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Abstract 

 

 

To deliver drugs via the lungs, compounds must overcome the air-blood barrier, 

which is, inter alia, being tested in mice during early stage drug development. 

To help meet the 3R principle (‘refine, reduce replace’) and potentially reduce 

the number of mice used in this context, this study aimed at the generation of 

novel murine cell lines displaying features of the alveolar epithelium. 

As an initial step, reliable and efficient protocols for the isolation and cultivation 

of primary murine alveolar epithelial cells (mAEpC) were established. Like the 

human equivalent (hAEpC), mAEpC trans-differentiate in vitro from an alveolar 

epithelial type II (ATII) to an ATI-like phenotype and build a thin monolayer with 

high transepithelial electrical resistance (TEERmax ~1900 Ωcm²) when grown on 

permeable filter supports (Transwells®) demonstrating tight junction 

functionality. To generate cells with unlimited growth capacity, primary mAEpC 

from different mouse strains were lentivirally transduced with a library consisting 

of 33 bona fide proliferation-promoting genes. Upon the integration of certain 

genes in to the mAEpC genome, 10 genetically distinct mAELVi (murine alveolar 

epithelial lentivirus immortalized) cell populations could be expanded, of which 

the most promising ones – mAELVi.E and mAELVi.wt – were further 

characterized regarding their potential use in drug transport and inhalation 

toxicity studies. 
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Kurzzusammenfassung 

 

 

Um eine gewünschte Wirkung über die pulmonale Route erzielen zu können, müssen 

potentielle Arzneistoffe die Blut-Luft-Schranke in der tiefen Lunge überqueren, was 

u.a. im Rahmen der frühen Medikamentenentwicklung an Tieren getestet wird. Unter 

Berücksichtigung des 3R-Prinzips (‚refine, reduce, replace‘) zielte diese Arbeit darauf 

ab, neuartige murine Zelllinien mit Eigenschaften des Alveolarepithels zu generieren, 

um dazu beizutragen die Zahl der in vorklinischen Studien eingesetzten Mäuse 

zukünftig reduzieren zu können. 

Hierfür wurden geeignete Methoden zur Isolation und Kultivierung primärer alveolarer 

Epithelzellen der Maus (mAEpC) etabliert. Diese trans-differenzieren in vitro und bilden 

eine dünne Schicht aus alveolaren Typ I-ähnlichen Epithelzellen mit hohem 

transepithelialen elektrischem Widerstand und folglich funktionalen ‚Tight Junctions‘. 

Um Zelllinien mit unbegrenzter Teilungsfähigkeit zu erhalten, wurden mAEpC mit Hilfe 

einer aus 33 lentiviralen Expressionsvektoren bestehenden Bibliothek verschiedener 

proliferationsfördernder Gene transduziert. Aufgrund der Lentivirus-vermittelten 

Integration potentieller Immortalisierungsgene in das mAEpC-Genom, entstanden 10 

genetisch unterschiedliche, expandierbare mAELVi-Zellpopulationen (‚murine 

alveolare Epithelzellen Lentivirus-immortalisiert‘), deren Eignung als in vitro Systeme 

für vorklinische Studien anhand von Transport- und Zytotoxizitätsstudien im Rahmen 

der vorliegenden Arbeit untersucht und beurteilt wurde.
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Introduction 

1 Introduction 

 

 

1.1 The respiratory system and its functions 

Few processes in biology are as ancient and pivotal for life as respiration, the 

mechanisms of transporting oxygen and carbon dioxide between the cells of an 

organisms and the external environment to ensure energy generation in terms of 

adenosine triphosphate (ATP) by oxidative phosphorylation. Animals exhibit 

specialized systems that enable an efficient exchange of gasses through respiratory 

membranes driven by passive diffusion (Weibel, 2011).  

In mammals, the respiratory system comprises the conducting airways which direct the 

inhaled oxygen-rich air through branching structures of the lung finally guiding the 

airflow into the deep lung, the so-called respiratory zone, where the gas exchange with 

the blood takes place. During expiration the carbon dioxide-enriched air moves in the 

opposite direction. Both areas exhibit different structures consisting of different types 

of specialized cells comprising the respiratory epithelium whose thickness decreases 

the deeper the air is inhaled. Concurrently, the morphology of the epithelial lining 

changes from a complex pseudostratified ciliated one in the upper airways to columnar 

and cuboidal in the lower parts to a simple squamous epithelium on the respiratory 

surface within the deep lung (Bur & Lehr, 2008; de Souza Carvalho et al., 2014; 

Steimer et al., 2005). Figure 1 shows a simplified scheme of the structure and occurring 

cell types of the airway epithelia at the three principal levels of the respiratory system 

covering the trachea and bronchi, bronchioles as well as alveoli (Klein et al., 2011). 

Furthermore, figure 2A highlights the organization and anatomy of the human lung. 

The conducting airways begin with the nasal cavities followed by the trachea which 

divides into the bronchi. In this area, the pseudostratified epithelium is covered by a 

thick layer of high viscous lining fluid, the mucus, which is produced by secretory goblet 

cells (Sanders et al., 2009). Moreover, it is mainly composed of basal and ciliated 

epithelial cells which are necessary for mucociliary clearance, the self-cleaning 

mechanism of the upper airways (Barton & Lourenco, 1973). 

Furthermore, each bronchus branches into smaller bronchi which further divide into 

numerous bronchioles which represent the margin between the conducting and the 
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respiratory zone (also see figure 2). These conducting tubes are the first part of the 

airways that is no longer supported by cartilage and mainly consists of ciliated epithelial 

cells as well as non-ciliated cells, known as Club or Clara cells (McDowell et al., 1978). 

The main functions of these bronchiolar exocrine cells include the secretion of 

glycosaminoglycans, the participation in xenobiotic metabolism, the modulation of 

inflammatory responses and the regeneration of both themselves and ciliated cells 

(Rokicki et al., 2016; Roth et al., 2013). 

In general, the main functions of these upper airways are to filter, warm and moisten 

the airflow as well as to build a physical barrier against inhaled xenobiotics. 

 

 

 

 

 

Figure 1: Structure of the airway epithelia and main cell types occurring at the 3 principal levels of 
the respiratory system: the trachea/bronchi, bronchioles and alveoli; adapted and modified from Klein 
et al. (2011). 
  

Conducting zone Respiratory zone 
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The respiratory zone begins with the extension of terminal bronchioles into respiratory 

bronchioles, which further divide into alveolar ducts. Here, the number of alveoli, tiny 

air-containing sacs, increases and finally the airways end in grapelike clusters 

consisting entirely of alveoli (~300 million in an adult human lung). The lining alveolar 

epithelium has the total surface area of a tennis court (~ 140 m²) (Weibel, 2011) and 

consists of mainly two different types of pneumocytes, alveolar type I (ATI) and type II 

(ATII) epithelial cells. Besides, alveolar macrophages are present in the alveoli as part 

of the residing innate immune system. 

As the basement membranes of the alveolar-surface epithelium and the capillary-wall 

endothelia fuse in many places within an alveolus, the blood stream is separated from 

the air only by the 100 - 500 nm thin monolayer of alveolar epithelial cells representing 

the so-called air-blood barrier. The alveolar epithelium and the comprising cell types 

are illustrated in figure 2B and described in more detail in the following section. 
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Figure 2: A - Organization of the human respiratory system emphasizing the anatomy of the lung 
and the air-conducting structures terminating in alveolar sacs; B - The alveoli and comprising cell 
types of the area of the alveolar epithelium and capillary endothelium displaying the air-blood barrier as 
the site of gas exchange; illustrations were adapted and modified from Mescher (2016). 

  

A. The organization of the human respiratory system 

 

B. The alveoli – the site of gas exchange 
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1.1.1 Features of the alveolar epithelium 

At the site of gas exchange, the alveolar lining comprises cellular and connective tissue 

components such as extracellular matrix. Cellular components encompass endothelial 

capillary wall cells lining the surrounding blood vessels as well as the two types of 

alveolar epithelial cells (ATI and ATII) and alveolar macrophages (see figure 1 and 2B). 

The squamous ATI cells are very thin (50 – 100 µm in diameter, volume of 

2000 - 3000 µm³) with broad cytoplasmic extensions forming a barrier sealed with tight 

junction complexes across which gas exchange occurs (Crandall & Matthay, 2001; 

Crapo et al., 1982).  

ATI cells also adhere to each other through dynamic intercellular junctions called 

desmosomes which form a linkage between the intermediate filaments of two cells 

(Garrod & Chidgey, 2008). Additionally, they exhibit the highest known water 

permeability of any mammalian cell type indicating an important role in the 

maintenance of alveolar fluid homeostasis (Schmidt et al., 2017). Although the ATI 

population covers up to 98% of the total alveolar surface area, it only represents ~ 10% 

of cells being present in the lung (Dobbs et al., 2010). 

 

The highly specialized ATII cells are smaller (10 - 20 µm in diameter, volume of 

~450 – 900 µm³), cuboidal in shape and cover the remaining ~2 - 4% of the surface 

region (Crapo et al., 1982). ATII cells exhibit progenitor potential and can recover the 

alveolar epithelium after lung injuries or upon primary culture of isolated ATII cells 

(Daum et al., 2012; Elbert et al., 1999), respectively, by trans-differentiating into ATI-

like cells (Bhaskaran et al., 2007). In addition, ATII cells play a role in defense 

mechanisms, e.g. against viral infections, by expressing Toll-like receptors and MHCII 

(class II major histocompatibility complex) molecules as well as responding to 

cytokines and chemokines (Qian et al., 2013; Steimer et al., 2005; J. Wang et al., 

2011). However, their main function entails the production, secretion and recycling of 

surfactant (‘surface active agent’), the complex alveolar lining fluid consisting of 

phospholipids and proteins which reduces the surface tension and stabilizes the 

alveoli. Therefore, ATII cells possess unique secretory organelles, termed lamellar 

bodies, which synthesize and store the four surfactant proteins (SP-A, -B, -C and -D) 

and surfactant lipids (Wright, 2005). 
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Type I and II cells are coupled by both tight junctions (TJ) and gap junctions providing 

dynamic, selectively permeable barrier functions and pathways for intercellular 

communication (Crandall & Matthay, 2001; Isakson et al., 2001a). Two main ways of 

transepithelial transport across the air-blood barrier have been described: the 

paracellular and the transcellular route (see figure 3). 

 

 

Figure 3: Scheme of the two main ways of transport across the air-blood barrier –the paracellular 
and the transcellular route. Paracellular uptake into the bloodstream occurs through the intercellular 
space of adjacent ATI cells and is regulated by junctional complexes (tight junctions, adherens junctions, 
gap junctions and desmosomes, shown schematically). In contrast, transcellular uptake through the cell 
membranes is mediated either by transporter proteins or transcytosis. 

 

TJ and associated protein complexes have been identified to regulate the passive 

transport of solutes, ions and small molecules (molecular weight ≤ 40 kDa) between 

the alveolar and interstitial space of adjacent epithelial cells (Gunzel & Yu, 2013; 

Schneeberger & Lynch, 2004). The complexes are composed of various TJ 

transmembrane proteins (e.g. occludin, claudins, junctional adhesion molecules), 

cytoplasmic adaptors linked to the actin cytoskeleton (e.g. ZO-1, -2, 3) and signaling 

molecules (e.g. protein kinase C, PKC) enabling the dynamic regulation of the 

paracellular transport (Mária A. Deli, 2009b). Together, they form a boundary between 

the apical and basolateral domains of epithelial (and endothelial), which seals the 

intercellular spaces of neighboring cells and contributes to the maintenance of the cell 

surface polarity (Balda & Matter, 2000). This mechanical barrier function can, in part, 

be measured as transepithelial electrical resistance (TEER) reflecting the tightness of 

a cell monolayer, and is a prerequisite for directional paracellular flux (Gunzel & Yu, 

2013). Calcium chelators, such as EDTA (ethylendiaminetetraacetic acid), serve as 
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absorption enhancers through the disassembly of TJ (and adherens junctions) which 

is triggered by the activation of PKC resulting in higher cell monolayer permeability and 

decreased barrier integrity (M. A. Deli, 2009a; Tomita et al., 1996). 

Transcellular transport can either depend on the polarized distribution of ion channels 

(e.g. epithelial Na+ channels, ENaCs) and drug transporters (for more detail refer to 

chapter 1.1.2) or be mediated vesicular by transcytosis (Hollenhorst et al., 2011; Van 

Driessche et al., 2007). 

Although the main function of the air-blood barrier entails the exchange of oxygen and 

carbon dioxide between the air-facing (apical) and blood-facing (basolateral) surfaces, 

it also exhibits a defense mechanism to prevent harmful particles from entering the 

blood system (Tam et al., 2011). Therefore, alveolar macrophages, as the residing part 

of the innate immune system, keep the alveolar lining under guard and phagocytose 

inhaled toxins or microorganisms, a mechanism described as alveolar clearance (Bur 

& Lehr, 2008). 

Finally, the efficiencies of gas exchange and host defense rely on the integrity of the 

alveolar epithelium and its dynamic interaction with the surrounding (Barkauskas et al., 

2013; Ganesan et al., 2013). Dysregulation or malfunction of the pathways involved in 

maintaining the barrier function of these cells can result in a loss of integrity and thus, 

can lead to the first signs of many pulmonary diseases such as acute lung injury 

(Herold et al., 2013), lung fibrosis (Camelo et al., 2014), asthma (Tsicopoulos et al., 

2013) or cystic fibrosis (Castellani et al., 2012). 

 
 

1.1.2 Pharmaceutical relevance of drug delivery through the lungs 

Delivering drugs through the lung not only provides the possibility to target local 

diseases such as asthma or COPD (Chronic obstructive pulmonary disease), but also 

offers great potential for rapid, non-invasive systemic delivery of therapeutics. Due to 

the huge alveolar absorptive surface, high permeability and a low concentration of local 

drug-metabolizing or -degrading enzymes, particles of highly dispersed aerosols 

deposited in the lungs by inhalation are absorbed into the blood circulation with high 

bioavailability avoiding hepatic and intestinal first-pass effects (Patton & Byron, 2007). 
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Particularly for drugs with poor oral absorption, such as peptides and proteins (e.g. 

inhaled insulin to treat diabetes), the pulmonary route of administration is a promising 

alternative to reach the systemic circulation. In this context, two groups of transport 

systems can be distinguished: cell membrane-associated transporters for ions or small 

molecules (e.g. the cystic fibrosis transmembrane conductance regulator CFTR) and 

vesicle- or Caveolae-mediated translocation of macromolecules. The latter is 

particularly interesting for an increasing number of biopharmaceutics such as nucleic 

acid-based polymers or hormones (Steimer et al., 2005; Uchenna Agu et al., 2001). 

Besides, a variety of drug transporters including peptide transporters, the P-

glycoprotein (P-gp), multidrug resistance-related proteins (MRP) and organic cationic 

transporters were found to be present in the lung offering potential targets for either 

local or systemic drug delivery (Groneberg et al., 2002; Salomon & Ehrhardt, 2012). 

Among these, the impact of the ATP-dependent efflux pump P-gp, also known as 

multidrug resistance protein 1 (MDR1), on pulmonary absorption and disposition has 

been studied most extensively. P-gp substrates are excreted back into the alveolar 

space, whereby the efficacy of a potential drug substance is significantly reduced 

(Nickel et al., 2016).  

However, the current understanding of what happens to a specific drug formulation 

after depositing in the deep lung is still limited and requires extensive investigations of 

the interactions between the compound, the delivery or carrier system and the air-

blood barrier (Agrahari et al., 2016; Patil & Sarasija, 2012; R. Mathias et al., 1996). 

Therefore, novel in vitro approaches to mimic the air-blood barrier are needed to 

elucidate drug delivery via the lung regarding the ADMET principle and risk 

assessment in order to prove the safety and effectiveness of a pharmaceutical 

formulation before entering clinical trials (Hittinger et al., 2015). 

 

  



  

 
20 

 

Introduction 

1.2 Cell systems - general and lung-specific applications 

Since the first human cell line HeLa was established in the 1950s (Leighton & Kline, 

1954), in vitro cell cultures of mammalian cells have become indispensable tools in 

research, biotechnology and medicine disciplines with numerous applications. These 

include basic research, where cell systems are used to analyze individual gene 

functions and regulation as well as to elucidate complex signaling pathways or 

immunological questions. In the field of biotechnology, cell systems are used to 

produce therapeutic proteins (e.g. antibodies) (Lindl, 1996), to screen for novel drugs 

or potential drug targets (Yin & Kassner, 2016) or to predict the effectiveness, 

properties and toxicology as part of preclinical studies during early drug development. 

In addition, cell cultures have recently been utilized for therapeutic purposes including 

cell-based therapies in regenerative medicine (Gerlach & Zeilinger, 2002), tissue 

engineering (Lee et al., 2009) and some diagnostics. For each of these applications, 

different cellular features and characteristics are required with the foremost aim to 

mimic the in vivo physiology as closely as possible. 

Accordingly, primary cells are often the first choice and represent the gold standard, 

but at the same time their usability is narrow due to limited availability, limited lifespan 

and cell heterogeneity caused by different donors or varieties in batch-to-batch 

isolations. Thus, immortalized cells or cell lines are the preferred tools for many routine 

applications because they can overcome most of the difficulties of primary cells. This 

results from the fact that cell lines offer unlimited availability, display homogenous cell 

populations and enable the possibility of controlled genetic manipulation. 

Nevertheless, cell lines exhibit one major drawback which is their restricted physiology 

and the loss or lack of cell type specific functions (Lipps et al., 2013). For that reason, 

scientists focus on the maintenance of such characteristics and investigate novel 

approaches for the generation of cell lines featuring cell-specific attributes. 

In this context, primary and cell line-based in vitro systems of the alveolar epithelium 

have been established which are described in the following sections. Upon ADMET 

investigations, animal testing is still the most common model applied for risk 

assessment, disease research and the development of novel drugs. To eventually 

reduce the number of animals used in this context according to the 3R principle (Balls 

et al., 1995), alternative systems such as cell culture models of the air-blood barrier 



  

 
21 

 

Introduction 

became of utmost investigational interest. However, such in vitro systems, especially 

those based on cell lines, often consign unresolved questions in relation to the realistic 

in vivo situation (Horvath et al., 2015), but concurrently provide simplicity, robustness, 

cost-effectiveness and advanced control in data acquisition. 

 

 

1.2.1 Primary culture of alveolar epithelial cells 

During the last decades, primary alveolar epithelial cells from various species, 

including mouse (Corti et al., 1996), rabbit (Saha et al., 1996), rat (J. Chen et al., 2004; 

Gonzalez et al., 2005; S. Wang & Hubmayr, 2011) and pig (Steimer et al., 2006), have 

been isolated to probe structure as well as to characterize morphological and functional 

changes upon varying cultivation conditions. 

Since they were first described (Elbert et al., 1999) and consistently optimized (Daum 

et al., 2012), primary human alveolar cells (hAEpC) are still the most mimetic cell model 

reflecting features of the air-blood barrier like high transepithelial electrical resistance 

(TEER) and as a consequence, functional tight junctions. This is why hAEpC have 

been deployed for many investigations such as pulmonary absorption and transport 

studies of xenobiotics or nanoparticles (Bur et al., 2006; Endter et al., 2007; B. Forbes 

& Ehrhardt, 2005; Thorley et al., 2014; Yacobi et al., 2010) and virus infection research 

(J. Wang et al., 2011). Recently, hAEpC have also been co-cultured with primary 

alveolar macrophages isolated from the same donor tissue to establish an advanced 

model of the air-blood barrier applicable for investigations of aerosol deposition of 

pharmaceutical formulations (Hittinger et al., 2016a; Hittinger et al., 2016b). 

Similar to hAEpC, primary murine alveolar epithelial cells (mAEpC) also mimic the air-

blood barrier (Demaio et al., 2009) and can be utilized as an in vitro model to study 

respiratory virus infections (Kebaabetswe et al., 2013) or immune responses upon 

Pseudomonas aeruginosa pneumonia infection (Wolf & Sapich et al., 2016). As an 

advantage over hAEpC, murine data from mApC can be generated from a specific 

knock-in or knockout mouse strains which offers the possibility to compare both in vitro 

and in vivo findings, as recently demonstrated. 
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1.2.2 Cell lines featuring characteristics of the alveolar epithelium 

Alveolar epithelial cell lines are useful tools to study biochemical aspects of healthy 

and diseased conditions, but concurrently exhibit dedifferentiated characteristics like 

impaired tight junction providing only limited application for barrier-dependent 

investigations. As an example, the human alveolar type II-like cell line A549, derived 

from an adenocarcinoma, is widely applied for toxicity studies (Foldbjerg et al., 2011; 

Kreja & Seidel, 2002; Lestari et al., 2012) but lacks high TEER and is thus, not well 

suited for drug adsorption studies (Foster et al., 1998). The human alveolar type I-like 

cell line TT1 (‘transformed type-1’) was obtained through immortalization of primary 

ATII cells which were retrovirally transduced with hTERT and a temperature sensitive 

mutant of the Simian Virus 40 (SV40) large T antigen (Kemp et al., 2008; O'Hare et al., 

2001). Immortalization methods and genes are addressed in the following chapter (see 

1.3). In fact, TT1 cells have been used to study nanoparticle uptake (Kemp et al., 2008) 

as well as inflammatory responses and barrier properties (van den Bogaard et al., 

2009). In the latter study, it was shown that TT1 did not develop high TEER limiting 

their applicability to barrier-independent experiments. This example illustrates that the 

genomic alterations upon cellular transduction might cause a loss of functional 

properties. 

Recently, a breakthrough in the immortalization of primary hAEpC could be achieved 

by which hAELVi (human alveolar epithelial lentivirus immortalized) cells were 

obtained (Kuehn et al., 2016). The hAELVi cell model represents the first described 

human alveolar epithelial cell line featuring the development of high TEER due to 

functional tight junctions. By now, the cell line, referred to as ‘huAEC’, is commercially 

available from InSCREENeX GmbH (Braunschweig, Germany) providing a suitable 

tool to mimic the air-blood barrier. This approach offers great potential to bridge the 

gap between the scientific limitations of in vitro systems and preclinical applications, 

especially regarding the replacement or reduction of animal testing used in these 

premises. Considering that cell culture systems are more and more considered as 

alternatives to animal testing, thereby overcoming ethical concerns, the interest in the 

development of cell lines has emerged in recent years. 
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1.3 Generation of cell lines and conventional immortalization approaches 

As the application of primary cells is bounded by several limitations (e.g. ethical 

concern, limited availability and life span, genetic heterogeneity, batch-to-batch 

variations), the need for novel cell lines, which can overcome these drawbacks, has 

led to the development of various cell immortalization approaches in recent years 

(Lipps et al., 2013). 

One the one hand, the generation of cell lines could be achieved by spontaneous 

immortalization. In this context, murine embryonic fibroblasts (MEF) were immortalized 

by continuous low-density passaging of primary cells in vitro according to a cultivation 

method that became known as ‘3T3 protocol’ (Todaro & Green, 1963) which yielded 

numerous infinitely growing NIH3T3 cell lines. Furthermore, immortal cells can be 

isolated from tumors such as HeLa cells representing the most ancient human cell line 

originally derived from a cervical carcinoma in 1951. However, tumor-derived cells are 

often characterized by chromosomal instability, non-defined (epi-)genetic alterations 

and aberrant growth control (Castro-Gamero et al., 2013; Damia & D'Incalci, 2010; 

Stevens et al., 2013) eventually causing dedifferentiation processes. 

On the other hand, cell lines could be generated by vectored transfer of specific genes 

or viral DNA in vitro. As a prominent example for the latter, the human cell line 

HEK293T was generated by transfer of a mix of sheared adenovirus type 5 DNA into 

primary human embryonic kidney cells (Graham et al., 1977). In subsequent years it 

was shown that the immortalization of HEK293T was most likely to be triggered by the 

genome integration of the viral genes E1A and E1B (Louis et al., 1997). Another 

distinguished virus associated with immortalization of particularly B lymphocytes is the 

Epstein-Barr virus (EBV). Although the responsible EBV-genes are not yet fully 

characterized, the EBV-mediated generation of B-cell lines is being routinely applied 

for the production of human monoclonal antibodies (Traggiai, 2012). 

Aside from that, immortalization of primary cells could be achieved by transduction of 

viral immortalizing genes. In this context, the Simian Virus 40 (SV40) large T antigen 

(TAg) was shown to be a broadly acting immortalizing gene due to its binding capacity 

to the tumor suppressor p53 and the subsequent inhibition of p53-dependent pathways 

(Hubbard & Ozer, 1999). In addition, TAg modulates the activity of numerous other 

cellular proteins causing inactivation of cell cycle control mechanisms which results in 
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an extended cell life span. However, immortalization attempts of human primary cells 

with TAg alone resulted in cell lines exhibiting dramatically altered phenotypes (Gazdar 

et al., 2002). 

Other viral oncogenes shown to be able to facilitate immortalization are the human 

papillomavirus (HPV) proteins E6 and E7 which interfere with host cell mechanisms 

associated with cell cycle control and the regulation of apoptosis. Upon transduction 

of primary amniotic epithelial cells with both E6 and E7, expandable cell lines were 

obtained which could not be confirmed in the case of single-gene transfer (Munger et 

al., 2004). 

Another well-known immortality gene is the human Telomerase reverse transcriptase 

(hTert) encoding the catalytic subunit of the telomerase enzyme which maintains the 

length of telomers in vivo, thus abating the senescence process known as the ‘Hayflick 

limit’. Upon recombinant expression of hTert the repetitive telomer DNA-sequences 

are transcribed enabling the cell to undergo infinite cell divisions. With this approach, 

successful immortalization of many cell types could be established including human 

corneal epithelial cells (Robertson et al., 2005) and mesenchymal stem cells (Bocker 

et al., 2008). As another example, the continuously replicating human bronchial 

epithelial cells (HBEC) could be obtained by transduction of primary cells from non-

cancerous and cancerous lung tissue with a combination of hTert and Cdk4, cyclin-

dependent kinase 4 (R. D. Ramirez et al., 2004). By this procedure HBEC retained 

epithelial characteristics, an intact p53 checkpoint and the cells did not form tumors 

upon engraftment into mice. However, the continuous expression of hTert over a 

longer period may induce changes in gene expression eventually resulting in a 

premalignant phenotype (Milyavsky et al., 2003). 

Although it may often be desirable to generate cell lines with unlimited capacities, it is 

even more important to ascertain that immortalization attempts do not cause structural 

or functional changes. In theory, the ideal cell line would be characterized by infinite 

growth, maintenance of genome integrity and retained cell-specific functions – 

challenges which could not be mastered in an adequate manner by any of the above-

mentioned immortalization strategies. Therefore, cell type-specific and growth-

controlled immortalization approaches are the subject of recent and ongoing 

investigations which are described in the following sections. 
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1.3.1 Immortalization by lentivirus-mediated transduction with a defined 

set of proliferation-promoting genes 

As existing cell line-based in vitro models most commonly are not sufficiently reflecting 

desired in vivo properties, cell lines overcoming this problem are of high interest for the 

realistic elucidation of molecular and biochemical processes. It has been demonstrated 

by many conventional immortalization attempts (see previous chapter) that the major 

limitation upon the generation of cell lines entails the unpredictably of potentially 

occurring cellular changes. These findings also revealed that the single gene transfer 

of prominent immortalizing genes such as SV40 TAg or the HPV oncogenes E6/E7 

mostly resulted in cell lines with inappropriate applicability. Thus, until today no 

universal system or immortalizing gene exists that would enable the generation of cell 

lines of any given cell type in unison with the maintenance of cell-specific functions. 

Taken together, it is highly probably that defined gene combinations could 

preferentially support the immortalization of specific cell types providing higher 

possibilities to retain both the natural physiology and function. 

In this context, an advanced approach to immortalize primary cells by lentivirus-

mediated transduction with a defined set of proliferation-promoting genes has recently 

been patented (May, Hauser, Klein, Zauers, & Schucht, 2016. This gene library (CI-

SCREEN library, International patent US9453203 B2, InSCREENeX GmbH) consists 

of 33 distinct genes with immortalizing potential which were cloned into lentiviral 

expression systems under the control of the constitutively active SV40 promotor. 

Lentiviruses as member of the retrovirus family, with HIV (Human Immunodeficiency 

Virus) representing the most prominent example, exhibit the ability to integrate viral 

DNA into the genome of the infected host cell providing an efficient method for gene 

delivery (Stevenson, 2002). Upon ectopic transduction of primary cells with the above 

lentiviral library, a certain combination of immortalizing genes will most likely be 

integrated into the host’s genome. If so, effectively transduced cells will form 

proliferating cell colonies which can further be expanded, while non-transduced cells 

would become senescent. It might also eventuate that cells will indeed be transduced, 

but the integrated gene combination could not trigger any proliferation-inducing 

mechanisms causing senescence, too. Thereby, the pattern of integrated genes in 

proliferating colonies can be assessed by basic PCR analysis revealing a potential set 

of cell-specific immortalizing genes. Based on the function-orientated characterization 
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of the obtained cell colonies, cell lines with the desired phenotype can eventually be 

established. 

As proof of concept, this advanced immortalization strategy could efficiently be applied 

for the generation of murine small intestinal epithelial cell lines reflecting in vivo 

characteristics of the intestinal epithelium (Schwerk et al., 2013). 

Furthermore, the recently described human alveolar epithelial hAELVi cells, 

representing the first human cell line exhibiting in vivo properties of the air-blood 

barrier, was obtained by transduction of primary cells with the lentiviral gene library, as 

mentioned before (Kuehn et al., 2016). These breakthroughs in cell immortalization 

offer great potential for pharmaceutical applications. Furthermore, the results 

demonstrate that physiological properties of primary cells could be maintained upon 

the outlined immortalization strategy, which was accordingly applied for this work to 

immortalize alveolar epithelial cells isolated from mice (see figure 4 for illustration). 

 

 

 
 
Figure 4: Scheme of immortalization strategy using 33 different lentiviral vector, each constitutively 
expressing a potential immortalizing gene (CI-SCREEN gene library; Lipps et al., 2018) to transduce 
primary mAEpC. Upon transduction, the random integration of certain genes triggered cell proliferation 
while other integrated gene combinations had no growth-inducing effect. Proliferating cells were 
expanded and characterized in terms of the integration pattern and alveolar epithelial features. 

 



  

 
27 

 

Introduction 

1.3.2 Immortalization by conditional expression of SV40 TAg 

As outlined in previous chapters, the clear majority of existing cell lines lack cell type-

specific features due to gross cellular changes caused by the integration of 

immortalizing genes. Because of the correlating narrow applicability of such insufficient 

cell lines, alternative strategies enabling the conditional expression of introduced 

immortalizing genes to generate transcriptionally-controlled cell lines were investigated 

(Mignotte et al., 1990). Such transgene regulation systems do not interfere with 

endogenous activities of the host cell’s regulatory network. As an example, an 

improved version of the original tetracycline system (Gossen & Bujard, 1992) has been 

developed to enable conditional expression of immortalizing genes such as the SV40 

Large T antigen (TAg). Thereby, not only the immortalizing but also the transgenic 

reverse transactivator gene (rtTA) are expressed under the control of a tetracycline-

dependent promotor, building an autoregulated system. Only in the presence of the 

inducer tetracycline or its more stable analogue doxycycline (Dox), rtTA binds to the 

tetracycline-operator region of the promotor inducing a positive expression feedback 

loop (May et al., 2006; Urlinger et al., 2000). 

Using such an autoregulated TAg expression cassette, transduced mouse embryo 

fibroblasts could be conditionally immortalized. In fact, proliferating cell clones were 

isolated in the presence of Dox whose growth-inducing effects could be completely 

reversed into growth arrest upon its absence in the cultivation medium. However, it 

has been shown that the expression of TAg changes the expression levels of more 

than 100 cellular genes. In absence of the inducer, these gene deregulations could be 

fully rescued providing an essential advantage over constitutively expressing 

immortalizing systems (Anastassiadis et al., 2010; May et al., 2004; May et al., 2005). 
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1.4 Starting point and aim of this work 

Before a potential drug will be approved for clinical trials by health authorities, the 

compound must proof its effectiveness and safety in numerous preclinical studies at 

several instances. During these studies, the efficient delivery of a drug is always 

dependent on its ability to cross the biological barrier it will face upon administration. 

To date, animal testing is indispensable in early ADMET studies prompting the need 

for alternative cell-based methods to reduce the number of mice consistent with the 

3R principle. 

Addressing the pulmonary route, thorough investigations of the air-blood barrier are 

the center of attention. Whereas primary human (Elbert et al., 1999; Fuchs et al., 2003) 

and rat (Hansen et al., 2006; Yacobi et al., 2007) in vitro cell models of the air-blood 

barrier are well characterized in the literature demonstrating their applicability for many 

areas in pulmonary research, little was known about murine alveolar epithelial cells 

(mAEpC). Despite isolation protocols for murine ATII have been described before 

(Corti et al., 1996; Messier et al., 2012), these primary cells were not characterized 

with regard to barrier properties. Nevertheless, the in vitro trans-differentiation of 

murine ATII into ATI-like cells alongside with an improved isolation protocol could be 

outlined by Demaio et al. (2009). It could further be demonstrated that isolated mAEpC 

form tight, polarized monolayers when grown on laminin 5-coated permeable filter 

supports, thus featuring characteristics of the air-blood barrier. However, no murine 

alveolar cell line exhibiting similar in vivo attributes yet exists. 

For these reasons, and to help meet the 3R principle, this work aimed at the generation 

of novel in vitro systems of the murine alveolar epithelium originating from primary 

cells. 

As a starting point to generate novel cell lines featuring ATI-like functions, an efficient 

and reliable isolation procedure to obtain mAEpC was established based on existing 

human (Daum et al., 2012) and murine (Demaio et al., 2009) protocols. These primary 

cells were isolated either from wildtype or transgenic ROSAConL mice exhibiting a 

luciferase gene under the control of the ubiquitously active ROSA26 promotor (Sandhu 

et al., 2011). The luciferase activity might be useful as a cell tracker upon in vivo 

studies, e.g. engraftment experiments to investigate lung cell regeneration after injury, 
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as previously outlined for murine ATII cells (Hoffman & Ingenito, 2012; P. M. Wang & 

Martin, 2013), but was not further addressed. 

Proceeding from previous findings (Demaio et al., 2009), the Transwell® cultivation 

conditions for mAEpC were optimized with the aim to achieve the best possible 

formation of an ATI-like monolayer with high TEER. In this context, it was demonstrated 

that the cell seeding density, the medium composition and the presence of specific cell 

attachment proteins have a strong impact on the development of integer monolayers 

(Isakson et al., 2001b). To mimic the in vivo situation of the alveolar epithelium as 

closely as possible, submerged cultures of mAEpC (equals liquid-covered conditions, 

LCC) were lifted to the air by removing the cultivation medium from the apical 

Transwell® compartments setting up air-liquid-interface (ALI) conditions. 

In a next step to generate novel cell lines of the murine alveolar epithelium, primary 

mAEpC exhibiting barrier properties were transduced with a lentiviral library consisting 

of 33 different proliferation-promoting genes (see figure 4 for a scheme of the 

immortalizing strategy). Based on this immortalization approach (Lipps et al., 2018; 

May et al., 2016), 10 distinct mAELVi (murine alveolar epithelial lentivirus-

immortalized) cell populations with a prolonged lifespan compared to untreated 

mAEpC were obtained and characterized regarding their alveolar epithelial features 

and barrier properties. Besides, the overall pattern of integrated genes was analyzed 

with the objective to identify cell type-specific immortalizing genes and define a minimal 

set of genes applicable for the generation of mAELVi populations isolated from a 

specific knock-in or knock-out mouse strain. 

Based on these findings, mAELVi.E (originating from ROSAConL mice) and 

mAELVi.wt (originating from wildtype mice) populations were selected and applied for 

the assessment of absorption rates in comparison with primary cells, and the prediction 

of acute inhalation toxicity to evaluate their potential to eventually reduce the number 

of mice used during preclinical studies. 
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2 Material & Methods 

 

 

2.1 Buffer solutions 

The compositions of different buffer solutions and the respective application are listed 

in table 1. All mentioned buffers are water-based (Millipore Milli-Q® purified water). For 

the adjustment of pH levels either hydrochloric acid or sodium hydroxide solution, 

respectively, was used. 

 

Table 1: Composition of buffer solutions and respective applications. 
 

 

BSSB, pH 7.4 

Balanced Salt Solution Buffer 
was used for the isolation 
procedure of mAEpC. 

137 mM NaCl 

5.0 mM KCL 

0.7 mM Na2HPO4 * 7 H2O 

10 mM HEPES 

5.5 mM D-glucose 

1.2 mM MgSO4 * 7 H2O 

1.8 mM CaCl2 * 2 H2O 

1% penicillin/streptomycin 

 

HEBS, pH 7.1 

HEPES Buffered Saline was 
used for transient transfection of 
HEK293T as part of the 
production of lentiviruses. 

280 mM NaCl 

50 mM HEPES 

1.5 mM Na2HPO4 
 

KRB, pH 7.4 

Krebs Ringer Buffer was used 
for the assessment of transport 
rates of model compounds 
through cell monolayers.  

 

142.03 mM NaCl 

2.95 mM KCl 

1.49 mM K2HPO4 * 3 H2O  

10.07 mM HEPES 

4.00 mM D-Glucose  

1.18 mM MgCl2 * 6 H2O  

4.22 mM CaCl2 * 2 H2O  
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2.2 General cell culture 

 

2.2.1 Cell lines and primary cells 

In these studies, different cell lines and primary cells have been used, which are listed 

and described in table 2. 

 

Table 2: Origin and description of cell lines and primary cells in alphabetical order. 
 

Cells Species Origin Description 

A549 
cell line 

Human 
Epithelial lung 
carcinoma cells 

ATCC® CCL-185™; derived from a lung 
carcinoma of a 58-year-old Caucasian male; 
used as negative control and reference cell line. 

hAEpC 
primary cells 

Human 
Alveolar epithelial 
cells 

Isolated from healthy patient tissue from lung 
lobectomies according to Daum et al. (2012). 

hAELVi 
cell line 

Human 
Alveolar epithelial 
lentivirus immortalized 
cells 

Derived from primary hAEpC by transduction with 
lentiviral CI-SCREEN gene library according to 
(Kuehn et al., 2016). 

HEK293T 
cell line 

Human 
Embryonic kidney 
cells 

ATCC® CRL-3216™; transformed by transfection 
with sheared DNA from adenovirus Ad5 (Graham 
et al., 1977); used to produce lentiviral vectors. 

mAEpC 
primary cells 

Murine 
Alveolar epithelial 
cells 

Isolated from either C57Bl/6 wildtype or 
ROSAConL hetero mice according to (Wolf & 
Sapich et al., 2016) 

mAELVi 
cell line 

Murine 
Alveolar epithelial 
lentivirus immortalized 
cells 

Derived from primary mAEpC by transduction 
with lentiviral CI-SCREEN gene library 
(InSCREENeX GmbH) according to May et al. 
(2016). 

MLE12 
cell line 

Murine Lung epithelial cells 

ATCC® CRL-2110™; Established from pulmonary 
tumors from a mouse transgenic for the SV40 
large T antigen under the control of the promotor 
region of the human surfactant protein C 
(Wikenheiser et al., 1992; Wikenheiser et al., 
1993); used as a reference mouse cell line. 

NIH3T3 
cell line 

Murine 
Embryonic fibroblast 
cells 

Spontaneously immortalized cells established 
from primary mouse embryonic fibroblasts 
cultured according to the ‘3T3 protocol’ (Todaro & 
Green, 1963); used for titer determination of 
produced lentiviruses. 

. 
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2.2.2 Cell cultivation 

Cell culture plastic and inserts have been used by Costar Corning (well-plates, 

Transwells®, cultivation dishes or flasks). In general, cells were cultivated at 37°C (5% 

CO2, 95% relative humidity) and the medium was changed every two to three days. At 

70 – 80% confluency, cells were passaged according to the experimental needs, as 

described in the appropriate sections. 

 

Table 3: Composition of cell cultivation media for cells of murine and human origin. 
 

 

 

For the cultivation of primary (mAEpC, hAEpC) and immortalized (mAELVi, hAELVi) 

cells, cell culture devices were coated with different extracellular matrix proteins to 

improve cell attachment or differentiation, respectively. Cells from murine origin were 

seeded on cell culture devices treated with a coating solution consisting of laminin 5 

Medium Composition and supplements Application 

Complete 
Mouse 

Medium  

(CMM)  

adapted from 
a previous 
publication 
(Demaio et 
al., 2009) 

 

 

DMEM/F12 50:50 
(Dulbecco's Modified Eagle Medium/ 

Nutrient Mixture Ham F-12) 

CMM was used for the 
isolation of mAEpC. 
CMM10 (CMM+10%FBS) 
was used for the 
cultivation of mAEpC, 
mAELVi and MLE cells. 

 

+ 1 mM glutamine (Gibco) 

+ 0.25% BSA (Sigma-Aldrich) 

+ 0.1 mM NEAA (Gibco) 

+ 0.05% insulin-transferrin-sodium 
selenite supplement (Roche) 

+ 100 µg/ml Primocin (Antimicrobial 

Reagent for primary cells, InvivoGen) 

+ 10% FBS (optional) 

Small 
Airway 
Growth 
Medium  

(SAGM) 

 

SABM™ (Small Airway Epithelial Cell 
Basal Medium; Lonza) 

SAGM was used for the 
isolation and cultivation of 
hAEpC and hAELVi cells. 
Here, it was also used to 
test its suitability for the 
cultivation of murine cells. 

+ SAGM™ SingleQuots™ Kit (Lonza) 

+ 10% FBS 

+ 1% penicillin/streptomycin 

Dulbecco’s 
Modified 
Eagle 
medium  

(DMEM) 

DMEM DMEM was used for the 
cultivation and transient 
transfection of HEK293T 
and NIH3T3 cells. 

+ 10% FBS 

+ 1% glutamine 

+ 1% penicillin/streptomycin 
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(1 µg/cm² Laminin from Engelbreth-Holm-Swarm murine sarcoma basement 

membrane, Sigma-Aldrich) and fibronectin (2 µg/cm² from human fibroblasts, BD 

Biosciences), whereas human cells were seeded on collagen-fibronectin-coated (rat 

tail collagen I and human fibronectin, both from BD Biosciences) cultivation surfaces. 

The compositions of the different applied cell culture media are listed in table 3. 

 

2.2.3 Freezing and thawing of cells 

Aliquots of used cell lines could be stored in liquid nitrogen by freezing the cells at a 

controlled cooling rate of about -1°C per minute in an appropriate cryoprotectant. This 

method allows the indefinite preservation of cell lines. Vice versa, the freezing process 

can be reversed by rapid thawing and subsequent seeding of the cells. 

Freezing was performed by resuspending 1 – 2 x 106 cells in 0.5 – 1 ml cryoprotective 

medium (10% DMSO in FBS) and subsequent transfer of the cell suspension into a 

freezing vial (ThermoFisher). Freezing vials were put into a Mr. Frosty™ Freezing 

Container (ThermoFisher) which was placed at -80°C for at least 24 hours before the 

cells were transferred to liquid nitrogen. 

Thawing was performed by placing the vials from liquid nitrogen directly into a 37°C-

water bath until the cell suspension was slightly defrosted. Subsequently, the cell 

suspension was transferred into 10 ml of cooled cultivation medium. After 

centrifugation (5 min, 300g at 4°C), the cell pellet can be resuspended in fresh medium 

and cells can be seeded as required. 

 

2.2.4 Cell counting 

For cell counting, determination of viability and purity of cells from cell culture or 

isolation two different approaches were used. 

 

2.2.4.1 Neubauer cell counting chamber 

Cell suspensions of primary murine and human AEpC were diluted in trypan blue 

solution in a 1:10 ratio. Subsequently, 10µl of the prepared dilution were pipetted into 

the Neubauer chamber. Cells that appeared white within the large grid squares were 
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counted manually using a light microscope. If N cells were counted in one large square, 

the number of cells can be determined by calculating:  

Cell number in cells/ml = N x 104 

 

2.2.4.2 CASY® - Roche Innovatis 

CASY® technology combines the resistance measurement principle with pulse area 

analysis. In brief, cells are diluted in CASY®ton and aspirated through a precision 

capillary in which a change of electrical resistance is recorded. The electrical signal is 

scanned, and the data from each particle is processed into a series of values that can 

be interpreted by pulse area analysis. This allows a particle size range to be recorded 

for each sample that can be interpreted as viable cells, dead cells, cell debris and cell 

aggregates. 

 

2.3 Mouse strains and ethical statement 

In these studies, murine alveolar epithelial cells (mAEpC) were isolated from lungs 

harvested either from the recombinant mouse strain ROSAConL (Sandhu et al., 2011) 

or wildtype mice (C57Bl/6), which were obtained from Janvier Labs (Le Genest-Saint-

Isle, France). The ROSAConL line exhibits a luciferase gene under the control of the 

ubiquitously active ROSA26 promoter and was established by backcrossing 

ROSALUC male mice with Balb/c (Sandhu et al., 2011). All animal experiments were 

performed in accordance with the national guidelines of the German Animal Welfare 

Law and approved by the local government of Lower Saxony and the “Landesamt für 

Soziales, Gesundheit und Verbraucherschutz” of the Saarland, Germany, respectively. 

 

2.4 Isolation procedure of primary alveolar epithelial cells 

Primary murine alveolar epithelial cells (mAEpC) were isolated from 7 to 12 weeks-old 

female ROSAConL hetero (Sandhu et al., 2011) or C57Bl/6 wildtype mice. Hereby, the 

procedure for the isolation of mAEpC was established by adaption to existing human 

and murine protocols (Daum et al., 2012; Demaio et al., 2009), and published in the 

course of this work (Wolf & Sapich et al., 2016). 
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For each isolation procedure 3 to 5 animals were slightly euthanized by an i.p. injection 

of 2.6 mg ketamine hydrochloride (Ketanest®; Pfizer) and 0.18 mg of xylazine 

hydrochloride (Rompun; Bayer) per mouse, or by CO2 asphyxiation, respectively. To 

remove the lung from the animal, the peritoneum was carefully cut open from the 

abdomen to the jaws, and the jugular veins within the armpits as well as the renal artery 

were cut through. In a next step, the diaphragm was punctured so that the lung lobes 

collapse. To expose both lung and heart, the diaphragm and parts of the rib cage were 

removed. Subsequently, the lung was perfused by intracardiac injection of 2 x 5 ml 

PBS to remove erythrocytes from pulmonary blood vessels. Then, lungs were instilled 

intratracheal with 2 ml dispase solution (50 U/ml; Corning), harvested and incubated 

in dispase solution for 45 min at 37°C. After dispase digestion, lungs were transferred 

into a culture dish (Ø 10cm²) containing 10 ml CMM (see table 4 for medium 

composition) plus 1 ml DNase I (from bovine pancreas, Sigma-Aldrich). Bronchi were 

removed, the lung tissue was cut into small pieces with the help of scissors and 

forceps, and incubated for 45 min at 37°C.  

To obtain a homogenous cell suspension, the tissue pieces were carefully 

resuspended for at least 15 min and filtered through 100 µm and 40 µm cell strainers 

(Corning). After centrifugation (5min, 300g at RT), the cell pellet was resuspended in 

20 ml CMM + 1 ml DNase I, seeded on 10cm²-culture dishes and incubated for 90 min 

at 37°C. During this incubation step, macrophages adhere to the plastic surface, 

whereas the epithelial cells remain in the supernatant, which was collected and spun 

down. The cell pellet was resuspended in 1.3 ml BSSB buffer (see table 2 for the 

manufacturing protocol) and incubated with a monoclonal anti-mouse EpCAM-PE 

antibody (PE-conjugated monoclonal rat anti-mouse CD326 antibody G8.8; 1:200 in 

BSSB; eBiosciences™, Cat.no. 14-5791-81) for 30 min at 4°C on a rotating device. 

After washing with BSSB, the cells were incubated with magnetic PE-Microbeads 

(Miltenyi) for 30 min at 4°C.  

Afterwards, the cell suspension was transferred to an equilibrated magnetic column 

(LS column, MACS® Cell separation, Miltenyi), which was subsequently rinsed twice 

with 6 ml washing buffer (PBS, pH 7.2, supplemented with 0.5% BSA and 2 mM 

EDTA). Finally, EpCAM-PE labeled cells were eluted with 5 ml CMM plus 10% FBS 

(PAA Laboratories). Freshly isolated cells were seeded in a density of 0.5 x 106 24-well 

plastic plates (for immortalization) or porous membranes of the apical Transwell® 
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compartments (0.33cm², pore size 0.4 µm, Corning), respectively. Prior to cell seeding, 

cell cultivation devices were coated with a combination of human fibronectin (2 µg/cm²; 

Sigma-Aldrich) and laminin-5 (1 µg/cm²; Laminin from Engelbreth-Holm-Swarm murine 

sarcoma basement membrane, Sigma-Aldrich). For air-liquid-interface (ALI) 

conditions, the medium within the apical compartment was removed after 48 hours. 

Figure 5 illustrates the crucial steps of the isolation and purification of murine alveolar 

cells. 

Primary human alveolar epithelial cells (hAEpC) were isolated from lung tissue 

following the established protocol (Daum et al., 2012). Human lung tissue samples 

were used with the ethical improvement of the “Ärztekammer des Saarlandes” and 

informed patients’ agreement. The isolation protocol of hAEpC follows the same 

principle as the one to obtain mAEpC. The major difference is given by the fact that 

the lung tissues from these two species differ from each other in terms of size and 

texture and must thus be processed in a species-adapted manner (e.g. use of species-

specific antibodies and tissue digestion enzymes). 

 

 

Figure 5: Illustrated overview of the mAEpC isolation procedure (Wolf & Sapich et al., 2016). 
Images were modified from Nature Protocols (K. A. Sauer et al., 2006). 
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2.1 Immortalization of primary mAEpC 

In the following section, the lentivirus-induced immortalization of mAEpC is described. 

All experiments were performed in a biosafety level 2 laboratory. 

 

2.1.1 Production of lentiviral vector systems 

In total, 33 different lentiviral vector systems were produced individually by transient 

transfection of HEK293T cells achieved through calcium phosphate co-precipitation as 

described previously (May et al., 2007; Spitzer et al., 1999). Briefly, 5 x 106 HEK293T 

cells were seeded in DMEM and cultivated for 24 hours. For safety reasons, HEK293T 

were co-transfected with lentiviral helper plasmids (ViroPower™ Packaging Mix 

containing the packaging and envelope plasmids pLP1, pLP2 and pVSV-G encoding 

essential genes for lentivirus production) plus the lentiviral expression cassette into 

which the CI-SCREEN library genes (see table 5;(Lipps et al., 2018; May et al., 2016) 

have been cloned before. 

Therefore, the plasmids were mixed with 2.5 M CaCl2 solution, which was 

subsequently dropped into a HEBS solution with simultaneous vortexing. The HEBS-

plasmid-DNA solution was then added dropwise onto HEK293T cells, which were 

cultured in fresh medium overnight. After 24 and 48 hours, the supernatant containing 

replication-incompetent lentiviruses can be harvested and stored at -80°C after 

filtration. To evaluate the lentivirus titer of the harvested supernatants, 1 x 104 NIH3T3 

were transfected with serially diluted lentivirus suspensions. After 3 days of cultivation, 

NIH3T3 were analyzed by flow cytometry regarding the expression of GFP, which 

verifies positive transduction and enables the determination of the virus titer by 

calculating:  

 
 

lentiviral particles

ml
=

104 NIH3T3

dilution factor
∗ number of positive cell counts 

 

Finally, the 33 different lentivirus suspensions were mixed in equal quantities resulting 

in a lentivirus “cocktail”, which was used to transduce primary mAEpC. This “cocktail” 

represents the CI-SCREEN gene library. Figure 6 illustrates the production procedure 

of lentiviral vector systems and the appropriate transduction of primary mAEpC. 
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Figure 6: Schematic overview of the lentivirus production procedure by co-transfection of 
HEK293T cells, virus harvesting and the subsequent lentiviral transduction of primary mAEpC. 

 

 

2.1.2   Lentiviral gene transfer to transduce mAEpC 

To assess the optimal timepoint for lentiviral transduction, mAEpC were seeded on 

porous membranes to evaluate the trans-differentiation from an ATII- to an ATI-like 

phenotype by TEER measurement (see 2.2 for detail). When the TEER reached 

maximum values (5-7 days post isolation), mAEpC from the same isolation but grown 

on 24-well culture plates (instead of Transwells®)were transduced with a lentiviral gene 

library containing 33 different proliferation-promoting genes (referred to as CI-

SCREEN gene library; InSCREENeX GmbH) according to a recent publication (Lipps 

et al., 2018). Upon infection, the primary cells were incubated with CMM containing the 

lentiviral “cocktail” for 10 hours at 37°C in the presence of 8 µg/ml polybrene. 

Subsequently, the medium was replaced against fresh CMM + 10% FBS.  

 

 

2.1.3 Cultivation of mAELVi cells 

The lentivirally transduced cells were further cultivated in CMM + 10% FBS (CMM10), 

which was changed every two to three days. To achieve clonal formation, the cells 

were continuously expanded (1:1) in culture dishes, up to a growing area of 10 cm². 
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Proliferating cells, which were initially characterized in terms of the percentage of 

EpCAM-positive cells obtained by FACS analysis (see 2.4), were further cultured and 

confirmed to be polyclonal cell lines, referred to as mAELVi (murine alveolar epithelial 

lentivirus immortalized cells). 

 

 

2.1.4 Analysis of gene integration pattern of mAELVi cells 

To analyze the integration pattern of successfully integrated immortalizing genes of the 

CI-SCREEN library (Lipps et al., 2018), total amounts of high molecular weight DNA 

were extracted from mAELVi cells, following the manufacturer’s protocol (DNeasy Kit, 

Cat. no. 69504, Quiagen). Subsequently, 33 individual PCR reactions (1 µg DNA as 

template) were prepared using Taq PCR Biomix (Quiagen). Table 4 displays the 

appropriate PCR program run with Roche Light Cycler 480. The gene-specific 

3’ reverse primer sequences of the CI-SCREEN immortalizing gene library, which were 

used to detect integrated genes, are listed in table 5 with the corresponding amplicon 

sizes. The 5’ forward primer binds within the SV40 promotor region of the immortalizing 

cassette and was used for all reactions (5’ SV40For primer sequence: 

GGAGGCCTAGGCTTTTGCAA). PCR reactions were analyzed by gel electrophoresis 

(1% agarose gel, 100 V for 20 min, BioRad Power Pac HC). As internal positive control 

PCR reactions for mGAPDH were carried along. 

 

Table 4: PCR program to analyze the gene integration pattern of mAELVi cells. 
 

Step Temperature Duration No. of cycles 

 

Initiation 

94°C 5 min 1 

72°C 7 min 1 

Denaturation 94°C 30 s 

35 Annealing 55°C 45 s 

Elongation 72°C 4 min 

Final elongation 72°C 7 min 1 

Hold 4°C ∞ 
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Table 5: Reverse primer sequences of the CI-SCREEN library (Lipps et al., 2018) to analyze the 
pattern of integrated immortalizing genes in mAELVi cells performing 33 independent PCR reactions. 
The forward primer binds within the SV40 promotor region of the immortalizing gene expression cassette 
and was used for all PCR reactions (SV40-Forward primer sequence:  
5’ GGAGGCCTAGGCTTTTGCAA 3’). 

 
# CI-SCREEN library 3´→ 5´ Reverse Primer sequence Amplicon size in bp 

1 Id2 GCAGGCTGACAATAGTGGGA 462 

2 Fos GGATGATGCTGGGAACAGGA 1054 

3 NS1 ATGTCCTGGAAGAGAAGGCA 678 

4 Jun TTCCTCATGCGCTTCCTCTC 912 

5 E2F1 CAGGGTCTGCAATGCTACGA 944 

6 ßCat TTATGCAAGGTCCCAGCGGT 806 

7 TAg CACCTGGCAAACTTTCCTCA 1214 

8 Myb CTTCTGGAAGCTTGTGGCCA 780 

9 Id3 ATGACAAGTTCCGGAGCGAG 453 

10 E7 GCCCATTAACAGGTCTTCCA 404 

11 E6 ATTCGCCCTTTTACAGCTGG 636 

12 Bcl2 TCTGCGAAGTCACGACGGTA 440 

13 HoxA9 GTTTAATGCCATAAGGCCGG 515 

14 Bmi1 GGGCCATTTCTTCTCCAGGT 782 

15 PymT CATCTCGGGTTGGTGTTCCA 606 

16 Core ACTTTACCCACGTTGCGCGA 487 

17 Oct3 GCAAAGCAGAAACCCTCGTG 846 

18 Klf4 AAGATCAAGCAGGAGGCGGT 1084 

19 Id1 AGAAGCACCAAACGTGACCA 980 

20 Myc AGTGGGCTGTGAGGAGGTTT 1001 

21 Lmo2 TTTCCGTCCCAGCTTGTAGT 822 

22 Nfe2L2 GCTGCTGAAGGAATCCTCAA 1008 

23 Yap1 GCCAGGATGTGGTCTTGTTC 950 

24 Nanog TATGGAGCGGAGCAGCATTC 935 

25 Sox2 CTCGCAGACCTACATGAACG 846 

26 RhoA AAGCATTTCTGTCCCAACGT 562 

27 Ezh2 ACTTCGAGCTCCTCTGAAGC 1481 

28 Gli1 CACCACATCAACAGCGAGCA 1144 

29 v-Myc GACACCCTGAGCGATTCAGA 1052 

30 Suz12 TACCCTGGAAGTCCTGCTTG 769 

31 ZFP217 CAAGAAGGGAGCACCGACAA 1188 

32 Id4 CAGCAAAGTGGAGATCCTGC 652 

33 Rex GCGAGCTCATTACTTGCAGG 920 
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2.2 TEER measurement  

The transepithelial electrical resistance (TEER; stated in Ωcm²) measurement provides 

an in vitro method to evaluate the integrity of tight junction dynamics and cellular barrier 

properties of cell monolayers, respectively. The TEER of primary and immortalized 

cells was determined as previously described (Daum et al., 2012; Srinivasan et al., 

2015). Briefly, cells were seeded and cultivated on permeable Transwell™ membranes 

under submerged conditions (LCC = liquid covered conditions) and the TEER was 

measured with an epithelial voltohmmeter (EVOM²; World Precision Instruments, 

Sarasota) using a chopstick electrode. During this procedure, the Transwell® plates 

were kept at 37°C on a heating plate to keep the temperature at a stable level.  

For the assessment of the TEER of cells kept at the air-liquid-interface (ALI), pre-

warmed cultivation medium was first added to the apical and second into the 

basolateral compartment. The cells were then incubated at 37°C for 1 – 2 hours prior 

to the TEER measurement. Afterwards, the cultivation medium was first removed from 

the basolateral, then from the apical compartment to restore ALI growth conditions. 

Table 6 contains the appropriate volumes of medium for apical and basolateral 

Transwell® compartments depending on the size of the cell growing area. TEER was 

calculated by subtraction of the resistance of blank inserts without cells (TEERblank: 

37 Ω for 0.33 cm² / 108 Ω for 1.12 cm² inserts; mean values with n = 9) from the 

measured cell layer resistance (TEERraw) and subsequent multiplication with the size 

of the cultivation area size: 

TEER in Ω cm² = (TEERraw – TEERblank) * 0.33/1.12 cm² 

 

 

Table 6: Volumes of cultivation medium for apical and basolateral compartments of 0.33 cm and 
1.12 cm² Transwell® inserts to set either LCC or ALI conditions. 
 

Transwell® 

insert size 

volume of medium in µl 

LCC ALI 

apical basolateral apical basolateral 

0.33 cm² 200 800 / 200 

1.12 cm² 500 1500 / 500 
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2.3 Morphological characterization 

For morphological and ultrastructural characterization mAEpC and mAELVi cells were 

grown on Transwell® membranes with a pore size of 0.4 μm and a growth area of 

0.33 or 1.12 cm² (3470/3460, Corning), respectively. Cells were cultivated under LLC 

or ALI conditions, and analyzed by cross sections, confocal laser scanning microscopy 

(CLSM) or transmission electron microscopy (TEM). 

 

2.3.1 Histology  

For histology analysis cells were fixed with 3% paraformaldehyde for 30 min at room 

temperature. After fixation, the samples were dehydrated by an ascending ethanol 

series (35, 50, 70, 95, 95, 100% ethanol solutions each for 10 min) followed by a 

10 min treatment with Histoclear II (Histological Clearing Agent-Fa. National 

diagnostics). Afterwards, the samples were embedded in paraffin (Histowax 

Embedding Medium – Leica Microsystems) for 1 hour and cut into 4 µm slices using a 

microtom (Reichert Jung 2040 Autocut). Finally, the cross-sections were stained with 

hematoxylin/eosin (H/E) and images were taken with a Zeiss light microscope (Zeiss 

Imager M1m, Zeiss) using a 100x objective. 

 

2.3.2 Confocal Laser Scanning Microscopy (C-LSM)  

Primary mAEpC were grown on 0.33 cm²-Transwell® filters (0.4 µm pore size, 3470, 

Corning) and fixed with 3% paraformaldehyde (PFA) at days 1, 3, 7 and 10 post 

isolation. Immortalized cells were grown on 1.12 cm²-0.4 µm pore size filters (3460, 

Corning) and fixed with 3% PFA for 30 min at room temperature at day 8 post seeding. 

In all samples quenching was performed using a 50 mM NH4Cl/PBS solution for 

10 min. Subsequently, the samples were blocked and permeabilized with PBS 

supplemented with 0.5% bovine serum albumin (BSA) and 0.025% Saponin for 30 min 

at room temperature (RT). Primary antibodies (rabbit anti-ZO1, Cat. No. 61-7300, 

Invitrogen; polyclonal anti-proSPC, AB3786, Merck Millipore) were diluted 1:200 in 

0.5% BSA in PBS and incubated for 1 hour at RT or overnight at 4°C, respectively. 

Secondary antibodies (polyclonal Alexa Fluor 488 conjugated, goat-anti-rabbit, A-

11008, ThermoFisher) were diluted 1:400 in PBS and incubated for 1 hour at 37°C. 

Afterwards, the filters were washed with PBS and stained with DAPI solution (1:50000). 
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Transwell® membranes were cut out from the carrier material, mounted in DAKO 

medium (Product No. S302380-2, DAKO) with a coverslip and imaged by confocal 

laser scanning microscopy (Zeiss LSM710, Zeiss). Images were acquired at a 

1024 x 1024 resolution with a 63x water immersion objective and Z-stacks. Image 

analysis was performed with ZEN2012 software and ImageJ. 

 

 

2.3.3 Transmission electron microscopy (TEM) 

To analyze the ultrastructure, primary mAEpC grown on 0.33cm²-Transwells® at either 

LCC or at the ALI were fixed for 1 hours at 4°C using 1% v/v glutaraldehyde (GA) in 

200 mM HEPES buffer. After fixation, the Transwell® inserts were transferred to 50 ml-

tubes filled with 200mM HEPES and shipped to Dr. Urska Repnik and Prof. Gareth 

Griffiths at the University of Oslo, Norway, for epon embedding and image acquisition 

which was performed according to a previous work (Susewind et al.). 

In brief, the cells were postfixed with 2% w/v OsO4 solution (EMA, PA) plus 1.5% w/v 

potassium ferricyanide for 1 hour on ice, and stained en bloc with 1.5% w/v aqueous 

uranyl acetate (EMS, PA) for 30 min followed by an ascending ethanol series (70, 80, 

90, 96, 4x 100% each for 10 min) treatment and progressive infiltration of epoxy resin 

(50, 75, 100%; Sigma-Aldrich) at RT. Blocks were polymerized overnight at 70°C and 

ultrathin sections (70 -80 nm), perpendicular to the filter plane, were prepared with a 

Leica ultramicrotome Ultracut EM UCT (Leica Microsystems) and an ultra-diamond 

knife (Diatome). Ultrathin sections were analyzed with a CM 100 transmission electron 

microscope (FEI). Using a Quemesa TEM CCD camera (Olympus Soft Imaging 

Solutions) images were recorded and analyzed with iTEM Software (Olympus Soft 

Imaging Solutions). 

 

 

2.4 Flow cytometry 

In this study, flow cytometry was applied for the determination of lentivirus titers 

(analysis of GFP-positive cells) after production as well as for the characterization of 

mAEpC and mAELVi (analysis of EpCAM-expression) following the protocol of a 

previous work (May et al., 2007). 
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In general, the cells were washed twice with PBS and detached with a trypsin solution. 

Subsequently, the cells were suspended in FACS buffer (PBS + 2% FBS), transferred 

to a 15-ml capped plastic tube and spun down at 100g for 5 min using a table-top 

centrifuge. For each attempt, an unstained (negative control) and a stained cell sample 

(positive control) were prepared. For the negative controls, cell pellets were 

resuspended in 100 – 500 µl FACS buffer (optional: + 50 µg/ml propidium iodide to 

stain dead cells) and the tubes were stored on ice. The positive controls, the cell pellets 

were resuspended in a 1:100 FACS buffer antibody dilution and incubated for 30 min 

at 4°C. Subsequently, the stained cells were centrifuged with 100 g for 5 min and 

resuspended in FACS buffer. All samples were analyzed using a BD Biosciences 

FACSCalibur™ Cell Analyzer System. A side scatter (SSC)/FSC dot blot was applied 

to exclude cell debris (FSC < 200). The FL3 channel was used to analyze the propidium 

iodide staining which excludes dead cells from the analysis. The FL2 channel was used 

for both the acquisition of GFP and the PE-labeled anti-EpCAM antibody (PE-

conjugated monoclonal rat anti-mouse CD326 antibody G8.8; 1:200 in BSSB; 

eBiosciences™, Cat.no. 14-5791-81), respectively. BD CellQuest™ software was 

used to analyze FACS data. 

 

 

2.5 RNA extraction and cDNA synthesis to analyze marker expression 

Total RNA amounts from freshly isolated mAEpC and mAELVi were extracted 

according to the manufacturer’s protocols (CellAmp Direct RNA Prep Kit #3732, 

Takara) to assess the expression of epithelial ATI- and ATII-like marker genes. After 

completion of the extraction protocol, the RNA concentration was determined with a 

NanoDrop Spectrophotometer (Thermo Scientific) measuring the absorbance ratio 

260/280 nm. Subsequently, reverse transcription of the first-strand cDNA synthesis 

was performed with oligo(dT)-primer following the manufacturer´s protocol (Ready-to-

go you-prime first strand beads, GE healthcare), where 2 to 3 ng RNA were used as 

template. 

Primer sequences for PCR analyses were designed in a way that the sense and 

antisense sequences were either intron-spanning or bridging exon-exon junctions 

using the NCBI (National Center for Biotechnology Information) online tools RefSeq 

and Primer Blast. All primer sequences were purchased from Eurofins (see table 7 for 
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nucleotide sequences and amplicon sizes). Table 8 displays the appropriate PCR 

program run with Roche Light Cycler 480. PCR reactions for mGAPDH were carried 

along as internal positive control. In a next step, the PCR reactions were analyzed by 

gel electrophoresis (3,5% agarose gel, 50 bp DNA ladder, 100 V, 25 min, BioRad 

Power Pac HC). 

 

 

Table 7: Primer sequences to analyze lung cell-specific marker expression by PCR. 

 
 
 
 
Table 8: PCR program to analyze the expression of lung-specific marker genes. 
 

Step Temperature Duration No. of cycles 

Initiation 94°C 5 min 1 

Denaturation 94°C 1 min 

35 Annealing 60°C 45 s 

Elongation 72°C 30 s 

Final elongation 72°C 10 min 1 

Hold 4°C ∞ 

  

marker gene FOR primer 5' → 3' REV primer 5' → 3' 
Amplicon 

size 

  
  

ATII 
  
  
  

SP-A TCCTGGAGACTTCCACTACCT CAGGCAGCCCTTATCATTCC 101 bp 

SP-B CTGCTTCCTACCCTCTGCTG CTTGGCACAGGTCATTAGCTC 121 bp 

SP-C ATGGACATGAGTAGCAAAGAGGT CACGATGAGAAGGCGTTTGAG 88 bp 

 
ATI  

   

AQP-5 CTCAGCAACAACACAACACCAGGC GGGGAAAAGCAAGTAGAAGTAGAGGATTG 86 bp 

Cav-1 CTACAAGCCCAACAACAAGGC AGGAAGCTCTTGATGCACGGT 198 bp 

ICAM-1 GCCTTGGTAGAGGTGACTGAG GACCGGAGCTGAAAAGTTGTA 103 bp 

 T1α GTTTTGGGGAGCGTTTGGTTC CATTAAGCCCTCCAGTAGCAC 101 bp 

Control mGAPDH TCAATGAGCCCCTTCCACAATG CCTGCACCACCAACTGCTTA 75 bp 
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2.6 Paracellular transport studies 

To evaluate the paracellular transport of fluorescent molecules of different molecular 

weights across monolayers, cells were seeded on Transwell® membranes. Freshly 

isolated mAEpC were seeded (1 x 106 cells/cm²) on fibronectin/laminin-coated 

0.33 cm²-inserts with 0.4 µm pore size (Corning, 3470) and cultivated for 6 to 8 days. 

MLE12, hAELVi, mAELVi.E and mAELVi.wt were seeded in a density of 0.1 x 106 

cells/cm² on 1.12 cm² Transwell® inserts with a pore size of 0.4 µm (Corning, 3460). 

TEER was assessed daily. Transport experiments of sodium fluorescein (MW 400 Da, 

Na-Flu; Sigma-Aldrich) and FITC dextran (MW 3,000 Da, FD3000M; Sigma-Aldrich) 

were performed according to previous protocols (Bur et al., 2006; Crandall & Matthay, 

2001).  

In brief, the cells were washed and equilibrated for 45 min with pre-warmed Krebs-

Ringer buffer (KRB; see table 1). Then, KRB was aspired and Na-Flu (10 µg/ml in KRB 

± 8/16 mM EDTA) or FITC dextran solutions (100 µg/ml in KRB + 0,2% BSA) were 

added to the donor compartment while the acceptor compartment was loaded with 

KRB. Immediately afterwards, samples were taken from both compartments and 

transferred into a 96-well plate to determine the initial concentrations. Table 9 outlines 

the respective start and sample volumes which differ according to the size of the 

Transwell® membrane and the analyzed transport direction. 

Subsequently, sampling from the acceptor compartment was continued every 30 min 

for up to 3 (Na-Flu) or 5 (FD3000) hours, respectively. Importantly, each sample 

volume taken from the respective acceptor compartment was replaced with the same 

volume of KRB. TEER was measured before the experiment, after KRB incubation and 

at the end of the experiment. Fluorescence was measured with a Tecan® plate reader 

using wavelengths of 488 nm (emission) and 530 nm (extinction). On basis of the 

measured fluorescence intensities and the appropriate calibration curve, the apparent 

permeability coefficients (Papp) were calculated as follows: 

 

 

Papp =  

 

 

ΔQ 

Δt * A * C0 
ΔQ/Δt  ≙ permeation rate across cell 
monolayer in µg/sec 
A ≙ area size of cell monolayer in 
cm² 
C0  ≙ start concentration of donor 
compartment in µg/ml 
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Table 9: Overview of start volumes (of the Transwells®) and sample/KRB volumes (to transfer to the 96-
well plate) in dependence on the growing size of the Transwell® insert and the transport direction. 
 
 

 
Start and time points 

of sampling 

0.33 cm² Transwell® 1.12 cm² Transwell® 

apical basolateral apical basolateral 

a
p

ic
a
l-

to
-b

a
s
o

la
te

ra
l 

(a
-t

o
-b

) 

Start volumes 
Transwells® 

220 µl 
fluorescent 
solution 

800 µl KRB 
520 µl 
fluorescent 
solution 

1500 µl KRB 

Sample to determine 
C0 at the start (tstart) 

20 µl sample 
+ 180 µl KRB 

/ 
20 µl sample 
+ 180 µl KRB 

/ 

Sampling from 
acceptor compartment 
at different time points 
starting at t=0 

/ 

100 µl 
sample 
(replaced by 
100 µl KRB) 
+ 100 µl KRB 

/ 

200 µl 
sample 
(replaced by 
200 µl KRB) 

Sample to determine 
end concentration (tend) 

20µl sample 
+ 180 µl KRB 

/ 
20µl sample 
+ 180 µl KRB 

/ 

b
a

s
o

la
te

ra
l-

to
-a

p
ic

a
l 

(b
-t

o
-a

) 

Start volumes 
Transwells® 

200 µl KRB 
820 µl 
fluorescent 
solution 

500 µl KRB 
1520 µl 
fluorescent 
solution 

Sample to determine 
C0 at the start (tstart) 

/ 
20 µl sample 
+ 180 µl KRB 

/ 
20 µl sample 
+ 180 µl KRB 

Sampling from 
acceptor compartment 
at different time points 
starting at t=0 

50 µl sample 
(replaced by 
50µl KRB) + 
150 µl KRB 

/ 

100 µl 
sample 
(replaced by 
100 µl KRB) 
+ 100 µl KRB 

/ 

Sample to determine 
end concentration (tend) 

/ 
200 µl 
sample 

/ 
200 µl 
sample 

 

 

 

2.7 Cytotoxicity assay 

The cytotoxic effects of a small set of test substances from different GHS (Globally 

Harmonized System) acute inhalation toxicity categories were assessed and 

compared, according to the methods and results of a previous study (U. G. Sauer et 

al., 2013). Cells (mAELVi.E, mAELVi.wt or MLE12) were seeded in 96-well plates in 

CMM10 at a density of 1 x 105 cells/well. Serial dilutions of ethanol, acetone, lactose 

(1:2) as well as SDS, glutaraldehyde and formaldehyde (1:10) were prepared in 

medium, starting with the highest concentration of 100 mg/ml. After 48 hours, medium 

was replaced by 200 µl of the test substance solutions (in triplicate). Medium alone 

was used as 100% viability control, whereas 25% glutaraldehyde (GA) diluted in 

medium served as the 0% viability control. After a 4-hours incubation at 37°C on a 

shaker, the test substance solutions were removed, and the cells were washed twice 
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with HBSS (Hank’s balanced salt solution; ThermoFisher). Afterwards, the cells were 

incubated with 200 µl/well MTT solution (1 mg/ml 3-(4,5-dimehtylthiazol-2-yl-2,5-

diphenyl tetrazolium bromide in HBBS; Sigma-Aldrich) at 37°C on a shaker. After 

another 4-hour incubation, the MTT solution was replaced with 100 µl/well DMSO and 

any formed crystals were dissolved for 20 min at 37°C. Finally, the absorbance at 

550 nm was measured with a Tecan© plate reader. 

The viability was calculated as {(ODtest substance – OD0%) / (OD100% - OD0%)*100%}. The 

IC50 was calculated by plotting at least three measurement points surrounding the 50% 

viability in logarithmic scale. If the IC50 value was above 100 mg/ml, the IC50 was 

considered to be the 100 mg/ml data point in the graph. The obtained results were then 

compared to the known GHS categories of the test substances. 

 

 

2.8 Statistics 

Data from TEER measurements, and the transport and cytotoxicity studies are 

representative of 3 - 6 individual experiments, each performed in triplicate, and are 

shown as mean ± S.D. calculated using Microsoft Excel® software. P values were 

determined by one-way ANOVA performed using Microsoft® Excel. 
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3 Results & Discussion 

 

 

The results of this work can be subdivided into 5 main sections which are described 

and discussed in the following. First, the isolation procedure and its particularities (see 

3.1) are explained followed by a characterization of the primary mAEpC model and its 

ability to mimic the air-blood barrier (see 3.2). In a next step, primary mAEpC were 

immortalized with the aim to generate novel murine alveolar cell lines by two different 

lentivirus-mediated approaches (see 3.3): transduction with the CI-SCREEN 

immortalizing gene library in accordance with Lipps et al. (2018) and transduction with 

a single vector conditionally expressing SV40 TAg. Concurrently, the DNA of mAELVi 

cells was analyzed to reveal the pattern of integrated immortalizing genes upon 

lentiviral transduction with the CI-SCREEN library. Proliferating cells obtained were 

expanded as mAELVi (murine alveolar epithelial lentivirus-immortalized) cell 

populations and characterized regarding ATI/II-specific traits and barrier properties 

(see 3.4). Finally, the suitability of selected immortalized cells (mAELVi.E and 

mAELVi.wt) for paracellular transport studies in comparison with primary mAEpC (see 

3.5) and the prediction of cytotoxic effects in comparison with MLE12 cells (see 3.6) 

was addressed. Parts of these results have recently been published (Sapich et al., 

2018). 

 

 

3.1 Towards an optimized isolation procedure to obtain primary mAEpC 

On basis of existing methods for the isolation of primary alveolar epithelial cells from 

human (Daum et al., 2012) and murine (Demaio et al., 2009) origin, an efficient and 

reliable protocol to obtain primary mAEpC was established in the course of this work 

(Wolf & Sapich et al., 2016). Thereby, the murine lung tissue is digested by dispase 

enzyme activity and the therein contained alveolar epithelial cells are labeled with 

EpCAM PE magnetic beads enabling positive cell separation (see chapter 2.4 for 

detail). Since this isolation protocol for mAEpC is based on the antibody-mediated 

selection of EpCAM-positive cells, both types of alveolar epithelial cells can be 

isolated. Given the fact that ATI cells form a very thin monolayer in vivo and are thus 
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extremely fragile, it is most likely that these cells will be damaged during or due to the 

isolation procedure, respectively. Hence, mAEpC monolayer formation is mainly 

performed by viable ATII cells undergoing trans-differentiation into ATI-like cells, as 

will be shown in the following. Furthermore, critical parameters of the isolation 

procedure and cultivation conditions of mAEpC are addressed below. 

 

3.1.1 Magnetic beads mAEpC cell separation versus flow cytometric cell 

sorting methods 

In contrast to magnetic cell separation-based methods to isolate mAEpC (Corti et al., 

1996; Demaio et al., 2009; Messier et al., 2012), alternative flow cytometric cell sorting 

approaches to obtain primary murine ATII cells have been described recently (Gereke 

et al., 2012; Sinha & Lowell, 2016). The authors claim that flow cytometric isolation of 

mAEpC yields in highly pure and viable cell populations at lower costs enabling 

genomic, transcriptomic, proteomic or secretomic analyses. However, properties of the 

air-blood barrier of such ATII cells were not addressed in these publications. 

Furthermore, FACS-sorted ATII cells could be only be cultivated in vitro for up to 

48 hours (Gereke et al., 2012). Recent FACS-based attempts to isolate murine 

(Hasegawa et al., 2017) and human (N. Fujino et al., 2012) ATII cells using different 

marker to distinguish cell populations turned out to be incompatible with prior 

enzymatic digestion, as it may negatively affect the surface-antigen expression of the 

cells. Therefore, flow cytometry-based methods to isolate murine ATII cells cannot be 

taken into consideration for these studies. Nevertheless, magnetic column cell 

separation and FACS-based protocols can be combined to obtain endothelial, 

epithelial and immune cells from murine lungs in the course of a single isolation 

procedure enabling the analysis of molecular features of different lung cell types 

(Bantikassegn et al., 2015). However, it is not yet possible to determine a proper ratio 

of isolated ATI and ATII cells using any of the abovementioned methods due to the 

lack of infinite markers. 

3.1.2 Purity and yield of isolated primary mAEpC 

To assess the purity of the isolated mAEpC, cell fractions were collected at different 

steps during the isolation procedure and analyzed regarding the amount of viable 

EpCAM-positive cells by flow cytometry (see figure 7). The total lung cell population 
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before MACS separation contained 21% EpCAM-positive cells which were significantly 

enriched after magnetic beads separation, where they represented over 90% of the 

cells. During the optimization of the isolation, a Percoll gradient as an additional 

purification step was performed, which is a regular part of the hAEpC isolation protocol. 

However, in case of murine cells the performance of a Percoll gradient could not 

increase the percentage of EpCAM-positive cells, but significantly decreased the cell 

yield after separation which was also observed in a previous study comparing mAEpC 

yields of isolation variations (Hansen et al., 2014). For that reason, a gradient density 

purification step was excluded from further experiments. 

On average, the applied mAEpC isolation protocol yields in 2 - 3 x 106 cells per mouse 

which equals cell yields obtained by e.g. alternative flow cytometric methods (Gereke 

et al., 2012) or comparable methods (Demaio et al., 2009). Notably, yields of individual 

mAEpC isolations showed marked differences which most definitely depend on the 

success of critical steps during lung harvesting. Namely, these key steps are the 

intracardial lung lavage with PBS and the intratracheal instillation with dispase solution, 

which require some hands-on experience. To further increase the cell yield, it is also 

crucial to release as many cells as possible from the digested lung tissue pieces by 

performing the resuspension of the cells thoroughly contributing to a reduced number 

of mice which must be applied for isolation procedures. 

 

 

 
Figure 7: Flow cytometric determination of EpCAM-positive cells assessed by FACS analysis 
before (a, left) and after (b, right) MACS magnetic beads cell separation during the isolation procedure 
of mAEpC.  
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3.2 Characterization of primary mAEpC 

To provide the basis for the generation of murine cell lines exhibiting in vivo functions 

of the alveolar epithelium, the cultivation of mAEpC was optimized in view of the best 

possible barrier quality. Therefore, primary cells have been characterized regarding 

their ability to gain ATI-like functions after isolation due to trans-differentiation 

processes, which is addressed in the following alongside with an ultrastructural 

characterization (see 3.2.1). To further improve the primary cell model, varying 

cultivation conditions (cell seeding density, medium composition, coating, LCC versus 

ALI) have been applied to evaluate the respective impact on the development of a tight 

mAEpC monolayer by TEER measurements (see 3.2.2). Besides, primary cultures of 

alveolar epithelial cells from murine and human origin are compared (see 3.2.3). 

 

3.2.1 Trans-differentiation and ultrastructure of mAEpC 

Primary AEpC of human (Daum et al., 2012), rat (Gonzalez et al., 2005), equine 

(Quintana et al., 2011) or bovine (Castleman et al., 1991) origin are known to trans-

differentiate in vitro from an ATII-like phenotype into an ATI-like phenotype. This 

process was tracked for mAEpC by monitoring the immunofluorescence intensity and 

localization of pro-surfactant protein C (proSP-C; ATII marker) and Zonula occludens 

protein 1 (ZO-1; both ATI and TJ marker) at different time points (see figure 8).  

Thereby, the expression of the ATII-marker gene proSP-C appears to be patchy and 

to decrease with time. Even though ZO-1 could be detected on the days 1 and 3, the 

characteristic distribution of ZO-1 expression restricted to the cell membranes became 

clearly obvious on day 7 and was maintained until day 10. These results indicate that 

freshly isolated mAEpC seeded at 1.5x 106 cells/cm² attached after 24 -48 hours and 

form a confluent monolayer starting at day 3 after isolation, which is similar to that 

observed for hAEpC (Elbert et al., 1999; Hittinger et al., 2016a). 
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Figure 8: Trans-differentiation of primary mAEpC – immunofluorescent staining of mAEpC was 

performed at different time points post isolation; the expression of proSP-C protein (ATII marker) is 

shown in the upper panel; the expression of ZO-1protein (both ATI and TJ marker) is shown in the lower 

panel (both proteins shown in green); cells were fixed on 0.33 cm²-membranes with 3% PFA and nuclei 

were stained with DAPI solution (shown in blue); scale bars: 20 µm. 

 

To further confirm that mAEpC exhibit ATI-like characteristics, cells grown on 

Transwells© at liquid-covered conditions (LCC) or the air-liquid interface (ALI), 

respectively, were analyzed by TEM in collaboration with the University of Oslo (see 

2.3.3 for more information). 

The ultrastructure of primary mAEpC (see figure 9) grown at both conditions revealed 

typical ATI structures, like tight junction complexes (indicated with blue circles) and 

desmosomes (indicated with green circles). Under the electron microscope, TJs 

appear as a series of fusion points between the outer membrane of adjacent cells. At 

these “kissing points” the intercellular space is no longer available. The characteristic 

electron dense structure of desmosomes showed a central core region that spans the 

intracellular space between apposing cells and separated two cytoplasmic plaques 

associated with intermediate filaments (D. Garrod & M. Chidgey, 2008). Desmosomes, 

also known as maculae adhaerentes, build “intercellular bridges” between the cell 

membranes and the intermediate filament network by creating an anchor consisting of 

a scaffolding of proteins such as epithelial cadherin (E-Cad) (Hartsock & Nelson, 

2008). 
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Taken together, these results give evidence that isolated mAEpC trans-differentiate 

into a monolayer of flattened ATI-like cells which exhibit structural ATI-characteristics 

like desmosomal structures and tight junction complexes, which could also be 

visualized by ZO-1 and occluding expression (see figure 8). 

 

 

 

Figure 9: Ultrastructure of primary mAEpC cultivated for 8 days on Transwell® membranes at a.) the 
air-liquid interface or b.) liquid-covered conditions. Green circles indicate desmosomal structures, blue 
circles indicate tight junction complexes; cells were grown on 0.4 µm thick Transwell® filters with a pore 
size of 0.4 µm and stained with H/E; scale bars: 500 nm. 

 

 

3.2.2 Barrier properties of primary mAEpC upon different cultivation 

conditions 

To monitor the presence of functional tight junctions and, consequently, evaluate the 

barrier properties of the mAEpC monolayers grown at different cultivation conditions, 

the transepithelial electrical resistance (TEER) was measured daily for up to two 

weeks. In this context, the formation of an integer mAEpC monolayer after isolation 

strongly depends on the cell seeding density, as shown in figure 10A. Here, it became 

clearly obvious that seeding densities of 0.3 - 0.9 x 106 cells/cm² are not sufficient for 

the development of high TEER, whereas higher seeding densities (≥ 1 x 106 cells/cm²) 

result in the formation of a mAEpC monolayer with high TEER. In this study, the highest 

TEER peaking at ~2400 Ωcm² could be measured at the highest seeding density 

(3x 106 cells/cm²). To help meet the 3R principle and reduce the number of mice, 

further studies were carried out at a lower mAEpC seeding density of 1.5x 106 

cells/cm², at which the maximal TEER still appeared to be high peaking at ~1800 Ωcm². 

As the attachment of mAEpC to the cultivation device surface requires up to 48 hours, 
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such high seeding densities are necessary to ensure sufficient cell-cell-contact and 

thus, the development of a tight monolayer. Compared to a protocol described by 

Hansen et al. (2014), whereby isolated mAEpC were seeded at much higher densities 

(1.5 x 106 cells/24-well ≈ 4.5 x 106 cells/cm²) on 24-well plates, the herein established 

procedure achieved a much higher efficiency. 

As a second key factor, cell culture devices must be subjected to a surface treatment 

to render the plastic suitable for cell attachment. In these studies, different extracellular 

matrix (ECM) proteins, such as collagen, laminin and fibronectin, were used to coat 

culture plates and Transwell® membranes. To determine the optimal cultivation 

conditions for mAEpC differentiation, TEER was assessed using different coating 

combinations as well as different cultivation media. Figure 10B conveys that mAEpC 

grown on Transwell® membranes coated with a mixture of fibronectin and laminin-5 

showed higher TEER (TEERmax ~2100 Ωcm²) than the combination of collagen and 

fibronectin (TEERmax ~1800 Ωcm²) and hence, was used for all further experiments. 

These data suggest that mAEpC require exogenous ECM proteins for the 

establishment of confluent monolayers and that laminin-5 is most likely to support the 

tightness of the epithelial barrier.It was previously suggested that phenotypic and 

morphological changes of isolated mAEpC might occur due to the properties of the 

ECM which reflect the in vivo environment (Isakson et al., 2001b; Rice et al., 2002). 

Previously, it was also observed that mAEpC grown on a mixture of type I collagen and 

fibronectin develop into functional ATI-like monolayers, whereas the ATII phenotype 

was retained when the cells were grown on laminin-5 only. This result stands in 

contrast with the abovementioned findings and a previous work, whereby it could be 

shown that laminin-5 supports the formation of a high-resistance monolayer (Demaio 

et al., 2009). 

Furthermore, figure 10B shows that mAEpC grown in Complete Mouse Medium (CMM) 

revealed significantly higher TEER development than mAEpC cultivated with Small 

Airway Growth Medium (SAGM) which is generally being applied for hAEpC (Daum et 

al., 2012). Consequently, CMM was applied for further mAEpC experiments. These 

data demonstrate the importance of the medium composition in terms of barrier 

properties. Whereas the cost-intense SAGM contains numerous supplements and 

growth factors, the less complex CMM is relatively cheap and its advanced suitability 

leads to economic benefits. 
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Taken together, primary mAEpC were seeded in a density of 1.5 x 106 cells/cm² in 

CMM10 on fibronectin/laminin-5-coated substrates for further experiments. 

 

 

 

 

 

 

 

 
Figure 10: Influence of different cultivation conditions on the TEER development of mAEpC 
monolayers – A: mAEpC seeded on FN/LM-coated Transwells® at different cell densities; B: mAEpC 
seeded in a density of 1.5x 106 cells/cm² on different coating combinations (FN/COL ≜ 
Fibronectin/Collagen or FN/LM ≜ Fibronectin/Laminin) and cultivated in either CMM or SAGM; values 
are shown as mean ± S.D. (n = 9 from 3 independent experiments). 
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To reflect the in vivo situation of the deep lung as closely as possible, primary cultures 

grown on Transwells® were lifted from liquid-covered conditions (LCC) to the air-liquid 

interface, as described above. Figure 11 shows the mean TEER progression at both 

cultivation conditions as a function of time taken from six independent mAEpC 

isolations. At both cultivation conditions, mAEpC develop high TEER increasing with 

time and reaching maximum values at day 6 after isolation. Remarkably, mAEpC kept 

at LCC develop higher TEER (TEERmax ~1900 Ωcm²) than cells grown at the ALI 

(TEERmax ~1100 Ωcm²). This was possibly due to a less optimal nutrient supply in ALI 

culture, or to cellular stress caused by the measurement procedure itself which might 

have temporarily impaired the barrier function. 

Commonly, functional alveolar epithelial in vitro barriers exhibit TEER values 

exceeding ≥ 1000 Ωcm² (Hittinger et al., 2015) which goes in line with the findings of 

this study. Therefore, it is most likely that primary mAEpC express functional tight 

junction complexes and thus, build a barrier against external threats mimicking the in 

vivo situation of the air-blood barrier. For this reason, the primary mAEpC in vitro model 

fully meets the requirements to be applied for paracellular transport studies. 

 

 

 

Figure 11: Comparison of the TEER development of primary mAEpC grown under liquid-covered 
conditions (LCC) or at the air-liquid interface (ALI); values are shown as mean ± S.D. (n=18 from 6 
independent mAEpC isolation procedures). 
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3.2.3 Comparison of primary mAEpC and hAEpC cultures 

To evaluate if the primary murine model of the alveolar epithelium exhibits features like 

the human equivalent, mAEpC and hAEpC were compared addressing their barrier 

properties and in vitro differentiation after isolation (see figure 12). 

Therefore, the TEER development of freshly isolated hAEpC (HIPS#629 and 

HIPS#631) and hence, the integrity of functional tight junctions was assessed over 

time (see figure 12A), whereby the cells were cultivated in SAGM (recommended for 

hAEpC) or CMM (recommended for mAEpC), respectively. Compared to mAEpC (see 

figure 10), the TEER development of human cells proceeds similarly with slightly higher 

TEERmax values. Whereas hAEpC grown in CMM show higher TEER within the first 5 

days after isolation, the appropriate TEERmax (~2000 Ωcm²) is marginally lower as the 

TEERmax of hAEpC grown in SAGM (~2200 Ωcm²). This result suggests that primary 

hAEpC can develop into a tight monolayer in both tested cultivation media. Vice versa, 

mAEpC could only develop high TEER when cultivated in CMM and the TEERmax of 

cells cultivated in SAGM could not exceed ~800 Ωcm² (see figure 12B). From an 

economical point of view, it would be interesting to further investigate the suitability of 

CMM for other hAEpC experiments as CMM is much more cost-effective than SAGM 

and its usage could contribute to a cost reduction of the relatively expensive hAEpC 

isolation procedure (Daum et al., 2012). 

To monitor the differentiation of hAEpC, immunofluorescence staining on 0.33 cm²-

Transwells® was performed at day 1 after isolation for the ATII marker protein 

proSP-C (see figure 12B) and at day 7 after isolation for the ATI marker and TJ protein 

ZO-1 (see figure 12C). In accordance with the findings for mAEpC and as previously 

described (Kuehn et al., 2016), freshly isolated hAEpC express proSP-C which is being 

reduced by time (data not shown). Moreover, hAEpC showed an expression of ZO-1 

restricted to the cell membranes starting at day 7 post isolation, as observed for 

mAEpC. 

These data suggest that human and murine AEpC exhibit comparable in vivo 

properties of the air-blood barrier including functional tight junction complexes as 

expressed by high TEER and immunofluorescence staining of prominent marker 

proteins. The interspecies comparison also gives evidence that both primary models 

can be applied for the elucidation of paracellular transport mechanisms. 
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In this context, primary human in vitro cell culture models could demonstrate their 

suitability in manifold manner (Elbert et al., 1999; I. I. Forbes, 2000; Hittinger et al., 

2016b), as described in detail in the course of the introducing chapters. To conclude, 

the herein established primary mAEpC model of the air-blood barrier can be used to 

complete possible applications in these premises avoiding the use of patient material. 

 

 

 

Figure 12: Barrier properties and trans-differentiation of hAEpC – A: TEER development of primary 
hAEpC cultivated in either CMM or SAGM; values are shown as mean ± S.D. with (n=6 from 2 
independent hAEpC isolation procedures: HIPS#629 and HIPS#631). B: Immunofluorescence of proSP-
C (green) at day 1 post isolation; C: Immunofluorescence of ZO-1 (green) at day 7 post isolation; hAEpC 
were fixed with 3% PFA on 0.33 cm²-Transwell® membranes and nuclei were stained with DAPI solution 
(blue); scale bars: 20µm. 
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3.3 Towards an optimized immortalization approach to generate cell lines 

originating from mAEpC 

In these studies, two different approaches aiming at the immortalization of primary 

mAEpC were applied. Thereby, the focus was on a novel immortalization strategy 

based on the lentiviral-mediated transduction of primary cells with a recently patented 

library of proliferation-promoting genes (see 3.3.2 and the following), as previously 

described by May et al. (2016). In an alternative immortalization attempt, mAEpC were 

transduced with a single lentiviral vector system conditionally expressing the SV40 

TAg, a conventional immortality gene known to cause dramatic cell alterations upon 

continuous expression, as outlined in the introduction (see 3.3.1). 

As a starting point, primary murine alveolar epithelial cells (mAEpC) were isolated from 

ROSAConL hetero mice and cultivated on porous 0.33 cm²-Transwell® membranes to 

enable the daily assessment of the TEER to monitor the development of a tight 

monolayer. At the same time, primary mAEpC were seeded on 24well-plates for the 

lentivirus-mediated transduction. When the TEER of the Transwell®-grown cells 

reached its maximum (4 to 6 days post seeding), primary mAEpC grown on 24-wells 

were transduced with the lentiviral expression systems. 

 

 

3.3.1 Lentiviral-mediated transduction of mAEpC with a vector system 

conditionally expressing the Simian Virus 40 Large T antigen  

Previously, it has been shown in multiple cell types that the expression of the Simian 

Virus 40 large T antigen (SV40 TAg) leads to an extension of the cell’s life span and 

increases the likelihood to obtain immortalized cell derivates. The explanation for the 

prolonged life span is attributed largely to the SV40 TAg and its binding capacity to the 

tumor suppressor p53 and, consequently, the inhibition of p53-dependent pathways 

(Hubbard & Ozer, 1999). Therefore, and as an alternative attempt to immortalize 

primary murine alveolar epithelial cells, a single-gene lentiviral vector conditionally 

expressing the Simian Virus 40 Large T antigen (TAg) was used to transduce mAEpC. 

This autoregulated expression system was described to feature tetracycline-

dependent and, thus controllable TAg expression (May et al., 2004, 2007). In theory, 

the key feature of cell lines established with this immortalization strategy is that their 
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proliferation status could be strictly controlled while the expression of relevant markers 

can be maintained (May et al., 2010). 

Due to the transduction of mAEpC with this lentiviral vector, the proliferating cell 

population mAELVi.J (J refers to the applied pJSARLT vector) could be obtained. 

When the cells could be expanded at desired densities (starting at passage 9), growth 

curves of mAELVi.J grown either in presence or absence of the tetracycline-analogue 

doxycycline (Dox) were assessed (see figure 13). Upon the presence of doxycycline 

in the cultivation medium, high cell division rates were observed as sigmoid growth 

curve, comparable to those of other standardized cell lines. However, mAELVi.J cell 

growth could not be arrested in the absence of doxycycline, as demonstrated by the 

appropriate growth curve which shows a course comparable to the results at induced 

conditions. In fact, induced cells grew just slightly faster than those grown without 

doxycycline indicating “leakiness” or dysfunction of the applied expression cassette 

which would have to be further analyzed in terms of functionality. Consequently, 

mAELVi.J cells most likely continuously express TAg and were further characterized 

regarding their morphology and barrier properties, which is described in the next 

chapter (see 3.4.3). 

 

 

 

Figure 13: Growth curve of mAELVi.J cells at passage 21 assessed over 10 days either at induced 
conditions (Dox) or uninduced conditions (w/o Dox); numbers of cells are shown as mean ± S.D. (n=3). 
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3.3.2 Lentiviral-mediated transduction of mAEpC with the CI-SCREEN 

immortalizing gene library 

Recently, a novel human cell line of the alveolar epithelium, referred to as hAELVi 

(human alveolar epithelial lentivirus-immortalized) cells, could be achieved as a result 

of the lentiviral-mediated transduction of primary hAEpC with a patented library of 33 

distinct proliferation-promoting genes (May et al., 2016). Likewise, this immortalization 

approach was applied to transduce primary mAEpC. Upon transduction with the 

lentiviral gene library, certain genes were integrated into the mAEpC genome 

eventually inducing cell proliferation processes, while non-transduced cells remained 

to be inherently growth-arrested and underwent senescence or apoptosis, 

respectively. Subsequently, 8 genetically distinct proliferating cell populations, referred 

to as mAELVi.A-H (murine alveolar epithelial lentivirus-immortalized cells), were 

obtained. To achieve clonal formation, these mAELVi populations were continuously 

expanded (1:1) in culture dishes, up to a growing area of 10 cm². However, clonal cell 

formations could only be observed in the case of mAELVi.C and mAELVi.E and is 

exemplarily shown for the latter in figure 14. These light microscope images, which 

were captured at cell passage 6 post lentiviral transduction, clearly demonstrates a 

distinct morphological appearance of some mAELVi.E cells compared to the 

surrounding. Because of the enhanced attachment of this cell formation to the 

cultivation surface, it was possible to isolate the cells by passaging them in two shifted 

trypsinization steps. Nonetheless, it remains unclear if the cell formation emerged from 

a single cell or if the cells represent a heterogeneous mAELVi.E population. Thus, all 

mAELVi cells were treated as polyclonal cell lines. 

 

 

 

 

 

 

 

 

Figure 14: Formation of proliferating mAELVi.E cells at passage 6 after lentiviral transduction; cells 
with distinct morphology were separated from surrounding cells by a shifted two-step trypsinization and 
the cell population was maintained as mAELVi.E; scale bars: 100µm. 



 

 
63 

 

Results & Discussion 

Furthermore, these expandable mAELVi populations were analyzed in terms of the 

integration pattern of immortalizing genes, ATI/II marker expression by PCR-based 

RNA-analysis and immunofluorescence staining as well as their barrier properties by 

TEER measurements. These experiments are described in detail for mAELVi.E and 

mAELVi.wt in the following (see 3.4). Table 11 (see 3.4.5) provides a summary of the 

obtained mAELVi cell populations and their characteristics in comparison with findings 

of primary mAEpC and MLE12. 

 

 

3.3.3 Gene integration pattern and minimal set of immortalizing genes 

Upon lentiviral-mediated transduction of mAEpC with the CI-SCREEN gene library, the 

resulting whole-cell RNA extracts of mAELVi.A-H cells were analyzed in respect of the 

pattern of integrated immortalizing genes by PCR. Table 10 provides an overview of 

the immortalizing gene integration pattern of the tested mAELVi cell populations. On 

average, 3 to 7 different genes (mean 5 ± 1) out of the total 33 genes have been 

integrated in the mAEpC genome which explains the outcome of the different mAELVi 

phenotypes. 

In total, only 14 out of 33 immortalizing genes could be detected. Namely, these are 

Bmi1, E6, E7, Ezh2, Fos, Id2, Id3, Id4, Kfl4, Myc, Nanog, Rex, RhoA and Nfe2L2. 

Remarkably, some of these genes could be detected more often than others. The most 

prominent immortalizing genes, which could be detected in ≥ 50% of the tested 

mAELVi populations, were Id3 (inhibitor of differentiation protein 3; 87,5% integration), 

RhoA (Ras homolog gene family member A; 62,5% integration) and Fos (Fos proto-

oncogene, Activating Protein-1 transcription factor subunit; 50% integration). 

The helix-loop-helix transcription factor Id3 was previously reported to be 

overexpressed in many types of carcinomas indicating an important role in 

tumorigenicity and cell cycle progression. In this context, it could be demonstrated that 

siRNA-mediated suppression of Id3 could significantly reduce cell proliferation 

suggesting Id3 as potential target for anti-cancer therapies (F. F. Chen et al., 2015; 

Kamalian et al., 2010). Similarly, the small GTP-binding protein RhoA has been found 

overexpressed in malignant non–small-cell lung cancer triggering cell cycle 

progression which could be reversed upon RhoA-knockdown (Liu et al., 2017; Zhang 

et al., 2014). The dimeric Fos transcription factor may regulate different target genes 
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executing distinct biological functions such as cell proliferation and transformation 

(Angel & Karin, 1991; Lian et al., 1991). 

These results suggest that some genes are more likely to be responsible for the 

prolongation of the cell’s lifespan and that this set of proliferation-promoting genes 

could be applied for the cell-specific immortalization of mAEpC, which was subject of 

additional investigations described in the following. 
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Table 10: Pattern of integrated genes from CI-SCREEN gene library upon lentiviral transduction of 
mAEpC which resulted in expandable mAELVi cells (mAELVi.A-H); *mAELVi.wt were transduced with 
a set of 9 out of 33 immortalizing genes; the results are based on PCR-analysis of mAELVi whole-cell 
DNA extractions; green boxes indicate positive PCR products for the respective gene; mGAPDH was 
used as internal control of the PCR. 
 
 

CI-
Screen 
gene 

library 

mAELVi populations 

A B C D E F G H wt* 

Gli1                 

Bmi1                 

Core                 

E6                 

E7                 

Ezh2                 

Fos                 

Bcl2                 

HoxA9                 

Id1                 

Id2                 

Id3                 

Id4                 

Kfl4                 

Lmo2                 

Myb                 

Myc                 

Nanog                 

Rex                 

RhoA                 

Sez12                 

Sox2                 

ß-Cat                 

TAg                 

Yap1                 

ZFP217                 

NS1                 

Nfe2L2                 

v-Myc                 

Jun                 

PymT                 

Oct3                 

E2F1                   

 

Ezh2 
Fos 
Id3 
Id4 
Kfl4 
Rex 

Ezh2 
Fos 
Id3 

E7 
Fos 
Id3 

RhoA 
Nfe2L2 

Bmi1 
E7 
Id2 
Id3 

Nanog 
RhoA 

Nfe2L2 

Bmi1 
Fos 
Id2 
Id3 

RhoA 

Nanog 
RhoA 

Nfe2L2 

Bmi1 
E6 
Id2 
Id3 
Myc 

Ezh2 
Id3 

RhoA 

E6 
Fos 
Id2  
Id3 

Nanog 

 6/33 3/33 5/33 7/33 5/33 3/33 5/33 3/33 5/9 
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3.3.4 Transduction of wildtype mAEpC with the defined minimal set of 

immortalizing genes 

In another step towards an optimized immortalization protocol and to define a minimal 

set of immortalizing genes, mAEpC isolated from RosaConL hetero mice were 

transduced with 14 genes out of the CI-SCREEN library which could be detected in 

mAELVi cell populations, as described above. In total, more than 100 samples of 

transduced mAEpC-DNA samples were analyzed by PCR regarding the integrated 

immortalizing genes. Following this procedure, the number of integrated genes could 

be further reduced to only 9 out of the total 33 genes, which are namely E6, E7, Id2, 

Id3, Fos, Myc, Nanog, Nfe2L2 and RhoA. To verify that this minimal set of genes can 

be applied for rather “cell-specific” immortalization, mAEpC were isolated from wildtype 

mice providing a distinct genetic background compared to previous experiments. As 

soon as wildtype mAEpC developed into a tight monolayer with high TEER in vitro, 

cells were transduced with the 9 abovementioned lentiviral vectors. As a result, a 

proliferating cell population, referred to as mAELVi.wt (“wildtype”), could be obtained  

The immortalization attempts of wildtype mAEpC resulted in an expandable cell 

population, referred to as mAELVi.wt, which was included in the following 

characterization and application-oriented experiments. The gene integration analysis 

of mAELVi.wt revealed that 5 (E6, Fos, Id2, Id3, Nanog) out of 9 applied immortalizing 

genes were introduced. 

Thus, this immortalization approach and the defined set of genes, respectively, form 

the basis for further experiments eventually enabling the establishment of cell lines 

derived from mice with a defined genetic background. This approach could be applied 

to compare and correlate both in vitro and in vivo data of the same mouse model, which 

provides an advantage over human cell culture systems. 
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3.4 Characterization of mAELVi cell populations 

Upon various lentiviral-mediated mAEpC immortalization attempts, different mAELVi 

cell populations were expanded, as previously described in detail: 

• mAELVi.A-H were achieved through transduction of mAEpC from 
RosaConL mice with the CI-SCREEN library 
 

• mAELVi.J was obtained by transduction of mAEpC from RosaConL mice 
with TAg only (see 3.4.3) 
 

• mAELVi.wt was achieved through transduction of mAEpC from wildtype 
mice with a defined set comprising 9 genes out of the CI-SCREEN library 

 

These continuously growing cells have been characterized regarding the integration 

pattern of immortalizing genes (see table 10), EpCAM expression by FACS analysis, 

the expression of ATI/ATII-specific markers and barrier properties. Fortunately, it was 

possible to successfully immortalize mAEpC in a way that the resultant mAELVi cells 

could be easily handles and grown in almost infinite quantities. Table 11 (see 3.4.4) 

provides an overview of the 10 expandable mAELVi populations and their 

characteristics in comparison with MLE12 and primary mAEpC. 

Based on these data, and particularly because of the highest TEER (TEERmax 

356 Ωcm²) obtained, mAELVi.E cells were selected for further studies (see 3.5 and 

3.6). Even though the abovementioned experiments were carried out with all mAELVi 

populations, the respective results presented in the following sections highlight 

mAELVi.E cells, unless otherwise indicated. In addition, MLE12 (Murine Lung 

Epithelial) cells were carried along in many experiments as a reference cell line (see 

table 2). This cell line was produced from lung tumors generated in transgenic mice 

expressing TAg under the control of the SP-C promotor. Upon the immortalization 

processes, the cells could maintain ATII-like features like lamellar bodies, but have not 

yet been analyzed regarding their barrier properties (Wikenheiser et al., 1992; 

Wikenheiser et al., 1993). 
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3.4.1 Morphological characterization of mAELVi cells 

Upon mAEpC transduction with the lentiviral gene library, genetically different mAELVi 

populations with distinct morphological appearances were obtained, from which are 

some displayed in figure 15 in comparison with primary mAEpC (day 4 post isolation). 

Notably, cells were cultivated on fibronectin/laminin-5-coated plastic surfaces to 

capture these light microscopic images. Morphologies might appear different when the 

cells are grown on other materials or surface structures, respectively, because these 

parameters have been found to strongly influence the cells’ behavior (Flemming et al., 

1999; Martinez et al., 2009). 

Whereas primary mAEpC, mAELVi.C, mAELVi.E and mAELVi.wt exhibit comparable 

morphologies displaying tight monolayers, mAELVi.H cells resembled a fibroblast-like 

phenotype (Seluanov et al., 2010) indicating that their epithelial character got impaired 

due to the integration of immortalizing genes, as described previously (Moiani et al., 

2012; Schmitz et al., 2012). Furthermore, the light microscopic appearance of 

mAELVi.D seems to be comparable to the human cell line A549 (Aarbiou et al., 2002) 

displaying an ATII-like cell formation. 

 

 

 

Figure 15: Light microscopic images of primary mAEpC and different immortalized mAELVi cell 
populations, as indicated; cells were cultured on fibronectin/laminin-5-coated plastic; scale bars: 100µm. 
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In addition to light microscopic analyses, the growth morphology of mAELVi.E and 

mAELVi.wt cells was determined by histology (see figure 16). Therefore, cells were 

grown on porous Transwells® for 7 days and subsequently treated for the preparation 

of membrane cross-sections. Both mAELVi.E (upper image) and mAELVi.wt (lower 

image) cells appeared to form a thin monolayer indicating an ATI-like growth behavior 

(Dobbs et al., 2010). 

 

 

 

 
Figure 16: Histological cross sections of mAELVi.E and mAELVi.wt grown on fibronectin/laminin-
5-coated 10 µm-thick Transwells® with a pore size of 0.4 µm; membrane sections were stained with H/E; 
images were captured with an inverted light microscope. 

 

 

3.4.2 Expression of alveolar epithelial characteristics of mAELVi cells 

To assess the percentage of mAELVi.A-J populations expressing the epithelial marker 

EpCAM, cell fractions from early (1 - 4) and late (17 - 21) passages were analyzed by 

flow cytometry (see figure 17). The FACS analyses revealed that the number of 

EpCAM-positive cells tends to increase with time, with mAELVi.C being the only 

exception. In all other mAELVi populations, the percentage of EpCAM-positive cells is 

much lower in early passages indicating that expression changes might occur upon 

cell expansion. In case of mAELVi.E, in early passages only 63% of the cells expressed 

EpCAM, whereas 90% EpCAM-expressing cells were detected in late passages. The 

increase in EpCAM-positive cells could be due to natural selection processes upon 

cultivation. This highly conserved transmembrane glycoprotein mediates cell-cell-

adhesion by binding to the actin cytoskeleton. It is normally expressed at the 

basolateral membrane of most epithelial tissues, and thus, is widely used as marker 

for such cells (Trzpis et al., 2007; Winter et al., 2003). 
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Figure 17: Percentage of EpCAM-positive cells of mAELVi cell populations assessed with a 
monoclonal anti-EpCAM PE antibody by FACS analyses. Results from early (passages 1 – 4) and late 
(passages 17 – 21) passages are compared. 

 

 

Furthermore, the expression and cellular localization of the transmembrane protein 

EpCAM was visualized by immunofluorescence staining performed with mAELVi.E 

cells at passage 33. Figure 18 illustrates that EpCAM is expressed mainly in the areas 

of the cell membranes in all mAELVi.E cells. Thus, mAELVi.E cells display an epithelial 

character, since non-epithelial cells do generally not express EpCAM (Trzpis et al., 

2007). 

 

 

 

Figure 18: Expression of EpCAM in mAELVi.E cells at passage 33 (left: DAPI-stained nuclei, middle: 
EpCAM distribution, right: merge); cells were fixed on fibronectin/laminin-5-coated chamberslides with 
3% PFA; scale bars: 50 µm. 
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Besides its applicability as epithelial marker to isolate and distinguish between different 

phenotypes of lung cells (N. Fujino et al., 2012; Hasegawa et al., 2017), EpCAM has 

been found to be overexpressed in various carcinomas (Patriarca et al., 2012) such as 

lung tumors (Y. Kim et al., 2009; Pak et al., 2012). Due to this fact, it remains unclear 

if the increasing amount of EpCAM-expressing mAELVi cells somehow relates to the 

impaired alveolar epithelial functions of the cells. 

In this context, a genome-wide expression analysis of the human lung cell lines A549 

and Calu-3 revealed a network of EpCAM-induced cell cycle regulators upon treatment 

with an EpCAM-specific antibody suggesting that EpCAM triggers several intercellular 

signaling pathways (Maaser & Borlak, 2008). In addition, the treatment of these cell 

lines with an EpCAM-specific antibody entailed a dose-dependent increase of cell 

proliferation rates. Taking this into account, EpCAM might possibly be involved in the 

mechanisms causing unlimited growth capacity of mAELVi populations which might 

occur concurrent with less prominent barrier function compared to primary mAEpC. 

To further characterize the expression of alveolar epithelial-specific genes, cDNA 

sequences produced from whole-cell RNA extractions of mAELVi, mAEpC, and MLE12 

cells were analyzed by PCR focusing on ATI markers (AQP5, Cav-1, T1α, ICAM-1) 

and ATII markers (SP-A, SP-B, SP-C). The functions of the appropriate gene products 

are outlined in the following discussion. As a positive control, PCR reactions of the 

housekeeping gene mGAPDH (murine glyceraldehyde-3-phosphate dehydrogenase) 

were carried along all experiments. Reactions containing all PCR agents except the 

cDNA templates served as negative control to preclude contaminations. As evident 

from figure 19, freshly isolated mAEpC and MLE12 cells expressed all tested ATI and 

ATII markers displaying a heterogenous genotype. Since the isolation protocol is 

based on EpCAM-positive selection, freshly isolated mAEpC (day 0) could also 

possibly be comprised of both ATI and ATII cells, as indicated by the positive signals 

obtained for all tested markers. However, it is likely that in vitro monolayer formation is 

mainly performed by viable ATII cells undergoing trans-differentiation into ATI-like 

cells, since most of the ATI cells would not have survived the isolation procedure due 

to their intrinsic fragility.  

In contrast, the expression profile of mAELVi.E cells was restricted to positive signals 

of typical ATI markers, such as AQP5, Cav-1 and ICAM-1. Thus, mAELVi cells 

exhibited an ATI-like genotype, while primary mAEpC and MLE12 revealed expression 
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profiles displaying both ATI-like and ATII-like characteristics. Gene expression details 

of other analyzed mAELVi populations are listed in table 11. 

 

 

Figure 19: PCR analyses of the expression of ATI and ATII markers in mAEpC, mAELVi.E and 
MLE12 cells; M: Hyperladder V (Bioline) with molecular weights indicated in base pairs (bp), analyzed 
ATII markers: SP-A (101bp), SP-B (121bp) and SP-C (88bp); ATII markers: T1α (101bp), AQP5 (86bp), 
Cav-1 (198bp) and ICAM-1 (103bp); mGAPDH and template-free samples, respectively, were run as 
controls (data not shown). 

 

 

T1α, also known as podoplanin, was one of the first identified ATI marker genes whose 

expression was shown to be restricted to type I cells of the alveolar epithelium (Cao et 

al., 2000). Even though its importance during lung development was demonstrated by 

homozygous T1α-null mice dying at birth from respiratory failure, the physiological role 

of the proteins in adults remains unclear (M. I. Ramirez et al., 2003). Because T1α was 

found to be co-expressed with aquaporins, an involvement in the regulation of fluid 

fluxes was proposed (Millien et al., 2006). In this context, the loss of AQP5, the major 

ATI cell-associated water channel, was shown to cause decreased water transport 

upon significant molecular changes in the expression of tight junction (TJ) proteins 

indicating a regulatory role in TJ assembly (Kawedia et al., 2007). Besides TJ 

complexes, ATI cells can be characterized by the presence of caveolae, invaginations 

of the plasma membrane coated with caveolin proteins which ATII cells are lacking 

(Campbell et al., 1999). Thereby, Cav-1 represents the main protein component of 

such lipid rafts and is involved in numerous cellular processes including transport and 

signaling pathways as demonstrated by gene knock-out experiments (Drab et al., 

2001). Furthermore, Cav-1-deficient MEF (murine embryonal fibroblasts) exhibited a 
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hyper-proliferative phenotype when compared to wildtype MEF suggesting that Cav-1 

functions as a putative tumor suppressor (Razani et al., 2001). 

The intercellular adhesion molecule 1, ICAM-1, is known to play a critical role in 

inflammatory processes and tumor cell growth in the airways (Jiang et al., 1998). In 

normal adult rat and human lung, ICAM-1 is highly expressed in ATI cells, whereas 

only slight expression levels could be detected in ATII cells (Attar et al., 1999). It was 

furthermore suggested that ICAM-1 is involved in ATI differentiation processes, hence 

it was included in the characterization of mAELVi populations. 

As surfactant is exclusively produced by alveolar type II cells, the presence of the 

respective surfactant proteins SP-A, SP-B and SP-C can be used as ATII-specific 

markers (Mulugeta & Beers, 2006). 

To further evaluate these observations regarding the functionality of the cells, mAELVi 

populations were analyzed due to the expression of TJ proteins and barrier properties 

which is described in the following. 

 

 

3.4.3 Expression of TJ proteins and barrier properties of mAELVi.E and 

mAELVi.wt cells 

To investigate the barrier properties of mAELVi monolayers in comparison with their 

primary counterpart, TEER measurements and immunofluorescence staining for TJ 

proteins were conducted. The appropriate findings are exemplary demonstrated for 

mAELVi.E and mAELVi.wt cells. Maximum TEER (TEERmax) and mean TEER values 

as well as complementary characteristics of other mAELVi populations are listed in 

table 11 (see 3.4.5). 

To assess the TEER and optimize the cultivation conditions in view of the formation of 

a tight monolayer, mAELVi cells grown on Transwells® were cultivated with different 

media (see figure 20A) or on different coating substrates (see figure 20B). In this 

context, it was previously shown that the extracellular environment (e.g. medium 

supplements, coating substrates) in vivo as well as in vitro influences the differentiation 

of alveolar epithelial cells (Y. M. Lin et al., 2010; Olsen et al., 2005). 

In case of mAELVi.E, the highest TEER peaking at 356 Ωcm² was assessed upon 

cultivation in CMM10 medium, whereas the TEER was lower when CMM10 was 
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supplemented with hydrocortisone (TEERmax = 256 Ωcm²) or dexamethasone 

(TEERmax = 211 Ωcm²), respectively. Cells cultivated in SAGM medium developed 

TEER slightly faster but could not exceed a TEERmax of 216 Ωcm². In case of 

mAELVi.wt, the cultivation in SAGM resulted in the highest TEER peaking at 256 Ωcm², 

however, all other tested medium compositions yielded in a comparable TEER 

development. For that reason, mAELVi cells were further cultivated in CMM10 as it is 

more cost effective compared to SAGM. Even though, mAEpC could also develop the 

highest TEER when grown in CMM10, primary cells exhibited much higher resistances 

peaking at~2500 Ωcm² (see figure 11). 

In this context, hydrocortisone was proposed to contribute to the maintenance of an 

ATII-like character of isolated mAEpC in vitro (Rice et al., 2002) corresponding to the 

findings obtained from this study. Accordingly, dexamethasone was suggested to play 

a role in the production of surfactant in primary hAEpC (J. Wang et al., 2007). However, 

cells analyzed in the latter study were grown on a mixture of Matrigel and rat tail 

collagen which further influenced the differentiation processes of freshly isolated 

hAEpC. 

For that reason, mAELVi.E and mAELVi.wt were grown on different substrates to 

evaluate the influence of extracellular matrix proteins on the development of TEER 

(see figure 21B). Hereby, the results for both mAELVi.E and mAELVi.wt demonstrate 

that the cells developed the highest TEER after 8 days of cultivation when grown on a 

combination of fibronectin (FN) and laminin-5 (LM) peaking at 305 and 264 Ωcm² for 

mAELVi.E and mAELVi.wt cells, respectively. TEER levels were lower when the cells 

were grown on a combination of fibronectin and collagen or fibronectin only. Hence, 

cultivation devices for mAELVi cells were coated with fibronectin and laminin-5 for 

further experiments consistent with the findings from primary mAEpC (see figure 10). 

Nonetheless, attempts to optimize the cultivation conditions of mAELVi monolayers 

could not increase the TEER to levels comparable with primary cells indicating that the 

random integration of immortalizing genes might have caused impaired barrier 

properties of mAELVi cells. 
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FN FN/COL FN/LM 

A  Influence of medium composition on TEER development of mAELVi.E (left) and mAELVi.wt (right) 

 
 
B  Influence of surface coating on TEER development of mAELVi.E (left) and mAELVi.wt (right) 
 

 
 
 
 
Figure 20: TEER development of mAELVi.E (left) and mAELVi.wt (right) seeded on 1.12 cm² 
Transwell® filter supports (pore size 0.4 µm) in CMM10 – A: Influence of medium composition 

(HC ≜ hydrocortisone, DM ≜ dexamethasone); B: Influence of different surface coatings 
(FN ≜ fibronectin; FN/COL ≜ fibronectin/collagen; FN/LM ≜ fibronectin/laminin-5); values are shown as 
mean ± S.D. (n = 9 from 3 independent experiments). 
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To better understand the decreased barrier function modulated by functional TJ, the 

expression of ZO-1 (see figure 21, left panel) and occludin (see figure 21, right panel) 

of primary mAEpC, mAELVi.E and mAELVi.wt cells was determined by 

immunofluorescence staining. Both TJ proteins were present in all cell types and 

revealed a cellular distribution restricted to cell membranes, as was observed for 

primary mAEpC. Despite expressing the most prominent TJ proteins ZO-1 and 

occludin, mAELVi cells appeared to exhibit much less pronounced barrier properties 

than mAEpC. These results suggest that the expression of other TJ proteins than ZO-

1 and occludin might be defective causing a less sealed monolayer formation of 

mAELVi cells. It could also be possible that signaling pathways involved in TJ 

regulation and modulation processes have become dysregulated or interrupted due to 

the transduction of immortalizing genes (Wolburg & Lippoldt, 2002). Since functional 

TJ complexes are key for the maintenance of epithelial barrier functions, only analyses 

of all involved proteins could provide further insight in the mechanisms causing the 

impaired functionality of mAELVi populations when compared to primary cells. 

Besides occludin, TJ complexes consist of other transmembrane core proteins, such 

as proteins of the Claudin family which have been discovered to form the structural 

backbone of TJ strands (Tsukita et al., 2001). In this context, Claudin-18 as one of the 

most prominent TJ proteins was shown to be expressed by primary mAEpC (Demaio 

et al., 2009). While most of these TJ proteins were found to be associated with 

signaling processes and anchoring to the actin cytoskeleton, recent studies have 

highlighted that claudins function as the major determinants of paracellular transport 

processes across the alveolar epithelium (Gonzalez-Mariscal et al., 2003; Van Itallie & 

Anderson, 2006). Studies in rodent model systems revealed that claudin 

dysregulations might correspond to human pulmonary disorders, such as inflammation 

(Fang et al., 2010) or sepsis (Cohen et al., 2010) demonstrating the importance of 

functional TJ proteins and their interactions with each other and the intercellular space.  

Furthermore, Zonula Occludens proteins, ZO-1 – 3, link the cytoplasmatic tail of 

occludin to the actin skeleton of the ECM and can interact with family members and 

other TJ-associated proteins such as Claudins and AF-6 (Förster, 2008) whose 

expression should be addressed to further elucidate mAELVi cell barrier formation. 
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Figure 21: Expression of TJ proteins (left panel: ZO-1 in green; right panel: occludin in red); A: primary 
mAEpC at day 7 after isolation on 0.33 cm²-membranes; B mAELVi.E cells; C: mAELVi.wt cells; 
immortalized cells were stained at day 14 post seeding on 1.12 cm² membranes; cells were fixed with 
3% PFA and nuclei were stained with DAPI solution; scale bars: 20 µm. 

 

As adherens junctions mediate cell-cell adhesion promoting the formation of TJ, both 

types of intercellular junctions contribute to alveolar epithelial barrier functions and 

paracellular permeability (Ganesan et al., 2013; Harris, 2012). Due to this fact, 

impaired mechanisms involved in the formation of functional adherens junctions could 

explain the less pronounced barrier properties of mAELVi populations compared to 

mAEpC. To elucidate the integrity of adherens junctions in mAELVi cells, further 

experiments are necessary. Alterations in junction assembly and function have 

previously also been reported to significantly impair the properties of the blood-brain 

barrier which is basically structured like the air-blood barrier (Stamatovic et al., 2016). 
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In this context, the loss of junction barrier function has been outlined to play a critical 

role in metastatic cancers of many organs (Martin & Jiang, 2009) and inflammatory 

diseases such as cystic fibrosis (Coyne et al., 2002). 

Considering that mAELVi cells exhibited ATI-like characteristics, such as the 

expression of EpCAM (demonstrated by both FACS and immunofluorescence 

staining), typical ATI markers (demonstrated by RNA analyses) including prominent TJ 

proteins (see figure 21), and at the same time exhibited less pronounced barrier 

properties than their primary counterpart, these results appear to be contradictory. 

Accordingly, the question why the ability of mAELVi.E cells to build a tight monolayer 

with high TEER got reduced although the cells display ATI-like characteristics remains 

open. Quantitative transcriptome analyses of primary and immortalized cells might 

contribute to gain further insight in altering expression levels causing functional 

differences in mAELVi populations. Here, it appears that the random integration of 

immortalizing genes has caused a yet unsolved cellular impairment which is critical for 

the proper assembly of cell junctions. 

 

 

3.4.4 Characterization of mAELVi.J cells 

To assess the barrier properties of mAELVi.J, TEER measurements of Transwell®-

grown cells were performed. Figure 22A reveals that the TEERmax of mAELVi.J cells 

was below 200 Ωcm² at any time demonstrating lacking barrier properties. In 

consistence with this result, light microscopy of mAELVi.J (Figure 22B) revealed that 

the cells built a leaky monolayer with cells appearing to be just slightly attached to each 

other. Consequently, mAELVI.J cells were not included in paracellular transport 

studies and toxicity prediction experiments in this work. 

Nevertheless, this immortalization outcome provides further evidence that the long-

term expression of TAg, as single immortalizing gene, leads to severe alterations of 

the cell’s phenotype, as previously described for other epithelial cell types (Bae et al., 

1998; Nitta et al., 2001; Yamasaki et al., 2009). Upon other TAg immortalization 

attempts, at least some in vivo-like cell characteristics could be retained. As an 

example, the Murine Lung Epithelial (MLE) cell line was produced from lung tumors 

induced in transgenic mice expressing TAg under the control of the lung-specific SP-
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C promotor (Wikenheiser et al., 1992). These cell lines grew rapidly, lacked contact 

inhibition but could demonstrate some ATII-like features (Wikenheiser et al., 1993). 

In this context, in vitro models like the hereby described mAELVi.J cells could be 

applied for studies addressing the molecular mechanisms of tumorigenesis and cancer 

progression as TAg signatures were also found in tumors from human patients 

suffering from the most aggressive breast, lung or prostate cancers (Deeb et al., 2007; 

Gazdar et al., 2002). 

 

 

 

Figure 22: Characterization of mAELVi.J cells regarding barrier properties - A: TEER development; 
values are shown as mean ± S.D (n=9 from 3 independent experiments). B: LM picture; scale bar: 
100 µm.  

  

 A  TEER measurement         B  Light microscopy 
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3.4.5 Tabular characterization summary of mAELVi populations 

Table 11: Characterization overview of mAELVi cells, primary mAEpC and MLE12; cells were 
characterized regarding the pattern of integrated lentiviral genes, ATI and ATII-like marker expression 
(PCR data), percentage of EpCAM-positive cells (FACS analyses; performed at cell passages 17 - 21) 
and TEER (mean and maximum in Ωcm²). 

 

Cells 
Immortalization 

features 

Integrated 
immortalizing 

genes 

Marker 
expression 
(PCR data) 

EpCAM-
positive 

cells 
(FACS) 

TEER 
(Ωcm²) 

ATI-
like 

ATII-
like 

mean maximum 

mAELVi.A 
CI-SCREEN gene 

library 
200µl + polybrene 

Ezh2, Fos, 
Id3, Id4, Kfl4, 

Rex 

T1α 
Cav-1 

ICAM-1 
AQP5 

/ 77.05% 187 205 

mAELVi.B 

CI-SCREEN gene 
library 

w/o E6, E7, Nanog 
200µl + polybrene 

Ezh2, Fos, Id3 

T1α 
Cav-1 

ICAM-1 
AQP5 

/ 86.65% 189 199 

mAELVi.C 

CI-SCREEN gene 
library 

200µl + polybrene 
clonal formation 

E7, Fos, Id3, 
RhoA, Nfe2L2 

T1α 
Cav-1 

ICAM-1 
AQP5 

/ 96.23% 211 244 

mAELVi.D 
CI-SCREEN gene 

library 
150µl + polybrene 

Bmi1, E7, Id2, 
Id3, Nanog, 

RhoA, Nfe2L2 

T1α 
Cav-1 

ICAM-1 
AQP5 

SP-A 91.71% 201 216 

mAELVi.E 

CI-SCREEN gene 
library 

100µl + polybrene 
clonal formation 

Bmi1, Fos, 
Id2, Id3, RhoA 

T1α 
Cav-1 

ICAM-1 
AQP5  

/ 91.77% 248 356 

mAELVi.F 
CI-SCREEN gene 

library 
100µl + polybrene 

Nanog, RhoA, 
Nfe2L2 

T1α 
AQP5 

/ 73.44% 189 210 

mAELVi.G 

CI-SCREEN gene 
library 

100µl + polybrene 
clonal formation 

Bmi1, E6, Id2, 
Id3, Myc 

T1α 
Cav-1 
AQP5 

SP-A 83.94% 206 268 

mAELVi.H 
CI-SCREEN gene 

library 
100µl + polybrene 

Ezh2, Id3, 
RhoA 

T1α 
Cav-1 
AQP5 

/ 93.56% 199 234 

mAELVi.J 
JSARLT vector 

150µl + polybrene 

SV40 TAg 
(conditional 
expression) 

T1α 
Cav-1 

ICAM-1 
AQP5 

SP-B 92.11% 177 198 

mAELVi.wt 

minimal set (9/33) of 
immortalizing genes 

from CI-SCREEN 
gene library  

200µl lentivirus + 
polybrene 

E6, Fos, Id2, 
Id3, Nanog 

T1α 
AQP5 
Cav-1 

I-CAM1 

SP-B 94.53% 213 259 

primary 
mAEpC 

N/A N/A 

T1α, 
AQP5 
Cav-1 

ICAM-1 

SP-A 
SP-B 
SP-C 

98.67% 1800 2500 

MLE12 N/A SV40 TAg 

T1α 
AQP5, 
Cav-1 

ICAM-1 

SP-A 
SP-B 
SP-C 

88.45% 190 216 
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3.5 Transport studies 

The pulmonary route is being thoroughly investigated not only for local drug 

administration to treat lung diseases but also as a non-invasive alternative to systemic 

drug delivery. During preclinical studies, it is thus of utmost importance to examine the 

biopharmaceutical and pharmacological aspects of the interactions between the 

alveolar lining and a certain compound or drug formulation, respectively. Besides 

transporter- or receptor-mediated transport, ions and larger molecules might enter the 

blood stream via the paracellular route mainly modulated by TJ complexes as major 

rate-limiting barrier (Rubas et al., 1996). For this purpose, pulmonary epithelial cell 

culture models are key to predict transport rates and evaluate apparent permeability 

coefficients (Papp) of a specific cell type for a defined molecule. 

In this context, the absorption kinetics and TEER of cell monolayers were determined 

by performing permeability studies and comparing the resulting Papp values for the 

transport of fluorescent model tracers with different molecular weight (MW). Thereby, 

the transport rates of the hydrophilic molecule sodium fluorescein (Na-Flu; MW 

400°Da) were assessed either in the absence or presence of the TJ modulator EDTA 

(M. A. Deli, 2009a) for mAEpC, mAELVi.E, mAELVi.wt and MLE12 monolayers (see 

figure 23A). Furthermore, the bidirectional transport of FITC-dextran (FD3000; MW 

3000 Da) was determined for monolayers of mAEpC, mAELVi.E and mAELVi.wt (see 

figure 23B). TEER was measured before and after each experiment. 

The Na-Flu-Papp coefficients of immortalized cells (mAELVi.E, mAELVi.wt) and MLE12 

were comparable, but were almost 10-fold higher than those of mAEpC. In the 

presence of EDTA, a more than two-fold increase in the permeability of the tightly-

joined primary cells was observed, whereas this effect was less apparent for the leakier 

immortalized and MLE12 cells (see figure 23A, left panel). As expected, the TEER, 

and thus, the barrier function of mAEpC, significantly declined in a dose-dependent 

manner in the presence of EDTA. This effect was less obvious for mAELVi and MLE12 

cells (see figure 23A, right panel). These results give evidence that primary cells 

exhibited functional TJs, but that these were lacking in all the other tested cells. In 

contrast, mAEpC exhibited Papp values comparable to those recently described for 

immortalized hAELVi cells (Kuehn et al., 2016; Kletting et al., 2017). However, the 

findings of mAEpC clearly demonstrate that the chelator EDTA can be applied to 
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enhance drug absorption as the depletion of Ca2+ ions and Mg2+ ions causes the 

reversible opening of TJ (X. Wang et al., 2016). 

The transport rate of FD3000 was assessed in apical-to-basolateral (a→b) and in 

basolateral-to-apical (b→a) direction (see figure 23B, left panel). Mean Papp values 

ranged between 1x 10-6 and 2.5x 10-6 cm/second, and were of a similar scale for all 

cell types tested. The lack of any preferred directionality points to passive transport, 

without the involvement of any active transporter or efflux system. As mentioned 

above, the TEER was independent of the transport direction remaining well above 

1000 Ωcm² for mAEpC, while mAELVi.E and mAELVi.wt showed comparable but lower 

TEER values remaining at ~250 Ωcm² (see figure 23B, right panel). However, in 

contrast to the Na-Flu permeability, the FD3000-Papp coefficients of primary and 

immortalized cells exhibited similar levels. This indicates that, in spite a higher 

permeability for the lower MW Na-Flu and relatively remote TEER (~ 250 Ωcm²), 

monolayers of the latter two cell populations effectively represented an absorption 

barrier for the higher MW FD3000. 

Taken together, these results provide evidence that mAELVi cells could successfully 

be applied to assess the transport rates of high-MW compounds and probably also the 

transport of nanoparticles. The primary mAEpC, with their tighter TJ, are more suitable 

for use in pulmonary absorptions studies of low-MW compounds. Since primary 

cultures of alveolar epithelial cells from pigs (Steimer et al., 2007), rats (Cheek et al., 

1989; K. J. Kim et al., 2001; Matsukawa et al., 1997) and humans (Bur et al., 2006; 

Elbert et al., 1999) could successfully be applied for the assessment of transport fluxes, 

the results of the studies of mAEpC complete the spectrum of suitable in vitro models 

of the air-blood barrier. 

To overcome the limitations of primary models and to diminish the number of animals 

used in this context in line with the 3R principle, various cell lines have been employed 

for the predication of cell permeability (Sarmento et al., 2012). Thereby, high TEER of 

monolayers represent a major prerequisite to mimic the in vivo situation of the 

peripheral lung (Srinivasan et al., 2015). Since the herein described mAELVi 

populations exhibited less pronounced barrier properties than their primary 

counterpart, the cell’s applicability for the evaluation of permeabilities is limited. 
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Similarly, the human alveolar cell lines TT1 and A549, respectively, have been used in 

drug transport studies despite lacking diffusional barrier properties (van den Bogaard 

et al., 2009; Z. Wang & Zhang, 2004). In contrast, the previously described ATI-like 

hAELVi cells providing high TEER represent a promising tool in these premises (Kuehn 

et al., 2016). Furthermore, cell lines of bronchial epithelial origin such as NHBC (H. Lin 

et al., 2007) and Calu-3 cells (Foster et al., 2000; Z. Wang & Zhang, 2004) form tight 

monolayers and constitute suitable models to study drug adsorption in early drug 

development stages. Besides, novel advancements towards a more realistic in vivo 

simulation of the air-blood barrier such as co-cultures of distinct lung cells (Lehmann 

et al., 2011; Pan et al., 2015) and three-dimensional models (Horvath et al., 2015) are 

currently being investigated. 
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Figure 23: Assessment of transport properties by determination of permeability and barrier 
integrity (TEER) – A: Transport of Na-fluorescein (mw = 400Da) in the absence or presence of the TJ 
modulator EDTA; TEER values were assessed before and after the transport experiments; B: 
Bidirectional (a→b and b→a) transport of FITC-dextran (FD3000; mw = 3000Da) and the corresponding 
TEER values. Data was determined in triplicate and is shown as mean ± S.D. (n = 9 from 3 individual 
experiments); *p < 0.05, **p < 0.01, ***p < 0.001. 

 

(United Nations, 2011) 
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3.6 Cytotoxicity studies 

Inhaled particles from gases, vapors or aerosols with the ability to overcome natural 

respiratory barriers including surfactant, alveolar macrophages and the tight epithelial 

cells, can induce a wide range of local or systemic adverse health effects which must 

be precluded in terms of risk and safety assessment of a certain compound (Hayes & 

Bakand, 2010). Up to today, these toxic effects are tested in animals prompting the 

need for alternative in vitro test systems consistent with the 3R principle. Based on 

available LC50 data from animal testing (lethal concentration causing 50% mortality 

within 2 weeks after 4 hours inhalation exposure), chemically different substances of 

known single-dose inhalation toxicity were assigned to one of the five acute inhalation 

toxicity hazard categories in terms of the United Nation’s Globally Harmonized System 

(GHS) of Classification and Labelling of Chemicals according to the.United Nations 

(2011). In this context, the cytotoxic effects of 17 of such compounds on different cell 

culture systems, i.e. ATII-like A549 and non-specific NIH3T3 control cells, were 

previously investigated to evaluate their applicability as potential routine in vitro models 

to predict acute inhalation toxicity (U. G. Sauer et al., 2013). 

To determine if mAELVi.E, mAELVi.wt, MLE12 and the human hAELVi cells (Kuehn et 

al., 2016) can be applied accordingly, the effects of a small set of compounds from 

different GHS categories, which are listed in table 12, were assessed for these cells 

by determining IC50 values and subsequent comparison with the corresponding GHS 

category (see figure 23). To be compliant with the 3R principle, primary cells were 

excluded from these experiments. The results from individual experiments of hAELVi 

cells did not offer adequate consistency to allow an evaluation of cytotoxic effects (data 

not shown). 

Although there was no direct correlation between the GHS categories 1 - 4 (with 

category 1 representing the highest toxicity) and IC50 values, the actual IC50 values 

obtained were very similar across all three tested cell lines. Importantly, for GHS 

category 5 compounds (which are the least toxic) the calculated IC50 were higher than 

10 mg/ml (log10 threshold) for all substances, except a single outlier in the case of 

ethanol, indicating relatively low hazard. These findings are in line with those reported 

by Sauer et. al. (2013), who suggested four GHS-corresponding in vitro hazard 

categories. Here, IC50 ≤ 10 mg/ml were categorized into in vitro hazard category 4 

which correlates to low hazard compounds of GHS category 5. 
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All three cell populations were thus able to distinguish between GHS category 5 and 

GHS category 4 or lower. Thus, these results demonstrated that immortalized murine 

cells could be useful for preliminary estimations of the potential inhalation toxicity of 

substances. 

 

 

Table 12: Test substances of different GHS categories applied for cytotoxicity assessment and 
corresponding hazard and GHS labelling information according to a previous work (U. G. Sauer et al., 
2013). 
 

GHS 
category 

Test substance Hazard information 
GHS 

labelling 

2 

Formaldehyde (FA) 
37% 

Human carcinogen causing respiratory 
irritation and sensitization as well as adverse 
changes in the upper respiratory tract 
(Checkoway et al., 2011; Lefebvre et al., 
2012) 

‘‘fatal if 
inhaled’’ 

Glutaraldehyde (GA) 
25% 

Respiratory irritant causing sensitization and 
occupational asthma (Gannon et al., 1995) 

3 
Sodium 
dodecylsulfate 
(SDS) 

Respiratory irritant causing surfactant 
changes in cellular permeability and cell lysis 
(Singer & Tjeerdema, 1993) 

‘‘toxic if 
inhaled’’ 

5 

Ethanol 
Respiratory irritant causing low hazard at 
any feasible exposure concentration 
according to http://echa.europa.eu/ ‘‘maybe 

harmful if 
inhaled’’ 

Acetone 
Respiratory irritant with fast adsorption into 
the blood causing central nervous effects (A. 
Fujino et al., 1992) 

(5) Lactose 
Control substance w/o known respiratory 
toxicity 

N/A 

 

 

In principle, the validity of such an in vitro test system is limited, due to the set-up itself 

(Landsiedel et al., 2014) and to the fact that it can only address some of the reasons 

for toxicity (Scherliess, 2011), such as tissue damage or possible transport that 

eventually leads to systemic effects.  

In this context, the mAELVi model might be further improved, in order to achieve a 

more realistic reflection of the in vivo situation, e.g. by implementing ALI conditions, as 

suggested previously (Hein et al., 2011; Hittinger M, 2017). Other approaches to 

enhance existing in vitro models of the deep lung further include non-cellular barriers, 

such as mucus (Gandhi & Vliagoftis; Murgia et al., 2016) or surfactant (Raesch et al., 
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2015). Furthermore, a range of promising in vitro exposure techniques have recently 

been developed which offer great potential to assess the biological activities of 

aerosolized substances (Murgia et al., 2017). 
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Figure 24: Cytotoxic effects of substances from different GHS categories – three independent 

experiments were performed to calculate specific IC50 values for ethanol, acetone, lactose, SDS, 

glutaraldehyde (GA) and formaldehyde (FA) for mAELVi.E, mAELVi.wt and MLE 12 cells. In each 

experiment (n = 3), decreasing serial dilutions (100, 10, 1, -0.1, -0.01, -0.001, -0.0001 and  

-0.00001 mg/ml) were analyzed using MTT assay. Each point in the graph represents the mean IC50. 

Substances and their corresponding GHS category are listed on the x-axis. The horizontal line indicates 

the in vitro threshold for substances of GHS category ≤ 4, as described by U. G. Sauer et al. (2013). 
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4 Conclusion & Outlook 

 

 

Reflecting the in vivo situation, primary mAEpC isolated from mouse lungs trans-

differentiate in vitro into ATI-like cells featuring crucial properties of the air-blood 

barrier. Therefore, an efficient isolation method for mAEpC which grow as a monolayer 

and develop high TEER by expressing functional tight junction complexes was 

established. This primary in vitro model could demonstrate its applicability for the 

assessment of paracellular transport rates and offers great opportunities towards 

advanced investigations of the alveolar epithelium. As an example, primary mAEpC 

were previously applied to study immune responses upon Pseudomonas aeroginosa 

infection in correlation with corresponding in vivo experiments (Wolf & Sapich et al., 

2016). In this context, the option to correlate in vitro and in vivo data generated from 

murine models provides an asset over human cell culture systems. As an alternative 

to isolate primary AEpC from lung tissue, previous and recent advances to differentiate 

either murine Clara cells (Zheng et al., 2017), murine embryonal (Ali et al., 2002; 

Samadikuchaksaraei & Bishop, 2006) or human (Huang et al., 2014; Jacob et al., 

2017) stem cells into alveolar epithelial cells, respectively, have been described. 

However, experimental designs using primary cells are substantially limited mainly due 

to their restricted availability, lifespan and ethical concerns failing to comply with the 

3R principle. 

Since animal testing remains indispensable for many routine research areas such as 

drug development and safety assessment, this study aimed at the generation of novel 

in vitro systems reflecting alveolar epithelial features in compliance with the 3R 

principle. Thus, primary mAEpC from heterozygous RosaConL mice were transduced 

with a lentiviral library consisting of 33 proliferation-promoting genes to establish a 

reliable immortalization protocol. By this approach, 8 genetically distinct mAELVi cell 

populations (mAELVi.A – H) with unlimited growth capacity could be achieved. Apart 

from this, transgenic mAELVi cells generated from RosaConL mice exhibit a Luciferase 

gene and could be useful for engraftment experiments, e.g. to investigate lung repair 

mechanisms or cell regeneration after bleomycin exposure as previously demonstrated 

using murine ATII cells (Hoffman & Ingenito, 2012; P. M. Wang & Martin, 2013). 
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Furthermore, a set of rather ATI-specific immortalizing genes could be defined and 

confirmed by the establishment of the wildtype cell population mAELVi.wt. In this 

respect, the immortalization protocol can further be applied to obtain mAELVi cells from 

mice with a defined genetic background, e.g. a specific knock-out strain to resolve a 

certain pathway or the pathogenesis of lung diseases, which can possibly be correlated 

to appropriate in vivo data of the same mouse model, as mentioned above. 

The obtained mAELVi populations were subsequently characterized regarding alveolar 

epithelial features in comparison with primary mAEpC and partly MLE12 cells. Even 

though mAEpC could be immortalized in a way that the resultant mAELVi populations 

can easily be handled and grown in almost infinite quantities, monolayers of 

immortalized cells developed much less pronounced barrier properties than their 

primary counterpart. Remarkably, mAELVi cells expressed the prominent TJ proteins 

ZO-1 and occluding demonstrated by immunofluorescent staining revealing a 

distribution pattern restricted to the cell membranes, as expected. Thus, the assembly 

or functionality of the TJ complexes formed by mAELVi populations must have been 

impaired due to immortalization-related processes upon the random integration of 

genes, whereby the underlying mechanisms remain unsolved. Most likely, alterations 

in signaling pathways are accountable for aberrant growth control mechanism and 

thus, cellular characteristics are strongly influenced, as outlined before. On this 

account, the establishment of controllable expression systems to transduce 

immortalizing genes could reduce the likelihood of acquiring new mutations or genetic 

instability (May et al., 2007; May et al., 2005). However, it was not possible to achieve 

such an inducible expression system upon the herein described immortalization of 

mAEpC. 

In this regard, pursuing analysis of the gene expression profile of mAELVi cells could 

provide further elucidation of the cell’s impaired TJ functionality, e.g. by investigating 

other relevant proteins associated with tight and adherens junctions. Apart from this, 

the chromosomal integrity as well as the transformation status of mAELVi cells upon 

engraftment in mice should be addressed to evaluate the cell’s capability to proliferate 

anchorage dependently (Chang et al., 2000). At best, non-transformed immortalized 

cells would remain non-tumorigenic and show cell contact inhibited proliferation (Lipps 

et al., 2013). 
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Since mAELVi cells lack the development of high TEER, permeability studies 

confirmed that the cells do not build a barrier for the low-MW tracer compound Na-Flu 

while primary cells clearly demonstrated integer barrier function. In this regard, the 

permeability of mAEpC was significantly enhanced upon treatment with the TJ  

modulator and Ca2+-chelator EDTA validating functional TJ complexes. Accordingly, 

TEER of mAEpC was significantly reduced when EDTA was present, whereas, this 

effect was less obvious for mAELVi and MLE12 cells. 

In contrast to low-MW compounds, the assessment of transport rates of FD3000 

disclosed that mAEpC and mAELVi exhibited comparable permeabilities for this high-

MW compound. Thus, mAELVi cells might be applied as a model to predict pulmonary 

absorption of molecules bigger than 3 kDa contributing to the challenge to reduce the 

number of animals used during drug development following the 3R principle. However, 

it was previously shown that molecules bigger than 3.5 Da are certainly precluded from 

entering the paracellular route (Rubas et al., 1996) which narrows the possible 

applications of mAELVi cells in these premises. In addition to the paracellular transport, 

further studies of mAELVi cells could address transporter-mediated drug adsorption, 

e.g. by analyses of active efflux systems such as the P-glycoprotein (Endter et al., 

2007) or the activities of metabolizing enzymes present (I. I. Forbes, 2000; Sakamoto 

et al., 2015; Z. Wang & Zhang, 2004). 

However, cytotoxicity assays of a small set of GHS-categorized compounds known as 

acute inhalation toxicity hazard demonstrated that immortalized mAELVi and MLE12 

cells allow an initial estimation of potential toxic effects. This could be shown by the 

fact that the tested cell lines were able to distinguish between substances of GHS 

category 5 and those of GHS category 4 or lower and thus, might contribute to the 3R 

principle by reducing the numbers of mice used for the risk and safety assessment of 

chemicals and drug molecules. Further development of the mAELVi model towards an 

enhanced imitation of the organotypic situation of the distal lung, such as the use of 

dose-controlled air-interface deposition systems (Bitterle et al., 2006; Mülhopt et al., 

2016) or co-cultivation with surfactant-producing cells or alveolar macrophages 

(Hittinger et al., 2016a; Lehmann et al., 2011) could improve this in vitro cytotoxicity 

testing strategy. 

As mAELVi cells could be cultivated at the ALI, the model could eventually be applied 

for nanoparticle uptake studies, as described for A549 cells (Blank et al., 2006). The 



 

 
91 

 

Conclusion & Outlook 

development and use of nanoparticle-based drug delivery systems enables specific 

cell targeting and might contribute to novel therapies to treat respiratory tract disorders 

(Fytianos et al., 2016). In this regard, gene therapy approaches are currently 

investigated for a variety of acute and chronic pulmonary diseases such as the 

autosomal recessive disorder CF (Griesenbach et al., 2004). Since attempts to transfer 

genes to AEpC using viral and non-viral (e.g. nanoparticle carriers) vehicles have not 

been fully successful in recent years, mAELVi cells could be applied to evaluate 

different transduction and transfection methods. Similarly, a lentiviral SP-C-specific 

GFP reporter expression construct could effectively transduce MLE12 cells providing 

the chance to facilitate ATII-specific gene therapy (Wunderlich et al., 2008). In this 

study, the commercially available cell line MLE12 was used as a reference to 

investigate potential benefits compared to primary and immortalized mAELVi cells. 

However, MLE12 cells were not able to develop a functional absorption barrier and 

their use did not convey any benefit over the use of other tested cells. 

Moreover, mAELVi cells may be suitable to study specific virus-host interactions, e.g. 

virus-induced cellular damage of the alveolar epithelium. Here, primary cultures of the 

murine alveolar epithelium provided robust in vitro models which can be correlated with 

in vivo findings to identify viral and host factors contributing to the severity of a 

respiratory virus-induced disease (Kebaabetswe et al., 2013). In this regard, it was 

recently pointed out that primary porcine respiratory epithelial cells retained high TEER 

upon Influenza infection. This fact indicates that research on pulmonary virus infections 

could be implemented independently from barrier properties providing a possible 

application for mAELVi cells (Wu et al., 2016). 

Since the airway epithelium responds to inhaled pathogens with an increased release 

of mediators of the innate immune system such as chemokines, cytokines and 

antimicrobial peptides, the mechanisms behind the recognition of pathogens by 

alveolar epithelial cells are crucial to coordinate protective immune responses. In this 

context, pattern-recognizing molecules mediating direct cell signaling such as Toll-like 

receptors (TLR) play an important role. Various TLR were shown to be expressed by 

airways epithelial cells mediating responses to bacterial, fungal and viral particles (Bals 

& Hiemstra, 2004). Analyses of the TLR expression and signaling in mAELVi cells 

could thus contribute to the development of novel therapies for infectious or 

inflammatory lung diseases (John et al., 2010). 
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As the mAELVi cell model has not yet been fully adapted to a specific application, 

many barrier-independent investigations and further advancements could potentially 

be considered. As an example, the human ATI-like cell line TT1 lacking a diffusional 

barrier were successfully used to study the alveolar inflammatory response to 

lipopolysaccharide (LPS) and might be useful for toxicity studies (van der Bogaard et 

al., 2009). In contrast to mAELVi cells, the TT1 cell line was established by transduction 

of primary ATII cells with hTERT and SV40 TAg. Both mAELVi and TT1 cells displayed 

an ATI-like character but not develop into monolayers with high TEER. 

Taken together, the generation of mAELVi populations by transduction of primary 

mAEpC could contribute to the development of novel in vitro models of the alveolar 

epithelium offering great potential to be applied for a variety of barrier-independent 

investigations addressing basic, pharmaceutical-relevant and disease-related question 

pursuant to the 3R principle. However, advancement and adaptions of the 

immortalized model to a specific application must be further investigated and validated. 
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5 Appendix 

 

 

5.1 List of abbreviations 

3R   Reduce, refine, replace 

α    Alpha 

Ab   Antibody 

ADMET   adsorption, distribution, metabolism, excretion, toxicity 

Ag   Antigen 

ALI   Air-liquid interface 

AQP5   Aquaporin 5 

ATI/II   Alveolar epithelial type I/II cells 

bp    DNA base pairs  

BSA    Bovine serum albumin  

Cav-1   Caveolin-1 protein 

cDNA    complementary DNA  

CF   Cystic fibrosis 

CFTR   Cystic fibrosis transmembrane conductance regulator  

CLSM   Confocal Laser Scanning Microscopy 

COL   Collagen 

COPD   Chronic obstructive pulmonary disease 

CMM   Complete mouse medium 

DM   Dexamethasone 

DMEM   Dulbecco’s Modified Eagle Medium 

DMSO    Dimethyl sulfoxide 

DNA    Desoxyribonucleic acid 

EBV   Epstein-Barr virus 

EDTA    Ethylendiaminetetraacetic acid 

EpCAM   Epithelial cell adhesion molecule 

EtOH   Ethanol 

EVOM   Epithelial voltohmmeter 

FA   Formaldehyde 

FACS   Fluorescence-activated cell sorting 

FBS   Fetal bovine serum 

FITC   Fluorescein isothiocyanate 
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FD   FITC-labeled dextran 

FDA   Food and Drug Administration 

FN   Fibronectin 

GA   Glutaraldehyde 

GFP   Green fluorescent protein 

GHS   Globally Harmonized System 

hAELVi  Human alveolar epithelial lentivirus immortalized cells 

hAEpC   Human alveolar epithelial cells 

HBBS   Hank’s balanced salt solution 

HC   Hydrocortisone 

H/E   Hematoxylin/Eosin 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPV   Human papilloma virus 

hTert   Human telomerase reverse transcriptase 

IC50   50% of the maximum inhibitory concentration 

ICAM-1   Intracellular adhesion molecule-I 

kb    Kilobase pairs  

kDa    Kilo-Dalton 

KRB   Krebs-Ringer buffer 

LC50   Lethal concentration, 50% 

LCC    Liquid-covered conditions 

LM   Laminin 

mAEpC   Murine alveolar epithelial cells 

mAELVi  Murine alveolar epithelial lentivirus immortalized cells 

MEF   Mouse embryonic fibroblasts 

mGAPDH  Murine glyceraldehyde-3-phosphate dehydrogenase 

MLE12   Murine Lung Epithelial cell line 12 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

mRNA    Messenger RNA 

N/A   Not applicable 

Na-Flu   Sodium fluorescein 

NCBI   National Center for Biotechnology Information 

NEAA   Non-essential amino acids 

Occl   Occludin 

PADDOCC  Pharmaceutical Aerosol Deposition Device on Cell Cultures 
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Papp   Apparent permeability coefficient 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

PFA   Paraformaldehyde 

PKC   Protein kinase C 

P/S   Penicillin/streptomycin 

RNA   Ribonucleic acid 

rpm   rounds per minute 

RT   Room temperature 

SAGM   Small airway growth medium 

S.D.   Standard deviation 

SDS   Sodium dodecyl sulfate 

SP-A/B/C  Surfactant protein A, B or C 

SV40   Simian virus 40 

TAg   Large T antigen 

TEER   Transepithelial electrical resistance 

TEM   Transmission electron microscopy 

TJ   Tight junction(s) 

TLR   Toll-like receptor 

VSV-G   Vesicular stomatitis virus glycoprotein 

v/v   Volume per volume 

w/o   without 

w/v   Weight per volume 

ZO-1   Zonula Occludens protein 1  
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5.2 List of figures 

 

 

Figure 1 Structure of the airway epithelia and main cell types occurring at the 3 
principal levels of the respiratory system: the trachea/bronchi, bronchioles and 
alveoli; adapted and modified from Klein et al. (2011). 
 

Figure 2 A - Organization of the human respiratory system emphasizing the anatomy 
of the lung and the air-conducting structures terminating in alveolar sacs; B - 
The alveoli and comprising cell types of the area of the alveolar epithelium 
and capillary endothelium displaying the air-blood barrier as the site of gas 
exchange; illustrations were adapted and modified from Mescher (2016). 
 

Figure 3 Scheme of the two main ways of transport across the air-blood barrier – 
the paracellular and the transcellular route. Paracellular uptake occurs through 
the intercellular space of adjacent ATI cells and is regulated by junctional 
complexes (tight, adherens, gap junctions and desmosomes, shown 
schematically). In contrast, transcellular uptake through the cell membranes is 
mediated either by transporter proteins or transcytosis. 
 

Figure 4 Scheme of immortalization strategy using 33 different lentiviral vector, each 
constitutively expressing a potential immortalizing gene (CI-SCREEN gene 
library; Lipps et al., 2018) to transduce primary mAEpC. Upon transduction, the 
random integration of certain genes triggered cell proliferation while other 
integrated gene combinations had no growth-inducing effect. Proliferating cells 
were expanded and characterized in terms of the integration pattern and alveolar 
epithelial features. 
 

Figure 5 Illustrated overview of the mAEpC isolation procedure according to a 
previous work (Wolf & Sapich et al., 2016); Images were modified from (K. A. 
Sauer et al., 2006). 
 

Figure 6 Schematic overview of the lentivirus production procedure by co-
transfection of HEK293T cells, virus harvesting and the subsequent lentiviral 
transduction of primary mAEpC. 
 

Figure 7 Flow cytometric determination of EpCAM-positive cells assessed by FACS 
analysis before (a, left) and after (b, right) MACS magnetic beads cell separation 
during the isolation procedure of mAEpC.  
 

Figure 8 Trans-differentiation of primary mAEpC – immunofluorescent staining of 
mAEpC was performed at different time points post isolation; the expression of 
proSP-C protein (ATII marker) is shown in the upper panel; the expression of 
ZO-1protein (both ATI and TJ marker) is shown in the lower panel (both proteins 
shown in green); cells were fixed on 0.33 cm²-membranes with 3% PFA and 
nuclei were stained with DAPI solution (shown in blue); scale bars: 20 µm. 
 

Figure 9 Ultrastructure of primary mAEpC cultivated for 8 days on Transwell® 
membranes at a.) the air-liquid interface or b.) liquid-covered conditions. Green 
circles indicate desmosomal structures, blue circles indicate tight junction 
complexes; cells were grown on 0.4 µm thick Transwell® filters with a pore size 
of 0.4 µm and stained with H/E; scale bars: 500 nm. 
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Figure 10 Influence of different cultivation conditions on the TEER development of 
mAEpC monolayers – A: mAEpC seeded on FN/LM-coated Transwells® at 
different cell densities; B: mAEpC seeded in a density of 1.5x 106 cells/cm² on 
different coating combinations (FN/COL ≜ Fibronectin/Collagen or FN/LM ≜ 

Fibronectin/Laminin) and cultivated in either CMM or SAGM; values are shown 
as mean ± S.D. (n = 9 from 3 independent experiments). 
 

Figure 11 Comparison of the TEER development of primary mAEpC grown under 
liquid-covered conditions (LCC) or at the air-liquid interface (ALI); values 
are shown as mean ± S.D. (n=18 from 6 independent mAEpC isolation 
procedures). 
 

Figure 12 Barrier properties and trans-differentiation of hAEpC – A: TEER 
development of primary hAEpC cultivated in either CMM or SAGM; values are 
shown as mean ± S.D. with (n=6 from 2 independent hAEpC isolation 
procedures: HIPS#629 and HIPS#631). B: Immunofluorescence of proSP-C 
(green) at day 1 post isolation; C: Immunofluorescence of ZO-1 (green) at day 7 
post isolation; hAEpC were fixed with 3% PFA on 0.33 cm²-Transwell® 
membranes and nuclei were stained with DAPI solution (blue); scale bars: 20µm. 
 

Figure 13 Growth curve of mAELVi.J cells at passage 21 assessed over 10 days either 
at induced conditions (Dox) or uninduced conditions (w/o Dox); numbers of cells 
are shown as mean ± S.D. (n=3). 
 

Figure 14 Formation of proliferating mAELVi.E cells at passage 6 after lentiviral 
transduction; cells with distinct morphology were separated from surrounding 
cells by a shifted two-step trypsinization and the cell population was maintained 
as mAELVi.E, scale bars: 100µm. 
 

Figure 15 Light microscopic images of primary mAEpC and different immortalized 
mAELVi cell populations, as indicated; cells were cultured on fibronectin/laminin-
5-coated plastic; scale bars: 100µm. 
 

Figure 16 Histological cross sections of mAELVi.E and mAELVi.wt grown on 
fibronectin/laminin-5-coated 10 µm-thick Transwells® with 0.4 µm pore size; 
membrane sections were stained with H/E; images were captured with an 
inverted light microscope. 
 

Figure 17 Percentage of EpCAM-positive cells of mAELVi cell populations assessed 
with a monoclonal anti-EpCAM PE antibody by FACS analyses. Results from 
early (passages 1 – 4) and late (passages 17 – 21) passages are compared. 
 

Figure 18 Expression of EpCAM in mAELVi.E cells at passage 33 (left: DAPI-stained 
nuclei, middle: EpCAM distribution, right: merge); cells were fixed on 
fibronectin/laminin-5-coated chamberslides with 3% PFA; scale bars: 50 µm. 
 

Figure 19 PCR analyses of the expression of ATI and ATII markers in mAEpC, 
mAELVi.E and MLE12 cells; M: Hyperladder V (Bioline) with molecular weights 
indicated in base pairs (bp), analyzed ATII markers: SP-A (101bp), SP-B (121bp) 
and SP-C (88bp); ATII markers: T1α (101bp), AQP5 (86bp), Cav-1 (198bp) and 
ICAM-1 (103bp); mGAPDH and template-free samples, respectively, were run 
as controls (data not shown). 
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Figure 20 TEER development of mAELVi.E (left) and mAELVi.wt (right) seeded on 
1.12 cm² Transwell® filter supports (pore size 0.4 µm) in CMM10 – A: Influence 
of medium composition (HC ≜ hydrocortisone, DM ≜ dexamethasone);  
B: Influence of different surface coatings (FN ≜ fibronectin; COL ≜ collagen; 

LM ≜ laminin-5); values are shown as mean ± S.D. (n = 9 from 3 independent 
experiments). 
 

Figure 21 Expression of TJ proteins (left panel: ZO-1 in green; right panel: occludin in 
red); A: primary mAEpC at day 7 after isolation on 0.33 cm²-membranes; B 
mAELVi.E cells; C: mAELVi.wt cells; immortalized cells were stained at day 14 
post seeding on 1.12 cm² membranes; cells were fixed with 3% PFA and nuclei 
were stained with DAPI solution; scale bars: 20 µm. 
 

Figure 22 Characterization of mAELVi.J cells regarding barrier properties - A: TEER 
development; values are shown as mean ± S.D (n=9 from 3 independent 
experiments). B: LM picture; scale bar: 100 µm. 
 

Figure 23 Assessment of transport properties by determination of permeability and 
barrier integrity (TEER) – A: Transport of Na-fluorescein (mw = 400Da) in the 
absence or presence of the TJ modulator EDTA; TEER values were assessed 
before and after the transport experiments; B: Bidirectional (a→b and b→a) 
transport of FITC-dextran (FD3000; mw = 3000Da) and the corresponding TEER 
values. Data was determined in triplicate and is shown as mean ± S.D. (n = 9 
from 3 individual experiments); *p < 0.05, **p < 0.01, ***p < 0.001. 
 

Figure 24 Cytotoxic effects of substances from different GHS categories – three 
independent experiments were performed to calculate specific IC50 values for 
ethanol, acetone, lactose, SDS, glutaraldehyde (GA) and formaldehyde (FA) for 
mAELVi.E, mAELVi.wt and MLE 12 cells. In each experiment (n = 3), decreasing 
serial dilutions (100, 10, 1, -0.1, -0.01, -0.001, -0.0001 and -0.00001 mg/ml) were 
analyzed using MTT assay. Each point in the graph represents the mean IC50. 
Substances and their corresponding GHS category are listed on the x-axis. The 
horizontal line indicates the in vitro threshold for substances of GHS category 
≤ 4, as described by U. G. Sauer et al. (2013). 
 

 

  



 

 
99 

 

Appendix 

5.3 List of tables 

 

 

Table 1 Composition of buffer solutions and respective applications. 
 

Table 2 Origin and description of cell lines and primary cells in alphabetical order. 
 

Table 3 Composition of cell cultivation media for cells of murine and human origin. 
 

Table 4 PCR program to analyze the gene integration pattern of mAELVi cells. 
 

Table 5 Reverse primer sequences of the CI-SCREEN library (Lipps et al., 2018) to 
analyze the pattern of integrated immortalizing genes in mAELVi cells 
performing 33 independent PCR reactions. The forward primer binds within the 
SV40 promotor region of the immortalizing gene expression cassette and was 
used for all PCR reactions (SV40-Forward primer sequence: 
5’ GGAGGCCTAGGCTTTTGCAA 3’). 
 

Table 6 Volumes of cultivation medium for apical and basolateral compartments of 0.33 
cm and 1.12 cm² Transwell® inserts to set either LCC or ALI conditions. 
 

Table 7 Primer sequences to analyze lung cell-specific marker expression by PCR. 
 

Table 8 PCR program to analyze the expression of lung-specific marker genes. 
 

Table 9 Overview of start volumes (of the Transwells®) and sample/KRB volumes (to 
transfer to the 96-well plate) in dependence on the growing size of the 
Transwell® insert and the transport direction. 
 

Table 10 Pattern of integrated genes from CI-SCREEN gene library upon lentiviral 
transduction of mAEpC which resulted in expandable mAELVi cells (mAELVi.A-
H); *mAELVi.wt were transduced with a set of 9 out of 33 immortalizing genes; 
the results are based on PCR-analysis of mAELVi DNA extractions; green boxes 
indicate positive PCR products for the respective gene; mGAPDH was used as 
internal control of the PCR. 
 

Table 11 Characterization overview of mAELVi cells, primary mAEpC and MLE12; cells 
were characterized regarding the pattern of integrated lentiviral genes, ATI and 
ATII-like marker expression (PCR data), percentage of EpCAM-positive cells 
(FACS analyses; performed at cell passages 17 - 21) and TEER (mean and 
maximum in Ωcm²). 
 

Table 12 Test substances of different GHS categories applied for cytotoxicity assessment 
and corresponding hazard and GHS labelling information according to a 
previous work (U. G. Sauer, 2013). 
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• Murine alveolar epithelial cells and their lentivirus-mediated 
immortalization (Sapich et al., 2018) 

Alternatives to Laboratory Animals (ATLA) 
Volume 46, Issue 2 – May 2018, pages 73-89. 

Sapich, Hittinger, Hendrix-Jastrzebski, Repnik, Griffiths, May, Wirth, Bals, 
Schneider-Daum, Lehr. 

 

• IL-17A-mediated expression of epithelial IL-17C promotes inflammation 
during acute Pseudomonas aeruginosa pneumonia (Wolf L. et al., 2016) 

American Journal Physiology - Lung Cellular and Molecular Physiology 
Volume 311, Issue 5 – November 2016, pages L1015-L1022. 

Wolf*, Sapich*, Honecker, Jungnickel, Seiler, Bischoff, Wonnenberg, Herr, 
Schneider-Daum, Lehr, Bals, Beisswenger. 

*equally contributing first authors 
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December 15 – 17, 2014 in Goslar-Hahnenklee, Germany 
 

• HZI Graduate School – 6th International PhD Symposium 
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• International Society of Aerosols in Medicine Congress 
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• Lung Regeneration and beyond - BREATH meets REBIRTH 
3rd International DZL Symposium, May 8 – 10, 2014 in Hannover, Germany 

 

• Biological Barriers - 10th International Congress and Workshop 
February 16 – 21, 2014 in Saarbrücken, Germany 

 

• Pharmaceutical sciences devoted to infection research 
3rd International HIPS Symposium, June 18, 2013 in Saarbrücken, Germany 
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December 12, 2013 in Braunschweig, Germany 
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