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Kurzzusammenfassung

Auf Skalenräumen basierende Ideen sind aus dem heutigen
Alltag nicht mehr wegzudenken. Wir beginnen mit einem auf der
homogenen Diffusionsgleichung aufbauenden Skalenraum und
verfolgen zwei Strategien zur Konstruktion neuer Skalenräume.
Als erstes beweisen wir, dass der lineare Osmosefilter, welcher auf
einer Drift-Diffusionsgleichung beruht, eine Reihe von wichtigen
Skalenraumeigenschaften erfüllt. Der zusätzliche Driftterm er-
möglicht einen großen Freiraum in der Modellierung und hat
sich bereits als vielversprechend in der Bildverarbeitung etabliert.
Allerdings sorgt er auch dafür, dass der stationäre Zustand nicht
konstant ist, im Gegensatz zu bisher untersuchten Skalenräumen.
Bei dem Beweis von Vereinfachungseigenschaften im Sinne von
Lyapunov-Funktionalen führt dies zu einer Reihe von Problemen.
Während der erste Teil der Arbeit einen neuen Skalenraum einführt,
werden wir uns im zweiten Teil den beiden meist studierten Klas-
sen von Skalenräumen widmen: den linearen shift-invarianten und
den morphologischen Skalenräumen. Mithilfe der neu eingeführten
Cramer-Fourier-Transformation zeigen wir, wie sich beide Klassen
sowohl auf struktureller Ebene als auch auf der Ebene der Evoluti-
onsgleichungen verbinden lassen. Dieses Resultat erweitert ein Er-
gebnis über die strukturelle Gleichheit des Gaußschen Skalenrau-
mes mit seinem morphologischen Gegenstück. Weiterhin beweisen
wir, dass die entscheidenden Eigenschaften der bisher verwendeten
Cramer-Transformation erhalten bleiben.
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Short Abstract

Scale-space ideas are ubiquitous and indispensable for modern im-
age analysis. Starting from a linear scale-space based on a homo-
geneous diffusion equation we pursue two strategies to create new
scale-spaces. First, we rigorously prove that the linear osmosis fil-
tering, which is based on a drift-diffusion equation, fulfils several im-
portant scale-space properties. The additional drift term introduces
a modelling choice that has proved valuable in the past for image
processing applications. However, in contrast to previously analysed
scale-spaces, the steady state is non-constant. This leads to a num-
ber of challenges when aiming for image simplification properties in
terms of Lyapunov functionals.
Whereas we analyse a new scale-space in the first part, the second
part picks up the two most studied classes of scale-spaces: linear
shift-invariant and morphological scale-spaces. By introducing the
Cramer-Fourier transform, we can connect these classes both on a
structural level and on the level of evolution equations. This extends
a structural similarity result between the Gaussian scale-space and
its morphological counterpart. While the decisive properties of the
previously used Cramer transform are preserved, our new transfor-
mation has many benefits in an image processing context. We use
the Cramer-Fourier transform to construct not yet discovered scale-
spaces.
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Abstract

Scale-space ideas are ubiquitous and indispensable formodern image
analysis. They combine efficiency with simplicity and enable a wide
range of image processing applications. In this work, we review ex-
isting scale-spaces, construct new ones and analyse the relations be-
tween different classes of scale-spaces. Starting from a linear scale-
space based on a homogeneous diffusion equation we pursue two
strategies to create new scale-spaces.
First, we analyse the linear osmosis filtering. This image filter relies
on a drift-diffusion equation where the additional drift term is used
to steer the evolution towards a desired steady state. As previous re-
sults show, this has applications for seamless image cloning, shadow
removal and image compression. For a given drift vector, we develop
a complete scale-space theory for the linear osmosis filtering. Of
particular importance is the existence of a family of Lyapunov func-
tionals. Its existence guarantees simplification of the image evolution
over time. Out of this family, one Lyapunov functional has an infor-
mation theoretic interpretation and is related to the relative entropy.
This explains how a scale-space can have reasonable simplification
properties and still approaches a non-constant steady state. Further-
more we show convergence of the parabolic drift-diffusion equation
towards a specific solution of the elliptic steady state equation. Both,
existence of Lyapunov functionals and convergence result rely on
having a positive lower bound of the steady state. We also prove such
a statement.
Whereas we analyse a new scale-space in the first part, the second
part picks up the two most studied classes of scale-spaces: linear
shift-invariant and morphological scale-spaces. Previous research
suggests a structural similarity between theGaussian scale-space and
the morphological scale-space with quadratic structuring function.
However, the Cramér transform, that is used to analyse this relation,
is limited to this specific example. We give an extensive overview
over previous approaches to connect linear andmorphological scale-
spaces and show that a Fourier-based transform is much more nat-
ural in an image processing context. This leads us to the introduc-
tion of the novel Cramér-Fourier transform. We show that all deci-
sive properties of the Cramér transform are preserved and the only
known correspondence is recovered by our new transform. Further-
more, we extend the previously known result and connect the linear
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shift-invariant and morphological scale-spaces both on a structural
level and on the level of evolution equations. In particular we show
that the morphological counterpart of the Poisson scale-space is the
morphological scale-space with a flat structuring function. Apart
from obtaining many new correspondences, we also construct not
yet discovered scale-spaces. At the end, we also outline a way to
unify both approaches based on the Cramér and the Cramér-Fourier
transform. This allows us to sketch an extension of the obtained
results to discrete filters.

vi



To Clara





Acknowledgments

First of all, I would like to thank JoachimWeickert. He invited me to work in his
mathematical image analysis group on a number of interesting and challenging
problems. He also proposed and initiated to look into the topics discussed in this
thesis. Without his supervision, this PhD thesis would have not been possible.
I would also like to thank Remco Duits for agreeing to review this thesis and
for discussions on possible extensions of the presented results. David Hafner
and Pascal Peter deserve special thanks for proofreading and providing valuable
feedback on a preliminary version of this work.
Furthermore, my thanks go to Darya Apushkinskaya for providing references
for and key insights into a number of relevant research results related to the
well-posedness of PDE evolution as well as Luis Alvarez for providing alternative
proofs for the existence of weak solutions based on Galerkin approximations.
Next, I would like to express my gratitude to all other current and previous
members of our group, in particular I want to thank Sarah Andris, Matthias
Augustin, Leif Bergerhoff, Marcelo Cárdenas, Oliver Demetz, Sven Grewenig,
Laurent Hoeltgen, Sebastian Hoffmann, Markus Mainberger, Sabine Müller,
Nico Persch, Christian Schmaltz, Christopher Schroers and Simon Setzer for
numerous and fruitful discussions. Furthermore, my gratitude goes to our
secretary Ellen Wintringer and our system administrator Peter Franke who
supported me in all non-scientific aspects related to working as research assistant
at Saarland University.
Also my family, first and foremost my fiancée Clara, contributed to making this
work a success. Their unlimited support always encouraged me.

ix





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Gaussian Scale-Space . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Nonlinear Anisotropic Diffusion Scale-Spaces . . . . . . . . . . 5
1.4 Morphological Scale-Spaces . . . . . . . . . . . . . . . . . . . 7
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Scale-Space Theory for Linear Osmosis 11
2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . 12
2.2 Linear Osmosis Model . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Existence and Regularity . . . . . . . . . . . . . . . . . . . . . 19
2.5 Grey Value Invariance . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Positivity Preservation . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Elliptic PDE and Steady State . . . . . . . . . . . . . . . . . . . 24
2.8 Lyapunov Functionals . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Morphological Counterparts of Linear Scale-Spaces 43
3.1 Linear Shift-Invariant (LSI) Scale-Spaces . . . . . . . . . . . . 43

3.1.1 Pseudodifferential Evolutions . . . . . . . . . . . . . . . 44
3.1.2 Interpretation as Convolution Scale-Spaces . . . . . . . 45
3.1.3 Examples of LSI Scale-Spaces . . . . . . . . . . . . . . 46

3.2 Morphological Scale-Spaces Revisited . . . . . . . . . . . . . . 50
3.2.1 Hamilton-Jacobi Equations . . . . . . . . . . . . . . . . 50
3.2.2 Interpretation as Infimal Convolution Scale-Spaces . . . 51

xi



3.2.3 Examples of Morphological Scale-Spaces . . . . . . . . 52
3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Hopf-Cole Transform . . . . . . . . . . . . . . . . . . . 55
3.3.2 Non-Newtonian Calculi . . . . . . . . . . . . . . . . . 57
3.3.3 Large Deviations Theory . . . . . . . . . . . . . . . . . 58
3.3.4 Cramér Transform . . . . . . . . . . . . . . . . . . . . 60

3.4 The Cramér-Fourier Transform . . . . . . . . . . . . . . . . . 61
3.5 Connections between Linear and Morphological Evolutions . . . 63
3.6 Application to Specific Scale-Spaces . . . . . . . . . . . . . . . 67
3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 Comparison to the Cramér Transform . . . . . . . . . . . . . . 78
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Conclusions and Outlook 85
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A Large Deviations Theory 89

Index 91

Bibliography 93
Own Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



Chapter 1

Introduction

Mathematics is the art of giving the same name to
different things.

Henri Poincaré

1.1 Motivation

Over the last decades, the influence of image processing applications on our daily
life has been rapidly increasing. Digital cameras have not only replaced film cam-
eras, but nowadays they are also integrated in almost every smartphone. These
mobile devices are omnipresent and allow to modify, improve and alter images
in seconds or even real-time. For the purpose of designing the underlying al-
gorithms two properties are vital: efficiency and simplicity. The designed algo-
rithms and methods should have as few parameters as possible with sane defaults
that work out of the box with no need of tweaking. Such algorithms are the daily
driver of an increasing number of people publishing more and more images on
the world wide web. However, there is also another class of methods whose
advance may completely change the world we know today. These are the highly
specialised algorithms that enable, among other things, driver assistance systems,
self-driving cars and all kinds of virtual and augmented reality applications.
What do all of these image processing applications have in common? Without the
emerge and prevalence of digital computers in the first half of the 20th century
none of the above examples would be conceivable. The almost exponential in-
crease in computing power over the last decades is only one reason for the current
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Chapter 1. Introduction

overwhelming success of image processing. The main advancements came from
an improved algorithm design and better understanding of drawbacks and advan-
tages of the employed methods. This is most apparent when keeping in mind
that the first image processing algorithms where investigated long before enough
computing power was available to evaluate the algorithm’s result numerically.
On its core, many image processing techniques rely implicitly or explicitly on
the simplification of images. These simpler versions of the image are essential
in many regards. The first preprocessing step after the acquisition of an image
usually consists of carving out the details required for further analysis while elim-
inating unwanted image features. The important aspect here is that this prepro-
cessing step does not need to accurately preserve all image details. The desired
goal for which this image was taken decides on the meaningfulness of specific
image features. As a simple example let us imagine a noisy image. In order to
generate an visually present image it would be enough to remove the noise while
preserving as many details as possible. However, for segmentation or object-
detection algorithms, too many small-scale structures might deteriorate the re-
sults.
In this work we focus exclusively on simplification methods based on partial
differential equations (PDEs) and, more generally, pseudodifferential equations.
When starting with a single image, these methods have the advantage of
generating a family of images indexed by a single time parameter. This time
parameter is used to decide on the scale of an image and on the level of details.
Such a family of images is known as a scale-space representation of an image.
The scale-space concept is essential for this work. From a mathematical point
of view scale-space approaches based on (pseudo-)differential equations offer
several modelling choices. First of all, and this is the most influential decision
- we need to pick a (pseudo-)differential operator. Since we are interested
in creating time evolutions of images, we will mostly stick to hyperbolic and
parabolic differential operators. However, there are also elliptic differential
operators known to create scale spaces [e.g. Burgeth et al., 2005b]. The next
choice lies in defining suitable boundary conditions. Here, the desired goal
should be taken into account. When the purpose is to analyse the differential
operator in question, is best to work on unbounded domains with no boundary
condition that might influence the evolution of the image. For real world
examples however, relying on an unbounded domain is an unrealistic assumption
for practical applications. Therefore, we use homogeneous Neumann boundary
conditions when discussing concrete algorithms that are designed to obtain a
desired result. Neumann boundary conditions guarantee a no-flux condition
over the boundary and help to preserve the average grey value of the image
evolution. In contrast, we take an unbounded domain for granted when we
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Gaussian Scale-Space

analyse the relations and connections between different scale-spaces.
The goal of this thesis is twofold. First, we develop a scale-space theory for the
linear osmosis filter. This recently introduced image filter is based on a drift-
diffusion equation and employs Neumann boundary conditions. We discuss not
only the parabolic differential operator, we also analyse the accompanying elliptic
steady state operator in detail. In particular, we construct a family of Lyapunov
functionals and use it to prove convergence of the parabolic PDE towards a spe-
cific solution of the elliptic PDE.
Afterwards, we restrict our investigation to a sub-class of the linear scale-spaces:
These are the linear shift-invariant (LSI) scale-spaces. Based on their represen-
tation in the Fourier domain we introduce the novel Cramér–Fourier transform
and show how it connects these LSI scale-spaces to morphological scale-spaces.
However, before we go into more details the following sections give a overview of
the different classes of scale-spaces that we use throughout this work. The end
of this chapter concludes with an outline of the thesis.

1.2 Gaussian Scale-Space

Scale-spaces take a key part in this work. They offer a mathematical and precise
description of an image that changes over time and adheres to a number of prop-
erties that can in many cases categorised as [Alvarez et al., 1993]

• architectural properties,

• information-reducing properties or

• invariance requirements .

First, however, let us start by fixing the notation used in connection with images.
An image is represented by a function f : Ω → R+ mapping coordinates from
the image domain Ω ⊂ R2 to positive grey values. The image domain is always
an open subset of an Euclidean space. Additional requirements are stated in the
sections where they are needed. The grey values are real numbers with small
and high values representing dark and light colours respectively. Although we
restrict our analysis in this thesis to two-dimensional grey scale images, many of
the results have analogues in higher dimensions.
Although it is also interesting to analyse images on its own, we want to study the
family of images

{Tt f | t > 0} (1.1)

3



Chapter 1. Introduction

indexed by a time parameter t. Such a family of images is an scale-space represen-
tation of an image f if T0 f coincides with f and if Tt f represents increasingly
simpler versions of f for growing t. However, there is no standardized definition
of a scale-space. Inmost cases, images are considered to be simpler if they contain
less structure and information. In this work we will also see an example where
simplicity is defined relative to a given image.
One of the first studied scale-spaces is obtained by computing the convolution of
an initial image f with a Gaussian G0,σ2 with mean zero and increasing variance
given by σ2 = 2t, i.e.

u(x, t) = (f ∗G0,2t)(x) . (1.2)

TheseGaussian kernels also lend their name to this scale-space, it iswidely known
as Gaussian scale-space. Several authors assume a different set of requirements
to single out this scale-space [see Weickert, 1998, Section 1.2.2]. The first ones
where Iijima [1962], Witkin [1983] and Koenderink [1984].

Instead of given an explicit description of the scale-space as seen in (1.2), inmany
cases it is easier to construct and model scale-spaces as solution of parabolic
PDEs. This leads to an alternative description of the Gaussian scale-space as the
solution of the initial value problem

∂tu = ∆u, onΩ× (0, T ] (1.3a)
u(., 0) = f (.) onΩ (1.3b)

where T > 0 and ∆ =
(
∂xx + ∂yy

)
denotes the spatial Laplacian.

The two equations (1.3a)–(1.3b) are the starting point of this thesis. By adapt-
ing and modifying this initial value problem, numerous scale-spaces have been
proposed and applied to problems in image analysis.
Most importantly for practical applications: When working on real-world prob-
lems, the image domain is always bounded. Since the boundary highly influences
the evolution and therefore the scale-space description of an image, it is desired
to incorporate these boundaries into the theoretical investigations. This allows
better predictions of the properties of discrete implementations and allows amore
precise modelling of scale-spaces to achieve a specific purpose. In Chapter 2
we study a scale-space theory for the linear osmosis filtering. This image fil-
ter supplements the linear diffusion equation (1.3a) with an additive drift term.
This method is useful for several image processing tasks such as seamless image
cloning, shadow removal and even image compression. The point is that it is
an already established initial boundary value problem where we cannot (and do
not want to) change the underlying behaviour by modifying or even removing the
boundary conditions.
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Nonlinear Anisotropic Diffusion Scale-Spaces

The second important topic of this work is based on the known connection
between the Gaussian scale-space and specific morphological scale-spaces.
Analysing this connection in Chapter 3 allows us to define a new transform that
extends previously known results.

1.3 Nonlinear Anisotropic Diffusion Scale-Spaces

Although the linear osmosis filter is a linear approach, many of its scale-space
properties will turn out to resemble results that are obtained for nonlinear
anisotropic scale-space approaches. For this reason, we give a short overview
about nonlinear anisotropic diffusion scale-spaces.
The name anisotropic already suggests that some kind of directional information
influences the evolution of the diffusion. These directional information are en-
coded in the structure tensor. It is obtained by

Jρ(∇uσ) := Kρ ∗ (∇uσ (∇uσ)
ᵀ
) ρ > 0,σ > 0 (1.4)

where uσ is a presmoothed version of the image u and the Gaussian Kρ is used
to assemble directional information from a small (weighted) neighbourhood. If
all pixels in this neighbourhood agree on the direction of the image gradient the
structure tensor will have one large and one small eigenvalue. Therefore, the
structure tensor can be used to detect edges and edge directions in images. In a
diffusion context, the structure tensor is used to prevent smoothing across edges:
Weickert [1998] analyses the following initial boundary value problem

∂tu = div(D(Jρ(∇uσ))∇u) onΩ× (0, T ] (1.5a)
u(., 0) = f (.) onΩ (1.5b)

〈D(Jρ(∇uσ))∇u, n〉 = 0 on ∂Ω× (0, T ] (1.5c)

where f ∈ L∞(Ω) and the diffusion tensor D ∈ C∞(R2×2, R2×2) is symmetry
preserving with D(Jρ(∇uσ)) being uniformly positive definite.
The smoothing properties of (1.5a)–(1.5c) are carried over from the linear homo-
geneous diffusion initial value problem

∂tu = div(∇u) onΩ× (0, T ] (1.6a)
u(., 0) = f (.) onΩ (1.6b)

whose solution is given by a convolution of the initial value f with aGaussianwith
variance σ increasing quadratically. This convolution ensures that the evolution
of (1.6a)–(1.6b) is smooth for every t > 0. This holds even in cases where the
initial value admits only lesser smoothness assumptions.
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Chapter 1. Introduction

Although the solution of (1.5a)–(1.5c) is not given by a convolution, similar
smoothing properties apply and the unique solution u is a smooth function in
C∞(Ω× (0, T ]) [Weickert, 1998, Theorem 1].
Furthermore, this solution u also admits an extremum principle which allows
bounding its value by the essential infimum and essential supremum of the initial
value f , i.e. the following inequality holds true for all (x, t) ∈ Ω× (0, T ]

ess inf
Ω

f 6 u(x, t) 6 ess sup
Ω

f . (1.7)

This inequality guaranties positivity preservation of the image evolution u if the
initial value f is positive. Furthermore, it ensures that the solution cannot be-
come arbitrarily large. However, not only upper and lower bounds are known
a priori for the evolution u but also its average grey value. The combination of
a differential operator in divergence formulation with homogeneous Neumann
boundary conditions ensures that the average grey value stays constant over time.
Incorporating the initial condition, we conclude that the average grey value of f is
also the average grey value of u(·, t) for all t > 0. We use f to denote the average
grey value of f , i.e.

f :=
1
|Ω|

∫
Ω

f (x) dx (1.8)

where

|Ω| =

∫
Ω

1 dx . (1.9)

Furthermore, we use M to denote the operator

Mf (x) := f for all x ∈ Ω (1.10)

turning an image into a constant image while preserving the average grey value.
Apart from studying these statistical properties of the evolution, also the long
time behaviour is of interest. One of the important theorems is the following:

Theorem 1.3.1 (Weickert, 1998, Theorem 3). The solution of (1.5a)–(1.5c) has the
following properties

(a) (Lyapunov functionals)

For all r ∈ C2(R) with r ′′ > 0 the function

V (t) := Φ(u(·, t)) :=
∫
Ω

r(u(x, t)) dx (1.11)

is a Lyapunov functional:

6



Morphological Scale-Spaces

(i) Φ(u(·, t)) 6 Φ(Mf ) for all t 6 0.

(ii) V ∈ C(R>0)∩C1(R) and V ′ 6 0 for all t > 0.

Moreover, if r ′′ > 0 on R, then V (t) = Φ(u(·, t)) is a strict Lyapunov
functional:

(iii) Φ(u(·, t)) = Φ(Mf ) ⇐⇒

{
u(·, t) = Mf on Ω (if t > 0)
u(·, t) = Mf a.e. on Ω (if t = 0)

(iv) If t > 0, then V ′(t) = 0 if and only if u(·, t) = Mf on Ω.

(v) V (0) = V (T ) for T > 0 ⇐⇒

{
f = Mf a.e. on Ω and

u(·, t) = Mf on Ω× (0, T ]

(b) (Convergence)

(i) lim
t→∞ ‖u(·, t) −Mf ‖Lp(Ω) = 0 for p ∈ R>1 .

(b) In the 1D case, the convergence lim
t→∞ u(x, t) = Mf is uniform on Ω .

The Lyapunov functionals play the role of a potential function and measure the
progress of the evolution towards its final steady state. For two given times t1 < t2

the grey value at a single point x may violate

|u(x, t1) − f | > |u(x, t2) − f | (1.12)

even though u converges to a constant image with value f . This means that
temporarily at a given point the distance of its grey value to its steady state value
may increase. Therefore, instead of looking at individual pixels, the Lyapunov
functional defines a potential functions that can be used to measure the progress
of the evolution as a whole.
In the above nonlinear anisotropic diffusion setting, the Lyapunov functional is
also used to verify Lp-convergence of the evolution to the average grey value of
the initial image.
The method of Lyapunov functionals is closely related to the potential method
[Cormen et al., 2001, Section 17.3] in computational complexity theory.

1.4 Morphological Scale-Spaces

This section is based on Schmidt andWeickert [2015, Chapter 3] and introduces
another class of scale-spaces, called morphological scale-spaces. For their def-
inition, we need to discuss the basic concepts of mathematical morphology.

7



Chapter 1. Introduction

Mathematical morphology is a system theory where the classical algebra
(R,×,+) that is used within linear system theory is replaced by the
morphological max-plus algebra Rmax := (R ∪ {−∞},+, max) or min-plus
algebra Rmin := (R ∪ {+∞},+, min) . In the last decades, these morphological
algebras have become very fruitful tools in applications such as discrete event
systems [Baccelli et al., 1992]. From a more theoretical perspective, they have
been studied in fields like tropical geometry [Maclagan and Sturmfels, 2015].
Morphological systems are based on the concepts of dilation and erosion. The
dilation ⊕ resp. erosion 	 of an image f with some concave structuring function
s : R2 → R ∪ {−∞} is defined as

(f ⊕ s)(x) := sup
y∈R2

{f (y) + s(x−y)} , (1.13)

(f 	 s)(x) := inf
y∈R2

{f (y) − s(y−x)} . (1.14)

In the following, we only focus on dilation for our derivations. Similar definitions
in terms of erosions are also possible.
For the purpose of scale-space creation the width of the structuring function has
to be increased over time. Commonly, an operation called umbral scaling is used:

st(x) := t s
(x

t

)
for t > 0, (1.15a)

s0(x) := s(x) . (1.15b)

With u(., 0) := f , the dilation scale-space evolution {u(., t) | t > 0} of f is given
by

u(., t) = f ⊕ st . (1.16)

It is possible to derive PDE formulations for such scale-space evolutions, if one
considers the slope transform of s [Maragos, 1994, Dorst and van den Boomgaard,
1994]:

S [ s ] (w) := stat
x∈R2

{s(x) − 〈w, x〉} , (1.17)

where the stationary values statx {h(x)} denote the set of function values forwhich
the gradient is zero:

stat
x∈R2

{h(x)} := {h(x) |∇h(x) = 0}. (1.18)

8



Outline

With these definitions, van den Boomgaard and Dorst [1997] have shown that
u(x, t) = (f ⊕ st)(x) is the solution of

∂tu = S [ s ] (∇u) on R2 × (0,∞), (1.19a)
u(., 0) = f (.) on R2. (1.19b)

For instance, choosing

s(x) = −
1
4
|x|2 (1.20)

as structuring function gives S [ s ] (w) = w2. Thus, (1.19a) becomes

∂tu = |∇u|2. (1.21)

An interesting equivalence between the Gaussian scale-space and morphological
scale-spaces with a quadratic structuring function has been discovered by van
den Boomgaard [1992b]: While Gaussians are the only separable and rotation-
ally invariant convolution kernels [Otsu, 1981], quadratic functions are the only
separable and rotationally invariant structuring functions. This has also triggered
Florack et al. [1999] and Welk [2003] to consider evolutions that combine both
scale-spaces.

If one uses as structuring function a flat disc

s(x) =

{
0 (|x| 6 1),
−∞ (else),

(1.22)

it has been shown [Brockett and Maragos, 1992] that one arrives at

∂tu = |∇u|. (1.23)

So far, it was an open question if this equation has a corresponding linear scale-
space. We will answer this in Chapter 3.

1.5 Outline

The goal of this work is to extend the toolbox for analysing and designing scale-
spaces. We focus on PDE-based approaches and two different strategies.
In Chapter 2 we present a detailed continuous scale-space theory for the linear
osmosis filtering. The underlying drift-diffusionmodel was already introduced to
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Chapter 1. Introduction

the image processing community byWeickert et al. [2013] and Vogel et al. [2013].
The authors also discuss several ways to construct useful drift vector fields that
lead to impressive results. Furthermore, they depict essential continuous scale
properties. This work expands their model mathematically. We do not only dis-
cuss and prove all properties stated in Weickert et al. [2013], we also show well-
definedness of the approach and givemore precise statements about prerequisites
and results. We also prove that both the image evolution and the steady state are
always strictly positive. In particular, this shows that the conjecture in Weickert
et al. [2013] about the preservation of positivity holds true.
Whereas Section 2.1 discusses some definitions needed to state sharp require-
ments, the linear osmosis filtering itself is introduced in Section 2.2. Althoughwe
focus on the continuous formulation, we review some previously obtained results
for discrete images using the linear osmosis filtering in Section 2.3. In Section 2.4
the existence of solutions is discussed before we analyse grey-value invariance in
Section 2.5 and positivity results in Section 2.6. Section 2.7 introduces the elliptic
model needed in Section 2.8 for the construction of Lyapunov functions which
are essential to the convergence results in Section 2.9. Finally, we sum up the
results of Chapter 2 in Section 2.10.
In Chapter 3 on the other hand, we focus on the connections between linear shift
invariant andmorphological scale-spaces. The underlying classes of scale-spaces
are introduced and discussed in detail in the Section 3.1 and Section 3.2 respec-
tively. Section 3.3 gives an overview over several previous approaches that con-
nects linear tomorphological scale-spaces beforewe introduce the novelCramér–
Fourier transform to in Section 3.4. Although it is obtained by modifying a trans-
formation called Cramér transform and we show that both transformations share
the same characteristic properties. However, our approach has the benefit of be-
ing applicable to a wider range of scale-spaces and allows us to connect linear and
morphological scale-spaces both on the level of convolutions/infimal convolu-
tions and on the level of evolution equations. This leads us to the definition of the
morphological counterpart of a linear shift-invariant scale-space is Section 3.5.
To visualise the results, we conduct several experiments in Section 3.7. Section
3.8 is dedicated to a comparison of both transformations with the goal to find a
unifying method generalising both, the Cramér and Cramér–Fourier transform.
The results are used to sketch a possible application of our analysis to discrete
filters. Section 3.9 sums up the results of Chapter 3.
In Chapter 4 we conclude this thesis and give an outlook.

10



Chapter 2

Scale-Space Theory for Linear
Osmosis

In contrast with nature, where the nonlinear limit-
ing of concentrations is caused by the depletion of
morphogens, engineering systems require dedicated
mechanisms for preventing overflow.

Alexander S. Sherstinsky and Rosalind W. Picard

In this chapter we develop a scale-space theory for the linear osmosis filtering.
The evolution equation (without boundary conditions and initial values) under-
lying the linear osmosis filtering is given by

∂tu = div (∇u− du) (2.1)

where the vector field d is called drift vector field. This PDE extends the linear
diffusion equation which is recovered for a vanishing drift vector field. In an
image processing context, d can be used to create a local grey value imbalance
which is resolved globally by the above evolution equation. In a discrete setting
we can think of having a semi-permeablemembrane between neighbouring pixels.
This also explains the name osmosis. The goal of this chapter is to establish a
scale-space theory for the linear osmosis filtering. However, before we can give a
precise definition of the linear osmosis filtering and the necessary requirements
we have to discuss a few prerequisites. Therefore, we review a few definitions.
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Chapter 2. Scale-Space Theory for Linear Osmosis

2.1 Mathematical Background

One of the key concepts needed in this chapter is Hölder continuity.
Let the image domain Ω be an open and bounded subset of the Euclidean
space R2. A function g : Ω → R is called Hölder continuous with exponent
α ∈ (0, 1] if it fulfils the Hölder condition

| g(x) − g(y)| 6 C |x − y|α (2.2)

for all x, y ∈ Ω and some constant C > 0. This condition defines a seminorm

[ g]α := sup
{
| g(x) − g(y)|

|x − y|α

∣∣∣∣ x, y ∈ Ω, x 6= y
}

, (2.3)

that is, it satisfies the seminorm properties

1. [ g]α > 0,

2. [cg]α = |c|[ g]α and

3. [ f + g]α 6 [ f ]α + [ g]α

for real values c ∈ R and functions f , g : Ω → R. For being a norm, only the
condition [ g]α = 0 if and only if g ≡ 0 is missing. Therefore, we can make it a
norm by adding the infinity norm

‖ g‖∞ := sup {g(x) | x ∈ Ω} . (2.4)

This leads to the definition of the Hölder space C0+α(Ω) as the set of functions g
onΩ that have a finite norm

‖ g‖0+α := ‖ g‖∞ + [ g]α . (2.5)

More generally, the Hölder spaces Ck+α(Ω) are defined as the set of k-times dif-
ferentiable functions onΩ for which the norm ‖g‖k+α given by

‖g‖k+α :=
∑
|`|6k

‖∇`g‖∞ +
∑
|`|=k

[
∇`g

]
α

(2.6)

is finite. We use the following multi-index notations:

|`| := `1 + `2 and ∇` := ∂`1
x ∂

`2
y . (2.7)
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Linear Osmosis Model

This means the Hölder space Ck+α(Ω) consists of k-times differentiable func-
tions whose partial derivatives up to order k are bounded and fulfil a Hölder
condition. Later on, we also use that Hölder spaces are Banach spaces, i.e. every
Cauchy sequence in Ck+α(Ω) has a limit in Ck+α(Ω).
Now that we know the definition of Hölder spaces we turn our attention to the
definition of theHölder class of a domain. Gilbarg and Trudinger [2001, Chapter
6.2] define that the boundary ∂Ω of a bounded domainΩ ⊂ R2 is of class Ck+α,
if at each point x0 ∈ ∂Ω there is a ball B = B(x0) and a one-to-one mappingψ of
B onto D ⊂ R2 such that

1. ψ(B∩Ω) ⊂ R2,

2. ψ(B∩ ∂Ω) ⊂ ∂Rn
+ and

3. ψ ∈ Ck+α(B),ψ−1 ∈ Ck+α(D) .

Locally, we can regard such a boundary as the graph of a function in Ck+α(Ω).
Having such a condition on the boundary is very typical for existence results of
solutions of partial differential equations. It is needed to extend results obtained
on the open setΩ to its completionΩ [e.g. Gilbarg and Trudinger, 2001, Chap-
ter 6.2].

2.2 Linear Osmosis Model

The linear osmosis filtering was introduced to the image processing community
byWeickert et al. [2013] and Vogel et al. [2013]. It is based on an initial boundary
value problem that is obtained by incorporating an additional term - called drift
term - into the homogeneous linear diffusion equation with Neumann boundary
conditions.
For the following discussion we will always assume that the image domain Ω is
a bounded, simply connected and open subset of the Euclidean space R2 with
boundary ∂Ω of class C2+α. The outer normal vector on ∂Ω is denoted by n.
Due to the requirements on the boundary it is well-defined on the whole bound-
ary. We also require the positive initial image f : Ω → R>0 to be a function
in C2+α(Ω). Furthermore, its gradient on the boundary is constrained to vanish
in outer normal direction, i.e.

〈∇f , n〉 = 0 on ∂Ω . (2.8)

One goal to modify the diffusion equation was to introduce an additional param-
eter that influences the steady state of the evolution. This new parameter defines
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Chapter 2. Scale-Space Theory for Linear Osmosis

the long term solution (almost) independent of the initial image as we will see in
Section 2.9. Since it forces the evolution to deviate from its path to a constant
image, this parameter is typically called drift vector field and denoted by d. It is
a smooth vector field d :Ω→ R2 with d ∈

(
C∞ (Ω))2

. Similarly to the initial
image, its outer normal derivative on the boundary is required to be zero, i.e.

〈d, n〉 = 0 on ∂Ω . (2.9)

With these conditionswe are now ready to define the linear osmosis initial bound-
ary value problem.

Definition 2.2.1 (Linear Osmosis). Let f and d be given as described above. The
linear osmosis initial boundary value problem is given by the parabolic PDE

∂tu = div(∇u− du) onΩ× (0, T ] (2.10a)

with initial condition

u(., 0) = f (.) on Ω (2.10b)

and homogeneous Neumann boundary condition

〈∇u, n〉 = 0 on ∂Ω× [0, T ]. (2.10c)

Similar to the structure tensor introduced in Section 1.3 the drift vector field d
usually incorporates and encodes directional information. Conceptionally, how-
ever, there are several differences between nonlinear diffusion and linear osmosis.
First of all, the model stays linear after introducing the drift termwhereas using a
time-dependent structure tensor leads to an nonlinear anisotropic PDE. Second,
since evolutions of diffusion equations converge towards a constant steady state,
the long time behaviour is known in advance. This means that the real value of
this kind of diffusion equations come from analysing and studying the evolution
itself. In contrast, the distinct property of the linear osmosis model is the de-
pendence of the steady state on the drift term. In fact, linear osmosis was even
designed to allow to use the drift vector field as a model parameter to steer the
evolution towards a desired steady state. This means that instead of analysing the
evolution itself, understanding the long term behaviour is much more important
for the linear osmosis model.
Throughout this chapter we will use L to denote the elliptic second-order partial
differential operator

Lu := −div(∇u− du) (2.11)
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appearing (up to a minus sign) at on the right-hand side of (2.10a). It is a partial
differential operator in divergence form, i.e. L has the form

Lu := −div(A∇u) + 〈b,∇u〉+ cu (2.12)

with A(x) = (ai,j(x))i,j=1,2 being the constant identity matrix in R2×2 for all
x ∈ Ω and

b(x) = −d(x), c(x) = −div(d(x)) (2.13)

for all x ∈ Ω.
Equation (2.12) is a standard form of an elliptic differential operator. This form
is very useful when applying well-known results from classical PDE theory to
our setting. One important prerequisite needed for standard methods is uniform
ellipticity of L, i.e. the existence of constants A0 and A1 is required such that L
satisfies

A0|ξ|
2 6

2∑
i,j=1

aij(x)ξiξj 6 A1|ξ|
2 (2.14)

for all ξ ∈ R2, x ∈ Ω. Since aij(x) is either zero or one this conditions is always
trivially fulfilled and only mentioned for completeness.

2.3 Related Work

The evolution equation

∂tu = div (∇u− du) (2.15)

is known under several names. In the literature Fokker-Planck equation [Jordan
et al., 1998, Risken, 1984], Smoluchowski equation [van Kampen, 2007, Dhont,
1996] and Kolmogorov forward equation or second Kolmogorov equation [Gnedenko,
1998, Freidlin and Wentzell, 2012] are common. Physically, equation (2.15) is
motivated in cases where we have a particle moving under external forces. The
above evolution equation describes the time-evolution of the probability density
function of the velocity or position of this particle. In these cases, however, the
drift vector field d is known to be a gradient vector field, i.e.

d = −∇F . (2.16)

This simplifies the solution enormously and is violated in all cases of interest in
our image processing setting.
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Chapter 2. Scale-Space Theory for Linear Osmosis

Biology is another research area where equation (2.15) is used. It describes the
interaction between two (neuron) populations [Carrillo et al., 2011, Cantrell and
Cosner, 2003].

In an image processing context, equation (2.15) was introduced byWeickert et al.
[2013] and Vogel et al. [2013]. The authors supplemented the evolution equation
(2.15) with homogeneous Neumann boundary conditions and a given initial im-
age. In the following we want to review some of their applications. We start by
visualising the image evolution starting with a constant image in Figure 2.1.
In this case the drift vector field d is the so-called canonical drift vector field . For
a given positive image v it is given by

d :=
∇v
v

. (2.17)

With this choice the elliptic steady state equation reads

0 = div
(
∇u−

∇v
v

u
)

onΩ (2.18a)

∇u · n = 0 on ∂Ω (2.18b)

and is solved by v if v satisfies the boundary condition

∇v · n = 0 on ∂Ω . (2.19)

This is the same condition that we also assume for the initial image f . Although
this elliptic problem has more than one solution we prove in Section 2.9 that
the evolution obtained from the parabolic problem (2.10a)–(2.10c) converges to-
wards v up to a scaling constantwhich preserve the average grey value of the initial
image. This is also what we observe in Figure 2.1. In Figure 2.1 the canonical drift
vector fieldwas computed fromamandrill image and the images (a)–(d) showhow
the constant initial image evolves over time and converges to this mandrill image
again. Furthermore, we observe the multiplicative invariance of the canonical
drift vector field: under multiplicative rescalings of v the canonical drift vector
field stays the same. This property is one of the distinct advantages of the linear
osmosis model for practical applications. With regard to the implementation,
Weickert et al. [2013] employ a simple finite difference scheme. As can be seen
in Figure 2.1, most of the details of the image are already visible after a several
thousand iterations. This discretisation of the linear osmosis model can also be
used to construct discretisations of hyperbolic PDEs [Hagenburg et al., 2012].
However, to obtain a high quality reconstruction of the original imagemuchmore
iterations are needed. Vogel et al. [2013] have tested several implicit schemes and
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(a) t = 0 (b) t = 50

(c) t = 1, 000 (d) t = 250, 000

Figure 2.1: Image evolution for different values of t [Weickert et al., 2013]

propose to use the biconjugate gradient stabilized method (BiCGStab) [van der
Vorst, 1992]. This scheme is particularly designed to solve the large unsymmetric
system of equations that is obtained for the linear osmosis model.
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In the next example, we show a result for seamless image cloning (Figure 2.2).

(a) Euler
(b) Lagrange with
selection boundary (c) fused image

Figure 2.2: Seamless image cloning [Weickert et al., 2013]

For seamless image cloning we start with two images f1 and f2. For both we
compute their canonical drift vector fields d1 and d2 respectively. Then if we
want to seamlessly replace f1 by f2 in a (open) subdomain Γ of the image domain
Ω we define

d(x) =


d2(x) on Γ
1
2 (d1(x) + d1(x)) on ∂Γ
d1(x) onΩ \Γ

(2.20)

and use f1 as initial image. Although such a drift vector field would violate the
assumed smoothness assumptions of our continuous setting the discretisation
still satisfies the discrete stability criterion [Vogel et al., 2013].
For last example let us look at a proof-of-concept for image compression. Ex-
ploiting the fact that the canonical drift vector field is large at edge locations,
an edge detector is used to find such locations. Afterwards, the original image
is reconstructed f from the canonical drift vectors at these edge locations K.
For all other points not in K the drift vector field is set to zero. Apart from the
selected drift vector fields at location in K also the average grey value of f has
to be stored. Figure 2.3(c) shows a reconstruction obtained from the drift vector
field at locationsmarked in black in (b). The reconstruction is far fromperfect but
only a mere fraction of the whole drift vector field is used for the reconstruction.
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(a) original image
(b) selected pixel
at edge locations (c) reconstructed image

Figure 2.3: Image compression [Weickert et al., 2013]

2.4 Existence and Regularity

In the previous section we have seen that the linear osmosis filtering is a valu-
able tool in every image processing toolbox. From a mathematical point of view,
however, many questions are open. In the following section we want to develop a
complete scale-space framework for the linear osmosis filtering.
We start by discussing existence and regularity results of solutions of the linear
osmosis initial boundary value problem introduced in Definition 2.2.1. In this
section, the main goal is to show that we have indeed a solution and that this
solution is at least twice continuously differentiable. Furthermore, we are also
interested in a uniqueness result. The boundary conditions and the initial value
play a key role in establishing these objectives.
Only if the boundary conditions and the initial value reduce the solution space of
the differential operator sufficiently, the possibility of having multiple solutions
or even a whole family of solutions can be averted. On the other hand, care
should also be taken to avoid having contradicting requirements. However, not
only prerequisite from the employed model influence the number of solutions.
Also the requirements on the solution itself play a crucial rule.
Ourmodel (2.10a)–(2.10c) uses derivatives of order one in time and of order up to
two in space. Naturally, we expect a solution to be differentiable in time and twice
differentiable in spacial variables. Unfortunately, starting with a twice differen-
tiable initial value f ∈ C2(Ω) withΩ of class C2 is not enough to deduce such a
conclusion. Even more importantly, the Hölder spaces introduced in Section 2.1
are not suited to analyse evolutions of parabolic PDEs which depend on a time
parameter. In order to incorporate this time dependence into the definition of a
suitable solution space, the Hölder spaces H k+α(Ω) are adapted to a parabolic
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setting. Following Lieberman [1988], we use Q = Ω× (0, T ) and define

|u|0 = sup
Ω

|u|, (2.21)

[u]α = sup
{
|u(X ) − u(Y )|

|X −Y |α

∣∣∣∣X 6= Y on Q
}

and (2.22)

〈u〉β = sup
{
|u(x, t) − u(x, t + k)|

kβ/2

∣∣∣∣ (x, t), (x, t + k) ∈ Q , k > 0
}

. (2.23)

These values form the foundation of the parabolic Hölder spaces Hk+α(Q).
Since we only need these spaces for k 6 2 we only give the definition for these
spaces. For 0 < α 6 1 we have the following definitions:

• Hα as the space of functions with finite norm

|u|α = |u|0 + [u]α . (2.24)

• H1+α as the space of functions with finite norm

|u|1+α = |u|0 + |∇u|α + 〈u〉1+α . (2.25)

• H2+α as the space of functions with finite norm

|u|1+α = |u|0 + |∇u|α + |∇2u|α + |ut |α + 〈∇u〉1+α . (2.26)

To sum up the definitions, the norms do not only rely on the functions and
its space derivatives, but also include time derivatives. Since for second order
parabolic PDEs, the highest order derivative in space is twice as high as the
highest order time derivative, this imbalance is taken care of in the definition.
The time derivative of u only appears in the definition of H2+α were also the
second derivatives in space appear first.
Ladyzhenskaya et al. [1968], Nazarov andUraltseva [1995] and Lieberman [1988]
use these spaces to study the solvability of parabolic PDEswithNeumann bound-
ary conditions. Although they do not study the osmosis model (2.10a)–(2.10c)
explicitly, they developed and applied much more general methods in order to
prove existence and regularity of a much broader class of problems.
In this section we want to follow Lieberman [1988] and sketch his results. He
employs several methods originally developed for nonlinear elliptic PDEs from
Gilbarg and Trudinger [2001] and adapts them to parabolic PDEs [e.g. Lieber-
man, 1986, 1996].
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Based on themethod of continuity, he uses a functionψ ∈ H2+β withβ ∈ (0,α)
satisfying the initial condition and the boundary conditions at time zero

∇ψ(., 0) · n = 0 on ∂Ω (2.27a)
ψ(., 0) = f onΩ (2.27b)

to define the set E as the set of solutions u ∈ H2+α of

Lu− ∂tu = σ(Lψ− ∂tψ) onΩ× (0, T ) (2.28a)
∇u · n = σ∇ψ · n on ∂Ω× (0, T ) (2.28b)
u(., 0) = f onΩ (2.28c)

for some σ ∈ [0, 1].
Lieberman [1988] uses a parabolic version of Gilbarg and Trudinger [2001, The-
orem 17.28] which comes down to showing boundedness of E.
Such boundedness results can be obtained by parabolic analogues of the Leray-
Schauder Theory for elliptic PDEs [Gilbarg and Trudinger, 2001, Chapter 11].
In order to apply them, a priori estimates are needed. Such a priori estimates are
established by both Ladyzhenskaya et al. [1968] and Lieberman [1988].
This allows us to formulate the following theorem.

Theorem 2.4.1. The osmosis initial boundary value problem (2.10a)–(2.10c) has a
unique solution in H2+β.

This guarantees that we have a unique classical solution of the osmosis model
meaning a solution that is at least twice differentiable in the spatial variables and
at least once differentiable in time.

2.5 Grey Value Invariance

For diffusion filters, one of their most compelling features is to preserve the av-
erage grey value. This allows image manipulations that do not alter the overall
brightness of an image. Essential for such an invariance are the boundary condi-
tions. One has to ensure that no mass leaves or enters the image domain. This
comes down to a zero flux condition on the boundary which is expressed in terms
of the outer normal vector n as follows

〈∇u− du, n〉 = 0 on ∂Ω . (2.29)
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As we can see, not only the evolution u is involved when looking at boundary
conditions but also the drift vector field d. While requiring a zero flux condition
of the drift vector field itself

〈d, n〉 = 0 on ∂Ω (2.30)

simplifies the boundary condition (2.29), it potentially decreases the modelling
choices for d as well. However, currently most applications of the discrete os-
mosis filtering [Vogel et al., 2013,Weickert et al., 2013] use canonical drift vector
fields at the boundary that also satisfy (2.30).

Theorem 2.5.1 (Grey value invariance). Let u be the unique solution of the osmosis
evolution equation. Then we have average grey value stays constant over time, i.e.∫

Ω

u(x, t) dx =

∫
Ω

f dx for all t > 0. (2.31)

While this theorem was previously proved by Weickert et al. [2013, Proposition
1], we want to give a proof for the sake of completeness.

Proof of Theorem 2.5.1. For t = 0, u(·, t) and f coincide by the initial condition
(2.10b) and for t > 0 we compute the derivative of the average grey values

∂

∂t

∫
Ω

u(x, t) dx =

∫
Ω

ut(t) dx (2.32a)

=

∫
Ω

div(∇u− du) dx (2.32b)

=

∫
∂Ω

(∇u− du) · n dS (2.32c)

= 0 (2.32d)

where the last two equalities are due to the divergence theorem and the assumed
boundary conditions respectively. As a result, the average grey value does not
change.

2.6 Positivity Preservation

Whereas nonnegativity of the image evolution was already discussed and proved
in a continuous setting byWeickert et al. [2013, Proposition 1], Vogel et al. [2013,
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Proposition 1] showed that in a discrete setting even positivity is preserved. In
this section we extend the result of Weickert et al. and show that positivity is
preserved also in a continuous setting.
For this reason, we employ the strong maximum principle. To put it briefly, it states
that when the solution of a partial differential equation has a maximum in the
interior of its domain, then the solution is constant. The original version was de-
veloped byHopf in 1927 [seeHopf et al., 2002] and only applies to a specific class
of elliptic PDEs. Nirenberg [1953] extends these results to parabolic PDEs, and
later on, Friedman [1964] prove a strong maximum principal for parabolic par-
tial differential equations involving Neumann boundary conditions. Even more
general boundary conditions are discussed in Lieberman [1996]. We will use the
notation of Friedman [1964, Chapter 2]. Starting point is a strongly parabolic
evolution equation

∂tu = div(A∇u) + b ·∇u+ cu (2.33)

with bounded functions bi and c. In (2.12) we have seen that the osmosis evolu-
tion equation has this form. However, the results of Friedman [1958, 1964] and
Lieberman [1996] state as additional assumption the nonpositivity of c, i.e.

c 6 0 . (2.34)

In our case, the problem is that the variable c is the divergence of the drift vector
field d and only in trivial cases free of sign changes. As a remedy, the transforma-
tion

u 7→ u exp (αt) (2.35)

transforms equations of type (2.33) to equations of type (2.33):

∂tu = div(A∇u) + b ·∇u+ (c −α)u . (2.36)

The only difference is the shift of c by α. Hence, this change of variable
transforms the osmosis evolution equation to an equation of form (2.36) with
(c −α) < 0 for α large enough. The transformation (2.35) is commonly used
when studying partial differential equations of the form (2.33), see e.g. Smoller
[1983], Cantrell and Cosner [2003] and Protter and Weinberger [1999].
These observations allow to apply classical results from the theory of partial dif-
ferential equations. In particular, these results apply to the osmosis. Cantrell and
Cosner [2003, Corollary 1.18] formulate the following conclusion:
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Theorem 2.6.1. If u ∈ C2,1(Ω× (0, T ])∩C(Ω× [0, T ]) satisfies

ut − Lu > 0 onΩ× (0, T ] (2.37a)
〈∇u, n〉 > 0 on ∂Ω× [0, T ] (2.37b)

and u(x, 0) > 0 for some x ∈ Ω, then

u(x, t) > 0 onΩ× (0, T ]. (2.38)

All these requirements are fulfilled by the unique solution obtained in
Theorem 2.4.1. Therefore, the unique solution of the linear osmosis model
(2.10a)–(2.10c)

∂tu = div(∇u− du) onΩ× (0, T ]

u(., 0) = f (.) on Ω
〈∇u, n〉 = 0 on ∂Ω× [0, T ]

is strictly positive inΩ× (0, T ].

2.7 Elliptic PDE and Steady State

When aiming at long-term solutions of parabolic PDEs, it can be useful to also
look at the corresponding elliptic steady state PDE.
Complementing the operator L fromDefinition (2.12) with a homogeneous Neu-
mann boundary condition yields the elliptic partial differential equation

div(∇u− du) = 0 onΩ (2.40a)
〈∇u, n〉 = 0 on ∂Ω. (2.40b)

In contrast to the previously parabolic PDE, this PDE does not include a time
parameter. These kind of equations are interesting since they arise naturallywhen
studying the long time behaviour of parabolic PDEs. In many cases it can be
shown that the solution of the parabolic equation converges to a solution of the
elliptic one when the time t approaches infinity. This is exactly what we do in the
next few sections.
The most beautiful theory for this kind of differential equations with Neumann
boundary condition is available in the case where the sign of c 6≡ 0 does not
change, e.g.

c 6 0 onΩ. (2.41)
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Not only does a unique solution of

Lu = f onΩ (2.42a)
〈∇u, n〉 = 0 on ∂Ω (2.42b)

exist in C2+α(Ω), but it also satisfies a strong maximum-principle (Cantrell and
Cosner [2003], Theorem 1.2 and 1.16).
Existence andunique solvability are proven byGilbarg andTrudinger [2001, The-
orem 6.31].

Theorem 2.7.1. LetΩ be a domain with boundary of class C2+α and let the coeffi-
cients of L be inCα(Ω)with c 6 0, c 6≡ 0. Then, the homogeneousNeumann boundary
problem

Lu = f onΩ (2.43a)
〈∇u, n〉 = 0 on ∂Ω (2.43b)

has a unique solution u ∈ C2+α(Ω) for every f ∈ Cα(Ω).

Unfortunately, the elliptic PDE (2.40a)–(2.40b) does not fulfil c 6 0. Further-
more, also the transformation used in the previous section to shift c is not appli-
cable without incorporating a time parameter.
Although we lose uniqueness of the solution, this is beneficial since we are not
interested in the trivial solution u ≡ 0 which always solves (2.40a)–(2.40b) for
f ≡ 0.
Our goal is to show that (2.40a)–(2.40b) has a positive, smooth solution that is
unique up to a multiplicative constant.
The first step to achieve this is finding a weak solution. Weak solutions are gen-
eralised solutions that rely on an integral formulation employing the L2-inner
product. The differential equation is multiplied by a so-called test function v and
afterwards integrated over the whole domain Ω. The space of test functions is
the space C∞

0 (Ω) of all smooth functions onΩwith compact support inΩ.
In order to formalise the above descriptions and simplify them, a generalised
notion of differentiability, called weak differentiability is needed. A function
g ∈ L2(Ω) is a weak derivative of order α ∈ N2 of a function f ∈ L2(Ω) if∫

Ω

gv dx = (−1)|α|

∫
Ω

f Dαv dx (2.44)

holds for all v ∈ C∞
0 (Ω). The weak derivative g is then denoted by Dαf .
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If the function f is sufficiently often differentiable the weak derivative coincides
with the usual derivative. In this case we could apply the divergence theorem (as
a generalisation of integration by parts to multidimensional domains) |α|-times
to obtain (2.44) since the boundary terms would vanish due to v having compact
support inΩ and therefore being zero on the boundary. However, weak deriva-
tives can be computed even in cases where f is merely integrable.
Starting fromweak derivatives, it is also possible and straight forward to construct
weak gradients and weak divergences.
To study the space of weakly differentiable functions Sobolev spaces are used. The
Sobolev space

H k(Ω) := {u ∈ L2(Ω) | Dαu ∈ L2(Ω) for all α with |α| 6 k} (2.45)

of k-times weakly differentiable functions with weak derivatives up to order k in
L2(Ω) is a Hilbert space with scalar product

〈u, v〉k =

∫
Ω

∑
|α|6k

〈Dαu, Dαv〉 dx . (2.46)

Now, having all the above definitions at hand, we can define what we mean when
we talk about a weak solution of our elliptic partial differential equation. A func-
tion u ∈ H 1(Ω) is said to be a weak solution of (2.40a)–(2.40b) if

−

∫
Ω

(〈∇u,∇ϕ〉− 〈du,∇ϕ〉) dx = 0 for allϕ ∈ H 1(Ω). (2.47)

Similar to the definition of the weak derivative in (2.44), the above definition is
the one one would obtain if all functions would be sufficiently smooth. Then
the computations would involve multiplying (2.40a) by the test function ϕ and
applying the divergence theorem to it. The boundary term would cancel due
to the boundary condition (2.40b) and the boundary property (2.9) of the drift
vector field d.
For finding a unique (weak) solution of our elliptic PDE

Lu = −div(A∇u) + 〈b,∇u〉+ cu (2.48)

Droniou and Vázquez [2009] heavily rely on the formal adjoint operator L∗ given
by

L∗v = −div(A∇v) − 〈b,∇v〉 . (2.49)
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They define the operator Lγ by Lγu := Lu + γu . This is an isomorphism be-
tween H 1(Ω) and its dual

(
H 1(Ω)

)′
for γ large enough since the second term

dominates in this case. We can use this isomorphism to define a compact operator
K on L2(Ω) by

K := γ (Lγ)
−1
∣∣∣
L2(Ω)

(2.50)

having the property

ker(L) = ker(IdL2 −K) . (2.51)

Using the theory of compact operators inHilbert spaces [see Evans, 1998, Section
6.2.3] we conclude that

ker(L) = ker(IdL2 −K) = ker(IdL2 −K∗) = ker(L∗) . (2.52)

For the osmosis differential operator, the adjoint operator is

L∗ = −div(A∇v) − 〈d,∇v〉 . (2.53)

For this operator, the constant functions lie in its kernel. Therefore,ker(L∗) > 1.
To show ker(L∗) 6 1, Droniou and Vázquez [2009] have constructed the piece-
wise linear test functionϕε ∈ H 1(Ω) by

ϕε(r) :=


0 if r > ε

r − ε if 0 < r < ε
−ε if r > 0

. (2.54)

This allows them to prove the following theorem [Droniou and Vázquez, 2009,
Theorem 1.1].

Theorem 2.7.2. The elliptic partial differential equation (2.40a)–(2.40b) has a
unique up to a multiplicative constant weak solution w ∈ H 1(Ω) with

w > 0 a.e. onΩ. (2.55)

In order to reduce the solution space to a single solution, we use themultiplicative
constant to fix the average grey value of the solution w to be the same as the aver-
age grey value of the initial image f used in the parabolic setting. The positivity
constraint (2.55) makes this possible.
With the previous theorem, we have a candidate w which solves (2.40a)–(2.40b)
in a weak sense. The next step is to show, that this candidate is indeed sufficient
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often differentiable such that the derivatives in (2.40a)–(2.40b)make sense in the
usual, classical meaning.
Regularity in the interior ofΩ is a classic result and can be found in [Gilbarg and
Trudinger, 2001, Theorem 8.11], or [Evans, 1998, Chapter 6.3, Theorem 3].

Theorem 2.7.3. Suppose u ∈ H 1(Ω) is a weak solution of the elliptic PDE

Lu = f onΩ (2.56)

where f ∈ C∞(Ω) and L has C∞-coefficients. Then

u ∈ C∞(Ω). (2.57)

Alternatively, also the theory of hypoelliptic differential operators [Hörmander,
1983a,b, 1985] gives the same result since every elliptic operator is hypoelliptic.
It remains to show the regularity at the boundary. Both Gilbarg and Trudinger
[2001] as well as Evans [1998], prove regularity results at the boundary only for
Dirichlet boundary conditions. Fortunately, also regularity results for Neumann
boundary are available in the literature. The following theorem is proved by
Winkert [2010, Theorem 4.3].

Theorem 2.7.4. Let u ∈ H 1(Ω) be a weak solution of

Au = f (x, u,∇u) onΩ (2.58a)
〈∇u, n〉 = g(x, u) on ∂Ω. (2.58b)

Under suitable assumptions, it holds

u ∈ C1+β(Ω) (2.59)

for some β > 0 .

If we apply this theorem to

• ai(x, s,ξ) = ξi ,

• Au(x) = −
n∑

i=1

∂
∂xi

ai(x, u(x),∇u(x)),

• f (x, s,ξ) = − 〈ξ, d〉− s div(d) and

• g(x, s) ≡ 0,
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the boundary value problem (2.58a)–(2.58b) boils down to (2.40a)–(2.40b), i.e.

div(∇u− du) = 0 onΩ
〈∇u, n〉 = 0 on ∂Ω .

Furthermore, the used functions A, ai , f and g are easy enough to check the con-
ditions given in Winkert [2010] without any problems. Together with Theo-
rem 2.7.3, this shows

w ∈ C∞(Ω)∩C1+β(Ω) (2.60)

for the weak solution w from Theorem 2.7.2.
Next, we want to show positivity of w. Therefore, we use Harnacks inequality. It
tells us that for anyΩ ′ that is compactly embedded in Ω, there is a constant C
such that

sup
Ω ′

w 6 C inf
Ω ′

w (2.61)

holds true. A proof of this inequality can be found in any standard book on partial
differential equations [e.g Gilbarg and Trudinger, 2001, Corollary 8.21].
Since we already know w > 0 a.e. onΩ, this shows by contradiction that

w > 0 onΩ . (2.62)

If (2.62)would be violated, we could find a point x0 and a compact neighbourhood
Ω ′ inΩ with w(x0) 6 0 . With Harnacks inequality (2.61) this would mean w is
nonpositive in the whole setΩ ′ violating Theorem 2.7.2.
It remains to showpositivity at the boundary. This is obtained by a theorem called
Hopf’s boundary lemma in the literature. The formulation used in this work is
modified in such a way that−u would fulfil the requirements given in Gilbarg and
Trudinger [2001, Lemma 3.4].

Theorem 2.7.5 (Hopf’s boundary lemma). Suppose that L is uniformly elliptic,
Lu 6 0 inΩ. Let x0 ∈ ∂Ω be such that

• u is continuous at x0

• 0 = u(x0) < u(x) for all x ∈ Ω

• ∂Ω satisfies an interior sphere condition at x0.

Then

〈∇u(x0), n(x0)〉 < 0 (2.63)

if the left hand side exists at x0.

29



Chapter 2. Scale-Space Theory for Linear Osmosis

Since this conclusion contradicts our boundary condition and the first and third
assumption is fulfilled for w, the second condition must be violated for every
point x0 at the boundary ofΩ. Summing up, we have proven

Theorem 2.7.6. Let d and Ω be as in Section 2.2. The elliptic partial differential
equation

div(∇u− du) = 0 onΩ (2.64a)
〈∇u, n〉 = 0 on ∂Ω (2.64b)

has a positive, smooth solution w ∈ C∞(Ω)∩C1+β(Ω) that is unique up to a multi-
plicative constant. In particular, there are constants E, ε > 0 such that

E > w > ε > 0 on Ω (2.65)

since w is continuous and positive on the closed domainΩand therefore takes its maxi-
mum E and minimum ε on Ω as well.

Especially, the lower bound is of utmost importance for the definition of the
osmotic measure in the next section.

2.8 Lyapunov Functionals

In this section we study the simplification properties of the linear osmosis filter-
ing.
It is also the basis for the convergence results that we establish in Section 2.9.
We employ an entropy method that allows us to show that the evolution of the
parabolic linear osmosis equation (2.10a)–(2.10c) approaches a solution of the
elliptic equation analysed in Section 2.7 such that the multiplicative constant is
uniquely determined by the initial value. For the theory of partial differential
equations a particular entropy methods has proved itself useful. It is based on so-
called Lyapunov functionals [Lyapunov, 1907]. These functionals play the role of
the potential that is missing in cases where the drift vector field is not a gradient
vector field. We show that the family of Lyapunov functions that we construct is
strictly decreasing over time and has a minimum for a specific elliptic solution.
In contrast to physically motivated discussions (e.g. Kinderlehrer andKowalczyk
[2001], Bartier et al. [2007], Ge [2009]) the osmosis model was specifically de-
signed to work in an image processing context. Noticeable differences are the
non-integrability of the drift vector field and the use of Neumann boundary con-
ditions.
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Since we have already established regularity and uniqueness results for solutions
for the parabolic and elliptic equations, we can prove similar results as in Bartier
et al. [2007], however, in a much more rigorous way.
Let f be an initial image satisfying the conditions given in Section 2.2. Then,
Theorem 2.7.6 guarantees that there is a unique positive solution w(x) of the
elliptic PDE

div(∇u− du) = 0 (2.66)

satisfying the homogeneous Neumann boundary condition and having the same
average grey value as f .
In contrast to results involving diffusion equations, we need the steady state of the
elliptic PDE to formulate a Lyapunov functional for the parabolic PDE .However,
as we have seen, the steady state solution only depends on the drift vector field d.

Theorem 2.8.1 (Lyapunov Functionals). Let u be the unique solution of the linear
osmosis model (2.10a)–(2.10c)

∂tu = div(∇u− du) onΩ× (0, T ]

u(., 0) = f (.) on Ω
〈∇u, n〉 = 0 on ∂Ω× [0, T ]

from Theorem 2.4.1 and let w be the unique solution of the steady state equation
(2.40a)–(2.40b)

div(∇u− du) = 0 onΩ
〈∇u, n〉 = 0 on ∂Ω

from Theorem 2.7.6 that has the same average grey value as the initial image f .
For all convex C2-functions r : R → R,

V (t) = Φ(u(·, t)) =
∫
Ω

w(x)r
(

u(x, t)
w(x)

)
dx (2.68)

is a Lyapunov functional, i.e.

i) Φ(u(·, t)) > Φ(w) for all t > 0 and

ii) V ∈ C[0,∞)∩C1(0,∞) and V ′(t) 6 0 for all t > 0.

In particular, we have

∂

∂t
V (t) = −

∫
Ω

r ′′
(

u(x, t)
w(x)

)
w(x)

(
∇
(

u(x, t)
w(x)

))2

dx. (2.69)

Moreover, if r ′′ > 0, then V (t) = Φ(u(·, t)) is a strict Lyapunov functional, i.e.
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iii) Φ(u(·, t)) = Φ(w) if and only if u(·, t) = w on Ω for all t > 0.

iv) If t > 0, then V ′(t) = 0 if and only if u(·, t) = w on Ω.

v) V (0) = V (T ) for T > 0 if and only if u(·, t) = w on Ω for all t ∈ [0, T ] .

This theorem resembles the analysis of the nonlinear diffusion case in Section
1.3. Moreover, although the results look quite similar, there is a large conceptual
difference: The Lyapunov function in Theorem 2.8.1 depends on the unknown
solution of the elliptic evolution. Without the analysis carried out in Section 2.7,
wewould not be able to prove this theorem sincewe require sufficient smoothness
that we get for free if we know that the solution is constant.
Since the Lyapunov functionals play the role of a potential function, it is not
surprising that they have an information theoretic interpretation. In dependence
of the convex function r which is denoted by φ in this context, the term∫

Ω

w(x)φ
(

u(x, t)
w(x)

)
dx (2.70)

is known asφ-divergence [Liese, 2012]. We discuss specific choice of r orφ and
the consequences thereof at the end of this section.

In order to prove Theorem 2.8.1 we reformulate the results in a stochastic frame-
work. This allows to incorporate the size of the image domain Ω as well as the
solution w of the elliptic equation into a new measure. Its properties are crucial
for the proof.
Let us start by reviewing the definition of a measurable space. A measurable space
is a pair (X ,Σ) where X is a set and Σ is a σ-algebra over X , i.e. Σ is a set of
subsets of X that satisfies

• ∅ ∈ Σ,

• A ∈ Σ implies X \A ∈ Σ and

• Ai ∈ Σ for i ∈ N implies
⋃

i∈N

Ai ∈ Σ .

The subsets in Σ are the ones on which a measure can be defined. A measure µ
on a measurable space (X ,Σ) is a function µ : Σ→ R with

• µ(E) > 0 for all E ∈ Σ,

• µ(∅) = 0 and
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• for a pairwise distinct family (Ei)i∈N in Σ:

µ

(⋃
i∈N

Ei

)
=

∑
i∈N

µ(Ei) . (2.71)

The triple (X ,Σ,µ) is then called ameasure space. If in additionµ(X ) = 1, then
it is called a probability space.
The most important measure is the Lebesgue measure λ on an open set Ω of
an Euclidean space. The σ-algebra of all Lebesgue-measurable sets is denoted
byB(Ω). It contains every subset of every null set. The Lebesgue measure is the
measure we usually use, it satisfies

λ(A) =

∫
A

1 dx = |A| =

∫
A

1 dλ(x) . (2.72)

In the following we construct a measure that is equivalent to the Lebesgue mea-
sure.

Definition/Theorem 2.8.2. Let w be the unique positive solution of the elliptic PDE
(2.40a)–(2.40b) with the same average grey value as the initial image f . The osmotic
measure δ on the σ-algebra B(Ω) of all Lebesgue-measurable subsets ofΩ is defined
by

δ : A 7→ 1
f

∫
A

w(x) dx (2.73)

for all A ∈ B(Ω).
It has the following properties:

i) The osmotic measure is a probability measure, i.e.

δ(Ω) = 1 (2.74)

and therefore (Ω,B(Ω), δ) is a probability space.

ii) The osmotic measure δ and the Lebesgue measure λ are equivalent.

The equivalence of measures is based on absolute continuity and guarantees that
both measures agree on which sets are null sets.

Definition 2.8.3. Let two measures γ and σ on the same measurable space (X ,Σ) be
given.
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(a) The measureγ is called absolute continuous with respect to the measureσ if every
null set of σ is also a null set of γ.

In this case we write γ� σ.

(b) We say γ and σ are equivalent if γ� σ and σ� γ.

Proof of Theorem 2.8.2. i) This follows from the construction of δ and choice
of w.

ii) LetA ∈ B(Ω). By definition, δ(A) is

δ(A) =
1
f

∫
A

w(x) dx =
1
f

∫
A

w(x) dλ(x). (2.75)

Hence, ifA is a λ-null set it is also a δ-null set.

On the other hand, if A is not a λ-null set it is also not a δ-null set since
w > ε > 0 onA ⊂ Ω.

For the above proof, it is essential that we not only have a positive function w but
a positive function with a positive lower bound. The last ingredients that we need
to prove Theorem 2.8.1 is the following formulation of the divergence theorem∫

Ω

∇g · F dx =

∫
∂Ω

g, F · n dS −

∫
Ω

g div F dx (2.76)

that can be obtained by applying the standard divergence theorem to g, F, and a
stochastic version of Jensens’ inequality [e.g Niculescu and Persson, 2005]:

Theorem 2.8.4. (Jensen’s inequality) Let (X ,Σ,σ) be a measure space with
σ(X ) = 1 andϕ a convex function on R, then

ϕ

∫
X

g dσ

 6
∫
X

ϕ ◦ g dσ (2.77)

for all σ-measurable functions g : X → R for whichϕ ◦ g is σ-integrable.
If ϕ is strictly convex, the above inequality becomes an equality if and only if g is
constant σ-almost everywhere.

Proof of Theorem 2.8.1.
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i) Using the preservation of the average grey value, we can express the Lya-
punov functionalΦ in terms of the measure δ by

Φ(u(·, t)) = f
∫
Ω

r
(

u(x, t)
w(x)

)
dδ(x) (2.78)

Φ(w) = f r

∫
Ω

u(x, t)
w(x)

dδ(x)

 (2.79)

and the probabilistic version of Jensen’s inequality (Theorem 2.8.4) gives
the desired result

Φ(u(·, t)) > Φ(w) . (2.80)

ii) Continuity and differentiability are clear since all occurring functions are at
least C2. It remains to show that the derivative of V is non-positive. Since
w does not depend on t, we compute

∂

∂t
V (t) =

∫
Ω

w
∂

∂t
r
( u

w

)
dx (2.81a)

=

∫
Ω

r ′
( u

w

)
∂tu dx (2.81b)

=

∫
Ω

r ′
( u

w

)
div(∇u− du) dx . (2.81c)

For

g = r ′
( u

w

)
and F = ∇u− du (2.82)

we have

∇g = r ′′
( u

w

)
∇
( u

w

)
(2.83)

and since

F · n = (∇u− du) · n = 0 (2.84)
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by the boundary condition (2.10c), applying (2.76) (divergence theorem)
yields

∂

∂t
V (t) = −

∫
Ω

r ′′
( u

w

)
∇
( u

w

)
· (∇u− du) dx (2.85a)

= −

∫
Ω

r ′′
( u

w

)
∇
( u

w

)
·
(
∇u− du

− w∇
( u

w

)
+ w∇

( u
w

))
dx

(2.85b)

= −

∫
Ω

r ′′
( u

w

)
w
(
∇
( u

w

))2
dx

−

∫
Ω

r ′′
( u

w

)
∇
( u

w

)
·
(
∇u− du− w∇

( u
w

))
dx.

(2.85c)

The second integral is zero as the following computation shows:

−

∫
Ω

r ′′
( u

w

)
∇
( u

w

)
·
(
∇u− du− w∇

( u
w

))
dx (2.86a)

= −

∫
Ω

r ′′
( u

w

)
∇
( u

w

)
·
(
∇u− du− w

w∇u− u∇w
w2

)
dx (2.86b)

= −

∫
Ω

r ′′
( u

w

)
∇
( u

w

)
·
(
−du+

u
w
∇w
)

dx (2.86c)

= −

∫
Ω

r ′′
( u

w

)( u
w

)
∇
( u

w

)
· (∇w − dw) dx. (2.86d)

We apply (2.76) (divergence theorem) to

g = r ′
( u

w

)
and F =

( u
w

)
(∇w − dw) . (2.87)

Then we have

∇g = r ′′
( u

w

)
∇
( u

w

)
(2.88)

and

div F = ∇
( u

w

)
· (∇w − dw) +

( u
w

)
div (∇w − dw) (2.89a)

= ∇
( u

w

)
· (∇w − dw) (2.89b)
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since w solves the PDE (2.66),

div (∇w − dw) = 0. (2.90)

The scalar product of F with n is zero by the boundary condition (2.10c).
Hence, the integral (2.86d) simplifies to

−

∫
Ω

r ′
( u

w

)
∇
( u

w

)
· (∇w − dw) dx. (2.91)

Another application of the divergence theorem with

g = r
( u

w

)
and F = (∇w − dw) (2.92)

yields

−

∫
Ω

r
( u

w

)
div (∇w − dw) dx (2.93)

since

∇g = r ′
( u

w

)
∇
( u

w

)
and F · n = 0. (2.94)

Again, we use that w solves (2.66). Therefore, the integral is zero and we
obtain

∂

∂t
V (t) = −

∫
Ω

r ′′
( u

w

)
w
(
∇
( u

w

))2
dx (2.95)

which is non-positive since r has a non-negative second derivative as a con-
vex function, w is positive by assumption and the last factor is a quadratic
term.

iii) In i) we showed

Φ(u(·, t)) > Φ(w) (2.96)

by applying Jensen’s inequality. For a strictly convex function r we can
utilize the second part of Jensen’s inequality.

Φ(u(·, t)) = Φ(w) (2.97a)

⇔ u(·, t)
w

is constant δ-a.e. onΩ Jensen’s inequality (2.97b)

⇔ u(·, t)
w

is constant λ-a.e. onΩ equivalence of δ and λ (2.97c)
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Furthermore, u(·, t) and w have the same average grey value, hence,

u(·, t) = w a.e. onΩ (2.98)

for all t > 0. Additionally, we know that for t > 0 both, u(·, t) and w are
continuous on Ω. This shows

Φ(u(·, t)) = Φ(w) ⇐⇒ u(·, t) = w on Ω (2.99)

for all t > 0.

iv) Let t > 0. In ii) we computed

∂

∂t
V (t) = −

∫
Ω

r ′′
( u

w

)
w
(
∇
( u

w

))2
dx. (2.100)

Since both w and r ′′ are positive onΩ, we have

V ′(t) = 0 ⇐⇒ ∇
(

u(·, t)
w

)
= 0 a.e. onΩ (2.101a)

⇐⇒ u(·, t)
w

is constant a.e. onΩ (2.101b)

and the claim follows as in iii).

v) Let V (0) = V (T ) for some T > 0. Since ∂
∂t V (t) 6 0, it follows

V (t) = const. on [0, T ]. (2.102)

Hence, V ′(t) = 0 on (0, T ) and by iv)

u(·, t) = w on Ω× (0, T ). (2.103)

By continuity (Theorem 2.4.1) this carries over to t = 0, T .

The other direction is quite simple since V (0) = V (T ) follows from

u(·, t) = w on Ω (2.104)

for all t ∈ [0, T ].
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This proof shows that, indeed, the functional defined by

Φ(u(·, t)) =
∫
Ω

w(x)r
(

u(x, t)
w(x)

)
dx (2.105)

is a strict Lyapunov functional for linear osmosis filter. As a consequence, the
image evolution u(., t) fulfils a simplification property in term of Lyapunov func-
tionals. For specific choices of the convex function this also allows an information
theoretic interpretation. Especially, if we choose

r(s) = s log(s) (2.106)

the Lyapunov functional simplifies to∫
Ω

u(x, t) log
(

u(x, t)
w(x)

)
dx . (2.107)

This term is known as relative entropy or Kullback–Leibler distance [see e.g. Cover
and Thomas, 2006, Section 8.5].
In the next section, we use

r(s) = (s − 1)2 (2.108)

to show convergence of u(., t) towards w in L2(Ω).

2.9 Convergence

The next step after having found a Lyapunov functional is to use it to prove con-
vergence of the time evolution.

Theorem 2.9.1 (Convergence). Using the notation from Theorem 2.8.1, we have

lim
t→∞ ||u(·, t) − w||L2(Ω) = 0. (2.109)

For the proof we follow an idea of Illner and Neunzert [1993] where the authors
used Lyapunov functionals to prove convergence for directed diffusion equation

∂tu = w∆u− u∆w
= div (w∇u− u∇w) .

(2.110)
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Proof. From Theorem 2.8.1, we know that

V (t) =
∫
Ω

w r
(

u(·, t)
w

)
dx (2.111)

is bounded from below and non-increasing with derivative

∂

∂t
V (t) = −

∫
Ω

r ′′
( u

w

)
w
(
∇
( u

w

))2
dx. (2.112)

Hence, the limit lim
t→∞ V (t) exists.

Now, we choose

r(x) =
1
2
(x − 1)2. (2.113)

On the one hand, this gives

∂

∂t
V (t) = −

∫
Ω

w
(
∇
( u

w

))2
dx, (2.114)

meaning that V is the antiderivative of the right hand side. Therefore,

0 6

∞∫
0

 ∫
Ω

w
(
∇
( u

w

))2
dx

 dt = lim
t→∞− [V (t) −V (0)] <∞. (2.115)

Since

∞∫
0

 ∫
Ω

w
(
∇
( u

w

))2
dx

 dt <∞ (2.116)

and w > ε > 0 onΩ, there exists a sequence (ti)i∈N in R such that

lim
i→∞ ti = ∞ (2.117)

and

lim
i→∞

∣∣∣∣∣∣∣∣∇(
u(ti)

w

)∣∣∣∣∣∣∣∣
L2(Ω)

= 0, (2.118)

otherwise the integral in (2.116) would be infinite.
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On the other hand, knowing that

V (t) =
∫
Ω

w
(

u(·, t)
w

− 1
)2

dx (2.119)

is bounded from below and non-increasing, means (V (ti))i∈N is a convergent
sequence in R and by the boundedness of w (Theorem 2.7.6),(

u(ti)
w

)
i∈N

(2.120)

is a bounded sequence in L2(Ω). By Alaoglu’s theorem there is a weakly con-
vergent subsequence, also denoted by (ti)i∈N, with weak limit g in L2(Ω). Next,
we apply Rellich’s Lemma (Richtmyer [1978] or Attouch et al. [1987, Theorem
5.4.2]), to see that there is another subsequence, also denoted by (ti)i∈N such that(

u(ti)
w

)
i∈N

(2.121)

converges to a function g strongly in L2(Ω).
It follows

∇
(

u(ti)
w

)
−→ ∇g (2.122)

in the sense of distributions. We also know from (2.118)

lim
i→∞

∣∣∣∣∣∣∣∣∇(
u(ti)

w

)∣∣∣∣∣∣∣∣
L2(Ω)

= 0. (2.123)

Hence, weakly we have

∇g = 0 onΩ . (2.124)

This means g is constant and by the grey value invariance,

g = 1 onΩ. (2.125)

Thus, we have

u(ti)
w

−→ 1 strongly in L2(Ω) (2.126)

for some sequence (ti) −→ ∞ and therefore,

lim
t→∞ ||u(·, t) − w||L2(Ω) = 0. (2.127)
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This theorem shows that we have the expected convergence of the parabolic so-
lution towards the elliptic solution that has the same average grey value as the
initial image of the parabolic problem.
A similar result also holds in a discrete setting [Vogel et al., 2013].

2.10 Summary

To sum up the results of this chapter: We have developed a complete scale-space
theory for the linear osmosis filtering. We have shown the existence of a unique,
classical solution of the parabolic PDE

∂tu = div(∇u− du) onΩ× (0, T ]

u(., 0) = f (.) on Ω
〈∇u, n〉 = 0 on ∂Ω× [0, T ].

Furthermore, we have seen, that the average grey value stays constant over the
evolution and that positivity is presevered. By analysing the steady state equa-
tion, we were able to prove an information reducing property in terms of Lya-
punov functionals. At the end, we have also seen a convergence result stating L2-
convergence of the parabolic solution towards a specific solution of the elliptic
problem.
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Chapter 3

Morphological Counterparts of Linear
Scale-Spaces

The mathematician’s patterns, like the painter’s or
the poet’s must be beautiful; the ideas like the
colours or the words, must fit together in a har-
monious way. Beauty is the first test: there is no
permanent place in the world for ugly mathematics.

Godfrey H. Hardy

We want to take a closer look at linear shift-invariant and morphological scale-
spaces. Both classes of scale-spaces are well-known in the literature and there are
several attempts to connect them. In this Chapter we review these approaches
and introduce the novel Cramér–Fourier transform. This allows us to extend
known results and connect the linear shift-invariant and morphological scale-
spaces on both a structural level and on the level of evolution equations. We start
by introducing the classes of scale-spaces under consideration in detail.
The Sections 3.1, 3.2 and 3.4–3.7 are based on Schmidt and Weickert [2016].

3.1 Linear Shift-Invariant Scale-Spaces

This section provides a general framework for the so-called linear shift-invariant
(LSI) scale-spaces. While their image evolution is steered by a pseudodifferential
operator the corresponding convolution kernel can be described in the Fourier
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Chapter 3. Morphological Counterparts of Linear Scale-Spaces

domain. Furthermore, this section introduces the symbol as an alternative de-
scription of the pseudodifferential operator. It reduces the analysis from a hard
to handle pseudodifferential operator to a mere function in two variables.

3.1.1 Pseudodifferential Evolutions

Pseudodifferential operators are a generalisation of partial differential operators.
In order to have a compact notation, we use the following multi-index notation:
For a multi-index α = (α1,α2) ∈ N2 and some vector v ∈ R2 we define
|α| := α1 +α2 and vα := vα1

1 vα2
2 .

A kth-order partial differential operator P is then given by

P(x,∇) =
∑
|α|6k

cα(x)∇α , (3.1)

where ∇ =
(
∂x ,∂y

)>
denotes the spatial gradient, cα are real-valued functions

on the image domainΩ and x is a point inΩ. The Fourier transform allows us
to obtain a different characterisation of the differential operator (3.1). We use the
following convention to define the Fourier transform of an integrable function u:

û(ξ) := F[u](ξ) :=
∫

R2

u(x) e−2πi〈ξ,x〉 dx (3.2)

where i2 = −1 and 〈., .〉 denotes theHermitian inner product. The above choices
of constants make the Fourier transform an unitary transform with inverse given
by

u(x) = F −1[ û ] (x) :=
∫

R2

û(ξ) e2πi〈x,ξ〉 dξ . (3.3)

The integral on the right-hand side is the L2 scalar product of the Fourier trans-
form of u and a basis function e2πi〈x,·〉. It can be regarded as a frequency decom-
position of the original image u. For derivatives, this decomposition yields

∇αu(x) =
∫

R2

(2πiξ)α û(ξ) e2πi〈x,ξ〉 dξ . (3.4)

Using the linearity of the Fourier transformwe can also use the pseudodifferential
operator P defined in (3.1) to obtain

P(x,∇)u(x) =
∫

R2

p (x, 2πξ) û(ξ) e2πi〈x,ξ〉 dξ (3.5)

44



Linear Shift-Invariant (LSI) Scale-Spaces

where the polynomial

p(x,ξ) =
∑
|α|6k

cα(x)(iξ)α (3.6)

is called the symbol of P(x,∇).
Since the right-hand side of (3.5) alsomakes sense in caseswhere p is not a polyno-
mial, we use this equation to define a so-called pseudodifferential operator denoted
by P(x,∇). This definition is slightly different from the one used by Taylor
[2010] due to a different convention for the Fourier transform. By restricting
our attention to pseudodifferential equations with constant coefficients we can
guarantee shift-invariance of the resulting system. This means that we have to
restrict p to functions that are independent of the locationx. Wedrop these spatial
parameters in the following discussion. The resulting pseudodifferential operator
P(∇) then defines a scale-space by the following initial value problem

∂tu = P(∇)u (3.7a)
u(., 0) = f . (3.7b)

We call linear shift-invariant (LSI) evolutions of this type LSI scale-spaces. They
comprise many well-known linear scale-spaces. We give an overview in Section
3.1.3.

3.1.2 Interpretation as Convolution Scale-Spaces

Let us now interpret LSI scale-spaces in terms of convolutions with appropriate
kernels. Since equation (3.7a) is linear, it can be described by a multiplication in
the Fourier domain where the factor is given by the symbol. To see this, we apply
the Fourier transform to (3.5) and obtain

F [ P(∇)u(·, t) ] (ξ) = p(2πξ)û(ξ, t) . (3.8)

Therefore, (3.7a)–(3.7b) simplifies under theFourier transform to the initial value
problem

∂t û(ξ, t) = p(2πξ)û(ξ, t) , (3.9a)

û(ξ, 0) = f̂ (ξ) . (3.9b)

Its solution is given by

û(ξ, t) = f̂ (ξ) exp (p(2πξ) t) . (3.10)
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Applying the inverse Fourier transform translates the result to the spatial domain
again:

u(x, t) =
(
f ∗F −1[ exp (p(2π ·) t) ]

)
(x) . (3.11)

This shows the importance of the symbol p: We can use it to characterise the solu-
tion of (3.7a)–(3.7b) as a convolution of the initial image f (x)with an appropriate
kernel k(x, t):

u(x, t) = (f ∗ k(·, t)) (x), (3.12a)

k(x, t) = F −1[ exp (p(2π ·) t) ] (x). (3.12b)

3.1.3 Examples of LSI Scale-Spaces

In order to illustrate that the family of LSI scale-spaces is fairly rich, let us inves-
tigate five examples in more detail.

1. Gaussian Scale-Space. It computes smoothed versions u(x, t) of f (x) as
solutions of the initial value problem

∂tu = ∆u on R2 × (0,∞), (3.13a)
u(., 0) = f on R2, (3.13b)

where ∆ = ∂xx + ∂yy denotes the spatial Laplacian. Gaussian scale-space
goes back to Iijima [1962] and Weickert et al. [1999]. It became popular
in the western world by the work of Witkin [1983], Koenderink [1984],
Lindeberg [1994], Florack [1997], and many others; see e.g. Sporring et al.
[1997] and the references therein.

2. α-Scale-Spaces. These evolutions replace the homogeneous diffusion
equation (3.13a) by the pseudodifferential equation

∂tu = −(−∆)αu (3.14)

with some parameter α ∈ (0,∞). While such processes can already be
found implicitly in Iijima’s early work [Iijima, 1962] and more explicitly
e.g. in a publication by Pauwels et al. [1995], they became popular as scale-
spaces due to the work of Duits et al. [2004]. Gaussian scale-space is re-
covered for α = 1, while α = 1

2 gives the so-called Poisson scale-space

∂tu = −
√
−∆ u (3.15)
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of Felsberg and Sommer [2001]. If one renounces a maximum–minimum
principle, one can also study scale-spaces for α > 1, comprising e.g. the
biharmonic scale-space for α = 2 [Didas et al., 2005].

3. Summed α-Scale-Spaces. Didas et al. [2005] discuss finite linear combi-
nations of fractional Laplacians

∂tu = −

m∑
k=1

λk(−∆)
αku (3.16)

with fractional derivative orders α1, . . . ,αm > 0 and weights λ1, . . . , λm >

0. Interestingly they can satisfy a maximum–minimum principle even if
some terms withα > 1 are present, as long as they are dominated by terms
with α < 1.

The special case of a linear combination of one Gaussian and one Poisson
kernel is used in Kanters et al. [2007] to approximate α-scale-spaces.

4. Relativistic Scale-Spaces. Burgeth et al. [2005a] have advocated a gener-
alisation of the Poisson scale-space by considering the evolution equations

∂tu = −
(√

m2 −∆ −m
)

u (3.17)

with m > 0. We see that this family contains the Poisson scale-space for
m = 0.

5. Anisotropic Scale-Spaces. Formally one can construct anisotropic ver-
sions of any of the preceding scale-spaces by replacing their Laplacian by
∇>D∇ with some symmetric positive definite matrix D ∈ R2×2. In the
case of Gaussian scale-space, this leads to the anisotropic Gaussian scale-
spaces

∂tu = div (D∇u) . (3.18)

They have been derived axiomatically by Iijima [1963, 1971] and later on by
Lindeberg [1994, 2011].

We discussed scale-space properties of nonlinear variants where the dif-
fusion tensor D is a function of the local structure of the evolving image in
Section 1.3.

Although these scale-spaces differ w.r.t. decay behaviour in Fourier space, sep-
arability, extremum principle, nonenhancement of local extrema and scale in-
variance, the pseudodifferential operators P(∇) and their corresponding kernels
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k(x, t) can be computed following the strategy in Subsections 3.1.1 and 3.1.2.
The results are summarised in Table 3.1. Note that the symbol representation
allows simple formulas even in those cases where the corresponding kernels do
not have a closed form representation. Therefore, we will also use it later on for
establishing correspondences to morphological scale-spaces.
In most cases, working with the symbol is much easier compared to using the
kernel.
Although the above examples give a compact overview of known linear scale-
spaces, there are many more approaches to construct scale-spaces. For example,
regularisationmethods and related concepts can be interpreted as scale-spaces by
considering their Euler-Lagrange equations, both in the linear and the nonlinear
setting [see e.g. Poggio et al., 1988, Nielsen et al., 1997, Scherzer and Weickert,
2000, Burgeth et al., 2005b, Demetz et al., 2012]. SinceGaussian scale-space can
be described by a linear diffusion equation, it is natural to generalise it also to non-
linear diffusion scale-spaces [Perona and Malik, 1990, Weickert, 1998]. On the
morphological side, continuous-scale versions of erosions are given by hyperbolic
PDEs [Alvarez et al., 1993, Arehart et al., 1993, Brockett andMaragos, 1992, van
den Boomgaard and Smeulders, 1994]. Parabolic morphological PDEs comprise
mean curvature motion [Alvarez et al., 1992, Kimia and Siddiqi, 1996] which can
be derived from iterated median filtering [Guichard and Morel, 1997]. It is also
possible to construct affine invariant morphological scale-spaces [Alvarez et al.,
1993, Sapiro andTannenbaum, 1993]. Moreover, morphological variants of linear
and nonlinear diffusion scale-spaces can be created by embedding these scale-
spaces into a counter-harmonic framework [Angulo, 2010].
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Table 3.1: Specific LSI scale-spaces, their evolution equations, symbols, and convolution kernels. The gamma function is
denoted by Γ , and Kν refers to the modified Bessel function of the third kind [Abramowitz and Stegun, 1974].

LSI scale-space evolution equation symbol kernel

alpha ∂tu = −(−∆)αu p(ξ) = −|ξ|2α no closed formula

Gaussian ∂tu = ∆u p(ξ) = −|ξ|2 k(x) =
1

4π
exp

(
−
|x|2

4

)
Poisson ∂tu = −

√
−∆ u p(ξ) = −|ξ| k(x) =

Γ( 3
2)

π3/2

1
(1 + |x|2)3/2

summed alpha ∂tu = −
m∑

k=1
λk(−∆)

αku p(ξ) = −
m∑

k=1
λk |ξ|

2αk no closed formula

relativistic ∂tu =
(
m −

√
m2 −∆

)
u p(ξ) = m −

√
m2 + |ξ|2 k(x) =

( m
2π

)3/2 2em

(1 + |x|2)3/4 K 3
2

(
m
√

1 + |x|2
)

anis. Gaussian ∂tu = div(D∇u) p(ξ) = − 〈ξ, Dξ〉 k(x) =
1

4πdet D
exp

(
−

x>D−1x
4

)

49



Chapter 3. Morphological Counterparts of Linear Scale-Spaces

3.2 Morphological Scale-Spaces Revisited

In this section we want to revive the discussion of the morphological scale-spaces
in Section 1.4. Wewill use an alternative description and follow the general struc-
ture of Section 3.1 as close as possible. This emphasises the similarities and
difference between linear shift-invariant and morphological scale-spaces.

3.2.1 Hamilton-Jacobi Equations

Morphological scale-spaces are given by Hamilton–Jacobi equations of type

∂tv = −H (∇v), (3.19a)
v(x, 0) = f (x) . (3.19b)

In such a setting, many of the concepts from the Section 1.4 can be reformulated
in the language of convex analysis.
In the sequel, we will assume that f is bounded and lower semi-continuous, i.e.

f (x0) 6 lim inf
x→x0

f (x) (3.20)

for all points x0 and that the function H is convex and coercive, i.e.

lim
|x|→∞

H (x)
|x|

= ∞ . (3.21)

Unfortunately, the concept of weak or generalised solutions is not suitable to
uniquely describe a solution of the Hamilton–Jacobi equation. As an example,
let us consider the one-dimensional PDE

∂tu = −(ux)
2 on R × (0, T ) (3.22a)

u(., 0) = 0 on R . (3.22b)

Then there are two solutions: Besides the constant function u ≡ 0 also the
piecewise linear function

u(x, t) =

{
0 for |x| > t > 0
−t + |x| for t > |x| .

(3.23)

solves (3.22a)–(3.22b) with the exception of the lower dimensional subspaces
given by t = |x| and x = 0.
In order to enforce uniqueness of a solution, additional constraints are needed.
This is were viscosity solutions come into play. They are defined as follows [see
Evans, 1998, Section 10.1.1]:
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Definition 3.2.1. A bounded, uniformly continuous function u is called a viscosity
solution of the Hamilton–Jacobi equation (3.19a)–(3.19b)

∂tv = −H (∇v),
v(x, 0) = f (x)

provided that u(·, t) = f on R2 and that for each v ∈ C∞(R2 × (0, T )) both{
if u− v has a local maximum at a point (x0, t0) ∈ R2 × (0,∞)

then vt(x0, t0) +H (∇v(x0, t0)) 6 0 ,

and {
if u− v has a local minimum at a point (x0, t0) ∈ R2 × (0,∞)

then vt(x0, t0) +H (∇v(x0, t0)) > 0

holds true.

This definition is motivated by the method of vanishing viscosity [Crandall and
Lions, 1983]. The idea is to add a second order term ε∆ with a small ε > 0
which converts the nonlinear first-order PDE into a second-order linear PDE. In
many cases the second-order equation is easier to solve or even allows explicit
solutions. Afterwards, the limit ε→ 0 is considered. The additional constraints
in the definition of viscosity solutions ensure that this limit is well-defined. The
name of the method originated from fluid dynamics where ε is the viscosity of a
fluid.
Viscosity solutions have a number of theoretical properties which render them
perfectly for solving hyperbolic transport equations. For an overview and more
details we refer to Crandall et al. [1992].

3.2.2 Interpretation as Infimal Convolution Scale-Spaces

The unique viscosity solution of the Hamilton–Jacobi equation (3.19a)–(3.19b) is
given by the Hopf-Lax formula [e.g. Heijmans, 2002] as

v(x, t) = min
y∈R2

{
f (y) + t H ∗

(
x − y

t

)}
(3.25)

where H ∗ denotes the the convex conjugate of H , i.e.

H ∗(x) := sup
y∈R2

{〈y, x〉−H (y)}. (3.26)

51



Chapter 3. Morphological Counterparts of Linear Scale-Spaces

We define the structuring function (SF)

s(x, t) := t H ∗
(x

t

)
= (tH )∗(x) . (3.27)

Up to a sign difference, this definition matches the one given in Section 1.4. Fur-
thermore, dilations and erosions are replaced by an operation called infimal con-
volution

(f � g)(x) = inf
y∈R2

{f (y) + g(x − y)} . (3.28)

Then the solution of our morphological evolution is given by

v(x, t) = (f � s(·, t))(x) , (3.29a)
s(x, t) = (tH )∗(x) . (3.29b)

3.2.3 Examples of Morphological Scale-Spaces

In a similar way as our LSI framework covers a large family of linear scale
spaces, the Hamilton–Jacobi formulation comprises also many morphological
scale-spaces. We illustrate this by a number of examples.

1. Dilation and Erosion Scale-Spaces.

As we have seen in Section 1.4, mathematical morphology is usually ex-
pressed in terms of dilations and erosions. The dilation and erosion were
defined in (1.13) and (1.14) respectively by

(f ⊕ b)(x) := sup
y∈R2

{f (y) + b(x−y)} ,

(f 	 b)(x) := inf
y∈R2

{
f (y) +b(x−y)

}
They relate to the infimal convolution by

f 	 b = f � b , (3.30)
−(f ⊕ b) = (−f ) � (−b) . (3.31)

Therefore, infimal convolutions behave essentially like erosions. However,
instead of requiring concavity of the structuring functions, infimal convo-
lutions expect structuring functions to be convex. Dilations can be ob-
tained by applying an infimal convolution with the negative of the struc-
turing function to the negative of the signal.

For these reasons, results for dilations and erosions are equivalent to results
for infimal convolutions.
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2. Quadratic Structuring Function Scale-Space. Taking s(x) = 1
4 |x|

2 as
structuring function, equation (3.26) implies thatH (x) = |x|2. In this case,
the infimal convolution

v(x, t) = (f � s(·, t)) (x) (3.32)

is the viscosity solution of the evolution process

∂tv = −|∇v|2 , (3.33a)
v(0) = f . (3.33b)

van denBoomgaard [1992b] has shown that quadratic structuring functions
such as

s(x) = 1
4 |x|

2 (3.34)

are the only structuring functions that are rotationally invariant and separa-
ble. This has motivated him to regard (3.33a)–(3.33b) as themorphological
equivalent of Gaussian scale-space, since the latter one is the only scale-
space with a rotationally invariant and separable convolution kernel [Otsu,
1981, Weickert et al., 1999].

3. Scale-Spaceswith FlatDisc Structuring Functions. If one uses as struc-
turing function a flat disc

s(x) =

{
0 for |x| 6 1,∞ else,

(3.35)

it has been shown in Alvarez et al. [1993], Arehart et al. [1993], Brockett
and Maragos [1992] that one arrives at

∂tv = −|∇v|. (3.36)

Evolutions of this type can be interpreted inmanyways as scale-spaces; see
Alvarez et al. [1993], van den Boomgaard and Smeulders [1994], Jackway
and Deriche [1996] for more details.

4. Structuring Functions of Arbitrary Power. Jackway [1994] as well as
Diop and Angulo [2014] have investigated morphological processes that
can be described by evolution equations of type

∂tv = −|∇v|β (3.37)

with arbitrary powers β > 1. Their corresponding structuring functions
are given by the poweroids

s(x) = (β− 1) |x/β|β/(β−1) . (3.38)
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5. Anisotropic Structuring Functions. So far, all our morphological scale-
spaces use isotropic structuring functions that do not favour specific direc-
tions. Depending on the application, it can be beneficial to consider also
anisotropic structuring functions that are adapted to directions of special
interest.
An early anisotropic morphological PDE model goes back to Arehart et al.
[1993]: They have used ellipse-shaped flat structuring functions

s(x) =

{
0 x>D−1x 6 1,∞ else

(3.39)

with some positive definite symmetric matrix D. This leads to evolutions
of type

∂tv = −|D∇v| . (3.40)

Later on, Breuß et al. [2007] have adapted D to the underlying local image
structure.
Evolutions with anisotropic quadratic structuring functions

s(x) =
1
4

x>D−1x (3.41)

can be described by
∂tv = −(∇v)> D∇v. (3.42)

Such processes go back to van den Boomgaard [1992a] and Jackway
[1995] in a space-invariant setting. More recently, Landström [2015] has
considered space-adaptive generalisations.

Table 3.2 gives a compact representation of the morphological examples that we
have discussed.
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Table 3.2: Specific morphological scale-spaces of Hamilton–Jacobi type and
their structuring functions (SFs).

morphological scale- evolution equation structuring function

space

quadratic SF ∂tv = −|∇v|2 s(x, t) = 1
4t |x|

2

flat disk SF ∂tv = −|∇v| s(x, t) =

{
0 |x| 6 t∞ else

poweroid SF ∂tv = −|∇v|β s(x, t) = t (β− 1)
∣∣∣ x

t β

∣∣∣β/(β−1)

flat ellipse-shaped SF ∂tv = −|D∇v| s(x, t) =

{
0 x>D−1x 6 t2∞ else

anisotropic quadratic SF ∂tv = −(∇v)> D∇v s(x, t) = 1
4t x

>D−1x

3.3 Related Work

Both morphological and linear shift-invariant PDEs are well-studied topics with
many interconnections. This section gives an overviewover previous approaches.

3.3.1 Hopf-Cole Transform

Hopf [1950] and Cole [1951] transformed the nonlinear Burgers’ equation

∂tu+ uux = εuxx (3.43)

into a linear heat equation with known solution. This allows them to give an
explicit solution of (3.43). Their method can be a generalised to PDEs of the
form

∂tu− a∆u+ b‖∇u‖2 = 0 . (3.44)

The transform

w = exp
(
−

b
a

u
)

(3.45)

converts (3.44) into a linear PDE [see Evans, 1998]. It is named after them and
nowadays known as Hopf-Cole transform.
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The same concepts are also able to solve the morphological initial value problem

∂tu = |∇u|2, (3.46a)
u(., 0) = f (3.46b)

where the Hamiltonian H (p) = p2 is used. In this case we have already seen that
the solution is given by an dilation with−H ∗(p) = − 1

4 p2 as structuring function.
This gives

u(x, t) = (f ⊕ (−H ∗))(x)

= sup
y∈R2

{
f (y) − 1

4t |x − y|2
} (3.47)

as solution of (3.46a)–(3.46b).
The second possibility for solving (3.46a)–(3.46b) is to introduce a small pertur-
bation to the partial differential operator. Adding a smallmultiple of theLaplacian
yields a new initial value problem of type (3.44):

∂tuε = ε∆uε + |∇uε|
2 (3.48a)

uε(., 0) = f . (3.48b)

We use uε to emphasise the dependence of the problem on the choice of ε. Using
the Hopf-Cole transform

wε = exp
(

1
ε
uε

)
(3.49)

turns (3.48a)–(3.48b) into the linear heat equation

∂twε = ε∆wε (3.50a)

wε(x, 0) = exp
(

1
ε

f (x)
)

. (3.50b)

Its solution is given by a convolution of the initial value exp
(

1
ε

f (x)
)
with aGaus-

sian (see Section 1.2). By inverting the Hopf-Cole transform we obtain

uε(x, t) = ε log

 ∫
R2

1
4πεt

e−
|x−y|2

4εt e
1
ε f (x) dy

 (3.51)

as the solution of the perturbed problem (3.48a)–(3.48b). We also have pointwise
convergence for ε→ 0, i.e.

lim
ε→0

ε log

 ∫
R2

1
4πεt

e−
|x−y|2

4εt e
1
ε f (x) dy

 = sup
y∈R2

{
f (y) − 1

4t |x − y|2
}

(3.52)

for every x ∈ R2 [e.g. Dolcetta, 2003].
The Hopf-Cole transform gives already a first hint for a logarithmic connection
between morphological and LSI scale-spaces.

56



Related Work

3.3.2 Non-Newtonian Calculi

The Hopf-Cole transform has an interpretation in terms of non-Newtonian cal-
culi. The non-Newtonian calculi were introduced by Grossman and Katz [1972]
and play an increasing role in current image processing applications. They allow
to design problem-tailored algorithms. Instead of solving a given task directly,
it is solved in an alternative domain where known or desired properties can be
exploited.
The non-Newtonian calculi are based on a set A together with four operations
+α,−α, ·α, /α and an ordering<α. The function α : A → A is called the genera-
tor of the calculus and defines the operations as follows:

x +α y := α
(
α−1(x) +α−1(y)

)
, (3.53a)

x −α y := α
(
α−1(x) −α−1(y)

)
, (3.53b)

x ·α y := α
(
α−1(x) · α−1(y)

)
, (3.53c)

x /α y := α
(
α−1(x) / α−1(y)

)
and (3.53d)

x <α y if and only if α−1(x) < α−1(y) . (3.53e)

Since the generator α has a crucial influence on the arithmetic operations, the
previous definitions are referred to asα-arithmetics. Also integration of a function
f in the α-calculus is possible by evaluating∫

α

f dµ := α

(∫
(α−1 ◦ f ) dµ

)
. (3.54)

Whereas the classical or Newtonian calculus is recovered when α is the identity
function, other choices of α lead to the so-called non-Newtonian calculi. The
best known example is the geometric or multiplicative calculus where α is taken
to be the exponential function. It is used by Fattal et al. [2002] to reflect the
human’s visual perception as described by the Weber-Fechner law. This law
states a logarithmic connection between the perceived colour values and their
actual intensities. A more formal justification is given by Georgiev [2006]. In
Florack and van Assen [2012] the geometric calculus is advocated to be used
for biomedical imaging applications. Many definitions from Newtonian calculus
carry over to the geometric calculus and allow to simplify derivations that are
cumbersome in the classical setting [Bashirov et al., 2008].
The Hopf-Cole transformation w 7→ exp( 1

ε
w) defined in (3.49) can be seen as an

non-Newtonian calculus where we take αn to be the family of scaled logarithms

αn(x) := 1
n log(x) n ∈ R \ {0} (3.55)
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with inverse

α−1
n (x) := exp(n x) n ∈ R \ {0} . (3.56)

We are interested in the limit n → ∞ where 1
n plays the role of ε. These limits

are closely related to mathematical morphology (see Section 1.4) since

x ·αn y = 1
n log (exp(n x) · exp(n y))) = x + y (3.57a)

lim
n→∞ x +αn y = 1

n log (exp(n x) + exp(n y)) = max(x, y) . (3.57b)

3.3.3 Large Deviations Theory

The theory of large deviations is concerned with quantifying the rate of conver-
gence of a stochastic system [e.g. Varadhan, 1984, Dembo and Zeitouni, 2009,
Ellis, 1985]. In many cases the law of large numbers predicts convergence to-
wards the expected value and the probability of different outcomes decays to zero
exponentially. In order to specify the rate of the exponential decay, rare events are
of particular interest. These are events with very small probability but significant
impact if they occur.
As a first example, let us look at the empirical mean

Zn =
1
n

n∑
i=1

Xi (3.58)

of a family of independent Gaussian distributed random variables {Xi}i∈N with
mean 0 and variance 1. Since Zn is again Gaussian distributed, the central limit
theorem tells us:

lim
n→∞ Pr

(
|
√

nZn| < δ
)
=

1√
2π

δ∫
−δ

e−
x2
2 dx . (3.59)

Therefore, we have

Pr (|Zn| > δ) = 1 −
1√
2π

δ
√

n∫
−δ

√
n

e−
x2
2 dx (3.60)

and

lim
n→∞ Pr (|Zn| > δ) = 0 . (3.61)
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For these kinds of estimates it is more natural to look at
1
n

log Pr (|Zn| > δ) . (3.62)

In the case of Gaussian distributed random variables this gives [e.g. Dembo and
Zeitouni, 2009, Section 1.1]

lim
n→∞

1
n

log Pr (|Zn| > δ) = −
δ2

2
. (3.63)

The limit depends on the underlying distribution of the involved random vari-
ables. One of the main objectives of the large deviations theory is to find an
exact statement for the above limit. Several results for more general distributions
or families of distributions with relaxed requirements on the dependence of the
random variables are available [Ellis, 1985, Dembo and Zeitouni, 2009].

Let (Xi)i∈N be a family of independent identically distributed (i.i.d.) random
variables in Rd and define

Zn =
1
n

n∑
i=1

Xi . (3.64)

We want to focus on rare events and look at
1
n

log E
[
en f (Zn)

]
. (3.65)

This term can be evaluated using a result from the large deviations theory. For
n � 0, only rare events with large values contribute to (3.65).
Under appropriate conditions on the probability measure Pn of the random vari-
able Zn (see Appendix A) the following formula known as Varadhan’s integral
lemma [see Dembo and Zeitouni, 2009, Section 4.3] holds true

lim
n→∞

1
n

log

 ∫
Rd

exp(n f (x))dPn(x)

 = sup
y∈Rd

(f (y) − I (y)) (3.66)

where I is a so-called rate function that only depends on the family of measures
Pn. In our setting the rate function is given as the convex conjugate of the logarith-
mic moment generating function [Dembo and Zeitouni, 2009, Theorem 2.2.30,
Cramér’s Theorem], i.e.

I (x) := sup
t∈Rd

{〈x, t〉− log m(t)} , (3.67)

m(t) := E [exp (〈t, X1〉)] . (3.68)
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When X1 is Gaussian distributed with mean x and covariance matrix 2t I2×2,
(3.66) simplifies to Eq. (3.52) obtained by the theHopf-Cole transform in Section
3.3.1:

lim
n→∞ ε log

 ∫
R2

1
4πεt

e−
|x−y|2

4εt e
1
ε f (x) dy

 = sup
y∈R2

{
f (y) − 1

4t |x − y|2
}

.

This means that Varadhan’s integral lemma (3.66) generalises the ideas that lead
to the Hopf-Cole transform. Instead of using Gaussian kernels more general
densities can be used. For example, if we can think of a multi-dimensional Gaus-
sian distribution with mean µ and positive definite covariance matrix Σ, then
Zn = 1

n

∑n
i=1 Xi is also Gaussian distributed with mean µ but covariance matrix

1
n Σ and the rate function is given by

Iµ,Σ(x) =
1
2
〈
x − µ,Σ−1(x − µ)

〉
. (3.69)

The rate function is known for a lot more distributions, but many of them are not
useful in the context of scale-space creation.
Varadhan’s integral lemmaoffers alsomuchmore insides intowhywe see the term
1
4t |x − y|2 on the right-hand side of (3.52). It shows a direct connection between
families of distributions that are used in scale-space recreation and the structuring
functions employed in mathematical morphology.

The family in (3.65) is also used by Florack et al. [1999] to construct an inter-
polation between a morphological and a linear PDE. Varadhan’s integral lemma
gives an elegant alternative to their analysis. Compared to the reparametrisation
argument they are using, a stochastic setting seems to be more natural.

3.3.4 Cramér Transform

Whereas the definition of the rate function I in the previous section is based on
the convex conjugate of the logarithmic moment-generating function of a ran-
dom variable X , a slightly different approach is common in the image processing
literature.
For conservative image processing applications, images can be represented by
densities. Therefore, working with densities is favoured over using random vari-
ables. Let us consider a random variable X with density p. The (double sided)
Laplace transform

L [ p ] (x) =
∫

R2

p(y)e〈x,y〉 dy (3.70)
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allows an alternative definition of the moment-generating function since

m(t) = E
[
e〈t,X1〉

]
=

∫
e〈t,x〉p(x) dx = L [ p ] (t) . (3.71)

Based on this observation theCramér transform is defined as the convex conjugate
of the logarithm of the Laplace transform, i.e.

C [ f ] := (logL [ f ])∗ . (3.72)

In cases where f is a probability density, it can be regarded as a rate function, but
the above definition is not restricted to probability densities.
Burgeth andWeickert [2005] have used the definition (3.72) as the starting point
for their analysis of the logarithmic connections between linear and morphologi-
cal systems.

Furthermore, the Cramér transform plays also an important role for discrete
event systems. Akian et al. [1998] state results that are quite similar to some
of our own findings in Section 3.6. In their language, the connections between
linear and morphological scale-spaces is a duality between probability and
optimization.

3.4 The Cramér-Fourier Transform

In Section 3.1.2 we have seen that linear shift-invariant scale-spaces can be ob-
tained by convolving an initial image with an convolution kernel flattening over
time. To preserve the average grey value, these kernels are normalized in such
a way that integrating over them yields one. Thus, they represent probability
densities. This limits the applicability of the Cramér transform since we have
to ensure that the corresponding moment-generating function is finite. In other
words, if the convolution kernel does not decay exponentially fast the double-
sided Laplace transform evaluates to infinity.

One of the main contributions of this work is the construction of a Fourier-based
Cramér transform. For image processing applications, the Fourier transform is a
muchmore natural choice. We call our novel transformation the Cramér–Fourier
transform and define it as follows:

Definition 3.4.1. Let f be a function with a real-valued and nonnegative Fourier
transform. Then its Cramér–Fourier transform is given by

CF [ f ] :=
(
− logF [ f ]

( ·
2π

) )∗ . (3.73)
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The constants are chosen in such a way that the Cramér and Cramér–Fourier
transform coincide for Gaussian kernels. An in-depth comparison of both trans-
forms is conducted in Section 3.8.
The definition fits also well to our kernels in Table 3.1: Their Fourier transforms
are real-valued (due to the kernel symmetry) and positive.

First we prove that the Cramér–Fourier transform benefits from the same key
property as the classical Cramér transform considered in Burgeth and Weickert
[2005]: It maps convolutions to infimal convolutions.

Theorem 3.4.2 (Convolution Property of the Cramér–Fourier transform). As-
sume that two functions f and g are proper, lower semi-continuous, and have convex
Cramér–Fourier transforms. Then the following holds true:

CF [ f ∗ g ] = CF [ f ] � CF [ g ] . (3.74)

Proof. Our proof uses several results from convex analysis (see e.g. Rockafellar
[1970]). Since CF [ f ] and CF [ g ] are lower semi-continuous, proper and convex,
also their convex conjugates CF [ f ]∗ and CF [ g ]∗ share these properties. More-
over, it follows that CF [ f ]∗ = − logF [ f ]. Therefore, a direct computation
gives

CF [ f ∗ g ] =
(
− logF [ f ∗ g ]

( ·
2π

))∗
=
(
(− logF [ f ]

( ·
2π

)
) + (− logF [ g ]

( ·
2π

)
)
)∗

= (− logF [ f ]
( ·

2π

)
)∗ � (− logF [ g ]

( ·
2π

)
)∗

= CF [ f ] � CF [ g ] (3.75)

where we have applied the convolution theorem

F [ f ∗ g ] = F [ f ] F [ g ] (3.76)

for the Fourier transform and the well known property

(f + g)∗ = f ∗ � g∗ (3.77)

of the convex conjugate.

Taking a delta peak

δ(x) =

{
1 for x = 0
0 else

(3.78)
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as f , and the convolution kernel k of an LSI space-space as g, Theorem 3.4.2
shows that we obtain a morphological scale-space with structuring function
CF [ k ] and morphological delta peak

χ(x) =

{
0 for x = 0∞ else

(3.79)

as initial value. The morphological delta peak is the neutral element for infimal
convolutions in the same way as a delta peak is the neutral element for convolu-
tions.
For applications in image processing, we use the convolution kernels and these
obtained structuring functions to create linear and morphological scale-spaces
with the same initial image f .

Definition 3.4.3. For some LSI scale-space

u(x, t) = (f ∗ k(·, t))(x) (3.80)

with convolution kernel

k(x, t) = F −1[ exp (p(2π ·) t) ] (x) (3.81)

and initial image f , the structuring function s(x, t) for a corresponding morpholog-
ical scale-space

v(x, t) = (f � s(·, t))(x) (3.82)

is obtained by applying the Cramér–Fourier transform to k(x, t):

s(x, t) = CF [ k(·, t) ] (x) = (−t p(·))∗ (x). (3.83)

3.5 Connections between Linear and Morphological
Evolutions

Interestingly, we can also use theCramér–Fourier transform on the level of evolu-
tion equations. This enables us to prove the following theoremwhich constitutes
one of our main results.

Theorem 3.5.1. Let u(x, t) be the solution of the LSI scale-space evolution

∂tu(x, t) = p (∇) u(x, t) on R2 × (0,∞) (3.84a)

u(x, 0) = δ(x) on R2 (3.84b)

63



Chapter 3. Morphological Counterparts of Linear Scale-Spaces

where p(ξ) denotes the symbol of the pseudodifferential operator P(∇) with constant
coefficients.
If p is proper, lower semi-continuous and convex, the Cramér–Fourier transform of u,
denoted by v, is the unique viscosity solution of the morphological scale-space evolution

∂tv(x, t) = p (∇v(x, t)) on R2 × (0,∞) (3.85a)

v(x, 0) = χ(x) on R2 . (3.85b)

A similar theorem using the Cramér transform is proved by Akian et al. [1994].
While their proof could be modified to our setting, using the previous obtained
results is much simpler.

Proof. The discussion in Section 3.1.2 shows that the solution of (3.84a)–(3.84b)
is given by

u(x, t) = (δ ∗ k(·, t))(x) (3.86)

with k(x, t) = F −1[ exp(p(2π·)t) ] (x). Since p is proper, lower semi-continuous
and convex, applyingTheorem 3.4.2 shows that v(x, t) = CF [ u(·, t) ] (x) is given
by

v(x, t) = (χ� s(·, t))(x) (3.87a)

with

s(x, t) = (−t p(·))∗(x) . (3.87b)

Following the discussion in Section 3.2 with H = −p, this is the Hopf-Lax
formula for the unique viscosity solution of (3.85a)–(3.85b).

This motivates us to introduce the following definition that is the counterpart of
Definition 3.4.3 in terms of evolution equations:

Definition 3.5.2. Let an LSI scale-space evolution be given by

∂tu = P(∇)u , (3.88a)
u(., 0) = f . (3.88b)

Then its corresponding morphological scale-space evolution satisfies

∂tv = p (∇v) , (3.89a)
v(x, 0) = f (x) . (3.89b)
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Note that for computing the corresponding morphological scale-space, only the
symbol p of the LSI scale-space is required. In particular, no closed-form kernel
representation is necessary.

Figure 3.1 summarises our theoretical findings. We observe that we have obtained
a simple dictionary that allows to translate results between linear and morpho-
logical scale-spaces, both in terms of convolutions / infimal convolutions and
evolution equations.
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3.6 Application to Specific Scale-Spaces

Nowwe are in a position to apply our theory to a number of linear scale-spaces in
order to derive their morphological counterparts.

1. Gaussian Scale-Space. Table 3.1 specifies the symbol of Gaussian scale-
space as

p(ξ) = −|ξ|2 . (3.90)

According to Definition 3.5.2, its morphological counterpart is given by

∂tv = −|∇v|2 , (3.91)

which coincides with van den Boomgaard’s result [van den Boomgaard,
1992b]. According to our framework, the corresponding structuring func-
tion can be computed as

s(x) = (− p (·))∗ (x) = 1
4 |x|

2, (3.92)

which again confirms van den Boomgaard’s result. This shows that our
framework reproduces the only connection between linear and morpho-
logical scale-spaces that is known so far. Thus, we can focus now on estab-
lishing novel connections.

2. α-Scale-Spaces. In the sameway as above, one can show that themorpho-
logical equivalents for the α-scale-spaces are given by

∂tv = −|∇v|2α. (3.93)

We observe that this is exactly the class of morphological evolutions that
are studied by Jackway [1994] and Diop and Angulo [2014].

Interestingly, (3.93) also proves that for α = 1
2 , the linear counterpart of

the widely-used morphological scale-space

∂tv = −|∇v|, (3.94)

which describe erosion with a flat disc of radius t, is given by the Poisson
scale-space

∂tu = −
√
−∆ u . (3.95)

To our knowledge, this connection has not been stated before.
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As a didactic example, let us now confirm that our computations also re-
produce the structuring functions of Diop and Angulo [2014]. Knowing
the symbol p(x) = −|x|2α, we can use (3.26) again to compute sα :

sα(x) = (−p (·))∗ (x) = (| · |2α)∗(x)

= (2α−1)
∣∣∣ x
2α

∣∣∣ 2α
2α−1

, (3.96)

since [see e.g Rockafellar, 1970, p. 106](
1
b | · |

b
)∗

(x) = b−1
b |x|

b
b−1 for b > 1 . (3.97)

This coincides with the result from Diop and Angulo [2014] stated in
(3.38). Although this formula only holds for α > 1

2 , we can compute the
pointwise limit

lim
α→ 1

2
+

sα(x) =

{
0 |x| 6 1,∞ else.

(3.98)

As expected, this is a flat disc of radius 1.

3. Summedα-Scale-Spaces. Weknow that summedα-scale-spaces have the
symbol

p(ξ) = −

m∑
k=1

λk |ξ|
2αk . (3.99)

This yields

∂tu = −

m∑
k=1

λk |∇u|2αk (3.100)

as morphological counterpart of

∂tu = −

m∑
k=1

λk(−∆)
αk u . (3.101)

In a similar way as before, its structuring function can be derived as

s(x) =
m
�

k=1
λk(2αk−1)

∣∣∣∣ x
2αk λk

∣∣∣∣
2αk

2αk−1

. (3.102)
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4. Relativistic Scale-Spaces. From Table 3.1 we see that relativistic scale-
spaces are characterised by the symbol

p(ξ) = m −
√
|ξ|2 +m2 . (3.103)

This gives
∂tv = m −

√
|∇v|2 +m2 (3.104)

as morphological counterparts. The structuring function sr,m can be com-
puted as before as the convex conjugate of the negative symbol:

sr,m(x) =
(√

| · |2 +m2 −m
)∗

(x) (3.105)

= sup
y∈R2

(
〈x, y〉+m −

√
|y|2 +m2

)
. (3.106)

If |x| 6 1, the solution for y is given by

y =
x m

1 − |x|2
. (3.107)

Thus, it follows that

sr,m(x) =

{
m
(

1 −
√

1 − |x|2
)

|x| 6 1,∞ else.
(3.108)

Form → 0, the structuring function sr,m converges to a flat disc of radius 1.
This is expected from the results from the last section, since the relativistic
scale-spaces converge to the Poisson scale-space for m → 0.

5. Anisotropic Scale-Spaces. The symbol for anisotropic Gaussian scale-
space is

p(ξ) = − 〈ξ, Dξ〉 . (3.109)

This allows to compute the morphological counterpart of

∂tu = div(D∇u) (3.110)

as

∂tv = − 〈∇v, D∇v〉 . (3.111)

As already mentioned, this morphological evolution has been studied by
van den Boomgaard [1992a] and by Jackway [1995].
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So far we have always started with LSI scale-spaces and derived their cor-
responding morphological scale-space. The only morphological evolution
that we could not derive in this way was the anisotropic differential equa-
tion of Arehart et al. [1993]:

∂tv = −|D∇v| = −
√
∇v>D2 ∇v . (3.112)

This is a good opportunity to show that our theoretical framework pro-
vides us with a dictionary that can be used also in the reverse direction.
Obviously (3.112) can be expressed as

∂tv = p(∇v) (3.113)

with symbol

p(ξ) = −

√
ξ>D2 ξ . (3.114)

This gives rise to an anisotropic Poisson scale-space

∂tu = −
√

−∇>D2 ∇ u (3.115)

that has not been described in the literature before.

Table 3.3 summarises the results of this Section 3.5. We observe that we have de-
rivedmany correspondences between knownLSI scale-spaces andmorphological
ones. Moreover, we have also managed to come up with novel scale-spaces.
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Table 3.3: Specific LSI scale-spaces and their morphological equivalents.

LSI scale-space LSI evolution morphological evolution morphological scale-space

Gaussian ∂tu = ∆u ∂tv = −|∇v|2 quadratic SF

Poisson ∂tu = −
√
−∆ u ∂tv = −|∇v| flat disk SF

alpha ∂tu = −(−∆)αu ∂tv = −|∇v|2α poweroid SF

summed alpha ∂tu = −
∑m

k=1 λk(−∆)
αku ∂tv = −

∑m
k=1 λk |∇v|2αk morphological summed alpha

relativistic ∂tu =
(
m −

√
m2−∆

)
u ∂tv = m −

√
m2 + |∇v|2 morphological relativistic

anisotropic Gaussian ∂tu = div(D∇u) ∂tv = −∇>v D∇v anisotropic quadratic SF

anisotropic Poisson ∂tu = −
√
−∇>D2 ∇ u ∂tv = −|D∇v| flat ellipse-shaped SF
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3.7 Experiments

Although our results are of theoretical nature, we would like to illustrate some
of the discussed scale-spaces and their correspondences by experiments. The
implementation for the linear scale-spaces uses a multiplication in the Fourier
domain. For themorphological scale-spaces, we compute the infimal convolution
over the image domain.

In Figure 3.2, we plot structuring functions of the morphological counterparts of
various alpha- and relativistic scale-spaces. First of all, we observe the convexity
of all structuring functions. Fig. 3.2(a) shows that for α → 0.5, the structuring
function of the morphological α-scale-space converges to a flat structuring func-
tion. A similar behaviour can be observed for morphological relativistic scale-
spaces whenm → 0; see Fig. 3.2(b). On the other hand, Fig. 3.2(c) shows that for
m = 0.4, the morphological relativistic scale-space gives a good approximation
to the morphological equivalent of Gaussian scale-space.

(a) morphological (b) morphological (c) morphological Gaussian
α-scale-space relativistic scale-space and relativistic scale-space

Figure 3.2: Structuring functions for one-dimensional morphological scale-
spaces.

Whereas Figure 3.3 shows the two-dimensional linear α-scale-space for
α = 0.75, Figures 3.4 shows its morphological infimal convolution counterpart
which corresponds to an erosion process. To enable comparisons, we have
chosen the sameMona Lisa image as in Burgeth andWeickert [2005]. Moreover,
for the sake of completeness, we also depict the corresponding dilation
scale-space in Figure 3.5.
Figures 3.6 and 3.7 compare the linear and morphological relativistic scale-space
for m = 0.1. Since this m value is fairly close to the limit m → 0, the lin-
ear evolution resembles Poisson scale-space, and its morphological counterpart
approximates erosion with disc-shaped structuring functions. The latter is well
visible.
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(a) t = 0 (b) t = 5

(c) t = 15 (d) t = 50

Figure 3.3: Linear α-scale-space with α = 0.75.

The last example inFigure 3.8 shows that the anisotropy of the convolution kernel
carries over to the structuring function. For this experiment we take the matrix

D =

(
5 1
1 1

)
(3.116)

and compare the convolution kernel of the anisotropic Poisson scale-space to its
corresponding flat, ellipse-shaped structuring function (3.39) with the inverse
matrix

D−1 =
1
4

(
1 −1

−1 5

)
. (3.117)
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(a) t = 0 (b) t = 1

(c) t = 3 (d) t = 10

Figure 3.4: Morphological α-scale-space with α = 0.75.

74



Experiments

(a) t = 0 (b) t = 1

(c) t = 3 (d) t = 10

Figure 3.5: Corresponding dilation scale-space.
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(a) t = 0 (b) t = 1

(c) t = 5 (d) t = 20

Figure 3.6: Linear relativistic scale-space with m = 0.1.
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(a) t = 0 (b) t = 1

(c) t = 5 (d) t = 20

Figure 3.7: Morphological relativistic scale-space with m = 0.1.
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Chapter 3. Morphological Counterparts of Linear Scale-Spaces

(a) t = 3 (b) t = 10

Figure 3.8: Left: Convolution kernel for linear anisotropic Poisson scale-space.
Right: Corresponding structuring function.

3.8 Comparison to the Cramér Transform

Most applications of the large deviations theory rely on the interpretation that
the rate function describes the tail probability of a distribution. However, this is
different from the use case in Section 3.3.3We aremore interested is the structural
change that takes place by replacing the classical algebra by the max-plus-algebra
Rmax. This transition is made explicit by the Cramér transform which needs the
moment generating function (Laplace transform of the density) to be finite. In
probability theory, the preferred way of describing a random variable X (with
density p) is the characteristic function defined by

ϕX(t) = E
[
ei〈t,X〉] = ∫

Rd

p(x) ei〈t,x〉 dx . (3.118)

Its main advantage compared to the moment generating function

mX(t) = E
[
e〈t,X〉] (3.119)

is the fact that the characteristic function always exists, for every distribution.
By definition, one expects similar properties of both characteristic and moment
generating function.
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We used this observation in Section 3.4 to construct the Cramér–Fourier trans-
form. The definition can be rewritten in term of the characteristic function as
follows:

CF [ p ] (x) =
(
− log

(
F [ p ]

(
.

2π

)))∗
(x) (3.120a)

= (− logϕX)
∗
(x) (3.120b)

with p being the density of X. Although the Cramér and the Cramér–Fourier
transform do not coincide, we can show the following lemma.

Lemma 3.8.1. Let X be a random variable with symmetric probability density func-
tion and finite moment generating function. Then, the leading terms of the Taylor
expansions of logL [X ] = log mX and − logF [X ]

(
.

2π

)
= − logϕX are equal.

The preconditions are chosen in such a way to make sure that both transforms
exist.

Proof. Since all odd moments of X vanish, we have

mX (t) =
∞∑

i=1

tn

n!
E [X n] (3.121a)

= 1 +
1
2

t2

∫
R

p(x) x2 dx

+O(t4). (3.121b)

For the characteristic function we obtain

ϕX (t) =
∫
R

p(x)eitx dx (3.122a)

=

∫
R

p(x)(cos(tx) + i sin(tx)) dx (3.122b)

=

∫
R

p(x) cos(tx) dx since p is even (3.122c)

=

∫
R

(
p(x)

∞∑
n=0

(−1)n

(2n)!
(tx)2n

)
dx (3.122d)

=

∞∑
n=0

(−1)n

(2n)!
t2n

∫
R

p(x) x2n dx

 (3.122e)
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= 1 −
1
2

t2

∫
R

p(x) x2 dx

+O(t4) . (3.122f)

The integral and the sum can be exchanged by Fubini’s theorem because the sum
can be interpreted as an integral with a discrete measure and we know that the
integral of the absolute value of the integrand is finite. Keep in mind that we use
the existence of the moment generating function of X at this point. The lemma
follows by observing

log(1 + z) = z −
z2

2
+O(z3). (3.123)

Although we cannot prove it at this point, we also expect the following to hold
true.

Conjecture 3.8.2. Let X be a random variable with density p. The leading terms of
the Taylor expansions of the Cramér transform

C [ p ] = (log mX )
∗ (3.124)

and the Cramér–Fourier transform

CF [ p ] = (− logϕX )
∗ (3.125)

coincide if both transforms exist.

Let us look at three examples to understand this conjecture in more details:

• Gaussian distribution. For a Gaussian distributed random variable X
with mean 0 we have

− logϕX ≡ log mX . (3.126)

In this case, even

C [ p ] ≡ CF [ p ] . (3.127)

holds true. This is expected, since the Cramér–Fourier transform is de-
signed to coincide with the Cramér transform for Gaussian kernels.
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• Uniform distribution. Take a continuous random variable X that is uni-
formly distributed on the interval [a, b] = [−1, 1]. Then it is known:

mX (t) =
ebt − eat

t(b − a)
=

sinh(t)
t

= 1 +
t2

3!
+

t4

5!
+O(t6) (3.128a)

ϕX (t) =
eibt − eiat

it(b − a)
=

sin(t)
t

= 1 −
t2

3!
+

t4

5!
+O(t6) (3.128b)

and we have

log(mX (t)) =
t2

6
−

t4

180
+O(t6) (3.129a)

− log(ϕX (t)) =
t2

6
+

t4

180
+O(t6). (3.129b)

This last example shows that the Cramér and Cramér–Fourier transform
can be different.

• Discrete Distributions. If we assume that the conjecture holds true, the
following extension to discrete filters would be possible.

Let X be a discrete random variable that takes the value xi ∈ Rd with
probability pi with 1 6 i 6 n and

∑n
i=1 pi = 1. The moment generating

function of X is given by

mX(t) = E
[
e〈t,X〉] = n∑

i=1

e〈t,xi〉pi (3.130)

and its Cramér transform is

C [X ] (t) = (log mX)
∗
(t) (3.131a)

= sup
s∈Rd

{
〈s, t〉− log

(
n∑

i=1

e〈s,xi〉pi

)
︸ ︷︷ ︸

h(s)

}
(3.131b)

To compute it explicitly we need the gradient of h

∂sj h(s) = tj −
∑n

i=1 xi,j e〈s,xi〉pi∑n
i=1 e〈s,xi〉pi

j = 1, . . . , d (3.132)

to be zero. The notation xi,j is used to denote the jth component of xi . If
we assume s = log(k) (defined componentwise) we obtain

n∑
i=1

pi (xi,j − tj)kxi !
= 0 k > 0, j = 1, . . . , d . (3.133)
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Thus, we need to solve a system of polynomial equations to evaluate the
Cramér transform of a general discrete filter at a given argument t.

In special cases, however, this is much easier. Let us consider the discrete
linear diffusion equation given by the stencil k

τ
h2 1 − 2 τ

h2
τ
h2 (3.134)

with grid size h > 0 and time step size τ > 0.

For every grid point j this kernel defines a probability distribution Xj by:

Pr (Xj = i)


τ
h2 for i = j ± 1
1 − 2 τ

h2 for i = j
0 else

. (3.135)

The convolution of k with a discrete signal f at point j can be expressed as
expectation of Xj in the following way:

(k ∗ f )j = E [f (Xj)] =
τ

h2 fj−1 +
(

1 − 2
τ

h2

)
fj +

τ

h2 fj+1 . (3.136)

The moment generating function is

mXj (t) =
τ

h2 e(j−1) t +
(

1 − 2
τ

h2

)
ej t +

τ

h2 e(j+1) t (3.137)

and to compute (log mXj )
∗ we have to solve (3.133), i.e.

τ

h2 (j − 1−t) kj−1+
(

1−2
τ

h2

)
(j−t) kj+

τ

h2 (j+1 − t) kj+1 !
= 0 (3.138)

for k > 0.

Since k is positive, we can divide by kj−1 and obtain a quadratic polynomial.
Furthermore, wemay assume j to be zero since we can substitute t by t − j .
For τ

h2 <
1
4 this gives the positive solution

k = −
1
2

h2t − 2τt +
√

h4t2 − 4τh2t2 + 4τ2

τ(t − 1)
(3.139)

with−1 6 t 6 1.
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Summary

Reintroducing j by translating t, we get an explicit representation of the
structuring function. As expected, its Taylor expansion at h = 0 is given
by

1
4 τ

h2

t2 +O(h4) (3.140)

which approximates the structuring function

1
4 t

‖x‖2 (3.141)

of a continuous Gaussian.

Conjecture 3.8.2 tells us that the result for the Cramér–Fourier transform
would be similar.

3.9 Summary

In this chapter we have established a mathematical dictionary that allows to
translate any linear shift-invariant scale-space evolution into its morphological
counterpart of Hamilton–Jacobi type and vice versa. In contrast to previous
work on structural similarities between linear and morphological systems,
we have achieved these equivalences in the terminology of differential or
pseudodifferential operators. It turned out that the symbol p is a very simple and
powerful concept: It allows to transform the linear evolution equation

∂tu = P(∇)u (3.142)

into its morphological counterpart

∂tv = p(∇v) . (3.143)

By considering specific examples of linear or morphological scale-spaces we have
discovered hitherto unexplored relations between known scale-spaces, such as
the Poisson scale-space and morphology with a disc-shaped structuring element
of increasing size. Moreover, novel scale-spaces have been introduced that have
not been studied before, e.g. anisotropic Poisson scale-spaces and morphological
relativistic scale-spaces.
Furthermore, we depicted a possible unification of Cramér and Cramér–Fourier
transform by only considering the leading order term of both transforms. We
stated the conjecture that these leading order terms always coincide (under the
assumption that both transforms exist).
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Chapter 4

Conclusions and Outlook

Study nature, love nature, stay close to nature.
It will never fail you.

Frank Lloyd Wright

4.1 Conclusions

In this thesis we have seen several new scale-space aspects in image processing.
First, we have analysed the continuous formulation of the linear osmosis filtering.
This is an existing framework for seamless image manipulation based on a drift-
diffusion equation where the desired outcome depends on the modelling of a
drift vector field. The employed differential operator is well studied in physics
and describes the evolution of the density of a moving particle in a conservative
force field. Based on the scalar potential function of this force field, the evo-
lution of the density can be written down explicitly. In our notation, the drift
vector field would be the gradient of the scalar potential function. However, in
practical applications, the constructed drift vector fields will not admit a scalar
potential function. This lead us to considering not only the parabolic but also
the elliptic formulation of the problem. We showed that the elliptic boundary
value problem allows a one-dimensional solution space. Furthermore, we proved
convergence for the evolution of the parabolic problem to a specific solution of
the elliptic problem. This specific solution is singled out by the average grey
value preservation of the parabolic image evolution - it is the solution that shares
the average grey value with the initial value. We need this solution as well when
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defining a class of Lyapunov functionals. They show the simplification of the
image evolution in a weighted L2-space. To sum up, we provided a complete
scale-space characterisation of the linear osmosis filtering.
Second, we introduced the Cramér–Fourier transform. Apart from connecting
linear shift-invariant and morphological scale-spaces on a structural and PDE
level it also offers away to construct new scale-spaces. The established dictionary
allows to translate evolution equations between LSI and morphological settings.
The Cramér–Fourier transform generalises previous research on the logarithmic
connection between Gaussian and dilation/erosion scale-spaces. We have shown
that the Fourier transform is the more natural choice to establish the above rela-
tionships. For the known correspondences, the results coincide. However, the
Cramér–Fourier transform extends to the whole class of LSI scale-spaces.

4.2 Outlook

In this work we have been focussing solely on linear scale-space ideas: In Chapter
2wehave analysed a scale-space theory for the linear osmosis filter and inChapter
3 we introduced the Cramér–Fourier transform to connect linear shift-invariant
scale-spaces to morphological scale-spaces. While we already depicted a way to
bring both the Cramér and Cramér–Fourier transform together again in Section
3.8, there are many more open challenges.
The linear osmosis filter was obtained by adding a drift term to a homogeneous
linear diffusion equation. Although we have seen several applications in Section
2.3, we feel that the full potential of the osmosis model is not yet utilised. So far,
neither the evolution itself has been used in practical applications nor drift vector
fields depending on evolution itself have been studied.
It is also possible to introduce a diffusivity function g : Ω→ R>0 into the evolu-
tion equation. This leads to a generalised osmosis evolution equation

∂tu = div (g∇u− du) . (4.1)

In a discrete setting, first results are already available: Baumann [2014] showed
that there is a one-to-one correspondence between a specific, but straightforward
space-discretisation of (4.1) and continuous-time Markov chains. He uses (4.1)
to rank football teams by modelling both diffusivities and drift vectors based on
given game results. However, in a continuous setting, no analysis was conducted
yet and many of the employed methods in this work do not extend to this case.
An importance special case is obtained when g ≡ ε for a small constant ε > 0 .
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This leads to a similar situation as discussed in Section 3.3.1: The ansatz

u = a exp
(
−

1
ε

w
)

(4.2)

transforms

∂tu = div (ε∇u− du) (4.3)

into [Risken, 1984, Section 6.6.7]

∂tw = −|∇w|2 − d ·∇w +O(ε) . (4.4)

It would be interesting to see whether the above results combined with ideas
from Section 3.8 could lead to a morphological counterpart of a linear osmosis
filter. Furthermore, it would be desirable to include scale-spaces of nonlinear
nature such as nonlinear diffusion [Perona and Malik, 1990, Weickert, 1998] and
curvature-based morphological evolutions [Alvarez et al., 1993, Sapiro and Tan-
nenbaum, 1993] into the theory.
Overall, there are a lot of interesting research questions and we hope that this
work inspires more people to study linear scale-space approaches and extend the
presented results in many unexpected ways.
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Appendix A

Large Deviations Theory

We all matter - maybe less then a lot but always more
than none.

John Green

Beforewe introduce the exact statements, we need somenotations. Fromnowon,
let (Ω, B) be ameasure space. A rate function is a lower semi-continuous function
I : Ω→ R>0 whose level sets are closed inΩ.

Definition A.1 (Large Deviation Principe). A family of probability measures
{µn}n∈N on (Ω, B) satisfies the large deviation principle (LDP) with a rate function I
if for all Γ ∈ B

lim inf
n→∞ 1

n logµn(Γ) > − inf
x∈Γ◦

I (x), (A.1)

lim sup
n→∞

1
n logµn(Γ) 6 − inf

x∈Γ
I (x) (A.2)

where Γ◦ and Γ denote the interior and closure of Γ , respectively.

This definition is the most important one in large deviation theory and a lot of
effort has been spent into proving that a LDP holds for specific families of proba-
bility measures. The first proven LDP goes back to Harald Cramér and is nowa-
days (together with all of its extensions) known as Cramér’s Theorem. Cramér
proved the following theorem in one dimension (see Dembo and Zeitouni [2009]
for a proof and a historic overview).
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Theorem A.2 (Cramér’s Theorem in Rd). Let {Xi}i∈I be a family of real-valued
independent identically distributed (i.i.d.) random variables in Rd with finite moment-
generating function

m(t) = E
[
e〈t,X1〉

]
. (A.3)

Let Zn := 1
n

∑
i Xi be its empirical mean with distribution Pn. Then {Pn} fulfils the

LDP with rate function

I (x) := sup
t∈Rd

{〈x, t〉− log m(t)} . (A.4)

Theorem A.3 (Varadhan’s Integral Lemma). Suppose that {µε} satisfies the LDP
with a good rate function I : X → [0,∞], and let Φ : X → R be any continuous
function. Assume further either the tail condition

lim
M→∞ lim sup

ε→0
ε log E

[
eΦ(Zε)/ε1{Φ(Zε)>M}

]
= −∞ (A.5)

or the following moment condition for some γ > 1,

lim sup
ε→0

ε log E
[
eγΦ(Zε)/ε

]
<∞ . (A.6)

Then

lim
ε→0

ε log E
[
eΦ(Zε)/ε

]
= sup

x∈X
{Φ(x) − I (x)} . (A.7)
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