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Abstract
Considering the same genome within every cell, the observed phenotypic diversity can only
arise from highly regulated mechanisms beyond the encoded DNA sequence. We investigated
several mechanisms of protein biosynthesis and analyzed DNAmethylation patterns, alterna-
tive translation sites, and genomic mutations. As chromatin states are determined by epige-
neticmodifications and nucleosome occupancy, we conducted a structural superimposition ap-
proach between DNAmethyltransferase 1 (DNMT1) and the nucleosome, which suggests that
DNA methylation is dependent on accessibility of DNMT1 to nucleosome–bound DNA. Con-
sidering translation, alternative non–AUG translation initiation was observed. We developed
reliable prediction models to detect these alternative start sites in a given mRNA sequence.
Our tool PreTIS provides initiation confidences for all frame–independent non–cognate and
AUG starts. Despite these innate factors, specific sequence variations can additionally affect a
phenotype. We conduced a genome–wide analysis with millions of mutations and found an
accumulation of SNPs next to transcription starts that could relate to a gene–specific regula-
tory signal. We also report similar conservation of canonical and alternative translation sites,
highlighting the relevance of alternative mechanisms. Finally, our tool MutaNET automates
variation analysis by scoring the impact of individual mutations on cell function while also
integrating a gene regulatory network.
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Zusammenfassung
Da sich in jeder Zelle die gleiche genomische Information befindet, kann die vorliegende
phänotypische Vielfalt nur durch hochregulierte Mechanismen jenseits der kodierten DNA–
Sequenz erklärt werden. Wir untersuchten Mechanismen der Proteinbiosynthese und analy-
sierten DNA–Methylierungsmuster, alternative Translation und genomische Mutationen. Da
die Chromatinorganisation von epigenetischenModifikationen und Nukleosompositionen be-
stimmt wird, führten wir ein strukturelles Alignment zwischen DNA–Methyltransferase 1
(DNMT1) und Nukleosom durch. Dieses lässt vermuten, dass DNA–Methylierung von einer
Zugänglichkeit der DNMT1 zur nukleosomalen DNA abhängt. Hinsichtlich der Translation
haben wir verlässliche Vorhersagemodelle entwickelt, um alternative Starts zu identifizieren.
Anhand einer mRNA–Sequenz bestimmt unser Tool PreTIS die Initiationskonfidenzen aller al-
ternativen nicht–AUG undAUG Starts. Auch können sich Sequenzvarianten auf den Phänotyp
auswirken. In einer genomweiten Untersuchung von mehreren Millionen Mutationen fanden
wir eine Anreicherung von SNPs nahe des Transkriptionsstarts, welche auf ein genspezifisches
regulatorisches Signal hindeuten könnte. Außerdem beobachteten wir eine ähnliche Konser-
vierung von kanonischen und alternativen Translationsstarts, was die Relevanz alternativer
Mechanismen belegt. Auch bewertet unser ToolMutaNET mit Hilfe von Scores und eines Gen-
regulationsnetzwerkes automatisch den Einfluss einzelner Mutationen auf die Zellfunktion.
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CHAPTER1
Introduction

Protein biosynthesis, the decoding of DNA into mRNA and proteins, is an essential process in
living cells. The number of constituents that are in someway involved in these highly regulated
processes is tremendous and range from epigenetic modifications, such as DNA methylation,
up to the ribosome with all its subunits and additional translation factors. Moreover, with
the progress in RNA sequencing, there is a constantly increasing amount of research projects
concerning alternative regulatory mechanisms that complement our evidence for alternative
transcription and translation initiation, alternative splicing, and alternative polyadenylation.
This greatly extends our current knowledge about protein biosynthesis and supersedes our
outdated views on a simple and transparent machinery. This thesis serves to improve our
understanding of the complex processes and regulatory elements behind protein biosynthesis.

This chapter introduces protein biosynthesis, provides an outline on utilized data sources
and bioinformatics software tools, summarizes statistical hypothesis testing, and shortly ex-
plains the background and the purpose of every project. Biological, computational, and statis-
tical details concerning individual projects are given at the beginning of the respective chapters.

1.1 Genomeorganization: fromdouble helix to con-
densed chromosomes

The hereditary material known as deoxyribonucleic acid (DNA) comprises the genetic infor-
mation and biological instructions that are needed for development, reproduction, and cellular
function as a whole in living organisms. DNA is located in the nucleus and inherited from the
parent generation to the offspring. The previously unknown biological entity was first discov-
ered in 1869 by Friedrich Miescher who isolated the molecule from the nucleus and termed it
"nuclein" [1]. His work was published in 1871 [2]. Subsequent to this groundbreaking discov-
ery, pioneersWatson and Crick [3] together with Franklin and Gosling [4] andWilkins et al. [5]
discovered in 1953 that the DNA molecule forms a two–stranded double helix.

The elementary building blocks of DNA are named nucleotides, which are composed of
one of the four nitrogen bases adenine (A), cytosine (C), guanine (G), and thymine (T) that
are bound to a sugar (deoxyribose) and a phosphate group [3, 6]. Figure 1.1 illustrates the
ladder–like DNA double helix. Thereby, deoxyribose and phosphate alternate and form a
sugar–phosphate backbone. The two–stranded helical DNA structure is built up by comple-
mentary base pairing of A with T and G with C via hydrogen bonds [3]. Thereby, A and G
belong to the purine bases, whereas T and C are pyrimidine bases [3]. The complementary
DNA strands are antiparallel with one strand proceeding from 5’ end to 3’ end, while the other
one ranges from 3’ end to 5’ end [6]. Dependent on the direction, the strand is called sense
or coding (5’→ 3’) and antisense or noncoding strand (3’→ 5’) [7]. In addition to the nuclear
genome, DNA is also found inmitochondria known asmitochondrial DNA [8, 9]. Among other
differences, the mitochondrial genome is circular instead of linear and has a much smaller size
compared to the nuclear genome [8].

To fit into a cell, a DNA molecule folds into a complex coiled higher–order structure. This
tight packaging is accomplished by formation of a hierarchical chromatin structure with DNA–

1
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Figure 1.1: DNA double helix. DNA forms a ladder–like double helical structure that is com-
posed of a sugar–phosphate backbone and complementary base pairings of A with T and G
with C. Hydrogen bonds are shown as dashed lines. The basis of this figure was adapted
from [6].

histone protein complexes, called nucleosomes, as basic repeating units [10, 11]. Nucleosomes
are composed of about 145–147 base pairs (bp) of double–stranded DNAwrapped around a hi-
stone octamer. Such an octamer, as the name suggests, is composed of eight proteins with two
copies of the four histone proteins H3, H4, H2A, and H2B each [10, 11, 12]. Histone variants
that can replace canonical histone proteins exist as well such as histone H3.3 or histone H2A.Z,
and several more known to date [13]. The amino acid sequence of the conserved histone H3.3
differs only slightly from canonical H3 histones, but histone variant H3.3 is expressed differ-
ently during the cell cycle [14]. Histone H3.3 was found to play a crucial role in mammalian
development [14]. Histone variant H2A.Z is also highly conserved and plays a role in gene reg-
ulation [13]. Generally, histone variants were reported to affect chromatin states that influence
gene expression as a whole [13].

Figure 1.2 shows anX–ray structure of the nucleosome core complex. Nucleosomes are then
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connected via 10–80 bp linker DNA stretches, which resemble a string of beads. This is known
as the primary chromatin structure [15]. Next, short–range nucleosome–nucleosome contacts
enable a folding of these nucleosome beads into secondary chromatin structure [12, 16, 17].
The condensed chromosome then forms via long–range fiber–fiber interactions referred to as
tertiary chromatin structure [12, 16, 17]. The human genome consists of 23 chromosome pairs,
22 pairs of autosomes and one pair of sex chromosomes, thus 46 chromosomes in total. This dy-
namic and adaptable chromatin structure controls genome accessibility and is thus crucial for
appropriate gene regulation and hence gene expression [10, 12, 18]. There are two chromatin
types: euchromatin and heterochromatin. While euchromatin, referred to as open chromatin,
is prevalent at active genes, the closed and condensed chromatin, known as heterochromatin,
is generally associated with less active genes and gene silencing [15, 19]. Additional chromatin
modifications, such as DNA methylation, post–translational histone modifications, or chro-
matin remodeling complexes are essential factors that govern gene regulation [19, 20]. An
erroneous regulation of chromatin structure was, for instance, found in tumor cells [10].

Figure 1.2: Nucleosome core complex. Shown is the DNA double helix (orange) wrapped
around a histone octamer that consists of two copies of each histone protein: H3 (green),
H4 (blue), H2A (cyan), and H2B (pink). Histone tails protrude out of the nucleosome core.
The structure was determined by Davey et al. [10] and can be retrieved from the Protein Data
Bank [21] via accession number 1KX5. The image was rendered using the PyMOL Molecular
Graphics System [22].
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1.2 Protein biosynthesis: evidence for alternative
regulation

Protein biosynthesis describes the synthesis of protein molecules based on the genetic code. In
a first step, double–strandedDNA is transcribed into single–strandedmessenger RNA (mRNA)
by RNA polymerase II [23]. Splicing and polyadenylation processes then ensure RNA matu-
ration [24]. Following this, the mature mRNA molecule is translated into a protein by the
ribosome scanning complex [23, 25]. Multiple regulatory mechanisms during transcription,
splicing, polyadenylation, and translation allow the controlled expression of more than 80,000
protein–encoding transcripts that encode about 250,000 up to 1 Mio. proteins solely based on
the genetic information of less than 20,000 genes [24]. This abundance can only be accom-
plished by a tight regulation together with alternative mechanisms such as an initiation at al-
ternative transcription or translation start sites [24].

In the following, the distinct steps of protein biosynthesis together with their (alternative)
regulation are explained. Since the investigation of alternative translation initiation was one
of the central objectives in this thesis, translation is explained in more detail. Here, we refer
to eukaryotic cells, although the described processes are very similar among eukaryotes and
prokaryotes.

1.2.1 Transcription: from DNA to RNA
In a first step, the genetic information is transcribed into ribonucleic acid (RNA) whereby
thymine is replaced by uracil (U), deoxyribose by ribose, and RNA is single–stranded rather
than double–stranded [7]. Transcription is separated into three phases: initiation, elongation,
and termination [26]. All phases are tightly regulated to guarantee a controlled and normal cell
behavior during development, growth, and survival [26]. During initiation, a RNApolymerase
binds to the promoter region directly upstream of a gene [23, 26]. Based on the eukaryotic DNA
organization, additional proteins are required to unpack the chromatin and enable DNA acces-
sibility [23]. A central element of eukaryotic promoter regions is the TATA box located about
25 to 35 bps upstream of the transcription initiation site [23]. This specific motif, with the
consensus sequence "TATTAA", is recognized by specific transcription factors enabling proper
start site usage [23]. In general, transcription factors control gene expression by recognizing
and binding to specific DNA sequences (motifs) [27]. In eukaryotes, enhancer sequences addi-
tionally allow the regulation of gene expression through binding of activator proteins and the
recruitment of RNA polymerase II [23]. Enhancer sequences can be located far away upstream
or downstream of a gene and even within introns [27]. The distance between interacting pro-
moter and enhancer regions is thereby defeated by DNA looping [23]. The looping is enabled
via interaction of promoter– and enhancer–bound proteins, whereby activator proteins pro-
mote and repressor proteins inhibit DNA looping [23]. Additionally, multiple enhancers can
influence a single RNA polymerase II promoter [27].

Upon initiation, the DNA double helix is opened and the RNA polymerase II elongates
the growing RNA molecule at the 3’ end by reading along the DNA template strand [23]. In
this manner, a complementary RNA chain is synthesized that grows in 5’→ 3’ direction. The
final transcript then corresponds to the DNA–coding strand, whereby T is substituted with
U [23]. Transcription terminates when the RNA polymerase detects a termination site. This
is then followed by release of the RNA transcript and the RNA polymerase from the DNA
molecule [23, 26].

Asmentioned, alternativemechanism of transcription initiation are known [24]. The usage
of alternative transcription start sites and promoters can either result in varying first exons
or a different 5’ untranslated region (5’ UTR) length. The resulting transcript abundance is
then based on alternative open reading frames (ORFs) and alternative N–termini [24]. It was
experimentally shown that the majority of gene promoters possesses several transcription start
sites that are regulated and expressed dependent on the cell–type [28].
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1.2.2 Splicing and polyadenylation: RNA maturation
Upon transcription, mRNAs undergo RNA splicing which results in a mature mRNA as a tem-
plate for protein translation [29]. In simple terms, splicing refers to the removal of introns [29].
However, alternative splicing leads to an expansion of biological variety by combining and
merging mRNA coding exons and introns in different ways. Examples are exon skipping, in-
tron continuance, or alternative acceptor/donor sites [24]. A transcriptome–wide study esti-
mated that about 95% of human multi–exon genes are subjected to alternative splicing [30].
Besides few exceptions, all eukaryotic mRNAs are further processed at the 3’ end by addition
of a poly(A)–tail [31]. This step is known as polyadenylation. Alternative polyadenylation
of transcripts can lead to different coding regions or result in diverging 3’ untranslated re-
gion (3’ UTR) lengths [24]. Moreover, alternative polyadenylation is associated with different
expression levels and thus protein abundance [31, 32, 33].

1.2.3 Translation: from mature RNA to protein
Following transcription, thematuremRNA transcript is encoded based on the genetic code and,
based on thismRNA template, the respective polypeptide is assembled by the ribosome [34, 35].
The mRNA sequence is translated in non–overlapping codons, or triplets, that comprise three
consecutive nucleotides [25]. The decoding of a triplet into an amino acid is based on the genetic
code shown in Table 1.1. All 20 natural amino acids together with their assigned one–letter as
well as the three–letter code are summarized in Table 1.2. The sequential array of coding triplets
then defines the open reading frame [25].

Table 1.1: The genetic code. The genetic code is a three–letter code that defines the translation
from three sequential nucleotides into an amino acid [7, 35]. These consecutive nucleotides are
referred to as codon or triplet. The amino acid one–letter and three–letter code is shown in
Table 1.2.

U C A G

U

UUU Phe UCU

Ser

UAU Tyr UGU Cys
UUC UCC UAC UGC

UUA Leu UCA UAA Stop UGA Stop

UUG UCG UAG UGG Trp

C

CUU

Leu

CCU

Pro

CAU His CGU

ArgCUC CCC CAC CGC

CUA CCA CAA Gln CGA

CUG CCG CAG CGG

A

AUU
Ile

ACU

Thr

AAU Asn AGU Ser
AUC ACC AAC AGC

AUA ACA AAA Lys AGA Arg
AUG Met ACG AAG AGG

G

GUU

Val

GCU

Ala

GAU Asp GGU

GlyGUC GCC GAC GGC

GUA GCA GAA Glu GGA

GUA GCG GAG GGG
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Table 1.2: The 20 natural amino acids. Amino acids are presented using one–letter or three–
letter codes, depending on which representation is more suitable in different contexts [7]. Dif-
ferent amino acids have different chemical and physical properties based on their side chains.
Nevertheless, properties can overlap and the chemical groups shown here represent a broad
classification.

Chemical group Amino acid Three–letter code One–letter code

Nonpolar Glycine Gly G

Alanine Ala A

Valine Val V

Leucine Leu L

Isoleucine Ile I

Proline Pro P

Phenylalanine Phe F

Methionine Met M

Tryptophan Trp W

Cysteine Cys C

Polar Asparagine Asn N

Glutamine Gln Q

Serine Ser S

Threonine Thr T

Tyrosine Tyr Y

Acidic Aspartic acid Asp D

Glutamic acid Glu E

Basic Histidine His H

Lysine Lys K

Arginine Arg R

The ribosome is a complex, with a small and a large subunit, that accommodates ribosomal
RNA (rRNA), transfer RNA (tRNA) and proteins [34]. The secondary structure of a tRNA
resembles a cloverleaf with an anticodon loop that can recognize the respective codon on the
mRNA transcript on one side and the matching amino acid on the other side [7]. An mRNA
transcript consists of three regions: 5’ UTR or leader sequence, coding DNA sequence (CDS),
and 3’ UTR [34]. In general, the ribosome scanning complex binds to the leader sequence,
scans the transcript until a suitable start codon is found, and translates the sequence from 5’
to 3’ end [25, 36]. This is referred to as the linear scanning model [36]. Translation comprises
three steps: initiation, elongation, and termination. Figure 1.3 illustrates canonical translation.

During initiation, the ribosomal initiation complex assembles on the mRNA transcript at
the ribosome binding site that is located near the 5’ end [25]. This initiation complex is com-
posed of eukaryotic initiation factors that bind to the small subunit of the ribosome (40S) as
well as an initiator methionine–tRNA [37]. Although there are exceptions to this rule, Kozak
[36] proposed a linear scanning model for eukaryotic translation stating that the 40S ribosomal
subunit binds to the mRNA 5’ end, scans the transcript in 5’ to 3’ direction and initiates trans-
lation at the first AUG codon with a beneficial flanking sequence context, see below. The small
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ribosomal subunit comprises three binding sites: an amino acid site (A–site), a polypeptide
site (P–site), and an exit site (E–site). To provide the first protein amino acid for the grow-
ing polypeptide chain, the initiator aminoacyl–tRNA holds the covalently bound amino acid
methionine and binds to the ribosome P–site located at an AUG start codon. Next, the large
ribosomal subunit (60S) completes the ribosome scanning machinery by binding to the initia-
tion complex. The initiation factors are then released. As the 40S subunit, the 60S ribosomal
subunit comprises three binding sites as well, which serve for different purposes during trans-
lation. Base pairing of tRNA anticodon with the mRNA codon takes place at the A–site, the
transfer of an amino acid from the tRNA to the growing polypeptide chain proceeds at the
P–site, whereas the exerted tRNA is subsequently released to the cytoplasm in order to bind
a new amino acid via the E–site. Except for the first amino acid, all subsequent amino acid
carrying tRNAs bind to the A–site rather than the P–site.

Figure 1.3: CanonicalmRNA translation. The ribosome scans themRNAsequence from5’ end
to 3’ end and translates the sequence based on the genetic code shown in Table 1.1. Depicted
are the small and large ribosomal subunits together with tRNAs carrying amino acids. Note
that mRNA codon and tRNA anticodon are complementary. The growing polypeptide chain is
elongated with every incoming amino acid by forming peptide bonds. Incoming tRNAs bind
to the A–site, are then moved to the P–site, and exit via the E–site.
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Upon initiation, the growing polypeptide chain is elongated based on the triplets of the
CDS and the genetic code shown in Table 1.1. Thereby, the tRNA anticodon is complementary
to the transcript codon ensuring a valid translation from mRNA into protein. The next tRNA
binds to the A–site and a peptide bond is formed between the incoming amino acid and the
amino acid of the tRNA located at the ribosomal P–site. This reaction is dependent on elon-
gation factors as well as the energy supplier guanosine triphosphate (GTP). The peptide bond
is catalyzed at the peptidyl transferase center consisting of ribosomal RNA [38]. Thus, the ri-
bosome is referred to as a ribozyme since RNAs, rather than proteins, are responsible for the
peptidyl transferase activity [39]. After peptide bond formation, the tRNA is transferred from
the A–site to the P–site for its release. This machinery of incoming tRNAs, peptide bond forma-
tion, and release of empty tRNAs into the cytoplasm is repeated until a stop codon is reached.
Translation is terminated by release factors that recognize stop codons (UAA, UAG, and UGA).
The completed polypeptide chain is released and the ribosome disassembles.

Alternative translation initiation, seeDever [25], Peabody [40], Kozak [41], Ivanov et al. [42],
Lee et al. [43], Ingolia et al. [44], completes the collection of alternative mechanisms that guide
processing from DNA to viable proteins and thus greatly contributes to biological complexity
and diversity. The reliable detection of alternative initiation sites located in human 5’ UTRs is
the objective of our web service PreTIS. Mechanistic details of alternative translation are hence
elaborated in Chapter 3.

1.3 Statistical hypothesis testing
Statistical hypothesis testing allows to analyze whether there is adequate evidence that an as-
sumed relationship between two datasets or a theory holds true (H0: null hypothesis) or not
(H1: alternative hypothesis) based on the given data [45]. Statistical evaluations are the basis of
data analysis studies and are applied in several projects in this thesis. Therefore, the Wilcoxon
rank–sum test statistic [46], which was used several times, is briefly explained in the follow-
ing. Subsequently, a short notice is given on the pitfalls of statistical misinterpretations, when
testing multiple hypotheses or when having large sample sizes, and on how to solve these dif-
ficulties.

1.3.1 Wilcoxon rank–sum statistic
The Wilcoxon rank–sum statistic is a nonparametric test to evaluate the statistical difference
between two given populations [46, 47]. The key idea is that a ranking of the given numerical
data from i = 1, 2, ..., N rather than the actual numerical values are used. In consequence, an
estimation of the data distribution and parameters such as mean and variance can be omitted.
This statistic is therefore different from parametric hypothesis tests like the Student’s t–test,
which assumes a normal distribution of the measurements [48, 49]. The Wilcoxon rank–sum
statistic is computed as

U1 = R1 −
n1(n1 + 1)

2
,

U2 = R2 −
n2(n2 + 1)

2

with the sample sizes n1 and n2 as well as the sum of the assigned ranks R1 and R2 of
the two populations. With a given significance level, for example α = 0.05, the larger U value
is then compared to the two–tailed critical value Ucrit of the Wilcoxon rank–sum distribution.
The null hypothesis H0, which states that the two populations distributions are the same, is
rejected at significance level α if one of the calculated U values is greater or equal to the critical
value Ucrit. Note that a large U1 or U2 results from an increased number of large ranks in one
of the two populations.
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1.3.2 Multiple hypothesis testing
In statistical analyses, application of several simultaneous hypothesis tests can result in sta-
tistical differences that arise only due to chance [45]. As a simple example, imagine that two
groups of persons are tested for significant differences based on the following properties or
features: gender, height, and age. With the addition of more and more features such as hair
color, weight, favorite meal, or place of birth, you may detect that these two groups are signif-
icantly different based on one of these features just by chance. Considering a bioinformatics
related example, when analyzing different genetic variant types in nine genetic elements, we
tested for pairwise statistical significant differences using n = 9×8

2 = 36 hypothesis tests. Of
course, a number of n = 36 comparisons is very small when considering that thousands or even
millions of comparisons are possible when working with human genes or transcripts for exam-
ple. Nevertheless, even for a small number of comparisons a correction for multiple testing is
necessary. Several methods for multiple testing correction have been developed, out of which
two commonly used methods, namely Bonferroni correction and Benjamini–Hochberg correc-
tion, are summarized here. Thereby, Bonferroni correction is more conservative compared to
Benjamini–Hochberg correction.

Using Bonferroni correction, the null hypothesis H0 is rejected if pi < α
n with pi the p–

value of the i–th test, the significance level α, and the number of tests n [45]. Applying the
Bonferroni method, the probability for type I error is then ≤ α for a hypothesis test [45]. Type
I error, also known as false positive case, refers to the false rejection of a true null hypothesis.
Thus, this states that their is enough evidence for the assumed relationship although the rela-
tionship does not exist. Analogously, type II error, or a false negative decision, occurs if a false
null hypothesis is not rejected, leading to an unrecognized but existing relationship. Note that
rejecting H0 refers to the positive case, whereas not rejecting H0 refers to the negative case. A
simple example for type I error is the detection of a disease that is actually not present, whereas
type II error would not detect an existing disease.

Since Bonferroni correction is based on the attempt to decrease the probability of making
even one false positive decision, it is seen as a quite conservative correction method [45]. An-
other widely used multiple testing correction method that relaxes this criterium is Benjamini–
Hochberg correction. This approach aims at controlling the false discovery rate (FDR), which
is defined as the proportion of type I errors out of all rejected null hypotheses [45]. Therefore,
all p–values are sorted with p1 ≤ p2 ≤ pi ≤ ... ≤ pn. Next, we search for the maximum i out
of all hypothesis tests such that it holds pi ≤ iα

n . This is then referred to as rejection threshold
t. The null hypothesis H0 is then rejected for all comparisons i with i ≤ t. Table 1.3 gives an
example of Bonferroni and Benjamini–Hochberg correction with the example of five p–values.

Table 1.3: Multiple hypothesis testing example. Given are n = 5 hypotheses and a signifi-
cance threshold of α = 0.05. A rejection of H0 is depicted by a checkmark X. The significance
level when applying Bonferroni correction is calculated as pi < α

n = 0.05
5 = 0.01. This results in

rejection of the null hypothesis for comparisons i ∈ (1, 2). The Benjamini–Hochberg approach
requires a calculation of hi = iα

n for every hypothesis test i such that the largest i with pi ≤ iα
n

can be assigned, here i = 3. Therefore, all comparisons i ∈ (1, 2, 3) are assumed to be statisti-
cally significant upon application of Benjamini–Hochberg correction. The last column marks
the naive approach with pi < α of not applying any multiple testing correction.

i pi Bonferroni Benjamini–Hochberg Naive

1 0.0003 X h1 = 0.01 X X

2 0.005 X h2 = 0.02 X X

3 0.02 × h3 = 0.03 X X

4 0.048 × h4 = 0.04 × X

5 0.08 × h5 = 0.05 × ×
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1.3.3 The p–value problem
As the sample size increases, p–values tend to converge to zero although the practically rel-
evant difference between the two samples is negligible [50, 51]. To measure the practical or
actual difference between two given distributions, the calculation of the effect size is helpful.
In other words, a p–value only provides an estimation that there is a difference between two
groupswhereas the effect size reports themagnitude of the deviation. Differentmeasurements
can be used to calculate the effect size between two groups. One example is Cohen’s d thatmea-
sures the standardized difference between two sample means and that is not dependent on the
sample size [50, 52]. Cohen’s d is defined as

d =
(µ1 − µ2)√

σ2
1+σ

2
2

2

(1.1)

with mean µ1 and µ2 as well as standard deviation σ1 and σ2 of the two distributions. The
computed effect sizes can be categorized into small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8),
and large (d ≥ 0.8) [50]. Table 1.4 illustrates the p–value problem by comparing sample size,
mean µ, standard deviation σ, the p–value calculated using the Wilcoxon rank–sum statistic,
and the Cohen’s d value of three artificial datasets that were drawn from normal (Gaussian)
distributions.

Table 1.4: The p–value problem. Shown are three artificial datasets, each representing two
randomly drawn normal (Gaussian) distributions. With increasing sample size, the p–value
decreases remarkably whereas the effect size reflects the actual difference between the two
groups. The distributions and p–values were generated using numpy.random.normal and
scipy.stats.ranksums methods provided by the Python programming language package.
Cohen’s d value was calculated using Formula 1.1.

Sample size Mean µ ± Std. dev. σ p–value Cohen’s d

1 100 79.91 ± 8.65 101.12 ± 9.28 3.16e−28 2.36

2 100 109.34 ± 11.32 110.45 ± 10.23 0.46 0.103

3 100,000 108.99 ± 9.98 110.0 ± 9.99 3.78e−108 0.102

Thus, a combination of the p–value, for instance calculated with the Wilcoxon rank–sum
test, and a measure for the effect size such as Cohen’s d is recommendable for statistical data
evaluation.

1.4 Data sources and bioinformatics tools
Reliable data is the fundamental basis for every scientific study. We used several datasets either
provided by public databases or by individual studies. All data sources are explained in detail
prior to the individual projects in the respective chapter. Nevertheless, our data sources are
shortly summarized in the following.

CpG and GpC DNA methylation data to analyze DNA methylation patterns was made
available by our collaborators from the (Epi)Genetics research group located at Saarland Uni-
versity. This data was first utilized in Schmidt et al. [53]. Alternative translation start sites de-
tected by experimental ribosome profiling technique were based on three individual studies,
see Lee et al. [43], Calviello et al. [54], and Ingolia et al. [44]. The Ensembl Genomes project [55]
served as basis for genomic mRNA sequences, whereas human genome annotations were re-
trieved from the UCSC Genome Browser [56]. Two large–scale genome sequencing projects,
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namely the 1000 Genomes Project [57] and the Genome of the Netherlands project [58, 59], pro-
vided us with human sequence variants. Paired–end reads of Escherichia coli and Staphylococ-
cus aureus bacterial strains were downloaded from the NCBI BioProject database [60] or taken
from a former project [61], respectively. Any regulatory and antibiotic resistance information
for these strains was retrieved from RegulonDB [62], AureoWiki [63], and PATRIC [64, 65].

Besides appropriate datasets, many bioinformatics software tools that cover diverse (com-
putational) biology research fields have been developed by the scientific community. Some
of these established and commonly used tools were applied throughout this thesis to facili-
tate analysis steps. The Basic Local Alignment Search Tool (BLAST) [66, 67] was applied for
sequence similarity searches, the ViennaRNA Package [68] helped in the prediction of RNA
secondary structure, MUSCLE (MUltiple Sequence Comparison by Log–Expectation) [69, 70]
was used to compute sequence alignments, Bowtie [71] was utilized as a short read aligner, and
VCFtools [72] supported the analysis of variation data. Moreover, a next–generation sequenc-
ing pipeline to call variants from FASTQfiles required the Burrows–Wheeler Alignment (BWA)
tool [73, 74], SAMtools [75, 76], and the VarScan2 software package [77].

BEDTools was used in several projects and is hence presented in the following. The BED-
Tools suite is a collection of highly efficient functions for comparing, annotating, and manip-
ulating genomic data in file formats such as BED (Browser Extensible Data), SAM (Sequence
Alignment Map), BAM (Binary Alignment Map), or GFF (General Feature Format) [78]. The
current BEDTools version (v2.26.0) provides about 40 different tools. Themost commonly used
command line tools support interval arithmetic operations such as intersectBed, mergeBed,
and complementBed to calculate the overlap between genomic intervals, to combine genomic
intervals, or to report all genomic intervals not contained in the input file, respectively. We
used BEDTools, more precisely intersectBed and complementBed, in several projects. The
intersectBed function was applied to assign single nucleotide polymorphisms (SNPs) as well
as insertions and deletions (indels) to genomic elements such as promoter regions, 5’ UTR, or
coding region (see Chapter 4), and to assign filtered WGBS (whole–genome bisulfite sequenc-
ing) and NOMe–seq (Nucleosome Occupancy and Methylome sequencing) data to promoter
regions, see Chapter 2. The complementBed function was applied in the latter project to derive
regionswith high nucleosome density compared to the local surrounding from annotated open
regions. Both mentioned projects consider human data. Our tool MutaNET software embeds
a function that overlaps SNPs with their respective genomic region within a given genome,
see Chapter 5. This function is based on intersectBed. Since MutaNET is a stand–alone
software package, a re–implementation rather than the integration of the original BEDTools
intersectBed function was necessary due to copyright regulations. Moreover, the BEDTools
getFastaFromBed function was used to extract nucleotide sequences from FASTA files given
genomic coordinates, see Chapter 4.

Furthermore, Python programming language 2.7 together with the following additional
packages was used in this thesis: Matplotlib [79], scikit–learn [80], pandas [81, 82], sqlite3 [83,
84], SciPy/NumPy [85, 86], Biopython [87], and seaborn [88]. Packages utilized for graphi-
cal visualizations are Matplotlib and seaborn, whereas pandas and sqlite3 were used for data
storage and fast data access. The scikit–learn package is a comprehensive collection of vari-
ous machine learning algorithms. SciPy is a fundamental Python package providing a large
range of different functions for scientific computing. Some of the core packages of SciPy are
NumPy,Matplotlib, and pandas. The Bio.PDB package [89] of the Biopython suite [87] together
with themolecular visualization software PyMOL [22]was used for structural superimposition
of two macromolecular X–ray structures, see Section 2.1.4 of Chapter 2. All packages used are
open source. Furthermore, our developed dynamic web service is based onHypertext Markup
Language (HTML), Cascading Style Sheets (CSS), JavaScript (JS), and PHP: Hypertext Prepro-
cessor (PHP). Detailed explanations on these publicly available data sources and software tools
used throughout this thesis can be found in the respective chapters.
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1.5 Objectives of this thesis
The goal of this thesis is to shed light on some central processes of eukaryotic protein biosyn-
thesis by investigating complex DNAmethylation patterns, analyzing mutation frequencies in
genomic key elements, and deciphering sequence–encoded features of alternative translation
initiation. Figure 1.4 illustrates the different projects and starting points of this thesis.

Figure 1.4: Overview of conducted projects. This thesis is separated into several projects
that deal with DNA methylation patterns, mutation frequencies in genomic key elements and
around transcription and translation start sites as well as alternative translation initiation. Note
that the ribosome was omitted in this figure for clarity. Moreover, we automated the analysis
of mutations, also integrating a gene regulatory network, to investigate their global impact on
gene regulation within a given genome.

First, DNA methylation, which (in eukaryotes) mostly refers to the addition of a methyl
group to a cytosine base, allows the formation of an additional gene regulatory level by not
altering the DNA sequence [90]. DNA methylation plays a crucial role in cancer development
when, for instance, promoter regions of tumor suppressor genes are hypermethylated [91].
DNA methylation is also found in the gene body [92]. We conducted a structural approach
to explain different methylation patterns found experimentally by our collaborators from the
(Epi)genetics research group located at Saarland University. The approach combines the struc-
tural organization of DNA within nucleosomes as well as the ability of DNA methyltrans-
ferases (DNMTs) to bind to specific histone–bound DNA segments in order to methylate a
cytosine.

Next, alternative translation initiation, besides alternative transcription initiation, splicing
and polyadenylation, contributes to the expansion of biological variety as well [24, 43, 44].
Alternative translation start sites can be be used in different tissues or in a specific cellu-
lar condition such as stress response [93]. We developed PreTIS, which is a web service to
visualize and predict in– and out–of–frame AUG and near–cognate alternative translation
start sites in human 5’ UTRs. The prediction model is based on linear regression with fea-
tures derived from mRNA sequence information. All predicted start sites of one transcript
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are postulated to have the potential to initiate translation. Datasets used by us are based
on the experimental ribosome profiling technique. The provided web service PreTIS assists
and considerably simplifies the analysis of mRNA sequences in terms of predicting possi-
ble translation start sites and their visualization. The PreTIS web service is accessible at
http://service.bioinformatik.uni-saarland.de/pretis.

Moreover, mutations contribute to genetic variation and thus provoke phenotypic varia-
tion [7, 94, 95]. Hence, we conducted a systematic analysis of human SNPs and indels provided
by the 1000 Genomes Project [57] and the Genome of the Netherlands Project [58, 59]. Beside
several genomic elements such as promoter regions or coding exons, we investigated the distri-
bution of mutations around transcription and translation start sites in more detail. Inspired by
the PreTIS project, we intensively compared SNP patterns in direct vicinity of annotated canon-
ical AUG and alternative translation start sites. This project was assisted by Tobias Marschall,
who is affiliated with the Center for Bioinformatics Saar and the Saarbrücken Max Planck In-
stitute for Informatics located at Saarland University.

Next, we automated mutation analysis and developed the MutaNET software package
to score mutations in different genomic regions such as transcription factor binding sites or
coding regions and estimate their impact on cellular function. The analyses were supported
by the integration of an underlying gene regulatory network to assess the global impact of
individual mutations on genome regulation. Our tool was then applied to several strains
of Staphylococcus aureus and Escherichia coli pathogens to unravel genetic modifications un-
derlying the development of antibiotic resistance in these bacterial strains. The MutaNET
software can be downloaded from https://sourceforge.net/projects/mutanet/. Back-
ground information on the MutaNET software and a step–by–step tutorial is available at
http://service.bioinformatik.uni-saarland.de/mutanet/.

Furthermore, bacterial quorum sensing (QS) was found to be targetable bymodern antivir-
ulence therapies to diminish the development of antibiotic resistance [96]. We presented theQS
systems of three selected bacteria in a review article. The work on bacterial QS was supported
by Anke Steinbach from the Helmholtz Institute for Pharmaceutical Research Saarland.

1.6 Projects and publications
Kerstin Reuter, Alexander Biehl, Laurena Koch, and Volkhard Helms. PreTIS: A Tool to Pre-
dict Non–canonical 5’ UTR Translational Initiation Sites in Human and Mouse. PLoS Com-
put. Biol., 12(10):e1005170, 2016.

Abstract Translation of mRNA sequences into proteins typically starts at an AUG triplet. In
rare cases, translation may also start at alternative non–AUG codons located in the annotated
5’ UTR which leads to an increased regulatory complexity. Since ribosome profiling detects
translation start sites at the nucleotide level, the properties of these start sites can then be
used for the statistical evaluation of functional open reading frames. We developed a linear
regression approach to predict in–frame and out–of–frame translation start sites within the
5’ UTR frommRNA sequence information together with their translation initiation confidence.
Predicted start codons comprise AUG aswell as near–cognate codons. The underlying datasets
are based on published translation start sites for HEK293 (human embryonic kidney 293) and
mouse embryonic stem cells that were derived by the original authors from ribosome profiling
data. The average prediction accuracy of true vs. false start sites for HEK293 cells was 80%.
When applied to mouse mRNA sequences, the same model predicted translation initiation
sites observed in mouse ES cells with an accuracy of 76%. Moreover, we illustrate the effect
of in silico mutations in the flanking sequence context of a start site on the predicted initiation
confidence. Our new web service PreTIS visualizes alternative start sites and their respective
ORFs and predicts their ability to initiate translation. Solely, the mRNA sequence is required
as input. PreTIS is accessible at http://service.bioinformatik.uni-saarland.de/pretis.

http://service.bioinformatik.uni-saarland.de/pretis
https://sourceforge.net/projects/mutanet/
http://service.bioinformatik.uni-saarland.de/mutanet/
http://service.bioinformatik.uni-saarland.de/pretis
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Kerstin Reuter, Anke Steinbach, and Volkhard Helms. Interfering with Bacterial Quorum
Sensing. Perspect. Medicin. Chem., 8:1–15, 2016.

Abstract Quorum sensing (QS) describes the exchange of chemical signals in bacterial
populations to adjust the bacterial phenotypes according to the density of bacterial cells.
This serves to express phenotypes that are advantageous for the group and ensure bacterial
survival. To do so, bacterial cells synthesize autoinducer molecules, release them to the envi-
ronment and take them up. Thereby, the autoinducer concentration reflects the cell density.
When the autoinducer concentration exceeds a critical threshold in the cells, the autoinducer
may activate the expression of virulence associated genes or of luminescent proteins. It has
been argued that targeting the QS system puts less selective pressure on these pathogens and
should avoid the development of resistant bacteria. Therefore, the molecular components
of QS systems have been suggested as promising targets for developing new anti–infective
compounds. Here, we focus on the QS systems of Vibrio fischeri and Staphylococcus aureus, and
discuss various antivirulence strategies based on blocking different components of the QS
machinery.

Kerstin Neininger, Tobias Marschall, and Volkhard Helms. Mutation frequencies at tran-
scription start sites and at canonical and alternative translational initiation sites in the hu-
man genome. Submitted to BMC Genomics.

Abstract Single nucleotide polymorphisms (SNPs) are the most common form of genetic
variation in humans and drive phenotypic variation. Due to evolutionary conservation, SNPs
and indels (insertion and deletions) are depleted in functionally important sequence elements,
such as coding exons or in flanking regions of translational initiation sites. Recently finalized
population–scale sequencing efforts such as the 1000 Genomes Project and the Genome of the
Netherlands Project have catalogued large numbers of SNPs and indels. Currently, there is a
lack of systematic analyses of the spatial distribution of these polymorphisms. In this studywe
analyzed the distribution of different SNP types and indels in various genomic elements of the
human genome (intergenic regions, CpG islands, promoters, 5’ UTRs, coding exons, 3’ UTRs,
introns and intragenic regions) as well as around transcription and translation start sites.
Indels were shown to exhibit distinct patterns in their prevalence and distribution throughout
the human genome compared to SNPs. Focussing on translation start sites, we compared the
SNP pattern in the flanking regions of canonical AUG start sites to that of alternative AUG
and near–cognate start sites, which were identified by experimental ribosome profiling. Our
analyses show that alternative translation initiation sites tend to have similar conservation
profiles as canonical start sites. Most strikingly, we discovered a previously unreported accu-
mulation of SNPs at the nucleotide position –1 directly in front of the transcription start site.
By showing that alternative translation start sites exhibit similar SNP densities compared to
canonical start sites, we provide further evidence for their importance in the human genome.
We confirm a strong counter–selection against indels not only in protein–encoding exons, but
also in elements with regulatory functions such as CpG islands. The significant enrichment of
mutations just before transcription start sites, reported here and analyzed for the first time in
more detail, has potential impact on models of gene regulation.

Kerstin Neininger, Karl Nordström, Jörn Walter, and Volkhard Helms. Modelling DNMT–
nucleosome–complexes to decipher DNA methylation patterns. In preparation, 2017.

Abstract Heritable epigenetic modifications such as DNA methylation together with
chromatin states are crucial for transcriptional gene regulation. This symmetric addition
of a methyl group to the C–5 position of a cytosine base in CpG context is recognized by
various proteins such as transcriptional regulators and is essential for genomic imprinting
and X–chromosome inactivation. Aberrant DNA methylation is associated with disease
phenotypes such as cancer formation as the most extensively studied example. The enzymes



15 INTRODUCTION

that carry out DNA methylation are referred to as DNA methyltransferases (DNMTs) with
DNMT1 responsible for maintenance DNA methylation and DNMT3a/3b functioning as de
novo methyltransferases. Thereby, it was also shown that DNA can undergo methylation by
DNMTs when wrapped around a histone octamer. The exact positioning of nucleosomes, the
basic chromatin repeating units that are composed of 145–147 bp of DNA wrapped around a
histone octamer, highly influences gene expression by making DNA accessible or unaccessible
to regulatory proteins and the transcription machinery. It was reported that DNAmethylation
and nucleosome occupancy are highly dependent on each other, while this relationship seems
to be bidirectional. NOMe–seq, short for nucleosome occupancy and methylome sequencing,
is an experimental technique to detect nucleosome positions and DNA methylation at CpG
sites from the same DNA strand in a genome–wide fashion. However, a complete understand-
ing of all dependencies and influences by which dynamic methylation patterns are generated
remains elusive. We hypothesize that methylation patterns and the observed varying dis-
tances between methylated CpG sites are dependent on a restricted accessibility of DNMTs to
nucleosomal DNA that is caused by the structure of nucleosome core complex. We applied
a structural superimposition approach of DNMT1 and the nucleosome core complex X–ray
structures to determine histone–bound DNA positions at base resolution that are accessible for
DNMT1–catalyzed DNA methylation. Statistical comparisons with experimental NOMe–seq
data revealed that DNA methylation patterns in regions with high nucleosome density can be
explained by structurally computed DNA accessibility scores.

Markus Hollander, Mohamed Hamed, Volkhard Helms, and Kerstin Neininger. MutaNET: a
tool for automated analysis of genomic mutations in gene regulatory networks. Bioinformat-
ics, doi:10.1093/bioinformatics/btx687, 2017.

Abstract Mutations in genomic key elements can influence gene expression and function
in various ways, and hence greatly contribute to the phenotype. We developed MutaNET to
score the impact of individual mutations on gene regulation and function of a given genome.
MutaNET performs statistical analyses of mutations in different genomic regions. The tool also
incorporates the mutations in a provided gene regulatory network to estimate their global im-
pact. The integration of a next–generation sequencing pipeline enables calling mutations prior
to the analyses. As application example, we used MutaNET to analyze the impact of muta-
tions in antibiotic resistance genes and their potential effect on antibiotic resistance of bacterial
strains. MutaNET is freely available at https://sourceforge.net/projects/mutanet/. It is
implemented in Python and supported on macOS, Linux, and MS Windows. Step–by–step
instructions are available at http://service.bioinformatik.uni-saarland.de/mutanet/.

1.7 Thesis outline
The aforementioned projects are each presented in individual chapters. The investigation of
DNAmethylation patterns using structural bioinformatics is presented inChapter 2. This is fol-
lowed by predicting alternative translation initiation starts which was addressed in our project
and web service PreTIS. Our machine learning approach and development of the PreTIS web
service are reported in Chapter 3. The investigation of mutations in key elements of the human
genome together with a deep analysis of variations in the flanking sequences of transcription
and translation start sites is depicted in Chapter 4. Analysis of these variations helped us to de-
cipher the functional relevance of specific elements aswell as individual positions in the human
genome. Next, we automated the analysis of variations in a given genome by investigating the
potential global impact of individual mutations on gene function. For this, we incorporated
refined scoring schemes and a gene regulatory network. Our developed MutaNET pipeline
and its application to bacterial genomes to decipher antibiotic resistance is presented in Chap-
ter 5. Our review article on bacterial quorum sensing as alternative antivirulence therapy is
presented in Chapter 6. A conclusion that summarizes our results together with an outlook is

https://sourceforge.net/projects/mutanet/
http://service.bioinformatik.uni-saarland.de/mutanet/
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finally given in Chapter 7. If not specified otherwise, all data integration, applied methodolo-
gies, and analysis steps were performed by me.

Prior to the presentation of our projects, each chapter starts with detailed explanations of
prerequisites to relevant biological, statistical, and bioinformatics foundations. Unless other-
wise specified, all (introductory) figures used in this thesis were redrawn and partially adapted
for our purposes from the given references. Following the prerequisites section and prior to
materials and methods as well as results and discussion sections, terms and background infor-
mation are shortly recapped if necessary. A short project summary is given at the end of every
chapter.



CHAPTER2
DNMT1–nucleosome

superimpositions decipher DNA
methylation patterns

This chapter presents a structural approach to explain experimentally observed DNA methy-
lation patterns. For this, we implemented a superimposition approach of DNA methyltrans-
ferase 1 (DNMT1)with the nucleosome core complex to calculate the accessibility of DNMT1 to
nucleosome–boundDNA that is necessary prior to cytosinemethylation. This projectwas in co-
operationwith the experimental (Epi)genetics research group fromSaarlandUniversity headed
by Jörn Walter. The working title of our project is currently "Modeling DNMT–nucleosome–
complexes to decipher DNA methylation patterns. Kerstin Neininger, Karl Nordström, Jörn
Walter, and Volkhard Helms". The manuscript will be submitted soon. My contribution was
performance of all analysis steps, which encompass the structural superimposition approach,
experimental data integration and filtering, the statistical evaluation and subsequent interpre-
tation. The experimental data was provided by our collaborators from the (Epi)genetics re-
search group. Karl Nordström provided the annotated open regions with lower nucleosome
density than the local surrounding, which was inferred based on an observed higher GCH
methylation, see also [53]. All authors helped in discussing the results.

2.1 Prerequisites
The term "epigenetics" was introduced in 1942 and describes heritable modifications that are
not encoded in the DNA sequence [97, 98]. Examples for epigenetic modifications are DNA
methylation, histone variants, or histone tail alterations. These epigenetic modifications were
reported to be crucial for normal mammalian development [99]. In this project, we focused
on DNA methylation and the interplay with nucleosome positioning. DNA methylation to-
getherwith nucleosome positioning are associatedwithDNAaccessibility aswell as chromatin
states, and hence responsible for the regulation of gene expression [100]. In the following, the
establishment and maintenance of DNA methylation by DNA methyltransferases and nucle-
osome positioning is explained in detail. Moreover, the experimental NOMe–seq technique
to detect DNA methylation and nucleosome position footprints from the same DNA strand
is introduced. The PyMOL molecular visualization system [22] in combination with Biopy-
thon [87, 89], which were used for computational analysis of X–ray structures, is presented in
the following as well.

2.1.1 DNA methylation: catalysis, function, and prevalence
DNA methylation plays a central role in gene regulation and is essential for cellular devel-
opment. The following section specifies the term of DNA methylation, summarizes different
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forms of DNA methylation, shows the distribution of methylated CpGs within the genome,
and illustrates the catalysis by DNA methyltransferases.

5–methylcytosine: the 'fifth base'in DNA
DNA methylation describes the symmetric addition of a methyl group to the carbon atom at
position five (C–5) of a cytosine base pyrimidine ring [90], see Figure 2.1. Since DNA methy-
lation is involved in and crucial for various cellular processes, 5–methylcytosine (5mC) was
referred to as "fifth base" in DNA [101, 102]. Thereby, S–adenosyl–L–methionine (SAMe) func-
tions as methyl donor [103]. Demethylation of SAMe results in the formation of S–adenosyl–
L–homocysteine (SAH). Hence, the catalyzed chemical reaction can be written as

SAMe + DNA −−−−−→ SAH + DNA with 5mC.

DNAmethylation at CpG sites is symmetric, i.e. both cytosine bases on the opposite DNA
strands are methylated duringmaintenance DNAmethylation [99]. In mammals, DNAmethy-
lation takes place in CpG context in more than 98% of cases, although non–CpG methylation
at CpA, CpT, and CpC sites was reported as well [104, 105, 106]. Thereby, methylation at CpA
is more frequent compared to CpT and CpC dinucleotides [105]. Several transcriptional regu-
lator proteins such as the CTCF transcription factor or the transcriptional repressor MeCP2,
which comprises of a methyl–CpG–binding domain, can specifically detect methylated cy-
tosines [102, 107, 108]. This emphasizes the importance of 5mC in regulation of gene expression
and its designation as an additional DNA base.

Figure 2.1: DNAmethylation. Amethyl group is added in situ to the C–5 position of a cytosine
base in CpG context. Enzymes catalyzing this reaction are named DNA methyltransferases.
SAMe functions as methyl group donor that becomes SAH through demethylation.

Generally, 5–methylcytosine is linked to heterochromatin, transcriptional repression, and
gene silencing [102]. DNA methylation is necessary for normal cellular development [99], but
is also essential for X–chromosome inactivation [109, 110], genomic imprinting [109, 111], and
the repression of transposable elements [112, 113]. Genomic imprinting describes amonoallelic
parent–of–origin–specific gene expression. Moreover, methylation patterns differ between cell
types, tissues, and individuals [114, 115].

Hypomethylation, hypermethylation, and hydroxymethylation
One distinguishes between DNA hypomethylation and hypermethylation. Hypomethylation
describes a decrease or loss of DNA methylation at CpG sites that are normally methylated,
whereas hypermethylation refers to an increase of methylation at these sites. Both hypo–
and hypermethylation are generally found in all types of cancer, although individual methy-
lation patterns are cancer–specific and dependent on the tumor–stage [116, 117]. For instance,
hypomethylation is frequently found in repeated DNA sequences in different cancers [118].
Moreover, promoter hypermethylation can lead to transcriptional silencing of tumor suppres-
sor genes and thus promote cancer development [91]. A global change of DNAmethylation in
cancer cells further influences chromatin regulatory proteins and enzymes involved in histone
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modification processes [117]. Hence, due to their specific occurrence, DNA hypomethylation
patterns are used by prediction models for cancer types, stages, or the clinical course of the
disease [117].

An oxidation of the 5mC group that is catalyzed by Ten–Eleven Translocation (TET) pro-
teins was discovered as well [119, 120]. DNA 5–hydroxymethylation (5hmC) describes the
addition of a –CH2–OH hydroxymethyl group, instead of a –CH3 methyl group, to the C–
5 position of a cytosine base. TET proteins belong to the protein family of methylcyto-
sine dioxygenases and can oxidize 5mC to 5hmC [120, 121]. They are essential for vari-
ous biological processes such as epigenetic reprogramming, development of the brain, and
hematopoiesis [120, 121, 122, 123]. Mutation or deletion of the TET2 genewas found in patients
with acute myeloid leukemia [124, 125]. In general, mutagenesis of DNMT and TET enzymes
seems to play an important role in cancer development [121, 126, 127].

Distribution of methylated CpGs is non–random
In general, there is a lack of CpGs in mammalian genomes, whereby 60–80 % of CpG sites are
methylated [99]. It was suggested that the general lack of CpG dinucleotides is due to a higher
mutation susceptibility of 5–methylcytosine to thymine via deamination [102]. Since thymine
is a regular DNA base, the resulting G–T mismatch is repaired less efficiently compared to a
G–U mismatch [128, 129]. In fact, only CpG islands (CGIs) that are unmethylated reflect the
expected cytosine and guanine content in the genome [130]. CGIs exhibit an increased CG
density while at the same time not even 10% of all CpGs are found there [99]. CGIs often over-
lap with promoter regions of specific gene classes such as housekeeping genes, tissue–specific
genes, or genes encoding developmental regulators [99, 131]. The association of promoter re-
gions with CGIs is frequently found (about 70%) in vertebrates [132]. Deaton and Bird [133]
speculate that all CGIs could function as transcription initiation sites. The euchromatic CGI
structure, which allows binding of transcription factors to promoter regions, strengthens this
assumption [134]. Asmentioned, 60–80% of CpGdinucleotides aremethylated [99]. An excep-
tion are those CGIs that are normally hypomethylated in all cell types [99]. This continuous
demethylation of CGIs in mammalian genomes requires regulatory mechanisms. It was re-
ported that the methylation–free state of CGIs seems to be associated with local transcription
factor binding [135]. In general, DNA methylation seems to be locally dependent on DNA–
binding factors [136].

DNA methyltransferases: de novo and maintenance DNA methylation
The enzyme family that is responsible for DNAmethylation are DNAmethyltransferases (DN-
MTs) [103]. The transfer of a methyl group to the C–5 position of a cytosine base is cat-
alyzed by three DNMT enzymes that are active in the human genome: DNMT1, DNMT3a,
andDNMT3b. They belong to two enzyme classes: maintenance and de novoDNAmethyltrans-
ferases [102, 103]. While DNMT1 is responsible for maintenance DNA methylation to reestab-
lish DNA methylation patterns during cell replication [102, 137], DNMT3a and DNMT3b are
responsible for de novoDNAmethylation [102, 138]. Another DNMT enzyme, namely the DNA
methyltransferase 3–like protein (DNMT3L), is catalytically inactive and functions as regula-
tory factor [138, 139]. DNMT3L is paralogous to the DNMT3 enzymes [140].

The maintenance DNA methyltransferase DNMT1 targets hemimethylated CpG sites and
is composed of several protein domains [137]. Hemimethylation describes the case when only
one of the opposing CpG dinucleotides on both DNA strands is methylated [99]. Methylated
cytosines form a base pair with guanine and are thus replicated as unmethylated cytosines.
Therefore, methylation must be maintained by subsequently adding a methyl group to the
replicated cytosine based on the hemimethylated template [102, 141, 142]. This enables that
established methylation patterns are sustained during cell replication. Song et al. [137] de-
termined the crystal structures of mouse (residues 650–1602) and human (residues 646–1600)
DNMT1 bound to 19 base pair hemimethylated DNA and complexedwith SAH, see Figure 2.2.
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DNMT1 enzymes are composed of several protein domains: the N-terminal replication foci–
targeting domain, the Cys–X–X–Cys (CXXC) domain that recognizes and binds to unmethy-
lated CpG sites, the tandem bromo–adjacent homology (BAH1/2) domains that are connected
by an alpha helix, and the C–terminal catalytic methyltransferase domain. The DNA-binding
CXXC protein domain is highly conserved, binds to DNA with unmethylated CpGs sites, and
is found in proteins that are involved in epigenetic regulation [99, 143]. The methyltransferase
domain is separated into a catalytic core and a target recognition domain and is adjacent to
the CXXC and BAH1 domains. An autoinhibitory linker connecting CXXC and BAH1 domains
was found to shield unmethylated dinucleotides from the active site and in doing so ensures
that only hemimethylated CpG dinucleotides, rather than unmethylated sites, are catalyzed
during maintenance DNA methylation [137].

Figure 2.2: DNMT1 in complex with DNA. The DNMT1 structure was determined by Song
et al. [137]. The structure was retrieved from the Protein Data Bank [21] via accession number
3PTA. Shown are the different DNMT1 domains: CXXC (red), BAH1 (purple), BAH2 (cyan),
and the methyltransferase domain (green). Linker structures are shown in grey color. DNMT1
is bound to a hemimethylated 19 bp DNA stretch (orange). SAMe is presented as yellow sticks.
The figure was adapted from Song et al. [137] and rendered using the PyMOL Molecular
Graphics System [22].

The de novoDNAmethyltransferases, DNMT3AandDNMT3B, are composed of a Pro–Trp–
Trp–Pro (PWWP) domain, an ATRX–DNMT3–DNMT3L (ADD) domain, and a C–terminal cat-
alytic methyltransferase domain [138, 144]. The regulatory protein DNMT3L is needed for acti-
vation of DNMT3 enzymes [140]. The PWWP domain is highly conserved and crucial to target
pericentric heterochromatin [145]. TheADDdomain is part of an autoinhibitorymechanism re-
pressing the binding affinity of themethyltransferase domain towards theDNA [138]. The crys-
tal structure of the DNMT3A–DNMT3L complexwas solved byGuo et al. [138] and is shown in
Figure 2.3. The complex is composed of a DNMT3L–DNMT3A–DNMT3A–DNMT3L tetramer
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having a central DNMT3A–DNMT3A interface as well as two lateral DNMT3L–DNMT3A in-
terfaces. It was reported that this complex has two active siteswith a distance of oneDNA–helix
turn [138]. This leads to periodic methylation patterns with about eight and ten base pairs be-
tween two methylated CpG dinucleotides.

Figure 2.3: C–terminal tetrameric DNMT3A–DNMT3L structure. Shown is the DNMT3A
(green, residues 623–908) structure in complex with DNMT3L (blue, residues 160–386). SAH
(yellow) is presented as stick structure. The tetrameric DNMT3L–DNMT3A–DNMT3A–
DNMT3L structurewas determined by Jia et al. [140] and can be retrieved from the ProteinData
Bank [21] via accession number 2QRV. The DNMT3A–DNMT3L interface with four phenylala-
nine residues is shown in orange color. The figurewas adapted from Jia et al. [140] and rendered
using the PyMOL Molecular Graphics System [22].

2.1.2 Nucleosome positioning: the key to genome regulation?
Nucleosome occupancy is highly organized, non–random, and the individual genomic nucle-
osome positions are essential for regulatory mechanisms [102]. Nucleosome positioning is re-
quired to be adjustable to guarantee dynamic gene regulation [102]. Thereby, rotational and
translational settings refer to the arrangement of the DNA double helix and the positions of
individual nucleosomes at a genomic locus, respectively. The rotational orientation refers to
the wrapping of the DNA double helix around the histone octamer which is facing towards
the core and outwards in an alternating manner [146]. The rotational setting is important for
cellular function since only DNA bases facing away from the histone octamer are accessible to
proteins or regulatory factors. The translational positioning relates to the favored nucleosome
occupancy on a DNA sequence [146]. In total, the human genome is assumed to harbor about
15 million nucleosomes [147], while it is estimated that about 75–90% of DNA is nucleosome–
bound [148]. The ordered and intrinsically favored nucleosome positions on a DNA sequence
is known as phasing [146]. The experimental techniques ChIP–on–chip and chromatin im-
munoprecipitation combined with DNA sequencing (ChIP–seq) can be applied to determine
whether a protein is bound to a specific location within a given genome [146, 149]. Thus, these
technologies are also applicable to detect nucleosome positions and greatly helped in deci-
phering chromatin states [146]. ChIP–on–chip is based on chromatin immunoprecipitation
and DNAmicroarray analysis [146, 149, 150], whereas ChIP–seq is a combination of chromatin
immunoprecipitation and high–throughput DNA sequencing [149, 151, 152, 153].
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Nucleosomes prefer specific base compositions
As the ability of the DNA double helical structure to bend is also dependent on the underly-
ing sequence, feasible positions a nucleosome can reside in must be, to some extent, predeter-
mined in the entire genome [102]. Thereby, a sharp DNA bending is necessary to enable an
establishment of the nucleosome structure with its tightly wrapped DNA sequence [148, 154].
Since the ability of a DNA sequence to bend sharply depends on particular base compositions,
a general association between nucleosome occupancy and underlying DNA sequence is cru-
cial [148, 154, 155]. Periodic A/T–rich sequences forming two H–bonds between each base
pair (see Figure 1.1)were found to be enriched inDNAminor grooves that face inwards in direc-
tion of the histone octamer, while G/C–rich sequences forming three H–bonds were prevalent
at positions that face away from the octamer [147, 148, 154, 156]. While dinucleotides composed
of A and T can broaden the DNA major groove, GC dinucleotides can narrow it [146]. Both
properties are essential for an appropriate DNA bending and nucleosome formation and these
DNA patterns were found to exhibit a periodicity of about 10 bp [147, 148]. Segal et al. [148]
could explain approximately 50% of nucleosome positions in yeast solely based on the com-
position of nucleosome–preferred DNA sequence. They referred to this as the "nucleosome
positioning code", which is assumed to be also necessary for binding of regulatory factors and
initiation of transcription [148].

In this sense, Jiang and Pugh [146] compared the genome–wide nucleosome occupancy
with the analogy of a roulette wheel in which the positions for the roulette ball are dictated.
Independent of the number of nucleosomes that are placed onto the DNA, specific base com-
positions determine the canonical positions. This model was referred to as independent posi-
tioning model due to an unbiased positioning of neighboring nucleosomes [146]. Considering
another model, which was declared as statistical positioning, a single fixed nucleosome deter-
mines the positions of all sequential nucleosomes [146]. Since these nucleosomes are organized
in an array, movements to both sides are restricted. The distribution of nucleosomes in this
array then resembles a probabilistic density distribution that does not rely on specific DNA
sequence positions. It is suggested that the truth lies somewhere in between the one with a
predetermined nucleosome boundary and the one of an array of nucleosomes that line up in a
probabilistic way [146]. It was observed that especially nucleosomes around transcription start
sites (TSSs) show a specific positioning pattern [100, 146]. Due to their explicit position around
transcription start sites, these nucleosomes are numbered accordingly. The first nucleosome
that is located upstream of the TSS is given number –1, while number +1 is assigned to the first
(fixed) nucleosome downstream of the TSS that could function as predetermined start in statis-
tical nucleosome positioning [146]. Figure 2.4 illustrates the nucleosome distribution around
a TSS. Nucleosome –1 resides in the promoter region between –300 and –150 bp according to
the TSS and can thus affect transcription initiation [146]. Thus, the flanking sequences around
a TSS might harbor predetermined canonical nucleosome positions necessary for gene regu-
lation, whereas nucleosome occupancy becomes more blurry in downstream direction when
entering the gene body [146].

DNA methylation and nucleosome occupancy are interconnected
Jiang and Pugh [146] state that an understanding of the rules behind nucleosome position-
ing within the genome would explain gene regulation and shed light on aberrant transcrip-
tional regulation found in diseases such as cancer. Beside sequence preferences, an association
of nucleosome occupancy and epigenetic factors such as DNA methylation was observed as
well [147, 157, 158]. Nevertheless, the knowledge of dependencies between DNA methylation
and nucleosome occupancy is still incomplete. It was even reported that analysis of in vivo and
in vitro data gave different results: while methylated linker DNA was prevalent in in vivo data,
an increased methylation of nucleosome core DNAwas observed in in vitro settings [147]. The
experimental NOMe–seq technology to detect nucleosome occupancy and DNA methylation
from the same DNA molecule is explained below.

Collings and Anderson [147] investigated nucleosome positioning and DNA methylation
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Figure 2.4: Nucleosome positioning around the TSS.Nucleosomes –1 and +1 are specifically
placed relative to the TSS to enable transcriptional regulation. With the begin of the gene body,
the distribution within the nucleosome array becomes fuzzier. The –1 nucleosome was re-
ported to reside about –300 bp to –150 bp upstream of the TSS [146]. The figure was adapted
from [146].

at CpG sites based on MNase–seq and NOMe–seq data in the human genome. They found a
positive correlation between nucleosome occupied positions and the frequency of methylated
CpG sites. They concluded that DNAmethylation and nucleosome positioning are dependent
on the underlying methylated CpG density. Thereby, a deviation from this pattern could be
attributed to other epigenetic factors [147]. These results suggest that, by considering an uni-
directional relationship, the methylated CpG density could regulate nucleosome positioning.
Portela et al. [157] showed that the relationship between DNAmethylation and nucleosome oc-
cupancy is even bidirectional. This means that methylated DNA sequences can dictate nucle-
osome positions, while genomic sequences occupied by nucleosomes can influence the methy-
lome as well. They studied hypermethylated promoter CpG islands of tumor suppressor genes
that are often found in cancer cells due to their gene silencing ability [91, 157].

Moreover, a periodicity of ten base pairs between methylated CpG sites of nucleosomal
DNA was identified [158]. This distribution was found to be independent of the genomic re-
gion and thus could present a general pattern. Moreover, the same study found a highermethy-
lation density in nucleosome–bound DNA compared to flanking DNA sequences. Based on
this distribution, they suggested that DNMTs prefer nucleosomal DNA rather than flanking
sequences. As the aforementioned studies, they also came to the conclusion that a general in-
fluence of nucleosome positions on DNAmethylation exists [158]. Beside specific nucleosome
positioning around transcription start sites, a higher nucleosome density in exonic regionswith
a preference on intron–exon boundaries was observed as well [158]. This nucleosome prefer-
ence together with additional higher methylation rates in exons provides an argument that ex-
ons are tagged by methylated DNA [158]. Both, the higher amount of nucleosomes and DNA
methylation in exonic regions emphasizes that DNMTs preferentially target nucleosomal DNA
rather than flanking DNA and that CpG methylation takes place on nucleosomes [158]. Fol-
lowing this, the observed ten base pair periodicity can be explained by this specific wrapping
of the DNA double helix around a histone octamer [158].

2.1.3 NOMe–seq reveals methylome and chromatin states
Kelly et al. [100] developed the method termed NOMe–seq (Nucleosome Occupancy and
Methylome sequencing). This is an experimental technique that provides genome–wide nu-
cleosome position footprints together with DNAmethylation at CpG sites, both from the same
DNA molecule. A GpC methyltransferase (M.CviPI) [159] methylates GpC sites that are not
occupied by nucleosomes, whereas endogenous DNA methylation is detected at CpG sites.
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Thereby, methylation at GpC sites is determined in GCH context, whereas CpG methylation
frequencies are reported in HCG context (H=A, C, or T). The combination of GpC and CpG
methylation information provides four epigenetic and chromatin states: regions are either nu-
cleosome occupied or depleted and CpG sites are either methylated or unmethylated. All four
chromatin structures are visualized in Figure 2.5. Whole–genome bisulfite sequencing [160] is
then applied to enable a distinction between methylated and unmethylated sites. Thereby, the
individual methylation frequency at a cytosine base is calculated as the number of methylated
reads divided by all reads found at the respective position.

Figure 2.5: NOMe–seq experimental technique. Genome–wide information on nucleosome
positioning together with endogenous DNA methylation can be obtained by NOMe–seq from
the same DNA strand [100]. The combination of GpC and CpG methylation profiles allows to
decipher four different chromatin structures: nucleosome occupied and depleted regions with
methylated or unmethylated CpG dinucleotides. NDR stands for nucleosome depleted region.
The figure was adapted from [100].

2.1.4 X–ray structure analysis with PyMOL and Biopython
The visualization program PyMOL in combination with the Biopython Bio.PDB module were
used for processing, analysis, and final representation of the DNMT1 enzyme and the nucle-
osome core particle NCP147, both stored as three–dimensional PDB structures. The Bio.PDB
module was used for the structural superimposition of DNMT1 and NCP147, which is pre-
sented in the following.

PyMOL molecular visualization system
PyMOL is amolecular visualization system for three–dimensional (macro)molecular structures
such as proteins [22]. PyMOL can be applied to represent molecular structures in various ways
including spheres and surfaces, and to render high quality ray–traced images. Structural data
can be given, for instance, in the widely used Protein Data Bank (PDB) file format [21]. More-
over, PyMOL applications are expandable by Python programming language via an embed-
ded command line interface. PyMOL together with the Bio.PDB package [89] of the Biopython
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suite [87] were applied to perform a structural superimposition between DNMT1 and the nu-
cleosome core complex for every nucleosome–bound DNA position.

Biopython in structural bioinformatics
The Bio.PDB module of the Biopython Project aims at facilitating the field of structural com-
putational molecular biology by providing various methods for straightforward analysis of
crystal structures provided as PDB files [89]. As the name suggest, Biopython is implemented
in Python. We made use of this comprehensive module to superimpose DNMT1 bound to
a short DNA stretch with the nucleosome core complex NCP147 to decipher DNA methyla-
tion patterns. In the following, the Bio.PDB module is described and the provided classes and
methods are explained with regard to our superimposition approach that is outlined in Algo-
rithm 2.1. Functions used inAlgorithm 2.1 that are highlighted in bold and italicwere provided
by the Bio.PDB module.

A reasonable way to make a PDB structure available for structural computations is the
construction of a structure object from a given PDB file, see Algorithm 2.1 (Lines 1 and
2). A structure object is based on the so–called SMCRA architecture. SMCRA stands for
Structure–Model–Chain–Residue–Atom and hence illustrates the composition of a crystal
structure by considering that these structures can be composed of model(s), a model ex-
hibits chain(s), a chain exhibits residues, and residues are assembled by atoms. A struc-
ture object is created from a PDB file using parser=Bio.PDB.PDBParser() and applying
parser.get_structure("1KX5", "1KX5.pdb") to a PDB query file. This will return a struc-
ture object of the PDB file with identifier "1KX5". Iterations over a structure object are then
straightforward by using

for model in structure:
for chain in model:

for residue in chain:
for atom in residue:

\\ do something.

Many methods are then applicable to individual entities such as structures, chains,
residues, and atoms. For instance, model=structure[0] allows specific access to a model,
whereas chain=model["A"] can be used to directly extract a specific chain, here chain A. Since
crystal structures are commonly composed of only one model, it is convenient to access the
model at position zero and thus omit the first for loop in the example above. This simplifica-
tion was also applied when we were working with the three–dimensional nucleosome (PDB
identifier 1KX5) and the DNMT1 (PDB identifier 3PTA) structures. Moreover, parent enti-
ties can be reached using get_parent(), like residue=atom.get_parent(). It is also pos-
sible to retrieve all atoms or residues of a structure object by structure.get_atoms() and
structure.get_residues(), respectively. Furthermore, atomic coordinates can be retrieved
using atom.get_coord() and distances d (in angstromÅ) can be easily measured between two
atoms by the minus operator via d=atom1-atom2.

Two crystal structures can be superimposed using the Superimposer class and construct-
ing a sup=Superimposer() object, compare with Algorithm 2.1 (Line 6). Thereby, the rotation
and translationmatrix for the necessary transformations of the atomic coordinates is calculated
such that the root–mean–square deviation (RMSD) of the two overlapping query structures is
minimal. This minimization is done by the sup.set_atoms(fixed, moving)methodwith two
lists of fixed (here nucleosome) and moving (here DNMT1) atoms as arguments. Thereby, as
the names suggest, the moving DNMT1 atoms are put on top of the fixed nucleosome atoms.
The calculated rotations and translations are then applied to the complete structure using
sup.apply(structure_atoms). To ensure a reliable superimposition between DNMT1 and
NCP147, we incorporated atoms belonging to the DNA stretch of DNMT1 as well as to the re-
spective DNA stretch (starting at position 1) of the DNAwrapped around the nucleosome. For
convenience, we only considered central DNMT1 DNA atoms (positions 4 to 15 and 24 to 35 in
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Algorithm 2.1 Superimposition(nucleosome.pdb, dnmt.pdb).
1: Init structure object of nucleosome from PDB file: nuc_structure
2: Init structure object of DNMT1 from PDB file: dnmt_structure
3: dnmt_bb_atoms← Iterate dnmt_structure, extract DNA backbone atoms
4: while i ≤ end of wrapped DNA do
5: nuc_bb_atoms← Iterate nuc_structure, extract DNAi backbone atoms
6: sup← Superimposer()
7: sup.set_atoms(nuc_bb_atoms, dnmt_bb_atoms)
8: sup.apply(dnmt_structure.get_atoms())
9:
10: {Save the edited (e.g. colors, helix representations) structures of shifted

DNMT1 and nucleosome structures as one PDB file using the PDBIO()
module and the Python pymol package.}

11:
12: nuc_atom_list← unfold_entities(nuc_structure, ’A’)
13: dnmt_atom_list ← unfold_entities(dnmt_structure, ’A’) {Atoms shifted

based on rotation and translation matrix.}
14:
15: ns← NeighborSearch(nuc_atom_list)
16: for all dnmt_atom in dnmt_atom_list do
17: center_coords← dnmt_atom.get_coord()
18: neighbors← ns.search(center_coords, 5.0)
19: for all neighbor_atom in neighbors do
20: Init vdW radius of atom_dnmt.element: r1
21: Init vdW radius of neighbor_atom.element: r2
22: d_radius← r1+r2
23: if distance < d_radius then {sterical clash}
24: . Save information about clashing atoms.
25: end if
26: end for
27: end for
28: i← i + 1
29: end while
30: return {Sterical clashes for every nucleosome position are stored.}
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the PDB file) of the sugar phosphate backbone. This superimposition is then repeated for every
wrapped DNA position in nucleosome core complex NCP147, see Algorithm 2.1 (Line 4).

Besides opening and parsing PDB structures, the Bio.PDB module also provides a class,
io=PDBIO(), for writing a PDB file from a structure object. In addition to saving the file via
io.set_structure(structure) followed by io.save("outname.pdb"), the structure can be
modified by, for instance, changing colors or helix representations. This is provided by the
Python pymol package and applying commands such as pymol.cmd.show_as("cartoon") to
visualize the crystal structure as cartoon. We made use of this functionality to edit (for ex-
ample specific coloring and modification of helix representations) and save both, DNMT1 and
nucleosome structure, to a single PDB file.

Since we were interested in the accessibility of DNMT1 to hemimethylated DNA that is
wrapped around a histone octamer (for details see below), the calculation of sterical clashes
between these two structures was reasonable. The NeighborSearch() object, which is based
on a KD tree data structure, can be applied to report all entities, like atoms or residues, that
are detected within a radius of a given atomic position. A KD tree data structure, for a k–
dimensional tree, is based on binary space splitting into half–spaces using separating hy-
perplanes [161]. This organization then allows for fast detection of nearest neighbors. The
ns=NeighborSearch() object is initialized with a list of atoms to construct a KD tree, see Al-
gorithm 2.1 (Line 15). Following this, the ns.search(center_coords,radius)method can be
applied to the given atomic position center_coords and a radius in angstrom Å. In case,
the entity level is given as atoms, this function returns all atoms within the specified radius.
Prior to this, it is convenient to use Selection.unfold_entities(structure,target_level)
with target_level="A" to select all atoms from a given structure, compare with Algorithm 2.1
(Lines 12 and 13). Thereby, entities are abbreviated as "S" for structure, "M" for model, "C" for
chain, "R" for residue, and "A" for atom. The advantage of using NeighborSearch() with a
radius of 5 Å is a reduction of the overall runtime.

The detection of neighbor atoms is then followed by computation of sterical clashes be-
tween DNMT1 and NCP147 for every possible position. We assume a sterical clash exists be-
tween two atoms if d < r1 + r2 with van der Waals (vdW) radii r1 and r2 and a distance d, see
Algorithm 2.1 (Lines 22 and 23). The definition of a sterical clash is visualized in Figure 2.6.
The vdW radius is dependent on the respective atom. We used the values suggested by Bondi
[162], namely rH=1.20Å, rC=1.70Å, rN=1.55Å, rO=1.52Å, rP=1.80Å, and rS=1.80Å. The number
of sterical clashes is then calculated for every nucleosome position and all necessary informa-
tion on clashing atoms is subsequently stored for further analysis. Note that we excluded zinc
("ZN"), manganese ("MN"), and chlorine ("CL") elements as well as atoms of the DNMT1 DNA
chain or atoms of wrapped DNA that are part of the superimposition from these sterical clash
calculations. The overall sterical clash (in percent [%]) between the DNMT1 enzyme and a
given DNA nucleosome position was then computed as the number of sterical clashes between
DNMT1 atoms and nucleosome atoms divided by the total number of DNMT1 atoms. In sum-
mary, the procedure outlined in Algorithm 2.1 illustrates the convenient applicability of the
Bio.PDB module concerning structural computations. The overall structural approach to de-
cipher DNA methylation patterns is discussed and presented in the following sections. For a
detailed description of the Bio.PDB module please refer to [89].

Figure 2.6: Illustration of a sterical clash. A sterical clash for two atoms with vdW radii r1
and r2 and distance d exists if d < r1 + r2 holds.
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2.2 Aim of this work
As mentioned, it was suggested that nucleosome occupancy and DNAmethylation are depen-
dent on each other [158]. The same study reported a ten base periodicity of DNA methylation
in nucleosomal DNA. DNMTs bind to the major groove of DNA that is located on the nucleo-
some outside, which would explain the observed ten nucleotide periodicity [158]. Moreover,
it was reported that nucleosome–bound DNA is methylated to a higher extent compared to
flanking DNA sequences [158]. Since these findings suggest that DNMTs are able to methy-
late nucleosome–bound DNA [158], we aimed at determining precise nucleosomal DNA posi-
tions (base pair resolution) that are accessible for DNMT1 such that a specific cytosine in CpG
context can undergo methylation. By assuming that DNAmethylation takes places on nucleo-
somes and that nucleosome–boundDNAcan bemethylated byDNMT1, we investigatedwhich
DNA positions are not reachable by the DNMT1 enzyme due to the organization of the nucleo-
some structure. For this, we implemented an in silico structural superimposition approach and
subsequently compared computed accessibility scores to experimental NOMe–seqmethylation
data. We found that the experimental DNA methylation patterns in regions with high nucle-
osome density reflect the accessibility of DNMT1 to specific DNA positions when complexed
as nucleosome structure. This strengthens the hypothesis that methylation can take place on
nucleosomes as suggested [158], and that only specific DNA bases are accessible by DNMT1
which is due to the nucleosome core complex structure that in turn leads to the experimentally
observed methylation patterns.

2.3 Materials and methods
This section starts with an explanation of our superimposition approach that generates a struc-
tural alignment of DNMT1 with every nucleosome–bound DNA position. This procedure al-
lows to find physically feasible DNMT1–nucleosome compositions that can subsequently be
used to derive structural accessibility scores. Following this, we compared these calculated
scores with experimental methylation data using a sliding window approach.

2.3.1 Structural superimposition approach
Protein crystal structures of the nucleosome core particle NCP147 (PDB identifier: 1KX5 [10];
Homo sapiens and Xenopus laevis) and of the human DNMT1 complexed with a 19 bp DNA
molecule (PDB identifier: 3PTA [137]; Homo sapiens; residues 646–1600) were retrieved from
the Protein Data Bank (PDB) [21]. The crystal structures of NCP147 and DNMT1 are shown
in Figure 1.2 and Figure 2.2, respectively. Using PyMOL (version 1.3) [22] together with the
Biopython library (version 1.68) [87, 89], we performed a structural superimposition between
DNMT1 and the nucleosome core complex for every nucleosome–bound DNA position. The
structural approach is illustrated in Figure 2.7 and outlined in Algorithm 2.1.

This DNA–DNA structural alignment was constructed based on the atomic positions of
the DNA sugar backbone (that means elements P, OP1, OP2, O5, C5, C4, O4, C3, O3, C2, and
C1) of DNA positions 4 to 15. For every possible DNMT1–DNA–DNA-nucleosome structural
alignment, we computed a superimposition with minimal RMSD by calculating the rotational
and translationalmatrixMRT that is required to place the sugar backboneDNMT1–DNAatoms
onto the nucleosome–DNA atoms. MRT is then applied to all atoms of the DNMT1 molecular
complex for a spatial transformation onto the considered nucleosome–DNAposition, see lower
panel of Figure 2.7.

Next, we determined which DNMT1–nucleosome superimpositions are mechanistically
feasible by computing a sterical clash score betweenDNMT1 and nucleosome for every binding
position. To reduce computation time, we calculated a sterical clash between a DNMT1 atom
and all nucleosome neighbor atoms in a distance of 5Å. We assume that a sterical clash exists
between two atoms if d < r1 + r2 with the respective atom van der Waals (vdW) radii r1
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DNMT1	
Structural	
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Figure 2.7: Superimposition of DNMT1 and nucleosome core complex. DNA positions 4–15
of DNMT1 are mapped onto every position of the nucleosomal DNA by calculating a rotation
and translation matrix for transformations of the spatial coordinates. Shown is the mapping
of DNMT1 to nucleosome DNA position 1. For this, a structural alignment between the DNA
bases of DNMT1 (left panel) with the nucleosome–bound DNA (right panel) is generated. The
bottom panel shows the superimposition of the DNA stretches. In this orientation, DNMT1
points away from the nucleosome.

and r2 as well as the distance d, see Figure 2.6. To calculate the overall percentual sterical
clash between the DNMT1 enzyme and the nucleosome at a DNA position, we calculated the
number of sterical clashes between DNMT1 atoms and nucleosome atoms normalized by the
total number of DNMT1 atoms.

2.3.2 Comparison with experimental methylation data
To validate our superimposition approach, we compared the in silico computed accessible DNA
positions against experimental GCH and HCGmethylation data. This data provides genome–
wide information aboutmethylatedGpC andCpG sites that can be used to deduce nucleosome
dense regions together with cytosinemethylation rates in CpG context. For simplification, note
that in the following we use the term "NOMe–seq" for methylation at GpC sites that was used
to infer nucleosome positions, whereas CpG methylation is referred to as "WGBS". Figure 2.8
displays the overall approach. First, high nucleosome density regions (HNDRs) and low nu-
cleosome density regions (LNDRs) were derived from experimental NOMe–seq data using a
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two–state binomial HMM combined with Fisher’s exact test (provided by Karl Nordström),
compare with [53]. These regions together with position–specific CpG methylation (WGBS)
were then assigned to promoter regions since promoters exhibit specific nucleosome arrange-
ments to regulate transcription [100]. Since open and closed chromatin regions are broad re-
gions rather than specific 146 bp sequences, we applied a sliding window approach and cal-
culated matching–scores for every possible nucleosome position within HNDRs and LNDRs
using experimental and randomized WGBS methylation data. In the following, a comparison
between our in silico scores and experimental methylation data is explained in detail.

Figure 2.8: Comparison of in silico and experimental data. The flowchart depicts the overall
approach and the comparison between in silico structural superimposition and experimentally
observed methylation. Note that "NOMe" refers to methylation of GCH sites while "WGBS"
refers to HCG methylation sites. An asterisk (*) denotes that randomized data was computed
as well. All plots shown are explained and discussed in detail in Section 2.4.

GCH and HCG methylation rates in promoter regions
Annotated open regions with higher GCH methylation than the local surrounding and thus
with lower nucleosome density (LNDRs) were determined based on GCH methylation data.
As mentioned above, LNDRs were provided by Karl Nordström, compare with [53]. The here
utilized NOMe–seq experimental data was first used in Schmidt et al. [53]. Since these re-
gions exhibit higher GCH methylation density compared to the local surrounding, they have
a higher probability of being open chromatin regions. We then considered the complement
genomic positions of the annotated open regions as regions with higher nucleosome density
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compared to the local surrounding (HNDRs), see Figure 2.8. These were extracted using the
complementBed function from the BEDTools suite (version v2.26.0) [78]. The necessary hg19
chromosome lengths were taken from the UCSC genome browser [56].

Since promoter regions harbor specific nucleosome patterns to enable transcriptional reg-
ulation [100], we investigated these regions in detail with regard to DNA methylation and
nucleosome occupancy. We defined the promoter region as the range from –2000 to +1000
bp around the TSS. Human Reference Sequence (RefSeq) gene annotations were downloaded
from the UCSC genome browser hg19 assembly [56, 163]. We removed all microRNAs and
small nucleolar RNAs, and genes with equal CDS start/end positions. Moreover, we included
only genes located on chromosomes 1 to 22, X, and Y. To analyze nucleosome occupancy and
DNAmethylation in the promoter region, we used the intersectBed function of the BEDTools
suite [78] (version v2.26.0) to assign the filtered WGBS (HCG) and NOMe–seq (GCH) data to
the defined promoter regions, see also Figure 2.8. Thereby, we only included positions with a
coverage of at least three reads in further analyses, compare with [100].

First, we determined the length [bp], start/end positions, and the corresponding GpC
methylation rates of HNDRs and LNDRs to decipher a general nucleosome occupancy pattern
around a TSS. For this, we calculated the average 100–GpC methylation rate for every position
within the predefined promoter regions. Thereby, an increased 100–GpC rate corresponds to a
decreased GpCmethylation rate at this position and thus a region possibly occupied by nucle-
osomes (depending on the local surrounding). Next, we analyzed the general genome–wide
CpG methylation patterns in the promoter regions by calculating the distance between indi-
vidual methylated CpG sites. For this calculation, we considered CpG sites with methylation
rates greater zero. To calculate the statistical significance, we then randomized WGBS data
by permutating the methylation rates within the promoter regions (without replacement), see
Figure 2.8. Annotated open and closed promoter regions together with the strand–specific ex-
perimental and randomizedCpGmethylation rateswere then compared to the computedDNA
accessibility scores, compare with Figure 2.8. This comparison is based on a sliding window
approach that is explained below.

Sliding window approach in HNDRs and LNDRs
Processing of experimental methylation data only provides broad regions with higher GpC
methylation rate compared to the local surrounding (LNDRs) and their complement (HNDRs).
Thus, we applied a sliding window approach and computed matching–scores for every possi-
ble window location to quantify thematch of in silico accessibility values andDNAmethylation
rates. The length of the sliding window amounts to 136 bp, which refers to the number of nu-
cleosome positions with sterical clashing information, while the step size equals 1 bp. For this,
computed accessibility valueswere normalized to a range between 0 and 100 to obtain the same
scale as the methylation rate. The sliding window approach is outlined in Figure 2.9. For all
promoter regions with HNDRs and LNDRs harboring methylated CpGs sites, we calculated a
matching–scorew ∈ [0, 1] for a possible sliding window position w:

matching − scorew =
1

#CpGsw
×

#CpGsw∑
i=1

Mi,

wherebyMi was defined as

Mi =

1, if (mri > mthres ∧ ci ≤ cthres) ∨ (mri ≤ mthres ∧ ci > cthres)

0, otherwise

with the methylation rate mri at CpG position i, a methylation threshold mthres required
to assume a CpG to be methylated, the accessibility/sterical clash ci at position i calculated by
the structural superimposition approach, and a tolerated sterical clash cthres. Thus,Mi = 1 if
a CpG is methylated and the sterical clash is tolerated or if a CpG is not methylated and the
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sterical clash is not tolerated, whichwouldmeanDNMT1 is not able to bind to the nucleosome.
The sum is then normalized by the number of CpG sites #CpGsw in the considered sliding
window. Elevated matching–scores indicate that the methylation rate reflects the calculated
sterical clash. We compared matching–scores calculated using different parameter values for
cthres ∈ {5, 10, 20, 50} andmthres ∈ {0, 10, 20}. For simplicity, matching–scores are abbreviated
as combination of cthres and mthres. For instance, c5m0 denotes that the score was calculated
using cthres = 5 andmthres = 0, whereby sterical clashes are tolerated if ci ≤ 5% and a CpG is
assumed to be methylated if the methylation ratemri > 0.

Figure 2.9: Sliding window approach. Shown is a promoter region, which was defined to
range from –2000 to +1000 bp relative to the TSS. Matching–scores were calculated for every
possible sliding position within HNDRs and LNDRs. To evaluate our results, scores between
experimental and randomized data were then compared regarding Cohen’s d values to mea-
sure effect size and p–values calculated with the Wilcoxon rank–sum test.

Next, we compared matching–scores of HNDRs and LNDRs with each other. To test for
significance, we applied the Wilcoxon rank–sum test to compare the matching–scores of ex-
perimental and randomized methylation rates. With a sufficiently large sample size, p–values
tend to become highly significant, even when the magnitude of the difference between the two
groups is very small [50, 51]. Thus, to also interpret the magnitude of underlying differences,
we computed the effect size by applying Cohen’s d estimator that is independent of the sample
size [50, 52]. Cohen’s d is defined as

d =
(me −mr)√

s2e+s
2
r

2

with experimental mean me, randomized mean mr, experimental standard deviation se,
and randomized standard deviation sr. Effect sizes were separated into small (0.2 ≤ d < 0.5),
medium (0.5 ≤ d < 0.8), and large (d ≥ 0.8) according to [50].

2.4 Results and discussion
To explain the experimentally observed methylation patterns, we applied a structural super-
imposition approach considering DNMT1 and the nucleosome core complex. In the following,
we present the DNA accessibility scores that were obtained by calculating the sterical clash
between these two X–ray structures. Our in silico results are subsequently compared to experi-
mental methylation data to evaluate our hypothesis that methylation of CpG sites is dependent
on their accessibility byDNMT1, which is impaired through the nucleosome core complex. The
results of our approach are explained in the following.
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2.4.1 Superimposition detects accessible CpG sites
With the help of an in silico structural superimposition approach based on X–ray crystallo-
graphic structures of DNMT1 and the nucleosome core complex, we superimposed the com-
plex of DNMT1 bound to a stretch of double–stranded DNA with every position of DNA
wrapped around a histone octamer. As an example, Figure 2.10A and 2.10B show two super-
impositions for DNA–nucleosome positions 2 and 18. For every aligned nucleosome–DNA po-
sition, we computed whether DNMT1 can bind reasonably well to the nucleosomal DNA such
that an individual DNA position can be methylated. Figure 2.10C shows the sterical clash [%]
as inversemeasure of DNA accessibility for every histone octamer–boundDNAposition. As an
example, DNMT1 can bind reasonably well to nucleosome–bound DNA position 2 and hence
methylate this CpG site, see Figure 2.10A.When DNMT1 is placed at position 18, nearly 60% of
DNMT1 atoms overlap with the nucleosome, see Figure 2.10B. This arrangement is physically
infeasible meaning that DNMT1 is not be able to methylate a CpG at DNA position 18 as long
as the DNA is tightly wound around the histone octamer core. Calculation of the matching–
score based on the sterical clash for every nucleosome–bound DNA position resembles a wave
pattern that results from the wrapping pattern of DNA around the nucleosome.

(A)	

(C)	

(B)	

Figure 2.10: Sterical clash betweenDNMT1 and the nucleosome core complex. Superimposi-
tion of DNMT1 and the nucleosome core particle reveals a wavelike pattern of sterical clashes.
Shown is the superimposition of DNMT1 and the nucleosome at (A) DNA position 2 and (B)
DNA position 18. (C) The obtained wave pattern of sterical clashes results from superimposi-
tions of DNMT1 and the nucleosome core complex for every DNA–nucleosome position. The
scores for the two orientations 2 and 18 are marked by circles.
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2.4.2 Experimental data evaluates structural approach
First, experimental GCH and HCG methylation data were filtered. In a preprocessing step,
we removed all sites that were covered by less than three reads. This resulted in a reduc-
tion of about 6.0% for GpC (NOMe) positions from about 219,000,000 sites reduced to about
206,000,000 sites. Considering CpG (WGBS) sites, this step reduced our dataset from about
39,000,000 sites to 36,000,000 sites, which amounts to about 8.7%. In total, we incorporated
25,416 gene promoters that were located on chromosomes 1–22, X, or Y, into our analyses. Fol-
lowing this, we analyzed the distribution of nucleosomes and methylated CpG sites in gene
promoters. Finally, the results of the sliding window approach were evaluated. To test for
statistical significance, we incorporated randomized methylation data into our approach.

Unambiguous nucleosome phasing at the TSS
Next, we aimed at determining the nucleosome occupancy in gene promoters. For this, we cal-
culated the average fraction of unmethylated GpCs for every DNA promoter position based on
experimental GCHmethylation data, see Figure 2.11A. Note that an elevated 100–GpC methy-
lation rate corresponds to nucleosome protected DNA sequences. Thus, the flanking sequence
around the TSS can be separated into LNDR and HNDRs. Figure 2.11A reveals a clearly visi-
ble nucleosome phasing pattern directly downstream of the TSS. Since the TSS is close to the
downstream end of the LNDR, the TSS position is a reasonable reference point for the start
of the next nucleosome. Due to the differing lengths of LNDRs between genes, the regions
upstream of the TSS become on average more "disordered" and the nucleosome phasing is not
clearly visible anymore. This pattern was observed before [100, 146] and reflects the nucleo-
some organization that is necessary to regulate gene transcription.

We then investigated the length distributions together with start/end positions of LNDRs
and HNDRs. The results are shown in Figure 2.11B–E. In human gene promoters, we found
that the average length of HNDRs is 424±429 bp, while the length of LNDRs is 355±216 bp on
average. Sincewe considered promoter regions defined from–2000 to +1000 bp around the TSS,
aHNDRof 3,000 bp is themaximum length possible. Figure 2.11C andE show that themajority
of HNDRs end about –200 bp upstream of the TSS and start about 100 bp downstream of the
TSS. LNDRs are by definition located at complementary positions. This distribution resembles
the observation in Figure 2.11A and [100] and draws confidence in the annotation of HNDRs
and LNDRs from experimental NOMe–seq data.

Distances between methylated CpGs diverge
Following the detailed analysis of accessible nucleosome–bound DNA positions and nucleo-
some occupancy in promoter regions, we next examined the general CpG methylation pat-
tern in promoter regions. Therefore, we plotted the average CpG methylation level (see Fig-
ure 2.12A, black lines) as well as the distance distribution between CpGs with a methylation
rate > 0 (see Figure 2.12B). Methylated CpG positions were detected by assigning the WGBS
filtered data to the defined promoter regions, see Figure 2.8. In Figure 2.8, we compared both
experimental and randomized CGH methylation rates. We observed that experimental CpG
methylation levels decreased towards the TSS, had a small peak at the TSS, and increased again
downstream of the TSS, see Figure 2.12A (black lines).

Moreover, we found that distances between experimentally detected methylated CpGs are
uniformly distributed with a small peak at a distance of 5 bp, see Figure 2.12B. Thereby, the
distance refers to the number of base pairs between twomethylated cytosines. Thus, the small-
est distance possible is 2 bp, for instance C*GTC*G, with * denoting cytosine methylation and a
GT within two methylated cytosines. A distance of zero is not possible since methylation takes
place in CpG context. Due to experimental restrictions, a composition of C*GC*G (distance of
1 bp) is not possible since a methylated CpG can only be reported in HCG context with H=A,
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C, or T. As mentioned above, we randomized the WGBS data in order to evaluate the statisti-
cal significance of our hypothesis that DNAmethylation is restricted by nucleosome structure.
Figures 2.12A and C show the average CpGmethylation and distances for the randomized data
in promoter regions. In contrast to the experimental data, randomized methylation rates are
equally distributedwithin the promoter region (Figure 2.12A, grey lines), whereas the distances
only slightly change as depicted in Figure 2.12C (compare with Figure 2.12B).

(A)	

(B)	

(D)	

(C)	

(E)	

LNDR	 HNDR	HNDR	

Figure 2.11: NOMe–seq GpC patterns in promoter regions. The TSS is located at position
zero. (A) Average 100–GpC methylation ratios (fraction of unmethylated GpCs) indicate nu-
cleosome depleted and occupied regions. (B–E) Regions with higher nucleosome density com-
pared to the local surrounding (HNDRs) and regions with lower nucleosome density (LNDRs)
were derived based on experimental GCH NOMe–seq data. Shown are distributions of region
lengths and start/end positions of HNDRs (B,C) and LNDRs (D,E).
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(C)	(B)	

(A)	

Figure 2.12: CpG methylation pattern of experimental and randomized data. We analyzed
the general CpG pattern for experimental (black) and randomized (grey) methylation rates in
promoter regions. The TSS is located at position zero. (A) Average experimental and random-
izedCpGmethylation rates (fraction ofmethylatedCpGs). (B,C)Distances betweenmethylated
CpGs for experimental (B) and randomized methylation rates (C). We assumed a methylation
rate ofmri > 0 and only display distances ≤ 20 bp for convenience.

Methylation patterns resemble DNA accessibility
As we observed differing CpG methylation periodicities, compare with Figure 2.12B, rather
than individualmethylations peak every 10 bp as detected by [158], we analyzed if there is a de-
pendency between accessible nucleosome–bound andmethylatedCpGpositions. As described
in Section 2.3.2, we calculated a matching–score for every possible sliding windowwithin pro-
moter HNDRs and LNDRs to compare experimental and randomized CpG methylation levels
with the estimated accessibility of DNMT1 to the nucleosome. The matching–scores for ex-
perimental and randomized methylation data were analyzed in terms of p–values (Wilcoxon
rank–sum test) and effect size (Cohen’s d). Since the number of CpGs within a sliding window
strongly influences the reliability of the matching–score, we analyzed effect size and statistical
significance dependent on the number of CpG sites.

Figure 2.13A and B as well as Figure 2.14A and B display the effect size and p–value de-
pendent on the number of CpGs within a sliding window, by comparing experimental and
randomized data within HNDRs and LNDRs. For HNDRs, we found clear differences of
Cohen’s d values depending on the values of the two parameters mthres ∈ [0, 10, 20] and
cthres ∈ [5, 10, 20, 50]. In general, cthres = 5 with any mthres value (c5m*) seems to give the
most significant results, see Figure 2.13A. Since we assume that a CpG position can be methy-
lated if the sterical clash betweenDNMT1 and the nucleosome is below 5%, the results obtained
with this parameter selection support our hypothesis.



37 DECIPHERING DNAMETHYLATION PATTERNS

(A)	

(B)	

(C)	 (D)	

Figure 2.13: Results of slidingwindow approach inHNDRs. We applied a sliding window to
HNDRs and compared experimental and randomized methylation data. (A) Cohen’s d values,
for convenience plotted from –3 to 3, for the differentmatching–scores. The respective numbers
are shown in Table A.1. (B) p–values between experimental and randomized data were calcu-
lated with the Wilcoxon rank–sum test. For numerical reasons, −log10(p− value) = 310 is the
maximum, and thus the smallest p–value possible using Python version 2.7 with scipy package
version 0.19. (C) Number of CpGs within different sliding windows of 136 bp length. The re-
spective frequencies and percentages can be found in Table A.3. (D) Distribution of matching–
scores for experimental and randomized methylation rates. Matching–scores were calculated
with parameters cthres = 5 andmthres = 0 for all sliding windows with at least 15 CpGs.
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(A)	

(B)	

(C)	 (D)	

Figure 2.14: Results of sliding window approach in LNDRs. We applied a sliding window to
LNDRs and compared experimental and randomized methylation data. (A) Cohen’s d values
(for convenience plotted from –3 to 3) for the different matching–scores. The respective num-
bers are shown in Table A.2. (B) p–values calculated with Wilcoxon rank–sum test between
experimental and randomized data. For numerical reasons, −log10(p − value) = 310 is the
maximum, and thus the smallest p–value, possible using Python version 2.7 with scipy pack-
age version 0.19. (C) Distribution of number of CpGs within sliding windows of 136 bp length,
compare with Figure 2.10. The respective frequencies and percentages are listed in Table A.4.
(D) Distribution of matching–scores for experimental and randomized methylation rates. A
matching–score was calculated with parameters cthres = 5 and mthres = 0 for all sliding win-
dows with at least 15 CpGs.

For higher threshold values cthres, the effect size decreases and for high clash values be-
comes even negative, meaning that the matching–scores of randomized methylation data were
on average higher than for experimental methylation rates. Moreover, the parameter mthres

seems to have a smaller influence on the effect size than cthres. This behavior is in accordance
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with our hypothesis that DNA can be methylated when wrapped around the histone octamer
core and only positions accessible by DNMT1 are methylated. As expected [50, 51] and men-
tioned beforehand, the p–values calculated with the Wilcoxon rank–sum test are highly sig-
nificant due to the large sample size, see Figure 2.13B. This shows that there is a significant
difference between experimental and randomized data, whereas the effect size quantifies the
magnitude of the difference and is thus crucial for interpretation here.

Figure 2.13C shows the overall distribution of the number of CpGs within HNDR slid-
ing windows. In total, HNDRs exhibit 2,277,851 possible sliding windows with on average
7.12± 4.88 CpGs and a median value of 6.0 CpGs per window, see Figure 2.13C and Table A.3.
Figure 2.13D shows the distribution of experimental and randomized matching–scores when
requiring at least 15 CpGs within a sliding window and using parameters cthres = 5 and
mthres = 0 (c5m0). This number of at least 15 required CpG sites was selected as Cohen’s d
value then exceeds d ≥ 0.8, which corresponds to a large effect size, see Figure 2.13A. Table A.3
shows that about 9% of the sliding windows within LNDRs contain at least 15 CpGs. All these
findings draw confidence in our initial hypothesis that methylation patterns are dependent on
the DNA accessibility of DNMT1.

As shown in Figure 2.14, LNDRs yielded lower Cohen’s d values compared to HNDRs. All
parameter curves behaved similarly and increased only slightly with an elevated number of
CpGs, see Figure 2.14A. Figure 2.14B shows that, as for the HNDRs, most of the p–values are
highly significant, which is also due to the large sample size. In total, LNDRs exhibit 4,390,558
possible sliding windows with on average 9.0± 5.22 CpGs and a median of 8.0 CpGs per win-
dow, see Figure 2.14C and Table A.4. Figure 2.14D displays the distribution of experimental
and randomizedmatching–scores (c5m0) with at least 15 CpGs (as displayed for HNDRs). The
density distributions of both groups overlap largely which underlines that the strong signal is
only present at HNDRs.

2.5 Summary
In this project, we analyzed the three–dimensional structures of the DNMT1 enzyme and the
nucleosome core complex in relation to observed DNA methylation patterns in the human
genome. As data basis, we used the determined X–ray structures of DNMT1 bound to a 19
bp DNAmolecule (PDB identifier: 3PTA [137]) and of the NCP147 nucleosome complex (PDB
identifier: 1KX5 [10]). Both structures were retrieved from the Protein Data Bank (PDB) [21].
Methylation data for GCH and HCG methylation rates were detected by conducting NOMe–
seq and WGBS experiments and were provided by our collaborators from the Saarland Uni-
versity (Epi)genetics department. With the help of a structural superimposition approach
between DNMT1 and every base pair position of the NCP147 nucleosome core complex, we
determined accessible nucleosome–bound DNA positions at nucleotide resolution. These ac-
cessibility scores were based on a computation of sterical clashes between DNMT1 and the
NCP147 core complex. Next, we aimed at a statistical comparison between experimentally de-
tected methylation rates and our computed accessibility scores. For this, we applied statistical
tests and calculated Cohen’s d effect sizes between experimentally observed and randomized
methylation rates. By doing so, we could show that the observed DNA methylation patterns
in regions with higher nucleosome density than the local surrounding can be explained by
accessibility of DNMT1 to the nucleosome–bound DNA. Thereby, we compared different pa-
rameter thresholds for required methylation rates and tolerated sterical clashes. We found that
large Cohens’d effect sizes between experimental and randomized methylation data were only
present when the tolerated sterical clash was below 5%. This is in accordance with the initial
hypothesis that nucleosome–bound DNA can methylated by DNMT1 and that DNMT1 is only
able to methylated accessible CpG sites. For this study, we constraint our analyses to promoter
regions as these regions show a specific nucleosome phasing around the TSS that was also
observed in our initial analysis of the experimental data.





CHAPTER3
Prediction of non–canonical 5’ UTR

translational initiation sites
This chapter deals with the challenging prediction of eukaryotic alternative translation start
sites in the 5’ UTR of a given mRNA sequence. Sections 3.2 to 3.6 of this chapter were adapted
and expanded fromour publishedmanuscript "PreTIS: A Tool to PredictNon–canonical 5’ UTR
Translational Initiation Sites in Human and Mouse. Kerstin Reuter, Alexander Biehl, Laurena
Koch, and Volkhard Helms. PLoS Computational Biology, 12(10):e1005170, 2016". Alexander
Biehl implemented a first functioning version of theweb service, whichwas revised, improved,
and partially reimplemented by me. Laurena Koch analyzed mRNA secondary structure and
GC–content with a focus on their usability as features. Both, Alexander Biehl, and Laurena
Koch contributed to this project in the course of their Bachelor's thesis and were advised by
me. The PreTIS web service is accessible at http://service.bioinformatik.uni-saarland.
de/pretis. Published supplementary information was omitted here. Please refer to our pub-
lication to examine the supplementary material. This chapter also complements the published
version in certain regards. The biological background, the theory of machine learning, im-
plementation details of the prediction model, and the web service application that were not
explained in the publication are described in detail in Section 3.1, 3.3, and 3.6.

3.1 Prerequisites
This section describes the biological foundations of eukaryotic alternative translation initiation
and of the experimental ribosome profiling technique that enables detection of translation start
sites on a genome–wide scale. Moreover, machine learning is introduced with a focus on lin-
ear regression and support vector machines that were applied in this project. Advantages of
web service development together with the fundamental languages of web programming are
presented, followed by a description of the integrated data sources and bioinformatics tools.

3.1.1 'Death of a dogma': alternative translation initiation
Besides alternative transcription, splicing, and polyadenylation, there is also evidence for al-
ternative translation initiation, see for instance Dever [25], Peabody [40], Kozak [41], Ivanov
et al. [42], Lee et al. [43], Ingolia et al. [44]. The phrase "death of a dogma" was introduced by
Mouilleron et al. [164]. It was reported that at least half of the mRNA transcripts exhibit two
or more start sites [43, 44]. Experimental work showed that alternative start codons, additional
to the canonical AUG–methionine, are recognized as start site during eukaryotic translation
initiation [40, 41, 43, 44, 54]. It is assumed that a non–AUG translation initiation site (TIS) dif-
fers from AUG by one nucleotide, thus yielding CUG, UUG, GUG, ACG, AUA, AUC, AUU,
AGG, and AAG [42]. Starck et al. [165] reported that an elongator tRNA carrying leucine was
found to initiate translation at CUG codons. Moreover, several studies verified the existence of
alternative TIS using mass spectrometry [166, 167] and ribosome profiling [43, 44, 54].

41

http://service.bioinformatik.uni-saarland.de/pretis
http://service.bioinformatik.uni-saarland.de/pretis


3.1. Prerequisites 42

Interestingly, several studies report that the first amino acid incorporated into the polypep-
tide chain was methionine although the start site differed from AUG [40, 166, 168]. This sug-
gests a general base mismatch between codon and anticodon during translation initiation [40].
Menschaert et al. [167] proposed a recoding event of leucine, valine, and threonine N–terminal
amino acids back to methionine as these N–terminal start sites were incorporated by the us-
age of the non–AUG alternative start sites CUG, GUG, ACG, and UUG. Moreover, a hierarchy
exists and some codons are used more frequently as start sites than other non–cognate alterna-
tive triplets [43, 44]. For instance, CUG and GUG codons were found to be the most frequent
non–cognate TIS, whereas AGG and AUA are used less frequently [44].

Alternative ORFs and their biological impact
There are several possibilities how a single transcript can undergo alternative translation initi-
ation and thus encode alternative ORFs. The formation of these alternative ORFs is illustrated
in Figure 3.1. Note that in the following, the main reading frame is defined as the ORF that is
initiated at the canonical AUG start site.

Figure 3.1: Alternative translation initiation. Dependent on the position of the start codon
together with in–frame or out–of–frame translation, a single transcript can encode different
protein isoforms. The figure was adapted from [169].
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Short sequences encoded within 5’ UTRs are known as upstream ORFs (uORFs) [170].
These uORFs are involved in translational regulation of the main reading frame and thus have
an influence on gene expression [171]. Furthermore, uORFs can overlapwith the CDS, which is
referred to as overlapping uORF, see Figure 3.1. In case a start site is located in theCDS and out–
of–frame with the canonical start site, an alternative downstream ORFs (dORFs) is encoded.
Additionally, dORFs that are in–frame with the main reading frame lead to truncated protein
isoforms [169]. On the other hand, in–frame ORFs with a start site located within the 5’ leader
sequence extend the CDS and thus result in protein isoforms with extended N–terminus [24].
An example is the TRPV6 Ca2+ channel protein, which was experimentally shown to exhibit
an elongated N–terminus using mass spectrometry [166]. Thereby, the majority of alternative
TISs is located in the 5’ UTR, whereas downstream TISs are scarcer and generally encompass
an AUG codon [24, 43, 44]. It is also possible that a single transcript bears several alternative
ORFs that can overlap, which is known as dual coding [172, 173]. Dual coding seems to be
rare (about 1%), although this underestimation could be based on technical and experimental
drawbacks [173].

Like alternative transcription or splicing, alternative translation further expands biological
variety. Alternative translation influences protein abundance, the amino acid assembly defin-
ing a protein isoform, and thus overall protein diversity [24]. Consequently, regulation of such
processes is of great importance for cell fate and requires a tight regulation [174]. Ivanov et al.
[42] showed that the N–terminal extensions of several alternatively translated proteins were
evolutionary conserved emphasizing their biological importance. Moreover, the function of
alternatively truncated or elongated protein isoforms can differ from the function of the canon-
ical proteins [175]. Starck et al. [93] reported that some uORFs initiated at non–AUG codons
are associated with stress response suggesting that alternative ORFs are encoded at different
cellular conditions.

Alternatively encoded ORFs can also influence regulatory processes. For example, there
are different protein isoforms of c–Myc that are encoded by the proto–oncogene c–Myc [176].
Both proteins, c–Myc 1 and c–Myc 2, differ in composition and function. Thereby, c–Myc 1 is
encoded at an upstream non–AUG start site, whereas c–Myc 2 refers to the canonical protein
isoform that is translated at the canonical AUG codon. In general, the Myc protein was found
to activate the p53 tumor suppressor gene by binding an E box myc site within the p53 pro-
moter region [177, 178]. It was reported that cellular growth is only repressed in case c–Myc 1
is overexpressed. Hann et al. [176] suggested that the elongated N–terminus leads to a con-
formational change of the c–Myc 1 trans–activation domain resulting in altered transcriptional
regulation.

Furthermore, alternative initiation can change the N–terminal localization sequence that
functions as sub–cellular target signal [179]. For instance, the sub–cellular localization of
AtLIG1 (DNA ligase 1) is dependent on the start codon usage: the protein isoform translated
from the first in–frameAUG is targeted to themitochondria, whereas the protein encoded from
the second in–frame AUG is transported to the nucleus [180]. Moreover, alternative start sites
can also lead to both, a different function and a deviating cellular compartment [174, 181]. An
example are four isoforms of human fibroblast growth factor 2 that arise from alternative transla-
tion initiation [181].

mRNA sequence determines start site recognition

Marilyn Kozak conducted various experiments concerning the influence of the start site flank-
ing sequence context [182, 183, 184, 185] and mRNA secondary structure [186, 187, 188] on
translational initiation efficiency. It was reported that the start site flanking sequence context
is crucial for translation initiation by eukaryotic ribosomes [185]. Especially positions –3R (R =
purine) and +4Ghadproven to be essential for an efficient translation initiation. Position –3was
reported to be highly conserved in multiple vertebrate sequences, whereby an A is preferred
over a G at this site [185]. An optimal eukaryotic initiation site was defined as the consensus
sequence (GCC)GCCA

GCCAUGG [185].
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Noderer et al. [189] applied high–throughput sequencing combined with fluorescence sig-
naling (FACS–seq) to experimentally compare all possible flanking sequence contexts with a
length of 11 nucleotides (position –6 to +5) concerning their ability to initiate translation at an
AUG start site. Based on a dinucleotide position weight matrix (PWM), they derived efficiency
values for all 48 = 65,536 sequences ranging from low, with a value of 12, up to most efficient,
with a value of 150. For example, the sequence context GCCACCAUGGG described as optimal
by Kozak [185] was assigned a value of 83. All these findings emphasize and illustrate that
the flanking sequence context is essential for efficient translation initiation. The strength of the
Kozak context also plays a role in start site selection as initiation at a specific start site seems to
be dependent on the constitution of the upstream start codons. It was reported that an uORF,
which is encoded from an AUG with strong Kozak context, entails that the main ORF is not
translated [43].

Furthermore, the propensity and position of mRNA secondary structure residing directly
downstream of a putative start site was shown to play an important role during translation
initiation [186, 187, 188, 190]. Based on the free energy of this secondary structure, it is as-
sumed that ribosome scanning decelerates and then halts with the AUG–recognition center
directly positioned over the AUG start site, ready for translation initiation [188]. It was exper-
imentally shown that mRNA secondary structure starting about 12 to 15 nucleotides down-
stream of a start codon and bearing a minimum free energy of ∆G = −19 kcal

mol can prevent
leaky scanning and compensate for an unfavorable flanking sequence context [188, 190]. The
largest effect was observed when the distance between the start site and the downstream hair-
pin structure amounted to 14 nucleotides [188]. The distance of 14 nucleotides enables that the
ribosomal AUG–recognition center situates directly above the AUG start codon [188]. Trans-
lation initiation is hindered in case the hairpin structure is very stable with energy below
∆G = −50 kcal

mol [186, 187]. Free energies of about ∆G = −30 kcal
mol are only tolerated if the

stem–loop structure is kept at distance from the start site [187]. It was proposed that a down-
streammRNAsecondary structuremight be beneficial for the initiation at alternative non–AUG
codons residing in upstream regions with increased CG–content [188].

Ribosome profiling detects translation start sites
The experimental technique that helped to decipher translational complexity on a genome–
wide scale is called ribosome profiling and was developed by Ingolia et al. [170]. They first
applied ribosome profiling to Saccharomyces cerevisiae budding yeast [170], followed by mouse
embryonic stem cells [44]. Ribosome profiling data provides information on the density of
ribosomes located at different regions of the transcript upon application of small chemicals
that block the elongation process [44, 170]. The central idea of ribosome profiling is that re-
gions which are protected by ribosomes are not digested upon application of nucleases [191].
Functional ORFs are then detected by deep–sequencing of ribosome–occupied mRNA frag-
ments. These mRNA fragments have a length of about 30 nucleotides, which corresponds to
the length of an RNA stretch protected by a ribosome. These fragments are called ribosome
footprints [175]. Thus, this technique enables to precisely monitor translation in vivo at nu-
cleotide resolution.

The ribosome profiling protocol involves three crucial steps: immobilization of active ri-
bosomes, nuclease treatment together with digestion of mRNA fragments not occupied by ri-
bosomes, and deep–sequencing of these fragments. The experimental approach is illustrated
in Figure 3.2. This procedure enables to gain information on ribosome occupancy at differ-
ent regions on the mRNA transcript. Thereby, treatment with the small chemical harringto-
nine, which specifically binds to and halts initiating ribosomes, facilitates to identify transla-
tion initiation sites [44]. More precisely, harringtonine binds to the 60S ribosomal subunit that
is not complexed within the 80S ribosome and hinders ribosomal movement along the tran-
script [44, 192]. Thus, initiating ribosomes gather at and protect translation start sites from nu-
clease treatment [191]. These ribosome footprints are subsequently extracted, deep–sequenced
and mapped to a reference genome [191]. High–throughput deep–sequencing enables to de-
termine the nucleotide sequences of several billion short reads at the same time [193]. Based
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on their short length, mapping of these reads into a reference genome is challenging [169].
Next, the integration of a machine learning approach based on support vector machines [194],
resulted in the determination of translation initiation sites from ribosome footprints profiles
with an accuracy of 86% [44].

Figure 3.2: Ribosomeprofiling protocol. Ribosomeprofiling allows to preciselymonitor trans-
lation at the nucleotide level. The immobilization of initiating ribosomes followed by nuclease
treatment and digestion of mRNA fragments not protected by ribosomes together with deep–
sequencing of ribosome–occupied footprints enables to decipher translational complexity in a
genome–wide scale. The figure was adapted from [169, 191].
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Ingolia et al. [44] applied ribosome profiling to mouse embryonic stem cells to define the
proteome of amammalian system. They found that more than half of themRNA sequences en-
coded at least two ORFs, while some transcripts (16%) were reported to exhibit evenmore than
four initiation sites. Moreover, most of the non–AUG start sites were found to initiate uORFs
rather than dORFs. It was found that the overall start codon distribution is dependent on the lo-
cation within the transcript: more than half of the start sites located in the CDS comprise AUG,
whereas CUG and GUG, in addition to AUG, are widely used as upstream alternative start
sites [44]. Lee et al. [43] applied ribosome profiling to human embryonic kidney 293 (HEK293)
cells. As translation inhibitors they used cycloheximide (CHX) and lactimidomycin (LTM).
Both chemicals bind to the ribosomal E–site. Thereby, CHX can bind to initiating and elongat-
ing ribosomes, whereas LTM prefers initiating ribosomes with a tRNA–depleted E–site [43].
Thus, by combining both inhibitors, it is possible to differentiate initiating from elongating
ribosomes [43]. In total, they identified about 10,000 transcripts that harbor almost 17,000 po-
tential ORFs with initiation sites located in the 5’ UTR, CDS, and 3’ UTR. Both datasets [43, 44],
which comprise various alternative start sites, were used in our studies.

3.1.2 Machine learning

In the following, the broad field of machine learning is introduced with a focus on the models
that were used in this thesis. There are numerous sources that provide theoretical and practi-
cal background information on statistical learning. This section is based on several references:
Hastie et al. [195] and Bishop [196] provide statistical concepts to various methodologies from
the statistical learning field, Boyd and Vandenberghe [197] focus on convex optimizationmeth-
ods, Boucheron et al. [198] demonstrate the theoretical background of classification models,
Schölkopf [194] deals with support vector learning, and Smola and Schölkopf [199] provide an
overview on support vector regression. For more information on these topics, please refer to
thementioned references. A very useful machine learning library is scikit–learn for the Python
programming language [80]. Moreover, LIBSVM (A Library for Support Vector Machines) is a
powerful software package for support vector classification and regression, which is also used
within the scikit–learn SVM implementation [200].

The basic idea: learn from what you observe

In general, there are two types of learning: supervised and unsupervised learning. Here, we
will focus on supervised learning. The main idea of supervised learning is to train a gener-
alized prediction model based on observed data such that the learned estimator function is
then applicable for the prediction of new unseen data. In more detail, we are given an n × d
dimensional input data matrix X and an n dimensional output vector Y

X =


X11 X12 · · · X1d

X21 X22 · · · X2d

...
...

. . .
...

Xn1 Xn2 · · · Xnd

 , Y =


Y1

Y2
...

Yn


with n training samples (Xij)

n
i=1 that are represented by d features (Xij)

d
j=1 and an output

vector (Yi)
n
i=1. Dependent on the output space of Y , the learning method denotes regression

with Yi ∈ R or classification with Yi ∈ K andK classes or output labels. IfK = 2, it is termed
binary classification, whereby the labels K can be defined arbitrarily such as Yi ∈ {−1, 1}
or Yi ∈ {0, 1}. A simple linear model to predict the output Ŷ dependent on observations
XT = (X1, . . . , Xd) is then defined as
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Ŷ = ŵ0 +

d∑
j=1

ŵjXj

with the weight vector or coefficients ŵ. The weight vector ŵ0 is termed the intercept or
bias and serves as a starting point for themodel. For convenience, predicted values are denoted
with a hat symbol such as Ŷ . In order to find the coefficients ŵ that multipliedwith the inputX
best approximate the output Y , a loss or error function must be optimized, and in this context
this means minimized.

In that sense, the goal of supervised learning algorithms is to find an optimal function
f : X → Y over all possible functions F such that f(x) = ŷ best approximates the output y in
terms of a minimized loss or cost objective function L(f(x), y) = L(ŷ, y). Thereby, X denotes
the input space and Y refers to the output space. Thus, learning algorithms can be described
as optimization problem

arg min
f∈F

1

n

n∑
i=1

L(f(Xi), Yi) + λR(f)

with a loss function L(f(x), y) that is minimized over all points in the training dataset, and
a regularization functional R(f) together with a regularization parameter λ > 0. Regulariza-
tion provides a trade–off between the complexity of a function and the error in order to avoid
overfitting of the training data. The most popular and widely used loss function when consid-
ering a regression problem is the L2 or squared error loss L(f(x), y) = (f(x)− y)2. In contrast
to the squared error loss, the estimation of the L1 or absolute loss L(f(x), y) = |f(x) − y| is
more robust against outliers. Nevertheless, an optimal solution for the squared error loss can
be computed easily compared to L1, thus explaining the widespread application of the L2 loss
compared to the L1 loss. Considering classification, the 0 − 1 loss L(f(x), y) = 1(f(x) 6= y)
is commonly used and simply penalizes the number of misclassifications when the output y
differs from the predicted value f(x).

Linear least squares regression
As mentioned, linear regression models attempt to predict an output Y = R based on obser-
vations X = Rd using linear functions f(x) = ŵ0 + ŵ1x1 + ... + ŵjxj . An approach for an
estimation of coefficients ŵ = (ŵ0, ŵ1, ŵ2, . . . , ŵd)

T is the widely used method of least squares
that attempts to optimize the squared loss L(f(x), y) = (f(x)− y)2 by minimizing the residual
sum of squares

RSS(w) =

N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

(
yi − w0 −

d∑
j=1

wjxij
)2

given the training data {(x1, y1), (x2, y2), . . . , (xN , yN )}. Taking the derivative with respect
to the weight vector ŵ results in the solution of the linear least squares regression

ŵ = (XTX)−1XTY.

Subsequently, predicted values ŷ can be calculated bymultiplying theweight vector ŵwith
the input matrix X

ŷ = Xŵ = X(XTX)−1XTY.

Here, we assume that a constant variable 1 is contained in the n × (d + 1) input matrix X
and the intercept ŵ0 is included in theweight vector ŵ. By doing so, the loss function optimizes
the distance between the predicted values f(x) and the output y.
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Support vector classification, regression, and the kernel trick
A support vector machine (SVM) is a widely used learner to solve classification and regression
problems. One advantage of SVMs is their robustness against outliers. Moreover, a similar
formulation of these optimization problems allows an application of SVMs to classification
as well as regression problems. The difficulty of linearly non–separable cases is counteracted
using the so–called kernel trick. Support vector machines, hard–margin and soft–margin case,
together with the kernel–trick are described in the following.

Support vector classification The aim of support vector classification is to find an op-
timal separating hyperplane between two classes by maximizing the distance to the nearest
point of each class. The training data is given as xi ∈ Rd with the class labels yi ∈ {−1, 1}. The
support vector classifier is defined as

f(x) = sign[xT ŵ + ŵ0]

with theweight vector ŵ, the offset ŵ0 and the signum function sign(x). Hence, dependent
on the sign of the linear separating hyperplane, points are classified as either ŷi = 1 if f(xi) > 0
or ŷi = −1 if f(xi) < 0. Since there are multiple possibilities for the values of ŵ and ŵ0, the
idea of support vector classification is to maximize the distance between the two classes. This
optimization results in a unique solution to optimally separate the training data. The closest
points from either class are called support vectors giving this classifier its name, whereas the
space between these training points is called margin. Figure 3.3 illustrates the hard–margin
case of support vector classification that does not tolerate misclassification. The soft–margin
case is explained below.

Figure 3.3: Hard–margin support vector classification. To find an optimal separating hyper-
plane, the distance between the training points from either class yi ∈ {−1, 1} is maximized.
Training points xi ∈ Rd that lie on the margin are called support vectors. The support vec-
tor classifier is relatively robust against outliers since only the support vectors have non–zero
weights and hence an influence on the weight vector ŵ. The strict hard–margin case does not
allow classification error. The figure was adapted from [195].
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Thus, assuming the classes are separable by a linear decision boundary, the optimization
problem to find an optimal separating hyperplane between two classes can be written as

max
w∈Rd, w0∈R

1

||w||
subject to: yi(xTi w + w0) ≥ 1, i = 1, . . . , n

with the training data xi ∈ Rd, the class labels yi ∈ {−1, 1}, and the margin M = 1
||w|| .

The optimization problem is often equivalently written as differentiable convex optimization
problem

min
w∈Rd, w0∈R

1

2
||w||2

subject to: yi(xTi w + w0) ≥ 1, i = 1, . . . , n.

As mentioned, training points are by definition not allowed to fall into the margin, this
criterion only holds for linearly separable data and is known as hard–margin case. This is
equivalent to the requirement that the training error amounts to zero.

The strict criterion of not allowing any errors is weakened by considering the soft–margin
case that introduces slack variables ξ to find a linear decision boundary between non–linearly
separable data. Based on a better applicability to real datasets, the soft–margin case is normally
used in practice. Thus, the soft–margin case allowsmisclassification of training data points and
is in consequence more robust against overfitting. The soft–margin optimization problem can
be formulated as

min
w∈Rd, w0∈R, ξ∈Rn

1

2
||w||2 + C

n∑
i=1

ξi

subject to: yi(xTi w + w0) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n

with slack variables ξi ≥ 0 and cost parameterC > 0. The penalty parameterC regularizes
the balance between a large margin (small C values), which allows training points to fall into
the margin and actually being misclassified, and a small margin (large C values) leading to
a smaller loss. Note that C = ∞ is thereby equivalent to the linearly–separable hard–margin
case. The soft–margin case is depicted in Figure 3.4.

Support vector regression Beside support vector classification, support vectormachines
can also be applied to regression problems. The general idea of support vector regression is to
find a function f(x) with maximum flatness that has precision ε, which means f(x) deviates
at most ε from the actual outcome yi for all training data points. Support vector regression can
be formulated as the optimization problem

minimize 1
2 ||w||

2 + C
n∑
i=1

(ξi + ξ∗i )

subject to


yi − f(xi) ≤ ε+ ξi

f(xi)− yi ≤ ε+ ξ∗i

ξi, ξ∗i ≥ 0

with n training samples (Xi)
n
i=1, the weight vector w, slack variables ξi, ξ∗i to tolerate some

errors, and precision ε. The penalty parameterC > 0 regularizes the tradeoff between the accu-
racy ε and the flatness of the function f(x). This formulation is very similar to the soft–margin
support vector classification. Figure 3.5 visualizes the principle of support vector regression.
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Figure 3.4: Soft–margin support vector classification. The soft–margin case is very similar
to the hard–margin case, see Figure 3.3. Although compared to the strict hard–margin case,
the soft–margin support vector classification is optimized with respect to the summed–up dis-
tances of all misclassified points ξi. The figure was adapted from [195].

Figure 3.5: Support vector regression. Shown is the soft–margin case. Points are penalized
linearly if the function f(x) deviates more than precision ε from the output yi. Thus, errors are
ignored in case they are smaller than ε. The figure was adapted from [199].
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Kernel trick Most often, data is not separable by linear decision functions, which calls for
an integration of more universal decision boundaries. A widespread principle is the use of
a kernel function k(x, y) = φ(x) · φ(y) that transforms input data from the input space, via a
feature map Φ, into a high–dimensional feature space such that a linearly separating hyper-
plane can be generated, see Figure 3.6. This is known as the so–called kernel trick. Hence, a
reasonable determination of a kernel function allows to find a linearly separating hyperplane
in the high–dimensional feature space even though this data was not linearly separable in the
original input space. Note that a linear decision surface in the feature space is equivalent to
a non–linear hyperplane in the input space. Several kernel functions exist such as the radial
basis function (RBF) kernel, which is defined as

k(x, y) = exp(−||x− y||
2

c
)

with ||x−y||2 denoting the squared Euclidean distance. A popular RBF kernel is the Gaus-
sian kernel with c = 2σ2.

Figure 3.6: Geometric representation of the kernel trick. A mapping from the input space
to a high–dimensional feature space using a feature map Φ allows to generate a separating
hyperplane to classify linearly non–separable data in the input space. The figure was adapted
from [201].

Find the best model: performance measurements and cross–validation
Performancemeasurements are applied formodel and parameter selection and are thus used to
assess a prediction model [195, 202]. Considering classification problems, common measure-
ments used in computational biology are accuracy, sensitivity, specificity, and precision. All
measurements contrast the number of correctly and incorrectly classified cases. This results in
four possible classification scenarios: true positive (TP), false positive (FP), true negative (TN),
and false negative (FN), compare with the confusion matrix in Table 3.1.

Table 3.1: Confusion matrix. Dependent on the actual and predicted class, cases are divided
into TP, TN, FP, and FN classifications.

Positive (Predicted) Negative (Predicted)

Positive (Actual) TP FN

Negative (Actual) FP TN
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Evaluation measures are then computed based on the number of TP, TN, FP, and FN classi-
fications. The most common performance measurements are defined in Table 3.2. Dependent
on the research field, the same formula can be named differently. For instance, sensitivity is
referred to as recall in the Information Retrieval field.

Table 3.2: Performance measurements applied in classification problems. The depicted per-
formance measurements are commonly used to assess the performance of classification mod-
els [202]. Dependent on the research field, true positive rate is also known as sensitivity or
recall, whereas true negative rate denotes specificity.

Measurement Formula Description

True positive rate TP
TP+FN Proportion of positive cases correctly predicted

as positive. This measurement is also known as
sensitivity or recall.

True negative rate TN
TN+FP Proportion of negative cases correctly predicted

as negative. This measurement is also known as
specificity.

False positive rate FP
FP+TN Proportion of negative cases wrongly predicted

as positive.

False negative rate FN
FN+TP Proportion of positive cases wrongly predicted

as negative.

Precision TP
TP+FP Proportion of positive cases out of all cases

predicted as positive.

Accuracy TP+TN
TP+FP+TN+FN Proportion of correctly predicted cases.

Another widely used performance assessment method in binary classification is Receiver
Operating Characteristics (ROC) analysis that compares the false positive rate (FPR) with the
true positive rate (TPR) for every possible discrimination threshold [195, 202, 203]. The FPR
can be calculated as 1−specificity while TPR denotes sensitivity, see also Table 3.2.

In performing ROC analysis, TPR is plotted against FPR, see Figure 3.7. Thus, the best
performing classifier(s) can be found at the top left corner close to (0,1) with FPR = 0% and
TPR = 100%, whereas the worst performing learning methods are situated at the bottom right
corner near (1,0) with FPR = 100% and TPR = 0%, compare with Figure 3.7. A random classi-
fier is denoted by the positive diagonalwith FPR = TPR. A common approach to quantitatively
compare different classifiers byROCanalysis andfinding the on average best performingmodel
is to maximize the area under the ROC curve (AUC) [203]. Optimizing the AUC rather than
minimizing the error rate can be a reasonable procedure when, for instance, skewed binary
class distributions are present [203].

K– fold cross–validation is often used to evaluate a learning method and select the best
performing model [195]. Especially when data is sparse,K– fold cross–validation enables a re-
peated data usage by partitioning data intoK−1 training datasets and a k–th test dataset. This
test dataset is often referred to as validation dataset. Thereby, the model is fitted to the training
dataset and the prediction error is calculated by applying the learned model to the validation
set. This is repeated k = 1, ...,K times and the overall cross–validation prediction error is the
combination of theK measurements. K–fold cross–validation is of practical relevance to avoid
overfitting and thus allows for a generalization of the learning function. In practice, common
choices for K are K = 5 or K = 10. The case where K equals the number of observations is
known as leave–one–out cross–validation.



53 PREDICTION OF ALTERNATIVE TRANSLATION STARTS

Figure 3.7: ROC analysis. ROC–curves are widely used to compare the performance of learn-
ing methods. The best classifier(s) are located in the upper left corner (FPR = 0%,TPR =
100%), whereas the worst performing classifiers can be found in the lower right corner (FPR =
100%,TPR = 0%). The positive diagonal represents a random classifier (FPR = TPR) in the
binary case.

3.1.3 Web development

An implementation of bioinformatics algorithms as web service bears the major advantage of
easy reachability and usability by interested researchers. In contrast to a local installation, all
required additional programs or command line tools are already installed on the web server.
Thus, time–consuming further installations and adjustments to the local system can be avoided.
The possibility to just test the usability of an application, at best when example data is provided
that can be filled in by just clicking a button, rather than the need to install all required pack-
ages and tools, increases the probability that the service is used. On the other hand, when the
web application stores generated results, a reliable and sufficiently large data storage system is
needed to sustain enough free hard disk space. This is avoided when a bioinformatics tool is
provided as a software package. Thus, a web service application and a local installation have
both advantages and disadvantages. During this thesis, we decided to implement both, a web
service application and a downloadable tool to be installed and utilized on a local machine.
PreTIS, explained in this chapter, was implemented as web service application, whereas Mu-
taNET, see Chapter 5, is a downloadable software suite that also provides a functional graphical
user interface (GUI).

This section deals with the basics of web development and necessary (programming) lan-
guages to implement and provide interactive (bioinformatics) web applications. Most web-
pages are based on a combination of HTML, CSS, JavaScript, and a Document Object Model
(DOM) for a well–presented and dynamic web application. This is known as Dynamic HTML
and is explained in the following sections. We used HTML, CSS, JavaScript, PHP, and Python
to develop a dynamic web service rather than a simple command line tool, to predict and vi-
sualize initiation confidences of translation start sites from user provided human 5’ UTR and
CDS sequences.
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Hypertext Markup Language
The Hypertext Markup Language (HTML) is the standard markup language to describe the
content of a website and is thus the basis of the World Wide Web. In principle, HTML
documents contain instructions on the composition of a webpage, which incorporates head-
ings, paragraphs, tables, figures, lists, or hyperlinks. These web components are designated
as HTML elements. HTML documents are interpreted and rendered using standard web
browsers. HTML was developed in 1989 by Tim Berners–Lee at The European Organization
for Nuclear Research (CERN) [204] and is currently maintained by the World Wide Web Con-
sortium (W3C) founded and headed by Berners–Lee [205]. The current version is HTML5 (as
of September 2017).

HTML elements are described by tags using smaller–than ("<") and larger–than (">")
symbols. Starting with <> and ending with </> enables to describe paragraphs with
<p>Please select...</p> or to render images using <img src="img.png" height="800"
width="600">, to name two examples. HTML documents are separated into <head> and
<body> elements. The <head> section is used to embed (technical)metadata information, which
is not displayed by the browser when the page is accessed. Metadata describes the HTML doc-
ument and is used to embed the title, style, or additional scripts such as JavaScript. The <body>
element describes the content that is presented by a HTML document. This includes text, ta-
bles, figures, (dynamic) plots, lists, and hyperlinks to subpages or external webpages. To give
an example for HTML code, a short and adapted extract from a PreTIS web service subpage
can be found in Listing 3.1. Since this serves as a descriptive HTML example and due to better
legibility, please note that the content of some HTML elements is shortened such as the (omit-
ted) parameter enctype="multipart/form-data" that is necessary for data transmission and
embedded in the form–data element.

Listing 3.1: Shortened and adapted HTML example from the PreTISweb service.
1 <html>
2 <head>
3 <title>PreTIS</title>
4 <!-- Embedding of CSS style sheets. -->
5 <link href="default.css" rel="stylesheet"/>
6 <link href="fonts.css" rel="stylesheet"/>
7 </head>
8 <body>
9 <h1><a href="index.php">PreTIS</a></h1>
10 <p>Prediction of translation initiation sites</a></p>
11 <!-- Data is forwarded after successful validation. -->
12 <form method="POST" action="execute.php" onsubmit="return

validate(document)">
13 <div class="title"><h2>Sequence form</h2></div>
14 <div class="title"><h3>1. Human mRNA sequence:</h3>
15

16 <!-- Sequence form: paste and upload. -->
17 <p>5' UTR sequence:</p>
18 <textarea id="utrP" name="n1" rows="5" cols="50"></textarea>
19 or upload a TXT file <input type="file" id="utrU" name="n2"/>
20 <button type="submit" class="myButton">Submit</button>
21 </form>
22 </body>
23 </html>
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The <head> part (Lines 2–7) defines the title and embeds the CSS style sheets via an external
<link> for a nice visualization. The <title> describes what is shown in the browser tab or in
the search engine results, here "PreTIS". The <body> consists of an interactive form–data with
method="POST" for a "hidden" HTTP request (Line 12). In contrast, method="GET" appends
data to the URL, which will then be visible to a client and should be omitted when working
with sensitive data. Prior to submission to the web server, user provided data is validated via
onsubmit="return validate(document)" (Line 12). Thereby the document object is a node
in the HTML DOM that allows access to and application of methods on these HTML docu-
ment objects via JavaScript. In general, the DOM structures a document, like HTML or XML,
as a tree with every node representing an object within the hierarchy. HTML node objects are
separated into element nodes (head, body, or a heading h1), attribute nodes (href, width, or
id) that further specify elements, text nodes that denote the text written in an element node,
and comment nodes. Thereby, the document object itself represents the root. For instance,
the JavaScript function document.getElementById("id"); can be used to retrieve the element
with the given attribute ID "id" for validation purposes. Data concerning the PreTIS web ser-
vice comprises mRNA sequences that can be pasted in a multi–row text field, created using the
<textarea...></textarea> tag (Line 18), or sequences can be uploaded from a local directory
by defining <input type="file"...> (Line 19). HTML elements allow to additionally define
parameters such as image sizes or identifiers. These identifiers ("id") are used to enable access
to elements and retrieve their content. Different headings with decreasing size and visibility
are marked using h1, h2, and h3. Comments are written as <!–...–> and shown in turquoise
color in Listing 3.1.

Cascading Style Sheets
Cascading Style Sheets (CSS) determines the visual look of HTML documents and is main-
tained by the W3C [205]. In contrast to a HTML document, which describes the content and
the structure of a web page, CSS is responsible for the visual layout. This separation of content
and visualization allows to reduce redundancy and define a concurrent layout style for several
documents. CSS defines font families, font sizes, colors, table design, borders, and margins to
name a few. The syntax of CSS is straightforward. A CSS rule comprises a selector followed
by a declaration block that consists of one or more property:value pairs, each ending with a
semicolon. A declaration block is enclosed by curly brackets:

Selector {
Property1 : Value1;
Property2 : Value2;
...

}.

Selectors determine the HTML elements the style should be applied to. Examples of selector
types are element name selector, class selector, and id selector. The element selector recog-
nizes the element name such as the body, a heading h1, or all paragraphs p. The class selector,
starting with a "." character, refers to all elements with the given class attribute. A style sheet
comprising .title h2 {...}will layout all h2 headings with class="title". The id selector,
starting with a "#" character, affects all HTML elements with the given id attribute. For in-
stance, the section <div id="menu-wrapper"> can be styled using the selector #menu-wrapper
{...}. Since identifiers within a HTML document should be unique, this layout will be ap-
plied to an individual element. Listing 3.2 shows a short example on how to define the layout
in terms of fonts, colors, and arrangements using three different selector types.

TEMPLATED [206] is a broad collection of various style sheets and templates that are re-
leased under theCreativeCommonsAttribution [207] license. Thus, by citing or referring to the
TEMPLATED webpage, the provided style templates can be used for private and commercial
website design without any additional costs. PreTIS and MutaNET CSS style templates were
retrieved from TEMPLATED and were adapted for our purposes. Note that theMutaNET web
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page only provides additional information on this software and does not embed a web service
application, see Chapter 5.

Listing 3.2: Shortened CSS example from the PreTIS web service.
1 /* Element name selector */
2 body {
3 margin: 0px;
4 padding: 0px;
5 background: #333333;
6 font−family: 'Muli', sans−serif;
7 font−size: 12pt;
8 font−weight: 300;
9 color: #363636;
10 }
11

12 /* Class selector */
13 .title h2 {
14 text−transform: uppercase;
15 letter-spacing: 0.10em;
16 font−weight: 700;
17 font−size: 1.8em;
18 color: #00AABB;
19 }
20

21 /* Identifier (id) selector */
22 #menu-wrapper {
23 color: #00AABB;
24 }

JavaScript
JavaScript (JS) can be embedded in HTML documents and enables the generation of dynamic
and interactive of websites. JS is executed client–sided, which means in the web browser
and thus on the processor of a client rather than on the web server. This reduces web server
load and allows fast executions as data transmission to the web server is avoided. Disadvan-
tages are potential incompatibility of scripts with the utilized browser (versions) that can lead
to errors or divergent output. The syntax resembles programming languages derived from
C. JS can be applied to edit websites via the DOM to perform data validation, manipulate
HTML content, display dialog boxes containing error messages, or visualize data in a dynamic
way. JS functions are integrated in HTML documents using a <script>...</script> tag or
are part of HTML elements such as <form...onsubmit="return function()"> or <button
onclick="function()">. For instance, the method document.getElementById("id"); en-
ables access to the element with the attribute identifier id="id". This allows element accessi-
bility to specifically modify HTML content, HTML attributes like an alteration of images via
the "src" attribute, or website layout via CSS. JS functionality and the scope of application
is very broad. A reliable reference to learn more about this web programming language is
W3Schools [208].

Listing 3.3 gives a short example of JS functionality as it was used in the PreTIS web ser-
vice. The function named "validate(document)" checks whether the given mRNA sequences
are valid (Lines 4–23). The sequences, which are pasted by a user into the text forms, are
fetched using the DOM function document.getElementById(id).value;with id="utrP" and
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id="cdsP" referring to the identifiers of the respective 5’ UTR and CDS text areas (Lines 6 and
7). The small code snippet then simply checks whether the sequences are not empty and only
consist of the valid nucleotide characters {A, C, T, G, U}. In case, a condition is violated, an
error message is displayed on the web page (Lines 13 and 16). The if statements would also
allow to alert more details on the type of error, for instance directly referring to problems in the
5’ UTR or CDS, respectively. If all validation checks are successful, the function returns true
(Lines 19–21) and the data is transmitted to the web server for further processing.

Listing 3.3: Shortened and adapted JavaScript example from the PreTIS web service.
1 /*
2 * User input is validated prior to submission to the web server.
3 */
4 function validate(document) {
5 //Retrieve sequence element values (pasted in text field) using attribute IDs.
6 var utrP = document.getElementById("utrP").value;
7 var cdsP = document.getElementById("cdsP").value;
8

9 if (utrP != "" && isSequence(utrP)) {
10 if (cdsP != "" && isSequence(cdsP)) {
11 //do something
12 } else {
13 alert("Please provide valid 5' UTR and CDS sequences.");
14 }
15 } else {
16 alert("Please provide valid 5' UTR and CDS sequences.");
17 }
18 ...
19 if (All criteria are fulfilled) {
20 return true;
21 }
22 return false;
23 }
24

25 /*
26 * Only characters {A,C,G,T,U} are allowed in mRNA sequences.
27 * Upper and lower case are both tolerated.
28 */
29 function isSequence(s) {
30 s.toUpperCase();
31 for (var i = 0; i < s.length; i++) {
32 if (!(s[i]=="A"||s[i]=="C"||s[i]=="G"||s[i]=="T"||s[i]=="U")) {
33 return false;
34 }
35 }
36 return true;
37 }

We took advantage of JS to validate user input, exemplary shown in Listing 3.3, prior to
data redirection to the web server. Moreover, we used the Highcharts library as part of our
PreTISweb service to display predicted translation initiation confidences as interactive bar plot.
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Highcharts is implemented in JS, based on Scalable Vector Graphics (SVG), and provides awide
range of interactive and dynamic charts for webpages [209]. To display further information
on individual start sites we also made use of a tooltip (mouse–over) functionality, which is
provided by the Highcharts library. JS was also used to interactively highlight putative start
sites within the 5’ UTR sequence to facilitate the identification of candidate start codons.

PHP: Hypertext Preprocessor
The widely used scripting language PHP is a recursive acronym for "PHP: Hypertext Prepro-
cessor" and is used to develop dynamic web pages and interactively process user input. Unlike
JavaScript, PHP is executed on the server–side and returns a HTML document upon a client
request. Thus, only the HTML output is displayed to a client while the scripts are hidden.
Moreover, there is no need for the client to install additional plugins required for client–sided
scripts. However, unauthorized access to the server via a server–sided PHP script poses a se-
curity risk. PHP code is enclosed by start and end tags<?php...?>. PHP syntax resembles C,
Perl, and Java programming languages. PHP scripts have the file extension ".php" and in our
case additionally comprised of HTML, CSS, and JS code.

PHP was used to call the Python scripts blast.py and predict.py to execute the BLAST
search, feature calculations, and prediction of translation initiation confidences. These Python
scripts constitute the bioinformatics core functionality of the web service. As example, the
predict.py call via combining PHP and Python is shown in Listing 3.4 (Lines 1–7). Thereby,
the popen() function opens a pipe with the command parameter given as argument. The
$python_print variable contains all values printed within the Python script, which is sub-
sequently parsed and saved as an PHP array() for further usage like result visualization.
Moreover, to display the returned results, a list representation to outline the codons that were
selected by the user on the input form was created dynamically using PHP, see Listing 3.4
(Lines 9–21). Note that the last codon is appended individually to omit the last comma. Fur-
thermore, the combination of HTML and PHP was used to present the returned nucleotide
extensions, respective codons, frames, ORFs, stop codon positions, and predicted initiation
confidences in tabular form. This is exemplarily shown with two column entries (extension
and predicted value) in Listing 3.4 (Lines 23–47). Note that the variable $feature_list is
retrieved from the previously saved and reopened PHP array() that contains all calculated
results. PHP was also applied to display the sequences reported by BLAST and to write a CSV
file containing all generated sequence–encoded features and prediction values.

JavaScript Object Notation
JavaScript Object Notation (JSON) is a text format that was developed for a simplified data
exchange between browser and web server [210]. JSON syntax is derived from JS objects and
is based on a simple dictionary or map structure that consists of key:value pairs, separated
by commas, and encompassed by curly brackets. Arrays are denoted by square brackets and
double quoting is required for strings. Due to the plain syntax, JSON is readable by humans
and machines making it suitable for data storage and browser–server communication. JSON
text can be converted to a JS object for further processing, while the reverse conversion from a
JS object back to JSON for subsequent transfer to a web server is also possible. The shortened
JSON example

[
{"desc":null,"query":"ENSG00000196329","id":"ENST00000498181","seq":"GAGGA...","molecule":"dna"},
{"desc":null,"query":"ENSG00000196329","id":"ENST00000358647","seq":"ATGAC...","molecule":"dna"},
...
{"desc":null,"query":"ENSG00000196329","id":"ENST00000493304","seq":"CTTTC...","molecule":"dna"}
]

illustrates several cDNA (complementary DNA) sequences together with the Ensembl gene ID
and the respective transcript IDs.
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Listing 3.4: Shortened and adapted PHP example from the PreTISweb service.
1 <?php
2 // Call python script with human and mouse sequences as arguments.
3 $command = sprintf("python predict.py %s %s %s %s %s", $human_utr,

$human_cds, $mouse_utr, $mouse_cds, $codons);
4 $python_print = popen($command,"r");
5 ...
6 $result_array = PHP array() with parsed/processed $python_print results;
7 ?>
8

9 <?php
10 // Dynamic list of user selected codons and presentation using HTML.
11 $codons = $result_array[1];
12 $codon_str = "";
13 for($i = 0; $i < count($codons)−1; $i++) {
14 $codon_str .= str_replace("T", "U", $codons[$i]).", ";
15 }
16 $codon_str .= str_replace("T", "U", $codons [$i]);
17

18 echo "<p>";
19 echo "<b>Selected codon(s): </b>". $codon_str."\n";
20 echo "</p><br/>\n";
21 ?>
22

23 <?php
24 // Initialize Table and paste header information.
25 echo "<div class=\"table_class\">\n<table id=\"table_id\">\n";
26 $table_entries= array("Extension", "Codon", "Prediction");
27 echo "<tr>";
28 for ($i = 0; $i < count($table_entries); $i++) {
29 echo "<td><b>" . $table_entries[$i] . "</b></td> ";
30 }
31 echo "</tr>\n";
32

33 // Fill Table with values.
34 $feature_list = $result_array[0];
35 foreach ($feature_list as $ext => $feat_dict) {
36 $codon = str_replace("T","U",$feat_dict["codon"]);
37 $pred = $feat_dict["pred"];
38 // Do some coloring based on predicted value using if...else statements.
39 if...else (...) {
40 $color_txt = ...;
41 }
42 $ext = "<font color=\".$color_txt.\">".$ext."</font>";
43 $pred = "<font color=\".$color_txt.\">".round($pred,2)."</font>";
44 echo "<tr><td>".$ext."</td><td>".$pred."</td></tr>\n";
45 }
46 echo "</table>\n</div>\n";
47 ?>
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These sequences of human gene GIMAP5, having gene ID ENSG00000196329, were re-
trieved from the Ensembl web server using the Ensembl REST API [211] with an appropriate
URL (see below). The Ensembl Representational State Transfer (REST) web server allows ac-
cess and retrieval of various datasets in JSON and FASTA format [211]. The respective request
for the CDS, rather than cDNA, is very similar by slightly adapting the URL, which results in
the following JSON text:
[
{"desc":null,"query":"ENSG00000196329","id":"ENST00000498181","seq":"ATGGG...","molecule":"dna"},
{"desc":null,"query":"ENSG00000196329","id":"ENST00000358647","seq":"ATGGG...","molecule":"dna"}
]

Listing 3.5 shows the implementation of these HTTP requests returning JSON formatted data,
which is then processed using JS to specifically modify the HTML document. This was im-
plemented as part of the PreTIS web service for the automatic retrieval of 5’ UTR and CDS
sequences given an Ensembl gene ID.

A JSON text is returned (Lines 1–6) by the web server request, which is then converted to
a JS object (Lines 8–12). Following this, JS in combination with HTML is used to modify the
text areas with the identifiers id="utrP" and id="cdsP" to display the retrieved sequences to
a user (Lines 14–16). Both requests, cDNA and CDS, are necessary to extract the 5’ UTR and
CDS for feature calculation and prediction of initiation confidence values, see below. The term
cDNA, for complementary DNA, denotes reverse transcribed mRNA [212]. Thus, a cDNA is
derived from mRNA and is hence only composed of coding sequences. Beside the sequences,
the respective transcript ID(s) are displayed to a PreTIS user as well. A client can then choose
a transcript that should be scanned for alternative start sites by PreTIS.

Listing 3.5: HTTP request from the PreTISweb service including JSON and JavaScript.
1 // HTTP Request with example Ensembl gene ID for human gene GIMAP5.
2 var id = "ENSG00000196329";
3 var url_cDNA = "http://rest.ensembl.org/sequence/id/"+id+"?content−type=

text/x−json;type=cdna;multiple_sequences=1";
4 var url_CDS = "http://rest.ensembl.org/sequence/id/"+id+"?content−type=

text/x−json;type=cds;multiple_sequences=1";
5 var json_cDNA = Retrieve cDNA with XMLHttpRequest() and var url_cDNA;
6 var json_CDS = Retrieve CDS with XMLHttpRequest() and var url_CDS ;
7

8 // Conversion of JSON data to JS object and processing.
9 var array_cDNA = JSON.parse(json_cDNA);

10 var array_CDS = JSON.parse(json_CDS);
11 var UTR_seq = 5’ UTR sequence from processing cDNA and CDS arrays;
12 var CDS_seq = CDS sequence from processing cDNA and CDS arrays;
13

14 // Update the sequences in text areas with IDs id="utrP" and id="cdsP".
15 document.getElementById("utrP").value = UTR_seq;
16 document.getElementById("cdsP").value = CDS_seq;

3.1.4 Data sources and bioinformatics tools
This PreTIS project is based on several datasets that are necessary for the integration of mRNA
sequence information and alternative start sites located in the 5’ UTR. Moreover, three bioin-
formatics software tools were applied to support the calculation of some sequence–encoded
features that were used in the PreTIS prediction model. Both, the datasets and software tools
are presented in the following.
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Data integration: Ensembl BioMart and non–canonical start sites

The Ensembl Genomes project was developed from 2000 until 2009 as a cooperate work be-
tween the European Bioinformatics Institute and the Wellcome Trust Sanger Institute [55].
Ensembl aims at providing genomic data such as gene annotations, nucleotide, and protein
sequences as well as sequence alignments, disease specific and regulatory information, GO
annotations, or variation data. So far (as of July 2017) the latest release is Ensembl version 89
from May 2017 supporting data for 86 vertebrate genomes. The Ensembl Genomes BioMart
is a comprehensive database that allows an easy retrieval of various genomic data mentioned
beforehand. We used Ensembl BioMart to download and store annotated genomic mRNA se-
quences for human and mouse. Moreover, the Ensembl REST API [211] was used to automati-
cally retrieve human 5’ UTR and CDS sequences with a human gene ID from the Ensembl web
server. This was implemented in the PreTIS web service for user convenience.

In total, we used three datasets comprising alternative translation start sites that were de-
tected by experimental ribosome profiling. Two datasets that were based on HEK293 cells [43]
and mouse embryonic stem cells (ES cells) [44] provided various alternative AUG and near–
cognate start codons. These datasets were used for feature calculation and establishment of the
prediction model. A third dataset [54], only comprising AUG starts from a HEK293 cell line,
was used for evaluation purposes.

BLAST: Basic Local Alignment Search Tool

The Basic Local Alignment Search Tool (BLAST) is the most widely used algorithm for se-
quence similarity searches [66, 67] with the publication from 1990 cited more than 66,000 times
until today (as of July 2017, see https://scholar.google.com/). The heuristic search enables
very fast computation of locally optimal sequence alignments, making BLAST applicable and
indispensable for the bioinformatics research field. BLAST software is subject to continuous
development and extensions. We applied blastn (nucleotide–nucleotide BLAST) to find or-
thologous mRNA sequences between human and mouse in order to calculate start site and
5’ UTR sequence conservation.

MUSCLE: MUltiple Sequence Comparison by Log–Expectation

MUSCLE, for MUltiple Sequence Comparison by Log–Expectation, software enables fast cal-
culation of multiple sequence alignments for both nucleotide and protein sequences [69, 70].
The starting point is a heuristic generation of a progressive sequence alignment, which is then
iteratively refined. The methodology is based on distance measurements, a sophisticated scor-
ing function, and tree methods such as the neighbor–joining [213] and UPGMA [214] methods.
MUSCLEwas used in combinationwith BLAST [67] to generate human–mouse sequence align-
ments and calculate translation start codon and 5’ UTR sequence conservation.

ViennaRNA: RNA secondary structure prediction

The ViennaRNA Package supports the prediction of RNA secondary structures [68]. The dy-
namic programming algorithm is thereby based on the principle of energy minimization. By
implementing different distance measures, the ViennaRNA Package can also be used for RNA
secondary structure comparisons. We applied the RNAfold function of theViennaRNAPackage
to predict mRNA secondary structure and minimum free energies from a given a mRNA se-
quence. Theminimum free energy of anmRNA secondary structure downstream of a potential
translation start codon was reported to have an effect on translation initiation [183, 187, 188].

https://scholar.google.com/
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3.2 Introduction

Translation initiation is a more complex process than reported in common textbooks. Experi-
mental work showed that the canonical AUG–Methionine translation start is not always used
to initiate eukaryotic translation [40, 41, 43, 44, 54]. Further alternative codons located up-
stream of the annotated AUG start can also serve as additional functional start sites and form
additional or alternative ORFs. Those non–AUG triplets are postulated to differ from AUG
by one nucleotide and hence comprise CUG, UUG, GUG, AAG, ACG, AGG, AUA, AUC and
AUU [42]. Translation can proceed in–frame as well as out–of–frame relative to the main open
reading frame [169]. This can, for example, lead to (small) upstream ORFs resulting in short
peptides or to extended proteins when translation initiation takes place at an in–frame start
codon located upstream of the canonical start.

Ribosome profiling data provides information on the density of ribosomes located at differ-
ent regions of the transcript upon application of small chemicals that block the elongation pro-
cess [44, 170]. Regions which are protected by ribosomes are not digested in the next step when
the mRNA is treated with nucleases [191]. These ribosome footprints (RNA) have a length of
about 30 nucleotides and are sequenced after nuclease treatment and subsequently mapped to
a reference genome [191]. For example, Lee et al. [43] applied ribosome profiling to HEK293
cells. As translation inhibitors they used CHX and LTM, which both bind to the ribosome
E–site [43]. While CHX can bind to both, initiating and elongating ribosomes, LTM prefers
initiating ribosomes with a tRNA–empty E–site [43]. Thus, by combining both inhibitors, it is
possible to differentiate initiating from elongating ribosomes [43]. Lee et al. identified 16,863
potential start sites out of about 10,000 transcriptswhereby start siteswere allowed to be located
in the 5’ UTR, at the annotated start site, in the coding region, or in the 3’ UTR, respectively.

Possible biological reasons underlying alternative translation initiation are the expansion
of biological variety, regulatory processes as well as targeting of the proteins to different com-
partments [174, 176, 181]. Touriol et al. [174] proposed that alternative translation initiation
results in different proteoforms that can exhibit different functions as well as various cell local-
izations, which is of great importance for cell fate. Moreover, some codons (e.g. AUG or CUG)
are more frequently used as translation initiation starts than other codons [43, 44].

So far, several bioinformatics studies have addressed the task of predicting alternative
translation start sites orORFs. Themajority of these studies only consideredAUG starts. Hatzi-
georgiou [215] applied an artificial neural network embedding a linear search for AUG starts.
They achieved 94% accuracy and were able to predict the correct start site in 60% of human
cDNAs. Saeys et al. [216] developed a meta–tool that combines three simple AUG start site
predictors that consider either PWMs, k–mer frequencies or the number of stop codons down-
stream of a start site. This combination of several simple predictors, named StartScan, resulted
in a sensitivity of 80%, tested on human chromosome 21. Sparks and Brendel [217] argued
that when one only searches for one translation start, predicting the leftmost (i.e. the most
upstream) AUG as sole correct translation start yielded specificity and sensitivity of 94%, re-
spectively. Chen et al. [218] used a flexible window and represented human DNA as k–tupels
that reflect the nucleotide composition and also integrated the physicochemical properties of
amino acids. For AUG codons, their method achieved an accuracy of 98%. A web service of
their algorithm is available. Besides, there also exist several web–based tools for ORF identifi-
cation. ORF Finder searches for ORFs given the accession number or sequence and the genetic
code [219]. ORF–Predictor provides an ab initio prediction of ORFs based on expressed se-
quence tag or cDNA sequences and BLASTX alignments or intrinsic sequence signals [220].

Only few studies involved ribosome profiling data or considered in– and out–of–frame
start codons differing from AUG. Ivanov et al. [42] studied annotated human 5’ UTRs via se-
quence alignments with orthologous species followed by a manual evaluation [42] to detect
non–AUG initiation in human sequences. They predicted 42 novel genes with non–AUG up-
stream translation initiation. For 25 of these genes non–canonical translation initiation could
be experimentally validated using Western blot as well as ribosome profiling data. They also
confirmed 17 alternatively translated genes that were known at this time. Crappé et al. [221]
applied an SVM approach to ribosome profiling data to detect conserved small open reading
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frames (sORFs) in mouse that code for micropeptides (10−100 amino acids). Michel et al. [222]
used ribosome profiling data to calculate translation initiation probabilities. In contrast to our
work, they focused on the initiation strength of a putative start site as a function of the num-
ber of ribosome footprints. To our best knowledge, no study so far has evaluated the general
properties of human start codons considering both AUG and all near–cognate codons, in– and
out–of–frame, based on start sites identified by applying ribosome profiling, and exploited this
to predict the initiation confidence from the mRNA sequence.

The aim of this work was to analyze alternative translation start sites (AUG and near–
cognate codons)with respect to sequence–based features to differentiate between true and false
start sites. We used start sites that were identified by applying ribosome profiling to HEK293
cells [43, 54] and mouse ES cells [44] as our primary datasets. Based on mRNA sequence infor-
mation we generated SVM models as well as a linear regression model for human and mouse
sequences. The learned model can then be applied to mRNA sequences not covered by ribo-
some profiling data or to investigate the impact of mutations in the flanking sequence context
of a start site on its translation initiation confidence. Ourweb service PreTIS visualizes putative
alternative start sites and the predicted initiation confidence in human.

3.3 Materials and methods
In the following, the materials and methods of our PreTIS project are presented. First, the
datasets are introduced starting with an overview on the data integration approach, followed
by a detailed presentation of the data processing and appropriate data storage. Next, the
sequence–encoded features are calculated based on the former processed databases.

3.3.1 Data processing and integration
This project is based on several datasets that are necessary to develop reliable predictionmodels
for alternative translation start sites in 5’UTRs. In the following, all data sources, the generation
of a negative set containing false translation start sites, and the integration of all these datasets
as clear and fast accessible data structures is presented.

Genomic mRNA sequences
Annotated genomic mRNA sequences for human and mouse were retrieved from Ensembl
biomart (Ensembl version 77 [55]). We only included curated mRNA sequences with available
mRNA RefSeq identifier (starting with NM_). It was recently shown that 85% of the start sites
used to initiate translation are conserved between human and mouse [43]. Thus, we used ho-
mologous pairs of human and murine sequences to calculate the conservation of putative start
codons as well as the 5’ UTR sequence conservation (see below). We identified the respective
murine orthologous mRNA sequences using the approach by Ivanov et al. [42] and used the
first blastn [67] hit as the respective ortholog (default blastn parameters).

Alternative 'true' and 'false' translation start sites
To identify putative start sites, each 5’ UTR was scanned for all AUGs and for alternative near–
cognate start codons that differ from generic AUG by one nucleotide (CUG, UUG, GUG, AAG,
ACG, AGG, AUA, AUC und AUU) and that are located either in–frame or out–of–frame with
the main open reading frame. Different sequence–based features were then calculated for all
putative start codons that have a downstream in–frame stop codon. To establish reliable true
positive and true negative translation start site datasets for training and testing purposes, we
used the findings from different ribosome profiling experiments [43, 44, 54]. Each dataset was
analyzed independently. Note that the datasets used here contain translation start sites derived
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from ribosome profiling data by the original authors (gene accession number, position relative
to annotated start site, codon). We did not include raw ribosome profiling (footprint) data
in our approach. In total, we trained two start site prediction models: a human prediction
model based on the HEK293 dataset [43] and a mouse prediction model based on the Mouse
ES dataset [44]. The third HEK293–AUG dataset [54] was used as validation set to further
evaluate the reliability and robustness of the developed prediction model.

For training and testing of every classifier, we considered each start site (AUG and near–
cognate) that matched a start codon found by ribosome profiling as a true start. False start
sites were defined as follows: remaining candidate start sites (AUG and near–cognate) that
were not detected by ribosome profiling and that are, based on the assumption of a linear
scanning model, located at least 99 nt downstream of the transcription start site as well as
upstream of the most downstream reported true translation initiation start. Figure 3.8 shows
an example mRNA sequence that illustrates the grouping of true positive and true negative
start sites for training and testing purposes based on ribosome profiling data. This start sites
categorization was executed for each of the three datasets, each time based on the individual
ribosome profiling experimental results [43, 44, 54].

  1 CGGUGAGGGU UCUCGGGCGG GGCCUGGGAC AGGCAGCUCC GGGGUCCGCG GUUUCACAUC 
 61 GGAAACAAAA CAGCGGCUGG UCUGGAAGGA ACCUGAGCUA CGAGCCGCGG CGGCAGCGGG 
121 GCGGCGGGGA AGCGUAUACC UAAUCUGGGA GCCUGCAAGU GACAACAGCC UUUGCGGUCC 
181 UUAGACAGCU UGGCCUGGAG GAGAACACAU GAAAGAAAGA ACCUCAAGAG GCUUUGUUUU 
241 CUGUGAAACA GUAUUUCUAU ACAGUUGCUC CAAUGACAGA GUUACCUGCA CCGUUGUCCU 
301 ACUUCCAGAA UGCACAGAUG UCUGAGGACA ACCACCUGAG CAAUACUGUA CGUAGCCAGA 
361 AUGACAAUAG AGAACGGCAG GAGCACAACG ACAGACGGAG CCUUGGCCAC CCUGAGCCAU 
421 ... 

Figure 3.8: Categorization of true positive and true negative start sites. Suppose that a ribo-
some profiling experiment detected the following start sites for a given mRNA sequence: CUG
at position –78 and CUG at position –120 (blue colored codons). These start sites were then
assumed to be true positive start sites. In consequence, all near–cognate start sites not listed in
the ribosome profiling dataset and upstream of the most downstream reported true start site
were assumed to be true negatives (dark red colored codons). The light red colored codons
are start sites not considered as false starts in the analyses since they are located downstream
of the most downstream reported true start site. Note that the grey colored downstream part
depicts the annotated CDS sequence whereas the italic (purple) upstream part marks the –99
upstream window needed to calculate some of the features (see below). All marked start sites
(true positive and true negative) exhibit a surrounding window of ±99 nucleotides as well as
a downstream in–frame stop codon. In total, this mRNA sequence would provide 2 true start
sites and 9 false start sites out of 23 putative starts.

Data integration: efficient data storage for fast access
Data that was retrieved from the mentioned sources was processed and then either stored as
SQLite database [83], pandas dataframe [82], or Python dictionary. In the following, data in-
tegration of the PreTIS framework is presented. Table 3.3 illustrates the parsed and efficiently
stored Ensemble gene and transcript data as fast accessible SQLite database.

For convenience, human andmouse 5’ UTR, CDS, and 3’ UTR sequences were organized as
Python dictionaries and saved using the Python pickle module that allows to efficiently store
objects by serialization. Experimentally found alternative start sites are based on the threemen-
tioned datasets. The retrieved mRNA sequence, gene/transcript IDs, and verified alternative
start site datasets were processed and stored as one unified database. The construction of this
database with the example of gene DHX9 is illustrated in Table 3.4. All information is stored
separately for human and mouse datasets.
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Table 3.3: SQLite database with Ensembl gene and transcript information. Retrieved gene
and transcript data was processed and stored as a SQLite database to provide a structured data
overview and fast access. Shown are the SQLite database column names with entries of gene
DHX9 as example.

Column name Example

RefSeq_mRNA NM_001357

RefSeq_protein NP_001348

Ensembl_Gene ENSG00000135829

Ensembl_Transcript ENST00000367549

Ensembl_Protein ENSP00000356520

Gene_Name DHX9

Description DEAH (Asp–Glu–Ala–His) box helicase 9

Table 3.4: SQLite database with sequence and TIS information. This SQLite database stores
verified alternative translation initiation sites together with the necessary mRNA sequence in-
formation. The extension is given in nucleotides (nt). The respective experimentally found al-
ternative start site is underlined in the sequence. In this example, CDS and 3’UTR are displayed
as shortened sequences. Another experimentally verified CTG–initiated translation start of
DHX9 can be found at position –25.

Column name Example

1 RefSeq NM_001357

2 Ensembl_Gene ENSG00000135829

3 Ensembl_Trans ENST00000367549

4 Gene_name DHX9

7 nt_ext –46

5 Codon_ext –16

8 Start_codon CTG

6 Reading_frame 2

9 UTR5 GCGAGTTGCTGTGCGTTTCTCTGTTGTCTCGGTAGAAGGCCAGAGTCACACACGG
TCCTAAGAGCTGGGCACCAGGAAGCGAAGGCTGATCTGAAGAAGACACTTGAATC

10 CDS ATGGGTGACG...

11 UTR3 AACTTGGTTA...

The dataset that is organized as outlined in Table 3.4 is then the basis for the search of
all possible alternative 5’ UTR translation start sites for every transcript. All putative start
sites found by this sequence scan are then stored as shown in Table 3.5. This database then
comprises the input datasets for the machine learning approach. Class labels are assigned
dependent on the experimental confirmation of a start site. Start sites that were found using
ribosome profiling (true starts) are assigned a class label of yi = 1, whereas false starts (as
described above) are assigned the label yi = 0. This database was generated for each of the
three experimental ribosome profiling datasets. As an example, the 5’ UTR of DHX9 harbors
21 possible TIS with two of them experimentally verified by [43], compare with Table 3.5.
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Table 3.5: SQLite database storing all possible alternative 5’ UTR start sites. The database
is represented using the example of geneDHX9. Considering the 5’ UTR position and the stop
position reveals the structure of the ORF, such as uORF or N–terminal extended ORF. Note
that the combination of the RefSeq ID and extension is unique. Experimentally confirmed start
sites are shown in bold and are retrieved from the SQLite database presented in Table 3.4. To
maintain a triplet reading frame, stop positions are always in–frame with the start site. The
given "Class" is later used as class label for the machine learning approach. The extension is
given in nucleotides (nt).

RefSeq Gene_name nt_ext Class Codon ORF_len Stop_position

1 NM_001357 DHX9 –3 0 ATC 3813 3810

... ... ... ... ... ... ... ...

6 NM_001357 DHX9 –22 0 ATC 3 –19

7 NM_001357 DHX9 –25 1 CTG 6 –19

8 NM_001357 DHX9 –28 0 AGG 9 –19

... ... ... ... ... ... ... ...

12 NM_001357 DHX9 –46 1 CTG 27 –19

... ... ... ... ... ... ... ...

21 NM_001357 DHX9 –105 0 TTG 27 –78

Next, a BLAST search [67] to find human and mouse orthologous mRNA sequences was
executed. This was necessary for the calculation of sequence conservation between these two
species. Thereby, the SQLite database as shown in Table 3.4 served as data basis for the BLAST
approach. First, a BLAST database, which is generated from human and mouse reference
mRNA sequences, is required and created using the

makeblastdb -in human.fasta -dbtype nucl

command with the human mRNA sequences "human.fasta" saved in FASTA format and nucl
for nucleotide. The procedure is repeated for the mouse FASTA formatted mRNA sequences.
Appropriate orthologous mouse sequences are then searched for every human mRNA using
the

blastn -db mouse.fasta -query human.fasta -num_alignments 0 -out blast_out

command with the previously prepared human and mouse BLAST databases. A blast_out
example for DHX9 gene, having RefSeq ID NM_001357, as query is returned by blastn as
follows:

Query= NM_001357|DHX9|cds_0_based:110-3922
Length=4240

Score E
Sequences producing significant alignments: (Bits) Value

NM_007842|Dhx9|cds_0_based:98-4249 4457 0.0

Lambda K H
1.33 0.621 1.12

Gapped
Lambda K H

1.28 0.460 0.850.
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In this example, only one orthologous sequence was found. In case there are several hits, the
first one is taken as respective ortholog. The BLAST result file is subsequently parsed and the
results are stored as SQLite database, see Table 3.6.

Table 3.6: SQLite databasewith results from the BLAST search. This SQLite database is used
to store all humanmRNA sequences together with their orthologous mouse sequence that was
detected using BLAST. All necessary information, such as the respective gene name and the
mRNA sequence, is stored in this database. Thereby, the 5’ UTR, CDS, and 3’ UTR sequences
are saved in separate columns.

Column name Example

1 RefSeq_Human NM_001357

2 Gene_name_Human DHX9

3 UTR5_Human GCGAGTTGCTGTGCGTTTCT...

4 CDS_Human ATGGGTGACGTTAAAAATTT...TAA

5 UTR3_Human AACTTGGTTATGTCAGTTCC...

6 RefSeq_Mouse NM_007842

7 Gene_name_ Mouse Dhx9

8 UTR5_Mouse GCCGTTCTCGTGGAAGGTTG...

9 CDS_Mouse ATGGGTGACATTAAAAATTT...TAA

10 UTR3_Mouse GACTGGACTCTGTCGGAGCC...

3.3.2 Features based on mRNA sequence information
All features used here are solely based on information derived from the mRNA sequences.
In total, we considered 1,252 features, with three features based on PWMs, 20 biologically–
motivated features (e.g. sequence conservation or start site flanking sequence context) and
1,229 features found by a k–mer search for k = 1 and k = 3. The features are explained in the
following.

Position weight matrix
In mammalian cells, some codons (e.g. AUG and CUG) are more frequently used to initiate
translation compared to other codons (e.g. AUA or AGG) [43, 44]. In the HEK293 dataset used
here, 26.1% of the reported upstream initiation start codons areAUGs and 29.8% are CUGs [43].
The start codon information was considered by using position weight matrices (PWMs). To
account for the important role of the flanking sequence context for translation initiation, we
considered a window ranging from –15 to +10 with respect to the start site in a set of sequences
S. First we calculated from the data in the training set a position frequency matrix (PFM) with
the nucleotides nt ∈ {A, C, U, G} as the rows and the sequence position i as the columns. The
matrix entries were filled by dividing the sum of occurrences of a nucleotide at position i by
the total number of sequences contained in S. The PWMwas then calculated by dividing each
entry in the PFM by the respective nucleotide background frequency and taking the natural
logarithm, that means

PWM(nt,i) = log

(PFM(nt,i)

bgnt

)
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where the background frequency bgnt is defined as the actual nucleotide frequency of the
5’ UTR in S. We calculated three PWMs, one based on the true start sites (PWMpositive), one
based on the false start sites (PWMnegative), and one based on the log–ratio between true and
false start sites (PWMratio) in the training set. The PWMscore for a sequence s was then com-
puted as

PWMscore(s) =

len(s)∑
i=0

PWMnti,i

where nti is the nucleotide occurring at position i in sequence s. With PWMpositive, a
PWMscore greater than zero indicates that the given sequence s is more likely a true start than
a false start while a PWMscore less than zero suggests a higher probability of being a false start
site.

Sequence conservation
To calculate the conservation of a putative start site, sequence alignments between pairs of hu-
man andmouse sequences (5’ UTR andCDS), found by applying blastn, were generated using
MUSCLE [70]. For this, 5’ UTR and CDS were translated into all three possible reading frames
and were aligned accordingly. We then translated the protein alignment back into the asso-
ciated (gap–free) nucleotide alignment, compare with [43]. A human start site was assumed
to be conserved if it shares the same codon or amino acid with the murine ortholog at the re-
spective position. This yielded two binary features: codon and amino acid conservation. We
also calculated the average degree of 5’ UTR sequence conservation, using the human–mouse
mRNA sequence alignment. For this we divided the number of matching nucleotides by the
length of the 5’ UTR sequence. Gaps were ignored.

Start codon flanking sequence context
The flanking sequence context was assessed in two ways where we considered either only
the positions –3R (R = purine) and +4G, which were determined to be crucial for initia-
tion [182, 183], or experimentally determined translational start codon efficiencies [189]. In
the first approach, the Kozak sequence context was discretized into strong (A or G at –3 and G
at +4), intermediate (A or G at –3 and no G at +4), weak (no A and no G at –3 and G at +4) and
no Kozak context. These categories were presented as the values 1 (no), 2 (weak), 3 (interme-
diate) and 4 (strong). In the second approach, we used the raw translational efficiency values
reported byNoderer et al. [189] as feature for the respective flanking sequence context of a start
site. These authors investigated the translational efficiency of all possible 11 nt long (position
–6 to +5) flanking sequence contexts around the AUG translation start using high–throughput
sequencing combined with fluorescence signaling. We assumed that alternative starts behave
similarly as AUG codons and therefore use the same translational efficiency values for the al-
ternative starts.

Minimum free energy of mRNA secondary structure
Secondary structure is an important factor for translation initiation [183, 187, 188]. Dependent
on the propensity of the mRNA secondary structure downstream of a putative start codon, the
ribosome scanning in downstream direction can pause and translation is initiated [188]. It was
shown that a secondary structure with a minimum free energy of ∆G = −19kcalmol that starts
12–15 nt downstream of the translation start site can prevent leaky scanning and compensate
for an unfavorable flanking sequence context [188, 190]. A secondary structure starting 14 nt
from the translation initiation site was observed to have the largest effect [188]. Here, we con-
sidered different windows for calculating the minimum free energy of the secondary structure
and then selected the most suitable one to differentiate between true and false start sites: a 60
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nt window starting at position +14, a 60 nt window starting at position +20, a window from
position –10 to +50 and a window from –50 to +50. Minimum free energies were calculated
using RNAfold [68].

GC–content
It was shown that the GC–content continuously decreases from 5’ UTR across the CDS to the
3’ end in human [223]. We therefore analyzed whether the GC–content differs between true
and false start sites using the same windows as for the minimum free energy (see above). Note
that the minimum free energy of anmRNA secondary structure and its GC–content are related
to each other since G–C pairs possess a higher degree of stability than A–U pairs due to their
additional hydrogen bond [224].

Open reading frame length
It appears plausible that the length of open reading frames that code for functional proteins
is generally longer than the ones resulting from arbitrary start sites in the mRNA sequence.
Therefore, we also considered the length of the putative open reading frame.

5’ UTR nucleotide distribution
As mentioned before, the GC–content varies between 5’ UTR and CDS. If a part of the an-
notated 5’ UTR is actually used as CDS this may result in a different nucleotide composition
compared to the actual 5’ UTR. Therefore, we calculated the percentage of all four nucleotides
(e.g. #A

5′ UTR length ) in the entire 5’ UTR. This resulted in four additional features.

5’ UTR length
We also tested the 5’ UTR length with respect to significant differences between true and false
start sites by defining the 5’ UTR (nucleotide) length as further feature.

K–mer search
We counted the frequency of all possible k–mers of length k = 1 (position–specific k–mers)
and k = 3 (codon and respective amino acid k–mers) in a window from –99 to +99 around
the start site. k–mers were defined as all possible combinations of subsequences of length k,
given an alphabet, here nucleotides {A,C,U,G}. We considered in–frame and out–of–frame
k–mers as well as k–mers upstream and/or downstream of the start site as suggested in [225].
In total, this yielded 1,229 k–mers: position–specific k–mers in the predefined window of ±99
amount to 198 positions × 4 nucleotides = 792 (e.g. "K–mer: position –12 is C"), 64 codons × 5
(counted in the complete ±99 region, the upstream region, the downstream region as well as
in–frame–downstream and in–frame–upstream) = 320, 20 amino acids × 5 = 100, 1 stop codon
× 5 = 5 and 4 nucleotides (k = 1) × 3 (complete ±99 region, upstream region and downstream
region) = 12. This sums up to 792 + 320 + 100 + 5 + 12 = 1, 229 k–mers.

3.3.3 Regression approach
The prediction approach, shown in Figure 3.9, was applied to the human HEK293 [43] and
mouse ES datasets [44]. The implementation was done in Python (version 2.7) and using the
scikit–learn package (version 0.17) for the machine learning part [80]. First, as mentioned, all
putative start sites in the 5’ UTR were defined as true positives or true negatives based on the
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reported ribosome profiling data and their location in the mRNA sequence. We then balanced
the size of the dataset so that it contains the same number of true and false start sites by ran-
domly under–sampling from the larger dataset. We repeated the data balancing as well as
the assignment of random training and test set 10 times to evaluate the model robustness and
reported the average performance.

We applied Wilcoxon rank–sum test and Bonferroni correction (with a significance thresh-
old of p = 0.01

1,252 = 8 × 10−6, with the total number of features as the denominator) to test for
the statistical significance of the biological, the k–mer, and the PWM features to differentiate
between true and false start sites. We subsequently calculated all pairwise Pearson correla-
tions between the significant biological and PWM features as well as for the 50 most significant
k–mer features and only used uncorrelated (|r| < 0.7) features in the training step. If two or
more features were correlated, the one with the smallest p–value was used. The PWMs were
calculated in each training step iteration to guarantee that the test set is independent on the
calculated PWMs. All features were normalized (mean zero and unit variance) to ensure com-
parability. Next, several learning models were established and evaluated, see Figure 3.9. The
PreTIS prediction model approach is outlined as Algorithm 3.1.

Metrics	
Accuracy	
Sensi-vity	
Specificity	
Precision	
AUC	

Significant	k-mer	
features	

Feature	set	(1252)	
1229	k-gram	features	

20	biologically-mo-vated	features	
3	PWM	features	

Wilcoxon rank-sum test 
Bonferroni correction 

Significant	PWM	and	
biologically-mo-vated	features	

Balance data 
(random sampling) 

Number	posi-ve	starts	
=	

Number	nega-ve	starts	

50	features	with	
smallest	p-values	

Uncorrelated	(r	<|0.7|)		
and	significant	features	

Training and parameter 
selection (10-fold CV) 

Regression	model	

30% 70% 

Test	data	

Training	data	

Apply thresholds 
0 ≤ t ≤ 1  

for classification 

5’	UTR	of	
mRNA	sequences	

True	posi-ves	
(TPs)	

True	nega-ves	
(TNs)	

Detected by 
ribosome profiling 

Not detected by ribosome profiling 
Upstream of most downstream true (detected) start 

Prevent over-training 
Reduce complexity 

Repeat 10 times 

Figure 3.9: Flowchart of the PreTIS regression approach. Data balancing was repeated ten
times to investigate model robustness. Significant features were identified by the Wilcoxon
rank–sum test [46].
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Algorithm 3.1 PredictionModel(**databases).
1: Init true start sites: ids_pos
2: Init false start sites: ids_neg
3: for all run from 1 to 10 do
4: Init true and randomly sampled false starts: ids
5: Init class labels of ids: labels
6: train_ids, test_ids, ytrain, ytest ← train_test_split(ids, labels,

test_size=0.3)
7: Xtrain, Xtest ← make_sets(train_ids, test_ids) {normalized, signifi-

cant, and uncorrelated features}
8: for all predictor in ["SVR","LinearRegression"] do
9: if predictor == "SVR" then
10: Init kernel parameters: params
11: classifier ← GridSearchCV (SVR(), params, cv=10, scoring=MSE)
12: end if
13: if predictor == "LinearRegression" then
14: classifier ← LinearRegression()
15: end if
16: classifier.fit(Xtrain, ytrain)
17: for all threshold from 0.0 to 1.0 do
18: for all test_point presented by (Xtest, ytest) do
19: Init feature set of test_point: Xtest_point
20: Init class label of test_point: ytrue
21: ypred_reg ← classifier.predict(Xtest_point)
22: if ypred_reg >= threshold then
23: ypred← 1
24: else
25: ypred← 0
26: end if
27: tp, fp, tn, fn← compare(ytrue, ypred)
28: end for
29: spec, sen, acc, prec← evaluate(tp, fp, tn, fn)
30: fpr, tpr, _← roc_curve(ytest, all ypred)
31: roc_auc← auc(fpr, tpr)
32: end for
33: end for
34: end for
35: return {Results for every run, predictor, and threshold are stored.}

Functions used in Algorithm 3.1 that are written in bold and italic were provided by the
scikit–learn library [80]. As input, several pre–computed databases that store information on
experimentally verified (true) and not verified (false) start sites (AUG and near–cognate), were
given as arguments. As mentioned, false start sites must also meet the criteria to be located
upstream of most downstream true start site, due to the assumption of a linear scanningmodel
(Line 2). This false start site set is further reduced by random sampling such that it is com-
posed of the same number of sites as the true start sites set to omit a class size dependent bias
(Line 4). Afterwards, the dataset was divided randomly into training (70%) and test (30%) set
using the train_test_split(ids, labels, test_size=0.3) function provided by the scikit–
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learn library (Line 6). Training and test datasets composed of normalized, significant, and
uncorrelated features (described above, compare with Figure 3.9) were subsequently used for
the learning procedure (Line 7).

Next, we generated simple linear as well as SVM regression models on 70% of this data
and tested them on the remaining 30% of the data, using three different kernels for the SVM
approach: linear, RBF and polynomial. We applied 10–fold cross–validation to find the best
penalty parameterC ∈ {0.1, 1, 10, 100} and ε–tube parameter∈ {0.01, 0.1, 1, 10} for the training
dataset when applying SVRmodels. The remainder of parameters were kept at default values.
This parameter selection was supported by the scikit–learn library (Line 12 and see below).

As mentioned, ε–support vector regression SVR() requires the selection of optimal pa-
rameters C and ε, which is optimized using the GridSearchCV(estimator, param_grid, cv,
scoring) function (Line 12 of Algorithm 3.1) with the estimator SVR(), the param_grid spec-
ifying the parameter sets for C, ε, and the kernel as well as the cross–validation splitting pa-
rameter cv = 10 and the test set scoring function MSE for "mean squared error". We compared
different kernels that can be specified via parameters "poly", "linear", and "rbf" for polyno-
mial, linear, and radial basis function kernel, respectively. We also established an ordinary
least squares linear regression using the scikit–learn package LinearRegression() function
(Line 15). The estimator, SVR() or LinearRegression(), is then fitted to the given dataset tak-
ing the different parameter sets into consideration (only for SVR()) and using the scikit–learn
fit(Xtrain, ytrain) function (Line 17). The resulting model with best performing parame-
ters is subsequently used to predict(Xtest_point) unseen data given an appropriate feature
set Xtest_point (Line 23).

The model is evaluated using specificity (spec), sensitivity (sen), accuracy (acc), and pre-
cision (prec) that were derived from the number of true positives (tp), false positives (fp), true
negatives (tn), and false negatives (fn) points given a threshold (Lines 24–31, comparewith Fig-
ure 3.9). The threshold is explained below. The area under the curve AUC was also calculated
using methods provided by the scikit–learn package (Lines 32 and 33).

Since we applied a regression approach, we applied 100 classification thresholds 0.0 ≤ t ≤
1.0 in steps of 0.01 to the predicted output ypred_reg in order to classify every start site as true
or false based on its model outcome and the given threshold t, see Figure 3.9 and Lines 19–
34 of Algorithm 3.1. These thresholds can be interpreted as initiation confidences where start
sites with a regression value ypred_reg ≥ t are predicted as true start sites and the ones with
ypred_reg < t as false start sites. If a start site is predicted with an initiation confidence > 1,
we substituted this value by one. The same holds for start sites with a predicted confidence
< 0, which were substituted with zero. We then compared the predicted class with the correct
class and used thementionedmetrics for model assessment. The final model for the prediction
of new mRNA sequences and for a SNP analysis was subsequently determined by comparing
different model performances.

3.3.4 In silico SNP analysis
To investigate the effect of putative SNPs within the flanking sequence context of the start sites
(position –15 to +10), we in silico substituted one nucleotide position at a time by all 3 remain-
ing nucleotides, yielding 75 different contexts (the start codon itself was not mutated). We
then recalculated the needed sequence features to investigate the mutational impact and sub-
sequently applied our final prediction model to all contexts. We then report the effect of these
substitutions on the predicted initiation probabilities.

3.4 Results
In this work we used ribosome profiling data fromHEK293 cells [43] andmouse ES cells [44] to
analyze sequence encoded differences between true and false translation initiation sites located
in the mRNA 5’ UTR. A third dataset, only containing AUG starts, was used as validation
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set [54]. Calculated sequence–based features were subsequently used to build a prediction
model. In the following, we present the generated true and false datasets, the results of the
regression approach, its application and an implementation as web service PreTIS.

3.4.1 Filtered dataset
The start sites reported by [43, 44, 54], based on ribosome profiling data, were filtered to include
only starts matching AUG and near–cognate codons in the 5’ UTR. For HEK293 cells [43], this
yielded 4,482 true start sites (i.e. reported in the experimental analysis) and 49,520 false start
sites in 3,566 mRNAs. For mouse ES cells [44], this gave 3,009 true start sites and 19,864 false
start sites in 1,632 mRNAs. True (reported) starts were assumed to be true positives and false
(not reported and upstream of the most downstream reported) starts were assumed to be true
negatives. For comparison, we also included a smaller dataset of Calviello et al. [54] who only
determined AUG starts in HEK293 cells. Table 3.7 displays the three datasets. All reported
analyses are based on these filtered datasets. Among the considered AUG and near–cognate
start codons, AUG (human: 26%, mouse: 16%), CUG (human: 30%, mouse: 34%) and GUG
(human: 13%, mouse: 19%) were the most prevalent translation start codons. Thus, CUG and
GUG are more often used in mouse compared to human. This is in accordance with [43, 44]
and shows that the start codon itself is very important for translation initiation.

Table 3.7: Datasets used in the PreTIS study. Three different datasets were used in this study
to establish a human andmouse predictionmodel and to cross–validate the regressionmodels.
The numbers indicate the filtered start sites used in the prediction approach.

Cell line mRNAs Start codons TPs TNs Used for Source

HEK293 3,566 AUG and
near–cognate

4,482 49,520 Human prediction
model

[43]

HEK293 391 AUG 332 447 Validation set [54]

Mouse ES 1,632 AUG and
near–cognate

3,009 19,864 Mouse prediction
model

[44]

HEK293 = Human embryonic kidney cells; Mouse ES = Mouse embryonic stem cells

3.4.2 Regression models predict initiation confidences
Table 3.7 illustrates that the negative sets outnumbered the positive sets by factors of 7 (mouse
ES) and 11 (HEK293). To avoid a class size dependent bias, we randomly under–sampled the
same number as true positive start sites from the true negative set. Next, we trained on 70%
and tested on 30% of the data (randomly assigned). Table 3.8 lists the performance of human
and mouse models together with the optimal thresholds t. All human models performed very
similarlywith accuracies of about 80%, while the average performance of themousemodel was
lower with average accuracies of about 76%, see Table 3.8. We also computed ROC curves and
the associated AUC. In accordance with the other metrics, also the AUC values were satisfac-
tory with average values of about 80% and 76% for the human andmousemodels, respectively.

Best performing prediction model
Since all models gave a very similar performance with accuracies of about 80%, we decided to
choose the simple linear regression model that can be interpreted well. The best performing
human linear regression model, with balanced performance metrics, was obtained in run 2
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Table 3.8: Evaluation of the PreTIS regression approach. The prediction was repeated 10
times to evaluate the model robustness. Shown are the average performance measures.

Accuracy Specificity Sensitivity Precision AUC Thres. t

HEK293

Linear SVR 0.80±0.01 0.80±0.01 0.81±0.01 0.80±0.01 0.80±0.01 0.62±0.01

RBF SVR 0.82±0.01 0.81±0.01 0.83±0.02 0.82±0.01 0.82±0.01 0.55±0.02

Polynomial SVR 0.80±0.01 0.80±0.01 0.81±0.02 0.80±0.01 0.80±0.01 0.59±0.02

Linear Regression 0.80±0.01 0.80±0.01 0.81±0.01 0.80±0.01 0.80±0.01 0.55±0.01

Mouse ES

Linear SVR 0.75±0.01 0.75±0.01 0.76±0.01 0.75±0.01 0.76±0.01 0.65±0.03

RBF SVR 0.76±0.01 0.76±0.01 0.76±0.02 0.76±0.01 0.76±0.01 0.58±0.03

Polynomial SVR 0.75±0.02 0.75±0.01 0.76±0.02 0.75±0.02 0.75±0.02 0.62±0.03

Linear Regression 0.76±0.01 0.75±0.01 0.76±0.01 0.75±0.01 0.76±0.01 0.55±0.01

(the prediction was repeated 10 times). This model had an accuracy of 83%, a sensitivity of
84%, a specificity of 82% and a precision of 83% on the test data. It was then applied to predict
unknown start sites of a gene of interest and to conduct an in silicomutation analysis. Moreover,
it is embedded in the PreTIS web service. Therefore, this model is analyzed in more detail in
the following. Figure 3.10 displays the predicted codon distribution when applying the best
performing linear regression model of run 2 to the mRNA sequences in the test set and using
the threshold t = 0.54 that gave the best overall performance.
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Figure 3.10: Codon distribution of test samples using the best performing human model.
AUG, CUG and GUG were the most prevalent TP start sites in the test samples with t = 0.54.

The distribution of predicted codons agreedwith the preferences found experimentally [43,
44]: AUG and CUG were the most prevalent start codons, whereas AUA or AAG were more
often classified as true negatives. Nevertheless, our predictor also detects true negative AUGs
and CUGs and true positive AUAs and AAGs.
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The features that were used to build this prediction model are displayed in Table 3.9. The
most significant feature is the length of the 5’ UTR (p < 10−310). The 5’ UTR was found to be
shorter on average for true starts sites (414±270 nt) compared to false start sites (675±545 nt).
The second most significant biologically–motivated feature with a p–value of p = 8.2× 10−190

was the conservation of the 5’ UTR. The values of 0.4±0.16 for the true start sites and 0.33±0.16
for false start sites suggest that 5’ UTRs harboring true start sites are in general more conserved.
Another highly significant feature (p = 5.1×10−144) was the number of upstream AUGs. Con-
sidered false start sites had more upstream AUGs (0.59±0.9) than considered true start sites
(0.22±0.57), see Table 3.9. This can be explained as follows: if AUG is located upstream of an-
other putative start site, the linear scanningmodel of Kozak [36] implies that it ismore probable
that the AUG is used as start site instead.

PWMpositive was also found to be highly significant (p = 5.5 × 10−173). The PWMs were
recalculated for each training sample to achieve unbiased test samples in every run. The back-
ground frequencies of the best performing run 2 amounted to bgA:0.16, bgC :0.29, bgU :0.21, and
bgG:0.34, while the average background frequencies of all training and test runswere calculated
as bgA:0.21±0.06, bgC :0.27±0.06, bgU :0.22±0.06, and bgG:0.3±0.06. Thus, as expected [223], gua-
nine and cytosine were prevalent in the 5’ UTR. Figure 3.11 shows the PWM scores calculated
for the test samples in the run with best overall performance (run 2) based on the PWM gener-
ated using the true training samples (PWMpositive) in this run. The scores of the true (test) start
sites were significantly higher (2.75± 1.5) than those of the false (test) start sites (−0.14± 2.82).
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Figure 3.11: Frequency distribution of PWMpositive scores. Shown are the results for all test
samples of the best performing run 2. The PWMwas established using the true start sites in the
training data of run 2. The difference between TPs and TNs was found to be highly significant
(p = 5.5× 10−173, Wilcoxon rank–sum test).

Interestingly, the distribution of the false start sites was found to be bimodal. Thus, one
might speculate that some of these considered false start sites with higher PWM values (i.e.
start sites not found by the ribosome profiling technique and located upstream of the most
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Table 3.9: Features of the best human PreTIS prediction model. Mean value and standard
deviation of the 44 features that were used in the best human model (biologically–motivated
andPWMfeatures are shown in bold). All 4,482 true and 49,520 false start siteswere considered
for this analysis. All listed features showed significant differences between true and false start
sites (p–values < 1.6 × 10−8). Note that due to numerical reasons, very small p–values (<
10−310) are represented as 0.0 in Python programming language (scipy version 0.17.0). The
PWM scores are based on the test data (compare to Figure 3.11).

Feature True starts False starts p–value

1. 5’ UTR length 414.41±270.48 675.41±545.35 < 10−310

2. 5’ UTR conservation 0.4±0.16 0.33±0.16 8.2 × 10−190

3. PWM positive 2.75±1.5 -0.14±2.82 5.5 × 10−173

4. K–mer: upstream AUG 0.22±0.57 0.59±0.9 5.1 × 10−144

5. 5’ UTR: percentage A 0.18±0.05 0.2±0.05 9.6 × 10−100

6. Kozak sequence context 2.67±1.07 2.3±1.11 9.2 × 10−95

7. Translational efficiency of flanking sequence 83.75±20.11 77.12±21.4 1.1 × 10−83

8. K–mer: position -12 is C 0.13±0.34 0.3±0.46 2.7 × 10−77

9. K–mer: upstream Asparagine 1.25±1.37 1.61±1.61 4.0 × 10−43

10. K–mer: downstream AUG 1.14±1.15 0.92±1.1 9.2 × 10−41

11. K–mer: upstream A 17.24±7.43 18.81±7.89 4.0 × 10−40

12. K–mer: in-frame upstream Alanine 3.69±2.6 3.16±2.29 4.0 × 10−37

13. K–mer: upstream Alanine 10.27±4.5 9.38±4.6 6.2 × 10−37

14. 5’ UTR: percentage G 0.32±0.06 0.31±0.05 7.1 × 10−37

15. Codon conservation 0.23±0.42 0.12±0.32 3.2 × 10−36

16. K–mer: position –3 is A 0.31±0.46 0.2±0.4 3.4 × 10−35

17. K–mer: upstream CCG 2.98±2.43 2.56±2.31 7.1 × 10−34

18. K–mer: downstream CCA 2.04±1.54 1.75±1.45 1.1 × 10−32

19. K–mer: position –12 is A 0.3±0.46 0.19±0.4 4.0 × 10−32

20. K–mer: in–frame upstream Methionine 0.07±0.29 0.2±0.48 3.3 × 10−31

21. K–mer: upstream Arginine 12.15±4.34 11.33±4.64 1.5 × 10−29

22. K–mer: upstream Histidine 1.7±1.52 1.97±1.65 2.2 × 10−27

23. K–mer: GCC 6.4±3.87 5.77±3.75 1.1 × 10−25

24. K–mer: position 4 is G 0.37±0.48 0.28±0.45 2.3 × 10−25

25. K–mer: upstream Threonine 3.56±2.08 3.91±2.19 4.9 × 10−25

26. K–mer: upstream CGG 3.14±2.51 2.77±2.41 3.2 × 10−24

27. K–mer: upstream C 30.4±8.98 28.96±9.04 1.0 × 10−23

28. K–mer: position –2 is G 0.23±0.42 0.32±0.47 1.2 × 10−23

29. K–mer: upstream Stop 2.3±1.71 2.66±2.0 1.4 × 10−23

30. K–mer: UAG 1.34±1.2 1.57±1.35 5.6 × 10−23

31. K–mer: upstream CAU 0.58±0.85 0.73±0.95 3.4 × 10−22

32. K–mer: upstream Serine 9.44±3.29 8.93±3.14 5.7 × 10−22

33. K–mer: downstream Glutamine 3.57±2.01 3.26±1.88 2.4 × 10−21

34. K–mer: AGG 4.29±2.51 4.7±2.69 2.1 × 10−20

35. K–mer: AGC 4.4±2.43 4.02±2.19 2.1 × 10−20

36. K–mer: downstream ACC 1.45±1.26 1.27±1.17 2.0 × 10−19

37. K–mer: UAA 1.22±1.42 1.51±1.76 6.2 × 10−19

38. K–mer: downstream Proline 9.3±5.63 8.56±5.47 3.5 × 10−18

39. K–mer: upstream CAA 0.75±0.92 0.91±1.06 1.3 × 10−17

40. K–mer: in–frame upstream Histidine 0.54±0.77 0.67±0.87 1.7 × 10−17

41. K–mer: upstream GAU 0.63±0.85 0.77±0.96 2.1 × 10−16

42. K–mer: in–frame upstream GCC 1.21±1.4 1.02±1.22 6.7 × 10−16

43. K–mer: in–frame upstream GCG 1.14±1.42 0.97±1.27 6.2 × 10−14

44. PWM negative 1.94±1.34 1.59±1.09 1.6 × 10−08
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downstream reported true start, which are therefore considered as true negative starts, see also
Figure 3.8) might be used as actual start sites in different cell types or cellular conditions. This
also explains the overlap between the true positive and true negative start sites in Figure 3.11.

Another biologically important feature that also represents the flanking sequence context is
the "Kozak sequence context” feature (see methods) with a p–value of 9.2×10−95. As expected
from experimental findings [36], true start codons more often exhibit a strong or intermediate
Kozak context compared to false start sites that often show noKozak context at all, see Table 3.9
and the supplementary material of our publication [226]. This is also in agreement with the
observation that A at position –3 (p = 3.4 × 10−35) and G at position +4 (p = 2.3 × 10−25)
were found (by the k–mer search) to be important for translation initiation. Similarly, the trans-
lational efficiency of the flanking sequence context, experimentally investigated in [189], was
also highly significant (p = 1.1×10−83). The average efficiency of true start sites is, as expected,
higher than the one calculated for the false start sites. Moreover, true start codons were found
to be more often conserved between human and mouse sequences compared to false start sites
(p = 3.2× 10−36). Start site conservation was also mentioned in the original publication of the
HEK293 dataset we used here [43].

Many significant features detected by the k–mer search contained upstream G–C patterns
(e.g. "K–mer: upstream CCG" or "K–mer: upstream CGG") at higher frequencies for true start
sites compared to false start sites. This reflects the generally higher GC–content in the 5’ UTR
compared to the CDS and is in accordancewith the finding that the GC–content decreases from
the 5’ UTR to the CDS [223].

Consistent with the p–values of the features used in the best performing human linear
regression model are the feature (weight) coefficients determined by the model training step.
The respective figure is shown in the supplementary material of our publication [226]. The
highest coefficients were assigned to the PWMpositive and the number of upstream AUGs ("K–
mer: upstream AUG’").

3.4.3 Transferability of the prediction model
To investigate the transferability of our best human prediction model, we analyzed its perfor-
mance using the mouse ES data as well as the HEK293–AUG dataset, see Table 3.10. With the
threshold of t = 0.54 that was found to be optimal for the trained HEK293 dataset, we obtained
for the mouse ES dataset an accuracy of 76%, a sensitivity of 72% and a specificity of 77%. By
scanning all possible thresholds, we found that t = 0.52 yields amore balanced performance of
75%, 76% and 74% for accuracy, sensitivity and specificity, respectively. Decreasing the thresh-
old seems to be advantageous for the mouse dataset, since some true positives seem to possess
weaker features for translation initiation (e.g. a weak flanking sequence context or a less com-
mon initiation codon), but are nevertheless true positive starts.

We then applied our best regression model to the start sites reported in the HEK293–AUG
dataset that only contains AUG starts [54]. The categorization of true positive and true nega-
tive start sites was conducted as above for the HEK293 dataset (see Figure 3.8), with the only
difference that the HEK293–AUG dataset only contains AUG start sites instead of AUG and all
near–cognate codons. Thus, we defined again the false start sites as all AUG starts located in
the 5’ UTR that were not detected by ribosome profiling and are located upstream of the most
downstream true start site.

Differentiating only between true and false AUG start sites is particularly difficult because
the AUG itself is a very strong signal for a true start site and just by random chance there might
be AUGs with, for example, good flanking sequence, which are not used as translation start
sites (or are not reported in the dataset). Moreover, our prediction model was trained on all
possible cognate codons instead of AUG alone. Our best model with the determined threshold
of t = 0.54 detected 77% of the true AUG starts in the HEK293–AUG dataset (sensitivity of
77%). Nevertheless, the specificity of this prediction is only 44% and thus the overall accuracy
is only slightly better than a random decision (58%), compare to Table 3.10. However, when
increasing the threshold from t = 0.54 to t = 0.65, we were able to increase the overall accuracy
to 63%. A threshold of t = 0.65 was found to be optimal for this dataset. More information on
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Table 3.10: Application of PreTIS to the independent datasets. Shown is the performance of
the best human HEK293 model applied to the mouse ES and human HEK293–AUG datasets.

Unbalanced dataset

Mouse ES Mouse ES HEK293–AUG HEK293–AUG

Threshold t=0.54 t=0.52 t=0.54 t=0.65

TP TN TP TN TP TN TP TN

Pred. pos. 2,161 4,569 2,273 5,072 257 249 207 160

Pred. pos. 848 15,295 736 14,792 75 198 25 287

Total 3,009 19,864 3,009 19,864 332 447 332 447

Accuracy 0.76 0.75 0.58 0.63

Sensitivity 0.72 0.76 0.77 0.62

Specificity 0.77 0.74 0.44 0.64

Precision 0.32 0.31 0.51 0.56

Balanced dataset

Mouse ES Mouse ES HEK293–AUG HEK293–AUG

Threshold t=0.54 t=0.52 t=0.54 t=0.64

TP TN TP TN TP TN TP TN

Pred. pos. 2,161 689 2,273 763 257 185 211 125

Pred. pos. 848 2,320 736 2,246 75 147 121 207

Total 3,009 3,009 3,009 3,009 332 332 332 332

Accuracy 0.74 0.75 0.61 0.63

Sensitivity 0.72 0.76 0.77 0.64

Specificity 0.77 0.75 0.44 0.62

Precision 0.76 0.75 0.58 0.63

the detection of optimal threshold values can be found in the supplementary material of our
publication [226]. Problematic was here the precision (i.e. the number of true positives out of
all samples classified as positive ( TPs

TPs+FPs )). Many starts that we assumed to be true negatives
actually show properties of true positives and are therefore classified as false positives. Espe-
cially if the dataset is highly unbalanced (e.g. the number of mouse ES true starts is only 15%
of the false start sites) this effect has a strong influence on the precision. When we balanced
our datasets, the precision increased drastically from 31% to 75% for the mouse ES dataset and
t = 0.52 and from 56% to 63% for the HEK293–AUG dataset and t = 0.64, see Table 3.10.

3.4.4 Applications of the prediction model

The established prediction model can, for example, be used to predict translation start sites
which are not covered by ribosome profiling experiments or to analyze the impact of mutations
in the flanking sequence around the start site.
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Prediction of unknown start sites
We applied the final model to a gene of interest, GIMAP5 (ENST00000358647), that was not
contained in the human ribosome profiling data. GIMAP5 codes for a GTPase binding GTP
and is involved in the survival of T–cells [227]. The scan of GIMAP5 resulted in 27 candidate
start sites with an in–frame stop codon and a surrounding window of ±99 nt to calculate the
k–mer features in. Figure 3.12 shows the predicted initiation probabilities of the putative start
sites. Out of these 27 candidate start sites, we found eight start codons with a confidence value
above t = 0.54. Among these starts, we found one hot candidate (AUG at position –203) with
a very high confidence value of 0.92 of being a true start site. Moreover, a CUG at position –36
was also predicted with a high confidence value of 0.81. We postulate that these start sites are
able to initiate translation in a specific cell type or cellular condition (for instance cellular stress
response). In this manner, the web service PreTIS can be used to visualize all putative start sites
and subsequently to predict unknown translation start sites.
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Figure 3.12: Alternative start codons of human gene GIMAP5. Predicted start sites were
subdivided into four confidence groups and highlighted by different colors and dashed lines:
very high (hot/best candidates with c ≥ 0.9), high (0.8 ≤ c < 0.9), moderate (0.7 ≤ c < 0.8)
and low (t = 0.54 ≤ c < 0.7) initiation confidence c. For this gene, we found one hot candidate
with a very high confidence value of 0.92 of being a true start site (AUG at position –203).

In silico mutation analysis
As an outlook where this methodology could be helpful as well, we investigated the effect of
fictitious SNPs on the translation initiation confidence around all start sites of gene GIMAP5.
We used the same surrounding window of –15 to +10 that was used to calculate the PWMs.
Figure 3.13 shows three possible scenarios how in silico mutations in the flanking sequence
context of a putative start site affect its predicted initiation confidence. In the first example,
the initiation confidence value is, independent of the SNP, always above the threshold. This
means that the start site is always predicted as true start site since the overall advantageous
properties are not changed severely by a single SNP that is inserted (see Figure 3.13A). In the
second case, the predicted initiation confidence value changes dependent on the SNP that is
artificially inserted into the flanking sequence (see Figure 3.13BC). Take for instance, CUG at
position –44 (Figure 3.13B): a C\G at position +4 increases the initiation confidence from 0.53
(see Figure 3.13) to 0.60. The same holds for a U\A SNP and U\G SNP at position –3 that in-
crease the predicted initiation confidence to 0.66 and 0.57, respectively. For the AUA start site
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at position –237 (Figure 3.13C), an U\A SNP and a U\G SNP at position –3 increased the initi-
ation confidence from 0.48 to 0.63 and 0.55, respectively. Positions –3 and +4 were mentioned
beforehand to be crucial for translation initiation [182, 183]. Moreover, SNPs at position –12,
also found to be significant by the k–mer search (Table 3.9), seem to have an important influence
on the translation initiation. A G\C SNP entails a dramatic drop of the initiation confidence
value to 0.33 (Figure 3.13C) since far less true starts contain Cs at position –12 (0.13) compared
to false starts (0.3), see Table 3.9. Finally, it may also happen that the initiation confidence is
always below the given threshold, independent of the SNP that is inserted (Figure 3.13D). This
is based on the overall disadvantageous properties of a start site such that a single mutation
cannot "boost" the overall disability of this start to initiation translation.

Figure 3.13: SNP analysis of geneGIMAP5. Mutationmatrix showing the impact of the flank-
ing sequence context of four putative start sites of geneGIMAP5 on the predicted initiation con-
fidence. In each case, only one nucleotide is mutated with respect to the reference sequence
(top line). Grey means that the start was predicted as true translation start (predicted initiation
confidence is greater than 0.54), whereas white means that the start was classified as false start.
Mutations at the start sites itself were not considered. The numbers reflect the predicted initi-
ation confidence values. A: CUG at position –36. B: CUG at position –44. C: AUA at position
–237. D: CUG at position –160.

To investigate the influence on the predicted initiation confidence (IC) on a more general
scale, we calculated the difference in the initiation confidence of a mutation (A, C, U, and G)
compared to the wild–type sequence (ICdifference = ICmutation − ICwildtype) for all start sites
in the 3,566 genes of the HEK293 dataset. The results are shown in Figure 3.14. For example, if
adenine or guanine are inserted at position –3, the initiation confidence value increases, with
median values of 0.11 and 0.06, respectively (see Figure 3.14). Asmentioned, position –12 seems
to play an important role in translation initiation. By comparing all start sites and possible
mutations, a cytosine at this position lowers the initiation confidence by 0.16 on average.
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Moreover, it was experimentally shown that positions +5 and +6 are important for efficient
translation initiation, especially in non–AUG initiation [228]. More precisely, it was shown that
the second codon (i.e. positions 4, 5 and 6) being GAU or GCU enabled an efficient translation
initiation while GUA ablated initiation. Thus, an AU or CU seem to be important at position
+5/+6 while UA is disadvantageous for translation initiation. This experimental finding can
also be observed in Figure 3.14: A and C at position +5 increase and U at position +5 decreases
the confidence value, while on the other hand at position +6, aU increases the confidence value.

Figure 3.14: In silicomutation analysis of the HEK293 dataset. The flanking sequences of all
possible start sites of all 3,566 genes in the HEK293 dataset were mutated. Shown is the differ-
ence in the predicted initiation confidence (ICdifference = ICmutation − ICwildtype). Positions
–3 and –12 are prevalent and seem to have the largest influence on the prediction. Positions at
the start site were not mutated.

3.5 Discussion
We were able to identify highly significant features belonging to three different feature classes
(biologically–motivated features, PWMaswell as k–mer features) that distinguish between true
and false translation initiation sites. A simple linear regression model based on significant
and uncorrelated features enabled us to reliably differentiate between true and false start sites.
While a k–mer search enabled an unbiased scan, the biologically–motivated features reflect
experimental observations regarding translation initiation. The PWMaccounts for the flanking
sequence context that is crucial to initiate translation. Also, it reflects the role of the start codon
itself since it was shown that some codons (e.g. AUG and CUG) are used more often by the
ribosome to initiate translation in mammals [43, 44].
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Problematicwas the inhomogeneous dataset thatmost likely contains some FPs andmisses
some TPs. Reasons for this may be experimental drawbacks, the proceeding steps of the raw
data, or the cell line that was used (some start sites may only be used in specific cell lines). In
general, several experimental steps have an influence on and can alter the data output: cell har-
vesting, nuclease treatment, and library generation [191]. The key idea of ribosome profiling
is the inhibition of translation. This may introduce certain biases into the data. For example, if
inhibition is slow, ribosomes can artificially accumulate at specific positions [191]. Moreover,
RNA fragments (e.g. non–coding RNAs) can distort the translation readouts. Especially in se-
quence analysis, the mapping of the sequence reads from similar regions of different transcript
variants is challenging. This is further complicated by the short length (about 30 nucleotides)
of ribosome footprints [191]. Moreover, it is currently not possible to apply ribosome profiling
to single cells, in contrast to mRNA–seq for instance [191].

Without doubt, the ribosome profiling technique is a huge innovation to understand trans-
lation initiation. However, it appears that the start codon selection based on the experimental
outcome is challenging. For example, a GUG start in gene RPLP1 at position –107 determined
by Lee et al. [43] has the following flanking sequence context: GCC GCC AAG GUG CUC. In
the light of the findings of Kozak [183, 184, 185], onemay speculate whether the upstreamAAG
codon would be the more appropriate start codon. Nevertheless, the deep analyses of the dif-
ferent datasets presented here was able to point out crucial sequence features for which a solid
experimental evidence exists (for example Kozak context) that significantly differed between
the considered true and false start sites. This verifies and draws confidence that the overall
ribosome profiling dataset(s) are suitable for the prediction of translation start sites.

Although, we used ribosome profiling applied to a specific cell line (HEK293) for train-
ing and testing, we propose that the predicted start sites have the potential to initiate transla-
tion in other cell types as well since the features used are only based on sequence properties.
As a rather extreme example, we showed that the classifier trained on human HEK293 cells
works reasonably well, albeit with lower accuracy, on mouse ES cells. Interestingly, we ob-
served that the codon distribution of predicted start sites in the test set was similar to that of
the experimentally observed start sites. This provides confidence in the quality of our predic-
tion approach. Moreover, applying regression instead of classification enabled us to provide
an initiation confidence value ranging from 0.0 to 1.0 rather than a strict decision between true
and false start site. Subdividing start sites into different confidence classes c (very high: c ≥ 0.9,
high: 0.8 ≤ c < 0.9, moderate: 0.7 ≤ c < 0.8 and low: t = 0.54 ≤ c < 0.7) helps to identify
hot candidate start sites with very high initiation confidence values. The analysis of SNPs in
the start site flanking sequence context showed that mutations can have a large impact on the
initiation confidence. This not only holds true in our prediction approach but also in the con-
text of in vivo translation. Kozak found that individual mRNA positions (–3, +4) are crucial for
initiation [182, 183].

3.6 PreTIS web service
To make the PreTIS algorithm available to the scientific community, we implemented a web
service to predict the initiation confidence of all reading frame–independent start sites (AUG
and all near–cognate codons) located in the 5’ UTR given a human mRNA sequence. Thereby,
the ribosome profiling datasets and the best human prediction model described above were
used as underlying regression model. The web service application PreTIS requires an mRNA
sequence and is accessible at:

http://service.bioinformatik.uni-saarland.de/pretis

Based on the given humanmRNA sequence, all possible AUG and near–cognate start sites,
with a surrounding window of at least ±99 nt (needed to calculate k–mers) and an in–frame
downstream stop codon, are identified in the 5’ UTR. PreTIS then calculates the required se-
quence features (see Table 3.9) for all detected start sites and subsequently predicts the initiation

http://service.bioinformatik.uni-saarland.de/pretis
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confidence. Based on the predicted initiation confidence value and the given prediction thresh-
old of t = 0.54, a start site is categorized into different initiation confidence classes. For start
sites with confidence values c greater than the given threshold t, the four confidence groups
were defined as follows: very high (hot/best candidates with c ≥ 0.9), high (0.8 ≤ c < 0.9),
moderate (0.7 ≤ c < 0.8) and low (t ≤ c < 0.7) confidence, respectively. Especially start sites
with very high confidence values can be considered as hot candidates for translation initiation.

The predicted initiation confidence for each start site is visualized by bar plots with the
x–axis displaying the mRNA position (compare to Figure 3.12). This enables a comprehensive
comparison of, for example, different flanking sequence contexts. Features calculated for each
start site can also be downloaded as CSV files for further analyses. For the calculation of some
features, an orthologous mouse sequence is required. This is automatically implemented by
the embedded BLAST search [67]. The mRNA sequence found by blastn can be inspected
afterwards and replaced, if desired. Furthermore, each job is given a Session–ID and a Job–
Number, which enables unambiguous accession to the prediction results. In the following,
details about the implementation of the PreTIS web service application are given.

Navigation bars allow a clear and expedient presentation
The PreTISweb service is presented by several subpages that are arranged by a horizontal nav-
igation bar. Thereby, several PreTIS subpages are internally linked. In addition, BLAST and
Ensembl websites as well as the journal website of the PreTIS publication can be reached via
hyperlinks. The internal linking structure is illustrated in Figure 3.15. The webpages reachable
by the HOME, ABOUT, and CONTACT tabs give a general overview on PreTIS, some back-
ground information such as presentation of the feature set, and a possibility to contact the
developers, respectively. The NEW JOB tab opens an input form to provide a human mRNA
sequence, separated into 5’ UTR and CDS, and to choose the start sites the provided sequence
is searched for. Thereby, a homologous mouse sequence, needed to calculate sequence con-
servation, can be provided either by the user or retrieved by applying the embedded BLAST
search. The input can subsequently be submitted for start site prediction.

Figure 3.15: PreTIS web service subpage linking. The PreTIS webpage core element is a hor-
izontal navigation bar allowing a clear subpage arrangement, here shown as turquoise rect-
angles. PreTIS embedded subpage files are colored in grey, whereas external websites, like
Ensembl or BLAST, are highlighted in light blue. Linkage between PreTIS subpages is shown
as black arrows, whereas external links are displayed as grey arrows.

Different requests are saved by assigning a unique Session–ID and Job–Number. Cookies
are used to store Session–ID to only increase the Job–Number in case a user starts several PreTIS
requests. Moreover, example data can be easily loaded for a first attempt to become familiar
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with PreTIS. Previously computed results can be retrieved by providing the obtained Session–
ID and Job–Number using the input fields of the RESULTS tab.

PreTIS core functionality: automatic initiation confidence prediction
The PreTIS web service was implemented using several (programming) languages: HTML,
CSS, JS, PHP, and Python. The combination of the markup language HTML, the style sheet
language CSS, and the programming languages JS, PHP, and Python enables the development
of a dynamic web service for translation start site prediction from a mRNA sequence and a
clear representation of the obtained results.

The client–sided front–end, implemented using HTML, CSS, JS, and PHP, represents the
web service application and validates user input prior to data transmission to server. Upon
validation, a BLAST search and start site prediction are executed on the server–sided back–end
using PHP and Python. The connection between front– and back–end as well as the com-
putational structure of PreTIS is shown in Figure 3.16. As mentioned previously, the HOME
(index.php), ABOUT (background.php), and CONTACT (contact.php) tabs of the navigation
bar allow access to the subpages that introduce PreTIS and give contact information. The func-
tionality represented by the remaining tabs is explained in the following.

Sequence and parameter submission The central component of the PreTIS applica-
tion is the submission form that is reachable via the NEW JOB tab. A user has several possibili-
ties to submit a humanmRNA sequence (5’ UTR and CDS). Sequences can be submitted either
by an automatic sequence retrieval via a valid Ensembl gene ID such as "ENSG00000196329", by
directly entering 5’ UTR and CDS sequences in the respective text area, or by uploading FASTA
files from a local folder. It is only possible to submit a sequence by either entering the sequence
or by uploading a text file. The fulfillment of this criterium is checked via a JS function. The
retrieval of human mRNA sequences via an Ensembl gene ID is enabled by the Ensembl REST
API [211]. REST stands for Representational State Transfer and allows to retrieve Ensembl se-
quence data in JSON file format, see Section 3.1.3. The requested sequence file is then parsed
and all available transcripts are reported to a user. Dependent on the transcript ID that is se-
lected by a user, a JS function is subsequently applied to display the respective sequence in
the submission form. For convenience, the "Load example" button can be used to demand an
example mRNA sequence (here GIMAP5, ENSG00000196329) to test PreTIS functionality in an
appropriate way.

Upon input of a human mRNA sequence, a homologous mouse mRNA sequence is nec-
essary for the calculation of 5’ UTR and start site conservation. This sequence can either be
provided by a user or the embedded blastn function can be applied to search for the best
mouse hit given a human mRNA sequence, see Figure 3.16. The latter option is set as the
default, which can be changed using a checkbox in the submission form. Beside human and
mouse sequences, the user can choose at least one out of the ten possible start sites: AUG,
CUG, GUG, UUG, AAG, ACG, AGG, AUA, AUC, and AUU. The 5’ UTR is then scanned for all
previously selected codons that are in– and out–of–frame with the canonical AUG. Following
feature calculation, the developed machine learning model is applied to predict initiation con-
fidences of all possible initiation sites. Thereby, the CDS is necessary to calculate some of the
sequence–based features such as the k–mer features.

For security reasons, a validation of the provided user input is necessary prior to submis-
sion of the given sequences and selected codons to the server, see Figure 3.16. This validation
step was implemented using JS. These functions verify that the provided sequences only con-
tain the characters {A, C, T, G, U} (upper or lower case) while all other characters, like line
breaks or spaces, are removed beforehand. In case, a sequence text file is uploaded, the text file
must not exceed a size of 512 kB. JS is also used to check whether a provided human Ensembl
gene ID is valid, that means it must start with "ENSG", have a length of 15 characters, and the
string succeeding "ENSG" must be a number. Finally, at least one out of the ten possible start
codons must be selected. Disregarding one of the above mentioned requirements will result in
a notification via respective error messages.
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Figure 3.16: PreTIS internal web service structure. Combining HTML, CSS, JS, PHP, and
Python enables the implementation of a dynamic web service for the prediction of start site
initiation confidences for all candidate codons, given a mRNA sequence. The front–end pro-
vides background information and a submission form for sequence input and parameter speci-
fication. Following input validation, the server–sided back–end computes all necessary results
such as codon positions and confidence values, which are then displayed to a user on the client–
side.

Back–end result computation In case all validation criteria are fulfilled, data is trans-
mitted to the server, compare with Figure 3.16. Assuming an automatic retrieval of an ortholo-
gous mouse sequence is intended by a user, the Python script blast.py is subsequently called
for the execution of a BLAST search

blastn -db mouse_fasta -query human_query -num_alignments 0 -out result

with the preprocessed FASTA file containing mouse sequences mouse_fasta, the human
mRNA sequence in FASTA format human_query, and a result file providing the detected
BLAST hits. The result file is then parsed and the best hit is stored for further analysis. Next,
the Python script predict.py is called with human mRNA sequences, mouse orthologous
mRNA sequences, and the selected codons as arguments, in order to compute the sequence–
based features and to predict translation initiation confidence values for every putative start
codon.
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The connection of and data exchange between Python and PHP is enabled via the PHP
popen() function that opens a pipe to a program or process specified by the command that is
given as argument, see Listing 3.4 (Lines 1–7). Here, the respective Python script together with
parameters, like mRNA sequences, is provided. The results of the BLAST search and the initi-
ation site prediction are then returned via the Python print function and subsequently parsed
using PHP. For convenience, all final results are then saved as a PHP array(), see Listing 3.4.
This functionality is implemented in execute.php, see Figure 3.16. The constant progress in the
result computation is reported by a subpage that is displayed to the user in the meantime. Pre-
viously computed results can then be easily reached via the RESULTS subpage (getresults.php)
by providing the assigned Session–ID and Job–Number.

Front–end result representation All computed results are represented by functions
embedded in the result.php file. The combination of HTML, CSS, JS, and PHP allows a nice
and clear presentation via an interactive bar plot depicting the confidence values, the provided
mRNA sequence with codons colored according to the regression values, a table representa-
tion listing properties of all detected start sites, the result of the BLAST search with external
Ensembl hyperlinks, and a CSV file with the summarized results as download. The RESULT
subpage is separated into five parts: general information and CSV download, interactive bar
plot, colored mRNA sequence, table representation, and BLAST results.

First, a short overview introduces and displays four initiation confidence categories, the
Session–ID, Job–Number, and the selected codon(s). Predicted start sites are subdivided into
different initiation confidence categories c with very high (c ≥ 0.9), high (0.8 ≤ c < 0.9), mod-
erate (0.7 ≤ c < 0.8), and low (t = 0.54 ≤ c < 0.7) confidence to facilitate the identification of
candidate initiation sites. Moreover, it is referred to the CSV download file containing informa-
tion, like nucleotide extension, codon, or calculated feature values, for all predicted translation
start sites. Our publication can be reached via a hyperlink as well.

The JS charting library Highcharts [209] was then used to visualize the predicted initiation
confidence values as interactive bar plot, see Figure 3.17.

Figure 3.17: PreTIS web service bar plot representation of initiation confidences. Predicted
initiation confidence values for every candidate start site of gene GIMAP5 (ENSG00000196329)
are presented as bar plot. This interactive visualization to display different start site properties
was implemented using the JS Highcharts library [209]. The color scheme corresponds to the
confidence categories c defined beforehand.

The mouse–over functionality provides additional information for every candidate start
site, such as the nucleotide extension, the start codon, the frame with respect to the main ORF,
the flanking sequence context, or the next in–frame downstream stop codon. This represen-
tation simplifies the comparison between the detected start sites concerning their confidence
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values, positions in the 5’ UTR, or Kozak flanking sequence contexts. Candidate start sites are
highlighted additionally within the complete mRNA sequence to emphasize the location of the
individual candidate start sites together with the local sequence surrounding. This sequence
visualization is denoted in Figure 3.18.

Figure 3.18: PreTIS web service 5’ UTR sequence visualization. Putative start sites of gene
GIMAP5 (ENSG00000196329) are highlighted within the 5’ UTR to emphasize their sequence
positions. Mouse–over functionality is used to display the nucleotide extension with respect
to the canonical start site. The color scheme corresponds to the confidence categories c defined
beforehand.

A table representation, shown in Figure 3.19, gives a clear overview of all candidate start
codons together with the nucleotide extension, codon, reading frame with respect to the main
ORF, position of the next in–frame downstream stop codon, ORF length, and predicted initi-
ation confidence. These values are also part of the downloadable CSV file. Finally, the best
BLAST hit, in case a BLAST search was executed, is reported together with the respective En-
sembl gene and transcript IDs (hyperlinked to the Ensembl webpage) and the 5’ UTR and CDS
mouse sequences, compare with Figure 3.20.

Figure 3.19: PreTIS web service table view of features values. To precisely describe all puta-
tive 5’ UTR start sites of gene GIMAP5 (ENSG00000196329), the exact position, codon, reading
frame, and corresponding stop codon are displayed using a table representation. The color
scheme helps to identify hot start site candidates for translation initiation.
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Figure 3.20: PreTIS web service BLAST result. In case the embedded BLAST search was
made use of, the best homologous mouse hit is displayed together with Ensemble gene and
transcript IDs that are hyperlinked to the respective Ensembl webpage. As the mRNA query
sequence belongs to gene GIMAP5 (ENSG00000196329), the reported mouse Ensembl gene ID
corresponds to the mouse ortholog Gimap5 (ENSMUSG00000043505).

Taken together, PreTIS is an intuitive tool that solely requires the human mRNA sequence
as input. It gives access to various calculated sequence–encoded and experimentally shown
important sequence properties for translation initiation. In addition, an initiation confidence
value for each start site is calculated using an established regression model that is based on
recent experimental data. All frame–independent AUG as well as alternative start codons are
considered.

3.7 Summary
In this project, we dealt with alternative translation initiation in the 5’ UTRs of human and
mouse mRNA sequences. We considered frame–independent non–AUG and AUG start sites
that can, dependent on the exact location within the mRNA, lead to extended or alternative
protein isoforms. Based on this, we developed a prediction model, named PreTIS, that detects
alternative start sites in a given mRNA sequence. Thereby, all integrated features are based
on mRNA sequence information. Our best performing model, with accuracies of about 80%,
is based on experimental evidences of alternative starts found using ribosome profiling. In
detail, PreTIS takes anmRNA sequence and assigns initiation confidence values to all potential
alternative start sites located in the 5’ UTR. These initiation confidences are then categorized
into "low", "medium", "high", and "very high" evidence, which helps to find hot candidate start
sites for alternative initiation. As we observed that features concerning the flanking sequence
context around alternative start sites can influence the performance of our prediction model,
we can confirm that especially these regions are crucial for translation initiation. An additional
investigation of the flanking sequence context via the introduction of in silico mutations also
verified that translation initiation is prone to changes in the start site surrounding sequence.
Our prediction model was also found to be transferable to the reliable detection of alternative
starts in mouse sequences. To make PreTIS available to the scientific community, we decided
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to embed the prediction model into a publicly available web service. This web service greatly
supports the analysis of alternative translation inmRNA sequences by providing an interactive
illustration of all predicted initiation confidences, by highlighting all putative start sites within
the givenmRNA sequence, and by summarizing all calculated features in downloadable tables.





CHAPTER4
Mutation frequencies in key elements

of the human genome
This chapter presents our investigations of mutation frequencies in several genomic key ele-
ments such as coding regions, CpG islands, and promoters. Inspired by our former project
PreTIS, we were especially interested in variations in the flanking sequences of transcription
and translation start sites. The manuscript "Mutation frequencies at transcription start sites
and at canonical and alternative translation initiation sites in the human genome. Kerstin
Neininger, Tobias Marschall, and Volkhard Helms." was submitted to BMC Genomics, see Sec-
tions 4.2 to 4.4. Data integration and analyses were performed by me. Tobias Marschall from
the Algorithms for Computational Genomics group located at Saarland University assisted us
in the discussion of the results and the write–up of the manuscript. Section 4.1 gives an intro-
duction to the topic and provides background information on the used methods.

4.1 Prerequisites
The determination and analysis of human genetic variation plays an essential role in various
research areas and revolutionized modern medicine. Various mutations are associated with
disease phenotypes such as cancer. The influence of a mutation on the phenotype is highly
dependent on the position of a mutation within the genome, for instance regulatory regions
or the gene body. As even small changes can influence initiation mechanisms and start site
recognition, we were especially interested in mutations that are located in direct vicinity to
transcription and translation start sites. Especially the flanking sequence context of translation
start sites is sensitive to polymorphisms, see Section 3.1.1 and Figure 3.14 of Section 3.4.4. In-
spired by our previous project, see Chapter 3, we conducted a genome–wide in–depth analysis
of mutations around these start sites together with a general investigation of mutation frequen-
cies in several genomic key elements. In the following, variation types, their emergence, and
the impact of human variations on (disease) phenotypes are presented. Moreover, the under-
lying data sources and bioinformatics tools used in this project are explained.

4.1.1 Genomic regions and their functional purpose
Eukaryotic genes comprise of several regions: intergenic region, promoter, 5’ UTR, coding
exon(s), 3’ UTR, intron(s), and intragenic region [7]. The basic genomic regions are illustrated
in Figure 4.1. Intragenic regions reside between a TSS and a transcription end site (TES) and
are composed of 5’ UTR, coding exon(s), 3’ UTR, and intron(s). The 5’ UTR is located between
the TSS and the coding start site (CSS), whereas the 3’ UTR resides between the coding or
translation end site (CES) and the TES. Thereby, 5’ UTR and 3’ UTR refer to the exonic seg-
ments in these regions. Coding exons are defined by exon start and exon end positions. They
reside between CSS and CES and are translated into a polypeptide sequence (canonical point
of view). Introns are located within intragenic regions and are defined as the intervals between
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the exonic sequences. The region between two genes refers to the intergenic region. Thereby,
two intergenic regions enclose one gene. The first intergenic region ranges from the TSS of
the considered gene to the mid–upstream position between the considered TSS and the TES of
the next upstream gene. The second intergenic region is defined analogously in downstream
direction. Genomic information such as transcription and coding start sites, strand (plus or
minus), or exon positions can be retrieved from the UCCS genome browser [56, 163].

Promoter regions are located upstream of a TSS and can overlapwith CpG islands [99, 131].
Promoter regions are essential for transcription initiation [7]. The core promoter is located close
to the TSS, that means about 40 bp away from the TSS [7]. In our project, the gene promoter
was defined as the region from 2000 bp upstream to 1000 bp downstream of the TSS. Normally,
transcription factors can bind to the core promoter to attract RNA polymerase for transcrip-
tion initiation [7]. The so–called TATA box core promoter is located between 28 and 34 bp
upstream of a TSS [229]. As the name suggests the consensus sequence constitutes of adenine
and thymine bases. TATA box–binding proteins can recognize and bind to this sequence to
attract RNA polymerase II [7, 229, 230]. Transcription factors can also bind to enhancer and si-
lencer DNA sequences, which play important roles in gene regulation by influencing activation
or repression of their target genes [231].

Figure 4.1: Definition of human genomic regions. Definition of the basic genomic regions:
intergenic region, promoter region, 5’ UTR, coding exon(s), 3’ UTR, intron(s), intragenic region
and CpG islands (not shown). Shown is the + strand, the – strand is analogous.

The flanking sequence context of translation start sites was experimentally shown to be
prone to small base exchanges [185, 189]. A statistical start site analysis, which was carried
out in our former project PreTIS, confirmed these tendencies, which were then integrated in
our machine learning approach, see Section 3.4.4. Moreover, it was shown that mutations in
promoter regions and transcription factor binding sites can have an impact on the transcription
machinery (see below). A study that scored the influence of individual mutations on transcrip-
tion factor binding is presented in Section 5.1.2. Thus, in addition to the mentioned "canonical"
genomic regions, we defined four additional regions ranging from –200 to +200 bp as well as
from –15 to +13 bp around transcription and translation start sites.

4.1.2 Human genetic variation
The Human Genome Project, initiated in 1990, was an international collaboration of various
scientific research groups with the aim to fully annotate and sequence the three billion base
pairs of the Homo sapiens genome [232, 233, 234]. The initial sequencing draft covered more
than 90% of the human genome and revealed about 1.4 million SNPs [232]. The project was
successfully completed in 2003 [233, 234]. The complete human genome sequence consisted of
2.85 billion nucleotides covering 99% of the euchromatic human genome [234]. A major aim
of this large–scale project was the determination of all human (protein–coding) genes [234].
Finally, the International Human Genome Sequencing Consortium deciphered that the human
genome consists of about 20,000 to 25,000 genes coding for proteins, not including RNA tran-
scripts [234]. All data was made publicly available to the scientific community providing a
basis for further research projects, for instance, focussing on the genetic variation between in-
dividuals.
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Genetic variations and their emergence are diverse
Differences in individual bases between two genomes can affect the phenotype to a great extent.
The three billion base pairs human genome consensus sequence from an European individual
was reported to share 99.5% similarity with other individuals of European origin [235, 236].
These variations lead to a phenotypic variety and are mainly based on single nucleotide poly-
morphism (SNPs) [236, 237]. An A/C polymorphism is shown in Figure 4.2.

Figure 4.2: Definition of a single nucleotide polymorphism. Single nucleotide polymor-
phisms are defined as variations of individual nucleotides between the DNA strands of paired
chromosomes or differences between separate genomes. Here, the reference base is an A,
whereas the mutated sequences shows a C, resulting in an A/C SNP. The complementary base
pairing leads to a change of A–T towards C–G, assuming the error is not corrected via repair
mechanisms.

Variants can be acquired over time and can arise in somatic cells, which is known as so-
matic mutation, or can be passed from a parent to the offspring, which is entitled as germline
mutation [238]. For instance, various mutations associated with cancer are somatic [238]. The
development of variants in human populations is due to various diverse processes. For ex-
ample, polymorphisms can be caused by DNA damage, erroneous DNA replication based on
nucleotide misincorporation, incorrect DNA repair, or mobile genetic elements such as trans-
posons [238, 239, 240]. Normally, mutations are eliminated by DNA repair mechanisms [241].
The number of new mutations per offspring was estimated to amount to approximately 100
polymorphisms [242, 243]. Moreover, about 70 de novo variants per offspring were reported
based on sequencing of human parent–offspring trios [244]. Acuna-Hidalgo et al. [245] ana-
lyzed recent studies and reported an average of about 44 to 82 de novomutations per offspring.
Thereby, only one or two mutations were found in coding regions [245]. The association of de
novo mutations with genetic disorders as well as their causes, genome–wide distribution and
parental origin are reviewed in [245].

In general, one distinguishes between SNPs and the substitution of several nucleotides
which is known as the collective term indels, short for insertions and deletions. SNPs are
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separated into transitions and transversions, with transitions indicating an exchange between
pyrimidine bases (C↔ T) or purine bases (A↔ G), whereas transversions denote the replace-
ment of a purine base with a pyrimidine base or vice versa. The difference between transition
and transversion SNPs is illustrated in Figure 4.3. Note that transitions are generally found
more frequently compared to transversions, with a proportion of about two thirds to one third,
based on their structural nature and the chemical conversion via deamination [128, 246].

Figure 4.3: Transition and transversion SNPs. Polymorphisms of single bases are divided
into transitions and transversions. Transitions underlie deaminations and occur much more
frequently in the genome.

Common SNPs are assumed to occur at a minimum allele frequency of at least 1% within
a population, which differentiates them from rare mutations with a frequency below 1% [238,
246]. The threshold of 1% was chosen arbitrarily and there is an ongoing debate on the exact
definition of the terms "mutation", "polymorphisms", "point mutation", and "SNP" that are
often used synonymously, see Karki et al. [238] for more details. SNPs are found frequently in
human genomes and the general assumption is that a polymorphism is found generally every
1000 base pairs [235, 247, 248, 249], although their distributionwithin different genomic regions
and even between chromosomes can vary [235, 250, 251]. Moreover, the distribution of SNPs
within in the human genome was reported to be non–random, whereby the smallest amount
of SNPs was found in coding regions [235].

Beside SNPs, copy–number variations contribute to genetic variations as well [252]. Copy–
number variants, or copy–number polymorphisms, are defined as large duplication and dele-
tion events of 100 kilo bases (kb) or even more [252, 253]. These genomic rearrangements also
emerge in intragenic regions and can affect the phenotype of an individual by gene proliferation
or deprivation [254, 255, 256]. Certain (inherited) alterations in the copy–number of an individ-
ual compared to the species average are associated with complex diseases [256]. For instance,
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a specific duplication event was also associated with susceptibility to HIV and AIDS [257].
Leukodystrophy is an inherited neurological disorder that affects the central nervous system
by a progressive loss of the myelin (white matter) sheath and can be caused by a duplication
event [258]. Down syndrome, also known as trisomy 21, is caused by an additional copy–
number of chromosome 21 [259]. Note that the main focus of our studies is on SNPs rather
than copy–number variants.

SNP positions determine the impact on (disease) phenotypes
The influence of a SNP on the phenotype is dependent on the precise position or genomic
region of the polymorphism [7, 95]. Mutations in coding regions can have an impact on the
encoded protein and thus change the proteome, whereas mutations in regulatory sites, such as
transcription factor binding sites, can affect gene expression and hence protein abundance. Of
course, both alterations may shape a disease phenotype.

SNPs locatedwithin DNA coding regions can affect protein function or structure, although
function and structure are in some way dependent on each other [7, 95]. Thereby, different
types of mutations are distinguished. A synonymousmutation is present if the nucleotide sub-
stitution does not affect the encoded amino acid. This often applies to the third codon position,
see Table 1.1 in Section 1.2. When the substituted nucleotide alters the encoded (wild–type)
amino acid or has an effect on the reading frame, we speak of a non–synonymous mutation.
Non–synonymousmissensemutations result in an exchange of a single amino acid in the trans-
lated protein sequence, whereas readthrough and nonsense mutations lead to substitution of
an amino acid with a stop codon and vice versa, respectively. A reading frame shift arises in
the case when the number of substituted bases is not divisible by three. In consequence, the
peptide sequence changes completely. Table 4.1 summarizes different coding mutation types
and their impact on the encoded protein sequence.

Table 4.1: Different types of coding mutations. One distinguishes different coding mutations
that arise dependent on the SNP position and the substitution. The nucleotide exchange is
given together with the impact of the substitution on the amino acid sequence. The affected
nucleotides are shown in bold.

Impact Description mRNA Protein

Synonymous: Wild–type and mutated amino acid
are the same.

GGC→ GGA Gly→ Gly

Non–synonymous:

Missense Translation of a different amino acid. ACG→ GCG Thr→ Ala

Readthrough A stop is replaced by an amino acid
resulting in an elongated isoform.

UAA→ UUA Stop→ Leu

Nonsense An amino acid is encoded as stop
resulting in a shortened isoform.

UCG→ UAG Ser→ Stop

Frameshift The ORF is shifted based on an indel
with the number of nucleotides not
divisible by three.

AAG–CUG
→
ACA–GCU–G...

Lys–Leu
→
Thr–Ala–...

Mutations located in genic flanking sequences, like gene regulatory elements, can influ-
ence regulatory mechanisms and disease phenotypes. For example, TERT promoter mutations
and overexpression of the telomerase reverse transcriptase (TERT) were observed in several
cancer types such as glioblastoma, an aggressive brain tumor, or melanoma, a very malignant
form of skin cancer [260, 261, 262]. Besides intragenic polymorphisms, mutations in the TERT
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promoter region were found to be associated with a reduced life expectancy and increased the
susceptibility to suffer from glioblastoma [260]. The up–regulation of TERT leads to mainte-
nance of telomere elongation and consequently prevents apoptosis [260]. Promoter mutations
in the GJC2 gene were reported in hypomyelinating leukodystrophy patients [263].

Specific differences in individual genes or gene regions were reported to be associated
with disease phenotypes as well [264]. Cystic fibrosis is based on a coding mutation in the
CFTR transmembrane protein known as the "cystic fibrosis transmembrane conductance regu-
lator" [265]. The risk to suffer fromAlzheimer’s disease is related to a polymorphism in both the
apolipoprotein E encoded by the APOE gene and the APOE promoter [266]. Deletion of a C–C
chemokine receptor type 5 (CCR5) segment is associated with resistance to HIV and CCR5 is
thus subject to studies aiming at identifying new target proteins in HIV research [267]. Sickle–
cell anemia is caused by a mutation in the gene that encodes the β–subunit of the hemoglobin
protein which is necessary for oxygen transport, resulting in a higher mortality rate and show-
ing symptoms such as anemia [268, 269]. Beside the mentioned negative impact, the sickle–cell
causing polymorphisms can also be advantageous in developing countries making a carrier of
this mutation resistant to malaria [268]. Nevertheless, the genetic basis and causes of various
genetic diseases are generally very complex [270].

Multiple research areas benefit from consideration of genetic variants
Human genetic variation is of great interest in various research fields such as population genet-
ics, the development of new drugs, a profound understanding of genetic diseases like cancer,
or the investigation of a connection between genotype and phenotype [246]. The clinical phe-
notype of various diseases such as diabetes, mental disorders as well as cardiovascular and au-
toimmune diseases are assumed to be associated with genetic variation in specific genes [246].
Moreover, DNA fingerprinting and the analysis of DNA profiles contributed tremendously to
forensic evidences, which is reviewed elsewhere [271].

The field of personalized or precisionmedicine benefits from new sequencing technologies
as well. Personalized medicine aims at medical treatments tailored to an individual and going
beyond classical treatment in which the same medication is applied to millions of (genetically
different) people [272]. Thereby, the consideration of DNA variants is essential [272, 273, 274].
For instance, colorectal cancer patients with a mutated K–ras gene were reported to respond
better to the treatment compared to patients with the wild–type K–ras gene [274]. Moreover,
survival rates in leukemia patients tested positive for the Philadelphia chromosome, an aber-
rant chromosomal translocation found in leukemia cancer cells, were found to increase upon
treatment with a specific drug functioning as tyrosine kinase inhibitor [273]. This underlines
that the consideration of the genotype and the resulting selection of an appropriate medica-
tion is crucial in the treatment of complex diseases such as cancer [275]. Most often, diseases
are not caused by a single variant but are based on (a) particular genetic predisposition(s) to-
gether with external or environmental influences that contribute to these so–called complex
diseases [246]. Studies that deal with the linkage between polymorphisms and a trait, such
as the onset of a disease, are known as genome–wide association studies (GWAS) and are re-
viewed elsewhere [276, 277, 278]. Another study aimed at investigating the geographic dis-
tribution of polymorphisms [279]. They sequenced 3,000 citizens from Europe and analyzed
their genotype with respect to DNA variants. Using principal component analysis (PCA), ge-
netic variance was visualized in two dimensions (axis PC1 and axis PC2). Interestingly, this
kind of visualization and the clusters that formed, mirrored the European geographic map.
Thus, the genotype "correlated" with the geographic distribution, meaning that individuals
could be assigned to the region they originate from just based on their genetic variants.

Moreover, two large–scale genome sequencing projects, the 1000 Genomes Project [57] and
Genome of the Netherlands (GoNL) project [58, 59], reported tens of millions of polymor-
phisms that are publicly available. Their aim was to decipher and analyze human genetic
variation in detail. Variation data from these two major projects was used in our project to
examine mutation frequencies in several genomic elements with a focus on transcription and
translation (alternative) start sites. The underlying datasets are explained below.
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Calculating evolutionary conservation
Computation of sequence conservation between genomes or species can shed light on the func-
tional importance and relevance of individual genomic regions. A simple measure of evolu-
tionary sequence conservation is the number of SNPs in a predefined region, defined as the
SNP density [250]. Thereby, a low SNP density is associated with a conserved region and vice
versa [250].

Moreover, Nei and Li [280] introduced the term nucleotide diversity that is defined as the
average number of differing bases between two genomes. Nucleotide diversity can be used
as an evolutionary measure to determine sequence variation and compare DNA sequences of
different genomes [264, 280]. For instance, the widely used Tajima’s D statistic considers nu-
cleotide diversity and can be applied to test for the neutral mutation hypothesis [281]. Neutral
theory assumes that the vast majority of mutations are neutral with respect to selection. This
means that evolutionary changes in DNA sequences and proteins are assumed to be based on
a random drift of selectively neutral mutants [282]. Tajima’s D test statistic was defined as the
normalized difference between π and θ

D =
π −Θ√

V ar(π −Θ)

with the average number of nucleotide differences (average sequence diversity) π, and

Θ =
S

n−1∑
i=1

1
i

with the number of segregating sites S and the population size n [281]. Segregating sites
are defined as sites that show at least two different nucleotides when comparing homologous
DNA sequences [283]. π can be estimated as the number of pairwise differences divided by
the total number of

(
n
2

)
possible pairwise alignments [284]. Tajima’s D statistic was applied

for the analysis of human polymorphisms in DNA coding regions [285], the association of rare
variants with complex diseases [286] as well as pharmaceutical studies involving membrane
transporters [287] to name some examples.

4.1.3 Data sources and bioinformatics tools
The analysis of human variants in different genomic elements and in the flanking sequence
context of transcription and translation start sites requires a collection of several datasets. Data
for this project was taken from the UCSC Genome Browser and two large–scale sequencing
projects. VCFtools, BEDTools (explained in Section 1.4), and Bowtie were used in the analysis
pipeline. The mentioned tools and datasets are presented in the following.

UCSC Genome Browser
TheUCSCGenomeBrowser is aweb service for the fast and comprehensive visualization of hu-
man genome annotations [56]. The browser can visualize whole–genome information like gene
annotations and predictions, expression and regulatory information, or variation data. The
UCSCTable Browser can be used for the (filtered) retrieval of various genome annotations from
the Genome Browser Database [163]. The Table Browser complements the Genome Browser
and enables a large–scale processing of data in common file formats such as tab–separated
text files or BED format. For the analysis of mutations in different genomic elements, human
genome annotations (RefSeq genes [288], hg19 assembly) were downloaded using the UCSC
Table Browser.
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Large–scale genome sequencing projects
Two of themost elaborate large–scale sequencing projects in recent years are the 1000 Genomes
Project [57] and Genome of the Netherlands (GoNL) project [58, 59]. The 1000 Genomes Project
reconstructed the genomes of 2,504 individuals from 26 populations. While this reconstruc-
tion was mainly based on low–coverage data, the GoNL consortium focused on a smaller
number of individuals, 250 Dutch parent–offspring families, but sequenced at a higher cov-
erage. Additionally, the GoNL experimental setting allowed the identification of de novo mu-
tations [58, 289]. The variations provided by these sequencing projects were used as basic
datasets for the analysis of mutations in various genomic elements such as promoter region,
5’ UTR, coding regions, and in the flanking sequence of transcription and translation start sites.
All variants are provided in commonly used variant call format (VCF).

TheVCFfile format is the conventional text file format for storing variant calls togetherwith
necessary information such as genome position, allele frequency, or quality [72]. Thereby, vari-
ants comprise single nucleotide polymorphisms, insertions and deletions as well as structural
variants. This file formatwas initially developed to efficiently store data from the 1000Genomes
Project, see [57] for the final publication of project phase 3. VCF files are composed of a header
section that displays meta–information starting with "##". The last header line defines the col-
umn names and starts with "#". The body of a VCF file then lists the detected variants with ad-
ditional information such as position or allele frequency. Thereby, eight tab–separated columns
are mandatory, see Table 4.2. For more detailed information on VCF file format, please refer to
Danecek et al. [72].

Table 4.2: VCF file format description. The VCF file formatwas initially developed to annotate
and store variants from the 1000 Genomes Project [57]. The eight listed columns are required
within the body of a VCF file. Header meta–information is given prior to the body and starts
with "##". SVTYPE refers to the structural variant type such as a deletion (DEL) or inversion
(INV). Detailed information on the variant call format is given by Danecek et al. [72].

Column name Description Example

CHROM Chromosome 1

POS Variant position (1–based) 1000

ID Variant identifiers (unique) rs123

REF Reference allele C

ALT Alternative alleles (comma–separated) G, CA

QUAL Quality score (Phred scaling) 50

FILTER Information on variant site filtering PASS

INFO Additional annotations (semicolon–separated) SVTYPE=DEL

VCFtools
VCFtools is a software package that implements several functions for the analysis of variation
data given as VCF files [72]. The provided functions include validation, filtering, comparisons,
estimation of allele frequencies, quality control, and general statistics. The TajimaD function,
provided by the VCFtools suite, was used by us to estimate the evolutionary pressure on differ-
ent genomic elements. The data basis was provided by the 1000 Genomes Project [57]. Tajima’s
D statistic [281] is widely used to evaluate the neutral evolution hypothesis, see Section 4.1.2.
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Bowtie
Bowtie is an efficiently implemented short read alignment program [71]. The speed is achieved
by taking advantage of the Burrows–Wheeler transformation for indexing of the reference
genome. Burrows–Wheeler transformation is explained in detail in Section 5.1.1. We applied
Bowtie for the retrieval of genomic coordinates from mRNA sequence information. This was
necessary for the analysis of the flanking sequence context around canonical and alternative
translation start sites.

GO terms and functional gene annotation
The Gene Ontology Consortium initiated the Gene Ontology (GO) project in 1998 with the aim
to develop a uniform vocabulary to describe the role of genes and gene products across or-
ganisms [290, 291]. They defined three separate ontologies referred to as biological process,
molecular function, and cellular component. A biological process is defined as a cellular pur-
pose or aim in which genes or gene products are involved in. Examples are the GO–terms "cell
aging", "translation", and "transmembrane transport". Amolecular function is referred to as all
biochemical activities, thereby also considering binding to specific ligands or structures. For
instance, "hydrolase activity", "DNAbinding", and "penicillin binding" are examples formolec-
ular functions. A cellular component is defined as the cellular location where the gene product
performs its functionality. Examples for cellular components are "membrane", "nucleus", and
"integrator complex".

Given a list of gene or protein identifiers, the DAVID Bioinformatics Resources database
can be used for functional enrichment analysis [292]. The following analyses can be con-
ducted: gene functional classification, functional annotation chart/clustering, and generation
of a functional annotation table. The underlying database is composed of more than 40 anno-
tation classes such as GO terms, pathways, expression data, and protein domains. We applied
DAVID to investigate functional roles of genes with a CpG site located directly upstream of
the transcription start site at position –1, which was found to harbor an elevated mutation rate
compared to the local surrounding.

4.2 Introduction
Polymorphic sites in the genome are a major source of phenotypic variation in human pop-
ulations [237]. These polymorphisms are caused by random mutational processes such as
nucleotide misincorporation during DNA replication, DNA damage, or erroneous activity of
DNA–processing enzymes [239, 240]. These mutational forces are typically counter–acted by
DNA repairmechanisms [241] and byDarwinian selection [293]. In general, there exist twoma-
jor types of point mutations, transition and transversion SNPs, as well as insertions and dele-
tions (indels). Thereby, transitions (mutation from C to T, or G to A on the second strand), are
the most frequent substitution found [128]. Hence, in our study we considered data from two
large–scale sequencing projects that characterized the variability of human genome sequences:
the 1000 Genomes Project [57] and the Genome of the Netherlands (GoNL) project [58, 59].
While the 1000 Genomes Project reconstructed genomes from 2,504 individuals from 26 popu-
lations, mostly from low–coverage data, the Genome of the Netherlands project focused on 250
Dutch parent–offspring families sequenced at higher coverage, which additionally allowed to
identify de novo mutations [59, 289]. Venter and colleagues recently presented an analysis of
variations in 10,000 human genomes [250].

In general, conservation can be measured either through multiple sequence alignments
between species or through population analysis. Protein encoding sequences are typically
strongly conserved whereby conservation increases from the 5’ UTR towards the coding se-
quence [294]. Outside of protein–encoding exons, highly conserved DNA elements are often
associated with transcriptional regulation such as promoter regions upstream of the transcrip-
tion start site of genes and tissue–specific enhancers. In consequence, polymorphisms occur
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more frequently in genomic regions without a known function [295]. The SNP density, defined
as the number of SNPs in a predefined region, can be seen as a simple measure for evolution-
ary sequence conservation, whereas a low SNP density indicates a strongly conserved region
and vice versa [250]. Another widely used measure that can be applied to test for the neutral
mutation hypothesis is Tajima’s D statistic [281]. To name a few studies, Tajima’s D statistic was
used to analyze SNPs in coding regions of human genes [285], to investigate SNP and haplotype
variation [296, 297], to examine drug response involving membrane transporter genes [287], to
analyze rare variants and their contribution to complex diseases [286] and a human polymor-
phic inversion that disrupts a specific gene [298].

The start site flanking region of translated sequences was shown to play a crucial role in
translation initiation and is important for the recognition of the start sites by the ribosome scan-
ning complex [182, 183, 189, 299]. Pioneering work considering the influence of the flanking
region on translation initiation was conducted by Marilyn Kozak in the 1980s. She found that
a purine at position –3 and a guanine at position +4 are crucial for efficient translation initia-
tion [182, 183]. Note that these positions are always given relative to the translation start site.
When the position –3R (R = purine) is replaced by a pyrimidine, translational efficiency was
reported to become more dependent on other positions, for example positions –1 and +4 [183].
Noderer et al. [189] analyzed the influence of all possible translation initiation starts between
positions –6 and +5 using an experimental technique called FACS–seq. They confirmed the
high influence of the sequence context in direct vicinity of the start site on translational effi-
ciency. Moreover, mutations in the translation start site of protein KLHL24 resulted in a short-
ened polypeptide due to ribosomal read–through of the mutated start site and initiation at an
in–frame downstreamAUG–Methionine [299]. Thus, SNPs in and around translation start sites
can influence on the efficiency of the start site recognition and thus the translation machinery.

Beside the canonical AUG, other codons that differ from AUG by one nucleotide were
shown to also function as translation start sites [42, 43]. These so–called alternative start sites
can occur in the 5’ UTR, CDS, or 3’ UTR. In general, 5’ UTRs comprise the largest fraction of
alternative translation starts [24]. Dependent on the location of a 5’ UTR alternative start site
relative to the annotated start site, translation can be in–frame or out–of–frame and therefore
result in, for instance, small upstream ORFs, elongated proteins, or alternative proteins [169].
Alternative translation initiation, and thus the resulting alternative proteins, are involved
in regulatory processes and can be targeted to different cell compartments [174, 176, 181].
Ribosome profiling is an experimental technique to determine (alternative) translation start
sites [43, 44, 170, 191]. A prediction model called PreTIS was developed by us to assist in the
analysis of 5’ UTR sequences and reveal alternative reading frame independent translation start
sites in human and mouse [226]. Providing a mRNA sequence, PreTIS predicts the translation
initiation confidence of all putative 5’ UTR start sites (AUG and all nine near–cognate codons).
The prediction model is based on mRNA sequence–encoded features that, for instance, incor-
porate position weight matrices and the crucial positions –3 and +4 mentioned above. Thus,
PreTIS can also be used to predict howmutations in the start site flanking region can influence
start codon recognition.

In this study, we carried out a systematic analysis of transition and transversion SNPs as
well as indels that occur in nine types of genetic elements (coding and non–coding regions) in
the human genome. The investigated regions comprise the intergenic region, CpG islands,
promoter, 5’ UTR, coding exons, 3’ UTR, all exons, introns and intragenic region, see Fig-
ure 4.1. As primary datasets, we used SNPs and indels reported in the European cohort of
the 1000 Genomes Project [57] and the GoNL project [58, 59]. To test for neutrality, we applied
thewidely used Tajima’s D statistic to different genetic elements [281]. Since SNPs around tran-
scription and translation initiation start sites may have direct effects on gene transcription and
protein translation, we investigated these SNP patterns in detail. Special attention was given
to the start site flanking region that was defined as a window ranging from –15 to +13 with
respect to the start site. With the common assumption that conservation reflects functional
relevance, we also compared the SNP distribution of canonical start sites and experimentally
detected [43] alternative start sites in the 5’ UTR.
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4.3 Materials and methods
The aim of our study was a detailed investigation of mutation frequencies in several genomic
key elements such as promoter regions and coding sequences to estimate their functional im-
portance. Moreover, we analyzed mutations in the flanking sequences of transcription and
translation start sites as these variations can impact the regulatory machinery. In the follow-
ing, the data sources and analysis steps are explained.

4.3.1 Data integration and mutation analysis
This study is based on variation data form two major sequencing projects. Moreover, muta-
tions were mapped in a genome–wide fashion to several genomic regions and analyzed sub-
sequently. In the following, the datasets used in this study together with the applied bioinfor-
matics tools are presented.

Variation data and genomic regions
Information about annotated SNPs and indels in human genes was used from the
1000 Genomes Project (1000G, phase 3, using only the EURopean super population, 503 in-
dividuals) [57] and from the Genome of the Netherlands project (GoNL, release 5) [58, 59].
Data was provided in VCF file format. For the analyses, we kept autosomal SNPs with a minor
allele frequency larger than zero, whereby allele frequencies were calculated from the respec-
tive consortium, see [57, 58, 59]. These variants were assigned to four classes, namely transition
SNPs, transversion SNPs, indels (without length cutoff), and the union of all variants.

Human gene annotations were downloaded from the UCSC genome browser hg19 assem-
bly (RefSeq genes) [56, 163]. We removed genes coding for microRNAs and small nucleolar
RNAs, genes with CDS start equal to the CDS end as well as genes located on chromosomes
other than chromosome 1 to chromosome 22. Special care was taken of overlapping genes,
where we distinguished between overlaps located inside other genes and staggered overlaps
(genes overlap partially). Genes inside other genes were excluded. All genes with staggered
overlap were collected and from each collection, only one gene was selected randomly to avoid
overlapping genes. In total, about 5% of all genes were removed due to overlaps. If a gene has
more than one transcript variant, only the longest transcript was retained.

For a general overview on SNP frequencies in the human genome, nine basic genetic re-
gions were derived for every gene based on the genomic information provided by the UCSC
genome browser. These regions comprise: intergenic region, CpG islands, promoter region,
5’ UTR, coding exons, 3’ UTR, all exons, introns, and intragenic region, see Figure 4.1. The
regions were defined as described in Section 4.1.1. The information needed to calculate the
genomic coordinates of these regions for every gene was downloaded from UCSC genome
browser and includes chromosome, strand, TSS, TES, CDS start and end, exon starts and exon
ends. Besides these nine general regions, we also considered narrow sequence windows of
±200 bp around transcription and translation start sites as well as in their direct vicinity and
ranging from –15 to +13 bp, see Figure 4.4.

Bioinformatics tools for mutation analysis
Any calculations requiring interval arithmetic and sequence mapping were implemented us-
ing the BEDTools suite (version v2.26.0) [78], samtools (version 1.3.1) [75, 76] and/or Bowtie
(version 1.1.2) [71]. These operations include the assignment of SNPs and indels to their respec-
tive genes and genetic elements as well as the retrieval of genomic coordinates by a nucleotide
sequence context and vice versa. SNP densities, defined as number of SNPs per kb, were then
calculated for the different variant types and the nine basic types of genetic elements. Note that
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Figure 4.4: Definition of sequence context around translation start sites. Per definition, posi-
tions around the translation start site are given relative to the start site, which is denoted as 1,2
and 3. Position zero is left out. Positions –3R (R = purine) and +4G were shown to be crucial
for translation initiation [182, 183] and are therefore highlighted in red color.

the calculated SNP density is a function of the cohort size. The evaluation of the neutral evo-
lution hypothesis was analyzed by the widely used Tajima’s D statistic [281] for every genetic
element. For this, we applied VCFtools (version v0.1.13) [72] with a bin size of 1 Mb (mega
base) to filtered VCF formatted variant files that only contain variants found in the respective
genomic regions. Tajima’s D aims at testing for the neutral mutation hypothesis by comparing
two nucleotide diversity measures for genetic variation: the number of segregating sites and
the average sequence diversity or number of nucleotide differences [281]. Tajima’s D was only
applied to the SNP data from 1000G because it provides publicly accessible genotype informa-
tion. Two–tailed Wilcoxon rank sum tests together with Bonferroni correction were used for
the statistical comparison of different SNP types within the nine genetic elements. Thereby, we
assume a p–value p to be significant if p < 1.4 × 10−3 with 0.05

#tests . The pairwise comparisons
included #tests = 9×8

2 .

4.3.2 Statistical permutation testing
Since the flanking regions of transcription and coding start sites have direct effects on gene
transcription and protein translation, we investigated these regions inmore detail and at higher
resolution with respect to their SNP and indel distribution. SNPs and indels can, for instance,
influence the binding of transcription factors in the promoter region or the translation initiation
of the ribosome scanning complex in the 5’ UTR [182, 183, 300]. We therefore examined the
average SNP density in a range of ±200 bp around the TSS and CSS and subsequently focused
on mutations in direct vicinity ranging from positions –15 to +13 of these start sites.

As translation initiation was shown to be especially dependent on the start site flanking
region [182, 183, 189, 299], we analyzed annotated (RefSeq genes) aswell as alternative start sites
located in the 5’UTR in detail. RefSeq geneswere retrieved as described abovewhile alternative
start sites in human HEK293 cells were retrieved from experimental ribosome profiling data
and used as annotated by the original authors [43]. To investigate the flanking region around
translation start sites, we defined a sequence window from –15 to +13 relative to a start site
that encompasses positions 1, 2 and 3, see Figure 4.4. Next, duplicated sequence contexts (for
example from several transcript variants) and codons differing from AUG and near–cognate
variants were removed. SNPs from 1000G and GoNL were then mapped to these sequence
contexts. Indels were excluded from further analysis since the amount of indels located in
the predefined sequence window from –15 to +13 is small such that a profound significance
analysis is not possible.

We conducted a permutation test to investigate whether the negative peak at the CSS (po-
sitions 1, 2, and 3) is statistically significant. That means we calculated the probability to detect
a negative peak of a certain magnitude by random sampling. For this, sequence contexts were
represented as binary strings, with 1 representing a mutation at a position, and 0 otherwise.
First, for all mutated translational sequence contexts detected by our analyses, in the following
denoted asWT for wild–type sequence, we calculated the z–score

φWT =
µWT{p} − Cp
σWT{p}
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with the average number µ of SNPs over all positions, except positions at the CSS (i.e.
p /∈ {1, 2, 3}), the average number of SNPs Cp at positions p ∈ {1, 2, 3}, and the respective stan-
dard deviation σ. We then randomly shuffled (SH) all binary sequence contexts, for instance
00101 can be shuffled into 10100 or 11000 by switching positions randomly, and calculated
analogously:

φSH =
µSH{p} − Cp
σSH{p}

.

The p–value pwas then computed as

p =
1

r
×

r∑
i=1

c(φWT , φSH) with c(φWT , φSH) =

1, φSH ≥ φWT

0, φSH < φWT

with r representing the number of shuffle repetitions, here r = 10, 000. We assume a p–
value to be significant (Bonferroni corrected) if p < 0.05

4 = 0.0125 with #tests = 4 when
considering canonical and alternative start sites as well as 1000G and GoNL data.

4.4 Results and discussion
In this study, our primary focus was to investigate mutation frequencies at transcription and
translation start sites in predefined sequence windows. Furthermore, we compared canonical
with alternative translation start sites detected by ribosome profiling to shed light on trans-
lational regulatory complexity. Before addressing these specific points, we will start with a
general comparison of the data from the 1000G and GoNL sequencing projects with current
literature.

4.4.1 Variant distribution in nine sequence elements
For our study, we selected SNPs and indels reported by (a) the European cohort of the 1000G
project (23,938,159 variants remained after filtering), and (b) the GoNL project (20,706,633 vari-
ants remained after filtering. 63% of the annotated 1000G variants on human autosomes were
transition SNPs resulting from deamination and tautomerization, whereas 30% were transver-
sion SNPs. The remaining variants (7%) were indels. Considering GoNL data, the distribution
was very similar with 65%, 29% and 6% representing transitions, transversions, and indels,
respectively.

Since different DNA elements such as CpG islands, 5’ UTRs, protein–encoding exons or
intergenic regions may exhibit different patterns of sequence conservation, we separately in-
vestigated these elements in the 16,604 RefSeq genes that remained after filtering. We used SNP
density (SNPs per kb) and Tajima’s D statistic [281] to compare the variant distribution of the
different genomic elements with each other and to evaluate the neutral evolution hypothesis.
Figure 4.5 illustrates the results for all SNP and indel types from the 1000G data. The results
for the GoNL data are shown in Figure B.1.

Considering the 1000Gdata, median SNPdensitieswere about 8–9 SNPs per kb for each ge-
nomic element and all variant types, see Figure 4.5A (leftmost group). Considering the GoNL
data, median SNP densities were on average slightly lower (about 6–7 SNPs per kb) compared
to 1000G for each genomic element and all SNP types, see Figure B.1. Figure 4.5A shows that
protein–coding regions were conserved with a median SNP density of about 7 SNPs/kb for all
SNP types. This is in accordance with earlier findings [250]. The large variance of the box plot
for the 5’ UTRwith amaximum SNP density value of about 35 SNPs per kb for 1000G data, (see
Figure 4.5A) is due to the short 5’ UTR length of 230 bp on average (median 180 bp), compare
with Figure B.2. In general, the data from 1000G and GoNL provided very similar results, see
Figure 4.5A and Figure B.1.
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(A)	

(B)	

Figure 4.5: Mutations in key genomic elements considering the 1000G data. Shown are SNP
and indel densities for all variant types and genomic key elements considering 1000G data
(European cohort). (A) Distribution of SNP and indel densities for every gene, the horizon-
tal line (–) represents the median value, the asterisk (?) denotes the mean value. Note that the
calculated SNP density is a function of the cohort size. In total, the 1000G European super pop-
ulation comprises 503 individuals. (B) Tajima’s D statistic was applied to evaluate the neutral
evolution hypothesis.

Indelswere especially rare in coding exons since this type ofmutation can cause frameshifts
in the translated protein. The distribution of indels is shown as rightmost group in Figure 4.5A.
Indel densities were significantly lower than SNP densities (p << 1.4× 10−3). Especially CpG
islands, 5’ UTRs, protein–encoding exons and 3’ UTRs showed a very low amount (median:
0.0) of indels, see Figure 4.5A (rightmost group). A decrease of deletions upstream of the tran-
scription start site has been described in the literature [301]. To our knowledge, a similar effect
has not been described yet for CpG islands. Indels might have more severe effects on tran-
scription factor binding sites than base exchanges [302]. Hence, the low frequency of indels
in CpG islands might be related to a strict conservation of functional sequences within this
genomic (regulatory) element. The evolutionary stability of CpG islands is related to a high
selective pressure on these regions, especially on CpG islands in the promoter regions of the
mammalian genes [132].

To calculate Tajima’s D statistic, we usedVCFtools [72] and a bin size of 1Mb to estimate the
evolutionary pressure acting on the different sequence elements for 1000G data. Figure 4.5B
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shows Tajima’sD values for all genomic elements. Tajima’sD values< 0 indicate a high number
of rare alleles based on a growth in population size and/or purifying selection while Tajima’s
D values> 0 indicate a high number of alleles with average frequency. Intergenic regions (me-
dian: 0.07) were more or less neutral with values around 0. The smallest Tajima’s D values
were found in coding exons (median: –1.21), followed by all exons (median: –0.86), 5’ UTR
exons (median: –0.62), CpG islands (median: –0.52), and 3’ UTR exons (median: –0.49). Thus,
as expected, genetically important gene regions, such as coding exons or 5’ UTRs, were ap-
parently subjected to purifying selection to preserve their functionality. A high conservation
of protein–coding regions and a lower conservation of intergenic regions and introns were re-
ported before [250]. Especially splice sites, that means exon–intron boundaries, were shown to
be highly conserved [250].

In summary, we obtained a very similar picture on the conservation of genomic elements
when either applying Tajima’s D statistic or calculating simple SNP densities. Slight differences
were observed when comparing CpG islands with intergenic regions: the SNP density was on
average higher in CpG islands (9 vs. 11 SNPs per kb, see Figure 4.5A) while the respective
Tajima’s D index was smaller (median: –0.52 vs. 0.07, see Figure 4.5B). Moreover, considering
1000G and GoNL data provided very similar SNP distributions.

4.4.2 Mutation frequencies around the TSS and the CSS
SNPs and indels in promoter regions and 5’ UTRsmay have direct effects on gene transcription
and protein translation [182, 183, 300]. Thus, we investigated SNP densities and their distribu-
tions around transcription and translation start sites in more detail. Considering translation
start sites, we also separately investigated canonical and alternative initiation sites and com-
pared their conservation patterns with each other. This analysis is assumed to shed light onto
the biological relevance of alternative mechanisms.

Mutations at transcription start sites peak at position –1
Figure 4.6A shows the local SNP density around the TSS in a range of±200 bp around the TSS.
Both, 1000G and GoNL data show a decrease in SNP density at the TSS. The same pattern was
observed before [250, 303]. Also, the indel frequency decreased slightly with the TSS as indels
might perturb protein–coding regions more strongly compared to base exchanges. Neverthe-
less, the number of indels was in general very low such that we can only observe a slight indel
depletion towards the TSS.

Next, we analyzed SNPs in direct vicinity to the TSS, see Figure 4.6B. The number of genes
with at least one SNP in this sequence window is given in Table 4.3. In general, the number of
SNPs directly downstream of the TSS was lower than directly upstream. Clearly noticeable is
the very high peak at position –1. Onemight speculate that the last base in the intergenic region
might simply be irrelevant for cellular function. It was recently reported that the mutation rate
in human genomes is elevated at protein–bound DNA sites such as active transcription factor
binding sites or nucleosome positions [304]. This was shown to be due to the interference of
the nucleotide excision repair (NER) machinery and DNA–binding proteins that results in a
decreased NER activity [304]. Thus, one might speculate that DNA–bound transcription fac-
tors could block repair enzymes resulting in higher mutation frequencies at these positions.
However, only the position –1 deviates from the general SNP pattern. Thus, we analyzed the
underlying DNA sequence at and around position –1 in more detail, also keeping in mind
that some polymorphisms can occur more frequently (e.g. in the context of methylated CpGs)
compared to other dinucleotides.

Figure 4.6C displays the dinucleotide distribution around the TSS while Figure 4.6D de-
notes the respective SNP distribution for individual dinucleotides. Figure 4.6C shows that the
frequency of CpG dinucleotides (and CpA dinucleotides, see below) was increased at position
–1 compared to the surrounding positions. A CpG at position –1 means that the C is located at
position –1, while the respective G resides at position 1.
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(A)	

(B)	

(C)	 (D)	

Figure 4.6: SNP and dinucleotide distributions around the TSS. (A) Average SNP and indel
density (1000G and GoNL data) around the TSS (±200 bp) of all RefSeq genes. (B) SNP pattern
in direct vicinity (–15 to +12) of the TSS considering 1000G and GoNL data. Position 1 denotes
the first intragenic nucleotide. (C) Distribution of dinucleotides starting with cytosine in the
flanking region of the TSS of all RefSeq genes. CpG and CpA dinucleotides are prevalent. (D)
Number of SNPs (1000G data) at individual dinucleotides. The majority of SNPs resides at
CpG dinucleotides.

In general, the number of CpG dinucleotides was increased around the TSS and peaks
with the TSS, see Figure B.3. This symmetric CpG pattern was reported before [132]. Thereby,
2,136 out of 16,603 considered RefSeq genes (one sequence context was removed due to the
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Table 4.3: Number of start sites in direct vicinity of TSS and CSS. Number of start sites
(RefSeq andHEK293 genes) and SNPs (1000G and GoNL) in direct vicinity of TSS and CSS.We
investigated genes with at least one SNP in this sequence window. For the CSS, we considered
AUG as start site for the RefSeq dataset and alternative AUG and all near–cognate codons for
the HEK293 dataset.

Start sites harboring SNPs SNPs in these start sites

TSS RefSeq 1000G 3,777 4,472

GoNL 2,681 3,043

CSS

RefSeq 1000G 3,319 3,819

GoNL 2,277 2,519

HEK293 1000G 1,276 1,487

GoNL 838 942

occurrence of "N", i.e. an unknown base, in the hg19 reference genome) exhibited a CpG dinu-
cleotide at position –1 corresponding to about 13% of all genes. Considering that there exist 16
dinucleotides, this number is twofold higher than expected randomly and about 50% higher
than at the neighboring positions (see Figure 4.6C). CpA dinucleotides were found at positions
–1/+1 for 3,415 out of 16,603 genes amounting to 21% of all RefSeq genes (threefold higher
than expected). The distribution of all 16 dinucleotides in the enlarged window (–15 to +12)
is shown in Figure B.4. Figure 4.6D displays the underlying SNP distribution (1000G data) for
individual dinucleotides. At position –1, SNPs were most often found at CpG dinucleotides,
followed by CpA dinucleotides. Thus, although there were more CpA than CpG dinucleotides
at position –1 (see Figure 4.6C), SNPs were more frequently found in CpG context (mutation
rates of 41

2,136 = 0.02 and 29
3,415 = 0.008, respectively). The frequencies for all 16 dinucleotides

together with the underlying SNP pattern when considering 1000G and GoNL data can be
found in Figure B.5 and Figure B.6, respectively.

The emergence of CpG (and CpA) dinucleotides especially at TSS position –1 was reported
before [305, 306] and this partially explains the higher mutation rate detected at this position.
Figure 4.6B shows that the total number of SNPs in 1000G data increases from about 160 per
position to 230 at position –1. According to Figure 4.6D about 20 SNPs of this increase was
found at CpGs and 20–25 SNPs at CpAs. The manifestation of polymorphisms at CpG sites,
where cytosine is oftenmethylated, is influenced by epigenetic marks [307]. Since deamination
of 5–methylcytosine results in thymine which is a regular base of DNA, the resulting G–T mis-
matches are less efficiently corrected thanG–Umismatches [128, 129]. It has been proposed that
the methylation of cytosines is one cause of the general CpG depletion of vertebrate genomes,
where only unmethylated CpG islands tend to have a CpG content that reflects the frequency of
cytosine and guanine in the genome [130]. The evolutionary stability of CpG islands has been
related to a high selective pressure on these regions, especially on CpG islands in the promoter
regions of the mammalian genes [132]. As shown in Figure 4.6C, CpA dinucleotides were also
highly enriched at position –1. Interestingly, non–CpG methylation was reported for different
mammalian cell types (e.g. embryonic stem cells but also differentiated cells) and it has been
suggested that methylation in non–CpG context is involved in the regulation of gene expres-
sion [104, 105, 106]. Beside CpG sites, methylation is most often found at CpA sites compared
to CpT and CpC sites [105].

Finally, we analyzed the 2,136 genes with a CpG dinucleotide at position –1 by a GO term
enrichment analysis using the DAVID–resource (version 6.8) [292]. As background gene set, we
used all RefSeq genes considered here. DAVID default functional terms, Benjamini–Hochberg
correction, and an EASE score threshold (corresponding to a modified Fisher exact p–value)
of 0.05 were applied. The results of the functional annotation are displayed in Table 4.4. It
is noteworthy that more than half of the inspected 2,136 genes are associated with the terms
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"Phosphoprotein", "Alternative splicing" and "Protein binding", see Table 4.4. Another highly
significant functional term was "Acetylation".

Table 4.4: Functional annotation results using the DAVID–resource. DAVID functional an-
notation [292] was applied to the 2,136 RefSeq genes with a CpG dinucleotide at TSS position
–1. Duplicated terms from different databases were deleted and the one with smallest p–value
was retained. Shown are terms with adjusted p–value of p < 0.05 (Benjamini correction).

Term # Genes % Genes Adjusted p–value

1. Phosphoprotein 1110 52.0 3.5× 10−13

2. Acetylation 507 23.7 2.1× 10−9

3. Alternative splicing 1314 61.5 1.6× 10−8

4. Cytoplasm 658 30.8 2.7× 10−8

5. Nucleoplasm 412 19.3 7.2× 10−7

6. Protein binding 1134 53.1 2.6× 10−6

7. Protein transport 112 5.2 5.5× 10−6

8. Nucleus 668 31.3 8.3× 10−5

9. Vesicle–mediated transport 39 1.8 1.9× 10−2

10. Cytoskeleton 177 8.3 8.6× 10−4

11. Rab GTPase binding 34 1.6 1.0× 10−2

12. Endocytosis 52 2.4 4.1× 10−3

13. Cytosol 450 21.1 6.0× 10−3

14. Guanine–nucleotide releasing factor 35 1.6 2.1× 10−3

15. Cell cycle 106 5.0 3.0× 10−3

16. Mitochondrion 162 7.6 4.1× 10−3

17. Transport 271 12.7 1.4× 10−2

18. Cell division 68 3.2 1.5× 10−2

19. Electron transport 24 1.1 1.4× 10−2

We then repeated the GO term enrichment analysis at position –1/+1 for the remaining 15
dinucleotides and found only three other dinucleotides with significant GO term enrichments:
CpA, TpA, and ApA, see Table B.1 to Table B.4. The genes harboring these three dinucleotides
at position –1 were significantly associated with olfaction. None of these dinucleotides pro-
vided a similarly high statistical enrichment as genes with a CpG dinucleotide at this position.
It was reported before that olfactory receptor genes are associated with high AT content in
their promoter region [308]. Nevertheless, we only found the three mentioned dinucleotides
to be significantly associated with olfaction instead of other A–T dinucleotide combinations.
The occurrence of different promoter compositions suggest that specific dinucleotides right
at the transcription start site might be involved in transcription (and translation) regulation.
This involves particularly CpG and CpA dinucleotides, which can be additionally epigeneti-
cally modified by DNAmethylation. The observation that the dinucleotide present at position
–1 is linked with the activity and expression level of a TSS [305] together with dinucleotide
associated GO terms indicates the involvement of specific dinucleotides right at the TSS in
gene–group specific regulation.
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Similar conservation patterns at canonical and alternative codons
Since changes at a single position in very close proximity to a start site can have an influence
on translation initiation [182, 183, 189, 299], we especially focussed on the flanking region of
canonical translation start sites and of alternative starts located in the 5’ UTR. First, we investi-
gated the SNP and indel occurrence from –200 to +200 bp around translation start sites. Figures
4.7A and B shows that the SNP density decreased with the CSS for the annotated RefSeq start
sites as well as for the alternative start sites located in the 5’ UTR that were identified by ex-
perimental ribosome profiling [43]. This depletion of SNPs in the coding region is most likely
due to purifying selection. This effect was most prominent for indels, as this type of mutation
has the potential to change the overall identity of proteins by shifts in the open reading frame.
However, based on the overall small number of indels we can only observe a small decrease of
the indel density towards the CSS. A depletion of indels especially in protein coding regions
was observed before, while the observed Tajima’s D values are also consistent with purifying
selection, see Figure 4.5. SNP densities calculated based on the 1000G and GoNL data behave
similarly. The vertical shift between those two major SNP projects can be attributed to the
overall higher number of SNPs in the 1000G data.

Next, we focused on the start codon and the flanking region (–15 to +13) that has been
shown to be crucial for translation initiation [182, 183, 189, 299]. In total, the RefSeq dataset
provided 16,604 canonical translation start sites (i.e. flanking regions), whereas the number
of alternative start sites located in the 5’ UTR amounted to 7,373 [43]. SNPs from 1000G and
GoNLwere mapped against these sequence contexts to determine their position in the interval
from –15 to +13 with respect to the respective start site. Table 4.3 summarizes the number
of translational sequence contexts in the RefSeq (AUG–only) and HEK293 datasets (AUG and
near–cognate) that harbored SNPs as well as the number of SNPs residing at those start sites.
Table 4.3 reveals that, on average, there was about one SNP per start site flanking region. In the
next step, we investigated the distribution of these SNPs along the defined sequence window
from positions –15 to +13.

Figure 4.7C shows the total number of SNPs in the flanking region of annotated and alter-
native start sites. We found that alternative start sites (AUG and near–cognate) located in the
5’ UTR showed similar conservation tendencies compared to annotated canonical start sites.
As expected, the number of SNPs decreased remarkably with the start site, which reflects the
importance to maintain translation start sites. To validate the statistical significance of this de-
crease in the number of SNPs at the start site, we performed a permutation test. We found
that the drop at canonical start sites (RefSeq genes) was highly significant irrespective of the
mutation dataset (p < 0.01), see Figure 4.7C. Considering alternative translation start sites
in HEK293 cells, the decrease in the number of SNPs at the start codon was only moderate
compared to the RefSeq starts and the p–values were not found to be significant. A negative
peak can also be observed at position –3, which was shown to be crucial for translation initia-
tion [182, 183]. However, this trendwas alsomore prominent for annotated start sites compared
to alternative start sites, see Figure 4.7C. Beside the start site itself and the prominent –3 posi-
tion, several other positions also showed negatives peaks, for example positions 8 and 10. An
experimental validation of the importance of these position is still lacking. Based on a simple
permutation test, the drop at these positions was not statistically significant. Thus, canonical
translation start sites arewell conserved to preserve normal cell behavior. Alternative initiation
start sites seem to be less conserved compared to canonical start codons. This could be due to
the location of the considered alternative start sites in the generally less conserved 5’ UTR as
well as be related to the general usage of these alternative sites. Non–canonical start codons can
be used in specific cellular states, in specific cell types, or as cellular stress response [24, 181].
Moreover, the dataset might also contain some FP start sites and miss some TP start sites due
to experimental and post–experimental (e.g. statistical evaluation) drawbacks [191].
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Figure 4.7: SNP distribution around the CSS. (AB) Average SNP density in a range of±200 bp
and 20 bp windows around the CSS (1000G and GoNL data). (A) Annotated translation start
sites of (RefSeq genes). (B) Alternative translation starts detected by ribosome profiling applied
to HEK293 cells. (C) SNP pattern in the flanking region (–15 to +13) of canonical and alterna-
tive starts. The applied permutation test provided the following p–values (curves from top
to bottom): RefSeq+1000G: 0.0, RefSeq+GoNL: 0.0002, HEK293+1000G: 0.027, HEK293+GoNL:
0.244. With a significance threshold of p < 0.05

4 = 0.0125, the drop in the number of SNPs at
the CSS is significant for canonical start sites.
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4.5 Summary
Following the analysis of DNA methylation patterns and the development of PreTIS, we in-
vestigated genomic mutations in different regions of the human genome. As primary datasets,
we used variations from the 1000 Genomes Project and the Genome of the Netherlands project.
We investigated several genomic regions in the human genome, namely intergenic region, CpG
islands, promoter, 5’ UTR, coding exons, 3’UTR, all exons, introns and intragenic region. We re-
ported conserved protein–coding regions and a significantly decreased indel density compared
to SNPs. This is in accordance with findings from earlier studies. Based on our former projects,
we were also interested in the distribution of mutations around transcription and translation
start sites. Considering translation start sites, we separately analyzed alternative and canonical
initiation sites. We observed an increased number of SNPs at position –1 relative to the tran-
scription start site. Moreover, we observed that CpG and CpA dinucleotides were prevalent at
this site, whereas an increased number of SNPs was found at CpGs. Next, using the DAVID–
resource, we conducted a functional annotation analysis of genes with a CpG dinucleotide at
TSS position –1. We found a significant enrichment of the terms "Phosphoprotein", "Alternative
splicing", and "Protein binding". A repetition of this functional annotation for the remaining
dinucleotides revealed significant enrichments associated with "olfaction" for genes with CpA,
TpA, and ApA dinucleotides at position –1. We propose that considering an increased number
of SNPs at CpG dinucleotides at this site, the susceptibility of a methylated cytosine to mutate,
and the results of the functional annotation might indicate a gene–specific regulatory signal.
When investigating the distribution of SNPs around translation start sites, we observed similar
conservation patterns of canonical and alternative start sites. Applying statistical permutation
tests, we calculated whether the detection of a negative peak, in this case the decreased num-
ber of SNPs, is statistically significant. By doing so, we found a statistical significance for the
negative peak at canonical start sites. Although the decrease was not significant for alternative
start sites, a general tendency of a decreasedmutation rate was observed as well. This indicates
the importance of alternative translation start sites for cellular function in the human genome.





CHAPTER5
Automated analysis of mutations in

gene regulatory networks
This chapter describes our software packageMutaNET, which was developed to automatically
score individual mutations in key genomic elements, such as transcription factor binding sites,
regarding their influence on cellular function. The integration of an underlying gene regula-
tory network helped to assess the potential global impact of mutations on gene expression. The
following chapter presents and extends our publication "MutaNET: a tool for automated analy-
sis of genomic mutations in gene regulatory networks. Markus Hollander, Mohamed Hamed,
Volkhard Helms, and Kerstin Neininger. Bioinformatics, doi:10.1093/bioinformatics/btx687,
2017". Markus Hollander implemented MutaNET software during his Bachelor's thesis in our
group under my supervision. A variant calling pipeline based on next–generation sequencing
paired–end reads was developed by Mohamed Hamed during his PhD in our group and first
applied in [61]. This pipeline was then reimplemented by me in the Python programming lan-
guage to be applicable in MutaNET. The MutaNET software for macOS, Linux, and Windows
operating systems can be downloaded from https://sourceforge.net/projects/mutanet/.
A web page that gives some background information together with a step–by–step tutorial is
available at http://service.bioinformatik.uni-saarland.de/mutanet/.

5.1 Prerequisites
In this project, we automated the genome–wide analysis of mutations and their potential in-
fluence on cell function. For this, we defined scores that estimate the impact of individual
mutations on protein function and regulator binding. Information on an underlying gene reg-
ulatory network was integrated as well, which helps to estimate the global effect of specific
mutations. Prior to the mutation analysis, an embedded variant calling pipeline can be used
to call mutations from paired–end reads. Our tool was then applied to decipher intrinsic an-
tibiotic resistance mechanisms of Escherichia coli and Staphylococcus aureus bacterial strains. In
the following, next–generation sequencing, the MutaNET embedded variant calling pipeline
and the scoring schemes, gene regulatory networks, and prokaryotic genome regulation are
presented. Moreover, Escherichia coli and Staphylococcus aureus bacteria are shortly introduced
together with an overview on antibiotic resistance mechanisms.

5.1.1 Next–generation sequencing and variant calling
The international human genome project was successfully terminated in 2003 and therewith
opened new challenges in sequencing technologies [233, 234]. Over the years, DNA sequencing
technologies improved dramatically and entailed significant cost reduction and expansion of
possible applications [309, 310]. In 2009, the costs for whole–genome sequencing of one human
genome amounted to roughly $200,000 [311]. Within the next five years these costs significantly
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dropped to about $1,000 per human genome [309, 311]. The initiative to achieve this $1,000 goal
was referred to as the "$1,000 genome" [310, 312, 313].

Next–generation sequencing: a '$2 billion market'
The term next–generation sequencing (NGS) comprises modern sequencing technologies and
emerged when the first high–throughput sequencing platform was released in the 2000s [309,
314]. NGS technologies comprise Illumina/Solexa sequencing, Roche 454 pyrosequencing, or
SOLiD sequencing [309]. An increasing demandofNGS application constituteswhole–genome
sequencing (WGS) projects due to its broad usability to solve various biological problems such
as mutation analysis or epigenetic modifications [309]. For instance, the 1000 Genomes Project
is based on WGS to analyze human genetic variation [57].

The company Solexa, which was founded in 1998, released their first sequencer in 2006
and constituted the basis of the well–known company Illumina [315]. In 2007, Illumina took
over Solexa to integrate and sell their genome sequencing technologies [193, 315]. Solexa, as a
hitherto industry leader in next–generation sequencing systems, had the aim to revolutionize
these technologies for low–cost and time–efficient (whole–genome) sequencing of single DNA
molecules and therefore entered this "$2 billion market" [316]. Illumina is the current market
leader of accurate and low–cost sequencing technologies [309, 317]. Illumina provides vari-
ous solutions for WGS, exome–sequencing, ChIP–seq to decipher protein–DNA interactions,
or RNA sequencing (RNA–seq) [309]. The Illumina HiSeq X system is able to sequence more
than 18,000 human genomes within a year (30x coverage) making it the sequencing platform
with highest throughput to date [318].

Illumina provides technologies for single– and paired–end sequencing [319]. Single–end
sequencing enables the sequencing of DNA fragments from one end, whereas in paired–end
sequencing, DNA fragments are sequenced from both ends thus resulting in read pairs [320].
Paired–end sequencing increases mapping quality and simplifies the correct detection and
alignment of repetitive elements or structural rearrangements such as insertions and deletions.
Figure 5.1 illustrates the idea of paired–end sequencing.

Figure 5.1: Paired–end DNA sequencing. Paired–end sequencing, in contrast to single–end
sequencing, enables to sequence a DNA strand from both directions. A consideration of the
distance between paired reads improves the alignment of repetitive elements against a refer-
ence genome. The figure was adapted from [319].

Moreover, there is a differentiation between short–read NGS and long–read NGS, both ap-
plied for different applications [309]. Short–readNGS techniques are categorized into sequenc-
ing by ligation or by synthesis. Thereby, a sequence read is defined as a nucleotide stretch from
an individual DNA molecule [309]. Long–read NGS is, for instance, necessary to completely
cover long repetitive regions to enable a precise genomic localization and determination of
their length. Moreover, long–read NGS can span entire gene transcripts and thus aid in the ex-
act analysis of mRNA transcripts to unveil exon positions and identify alternative transcripts.
The development of long–read sequencing also allowed an extension of the GRCh37 reference
genome by closing previously existing gaps [321]. NGS became a routine and with this contin-
uous improvement, sequencing technologies also found their way to clinical applications [309].
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File formats and quality control
A next–generation sequencing variant calling pipeline was developed in our group by Hamed
et al. [61] to call SNPs and indels from given paired–end reads in FASTQ format. For compati-
bility reasons, this pipeline was reimplemented by me in Python programming language and
subsequently embedded in the MutaNET software package. A description of the FASTQ file
format, which is an extension to the well known FASTA format, together with an explanation
of the Phred quality score is given below.

FASTA file format The FASTA format is commonly used to store nucleotide and peptide
primary sequences. Sequences are presented using one–letter codes for nucleotides from the
alphabet {A,C, T,G} and amino acids from the alphabet {G,A, V, L, I, P, ...}, see Table 1.2.
FASTA files maintain a specific (simple) format, starting with a greater–than (">") symbol fol-
lowed by a single line description of the stored sequence data. The description line is then
followed by (several) lines of nucleotide or protein sequences. For instance,

>TRPV6|Transient receptor potential cation channel subfamily V member 6
MGPLQGDGGPALGGADVAPRLSPVRVWPRPQAPKEPALHPMGLSLPKEKGLILCLWSKFC
RWFQRRESWAQSRDEQNLLQQKRIWESPLLLAAKDNDVQALNKLLKYEDCKVHQRGAMGE
TALHIAALYDNLEAAMVLMEAAPELVFEPMTSELYEGQTALHIAVVNQNMNLVRALLARR
ASVSARATGTAFRRSPCNLIYFGEHPLSFAACVNSEEIVRLLIEHGADIRAQDSLGNTVL
HILILQPNKTFACQMYNLLLSYDRHGDHLQPLDLVPNHQGLTPFKLAGVEGNTVMFQHLM
QKRKHTQWTYGPLTSTLYDLTEIDSSGDEQSLLELIITTKKREARQILDQTPVKELVSLK
WKRYGRPYFCMLGAIYLLYIICFTMCCIYRPLKPRTNNRTSPRDNTLLQQKLLQEAYMTP
KDDIRLVGELVTVIGAIIILLVEVPDIFRMGVTRFFGQTILGGPFHVLIITYAFMVLVTM
VMRLISASGEVVPMSFALVLGWCNVMYFARGFQMLGPFTIMIQKMIFGDLMRFCWLMAVV
ILGFASAFYIIFQTEDPEELGHFYDYPMALFSTFELFLTIIDGPANYNVDLPFMYSITYA
AFAIIATLLMLNLLIAMMGDTHWRVAHERDELWRAQIVATTVMLERKLPRCLWPRSGICG
REYGLGDRWFLRVEDRQDLNRQRIQRYAQAFHTRGSEDLDKDSVEKLELGCPFSPHLSLP
MPSVSRSTSRSSANWERLRQGTLRRDLRGIINRGLEDGESWEYQI

represents the TRPV6 protein sequence retrieved from UniProt (protein ID: Q9H1D0) [227].
The header information consists of gene and protein name followed by the protein sequence of
TRPV6 isoform 1 with a total length of 765 amino acids.

FASTQ file format FASTQ files are an extension of FASTA files with additional informa-
tion on quality scores for every base. Each entry in a FASTQ file is composed of four lines,
whereas each line provides different information [322]. The first line presents a sequence iden-
tifier (starting with "@"), followed by optional information such as the instrument name or
flowcell lane. The second line stores the sequence. The third line starts with a "+" followed by
optional repetition of the first line, which is often omitted due to memory space. The forth line
represents Phred quality scores for every base usingASCII characters (see below). For instance,
the following information was extracted from a FASTQ file that was analyzed in [61]:

@M00214:74:000000000-A3DA3:1:1101:13948:2193 1:N:0:1
AACATTGTTATTTAACAAAATTATGTTAAAATTTAGCATTATAAAAGATACAAATCAATGAC...
+
ABBBBFFFFFFFGGGGGGGGGGHHHHHHHHHHGHHFGHHFHGHHHHHGGEHFCGGHDGFBDH...
@M00214:74:000000000-A3DA3:1:1101:18114:2205 1:N:0:1
TTCAAAATTCATTTCTTGGAGATGATTGATGCGTTGAAATATAACTAATTGCCATAATACTT...
+
1AAAAFFF1DFFGGGGGGGGGG1GF3DFBGHHCFFGHHHBG2GHFBHGHGFHHHHHHHHHGG...
@M00214:74:000000000-A3DA3:1:1101:19506:2206 1:N:0:1
GTATTTACAACAGAATATTCGGTTCGTACTGCCATGGAAGCTGTTTATCAATTACTAAATAT...
+
AABBBFFFFFFBGGGGGGGGGGGGFEEGGHHHHHHHFHHFEGHFBEGFHHHHGHHHHHHHHH...
...
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FASTQ files are supported by common NGS technologies and are thus the format of choice
to store sequencing information and enable across–platform data handling. Using software
tools such as the BWA tool [73, 74], FASTQ sequence reads can be mapped against a reference
genome for further downstream analysis.

Phred quality score Phred quality scores find application in high–throughput DNA se-
quencing by assigning a quality measure to individual base calls [323]. This allows to assess
DNA sequence quality and sequencing methods. A Phred quality score, which is also known
as Q score, is defined as follows

Q = −10 log10 P (5.1)

with the error probability P that a base call is incorrect. Thereby, high quality scores cor-
respond to low error probabilities and thus indicate a higher (more reliable) quality base call.
Table 5.1 illustrates the logarithmic relationship between quality scores and error probabilities.
For instance, a Phred base quality value of Q30 corresponds to an error probability to detect
one incorrect base call out of 1000 calls. This means that a sequence read with a of length 1000
bp probably contains one error. The corresponding base call accuracy of 99.9% is then defined
as the probability that a base call is correct. Note that the Q30 value is often used as the default
minimum value to guaranty reliable sequencing quality.

Table 5.1: Relationship between Phred quality score and error probability. Phred scores
allow assessment of base calling quality from DNA sequencing. Thereby, the Phred quality
score Q and the error probability P to detect an incorrect base are dependent on each other.
Base call accuracy is defined as probability to call a correct base. Quality scores are calculated
using Equation 5.1. For instance the value Q30 results from Q = −10 log10(0.001) = 30.

Phred score Q Error probability P Base call accuracy

0 10 in 10 = 1 0%

10 1 in 10 = 0.1 90%

20 1 in 100 = 0.01 99%

30 1 in 1000 = 0.001 99.9%

40 1 in 10,000 = 0.0001 99.99%

50 1 in 100,000 = 0.00001 99.999%

60 1 in 1,000,000 = 0.000001 99.9999%

Thus, a Phred score can be seen as a probability prediction to detect incorrect base calls.
With use of the negative decadic logarithm, very small error probabilities can be displayed
reasonably. Quality scores are assigned during the sequencing procedure and are storedwithin
the FASTQ files.

NGS variant calling pipeline
The variant calling pipeline mentioned before is built up from a series of several software pack-
ages. First, paired–end sequence reads aremapped to a given reference genome using the BWA
tool [73, 74]. Next, duplicated PCR reads and reads with low quality (Phred quality score <30)
are removed by applying SAMtools [75, 76]. Subsequently, the final alignments are sorted us-
ing SAMtools. SNPs and indels are then called by VarScan2 [77]. This pipeline is embedded
in our tool MutaNET to call SNPs and indels from a reference genome prior to further statisti-
cal analyses. The variant calling pipeline is displayed in Figure 5.2 and explained hereinafter.



117 MUTATION ANALYSIS IN GENE REGULATORY NETWORKS

Prior to executing this pipeline, raw sequencing reads can be quality checked using the FastQC
software package [324].

Figure 5.2: NGS variant calling pipeline. The variant calling pipeline consists of three es-
sential steps: paired–end read alignment to a given reference genome, quality control and
filtering, and the final variant calling (SNPs and indels). To achieve this, Burrows–Wheeler
Alignment [73, 74], SAMtools [75, 76], and VarScan2 [77] are executed consecutively. Individ-
ual commands together with the parameters and options used here are explained in the main
text.

BWA The Burrows–Wheeler Alignment (BWA) tool is applied tomap sequence reads against
a (large) reference genome [73, 74]. It implements algorithms for both, short (<100 bp) [73] and
long (< 1Mb) [74] read alignments. As the name suggest, BWA takes advantage of Burrows–
Wheeler transformation that enables a fast and efficient mapping. To tolerate base mismatches
and gaps, BWA provides solutions for inexact sequence matching [73]. Thereby, one differen-
tiates between mismatches, gap opening and closing to be relevant for practical applications.
The results of a BWA call are reported in the common SAM file format [75].

The Burrows–Wheeler transform is a widely used data compression and indexing algo-
rithm [325]. The algorithm was initially developed by D. J. Wheeler in 1983 and finally pub-
lished in 1994 together with M. Burrows [325]. The algorithm is composed of three main steps:
string rotation, lexicographical sorting, and extraction. More precisely, given a string S, all
possible (distinct) cyclic rotations of S are generated, which is followed by sorting them in
lexicographical order. The Burrows–Wheeler Transformation BWT (S) is then constructed by
concatenating the last characters in the last column of each cyclic string rotation. An example
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with S = "papaya$" is given in Figure 5.3. As it is common for suffix arrays and suffix trees,
a termination character $ is appended to S. Note that the Burrows–Wheeler matrix and suffix
array are constructed similarly. A suffix array (SA) represents all possible suffixes of a given
string S with maintained alphabetical order, see Figure 5.3. The lexicographical sorting step
ensures that rotated strings with similar suffixes are arranged next to each other enabling fast
lookup. As example, the localization of the substring "pa" in "papaya" and the determination
of occurrences together with the exact position results in the SA interval (4, 5) with the respec-
tive SA values 0 and 2 that give the 0–based positions of the substring occurrences in the given
sequence S, see Figure 5.3. Note that the transformations S ←→ BWT (S) are reversible.

Figure 5.3: Example illustrating Burrows–Wheeler transformation. Given a string S, the
Burrows–Wheeler transformationBWT (S) is generated by constructing all cycling rotations of
S followed by lexicographical sorting. BWT (S) then corresponds to the last character of each
sorted rotation in the Burrows–Wheeler matrix. Here, as an example the string was given as S
= "papaya$" resulting in theBWT (S) = "aypp$aa". The termination character $, which appears
lexicographically prior to all other characters, was added to the end of S as it is commonly done
when applying suffix array or suffix tree algorithms. The original string is given in row 4 of
the final matrix. Note that construction of the Burrows–Wheeler matrix and a suffix array (SA)
is related. The corresponding SA is shown on the right and demonstrates the similarity to the
Burrows–Wheeler matrix. The SA interval of the substring "pa" in "papaya" is found as (4, 5)
with the respective SA values 0 and 2 that mark the substring positions in the string S. Note
that indices are 0–based.

Coming back to BWA as a read aligner, the alignment of reads against a reference genome
corresponds to the lookup of substrings in a given sequence S and determination of the appro-
priate SA intervals and thus the exact (genomic) position. When using BWA as a read aligner,
the FM–index [326] of a given reference genome sequence must be generated using the index
command in a first step. This transformation allows to store the complete reference sequence in
a compressed format to index large sequences for a fast localization of substring positions and
occurrences and thus serves as basis for efficient read mapping against a reference sequence.

The index construction is mainly based on the principles used in Burrows–Wheeler trans-
formation and suffix arrays. Lookup speed and memory space are both crucial when work-
ing with large strings such as the human genome reference sequence consisting of almost 3
billion bases [234]. Note that in the following paired–end reads are denoted as reads1 and
reads2. The respective reference genome is referred to as RefGenome. Given a reference genome
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RefGenome in FASTA format, a BWT index file with the filename "RefGenomeInd" (-p option)
is generated using

$ bwa index -a is -p RefGenomeInd RefGenome.fasta

with the default index construction algorithm "IS" to create a suffix array (-a option). To gen-
erate a sequence alignment, the suffix array positions of the given paired–end reads are then
determined with

$ bwa aln RefGenomeInd reads1.fastq.gz > reads1.sai
$ bwa aln RefGenomeInd reads2.fastq.gz > reads2.sai.

Finally, mapped paired–end reads are incorporated into one SAMfile format for quality checks
and filtering using

$ bwa sampe RefGenomeInd reads1.sai reads2.sai reads1.fastq.gz
reads2.fastq.gz > alignment.sam

Application of BWA is followed by the usage of SAMtools [75, 76] for mapping quality control
and filtering.

SAMtools The second step comprises alignment quality control and read filtering, which
is enabled by SAMtools [75, 76]. The previously created alignment file is first converted to
BAM format. File conversions, for instance from SAM to BAM file format, as well as sequence
indexing are essential such that the sequentially connected command line tools are applicable
and fast access is enabled. SAM file format is a widely used format for the storage of (short or
large) read alignments against a reference genome [75]. BAM files store the same information
but in a compressed binary format [75]. Application of file conversion, sorting of alignment
coordinates, and indexing of the sorted BAM file is achieved by applying

$ samtools view -bSh alignment.sam | samtools sort -o alignment_sorted.bam
$ samtools faidx RefGenome.fasta
$ samtools index alignment_sorted.bam.

These operations are the basis for subsequent quality control. Note that the sorting step is
required prior to indexing. Next, duplicated PCR reads (rmdup) and reads with low quality
(Phred quality score < 30) are removed via

$ samtools view -q30 -b alignment_sorted.bam |
samtools rmdup - alignment_filtered.bam

$ samtools index alignment_filtered.bam.

An indexing step is again necessary for further processing and generation of the final mpileup
file. A SAMtools mpileup file is created by applying

$ samtools mpileup -f RefGenome.fasta alignment_filtered.bam
> alignment_filtered.mpileup.

The usage of UNIX piping by "|" avoids the generation of temporary files.
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VarScan2 As final step, VarScan2 [77] is applied to call variants (SNPs and indels) from the
sequence alignment mpileup file and store them in VCF file format whilst executing

$ varscan mpileup2snp alignment_filtered.mpileup --p-value 0.05
--output-vcf 1 > snps.vcf

$ varscan mpileup2indel alignment_filtered.mpileup --p-value 0.05
--output-vcf 1 > indels.vcf.

VarScan2 is a software tool that implements a heuristic algorithm to detect somatic variants
(SNPs and indels) and copy number variations from sequencing data [77]. VarScan2 was pub-
lished in 2012, while a first version of VarScan was released a few years earlier in 2009 [327].
To apply VarScan2, read alignment information is needed in SAMtools (m)pileup file format.
Variants are called based on an initial evaluation of allele frequency, read coverage, Phred base
quality, and statistical testing. When all required threshold criteria for coverage and Phred base
quality are fulfilled, the detected read bases at individual positions determine the genotype.
Allele frequencies of variants are derived fromobserved read counts. The default threshold val-
ues are given as aminimum coverage of at least three reads, a Phred base quality score≥ 20, 8%
allele frequency, and a p–value threshold of p < 0.05 for statistical testing. For evaluation pur-
poses, the authors of VarScan applied their tool to detect mutations in matched normal–tumor
ovarian cancer samples that were retrieved from The Cancer Genome Atlas (TCGA) [328].
Thereby, samples were based on exome sequencing. VarScan2 variant detection showed 93%
sensitivity and 85% precision for the reported single variants.

5.1.2 Mutation analysis using scoring schemes
Applying MutaNET software, mutations are assigned to the genomic regions using in–house
scripts that are analogous to BEDTools [78]. The considered genomic regions comprise coding
region, promoter region, and transcription factor binding sites (TFBSs). Note that a mutation
can be associated with multiple genes or genomic regions due to overlaps. Since mutations
at different positions throughout a genome sequence have different influences on gene func-
tion and regulation, we implemented appropriate scoring schemes separately for the differing
regions. In the following, these scoring schemes for mutations in transcription factor binding
sites and in coding regions are introduced.

Scoring mutations in transcription factor binding sites
The human genome is mainly composed of non–coding DNA, like regulatory elements or non–
coding RNAs, rather than coding DNA sequences that serve as blueprint for proteins [329].
Thereby, the number of regulatory sites is assumed to exceed the number of genes [329]. As
mentioned beforehand in Section 4.1.2, mutations can impact (disease) phenotypes heavily
when located at crucial positions in non–coding regulatory sites or in coding regions. Hence,
an estimation of the impact of mutations in non–coding elements is also of considerable impor-
tance to explain phenotypic variation. Following this, it was reported that cancer development
is associated with variations in regulatory regions that can entail a disturbed gene regulation
and thus affect gene expression [10, 146, 300].

Melton et al. [300] investigated the influence of individual mutations in TFBSs on regula-
tor binding in several cancer subtypes. Based on observed mutations in TFBSs, they report a
positive selection of these variations in regulatory regions and noticed that two scenarios are
possible: the loss of a TFBSs that hinders transcription factor (TF) binding but also an establish-
ment of novel binding sites TFs can interact with. Their approach aims at scoring the impact of
individual point mutations in TFBSs on regulator binding [300]. Thereby, their methodology is
based on a statistical comparison between observed and introduced random mutations. Their
method is shown in Figure 5.4A. First, TF motif sequences were aligned with publicly available
position weight matrices (PWMs) of TFBSs. Following this, they introduced a random muta-
tion for every observed mutation, thereby maintaining the probabilities to convert one base to
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another. Finally, matching scores of the wild–type sequence, the observed mutated sequence,
and the randomly mutated sequence with the determined TF PWMwere calculated.

Figure 5.4: Scoring ofmutations in TFBSs. Melton et al. [300] defined the followingmethodol-
ogy to score individual mutations in TFBSs. (A) Binding sites were mutated randomly accord-
ing to observed mutations. PWM binding site scores were subsequently calculated to estimate
the strength of a mutation. (B) Sequence logos enable a comparison between wild–type, mu-
tated, and randomly mutated motifs. The individual mutation count suggests that a mutation
at the central CG site of the CEBPD motif highly affects TF binding. (C) Mean differences be-
tween PWM matching scores of the mutant and the reference show that the matching scores
decrease significantly for mutated sites. Wilcoxon rank–sum test and FDR< 0.05 were applied.
The figure was taken from [300].

Next, they illustrated their method using two binding sites: CEBPD and SPI1. Sequence lo-
gos ofCEBPD and SPI1 binding site alignmentswith the respective TFmotif PWMare depicted
in Figure 5.4B. Considering CEBPD, mutations were prevalent at a reference CG site located in
themotif centre. On the other hand, mutations in the SPI1motif were distributedmore equally
throughout the binding site, see Figure 5.4B. Comparing the two mutational landscapes, the
prevalent mutations in CEBPD suggest a specific mutational selection that has an impact on
TF binding, thereby considering both, the inhibition of binding as well as a novel binding of
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alternative TFs. Due to more equally distributed mutations in the binding motif of SPI1, this
assumption might not hold true for this binding site [300]. The computation of PWM match-
ing scores for every TFBS can support the detection of mutated binding sites with significantly
decreased matching scores compared to their wild–type sequence, see Figure 5.4C. This ap-
proach by Melton et al. [300] to estimate the impact of mutations in TFBSs is embedded in our
MutaNET software, whereby publicly available PWM of known TFBSs must be given as input.
In summary, the impact of mutations in regulatory regions such as TF binding sites might be
underestimated although their global influence on cellular function can be extensive.

Scoring mutations in coding regions
Considering coding mutations, MutaNET differentiates between synonymous, missense, non-
sense, readthrough, and frameshift mutations. Since the position in the protein highly influ-
ences the impact of a mutation, protein domain(s) are incorporated in the analysis as well. The
effect on the amino acid sequence is automatically assessed using a pairwise sequence align-
ment of the reference (R) and mutated (M ) amino acid sequence together with an amino acid
substitution matrix S (here: PAM10). The overall substitution score Scorecod ∈ [0, 1] is com-
puted as

Scorecod =

N∑
i=1

SR[i],M [i] −
N∑
i=1

min
j∈AA

{SR[i],j}

N∑
i=1

max
j∈AA

{SR[i],j} −
N∑
i=1

min
j∈AA

{SR[i],j}

with the matrix entry SR[i],M [i] of the reference and mutated amino acid AA at sequence
position i, and the aligned sequence lengthN . Thereby, a decreased scoreScorecod is associated
with a probable higher impact of the mutation due to an increased deviation of the mutated
amino acid sequence from the reference sequence.

5.1.3 Gene regulatory networks
Understanding how genes are regulated and therewith how different expression patterns are
generated is the key to explain phenotypic diversity between individuals [330, 331]. The gener-
ation and comparative analysis of underlying gene regulatory networks (GRNs) greatly helps in
deciphering these relationships. Generally, a GRN is composed of nodes and edges connecting
these nodes. Thereby, nodes represent target genes and their regulators such as transcription
factors or chromatin remodeling complexes, while edges specify their directed regulatory re-
lationship such as repression or activation [330]. A TF can for instance bind to the promoter
region or TFBSs and thereby regulate a target gene. Note that the expression level of one gene
can depend on a combination of several regulators [330]. These connections can be formu-
lated using mathematical regulatory functions such as differential equations [330]. Figure 5.5
illustrates a simple example for a gene regulatory network.

Furthermore, one distinguishes between cis–regulatory elements and trans–regulatory el-
ements [332]. Thereby, cis–regulatory elements refer to non–coding sequence elements that
regulate genes in direct vicinity, most often in downstream direction. For instance, TFBSs, pro-
moter, and enhancer elements [332]. Trans–regulatory elements are regulators such as proteins
and non–coding RNAs that regulate specific genes and are located more distantly from their
target gene(s). Of course, both types of regulatory elements are crucial for the regulation of
gene expression. A comparative analysis of gene regulatory networks is comprehensively re-
viewed elsewhere [330].

Cytoscape is a comprehensive andwidely used software for data integration, analysis, and
visualization of biological networks [333]. Our toolMutaNET provides a GraphModeling Lan-
guage (GML) formatted network file that enables further and specific investigations of the given
network in various ways using, for instance, Cytoscape software.
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Figure 5.5: Simple GRN example. GRNs represent the relationships between target genes and
their regulators. (A) In this simple example, two transcription factors (TF1 and TF2) regulate
two target genes (Gene A and Gene B) by binding to their promoter regions. Transcription
factor TF1 activates gene A and represses gene B, while transcription factor TF2 activates gene
B. (B) The resulting GRN is composed of four nodes (gene A, gene B, TF1, and TF2) and three
edges that represent the relations of regulators and target genes.

5.1.4 The bacterial kingdom and antibiotic resistance
As case studies, MutaNET was applied to strains of Escherichia coli and Staphylococcus aureus
to decipher the genotypic differences that could confer antibiotic resistance. These analyses
also involved an underlying GRN such that the global impact of candidate mutations can be
estimated. In the following, these bacteria are shortly introduced. Next, a presentation of bac-
terial genome regulation and a summary of antibiotic resistance mechanisms that can render
antibiotics ineffective follows.

Escherichia coli: a model organism
Escherichia coli (E. coli) is a gram–negative bacterium that belongs to the mammalian gut micro-
biome and is responsible for the production of vitamin K and vitamin B12 [334, 335]. Moreover,
it was reported that E. coli is important for defense against pathogens that are situated in the
gut as well [336]. The E. coli bacterium was discovered in 1884 by Theodor Escherich during
his studies of the gut microflora in infants [337, 338]. E. coli has proven to be a valuable model
organism for various studies that investigate gene expression, the proteome, and associated
cellular processes [334, 339]. The number of studies involving E. coli is tremendous and it is
not without reason that Blount [334] referred to E. coli as "best understood organism on the
planet". In fact, what we know about prokaryotic genome structure is to a great extent based
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on E. coli studies [340]. Moreover, the GRN of E. coli was intensively studied, resulting in the
RegulonDB database as a reliable data source for genome–wide transcriptional regulatory net-
work annotations of the E. coli K–12 strain [62].

Besides its positive properties for the gut microenvironment, E. coli was also found to be
pathogenic and to trigger diseases such as bacteremia as well as infections of the urinary tract
or bloodstream [334, 341, 342]. Moreover, resistance mechanisms were also observed for vari-
ous E. coli strains, whereby the resistance against individual antibiotics was reported to differ
between populations [342]. Note that beside pathogenic bacteria, also commensal bacteria are
able to confer drug resistance [342]. We applied our toolMutaNET, which automatically scores
mutations according to their influence on cellular function, to paired–end sequenced E. coli
strains to identify candidate resistance mutations.

Staphylococcus aureus: a pathogenic bacterium
The gram–positive bacterium Staphylococcus aureus (S. aureus) can cause severe diseases of the
skin and soft–tissue, bacteremia, endocarditis, sepsis and toxic shock syndrome [343, 344]. The
mentioned infections and S. aureus pathogenesis are often triggered by intrinsic virulence fac-
tors such as enzymes or exotoxins [345, 346, 347]. These factors enable tissue adhesion, im-
mune system evasion, or can harm the host cells otherwise. For instance, the toxic shock syn-
drome and pneumonia are based on virulence factor release [345, 348, 349, 350]. Virulence
factor expression is regulated by cell–to–cell communication referred to as quorum sensing
(QS) [351, 352]. The QS system of S. aureus enables an adaption to external influences, the con-
trol of beneficial group behavior, and provides novel targets for antivirulence therapies. This
is presented in Chapter 6. Moreover, the AureoWiki database provides several comprehensive
tables that contain detailed information on genes and proteins (position, strand, sequence),
operons, and regulation such as target genes and regulators for several S. aureus strains [63].

Furthermore, S. aureus can develop antibiotic resistance against antimicrobials, which is
referred to as methicillin–resistant Staphylococcus aureus (MRSA) [343, 345, 353]. The develop-
ment of MRSA strains is a major burden in the healthcare sector that complicates antibacterial
treatment. Our toolMutaNETwas applied to the sequenced genomes of several S. aureus strains
to detect candidate mutations in known antibiotic resistance genes or in their regulators that
could confer antibiotic resistance.

Prokaryotic genome regulation
Prokaryotic and eukaryotic genome organization and regulation differ. Eukaryotic gene ex-
pression is regulated at different levels that include epigenetic modifications, transcription,
post–transcriptional processes such as splicing, translation, or post–translational mechanisms.
In contrast, prokaryotic regulation is solely controlled at the level of transcription [354]. Note
that the eukaryotic genome organization is presented in Section 4.1.1, while the regulation of
eukaryotic gene expression is explained in Section 1.2. Since we subjected several Escherichia
coli and Staphylococcus aureus strains to ourMutaNET software, genome regulation of prokary-
otes is summarized in the following.

In contrast to eukaryotic gene expression, prokaryotic transcription and translation take
place concurrently in the cytoplasm due to the nonexistent nucleus and the thus free DNA
state [340]. Prokaryotic DNA is tightly packaged via supercoiling and usually located as one
condensed single circular chromosome in the nucleoid [340]. Thereby, DNA topoisomerase
and DNA gyrase are involved in these processes and are thus preferred targets in antibacte-
rial treatment [340, 355]. Besides chromosomes, bacteria normally consist of linear or circular
extrachromosomal DNA referred to as plasmids [340]. These plasmids are advantageous for
defense against antibiotics as they can encode antibiotic resistance genes that can be transferred
via conjugation as well [340, 356, 357].

The organization of prokaryotic genomes must meet the criteria to be adaptable to various
environmental influences such as an unavailability of essential nutrients or the presence of sub-
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stances harmful for the bacterial cell such as antibiotics [354]. The bacterial strategy to combat
those influences are changes in gene expression such that necessary proteins are available for
cellular function [354]. Prokaryotic genes can be organized as operons, which are composed of
several closely located co–expressed genes [354, 358]. A single promoter upstream of the cod-
ing sequences ensures that all genes within an operon are transcribed concurrently leading to
a single mRNA that is then translated into several proteins. Beside a gene promoter sequence,
operons consist of further regulatory sites such as operator and terminator sequences [354].
Operator sites, which are situated between promoter and the coregulated genes, regulate tran-
scriptional activation or repression. The terminator site determines the end of the operon and
functions as the transcription stop. This genome organization and regulation enables a fast
adaptation to environmental changes using very efficient regulatory mechanisms [354].

The E. coli lac operon is one of the best investigated examples and is therefore described
in more detail. The composition and regulation of the lac operon was uncovered by Francois
Jacob and JacquesMonod [359]. It is responsible for themetabolism of lactose and is composed
of three structural genes named lacZ, lacY, and lacA, which together digest lactose as a nutrient
and hence energy source. Expression of these genes in the lac operon is dependent on lactose
and glucose availability. In detail, transcription is repressed in case lactose is absent and the
transcription machinery is started once lactose is accessible and glucose is unavailable [360].
These dependencies are regulated by the lac repressor that leaves the operator site upon lactose
binding. Moreover, the catabolite gene activator protein (CAP), together with cAMP, bind to
the promoter sequence to activate transcription in case glucose is not present [360, 361]. Hence,
transcription of the lac operon encoded genes is only initiated if CAP and cAMP are bound and
the lac repressor does not occupy the operator. Figure 5.6 illustrates the organization of the E.
coli lac operon.

Figure 5.6: The E. coli lac operon. The E. coli lac operon is composed of three structural genes
as well as a promoter, operator and terminator sequence. Gene expression is dependent on the
presence of glucose and lactose. The transcriptional repressor is released upon lactose binding
and transcription is initiated for lactose digestion.

Due to this organization, mutations located in promoter sequences could affect all genes ex-
pressed in the downstreamoperon in case binding of theRNApolymerase is hindered, whereas
non–synonymous mutations in the coding sequence only influence the encoded protein of the
underlying gene [354]. Nevertheless, mutations that lead to protein malfunction also influence
genes in the complete regulatory cascade or pathway of the affected protein [354]. The anal-
ysis of these complex regulatory cascades and an estimation of the global impact on cellular
function in case mutations are present is facilitated using MutaNET.
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Antibiotic resistance complicates medical treatment
Antibiotics are administered to treat bacterial infections [362, 363, 364]. The mechanisms of ac-
tion aremainly based on an inhibition of bacterial nucleic acid synthesis, suppression of protein
synthesis, a modification of the bacterial cell wall or alteration of any other vital (metabolic)
pathway. Examples for antimicrobials are β–lactams that inhibit synthesis of the bacterial cell
wall leading to cell lysis [365], tetracyclines that interfere with protein biosynthesis [366], or
quinolones that inhibit DNA synthesis [355]. Quinolones preferentially target DNA topoiso-
merase IV and DNA gyrase that are both crucial for DNA unwinding [355]. Streptomycin was
found to interact with the small ribosomal subunit and thus affects bacterial protein synthe-
sis [367, 368].

The emergence of antibiotic resistant bacteria such asMRSA strains is amajor clinical prob-
lem, which considerably impedes appropriate treatment [343, 353, 369, 370]. Normally, the
minimum inhibitory concentration is used to measure resistance upon antibiotic administra-
tion [371]. There are several mechanisms bacteria can rely on to render antibiotics inefficient
and establish an antibiotic resistance against the administered medication. Antibiotics can be
modified or exported out of the cell via efflux pumps [366, 372]. Tetracyclines, for instance, are
removed from the cell via efflux pumps [366]. NorA, NorB, and NorC efflux pumps of S. aureus
were reported to transport fluoroquinolones out of the bacterial cell [372]. In general, efflux
pumps can be specific for an individual drug or can be multidrug resistant and thus allow a
broad removal of various different compounds from a cell [372].

Considering another resistance mechanism, the drug target can be altered such that an
interaction with the antibiotic is hindered. For instance, mutations in genes coding for rRNA,
most often the genes that code for the ribosomal protein S12, were found to harbor mutations
that confer antibiotic resistance to streptomycin [367]. These alterations generally prevent the
drug from binding to the small ribosomal subunit such that bacterial protein synthesis is not
adversely affected [367]. Antibiotic resistance to the competitive inhibitor chloramphenicol was
also attributed to mutations in the target rRNA that is involved in peptidyl transfer [373, 374].
Moreover, resistance to quinolones is based on specificmutations in theDNA topoisomerase IV
andDNA gyrase genes that hinder interaction between drug and target [355]. Beside alteration
of the drug target, the drug itself can also be modified. Resistance to chloramphenicol was
found to be due to on acetylation of the drug by acetyltransferases or phosphotransferases
that render it inactive [375]. Moreover, a degradation of the drug is possible, as it is the case
for β–lactamase enzymes that break down β–lactam antibiotics such as penicillin [365, 376].
Also effective is a previous hindrance of a drug to enter the bacterial cell. For the antimicrobial
substance chloramphenicol, it was observed that the transport of the drug into the bacterial cell
and thus to its target is prevented in advance [377, 378]. The entire set of antibiotic resistance
genes is referred to as antibiotic resistome [379]. This gene collection also comprises precursor
genes with decreased antimicrobial activity but with preferences to interact with antibiotics
and that thus have the potential to confer resistance [379, 380].

Bacteria can either acquire resistance via the transfer of genetic material or they can be in-
trinsically resistant. Examples for intrinsic resistance are gram–negative bacteria that have an
advantage based on the impermeability of their outer membrane as an additional drug imped-
iment, a general absence of a drug target, or an overexpression of efflux transporters [381, 382].
Considering acquired resistance, there are two main mechanisms: vertical and horizontal
gene transfer [383]. Vertical gene transfer designates the transfer of antibiotic resistance genes
to the daughter cells during cell division [383]. In contrast, horizontal gene transfer refers
to exchange of genetic material between individual bacteria and is independent of cell divi-
sion [356, 383]. Horizontal gene transfer was also observed between phylogenetically distant
bacteria [383]. This is further separated into conjugation, transduction, and transformation that
refer to a transfer via plasmids through direct cell–to–cell contact, an intake of genetic mate-
rial via bacteriophages, or from the environment even between distantly related pathogens,
respectively [356].

As mentioned above and also in Section 4.1.2, genomic mutations can shape the observed
phenotype, cause severe diseases, and considering pathogens, mutations were found to greatly
contribute to increased bacterial survival and to confer resistance against major antibiotics. The
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detection of candidate resistance mutations in bacterial genomes with their constant variabil-
ity, which tremendously impedes antimicrobial treatment, is a major challenge. Therefore, we
applied our software MutaNET to S. aureus and E.coli strains and aimed at identifying novel
resistance mutations. The Pathosystems Resource Integration Center (PATRIC) is a compre-
hensive database that contains information on various bacterial strains concerning bacterial
genomes, transcriptomes, proteomes, and resistomes [64, 65]. We used the PATRIC database
to retrieve known antibiotic resistance genes.

5.2 Aim of this project
Mutations can affect an organismal phenotype in manyways, whereby the genomic position of
a variant is of fundamental importance. Codingmutations can influence protein function [384],
whereas those in regulatory sites can affect expression of the gene itself and of genes in that
regulatory cascade [385]. Thereby, gene expression levels are regulated by TFs via binding to
TFBSs [386]. We developed MutaNET that scores the potential impact of mutations on gene
expression and protein function of a given genome. MutaNET statistically compares the mu-
tational impact on coding regions and TFBSs using refined scoring schemes. If regulatory in-
formation is provided as well, a GRN is constructed to examine the global effect of individual
mutations. To the best of our knowledge, a similar tool that implements a combinatory analysis
of variant calling, statistical analysis, and incorporation of a GRN does not exist yet. Moreover,
MutaNET supports statistical comparisons between different gene groups such as bacterial an-
tibiotic resistance and non–antibiotic resistance genes. Since mutations in antibiotic resistance
genes or in their regulatory sites can cause or affect antibiotic resistance of bacterial strains,
we used MutaNET for a detailed analysis of mutations in antibiotic resistance genes and their
possible impact on antibiotic resistance. In general, bacteria are very suitable to investigate the
impact of mutations on the phenotype due to their haploid genome that comprises only one
copy of every gene [340].

5.3 MutaNET facilitates mutation analysis
MutaNET consists of several analysis steps: a mutation calling pipeline, a statistical compar-
ison of mutations in different genomic regions, and generation of the underlying GRN, see
Figure 5.7. Mutations can either be called automatically fromNGS paired–end reads using the
embedded mutation calling pipeline presented in [61], or mutations can be provided by the
user. Mutations are then assigned to different genomic regions (coding region, promoter, and
TFBS) using in–house scripts analogous to BEDTools [78]. Statistically significant differences
are identified based on the Wilcoxon rank–sum test.

Fo a detailed mutation analysis, MutaNET differentiates between synonymous, missense,
nonsense, readthrough, and frameshift mutations. The effect of mutations in coding regions is
assessed using an amino acid substitution matrix and a pairwise sequence alignment between
reference andmutated protein sequence, see Section 5.1.2. Since the impact of a mutation is in-
fluenced by its position in the protein, protein domain information, which can be downloaded
from UniProt [227], is incorporated in the analysis as well. Mutations in TFBS can increase or
decrease the ability of the corresponding regulator to bind [300, 385]. A score is computed that
indicates whether mutations in a TFBS are likely to increase or decrease the binding ability
of the TF. This TFBS mutation score is based on a PWM constructed from TF motif sequence
alignments and a comparison between observed and randommutations following the method
by Melton et al. [300], see Section 5.1.2. Finally, a GRN is constructed to decipher the global
effect of mutations. The nodes (genes) display the number of non–synonymous coding, pro-
moter, and TFBS mutations. This allows to quickly identify genes with mutations that directly
or indirectly regulate specific genes, such as antibiotic resistance genes. GRNs can be further
processed using programs such as Cytoscape [333].
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Figure 5.7: MutaNET workflow: NGS pipeline and mutation analysis. Shown is the Mu-
taNET workflow. A variant calling pipeline can be executed to call variations from paired–end
next–generation sequencing reads prior to a detailed mutation analysis. Mutations are sub-
sequently compared using statistical tests and refined scoring schemes. An underlying GRN
helps to find mutations with a global impact on gene regulation. A Python SQLite database
serves as central storage system [83, 84]. An asterisk (*) denotes optional information. This
figure was generated by Markus Hollander during the preparation of our manuscript for sub-
mission to the Bioinformatics journal.

5.4 Case study: decipher antibiotic resistance
To demonstrate one possible application, we applied MutaNET to E. coli K–12 and S. aureus
NCTC 8325 reference strains. Paired–end reads were based on sequence type 131 (ST131) and
clonal complex five (CC5) for E. coli and S. aureus, respectively [61, 387]. Mutations were called
with the embedded NGS pipeline from a set of 300 E. coli and 30 S. aureus strains. The 30 S.
aureus strains were subject to the work of Hamed et al. [61], while the genome sequences of 300
E. coli strains were downloaded from the NCBI BioProject database [60]. The BioProject acces-
sion numbers of the utilized E. coli strains can be found in Table 5.2. Regulatory and antibiotic
resistance information for E. coli and S. aureuswas taken fromRegulonDB [62], AureoWiki [63],
and PATRIC [64, 65]. Markus Hollander assembled these datasets.

We reported 93,204 and 18,447 mutations of which 3,035 and 372 were found in antibiotic
resistance genes for E. coli and S. aureus, respectively. All numerical results are depicted in Ta-
ble 5.3. The observed number of transitions, transversions, and indels reflect a generally higher
amount of transitions (C↔ T and A↔ G), which is based on their chemical structures. For S.
aureus, we found that the number of missense mutations was significantly lower (p = 0.02) in
antibiotic resistance genes (21.3%) compared to non–antibiotic resistance genes (28.4%). Upon
antimicrobial treatment, antibiotic resistance genes, like multidrug efflux pumps, are essential
for bacterial survival and so that specific missense mutations in important protein domains
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could result in a fitness loss [388]. A decreased number of missense mutations in antibiotic
resistance genes was observed for E. coli as well, although this difference was statistically not
significant.

Table 5.2: E. coli accession numbers of the NCBI BioProject database. In our case study,
we analyzed 300 genome sequences of E. coli sequence type 131 (ST131). The sequences were
retrieved from the NCBI BioProject database [60] and subsequently subjected to our variant
calling pipeline with a E. coli K–12 reference genome. The respective BioProject accession num-
bers together with a short description are presented. Data retrieval was conducted by Markus
Hollander.

BioProject accession Description taken from the BioProject database [60]

PRJNA383781 “Escherichia coli ST131–O25b:H4 strain: 81009.”

PRJDB3868 “Whole genome sequencing of Escherichia coli ST131.”

PRJEB6262 “Four main virotypes Escherichia coli ST131.”

PRJEB21171 “Escherichia coli ST131 in Germany.”

PRJNA211153 “Escherichia coli O25b:H4–ST131 Genome sequencing.”

PRJDB4303 “Comparative genomics of ESBL–producing Escherichia
coli ST131 isolates.”

PRJEB5004 “Escherichia coli ST131 indian strains.”

PRJEB15503
“Detection of the high–risk clone ST131 of Escherichia coli
carrying the colistin resistance gene mcr–1 and producing
acute peritonitis.”

5.4.1 Antibiotic resistance regulatory subnetworks
To analyze the global effect of mutations, antibiotic resistance regulatory subnetworks of E. coli
and S. aureus were constructed using MutaNET. It was reported that, for instance, overexpres-
sion of efflux pumps is associated with antibiotic resistance as the drug can be expelled from
the bacterial cell [389, 390, 391].

We found several severe mutations in the E. coli helix–turn–helix (HTH) domain of tran-
scriptional regulator AcrR [392] that could lead to malfunction, see Figure 5.8A. In conse-
quence, the repression of acrA and acrB, which code for multidrug–resistant efflux (MDRE)
pump subunits, might be disturbed. This could lead to the development of antibiotic resis-
tance due to overexpression of these MDRE pumps. The acrAB operon is negatively regulated
by repressor MprA [62] for which a frameshift mutation in the HTH domain and a missense
mutationwere observed. Moreover, dysfunction ofMprA could lead to overexpression of mul-
tidrug transporters EmrA, EmrB, and EmrE that were found to confer resistance to several an-
tibiotics via multidrug efflux [393, 394].

Concerning S. aureus, Figure 5.8B shows that the NorG protein is one of the central regula-
tors in the regulation of the multidrug efflux pumps encoded by S. aureus [395]. We observed
a nonsense mutation (K5Stop) in the DNA binding HTH domain of NorG that results in a
non–functional protein with a length of four amino acids. A loss of NorG would have severe
consequences as activation of the regulator encoding genes arlS, lexA, mgrA, sarR, and sarZ as
well as of efflux pump encoding gene norB is hindered [395]. Moreover, an upregulation of ef-
flux pumps abcA and norC could be promoted due to the missing transcriptional repression by
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Table 5.3: MutaNET results ofmutations in E. coli and S. aureus strains. Comparison of E. coli
and S. aureus strains was conducted by applyingMutaNET to the datasets described in the text
and using regulatory information from RegulonDB [62] and AureoWiki [63], and information
on resistance genes from PATRIC [64, 65] and the literature (see supplementary material of our
publication). Antibiotic resistance genes include MDRE pumps and their direct regulators.
Numbers associated with antibiotic resistance genes are given in brackets. Density is defined
as the number of mutations per kb. We assumed statistical significance if p < 0.05, which is
denoted by an asterisk (*). We used the Wilcoxon rank–sum test to assess the distributions of
antibiotic resistance genes against non–antibiotic resistance genes.

E. coli S. aureus

Strains in dataset 300 30

AR genes 97 47

MDRE pumps 39 13

Direct MDRE regulators 29 8

Non–AR genes 4,468 2,929

TFs 157 (35) 38 (10)

TFBSs 1,794 (113) 261 (4)

Mutations 93,204 (3,035) 18,447 (372)

Transitions [%] 73.7 (74.6) 66.9 (66.7)

Transversions [%] 25.8 (24.9) 31.8 (32.2)

Indels [%] 0.4 (0.5) 1.3 (1.1)

Synonymous [%] 80.4 (82.1) 64.6 (69.4)

Missense [%] 14.9 (13.6) 28.4 (21.3)*

Mean density synonymous 16.9 (18.9)* 4.4 (5.1)*

Mean density missense 3.8 (3.7) 2.5 (1.6)

NorG. Moreover, since mgrA activation is lost, an overexpression of efflux pump norA is possi-
ble due to nonexistent transcriptional repression of norA by theMgrA regulator, see Figure 5.8B.
It was already shown that overexpression of norA is associated with antibiotic resistance [390].

Besides norA repression, the MgrA regulator also represses tet38 and norC efflux trans-
porters [396, 397], which can thus again lead to efflux pump upregulation. Thus, the functional
loss of only one regulator protein can favor an upregulation of several multidrug efflux trans-
porters, which could in turn lead to antibiotic resistance. This emphasizes the importance of
specific mutations in key regulatory proteins and their potential global impact on antibiotic
resistance. Despite the nonsense mutation in the NorG protein sequence, we also found two
missense mutations, S28P (Scorecod = 0.63) and H29Q (Scorecod = 0.64), in the HTH DNA
binding domain, which could also have the potential to disturb NorG function.

Moreover, we found a nonsensemutation in the sigma 70 domain of the SigB regulator pro-
tein, comparewith Figure 5.8B. Assuming the function of SigB is restricted due to thismutation
(Scorecod = 0.92), this can have an impact on the regulation of efflux pump genes norA, msrA,
and msrB via a pathway composed of regulator proteins ArlS, SarA, and Rot. In summary, the
generated regulatory subnetwork together with annotated mutations is a good basis for fur-
ther speculations and interpretations, and hence greatly helps to decipher possible resistance
mechanisms of a given strain.
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Figure 5.8: Antibiotic resistance GRNs of E. coli and S. aureus. Shown are the (truncated) an-
tibiotic resistance GRNs of (A) E. coliK–12 and (B) S. aureusNCTC 8325 strains provided byMu-
taNET. Antibiotic resistance genes and their direct regulators are highlighted. Since antibiotic
resistance is associated with an overexpression of multidrug efflux pumps [389, 390, 391, 398],
the antibiotic resistance genes are composed of MDRE pumps and their direct regulators
as well. The GRNs were generated by Markus Hollander during the preparation of our
manuscript for submission to the Bioinformatics journal.
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5.4.2 Mutation analysis across species

To decipher similar resistance mechanisms across several species, a comparison of candidate
mutations in related genes and/or their regulators is reasonable. Applying MutaNET enables
this mutation analysis across various species. As we compared the mutational landscape of
different S. aureus and E. coli strains, we found several mutations in the genes parC and gyrA
for both, E. coli and S. aureus, see Table 5.4. The genes parC and gyrAwere found to be associated
with antibiotic resistance to quinolones [227, 399].

Table 5.4: Mutations in E. coli and S. aureus parC and gyrA genes. We compared mutations
foundbyMutaNETwith known resistancemutations from theUniProt database [227]. Thereby,
"yes" indicates that the mutation was reported, "no" otherwise. All mutations provided by the
UniProt database were associated with resistance to quinolones.

Gene Protein Organism Mutation UniProt MutaNET

parC DNA topoisomerase E. coli S80L yes no

S80I no yes

S80R no yes

E84K yes no

E84P yes no

E84V no yes

S. aureus S80F yes yes

S80Y yes no

E84K yes no

E84L yes no

gyrA DNA gyrase E. coli S83A yes no

S83L yes yes

S83W yes no

D87N yes yes

D87V yes no

D87G no yes

S. aureus S84L yes yes

S84A yes no

E88K yes no

Some of the reportedmutations byMutaNET are known resistance mutations, whereas the
other mutations reported by MutaNET can be considered as candidate resistance mutations.
A multiple sequence alignment of parC and gyrA genes, shown in Figure 5.9, highlights the
mutated positions. This finding suggests a similar resistance mechanism on these E. coli and
S. aureus strains involving parC and gyrA genes.
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Figure 5.9: Multiple sequence alignment of E. coli and S. aureus genes parC and gyrA. The
alignment highlights the positions of reported resistance and candidate resistance mutations,
see also Table 5.4. This figure was generated by Markus Hollander during the preparation of
our manuscript for submission to the Bioinformatics journal.

5.5 Summary
We developed MutaNET to automate mutation analysis by providing a tool that is able call
mutations from sequenced paired–end reads, followed by a detailed analysis of these variants
in several genomic regions. For this analysis, we integrated scoring schemes to estimate the
impact of mutations in coding regions and in TFBSs on gene function and regulation. Consid-
ering coding mutations, MutaNET differentiates between synonymous, missense, nonsense,
readthrough, and frameshift mutations to optimally assess the impact of individual sequence
variations. The influence ofmutations in TFBSs is estimated by a comparison between observed
and randomly introduced mutations, also using position weight matrices. Besides these scor-
ing schemes, an additional integration of a gene regulatory network greatly aids in the analysis
of mutations concerning their global impact on cell function. As a case study, we applied Mu-
taNET to paired–end sequenced genomes of E. coli and S. aureus strains to analyze antibiotic
resistance. We found severe mutations in key regulator proteins that could influence the resis-
tance phenotype to a large extend by an overexpression of multidrug efflux pumps. Moreover,
we found similar candidate resistancemutations in orthologous E. coli and S. aureus genes, that
suggest similar resistance mechanisms across species.





CHAPTER6
Targeting bacterial quorum sensing:

a novel antivirulence strategy
Quorum sensing (QS) plays a crucial role in bacterial survival and is hence predestined as
target in the development of novel antivirulence therapies. Different QS systems and how to
target themwere summarized in our review paper that was published in "Interfering with Bac-
terial Quorum Sensing. Kerstin Reuter, Anke Steinbach, and Volkhard Helms. Perspectives in
Medicinal Chemistry, 8:1–15, 2016". This work was in cooperation with Anke Steinbach from the
Helmholtz Institute for Pharmaceutical Research Saarland. The following chapter is a short-
ened and adapted version of our review article on bacterial QS. Interspecies and interkingdom
communication as well as quorum sensing in Pseudomonas aeruginosa (P. aeruginosa) are also
covered in our publication, but omitted here. P. aeruginosa is a gram–negative bacterium that
causes chronic lung infections based on QS controlled biofilm formation and that is predomi-
nantly found in patients suffering from cystic fibrosis [400, 401, 402]. Please refer to the publi-
cation for details on the P. aeruginosa quorum sensing system and possible targeting strategies.

6.1 Quorum sensing: cell–to–cell communication
Quorum sensing (QS) is a signaling mechanism that is quite common in bacteria and involves
the exchange of small chemicals between bacteria. It was first identified in the marine bac-
terium Vibrio fischeri [403, 404, 405]. QS describes the ability of an organism to adapt the activ-
ity of its gene expressionmachinery to the population density in the nearby environment. This
allows bacteria to act as a community and thus express phenotypes that are beneficial for the
group. Single bacteria release internally synthesized chemicals, known as autoinducers (AI),
either by actively transporting them across the bacterial cell membrane or by passive diffusion
through the membrane. In this manner, the external AI concentration automatically reflects
the cell population density. When a certain cell population density, that means AI density,
is reached, gene expression of bacterial cells is altered and transcription of certain genes is
switched on or off. Thus, in adapting their behaviors to various environments, bacteria can
regulate genes that are advantageous for their survival. Such cell–to–cell communication is im-
portant, for example, to organize light–emitting reactions (bioluminescence), to form biofilms,
to produce antibiotics, to express virulence factors, or for the transfer of genetic material via
conjugation or transformation [96, 406].

Various genera, such as Aliivibrio, Escherichia, Pseudomonas and Staphylococcus, utilize QS
for cell–to–cell communication enabling them to adapt their gene expression levels in order to
express phenotypes that are advantageous for the group. Inhibition of QS mechanisms in the
course of antivirulence therapies has been discussed as an attractive way of combatting bacte-
rial infections [96]. It is suggested that due to a reduced selective pressure on the bacterial pop-
ulation, an emergence of antibiotic resistance is diminished [96, 407]. In the following, the well
understoodQS systems of themodel organismVibrio fischeri and of the pathogen Staphylococcus
aureus are presented together with pharmaceutical strategies to target the gene–regulatory QS
machinery for the development of novel antivirulence strategies.
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6.1.1 The QS lux system of Vibrio fischeri
Themarine luminous bacteriumVibrio (Aliivibrio) fischeri (V. fischeri) forms a symbiotic relation-
ship with various eukaryotic hosts. Thereby, V. fischeri benefits from nutrient supply while the
host takes advantage of the luminescence reaction carried out by this bacterium [408]. Light
emission is used in different ways, for example to produce counterillumination that prevents
detection by natural enemies (camouflage), to support hunting, to provide protection against
predators, or to help in alluring mates [408, 409, 410].

V. fischeri uses the well understood QS system, shown in Figure 6.1, to control and regulate
the bioluminescence reaction. The signaling system requires two regulatory proteins, encoded
by the genes luxI and luxR, to carry out central functions in the QS circuit. luxI is organized
in the luxICDABE operon that also harbors the genes needed for the luminescence reaction
itself. The two luciferase subunits, needed for the luminescence reaction, are expressed by
luxABwhile the proteins expressed from luxCDE are part of the reductase system essential for
luciferase aldehyde biosynthesis [406].

Figure 6.1: QS bioluminescence system of V. fischeri. The QS system of the marine bacterium
V. fischeri requires the regulatory proteins LuxI and LuxR as well as LuxAB and LuxCDE that
are needed for the luminescence reaction and luciferase aldehyde biosynthesis, respectively.

LuxI (the protein expressed from luxI) synthesizes a signalingmolecule, or AI, homoserine
lactone (HSL) that can passively diffuse between intra– and extracellular environment [406,
411]. In consequence, the HSL concentration is equally distributed between inside and outside
of a bacterial cell. When a concentration threshold is reached, HSL binds to the intracellu-
lar transcriptional regulator LuxR [406, 408, 412]. The LuxR–HSL complex then activates the
luxICDABE operon by binding to the 20 bp long lux box binding sequence, which is located
upstream (–40 bp) of the luxICDABE operon, but at the same time represses transcription of
luxR by binding to the luxR promoter [408, 413]. Thus, LuxR–HSL indirectly down–regulates
the expression of luxICDABE via a negative feedback loop as well [408]. Thus, a low cell den-
sity entails a low transcription rate of luxICDABE, a low level of HSL and, finally, low light
production. In contrast, high cell populations lead to synthesis of more AI molecules and light
production increases.

6.1.2 The QS agr system of Staphylococcus aureus
Staphylococcus aureus (S. aureus) is a gram–positive bacterium responsible for infections of the
skin and soft tissue, bacteremia, endocarditis, sepsis and toxic shock syndrome [343, 344].
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Treating S. aureus is complicated due to the evolvement of multidrug resistant S. aureus strains,
known asmethicillin–resistant Staphylococcus aureus (MRSA) [343, 353]. In general, methicillin–
resistant pathogens are a huge burden must be overcome, especially in the healthcare sector.

Various infections that are caused by S. aureus are facilitated by several (intrinsic) bacterial
virulence factors. Virulence factors comprise a large spectrum of various enzymes and exo-
toxins that enable a evasion of the immune system, tissue adhesion, or cause damages of the
host cell [345, 346, 347]. Sepsis, which is caused by virulence factors, is associated with en-
terotoxin release such as the toxic shock syndrome toxin [345]. Further virulence factors that
are secreted by S. aureus are hemolysins, such as α–hemolysin, that trigger the destruction of
membrane structures and that can cause pneumonia [348, 349, 350]. Thus, virulence factors are
a crucial part of the pathogenesis of bacterial infections. Expression of different virulence fac-
tors depends on external influences [351] and is regulated by the cell–density–dependent QS
accessory gene regulator (agr) system of S. aureus [351, 352], which is displayed in Figure 6.2.

Figure 6.2: QS accessory gene regulator system of S. aureus. QS in S. aureus is based on
genes agrA, agrB, agrC, agrD, and hld that have different functions in the QS system such as the
transmembrane protein AgrB or histidine kinase AgrC.

The agr locus consists of the five genes agrA, agrB, agrC, agrD, and hld, with agrA to agrD
organized in one operon [351]. Thereby, the agr operon and hld are controlled by different pro-
moters, termed P2 and P3, respectively. Each of these proteins takes over a different function
in the QS system: the transmembrane protein AgrB and the type I signal peptidase SpsB con-
vert the pro–peptide AgrD into an autoinducing peptide (AIP), which is then used as cellular
signaling molecule. While AgrB removes the charged AgrD–carboxy–tail [414, 415], SpsB is re-
sponsible for the removal of the amphipathic N–terminus [416]. In contrast to gram–negative
bacteria, short peptides rather than homoserine lactones are used as signaling molecules in
S. aureus. S. aureus encodes four different allelic AIP variants (AIP–I to AIP–IV), whereby the
length of these AIPs varies between seven and nine amino acids [417]. Five residues form a
thiolactone ring at the C–terminus [417] and each secreted AIP can bind specifically to the re-
spective AgrC histidine kinase [351, 418].

Upon AIP synthesis, the signaling molecule is transported out of the cell by transmem-
brane protein AgrB. AIP then binds to the extracellular part of the integral membrane protein
AgrC. As mentioned, AgrC functions as a histidine kinase that in turn autophosphorylates the
response regulatorAgrA. This autophosphorylation is established by anAIP induced change of
theAgrC conformation that enables a connection between the sensor and kinase domains [351].
AgrA subsequently upregulates expression of the hld and agr operons by binding to the inter-
genic DNA between promoters P2 and P3. The hld gene encodes a RNAIII effector molecule
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that posttranscriptionally regulates several virulence factors (for example α–hemolysin). In
consequence, the agr system regulates expression of virulence factors but, in addition to other
global regulators, also regulates its own expression. In total, RNAIII and AgrA regulate the
transcription of about 200 genes also comprising virulence factors [419].

6.2 Novel approaches: interfering with QS
A number of studies have succeeded in exploiting the bacterial QS system as target for antibac-
terial treatments. Several studies are presented in the following. It is believed that targeting the
QS system is advantageous over conventional therapeutic strategies due to an approach that
only disrupts the communication between bacteria rather than an elimination of individual
bacterial cells. This strategy is therefore assumed to lower the selective pressure and reduce
the rate at which antibiotic resistance normally develops during treatment [96, 407]. Since bac-
teria use their QS system to also regulate expression of virulence factors and biofilm formation,
inhibiting the signaling system should favor the viability of less virulent strains and prevent or
minimize the establishment of pathogenic biofilms [96].

Various classes of chemical compounds and targets that interfere with different parts of
the QS cascade have been proposed (see below). All QS systems share a general pattern or
signaling cascade: an AI is synthesized, a certain AI concentration reaches a threshold, and the
AI binds to a transcriptional regulator that subsequently activates or represses certain genes.
This opens up four promising strategies for an anti–infective therapy: the AI synthesis can be
suppressed, the AI can be attacked and decomposed in an enzymatic reaction or deactivated
using antibodies, regulator antagonism, and binding of a regulator protein to the DNA can be
hindered [96].

6.2.1 Targeting the QS system of V. fischeri
The QS system of V. fischeri was targeted in several studies. Schaefer et al. [420] investigated
synthetic HSL analogs in terms of their binding affinity to LuxR and their ability to reduce the
luminescence reaction. They identified several LuxR binders which induced a luminescence
reaction and also identified competitive HSL compounds, which were not capable of activating
the luminescence reaction and could thus be applied to inhibit QS dependent gene expression.

Both Piletska et al. [421] and Cavaleiro et al. [422] studied the ability of polymers to atten-
uate QS in V. fischeri. These synthetic polymers, which can be itaconic acid–based, were able
to sequester the autoinducing signal and were therefore termed signal molecule–sequestering
polymer [421]. These polymers showed affinities to the HSL signaling molecule and prevented
theV. fischeri bioluminescence reaction by absorbing the AI [421]. One advantage of these poly-
mers, in comparison to other anti–infectives, is the decrease of harmful side–effects [421].

6.2.2 Attacking the S. aureus QS system to treat infections
As mentioned several strategies can be applied to disrupt the sequential bacterial QS cascade.
In the following, we present experimental possibilities on how to attack an AI, hinder an inter-
action between AI and the regulator protein, and how to prevent regulator binding to DNA.
Subsequent to these experimental approaches, we introduce some in silico studies that investi-
gated QS inhibitors.

Attacking the AI
Park et al. [423] applied an immunopharmacotherapeutic approach and investigated mono-
clonal antibodies in terms of their ability to neutralize the AI peptide AIP–IV via sequestration.
Out of 20 produced anti–AIP–IV, one antibody (AP4–24H11) with high binding affinity was
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highly specific towards AIP–IV. Moreover, applying AP4–24H11 to different S. aureus strains
resulted in a decreased α–hemolysin production. This antibody was also successfully applied
to an infected murine model that showed abscess formation [423]. These results highlight that
the removal of an autoinducing signal peptide from a bacterial system can result in inhibition
of QS dependent gene expression without manipulating bacterial genetic information.

Preventing AI–regulator interactions
Mansson et al. [424] investigated the potential of marine bacteria to decrease the pathogenicity
of S. aureus by attacking its agr QS system. They showed that the investigated marine pho-
tobacterium produces two AI antagonists named solonamide A and B, see Figure 6.3. These
antagonists were able to inhibit QS in a highly virulent community–acquired MRSA strain.

Figure 6.3: S. aureus QS inhibitors solonamide A and B. Dependent on the residue R, the
inhibitor is categorized into solonamideAwithR = H and solonamide BwithR = C2H5 [424].
This figure was generated by Anke Steinbach during the preparation of our manuscript.

Murray et al. [425] synthesized several small–molecule inhibitors that interact with the cy-
toplasmic membrane and appear to affect AIP–AgrC interaction as allosteric non–competitive
inhibitors. The most potent inhibitor was tested in a mouse model that was infected with S.
aureus. These experiments showed that the inhibitory effect towards the agr system could de-
crease nasal colonization in mouse.

Inhibiting regulator binding to DNA
Since the S. aureus agr systemwas shown to be involved in skin and soft tissue infections [344],
Sully et al. [426] aimed at identifying a small molecule inhibitor that disrupts the S. aureus
signaling cascade but, at the same time, omits suppressing that of commensal Staphylococcus
epidermidis (S. epidermidis). The reason behind this was that S. epidermidis is an important gram–
positive bacterium involved in host defense mechanisms against skin pathogens and is thus
important for human skin flora [427]. To ensure specificity toward S. aureus, they investigated
the structural differences between components of the agr systems of S. aureus and S. epidermidis.
Since the AgrC residues, which are crucial for agr functionality, were found to be conserved
between S. aureus and S. epidermidis, AgrA was selected as target protein. The authors applied
high–throughput screening to 24,087 compounds and discovered inhibitors of the agr signaling
cascade that suppressed up–regulation of virulence factors. The inhibitor was named savirin
short for S. aureus virulence inhibitor [426]. Its structure is shown in Figure 6.4.

Savirin blocks binding of AgrA to the promoter region, which was confirmed by chang-
ing the P3 coupled product to GFP. To analyze the specificity of savirin binding to S. aureus
AgrA, the in silico tool SwissDock [428] was applied to dock savirin to both AgrA of S. epider-
midis and S. aureus. Since the critical AgrA residues were found to be not conserved between
these bacteria, only the latter docking was successful. In consequence, the authors concluded
that savirin preferentially binds to AgrA of S. aureus rather than S. epidermidis making AgrA a
reliable target structure and savirin a promising agr signaling inhibitor.
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Figure 6.4: S. aureus QS inhibitor savirin. Savirin inhibits binding of AgrA to the promoter
region. Savirin takes its name from the first syllables of S. aureus virulence inhibitor [426]. This
figure was generated by Anke Steinbach during the preparation of our manuscript.

Daly et al. [429] recently reported that a polyhydroxyanthraquinone, which was named
ω–hydroxyemodin (OHM), prevented agr signaling by all four S. aureus agr alleles at concen-
trations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth. The com-
ponent OHM inhibited QS by direct binding to AgrA and decreased the S. aureus bacterial load
in a mouse model.

6.3 In silicomethods find promising QS inhibitors

Computer–based approaches have been applied in the field of discovering anti–QS substances
with the aim of saving experimental time and costs by preselecting promising candidates via
virtual screening. The following approaches are related to P. aeruginosa and S. aureus. More
details on P. aeruginosa QS system can be found in the published paper.

Preventing AI–regulator interactions

Annapoorani et al. [430] carried out a virtual screening approach to find LasR and RhlR QS
inhibitors in P. aeruginosa. Out of 1,920 compounds, docking identified five promising candi-
date substrates for the LasR and RhlR receptors. They verified their potential to suppress the
expression of virulence factors protease, elastase, and hemolysin, by in vitro experiments.

By application of Boolean network modeling, Schaadt et al. [431] presented an in silico
multi–level modeling approach to study time–dependent properties of the Las, Rhl, and Pqs
signaling systems of P. aeruginosa. Their aimwas to investigate the regulatory andmetabolic in-
terplay betweenQS inhibitors, receptor antagonism, signalingmolecules, and expression of the
virulence factors elastase, rhamnolipids, and pyocyanin. In their simulations, they found that
signalingmolecules HHQ and PQS are decreasedwhen expression of pqsBCD is suppressed by
appropriate inhibitors. Using this network approach they were able to predict the quantitative
impact of Pqs inhibitors and PqsR antagonists on QS.

Inhibit regulator binding to DNA

Leonard et al. [432] determined the crystal structure of the AgrA LytTR domain in S. aureus
that is necessary to bindDNA. They subsequently applied fragment virtual screening to a small
library consisting of 500 compounds and found three inhibitors that disrupted binding of AgrA
to DNA.
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6.4 Limits of QS therapeutic strategies
Although several newdiscoveries in the field of bacterial QS and in the development of promis-
ing inhibitors have been reported recently, significant research gaps remain. First of all, it is un-
clear whether all molecular components of QS systems and the respective regulators have been
discovered up to date. For example, Miller et al. [433] recently identified novel antagonists of
pyocyanin production in P. aeruginosa that appear to act through a pathway that is independent
of the known regulators LasR and RhlR.

An important issue in antimicrobial drug development is the treatment of bacterial
biofilms. Infections that are based on biofilms have a preference to be chronic and resistant
to antibiotics [434]. Thereby, QS can help bacteria to regulate group behavior in these densely
packed bacterial biofilms [434]. Here, a combination therapy of QS inhibitors and antibiotics
could be beneficial: inhibitors can enhance the susceptibility of bacterial biofilms to a treatment
with antibiotics that resulted in increased in vitro killing and in vivo survival rates [435].

Despite the fact that multiple drugs have been tested in vitro and in vivo, very few clinical
trials involving QS inhibitors have been conducted or initiated. Only three clinical trials, with
verified status, are reported in the publicly available Clinical Trials database [436]. Moreover,
Scutera et al. [96] speculated that the interest of pharmaceutical companies in the development
of QS inhibitors is only moderate based on the imbalance between high costs for developing
new drugs while the market for these drugs seems to be restricted. They also suggested that
the apparent advantage of avoiding drug resistance by targeting the signaling systemmay have
the downside that strains with increased virulence could be selected.

Discovering the complex intricacies of QS systems and understanding the genetic, and pos-
sibly also epigenetic, mechanisms of bacterial adaptation under selective pressure are impor-
tant research questions. For example, it is possible that when a certain signaling system of
specific species is targeted, other (pathogenic) bacterial species a patient is infected with, may
have an increased selective advantage. Moreover, bacteria may also become resistant to QS in-
hibitors. In the case of the S. aureus agr system this can occur via the up–regulation of efflux
transporters [426]. Fortunately, the recently discovered QS inhibitors reviewed in our article
and elsewhere [96] are nice tools for such mechanistic studies.





CHAPTER7
Conclusion and outlook

In this thesis, we considered several regulatory levels of protein biosynthesis that together
shape the complex diversity of phenotypes. First, we analyzed the association between the hu-
man methylome and nucleosome occupancy to explain experimentally observed DNAmethy-
lation patterns using a structural superimposition approach. This was followed by the devel-
opment of a statistical model to predict alternative non–cognate translation start sites in the
5’ UTR based on a given mRNA sequence. Alternative translation is important for cellular
function and was found to be associated with an adaption to environmental conditions such
as cellular stress response. Besides innate factors that contribute to a phenotype, we were also
interested in genome variations and their potential influence on protein biosynthesis. Muta-
tions in genomic key elements are associated with (disease) phenotypes, whereby the exact
location of a variation, like coding or regulatory sites, is of crucial importance to estimate the
genome–wide impact. Thus, we analyzed mutation frequencies in genomic regions such as
coding regions and the flanking sequences of transcription and translation start sites in hu-
man. Subsequently, we developed a tool that automatically scores the impact of mutations in
a given genome by also integrating an underlying gene regulatory network. This software was
then applied to two prokaryotic genomes, namely Escherichia coli and Staphylococcus aureus, to
investigate the contribution of individual variations on antibiotic resistance.

As mentioned, we analyzed DNA methylation patterns and their association with the or-
ganization of DNA within the nucleosome core complex. For this, we computed accessibility
scores based on a structural alignment of maintenance DNA methyltransferase DNMT1 and
the nucleosome core complex (NCP147) X–ray structures [137]. The calculation of unfeasi-
ble binding positions between DNMT1 and NCP147 using a sterical clash model enabled the
detection of accessible nucleosome–bound CpG sites at nucleotide resolution. Our thus de-
rived scores were then statistically compared to experimentally observed methylation pattern.
Experimental data was thereby based on the NOMe–seq technique that simultaneously de-
tects GpCmethylated sites to derive nucleosome occupied and depleted regions together with
genome–wide methylome data [100]. In this study it was crucial to bring together these two
regulatory factors, DNA methylation and nucleosome positioning, to unravel their relation-
ship [100]. Our results suggest that the distribution of methylated CpG sites throughout the
human genome is dependent on the accessibility of DNMT1 to the nucleosome–bound DNA.
We could show that this pattern is only present in regions with higher nucleosome density
compared to the local surrounding and was absent in regions with low nucleosome density.
It was suggested that DNA methylation and nucleosome occupancy are dependent on each
other, maybe even in a bidirectional way [147, 157, 158]. Our results support this hypothesis
and highlight the important association between (epi)genetic marks to ensure the complex and
dynamic genome regulation present in our cells. Nevertheless, several other factors such as
histone modifications were reported to influence DNA methylation [437]. The consideration
of present and absent histone modifications could therefore improve the understanding of this
process and help to decipher underlying methylation patterns. Moreover, due to the specific
nucleosomepositioning and regulatory function ofDNAmethylation, we limited our studies to
promoter regions. A genome–wide analysis of CpGmethylation together with nucleosome oc-
cupancy in several genomic key elements such as coding regions or nucleosome–dense intron–
exon boundaries [158] could greatly contribute to a better understanding of genome regulation
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in eukaryotic cells.
Next, we analyzed the sequence–encoded differences between genome–wide experimen-

tally confirmed alternative translation initiation sites and the remaining set of putative start
sites within human 5’ UTRs. This knowledge on sequence–encoded differences between these
groups was then used to develop statistical regression models, which assign translation initia-
tion confidence scores to all putative start sites found in a givenmRNA sequence and therewith
predict their ability to initiate translation. We were able to demonstrate that alternative start
sites detected by experimental ribosome profiling [170] and features based onmRNA sequence
information can be used to build reliable prediction models with accuracies of about 80% for
start codon and open reading frame prediction in human. All predicted start sites of one tran-
script are postulated to have the potential to initiate translation. They could, for example, be
used in different tissues or in a specific cellular condition such as stress response. Although
there already exist several other approaches to predict translational initiation start sites, at the
time when we published our study, none of them considered all in– and out–of–frame AUG
and near–cognate codons. Very recently, a group following up on ourwork published an open–
source software with apparently higher accuracy that was trained using deep learning [438].
Our provided web service PreTIS considerably simplifies and assists the analysis of mRNA se-
quences in terms of prediction of possible translation start sites and their visualization. PreTIS
can also be used to estimate the impact of individual mutations in the start site flanking re-
gions. The analysis of mutations in these regions and in further defined genomic elements was
investigated by conducting a genome–wide variation analysis (see below).

To generate accurate predictor functions, the reliability of the underlying dataset is crucial.
The availability of thousands of alternative start sites detected using the ribosome profiling
technology is a major step forward to decipher translational complexity and greatly supports
the development of statistical models. Nevertheless, the available datasets are probably com-
posed of some false start sites and do not contain some true start sites. This inhomogeneity can
be based on experimental drawbacks and subsequent processing steps of the raw data. More-
over, we limited our studies to start sites located in the 5’ UTR due to their ability to extend
known protein isoforms as well as to generate completely new proteins in case the start site is
out–of–frame with the canonical AUG codon. Thus, one could expand the existing regression
model to predict start sites located in the CDS and 3’ UTR. Furthermore, an investigation of
potential sequence–encoded differences and similarities between start codons in the 5’ UTR,
CDS, and 3’ UTR could be worth the effort to generate individual predictors dependent on the
specific mRNA element. For instance, features such as codon or overall sequence conservation
are likely to loose some significance due to a generally higher conservation of coding sequences
compared to their flanking regions. Moreover, a dependency between individual start sites on
a single mRNA with different Kozak consensus sequences was observed [43]. Therefore, a
sophisticated approach that also considers initiation confidences of all start sites located in up-
stream direction could hence be beneficial to improve the underlying statistical model, when
expanding the approach to the complete mRNA sequence. Finally, a consideration of several
cell lines could further shed light on alternative codon usage, especially when assuming that
non–canonical start sites are used differently across cell types.

Following this, we examined the human genome based on data on tens ofmillions ofmuta-
tions from two major sequencing projects. We separately investigated several genomic regions
and analyzed their functional relevance based on sequence conservation. A detailed analysis of
mutation pattern around transcription and canonical as well as non–canonical translation start
sites was carried out as well. This investigation of SNPs and indels from the 1000 Genomes
Project [57] and the Genome of the Netherlands project [58, 59] revealed pronounced differ-
ences in the distribution of several variant types across genomic elements, such as promoters,
5’ UTRs, and coding exons. The coding start site coincided with a decrease in SNP density,
which is in agreement with the expected strong conservation of protein–encoding sequences.
Also, we noticed a decreased SNP and indel density at the TSS suggesting strong purifying
selection against indels within intragenic regions. As described before [302], we found that in-
dels are not only rare in open reading frames but also in potential regulatory elements such as
CpG islands. In general, mutation frequencies found here were in accordance with earlier find-
ings [250]. However, we discovered a remarkable amount of genes with a CpG dinucleotide
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upstream of the TSS at position –1 that coincided with an elevated number of SNPs at this
position. Applying DAVID enrichment analysis [292], we found that most of these genes are
significantly enriched in the annotations "Phosphoprotein", "Alternative splicing" and "Protein
binding". Onemight speculate that a mutation–pronemethylated CpG dinucleotide at this po-
sition functions as cellular signal for transcriptional regulation of specific gene groups. With
respect to translation initiation sites, our investigations showed that alternative start sites lo-
cated in the human 5’ UTR exhibit a similar conservation tendency in their flanking region
compared to annotated canonical AUG start sites. In doing so, we considered AUG and near–
cognate as well as in– and out–of–frame with the annotated start site detected by experimental
ribosome profiling [170]. We found a pronounced decrease in the number of SNPs at the start
site itself, but also at prominent position –3, which was experimentally shown to be crucial for
translation initiation [182, 183]. In general, alternative starts are not as conserved as canonical
start sites. Nevertheless, the similar conservation pattern found confirms the importance of
alternative start codons and their relevant contribution to the expansion of biological variety
and complexity.

Finally, we developed theMutaNET software that supports and facilitates the investigation
of individual mutations and their impact on gene function and regulation in a given genome.
The sequential analysis steps provide a detailed report of different mutation types in distinct
genomic elements and also allows their statistical comparison between gene groups, such as
antibiotic resistant and non–antibiotic resistant genes. We provide different scores that are
calculated based on the location of a mutation such as coding regions or transcription factor
binding sites. These mutation scores help to estimate to which extent a mutation can influ-
ence an encoded protein sequence or impact regulator binding. Moreover, integration of an
underlying gene regulatory network greatly helps in estimating the global impact of muta-
tions on gene expression. We then applied our software to antibiotic resistant Escherichia coli
and Staphylococcus aureus bacterial strains. Application of MutaNET to these resistance gene
datasets considerably simplified the confirmation of known resistance mutations as well as the
identification of novel candidate resistance mutations. It was also possible to decipher possible
similar resistance mechanisms across these species. As further application,MutaNET could be
used to detect novel resistancemutations in cancer cell lines and to estimate their impact on the
human regulome. Moreover, it would be possible to decipher similar resistance and adaptation
mechanisms across the kingdoms of life when considering that bacterial resistance against an-
tibiotics and the development of chemoresistant cancer cells upon treatment with cytostatica
are based on similar adaptation strategies such as increased drug efflux via transmembrane
transporters [372, 439, 440].

In summary, various processes involved in protein biosynthesismust be tightly regulated to
ensure normal cell behavior. Even small changes within specific regions, such as promoter hy-
permethylation, can cause transcriptional silencing of tumor suppressor genes and thus favor
cancer development. Moreover, individual mutations are associated with disease phenotypes,
whereas the location is of crucial importance. In this sense, the establishment and analysis
of the underlying gene regulatory network together with an investigation of the affected pro-
tein domains can help to find candidate mutations for phenotypes such as antibiotic resistant
pathogens. The selection of translation start sites is highly influenced by the (flanking) mRNA
sequence. Machine learning can thus help to decipher these pattern and find novel experimen-
tally undetected but important initiation sites that could be used in different cellular states or
that encode alternative protein isoforms with essential functions in different cell types.





Abbreviations
1000G 1000 Genomes Project

3’ UTR 3’ untranslated region

5’ UTR 5’ untranslated region

5hmC 5–hydroxymethylation

5mC 5–methylcytosine

A adenine

A–site amino acid site

ADD ATRX–DNMT3–DNMT3L

agr accessory gene regulator

AI autoinducers

AIP autoinducing peptide

AUC area under the ROC curve

BAH1/2 tandem bromo–adjacent homology

BAM Binary Alignment Map

BED Browser Extensible Data

BLAST Basic Local Alignment Search Tool

bp base pair

BWA Burrows–Wheeler Alignment

C cytosine

CAP catabolite gene activator protein

CC clonal complex

CCR5 C–C chemokine receptor type 5

cDNA complementary DNA

CDS coding DNA sequence

CERN The European Organization for Nuclear Research

CES translation end site

CGI CpG island

ChIP–seq chromatin immunoprecipitation combined with DNA sequencing

CHX cycloheximide

CSS Cascading Style Sheets

CSS coding start site

CXXC Cys–X–X–Cys

DNA deoxyribonucleic acid
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DNMT DNAmethyltransferase

DNMT1 DNAmethyltransferase 1

DNMT3a DNAmethyltransferase 3a

DNMT3b DNAmethyltransferase 3b

DNMT3L DNAmethyltransferase 3–like protein

DOM Document Object Model

dORF downstream ORF

E–site exit site

E. coli Escherichia coli

ES cell embryonic stem cell

FACS–seq fluorescence-activated cell sorting and high-throughput DNA sequencing

FDR false discovery rate

FN false negative

FP false positive

FPR false positive rate

G guanine

GFF General Feature Format

GML Graph Modeling Language

GO Gene Ontology

GoNL Genome of the Netherlands

GRN gene regulatory network

GTP guanosine triphosphate

GUI graphical user interface

GWAS genome–wide association studies

HEK293 human embryonic kidney 293

HNDR high nucleosome density region

HSL homoserine lactone

HTH helix–turn–helix

HTML Hypertext Markup Language

IC initiation confidence

indel insertion and deletion

JS JavaScript

JSON JavaScript Object Notation

kb kilo base

LNDR low nucleosome density region

LTM lactimidomycin

Mb mega base

MDRE multidrug–resistant efflux
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mRNA messenger RNA

MRSA methicillin–resistant Staphylococcus aureus

MUSCLE MUltiple Sequence Comparison by Log–Expectation

NDR nucleosome depleted region

NER nucleotide excision repair

NGS next–generation sequencing

NOMe–seq Nucleosome Occupancy and Methylome sequencing

nt nucleotide

OHM ω–hydroxyemodin

ORF open reading frame

P–site polypeptide site

P. aeruginosa Pseudomonas aeruginosa

PATRIC Pathosystems Resource Integration Center

PCA principal component analysis

PDB Protein Data Bank

PFM position frequency matrix

PHP PHP: Hypertext Preprocessor

PWM position weight matrix

PWWP Pro–Trp–Trp–Pro

QS quorum sensing

RBF radial basis function

RefSeq Reference Sequence

REST Representational State Transfer

RMSD root–mean–square deviation

RNA ribonucleic acid

RNA–seq RNA sequencing

ROC Receiver Operating Characteristics

rRNA ribosomal RNA

S. aureus Staphylococcus aureus

S. epidermidis Staphylococcus epidermidis

SA suffix array

SAH S–adenosyl–L–homocysteine

SAM Sequence Alignment Map

SAMe S–adenosyl–L–methionine

SNP single nucleotide polymorphism

sORF small open reading frame

ST sequence type

SVG Scalable Vector Graphics
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SVM support vector machine

T thymine

TCGA The Cancer Genome Atlas

TERT telomerase reverse transcriptase

TES transcription end site

TET Ten–Eleven Translocation

TF transcription factor

TFBS transcription factor binding site

TIS translation initiation site

TN true negative

TP true positive

TPR true positive rate

tRNA transfer RNA

TSS transcription start site

U uracil

uORF upstream ORF

V. fischeri Vibrio (Aliivibrio) fischeri

VCF variant call format

vdW van der Waals

W3C World Wide Web Consortium

WGBS whole–genome bisulfite sequencing

WGS whole–genome sequencing



Supplementary material

Appendix A: Decipher DNA methylation patterns

Table A.1: Cohen’s d values for different matching scores in HNDRs. The matching–score
and thus Cohen’s d values are dependent on tolerated sterical clash cthres and methylation
threshold mthres parameters. For instance, c5m0 denotes that the score was calculated using
cthres = 5 andmthres = 0. The numbers are visualized in Figure 2.13.

i c5m0 c5m10 c5m20 c10m0 c10m10 c10m20 c20m0 c20m10 c20m20 c50m0 c50m10 c50m20

1 –0.02 –0.01 0.01 –0.01 0.0 0.01 0.01 0.0 0.0 0.02 0.0 –0.03

2 0.1 0.12 0.11 0.05 0.06 0.06 –0.03 –0.03 –0.03 –0.17 –0.21 –0.19

3 0.13 0.14 0.14 0.07 0.08 0.07 –0.04 –0.05 –0.04 –0.23 –0.25 –0.24

4 0.2 0.22 0.2 0.11 0.12 0.11 –0.06 –0.07 –0.06 –0.32 –0.35 –0.33

5 0.23 0.24 0.23 0.13 0.13 0.13 –0.07 –0.07 –0.07 –0.37 –0.38 –0.37

6 0.29 0.3 0.29 0.16 0.17 0.16 –0.09 –0.1 –0.09 –0.46 –0.48 –0.46

7 0.39 0.39 0.37 0.22 0.22 0.21 –0.13 –0.12 –0.12 –0.61 –0.62 –0.6

8 0.47 0.47 0.44 0.26 0.26 0.24 –0.15 –0.15 –0.14 –0.74 –0.75 –0.72

9 0.51 0.51 0.48 0.29 0.29 0.26 –0.16 –0.16 –0.15 –0.79 –0.79 –0.76

10 0.58 0.58 0.55 0.33 0.32 0.31 –0.18 –0.18 –0.17 –0.91 –0.91 –0.88

11 0.67 0.66 0.63 0.38 0.37 0.35 –0.21 –0.2 –0.19 –1.03 –1.02 –0.99

12 0.71 0.69 0.66 0.4 0.38 0.36 –0.23 –0.22 –0.2 –1.11 –1.08 –1.05

13 0.8 0.77 0.74 0.45 0.43 0.41 –0.25 –0.24 –0.23 –1.27 –1.24 –1.22

14 0.83 0.8 0.77 0.46 0.44 0.43 –0.28 –0.27 –0.26 –1.31 –1.26 –1.23

15 0.94 0.9 0.87 0.53 0.51 0.48 –0.28 –0.27 –0.27 –1.48 –1.43 –1.43

16 0.97 0.94 0.93 0.54 0.52 0.5 –0.31 –0.29 –0.29 –1.6 –1.55 –1.58

17 1.03 0.99 1.0 0.55 0.53 0.53 –0.33 –0.31 –0.31 –1.71 –1.66 –1.74

18 1.1 1.06 1.07 0.6 0.58 0.58 –0.34 –0.33 –0.32 –1.86 –1.81 –1.86

19 1.18 1.14 1.14 0.64 0.62 0.61 –0.38 –0.35 –0.35 –2.02 –1.96 –2.05

20 1.28 1.23 1.21 0.69 0.66 0.64 –0.4 –0.39 –0.39 –2.19 –2.12 –2.16

21 1.33 1.27 1.22 0.75 0.71 0.68 –0.41 –0.39 –0.37 –2.15 –2.07 –2.08

22 1.26 1.21 1.21 0.69 0.66 0.64 –0.42 –0.4 –0.4 –2.15 –2.1 –2.2

23 1.36 1.32 1.29 0.77 0.74 0.72 –0.41 –0.39 –0.36 –2.18 –2.13 –2.18

24 1.22 1.16 1.1 0.69 0.66 0.62 –0.46 –0.44 –0.4 –1.97 –1.89 –1.85

25 1.4 1.34 1.31 0.74 0.69 0.66 –0.5 –0.48 –0.46 –2.46 –2.37 –2.44

26 1.42 1.36 1.3 0.79 0.75 0.72 –0.43 –0.41 –0.37 –2.14 –2.08 –1.98

27 1.65 1.65 1.51 0.97 0.98 0.87 –0.49 –0.45 –0.41 –2.59 –2.53 –2.4

28 1.52 1.48 1.34 0.9 0.88 0.76 –0.42 –0.43 –0.38 –2.42 –2.46 –2.3

29 1.46 1.5 1.53 0.79 0.77 0.82 –0.39 –0.43 –0.3 –2.14 –2.28 –2.25

30 1.04 0.99 0.92 0.72 0.67 0.47 –0.24 –0.18 –0.34 –1.73 –1.76 –1.71

31 1.16 1.14 1.24 0.63 0.61 0.7 –0.34 –0.33 –0.27 –2.28 –2.34 –2.68

32 2.07 1.99 1.91 1.21 1.16 1.07 –0.41 –0.38 –0.42 –2.73 –2.66 –2.56

33 2.06 1.99 2.2 1.25 1.28 1.26 –0.37 –0.27 –0.43 –3.36 –3.4 –3.91

34 5.0 3.59 4.29 3.46 2.75 4.25 –1.96 –1.59 0.15 –5.84 –5.35 –5.86
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Table A.2: Cohen’s d values for different matching scores in LNDRs. The matching–score
and thus Cohen’s d values are dependent on tolerated sterical clash cthres and methylation
threshold mthres parameters. For instance, c5m0 denotes that the score was calculated using
cthres = 5 andmthres = 0. The numbers are visualized in Figure 2.14.

i c5m0 c5m10 c5m20 c10m0 c10m10 c10m20 c20m0 c20m10 c20m20 c50m0 c50m10 c50m20

1 0.04 0.04 0.06 0.02 0.03 0.04 –0.01 –0.01 –0.02 –0.07 –0.08 –0.12

2 0.14 0.15 0.16 0.08 0.08 0.09 –0.04 –0.04 –0.05 –0.24 –0.26 –0.3

3 0.16 0.16 0.18 0.08 0.08 0.09 –0.05 –0.05 –0.05 –0.28 –0.28 –0.32

4 0.18 0.18 0.19 0.1 0.1 0.11 –0.05 –0.05 –0.06 –0.3 –0.3 –0.34

5 0.18 0.18 0.2 0.1 0.1 0.11 –0.06 –0.06 –0.06 –0.32 –0.31 –0.36

6 0.22 0.2 0.23 0.12 0.11 0.12 –0.07 –0.06 –0.07 –0.38 –0.35 –0.4

7 0.22 0.2 0.23 0.12 0.11 0.12 –0.06 –0.06 –0.07 –0.37 –0.33 –0.4

8 0.24 0.21 0.25 0.13 0.12 0.13 –0.07 –0.07 –0.08 –0.4 –0.36 –0.44

9 0.23 0.2 0.24 0.12 0.11 0.13 –0.07 –0.07 –0.07 –0.38 –0.34 –0.41

10 0.23 0.2 0.24 0.12 0.11 0.13 –0.07 –0.06 –0.07 –0.38 –0.33 –0.41

11 0.25 0.21 0.26 0.14 0.12 0.15 –0.07 –0.06 –0.07 –0.4 –0.35 –0.44

12 0.24 0.2 0.24 0.13 0.11 0.13 –0.08 –0.07 –0.08 –0.4 –0.35 –0.43

13 0.24 0.21 0.27 0.14 0.12 0.15 –0.07 –0.06 –0.08 –0.39 –0.33 –0.45

14 0.26 0.22 0.29 0.14 0.12 0.16 –0.08 –0.06 –0.09 –0.42 –0.36 –0.49

15 0.27 0.23 0.31 0.15 0.13 0.17 –0.08 –0.07 –0.1 –0.43 –0.37 –0.51

16 0.28 0.25 0.34 0.15 0.14 0.19 –0.1 –0.08 –0.11 –0.46 –0.4 –0.57

17 0.26 0.23 0.33 0.15 0.13 0.18 –0.08 –0.07 –0.1 –0.43 –0.37 –0.54

18 0.28 0.24 0.36 0.16 0.14 0.2 –0.08 –0.07 –0.11 –0.45 –0.38 –0.59

19 0.32 0.28 0.39 0.18 0.15 0.21 –0.09 –0.08 –0.12 –0.51 –0.44 –0.65

20 0.35 0.3 0.41 0.2 0.17 0.23 –0.13 –0.11 –0.14 –0.57 –0.48 –0.69

21 0.38 0.34 0.46 0.21 0.19 0.25 –0.14 –0.12 –0.15 –0.63 –0.56 –0.76

22 0.41 0.36 0.48 0.22 0.2 0.26 –0.13 –0.11 –0.16 –0.66 –0.59 –0.81

23 0.44 0.39 0.52 0.25 0.22 0.29 –0.14 –0.12 –0.16 –0.71 –0.63 –0.86

24 0.42 0.37 0.52 0.24 0.21 0.3 –0.12 –0.1 –0.14 –0.66 –0.58 –0.82

25 0.43 0.38 0.48 0.23 0.21 0.26 –0.13 –0.12 –0.15 –0.69 –0.61 –0.82

26 0.49 0.44 0.53 0.31 0.28 0.31 –0.13 –0.1 –0.16 –0.72 –0.64 –0.86

27 0.38 0.32 0.49 0.19 0.16 0.25 –0.17 –0.15 –0.2 –0.65 –0.58 –0.84

28 0.45 0.39 0.62 0.26 0.22 0.36 –0.14 –0.13 –0.16 –0.7 –0.61 –0.99

29 0.57 0.47 0.67 0.39 0.32 0.42 –0.08 –0.08 –0.15 –0.78 –0.67 –1.06

30 0.67 0.6 0.88 0.35 0.32 0.49 –0.24 –0.2 –0.22 –0.93 –0.83 –1.3

31 0.87 0.86 1.16 0.5 0.48 0.64 –0.23 –0.2 –0.36 –1.39 –1.42 –2.16

32 0.45 0.44 0.96 0.22 0.2 0.45 –0.24 –0.23 –0.32 –0.74 –0.78 –1.54

33 0.9 0.88 1.24 0.54 0.49 0.5 –0.36 –0.35 –0.65 –1.92 –2.23 –2.71

34 0.93 1.31 1.57 0.66 0.91 1.12 0.46 0.5 0.44 –0.23 –0.4 –1.18

35 –1.11 –1.25 0.0 –1.51 –1.58 –0.38 –1.51 –1.7 –1.41 –1.0 –2.5 –9.19
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Table A.3: Number of CpGs in HNDRs. Frequency and percentages of sliding windows with
specific number of CpGs in HNDRs. In total, 2,277,851 sliding windows were considered with
an average of 7.12± 4.88 CpGs and a median of 6.0 CpGs per window.

i Nbr. of CpGs = i Nbr. of CpGs ≥ i

Frequency Percentage Frequency Percentage

1 161652 7.1% 2277851 100.0%

2 252595 11.09% 2116199 92.9%

3 199454 8.76% 1863604 81.81%

4 226055 9.92% 1664150 73.06%

5 189821 8.33% 1438095 63.13%

6 188064 8.26% 1248274 54.8%

7 164968 7.24% 1060210 46.54%

8 151376 6.65% 895242 39.3%

9 128280 5.63% 743866 32.66%

10 111503 4.9% 615586 27.02%

11 94823 4.16% 504083 22.13%

12 80939 3.55% 409260 17.97%

13 67733 2.97% 328321 14.41%

14 56286 2.47% 260588 11.44%

15 46635 2.05% 204302 8.97%

16 37215 1.63% 157667 6.92%

17 29316 1.29% 120452 5.29%

18 23394 1.03% 91136 4.0%

19 19429 0.85% 67742 2.97%

20 14169 0.62% 48313 2.12%

21 11247 0.49% 34144 1.5%

22 8117 0.36% 22897 1.01%

23 5386 0.24% 14780 0.65%

24 3499 0.15% 9394 0.41%

25 2388 0.1% 5895 0.26%

26 1579 0.07% 3507 0.15%

27 798 0.04% 1928 0.08%

28 513 0.02% 1130 0.05%

29 293 0.01% 617 0.03%

30 129 0.01% 324 0.01%

31 103 0.0% 195 0.01%

32 60 0.0% 92 0.0%

33 29 0.0% 32 0.0%

34 3 0.0% 3 0.0%
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Table A.4: Number of CpGs in LNDRs. Frequency and percentages of sliding windows with
specific number of CpGs in LNDRs. In total, we considered 4,390,558 sliding windows with an
average of 9.0± 5.22 CpGs and a median of 8.0 CpGs per window.

i Nbr. of CpGs = i Nbr. of CpGs ≥ i

Frequency Percentage Frequency Percentage

1 155775 3.55% 4390558 100.0%

2 257549 5.87% 4234783 96.45%

3 250314 5.7% 3977234 90.59%

4 306887 6.99% 3726920 84.88%

5 313941 7.15% 3420033 77.9%

6 330375 7.52% 3106092 70.74%

7 326022 7.43% 2775717 63.22%

8 315711 7.19% 2449695 55.79%

9 302240 6.88% 2133984 48.6%

10 279142 6.36% 1831744 41.72%

11 254193 5.79% 1552602 35.36%

12 232048 5.29% 1298409 29.57%

13 201351 4.59% 1066361 24.29%

14 174937 3.98% 865010 19.7%

15 148615 3.38% 690073 15.72%

16 124139 2.83% 541458 12.33%

17 104189 2.37% 417319 9.5%

18 82682 1.88% 313130 7.13%

19 65324 1.49% 230448 5.25%

20 49456 1.13% 165124 3.76%

21 36344 0.83% 115668 2.63%

22 26192 0.6% 79324 1.81%

23 19586 0.45% 53132 1.21%

24 12671 0.29% 33546 0.76%

25 8333 0.19% 20875 0.48%

26 5460 0.12% 12542 0.29%

27 3059 0.07% 7082 0.16%

28 1818 0.04% 4023 0.09%

29 1106 0.03% 2205 0.05%

30 545 0.01% 1099 0.03%

31 249 0.01% 554 0.01%

32 218 0.0% 305 0.01%

33 51 0.0% 87 0.0%

34 30 0.0% 36 0.0%

35 6 0.0% 6 0.0%
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Appendix B: Mutations in genomic elements
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Figure B.1: Mutations in key genomic elements considering the GoNL data. Shown are SNP
and indel densities for all genetic elements considering the GoNL data. The horizontal line (–)
represents the median value, the asterisk (?) denotes the mean value.



156

Figure B.2: Lengths of the genomic elements. Upper and lower panel show the same data
but use different y–scales (0–200 kb and 0–10 kb). Each box plot is labeled with the number
of genes exhibiting this element [%], the median (?) [kb] and mean values (–) [kb]. 5’ UTRs
are the shortest genetic elements with an median value of 180 bp (0.18 kb), whereas intergenic
regions (median: ∼29 kb), introns (median: ∼24 kb) and the intragenic region (median: ∼25
kb) are the largest elements.
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Figure B.3: Average number of CpGs around the TSS. We considered a window from –5000
bp to +5000 bp around the TSS of RefSeq genes. The number of CpGs peaks at the TSS, which
was found earlier [132].
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Figure B.4: Dinucleotide distribution in the TSS flanking region. We considered all RefSeq
genes that remained after filtering. All 16 possible dinucleotides were compared. Position
1 denotes the first intragenic nucleotide. A CpG dinucleotide at position –1 means the C is
located at position –1 while the G resides at position +1.
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Figure B.5: Mutations at dinucleotides considering the 1000G data. Shown is the number of
SNPs at individual dinucleotides in the flanking region of the TSS considering the 1000G data.
SNPs were analyzed at individual dinucleotides in the flanking region of the TSS. Position 1
denotes the first intragenic nucleotide.
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Figure B.6: Mutations at dinucleotides considering the GoNL data. SNPs were analyzed at
individual dinucleotides in the flanking region of the TSS. Depicted is the number of SNPs at
individual dinucleotides in the flanking region of the TSS considering the GoNL data. Position
1 denotes the first intragenic nucleotide.
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Table B.1: Results of DAVID functional annotation considering Ap* dinucleotides. Results
of DAVID functional annotation [292] for all genes differentiated by the dinucleotide present
at TSS position –1. Duplicated terms from different databases were deleted and the one with
smallest p–value was retained. Shown are terms with corrected p–value of p < 0.05 (Benjamini
correction). If no significant GO term enrichment was found for a dinucleotide gene subset,
only the first two terms are displayed for convenience. Number of genes (RefSeq identifiers
accepted by DAVID tool) of every subgroup is given in brackets.

Term # Genes % Genes Adjusted p–value

ApA (530 genes) 1. Detection of chemical stimulus involved in sensory perception of smell 97 18.3 1.4 × 10−61

2. Olfactory receptor 97 18.3 1.1 × 10−61

3. Olfactory receptor activity 97 18.3 3.5 × 10−61

4. Olfaction 97 18.3 7.1 × 10−61

5. Olfactory transduction 97 18.3 3.4 × 10−53

6. Sensory transduction 103 19.4 5.8 × 10−52

7. G-protein coupled receptor activity 108 20.4 1.6 × 10−49

8. GPCR, rhodopsin–like, 7TM 105 19.8 1.5 × 10−46

9. G–protein coupled receptor 112 21.1 1.5 × 10−46

10. G–protein coupled receptor, rhodopsin–like 103 19.4 6.2 × 10−46

11. Transducer 113 21.3 2.4 × 10−44

12. G-protein coupled receptor signaling pathway 112 21.1 7.4 × 10−42

13. Receptor 132 24.9 4.6 × 10−29

14. Topological domain: extracellular 161 30.4 9.4 × 10−20

15. Disulfide bond 162 30.6 2.8 × 10−18

16. Topological domain: cytoplasmic 179 33.8 1.3 × 10−17

17. Glycosylation site: N–linked 202 38.1 3.9 × 10−16

18. Odorant binding 26 4.9 3.3 × 10−16

19. Disulfide bond 173 32.6 2.8 × 10−16

20. Glycoprotein 209 39.4 1.1 × 10−14

21. Cell membrane 156 29.4 3.5 × 10−13

22. Detection of chemical stimulus involved in sensory perception 22 4.2 1.2 × 10−11

23. Plasma membrane 184 34.7 2.7 × 10−11

24. Sensory perception of smell 24 4.5 1.4 × 10−9

25. Transmembrane region 202 38.1 1.0 × 10−8

26. Transmembrane helix 216 40.8 1.8 × 10−8

27. Integral component of membrane 199 37.5 9.1 × 10−8

28. Transmembrane 216 40.8 2.2 × 10−8

29. Transmembrane signaling receptor activity 22 4.2 6.1 × 10−5

30. Membrane 255 48.1 4.3 × 10−5

ApC (392 genes) 1. Extracellular space 45 11.5 3.6 × 10−1

2. Biosynthesis of antibiotics 12 3.1 2.8 × 10−1

ApG (1,011 genes) 1. Domain: Leucine–zipper 17 1.7 5.7 × 10−1

2. DNA-binding region: basic motif 20 2.0 9.5 × 10−1

ApT (223 genes) 1. Commissural neuron axon guidance 3 1.3 9.8 × 10−1

2. Disulfide bond 55 24.7 7.6 × 10−1
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Table B.2: Results of DAVID functional annotation considering Cp* dinucleotides. Results
of DAVID functional annotation [292] for all genes differentiated by the dinucleotide present
at TSS position –1. Duplicated terms from different databases were deleted and the one with
smallest p–value was retained. Shown are terms with corrected p–value of p < 0.05 (Benjamini
correction). If no significant GO term enrichment was found for a dinucleotide gene subset,
only the first two terms are displayed for convenience. Number of genes (RefSeq identifiers
accepted by DAVID tool) of every subgroup is given in brackets.

Term # Genes % Genes Adjusted p–value

CpA (3,412 genes) 1. Topological domain: extracellular 587 17.2 1.9 × 10−5

2. G–protein coupled receptor signaling pathway 213 6.2 1.8 × 10−4

3. Olfactory receptor activity 112 3.3 7.5 × 10−5

4. GPCR, rhodopsin–like, 7TM 174 5.1 1.5 × 10−4

5. G–protein coupled receptor, rhodopsin-like 170 5.0 1.0 × 10−4

6. Olfactory receptor 112 3.3 7.4 × 10−5

7. Detection of chemical stimulus involved in sensory perception of smell 111 3.3 2.5 × 10−4

8. Olfaction 114 3.3 5.4 × 10−5

9. Topological domain: cytoplasmic 701 20.5 3.7 × 10−4

10. Transmembrane region 981 28.8 2.5 × 10−4

11. Transducer 207 6.1 5.3 × 10−5

12. G–protein coupled receptor 194 5.7 5.4 × 10−5

13. Glycosylation site: N–linked (GlcNAc...) 844 24.7 8.1 × 10−4

14. Olfactory transduction 112 3.3 2.5 × 10−4

15. Integral component of membrane 989 29.0 1.0 × 10−3

16. Glycoprotein 906 26.6 1.9 × 10−4

17. Sensory transduction 146 4.3 1.9 × 10−4

18. G-protein coupled receptor activity 163 4.8 1.7 × 10−3

19. Transmembrane 1076 31.5 2.5 × 10−4

20. Transmembrane helix 1072 31.4 2.4 × 10−4

21. Cell membrane 635 18.6 4.1 × 10−4

22. Receptor 350 10.3 6.8 × 10−4

23. Nucleosome core 31 0.9 1.6 × 10−3

24. Sensory perception of smell 44 1.3 8.6 × 10−2

25. Histone–fold 35 1.0 4.0 × 10−2

26. Keratin–associated matrix 11 0.3 3.6 × 10−2

27. Disulfide bond 670 19.6 3.6 × 10−3

28. TAF 10 0.3 4.1 × 10−2

29. H4 10 0.3 4.1 × 10−2

30. TATA box binding protein associated factor (TAF) 10 0.3 3.9 × 10−2

31. Histone H4 10 0.3 3.9 × 10−2

CpC (1,289 genes) 1. Mitochondrion 119 9.2 3.6 × 10−1

2. Neuron projection 30 2.3 5.0 × 10−1

CpG (2,136 genes) see Table 4.4

CpT (625 genes) 1. Signal 153 24.5 7.1 × 10−1

2. Secreted 84 13.4 4.8 × 10−1
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Table B.3: Results of DAVID functional annotation considering Gp* dinucleotides. Results
of DAVID functional annotation [292] for all genes differentiated by the dinucleotide present
at TSS position –1. Duplicated terms from different databases were deleted and the one with
smallest p–value was retained. Shown are terms with corrected p–value of p < 0.05 (Benjamini
correction). If no significant GO term enrichment was found for a dinucleotide gene subset,
only the first two terms are displayed for convenience. Number of genes (RefSeq identifiers
accepted by DAVID tool) of every subgroup is given in brackets.

Term # Genes % Genes Adjusted p–value

GpA (1,005 genes) 1. G–protein coupled receptor activity 61 6.1 9.0 × 10−3

2. G–protein coupled receptor, rhodopsin–like 60 6.0 4.7 × 10−2

3. G-protein coupled receptor 68 6.8 2.0 × 10−2

4. Odorant binding 16 1.6 2.4 × 10−2

5. GPCR, rhodopsin–like, 7TM 60 6.0 4.8 × 10−2

GpC (871 genes) 1. Calcium transport 16 1.8 4.0 × 10−2

GpG (1,413 genes) 1. Splice variant 637 45.1 3.2 × 10−2

GpT (282 genes) 1. IL12 and Stat4 Dependent Signaling Pathway in Th1 Development 4 1.4 1.6 × 10−1

2. snRNA processing 3 1.1 1.0
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Table B.4: Results of DAVID functional annotation considering Tp* dinucleotides. Results
of DAVID functional annotation [292] for all genes differentiated by the dinucleotide present
at TSS position –1. Duplicated terms from different databases were deleted and the one with
smallest p–value was retained. Shown are terms with corrected p–value of p < 0.05 (Benjamini
correction). If no significant GO term enrichment was found for a dinucleotide gene subset,
only the first two terms are displayed for convenience. Number of genes (RefSeq identifiers
accepted by DAVID tool) of every subgroup is given in brackets.

Term # Genes % Genes Adjusted p–value

TpA (951 genes) 1. Olfaction 49 5.2 6.1 × 10−6

2. Olfactory receptor activity 48 5.0 1.5 × 10−5

3. Detection of chemical stimulus involved in sensory perception of smell 48 5.0 5.0 × 10−5

4. Olfactory receptor 48 5.0 4.1 × 10−5

5. Olfactory transduction 50 5.3 1.3 × 10−5

6. Sensory transduction 58 6.1 8.5 × 10−5

7. G–protein coupled receptor activity 59 6.2 7.2 × 10−3

TpC (698 genes) 1. Transcription factor activity, sequence–specific DNA binding 59 8.5 1.0 × 10−1

2. DNA–binding 100 14.3 7.1 × 10−1

TpG (1,519 genes) 1. Xenobiotic metabolic process 16 1.1 9.7 × 10−1

2. Protease inhibitor 20 1.3 8.2 × 10−1

TpT (238 genes) 1. Kinetochore binding 3 1.3 3.4 × 10−1

2. Negative regulation of transcription, DNA–templated 16 6.7 7.6 × 10−1
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