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Zusammenfassung

In dieser Dissertation rechtfertigen wir die sequentiell konsistente Semantik von paral-
lelen Hochebenensprachen wie C11 oder Java, wenn diese für x86-ähnliche Architek-
turen übersetzt werden. Sprachen wie C11 garantieren dass Programme, welche eine
bestimmte Software-Disziplin befolgen, sich so verhalten als würden sie auf einer ein-
fachen kohärenten Mehrkernprozessor mit gemeinsamem Speicher ausgeführt werden.
In echten x86 Maschinen ist der gemeinsame Speicher hingegen nicht kohärent, und
Übersetzer fügen langsame Synchronisationsinstruktionen ein, um Kohärenz vorzu-
gaukeln. Wir zeigen dass eine Software-Disziplin die sich stark an Software-Disziplinen
solcher Programmiersprachen wie C11 und Java anlehnt — im Grunde, dass Speicher-
zugriffe in einer Wettlaufsituation vom Programmierer annotiert werden — und eine
bestimmte Methode, relativ wenige Synchronisationsinstruktionen einzufügen — im
Grunde zwischen einem annotierten Schreibzugriff und einem annotierten Lesezugriff
des gleichen Fadens — ausreichen, um diese Illusion zu gewährleisten. Die Software-
Disziplin müssen bei individuellen Programmen nur in der sequentiell konsistenten
Semantik der Hochebenensprache geprüft werden, so dass die gesamte Verifikationsar-
beit in der sequentiell konsistenten Semantik der Hochebenensprache stattfinden kann.
Wir behandeln eine Maschine mit Betriebssystemunterstützung, und unsere Theoreme
können entsprechend auch zur Verifikation unterbrechbarer Mehrkern-Betriebssysteme
verwendet werden, einschliesslich solcher, bei denen Benutzer unverifizierte Program-
me laufen lassen können, die nicht die Software-Disziplin befolgen.



Abstract

In this thesis we justify the strong memory semantics of high-level concurrent lan-
guages, such as C11 or Java, when compiled to x86-like machines. Languages such
as C11 guarantee that programs that obey a specific software discipline behave as if
they were executed on a simple coherent shared memory multi-processor. Real x86
machines, on the other hand, do not provide a coherent shared memory, and compilers
add slow synchronizing instructions to provide the illusion of coherency. We show that
one software discipline that closely matches software disciplines of languages such as
C11 and Java — in a nutshell, that racing memory accesses are annotated as such by the
programmer — and one particular way to add relatively few synchronization instruc-
tions — in a nutshell, between an annotated store and an annotated load in the same
thread — suffice to create this illusion. The software discipline has to be obeyed by
the program in the semantics of the high-level language, therefore allowing the verifi-
cation effort to take place completely in the strong memory semantics of the high-level
language. We treat a machine with operating system support, and accordingly our the-
orems can be used to verify interruptible multi-core operating systems, including those
where users can run unverified programs that do not obey the software discipline.
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Chapter 1

Introduction

When programming a software system, there are huge productivity gains by using high-
level languages, which a) abstract away from complicated details of the target machine,
b) allow development to be easily ported to other target machines, and c) allow ac-
tions that require many instructions in the target machine to be expressed within a
single, expressive statement. One obtains similar gains in productivity when verifying
the program in its high-level semantics. However, then one also has to show that the
compiled program, when run on the target machine, does not exhibit new behaviors.
State-of-the-art methods, such as translation validation [PSS98,CV16], are incomplete
and have to be repeated for each program and whenever any element of the tool chain,
such as the compiler, compiler flags, linker, any line in the source program, or the tar-
get architecture, change. Automation is normally employed to help tackle this tedious
and effortful work, but may suddenly stop working due to subtle changes in the code
or tool chain. A more fundamental approach is to verify the correctness of the linker
and the compiler, i.e., to show once and for all that all programs in the source lan-
guage are compiled correctly. For single-core machines with a strong memory model
(unlike Intel, AMD, or ARM processors, which all have weak memory models) such
compiler correctness proofs exist (e.g., [CA], [PBLS16, Chapter 12]), but no complete
proofs exist for multi-core processors with weak memory models. We are aware of two
results from the literature that tackle compiler correctness on multi-core processors,
but the first [BSDA14] ignores the problem, and the second [VN] simply replicates
the interleaving and memory semantics of the target architecture. There are two main
challenges to be overcome:

• High-level languages have to provide a single memory model (typically strong
memory consistency), while the architectures targeted by the language can have
very diverse and very weak memory models. For example, C11 offers a strong
memory model, but can be compiled to Intel x86 and to ARM Armv8-A proces-
sors, which each have their own distinct weak memory model.

• High-level languages have a much coarser interleaving model than their target
architectures as what is usually considered a single unit of execution in the high-
level language may be translated into multiple steps of execution in the target
machine, such as the well-known i++.

Due to these challenges, compilers can not be expected to compile all programs
“correctly” w.r.t. the intuitive semantics. Instead, languages require help from the
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programmer, and leave the semantics of programs undefined when the programmer
does not do her part. For example, C11 provides program annotations to flag memory
accesses as racing, and defines no semantics for programs unless all racing accesses are
flagged by the programmer. Obviously, this property is verified in the semantics of the
high-level language, i.e., a verification engineer has to show that all races in all coarsely
interleaved, sequentially consistent executions of the program, are flagged correctly;
only then can she expect that the program has no new behaviors when compiled to a
finely interleaved, weak memory machine. However, this raises one big question: how
can one make assumptions about a thing to prove that the thing exists? Is this not like
the famous Baron Münchhausen, who pulled himself from mire by his own hair (Figure
1.1)?

Figure 1.1: Using properties of a program in a semantics of which we
do not know it exists to show that it exists.

In this thesis we address this question for x86-like multi-core processors with op-
erating system support, and show a set of sufficient high-level conditions under which
sequential consistency can be regained on such an architecture. The thesis is split into
three parts.

1. In the first part (Chapter 2) we define an extremely powerful and generic, yet
compact machine model that has all support for all of the features we expect
from a state-of-the-art processor architectures, such as:

(a) Autonomous devices, which can register read- and write accesses and change
their state both immediately as a deterministic side-effect (e.g., a device
that accumulates all values stored into one register, and clears that register
when writing to a second register) and eventually in a non-deterministic
step (e.g., a disk that responds to a load command eventually),

(b) Inter-processor-interrupts (IPIs) that are delivered directly into the core of
other processors, thereby interrupting them immediately,

(c) Asynchronous write buffers, which act as a buffer between each processor
and the shared memory system, and are the source of the weak memory
model of x86-like processors,
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(d) Memory accesses that bypass the write buffers, e.g., when memory man-
agement units (MMUs) read and modify page table entries without snoop-
ing or modifying the write buffers,

(e) Heterogeneous memory accesses, such as byte and word accesses and mis-
aligned accesses,

(f) Read-modify-writes (RMW), such as compare-and-swap and fetch-and-
add,

(g) Complex core components, such as translation look-aside buffers (TLBs)
and floating point units,

(h) Single-cycle fetch and execute,

(i) Writable code regions, as is necessary for just-in-time compilation and
page faults on fetch,

(j) Guard conditions, which keep the computations sane by disabling steps that
make no sense, such as extending translations that do not exist or for which
there are no rights.

This machine model has two semantics: a low-level semantics where all steps
use the write buffer, and a high-level semantics where only unverified code uses
the write buffer.

2. In the second part (Chapter 3) we instantiate our model with a variant of MIPS
ISA known as MIPS86, in order to show how to use the model to implement
several of the components mentioned above. This MIPS ISA supports IPIs,
MMUs, and a simple device. That this ISA can actually be implemented is
demonstrated in [PLO], which gives a gate level construction and correctness
proof of a MIPS86 multi-core processor.

3. In the third part (Chapter 4), we give a sufficient set of conditions such that
any program that satisfies the conditions in the sequentially consistent variant
of the ISA will not exhibit new behaviors when executed on the weak memory
ISA. Our conditions make no assumption about the behavior of (potentially ma-
licious) user code, which therefore still exhibits weak memory behaviors in our
sequentially consistent ISA.

Our conditions are based on an efficient software discipline of Cohen and Schirmer
[CS10], which has been proven correct for a much simpler machine. The gist of
the conditions is that rather than using inefficient synchronization instructions
behind every shared write (as is the case in state-of-the-art compilers), a syn-
chronization instruction is only needed between a racing write and a racing read
on the same thread.

The correctness of our conditions is proven in a write buffer reduction theorem,
which shows that all finite weak memory machine executions simulate a sequen-
tially consistent execution. Finally, we extend the theorem to infinite executions.

Similar theorems are proven in [CCK14,CS10], which make safety assumptions
about user code, in particular, that user programs strictly obey the flushing dis-
cipline, a condition that can not be enforced by hardware. Furthermore, they do
not deal with interrupt controllers or mixed-size and misaligned accesses, which
cause significant difficulties. In the thesis of Chen [Che16], mixed-size (but not
misaligned) accesses are considered, but only under the assumption of a stronger
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memory model than that of x86. On the other hand, their work can be applied
to situations where a page fault handler races with memory management units,
while in our work, page fault handlers can only be active while the memory
management unit on the same core is disabled.

We are aware of one more efficient software discipline [BDM13] for a simple
machine. We deem this software discipline too complicated to be applied by
humans, and unlike the disciplines based on Cohen and Schirmer’s work, can
not be automatically applied to practical programs yet (even if the programmer
correctly flags all races).

This thesis therefore reduces compiler correctness proofs for x86-like multi-core
processors to sequentially consistent reasoning. Informally speaking, it shows that
any reasonable1 high-level language that enforces the conditions given in this thesis
(e.g., has undefined semantics for programs that do not satisfy the conditions) can be
compiled correctly and straightforwardly to x86-like machines.

Our write buffer reduction theorem is the first (non-trivial) to apply to operating
systems with untrusted user programs. Since user code is not assumed to obey any pro-
gramming discipline, write buffers can not be completely abstracted away, and even in
our higher level of abstraction remain visible for user code. A similar problem exists
with processor correctness theorems, which so far (e.g., [KMP14]) assume conditions
for all code on the machine, in particular, lack of unsynchronized self-modifying code.
Since we can not in good faith assume this property for user code, our MIPS instan-
tiation employs a non-deterministic instruction buffer for users, which in case of an
unsynchronized self-modification may non-deterministically either provide the old or
the new instruction.

1.1 Overview

1.1.1 Model
We define a non-deterministic computational model in which multiple active units,
such as processors, APICs, and devices, share memory. The shared memory is split
into normal read-writable memory, and reactive device memory. While the normal
memory simply accepts modifications, the device memory can use hardwired logic to
make a complex transition based on incoming writes. For example, a device regis-
ter might count incoming writes by incrementing its value every time a write is sent
(cf Fig. 1.2). This allows us to implement complex write-triggered (also known as
transport-triggered) devices.

Each unit is provided with local storage, called the core. The core is separated
into two parts: normal registers, which are completely local to the unit, and interrupt
registers, which are used as-if local to the unit but can be modified by other units. When
the interrupt registers of a unit i are modified by another unit, we say that unit i is a
victim of the other unit.

Each unit can access its core, the interrupt registers of other units, and the shared
memory. A full map of the memory is given in Fig. 1.3.

Each unit is split into two active, almost asynchronous objects: a “smart” object,
called the processor, and a “dumb” object, called the write buffer. The processor can

1Under reasonable we understand languages in the class of C11 or Java that behave like turing machines,
do not have a memory model stronger than sequential consistency, etc.
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a = 5 a = 0a := 0

(a) Writing to a normal memory ad-
dress: the value is taken verbatim
from the write.

a = 5 a = 6a := 0

(b) Writing to a write-triggered de-
vice register: value of write and
current state are used to compute
next state, in this case by incre-
menting the current state.

Figure 1.2: The effect of writing value 0 to shared memory address
a depends on whether the address is a device address or a normal
memory address.

Normal
Shared

Memory

Memory of
Device A

Memory of
Device B

Memory of
Device C

NPR IPR

NPR IPR

NPR IPR

NPR IPR

Figure 1.3: The memory layout for a design with four units and three
device memories. The third unit can access its own NPR, all the IPRs,
the shared memory and devices (represented by boxes with solid lines
in the figure), but not the normal processor registers of other units
(represented by boxes with dashed lines in the figure).

non-deterministically chose between a variety of steps which can do complex memory
accesses and buffer writes, i.e., assign them to the write buffer for later execution. The
write buffer can only do one type of step, which commits the oldest buffered write to
memory.

In each step, the processor has full access to its core, then computes a memory
region to fetch from. After having a fetch result, the processor computes two mem-
ory region to read from: one that prefers more up-to-date values from its own write
buffer to the current state of the shared memory, and one which simply loads from the
shared memory and completely ignores the write buffer. Both ignore the content of
write buffers of other units. After collecting the content of this memory region from
the memory system (own write buffer + current state of shared memory and interrupt
registers), the processor computes two writes: one write to be executed immediately,
and one write to be buffered2.

This distinction between memory accesses that ignore the buffer (called bypassing
accesses) and those that go through the buffer (called buffered accesses) is necessary for

2If the latter is empty, nothing is added to the buffer to prevent unnecessary write buffer steps.
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three reasons. Firstly, core registers such as the program counters or the GPR are close
to the CPU and are modified directly, rather than through the write buffer. Secondly,
processors often provide special atomic operations, called read-modify-writes (RMW),
which in a single step load values, perform some computations on them, and then write
values back to the memory system. These do not appear to be atomic if the modification
goes into the write buffer. Imagine, for example, two locking operations, where the
second locking operation succeeds because the first locking operation is still in the
write buffer (but has already signaled to its processor that the lock was successfully
acquired). Thirdly and most importantly, modern processors have special components
that create additional memory accesses, such as the memory management unit (MMU)
when it walks page tables. These components share central data structures with the
processor, such as the translation look-aside buffer (TLB) in case of an MMU, which
therefore have to be part of the core. At the same time, some of these components
act like independent units in that they completely ignore the write buffer. To model
such components with a single, uniform model, we need the full power of bypassing
memory accesses.

Since for technical reasons all units have a processor and a write buffer, in particular
APICs and devices have a write buffer. By instantiating the processors for APICs
and devices in such a way that they never compute a write to be buffered, the write
buffer of these unit stays empty and effectively disabled. Similarly, APICs for technical
reasons have interrupt registers and normal registers, which they never need. Most
of the state of APICs and devices is stored in the shared memory, which is easily
accessible for other units. For example, the interrupt command register of an x86 APIC
can be modeled as a normal memory register, which is accessed via normal store and
load instructions of an x86 processor.

It is equally necessary to point out that when the word “processor” is normally
used (i.e., outside of this thesis), it denotes only the programmable MIPS processor
and not APICs or devices. In this document, however, processors are not necessarily
programmable; each processor can have its own logic that makes it tick. This allows
us to model APICs as just another type of processor which fetches “instructions” from
the interrupt command register, and similarly, devices as just another type of processor
which fetches “instructions” from, e.g., the command and status register, or in case of
a sensor, updates certain memory registers based on the environment (which can be
modeled as non-deterministic input to the device processor).

The technical goal here is to use a uniform model for all imaginable types of ac-
tive units that can make steps that are completely asynchronous from the normal pro-
grammable processor. As a simple example, consider the ability of APICs to deliver
interrupts to normal processors. In this document, this ability is not a magic hard-coded
ability of APICs, which therefore would need to be considered as a special case in each
step of the proof; but rather, all units have the power to modify the interrupt registers
of all other units. In our instantiation of MIPS86, we will of course only allow the
APICs do this. This uniform model also allows us to instantiate virtually the complete
MIPS86 semantics in a mere 30 pages (Chapter 3).

The write buffer of unit i is actively drained on three occasions.

1. When the processor of unit i explicitly requests a write buffer drain, e.g., when
executing an mfence instruction.

2. When the processor of unit i tries to load a value that is partially but not fully
served by the most up-to-date write in its write buffer. This situation is called a
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partial hit. The write buffer is only partially drained, namely until those writes
leave the write buffer.

3. When unit i is a victim of an interrupt. This is necessary because the interrupt
immediately moves control of the processor to the interrupt handler. But if there
are still writes in the buffer, the interrupted program will have an afterglow: the
buffered writes will still be executed and it looks as if the unit had not been
interrupted.

We define two semantics for our model: low-level semantics and high-level seman-
tics. In low-level semantics, a processor that decides to buffer a write will buffer the
write and not execute it, and a write buffer step will execute the oldest buffered write.
In high-level semantics, the write that the processor planned to buffer will instead be
executed immediately, and a write buffer step has no effect (for technical reasons, we
still keep the buffer as a ghost register) (cf Fig. 1.4).

a = 5
wb = []

a = 5
wb = [a=0]

a = 6
wb = [a=0]

a = 6
wb = []

a = 6
wb = []

a=0 a=0

wb step wb step

High
Level

Low
Level

Figure 1.4: Using again the example of a device that counts the num-
ber of writes, we show the difference between high-level semantics
on the left and low-level semantics on the right. Execution starts at
the top with the device having counted five writes, and an empty write
buffer. We then let the processor buffer a write to the device, and
then step the write buffer. In high-level semantics, the write immedi-
ately reaches the device and the count is incremented immediately,
whereas the write buffer step does not execute the buffered write. In
low-level semantics, the processor step has no effect on the device,
and the write only reaches the device when the write buffer step exe-
cutes it.

We introduce two machines M ∈ {↓,↑}: the low-level machine ↓ and the high-level
machine ↑. The low-level machine always has low-level semantics. The high-level
machine sometimes has low-level semantics and sometimes has high-level semantics.
Which of the two it is is completely deterministic and depends on whether the pro-
cessor is currently running trusted (operating system) code which obeys the software
discipline, or untrusted (user) code which does not obey the discipline. To distinguish
between the two modes we introduce for each unit memory mode registers ASC,i —
ghost or otherwise — in the normal registers, the value of which is used as an input to
predicate SCi for sequentially consistent mode of unit i

SCi(c.m
∣∣
ASC,i

).
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The meaning of this predicate is simple: SCi(c.m
∣∣
ASC,i

) = 1 means the unit is in
configuration c in the middle of trusted code, must obey the software discipline, and
will use high-level semantics in the high-level machine. SCi(c.m

∣∣
ASC,i

) = 0 means that
the unit is in configuration c in the middle of untrusted code, ignores the software
discipline, and will use low-level semantics in the high-level machine.

The non-determinism in our model is made precise by so called oracle input. The
oracle input is used in each step to a) uniquely identify an object (and unit) making the
step and b) to provide external inputs to processors when they make steps. This gives us
one transition operator �M for each machine M, which moves us from one configuration
c to the next configuration c′ using an oracle input x

c′ = c �M x.

A sequence of such oracle inputs is called a schedule. Each schedule s, when
starting from an original configuration, induces on each machine a computation c[s]M ,
which is a sequence of configurations where the t+1-th configuration is obtained by
applying the transition operator to the t-th configuration and the t-th oracle input

c[s]t+1
M = c[s]tM �M s(t).

Our definitions are such that we can run the high-level machine and the low-level
machine with the same program in parallel using the same schedule. When in each
step of the two computations made by a processor the processor 1) has the same core
configuration, 2) fetches the same instructions, and 3) obtains the same results from the
memory system, we say that the computation is reduced. In this case the unit making
the step will make the same decisions in both machines.

Not all computations are reduced, as the following example shows. We consider
a program with two threads; the first thread modifies a variable x, the second thread
loads from that variable. We use the symbol = for assignment through the write buffer
and the symbol := for an assignment that goes directly to the memory. We write ->
BUF behind an assignment that enters the write buffer and does not change memory,
and -> before an assignment that comes from the buffer.

x = 1; y := x;

We now consider the schedule where Thread 1 steps first, and then Thread 2, and
finally the write buffer of Thread 1. In the low-level machine computation, the write to
x is buffered, and Thread 2 sees the old value from the shared memory.

x y
x = 1; -> BUF 0 0

y := x; 0 0
-> x = 1; 1 0

In the high-level machine computation (using high-level semantics), the write is
executed immediately and the write buffer step has no effect (NOOP). Consequently,
Thread 2 sees the new value written by Thread 1.

x y
x = 1; 1 0

y := x; 1 1
-> NOOP 1 1
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In one machine, Thread 2 reads a 0, in the other machine it reads a 1, and thus the
computation is not reduced.

In fact, almost all programs have non-reduced schedules. It is thus not valuable to
prove a theorem showing that all programs satisfying some condition have only reduced
schedules, since the conditions would have to be of such a kind that only very trivial
programs satisfy them. Instead, we prove that for each schedule s, there is another
schedule r such that

• the low-level machine computations of the two schedules are equivalent, i.e.,
when a processor makes its n-th step in the low-level computations induced by
schedules s and r, it 1) has the same core configuration, 2) fetches the same
instructions, and 3) obtains the same results from the memory system,

• and schedule r is reduced.

One can now use transitivity to obtain that the original low-level machine computa-
tion always has the same core, fetched instructions, and memory results, as the new
high-level computation. Therefore any sequence of values observed by processors in a
low-level machine computation can be explained by a sequence of values observed by
processors in a high-level machine computation.

Considering again the schedule from above, we can easily define an equivalent,
reduced schedule, namely by stepping Thread 2 first. We check that this schedule is in-
deed equivalent by comparing the value read by Thread 2 in the low-level computation,
which as in the original low-level computation is zero.

x y
y := x; 0 0

x = 1; -> BUF 0 0
-> x = 1; 1 0

Furthermore, Thread 2 also reads zero in the high-level computation of this sched-
ule.

x y
y := x; 0 0

x = 1; 1 0
-> NOOP 1 0

It is easy to check that for each schedule of the program above there is such an
equivalent, reduced schedule. Schedules where Thread 2 is scheduled before the write
buffer step are all equivalent to the reduced schedule above; schedules where the write
buffer step is stepped before Thread 2 are already reduced.

In this thesis, we consider a set of sufficient conditions of all high-level machine
computations which imply that all schedules of the low-level machine have an equiva-
lent, reduced schedule. We call such programs sequentially consistent.

1.1.2 Programming Discipline
The programming discipline is formulated as a set of properties of high-level compu-
tations. A program where all possible high-level computations have those properties is
called safe. The properties are defined in such a way that they always hold for untrusted
code, either because they explicitly are only checked for trusted code, or because they
trivially hold for trusted code.
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To distinguish between trusted code and untrusted code, we have introduced reg-
isters ASC,i — ghost or otherwise — that indicate whether a processor is currently
executing trusted code or untrusted code. The proof obligation for these registers is
that changing the register content is only allowed when the write buffer is empty3.

Most of the properties are defined in terms of races between memory accesses.
A race occurs when two memory accesses in a computation affect the same memory
region, and at least one of them is modifying that region. For our discipline, however,
we only consider those races where the memory accesses can occur directly after each
other, i.e., at steps t and t+1 in the computation. This restriction at first glance seems to
exclude many races that could potentially be harmful for our program, but we show in
Sections 4.8 to 4.10 that this restricted set of races is sufficient to find all relevant races
in the program. One way to find such races is by an ownership discipline such as the one
of Cohen and Schirmer [CL98], where memory regions are either owned by a thread or
shared, and are either write-able or not; depending on the ownership state, a memory
access is classified as potentially racing or not; or the one of Oberhauser [Obe16] in
which threads exclude other threads from reading or from writing to memory regions,
and an access to a memory region is potentially racing when other threads are not
excluded from accessing that region.

Like Cohen and Schirmer, we introduce a ghost annotation of shared memory ac-
cess. This annotation comes with a simple proof obligation: all memory accesses
involved in a race where the accesses occur directly after each other have to be anno-
tated as shared. This immediately corresponds to the requirement of Java that variables
that are used by multiple threads concurrently have to be annotated as “volatile”, and
of C11/C++11 that all memory accesses involved in a race have to be annotated as
“atomic”. Furthermore, memory accesses to 1) device memory, 2) interrupt registers
(except for the implicit snoop of the interrupt registers at the beginning of each pro-
cessor step) have to be shared. Because we can not expect the untrusted code to be
annotated correctly, we simply define that all steps of untrusted code are shared. Simi-
larly, write buffer steps (which are asynchronous and not under directly control of the
system programmer) are defined to be shared.

We then take the central proof obligation of the software discipline from Cohen
and Schirmer, i.e., that no shared read is ever executed by a processor that is buffering
a shared write. Of course in our software discipline, this is only required when the
processor is executing trusted code (i.e., SCi(c.m

∣∣
ASC,i

) = 1).
These are the main proof obligations.
As a concrete example, we consider again the simple program from before.

x = 1; y := x;

Since the assignment to x by Thread 1 and the load of x by Thread 2 can be exe-
cuted directly after each other in the high-level machine, they need to be annotated as
shared. We do so by using x.store(1) instead of the simple assignment operator =,
and x.load() instead of simply the expression x

x.store(1); y := x.load();

Since no single thread executes both shared writes and shared reads, the Cohen-
Schirmer condition is trivially satisfied; the program is now safe, without having to
insert instructions that would drain the write buffer.

3Strictly speaking, it is likely harmless to change the content of the registers as long as this does not
change the result of SCi; we leave this as minor future work.
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The Cohen-Schirmer condition is simple and efficient, but is insufficient in the
context of heterogeneous memory accesses, i.e., memory accesses that are not aligned
and of the same size. Dealing with heterogeneous memory accesses turns out to be
difficult, mainly because compare-and-swap accesses can in the high-level machine be
prevented from racing with read accesses by a buffered write (which has been executed
in the high-level machine). We add a very technical condition which is efficient but not
simple, and suggest a few potential simplifications. Proving that these simplifications
are indeed correct and determining their impact on performance is left as future work.
Similarly, since we allow dynamic code, we have to add a technical condition that
prevents programs from hiding races by modifying the code of a racing access, e.g., by
turning a racing read instruction into an instruction that loads a constant value. We call
this Section 4.5.

The conditions are as follows. If there is a race between steps k′ and k′+1 such that
step k′+ 1 modifies some values used by step k′, and does so using a buffered write,
then until another object makes a step, i.e., for all l + 1 > k′+ 1 such that all steps
t ′ ∈ (k′+1 : l +1) are made by the same object, all of the following must hold:

1. step l+1 only reads a memory region modified by step k′ if the values have since
then been overwritten (i.e., the values written by step k′ are not visible to step
l +1),

2. step l + 1 only modifies a memory region accessed by step k′ if step l + 1 is
annotated as shared.

Finally, we need to restrict our model somewhat when running trusted code: the by-
passing memory accesses are too powerful and can easily be used to break sequential
consistency, and similarly, buffering writes to interrupt registers is extremely harm-
ful since the interrupt will be triggered instantaneously in the high-level machine but
only once the write leaves the write buffer in the low-level machine. In more detail, a
processor that is currently executing trusted code may never

1. Buffer writes to interrupt registers.

2. Use a bypassing reading access (fetch or read) when more up-to-date values are
in the ghost buffer of the same unit (in which case an outdated value can be read
in the low-level machine).

3. Overwrite a buffered value in its ghost buffer with a bypassing write (in which
case the new value will be overwritten by the older, buffered value once it leaves
the buffer).

4. Have a shared write be buffered and bypassing at the same time (in which case
other processors may see the bypassing half of the write but not the buffered
half).

5. Use a shared bypassing write while it has writes in its ghost buffer (in which
case a lock might be released with the shared write before the unshared memory
accesses to the locked data structure are visible to the other threads).

6. Do a shared RMW where the modification is being buffered (in which case the
RMW is atomic in the high-level machine but absolutely not atomic in the low-
level machine).
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However, we explicitly allow non-shared bypassing writes, in particular even if
there are writes in the buffer (shared or otherwise). This suggests that the order of
non-shared writes among another is irrelevant and that a non-shared write can overtake
a shared write (but not the other way around) without breaking sequential consistency.
If that is true, the discipline in this paper would also work for architectures with write-
combine buffers as long as no shared write may ever overtake a non-shared write due
to write-combining. The details are future work.

To show how the power of bypassing memory accesses can be easily used to break
sequential consistency, we consider the MIPS86 MMU in more detail. The MIPS pro-
cessor and the MMU share four normal registers: 1) the OS mode register in the SPR,
since translations are only done in user mode, 2) the page table origin, where the MMU
begins walking, 3) the address space identifier, which is a tag associated with each
translation to separate translations of different user programs, and 4) the TLB, where
translations are buffered. All of these registers are part of the core and can be changed
by the MIPS processor with instructions such as flush (for flushing all translations
out of the TLB) or movg2s (for the changing the other three registers). Furthermore,
the TLB is accessed at the beginning of each MIPS processor step before even fetch-
ing an instruction. Similarly, the TLB is accessed by the MMU in virtually all of its
steps, to add new translations. That is why we have to make the MMU and the MIPS
processor a single unit, so that they can both access these normal core registers. On the
other hand, a MIPS86 MMU does not drain the write buffer nor does it consider more
up-to-date writes in the write buffer: its memory accesses, e.g., when loading a page
table entry, completely bypass the write buffer. Imagine now a single-core MIPS86
machine where a single operating system thread has just swapped out a page, and is
now attempting to prevent the MMU from using stale translations to that page. This is
done in two simple steps: 1) lower the present bit PTE.p of the page table entry that
maps to the swapped out page, and 2) flush all the stale translations from the TLB that
were created using the no longer present page table entry. Let us now assume that while
this is happening4, the MMU autonomously performs translations on present page ta-
ble entries, filling the TLB and setting accessed bits .a on those page table entries (all
of this is an atomic operation). In code, the situation can be represented like this, using
one thread for the CPU and one thread for the MMU:

CPU MMU
PTE.p = 0; if (PTE.p) PTE.a := 1;
flush;

Note that it makes sense to use two threads CPU and MMU even though the steps
are made by the same processor for two reasons: 1) the MMU non-deterministically
translates page table entries, and thus the translation attempt for PTE can be scheduled
at any point, and 2) the MMU bypasses the write buffer, and thus acts like a separate
thread with no access to the write buffer. One easily checks that in high-level machine
computations, after flushing the TLB, the MMU will not add a new translation for that
page table entry, since the present bit has been set to zero.

We also easily find a schedule in which the high-level computation violates the
conditions of the discipline. The computation looks as follows (we focus on the ghost
write buffer, rather than the values of the variables PTE.p and PTE.a).

4In MIPS86, the MMU is disabled in operating system mode and the problem below can not normally
occur.
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CPU MMU ghost wb
PTE.p = 0; [PTE.p = 0;]
flush; [PTE.p = 0;]

if (PTE.p) PTE.a := 1; [PTE.p = 0;]
-> NOOP []

The processor in the MMU step uses a bypassing reading access to read the present
bit, for which a more up-to-date write exists in its own ghost write buffer.

Running the same schedule in the low-level machine shows how this bypassing
read destroys sequential consistency.

CPU MMU PTE.p PTE.a
PTE.p = 0; -> BUF 1 0
flush; 1 0

if (PTE.p) PTE.a := 1; 1 1
-> PTE.p = 0; 0 1

Note that the flush of the TLB is executed after the assignment to PTE has entered
the buffer, but before it is committed to memory. As a consequence, the MMU can set
the accessed bit and put a translation of the no longer present page table entry into the
TLB.

1.1.3 Proof
As mentioned above, the main result of this paper is that programs that obey the soft-
ware discipline in all computations of the high-level machine are sequentially consis-
tent, i.e., for each schedule s there is an equivalent (in the low-level machine) schedule
r which is reduced.

The proof is very technical but follows a relatively simple plan.

1. Sections 4.8 to 4.10: We define a synchronization relation I between steps.
The central idea is that when a shared read sees the value written by a shared
write, the two steps are synchronized. Additionally, steps of the same object are
usually synchronized, a step that interrupts another step is synchronized with that
step, and a shared RMW that does not see the value written by a later write is
synchronized with that write (since it essentially witnesses that the write has not
occurred yet). We show with Lemma 258 that even though our discipline only
considers races where the memory accesses occur directly after one another, all
races are actually synchronized, i.e., there is a sequence of shared reads and
shared writes, steps of the same unit, interrupts, and shared RMWs that do not
see the value of a later write, which effectively prevent us from executing the
two memory accesses next to each other.

This result only depends on the high-level machine and does not use any software
condition except for the condition that races where the accesses occur directly
after one another are annotated as shared.

Interestingly, one often finds the opposite approach in language specifications:
two memory accesses are considered “concurrent” if they are not synchronized
by such a sequence of synchronization steps, and have to be annotated as shared
when they are concurrent.

2. Section 4.11: We show several key properties of reduced schedules, such as that
the write buffers and cores in the machines are kept in sync. We then introduce
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a key weapon in our arsenal, which is a class of schedules where no unit makes
global steps — shared writes that modify memory or shared reads — while a
shared write is being buffered by a unit that is executing trusted code. We show
that such schedules are always reduced with Lemma 305. The proof has three
central steps:

• Lemma 281 shows that a buffered write is never synchronized with other
units, because none of the synchronization rules apply:

shared write/shared read: per discipline, a shared bypassing write is not
allowed while a write is being buffered; so the shared write would have
to be buffered as well. A shared read would be a global step, which
can not occur while a shared write is buffered.

interrupt: an interrupt would drain the buffer, but the buffer is not empty.
a shared RMW: per discipline, a shared RMW would have to be bypass-

ing. But per discipline, a shared bypassing write is not allowed while
a write is being buffered.

• Because races require synchronization (Proof Step 1.), and the buffered
write is not synchronized with other units, there is no race. This is stated
jointly by Lemmas 282 and 283.

• Thus a unit never modifies or reads from a memory region to which an-
other unit is buffering writes. As a consequence, the order of writes and
of reads and writes is never changed. The memory systems (but not mem-
ories) are kept in sync, i.e., during the execution of trusted code, buffer
+ memory in the low-level machine correspond to memory in the high-
level machine, and during execution of untrusted code the memories are
the same. This is stated in Lemma 295. Furthermore, since a unit only
reads a memory region after all writes to that region have left the buffer
(shown in Lemma 301), reads always see the most up-to-date value. This
is stated jointly in Lemmas 298 and 304.

• Because reads see the same writes in both machines, they see the same
values, i.e., the schedule is reduced. This is Lemma 305.

Because the order of writes and of reads and writes is the same in both machines,
we call these schedules ordered schedules.

3. Section 4.12: We show how to reorder any schedule into an ordered schedule.
The basic idea is simple: unroll the schedule in the order of global steps. We
do this iteratively. After t iterations, we have some reordering Ot that created
an ordered prefix sOt [0 : t− 1] of length t. We look at the next global step gt .
Steps l ∈ [t : gt) are thus by definition local. We try to create an ordered prefix by
moving this step forward to position t, but we might get stuck because one of the
steps l ∈ [t : gt) is a step of the same unit, or is interrupted by step gt . We thus
move instead step kt , which is the first step made by the same unit or interrupted
by gt . For the sake of illustration, we run the reordering strategy on a schedule
of the simple program from before

x.store(1); y := x.load();

As shown in Fig. 1.5, we begin with the non-reduced schedule sO0 where Thread
1 is stepped first. Since in the low-level machine the shared write goes into the
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buffer and does not change memory, the step is considered local. Thread 2 makes
the second step, which is a shared read. The last step is made by the write buffer
of Thread 1, which is a shared write and thus global.

x y
x.store(1); -> BUF 0 0

y := x.load(); 0 0
-> x.store(1); 1 0

The next global step is thus the step made by Thread 2 (g0 = 1). Since that step
is the only step of that unit, it is also the first step of that unit (k0 = g0 = 1).
We move k0 to position 0, which moves step 0 to the back. After one iteration
we are now in schedule sO1. The next global step g1 is now step 2, which is
made by the write buffer of Thread 1. Since step 1 is made by the same unit,
we can not simply reorder step 2 to position 1; instead, we move step k1 = 1.
This clearly does not change the schedule. After two iterations we are now in
schedule sO2. The next global step g2 is still step 2, which is now also the first
step of that unit outside of the ordered prefix. We thus move k2 = g2 = 2 to
position 2, which again does not change the schedule. After three iterations we
are now in schedule sO3. Since there are no unordered steps remaining, we are
done. Note that the resulting schedule is exactly the schedule described on page
13 in Section 1.1.1:

x y
y := x.load(); 0 0

x.store(1); -> BUF 0 0
-> x.store(1); 1 0

This demonstrates the basic principles behind the reordering strategy. To show
that the reordering strategy works for all programs that obey the software disci-
pline and all schedules is considerably more involved.

When run on more complex programs and schedules, such as in Fig. 1.6, it can
sometimes take multiple iterations before a global step can be moved.

4. Sections 4.12.1 to 4.12.5: To show that this reordering really works, we need to
show 1) that the schedule sOt+1 is ordered until t and 2) that the schedule sOt+1
is equivalent with schedule sOt .

We observe first that all intermediate steps l ∈ [t : gt) are local. We say that the
schedule in iteration t has a local tail from t to gt , and write LOt(t,gt). Since
the steps are all local, we obtain with Lemma 320 that the schedule is not only
ordered before t, but actually before gt . Since ordered schedules are reduced, we
can run the program in the high-level machine and low-level machine in parallel
with the schedule sOt and obtain that all steps before gt see the same values
and make the same decisions in the two machines, and that the write buffer is
the same. This allows us to use the software discipline — which only speaks
about the high-level computation — to reason about those steps in the low-level
computation.

We distinguish at this point between two cases. When step kt is a write buffer
step of a unit currently executing trusted code (and because it is global, also
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Figure 1.5: A complete run of the reordering strategy on the non-
reduced schedule of the simple program from page 12. Steps are
lined up like pearls on a string, with step zero at the left. Local steps
are represented by squares with round corners, global steps simply
by squares. The object making the step is inscribed in the square
representing the step, either Thread 1 (T1), Thread 2 (T2), or the write
buffer of Thread 1 (W1). The ordered prefix is shaded gray. The bent
arrow indicates steps of the same unit or which are interrupted, and
thus have to be moved first. The straight arrow indicates a reordering
and begins at the step to be moved and ends at the target step. In this
case, we move first step 1 to position 0, then step 1 to position 1, and
finally step 2 to position 2. The latter two reorderings are obviously
no-ops.

the next global step gt = kt ), we say that the schedule has a local tail that com-
mits a write buffer step and write LW Ot(t,gt). This case (handled completely in
Section 4.12.4) is relatively simple, because write buffer steps do not have read
results and the intermediate steps do not race with the buffered write because the
schedule is ordered until gt .

When step kt is not a write buffer step of a unit currently executing trusted code,
we observe that at least it is not made by any of the units making steps l ∈ [t : kt)
and does not interrupt any of them. In this case we say that the schedule has
a local tail with an independent end and write LIOt(t,kt). We can easily show
with Lemma 332 that in the low-level machine none of these steps modifies the
instructions fetched by step kt . In the high-level machine that is not the case.
Consider, for example, a situation where a thread uses a buffered shared write
to change an instruction. In the low-level machine, the step is local, because the
buffered write has no effect. In the high-level machine, the step is executed im-
mediately, and step kt in the high-level machine will execute the new instruction.
So clearly we can not transfer all of the properties of the software discipline for
step kt , in particular none of the properties that talk about decisions made after
fetching, such as the read and written addresses.
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sOt . . .
t gt

P,i P,i P,i. . .
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. . .P,i P,i P,i. . . X2sOt+2
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kt+2
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t +1
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. . .P,i P,i P,i. . . X2sOt+3 X1 X3 X4 X5

Figure 1.6: Four iterations of the reordering strategy. In iteration t,
there are two steps made by the same unit as step gt — unit i —
which therefore have to be moved first. After two iterations, the path is
clear, and the global step can be added to the ordered prefix. As can
be seen, once a step is added to the ordered prefix, it is never moved
again. This allows us to diagonalize and obtain an infinite ordered
schedule.

We move step kt to position t. Since none of the steps change the instruction
fetched by step kt , this move does not change the instructions fetched by former
step kt . This is stated by Lemma 334. To actually justify the reordering, however,
we also need to show that 1) the read results are not changed, 2) the inputs of all
the intermediate steps are not changed, and 3) the configurations after step kt are
not changed.

We obtain with Lemma 336 that after being moved to position t, the step sees the
same values in the high-level and low-level computations, i.e., sOt+1 is reduced
until t. We can now begin to use the software conditions also for step kt at its
new position.

A naive (and incorrect) plan for proving that the values seen by step kt and all
of the intermediate steps l are unchanged by this reordering proceeds as follows.
We push step kt (now at position t and reduced) back until it is at l and the former
step l is at position l+1 (cf. Fig. 1.7). Since the two steps occur directly after one
another, we obtain for the high-level computation that any race between kt and l
must be annotated as shared. Since step l is local in the low-level computation, it
could not be a shared read, thus eliminating races where step kt is the modifying
step, and it could also not be a shared write that has an effect, and thus (in the low-
level computation) there would not be a race where step l is the modifying step
either. Thus there would be no race between l and kt in the low-level machine.

This plan fails because, as mentioned before, there could be a malicious step
k′ ∈ [t : l) which changes the sets of accessed addresses of step kt , in one of the
following two ways: step k′ changes the instruction executed by step l, e.g., by
changing it to a NOOP; or step kt is an RMW instruction, such as a test-and-set,
and the modification made by step k′ changes the value of the test variable so
that the test-and-set no longer makes a modification. Recall that this is possible
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sOt
. . .

t
. . .

kt

. . .. . .sOt+1
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. . . . . .
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Figure 1.7: A naive plan for proving that sOt+1 is equivalent to sOt
moves the former step kt (now step t) back next to each l (reordering
depicted as schedule s′ in the figure) to show that there is no race
between kt and l in the low-level machine.

even though step k′ is a local step in the low-level machine because step k′ could
be buffering a shared write, and thus only change the behavior of step kt in the
high-level machine. Therefore step l in the schedule s′ from Fig. 1.7 is no longer
reduced, and even if there is no race in the high-level computation, a race might
exist in the low-level computation.

We instead with Lemma 344 only move the former step kt as far as possible,
which is right before such a step k′. The resulting schedule, denoted as s′′ in
Fig. 1.8, has a step at k′+ 1 racing with step k′, and as shown in Lemma 342
must thus be shared. Because it is shared but local in the low-level machine, the
step must be buffering a write which is executed in the high-level computation,
and is thus executing trusted code (since untrusted code uses low-level seman-
tics). We want to show that there is no race with step l + 1 (which was step l
in the original schedule). This almost corresponds to Section 4.5, the techni-
cal software condition introduced above, except for one crucial detail: the steps
between k′+1 and l +1 might be by different objects.

sOt
. . .

t
. . .

kt

. . .. . .sOt+1

Y

Y

X

X

. . . . . .

. . .

l l +1

. . .. . .
s′′ YX. . . . . .

k′

Z
k′+1

. . .

. . . . . .Z

Z . . .

Figure 1.8: Instead of moving until position l, we move only until po-
sition k′.

We apply one last crucial trick: before moving step kt at all, we sort with Lemma 319
the local tail of the schedule, moving all steps of the object that makes step l to
the very front. In Fig. 1.8, this is object Y . In the resulting schedule r, shown in
Fig. 1.9, step l is moved to position l′ ≤ l and all steps between t and l′ are made
by the same object, namely Y . It is easy to see that schedule r is equivalent to
the original schedule, since only local steps occurring next to each other have to
be reordered (we use bubblesort [Knu98] to sort the schedule) and in a reduced
schedule, two local steps that occur directly next to each other never have a race.
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kt

Y X. . .
l

YY. . . . . .. . .

r . . .. . . Y X. . .YY
l′

Figure 1.9: Before moving step kt to the front, we sort the local tail.

Furthermore, if we would now try to move step kt to position t and then back
to position l′, there might still be a step k′ that prevents us from doing so, but
in this case all steps between k′+1 and l′+1 would obviously have to be made
by the same object (cf. Fig. 1.10). For this case, we show with Lemma 352
that the technical software condition from above applies. By Lemma 348 we can

t kt
r . . .. . . Y X. . .YY

l′

. . .. . . YX . . .YY

r′
. . .. . . YX . . .YY

l′+1

k′ k′+1

Figure 1.10: In the sorted schedule, a race between a malicious step
k′+ 1 and step k′ can only occur if all steps between k′+ 1 and l′+ 1
are made by the same object.

now immediately use Section 4.5 to show that there may not be a race between
step l′ + 1 and step k′ in schedule r′ of Fig. 1.10, which is stated jointly by
Lemmas 357, 360 and 364. It is at this point an easy book keeping exercise to
show that there can also be no race between step l and step kt in schedule sOt
(stated jointly by Lemmas 362, 365 and 368.

Thus in both cases the schedule after iteration t + 1 is equivalent to that after
iteration t (this is Theorem 1).

5. Section 4.13: We now have that after t iterations of the reordering, a prefix of
length t is ordered (Theorem 1). This works great for finite schedules such as
the one of the simple program from before, but in case of, e.g., an operating
system which hopefully does not crash after a finite amount of steps but can run
indefinitely, may not be enough. To show that for infinite schedules there is also
an equivalent, reduced schedule, we observe that steps in the ordered prefix of
the reordered schedule are never moved. We thus obtain a growing, finite prefix.
By diagonalizing through the reorderings and defining

s∞(t) = sOt+1(t),

we therefore obtain a schedule that is ordered at every point and thus reduced,
as stated by Theorem 4. It is also easy to show that every step in s∞(t) sees the
same values as the step in sOt+1, and since that schedule is equivalent to s, also
as the original step in that schedule.
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However it is not as easy to show that every step from s eventually ends up in
the growing prefix, and therefore in s∞. A glance at Fig. 1.6 shows that step
t in schedule sOt of object X1 is delayed several times, and it is not clear why
it should not be delayed like this indefinitely and thus never enter the growing
finite ordered prefix. In fact, the reordering strategy described above is slightly
incomplete and might delay steps indefinitely in that manner. The actual reorder-
ing strategy is sometimes greedy and does not always choose gt to be the next
global step; it sometimes chooses local steps that are not buffering anything,
and which might therefore be pushed into nirvana if the unit that makes the step
never again makes a global step. We call these steps pushable, and define gt to
be the next step which is global or pushable. That this does not harm the correct-
ness proof of the reordering strategy is easy to see: a local step is moved easily
from kt to position t without breaking equivalence, and because the step does not
buffer a write, it can never buffer a shared write that would make the schedule
not ordered.

That this suffices rests on one central observation. If a step is not pushable, it
is either a) global and will be picked up as gt eventually, or b) it is buffering a
write which has to be committed at some point, and that commit will be picked
up as gt eventually and pick up the step in question as kt (since it is made by the
same unit). These observations are combined in Theorem 5, which states that all
schedules can be reordered into an equivalent, reduced schedule.
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Chapter 2

Machine Model

In this chapter we introduce the model and semantics of our machine, as well as the
general notation used through the thesis.

2.1 Notation
We introduce some shared notation and language for the following chapters. The set of
booleans is

B= {0,1} .

The set of sequences of X of length n is denoted by

Xn,

e.g., for 32-bit strings we use
B32.

Finite sequences are indexed in the subscript, starting from zero:

l ∈ Xn→ l = [ l0, . . . , ln1 ]∧ li ∈ X .

For concatenation of sequences we use the binary infix symbol ◦, where the lower
indices are on the left and the higher indices are on the right:

l ∈ Xn∧ l′ ∈ Xk ∧ i < n+ k→ (l ◦ l′)i =

{
li i < n
l′i−n o.w.

A slice of a sequence is obtained by

l[n : k] = [ ln, . . . , lk ] .

The head is the zero-indexed element, and the tail are the remaining elements:

l ∈ Xn+1→ hd(x) = l0∧ tl(x) = l[1 : n].

For the empty list, we define head and tail to be some fresh symbol ⊥ 6∈ X

hd(ε) = tl(ε) =⊥.

25



The set of finite sequences is denoted by

X∗.

Analogous to set comprehension we employ a list comprehension

[ f (e) | e ∈ l∧P(e) ] ,

which preserves the order of the elements in x and is defined recursively by the follow-
ing

[ f (e) | e ∈ ε ∧P(e) ] = ε,

[ f (e) | e ∈ (h◦ t)∧P(e) ] =

{
f (h)◦ [ f (e) | e ∈ t ∧P(e) ] P(h)
[ f (e) | e ∈ t ∧P(e) ] o.w.,

If P(e) is always equivalent to 1, we drop the conjunct.
One easily shows that the list comprehension distributes over concatenation; we do

not show a proof.

Lemma 1.[
f (e)

∣∣ e ∈ (l ◦ l′)∧P(e)
]
= [ f (e) | e ∈ l∧P(e) ]◦

[
f (e)

∣∣ e ∈ l′∧P(e)
]
.

We say N and M intersect when their intersection is non-empty. Formally we write

N ∩̇M ≡ N∩M 6= /0.

This relation binds weaker than set operators.
For intervals, we use a bracket when the endpoint is included and a parenthesis

when the endpoint is excluded

[t : k) = { t, . . . ,k−1} .

We similarly use the words “until k” and “before k” to denote inclusion resp. exclusion
when k is the higher endpoint and (somewhat inconsistently) “from t” and “after t” to
denote inclusion resp. exclusion when t is the lower endpoint.

A dependent product, written

Πx ∈ X .Y (x),

is a function type where the co-domain depends on the particular input. A formal
definition is given by

Πx ∈ X .Y (x) =

{
f : X →

⋃
x

Y (x)

∣∣∣∣∣ ∀x ∈ X . f (x) ∈ Y (x)

}
.

Just as in other quantifiers, the ‘.’ in the definition binds weaker than other connectives.
See the following example.

Πx ∈ X .Y (x)×Z(x)→
⋃
y

T (y,x) = Πx ∈ X .(Y (x)×Z(x)→
⋃
y

T (y,x)).

Just as in other quantifiers, we sometimes bind multiple variables with a single Π

Πx1 ∈ X1, . . . ,xn ∈ Xn.Y (x1, . . . ,xn) = Π(x1, . . . ,xn) ∈ X1× . . .×Xn.Y (x1, . . . ,xn).
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In general we do not distinguish between cascaded function types1

f : X → Y → Z,

and cartesian function types
f : X×Y → Z,

but we prefer the cartesian style over the cascaded style. Therefore the following two
are considered equal, while the second notation is preferred

f (x)(y) = f (x,y).

Dependent products are well-known to type theorists, but are considered strange
and complicated by some people working with set theory. This does not have to be
the case as dependent products are used a lot by people who work with set theory,
and we give some examples. The first example are parametric functions where the
type of the function depends on the parameter, like a device transition function of
device d that maps from the cartesian product of the set of device configurations of
that device KDEV,d and set of oracle inputs of that device ΣDEV,d into the set of device
configurations of that device

δDEV,d : KDEV,d×ΣDEV,d → KDEV,d .

If one defines instead a device transition function δ ′DEV of which d is a proper argument,
one has to do so with a dependent product

δ
′
DEV : Πd ∈ Devices.KDEV,d×ΣDEV,d → KDEV,d .

It can be read as “given a device d, a device configuration of d and an oracle input of d,
we obtain a new device configuration of d.” Let now d be a device, c ∈ KDEV,d a device
configuration of that device and x ∈ ΣDEV,d a corresponding oracle input. One obtains
the equality

δDEV,d(c,x) = δ
′
DEV (d,c,x).

For configurations c and components x we use the notation

c.x.

Components can be functions in which case we use the notation

c. f (a).

In our simulation proofs we will be talking about a low-level machine which simu-
lates a high-level machine. In such cases, we use a machine-type index M ∈ {↓,↑} in
the subscript to distinguish between definitions for the high-level machine and defini-
tions for the low-level machine. For example, we will later define a buffered write BW ,
and distinguish between the write buffered in the low-level machine

BW↓

and the write buffered in the high-level machine

BW↑.

1As is usual, function (and implication) arrows are right-associative and bind weaker than other connec-
tives except for ‘.’.
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We model the non-determinism in our machine by oracle inputs in our transition
operator. From each configuration, multiple transitions may be enabled; the oracle
input determines which of these transitions to take. Given a sequence s of oracle inputs
this allows us to define a sequence of configurations, where configuration n+ 1 is the
result of applying the transition operator with configuration n and oracle input n. We
call such a sequence of configurations a computation.

The same sequence s of oracle inputs can, however, yield different configurations
in the different machines, and again we distinguish a computation in the low-level
machine from computations in the high-level machine with a machine-type index M

cM[s].

A list of commonly used symbols and notations and their general meaning is given
below.

• The set of all addresses A

• Sets of addresses A⊆A

• Each address a ∈ A has a range V (a)

• Configurations c are labeled tuples

• Components c.x are projections of configurations where x is the label of the
projection

• We often consider an original configuration c0

• The set of units U

• Units i, j

• The set of oracle step inputs Σ

• Oracle step inputs x ∈ Σ

• Steps c,x and the resulting configuration c � x. We call � the transition operator.

• Schedules s are sequences of oracle step inputs.

2.2 The Programming Language
We sometimes provide example programs. The programs use a C-like pseudo syntax.
Unless stated otherwise, variables are stored in shared memory, have integer value, and
are initially zero. A shared store x.store(v) updates the value of variable x to v. A
shared load x.load() is an expression that evaluates to the current value of variable
x. An atomic compare-and-swap operation x.cas(cmp→ new) atomically changes
the value of variable x to new if the old value is equal to cmp, and leaves it unchanged
otherwise; in each case it evaluates to the old value of x. It is always a shared operation.
The assignment operator =, on the other hand, is a local operation. Loads and stores
and the normal assignment operator use the buffer, while an atomic compare-and-swap
operation flushes the buffer and modifies the memory directly. Finally we allow a
local bypassing assignment operator :=, which is a local operation that modifies the
memory directly but does not drain the write buffer (and therefore bypasses the stores
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in the write buffer). Parallel threads are denoted by vertical bars ||, and statement
boundaries are denoted by ;.

We create sub-word accesses with x[a:b], e.g., x[0:7] = x[8:15]; copies
the second byte of x to the first byte of x.

Furthermore, we give threads access to a thread-local struct ICR with the following
fields.

ICR.target: A thread which is to be interrupted.

ICR.status: A boolean flag with values PENDING and IDLE. An interrupt is even-
tually sent when the status is PENDING. The interrupt also sets the status back
to IDLE.

Finally, we give threads access to a thread-local variable IRR (for interrupt request
register), which is a boolean flag that records whether an inter-processor interrupt has
been received.

Our programming language has two semantics: a high-level semantics which is se-
quentially consistent and where all writes immediately change the shared memory (and
ICR/IRR), and a low-level semantics where only bypassing assignment and compare-
and-swap operations immediately change the shared memory, and all other assignments
can be delayed by the write buffer.

2.3 The Machine Model
We consider a machine with units U and addresses A. The exact values of U and A
are left uninterpreted and are open to the instantiation of the model, but we make some
assumptions.

Addresses A can be partitioned into processor registers for each unit i ∈U ,

APR,i,

also known as core registers; registers of write-triggered devices d ∈ D

ADEV,d ,

and main memory registers
AMEM.

Processor registers are partitioned further into interrupt and normal registers

APR,i = AIPR,i]ANPR,i.

The difference between these is that the interrupt registers can be modified and read by
other processors in order to send inter processor interrupts, while the normal processor
registers are completely local for the processor. In the case of MIPS, the APIC regis-
ters that are used to compute the interrupt vector — i.e., the interrupt request register
IRR and the in-service register ISR — will be interrupt registers, whereas the remain-
ing registers such as the ICR will not be. The distinction is important as we will not
allow interrupt registers to be modified by buffered writes in strong memory mode, as
the write would immediately trigger an interrupt in a sequentially consistent model but
will not trigger the interrupt in a weak memory model until the write leaves the buffer,
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possibly many instructions later. The remaining APIC registers, however, can be mod-
ified by buffered writes; in fact, since the APIC likely is not integrated into the cache
system, this may be the only way to modify those APIC registers at all.

We define shorthands for the set of all device addresses

ADEV =
⋃
d

ADEV,d

and for the set of all interrupt registers

AIPR =
⋃

i

AIPR,i.

Visible to processor i are only interrupt registers, its own normal registers, device
registers, and memory registers

ACCi = ANPR,i∪AIPR∪ADEV ∪AM.

Processors can buffer writes to the interrupt registers, device registers, and memory
registers, but never to the normal processor registers2. For example, the write buffer
can not be used to buffer modifications of the program counter or the GPR. We define
the set of bufferable addresses

BA = AIPR∪ADEV ∪AM.

Furthermore, each oracle input x may cause direct-to-core IPIs under certain cir-
cumstances. These circumstances are entirely defined by the content of a memory
region AIPI(x), which belongs to interrupt and device registers3, but not memory regis-
ters

AIPI(x)⊆ AIPR∪ADEV .

We call these registers the IPI-relevant registers for x. In the case of MIPS86, they are
the entries of the redirection table for the IO APIC delivery step, and the command and
status registers for the APIC delivery steps. We do not need to assume anything about
their structure or semantics, merely that they exist; the aim is to prevent processor steps
from disabling interrupts that target them, in which case interrupts might be disabled
in the low-level semantics by seemingly local steps. Since interrupts are a form of
synchronization, programs that disable interrupts that target them using bypassing local
writes seem well-synchronized, as the following example shows.

ICR.target.store(Thread1); while (!IRR);
ICR.status.store(PENDING); assert(false);
ICR.status.store(IDLE);
ICR.target := Thread2;

Clearly, in sequentially consistent executions, Thread 2 can only be a target when
the status register has already been set to IDLE, and thus Thread 2 will never be inter-
rupted.

It is also clear that this is not true in the low-level machine
2This is not technically necessary for the proof to go through, but it simplifies the proof and makes

sense.
3This makes sure that accesses to these registers are marked as shared.
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ICR.target.store(Thread1); -> BUF
BUF -> ICR.target.store(Thread1);
ICR.status.store(PENDING); -> BUF
BUF -> ICR.status.store(PENDING);
ICR.status.store(IDLE); -> BUF
ICR.target := Thread2;
IPI: Thread2.IRR = 1;

while (!IRR);
assert(false);

The program still seems well-synchronized because the APIC is never active at the
time when the target is changed.

Each address a ∈ A has a specific value domain V (a). For example, an instruction
buffer can be modeled as a relation between physical instruction addresses and instruc-
tion words. In an instantiation, one could model the instruction buffer of processor i
as a processor register IBi, with all relations from instruction addresses to instruction
words

V (IBi)⊆ 232×232,

while an addressable MIPS memory cell m[x] has an 8 bit value

V (m[x]) = B8, x ∈ B32.

For more examples, see our instantiation of the model for MIPS86 in Chapter 3.
A configuration of each machine is simply a function that maps each address to

a value from its domain. We generalize this concept to sets of addresses A ⊆ A and
introduce the set of valuations over A

Val(A) = Πa ∈ A.V (a).

We denote by /0 the empty valuation. If address a is not in the domain of valuation ν ,
we use the notation

ν(a) =⊥,

where ⊥ is a fresh symbol not used in the domain of any address

⊥ 6∈
⋃
a

V (a).

Therefore, two valuations agree on the value of an address iff either a is in the domain
of both and both valuations yield the same value, or if a is in the domain of neither
valuation.

We use valuations also for modifications to the memory, assigning to each address a
new value. Since modifications only change a subset of addresses, we introduce partial
valuations of A⊆A as total valuations of subsets of A by

PVal(A) =
⋃

A′⊆A

Val(A′).

A configuration for our write buffer- and sequentially consistent machines has two
components, a memory

c.m ∈Val(A)
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and for each unit i ∈U a write buffer, which is a sequence of writes to the bufferable
addresses

c.wb(i) ∈ PVal(BA)∗.

Note that the component c.m contains the state not only of the shared memory, but also
of processors and devices.

We also consider an initial configuration

c0,

about which we only make the assumption that write buffers are empty:

c0.wb(i) = ε.

In what follows we will run both the low-level and the high-level machine starting with
this configuration.

2.4 Memory Update and Semantics of Devices
A device configuration is a valuation of device addresses

KDEV,d =Val(ADEV,d),

and a device oracle input is a partial valuation of device addresses

ΣDEV,d = PVal(ADEV,d).

In other words, the state of a device is the content of the registers of the device, while
a device oracle input is an update of the device state. We assume a device transition
function

δDEV,d : KDEV,d×ΣDEV,d → KDEV,d .

We say ν and ν ′ agree on addresses A if the value of the addresses are equal
between the two configurations. Formally, we define

ν =A ν
′ ≡ ∀a ∈ A.ν(a) = ν

′(a).

We define a memory update operator which updates a valuation ν by a more up-to-
date well-formed write w∈Val(A). Since a device modification depends on the current
state of the device, the whole device state becomes an input to steps that modify the
device. Similarly a modification of a single address in the device can trigger a change
of all addresses in the device. We define the device closure of a set of addresses A by
including all addresses of devices which have addresses in A:

dc(A) =
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A

}
.

The set of device addresses contained in A is a subset of the device closure of A.

Lemma 2.
ADEV ∩A⊆ dc(A).
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Proof.

ADEV ∩A =
{

a
∣∣ a ∈ ADEV,d ∩A

}
=
{

a ∈ ADEV,d
∣∣ a ∈ ADEV,d ∩A

}
⊆
{

a ∈ ADEV,d
∣∣ ADEV,d ∩̇A

}
=
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A

}
= dc(A).

We define the inclusive device closure of A as the union of A and its device closure

idc(A) = A∪dc(A).

We say that a set of addresses A is closed under devices if it is equal to its inclusive
device closure

closed(A)≡ A = idc(A).

This is the case iff it contains its device closure.

Lemma 3.
closed(A)≡ dc(A)⊆ A.

Proof. closed(A)→ dc(A)⊆ A: Assume A is equal to its its inclusive device closure

A = idc(A).

We rewrite this equality on the right-hand-side of the claim and reduce it to the
following

dc(A)⊆ idc(A).

We unfold the definition of idc

dc(A)⊆ A∪dc(A),

which is trivially true.

dc(A)⊆ A→ closed(A): Assume A is contained in its device closure

dc(A)⊆ A.

Unfolding the definition of closed and idc we reduce the claim to the following

A = A∪dc(A).

We show that both sides of the equality are contained in each other.

A⊆ A∪dc(A): This is trivially true.

A∪dc(A)⊆ A: Follows directly with the assumption

A∪dc(A)⊆ A∪A = A.
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All of the fixed sets of addresses are closed. We do not present proofs.

Lemma 4. Let A be one of the major sets of addresses

A ∈
{

AMEM,APR,i,ANPR,i,AIPR,i,AIPR,ADEV,d ,ADEV ,BA,ACCi
}
,

then A is closed
closed(A).

We define now ν updated by w ∈Val(A) as

ν~w(a) =


δDEV,d(ν

∣∣
ADEV,d

,w
∣∣
ADEV,d

)(a) a ∈ dc(A)∩ADEV,d

w(a) a ∈ A\dc(A)
ν(a) o.w.

This operator is left-associative

ν~w~w′ = (ν~w)~w′.

Agreement under device closure is preserved by updates.

Lemma 5.

A⊆ idc(Dom(w))∧ closed(A)∧ν =dc(A) ν
′→ ν~w =A ν

′~w.

Proof. We have to show that for addresses a ∈ A the two valuations agree

ν~w(a) = ν
′~w(a).

The proof is only difficult for addresses in the device closure

a ∈ dc(Dom(w))∩A.

This is only the case for device addresses

a ∈ ADEV,d ,

which are consequently also in the device closure of A

ADEV,d ⊆ dc(A).

Consequently the valuations agree on the state of the device d

ν
∣∣
ADEV,d

= ν
′∣∣

ADEV,d

and we easily conclude

ν~w(a) = δDEV,d(ν
∣∣
ADEV,d

,w
∣∣
ADEV,d

)(a)

= δDEV,d(ν
′∣∣

ADEV,d
,w
∣∣
ADEV,d

)(a) = ν
′~w(a).

A set is closed under devices iff it either contains all registers of a device, or none
of them.

34



Lemma 6.
closed(B) ≡ ∀d.ADEV,d ⊆ B∨ADEV,d 6 ∩̇ B.

Proof. We show the equivalence first from left to right and then from right to left.

=⇒ : It suffices to show that if the device registers intersect with B, they are all con-
tained in B. Assume thus

ADEV,d ∩̇B.

By definition the device registers are in the device closure, and since B is closed,
they must also be in B

ADEV,d ⊆ dc(B)⊆ B.

⇐= : Assume that the registers of each device are either contained in B or disjoint
from it

∀d.ADEV,d ⊆ B∨ADEV,d 6 ∩̇ B.

We apply Lemma 3 and reduce the claim to showing that the device closure of B
is subsumed by it

dc(B)
!
⊆ B.

Let b ∈ dc(B) one of the addresses, and it suffices to show that b is contained in
B

b
!
∈ B.

Clearly b is a register of some device d

b ∈ ADEV,d ,

the addresses of which therefore intersect with B

ADEV,d ∩̇B.

By assumption, all addresses of the device must be contained in B,including b

b ∈ ADEV,d ⊆ B,

which is the claim.

The device closure distributes over union.

Lemma 7.
dc(A∪B) = dc(A)∪dc(B).

Proof.

dc(A∪B) =
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A∪B

}
=
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A∨ADEV,d ∩̇B

}
= dc(A)∪dc(B).
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The device closure of an intersection is a subset of the intersection of the device
closures.

Lemma 8.
dc(A∩B)⊆ dc(A)∩dc(B).

Proof.

dc(A∩B) =
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A∩B

}
⊆
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A∧ADEV,d ∩̇B

}
= dc(A)∩dc(B).

The device closure is monotone.

Lemma 9.
A⊆ B→ dc(A)⊆ dc(B).

Proof.

dc(A) =
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A

}
⊆
⋃{

ADEV,d
∣∣ ADEV,d ∩̇B

}
= dc(B).

The device closure distributes over subtraction with closed sets.

Lemma 10.
closed(B)→ dc(A\B) = dc(A)\dc(B).

Proof. We show first that the intersection between the registers of a device and A\B is
either the intersection between A and the registers of the device, or empty.

ADEV,d ∩ (A\B) = (ADEV,d \B)∩A

=

{
ADEV,d ∩A ADEV,d 6 ∩̇ B
/0 ADEV,d ⊆ B.

The case distinction is exhaustive due to Lemma 6.
Consequently, the registers of a device intersect A\B iff they intersect A but not B

ADEV,d ∩̇(A\B) ⇐⇒ ADEV,d ∩ (A\B) 6= /0

⇐⇒

{
ADEV,d ∩A 6= /0 ADEV,d 6 ∩̇ B
/0 6= /0 ADEV,d ⊆ B

⇐⇒ ADEV,d ∩A 6= /0∧ADEV,d 6 ∩̇ B

⇐⇒ ADEV,d ∩̇A∧ADEV,d 6 ∩̇ B.

The claim follows:

dc(A\B) =
⋃{

ADEV,d
∣∣ ADEV,d ∩̇(A\B)

}
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=
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A∧ADEV,d 6 ∩̇ B

}
=
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A

}
∩
{

ADEV,d
∣∣ ADEV,d 6 ∩̇ B

}
=
⋃{

ADEV,d
∣∣ ADEV,d ∩̇A

}
\
{

ADEV,d
∣∣ ADEV,d ∩̇B

}
=
(⋃{

ADEV,d
∣∣ ADEV,d ∩̇A

})
\
⋃{

ADEV,d
∣∣ ADEV,d ∩̇B

}
= dc(A)\dc(B).

The complement of a closed set is also closed.

Lemma 11.
closed(A)→ closed(A\A)

Proof. Assume A is closed. We apply Lemma 6, which reduces the claim to showing
that the registers of a device are either contained in or disjoint from the complement of
A

ADEV,d ⊆A\A
!
∨ADEV,d 6 ∩̇ A\A.

A set is a subset of another set iff it does not intersect its complement. We apply this
twice and reduce the claim to showing that the device addresses are either disjoint from
or contained in the complement of the complement of A

ADEV,d 6 ∩̇ A\ (A\A)
!
∨ADEV,d ⊆A\ (A\A).

The complement of the complement of a set is the set, and thus it suffices to show that
the device addresses are either disjoint from or contained in A

ADEV,d 6 ∩̇ A
!
∨ADEV,d ⊆ A.

By Lemma 6 this is equivalent to showing that A is closed, which we have by assump-
tion.

The intersection of a closed set is also closed.

Lemma 12.
closed(A)∧ closed(B)→ closed(A∩B)

Proof. With Lemmas 3 and 10 we obtain that the device closure of the intersection is
a subset of the intersection

dc(A∩B)⊆ dc(A)∩dc(B) L 10
⊆ A∩B. L 3

The claim is now Lemma 3.

The device closure can be used to identify intersections between a set and device
registers.

Lemma 13.
dc(A) ∩̇ADEV,d ⇐⇒ A ∩̇ADEV,d .
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Proof. Follows by definition of dc and the disjointness of device registers

dc(A) ∩̇ADEV,d ⇐⇒
⋃{

ADEV,d′
∣∣ A ∩̇ADEV,d′

}
∩̇ADEV,d

⇐⇒ ∃d′.ADEV,d′ ∩̇ADEV,d ∧A ∩̇ADEV,d′

⇐⇒ ∃d′.d = d′∧A ∩̇ADEV,d′

⇐⇒ A ∩̇ADEV,d .

Since device closures are just a union of device registers, we obtain a similar result
for those.

Lemma 14.
dc(A) ∩̇dc(B) ⇐⇒ A ∩̇dc(B).

Proof. Follows with Lemma 13

dc(A) ∩̇dc(B) ⇐⇒ dc(A) ∩̇
⋃{

ADEV,d
∣∣ B ∩̇ADEV,d

}
⇐⇒ ∃d.dc(A) ∩̇ADEV,d ∧B ∩̇ADEV,d

⇐⇒ ∃d.A ∩̇ADEV,d ∧B ∩̇ADEV,d L 13

⇐⇒ A ∩̇
⋃{

ADEV,d
∣∣ B ∩̇ADEV,d

}
⇐⇒ A ∩̇dc(B).

If a set is closed under devices, it intersects with another set iff it intersects with the
inclusive device closure of that set.

Lemma 15.
closed(A)→ A ∩̇B ⇐⇒ A ∩̇ idc(B).

Proof. Because A is closed, it is equal to its inclusive device closure

A = idc(A) = A∪dc(A).

The claim now follows with Lemma 14

A ∩̇B ⇐⇒ (A∪dc(A)) ∩̇B

⇐⇒ A ∩̇B∨dc(A) ∩̇B

⇐⇒ A ∩̇B∨dc(A) ∩̇dc(B) L 14
⇐⇒ A ∩̇B∨A ∩̇dc(B) L 14
⇐⇒ A ∩̇(B∪dc(B))

⇐⇒ A ∩̇ idc(B).

Complementarily, a set is a subset of a closed set iff its inclusive device closure is
a subset of that set.

Lemma 16.
closed(A)→ B⊆ A ⇐⇒ idc(B)⊆ A.
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Proof. We negate both sides

B 6⊆ A !⇐⇒ idc(B) 6⊆ A.

Clearly a set is not a subset of another set iff it intersects with the complement of that
set. We can thus change the claim to the following

B ∩̇(A\A) !⇐⇒ idc(B) ∩̇(A\A).

We apply Lemma 15, which reduces the claim to showing that the complement of A is
closed

closed(A\A),

which is Lemma 11.

Inclusive device closures intersect iff the original sets or their device closures inter-
sect

Lemma 17.
idc(A) ∩̇ idc(B) ⇐⇒ A ∩̇B∨dc(A) ∩̇dc(B).

Proof. Follows by applying twice Lemma 14

idc(A) ∩̇ idc(B) ⇐⇒ (A∪dc(A)) ∩̇(B∪dc(B))

⇐⇒ A ∩̇B∨dc(A) ∩̇B∨A ∩̇dc(B)∨dc(A) ∩̇dc(B)

⇐⇒ A ∩̇B∨dc(A) ∩̇dc(B)∨dc(A) ∩̇dc(B)∨dc(A) ∩̇dc(B) L 14
⇐⇒ A ∩̇B∨dc(A) ∩̇dc(B).

The device closure is idempotent.

Lemma 18.
dc(B) = dc(dc(B)).

Proof. The claim easily follows with Lemma 13:

dc(B) =
⋃{

ADEV,d
∣∣ ADEV,d ∩̇B

}
=
⋃{

ADEV,d
∣∣ ADEV,d ∩̇dc(B)

}
= dc(dc(B)).

The device closure of the inclusive device closure is the device closure of the orig-
inal set.

Lemma 19.
dc(idc(B)) = dc(B).

Proof. With Lemmas 7 and 18

dc(idc(B)) = dc(B∪dc(B))

= dc(B)∪dc(dc(B)) L 7
= dc(B)∪dc(B) L 18
= dc(B).
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The device closure is closed.

Lemma 20.
closed(dc(B)).

Proof. Follows with Lemma 18

dc(B) = dc(B)∪dc(B) = dc(B)∪dc(dc(B)).

Inclusive device closures are always closed.

Lemma 21.
closed(idc(A)).

Proof. We obtain first with Lemma 19 that the device closure of the inclusive device
closure is a subset of the inclusive device closure

dc(idc(A)) = dc(A) L 19
⊆ A∪dc(A)

= idc(A).

The claim follows with Lemma 3.

Lemma 22.
idc(A) ∩̇B ⇐⇒ A ∩̇ idc(B).

Proof. By Lemma 21, both idc(A) and idc(B) are closed

closed(idc(A)), closed(idc(B)).

The claim follows with Lemma 15.

idc(A) ∩̇B ⇐⇒ idc(A) ∩̇ idc(B) L 15
⇐⇒ A ∩̇ idc(B). L 15

One can subtract any device closure from a closed set and the resulting set is still
closed.

Lemma 23.
closed(A)→ closed(A\dc(B)).

Proof. It suffices to show that the device closure of A\dc(B) is a subset of A\dc(B),
which follows with Lemmas 10 and 18.

dc(A\dc(B)) = dc(A)\dc(dc(B)) L 10
= dc(A)\dc(B) L 18
⊆ A\dc(B).
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For some of the lemmas above, we obtain variants for the inclusive device closure.
We state the ones we need without giving proofs.

Lemma 24.
idc(A∪B) = idc(A)∪ idc(B).

Lemma 25.
idc(idc(A)) = idc(A).

Lemma 26.
A⊆ B→ idc(A)⊆ idc(B).

Lemma 27.
idc(A) ∩̇ADEV,d ⇐⇒ A ∩̇ADEV,d .

A write only modifies the inclusive device closure of its domain

Lemma 28.
A 6 ∩̇ idc(Dom(w))→ ν~w =A ν .

Since addresses outside of the domain of the write are unchanged, we can obtain
a lemma similar to Lemma 5 for sets that are not subsumed in the inclusive device
closure of the write if we assume that the memories also agree on those portions not
subsumed by the device closure.

Lemma 29.
closed(A)∧ν =A ν

′→ ν~w =A ν
′~w.

Proof. Clearly the intersection between A and the inclusive device closure of the do-
main of the write is a subset of the inclusive device closure of the domain of the write

A∩ idc(Dom(w))⊆ idc(Dom(w)).

The inclusive domain closure is closed by Lemma 21

closed(idc(Dom(w)))

and since A is closed, so is their intersection by Lemma 12

closed(A∩ idc(Dom(w))),

and by Lemma 3 we conclude that the device closure of their intersection is contained
in A

dc(A∩ idc(Dom(w)))⊆ A∩ idc(Dom(w)) L 3
⊆ A.

We conclude first that the memories agree on that region of memory

ν =dc(A∩idc(Dom(w))) ν
′

and then with Lemma 5 that the updated memories agree on that set

ν~w =A∩idc(Dom(w)) ν
′~w.
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On the other hand the remaining part does not intersect with the inclusive device
closure of the domain of the write

A\ idc(Dom(w)) 6 ∩̇ idc(Dom(w))

and with Lemma 28 we immediately obtain that the updated memories also still agree
on that portion

ν~w =A\idc(Dom(w)) ν L 28

=A\idc(Dom(w)) ν
′

=A\idc(Dom(w)) ν
′~w L 28.

The claim follows.

If two writes do not interact, their order is irrelevant.

Lemma 30. For writes
w ∈Val(A),w′ ∈Val(A′)

which do not interact
idc(A) 6 ∩̇ idc(A′),

the order is irrelevant
ν~(w∪w′) = ν~w~w′.

Proof. Note that for devices the lack of intersection of the device closures implies that
each device completely belongs to at most one write

(w∪w′)
∣∣
ADEV,d

=

w
∣∣
ADEV,d

ADEV,d ∩̇A

w′
∣∣
ADEV,d

ADEV,d ∩̇A′.

We fold and unfold the definitions and ultimately obtain three cases

ν~(w∪w′)(a) =


δDEV,d(ν

∣∣
ADEV,d

,w∪w′
∣∣
ADEV,d

)(a) a ∈ dc(A∪A′)∩ADEV,d

(w∪w′)(a) a ∈ A∪A′ \dc(A∪A′)
ν(a) o.w.

=



δDEV,d(ν
∣∣
ADEV,d

,w
∣∣
ADEV,d

)(a) a ∈ dc(A)∩ADEV,d

δDEV,d(w
∣∣
ADEV,d

,w′
∣∣
ADEV,d

)(a) a ∈ dc(A′)∩ADEV,d

w(a) a ∈ A\dc(A)
w′(a) a ∈ A′ \dc(A′)
ν(a) o.w.

=



(ν~w)(a) a ∈ dc(A)∩ADEV,d

(ν~w′)(a) a ∈ dc(A′)∩ADEV,d

(ν~w)(a) a ∈ A\dc(A)
((ν~w)~w′)(a) a ∈ A′ \dc(A′)
(ν~w)(a) o.w.
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=


(ν~w′)(a) a ∈ dc(A′)∩ADEV,d

((ν~w)~w′)(a) a ∈ A′ \dc(A′)
(ν~w)(a) o.w.

=


(ν~w′)(a) a ∈ dc(A′)
((ν~w)~w′)(a) a ∈ A′ \dc(A′)
(ν~w)(a) a 6∈ idc(A′).

We complete the three cases as follows.

a ∈ dc(A′): With Lemma 28 we obtain that w does not change the device closure of A′

ν~w =dc(A′) ν .

With Lemma 20 we obtain that the device closure is closed

closed(dc(A′)),

and thus with Lemma 29 the device closure is still unchanged after applying w′

ν~w~w′ =dc(A′) ν~w′.

The claim follows with a ∈ dc(A′)

(ν~w~w′)(a) = (ν~w′)(a) = ν~(w∪w′)(a).

a ∈ A′∧a 6∈ dc(A′): This is already the claim

ν~(w∪w′)(a) = ν~w~w′(a).

a 6∈ idc(A′): With Lemma 28 we obtain the following

ν~w~w′ =A\idc(A′) ν~w.

The claim follows with a ∈ A\ idc(A′)

(ν~w~w′)(a) = (ν~w)(a) = ν~(w∪w′)(a).

If we are only interested in a small closed portion of memory, we can drop all other
parts of a memory update.

Lemma 31.
closed(A)→ ν~w =A ν~w

∣∣
A.

Proof. Let B be the addresses in the domain of w not included in A

B = Dom(w)\A.

Clearly we can split w between A and B

w = w
∣∣
A∪w

∣∣
B.
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Because A is closed, it equals its own inclusive device closure

idc(A) = A.

We obtain with Lemma 15 that the inclusive device closures of A and B do not intersect

idc(A) ∩̇ idc(B)

⇐⇒ A ∩̇ idc(B)

⇐⇒ A ∩̇B L 15
⇐⇒ A ∩̇Dom(w)\A

⇐⇒ 0.

The claim now follows with Lemmas 30 and 28

ν~w = ν~(w
∣∣
A∪w

∣∣
B)

= ν~w
∣∣
A~w

∣∣
B L 30

=A ν~w
∣∣
A. L 28

If two memory updates agree on the portion we are interested in, we can swap them.

Lemma 32.
closed(A)∧w =A w′→ ν~w =A ν~w′.

Proof. We simply apply Lemma 31 twice

ν~w =A ν~w
∣∣
A L 31

= ν~w′
∣∣
A

=A ν~w′. L 31

2.5 The Semantic Framework
We define our non-deterministic semantics in terms of an oracle step input x ∈ Σ. We
distinguish for each unit i ∈U between oracle step inputs for processor steps and write
buffer steps

ΣP,i,ΣWB,i.

These sets of oracle inputs are pairwise disjoint, which allows us to define u(x) to
be the unit to which x belongs

u(x) = i where x ∈ ΣWB,i∪ΣP,i.

For the sake of precise language, we use the term object for processors and write
buffers. Analogously to the unit we define o(x) to be the object to which an oracle
input x belongs

o(x) = X where x ∈ ΣX , X ∈ {P, i | i ∈U }∪{WB, i | i ∈U } .

Each processor step has three transitions, shown also in Fig. 2.1
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write
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shared
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processor
registers

Figure 2.1: The three transitions in the processor step are repre-
sented as rounded boxes on the left. First, the processor only sees
the core configuration core and uses it to compute F , the set of ad-
dresses to fetch from. Then the memory returns the fetched instruc-
tions f etch, and the processor uses core configuration and fetched
addresses to compute R.wba, the set of addresses to be read where
more up-to-date values from the buffer are preferred over the shared
memory, and R.bpa, the set of addresses to be read where the buffer is
completely ignored. As a result, the processor returns a memory view
v which combines the results for R.wba (from memory and buffer) and
of R.bpa (only from memory). Using the memory view v and the pre-
vious results (core, f etch), the processor computes two writes: W.bpa
which immediately modifies memory, and W.wba which is entered into
the buffer and only modifies memory later. The portion W.bpa is also
used to update the core configuration.

Fetch: The processor first considers its local state and decides which addresses to fetch
from.

Read: After fetching the values from the memory, the processor decides which ad-
dresses to read from. It distinguishes for each address whether it wants to snoop
its own write buffers for more up-to-date values or not.

Write: After receiving the results from the memory system, the processor now decides
where and what to write. This includes writing to its local state, e.g., to increment
the program counter or to store the read results.

Since we are in a setting of write buffers, read and write accesses to the memory
system may go through the write buffer or bypass it. In case of a read, going through
the write buffer means forwarding of more up-to-date values if they are present in the
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buffer; in case of a write, it means inserting a new write at the end of the buffer. In
fact, the same step may do some part of the access through the buffer (such as a store
operation) and bypass it for other parts of the access (such as incrementing the program
counters, etc.). To formalize this, we define a disjoint split of a set A as the disjoint pairs
of subsets of A

D(A) = { (wba,bpa) | wba,bpa⊆ A∧wba 6 ∩̇ bpa} .

Note that we use the acronyms wba for write buffer addresses and bpa for bypassing
addresses, respectively.

We overload notation to allow a disjoint pair of sets of addresses as a parameter of
PVal. We simply distribute the sets of addresses over the partial valuations, i.e., the par-
tial valuation of a pair is the cross product of the partial valuations of the components
of the pair

PVal((wba,bpa)) = PVal(wba)×PVal(bpa).

In the high-level machine, write buffers are still sometimes used, e.g., in untrusted
code of users and in the code that switches between the untrusted code and the trusted
code. To distinguish between those two types of code, each processor records its cur-
rent memory mode in memory mode registers ASC,i, which are normal processor regis-
ters

ASC,i ⊆ ANPR,i;

the current memory mode can be extracted using a function SCi

SCi : Val(ASC,i)→ B.

In the low-level machine, the function does not matter; but in the high-level machine,
a unit in sequentially consistent (or strong memory) mode essentially ignores the write
buffer: writes that should go through the buffer are executed immediately, the write
buffer is not snooped for more up-to-date values, and write buffer steps have no effect.
The write buffer is kept, however, as a ghost component, and is filled with the writes
that the machine would have buffered if it had not been in strong memory mode.

A unit is in strong memory mode in configuration c when its memory mode regis-
ters indicate that it is4

SCiM(c) = SCi(c.m
∣∣
ASC,i

).

In order to easily define forwarding, we overload ~ by allowing the write to be in
the form of a sequence:

ν~wb, wb ∈ PVal(A)∗.

In this case, the entries of the sequence are simply applied from left to right:

ν~w◦wb = ν~w~wb, ν~ε = ν .

We now formalize forwarding. We define perfect world forwarding memory system
by simply applying all outstanding writes to the memory:

p f msiM(c) = c.m~c.wb(i).

This perfect world forwarding memory system predicts the value of device transitions
correctly, i.e., if a write in the write buffer is going to update a write-triggered device,

4We later define for functions fM with a machine-type index notation for schedules fM [s](t). To make
use of this notation, we sometimes add a machine-type index where it is not necessary, as here.
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the device state is correctly computed and forwarded. Therefore, a write buffer step
never changes the perfect world forwarding memory system of the processor that issued
the write (cf. Lemma 68, page 62).

It is easy to see that this perfect world forwarding can not be implemented in hard-
ware, as the forwarding hardware can not possibly predict the behavior of devices.
Since we are creating a processor model for which we claim that it is implementable,
we have to use a different function for forwarding in our model. We define an unin-
formed update operator which treats device modifications like normal writes, i.e., does
not apply the device transition

ν}ν
′ =

{
ν ′(a) a ∈ Dom(ν ′)

ν(a) o.w.,

and define the forwarding memory system by

f msiM(c) = c.m}c.wb(i).

This forwarding memory system does not correctly predict results for devices cor-
rectly, and so a program that first modifies and then reads from a write-triggered device
might not behave sequentially consistent. We state without proof variants of Lem-
mas 28 and 29 for the uninformed update.

Lemma 33.
ν =A ν

′→ ν}w =A ν
′}w.

Lemma 34.
w ∈Val(B)∧B′ 6 ∩̇ B→ ν}w =B′ ν .

Furthermore, the uninformed update and the update agree on everything except
devices.

Lemma 35.
dc(A) 6 ∩̇ Dom(w)→ ν~w =A ν}w.

Proof. With Lemma 14 we obtain that the device closure of the domain of the write
does not intersect A

dc(A) 6 ∩̇ Dom(w)

⇐⇒ dc(A) 6 ∩̇ dc(Dom(w)) L 14
⇐⇒ A 6 ∩̇ dc(Dom(w)) L 14.

Let a ∈ A be an address for which we have to show the equality

ν~w(a) !
= ν}w(a).

Clearly a can not be in be in the device closure of the domain of the write

a 6∈ dc(Dom(w)).

The claim follows now by simply unfolding the definitions on each side.

(ν~w)(a) =


. . . a ∈ dc(Dom(w))∩ADEV,d

w(a) a ∈ A\dc(A)
ν(a) o.w.
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=

{
w(a) a ∈ A\dc(A)
ν(a) o.w.

= (ν}w)(a).

We consider three list operations. Each of those list operations is a partial function
that maps a list and one list element into the set of lists

δ : X∗×X → X∗.

In this context, l, p,q∈ X∗ are usually lists and e,x∈ X are usually single elements.
The first function, push, adds the element to the end of of the list

push(l,e) = l ◦ e.

The second function, pop, drops the head of the list

pop(l,e) =

{
ε l = ε

tl(l) o.w.

The third function, noop, just leaves the list as-is

noop(l,e) = l.

We will apply these transition functions frequently for write buffers, which are lists
of partial valuations.

We show that the list comprehension and the list operations commute.

Lemma 36.

δ ∈ { push, pop,noop}→ δ ([ f (e) | e ∈ l ] , f (x)) = [ f (e) | e ∈ δ (l,x) ] .

Proof. By case distinction on δ . We only show the case for the push operation

δ = push,

the other cases are simpler. The proof easily follows with Lemma 1

δ ([ f (e) | e ∈ l ] , f (x)) = push([ f (e) | e ∈ l ] , f (x))

= [ f (e) | e ∈ l ]◦ f (x)

= [ f (e) | e ∈ l ]◦ [ f (e) | e ∈ [ x ] ]

= [ f (e) | e ∈ l ◦ x ] L 1
= [ f (e) | e ∈ push(l,x) ]

= [ f (e) | e ∈ δ (l,x) ] .

We state a few simple lemmas about lists without proof.
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Lemma 37. If an element x is in the list l but is not the head, then it must be in the tail.

x 6= hd(l)∧ x ∈ l→ x ∈ tl(l).

Lemma 38. If an element x is in the list l but is not the head, then the tail can not be
empty.

x 6= hd(l)∧ x ∈ l→ tl(l) 6= ε.

Lemma 39. If the tail of a list l is not empty, and that list is split into a prefix p and a
single-element suffix x, then the prefix must also be non-empty.

tl(l) 6= ε ∧ l = p◦ x→ p 6= ε.

Lemma 40. If a list l is split into a prefix p and a suffix q, and the prefix is non-empty,
the list and its prefix have the same head.

p 6= ε ∧ l = p◦q→ hd(l) = hd(p).

Lemma 41. If a prefix p is not empty, tail commutes with concatenation.

p 6= ε → tl(p◦q) = tl(p)◦q.

Push and noop only add elements at the tail.

Lemma 42.
δ ∈ { push,noop}→ ∃q.δ (l,e) = l ◦q.

Proof. By case distinction on δ .

δ = push: Claim follows with q := e

push(l,e) = l ◦ e.

δ = noop: Claim follows with q := ε

noop(l,e) = l = l ◦ ε.

If a list is non-empty, push and noop do not change the head element.

Lemma 43.
δ ∈ { push,noop}∧ l 6= ε → hd(δ (l,e)) = hd(l).

Proof. By Lemma 42 we obtain a suffix q that is added to l

δ (l,e) = l ◦q.

The claim is just Lemma 40

hd(δ (l,e)) = hd(l ◦q) = hd(l).

Pushing or doing nothing does not make the list empty; we do not show a proof.
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Lemma 44.
δ ∈ { push,noop}∧ l 6= ε → δ (l,e) 6= ε.

If a list is non-empty during push, all operations commute with the tail operation.

Lemma 45.
(δ 6= push∨ p 6= ε)→ tl(δ (p,e)) = δ (tl(p),e).

Proof. By case distinction on δ .

δ = push: The claim is proven by Lemma 41

tl(push(p,e)) = tl(p◦ e) = tl(p)◦ e = push(tl(p),e).

δ = pop: Claim follows

tl(pop(p,e)) = tl(tl(p)) = pop(tl(p),e).

δ = noop: Claim follows

tl(noop(p,e)) = tl(p) = noop(tl(p),e).

Using the fact that a pop applies a tail operation, we obtain that pop commutes
with other operators in the same manner.

Lemma 46.

(δ 6= push∨ p 6= ε)∧δ
′ = pop→ δ

′(δ (p,e),e′) = δ (δ ′(p,e′),e).

Proof. Follows directly from Lemma 45

δ
′(δ (p,e),e′) = pop(δ (p,e),e′)

= tl(δ (p,e))

= δ (tl(p),e)

= δ (δ ′(p,e′),e).

Recall the three transitions from before (fetch, read, write). We specify uninter-
preted functions for these transitions, which again are defined only in the instantiation.
In what follows, we bind the big union operator weaker than all other connectors, in
particular weaker than the function arrow.

For the fetch transition, we specify an uninterpreted function fetch-set for each
processor. We are only allowed to fetch from accessible registers

F :
⋃

i

Val(APR,i)×ΣP,i→ 2ACCi .

Note that we have specified the function type as union over processor-specific do-
mains. One of the parameters is an oracle input of the processor ΣP,i, which serves to
distinguish the individual function domains; as a consequence, given a configuration
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of processor registers core ∈ Val(APR,i) and a oracle step input x ∈ ΣP,i, the fetched
addresses are always accessible to unit i = u(x)

F(core,x)⊆ ACCu(x).

For the read transition, we have the value of the processor registers and the value of
the fetched addresses. Since the fetched addresses depend on the state of the processor
registers, we have to use a dependent product.

R :
⋃

i

Πcore ∈Val(APR,i),x ∈ ΣP,i.Val(F(core,x))→ D(ACCi).

Given the state of the processor registers core ∈ Val(APR,i), the oracle input x ∈ ΣP,i,
and the value of the fetched addresses f etch ∈ Val(F(core,x)), we thus obtain two
disjoint sets of addresses

R(core,x, f etch).wba⊆ ACCu(x),

R(core,x, f etch).bpa⊆ ACCu(x),

each of which is accessible to the unit i = u(x) to which the oracle input belongs.
For the write transition, we specify a function prepared writes for each proces-

sor, using the dependent product to make explicit the dependency on the results from
memory after fetching and reading:

PW :
⋃

i

Πcore ∈Val(APR,i),x ∈ ΣP,i, f etch ∈Val(F(core,x)).Val(R(core,x, f etch))

→
⋃

d∈D(ACCu(x))

PVal(d).

Given the state of the processor registers core∈Val(APR,i), the oracle input x∈ ΣP,i, the
value of the fetched addresses f etch ∈ Val(F(core,x)), and the memory view (results
of the read) v ∈Val(R(core,x, f etch)), we obtain a disjoint pair of sets of addresses to
be written

(wba,bpa) ∈ D(ACCu(x)),

and partial valuations of each component of the pair

PW (core,x, f etch,v).wba ∈ PVal(wba),

PW (core,x, f etch,v).bpa ∈ PVal(bpa).

We restrict the domain of the buffered prepared write further to buffered addresses

PW (core,x, f etch,v).wba⊆ BA. (2.1)

Unlike processor steps, which are defined in terms of uninterpreted functions like
PW , the semantics of write buffer steps are completely defined in our semantics; we
give the definitions later.

Not all steps are meaningful. Most noticeably, write buffers can not make steps
while the buffer is empty, and memory management units can not create translations for
pages which are not present. We use guard conditions, which in general are predicates
on the inputs of a step, to formally exclude such steps. In order to make this possible
we distinguish further between instance guard conditions, which are defined in the
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instantiation and may indeed only depend on normal inputs of a step (e.g., the read-set
for a processor step), and buffer conditions, which in addition may depend on the state
of the write buffer. An important detail about instance guard conditions are that they,
too, can be split between two decision points: at Decision 1, only the local state and
the step input are checked, while at Decision 2, one can also check the values from the
memory. The idea is that at Decision 1, one checks whether an access to those addresses
is at all feasible, while at Decision 2, one can check the overall validity of the step.
This distinction will play an important role in the definition of the software conditions:
for detecting races we include all feasible accesses, even if they are not valid. For
a concrete example, in the formalization of MIPS86 given by Schmaltz [Sch13], a
page fault step is feasible if the given incomplete walk is in the TLB and matches the
address to be accessed, but it is only valid if the extension of the walk would indeed
be faulty. Note that if the step is invalid there would be a valid step that accesses the
same address, namely the walk extension, so no additional memory accesses (and thus
races) are created. Our theorem write buffer reduction theorem obviously works best
if no races are created by feasible but invalid steps.

We specify the instance guard conditions for feasibility by

ΦP :
⋃

i

Val(APR,i)×ΣP,i→ B,

and for validity by by

ϒP :
⋃

i

Πcore ∈Val(APR,i),x ∈ ΣP,i.Val(F(core,x))→ B.

We consider three sources of write buffer drains:

1. Explicit drain requests issued by the program. In MIPS-86 these are fence and
compare-and-swap instructions. We specify these by a predicate fence

f ence :
⋃

i

Πcore ∈Val(APR,i),x ∈ ΣP,i.Val(F(core,x))→ B,

which again is defined in the instantiation.

2. Partial hits, which are situations in which a processor is issuing a read through
the write buffer, for which there is no consistent most-up-to-date value in the
write buffer. We define the most-up-to-date value for a given set of addresses A
as the hit of A in wb recursively by

hit(A,ε) =⊥,

hit(A,wb◦ν) =

{
ν Dom(ν) ∩̇A
hit(A,wb) o.w.

Note that hit(A,wb) =⊥ if and only if there is no hit for A. We overload hit as
a predicate which is true iff there is a hit

hit(A,wb)≡ hit(A,wb) 6=⊥.

We say A has a partial hit in wb when there is a hit which can not serve A because
it does not have values for all addresses in a:

phit(A,wb)≡ hit(A,wb) 6=⊥∧A 6⊆ Dom(hit(A,wb)).
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3. Writes into the local registers of other processors, which drain the buffers of
those processors. This situation occurs, for example, in case one places the in-
terrupt request registers of an APIC into the local registers of a processor, so
that each step can snoop the value of the processor before deciding what and
if to fetch, and without creating a race. This is true in particular in the seman-
tics of MIPS86, and we will explain why the hardware-enforced flush is nec-
essary in that case. The interrupt command register of the sending processor
changes in the same cycle as the interrupt request registers of the victim proces-
sors. These registers are also immediately used to interrupt the processor and
thus prevent the current threads on the victim processors from making any fur-
ther steps. In a weak memory machine, the victim processors might still have
buffered writes. If the writes would be allowed to discharge after the interrupt is
sent, these steps would look to the sending processor like additional steps of the
interrupted thread, which contradicts the strong view of the sending processor.
Consider the following example, where the ICR has two fields target and status,
which define which thread to interrupt and whether an interrupt has been sent,
respectively

fence; x = 1; fence; ICR.target = Thread1;
fence; fence; ICR.status = PENDING;

fence; while (ICR.status != IDLE);
fence; y = x;
fence; z = x;

In a strong memory model, one easily verifies that y = z after every execution
of the program. The fences in this program do nothing, however, to prevent the
following execution:

fence; ICR.target = Thread1;
fence; ICR.status = PENDING;

fence; x = 1; -> BUF
IPI: Thread1.IRR = 1;
fence; ICR.status != IDLE;
fence; y = x;

BUF -> x = 1;
fence; z = x;

The Intel manual [Int, p. 2397] specifies that the buffer is drained when an
“interrupt is generated”. This likely means the point where the processor ac-
tually reacts to the IPI, which can be considerably later than the step in which
the IPI is considered “delivered” by the sending processor. This does not pre-
vent the weak memory behavior of the program above. There are at least two
other ways to regain sequential consistency in this setting. The first is to define
weaker constraints for the ordering between the change of the ICR and the actual
interrupt, i.e., specify that processors may continue to make a finite but undeter-
mined amount of steps after receiving an interrupt request. In our semantics,
that would mean making the IRR an external register (in AMEM or ADEV ), and
non-deterministically fetching from the IRR to snoop for interrupts. In order to
prevent spurious steps, one could make steps that snoop the IRR but do not find
an interrupt invalid (this is permissible, since snooping the IRR is done with the
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fetching accesses). Note that this works independently of whether the hardware
actually reacts to the interrupt immediately or not, since one can simply add a
trivial layer of simulation between a hardware machine that reacts immediately
and an abstract write buffer machine that uses oracle inputs to snoop for the in-
terrupt: whenever the hardware machine is interrupted, we simulate a snooping
step in the abstract write buffer machine. Our machine model is compatible with
this computational model.

The second is to enforce a software protocol where the interrupt has to be ac-
knowledged by the victim processors by writing to shared variables, and a busy
wait of all involved processors until all victims have sent their acknowledgment.
How exactly such a protocol and a write buffer reduction proof based on such a
protocol would look like is an open question.

We combine explicit flushes and partial hits in internal buffer conditions for pro-
cessor steps:

∆P(core, f etch,wb,x)

=

{
wb = ε f ence(core,x, f etch)
¬phit(Dom(R(core,x, f etch).wba),wb) o.w.

Since APICs for us are just processors that access the processor registers of other
processors, we formalize the drain on writing to interrupt registers of other units by
an external buffer condition for processor steps. This condition takes a set of victims
V and a mapping wbp of unit indexes to write buffer configurations of the processors
(short for write buffers of processors)

wbp : U → PVal(BA)∗

and holds if the write buffers of all victim processors are empty

∆IPI(V,wbp)≡
∧
j∈V

wbp( j) = ε.

Finally we add for write buffer steps the condition that the buffer be non-empty:

∆WB(wb)≡ wb 6= ε.

For write buffers of processors, we use the notation

wbp =i wbp′ ≡ wbp(i) = wbp′(i).

We state a series of trivial lemmas without proof.
If there is a hit, the hit is an element of the buffer.

Lemma 47.
hit(A,wb)→ hit(A,wb) ∈ wb.

If A subsumes B, buffers that have a hit with B also have a hit with A (although not
necessarily the same one).
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Lemma 48.
B⊆ A∧hit(B,wb)→ hit(A,wb).

If there is a hit with A∪B there is also a hit with A or a hit with B and vice versa.

Lemma 49.
hit(A∪B,wb) ⇐⇒ hit(A,wb)∨hit(B,wb).

Equivalently, there is no hit with A∪B iff there is no hit with A nor a hit with B.

Lemma 50.
¬hit(A∪B,wb) ⇐⇒ ¬hit(A,wb)∧¬hit(B,wb).

A hit in a write buffer exists if there is a hit in the upper half or in the lower half. If
there is a hit in the lower half, the hit is the hit of the lower half.

Lemma 51.

1. hit(A,wb◦wb′) =

{
hit(A,wb′) hit(A,wb′)
hit(A,wb) o.w.

.

2. hit(A,wb◦wb′) ⇐⇒ hit(A,wb)∨hit(A,wb′).

Lemmas 33, 34, 28, 30, and 35 can be easily extended to sequences of writes by
simply iterating the Lemma. We again do not present proofs.

Lemma 52.
ν =A ν

′→ ν}wb =A ν
′}wb.

Lemma 53.
¬hit(A,wb)→ ν}wb =A ν .

Lemma 54.
closed(A)∧¬hit(A,wb)→ ν~wb =A ν .

Lemma 55.

¬hit(idc(Dom(w)),wb)→ ν~w~wb = ν~wb~w.

Lemma 56.
¬hit(dc(A),wb)→ ν~wb =A ν}wb.

Note that buffers are, in a sense, monotone. If a processor step can be done with one
configuration of the buffers, dropping more elements from the buffer will not invalidate
that step. This is true because fewer writes in the buffer cause fewer hits, and thus also
fewer partial hits.

Lemma 57.

∆P(core, f etch,wb◦wb′,x)→ ∆P(core, f etch,wb′,x).

Proof. We distinguish between fences and other steps.

f ence(core, f etch,x): Then the large write buffer is empty, and so is the suffix

wb◦wb′ = ε = wb′.

The claim follows

∆P(core, f etch,wb′,x)≡ wb′ = ε ≡ 1.
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Otherwise: There can not be a partial hit in the large buffer

¬phit(Dom(R(core,x, f etch).wba),wb◦wb′).

Let the accessed memory region be A

A = R(core,x, f etch).wba.

By unfolding the definition of partial hit, we obtain that there either is no hit with
A in the large buffer or A can be served by the hit

¬hit(A,wb◦wb′)∨A⊆ Dom(hit(A,wb◦wb′)). (2.2)

We distinguish whether there was a hit in the suffix or not.

¬hit(A,wb′): Therefore there is also no partial hit in the suffix, and the drain
condition is satisfied

∆P(core, f etch,x,wb′) = ¬phit(A,wb′) = ¬hit(wb′)∨ . . .= 1.

hit(A,wb′): By Lemma 51, that hit is the hit of the large buffer

hit(A,wb◦wb′) = hit(A,wb′).

We substitute hits in the suffix for hits in the large buffer in Equation (2.2)

¬hit(A,wb′)∨A⊆ Dom(hit(A,wb′)).

By definition of phit, we obtain that there is no partial hit

¬phit(A,wb′),

and the claim follows

∆P(core, f etch,wb′,x)≡ ¬phit(A,wb′)≡ 1.

2.5.1 Functions and Steps
We have defined and specified so far a lot of functions in terms of valuations and oracle
inputs. Our machine semantics, however, will be defined in terms of configurations
and oracle inputs, so we will now overload and generalize those functions to work in a
uniform way with steps.

We extend the definition of a unit to steps in the obvious way for the sake of uniform
notation

uM(c,x) = u(x),

and say that uM(c,x) is the unit making step c,x.
We obviously have that the unit is independent of the configuration.

Lemma 58.
uM(c,x) = uN(c′,x).
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Proof.
uM(c,x) = u(x) = uN(c′,x).

We also extend the definition of objects to steps

oM(c,x) = o(x).

A step is done in sequentially consistent mode if the unit making that step is in
sequentially consistent mode at the beginning of the step

SCM(c,x) = SCuM(c,x)M(c).

We define the local state used in the step as core inputs or local inputs by

CM(c,x) =

{
APR,i x ∈ ΣP,i

ASC,i x ∈ ΣWB,i,

Lemma 59. The local inputs do not depend on the configuration or machine type

CM(c,x) =CN(c′,x).

Proof. Straightforward

CM(c,x) =

{
APR,i x ∈ ΣP,i

ASC,i x 6∈ ΣP,i

=CN(c′,x).

Only the unit to which the processor registers belong uses those registers as its core
registers

Lemma 60.
CM(c,x) ∩̇APR,i→ uM(c,x) = i.

Proof. By definition of CM(c,x) we obtain that the step is made by processor i or its
write buffer

x ∈ ΣP,i∪ΣWB,i

and the claim follows
uM(c,x) = u(x) = i.

The core configuration used during step c,x is defined by

coreM(c,x) = c.m
∣∣
CM(c,x).

Note that this is curried notation: the core configuration is itself a valuation, i.e., a map
from addresses to values

coreM(c,x)(a) ∈Va.

The fetched addresses in step c,x are defined by

FM(c,x) =

{
F(coreM(c,x),x) x ∈ ΣP,i

/0 o.w.,
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Lemma 61. The fetched addresses only depend on the core configuration

coreM(c,x) = coreN(c′,x)→ FM(c,x) = FN(c′,x).

Proof. We distinguish between processor and write buffer steps.

x ∈ ΣP,i: Straightforward

FM(c,x) = F(coreM(c,x),x)

= F(coreN(c′,x),x) = FN(c′,x).

x 6∈ ΣWB,i: Nothing is fetched

FM(c,x) = /0 = FN(c′,x).

The fetch result is defined by simply taking the value of the fetched addresses in
the memory

f etchM(c,x) = c.m
∣∣
FM(c,x).

The addresses read in step c,x are defined by

RM(c,x) =

{
R(coreM(c,x),x, f etchM(c,x)) x ∈ ΣP,i

( /0, /0) o.w.

Note that again the read addresses contain two components for the buffered and
bypassing access

RM(c,x).wba, RM(c,x).bpa,

and that for the sake of brevity we coerce RM to a set of addresses in appropriate
contexts by taking the union of these two components

RM(c,x) = RM(c,x).wba∪RM(c,x).bpa.

Lemma 62. The read addresses only depend on the core configuration and the fetch
results

coreM(c,x) = coreN(c′,x)∧ f etchM(c,x) = f etchN(c′,x)→ RM(c,x) = RN(c′,x).

Proof. We distinguish between processor and write buffer steps.

x ∈ ΣP,i: Straightforward

RM(c,x) = R(coreM(c,x),x, f etchM(c,x))

= R(coreN(c′,x),x, f etchN(c′,x))

= RN(c′,x).

x 6∈ ΣWB,i: Nothing is read

RM(c,x) = ( /0, /0) = RN(c′,x).
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We also combine the guard conditions

ΦM(c,x) =

{
ΦP(coreM(c,x),x) x ∈ ΣP,i

1 o.w.,

ϒM(c,x) =

{
ϒP(coreM(c,x),x, f etchM(c,x)) x ∈ ΣP,i

1 o.w.,

Note that for all functions defined so far, the machine-type index is irrelevant. We say
that these functions are independent of the machine type.

2.5.2 Machine Modes
We introduce now the machine modes. We distinguish between two types of semantics.
In low-level semantics (or weak memory semantics), a processor steps uses the buffer
for forwarding during reads, and write buffer steps commit the oldest write in the buffer
to memory. In high-level semantics (or strong memory semantics), processors ignore
the write buffer during reads, and write buffer steps do not modify the memory.

Whether a unit is currently using low-level semantics depends at one level between
the machine type

M ∈ {↓,↑} ,

and at another level on the memory mode of the unit making the step.
In the low-level machine, units are always using low-level semantics

LLi↓(c) = 1,

but in the high-level machine, a unit uses low-level semantics only when it is not in
strong memory mode

LLi↑(c) = ¬SCiM(c).

This crucial definition implies that we have three main cases for our semantics:

1. Low-level machine running any software. Write buffers are completely visible.

2. High-level machine running untrusted software on processor i. Write buffers of
processor i are completely visible, processor uses semantics of low-level ma-
chine.

3. High-level machine running trusted software on processor i. Write buffers of
processor i are invisible; all writes of this processor are executed immediately;
write buffer steps of this processor have no effect on the memory (but drop an
element from the ghost buffer).

A step is using low-level semantics if the unit making the step is in low-level se-
mantics while making the step

LLM(c,x)≡ LLuM(c,x) M(c).

We obtain that a step in the high-level machine is done with low-level semantics iff
the step is not done in strong memory mode.
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Lemma 63.
LL↑(c,x) ⇐⇒ ¬SC↑(c,x).

Proof.
LL↑(c,x)≡ LLu↑(c,x) M(c)≡ ¬SCu↑(c,x)M(c)≡ ¬SC↑(c,x).

The forwarding memory system used in step c,x is that of the processor making the
step (write buffers do not use forwarding)

f msM(c,x) =

{
f msiM(c) x ∈ ΣP,i

/0 o.w.

In low-level semantics, we define the memory view in step c,x as the union of the re-
sults from memory for the bypassing portion and from the forwarding memory system
for the buffered portion. In high-level semantics, we use the results from memory for
both portions

vM(c,x) =

{
c.m
∣∣
RM(c,x).bpa∪ f msM(c,x)

∣∣
RM(c,x).wba LLM(c,x)

c.m
∣∣
RM(c,x) ¬LLM(c,x).

Clearly the domain of this memory view is the read-set; we do not state a proof.

Lemma 64.
Dom(vM(c,x)) = RM(c,x).

We define in the straightforward way the prepared writes in step c,x

PWM(c,x) =

{
PW (coreM(c,x),x, f etchM(c,x),vM(c,x)) x ∈ ΣP,i

( /0, /0) o.w.

We use the projections .wba and .bpa

PWM(c,x) = (PWM(c,x).wba,PWM(c,x).bpa).

The write buffered in step c,x is the buffered portion of the prepared write

BWM(c,x) = PWM(c,x).wba.

We define a list operation used in step c,x for the write buffer

OpiM(c,x) : X∗×X → X ,

using the functions push,pop, and noop. Processor steps of the same unit that are
preparing to buffer a write use the push operation; write buffer steps of the same unit
use the pop operation. All other steps are no-ops.

OpiM(c,x) =


push x ∈ ΣP,i∧BWM(c,x) 6= /0
pop x ∈ ΣWB,i

noop o.w.

Clearly the new write given to the transition operator is relevant only for processor
steps that are buffering a write.
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Lemma 65.

¬(x ∈ ΣP,i∧BWM(c,x) 6= /0)→ OpiM(c,x)(wb,w) = OpiM(c,x)(wb,w′)

Proof. We distinguish between write buffer and other steps.

x ∈ ΣWB,i: By definition the operation is a pop, and the claim follows

OpiM(c,x)(wb,w) = pop(wb,w) = tl(wb) = pop(wb,w′) = OpiM(c,x)(wb,w′).

Otherwise: By definition the operation is a no-op, and the claim follows

OpiM(c,x)(wb,w) = noop(wb,w) = wb = noop(wb,w′) = OpiM(c,x)(wb,w′).

Whenever we know that no write is being buffered, we may omit the (sometimes
long) term for the write. We use three dots . . . to denote that such a sub-expression is
irrelevant.

If in case of a buffered write the new writes are the same, the new buffers are also
the same. This allows us to reduce certain proofs to the case where something is being
buffered.

Lemma 66.

((x ∈ ΣP,i∧BWM(c,x) 6= /0)→ w = w′)→ OpiM(c,x)(wb,w) = OpiM(c,x)(wb,w′).

Proof. Either no write is being buffered or the buffered writes are the same.

¬(x ∈ ΣP,i∧BWM(c,x) 6= /0): The claim is exactly Lemma 65.

w = w′: The claim trivially follows

OpiM(c,x)(wb,w) = OpiM(c,x)(wb,w′).

We also define the effect of a step on memory. For this we use a function writes,
which is a partial valuation of addresses and acts as an update for the memory

WM(c,x) ∈ PVal(A).

For processor steps in low-level semantics, the function simply executes the bypassing
portion of the prepared writes. For processor steps in high-level semantics, it also
executes the buffered portion of the prepared writes. For write-buffer steps in low-level
semantics, the function commits the head of the write buffer in question; in high-level
semantics, it does nothing.

WM(c,x) =


PWM(c,x).bpa x ∈ ΣP,i∧LLM(c,x)
PWM(c,x).bpa∪PWM(c,x).wba x ∈ ΣP,i∧¬LLM(c,x)
hd(c.wb(i)) x ∈ ΣWB,i∧LLM(c,x)
/0 x ∈ ΣWB,i∧¬LLM(c,x).

Clearly the domain of the write is a subset of the accessible registers.
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Lemma 67.
Dom(WM(c,x))⊆ ACCu(x).

Proof. We distinguish between processor steps and write buffer steps.

x ∈ ΣP,i: By definition, the executed write is subsumed by the union of bypassing and
buffered writes

WM(c,x) =

{
PWM(c,x).bpa LLM(c,x)
PWM(c,x).bpa∪PWM(c,x).wba ¬LLM(c,x)

⊆ PWM(c,x).bpa∪PWM(c,x).wba.

Each of these are partial valuations of the accessible registers, i.e., for X ∈
{bpa,wba}

PWM(c,x).X = PW (coreM(c,x),x, f etchM(c,x),vM(c,x)).X ,

Dom(PWM(c,x).X) = Dom(PW (coreM(c,x),x, f etchM(c,x),vM(c,x)).X)

⊆ ACCu(x).

and the claim follows

Dom(WM(c,x))⊆ Dom(PWM(c,x).bpa∪PWM(c,x).wba)

= Dom(PWM(c,x).bpa)∪Dom(PWM(c,x).wba)

⊆ ACCu(x)∪ACCu(x)

= ACCu(x)).

x ∈ ΣWB,i: The claim follows by definition

Dom(WM(c,x)) = Dom(hd(c.wb(i)))

⊆ BA

⊆ ACCu(x).

2.5.3 Transition Operator
We now define the transition operators for the two machines. The memory in the next
configuration is easily defined by applying the bypassing write as an update to the
memory

c �M x.m = c.m~WM(c,x).

For the write buffer, we apply the operation of that step on the current buffer, using the
buffered write as the update to the buffers

c �M x.wb(i) = OpiM(c,x)(c.wb(i),BWM(c,x)).

Write buffer steps do not change the perfect world forwarding memory system.

Lemma 68.

c.wb(i) 6= ε ∧ x ∈ ΣWB,i→ p f msiM(c) = p f msiM(c �M x).
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Proof. The buffer can be split into head and tail

c.wb(i) = hd(c.wb(i))◦ tl(c.wb(i)).

The claim follows with the facts that the head of the write buffer is the write com-
mitted in the step, and the tail of the write buffer is the new write buffer

p f msiM(c) = c.m~c.wb(i)

= c.m~hd(c.wb(i))~ tl(c.wb(i))

= c.m~WM(c,x)~c �M x.wb(i)

= c �M x.m~c �M x.wb(i)

= p f msiM(c �M x).

We define the victims of a step as all processors who have their private regions
touched by another processor

victimsM(c,x) = { i | APR,i ∩̇Dom(WM(c,x))∧ x 6∈ ΣP,i∪ΣWB,i }

Consider the case where the low-level machine simulates a high-level machine pro-
cessor step in strong memory mode. In the low-level machine, the set of victims is
determined by the bypassing writes, but in the high-level machine, also by the buffered
writes. It would follow that the two machines can have different sets of victims. We
will later require as a software condition that a processor in sequential mode will never
buffer writes to processor registers, and therefore the set of victims will always be the
same in safe computations.

We also require that the set of victims is actually defined by the contents of the
memory region AIPI(x)

∀c,c′.c.m =AIPI(x) c′.m→ victimsM(c,x) = victimsM(c′,x). (2.3)

We now combine the drains for processor and write buffer steps in the local drain
condition

∆M(c,x) =

{
∆P(coreM(c,x), f etchM(c,x),c.wb(i),x) x ∈ ΣP,i

∆WB(c.wb(i)) x ∈ ΣWB,i.

We also define the instance condition used in the step as the combination of feasi-
bility and validity

IM(c,x) = ΦM(c,x)∧ϒM(c,x).

The guard condition holds when the instance condition and the local drain condition
holds

ΓM(c,x) = IM(c,x)∧∆M(c,x).

In addition, we define a global drain condition for IPIs

∆IPI M(c,x) = ∆IPI(victimsM(c,x),c.wb).
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For now, the global drain condition is not that relevant, and we will require that sched-
ules are safe even if they violate this guard condition. On the other hand, we will later
require that all schedules provided by the hardware (for which we will prove that they
simulate a high-level execution) satisfy the global drain condition.

This raises the question of how much efficiency in the software discipline is lost
by not considering the drains that are caused by IPIs. We believe that there is no lost
efficiency due the following reasons.

1. The time of IPI delivery is usually impossible to predict, and can thus not be
used to justify assumptions about the write buffer being empty.

2. After an IPI is delivered, the victim processors will usually execute a jump to
the interrupt service routine (JISR) step. In many architectures this step acts as
a fence, at which point the state of the write buffer is known to the software
discipline anyways.

3. In real-world architectures, IPIs do not drain the write buffer of the victims on de-
livery. In this case, the IPI can not be modeled5 as a direct-to-core IPI, but has to
use shared registers (e.g., in ADEV ) to signal the interrupt, and non-deterministic
processor steps to sample the interrupt. In the terms of this thesis, such IPI
delivery steps are not considered IPIs but rather normal shared writes, and the
behavior of drains on IPIs is completely irrelevant.

On the other hand, the advantages for the proof effort one obtains by strengthening
the assumptions in such a way are considerable, because one never has to worry about
the effect of a reordering on the write buffers of other processors.

We are sometimes in a situation where we know that two configurations agree on
the buffers of the unit making the step, but not much more. During steps of write
buffers, this is enough to obtain that the steps agree on the local drain condition. We
define a predicate that captures the local drain condition in write buffer steps and is
always true in other steps

ΛM(c,x)≡ ∀i.x 6∈ ΣWB,i∨∆M(c,x).

We call this predicate the write buffer drain condition.
We show that the condition indeed only depends on the write buffer.

Lemma 69.

c.wb(i) = c′.wb(i)∧ i = u(x)→ ΛM(c,x) = ΛM(c′,x).

Proof. We distinguish between processor and write buffer steps.

x ∈ ΣP,i: The condition vacuously holds in both configurations, and the claim follows

ΛM(c,x) = 1 = ΛM(c′,x).

x ∈ ΣWB,i: The condition unfolds to be the drain condition of the write buffer, which
indeed only depends on the write buffer

ΛM(c,x) = ∆M(c,x)

5This is not a shortcoming of our model, but rather a consequence of the fact that direct-to-core IPIs
cause sequentially inconsistent behaviors if they do not drain the buffer of victims on delivery. Our model is
versatile enough to be able to handle both types of IPIs.
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= ∆WB(c.wb(i))

= ∆WB(c′.wb(i))

= ∆M(c′,x)

= ΛM(c′,x),

which was the claim.

2.6 Computations
We define a computation in terms of a schedule, which is an infinite sequence of oracle
inputs

s : N→ Σ.

The computation induced by s is an infinite sequence of configurations, denoted by

cM[s],

and we write the index in the superscript. Thus the configuration after t steps is denoted
as follows

cM[s]t .

The sequence is defined recursively by applying the transition operator to each
individual step input, starting (in both machines) with configuration c0

cM[s]0 = c0,

cM[s]t+1 = cM[s]t �M s(t).

Note that this means that every schedule s induces two computations: the low-level
computation

c↓[s],

in which all steps always use low-level semantics, and the high-level computation

c↑[s]

in which steps use low-level semantics if the unit making that step is currently in weak
memory mode, and high-level semantics if the unit is strong memory mode.

In particular, we can run a schedule on both machines in parallel, and argue about
what happens in the steps that are executed in parallel. We will later define a class of
schedules for which the two computations execute the same steps. By that we mean
that many functions, such as BW , F , etc., are the same in the low-level computation
and high-level computation in each step. What we explicitly do not mean is that the
two computations are in the same configuration after each step; this generally would
only hold for the very first configuration c0, which is the same in both schedules. The
reason why this is not true in general is simple: when running a processor in strong
memory mode on the two machines in parallel, the low-level machine will use low-level
semantics and put writes into the buffer without applying these writes to the memory
configuration. The high-level machine, on the other hand, will use high-level semantics
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and execute the write immediately, thus changing the memory configuration. After one
such step, the configurations are different. This problem does not occur for untrusted
code, which runs in low-level semantics on both machines.

We define for functions fM(c) as f at t in schedule s (in machine-type M)

fM[s](t) = fM(cM[s]t),

and for functions of a step fM(c,x) we define f during t in schedule s (in machine-type
M)6 as f applied to the configuration after t steps and the t-th oracle step input

fM[s](t) = f (cM[s]t ,s(t)).

For components c.x we similarly define x at t in schedule s as the component of the
configuration after t steps

xM[s]t = cM[s]t .x.

We say a schedule s is valid if the guard condition is satisfied at all steps

ΓM(s)≡ ∀t.ΓM[s](t).

We also introduce validity until t, which indicates that step t and earlier steps are
valid:

Γ
t
M(s)≡ ∀t ′ ≤ t.ΓM[s](t ′).

We will often consider schedules where steps up to some point are valid and the next
step is at least feasible. In that case we say that the schedule is semi-valid until t and
write

ΓΦ
t
M(s)≡ Γ

t−1
M (s)∧ΦM[s](t).

We similarly define that a schedule s is IPI-valid when it satisfies the global drain
condition at all steps

∆
t
IPI M(s)≡ ∀t ′ ≤ t.∆IPI M[s](t).

2.7 Reordering
We reorder with three schedule operators, shown in Fig. 2.2. We swap t and t +1 by

s[t↔ t +1],

and move t to k by
s[t→ k] or s[k← t],

if t is before or after k, resp. The latter are simply repeated application of the basic
operator [t↔ t +1], which is defined as follows

s[t↔ t +1](t ′) =


s(t) t ′ = t +1
s(t +1) t ′ = t
s(t ′) o.w.,
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. . .s[t↔ t +1]

t
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X . . .

. . .

Y

t+1

(a) Swapping steps t and t + 1. Other
steps are unaffected.

. . .s

. . .s[t→ k] . . .

. . .
kt

X Y1 Yn

Y1 X

. . .

Yn
. . .

(b) Delaying step t by moving it to position k. Intermedi-
ate steps are moved one position forward.

. . .s

. . .s[t← k] . . .

. . .
kt

X Y1 Yn

Y1 X. . . Yn

. . .

(c) Executing step k earlier by moving it to position t.
Intermediate steps are delayed by one position.

Figure 2.2: The three reordering operators.

We use the variable Ω to range over instances of the basic operator

Ω ∈ { [t↔ t +1] | t ∈ N} .

We can chain the basic operator several times

((sΩ1) . . .)Ωn−1

and observe that operators are applied from left to right. We usually write these expres-
sions without parentheses

sΩ1 . . .Ωn−1 = ((sΩ1) . . .)Ωn−1,

at which point it is tempting to treat the operators as a sequence O

O = Ω1 ◦ . . .◦Ωn−1.

To make this formal, we define by recursion on O the reordered schedule sO, in which
the basic operators are applied from left to right

sε = s, s(Ω◦O) = (sΩ)O.

6Strictly speaking, this creates a conflict due to our convention that the cartesian function f (c,x) can
always be used as a cascaded function f (c)(x), and thus it is not clear which notation applies. We use the
natural convention that the notation for steps has precedence over the notation for configurations in case both
of them could be applied.
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Note that the overloaded notation here is not problematic, since the singleton list con-
taining Ω applies exactly Ω

s(Ω◦ ε) = (sΩ)ε = sΩ.

We often call such sequences of basic operators O a reordering.
In what follows, we use two shorthands: 1) we do not write ◦ and 2) we flatten

nested sequences of operators. Thus the following are all the same, where O = Ω1 ◦
. . .◦Ωn−1 and O′ = Ω′1 ◦ . . .◦Ω′n′−1 are sequences of operators

OO′ = O◦O′

= (Ω1 ◦ . . .◦Ωn−1)◦ (Ω′1 ◦ . . .◦Ω
′
n′−1)

= Ω1 ◦ . . .◦Ωn−1 ◦Ω
′
1 ◦ . . .◦Ω

′
n′−1

= Ω1 . . .Ωn−1Ω
′
1 . . .Ω

′
n′−1.

This allows us to define the remaining two operators recursively on k simply as
sequences of basic operators as follows.

To move step t to position t, no reordering has to take place.

[t→ t] = ε,

To move step t to position k+1, we move step t to position k, then swap k and k+1.

[t→ k+1] = [t→ k][k↔ k+1],

To move to step t from position t, no reordering has to take place.

[t← t] = ε,

To move to step t from position k+ 1, we swap k and k+ 1, then move to step t from
position k.

[t← k+1] = [k↔ k+1][t← k].

In contexts where there is exactly one original schedule s and reordered schedules
s1, . . . ,sn, where si is obtained from s by applying a sequence of operators Oi, e.g., of
the form

Oi = [t→ u][v← k] . . . ,

so that we have
si = sOi,

we may apply the operators directly to f and obtain f at t after Oi

fMOi(t) = fM[sOi](t).

Note that since there is only one original schedule, this may not cause ambiguity.
For example, when we move t to k in s, we obtain a new schedule s[t→ k] (“s with

t moved to k”). In that case we use

WM[t→ k](k) =WM[s[t→ k]](k),
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RM[t→ k](k) = RM[s[t→ k]](k),

to denote the writes or read-set in step k after moving t to k. If we move t to k+1 we
may use

WM[t→ k+1](k+1) =WM[s[t→ k+1]](k+1)
=WM[s[t→ k][k↔ k+1]](k+1)
=WM[t→ k][k↔ k+1](k+1)

to denote the writes in step k + 1 after moving t to k + 1, or equivalently, after first
moving t to k and then k to k + 1. We use a similar notation for components or the
configuration x ∈ { c,m,wb}

xMOt
i = xM[sOi]

t ,

such as the memory
mM[t→ k]k = mM[s[t→ k]]k

or write buffers
wbM[t→ k]k = wbM[s[t→ k]]k.

In the special case where the sequence of operators is empty Oi = ε , the “reordered”
schedule si is s. This allows us to make the original sequence implicit:

fM(t) = fM[s](t), xt
M = xM[s]t .

Note that after reordering t to k, the step at position k is the step that was before at
position t

s[t→ k](k) = s(t).

Similarly, steps t ′ between t and k are moved by one step

t ′ ∈ [t : k)→ s[t→ k](t ′) = s(t ′+1),

while other steps are not moved at all

t ′ 6∈ [t : k]→ s[t→ k](t ′) = s(t ′).

Consequently we would expect that other functions, such as read-set and writes, or
components such as the memory, also move similarly with the step:

WM[t→ k](k) ?
=WM(t),

t ′ ∈ [t : k)→WM[t→ k](t ′) ?
=WM(t ′+1),

t ′ 6∈ [t : k]→WM[t→ k](t ′) ?
=WM(t ′).

However, this is usually not the case: when moving the oracle input, one changes the
order of reads and writes, and therefore one changes the configuration in which the step
is executed. If the function of the step depends on registers which are changed during
the reordering, the value will obviously also change. Nevertheless, we will often only
reorder in situations where we know at least for a portion of the functions fM and
components x that their values are unchanged, e.g.,

fM[t→ k](k) = fM(t)∧ xM[t→ k]k = xt .

Only during steps t ′ < t that occurred before the reordered portion we can always show
that nothing is changed.
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Lemma 70. Only portions of the schedule after the reordering are changed.

1. s[0 : t−1] = s[t↔ t +1][0 : t−1].

2. s[0 : t−1] = s[t→ k][0 : t−1].

3. s[0 : t−1] = s[t← k][0 : t−1].

Proof. The first one is by definition. The second and third are proven by induction on
k, starting with t, and with s generalized (i.e., the induction hypothesis quantifies over
all s). The base cases are trivial. In the inductive step from k to k+1, we have for the
second claim with the first claim

s[t→ k+1][0 : t−1] = s[t→ k][k↔ k+1][0 : t−1]
= s[t→ k][0 : k−1][0 : t−1]
= s[t→ k][0 : t−1].

The last equality holds because k is at least t.
For the third claim we have

s[t← k+1][0 : t−1] = s[k↔ k+1][t← k][0 : t−1]
= s[k↔ k+1][0 : t−1]
= s[0 : k−1][0 : t−1]
= s[0 : t−1].

The last equality holds because k is at least t.

Lemma 71. Steps which occur before the reordered step are unaffected by the reorder-
ing. Let t ′ < t be a step occurring before the reordering.

1. fM(t ′) = fM[t↔ t +1](t ′).

2. fM(t ′) = fM[t→ k](t ′).

3. fM(t ′) = fM[t← k](t ′).

Proof. Let O be the singleton sequence of operators applied to the schedule

O ∈ { [t↔ t +1], [t→ k], [t← k]} .

We first show with Lemma 70 that ct ′ is unchanged

cM[s]t
′
= c �M s(0) �M . . . �M s(t ′−1)
= c �M sO(0) �M . . . �M sO(t ′−1)

= c[sO]t
′
.

We obtain now for f with the equality of ct ′ and Lemma 70

fM(t ′) = fM[s](t ′)

= f (cM[s]t
′
,s(t ′))

= f (cM[sO]t
′
,sO(t ′)) L 70

= fMO(t ′).
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The notation also gives us recursive characterizations for components.

Lemma 72. Let O be some sequence of operators of schedules. All of the following
hold.

1. cMOt+1 = cMOt �M sO(t).

2. wbMOt+1(i) = OpiMO(t)(wbMOt(i),BWMO(t)).

3. mMOt+1 = mMOt~WMO(t).

Proof.

cMOt+1 = cM[sO]t+1

= cM[sO]t �M sO(t)

= cMOt �M sO(t),

wbMOt+1(i) = cM[sO]t+1.wb(i)

= cM[sO]t �M sO(t).wb(i)

= OpiM(cM[sO]t ,sO(t))(cM[sO]t .wb(i),BWM(cM[sO]t ,sO(t)))

= OpiM[sO](t)(wbM[sO]t(i),BWM[sO](t))

= OpiMO(t)(wbMOt(i),BWMO(t)),

mMOt+1 = cM[sO]t+1.m

= cM[sO]t �M sO(t).m

= cM[sO]t .m~WM(cM[sO]t ,sO(t))

= mM[sO]t~WM[sO]t

= mMOt~WMOt .

We wish to track steps as they get moved by a reordering. For each basic reordering
operator Ω we define a function mvΩ(l) that tracks exactly how step l is moved

mv[t↔ t +1](l) =


l l 6∈ { t, t +1}
t +1 l = t
t l = t +1

That this really tracks the movement of each step is shown in the following lemma.

Lemma 73.
s(l) = sΩ(mvΩ(l)).

Proof. We first split along the cases of mvΩ(l) and then of sΩ(. . .).

s[t↔ t +1](mv[t↔ t +1](l)) =


s[t↔ t +1](l) l 6∈ { t, t +1}
s[t↔ t +1](t +1) l = t
s[t↔ t +1](t) l = t +1

=


s(l) l 6∈ { t, t +1}
s(t) l = t
s(t +1) l = t +1
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= s(l).

This function is injective. We do not show the proof.

Lemma 74.
mvΩ(l) = mvΩ(l′)→ l = l′.

We extend mv to sequences of operators O by applying the operators in the same
order they are applied on the schedule, i.e., from left to right

mvε(l) = l, mvΩO(l) = mvO(mvΩ(l)).

Again the overloaded notation is not problematic since tracking the movement of the
singleton list containing Ω exactly tracks the movement of Ω

mvΩε(l) = mvε(mvΩ(l)) = mvΩ(l).

For example, a single (long distance) operator is represented by a sequence of
swaps

mv[t→ k](l) = mv[t↔ t +1] . . . [k−1↔ k](l)

mv[t← k](l) = mv[k−1↔ k] . . . [t↔ t +1](l).

An easy lemma shows that for sequences of operators the reordering also works

Lemma 75.
s(l) = sO(mvO(l)).

Proof. By induction on O, with s and l generalized. The base case is trivial. The
inductive step O→ ΩO is solved easily with Lemma 73 and the induction hypothesis
for s := sΩ and l := mvΩ(l)

s(l) = sΩ(mvΩ(l)) L 73
= sΩO(mvO(mvΩ(l))). IH
= sΩO(mvΩO(l)).

We show that our shorthands for sequences of operators (dropping ◦ and flattening
nested sequences) also makes sense for this function with the following lemma, which
shows that it does not matter where we split between operators.

Lemma 76.
mvOO′(l) = mvO′(mvO(l)).

Proof. By induction on O with l generalized. The base case is trivial. The inductive
step O→ΩO is straightforward with the induction hypothesis applied for l := mvΩ(l)

mvΩOO′(l) = mvOO′(mvΩ(l))

= mvO′(mvO(mvΩ(l))) IH
= mvO′(mvΩO(l)).
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An explicit form for these reorderings is given by the following lemma.

Lemma 77.

mv[t→ k](l) =


l l 6∈ [t : k]
l−1 l ∈ (t : k]
k l = t

mv[t← k](l) =


l l 6∈ [t : k]
l +1 l ∈ [t : k)
t l = k

Proof. We only show the proof for [t → k]. The proof is by induction on k. The base
case is trivial. In the inductive step k→ k+1, we obtain with Lemma 76 that we can
first move t to position k

mv[t→ k+1](l) = mv[t→ k][k↔ k+1](l)
= mv[k↔ k+1](mv[t→ k](l))L 76

We distinguish between four cases (corresponding to 1) not moved at all, 2) not moved
in the recursion but moved in the recursive step, 3) moved forward by the recursion,
and 4) step t which is moved back).

l 6∈ [t : k+1]: In this case l is also neither in the interval [t : k] nor in the set { k,k+1}
and the claim follows with the induction hypothesis

mv[t→ k+1](l) = mv[k↔ k+1](mv[t→ k](l))

= mv[k↔ k+1](l) IH
= l.

l = k+1: By the induction hypothesis, step l is not moved when t is moved to k, and
it is moved to k = l−1 by the swap

mv[t→ k+1](l) = mv[k↔ k+1](mv[t→ k](l))

= mv[k↔ k+1](l) IH
= mv[k↔ k+1](k+1)
= k

= l−1,

which is the claim.

l ∈ (t : k]: In this case l−1 is before k and thus not in the set { k,k+1} and the claim
follows with the induction hypothesis

mv[t→ k+1](l) = mv[k↔ k+1](mv[t→ k](l))

= mv[k↔ k+1](l−1) IH
= l−1.

l = t: By the induction hypothesis step l is first moved to position k, and then moved
again by the swap

mv[t→ k+1](l) = mv[k↔ k+1](mv[t→ k](l))
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= mv[k↔ k+1](k) IH
= k+1,

which is the claim.

Note that functions mv[t→ k] and m[t← k] are injective. All reorderings are.

Lemma 78.
mvO(l) = mvO(l′)→ l = l′.

Proof. Since mvO is just the chained application of injective functions mvΩ, it is also
injective.

We now look at how to undo a reordering. We will define for each reordering O an
inverse O−1 which undoes the reordering such that sOO−1 = s (the inversion operator
·−1 binds stronger than concatenation).

We begin by defining an inverse Ω−1 for the basic operators. Unsurprisingly, to
undo a swap of t and t + 1, one simply swaps t and t + 1 again. Therefore each basic
operator is its own inverse.

Ω
−1 = Ω.

One easily sees that applying a reordering operator and then its inverse does not
actually move any steps.

Lemma 79.
mvΩΩ

−1(l) = l.

Inverting twice yields the same operator.

Lemma 80.
Ω = (Ω−1)−1.

To undo a reordering O consisting of several chained basic operators, we undo each
basic operator but in reverse order.

ε
−1 = ε, (ΩO)−1 = O−1

Ω
−1.

Again the overloaded notation is not problematic since the inverse of the singleton list
containing Ω is exactly the singleton list containing the inverse of Ω

(Ωε)−1 = ε
−1

Ω
−1 = εΩ

−1 = Ω
−1.

Here too the nesting and ◦ do not matter and we can split between operators any-
where we want. We do not show the proof.

Lemma 81.
(OO′)−1 = O′−1O−1.

One now easily obtains that the inverse of the inverse of a reordering is the reorder-
ing itself

Lemma 82.
(O−1)−1 = O.
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Proof. By induction on O. The base case is trivial. The inductive step O→ ΩO is
straightforward with Lemmas 80 and 81

((ΩO)−1)−1 = (O−1
Ω
−1)−1

= (Ω−1)−1O−1)−1 L 81
= ΩO IH, L 80

Almost by definition one now obtains that the reorderings [t→ k] and [t← k] undo
each other.

Lemma 83.

[t→ k] = [t← k]−1,

[t← k] = [t→ k]−1.

Proof. We show first the first claim by induction on k, the base case is trivial. The
inductive step k→ k+1 is straightforward

[t→ k+1] = [t→ k][k↔ k+1]

= [t← k]−1[k↔ k+1] IH

= [t← k]−1[k↔ k+1]−1

= ([k↔ k+1][t← k])−1

= [t← k+1]−1.

which proves the first claim.
The second claim follows by inverting both sides of the first claim and applying

Lemma 82 to cancel the double inversion

[t→ k]−1 = ([t← k]−1)−1 Claim 1
= [t← k]. L 82

Applying a reordering and then its inverse moves no steps. For example, moving t
to step k and then from k to t (or vice versa) does not move any steps at all (cf. Fig. 2.3).

Lemma 84.
mvOO−1(l) = l.

Proof. By induction on O with l generalized. The base case is trivial. The inductive
step O→ ΩO is straightforward with the induction hypothesis for l := mvΩ(l) and
Lemmas 76 and 79

mvΩO(ΩO)−1(l) = mvΩOO−1
Ω
−1(l)

= mvΩ
−1(mvOO−1(mvΩ(l))) mv split

= mvΩ
−1(mvΩ(l)) IH

= mvΩΩ
−1(l)

= l. L 79
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. . .[t→ k][t← k] X . . .

Figure 2.3: Moving step t to position k and then to position t from
position k has no effect.

We can now give an alternative definition for sO(l): rather than applying the re-
ordering operators in O to s, we can find the oracle input used by the original position
of step l in s by undoing the reordering.

Lemma 85.
sO(l) = s(mvO−1(l)).

Proof. Straightforward with Lemmas 75, 76, 82 and 84

sO(l) = sO(mvO−1(O−1)−1(l)) L 84

= sO(mvO−1O(l)) L 82

= sO(mvO(mvO−1(l)) L 76

= s(mvO−1(l)). L 75

For example, to obtain the oracle input of step l after moving k to position t, we
can simply backtrack and see where step l was before the reordering by moving t back
to position k

s[t← k](l) = s(mv[t→ k](l)).

Furthermore, applying a reordering O and its inverse has no effect

Lemma 86.
sOO−1(l) = s(l).

Proof. Straightforward with Lemmas 75 and 84

sOO−1(l) = sOO−1(mvOO−1(l)) L 84
= s(l) L 75

Therefore, when comparing schedules s and sO, we can choose which schedule to
consider the original schedule and which to consider the reordered schedule: either 1)
s is the original schedule, and sO is the schedule with reordering O, or 2) schedule sO
is the original schedule and s = sOO−1 is the reordered schedule with reordering O−1.
We will use this observation several times.
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2.8 Managing Layers of Notation
We have now introduced several layers of notation for lifting functions defined in terms
of steps c,x to steps t in a computation. We wish to do the same for lemmas that range
over steps c,x without having to tediously fold and unfold the notation for computa-
tions. Consider for example Lemma 67, which says that the domain of the writes only
includes accessible registers

Dom(WM(c,x))⊆ ACCu(x).

In order to obtain the analogous result for steps in a computation

Dom(WM(t))⊆ ACCuM(t),

we have to unfold two layers of notation on the left, apply Lemma 67, and then fold
the layers of notation again:

Dom(WM(t)) = Dom(WM[s](t))

= Dom(WM(cM[s]t ,s(t)))

⊆ ACCu(s(t)) L 67

= ACCuM [s](t)

= ACCuM(t).

As the following Lemma shows, we can always convert such statements.

Lemma 87. Let fiM be a finite family of functions with i ∈ [1 : n]. Consider some
predicate P over steps which is defined in terms of the functions fiM , and which holds
for all steps

∀c,x.P(c,x, f1M(c,x), · · · , fnM(c,x)).

We immediately obtain that it also holds for all steps in computations

∀s, t.P(ct
M,s(t), f1M(t), · · · , fnM(t)).

Proof. Unfolding the notation we reduce the claim to the following

P(ct
M,s(t), f1M(t), · · · , fnM(t))

⇐⇒ P(cM[s]t ,s(t), f1M[s](t), · · · , fnM[s](t))

⇐⇒ P(cM[s]t ,s(t), f1M(cM[s]t ,s(t)), · · · , fnM(cM[s]t ,s(t))).

The assumption solves this goal.

We will thus implicitly convert statements about configurations c and steps c,x to
statements about configurations at t and steps t in a schedule.

2.9 Inputs and Outputs
We now look at addresses read in a step and addresses modified in a step. We define
first inM(c,x)⊆A as the inputs of step c,x by

inM(c,x) =CM(c,x)∪FM(c,x)∪RM(c,x).
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We define the write set as the domain of the write

WSM(c,x) = Dom(WM(c,x)).

We define the device inputs as the inputs taken during the device modification by

devinM(c,x) = dc(WSM(c,x)).

The state of device inputs devin only matters for the configuration of a device after
a write, but not for the processor executing that write. Only the state of addresses in
C,F,R matter, which is why we do not include devin in the definition of inputs in. One
can split steps that modify devices into two substeps:

Processor step, depends on in, modifies AMEM , APR,i.

Device step, triggered by processor step, depends on devin, modifies ADEV .

This corresponds to the notion of passive transitions in [Sch13]. Note that the device
step also depends on the value of inputs, because those determine the write that triggers
the device step.

For write buffer steps, only the head element matters, and the rest can be removed
or added freely. We define a relation between steps that use the same oracle input which
holds during a write buffer step when the heads of the write buffers are the same, and
for processor steps when the write buffer of the second step is a suffix of the write
buffer of the first step and the elements in the prefix do not matter to the step.

We say that wb subsumes wb′ when stepped with x on inputs A and write

bu f S(x,A,wb,wb′)≡

{
hd(wb) = hd(wb′) x ∈ ΣWB,i

∃w. wb = w◦wb′∧¬hit(A,w) x ∈ ΣP,i.

This relation is transitive. We do not show the proof.

Lemma 88.

bu f S(x,A,wb,wb′)∧bu f S(x,A,wb′,wb′′)→ bu f S(x,A,wb,wb′′).

This relation is also reflexive.

Lemma 89.
wb = wb′→ bu f S(x,A,wb,wb′).

Proof. By case distinction on x.

x ∈ ΣP,i: With w := ε the claim reduces to showing that the buffers are the same and
that there is no hit in the empty buffer

wb = ε ◦wb′∧¬hit(A,ε)

⇐⇒ wb = wb′∧¬hit(A,ε).

The former is an assumption and the latter trivially holds.
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x ∈ ΣWB,i: The buffers are the same and the claim follows

hd(wb) = hd(wb′).

Note that forwarding is used only in low-level machine semantics. We define the
forwarding inputs as either the inputs when the machine is using low-level semantics,
or as the empty set

f inM(c,x) =

{
inM(c,x) LLM(c,x)
/0 o.w.

We extend the definition to steps by using the forwarding inputs of the step and the
buffers of the unit making the step

bu f SM(x,c,c′) = bu f S(x, f inM(c,x),c.wb(uM(c,x)),c′.wb(uM(c,x))).

In this case we say that the buffers of step c,x subsume those of step c′,x. In case of
steps in a schedule, we allow ourselves the freedom to use step numbers, as such in the
following example

bu f SM(s(t),ct
M,cM[t→ k]k)

we might say that the buffers of step t subsume those of step k after moving t to k.
We can extend Lemma 89 to steps. We do not show the proof.

Lemma 90.
c.wb =uM(c,x) c.wb′→ bu f SM(x,c,c′).

We define a powerful simulation relation that couples the inputs of two configura-
tions that are stepped with the same oracle input x, possibly in different machines M
and N. For processor steps x ∈ ΣP,i, we couple the value of core and fetched registers

c =x
M,N c′ ≡ c.m =CM(c,x)∪FM(c,x) c′.m∧ vM(c,x) = vN(c′,x)∧∆M(c,x)≡ ∆N(c′,x).

For write buffer steps x ∈ ΣWB,i, we do a little more. We require that the configurations
agree on the core registers (i.e., the memory mode), as well as the head of the write
buffers

c =x
M,N c′ ≡ c.m =CM(c,x) c′.m∧hd(c.wb(i)) = hd(c′.wb(i)).

If this relation holds between steps c and c′, we say that the configurations strongly
agree when stepped with x. If we are using reorderings and one of the configurations
is at k in the reordered schedule, which is the new position of step t in the previous
schedule which happens to be the other configuration, we say step t can still be executed
at k.

Intuitively speaking, when c and c′ strongly agree during step x, the steps c,x and
c′,x see the same values and therefore have the same effect.

We show that all steps that strongly agree also agree on the value of core and fetched
values, on the memory view, and on the drain condition.

Lemma 91.

c =x
M,N c′→ c.m =CM(c,x)∪FM(c,x) c′.m∧ vM(c,x) = vN(c′,x)∧∆M(c,x)≡ ∆N(c′,x).
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Proof. We distinguish between processor and write buffer steps.

x ∈ ΣP,i: The claim holds by definition of strong agreement.

x ∈ ΣWB,i: By assumption the configurations agree on the value of core registers

c.m =CM(c,x) c′.m,

Nothing is being fetched

FM(c,x) = /0 = FN(c′,x).

and thus the configurations also vacuously agree on the value of fetched registers

c.m =FM(c,x) c′.m.

Similarly, nothing is being read

RM(c,x) = /0 = RN(c′,x)

and thus the configurations vacuously agree on the memory view

vM(c,x) =

{
c.m
∣∣

/0∪ f msM(c,x)
∣∣

/0 LLM(c,x)
c.m
∣∣

/0 ¬LLM(c,x)

= /0

=

{
c′.m

∣∣
/0∪ f msN(c′,x)

∣∣
/0 LLN(c′,x)

c′.m
∣∣

/0 ¬LLN(c′,x)

= vN(c′,x).

It remains to be shown that the steps agree on the drain condition, which follows
with the fact that they agree on the head element of the write buffer

∆M(c,x)≡ ∆N(c′,x)

⇐⇒ ∆WB(c.wb(i))≡ ∆WB(c′.wb(i))

⇐⇒ c.wb(i) 6= ε ≡ c′.wb(i) 6= ε

⇐⇒ hd(c.wb(i)) 6=⊥≡ hd(c′.wb(i)) 6=⊥
⇐⇒ hd(c.wb(i)) 6=⊥≡ hd(c.wb(i)) 6=⊥.

When we use the strong agreement for steps of the same machine-type, we omit
the second index for the sake of brevity

c =x
M c′ ≡ c =x

M,M c′.

We define outM(c,x) as the outputs of step c,x by the inclusive device closure of
the write set

outM(c,x) = idc(WSM(c,x)).

In the high-level machine, a processor step in strong memory mode executes the
buffered writes.
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Lemma 92.
x ∈ ΣP,i∧SC↑(c,x)→ Dom(BW↑(c,x))⊆ out↑(c,x).

Proof. The step is not using low-level machine semantics

¬LL↑(c,x),

and therefore the processor is executing bypassing and buffered writes

W↑(c,x) = PW↑(c,x).bpa∪PW↑(c,x).wba.

The claim follows

Dom(BW↑(c,x)) = Dom(PW↑(c,x).wba)

⊆ Dom(W↑(c,x))

= Dom(PW↑(c,x).bpa∪PW↑(c,x).wba)

⊆ idc(Dom(W↑(c,x)))

= out↑(c,x).

We also show that inputs and outputs are indeed confined to the set of accessible
registers.

Lemma 93.
inM(c,x),outM(c,x)⊆ ACCuN(c,x).

Proof. The unit making step c,x in machine N is by definition the unit to which the
oracle input x belongs

uN(c,x) = u(x),

which reduces the claim to the following

inM(c,x),outM(c,x)
!
⊆ ACCu(x).

For the outputs, we know that the device closure are device registers which are
accessible, and it suffices to show that the write-set is contained

outM(c,x)⊆ ACCu(x)

⇐⇒ idc(WSM(c,x))⊆ ACCu(x)

⇐⇒ WSM(c,x)⊆ ACCu(x). L 16, 4

The write-set is just the domain of the writes, and the first claim is Lemma 67

WSM(c,x) = Dom(WM(c,x))⊆ ACCu(x).

For the inputs, we have that each of the individual parts C,F,R are restricted to
accessible registers; for the core registers this is because they are core registers, which
are accessible

CM(c,x)⊆ APR,u(x) ⊆ ACCu(x),

for the fetched and read registers this is by definition

FM(c,x),RM(c,x)⊆ ACCu(x).
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Therefore their union is also contained in the set of accessible registers

inM(c,x) =CM(c,x)∪FM(c,x)∪RM(c,x)⊆ ACCu(x).

Normal processor registers are not modified by other processors, which means that
a modification of processor registers of another unit always means that the interrupt
registers are being modified.

Lemma 94.
outM(c,x) ∩̇APR, j ∧ i 6= j→ outM(c,x) ∩̇AIPR.

Proof. By Lemma 93, step t only modifies accessible registers

outM(c,x)⊆ ACCi

which by definition do not include normal processor registers of unit j

ANPR, j 6 ∩̇ ACCi.

Therefore step t does not modify normal processor registers of unit j

outM(c,x) 6 ∩̇ ANPR, j,

leaving only the interrupt registers

outM(c,x) ∩̇AIPR, j.

The claim follows
outM(c,x) ∩̇AIPR.

Different units do not modify each other’s write buffers.

Lemma 95.
uM(c,x) 6= i→ OpiM(c,x)(wb,w) = wb.

Proof. Since the step is not made by unit i, it is neither a step of processor i nor its
write buffer

uM(c,x) 6= i

=⇒ u(x) 6= i

=⇒ x 6∈ ΣP,i∪ΣWB,i,

and the claim follows

wb = noop(wb,w) = OpiM(c,x)(wb,w).

Lemma 96.
uM(c,x) 6= i→ c.wb =i c �M x.wb.
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Proof. By Lemma 95 a step by a different unit no effect on the write buffer

c �M x.wb(i) = OpiM(c,x)(c.wb(i), . . .) = c.wb(i).

Therefore the write never matters in write buffer transitions made by different units

Lemma 97.

uM(c,x) 6= i→ OpiM(c,x)(wb,w) = OpiM(c′,x)(wb,w′).

Proof. Note that the unit making step c′,x is the same as the unit making step c,x, and
thus not unit i

uM(c′,x) = u(x) = uM(c,x) 6= i.

The claim is now just twice Lemma 95

OpiM(c,x)(wb,w) = wb = OpiM(c′,x)(wb,w′).

The set of victims can now be restated as the set of those processors which have
their local registers modified by other units

Lemma 98.

victimsM(c,x) = { i | APR,i ∩̇outM(c,x)∧uM(c,x) 6= i} .

Proof. Note that x does not belong to processor i or its write buffer iff the step c,x is
made by a different unit than unit i

x 6∈ ΣWB,i∪ΣP,i ⇐⇒ ¬(x ∈ ΣWB,i∪ΣP,i)

⇐⇒ ¬(u(x) = i)

⇐⇒ u(x) 6= 1
⇐⇒ uM(c,x) 6= i.

The claim follows with Lemmas 15 and 4

victimsM(c,x) = { i | APR,i ∩̇Dom(WM(c,x))∧ x 6∈ ΣP,i∪ΣWB,i }
= { i | APR,i ∩̇WSM(c,x)∧ x 6∈ ΣP,i∪ΣWB,i }
= { i | APR,i ∩̇WSM(c,x)∧uM(c,x) 6= i}
= { i | APR,i ∩̇ idc(WSM(c,x))∧uM(c,x) 6= i} L 15, 4
= { i | APR,i ∩̇outM(c,x)∧uM(c,x) 6= i}

We identify steps made by different units by the following predicate

di f f u(x,y)≡ u(x) 6= u(y).
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Lemma 99. A step of another unit

x 6∈ ΣP,i∪ΣWB,i

commutes w.r.t. the write buffer

OpiM(c,x)(OpiM(c′,y)(wb,w′),w) = OpiM(c′,y)(OpiM(c,x)(wb,w),w′).

Proof. The operation of x is a no-op. The claim follows

OpiM(c,x)(OpiM(c′,y)(wb,w′),w) = noop(OpiM(c′,y)(noop(wb,w),w′),w)

= OpiM(c′,y)(OpiM(c,x)(wb,w),w′).

Lemma 100. If two different units modify the write buffer

di f f u(x,y),

the order of the steps is irrelevant.

OpiM(c,x)(OpiM(c′,y)(wb,w′),w) = OpiM(c′,y)(OpiM(c,x)(wb,w),w′).

Proof. At least one of the steps is not made by unit i. Let WLOG that step be x

x 6∈ ΣP,i∪ΣWB,i.

The claim is now Lemma 99.

We extend the definition of different units to timestamps in the obvious way

di f f u[s](t,k) = di f f u(s(t),s(k)).

It could be alternatively defined in terms of the units making those steps.

Lemma 101.
di f f u(t,k)≡ uM(t) 6= uN(k).

Proof. Straightforward

uM(t) 6= uN(k)

⇐⇒ uM(cM[s]t ,s(t)) 6= uN(cN [s]k,s(k))

⇐⇒ u(s(t)) 6= u(s(k))

⇐⇒ di f f u(t,k).

We say step t interrupts step k if the unit making step k is a victim of step t

intM(t,k)≡ uM(k) ∈ victimsM(t).

Note that this definition implies no particular order between t and k; a much later
step may interrupt an earlier step. This makes sense in our context because we are not
just looking at one particular ordering of steps, but also other potential orderings; the
interrupt here simply means that steps t and k can not be reordered without seriously
interfering with step k, by possibly changing all of the predicates and functions of step
k (such as feasibility, fetched addresses, whether it is marked as shared or not, etc.).

A unit is interrupted iff its local registers are modified or read by a different unit
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Lemma 102.
APR,uM(k) ∩̇outM(t)∧di f f u(t,k)≡ intM(t,k).

Proof. Straightforward with Lemma 98

intM(t,k)≡ uM(k) ∈ victimsM(t)

≡ uM(k) ∈ { i | APR,i ∩̇outM(t)∧uM(t) 6= i} L 98
≡ APR,uM(k) ∩̇outM(t)∧uM(t) 6= uM(k)

≡ APR,uM(k) ∩̇outM(t)∧di f f u(t,k).

We say steps t and k are unit-concurrent if they are not steps of the same unit, and
step t does not interrupt step k

uconM(t,k)≡ ¬intM(t,k)∧di f f u(t,k).

For the intuition behind this definition, consider steps t and t + 1 which are unit-
concurrent. Because step t does not interfere with local inputs of step t + 1, both s(t)
and s(t +1) could be stepped next, i.e., are feasible in the configuration cM[s]t .

Note that this definition is not symmetric at all; when steps t and k are unit-
concurrent, changing their order will simply not change the feasibility of step k (and
thus races can not be hidden by changing the order and thus disabling step k), but step
k might still interrupt step t, therefore changing its feasibility.

Note also that this definition does not imply an ordering between t and k; t may be
well after k and still be unit-concurrent with it.

When a step accesses the registers of a unit making another step, the steps are not
unit-concurrent.

Lemma 103.
outM(t) ∩̇APR,uM(k)→¬uconM(t,k)

Proof. We apply Lemma 102 and obtain that the steps are made by different units iff
step t interrupts k.

APR,uM(k) ∩̇outM(t)∧di f f u(t,k)≡ intM(t,k)

⇐⇒ 1∧di f f u(t,k)≡ intM(t,k)

⇐⇒ di f f u(t,k)≡ intM(t,k).

The claim follows

uconM(t,k)≡ ¬intM(t,k)∧di f f u(t,k)

≡ ¬di f f u(t,k)∧di f f u(t,k)

≡ 0.

When a step modifies or reads the local inputs of another step, they are not unit-
concurrent.

Lemma 104.
outM(t) ∩̇CM(k)→¬uconM(t,k)
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Proof. By definition, the core registers of step k are processor registers of the unit
making step k

CM(k)⊆ APR,uM(k)

and we obtain an intersection between the outputs of step t and the core registers of
step k

outM(t) ∩̇APR,uM(k).

The claim is now Lemma 103.

We will often consider races where we do no not have unit-concurrency because
the steps are made by the same unit, in particular, by the processor and the write buffer
of the same unit. In those cases, races might occur for two reasons: 1) the processor
step and write buffer step are in weak memory mode, and thus by definition annotated
as a shared read and shared write respectively; or 2) the processor step modifies the
mode registers, which are inputs (core registers) of the write buffer step.

In order to save ourselves pointless case distinctions, we define two steps as object-
concurrent when the first does not modify the core registers of the second and they are
made by different objects

oconM(t,k)≡ outM(t) 6 ∩̇CM(k)∧oM(t) 6= oM(k).

Lemma 105.
uconM(t,k)→ oconM(t,k).

Proof. After unfolding definitions, we obtain the following claim

uconM(t,k)→ outM(t) 6 ∩̇CM(k)∧oM(t) 6= oM(k).

The first part is just the contraposition of Lemma 104. For the second part, assume
for the sake of contradiction that the steps are made by different units but by the same
object

uM(t) 6= uM(k)∧oM(t) = oM(k).

The proof continues by case distinction on the object making step t.

oM(t) = oM(k) = P, i: The oracle input of both steps belongs to processor i

s(t),s(k) ∈ ΣP,i.

Thus both steps are made by unit i

uM(t) = uM(k) = i,

which is a contradiction.

oM(t) = oM(k) =WB, i: The oracle input of both steps belongs to write buffer i

s(t),s(k) ∈ ΣWB,i.

Thus both steps are made by unit i

uM(t) = uM(k) = i,

which is a contradiction.
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If steps are made by different objects, they are either made by different units, or the
first step is made by a processor and the second by its write buffer, or vice versa. We
do not show the proof.

Lemma 106.

oM(t) 6= oM(k)≡ di f f u(t,k)

∨ s(t) ∈ ΣP,i∧ s(k) ∈ ΣWB,i

∨ s(t) ∈ ΣWB,i∧ s(k) ∈ ΣP,i.

Outputs of a step only remain visible to later steps if they have not been overwritten.
We define the set of addresses overwritten in the interval I as the union of outputs of
steps in I

outM[s](I) =
⋃
t∈I

outM[s](t).

If the interval is empty, the set of overwritten addresses is empty.

Lemma 107.
outM( /0) = /0.

Proof. Straightforward

outM[s]( /0) =
⋃
t∈ /0

outM[s](t) = /0.

The intervals can be concatenated.

Lemma 108.
outM(I)∪outM(J) = outM(I∪ J).

Proof. Straightforward

outM(I)∪outM(J) = (
⋃
t∈I

outM[s](t))∪
⋃
t∈J

outM[s](t)

=
⋃

t∈(I∪J)

outM[s](t)

= outM(I∪ J).

We define the visible write-set of t at k as the write-set minus all outputs from t to
k

vwsM[s](t,k) =WSM[s](t)\outM[s]((t : k)).

The visible write-set at step t +1 is just the write-set.

Lemma 109.
vwsM(t, t +1) =WSM(t).
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Proof. Straightforward with Lemma 107

vwsM(t, t +1) =WSM(t)\outM((t : t +1))
=WSM(t)\outM( /0)
=WSM(t)\ /0 L 107
=WSM(t).

The visible write-set can be extended to the right by removing more overwritten
outputs.

Lemma 110.

k ≤ l→ vwsM(t,k)\outM((k−1 : l)) = vwsM(t, l).

Proof. Straightforward with Lemma 108. One easily sees that the intervals (t : k) and
(k−1 : l) can be joined together to interval (t : l) (cf. Fig. 2.4)

. . . . . .
l-1t+1 k-1t k

(t : k) (k−1 : l)

l

(t : l)

. . . . . .

Figure 2.4: Interval (t : k) ends with k−1, interval (k−1 : l) begins with
k. They can thus be joined seamlessly.

vwsM(t,k)\outM((k−1 : l)) =WSM(t)\outM((t : k))\outM((k−1 : l))

=WSM(t)\ (outM((t : k))∪outM((k−1 : l)))

=WSM(t)\outM((t : k)∪ (k−1 : l)) L 108
=WSM(t)\outM((t : l))

= vwsM(t, l).

This also works for individual steps

Lemma 111.
vwsM(t,k)\outM(k) = vwsM(t,k+1).

Proof. Straightforward with Lemma 110

vwsM(t,k)\outM(k) = vwsM(t,k)\outM((k−1 : k+1))
= vwsM(t,k+1). L 110
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For devices, that is not completely true: even when device registers are overwritten,
the device might decide to “ignore” these changes or otherwise remember the original
write. The device closure of the write-set of t thus always stays a visible output.

We define visible outputs of t at k by

voutM[s](t,k) = dc(WSM[s](t))∪ vwsM[s](t,k).

The visible outputs at step t +1 are just the outputs.

Lemma 112.
voutM(t, t +1) = outM(t).

Proof. Straightforward with Lemma 109

voutM(t, t +1) = dc(WSM(t))∪ vwsM(t, t +1)
= dc(WSM(t))∪WSM(t) L 109
= outM(t).

The visible outputs are a subset of the outputs

Lemma 113.
voutM(t,k)⊆ outM(t).

Proof. Straightforward

voutM(t,k) = dc(WSM(t))∪ vwsM(t,k)

= dc(WSM(t))∪ (WSM(t)\
⋃

t ′∈(t:k)
outM(t ′))

⊆ dc(WSM(t))∪WSM(t)

= outM(t).

2.10 Equivalence of Schedules
We wish to show that the reordering strategy which we will define does not affect the
inputs of any of the steps in the low-level machine. For this we need a mechanism
for identifying the same steps in different schedules, and for comparing how steps are
executed in various schedules. We count steps of object X in a finite sequence s

#X(s) = #{ t | o(s(t)) = X } ,

and in a schedule until t
#X [s](t) = #X(s[0 : t−1]).

This allows us to split a schedule into parts, which are summed over individually.

Lemma 114.
#X(s◦ r) = #X(s)+#X(r).
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Proof.

#X(s◦ r) = #{ t | o((s◦ r)(t)) = X }
= #{ t | t < |s|∧o(s(t)) = X ∨ t ∈ [|s| : |s|+ |r|)∧o(r(t−|s|)) = X }
= #({ t | o(s(t)) = X }∪{ t | t ∈ [|s| : |s|+ |r|)∧o(r(t−|s|)) = X })
= #({ t | o(s(t)) = X }∪{ t | t ∈ [0 : 0+ |r|)∧o(r(t−0)) = X })
= #({ t | o(s(t)) = X }∪{ t | o(r(t)) = X })
= #{ t | o(s(t)) = X }+#{ t | o(r(t)) = X }
= #X(s)+#X(r).

We also define the steps counts taken by an object in the whole schedule by

X(s) = {n | ∃t.#X [s](t) = n} .

This is necessary to deal both with situations where object X makes a finite amount of
steps, in which case X(s) is the finite set of numbers less than or equal to the step count
of object X , and where object X makes an infinite amount of steps, in which case X(s)
is the set of natural numbers. Finally we find the step where object X makes it’s n-th
step by

#X≈n(s) = ε { t | o(s(t)) = X ∧#X [s](t) = n} .

Since the step count is monotonic and increases at that point, there is always at most
one such step.

Lemma 115.

∀t, t ′.o(s(t)) = o(s(t ′)) = X ∧#X [s](t) = n∧#X [s](t ′) = n→ t ′ = t.

Proof. Assume for the sake of contradiction that they are unequal

t 6= t ′.

Let without loss of generality t be the earlier step

t < t ′.

Since t is a step of object X , the steps of object X before t are a proper subset of the
steps before t ′

{ k < t | o(k) = X }( { k < t | o(s(k)) = X }∪{ t }
= { k < t +1 | o(s(k)) = X }
⊆
{

k < t ′
∣∣ o(s(k)) = X

}
and thus the step count at t is less than that at t ′

#X(t) = #{ k < t | o(s(k)) = X }< #
{

k < t ′
∣∣ o(s(k)) = X

}
= #X(t ′).

But that contradicts our assumption that the step count at both is n

#X(t) = n = #X(t ′).

90



When a step number n+1 is reached by unit X , there is a point in time when unit
X makes its n-th step.

Lemma 116.

#X [s](t) = n+1→∃t ′.o(s(t ′)) = X ∧#X [s](t ′) = n.

Proof. By induction on t.
In the base case, the step count is zero

#X [s](0) = #X(s[0 :−1]) = #X(ε) = 0,

which contradicts our assumption that the step count equals n+1.
In the inductive step t→ t +1, the step count at t +1 can be split between the step

count at t and step t

#X [s](t +1) = #X(s[0 : t])

= #X(s[0 : t−1])+#X(s(t))

= #X [s](t)+#X(s(t)).

We distinguish whether step t is made by object X or not.

o(s(t)) = X: In this case the step number increases

#X(s(t)) = 1∧#X [s](t +1) = #X [s](t)+1,

and thus the step count at t was n

X [s](t) = n

and the claim follows with t ′ := t.

o(s(t)) 6= X: In this case the step count is unchanged

#X(s(t)) = 0∧#X [s](t +1) = #X [s](t) = n+1,

and the claim follows directly by the induction hypothesis.

We say schedules s and r are equivalent when each object makes the same steps
and both computations strongly agree on those steps

s≡M r ⇐⇒ ∀X .X(s) = X(r)∧∀t,k.t = #X≈n(s)∧ k = #X≈n(r)

→ s(t) = r(k)∧ cM[s]t =s(t)
M cM[r]k.

This relation obviously is an equivalence relation.
If we only do a single reordering, it is easy to keep track of the position of each

step: steps outside of the reordered portion are not moved, the moved step is now at its
new position, and the other steps are off by one. The situation is depicted in Fig. 2.5.
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s’ . . .
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Z : +1
Yi :−1

Figure 2.5: Step k of object Z is moved to position t, other steps in
the reordered portion are made by objects Yi other than Z. We pick
some timestamp t ′ in the reordered interval (dotted vertical line) and
compare the number of steps made by each object at that timestamp.
Summing up the steps of each object from the left, we count one addi-
tional Z = o(s(k)) and one less Yi = o(s′(t ′)) in schedule s′. For all other
objects the number of steps is unchanged.

Lemma 117. Let s′ be the schedule obtained from s by moving k to t ≤ k

s′ = s[t← k].

Assume that this did not reorder steps of the same object

∀t ′ ∈ [t : k].o(s(k)) = o(s(t ′))→ k = t ′.

Then both of the following are true.

1. The step counts are changed only in the reordered portion, in which the moved
unit had one additional step before the reordering, and the unit that is now
stepped at that position has one additional step after the reordering

#X [s′](t ′) =


#X [s](t ′)+1 o(s(k)) = X ∧ t ′ ∈ (t : k]
#X [s](t ′)−1 o(s′(t ′)) = X ∧ t ′ ∈ (t : k]
#X [s](t ′) o.w.

2. Let n be one of the step counts reached by object X in s

n ∈ X(s).

The position of the n-th step is changed by the reordering as follows

#X≈n(s′) =


#X≈n(s) #X≈n(s) 6∈ [t : k]
t #X≈n(s) = k
#X≈n(s)+1 #X≈n(s) ∈ [t : k).

Proof. Note that the object of step t ′ ∈ (t : k] in s′ is the object of step t ′−1 in s

o(s′(t ′)) = o(s[t← k](t ′)) = o(s(t ′−1)),

and by assumption it can never equal the object of step k in s

t ′−1 6= k∧o(s(t ′−1)) 6= o(s(k)).
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Note that s′ can be characterized as a piece-wise reordering of s

s′ = s[0 : t−1]◦ s(k)◦ s[t : k−1]◦ s[k+1 : ∞].

Thus the first t ′ steps in the sequence can also be characterized in piece-wise fashion

s′[0 : t ′−1] =


s[0 : t ′−1] t ′ ≤ t
s[0 : t−1]◦ s(k)◦ s[t : t ′−2] t ′ ∈ (t : k]
s[0 : t−1]◦ s(k)◦ s[t : k−1]◦ s[k+1 : t ′−1] t ′ > k.

We can thus split the definition of the number of steps in an analogous fashion

#X [s′](t ′) = #X(s′[0 : t ′−1])

=


#X(s[0 : t ′−1]) t ′ ≤ t
#X(s[0 : t−1]◦ s(k)◦ s[t : t ′−2]) t ′ ∈ (t : k]
#X(s[0 : t−1]◦ s(k)◦ s[t : k−1]◦ s[k+1 : t ′−1]) t ′ > k.

We distinguish between those three cases in our proof of the first claim.

t ′ ≤ t: Straightforward

#X [s′](t ′) = #X(s[0 : t ′−1]) = #X [s](t ′).

t ′ ∈ (t : k]: We split the count and add a negative term to make up for the missing step
s(t ′−1)

#X [s′](t ′) = #X(s[0 : t−1]◦ s(k)◦ s[t : t ′−2])
= #X(s[0 : t−1])+#X(s(k))+#X(s[t : t ′−2])
= #X(s[0 : t−1])+#X(s(k))+#X(s[t : t ′−2])

+#X(s(t ′−1))−#X(s(t ′−1))
= #X(s[0 : t−1]◦ s[t : t ′−2]◦ s(t ′−1))+#X(s(k))−#X(s(t ′−1))
= #X(s[0 : t ′−1])+#X(s(k))−#X(s(t ′−1))
= #X [s](t ′)+#X(s(k))−#X(s(t ′−1))

=


#X [s](t ′)+1−0 o(s(k)) = X
#X [s](t ′)+0−1 o(s(t ′−1)) = X
#X [s](t ′)+0−0 o.w.

=


#X [s](t ′)+1 o(s(k)) = X
#X [s](t ′)−1 o(s′(t ′)) = X
#X [s](t ′) o.w.,

which is the claim.

t ′ > k: We split the count and reorder it

#X [s′](t ′) = #X(s[0 : t−1]◦ s(k)◦ s[t : k−1]◦ s[k+1 : t ′−1])
= #X(s[0 : t−1])+#X(s(k))+#X(s[t : k−1])+#(s[k+1 : t ′−1])
= #X(s[0 : t−1]◦ s[t : k−1]◦ s(k)◦ s[k+1 : t ′−1])
= #X(s[0 : t ′−1]) = #X [s](t ′),

which is the claim.
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Let now for the sake of brevity

t ′ = #X≈n(s)

be the original position of the n-th step, and

t ′′ =


t ′ t ′ 6∈ [t : k]
t t ′ = k
t ′+1 t ′ ∈ [t : k).

be its claimed new position
#X≈n(s′) !

= t ′′.

By Lemma 115 it suffices to show that t ′′ is a step of object X and that object X had
already reached n steps at t ′′

o(s′(t ′′)) !
= o(s(t ′))∧#X [s′](t ′′) !

= n.

We clearly obtain for each case in the definition of t ′′ that t ′′ is the new position of
the step in the schedule

s(t ′) =


s′(t ′) t ′ 6∈ [t : k]
s′(t) t ′ = k
s′(t ′+1) t ′ ∈ [t : k),

= s′(t ′′),

and therefore t ′′ is a step of object X

o(s′(t ′′)) = o(s(t ′)) = X .

Since none of the steps between k and t are made by the unit of which we move the
step, we have

o(s(k)) = X → #X [s](k) = #X [s](t).

With Claim 1 (shown above) we now obtain that the step count for each of the cases in
the definition of t ′′ corresponds to the step count of t ′

n = #X [s](t ′) =


#X [s′](t ′) t ′ 6∈ [t : k]
#X [s](t) t ′ = k∧o(s(k)) = X
#X [s′](t ′)+1 t ′ ∈ [t : k)∧o(s′(t ′)) = X

=


#X [s′](t ′) t ′ 6∈ [t : k]
#X [s′](t) t ′ = k∧o(s′(t)) = X
#X [s′](t ′+1) t ′ ∈ [t : k)∧o(s′(t ′)) = X

= #X [s′](t ′′),

which was the claim.

Furthermore, if we only do a single reordering, the steps before the reordered por-
tion are the same, and the steps behind the reordered portion are executed in the same
order. Therefore such schedules are equivalent if the inputs of the moved steps are
the same and the schedules reach the same configuration at the end of the reordered
portion.
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Lemma 118. If the step at t after moving k to t strongly agrees with step k before the
reordering

ck
M =

s(k)
M cM[t← k]t ,

and steps t ′ ∈ [t : k) after the reordering also strongly agree

ct ′
M =

s(t ′)
M cM[t← k]t

′+1,

and the computations reach the same configuration after step k

cM[t← k]k+1 = ck+1
M ,

then the schedules are equivalent

s[t← k]≡M s.

Proof. Obviously each unit is stepped equally often in the two schedules

X(s[t← k]) = X(s).

Consider now steps t ′ and t ′′ which are the n-th step of unit X in s and s[t ← k],
respectively

t ′ = #X≈n(s), t ′′ = #X≈n(s[t← k]).

We have to show that the steps have the same oracle input and that the configura-
tions from which the steps are started strongly agree

s(t ′) !
= s[t← k](t ′′),

ct ′
M

!
=

s(t ′)

M cM[t← k]t
′′
.

By Lemma 117 we obtain that t ′′ is as follows

t ′′ =


t ′ t ′ 6∈ [t : k]
t t ′ = k
t ′+1 t ′ ∈ [t : k).

We distinguish between these three cases, but split the first case depending on
whether t ′ is before the reordered portion or after it.

t ′ < t: In this case t ′ equals t ′′

t ′′ = t ′,

and t ′ is before the reordered portion. Thus the same step is made

s[t← k](t ′′) = s(t ′′) = s(t ′),

which is the first claim. Furthermore the steps are started from the same config-
uration

cM[t← k]t
′′
= ct ′′

M = ct ′
M,

and strong agreement holds by reflexivity

ct ′
M =

s(t ′)
M cM[t← k]t

′′
,

which is the second claim.
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t ′ > k: In this case t ′ equals t ′′

t ′′ = t ′,

It is easy to show that the same step is made

s[t← k](t ′′) = s(t ′′) = s(t ′),

For the memory view, however, we first prove by induction on t ′′, starting with
k+1, that the configurations are the same

cM[t← k]t
′′
= ct ′′

M.

• The base case is solved by the assumption

cM[t← k]k+1 = ck+1
M .

• In the inductive step t ′′ → t ′′+ 1, the inductive claim follows with the in-
duction hypothesis and the fact that t ′′ is not in the reordered portion of
s

cM[t← k]t
′′+1 = cM[t← k]t

′′
�M s[t← k](t ′′)

= ct ′′
M �M s(t ′′)

= ct ′′+1
M .

We conclude that the configurations in which the step starts are the same

ct ′
M = ct ′′

M = cM[t← k]t
′′
,

and the second claim holds by reflexivity

ct ′
M =

s(t ′)
M cM[t← k]t

′′
.

t ′ = k: In this case t ′′ is t
t ′′ = t.

Clearly the same step is made

s[t← k](t ′′) = s[t← k](t) = s(k) = s(t ′).

The configurations at k and at t agree by assumption

ck
M =

s(k)
M cM[t← k]t ,

and the claim follows with the equalities k = t ′ and t = t ′′

ct ′
M =

s(t ′)
M cM[t← k]t

′′
.

t ′ ∈ [t : k): In this case t ′′ is t ′+1
t ′′ = t ′+1.

Clearly the same step is made

s[t← k](t ′′) = s[t← k](t ′+1) = s(t ′).

The configurations at t ′ and at t ′+1 agree by assumption

ct ′
M =

s(t ′)
M cM[t← k]t

′+1,

and the claim follows
ct ′

M =
s(t ′)
M cM[t← k]t

′′
.
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2.11 Reads, Writes, Read-Modify-Writes
Normally it is useful to classify instructions into reads, i.e., instructions that read from
memory, writes, i.e., instructions that modify memory, and read-modify-writes, i.e.,
instructions that atomically do both and where the written values depend on the read
(e.g., test-and-set). In this thesis, this classification can not be done based on syntax of
the instruction, e.g., bit patterns; but only on the semantics of the step.

In this sense, a memory write is a step that modifies not only the normal processor
registers (or the write buffer):

mwriteM(c,x)≡ outM(c,x) 6⊆ ANPR,uM(c,x).

Note that this ignores, e.g., store instructions in low-level machine mode, which go to
the buffer and do not immediately modify the memory. Furthermore, there is no guar-
antee that an instruction which is fetched in one configuration and is a memory write
is still a memory write in other configurations. For example, a test-and-set operation
may modify a bit in one configuration, but not another.

Perhaps surprisingly, it is not necessary to formalize the notions of reads and read-
modify-writes for the purpose of this work. The only reads that are relevant for us are
shared reads, i.e., reads that access shared data. As mentioned before, shared reads
have to be annotated by the programmer, and are not based on the semantics of the
instruction; the formalization is found in Section 4.2.

A read-modify-write is simply a step which is both a read and a memory write.
Again, since this classification is purely semantical, a compare-and-swap instruction
with a failed test might is not considered an RMW in this text. We will need to deal
with races between a write and a read-modify-write. In this case, whether the read-
modify-write modifies the memory or not depends on the order between the write and
the read-modify-write. Consider the following program:

x[0:7].store(1); x[0:15].cas(0 → 28);
y = x[8:15].load();

In a high-level computation (without buffers), the compare-and-swap can never
race with the load because it would have to be ordered after the store. This order
can be reversed in a low-level computation if the write is buffered, thus causing the
compare-and-swap to race with the load. Similarly, an ordinary load instruction can
be disabled by a concurrent code modification, as the following program shows. We
consider here I to be the address of the instruction of the second thread which loads
the value of x. Thread 1 replaces that load by a constant assignment.

I.store(’t = 0;’); I: t = x;
x := 1;

In a high-level computation, there is no race between the load and the store, and
the value of t is always 0 (either because the instruction has been replaced by a con-
stant assignment, or because the assignment to x has not taken place when Thread 1 is
scheduled). But in the low-level machine, the assignment to x can be executed before
the code modification takes place, resulting in a race between the assignment to x and
the load from x, and a possible value of t = 1.

We will exclude programs like these with our software conditions.
We show that it suffices to look at the write-set to determine whether a step is

memory write or not.
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Lemma 119.
mwriteM(c,x)≡WSM(c,x) 6⊆ ANPR,uM(c,x).

Proof. By Lemma 4, the normal processor registers are closed

closed(ANPR,uM(c,x)).

The claim follows with Lemma 16

mwriteM(c,x)≡ outM(c,x) 6⊆ ANPR,uM(c,x)

≡ idc(WSM(c,x)) 6⊆ ANPR,uM(c,x)

≡WSM(c,x) 6⊆ ANPR,uM(c,x). L 16

For processor steps in the low-level machine, it suffices thus to look at the domain
of the prepared bypassing writes.

Lemma 120.

x ∈ ΣP,i→ mwrite↓(c,x)≡ Dom(PW↓(c,x).bpa) 6⊆ ANPR,u↓(c,x).

Proof. The low-level machine uses low-level machine semantics

LL↓(c,x)

and thus the executed write is the prepared bypassing write

W↓(c,x) = PW↓(c,x).bpa.

The claim follows with Lemma 119

mwrite↓(c,x)≡WS↓(c,x) 6⊆ ANPR,u↓(c,x) L 119

≡ Dom(W↓(c,x)) 6⊆ ANPR,u↓(c,x)

≡ Dom(PW↓(c,x).bpa) 6⊆ ANPR,u↓(c,x).

We show that a step can only modify accessible registers of another unit with a
memory write.

Lemma 121.
uM(t) 6= i∧outM(t) ∩̇ACCi→ mwriteM(t).

Proof. The processor registers of the unit making step t are not accessible to unit i,
which is a different unit

ANPR,uM(t) 6 ∩̇ ACCi,

Since the outputs of t intersect with the accessible registers, we conclude that the out-
puts of t are not contained in the normal processor registers

outM(t) 6⊆ ANPR,uM(t)

and by definition step t is a memory write

mwriteM(t).
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Therefore interaction between units — even across different machines M and N —
is only possible using memory writes.

Lemma 122.

di f f u(t,k)∧outM(t) ∩̇ inN(k)∪outN(k)→ mwriteM(t).

Proof. By assumption the steps are made by different units

uM(t) 6= uN(k).

By Lemma 93 the inputs and outputs of step k are a subset of the addresses accessible
to the unit making step k

inN(k)∪outN(k)⊆ ACCuN(k).

We conclude that the outputs intersect with the accessible registers of step k

outM(t) ∩̇ACCuN(k).

The claim is now Lemma 121.
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Chapter 3

MIPS ISA

In this part we instantiate the models of the previous chapters with a variant of the
MIPS instruction set architecture, which has been enriched with the advanced hardware
features of x86 discussed in the previous chapters (APICs, store buffers, devices). A
formalization of that instruction set architecture is in the appendix, taken verbatim from
the technical report of Schmaltz [Sch13]. Our instantiation differs in a few key points
from the ISA in the technical report of Schmaltz.

• In order to correctly describe the behavior of the machine in case of misbehav-
ing users, we will need to separate instruction fetch and instruction execute for
users. We add a non-deterministically filled instruction buffer, which is a set
of key-value pairs that maps physical instruction addresses to instruction words.
Interrupts flush this buffer. For the operating system, one can easily enforce
software conditions — such as waiting a few cycles between modifying an in-
struction and fetching from it on the same core, and never concurrently modi-
fying code — that simulate single-cycle fetch and execute (even though in the
pipelined hardware, an instruction is fetched long before it is executed). We
therefore use the instruction buffer only in user mode.

• We allow the MMU to set the access bit in operating system mode, but only di-
rectly after jumping to the interrupt service routine. Allowing the step in operat-
ing system mode is necessary in case the hardware jumps to the interrupt service
routine while the MMU is setting the accessed bit, in which case this write opera-
tion can not be aborted and completes after the interrupt service routine has been
entered. However, in hardware we can stall the execution of the interrupt service
routine until the MMU has completed the operation (by preventing the first in-
struction of the interrupt service routine from leaving the translation stages of the
pipeline while a translation is still taking place). In the ISA this is reflected by a
delayed user mode bit, which is active until the first instruction of the interrupt
service routine is executed. The MMU is allowed to perform translations in op-
erating system mode until that flag is lowered, i.e., after jumping to the interrupt
service routine but before executing the first instruction of the interrupt service
routine.

• We do not always lower the in-service register bits on an exception return, and
we do not lower them when writing to the end-of-interrupt port of the APIC.
This resolves the redundancy (which falsely causes two serviced interrupts to be
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cleared by the interrupt service routine) and prevents the interrupt service rou-
tine from falsely clearing serviced interrupts when the interrupt service routine
is not handling an external interrupt. One of the conditions of the software disci-
pline (Condition IRRForwarding) will forbid us to have at the same time a) the
in-service register as interrupt registers and b) allow changes to the in-service
register to be performed by (buffered) store instructions. For the sake of imple-
menting the direct-to-core IPI functionality of the Schmaltz ISA, we have to put
the in-service registers into the processor registers, and can thus not allow writes
to the end-of-interrupt port of the local APIC to have any effect on the in-service
register1. Instead, we use the exception cause register to determine whether the
in-service register bits should be flushed. Note that this means that the exception
cause register can not be restored by a preempting interrupt service routine, and
has to be stored on an interrupt stack at the beginning of the interrupt service
routine before external interrupts are enabled.

• We add read- and write fences which on their own do nothing but together are
an efficient tool to ensure that shared writes are never buffered by a thread that
executes a shared read.

• We flush the write buffer when an interrupt is taken (i.e., during the processor
step that jumps to the interrupt service routine). This is closer to x86 and allows
us to use for the memory mode registers ASC,p essentially the operating system
mode c.p(p).core.spr(mode).

• The passive transition function of the end-of-interrupt register uses the stored
value to determine the interrupt that has ended, rather than snooping the in-
service register of its processor. The main reason for this is that the model does
not allow us to snoop processor registers when the store buffer makes a step,
only the other device registers; in short, this issue could be resolved as well by
switching to voluntary IPIs.

• We do not consider a generic device model, but only a simple disk with an inter-
rupt request bit.

• We add an emode register, which stores the value of the mode register on JISR
and restores it on ERET.

• We add two delayed program counters, which correspond to the delay slots in-
curred by pipelined implementations of MIPS with address translation that do
not have branch speculation.

• We allow faulty walks to enter the translation look-aside buffer,

• We do not consider the multiplication unit and its special registers HI and LO.

Most of these changes can be found in the literature [PBLS16, KMP14].
We also have modified several minor things, such as the order of some fields in the

APIC, in order to streamline the definition somewhat.
1A better semantics of APICs, which would also be closer to the x86 APIC model, would use non-

deterministic, voluntary IPIs rather than direct-to-core IPIs. In that model, the in-service and interrupt request
registers would be in the address space of the local APIC. This alternative semantics of APICs can also be
modeled by our machine model, by non-deterministically fetching interrupts. Steps that fetch interrupts drain
the write buffer and are only valid if there is an interrupt to be fetched, and perform the jump to the interrupt
service routine.
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3.1 Notation
We use the notation for binary representation xn, binary interpretation 〈a〉, and binary
addition a+n b from [PBLS16]. For the convenience of the reader we have copied the
definition of this notation in Appendix A.

We consider P ∈ N MIPS processors, denoted by natural numbers p ∈ [1 : P]. We
use p,q for variables ranging over MIPS processors.

We will often come across situations in which a single component of the Schmaltz
ISA, such as the program counter, is split into multiple addresses in our model, such as
four individual bytes. In general, if component a is split into R parts, each a bit string
of length d, we denote the addresses with

ar ∈ A∧V (ar) = Bd , r ∈ [0 : R−1].

We try to minimize the pain of this by treating a as the sum of the parts, with the
meaning depending on the context:

• given a valuation ν that covers all bytes of such a component, we use the notation

ν(a) = ν(aR−1)◦ . . .◦ν(a0)

to denote the concatenation of the individual bytes,

• when defining a valuation
ν(a) = v,

by splitting the value into R equal parts

ν(ar) = v[(r+1) ·d−1 : r ·d],

• when an enumeration of addresses is required, we treat a as the enumeration of
its parts

a = a0, . . . ,aR−1;

for example,
ν ={a,b} ν

′ ⇐⇒ ν ={a0,...,aR−1,b} ν
′,

Furthermore, we define d ∈ N consecutive 32-bit addresses starting at a ∈ B32

(a ·d)r = a+32 r32, r < d,

using the same notation as above. For example, when we wish to fetch four bytes
starting from the delayed delayed program counter (ddpc), we might say

F(c,x) = { c.p(p).core.ddpc ·4} .

All components of the MIPS ISA are collapsed into one memory component in
our model. In order to make the notation more uniform, we define for some addresses
a specific notation that allows us to closely mirror the MIPS ISA notation of Sabine
Schmaltz, such as

c.p(p).core.pc = c.m((p, p,pc)).

Since nearly all addresses have a range of one byte, we define (unless stated other-
wise) that the range of each address is one byte

V (a) = B8.
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In order to avoid confusion between constant addresses and variables ranging over
addresses or values of addresses, we use a non-italic font for fixed addresses, and italic
names for variables, as in the following example

pc ∈ A, pc ∈V (pc).

When we define F and R etc., we will often have multiple parameters that are
valuations, namely the core configuration, the set of fetched addresses, and the read
results

core ∈Val(APR,i),

f etch ∈Val(F(core,x)),

v ∈Val(R(core,x, f etch)),

which are passed as parameters to functions such as F and R. We will define those
functions f ∈ {F,R, . . .} using the form

f (c,x) = . . . ,

and simply be vigilant to only use components of c for which the parameters given
to f in step c,x really provide values. In the case of F , for example, we use core
registers such as the program counters, which would allow us to define something like
the following

F(c,x) = { c.p(p).core.ddpc ·4} ,

and in the case of R(c,x) we use core registers, but also registers fetched in step c,x as
defined by F(c,x).

This may cause conflicts when the parameters provide different value for the same
address, for example when an instruction loads from its own address, and thus W ob-
tains a value for that address from f etch (taken directly from c.m) and a different value
from v (taken from a more up-to-date write in the write buffer). We resolve such con-
flicts by using the value from the most recent memory access: results from v overwrite
those from f etch, which overwrite those from core.

When defining a partial valuation, e.g., W , we sometimes use a tabular notation
which lists in one column the address (and possible conditions) and in another column
the value for that address.

3.2 Configurations
In this section we introduce all the processors and devices as well as all addresses and
their ranges.

For the sake of brevity, we define for all units except for MIPS processors that there
are no memory mode registers

i 6= p→ ASC,i = /0

and that the unit is always in strong memory mode

i 6= p→ SCi(. . .) = 0.
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122231 21 11 0

px2 px1

px0ba

01019 9

a

ba

Figure 3.1: A bit string a∈B32 is split into base address ba∈B20 and a
byte offset px0. The base address is split further into two page indices
px2, px1.

3.2.1 MMU Translations
As shown in Fig. 3.1, for each 32-bit string a ∈ B32 we define bitfields ba for base
address

a.ba = a[31 : 12],

and a byte offset px0
a.px0 = a[11 : 0].

For each base address ba ∈ B20 we define two levels of page indices px1, px2

ba.px2 = a[19 : 10], ba.px1 = a[9 : 0].

When an address is translated, its base address is treated as a virtual address and
translated to a physical base address, whereas the byte offset is used verbatim.

1231 11
bapte p

10 9 8 7

wuf

r

2 1 0

a

Figure 3.2: A page table entry is split into a base address, a present
bit, three access-rights bits, and an accessed bit. The lowest six bits
are unused.

As show in Fig. 3.2, we define for each page table entry pte ∈ B32 (in addition to
the base address etc.) the following bit fields. A present bit p

pte.p = pte[11],

access rights bits r
pte.r = pte[10 : 8],

and an accessed bit a
pte.a = pte[7].

Access rights r ∈ B3 have fields for permission to fetch

r. f = r[2],

permission to access in user mode (redundant, since all translations are used in user
mode)

r.u = r[1],
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and permission to write
r.w = r[0].

A walk w ∈ Kwalk consists of the following bit fields

w.va ∈ B20: virtual page address to be translated.

w.ba ∈ B20: base address of the next memory location to be accessed, i.e., either the
next page table entry, or the physical page address.

w.asid ∈ B6: address space identifier (ASID) of the translation.

w.level ∈ {0,1,2}: the number of remaining walk extensions needed to reach the
physical page address.

w.r ∈ B3: rights remaining for memory accesses using this translation.

w. f ault ∈ B: indicates a faulting walk.

A walk is complete when the level is zero

complete(w)≡ w.level = 0.

For incomplete walks, the address of the next page table entry to be accessed is
computed by appending the page index corresponding to the level behind the base
address of the walk.

¬complete(w)→ ptea(w) = w.ba◦w.va.pxw.level ◦00

The physical address given by a translation and a complete virtual address va∈B32

is obtained by concatenating the base address of the walk with the byte offset of the
virtual address

pma(w,va) = w.ba◦ va.px0.

A new walk is created for a virtual address and ASID and base address of the page
table by setting the level to two, the rights to full permission, and the fault bit to zero

winit(va,ba,asid).va = va,

winit(va,ba,asid).ba = ba,

winit(va,ba,asid).asid = asid,

winit(va,ba,asid).level = 2,
winit(va,ba,asid).r = 111,

winit(va,ba,asid). f ault = 0.

An incomplete walk is extended using a given page table entry by using the base
address indicated by the page table entry, decreasing the level, taking the lower permis-
sions of the walk and the page table entry, and indicating a fault if the page table entry
was not present

wext(w, pte).va = w.va,

wext(w, pte).ba = pte.ba,

wext(w, pte).asid = w.asid,

wext(w, pte).level = w.level−1,
wext(w, pte).ri = w.ri∧ pte.ri,

wext(w, pte). f ault = ¬pte.p.
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3.2.2 MIPS Processor Configurations
We consider a machine with P ∈N MIPS processors. Each MIPS processor p ∈ [1 : P]
is a unit

p ∈U.

Each MIPS processor p has the following registers.

• 32 word-sized general purpose registers (GPR) and special purpose registers
(SPR). Each register x ∈ [0 : 31] in each register file pr ∈ {gpr,spr} is split
into four bytes

(p, p, pr,x)r ∈ ANPR,p.

For these we use the notation

c.p(p).core.pr(x) = c.m((p, p, pr,x)).

• A program counter and two delayed program counters. Each of these pc ∈
{pc,dpc,ddpc} is split into four bytes

(p, p, pc)r ∈ ANPR,p.

For these we use the notation

c.p(p).core.pc = c.m((p, p, pc)).

• A translation look-aside buffer (TLB), which is a set of walks

(p, p,TLB) ∈ ANPR,p,

V ((p, p,TLB)) = 2Kwalk .

For the TLB we use the notation

c.p(p).TLB = c.m((p, p,TLB)).

• An instruction buffer (IB), which is a set of pairs of aligned addresses and words

(p, p, IB) ∈ ANPR,p,

V ((p, p, IB)) = 2B
30×B32

.

For the IB we use the notation

c.p(p).IB = c.m((p, p, IB)).

• Two flags that manage start and init interrupt requests. Each of the flags IR ∈
{ sipirr, initrr} is an interrupt register and has a single bit

(p, p, IR) ∈ AIPR,p,

V ((p, p, IR)) = B.

For these we use the notation

c.p(p).apic.IR = c.m((p, p, IR)).
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• The eight most significant bits of the program counter to which the processor
jumps after a SIPI interrupt (called SIPI-vector, since it is sent as the interrupt
vector in a SIPI)

(p, p,sipivect) ∈ AIPR,p.

For the SIPI-vector we use the notation

c.p(p).apic.sipivect = c.m((p, p,sipivect)).

• An interrupt request register (IRR), which is an interrupt register. We split the
register into pieces of 32 bytes

(p, p, IRR)r ∈ AIPR,p.

For the IRR we use the notation

c.p(p).apic.IRR = c.m((p, p, IRR)).

• An in-service register (ISR), which is a normal register. We split the register into
pieces of 32 bytes

(p, p, ISR)r ∈ ANPR,p.

For the ISR we use the notation

c.p(p).apic.ISR = c.m((p, p, ISR)).

• A binary running bit

(p, p, running) ∈ ANPR,p,

V ((p, p, running)) = B.

For this register we use the notation

c.running(p) = c.m((p, p, running)).

• A binary delayed mode bit which records the mode of the previous configuration

(p, p,dm) ∈ ANPR,p,

V ((p, p,dm)) = B.

For this register we use the notation

c.p(p).dm = c.m((p, p,dm)).

Some special purpose registers have names, in which case we define the name to
be an alias for the index of the register in the SPR, such as

sr = 0, esr = 1, . . . .
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Our emode register is SPR register 8

emode = 8.

A processor is in delayed user mode when it is in user mode or the delayed mode
is user mode

dump(c) = c.p(p).core.spr(mode)[0]∨ c.p(p).dm.

The memory mode registers of a processor are simply the four bytes of the operat-
ing system mode register in the SPR

ASC,p = { (p, p,spr,mode)} ,

and a processor is in strong memory mode when it is not in user mode

SCp(c) = ¬c.p(p).core.spr(mode)[0].

3.2.3 Memory Configuration
The main memory is a byte-addressable memory. All addresses have a length of 32
bit. However, we add two special addresses, the purpose of which will be explained
shortly.

AMEM = B32∪{w f ,r f } .

The ranges of those special addresses do not really matter (as long as they are non-
empty), but for the sake of completeness we define them as binary registers

V (w f ) =V (r f ) = B.

For memory addresses a ∈ B32 we use for the sake of uniform notation the follow-
ing notation

c.m(a) = c.m(a).

3.2.4 Interrupt Command Registers

2431 18

cmd dest

19 16 14 12

rirr

dsh

mask ds

dm vect

10 8 7 0

Figure 3.3: An interrupt command register is split into several fields.
The dest and dsh fields are used to choose the targets of the IPI.
The mask and rirr bits are only used by the IO APIC for masking and
controlling device events. The ds bit indicates is raised to send an IPI
and lowered by the APIC when the interrupt has been sent. The dm
and vect fields are only used by the local APICs and determine the
type of IPI to be sent.

Interrupt command registers are used by the IO APIC and the local APICs to de-
termine which interrupts to deliver to which processors. We use the following fields
(shown in Fig. 3.3). The destination ID contains the APIC ID of the target (if the APIC
is in single target mode)

cmd.dest = cmd[31 : 24].
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The destination shorthand distinguishes between four targeting modes: all APICs, all
other APICs, self, and single target

cmd.dsh = cmd[19 : 18].

The interrupt mask (used only by the IO APIC) may prevent the interrupt from being
sent

cmd.mask = cmd[16].

The remote interrupt request (used only by the IO APIC) is used as a synchronization
mechanism between the IO APIC and the target APICs to prevent redundant sampling
of an interrupt that is active in the device but is already being serviced by the target
processor

cmd.rirr = cmd[14].

The delivery status indicates whether an interrupt is ready to be sent or not (raised
when an interrupt should be sent, lowered when the APIC is idle)

cmd.ds = cmd[12].

The delivery mode (only used by the local APIC) distinguishes between three types of
interrupts to be sent: a fixed interrupt vector, an INIT interrupt (for halting and resetting
a core to an initial state), and a SIPI interrupt (for starting a halted processor)

cmd.dm = cmd[10 : 8].

The IO APIC ignores this field and always sends a fixed interrupt vector.
The interrupt vector to be sent in case of a fixed interrupt

cmd.vect = cmd[7 : 0].

We define the targets of an interrupt sent by the APIC of processor p based on the
destination shorthand dsh and a destination APIC ID id as follows

q ∈ targetsp(c,dsh, id)≡


q 6= p dsh = 11
1 dsh = 10
q = p dsh = 01
c.p(q).apic.APICID = id dsh = 00.

3.2.5 APIC Configurations
We model APICs as units. For each MIPS processor p ∈ [1 : P], there is an APIC

(apic, p) ∈U.

APICs do not have processor registers. Instead, each APIC is also a device

(apic, p) ∈ D

and uses the device registers for its components. We make two changes over the
Schmaltz ISA. Firstly, we reorder the entries of the interrupt command register to cor-
respond to the entries of the IO APIC one-to-one; secondly, we increase the length of
the APIC ID from three to eight bits, therefore matching the length of the APIC ID in
the destination register of the APIC and enabling the usage of a load byte to obtain the
full APIC ID.

Each APIC has the following registers.
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Subregister Bits Meaning
EOI 607-576 Signal end of interrupt
APICID 575-544 Unique number of IPI reception
ISR 543-288 Interrupts in service
IRR 287-32 Interrupt requests
ICR 31-0 Interrupt command register

Table 3.1: APIC Memory Map.

• An interrupt command register (ICR) of 32 bits, split into four bytes

(apic, p, ICR)r ∈ ADEV,(apic,p).

We use the following notation

c.p(p).apic.ICR = c.m((apic, p, ICR)).

• A pending end-of-interrupt (EOI) register of 256 bits, split into 32 bytes

(apic, p,EOIpending)r ∈ ADEV,(apic,p).

We use the following notation

c.p(p).apic.EOIpending = c.m((apic, p,EOIpending)).

• An end-of-interrupt register (EOI) of 32 bits, split into four bytes

(apic, p,EOI)r ∈ ADEV,(apic,p).

We use the following notation

c.p(p).apic.EOI = c.m((apic, p,EOI)).

• An APIC ID register of 32 bits, split into four bytes (of which only the least
significant byte contains the APIC ID)

(apic, p,APICID)r ∈ ADEV,(apic,p).

We use the following notation

c.p(p).apic.APICID = c.m((apic, p,APICID)).

We generate a memory-mapping over the local APIC. This means that all memory
accesses to a certain range of addresses will be redirected to registers of the APIC
(i.e., of the APIC device and the processor registers IRR and ISR of the corresponding
processor). A layout of this memory-mapping is given in Table 3.1.

The memory map of the local APIC starts at address 120012. We define a function
mmp that reroutes accesses to an address a ∈ AMEM to the memory mapped register
corresponding to that address. For the local APIC, the mapping is as follows

mmp(1200511001r2) = (apic, p,EOI)r,
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mmp(1200511000r2) = (apic, p,APICID)r,

mmp(1200510r5) = (p, p, ISR)r,

mmp(1200501r5) = (p, p, IRR)r,

mmp(1200500000r2) = (p, p, ICR)r.

Note that this mapping is slightly different for each MIPS processor p because each
processor only has access to its own local APIC, i.e., the same memory region is used
for all local APICs, but memory accesses of processor p to that memory region are
redirected to the local APIC of processor p.

We will extend this function when we memory-map the IO APIC.
We give a special name to the base address of the EOI register

aEOI = 120051100100.

3.2.6 Disk Configuration and Controller
We model devices as regular memory ports plus processors (for the device controllers),
which will allow us to model hidden device storage (such as swap memory) and non-
deterministic device steps.

In this document, we only model a disk similar to that in the System Architecture
textbook [PBLS16], but enhanced with an interrupt request bit. The disk model consists
of a set of memory-mapped ports and a big swap memory. Data can be exchanged be-
tween a page-sized memory-mapped buffer bu f f and the swap memory by giving read
or write commands to the disk through a command-and-status register csmr; a write
command is issued by raising the second least significant bit, whereas a read command
is issued by raising the least significant bit. The page to be loaded or modified is given
as a 28-bit address in the swap memory address register sma. Completion of the disk
operation takes a non-deterministic amount of time, and will raise the interrupt request
bit.

The disk is therefore not write-triggered, as the disk is updated non-deterministically
when one of the command bits in the command-and-status register is raised, not as an
(immediate) side-effect of writing to the command-and-status register. This means we
can simply use normal memory addresses for the IO ports (and thus avoid defining a
device transition function).

We add a unit
disk ∈U

with one processor register: a big swap memory

sm ∈ ANPR,disk,

which consists of one terabyte, managed as a four kilobyte-addressable memory

V (sm) = B28→ B8·4K .

We use the following notation

c.sm = c.m(sm).

We also give names to a few memory registers. The buffer occupies the four kilo-
byte starting at address 118014

abuff = 11800080000,
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the swap memory address occupies the next four byte

asma = 11801080000,

and the command and status register the four bytes after that

acmsr = 11801080100.

The three first bits of the command and status register correspond to a read com-
mand, a write command, and a status bit to signal that a disk operation has completed,
and which causes the IO APIC to deliver an interrupt.

The memory region occupied by the disk is then defined as follows

Adisk = {abuff · (4K)}∪{asma ·4}∪{acmsr ·4} .

3.2.7 IO APIC Configuration
The IO APIC is similar to the normal APICs, except for a few central points.

• The IO APIC is shared between all processors,

• Instead of a single interrupt command register, the IO APIC is programmed
through an array of interrupt command registers called the redirection table.
Each row of the redirection table is an interrupt command register that is con-
nected to a device and lists the destination of interrupts from that device,

• The IO APIC obtains the delivery status from the interrupt request bits of the
devices (here: only the disk),

• The IO APIC does not interrupt a processor again until the APIC of that proces-
sor has sent an end-of-interrupt signal.

We allow our redirection table to have some arbitrary number of entries, as long as
that number is a power of two and all entries of the redirection table can be represented
by a word. In other words, there is some number of interrupt devices ID≤ 232 and the
redirection table has 2ID entries.

We add the IO APIC as a unit

ioapic ∈U

and as a device
ioapic ∈ D.

The IO APIC has no processor registers, but has the following device registers.

• A redirection table “redirect” of 2ID entries d < 2ID, each of 32 bits, split into
four bytes

(ioapic, redirect,d)r ∈ ADEV,ioapic where d < 2ID.

We use the following notation

c.ioapic.redirect[d] = c.m((ioapic, redirect,d)).

Each redirection table entry works analogous to the command register of the
APIC, and could be considered the command register of the APIC of the device.
In our model, we have only one device (the disk), which uses the first entry of
the redirection table (i.e., entry 0).
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• A register selection port (regsel) to select a entry in the redirection table, split
into four bytes

(ioapic, regsel)r ∈ ADEV,(ioapic).

We use the following notation

c.p(p).ioapic.regsel = c.m((ioapic, regsel)).

• A so called “win” port to access the selected entry. Split into four bytes

(ioapic,win)r ∈ ADEV,(ioapic).

We use the following notation

c.p(p).ioapic.win = c.m((ioapic,win)).

Only the win and regsel registers are memory mapped

mmp(1190100r2) = (ioapic, p, regsel)r,

mmp(1190101r2) = (ioapic, p,win)r.

Intuitively, the IO APIC redirection table works like a web browser with no tabs.
The programmer can point his web browser (the WIN register) to one server (a redirec-
tion table entry) on the Internet (the redirection table) by entering the web server’s ad-
dress (table index d) into the web browser’s URL bar (the REGSEL register). Then the
programmer can interact with that server by copying or changing its content (through
the WIN register), or change the server he is connected to. Other clients (the IO APIC
and the devices) can also connect to the servers independently of the programmer.
However, in the case of the redirection table, the hardware grants atomicity: the con-
tent of the WIN register and the content of the server (the redirection table entry) are
always the same. In Fig. 3.4 we show four example operations of the redirection table.

3.2.8 Memory Mapping
We have already defined how certain registers are memory mapped. We denote by MM
the set of memory addresses which have been explicitly mapped, which is the same for
all MIPS processors. For all remaining memory addresses a ∈ AMEM \MM we use the
identity mapping

mmp(a) = a.

Clearly this function is injective and thus has an inverse mm−1
p . We will later use

this to define the prepared writes.
We also lift the function to sets of addresses

mmp(A) =
{

mmp(a)
∣∣ a ∈ A

}
.

3.2.9 Instructions
The definition of most functions over instruction words can be found in the Appendix
(Section B.6.1). The following functions are added to simplify some definitions.

An instruction is a memory operation when it is a compare-and-swap, store, or load
instruction

mop(I) = cas(I)∨ store(I)∨ load(I).

113



2REGSEL

3

2

1

0

WIN

(9,1,0,0)

(9,1,0,0)
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(0,1,1,0)

(5,1,0,0)
redirection table

(a) Original configuration of the redirection table. Register REGSEL contains
the value 2, and therefore WIN is pointed at the redirection table entry 2. All
redirection table entries except for entry 0 are masked. Redirection table entry
0 has a pending interrupt.
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(b) A MIPS processor writes a zero into the REGSEL register. As an atomic
side-effect of this write, the WIN register is now pointed at the redirection table
entry 0.
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redirection table

(c) The IO APIC delivers the pending interrupt of redirection table entry 0, thus
clearing the delivery status bit and setting the remote interrupt request bit. Be-
cause the WIN register is currently pointed at that redirection table entry, the
WIN register is updated as an atomic side-effect to reflect the new value of the
redirection table entry.

redirection table

0REGSEL

3

2

1

0

WIN

(9,1,0,0)

(7,0,0,0)

(7,0,0,0)

(0,1,1,0)

(5,1,0,0)

(d) The interrupted MIPS processor modifies the WIN register to clear the re-
mote irr bit, so that new interrupts can be sampled from the device. Because
the WIN register is currently pointed at redirection table entry 0, that entry is
updated as an atomic side-effect to reflect the new value of the WIN register.

Figure 3.4: We show four configurations of the redirection table and
REGSEL and WIN registers. Registers REGSEL and WIN are on the
left, the redirection table with four entries (ID = 2) is on the right. The
values of redirection table entries and the WIN register are given as
four-tuples (dest,mask,rirr,ds), the value of the REGSEL register is
given as an index i ∈ [0 : 3] in the redirection table.
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Each memory access has to be aligned. An address is d-misaligned for d = 2l if
the last l bits are not equal to zero

mal2l (a)≡ a[l : 0] 6= 0l .

Move instructions, exception return, and TLB invalidation instructions are restricted
to operating system mode

restr(I) = movs2g(I)∨movg2s(I)∨ eret(I)∨ inval pg(I)∨ f lush(I).

Several functions were defined in terms of a MIPS core configuration (cf. Defi-
nition 21 in the Appendix). We show how to extract such a MIPS core configuration
from our configuration by defining all components x of the MIPS core configuration of
processor p as follows

corep(c).x = c.p(p).core.x.

One easily notices that all such registers are processor registers of processor p, and
thus the MIPS core configuration can always be used in steps of processor p to define
F , Φ, etc.

We add write fence and read fence instructions as r-type instructions. The function
codes below are somewhat arbitrary, but not occupied

w f ence(I)≡ rtype(I)∧ f un(I) = 111010,
r f ence(I)≡ rtype(I)∧ f un(I) = 111001.

On a high level, read fence is only executed if all writes that were issued before
the last write fence have left the buffer. The implementation in our model is extremely
technical, and somewhat abuses partial hits; the gist is that a write fence is buffering a
write that has no effect except for causing partial hits during a read fence, consequently
draining the buffer until all write fences and all writes before them have been drained.
We use the registers {w f ,r f } to make this work.

3.3 Semantics
In this section we define the semantics of the different types of steps. Each type of
steps uses an oracle input of a certain form. We define then the feasibility, the fetched
addresses, the guard condition, the read addresses, and finally the prepared writes of
the step.

We distinguish between normal processor steps, for which oracle step inputs x have
the following form

x = (p, . . .),

steps of components such as the MMU and the instruction buffer (also belong to a
MIPS processor, but do not have the form above), and steps of other units, such as the
APICs and the devices.

Only normal processor steps use the write buffer. For all other steps, we keep the
buffered accesses empty

x 6= (p, . . .) =⇒ R(c,x).wba = PW (c,x).wba = /0.

Since only normal processor steps use the write buffer, other steps normally do not
need to be fences and we define for those other steps unless specified otherwise

x 6= (p, . . .) =⇒ f ence(c,x) = 0.
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Only two types of steps will be allowed to interrupt other processors: IPI delivery
steps of the APIC and of the IO APIC. Unless stated otherwise, we define that set of
IPI-relevant registers is empty

AIPI(x) = /0.

3.3.1 MMU Walk Creation
The oracle input for MMU walk creation has the form

x = (tlb−create,va, p) ∈ ΣP,p.

The step is feasible if the processor is in user mode and running

ΦP(c,x)≡ c.p(p).core.spr(mode)[0]∧ c.running(p).

It does not fetch anything
F(c,x) = /0.

The step is always valid
ϒP(c,x) = 1.

The step does not read anything

R(c,x).bpa = /0.

The step creates a new walk using the page table origin and the address space
identifier

w = winit(va,c.p(p).core.spr(pto).ba,c.p(p).core.spr(asid)[5 : 0]),

and prepares to modify the TLB by inserting that new walk (recall that the value of the
TLB is a set of walks)

PW (c,x).bpa((p, p,TLB)) = c.p(p).TLB∪w.

3.3.2 MMU Accessed Bits
The oracle input for the MMU step that sets accessed bits has the form

x = (tlb−set−accessed,w, p) ∈ ΣP,p.

As described before, an MMU access in hardware that sets accessed bits and has
reached the cache system can be neither canceled nor rolled back. In the case of an
interrupt that is triggered after such an access has begun, this means that the processor
is switched to operating system mode before the MMU completes the memory access.
As a result, the hardware will simulate the MMU step only once the processor is in
operating system mode. To model this behavior without giving the MMU the power to
fully run in operating system mode, we have introduced the delayed user mode which is
stays active after the interrupt but only until the first instruction of the interrupt service
routine is executed.

The step is thus feasible if the processor is in delayed user mode and running, the
walk w is from the TLB, incomplete, and matches the current address space identifier

ΦP(c,x)≡ dump(c)∧ c.running(p)
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∧w ∈ c.p(p).TLB∧¬complete(w)∧w.asid = c.p(p).core.spr(asid)[5 : 0].

It does not fetch anything
F(c,x) = /0

and is always valid
ϒP(c,x) = 1.

Note that this means that the step is valid even when the page table entry is not
present, unlike in the ISA given by Schmaltz.

The step reads the page table entry

R(c,x) = { ptea(w) ·4} ,

and thus obtains the memory content of the page table entry

pte = c.m(ptea(w) ·4).

The step then raises the accessed bit (bit 7)

PW (c,x).bpa(ptea(w) ·4) = pte[31 : 8]1pte[6 : 0].

Unlike in the ISA given by Schmaltz, we set the accessed bit even for page table entries
that are not present. This is a side-effect of the fact that we wish to put faulty walks
into the TLB, which clearly depend on the page table entry.

3.3.3 MMU Walk Extension
The oracle input for MMU walk creation has the form

x = (tlb−extend,w, p) ∈ ΣP,p.

The step is feasible if the processor is in user mode and running, the walk w is from
the tlb and incomplete, and matches the current address space identifier

ΦP(c,x)≡ c.p(p).core.spr(mode)[0]∧ c.running(p)

∧w ∈ c.p(p).TLB∧¬complete(w)∧w.asid = c.p(p).core.spr(asid)[5 : 0].

It fetches the page table entry2

F(c,x) = { ptea(w) ·4} ,

and thus obtains the memory content of the page table entry

pte = c.m(ptea(w) ·4).

The step is valid if the page table entry has been accessed

ϒP(c,x) = pte.a.

2It is necessary to fetch the page table entry, rather than simply reading from it, since we want to make
validity dependent on the entry, and validity only depends on what we have fetched, not on what we have
read.
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Note that it is important that we fetch the page table entry, rather than simply reading
it: if we would not fetch the page table entry, we would not be able to make the step
invalid in case it has not been accessed.

The step does not read anything

R(c,x).bpa = /0.

The step creates a new walk using the page table origin and the address space
identifier

w = wext(va, pte),

and prepares to modify the TLB by inserting that new walk

PW (c,x).bpa((p, p,TLB)) = c.p(p).TLB∪w.

3.3.4 Instruction Buffering
While the processor is in user mode, the instruction buffer may speculatively fetch in-
structions and put them into the instruction buffer; but only if there is a valid translation
for the instruction address.

The oracle input for instruction buffering has the form

x = (ib,w, ia, p) ∈ ΣP,p.

The step is feasible if the processor is in user mode and running, the walk w is
from the tlb and complete, has fetching rights, and matches the current address space
identifier and instruction address

ΦP(c,x)≡ c.p(p).core.spr(mode)[0]∧ c.running(p)

∧w ∈ c.p(p).TLB∧ complete(w)

∧w.r. f ∧w.r.u∧w.asid = c.p(p).core.spr(asid)[5 : 0]∧w.r.va = ia.ba.

It fetches the given instruction

F(c,x) = { pma(w, ia) ·4} ,

and thus obtains an instruction word

I = c.m(pma(w, ia) ·4).

The step is valid
ϒP(c,x) = 1.

The step does not read anything

R(c,x).bpa = /0.

The step prepares to put the pair of address and instruction into the instruction
buffer

PW (c,x).bpa((p, p, IB)) = c.p(p).IB∪ (ia, I).
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3.3.5 Normal Processor Steps
Oracle inputs for normal processor steps have the form

x = (p, p, I′ ∈ B32,wI ∈ Kwalk,wE ∈ Kwalk) ∈ ΣP,p.

The idea is that for user steps, the oracle input must either provide a faulting instruction
walk wI or an instruction I′ from the instruction buffer. If an instruction in user mode
is a memory operation, then the execute walk wE must be from the TLB and either
faulting or complete. For operating system steps and steps that do not make use of the
instruction, the provided parameters are irrelevant.

This gives nine possible feasible steps (shown also in the flowchart of Fig. 3.5):

1. An unmasked external interrupt. The step goes directly to the interrupt service
routine. Oracle inputs I′,wI ,wE do not matter.

2. A misaligned instruction address is used. The step goes directly to the interrupt
service routine. Oracle inputs I′,wI ,wE do not matter.

3. An operating system step. The instruction is fetched directly from memory and
is executed normally. Oracle inputs I′,wI ,wE do not matter.

4. A user mode step where wI is a faulting walk from the TLB that matches the fetch
access (i.e., matches the instruction address and the address space identifier).
Such steps are page faults and thus jump to the interrupt service routine. Oracle
inputs I′,wE do not matter.

5. A user mode step where I′ is an instruction from the instruction buffer and
matches the instruction address, and some other interrupt (e.g., a misaligned
effective address interrupt in case of a memory operation) occurs. In case of
a continue interrupt (which are never memory operations), the instruction I′ is
executed normally. In any case, the step jumps to the interrupt service routine.
Oracle inputs wI ,wE do not matter.

6. A user mode step where I′ is an instruction from the instruction buffer and
matches the instruction address, and is not a memory operation. The instruc-
tion I′ is executed normally. Oracle inputs wI ,wE do not matter.

7. A user mode step where I′ is an instruction from the instruction buffer and
matches the instruction address, and is a memory operation, and where wE is
a complete walk from the TLB that matches the memory access performed by
instruction I′ (e.g., if it is a write, the walk has user and write permissions and
matches the effective address and the address space identifier). The instruction
I′ is executed normally. Oracle input wI does not matter.

8. A user mode step where I′ is an instruction from the instruction buffer and
matches the instruction address, and is a memory operation, and where wE is
a faulting walk from the TLB that matches the memory access (i.e., matches the
effective address and the address space identifier). Such steps are page faults and
thus jump to the interrupt service routine. Oracle input wI does not matter.

The instruction address of the step is the ddpc

ia = c.p(p).core.ddpc.
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Figure 3.5: A flowchart detailing the eight possible feasible steps. A
step is feasible if it can take a branch at each decision node (diamond)
of the flow chart and ends up in one of the eight leaf nodes (rectangle).
Steps that “get stuck” at a decision node are infeasible, e.g., a user
step where neither wI is a faulting matching walk nor I′ is a matching
instruction. Such steps do not occur in sane schedules and are never
simulated by the hardware. Nodes on the bottom correspond to nor-
mal instruction execution, nodes on the right correspond to interrupted
(but feasible) steps that do not execute an instruction (except for the
jisr node, which may execute an instruction in a continue interrupt). In
one case two branches are valid, i.e., when I′ matches the instruction
address and wI is a faulting walk that matches the instruction address.
In this case we follow the downwards-pointing branch.

We abbreviate the user mode

user = c.p(p).core.spr(mode)[0]
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Interrupt Index Shorthand
reset 0 reset
external 1 e
misalignment on fetch 2 mal f
page fault on fetch 3 p f f
illegal instruction 4 ill
misalignment on execute 5 male
page fault on execute 6 p f e
system call 7 sysc
overflow 8 ov f

Table 3.2: List of interrupts.

and the address space identifier

asid = c.p(p).core.spr(asid)[5 : 0].

The given instruction I′ is matching when the buffer maps the instruction address
to that instruction

Imatch = (ia, I′) ∈ c.p(p).IB.

As can be seen from the flow chart (Fig. 3.5), when we are in user mode and we
are not given a matching I′ from the instruction buffer, the step is only valid if we have
a page fault on fetch. In this case we say that we expect a page fault on fetch and write
ep f f

ep f f = user∧¬Imatch.

The external event vector is given by the interrupt request vector. However, inter-
rupts that are currently being serviced (i.e., have a bit raised in the in-service register)
mask all interrupt requests of interrupts with the same or lower priority

eevl = c.p(p).apic.IRRl ∧@l′ ≤ l.c.p(p).apic.ISRl′ .

We partially define the masked cause vector of interrupts, introducing misalignment
on fetch, and increasing the priority of page faults on fetch. An updated list of interrupts
is found in Table 3.2

We assume that configuration zero is the configuration after reset, and during the
rest of the execution reset is off

mcareset = 0

There is an external interrupt when the status register is not masking external in-
terrupts and the external event vector (taken from the IRR and the ISR) indicates an
external event

mcae = c.p(p).core.spr(sr)[1]∧∃l.eevl .

There is a misalignment on fetch when the instruction address is not word-aligned

mcamal f = mal2(ia).

There is a page fault on fetch when we expect a page fault on fetch (thus prioritizing I′

over wI in case both could be used for the step, cf. Fig. 3.5) and the instruction walk is
faulty or does not have sufficient permissions

mcap f f = ep f f ∧ (wI . f ault ∨¬wI .r. f ∨¬wI .r.u).
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The given instruction walk is valid when there is a page fault on fetch and the walk
matches the instruction address

wIvalid = mcap f f ∧ ia.ba = wE .va∧wI .asid = asid.

For instructions in user mode, we can already define some of the other interrupts

mca′ill = ill(I′)∨ restr(I′),

mca′male = mop(I′)∧mald(I′)(ea(corep(c), I′)),

mca′p f e = mop(I′)∧ (wE . f ault ∨¬wE .r.w∨¬wE .r.u).

The given walk for execution is valid when the instruction is a memory operation,
the walk matches the effective address, and produces a page fault or is complete

wEvalid ≡ mop(I′)∧ ea(corep(c), I′).ba = wE .va∧wE .asid = asid

∧ (mca′p f e∨ complete(wE)).

We encode the flowchart with predicate FC as follows

FC(c,x)≡ mcae∨mcamal f ∨¬user∨wIvalid

∨ Imatch∧ (mca′ill ∨mca′male∨¬mop(I′)

∨wEvalid)

and say that the step is feasible if the processor is running and is feasible according to
the flowchart

ΦP(c,x)≡ c.running(p)∧Φ
′
P(c,x).

A normal processor step only has to fetch in operating system mode (otherwise, we
use the instruction I′ or have an interrupt), and when there are no interrupts preventing
us from fetching. When we fetch, we fetch from the instruction address. We need to
be a little careful with the memory mapping. We wrap the memory mapping around all
addresses that go to the main memory

F(c,x) =

{
/0 user∨mcae∨mcamal f

mmp({ ia ·4}) o.w.

After fetching, we can define the instruction to be executed as either the instruction
given by the oracle input (for user mode steps), or the fetched instruction. In case
no instruction was fetched due to an interrupt, the instruction does not matter and we
default to I′

I =

{
I′ user∨mcae∨mcamal f

c.m(ia ·4) o.w.

We can now define the remainder of the cause vector, filling all bits behind the
overflow bit with zeros

mcaill = ill(I)∨user∧ restr(I),

mcamale = mop(I)∧mald(I)(ea(corep(c), I)),

mcap f e = user∧mop(I)∧ (wE . f ault ∨¬wE .r.w∨¬wE .r.u),

mcasysc = sysc(I),
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mcaov f = ov fp(c, I),

mcal = 0. l ∈ (ov f : 32)

Note that the instruction may be meaningless in case there is a page fault or in
case the instruction address is misaligned. In that case, all cause bits involving the
instruction are meaningless, too. We blend out all interrupt bits except for the one with
the highest priority. We call these the normalized cause vector

ncal = mcal ∧@l′ < l.mcal′ .

The step jumps to the interrupt service routine if any bit in the vector is raised

jisr = ∃l.ncal .

Compare-and-swap, memory fences, and the jump to the interrupt service routine
are fences

f ence(c,x) = cas(I)∨m f ence(I)∨ jisr.

The physical effective address is obtained in user mode by using the translation wE ,
and in operating system mode by simply taking the effective address directly

pea =

{
pma(wE ,ea(corep(c), I)) user
ea(corep(c), I) o.w.

When the instruction is a compare-and-swap or a load instruction, and there is
no interrupt, the instruction reads d(I) bytes starting at the physical effective address
through the buffer. In case of a read fence, we read the two special registers r f and w f

R(c,x).wba =


mmp({ pea ·d(I)}) ¬ jisr∧ (cas(I)∨ load(I))
{ r f ,w f } ¬ jisr∧ r f ence(I)
/0 o.w.

The step does not bypass the buffer while reading

R(c,x).bpa = /0.

We define as the load result the memory at the read address

lres = (c.m◦mmp)(pea ·d(I)).

To deal with the memory mapping for the prepared writes, we define later an auxil-
iary function PW ′ that ignores the memory mapping, and then put the memory mapping
in front of that function

PW (c,x).X = PW ′(c,x).X ◦mm−1
p .

Only uninterrupted store instructions buffer writes. Normally, we buffer the store
value; but if the physical effective address is the memory mapped address of the EOI
register (and we are storing four words), we use the binary encoding of the highest-
priority interrupt currently being serviced.

In this case we are signaling an end-of-interrupt

eoi≡ pea = aEOI ∧d(p) = 4.
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The ending interrupt is the interrupt with the highest priority currently being serviced

ei = min{ l | c.p(p).apic.ISRl } .

The buffered prepared writes are then easily defined as follows

¬ jisr∧ store(I)→ PW ′(c,x).wba(pea ·d(I)) =

{
ei32 eoi
sv(corep(c), I) o.w.

A write fence buffers a write to the special register w f

¬ jisr∧w f ence(I)→ PW ′(c,x).wba(w f ) = 1.

One can now easily see the interplay between write fences, other writes, and read
fences. A write fence enters the buffer and modifies w f ; a read fence reads from the
buffer and attempts to read both w f and r f , causing a partial hit until the write fence
and all writes before it leave the buffer.

If there is an interrupt, we distinguish between continue interrupts and other inter-
rupts. System call and overflow are the continue interrupts

continue = ncasysc∨ncaov f .

We define the intermediate core configuration (called c∗ in [Zah16]) either as the
core configuration reached by executing the instruction (using the transition function
δinstr of Definition 49 in the appendix) if there was no interrupt or in case of a continue
interrupt, or as the core configuration before the step

cI =

{
δinstr(corep(c), I, lres) ¬ jisr∨ continue
corep(c)

The processor returns from exception if there is no interrupt and the instruction is
eret

r f e = ¬ jisr∧ eret(I).

The delayed mode after the step is the mode before the step

PW ′(c,x).bpa((p, p,dm)) = c.p(p).core.spr(mode)[0].

We define the remainder of the prepared bypassing writes by case distinction on
whether there was a jump to the interrupt service routine, a return from exception, or
neither.

¬ jisr∧¬r f e: If there is no interrupt, we copy the pc into the dpc and the dpc into the
ddpc

PW ′(c,x).bpa((p, p,dpc)) = c.p(p).code.pc,
PW ′(c,x).bpa((p, p,ddpc)) = c.p(p).code.dpc.

All other core components are taken verbatim from the intermediate configura-
tion

PW ′(c,x).bpa((p, p,gpr,x)) = cI .gpr(x),
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PW ′(c,x).bpa((p, p,spr,x)) = cI .spr(x),

PW ′(c,x).bpa((p, p,pc)) = cI .pc.

In case of an invalidating instruction, the TLB is updated accordingly. For flush,
this means the TLB becomes empty.

f lush(I)→ PW ′(c,x).bpa((p, p,TLB)) = /0

For invalpg, we obtain the invalidated base address from the rd register

inval pga = c.p(p).core.gpr(rd(I)).ba

and the invalidated address space from the rs register

inval pgasid = c.p(p).core.gpr(rs(I))[5 : 0].

A walk is then deleted if it matches the address and ASID

del(w)≡ w.va = inval pga∧w.asid = inval pgasid.

The remaining TLB are all walks that are complete and not deleted

tlb′ = {w ∈ c.p(p).TLB | complete(w)∧¬del(w)} .

Only walks that are complete and not deleted remain

inval pg(I)→ PW ′(c,x).bpa((p, p,TLB)) = tlb′.

A compare-and-swap is successful if the load result (which by definition has
four bytes in the case of a cas instruction) equals the value of the GPR register
indicated by the rd field

scas≡ cas(I)∧ lres = c.p(p).core.gpr(rd(I)).

In case of a successful compare-and-swap, we modify the memory by writing
the store value to the physical effective address

scas→ PW ′(c,x).bpa(pea ·d(I)) = sv(corep(c), I).

One complication is the fact that writes to the EOI register of the APIC should
change the in-service register.

jisr: In the case of a jump to the interrupt service routine, we reset program counters
to the beginning of the interrupt service routine

PW ′(c,x).bpa((p, p,ddpc)) = 032,

PW ′(c,x).bpa((p, p,dpc)) = 432,

PW ′(c,x).bpa((p, p,pc)) = 832,

storing the program counters of the intermediate core configuration in the excep-
tion registers

PW ′(c,x).bpa((p, p,spr,edd pc)) = cI .dd pc,
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PW ′(c,x).bpa((p, p,spr,ed pc)) = cI .d pc,

PW ′(c,x).bpa((p, p,spr,epc)) = cI .pc.

We switch to operating system mode, storing the mode of the intermediate core
configuration in the emode register

PW ′(c,x).bpa((p, p,spr,mode)) = 032,

PW ′(c,x).bpa((p, p,spr,emode)) = cI .spr(mode).

We mask all interrupts, and store the previous mask in the exception register.

PW ′(c,x).bpa((p, p,sr)) = 032,

PW ′(c,x).bpa((p, p,esr)) = cI .spr(sr).

The exception cause is taken from the normalized cause

PW ′(c,x).bpa((p, p,eca)) = nca.

In the case of a page fault on execute, the exception data is the (virtual) effective
address

ncap f e→ PW ′(c,x).bpa((p, p,spr,edata)) = ea(corep(c), I).

In the case of an external interrupt, the exception data data is the binary encoding
of the lowest active index in the external event vector

ncae→ PW ′(c,x).bpa((p, p,spr,edata)) = (min{ l | eevl })32.

The GPR is taken from the intermediate configuration

PW ′(c,x).bpa((p, p,gpr,x)) = cI .gpr(x).

The instruction buffer is cleared

PW ′(c,x).bpa((p, p, IB)) = /0.

To be consistent with the ISA of Lutsyk [Lut] we do not invalidate any walks in
the TLB on jisr. This is different from the ISA of Schmaltz, which invalidates
walks corresponding to a faulty address in case of a page fault. This design
decision makes the implementation of the processor slightly simpler at the cost
of having to do one additional (very fast) invalpg instruction in case of a page
fault, but does not have any deeper reason.

Finally, in case of an external interrupt, the interrupt request and in-service reg-
isters are changed. The lowest active bit of the interrupt request register

k = min{ l | c.p(p).apic.IRRl }

is moved from the interrupt request register to the in-service register

PW ′(c,x).bpa((p, p, IRR))l = c.p(p).apic.IRRl ∧ (l 6= k),

PW ′(c,x).bpa((p, p, ISR))l = c.p(p).apic.ISRl ∨ (l = k).
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r f e: The exception registers are restored

PW ′(c,x).bpa((p, p,ddpc)) = c.p(p).core.spr(edd pc),

PW ′(c,x).bpa((p, p,dpc)) = c.p(p).core.spr(ed pc),

PW ′(c,x).bpa((p, p,pc)) = c.p(p).core.spr(epc),

PW ′(c,x).bpa((p, p,spr,mode)) = c.p(p).core.spr(mode),

PW ′(c,x).bpa((p, p,spr,sr)) = c.p(p).core.spr(esr).

We are returning from an external interrupt if the corresponding bit of the excep-
tion cause is raised

ree = c.p(p).core.spr(eca)e,

in which case the lowest active bit of the in-service register

k = min{ l | c.p(p).apic.ISRl }

is quenched

ree→ PW ′(c,x).bpa((p, p, ISR))l = c.p(p).apic.ISRl ∧ (l 6= k).

3.3.6 IPI Delivery
The oracle input for IPI delivery has the form

x = (apic−sendIPI, p) ∈ ΣP,(apic,p).

The IPI-relevant registers for this step are the interrupt command register, and the
APIC IDs of all other processors

AIPI(x) = { (apic, p, ICR)}∪
⋃
q
{ (apic,q,APICID)} .

The step is always feasible
ΦP(c,x)≡ 1.

It fetches the interrupt command register

F(c,x) = { (apic, p, ICR)} ,

yielding the command
cmd = c.p(p).apic.ICR.

The step is valid if the command has an active delivery status

ϒP(c,x) = cmd.ds.

Note that we ignore the destination mode since only physical destination mode is sup-
ported anyways.

The step reads the interrupt request registers and APIC ids of all other processors

R(c,x).bpa =
⋃
q
{ (p,q, IRR),(apic,q,APICID)} .
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We can now compute the targets of the interrupt

t = targetsp(c,cmd.dsh,cmd.dest).

The step lowers its own delivery status (bit 12)

PW (c,x).bpa((apic, p, ICR)) = cmd[31 : 13]0cmd[11 : 0].

We distinguish between the three categories of interrupts. A fixed interrupt vector
is sent when the delivery mode is 000

f ixed ≡ cmd.dm = 000.

An INIT interrupt is sent when the delivery mode is 101

init ≡ cmd.dm = 101.

A SIPI interrupt is sent when the delivery mode is 110

sipi≡ cmd.dm = 110.

In case of a fixed interrupt, the step raises the interrupt bit in the interrupt request
registers corresponding to the sent vector

f ixed∧q ∈ t→ PW (c,x).bpa((p,q, IRR))v ≡ c.p(q).apic.ICR∨ v = 〈cmd.vect〉.

In case of an INIT interrupt, the step raises the init request bit of the target processor

init ∧q ∈ t→ PW (c,x).bpa((p,q, initrr)) = 1,

and analogously for a SIPI interrupt

sipi∧q ∈ t→ PW (c,x).bpa((p,q,sipirr)) = 1.

In case of a SIPI interrupt, however, the SIPI-vector is also updated to the vector given
by the command register.

sipi∧q ∈ t→ PW (c,x).bpa((p,q,sipivect)) = cmd.vect.

One easily checks that those predicates – and thus whether processor q is inter-
rupted or not – indeed only depend on the IPI-relevant registers.

3.3.7 EOI Delivery
The oracle input for EOI delivery has the form

x = (apic−sendEOI, p) ∈ ΣP,(apic,p).

The step is always feasible
ΦP(c,x)≡ 1.

It fetches the interrupt command register

F(c,x) = { (apic, p,EOIpending)} ,
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and is valid if there are pending EOI signals

ϒP(c,x) = ∃l.c.p(p).apic.EOIpendingl .

In this case we define the ending interrupt as the interrupt with highest priority
among them

ei = min{ l | c.p(p).apic.EOIpendingl } .
The step reads the complete redirection table

R(c,x).bpa =
{
(ioapic, redirect,d)

∣∣ d < 2ID } ,
yielding redirection entries

redd = c.ioapic.redirect[d],

and lowers the remote interrupt request signal (bit 14) if the ending interrupt matches
the vector in the redirection table

redd .vect = ei32→ PW (c,x).bpa((ioapic, redirect)) = redd [31 : 15]0redd [13 : 0].

In any case, it lowers the pending signal of the ending interrupt

PW (c,x).bpa((apic, p,EOIpending))v = c.p(p).apic.EOIpendingv∧ v 6= ei.

3.3.8 INIT Interrupt
The oracle input for INIT interrupts has the form

x = (apic−initCore, p) ∈ ΣP,p.

The step is feasible if the processor has a pending INIT request

ΦP(c,x)≡ c.p(p).apic.initrr.

It fetches nothing
F(c,x) = /0

and is always valid
ϒP(c,x) = 1.

Unlike in the Schmaltz ISA, we define that INIT Interrupts act as a fence

f ence(c,x) = 1.

Otherwise, one can not send an INIT interrupt to a core in strong memory mode without
violating the order between buffered writes and shared writes.

The step does not read anything

R(c,x).bpa = /0.

The step prepares to clear the INIT request and lowers the running bit

PW (c,x).bpa((p, p, initrr)) = 0,
PW (c,x).bpa((p, p, running)) = 0.

Unlike the Schmaltz ISA, we do not modify the remaining core registers until the
SIPI.

129



3.3.9 SIPI Interrupt
The oracle input for SIPI interrupts has the form

x = (apic−startCore, p) ∈ ΣP,p.

The step is feasible if the processor has a pending SIPI request and is not running

ΦP(c,x)≡ c.p(p).apic.sipirr∧¬c.running(p).

It fetches nothing
F(c,x) = /0

and is always valid
ϒP(c,x) = 1.

The step does not read anything

R(c,x).bpa = /0.

The step prepares to clear the SIPI request and raises the running bit, resets the
program counters according to what is given in the SIPI vector, switches to operat-
ing system mode, and sets the cause register to a state corresponding to a reset (least
significant bit raised, other bits low)

PW (c,x).bpa((p, p,sipirr)) = 0,
PW (c,x).bpa((p, p, running)) = 1,

PW (c,x).bpa((p, p,ddpc)) = c.p(p).apic.sipivect◦024,

PW (c,x).bpa((p, p,dpc)) = c.p(p).apic.sipivect◦424,

PW (c,x).bpa((p, p,pc)) = c.p(p).apic.sipivect◦824,

PW (c,x).bpa((p, p,spr,mode)) = 032,

PW (c,x).bpa((p, p,spr,eca)) = 132.

Because a SIPI interrupt changes the mode registers, our software discipline will
require that the write buffers are empty at the beginning of a SIPI step. Note that a SIPI
interrupt can only be taken while the running bit is low. The running bit is only low
after reset and after taking an INIT interrupt. In each case the write buffers are empty.

3.3.10 Disk Steps
Steps that indicate steps of the disk have the form

x = d ∈ ΣP,disk.

Disk steps are always feasible

Φ(c,x) = 1.

They fetch the command and status register and the swap memory address

F(c,x) = {acmsr ·4}∪{asma ·4} .
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The step is a read if the first bit of the command and status register is raised

hdr ≡ c.m(acmsr ·4)[0]

and a write if the second bit is raised and the step is not a read (thus giving precedence
to reads in case both bits are raised)

hdw≡ c.m(acmsr ·4)[1]∧¬hdr.

The swap page address are the lower 28 bits of the swap memory address

spa = c.m(asma ·4)[27 : 0].

The step is valid if it is a read or a write

ϒ(c,x)≡ hdr∨hdw.

In case of a write, the step reads the buffer (so it can write it into swap memory); a
read step reads nothing

R(c,x).bpa =

{
{abuff · (4K)} hdw
/0 o.w.

In case of a write, the step copies the memory into the page corresponding to the
swap memory address. For this we define a new swap memory

sm(sma) =

{
c.m(abuff · (4K)) sma = spa
c.sm(sma) o.w.,

which we prepare to set as the new swap memory

hdw→ PW (c,x).bpa(sm) = sm

In case of a read, we instead copy the page from the swap memory to the buffer

hdr→ PW (c,x).bpa(abuff · (4K)) = c.sm(spa).

In each case, the step changes the state of the disk to idle by lowering the least two
bits and raising the status bit

PW (c,x).bpa(acmsr ·4) = 029100.

3.3.11 Sampling Device Interrupts
The oracle input for sampling the interrupt request of the disk has the form

x = (ioapic−sample,d) ∈ ΣP,ioapic.

The step is feasible if redirection table entry d is connected to a device, which in
this case is true only when d = 0

ΦP(c,x)≡ d = 0.
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It fetches the redirection table entry for that device

F(c,x) = {acmsr ·4,(ioapic, redirect,d)}

and thus obtains the redirection entry, which as mentioned before acts as an interrupt
command register

cmd = c.ioapic.redirect[d].

The step is valid if the disk has completed an operation (and thus bit 2 of the disk’s
command and status register — the status bit — is set), the interrupt is not masked in
the redirection table, and there is no remote interrupt request3

ϒP(c,x) = c.m(acmsr ·4)[2]∧¬cmd.mask∧¬cmd.rirr.

The step does not read anything

R(c,x).bpa = /0.

The step sets the delivery status (bit 12) to pending

PW (c,x).bpa((ioapic, redirect,0)) = cmd[31 : 13]1cmd[11 : 0].

3.3.12 Delivering Device Interrupts
The delivery of device interrupts is essentially identical to the delivery of normal inter-
rupts by local APICs, except that a) the command register is taken from the redirection
table and b) the delivery mode of the command register is ignored, and the remote
interrupt request is raised.

The oracle input for device interrupt delivery has the form

x = (ioapic−deliver) ∈ ΣP,ioapic.

The IPI-relevant registers for this step are the disk’s redirection table entry, and the
APIC IDs of all other processors

AIPI(x) = { (ioapic, redirect,0)}∪
⋃
q
{ (apic,q,APICID)} .

The step is always feasible
ΦP(c,x)≡ 1.

It fetches the redirection table entry

F(c,x) = { (ioapic, redirect,0)} ,

yielding the command
cmd = c.ioapic.redirect[0].

The step is valid if the command has an active delivery status

ϒP(c,x) = cmd.ds.

3To keep things simple for now, we use the command-and-status register of the disk directly. If there
were more devices, one would have to use a more flexible scheme for sampling device interrupts, e.g., by
using a fixed map of addresses acmsr(d).
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Note that we ignore the destination mode since only physical destination mode is sup-
ported anyways.

The step reads the interrupt request registers and APIC ids of all other processors

R(c,x).bpa =
⋃
q
{ (p,q, IRR),(apic,q,APICID)} .

We can now compute the targets of the interrupt

t = targetsp(c,cmd.dsh,cmd.dest).

The step lowers its own delivery status (bit 12) and raises the remote interrupt
request (bit 14)

PW (c,x).bpa((ioapic, redirect,0)) = cmd[31 : 15]1cmd[13]0cmd[11 : 0].

The step raises the interrupt bit in the interrupt request registers corresponding to
the sent vector

q ∈ t→ PW (c,x).bpa((p,q, IRR))v ≡ c.p(q).apic.ICR∨ v = 〈cmd.vect〉.

One easily checks that whether processor q is a target – and thus whether it is
interrupted or not – indeed only depends on the IPI-relevant registers.

3.3.13 Passive Steps of APIC
We now define the write-triggered semantics of the APIC device, i.e., we define the
function

δDEV,(apic,p) : KDEV,(apic,p)×ΣDEV,(apic,p)→ KDEV,(apic,p).

Let c ∈ KDEV,(apic,p) be a configuration of the device, and w ∈ ΣDEV,(apic,p) be an
input to the device. By definition, c is a valuation of the device addresses

c : Val(ADEV,(apic,p)),

and w is a more up-to-date partial valuation of the device addresses

w : PVal(ADEV,(apic,p)).

We will define a new device configuration c′

c′ = δDEV,(apic,p)(c,w).

We look at the shape of w and treat one interesting special case. In all other cases,
we simply apply the update as if the device was a normal memory region. Because of
the way our machine is built (aligned memory accesses, etc.), nothing can go wrong;
it is, for example, impossible to write half a word into the end-of-interrupt register and
another half of the word into the APICID, or to write to the EOIpending register.

The special case is when w is modifying the first byte of the EOI register. In this
case we interpret the value of the update w as an interrupt vector for which a pending
end-of-interrupt must be signaled.
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aEOI ∈ Dom(w): We raise the EOIpending signal corresponding to the interrupt sig-
naled by the value of the write

c′((apic, p,EOIpending))v = c′((apic, p,EOIpending))v∨ v = 〈w(aEOI)〉.

All other values are unchanged

a 6∈ { (apic, p,EOIpending)}→ c′(a) = c(a).

Otherwise: We simply apply the update directly

c′(a) =

{
w(a) a ∈ Dom(w)
c(a) o.w.

3.3.14 Passive Steps of IO APIC
We now define the write-triggered semantics of the IO APIC device, i.e., we define the
function

δDEV,ioapic : KDEV,ioapic×ΣDEV,ioapic→ KDEV,ioapic.

Let c ∈ KDEV,ioapic be a configuration of the device, and w ∈ ΣDEV,ioapic be an input
to the device. By definition, c is a valuation of the device addresses

c : Val(ADEV,ioapic),

and w is a more up-to-date partial valuation of the device addresses

w : PVal(ADEV,ioapic).

We will define a new device configuration c′

c′ = δDEV,ioapic(c,w).

We look at the shape of w and treat two interesting special cases. In all other cases,
we simply apply the update as if the device was a normal memory region.

The special cases are when w is modifying the WIN or the regsel registers.

{ (ioapic, regsel)} ⊆ Dom(w): We select the redirection table entry corresponding to
the value given by the write, using only the least significant ID bits of the value
written to the regsel register

d = 〈w(ioapic, regsel)[ID−1 : 0]〉,

and copy its value into the WIN register

c′((ioapic,win)) = c((ioapic, redirect,d)).

The register selection register is taken from the update w

c′((ioapic, regsel)) = w((ioapic, regsel)).

All other values are unchanged

a 6∈ { (ioapic,win),(ioapic, regsel)}→ c′(a) = c(a).
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{ (ioapic,win)} ⊆ Dom(w)∧{ (ioapic, regsel)} 6⊆ Dom(w): We select the redirection
table entry given by the current value of the regsel register

d = 〈c(ioapic, regsel)[ID−1 : 0]〉,

and copy the value written to the WIN register into that redirection table entry

c′((ioapic, redirect,d)) = w((ioapic,win)),

and to the WIN register

c′((ioapic,win)) = w((ioapic,win)).

All other values are unchanged

a 6∈ { (ioapic,win),(ioapic, redirect,d)}→ c′(a) = c(a).

Otherwise: We first apply the update directly. However, if the port that is currently
viewed in the WIN register is changed, we need to reflect that change in the WIN
register. We select the redirection table entry given by the current value of the
regsel register

d = 〈c(ioapic, regsel)[ID−1 : 0]〉,

and change the value of the overwritten address, and in case a byte of the redi-
rection table entry d is overwritten, also of the WIN register

c′(a) =


w(a) a ∈ Dom(w)
w(b) ∃r.a = (ioapic,win)r ∧b = (ioapic, redirect,d)r ∈ Dom(w)
c(a) o.w.

Note that this fixes a bug in the MIPS 86 ISA of Sabine Schmaltz, where changes
made to the redirection table by IO APIC steps were not reflected in the WIN
register.
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Chapter 4

Write Buffer Reduction

In this chapter, we define the software discipline for write buffer reduction. To do so,
we need to introduce some auxiliary functions and information. We then prove that any
program in the high-level semantics that obeys the software discipline can be executed
on the low-level machine without introducing any new computations. The proof has
three parts:

1. We show that a certain technical definition of races really catches all races,

2. We show that we can keep the two machines — high-level and low-level —
in sync as long as no shared reads are executed while a shared write is being
buffered by another processor,

3. We show that we can reorder all schedules so that no shared reads are executed
while a shared write is being buffered by another processor.

4.1 Enhancing the Buffer
We now enhance the buffer with considerable ghost information. In particular, we keep
track for each unit i and each entry in the buffer of unit i the point at which it was added
to the buffer. We use a sequence of functions issueM , defined as follows

issueM[s]0(i) = ε

issueM[s]t+1(i) = OpiM(t)(issueM[s]t(i), t).

That this function indeed keeps track of the right timestamps is given by the following
lemma.

Lemma 123. The write buffer can be expressed in terms of the issued timestamps.[
BWM(t ′)

∣∣ t ′ ∈ issuet
M(i)

]
= wbt

M(i).

Proof. By straightforward induction on t. The base case is trivial. In the inductive step,
we commute the list comprehension using Lemma 36 with δ := OpiM(t), f := BWM ,
l := issuet

M(i), and x := t, and solve the claim using the induction hypothesis[
BWM(t ′)

∣∣ t ′ ∈ issuet+1
M (i)

]
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=
[

BWM(t ′)
∣∣ t ′ ∈ OpiM(t)(issuet

M(i), t)
]

= OpiM(t)(
[

BWM(t ′)
∣∣ t ′ ∈ issuet

M(i)
]
,BWM(t)) L 36

= OpiM(t)(wbt
M(i),BWM(t)) IH

= wbt+1
M (i).

Each sequence of issued writes is monotone in two ways: 1) it is sorted (the head
is the minimum element), and 2) once a timestamp leaves the sequence, it never enters
again. Furthermore, the elements in the buffer are all less than the current timestamp.
We formalize these properties but we do not show the proofs.

Lemma 124.
e+1 < |issuet

M(i)| → issuet
M(i)e < issuet

M(i)e+1.

Lemma 125.
∀t ∈ (t ′ : k].t ′ ∈ issuek

M(i)→ t ′ ∈ issuet
M(i).

Lemma 126.
e < |issuet

M(i)| → issuet
M(i)e < t.

We refer to these properties informally as “monotonicity of the sequence of issued
writes”.

The write buffer has a hit iff there is an issued write with that domain.

Lemma 127.

hit(A,wbt
M(i)) ⇐⇒ ∃t ′ ∈ issuet

M(i).Dom(BWM(t ′)) ∩̇A

Proof. Obviously a hit for A exists in a buffer iff there is a write in the buffer the
domain of which is intersecting with A. The claim follows with Lemma 123

hit(A,wbt
M(i)) ⇐⇒ ∃w ∈ wbt

M(i).Dom(w) ∩̇A

⇐⇒ ∃t ′ ∈ issuet
M(i).Dom(BWM(t ′)) ∩̇A. L 123

Lemma 128. If the steps from t to k are not write buffer steps of unit i

∀t ′ ∈ [t : k).s(t ′) 6∈ ΣWB,i

then the sequence of issued writes of unit i at l ∈ [t : k] is a prefix of the sequence at k

∃q.issuek
↓(i) = issuel

↓(i)◦q.

Proof. By downwards induction on l, starting at k. The base case is trivial with q := ε .
In the inductive step l→ l−1, we have a suffix q that has been added

issuek
↓(i) = issuel

↓(i)◦q.

Since step l−1 ∈ [t : k) is not a write buffer step of unit i

s(l−1) 6∈ ΣWB,i
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the operation performed by it is a push or noop

Opi↓(l−1) ∈ { push,noop} .

With Lemma 42 we obtain a suffix q′ which is added in step l− 1, and the claim
follows with q := q′ ◦q

issuek
↓(i) = issuel

↓(i)◦q

= (issuel−1
↓ (i)◦q′)◦q L 42

= issuel−1
↓ (i)◦ (q′ ◦q).

When reordering a schedule, the sequences of issued writes are also reordered,
since the steps in which the writes were issued have been moved. We lift the function
mvO to sequences of numbers

mvO(l) = [mvO(t ′)|t ′ ∈ l].

4.2 Shared Accesses and Global Steps
We consider a program annotation that marks some accesses as shared. The annotation
comes with two proof obligations for the system programmer: potential races (i.e.,
memory accesses that in some schedule are part of a race) have to be marked as shared,
and a processor must not issue a shared read while a shared write is in its buffer.

The decision to do a shared access is made before reading the memory, and we
assume an annotation intention to do a shared access

iShi : Val(APR,i)→ B.

This roughly corresponds to volatile bits in [CS10].
Our analysis of steps has to be more fine-grained. Our flushing discipline intro-

duces flushes before certain shared reads. Consider a step that fetches a shared store
instruction. This instruction is considered a read, because it is fetching from memory,
and it is also considered shared, because the store portion of it is shared. A naive for-
malization would require us to insert a slow memory barrier before the shared store.
However, the portion of the step that is potentially racing is the store instruction, not
the fetch, and thus no memory barrier is needed. To distinguish between steps where
a non-racing read is executed as well as a potentially racing (shared) store from those
where the read is also potentially racing (and a memory barrier is needed), we introduce
an annotation intention to do a shared read

iShR : Val(APR,i)→ B

which is specifically used to mark steps that perform a potentially racing read.
We require that every step that is intending to do a shared read is also intending to

do a shared access
iShR(core)→ iShi(core). (4.1)
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Steps that read from or modify devices or interrupt registers of other units, or mod-
ify their own interrupt registers, are always shared. We call these steps volatile. We
distinguish between volatile reads

volRM(c,x)≡ inM(c,x) ∩̇ADEV ∪
⋃

i 6=uM(c,x)

AIPR,i.

and volatile writes

volWM(c,x)≡ outM(c,x) ∩̇ADEV ∪
⋃

i

AIPR,i.

A step is volatile if it is a volatile read or a volatile write

volM(c,x) = volRM(c,x)∨ volWM(c,x).

Steps are shared if they have the intention to be shared or are volatile, but steps in
weak-memory mode and non-processor steps are also shared:

ShM(c,x) =

{
iShi (coreM(c,x))∨ volM(c,x)∨¬SCM(c,x) x ∈ ΣP,i

1 o.w.

A step is a shared read if it has the intention to be a shared read or is a volatile read,
but steps in weak memory mode are also shared reads:

ShRM(c,x) =

{
iShR(coreM(c,x))∨ volRM(c,x)∨¬SCM(c,x) x ∈ ΣP,i

0 o.w.

Intuitively, we consider all steps that the operating system programmer can not
control, such as write buffer steps and user program steps, as shared. The reason for
this is that they might be racing or not racing other steps without any control of the
system programmer. We do know that write buffer steps are never reads, and thus do
not consider them shared reads. For the operating system, we only consider those steps
as shared which are racing or volatile. We will sometimes use the term annotation of
the step c,x to refer to ShM(c,x) and/or ShRM(c,x).

Lemma 129.
ShRM(c,x)→ ShM(c,x).

Proof. The claim is solved easily with the fact that an intention to do a shared read
always implies the intention to do a shared access. We do not show the proof.

Volatile steps are always shared.

Lemma 130.
volM(c,x)→ ShM(c,x).

Proof. The proof distinguishes between processor and other steps.

x ∈ ΣP,i: If a processor step is volatile it is shared

ShM(c,x) = . . .∨ volM(c,x)∨ . . .= 1,

which is the claim.
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x 6∈ ΣP,i: Non-processor steps are always shared.

Lemma 131.
volRM(c,x)→ ShRM(c,x).

Proof. The proof distinguishes between processor and other steps.

x ∈ ΣP,i: If a processor step is a volatile read it is a shared read

ShRM(c,x) = . . .∨ volRM(c,x)∨ . . .= 1,

which is the claim.

x 6∈ ΣP,i: By definition, non-processor only access the core registers

inM(c,x) =CM(c,x)∪FM(c,x)∪RM(c,x)

=CM(c,x)∪ /0∪ /0
=CM(c,x)

⊆ APR,i

which do not intersect with device registers or interrupt registers of other units

APR,i 6 ∩̇ ADEV ∪
⋃

i 6=uM(c,x)

AIPR,i.

We conclude that the interrupts do not intersect with those registers

inM(c,x) 6 ∩̇ ADEV ∪
⋃

i6=uM(c,x)

AIPR,i,

and thus by definition of volR there is no volatile read

¬volRM(c,x),

which is a contradiction.

We conclude that all accesses to devices are shared.

Lemma 132.
inM(c,x) ∩̇ADEV ∪

⋃
i6=uM(c,x)

AIPR,i→ ShRM(c,x).

Proof. The step is by definition of volR a volatile read

volRM(c,x),

and by Lemma 131 it is a shared read

ShRM(c,x).
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Lemma 133.

outM(c,x)∪devinM(c,x) ∩̇ADEV ∪
⋃

i

AIPR,i→ ShM(c,x).

Proof. The device inputs are a subset of the outputs

devinM(c,x) = dc(WSM(c,x))

⊆WSM(c,x)∪dc(WSM(c,x))

= idc(WSM(c,x)) = outM(c,x),

and thus the outputs or inputs of the step access the device or interrupt registers

outM(c,x) ∩̇ADEV ∪
⋃

i

AIPR,i.

By definition of volW and vol such a step is a volatile write and thus volatile

volM(c,x) = volWM(c,x) = 1.

The claim follows with Lemma 130

ShM(c,x).

We say that a step is global when it is a shared read or a memory write that is
shared

GM(c,x) = ShRM(c,x)∨mwriteM(c,x)∧ShM(c,x).

This includes write buffer steps that commit non-shared writes. We will later reorder
the schedule in a way that keeps the order of global steps intact. This corresponds
to the intuition that on TSO, all processors agree on the order of stores (as they reach
memory); therefore it is not surprising that in TSO an equivalent sequentially consistent
execution can be found that does not reorder any stores. Since our machine model is
slightly weaker than TSO, we will not get around changing the order of some write
operations: if a processor issues a bypassing non-shared write while it has a buffered
write, the bypassing non-shared write may be delayed until the buffered write can leave
the write buffer.

We say that the step is local and write LM(c,x) if it is not global

LM(c,x) = ¬GM(c,x).

A local step has no victims.

Lemma 134.
LM(c,x)→ victimsM(c,x) = /0.

Proof. Assume for the sake of contradiction that there is a victim j

j ∈ victimsM(c,x).

By Lemma 98 we obtain that step t modifies the processor registers of unit j and is
made by a different unit

outM(c,x) ∩̇APR, j ∧uM(c,x) 6= j.
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The processor registers are accessible for unit j

outM(c,x) ∩̇ACC j.

With Lemma 121 we obtain that the step is a memory write

mwriteM(c,x).

By Lemma 94 step t is modifying interrupt registers

outM(c,x) ∩̇AIPR

and by Lemma 133, step t must be shared

ShM(c,x).

Since it is shared and a memory write, it is a global step

GM(c,x)

which is a contradiction.

A local step is also IPI-valid

Lemma 135.
LM(c,x)→ ∆IPIM(c,x).

Proof. By Lemma 134 the step has no victims

victimsM(c,x) = /0.

It is thus vacuously true that all write buffers of all victims are empty, and the claim
follows

∆IPIM(c,x) =
∧

i∈victimsM(c,x)

. . .

=
∧
i∈ /0

. . .

= 1.

Write buffer steps are global in the low-level machine.

Lemma 136.
s(c,x) ∈ ΣWB,i→ G↓(c,x).

Proof. By Lemma 123, the head of the write buffer was issued at some time and is thus
non-empty

hd(wbt
↓(i)) = BW↓(hd(issuet

↑(i))) 6= /0,

and write buffer entries are always to the bufferable addresses

Dom(hd(wbt
↓(i)))⊆ BA,
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which do not contain normal processor registers

BA 6 ∩̇ ANPR,i.

We conclude that the domain of the committed write is not contained in the normal
processor registers

Dom(hd(wbt
↓(i))) 6⊆ ANPR,i.

The low-level machine uses low-level semantics

LL↓(c,x)

and therefore the executed write is exactly the committed write

W↓(c,x) = hd(wbt
↓(i)).

Therefore the outputs subsume the domain of the committed write

Dom(hd(wbt
↓(i))) = Dom(W↓(c,x))⊆ idc(Dom(W↓(c,x))) = out↓(c,x),

and the outputs are also not contained in the normal processor registers

out↓(c,x) 6⊆ ANPR,i.

Therefore the step is a memory write

mwrite↓(c,x).

Write buffer steps are by definition shared

Sh↓(c,x),

and shared memory writes are by definition global

G↓(c,x),

which was the claim.

Local steps never modify IPI-relevant registers.

Lemma 137.
LM(c,x)→ outM(c,x) 6 ∩̇ AIPI(x)

Proof. Assume for the sake of contradiction that the step modifies IPI-relevant registers

outM(c,x) ∩̇AIPI(x).

IPI-relevant registers are interrupt or device registers

AIPI(x)⊆ AIPR∪ADEV

and we conclude that the step modifies those

outM(c,x) ∩̇AIPR∪ADEV .
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Clearly the step does not only modify normal processor registers

outM(c,x) 6⊆ ANPR,i

and is thus a memory write
mwriteM(c,x).

Furthermore the step modifies interrupt or device registers and is by Lemma 133
shared

ShM(c,x),

and thus by definition global
GM(c,x),

which is a contradiction.

4.3 Input and Output Correctness
Under correctness of inputs and outputs we understand that the value of inputs deter-
mine the decisions made by a step, and only outputs are changed by a step. We show
this by a series of trivial lemmas. We do not show proofs.

Lemma 138.
A 6 ∩̇ outM(c,x)→ c �M x.m =A c.m.

Lemma 139.
ASC,i 6 ∩̇ outM(c,x)→ SCiM(c�M) = SCiM(c).

Lemma 140.
ν =A ν

′∧ν =A′ ν
′→ ν =A∪A′ ν

′.

Lemma 141.
ν =A ν

′∧A′ ⊆ A→ ν =A′ ν
′.

Lemma 142. When two configurations agree on the value of local inputs during a step

c.m =CM(c,x) c′.m,

then they agree on all functions X which are defined in terms of the core, i.e., for

X ∈ { core,C,F,Φ,Sh,ShR,SC }

we have
XM(c,x) = XN(c′,x).

Lemma 143. When two configurations agree on the local inputs and fetched inputs
during a step

c.m =CM(c,x)∪FM(c,x) c′.m,

they agree on all functions X which are defined in terms of those values, i.e., for

X ∈ { f etch,R,ϒ, I, in,read }

and for
X ∈ { core,C,F,Φ,Sh,ShR,SC }

we have
XM(c,x) = XN(c′,x).
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Lemma 144. When two configurations strongly agree on the inputs during a step

c =x
M,N c′,

then they agree on all of the functions X below

XM(c,x) = XN(c′,x).

1. All functions X which are defined in terms of core, fetched and read addresses,
and the local buffer, i.e., for

X ∈ {PW,BW,Opi,∆,Γ}

and for
X ∈ { f etch,R,ϒ, I, in,read }

and for
X ∈ { core,C,F,Φ,Sh,ShR,SC }

2. When the machines also agree on whether they are using low-level semantics for
the step

LLM(c,x) = LLN(c′,x),

also on all functions that additionally depend on the machine-type

X ∈ {W,WS,out,mwrite,devin,victims,G} .

Proof. We only show the second claim, and only in the case that the machine types
are different. The other claims are all trivial. Assume thus that the machine types are
different but the machine semantics are the same

N 6= M∧LLM(c,x) = LLN(c′,x),

and that X is one of the functions that depend on the the machine type

X ∈ {W,WS,out,mwrite,devin,victims,G} .

Note that since low-level machines always have low-level semantics, and at least
one of the machines is a low-level machine, that machine is using low-level semantics

LLM(c,x)∨LLN(c′,x).

Since the machines agree on their machine semantics, the machines must both be in
low-level semantics

LLM(c,x) = LLN(c′,x) = 1.

We now show that the machines execute the same writes by case distinction on x.

x ∈ ΣP,i: Both machines execute exactly the bypassing portion of the prepared writes.
The claim follows with Claim 1 for X := PW

WM(c,x) = PWM(c,x).bpa

= PWN(c′,x).bpa Claim 1
=WN(c′,x).
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x ∈ ΣWB,i: Both steps commit the head of the write buffer, which is the same

WM(c,x) = hd(c.wb(i)) = hd(c′.wb(i)) =WN(c′,x).

Now that we have that the steps execute the same writes, the remaining claims
trivially follow

WSM(c,x) = Dom(WM(c,x)) = Dom(WN(c′,x)) =WSN(c′,x),

outM(c,x) = idc(WSM(c,x)) = idc(WSN(c′,x)) = outN(c′,x),

mwriteM(c,x)≡ outM(c,x) 6⊆ ANPR,uM(c,x)

≡ outN(c′,x) 6⊆ ANPR,uN(c′,x)

≡ mwriteN(c′,x),

devinM(c,x) = dc(WSM(c,x)) = dc(WSN(c′,x)) = devinN(c′,x),

victimsM(c,x) = { i | APR,i ∩̇Dom(WM(c,x))∧ x 6∈ ΣP,i∪ΣWB,i }
=
{

i
∣∣ APR,i ∩̇Dom(WN(c′,x))∧ x 6∈ ΣP,i∪ΣWB,i

}
= victimsN(c′,x),

GM(c,x) = ShM(c,x)∧mwriteM(c,x)∨ShRM(c,x)

= ShN(c′,x)∧mwriteN(c′,x)∨ShRN(c′,x)

= GN(c′,x)

Strong agreement is in fact an equivalence relation.

Lemma 145.

c =x
M,M c,

c =x
M,N c′→ c′ =x

N,M c,

c =x
M,N c′∧ c′ =x

N,O c′′→ c =x
M,O c′′.

Proof. We only show symmetry, and only the claim for the agreement between mem-
ories on core and fetched registers when x ∈ ΣP,i; the remaining goals are either trivial
or analogous.

Assume for that case that the memories agree on the core and fetched registers in
step c,x of machine M

c.m =CM(c,x)∪FM(c,x) c′.m,

and we have to show that they also agree on the core and fetched registers in step c′,x
of machine N

c.m !
=CN(c′,x)∪FN(c′,x) c′.m.

We wish to rewrite C with Lemma 59 and F with Lemma 61, which would immediately
solve the goal. The only thing we still need to show is that the steps have the same cores

coreM(c,x) !
= coreN(c′,x),

which is Lemma 142.

Lemma 146.

¬SCM(c,x)∧ c.m =CM(c,x) c′.m→ LLM(c,x) = LLN(c′,x).
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Proof. By Lemma 142 the second machine also makes a weak memory mode step

¬SCN(c′,x).

Independently of the machine type, weak memory mode steps always use low-level
machine semantics. Thus both machines make a low-level machine step

LLM(c,x) = LLN(c′,x) = 1.

Lemma 147.
c.m =CM(c,x) c′.m→ LLM(c,x) = LLM(c′,x).

Proof. We only show the proof for the high-level machine

M =↑,

since the claim trivially holds in the low-level machine. By Lemma 142, the steps use
the same memory mode

SCM(c,x) = SCM(c′,x)

and the claim follows

LLM(c,x) = ¬SCM(c,x) = ¬SCM(c′,x) = LLM(c′,x).

We can show that if two configurations strongly agree when stepped with some
input x, and they agree on the state of the device inputs during the step, they have the
same effect on the configuration and thus have the same outputs

c =x
M c′∧ c.m =devinM(c,x) c′.m→ c �M x.m =outM(c,x) c′ �M x.m.

This turns out not to be strong enough. We need a generalization that talks about
configurations where some of the devices modified by the step were not in the same
state. In this case, we can not show that they are in the same state after the step.

Lemma 148.

c =x
M c′∧ c.m =devinM(c,x)\dc(B) c′.m→ c �M x.m =outM(c,x)\dc(B) c′ �M x.m.

Proof. The device closure over the outputs minus the device closure of B is the same
as the device inputs minus the device closure of B. With Lemmas 7, 10, 18 and 20 we
obtain

dc(outM(c,x)\dc(B)) = dc(outM(c,x))\dc(dc(B)) L 10, 20
= dc(outM(c,x))\dc(B) L 18
= dc(idc(WSM(c,x)))\dc(B)

= dc(WSM(c,x))\dc(B) L 19
= devinM(c,x)\dc(B).

We conclude with the assumption that the memories agreed on the latter that they also
agreed on the former

c.m =dc(outM(c,x)\dc(B)) c′.m.
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With Lemma 23 we obtain further that the outputs without the device closure of B
is closed

closed(outM(c,x)\dc(B)).

The claim follows with Lemmas 5 and 144

c �M x.m = c.m~WM(c,x)

=outM(c,x)\dc(B) c′.m~WM(c,x) L 5

= c′.m~WM(c′,x) L 144, 147
= c′ �M x.m.

Putting these together we obtain the following lemma.

Lemma 149. When two configurations agree about a set of addresses A, except for the
device closure of B, and they strongly agree on the inputs, and the complement of A is
contained in the inclusive device closure of B

c.m =A\dc(B) c′.m∧ c =x
M c′∧ (A\A)⊆ idc(B),

then the configurations after the step agree on A and the outputs of the step, except for
the device closure of B

c �M x.m =(A∪outM(c,x))\dc(B) c′ �M x.m.

Proof. Because set difference can be distributed over set union we obtain the following

(A∪outM(c,x))\dc(B) = ((A\outM(c,x))∪outM(c,x))\dc(B)

= ((A\outM(c,x))\dc(B))∪ (outM(c,x)\dc(B))

= ((A\dc(B))\outM(c,x))∪ (outM(c,x)\dc(B)).

Therefore the claim is equivalent to the following

c �M x.m !
=((A\dc(B))\outM(c,x))∪(outM(c,x)\dc(B)) c′ �M x.m.

We also obtain that the device inputs minus the device closure of B are a subset of
A minus the device closure of B

(A\A)⊆ idc(B)

=⇒ dc(A\A)⊆ dc(idc(B)) L 9
=⇒ ADEV ∩ (A\A)⊆ dc(B) L 2
=⇒ ADEV \A⊆ dc(B)

=⇒ ADEV ⊆ dc(B)∪A

=⇒ devinM(c,x)⊆ A∪dc(B)

=⇒ devinM(c,x)\dc(B)⊆ A\dc(B).

By Lemma 148 we obtain the following

c �M x.m =outM(c,x)\dc(B) c′ �M x.m.
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With Lemma 140 it now suffices to show that the addresses which are not outputs
are correct

c �M x.m !
=(A\dc(B))\outM(c,x) c′ �M x.m.

By Lemma 147 both machines have the same machine-mode

LLM(c,x) = LLM(c′,x)

and by Lemma 144, the outputs of the two steps are the same

outM(c,x) = outM(c′,x).

By applying Lemma 138 twice we can now reduce the claim to showing that the con-
figurations agree on the non-outputs before the step

c �M x.m =(A\dc(B))\outM(c,x) c.m !
=(A\dc(B))\outM(c,x) c′.m =(A\dc(B))\outM(c,x) c′ �M x.m.

With Lemma 141 we reduce the claim to the following

c.m !
=A\dc(B) c′.m,

which we have by assumption.

We will often wish to apply Lemmas 142, 143, and 144 in situations where the
functions X are applied after reordering, and usually on the same machine. The fol-
lowing theorems apply exactly in situations like that. We only give a proof for the first
one, the others are analogous. For Lemma 144, we make use of the fact that the lemma
proves more when the machine types are the same.

Lemma 150. Let O1,O2 be sequences of operators and t1, t2 be the position of some
step after the corresponding reorderings

sO1(t1) = sO2(t2),

and the two configurations before the step strongly agree during that step

cMOt1
1 =

sO1(t1)
M cMOt2

2 ,

then the two computations agree on the following functions X which are used during
the step, i.e., for

X ∈ {PW,Opi,W,WS,out,victims,mwrite,read,∆,Γ,L}

and for
X ∈ {R,ϒ, I, in}

and for
X ∈ { core,C,F,Φ,Sh,ShR,SC }

we have
XMO1(t1) = XMO2(t2).
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Proof. We simply unfold notations and rewrite with the equality of the steps

XMO1(t1) = XM(cMOt1
1 ,sO1(t1)),

XMO2(t2) = XM(cMOt2
2 ,sO2(t2))

= XM(cMOt2
2 ,sO1(t1)),

and thus rewrite the claim to the following

XM(cMOt1
1 ,sO1(t1))

!
= XM(cMOt2

2 ,sO1(t1)).

We now obtain with Lemma 147 that the steps are done in the same machine-mode

LLM(c,x) = LLM(c′,x).

The claim is now Lemma 144.

Lemma 151. Let O1,O2 be sequences of operators and t1, t2 be the position of some
step after the corresponding reorderings

sO1(t1) = sO2(t2),

and the two configurations before the step agree on the local inputs during that step

mMOt1
1 =CMO1(t1) mNOt2

2 ,

then the two computations agree on all functions X which are made before fetching,
i.e., for

X ∈ { core,C,F,Φ,Sh,ShR,SC }

we have
XMO1(t1) = XNO2(t2).

Lemma 152. Let O1,O2 be sequences of operators and t1, t2 be the position of some
step after the corresponding reorderings

sO1(t1) = sO2(t2),

and the two configurations before the step agree on the local inputs and fetch inputs
during that step

mMOt1
1 =CMO1(t1)∧FMO1(t1) mNOt2

2 ,

then the two computations agree on all functions X which are made before loading,
i.e., for

X ∈ {R,ϒ, I, in}

and for
X ∈ { core,C,F,Φ,Sh,ShR,SC }

we have
XMO1(t1) = XNO2(t2).

Forwarding is only dependent on the portion of write buffers that modifies the for-
warded region, and the memory at the forwarded region.
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Lemma 153. When two valuations agree on some range of addresses A

ν =A ν
′

and write buffers w1,w2 are equal except for a prefix w not used by A

w1 = w◦w2∧¬hit(A,w),

then they have the same forwarding on A

ν}w1 =A ν
′}w2.

Proof. The claim follows with Lemmas 52 and 53

ν}w1 =A ν
′}w2

⇐⇒ ν}(w◦w2) =A ν
′}w2

⇐⇒ (ν}w)}w2 =A ν
′}w2

⇐= (ν}w) =A ν
′ L 53

⇐= ν =A ν
′. L 52

Lemma 154. When two configurations agree on some range of addresses A

c.m =A c′.m

and for processor steps write buffers are equal except for a portion not used by for-
warding

x ∈ ΣP,i→ c.wb(i) = w◦ c′.wb(i)∧¬hit(A,w),

then they have the same forwarding system on A

f msM(c,x) =A f msN(c′,x).

Proof. By case distinction on x.

x ∈ ΣP,i: The claim follows with Lemma 153

f msM(c,x) = f msiM(c)

= c.m}c.wb(i)

=A c′.m}c′.wb(i) L 153
= f msiN(c′)

= f msN(c′,x).

x ∈∈ ΣWB,i: Both are empty by definition

f msM(c,x) = /0 = f msN(c′,x).
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4.4 Types of Races
Races are situations in which two concurrent steps access an address, and at least one
of the accesses is modifying the value of the address. This gives rise to three types
of races: write followed by read, write followed by write, and read followed by write.
We can further distinguish between races in the main memory and races in devices
(including the APIC).

Formally, steps t and t ′ are a write-read race in A if the outputs of t intersect with
the inputs of t ′

WRA
M(t, t ′)≡ outM(t)∩ inM(t ′) ∩̇A.

They are a write-write race in A if the outputs intersect instead

WW A
M(t, t ′)≡ outM(t)∩outM(t ′) ∩̇A.

They are a read-write race in A if the inputs of t intersect with the outputs of t ′

RW A
M(t, t ′)≡ inM(t)∩outM(t ′) ∩̇A.

When the race is in any register, i.e., A =A, we drop the superscript. Formally, for
X ∈ {WR,RW,WW } we have

XM(t, t ′) = XA
M (t, t ′).

We add two more types of races, both of which are a subcases of the write-read
race.

The first is code modification. Step t modifies code of step t ′ if it writes into the
fetched addresses of that step

CMM(t, t ′)≡ outM(t) ∩̇FM(t ′).

We also consider situations where outputs of a step have been overwritten by other
steps, in which case we might no longer see that a write-read race originally took place.
In such a case, one might be able to drop the writing step from the schedule without
affecting the steps behind it, even though there is a write-read race. We call situations in
which the visible outputs still overlap with the inputs of the later step visible write-read
races

V RM(t, t ′)≡ voutM(t, t ′) ∩̇ inM(t ′).

Note that this is the only type of race which makes only sense if t < t ′, due to the fact
that the visible outputs do not make sense in the other case.

We state four simple lemmas about races. We do not show proofs. In the high-level
machine, sequentially consistent buffered code modifications are write-read races in
the fetch region.

Lemma 155.
SC↑(t)∧CM↑(t, t ′)→WR

idc(F↑(t ′))
↑ (t, t ′).

A race in some memory region is a race.
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Lemma 156.
X ∈ {WR,RW,WW }∧XA

M(t, t ′)→ XM(t, t ′).

Races can be defined in terms of output and input intersections.

Lemma 157.

WRM(t, t ′)≡ outM(t) ∩̇ inM(t ′),

WWM(t, t ′)≡ outM(t) ∩̇outM(t ′),

RWM(t, t ′)≡ inM(t) ∩̇outM(t ′).

Code modifications and visible write-read races are write read races.

Lemma 158.
CMM(t, t ′)∨V RM(t, t ′)→WRM(t, t ′).

In the software conditions, we will usually only consider races where steps t and t ′

are not just concurrent, but also adjacent, i.e., t ′ = t+1. That this suffices to also detect
races where t ′ is much later than t is due to the fact that we will consider all schedules,
and if there is no sequence of synchronizing memory operations (e.g., locking oper-
ations) that prevents us from reordering the schedule in such a way that the memory
operations at t and t ′ occur directly one after another, we can always construct a new
schedule where the race consists of adjacent memory operations. That this is really
true is shown with Lemma 258 on page 241.

We show that only memory writes cause write races with steps made by a different
unit, or object-concurrent steps.

Lemma 159.

di f f u(t,k)∧ (WRM(t,k)∨WWM(t,k))→ mwriteM(t).

Proof. We have by assumption that there is a write-read or write-write race between
those steps, and thus that the outputs of step t and inputs or outputs of step k intersect

outM(t) ∩̇ inM(k)∪outM(k).

The claim is now a special case of Lemma 122.

We show that object concurrent write-read and write-write races are also only made
by memory writes.

Lemma 160.

oconM(t,k)∧ (WRM(t,k)∨WWM(t,k))→ mwriteM(t).

Proof. By definition, the steps are made by different objects and step t does not modify
processor registers of the unit making step k

oM(t) 6= oM(k)∧outM(t) 6 ∩̇CM(k).

With Lemma 106 we obtain that the steps are either made by different units, or by a
processor and its write buffer in one order, or in the other order. We consider these
three cases.
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di f f u(t,k): The claim is just Lemma 159.

s(t) ∈ ΣP,i∧ s(k) ∈ ΣWB,i: The only inputs of a write buffer step are its core registers

inM(k) =CM(k)∪FM(k)∪RM(k) =CM(k).

Since step t by assumption is object concurrent and thus does not modify those

outM(t) 6 ∩̇CM(k),

there is no intersection between the inputs of step k and the outputs of step t

outM(t) 6 ∩̇ inM(k)

and thus we can exclude a write-read race

¬WRM(t,k).

This leaves only the write-write race

WWM(t,k),

and we have thus an intersection between the outputs

outM(t) ∩̇outM(k).

For the write-write race we obtain with Lemmas 4 and 26 that the domain of the
write of step k are bufferable addresses

outM(k) = idc(Dom(WM(k)))

⊆ idc(BA) L 26
= BA. L 4

Consequently the outputs of t intersect with bufferable addresses

outM(t) ∩̇BA.

Since bufferable addresses do not include normal processor registers

BA 6 ∩̇ ANPR,uM(t),

there are some outputs that are not normal processor registers either

outM(t) 6⊆ ANPR,uM(t).

Therefore step t is, as claimed, a memory write

mwriteM(t).

s(t) ∈ ΣWB,i∧ s(k) ∈ ΣP,i: The outputs of t are buffered addresses

outM(t) = idc(Dom(WM(t)))

⊆ idc(BA) L 26
= BA. L 4
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Since there is a write-write or write-read race, the outputs of step t intersect with
some set X (either outputs or inputs of step k)

outM(t) ∩̇X

and are thus non-empty
outM(t) 6= /0.

Since the outputs are buffered addresses and those do not include normal proces-
sor registers

BA 6 ∩̇ ANPR,uM(t),

there are some outputs that are not normal processor registers either

outM(t) 6⊆ ANPR,uM(t).

Therefore step t is, as claimed, a memory write

mwriteM(t).

When the outputs of a step made with input x do not affect the inputs of the next
step made with input y, the step with input y could be executed first. By that we mean
that the configuration after executing the step with input x strongly agrees with the
configuration before that step, when stepped with y.

Lemma 161.

di f f u(x,y)∧outM(c,x) 6 ∩̇ inM(c �M x,y)→ c �M x =y
M c.

Proof. We apply Lemma 188, which gives us the following two subclaims.

Memory agrees: We have to show that the memory agrees on the inputs

c �M x.m !
=inM(c�Mx,y) c.m.

This is exactly Lemma 138.

Same Buffers: By assumption the steps are made by different units

uM(c,x) 6= uM(c �M x,y).

We have to show that the write buffers are the same

c �M x.wb !
=uM(c�Mx,y) c.wb.

This is exactly Lemma 96.

Similarly, the first step could be executed in the second position, but only if the
second step also does not modify inputs of the first step.

Lemma 162.

di f f u(x,y)∧outM(c,x) 6 ∩̇ inM(c �M x,y)∧outM(c �M x,y) 6 ∩̇ inM(c,x)→ c �M y =x
M c.
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Proof. With Lemma 161 we obtain that y could be stepped before x

c �M x =y
M c,

and with Lemma 144 it has the same outputs when stepped before x

outM(c,y) = outM(c �M x,y).

Thus the step in its new position does not modify any inputs of x in its old position

outM(c,y) 6 ∩̇ inM(c,x),

and with Lemma 138 we obtain that the configurations before x agree on the inputs of
step x

c.m =inM(c,x) c �M y.m.

With Lemma 142 we obtain that the step still has the same inputs

inM(c,x) = inM(c �M y,x),

and therefore there is no intersection between the outputs of the now first step and the
inputs of the now second step

outM(c,y) 6 ∩̇ inM(c �M y,x).

Obviously di f f u is symmetric
di f f u(y,x),

and the claim is Lemma 161.

When there is also no intersection of the outputs of the two steps, then the resulting
configuration is in fact equal.

Lemma 163. Let x,y be steps of different units

di f f u(x,y).

Then if the steps can be swapped and still be executed at their new positions and there
is also no write-write race between them

• c �M x =y
M c,

• c �M y =x
M c,

• outM(c,x) 6 ∩̇ outM(c �M x,y),

then the order of the steps is irrelevant

c �M y �M x = c �M x �M y.

Proof. We show the equality of the final configurations component-wise.
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c �M y �M x.m = c �M x �M y.m: By assumption the outputs do not intersection

outM(c,x) 6 ∩̇ outM(c �M x,y).

By definition, these are the inclusive device closures of the domains of the writes
during those steps, which therefore also do not intersect

idc(Dom(WM(c,x))) 6 ∩̇ idc(Dom(WM(c �M x,y))).

The claim follows with Lemmas 30 and 144

c �M y �M x.m = c.m~WM(c,y)~WM(c �M y,x)

= c.m~WM(c �M x,y)~WM(c,x) L 144×2
= c.m~(WM(c,x)∪WM(c �M x,y)) L 30
= c.m~WM(c,x)~WM(c �M x,y) L 30
= c �M x �M y.m.

c �M y �M x.wb(i) = c �M x �M y.wb(i): The two steps are made by different units

di f f u(x,y),

and the claim follows with Lemmas 100 and 144

c �M y �M x.wb(i)

= OpiM(c �M y,x)(OpiM(c,y)(c.wb(i),BWM(c,y)),BWM(c �M y,x))

= OpiM(c,y)(OpiM(c �M y,x)(c.wb(i),BWM(c �M y,x)),BWM(c,y)) L 100
= OpiM(c �M x,y)(OpiM(c,x)(c.wb(i),BWM(c,x)),BWM(c �M x,y)) L 144
= c �M x �M y.wb(i).

We lift these Lemmas to schedules. We only show the proof for the first one, the
others are analogous.

Lemma 164.

di f f u(t, t +1)∧¬WRM(t, t +1)→ ct+1
M =

s(t+1)
M cM[t↔ t +1]t .

Proof. Because there is no race, the outputs and inputs do not intersect

outM(t) 6 ∩̇ inM(t +1).

The configuration at t is before the reordered portion and is thus the same in both
schedules

ct
M = cM[t← t +1]t ,

whereas the configuration at t +1 is the configuration at t stepped with s(t)

ct+1
M = ct

M �M s(t).

Rewriting this changes the claim to the following

ct
M �M s(t) =s(t+1)

M ct
M.

The claim is now Lemma 161.
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Lemma 165.

di f f u(t, t +1)∧¬WRM(t, t +1)∧¬RWM(t, t +1)→ ct
M =

s(t)
M cM[t↔ t +1]t+1.

Lemma 166. If adjacent steps are made by different units and without races

di f f u(t, t +1)∧¬WRM(t, t +1)∧¬RWM(t, t +1)∧¬WWM(t, t +1)

their order can be swapped without affecting the final configuration

ct+2
M = cM[t↔ t +1]t+2.

Consequently, if two adjacent steps are made by different units and there is no race
between them, they commute.

Lemma 167.

di f f u(t, t+1)∧¬(WRM(t, t+1)∨RWM(t, t+1)∨WWM(t, t+1))→ s≡M s[t↔ t+1].

Proof. Note now that changing the order of t and t +1 is the same as moving t +1 to t

s[t↔ t +1] = s[t← t +1],

which reduces our goal to showing that this move preserves equivalence

s
!≡M s[t← t +1].

We now apply Lemma 118 with k := t +1, and reduce the claim to the following three
subgoals.

ct+1
M =

s(t+1)
M cM[t← t +1]t : This is Lemma 164.

t ′ ∈ [t : t +1)→ ct ′
M =

s(t ′)
M cM[t← t +1]t

′+1: Clearly the only such t ′ is t

t ′ = t.

Substituting this reduces the claim to the following

ct
M =

s(t)
M cM[t← t +1]t+1,

which is Lemma 165.

ct+2
M = cM[t← t +1]t+2: This is Lemma 166.

4.5 Conditions
We now formalize the software conditions for write buffer reduction. We assume for
all schedules s for the high-level machine and all t that all of the following conditions
hold.
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Races In a valid schedule, racing accesses are shared, i.e., when a unit-concurrent step
satisfies the local guard condition and the steps before it are valid

ucon↑(t, t +1)∧Γ
t+1
↑ (s),

both of the following are true

If there is a write-write race, both steps have to be shared

WW AMEM
↑ (t, t +1)→ Sh↑(t)∧Sh↑(t +1).

If there is a write-read race, both steps have to be shared but the read has to be
a shared read

WRAMEM
↑ (t, t +1)→ Sh↑(t)∧ShR↑(t +1).

We show with Lemma 210 that this definition is strong enough to account for
read-write races as well as races in any register.

Flush In a semi-valid schedule, a processor in strong memory mode which might be
buffering shared writes in the low-level machine:

ΓΦ
t
↑(s)∧ s(t) ∈ ΣP,i∧SC↑(t)∧∃t ′ ∈ issuet

↑(i).Sh↑(t ′)

never issues a shared read
¬ShR↑(t).

Note that the dirty bit of Cohen and Schirmer [CS10] is an elegant approximation
of whether there is a shared write in the buffer. The dirty bit is set to one when a
shared write enters the buffer, and is reset to zero when the buffer is flushed. The
only downside to the dirty bit is that it ignores the effect of drains due to partial
hits. Partial hits are extremely useful because they only partially drain the buffer
and only as far as necessary, and can be used to simulate shared read and write
fences (cf. Chapter 3).

Switch Modifying memory mode registers is only possible in a valid schedule when
the write buffer is empty and stays empty:

Γ
t
↑(s)∧ASC,i ∩̇out↑(t)→ wbt

↑(i) = ε = wbt+1
↑ (i)).

TSO Processors in strong memory mode roughly obey TSO. This means that when

s(t) ∈ ΣP,i∧SC↑(t),

we require all of the following:

IRRForwarding We never break local write/read ordering by buffering writes
to local registers in a valid schedule

Γ
t
↑(s)∧APR, j 6 ∩̇ Dom(PW↑(t).wba).

Note that this includes modifications to other processors.
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CodeOrder A semi-valid schedule never breaks local write/fetch order by fetch-
ing while a more up-to-date value is in the buffer

ΓΦ
t
↑(s)→¬hit(idc(F↑(t)),wbt

↑(i)).

WriteReadOrder A valid schedule never breaks local write/read order by read-
ing directly from memory while a more up-to-date value is in the buffer

Γ
t
↑(s)→¬hit(idc(R↑(t).bpa),wbt

↑(i)).

WriteWriteOrder A valid schedule never breaks local write/write ordering by
writing directly to memory while an older value is still in the buffer

Γ
t
↑(s)→¬hit(idc(Dom(PW↑(t).bpa)),wbt

↑(i)).

Note that there is no analogous condition for core registers, since writes to
the core registers can never be buffered based on Condition IRRForwarding
above.

AtomicWrite A shared write in a valid schedule is either buffered or bypassing,
but never both

Γ
t
↑(s)∧Sh↑(t)→ Dom(PW↑(t).wba) = /0∨Dom(PW↑(t).bpa)⊆ ANPR,i.

Otherwise, half of the write would become visible before the other half in
the low-level machine, which is not sequentially consistent since the high-
level machine executes the bypassing writes and buffered writes atomically.
The normal processor registers can be ignored in this matter because they
never become visible to other processors.

MessagePassing In a valid schedule, a shared write must not overtake other
writes, i.e., when we might issue a shared bypassing write the buffer must
be empty:

Γ
t
↑(s)∧Sh↑(t)∧Dom(PW↑(t).bpa) 6⊆ ANPR,i→ wbt

↑(i) = ε.

Violating this condition destroys message-passing, e.g., when updating a
concurrent list, unshared modifications to the list element might not be vis-
ible to other processors that see the shared write to the tail pointer which
adds the element to the list.

AtomicRMW In a valid schedule there are no shared read-modify-writes which
are buffered

Γ
t
↑(s)∧ShR↑(t)→ Dom(BW↑(t)) = /0.

These would appear to be atomic to observers in the high-level machine,
while not being atomic in the low-level machine. That is not sequentially
consistent.
Otherwise, it is possible to hide races by buffering code modifications.

CodeMod In a semi-valid schedule, a concurrent code modification is correctly anno-
tated

ΓΦ
t+1
↑ (s)∧ucon↑(t, t +1)∧CM↑(t, t +1)→ Sh↑(t)∧ShR↑(t +1).
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RMWRace In a semi-valid schedule, a race with an RMW is never hidden by a
buffered write. Formally, consider a feasible sequentially consistent step at l+1
with a buffered write from k′+11

ΓΦ
l+1
↑ (s)∧SC↑(l +1)∧ s(l +1) ∈ ΣP,i∧ k′+1 ∈ issuel+1

↑ (i),

and all steps between k′+1 and l+1 are made by the same object (i.e., processor
i)

∀t ′ ∈ [k′+1 : l +1].o↑(t ′) = o↑(k′+1),

then the buffered write may only read-write race a unit-concurrent instruction
directly preceding it

ucon↑(k′,k′+1)∧RW↑(k′,k′+1)

if all of the following hold.

1. There is no visible write-read race:

¬V R↑(k′, l +1)

2. If there is a valid write-write race, step l +1 is shared

Γ↑(l +1)∧WW↑(k′, l +1)→ Sh↑(l +1).

3. If there is a valid read-write race, step l +1 is shared

Γ↑(l +1)∧RW↑(k′, l +1)→ Sh↑(l +1).

The last condition is annoying for two reasons. First, it is complicated and hard
to decipher. We give in Figures 4.1a and 4.1b examples of situations in which the
condition requires us to insert a fence. Consider the following variant of the Program
from page 97, which corresponds roughly to Figure 4.1a.

x[0:7].store(1); x[0:15].cas(0 → 28);
y = x[8:15];

In all sequentially consistent configurations, the store in that program is executed
before the load, and the compare-and-swap never directly races with the load. We show
all sequentially consistent computations in which the compare-and-swap instruction
and the load are executed in adjacent steps. In the first such schedule, the load is
executed first:

x[0:7].store(1);
y = x[8:15];

x[0:15].cas(0 → 28);

In the second such schedule, the load is executed second:

x[0:7].store(1);
x[0:15].cas(0 → 28);

y = x[8:15];

1Note that the variables can be chosen more nicely, in particular l+1 could be aliased as t; but this form
is closer to the description given in the introduction and to the version used in the proof.
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In each case, the prior store operation makes the compare-and-swap fail, and there-
fore the compare-and-swap never is a write when executed next to the load. Condition
Races never applies and never forces us to mark the load as shared. Furthermore, these
are the only executions in which y loads a zero. In each case x ends up as one.

In the write buffer machine, however, the store can still be buffered when the load
and the compare-and-swap are executed, causing not only a race, but also a computa-
tion where y loads a zero, but x ends up as 28+1:

x y
x[0:7].store(1); -> BUF 0 0
y = x[8:15]; 0 0

x[0:15].cas(0 → 28); 28 0
BUF -> x[0:7].store(1) 28+1 0

Clearly this computation can not be simulated by the high-level machine. The
program violates Condition RMWRace in the following execution of the high-level
machine

k x[0:15].cas(0 → 28);
k+1 x[0:7].store(1);
l +1 y = x[8:15];

In this case, k is the step in which the compare-and-swap is (successfully) executed,
k+1 is the step in which the store to x is buffered, and step l +1 is the step where the
load to x is executed. The store is still buffered in step l +1, and the steps from k+1
until l +1 (which are just those two steps) are made by the same object, the processor
executing Thread 1. Since the compare-and-swap is successfully executed and the store
in step k+1 does not completely overwrite the modification of the compare-and-swap,
there is a visible write-read race between k and l +1, which contradicts the condition.

The condition in fact detects all such programs by considering the execution in
which the RMW (or instruction in general) is successfully executed, and looking for
races that cover a long distance. That this only rarely creates false positives is simply
explained by the fact that in the low-level machine, the store and all subsequent stores
can be delayed until l+1 by simply being buffered. We can then delay the RMW until
we find a race in the low-level machine that can not be explained by an execution in the
high-level machine, such as the one above. That it finds all such inconsistencies is hard
to prove but easily explained: if there was an inconsistency, it must be because both
a) there is a buffered store that causes the memory configuration of the two machines
to diverge and b) that store changes the effect of the RMW. Then by simply reversing
the argument from before and moving the RMW to the front of the buffered store
we obtain a sequentially consistent execution in which the RMW is executed directly
before the store that changes its effect, and the race between the RMW and the step at
l +1 persists.

The formal proof that this really works is one of the central results of this thesis,
and the source of most of the effort in Section 4.12.

The second reason for why the condition is annoying is that it requires exten-
sive backtracking in verification — every time we execute a write, we have to record
whether it was racing with an RMW, the effect of the RMW, etc., until the write is
finally drained. Both points can be resolved by using a less efficient simplification, and
we give some examples for such simplifications.

• If a write only races with an RMW if the footprint of the write subsumes the
footprint of the RMW, there is never an intersection of the visible outputs and
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T2

RMW
T1
s

l

T1

(a) RMW Race in same word, using half-word
accesses:
cas(x00) || sh(x00) ; lh(x10)

T2

RMW
T1

s
T1

l

(b) RMW Race due to misalignment:
cas(x010) || sw(x000) ; lw(x100)

Figure 4.1: An RMW Race: An RMW of Thread 2 races first with
a store, then a load of Thread 1, on disjoint addresses. Accessed
addresses are indicated by vertical size and position of the block, word
alignment is indicated by dotted lines. Steps that are more to the right
occur later.

the inputs because the visible outputs will be empty. This is the case in all archi-
tectures with aligned, same-sized memory accesses and no interrupts, such as the
ones considered in the work of Cohen and Schirmer [CS10] or Owens [Owe10].
It is also easy to implement, but only works for high-level languages that make
this restriction.

• One can strengthen the machine model (and thus obtain a stronger memory
model than TSO) so that the write is drained by the hardware before execut-
ing the read. This is the case in Chen’s PhD thesis [Che16], where the footprint
of memory operations must always be within an aligned machine-word, and the
definition of a partial hit is weakened to include situations in which the footprint
of the write and the read do not need to overlap, i.e., all writes that modify the
same machine-word as a later read trigger a partial hit and are drained from the
buffer. This situation is shown in Figure 4.2. We are aware of no other work with
mixed-size accesses.

T1

T1

s

l

Partial hit

Figure 4.2: In Chen’s PhD Thesis, a store operation and a later load
operation cause a partial hit, even though there is no actual hit.

In general a stronger machine model with support for shared instructions or par-
tial barriers would be more efficient than software-based solutions, which have to
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over-approximate (e.g., draining the whole buffer to get rid of the shared writes
rather than draining the buffer partially), and would allow additional hardware
optimizations (e.g., write-merging on non-shared stores to the same cache line).

• Similarly one can place after every shared write a fence. This is the easiest
solution and also the one used in state-of-the-art compilers, but it is also the least
efficient solution.

• If one considers a concurrent access of an RMW and a read a race even if the
RMW is not modifying memory (e.g., in case of a compare-and-swap because
it is unsuccessful), then the normal flushing condition between the shared write
and the shared read already prevents the situation altogether. We are not aware
of any program where this simplification causes additional flushes, in particular
because unsuccessful compare-and-swap operations usually only race with reads
if there are also concurrent potentially successful compare-and-swap operations,
as is the case in most lock-free algorithms. In this case there are schedules in
which one of the compare-and-swap operations is successful directly before the
read, which thus causes the read to be marked as shared. To make this work,
races would have to be defined in terms of potential outputs Pout that 1) can be
computed solely based off of the current core registers, similar to F

PoutM(c,x) = Pout(coreM(c,x),x)

and 2) always subsume the outputs

outM(c,x)⊆ PoutM(c,x).

Then one could define the write-read race in terms of Pout as follows

WR′A↑ (t, t
′) = Pout↑(t)∩ in↑(t ′) ∩̇A.

Note that Conditions Races and CodeMod require us to annotate certain steps under
certain circumstances. Under those circumstances we informally say that the steps are
“correctly annotated” when the steps have the annotation required by those conditions.
For example, if there is a feasible code modification, the steps are correctly annotated
if the writing step is shared and the fetching step is a shared read.

Note now that our assumptions are only on the OS code and the hardware2. Due to
this, one can verify a program against this discipline without actually considering the
exact user code or interleavings created by write buffers, and we quickly explain why
that is the case. In order to detect races between user code and OS code, one can use the
fact that users run in translated mode and thus only access page tables (during MMU
steps) and pages for which they have sufficient rights (during user program steps). Thus
one can abstract away from the actual user code and simply assume the worst case,
namely that all addresses to which currently running users and MMUs have access
have to be accessed shared by the OS. One small problem with this is the fact that
changing the page tables immediately changes the access rights, but there may still be
“legacy writes” in the buffer of user processors which were issued under the old rights;
such situations have to either be modeled or, more likely, prevented, in order to have
a sound model without users. Write buffers then become irrelevant in a sense because

2For example, we assume that the OS and hardware can restrict somehow the set of addresses that the
user can access, e.g., by a memory management unit.
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they are not considered in user mode and only create no-ops in OS mode, and are only
used for the discipline in form of the write buffer. Again one can simply assume the
worst case, namely that writes stay in the buffer as long as possible, i.e., until they are
explicitly drained by a fence, partial hit, or IPI. The details are future work.

The main result of this thesis is now as follows. If every schedule satisfies the
conditions, then for every schedule s that is valid and IPI-valid in the low-level machine

(∀t.Γ↓[s](t)∧∆IPI↓[s](t))

there is an equivalent schedule s′ which is also valid and IPI-valid, and where every
step of the low-level machine strongly agrees with he step in the high-level machine

∃s′.s′ ≡↓ s∧∀t.Γ↓[s′](t)∧∆IPI↓[s′](t)∧ c↓[s′]t =
s′(t)
↓,↑ c↑[s′]t .

4.6 Strengthening the Conditions
We will now prove that the conditions are strong enough to imply stronger or more
useful variants, as well as several key facts.

We show that while a write is buffered, the memory mode is not changed. This
means that a write that entered the buffer in strong memory mode can not leave the
buffer in weak memory mode (and thus, e.g., be executed twice: once when it was
issued in strong memory mode, and once when it leaves the buffer in weak memory
mode) or vice versa.

Lemma 168.
Γ

k−1
↑ (s)∧ t ∈ issuek

↑(i)→ SCi↑(t) = SCi↑(k).

Proof. By the monotonicity of the write buffer, step t is an issued time-stamp in all
configurations t ′ ∈ [t +1 : k]

t ∈ issuet ′
↑ (i).

By Lemma 123, the write buffered at t is thus always in the buffer

BW↑(t) ∈ wbt ′
↑ (i)

and thus the buffer is never empty

wbt ′
↑ (i) 6= ε.

By contraposition of Condition Switch we obtain that the mode registers were not an
output of step t ′−1

ASC,i 6 ∩̇ out↑(t ′−1),

and thus by Lemma 139 the mode is not changed by any of the steps t ′−1 ∈ [t : k−1)

SCi↑(t) = . . .=ASC,i SCi↑(k).

When a write buffer makes a step that satisfies the write buffer drain condition, its
write buffer is not empty.

Lemma 169.
s(t) ∈ ΣWB,i∧Λ↑(t)→ wbt

↑(i) 6= ε.
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Proof. Because the step is a write buffer step, the local drain condition is satisfied. By
definition of the local drain condition, this means that the write buffer is non-empty

1≡ Λ↑(t)

≡ ∆↑(t)

≡ ∆WB(wbt
↑(i))

≡ wbt
↑(i) 6= ε,

which is the claim.

In a valid schedule, a step can not change the memory mode registers of a unit right
before the write buffer of that unit makes a step that satisfies the write buffer drain
condition.

Lemma 170.

s(t +1) ∈ ΣWB,i∧Γ
t
↑(s)∧Λ↑(t +1)→ ASC,i 6 ∩̇ out↑(t).

Proof. By Lemma 169, the write buffer of unit i is non-empty in step t +1

wbt+1
↑ (i) 6= ε.

The claim is now the contraposition of Condition Switch.

Since valid write buffer steps always satisfy the write buffer drain condition, we
obtain immediately the following

Lemma 171.

s(t +1) ∈ ΣWB,i∧Γ
t
↑(s)∧Γ↑(t +1)→ ASC,i 6 ∩̇ out↑(t).

It can also not change the mode registers if it is a write buffer step of that unit itself.

Lemma 172.
s(t) ∈ ΣWB,i∧Γ

t
↑(s)→ ASC,i 6 ∩̇ out↑(t).

Proof. Because the step is valid, the local drain condition and thus the write buffer
drain condition are satisfied

Γ↑(t) =⇒ ∆↑(t) =⇒ Λ↑(t).

By Lemma 169, the write buffer of unit i is non-empty in step t

wbt
↑(i) 6= ε.

The claim is now the contraposition of Condition Switch.

Furthermore, a processor in sequential mode never has a buffered write to a device
that it is trying to load from.

Lemma 173.

Γ
t
↑(s)∧ s(t) ∈ ΣP,i∧SCi↑(t)→¬hit(dc(in↑(t)),wbt

↑(i))
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Proof. Assume for the sake of contradiction a hit

hit(dc(in↑(t)),wbt
↑(i)).

By Lemma 127, the hit was issued at some timestamp t ′

∃t ′ ∈ issuet
↑(i).Dom(BW↑(t ′)) ∩̇dc(in↑(t)).

Because the device closure only contains device addresses, the domain of the buffered
write must contain some device address. The device closure can also not be empty, and
thus the inputs must also contain some device address.

ADEV ∩̇Dom(BW↑(t ′))∧ADEV ∩̇ in↑(t).

Clearly step t ′ which added a write to the buffer of processor i was made by pro-
cessor i

s(t ′) ∈ ΣP,i.

By Lemma 168, step t ′ was made in strong memory mode

SC↑(t ′) = SC↑i(t ′) = SC↑i(t) = 1.

By Lemma 92 the buffered write was therefore executed and part of the outputs

Dom(BW↑(t ′))⊆ out↑(t ′)

and the outputs of step t ′ intersected with the registers of some device

out↑(t ′) ∩̇ADEV

By definition of volW resp. volR step t ′ is a volatile write and step t is a volatile read

volW↑(t ′)∧ volR↑(t)

and step t ′ by definition is volatile
vol↑(t ′).

Thus by Lemma 130 step t ′ is shared and by 131 step t is a shared read

Sh↑(t ′)∧ShR↑(t).

We conclude that t ′ is a shared buffered write still existing in the buffer of i when t is
executing a shared read

(t ′ ∈ issuet
↑(i)∧Sh↑(t ′))∧ShR↑(t),

and clearly the step is in strong memory mode

SC↑(t) = SCi↑(t) = 1,

which contradicts our Condition Flush.

Sequentially consistent write buffer steps have no effect.

Lemma 174.

x ∈ ΣWB,i∧SC↑(c,x)→W↑(c,x) = /0∧out↑(c,x) = /0
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Proof. The machine is using high-level machine semantics

¬LL↑(c,x)

and the first claim follows by definition

W↑(c,x) = /0.

The second claim immediately follows

out↑(c,x) = idc(WS↑(c,x)) = idc(Dom(W↑(c,x)))

= idc(Dom( /0)) = idc( /0)
= /0∪dc( /0)
= /0.

Thus a write buffer step can never switch to weak memory mode.

Lemma 175.
x ∈ ΣWB,i∧SCi↑(c)→ SCi↑(c �↑ x).

Proof. By definition the step is made in sequentially consistent semantics

SC↑(c,x) = SCi↑(c).

With Lemma 174 we obtain that there are no outputs

out↑(c,x) = /0.

The claim follows with Lemma 138

c.m =A c �↑ x.m.

Writes to the IRR are never buffered by a processor in strong memory mode in the
high-level machine in valid schedules.

Lemma 176.
Γ

t−1
↑ (s)∧SCi↑(t)→¬hit(APR, j,wbt

↑(i)).

Proof. By induction on t. The base case is trivial.
In the inductive step t→ t +1, we distinguish whether the processor was in strong

memory mode at t or not.

SCi↑(t): By the induction hypothesis, there is no such write in the buffer at t

¬hit(APR, j,wbt
↑(i)).

The write buffer at t + 1 is either the same, or a suffix, or increased by one
element

wbt+1
↑ =


push(wbt

↑, . . .) s(t) ∈ ΣP,i∧BW↑(t) 6= /0
pop(wbt

↑, . . .) s(t) ∈ ΣWB,i

noop(wbt
↑, . . .) o.w.
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We focus on the only difficult case where the write buffer is increased. Assume
thus that the step is a processor step of unit i pushing a new write

s(t) ∈ ΣP,i∧BW↑(t) 6= /0.

By Condition IRRForwarding, the step is not buffering a write to processor reg-
isters

APR, j 6 ∩̇ Dom(BW↑(t))

and the claim follows with Lemma 51

hit(APR, j,wbt+1
↑ (i))≡ hit(APR, j, push(wbt

↑(i),BW↑(t)))

≡ hit(APR, j,wbt
↑(i)◦BW↑(t))

≡ hit(APR, j,wbt
↑(i))∨hit(APR, j,BW↑(t))

≡ 0∨0
≡ 0.

¬SCi↑(t): The processor is now in strong memory mode. Thus the memory mode has
been changed

SCi↑(t +1) = 1 6= 0 = SCi↑(t).

By contraposition of Lemma 139, the mode registers were an output of step t

ASC,i ∩̇out↑(t).

By Condition Switch, the buffer is empty

wbt+1
↑ (i) = ε

and the claim trivially follows

¬hit(APR, j,wbt+1
↑ (i)).

Lemma 177. If step t is a processor step in strong memory mode executing a memory
write

s(t) ∈ ΣP,i∧SC↑(t)∧mwrite↑(t),

and the step is not preparing bypassing writes except to the normal processor registers

Dom(PW↑(t).bpa)⊆ ANPR,i,

then the step is buffering a write

BW↑(t) 6= /0.

Proof. By Lemma 119, the write-set is not a subset of the normal processor registers

WS↑(t) 6⊆ ANPR,u↑(t),

and we obtain that the union of the domains of the prepared writes is not a subset of
the processor registers

WS↑(t) 6⊆ ANPR,u↑(t)
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⇐⇒ Dom(W↑(t)) 6⊆ ANPR,u↑(t)

⇐⇒ Dom(PW↑(t).bpa∪PW↑(t).wba) 6⊆ ANPR,u↑(t)

⇐⇒ Dom(PW↑(t).bpa)∪Dom(PW↑(t).wba) 6⊆ ANPR,u↑(t).

By hypothesis the domain of the bypassing writes is a subset of the normal processor
registers, but as we have shown the union of the prepared writes is not. Thus the
prepared buffered writes are not a subset of the normal processor registers

Dom(PW↑(t).wba) 6⊆ ANPR,u↑(t).

The buffered write can thus not be the empty write

Dom(PW↑(t).wba) 6= /0,

and the claim follows
BW↑(t) = PW↑(t).wba 6= /0.

We can also show that if the write buffer is non-empty, shared writes are always
buffered writes.

Lemma 178. Let the schedule be valid until step t, which is a processor step

Γ
t
↑(s)∧ s(t) ∈ ΣP,i.

If step t is a shared memory write in sequentially consistent mode and the buffer is
non-empty

SC↑(t)∧Sh↑(t)∧mwrite↑(t)∧wbt
↑(i) 6= ε,

it must be a completely buffered write

BW↑(t) 6= /0∧Dom(PW↑(t).bpa)⊆ ANPR,i.

Proof. The unit making the step is unit i

u↑(t) = i.

By Condition MessagePassing the step does not issue a bypassing write except to
the normal processor registers

Dom(PW↑(t).bpa)⊆ ANPR,u↑(t),

and the claim follows with Lemma 177.

We show that if during a processor step two configurations agree on the core and
fetched registers, the drain condition is monotone under buffer subsumption.

Lemma 179.

c.m =CM(c,x)∪FM(c,x) c′.m∧bu f SM(x,c,c′)∧∆M(c,x)→ ∆N(c′,x).

Proof. We distinguish between the object making step c,x
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x ∈ ΣP,i: Since the buffers of step c,x subsume those of step c′,x, we obtain that the
write buffer of configuration c′ is a suffix of that in configuration c

c.wb(i) = p◦ c′.wb(i).

The claim follows with Lemmas 57 and 143

∆M(c,x) ⇐⇒ ∆P(coreM(c,x), f etchM(c,x),c.wb(i),x)

⇐⇒ ∆P(coreN(c′,x), f etchN(c′,x),c.wb(i),x) L 143×2
⇐⇒ ∆P(coreN(c′,x), f etchN(c′,x), p◦ c′.wb(i),x)

=⇒ ∆P(coreN(c′,x), f etchN(c′,x),c′.wb(i),x) L 57
⇐⇒ ∆N(c′,x).

x ∈ ΣWB,i: The heads of the write buffers are the same

hd(c.wb(i)) = hd(c′.wb(i)) 6=⊥

and thus the write buffer of configuration c′ is not empty

c′.wb(i) 6= ε

and the claim follows

∆N(c′,x) ⇐⇒ ∆WB(c′.wb(i))

⇐⇒ c′.wb(i) 6= ε.

When two configurations have the same buffers and agree on core and fetched
registers, then validity of one implies validity of the other.

Lemma 180.

c.wb =uM(c,x) c′.wb∧ c.m =CM(c,x)∪FM(c,x) c′.m∧ΓM(c,x)→ ΓN(c′,x).

Proof. By definition the local instance and write buffer guard conditions are satisfied
in step c,x

IM(c,x)∧∆M(c,x).

By Lemma 143 with X := I the instance guard condition can be moved to step c′,x

IN(c′,x) = IM(c,x) = 1.

By Lemma 90 the buffers of step c,x subsume those of step c′,x

bu f SM(x,c,c′),

and with Lemma 179 we obtain that the drain condition in step c′,x

∆N(c′,x).

The claim follows
ΓN(c′,x).
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Lemma 181. When two configurations agree on the inputs of a step

c.m =inM(c,x) c′.m

and the buffers of step c,x subsume the buffers of step c′,x

bu f SM(x,c,c′),

and step c,x is a processor step using low-level machine semantics

x ∈ ΣP,i∧LLM(c,x),

then the two steps agree on the forwarding memory system for the forwarded addresses

f msM(c,x) =RM(c,x).wba f msN(c′,x)

Proof. Since the buffers of step c,x subsume those of step c′,x and the step is made
in low-level machine semantics, we obtain that the write buffer of configuration c′ is a
suffix of that in configuration c

c.wb(i) = w◦ c′.wb(i),

and that the missing elements are not relevant for forwarding

¬hit( f inM(c,x),w).

In low-level machine semantics, read addresses that use the buffer are by definition a
subset of the forwarded inputs

RM(c,x).wba⊆ inM(c,x) = f inM(c,x).

We conclude by contraposition of Lemma 48 that there is also no hit with those ad-
dresses

¬hit(RM(c,x).wba,w).

The claim is now Lemma 154

f msM(c,x)
∣∣
RM(c,x).wba = f msN(c′,x)

∣∣
RM(c,x).wba.

If two configurations agree on inputs and the buffers in one step subsume those in
the other step, the steps agree on the memory view.

Lemma 182. When two configurations agree on the inputs of a step

c.m =inM(c,x) c′.m

and the buffers of step c,x subsume the buffers of step c′,x

bu f SM(x,c,c′),

and at least one of the following is true

1. the configurations agree on the machine semantics

LLM(c,x) = LLN(c′,x),
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2. or step c,x uses low-level semantics, step c′,x high-level semantics, and the write
buffer contains no information that should be forwarded

LLM(c,x)∧¬LLN(c′,x)∧¬hit(RN(c′,x).wba,c′.wb(uN(c′,x))),

then they agree on the memory view

vM(c,x) = vN(c′,x).

Proof. We distinguish between the object making step c,x

x ∈ ΣP,i: We obtain with Lemma 143 that the steps have the same core configuration
and fetch results.

coreM(c,x) = coreN(c′,x), L 143
f etchM(c,x) = f etchN(c′,x). L 143.

By assumption, the memories agree on the inputs, and thus in particular on all
read addresses

c.m =RM(c,x) c′.m

and in particular on those addresses that are read using a bypassing read

c.m =RM(c,x).bpa c′.m.

By assumption, the steps use the same machine semantics unless step c,x uses
low-level semantics and step c′,x does not and the buffered writes are not relevant
for forwarding. We distinguish between three cases: both steps use low-level
semantics, both steps do not use low-level semantics, or step c,x does and step
c′,x does not.

LLM(c,x) = LLN(c′,x) = 1: The claim follows with Lemmas 181 and 62

vM(c,x) = c.m
∣∣
RM(c,x).bpa∪ f msM(c,x)

∣∣
RM(c,x).wba

= c′.m
∣∣
RM(c,x).bpa∪ f msN(c′,x)

∣∣
RM(c,x).wba L 181

= c′.m
∣∣
RN(c′,x).bpa∪ f msN(c′,x)

∣∣
RN(c′,x).wba L 62

= vN(c′,x).

LLM(c,x) = LLN(c′,x) = 0: The claim follows with Lemma 62

vM(c,x) = c.m
∣∣
RM(c,x)

= c′.m
∣∣
RM(c,x)

= c′.m
∣∣
RN(c′,x)

L 62

= vN(c′,x).

LLM(c,x)∧¬LLN(c′,x)∧¬hit(RN(c′,x).wba,c′.wb(uN(c′,x))):
With Lemma 53 we obtain that forwarding and memory are the same in c′

f msN(c′,x) = f msuN(c′,x)(c
′)
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= c′.m}c′.wb(uN(c′,x))

=RN(c′,x).wba c′.m. L 53

The claim follows with Lemmas 181 and 62

vM(c,x) = c.m
∣∣
RM(c,x).bpa∪ f msM(c,x)

∣∣
RM(c,x).wba

= c′.m
∣∣
RM(c,x).bpa∪ f msN(c′,x)

∣∣
RM(c,x).wba L 181

= c′.m
∣∣
RN(c′,x).bpa∪ f msN(c′,x)

∣∣
RN(c′,x).wba L 62

= c′.m
∣∣
RN(c′,x).bpa∪ c′.m

∣∣
RN(c′,x).wba

= c′.m
∣∣
RN(c′,x)

= vN(c′,x).

x ∈ ΣWB,i: The claim holds since write buffer steps do not read

RM(c,x) = RN(c′,x) = /0

and thus the steps do not have a memory view

vM(c,x) = /0 = vN(c′,x).

Thus if two configurations agree on inputs and on the portion of the write buffers
that is used by forwarding, the configurations agree on the memory view, and if the
configuration with the larger buffer satisfies the drain condition, so does the other.

Lemma 183. When two configurations agree on the inputs of a step

c.m =inM(c,x) c′.m

and the buffers of step c,x subsume the buffers of step c′,x

bu f SM(x,c,c′),

then they agree on the memory view, and if the configuration with the longer buffer
satisfies the drain condition, so does the other

c.m =CM(c,x)∪FM(c,x) c′.m∧ vM(c,x) = vN(c′,x)∧ (∆M(c,x)→ ∆N(c′,x)).

Proof. Since local and fetched registers are a subset of the inputs

CM(c,x)∪FM(c,x)⊆ inM(c,x),

the memories agree on the local and fetched registers

c.m =CM(c,x)∪FM(c,x) c′.m,

which is the first claim.
By Lemma 147, the machines have the same machine semantics

LLM(c,x) = LLM(c′,x)

and the second claim is Lemma 182.
The third claim is Lemma 179.
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We consider the special case where the suffix of the buffer on which the configura-
tions agree is actually the complete buffer. In this case we obtain strong agreement.

Lemma 184. When two configurations agree on the inputs of a processor step

x ∈ ΣP,i∧ c.m =inM(c,x) c′.m

and on the buffers
c.wb =i c′.wb,

then they agree on the memory view, and if the configuration with the longer buffer
satisfies the drain condition, so does the other

c =x
M,N c′

Proof. By Lemma 90, the buffers of each configuration subsume the buffers of the
other one

bu f SM(x,c,c′)∧bu f SN(x,c′,c).

We use Lemma 183 and obtain that the configurations agree on the core and fetched
registers, on the memory view, and that the drain condition is satisfied by c′ if it is
satisfied by c

c.m =CM(c,x)∪FM(c,x) c′.m∧ vM(c,x) = vN(c′,x)∧ (∆M(c,x)→ ∆N(c′,x)).

With Lemma 143 we obtain that step c′,x has the same inputs as step c,x

inN(c′,x) = inM(c,x)

and thus the configurations also agree on the inputs of step c′,x

c.m =inN(c′,x) c′.m.

We use again Lemma 183 (with reversed arguments) and obtain that the drain condition
is satisfied by step c,x if it is satisfied by step c′,x

∆N(c′,x)→ ∆M(c,x),

from which we immediately obtain that the configurations agree on the drain condition

∆N(c′,x) = ∆M(c,x).

The claim follows by definition

c =x
M,N c′

≡ c.m =CM(c,x)∪FM(c,x) c′.m∧ vM(c,x) = vN(c′,x)∧∆M(c,x) = ∆N(c′,x).

≡ 1.

Lemma 185. When two configurations agree on the inputs of a processor step

x ∈ ΣP,i∧ c.m =inM(c,x) c′.m
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and one of the configurations satisfies the local drain condition

∆M(c,x)

and the buffers of that configuration subsume the buffers of the other configuration

bu f SM(x,c,c′),

then they agree on the memory view, and if the configuration with the longer buffer
satisfies the drain condition, so does the other

c =x
M,N c′

Proof. We apply Lemma 183 and obtain that the configurations agree on the core and
fetched registers, on the memory view, and that the drain condition is satisfied by c′ if
it is satisfied by c

c.m =CM(c,x)∪FM(c,x) c′.m∧ vM(c,x) = vN(c′,x)∧ (∆M(c,x)→ ∆N(c′,x)).

Since the drain condition of step c,x is satisfied, so is the drain condition of step c′,x

∆N(c′,x)

and the steps agree on the drain condition

∆M(c,x) = ∆N(c′,x).

The claim follows by definition of strong agreement.

Lemma 186. When two configurations agree on the inputs of a write buffer step

x ∈ ΣWB,i∧ c.m =inM(c,x) c′.m

the buffers of that configuration subsume the buffers of the other configuration

bu f SM(x,c,c′),

then they strongly agree
c =x

M,N c′

Proof. Since the core registers are inputs

CM(c,x)⊆ inM(c,x),

the configurations agree on the core registers

c.m =CM(c,x) c′.m.

The claim follows with the assumption

c =x
M,N c′ ≡ c.m =CM(c,x) c′.m∧hd(c.wb(i)) = hd(c′.wb(i))

≡ 1.
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Lemma 187. When step c,x is valid

ΓM(c,x)

and c agrees with a configuration c′ on the inputs during step c,x

c.m =inM(c,x) c′.m

and write buffers of step c,x subsume those of step c′,x

bu f SM(x,c,c′),

then the configurations strongly agree when stepped with x

c =x
M,N c′.

Proof. By case distinction on x.

x ∈ ΣP,i: By assumption the guard condition holds during the step

ΓM(c,x),

and thus the local drain condition is satisfied

∆M(c,x).

The claim is now Lemma 185.

x ∈ ΣWB,i: The claim is just Lemma 186.

We also prove a simpler variant where the write buffers are equal also for write
buffer steps, and the machines are the same.

Lemma 188. When two configurations agree on the inputs

c.m =inM(c,x) c′.m

and write buffers of the unit making the step are equal

c.wb =uM(c,x) c′.wb,

then the configurations strongly agree when stepped with x

c =x
M c′.

Proof. By case distinction on x.

x ∈ ΣP,i: The claim is just Lemma 184.

x ∈ ΣWB,i: By Lemma 90 the buffers of step c,x subsume those of step c′,x

bu f SM(x,c,c′).

The claim is now Lemma 186.
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We now consider a situation where we are running two schedules in parallel, where
the second is obtained by a sequence of reorderings O from the first. We reach the
configurations at k,k′, respectively, which are stepped with the same oracle input. The
reordering had the effect of moving step t < k, and thus the visible outputs of step t
and the write buffers of the unit making step t have been changed, but the rest of the
configuration happens to be the same. We now progressively show conditions under
which steps k and k′ can be executed in parallel, maintaining the invariant that visible
outputs of step t and the write buffer of the unit making step t are the only things that are
affected by the reordering O. When the invariant holds we say that the configurations
at k and k′ are nearly the same (after the reordering O) and write It

M[s](O,k,k′)

It
M[s](O,k,k′)≡ mk

M =A\voutM(t,k) mMOk′ ∧∀i 6= uM(t).wbk
M =i wbMOk′ .

We first show that if the configurations strongly agree, the part of the invariant of
the memory is maintained.

Lemma 189. If the configurations at k and k′ agree on everything except for the visible
outputs of step t, and step k and configuration k′ strongly agree when stepped with s(k)

mk
M =A\voutM(t,k) mMOk ∧ ck

M =
s(k)
M cMOk′ ,

and both configurations are actually stepped with s(k)

sO(k′) = s(k),

the configurations after the step also agree on everything except for visible outputs

mk+1
M =A\voutM(t,k+1) mMOk′+1

Proof. By Lemma 111 we can take the outputs of k out of the visible write set

vwsM(t,k+1) = vwsM(t,k)\outM(k).

We obtain that the complement of the visible outputs at k+1 is the complement of
the visible writes at k, the outputs of k, but not the device closure of the write-set of
step t

A\ voutM(t,k+1) =A\ (vwsM(t,k+1)∪dc(WSM(t)))

=A\ (vwsM(t,k)\outM(k+1))\dc(WSM(t))

= ((A\ vwsM(t,k))∪outM(k+1))\dc(WSM(t)).

The last step is justified because outM(k+1) is a subset of A.
Note that the configuration at k′+1 in the reordered schedule is obtained by step-

ping the configuration at k′ with the oracle inputs of k in the original schedule

cMOk′+1 = cMOk′ �M sO(k′)

= cMOk′ �M s(k).
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We wish to apply Lemma 149 with the following parameters

A :=A\ vwsM(t,k),

B :=WSM(t),

c := ck
M,

c′ := cMOk′ ,

x := s(k).

It suffices to show the following three subclaims.

mk
M =A\vwsM(t,k)\dc(WSM(t)) mMOk′ : The set of addresses is just the complement of the

visible outputs

A\ vwsM(t,k)\dc(WSM(t)) =A\ (vwsM(t,k)∪dc(WSM(t)))

=A\ voutM(t,k).

The claim is now an assumption

mk
M =A\voutM(t,k) mMOk′ .

ck
M =

s(k)
M cMOk′ : This is an assumption.

(A\ (A\ vwsM(t,k)))⊆ idc(WSM(t)): We cancel out the double-complement and the
claim follows with Lemma 113

vwsM(t,k)⊆ voutM(t,k+1)⊆ outM(t) = idc(WSM(t)).

The invariant can always be established when we are delaying a step, i.e., the con-
figurations directly after step t and before step t are nearly the same.

Lemma 190. The configurations at t + 1 and t are nearly the same when step t is
delayed to k ≥ t

It
M([t→ k], t +1, t).

Proof. The configurations at t are the same

ct
M = cM[t→ k]t

and by Lemma 138 the configurations at t +1 differ exactly by the outputs

mt+1
M =A\outM(t) mt

M = mM[t→ k]t .

By Lemma 112, those outputs are exactly the visible outputs

outM(t) = voutM(t, t +1),

and thus the first claim follows

mt
M =A\voutM(t,t+1) mM[t→ k]t .

The second claim follows by Lemma 96

∀i 6= uM(t).wbt
M =i wbt+1

M (i).
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Lemma 191. If step t does not visibly modify a memory region A

voutM(t) 6 ∩̇ A,

the configurations agree on A if configurations are nearly the same

It
M(O,k,k′)→ mk

M =A mMOk′ .

Proof. Since the configurations at k and k′ are nearly the same, they agree on every-
thing except for the visible outputs

mk
M =A\voutM(t,k) mMOk′

and thus on A
mk

M =A mMOk′ ,

which is the claim.

Lemma 192. If step t does not modify a memory region A

outM(t) 6 ∩̇ A,

the configurations agree on A if configurations are nearly the same

It
M(O,k,k′)→ mk

M =A mMOk′ .

Proof. Since by Lemma 113 the outputs subsume the visible outputs

voutM(t,k)⊆ outM(k)

we conclude that there is no intersection between those and A either

voutM(t,k) 6 ∩̇ A.

The claim is Lemma 191.

Lemma 193. If step t is object-concurrent with step k

oconM(t,k),

the configurations agree on the core registers if configurations are nearly the same

It
M(O,k,k′)→ mk

M =CM(k) mMOk′ .

Proof. By definition of ocon step t does not modify the core registers of step k

outM(t) 6 ∩̇CM(k).

The claim is now Lemma 192.

Lemma 194. If step t is unit concurrent with step k

uconM(t,k),

the configurations agree on the core registers if configurations are nearly the same

It
M(O,k,k′)→ mk

M =CM(k) mMOk′ .
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Proof. By Lemma 105 we obtain that the step is also object-concurrent

oconM(t,k)

and the claim is Lemma 193.

Lemma 195. If there is no visible write-read race

¬V RM(t,k),

the memories agree on the inputs if the configurations are nearly the same

It
M(O,k,k′)→ mk

M =inM(k) mMOk′ .

Proof. There is no visible write-read race, and by definition there is no intersection
between the visible outputs of step t and the inputs of step k

voutM(t,k) 6 ∩̇ inM(k).

The claim is Lemma 191.

Lemma 196. If step k is not made by the same unit as step t and there is no visible
write-read race

di f f u(t,k)∧¬V RM(t,k),

the steps strongly agree if the configurations are nearly the same

It
M(O,k,k′)→ ck

M =
s(k)
M cMOk′ .

Proof. By Lemma 195 the configurations agree on the inputs

mk
M =inM(k) mMOk′ .

Since the unit making step k is not the unit making step t

uM(t) 6= uM(k),

buffers of the unit making the step are the same

wbk
M =uM(k) wbMOk′ .

The claim is now Lemma 188
ck

M =
s(k)
M cMOk.

Lemma 197. If step k can be executed at k′ in the reordered schedule

ck
M =

s(k)
M cMOk′ ,

and the configurations are stepped with the same input

sO(k′) = s(k),

the invariant is maintained by steps k resp. k′

It
M(O,k,k′)→It

M(O,k+1,k′+1).
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Proof. The first portion of the invariant is maintained by Lemma 189

mk+1
M =A\voutM(t,k+1) mMOk′+1.

The second portion of the invariant is maintained by Lemma 150 and the invariant

wbk+1
M (i) = OpiM(k)(wbk

M(i),BWM(k))

= OpiMO(k′)(wbk
M(i),BWMO(k′)) L 150

= OpiMO(k′)(wbMOk′(i),BWMO(k′)) Inv

= wbMOk′+1(i).

The claim follows.

Lemma 198. If step k is not made by the same unit as step t and there is no visible
write-read race

di f f u(t,k)∧¬V RM(t,k),

and the configurations are stepped with the same input

sO(k′) = s(k),

the invariant is maintained by steps k resp. k′

It
M(O,k,k′)→It

M(O,k+1,k′+1).

Proof. By Lemma 196 the steps agree

ck
M =

s(k)
M cMOk′ ,

and the claim is Lemma 197.

We can also add the step back in if we swap the schedules and indices, as shown in
Fig. 4.3.

Lemma 199. If the configuration at k′ is stepped with the same input as t and the steps
strongly agree

sO(k′) = s(t)∧ ct
M =

s(t)
M cMOk′ ,

then after step k′ we can switch the direction of the invariant undoing the reordering
and thus considering sO as the original and s = sOO−1 as the reordered schedule

It
M(O,k,k′)→Ik′

MO(O−1,k′+1,k).

Proof. By assumption, the configurations agree on the content of everything except the
visible outputs of step t

mk
M =A\voutM(t,k) mMOk′ .

By Lemma 138 the memories at k′+1 and k′ agree on everything except for outputs
of step k′

mMOk′+1 =A\outMO(k′) mMOk′ .

By Lemma 150, step k′ after the reordering has the same outputs as step t

outM(t) = outMO(k′).
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. . .s

. . .s[t→ k′]

k’t

X

X

. . .

. . .

O = [t→ k′]

O−1 = [t← k′]

It
M(O,k′+1,k′) Ik′

MO(O−1,k′+1,k′+1)

Figure 4.3: In dark gray: We move step t to position k′, then run
the schedules in parallel starting from t + 1 in s and t in s[t → k′] until
we reach k = k′+ 1 and k′, i.e., right before the new position of step
t. In other words, step t has been executed in schedule s but not
in schedule s[t → k′], and thus the position in schedule s is always
ahead by one step. Once we reach k′, we execute the step but only
in s[t → k′]. This changes only a) outputs of step k′, which subsume
visible outputs of step t in s and b) the write buffer of the unit making
step k′, which also made step t in s. As shown in black, we can now
obtain again the invariant, but using s[t → k′] as the original schedule
and s = s[t → k′][t ← k′] as the reordered schedule, and running the
schedules in parallel starting from k′ + 1 in both schedules. This is
due to the fact that now the same steps have been executed by both
schedules, albeit in different order. We can now continue to run the
schedules in parallel until we reach a step l′ that has a visible write-
read race or is made by the same unit as step k′ in s[t→ k′].

By Lemma 113 the visible outputs of step t at k are a subset of the outputs of step t

voutM(t,k)⊆ outM(t),

and by Lemma 112 the visible outputs of step k′ at k′+1 are the outputs of step k′

outMO(k′) = voutMO(k′,k′+1)

and we conclude that the visible outputs of step t at k are a subset of the visible outputs
of step k′ at k′+1 in the reordered schedule

voutM(t,k)⊆ outM(t) = outMO(k′) = voutMO(k′,k′+1).

By Lemma 141, the configurations at k′ and k′+ 1 after the reordering therefore
agree on everything except the visible outputs

mMOk′+1 =A\voutMO(k′,k′+1) mMOk′

and the configurations at k and k′ agree on the content of everything except the visible
outputs of k′ at k′+1

mk
M =A\voutMO(k′,k′+1) mMOk′ ,

and thus the configurations at k in the original schedule and k′+ 1 in the reordered
schedule agree on everything except the visible outputs

mMOk′+1 =A\voutMO(k′,k′+1) mk
M.
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Since the original schedule is by Lemma 86 also obtained by applying first the
operations O and then the operations O−1

s = sOO−1,

the memory at k in those schedules is the same

mk
M = mMOO−1k

and the first part of the claim follows

mMOk′+1 =A\voutMO(k′,k′+1) mMOO−1k
.

The second part similarly follows: by the fact that step k′ is made by the same unit
as step t in the original schedule, we obtain with Lemma 96 for other units

i 6= uM(t) = uMO(k′)

that step k′ does not affect their write buffers

wbMOk′+1 =i wbMOk′ =i wbk
M = wbMOO−1k

.

If the configurations when moving further than l are nearly the same at l +1 resp.
l, so are the configurations when moving exactly to l.

Lemma 200. The configurations at k and at l when moving t to k′ ≥ l are nearly the
same iff the ones when moving t to l are

It
M([t→ k′],k, l)≡ It

M([t→ l],k, l).

Proof. Moving t to k′ is the same as moving t to l and then l to k′

s[t→ k′] = s[t→ l][l→ k′]

and thus the steps before l are the same in the two reorderings

s[t→ k′][0 : l−1] = s[t→ l][l→ k′][0 : l−1] = s[t→ l][0 : l−1].

We conclude that the configurations at l are also the same

cM[t→ k′]l = cM[t→ l]l .

The claim follows

It
M([t→ k′],k, l)≡ mk

M =A\voutM(t,k) mM[t→ k′]l ∧∀i 6= uM(t).wbk
M =i wbM[t→ k′]l

≡ mk
M =A\voutM(t,k) mM[t→ l]l ∧∀i 6= uM(t).wbk

M =i wbM[t→ l]l

≡ It
M([t→ l],k, l).

184



s

s’ . . .

. . .
t

X

X

k

k’

fi(l) = l
(a) For k = k′ ≤ t, both schedules have executed the same steps. Thus there
are no missing operations, and fi(l) = l.

s

s’ . . .

. . .
t

X

X

k

fi(l) = OpiM(t)(l, t)

k’

(b) For k = k′+1 and k,k′ ∈ (t : t ′], we have executed all steps except for step t of
the original schedule in s[t→ t ′]. To synchronize the sequences of issued writes
we have to apply the missing operation fi(l) = OpiM(t)(l, t) to the sequence of
issued writes at k′ in schedule s[t→ t ′].

s

s’ . . .

. . .
t

X

X

k

k’

fi(l) = l
(c) For k = k′ > t ′, both schedules have again been synchronized, as the miss-
ing step t has now been executed at t ′. One can thus immediately synchronize
the sequences of issued writes of each unit i, and can take fi as the identity
fi(l) = l.

Figure 4.4: Examples of functions fi for different k and k′ such that we
can obtain the sequence of issued writes at k by undoing the reorder-
ing [t→ t ′], and then applying fi, to the sequence of issued writes at k′

in the reordered schedule

issuek
M(i) = fi(mv[t→ t ′]−1(issueM [t→ t ′]k

′
(i))).

We sometimes need a similar invariant, namely to compare how sequences of issued
writes are reordered. In this case the sequence of issued writes of the unit making step t
is still missing the operation of step t, but unlike the write buffers, the other sequences
are not simply the same. This is due to the fact that the write buffers do not care
when the writes were buffered, only what writes were buffered; thus the order does not
matter, only the result. In case of the sequence of issued writes, however, the order
does matter. We use the function mv that tracks movement of steps from Section 2.7 to
track how the order of steps changes.

We define a very general invariant J , which uses a function fi for each sequence
of issued writes, an original schedule s and a reordering O. We will give the formal
definition first, then explain the intuition behind that function in more detail. We say
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that the sequences of issued writes at k and k′ are nearly the same when the sequences
of issued writes in the original schedule can be obtained by undoing the reordering
(using mvO−1) and applying function fi to the sequences of issued writes of unit i in
the reordered schedule

J fi
M [s](O,k,k′)≡ ∀i.issuek

M(i) = fi(mvO−1(issueMOk′(i))).

We will use this invariant only in one particular setting, namely when O moves some
step t to some position l. In this case, we use the function fi to remember all of the
operations that have been applied to the sequence of issued writes of unit i in schedule s
until k but not in schedule s[t→ t ′] until k′. There are three phases (shown in Fig. 4.4):

1. Steps k and k′ are equal and before t. The sequences of issued writes are nearly
the same because there is no difference between s and sO. Also, everything that
has happened to sequences of issued writes in schedule s until k has happened in
schedule sO until k′, and therefore we do not have to remember any operations

fi(l) = l.

2. Steps k = k′+ 1 and k′ are in the reordered portion (t : t ′]. Step t in the orig-
inal schedule has been executed at k in the original schedule, but has not been
executed at k′ in the reordered schedule. All other steps have been executed in
both schedules, but maybe at a different point in time. Therefore we have to
remember the operation performed by step t

fi(l) = OpiM(t)(l, t).

3. Steps k and k′ are equal and behind the reordered portion. All steps in the original
schedule that have been executed until k have also been executed until k′ in the
reordered schedule: step t has been executed at position t ′ in s[t → t ′], and the
reordered steps (t : t ′] have been executed in the interval [t : t ′). Thus once more
we do not have to remember any operations

fi(l) = l.

The first of these phases is easy, because nothing has happened. For the other two
phases, we show three lemmas. The first lemma proves that the invariant can be estab-
lished at the beginning of Phase 2, i.e., for k = t+1 and k′= t, and fi(l)=OpiM(t)(l, t).
The second lemma shows that the invariant is actually invariant under certain condi-
tions, i.e., if those conditions hold and the invariant holds for some O and fi at k and
k′, it also holds at k+ 1 and k′+ 1. Since we have established the invariant for t + 1
and t using the first lemma, we can now move the invariant to any position in Phase
2, including the final point where k is t ′+ 1 and k′ is t ′. At this point step t is added
back into the schedule, and the third lemma shows that we can now enter Phase 3 by
continuing the invariant with k (not increased), k′+1, and fi(l) = l. After this we can
again with the second lemma move the invariant to any position in Phase 3.

When fi is the function applied in step t and O = [t→ k] moves t to position k, the
sequences of issued writes at t +1 and t are nearly the same

Lemma 201.
fi(l) = OpiM(t)(l, t)→J fi

M ([t→ k], t +1, t).
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Proof. Because all elements of the write buffers at t have entered before t, we obtain
with Lemma 77 that they are not affected by the reordering

issuet
M(i) = issueM[t→ k]t(i) = mv[t← k](issueM[t→ k]t(i)).

The proof is now straightforward with Lemma 83

issuet+1
M (i) = OpiM(t)(issuet

M(i), t)

= fi(issuet
M(i))

= fi(mv[t← k](issueM[t→ k]t(i)))

= fi(mv[t→ k]−1(issueM[t→ k]t(i))). L 83

Lemma 202. When step k is moved to k′

mvO(k) = k′,

and fi commutes with the operation in step k when applied to the sequence of issued
writes at k′ after the reordering is undone

fi(OpiM(k)(mvO−1(issueMOk′(i)),k)) = OpiM(k)( fi(mvO−1(issueMOk′(i))),k),

and steps k and k′ strongly agree

ck
M =

s(k)
M cMOk′ ,

the invariant is maintained when the steps are executed in parallel.

J fi
M (O,k,k′)→J fi

M (O,k+1,k′+1).

Proof. With Lemmas 76, 82 and 84 we obtain that k is the original position of step k′

mvO−1(k′) = mvO−1(mvO(k))

= mvO−1O(k) L 76

= mvO−1(O−1)−1(k) L 82
= k. L 84

By Lemma 75 the steps are stepped with the same oracle input

s(k) = sO(mvO(k)) = sO(k′).

The proof is now straightforward with Lemmas 36 and 150

issuek+1
M (i) = OpiM(k)(issuek

M(i),k)

= OpiM(k)( fi(mvO−1(issueMOk′(i))),k) Inv

= fi(OpiM(k)(mvO−1(issueMOk′(i)),k)) Comm

= fi(OpiM(k)(mvO−1(issueMOk′(i)),mvO−1(k′)))

= fi(mvO−1(OpiM(k)(issueMOk′(i),k′))) L 36

= fi(mvO−1(OpiMO(k′)(issueMOk′(i),k′))) L 150

= fi(mvO−1(issueMOk′+1(i))).
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By dropping fi we can move step t back into the schedule. Unlike the memory
region modified by step t in the corresponding lemma for invariant I (Lemma 199),
the sequences of issued writes converge seamlessly after step t is added back into the
schedule. This is why there is no need to play tricks with s and O/O−1.

Lemma 203. If after moving step t to position k the steps strongly agree

ct
M =

s(t)
M cM[t→ k]k,

and if fi is the function applied in step t

fi(l) = OpiM(t)(l, t),

and the sequences of issued writes at k+1 and k are nearly the same

J fi
M ([t→ k],k+1,k),

then the sequences of issued writes are also nearly the same after k, and the functions
fi that were missing before is now already applied in the reordered schedule (and we
use the identity function f ′i (l) = l)

J f ′i
M ([t→ k],k+1,k+1).

Proof. Note that [k← t] is the inverse of [t→ k] (Lemma 83) The proof is straightfor-
ward with Lemmas 36, 77 and 150

issuek+1
M (i) = fi(mv[k← t](issueM[t→ k]k(i))) Inv

= OpiM(t)(mv[k← t](issueM[t→ k]k(i)), t)

= OpiM(t)(mv[k← t](issueM[t→ k]k(i)),mv[k← t](k)) L 77

= mv[k← t](OpiM(t)(issueM[t→ k]k(i),k)) L 36

= mv[k← t](OpiM[t→ k](k)(issueM[t→ k]k(i),k)) L 150

= mv[k← t](issueM[t→ k]k+1(i))

= f ′i (mv[k← t](issueM[t→ k]k+1(i))).

Moving steps behind the reordered portion and behind k has no effect. This allows
us to increase the reordered portion in specific instances.

Lemma 204.

J fi
M ([t→ k],k+1,k)∧ k′ > k→J fi

M ([t→ k′],k+1,k).

Proof. Note that [t ← k] is the inverse of [t → k] (Lemma 83). Furthermore, the steps
that are in the sequence of issued writes at k in the reordered schedule are all before k

∀t ′ ∈ issueM[t→ k]k(i).t ′ < k

and are thus by Lemma 77 not affected by the reordering

mv[k← k′](issueM[t→ k]k(i)) =
[

mv[k← k′](t ′)
∣∣∣ t ′ ∈ issueM[t→ k]k(i)

]
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=
[

t ′
∣∣∣ t ′ ∈ issueM[t→ k]k(i)

]
L 77

= issueM[t→ k]k(i)

= issueM[t→ k][k→ k′]k(i)

= issueM[t→ k′]k(i).

The proof is now straightforward

issuek+1
M (i) = fi(mv[t← k](issueM[t→ k]k(i)))

= fi(mv[t← k](mv[k← k′](issueM[t→ k]k(i))))

= fi(mv[k← k′][t← k](issueM[t→ k]k(i)))

= fi(mv[t← k′](issueM[t→ k]k(i)))

= fi(mv[t← k′](issueM[t→ k′]k(i))).

Condition Races seems fishy, since it only considers situations where the modifica-
tion occurs in the first step. We will show that it is admissible to consider modifications
in the second step if the second step is valid, as one can then switch the order of the
two steps. This is not as obvious as it sounds, as an RMW in the second step might no
longer be modifying if the order is reversed. In that case, however, there must already
be a write/read race in the original schedule, causing the steps to be marked as shared
anyways.

We first prove a generalization of Condition Races that considers all addresses,
rather than only the ones in memory or core. This works because steps that interact
through devices must be shared, steps that interact through processor registers of other
processors are shared, and steps that interact through the processor registers of the
second processor are not unit-concurrent.

Lemma 205. When s is valid until t +1

Γ
t+1
↑ (s)

and there are unit-concurrent steps

ucon↑(t, t +1),

then both of the following must hold

Write-read races have to be annotated correctly

WR↑(t, t +1)→ Sh↑(t)∧ShR↑(t +1).

Write-write races have to be annotated correctly

WW↑(t, t +1)→ Sh↑(t)∧Sh↑(t +1).

Proof. We show the full proof for the first claim. The proof for the second claim is
analogous and we only hint at the differences.

We have a write-read race, and thus an input output intersection somewhere in
memory

out↑(t)∩ in↑(t +1) ∩̇A.
We distinguish now between the different regions of memory where the race could be:
main memory, devices, processor registers of u↑(t +1), or of any other processor.
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out↑(t)∩ in↑(t +1) ∩̇AMEM: We obtain immediately that there is a race in the memory

WRAMEM
↑ (t, t +1),

and the claim is Condition Races

Sh↑(t)∧ShR↑(t +1).

In the second claim, one uses the part of Condition Races that talks about write-
write races.

out↑(t)∩ in↑(t +1) ∩̇ADEV : Both processors access a device and by applying Lemma 133
we obtain that step t is shared, and by Lemma 132 step t +1 is a shared read

Sh↑(t)∧ShR↑(t +1),

which is the claim.

For the second claim, one simply uses Lemma 133 twice to prove that both steps
are shared.

out↑(t)∩ in↑(t +1) ∩̇APR,u↑(t+1): Clearly step t is modifying processor registers of the
unit making step t

out↑(t) ∩̇APR,u↑(t+1).

By Lemma 103 we obtain that if step t writes to the processor registers of u↑(t +
1), the steps are not concurrent

¬ucon↑(t, t +1),

which is a contradiction.

The proof for the second claim is literally the same.

out↑(t)∩ in↑(t +1) ∩̇APR,i∧ i 6= u↑(t +1): Step t+1 can not access processor registers
of unit i except for the interrupt registers, and thus the intersection is there

out↑(t)∩ in↑(t +1) ∩̇AIPR,i.

Step t is shared because it modifies interrupt registers (Lemma 133), and step
t + 1 is a shared read because it reads from the interrupt registers of another
processor (Lemma 132)

Sh↑(t)∧ShR↑(t +1).

For the second claim, one simply uses Lemma 133 twice to prove that both steps
are shared.

We extend this as well as Condition CodeMod by showing that object-concurrent
steps already have to be annotated. We unite the two in one lemma.
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Lemma 206. When s is valid until t

Γ
t
↑(s)

and there are object-concurrent steps

ocon↑(t, t +1),

then all of the following must hold

Feasible code-modifications have to be annotated correctly

Φ↑(t +1)∧CM↑(t, t +1)→ Sh↑(t)∧ShR↑(t +1).

Valid write-read races have to be annotated correctly

Γ↑(t +1)∧WR↑(t, t +1)→ Sh↑(t)∧ShR↑(t +1).

Valid write-write races have to be annotated correctly

Γ↑(t +1)∧WW↑(t, t +1)→ Sh↑(t)∧Sh↑(t +1).

Proof. The steps are either made by the same unit or not

u↑(t) = u↑(t +1)∨u↑(t) 6= u↑(t +1).

Since the steps are object-concurrent, they are made by different objects

o↑(t) 6= o↑(t +1)

and thus, if they are made by the same unit, one step must be made by the processor
and the other by the write buffer. We distinguish between the resulting three cases: 1)
steps by different units, 2) steps by same unit, where processor step is made first, and
3) steps by same unit, where write buffer step is made first.

u↑(t) 6= u↑(t +1): We immediately obtain that step t is not interrupting step t +1

¬int↑(t, t +1)

and thus the steps are unit-concurrent

ucon↑(t, t +1).

Claim 1 is now just Condition CodeMod. Claims 2 and 3 are just Lemma 205.

u↑(t) = u↑(t +1) = i∧ s(t) ∈ ΣP,i∧ s(t +1) ∈ ΣWB,i: Claim 1 trivially holds because
step t +1 is not fetching

F↑(t +1) = /0

and there is thus no code modification

¬CM↑(t +1).

Claim 2 trivially holds because by assumption step t is not modifying core reg-
isters of step t +1

out↑(t) 6 ∩̇C↑(t +1),
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and those are by definition the only inputs of a write buffer step

in↑(t +1) =C↑(t +1)∪F↑(t +1)∪R↑(t +1)
=C↑(t +1)∪ /0∪ /0
=C↑(t +1).

Thus there is no output-input intersection

out↑(t) 6 ∩̇ in↑(t +1)

and thus also no write-read race between those two steps

¬WR↑(t, t +1).

For Claim 3, assume that step t +1 is valid

Γ↑(t +1)

and that we have an output-output intersection

out↑(t) ∩̇out↑(t +1).

Clearly the outputs of step t +1 are non-empty

out↑(t +1) 6= /0,

and by contraposition of Lemma 174 we obtain that step t + 1 is made in weak
memory mode

¬SC↑(t +1).

By Lemma 171 we obtain that the mode registers are not changed by step t

ASC,i 6 ∩̇ out↑(t)

and thus by Lemma 139 it is not modified by the step, and both steps are in weak
memory mode

SC↑(t) = SCi↑(t) = SCi↑(t +1) = SC↑(t +1) = 0.

They are thus by definition shared, which was Claim 3

Sh↑(t)∧Sh↑(t +1).

u↑(t) = u↑(t +1) = i∧ s(t) ∈ ΣWB,i∧ s(t +1) ∈ ΣP,i: In each of the three cases, the out-
puts of step t intersect with some set X (either fetched registers, inputs, or outputs
of step t +1)

out↑(t) ∩̇X

and must thus be non-empty
out↑(t) 6= /0.

By contraposition of Lemma 174 we obtain that step t is made in weak memory
mode

¬SC↑(t).
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By Lemma 172 we obtain that the mode registers are not changed by step t

ASC,i 6 ∩̇ out↑(t),

and thus by Lemma 139 it is not modified by the step, and both steps are in weak
memory mode

SC↑(t +1) = SCi↑(t +1) = SCi↑(t) = SC↑(t) = 0.

They are thus by definition shared, and step t +1 is a shared read, which solves
all three claims

Sh↑(t)∧Sh↑(t +1)∧ShR↑(t +1).

We now wish to prove that read-write races are also annotated as shared with our
discipline. The strategy will be to change the order of the read-write racing steps: in
the reordered schedule we will have a write-read race, which is annotated correctly.

We show that unit-concurrency is preserved by reordering if the configurations of
the interrupting step agree.

Lemma 207. Let s be a schedule and O be a sequence of reorderings. Let t,k be two
steps (in no particular order) in the original schedule which are unit-concurrent

ucon↑(t,k),

which have been moved to t ′,k′, respectively

s(t) = sO(t ′), s(k) = sO(k′).

If step t can be executed at its new position

ct
↑ =

s(t)
↑ c↑Ot ′ ,

the steps are still concurrent in the new schedule

ucon↑O(t ′,k′).

Proof. Note that the steps are still made by different units

di f f uO(t ′,k′)

≡ u(sO(t ′)) 6= u(sO(k′))

≡ u(s(t)) 6= u(s(k))

≡ di f f u(t,k);

and with Lemma 150 we obtain that the steps have the same victims, and thus that step
t ′ after the reordering still does not interrupt step k′

int↑O(t ′,k′)≡ u↑O(k′) ∈ victims↑O(t ′)

≡ u↑(k) ∈ victims↑(t) L (150)
≡ int↑(t,k).
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We conclude that the steps are still concurrent after the reordering

ucon↑O(t ′,k′)≡ ¬int↑O(t ′,k′)∧di f f uO(t ′,k′)

≡ ¬int↑(t,k)∧di f f u(t,k)

≡ ucon↑(t,k)

≡ 1,

which was the claim.

The same holds for object-concurrency. The proof is completely analogous to that
for weak-concurrency and omitted.

Lemma 208. Let s be a schedule and O be a sequence of reorderings. Let t,k be two
steps (in no particular order) in the original schedule which are object-concurrent

ocon↑(t,k),

which have been moved to t ′,k′, respectively

s(t) = sO(t ′), s(k) = sO(k′).

If step t can be executed at its new position

ct
↑ =

s(t)
↑ c↑Ot ′ ,

the steps are still object-concurrent in the new schedule

ocon↑O(t ′,k′).

. . .s

. . .sO . . .

. . .X

XZ

Z

t’ t’+1

tk

Figure 4.5: A race between t and k can be detected after moving t to
t ′ and k to k′, where they occur directly after one another.

Lemma 209. Let s be a schedule and O be a sequence of reorderings. Let t,k be two
steps (in no particular order) in the original schedule which are object-concurrent

ocon↑(t,k),

which have been moved to t ′, t ′+1, respectively (as in Fig. 4.5)

s(t) = sO(t ′), s(k) = sO(t ′+1).

Assume the new schedule is valid until right before t ′

Γ
t ′−1
↑ (sO),
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and that steps t was valid
Γ↑(t).

Assume that step can be executed at its new position

ct
↑ =

s(t)
↑ c↑Ot ′ ,

and that the configuration at t ′ only differs from the configuration at k by at most the
outputs of step t

m↑Ot ′ =in↑(k)\out↑(t) mk
↑,

and that the buffers of the original step k subsume those at t ′ + 1 in the reordered
schedule

bu f S↑(sO(t ′+1),ck
↑,c↑O

t ′+1).

Then a race or code modification has to be correctly annotated:

1. Φ↑(k)∧CM↑(t,k)→ Sh↑(t)∧ShR↑(k),

2. Γ↑(k)∧WR↑(t,k)→ Sh↑(t)∧ShR↑(k),

3. Γ↑(k)∧WW↑(t,k)→ Sh↑(t)∧Sh↑(k).

Proof. By Lemma 150, the outputs of step t are the same when it is executed at t ′

out↑O(t ′) = out↑(t).

We obtain that the configurations at t ′ and at k agree on inputs of step k that are not
outputs of step t ′ after the reordering

m↑Ot ′ =in↑(k)\out↑O(t ′) mk
↑,

and with Lemma 138 we obtain that the configuration at t ′ + 1 agrees on the same
addresses with the configuration at t ′

m↑Ot ′+1 =in↑(k)\out↑O(t ′) m↑Ot ′ =in↑(k)\out↑O(t ′) mk
↑.

Note that partial agreement between functions is transitive, and thus the configuration
at t ′+1 agrees on the same addresses with the configuration at k

m↑Ot ′+1 =in↑(k)\out↑O(t ′) mk
↑.

By Lemma 208, step t ′ is object-concurrent with step t ′+1 in the reordered sched-
ule

ocon↑O(t ′, t ′+1).

Thus step t ′ does not modify core registers of step t ′+1

out↑O(t ′) 6 ∩̇C↑(t ′+1).

With Lemma 59 we can trace the core registers back to step k in the original sched-
ule and obtain that step t ′ in the reordered schedule did not modify the core registers of
step k in the original schedule

out↑O(t ′) 6 ∩̇C↑(k).
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Since the core registers are by definition inputs

C↑(k)⊆C↑(k)∪R↑(k)∪F↑(k) = in↑(k),

we obtain that the configurations at t ′ after the reordering and k before the reordering
agree on the core registers

m↑Ot ′ =C↑(k) mk
↑.

We now prove the three claims. The strategy is the same in each case: move the
claim completely to the reordered schedule, where we can apply Lemma 206. Each
claim uses the previous one in order to justify this move.

Φ↑(k)∧CM↑(t,k)→ Sh↑(t)∧ShR↑(k): We unfold the definition of concurrent code
modification in the claim

Φ↑(k)∧out↑(t) ∩̇F↑(k)
!→ Sh↑(t)∧ShR↑(k).

We rewrite all functions with parameter k using Lemma 151 and all functions
with parameter t using Lemma 150

Φ↑O(t ′+1)∧out↑O(t ′) ∩̇F↑O(t ′+1) !→ Sh↑O(t ′)∧ShR↑O(t ′+1).

We fold again the definition of a concurrent code modification in the claim

Φ↑O(t ′+1)∧CM↑O(t ′, t ′+1) !→ Sh↑O(t ′)∧ShR↑O(t ′+1).

The claim is now Lemma 206.

Γ↑(k)∧WR↑(t,k)→ Sh↑(t)∧ShR↑(k): We distinguish whether there is a concurrent
code modification or not.

CM↑(t,k): Because step k is valid, it is by definition also feasible

Φ↑(k).

The claim is now solved by Claim 1 (shown above).

¬CM↑(t,k): By definition the outputs of step t do not modify fetched registers
of step k

out↑(t) 6 ∩̇ F↑(k).

With Lemma 150 we obtain that the fetched registers are not modified by
step t ′ after the reordering either

out↑O(t ′) 6 ∩̇ F↑(k)

and thus the configurations at t ′+1 after and k before the reordering must
also agree on the fetched registered registers

m↑Ot ′+1 =C↑(k)∪F↑(k) mk
↑.

Assume now that step k is valid in the original schedule

Γ↑(k).
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By definition of validity, the step satisfies both the instance guard condition
and local drain condition

I↑(k)∧∆↑(k).

With Lemma 152 we obtain that the instance guard condition is still satis-
fied

I↑O(t ′+1) = I↑(k),

and with Lemma 179 and the assumption that the buffer is subsumed we
obtain that the drain condition is still satisfied

∆↑O(t ′+1).

Therefore the step is by definition still valid at its new position

Γ↑O(t ′+1).

We unfold the write-read race in the claim with Lemma 157

out↑(t) ∩̇ in↑(k)
!→ Sh↑(t)∧ShR↑(k).

We rewrite all functions with parameter k using Lemma 152 and all func-
tions with parameter t using Lemma 150

out↑O(t ′) ∩̇ in↑O(t ′+1) !→ Sh↑O(t ′)∧ShR↑O(t ′+1).

We fold again the definition of a write-read race

WR↑O(t ′, t ′+1) !→ Sh↑O(t ′)∧ShR↑O(t ′+1).

The claim is now Lemma 206.

Γ↑(k)∧WW↑(t,k)→ Sh↑(t)∧Sh↑(k): We distinguish whether there is a write-read race
or not.

WR↑(t,k): With Claim 2 (shown above) we obtain that the steps are shared and
a shared read, respectively

Sh↑(t)∧ShR↑(k).

The claim is now solved by Lemma 129

Sh↑(t)∧Sh↑(k).

¬WR↑(t,k): By definition the outputs of step t do not modify inputs of step k

out↑(t) 6 ∩̇ in↑(k).

With Lemma 150 we obtain that the inputs are not modified by step t ′ after
the reordering either

out↑O(t ′) 6 ∩̇ in↑(k)

and thus the configurations at t ′+1 after and k before the reordering must
agree on all inputs

m↑Ot ′+1 =in↑(k) mk
↑.
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By Lemma 187 the step can still be executed at its new position

ck
↑ =

s(k)
↑ c↑Ot ′+1.

We unfold the write-write race in the claim with Lemma 157

Γ↑(k)∧out↑(t) ∩̇out↑(k)
!→ Sh↑(t)∧Sh↑(k).

We move everything to the reordered schedule with Lemma 150

Γ↑O(t ′+1)∧out↑O(t ′) ∩̇out↑O(t ′+1) !→ Sh↑O(t ′)∧Sh↑O(t ′+1).

We fold again the write-write race

Γ↑O(t ′+1)∧WW↑O(t ′, t ′+1) !→ Sh↑O(t ′)∧Sh↑O(t ′+1).

The claim is now Lemma 206.

We now prove the symmetry of our annotation.

Lemma 210. Read-write races require shared accesses in valid schedules, i.e., when
s is valid until t +1

Γ
t+1
↑ (s)

and there are unit-concurrent (in both directions) steps

ucon↑(t, t +1)∧ucon↑(t +1, t),

that have a read-write race
RW↑(t, t +1),

then there is a write-read race and the steps are correctly annotated, or the read is a
shared read and the write is shared

WR↑(t, t +1)∧Sh↑(t)∧ShR↑(t +1)∨ShR↑(t)∧Sh↑(t +1).

Proof. We distinguish whether a write-read race exists or not.

WR↑(t, t +1): By Lemma 205 we obtain that the steps are marked as shared and as a
shared read, respectively

Sh↑(t)∧ShR↑(t +1),

and the claim follows.

¬WR↑(t, t +1): We will switch the order of the two accesses. This is possible because
the second step does not read any registers that are changed by the first step.
Since we are in the case without any write/read races, i.e.,

out↑(t) 6 ∩̇ in↑(t +1),

we obtain with Lemma 138 that inputs are unchanged

mt+1
↑ =in↑(t+1) mt

↑ = m↑[t↔ t +1]t .
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By assumption the steps are unit-concurrent and thus made by different units

di f f u(t, t +1).

By definition, the unit making step t is thus not the unit making step t +1

u↑(t) = u(s(t)) 6= u(s(t +1)) = u↑(t +1),

and by Lemma 95 we obtain that the write buffer of the unit making step t +1 is
unchanged by the reordering

wbt+1
↑ (u↑(t +1)) = Opu↑(t)↑(wbt

↑(u↑(t +1)), . . .)

= wbt
↑(u↑(t +1)) L 95

= wb↑[t↔ t +1]t(u↑(t +1)).

We conclude with Lemma 188 that the configurations strongly agree for the ora-
cle input of step t +1

ct+1
↑ =

s(t+1)
↑ c↑[t↔ t +1]t . (4.2)

With Lemma 95 we also obtain that the buffers of the unit making step t are not
changed

wb↑[t↔ t +1]t+1(u↑(t)) = Opu↑[t↔t+1](t)↑(wb↑[t↔ t +1]t(u↑(t)), . . .)

= wb↑[t↔ t +1]t(u↑(t)) L 95
= wbt

↑(u↑(t)).

and by Lemma 90 we obtain that the buffers of step t subsume those of step t +1
in the reordered schedule

bu f S↑(s(t),ct
↑,c↑[t↔ t +1]t+1). (4.3)

By definition, the new positions of the steps are now t and t +1

s(t +1) = s[t↔ t +1](t), s(t) = s[t↔ t +1](t +1). (4.4)

Because the steps before t are not changed, the new schedule is valid until t−1

Γ
t−1
↑ (s[t↔ t +1]). (4.5)

Because the steps before t are not changed, the memory at t is the same

m↑[t↔ t +1]t = mt
↑.

Thus the memories at t agree in particular on those inputs which are not outputs
of t

m↑[t↔ t +1]t =in↑(t)\out↑(t+1) mt
↑. (4.6)

By assumption steps t +1 and t were valid

Γ↑(t +1)∧Γ↑(t). (4.7)
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Note now that a read-write race is a write-read race with swapped parameters,
and thus we have a write-read race between t +1 and t

WR↑(t +1, t). (4.8)

By Lemma 105 the steps are also object-concurrent

ocon↑(t, t +1). (4.9)

From Lemma 209, with O := [t ↔ t + 1], k := t, t := t + 1, and t ′ := t, and
Eqs. (4.2) to (4.9) we obtain now that step t + 1 is shared and step t is a shared
read

Sh↑(t +1)∧ShR↑(t),

and the claim follows.

While a processor in sequential mode writes to interrupt registers, it can not buffer
a write.

Lemma 211.

Γ
t
↑(s)∧ s(t) ∈ ΣP,i∧SC↑(t)∧out↑(t) ∩̇AIPR→ BW↑(t) = /0.

Proof. Let j be a unit of which the interrupt registers are modified by step t

out↑(t) ∩̇AIPR, j.

The step is modifying interrupt registers and by Lemma 133 must be shared

Sh↑(t).

By Condition IRRForwarding, the buffered writes may not include processor reg-
isters of unit j

Dom(PW↑(t).wba) 6 ∩̇ APR, j

and thus also not its interrupt registers

Dom(PW↑(t).wba) 6 ∩̇ AIPR, j.

Since a sequentially consistent step in the high-level machine does not use low-level
machine semantics

LL↑(t) = ¬SC↑(t) = 0,

the executed write is the union of the prepared writes

W↑(t) = PW↑(t).wba∪PW↑(t).bpa.

With Lemmas 15 and 4 we obtain that the write is intersecting with the interrupt
processor registers.

out↑(t) ∩̇AIPR, j.

⇐⇒ idc(WS↑(t)) ∩̇AIPR, j

⇐⇒ WS↑(t) ∩̇AIPR, j L 15, 4
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⇐⇒ Dom(W↑(t)) ∩̇AIPR, j.

Since the buffered portion of the prepared write does not intersect the interrupt regis-
ters, it must be the bypassing portion that causes the intersection

⇐⇒ Dom(PW↑(t).wba∪PW↑(t).bpa) ∩̇AIPR, j

⇐⇒ Dom(PW↑(t).wba)∪Dom(PW↑(t).bpa) ∩̇AIPR, j

⇐⇒ Dom(PW↑(t).wba) ∩̇AIPR, j ∨Dom(PW↑(t).bpa) ∩̇AIPR, j

⇐⇒ 0∨Dom(PW↑(t).bpa) ∩̇AIPR, j

⇐⇒ Dom(PW↑(t).bpa) ∩̇AIPR, j.

We conclude that the prepared bypassing writes are not just normal processor registers
of unit i

Dom(PW↑(t).bpa) 6⊆ ANPR,i,

and by Condition AtomicWrite the domain of the prepared buffered writes is empty

Dom(PW↑(t).wba) = /0

and the claim follows
BW↑(t) = PW↑(t).wba = /0.

4.7 Proof Strategy for Write Buffer Reduction
Our proof can be split into three phases. In the first phase we show that information
flows between threads only if the threads are synchronized by a sequence of

1. shared write/shared read pairs

2. shared RMW/write pairs

3. IPIs

We then consider a schedule where processors are only allowed to perform a shared
read if no other processor has a buffered shared write (to any address), and where the
global order of shared writes is not changed by write buffers. By this we mean that
the n-th shared write that is issued by a processor is also the n-th shared write to be
committed to memory by the write buffers. In such a schedule, a processor in SC
mode which has a buffered write can not be synchronized by either of the above three,
because

1. the shared write is still buffered, preventing the shared read by assumption

2. a shared RMW drains the buffer (cf. Condition MessagePassing)

3. IPIs drain the buffer

By contraposition there is no information flow from a processor which has buffered
writes, i.e., as long as a processor is buffering writes to an address, no other processor
reads from that address. Consequently one can show that in such a schedule forwarding
is correct for all addresses which are being accessed, and thus the low-level computa-
tion and the high-level computation see the same values.

Finally one shows that every schedule can be reordered to an equivalent schedule
which has that property.
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4.8 Communication and Synchronization
We now consider channels of communication between processors and APICs. We
define a relation synchronized-with, which identifies situations in which an earlier step
can not be moved across a later step because

• The later step depends on the earlier step,

• the later step would prevent the earlier step if the order would be reversed, in
particular if this would hide a race, or

• the later step would change the program annotation of the first step. This is the
case only if the first step is a processor step, and the second step is interrupting
the step; in this case the IPRs may change, which however are used as an input
to iSh and iShR.

For example, a read depends on the most recent writes to the same addresses, and a
write can disable a compare-and-swap.

The results and definitions in this section can mostly be found in a less streamlined
version in [Obe15]. The fact that they still hold in the new machine relies on a careful
redefinition of the synchronized-with relation, which is now based on inputs and out-
puts rather than the actual steps. We first give a formal definition, then quickly describe
the non-obvious rules.

We distinguish between forward-synchronization, which depends on step t and the
oracle input of step k, and synchronization, which also depends on the step k.

We say t is forward-synchronized-with k in s and write tB[s]k when step t can not
be moved/dropped due to the oracle input of step k.

NOTCONCURRENT
t < k ¬ocon↑(t,k)

tBk

ISSUEWRITE

t = hd(issuek
↑(i)) s(k) ∈ ΣWB,i

tBk

PROCESSORFENCE
t < k s(t) ∈ ΣWB,i s(k) ∈ ΣP,i

tBk

Rule NOTCONCURRENT prevents steps that are not object-concurrent from overtak-
ing each other.

Rule ISSUEWRITE considers a buffered write, which can not overtake the write
buffer step that commits it to memory.

Rule PROCESSORFENCE prevents a fence (or partial hit) from overtaking write buffer
steps on the same processor. It is slightly more general than that since it blocks all
processor steps, including those that are not fences, from overtaking the write buffer
step, but that will turn out to be fine.
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We say t is race-synchronized with k and write tB∗ [s]k if it is forward-synchronized
or there is a visible write-read race that is annotated correctly

tBk
tB∗ k

COMMEXT
t < k V R↑(t,k) Sh↑(t) ShR↑(k)

tB∗ k

Rule COMMEXT is interesting because it seemingly ignores interaction which is not
using shared accesses. This will turn out to be fine due to Condition Races, which will
cause all interaction through the memory which is not marked as shared to be synchro-
nized by another memory interaction which is marked as shared, e.g., the release and
subsequent acquisition of a lock. This relation corresponds to the synchronization rela-
tion of [Obe15] and is insufficient for machines with IPIs and heterogeneous memory
accesses. To tackle these, we define a new relation with two new rules.

We say t is synchronized-with k and write tI[s]k when step t can not be moved/-
dropped because of what step k does.

tB∗ k
tIk

INTERRUPTED
t < k mwrite↑(t) int↑(k, t)

tIk

RMWDISABLE
t < k ShR↑(t) mwrite↑(t) RW↑(t,k)

tIk

Rule INTERRUPTED prevents interrupts from overtaking writes: if the interrupt over-
takes a write, the write is possibly not executed anymore. Rule RMWDISABLE pre-
vents writes from overtaking read-modify-writes that read-write race them; such read-
modify-writes might be disabled if the write is executed before the RMW.

We show that both race- and forward-synchronization synchronize steps. We do
not show proofs.

Lemma 212.
tBk→ tIk.

Lemma 213.
tB∗ k→ tIk.

4.9 Delaying Unsynchronized Steps
We prove that Condition Races implies that unshared accesses to the same memory
region are also synchronized. The proof works by moving potentially unsynchronized
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accesses next to each other, at which point they become races in the sense of Condition
Races and have to be shared. This technique is familiar from Lemma 209.

If t is not synchronized-with any of the steps until k, then it can be reordered until
k and the schedule changes significantly only after k, as in Figure 4.6.

. . .s

. . .s’ . . .

. . .
kt

X Y1 Y2 Y3 Y4 Y5

Y1 Y2 Y3 Y4 Y5 XZ

Z

Figure 4.6: If step t (made by object X) is not synchronized with any
of the steps until k (made by objects Yi), and not forward-synchronized
with step k (made by object Z), it can be delayed behind step k.

This will only work if the involved steps are valid, and the last step is at least
feasible. For technical reasons we need to exclude write buffer steps that are made
with an empty write buffer, and we define WB-feasibility as feasibility plus the write
buffer drain condition

ΨM(c,x) = ΦM(c,x)∧ΛM(c,x).

We define analogously to semi-validity a WB-validity

ΓΨ
t
M(s)≡ Γ

t−1
M (s)∧ΨM[s](t).

Interestingly, since the schedules will behave in the same way, it will not matter
whether WB-feasibility and validity of the steps hold in the original schedule or the
reordered one. In fact, we only need for each individual step that it is valid (resp. WB-
feasible) in one of the schedules, so it is completely acceptable for some steps to be
valid (resp. WB-feasible) in one and the other steps to be valid (resp. WB-feasible) in
the other schedule. We express this with a predicate pval for pseudo-valid

pval[s](t,k) = Γ
t
↑(s)

∧∀t ′ ∈ (t : k).Γ↑(t ′)∨Γ↑[t→ k](t ′−1)
∧ (Ψ↑(k)∨Ψ↑[t→ k](k−1)).

Note that the steps until step t are the same in both schedules, so we do not make this
split for those steps. The steps t ′ after step t are executed at t ′−1 after the reordering.

We prove with Invariant Valid below that this pseudo-validity indeed suffices to get
validity in both of the two schedules.

We call step t delayable until k if the schedule is pseudo-valid and step t is not
synchronized with any step until k

delay[s](t,k)≡ pval[s](t,k)∧∀t ′ ∈ (t : k].t 6I [s]t ′.

We define several invariants, all of which (as we will show) are preserved during
reordering of delayable steps.
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NearlySame The configurations at k+1 and k are nearly the same

It
↑([t→ k],k+1,k).

IssueSame Except for the operation made in step t

fi(l) = Opi↑(t)(l, t),

the sequences of issued writes are nearly the same at k+1 and k

J fi
↑ ([t→ k],k+1,k).

NothingIssued No new write buffer entries are issued by the unit making step t

∀t ′ ∈ issue↑[t→ k]k(u↑(t)).t ′ < t.

Valid Steps before k are still valid resp. WB-feasible in both schedules

ΓΨ
k
↑(s)∧ΓΨ

k−1
↑ (s[t→ k]).

The validity of step k is also the same

Γ↑(k) = Γ↑[t→ k](k−1).

SameState If step t is a write and step k is valid

mwrite↑(t)∧Γ↑(k),

step t can be moved to k and sees the same values from memory

m↑[t→ k]k =in↑(t) mt
↑,

and the buffers in step t subsume those in step k after the reordering

bu f S↑(s(t),ct
↑,c↑[t→ k]k).

We prove these invariants by induction on k. In each proof we can use the invariants
for k but also invariants for k+ 1 which we have already shown. To refer to Invariant
X when reordering t until k, we use the notation X(t,k), e.g.,

NearlySame(t,k).

If all invariants hold at k, we write

Inv(t,k)≡ NearlySame(t,k)∧ . . .∧SameState(t,k).

Clearly the invariants hold when moving t to t

Lemma 214.
Inv(t, t).

Proof. Note first that all predicates and components are unchanged by moving t to t

X↑[t→ t] = X↑.

We now prove the invariants.
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NearlySame: The claim is just a special case of Lemma 190.

IssueSame: The claim is just a special case of Lemma 201.

NothingIssued Clearly all issued timestamps are before the current timestamp

∀t ′ ∈ issue↑[t→ t]t(u↑(t)).t ′ < t.

Valid: Pseudo-validity gives us validity until t

Γ
t
↑(s).

The claims are all weaker than this and the invariant follows.

SameState: There is no reordering, and the claim about memory follows

m↑[t→ t]t = mt
↑,

and the write buffers are similarly unchanged

wb↑[t→ t]t = wbt
↑.

The remaining claim follows with Lemma 90

bu f S↑(s(t),ct
↑,c↑[t→ t]t).

We now show that the invariants are actually maintained by the reordering.
The essence of the proof is quickly explained. We show that races between steps

t and k+ 1 are maintained by moving step t until step k. Since steps k and k+ 1 are
adjacent, this allows us to use Lemma 209 to show that races have to be correctly
annotated. At this point we use the fact that there is no synchronization between steps
t and k to deduce that there is no correctly annotated race, therefore no race, and thus
also no race in the original schedule, which allows us to move step t further to position
k+1. The situation is depicted in Figure 4.7.

In what follows, we assume that t is always less or equal to k

t ≤ k.

Lemma 215.
t 6B k+1→ o↑(t) 6= o↑(k+1).

Proof. By contraposition of Rule NOTCONCURRENT, steps t and k+1 are object-concurrent

ocon↑(t,k+1).

The claim follows.

Lemma 216. If step t is not forward-synchronized with step k+1, it is not made by the
write buffer of the unit that makes step k+1

t 6B k+1→ s(t) 6∈ ΣWB,u↑(k+1),
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Figure 4.7: We obtain s′ by moving step t to position k, and s′′ by
moving t one step further to the right. In s′, we try to execute s(k+1)
after s(t), but in s′′ we execute s(k+1) at position k.

Proof. Let the unit making step k+1 be i

i = u↑(k+1).

We distinguish between the object making step k+1

s(k+1) ∈ ΣP,i: The claim is the contraposition of Rule PROCESSORFENCE.

s(k+1) ∈ ΣWB,i: By Lemma 215, steps t and k+1 are not made by the same object

o↑(t) 6= o↑(k+1)

and the claim follows
s(t) 6∈ ΣWB,i.

If step t is made by the same unit as step k+ 1 but is not forward-synchronized,
step t is a processor step and step k+1 is a write buffer step.

Lemma 217.

u↑(t) = u↑(k+1)∧ t 6B k+1→ s(t) ∈ ΣP,u↑(t)∧ s(k+1) ∈ ΣWB,u↑(t).

Proof. By Lemma 216 step t is not made by the write buffer of step k+1

s(t) 6∈ ΣWB,u↑(k+1),

and since it is made by unit u↑(k+1)

u↑(t) = u↑(k+1),

it must be made by the processor of that unit

s(t) ∈ ΣP,u↑(k+1).

By Lemma 215 we can now exclude the processor for step k+1 and obtain that it must
have been made by the write buffer of unit u↑(k+1)

s(k+1) ∈ ΣWB,u↑(k+1).

By assumption, that is also the unit making step t and the claim follows

s(t) ∈ ΣP,u↑(t)∧ s(k+1) ∈ ΣWB,u↑(t).
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Because no new writes have been added to the buffer of the unit making step t, the
sequence of issued writes of that unit is unaffected by the reordering.

Lemma 218.

Inv(t,k)∧ i = u↑(t)→ issue↑[t→ k]k(i) = mv[t← k](issue↑[t→ k]k(i)).

Proof. By Invariant NothingIssued no new writes have entered the sequence of issued
writes

∀t ′ ∈ issue↑[t→ k]k(i).t ′ < t.

The claim follows with Lemma 77

mv[t← k](issue↑[t→ k]k(i)) =
[

mv[t← k](t ′)
∣∣∣ t ′ ∈ issue↑[t→ k]k(i)

]
=
[

t ′
∣∣∣ t ′ ∈ issue↑[t→ k]k(i)

]
L 77

= issue↑[t→ k]k(i).

This simplifies the invariant for the unit making step t.

Lemma 219.

Inv(t,k)∧ i = u↑(t)→ issuek+1
↑ (i) = Opi↑(t)(issue↑[t→ k]k(i), t)

Proof. By Invariant IssueSame, the sequences of write buffers are nearly the same

issuek+1
↑ (i) = Opi↑(t)(mv[t← k](issue↑[t→ k]k(i)), t),

and the claim follows immediately with Lemma 218

issuek+1
↑ (i) = Opi↑(t)(issue↑[t→ k]k(i), t).

Lemma 220.

Inv(t,k)→ wbk+1
↑ (i) = Opi↑(t)(wb↑[t→ k]k(i),BW↑(t)).

Proof. We distinguish whether unit i made step t or not

u↑(t) = i: By Lemma 219 step t is exactly the step missing in the sequence of issued
writes

issuek+1
↑ (i) = Opi↑(t)(issue↑[t→ k]k(i), t).

Using Lemmas 123 and 36 we obtain the same for the write buffers

wbk+1
↑ (i) =

[
BW↑(t ′)

∣∣∣ t ′ ∈ issuek+1
↑ (i)

]
L 123

=
[

BW↑(t ′)
∣∣∣ t ′ ∈ Opi↑(t)(issue↑[t→ k]k(i), t)

]
= Opi↑(t)(

[
BW↑(t ′)

∣∣∣ t ′ ∈ issue↑[t→ k]k(i)
]
,BW↑(t)) L 36

= Opi↑(t)(wb↑[t→ k]k(i),BW↑(t)), L 123

which was the claim.
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u↑(t) 6= i: By Invariant NearlySame the buffers are the same, and the claim follows
with Lemma 95

wbk+1
↑ (i) = wb↑[t→ k]k(i) = Opi↑(t)(wb↑[t→ k]k(i),BW↑(t)).

Lemma 221. Assume that the schedule is pseudo-valid until k+1, the invariants hold
at k, t is delayable until k+1, and step t is not forward-synchronized with step k+1

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1,

and that step k+1 is a step of the write buffer of processor i

s(k+1) ∈ ΣWB,i.

Then the operation at t was not a push, or the sequence of issued writes before the
reordering must be non-empty

Opi↑(t) 6= push∨ issuek+1
↑ (i) 6= ε ∧ issue↑[t→ k]k(i) 6= ε.

Proof. Assume that the operation was a push

Opi↑(t) = push.

Thus step t was made by the processor i and thus by unit i

u↑(t) = i.

By Lemma 219 step t is exactly the step missing in the sequence of issued writes

issuek+1
↑ (i) = Opi↑(t)(issue↑[t→ k]k(i), t).

We conclude that the sequence of issued writes at k+1 contains the issued writes
at k after reordering and t

issuek+1
↑ (i) = push(issue↑[t→ k]k(i), t) = issue↑[t→ k]k(i)◦ t,

and is thus clearly non-empty
issuek+1

↑ (i) 6= ε,

which is the first half of the claim.
Step t is in the buffer at k+1

t ∈ issuek+1
↑ (i)

but we obtain by contraposition of Rule ISSUEWRITE that t can not be the step that
issued the committed write

t 6= hd(issuek+1
↑ (i)),

and by Lemma 38, the tail of the issued writes is not empty

tl(issuek+1
↑ (i)) 6= ε.

By Lemma 39 we obtain the claim

issue↑[t→ k]k(i) 6= ε.
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If step k+ 1 is a write buffer step, the write buffer after and before the reordering
must be non-empty.

Lemma 222. Assume that the schedule is pseudo-valid until k+1, the invariants hold
at k, t is delayable until k+1, and step t is not forward-synchronized with step k+1

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1,

that step k+1 is a step of the write buffer of processor i

s(k+1) ∈ ΣWB,i.

Then the write buffers after and before the reordering must be non-empty

wbk+1
↑ (i) 6= ε ∧wb↑[t→ k]k(i) 6= ε.

Proof. We distinguish between the three cases for the operator applied in step t.

s(t) ∈ ΣP,i∧BW↑(t) 6= /0: Since step t buffered a write, the operation is a push

Opi↑(t) = push

and by Lemma 221 the sequence of issued writes at k+1 in the original schedule
and at k in the reordered schedule are non-empty

issuek+1
↑ (i) 6= ε ∧ issue↑[t→ k]k(i) 6= ε.

The claims follow with Lemma 123

wbk+1
↑ (i) 6= ε ∧wb↑[t→ k]k(i) 6= ε.

s(t) ∈ ΣWB,i: By contraposition of Rule NOTCONCURRENT, the steps are object-concurrent

ocon↑(t,k+1)

and thus by definition made by different objects, which is a contradiction

WB, i = o↑(t) 6= o↑(k+1) =WB, i.

Otherwise: By Lemma 220 the buffers are missing exactly step t

wbk+1
↑ (i) = Opi↑(t)(wb↑[t→ k]k(i),BW↑(t)).

Since the operator is a noop, the buffers are the same

wbk+1
↑ (i) = wb↑[t→ k]k(i),

and it suffices to show that either of them is non-empty. Since step t can be
delayed until k+1, by definition of delay the schedule is pseudo-valid

pval(t,k+1)

and thus by definition of pval step k + 1 is WB-feasible in at least one of the
schedules

Ψ↑(k+1)∨Ψ↑[t→ k](k).
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Since step k+1 is a write buffer step, this implies that the drain condition holds
in at least one of the steps

∆↑(k+1)∨∆↑[t→ k](k).

We conclude that the write buffer is non-empty in one of the steps

wbk+1
↑ (i) 6= ε ∨wb↑[t→ k]k(i) 6= ε.

Since they are equal, they must both be non-empty

wbk+1
↑ (i) = wb↑[t→ k]k(i) 6= ε,

which is the claim.

We can now show the first part of Invariant Valid.

Lemma 223. If in a pseudo-valid schedule the invariants hold at k and step t is not
forward-synchronized with k + 1, then the schedule and the reordered schedule are
WB-valid until k+1 resp. k

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1→ ΓΨ
k+1
↑ (s)∧ΓΨ

k
↑(s[t→ k+1]).

Proof. By Invariant Valid the steps before k are all valid

Γ
k−1
↑ (s)∧Γ

k−2
↑ (s[t→ k]).

The schedule where t is moved to k+1 is obtained by moving t to k and then k to k+1

s[t→ k+1] = s[t→ k][k↔ k+1],

and the steps before k are unaffected by the latter move. Thus we obtain that the steps
are also valid until k−2 when t is moved to k+1

Γ
k−2
↑ (s[t→ k+1]) = Γ

k−2
↑ (s[t→ k]) = 1,

and that the validity of step k−1 before and after this additional reordering is the same

Γ↑[t→ k+1](k−1) = Γ↑[t→ k](k−1).

The schedule is pseudo-valid until k + 1, and thus step k is valid in one of the
schedules

Γ↑(k)∨Γ↑[t→ k](k−1).

By Invariant Valid the validity of the step is the same in both schedules, i.e., the step is
valid

Γ↑(k) = Γ↑[t→ k](k−1) = 1.

Step k−1 after the additional reordering is the same and thus also valid

Γ↑[t→ k+1](k−1).

We conclude that the schedules are valid until k reps. k−1

Γ
k
↑(s)∧Γ

k−1
↑ (s[t→ k+1]).
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It thus only remains to be shown that they are WB-feasible at k+1 resp. k

Ψ↑(k+1)
!
∧Ψ↑[t→ k+1](k).

The proof now depends on whether step k+ 1 is made by a processor or a write
buffer.

s(k+1) ∈ ΣP,i: For processor steps, WB-feasibility is just feasibility

Φ↑(k+1)
!
∧Φ↑[t→ k+1](k).

By assumption, at least one of the steps is feasible

Φ↑(k+1)∨Φ↑[t→ k+1](k).

By Invariant NearlySame, the configurations at k+1 and k are nearly the same

It
↑([t→ k],k+1,k)

and by contraposition of Rule NOTCONCURRENT steps t and k + 1 are object-
concurrent

ocon↑(t,k+1).

By Lemma 193 we obtain that the configurations at k+1 and k agree on the core
registers

mk+1
↑ =C↑(k+1) m↑[t→ k]k = m↑[t→ k+1]k.

By Lemma 151, both steps are feasible

Φ↑(k+1) = Φ↑[t→ k+1](k) = 1,

which was the claim.

s(k+1) ∈ ΣWB,i: Write buffer steps are always feasible

Φ↑(k+1)∧Φ↑[t→ k+1](k),

and it suffices to show that the steps satisfy the local drain condition

Ψ↑(k+1)∧Ψ↑[t→ k+1](k)
⇐⇒ Φ↑(k+1)∧Λ(k+1)∧Φ↑[t→ k+1](k)∧Λ[t→ k+1](k)
⇐⇒ 1∧∆↑(k+1)∧1∧∆↑[t→ k+1](k)

⇐⇒ ∆WB(wbk+1
↑ (i))∧1∧∆WB(wb↑[t→ k+1]k(i)),

i.e., that the write buffers are not empty

⇐⇒ wbk+1
↑ (i) 6= ε ∧wb↑[t→ k+1]k(i) 6= ε

⇐⇒ wbk+1
↑ (i) 6= ε ∧wb↑[t→ k]k(i) 6= ε.

The claim is now exactly Lemma 222.
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With Invariant SameState we can easily show that if step t is a memory write, it can
be moved to k and executed at its new position.

Lemma 224.

Inv(t,k)∧mwrite↑(t)∧Γ↑(k)→ ct
↑ =

s(t)
↑ c↑[t→ k]k.

Proof. By Invariant SameState we obtain that that the configurations agree on the in-
puts

mt
↑ =in↑(t) m↑[t→ k]k,

and that the buffers in step t subsume those in step k after the reordering

bu f S↑(s(t),ct
↑,c↑[t→ k]k).

The claim is now Lemma 187.

If the schedule is pseudo-valid until k+1, we already know that step k is valid. We
can thus immediately use Lemma 224.

Lemma 225.

pval(t,k+1)∧ Inv(t,k)∧mwrite↑(t)→ ct
↑ =

s(t)
↑ c↑[t→ k]k.

Proof. Since the schedule is pseudo-valid until k+ 1 the schedule is valid at k in one
of the schedules

Γ↑(k)∨Γ↑[t→ k](k−1).

By Invariant Valid, the validity is the same, i.e., valid

Γ↑(k) = Γ↑[t→ k](k−1) = 1.

The claim is now Lemma 224.

Only writes have write-read and write-write races, and thus we can obtain the same
lemma for races.

Lemma 226. When the schedule is pseudo-valid until k+ 1, and the invariants hold
until k, and the steps t and k+1 have a write-read or write-write race

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1∧ (WR↑(t,k+1)∨WW↑(t,k+1))

then step t can be executed in its new position

ct
↑ =

s(t)
↑ c↑[t→ k]k.

Proof. By contraposition of Rule NOTCONCURRENT we obtain that steps t and k+1 are
object-concurrent

ocon↑(t,k+1).

By Lemma 160, step t must be a memory write

mwrite↓(t).

The claim is now Lemma 225.
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Lemma 227. When the schedule is pseudo-valid, the invariants hold, and step t is not
forward-synchronized with step k+1

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1,

the buffers of step k+1 at configuration k+1 before the reordering subsume those at
configurations k+1 and k after the reordering

bu f S(s(k+1),ck+1
↑ ,c↑[t→ k]k+1).

∧bu f S(s(k+1),ck+1
↑ ,c↑[t→ k]k).

Proof. The proof distinguishes between steps by different units and steps by the same
unit.

u↑(t) 6= u↑(k+1) = i: Note that the unit making step t also makes step k after moving
t to k

u↑[t→ k](k) = u(s[t→ k](k)) = u(s(t)) = u↑(t) 6= i.

By Invariant NearlySame the buffers are the same

wbk+1
↑ (i) = wb↑[t→ k]k(i).

Since step k after moving t to k is also made by a different unit, by Lemma 95 its
operation has no effect, and the buffers at k and k+1 stay the same

wbk+1
↑ (i) = wb↑[t→ k]k(i)

= Opi↑[t→ k](k)(wb↑[t→ k]k(i),BW↑[t→ k]k(i)) L 95

= wb↑[t→ k]k+1(i).

The claims are now Lemma 90.

u↑(t) = u↑(k+1) = i: By Lemma 217 step t is made by the processor and step k+ 1
by the write buffer of the unit

s(t) ∈ ΣP,i∧ s(k+1) ∈ ΣWB,i.

By Lemma 220 we obtain that the buffers are missing exactly step t

wbk+1
↑ (i) = Opi↑(t)(wb↑[t→ k]k(i), t).

By Lemma 222, the buffers at k are non-empty

wb↑[t→ k]k(i) 6= ε.

Since step t is a processor step, the operation is either push or noop, depending
on whether the step is buffering a write or not

Opi↑(t) ∈ { push,noop} ,

and by Lemma 43 the head of the non-empty write buffer is unchanged

hd(wbk+1
↑ (i)) = hd(Opi↑(t)(wb↑[t→ k]k(i),BW↑(t)))
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= hd(wb↑[t→ k]k(i)).

Step k after moving t to k is also a processor step of unit i

s[t→ k](k) = s(t) ∈ ΣP,i

and thus the operation is still a push or a noop

Opi↑[t→ k](k) ∈ { push,noop} .

We conclude again with Lemma 43 that the head of the non-empty write buffer
is unchanged by this operation

hd(wbk+1
↑ (i)) = hd(Opi↑[t→ k](k)(wb↑[t→ k]k(i),BW↑[t→ k](k)))

= hd(wb↑[t→ k]k+1(i))

We conclude that the head of the write buffer at k+1 before the reordering is the
head of the write buffer at k and k+1 after the reordering

hd(wbk+1
↑ (i)) = hd(wb↑[t→ k]k(i)).

hd(wbk+1
↑ (i)) = hd(wb↑[t→ k]k+1(i)).

By definition, the buffer at k+1 subsumes those at k and k+1 after the reordering

bu f S↑(s(k+1),ck+1
↑ ,c↑[t→ k]k)

∧bu f S↑(s(k+1),ck+1
↑ ,c↑[t→ k]k+1),

which was the claim.

Lemma 228. When the schedule is pseudo-valid until k+ 1, and the invariants hold
until k, and the steps t and k+1 are not forward-synchronized

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1,

then all of the following are true.

1. If there is a code modification, the steps are annotated correctly

CM↑(t,k+1)→ Sh↑(t)∧ShR↑(k+1).

2. If there is a valid write-read race, the steps are annotated correctly

WR↑(t,k+1)∧Γ↑(k+1)→ Sh↑(t)∧ShR↑(k+1).

3. If there is a valid write-write race, the steps are annotated correctly

WW↑(t,k+1)∧Γ↑(k+1)→ Sh↑(t)∧Sh↑(k+1).

Proof. We apply Lemma 209 with O := [t → k], t := t, k := k+ 1, and t ′ := k which
reduces the goal to the following subclaims.
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ocon↑(t,k+1): Is the contraposition of Rule NOTCONCURRENT.

s(t) = s[t→ k](k): Obviously true.

s(k+1) = s[t→ k](k+1): Obviously true.

Γ
k−1
↑ (s[t→ k]): Follows trivially with Lemma 223.

Γ↑(t): Follows trivially from the definition of pval.

ct
↑ =

s(t)
↑ c↑[t→ k]k: The claim is Lemma 226.

m↑[t→ k]k =in↑(k+1)\out↑(t) mk+1
↑ : Clearly the outputs do not intersect with the inputs

minus the outputs
out↑(t) 6 ∩̇ in↑(k+1)\out↑(t).

By Invariant NearlySame the configurations at k and k+1 are nearly the same

It
↑([t→ k],k+1,k)

and the claim is Lemma 192.

bu f S(s[t→ k](k+1),ck+1
↑ ,c↑[t→ k]k+1): Since step k+ 1 is after the reordering, its

oracle input is unaffected

s(k+1) = s[t→ k](k+1).

This reduces the claim to showing the following

bu f S(s(k+1),ck+1
↑ ,c↑[t→ k]k+1),

which is just Lemma 227.

We also obtain that of step k+1 is unchanged when executed at k after moving t to
k+1.

Lemma 229. Assume that t is delayable until k+1 and the invariants hold at k

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1,

then if there is no visible write-read race

¬V R↑(t,k+1),

the configurations at k + 1 and k, before and after moving t to k + 1, respectively,
strongly agree when stepped with s(k+1)

ck+1
↑ =

s(k+1)
↑ c↑[t→ k+1]k.

Proof. Note first that the configuration at k after moving t to k+1 is the same as that
at k after moving t to k, since the order of steps after k does not affect the configuration
at k

c↑[t→ k+1]k = c↑[t→ k]k

and it suffices to show the following

ck+1
↑ =

s(k+1)
↑ c↑[t→ k]k.

We distinguish now with Lemma 217 between two cases: either the steps are made
by different units, or step k+1 is a write buffer step.
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u↑(t) 6= u↑(k+1): We obtain that the steps are made by different units

di f f u(t,k+1)

and by Invariant NearlySame that the configurations are nearly the same

It
↑([t→ k],k+1,k).

The claim is now Lemma 196.

s(k+1) ∈ ΣWB,u↑(t): We apply Lemma 186 and reduce the goal to the following two
subclaims.

mk+1
↑ =in↑(k+1) m↑[t→ k]k: By Invariant NearlySame the configurations are nearly

the same
It
↑([t→ k],k+1,k)

and the claim is just Lemma 195.

bu f S↑(s(k+1),ck+1
↑ ,c↑[t→ k]k): The claim is just Lemma 227.

Lemma 230.

pval(t,k+1)∧ t 6B∗ k+1∧ Inv(t,k)→¬V R↑(t,k+1).

Proof. Assume for the sake of contradiction that the visible outputs are used by step
k+1

vout↑(t,k+1) ∩̇ in↑(k+1).

With Lemma 113 we obtain that the outputs subsume those addresses and thus must
also intersect the inputs

out↑(t) ∩̇ in↑(k+1).

Therefore there is a write-read race

WR↑(t,k+1).

Step t is not race-synchronized and thus also not forward-synchronized with step
k+1

t 6B k+1.

With Lemma 228 we obtain that both steps are shared

Sh↑(t)∧ShR↑(k+1),

and by Rule COMMEXT the steps are race-synchronized

tB∗ k+1,

which is is a contradiction.
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Lemma 231. Assume that the schedule is pseudo-valid until k + 1, t is not race-
synchronized with k+1, and the invariants hold at k

pval(t,k+1)∧ t 6B∗ k+1∧ Inv(t,k),

then the configurations at k+1 and k, before and after moving t to k+1, respectively,
strongly agree when stepped with s(k+1)

ck+1
↑ =

s(k+1)
↑ c↑[t→ k+1]k.

Proof. By Lemma 230, there is no visible write-read race

¬V R↑(t,k+1).

The claim is now Lemma 229.

Lemma 232. Assume that the schedule is pseudo-valid until k + 1, t is not race-
synchronized with k+1, and the invariants hold at k

pval(t,k+1)∧ t 6B∗ k+1∧ Inv(t,k),

then all functions X that depend on core, fetched and read addresses, or the write
buffer, agree between step k+1 before the reordering and k after t was moved to k+1,
i.e., for

X ∈ {PW,W,WS,out,victims,∆,Γ}

and for
X ∈ {R,ϒ, I, in}

and for
X ∈ { core,C,F,Φ,Sh,ShR,SC }

we have
X↑(k+1) = X↑[t→ k+1](k).

Proof. With Lemma 231 we obtain that the configurations during the step agree

ck+1
↑ =

s(k+1)
↑ c↑[t→ k+1]k.

Furthermore, the steps made in the configuration are the same

s[t→ k+1](k) = s[t→ k][k↔ k+1](k) = s[t→ k](k+1) = s(k+1).

The claims are now Lemma 150.

Lemma 233.

pval(t,k+1)∧ t 6B∗ k+1∧ Inv(t,k)→ NearlySame(t,k+1).

Proof. By Invariant NearlySame, the configurations are nearly the same at k+1 and k

It
↑([t→ k],k+1,k).

We can move step t one further without affecting the configuration at k

c↑[t→ k]k = c↑[t→ k+1]k.
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Thus the configurations are still nearly the same when moving t until k+1

It
↑([t→ k],k+1,k)

⇐⇒ mk+1
↑ =A\vout↑(t,k+1) m↑[t→ k]k ∧∀i 6= u↑(t).wbk+1

↑ =i wb↑[t→ k]k

⇐⇒ mk+1
↑ =A\vout↑(t,k+1) m↑[t→ k+1]k ∧∀i 6= u↑(t).wbk+1

↑ =i wb↑[t→ k+1]k

⇐⇒ It
↑([t→ k+1],k+1,k).

We now distinguish whether the steps are made by the same unit or not.

u↑(t) 6= u↑(k+1): In this case the steps are made by different units

di f f u(t,k+1)

and by Lemma 230 there is no visible write-read race

¬V R↑(t,k+1).

The claim is thus Lemma 198.

u↑(t) = u↑(k+1) = i: Clearly the steps at k+ 1 and k in the schedules use the same
oracle input

s[t→ k+1](k) = s(k+1).

By Lemma 231 the steps strongly agree

ck+1
↑ =

s(k+1)
↑ c↑[t→ k+1]k

and the claim is Lemma 197.

Lemma 234.

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1→ IssueSame(t,k+1).

Proof. With Invariant IssueSame and Lemma 204 with k′ := k+ 1 we obtain that the
sequences of issued writes are nearly the same at k + 1 and k when reordering until
k+1

J fi
↑ ([t→ k+1],k+1,k).

We apply Lemma 202, which reduces the claim to the following three.

mv[t→ k+1](k+1) = k: This is just a special case of Lemma 77.

Commutativity: The claim is that the operations at t and k+1 can be commuted

fi(Opi↑(k+1)(issue↑[t→ k+1]k,k+1))

= Opi↑(t)(Opi↑(k+1)(issue↑[t→ k+1]k,k+1), t)
!
= Opi↑(k+1)(Opi↑(t)(issue↑[t→ k+1]k, t),k+1)

= Opi↑(k+1)( fi(issue↑[t→ k+1]k),k+1).

We distinguish whether the steps are made by the same unit or not.
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u↑(t) = u↑(k+1) = i: By Lemma 217 step t is made by the processor and step
k+1 by the write buffer

s(t) ∈ ΣP,i∧ s(k+1) ∈ ΣWB,i.

By Lemma 222 the write buffer at k is non-empty or step t did not push
something

Opi↑(t) 6= push∨ issue↑[t→ k+1]k(i) = issue↑[t→ k]k(i) 6= ε,

whereas the operation at k+1 is certainly a pop

Opi↑(k+1) = pop.

The claim is now Lemma 46 with δ := Opi↑(t) and δ ′ := Opi↑(k+1)

Opi↑(t)(Opi↑(k+1)(issue↑[t→ k+1]k,k+1), t)

= Opi↑(k+1)(Opi↑(t)(issue↑[t→ k+1]k, t),k+1).

u↑(t) 6= u↑(k+1): The claim is just Lemma 100

Opi↑(t)(Opi↑(k+1)(issue↑[t→ k+1]k,k+1), t)

= Opi↑(k+1)(Opi↑(t)(issue↑[t→ k+1]k, t),k+1).

ck+1
↑ =

s(k+1)
↑ c↑[t→ k+1]k: This is just Lemma 231.

Lemma 235.

pval(t,k+1)∧ Inv(t,k)∧ t 6B k+1→ NothingIssued(t,k+1).

Proof. By Invariant NothingIssued no new writes have been issued at k when moving
until k

∀t ′ ∈ issue↑[t→ k]k(u↑(t)).t ′ < t.

The sequence at k is unaffected by moving one step further, and we obtain the same
when moving until k+1

∀t ′ ∈ issue↑[t→ k+1]k(u↑(t)).t ′ < t.

We want to show that this still holds at k+1, which is obtained by applying the operator
of step k in the reordered schedule

issue↑[t→ k+1]k+1(u↑(t)) = Opu↑(t)↑[t→ k+1](k)(issue↑[t→ k+1]k(u↑(t)),k).

The proof now distinguishes between the three possible operators at k

Opu↑(t)↑[t→ k+1](k) = push: By definition of Op, step k in the reordering and thus
step k+1 in the original schedule is a processor step of the unit that makes step t

s(k+1) = s[t→ k+1](k) ∈ ΣP,u↑(t)

consequently both steps are made by the same unit

u↑(k+1) = u↑(t).

But by Lemma 217, step k+ 1 is made by a write buffer and thus not by a pro-
cessor

s(k+1) ∈ ΣWB,u↑(t)∧ s(k+1) 6∈ ΣP,u↑(t).
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Opu↑(t)↑[t→ k+1](k) = pop: The step only drops elements

issue↑[t→ k+1]k+1(u↑(t)) = tl(issue↑[t→ k+1]k(u↑(t)))

and thus all elements of the sequence at k+1 were already in the sequence at k.
The claim follows

∀t ′ ∈ issue↑[t→ k+1]k+1(u↑(t)).t ′ < t.

Opu↑(t)↑[t→ k+1](k) = noop: The step does not change the sequence of issued writes

issue↑[t→ k+1]k+1(u↑(t)) = issue↑[t→ k+1]k(u↑(t))

and thus all elements of the sequence at k+1 were already in the sequence at k.
The claim follows

∀t ′ ∈ issue↑[t→ k+1]k+1(u↑(t)).t ′ < t.

Lemma 236.

pval(t,k+1)∧ t 6B∗ k+1∧ Inv(t,k)→Valid(t,k+1).

Proof. The first portion of the invariant is just Lemma 223. The second portion of the
invariant is just Lemma 232 with X := Γ.

To prove Invariant SameState, we also need that step t is not interrupted or a dis-
abled RMW (i.e., we need t 6I k+1). This is conveniently expressed by delay(t,k+1).
To go back to the form used before, we prove a small lemma: when step t can be
delayed until k + 1, the schedule is pseudo-valid, and t is neither race- nor forward-
synchronized with k+1.

Lemma 237.

delay(t,k+1)→ pval(t,k+1)∧ t 6B∗ k+1∧ t 6B k+1.

Proof. The first claim is by definition of delay. By definition of delay, we obtain
further that t is not synchronized with k+1

t 6I k+1.

By contraposition of Lemma 212 we immediately obtain that there is no forward-
synchronization

t 6B k+1,

and by contraposition of Lemma 213 that there is no race-synchronization

t 6B∗ k+1,

and the claim follows.
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Lemma 238. Assume that t can be delayed until k+1 and the invariants hold at k

delay(t,k+1)∧ Inv(t,k).

If step t is a memory write and step k+1 is a valid step of the same unit

mwrite↑(t)∧Γ↑(k+1)∧u↑(t) = u↑(k+1),

the steps and step k after moving t to k+1 are all using the same memory mode

SC↑(t) = SC↑[t→ k+1](k) = SC↑(k+1).

Proof. By Lemma 217, step k + 1 must be a write buffer step and step t must be a
processor step

s(t) ∈ ΣP,i∧ s(k+1) ∈ ΣWB,i.

The mode registers are inputs of step t

ASC,i ⊆ in↑(t).

Due to Invariant SameState, the mode registers are unchanged by the reordering

mt
↑ =ASC,i m↑[t→ k]k.

Reordering further does not change the configuration and thus the mode registers at k

m↑[t→ k]k =ASC,i m↑[t→ k+1]k,

and since the unit making step k after moving t to k+1 is again unit i

u↑[t→ k+1](k) = u(s[t→ k+1](k)) = u(s(k+1)) = u↑(k+1) = i,

step k after moving t to k+1 is also done in the same memory mode

SC↑[t→ k+1](k) = SCi↑[t→ k+1](k)
= SCi↑(t)

= SC↑(t).

With Lemma 232 with X := SC and Lemma 237 we obtain that the step was in the
same memory mode in the original schedule

SC↑(k+1) = SC↑[t→ k+1](k) = SC↑(t),

which is the claim.

Lemma 239. Assume that t can be delayed until k+1 and the invariants hold at k

delay(t,k+1)∧ Inv(t,k).

If step t is a memory write and step k+ 1 is a valid step of the same unit, there is no
read-write race between the two steps

mwrite↑(t)∧Γ↑(k+1)∧u↑(t) = u↑(k+1)→¬RW↑(t,k+1).
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Proof. Assume for the sake of contradiction that there is such a race

RW↑(t,k+1).

By contraposition of Rule RMWDISABLE, we obtain that step t is not a shared read

¬ShR↑(t).

By Lemmas 217 and 237, step k+1 must be a write buffer step and step t must be
a processor step

s(t) ∈ ΣP,i∧ s(k+1) ∈ ΣWB,i.

By definition of ShR, a processor step that is not a shared read is performed in
sequentially consistent mode

SC↑(t).

By Lemma 238 step k+1 is made in the same memory mode

SC↑(k+1)

and thus by definition the write at k+1 before the reordering is empty

W↑(k+1) = /0.

Thus step k+1 does not have outputs

out↑(k+1) = /0,

which contradicts the assumption that its outputs somehow modify inputs of step t.

in↑(t) 6 ∩̇ out↑(k+1).

Lemma 240. Assume that t can be delayed until k+1 and the invariants hold at k

delay(t,k+1)∧ Inv(t,k).

If step t is a memory write and step k+1 is valid, the buffers of step t subsume those of
step k+1 after moving t to k+1

mwrite↑(t)∧Γ↑(k+1)→ bu f S↑(s(t),ct
↑,c↑[t→ k+1]k+1).

Proof. We have by Invariant SameState that the buffers of step t subsume those of step
k after moving t to k

bu f S↑(s(t),ct
↑,c↑[t→ k]k).

We move t on to k+1, which does not affect the configuration at k

c↑[t→ k+1]k = c↑[t→ k]k,

and obtain that the buffers of step t subsume those of step k after moving t to k+1

bu f S↑(s(t),ct
↑,c↑[t→ k+1]k).
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We unfold notation in the assumption

bu f S(s(t), f in↑(t),ct
↑.wb(u↑(t)),c↑[t→ k+1]k.wb(u↑(t)))

and in the claim

bu f S(s(t), f in↑(t),ct
↑.wb(u↑(t)),c↑[t→ k+1]k+1.wb(u↑(t)))

and apply transitivity (Lemma 88), which reduces the claim to showing that the buffers
at k after the reordering subsume those at k+1 after the reordering when stepped with
s(t) and using the forwarding inputs of step t

bu f S(s(t), f in↑(t),c↑[t→ k+1]k.wb(u↑(t)),c↑[t→ k+1]k+1.wb(u↑(t))).

We distinguish whether steps t and k+1 were made by the same unit, or by different
units.

u↑(t) = u↑(k+1) = i: By Lemmas 217 and 237 we obtain that the step were made by
a processor and its write buffer

s(t) ∈ ΣP,i∧ s(k+1) ∈ ΣWB,i.

Therefore we have to show that there is a prefix w that is missing and not used
by the forwarding inputs

wb↑[t→ k+1]k(i) = w◦wb↑[t→ k+1]k+1(i)
!
∧¬hit( f in↑(t),w);

that prefix is the head of the write buffer, which is committed during the write
buffer step

w := hd(wb↑[t→ k+1]k(i)).

The first claim holds now by definition

wb↑[t→ k+1]k(i) = hd(wb↑[t→ k+1]k(i))◦ tl(wb↑[t→ k+1]k(i))

= w◦wb↑[t→ k+1]k+1(i).

For the second claim, we distinguish between weak and strong memory mode.

SC↑(t): By definition the machine uses high-level semantics and the forwarding
inputs are empty

LL↑(t) = 0∧ f in↑(t) = /0,

and the claim trivially holds.

¬SC↑(t): By Lemma 238, step k after moving t to k+1 is also in weak memory
mode

¬SC↑[t→ k+1](k).

Since step k+1 is a write buffer step, so is step k after moving t to k+1

s[t→ k+1](k) = s(k+1) ∈ ΣWB,i

and thus the write executed in step k after moving t to k+1 is the head of
the write buffer

W↑[t→ k+1](k) = hd(wb↑[t→ k+1]k(i)).
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The second claim is thus equivalent to showing that the write-set of that
step does not intersect with the inputs

¬hit( f in↑(t),w)≡ ¬hit(in↑(t),hd(wb↑[t→ k+1]k(i)))

≡ in↑(t) 6 ∩̇ Dom(hd(wb↑[t→ k+1]k(i)))
≡ in↑(t) 6 ∩̇ Dom(W↑[t→ k+1](k))
≡ in↑(t) 6 ∩̇WS↑[t→ k+1](k).

By Lemmas 232 and 237, that is the write-set of step k+ 1 before the re-
ordering

WS↑[t→ k+1](k) =WS↑(k+1).

By Lemma 239 there is no read-write race between these steps, and thus no
intersection between inputs and outputs

in↑(t) 6 ∩̇ out↑(k+1),

and the claim follows with the observation that the outputs subsume the
write-set

WS↑(k+1)⊆WS↑(k+1)∪dc(WS↑(k+1))
= idc(WS↑(k+1))
= out↑(k+1).

u↑(t) 6= u↑(k+1): The unit making step k after moving t to k+1 is also not the same
as the one making step t

u↑[t→ k+1](k) = u(s[t→ k+1](k)) = u(s(k+1)) = u↑(k+1) 6= u↑(t).

By Lemma 96, step k after moving t to k has no effect on the write buffer

c↑[t→ k+1]k.wb(u↑(t)) = c↑[t→ k+1]k+1.wb(u↑(t))

and the claim is Lemma 89.

Lemma 241. Assume step t can be delayed until k+1 and the invariants hold at k

delay(t,k+1)∧ Inv(t,k).

If step t is a memory write and step k+ 1 is a valid step of another unit, there is no
read-write race between the two steps

mwrite↑(t)∧Γ↑(k+1)∧u↑(t) 6= u↑(k+1)→¬RW↑(t,k+1).

Proof. Assume for the sake of contradiction that there is such a race

RW↑(t,k+1).

By contraposition of Rule INTERRUPTED we obtain that step t is not interrupted by
step k+1

¬int↑(k+1, t).
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By assumption the steps are made by different units

di f f u(t,k).

Therefore step k+1 is by definition of ucon unit-concurrent with t

ucon↑(k+1, t),

and by Lemma 105 also object-concurrent

ocon↑(k+1, t) (4.10)

Clearly step k+1 and t have been moved to k and k+1, respectively

s(k+1) = s[t→ k+1](k), s(t) = s[t→ k+1](k+1). (4.11)

With Lemmas 231 and 237 step k+1 can be executed at its new position

ck+1
↑ =

s(k+1)
↑ c↑[t→ k+1]k. (4.12)

By Lemmas 223 and 237 the new schedule is valid until k−1

Γ
k−1
↑ (s[t→ k+1]), (4.13)

and the old schedule is valid until k

Γ
k
↑(s).

In particular step t is valid
Γ↑(t) (4.14)

and step k is valid
Γ↑(k)

and by Invariant SameState we obtain that the value of inputs is unchanged

m↑[t→ k]k =in↑(t) mt
↑,

in particular for those inputs which are not outputs of k+1

m↑[t→ k]k =in↑(t)\out↑(k+1) mt
↑.

Since that memory configuration at k is not affected by moving t one more step

m↑[t→ k+1]k = m↑[t→ k][k↔ k+1]k = m↑[t→ k]k,

we obtain that the memory configuration at k after the reordering equals that at t before
the reordering

m↑[t→ k+1]k =in↑(t)\out↑(k+1) mt
↑. (4.15)

By Lemma 240, the buffers of step t subsume those of step k+1 after moving t to
k+1

bu f S↑(s(t),ct
↑,c↑[t→ k+1]k+1).

Rewriting with the equality s(t) = s[t→ k+1](k+1) we obtain the following

bu f S↑(s[t→ k+1](k+1),ct
↑,c↑[t→ k+1]k+1). (4.16)
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Note that a read-write race is a write-read race with the step indices swapped, and
so there is a write-read race between k+1 and t

WR↑(k+1, t).

We apply Lemma 209 with O := [t→ k+1], t := k+1, k := t, t ′ := k, the assump-
tion that step k+1 is valid and Eqs. (4.10) to (4.16), and obtain that step t is a shared
read

ShR↑(t).

By Rule RMWDISABLE, the steps are synchronized

tIk+1,

which is a contradiction.

Lemma 242.

delay(t,k+1)∧ Inv(t,k)∧mwrite↑(t)∧Γ↑(k+1)→¬RW↑(t,k+1).

Proof. By case distinction on whether the units are the same.

u↑(t) = u↑(k+1): The claim is just Lemma 239.

u↑(t) 6= u↑(k+1): The claim is just Lemma 241.

Lemma 243.
delay(t,k+1)∧ Inv(t,k)→ SameState(t,k+1).

Proof. Let step t be a memory write and step k+1 be valid

mwrite↑(t)∧Γ↑(k+1).

We show the two claims.

m↑[t→ k+1]k+1 =in↑(t) mt
↑: By definition of delay, the schedule is pseudo-valid and

by Lemma 223 valid until k
Γ

k
↑(s),

in particular at k
Γ↑(k).

By Invariant SameState we have that the memory at k when moving until k is the
same, which is obviously the same as that at k when moving until k+1

m↑[t→ k+1]k = m↑[t→ k]k =in↑(t) mt
↑.

With Lemma 242 we obtain that there is no read-write race

¬RW↑(t,k+1),

and thus the outputs of step k+1 are not intersecting with the inputs of t

out↑(k+1) 6 ∩̇ in↑(t).
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The outputs at the new position of k are the same by Lemmas 232 and 237

out↑(k+1) = out↑[t→ k+1](k),

and we obtain that these do not intersect the inputs either

out↑[t→ k+1](k) 6 ∩̇ in↑(t).

The claim follows with Lemma 138

m↑[t→ k+1]k =in↑(t) m↑[t→ k+1]k =in↑(t) mt
↑.

bu f S↑(s(t),ct
↑,c↑[t→ k+1]k+1): The claim is just Lemma 240.

Furthermore, if a step can be delayed until k+1 it can also be delayed until k

Lemma 244.
pval(t,k+1)→ pval(t,k).

Proof. The proof is completely trivial except for showing that the last step is WB-
feasible in one schedule

Ψ↑(k)
!
∨Ψ↑[t→ k](k−1).

However we have by assumption that that step k ∈ (t : k+1) is valid in one schedule

Γ↑(k)∨Γ↑[t→ k](k−1),

and by unfolding definitions we obtain that it is feasible and satisfies the drain condition

Φ↑(k)∧∆↑(k)∨Φ↑[t→ k](k−1)∧∆↑[t→ k](k−1)

and thus by definition of Λ also the write buffer drain condition

Φ↑(k)∧Λ↑(k)∨Φ↑[t→ k](k−1)∧Λ↑[t→ k](k−1)

which by definition of Ψ is the claim.

Lemma 245.
delay(t,k+1)→ delay(t,k)

Proof. By assumption the schedule is pseudo-valid until k+1 and thus by Lemma 244
also until k

pval(t,k).

By assumption none of the steps t to k + 1 are synchronized, so clearly also not the
ones until k

∀t ′ ∈ (t : k].t 6I t ′.

The claim follows.

Combining all of these lemma gives us
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Lemma 246.
delay(t,k)→ Inv(t,k).

Proof. Induction on k, starting with t. In the base case we apply Lemma 214. In the
inductive step from k to k + 1, we first apply Lemma 245 and obtain that t can be
delayed until k

delay(t,k).

We use the induction hypothesis and obtain the invariants at k

Inv(t,k).

The inductive claim now follows by simply applying the right lemma from above
for each invariant (Lemmas 233, 234, 236 and 243)

Often we need to argue about steps k′ ≤ k when t can be delayed until k. By
repeatedly applying Lemmas 244 and 245 we can use lemmas from above, including
Lemmas 232 and 246, to argue about those steps.

Lemma 247. When step t is not race-synchronized with k and can be delayed until
k−1

t 6B∗ k∧delay(t,k−1),

then step t is not race-synchronized with any k′ ∈ (t : k]

t 6B∗ k′.

Proof. By case distinction on k ≤ k′.

k = k′: In this case we have the claim as an assumption.

k < k′: In this case we have by definition of delay that step t is not synchronized with
k′

t 6I k′

and the claim is the contraposition of Lemma 213.

Lemma 248. When a schedule is pseudo-valid until k, step t is not race-synchronized
with k and can be delayed until k−1

pval(t,k)∧ t 6B∗ k∧delay(t,k−1),

then for all k′ ∈ (t : k], the schedule is pseudo-valid until k′, step t is not race-synchronized
with k′, and the invariants hold at k′−1

pval(t,k′)∧ t 6B∗ k′∧ Inv(t,k′−1).
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Proof. By repeated application of Lemma 245 we obtain that t can be delayed until
k′−1≤ k−1

delay(t,k′−1)

and thus by Lemma 246 the invariants hold at k′−1

Inv(t,k′−1).

By repeated application of Lemma 244 we obtain that the schedule is pseudo-valid
until k′ ≤ k

pval(t,k′).

By Lemma 247 we obtain that t is not race-synchronized with k′

t 6B∗ k′

which completes the proof.

Lemma 249. When a schedule is pseudo-valid until k, step t is not race-synchronized
with k and can be delayed until k−1

pval(t,k)∧ t 6B∗ k∧delay(t,k−1),

then for all k′ ∈ (t : k], the schedule is pseudo-valid until k′, step t is not forward-
synchronized with k′, and the invariants hold at k′−1

pval(t,k′)∧ t 6B k′∧ Inv(t,k′−1).

Proof. Follows directly with Lemma 248 and the definition of B∗ .

Lemma 250. When a schedule is pseudo-valid until k, step t is not race-synchronized
with k and can be delayed until k−1

pval(t,k)∧ t 6B∗ k∧delay(t,k−1),

then all functions X that depend on core, fetched and read addresses, or the write
buffer, agree between step k′ before the reordering and k′−1 after t was moved to k for
all k′ ∈ (t : k], i.e., for

X ∈ {PW,W,WS,out,victims,∆,Γ}

and for
X ∈ {R,ϒ, I, in}

and for
X ∈ { core,C,F,Φ,Sh,ShR,SC }

we have
X↑(k′) = X↑[t→ k](k′−1).

230



Proof. By Lemma 248, the schedule is pseudo-valid until k′, step t is not race-synchronized
with k′, and the invariants hold at k′−1

pval(t,k′)∧ t 6B∗ k′∧ Inv(t,k′−1).

With Lemma 232 we obtain that X is unchanged when moving t until k′

X↑(k′) = X↑[t→ k′](k′−1)

and the claim follows as moving k′ further does not affect step k′−1

X↑[t→ k′](k′−1) = X↑[t→ k′][k′→ k](k′−1) = X↑[t→ k](k′−1).

We can now show that delaying a step that can be delayed until k does not affect
synchronization and races of any of the steps before k. Together with Lemma 246, this
lemma is extremely powerful since it allows us to drop unsynchronized steps from a
schedule without affecting the steps around it.

Lemma 251. Assume that the schedule is pseudo-valid until k, t is not race-synchronized
with k, and we can delay t until k−1

pval(t,k)∧ t 6B∗ k∧delay(t,k−1),

we can move t to k without changing synchronization between steps before t and steps
after t: for all t ′ < t and all k′ ∈ (t : k] we have

1. The races are unchanged, i.e., for each type of race T ∈ {WR,WW,RW,CM }
we have

T↑(t ′,k′)≡ T↑[t→ k](t ′,k′−1).

2. The interrupts are unchanged, i.e., we have

int↑(t ′,k′)≡ int↑[t→ k](t ′,k′−1)∧ int↑(k′, t ′)≡ int↑[t→ k](k′−1, t ′).

3. Visible write-read races are unchanged

V R↑(t ′,k′)≡V R↑[t→ k](t ′,k′−1).

4. The synchronization is unchanged, i.e., for R ∈ {B,B∗ ,I}

t ′ R k′ ≡ t ′ R[t→ k]k′−1.

Proof. The situation is depicted in Fig. 4.8.
We obtain directly with Lemma 250 that outputs, inputs, and fetched registers X ∈

{ in,out,F } of step k′ are unchanged

X↑(k′) = X↑[t→ k](k′−1),

and from the fact that t ′ is less than t and thus in the prefix of s which is unchanged,
that the outputs and inputs of step t ′ are also unchanged

in↑(t ′) = in↑[t→ k](t ′),
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Figure 4.8: Steps t ′ and k′ (represented by rectangles with dashed
outlines) can be anywhere in the given ranges (represented by long
rectangles). By moving step t to position k, step k′ is moved to position
k′−1 but step t ′ is not moved at all.

out↑(t ′) = out↑[t→ k](t ′).

The first claim follows. We only show the proof for T =WR, the others are analogous.

WR↑(t ′,k′)≡ out↑(t ′) ∩̇ in↑(k′)

≡ out↑[t→ k](t ′) ∩̇ in↑[t→ k](k′−1)
≡WR↑[s[t→ k]](t ′,k′−1).

With Lemma 250 we obtain analogously that the victims of the steps are the same

victims↑[t→ k](k′−1) = victims↑(k′), L 250
victims↑[t→ k](t ′) = victims↑(t ′).

The second claim follows. We show the proof only for int↑(t ′,k′)

int↑(t ′,k′) = u↑(k′) ∈ victims↑(t ′)

= u↑[t→ k](k′−1) ∈ victims↑[t→ k](t ′)

= int↑[t→ k](t ′,k′−1).

For the third claim, we obtain equalities for WS↑ and in↑

WS↑(t ′) =WS↑[t→ k](t ′),

in↑(k′) = in↑[t→ k](k′−1), L 250
Sh↑(t ′) = Sh↑[t→ k](t ′) = 1,
Sh↑(k′) = Sh↑[t→ k](k′−1) = 1, L 250

as well as that t ′ is also less than k′−1

t ′ < t ≤ k′−1.

We also obtain that the addresses overwritten in the interval (t ′ : t) are the same, and
the addresses overwritten in the interval (t : k′) are now overwritten in the interval
(t−1 : k′−1)

out↑((t ′ : t)) =
⋃

t ′′∈(t ′:t)
out↑(t ′′)

=
⋃

t ′′∈(t ′:t)
out↑[t→ k](t ′′)
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= out↑[t→ k]((t ′ : t)),

out↑((t : k′)) =
⋃

t ′′∈(t:k′)
out↑(t ′′)

=
⋃

t ′′∈(t:k′)
out↑[t→ k](t ′′−1) L 250

=
⋃

t ′′∈(t−1:k′−1)

out↑[t→ k](t ′′)

= out↑[t→ k]((t−1 : k′−1)).

On the other hand, it is not necessarily true that the visible outputs are unchanged.
Since the outputs of t are missing in schedule s[t→ k], there might be additional visible
outputs of t ′ in that schedule. In fact, the reordering increases the visible write-set
exactly by the visible outputs of the moved step t

vws↑(t ′,k′) =WS↑(t ′)\out↑((t ′ : k′))

=WS↑(t ′)\out↑((t ′ : t))\out↑(t)\out↑((t : k′))

=WS↑[t→ k](t ′)\out↑[t→ k]((t ′ : t))\out↑(t)\out↑((t : k′))

= vws↑[t→ k](t ′, t)\out↑(t)\out↑((t : k′))

= vws↑[t→ k](t ′, t)\out↑((t : k′))\out↑(t)

= vws↑[t→ k](t ′, t)\out↑((t : k′))\ (dc(WS↑(t))∪WS↑(t))

= vws↑[t→ k](t ′, t)\out↑((t : k′))\ (dc(WS↑(t))∪WS↑(t)\out↑((t : k′)))

= vws↑[t→ k](t ′, t)\out↑((t : k′))\ (dc(WS↑(t))∪ vws↑(t,k′))

= vws↑[t→ k](t ′, t)\out↑((t : k′))\ vout↑(t,k′)

= vws↑[t→ k](t ′, t)\out↑[t→ k]((t−1 : k′−1))\ vout↑(t,k′)

We can pull these outputs into the visible write-set using Lemma 110

= vws↑[t→ k](t ′,k′−1)\ vout↑(t,k′).

By Lemmas 230 and 248 there is no visible write-read race, and the visible outputs
of t are not used by k′

vout↑(t,k′) 6 ∩̇ in↑(k′)

and thus they do not affect the intersection with inputs

vws↑(t ′,k′) ∩̇ in↑(k′)

⇐⇒ vws↑[t→ k](t ′,k′−1)\ vout↑(t,k′) ∩̇ in↑(k′)

⇐⇒ vws↑[t→ k](t ′,k′−1) ∩̇ in↑(k′).

We conclude that the visible outputs still intersect the inputs

V R↑(t ′,k′) ⇐⇒ vout↑(t ′,k′) ∩̇ in↑(k′)

⇐⇒ vws↑(t ′,k′)∪dc(WS↑(t ′)) ∩̇ in↑(k′)

⇐⇒ vws↑(t ′,k′) ∩̇ in↑(k′)∨dc(WS↑(t ′)) ∩̇ in↑(k′)

⇐⇒ vws↑[t→ k](t ′,k′−1) ∩̇ in↑(k′)∨dc(WS↑(t ′)) ∩̇ in↑(k′)

⇐⇒ vws↑[t→ k](t ′,k′−1)∪dc(WS↑(t ′)) ∩̇ in↑(k′)
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⇐⇒ vws↑[t→ k](t ′,k′−1)∪dc(WS↑[t→ k](t ′)) ∩̇ in↑[t→ k](k′−1),
⇐⇒ vout↑[t→ k](t ′,k′−1) ∩̇ in↑[t→ k](k′−1)
⇐⇒ V R↑[t→ k](t ′,k′−1),

which is the third claim.
For the fourth claim, we look through all of the synchronization rules and observe

that almost all remaining subterms X that depend on one step are also equal in s and
s[t→ k] due to Lemma 250

X↑(k′) = X↑[t→ k](k′−1),
X↑(t ′) = X↑[t→ k](t ′).

Together with the first three claims, this works for all rules except ISSUEWRITE,
where we additionally have to show that step k′ commits t ′ before the reordering iff
step k′−1 does after the reordering

t ′ = hd(issuek′
↑ (i))∧ s(k′) ∈ ΣWB,i

!≡ t ′ = hd(issue↑[t→ k]k
′−1(i))∧ s[t→ k](k′−1) ∈ ΣWB,i

Note first that step k′ − 1 is a write buffer step of some unit i in the reordered
schedule iff step k′ was in the original schedule because the oracle inputs are the same

s[t→ k](k′−1) = s(k′).

Using simple boolean logic, this reduces the equivalence above to showing that when
step k′ is a write buffer step of unit i, then the head of the sequence of issued writes
of that unit at k′ in the original schedule was t ′ iff the one at k′− 1 in the reordered
schedule is. Assume thus that step k′ is made by a write buffer step of unit i

s(k′) ∈ ΣWB,i

and we have to show that the head in the original schedule is t ′ iff it is in the reordered
schedule

t ′ = hd(issuek′
↑ (i))

!≡ t ′ = hd(issue↑[t→ k]k
′−1(i)).

Since mv[t← k] is injective we apply it to the right side and obtain the following claim

t ′ = hd(issuek′
↑ (i))

!≡ mv[t← k](t ′) = mv[t← k](hd(issue↑[t→ k]k
′−1(i))).

Reducing the claim further with Lemma 77 we obtain

t ′ = hd(issuek′
↑ (i))

!≡ t ′ = hd(mv[t← k](issue↑[t→ k]k
′−1(i))).

We show the stronger claim that both heads are equal

hd(issuek′
↑ (i))

!
= hd(mv[t← k](issue↑[t→ k]k

′−1(i))).

By Lemma 249, the invariants hold at k′−1, the schedule is pseudo-valid until k′,
and step t is not forward-synchronized with step k′

pval(t,k′)∧ t 6B k′∧ Inv(t,k′−1).
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By Invariant IssueSame and Lemma 204 with k′ := k we obtain that the write buffer at
k′−1 is exactly missing step t and has been reordered

issuek′
↑ (i) = Opi↑(t)(mv[t← k](issue↑[t→ k]k

′−1(i)), t),

We distinguish between the possible operations.

Opi↑(t) = push: In this case by Lemma 221 the sequence of issued writes is non-
empty

issue↑[t→ k]k
′−1(i) 6= ε

and neither is the sequence of writes after undoing the reordering, since that does
not change the length

mv[t← k](issue↑[t→ k]k
′−1(i)) 6= ε.

Step t adds additional elements

issuek′
↑ (i) = Opi↑(t)(mv[t← k](issue↑[t→ k]k

′−1(i)), t)

= mv[t← k](issue↑[t→ k]k
′−1(i))◦ t,

and with Lemma 40 the claim follows

hd(issuek′
↑ (i)) = hd(mv[t← k](issue↑[t→ k]k

′−1(i))).

Opi↑(t) = pop: In this case steps t and k′ are made by the write buffer of the same unit

s(t) ∈ ΣWB,i,

which contradicts Lemma 217.

Opi↑(t) = noop: The step did not change the sequence of issued writes

Opi↑(t)(mv[t← k](issue↑[t→ k]k
′−1(i)), t) = mv[t← k](issue↑[t→ k]k

′−1(i))

and the claim follows

hd(issuek′
↑ (i)) = hd(mv[t← k](issue↑[t→ k]k

′−1(i))).

Synchronization between steps in the reordered interval is also unchanged.

Lemma 252. Assume that the schedule is pseudo-valid until k, t is not race-synchronized
with k, and we can delay t until k−1

pval(t,k)∧ t 6B∗ k∧delay(t,k−1),

we can move t to k without changing synchronization between steps in the reordered
interval: for all t ′,k′ ∈ (t : k] we have that the synchronization is unchanged, i.e., for
R ∈ {B,B∗ ,I}

t ′ R k′ ≡ t ′−1 R[t→ k]k′−1.
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Figure 4.9: Intermediate steps t ′,k′ are both moved one step forward,
but synchronization is unchanged.

Proof. The situation is depicted in Fig. 4.9.
We observe first that the reordering moves t ′ correctly by Lemma 77

mv[t→ k](t ′) = t ′−1.

The proof is mostly analogous to that of Lemma 251 and we state the corresponding
proof steps without a detailed proof. For all important functions of the step X we obtain
that the value is unchanged

X(t ′) = X [t→ k](t ′−1)∧X(k′) = X [t→ k](k′−1).

Races T ∈ {WR,RW,WW } are unchanged

T (t ′,k′)≡ T [t→ k](t ′−1,k′−1).

Interrupts between k′ and t ′ are unchanged

int(k′, t ′)≡ int[t→ k](k′−1, t ′−1).

The proof is much easier for the visible write-read races, since all steps are still there.
The outputs in the interval (t ′ : k′) are completely transferred to the interval (t ′− 1 :
k′−1)

out↑((t ′ : k′)) =
⋃

t ′′∈(t ′:k′)
out↑(t ′′)

=
⋃

t ′′∈(t ′:k′)
out↑[t→ k](t ′′−1) L 250

=
⋃

t ′′∈(t ′−1:k′−1)

out↑[t→ k](t ′′)

= out↑[t→ k]((t ′−1 : k′−1)).

Consequently the visible write-set is unchanged

vws↑(t ′,k′) =WS↑(t ′)\out↑((t ′ : k′))

=WS↑[t→ k](t ′−1)\out↑[t→ k]((t ′−1 : k′−1))
= vws↑[t→ k](t ′−1,k′−1)

and visible write-read races are stable

V R↑(t ′,k′) ⇐⇒ vout↑(t ′,k′) ∩̇ in↑(k′)

⇐⇒ vws↑(t ′,k′)∪dc(WS↑(t ′)) ∩̇ in↑(k′)
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⇐⇒ vws↑[t→ k](t ′−1,k′−1)∪dc(WS↑[t→ k](t ′−1)) ∩̇ in↑[t→ k](k′−1),
⇐⇒ vout↑[t→ k](t ′−1,k′−1) ∩̇ in↑[t→ k](k′−1)
⇐⇒ V R↑[t→ k](t ′−1,k′−1).

As before, this works for all rules except ISSUEWRITE, where we additionally have
to show that step k′ commits t ′ iff step k′−1 commits t ′−1

t ′ = hd(issuek′
↑ (i))∧ s(k′) ∈ ΣWB,i

!≡ t ′−1 = hd(issue↑[t→ k]k
′−1(i))∧ s[t→ k](k′−1) ∈ ΣWB,i

The proof slightly differs because we need to consider step t ′− 1 rather than step t ′.
Analogously to before we can assume that step k′ is a write buffer step of unit i

s(k′) ∈ ΣWB,i

and have to show that the step being committed is t ′ in the original schedule iff the step
being committed is t ′−1 in the reordered schedule

t ′ = hd(issuek′
↑ (i))

!≡ t ′−1 = hd(issue↑[t→ k]k
′−1(i)).

Since mv[t ← k] is injective we apply it to the right-hand side of the equivalence and
obtain the following claim

t ′ = hd(issuek′
↑ (i))

!≡ mv[t← k](t ′−1) = mv[t← k](hd(issue↑[t→ k]k
′−1(i))).

Reducing the claim further with Lemma 77 we obtain the following claim

t ′ = hd(issuek′
↑ (i))

!≡ t ′ = hd(mv[t← k](issue↑[t→ k]k
′−1(i))).

We show the stronger claim that both heads are equal

hd(issuek′
↑ (i))

!
= hd(mv[t← k](issue↑[t→ k]k

′−1(i))).

The proof can now be concluded literally like the proof of Lemma 251.

4.10 Synchronization of Unshared Accesses
Using these results, we prove that communication needs some sequence of synchro-
nization. We define far forward-synchronization as the relation composed from some
number of synchronized steps and one forward-synchronized step.

IB=I∗ ◦B .

Analogously we define far race-synchronization

IB∗ =I∗ ◦B∗ .

We obtain that both relations are left-compositional with synchronization.
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Lemma 253.

I◦IB∗ ⊆IB∗ ,
I◦IB⊆IB .

Proof. Follows with the associativity of composition and the fact that closure un-
der composition is closed under composition. We only show the proof for far race-
synchronization

I◦IB∗ =I◦(I∗ ◦B∗ )
= (I◦I∗)◦B∗
⊆I∗ ◦B∗
=IB∗ .

Far race-synchronization subsumes race-synchronization.

Lemma 254.
B∗ ⊆IB∗ .

Proof. Straightforward

B∗ ⊆I∗ ◦B∗
=IB∗ .

Recall that in some lemmas above, e.g., Lemma 251, we require that a step can be
delayed until some k−1 and that it is not race-synchronized with k. By unfolding the
definition of delay we obtain that the step must not be synchronized with any step until
k−1 and that it is not race-synchronized with k. This happens to be the case whenever
step t is the last step that is not far race-synchronized with k, as the following lemma
shows.

Lemma 255. Assume that step t is not far race-synchronized with k but all steps in
between are

t 6IB∗ k∧∀t ′ ∈ (t : k).t ′IB∗ k.

Then step t is neither race-synchronized with k nor synchronized with any of the steps
in between

t 6B∗ k∧∀t ′ ∈ (t : k).t 6I t ′.

Proof. The first part of the claim is the contraposition of Lemma 254.
The second part of the claim is the contraposition of Lemma 253.

Lemma 256. A schedule which is semi-valid until k

ΓΦ
k
↑(s)

and where some step t modifies code of step k or step k is valid

CM↑(t,k)∨Γ↑(k)

is pseudo-valid for l < k
pval(l,k).
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Proof. We immediately obtain that the schedule is valid until l

Γ
l
↑(s)

and the steps t ′ ∈ (l : k) are all valid

Γ↑(t ′),

and we will show that step k is WB-feasible, which will by definition of pval complete
the proof. Note first that step k is by assumption feasible

Φ↑(k),

and by definition of Ψ we only have to show that it also satisfies Λ. By assumption
there is either a code modification or step k is valid, and we distinguish between these
two cases.

CM↑(t,k): We obtain that the fetched registers are modified

out↑(t) ∩̇F↑(k),

and thus the step fetches something

F↑(k) 6= /0

and we conclude that it is not a write buffer step

s(k) 6∈ ΣWB,i

and the claim follows by definition of Λ

Λ↑(k).

Γ↑(k): The claim follows by definition of Γ

Λ↑(k).

We show that far-synchronization is not affected by delaying a step that is not syn-
chronized.

Lemma 257. Assume that the schedule is pseudo-valid until k, t is not race-synchronized
with k, and t can be delayed until k−1

pval(t,k)∧ t 6B∗ k∧delay(t,k−1),

and is also not synchronized with any step before k

∀l ∈ (t : k].t 6I k,

we can move t to k without affecting far-synchronization between t ′ < t and k′ ∈ (t : k]

t ′IB∗ k′ ≡ t ′IB∗ [t→ k]k′−1.
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Figure 4.10: After step t is moved to position k, steps t ′, . . . , ti < t are
not moved and their synchronization is unaffected. Steps ti+1, . . . ,k′ >
t are moved forward by one step, and their synchronization can be
inferred with Lemma 252. The synchronization of steps ti and ti+1 on
the other hand is maintained by Lemma 251.

Proof. We show only the direction from left to right, the other direction is analogous.
The step is far-synchronized iff there is a sequence of steps [ t0, . . . , tn+1 ] with t0 = t ′

and tn+1 = k′ that are each synchronized with one another except for last two steps,
which are race synchronized (cf. Fig. 4.10)

t ′IB∗ k′ ≡ t ′I t1I . . .I tnB∗ k′.

We show that by tracking the movement of all steps ti, we again get a sequence
[mv[t→ k](t0), . . . ,mv[t→ k](tn+1) ] which has the same synchronizations

ti R ti+1
!≡ mv[t→ k](ti) R[t→ k] mv[t→ k](ti+1).

Step t is not synchronized with any intermediate step l, and thus step t can not be
in that sequence of steps

∀i.t 6= ti.

This allows us to distinguish between three cases, depending on whether the syn-
chronization is before t, crosses over t, or is after t.

ti, ti+1 < t: The schedule is the same until ti+1 and the synchronization rules can be
transferred 1:1 for the same steps.

ti R ti+1 ≡ ti R[t→ k] ti+1

The claim follows with Lemma 77 since the two steps are not moved

ti R ti+1 ≡ mv[t→ k](ti) R[t→ k] mv[t→ k](ti+1).

ti < t, ti+1 > t: By Lemma 251 we obtain that the synchronization is stable when step
ti+1 is pushed forward

ti R ti+1 ≡ ti R[t→ k] ti+1−1,
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and the claim follows with Lemma 77 since that is exactly how step ti+1 is moved
by the reordering

ti R ti+1 ≡ mv[t→ k](ti) R[t→ k] mv[t→ k](ti+1).

ti, ti+1 > t: By Lemma 252 we obtain that the synchronization is stable when both steps
are pushed forward

ti R ti+1 ≡ ti−1 R[t→ k] ti+1−1,

and the claim follows with Lemma 77 since that is exactly how the steps are
moved by the reordering

ti R ti+1 ≡ mv[t→ k](ti) R[t→ k] mv[t→ k](ti+1).

And the claim follows with Lemma 77

t ′IB∗ k′ =⇒ t ′I . . .B∗ k′

⇐⇒ mv[t→ k](t ′)I[t→ k] . . .B∗ [t→ k]mv[t→ k](k′)

=⇒ t ′IB∗ [t→ k]k′−1.

We now prove a fundamental property of the synchronization relation and the sim-
ple annotation: when two threads access the same memory region without any syn-
chronization, the accesses are always correctly annotated.

Lemma 258. Assume that in a schedule which is semi-valid until k

ΓΦ
k
↑(s)

and that some step t before k is not far race-synchronized with it

t < k∧ t 6IB∗ k.

Then all of the following are true

1. If there is a code modification, the steps are annotated correctly

CM↑(t,k)→ Sh↑(t)∧ShR↑(k).

2. If there is a valid write-read race, the steps are annotated correctly

WR↑(t,k)∧Γ↑(k)→ Sh↑(t)∧ShR↑(k).

3. If there is a valid write-write race, the steps are annotated correctly

WW↑(t,k)∧Γ↑(k)→ Sh↑(t)∧Sh↑(k).

Proof. With Lemma 251 we will now drop all non-far race-synchronized steps between
t and k (cf. Figure 4.11). To see how this can be done, let l ∈ (t : k) be the last such
non-synchronized step

l 6IB∗ k∧∀t ′ ∈ (l : k).t ′IB∗ k.
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Figure 4.11: Steps which are not synchronized with step k (left blank)
can be moved behind step k, and thus dropped from the schedule.
The proof can focus on the case where step t is the only step not
synchronized with step k.

By Lemma 255 step l is neither race-synchronized with k nor synchronized with any
of the steps in between

l 6B∗ k∧∀t ′ ∈ (l : k).l 6I t ′.

By Lemma 256 the schedule is pseudo-valid until k in all three cases (in Case 1
because of the code modification, in Cases 2 and 3 because step k is valid)

pval(l,k)

and by Lemma 244 also until k−1

pval(l,k−1).

By definition of delay it follows that t can be delayed until k−1

delay(l,k−1).

We move step l behind step k. By Lemmas 250 and 251 we immediately obtain that
the schedule is still valid and all races and annotations are unchanged. With Lemma 257
with t := l, k := k, k′ := k, and t ′ := t we obtain further that there is still no far race-
synchronization.

Thus we assume without loss of generality that there are no such steps l which
are not far race-synchronized with k, and thus step t is the last step not far race-
synchronized with step k

∀t ′ ∈ (t : k).t ′IB∗ k.

By Lemma 255 step t is neither forward-synchronized with k nor synchronized with
any of the steps in between

t 6B∗ k∧∀t ′ ∈ (t : k).t 6I t ′.

By Lemmas 244 and 256 we obtain again that the schedule is pseudo-valid until k
and k−1

pval(t,k)∧ pval(t,k−1).

It immediately follows that t can be delayed until k−1

delay(t,k−1),
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and with Lemma 246 we obtain that the invariants hold when moving until k−1

Inv(t,k−1).

Since step t is not race-synchronized with k, it is also not forward-synchronized
with it

t 6B k.

The claim is now Lemma 228.

4.11 Simulation of the High-Level Machine
Note that we have set up the semantics of the high-level machine to be able to handle
exactly the schedules from the low-level machine. This allows us to define a straight-
forward simulation relation. We simply use strong agreement between the low-level
machine step and the high-level machine step. Thus when the low-level machine con-
figuration c↓ strongly agrees with the high-level machine configuration c when stepped
with x

c↓ =x
↓,↑ c,

we say that c↓ simulates c when stepped with x.
Note that this is a simulation relation between steps, not configurations. In order

to obtain a state-based simulation relation, one would need an operation buffer in the
abstract machine, such as the one used by Cohen and Schirmer [CS10], where proces-
sor steps simulate a push of the operation into the operation buffer of that processor,
and write buffer steps simulate popping a sequence of operations leading to the next
write on that operation buffer; and where the simulation relation couples each local
processor state in the low-level machine with the state one would obtain by popping
the entire operation buffer of that processor in the abstract machine. This is obviously
more complicated. Simpler purely state-based coupling relations do not work, because
buffered steps will desynchronize the memory component of the abstract machine and
of the low-level machine, and therefore one can not know that the next step will see the
correct value from the memory.

We say that a schedule s is reduced (until k) or k-abstract if at all steps (until k) the
low-level execution simulates the high-level execution:

s ∈ ABSk ≡ ∀t < k.c↓[s]t =
s(t)
↓,↑ c↑[s]t .

Due to the transitivity of strong agreement, we can transfer strong agreement be-
tween the machines; i.e., strong agreement with a low-level machine configuration in
an abstract schedule is equivalent to agreement with the high-level machine configura-
tion at the same step.

Lemma 259. When a schedule is t ′+1-abstract

s ∈ ABSt ′+1,

we have strong agreement at t ′ with the low-level machine iff we have strong agreement
with the high-level machine

ct ′
↑ =

s(t ′)
↑,M c ⇐⇒ ct ′

↓ =
s(t ′)
↓,M c.
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Proof. Because the schedule is t ′+1-abstract, at step t ′ the machines strongly agree

ct ′
↓ =

s(t ′)
↓,↑ ct ′

↑ .

We show the equivalence by showing an implication in each direction.

=⇒ : The claim follows by transitivity

ct ′
↓ =

s(t ′)
↓,↑ ct ′

↑ =
s(t ′)
↑,M c.

⇐= : The claim follows by transitivity and symmetry

ct ′
↑ =

s(t ′)
↑,↓ ct ′

↓ =
s(t ′)
↓,M c.

Lemma 260. Let O be some reordering that moves t ′′ < k′′ to t ′ < k′

sO(t ′) = s(t ′′).

If the schedule and its reordering sO are abstract until k′′ and k′, respectively

s ∈ ABSt ′′+1∧ sO ∈ ABSt ′+1,

we have strong agreement with the low-level machine iff we have strong agreement
with the high-level machine

c↑Ot ′ =
sO(t ′)
↑ ct ′′

↑ ⇐⇒ c↓Ot ′ =
sO(t ′)
↓ ct ′′

↓ .

Proof. The claim is twice Lemma 259

c↑Ot ′ =
sO(t ′)
↑ ct ′′

↑

⇐⇒ c↑Ot ′ =
sO(t ′)
↑,↑ ct ′′

↑

⇐⇒ c↓Ot ′ =
sO(t ′)
↓,↑ ct ′′

↑ L 259

⇐⇒ c↓Ot ′ =
sO(t ′)
↓,↓ ct ′′

↓ L 259, Symmetry

⇐⇒ c↓Ot ′ =
sO(t ′)
↓ ct ′′

↓

We add a simple state invariant, which says that processor configurations and write
buffers are the same for all processors. In that case we say c↓ is locally simulating c
and write

c↓
.
= c≡ ∀i.c↓.m =APR,i c.m∧ c↓.wb =i c.wb.

We show that abstract schedules also satisfy the local simulation relation by a series
of lemmas.

Lemma 261.
c↓

.
= c→ c↓.m =C↓(c↓,x) c.m.
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Proof. Clearly the core registers are processor registers

C↓(c↓,x)⊆ APR,u(x),

and thus the configurations agree on it

c↓.m =C↓(c↓,x) c.m.

Lemma 262.
c↓

.
= c→ core↓(c↓,x) = core↑(c,x).

Proof. With Lemma 261 we obtain that the configurations agree on the core registers

c↓.m =C↓(c↓,x) c.m.

The claim is now Lemma 142.

Lemma 263.
c↓

.
= c→ c↓.m =ASC,i c.m.

Proof. Because c↓ locally simulates c, it has the same core configuration for each pro-
cessor, including processor i

c↓.m =APR,i c.m.

Since the mode registers are core registers

ASC,i ⊆ APR,i,

the claim follows
c↓.m =ASC,i c.m.

If a step is done in weak memory mode, the machines execute the same write.

Lemma 264. If c↓ simulates c and c↓,x is a weak memory mode step

c↓ =x
↓,↑ c∧¬SC↓(c↓,x),

the low-level machine step c↓,x performs the same writes as the high-level machine
step c,x that it simulates

W↓(c↓,x) =W↑(c,x)∧out↓(c↓,x) = out↑(c,x).

Proof. Steps that strongly agree agree on the core registers

c↓.m =C↓(c↓,x) c.m.

By Lemma 146 both machines use low-level machine semantics

LL↓(c↓,x) = LL↑(c,x).

The claim is now Lemma 144.
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Only the outputs of sequentially consistent write buffer steps are not visible in the
high-level machine.

Lemma 265. If c↓ simulates c and c↓,x is not a sequentially consistent write buffer
step

c↓ =x
↓,↑ c∧¬(SC↓(c↓,x)∧ x ∈ ΣWB,u↓(c↓,x)),

writes and outputs of the low-level machine are visible in the high-level machine

W↓(c↓,x)⊆W↑(c,x)∧out↓(c↓,x)⊆ out↑(c,x).

Proof. We distinguish between the following two cases.

¬SC↓(c↓,x): Lemma 264 proves the claim with equality

W↓(c↓,x)) =W↑(c,x)∧out↓(c↓,x) = out↑(c,x).

SC↓(c↓,x): By assumption we also have that x is also not an input for a write buffer
step

x 6∈ ΣWB,u↓(c↓,x),

leaving only processor steps
x ∈ ΣP,i.

By Lemma 144 the steps prepare the same writes

PW↓(c↓,x) = PW↑(c,x),

and since a processor in the high-level machine in sequential mode executes both
buffered and bypassing portions of this write whereas in the low-level machine it
only executes the bypassing portions of this write, we obtain that write executed
in the high-level machine subsumes the write executed in the low-level machine

W↓(c↓,x) = PW↓(c↓,x).bpa

= PW↑(c,x).bpa

⊆ PW↑(c,x).bpa∪PW↑(c,x).wba

=W↑(c,x),

which is the first claim. The second claim follows with Lemma 26

out↓(c↓,x) = idc(Dom(W↓(c↓,x)))⊆ idc(Dom(W↑(c,x))) = out↑(c,x).

In each case, however, the machines keep the core registers in sync.

Lemma 266. Let a schedule be valid until t + 1 in the low-level machine and step t
simulate the high-level step

Γ
t+1
↓ (s)∧ ct

↓
.
= ct
↑∧ ct

↓ =
s(t)
↓,↑ ct

↑,

then the two machines have the same effect on the core registers

W↓(t) =APR,i W↑(t).
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Proof. We distinguish between steps in weak memory mode, processor steps in strong
memory mode, and write buffer steps in strong memory mode.

¬SC↓(t): In this case we obtain that the complete write is the same in both machines
with Lemma 264

W↓(t) =W↑(t),

and the claim easily follows

W↓(t) =APR,i W↑(t).

SC↓(t)∧ s(t) ∈ ΣP, j: By Lemma 144, the high level machine makes a step in strong
memory mode

SC↑(t) = SC↓(t) = 1,

and the low-level machine executes exactly the bypassing portion of the prepared
writes

W↓(t) = PW↓(t).bpa

= PW↑(t).wba, L 144

whereas the high-level machine also executes the buffered portion

W↑(t) = PW↑(t).bpa∪PW↑(t).wba.

By Condition IRRForwarding no core registers are modified by buffered writes

APR,i 6 ∩̇ Dom(PW↑(t).wba).

The claim follows

W↑(t) = PW↑(t).bpa∪PW↑(t).wba

=APR,i PW↑(t).bpa

=W↓(t).

s(t) ∈ ΣWB, j ∧SC↓(t): By Lemma 144, the high level machine makes a step in strong
memory mode

SC↑(t) = SC↓(t) = 1.

By Lemma 174 the write buffer step has no effect in the high-level machine

W↑(t) = /0∧APR,i 6 ∩̇ Dom(W↑(t)).

By Lemma 176 we obtain that the processor also does not have buffered such
writes

¬hit(APR,i,wbt
↑( j))

and by the local simulation we obtain that the low-level machine does not buffer
any such writes either

hit(APR,i,wbt
↓( j)) = hit(APR,i,wbt

↑( j)) = 0.
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Therefore the head of the write buffer in the low-level machine can not modify
the processor registers either

APR,i 6 ∩̇ Dom(hd(wbt
↓( j))),

which is the write that is executed by the low-level machine

Dom(hd(wbt
↓( j))) = Dom(W↓(t)).

The claim follows
W↓(t) =APR,i /0 =W↑(t).

Lemma 267. In a schedule s ∈ ABSk which is reduced until k the following are all
true.

1. The low-level execution also locally simulates the high-level execution at k

ck
↓
.
= ck
↑,

in particular, the machines have the same write buffers

wbk
↑(i) = wbk

↓(i),

2. The sequence of issues is the same

issuek
↑(i) = issuek

↓(i).

Proof. By induction on k. The base case k = 0 is trivial. In the inductive step from
k to k+ 1, we obtain with the induction hypothesis that the low-level machine locally
simulates the high-level machine; by assumption it also simulates its step

ck
↓
.
= ck
↑∧ ck

↓ =
s(k)
↓,↑ ck

↑.

We now show the claims individually, splitting the claim about local simulation
further between equality of processor configurations and equality of write buffers.

Same Issued Writes: With Lemma 144 we obtain that the processor performs the
same operation on the buffers

Opi↓(k) = Opi↑(k).

The claim follows

issuek+1
↓ (i) = Opi↓(k)(issuek

↓(i),k)

= Opi↑(k)(issuek
↓(i),k)

= Opi↑(k)(issuek
↑(i),k) IH

= issuek+1
↑ (i).
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Same buffers: With Lemma 144 we obtain that the processor is buffering the same
writes and performs the same operation on the buffers

BW↓(k) = BW↑(k)∧Opi↓(k) = Opi↑(k).

The claim follows

wbk+1
↓ (i) = Opi↓(k)(wbk

↓(i),BW↓(k))

= Opi↑(k)(wbk
↓(i),BW↑(k))

= Opi↑(k)(wbk
↑(i),BW↑(k)) IH

= wbk+1
↑ (i).

Same Local Configurations: With Lemma 266 we obtain first that the updates are
done the same way

W↓(k) =APR,i W↑(k).

The claim follows with the induction hypothesis and Lemmas Lemma 29, 32,
and 4

mk+1
↓ = mk

↓~W↓(k)

=APR,i mk
↑~W↓(k) IH, L 29, 4

=APR,i mk
↑~W↑(k) L 32, 4

= mk+1
↑ .

Lemma 268.
s ∈ ABSk→ SCi↓(k) = SCi↑(k).

Proof. With Lemma 267 we obtain that there is a local simulation

ck
↓
.
= ck
↑,

and the claim follows with Lemma 263.

Lemma 269. Let s ∈ ABSk be a k-abstract schedule. Then the following functions

X ∈ { core,C,F,Φ,Sh,ShR,SC }

are the same between the low-level and high-level machine at k

X↓(k) = X↑(k).

Proof. With Lemma 267 we obtain that there is a local simulation

ck
↓
.
= ck
↑.

With Lemma 261 we obtain that the configurations agree on the core registers

mk
↓ =C↓(k) mk

↑.

The claims follow with Lemma 142.
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If the simulation also holds during the step, we can go even further and simulate all
functions which depend on fetch and read results.

Lemma 270. Let s ∈ ABSk+1 be an abstract schedule until k+1. Then functions that
depend on the fetch and read results but not on the machine type

X ∈ {PW,BW,Opi, in, I,∆,Γ} ,

but also the victims
X = victims

and in weak memory mode also the writes and outputs

¬SC↑(k)∧X = {W,out }

are the same between the low-level and high-level machine at k

X↓(k) = X↑(k).

Proof. The first claims are just Lemma 144. The claim about the victims is harder.
With Lemma 266 we obtain first that the writes in both machines agree about the pro-
cessor registers

W↓(k) =APR,i W↑(k),

and thus the domains of the writes – and therefore the write-sets of the steps – also
agree

WS↓(k) ∩̇APR,i ≡ Dom(W↓(k)) ∩̇APR,i

≡ Dom(W↑(k)) ∩̇APR,i

≡WS↑(k) ∩̇APR,i.

The claim follows

victims↑(k) =
{

i
∣∣ APR,i ∩̇WS↑(k)∧ s(k) 6∈ ΣP,i∪ΣWB,i

}
=
{

i
∣∣ APR,i ∩̇WS↓(k)∧ s(k) 6∈ ΣP,i∪ΣWB,i

}
= victims↓(k).

The claim for the write and outputs is Lemma 264.

Lemma 271. In a schedule s ∈ ABSk which is reduced until k the following are all
true.

1. The schedules agree on validity until k−1

Γ
k−1
↓ (s) = Γ

k−1
↑ (s),

2. The schedules agree on semi-validity until k

ΓΦ
k
↓(s) = ΓΦ

k
↑(s),

3. The schedules agree on IPI validity until k−1

∆
k−1
IPI↓(s) = ∆

k−1
IPI↑(s).
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Proof. Because the schedule is reduced, every step until k− 1 the machines strongly
agree

∀t ≤ k−1.ct
↓ =

s(t)
↓,↑ ct

↑.

The first claim follows directly with Lemma 144

Γ
k−1
↓ (s) = ∀t ≤ k−1.Γ↓(t)

= ∀t ≤ k−1.Γ↑(t) L 144

= Γ
k−1
↑ (s),

and the second claim follows with Lemma 269

ΓΦ
k
↓(s) = Γ

k−1
↓ (s)∧Φ↓(k)

= Γ
k−1
↑ (s)∧Φ↑(k) Claim 1, L 269

= ΓΦ
k
↑(s).

With Lemma 267 we obtain that processors have the same write buffers in both
machines at all steps until k

∀t ≤ k.wbt
↓ = wbt

↑,

and with Lemma 270 we obtain the steps until k−1 have the same victims

∀t ≤ k−1.victims↓(t) = victims↑(t).

The third claim follows

∆
k−1
IPI↓(s) = ∀t ≤ k−1.∆IPI↓(t)

= ∀t ≤ k−1.
∧

j∈victims↓(t)

wbt
↓( j) = ε

= ∀t ≤ k−1.
∧

j∈victims↑(t)

wbt
↑( j) = ε

= ∀t ≤ k−1.∆IPI↑(t)

= ∆
k−1
IPI↑(s).

We therefore sometimes drop the machine-type index for these functions where
appropriate, replacing it by an asterisk3. Let for example s ∈ ABSk be a k-abstract
schedule. We write the following

Γ
k−1
∗ (s) = Γ

k−1
↓ (s) = Γ

k−1
↑ (s).

3A person who likes to live dangerously can drop the asterisk; we use it to distinguish between typo-
graphic errors where an arrow was accidentally not written but should have been and cases where the arrow
does not matter. Personal experience shows that this distinction is indeed useful, especially if one overlooks
the error in the statement of a lemma and then proceeds to use the lemma as if it held for both machines.
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4.11.1 Ordered Schedules
We will now define a set of schedules for which we will show that they are reduced.
These schedules never execute global steps (GM(t), page 141) while a shared write is
buffered by a processor in strong memory mode (except for global steps that empty
that processor’s store buffer).

We say the buffer is dirty if it has a buffered shared write issued in strong memory
mode:

dirtyM[s](t, i)≡ SCiM[s](t)∧∃t ′ ∈ issueM[s]t(i).ShM[s](t ′).

We say the configuration at t is clean if no write buffers are dirty at the beginning
of step t

cleanM[s](t)≡ ∀i.¬dirtyM[s](t, i).

Lemma 272. When the schedule is k reduced

s ∈ ABSk,

we can ignore the machine-type index for dirtiness and cleanness.

dirty↓(k, i) = dirty↑(k, i),

clean↓(k) = clean↑(k).

Proof. With Lemmas 267 to 269 the claims follow

dirty↓(k, i) = SCi↓(t)∧∃t ′ ∈ issuet
↓(i).Sh↓(t ′)

= SCi↑(t)∧∃t ′ ∈ issuet
↑(i).Sh↑(t ′)

= dirty↑(k, i),

clean↓(k) = ∀i.¬dirty↓(k, i)

= ∀i.¬dirty↑(k, i)

= clean↑(k).

We may thus also drop the machine-type index in these definitions when the sched-
ule is reduced.

A step is ordered if a dirty buffer prevents the step from being global unless the
step is draining the dirty buffer

ordM[s](t)≡ ∀i.dirtyM[s](t, i)∧GM[s](t)→ s(t) ∈ ΣWB,i.

Therefore, the order of shared write buffer steps is exactly the order of the processor
steps that issue them. Furthermore, while a shared write is buffered, different pro-
cessors may have a different view of memory. However, since every shared read is a
global step, other processors can not notice this difference. Note that the condition al-
lows situations where multiple processors in strong memory mode have shared writes
in their buffers, since adding a write to the buffer is not a global step. Note also that in
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such a situation each dirty buffer prevents the other buffers from draining their writes,
consequently locking the execution in a state where no more global steps are allowed.

Note that steps that are global in the low-level machine are not always global in the
high-level machine, and so we may not drop the machine-type index for this definition.

In a clean configuration, all steps are ordered.

Lemma 273.
clean↓(t)→ ord↓(t).

Proof. Assume for the sake of contradiction that step t is not ordered. There is some
processor i which is dirty

dirty↓(t, i),

which contradicts the assumption that the configuration at t is clean.

A schedule is k-ordered if steps before k are ordered (in the low-level machine)

s ∈ ORDk ≡ ∀t < k.ord↓(t).

We consider also a slightly weaker definition that only excludes shared reads, but
not shared writes. We call a step during which this is true semi-ordered

sordM[s](t)≡ ∀i.dirtyM[s](t, i)→¬ShRM[s](t).

We define as k-semi-ordered a schedule which is k− 1-ordered, and semi-ordered in
step k−1

s ∈ ORD−k ≡ s ∈ ORDk−1∧ sord↓[s](k−1).

Lemma 274.
s ∈ ABSk→ sord↓(k) = sord↑(k)

Proof. By Lemmas 269 and 272

sord↓(k) = ∀i.dirty↓(k, i)→¬ShR↓(k)

= ∀i.dirty↑(k, i)→¬ShR↑(k)

= sord↑(k).

We may also drop the machine-type index in this definition.
While the last step of a semi-ordered schedule may break the ordering of writes

and therefore cause an inconsistency in the memory configurations, the step will still
at least not see any memory inconsistencies, and thus be executed correctly.

Ordered steps are semi-ordered

Lemma 275.
ord↓(t)→ sord↓(t)
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Proof. Assume for the sake of contradiction that the step is ordered but dirty and a
shared read

dirty↓(t, i)∧ShR↓(t).

By definition it is not a write buffer step, in particular not of i

s(t) 6∈ ΣWB,i.

It is also global because it is a shared read

G↓(t),

which contradicts the definition of ord.

We state a few trivial consequences of this Lemma but do not give proofs

Lemma 276.
s ∈ ORDk+1→ sord↓(k).

Lemma 277.
ORDk ⊆ ORD−k .

Lemma 278. Let in a k+1-semi-ordered and k-abstract schedule s∈ORD−k+1∩ABSk
processor i in sequentially consistent mode

SCi↑(k)

have a buffered write from t at k

t ∈ issuek
↑(i).

It can not be the case that step t is shared and step k is a shared read

¬(Sh↑(t)∧ShR↑(k)).

Proof. Assume for the sake of contradiction that the steps are both marked as shared
resp. a shared read

Sh↑(t)∧ShR↑(k).

We immediately obtain from the hypothesis that step t is buffered that the buffer is
dirty

dirty∗(k, i)

and thus the step is not semi-ordered

¬sord∗(k)

which is a contradiction.

Lemma 279. If in a schedule that is valid in the high-level machine until k−1

Γ
k−1
↑ (s)

step t is forward-synchronized with k

tBk
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and is made by a processor in strong memory mode which keeps a buffered write at
k+14,

s(t) ∈ ΣP,i∧SC↑(t)∧ t ′ ≤ t ∧ t ′ ∈ issuek+1
↑ (i),

then step k must be made by the same processor.

s(k) ∈ ΣP,i.

Proof. By case distinction on the rule used to prove tBk.

NOTCONCURRENT:
¬ocon↑(t,k)

We obtain that step t is either made by the same object as step k or the outputs of
step t modify the core registers of step k+1

out↑(t) ∩̇C↑(k)∨o↑(t) = o↑(k).

We distinguish between those two cases.

o↑(t) = o↑(k): The object making step t is processor i and the claim follows

s(k) ∈ ΣP,i.

out↑(t) ∩̇C↑(k): Since we are not in the case above, assume that the steps are
made by different objects

o↑(t) 6= o↑(k)

and therefore step k is not made by processor i

s(k) 6∈ ΣP,i.

Since t ′ is still an issued time stamp at k+ 1 and buffers are monotone, t ′

must have been an issued time stamp at t +1

t ′ ∈ issuet+1
↑ (i).

By Lemma 123 we obtain that the write of step t ′ was buffered in the write
buffer at t +1

BW↑(t ′) ∈ wbt+1
↑ (i),

which was therefore non-empty

wbt+1
↑ (i) 6= /0.

By contraposition of Condition Switch the mode registers of unit i are not
outputs of step t

ASC,i 6∈ out↑(t).

Since there is an intersection between the outputs of step t and the core
registers of step k, the core registers of step k can not be only the memory
mode registers of unit i

C↑(k) 6= ASC,i

4If the write is only kept at k, step k might also be the write buffer step that commits the write (synchro-
nized by Rule ISSUEWRITE).
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and thus the step can not be made by the write buffer of unit i

s(k) 6∈ ΣWB,i.

Since step t is made by processor i and step k is neither made by processor
i nor its write buffer, step k is made by a different unit j

j = u↑(k) 6= u↑(t) = i.

The core registers of step k are processor registers of unit j

C↑(k)⊆ APR, j

and thus step t modifies processor registers of unit j

out↑(k) ∩̇APR, j.

Since the steps are made by different units, we obtain with Lemma 94 that
step t is modifying interrupt registers

out↑(k) ∩̇AIPR.

By Lemma 211 the step is not buffering a write

BW↑(t) = /0.

Since t ′ is a buffered write, we obtain that t ′ is not t and thus before it

t ′ < t.

By Lemma 123 we obtain that the write of step t ′ was buffered in the write
buffer at t

BW↑(t ′) ∈ wbt
↑(i),

and thus the write buffer was non-empty at t

wbt
↑(i) 6= ε.

With Lemma 133 we obtain that a step that is modifying interrupt processor
registers is shared

Sh↑(t),

and since it is modifying interrupt registers it clearly is not only modifying
normal processor registers

out↑(t) 6⊆ ANPR,i

and is thus a memory write

mwrite↑(t).

With Lemma 178 we obtain that step t is buffering a write

BW↑(t) 6= /0,

which is a contradiction.
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PROCESSORFENCE:
s(t) ∈ ΣWB,i∧ s(t) ∈ ΣP,i

Contradicts the assumption that step t is a processor step.

ISSUEWRITE:
t = hd(issuek

↑(i))∧ s(k) ∈ ΣWB,i

Since buffers are monotone and t ′ ≤ t, t ′ must have left the buffer by the time t
left the buffer

t ′ 6∈ issuek+1
↑ (i),

which contradicts the assumption.

In an ordered schedule, a processor with buffered writes is not synchronized-with
other units.

Lemma 280. In an ordered, reduced schedule

s ∈ ABSk+1∩ORDk+1

which is valid and IPI-valid until k

Γ
k
∗(s)∧∆

k
IPI∗(s),

a step of a strong memory mode processor with buffered writes is not far synchronized-
with other units

s(t) ∈ ΣP,i∧SC↑(t)∧ t ∈ issuek+1
↑ (i)∧ tI∗ k→ s(k) ∈ ΣP,i.

Proof. By induction on the number ofI in tI∗ k. In the base case, t = k and the claim
follows.

In the inductive step we have
tI∗ kIk′

where the induction hypothesis holds for tI∗ k, and we have to show the claim for
tI∗ k′.

Since the buffer is monotonic, t must have been buffered after k

t ∈ issuek+1
↑ (i)

and by the induction hypothesis we conclude k was a step of processor i

s(k) ∈ ΣP,i.

By Lemma 168 we also have that the mode is unchanged

SCi↑(k) = SCi↑(k′) = 1,

and can use the conditions about TSO.
We distinguish now the cases for kIk′.

kBk′: The claim is simply Lemma 279 with t ′ := t, t := k, and k := k′.
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COMMEXT:
V R↑(k,k′)∧Sh↑(k)∧ShR↑(k′)

By Lemma 158, there is also a write-read race between the two steps

WR↑(k,k′).

Assume for the sake of contradiction that step k′ is not a step of processor i

s(k′) 6∈ ΣP,i.

Because the step is a shared read, by definition it is not a write buffer step, in
particular not of processor i

s(k′) 6∈ ΣWB,i.

Since step k′ is neither a processor nor a write buffer step of unit i, it is not made
by unit i

u↑(k′) 6= i

and the steps are made by different units

di f f u(k,k′).

With Lemma 159 we obtain that step k is a memory write

mwrite↑(k).

By Lemma 278 it now suffices to show that k is an issued timestamp at k′

k
!
∈ issuek′

↑ (i).

The proof distinguishes whether t is k or before it.

t = k: The claim is an assumption

t ∈ issuek′
↑ (i).

t < k: By the monotonicity of the buffer, t is an issued timestamp at k

t ∈ issuek
↑(i).

We conclude with Lemma 123 that the write issued at t is still buffered at k

BW↑(t) ∈ wbk
↑(i)

and thus the buffer is not empty at k

wbk
↑(i) 6= /0.

With Lemma 178 we obtain that step k buffered a write

BW↑(k) 6= /0,

and by the monotonicity of the list of issued timestamps, that shared buffered
write is still buffered at k′

k ∈ issuek′
↑ (i).
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INTERRUPTED:
mwrite↑(k)∧ int↑(k′,k)

Unit i is a victim of step k′

i ∈ victims↑(k′).

Because the drain condition for IPI holds, the write buffer of i is the empty list

wbk′
↑ (i) = ε,

and by Lemma 123 this holds also for the list of issued writes

issuek′
↑ (i) = ε.

This clearly contradicts the fact that t is still issued after the step

t 6∈ issuek′+1
↑ (i).

RMWDISABLED:
ShR↑(k)∧mwrite↑(k)∧RW↑(k,k′)

By Lemma 129 step k is shared
Sh↑(k)

Since k is shared and the buffer of processor i is non-empty, we obtain by con-
traposition of Condition MessagePassing that there are no bypassing prepared
writes except for the normal processor registers

Dom(PW↑(k).bpa)⊆ ANPR,i.

Since the step is a memory write, it has outputs other than the normal processor
registers

out↑(k) 6⊆ ANPR,i

and thus the inclusive device closure of the domain of the executed writes is not
contained in the set of normal processor registers

idc(Dom(W↑(k))) 6⊆ ANPR,i.

With Lemma 16 and the fact that the set of normal processor registers is closed
(Lemma 4) we can drop the inclusive device closure and obtain that the domain
of the executed writes is subsumed by the normal processor registers

Dom(W↑(k)) 6⊆ ANPR,i.

Since the step is a sequentially consistent processor step we also know that the
buffered portion of the prepared writes are executed

W↑(k) = PW↑(k).bpa∪PW↑(k).wba,

and since the domain of the bypassing writes is contained in the set of normal
processor registers, the domain of the executed writes are contained in the set of
normal processor registers and the domain of the buffered prepared writes

Dom(W↑(k))⊆ ANPR,i∪Dom(PW↑(k).wba).
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Since the domain of the executed writes is subsumed by the set of normal pro-
cessor registers and the domain of the buffered prepared writes, we obtain that
these are also not contained in the set of of normal processor registers

ANPR,i∪Dom(PW↑(k).wba) 6⊆ ANPR,i.

Thus the domain of the prepared buffered writes and thus the buffered writes is
non-empty

Dom(BW↑(k)) = Dom(PW↑(k).wba) 6= /0.

By the contraposition of Condition AtomicRMW we obtain that step k is not a
shared read

¬ShR↑(k),

which is a contradiction.

If the steps are far forward-synchronized, we get the claim even if the last step is
not abstract or valid or ordered.

Lemma 281. In an ordered, reduced schedule

s ∈ ABSk ∩ORDk

which is valid and IPI valid until k−1

Γ
k−1
∗ (s)∧∆

k−1
IPI∗(s),

a step of a strong memory mode processor with buffered writes is not far forward-
synchronized with other units

s(t) ∈ ΣP,i∧SC↑(t)∧ t ∈ issuek
↑(i)∧ tIBk→ s(k) ∈ ΣP,i∪ΣWB,i.

Proof. Assume for the sake of contradiction that the step is a step of another unit

s(k) 6∈ ΣP,i∪ΣWB,i.

Thus the operation performed by step k is a noop

Opi↑(k) = noop

and the write is still buffered at k+1

t ∈ issuek
↑(i) = issuek+1

↑ (i).

We get that there is some k′ with which t is synchronized and which is forward-
synchronized with k

tI∗ k′Bk.

Clearly k′ is before k and t is less than or equal to k′

t ≤ k′ < k,

and by monotonicity of the buffers t is already buffered at k′+1

t ∈ issuek′+1
↑ (i).
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Furthermore, the steps until k′ are valid, and the schedule is k′+1-abstract and -ordered

s ∈ ABSk′+1∩ORDk′+1∧Γ
k′
↓ (s).

We apply Lemma 280 with t := t, k := k′ and obtain that step k′ was made by the
same processor

s(k′) ∈ ΣP,i.

With Lemma 279 with t ′ := t, t := k′, and k := k we obtain that step k is also made by
the same processor

s(k) ∈ ΣP,i,

which is a contradiction.

To use this lemma, we need a lemma similar to Lemma 258 where t is only not far
forward-synchronized with k, but may be far race-synchronized. In this case the origi-
nal race between t and k may be facilitated by some step l which is race-synchronized
with k, and it is no longer necessary for t to be shared. In case step t issued a buffered
write that has not been drained, we still obtain that the buffer must be dirty at k from a
write that was issued at t or later.

Lemma 282. In a k-ordered, k-abstract schedule

s ∈ ABSk ∩ORDk

which is valid and IPI valid until k−1

Γ
k−1
∗ (s)∧∆

k−1
IPI∗(s)

and where a step of a strong memory mode processor with buffered writes is not far
forward-synchronized with step k

s(t) ∈ ΣP,i∧SC↑(t)∧ t ∈ issuek
↑(i)∧ t 6IB k,

all of the following hold

1. If there is a code modification, the buffer is dirty and step k is a shared read

CM↑(t,k)→∃l ∈ issuek
↑(i).l ≥ t ∧Sh↑(l)∧ShR↑(k).

2. If there is a valid write-read race, the buffer is dirty and step k is a shared read

WR↑(t,k)∧Γ↑(k)→∃l ∈ issuek
↑(i).l ≥ t ∧Sh↑(l)∧ShR↑(k).

3. If there is a valid write-write race, the buffer is dirty and step k is shared

WW↑(t,k)∧Γ↑(k)→∃l ∈ issuek
↑(i).l ≥ t ∧Sh↑(l)∧Sh↑(k).

Proof. By Lemma 168 we obtain that the processor is still in strong memory mode

SCi↑(k) = SCi↑(t) = SC↑(t) = 1.

We now distinguish whether there is also no far race-synchronization.
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t 6IB∗ k: To show that the buffer of unit i is dirty, we show that l := t is the shared write,
and the claims follow with Lemma 258.

tIB∗ k: By definition ofIB∗ , step t is synchronized with some l, which is race-synchronized
with k

tI∗ lB∗ k.

Note that l is before k
l < k

and thus the schedule is l-abstract, l-ordered, valid until l, satisfies the IPI drain
condition until l

s ∈ ABSl ∩ORDl ∧Γ
l
∗(s)∧∆

l
IPI∗(s)

and with Lemma 280 we obtain that l is made by processor i

s(l) ∈ ΣP,i.

Since t is by assumption not far forward-synchronized with k, we immediately
obtain that l can not be forward-synchronized with k

l 6B k,

and thus the race-synchronization must have been established by Rule COMMEXT

V R↑(l,k)∧Sh↑(l)∧ShR↑(k).

By Lemma 129 step k is also shared

Sh↑(k),

and it only remains to be shown that the buffer of unit i is dirty at k.

We show that l := l is the shared write and distinguish whether the sequence of
synchronizations between t and l is empty or not, i.e., whether t = l or t < l.

t = l: The claims immediately follow.

t < l: By the monotonicity of the buffers, the write issued in step t is in the
buffers at l

t ∈ issuel
↑(i)

and by Lemma 168 we obtain that step l is made in strong memory mode

SC↑(l) = SCi↑(l) = SCi↑(t) = SC↑(t) = 1.

By contraposition of Rule NOTCONCURRENT we obtain that the steps are
object-concurrent

ocon↑(l,k)

and since there is a visible write-read race, there is a write-read race

WR↑(l,k).

By Lemma 160 we obtain that step l is a memory write

mwrite↑(l).
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By Lemma 123 we obtain that the write issued at t is indeed in the buffer

BW↑(t) ∈ wbl
↑(i)

which is thus non-empty
wbl
↑(i) 6= ε.

Since the processor is buffering a write and is in strong memory mode, it
can by Lemma 178 only execute a shared write if that write is buffered as
well

BW↑(l) 6= /0,

and the write issued by step l is buffered at l +1

l ∈ issuel+1
↑ (i).

By the monotonicity of write buffers this shared write is not committed
before the write issued at t, and since the write issued at t is still buffered
at k, so is this write

l ∈ issuek
↑(i),

and the claim follows.

This lemma is extremely useful and versatile, since it eliminates many races out-
right, or at least shows that they need synchronization; and as we have shown in
Lemma 281, synchronization is extremely limited in ordered schedules.

Note that the conclusion of Cases 1. and 2. of Lemma 282 are never satisfied when
the processor is in strong memory mode and step k is semi-ordered, as the following
lemma shows.

Lemma 283. If a processor is in strong memory mode and the step is semi-ordered

SCi↑(k)∧ sord↑(k),

there is no shared write in the buffer of that processor issued after step t in case step k
is a shared read

@l ∈ issuek
↑(i).l ≥ t ∧Sh↑(l)∧ShR↑(k).

Proof. Straightforward

sord↑(k) =⇒ dirty↑(k, i)→¬ShR↑(k)

⇐⇒ ¬(dirty↑(k, i)∧ShR↑(k))

⇐⇒ ¬(SCi↑(k)∧ (∃l ∈ issuek
↑(i).Sh↑(l))∧ShR↑(k))

⇐⇒ ¬((∃l ∈ issuek
↑(i).Sh↑(l))∧ShR↑(k))

⇐⇒ @l ∈ issuek
↑(i).Sh↑(l)∧ShR↑(k).

=⇒ @l ∈ issuek
↑(i).l ≥ t ∧Sh↑(l)∧ShR↑(k).
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Lemma 284. Let in a k+1-ordered, k+1-abstract schedule s ∈ ORDk+1 ∩ABSk+1
which is valid until k and IPI-valid until k

Γ
k
∗(s)∧∆

k−1
IPI∗(s)

distinct processors i and j
i 6= j

have a buffered sequentially consistent write from t resp. t ′ at k+1

SC↑(t)∧ t ∈ issuek
↑(i),

SC↑(t ′)∧ t ′ ∈ issuek
↑( j).

Then if the writes overlap both buffers are dirty

out↑(t) ∩̇out↑(t ′)→ dirty↑(k, i)∧dirty↑(k, j).

Proof. Without loss of generality t was before t ′

t < t ′.

Clearly t ′ to be buffered at k must be less than k

t ′ < k

and the schedule is also valid and IPI-valid until t ′

Γ
t ′
∗ (s)∧∆

t ′−1
IPI∗(s)

Because t ′ issued a write for processor j

t ′ ∈ issuek
↑( j),

it must have been a step of processor j

s(t ′) ∈ ΣP, j

and thus not a step of processor i

s(t ′) 6∈ ΣP,i

or of the write buffer of i
s(t ′) 6∈ ΣWB,i.

We obtain also by the monotonicity of write buffers that t is still buffered at t ′

t ∈ issuet ′
↑ (i),

and by contraposition of Lemma 281 with k := t ′ step t is not far forward-synchronized
with step t ′

t 6IB t ′.

We obtain from the hypothesis that there is a write-write race between steps t and
t ′

WW↑(t, t ′).

264



With Lemma 282 for k := t ′ we obtain that there is a shared write from l ≥ t which is
still being buffered and step t ′ is shared

l ∈ issuet ′
↑ (i)∧Sh↑(l)∧Sh↑(t ′).

By the monotonicity of write buffers, the write issued at l is not committed before the
write issued at t, which is still buffered at k

l ∈ issuek
↑(i).

With Lemma 168 we obtain that the mode is unchanged and thus both units are in
strong memory mode at k

SCi↑(k) = SCi↑(t) = SC↑(t) = 1,
SCi↑(k) = SCi↑(t ′) = SC↑(t ′) = 1.

The claim follows
dirty↑(k, i)∧dirty↑(k, j).

Lemma 285. In a k+1-abstract, k+1-ordered schedule that is valid until k

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s),

no sequentially consistent processor is buffering writes that it is also modifying in the
low-level machine

∀i.SCi↑(k)∧hit(out↓(k),wbk
↑(i))→ s(k) 6∈ ΣP,i.

Proof. Assume for the sake of contradiction that the processor is overwriting its own
buffered writes

s(k) ∈ ΣP,i.

By Condition WriteWriteOrder, the step k was not preparing to directly overwrite
its own buffered writes in the high-level machine

¬hit(idc(Dom(PW↑(k).bpa)),wbk
↑(i)).

By Lemma 270, the steps are preparing the same writes, which in the low-level machine
are the executed writes

PW↑(k).bpa = PW↓(k).bpa =W↓(k).

We obtain that the low-level machine was not overwriting buffered writes

¬hit(idc(Dom(W↓(k))),wbk
↑(i)),

which results in a contradiction

¬hit(out↓(k),wbk
↑(i)).

It follows that in an ordered schedule, no sequentially consistent processor is buffer-
ing writes to an address which is modified during that step.
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Lemma 286. In a k+1-abstract, k+1-ordered schedule that is valid until k and IPI-
valid until k−1

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s)∧∆

k−1
IPI∗(s),

no sequentially consistent processor is buffering writes to what the low-level machine
is modifying (except if the low-level machine is committing a write from that buffer)

∀i.SCi↑(k)∧ s(k) 6∈ ΣWB,i→¬hit(out↓(k),wbk
∗(i)).

Proof. Assume for the sake of contradiction that there is a sequentially consistent pro-
cessor which is buffering such writes

SCi↑(k)∧ s(k) 6∈ ΣWB,i∧hit(out↓(k),wbk
∗(i)).

By Lemma 127 that hit must have been issued at some point t

t ∈ issuek
∗(i)∧Dom(BW∗(t)) ∩̇out↓(k).

With Lemma 168 we obtain that the processor has already been in sequentially consis-
tent mode at that point

SCi↑(t).

By Lemma 92 the outputs of step t in the high-level machine include the domain of
the buffered write

Dom(BW∗(t))⊆ out↑(t).

Therefore there is an intersection between the outputs of step t in the high-level ma-
chine and the outputs of step k in the low-level machine

out↑(t) ∩̇out↓(k). (4.17)

By Lemma 285, step k can also not be a step of processor i

s(k) 6∈ ΣP,i

and is thus made by a different unit

u↓(k) 6= i.

On the other hand, step k is a memory write by Lemma 122

mwrite↓(k).

It is thus global if it is shared

Sh↓(k)→ G↓(k).

Since the schedule is ordered and step k is not made by the write buffer of unit i, it
can not both be true that the buffer of i is dirty and that step k is global in the low-level
machine

¬(dirty∗(k, i)∧G↓(k))

and thus it can also not be true that the buffer is dirty and step k is shared in the low-
level machine

¬(dirty∗(k, i)∧Sh↓(k)).

By Lemma 269 for X := Sh we obtain the same for the high-level machine

¬(dirty∗(k, i)∧Sh↑(k)).

We now distinguish between two cases: either step k is a sequentially consistent
write buffer step that is committing a buffered write, or something else.
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s(k) ∈ ΣWB, j ∧SC↓(k): In this case step k is just executing in the low-level machine the
head of the write buffer

W↓(k) = hd(wbk
↓( j)),

which by Lemma 267 is the head of the write buffer in the high-level machine

W↓(k) = hd(wbk
↑( j)).

By Lemma 123 that write was issued in some step t ′

t ′ = hd(issuek
↑( j))∧hd(wbk

↑( j)) = BW↑(t ′).

By Lemma 168, step t ′ was made in sequentially consistent mode

SC↑(t ′)≡ SC j↑(t ′)≡ SC j↑(k)≡ SC↑(k)≡ 1.

By Lemma 92, the buffered writes of step t ′ are outputs at t ′ in the high-level
machine

Dom(BW↑(t ′))⊆ out↑(t ′),

and thus by Lemma 26 the outputs of the low-level machine are contained in the
inclusive device closure of the outputs of the high-level machine

out↓(k) = idc(Dom(W↓(k)))

= idc(Dom(hd(wbk
↑( j))))

= idc(Dom(BW↑(t ′)))

⊆ idc(out↑(t ′)) L 26

and since the outputs are closed under devices, that is exactly the outputs

= out↑(t ′).

With Eq. (4.17) we obtain that the outputs of t and t ′ overlap

out↑(t) ∩̇out↑(t ′)

and by Lemma 284 the buffer of processor i is dirty

dirty↑(k, i).

Note that step k is shared by definition of Sh since it is a write-buffer step

Sh↑(k),

which leads to a contradiction

dirty↑(k, i)∧Sh↑(k).

¬(s(k) ∈ ΣWB, j ∧SC↓(k)): By Lemma 265, the outputs in the low-level machine are a
subset of those in the high-level machine

out↓(k)⊆ out↑(k)
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and therefore with Statement (4.17) there is an intersection between the outputs
of steps t and k in the high-level machine

out↑(t) ∩̇out↑(k),

i.e., a write-write race
WW↑(t,k).

Recall that step k is made by a different unit than unit i, and thus by contraposi-
tion of Lemma 281 step t is not far forward-synchronized with step k

t 6IB k

With Lemma 282 we obtain that there is some step l which buffers a shared write
for unit i and that step k is shared

l ∈ issuek
↑(i)∧Sh↑(l)∧Sh↑(k),

and we conclude that the buffer of unit i is dirty and step k is shared

dirty∗(k, i)∧Sh↑(k),

which is a contradiction.

Lemma 287. If in a k+1-abstract schedule s∈ABSk+1 step k is only in strong memory
mode if it is made by a processor that will not be buffering writes to a set of addresses
A

SC↑(k)→∃ j.s(k) ∈ ΣP, j ∧¬hit(A,wbk+1
↑ ( j))

then the writes of the two machines in that step agree on A

W↑(k) =A W↓(k).

Proof. We distinguish between strong and weak memory mode

SC↑(k): By assumption there is a processor j that is not buffering writes to A

s(k) ∈ ΣP, j ∧¬hit(A,wbk+1
↑ ( j)).

By Lemma 270, the machines are preparing the same writes

PW↑(k) = PW↓(k).

However, the low-level machine only executes the bypassing portion of the write,
whereas the high-level machine also executes the bypassing portion

W↑(k) = PW↑(k).wba∪PW↑(k).bpa,
!
=A PW↑(k).bpa

= PW↓(k).bpa

=W↓(k).
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It thus suffices to show that the buffered portion of the write has no effect on A

Dom(PW↑(k).wba)
!
6 ∩̇ A.

Assume for the sake of contradiction that it does

Dom(PW↑(k).wba) ∩̇A.

Thus clearly the prepared buffered write, which is also the buffered write, is
non-empty

BW↑(k) = PW↑(k).wba 6= /0

and the operation of the step is a push operation

Op j↑(k) = push.

Since the buffered write intersects A, there is a hit in the singleton list containing
only the buffered write

hit(A,BW↑(k)),

and by Lemma 51 also in the write buffer at k concatenated with that write

hit(A,wbk
↑( j)◦BW↑(k)).

Since the operation of the step is a push operation, that is the buffer at k+1

hit(A,wbk+1
↑ ( j)),

which is a contradiction.

¬SC↑(k): The claim follows immediately with Lemma 264.

We say that a set of addresses A is up to date for processor i at k when there is no
other unit in strong memory mode that has outstanding writes to that address

utdi(k,A)≡ ∀ j 6= i.SC j↑(k)→¬hit(A,wbk
↑( j)).

The only type of step that can make an address up to date is a write buffer step of
another unit in strong memory mode.

Lemma 288. Let in a k+1-abstract, k+1-ordered schedule that is valid until k

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s)

a set of addresses A be up to date for unit i at k+1

utdi(k+1,A)

and step k not be made by a write buffer in strong memory mode

SC↑(k)→ @ j.s(k) ∈ ΣWB, j ∧ j 6= i.

Then A was already up to date at k

utdi(k,A).
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Proof. Assume for the sake of contradiction that A is up to date at k+1

∀ j 6= i.SC j↑(k+1)→¬hit(A,wbk+1
↑ ( j)),

and that j is another processor in strong memory mode at k which had a hit on A

j 6= i∧SC j↑(k)∧hit(A,wbk
↑( j)).

Because there is a hit, the write buffer is non-empty

wbk
↑( j) 6= ε

and by contraposition of Condition Switch, the mode registers are not changed

ASC, j 6 ∩̇ out↑(k).

We conclude with Lemma 139 that processor j is still in strong memory mode at k+1

SC j↑(k+1) = SC j↑(k) = 1,

and since the addresses are now up to date, no longer has a hit on A in its write buffer

¬hit(A,wbk+1
↑ ( j)).

We immediately obtain that the buffers must have changed

wbk+1
↑ ( j) 6= wbk

↑( j),

and distinguish now between the two cases that might have changed the write buffer: a
processor step of unit j buffering a write, and a write buffer step of unit j committing
one.

s(k) ∈ ΣP, j ∧BW↑(k) 6= /0: We immediately obtain with Lemma 51 that the hit has not
disappeared

hit(A,wbk+1
↑ ( j))≡ hit(A,wbk

↑( j)◦BW↑(k))

≡ hit(A,wbk
↑( j))∨ . . . L 51

≡ 1,

which is a contradiction.

s(k) ∈ ΣWB, j: Clearly the step is made in strong memory mode

SC↑(k) = SC j↑(k) = 1,

which contradicts our assumption.

Even such a step can only make those addresses up to date that it modifies.
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Lemma 289. Let in a k+1-abstract, k+1-ordered schedule that is valid until k

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s)

a set of addresses A be up to date for unit i at k+1

utdi(k+1,A)

and step k be made by a write buffer of another unit in strong memory mode

SC↑(k)∧ s(k) ∈ ΣWB, j ∧ j 6= i.

Then the portion of A not modified by the step was already up to date at k

utdi(k,A\out↓(k)).

Proof. By assumption processor j was sequentially consistent at k, and by Lemma 174
a sequentially write buffer step has no outputs

out↑(k) = /0

and thus by Lemma 138 does not change the memory mode, so processor j is also
sequentially consistent at k+1

SC j↑(k+1) = SC j↑(k) = 1.

By assumption, processor j does not have any buffered writes to A at k+1

¬hit(A,wbk+1
↑ ( j)),

which is the tail of its write buffer at k

wbk+1
↑ ( j) = tl(wbk

↑( j)),

and with Lemma 48 we obtain that there is no hit for A\out↓(k) in the tail of the write
buffer at k

hit(A\out↓(k), tl(wbk
↑( j))) =⇒ hit(A, tl(wbk

↑( j))) L 48

⇐⇒ hit(A,wbk+1
↑ ( j))

⇐⇒ 0.

With Lemma 267 we obtain that the outputs at k subsume the domain of the head
of the write buffer at k

out↓(k) = idc(Dom(W↓(k)))

= idc(Dom(hd(wbk
↓( j))))

= idc(Dom(hd(wbk
↑( j)))) L 267

⊇ Dom(hd(wbk
↑( j))),

and thus we obtain that there is no hit for A\out↓(k) in the head of the write buffer at
k, either

hit(A\out↓(k),hd(wbk
↑( j)))
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⇐⇒ A\out↓(k) ∩̇Dom(hd(wbk
↑( j)))

⇐⇒ 0.

Since there is a hit neither in the head nor in the tail, with Lemma 51 we obtain
that j was not buffering writes to A\out↓(k) at k, just as at k+1; therefore the two hit
predicates are the same

hit(A\out↓(k),wbk
↑( j))

= hit(A\out↓(k),hd(wbk
↑( j)))∨hit(A\out↓(k), tl(wbk

↑( j))) L 51

= 0∨0 = 0

= hit(A\out↓(k),wbk+1
↑ ( j)). (4.18)

Since by Lemma 174 a strong memory write buffer step has no outputs

out↑(k) = /0,

with Lemma 139 we obtain that the step did not change any mode

∀ j′.SC j′↑(k+1) = SC j′↑(k). (4.19)

Since step k is a step of unit j

u↑(k) = j,

by Lemma 96 the write buffers of other units are also unchanged

∀ j′ 6= j.wbk+1
↑ ( j′) = wbk

↑( j′)) (4.20)

and thus we obtain for those processors also that the hit predicate is unchanged

∀ j′ 6= j.hit(A\out↓(k),wbk+1
↑ ( j′)) = hit(A\out↓(k),wbk

↑( j′)).

Combining this with Equation (4.18) we obtain that the hit predicates are unchanged
for all processors

∀ j′.hit(A\out↓(k),wbk+1
↑ ( j′)) = hit(A\out↓(k),wbk

↑( j′)). (4.21)

Since the buffers for A are up to date at k+1, no other processor in sequential mode
is buffering a write to A at k

∀ j′ 6= i.SC j′↑(k+1)→¬hit(A,wbk+1
↑ ( j′))

and by contraposition of Lemma 48 also not to the portion of A not modified by the
low-level machine

∀ j′ 6= i.SC j′↑(k+1)→¬hit(A\out↓(k),wbk+1
↑ ( j′)).

Since by Eqs. (4.19) and (4.21) the memory mode registers and hits have not
changed, we obtain the same at k

∀ j′ 6= i.SC j′↑(k)→¬hit(A\out↓(k),wbk
↑( j′)),

which is the claim
utdi(k,A\out↓(k)).
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We say that the memory views of processor i of the machines are in sync in cycle k
on a set of addresses A when the memory of the high-level machine agrees either with
the memory of the low-level machine or the perfect world forwarding memory system
of the low-level machine, depending on the memory mode of that processor

synci(k,A)≡ mk
↑ =A

{
mk
↓ ¬SCi↑(k)

p f msi↓(k) SCi↑(k).

For a processor that currently has a strong memory view, the writes in the buffer have
already been executed in the high-level machine, but not yet in the low-level machine,
which is why we use perfect world forwarding. For a processor in weak memory
mode, the writes in the buffer are buffered in both machines, and thus the memories
are in sync.

When the memory views of a processor are in sync in cycle k on two sets of ad-
dresses, they are also in sync on the union. We do not show the proof.

Lemma 290.
synci(k,A)∧ synci(k,A′)→ synci(k,A∪A′).

We wish to show that sets of addresses that are up to date are also in sync. We call
this the memory invariant

minvi(k,A) ≡ utdi(k,A)→ synci(k,A).

We show that if the mode of a processor is changed, the memory invariant is main-
tained.

Lemma 291. Let in a k+1-abstract, k+1-ordered schedule that is valid until k

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s)

step k change the memory mode of some processor i

SCi↑(k) 6= SCi↑(k+1).

Then the memory invariant is maintained on every set of addresses A that is closed
under devices

closed(A)∧minvi(k,A)→ minvi(k+1,A).

Proof. Assume that A is closed, the memory invariant holds at k, and A is up to date
for processor i at k+1

closed(A)∧minvi(k,A)∧utdi(k+1,A).

Since the addresses are up to date, no other processor in strong memory mode has
buffered a write to A

∀ j 6= i.SC j↑(k+1)→¬hit(A,wbk+1
↑ ( j)).

By Condition Switch the buffers in the high-level machine are empty before and
after step k

wbk
↑(i) = wbk+1

↑ (i) = ε.
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We conclude that the write buffer of i has not hit on A either

¬hit(A,wbk+1
↑ ( j)),

and thus there is no unit in strong memory mode that has such a hit

∀ j.SC j↑(k+1)→¬hit(A,wbk+1
↑ ( j)).

Furthermore, step k modifies the memory mode and thus by Lemma 139 has outputs

ASC,i ∩̇out↑(k),

from which we conclude by contraposition of Lemma 174 that the step is not a sequen-
tially consistent write buffer step

SC↑(k)→∀ j.s(k) 6∈ ΣWB, j.

We conclude that if step k is a sequentially consistent step, it is made by a processor
which has no hit for A

SC↑(k)→∃ j.s(k) ∈ ΣP, j ∧¬hit(A,wbk+1
↑ ( j)).

By Lemma 287, the executed writes of the machines agree on A

W↑(k) =A W↓(k).

We conclude further that step k can not be made by a write buffer of another unit in
strong memory mode

SC↑(k)→ @ j.s(k) ∈ ΣWB, j ∧ j 6= i,

and thus by Lemma 288, the addresses were up to date at k

utdi(k,A)

and with the memory invariant we obtain that the memory views were in sync

synci(k,A).

By Lemma 267, the write buffers in the low-level machine are the same as those in
the high-level machine and thus also empty

wbk
↓(i) = wbk+1

↓ (i) = ε.

Since the write buffers of unit i are empty in both steps k′ ∈ { k,k+1}, the perfect
world forwarding memory system simply equals the memory in both steps

p f msi↓(k′) = mk′
↓ ◦ ε = mk′

↓ .

Therefore the memory views are in sync iff the memories agree on A

synci(k′,A)≡ mk′
↑ =A

{
mk′
↓ ¬SCi↑(k′)

p f msi↓(k′) SCi↑(k′)

≡ mk′
↑ =A mk′

↓ .
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Since the memory views are in sync at k we immediately conclude that the memo-
ries agree on A

mk
↑ =A mk

↓.

By Lemma 32, we can update the memory of both configurations only using the
portion of the writes on which the machines agree,

mk+1
↑ = mk

↑~W↑(k)

=A mk
↑~W↓(k) L 32

and by Lemma 29 only the portion of the memories on which the machines agree
matters, and we conclude the memories at k+1 are the same

=A mk
↓~W↓(k) L 29

= mk+1
↓ ,

which is equivalent to the claim

synci(k+1,A).

Lemma 292. Let in a k+1-abstract, k+1-ordered schedule that is valid until k

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s)

a set of addresses A be up to date for processor i at k+1

utdi(k+1,A).

If step k is not sequentially consistent or made by another processor

¬SC↑(k)∨ s(k) ∈ ΣP, j ∧ i 6= j,

both of the following hold.

1. The step is not made by another write buffer in strong memory mode

SC↑(k)→ @ j.s(k) ∈ ΣWB, j ∧ j 6= i,

2. If the step is made in sequentially consistent mode, it is made by a processor with
no hit for A

SC↑(k)→∃ j.s(k) ∈ ΣP, j ∧¬hit(A,wbk+1
↑ ( j)).

Proof. Assume for both claims that the step is made in strong memory mode

SC↑(k).

The step must be made by another processor

s(k) ∈ ΣP, j ∧ i 6= j.

It is thus not a write buffer step and the first claim follows

@ j′.s(k) ∈ ΣWB, j′ ∧ j′ 6= i.

That processor is in strong memory mode at k

SC j↑(k),

and our proof distinguishes between its memory mode at k+1.
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SC j↑(k+1): By assumption, other processors in strong memory mode do not have a
hit for A

¬hit(A,wbk+1
↑ ( j))

and the claim follows.

¬SC j↑(k+1): Clearly the memory mode has changed, and by contraposition of Lemma 139
the mode registers are an outputs of step k

ASC, j ∩̇out↑(k).

By Condition Switch, the write buffer of unit j is empty at k+1

wbk+1
↑ ( j) = ε

and thus has no hit for A
¬hit(A,wbk+1

↑ ( j)),

and the claim follows.

Sequentially consistent write buffer steps keep the memory views of their unit in
sync.

Lemma 293. Let in a k+1-abstract, k+1-ordered schedule that is valid until k

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s)

step k be a sequentially consistent write buffer step of unit i

SC↑(k)∧ s(k) ∈ ΣWB,i.

Then the memory views of that unit are kept in sync and the mode is not changed

synci(k,A)→ SCi↑(k+1)∧ synci(k+1,A).

Proof. In the high-level machine, the step executes an empty write that does not change
the memory

mk
↑ = mk

↑~ /0 = mk
↑~W↑(k) = mk+1

↑ ,

and in the low-level machine the forwarding is unchanged by Lemma 68

p f msi↓(k+1) = p f msi↓(k).

We immediately conclude that the memory mode is unchanged in the high-level ma-
chine

SCi↑(k+1) = SCi↑(k) = SC↑(k) = 1.

Assume now that the memory views are in sync, i.e., that the forwarding of the
low-level machine agrees with the memory of the high-level machine

p f msi↓(k) =A mk
↑.

The claim follows

p f msi↓(k+1) = p f msi↓(k) =A mk
↑ = mk+1

↑ .
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The machine is also kept in sync if the mode is not switched, although this is more
difficult to prove.

Lemma 294. Let in a k+ 1-abstract, k+ 1-ordered schedule that is valid until k and
IPI-valid until k−1

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s)∧∆

k−1
IPI∗(s)

step k not change the mode of some processor i

SCi↑(k) = SCi↑(k+1).

Then if the memory invariant holds at k for every processor and closed set of addresses

∀A′, i′.closed(A′)→ minvi′(k,A
′),

it also holds at k+1
∀A.closed(A)→ minvi(k+1,A).

Proof. Clearly, the lemma models the inductive step of an inductive proof. Therefore,
we refer to the assumption that the memory invariant holds at k as the induction hy-
pothesis throughout the proof. Unless we specify something else, we always apply the
induction hypothesis with i′ := i and A′ := A.

Let A be closed and up-to-date

closed(A)∧utdi(k+1,A),

and we have to show that the memory is in sync

synci(k+1,A) !
= 1.

By Lemmas 267 and 270 we obtain that the machines agree on the buffers, the
prepared writes, and the buffered writes

wbk
↑ = wbk

↓, L 267

wbk+1
↑ = wbk+1

↓ , L 267

PW↑(k) = PW↓(k), L 270
BW↑(k) = BW↓(k), L 270

and for the sake of brevity we will often discard the machine-type index with these
terms, simply writing an asterisk in its place, e.g.,

wbk
∗ = wbk

↑ = wbk
↓.

Clearly, one of the following holds.

1. The step is made in weak memory mode

¬SC↑(k),

2. The step is made in strong memory mode by processor i

SC↑(k)∧ s(k) ∈ ΣP,i,
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3. The step is made in strong memory mode by another processor j 6= i

SC↑(k)∧ s(k) ∈ ΣP, j ∧ j 6= i,

4. The step is made in strong memory mode by the write buffer of processor i,

SC↑(k)∧ s(k) ∈ ΣWB,i,

5. The step is made in strong memory mode by the write buffer of another processor
j 6= i.

SC↑(k)∧ s(k) ∈ ΣWB, j ∧ j 6= i,

We distinguish between those cases, but treat Cases 1 and 3 as one.

Case 1 or Case 3
¬SC↑(k)∨ s(k) ∈ ΣP, j ∧ i 6= j

By Lemma 292, if the step is made in strong memory mode, it is not done by the
write buffer of another unit

SC↑(k)→ @ j.s(k) ∈ ΣWB, j ∧ j 6= i,

and by Lemma 288, the addresses were up to date at k

utdi(k,A)

and with the induction hypothesis we obtain that the memory view is at sync at k

synci(k,A).

Also by Lemma 292, if the step is made in strong memory mode, it is made by
another processor with no hit for A

SC↑(k)→∃ j.s(k) ∈ ΣP, j ∧¬hit(A,wbk+1
↑ ( j)).

With Lemma 287 we immediately obtain that the writes of both machines agree
on A

W↑(k) =A W↓(k).

The proof now distinguishes whether unit i was in strong memory mode or not.

SCi↑(k): Because the step is either made in weak memory mode or by another
processor, it is not made by the same unit

u↑(k) 6= i

and by Lemma 96 the write buffer of unit i is not changed by the step

wbk
∗(i) = wbk+1

∗ (i).

Step k is in particular not a step of the write buffer of processor i

s(k) 6∈ ΣWB,i

278



and by Lemma 286 there is no hit between the outputs of the low-level
machine and the write buffer of unit i

¬hit(out↓(k),wbk
∗(i)),

and by repeated application of Lemma 30 we can pull the update of the
low-level machine behind the buffered writes

p f msi↓(k+1) = mk+1
↓ ~wbk+1

∗ (i)

= mk
↓~W↓(k)~wbk

∗(i)

= mk
↓~wbk

∗(i)~W↓(k) L 30

= p f msi↓(k)~W↓(k)

and the claim follows with the induction hypothesis and Lemmas 29 and 32

=A mk
↑~W↓(k) IH, L 29

=A mk
↑~W↑(k) L 32

= mk+1
↑ .

¬SCi↑(k): The claim follows with the induction hypothesis and Lemmas 29
and 32

mk+1
↑ = mk

↑~W↑(k)

=A mk
↓~W↑(k) IH, L 29

=A mk
↓~W↓(k) L 32

= mk+1
↓ .

Case 2
SC↑(k)∧ s(k) ∈ ΣP,i,

By Lemma 288, the addresses were up to date at k

utdi(k,A)

and with the induction hypothesis we obtain that the memory view is at sync at k

synci(k,A).

Since the step is in strong memory mode, unit i is in strong memory mode

SCi↑(k) = SC↑(k) = 1.

In the low-level machine, the bypassing portion of the write is executed before
the write buffer and the buffered portion is added behind the write buffer

p f msi↓(k+1) = mk+1
↓ ~wbk+1

∗ (i)

=

{
mk
↓~PW∗(k).bpa~(wbk

∗(i)◦BW∗(k)) BW∗(k) 6= /0
mk
↓~PW∗(k).bpa~wbk

∗(i) BW∗(k) = /0
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=

{
mk
↓~PW∗(k).bpa~wbk

∗(i)~BW∗(k) BW∗(k) 6= /0
mk
↓~PW∗(k).bpa~wbk

∗(i)~ /0 BW∗(k) = /0

= mk
↓~PW∗(k).bpa~wbk

∗(i)~BW∗(k)

= mk
↓~PW∗(k).bpa~wbk

∗(i)~PW∗(k).wba.

However, with Condition WriteWriteOrder we obtain that the inclusive device
closure of the bypassing writes does not conflict with buffered writes

¬hit(idc(Dom(PW∗(k).bpa)),wbk
∗(i))

and we can thus move the bypassing portion of the write buffer behind the buffer
and combine it with the buffered write by repeated application of Lemma 30

p f msi↓(k+1) = mk
↓~PW∗(k).bpa~wbk

∗(i)~PW∗(k).wba

= mk
↓~wbk

∗(i)~(PW∗(k).bpa∪PW∗(k).wba) L 30

= p f msi↓(k)~W↑(k)

Using now the induction hypothesis and Lemma 29 we can replace the perfect
world forwarding with the memory in the high-level machine, and obtain the
claim

=A mk
↑~W↑(k) IH, L 29

= mk+1
↑ .

Case 4
SC↑(k)∧ s(k) ∈ ΣWB,i,

By Lemma 288, the addresses were up to date at k

utdi(k,A)

and with the induction hypothesis we obtain that the memory view is at sync at k

synci(k,A).

The claim is now Lemma 293.

Case 5
SC↑(k)∧ s(k) ∈ ΣWB, j ∧ j 6= i

This case is the most difficult one, since it includes the case where a write buffer
step clears the last write to a portion of A and thus makes A up to date.

Using Lemma 290 we therefore split the proof between the portions of A that are
modified resp. not modified by step k.

synci(k+1,A∩out↓(k)): This portion of A was buffered at k and we can not
apply the induction hypothesis for i and A. However, by Lemma 286 no
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processor in strong memory mode except for j may be buffering a write
that conflicts with the low-level write in k

1 ⇐⇒ ∀ j′.SC j′↑(k)∧ s(k) 6∈ ΣWB, j′ →¬hit(out↓(k),wbk
↑( j′))

⇐⇒ ∀ j′.SC j′↑(k)∧ j′ 6= j→¬hit(out↓(k),wbk
↑( j′))

⇐⇒ ∀ j′ 6= j.SC j′↑(k)→¬hit(out↓(k),wbk
↑( j′))

=⇒ ∀ j′ 6= j.SC j′↑(k)→¬hit(A∩out↓(k),wbk
↑( j′)) L 48

(4.22)

=⇒ utd j(k,A∩out↓(k)).

By Lemma 12 the intersection is closed

closed(A∩out↓(k)).

We can thus apply the induction hypothesis with i′ := j and A′ := A∩
out↓(k), and obtain that the memory views of that processor are in sync

sync j(k,A∩out↓(k))

and by Lemma 293 that is still the case at k+1 and the mode is unchanged

sync j(k+1,A∩out↓(k))∧SCi↑(k+1),

and thus the memory and the forwarding agree

mk+1
↑ =A∩out↓(k) p f ms↓ j(k+1).

Because the memory is now up-to-date for unit i, unit j no longer buffers
writes to A at k+1

¬hit(A,wbk+1
∗ ( j))

and by Lemma 54 the write buffer can be dropped from the forwarding
system

mk+1
↑ =A∩out↓(k) p f ms↓ j(k+1)

= mk+1
↓ ~wbk+1

∗ ( j)

=A mk+1
↓ L 54

The proof now distinguishes between the memory mode of unit i.

SCi↑(k+1): The step of another write buffer does not modify the write
buffer of unit i

wbk
∗(i) = wbk+1

∗ (i).

Since the machine mode of unit i is by assumption not changed by the
step, the machine was already in strong memory mode at k

SCi↑(k)

and with Statement (4.22) with j′ := i we obtain that there is neither a
hit in the write buffer of unit i at k

¬hit(A∩out↓(k),wbk
↑(i))
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nor at k+1
¬hit(A∩out↓(k),wbk+1

↑ (i)).

The claim follows with Lemma 54

mk+1
↑ =A∩out↓(k) mk+1

↓

=A∩out↓(k) mk+1
↓ ~wbk+1

↑ (i) L 54

=A∩out↓(k) p f msi↓(k+1).

¬SCi↑(k+1): The memory views are in sync when the memories agree
and we are done

synci(k+1,A∩out↓(k)).

synci(k+1,A\out↓(k)): By Lemma 289 the addresses were up to date

utdi(k,A\out↓(k))

and with the induction hypothesis for A′ := A \ out↓(k) we obtain that the
memory view is at sync at k

synci(k,A\out↓(k)).

By Lemma 174 step k has no outputs in the high-level machine

out↑(k) = /0

and by Lemma 138 neither the high-level machine nor the low-level ma-
chine modify the addresses

mk+1
↑ =A\out↓(k) mk

↑,

mk+1
↓ =A\out↓(k) mk

↓.

The proof distinguishes now between the mode of unit i.
SCi↑(k): By Lemma 96 the write buffer of unit i is not changed

wbk
∗(i) = wbk+1

∗ (i)

and the claim follows with the induction hypothesis and Lemma 29

mk+1
↑ =A\out↓(k) mk

↑

=A\out↓(k) p f msi↓(k) IH

= mk
↓~wbk

∗(i)

=A\out↓(k) mk+1
↓ ~wbk

∗(i) L 29

= mk+1
↓ ~wbk+1

∗ (i)

= p f msi↓(k+1)

¬SCi↑(k): The claim follows with the induction hypothesis

mk+1
↑ =A\out↓(k) mk

↑

=A\out↓(k) mk
↓ IH

=A\out↓(k) mk+1
↓ .
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We can now show that an ordered schedule keeps the two machines in sync.

Lemma 295. In a k-abstract, k-ordered schedule that is valid until k−1 and IPI-valid
until k−2

s ∈ ABSk ∩ORDk ∧Γ
k−1
∗ (s)∧∆

k−2
IPI∗(s)

the memory invariant holds at k for every processor and every closed set of addresses

closed(A)→ minvi(k,A).

Proof. We prove the claims by induction on k, with i and j generalized. The base case
is trivial. In the inductive step k→ k+1 we have that s is a k+1-abstract, k+1-ordered
schedule that is valid until k and IPI-valid until k−1

s ∈ ABSk+1∩ORDk+1∧Γ
k
∗(s)∧∆

k−1
IPI∗(s)

and immediately obtain that it is also a k-abstract, k-ordered schedule that is valid until
k−1 and IPI-valid until k−2

s ∈ ABSk ∩ORDk ∧Γ
k−1
↓ (s)∧∆

k−2
IPI∗(s).

By the inductive hypothesis we obtain that the memory invariant holds at k on all
closed sets of addresses for every processor

∀i′,A′.closed(A′)→ minvi(k,A),

and we have to show the same for k+1

closed(A)→ minvi(k+1,A).

We distinguish whether the mode changed or not.

SCi↑(k) 6= SCi↑(k+1): Since A is closed, the memory invariant holds at k for A and i

minvi(k,A).

The claim is now Lemma 291.

SCi↑(k) = SCi↑(k+1): The claim is Lemma 294.

We prove the following corollary.

Lemma 296. In a k-abstract, k-ordered schedule that is valid until k−1 and IPI-valid
until k−2

s ∈ ABSk ∩ORDk ∧Γ
k−1
∗ (s)∧∆

k−2
IPI∗(s)

for all A which are closed under devices and to which no writes are buffered by any
processor in SC mode

closed(A)∧∀ j.SC j↑(k)→¬hit(A,wbk
↑( j))

the memories agree on A
mk
↓ =A mk

↑.
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Proof. Let i be some processor.
By assumption all other processors in strong memory mode are not buffering writes

to A
∀ j 6= i.SC j↑(k)→¬hit(A,wbk

↑( j)),

and thus the memory view is up to date for processor i

utdi(k,A).

By Lemma 295 we obtain that the memory invariant holds

minvi(k,A)

and thus the memory views are in sync

synci(k,A).

We distinguish between the memory mode of processor i.

¬SCi↑(k): Since the memory views are in sync, the memories must agree

mk
↓ =A mk

↑,

which is the claim.

SCi↑(k): Since no processor in strong memory mode is buffering writes to A, neither
is processor i

¬hit(A,wbk
↑(i)),

and by Lemma 267 the same holds for the low-level machine

¬hit(A,wbk
↓(i)).

Since the memory views are in sync, the memory of the high-level machine
agrees with perfect world forwarding in the low-level machine, and the claim
follows with Lemma 54

mk
↑ =A p f msi↓(k)

= mk
↓~wbk

↓(i)

=A mk
↓. L 54

We now show that if a step uses some address as an input, the other units in sequen-
tially consistent mode are not buffering writes to that address. We begin with fetched
addresses, which are never modified by a buffered write.

Lemma 297. Let in a k+1-ordered and k-abstract schedule s∈ORD−k+1∩ABSk which
is semi-valid until k and IPI-valid until k−1

ΓΦ
k
∗(s)∧∆

k−1
IPI∗,

processor i in sequentially consistent mode

SCi↑(k)
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have a write from t at k
t ∈ issuek

↑(i).

Then the processor does not modify code of other processors5

CM↑(t,k)→ s(k) ∈ ΣP,i.

Proof. Assume that there was a code modification

CM↑(t,k).

By Lemma 168 we obtain that the buffered write was issued in sequentially consis-
tent mode

SC↑(t) = SCi↑(t) = SCi↑(k) = 1.

Step k is semi-ordered
sord∗(k)

and by Lemma 283 we obtain that there is no shared write buffered for processor i in
case step k is a shared read

@l ∈ issuek
↑(i).l ≥ t ∧Sh↑(l)∧ShR↑(k).

By contraposition of Lemma 282 steps t and k must be far forward-synchronized

tIBk.

By Lemma 281 step k is a step of processor i or its write buffer

s(k) ∈ ΣP,i∪ΣWB,i,

but since there is a code modification, step k is fetching something

F↑(k) 6= /0

and thus step k is not a write buffer step

s(k) 6∈ ΣWB,i.

The claim follows
s(k) ∈ ΣP,i.

We conclude that in an ordered schedule, the last step still fetches the correct values.

Lemma 298. Let in a k+1-ordered and k-abstract schedule s∈ORD−k+1∩ABSk which
is semi-valid until k and IPI-valid until k−1

ΓΦ
k
∗(s)∧∆

k−1
IPI∗(s),

step k has the same core and still fetches the same values

mk
↑ =C↓(k)∪F↓(k) mk

↓.

5Write buffer steps do not fetch and execute code and can thus be excluded as well.
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Proof. By Lemma 267, at the end of the abstract portion of the schedule the low-level
machine configuration still locally simulates the high-level configuration

ck
↓
.
= ck
↑

and by Lemma 261 we obtain that the steps agree on the core registers

mk
↓ =C↓(k) mk

↑.

It suffices now to show that the memories agree on the fetched registers

mk
↓

!
=F↓(k) mk

↑.

We show that the agree on the inclusive device closure of the fetched registers, which
subsumes the fetched registers

mk
↓

!
=idc(F↓(k)) mk

↑.

By Lemma 21 that set is closed

closed(idc(F↓(k))).

We apply Lemma 296, which reduces the claim to showing that no sequentially
consistent processor is buffering writes to those addresses

∀i.SCi↑(k)→¬hit(idc(F↓(k)),wbk
↑(i)).

Assume for the sake of contradiction that such a processor exists

SCi↑(k)∧hit(idc(F↓(k)),wbk
↑(i)).

By Lemma 127 there must be an issued timestamp t that put the write into the buffer

t ∈ issuek
↑(i)∧Dom(BW↑(t)) ∩̇ idc(F↓(k)).

By Lemma 142, the two machines fetch the same values and we obtain that the write
must modify the fetched values of the high-level machine

Dom(BW↑(t)) ∩̇ idc(F↑(k)).

By Lemma 92, the buffered writes are outputs

Dom(BW↑(t))⊆ out↑(t)

and thus there is an intersection between outputs and the inclusive device closure of the
fetched addresses

out↑(t) ∩̇ idc(F↑(k)).

The outputs are closed and by Lemma 15 we can drop the inclusive device closure for
the fetched addresses

out↑(t) ∩̇F↑(k)

and there is thus a code modification

CM↑(t,k).
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By Lemma 297, step k must have been made by processor i

s(k) ∈ ΣP,i,

which is thus also done in strong memory mode

SC↑(k) = SCi↑(k) = 1.

By Condition CodeOrder, there is no hit in the write buffer for the inclusive device
closure of the fetched addresses

¬hit(idc(F↑(k)),wbk
↑(i)),

which was the claim.

When an ordered schedule is abstract until k, validity can be transferred to the
high-level machine until k.

Lemma 299. Let in a k+1-semi-ordered and k-abstract schedule s which is semi-valid
until k

s ∈ ORD−k+1∩ABSk ∧ΓΦ
k
∗(s)∧∆

k−1
IPI∗,

the schedule is valid at k in the high-level machine iff it is valid in the low-level machine

Γ↑(k) = Γ↓(k).

Proof. By Lemma 298, the machines see the same values for core and fetched registers

mk
↓ =C↓(k)∪F↓(k) mk

↑

and by Lemma 143 the configurations have the same core and fetched registers, and
thus also agree on the core and fetched registers of the other machine

mk
↓ =C↑(k)∪F↑(k) mk

↑

By Lemma 267 the configurations have the same buffers

wbk
↓ = wbk

↑.

By Lemma 180 the validity of the high-level machine implies the validity in the
low-level machine

Γ↑(k)→ Γ↓(k)

and again by Lemma 180 the validity of the low-level machine implies the validity in
the high-level machine

Γ↓(k)→ Γ↑(k)

and the claim follows.

We can now prove that while a processor buffers writes to an address, other units
do not read from that address.

287



Lemma 300. Let in a k+1-semi-ordered and k-abstract schedule s which is valid until
k and IPI-valid until k−1

s ∈ ORD−k+1∩ABSk ∧Γ
k
↓(s)∧∆

k−1
IPI∗(s),

processor i in sequentially consistent mode

SCi↑(k)

have a buffered write from t at k

t ∈ issuek
↑(i).

Then there is no write-read race in memory with any other unit

WR↑(t,k)→ s(k) ∈ ΣP,i∪ΣWB,i.

Proof. The schedule is also semi-valid in the low-level machine

ΓΦ
k
↓(s),

and by Lemma 271 also in the high-level machine

ΓΦ
k
↑(s).

By Lemma 299 the step k is valid in the high-level machine

Γ↑(k).

Assume now that there is a write-read race

WR↑(t,k).

By Lemma 168 we obtain that the buffered write was issued in sequentially consis-
tent mode

SC↑(t) = SCi↑(t) = SCi↑(k) = 1.

Step k is semi-ordered
sord∗(k)

and by Lemma 283 we obtain that there is no shared write buffered for processor i in
case step k is a shared read

@l ∈ issuek
↑(i).l ≥ t ∧Sh↑(l)∧ShR↑(k).

By contraposition of Lemma 282 steps t and k must be far forward-synchronized

tIBk.

By Lemma 281 step k is a step of processor i or its write buffer

s(k) ∈ ΣP,i∪ΣWB,i,

which is the claim.

288



We obtain that other processors in strong memory mode never buffer writes to a
read address.

Lemma 301. Let in a k+1-semi-ordered and k-abstract schedule s which is valid until
k and IPI-valid until k−1

s ∈ ORD−k+1∩ABSk ∧Γ
k
↓(s)∧∆

k−1
IPI∗(s)

step k be made by processor i
s(k) ∈ ΣP,i.

Then there is no other processor in strong memory mode that buffers a write to the
inclusive device closure of the portions X ∈ {wba,bpa} of the addresses read in the
step

∀ j 6= i.SC j↑(k)→¬hit(idc(R↑(k).X),wbk
↑( j)).

Proof. Assume for the sake of contradiction that such a processor exists

j 6= i∧SC j↑(k)∧hit(idc(R↑(k).X),wbk
↑( j)).

By Lemma 127 there must be an issued timestamp t that put the write into the buffer

t ∈ issuek
↑( j)∧Dom(BW↑(t)) ∩̇ idc(R↑(k).X).

Clearly the domain of that buffered write is non-empty

Dom(BW↑(t)) 6= /0.

With Lemma 168 we obtain that it was also made in strong memory mode

SC↑(t) = SC j↑(t) = SC j↑(k) = 1,

and thus by Lemma 92 the domain of the buffered write is part of the outputs

Dom(BW↑(t))⊆ out↑(t).

Thus the outputs intersect with the inclusive device closure of the read addresses

out↑(t) ∩̇ idc(R↑(k).X)

and because the outputs are closed under devices we can drop the inclusive device
closure with Lemma 15

out↑(t) ∩̇R↑(k).X .

Since the read addresses are inputs, there must be an intersection between outputs
and inputs

out↑(t) ∩̇ in↑(k),

and thus a write-read race
WR↑(t,k).

By Lemma 300, step k must be made by processor j or its write buffer

s(k) ∈ ΣP, j ∪ΣWB, j.

Because oracle inputs are disjoint and step k is already a step of processor i, we obtain
that i and j are the same

i = j,

which is a contradiction.
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Lemma 302. A k+1-semi-ordered and k-abstract schedule s which is valid until k in
the low-level machine

s ∈ ORD−k+1∩ABSk ∧Γ
k
↓(s)

is also valid until k in the low-level machine

Γ
k
↑(s).

Proof. By Lemma 271 the schedule is valid until k−1

Γ
k−1
↑ (s)

and by Lemma 299 also at k
Γ↑(k)

and the claim follows
Γ

k
↑(s).

Lemma 303. Let in a k+1-semi-ordered and k-abstract schedule s which is semi-valid
until k and IPI-valid until k−1

s ∈ ORD−k+1∩ABSk ∧Γ
k
↓(s)∧∆

k−1
IPI∗(s)

step k be made by processor i
s(k) ∈ ΣP,i.

Then there is no processor in strong memory mode that buffers a write to the inclusive
device closure of the bypassing portion of the addresses read in the step

∀ j.SC j↑(k)→¬hit(idc(R↑(k).bpa),wbk
↑( j)).

Proof. Assume that processor j is in strong memory mode has a buffered write

SC j↑(k)∧hit(idc(R↑(k).bpa),wbk
↑( j)).

By contraposition of Lemma 301, processors i and j are the same

i = j.

Therefore the step is made in strong memory mode

SC↑(k) = SC j↑(k) = 1.

By Lemma 302 the schedule is valid until k

Γ
k
↑(s).

By Condition WriteReadOrder, there is no hit

¬hit(idc(R↑(k).bpa),wbk
↑( j)),

which is a contradiction.

We conclude that if step k is also still ordered, the step reads the same values from
memory.
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Lemma 304. Let in a k+1-semi-ordered and k abstract schedule s which is valid until
k and IPI-valid until k−2

s ∈ ORD−k+1∩ABSk ∧Γ
k
↓(s)∧∆

k−1
IPI∗(s),

step k, if made by a processor, has the same core and still fetches the same values

s(k) ∈ ΣP,i→ v↑(k) = v↓(k).

Proof. By Lemma 298 the step sees the same core and fetched register values

mk
↑ =C↓(k)∪F↓(k) mk

↓.

By Lemma 143 we obtain that the step reads the same addresses

R↑(k) = R↓(k).

By Lemma 303 no processor has a hit for the inclusive device closure of the by-
passing reads

∀ j.SC j↑(k)→¬hit(idc(R↑(k).bpa),wbk
↑( j)).

and by Lemma 296 the machines agree on the value of those addresses

mk
↑ =idc(R↑(k).bpa) mk

↓,

and thus on the value of the bypassing reads

mk
↑ =R↑(k).bpa mk

↓.

By Lemma 301 we obtain that no other processor in strong memory mode has a hit
for the inclusive device closure of the buffered reads

∀ j 6= i.SC j↑(k)→¬hit(idc(R↑(k).wba),wbk
↑( j)),

and thus by definition that memory region is up-to-date

utdi(k, idc(R↑(k).wba)).

The proof now depends on the memory mode of processor i.

SCi↑(k): By Lemma 295 we obtain that the memory of the high-level machine agrees
with the perfect world forwarding in the low-level machine on the inclusive de-
vice closure of the buffered reads

mk
↑ =idc(R↑(k).wba) p f msi↓(k),

and thus also on the buffered reads

mk
↑ =R↑(k).wba p f msi↓(k).

By Lemma 173 we obtain that the step is not buffering hits to the device closure
of the inputs

¬hit(dc(in↑(k)),wbk
↑(i)),
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which by Lemma 267 also holds for the low-level machine

¬hit(dc(in↑(k)),wbk
↓(i)).

We obtain by Lemma 56 that perfect world forwarding and forwarding agree on
the inputs in the low-level machine

p f msi↓(k) = mk
↓~wbk

↓(i)

=in↑(k) mk
↓}wbk

↓(i) L 56

= f msi↓(k),

and thus also on the buffered reads (which are a subset of the inputs)

p f msi↓(k) =R↑(k).wba f msi↓(k).

We conclude that memory of the high-level machine and forwarding of the low-
level machine step agree

mk
↑ =R↑(k).wba p f msi↓(k)

=R↑(k).wba f msi↓(k)

= f ms↓(k).

The step is in strong memory mode and thus not in low-level machine semantics
in the high-level machine

SC↑(k)∧¬LL↑(k),

and the claim follows

v↑(k) = mk
↑

∣∣∣
R↑(k)

= mk
↑

∣∣∣
R↑(k).bpa

∪mk
↑

∣∣∣
R↑(k).wba

= mk
↓

∣∣∣
R↑(k).bpa

∪ f ms↑(k)
∣∣
R↑(k).wba

= mk
↓

∣∣∣
R↓(k).bpa

∪ f ms↑(k)
∣∣
R↓(k).wba

= v↓(k).

¬SCi↑(k): With Lemma 295, we obtain that the memory of the machines agrees on the
buffered reads

mk
↑ =R↑(k).wba mk

↓.

They agree thus on the core registers, the fetched registers, the bypassing reads,
and the buffered reads

mk
↑ =C↑(k)∪F↑(k)∪R↑(k).bpa∪R↑(k).wba mk

↓,

which together are the inputs

mk
↑ =in↑(k) mk

↓.

292



The step is being made in weak memory mode and thus uses low-level machine
semantics

¬SC↑(k)∧LL↑(k)

and thus the machine semantics of the machines are the same

LL↓(k) = 1 = LL↑(k).

By Lemma 267 the machines use the same buffer

wbk
↓ = wbk

↑,

in particular for the unit making the step

wbk
↓ =u↓(k) wbk

↑,

and thus by Lemma 90 the buffers of the low-level machine subsume those of
the high-level machine

bu f S↓(s(k),ck
↓,c

k
↑).

The claim is now Lemma 182.

The crucial result that semi-ordered schedules are abstract follows.

Lemma 305.
Γ

k−1
↓ (s)∧∆

k−2
IPI↓∧ s ∈ ORD−k → s ∈ ABSk

Proof. By induction on k. The base case is trivial. For k→ k+1, assume a k+1-semi-
ordered schedule

s ∈ ORD−k+1

that is valid until k and IPI-valid until k−1

Γ
k
↓(s)∧∆

k−1
IPI↓.

Clearly it is also valid until k−1, IPI-valid until k−2, and k-semi-ordered and by
the inductive hypothesis it is abstract until k

s ∈ ABSk.

We have to show s is also k+1-abstract

s
!
∈ ABSk+1,

for which it clearly suffices to show that the low-level machine simulates the high-level
machine during step k

ck
↓

!
=

s(k)

↓,↑ ck
↑.

The proof distinguishes between processor and write buffer steps.

s(k) ∈ ΣP,i: We unfold the definition of our claim and obtain three subclaims.

mk
↓ =C↓(k)∪F↓(k) mk

↑: This is just Lemma 298.
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v↓(k) = v↑(k): This is just Lemma 304.

∆↓(k) = ∆↑(k): With Lemma 143 and what we have shown above we obtain that
the configurations have the same core and fetch the same values

core↓(k) = core↑(k), f etch↓(k) = f etch↑(k).

By Lemma 267 the processors are in local simulation, and thus the write
buffers are the same

wbk
↓ = wbk

↑.

The claim follows

∆↓(k) = ∆P(core↓(k), f etch↓(k),wbk
↓(i),s(k))

= ∆P(core↑(k), f etch↑(k),wbk
↑(i),s(k))

= ∆↑(k).

s(k) ∈ ΣWB,i: We unfold the definition of our claim and obtain two subclaims.

mk
↓ =C↓(k) mk

↑: Follows directly from Lemma 298.

hd(wbk
↓(i)) = hd(wbk

↑(i)): Follows directly with Lemma 267.

4.12 Constructing an Ordered Schedule
In order to show that all schedules are equivalent to a reduced schedule, by Lemma 305
it suffices to show that every schedule can be reordered into an equivalent ordered
schedule. We define a recursive reordering strategy. At each iteration, we start out with
a t-ordered schedule and choose a candidate step kt ≥ t. We move that step to position
t, keeping steps [0 : t) as they are. As a consequence, we obtain a growing prefix which
is ordered. We later show that all steps of the original schedule eventually become part
of the prefix. The idea is to unroll the schedule in the order of global steps. In order to
obtain ordering, we may not allow a write to enter the buffer unless we can be sure that
the next global step is the one committing the write to memory.

Our reordering only works if all buffered writes are eventually committed. Other-
wise, in an infinite schedule with an infinite number of global steps, a buffered write
might be pushed infinitely far away. To formalize this, we count after each proces-
sor step the number of buffered writes of that processor using the following recursive
function #BWi[s] : P, i(s)→ N

#BWi[s](0) = 0,

#BWi[s](n+1) = #BWi[s](n)+

{
1 BW↓[s](#P, i≈ n(s)) 6= /0
0 o.w.

The number of writes buffered by each processor i after n steps of that processor is
preserved by equivalence.

Lemma 306.
s≡↓ r→ #BWi[s](n) = #BWi[r](n).
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Proof. Note first that due to equivalence, the number of processor steps of i is the same

P, i(s) = P, i(r)

and thus the domains of the functions are the same.
The proof now is by induction on n ∈ P, i(s). The base case is trivial.
In the step n→ n+1, we obtain by equivalence that the configurations during which

processor i makes its n-th step strongly agree

c↓[s]#P,i≈n(s) =
s(#P,i≈n(s))
↓ c↓[r]#P,i≈n(r)

and the configurations are stepped with the same oracle input

s(#P, i≈ n(s)) = r(#P, i≈ n(r)).

We conclude with Lemma 144 that the steps agree on whether they buffered a write

BW↓[s](#P, i≈ n(s)) = BW↓(c↓[s]#P,i≈n(s),s(#P, i≈ n(s)))

= BW↓(c↓[r]#P,i≈n(r),s(#P, i≈ n(s))) L 144

= BW↓(c↓[r]#P,i≈n(r),r(#P, i≈ n(r)))

= BW↓[r](#P, i≈ n(r)).

The claim now follows with the induction hypothesis

#BWi[s](n+1) = #BWi[s](n)+

{
1 BW↓[s](#P, i≈ n(s))
0 o.w.

= #BWi[r](n)+

{
1 BW↓[r](#P, i≈ n(r))
0 o.w.

= #BWi[r](n+1).

We say that a schedule is balanced when the set of reached numbers of buffered
writes is equal to the set of reached number of write buffer steps

s ∈ bal ⇐⇒ ∀i.{#BWi[s](n) | n ∈ P, i(s)}=WB, i(s).

We show that balance is preserved by equivalence.

Lemma 307.
s≡↓ r∧ s ∈ bal→ r ∈ bal.

Proof. Since the schedules are equivalent, processors and write buffers reach the same
number of steps

P, i(s) = P, i(r)∧WB, i(s) =WB, i(r).

By Lemma 306 the number of buffered writes at each n are the same

∀n ∈ P, i(s).#BWi[s](n) = #BWi[r](n).
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By assumption, schedule s is balanced and thus the set of reached numbers of
buffered writes is equal to the number of write buffer steps

{#BWi[s](n) | n ∈ P, i(s)}=WB, i(s),

and we immediately obtain the same for r

{#BWi[r](n) | n ∈ P, i(r)}=WB, i(r)

and the claim follows.

Clearly, in a valid schedule, at each point in time t the number of buffered writes is
at least the number of write buffer steps. In fact, the difference is exactly equal to the
number of outstanding write buffer entries.

Lemma 308.

(∀t ′.Γ↓(t ′))→ #BWi(#P, i(t)) = #WB, i(t)+ |wbt
↓(i)|

Proof. By induction on t. The base case is trivial.
In the inductive step t → t +1, we distinguish between the operator applied to the

buffer of unit i.

Opi↓(t) = push: In this case step t is made by the processor of unit i and is buffering
a write

s(t) ∈ ΣP,i∧BW↓(t).

Thus the number of processor steps has increased

#P, i(t +1) = #P, i(s[0 : t])

= #P, i(s[0 : t−1])+#P, i(s(t))

= #P, i(t)+1,

and step t is the is the step where the processor makes its #P, i(t)-th step

#P, i≈ (#P, i(t))(s) = t.

Thus the number of buffered writes has increased

#BWi(#P, i(t +1)) = #BWi(#P, i(t)+1)

= #BWi(#P, i(t))+

{
1 BW↓(#P, i≈ (#P, i(t))(s)) 6= /0
0 o.w.

= #BWi(#P, i(t))+

{
1 BW↓(t) 6= /0
0 o.w.

= #BWi(#P, i(t))+1.

The number of write buffer steps has clearly not increased

#WB, i(t +1) = #WB, i(s[0 : t])

= #WB, i(s[0 : t−1])+#WB, i(s(t))

= #WB, i(t)+0,
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but the length of the write buffer has

|wbt+1
↓ (i)|= |wbt

↓(i)◦BW↓(t)|
= |wbt

↓(i)|+1.

The claim follows with the induction hypothesis

#BWi(#P, i(t +1)) = #BWi(#P, i(t))+1
= (#WB, i(t)+ |wbt

↓(i)|)+1

= #WB, i(t)+0+ |wbt
↓(i)|+1

= #WB, i(t +1)+ |wbt+1
↓ (i)|.

Opi↓(t) = pop: In this case the step is a write buffer step

s(t) ∈ ΣWB,i.

Thus the number of processor steps has not changed

#P, i(t +1) = #P, i(s[0 : t])

= #P, i(s[0 : t−1])+#P, i(s(t))

= #P, i(t)+0,

but the number of write buffer steps has increased

#WB, i(t +1) = #WB, i(s[0 : t])

= #WB, i(s[0 : t−1])+#WB, i(s(t))

= #WB, i(t)+1.

Since the schedule is valid, the drain condition holds

∆↓(t),

and thus the write buffer is non-empty

wbt
↓(i) 6= ε.

Its length is thus decreased by one

|wbt+1
↓ (i)|= |tl(wbt

↓(i))|
= |wbt

↓(i)|−1.

The claim follows with the induction hypothesis

#BWi(#P, i(t +1)) = #BWi(#P, i(t)+0)
= #BWi(#P, i(t))

= #WB, i(t)+ |wbt
↓(i)|

= (#WB, i(t)+1)+(|wbt
↓(i)|−1)

= #WB, i(t +1)+ |wbt+1
↓ (i)|.
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Opi↓(t) = noop: Step t is clearly not a write buffer step

s(t) 6∈ ΣWB,i.

Neither the number of write buffer steps

#WB, i(t +1) = #WB, i(s[0 : t])

= #WB, i(s[0 : t−1])+#WB, i(s(t))

= #WB, i(t)+0,

nor the length of the buffer have changed

|wbt+1
↓ (i)|= |wbt

↓(i)|.

Thus the term on the right-hand side is unchanged

#WB, i(t)+ |wbt
↓(i)|= #WB, i(t +1)+ |wbt+1

↓ (i)|.

We distinguish whether step t was a processor step or not.

s(t) ∈ ΣP,i: The number of processor steps has increased

#P, i(t +1) = #P, i(s[0 : t])

= #P, i(s[0 : t−1])+#P, i(s(t))

= #P, i(t)+1,

and step t is the is the step where the processor makes its #P, i(t)-th step

#P, i≈ (#P, i(t))(s) = t.

However, since the operation is not a push, no write was buffered

BW↓(t) = /0

and thus the number of buffered writes has not increased

#BWi(#P, i(t +1)) = #BWi(#P, i(t)+1)

= #BWi(#P, i(t))+

{
1 BW↓(#P, i≈ (#P, i(t))(s)) 6= /0
0 o.w.

= #BWi(#P, i(t))+

{
1 BW↓(t) 6= /0
0 o.w.

= #BWi(#P, i(t))+0.

The claim follows with the induction hypothesis

#BWi(#P, i(t +1)) = #BWi(#P, i(t))

= #WB, i(t)+ |wbt
↓(i)|

= #WB, i(t +1)+ |wbt+1
↓ (i)|.
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s(t) 6∈ ΣP,i: In this case the number of processor steps has also not increased

#P, i(t +1) = #P, i(s[0 : t])

= #P, i(s[0 : t−1])+#P, i(s(t))

= #P, i(t)+0,

and the claim follows with the induction hypothesis

#BWi(#P, i(t +1)) = #BWi(#P, i(t))

= #WB, i(t)+ |wbt
↓(i)|

= #WB, i(t +1)+ |wbt+1
↓ (i)|.

Lemma 309. In a balanced, valid schedule,

s ∈ bal∧∀t ′.Γ↓(t ′)

a non-empty buffer will eventually make a step

wbt+1
↓ (i) 6= ε →∃g > t.s(g) ∈ ΣWB,i.

Proof. The length of the write buffer is greater than zero

|wbt+1
↓ (i)|> 0

and by Lemma 308 the number of buffered writes is thus larger than the number of
write buffer steps

#BWi(#P, i(t +1)) = #WB, i(t +1)+ |wbt+1
↓ (i)|> #WB, i(t +1).

Since the schedule is balanced, the number of buffered writes is eventually matched

#BWi(#P, i(t +1)) ∈WB, i(s),

and thus there is a step k where the number of write buffer steps is equal to the number
of buffered writes and thus larger than it is right now

#WB, i(k) = #BWi(#P, i(t +1))> #WB, i(t +1).

We obtain that the number of write buffer steps until t plus the number of write
buffer steps between t+1 and k−1 is larger than the number of write buffer steps until
t

#WB, i(s[0 : t])+#WB, i(s[t +1 : k−1]) = #WB, i(s[0 : k−1])
= #WB, i(k)

> #WB, i(t)

= #WB, i(s[0 : t]),

and we conclude that there are additional write buffer steps between t +1 and k

#WB, i(s[t +1 : k−1])> 0.

The claim follows
∃g ∈ [t +1 : k−1].s(t) ∈ ΣWB,i.
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Lemma 310. In a balanced, valid schedule,

s ∈ bal∧∀t ′.Γ↓(t ′)

each buffered write has its write buffer step

s(t) ∈ ΣP,i∧BW↓(t) 6= /0→∃g > t.s(g) ∈ ΣWB,i.

Proof. By definition, step t is buffering a write

Opi↓(t) = push.

Thus the length of the write buffer at t +1 is greater than zero

|wbt+1
↓ (i)|= |wbt

↓(i)◦BW↓(t)|= |wbt
↓(i)|+1 > 0.

The claim is now Lemma 309.

Thus each global step and each processor step that buffers a write has a global step
made by the same unit.

Lemma 311. In a balanced, valid schedule,

s ∈ bal∧∀t ′.Γ↓(t ′)

each buffered write and global step are eventually followed by a global step of the same
unit

G↓(t)∨BW↓(t) 6= /0→∃g≥ t.u↓(g) = u↓(t)∧G↓(g).

Proof. We distinguish whether step t is global or buffering a write.

G↓(t): Then g := t solves the claim immediately.

BW↓(t) 6= /0: Then the prepared buffered write is not empty

PW↓(t).wba = BW↓(t) 6= /0

and thus by definition made by a processor

s(t) ∈ ΣP,i.

We obtain from Lemma 310 that there is g > t made by the write buffer of unit
i. We choose g := g and the first of part of the claim follows

u↓(g) = i = u↓(t),

and the second part is Lemma 136.

Lemma 312. In a balanced, valid schedule,

s ∈ bal∧∀t ′.Γ↓(t ′)

a non-empty sequence of issued writes will eventually make a step, and will only have
grown until then

t ′ ∈ issuet+1
↓ (i)→∃g > t,q.s(g) ∈ ΣWB,i∧ issueg

↓(i) = issuet
↓(i)◦q.
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Proof. By Lemma 123 the corresponding buffered write is in the buffer

BW↓(t ′) ∈ wbt+1
↓ (i),

which is thus non-empty
wbt+1
↓ (i) 6= ε.

By Lemma 309, there are write buffer steps of unit i after t

∃g > t.s(g) ∈ ΣWB,i,

and we choose the first such step

g := min{g > t | s(g) ∈ ΣWB,i } .

Clearly there are no write buffer steps between t and g

@t ′ ∈ [t : g).s(t ′) ∈ ΣWB,i.

By Lemma 128, the tail of the sequence of issued writes has grown by some suffix
q

issueg
↓(i) = issuet

↓(i)◦q,

which is the claim.

Thus, when unrolling the schedule in the order of global steps, we only have to
worry that other steps might be pushed into infinity. Those steps are clearly local and
thus not shared reads, and since the buffer is empty, the buffer is not dirty. We call
these steps pushable, and give the formal simple definition

p↓(t)≡ L↓(t)∧wbt
↓(u↓(t)) = ε ∧BW↓(t) = /0.

A non-pushable step is either global or leaves the buffer non-empty.

Lemma 313.
¬p↓(t)→ G↓(t)∨wbt+1

↓ (u↓(t)) 6= ε.

Proof. Assume that the step is not global, i.e., local

L↓(t).

By Lemma 136, the step is a processor step of i = u↓(t)

s(t) ∈ ΣP,i.

Thus the operation executed by step t is not a pop

Opi↓(t) 6= pop.

By definition of p, step t buffers a write or the write buffer is non-empty before the
step

BW↓(t) 6= /0∨wbt
↓(i) 6= ε.

We distinguish between these two cases.
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BW↓(t) 6= /0: In this case the operation is a push and the claim follows

wbt+1
↓ (i) = wbt

↓(i)◦BW↓(t) 6= ε.

wbt
↓(i) 6= ε: By Lemma 42 the write buffer at t is a prefix of the write buffer at t + 1,

which thus must also be non-empty

wbt+1
↓ (i) = wbt

↓(i)◦q 6= ε.

That is the claim.

Lemma 314. In a balanced, valid schedule,

s ∈ bal∧∀t ′.Γ↓(t ′)

non-pushable steps are eventually followed by a global step

¬p↓(t)→∃g≥ t.G↓(g).

Proof. By Lemma 313, the step is either global or has a non-empty write buffer

G↓(t)∨wbt+1
↓ (u↓(t)) 6= ε.

By Lemma 309 in the latter case there is a write buffer step after t

G↓(t)∨∃g > t.s(g) ∈ ΣWB,i.

By contraposition of Lemma 136, write buffer steps are global thus the step g must be
global

G↓(t)∨∃g > t.G↓(g)

and the claim follows.

Lemma 315. In a balanced, valid schedule,

s ∈ bal∧∀t ′.Γ↓(t ′)

there is always a pushable or a global step

∃g≥ t.G↓(g)∨ p↓(g).

Proof. By case distinction on whether step t is pushable.

p↓(t): The claim follows with g := t.

¬p↓(t): The claim follows by Lemma 314.
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We now recursively construct a sequence Ot of reorderings.
We begin with the original schedule

O0 = ε.

For t→ t+1, we consider the next global or pushable step

gt = min
{

g≥ t
∣∣ G↓Ot(g)∨ p↓Ot(g)

}
.

We wish to move that step to the front, but that is not always possible. We must
never reorder an interrupt delivery step with steps of its victims, or the step that com-
mits a write with the step that issued it. Therefore, if the next global step is made by
one of those units, we have to find all steps that must not be reordered with the next
global step (or each other). If such steps exist, we pick the first of these steps and move
it to the front. If no such steps exist, we can simply take the next global step and move
it directly.

Formally, we distinguish between write buffer steps in strong memory mode and
other steps.

SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i: Since we know that write buffer steps in strong memory
mode do not interrupt other steps, we only need to make sure that the order
with fences and with the step that issued the write is unchanged. Since the steps
between the step that issued the write and step gt (when the write is committed)
can not possibly be fences, we only need to consider processor steps before that
step. (cf Fig. 4.12)

sOt

t

P P. . .
kt

P P. . .

X1 X2

X1 X2sOt+1

P P. . . X2sOt+2

X3 X4 X5

X1 X3 X4 X5

X3 X4 X5

kt+1t +1

t +2

P P WB. . . X2sOt+3 X1 X3 X4

. . .
gt

WB

. . .WB

. . .WB

gt+1

kt+2
=gt+2

. . .X5

X6P

X6P

X6P

X6P

issuedsame P

Figure 4.12: Reordering strategy in case step gt is a write buffer step.
Steps of the processor of the same unit are marked with P, steps of
objects of other units with Xi. We move the step that issued the write to
the front. This forces us to first move all steps by the same processor
to the front. Steps of the same processor between the step that issued
the write and the write buffer step are ignored.

kt = min
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
.
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¬(SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i): In this case we simply select the first step that is not
unit-concurrent with the next global step6 (cf. Fig. 4.13)

sOt

t

P,j. . .
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P,j. . .

X1 X2

X1 X2sOt+1

P,i. . .sOt+2 X1

t +1

t +2

sOt+3

. . .
gt

P,j P,i

. . .P,j P,i

. . .P,iX2

X3 X4 X5

X3 X4 X5

X3 X4 X5

gt+1kt+1

kt+2
=gt+2

P,i

P,i

P,i. . . X1

P,i. . .sOt+4

. . .P,iX2 X3 X4 X5

. . .X2X1 X3 X4 X5P,i

P,j

P,j P,j

P,j P,j

P,j

Figure 4.13: Reordering strategy in case step gt made by processor i
interrupts processor j. We first move all steps of the same processor
(gray arrows) and steps that are interrupted by the step (black arrows)
to the front.

kt = min
{

k ≥ t
∣∣ ¬ucon↓Ot(gt ,k)

}
.

We define
Ot+1 = Ot [t← kt ].

Note that the above is only a definition when the schedule in iteration t is balanced
and valid. We will only use gt and kt for such schedules.

We will now show that this reordering does indeed a) not destroy equivalence and
b) creates an ordered schedule. In the process of proving this, we need to show that
moving each kt to position t is fine, under the induction hypothesis that the schedule
is already t-ordered. Intuitively speaking, the following observations should help us to
do this:

• Since gt is the next global step and kt is by definition not later than gt , all the
intermediate steps t ′ ∈ [t : kt) are local.

• Since all those local steps are also ordered, the schedule is kt -ordered (not just
t-ordered) and thus also kt -abstract (by Lemma 305).

• Step kt is only global if it is a write buffer step of a processor in strong memory
mode (the first case in the definition above), or if it is unit-concurrent with all
steps t ′ ∈ [t : kt).

6It suffices here to consider one direction of unit-concurrency, because interrupts are shared and thus
none of the steps in the interval interrupt other steps.
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Intuitively speaking, it should be easy to reorder a sequence of local steps with
a global step, since races by assumption are shared, and shared steps are usually not
local; therefore, there should not be any races between the sequence of local steps and
the global step. This intuition turns out to be not quite correct, since local steps in the
low-level machine may be global in the high-level machine, namely if they are made
by a processor in strong memory mode which issues a write: in the low-level machine,
the write goes to the buffer and is not executed, and thus the step is by definition local;
in the high-level machine, the write is executed immediately, and thus the step is by
definition global.

The proof is therefore more careful, and proceeds in three steps.

1. We move step kt to position t. Because all intermediate steps are local in the
low-level machine, they either have no effect in the low-level machine, or are not
write-read racing with step kt . Therefore in the low-level machine, step kt can be
executed at position t. This could still mess up all of the intermediate steps, in
case step kt modifies something other steps did not read.

2. To show that each intermediate step l′ ∈ [t : kt) is not messed up after having
moved kt to t, and only for that reason, we temporarily push kt (which is now at
position t) as far back towards l′ as possible in the high-level machine. If there
are no races, it is possible to move to l′, but in general we can only move until
the first race, which occurs at some k′

RW↑[t← kt ][t→ k′](k′,k′+1).

As mentioned above, such a race is only possible if step k′+1 (formerly k′) is a
processor step in strong memory mode that issues a write

s[t← kt ][t→ k′](k′+1) ∈ ΣP,i

∧SC↑[t← kt ][t→ k′](k′+1)
∧BW↑[t← kt ][t→ k′](k′+1) 6= /0.

Since local steps are not write buffer steps, that write is still buffered at l′+ 1
(formerly l′)

k′+1 ∈ issuel′
↑ (i)

and the memory mode of the unit is unchanged

SCi↑[t← kt ][t→ k′](l′+1) = SC↑[t← kt ][t→ k′](k′+1).

At this point we wish to apply Condition RMWRace to show that there is no
visible write-read race between k′ (formerly kt ) and l′+1 (formerly l′). At first,
this only works if all of the steps t ′ between k′+ 1 and l′+ 1 are made by the
same object.

3. To repeat the argument on schedules where the steps are not made by the same
object, we simply sort the interval [t : kt) of local steps according to some strict
weak order ≺ on objects, where that object P, i is the least object. To do this
we show that two local steps in an abstract schedule never race with each other
nor send interrupts, and thus can be reordered (unless they are made by the same
object). As a result, all steps of that object are moved to the front, and with the
previous argument we obtain that there are no such visible write-read races in
this schedule. Using a slightly technical argument we obtain that the original,
unsorted schedule also has no visible write-read races.
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4. We conclude that no intermediate steps are messed up by the reordering, and
thus the schedule sOt+1 after reordering kt to position t is equivalent to schedule
sOt before the reordering.

We begin by showing in Section 4.12.1 that the interval of local steps can indeed
be sorted in this way. Such a sorting results in a schedule where all steps at the be-
ginning of the interval are made by the same object, which we therefore call sorted.
We then show that these sorted schedules have no such visible write-read races in Sec-
tion 4.12.2. We then show how to transfer these results to schedules which are not
sorted in Section 4.12.3. We combine the results in Section 4.12.5.

4.12.1 Sorting a Local Segment
We turn to schedules where a sequence of steps is local. This case arises naturally in
our construction of ordered schedules, where we look for the next global steps: all steps
until that step are by definition local. At certain points, we need to sort these schedules
in order to be able to apply Condition RMWRace, which requires that certain steps are
made by the same unit. In this section we show that this is indeed possible.

A local step in an abstract schedule is unit-concurrent with steps made by other
units.

Lemma 316.

Γ
t
∗(s)∧L↓(t)∧ s ∈ ABSt+1∧di f f u(t, t ′)→ ucon↑(t, t ′).

Proof. Steps are unit-concurrent if they are made by different units and do not interrupt
each other

ucon↑(t, t ′)≡ di f f u(t, t ′)∧¬int↑(t, t ′).

Since the units are different by assumption, it suffices to show that there is no interrupt.
Assume now for the sake of contradiction that step t interrupts step t ′

int↑(t, t ′).

By definition, this means that the unit making step t ′ is a victim of step t

u↑(t ′) ∈ victims↑(t).

By Lemma 270 we obtain that this is also the case in the low-level machine

u↑(t ′) ∈ victims↓(t).

This contradicts Lemma 134.

If the second step is a reduced local step, there is no race at all.

Lemma 317. Two adjacent local reduced valid steps by different units

Γ
t+1
∗ (s)∧L↓(t)∧L↓(t +1)∧ s ∈ ABSt+2∧di f f u(t, t +1)

do not race
¬WR↓(t, t +1)∧¬RW↓(t, t +1)∧¬WW↓(t, t +1).
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Proof. The steps are unit-concurrent in both directions due to Lemma 316

ucon↑(t, t +1)∧ucon↑(t +1, t).

Since the steps are local, they are not shared reads in the low-level machine

¬ShR↓(t)∧¬ShR↓(t +1),

and by Lemma 269 also not in the high-level machine

¬ShR↑(t)∧¬ShR↑(t +1).

By contraposition of Lemma 205 we obtain that there is no write-read race

¬WR↑(t, t +1)

and by contraposition of Lemma 210 that there is no read-write race

¬RW↑(t, t +1).

Assume now for the sake of contradiction that there is a race in the low-level ma-
chine

WR↓(t, t +1)∨RW↓(t, t +1)∨WW↓(t, t +1).

By Lemma 136 neither of the steps is a write buffer step

s(t),s(t +1) 6∈ ΣWB,i

and by Lemma 265 the outputs of the low-level machine are subsumed by those in the
high-level machine

out↓(t)⊆ out↑(t), out↓(t +1)⊆ out↑(t +1).

By Lemma 270 the inputs of the low-level machine are the inputs in the high-level
machine

in↓(t) = in↑(t), in↓(t +1) = in↑(t +1).

We obtain that there is no write-read or read-write race in the low-level machine,
either

WR↓(t, t +1)∨RW↓(t, t +1)
⇐⇒ out↓(t) ∩̇ in↓(t +1)∨ in↓(t) ∩̇out↓(t +1)
=⇒ out↑(t) ∩̇ in↑(t +1)∨ in↑(t) ∩̇out↑(t +1)
⇐⇒ WR↑(t, t +1)∨RW↑(t, t +1)
⇐⇒ 0,

leaving only a write-write race
WW↓(t, t +1).

We can similarly lift this race to the high-level machine

WW↓(t, t +1) ⇐⇒ out↓(t) ∩̇out↓(t +1)
=⇒ out↑(t) ∩̇out↑(t +1)
⇐⇒ WW↑(t, t +1).
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By Lemma 205, step t must be shared

Sh↑(t).

By Lemma 159, step t must be a memory write

mwrite↓(t)

and since it is local, it can not be shared

¬Sh↓(t).

By Lemma 269, that is also true in the high-level machine

¬Sh↑(t),

which is a contradiction.

Consequently, local steps of different units can be reordered arbitrarily.

Lemma 318. Two adjacent local reduced valid steps by different units

Γ
t+1
↓ (s)∧L↓(t)∧L↓(t +1)∧ s ∈ ABSt+2∧di f f u(t, t +1)

can be reordered
s≡↓ s[t↔ t +1].

Proof. By Lemma 317 there is no race

¬WR↓(t, t +1)∧¬RW↓(t, t +1)∧¬WW↓(t, t +1).

The claim follows with Lemma 167.

This simple lemma allows us to take out the big guns and sort the local steps in
the interval [t : k) without destroying equivalence. In order for this sorting to be fully
useful, we also need to maintain a few other key properties which are not generally
stable under equivalence, such as IPI-validity7.

Lemma 319. Let ≺ be a total order over units. Then if in a k-ordered schedule that is
valid and IPI-valid until k−1

Γ
k−1
↓ (s)∧∆

k−1
IPI↓(s)∧ s ∈ ORDk

steps [t : k) are local
∀t ′ ∈ [t : k).L↓(t ′),

those local steps can be arranged by a sequence of operations ≺(t,k) such that

1. The schedule and the rearranged schedule are equivalent

s≺(t,k)≡↓ s,

7To see that IPI validity is not stable under equivalence, we change the order of the last write buffer step
of a unit and a step that interrupts that unit. The schedules may well be equivalent but certainly are no longer
IPI valid, as the write buffer is no longer empty during the interrupt.
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2. Only those local steps are reordered

s≺(t,k)[0 : t−1] = s[0 : t−1]∧ s≺(t,k)[k : ∞] = s[k : ∞]

3. The local steps are only reordered among each other

#X≈n(s) ∈ [t : k) ⇐⇒ #X≈n(s≺(t,k)) ∈ [t : k),

4. The local steps remain local

∀t ′ ∈ [t : k).L↓ ≺(t,k)(t ′),

5. The schedule remains valid and ordered

Γ
k−1
↓ (s≺(t,k))∧∆

k−1
IPI↓(s≺(t,k))∧ s≺(t,k) ∈ ORDk.

6. After the reordered portion, the configurations are the same

ck
↓ = c↓ ≺(t,k)k.

7. The local steps are now sorted by ≺, i.e., for t ′ ∈ [t : k)

u(s≺(t,k)(t ′))≺ u(s≺(t,k)(t ′+1))∨ t ′+1 = k,

Proof. We simply sort the slice s[t : k− 1] with bubblesort [Knu98]. Bubblesort only
uses swaps of adjacent values. We define

≺(t,k)

to be the sequence of swaps performed by bubblesort. Claim 7 (that the resulting
schedule is sorted) is satisfied by the correctness of bubblesort.

We prove the remaining claims by induction on the sequence of swaps in ≺ (t,k).
The base case is trivial. In the inductive step O→ O[t ′↔ t ′+1], we show the claims
individually. Note that we never swap steps of the same unit

di f f u(t ′, t ′+1)

and that we never swap steps outside of the reordered portion

t ′, t ′+1 ∈ [t : k).

Let for the sake of brevity O′ be the schedule after the additional swap

O′ = O[t ′↔ t ′+1].

sO′ ≡↓ s: By the induction hypothesis, the sequence O preserved equivalence

sO≡↓ s.

By the induction hypothesis, we also obtain that the schedule is valid and ordered

Γ
k−1
↓ (sO)∧∆

k−1
IPI↓(sO)∧ sO ∈ ORDk,
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and by Lemma 305 thus abstract

sO ∈ ABSk.

By the induction hypothesis, we also obtain that the steps are still local

∀t ′ ∈ [t : k).L↓O(t ′)

By Lemma 318 we can swap the steps

sO≡↓ sO′

and the claim follows by transitivity

sO′ ≡↓ s.

sO′[0 : t−1] = s[0 : t−1]∧ sO′[k : ∞] = s[k : ∞]: By the induction hypothesis the sched-
ule sO is the same as s on those portions

sO[0 : t−1] = s[0 : t−1]∧ sO[k : ∞] = s[k : ∞]

The swap by definition only affects steps within the interval

sO′[0 : t−1] = sO[0 : t−1]∧ sO′[k : ∞] = sO[k : ∞]

and the claim follows.

#X≈n(s) ∈ [t : k) ⇐⇒ #X≈n(sO′) ∈ [t : k): When we swap two adjacent steps, we
obtain by Lemma 117 that the position of those steps is swapped and the position
of other steps is not moved. Therefore the position of steps stays within the
interval in which the swaps are made.

∀tS ∈ [t : k).L↓O′(t ′): Clearly tS is the n-th step of some unit X

tS = #X≈n(sO′).

We have already shown that we reorder the local steps only among themselves.
Therefore the original position tO of the step was also in that interval

tO = #X≈n(s) ∈ [t : k).

Steps in that interval were by assumption local

L↓(tO).

Because the schedules are equivalent, the steps have strong agreement

c↓O′tS =
sO′(tS)
↓ ctO

↓

and execute the same step
sO′(tS) = s(tO).

The claim follows with Lemma 150:

L↓O′(tS) = ¬G↓O′(tS) = ¬G↓(tO) = L↓(tO) = 1.
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ck
↓ = c↓O′

k: By Lemma 317 there is no race

¬WR↓O(t ′, t ′+1)∧¬RW↓O(t ′, t ′+1)∧¬WW↓O(t ′, t ′+1).

By Lemma 166 the configurations after the swap are the same

c↓Ot ′+2 = c↓O′
t ′+2

.

By definition the schedules after the swap are the same

sO[t ′+2 : k−1] = sO[t ′↔ t ′+1][t ′+2 : k−1],

and therefore the configurations at k are the same

c↓Ok = c↓O′
k
.

The claim follows with the induction hypothesis

ck
↓ = c↓Ok = c↓O′

k
.

Γ
k−1
↓ (sO)∧∆

k−1
IPI↓(sO)∧ sO′ ∈ ORDk: We have already shown that the first portion of

the schedule is the same

sO′[0 : t−1] = s[0 : t−1]

and thus the independence of those steps can be taken from the original schedule

sO′ ∈ ORDt .

The remaining steps [t : k) are all local, and independence follows

sO′ ∈ ORDk.

For validity, we obtain similarly that the validities for the first t steps still hold
simply because the schedule is the same

Γ
t
↓(sO′)∧∆

t
IPI↓(‘sO).

For each remaining step tS ∈ [t : k) we first obtain that it was executed at step
tO ∈ [t : k)

tS = #X≈n(sO′), tO = #X≈n(s).

Step tO was thus valid by assumption

Γ↓(tO)∧∆IPI↓(tO).

With equivalence we obtain strong agreement

c↓O′
tS =

s(tS)
↓ ctO

↓ ,

and by Lemma 150 we obtain that the step satisfies the guard condition

Γ↓O′(tS) = Γ↓(tO) = 1.
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Note that the step is local and thus by Lemma 135 IPI-valid

∆IPI↓O′(tS).

The claims follow, i.e., for X ∈ {Γ,∆IPI }

Xk−1
↓ (sO′) = ∀k′ < k.X↓O′(k′)

= (∀k′ < t.X↓O′(k′))∧ (∀tS ∈ [t : k).X↓O′(tS))

= X t
↓(sO′)∧ (∀tS ∈ [t : k).X↓O′(tS))

= 1.

4.12.2 Transferring Races in a Sorted Schedule
In this subsection we show that certain races in the low-level machine imply races in the
high-level machine, which we can exclude with the conditions. The races are between
one local step and one step which is not a step of a write buffer in strong memory
mode; therefore, outputs of the steps can be easily transferred to the high-level with
Lemma 265, which covers write-read, write-write, and read-write races. For visible
write-read races we have to work a bit harder.

During the reordering, we will have to deal with three distinct types of situations:

1. We have to move a write buffer step in strong memory mode across a sequence
of local steps,

2. we have to move a global step across a sequence of local steps made by different
units,

3. we have to move a local step across a sequence of local steps made by different
units.

All three situations have a few properties in common, which we bundle together in one
definition. We say that schedule s has a local tail from t to k and write L[s](t,k) when
all of the following hold.

1. The schedule is t-ordered, valid until k, and IPI-valid until t−1

Γ
k
↓(s)∧∆

t−1
IPI↓(s)∧ s ∈ ORDt ,

2. and all steps from t and before k are local

∀t ′ ∈ [t : k).L↓[s](t ′).

Situations 1 and 2 are distinct because write buffer steps in strong memory mode
have no effect in the high-level machine, and we can not use lemmas about races to
deduce anything about them; but the write is already buffered, and we can use lemmas
from Section 4.11.1 to show that there are no races. Additional complications arise
from the fact that the steps in the local tail are not made by different units.

Situations 2 and 3 are distinct because local steps are always ordered, and thus plac-
ing a local step directly behind an ordered segment yields a longer ordered segment;
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if we move a global step, however, the longer segment is only ordered if the earlier
segment ended in a clean step.

We do our best to handle Situations 2 and 3 with the same Lemmas, by catching
both of them with the following definition. We say that schedule s has a local tail with
an independent end from t to k and write LI [s](t,k) when all of the following hold.

1. The schedule has a local tail from t to k

L[s](t,k),

2. the configuration at t is clean

clean↓[s](t),

3. step k is not a write buffer step in strong memory mode

@i.SC↓(k)∧ s(k) ∈ ΣWB,i,

4. and all steps from t and before k are unit-concurrent with k

∀t ′ ∈ [t : k).ucon↓[s](k, t ′).

Lemma 320. If the schedule has a local tail from t to k

L(t,k),

it is k-ordered
s ∈ ORDk.

Proof. The schedule is t-ordered
s ∈ ORDt .

Steps from t and before k are local

∀t ′ ∈ [t : k).L↓(t ′),

and thus ordered
∀t ′ ∈ [t : k).ord↓(t ′).

The claim follows
s ∈ ORDk.

Lemma 321. If the schedule has a local tail from t to k

L(t,k),

it is IPI-valid until k−1
∆

k−1
IPI↓(s).
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Proof. The schedule is IPI-valid until t−1

∆
t−1
IPI↓(s).

Steps from t and before k are local

∀t ′ ∈ [t : k).L↓(t ′),

and thus by Lemma 135 IPI-valid

∀t ′ ∈ [t : k).∆IPI↓(t ′).

The claim follows
∆

k−1
IPI↓(s).

Lemma 322. If the schedule has a local tail from t to k

L(t,k),

it is l-abstract for all l ≤ k
s ∈ ABSl .

Proof. Since it has a local tail, the schedule is valid until k

Γ
k
↓(s),

and by Lemmas 320 and 321 also k-ordered and IPI-valid until k−1

∆
k−1
IPI↓(s)∧ s ∈ ORDk.

By Lemma 305 the schedule is k-abstract

s ∈ ABSk

and thus also l-abstract
s ∈ ABSl .

Lemma 323. If the schedule has a local tail from t to k

L(t,k),

then the schedule is valid until k−1 in the high-level machine

Γ
k−1
↑ (s).

Proof. By Lemma 322 the schedule is abstract until k

s ∈ ABSk,

and since the schedule has a local tail it is valid in the low-level machine until k

Γ
k
↓(s)

and thus also until k−1
Γ

k−1
↓ (s).

The claim is Lemma 271
Γ

k−1
↑ (s).
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Lemma 324. Step t after moving k to t is made by a write buffer iff step k was

s[t← k](t) ∈ ΣWB,i ≡ s(k) ∈ ΣWB,i.

Proof. The oracle inputs are the same

s[t← k](t) = s(k)

and the claim follows.

Lemma 325. If the schedule has a local tail from t to k

L(t,k)

then the sequence of issued writes at l ∈ [t : k] is a prefix of the sequence at k

∃q.issuek
↓(i) = issuel

↓(i)◦q.

Proof. Since there is a local tail, the steps t ′ ∈ [t : k) are local

L↓(t ′),

and by contraposition of Lemma 136 not write buffer steps of unit i

s(t ′) 6∈ ΣWB,i.

The claim is now Lemma 128.

Lemma 326. If the schedule has a local tail from t to k

L(t,k)

and the sequence of issued writes at l ∈ [t : k] is non-empty

issuel
↓(i) 6= ε,

then the head of the write buffer at l is exactly the same as at k

hd(issuel
↓(i)) = hd(issuek

↓(i)).

Proof. By Lemma 325, step k has an additional sequence of writes q

issuek
↓(i) = issuel

↓(i)◦q,

and the claim is Lemma 40

hd(issuek
↓(i)) = hd(issuel

↓(i)).

Lemma 327. If the schedule has a local tail from t to k

L(t,k)

and step k is a write buffer step of unit i issued before t

s(k) ∈ ΣWB,i∧hd(issuek
↓(i))< t,

then the mode of unit i at l ∈ [t : k] is the same as at k

SCi↑(l) = SCi↑(k).
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Proof. By Lemma 323 the schedule is valid until k−1

Γ
k−1
↑ (s).

Let now t ′ be the step when the write committed at k was issued

t ′ = hd(issuek
↓(i)).

By Lemma 322 the schedule is k-abstract

s ∈ ABSk

and with Lemma 267 we obtain that the sequence of issued writes is the same in both
machines, and therefore t ′ is contained in both of them

t ′ ∈ issuek
↓(i) = issuek

↑(i).

By the monotonicity of the sequence of issued writes, the write was already buffered
at l

t ′ ∈ issuel
↑(i),

and by applying twice Lemma 168 the mode is unchanged in the high-level machine

SCi↑(l) = SCi↑(t ′) = SCi↑(k),

which was the claim.

Lemma 328. If the schedule has a local tail from t to k

L(t,k)

and step k is a write buffer step of unit i issued before t

s(k) ∈ ΣWB,i∧hd(issuek
↓(i))< t,

then the mode of unit i at t is the same as at k

SCi↓(t) = SCi↓(k).

Proof. By Lemma 327 we obtain the claim for the high-level machine

SCi↑(t) = SCi↑(k).

By Lemma 322 the schedule is t-abstract

s ∈ ABSt .

The claim follows by applying twice Lemma 268

SCi↓[t← k](t) = SCi↑[t← k](t) = SCi↑(k) = SCi↓(k).
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Lemma 329. Let O be some reordering that moves t ′′ < k to t ′ < k

sO(t ′) = s(t ′′).

If the schedule and its reordering sO have a local tail from t to k

L(t,k)∧LO(t,k),

we have strong agreement with the low-level machine iff we have strong agreement
with the high-level machine

c↑Ot ′ =
sO(t ′)
↑ ct ′′

↑ ⇐⇒ c↓Ot ′ =
sO(t ′)
↓ ct ′′

↓ .

Proof. By Lemma 322 the schedules are t ′′+1- resp. t ′+1-abstract

s ∈ ABSt ′′+1∧ sO ∈ ABSt ′+1,

and the claim is Lemma 260.

The outputs of local steps are always visible in the high-level machine.

Lemma 330.
Γ

t
∗(s)∧ s ∈ ABSt+1∧L↓(t)→ out↓(t)⊆ out↑(t).

Proof. By contraposition of Lemma 136, step t is not a write buffer step

s(t) 6∈ ΣWB,i

and therefore also not a sequentially consistent write buffer step

¬(SC↑(t)∧ s(t) ∈ ΣWB,i).

The claim is just Lemma 265.

If a local step is a shared write, it must be a processor step in strong memory mode
that is buffering a write.

Lemma 331. If in a t-valid, t+1-abstract schedule a local step executes a shared
memory write in the high-level machine

Γ
t
∗(s)∧ s ∈ ABSt+1∧L↓(t)∧Sh↑(t)∧mwrite↑(t),

the step is a processor step in strong memory mode that is buffering a write

∃i.s(t) ∈ ΣP,i∧SC↑(t)∧BW↑(t) 6= /0.

Proof. The witness i is simply the unit making the step

i := u↑(t).

By contraposition of Lemma 136, the step is not made by a write buffer

s(t) 6∈ ΣWB,i,

and is thus made by the processor of the unit making the step

s(t) ∈ ΣP,i,

317



which is the first part of the claim.
By Lemma 269, the step is also shared in the low-level machine

Sh↓(t)

and since it is local it is not a memory write

¬mwrite↓(t).

Thus the outputs of the step are a subset of the NPR in the low-level machine, but not
in the high-level machine

out↓(t)⊆ ANPR,i ∧ out↑(t) 6⊆ ANPR,i,

and we conclude the outputs are not the same

out↓(t) 6= out↑(t).

By contraposition of Lemma 264, the step must have been in sequentially consistent
mode

SC↓(t),

which is the second part of the claim.
We further conclude with Lemma 270 that the domain of the prepared writes of the

high-level machine are a subset of the NPR

Dom(PW↑(t).bpa) = Dom(PW↓(t).bpa) L 270
⊆ Dom(W↓(t))

⊆ idc(Dom(W↓(t)))

= out↓(t)

⊆ ANPR,i.

With Lemma 177 the third part of the claim follows

BW↑(t) 6= /0.

Lemma 332. If in an ordered, semi-valid schedule

ΓΦ
k
↓(s)∧ s ∈ ORDk

step k−1 is a local step not made by step k

L↓(k−1)∧di f f u(k−1,k),

then step k−1 does not modify the code of step k in the low-level machine

¬CM↓(k−1,k).

Proof. Assume for the sake of contradiction that there is a code modification

CM↓(k−1,k)
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and thus a write-read race
WR↓(k−1,k).

By Lemma 159, step k−1 is a memory write

mwrite↓(k−1)

and because it is local it can not be shared

¬Sh↓(k−1).

By Lemma 305 the schedule is k-abstract

s ∈ ABSk.

We apply Lemma 269 and obtain that step k− 1 is also not shared in the high-level
machine

¬Sh↑(k−1).

By Lemma 316, steps k−1 and k are unit-concurrent

ucon↑(k−1,k),

and by contraposition of Condition CodeMod, there is no code modification in the
high-level machine

¬CM↑(k−1,k).

By Lemma 269, step k fetches the same addresses in the low-level machine

F↓(k) = F↑(k),

and by Lemma 330 step k−1 does not have fewer outputs in the high-level machine

out↓(k)⊆ out↑(k).

We conclude that there is also no code modification in the low-level machine

¬CM↑(k−1,k) ⇐⇒ out↑(k−1) 6 ∩̇ F↑(k)

=⇒ out↓(k−1) 6 ∩̇ F↓(k)

=⇒ ¬CM↓(k−1,k),

which is a contradiction.

Lemma 333. If the schedule has a local tail with an independent end from t to k

LI(t,k),

then each t ′ ∈ [t : k] is made by a different unit than k

di f f u(k, t ′).

Proof. Since the schedule has a local tail with an independent end, step k is unit-
concurrent with all of those steps

ucon↓(k, t ′)

and thus by definition made by a different unit

di f f u(k, t ′)

which is the claim.
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We now begin showing that step k in the low-level machine can be moved to t
without messing up step k. We begin by showing that nothing changes except maybe
for the read-results.

Lemma 334. If the schedule has a local tail with an independent end from t to k

LI(t,k),

we can move step k to position t without affecting its write buffers, core registers,
fetched registers, and IPI-relevant registers

wb↓[t← k]t =u↓(k) wbk
↓∧m↓[t← k]t =C↓(k)∪F↓(k)∪AIPI(s(k)) mk

↓.

Proof. The configuration at t when moving k to t is the same as in the original schedule

c↓[t← k]t = ct
↓.

We use this and generalize the claim to t ′ ∈ [t : k]

wbt ′
↓ =u↓(k) wbk

↓
!
∧mt ′

↓ =C↓(k)∪F↓(k)∪AIPI(s(k)) mk
↓.

We prove the claim by downwards induction on t ′, starting from k. The base case
is trivial.

In the inductive step from t ′ to t ′−1, we have by the induction hypothesis we now
obtain that we can move step k to position t ′

wbt ′
↓ =u↓(k) wbk

↓∧mt ′
↓ =C↓(k)∪F↓(k)∪AIPI(s(k)) mk

↓.

By Lemma 333 we obtain that step k and t ′−1 we made by different units

di f f u(k, t ′−1),

and thus the units making those steps were different

u↓(k) 6= u↓(t ′−1).

With Lemma 96 we obtain that the write buffer at t ′−1 is the same as that at t ′, and
therefore also as that at k

wbt ′−1
↓ =u↓(k) wbt ′

↓ =u↓(k) wbk
↓,

which is the first claim.
With Lemma 316 we obtain that steps t ′−1 and k are unit-concurrent in the original

schedule
ucon↓(t ′−1,k)

and by contraposition of Lemma 104 step t ′− 1 does not modify the core registers of
step k

out↓(t ′−1) 6 ∩̇C↓(k).

Note that step k is stepped at t ′ after moving k to t ′

s[t ′← k](t ′) = s(k)
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and we obtain with Lemma 152 that step t ′ after the move is feasible and has the same
core and fetched registers

Φ↓[t ′← k](t ′) = Φ↓(k) = 1,
C↓[t ′← k](t ′) =C↓(k),

F↓[t ′← k](t ′) = F↓(k).

Since the steps before t ′ are not affected by moving k to t ′, we obtain that step t ′−1
is still local

L↓[t ′← k](t ′−1),

and that the steps until t ′−1 are still valid and ordered

Γ
t ′−1
↓ (s[t ′← k])∧ s[t ′← k] ∈ ORDt ′ .

Clearly the steps are also still made by different units

di f f u[t ′← k](t ′−1, t ′)≡ u(s[t ′← k](t ′−1)) 6= u(s[t ′← k](t ′))

≡ u(s(k)) 6= u(s(t ′−1))
≡ di f f u(k, t ′−1).

With Lemma 332 we obtain that step t ′− 1 does not modify code of step t ′ after
moving k to t ′

¬CM↓[t ′← k](t ′−1, t ′)

and since the fetched registers of step t ′ after the reordering are those at k in the original
schedule, step t ′−1 does not modify fetched registers of step k in the original schedule

¬CM↓[t ′← k](t ′−1, t ′)≡ out↓[t ′← k](t ′−1) 6 ∩̇ F↓[t ′← k](t ′)

≡ out↓(t ′−1) 6 ∩̇ F↓(k).

By Lemma 137, step t ′−1 does not modify the IPI-relevant registers

out↓(t ′−1) 6 ∩̇ AIPI(s(k)).

Therefore the step modifies neither core nor fetched nor IPI-relevant registers

out↓(t−1) 6 ∩̇C↓(k)∪F↓(k)∪AIPI(s(k))

The second claim follows with Lemma 138

mt−1
↓ =C↓(k)∪F↓(k)∪AIPI(s(k)) mt

↓ =C↓(k)∪F↓(k)∪AIPI(s(k)) mk
↓.

The guard condition is also still satisfied.

Lemma 335. If the schedule has a local tail with an independent end from t to k

LI(t,k),

we can move step k to position t without violating the guard condition

Γ↓[t← k](t).
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Proof. By Lemma 334 the step can be executed at the new position

wb↓[t← k]t =u↓(k) wbk
↓∧m↓[t← k]t =C↓(k)∪F↓(k)∪AIPI(s(k)) mk

↓.

The claim follows immediately with Lemma 180.

Lemma 336. If the schedule has a local tail with an independent end from t to k

LI(t,k),

we can move step k to position t and the schedule is t+1-abstract and -ordered, and
valid until t, and IPI-valid until t−1

∆
t−1
IPI↓(s[t← k])∧Γ

t
↓(s[t← k])∧ s[t← k] ∈ ABSt+1∩ORDt+1.

Proof. The schedule is t-ordered, valid until k, and IPI-valid until t−1

Γ
k
↓(s)∧∆

t−1
IPI↓(s)∧ s ∈ ORDt .

The reordered schedule is the same until t−1

s[0 : t−1] = s[t← k][0 : t−1]

and thus also valid and IPI-valid until t−1

Γ
t−1
↓ (s[t← k])∧∆

t−1
IPI↓(s[t← k]),

which solves the first part of the claim.
By Lemma 335 step t is also still valid

Γ↓[t← k](t)

and thus the schedule is valid until t

Γ
t
↓(s[t← k])≡ Γ

t−1
↓ (s[t← k])∧Γ↓[t← k](t)≡ 1,

which solves the second part of the claim.
Furthermore, steps before t are still ordered

s[t← k] ∈ ORDt .

Since the steps leading to that configuration are the same, it still is clean

clean↓[t← k](t)

= ∀i.¬dirty↓[t← k](t, i)

= ∀i.¬(SCi↓[t← k](t)∧∃t ′ ∈ issue↓[t← k]t(i).Sh↓[t← k](t ′))

= ∀i.¬(SCi↓(t)∧∃t ′ ∈ issuet
↓(i).Sh↓(t ′))

= ∀i.¬dirty↓(t, i)

= clean↓(t).

Thus step t is still executed in a clean state and by Lemma 273 also ordered

ord↓[t← k](t).
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Therefore the schedule is t+1-ordered

s[t← k] ∈ ORDt+1.

By Lemma 305 the schedule is also t+1-abstract

s[t← k] ∈ ABSt+1

and the claim follows.

We have thus moved the step successfully to position t. We will now move it
back towards k as far as possible, which means until we hit a read-write race. We
can therefore maintain strong agreement, and the victims of the step are unchanged.
With t and k fixed, we say that the step is executable at k′ when strong agreement is
maintained at k′ and the step is unit-concurrent with all the remaining steps

E(t,k,k′)≡ c↑[t← k]t =s[t←k](t)
↑ c↑[k′← k]k

′ ∧∀t ′ ∈ [k′ : k).ucon↑[k′← k](k′, t ′+1).

Lemma 337. If the schedule has a local tail with an independent end from t to k

LI(t,k),

the step is executable at t
E(t,k, t).

Proof. We have to show that the steps are in strong agreement and that the step is
unit-concurrent with all the steps until k−1

c↑[t← k]t =s[t←k](t)
↑ c↑[t← k]t

!
∧∀t ′ ∈ [t : k).ucon↑[t← k](t, t ′+1).

The first part holds by reflexivity. For the second part, we obtain by Lemma 334
that the IPI-relevant registers are not changed by the move

mk
↓ =AIPI(s(k)) m↓[t← k]t ,

And thus the victims are the same

victims↓(k) = victims↓[t← k](t).

By Lemma 336 the schedule is t+1-abstract

s[t← k] ∈ ABSt+1,

and by Lemma 270 the victims are the same in the two machines

victims↑[t← k](t) = victims↓[t← k](t) = victims↓(k).

The unit making step t ′+ 1 in the high-level machine after the move was the unit
making step t ′ in the low level machine

u↑[t← k](t ′+1) = u(s[t← k](t ′+1)) = u(s(t ′)) = u↓(t ′).
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The claim follows from the assumption that step k was unit-concurrent with step t ′

in the low-level machine

ucon↑[t← k](t, t ′+1)
≡ di f f u[t← k](t, t ′+1)∧¬int↑[t← k](t, t ′+1)
≡ u(s[t← k](t)) 6= u(s[t← k](t ′+1))∧u↑[t← k](t ′+1) 6∈ victims↑[t← k](t)

≡ u(s(k)) 6= u(s(t ′))∧u↓(t ′) 6∈ victims↓(k)

≡ di f f u(k, t ′)∧¬int↓(k, t ′)

≡ ucon↓(k, t ′).

Lemma 338. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

then the new schedule is valid until k′ in the high-level machine

Γ
k′
↑ (s[k

′← k]).

Proof. By Lemma 336 the schedule where k is moved to t is valid in the low-level
machine and abstract until t

Γ
t
↓(s[t← k])∧ s[t← k] ∈ ABSt+1.

By Lemma 271 it is also valid in the high-level machine

Γ
t
↑(s[t← k]),

and in particular step t is valid
Γ↑[t← k](t).

The step can be executed at k′ and thus there is strong agreement between those
configurations

c↑[t← k]t =s[t←k](t)
↑ c↑[k′← k]k

′
.

By Lemma 150, step k′ is thus also valid when moving k to k′

Γ↑[k′← k](k′).

By Lemma 323 the original schedule is valid until k−1 in the high-level machine

Γ
k−1
↑ (s).

Since the original schedule and schedule where k is moved to k′ are the same before
k′ and k′ is less than k, the reordered schedule is also valid before k′

Γ
k′−1
↑ (s[k′← k])

Since step k′ is valid and the steps before k′ are valid, the steps until k′ are valid

Γ
k′
↑ (s[k

′← k]),

which was the claim.
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Lemma 339. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

then step k′+ 1 is valid and there is no write-read race between k′ and k′+ 1 in the
reordered schedule

Γ↑[k′← k](k′+1)∧¬WR↑[k′← k](k′,k′+1).

Proof. The configuration at k′ is the same in both schedules

ck′
↑ = c↑[k′← k]k

′
.

By contraposition of Lemma 104 we obtain that the core registers of step k′+1 are
not modified

out↑[k′← k](k′) 6 ∩̇C↑[k′← k](k′+1),

and by Lemma 138 the memory content is the same at k′ in the original schedule

m↑[k′← k]k
′+1 =C↑[k′←k](k′+1) m↑[k′← k]k

′
= mk′

↑ .

By assumption, all steps until k are local

∀t ′ ∈ [t : k).L↓(t ′).

In particular k′ was local
L↓(k′)

and thus not a shared read
¬ShR↓(k′),

and by Lemma 269 we obtain that the step was also not a shared read in the high-level
machine

¬ShR↑(k′)

We apply twice Lemma 151 and obtain that the step is feasible not a shared read in its
new position

Φ↑[k′← k](k′+1) = Φ↑(k′) = 1,
ShR↑[k′← k](k′+1) = ShR↑(k′) = 0.

By Lemma 338 the schedule is valid until k′

Γ
k′
↑ (s[k

′← k]),

and thus also semi-valid until k′+1

ΓΦ
k′+1
↑ (s[k′← k]).

Since the step is executable at k′, it is unit-concurrent with k′+1

ucon↑[k′← k](k′,k′+1).
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By contraposition of Condition CodeMod we obtain that there is no code modifi-
cation

¬CM↑[k′← k](k′+1).

We conclude that the fetched registers are also not modified

out↑[k′← k](k′) 6 ∩̇ F↑[k′← k](k′+1),

and by Lemma 138 the memory content of the fetched registers is the same at k′ in the
original schedule

m↑[k′← k]k
′+1 =F↑[k′←k](k′+1) m↑[k′← k]k

′
= mk′

↑ .

Combining this with the fact that the core registers are also unchanged we obtain
that both are unchanged

m↑[k′← k]k
′+1 =C↑[k′←k](k′+1)∪F↑[k′←k](k′+1) m↑[k′← k]k

′
.

Since the step is unit-concurrent, it is also made by a different unit

di f f u[k′← k](k′,k′+1)

and in particular the units making the steps are different

u↑[k′← k](k′) 6= u↑[k′← k](k′+1).

By Lemma 96 we obtain that step k′ after the move did not modify the write buffer
of the unit making step k′+1 after the move

wb↑[k′← k]k
′+1 =u↑[k′←k](k′+1) wb↑[k′← k]k

′
= wbk′

↑

and with Lemma 180 we obtain that step k′+1 is valid

Γ↑[k′← k](k′+1) = Γ↑(k′),

which is the first claim.
By contraposition of Lemma 205 we obtain that there is no write-read race

¬WR↑[k′← k](k′+1),

which is the second claim.

Combining Lemmas 338 and 339 we obtain that the schedule is semi-valid until
k′+1.

Lemma 340. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

then the new schedule is semi-valid until k′+1 in the high-level machine

ΓΦ
k′+1
↑ (s[k′← k]).
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Proof. For the steps until k′ we use Lemma 338, for step k′+1 we obtain with Lemma 339
that it is valid

Γ↑[k′← k](k′+1)

and thus by definition of Γ feasible

Φ↑[k′← k](k′+1),

which proves the claim.

Lemma 341. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

then step k′+1 after the reordering and k′ before the reordering strongly agree

c↑[k′← k](k′+1) =s[k′←k](k′+1)
↑ ck′

↑ .

Proof. By Lemma 339 there is no write-read race

¬WR↑[k′← k](k′,k′+1)

and the claim is Lemma 164.

Lemma 342. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

then step k′+1 is shared in both of the following cases

1. there is a valid read-write race between k′ and k′+1 in the reordered schedule

Γ↑[k′← k](k′+1)∧RW↑[k′← k](k′,k′+1)→ Sh↑[k′← k](k′+1)

2. there is a valid write-write race between k′ and k′+1 in the reordered schedule

Γ↑[k′← k](k′+1)∧WW↑[k′← k](k′,k′+1)→ Sh↑[k′← k](k′+1)

Proof. By Lemma 338, the schedule is valid until k′

Γ
k′
↑ (s[k

′← k]).

Thus the schedule is in both cases valid until k′+1

Γ
k′+1
↑ (s[k′← k]).

We distinguish between the two claims.
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RW↑[k′← k](k′,k′+1)→ Sh↑[k′← k](k′+1): By Lemma 341 there is strong agree-
ment between the step at k′+1 when k is moved to k′ and the step at k′

c↑[k′← k]k
′+1 =

s[k′←k](k′+1)
↑ ck′

↑ .

In the original schedule, the step had no victims by Lemma 134

victims↑(k′) = /0,

and by Lemma 150 also not at its new position

victims↑[k′← k](k′+1) = victims↑(k′) = /0.

We conclude it does not interrupt k′ in the reordered schedule

¬int↑[k′← k](k′+1,k′)

and since it is made by a different unit, is unit-concurrent with step k′ in the
reordered schedule

ucon↑[k′← k](k′+1,k′).

By Lemma 210 step k′+1 is shared or a shared read

Sh↑[k′← k](k′+1)∨ShR↑[k′← k](k′+1),

and since shared reads are shared by Lemma 129, it is shared either way

Sh↑[k′← k](k′+1),

which is the claim.

WW↑[k′← k](k′,k′+1)→ Sh↑[k′← k](k′+1):
The claim follows directly from Lemma 205

Lemma 343. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

and there is no read-write race between k′ and k′+1 in the reordered schedule

¬RW↑[k′← k](k′,k′+1),

the step is also executable at k′+1

E(t,k,k′+1).
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Proof. By Lemma 339, there is also no write-read race

¬WR↑[k′← k](k′,k′+1),

and by Lemma 165 there is strong agreement between the step at k′ when k is moved
to k′ and the step at k′+1 when k′ is afterwards moved to to k′+1

c↑[k′← k]k
′
=

s[k′←k](k′)
↑ c↑[k′← k][k′↔ k′+1]k

′+1.

Obviously, the oracle input at k′ after moving k to k′ is the same as at t after moving k
to t

s[k′← k](k′) = s[t← k](t),

and moving k′ to k′+1 after moving k to k′ is the same as moving k to k′+1

s[k′← k][k′↔ k′+1] = s[k′+1← k].

We conclude that the configurations at k′ when moving k to t and at k′+ 1 after
moving k to k′ strongly agree when stepped with the oracle input at t when moving k
to t

c↑[k′← k]k
′
=

s[t←k](t)
↑ c↑[k′+1← k]k

′+1,

and by transitivity and the assumption we obtain that the configurations at t after mov-
ing k to t and at k′+1 after moving k to k′+1 also agree

c↑[t← k]t =s[t←k](t)
↑ c↑[k′← k]k

′

=
s[t←k](t)
↑ c↑[k′+1← k]k

′+1,

which is the first part of the claim.
For the second part of the claim, let t ′ ∈ [k′+1 : k). By assumption step k′ was unit

concurrent with step t ′+1 when moving k to k′

ucon↑[k′← k](k′, t ′+1).

Clearly t ′+1 is after k′+1

t ′+1≥ (k′+1)+1 > k′+1,

and the position of the step is unchanged by swapping k′ with k′+1

s[k′← k][k′↔ k′+1](t ′+1) = s[k′← k](t ′+1).

By Lemma 207, step k′+ 1 after the additional swap is still unit concurrent with
step t ′+1

ucon↑[k′← k][k′↔ k′+1](k′+1, t ′+1).

As argued before, this is the schedule where k was moved to k′+1, and the claim
follows

ucon↑[k′+1← k](k′+1, t ′+1).

We can thus move step k first to position t, and then move the step to the right until
we hit a read-write race.
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Lemma 344. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and there is no read-write race between t ′ and t ′ + 1 in any schedule reordered by
moving k to t ′ before some k′ ∈ [t : k)

∀t ′ ∈ [t : k′).¬RW↑[t ′← k](t ′, t ′+1),

then for all l ∈ [t : k′], the step is executable at l

E(t,k, l)

Proof. By induction on l, starting at t. The base case is Lemma 337.
In the inductive step l→ l +1 we have by the induction hypothesis that the step is

executable at l
E(t,k, l).

Since all steps before k′ do not have read-write races, in particular step l does not
have a read-write race

¬RW↑[l← k](l, l +1).

The claim is now Lemma 343.

Not only step t can still be executed at k′, but all the other steps can also be ex-
ecuted at their new position. To show this, we use Invariant I from page 178 to run
the schedules in parallel. We use the fact that reorderings are “transitive”, i.e., when
moving a step t1 to some position t2, and then moving that step to another position t3,
it is the same as moving t1 directly to t3. We use this in the following instances

s[t← k][t→ k′] = s[k′← k],

s[t← k][t→ l] = s[l← k],

s[l← k][t← l] = s[t← k],

where t ≤ l ≤ k′ < k.

Lemma 345. When the configurations at l +1 when moving k to t and l when moving
t further to k′ ≥ l are nearly the same

It
↑[t← k]([t→ k′], l +1, l)

and the configurations at t and l strongly agree when moving k to t respectively k

c↑[t← k]t =s[t←k](t)
↓ c↑[l← k]l ,

then the configurations are also nearly the same at l +1 when moving k to l and l +1
when moving l further to t

I l
↑[l← k]([t← l], l +1, l +1).

Proof. By Lemma 200 the configurations when moving t further to l are nearly the
same

It
↑[t← k]([t→ l], l +1, l).
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Clearly moving l back to t is the inverse operation for moving t to l

s[t← k][t→ l][t← l] = s[l← k][t← l] = s[t← k],

and by Lemma 199 we obtain that the configurations at l + 1 when moving k to t and
then t to l, and l +1 when moving l back to t, are nearly the same

I l
↑[t← k][t→ l]([t← l], l +1, l +1).

That is clearly the same as the claim

I l
↑[l← k]([t← l], l +1, l +1).

Lemma 346. When the configurations at l +1 when moving k to t and l when moving
t further to k′ ≥ l are nearly the same and the step can be executed at l

It
↑[t← k]([t→ k′], l +1, l)∧E(t,k, l),

then the configurations are also nearly the same at l +1 when moving k to l and l +1
when moving l further to t

I l
↑[l← k]([t← l], l +1, l +1).

Proof. Since the step can be executed at l, the configurations at t and l strongly agree

c↑[t← k]t =s[t←k](t)
↓ c↑[l← k]l ,

and the claim is Lemma 345.

Lemma 347. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and there is no read-write race between t ′ and t ′ + 1 in any schedule reordered by
moving k to t ′ before some k′ ∈ [t : k)

∀t ′ ∈ [t : k′).¬RW↑[t ′← k](t ′, t ′+1),

then for all l ∈ [t : k′], the configurations at l+1 and l are nearly the same when moving
until k′

It
↑[t← k]([t→ k′], l +1, l).

Proof. By induction on l, starting at t. The base case is Lemma 190.
In the inductive step l→ l+1 we have by the induction hypothesis that the config-

urations at l +1 and l are nearly the same when moving until k′

It
↑[t← k]([t→ k′], l +1, l).

By Lemma 344, the step can be executed at l

E(t,k, l).
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By Lemma 346, the configurations are also nearly the same at l +1 when moving
k to l and l +1 when moving l further to t

I l
↑[l← k]([t← l], l +1, l +1).

By Lemma 339 we obtain that there is no write-read race

¬WR↑[l← k](l, l +1),

and thus also no visible write-read race

¬V R↑[l← k](l, l +1),

and by Lemma 196 the configurations for l +1 strongly agree

c↑[l← k]l+1 =
s[l←k](l+1)
↑ c↑[l← k][t← l]l+1 = c↑[t← k]l+1.

By Lemma 150, the steps have the same inputs

in↑[l← k](l +1) = in↑[t← k](l +1).

Since the step can be executed at l, the configurations at t and at l strongly agree

c↑[t← k]t =s[t←k](t)
↑ c↑[l← k]l .

By Lemma 150, the steps have the same outputs

out↑[t← k](t) = out↑[l← k](l).

By Lemma 113, the visible outputs of step t at l +1 are a subset of the outputs at t

vout↑[t← k](t, l +1)⊆ out↑[t← k](t).

Since there is no write-read race , there is no intersection between the outputs of
step l and the inputs of step l +1

out↑[l← k](l) 6 ∩̇ in↑[l← k](l +1),

and we conclude that there is no such intersection between the visible outputs of step t
at l +1 and the inputs of step l +1 either

vout↑[t← k](t) 6 ∩̇ in↑[t← k](l +1),

i.e., there is no visible write-read race in the schedule where k is moved to t

¬V R↑[t← k](t, l +1)

and the claim follows by Lemma 198 for k := l = 1, k′ := l, and O := [t→ k′]

It
↑[t← k]([t→ k′], l +2, l +1).
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At this point we are in a good position to use Condition RMWRace, with which
we can prove that subsequent steps of the same processor never have visible write-read
races. We can thus run the original schedule and the schedule with the read-write race
in parallel using again the invariant I.

We use again the observation that we can treat s[k′← k] as the original and s[k′←
k][k′→ k] = s as the reordered schedule. We define a simple invariant.We say that the
condition applies at l and write

ca(l)

when all of the following are true.

1. The configurations at l +1 when k is moved to k′ and at l when k is moved to k′

and then k′ is moved to k are nearly the same

Ik′
↑ [k
′← k]([k′→ k], l +1, l),

2. the schedule is semi-valid until l +1

ΓΦ
l+1
↑ (s[k′← k]),

3. if step l + 1 is step k′+ 1, it is buffering a write, and if it is after k′+ 1, it has a
buffered write from k′+1{

BW↑[k′← k](l +1) 6= /0 k′ = l
k′+1 ∈ issue↑[k′← k]l+1(i) k′ < l.

4. step l +1 is a processor step in strong memory mode

s[k′← k](l +1) ∈ ΣP,i∧SC↑[k′← k](l +1).

Recall that Condition RMWRace only applies when all steps since the read-write
race are made by the same object. As we have mentioned before, sorting creates sched-
ules where all steps at the beginning of the interval [t : k) are made by the same object.
We will for now focus mostly on such schedules.

Lemma 348. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

and there is a read-write race between k′ and k′+1 in the reordered schedule

RW↑[k′← k](k′,k′+1),

and all steps after k′+1 until some step l+1 (where l ∈ [k′ : k)) are made by the same
object

∀t ′ ∈ [k′ : l].o↑[k′← k](t ′+1) = o↑[k′← k](k′+1),

and the condition applies at l
ca(l),

then Condition RMWRace actually applies, i.e.,
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1. there is no visible write-read race

¬V R↑[k′← k](k′, l +1),

2. a valid read-write race is marked as shared

Γ↑[k′← k](l +1)∧RW↑[k′← k](k′, l +1)→ Sh↑[k′← k](l +1)

3. a valid write-write race is marked as shared

Γ↑[k′← k](l +1)∧WW↑[k′← k](k′, l +1)→ Sh↑[k′← k](l +1)

Proof. We distinguish between the cases where l is k′ or after it.

k′ = l: In this case we have by Lemma 339 that there is no write-read race at all be-
tween k′ and k′+1

¬WR↑[k′← k](k′,k′+1)

and thus also no visible write-read race

¬V R↑[k′← k](k′,k′+1),

and the first claim follows with the fact that l = k′.

The other two claims are Lemma 342.

k′ < l: In this case we have by assumption that the buffer at l+1 contains a write from
step k′+1

k′+1 ∈ issue↑[k′← k]l+1(i).

We also have that the schedule is semi-valid until l +1

ΓΦ
l+1
↑ (s[k′← k]),

and that step l +1 is a processor step in strong memory mode

s[k′← k](l +1) ∈ ΣP,i∧SC↑[k′← k](l +1).

Since the step is executable at k′, step k′ is unit-concurrent with step k′+1

ucon↑[k′← k](k′,k′+1).

The claims are now Condition RMWRace.

Lemma 349. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

and there is a read-write race between k′ and k′+1 in the reordered schedule

RW↑[k′← k](k′,k′+1),

then step k′+1 is a processor step in strong memory mode that is buffering a write

∃i.s[k′← k](k′+1) ∈ ΣP,i∧SC↑[k′← k](k′+1)∧BW↑[k′← k](k′+1) 6= /0.
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Proof. By Lemma 322 the original schedule is k-abstract

s ∈ ABSk

and since k′ is less than k, also k′+1-abstract

s ∈ ABSk′+1.

By Lemma 342 step k′+1 is shared

Sh↑[k′← k](k′+1).

By Lemma 341, step k′+1 can be executed at k′

c↑[k′← k]k
′+1 =

s[k′←k](k′+1)
↑ ck′

↑ .

By Lemma 150 we obtain that that step k′ is shared in the high-level machine in the
original schedule

Sh↑(k′).

A read-write race is a write-read race with parameters swapped, and thus step k′+1
has a write-read race with step k′

WR↑[k′← k](k′+1,k′).

Since the step can be executed at k′, step k′ is unit-concurrent with step k′+1

ucon↑[k′← k](k′,k′+1)

and thus made by a different unit

di f f u[k′← k](k′,k′+1).

This is obviously symmetric, and thus steps k′+1 and k′ are made by different units

di f f u[k′← k](k′+1,k′),

and we obtain that step k′+1 is a memory write by Lemma 159

mwrite↑[k′← k](k′+1).

By Lemma 150 we obtain that that step k′ is a memory write in the high-level machine
in the original schedule

mwrite↑(k′).

The step is thus a shared local memory write, and by Lemma 331 it is a processor
step in strong memory mode that is buffering a write in the original schedule

∃i.s(k′) ∈ ΣP,i∧SC↑(k′)∧BW↑(k′) 6= /0.

The claim follows with Lemma 150

∃i.s[k′← k](k′+1) ∈ ΣP,i∧SC↑[k′← k](k′+1)∧BW↑[k′← k](k′+1) 6= /0.
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Lemma 350. When a step is a processor step, and it either is step k′+1 and buffering
a write or it is after k′+1 and has buffered a write from k′+1

s[k′← k](l +1) ∈ ΣP,i∧

{
BW↑[k′← k](l +1) 6= /0 k′ = l
k′+1 ∈ issue↑[k′← k]l+1(i) k′ < l,

then the next step certainly has buffered a write from k′+1

k′+1 ∈ issue↑[k′← k]l+2(i).

Proof. We distinguish between the two cases.

k′ = l: Then step k′+1 is by definition buffering the write

issue↑[k′← k]l+2(i) = Opi↑[k′← k](l +1)(issue↑[k′← k]l+1(i), l +1)

= Opi↑[k′← k](k′+1)(issue↑[k′← k]k
′+1(i),k′+1)

= push(issue↑[k′← k]k
′+1(i),k′+1)

= issue↑[k′← k]k
′+1(i)◦ (k′+1),

and it is certainly buffered in the next step

k′+1 ∈ issue↑[k′← k]l+2(i).

k′ < l: By assumption, the step is buffered at l +1

k′+1 ∈ issue↑[k′← k]l+1(i)

and since step k′ is a processor step, it does not perform a pop operation

Opi↑[k′← k](l +1) 6= pop.

We distinguish between the remaining two operations.

Opi↑[k′← k](l +1) = push: The buffer is increased by one element

issue↑[k′← k]l+2(i) = issue↑[k′← k]l+1(i)◦ . . .

and thus all elements of the buffer at l + 1, including k′+ 1, are still ele-
ments of the buffer at l +2

k′+1 ∈ issue↑[k′← k]l+2(i)

which is the claim.

Opi↑[k′← k](l +1) = noop: The list of issued writes is unchanged

issue↑[k′← k]l+2(i) = issue↑[k′← k]l+1(i)

and the claim follows immediately

k′+1 ∈ issue↑[k′← k]l+2(i).
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Lemma 351. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

and there is a read-write race between k′ and k′+1 in the reordered schedule

RW↑[k′← k](k′,k′+1),

and all steps after k′+1 until some step l+1 (where l ∈ (k′ : k)) are made by the same
object

∀t ′ ∈ [k′ : l].o↑[k′← k](t ′+1) = o↑[k′← k](k′+1),

and the condition applies at l
ca(l),

then the configurations at l+1 and l strongly agree and the reordered schedule s[k′←
k] is valid until l +1

c↑[k′← k]l+1 =
s[k′←k](l+1)
↑ cl

↑∧Γ
l+1
↑ (s[k′← k]).

Proof. By Lemma 348 we obtain that there is no visible write-read race

¬V R↑[k′← k](k′, l +1).

Since the step can be executed at k′, step k′ is unit concurrent with step l +1

ucon↑[k′← k](k′, l +1)

and thus made by a different unit

di f f u[k′← k](k′, l +1).

Since the condition applies at l, the configurations at l+1 and l are nearly the same

Ik′
↑ [k
′← k]([k′→ k], l +1, l),

and with Lemma 196 we obtain that the configurations at l +1 and l strongly agree

c↑[k′← k]l+1 =
s[k′←k](l+1)
↑ c↑[k′← k][k′→ k]l = cl

↑,

which is the first claim.
By Lemma 323 we obtain that the original schedule is valid until k−1

Γ
k−1
↑ (s)

and thus in particular step l was valid, which by Lemma 150 is now step l +1

Γ↑[k′← k](l +1) = Γ↑(l) = 1.

The second claim follows
Γ

l+1
↑ (s[k′← k]).
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Lemma 352. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and the step is executable at some k′ ∈ [t : k)

E(t,k,k′),

and there is a read-write race between k′ and k′+1 in the reordered schedule

RW↑[k′← k](k′,k′+1),

and all steps after k′+1 until some step l+1 (where l ∈ [k′ : k)) are made by the same
object

∀t ′ ∈ [k′ : l].o↑[k′← k](t ′+1) = o↑[k′← k](k′+1),

then the condition applies at l
ca(l).

Proof. By induction on l, starting at k′. In the base case, the first part of the condition
is Lemma 190 for t := k′ and k := k and using k = l. The second part is Lemma 340.
The third and fourth part follow directly by Lemma 349.

In the inductive step l→ l +1 we have that steps until l +2 are made by the same
object

∀t ′ ∈ [k′ : l +1].o↑[k′← k](t ′+1) = o↑[k′← k](k′+1),

and thus clearly also those until l +1

∀t ′ ∈ [k′ : l].o↑[k′← k](t ′+1) = o↑[k′← k](k′+1).

We can thus apply the induction hypothesis and obtain that the configurations at
l +1 and l are nearly the same

Ik′
↑ [k
′← k]([k′→ k], l +1, l)

and the schedule is semi-valid until l +1

ΓΦ
l+1
↑ (s[k′← k])

and step l +1 is a processor step in strong memory mode

s[k′← k](l +1) ∈ ΣP,i∧SC↑[k′← k](l +1)

that buffers or has a buffered write from k′+1{
BW↑[k′← k](l +1) 6= /0 k′ = l
k′+1 ∈ issue↑[k′← k]l+1(i) k′ < l.

Since the step can be executed at k′, step k′ is unit concurrent with steps l +1 and
l +2

ucon↑[k′← k](k′, l +1)∧ucon↑[k′← k](k′, l +1)

and thus by definition of ucon made by a different unit than step l +1

di f f u[k′← k](k′, l +1).
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By Lemma 348 we obtain that there is no visible write-read race

¬V R↑[k′← k](k′, l +1)

and with Lemma 198 for k := l = 1 and k′ := l we obtain the first claim

Ik′
↑ [k
′← k]([k′→ k], l +2, l +1).

By Lemma 351 the steps until l +1 are valid

Γ
l+1
↑ (s[k′← k]).

By Lemma 323 we obtain that the original schedule is valid until k−1

Γ
k−1
↑ (s)

and thus in particular step l +1 was valid

Γ↑(l +1)

and thus also feasible
Φ↑(l +1).

By Lemma 194 for k := l + 2 and k′ := l + 1 we obtain that the configurations at
k′+1 and k′ agree on the core registers

m↑[k′← k]l+2 =C↑[k′←k](l+2) m↑[k′← k][k′→ k]l+1 = ml+1
↑ .

With Lemma 142 we obtain that step l +2 is feasible after the reordering

Φ↑[k′← k](l +2) = Φ↑(l +1) = 1.

Therefore the reordered schedule is semi-valid until l +2

ΓΦ
l+2
↑ (s[k′← k]),

which is the second claim.
Since all the steps until l +2 are made by the same object, step l +2 also is made

by processor i
s[k′← k](l +2) ∈ ΣP,i.

By Lemma 350 timestamp k′+1 is buffered at l +2

k′+1 ∈ issue↑[k′← k]l+2(i)

Note that l +1 is certainly greater than k′, and the third claim follows.
By Lemma 168 with k := l+1 and t := k′+1 we conclude that the processor could

not change its memory mode, and thus step l +2 is also in strong memory mode

SC↑[k′← k](l +2) = SCi↑[k′← k](l +2)
= SCi↑[k′← k](k′+1) L 168
= SCi↑[k′← k](l +1) L 168
= SC↑[k′← k](l +1),

and the fourth claim follows.
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It is now obvious that there are no races with the local steps in the low-level ma-
chine. On a very high level, the argument is that we have strong agreement essentially
everywhere, and can thus reduce any race in the low-level machine to race in the high-
level machine. Therefore the steps must be shared, which contradicts the fact that the
steps are local.

We first show that the steps have to be shared no matter whether there is a read-write
race that would prevent us from moving the step or not.

Lemma 353. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and all steps between t and l ∈ [t : k) are made by the same object

∀t ′ ∈ [t : l].o↑(t ′) = o↑(l),

and let k′ be the first step with a read-write race (or l if none exists)

k′ = min
{

k′ ≥ t
∣∣ RW↑[k′← k](k′,k′+1)∨ k′ = l

}
.

then all of the following are true.

1. The step can be executed at k′

E(t,k,k′),

2. The configurations at k′+1 when k is moved to k′ and at k′+1 when k is moved
to t are nearly the same

Ik′
↑ [k
′← k]([t← k′],k′+1,k′+1),

3. The configurations at l+1 in the reordered and l in the original schedule strongly
agree

c↑[k′← k]l+1 =
s[k′←k](l+1)
↑ cl

↑,

4. There is no visible read-write race between k′ and l +1

¬V R↑[k′← k](k′, l +1),

5. If there is a read-write race, step l +1 is shared

RW↑[k′← k](k′, l +1)→ Sh↑[k′← k](l +1),

6. If there is a write-write race, step l +1 is shared

WW↑[k′← k](k′, l +1)→ Sh↑[k′← k](l +1).

Proof. By definition of k′ we know that all steps before it do not have read-write races

∀t ′ ∈ [t : k′).¬RW↑[t ′← k](t ′, t ′+1),

and by Lemma 344 the step is executable at k′

E(t,k,k′),

340



which is the first claim.
By Lemma 347 with l := k′, we obtain that the configurations at k′+ 1 and k′ are

nearly the same
It
↑[t← k]([t→ k′],k′+1,k′),

and the second claim is Lemma 346.
We now distinguish two cases: either k′ is l, or less than l and there is a read-write

race.

k′ = l: The third claim is Lemma 341.

By Lemma 339 there is no write-read race

¬WR↑[k′← k](k′,k′+1),

and thus also no visible write-read race

¬V R↑[k′← k](k′,k′+1),

which is the fourth claim.

The remaining two claims are Lemma 342.

k′ < l∧RW↑[k′← k](k′,k′+1): Clearly in the reordered schedule, the steps from k′+1
until l +1 are made by the same unit

∀t ′ ∈ [k′ : l].o↑[k′← k](t ′+1) = o↑(t ′) = o↑(l) = o↑[k′← k](l +1).

By Lemma 352, the conditions apply at l

ca(l).

The third claim is Lemma 351.

The fourth claim is just Lemma 348.

By Lemma 351 we obtain that the schedule is valid until l +1

Γ
l+1
↑ (s[k′← k]).

In particular, step l +1 is valid

Γ↑[k′← k](l +1),

and the remaining two claims are Lemma 348.

Lemma 354. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and all steps between t and l ∈ [t : k) are made by the same object

∀t ′ ∈ [t : l].o↑(t ′) = o↑(l),

and let k′ be the first step with a read-write race (or l if none exists)

k′ = min
{

k′ ≥ t
∣∣ RW↑[k′← k](k′,k′+1)∨ k′ = l

}
.

then for each l′ ∈ [k′ : l], the configurations at l′+ 1 are nearly the same in the two
reordered schedules

Ik′
↑ [k
′← k]([t← k′], l′+1, l′+1),
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Proof. By induction on l′, starting at k′.
The base case is solved by Lemma 353.
In the inductive step l′→ l′+1, we have that the configurations at l′+1 are nearly

the same
Ik′
↑ [k
′← k]([t← k′], l′+1, l′+1),

Since l′ is by assumption greater than or equal to k′, and l′+1 is less than or equal
to l, k′ must be less than l

k′ ≤ l′ < l′+1≤ l.

Thus k′ has a read-write race and we obtain that k′ is also the first step before l′ with a
read-write race

k′ = min
{

k′ ≥ t
∣∣ RW↑[k′← k](k′,k′+1)∨ k′ = l′

}
.

By Lemma 353 with l := l′, we obtain that there is no visible write-read race be-
tween k′ and l′+1

¬V R↑[k′← k](k′, l′+1),

and by the same Lemma, the step can be executed at k′

E(t,k,k′).

It is thus unit-concurrent with l′+1

ucon↑[k′← k](k′, l′+1)

and thus also made by a different unit

di f f u↑[k′← k](k′, l′+1).

The claim is now Lemma 198 with k := l′+1 and k′ := l′+1

Ik′
↑ [k
′← k]([t← k′], l′+2, l′+2).

Lemma 355. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and all steps between t and l ∈ [t : k) are made by the same object

∀t ′ ∈ [t : l].o↑(t ′) = o↑(l),

and let k′ be the first step with a read-write race (or l if none exists)

k′ = min
{

k′ ≥ t
∣∣ RW↑[k′← k](k′,k′+1)∨ k′ = l

}
.

then for each l′ ∈ [k′ : l], the configurations at l′+1 strongly agree in the two reordered
schedules

c↑[k′← k]l
′+1 =

s[k′←k](l+1)
↑ c↑[t← k]l

′+1.
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Proof. By Lemma 354, the configurations at l+1 are nearly the same in the reordered
schedules

Ik′
↑ [k
′← k]([t← k′], l +1, l +1).

By Lemma 353 with l := l′, we obtain that there is no visible write-read race be-
tween k′ and l′+1

¬V R↑[k′← k](k′, l′+1),

and by the same Lemma, the step can be executed at k′

E(t,k,k′).

It is thus unit-concurrent with l′+1

ucon↑[k′← k](k′, l′+1)

and thus also made by a different unit

di f f u↑[k′← k](k′, l′+1).

By Lemma 196 with k := l′+1 and k′ := l′+1, the steps at l +1 strongly agree in
the reordered schedules

c↑[k′← k]l+1 =
s[k′←k](l+1)
↑ c↑[k′← k][t← k′]l+1.

We observe that moving k to k′ and then k′ to t is the same as moving k to t

s[k′← k][t← k′] = s[t← k],

and the claim follows

c↑[k′← k]l+1 =
s[k′←k](l+1)
↑ c↑[t← k]l+1.

Lemma 356. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and all steps between t and l ∈ [t : k) are made by the same object

∀t ′ ∈ [t : l].o↑(t ′) = o↑(l),

then all steps l ∈ [t : k) can be executed at their new position when moving k to t

c↑[t← k]l+1 =
s[t←k](l+1)
↑ cl

↑.

Proof. We move step t as far to the right as possible, i.e., either until we reach a read-
write race, or l

k′ = min
{

k′ ≥ t
∣∣ RW↑[k′← k](k′,k′+1)∨ k′ = l

}
.

By Lemma 353, the configurations in that schedule and the original schedule strongly
agree

c↑[k′← k]l+1 =
s[k′←k](l+1)
↑ cl

↑.
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By Lemma 355, the configurations in that schedule and the schedule where k is
moved to t also strongly agree

c↑[k′← k]l+1 =
s[k′←k](l+1)
↑ c↑[t← k]l+1.

Observing now that moving k to k′ is the same as moving k to t and then t to k′

s[k′← k] = s[t← k][t→ k′]

and that step l + 1 is after k′, we obtain that the latter operation has no effect on the
oracle input at l +1

s[t← k][t→ k′](l +1) = s[t← k](l +1).

The claim follows by transitivity and symmetry of strong agreement

c↑[t← k]l+1 =
s[t←k](l+1)
↑ c↑[k′← k]l+1 =

s[t←k](l+1)
↑ cl

↑.

We now show the crucial result that in a sorted schedule, there is no visible write-
read race between t (formerly k) and any intermediate step l +1 (formerly l).

Lemma 357. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and all steps between t and l ∈ [t : k) are made by the same object

∀t ′ ∈ [t : l].o↑(t ′) = o↑(l),

then all steps l ∈ [t : k) have no visible write-read race from t when moving k to t

¬V R↑[t← k](t, l +1).

Proof. We move the step as far to the right as possible

k′ = min
{

k′ ≥ t
∣∣ RW↑[k′← k](k′,k′+1)∨ k′ = l

}
.

By Lemma 353, there is no visible write-read race in that schedule

¬V R↑[k′← k](k′, l +1)

and the step is executable at k′

E(t,k,k′).

Thus by definition of E we have strong agreement between k′ when moving to k′

and t when moving to t

c↑[t← k]t =s[t←k](t)
↑ c↑[k′← k]k

′

and by Lemma 144 the write set of those steps are the same

WS↑[t← k](t) =WS↑[k′← k](k′).

344



By Lemma 355 all steps l′+1 until l +1 are also not affected

c↑[k′← k]l
′+1 =

s[k′←k](l′+1)
↑ c↑[t← k]l

′+1.

By Lemma 144 the outputs of those steps l′+1 < l +1 are the same

out↑[k′← k](l′+1) = out↑[t← k](l′+1)

and the inputs of step l are the same

in↑[k′← k](l +1) = in↑[t← k](l +1).

Thus the set of addresses overwritten in the interval (k′ : l +1) is the same

out↑[k′← k]((k′ : l +1)) =
⋃

t ′∈(k′:l+1)

out↑[k′← k](t ′)

=
⋃

l′+1∈(k′:l+1)

out↑[k′← k](l′+1)

=
⋃

l′+1∈(k′:l+1)

out↑[t← k](l′+1)

= out↑[t← k]((k′ : l +1)).

Therefore the set of overwritten addresses in the interval (t : l+1) when k is moved
to t subsumes the set of addresses overwritten in the interval (k′ : l+1) when k is moved
to k′

out↑[t← k]((t : l +1))⊇ out↑[t← k]((k′ : l +1)) = out↑[k′← k]((k′ : l +1)).

Consequently, when moving k to t rather than k′, less of its visible write-set remains

vws↑[t← k](t, l +1) =WS↑[t← k](t)\out↑[t← k]((t : l +1))
⊆WS↑[k′← k](k′)\out↑[k′← k]((k′ : l +1))
= vws↑[k′← k](k′, l +1).

Therefore the step has fewer visible outputs

vout↑[t← k](k′, l +1) = dc(WS↑[t← k](t))∪ vws↑[t← k](t, l +1)
⊆ dc(WS↑[k′← k](k′))∪ vws↑[k′← k](k′, l +1)
= vout↑[k′← k](k′, l +1).

To summarize: when moving k to t, the writing step has fewer visible outputs, and
the reading step has the same inputs. The claim follows

¬V R↑[k′← k](k′, l +1) ⇐⇒ vout↑[k′← k](k′, l +1) 6 ∩̇ in↑[k′← k](l +1)
=⇒ vout↑[t← k](t, l +1) 6 ∩̇ in↑[t← k](l +1)
⇐⇒ ¬V R↑[t← k](t, l +1).
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Lemma 358. If the schedule has a local tail with an independent end from t to k

LI(t,k),

then step t after moving k to t is not a write buffer step in strong memory mode

@i.SC↑[t← k](t)∧ s[t← k](t) ∈ ΣWB,i.

Proof. Assume for the sake of contradiction that the step is made by a write buffer in
strong memory mode

SC↑[t← k](t)∧ s[t← k](t) ∈ ΣWB,i.

By Lemma 324 step k is a write buffer step

s(k) ∈ ΣWB,i.

By Lemma 336 the schedule is t +1-valid and thus also t-valid

s[t← k] ∈ ABSt

and by Lemma 269 step t is also in strong memory mode in the low-level machine

SC↓[t← k](t) = SC↑[t← k](t) = 1.

By Lemma 334 the core registers are the same at t and k

m↓[t← k]t =C↓(k) mk
↓

and by Lemma 151 we obtain that step k was made in strong memory mode

SC↓(k) = SC↓[t← k](t) = 1.

Since the schedule has a local tail with an independent end from t to k, step k is not
a write buffer step in strong memory mode

@i.SC↓(k)∧ s(k) ∈ ΣWB,i,

which is a contradiction.

We also show that there is also no read-write race in the low-level machine; thus
step k is not affected by being moved to t either. To do so we first show that the outputs
of step l intersect with neither the inputs nor outputs of step t after moving k to t.

Lemma 359. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and all steps between t and l ∈ [t : k) are made by the same object

∀t ′ ∈ [t : l].o↑(t ′) = o↑(l),

then for X ∈ { in,out } there is no intersection between the outputs of step l and the set
X during step t after k is moved to t in the low-level machine

out↓(l) 6 ∩̇ X↓[t← k](t).
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Proof. Assume for the sake of contradiction the outputs of l and either inputs or outputs
X ∈ { in,out } of step t after k is moved to t intersect

out↓(l) ∩̇X↓[t← k](t).

By Lemma 322, the schedule is k-abstract

s ∈ ABSk.

Since l is before k we obtain that the schedule is valid until l and l+1-abstract

Γ
l
↑(s)∧ s ∈ ABSl+1,

and thus by Lemma 330, the outputs of step l in the low-level machine are a subset of
those in the high-level machine

out↓(l)⊆ out↑(l),

and by Lemma 269 the steps have the same annotation

Sh↑(l) = Sh↓(l), ShR↑(l) = ShR↓(l).

We now move step t as far to the right as possible, i.e., either until we reach a
read-write race, or l

k′ = min
{

k′ ≥ t
∣∣ RW↑[k′← k](k′,k′+1)∨ k′ = l

}
.

By Lemma 353, step l +1 can be executed at l in the original schedule

c↑[k′← k]l+1 =
s[k′←k](l+1)
↑ cl

↑

and we conclude with Lemma 150 that the outputs of step l +1 subsume those at l in
the low-level machine in the original schedule

out↓(l)⊆ out↑(l) = out↑[k′← k](l +1)

and also agree on the annotation

Sh↑[k′← k](l +1) = Sh↑(l) = Sh↓(l),

ShR↑[k′← k](l +1) = ShR↑(l) = ShR↓(l).

By Lemma 336 step t in that schedule is abstract

s[t← k] ∈ ABSt+1.

By Lemma 358 step t after moving k to t is not a write buffer step in strong memory
mode

@i.SC↑[t← k](t)∧ s[t← k](t) ∈ ΣWB,i.

By Lemma 270 has the same inputs in both machines

in↓[t← k](t) = in↑[t← k](t),

and by Lemma 265 more outputs in the high-level machine

out↓[t← k](t)⊆ out↑[t← k](t).
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We obtain in each case that both inputs and outputs X ∈ { in,out } in the low-level
machine are subsumed by the inputs resp. outputs in the high-level machine

X↓[t← k](t)⊆ X↑[t← k](t).

By Lemma 353, the step can be executed at k′

E(t,k,k′)

and thus the configurations at k′ when k is moved to k′ and at t when k is moved to t
strongly agree

c↑[t← k]t =s[t←k](t)
↑ c↑[k′← k]k

′

and by Lemma 150 for t1 := t and t2 := k′, the value of X ∈ { in,out } is unchanged and
thus still subsumes the value of X in the low-level machine

X↓[t← k](t)⊆ X↑[t← k](t) = X↑[k′← k](k′).

By definition of LI , step k is unit-concurrent with step l

ucon↑(k, l)

and thus made by a different unit

u↓(l) 6= u↓(k) = u↓[t← k](t).

By Lemma 93, the inputs resp. outputs of step t are accessible to the unit making
the step

X↓[t← k](t)⊆ ACCu↓[t←k](t),

and by Lemma 121 step l is a memory write in both cases

mwrite↓(l)

and since it is local, not shared
¬Sh↓(l).

We conclude that there is an intersection between the outputs of l+1 and the set X
at k′ in the reordered schedule

out↑[k′← k](l +1) ∩̇X↑[k′← k](k′).

Thus there is either a read-write race or a write-write race (depending on whether
X is the inputs or the outputs)

RW↑[k′← k](k′, l +1)∨WW↑[k′← k](k′, l +1),

and by Lemma 353, step l +1 must be shared

Sh↑[k′← k](l +1),

which is a contradiction.
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Lemma 360. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and all steps between t and l ∈ [t : k) are made by the same object

∀t ′ ∈ [t : l].o↑(t ′) = o↑(l),

then there is no write-read race between l and k in the low-level machine

¬WR↓(l,k).

Proof. By Lemma 334 the configurations at t when k is moved to t and at k agree on
the memory content of core and fetched registers

m↓[t← k]t =C↓(k)∪F↓(k) mk
↓.

By Lemma 152 those configurations agree on the inputs

in↓[t← k](t) = in↓(k).

Assume now for the sake of contradiction that such a race exists, in which case
there is an intersection between outputs and inputs

out↓(l) ∩̇ in↓(k)

and thus also when k is moved to t

out↓(l) ∩̇ in↓[t← k](t).

That contradicts Lemma 359.

4.12.3 Transferring Races in Unsorted Schedules
We wish to apply the Lemmas from the previous section in an unsorted schedule. We
prove a key lemma which allows us to transfer all races of the unsorted schedule to a
sorted schedule.

Lemma 361. If the schedule has a local tail with an independent end from t to k

LI(t,k),

then for all l′ ∈ [t : k) there is a sequence of operations O and some l ∈ [t : k) such that
all of the following hold

1. The schedules before t, at k, and at l resp. l′ are the same

sO[0 : t−1] = s[0 : t−1]∧ sO(k) = s(k)∧ sO(l) = s(l′),

2. the steps at k strongly agree

c↓Ok =
sO(k)
↓ ck

↓,

3. The reordered schedule has a local tail with an independent end from t to k

LIO(t,k),
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4. the steps from t until l are made by the same object

∀t ′ ∈ [t : l].o↑O(t ′) = o↑O(l),

5. and furthermore the steps l and l′ strongly agree

c↓Ol =
sO(l)
↓ cl′

↓ ,

6. the outputs from t until l are subsumed by those from t until l′ in the original
schedule

out↑O([t : l))⊆ out↑([t : l′))

Proof. By Lemma 321 and 320 we obtain that the schedule is IPI valid until k−1 and
k-ordered

∆
k−1
IPI↓(s)∧ s ∈ ORDk.

Using Lemma 319, we sort the steps from t until k−1, putting all steps of the unit
making step l′ to the very left by defining

u(s(l′))≺ i ∀i 6= u(s(l′))

and ordering all remaining units in an arbitrary way.
We define O to be the sequence of reorderings that sort the schedule

O := ≺(t,k)

and by Lemma 319 the sorted schedule is equivalent to the original schedule

sO≡↓ s.

Let X be the object making step l′

X = o(s(l′))

and n be the number of steps made by X at l′

n = #X(l′).

Clearly l′ is the time when object X makes its n-th step

l′ = #X ≈ n(s) ∈ [t : l′+1).

We define l to be the n-th step of X in that schedule

l := #X ≈ n(sO)

which due to equivalence of the schedules uses the same oracle input

sO(l) = s(l′).

The first claim follows with Lemma 319

sO[0 : t−1] = s[0 : t−1]∧ sO(k) = s(k).
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By Lemma 319, the configurations at k are the same

c↓Ok = ck
↓

and the second claim follows by reflexivity of strong agreement

c↓Ok =
sO(k)
↓ ck

↓.

By Lemma 319, the sorted schedule is k-ordered and valid and IPI-valid until k−1

Γ
k−1
↓ (sO)∧∆

k−1
IPI↓(sO)∧ sO ∈ ORDk.

Since the schedule and the configuration are the same at k, step k is still valid in the
sorted schedule

Γ↓O(k) = Γ↓(c↓Ok,sO(k)) = Γ↓(ck
↓,s(k)) = Γ↓(k)

Thus the schedule is valid until k, and IPI-valid until t−1 and t-ordered

Γ
k
↓(sO)∧∆

t−1
IPI↓(sO)∧ sO ∈ ORDt .

By Lemma 319 all steps before k are still local

∀t ′ ∈ [t : k].L↓O(t ′),

and thus has a local tail from t to k

LO(t,k).

Because the steps before t are the same, the configuration at t is still the same

c↓Ot = ct
↓,

and also the sequence of issued writes

issue↓Ot(i) = issuet
↓(i),

and thus the configuration at t is still clean

clean↓O(t) = clean↓(t) = 1.

We wish to show that step k is still unit-concurrent with all steps t ′ ∈ [t : k). By
Lemma 144, the victims of step k have not changed

victims↓O(k) = victims↓(k).

Let now t ′ be some step in the interval, which is now the n′-th step of some object X ′

X ′ = o(sO(t ′))∧n′ = #X ′O(t ′).

Let t ′′ be the position of the n′-th step of object X ′ in the original schedule

t ′′ = #X ′ ≈ n′(s)

which by Lemma 319 is also in the interval [t : k)

t ′′ ∈ [t : k).
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Thus by assumption step k was unit-concurrent with step t ′′.

ucon↓(k, t ′′).

Clearly the steps are made by the same unit

u↓O(t ′) = u↓(t ′′),

and it is now easy to show that step k is unit-concurrent with step t ′

ucon↓(k, t ′′)≡ di f f u(k, t ′′)∧u↓(t ′′) 6∈ victims↓(k)

≡ u↓(k) 6= u↓(t ′′)∧u↓(t ′′) 6∈ victims↓(k)

≡ u↓O(k) 6= u↓O(t ′)∧u↓O(t ′) 6∈ victims↓O(k)

≡ ucon↓O(k, t ′).

Since the schedule and configurations are unchanged at k, we obtain that step k is
still not made by a write buffer in strong memory mode

@i.SC↑O(k)∧ sO(k) ∈ ΣWB,i.

We conclude that the sorted schedule also has a local tail with an independent end
from t to k

LIO(t,k),

which is the third claim.
Since the schedule is sorted and the unit making step l′ is by definition the minimal

unit in the order, all steps from t until l are made by the same unit

∀t ′ ∈ [t : l].u↑O(t ′) = u↑O(l).

All of those steps are local

∀t ′ ∈ [t : l].L↓O(t ′).

Since by Lemma 136 the local steps are not write buffer steps, all steps of the same
unit are also steps of the same object

∀t ′ ∈ [t : l].o↑O(t ′) = P,u↑O(t ′) = P,u↑O(l′) = o↑O(l),

which is the fourth claim.
The fifth claim follows from equivalence of the two schedules since l and l′ are the

n-th step of object X
c↓Ol =

sO(l)
↓ cl′

↓ .

As we have shown above, all steps t ′ between t and l in the sorted schedule

t ′ ∈ [t : l)

are made by the same object as l, i.e., object X

o↑O(t ′) = o↑O(l) = X ,

and thus t ′ is the n′-th step of unit X

t ′ = #X ≈ n′(sO).
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Since step t ′ is before step l, and step counts are monotone, we obtain that n′ is also
before n

n′ < n.

Let step t ′′ now be the n′-th step of object X in the original schedule

t ′′ = #X ≈ n′(s).

again since step counts are monotone, the n′-th step is also made before the n-th step
in the original schedule

t ′′ = #X ≈ n′(s)< #X ≈ n(s) = l′.

Furthermore, since the step was in the sorted interval, by Lemma 319 it is still in the
sorted interval

t ′′ ∈ [t : k)

and it is now between t and l′

t ′′ ∈ [t : l′).

Since the schedules are equivalent, steps t ′, t ′′ have strong agreement in the low-
level machine

c↓Ot ′ =
sO(t ′)
↓ ct ′′

↓

and the same oracle inputs
sO(t ′) = s(t ′′)

and by Lemma 329 the same holds in the high-level machine

c↑Ot ′ =
sO(t ′)
↑ ct ′′

↑ .

By Lemma 150 the steps thus have the same outputs in the high-level machine

out↑O(t ′) = out↑(t ′′).

Thus for each t ′ ∈ [t : l) there is a t ′′ ∈ [t : l′) with the same outputs. It immediately
follows that the set of addresses overwritten in the interval from t to l′ after sorting is
a subset of the set of addresses overwritten in the interval from t to l in the original
schedule

out↑O([t : l)) =
⋃

t ′∈[t:l)
out↑O(t ′)

⊆
⋃

t ′′∈[t:l′)
out↑(t ′′)

= out↑([t : l′)),

which is the sixth claim.

We begin by moving the absence of write-read races of the low-level machine to
the unsorted schedule.

Lemma 362. If the schedule has a local tail with an independent end from t to k

LI(t,k),

then there is no write-read race between any l′ ∈ [t : k) and k in the low-level machine

¬WR↓(l′,k).
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Proof. By Lemma 361 we obtain O, l such that sO still has a local tail with an inde-
pendent end from t to k

LIO(t,k),

and the schedule is sorted

∀t ′ ∈ [t : l].o↑O(t ′) = o↑O(l),

and that steps k and l′ can be executed at k and l, respectively

c↓Ok =
sO(k)
↓ ck

↓,

c↓Ol =
sO(l)
↓ cl′

↓ .

By Lemma 360 there is no write-read race in sO

¬WR↓O(l,k).

With Lemma 150 we obtain that the outputs resp. inputs are the same

in↓O(k) = in↓(k),

out↓O(l) = out↓(l′),

and thus there is also no write-read race in the sorted schedule

WR↓(l′,k) ≡ out↓(l′) ∩̇ in↓(k) ≡ out↓O(l) ∩̇ in↓O(k) ≡ WR↓O(l,k) ≡ 0,

which is the claim.

Thus step k can be moved to step t without being affected at all.

Lemma 363. If the schedule has a local tail with an independent end from t to k

LI(t,k),

then k can be executed at t
ck
↓ =

s(k)
↓ c↓[t← k]t .

Proof. We generalize the claim to t ′ ∈ [t : k]

ck
↓

!
=

s(k)

↓ c↓[t ′← k]t
′
,

which we prove by downwards induction on t ′, starting from k.
In the inductive step t ′→ t ′−1 we have that step k can be executed at t ′

ck
↓ =

s(k)
↓ c↓[t ′← k]t

′
,

and by Lemma 362 that there is no write-read race between t ′−1 and k in the original
schedule

¬WR↓(t ′−1,k).

With Lemma 150 with X := in we obtain that there is also no write-read race between
t ′−1 and t ′ in the reordered schedule

WR↓[t ′← k](t ′−1, t ′)≡ out↓[t ′← k](t ′−1) ∩̇ in↓[t ′← k](t ′)
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≡ out↓(t ′−1) ∩̇ in↓(k)

≡WR↓(t ′−1,k).

By assumption the steps were unit-concurrent and thus made by different units

di f f u↓(k, t ′−1).

Clearly the steps are still made by different units

di f f u↓[t ′← k](t ′−1, t ′).

By Lemma 164 with t := t ′− 1 and s := s[t ′← k], we can thus swap the order of
t ′−1 and t ′, which is the same as moving k to t ′−1

ck
↓ =

s(k)
↓ c↓[t ′← k]t

′
IH

=
s[t ′←k](t ′)
↓ c↓[t ′← k][t ′−1↔ t ′]t

′−1 L 164

= c↓[t ′−1← k]t
′−1

and since the oracle input at t ′ when k is moved to t ′ is the same as at k in the original
schedule

s(k) = s[t ′← k](t ′)

the claim follows by transitivity

ck
↓ =

s(k)
↓ c↓[t ′−1← k]t

′−1.

We can now prove the absence of write-write races in sorted schedules.

Lemma 364. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and all steps between t and l ∈ [t : k) are made by the same object

∀t ′ ∈ [t : l].o↑(t ′) = o↑(l),

then there is no write-write race between l and k in the low-level machine

¬WW↓(l,k).

Proof. By Lemma 363 the configurations at t when k is moved to t and at k strongly
agree

ck
↓ =

s(k)
↓ c↓[t← k]t .

By Lemma 150 those configurations agree on the outputs

out↓[t← k](t) = out↓(k).

Assume now for the sake of contradiction that such a race exists, in which case
there is an intersection between outputs and outputs

out↓(l) ∩̇out↓(k)

and thus also when k is moved to t

out↓(l) ∩̇out↓[t← k](t).

That contradicts Lemma 359.
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We transfer the absence of write-write races to the unsorted schedules.

Lemma 365. If the schedule has a local tail with an independent end from t to k

LI(t,k),

then there is no write-write race between l′ ∈ [t : k) and k in the low-level machine

¬WW↓(l′,k).

Proof. By Lemma 361 we obtain O, l such that sO still has a local tail with an inde-
pendent end from t to k

LIO(t,k),

and the schedule is sorted

∀t ′ ∈ [t : l].o↑O(t ′) = o↑O(l),

and that steps k and l′ can be executed at k and l, respectively

c↓Ok =
sO(k)
↓ ck

↓,

c↓Ol =
sO(l)
↓ cl′

↓ .

By Lemma 364 there is no write-write race in sO

¬WW↓O(l,k).

With Lemma 150 we obtain that the outputs are the same

out↓O(k) = out↓(k),

out↓O(l) = out↓(l′),

and thus there is also no write-write race in the sorted schedule

WW↓(l′,k) ≡ out↓(l′) ∩̇out↓(k) ≡ out↓O(l) ∩̇out↓O(k) ≡ WW↓O(l,k) ≡ 0,

which is the claim.

We wish to similarly transfer the visible write-read races, but this is more difficult:
there is an inherent “direction” in the visible outputs, since we subtract all outputs
behind the write until the read. Thus a visible write-read race between k and l′ is
somewhat meaningless, and we are focus instead on the visible write-read race between
t and l′+1 when k is moved to t. As above, we wish to show that no such races exist;
but to do so in the schedule where k is moved to t (rather than the original schedule s, as
in the lemmas above) we would need to show that steps [t : l′) in the original schedule
and [t +1 : l′+1) after moving k to t have the same outputs

out↑([t : l′))) !
= out↑[t← k]([t : l′)))

and that steps l′ in the original schedule and l′+ 1 after moving k to t have the same
inputs

in↑(l′)
!
= in↑[t← k](l′),

which will only be possible after we have shown that such races do not exist.
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Instead of attempting to prove these equalities and that there is no visible write-read
race, we unfold the definition of a visible write-read race, substitute the write set of step
k with the write step of step t after moving k to t (an equality that we can already prove)

WS↑(k) =WS↑[t← k](t)

but keep the outputs of the intermediate steps and the inputs of l′ in the original sched-
ule. The resulting lemma is a little ugly and technical, but will do the job.

Lemma 366. If the schedule has a local tail with an independent end from t to k

LI(t,k),

then for all l′ ∈ [t : k) in the high-level machine, the device closure of the write-set at t
when moving k to t and the write-set at t when moving k to t minus the outputs from t
to l′ do not intersect the inputs of step l′

dc(WS↑[t← k](t))∪ (WS↑[t← k](t)\out↑([t : l′))) 6 ∩̇ in↑(l′).

Proof. By Lemma 361 we obtain O, l such that sO still has a local tail with an inde-
pendent end from t to k

LIO(t,k),

and the schedule is sorted

∀t ′ ∈ [t : l].o↑O(t ′) = o↑O(l),

and that the steps before t and at k and at l resp. l′ are the same

sO[0 : t−1] = s[0 : t−1]∧ sO(k) = s(k)∧ sO(l) = s(l′)

and that step l′ can be executed at l

c↓Ol =
sO(l)
↓ cl′

↓ ,

and that the outputs between t and l are a subset of those between t and l′

out↑O([t : l))⊆ out↑([t : l′)).

By Lemma 357 we obtain that the sorted schedule has no visible write-read race

¬V R↑O[t← k](t, l +1).

Unfolding the definition of V R, then of vout, and then of vws, we obtain that there is
no intersection between the the device closure of the write-set at t and the write-set at
t minus the outputs from t +1 to l +1 and the inputs of step l +1

vout↑O[t← k](t, l +1) 6 ∩̇ in↑O[t← k](l +1)
⇐⇒ dc(WS↑O[t← k](t))∪ vws↑O[t← k](t, l +1) 6 ∩̇ in↑O[t← k](l +1)
⇐⇒ dc(WS↑O[t← k](t))∪ (WS↑O[t← k](t)\out↑O[t← k]([t +1 : l +1)))

6 ∩̇ in↑O[t← k](l +1). (4.23)

Since the oracle inputs at k are the same, so are the oracle inputs at t when k is
moved to t

s[t← k](t) = s(k) = sO(k) = sO[t← k](t),
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and since the steps before t are the same and not affected by moving k to t, they are
also the same after that move

s[t← k][0 : t−1] = s[0 : t−1] = sO[0 : t−1] = sO[t← k][0 : t−1].

We conclude that all steps until t are the same after that move

s[t← k][0 : t] = sO[t← k][0 : t],

and thus the write-set at t is the same

WS↑[t← k](t) =WS↑O[t← k](t). (4.24)

By Lemma 356 all the steps in the sorted schedule are executed the same before
and after that move

∀t ′ ∈ [t : k).c↑O[t← k]t
′+1 =

sO[t←k](t ′+1)
↑ c↑Ot ′ .

Thus by Lemma 150 we obtain in particular for the steps t ′ ∈ [t : l) that the outputs
are the same

∀t ′ ∈ [t : l).out↑O[t← k](t ′+1) = out↑O(t ′),

and thus the outputs from t +1 to l+1 after the move are the same as the outputs from
t to l before the move

out↑O[t← k]([t +1 : l +1)) =
⋃

t ′∈[t+1:l+1)

out↑O[t← k](t ′)

=
⋃

t ′∈[t:l)
out↑O[t← k](t ′+1)

=
⋃

t ′∈[t:l)
out↑O(t ′)

= out↑O([t : l))

which as we know are a subset of the outputs from t to l′ in the original schedule

⊆ out↑([t : l′)).

Thus the write-set minus the outputs in the sorted schedule after the move subsume
the write-set minus the outputs in the original schedule

WS↑O[t← k](t)\out↑O[t← k]([t+1 : l+1))⊇WS↑O[t← k](t)\out↑([t : l′)). (4.25)

Since steps l and l′ are before k and agree in the low-level machine, by Lemma 329
we obtain that they also agree in the high-level machine

c↑Ol =
sO(l)
↑ cl′

↑ .

Thus by Lemma 150 we obtain that step l in the sorted schedule has the same inputs as
step l′ in the original schedule

in↑O(l) = in↑(l′).
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By Lemma 356 step l+1 in the sorted schedule after the move is executed the same
as step l in the sorted schedule

c↑O[t← k]l+1 =
sO[t←k](l+1)
↑ c↑Ol .

Thus by Lemma 150 we obtain that step l + 1 after the move has the same inputs as
step l′ before the move

in↑O[t← k](l +1) = in↑O(l) = in↑(l′). (4.26)

Combining Statement (4.23) with Eqs. (4.24) to (4.26) we obtain the claim

dc(WS↑O[t← k](t))

∪ (WS↑O[t← k](t)\out↑O[t← k]([t +1 : l +1)))
6 ∩̇ in↑O[t← k](l +1)

=⇒ dc(WS↑O[t← k](t))∪ (WS↑O[t← k](t)\out↑([t : l′)))

6 ∩̇ in↑O[t← k](l +1) E (4.25)
⇐⇒ dc(WS↑[t← k](t))∪ (WS↑[t← k](t)\out↑([t : l′))) 6 ∩̇ in↑(l′) E (4.26), (4.24)

Lemma 367. If the schedule has a local tail with an independent end from t to k

LI(t,k),

and after all steps t ′ before l′ ∈ [t : k) the configurations are nearly the same when
moving k to t

∀t ′ ∈ [t : l′).It
↑[t← k]([t→ k], t ′+2, t ′+1),

then the configurations until l′ are nearly the same too

∀t ′ ∈ [t : l′].It
↑[t← k]([t→ k], l′+1, l′).

Proof. By Lemma 190 the configuration at t is nearly the same

It
↑[t← k]([t→ k], t +1, t)

With an index shift by one we obtain that the configurations from t+1 before l′+1
are also nearly the same

∀t ′ ∈ [t +1 : l′+1).It
↑[t← k]([t→ k], t ′+1, t ′),

and thus the configurations from t +1 until l′

∀t ′ ∈ [t +1 : l′].It
↑[t← k]([t→ k], t ′+1, t ′),

and the claim follows.

We now obtain the crucial result that there are no visible write-read races in un-
sorted schedules.

Lemma 368. If the schedule has a local tail with an independent end from t to k

LI(t,k),

all of the following are true for each l′ ∈ [t : k) when moving k to t.
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1. In the high-level machine there is no visible write-read race with l′+1

¬V R↑[t← k](t, l′+1),

2. steps t and l′+1 are made by different units,

di f f u↑(t, l′+1),

3. the configurations after l′+1 after moving k to t and after l′ are nearly the same

It
↑[t← k]([t→ k], l′+2, l′+1).

Proof. By strong induction on l′ we have that all steps t ′ ∈ [t : l′) satisfy the the property

∀t ′ ∈ [t : l′).¬V R↑[t← k](t, t ′+1)∧It
↑[t← k]([t→ k], t ′+2, t ′+1).

Note that this hypothesis may be vacuously true when l′ = t. We use Lemma 367
to obtain that the configurations at l′ are nearly the same anyways

It
↑[t← k]([t→ k], l′+1, l′).

Clearly all of these steps are delayed exactly by one

∀t ′ ∈ [t : l′].s[t← k](t ′+1) = s[t← k][t→ k](t ′) = s(t ′).

By Lemma 337, the step can be executed at t

E(t,k, t)

and is thus unit-concurrent with each step t ′+1 where t ′ ≤ l′

∀t ′ ∈ [t : l′].ucon↑[t← k](t, t ′+1)

and thus also made by a different unit

∀t ′ ∈ [t : l′].di f f u[t← k](t, t ′+1). (4.27)

For the steps before l′ we conclude by Lemma 196 with k := t ′+1 and k′ := t ′ that
they can be executed at their new position

∀t ′ ∈ [t : l′).c↑[t← k]t
′+1 =

s[t←k](t ′+1)
↑ c↑[t← k][t→ k]t

′
= ct ′
↑ .

By Lemma 150, the outputs of the steps are unchanged

∀t ′ ∈ [t : l′).out↑[t← k](t ′+1) = out↑(t ′),

and thus also the combined outputs

out↑[t← k]([t +1 : l′+1)) =
⋃

t ′∈[t+1:l′+1)

out↑[t← k](t ′)

=
⋃

t ′∈[t:l′)
out↑[t← k](t ′+1)
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=
⋃

t ′∈[t:l′)
out↑(t ′)

= out↑([t : l′)).

By Lemma 366 there is no intersection between the device closure of the write-set
and the write-set minus the outputs from t to l′ and the inputs

dc(WS↑[t← k](t))∪ (WS↑[t← k](t)\out↑([t : l′))) 6 ∩̇ in↑(l′)

and we rewrite with the equality we obtained for the outputs

dc(WS↑[t← k](t))∪ (WS↑[t← k](t)\out↑[t← k]([t +1 : l′+1))) 6 ∩̇ in↑(l′)

and fold the definition of the visible write-set

dc(WS↑[t← k](t))∪ vws↑[t← k](t, l′+1) 6 ∩̇ in↑(l′)

and of the visible outputs

vout↑[t← k](t, l′+1) 6 ∩̇ in↑(l′)

and have thus no intersection between the visible outputs in the reordered schedule and
the inputs in the original schedule.

By Lemma 367 in particular the configurations at l′ are nearly the same

It
↑[t← k]([t→ k], l′+1, l′).

By Lemma 191 the configurations agree on the memory content of the inputs

m↑[t← k]l
′+1 =in↑(l′) m↑[t← k][t→ k]l

′
= ml′

↑ ,

in particular the core and fetched registers

m↑[t← k]l
′+1 =C↑(l′)∪F↑(l′) ml′

↑ .

By Lemma 152 we obtain that steps l′ and l′+ 1 after the move have the same
inputs

in↑[t← k](l′+1) = in↑(l′).

We conclude that there is no intersection between the visible outputs and the inputs
after the move

vout↑[t← k](t, l′+1) 6 ∩̇ in↑[t← k](l′+1)

and thus no visible write-read race

¬V R↑[t← k](t, l′+1),

which is the first claim.
Since by Statement (4.27) the steps until l′+1 are made by different units, in par-

ticular step l′+1 is made by a different unit

di f f u↑[t← k](t, l′+1),

which is the second claim.
The third claim is simply Lemma 198.
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We can finally prove that the intermediate steps are not affected by moving k to t.

Lemma 369. If the schedule has a local tail with an independent end from t to k

LI(t,k),

then in the high-level machine the configurations at l′ ∈ [t : k) strongly agree before
and after the move

c↑[t← k]l
′+1 =

s[t←k](l′+1)
↑ cl′

↑ .

Proof. By Lemma 368 we obtain that there is no visible write-read race and the steps
are made by different units

¬V R↑[t← k](t, l′+1)∧di f f u[t← k](t, l′+1),

and with Lemma 368 we obtain that after all t ′ before l′ the configurations are nearly
the same

∀t ′ ∈ [t : l′).It
↑[t← k]([t→ k], t ′+2, t ′+1).

By Lemma 367 the configurations until l′ are nearly the same, in particular the
configuration at l′

It
↑[t← k]([t→ k], l′+1, l′).

The claim is now Lemma 196.

4.12.4 Reordering Write Buffer Steps
So far we have mostly excluded write buffer steps in strong memory mode. We now
show that all key properties (e.g., strong agreement between the steps) also hold when
reordering those types of steps.

We say that schedule s has a local tail from t to k that ends with with an issued
write buffer step and write LW (t,k) when all of the following hold.

1. The schedule has a local tail from t to k

L[s](t,k),

2. step k is a write buffer step in strong memory mode

s(k) ∈ ΣWB,i∧SC↓(k)

3. the write committed at k was already buffered before t

hd(issuek
↓(i))< t,

4. only unit i can have dirty buffers at t

dirty↓(t, j)→ i = j.

Lemma 370. If the schedule has a local tail from t to k that ends with with an issued
write buffer step

LW (t,k),

step k can be executed at t

c↓[t← k]t =s[t←k](t)
↓ = ck

↓.
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Proof. By Lemma 328 the mode of unit i = u↑(k) is the same

SCi↓(t) = SCi↓(k).

The only input of a write buffer step are the mode registers

in↓(k) =C↓(k)∪F↓(k)∪R↓(k) = ASC,i,

and thus the configurations agree on the content of inputs

mt
↓ =in↓(k) mk

↓.

The write committed at k was already buffered before t

hd(issuek
↓(i))< t,

and by the monotonicity of the write buffer, the write was a buffered write at t

hd(issuek
↓(i)) ∈ issuet

↓(i).

Thus clearly there were buffered writes at t

issuet
↓(i) 6= ε.

By Lemma 326 the sequence of issued writes has the same head

hd(issuek
↓(i)) = hd(issuet

↓(i))

and by Lemma 123 the write buffers have the same head

hd(wbk
↓(i)) = BW↓(hd(issuek

↓(i)))

= BW↓(hd(issuet
↓(i)))

= hd(wbt
↓(i))

and thus by definition the buffers of the configuration at k subsume those at t

bu f S↓(s(k),ck
↓,c

t
↓).

Since by hypothesis the schedule has a local tail, it is valid until k

Γ
k
↓(s)

and in particular step k is valid
Γ↓(k).

By Lemma 187 the configurations at t and and k strongly agree when stepped with
s(k)

ct
↓ =

s(k)
↓ ck

↓,

and the claim follows with the observation that the configuration t is unaffected by the
reordering

c↓[t← k]t =s[t←k](k)
↓ ck

↓.
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This proves that step k can be moved. For the other steps, we use again that the
configurations are nearly the same; but we need extra machinery to deal with steps
made by the same unit, i.e., by the processor of the unit making the write buffer step.

Lemma 371. If the schedule has a local tail from t to k that ends with with an issued
write buffer step

LW (t,k),

then the mode of step t after moving k to t is in strong memory mode in the high-level
machine

SC↑[t← k](t).

Proof. By Lemma 322 that the schedule is k-abstract

s ∈ ABSk

and thus t-abstract
s ∈ ABSt

and by Lemma 269 we obtain that step t was made in the same mode in both machines

SC↑[t← k](t) = SC↓[t← k](t).

By Lemma 370 we obtain that step k can be executed at t

c↓[t← k]t =s[t←k](t)
↓ = ck

↓,

and with Lemma 144 we obtain that step t in the high-level machine is made in strong
memory mode

SC↑[t← k](t) = SC↓[t← k](t) = SC↓(k) = 1.

Lemma 372. If the schedule has a local tail from t to k that ends with with an issued
write buffer step

LW (t,k),

and at l′ ∈ [t : k) the configurations are nearly the same and the write buffer of unit
i = u↑(k) at l′+1 after the reordering is the tail of the write buffer at l′

It
↑[t← k]([t→ k], l′+1, l′)∧wb↑[t← k]l

′+1(i) = tl(wbl′
↑ (i)),

then the configurations at l′+1 and l′ (in their respective schedule) strongly agree

c↑[t← k]l
′+1 =

s[t←k](l′+1)
↑ cl′

↑ .

Proof. We show the equivalent claim that the configurations strongly agree when stepped
with s(l′)

c↑[t← k]l
′+1 !

=
s(l′)

↑ cl′
↑ .

We obtain by Lemma 371 that the step at t is made in strong memory mode

SC↑[t← k](t)
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and thus not using low-level machine semantics

¬LL↑[t← k](t).

Therefore the step has no outputs

out↑[t← k](t) = /0

and by Lemma 192 we obtain that the memory is the same

m↑[t← k]l
′+1 = ml′

↑ ,

in particular at the inputs
m↑[t← k]l

′+1 =in↑(l′) ml′
↑ .

The proof now distinguishes between steps of unit i and other steps.

u↑(l′) = i: Because l′ is in the local tail, it is local

L↓(l′).

By contraposition of Lemma 136, the step is not a write buffer step

s(l′) 6∈ ΣWB,i,

and thus a processor step of unit i

s(l′) ∈ ΣP,i.

By Lemma 322 that the schedule is k-abstract

s ∈ ABSk.

With Lemmas 327 and 268 we obtain that the step is done in strong memory
mode

SC↑[t← k](l′+1) = SCi↑[t← k](l′+1)
= SCi↑(l′)

= SCi↑(k) L 327
= SCi↓(k) L 268
= SC↓(k) = 1,

and thus not using low-level machine semantics

¬LL↑[t← k](l′+1).

Therefore the forwarding inputs are empty

f in↑[t← k](l′+1) = /0.

There is thus no hit in the head of the write buffer

¬hit( f in↑[t← k](l′+1),hd(wbl′
↑ (i))).
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The buffer at l′ is the head of the write buffer at l′ followed by the buffer at l′+1
after the move

wbl′
↑ (i) = hd(wbl′

↑ (i))◦ tl(wbl′
↑ (i)) = hd(wbl′

↑ (i))◦wb↑[t← k]l
′+1(i)

and thus the buffers at l′ before the reordering subsume those at l′+ 1 after the
reordering

bu f S↑(s(l′),cl′
↑ ,c↑[t← k]l

′+1).

By Lemma 323 the schedule is valid in the high-level machine before k

Γ
k−1
↑ (s)

and since l′ is before k, in particular step l′ is valid

Γ↑(l′).

By Lemma 187 the claim follows

cl′
↑ =

s(l′)
↑ c↑[t← k]l

′+1.

u↑(l′) 6= i: Since the configurations are nearly the same, the write buffers of that unit
are the same

wb↑[t← k]l
′+1 =u↑[t←k](l′+1) wbl′

↑ .

By Lemma 188 the configurations strongly agree

c↑[t← k]l
′+1 =

s(l′)
↑ cl′

↑ .

Lemma 373. If the schedule has a local tail from t to k that ends with with an issued
write buffer step

LW (t,k),

then at each l′ ∈ [t : k) the configurations are nearly the same and the write buffer of
unit i = u↑(k) at l′+1 after the reordering is the tail of the write buffer at l′

It
↑[t← k]([t→ k], l′+1, l′)∧wb↑[t← k]l

′+1(i) = tl(wbl′
↑ (i)).

Proof. The proof is by induction on l′, starting at t.
In the base case, the first part of the claim is Lemma 190. By Lemma 324 step t

after the move is made by the write buffer of unit i

s[t← k](t) ∈ ΣWB,i

which by definition executes a pop operation

Opi↑[t← k](t) = pop.

The second part of the claim follows by definition and the observation that the
configuration at t is unchanged by moving k to t

wb↑[t← k]l
′+1(i) = Opi↑[t← k](t)(wb↑[t← k]t(i), . . .)
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= tl(wb↑[t← k]t(i))

= tl(wbt
↑(i))

= tl(wbl′
↑ (i)).

In the inductive step l′→ l′+1 we obtain by Lemma 372 that the configurations at
l′ and l′+1 strongly agree

c↑[t← k]l
′+1 =

s[t←k](l′+1)
↑ cl′

↑ .

The first part of the claim follows by Lemma 197. For the second part of the claim,
we distinguish between steps of the same unit and steps of a different unit.

By Lemma 322 the schedule is k-abstract

s ∈ ABSk

and by Lemma 267 the head of the sequence of issued writes is the same

hd(issuek
↑(i)) = hd(issuek

↓(i)).

By definition of LW , that head is already buffered at t

hd(issuek
↑(i))< t

and by the monotonicity of the sequence of issued writes, it is also buffered at l′ ∈ [t : k)

hd(issuek
↑(i)) ∈ issuel′

↑ (i),

and by Lemma 123 we obtain that the corresponding write is an element of the write
buffer at l′

BW↑(. . .) ∈ wbl′
↑ (i),

which is thus non-empty
wbl′
↑ (i) 6= ε.

By Lemma 45 we can change the order of operations, and by Lemma 150 both
steps perform the same operation on the buffer

wb↑[t← k]l
′+2(i) = Opi↑[t← k](l′+1)(wb↑[t← k]l

′+1(i),BW↑[t← k](l′+1))

= Opi↑(l′)(wb↑[t← k]l
′+1(i),BW↑(l′)) L 150

= Opi↑(l′)(tl(wbl′
↑ (i)),BW↑(l′)) IH

= tl(Opi↑(l′)(wbl′
↑ (i),BW↑(l′))) L 45

= tl(wbl′+1
↑ (i)),

and the second part of the claim follows.

Lemma 374. If the schedule has a local tail from t to k that ends with with an issued
write buffer step

LW (t,k),

then for each t ′ ∈ [t : k), the configurations at l′+1 and l′ (in their respective schedule)
strongly agree

c↑[t← k]l
′+1 =

s[t←k](l′+1)
↑ cl′

↑ .
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Proof. By Lemma 373

It
↑[t← k]([t→ k], l′+1, l′)∧wb↑[t← k]l

′+1(i) = tl(wbl′
↑ (i)).

The claim is Lemma 372.

Lemma 375. If the schedule has a local tail from t to k that ends with with an issued
write buffer step

LW (t,k),

then step k has no victims
victims↓(k) = /0.

Proof. By Lemma 322, the schedule is k-abstract

s ∈ ABSk

and by Lemma 267 the machines have the same write buffer for unit i = u↑(k)

wbk
↑(i) = wbk

↓(i)

and by Lemma 269 the same memory mode

SC↑(k) = SC↓(k) = 1.

By Lemma 323, the schedule is valid until k−1 in the high-level machine

Γ
k−1
↑ (s).

Let now j be an arbitrary processor

j ∈ P

and we will show that j is not a victim, which proves the claim.
We obtain first by definition of LW that the memory mode is raised in the high-level

machine
SCi↑(k) = SC↑(k) = 1,

and then with Lemma 176 that there is no hit with processor registers in the high-level
machine

¬hit(APR, j,wbk
↑(i))

and thus also not in the low-level machine

¬hit(APR, j,wbk
↓(i)).

Therefore the domain of the head of the write buffer does not intersect with proces-
sor registers

Dom(hd(wbk
↓(i))) 6 ∩̇ APR, j.

Since we are in the low-level machine we use low-level machine semantics

LL↓(k)

and the write buffer step commits the head of the write buffer to memory

W↓(k) = hd(wbk
↓(i))
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and we conclude that step k is not modifying any processor registers

Dom(W↓(k)) = Dom(hd(wbk
↓(i))

6 ∩̇ APR, j.

By the definition of victims j is not a victim

j 6∈ victims↓(k)

which is the claim.

Lemma 376. If the schedule has a local tail from t to k that ends with with an issued
write buffer step

LW (t,k),

then there is no write-write race between l′ ∈ [t : k) and k in the low-level machine

¬WW↓(l′,k).

Proof. By assumption, step k is a write buffer step made by unit i in strong memory
mode

s(k) ∈ ΣWB,i∧SC↓(k)

and has been issued before t
hd(issuek

↓(i))< t,

and by the monotonicity of the sequence of issued writes, was already issued at l′ ∈ [t :
k)

hd(issuek
↓(i)) ∈ issuel′

↓ (i).

Assume now for the sake of contradiction that there is a write-write race between
step l′ and k, and thus an intersection between the outputs of step l′ and step k

out↓(l′) ∩̇out↓(k)

and thus by definition with the inclusive device closure of the domain of the executed
write in step k

out↓(l′) ∩̇ idc(Dom(W↓(k))).

By Lemma 21 the outputs are closed, and with Lemma 15 we conclude that there
is an intersection between the outputs at l′ and the domain of the write at k

out↓(l′) ∩̇Dom(W↓(k)).

Step k uses low-level semantics

LL↓(k)

and thus the executed write is the head of the write buffer

W↓(k) = hd(wbk
↓(i)),

which by Lemma 123 is the write issued at the timestamp that is the head of the write
buffer

hd(wbk
↓(i)) = BW↓(hd(issuek

↓(i))).
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By Lemma 127 the outputs of step l′ have a hit in the write buffer of unit i at l′

hit(out↓(l′),wbl′
↓ (i)).

By Lemma 322, the schedule is l′-abstract

s ∈ ABSl′

and by Lemma 267 the write buffers at l′ are the same in the two machines

wbl′
↓ = wbl′

↑ ,

and we conclude that there is also a hit in the high-level machine

hit(out↓(l′),wbl′
↑ (i)).

Since the schedule has a local tail from t to k, we obtain that the schedule is valid
until k

Γ
k
↓(s),

and with Lemmas 320 and 321 we obtain that it is also k-ordered and IPI-valid until
k−1

s ∈ ORDk ∧∆
k−1
IPI↓(s).

Since l′+1≤ k we obtain that the schedule is also l′+1-ordered, valid until l′, and
IPI-valid until l′−1

s ∈ ORDl′+1∧Γ
l′
↓ (s)∧∆

l′−1
IPI↓(s),

and by Lemma 305 also l′+1-abstract

s ∈ ABSl′+1.

Since l′ is in the local tail, it is local

L↓(l′)

and by contraposition of Lemma 136 not a write buffer step, in particular not of unit i

s(l′) 6∈ ΣWB,i.

By Lemma 322, the schedule is k-abstract

s ∈ ABSk

and by Lemma 268 has the same mode in both machines

SCi↑(k) = SCi↓(k) = 1.

By Lemma 327, unit i has the same mode at l′ as at k in the high-level machine

SCi↑(l′) = SCi↑(k) = 1.

By Lemma 286 with k := l′, there is no hit of the outputs of step l′ in the write
buffer

¬hit(out↓(l′),wbl′
↑ (i)),

which is a contradiction.
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4.12.5 Combining the Results
We now combine the results of the previous two subsections. We first combine the two
cases in one definition. We say that schedule s has a local tail from t to k with a global
end if it has an independent end or ends with an issued write buffer step, i.e., there is
G ∈ { I,W } such that

LG(t,k).

Clearly in each case the schedule actually has a local tail from t to k.

Lemma 377.
LG(t,k)→L(t,k)

Lemma 378. If the schedule has a local tail from t to k with a global end

LG(t,k),

None of the steps in the local segment are made by its victims

∀t ′ ∈ [t : k).u↓(t ′) 6∈ victims↓(k).

Proof. By case distinction on G.

G = I: Since the schedule has a local tail with an independent end, all of the steps
t ′ ∈ [t : k) are unit-concurrent

ucon↓(k, t ′)

and thus not interrupted
¬int↓(k, t ′)

and thus not made by victims of step k

u↓(t ′) 6∈ victims↓(k).

G =W : The claim follows directly by Lemma 375.

Lemma 379. If the schedule has a local tail from t to k with a global end

LG(t,k),

then the configurations at k and t (in their respective schedule) strongly agree

ck
↓ =

s(k)
↓ c↓[t← k]t .

Proof. By case distinction on G.

G = I: The claim is Lemma 363

G =W : The claim follows directly by Lemma 370.
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Lemma 380. If the schedule has a local tail from t to k with a global end

LG(t,k),

then for each l′ ∈ [t : k), the configurations at l′+1 and l′ (in their respective schedule)
strongly agree

c↑[t← k]l
′+1 =

s[t←k](l′+1)
↑ cl′

↑ .

Proof. By case distinction on G.

G = I: The claim is Lemma 369.

G =W : The claim follows directly by Lemma 374.

Lemma 381. If the schedule has a local tail from t to k with a global end

LG(t,k),

then step t is still IPI-valid after moving k to t

∆IPI↓[t← k](t).

Proof. By Lemma 379 we obtain that step k can be executed at t

c↓[t← k]t =s[t←k](t)
↓ = ck

↓,

and by Lemma 150 its victims are unchanged

victims↓[t← k](t) = victims↓(k).

By Lemma 378 the steps t ′ ∈ [t : k) are not made by victims

u↓(t ′) 6∈ victims↓(k).

Let unit i now be a victim of step k

i ∈ victims↓(k)

and we immediately observe that all steps t ′ ∈ [t : k) are not made by unit i

u↓(t ′) 6= i.

By repeated application of Lemma 96 we conclude that none of those steps change the
write buffer of unit i

wbt
↓ =i . . .=i wbk

↓.

Since the configuration at t is unaffected by moving k to t, the write buffers of
victims of step k are thus the same as at k

∀i ∈ victims↓(k).wb↓[t← k]t =i wbt
↓ =i wbk

↓

and the claim follows

∆IPI↓[t← k](t)≡
∧

i∈victims↓[t←k](t)

wb↓[t← k]t(i) = ε
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≡
∧

i∈victims↓(k)

wb↓[t← k]t(i) = ε

≡
∧

i∈victims↓(k)

wbk
↓(i) = ε

≡ ∆IPI↓(k).

Lemma 382. If the schedule has a local tail from t to k with a global end

LG(t,k),

then step t is ordered after moving k to t

ord[t← k](t).

Proof. We have to show that if the buffer of some unit j is dirty and the step is global,
it is made by the write buffer of unit j

dirty↓[t← k](t, j)∧G↓[t← k](t) !→ s[t← k](t) ∈ ΣWB, j.

We prove this by case analysis on G.

G = I: Since the schedule had a local tail that ends with an independent step from t to
k, the configuration at t was clean

clean↓(t).

The configuration at t is still clean after the reordering

clean↓[t← k](t),

and the claim follows with Lemma 273

ord[t← k](t).

G =W : Assume now hat the buffer was dirty

dirty↓[t← k](t, j).

We conclude it was dirty in the original schedule

dirty↓(t, j),

and since the schedule had a local tail from t to k that ends with an issued write
buffer step, we obtain first that step k was made by the write buffer of some unit
i

s(k) ∈ ΣWB,i

and second that that is the unit with the dirty buffer

j = i.

The claim follows with the observation that step k is now stepped at t

s[t← k](t) = s(k) ∈ ΣWB, j.

373



Lemma 383. If the schedule has a local tail from t to k with a global end

LG(t,k),

then all of the following are true

1. the schedule where k is moved to t is valid until t

Γ
t
↓(s[t← k])

2. the schedule where k is moved to t is IPI-valid until t

∆
t
IPI↓(s[t← k])

3. the schedule where k is moved to t is t+1-ordered

s[t← k] ∈ ORDt+1.

Proof. Since the schedules are the same before t, we obtain

1. the schedule where k is moved to t is valid until t−1

Γ
t−1
↓ (s[t← k])

2. the schedule where k is moved to t is IPI-valid until t−1

∆
t−1
IPI↓(s[t← k])

3. the schedule where k is moved to t is t-ordered

s[t← k] ∈ ORDt .

For step t, we use for validity Lemmas 379 to obtain that the steps strongly agree

ck
↓ =

s(k)
↓ c↓[t← k]t .

and by Lemma 150 that the step is still valid

Γ↓[t← k](t) = Γ↓(k) = 1.

The first claim follows
Γ

t
↓(s[t← k]).

IPI-validity of step t is solved by Lemma 381

∆IPI↓[t← k](t).

The second claim follows
∆

t
IPI↓(s[t← k]).

By Lemma 382, step t is ordered

ord↓[t← k](t).

The third claim follows
s[t← k] ∈ ORDt+1.
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The schedule after the move is k+1-ordered, and each step can be executed at its
new position.

Lemma 384. If the schedule has a local tail from t to k with a global end

LG(t,k),

then all of the following are true for each l′ ∈ [t : k].

1. the schedule where k is moved to t is valid until k

Γ
k
↓(s[t← k])

2. if l′ is after t, then step l′−1 can be executed at l′

l′ > t→ c↓[t← k]l
′
=

s[t←k](l′)
↓ cl′−1

↓ ,

3. the schedule where k is moved to t is IPI-valid until l′

∆
k′
IPI↓(s[t← k])

4. the schedule where k is moved to t is l′+1-ordered

s[t← k] ∈ ORDl′+1.

Proof. The proof is by induction on l′ starting at t.
The base case is Lemma 383.
In the inductive step l′ → l′+ 1, we have that the schedule is l′+1-ordered, valid

and IPI-valid until l′ for all l′ ∈ [t : k]

Γ
l′
↓ (s[t← k])∧∆

l′
IPI↓(s[t← k])∧ s[t← k] ∈ ORDl′+1.

By Lemma 305 it is l′+1-abstract

s[t← k] ∈ ABSl′+1.

By Lemma 380 step l′ can be executed at l′+1

c↑[t← k]l
′+1 =

s[t←k](l′+1)
↑ cl′

↑ .

By Lemma 377 the schedule has a local tail from t to k

L(t,k).

By Lemma 322, schedule s is k-abstract

s ∈ ABSk

and by Lemma 259 we obtain that the low-level machine at l′ strongly agrees with the
high-level machine at l′+1 in the reordered schedule

c↑[t← k]l
′+1 =

s[t←k](l′+1)
↑ cl′

↓ .
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Because step l′ is in the local tail with an independent end, it is local

L↓(l′)

and thus not a shared read
¬ShR↓(l′).

With Lemmas 144 and 269 we obtain that step l′+ 1 in the low-level machine is
not a shared read either

ShR↓[t← k](l′+1) = ShR↑[t← k](l′+1) L 269
= ShR↓(l′) L 144

Thus step l′+1 is semi-ordered

sord↓[t← k](l′+1)

and in fact the schedule is l′+2-semi-ordered

s[t← k] ∈ ORD−l′+2.

With the same lemmas we transfer feasibility

Φ↓[t← k](l′+1) = Φ↑[t← k](l′+1) L 269
= Φ↓(l′) L 144

Thus the schedule is semi-valid until l′+1

ΓΦ
l′+1
↓ (s[t← k]).

and by Lemma 299 and Lemma 144 valid at l′+1

Γ↓[t← k](l′+1) = Γ↑[t← k](l′+1) L 299
= Γ↓(l′) L 144

The schedule is thus valid until l′+1

Γ
l′+1
↓ (s[t← k]),

which is the first claim.
By Lemma 305 the schedule is l′+2-abstract

s[t← k] ∈ ABSl′+2.

Therefore by Lemma 260 in the low-level machines step l′ can be executed at l′+1

c↓[t← k]l
′+1 =

s[t←k](l′+1)
↓ cl′

↓ ,

which is the second claim, and by Lemma 150 step l′+1 is also local

L↓[t← k](l′+1) = L↓(l′) = 1.

By Lemma 135 step l′+1 is IPI-valid

∆IPI↓[t← k](l′+1)
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and thus the schedule is IPI-valid until l′+1

∆
l′+1
IPI↓(s[t← k]),

which is the third claim.
Furthermore, step l′+1 is local and thus ordered

ord↓[t← k](l′+1),

and therefore the schedule is l′+2-ordered

s[t← k] ∈ ORDl′+2,

which is the fourth claim.

Lemma 385. If all steps t ′ ∈ [t : k) are made by a different unit that step k

∀t ′ ∈ [t : k).di f f u(k, t ′),

and step k can be moved to t ≤ k and k can be executed at its new position

cM[t← k]t =s[t←k](t)
M ck

M

and all other steps can be executed at their new position

∀t ′ ∈ [t : k).cM[t← k]t
′+1 =

s[t←k](t ′+1)
M ct ′

M

and there is no write-write race between any of the other steps and step k

∀t ′ ∈ [t : k).¬WWM(t ′,k),

then the configuration at k+1 is unchanged by the move

ck+1
M = cM[t← k]k+1.

Proof. The steps are indeed made by units other than unit uM(k)

∀t ′ ∈ [t : k).uM(k) 6= uM(t ′),

and by repeated application of Lemma 96 we obtain that the buffers of the unit making
step k are the same at t and at k

wbt
M =uM(k) . . .=uM(k) wbk

M.

The buffers at t are unchanged by the reordering

wbM[t← k]t = wbt
M =uM(k) wbk

M.

Since step k can be executed at t, by Lemma 150 it buffers the same write and
executes the same operation, and thus the buffers after that step are also the same

wbM[t← k]t+1(uM(k))

= OpuM(k)M[t← k](t)(wbM[t← k]t(uM(k)),BWM[t← k](t))

= OpuM(k)M(k)(wbM[t← k]t(uM(k)),BWM(k)) L 150
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= OpuM(k)M(k)(wbk
M(uM(k)),BWM(k))

= wbk+1
M (uM(k)).

The steps in the reordered schedule are still made by units other than uM(k)

∀t ′ ∈ [t : k).uM(k) 6= uM[t← k](t ′+1),

and by repeated application of Lemma 96 we obtain that the buffer of the unit making
step k is not changed any further

wbM[t← k]t+1(uM(k)) =uM(k) . . .=uM(k) wbM[t← k]k+1(uM(k)).

We consider now the sequence of writes from t to k, which form a virtual write
buffer8 wb

wb =WM(t)◦ . . .◦WM(k−1).

Note that we can treat this sequence of writes like a write buffer.
Since there is no write-write race with any of those steps

¬WWM(t ′,k),

the outputs of the steps do not intersect

outM(t ′) 6 ∩̇ outM(k)

and thus the inclusive device closure of the domain of the write at t ′ does not intersect
with the outputs at k

idc(Dom(WM(t ′))) 6 ∩̇ outM(k).

The outputs are closed by Lemma 21, and by Lemma 15 we can drop the inclusive
device closure

Dom(WM(t ′)) 6 ∩̇ outM(k).

We conclude for every t ′ that the write of t ′ is not the hit of the outputs at k in the
sequence of writes wb

WM(t ′) 6= hit(outM(k),wb)

and thus the hit can not be an element of the sequence of writes wb, which is made up
exactly of those writes

hit(outM(k),wb) 6∈ wb.

By contraposition of Lemma 47, there is no hit in wb for the outputs

¬hit(outM(k),wb),

and thus not for the inclusive device closure of the domain of the write at k

¬hit(idc(Dom(WM(k))),wb).

Clearly the memory at k+1 is obtained by applying the writes wb (using the over-
loaded definition of ~ from page 46) followed by the write at k to the memory at t

mk+1
M = mk

M~WM(k)

8Note that write buffers are sequences of writes on memory region BA whereas this is a sequence of
writes on memory region

⋃
i ACCi. Still, all functions etc. we use are well-defined also for such sequences

of writes.
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= . . .

= mt
M~WM(t)~ . . .~WM(k−1)~WM(k)

= mt
M~(WM(t)◦ . . .◦WM(k−1))~WM(k)

= mt
M~wb~WM(k)

and by Lemma 55 the writes wb and the write at k can be swapped

= mt
M~WM(k)~wb

and using the same arguments as before, we obtain that this is exactly the configuration
at t after the reordering, updated by the write at t after the reordering

= mM[t← k]t~WM[t← k](t)~wb

= mM[t← k]t+1~wb

= mM[t← k]t+1~(WM(t)◦ . . .◦WM(k−1))

and by Lemma 150 we obtain that all those writes are the writes executed one step later
in the reordered schedule

= mM[t← k]t+1~(WM[t← k](t +1)◦ . . .◦WM[t← k](k))

= mM[t← k]t+1~WM[t← k](t +1)~ . . .~WM[t← k](k)

= mM[t← k]k+1.

It now remains to show that the buffers of the other units are the same after the
reordering. By Lemma 190 we obtain that the configurations at t before and t +1 after
the reordering are nearly the same

It
M[t← k]([t→ k], t +1, t),

and by repeatedly applying Lemma 197 we can push this until k

It
M[t← k]([t→ k],k+1,k).

We simply apply Lemma 199 and obtain that the configurations at k+1 are nearly
the same

It
M[t← k][t→ k]([t← k],k+1,k+1).

We observe that moving k to t and then t to k is a no-op

It
M([t← k],k+1,k+1).

We immediately obtain the claim

∀i 6= uM(k).wbk+1
M =i wbM[t← k]k+1.

Lemma 386. If the schedule has a local tail from t to k with a global end

LG(t,k),

then there is no write-write race between l ∈ [t : k) and k in the low-level machine

¬WW↓(l,k).

379



Proof. By case distinction on G.

G = I: The claim is Lemma 365.

G =W : The claim is Lemma 376.

We can now easily show that the schedules are equivalent.

Lemma 387. If the schedule has a local tail from t to k with a global end

LG(t,k),

then the configurations at k+1 are the same and the schedules are equivalent

c↓[t← k]k+1 = ck+1
↓ ∧ s≡↓ s[t← k].

Proof. By Lemma 379 step k can be moved to t

ck
↓ =

s(k)
↓ c↓[t← k]t .

By Lemma 384, for all t ′ ∈ (t : k], t ′−1 can be moved to t ′

c↓[t← k]t
′
=

s[t←k](t ′)
↓ ct ′−1

↓ .

By an index shift by one we obtain that all t ′ ∈ [t : k) can be moved to t ′+1

c↓[t← k]t
′+1 =

s[t←k](t ′+1)
↓ ct ′

↓ .

By Lemma 386, there is no write-write race between k and any of those t ′

¬WW↓(t ′,k).

By Lemma 385, the final configuration at k+1 is the same in both schedules

c↓[t← k]k+1 = ck+1
↓ .

The claim follows with Lemma 118.

Lemma 388. If the schedule has a local tail from t to k with a global end

LG(t,k),

and was valid and IPI-valid everywhere

∀t ′.∆IPI↓(t ′)∧Γ↓(t ′),

the reordered schedule also is

∀t ′.∆IPI↓[t← k](t ′)∧Γ↓[t← k](t ′),
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Proof. For the steps before k+1, the claim is Lemma 384.
For the steps at and after k+ 1, we have by Lemma 387 that the configurations at

k+1 are the same
c↓[t← k]k+1 = ck+1

↓

and that the schedules starting from k+1 are the same

s[k+1 : ∞] = s[t← k][k+1 : ∞],

and by straightforward induction all configurations t ′ ≥ k+1 are the same

c↓[t← k]t
′
= ct ′
↓ .

Therefore all steps t ′ ≥ k+1 are the same

X↓[t← k](t ′) = X↓(c↓[t← k]t
′
,s[t← k](t ′)) = X↓(ct ′

↓ ,s(t
′)) = X↓(t ′)

and the claim follows.

We wish to show that our reordering only reorders when there is a local tail from t
to kt with a global end. For this to work, we need to add as an invariant that whenever
we allow a shared write to enter the buffer, it is committed at the next global step.
Again, the next global step is only known to exist if the schedule is balanced and valid.
In order to prove that there is a local tail, we also need IPI-validity. Since the hardware
(hopefully) provides such a schedule, we say that s is a hardware schedule when those
properties hold

s ∈ HW ⇐⇒ s ∈ bal∧∀t ′.Γ↓[s](t ′)∧∆IPI↓[s](t ′).

Since hardware schedules are balanced, we can always use the definitions for con-
structing an ordered schedule from page 304, i.e., the next global or pushable step gt
and the next step kt to be moved to the front.

We say that the schedule in iteration t is ready and write R[s](t) when each dirty
buffer buffer contains only a single write, which is the write committed at the next
global step

R[s](t)≡ ∀i.dirty↓Ot(t, i)→ sOt(gt) ∈ ΣWB,i∧ issue↓Ot
t(i) = hd(issue↓O

gt
t (i)).

Since the sets oracle inputs are disjoint, this immediately implies that there is at
most one dirty buffer: the one of the unit that will also commit it next. This ensures that
we can always commit that write (i.e., move it to the front) without causing conflicts.

We show that the first schedule is ready.

Lemma 389. The schedule in iteration 0 is ready

R(0).

Proof. Assume that some buffer is dirty

dirty↓O0(0, i)

and thus has a write issued from t ′

t ′ ∈ issue↓O0(0).
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This contradicts the fact that the sequence of issued writes is empty at 0

issue↓O0(0) = ε.

We never move a step across the next global or pushable step.

Lemma 390.
sOt ∈ HW → kt ≤ gt .

Proof. We distinguish whether step gt is a write buffer step in strong memory mode or
not.

SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i: By definition kt is the first step made by processor i be-
fore the head of the buffer at gt , or it is equal to gt

kt = min
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
.

Obviously gt is in that set

gt ∈
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
,

and the claim follows

kt = min
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
≤ gt .

¬(SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i): In this case we take kt to be the first step that is not
unit-concurrent

kt = min
{

k ≥ t
∣∣ ¬ucon↓Ot(gt ,k)

}
.

The unit making step gt is obviously the same as the unit making step gt

u↓Ot(gt) = u↓Ot(gt),

from which we conclude that step gt is not unit-concurrent with itself

¬ucon↓Ot(gt ,gt).

Thus gt is in that set

gt ∈
{

k ≥ t
∣∣ ¬ucon↓Ot(gt ,k)

}
and the claim follows

kt = min
{

k ≥ t
∣∣ ¬ucon↓Ot(gt ,k)

}
≤ gt .

If kt is global, it is the next global step.

Lemma 391.
sOt ∈ HW ∧G↓Ot(kt)→ kt = gt .
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Proof. By definition gt is the first global or pushable step

gt = min
{

g≥ t
∣∣ G↓Ot(g)∨ p↓Ot(g)

}
.

By Lemma 390, the step is before or equal to gt

kt ≤ gt ,

and since kt is by assumption global, it can not be earlier than gt

kt ≥ gt

and the claim follows
kt = gt .

When kt is local, steps before kt are made by a different unit than kt .

Lemma 392.

sOt ∈ HW ∧L↓Ot(kt)→∀t ′ ∈ [t : kt).di f f uOt(kt , t ′).

Proof. Assume for the sake of contradiction that step t ′ ∈ [t : kt) is made by the same
unit

u↓Ot(t ′) = u↓Ot(kt).

We distinguish between the cases in the definition of kt .

SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i: In this case kt is the first step of a processor before or
equal to the head of the sequence of issued writes, or equal to gt

kt = min
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
,

and since write buffer step gt is by Lemma 136 global

G↓Ot(gt)

and kt is not, we conclude that they are not the same

kt 6= gt

and thus kt is the first processor step of unit i

sOt(kt) ∈ ΣP,i∧∀t ′′ ∈ [t : kt).sOt(t ′′) 6∈ ΣP,i.

In particular, step t ′ is not made by processor i

sOt(t ′) 6∈ ΣP,i.

Since t ′ is made by the same unit as kt , it must be made by the write buffer of
unit i

sOt(t ′) ∈ ΣWB,i

and thus by Lemma 136 it must be a global step

G↓Ot(t ′),
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and thus must be after or equal to step gt

t ′ ≥ gt .

Since it is before step kt , step kt must also be before gt

kt > t ′ ≥ gt ,

but this contradicts Lemma 390.

¬(SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i): By definition, step kt is the first step that is not unit
concurrent with step gt

kt = min
{

k ≥ t
∣∣ ¬ucon↓Ot(gt ,k)

}
.

It is thus not unit-concurrent with step gt , whereas t ′ is

¬ucon↓Ot(gt ,kt)∧ucon↓Ot(gt , t ′).

Unfolding the definitions and using the fact that both steps are made by the same
unit yields a contradiction

¬ucon↓Ot(gt ,kt)≡ ¬(di f f uOt(gt ,kt)∧¬int↓Ot(gt ,kt))

≡ ¬(u↓Ot(gt) 6= u↓Ot(kt)∧¬(u↓Ot(kt) ∈ victims↓Ot(gt))

≡ ¬(u↓Ot(gt) 6= u↓Ot(t ′)∧¬(u↓Ot(t ′) ∈ victims↓Ot(gt))

≡ di f f uOt(gt , t ′)∧¬int↓Ot(gt , t ′)

≡ ¬ucon↓Ot(gt , t ′).

Lemma 393. If the schedule is a hardware schedule and t-ordered

sOt ∈ HW ∩ORDt ,

it has a local tail until gt and until kt

LOt(t,kt)∧LOt(t,gt).

Proof. By definition gt is the first global or pushable step

gt = min
{

g≥ t
∣∣ G↓Ot(g)

}
∨ p↓Ot(g).

Thus all steps between t and gt are local

∀t ′ ∈ [t : gt).L↓Ot(t ′).

Since all steps are valid and IPI-valid, so are all steps until gt resp. t

Γ
gt
↓ (sOt)∧∆

t
IPI↓(sOt),

and thus the schedule has a local tail until gt

LOt(t,gt).
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By Lemma 390, kt is before or equal to gt

kt ≤ gt

and thus all steps before kt are also local

∀t ′ ∈ [t : kt).L↓Ot(t ′)

and all steps until kt are valid
Γ

kt
↓ (sOt).

It follows that the schedule also has a local tail until kt

LOt(t,kt).

Lemma 394. When the schedule is a hardware schedule

sOt ∈ HW

and the schedule is ready and has a local tail until gt

R(t)∧LOt(t,gt),

then if the buffer of some unit is dirty, the next step is made by the write buffer of that
unit and in strong memory mode.

dirty↓Ot(t, i)→ SC↓Ot(kt)∧ sOt(kt) ∈ ΣWB,i.

Proof. Since the write buffer is dirty, it is in strong memory mode and has a shared
write in the buffer from t ′

SCi↓Ot(t)∧ t ′ ∈ issue↓Ot
t(i)∧Sh↓Ot(t ′).

Since the schedule is ready, the next global or pushable step is made by a write buffer
and the write buffer at t only contains the write to be committed

sOt(gt) ∈ ΣWB,i∧ issue↓Ot
t(i) = hd(issue↓O

gt
t (i)).

Thus the write t ′ must be that write, which by the monotonicity of write buffers was
issued before t

t ′ = hd(issue↓O
gt
t (i))< t.

By Lemma 328 with k := gt we obtain that the step uses the same memory mode and
is thus in strong memory mode

SC↓Ot(gt) = SCi↓Ot(gt) = SCi↓Ot(t) = 1.

Thus gt is a write buffer step in strong memory mode

SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i,

and by definition kt is the first step of a processor before or equal to the head of the
sequence of issued writes, or equal to gt

kt = min
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
,

and since the head of the sequence of issued writes is before t, there are no such pro-
cessor steps and kt is gt

kt = gt .

The claim immediately follows.
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Lemma 395. When the schedule is a hardware schedule

sOt ∈ HW

and the schedule in iteration t is ready and has a local tail until kt and gt , then it has a
local tail with a global end at kt .

R(t)∧LOt(t,kt)∧LOt(t,gt)→∃G ∈ {W, I } .LGOt(t,kt).

Proof. We distinguish whether kt is a write buffer step in strong memory mode or not.

SC↓Ot(kt)∧ sOt(kt) ∈ ΣWB,i: In this case we choose G :=W , and show the four claims
in the definition of LW .

By assumption the schedule has a local tail until kt and step kt is a write buffer
step in strong memory mode, which solves the first two claims.

By Lemma 136, the step is global

G↓Ot(kt)

and thus by Lemma 391 it is the next global step

kt = gt .

By definition kt is the first step made by processor i at or before the head of the
buffer at gt , or it is equal to gt

kt = min
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
,

and we conclude that there are no steps before gt made by processor i at or before
the head of the buffer at gt

@k ∈ [t : gt).sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O
gt
t (i)).

By the monotonicity of the sequence of issued writes, all writes, including the
head element, entered the buffer before gt

hd(issue↓O
gt
t (i))< gt ,

and since only processor steps issue writes we know that the head of the write
buffer was issued by a processor step

sOt(hd(issue↓O
gt
t (i))) ∈ ΣP,i.

We conclude that the head of the write buffer was not issued between t and gt

hd(issue↓O
gt
t (i)) 6∈ [t : gt),

and since it was not issued after gt either, it must have been issued before t

hd(issue↓O
gt
t (i))< t,

which solves the third claim.
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For the fourth claim, assume that the buffer of some unit j is dirty

dirty↓Ot(t, j).

Since the schedule is ready, the next global or pushable step is made by the write
buffer of unit j

sOt(gt) ∈ ΣWB, j.

Step kt is the same step, and thus step kt is made by the write buffer of unit j

sOt(kt) ∈ ΣWB, j.

Since we have already established that step kt is made by the write buffer of unit
i, the claim follows

i = j.

¬(SC↓Ot(kt)∧ sOt(kt) ∈ ΣWB,i): In this case we choose G := I, and show the four
claims in the definition of LI .

The first claim is an assumption.

By contraposition of Lemma 394 there is no dirty buffer at t

∀i.¬dirty↓Ot(t, i)

and thus by definition the configuration is clean

clean↓Ot(t),

which is the second claim.

The third claim is an assumption.

For the fourth claim, we distinguish whether step kt is global or local.

G↓Ot(kt): By Lemma 391, step kt is the next global step

kt = gt .

Since kt is not a write buffer step in strong memory mode, neither is gt

¬(SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i),

and kt is defined to be the first step that is not unit-concurrent with gt

kt = min
{

k ≥ t
∣∣ ¬ucon↓Ot(gt ,k)

}
.

We conclude that all steps before kt are unit-concurrent with gt

∀t ′ ∈ [t : kt).ucon↓Ot(gt , t ′)

and thus also all steps before gt , which is the claim

∀t ′ ∈ [t : gt).ucon↓Ot(gt , t ′).
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L↓Ot(kt): We obtain by Lemma 392 that all steps before step kt are made by
different units

∀t ′ ∈ [t : kt).di f f uOt(kt , t ′),

and by Lemma 134 that step kt has no victims

victims↓Ot(kt) = /0.

Let now t ′ ∈ [t : kt) be one of the steps in question. Since step kt has no
victims, the unit making step t ′ is not among them

u↓Ot(t ′) 6∈ victims↓Ot(kt)

and thus step t ′ is not interrupted by step kt

¬int↓Ot(kt , t ′).

The claim follows by definition

ucon↓Ot(kt , t ′).

Lemma 396. When in an t+1-abstract schedule that is valid until t

Γ
t
↓(s)∧ s ∈ ABSt+1

a step makes a buffer dirty, it is a shared buffered write in strong memory mode

¬dirtyt
↓(i)∧dirtyt+1

↓ (i)→ s(t) ∈ ΣP,i∧SC↓(t)∧Sh↓(t)∧BW↓(t) 6= /0.

Proof. By Lemma 271 the schedule is valid in the high-level machine

Γ
t
↑(s).

Since the configuration is dirty at t +1, unit i is in strong memory mode and there
is a shared write in the buffer

SCi↓(t +1)∧∃t ′ ∈ issuet+1
↓ (i).Sh↓(t ′).

Clearly the sequence of issued writes is non-empty

issuet+1
↓ (i) 6= ε

and by Lemma 123 we obtain that the write buffer at t +1 is non-empty

wbt+1
↓ (i) 6= ε.

By Lemma 267 we obtain that the buffer in the high-level machine is also non-
empty

wbt+1
↑ (i) = wbt+1

↓ (i) 6= ε.

By contraposition of Condition Switch we obtain that step t did not change the
mode in the high-level machine

SCi 6∈ out↑(t)
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and by Lemma 138 the mode is indeed unchanged

SCi↑(t) = SCi↑(t +1).

Using twice Lemma 268 we obtain that the mode was also unchanged in the low-
level machine

SCi↓(t) = SCi↑(t) = SCi↑(t +1) = SCi↓(t +1) = 1.

Since the buffer however was not dirty at t, we conclude that no shared write was
buffered at t

@t ′ ∈ issuet
↓(i).Sh↓(t ′).

Since such a write is in the buffer at t +1 but not in t, we conclude that the buffer
has grown and thus the operation at t was a push

Opi↓(t) = push

and thus step t was made by a processor and is buffering a write

s(t) ∈ ΣP,i∧BW↓(t) 6= /0.

We also conclude that the step was in strong memory mode

SC↓(t) = SCi↓(t) = 1.

Since step t is the only new element in the buffer, it must be the shared write

Sh↓(t),

and the claim follows.

Lemma 397. When the schedule is a hardware schedule

sOt ∈ HW

and ready and has a local tail from t to gt and from t to kt

R(t)∧LOt(t,gt)∧LOt(t,kt),

and also in iteration t +1 from t +1 to gt+1

LOt+1(t +1,gt+1),

then it is also ready in iteration t +1

R(t +1).

Proof. Assume that the buffer of some unit i is dirty at t +1

dirty↓Ot+1(t +1, i).

Note that step t in this schedule is kt from the previous schedule

sOt+1(t) = sOt [t← k](t) = sOt(kt).

We distinguish whether step gt was a write buffer step in strong memory mode or
not.
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SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i: By definition kt is the first step made by processor i be-
fore the head of the buffer at gt , or it is equal to gt

kt = min
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
.

We distinguish between those two cases.

sOt(kt) ∈ ΣP,i∧ kt ≤ hd(issue↓O
gt
t (i)): We obtain that t is not after the head of

the sequence of issued writes at gt

t ≤ kt ≤ hd(issue↓O
gt
t (i))

Since write buffers are monotone, all writes in the buffer at t were issued
before t, and thus the head of the sequence of issued writes at gt can not be
among them

hd(issue↓O
gt
t (i)) 6∈ issue↓Ot

t(i).

We conclude that the head of the sequence of issued writes at gt is not the
head of the sequence of issued writes at t

hd(issue↓O
gt
t (i)) 6= hd(issue↓Ot

t(i)).

By contraposition of Lemma 326 we obtain that the sequence of buffered
writes at t was empty

issue↓Ot
t(i) = ε,

and since the schedule before t is unchanged by the reordering, the se-
quence is also empty at t in the reordered schedule

issue↓Ot
t+1(i) = issue↓Ot [t← kt ]

t(i) = issue↓Ot
t(i) = ε.

However the list of issued writes at t + 1 by assumption contains a shared
write

∃t ′ ∈ issue↓Ot+1
t+1(i).Sh↓Ot+1(t ′).

We conclude that the shared write in the buffers at t +1 was added by step
t

issue↓Ot+1
t+1(i) = t ∧Sh↓Ot+1(t).

By Lemma 326, the head of the write buffer at t +1 is the head of the write
buffer at gt+1

t = hd(issue↓Ot+1
t+1(i)) = hd(issue↓O

gt+1
t+1 (i)).

By Lemma 390, step kt is before or equal to step gt

kt ≤ gt .

Since step kt is a processor step and step gt is a write buffer step, they are
not the same

kt 6= gt ,

and thus gt is greater than kt
gt > kt
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and thus not moved and still a write buffer step

sOt+1(gt) = sOt [t← kt ](gt) = sOt(gt) ∈ ΣWB,i

and thus by Lemma 136 still global

G↓Ot+1(gt).

By Lemma 395 the schedule had a local tail with a global end until kt

LGOt(t,kt)

and by Lemma 384 with l′ : t ′+ 1, all steps t ′ ∈ [t : kt) can be executed at
their new position

c↓Ot ′
t =

sOt [t←k](t ′+1)
↓ c↓Ot [t← k]t

′+1 = c↓Ot ′+1
t+1

and by Lemma 150 are still local

L↓Ot+1(t ′+1) = L↓Ot [t← k](t ′+1) = L↓Ot(t ′) = 1.

We conclude with an index shift by one that now all steps from t+1 before
kt +1 are still the same

∀t ′ ∈ [t +1 : kt +1).L↓Ot+1(t ′).

By Lemma 387 the configurations at kt +1 are the same

c↓O
kt+1
t+1 = c↓Ot [t← k]kt+1 = c↓O

kt+1
t ,

and since the steps after kt are unchanged by the reordering

sOt+1[kt +1 : ∞] = sOt [t← kt ][kt +1 : ∞] = sOt [kt +1 : ∞],

the configurations at t ′ ∈ [kt +1 : gt) are also the same

c↓Ot ′
t+1 = c↓Ot ′

t

and thus the steps are still local

L↓Ot+1(t ′) = L↓(c↓Ot ′
t+1,sOt+1(t ′)) = L↓(c↓Ot ′

t ,sOt(t ′)) = L↓Ot(t ′) = 1.

Combining the two intervals, we obtain that all steps from t + 1 before gt
are now local

∀t ′ ∈ [t +1 : gt).L↓Ot+1(t ′),

and thus step gt is still the first global step

gt+1 = gt .

The claim follows

sOt+1(gt+1) = sOt(gt) ∈ ΣWB,i∧ issue↓Ot+1
t+1(i) = t = hd(issue↓O

gt+1
t+1 (i)).
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kt = gt : In this case sOt+1(t) is a write buffer step

sOt+1(t) = sOt [t← kt ](t) = sOt(kt) = sOt(gt) ∈ ΣWB,i,

which performs a pop operation

Opi↓Ot+1(t) = pop.

Thus the buffer at t contains all elements of the buffer at t + 1, and one
additional element

issue↓Ot
t+1(i) = hd(issue↓Ot

t+1(i))◦ tl(issue↓Ot
t+1(i))

= hd(issue↓Ot
t+1(i))◦ issue↓Ot+1

t+1(i).

The buffer at t is unchanged by moving kt to t

issue↓Ot
t(i) = issue↓Ot

t+1(i)

= hd(issue↓Ot
t+1(i))◦ issue↓Ot+1

t+1(i).

Let t ′ be a write that makes the buffer at t +1 dirty

t ′ ∈ issue↓Ot+1
t+1(i)∧Sh↓Ot+1(t ′).

This write was therefore already buffered at t in the previous schedule

t ′ ∈ issue↓Ot
t(i),

and by the monotonicity of the sequence of issued writes it was issued
before t

t ′ < t

and thus the step that issued it is unaffected by moving kt to t, and thus the
step was shared in the previous schedule

Sh↓Ot(t ′) = Sh↓Ot [t← kt ](t ′) = Sh↓Ot+1(t ′).

Thus the buffer is dirty at t in the previous schedule

dirty↓Ot(t, i),

and since the schedule was ready, the buffer contained only one element

issue↓Ot
t(i) = hd(issue↓O

gt
t (i)),

which contradicts the fact that it contained at least two elements.

¬(SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i): If the step is not sequentially consistent, it is not dirty
by definition of dirty, and if the step is not a write buffer step, it is not dirty by
contraposition of readiness at t. In each case, the buffer at t was not dirty

¬dirty↓Ot(t, i).

Since the schedule before t is unaffected by the reordering, the buffer at t is not
dirty in the reordered schedule either

¬dirty↓Ot+1(t, i).
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The schedule is a hardware schedule and thus valid, in particular until t

Γ
t
↓(sOt+1).

Since the reordered schedule has a local tail starting at t + 1, we obtain with
Lemma 322 that it is t+1-abstract

sOt+1 ∈ ABSt+1.

Since the buffer is dirty at t + 1 but not at t, we conclude with Lemma 396 that
step t is a shared processor step that buffered a write in strong memory mode

sOt+1(t) ∈ ΣP,i∧SC↓Ot+1(t)∧Sh↓Ot+1(t)∧BW↓Ot+1(t) 6= /0.

By Lemma 271 the schedule is valid in the high-level machine until t

Γ
t
↑(sOt+1).

Using Lemmas 269 and 270 we obtain that the step is also a shared step buffering
a write in the high-level machine

Sh↑Ot+1(t)∧BW↑Ot+1(t) 6= /0.

Thus in particular the domain of the prepared buffered write is non-empty

Dom(PW↑Ot+1(t).wba) = Dom(BW↑Ot+1(t)) 6= /0,

and with Condition AtomicWrite we obtain that step t did not prepare any by-
passing writes (except to the normal processor registers)

Dom(PW↑Ot+1(t).bpa)⊆ ANPR,i.

By contraposition of Condition AtomicRMW we obtain further that step t is not
a shared read

¬ShR↑Ot+1(t).

Using Lemmas 269 and 270 we conclude the same for the low-level machine

Dom(PW↓Ot+1(t).bpa)⊆ ANPR,i∧¬ShR↓Ot+1(t).

We conclude by Lemma 120 that the step is not a memory write in the low-level
machine

¬mwrite↓Ot+1(t),

and since it is also not shared, it is by definition not global

¬G↓Ot+1(t).

Clearly the oracle input at t in the reordered schedule is the oracle input at kt in
the previous schedule

sOt+1(t) = sOt [t← kt ](t) = sOt(kt),
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which was thus also made by processor i

sOt(kt) ∈ ΣP,i.

By Lemma 395 we obtain that the schedule has a local tail with a global end
from t to kt

LGOt(t,kt),

and by Lemma 379 we obtain that step kt can be executed at its new position

c↓O
kt
t =

sOt (kt )
↓ c↓Ot [t← kt ]

t = c↓Ot
t+1

and from Lemma 150 we obtain that it was not a global step at its old position
either, and also buffered a write

¬G↓Ot(kt)∧BW↓Ot(kt) 6= /0

and by definition of p it also was not a pushable step

¬p↓Ot(kt)

from which we conclude that it is not the next global or pushable step gt

kt 6= gt .

Also by Lemma 150 we obtain that the step was also shared

Sh↓Ot(kt) = Sh↓Ot+1(t) = 1.

By definition, the operation at kt was a push

Opi↓Ot(kt) = push,

and kt was an issued write at kt +1

kt ∈ issue↓O
kt+1
t (i).

By Lemma 390, step kt is before or equal to step gt

kt ≤ gt .

Since we already know that they are not equal, step kt must have been before
step gt

kt < gt

and thus step kt +1 is before or equal to step gt

kt +1≤ gt .

By Lemma 325 the sequence of issued writes at gt has grown by some suffix q

issue↓O
gt
t (i) = issue↓O

kt+1
t (i)◦q
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and thus the issued write is still buffered at gt

kt ∈ issue↓O
gt
t (i).

We conclude that the sequence is not empty

issue↓O
gt
t (i) 6= ε,

and by Lemma 123 the write buffer is also not empty

wb↓O
gt
t (i) 6= ε.

Thus by definition of p step gt is not pushable

¬p↓Ot(gt)

and by definition of gt it is global

G↓Ot(gt).

Since the drain condition holds at gt , unit i can thus not be a victim of step gt

i 6∈ victims↓Ot(gt).

Since step kt is made by that unit

u↓Ot(kt) = i,

step gt does not interrupt step kt

¬int↓Ot(gt ,kt).

By definition we take kt to be the first step that is not unit-concurrent

kt = min
{

k ≥ t
∣∣ ¬ucon↓Ot(gt ,k)

}
,

from which we conclude that the step is not unit-concurrent

¬ucon↓Ot(gt ,kt).

Thus it is either made by the same unit as or interrupted by step gt

u↓Ot(gt) = u↓Ot(kt)∨ int↓Ot(gt ,kt).

Since we have already excluded the interrupt, step gt must be made by the same
unit

u↓Ot(gt) = u↓Ot(kt) = i.

With Lemma 322 we obtain that the previous schedule was gt -abstract

sOt ∈ ABSgt ,

and with Lemma 269 we obtain that step gt is feasible in the high-level machine

Φ↑Ot(gt) = Φ↓Ot(gt) = 1.
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With Lemma 267 we obtain that the sequence of issued writes is the same in the
two machines

issue↑O
gt
t (i) = issue↓O

gt
t (i),

and thus step kt is buffered in the high-level machine as well

kt ∈ issue↑O
gt
t (i).

Furthermore, since the schedule is gt -abstract and step gt is after or equal to step
kt +1, the schedule is also kt+1-abstract

sOt ∈ ABSkt+1,

and by Lemma 270, step kt is also shared in the high-level machine

Sh↑(kt).

The schedule is also kt -abstract

sOt ∈ ABSkt .

Again by Lemmas 150 and 269, we obtain that the step was in strong memory
mode

SC↑Ot(kt) = SC↓Ot(kt) L 269
= SC↓Ot+1(t) L 150
= 1.

Thus the unit was in strong memory mode at kt

SCi↑Ot(kt) = SC↑Ot(kt) = 1.

By Lemma 323 the schedule is valid until gt −1

Γ
gt−1
↑ (sOt),

and since it is feasible at gt it is semi-valid until gt

ΓΦ
gt
↑ (sOt).

Using Lemma 168, we obtain that the memory mode of unit i has not changed
until gt

SCi↑Ot(kt) = SCi↑Ot(gt),

and thus step gt is made in strong memory mode

SC↑(gt).

Since it is not made by a write buffer in strong memory mode, it is made by a
processor; since it is made by the same unit as step kt , it is made by the processor
of unit i

sOt(gt) ∈ ΣP,i.

396



Thus step gt has a buffered shared write from kt , and by Condition Flush we
obtain that step gt is not a shared read

¬ShR↑Ot(gt).

By Lemma 269 we obtain that it is also not a shared read in the low-level machine

¬ShR↓Ot(gt),

and we conclude that it is semi-ordered

sord↓Ot(gt).

By Lemma 320 the schedule is gt -ordered

sOt ∈ ORDgt ,

and it is thus gt+1-semi-ordered

sOt ∈ ORD−gt+1.

Since it is valid and IPI-valid, it is so in particular until gt resp. gt −1

Γ
gt
↓ (sOt)∧∆

gt−1
IPI↓ (sOt),

and by Lemma 305 the schedule is gt+1 abstract

sOt ∈ ABSgt+1.

We conclude with Lemma 271 that the schedule is valid until gt in the high-level
machine

Γ
gt
↑ (sOt).

Since step gt is not a shared read but global, it is a shared memory write

mwrite↓Ot(gt)∧Sh↓Ot(gt).

The schedule is clearly gt -abstract

sOt ∈ ABSgt ,

and by Lemma 269 step gt is also shared in the high-level machine

Sh↑Ot(gt).

By Lemma 120, the domain of the prepared bypassing writes is not contained in
the normal processor registers

Dom(PW↓Ot(gt).bpa) 6⊆ ANPR,i.

By Lemma 270 this also holds in the high-level machine

Dom(PW↑Ot(gt).bpa) 6⊆ ANPR,i,
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And by Condition MessagePassing the buffer must be empty

wb↑O
gt
t (i) = ε,

and by Lemma 123 so must the sequence of issued writes

issue↑O
gt
t (i) = ε,

which contradicts the fact that kt is an issued write.

We now prove that the reordering strategy indeed creates an ordered prefix.

Theorem 1. If the original schedule is a hardware schedule

s ∈ HW,

then in each iteration the following properties hold.

1. the schedule is equivalent to the original schedule,

sOt ≡↓ s,

2. the schedule is a hardware schedule

sOt ∈ HW,

3. the schedule is t-ordered
sOt ∈ ORDt ,

4. the schedule is ready
R(t).

Proof. The proof is by induction on t.
In the base case, the first claim is trivial. The third claim is by assumption. The

second claim is trivial. The fourth claim is Lemma 389.
In the inductive step t → t + 1, we obtain by Lemma 393 with the induction hy-

pothesis that the schedule has a local tail until kt and until gt

LOt(t,kt)∧LOt(t,gt).

By Lemma 395 we obtain that the schedule has a local tail with a global end from
t to kt

LGOt(t,kt).

The first claim follows with Lemma 387

s≡↓ sOt ≡↓ sOt [t← kt ] = sOt+1.

Since the previous schedule is a hardware schedule, it is balanced, valid, and IPI-
valid

sOt ∈ bal∧∀t ′.∆IPI↓Ot(t ′)∧Γ↓Ot(t ′).
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By Lemma 307 the reordered schedule is still balanced

sOt+1 ∈ bal.

By Lemma 388 the schedule after the reordering is still valid and IPI-valid

∀t ′.∆IPI↓Ot [t← kt ](t ′)∧Γ↓Ot [t← kt ](t ′),

which is the schedule in iteration t +1

∀t ′.∆IPI↓Ot+1(t ′)∧Γ↓Ot+1(t ′).

The third claim follows
sOt+1 ∈ HW.

By Lemma 383 the reordered schedule is t+1-ordered, and the third claim follows

sOt+1 = sOt [t← kt ] ∈ ORDt+1.

By Lemma 393 we obtain now that the reordered schedule has a local tail until gt+1

LOt+1(t +1,gt+1),

and the fourth claim is just Lemma 397.

4.13 Infinite Schedules
The above method generates schedules where a finite prefix is reduced. We want to
obtain an equivalent schedule which is completely reduced. Note that the above method
never changes the finite reduced prefix.

Lemma 398.
t ≤ t ′→ sOt [0 : t−1] = sOt ′ [0 : t].

Proof. By induction on t ′ starting at t. The base case is trivial.
In the inductive step t ′→ t ′+1, we reorder only steps from t ′

Ot ′+1 = Ot ′ [t
′← kt ′ ]

which does not change the steps before t ′ and the claim follows with the induction
hypothesis

sOt ′+1[0 : t−1] = sOt ′ [t
′← kt ′ ][0 : t−1] = sOt ′ [0 : t−1] = sOt [0 : t−1].

If we now raise t ′ towards infinity, we obtain a longer and longer prefix which is
reduced. In the “limit”9, we obtain a schedule s∞

s∞(t) = sOt+1(t).

Assume for the remainder of this section that the original schedule is a hardware
schedule

s ∈ HW,

and thus by Theorem 1 also all finite reorderings are hardware schedules

sOt ∈ HW.
9We do not use a formal meaning of limit here; we simply define a schedule s∞ that we call the limit.
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4.13.1 Fairness
We have to show that every step l of s is eventually added to s∞. This is the case if in
some iteration t, the new position of l after iteration t is equal to t.

We first show that the function mv which tracks the movement of steps also tracks
the position of the n-th step of object X .

Lemma 399.
mv[t← kt ](#X≈n(sOt)) = #X≈n(sOt+1).

Proof. Follows with Lemmas 77 and 117

mv[t← kt ](#X≈n(sOt)) =


t #X≈n(sOt) = kt

#X≈n(sOt)+1 #X≈n(sOt) ∈ [t : kt)

#X≈n(sOt) o.w.

= #X≈n(sOt [t← kt ]) L 117
= #X≈n(sOt+1).

We show that these steps always strongly agree.

Lemma 400.

sOt(k) = sOt+1(mv[t← kt ](k))∧ c↓Ok
t =

sOt (k)
↓ c↓O

mv[t←kt ](k)
t+1 .

Proof. By Theorem 1 the schedules are equivalent

sOt ≡↓ s≡↓ sOt+1.

Clearly step k is the n-th step of some object X

k = #X≈n(sOt))

and by Lemma 399 step mv[t ← kt ](k) is the n-th step of that object in the reordered
schedule

mv[t← kt ](k) = mv[t← kt ](#X≈n(sOt)) = #X≈n(sOt+1).

The claims follow by definition of ≡↓ for t := k and k := mv[t← kt ](k).

Using mvOt we can track the position of the n-th step of X after t iterations of the
reordering strategy, i.e., in schedule sOt .

Lemma 401.
mvOt(#X≈n(s)) = #X≈n(sOt)
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Proof. By induction on t.
The base case is easy

mvO0(#X≈n(s)) = mvε(#X≈n(s)) = #X≈n(s) = #X≈n(sO0).

In the inductive step t → t + 1, the position is moved according to mv[t ← kt ] and
the claim follows with Lemma 399

mvOt+1(#X≈n(s)) = mvOt [t← kt ](#X≈n(s))

= mv[t← kt ](mvOt(#X≈n(s)))

= mv[t← kt ](#X≈n(sOt)) IH
= #X≈n(sOt+1). L 399

Lemma 402. The steps have the same oracle input and strongly agree

s(l) = sOt(mvOt(l))∧ cl
↓ =

s(l)
↓ c↓O

mvOt (l)
t .

Proof. By Theorem 1, the schedule sOt is equivalent to the original schedule

sOt ≡↓ s.

Obviously step l was the n-th step of some object X

l = #X≈n(s),

and by Lemma 401, the step mvOt(l) is the n-th step of that object in sOt

mvOt(l) = #X≈n(sOt).

Since the schedules are equivalent, we obtain that these steps have the same oracle
input

s(l) = sOt(mvOt(l))

and strongly agree
cl
↓ =

s(l)
↓ c↓O

mvOt (l)
t ,

which are the claims.

Due to the monotonicity, buffered writes are never moved beyond the write buffer
step that commits them. Those steps are global, and thus never delayed. It follows that
buffered writes are never moved beyond the point at which they were committed in the
original schedule.

In order to make this argument precise, we use invariant J from page 186 to show
that the sequence of issued writes is reordered quite much in the same way as the
individual steps.

In the steps before the reordering, nothing changes and nothing is moved.

Lemma 403.

k ≤ t→ issue↓Ok
t+1(i) = mv[t← kt ](issue↓Ok

t (i)).
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We show that the schedule only has a local tail that ends with an issued write buffer
step of unit i, then both 1) step t in the reordered schedule executes a pop operation and
2) at all steps between t and k the sequence of issued writes in the original schedule
of the unit is non-empty. This will allow us to use Lemma 46 to prove commutativity
when we later apply Lemma 202.

Lemma 404.

k ∈ [t : kt ]∧LW Ot(t,kt)∧ i = u↓Ot(kt)→ Opi↓Ot+1(t) = pop∧ issue↓Ok
t (i) 6= ε.

Proof. By definition of LW , step kt in the original schedule is a write buffer step

sOt(kt) ∈ ΣWB,i.

By Lemmas 77 and 402 we obtain the same for step t in the reordered schedule

sOt+1(t) = sOt+1(mt[t← kt ](kt)) = sOt(kt) ∈ ΣWB,i,

which thus executes a pop operation

Opi↓Ot+1(t) = pop.

This proves the first part of the claim.
We also obtain by definition of LW that the head of the write buffer at gt has been

issued before t
hd(issue↓O

gt
t (i))< t.

By the monotonicity of write buffers, it is also buffered at k ∈ [t : gt ]

hd(issue↓O
gt
t (i)) ∈ issue↓Ok

t (i),

and the second part of the claim follows.

Using the observation (with Lemmas 83 and 86) that we can treat the reordered
schedule sOt+1 as the “original” schedule, and the original schedule sOt as a “re-
ordered” version of that schedule using the reordering [t→ kt ]

sOt = sOt [t← kt ][t→ kt ] = sOt+1[t→ kt ],

we can use for the steps in the moved interval the invariant J with the operation that is
done in step t in the “original” schedule

fi(l) = OpiOt+1(t)(l, t).

Lemma 405.
k ∈ [t : kt ]→J fi

↓ Ot+1([t→ kt ],k+1,k).

Proof. We prove this by induction on k, starting at t. The base case is just Lemma 201.
In the inductive step k→ k+1, we use Lemma 202, which reduces the claim to the

following three subclaims.

mv[t→ kt ](k+1) = k: This is just a special case of Lemma 77.

Commutativity: We distinguish whether steps k and kt are made by the same unit.

di f f uOt(kt ,k): The claim is Lemma 100.
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¬di f f uOt(kt ,k): We immediately obtain that steps kt and k are not unit-concurrent

¬ucon↓Ot(kt ,k)

and thus by definition of LI the schedule does not have an independent end

¬LIOt(t,kt).

With Theorem 1 and Lemmas 393 and 395 we obtain as before that the
local tail has a global end

∃G ∈ {W, I } .LGOt(t,kt),

and since it does not have an independent end, the tail ends with an issued
write buffer step

LW Ot(t,kt).

Let i be the unit that makes the two steps

i = u↓Ot(k) = u↓Ot(kt)

and by Lemma 404, step t in the reordered (“original”) schedule executes
a pop operation and the sequence of issued writes in the original (“re-
ordered”) schedule is non-empty

Opi↓Ot+1(t) = pop∧ issue↓Ok
t (i) 6= ε.

We turn the original schedule into the “reordered” schedule

issue↓Ot+1[t→ kt ]
k(i) = issue↓Ok

t (i) 6= ε

and obtain that the moved sequence of issued writes (which has the same
length) is also non-empty

mv[t→ k]−1(issue↓Ot+1[t→ kt ]
k(i)) 6= ε.

and with Lemma 46 we obtain that the operations done in steps t and k in
the reordered schedule commute

Opi↓Ot+1(t)(Opi↓Ot+1(k)(mv[t→ k]−1(issue↓Ot+1[t→ kt ]
k(i)),k), t)

= Opi↓Ot+1(k)(Opi↓Ot+1(t)(mv[t→ k]−1(issue↓Ot+1[t→ kt ]
k(i)), t),k),

which is the claim.

c↓Ok+1
t+1 =

sOt+1(k+1)
↓ c↓Ot+1[t→ kt ]

k: Using Lemma 402 and Lemma 77 we obtain that
step k+1 in schedule sOt+1 is step k in schedule sOt

sOt(k) = sOt+1(mv[t← kt ](k)) = sOt+1(k+1).

We rewrite the claim as follows with Lemma 77

c↓O
mv[t←kt ](k)
t+1 =

sOt (k)
↓ c↓Ok

t .

This is just a special case of Lemma 402.
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For the steps after kt , no operation is missing

f ′i (l) = l.

Lemma 406.
k > kt →J

f ′i
↓ Ot+1([t→ kt ],k,k).

Proof. By induction on k, starting at kt + 1. The base case is just Lemma 203 and
Lemma 405 with k := kt .

In the inductive step k→ k+1, we use Lemma 202 which reduces the claim to the
following three subclaims.

mv[t→ kt ](k) = k: This is just a special case of Lemma 77.

Commutativity: There is nothing to show because no operations are missing ( f ′i (l) =
l).

c↓Ok
t+1 =

sOt+1(k)
↓ c↓Ot+1[t→ kt ]

k: Using Lemma 402 and Lemma 77 we obtain that
step k+1 in schedule sOt+1 is step k in schedule sOt

sOt(k) = sOt+1(mv[t← kt ](k)) = sOt+1(k).

We rewrite the claim as follows with Lemma 77

c↓O
mv[t←kt ](k)
t+1 =

sOt (k)
↓ c↓Ok

t .

This is just a special case of Lemma 402.

Lemma 407.

k 6∈ (t : kt ]→ issue↓Ok
t+1(i) = mv[t← kt ](issue↓Ok

t (i)).

Proof. For the steps k ≤ t this is exactly Lemma 403 . For the remaining steps k > kt ,
we obtain with Lemma 406 that the sequences of issued writes are nearly the same

J f ′i
↓ Ot+1([t→ kt ],k,k)

and we obtain that the “original” and “reordered” schedules are nearly the same

issue↓Ok
t+1(i) = f ′i (mv[t→ kt ]

−1(issue↓Ot+1[t→ kt ]
k(i))).

Rewriting with Lemma 83, f ′i (l) = l and the fact that the “reordered” schedule is the
original schedule we obtain the claim

issue↓Ok
t+1(i) = mv[t← kt ](issue↓Ok

t (i)).

We observe that in any single iteration, global steps and pushable steps are not
delayed.
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Lemma 408.
G↓Ot(l)∨ p↓Ot(l)→ l 6∈ [t : kt).

Proof. Assume for the sake of contradiction that the step is delayed

l ∈ [t : kt).

With Lemma 390 we obtain that step mvOt(l) is before step gt

l < kt ≤ gt ,

which is by definition the next global or pushable step

gt = min
{

g≥ t
∣∣ G↓Ot(g)∨ p↓Ot(g)

}
.

It follows that step l is not global or pushable

¬G↓Ot(l)∧¬p↓Ot(l),

which is a contradiction.

Pushable steps remain pushable.

Lemma 409.
p↓(l)→ p↓Ot(mvOt(l)).

Proof. By induction on t. The base case is trivial.
In the inductive step t→ t +1, we have by the inductive hypothesis that the step is

still pushable after t iterations
p↓Ot(mvOt(l)).

Let i be the unit that makes step l

i = u↓(l)

(and by Lemma 402 also steps mvOt(l) and mvOt+1(l) in the respective schedules)

u↓Ot(mvOt(l)) = u↓(l) = u↓Ot+1(mvOt+1(l)) = i.

Because the step is pushable, it is local and does not buffer a write

L↓(l)∧BW↓(l) = /0.

By Lemma 402, the steps have the same oracle inputs and strongly agree

s(l) = sOt+1(mvOt+1(l))∧ cl
↓ =

s(l)
↓ c↓O

mvOt+1(l)
t+1 .

With Lemma 150 with X := L,BW we obtain that the step is still local and does not
buffer a write

L↓Ot+1(mvOt+1(l))∧BW↓Ot+1(mvOt+1(l)) = /0,

which are two parts of the definition of p.
Since step mvOt(l) is pushable, by definition of p, the write buffer at mvOt(l) is

empty
wb↓O

mvOt (l)
t (i) = ε.
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We show now the third part of the definition of p, i.e., that the buffer at it is still
empty after the reordering

wb↓O
mvOt+1(l)
t+1 (i) !

= ε.

This is the same as showing that the write buffer has length zero

|wb↓O
mvOt+1(l)
t+1 (i)| !

= 0.

With Lemma 123 it suffices to show that the length of the sequence of issued writes
has not increased and is thus also zero

0 = |wb↓O
mvOt (l)
t (i)|= |issue↓O

mvOt (l)
t (i)| L 123

!
≥ |issue↓O

mvOt+1(l)
t+1 (i)|

= |wb↓O
mvOt+1(l)
t+1 (i)| L 123

= 0,

We distinguish whether step mvOt(l) is equal to kt and thus moved to the front or
not.

mvOt(l) = kt : In this case the step is moved to position t

mvOt+1(l) = mv[t← kt ](mvOt(l)) = mv[t← kt ](kt) = t.

By Lemma 393 and Theorem 1 the schedule has a local tail

LOt(t,kt)

and with Lemma 325 with l := t we obtain that the sequence of issued writes at
kt has a suffix q not contained in the sequence of issued writes at t

∃q.issue↓O
kt
t (i) = issue↓Ot

t(i)◦q

and is thus at least as long

|issue↓O
kt
t (i)| ≥ |issue↓Ot

t(i)|.

The claim follows as the reordering does not affect the sequence of issued writes
at t

|issue↓O
mvOt (l)
t (i)|= |issue↓O

kt
t (i)|

≥ |issue↓Ot
t(i)|

= |issue↓Ot
t+1(i)|

= |issue↓O
mvOt+1(l)
t+1 (i)|.

mvOt(l) 6= kt : By Lemma 408 with l := mvOt(l), the step is not delayed in iteration t

mvOt(l) 6∈ [t : kt).

Since step mvOt(l) is also not moved to the front, it is not in the moved range

mvOt(l) 6∈ [t : kt ]
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and with Lemma 77 we obtain that it is thus not moved at all

mvOt+1(l) = mv[t← kt ](mvOt(l)) = mvOt(l).

Furthermore by Lemma 407 with k := mvOt(l) the sequence of issued writes is
transformed by mv[t← kt ]

issue↓O
mvOt+1(l)
t+1 (i) = issue↓O

mvOt (l)
t+1 (i) = mv[t← kt ](issue↓O

mvOt (l)
t (i)).

We conclude they have the same length, and the claim follows

|issue↓O
mvOt+1(l)
t+1 (i)|= |mv[t← kt ](issue↓O

mvOt (l)
t (i))|= |issue↓O

mvOt (l)
t (i)|.

Therefore global steps and pushable steps are never delayed at all.

Lemma 410.
G↓(l)∨ p↓(l)→ mvOt(l) 6∈ [t : kt).

Proof. With Lemma 410 we reduce the claim to showing that the step is still global or
pushable

G↓Ot(mvOt(l))∨ p↓Ot(mvOt(l)).

We distinguish whether the step was originally global or pushable.

G↓(l): By Lemma 402, the steps have the same oracle inputs and strongly agree

s(l) = sOt(mvOt(l))∧ cl
↓ =

s(l)
↓ c↓O

mvOt (l)
t .

With Lemma 150 with X := L we obtain that the step is still global

G↓Ot(mvOt(l))≡ ¬L↓Ot(mvOt(l))≡ ¬L↓(l)≡ G↓(l),

and the claim follows.

p↓(l): By Lemma 409 the step is still pushable

p↓Ot(mvOt(l)),

and the claim follows.

Lemma 411.
G↓(l)∨ p↓(l)→ mvOt(l)≤ l.

Proof. By induction on t. The base case is trivial.
In the inductive step t → t + 1, we have to show that the reordering in iteration t

does not move mvOt(l) beyond l

mvOt+1(l) = mv[t← kt ](mvOt(l))
!
≤ mvOt(l)≤ l.

We distinguish between the three cases in the definition of mv[t← kt ]
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mvOt(l) = kt : By definition, step kt is after or equal to step t

kt ≥ t,

and the claim follows

mv[t← kt ](mvOt(l)) = t ≤ kt = mvOt(l).

mvOt(l) ∈ [t : kt): This contradicts Lemma 410.

mvOt(l) 6∈ [t : kt ]: By definition, the step is not moved, and the claim follows

mv[t← kt ](mvOt(l)) = mvOt(l)≤ mvOt(l).

It can now be shown that step that commits a buffered write never overtakes that
buffered write.

Lemma 412.

l = hd(issuek
↓(i))∧ s(k) ∈ ΣWB,i→ mvOt(l) = hd(issue↓O

mvOt (k)
t ).

Proof. By induction on t. The base case is trivial.
In the inductive step t → t +1, we distinguish between the three cases in the defi-

nition of mv[t← kt ] for the reordering of step k.

mvOt(k) = kt : Then the next position of step k is at t

mvOt+1(k) = t.

By Lemma 402 we obtain that the step has the same oracle input as step k in the
original schedule

sOt+1(t) = sOt+1(mvOt+1(k)) = s(k)

and is thus made by the same unit, namely unit i

u↓Ot+1(t) = u↓(k) = i.

Since the steps before t are not changed in the reordering, we obtain that the
sequence of issued writes at t in iteration t is the same sequence in iteration t +1
at the position of k in iteration t +1

issue↓Ot
t(i) = issue↓Ot [t← kt ]

t(i)

= issue↓Ot
t+1(i)

= issue↓O
mvOt+1(k)
t+1 (i).

The schedule after the reordering is a hardware schedule and thus valid. In par-
ticular step t is valid

Γ↓Ot+1(t)
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and thus by definition satisfies the drain condition

∆↓Ot+1(t)

and thus by definition has non-empty write buffer

wb↓Ot
t+1(i) 6= ε.

By Lemma 123 we obtain the same for the sequence of issued writes

issue↓Ot
t+1(i) 6= ε,

and since the steps before t are not changed in the reordering, the same holds in
iteration t

issue↓Ot
t(i) 6= ε.

By Theorem 1 that schedule is t-ordered

sOt ∈ ORDt ,

and by Lemma 393 the schedule has a local tail from t to kt

LOt(t,kt).

By Lemma 326 and the induction hypothesis we obtain that the head at t is the
same as at kt , i.e., the current position of l

hd(issue↓Ot
t(i)) = hd(issue↓O

kt
t (i)) = hd(issue↓O

mvOt (k)
t (i)) = mvOt(l).

We conclude from the monotonicity of the sequence of issued writes that the
position of l is before t

mvOt(l)< t

and is thus unchanged in the step

mvOt+1(l) = mv[t← kt ](mvOt(l)) = mvOt(l).

Thus the position of step l in iteration t +1 is the head of the sequence of issued
writes t in iteration t

mvOt+1(l) = hd(issue↓Ot
t(i)),

and the claim follows

mvOt+1(l) = hd(issue↓O
mvOt+1(k)
t+1 (i)).

mvOt(k) ∈ [t : kt): By Lemma 136 step k is global

G↓(k)

and this case contradicts Lemma 410.
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mvOt(k) 6∈ [t : kt ]: The position is unchanged

mvOt+1(k) = mv[t← kt ](mvOt(k)) = mvOt(k),

and by Lemma 407 the sequence of issued writes is moved by mv[t← kt ]

issue↓O
mvOt+1(k)
t+1 (i) = mv[t← kt ](issue↓O

mvOt+1(k)
t (i))

= mv[t← kt ](issue↓O
mvOt (k)
t (i)).

The position of l is also moved by mv[t← kt ]

mvOt+1(l) = mv[t← kt ](mvOt(l))

and the claim follows with the induction hypothesis

mvOt+1(l) = mv[t← kt ](mvOt(l))

= mv[t← kt ](hd(issue↓O
mvOt (k)
t (i))) IH

= hd(mv[t← kt ](issue↓O
mvOt (k)
t (i)))

= hd(issue↓O
mvOt (k)
t+1 (i)))

= hd(issue↓O
mvOt+1(k)
t+1 (i)).

We show that every write in a buffer is eventually committed

Lemma 413.

s ∈ bal∧ l ∈ issuet+1
↓ (i)→∃k > l.s(k) ∈ ΣWB,i∧ l = hd(issuek

↓(i)).

Proof. Clearly, the sequence can be split into a prefix p, step l, and then a suffix q

issuet
↓(i) = p◦ l ◦q.

The proof is by induction on p with t and q generalized.
In the base case p = ε , we obtain with Lemma 312 that there are g and q′ such that

the sequence has grown by q′

issueg
↓(i) = issuek

↓(i)◦q′ = l ◦q◦q′,

and step g is a write buffer step of unit i

s(g) ∈ ΣWB,i.

Clearly the head of the sequence at g is step l

hd(issueg
↓(i)) = hd(l ◦q◦q′) = l,

and the claim follows with k := g.
In the inductive step p→ t ′ ◦ p, we obtain with Lemma 312 that there are g and q′

such that the sequence has grown by q′

issueg
↓(i) = issuek

↓(i)◦q′ = t ′ ◦ p◦ l ◦q◦q′,

410



and step g is a write buffer step of unit i

s(g) ∈ ΣWB,i.

Thus the operation at g is a pop operation

Opi↓(g) = pop

and the head of the buffer is removed, which by Lemma 41 is t ′

issueg+1
↓ (i) = tl(issueg

↓(i))

= tl(t ′ ◦ p◦ l ◦q◦q′)

= tl(t ′)◦ p◦ l ◦q◦q′ L 41
= ε ◦ p◦ l ◦q◦q′

= p◦ l ◦ (q◦q′).

The claim is now the inductive hypothesis with t := g+1 and q := q◦q′.

Connecting these lemmas we obtain that each step is committed at some point.

Lemma 414.
∀l.∃t.mvOt+1(l)≤ t.

Proof. We distinguish between global steps and pushable steps, and other steps.

G↓(l)∨ p↓(l): We choose t := l. The claim is Lemma 411 with t := l +1.

¬G↓(l)∧¬p↓(l): Since the step is not pushable, it is either not local or buffering a
write

¬L↓(l)∨BW↓(l) 6= /0.

Since it is not global, it is local, leaving only the possibility that it is buffering a
write

BW↓(l) 6= /0.

By contraposition of Lemma 136, step l is not not a write buffer step

s(l) 6∈ ΣWB,i

and is thus a processor step
s(l) ∈ ΣP,i,

and thus by definition the operation performed by step l is a push

Opi↓(l) = push.

By definition, step l is an element of the sequence of issued writes at l +1

l ∈ issuel
↓(i)◦ l = issuel+1

↓ (i).

By Lemma 413, step l eventually becomes the head of the write buffer at k, which
is also a write buffer step

s(k) ∈ ΣWB,i∧ l = hd(issuek
↓(i)).
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By Lemma 136, that step is global

G↓(k).

We choose t := k. By Lemma 412, the position in iteration k+ 1 is the head of
the buffer in iteration k+1 at the position of k in iteration k+1

mvOk+1(l) = hd(issue↓O
mvOk+1(k)
k+1 ).

By the monotonicity of the sequence of issued writes, the position in iteration
k+1 is less than the position of k in iteration k+1

mvOk+1(l)< mvOk+1(k),

and the claim follows with Lemma 411

mvOk+1(l)< mvOk+1(k)≤ k.

With this lemma at our disposal, it is easy to show that all steps are eventually
added to the growing finite prefix and thus eventually end up in s∞. We first show that
a step that has become a part of the growing prefix also entered s∞.

Lemma 415.
l < t→ sOt(l) = sOl+1(l).

Proof. By induction on t, starting at l +1. The base case is trivial.
In the inductive step, we simply observe that we only reorder steps at and after step

t
sOt+1(l) = sOt [t← kt ](l) = sOt(l)

and the claim follows with the induction hypothesis

sOt(l) = sOl+1(l).

Thus each prefix of s∞ corresponds to an iteration of the reordering.

Lemma 416.
s∞[0 : t−1] = sOt [0 : t−1].

Proof. Let l < t be one of the steps in question. The claim follows by definition and
Lemma 415

s∞(l) = sOl+1(l) = sOt(l).

We can now show that our infinite reordering never drops (or adds) any steps.

Lemma 417.
X(s∞) = X(s).

Proof. We show that each set contains the other.
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X(s∞)⊆ X(s): Let n be a step number reached by unit X at t

#X [s∞](t) = n,

and we will show that it is also reached by unit X in s.

By Lemma 416, the schedule until t−1 is the same as some finite iteration

s∞[0 : t−1] = sOt [0 : t−1],

and therefore also the step counts at t

#X [sOt ](t) = #X [s∞](t) = n.

Thus n steps are also reached by unit X in sOt

n ∈ X(sOt).

By Theorem 1, that iteration in the reordering is equivalent to s

s≡↓ sOt

and thus X reaches the same steps numbers in s, and the claim follows

n ∈ X(sOt) = X(s).

X(s∞)⊇ X(s): Let n be a step number reached by unit X at t in s

#X [s](t) = n,

and we will show that it is also reached by unit X in s∞.

We distinguish two cases: either n is zero, or it the successor of some number n′.

n = 0: This step count is reached at the beginning of the schedule

#X [s∞](0) = #X(s∞[0 :−1]) = #X(ε) = 0,

and thus definitely reached

0 ∈ X(s∞).

n = n′+1: By Lemma 116 there is a step at t ′ made by object X where object X
has made n′ steps

o(s(t ′)) = X ∧#X [s](t ′) = n.

By Lemma 115, that step is really the n′-th step of object X

#X ≈ n′(s) = t ′.

By Lemma 414 there is an iteration k + 1 in which the position of t ′ is
before k

mvOk+1(t ′)≤ k.

By Lemma 401, the n′-th step of X is at that position in iteration k+1

#X ≈ n′(sOk+1) = mvOk+1(t ′)≤ k,
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and by Lemma 416, that schedule is the same until k as the limit

s∞[0 : k] = sOk+1[0 : k].

We conclude that step counts of object X until the position of t ′ are the
same

#X [s∞](mvOk+1(t ′)) = #X [sOk+1](mvOk+1(t ′)) = n′,

and that the step is still made by object X

o(s∞(mvOk+1(t ′))) = o(sOk+1(mvOk+1(t ′))) = X ,

and thus after the step, the step count has reached n′+1, i.e., n

#X [s∞](mvOk+1(t ′)+1) = #X [s∞](mvOk+1(t ′))+#X(s∞(mvOk+1(t ′)))

= #X [s∞](mvOk+1(t ′))+1
= n′+1
= n

and the claim follows
n ∈ X(s∞).

4.13.2 Correctness
We can finally show that the infinitely reordered schedule s∞ is equivalent to s and
reduced.

Theorem 2. The infinitely reordered schedule is equivalent to the original schedule

s∞ ≡↓ s.

Proof. Let X be the object for which we have to show the claims. By Lemma 417, the
object make the same steps

X(s∞) = X(s).

Let now t,k be the n-th step of object X in their respective schedule

t = #X≈n(s∞)∧ k = #X≈n(s).

By Lemma 416, the limit has the same steps until t as the schedule in iteration t+1

s∞[0 : t] = sOt+1[0 : t]

and thus step t is also the n-th step of object X in that schedule

t = #X≈n(sOt+1).

Since by Theorem 1 the schedule in iteration t + 1 and the original schedule are
equivalent

sOt+1 ≡↓ s,
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we obtain that the steps at t and k have the same oracle inputs and strongly agree

sOt+1(t) = s(k)∧ c↓[sOt+1]
t =

sOt+1(t)
↓ c↓[s]k

and the claim follows

s∞(t) = sOt+1(t) = s(k)∧ c↓[s∞]
t = c↓[sOt+1]

t =
sOt+1(t)
↓ c↓[s]k.

Theorem 3. The infinitely reordered schedule is a hardware schedule

s∞ ∈ HW.

Proof. By Theorem 2 the schedules are equivalent

s∞ ≡↓ s

and by Lemma 307 is still balanced

s∞ ∈ bal.

Let now step t be a step for which we need to show that it is valid and IPI-valid in
s∞. By Lemma 416, the schedule in iteration t +1 is the same until t

s∞[0 : t] = sOt+1[0 : t].

By Theorem 1, that schedule is a hardware schedule

sOt+1 ∈ HW

and thus step t is valid and IPI-valid

Γ↓Ot+1(t)∧∆IPI↓Ot+1(t).

Since the infinitely reordered schedule is the same until t, it immediately follows
that step t is also valid and IPI-valid in that schedule

Γ↓[s∞](t)∧∆IPI↓[s∞](t).

Theorem 4. In the infinitely reordered schedule, the low-level machine simulates the
computation of the high-level machine

∀t.c↓[s∞]
t =

s∞(t)
↓,↑ c↑[s∞]

t .

Proof. Let now step t be a step for which we need to show the simulation. By Lemma 416,
the schedule in iteration t +1 is the same until t

s∞[0 : t] = sOt+1[0 : t].

By Theorem 1, that schedule is t+1-ordered and a hardware schedule

sOt+1 ∈ ORDt+1∩HW
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and thus valid and IPI-valid, in particular until t and t−1

Γ
t
↓(sOt+1)∧∆

t−1
IPI↓(sOt+1).

By Lemma 305 it is therefore t+1-abstract

sOt+1 ∈ ABSt+1,

and by definition step t is simulated correctly

c↓Ot
t+1 =

sOt+1(t)
↓,↑ c↑Ot

t+1.

Since the schedules are the same until t, so are the configurations at t and the oracle
input at t, and the claim follows

∀t.c↓[s∞]
t =

s∞(t)
↓,↑ c↑[s∞]

t .

We combine these results in a single write buffer reduction theorem.

Theorem 5. If all schedules satisfy the conditions of Section 4.5 (which are formulated
in terms of the high-level computation), then for every hardware schedule s there is an
equivalent hardware schedule r which is reduced

∀s ∈ HW.∃r ∈ HW.r ≡↓ s∧∀t.c↓[r]t =
r(t)
↓,↑ c↑[r]t .

Proof. We choose r := s∞ and the claims are Theorems 2 to 4.
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Chapter 5

Conclusion and Related Work

5.1 Review and Open Problems
We have introduced a powerful yet compact computational model for x86-like proces-
sors (Chapter 2) and have shown that it is strong enough to model an x86-like ISA from
the literature (Chapter 3). We have extended the efficient software conditions of Cohen
and Schirmer [CS10] to deal with the new features of this computational model, and
have shown that the conditions are indeed sufficient to regain sequential consistency on
the weak memory semantics of our processor model (Chapter 4).

There are several direct fruits of this work.

• First and foremost, it enables verification of complex software under the assump-
tion of sequential consistency, even if the software is supposed to be run on x86-
like processors.

• Secondly, it allows for a very simple compiler optimization: instead of compiling
a fence behind every shared write, one can track the state of the write buffer –
either using a static over-approximation, or dynamically in software – and thus
ensure that there is a fence between every shared write and shared read on the
same thread.

• Thirdly, it opens up the way for further optimizations of the hardware model
such as by adding shared memory operations to a processor with write buffers,
and draining in hardware all shared writes before a shared read is executed, or by
introducing local read-modify-writes (e.g., non-interlocked fetch-and-add) that
do not drain the buffer, or by introducing read and write barriers such as we have
shown.

• Fourth, we have learned that direct-to-core IPIs, even though they are a natural
way to formalize IPIs, are bad for sequential consistency; and similarly, one
can use theorems like Theorem 5 to evaluate the effect of design decisions on
sequential consistency when formalizing an instruction set architecture.

However, many questions remain open. We have done a tiny first step towards
moving to weaker memory architectures than TSO by allowing bypassing writes in
strong memory mode and while the buffer is non-empty. This immediately raises the
question whether the order of local writes in the buffer matters at all (as long as they
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can not be overtaken by shared writes). Allowing local writes to leave the buffer early
– for example to clear a partial hit – or to be combined with earlier local and shared
writes may be a valuable performance boost, and at least our work hints at the fact that
this may be possible without changing the software discipline. Similar weakenings of
the memory model with relation to speculative loads and of the visibility of writes in
between processors are also interesting.

We consider all accesses to device memory as volatile and thus shared. That this is
strictly necessary is not clear, for example, when some device memory is used only by
a single processor. In this case, it might be sufficient to not issue a read from a device
when a write to that device is being buffered by the same unit. The key statement that
has to remain provable is that of Lemma 173.

In our work, we have not been able to handle autonomous steps of components
closely related to the processor (such as the MMU or the INIT interrupt) in strong
memory mode1, because shared reads and shared bypassing writes of these units would
introduce flushing obligations that the system programmer can not possibly satisfy. Ko-
valev, Chen, and Cohen [CCK14] have proposed and proven correct an extension of the
Cohen Schirmer result that handles MMUs in strong memory mode by using a mono-
tonicity property of the MMU (page 8 of [CCK14]), essentially showing that 1) for the
sake of validity of steps of the same unit (CPU, MMU, etc.), MMU steps can always
be moved forward because each MMU step makes more processor steps valid (this is
monotonicity) and 2) MMU steps and CPU steps on the same unit can be reordered
as long as the CPU steps do not access shared data structures with bypassing memory
accesses, such as the PTO register or the TLB. A few simple flushing obligations then
ensure that we never have to reorder MMU steps and CPU steps where the CPU exe-
cutes such a bypassing access (e.g., by flushing before changing the PTO). As a result,
they no longer need to flush the write buffer before the MMU executes a bypassing
read to a buffered address, or before the MMU executes a bypassing shared store, or
before the MMU executes a shared read (none of these can be realistically done by the
programmer); instead they simply move the MMU step as if it was a global step of
another unit. Whether a more general result exists for such autonomous components,
or whether one would have to extend the model explicitly for MMUs that are allowed
to run in strong memory mode, is not clear at all.

In many contexts it makes sense to use the fact that hardware write buffers have
fixed length N, and thus if N write operations have been executed by a thread since
its last shared write, that write has already left the write buffer and no shared writes
are being buffered. It seems as if our reordering strategy maintains such limits of write
buffers, i.e., every low-level computation is reordered to another low-level computation
where at the beginning of the n-th step of object X , the write buffer of the unit that the
object belongs to is not longer than the write buffer at the beginning of the n-th step
of object X in the original schedule and thus also has no more than N elements; and
also at every point in the proof where we use the software discipline on a reordered
version of the original schedule, the write buffer of each unit has length N or less. One
might thus strengthen our theorem by showing 1) that the software discipline only has
to be obeyed in computations of the high-level machine where the write buffer length
is bounded by N and 2) in the reordered schedule s∞ write buffer length is bounded by
N.

1Luckily in the case of MIPS, the MMU is disabled when the CPU is in kernel mode, and the page fault
handler has to be written in kernel mode. This is also the case for multi-level MMUs, where the MMU of the
hypervisor is disabled while the page fault handler of the hypervisor is running on the same core. Therefore
the theorem presented here is strong enough for a MIPS operating system or hypervisor.
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There are a few well-known code patterns that behave like a fence but are not well-
understood by our discipline. For example, when a processor issues a store instruction
and waits for a response by another processor, it is clear that the response can only
come after the store has left the store buffer. Similarly, a processor that issues a store
and then waits for the value to change will certainly wait until the store has reached the
memory, as until then forwarding will ensure that the processor keeps seeing the same
value. Finding ways to integrate such patterns into the reduction theorem – or prove
a lower-level reduction theorem that shows that these situations behave like fences –
may be useful, but this is not immediately clear, as we expect the performance penalty
of additional fence instructions in these programs to be low.

There are other patterns that are not immediately sequentially consistent, but always
eventually reach configurations reached by sequentially consistent executions. One of
these is a barrier, where two threads wait for each other:

x.store(1); y.store(1);
while (! y); while (! x);

In TSO (but not in sequential consistency), there may be multiple failed attempts
of both threads to leave the while-loop, but (as in sequential consistency) both threads
will eventually leave the loop. By erasing the failed iterations of the loop, one obtains
a sequentially consistent execution. One may thus call such an execution quasi-SC.

Compare this to a variant without loops, which is just plainly inconsistent (and
often the textbook example of a sequentially inconsistent program)

x.store(1); y.store(1);
t1 = ! y; t2 = ! x;

It has been informally conjectured by Vafeiadis that in practice, “nobody programs
like this”. If that is the case, it should be possible to obtain a practical software disci-
pline with no (or nearly no) memory barriers that only allows for quasi-SC executions;
but this is still an open problem.

5.2 Related Work
Regaining sequential consistency on weak memory architectures is a real and thus very
important problem. It is thus not surprising that a lot of very interesting research has
been done on this field, and we only give a quick survey of the results that we find most
important.

The only results, to the best of our knowledge, that come close to the hardware
model we have presented here, is the result of Kovalev, Chen, and Cohen [CCK14],
who considered TSO processors with word aligned accesses and memory management
units that bypass the write buffer. The discipline is given in terms of ownership rather
than races, and fences are introduced conservatively for communication between the
MMU and the processor (e.g., when changing the page table origin or the mode). The
result was extended to consider aligned sub-word accesses in the PhD thesis of Chen
[Che16], but the definition of a partial hit was weakened to resolve the issue of races
with RMW (cf. Condition RMWRace). In our model, we are only concerned about
store buffer reduction while the memory management unit is not running, and we thus
do not need to worry about interactions between the memory management unit and
our processor. All of the fences inserted in the above results due to the MMU are
replaced by a single fence when switching the memory mode. There are, to the best
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of our knowledge, no other results for anything beyond simple user machines with
aligned word accesses. From those, the closest to our work was done by Cohen and
Schirmer [CS10], which serves as the basis of this work. Another interesting result
in this class is given by Bouajjani et al. [BDM13], who describe a discipline which is
optimal in the number of inserted fences, but is impractical. The key result is to look
for executions which are sequentially consistent, but in TSO can be reordered easily
into executions that are no longer sequentially consistent. Also worthy of mention is
the work of Alglave et al. [AKNP14], who, unlike our result and most of the literature,
consider considerably weaker memory models than TSO.
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Appendix A

Binary Arithmetic

In Chapter 3 and Appendix B we use notation for binary arithmetic from [PBLS16]. We
reproduce the notation and definitions from that book, deviating from those definitions
only slightly when this helps us speed things up.

The interpretation of a bit string a∈Bn as a binary number 〈a〉 is defined as follows

〈a〉= ∑
i<n

ai ·2i.

The set of binary numbers that can be represented with n bits is denoted by Bn and
can be defined as follows

Bn = [0 : 2n).

Two integers are congruent modulo k if their difference is divisible by k

x≡ y mod k ⇐⇒ ∃d ∈ Z.x− y = k ·d.

Given an integer x ∈ Z, we define its binary representation with n bits binn(x) as
the bit string of which the binary number interpretation is congruent to x modulo 2n1

binn(x) = ε {a ∈ Bn | 〈a〉 ≡ x mod 2n } .

We also use the following shorthand

xn = binn(x).

The binary addition (substraction) of two strings a,b ∈ Bn, denoted by a+n b (a−n
b), is the binary representation of the sum (difference) of the binary interpretations of
the two bit strings

◦ ∈ {+,−}→ a◦n b = (〈a〉 ◦ 〈b〉)n.

The interpretation of a bit string a∈Bn as a two’s complement number [a] is defined
as follows

[a] =−an−1 ·2n−1 + 〈a[n−2 : 0]〉.

1We differ here from the book in two ways: 1) we define the representation for all integers, and 2) we
choose a representation that is congruent modulo 2n. This way we can avoid defining functions mod and
tmod, and simply use the binary representation directly when adding binary numbers. We do the same later
for two’s complement numbers.
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The set of two’s complement numbers that can be represented with n bits is denoted
by Tn and can be defined as follows

Tn = [−2n−1 : 2n−1).

The two’s complement representation of a number twocn(x) is easily defined as
follows

twocn(x) = ε {a ∈ Bn | [a]≡ x mod 2n } .

Note that binary and two’s complement encoding are congruent modulo 2n and thus
the functions twoc and bin yield the same values

twocn(x) = binn(x).

We still have to define the functions for when they are used in Appendix B.
We lift operators ∨,∧,⊕ normally defined on bits to bit strings of equal length

a,b ∈ Bn by applying them pair wise

◦ ∈ {∨,∧,⊕}→ (a◦32 b)i = ai ◦bi,

and similarly we lift negation to bit strings

(¬a)i = ¬(ai).

For each bit string a ∈ Bn we define the zero-extension to n′ ≥ n bits by filling the
remaining bits with zeros

zxtn′(a) = 0n′−n ◦a,

and the sign-extension by filling the remaining bits with the most significant bit

sxtn′(a) = an′−n
n−1 ◦a.
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Appendix B

MIPS86

The following is a verbatim copy of the technical report “MIPS 86” by Sabine Schmaltz;
only formatting has been changed.

B.1 Formal Model of MIPS-86
This report provides a simple multi-core MIPS model we call MIPS-86. It aims at
providing an overall specification for the reverse-engineered hardware models provided
in [KMP14]. Essentially, we take the simple sequential MIPS processor model from
[KMP14] and extend it with a memory and device model that resembles the one of
modern x86 architectures. The model has the following features:

• Sequential processor core abstraction with atomic execute-and fetch transitions

In order to justify modeling instruction execution by an atomic transition that
combines fetching the instruction from memory and executing it, the absence of
self-modifying code is a prerequisite. When instructions being fetched cannot be
changed by the execution of other cores, these fetch cycles can be reordered to
occur right before the corresponding execute cycle. This, in turn, means that the
semantics of fetch and execute steps can be combined into single atomic steps.

• Memory-management unit (MMU) with translation-lookaside buffer (TLB)

The memory-management unit considered performs a 2-level translation from
virtual to physical addresses, caching partial and complete translations (which
are called walks) in a translation lookaside buffer (TLB). The page table origin,
i.e. the address of the first-level page table, is taken from the special purpose
register pto. In order to allow an update of page-tables to be performed in a con-
sistent manner, the machine is extended by two instructions: A flush-operation
that empties the TLB of all walks, and an invalidate-page-operation that removes
all walks to a certain virtual page address from the TLB.

• Store buffer (SB)

In order to argue about store-buffer reduction, we provide a processor model
with store-buffer. The store-buffer we consider is simple in the sense that it
does not reorder or combine accesses but instead simply acts as a first-in-first-
out queue for memory write operations to physical addresses. We provide two
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serializing instructions: A fence-operation that simply drains the store-buffer,
and a compare-and-swap-operation that atomically updates a memory word on
a conditional basis while also draining the store-buffer.

• Processor-local advanced programmable interrupt controller (local APIC)

In order to have a similar boot mechanism as the x86-architecture, we imitate the
inter-processor-interrupt (IPI) mechanism of the x86-architecture. We extend our
MIPS model by a strongly simplified local APIC for each processor. The local
APIC provides interrupt signals to the processor and acts as a device for sending
inter-processor-interrupts between processors. Local APIC ports are mapped
into a processor’s memory space by means of memory-mapped I/O.

• I/O APIC

The I/O APIC is a component that is connected to the devices of the system
and to the local APICs of the processors of the system. It provides the means
to configure distribution of device interrupts to the processors of the multi-core
system, i.e. whether a given device interrupt is masked and which processor will
receive the interrupt. We do not consider edge-triggered interrupts, however, we
do model the end-of-interrupt (EOI) protocol between local APIC and I/O APIC:
After sending an interrupt signal to a local APIC, the I/O APIC will not sample
a raised device interrupt again until the corresponding EOI message has been
received from the local APIC.

• Devices

We use a generic framework along the lines of the Verisoft device model [HIP05]:
Device configurations are required to have a certain structure which can be in-
stantiated, e.g. certain device transitions that specify side-effects associated with
reading or writing device ports must be provided. Every device consists of ports
and an interrupt line it may raise as well as some internal state that may be in-
stantiated freely. Devices may interact with an external environment by receiving
inputs and providing outputs.

In the following, we proceed by providing tables that give an overview over the
instruction-set-architecture of MIPS-86, followed by operational semantics of the non-
deterministic MIPS-86 model.

B.2 Instruction-Set-Architecture Overview and Tables
The instruction-set-architecture of MIPS-86 provides three different types of instruc-
tions: I-type instructions, J-type instructions and R-type instructions. I-type instruc-
tions are instructions that operate with two registers and a so-called immediate constant,
J-type instructions are absolute jumps, and R-type instructions rely on three register
operands.

B.2.1 Instruction Layout
The instruction-layout of MIPS-86 depends on the type of instruction. In the subse-
quent definition of the MIPS-86 instruction layout, rs, rt and rd specify registers of the
MIPS-86 machine.
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I-Type Instruction Layout

Bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 0
Field Name opcode rs rt immediate constant imm

R-Type Instruction Layout

Bits Field Name
31 . . . 26 opcode
25 . . . 21 rs
20 . . . 16 rt
15 . . . 11 rd
10 . . . 6 shift amount sa
5 . . . 0 function code f un

J-Type Instruction Layout

Bits 31 . . . 26 25 . . . 0
Field Name opcode instruction index iindex

Effect of Instructions

A quick overview of available instructions is given in tables B.1 (for I-type), B.2 (for
J-type), and B.3 (for R-type). Note that these tables – while giving a general idea what
is available and what it approximately does – are not comprehensive. In particular, note
that for all instructions whose mnemonic ends with ”u”, register values are interpreted
as binary numbers whereas in all other cases they are interpreted as two’s-complement
numbers. Note also that MIPS-86 is still incomplete in the sense that in order to ac-
commodate the distributed cache model of the hardware construction, the architecture
needs to be extended to allow proper management of cache-bypassing memory access
(e.g. to devices). The abstract model provided here is one where caches are already
abstracted into a view of a single coherent memory. The exact semantics of all in-
structions present in the provided instruction-set architecture tables is given later in the
transition function of the MIPS-86 processor core.

B.2.2 Coprocessor Instructions and Special-Purpose Registers
Note that in contrast to most MIPS-architectures, in MIPS-86 coprocessor-instructions
are provided as R-type instructions. Coprocessor instructions in MIPS-86 deal with
moving data between special-purpose register file and general-purpose register file and
exception return. The available special purpose registers of MIPS-86 are listed in table
B.5.
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Table B.1: I-Type Instructions of MIPS-86.

opcode Mnemonic Assembler-Syntax d Effect
Data Transfer
100 000 lb lb rt rs imm 1 rt = sxt(m[rs+imm])
100 001 lh lh rt rs imm 2 rt = sxt(m[rs+imm])
100 011 lw lw rt rs imm 4 rt = m[rs+imm]
100 100 lbu lbu rt rs imm 1 rt = 024m[rs+imm]
100 101 lhu lhu rt rs imm 2 rt = 016m[rs+imm]
101 000 sb sb rt rs imm 1 m[rs+imm] = rt[7:0]
101 001 sh sh rt rs imm 2 m[rs+imm] = rt[15:0]
101 011 sw sw rt rs imm 4 m[rs+imm] = rt
Arithmetic, Logical Operation, Test-and-Set
001 000 addi addi rt rs imm rt = rs + sxt(imm)
001 001 addiu addiu rt rs imm rt = rs + sxt(imm)
001 010 slti slti rt rs imm rt = (rs < sxt(imm) ? 1 : 0)
001 011 sltiu sltiu rt rs imm rt = (rs < sxt(imm) ? 1 : 0)
001 100 andi andi rt rs imm rt = rs ∧ zxt(imm)
001 101 ori ori rt rs imm rt = rs ∨ zxt(imm)
001 110 xori xori rt rs imm rt = rs ⊕ zxt(imm)
001 111 lui lui rt imm rt = imm016

opcode rt Mnemonic Assembler-S. Effect
Branch
000 001 00000 bltz bltz rs imm pc = pc + (rs < 0 ? imm00 : 4)
000 001 00001 bgez bgez rs imm pc = pc + (rs ≥ 0 ? imm00 : 4)
000 100 beq beq rs rt imm pc = pc + (rs = rt ? imm00 : 4)
000 101 bne bne rs rt imm pc = pc + (rs 6= rt ? imm00 : 4)
000 110 00000 blez blez rs imm pc = pc + (rs ≤ 0 ? imm00 : 4)
000 111 00000 bgtz bgtz rs imm pc = pc + (rs > 0 ? imm00 : 4)

B.2.3 Interrupts
Traditionally, hardware architectures provide an interrupt mechanism that allows the
processor to react to events that require immediate attention. When an interrupt signal
is raised, the hardware construction reacts by transferring control to an interrupt handler
– on the level of hardware, this basically means that the program counter is set to the
specific address where the hardware expects the interrupt handler code to be placed by
the programmer and that information about the nature of the interrupt is provided in
special registers. Since interrupts are mainly supposed to be handled by an operating
system instead of by user processes, such a jump to interrupt service routine (JISR)
step also tends to involve switching the processor to system mode.

Interrupts come in two major flavors: There are internal interrupts that are trig-
gered by executing instructions, e.g. an overflow occuring in an arithmetic operation,
a system-call instruction being executed (which is supposed to have the semantics of
returning control to the operating system in order to perform some task requested by a
user processor), or a page fault interrupt due to a missing translation in the page tables.
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Table B.2: J-Type Instructions of MIPS-86

opcode Mnemonic Assembler-Syntax Effect
Jumps
000 010 j j iindex pc = bin32(pc+4)[31:28]iindex00
000 011 jal jal iindex R31 = pc + 4,

pc = bin32(pc+4)[31:28]iindex00

In contrast, there are external interrupts which are triggered by an external source, e.g.
the reset signal or device interrupts. Interrupts of lesser importance tend to be mask-
able, i.e. there is a control register that allows the programmer to configure that certain
kinds of interrupts shall be ignored by the hardware.

The possible interrupt sources and priorities of MIPS-86 are listed in table B.6.
Interrupts are either of type repeat, abort, or continue. Here repeat expresses that the
interrupted instruction will be repeated after returning from the interrupt handler, abort
means that the exception is usually so severe that the machine will be by default unable
to return from the exception, and continue means that even though there is an inter-
rupt, the execution of the interrupted execution will be completed before jumping to
the interrupt-service-routine. In case of a continue-interrupt execution after exception
return will proceed behind the interrupted execution. Note that the APIC mechanism
is discussed in more detail in section B.8.1.
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B.3 Overview of the MIPS-86-Model

B.3.1 Configurations
We define the set K of configurations of an abstract simplified multi-core MIPS ma-
chine in a top-down way. I.e., we first give a definition of the overall concurrent ma-
chine configuration which is composed of several subcomponent configurations whose
definitions follow.

Definition 1 (Configuration of MIPS-86). A configuration

c = (c.p,c.running,c.m,c.d,c.ioapic) ∈ K

of MIPS-86 is composed of the following components:

• a mapping from processor identifier to processor configuration, c.p : [0 : np−
1]→ Kp,

(np is a parameter that describes the number of processors of the multi-core
machine)

• a mapping from processor identifier to a flag that describes whether the proces-
sor is running, c.running : [0 : np−1]→ B,

(If c.running(i) = 0, this means that the processor is currently waiting for a
startup-inter-processor-interrupt (SIPI))

• a shared global memory component c.m ∈ Km,

• a mapping from device identifiers to device configurations, c.dev : [0 : nd−1]→
Kdev, and

(where Kdev =
⋃nd−1

i=0 Kdev(i) is the union of individual device configurations, and
nd is a parameter that describes the number of devices considered)

• an I/O APIC, c.ioapic ∈ Kioapic.

Processor

Definition 2 (Processor Configuration of MIPS-86).

Kp = Kcore×Ksb×Ktlb×Kapic

A processor p= (p.core, p.sb, p.tlb, p.apic)∈Kp is subdivided into the following com-
ponents:

• a processor core p.core ∈ Kcore,

The processor core executes instructions according to the
Instruction-Set-Architecture (ISA).

• a store buffer p.sb ∈ Ksb,

A store-buffer buffers write accesses to the memory system local to the processor.
If possible, read requests by the core are served by the store-buffer. Writes leave
the store-buffer in the order they were placed (first-in-first-out).
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Figure B.1: Overview of MIPS-86 Model Components.

• a TLB p.tlb ∈ Ktlb

A translation-lookaside buffer (TLB) performs and caches address translations
to be used by the processor in order to establish a virtual memory abstraction.

• a local APIC p.apic ∈ Kapic

A local APIC receives interrupt signals from the I/O APIC and provides them
to the processor. Additionally, it acts as a processor-local device that can send
inter-processor-interrupts (IPI) to other processors of the system.

Definitions of Kcore,Ksb,Ktlb, and Kapic are each given in the section that defines
the corresponding component in detail.

Memory

Definition 3 (Memory Configuration of MIPS-86). For this abstract machine, we con-
sider a simple byte-addressable shared global memory component

Km ≡ B32→ B8

which is sequentially consistent.

Definition 4 (Reading Byte-Strings from Byte-Addressable Memory). For a memory
m ∈ Km and an address a ∈ B32 and a number d ∈ N of Bytes, we define

md(a) =

{
md−1(a+32 132)◦m(a) d > 0
ε d = 0
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B.3.2 Transitions
We define the semantics of the concurrent MIPS machine MIPS-86 as an automaton
with a partial transition function

δ : K×Σ ⇀ K

and an output function
λ : K×Σ ⇀ Ω

where Σ is the set of inputs to the automaton and Ω is the set of outputs of the au-
tomaton. In particular, in order to be able to define the semantics of our system as
a deterministic automaton, these inputs do include scheduling information, i.e. they
determine exactly which subcomponent makes what step. Note that, in the following
sections, we will first define the semantics of all individual components before we give
the definition of δ and λ in section B.11.

Scheduling

We provide a model in which the execution order of individual components of the
system is not known to the programmer. In order to prove correct execution of code,
it is necessary to consider all possible execution orders given by the model. We model
this non-deterministic behavior by deterministic automata which take, as part of their
input, information about the execution order. This is done in such a way that, in every
step, it is specified exactly which subcomponent of the overall system makes which
particular step.

There are occasions where several components make a synchronous step. In such
cases, our intuition is that one very specific subcomponent actively performs a step,
while all other components make a passive step that merely responds to the active
component in some way. The memory, in particular, is such a passive component.
Also, devices can react passively to having their registers read by a processor, causing
a side-effect on reading.

B.4 Memory
Definition 5 (Memory Transition Function). We define the memory transition function

deltam : Km×Σm ⇀ Km

where
sigmam = B32× (B8)∗∪B32×B32×B32

Here,

• (a,v) ∈ B32× (B8)∗ – describes a write access to address a with value v, and

• (c,a,v) ∈ (B32)3 – describes a read-modify-write access to address a with
compare-value c and value v to be written in case of success.

We have

δm(m, in)(x) =


byte(〈x〉−〈a〉,v) in = (a,v)∧0≤ 〈x〉−〈a〉< len(v)/8
byte(〈x〉−〈a〉,v) in = (c,a,v)∧m4(a) = c∧0≤ 〈x〉−〈a〉< 4
m(x) otherwise

433



Note that, in this memory model, we assume that read accesses cannot change the
memory state – thus, any result of a read operation can simply be computed directly
from a given memory configuration. In a more concrete model where caches are still
visible, we need to consider memory reads as explicit inputs to the cache system.

B.5 TLB

B.5.1 Address Translation
Most processors, including MIPS-86 and x86-64, provide virtual memory which is
mostly used for implementing process separation in the context of an operating system.
By performing address translation from virtual memory addresses to physical memory
addresses (i.e. regular memory addresses of the machine’s memory system), the notion
of a virtual memory is established – if this translation is injective, virtual memory has
regular memory semantics (i.e. writing to an address affects only this single address
and values being written can be read again later). Mostly, this is used to establish
several virtual address spaces that are mapped to disjoint address regions in the physical
memory of the machine. User processes of the operating system can then each be run
by the operating system in their respective address spaces without any risk of user
processes affecting each other or the operating system.

Processors tend to provide a mechanism to activate and deactivate address trans-
lation – usually by writing some special control register. In the case of MIPS-86, a
special-purpose-register mode is provided which decides whether the processor is run-
ning in system mode, i.e. without address translation, or in user mode, i.e. with address
translation.

The translation from virtual addresses to physical addresses is usually given at the
granularity of memory pages – in the case of MIPS-86, a memory page consists of
212 consecutive bytes. Since MIPS-86 is a 32-bit architecture, a page address thus
consists of 20 Bits. Defining a particular translation from virtual addresses to phyiscal
addresses is done by establishing page tables that describe the translation. In the most
simple case, a single-level translation can be given by a single page table – which
is a sequence of page table entries that each describe how – and if – a given virtual
page address is translated to a corresponding physical page address. The translation
tends to be partial, i.e. not every virtual page address has a corresponding physical
page address, which is reflected in the page table entry by the present bit. Trying to
access a virtual address in user mode that does not have a translation set up in the page
table according to the present bit then results in a page-fault interrupt which returns the
processor to system mode – e.g. allowing the operating system to set up a translation
for the faulting virtual page address.

MIPS-86, like x86-64, applies a multi-level page table hierarchy: Instead of trans-
lating using a single page table that describes the virtual page address to physical page
address translation, there are several levels of page tables. One advantage of this is that
multi-level page tables tend to require less memory space: Instead of providing a page
table entry for every virtual page address, the page tables now form a graph in such
a way that every level of page tables effectively describes a part of the page address
translation by linking to page tables belonging to the next level of translation. Since
only a part of the translation is provided, these page tables are much smaller than a
single-level translation page table. MIPS-86 provides 2 levels of address translation (in
comparison, x86-64 makes use of 4 levels). The first level page table – also called page
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directory – translates the first 10 Bits of a page address by describing where the page
tables for translating the remaining 10 Bits can be found, i.e. they contain addresses
of second level page tables. These terminal page tables then provide the physical page
addresses. Note that, in defining a multi-level translation via page tables, page table
entries can be marked as not present in early translation levels which essentially means
that no further page tables need to be provided for the given virtual page address pre-
fix – which effectively is the reason why multi-level translations tend to require less
memory space.

The actual translation is performed in hardware by introducing a circuit called mem-
ory management unit (MMU) which serves translation requests from the processor by
accessing the page tables residing in memory. In a naive hardware implementation
of address translation, the processor running in user mode could simply issue trans-
lation requests to the MMU in order as needed for instruction execution and wait for
the MMU circuit to respond with a translation. Such a synchronous implementation
however, would mean that the processor is constantly waiting for the MMU to per-
form translations, limiting the speed of execution to that of the MMU performing as
many memory accesses as needed to compute the translations needed for instruction
fetch and execution. Fortunately, however, it can be observed that instruction fetch
in user mode to a large degree tends to require translations for virtual addresses that
lie in the same page (with an appropriate programming style this is also mostly true
for memory accesses performed by instructions), thus, in order not to constantly have
the MMU repeat a translation for the same virtual page address, it might be helpful
to keep translations available to the processor in a special processor-local cache for
translations. This cache is commonly called translation lookaside buffer (TLB) and is
updated by the MMU whenever necessary in order to serve translation requests by the
processor. Note that a hardware TLB may cache partial translations for virtual page
address prefixes in order to reuse them later.

Since the operating system may modify the page tables, translations in the TLB
may become outdated – removing or changing translations provided by the page tables
can make the TLB inconsistent with the page tables. Thus, architectures with TLB
tend to provide instructions that allow the processor to control the state of the TLB to
some degree. The functionality needed in order to keep the TLB consistent with the
page tables is in fact quite simple: In order to ensure that all translations present in
the TLB are also given by the page tables, all we need is to be able to remove particu-
lar translations (or all translations) from the TLB. Both x86-64 and MIPS-86 provide
such instructions – for MIPS-86, invl pg invalidates a single virtual page address, while
f lush removes all translations from the TLB.

B.5.2 TLB Configuration
When the MIPS-86 processor is running in user mode, all memory accesses are subject
to address translation according to page tables residing in memory. In order to perform
address translation, the MMU operates on the page tables to create, extend, complete,
and drop walks. A complete walk provides a translation from a virtual address to a
physical address of the machine that can in turn be used by the processor core. Our
TLB offers address space identifiers – a tag that can be used to associate translations
with particular users – which reduces the need for TLB flushes when switching between
users.

Definition 6 (TLB Configuration of MIPS-86). We define the set of configurations of
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a TLB as
Ktlb = 2Kwalk

where the set of walks Kwalk is given by

Kwalk = B20×B6×{0,1,2}×B20×B3×B

The components of a walk w= (w.va,w.asid,w.level,w.ba,w.r,w. f ault)∈Kwalk are the
following:

• wva ∈ B20 – the virtual page address to be translated,

• wasid ∈ B6 – the address space identifier (ASID) the translation belongs to,

• wlevel ∈ {0,1,2} – the current level of the walk, i.e. the number of remaining
walk extensions needed to complete the walk,

• wbawalk ∈B20 – the physical page address of the page table to be accessed next,
or, if the walk is complete, the result of the translation,

• wr ∈ B3 – the accumulated access rights, and

Here, r[0] stands for write permission, r[1] for user mode access, and r[2] ex-
presses execute permission.

• w f ault ∈ B – a page fault indicator.

B.5.3 TLB Definitions
In the following, we make definitions that describe the structure of page tables and
the translation function specified by a given page table origin according to a memory
configuration. Addresses are split in two page index components px2, px1 and a byte
offset px0 within a page:

a = a.px2 ◦a.px1 ◦a.px0

Definition 7 (Page and Byte Index). Given an address a ∈ B32, we define

• the second-level page index apx2 = a[31 : 22],

• the first-level page index apx1 = a[21 : 12], and

• the byte offset apx0 = a[11 : 0]

of a.

Definition 8 (Base Address (Page Address)). The base address (also sometimes re-
ferred to as page address) of an address a ∈ B32 is then given by

aba = a.px2 ◦a.px1.

Definition 9 (Page Table Entry). A page table entry pte ∈ B32 consists of

• ptebapte = pte[31 : 12] – the base address of the next page table or, if the page
table is a terminal one, the resulting physical page address for a translation,

• pteppte = pte[11] – the present bit,
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• pterpte = pte[10 : 8] – the access rights for pages accessed via a translation that
involves the page table entry,

• pteapte = pte[7] – the accessed flag that denotes whether the MMU has already
used the page table entry for a translation, and

Definition 10 (Page Table Entry Address). For a base address ba ∈ B20 and an index
i ∈ B10, we define the corresponding page table entry address as

ptea(ba, i) = ba◦012 +32 020i00

The page table entry address needed to extend a given walk w ∈ Kwalk is then defined
as

ptea = ptea(w.ba,(w.va◦012).pxw.level)

Definition 11 (Page Table Entry for a Walk). Given a memory m ∈ Kmem and a walk
w ∈ Kwalk, we define the page table entry needed to extend a walk as

pte = m4(ptea(w))

Definition 12 (Walk Creation). We define the function

winit : B20×B20×B6→ Kwalk

which, given a virtual base address va ∈ B20, the base address pto ∈ B20 of the page
table origin and an address space identifier asid ∈ B6, returns the initial walk for the
translation of va.

winit = w

is given by
w.va = va

w.asid = asid

w.level = 2

w.ba = pto

w.r = 111

w. f ault = 0

Note that in our specification of the MMU, the initial walk always has full rights
(w.r = 111). However, in every translation step, the rights associated with the walk can
be restricted as needed by the translation request made by the processor core.

Definition 13 (Sufficient Access Rights). For a pair of access rights r,r′ ∈ B3, we use

le
de f⇔ ∀ j ∈ [0 : 2] : r[ j]≤ r′[ j]

to describe that the access rights r are weaker than r′, i.e. rights r′ are sufficient to
perform an access with rights r.
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Definition 14 (Walk Extension). We define the function

wext : Kwalk×B32×B3→ Kwalk

which extends a given walk w ∈ Kwalk using a page table entry pte ∈ B32 and access
rights r ∈ B3 in such a way that

wext = w′

is given by
w′.va = w.va

w′.asid = w.asid

w′.level =

{
w.level−1 pte.p
w.level otherwise

w′.ba =

{
pte.ba pte.p
w.ba otherwise

w′.r =

{
pte.r pte.p
w.r otherwise

w′. f ault = ¬pte.p∨¬r ≤ pte.r

Note that, in the original x86 model, in addition to restricting the rights according
to the rights set in the page table entry used to extend the walk, there was the possibility
to restrict the rights of a walk even further during walk extension. This has something
to do with the fact that translation requests that do not need write rights would not need
to set a dirty flag in the page table entry. In this model, however, we only model the
accessed bit and not the dirty bit.

Definition 15 (Complete Walk). A walk w∈Kwalk with w.level = 0 is called a complete
walk:

complete≡ w.level = 0

Definition 16 (Setting Accessed Flag of a Page Table Entry). Given a page table entry
pte ∈ B32 , we define the function

set−ad = pte[a := 1]

which returns an updated page table entry in which the accessed bit is set.

Definition 17 (Translation Request). A translation request

trq = (trq.asid, trq.va, trq.r) ∈ B6×B32×B3

is a triple of

• address space identifier trqasidtrq ∈ B6,

• virtual address trqvatrq ∈ B32, and

• access rights trqrtrq ∈ B3.
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Definition 18 (TLB Hit). When a walk w matches a translation request trq in terms of
virtual address, address space identifier and access rights, we call this a TLB hit:

hit ≡ w.va = trq.va[31 : 12]∧w.asid = trq.asid∧ trq.r ≤ w.r

Note, that a hit may be to an incomplete walk.

Definition 19 (Page-Faulting Walk Extension). A page fault for a given translation
request can occur for a given walk when extending that walk would result in a fault:
The page table entry needed to extend is not present or the translation would require
more access rights than the page table entry provides. To denote this, we define the
predicate

f aultwalk ≡ /complete(w)∧hit(trq,w)
∧wext(w, pte(m,w), trq.r). f ault

which, given a memory m, a translation request trq and a walk w, is fulfilled when
walk extension for walk w under translation request trq in memory configuration m
page-faults.

Note that a page fault may occur at any translation level. However, the TLB will
only store non-faulting walks (this is an invariant of the TLB) – page faults are always
triggered by considering a faulting extension of a walk in the TLB.

How page faults are triggered is defined in the top-level transition function of
MIPS-86 as follows: the processor core always chooses walks from the TLB non-
deterministically to either obtain a translation, or, to get a page-fault when the chosen
walk has a page faulting walk extension. Note that, when a page-fault for a given pair
of virtual address and address space identifier occurs, MIPS-86 flushes all correspond-
ing walks from the TLB. Another side-effect of page-faults in the pipelined hardware
implementation is that the pipeline is drained. Since the MIPS-86 model provides a
model of sequential instruction execution, draining the pipeline cannot be expressed
on this level, however, this behavior is needed in order to be able to prove that the
pipelined implementation indeed behaves as specified by MIPS-86.

Definition 20 (Transition Function of the TLB). We define the transition function of
the TLB that states the passive transitions of the TLB

deltatlb : Ktlb×Σtlb→ Ktlb

where

sigmatlb = {flush}×B6×B20∪{flush-incomplete}∪{add-walk}×Kwalk

as a case distinction on the given input:

• flushing a virtual address for a given address space identifier:

δtlb(tlb,(flush,asid,va)) = {w ∈ tlb | ¬(w.asid = asid∧w.va = va)}

• flushing all incomplete walks from the TLB:

δtlb(tlb,flush-incomplete) = {w ∈ tlb | complete(w)}

• adding a walk:
δtlb(tlb,(add-walk,w)) = tlb∪{w}
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B.6 Processor Core
Definition 21 (Processor Core Configuration of MIPS-86). A MIPS-86 processor core
configuration c = (c.pc,c.gpr,c.spr,c.HI,c.LO) ∈ Kcore consists of

• a program counter: cpc ∈ B32,

• a general purpose register file: cgpr : B5→ B32,

• a special purpose register file: cspr : B5→ B32, and

• multiplication accumulator registers: cHI,c.LO ∈ B32

Definition 22 (Processor Core Transition Function of MIPS-86). We define the proces-
sor core transition function

deltacore : Kcore×Σcore ⇀ Kcore

which takes a processor core input from

sigmacore = Σinstr×Σeev×B×B

where
sigmainstr = B32× (B8∪B16∪B32∪{⊥})

is the set of inputs required for instruction execution, i.e. a pair of instruction word
I ∈ B32 and value R ∈ B8∪B16∪B32∪{⊥} read from memory (which is only needed
for read or cas instructions), and

sigmaeev = B256

is used to represent a vector eev∈B256 of interrupt signals provided by the local APIC.
Also, we explicitly pass the page fault fetch and page fault load/store signals pff,pfls ∈
B.

We define the processor core transition function

δcore(c, I,R,eev,pff,pfls)=


δjisr(c, I,R,eev,pff,pfls) jisr(c, I,eev,pff,pfls)
δrfe(c) eret(I)∧¬ jisr(c, I,eev,pff,pfls)
δinstr(c, I,R) otherwise

as a case distinction on the jump-interrupt-service-routine-signal jisr (for definition,
see B.6.3) which formalizes whether an interrupt is triggered in the current step of
the machine and the return-from-exception-signal r f e which is active when the next
instruction to be executed is r f e.

In the definition above, we use the auxiliary transition functions

δinstr : Kcore×Σinstr ⇀ Kcore

which executes a non-interrupted instruction of the instruction set architecture (for def-
inition, see section B.6.2),

δjisr : Kcore×Σcore→ Kcore

which is used to specify the state the core reaches when an interrupt is triggered (for
definition, see section B.6.4), and

δrfe : Kcore→ Kcore

which specifies the return-from-exception transition (for definition, see section B.6.4).

440



B.6.1 Auxiliary Definitions for Instruction Execution
In the following, we make auxiliary definitions in order to define the processor core
transitions that deal with instruction execution. In order to execute an instruction, the
processor core needs to read values from the memory. Of relevance to instruction
execution is the instruction word I ∈ B32 and, if the instruction I is a read or cas
instruction, we need the value R ∈ B8∪B16∪B32 read from memory.

Instruction Decoding

Definition 23 (Fields of the Instruction Layout). Formalizing the tables given in sub-
section B.2.1, we define the following shorthands for the fields of the MIPS-86 instruc-
tion layout:

• instruction opcode
opc = I[31 : 26]

• instruction type

rtype≡ opc(I) = 06∨opc(I) = 0104∨opc(I) = 01302

jtype≡ opc(I) = 0410∨opc(I) = 0411

itype≡ rtype(I)∨ jtype(I)

• register addresses
rs = I[25 : 21]

rt = I[20 : 16]

rd = I[15 : 11]

• shift amount
sa = I[10 : 6]

• function code (used only for R-type instructions)

f un = I[5 : 0]

• immediate constants (for I-type and J-type instructions, respectively)

imm = I[15 : 0]

iindex = I[25 : 0]

Definition 24 (Instruction-Decode Predicates). For every MIPS-Instruction, we define
a predicate on the MIPS-configuration which is true iff the corresponding instruction is
to be executed next. The name of such an instruction-decode predicate is always the in-
struction’s mnemonic (see MIPS ISA-tables at the beginning). Formally, the predicates
check for the corresponding opcode and function code. E.g.

lw(I)≡ opc(I) = 100011

. . .

add(I)≡ rtype(I)∧ f un(I) = 100000
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The instruction-decode predicates are so trivial to formalize that we do not explic-
itly list all of them here.

Definition 25 (Illegal Opcode). Let

ill = ¬(lw(I)∨ . . .∨add(I))

be the predicate that formalizes that the opcode of instruction I is illegal by negating
the disjunction of all instruction-decode predicates.

Note that, encountering an illegal opcode during instruction execution, an illegal
instruction interrupt will be triggered.

Arithmetic and Logic Operations

The arithmetic logic unit (ALU) of MIPS-86 behaves according to the following table:

alucon[3:0] i alures ovf
0 000 * a+32 b 0
0 001 * a+32 b [a]+ [b] /∈ T32
0 010 * a−32 b 0
0 011 * a−32 b [a]− [b] /∈ T32
0 100 * a∧32 b 0
0 101 * a∨32 b 0
0 110 * a⊕32 b 0
0 111 0 ¬32(a∨32 b) 0
0 111 1 b[15 : 0]016 0
1 010 * 031([a]< [b]?1 : 0) 0
1 011 * 031(〈a〉< 〈b〉?1 : 0) 0

Based on inputs a,b ∈ B32,alucon ∈ B4 and i ∈ B, this table defines alures ∈ B32 and
ov f ∈ B.

Definition 26 (ALU Instruction Predicates). To describe whether a given instruction
I ∈ B32 performs an arithmetic or logic operation, we define the following predicates:

• I-type ALU instruction: compi≡ itype(I)∧ I[31 : 29] = 001

• R-type ALU instruction: compr ≡ rtype(I)∧ I[5 : 4] = 10

• any ALU instruction: alu≡ compi(I)∨ compr(I)

Definition 27 (ALU Operands of an Instruction). Following the instruction set archi-
tecture tables, we formalize the right and left operand of an ALU instruction I ∈ B32

based on a given processor core configuration c ∈ Kcore as follows:

• left ALU operand: lop = c.gpr(rs(I))

• right ALU operand: rop =


c.gpr(rt(I)) rtype(I)
sxt32(imm(I)) /rtype(I)∧/I[28]
zxt32(imm(I)) otherwise
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Definition 28 (ALU Control Bits of an Instruction). We define the ALU control bits of
an instruction I ∈ B32 as

alucon[2 : 0] =

{
I[2 : 0] rtype(I)
I[28 : 26] otherwise

alucon(I)[3]≡ rtype(I)∧ I[3]∨/I[28]∧ I[27]

Definition 29 (ALU Compute Result). The ALU result of an instruction I executed in
processor core configuration c ∈ Kcore is then given by

compres = alures(lop(c, I),rop(c, I),alucon(I), itype(I))

Multiplication Operations

The multiplication unit of MIPS-86 takes inputs a, b, c, d, and mulcon and behaves
according to the following table, providing mures(a,b,c,d,mulcon):

mulcon[2:0] mures
000 twoc64([a] · [b])
001 bin64(〈a〉 · 〈b〉)
100 cd +64 twoc64([a] · [b])
101 cd +64 bin64(〈a〉 · 〈b〉)
110 cd−64 twoc64([a] · [b])
111 cd−64 bin64(〈a〉 · 〈b〉)

Definition 30 (Multiplication Control Bits). The multiplication control bits are

mulcon≡ (opc(I)[2]⊕ f un(I)[1])◦ f un[2]◦ f un[0]

Definition 31 (Multiplication Result). We define the multiplication result as

mres = mures(c.gpr(rs(I)),c.gpr(rt(I)),c.HI,c.LO,mulcon(I))

Definition 32 (Multiplication Accumulator Register Instructions). The predicate

mulacc = mult(I)∨multu(I)∨madd(I)∨maddu(I)∨msub(I)∨msubu(I)

is true whenever the machine is about to execute a multiplication operation that writes
a result to the HI and LO registers.

Jump and Branch Instructions

Jump and branch instructions affect the program counter of the machine. The dif-
ference between branch instructions and jump instructions is that branch instructions
perform conditional jumps based on some condition expressed over general purpose
register values. The following table defines the branch condition result bcres ∈ B, i.e.
whether for the given parameters the branch will be performed or not, based on inputs
a,b ∈ B32 and bcon ∈ B4:
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bcon[3:0] bcres(a, b, bcon)
001 0 [a]< 0
001 1 [a]≥ 0
100 * a = b
101 * a 6= b
110 * [a]≤ 0
111 * [a]> 0

Definition 33 (Branch Instruction Predicates). We define the following branch instruc-
tion predicates that denote whether a given instruction I ∈ B32 is a jump or successful
branch instruction given configuration c ∈ Kcore:

• branch instruction: b≡ opc(I)[5 : 3] = 03∧ itype(I)

• jump instruction: jump≡ j(I)∨ jal(I)∨ jr(I)∨ jalr(I)

• jump or branch taken:

jbtaken≡ jump(I)∨b(I)∧bcres(c.gpr(rs(I)),c.gpr(rt(I)),opc[2 : 0]rt(I)[0])

Definition 34 (Branch Target). We define the target address of a jump or successful
branch instruction I ∈ B32 in a given configuration c ∈ Kcore as

btarget ≡


c.pc+32 sxt30(imm(I))00 b(I)
c.gpr(rs(I)) jr(I)∨ jalr(I)
(c.pc+32 432)[31 : 28]iindex(c)00 j(I)∨ jal(I)

Shift Operations

Shift instructions perform shift operations on general purpose registers.

Definition 35 (Shift Results). For a[n−1 : 0] ∈ Bn and i ∈ {0, . . . ,n−1} we define the
following shift results (∈ Bn):

• shift left logical: sll = a[n− i−1 : 0]0i

• shift right logical: srl = 0ia[n−1 : i]

• shift right arithmetic: sra = ai
n−1a[n−1 : i]

Note that, for MIPS-86, we will use the aforementioned definitions only for n = 32.

Definition 36 (Shift Unit Result). We define the result of a shift operation based on
inputs a ∈ Bn, i ∈ {0, . . . ,n−1}, and s f ∈ B2 as follows:

sures =


sll(a, i) s f = 00
srl(a, i) s f = 10
sra(a, i) s f = 11

Definition 37 (Shift Instruction Predicate). We define a predicate that, given an in-
struction I ∈ B32, expresses whether the instruction is a shift instruction by a simple
disjunction of shift instruction predicates:

su≡ sll(I)∨ srl(I)∨ sra(I)∨ sllv(I)∨ srlv(I)∨ srav(I)
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Definition 38 (Shift Operands). Given a shift instruction I ∈ B32 and a processor core
configuration c ∈ Kcore, we define the following shift operands:

• shift distance: sdist =

{
〈sa(I)〉mod32 f un(I)[3] = 0
〈c.gpr(rs(I))[4 : 0]〉mod32 f un(I)[3] = 1

• shift left operand: slop = c.gpr(rt(I))

Definition 39 (Shift Function). The shift function of a shift instruction I ∈ B32 is given
by

s f = I[1 : 0]

Memory Accesses

We define auxiliary functions that we need in order to define how values are read/writ-
ten from/to the memory in the overall system’s transition function.

Definition 40 (Effective Address and Access Width). Given an instruction I ∈B32 and
a processor core configuration c ∈ Kcore, we define the effective address and access
width of a memory access:

• effective address: ea =

{
c.gpr(rs(I))+32 sxt32(imm(I)) itype(I)
c.gpr(rs(I)) rtype(I)

• access width: d =


1 lb(I)∨ lbu(I)∨ sb(I)
2 lh(I)∨ lhu(I)∨ sh(I)
4 sw(I)∨ lw(I)∨ cas(I)

The effective address is the first byte address affected by the memory address and the
access width is the number of bytes which are read, or, respectively, written.

Definition 41 (Misalignment Predicate). For an instruction I ∈ B32 and a processor
core configuration c ∈ Kcore, we define the predicate

mal ≡ (lw(I)∨ sw(I)∨ cas(I))∧ ea(c, I)[1 : 0] 6= 00
∨(lhu(I)∨ lh(I)∨ sh(I))∧ ea(c, I)[0] 6= 0

that describes whether the memory access is misaligned. To be correctly aligned, the
effective address of the memory access must be divisible by the access width.

Note that misaligned memory access triggers the corresponding interrupt.

Definition 42 (Load/Store Instruction Predicates). In order to denote whether a given
instruction I ∈ B32 is a load or store instruction, we define the following predicates:

• load instruction: load ≡ lw(I)∨ lhu(I)∨ lh(I)∨ lbu(I)∨ lb(I)

• store instruction: store≡ sw(I)∨ sh(I)∨ sb(I)

Definition 43 (Load Value). The value read from memory R ∈ B8∪B16∪B32 is given
as an input to the transition function of the processor core. In order to write this value
to a general purpose register, depending on the memory instruction used, we either
need to sign-extend or zero-extend this value:

lv =

{
zxt32(R) lbu(I)∨ lhu(I)
sxt32(R)
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Definition 44 (Store Value). Given an instruction I ∈B32 and a processor core config-
uration c ∈ Kcore, the store value is given by the last d(I) bytes taken from the general
purpose register specified by rt(I):

sv = c.gpr(rt(I))[8 ·d(I)−1 : 0]

General Purpose Register Updates

Definition 45 (General Purpose Register Write Predicate). The predicate

gprw≡ alu(I)∨ su(I)∨ lw(I)∨ cas(I)∨ jal(I)∨ jalr(I)

∨movs2g(I)∨mul(I)∨m f lo(I)∨m f hi(I)

describes whether a given instruction I ∈B32 results in a write to some general purpose
register.

Definition 46 (General Purpose Register Result Destination). We define the result des-
tination of an ALU/shift/coprocessor/memory instruction I ∈ B32 as the following gen-
eral purpose register address:

rdes =

{
rd(I) rtype(I)∧/movs2g(I)∨mul(I)
rt(I) otherwise

Definition 47 (Written General Purpose Register). For an instruction I ∈ B32, the ad-
dress of the general purpose register which is actually written to is defined as

cad =

{
15 jal(I)
rdes(I) otherwise

Definition 48 (General Purpose Register Input). We define the value written to the
general purpose register specified above based on the instruction I ∈ B32 and a given
processor core configuration c ∈ Kcore as

gprdin =



c.pc+32 432 jal(I)∨ jalr(I)
lv(R) load(I)∨ cas(I)
c.spr(rd(I)) movs2g(I)
c.HI m f hi(I)
c.LO m f lo(I)
alures(lop(c, I),rop(c, I),alucon(I)) alu(I)
mres(c, I)[31 : 0] mul(I)
sures(slop(c, I),sdist(c, I),s f (I)) su(I)

B.6.2 Definition of Instruction Execution
Based on the auxiliary functions defined in the last subsection, we give the definition
of instruction execution in closed form:

Definition 49 (Non-Interrupted Instruction Execution). We define the transition func-
tion for non-interrupted instruction execution

δinstr : Kcore×Σinstr ⇀ Kcore
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where
Σinstr = B32× (B8∪B16∪B32∪{⊥})

as

δinstr(c, I,R) =

{
unde f ined (load(I)∨ cas(I))∧R /∈ B8·d(I)

c′ otherwise

where

• c′.pc =

{
btarget(c, I) jbtaken(c, I)
c.pc+32 432 otherwise

• c′.gpr(x) =

{
gprdin(c, I,R) x = cad(I)∧gprw(I)
c.gpr(x) otherwise

• c′.spr(x) =

{
c.gpr(rt(I)) rd(I) = x∧movg2s(I)
c.spr(x) otherwise

• c′.HI =


mres(c, I)[63 : 32] mulacc(I)
c.gpr(rs(I)) mthi(I)
unde f ined mul(I)
c.HI otherwise

• c′.LO =


mres(c, I)[31 : 0] mulacc(I)
c.gpr(rs(I)) mtlo(I)
unde f ined mul(I)
c.HI otherwise

B.6.3 Auxiliary Definitions for Triggering of Interrupts
MIPS-86 provides the following interrupt types which are ordered by their priority
(interrupt level):

interrupt shorthand internal type maskable
level /external
0 reset eev abort 0 reset
1 I/O eev repeat 1 devices
2 ill iev abort 0 illegal instruction
3 mal iev abort 0 misaligned
4 pff iev repeat 0 page fault fetch
5 pfls iev repeat 0 page fault load/store
6 sysc iev continue 0 system call
7 ovf iev continue 1 overflow

Note that the all continue interrupts are either triggered by execution of ALU operations
with overflow or execution of the sysc-Instruction.

While external event signals are provided by the local APIC as input eev ∈ B256 to
the processor core transition function, the internal event signals iev∈B8 are defined by
the following table that uses the page-fault signals pff,pfls ∈ B which are provided by
the MMU of the processor to the processor core transition function.
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internal event signal defined by
iev(c, I,pff,pfls)[2] ≡ ill(I)∨ c.mode[0] = 1∧ (movg2s(I)∨movs2g(I))
iev(c, I,pff,pfls)[3] ≡ mal(c, I)
iev(c, I,pff,pfls)[4] ≡ pff
iev(c, I,pff,pfls)[5] ≡ pfls
iev(c, I,pff,pfls)[6] ≡ sysc(I)
iev(c, I,pff,pfls)[7] ≡ ov f (lop(c, I),rop(c, I),alucon(I), itype(I))

Note that even though, from the view of the processor core, the page-fault signals
appear just as external as the external event vector provided by the local APIC, the
difference is that the external interrupts provided by the local APIC originate from
devices while the page-fault signals originate from the MMU belonging to processor
itself. This justifies classifying them as internal event signals.

When an interrupt occurs, information about the type of interrupt is stored in a
special purpose register to allow the programmer to discover the reason, i.e. the cause,
for the interrupt.

Definition 50 (Cause and Masked Cause of an Interrupt). We define the cause ca ∈ B8

of an interrupt and masked cause mca ∈ B8 of an interrupt based on the current pro-
cessor core configuration c ∈ Kcore, the instruction I ∈ B32 to be executed, the external
event vector eev ∈ B256 and the page-fault signals pff,pfls ∈ B as follows:

• cause of interrupt:

ca[ j] =


iev(c, I,pff,pfls)[ j] j ∈ [2 : 7]∨255

i=0 eev[i] j = 1
0 otherwise

• masked cause:

mca[ j] =

{
ca(c, I,eev,pff,pfls)[ j] j /∈ {1,7}
ca(c, I,eev,pff,pfls)[ j]∧ c.spr(sr)[ j] j ∈ {1,7}

Only interrupt levels 1 and 7 are maskable; the corresponding mask can be found in
special purpose register sr (status register) and is applied to the cause of interrupt to
obtain the masked cause.

Definition 51 (Jump-to-Interrupt-Service-Routine Predicate). To denote that in a given
configuration c ∈ Kcore for a given instruction I ∈ B32, external event signals eev ∈
B256, and page-fault signals pff,pfls ∈ B an interrupt is triggered, we define the predi-
cate

jisr ≡
∨

j

mca(c, I,eev,pff,pfls)[ j]

Definition 52 (Interrupt Level of the Triggered Interrupt). To determine the interrupt
level of the triggered interrupt, we define the function

il = min{ j | mca(c, I,eev,pff,pfls)[ j] = 1}

Definition 53 (Continue-Type Interrupt Predicate). The predicate

continue≡ il(c, I,R,eev) ∈ {6,7}

denotes whether the triggered interrupt is of continue type.
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B.6.4 Definition of Handling
Definition 54 (Interrupt Execution Transition Function). We define

δ jisr(c, I,R,eev,pff,pfls) = c′

where I ∈ B32 is the instruction to be executed and eev ∈ B256 are the event signals
received from the local APIC and pff,pfls ∈ B are the page-fault signals provided by
the processor’s MMU.

Let k = min{ j | eev[ j] = 1}.

• c′.pc = 032

• c′.spr(x)=



032 x = sr
032 x = mode
c.sr x = esr
zxt32(mca(c, I,eev,pff,pfls)) x = eca
c.pc x = epc

∧/continue(c, I,eev,pff,pfls)
δinstr(c, I,R).pc x = epc∧ continue(c, I,eev,pff,pfls)
ea(c, I) x = edata∧ il(c, I,eev,pff,pfls) = 5
bin32(k) x = edata∧ il(c, I,eev,pff,pfls) = 1
c.spr(x) otherwise

• c′.gpr =

{
c.gpr /continue(c, I,eev,pff,pfls)
δinstr(c, I,R).gpr otherwise

Definition 55 (Return From Exception Transition Function). We define deltar f e(c) =
c′.

• c′.pc = c.spr(epc)

• c′.spr(x) =


0311 x = mode
c.spr(esr) x = sr
c.spr(x) otherwise

• c′.gpr = c.gpr

B.7 Store Buffer
Store buffers are, in their simplest form, first-in-first-out queues for write accesses that
reside between processor core and memory. In a processor model with store-buffer,
servicing memory reads is done by finding the newest store-buffer entry for the given
address if one is available – otherwise the read is serviced by the memory subsystem.
Essentially, this means that read accesses that rely on values from preceeding write
accesses can be serviced even before they reach the caches. The benefit of store-buffers
implemented in hardware is that instruction execution can proceed while the memory
is still busy servicing previous write accesses.
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In order to allow the programmer to obtain a sequentially consistent view of mem-
ory in the presence of store-buffers, architectures whose abstract model contains store-
buffers tend to provide instructions that have an explicit effect on the store-buffer, e.g.
by draining the pipeline. MIPS-86 offers a memory fence instruction f ence that simply
drains the store buffer and a read-modify-write operation rmw that performs an atomic
conditional memory update with the side-effect of draining the store-buffer.

Note that, even in a machine that has no store-buffer in hardware, pipelining of
instruction execution may introduce a store-buffer to the abstract machine model. We
discuss this in the next subsection before we give a definition of the store-buffer of
MIPS-86.

B.7.1 Instruction Pipelining May Introduce a Store-Buffer
The term pipelining used in the context of gate-level circuit design can be used to de-
scribe splitting up a hardware construction (e.g. of a processor) that computes some
result in a single hardware cycle (e.g. executes an instruction) into n smaller compo-
nents which are called pipeline stages whose outputs are always inputs of the next one
and which each computes a part of the final result in its own registers – in such a way
that, initially, after n cycles, the first result is provided by the nth component and then,
subsequently, every following cycle a computation finishes. The reason why this is ef-
ficient lies in the fact that, in terms of electrophysics, smaller circuits require less time
for input signals to propagate and for output signals to stabilize, thus, smaller circuits
can be clocked faster than larger ones. Note that the increase in delay for inserting
additional registers in the subcomponents tends to be less than the delay saved by split-
ting the construction into pipeline stages, resulting in an overall faster computation due
to the achieved parallelization.

A common feature to be found in processors is instruction pipelining. For a basic
RISC machine (like MIPS-86), the common five-stage pipeline is given by the follow-
ing five stages: IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM
= Memory access, and WB = Register write back. Note that a naive hardware imple-
mentation where all that is changed from the one-cycle hardware construction is that
additional registers are inserted will, in general, behave differently than the original
construction: Execution of the next instruction may depend on results from the execu-
tion of previous instructions which are still in the instruction pipeline. The occurrence
of such a dependency where the result of a computation in the naively pipelined ma-
chine does not match the result of the sequential machine is referred to as a hazard.
One way to circumvent this is by software: If the programmer/compiler ensures that
the machine code executed by the pipelined machine does not cause any hazard (e.g. by
inserting NOOPs (no operations, i.e. instructions that do not have any effect other than
incrementing the program counter) or by reordering instructions). This, however, by
requiring a much more conservative style of programming, reduces the speedup gained
by introducing pipelining in the first place.

In fact, instead of leaving hazard detection and handling exclusively to the pro-
grammer of the machine, modern architectures implement proper handling of most
hazards in hardware. When a data hazard is detected (i.e. an instruction depends on
some value computed by an earlier instruction that is still in the pipeline), the hardware
stalls execution of the pipeline on its own until the required result has been computed.
Additional hardware then forwards the result from the later pipeline stage directly to
the waiting instruction that is stalled in an earlier pipeline stage. Note that even though
many hazards can be detected and resolved efficiently in hardware, it is not necessarily
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the best thing to prevent all hazards in hardware – overall performance of a system
may be better when minor parts of hazard handling are left to the programmer/com-
piler. In fact, for modern pipelined architectures, it is common practice to allow slight
changes to the abstract hardware model at ISA level which allow for a less strict but
more performant treatment of hazards.

When a memory write is forwarded to a subsequent memory read instruction to
the same address (or to the instruction fetch stage, possibly), this can be modeled by
introducing a store-buffer between processor and memory system – even when there is
no physical store-buffer present in the hardware implementation [Hot12]. For a single-
core architecture, it is not overly hard to prove that a processor model with store-buffer
is actually equivalent to the processor model without store-buffer. For a multi-core
architecture however, it is more involved to prove that store-buffers become invisible
on higher layers of abstraction: Since every processor has its own store-buffer and the
values from store-buffers are not forwarded to other processors, any two processors
may have different values for the same address present in their store-buffers. For an in-
detail treatment of hardware construction and correctness for a pipelined simple MIPS
machine, see [Pau12].

B.7.2 Configuration
Definition 56 (Store Buffer Configuration). The set of store buffer entries is given by

Ksbe ≡ {(a,v) | a ∈ B32∧ v ∈ B8∪B16∪B32}

while the set of store buffer configurations is defined as follows:

Ksb ≡ K∗sbe

We consider a store buffer modeled by a finite sequence of store buffer write accesses
(a,v) where a ∈ B32 is an address and v ∈ B8 ∪B16 ∪B32 is the value to be written
starting at memory address a.

B.7.3 Transitions
A step of the store buffer produces the memory write specified by the oldest store-
buffer entry – in order to be sent to the memory subsystem. When the store buffer is
empty (c.sb = ε), it cannot make a step. We always append at the front and remove at
the end of the list. Transitions of the store buffer are formalized in the overall transition
relation – we do not provide an individual transition relation for the store buffer.

B.7.4 Auxiliary Definitions
We define some auxiliary functions for use in the definition of the system’s transition
function.

Definition 57 (Store Buffer Entry Hit Predicate). Given a store buffer entry (a,w) ∈
Ksbe and a byte address x ∈ B32, we define the predicate

sbehit ≡ 〈x−32 a〉< |w|/8

which denotes that there is a store buffer hit for the given entry and address, i.e. the
address is written by the write access represented by the store buffer entry.
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Definition 58 (Store Buffer Hit Predicate). Given a store buffer configuration sb ∈ Ksb
and a byte address x ∈ B32, the predicate

sbhit ≡ ∃ j : sbehit(sb[ j],x)

denotes whether there is a store buffer hit for the given address in the given store buffer.

Definition 59 (Newest Store Buffer Hit Index). Given a store buffer configuration
sb ∈ Ksb and a byte address x ∈ B32, we define the function

maxsbhit ≡

{
max{ j | sbehit(sb[ j],x)} sbhit(sb,x)
⊥ otherwise

which computes the index of the newest entry of the store buffer for which there is a hit
or returns the special value ⊥ if there is no such index.

Definition 60 (Store Buffer Value). We define the function

sbv : Ksb×B32 ⇀ B8

which, given a store buffer configuration sb and a byte-address x computes the value
forwarded from the store buffer for the given address, if defined:

sbv =

{
byte(〈x〉−〈a〉,v) sb[maxsbhit(sb,x)] = (a,v)
unde f ined otherwise

Definition 61 (Store Buffer Hazard). When the processor tries to perform a read access
which causes a store-buffer hit but at the same time cannot be serviced by the single
newest store buffer entry (e.g. when we have a partial hit for a halfword or word
access), we have a store-buffer hazard1: Given a store-buffer configuration sb, a byte-
address a and an access width d ∈ N, we have

sbhazard ≡

∃i, j : 0≤ i < j < d∧maxsbhit(sb,a+32 i32) 6= maxsbhit(sb,a+32 j32)

B.8 Devices

B.8.1 Introduction to Devices, Interrupts and the APIC Mecha-
nism

Interesting hardware tends to include devices of some kind, e.g. screens, input de-
vices, timers, network adapters, storage devices, or devices that control factory robots,
conveyor belts, nuclear power plants, radiation therapy units, etc. In order to trigger
interrupts in a processor core, devices tend to provide interrupt request signals. Com-
monly, device interrupt request signals are distinguished in edge-triggered signals, i.e.
the device signals an interrupt by switching the state of its interrupt request signals,
and level-triggered signals, i.e. the interrupt request signal is raised when an interrupt
is currently pending (i.e. the interrupt request signal has the digital value 1). In a simple

1In the overall transition relation, the processor core has to wait until the write causing the store-buffer
hazard leaves the store-buffer.
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hardware implementation of a single-core architecture, level-triggered interrupt request
signals originating from devices basically just need to be connected to the processor as
external interrupt signals while edge-triggered signals need to be sampled properly and
then provided to the processor until it can accept them. Note that in MIPS-86, we
restrict interrupt request signals to level-triggered signals.

The processor tends to communicate with devices either by means of memory
mapped input/output (memory mapped I/O), i.e. device ports (which can essentially
be considered user-visible registers of a device) are mapped into the memory space of
the processor and accessed with regular memory instructions, or by using special I/O
instructions that operate on a seperate port address space where device ports reside.
Reading or writing device ports tends to have side-effects, e.g. such as disabling the
interrupt request signal raised by the device, allowing the processor to acknowledge
that it has received the interrupt, or causing the device to initiate some interaction with
the external world.

For a multi-core architecture, device interrupts become more interesting: Is it desir-
able to interrupt all processors when a device raises an interrupt signal? In many cases,
the answer is no: It is fully sufficient to let one processor handle the interrupt. The
main question is mostly which device interrupt is supposed to go to which processor.
In x86 architectures this is resolved in hardware by providing each processor with a
local advanced programmable interrupt controller (local APIC) that receives interrupt
messages from a global input/output advanced programmable interrupt controller (I/O
APIC) which collects and distributes the interrupt request signals of devices. In order
not to transmit a single interrupt to a processor more often than necessary, there is a
protocol between I/O APIC and the processor (via the local APIC) in which the pro-
cessor has to acknowledge the handling of the interrupt by sending an end of interrupt
(EOI) message via the local APIC. Only after such an EOI message has been received
will the I/O APIC sample the corresponding interrupt vector again. Essentially, in the
abstract hardware model, both local APIC and I/O APIC can be seen as a special kind
of device that does not raise interrupts on its own but can be accessed by the processor
by means of memory mapped I/O just like a regular device. Since MIPS-86 imple-
ments a greatly simplified version of the x86 APIC mechanism, we will not discuss the
detailed x86 APIC mechanism in the following and focus on MIPS-86 in the following.

How exactly the I/O APIC distributes device interrupt signals to the individual pro-
cessor cores is specified by the redirect table – which can be accessed through the I/O
APIC ports. This redirect table – which must be set up by the programmer of the ma-
chine – specifies the following for each device interrupt request signal: The destination
processor, whether the interrupt signal is masked already at the I/O APIC, and the in-
terrupt vector to be triggered. The interrupt vector of an interrupt is used to provide
information about the cause of the interrupt to the processor. Device interrupt signals
are sampled at the I/O APIC and subsequently sent to the destination processor’s local
APIC over a common bus that connects all local APICs and the I/O APIC. The local
APIC associated with a processor core receives interrupt messages from the I/O APIC,
collecting interrupt vectors which are then passed to the processor core by raising ex-
ternal interrupt signals at the processor core.

In addition to providing a means of distributing device interrupts, the APIC mech-
anism offers processor cores of the multi-core system the opportunity to send inter-
processor interrupts (IPIs). This can, for example, be useful to implement communi-
cation between different processors in the context of an operating system. Sending of
an inter-processor interrupt is triggered by writing a particular control register belong-
ing to the ports of the local APIC of the processor. The content of this control register
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describes the destination processors, delivery status, delivery mode and interrupt vec-
tor of the inter-processor interrupt. The IPI mechanism is particularly important for
booting the machine: Initially, after power on, only the bootstrap processor (BSP) is
running while all other processors are in a halted state with their local APICs waiting
for an initialization inter-processor interrupt (INIT-IPI) and a subsequent startup inter-
processor interrupt (SIPI). Effectively, booting the multi-core system can be done by
the bootstrap processor in a sequential fashion until it initializes and starts the other
processor cores of the system via the IPI mechanism.

B.8.2 Configuration
Definition 62 (Device Port Address Length). We assume a function

devpalen : [0 : nd−1]→ N

to be given that specifies the address length of port addresses of all nd ∈ N devices of
the system in bits.

Definition 63 (Device Configuration). The configuration d ∈ Kdevi of device i is given
by

• I/O ports d.ports : Bdevpalen(i)→ B8,

• an interrupt request signal d.irq ∈ B, and

• internal state d.internal ∈ Di

Note that the Di have to be defined by users of our model to describe the devices they
want to argue about.

B.8.3 Transitions
Devices react to external inputs provided to them and they have side-effects that occur
when their ports are read, or, respectively, written. Note that we currently do not model
read-modify-write accesses to devices and we only consider word-accesses on device
ports.

Definition 64 (Device Transition Function). For every device, we assume a transition
function to be given of the form

δdev(i) : Kdev(i)×Σdev(i) ⇀ Kdev(i)

with
Σdev(i) = Σext(i)∪Bdevpalen ∪Bdevpalen × (B8)∗∪B32×Bdevpalen ×B32

where the input to the transition function in ∈ Σdev(i) is either

• an external input for device i: in = ext ∈ Σext(i),

• an external input for device i: in = a ∈ Bdevpalen(i), or

• a word write-access to port address a with value v: in= (a,v)∈Bdevpalen(i)×B32.
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Note that all active steps of a device are modeled via external inputs, i.e. every
active step of the device should be modeled by an input from Σext(i) that triggers the
corresponding step. Further, Σext(i) can be used to model how the device reacts to the
external world.

Depending on the device in question, reading or writing port addresses may have
side-effects – for example, deactivating the interrupt request when a specific port is
read. This needs to be specified individually for the given device in its transition func-
tion. One restriction we make in this model is that even though reading ports may
have side-effects, the value being read is always the one that is given in the I/O ports
component of the device. This is reflected in the next section when an overall view of
memory with device I/O ports mapped into the physical address space of the machine
is defined.

B.8.4 Device Outputs
We allow devices to provide an output function

λdev(i) : Kext(i)×Σdev(i) ⇀ Ωdev(i)

in order to allow interaction with some external world. This is a partial function, since
a device does not need to produce an output for every given external input in a given
configuration.

B.8.5 Device Initial State
To define a set of acceptable initial states of a device after reset, the predicate

initialstate(i) : Kdev(i)→ B

shall be defined.

B.8.6 Specifying a Device
To specify a particular device of interest, we always need to define the following:

• Di – the internal state of the device,

• Σext(i) – the external inputs the device reacts to,

• Ωdev(i) – the possible outputs provided by the device,

• devpalen(i) – the length of port addresses of the device,

• δdev(i) – the transition function of the device,

• λdev(i) – the output function of the device, and

• initialstate(i) – the set of acceptable initial states of the device.
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B.9 Local APIC
The local APIC receives device and inter-processor interrupts sent over the interrupt
bus of the system and provides these interrupts to the processor core it is associated
with. While the local APIC shares some behavior with devices (i.e. it is accessed
by means of memory-mapped I/O) some of its behavior differs significantly from that
of devices (i.e. communicating over the interrupt bus instead of raising an interrupt
request signal, providing interrupt signals directly to the processor core).

The x86-64 model of [Deg11] provides a local APIC model that describes sending
of inter-processor interrupts but ignores devices. While already simplified somewhat
compared to the informal architecture definitions, this model is still quite complex.
Thus, Hristo Pentchev provides a simplified version of the x86-64 local APIC model
in his upcoming dissertation in order to prove formal correctness of an inter-processor
interrupt protocol implementation [ACHP10]. On the one hand, the local APIC model
we present in the following is even further simplified – mostly by expressing APIC
system transitions atomically instead of in terms of many intermediate steps and by
reducing the possible interrupt types and target modes. On the other hand, the model
provided here is more powerful in the sense that device interrupts and I/O APIC are
modeled.

We have the following simplifications over x86-64:

• We only consider level-triggered interrupts.

• We reduce IPI-delivery to Fixed, INIT and Startup interrupts. The I/O APIC only
delivers Fixed interrupts.

• We only model physical destination mode where IPIs are addressed to a local
APIC ID (or to a shorthand). We don’t consider logical destination mode.

• We do not consider the error-status-register which keeps track of errors encoun-
tered when trying to deliver interrupts.

B.9.1 Configuration
Definition 65 (Local APIC Configuration). The configuration of a local APIC

apic = (apic.ports,apic.initrr,apic.sipirr,apic.sipivect,apic.eoipending) ∈ Kapic

consists of

• I/O-ports apic.ports : B7→ B8,

• INIT-request register apic.initrr ∈ B,

(a flag that denotes whether an INIT-request is pending to be delivered to the
processor)

• SIPI-request register apic.sipirr ∈ B,

(a flag that denotes whether a SIPI-request is pending to be delivered to the
processor)

• SIPI-vector register apic.sipivect ∈ B8,

(the start address for the processor to execute code after receiving SIPI)
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• EOI-pending register apic.eoipending ∈ B256

(a register that keeps track of all interrupt vectors for which an EOI message is
to be sent to the I/O APIC)

The I/O ports of the local apic can be accessed by the processor by means of mem-
ory mapped I/O. All other local APIC components cannot be accessed by other com-
ponents. This is reflected in the overall transition relation of the system.

Local APIC ports

Let us define a few shorthands for specific regions in the local APIC ports:

• APIC ID Register

apic.APIC ID = apic.ports4(07)

Bits description
31-24 local APIC ID
23-0 reserved

This register contains the local APIC ID of the local APIC. This ID is used when
addressing inter-processor-interrupts to a specific local APIC.

• Interrupt Command Register (ICR)

apic.ICR = apic.ports8(47) ∈ B64

Bits abbreviation description
63-56 dest destination field
55-20 reserved
19-18 dsh destination shorthand

00b = no shorthand, 01b = self
10b = all including self, 11b = all excluding self

17-13 reserved
12 ds delivery status

0b = idle, 1b = send pending
11 destmode destination mode

0b = physical
10-8 dm delivery mode

000b = Fixed, 101b = INIT, 110b = Startup
7-0 vect vector

This register is used to issue a request for sending an inter-processor interrupt to
the local APIC.

• End-Of-Interrupt Register

apic.EOI = apic.ports4(127) ∈ B32

Writing to this register is used to signal to the local APIC that the interrupt-
service-routine has finished. This has the effect that the local APIC will eventu-
ally send an end-of-interrupt acknowledgement to the I/O-APIC.
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• In-Service Register

apic.ISR = apic.ports32(167) ∈ B256

This register keeps track of which interrupt vectors are currently being serviced
by an interrupt-service-routine. For our simple processor, maskable interrupts
(to which device interrupts belong) are by default masked in the processor core
when an interrupt is triggered. However, when the programmer explicitly un-
masks device interrupts during the interrupt handler run, it can happen that a
higher-priority interrupt provided by the local APIC may trigger another inter-
rupt, resulting in several interrupt vectors being in service at the same time.

• Interrupt Request Register

apic.IRR = apic.ports32(487) ∈ B256

This register keeps track for which interrupt vectors there is currently a request
pending. These requests are provided to the processor as external event signals.
In this process, all interrupt requests of lower priority than the ones currently in
service are masked by the local APIC.

Definition 66 (Processor Core External Event Signals). We define the external event
vector eev ∈ B256 provided by the local APIC apic ∈ Kapic to the processor core as

eev(apic)[ j] =

{
0 ∃k ≤ j : apic.ISR[k] = 1
apic.IRR[ j] otherwise

B.9.2 Transitions
We simplify device accesses in such a way that we expect only aligned word-accesses
to occur on device ports, i.e. halfword and byte accesses on devices are not modeled.

For all passive steps of the local APIC, we define a transition function

δapic : Kapic×Σapic→ Kapic

where
Σapic ≡ B7×B32∪{Fixed,INIT,SIPI}×B8∪{jisr,rfe}

A passive step of a local APIC is a write access to its ports, a receive-interrupt step, the
reaction to a jisr-step of the processor core, or the reaction to a rfe-step of the processor.
We define

δapic(apic, in) = apic′

by a case-distinction:

• write without side-effects:

in = (a,v)∧a 6= 127

apic′.ports(x) =

{
byte(〈x〉−〈a〉,v) in = (a,v)∧0≤ 〈x〉−〈a〉< 4
apic.ports(x) otherwise
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• write with side effects (to EOI-register):

in = (a,v)∧a = 127

apic′.EOI = v

apic′.ISR[ j] =

{
0 j = min{k | apic.ISR[k] = 1}
apic.ISR[ j] otherwise

All other local APIC ports stay unchanged.

apic′.eoipending[ j] =

{
1 j = min{k | apic.ISR[k] = 1}
apic.eoipending[ j] otherwise

Writing to the EOI-Register puts the local APIC in a state where it will send
an EOI-message over the interrupt bus in order to acknowledge handling of the
highest-priority interrupt to the I/O APIC.

• receiving an interrupt:

– in = (Fixed,vect)

apic′.IRR[ j] =

{
1 j = 〈vect〉
apic.IRR[ j] otherwise

All other ports unchanged.
– in = (SIPI,vect)

Receiving a startup-interrupt is successful when there is currently no startup-
interrupt pending: If apic.sipirr 6= 0, apic′ = apic (the local APIC will
discard the interrupt), otherwise
apic′.ports = apic.ports
apic′.sipirr = 1
apic′.sipivect = vect
This records a SIPI which can in turn be used by the local APIC to set the
running flag of the corresponding processor, effectively starting it.

– in = (INIT,vect)
Receiving an INIT-interrupt is successful when there is currently no INIT-
interrupt pending: If apic.initrr 6= 0, apic′ = apic, otherwise
apic′.ports = apic.ports
apic′.initrr = 1
When the local APIC received an INIT-IPI, it will force a reset on the cor-
responding processor.

• reaction to a jisr-step in = jisr:

apic′.IRR[ j] =

{
0 j = min{k | apic.IRR[k] = 1}
apic.IRR[ j] otherwise

apic′.ISR[ j] =

{
1 j = min{k | apic.IRR[k] = 1}
apic.ISR[ j] otherwise

• reaction to a rfe-step in = rfe:

apic′.ISR[ j] =

{
0 j = min{k | apic.ISR[k] = 1}
apic.ISR[ j] otherwise
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All components not explicitly mentioned stay unchanged between apic and apic′.
The active steps of the local APIC (i.e. sending IPIs, sending EOI messages, ap-

plying SIPI and INIT-IPI to the processor) are treated in the overall transition relation
of the system.

B.10 I/O APIC
The I/O APIC samples the interrupt request signals of devices and distributes the inter-
rupts to the local APICs according to its redirect table by sending interrupt messages
over the interrupt bus. Device interrupts can be masked directly at the I/O APIC.

B.10.1 Configuration
Definition 67 (I/O APIC Configuration). The configuration of an I/O APIC

ioapic = (ioapic.ports, ioapic.redirec) ∈ Kioapic

is given by

• I/O-ports ioapic.ports : B3→ B8, and

• a redirect table ioapic.redirect : [0 : 23]→ B32

I/O APIC Ports

Shorthands to the ports of the I/O APIC are

• select register ioapic.ioregsel = ioapic.ports4(03)

• data register ioapic.iowin = ports4(43)

Note a pecularity about the I/O APIC: instead of mapping the redirect table into
the processor’s memory, only a select and a data register are provided. Writing the
select register has the side-effect of fetching the redirect table entry specified to the
data register. Writing the data register has the side effect of also writing the redirect
table entry specified by the select register. Reading from the I/O APIC ports does not
have any side-effects.

Format of the Redirect Table

A redirect table entry e ∈ B32 has the following fields:
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Bits Short Name Description
24-31 dest Destination Local APIC ID of destination local APIC
17-24 reserved
16 mask Interrupt Mask masked if set to 1
15 reserved
14 rirr Remote IRR 0b = EOI received

1b = interrupt was received by local APIC
13 reserved
12 ds Delivery Status 1b = Interrupt needs to be delivered

to local APIC
11 reserved
8-10 dm Delivery Mode 000b = Fixed
0-7 vect Interrupt Vector

B.10.2 Transitions
We define a transition function for the passive steps of the I/O APIC

δioapic : Kioapic×Σioapic ⇀ Kioapic

with
Σioapic = B3×B32∪B8

where in ∈ Σ is either

• in = (a,v) ∈ B3×B32 – a write access to port address a with value v,

• in = vect ∈ B8 – receiving an EOI message for interrupt vector vect

We define δioapic(ioapic, in) = ioapic′ by case distinction on in:

• in = (a,v) ∈ B3×B32 – write access to the I/O APIC ports

δioapic(ioapic, in) is undefined iff a /∈ {03,43}. Otherwise

– Case a = 03:
ioapic′.IOREGSEL = v
ioapic.IOWIN = ioapic.redirect(〈v〉)

– Case a = 43:
ioapic′.IOWIN = v

ioapic′.redirect(i) =

{
v i = 〈ioapic.IOREGSEL〉
ioapic.redirect(i) otherwise

• in = vect ∈ B8 – receiving an EOI message for interrupt vector vect

ioapic′.redirect(i).rirr

=

{
0 ioapic.redirect(i).vect = vect
ioapic.redirect(i).rirr otherwise

Receiving an EOI message for interrupt vector vect resets the corresponding re-
mote interrupt request signal associated with all redirect table entries associated
with the interrupt vector. Note that it is adviseable to configure the system in
such a way that interrupt vectors assigned to devices are unique.
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All components not explicitly mentioned stay unchanged.
Active transitions of the I/O APIC can be found in the definition of the overall

transition relation.

B.11 Multi-Core MIPS
Transitions of the abstract machine are defined as

δ : K×Σ ⇀ K

Inputs of the system specify which processor component makes what kind of step and
are defined below. On the level of abstraction provided, we assume that the memory
subsystem does not make steps on its own, thus it may neither receive external inputs
nor be scheduled to make an active step.

The transition functions of the subcomponents are given by

• memory transitions : δm : Km×Σm→ Km (always passive, section B.4),

• processor core transitions : δcore : Kcore×Σcore ⇀ Kcore (section B.6),

• passive TLB transitions : δtlb : Ktlb×Σtlb→ Ktlb (section B.5, active transitions
are given explicitly in the top level transition function),

• store-buffer transitions which are stated explicitly in the top level transition func-
tion,

• passive local APIC transitions : δapic : Kapic×Σapic→ Kapic (see section B.9),

• passive I/O APIC transitions: δioapic : Kioapic×Σioapic ⇀ Kioapic (section B.10),
and

• device transitions which are given by : δdev(i) : Kdev(i) × Σdev(i) → Kdev(i) (see
section B.8).

Additionally, we have an output-function

λ : K×Σ ⇀ Ω

where

Ω =
nd−1⋃
i=0

Ωdev(i)

that allows devices to interact in some way with the external world.

B.11.1 Inputs of the System
We define

Σ = Σp× [0 : np−1]∪Σioapic+dev

as the union of processor inputs and I/O APIC and device inputs. In the following, we
define both of them.
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Definition 68 (Processor Inputs). We have

Σp = {core}×Kwalk×Kwalk∪{tlb-create}×B20∪{tlb-extend}×Kwalk×B3

∪{tlb-accessed}×Kwalk∪{sb}
∪{apic-sendIPI,apic-sendEOI,apic-initCore,apic-startCore}

Note that the processor and the store buffer are both deterministic, i.e. they have
only one active step they can perform. In contrast, the TLB and the local APIC are non-
deterministic, i.e. there are several steps that can be performed, thus, the scheduling
part of the system’s input specifies which step is made.

Definition 69 (I/O APIC and Device Inputs). We have

Σioapic+dev = {ioapic-sample, ioapic-deliver}× [0 : nd−1]
∪{device}× [0 : nd−1]×Σext

where
Σext =

⋃
i∈[0:nd−1]

Σext(i)

is the union of all external inputs to devices.

B.11.2 Auxiliary Definitions
In order to define the overall transition relation, we need a view of the memory that can
serve read requests of the processor in the way we expect: depending on the address,
a read request can go to a local apic, to the I/O-apic, to a device, to the store-buffer,
or, if none of the aforementioned apply, to the memory. Depending on whether the
machine is running in user mode or system mode, memory accesses are subject to
address translation performed using the TLB component of the machine.

Definition 70 (Local APIC Base Address). The local APIC ports in this machine are
mapped to address

apicbase ≡ 120012

Definition 71 (Local APIC Addresses). The set of byte-addresses covered by local
APIC ports is given by

Aapic = {a ∈ B32 | 0≤ 〈a〉−apicbase < 128}

Definition 72 (I/O APIC Base Address). The I/O APIC ports in this machine are al-
ways mapped to address

ioapicbase ≡ 119013

Definition 73 (I/O APIC Addresses). The set of byte-addresses covered by the I/O
APIC ports is

Aioapic = {a ∈ B32 | 0≤ 〈a〉− ioapicbase < 8}

Definition 74 (Device Base Addresses). We assume a function

devbase : [0 : nd−1]→ B32

to be given that specifies the base address of the ports region of all devices.
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Definition 75 (Device Addresses). The set of addresses covered by device i’s ports is
given by

Adev(i) = {a ∈ B32 | 0≤ 〈a〉−devbase(i)< 2devpalen}.

The set of all byte-addresses covered by device, local APIC and I/O APIC ports is
defined as

Adev =
nd−1⋃
i=0

Adev(i)∪Aapic∪Aioapic

Definition 76 (Port Address). Given a memory address x, the corresponding port ad-
dresses of devices, local APIC and I/O APIC are computed as

devadr(i,x) = (x−32 devbase(i))[devpalen(i)−1 : 0]

apicadr(x) = (x−32 apicbase(i))[6 : 0]

ioapicadr(x) = (x−32 ioapicbase(i))[2 : 0]

Definition 77 (Memory System). The results of read accesses performed by the pro-
cessor core are described in terms of a memory system that takes into account device
ports, I/O APIC ports, local APIC ports, the store buffer and the memory. We define a
function ms that, given these components, returns the merged memory view seen by the
processor core:

ms(dev, ioapic,apic,sb,m)(x) =

sbv(sb,x) sbhit(sb,x)
apic.ports(apicadr(x)) ¬sbhit(sb,x)∧ x ∈ Aapic

ioapic.ports(ioapicadr(x)) ¬sbhit(sb,x)∧ x ∈ Aioapic

dev(i).ports(devadr(i,x)) ¬sbhit(sb,x)∧ x ∈ Adev(i)
m(x) otherwise

Note that, in order to have a meaningful memory system, the machine must be
configured in such a way that address ranges of devices, I/O APIC and local APIC are
pairwise disjoint.

Definition 78 (Current Address Space Identifier). The current address space identifier
is given by the last 6 bits of the special purpose register asid:

asid(core) = core.spr(asid)[5 : 0]

B.11.3 Transitions of the Multi-Core MIPS
Let us define the transition function δ and the output function λ of MIPS-86 by a case
distinction on the given input a:

δ (c,a) = c′

Any subcomponent of configuration c′ that is not listed explicitly in the following has
the same value as in configuration c.

• a = (core,wI ,wR, i) – processor core i performs a step (using walks wI and wR if
running in translated mode; in system mode, wI and wR are ignored)

In order to formalize a processor core step of processor i, we define the following
shorthands:
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– ci = c.p(i).core – the processor core configuration of processor i,

– ms(i) = ms(c.dev,c.ioapic,c.p(i).apic,c.p(i).sb,m) – the memory view of
processor i,

– modei = ci.spr(mode)[0] – the execution mode of processor i,

– trqI = (asid(ci),ci.pc,011) – the translation request for instruction execu-
tion if processor core i is running in user mode,

– pff ≡ modei = 1∧ f ault(c.m, trqI,wI) – signals whether there is a page-
fault-on-fetch for the given walk wI and the translation request trqI, and

– pmaI =

{
wI .pa◦ ci.pc[11 : 0] modei = 1
ci.pc modei = 0

– the physical memory address for instruction fetch of processor core i
(which is only meaningful if no page-fault on instruction fetch occurs),

– I = ms(i)4(pmaI)
– the instruction fetched from memory for processor core i (in case of a
page-fault-on-fetch the value of I has no further relevance),

– trqEA = (asid(ci),ea(ci, I),(store(I)∨ cas(I)) ◦ 10) – the translation re-
quest for the effective address if processor core i is running in user mode,

– pfls≡ modei = 1∧ f ault(c.m, trqEA,wR)
∧/pff∧ (store(I)∨ load(I)∨ cas(I))
– the page-fault-on-load-store signal for processor core i.

– pmaEA =

{
wR.pa◦ ea(ci, I)[11 : 0] modei = 1
ea(ci, I) modei = 0

– the physical memory address for the effective address of processor core
i,

– R =

{
⊥ pff∨pfls
ms(i)d(I)(pmaEA) otherwise

– the value read from memory for a read or cas instruction of processor
core i,

– eev= eev(c.p(i).apic) – the external event vector provided to the processor
core by its apic,

δ (c,a) is defined iff all of the following hold:

– modei = 1⇒ wI ∈ c.p(i).tlb – in translated mode, walk wI must be a walk
from the TLB,

– modei = 1∧ (cas(I)∨ store(I)∨ load(I))⇒ wR ∈ c.p(i).tlb – in translated
mode, in case the instruction causes a memory access, the walk wR must be
a walk from the TLB

– modei = 1⇒ hit(wI , trqI) – running in translated mode, the walk wI must
match the translation request for instruction fetch, and

– modei = 1⇒ ((store(I)∨ load(I)∨ cas(I))∧¬pff⇒ (hit(wR, trqEA))) –
running in translated mode, if there is a read or write instruction and no
page-fault on fetch has occurred, the walk wR must match the translation
request for the effective address, and
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– ¬pff⇒ complete(wI) – if there is no page-fault on fetch, walk wI is com-
plete, and thus, provides a translation from virtual to physical address, and

– ¬pfls⇒ complete(wR) – if there is no page-fault on load/store, walk wR is
complete, and thus, provides a translation from virtual to physical address,
and

– (cas(I)∨m f ence(I))⇒ c.sb = ε – a compare-and-swap or a fence instruc-
tion can only be executed when the store-buffer is empty, and

– load(I) ⇒ ¬sbhazard(c.p(i).sb, pmaEA,d(I)) – there is no store-buffer
hazard for the read access the processor tries to perform

– pmaI /∈ Adev – we do not fetch instructions from device ports, and

– (cas(I)∨ d(I) 6= 4∧ (load(I)∨ store(I)))⇒ pmaEA /∈ Adev – we exclude
compare-and-swap accesses and byte/halfword accesses to device ports,
and

– c.running(i) – only processors that are not waiting for a SIPI can execute.
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Then,

c′.p( j).core =


δcore(ci, I,R,eev,pff,pfls) i = j∧ (load(I)∨ cas(I))
δcore(ci, I,⊥,eev,pff,pfls) i = j∧ (¬load(I)∧¬cas(I))
c.p( j).core otherwise

c′.p( j).sb =


(pmaEA,sv(ci, I))◦ c.p(i).sb i = j∧ store(I)

∧/ jisr(ci, I,eev,pff,pfls)
c.p( j).sb otherwise

c′.p( j).apic =



δapic(c′.p(i).apic, jisr) j = i∧ jisr(c, I,eev,pff,pfls)
∧ il(c, I,eev,pff,pfls) = 1

δapic(c′.p(i).apic,rfe) j = i∧ eret(I)
∧/ jisr(ci, I,eev,pff,pfls)

c.p( j).apic otherwise

c′.p( j).tlb =



/0 i = j∧ f lush(I)
tlb′ i = j∧ invl pg(I)
δtlb(c.p(i).tlb,(flush,asid(ci),ci.pc.ba)) i = j∧pff
δtlb(c.p(i).tlb,(flush,asid(ci),ea(ci, I).ba)) i = j∧/pff∧pfls
c.p( j).tlb otherwise

where

tlb′ = δtlb(δtlb(c.p(i).tlb,(flush,ci.gpr(rs(I))[5 : 0],ci.gpr(rd(I)).ba)),

flush-incomplete)

c′.m =


δm(c.m,(ci.gpr(rd(I)), pmaEA,sv(ci, I))) cas(I)∧ pmaEA /∈ Adev

∧/ jisr(ci, I,eev,pff,pfls)
c.m otherwise

c′.dev( j) =

{
δdev(j)(c.dev( j),devadr( j, pmaEA)) lw(I)∧ pmaEA ∈ Adev(j)

c.dev( j) otherwise

The flag running cannot be modified by a processor core step; it can only be
modified by the corresponding local APIC. Local APIC and I/O APIC config-
urations are never modified by a processor core step since neither local APICs
nor I/O APIC have side-effects on reads and we do not allow compare-and-swap
accesses to devices – writes to devices always go through the store buffer, thus,
any side-effects on device writes are triggered when the write leaves the store
buffer.

Performing a processor core step of core i, we apply the processor core transition
function to the current processor core configuration, providing the instruction
word I read from memory, the read value R (if needed), the external event signals
eev(c.p(i).apic) provided by the local APIC belonging to processor i, and the
page-fault signals pff, and pfls given above. In case of a store-instruction, the
corresponding write access enters processor i’s store buffer. If there is a page-
fault, the TLB reacts by flushing all translations for the page-faulting address –
this is necessary in our model in order to allow the MMU to rewalk the page-
tables after interrupt handling without triggering the old page-fault. Only in case
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of a compare-and-swap instruction, the memory component reacts directly to the
compare-and-swap access (since, in all other cases, the store-buffer receives any
write requests). Last, in case there is a read-access to a device, the corresponding
device transition function is triggered: It specifies how the device reacts to the
read-access by specifying appropriate side-effects on reading for the device.

λ (c,a) undefined: The processor core does not interact with the external envi-
ronment, this is exclusive to devices.

Note that continue interrupts can only be caused by execution of instructions
that affect only the processor core – thus, continue interrupts are covered in an
adequate way in the definitions given here. That is, we do not need to consider
changes to other components than the processor core in the case of a continue
interrupt.

• a = (sb, i) – a memory write leaves store buffer i

δ (c,a) is defined iff c.p(i).sb 6= ε – the store buffer can only make a step when
it is not empty. Then,

c′.p( j).sb =

{
c.p(i).sb[|c.p(i).sb|−1 : 1] i = j
c.p( j).sb i 6= j

c′.p( j).apic=


δapic(c.p(i).apic,(apicadr(a),v)) i = j∧ c.p(i).sb[0] = (a,v)

∧a ∈ Aapic

c.p( j).apic otherwise

c′.m =

{
δm(c.m,c.p(i).sb[0]) c.p(i).sb[0] = (a,v)∧a /∈ Adev

c.m otherwise

c′.ioapic =


δioapic(c.ioapic,(ioapicadr(a),v)) c.p(i).sb[0] = (a,v)

∧a ∈ Aioapic

c.ioapic otherwise

c′.dev( j) =


δdev(j)(c.dev( j),(devadr( j,a),v)) c.p(i).sb[0] = (a,v)

∧a ∈ Adev(j)

c.dev( j) otherwise

Store buffer steps never change processor core configurations, TLB configura-
tions or the running flag. The oldest write in the store buffer is handled by the
component the address belongs to. Note that here, we rely on the correct align-
ment of accesses, since otherwise, write accesses might partially cover ports and
memory at the same time.

λ (c,a) undefined

• a = (tlb-create,va, i) – a new walk for virtual address va is created in TLB i

δ (c,a) is defined iff

– c.p(i).spr(mode)[0] = 1 – the TLB will only create walks when the pro-
cessor is running in user mode, and

– c.running(i) – the TLB will only create walks when the processor is not
waiting for SIPI.
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– c.running(i) – only when the processor is not waiting for a SIPI, the MMU
will start translations.

Then,

c′.p( j).tlb =

{
c.p(i).tlb∪winit(va,ci.spr(pto).ba,asid(c.p(i)) i = j
c.p( j).tlb otherwise

Creating a new walk in the TLB is a step that affects only the TLB.

λ (c,a) undefined

• a=(tlb-set-accessed,w, i) – accessed bit of the page table entry needed to extend
walk w in TLB i is set

δ (c,a) is defined iff

– c.p(i).spr(mode)[0] = 1 – page table entry flags can only be set in trans-
lated mode,

– w ∈ c.p(i).tlb∧¬complete(w)∧w.asid = asid(c.p(i)) – we only set the
accessed bit for incomplete walks of the current address space identifier,
and

– pte(c.m,w).p = 1 – the MMU can only set accessed flags for page table
entries which are actually present.

Then,

c′.m = δm(c.m,(ptea(w),set-a(pte(c.m,w))))

Setting the page table entry flags only affects the corresponding page table entry
in memory. In this model, the MMU non-deterministically sets the accessed flag
– enabling walk extension using the given page table entriy.

λ (c,a) undefined

• a = (tlb-extend,w, i) – an existing walk in TLB i is extended

δ (c,a) is defined iff

– w ∈ c.p(i).tlb – the walk is to be extended is contained in the TLB, and
– ¬complete(w) – the walk is not yet complete, and
– w.asid = asid(c.p(i)) – the walk is for the current ASID, and
– pte(c.m,w).a – the accessed flag is set appropriately, and
– ¬wext(w, pte(c.m,w),000). f ault – the walk extension does not fault result

in a faulty walk, and
– c.running(i) – the TLB will only extend walks when the processor is not

waiting for SIPI.

Then,

c′.p( j).tlb =


δtlb(c.p(i).tlb,

add-walk(wext(w, pte(c.m,w),000))} i = j
c.p( j).tlb otherwise

Walk extension only affects the TLB, note however, that in order to perform walk
extension, the corresponding page-table entry is read from memory.

λ (c,a) undefined
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• a = (apic-sendIPI, i) – local APIC i sends a pending inter-processor-interrupt to
all target local APICs

δ (c,a) is defined iff

– c.p(i).apic.ICR.ds = 1 – there is currently an inter-processor-interrupt to
be delivered, and

– c.p(i).apic.ICR.destmode 6= 0 – the destination mode is set to something
other than 0

Then,

c′.p( j).apic

=



δapic(apic′,(type,vect)) i = j∧ self-target
apic′ i = j∧¬self-target
δapic(c.p( j).apic,(type,vect)) i 6= j∧ (t = ID

∧c.p( j).apic.APIC ID
= c.p(i).apic.ICR.dest

∨t = ALL-BUT-SELF∨ t = ALL)
c.p( j).apic otherwise

where
vect = c.p(i).apic.ICR.vect[7 : 0]

is the interrupt vector that is sent over the interrupt bus,

type =


Fixed c.p(i).apic.ICR.dm = 03

INIT c.p(i).apic.ICR.dm = 101
SIPI c.p(i).apic.ICR.dm = 110

is the type of interrupt as specified by the command register of the sending local
APIC,

t =


ALL c.p(i).apic.ICR.dsh = 10
ALL-BUT-SELF c.p(i).apic.ICR.dsh = 11
SELF c.p(i).apic.ICR.dsh = 01
ID c.p(i).apic.ICR.dsh = 00

describes the target mode of the requested inter-processor interrupt,

self-target≡ t = SELF∨ t = ALL
∨ (t = ID∧ c.p(i).apic.APIC ID = c.p(i).apic.ICR.dest)

expresses whether the sending local APIC is also a target of the inter-processor
interrupt, and apic′ is identical to c.p(i).apic everywhere except apic′.ICR.ds =
0.

Sending an inter-processor-interrupt only affects local APIC configurations –
both of the sending local APIC and the receiving ones. All receiving local APICs
perform a passive receive-interrupt transition.

λ (c,a) undefined
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• a = (apic-sendEOI, i) – local APIC i sends an EOI message to the I/O APIC

δ (c,a) is defined iff

–
∨

i c.p(i).apic.eoipending[i] = 1 – there is currently an end-of-interrupt
message pending

Then,

c′.p( j).apic =

{
apic′ i = j
c.p( j).apic otherwise

where apic′ is identical to c.p(i).apic everywhere except

apic′.eoipending[k] =

{
0 k = 〈vect〉
c.p(i).apic.eoipending[k] otherwise

and vect = min{l | c.p(i).apic.eoipending[l] = 1}8

c′.ioapic = δioapic(c.ioapic,vect)

Transmitting an EOI message affects only the sending local APIC and the I/O
APIC. When a local APIC sends an EOI message it is always for the smallest
interrupt vector for which an EOI message is pending. The I/O APIC receives
the EOI message and reacts with the passive transition given by δioapic that resets
the remote interrupt request flag in its redirect table, re-enabling the I/O APIC to
sample the corresponding device interrupt.

λ (c,a) undefined

• a = (apic-initCore, i) – local APIC i applies a pending INIT-IPI to processor
core i

δ (c,a) is defined iff c.p(i).apic.initrr = 1 – there is currently an INIT-IPI pend-
ing in the local APIC of processor i. Then,

c′.p( j).core =

{
core′ i = j
c.p( j).core otherwise

where

core′ is identical to c.p(i).core except for core′.pc = 032, core′.spr(mode) = 032

and core′.spr(eca) = 032.

c′.running( j) =

{
0 i = j
c.running( j) otherwise

c′.p( j).apic =

{
apic′ i = j
c.p( j).apic otherwise

where apic′ is identical to c.p(i).apic everywhere except apic′.initrr = 0.

When the local APIC applies an INIT-IPI to the corresponding processor core,
the store buffer and TLB of that processor as well as the global memory and all
other devices are not affected. The INIT-IPI effectively acts as a warm reset to
the processor core.

λ (c,a) undefined
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• a = (apic-startCore, i) – local APIC i applies a pending SIPI interrupt to pro-
cessor core i

δ (c,a) is defined iff

– c.p(i).apic.sipirr = 1 – there is currently a SIPI pending in the local APIC
of processor i, and

– c.running(i) = 0 – the processor is currently waiting for SIPI.

Then,

c′.p( j).core =

{
core′ i = j
c.p( j).core otherwise

where

core′ is identical to c.p(i).core except for core′.pc = c.p(i).apic.sipivect ◦024.

c′.running( j) =

{
1 i = j
c.running( j) otherwise

c′.p( j).apic =

{
apic′ i = j
c.p( j).apic otherwise

where apic′ is identical to c.p(i).apic everywhere except apic′.sipirr = 0.

Similar to the INIT-IPI, the store buffer and TLB of that processor as well as the
global memory and all other devices are not affected. The interrupt vector of the
SIPI is used to initialize the program counter of the processor core and the flag
c.running(i) is set in order to allow the processor core to perform steps.

λ (c,a) undefined

• a = (ioapic-sample,k) – the I/O APIC samples the raised interrupt of device k

δ (c,a) is defined iff

– c.dev(k).irq= 1 – device k does currently have an interrupt signal activated,
and

– c.ioapic.redirect(k).mask = 0 – the interrupt of device k is not masked,
and

– c.ioapic.redirect(k).rirr = 0 – handling of any previous interrupt for de-
vice k has been acknowledged by an EOI message from the corresponding
local APIC.

Then,

c′.ioapic is identical to c.ioapic except for

c′.ioapic.redirect(i).ds =

{
1 i = k
c.ioapic.redirect(i).ds otherwise

Sampling a device interrupt only affects the state of the I/O APIC. The deliv-
ery status bit of the corresponding redirect table entry is set in order to allow a
subsequent ioapic-deliver transition.

λ (c,a) undefined
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• a = (ioapic-deliver,k) – the I/O APIC delivers a pending interrupt from device
k to the target local APIC

δ (c,a) is defined iff

– c.ioapic.redirect(k).ds = 1 – there is currently an interrupt pending to be
delivered for device k

Then,

c′.p( j).apic =


δapic(c.p( j).apic,(Fixed,v)) c.p( j).apic.APIC ID

= c.ioapic.redirect(k).dest
c.p( j).apic otherwise

where v = c.ioapic.redirect(k).vect

and c′.ioapic is identical to c.ioapic except for the following:

– c′.ioapic.redirect(k).ds = 0

– c′.ioapic.redirect(k).rirr = 1

Delivering a pending device interrupt only affects the I/O APIC and the target
local APIC specified in the redirect table of the I/O APIC. The I/O APIC sets
the remote interrupt request flag in order to prevent sampling the same device
interrupt several times. Only after the corresponding local APIC acknowledges
handling of the interrupt vector to the I/O APIC by sending an EOI message,
sampling the device interrupt is possible again.

λ (c,a) undefined

• a = (device,k,ext) – device k performs a step under given external input ext

δ (c,a) is defined iff

– ext ∈ Σdev(k) – the external input belongs to device k.

Then,

c′.dev( j) =

{
δdev(k)(c.dev(k),ext) j = k
c.dev( j) otherwise

Only device k is affected. Execution proceeds as specified by the device transi-
tion function.

λ (c,a) = λdev(k)(c.dev(k),ext)

The device may provide an output to the external world as specified by its output
function.
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Table B.3: R-Type Instructions of MIPS-86.

opcode fun Mnemonic Assembler-Syntax Effect
Shift Operation
000000 000 000 sll sll rd rt sa rd = sll(rt,sa)
000000 000 010 srl srl rd rt sa rd = srl(rt,sa)
000000 000 011 sra sra rd rt sa rd = sra(rt,sa)
000000 000 100 sllv sllv rd rt rs rd = sll(rt,rs)
000000 000 110 srlv srlv rd rt rs rd = srl(rt,rs)
000000 000 111 srav srav rd rt rs rd = sra(rt,rs)
Multiplication Unit Instructions
000000 010 000 mfhi mfhi rd rd = HI
000000 010 001 mthi mthi rs HI = rs
000000 010 010 mflo mflo rd rd = LO
000000 010 011 mtlo mtlo rs LO = rs
000000 011 000 mult mult rs rt HI,LO = rs · rt
000000 011 001 multu multu rs rt HI,LO = rs · rt
Arithmetic, Logical Operation
000000 100 000 add add rd rs rt rd = rs + rt
000000 100 001 addu addu rd rs rt rd = rs + rt
000000 100 010 sub sub rd rs rt rd = rs − rt
000000 100 011 subu subu rd rs rt rd = rs − rt
000000 100 100 and and rd rs rt rd = rs ∧ rt
000000 100 101 or or rd rs rt rd = rs ∨ rt
000000 100 110 xor xor rd rs rt rd = rs ⊕ rt
000000 100 111 nor nor rd rs rt rd = rs ∨ rt
Test Set Operation
000000 101 010 slt slt rd rs rt rd = (rs < rt ? 1 : 0)
000000 101 011 sltu sltu rd rs rt rd = (rs < rt ? 1 : 0)
Jumps, System Call
000000 001 000 jr jr rs pc = rs
000000 001 001 jalr jalr rd rs rd = pc + 4 pc = rs
000000 001 100 sysc sysc System Call
Synchronizing Memory Operations
000000 111 111 cas cas rd rs rt rd’ = m

m’ = (rd = m ? rt : m)
flushes the SB

000000 111 110 mfence mfence flushes the SB
TLB Instructions
000000 111 101 flush flush flushes TLB
000000 111 100 invlpg invlpg rd rs flushes TLB translations

for addr. rd from ASID rs
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Table B.4: R-Type Instructions of MIPS-86, continued.

Multiplication Instructions
opcode fun Mnemonic Assembler-Syntax Effect
011100 000 000 madd madd rs rt HI,LO = HI,LO + rs · rt
011100 000 001 maddu maddu rs rt HI,LO = HI,LO + rs · rt
011100 000 010 mul mul rd rs rt rd = (rs · rt) [31:0]
011100 000 100 msub msub rs rt HI,LO = HI,LO - rs · rt
011100 000 101 msubu msubu rs rt HI,LO = HI,LO - rs · rt
Coprocessor Instructions
opcode rs fun Mnemonic Assembler-S. Effect
010000 10000 011 000 eret eret Exception Return
010000 00100 movg2s movg2s rd rt spr[rd] := gpr[rt]
010000 00000 movs2g movs2g rd rt gpr[rt] := spr[rd]

Table B.5: MIPS-86 Special Purpose Registers.

i synonym
0 sr status register

(contains masks to enable/disable maskable interrupts)
1 esr exception sr
2 eca exception cause register
3 epc exception pc (address to return to after interrupt handling)
4 edata exception data (contains effective address on pfls)
5 pto page table origin
6 asid address space identifier
7 mode mode register ∈ {0311,032}

Table B.6: MIPS-86 Interrupt Types and Priority.

interrupt shorthand internal type maskable
level /external
0 reset eev abort 0 reset
1 I/O eev repeat 1 devices
2 ill iev abort 0 illegal instruction
3 mal iev abort 0 misaligned
4 pff iev repeat 0 page fault fetch
5 pfls iev repeat 0 page fault load/store
6 sysc iev continue 0 system call
7 ovf iev continue 1 overflow
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Appendix C

Quick Reference

This chapter contains non-trivial definitions in page order.

Definition 1.

[ f (e) | e ∈ ε ∧P(e) ] = ε,

[ f (e) | e ∈ (h◦ t)∧P(e) ] =

{
f (h)◦ [ f (e) | e ∈ t ∧P(e) ] P(h)
[ f (e) | e ∈ t ∧P(e) ] o.w.,

Definition 2.

Πx ∈ X .Y (x) =

{
f : X →

⋃
x

Y (x)

∣∣∣∣∣ ∀x ∈ X . f (x) ∈ Y (x)

}
.

Definition 3.
APR,i = AIPR,i]ANPR,i.

Definition 4.
ADEV =

⋃
d

ADEV,d

Definition 5.
AIPR =

⋃
i

AIPR,i.

Definition 6.
ACCi = ANPR,i∪AIPR∪ADEV ∪AM.

Definition 7.
BA = AIPR∪ADEV ∪AM.

Definition 8.
AIPI(x)⊆ AIPR∪ADEV .

Definition 9.
c.m ∈Val(A)

Definition 10.
c.wb(i) ∈ PVal(BA)∗.
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Definition 11.
dc(A) =

⋃{
ADEV,d

∣∣ ADEV,d ∩̇A
}
.

Definition 12.
idc(A) = A∪dc(A).

Definition 13.
closed(A)≡ A = idc(A).

Definition 14.

ν~w(a) =


δDEV,d(ν

∣∣
ADEV,d

,w
∣∣
ADEV,d

)(a) a ∈ dc(A)∩ADEV,d

w(a) a ∈ A\dc(A)
ν(a) o.w.

Definition 15.
f msiM(c) = c.m}c.wb(i).

Definition 16.
push(l,e) = l ◦ e.

Definition 17.

pop(l,e) =

{
ε l = ε

tl(l) o.w.

Definition 18.
noop(l,e) = l.

Definition 19.

hit(A,ε) =⊥,

hit(A,wb◦ν) =

{
ν Dom(ν) ∩̇A
hit(A,wb) o.w.

Definition 20.
hit(A,wb)≡ hit(A,wb) 6=⊥.

Definition 21.

phit(A,wb)≡ hit(A,wb) 6=⊥∧A 6⊆ Dom(hit(A,wb)).

Definition 22.

∆P(core, f etch,wb,x)

=

{
wb = ε f ence(core,x, f etch)
¬phit(Dom(R(core,x, f etch).wba),wb) o.w.

Definition 23.
∆IPI(V,wbp)≡

∧
j∈V

wbp( j) = ε.

Definition 24.
∆WB(wb)≡ wb 6= ε.
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Definition 25.
wbp =i wbp′ ≡ wbp(i) = wbp′(i).

Definition 26.
SCM(c,x) = SCuM(c,x)M(c).

Definition 27.

CM(c,x) =

{
APR,i x ∈ ΣP,i

ASC,i x ∈ ΣWB,i,

Definition 28.

ΦM(c,x) =

{
ΦP(coreM(c,x),x) x ∈ ΣP,i

1 o.w.,

ϒM(c,x) =

{
ϒP(coreM(c,x),x, f etchM(c,x)) x ∈ ΣP,i

1 o.w.,

Definition 29.
LLi↓(c) = 1,

Definition 30.
LLi↑(c) = ¬SCiM(c).

Definition 31.
LLM(c,x)≡ LLuM(c,x) M(c).

Definition 32.

f msM(c,x) =

{
f msiM(c) x ∈ ΣP,i

/0 o.w.

Definition 33.

vM(c,x) =

{
c.m
∣∣
RM(c,x).bpa∪ f msM(c,x)

∣∣
RM(c,x).wba LLM(c,x)

c.m
∣∣
RM(c,x) ¬LLM(c,x).

Definition 34.

PWM(c,x) =

{
PW (coreM(c,x),x, f etchM(c,x),vM(c,x)) x ∈ ΣP,i

( /0, /0) o.w.

Definition 35.
BWM(c,x) = PWM(c,x).wba.

Definition 36.

OpiM(c,x) =


push x ∈ ΣP,i∧BWM(c,x) 6= /0
pop x ∈ ΣWB,i

noop o.w.

Definition 37.

WM(c,x) =


PWM(c,x).bpa x ∈ ΣP,i∧LLM(c,x)
PWM(c,x).bpa∪PWM(c,x).wba x ∈ ΣP,i∧¬LLM(c,x)
hd(c.wb(i)) x ∈ ΣWB,i∧LLM(c,x)
/0 x ∈ ΣWB,i∧¬LLM(c,x).
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Definition 38.
c �M x.m = c.m~WM(c,x).

c �M x.wb(i) = OpiM(c,x)(c.wb(i),BWM(c,x)).

Definition 39.

victimsM(c,x) = { i | APR,i ∩̇Dom(WM(c,x))∧ x 6∈ ΣP,i∪ΣWB,i }

Definition 40.

∆M(c,x) =

{
∆P(coreM(c,x), f etchM(c,x),c.wb(i),x) x ∈ ΣP,i

∆WB(c.wb(i)) x ∈ ΣWB,i.

Definition 41.
IM(c,x) = ΦM(c,x)∧ϒM(c,x).

Definition 42.
ΓM(c,x) = IM(c,x)∧∆M(c,x).

Definition 43.
∆IPI M(c,x) = ∆IPI(victimsM(c,x),c.wb).

Definition 44.
ΛM(c,x)≡ ∀i.x 6∈ ΣWB,i∨∆M(c,x).

Definition 45.

cM[s]0 = c0,

cM[s]t+1 = cM[s]t �M s(t).

Definition 46.
ΓM(s)≡ ∀t.ΓM[s](t).

Definition 47.
Γ

t
M(s)≡ ∀t ′ ≤ t.ΓM[s](t ′).

Definition 48.
ΓΦ

t
M(s)≡ Γ

t−1
M (s)∧ΦM[s](t).

Definition 49.
∆

t
IPI M(s)≡ ∀t ′ ≤ t.∆IPI M[s](t).

Definition 50.

mv[t↔ t +1](l) =


l l 6∈ { t, t +1}
t +1 l = t
t l = t +1

Definition 51.
mvε(l) = l, mvΩO(l) = mvO(mvΩ(l)).

Definition 52.
Ω
−1 = Ω.
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Definition 53.
ε
−1 = ε, (ΩO)−1 = O−1

Ω
−1.

Definition 54.
inM(c,x) =CM(c,x)∪FM(c,x)∪RM(c,x).

Definition 55.
WSM(c,x) = Dom(WM(c,x)).

Definition 56.
devinM(c,x) = dc(WSM(c,x)).

Definition 57.

bu f S(x,A,wb,wb′)≡

{
hd(wb) = hd(wb′) x ∈ ΣWB,i

∃w. wb = w◦wb′∧¬hit(A,w) x ∈ ΣP,i.

Definition 58.

f inM(c,x) =

{
inM(c,x) LLM(c,x)
/0 o.w.

Definition 59.

bu f SM(x,c,c′) = bu f S(x, f inM(c,x),c.wb(uM(c,x)),c′.wb(uM(c,x))).

Definition 60.

c =x
M,N c′ ≡ c.m =CM(c,x)∪FM(c,x) c′.m∧ vM(c,x) = vN(c′,x)∧∆M(c,x)≡ ∆N(c′,x).

c =x
M,N c′ ≡ c.m =CM(c,x) c′.m∧hd(c.wb(i)) = hd(c′.wb(i)).

Definition 61.
c =x

M c′ ≡ c =x
M,M c′.

Definition 62.
outM(c,x) = idc(WSM(c,x)).

Definition 63.
di f f u(x,y)≡ u(x) 6= u(y).

Definition 64.
di f f u[s](t,k) = di f f u(s(t),s(k)).

Definition 65.
intM(t,k)≡ uM(k) ∈ victimsM(t).

Definition 66.
uconM(t,k)≡ ¬intM(t,k)∧di f f u(t,k).

Definition 67.

oconM(t,k)≡ outM(t) 6 ∩̇CM(k)∧oM(t) 6= oM(k).

Definition 68.
outM[s](I) =

⋃
t∈I

outM[s](t).
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Definition 69.
vwsM[s](t,k) =WSM[s](t)\outM[s]((t : k)).

Definition 70.
voutM[s](t,k) = dc(WSM[s](t))∪ vwsM[s](t,k).

Definition 71.
#X(s) = #{ t | o(s(t)) = X } ,

Definition 72.
#X [s](t) = #X(s[0 : t−1]).

Definition 73.
X(s) = {n | ∃t.#X [s](t) = n} .

Definition 74.
#X≈n(s) = ε { t | o(s(t)) = X ∧#X [s](t) = n} .

Definition 75.

s≡M r ⇐⇒ ∀X .X(s) = X(r)∧∀t,k.t = #X≈n(s)∧ k = #X≈n(r)

→ s(t) = r(k)∧ cM[s]t =s(t)
M cM[r]k.

Definition 76.
mwriteM(c,x)≡ outM(c,x) 6⊆ ANPR,uM(c,x).

Definition 77.

issueM[s]0(i) = ε

issueM[s]t+1(i) = OpiM(t)(issueM[s]t(i), t).

Definition 78.
mvO(l) = [mvO(t ′)|t ′ ∈ l].

Definition 79.

volRM(c,x)≡ inM(c,x) ∩̇ADEV ∪
⋃

i 6=uM(c,x)

AIPR,i.

Definition 80.
volWM(c,x)≡ outM(c,x) ∩̇ADEV ∪

⋃
i

AIPR,i.

Definition 81.
volM(c,x) = volRM(c,x)∨ volWM(c,x).

Definition 82.

ShM(c,x) =

{
iShi (coreM(c,x))∨ volM(c,x)∨¬SCM(c,x) x ∈ ΣP,i

1 o.w.

Definition 83.

ShRM(c,x) =

{
iShR(coreM(c,x))∨ volRM(c,x)∨¬SCM(c,x) x ∈ ΣP,i

0 o.w.
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Definition 84.

GM(c,x) = ShRM(c,x)∨mwriteM(c,x)∧ShM(c,x).

Definition 85.
LM(c,x) = ¬GM(c,x).

Definition 86.
WRA

M(t, t ′)≡ outM(t)∩ inM(t ′) ∩̇A.

Definition 87.
WW A

M(t, t ′)≡ outM(t)∩outM(t ′) ∩̇A.

Definition 88.
RW A

M(t, t ′)≡ inM(t)∩outM(t ′) ∩̇A.

Definition 89.
XM(t, t ′) = XA

M (t, t ′).

Definition 90.
CMM(t, t ′)≡ outM(t) ∩̇FM(t ′).

Definition 91.
V RM(t, t ′)≡ voutM(t, t ′) ∩̇ inM(t ′).

Definition 92.

It
M[s](O,k,k′)≡ mk

M =A\voutM(t,k) mMOk′ ∧∀i 6= uM(t).wbk
M =i wbMOk′ .

Definition 93.

J fi
M [s](O,k,k′)≡ ∀i.issuek

M(i) = fi(mvO−1(issueMOk′(i))).

Definition 94.
NOTCONCURRENT
t < k ¬ocon↑(t,k)

tBk

ISSUEWRITE

t = hd(issuek
↑(i)) s(k) ∈ ΣWB,i

tBk

PROCESSORFENCE
t < k s(t) ∈ ΣWB,i s(k) ∈ ΣP,i

tBk

Definition 95.
tBk
tB∗ k

COMMEXT
t < k V R↑(t,k) Sh↑(t) ShR↑(k)

tB∗ k
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Definition 96.

tB∗ k
tIk

INTERRUPTED
t < k mwrite↑(t) int↑(k, t)

tIk

RMWDISABLE
t < k ShR↑(t) mwrite↑(t) RW↑(t,k)

tIk

Definition 97.
ΨM(c,x) = ΦM(c,x)∧ΛM(c,x).

Definition 98.
ΓΨ

t
M(s)≡ Γ

t−1
M (s)∧ΨM[s](t).

Definition 99.

pval[s](t,k) = Γ
t
↑(s)

∧∀t ′ ∈ (t : k).Γ↑(t ′)∨Γ↑[t→ k](t ′−1)
∧ (Ψ↑(k)∨Ψ↑[t→ k](k−1)).

Definition 100.

delay[s](t,k)≡ pval[s](t,k)∧∀t ′ ∈ (t : k].t 6I [s]t ′.

Definition 101 (Invariants).

NearlySame The configurations at k+1 and k are nearly the same

It
↑([t→ k],k+1,k).

IssueSame Except for the operation made in step t

fi(l) = Opi↑(t)(l, t),

the sequences of issued writes are nearly the same at k+1 and k

J fi
↑ ([t→ k],k+1,k).

NothingIssued No new write buffer entries are issued by the unit making step t

∀t ′ ∈ issue↑[t→ k]k(u↑(t)).t ′ < t.

Valid Steps before k are still valid resp. WB-feasible in both schedules

ΓΨ
k
↑(s)∧ΓΨ

k−1
↑ (s[t→ k]).

The validity of step k is also the same

Γ↑(k) = Γ↑[t→ k](k−1).
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SameState If step t is a write and step k is valid

mwrite↑(t)∧Γ↑(k),

step t can be moved to k and sees the same values from memory

m↑[t→ k]k =in↑(t) mt
↑,

and the buffers in step t subsume those in step k after the reordering

bu f S↑(s(t),ct
↑,c↑[t→ k]k).

Definition 102.
IB=I∗ ◦B .

Definition 103.
IB∗ =I∗ ◦B∗ .

Definition 104.
s ∈ ABSk ≡ ∀t < k.c↓[s]t =

s(t)
↓,↑ c↑[s]t .

Definition 105.
c↓

.
= c≡ ∀i.c↓.m =APR,i c.m∧ c↓.wb =i c.wb.

Definition 106.

dirtyM[s](t, i)≡ SCiM[s](t)∧∃t ′ ∈ issueM[s]t(i).ShM[s](t ′).

Definition 107.
cleanM[s](t)≡ ∀i.¬dirtyM[s](t, i).

Definition 108.

ordM[s](t)≡ ∀i.dirtyM[s](t, i)∧GM[s](t)→ s(t) ∈ ΣWB,i.

Definition 109.
s ∈ ORDk ≡ ∀t < k.ord↓(t).

Definition 110.

sordM[s](t)≡ ∀i.dirtyM[s](t, i)→¬ShRM[s](t).

Definition 111.
s ∈ ORD−k ≡ s ∈ ORDk−1∧ sord↓[s](k−1).

Definition 112.

utdi(k,A)≡ ∀ j 6= i.SC j↑(k)→¬hit(A,wbk
↑( j)).

Definition 113.

synci(k,A)≡ mk
↑ =A

{
mk
↓ ¬SCi↑(k)

p f msi↓(k) SCi↑(k).
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Definition 114.
minvi(k,A) ≡ utdi(k,A)→ synci(k,A).

Definition 115.

#BWi[s](0) = 0,

#BWi[s](n+1) = #BWi[s](n)+

{
1 BW↓[s](#P, i≈ n(s)) 6= /0
0 o.w.

Definition 116.

s ∈ bal ⇐⇒ ∀i.{#BWi[s](n) | n ∈ P, i(s)}=WB, i(s).

Definition 117.

p↓(t)≡ L↓(t)∧wbt
↓(u↓(t)) = ε ∧BW↓(t) = /0.

Definition 118.
O0 = ε.

gt = min
{

g≥ t
∣∣ G↓Ot(g)∨ p↓Ot(g)

}
.

SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i:

kt = min
{

k ≥ t
∣∣ sOt(k) ∈ ΣP,i∧ k ≤ hd(issue↓O

gt
t (i))∨ k = gt

}
.

¬(SC↓Ot(gt)∧ sOt(gt) ∈ ΣWB,i):

kt = min
{

k ≥ t
∣∣ ¬ucon↓Ot(gt ,k)

}
.

Ot+1 = Ot [t← kt ].

Definition 119. We say that schedule s has a local tail from t to k and write L[s](t,k)
when all of the following hold.

1. The schedule is t-ordered, valid until k, and IPI-valid until t−1

Γ
k
↓(s)∧∆

t−1
IPI↓(s)∧ s ∈ ORDt ,

2. and all steps from t and before k are local

∀t ′ ∈ [t : k).L↓[s](t ′).

Definition 120. We say that schedule s has a local tail with an independent end from t
to k and write LI [s](t,k) when all of the following hold.

1. The schedule has a local tail from t to k

L[s](t,k),

2. the configuration at t is clean

clean↓[s](t),
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3. step k is not a write buffer step in strong memory mode

@i.SC↓(k)∧ s(k) ∈ ΣWB,i,

4. and all steps from t and before k are unit-concurrent with k

∀t ′ ∈ [t : k).ucon↓[s](k, t ′).

Definition 121.

E(t,k,k′)≡ c↑[t← k]t =s[t←k](t)
↑ c↑[k′← k]k

′ ∧∀t ′ ∈ [k′ : k).ucon↑[k′← k](k′, t ′+1).

Definition 122. We say that the condition applies at l and write

ca(l)

when all of the following are true.

1. The configurations at l +1 when k is moved to k′ and at l when k is moved to k′

and then k′ is moved to k are nearly the same

Ik′
↑ [k
′← k]([k′→ k], l +1, l),

2. the schedule is semi-valid until l +1

ΓΦ
l+1
↑ (s[k′← k]),

3. if step l +1 is step k′+1, it is buffering a write, and if it is after k′+1, it has a
buffered write from k′+1{

BW↑[k′← k](l +1) 6= /0 k′ = l
k′+1 ∈ issue↑[k′← k]l+1(i) k′ < l.

4. step l +1 is a processor step in strong memory mode

s[k′← k](l +1) ∈ ΣP,i∧SC↑[k′← k](l +1).

Definition 123. We say that schedule s has a local tail from t to k that ends with with
an issued write buffer step and write LW (t,k) when all of the following hold.

1. The schedule has a local tail from t to k

L[s](t,k),

2. step k is a write buffer step in strong memory mode

s(k) ∈ ΣWB,i∧SC↓(k)

3. the write committed at k was already buffered before t

hd(issuek
↓(i))< t,
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4. only unit i can have dirty buffers at t

dirty↓(t, j)→ i = j.

Definition 124. We say that schedule s has a local tail from t to k with a global end
if it has an independent end or ends with an issued write buffer step, i.e., there is
G ∈ { I,W } such that

LG(t,k).

Definition 125.

s ∈ HW ⇐⇒ s ∈ bal∧∀t ′.Γ↓[s](t ′)∧∆IPI↓[s](t ′).

Definition 126.

R[s](t)≡ ∀i.dirty↓Ot(t, i)→ sOt(gt) ∈ ΣWB,i∧ issue↓Ot
t(i) = hd(issue↓O

gt
t (i)).
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