
Monitoring with Parameters

A dissertation submitted towards the degree Doctor of Natural Sciences
(Dr. rer. nat.) of the Faculty of Mathematics and Computer Science of

Saarland University

Peter Faymonville

Saarbrücken
2019

Dean of the faculty Prof. Dr. Sebastian Hack

Date of colloquium 17.05.2019

Chair of the commiĴee Prof. Dr. Jan Reineke

Reviewers Prof. Bernd Finkbeiner, PhD
Prof. César Sánchez, PhD

Academic Assistant Dr. Daniel Stan

ii

Abstract

Runtime monitoring of embedded systems is a method to safeguard their reliable
operation by detecting runtime failures within the system and recognizing unex-
pected environment behavior during system development and operation. Specifi-
cation languages for runtime monitoring aim to provide the succinct, understand-
able, and formal specification of system and component properties.

This thesis explores runtime monitoring in the domain of autonomous unmanned
aerial systems (UAS), which are a challenge for monitoring due to their dynamic
physical environment, multitude of sensors with complex data and on-line decision-
making capability. They are controllable via high-level control commands and have
limited on-board computational resources with real-time constraints. Since the mon-
itor itself is a critical system component, predictions on its use of resources, specif-
ically the usage of memory, are a key requirement for their application.

There is a trade-off between expressivity and resource predictability: On one
end of the spectrum, temporal logic-based specification languages satisfy the re-
source predictability requirement, since their automata-based monitoring imple-
mentations come with formal resource guarantees for execution time and memory.
However, for UAS, these languages are not sufficiently expressive to handle the
complex physical environment. On the other end, general purpose programming
languages are sufficiently expressive, but lack resource predictability.

Starting from temporal logics, this thesis bridges the expressivity gap for mon-
itoring specifications in three key aspects while maintaining the predictability of
resource usage. First, we provide monitoring algorithms for linear-time temporal
logic with parameters (PLTL), where the parameters bound the number of steps
until an eventuality is satisfied. Second, we introduce Lќљю ₂.₀, which adds data pa-
rameterization to the stream specification language Lќљю. Data parameterization
allows for quantification over a data domain. Third, we integrate real-time specifi-
cations in RTLќљю and add real-time sliding windows, which aggregate data over
real-time intervals. For the combination of these extensions, we present a design-
time specification analysis which provides resource guarantees.

We report on a case study on the application of the language in an autonomous

iii

UAS. This case study has been carried out in collaboration with the German Aero-
space Center (DLR Braunschweig). Component and system properties were speci-
fied together with domain experts in the developed stream specification language
and evaluated in a real-time hardware-in-the-loop testbed with a complex environ-
ment simulation. The case study demonstrates that our language provides suffi-
cient expressivity for practically relevant properties of autonomous vehicle systems
while guaranteeing resource predictability.

iv

Zusammenfassung

Laufzeitüberwachung von eingebeĴeten Systemen ist eine Methode zur Absicher-
ung zuverlässigen Systemverhaltens. Sie erkennt zur Laufzeit sowohl Fehler inner-
halb des Systems als auch unerwartetes Verhaltens der Systemumgebung während
Systementwicklung und Systembetrieb. Spezifikationssprachen zur Laufzeitüber-
wachung ermöglichen die kompakte, verständliche und formale Spezifikation von
Eigenschaften auf Komponenten- und Systemebene.

Die vorliegende Dissertation untersucht Laufzeitüberwachung in der Anwen-
dungsdomäne von autonomen, unbemannten Flugsysteme (UAS), welche eine Viel-
zahl von Herausforderungen an die Überwachungsmethode stellt. Hierzu gehören
die komplexe physische Umgebung, eine Vielfalt an Sensoren mit komplexen Da-
tenströmen und die Möglichkeit, zur Laufzeit Kontrollentscheidungen zu treffen.
Systeme dieser Art können mit abstrakten Befehlen auf hoher Ebene gesteuert wer-
den, allerdings haben sie begrenzte Rechenressourcen an Bord, die Echĵeitanfor-
derungen genügen muss. Da der Laufzeitmonitor in diesen Systemen selbst zur
kritischen Systemkomponente wird, ist die Vorhersagbarkeit von Ressourcennut-
zung, spezifisch von Speichernuĵung, eine Kernanforderung für die Anwendung.

Zwischen der Ausdrucksfähigkeit einer Spezifikationssprache und der Vorher-
sagbarkeit ihrer Ressourcennuĵung besteht ein Zielkonflikt: An einem Ende des
Spektrums gibt es Spezifikationssprachen, die auf Temporallogiken basieren. Diese
erfüllen die Vorhersagbarkeitsanforderung, da ihre automatenbasierten Implemen-
tierungen formale Garantien zur Ressourcennuĵung von Speicher und Laufzeit
mitbringen. Leider sind sie nicht ausdrucksstark genug, um die Eigenschaften der
komplexen physischen Umgebung von autonomen UAS zu beschreiben. Am an-
deren Ende des Spektrums stehen universelle Programmiersprachen, welche aus-
reichend ausdrucksstark sind, allerdings keine Vorhersagbarkeit ihrer Ressourcen-
nuĵung zulassen.

Beginnend von Temporallogiken beschreibt diese Dissertation einen Brücken-
schlag zwischen den beiden Enden des Spektrums. Sie erweitert die Ausdrucksfä-
higkeit der Spezifikationssprachen in drei Kernaspekten, während die Vorhersag-
barkeit der Ressourcennuĵung erhalten bleibt. Erstens werden Algorithmen zur

v

Überwachung miĴels linear temporaler Logik mit Parametern (PLTL) beschrieben.
Die Parameter repräsentieren hier die Einhaltung von SchriĴgrenzen der modalen
Operatoren. Zweitens werden Datenparameter in die strombasierte Spezifikations-
sprache Lќљю eingeführt. Die resultierende Sprache Lќљю ₂.₀ ermöglicht miĴels der
Datenparameter die Quantifizierung über Datendomänen. DriĴens wird gezeigt,
wie Realzeitanforderungen in RTLќљю integriert werden können. Mit gleitenden
Fenstern über Realzeitintervalle können diese Anforderungen erfasst werden. Für
die Kombination aus diesen Erweiterungen wird eine Spezifikationsanalysetechnik
aufgezeigt, welche zum Entwicklungszeitpunkt der Spezifikationen Garantien über
die Ressourcennuĵung zulässt.

In einer praktischen Fallstudie wurde die Anwendung der entwickelten Spezi-
fikationssprachen zur Überwachung unbemannter autonomer Flugsysteme in Ko-
operation mit dem deutschen Zentrum für Luft- und Raumfahrt (DLR) in Braun-
schweig erprobt. Spezifikationen auf Komponenten- und Systemebene wurden ge-
meinsam mit Domänenexperten entwickelt und auf einem echĵeitfähigen Prüf-
stand mit Umgebungssimulation erprobt. Diese Fallstudie zeigt, dass die Sprache
ausreichend ausdrucksstark für praktisch relevante Spezifikationen von autono-
men Fahrzeugen ist und gleichzeitig Vorhersagbarkeit von Ressourcennuĵung zu-
lässt.

vi

Acknowledgements

This thesis would not have been possible without the support from several people
in many different ways. First and foremost, this thesis would not exist without my
supervisor, Bernd Finkbeiner, who shaped many of the research ideas and always
had an open door. It was a decade-long journey from the sunny coast of San Diego
with many unique experiences and encouragement.

Second, the excellent research environment of the Reactive Systems Group would
not be the same without my colleagues, Lars Kuhĵ, Rayna Dimitrova, Hans-Jörg
Peter, Rüdiger Ehlers, Klaus Dräger, Michael Gerke, Andrey Kupriyanov, Markus
Rabe, Hazem Torfah, Leander Tentrup, Felix Klein, Jesko Hecking-Harbusch, Mar-
tin Zimmermann, Alexander Weinert, Swen Jacobs, Mouhammad Sakr, Christo-
pher Hahn, Norine Coenen, Noemi Passing, Maximilian Schwenger, Malte Schled-
jewski, Jana Hofmann, and Christa Schäfer, who were always open for inspirational
discussions and collaboration over coffee and cake.

Third, the applied parts of this thesis would not have happened without the gen-
erous support from my collaborators at DLR Braunschweig. Sebastian Schirmer,
Florian-Michael Adolf, Christoph Torens, Jörg DiĴrich and colleagues gave the op-
portunity to test runtime monitoring in a real system and provided essential moti-
vation and inspiration for this thesis.

Fourth, I would like to thank César Sánchez for joining the thesis commiĴee and
for performing an excellent and thorough review of this thesis.

Fifth, life in Saarbrücken outside of the university was greatly enriched by my
friends and flatmates Anna, Maurice, Silke, Benni, Jana, Philip, Olli, Corinna, and
the fellow volunteers from the volunteer fire department St. Johann.

Sixth, I am very grateful to my family, Rudolf, Irmgard, Jochen, Susanne, Christoph,
and Claus for their unconditional support.

Finally and most importantly, I owe special thanks to my wife, Anna Marie, who
provided support in crucial moments and had patience with my absentmindedness.
Thank you for being part of the journey!

vii

Contents

1 Introduction 1

2 Monitoring Parametric Temporal Logics 9
2.1 PLTL Syntax and Semantics . 9
2.2 Offline monitoring . 13
2.3 The online monitoring problem - hardness 16
2.4 Measuring Automata . 19
2.5 Deterministic PLTL . 20

2.5.1 From Deterministic PLTL to Measuring Automata 21
2.5.2 Correctness . 24

2.6 Unambiguous PLTL . 30
2.6.1 From Unambiguous PLTL to Measuring Automata 32

2.7 Monitoring Algorithm . 35
2.8 Experiments . 36

3 Stream Monitoring 39
3.1 Classic Lќљю . 40

3.1.1 Syntax . 42
3.1.2 Semantics . 43
3.1.3 Properties . 43

3.2 Efficiently monitorable specifications 45
3.3 Online Monitoring Algorithm . 47

3.3.1 Time and Memory Requirements 48
3.4 Embedding PLTL in Lќљю . 49

4 Stream Monitoring with Parametric Data 51
4.1 Parameterized Stream Monitoring . 54

4.1.1 Syntax . 55
4.1.2 Semantics . 56
4.1.3 Fragments and Properties . 59

ix

Contents

4.2 Fixpoint-based online monitoring algorithm 62
4.2.1 Memory Requirements . 64

4.3 Efficient implementation . 65
4.4 Experiments . 65

5 Real-time Stream Monitoring 71
5.1 Monitoring with Time . 73

5.1.1 Syntax . 74
5.1.2 Semantics . 77

5.2 Window Aggregation Functions . 79
5.3 Memory Analysis . 80
5.4 Online Monitoring Algorithm . 82
5.5 Experiments . 85

5.5.1 Memory Requirement vs. Input Rates 85
5.5.2 Data Analysis . 85

6 Case Study: Monitoring in UAS 89
6.1 DLR ARTIS Research Platform . 91

6.1.1 Certification of UAS . 94
6.1.2 Impact on system development 96

6.2 Lola Extension . 96
6.3 Specifications in classic Lќљю . 98
6.4 Specifications in RTLola . 102
6.5 Monitor Integration . 106
6.6 Experiments . 106

6.6.1 Offline Trace Analysis . 106
6.6.2 Hardware-in-the-loop Online Monitoring 107

7 Conclusion 111

x

1 Introduction

Ensuring correctness of systems is an important goal in the development of com-
putational systems. One answer to the problem of system correctness is design
verification: ensuring error-freeness at design-time. Yet, existing methods for de-
sign verification are too expensive to apply to all systems: on the usability side the
tools lack automation, the specification languages require significant training for
users, the creation of complex specifications needs large manual effort, and many
approaches are limited by their discrete abstractions. Also, even after design verifi-
cation and testing, the operation of safety-critical systems in complex and dynamic
environments may lead to unforeseen operating conditions, and additionally un-
predictable hardware faults may lead to unsafe behavior.

To safeguard the system behavior at runtime, runtime monitoring is an established
method to detect failures within the system and discharge environment assump-
tions of the specification by monitoring the system during its operation.

A shared challenge of the aforementioned verification approaches is the concrete
definition of correctness for a system – we call a system correct if it adheres to its
specification. One of the main challenges for specification is expressivity, as system
properties are more easily specified in high-level languages, but the computational
costs of such languages may be prohibitive.

The field of runtime verification [51, 48] refers to the systematic study of verification
techniques to evaluate traces for verdicts based on a specification, originating in the
larger field of formal methods and therefore heavily influenced by the development
of formal specification languages and accompanying algorithms.

Monitoring as a Formal Method In the larger context of formal methods, runtime
verification is a so-called lightweight formal method, due to its applicability to black-
box systems, the expressiveness of the specification mechanisms, and the compara-
tively low computational complexity – it only observes a single execution. It is not
a prerequisite to have a formalization or an abstraction of the system design and
internals in the form of a model, before runtime verification can be applied. The
creation and maintenance of system models of complex systems suitable for formal

1

1 Introduction

verification is a significant effort within an engineering process. The computational
advantage stems from the fact that runtime verification only has to consider a sin-
gle system execution, while static verification methods such as model checking rea-
son over all possible system executions. Therefore, more expressive specification
mechanisms can be used as concrete data values are provided along the execution,
without running into memory resource limits. However, static and dynamic verifi-
cation methods can also be combined for a system: if for example model checking
has been performed on a discrete abstraction of a system, runtime verification can
complement the model checking phase by verifying the inherent assumptions of
the abstraction at runtime. Two main alternatives of monitoring are differentiated:
Offline monitoring refers to the method where the full trace is already available on
a storage medium. In this case, the trace can be processed in forward or reverse
direction, random positions can be accessed, and the length of the trace is known
a-priori. Online monitoring is the method where the length of trace is not known
beforehand, and the trace becomes available to the monitor one event at a time.
The monitor may run concurrently to the system under observation, and the trace
is processed in a forward manner.

AutonomousUnmannedAerial Systems One of the main application areas of mon-
itoring and runtime verification are reactive embedded systems (also referred to as
cyber physical systems [49], if they are networked). The distinctive feature of this
class of systems is the interaction between a physical environment and the digital
control system. These systems consist of at least one sensor, a processing unit, and
an actuator. As many cyber physical systems are used in safety-critical applications,
a number of norms and standards exist for their development, for example the IEC
61508 [64] family of process norms, which are instantiated for various industries
such as automotive [44]; or similar norms for aviation [58, 59]. These are enforced
either through product liability laws for manufacturers or due to regulatory pro-
cesses.

As a challenging application benchmark for runtime monitoring, we present a
representative class of systems in Chapter 6: autonomous, unmanned aerial sys-
tems (UAS). For UAS, the standardization work for the certification and safety of
these system is currently ongoing [46]. The challenges for monitoring specifications
for these systems are (1) the dynamic, physical environment, (2) the dynamic high-
level control commands from the ground station, and (3) the limited computational
resources on-board with real-time constraints. Since no on-board pilot is present
and the communication channels to the ground station are unreliable, the system

2

needs to take autonomous decisions and may need to switch to a safe state on a
monitor decision. Since this establishes the runtime monitor as a critical system
component, the integrity of the monitor itself is of particular importance. The pre-
dictability of the usage of memory resources by the monitor is a key requirement
for this application.

On the other hand, to meet the requirements for runtime monitoring of this bench-
mark application, the specification language has to be sufficiently expressive to
cover properties of the physical environment and complex sensor data, and at the
same time provide resource guarantees to enable the realization of the runtime mon-
itor with sufficient integrity.

Expressivity in Runtime Monitoring The design spectrum concerning the expres-
sivity of specification languages in runtime monitoring ranges from restrictive tem-
poral logic-based approaches to full programming languages. In increasing order of
expressivity, the following main classes of specification languages have been used
for runtime monitoring: Variants of linear-time temporal logics like LTL [39, 17,
13] have been adapted from verification applications to monitoring applications.
Further, extensions of classic LTL towards more expressive temporal logics such
as metric interval temporal logic (MITL) have been introduced in [55]. In the con-
text of real-time signals, runtime monitoring for signal-temporal logic (STL) was
discussed in [27, 28]. Moreover, related formalisms based on state machines, reg-
ular expressions, and automata have been applied for monitoring, such as quanti-
tative event automata (QEA) [60] and quantitative regular expressions (QRE) [4].
Beyond these, stream-based approaches such as Lola [24], TeSSLa [23], and Striver
[40] have been adapted from synchronous programming languages for monitoring.
Seperately, rule-based approaches such as Eagle and RuleR [6, 7] have been intro-
duced. Finally, monitoring and stream processing have been performed with full
programming languages, such as in Apache Spark [76].

There exists an essential trade-off between the expressivity of the specification
language and the resource predictability. For the benchmark application of au-
tonomous UAS, the requirements towards the expressivity of the specification lan-
guage and the resource guarantees could not be met by any of the aforementioned
approaches. Since autonomous UAS fly in a dynamic, physical environment with
continuous observations of real-valued signals, classic logic- or automata-based for-
malisms are not sufficient to express the necessary properties (for more details,
see Chapter 6). This is also the case for STL-based monitoring, since it cannot ex-
press properties of online statistics of the incoming sensor data due to the Boolean

3

1 Introduction

abstraction. More expressive formalisms, such as rule-based approaches and full
programming languages are not able to provide the necessary resource guarantees
in the monitor implementation. The existing stream-based approaches with their
equation-style specifications present the closest match to the requirements of the ap-
plication from a usability standpoint, but still are not equipped to handle complex
sensor data and dynamic lists of high-level commands in the form of waypoints for
the aircraft or able to fully express the time-bounded reachability property for these
waypoints.

Therefore, in this thesis, we demonstrate how to extend the expressivity while
maintaining the resource predictability. The initial step here is the integration of
different types of parameterization in Chapters 2 and 4.

Parameterization inRuntimeMonitoring One step towards more expressive spec-
ification languages for monitoring is to incorporate the concept of parameterization,
which can be added to both logic- and stream-based formalisms. A number of ear-
lier approaches have been proposed to integrate different forms of parameteriza-
tion into formal specification languages for runtime monitoring. In the context of
monitoring Java programs, LTL with parametrised propositions was proposed in
[69]. This work was extended to next-free LTL with free variables and binding in
[68]. For the parametric monitoring of Java objects, the JavaMOP framework was
used to monitor object instances in [45]. In a continuation, parametric monitoring
with slicing on execution traces was introduced in [62]. More expressive variants of
logic for runtime monitoring where considered in [14, 8], where first-order LTL was
used, and in [15], where first-order logic for policies was introduced. Rule-based
specifications with data parameters were described in [7], where a parameterized
version of RuleR was introduced.

The described approaches fall short of our application requirements, as the logic-
based approaches are not sufficiently expressive and usable, and the monitor imple-
mentations for parametric rule-based specifications do not provide resource guar-
antees. As we will show, the expressivity gain through parameters brings us one
step closer to a realistically usable and sufficiently expressive stream-based moni-
tor specification language. This language and especially its corresponding monitor
implementation is able to provide resource guarantees for our benchmark applica-
tion.

4

Handling real-time behavior A second necessary addition for expressivity is the
handling of real-time behavior, where incoming events are not necessarily arriving
in a synchronized manner and incoming signals are real-valued. While this prob-
lem alone could be solved with a straightforward semantic extension of the existing
specification mechanism, resource predictions require a careful balance between
immediate reaction on asynchronous events and deterministic timing for the mon-
itor outputs. Earlier work on real-time behavior in runtime monitoring includes:
Real-time variants of temporal logics [47, 54, 27], such as STL over real-valued sig-
nals [28]. Metric variants of first-order properties [10] with sliding windows [9],
and event-rate independence in the tool Aerial [12]. Real-time capable monitoring
in Copilot [56], TeSSLa [50, 23], and asynchronous stream monitoring in Striver [40].

Contributions This thesis provides the following contributions to the field of run-
time verification. To enhance the expressivity of specification languages for moni-
toring, we introduce three extensions to increase specification language expressiv-
ity and improve their applicability. The first extension concerns parametric linear
temporal logic (PLTL) for runtime monitoring, which had been previously used
for model checking and adds parameters for satisfying eventualities. The second
extension, Lќљю ₂.₀, adds data parameterization to the stream-based specification
language Lќљю, providing the ability to quantify over a data domain. The third
extension introduces real-time specifications via real-time sliding windows, which
are able to express aggregations on data over time intervals, in RTLќљю. All these
include the identification of fragments with advantageous computational proper-
ties. An important property of the monitoring for these specification languages is
their resource predictability, which can either be guaranteed from the semantics or
derived for the individual specification. Ambiguity is identified as an important
property, which refers to the ability of events in the (distant) future to affect the
current verdict, parameters, and measures of monitor implementations. In addi-
tion to the improvements in expressiveness, we have performed a case study on the
application to an autonomous unmanned aerial systems (UAS). This evaluates the
applicability of our specification languages for a specific system design, and allows
to demonstrate the contribution of runtime monitoring to the system design and de-
velopment of safety-critical systems. For autonomous UAS, we show that runtime
monitoring with the extended specification languages that we propese is suitable
to establish the safe operation of the UAS and safeguard the flight environment.

5

1 Introduction

More concretely, this thesis provides the following technical contributions:

1. We establish a lower bound for the space complexity of the online monitoring
problem for PLTL.

2. We introduce deterministic PLTL and unambiguous PLTL as syntactic and
semantic fragments, respectively.

3. We provide online monitoring algorithms for the two fragments with loga-
rithmic space complexity in the length of the trace.

4. We give an experimental evaluation on circuit examples for a prototypical Java
implementation of the monitoring algorithm.

5. We introduce Lќљю ₂.₀, which adds data parameterization to the stream-based
specification language Lќљю.

6. We adapt the notion of efficient monitorability to Lќљю ₂.₀.

7. We provides an online monitoring algorithm for efficiently monitorable Lќљю ₂.₀.

8. We evaluate the enhanced expressivity by expressing network monitoring
properties for security violations in Lќљю ₂.₀ and provide an experimental eval-
uation of the monitoring algorithm on network traces.

9. We introduce RTLќљю by adding real-time sliding windows to Lќљю ₂.₀.

10. We define a static analysis for the memory usage of RTLќљю specifications.

11. We provide an online monitoring algorithm for RTLќљю.

12. We evaluate an implementation of the online monitoring algorithm for data
analysis tasks.

13. We perform a case study in the application environment of autonomous un-
manned aircraft systems.

14. We introduce a domain-specific variant of Lќљю for the UAS application.

15. We provide representative practical specifications in Lќљю and RTLќљю for the
functional safety of the aircraft.

16. We evaluate the online monitoring of the specifications with experiments on
a hardware-in-the-loop (HIL) testbed on real flight hardware.

6

Structure

• In Chapter 2, we study the monitoring problem for parametric linear temporal
logic, which extends linear temporal logic with parametric step bounds on the
temporal operators. While the full logic has a larger than logarithmic space
complexity in the length of the trace, we introduce deterministic PLTL and
unambiguous PLTL as syntactic and semantic fragments of the logic. Both
fragments have only logarithmic space complexity in the length of the trace
and enjoy the unique measure property, where monitoring a PLTL specifica-
tion on a single trace always yields a unique result for the timing parameters.

• Chapter 3 provides the necessary background for the stream-based monitor-
ing paradigm by recapitulating the monitoring language Lќљю together with
its monitoring algorithm and analysis. In this chapter we describe basic prop-
erties and fragments of the specification language.

• Chapter 4 introduces data parameterization to the synchronous stream-based
specification language Lќљю. Here, we introduce data parameters to output
streams, which allows us to slice the incoming input data and treat individual
slices on their own timeline and control the lifetime of the individual slices.
This extension enables the application of the resulting language, called Lќљю
₂.₀, for network monitoring to detect violations of security policies via declar-
ative, stream-based specifications. For practical applications, the efficiently-
monitorable fragment of Lќљю ₂.₀ is defined to be able to ensure bounded mem-
ory usage of the monitor.

• Next, in Chapter 5 we extend the previously synchronous timing model of
Lќљю to include references to real-time intervals, we call the resulting lan-
guage RTLќљю. In RTLќљю, the monitor realization is split into an input-syn-
chronous, event-triggered part and a fixed-rate part, which runs independent
of the input event stream. The monitor outputs are evaluated at this specifi-
able monitor frequency. To recover a bounded memory guarantee despite a
possibly unlimited input event rate, efficient aggregation functions are defined
to access input streams via real-time sliding windows. In general, memory
guarantees cannot be established, we introduce a static analysis of RTLќљю
specifications to determine these memory requirements.

• Finally, in Chapter 6 we demonstrate the applicability of stream-based run-
time monitoring in a real-world case study: unmanned aerial systems with

7

1 Introduction

complex autonomous decision making. In cooperation with the Institute of
Flight Systems at German Aerospace Center (DLR), we have introduced on-
line and offline monitoring to improve system design and development within
the DLR ARTIS fleet of unmanned aircraft. We report about the experiences
during specification elicitation, instrumentation, and offline and online ex-
periments, as well as their impact on further specification mechanism design.
Further, we characterize the potential impact of runtime monitoring for this
regulated domain.

The presented contributions in this thesis have been published in the following
papers:

1. Chapter 2: Peter Faymonville, Bernd Finkbeiner, and Doron Peled.
Monitoring Parametric Temporal Logic.
15th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2014). [33]

2. Chapter 4: Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem
Torfah.
A Stream-based Specification Language for Network Monitoring.
16th International Conference on Runtime Verification (RV 2016). [34]

3. Chapter 5: Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and
Hazem Torfah.
Real-time Stream-based Monitoring.
arXiv:1711.03829. [35]

4. Chapter 6: Florian-Michael Adolf, Peter Faymonville, Bernd Finkbeiner, Se-
bastian Schirmer, and Christoph Torens.
Stream Runtime Monitoring on UAS.
17th International Conference on Runtime Verification (RV 2017). [1]

5. Chapter 6: Christoph Torens, Florian-Michael Adolf, Peter Faymonville, and
Sebastian Schirmer.
Towards Intelligent System Health Management using Runtime Monitoring.
AIAA Information Systems-AIAA Infotech @ Aerospace, AIAA SciTech Fo-
rum, (AIAA 2017-0419). [74]

8

2 Monitoring Parametric Temporal Logics

Temporal logics such as LTL are popular as a specification mechanism in runtime
monitoring in the runtime verification community following their success in hard-
ware model checking. An important property of LTL-based monitoring is trace
length independence, which establishes that any LTL formula can be monitored online
on a trace with constant memory in the length of the trace.

In this chapter, we describe the monitoring problem for an extension of LTL
equipped with step-bounded parametric temporal operators. This extension gives
additional expressibility and enables us to measure performance properties of the
system, such as response times to external events. Although LTL is a rather restric-
tive specification mechanism for monitoring, the issues described in this chapter
foreshadow the challenges of Chapter 4, which deals with a much more expressive
stream-based specification language. The content of this chapter is based on [33]
and covers online and offline monitoring algorithms as well as a complexity anal-
ysis with a lower bound proof on the memory requirements in terms of the trace
length of any online algorithm for the full logic.

Due to the importance of space requirements for monitoring algorithms, espe-
cially in hardware realizations, we then introduce two restricted fragments of PLTL,
which both have the property of being able to monitor a trace with logarithmic
memory in the length of the trace.

Parametric LTL (PLTL) was originally introduced in [2, 3] as a logic for model
measuring, i.e. to establish quantitative guarantees for system models given as Krip-
ke structures. The model measuring problem is defined as determining for a Kripke
structure the parameter valuations for which the formula holds on all paths.

2.1 PLTL Syntax and Semantics

Given a set of atomic propositions 𝐴𝑃 with typical element 𝑎, the syntax of LTL is
given by the following grammar:

𝜑LTL ∶∶= 𝑎 ∣ ¬𝜑 ∣ 𝜑 ∧𝜑 ∣ 𝜑∨𝜑 ∣ 𝜑 ∣ 𝜑 ∣ 𝜑 ∣ 𝜑 U 𝜑 ∣ 𝜑R𝜑

9

2 Monitoring Parametric Temporal Logics

For a set of parameters 𝑋 with typical element 𝑥, PLTL extends LTL with the
following parametric operators:

𝜑 ∶∶= 𝜑LTL ∣ ≤𝑥 𝜑 ∣ ≤𝑥 𝜑

A valuation 𝛼 for the set of parameters𝑋 is a function 𝛼 ∶ 𝑋 ↦ N∪ {∞}, mapping
each parameter 𝑥 to a natural number or infinity.

As an example, the PLTL formula ≤𝑥 𝑎 expresses that the atomic proposition 𝑎
has to hold within 𝛼(𝑥) steps.

An arbiter example, where access requests (𝑟, 𝑟) should be eventually granted
(𝑔, 𝑔) within 𝑥,𝑦 steps, but not at the same time, can be specified in PLTL as fol-
lowing:

𝜑 = (𝑟 → ≤𝑥 𝑔) ∧ (𝑟 → ≤𝑦 𝑔) ∧ ¬(𝑔 ∧ 𝑔).

The PLTL semantics [2, 3] were originally defined on infinite traces. Monitoring
algorithms always deal with finite portions of an potentially infinite trace, since
monitors either read a finite trace from storage in case of offline monitoring, or a
finite history of an ongoing run of a system in the case of online monitoring. The
semantics of LTL are usually defined for infinite traces, and therefore need to be
adapted to the case of finite traces. There exists a large body of work covering the
different finite trace semantics for LTL, an overview is given in [16]. Here, we follow
the truncated path semantics, originally introduced in [29]. These semantics take a
positive view on the system, treating unfulfilled obligations at the end position not
as negative evidence towards the satisfaction of the formula on a trace, as long as
they can still be satisfied.

A finite trace 𝜎 of length |𝜎| provides an interpretation of the events Σ = 2𝐴𝑃,
where an atomic proposition is present in the event if the proposition currently
holds, and the trace can thus be defined as the mapping 𝜎 ∶ {0, … , |𝜎| − 1} ↦ Σ. We
denote the event at position 𝑘 by 𝜎(𝑘).

For a PLTL formula 𝜑 over the set of atomic propositions 𝐴𝑃, a corresponding
valuation 𝛼, a finite trace 𝜎, and a trace position 𝑘, we define the following semantics
for PLTL recursively over the structure of the formula:

• (𝜎, 𝑘, 𝛼) ⊨ 𝑎, iff 𝑎 ∈ 𝜎[𝑘].

• (𝜎, 𝑘, 𝛼) ⊨ ¬𝜑, iff (𝜎, 𝑘, 𝛼)⊭ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑 ∧𝜑, iff (𝜎, 𝑘, 𝛼) ⊨ 𝜑 and (𝜎, 𝑘, 𝛼) ⊨ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑 ∨𝜑, iff (𝜎, 𝑘, 𝛼) ⊨ 𝜑 or (𝜎, 𝑘, 𝛼) ⊨ 𝜑.

10

2.1 PLTL Syntax and Semantics

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑, iff 𝑘 + 1 < |𝜎| and (𝜎, 𝑘 + 1, 𝛼) ⊨ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑, iff ∃𝑖. 𝑘 ≤ 𝑖 < |𝜎|, where (𝜎, 𝑖, 𝛼) ⊨ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑, iff ∀𝑖. 𝑘 ≤ 𝑖 < |𝜎| we have (𝜎, 𝑖, 𝛼) ⊨ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑U𝜑, iff ∃𝑖. 𝑘 ≤ 𝑖 < |𝜎|, where (𝜎, 𝑖, 𝛼) ⊨ 𝜑 and ∀𝑗. 𝑘 ≤ 𝑗 < 𝑖, we have
(𝜎, 𝑗, 𝛼) ⊨ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑R𝜑, iff either
∃𝑖. 𝑘 ≤ 𝑖 < |𝜎|, where (𝜎, 𝑖, 𝛼) ⊨ 𝜑 and ∀𝑗. 𝑘 ≤ 𝑗 ≤ 𝑖, we have (𝜎, 𝑗, 𝛼) ⊨ 𝜑,
or ∀𝑗. 𝑘 ≤ 𝑗 < |𝜎| we have (𝜎, 𝑗, 𝛼) ⊨ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ ≤𝑥 𝜑, iff ∃𝑖. 𝑘 ≤ 𝑖 ≤ 𝛼(𝑥) and 𝑘 + 𝑖 < |𝜎|, where (𝜎, 𝑘 + 𝑖, 𝛼) ⊨ 𝜑, or we
have that 𝑘 + 𝛼(𝑥) ≥ |𝜎|.

• (𝜎, 𝑘, 𝛼) ⊨ ≤𝑥 𝜑, iff 𝑘 + 𝛼(𝑥) < |𝜎| and ∀𝑖. 𝑘 ≤ 𝑖 ≤ 𝛼(𝑥) we have (𝜎, 𝑘 + 𝑖, 𝛼) ⊨ 𝜑.

Logical constants can be defined as following: true ∶= 𝑎 ∨ ¬𝑎, false ∶= 𝑎 ∧ ¬𝑎.

Arbiter Trace Example As an example, consider the following finite trace over the
alphabet 𝐴𝑃 = {𝑟, 𝑟, 𝑔, 𝑔}:

position 0 1 2 3 4 5 6 7 8
stream {𝑟, 𝑟} {𝑟, 𝑟} {𝑔, 𝑟} {𝑟, 𝑔} {𝑟} {𝑟} {𝑟} {𝑟} {𝑔}

According to our previously defined semantics, the formula 𝜑 = (𝑟 → ≤𝑥 𝑔) ∧
(𝑟 → ≤𝑦 𝑔) ∧ ¬(𝑔 ∧ 𝑔) is satisfied on this trace for 𝛼(𝑥) = 5 and 𝛼(𝑦) = 3.

Monotonicity Following the semantics of the parametric operators, we observe
that parametric operators appear in two ways, which we call polarities: Parame-
terized eventualities, such as ≤𝑥 𝜑, are upward-closed, i.e. if ≤𝑥 𝜑 holds for some
𝛼(𝑥) = 𝑗, then it also holds for all 𝛼(𝑥) = 𝑘 with 𝑘 > 𝑗. Conversely, parameterized
always-operators are downward-closed: if ≤𝑥 𝜑 holds for some 𝛼(𝑥) = 𝑗, then it also
holds for all 𝛼(𝑥) = 𝑘 where 𝑘 < 𝑗, i.e. for all smaller values.

Existence of a valuation α To check whether there exists any valuation 𝛼 for a
given trace 𝜎, we can check a single valuation �̂� by seĴing the parametric operators
to their weakest requirements: for ≤𝑥 𝜑we set �̂�(𝑥) = 0 and for ≤𝑦 𝜑 to �̂�(𝑦) = |𝜎|.

LTL Abstraction The LTL abstraction [𝜑] of a PLTL formula 𝜑 is the LTL formula
which is satisfied if and only if there exists some parameter valuation under which
𝜑 is satisfied. It is obtained via the following syntactic rewrite rules:

11

2 Monitoring Parametric Temporal Logics

• [≤𝑥 𝜓] = [𝜓]

• [≤𝑥 𝜓] = [𝜓]

• [𝑝] = 𝑝

• [¬𝑝] = ¬𝑝

• [𝜓 ∧𝜓] = [𝜓] ∧ [𝜓]

• [𝜓 ∨𝜓] = [𝜓] ∨ [𝜓]

• [𝜓] = [𝜓]

• [𝜓] = [𝜓]

• [𝜓] = [𝜓]

• [𝜓U𝜓] = [𝜓]U[𝜓]

• [𝜓R𝜓] = [𝜓]R[𝜓]

Optimality Assuming a formula with only a single parameter, occuring once in the
formula, the monotonicity properties of the operators directly give rise to a defini-
tion of optimality: For upward-closed parametric operators, we report the minimal
value which can be guaranteed on the trace, since it represents the strongest guaran-
tee which holds. For downward-closed parametric operators, we conversely report
the maximal value. If the specification contains more than a single parameter, these
optimization goals do not necessarily yield a single, optimal solution: Consider the
trace 𝜎 = [∅, {𝑝}] of length 2. For the PLTL-formula 𝜑 = ≤𝑥 ≤𝑦 𝑝, there are two
minimal incomparable valuations: 𝛼 ∶ 𝑥 ↦ 1, 𝑦 ↦ 0 and 𝛼′ ∶ 𝑥 ↦ 0, 𝑦 ↦ 1, depend-
ing on when the descent to the satisfaction of the subformula ≤𝑦 𝑝 happens. The
set {𝛼, 𝛼′} forms an antichain for the ground set N and the natural partial order ≤
on integer vectors.

To restore a total (i.e. linear) order, we introduce a total order on the parameters
in𝑋, called priority order and denoted as≫, where we say that 𝑥 ≫ 𝑦 if the parameter
𝑥 has priority over 𝑦. The 𝑚𝑎𝑥(𝑋) w.r.t. ≫ denotes the highest priority parameter.
This order in turn induces a total order on valuations, denoted as ⊐, where 𝛼 ⊐ 𝛼′

if, for 𝑥 = 𝑚𝑎𝑥(𝑋), we have:

• 𝛼(𝑥) < 𝛼′(𝑥) and 𝑥 is associated to an upward-closed parametric operator, or

• 𝛼(𝑥) > 𝛼′(𝑥) and 𝑥 is associated to a downward-closed parametric operator, or

• 𝛼(𝑥) = 𝛼′(𝑥), and 𝛼 ⧵ {𝑥} ⊐ 𝛼′ ⧵ {𝑥}.

For a PLTL formula𝜑 and a trace 𝜎, we call the optimal valuation 𝛼∗ – with respect
to ⊐ – the measure of 𝜑 on 𝜎.

Operator context Observe that parametric operators in the scope of always, even-
tually, until, and release operators measure more than once and combine their mea-
surements due to the conjunctive or disjunctive nature of their parent operator: As

12

2.2 Offline monitoring

an example, the formula ≤𝑥 𝑝 triggers a measurement in every position of the
trace, and the measure of the formula is the conjunctive combination of the individ-
ual measurements of ≤𝑥 𝑝, which themselves are downward closed. Therefore, the
measure will be the maximum over all measurements due to the conjunctive nature
of the -operator, and the value will be the longest ¬𝑝-sequence on the trace. If we
consider the formula ≤𝑥 𝑝, however, the disjunctive nature of the -operator
allows us to select the minimum over the measurements starting in every position
of the trace, yielding – if the formula is satisfied at all on a trace – always the value
0, since we can shift the start of the measurement to the first 𝑝-position. While for-
mulas of this type are syntactically permissible in full PLTL, they are obviously not
very meaningful in practice.

Finite trace semantics and measurements Because of the truncated path seman-
tics, we ignore open measurements which look beyond the end of the trace. A for-
mula like ≤𝑥 𝑝would only hold on traces which end in 𝑝-states and not report a
measure otherwise. The measure for 𝑥will take into account all evidence observed
on the trace, but the last open eventuality will only be taken into account insofar it
contributes to a new, larger minimum value for 𝑥.

Negation-normal form To simplify the presentation of our algorithms, we assume
that PLTL formulas are given in negation-normal form, where negations occur only
next to atomic propositions. As in LTL, general PLTL formulas can be rewriĴen to
negation-normal form with a small set of rewrite rules, which push negations to
the inner subformulas and remove double negations. For PLTL, we add the rewrite
rule ¬ ≤𝑥 𝜑 ↦ ≤𝑥 ¬𝜑 and ¬ ≤𝑥 𝜑 ↦ ≤𝑥 ¬𝜑. This transformation increases the
size of the formula at most linearly.

2.2 Offline monitoring

First, we give an algorithm to perform offline monitoring and measuring of a PLTL
formula on a finite trace. The algorithm is best suited for the offline case, where the
trace is stored on external storage before analysis, since it needs access to the trace
positions in reverse chronological order. To apply the same algorithm in an online
seĴing, one would need to store the trace and re-run the algorithm for every incom-
ing event, which will become infeasible quickly. The algorithm is a straightforward
extension of the one for LTL with statistical measures introduced in [37].

We first give a method to efficiently check a trace against a formula and a concrete

13

2 Monitoring Parametric Temporal Logics

valuation (given as an input to the algorithm), which is in effect a formula without
parameters. Then, we present how to check a formula with a single parameter.
Due to the given parameter order ⊐, we can then use this procedure to start from
the highest-priority parameter, use binary search to determine an optimal value
for the parameter while seĴing all other parameters to their weakest values. This
optimal value can then be added as a constant to the valuation, and we can repeat
the procedure for to the next-highest priority parameter. The final result will be the
measure of the formula.

Checking formulas with constant parameters To check a formula with only con-
stant parameters on a finite trace, we perform a backward traversal of the trace 𝜎.
The backward traversal has the usual advantage that the algorithm already knows
how the future plays out, and thus does not have to track all possible nondeter-
ministic choices, as a forward traversal of a trace must. This approach allows an
algorithm whose runtime is linear in the length of the formula and in constant time
per event.

We check the satisfaction of the formula 𝜑 on the trace by maintaining – for every
subformula 𝜓 of 𝜑 – a Boolean variable 𝑏𝜓, which indicates whether a subformula
holds in the currently considered trace position. To compute 𝑏𝜓, we need to ac-
cess the value of 𝑏𝜓 in the previously processed position, which we denote by 𝑏′𝜓, to
implement the expansion laws of the temporal operators. For every parametric sub-
formula 𝜓, we will additionally maintain a counter 𝑐𝜓, which we will use to ensure
that the constant parameters are correct for the given trace. In the case of a paramet-
ric eventuality ≤𝑗 𝜓𝑔, this counter will track the distance to the satisfaction of the
goal subformula 𝜓𝑔. In the case of a parametric always ≤𝑗 𝜓𝑔, this counter keeps
track of for how long 𝜓𝑔 holds. In both cases, the corresponding Boolean variable
𝑏𝜓 will be true as long as the counter 𝑐𝜓 does not increase/decrease beyond 𝑘.

We initialize the 𝑏𝜓-variables as following:

• 𝑏 𝜓 ∶= false

• 𝑏 𝜓 ∶= true

• 𝑏 𝜓 ∶= false

• 𝑏𝜓U𝜓 ∶= false

• 𝑏𝜓R𝜓 ∶= true

• 𝑏
≤𝑘 𝜓

∶= false

• 𝑏
≤𝑘 𝜓

∶= true

All counters 𝑐𝜓 are initialized to 0.
To process the event 𝜎[𝑘], we first rename all variables 𝑏𝜓 to 𝑏′𝜓 and the apply the

14

2.2 Offline monitoring

following update rules in a boĴom-up fashion:

• 𝑏𝑎 ∶= if 𝑎 ∈ 𝜎[𝑘] then true else false

• 𝑏¬𝜑 ∶= ¬𝑏𝜑

• 𝑏𝜑∧𝜑 ∶= 𝑏𝜑 ∧ 𝑏𝜑

• 𝑏𝜑∨𝜑 ∶= 𝑏𝜑 ∨ 𝑏𝜑

• 𝑏 𝜓 ∶= 𝑏
′
𝜓

• 𝑏 𝜓 ∶= 𝜓 ∧ 𝑏′ 𝜓

• 𝑏 𝜓 ∶= 𝜓 ∨ 𝑏
′

𝜓

• 𝑏𝜓U𝜓 ∶= 𝑏𝜑 ∨ (𝑏𝜑 ∧ 𝑏
′
𝜓U𝜓)

• 𝑏𝜓R𝜓 ∶= 𝑏𝜑 ∧ (𝑏𝜑 ∨ 𝑏
′
𝜓R𝜓)

The counters 𝑐𝜓 are updated in the following way:

• 𝑐
≤𝑗 𝜓𝑔

∶= if 𝑏𝜓𝑔 then 0 else 𝑐′
≤𝑗 𝜓𝑔

+ 1

• 𝑐
≤𝑗 𝜓𝑔

∶= if ¬𝑏𝜓𝑔 then 0 else 𝑐′
≤𝑗 𝜓𝑔

+ 1

Finally, the Boolean variables for the parametric subformulas are determined:

• 𝑏
≤𝑗 𝜓𝑔

∶= 𝑐
≤𝑗 𝜓𝑔

≤ 𝑗 • 𝑏
≤𝑗 𝜓𝑔

∶= 𝑐
≤𝑗 𝜓𝑔

≥ 𝑗

For every subformula and trace position, we thus update one Boolean variable
and at most one integer counter. The running time of our algorithm is therefore
linear in trace and specification, in𝑂(|𝜑| × |𝜎|), and it runs in space𝑂(|𝜑| + #𝑐 × log|𝜎|)
due to the integer counters, which are bounded by the trace length and encoded in
binary. Every position of the trace has to be read only once from external storage.
Moreover, accesses are in a predictable orer.

Measuring formulas with at least one parameter If the formula 𝜑 contains ex-
actly one parameter, we perform binary search to obtain the optimal value for the
parameter, which is bounded between 0 and |𝜎|. For a single parameter, this yields
a runtime of 𝑂(|𝜑| × |𝜎| × log|𝜎|), as we need a logarithmic number of calls in the
length of the trace.

For a larger number of parameters, we start with the highest-priority parameter
according to ⊐ and set all other parameters to their weakest values, since they are of
lower priority and the weakest values do not affect the determined measure. Once
an optimal value for this parameter has been determined, we fix this value in the
valuation and continue the procedure with the next parameter in the parameter
order.

15

2 Monitoring Parametric Temporal Logics

To determine the measure of a formula containing 𝑛 parameters (bounded above
by |𝜑|), we thus apply the procedure for the single parameter at most |𝜑| times,
leading us to the following theorem for offline monitoring:

Theorem 2.1. Let 𝜑 be a PLTL formula, ⊐ be an order on the parameters of 𝜑, and 𝜎 be a
finite trace. With direct access to all trace positions, the measure of 𝜑 on 𝜎 can be computed
in space 𝑂(|𝜑| × log|𝜎|) and time 𝑂(|𝜑| × |𝜎| × log|𝜎|) .

2.3 The online monitoring problem - hardness

After we have established an algorithm for the case of offline monitoring, we now
turn our focus to the seĴing of online monitoring. In many applications of runtime
verification, monitors run alongside their systems to analyse their behavior on-the-
fly, or traces stored on secondary storage are too large to keep in memory or to be
accessed multiple times during each analysis, since the monitoring process may be
I/O-bound. Therefore, online algorithms and their space requirements are of great
importance for monitoring tasks.

For temporal logics such as LTL, online monitoring with only a single access to
each event can be performed by constructing an alternating automaton from the
formula and maintaining an – in the worst case – exponential number of nondeter-
ministic possibilities to satisfy the formula. The space complexity of this algorithm
is constant in terms of the length of trace [37]. In turn, this enables to construct
a hardware circuit without any external memory requirement [36]. The size only
depends on the specification, which is usually known before a hardware monitor
implementation. In terms of trace length, the work to be performed by monitor is
constant per event, and does not grow, making timing fully deterministic.

In the case of PLTL, retaining the same space complexity for online monitoring is
unrealistic, as for any logic which can measure the length of the trace. It is easy to
measure the trace length since the formula false is only true in the last position
of the trace. Therefore, we will have at least a logarithmic dependency due to the
binary encoding of counters.

For most embedded systems, a logarithmic space dependency is still fine, since
the event frequency of the system will usually be fixed at design time and the mem-
ory of the system can be appropriately sized.

However, as we will shortly prove, not even a logarithmic-space online moni-
toring algorithm exists for full PLTL. In later sections, we will give two restricted
variants of the logic, which recover this important property.

16

2.3 The online monitoring problem - hardness

Theorem 2.2. There exists no online measuring algorithm for PLTL which uses only log-
arithmic memory in the length of trace.

Proof. Suppose such an algorithm exists. We show that even for a formula with only
two parameters, any online algorithm is forced to use more than logarithmic space
in the length of trace. More concretely, let 𝜑 = (𝑎 → (≤𝑥 𝑏 ∨ ≤𝑦 𝑐)) with 𝑥 ⊐ 𝑦.
Now, we show that there exists a sequence 𝜎 of length 𝑂(𝑛 ⋅ 𝑚), which forces the
memory of any monitor to store an arbitrary integer set 𝐾 = {𝑘, 𝑘, … , 𝑘𝑛} of length
𝑛. Without loss of generality, we assume that the individual 𝑘𝑖 are smaller than 𝑚
and that the 𝑘𝑖 are in ascending order, i.e. 𝑘 < 𝑘 < ⋯ < 𝑘𝑛. To show the memory
content requirement, we construct a continuation trace 𝜌, which is able to recall any
of the 𝑘𝑖 as part of the measure of 𝜑 of the concatenated trace 𝜎 ⋅ 𝜌. The traces are
illustrated in Figure 2.1.

0 𝑘 𝑚 𝑚+ 𝑘 2𝑚 (𝑛−1)𝑚 (𝑛−1)𝑚+𝑘𝑛
↓ ↓ ↓ ↓ ↓ ↓ ↓
𝑎 𝑐 𝑏 𝑎 𝑐 𝑏 𝑎 … 𝑎 𝑐 𝑎

𝑏
↑ ↑ ↑
𝑚−1 2𝑚−2 𝑛 ⋅ 𝑚

𝜎

𝑚−𝑖
↓
𝑏

𝜌

Figure 2.1: Sequences 𝜎 and 𝜌 in the proof of Theorem 2.2. Proposition 𝑎 is true
every𝑚 steps, creating 𝑛measuring segments of length𝑚. Proposition 𝑏
starts at position 𝑚− 1 and moves one step backward in every segment.
Proposition 𝑐 is used to encode the 𝑘𝑖, one per segment. The suffix 𝜌
contains a single proposition 𝑏 at the position 𝑚− 𝑖 to force the recall of
value 𝑘𝑖 as part of the measure of 𝜎 ⋅ 𝜌.

The sequence 𝜎 is constructed as following: Every segment of length𝑚 starts with
a position on which proposition 𝑎 holds. Proposition 𝑏 occurs first at position 𝑚− 1
and moves one position closer to the beginning of the trace each segment, until it
occurs in the same position as 𝑎 in the last segment. Proposition 𝑐 is true exactly
with distance 𝑘𝑖, where 𝑖 is the segment number. The trace 𝜎 ends with proposition
𝑎 holding at position 𝑛 ⋅ 𝑚.

To recall the value of 𝑘𝑖 via the measure from the monitor, we construct as follows:
Proposition 𝑏 holds at position 𝑚− 𝑖, and 𝑎 and 𝑐 never hold in 𝜌.

At the start of every segment, the 𝑎-position triggers a new measurement, which

17

2 Monitoring Parametric Temporal Logics

needs to be satisfied either by the left-hand-side ≤𝑥 𝑏 of the disjunction or by the
right-hand-side ≤𝑦 𝑐 of the disjunction. In the continuation 𝜌, this is only possible
with the left-hand side, since no 𝑐 appears in 𝜌. This automatically fixes a measure
for the higher-priority variable 𝑥, since the optimal achievable value for 𝑥 is 𝑚− 𝑖.

To find the correct measure of 𝑦, we only need to consider the first 𝑖 segments of
𝜎, since for the remaining trace 𝜎 ⋅ 𝜌, the left-hand-side of the disjunction holds, as
the distances from 𝑎 to 𝑏 are smaller than 𝑚 − 𝑖 as we progress through the trace.
Now, since the 𝑘𝑖 have been encoded into 𝜎 in ascending order, we need to make
sure that the first 𝑖 segments satisfy the right-hand-side of the implication, as they
cannot satisfy the left-hand-side of the implication, since the 𝑎-𝑏 distances are larger
than the measure of 𝑥. Therefore, the measure of 𝑦 needs to be the maximum of
the individual measurements of the first 𝑖 segments, and the largest 𝑎-𝑐 distance
happens to be exactly the value 𝑘𝑖.

Thus, any monitor has to store the full set𝐾 at the last position of trace 𝜎, since we
can recall any value 𝑘𝑖 by a proper extension with 𝜌. With only logarithmic memory,
it is impossible to store the set 𝐾 : A binary encoding of 𝐾 needs at least a memory of
𝑂(𝑛 ⋅ log(𝑚)), i.e. linear space. Therefore, any online monitoring algorithm for PLTL
needs more than logarithmic space. This concludes the proof of Theorem 2.2.

The formula 𝜑 = (𝑎 → (≤𝑥 𝑏 ∨ ≤𝑦 𝑐)) with 𝑥 ⊐ 𝑦 used in the proof of The-
orem 2.2 purposefully uses two features of PLTL to show the hardness result: the
disjunction between the two measuring operators and the optimality requirement
on the measure in combination with the parameter order. Both features together
disallow the summarization (for example to only store the currently reached opti-
mal value or value combination) of the measuring parts of the formula along the
trace. For an online monitor, the disjunctions may create in every step a new mea-
surement to be started from this point onward, and the parameter order with the
optimality requirement requires the monitor to store measured values for one pa-
rameter according to the context of all other parameters, which may be recalled later
because a higher-priority parameter reaches its optimal value in a certain context.

We now present two restrictions of PLTL with a logarithmic space monitoring
procedure:

• Deterministic PLTL, a syntactic restriction in analogy to deterministic LTL [53],
and

• Unambigous PLTL, a semantic restriction, which restricts the measuring but
retains the full expressivity of LTL.

18

2.4 Measuring Automata

2.4 Measuring Automata

We use an automaton construction to allow us to implement the semantics of the
logic. To check and measure PLTL formulae on a trace, we use extended finite-state
automata, which maintain on a run – in addition to a current state – a fixed num-
ber of integer variables. These integer variables will be used to store the necessary
information on the measurements along the trace.

Formally, a deterministic measuring automaton 𝐴 is described by the tuple 𝐴 =
(Σ,Ω,𝑄, 𝑞, Θ, 𝛿, 𝛾, 𝐹, 𝜔)where Σ is the input alphabet,Ω the output domain, 𝑄 the
state space, 𝑞𝑜 the initial state,Θ ∶ 𝑋 ↦ {0,∞} an initial assignment, 𝛿 ∶ 𝑄×Σ ↦ 𝑄∪
{⊥} describes the transition function, an update function 𝛾 ∶ 𝑄 × Σ ↦ (𝑋 ↦ N) ↦
(𝑋 ↦ N), a set of final states 𝐹 ⊆ 𝑄 and an output function 𝜔 ∶ 𝐹 × (𝑋 ↦ N) ↦ Ω.

A run of a measuring automaton 𝐴 on a trace 𝜎 = 𝜎, 𝜎, … 𝜎𝑛− ∈ Σ ∗ of length 𝑛 is
a sequence of configurations (𝑠, 𝜂), (𝑠, 𝜂) … (𝑠𝑛, 𝜂𝑛), where the 𝑖th configuration is
a pair of state 𝑠𝑖 and valuation 𝜂𝑖, which adhere to the following conditions:

• 𝑠 = 𝑞,

• 𝜂 = Θ,

• ∀𝑖 < 𝑛 − 1. 𝑠𝑖+ = 𝛿(𝑠𝑖, 𝜎𝑖),

• ∀𝑖 < 𝑛 − 1. 𝜂𝑖+ = 𝛾(𝑠𝑖, 𝜎𝑖)(𝜂𝑖),

• 𝑠𝑛 ∈ 𝐹.

The result of the run is determined by 𝜔(𝑠𝑛, 𝜂𝑛). Since 𝐴 – more concretely 𝛿 and
𝛾 – are deterministic, we have the property that for every trace 𝜎, 𝐴 either has a
unique run or no run at all. If 𝐴 has a run on 𝜎, we say that 𝐴 accepts 𝜎 with result
𝜔(𝑠𝑛, 𝜂𝑛).

Defining updates on valuations with γ We restrict the possible functions 𝛾 by
specifying them in terms of the following operations for a variable 𝑥 ∈ 𝑋:

• Reset: 𝑥 ∶= 0,

• Increment: 𝑥 ∶= 𝑥 + 1,

• Maximum: 𝑥 ∶= max(𝑥, 𝑦), where 𝑦 ∈ 𝑋,

• Minimum: 𝑥 ∶= min(𝑥, 𝑦), where 𝑦 ∈ 𝑋.

19

2 Monitoring Parametric Temporal Logics

Due to these restrictions, on an input trace 𝜎 of length 𝑛, the values of the variables
in 𝑋 are either ∞ or bounded by 𝑛, since only one increment can be performed per
trace event. Therefore, the values of variable 𝑥 ∈ 𝑋 along a run can be encoded in
binary in logarithmic space in the length of 𝑛.

Lemma 2.3. The configuration of a measuring automaton can be represented in logarithmic
space in the length of the input.

2.5 Deterministic PLTL

The definition of deterministic PLTL was inspired by [53], that introduced deter-
ministic LTL, which has a linear translation to universal Büchi automata, was de-
fined. Our fragment PLTLdet is defined by a syntactic restriction, which ensures the
determinicity of the full transition relation of the automaton: the propositional and
temporal, but also the measuring parts, i.e. the counters of the measuring automa-
ton.

In deterministic PLTL, we remove disjunctive features of the logic by determiniz-
ing temporal operators like until and eventually and by restricting disjunctions.
These features are determinized by using conjunctions with atomic propositions,
which are immediately available from the inputs and resolve the remaining nonde-
terminism.

Formulas of deterministic PLTL are generated from the following syntax:

𝜑 ∶∶=⊤ ∣ ⊥ ∣ 𝑎 ∣ ¬𝑎 ∣ 𝜑 ∧𝜑 ∣ (𝑎 ∧ 𝜑) ∨ (¬𝑎 ∧ 𝜑) ∣
𝜑 ∣ 𝑎 ∣ 𝜑 ∣ (𝑎 ∧ 𝜑)U(¬𝑎 ∧ 𝜑) ∣ ≤𝑥 𝑎 ∣ ≤𝑥 𝜑

The semantics of deterministic PLTL stay the same as for PLTL.
One example formula in this fragment is the arbiter specification:

𝜑 = (𝑟 → ≤𝑥 𝑔) ∧ (𝑟 → ≤𝑥 𝑔) ∧ ¬(𝑔 ∧ 𝑔),

which can be rewriĴen to:

𝜑 = ((¬𝑟 ∧⊤) ∨ (𝑟 ∧ ≤𝑥 𝑔))

∧ ((¬𝑟 ∧⊤) ∨ (𝑟 ∧ ≤𝑥 𝑔))

∧ (((¬𝑔 ∧⊤) ∨ (𝑔 ∧¬𝑔)) ∧ ((¬𝑔 ∧⊤) ∨ (𝑔 ∧¬𝑔)))

20

2.5 Deterministic PLTL

to fall into the syntactic fragment.

2.5.1 From Deterministic PLTL to Measuring Automata

A measuring automaton for a deterministic PLTL formula 𝜑 runs on the input al-
phabet Σ = 2𝐴𝑃 and produces as an output the mapping Ω ∶ 𝑋 ↦ N.

Similar to the standard closure-based automaton construction for LTL [22], we
construct the state space of our measuring automata for deterministic PLTL from
subsets of the closure of the formula (called atoms) and add counter variables.

The closure of a PLTL formula𝜑, denoted by cl(𝜑), is the set of PLTL formulas that
includes all subformulas of 𝜑 and the negations of the non-parametric subformulas
of 𝜑.

The states of the measuring automaton used to monitor and measure a PLTLdet

formula 𝜑 are based on the atoms of cl(𝜑). The current atom of the measuring au-
tomaton represents the state of the formula after processing a prefix of the trace.

An atom of a PLTL formula 𝜑 is a subset of formulas of cl(𝜑), which adheres to
the following properties:

• Consistency w.r.t. propositional logic: A subset 𝐴 ⊆ cl(𝜑) is consistent with
respect to propositional logic if the following conditions hold: 𝜓 ∧𝜓 ∈ 𝐴 iff
𝜓 ∈ 𝐴 and 𝜓 ∈ 𝐴, 𝜓 ∈ 𝐴 implies ¬𝜓 ∉ 𝐴, and ⊤ ∈ cl(𝜑) implies ⊤ ∈ 𝐴.

• Local consistency w.r.t. the until operator: A subset 𝐴 ⊆ cl(𝜑) is locally con-
sistent with respect to the until operator if for all 𝜓U𝜓 ∈ cl(𝜑) the following
conditions hold: 𝜓 ∈ 𝐴 implies 𝜓U𝜓 ∈ 𝐴, 𝜓 ∉ 𝐴 and 𝜓U𝜓 ∈ 𝐴 implies
𝜓 ∈ 𝐴.

• Local consistencyw.r.t. the release operator: A subset𝐴 ⊆ cl(𝜑) is locally con-
sistent with respect to the release operator if for all 𝜓R𝜓 ∈ cl(𝜑) the follow-
ing conditions hold: 𝜓 ∈ 𝐴 and 𝜓 ∈ 𝐴 implies 𝜓R𝜓 ∈ 𝐴, and 𝜓R𝜓 ∈ 𝐴
implies 𝜓 ∈ 𝐴.

• Local consistency w.r.t. the globally operator: A subset 𝐴 ⊆ cl(𝜑) is locally
consistent with respect to the globally operator if for all 𝜓 ∈ cl(𝜑), we have
that if 𝜓 ∈ 𝐴, then 𝜓 ∈ 𝐴.

• Local consistency w.r.t. the parametric globally operator: A subset𝐴 ⊆ cl(𝜑)
is locally consistent with respect to the parametric globally operator if for all

≤𝑥 𝜓 ∈ cl(𝜑), we have that if ≤𝑥 𝜓 ∈ 𝐴, then 𝜓 ∈ 𝐴.

21

2 Monitoring Parametric Temporal Logics

• Maximality: A subset 𝐴 ⊆ cl(𝜑) is maximal if for all non-parametric subfor-
mulas 𝜓 ∈ 𝑐𝑙, we have that either 𝜓 ∈ 𝐴 or ¬𝜓 ∈ 𝐴.

The set of atoms of a PLTL formula 𝜑 is denoted by At𝜑.
To implement the semantics of the temporal operators of PLTL, we define a suc-

cessor relation on atoms.
Let→⊆ At𝜑 ×2AP ×At𝜑 denote the successor relation between the atoms of𝜑. For

each 𝑡 ∈ At𝜑, 𝑒 ∈ 2AP, 𝑡′ ∈ At𝜑, we have that (𝑡, 𝑒, 𝑡′) ∈→, also denoted as 𝑡 𝑒−→ 𝑡′, if 𝑡′

is the smallest set such that the following conditions hold:

• 𝑡′ ∩AP = 𝑒.

• If 𝜓 ∈ 𝑡, then 𝜓 ∈ 𝑡′.

• If 𝜓 ∈ 𝑡, then 𝜓 ∈ 𝑡′.

• If 𝜓U𝜓 ∈ 𝑡, then either 𝜓 ∈ 𝑡 or 𝜓 ∈ 𝑡 and 𝜓U𝜓 ∈ 𝑡′.

• If 𝜓 ∈ 𝑡, then 𝜓 ∈ 𝑡 or 𝜓 ∈ 𝑡′.

• If ≤𝑥 𝜓 ∈ 𝑡, then 𝜓 ∈ 𝑡 or ≤𝑥 𝜓 ∈ 𝑡
′.

• If ≤𝑥 𝜓 ∈ 𝑡, then 𝜓 ∈ 𝑡 and 𝜓 ∉ 𝑡′ or ≤𝑥 𝜓 ∈ 𝑡′.

Note that the parameters 𝑥 are kept as symbols in the successor relation, as the
counters are handled separately.

In the case of PLTLdet, this successor relation yields a deterministic transition
function for the automaton, since the incoming event 𝑒 fully determines the next
atom 𝑡′. All possible disjunctions in these conditions are resolved, since the tar-
get formulas of eventually-operators and until-formulas are either directly atomic
propositions or are protected by atomic propositions immediately available from 𝑒.

Lemma 2.4. For every atom 𝑡 ∈ At𝜑 and every event 𝑒 ∈ 2AP of a PLTL
det-formula 𝜑, there

is at most one atom 𝑡′ ∈ At𝜑 such that 𝑡 𝑒−→ 𝑡′.

The transition function 𝛿 of the measuring automaton can then be defined accord-
ing to the relation →:

• For the designated initial state 𝑞 (the only state which is not an atom, because
no events have been seen so far), the immediate successor 𝛿(𝑞, 𝑒) is the unique
atom which contains 𝜑 and is consistent with 𝑒, i.e. the atom 𝑡 ∈ At𝜑 where
𝜑 ∈ 𝑡 and 𝑡 ∩AP = 𝑒 or ⊥ if no such atom exists.

22

2.5 Deterministic PLTL

• For all other states 𝑡 ∈ At𝜑, the next state 𝛿(𝑡, 𝑒) is either the unique atom 𝑡′ ∈
At𝜑 for 𝑡 𝑒−→ 𝑡′, or ⊥ if no such atom exists.

The update function 𝛾 of the measuring automaton keeps track of two counter
variables 𝑛𝑥 and 𝑚𝑥 for each parameter 𝑥 ∈ 𝑋. The variable 𝑛𝑥 is a counter, which
keeps track of the current value of 𝑥, i.e. the number of steps since which the sub-
formula associated to 𝑥 has been present in the trace of atoms. The purpose of the
second variable 𝑚𝑥 is to record the extremal value of the possibly multiple mea-
surements of 𝑛𝑥, since the temporal operators of the formula may introduce the
parametric subformula multiple times into the current atom, for example for the
formula ((¬𝑟 ∧⊤)∨ (𝑟 ∧ ≤𝑥 𝑔)). In this example formula, 𝑛𝑥 will keep track of the
number of steps until 𝑔 is true since the last 𝑟, and 𝑚𝑥 will record the maximal 𝑟-𝑔
distance along the trace. For formulas with parametric operators of other polarity,
such as (𝑞 ∧ ≤𝑥 𝑝),𝑚𝑥 will record the minimal number of steps until 𝑝 holds after
a 𝑞 appears.

The initialization of the counter variables via Θ also depends on the polarity of
parametric operators:

• For upward-closed operators, where 𝑚𝑥 is used to keep track of the maxi-
mal (completed) measurement of 𝑛𝑥 seen so far, we initialize Θ(𝑛𝑥) = 0 and
Θ(𝑚𝑥) = 0, i.e. the weakest guarantee.

• For downward-closed operators, where 𝑚𝑥 keeps track of the minimal (com-
pleted) measurement of 𝑛𝑥 seen so far, we initializeΘ(𝑛𝑥) = 0 andΘ(𝑚𝑥) = ∞,
again the weakest guarantee.

To properly define the update function 𝛾(𝑠, 𝑒), which maps a state 𝑠 and an in-
put event 𝑒 to a mapping between successive valuations, it is important to distin-
guish situations where a parametric subformula is freshly generated, i.e. a new mea-
surement is started, from situations where a parametric subformula was already
present, i.e. a previously started measurement is continued.

A formula 𝜓 ∈ 𝑡 is generated in a pair of atoms 𝑡, 𝑡′ ∈ At𝜑, denoted by the predicate
generated(𝜓, 𝑡, 𝑡′), if one of the following conditions is met:

• 𝜓 is a direct subformula1 of some other formula in 𝑡′, or

• 𝜓 ∈ 𝑡.
1A direct subformula of a formula is a subformula for which a single application of the syntax gram-

mar yields the original formula.

23

2 Monitoring Parametric Temporal Logics

To also cover the designated initial state 𝑞 with the definition and to simplify no-
tation, we set generated(𝜓, 𝑞, 𝑡′) to true for all 𝑡′, 𝜓.

We give the definition for 𝛾(𝑠, 𝑒) per parametric subformula and associated coun-
ters.

In the case of upward-closed parametric subformulas, we take the maximal value
of the individual measurements as the strongest guarantee for the formula. For
every upward-closed parametric subformula ≤𝑥 𝜓 ∈ 𝛿(𝑠, 𝑒):

𝛾(𝑠, 𝑒) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑚′
𝑥 ∶= 𝑚𝑥, 𝑛′𝑥 ∶= 0 if generated(≤𝑥 𝜓, 𝑠, 𝛿(𝑠, 𝑒))

𝑚′
𝑥 ∶= max(𝑚𝑥, 𝑛𝑥), 𝑛′𝑥 ∶= 0 if 𝜓 ∈ 𝑡′ ∧¬generated(≤𝑥 𝜓, 𝑠, 𝛿(𝑠, 𝑒))

𝑚′
𝑥 ∶= 𝑚𝑥, 𝑛′𝑥 ∶= 𝑛𝑥 + 1 if 𝜓 ∉ 𝑡′.

In the case of downward-closed parametric subformulas, we restart counting for
the strongest guarantee whenever we re-enter the parametric subformula into the
atom, since we in the end need to obtain the minimum of all measurements. For
every downward-closed parametric subformula ≤𝑥 𝜓 ∈ 𝛿(𝑠, 𝑒):

𝛾(𝑠, 𝑒) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑚′
𝑥 ∶= 𝑚𝑥, 𝑛′𝑥 ∶= 0 if 𝜓 ∈ 𝑡′, generated(≤𝑥 𝜓, 𝑠, 𝛿(𝑠, 𝑒))

𝑚′
𝑥 ∶= 𝑚𝑥, 𝑛′𝑥 ∶= 𝑛𝑥 + 1 if 𝜓 ∈ 𝑡′, ¬generated(≤𝑥 𝜓, 𝑠, 𝛿(𝑠, 𝑒))

𝑚′
𝑥 ∶= min(𝑚𝑥, 𝑛𝑥), 𝑛′𝑥 ∶= 0 if 𝜓 ∉ 𝑡′.

If the parametric subformulas of a parameter 𝑥 do not occur in an atom, we keep
their counter variables unchanged: 𝑚′

𝑥 ∶= 𝑚𝑥 and 𝑛′𝑥 ∶= 𝑛𝑥.
The final states 𝐹 of the measuring automaton are exactly the atoms without un-

fulfilled obligations (and the designated initial state 𝑞): 𝑡 ∈ 𝐹 iff for all 𝜓U𝜓 ∈ 𝑡
also 𝜓 ∈ 𝑡, for all 𝜓 ∈ 𝑡 also 𝜓 ∈ 𝑡, and there is no 𝜓 ∈ 𝑡.

For such states 𝑡 ∈ 𝐹, 𝜔(𝑡, 𝜂) returns the variable value of 𝑚𝑥 for upward-closed
parameters if ≤𝑥 𝜓 ∉ 𝑡 and max(𝑚𝑥, 𝑛𝑥) for ≤𝑥 𝜓 ∈ 𝑡, and for downward-closed
parameters it returns the value of 𝑚𝑥 if ≤𝑥 𝜓 ∉ 𝑡 and min(𝑚𝑥, 𝑛𝑥) if ≤𝑥 𝜓 ∈ 𝑡, to
take into account the currently active counter evidence.

2.5.2 Correctness

We split the proof of the correctness of the measure automaton construction into
two parts:

24

2.5 Deterministic PLTL

Lemma 2.5. If there exists a run 𝜋 = (𝑡, 𝜂), (𝑡, 𝜂), … (𝑡𝑛, 𝜂𝑛) of 𝐴𝜑 on the trace
𝜎 = 𝑒𝑒…𝑒𝑛− ∈ (2AP)∗ with result 𝑟, then (𝜎, 0, 𝑟) ⊧ 𝜑.

To prove Lemma 2.5, we first prove that the atom sequence 𝑡, 𝑡, … 𝑡𝑛 is in corre-
spondence with the semantics.

Lemma 2.6. For all subformulas 𝜓 ∈ cl(𝜑) and for all positions 𝑖, if 𝜓 ∈ 𝑡𝑖, then
(𝜎, 𝑖 − 1, 𝑟) ⊧ 𝜓.

The proof of Lemma 2.6 proceeds by induction on the length of the trace, pro-
gressing backwards from the last position.

Proof. We prove, by induction on 𝑖, starting in the last atom 𝑡𝑛, the slightly stronger
claim that, for all positions 𝑖 and all non-parametric subformulas 𝜓, 𝜓 ∈ 𝑡𝑖 iff (𝜎, 𝑖 −
1, 𝑟) ⊧ 𝜓, and for all parametric subformulas 𝜓, if 𝜓 ∈ 𝑡𝑖 then (𝜎, 𝑖 − 1, 𝑟) ⊧ 𝜓.
Base case 𝑘 = 𝑛: Since 𝜋 is accepting, 𝑡𝑛 is final.
By structural induction on 𝜓.
For all subformulas 𝜓 of 𝜑, 𝜓 ∈ 𝑡𝑖 ⇒ (𝜎, 𝑖 − 1, 𝑟) ⊧ 𝜓.

• Let 𝜓 = true. (𝜎, 𝑛 − 1, 𝑟) ⊧ true.

• Let 𝜓 = 𝑝. ∃ 𝑡𝑛−
𝑠𝑛−⟶ 𝑡𝑛. By definition of ⟶, 𝑝 ∈ 𝑡𝑛, and 𝑝 ∈ 𝑠𝑛−. Therefore,

(𝜎, 𝑛 − 1, 𝑟) ⊧ 𝑝.

• Let 𝜓 = ¬𝜇. ¬𝜇 ∈ 𝑡𝑛. 𝜇 ∉ 𝑡𝑛. Therefore, (𝜎, 𝑛 − 1, 𝑟) ⊭ 𝜇.

• Let 𝜓 = 𝜇∧ 𝜈. Since 𝑡𝑛 is an atom, 𝜇 ∈ 𝑡𝑛 and 𝜈 ∈ 𝑡𝑛. Therefore, (𝜎, 𝑛 − 1, 𝑟) ⊧ 𝜇,
(𝜎, 𝑛 − 1, 𝑟) ⊧ 𝜈 and thus (𝜎, 𝑛 − 1, 𝑟) ⊧ 𝜇 ∧ 𝜈.

• Let 𝜓 = (𝑝 ∧ 𝜇) ∨ (¬𝑝 ∧ 𝜈). Since 𝑡𝑛 is an atom, either 𝑝 ∧ 𝜇 ∈ 𝑡𝑛 or ¬𝑝 ∧ 𝜈 ∈ 𝑡𝑛.
Therefore, either (𝜎, 𝑛 − 1, 𝑟) ⊧ 𝑝 ∧ 𝜇 or (𝜎, 𝑛 − 1, 𝑟) ⊧ ¬𝑝 ∧ 𝜈 and thus (𝜎, 𝑛 −
1, 𝑟) ⊧ (𝑝 ∧ 𝜇) ∨ (¬𝑝 ∧ 𝜈).

• Let 𝜓 = 𝜇. Since 𝑡𝑛 is final, there is no such formula.

• Let 𝜓 = (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈). Since 𝑡𝑛 is final, we have ¬𝑝 ∧ 𝜈 ∈ 𝑡𝑛. Therefore,
(𝜎, 𝑛 − 1, 𝑟) ⊧ 𝑝 ∧ 𝜈 and (𝜎, 𝑛 − 1, 𝑟) ⊧ (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈).

• Let 𝜓 = ≤𝑥 𝜇. Since 𝑡𝑛 is final, we have 𝜇 ∈ 𝑡𝑛. Therefore (𝜎, 𝑛 − 1, 𝑟) ⊧ 𝜇 and
(𝜎, 𝑛 − 1, 𝑟) ≤𝑥 ⊧ 𝜇.

• Let 𝜓 = ≤𝑥 𝜇. Since 𝑡𝑛 must be locally consistent with respect to the globally
operator, we have 𝜇 ∈ 𝑡𝑛 and (𝜎, 𝑛 − 1, 𝑟) ⊧ 𝜇. Thus, (𝜎, 𝑛 − 1, 𝑟) ≤𝑥 ⊧ 𝜇.

25

2 Monitoring Parametric Temporal Logics

Inductive case 𝑘 + 1 ⇒ 𝑘: By structural induction on 𝜓.

• Let 𝜓 = true. (𝜎, 𝑘 − 1, 𝑟) ⊧ true.

• Let 𝜓 = 𝑝. ∃𝑡𝑘−
𝑠𝑘⟶ 𝑡𝑘. By definition of ⟶, 𝑝 ∈ 𝑡𝑘, 𝑠𝑘. Therefore, (𝜎, 𝑘 − 1, 𝑟) ⊧

𝑝.

• Let 𝜓 = ¬𝜇. ¬𝜇 ∈ 𝑡𝑘. 𝜇 ∉ 𝑡𝑘. Therefore, (𝜎, 𝑘 − 1, 𝑟) ⊭ 𝜇.

• Let 𝜓 = 𝜇∧ 𝜈. Since 𝑡𝑘 is an atom, 𝜇 ∈ 𝑡𝑘 and 𝜈 ∈ 𝑡𝑘. Therefore, (𝜎, 𝑘 − 1, 𝑟) ⊧ 𝜇,
(𝜎, 𝑘 − 1, 𝑟) ⊧ 𝜈 and thus (𝜎, 𝑘 − 1, 𝑟) ⊧ 𝜇 ∧ 𝜈.

• Let 𝜓 = (𝑝 ∧ 𝜇) ∨ (¬𝑝 ∧ 𝜈). Since 𝑡𝑘 is an atom, either 𝑝 ∧ 𝜇 ∈ 𝑡𝑘 or ¬𝑝 ∧ 𝜈 ∈ 𝑡𝑘.
Therefore, either (𝜎, 𝑘 − 1, 𝑟) ⊧ 𝑝 ∧ 𝜇 or (𝜎, 𝑘 − 1, 𝑟) ⊧ ¬𝑝 ∧ 𝜈 and thus (𝜎, 𝑘 −
1, 𝑟) ⊧ (𝑝 ∧ 𝜇) ∨ (¬𝑝 ∧ 𝜈).

• Let 𝜓 = 𝜇. ∃𝑡𝑘
𝑠𝑘⟶ 𝑡𝑘+. By definition of ⟶ and IH, 𝜇 ∈ 𝑡𝑘+, therefore

(𝜎, 𝑘, 𝑟) ⊧ 𝜇 and (𝜎, 𝑘 − 1, 𝑟) ⊧ 𝜇.

• Let 𝜓 = (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈). By definition of ⟶ and local consistency of the
atom 𝑡𝑘, we have either ¬𝑝 ∧ 𝜈 ∈ 𝑡𝑘 or (𝑝 ∧ 𝜇) ∈ 𝑡𝑘 and (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈) ∈ 𝑡𝑘+.
Therefore, either (𝜎, 𝑘 − 1, 𝑟) ⊧ 𝑝 ∧ 𝜇 and (by IH) (𝜎, 𝑘, 𝑟) ⊧ (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈) or
(𝜎, 𝑘 − 1, 𝑟) ⊧ ¬𝑝 ∧ 𝜈. Thus, either way (𝜎, 𝑘 − 1, 𝑟) ⊧ (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈).

• Let 𝜓 = ≤𝑥 𝜇. We either have 𝜓 ∈ 𝑡𝑘+, with some 𝑛𝑥 = 𝜂𝑘+(𝑛𝑥), or 𝜇 ∈ 𝑡𝑘.
In the laĴer case, we trivially have (𝜎, 𝑘 − 1, 𝑟) ⊧ ≤𝑥 𝜇. In the former case, we
have that 𝜇 ∈ 𝑡𝑘+𝑗+ for some distance 𝑗. By IH, we have (𝜎, 𝑘, 𝑟) ⊧ ≤𝑥 𝜇, thus
we also have (𝜎, 𝑘, 𝑟′) ⊧ ≤𝑥 𝜇 for some r’.

• Let𝜓 = ≤𝑥 𝜇. Since 𝑡𝑘+ must be locally consistent with respect to the globally
operator, we have 𝜇 ∈ 𝑡𝑘+, 𝜇 ∈ 𝑡𝑘 and (𝜎, 𝑘, 𝑟) ⊧ 𝜇 as well as (𝜎, 𝑘 − 1, 𝑟) ⊧ 𝜇. By
IH, (𝜎, 𝑘, 𝑟) ≤𝑥 ⊧ 𝜇, and thus (𝜎, 𝑘 − 1, 𝑟′) ≤𝑥 ⊧ 𝜇 for some r’.

This concludes the proof of Lemma 2.6.

It remains to show the remaining part of Lemma 2.5, which is that the result of
the run is the measure of 𝜑.

Lemma 2.7. For all positions 𝑖 and atoms 𝑡𝑖, and for every eventuality ≤𝑥 𝜇 in 𝑡𝑖, the
distance 𝑑𝑖(𝑥) to the next atom containing 𝜇 adheres to 𝑑𝑖(𝑥) ≤ 𝑟(𝑥) − 𝜂𝑖(𝑛𝑥), and for every
parameterized globally operator ≤𝑥 𝜇 in 𝑡𝑖, the distance 𝑑𝑖(𝑥) to the next atom containing
¬𝜇 adheres to 𝑑𝑖(𝑥) ≥ 𝑟(𝑥) − 𝜂𝑖(𝑛𝑥).

26

2.5 Deterministic PLTL

We show, inductively, that for a subformula ≤𝑥 𝜓 in atom 𝑡𝑖, the distance to the
next atom with [𝜓] is at most 𝑟(𝑥) − 𝜂𝑖(𝑛𝑥) steps; and, likewise, that for a subformula

≤𝑥 𝜓 in atom 𝑡𝑖, the distance to the next atom with ¬[𝜓] is at least 𝑟(𝑥) − 𝜂𝑖(𝑛𝑥) steps.

Proof. We prove that the final valuation 𝜂𝑛 which determines the result 𝑟, agrees
with the valuation 𝑟 such that (𝜎, 0, 𝑟) ⊧ 𝜑, by induction on trace 𝜎. More precisely,
we prove that for every position 𝑖, for every eventuality ≤𝑥 𝜇 in atom 𝑡𝑖, the dis-
tance 𝑑𝑖(𝑥) to the next atom containing 𝜇 adheres to 𝑑𝑖(𝑥) ≤ 𝑟(𝑥) − 𝜂𝑖(𝑛𝑥) and for every
parameterized globally operator ≤𝑥 𝜇 in 𝑡𝑖, the distance 𝑑𝑖(𝑥) to the next atom con-
taining ¬𝜇 adheres to 𝑑𝑖(𝑥) ≥ 𝑟(𝑥) − 𝜂𝑖(𝑛𝑥).
Base case 𝑖 = 0:
We split the cases based on the parametric operators:

• Let 𝜓 = ≤𝑥 𝜇. We have 𝜂(𝑚𝑥) = 0 and 𝜂(𝑛𝑥) = 0 by initialization with 𝜃. We
prove by contradiction that 𝑟(𝑥) = 𝜔(𝜂𝑛(𝑚𝑥)) contains the maximum 𝜂-value
of 𝑛𝑥 along the trace: If there were a position 𝑘, where 𝑛𝑥 > 𝜂𝑛(𝑚𝑥), then 𝑘must
have been followed by a position 𝑗 > 𝑘 where 𝜇 ∉ 𝑡𝑗. By definition of 𝛾, the
newly stored maximum in 𝜂𝑗(𝑚𝑥) must be greater than 𝜂𝑛(𝑚𝑥). The position 𝑗
must occur before the end of the trace, since we do not allow eventualities in
final atoms. Thus, we have that 𝑑(𝑥) ≤ 𝑟(𝑥).

• Let 𝜓 = ≤𝑥 𝜇. We have 𝜂(𝑚𝑥) = ∞ and 𝜂(𝑛𝑥) = 0 by initialization with
𝜃. We prove by contradiction that 𝑟(𝑥) = 𝜔(𝜂𝑛(𝑚𝑥)) contains the minimum
𝜂-value of 𝑛𝑥 along the positions 𝑘 of the trace where ¬𝜇 ∈ 𝑡𝑘: If there were a
position 𝑗, where ¬𝜇 ∈ 𝑡𝑗 and 𝑛𝑥 < 𝜂𝑛(𝑚𝑥), then by definition of 𝛾, the newly
stored minimum in 𝜂𝑗(𝑚𝑥)must be smaller than 𝜂𝑛(𝑚𝑥). Since the minimum is
also applied by 𝜔 on the last position of the run, we have that 𝑑(𝑥) ≥ 𝑟(𝑥).

Inductive case 𝑖 ⇒ 𝑖 + 1:
We split the cases based on the parametric operators:

• Let 𝜓 = ≤𝑥 𝜇. If 𝜇 ∈ 𝑡𝑖+, then 𝑑𝑖+(𝑥) = 0 and 𝑑𝑖+(𝑥) ≤ 𝑟(𝑥) − 𝜂𝑖+(𝑛𝑥), since
𝑟(𝑥) contains the maximum of all 𝑛𝑥-values. If 𝜇 ∉ 𝑡𝑖+, then we have that
𝑑𝑖+(𝑥) = 𝑑𝑖(𝑥) − 1 and by definition of 𝛾, 𝜂𝑖+(𝑛𝑥) = 𝜂𝑖(𝑛𝑥) + 1. Thus, together
with the induction hypothesis, the inequality still holds.

• Let 𝜓 = ≤𝑥 𝜇. If ¬𝜇 ∈ 𝑡𝑖+, then 𝑑𝑖+(𝑥) = 0 and 𝑑𝑖+(𝑥) ≥ 𝑟(𝑥) − 𝜂𝑖+(𝑛𝑥), since
𝑟(𝑥) contains the minimum of all 𝑛𝑥-values in ¬𝜇-atoms. If 𝜇 ∈ 𝑡𝑖+, then we
have that 𝑑𝑖+(𝑥) = 𝑑𝑖(𝑥) − 1 and by definition of 𝛾, 𝜂𝑖 + 1(𝑛𝑥) = 𝜂𝑖(𝑛𝑥) + 1. Thus,
together with the induction hypothesis, the inequality still holds.

27

2 Monitoring Parametric Temporal Logics

This concludes the proof of Lemma 2.7.

Thus, for 𝑟(𝑥) = 𝜔(𝑡𝑛, 𝜂𝑛)(𝑥), we have (𝜎, 0, 𝑟) ⊧ 𝜑.

Lemma 2.8. For a trace 𝜎 = 𝑒𝑒…𝑒𝑛− ∈ (2AP)∗, if (𝜎, 0, 𝑟) ⊧ 𝜑, then there exists a run
𝜋 = (𝑡, 𝜂), (𝑡, 𝜂), … (𝑡𝑛, 𝜂𝑛) of 𝐴𝜑 on 𝜎 with result 𝑟′, where 𝑟 ⊒ 𝑟′.

For the reverse direction, stated as Lemma 2.8, we first construct the sequence of
atoms corresponding to the given trace. Based on the semantics, we show induc-
tively that the subformulas in the atoms hold over the respective suffixes.

Lemma 2.9. For a trace 𝜎 = 𝑒𝑒…𝑒𝑛− and a deterministic PLTL formula 𝜑, if (𝜎, 0, 𝑟) ⊧
𝜑, then there exists an atom sequence 𝑡… 𝑡𝑛 such that 𝑡 is the unique atom that contains

𝜑 and is consistent with 𝑒, 𝑡𝑖
𝑠𝑖⟶ 𝑡𝑖+ for all 𝑖 = 0…𝑛 − 2, and for every subformulas 𝜓

and position 𝑖 = 0…𝑛 − 1, if 𝜓 ∈ 𝑡𝑖, (𝜎, 𝑖 − 1, 𝑟) ⊧ 𝜓.

We complete the atom sequence of Lemma 2.9 into a complete run by computing
the values of 𝑛𝑥 and 𝑚𝑥 for each parameter 𝑥 and each trace position according to
the definition of the automaton.

Proof. There exists a sequence 𝑢, 𝑢, … 𝑢𝑛 with ∀𝑖.𝑢𝑖 ⊆ non-parametric formulas of
𝜑 with the property that for all positions 𝑖 and for all subformulas 𝜓, 𝜓 ∈ 𝑢𝑖 ⇔
(𝜎, 𝑖 − 1, 𝑟) ⊧ 𝜓 for some 𝑟.
We proceed by induction on 𝜎, constructing the sequence 𝑢, 𝑢, … 𝑢𝑛 backwards.
For all non-parametric subformulas:
Base case 𝑘 = 𝑛: By structural induction on 𝜓:

• Let 𝜓 = true. true ∈ 𝑢𝑛.

• Let 𝜓 = 𝑝. If 𝑝 ∈ 𝑠𝑛−, then 𝑝 ∈ 𝑢𝑛.

• Let 𝜓 = ¬𝜇. If (𝜎, 𝑛 − 1, 𝑟) ⊭ 𝜇, ¬𝜇 ∈ 𝑢𝑛.

• Let 𝜓 = 𝜇∧ 𝜈. If 𝜇 ∈ 𝑢𝑛 and 𝜈 ∈ 𝑢𝑛 then 𝜇∧ 𝜈 ∈ 𝑢𝑛.

• Let 𝜓 = (𝑝 ∧ 𝜇) ∨ (¬𝑝 ∧ 𝜈). If 𝑝 ∈ 𝑢𝑛 and 𝑝 ∧ 𝜇 ∈ 𝑢𝑛 or ¬𝑝 ∈ 𝑢𝑛 and ¬𝑝 ∧ 𝜈 ∈ 𝑢𝑛
then (𝑝 ∧ 𝜇) ∨ (¬𝑝 ∧ 𝜈) ∈ 𝑢𝑛.

• Let 𝜓 = 𝜇. 𝜇 ∈ 𝑢𝑛.

• Let 𝜓 = (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈). If (¬𝑝 ∧ 𝜈) ∈ 𝑢𝑛, then (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈) ∈ 𝑢𝑛.

28

2.5 Deterministic PLTL

Inductive case 𝑘 + 1 ⇒ 𝑘: Induction on 𝜓:

• Let 𝜓 = true, and true ∈ 𝑢𝑘.

• Let 𝜓 = 𝑝. If 𝑝 ∈ 𝑠𝑘−, then 𝑝 ∈ 𝑢𝑘.

• Let 𝜓 = ¬𝜇. If (𝜎, 𝑘 − 1, 𝑟) ⊭ 𝜇, ¬𝜇 ∈ 𝑢𝑘.

• Let 𝜓 = 𝜇∧ 𝜈. If 𝜇 ∈ 𝑢𝑘 and 𝜈 ∈ 𝑢𝑘 then 𝜇∧ 𝜈 ∈ 𝑢𝑘.

• Let 𝜓 = (𝑝 ∧ 𝜇) ∨ (¬𝑝 ∧ 𝜈). If 𝑝 ∈ 𝑢𝑘 and 𝑝 ∧ 𝜇 ∈ 𝑢𝑘 or ¬𝑝 ∈ 𝑢𝑘 and ¬𝑝 ∧ 𝜈 ∈ 𝑢𝑘
then (𝑝 ∧ 𝜇) ∨ (¬𝑝 ∧ 𝜈) ∈ 𝑢𝑘.

• Let 𝜓 = 𝜇. If 𝜇 ∈ 𝑢𝑘+, then 𝜇 ∈ 𝑢𝑘.

• Let𝜓 = (𝑝∧𝜇)U(¬𝑝∧𝜈). If (¬𝑝∧𝜈) ∈ 𝑢𝑘 or (𝑝∧𝜇) ∈ 𝑢𝑘+ and (𝑝∧𝜇)U(¬𝑝∧𝜈) ∈
𝑢𝑘+, then (𝑝 ∧ 𝜇)U(¬𝑝 ∧ 𝜈) ∈ 𝑢𝑘.

Then there exists a sequence 𝜋 = 𝑡, 𝑡, … 𝑡𝑛, such that for all positions 𝑖, we have that
𝑢𝑖 ⊆ 𝑡𝑖 ⊆ cl(𝜑) and for all subformulas 𝜓, 𝜓 ∈ 𝑡𝑖 ⇒ (𝜎, 𝑖 − 1, 𝑟).
We proceed by induction on 𝜎, constructing the accepted sequence 𝜋.
Base case 𝑘 = 0: 𝑞.
Base case 𝑘 = 1: By structural induction on 𝜓.
Since 𝑢 ⊆ 𝑡, only the parametric operators remain.

• Let 𝜓 = ≤𝑥 𝜇. If ≤𝑥 𝜇 is generated by a subformula of 𝑢, ≤𝑥 𝜇 is in 𝑡.

• Let 𝜓 = ≤𝑥 𝜇. If ≤𝑥 𝜇 is generated by a subformula of 𝑢, ≤𝑥 𝜇 is in 𝑡.

Inductive case 𝑘 ⇒ 𝑘 + 1: By structural induction on 𝜓. Since 𝑢𝑘+ ⊆ 𝑡𝑘+, only the
parametric operators remain.

• Let 𝜓 = ≤𝑥 𝜇. If 𝜓 ∈ 𝑡𝑘 and 𝜇 ∉ 𝑡𝑘, 𝜓 ∈ 𝑡𝑘+.

• Let 𝜓 = ≤𝑥 𝜇. If 𝜓 ∈ 𝑡𝑘 and 𝜇 ∉ 𝑡𝑘+, then 𝜓 ∈ 𝑡𝑘+.

This concludes the proof of Lemma 2.9.

Lemma 2.10. For a trace 𝜎 = 𝑒𝑒, … 𝑒𝑛− and a deterministic PLTL formula𝜑, if (𝜎, 0, 𝑟) ⊧

𝜑, then there exists a run of 𝐴𝜑, 𝜋 = (𝑡, 𝜂), (𝑡, 𝜂) … (𝑡𝑛, 𝜂𝑛) where 𝑡𝑖
𝑒𝑖⟶ 𝑡𝑖+ and for all

subformulas and positions 𝑖, if 𝜓 ∈ 𝑡𝑖, (𝜎, 𝑖 − 1, 𝑟) ⊧ 𝜓, with result 𝜔(𝑒𝑛, 𝜂𝑛) ⊑ 𝑟.

29

2 Monitoring Parametric Temporal Logics

Proof. To prove Lemma 2.10, that the result of the run is at least as good as 𝑟, we
show, inductively, (1) that for each subformula ≤𝑥 𝜓 and each trace position 𝑖,
𝜂𝑖(𝑛𝑥) is less than or equal to the difference of 𝑟(𝑥) and the distance of the closest
atom that contains𝜓; and (2) that for each subformula ≤𝑥 𝜓 and each trace position
𝑖, the sum of 𝜂𝑖(𝑛𝑥) and the distance of the closest atom that contains ¬[𝜓] is greater
than or equal to 𝑟(𝑥). Since 𝑚𝑥 maintains for ≤𝑥 𝜓 and for ≤𝑥 𝜓, the maximum
and minimum measure, respectively, the Lemma 2.10 follows.

Theorem 2.11. For every PLTLdet-formula 𝜑, there exists a deterministic measuring au-
tomaton 𝐴𝜑 with a linear number of states in |𝜑| and a linear number of variables 𝑋 in |𝜑|,
such that for every sequence 𝜎 ∈ (2AP)∗, 𝜎 is accepted by𝐴𝜑 with result 𝑟 iff 𝑟 is the measure
of 𝜑 on 𝜎.

Proof. Since𝐴𝜑 only has a at most one run on a given trace due to determinicity and
therefore a unique result, if a run exists, Lemma 2.5 and Lemma 2.8 imply that the
result of 𝐴𝜑 on a trace is the measure of 𝜑 on the given trace.

Lemma 2.12. The configuration of a measuring automaton can be represented in logarith-
mic space in the length of the input sequence.

From Theorem 2.11 and Lemma 2.12 (which follows directly from the construc-
tion) it follows that the space required by the online monitor is linear in the size of
the specification and logarithmic in the length of the trace.

Corollary 2.13. A PLTLdet formula 𝜑 can be measured in linear space in the size of 𝜑 and
logarithmic space in the length of the trace.

2.6 Unambiguous PLTL

In PLTLdet, we have traded the full expressivity of LTL against a simpler parametric
monitoring and measuring problem, where monitoring a single trace always lead
to a unique result: the measure of the trace. In this section, we recover the full ex-
pressivity of LTL, but instead only determinize the measuring parts of the formula.
This leads to an exponential construction of the monitoring automaton in the size
of the formula, but keeps the logarithmic dependency on the trace length.

As the size of the formula is usually known at design-time of a system, this ex-
ponential component in the complexity does not necessarily lead to a problem in
practice, as the formula could be refined in a more deterministic manner while ex-
pressing a strengthened property.

30

2.6 Unambiguous PLTL

While PLTLdet is a syntactic restriction on the permiĴed formulas, unambiguous
PLTL is a semantic restriction on the formulas. The semantics of disjunctive fea-
tures of the logic are modified to remove precisely the expensive nature of measur-
ing under uncertainty with respect to the satisfaction of complex future temporal
dependencies.

Syntax and Semantics of unambiguous PLTL The syntax of unambiguous PLTL
is the same as PLTL as given in Section 2.1. The semantics of temporal and logical
operators with disjunctive features is modified as follows:

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑 ∨𝜑, iff (𝜎, 𝑘, 𝛼) ⊨ 𝜑 or (𝜎, 𝑘, 𝛼) ⊨ ¬[𝜑] ∧ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑U𝜑, iff ∃𝑖. 𝑘 ≤ 𝑖 < |𝜎|, where (𝜎, 𝑖, 𝛼) ⊨ 𝜑 and ∀𝑗. 𝑘 ≤ 𝑗 < 𝑖, we have
(𝜎, 𝑗, 𝛼) ⊨ 𝜑 ∧¬[𝜑].

• (𝜎, 𝑘, 𝛼) ⊨ 𝜑R𝜑, iff
either ∃𝑖. 𝑘 ≤ 𝑖 < |𝜎|, where (𝜎, 𝑖, 𝛼) ⊨ 𝜑 ∧ 𝜑 and ∀𝑗. 𝑘 ≤ 𝑗 ≤ 𝑖, we have
(𝜎, 𝑗, 𝛼) ⊨ ¬[𝜑] ∧ 𝜑,
or ∀𝑗. 𝑘 ≤ 𝑗 < |𝜎| we have (𝜎, 𝑗, 𝛼) ⊨ ¬[𝜑] ∧ 𝜑.

• (𝜎, 𝑘, 𝛼) ⊨ ≤𝑥 𝜑, iff
∃𝑖. 𝑘 ≤ 𝑖 ≤ 𝛼(𝑥) and 𝑘 + 𝑖 < |𝜎|, where (𝜎, 𝑘 + 𝑖, 𝛼) ⊨ 𝜑 and ∀𝑗. 𝑘 ≤ 𝑗 < 𝑖, we have
(𝜎, 𝑗, 𝛼) ⊨ ¬[𝜑],
or we have that 𝑘 + 𝛼(𝑥) ≥ |𝜎| and ∀𝑗. 𝑘 ≤ 𝑗 < |𝜎|, we have (𝜎, 𝑗, 𝛼) ⊨ ¬[𝜑].

These changes ensure that we never have the situation where a measurement
needs to be combined disjunctively from both sides of a logical disjunction, and
that the temporal operators have to match on the first opportunity.

Note that this change removes commutativity of disjunction, if there is a para-
metric subformula on its right-hand side. Also note that for formulas in the syntax
of PLTLdet, both semantics agree, guaranteeing that unambiguous PLTL is a strict
generalization of PLTLdet.

Example Consider the trace 𝜎 = {𝑎}{𝑎, 𝑏}∅ and the PLTL formula 𝜑 = 𝑎U ≤𝑥 𝑏.
According to the original semantics in Section 2.1, both for the valuation 𝛼 ∶ {𝑥 ↦ 0}
and the valuation 𝛼′ ∶ {𝑥 ↦ 1}, we have that (𝜎, 0, 𝛼) ⊨ 𝜑 and (𝜎, 0, 𝛼′) ⊨ 𝜑, respec-
tively. This is due to the two possibilities to satisfy the goal of the until formula
by satisfying ≤𝑥 𝑏. Under the unambiguous semantics, we immediately use the
first position where the subformula is satisfied, so we only have (𝜎, 0, 𝛼′) ⊨ 𝜑 with

31

2 Monitoring Parametric Temporal Logics

measure 𝑥 ↦ 1, because the LTL abstraction [≤𝑥 𝑏] = 𝑏 is satisfied at position 0,
and the requirement would be that ¬[≤𝑥 𝑏] is satisfied.

2.6.1 From Unambiguous PLTL to Measuring Automata

The disjuncts of unambiguous PLTL are not guarded by atomic propositions, but
instead are guarded by full temporal subformulas. The truth values of these formu-
las may - in the worst case - only be resolved at the end of the trace, so we have to
extend the construction of the automaton to keep track of all possible runs resulting
in a positive result.

Still, the nondeterminism in the successor relation of the measuring automaton
only depends on the behavior of the non-parametric subformulas, as the following
lemmata show.

Lemma 2.14. Let 𝑡, 𝑡′ be two atoms in a state 𝑠 of the measuring automaton reached after
reading some trace 𝜎 = 𝑒𝑒𝑒…𝑒𝑛, such that there exists a sequence 𝑡𝑡… 𝑡𝑛+ of atoms

with 𝑡𝑖 ∈ 𝑠𝑖 for 𝑖 = 1…𝑛 + 1 and 𝑡𝑖
𝑒𝑖⟶ 𝑡𝑖+ for 𝑖 = 1…𝑛 such that 𝑡𝑛+ = 𝑡, and a sequence

𝑡′𝑡′… 𝑡′𝑛+ of atoms with 𝑡′𝑖 ∈ 𝑠𝑖 for 𝑖 = 1…𝑛 + 1 and 𝑡′𝑖
𝑒𝑖⟶ 𝑡′𝑖+ for 𝑖 = 1…𝑛 such that

𝑡′𝑛+ = 𝑡′. If 𝑡𝑖 and 𝑡′𝑖 agree on the non-parametric formulas for all 𝑖 = 1…𝑛+ 1, then 𝑡 = 𝑡′.

Proof. By induction on the length of 𝜎. By contradiction, let 𝑖 be the first position
where a parametric subformula 𝜓 occurs in 𝑡𝑖 but not in 𝑡′𝑖 , and let 𝜓 be the largest
(in some total order that extends formula length) such subformula.

• if 𝜓 occurs as the direct subformula of a disjunction or until operator in 𝑡𝑖 and
𝑡′𝑖 , then this contradicts unambiguity in disjunction or until;

• if 𝜓 occurs as the direct subformula of a conjunction or negation, this contra-
dicts the consistency requirement.

Hence, no such 𝜓 can exist.

Lemma 2.15. Let 𝑡, 𝑡 be two atoms in a state of the measuring automaton reached after
reading some trace 𝜎, and let 𝑡′ be an atom in the state reached after reading the additional

event 𝑒, such that 𝑡
𝑒⟶ 𝑡′ and 𝑡

𝑒⟶ 𝑡′. Then 𝑡 = 𝑡.

Proof. We first show the result for 𝑡 and 𝑡. Then, repeating the argument on the
predecessor atoms, the corresponding atoms on the sequences of atoms leading to
𝑡 and 𝑡, agree on the non-parametric subformulas. By Lemma 2.14, it then follows
that 𝑡 and 𝑡 also agree on the parametric formulas.

32

2.6 Unambiguous PLTL

Suppose there exist 𝑡, 𝑡 ∈ At𝜑 with 𝑡
𝑒⟶ 𝑡′, 𝑡

𝑒⟶ 𝑡′, 𝑡 ∩AP = 𝑡 ∩AP = 𝑒, and
there exists a non-parametric subformula 𝜓 ∈ cl(𝜑) such that 𝜓 ∈ 𝑡 ∖ 𝑡. Let 𝜓 be
the smallest (in some total order that extends formula length) such formula in 𝑡.

• 𝜓 ∈ AP: 𝜓 cannot be an atomic proposition, because 𝑡 ∩AP = 𝑡 ∩AP;

• 𝜓 = 𝜇 ∧ 𝜂, 𝜓 = 𝜇 ∨ 𝜂, or 𝜓 = ¬𝜇: 𝜓 cannot be a conjunction, disjunction, or
negation because of the assumption that 𝜓 is the smallest subformula where
𝑡 and 𝑡 disagree;

• if𝜓 is a (non-parametric) temporal formula, then, because of maximality,¬𝜓 ∈
𝑡;

– if 𝜓 = 𝜂, then 𝜂 ∈ 𝑡′ because of 𝑡
𝑒⟶ 𝑡′, and ¬𝜂 ∈ 𝑡′, because ¬𝜓 ∈ 𝑡

and 𝑡
𝑒⟶ 𝑡′. This contradicts the consistency of 𝑡′.

– if 𝜓 = 𝜇U𝜂, then there are two cases: (1) 𝜂 ∈ 𝑡; since 𝜓 is the smallest
formula in 𝑡 where 𝑡 and 𝑡 disagree, we have that 𝜂 ∈ 𝑡; since, by
maximality, also ¬𝜓 ∈ 𝑡, this contradicts the consistency of 𝑡. (2) 𝜂 ∉ 𝑡𝑞,
therefore by maximality, ¬𝜂 ∈ 𝑡, and, again because 𝜓 is the smallest

formula in 𝑡 where 𝑡 and 𝑡 disagree, ¬𝜂 ∈ 𝑡. Because of 𝑡
𝑒⟶ 𝑡′ we

thus have 𝜓 in 𝑡′, and by 𝑡
𝑒⟶ 𝑡′, we have that ¬𝜓 ∈ 𝑡′. This contradicts

the consistency of 𝑡′.

– if 𝜓 = 𝜇R𝜂, then there are two cases: (1) 𝜇 ∈ 𝑡; since 𝜇 is the smallest
formula in 𝑡 where 𝑡 and 𝑡 disagree, we have that 𝜇 ∈ 𝑡; since, by
maximality, also ¬𝜓 ∈ 𝑡, this contradicts the consistency of 𝑡. (2) 𝜇 ∉ 𝑡,
therefore by maximality, ¬𝜇 ∈ 𝑡, and, again because 𝜓 is the smallest

formula in 𝑡 where 𝑡 and 𝑡 disagree, ¬𝜇 ∈ 𝑡. Because of 𝑡
𝑒⟶ 𝑡′ we

thus have 𝜓 in 𝑡′, and by 𝑡
𝑒⟶ 𝑡′, we have that ¬𝜓 ∈ 𝑡′. This contradicts

the consistency of 𝑡′.

Lemma 2.16. Every final state 𝑓 ∈ 𝐹 reached by the measuring automaton on some trace
contains exactly one atom, and this atom has no unfulfilled obligations.

Proof. Assume that there exist two different atoms 𝑡, 𝑡 ∈ 𝑓, 𝑡 ≠ 𝑡. We first show
that 𝑡 and 𝑡 agree on the non-parametric formulas. In analogy to the proof of
Lemma 2.15 it then follows that the corresponding atoms on the sequences of atoms

33

2 Monitoring Parametric Temporal Logics

leading to 𝑡 and 𝑡 agree on the non-parametric subformulas. By Lemma 2.14, it
then follows that 𝑡 and 𝑡 also agree on the parametric formulas.
By contradiction, let 𝜓 be the smallest (in some total order that extends formula
length) non-parametric formula that is in 𝑡 but not in 𝑡.

• 𝜓 ∈ AP: 𝜓 cannot be an atomic proposition, because the atoms of a state agree
on the atomic propositions.

• 𝜓 = 𝜇 ∧ 𝜂, 𝜓 = 𝜇 ∨ 𝜂, or 𝜓 = ¬𝜇: 𝜓 cannot be a conjunction, disjunction, or
negation because of the assumption that 𝜓 is the smallest subformula where
𝑡 and 𝑡 disagree;

• 𝜓 = 𝜂 is not allowed for final states;

• if 𝜓 = 𝜇U𝜂, then 𝜂 ∈ 𝑡 and, since 𝜓 is the smallest formula where 𝑡 and 𝑡
disagree, also 𝜂 ∈ 𝑡; hence, 𝜓 ∈ 𝑡;

• if 𝜓 = 𝜇R𝜂, then 𝜇 ∈ 𝑡 and, since 𝜓 is the smallest formula where 𝑡 and 𝑡
disagree, also 𝜇 ∈ 𝑡; hence, 𝜓 ∈ 𝑡;

Hence, no such formula 𝜓 can exist.

Soundness.

Theorem2.17. For every PLTL formula𝜑 there exists ameasuring automaton𝐴𝜑 = (Σ,Ω,
𝑄, 𝑞, 𝑋, 𝜃, 𝛿, 𝛾, 𝐹, 𝜔) with an exponential number of states𝑄 in |𝜑| and a linear number of
variables 𝑋 in |𝜑| such that for every sequence 𝜎 ∈ (2AP)∗, 𝜎 is accepted by 𝐴𝜑 with result 𝑟
iff 𝑟 is the measure of 𝜑 on 𝜎 under the unambiguous semantics.

Proof. The correctness proof of the construction of 𝐴𝜑 in Theorem 2.17 follows the
structure of the proof of Theorem 2.11 (the corresponding construction for deter-
ministic PLTL). The key difference is in the proof of Lemma 2.9, where we claim
that for every trace 𝜎 and formula 𝜑, if (𝜎, 0, 𝑟) ⊧ 𝜑, then there exists an atom se-
quence that satisfies the successor relation.

For deterministic PLTL, this sequence can be constructed in a simple induction,
progressing from the first position forwards, because the semantics are determin-
istic, i.e., the subformulas of the successor atom are uniquely determined by the
present atom and the next event.

For unambiguous PLTL, the parametric subformulas are chosen based on the
truth value of the non-parametric subformulas. We therefore construct the sequence
of atoms in two steps. In the first step, we compute, progressing backwards from

34

2.7 Monitoring Algorithm

the final position, precisely the set of non-parametric formulas that are satisfied in
each position. In the second step, we add, progressing forwards from the initial po-
sition, the parametric subformulas according to the (now deterministic) semantics
of unambiguous PLTL.

From Theorem 2.17 and Lemma 2.12 it follows that the space required by the
online monitor is exponential in the size of the specification and logarithmic in the
length of the trace.

Corollary 2.18. Under the unambiguous semantics, a PLTL formula 𝜑 can be measured
in exponential space in the size of the specification 𝜑 and logarithmic space in the length of
the trace.

2.7 Monitoring Algorithm

For online monitoring, we first construct the measuring automaton for the given
PLTL formula. Then, we process the incoming events starting in the initial states,
following the transition relation and eliminating sets of states which contain unsat-
isfiable sets of formulas.

To represent the current state of the automaton, the algorithm maintains in case
of deterministic PLTL only a single, universally interpreted atom. In case of unam-
biguous PLTL, it maintains a set of universally interpreted atoms. The counters,
which are kept per atom, are represented in a binary encoding.

For deterministic PLTL, the online monitoring algorithm (Algorithm 1) needs
space linear in the specification 𝜑, due to the maintenance of the current atom and
the counters, and logarithmic in the length of the trace 𝜎. The time complexity is
linear in 𝜎, and polynomial in 𝜑, if the transition relation is computed on-the-fly.

The complexity of the online monitoring algorithm for unambiguous PLTL (Al-
gorithm 2) is now mainly dominated by the specification, since it needs to maintain
a universally interpreted set of atoms. For space complexity, it is exponential in for-
mula 𝜑 (due to the need for explicitly maintaining a large number of counters), and
again logarithmic in the length of the trace 𝜎 due to the size of the counters. With
regard to time complexity, the algorithm is still constant time per event in respect
to 𝜎, and exponential in 𝜑 for the on-the-fly calculation of 𝛿 and 𝛾.

35

2 Monitoring Parametric Temporal Logics

Algorithm 1 Online Monitoring Algorithm for deterministic PLTL

Input: specification: PLTLdet 𝜑, deterministic measuring automaton 𝐴𝜑,
trace 𝜎 with incoming events 𝑒 ∈ 2𝐴𝑃
Output: (preliminary) verdict 𝑣, measure 𝑟

1: currAtom← 𝑞 ▷ initial state
2: currMeas← 𝜂, 𝜂 = {Θ(𝑛𝑥) ∣ 𝑥 ∈ 𝑋} ∪ {Θ(𝑚𝑥) ∣ 𝑥 ∈ 𝑋} ▷ initial counter values
3: pv← true ▷ initial verdict
4: for all new incoming events 𝑒 do
5: nextAtom← 𝛿(currAtom, 𝑒) ▷ evaluate transition relation
6: nextMeas← 𝛾(currMeas, currAtom, 𝑒) ▷ update counters
7: currAtom← nextAtom
8: currMeas← nextMeas
9: if currAtom ∈ 𝐹 then ▷ evaluate preliminary verdict

10: pv← true
11: else
12: pv← false
13: end if
14: end for
15: 𝑣 ← pv ▷ set final verdict
16: 𝑟 ← 𝜔(currAtom, currMeas) ▷ final evaluation of counters

2.8 Experiments

The algorithms from the previous section have been implemented in Java for both
deterministic and unambiguous PLTL, together with an implementation for the of-
fline algorithm described in section 2.2. For evaluation purposes, a Boolean abstrac-
tion of simulated circuit traces was used. The experiments were executed on an 2.6
GhZ Intel Core i7 processor with 8GB memory. The traces were generated as circuit
simulation runs and stored on a solid-state disk drive. For the online monitor, they
were given eventwise to the implementation.

Bus arbiter For this benchmark, traces from a bus arbiter for a shared resource
serving three clients were used. The parameters are used to measure the waiting
times of the clients with the following PLTL formula:

(𝑟 → ≤𝑥 𝑔) ∧ (𝑟 → ≤𝑥 𝑔) ∧ (𝑟 → ≤𝑥 𝑔)

Memory controller The second benchmark is an implementation of a memory
controller module. The controller exports a bus interface to a memory module and
reads and writes memory cell contents onto the bus. Here, we measured the re-

36

2.8 Experiments

Algorithm 2 Online Monitoring Algorithm for unambiguous PLTL
Input: specification: unambiguous PLTL formula𝜑, measuring automaton𝐴𝜑,
trace 𝜎 with incoming events 𝑒 ∈ 2𝐴𝑃
Output: (preliminary) verdict 𝑣, measure 𝑟

1: currAtomList← [𝑞] ▷ initial state
2: currMeasList← [𝜂], 𝜂 = {Θ(𝑛𝑥) ∣ 𝑥 ∈ 𝑋} ∪ {Θ(𝑚𝑥) ∣ 𝑥 ∈ 𝑋} ▷ initial counter

values
3: pv← true ▷ initial verdict
4: for all new incoming events 𝑒 do
5: nextAtomList← []
6: nextMeasList← []
7: for (𝑡, 𝜂) ∈ zip(currAtomList,cMeasList) do
8: nextAtomList← nextAtomList.append(𝛿(𝑡, 𝑒)) ▷ 𝛿 is not deterministic
9: nextMeasList← nextMeasList.append(𝛾(𝜂, 𝑡, 𝑒))

10: ▷ 𝛾 lifted to lists of counter valuations
11: end for
12: currAtomList← nextAtomList
13: currMeasList← nextMeasList
14: if ∃ currAtom ∈ currAtomList∧ currAtom∩ 𝐹 ≠ ∅ then
15: ▷ evaluate preliminary verdict
16: pv← true
17: else
18: pv← false
19: end if
20: end for
21: 𝑣 ← pv ▷ set final verdict
22: 𝑟 ← 𝜔(currAtomList, currMeasList) ▷ final evaluation of counters

tention period of a memory cell over a trace. The PLTL specification consisted of a
single U≤𝑥 formula.

The performance differences highlighted in Table 2.8 are mainly a result of the
different I/O behavior of the algorithms. Since the offline algorithm has to perform
multiple passes over the trace, it reads the input file multiple times from disc. Since
the online algorithm just maintains the reachable set of atoms at any given point in
time, it does not have to explore the full state space of the corresponding measuring
automata.

37

2 Monitoring Parametric Temporal Logics

bus arbiter memory controller
trace length offline online offline online
10k events 2027 ms 74 ms 444 ms 84 ms

100k events 6679 ms 263 ms 752 ms 246 ms
1M events 63711 ms 1484 ms 6275 ms 727 ms

10M events 180281 ms 13642 ms 65209 ms 15606 ms

Table 2.1: Runtime (in ms) for the offline and online monitoring algorithms on both
benchmarks.

38

3 Stream Monitoring

This chapter provides the necessary background and important notions for stream-
based monitoring with Lќљю as described in [24]. As an addition, a PLTL embedding
is described in Section 3.4.

Classic monitoring approaches, as presented in Chapter 2, work on a Boolean ab-
straction of the system trace, mainly due to the historical roots of the underlying
logics, and their use in hardware model checking. There, the Boolean abstraction
ensures an overall finite state behavior of the system model, and thus makes model
checking feasible because large, possibly infinite value domains of variables are ab-
stracted away. In runtime monitoring, we are however not necessarily limited to
Boolean abstractions. Since we are observing the runtime behavior as a single trace,
it is easy to extract the current value of variables in the system under observation.
Therefore, the barrier to use richer logics with expressive value domains is not im-
mediately prohibitive.

The specification language Lќљю [24] was originally introduced for monitoring
synchronous circuits, and it was inspired by developments in synchronous pro-
gramming languages [41] like Esterel [18] and Lustre [20]. Its features include sup-
port for data types such as integers, floating point numbers and strings, as well
as functions and future and past lookups of values. The underlying computation
model is that of a stream transducer, which computes from a set of (typed) input
streams a set of (typed) output streams. The verdict domain of such a monitor can be
much richer than a Boolean result, as Boolean output streams can be used to mimic
classic temporal logic monitoring, but output streams with numeric types allow the
computation of aggregations and statistics and trigger external alerts based on the
computed information.

For stream-based monitoring, the computational model of the monitor is more
complex. Instead of computing a single output for a full trace as for a logic, the
stream specification defines a transducer, which transforms a set of (typed) input
streams to a set of (typed) output streams.

Since both input and output streams are typed, with types not necessarily re-
stricted to Boolean, the output streams of a stream-based monitor can be interpreted

39

3 Stream Monitoring

as verdicts, which contain all preliminary and the final verdict.
As an example, while PLTL monitoring could be used to compute partial statistics

of traces, such as the maximal (or minimal) waiting time of arbiter clients, Lќљю
allows to express general statistics, such as the average waiting time of a client, by
giving direct access to the counters that a PLTL monitor keeps implicit, as shown in
Listing 1.

1 input bool request
2 input bool grant
3 output int wait := if !request[-1,true] & request { 0 }
4 else { wait[-1,0]+1 }
5 output int num_grants := if grant & wait > 0 { num_grants[-1,0] + 1 }
6 else { num_grants[-1,0] }
7 output int sum_wait := if grant & wait > 0 { sum_wait[-1,0] + wait }
8 else { sum_wait[-1,0] }
9 output double avg := sum_wait / num_grants

Listing 1: A Lќљю specification tracking the average waiting time

One distinctive feature of Lќљю in comparison to rule-based monitoring methods
such as Eagle [6] and RuleR [7], another type of specification formalism with more
expressivity than temporal logics, is the decoupling of the specification language
(the declaration), from the monitoring algorithm (the evaluation). This allows for
multiple backends: the same specification can be monitored using a hardware cir-
cuit, compiled into a high-level programming language or just fed to an interpreter.

The expressivity of Lќљю is not just a result of the richer type system, as a formal
complexity and expressivity analysis for the case of just Boolean types shows in [19],
but also due to its computational model.

As illustrated by Listing 1, one major difference of stream-based specifications
in comparison to temporal logics is the explicit representation of intermediate re-
sults, which allows compositional specifications. The output stream avg uses the
intermediate results computed in num_grants and sum_wait to compute the final
statistic.

3.1 Classic Lola

As a simple example, a specification which counts the number of times an input
proposition in is true can be expressed in Lќљю as follows:

40

3.1 Classic Lќљю

1 input bool in
2 output int out := if in { out[-1,0] + 1 } else { out[-1,0] }

Listing 2: A simple Lќљю specification

In the first line, we explicitly declare the input stream (input), its type (bool) and
declare its name (in). On the second line, we define the output stream out of type
int and give a stream expression to define its value. Within the expression, we use
a conditional to test whether the stream in is true in the current position, and then
use the stream access operator out[-1,0] to access the value of out in the previous
position (-1) of the stream and – depending on the value of in – either increment or
leave the value of out as before.

To illustrate the evaluation of this specification, consider the following example
trace:

pos 0 1 2 3 4 5

in true false true true false true

out 0+1 1 1+1 2+1 3 3+1

−1 −1 −1 −1 −1 −1

Figure 3.1: Example input trace and evaluation of the output stream out

In order to evaluate out at position 0, we first evaluate the conditional by looking
at in at position 0. Since it has value true, we evaluate the positive case, and de-
termine the value of out[-1,0] at position 0. Since the stream offset looks beyond
the beginning of the stream, it evaluates to the out of bounds value, 0. Therefore,
the value of out is 1 in the first position. The other positions are evaluated accord-
ingly, except for the past offsets to out, which now evaluate to the value of out in
the previous position.

41

3 Stream Monitoring

3.1.1 Syntax

A Lќљю specification is declared as a system of equations, which is expressed as a
set of typed stream variables and their corresponding stream expressions. We will
denote stream types by capital leĴers (𝑇), stream variables by lowercase leĴers (𝑡),
and expressions by lowercase leĴers (𝑒) or (𝜑) for Boolean expressions. Three types
of streams exist: input streams, output streams, and trigger streams.

input 𝑇 𝑡
⋮

input 𝑇𝑚 𝑡𝑚
output 𝑇𝑚+ 𝑠 ∶= 𝑒(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛)

⋮
output 𝑇𝑚+𝑛 𝑠𝑛 ∶= 𝑒𝑛(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛)
trigger 𝜑, … , 𝜑𝑘

Note that only output and trigger streams have corresponding stream expres-
sions. The stream expressions 𝑒𝑖(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛) are defined over the set of inde-
pendent (input) stream variables 𝑡, … , 𝑡𝑚 and dependent (output) stream variables
𝑠, … , 𝑠𝑛. All stream variables are typed with their associated types 𝑇𝑖. Trigger ex-
pressions 𝜑, … , 𝜑𝑘 are by definition typed as Boolean.

Stream Expressions A stream expression 𝑒(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛) of type 𝑇 is defined
recursively from the following elements:

• Constants: For a given constant 𝑐 of type𝑇 , 𝑒 = 𝑐 is an atomic stream expression
of type 𝑇 .

• Stream Variables: For a stream variable 𝑠 of type 𝑇 , 𝑒 = 𝑠 is an atomic stream
expression of type 𝑇 .

• Functions: For a 𝑘-ary function 𝑓 ∶ 𝑇 ×⋯× 𝑇𝑘 → 𝑇 and stream expressions
𝑒, … , 𝑒𝑘 of matching types 𝑇, … , 𝑇𝑘, 𝑒 = 𝑓(𝑒, … , 𝑒𝑘) is a stream expression of
type 𝑇 .

• Conditionals: For a stream expression 𝑏 of type bool, stream expressions 𝑒 and
𝑒 of type 𝑇 , 𝑒 = ite(𝑏, 𝑒, 𝑒) is a stream expression of type 𝑇 .

• Stream Offsets: For a stream variable 𝑠 with corresponding type 𝑇 , a default

42

3.1 Classic Lќљю

value 𝑑 of type 𝑇 , and a stream offset 𝑖 of type int, 𝑒 = 𝑠[𝑖, 𝑑] is a stream
expression of type 𝑇 .

The type system supports basic types such as bool, int, double, and string. Ba-
sic logical connectives and arithmetic operators are used with their usual semantics
and can easily be defined within the syntax as function expressions.

3.1.2 Semantics

The semantics of a Lќљю specification on a specific input trace are defined via its
corresponding evaluation model. Note that in general, a Lќљю specification and a
trace may have no corresponding evaluation model, one evaluation model, or even
many evaluation models.

LetΦ be a Lќљю specification with input stream variables 𝑡, … 𝑡𝑚 of types𝑇, … , 𝑇𝑚
and output stream variables 𝑠, … , 𝑠𝑛 of types 𝑇𝑚+, … , 𝑇𝑚+𝑛. Let𝑁 denote the length
of the input traces, whose values are denoted by finite subtraces 𝜏𝑖 for 1 ≤ 𝑖 ≤ 𝑚.
The value of input stream 𝑖 at position 𝑗 is denoted by 𝜏𝑖(𝑗), where 0 ≤ 𝑗 < 𝑁 .

An evaluation model ofΦ on 𝜏 is a tuple Γ = ⟨𝜏…𝜏𝑚, 𝜎𝑚+…𝜎𝑚+𝑛⟩ of typed streams
of length𝑁 , such that for all streams 𝑠𝑖, their stream expressions 𝑒𝑖, and all positions
𝑗, the values of 𝜎𝑖 match the evaluation function val(𝑒𝑖)(𝑗), defined recursively over
the structure of 𝑒𝑖 as follows:

• val(𝑐)(𝑗) = 𝑐 (constant expressions)

• val(𝑡ℎ)(𝑗) = 𝜏ℎ(𝑗) (stream variables)

• val(𝑓(𝑒, … , 𝑒ℎ))(𝑗) = 𝑓(val(𝑒)(𝑗), … ,val(𝑒ℎ)(𝑗)) (function application)

• val(ite(𝑏, 𝑒, 𝑒))(𝑗) =

⎧⎪⎪⎨
⎪⎪⎩
val(𝑒)(𝑗) if val(𝑏)(𝑗) = true

val(𝑒)(𝑗) else
(conditional expression)

• val(𝑠ℎ[𝑘, 𝑑])(𝑗) =

⎧⎪⎪⎨
⎪⎪⎩
val(𝑠ℎ)(𝑗 + 𝑘) if 0 ≤ 𝑗 + 𝑘 < 𝑁
𝑑 if otherwise

(stream offsets)

3.1.3 Properties

We now recapitulate important semantic and syntactic properties of Lќљю specifi-
cations.

43

3 Stream Monitoring

Well-defined specifications A Lќљю specification is well-defined [24], if for any set
of appropriately-typed same-length input streams, it has a single, unique evalu-
ation model. One example specification which does not have the property is the
following:

output bool a := !a

In this specification, stream a accesses itself with an offset of 0 and negates the
result. It does not have an evaluation model. A second example specification which
has more than a single evaluation model, is the following:

output int c := c

The evaluation models for this specification allow every possible integer value
for c in every position. While for these specifications the problems are easy to spot,
they can easily be made more complex:

1 output int a := b
2 output int b := a
3 output int c := d[1,0]
4 output int d := c[-1,0]

Listing 3: A Lќљю specification with circular references

Observe that the well-definedness property of Lќљю specifications is a semantic
property of the specification. In the worst case, we would need to explore all pos-
sible evaluation models of a specification, which is expensive to check for pure
Boolean streams as the problem is in EXPTIME and PSPACE-hard [19], and unde-
cidable in general due to the rich type model for streams.

Well-formed specifications Since we need an efficient way to determine whether
a Lќљю specification has a unique evaluation model, the notion of well-formed speci-
fications was introduced in [24]. Well-formedness represents a more restrictive, but
syntactic criterion, based on the dependency graph of a Lќљю specification. It over-
approximates well-definedness: Every well-formed specification is well-defined,
but not vice versa.

The dependency graph of a Lќљю specification is a weighted and directed multi-
graph, where the vertices represent stream variables, the edges represent stream
accesses within stream expressions, and the edge weights represent temporal off-
sets. Given a Lќљю specification Φ, its dependency graph is defined as follows:

44

3.2 Efficiently monitorable specifications

𝐺 = ⟨𝑉, 𝐸⟩, where 𝑉 = {𝑠, … , 𝑠𝑛, 𝑡, … 𝑡𝑚}. For the edge set 𝐸, we add an edge

𝑠𝑖
𝑤−→ 𝑠𝑗 to 𝐸 whenever there is an access in the stream expression 𝑒𝑖 to 𝑠𝑗 with offset

𝑤.
The dependency graph of the specification in Listing 3 is shown in Figure 3.2.

a

b

c

d

1 -1

Figure 3.2: Dependency graph of the specification in Listing 3.

A cycle in the graph 𝐺 is a sequence 𝑣
𝑒,𝑤−−−−→ 𝑣…𝑣𝑘−

𝑒𝑘,𝑤𝑘−−−−→ 𝑣𝑘, such that for all 𝑖,

𝑣𝑖 ∈ 𝑉 , 𝑒𝑖 = 𝑣𝑖
𝑤𝑖−−→ 𝑣𝑖+ ∈ 𝐸, and 𝑣 = 𝑣𝑘. Theweight of a cycle is the sum of its weights

𝑤. If 𝑤 = 0, we call the corresponding cycle zero-weight.
A Lќљю specification iswell-formed iff its dependency graph does not contain zero-

weight cycles. As can be seen in the example of 3.2, the cycle formed by the streams
𝑐-𝑑-𝑐 has zero-weight, therefore the specification is not well-formed.

3.2 Efficiently monitorable specifications

The possible use of future dependencies in stream access expressions within Lќљю
may lead to high memory requirements for an online monitor.

1 input bool in
2 output bool eventually := in | eventually[+1,false]

Listing 4: A Lќљю specification checking the eventually-operator with unbounded
future.

An example specification can be seen in Listing 4, where the usual semantic def-
inition of the LTL-operator eventually was directly translated to Lќљю. Here, the
memory requirement for an online monitor grows linearly with the input trace, if

45

3 Stream Monitoring

in

eventually 1

in

sliding

-2 -1 1 2

Figure 3.3: Dependency graphs of the specifications in Listing 4 (left) and Listing 5
(right).

the stream in only becomes true in the last position of the trace, since it needs to
maintain the full stack of unresolved stream expressions at every position before,
and can only back-propagate the result once it arrives at the last position.

The main issue is that Lќљю in general allows unbounded dependencies on the
future value of streams. From the point of view of memory requirements of an
online monitor, however, not all use of future dependencies leads to a problem.

1 input int in
2 output double sliding =
3 (in[-2,0] + in[-1,0] + in + in[+1,0] + in[+2,0]) / 5.0

Listing 5: A Lќљю specification computing a five-step sliding average.

The example specification for a sliding average described in Listing 5 contains
future references, but an online monitoring algorithm only has to keep five values
or partially evaluated stream expressions in its memory.

The difference between the two specifications can be visualized from their depen-
dency graphs, seen in Figure 3.3. While the left dependency graph and specification
contains a positive cycle on the eventually-stream and therefore looks unbounded
into the future, the right dependency graph and specification does not contain a
cycle and only has bounded lookahead into the the future.

This gives us the following characterization of efficient monitorability: A Lќљю
specification is efficiently monitorable iff its dependency graph does not contain any
positive-weight cycles. As we will see in the online monitoring algorithm in the
next section, this property of the specification is essential to bound the memory

46

3.3 Online Monitoring Algorithm

resources of the monitor.
For the eventually-specification of Listing 4, we can state the property in a differ-

ent way as a Lќљю specification without future lookups, as described in Listing 6.

1 input bool in
2 output bool eventually := eventually[-1,false] | in

Listing 6: A Lќљю specification checking the eventually-operator in a past version.

Note that the specifications produce different outputs, as the first variant will set
the output stream (after delaying until the first position where in becomes true)
to true in every position, whereas the second (past) variant will continually output
false until the first position where in becomes true.

3.3 Online Monitoring Algorithm

The online monitoring algorithm maintains an equation store with two sets of equa-
tions 𝑅 (resolved) and 𝑈 (unresolved). The equation store with 𝑅 and 𝑈 contains
instantiated stream expressions for every position. 𝑈 contains partially resolved
stream expressions, where not all stream accesses have been resolved yet. Once a
stream expression has been fully evaluated, it is moved to the set 𝑅, which contains
only constant expressions (i.e. values). Both sets are indexed by stream variable and
position. The lookup-table 𝐺𝐶 for garbage collection holds the offset vectors which
determine when values are cleared from set 𝑅. An example equation store with 𝑅
and 𝑈 is illustrated in Figure 3.4.

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 …

𝑈

𝑅 a[1]=T,a[2]=F,a[3]=T

a[4]=?

Figure 3.4: Illustration of the equation store for classic Lќљю. The equations with
future accesses to stream a are not yet resolved for position 4. Within
the current monitor step, a[4] can be resolved and moved to the set 𝑅.

47

3 Stream Monitoring

Algorithm 3 Online Monitoring Algorithm for Lќљю
Input: Incoming Event 𝐸
Output: List of Triggers 𝑇

1: pos ← pos+ 1 ▷ Increment current position
2: for all 𝑖 ∈ 𝐸 do ▷ Add input events to R
3: 𝑅 ← 𝑅∪ {𝑖}
4: end for
5: while fixpoint 𝑈 do
6: for all 𝑒𝑗 ∈ 𝑈 do
7: simplify 𝑒𝑗 ▷ Evaluate expression
8: if 𝑒𝑗 is constant then
9: 𝑈 ← 𝑈 ⧵ {𝑒𝑗}

10: 𝑅 ← 𝑅∪ {𝑒𝑗} ▷ Add to resolved equations
11: check if 𝑒𝑗 activates a trigger; add to 𝑇
12: end if
13: end for
14: end while
15: for all 𝑒 ∈ 𝑅 do ▷ Perform garbage collection
16: if GC(e) > pos then
17: 𝑅 ← 𝑅 ⧵ {𝑒} ▷ Compare to Offset
18: end if
19: end for
20: return active triggers 𝑇

The performance of the algorithm is mainly determined by the order of expres-
sion evaluation in line 6, which can be optimized before runtime by analysis of the
specification.

3.3.1 Time and Memory Requirements

For Algorithm 3, the time complexity is polynomial in the size of the specification
and linear in the trace. The space requirement of the algorithm in terms of the spec-
ification is again polynomial. For the memory dependency on the trace, we can
derive a precise upper bound only for efficiently monitorable specifications, which
equals the maximal size of the sets 𝑅 and 𝑈 , which in turn is determined by the
maximal GC-distance of any stream times the size of the Lќљю specification. This
memory bound only depends on the specification, therefore the online monitor-
ing problem for Lќљю for efficiently monitorable specifications is constant modulo
datatypes1 in the length of the trace .

1Assuming constant storage requirements for the stored stream values in their respective datatypes.

48

3.4 Embedding PLTL in Lќљю

3.4 Embedding PLTL in Lola

To embed a deterministic or unambiguous PLTL formula as a Lќљю specification,
we can utilize the structure of the corresponding measuring automaton and imple-
ment its transition relation and counter updates using Lќљю streams. For a PLTLdet

formula, it is sufficient to represent the current state of the automaton by maintain-
ing a representation of a single atom via its subformulas. For unambiguous PLTL,
the construction needs to be lifted to sets of atoms.

For a PLTLdet formula 𝜑 over 2𝐴𝑃 with corresponding deterministic measuring
automaton𝐴𝜑 = (Σ,Ω,𝑄, 𝑞, Θ, 𝛿, 𝛾, 𝐹, 𝜔), we introduce the following Lќљю streams:

• Per 𝑝 ∈ 𝐴𝑃: a Boolean input stream,

• Per subformula of cl(𝜑): a Boolean output stream,

• Per parametric subformula of cl(𝜑): two integer output streams to maintain
counters 𝑛𝑥 and𝑚𝑥, and a Boolean output stream to implement the generated-
predicate.

The transition relation 𝛿 can then be implemented via the stream expressions of
the Boolean output streams of the subformulas. The update function 𝛾 can be di-
rectly realized through the stream expressions of the integer output streams.

The verdict 𝑣 is the last value of the Boolean output stream of the top-level formula
𝜑 itself. The measure 𝑟 can be evaluated identically to 𝜔 by using the last values of
the integer output streams for the counters.

The partial statistics and datatypes supported by Lќљю are sufficient to implement
the counters and counter updates of the measuring automaton, as only increments,
case distinctions and minimum and maximum operations are needed.

Example We will translate the PLTLdet-formula 𝜑 = (¬𝑟 ∧ ⊤) ∨ (𝑟 ∧ ≤𝑥 𝑔) to
a Lќљю specification. The closure of 𝜑 contains the following elements: cl(𝜑) =
{𝑟, 𝑔, ¬𝑟, ≤𝑥 𝑔, 𝑟 ∧ ≤𝑥 𝑔, (¬𝑟 ∧⊤) ∨ (𝑟 ∧ ≤𝑥 𝑔), 𝜑}. The Lќљю specification is shown
in Listing 7.

Note that the size and number of streams of the corresponding Lќљю specification
for a PLTLdet formula is linear in the size of the formula. For unambiguous PLTL,
we have to implement the full exponential construction for the atoms, since we need
to maintain a set of counters per atom.

Limits The presented classic variant of Lќљю offers no direct support for parame-
terization. Still, it is expressive enough to express parametric logics such as PLTL, as

49

3 Stream Monitoring

1 input bool r
2 input bool g
3

4 output bool neg_r := ! r
5 output bool pfinally_g := pfinally_g[-1,false] | g
6 output bool r_and_pfinally_g := r & pfinally_g
7 output bool neg_r_or_r_and_pfinally_g := neg_r | r_and_pfinally_g
8 output bool phi := phi[-1,true] & neg_r_or_r_and_pfinally_g
9

10 output bool generated_pfinally_g := neg_r[-1,false] & r
11 output int n_x := ite(generated_pfinally_g, 0,
12 ite(g, 0, n_x[-1,0]+1))
13 output int m_x := ite(g, max(n_x,m_x[-1,0]), m_x[-1,inf])

Listing 7: A Lќљю specification implementing a monitor for the PLTLdet-formula 𝜑.

we have demonstrated in this chapter. With regards to parameterization, the main
drawback of the monitoring approach of classic Lќљю is that everything parametric
needs to be explicitly encoded into the specification, which leads to a significant
increase of the size of the specification, and that there is no language support to
specify the behavior of substreams of the input data in a direct manner.

50

4 Stream Monitoring with Parametric
Data

A fundamental challenge in runtime monitoring and in the development of mon-
itoring specifications is the handling of data in the event stream of a system. Al-
lowing local specifications of substreams, automatic reconstruction of their context,
and efficiently handling the local monitors in the online monitoring algorithm are
the key issues handled within the extension of Lќљю to handle parametric data that
we present in this chapter.

Within the field of runtime monitoring, there have been multiple approaches to
deal with parametric data in specifications. One such approach in the context of
rule-based specification languages was in the systems Eюєљђ, described in [42, 6],
and RѢљђџ, described in [7]. In [4], Alur et. al. proposed a quantitative extension
of regular expressions, QRE, to handle the specification of parametric data in event
streams. For automata-based approaches, quantified event automata were intro-
duced in [5] and contain a similar type of quantification over data.

Lola Specification
input int i
input bool a
input bool b
output bool and := a & b
output int acc := i + acc[-1,0]
trigger and

a
i

b

and
acc

trigger �
Figure 4.1: Model of classic Lќљю Stream Monitoring

To demonstrate the introduction of parameters and data into a specification lan-
guage like Lќљю, we first give an educational example. Suppose we would like to

51

4 Stream Monitoring with Parametric Data

monitor an authentication log of a system with many users. The log will record
successful and unsuccessful authentication aĴempts. Due to mistyped passwords
and other user mistakes, we may regularly see unsuccessful aĴempts in the log,
which are usually followed by a password reset or a successful authentication at-
tempt for that particular user. Across all users, for any given time interval, we may
see a significant number of failed authentication aĴempts, which makes it hard to
specify a generic alert threshold without considering the individual users. Still, de-
tecting failed authentication aĴempts for individual users is useful to stop directed
password-guessing aĴacks.

A common mitigation to prevent guessing aĴacks is to perform rate-limiting on
the number of authentication aĴempts which an individual user may perform suc-
cessively. A common property associated to this mitigation would be to trigger a
lockdown for a user account with more than three consecutive failed login aĴempts.

If there is an a-priori known, finite number of users in our system, we can monitor
the property with a logic-based approach: We simply instantiate an appropriately
large set of atomic propositions (failed𝑢𝑠𝑒𝑟, success𝑢𝑠𝑒𝑟, …), and then express the
property as following in LTL for a user 𝑢:

𝜑𝑢 = ¬ (failed𝑢 ∧ (¬success𝑢U(failed𝑢 ∧ (¬success𝑢Ufailed𝑢))))

This approach has the following drawbacks:

• the system log output needs to be pre-processed to give Boolean valuations to
the indexed atomic propositions,

• the number of users needs to be bounded at design-time of the specification,

• the encoding results in a large number of atomic propositions,

• the resulting specification is large and grows proportionally to to the number
of users,

• it does not scale to infinite domains such as strings (for user identifiers).

A similar approach would be possible in the classic version of Lќљю, where one
could introduce one output stream per possible user identifier. The problem, how-
ever, is that one needs to explicitly reconstruct the context per user to obtain the
current number of failed login aĴempts, as can be seen in Listing 4.1, where the
outer conditional needs to check whether the current input event is relevant to the
stream, and can only then test the inner conditional for the intended property. The

52

context is implemented by the outer conditional, which on the negative case just
carries the previous value over.

input bool loginSuccess
input int uid
output int attempts_1 := ite(uid = 1,

ite(loginSuccess, 0, attempts_1[-1,0] + 1),
attempts_1[-1,0])

trigger attempts_1 > 3

output int attempts_2 := ite(uid = 2,
ite(loginSuccess, 0, attempts_2[-1,0] + 1),

attempts_2[-1,0])
trigger attempts_2 > 3
…

Listing 4.1: Login aĴempts mitigation unrolled as a classic Lќљю specification.

An example input trace is displayed in Figure 4.2. Here, we highlight two rel-
evant slices of the input trace for the user identifiers uid with values 1 and 2 are
highlighted. This visualization emphasizes the need to treat each user on its indi-
vidual slice and its individual time scale.

input bool loginSuccess
input string uid
output int attempts<string user>

invoke: uid
extend: uid=user
:= if loginSuccess then 0 else attempts(user)[-1,0]+1

output bool bruteforce<string user>
invoke: uid
extend: uid=user
:= attempts(user) > 3

trigger any(bruteforce)

Listing 4.2: Login aĴempts mitigation as a Lќљю ₂.₀ specification.

Both features have native language support in Lќљю ₂.₀, as demonstrated in List-
ing 4.2: The data parameterization of the output stream attempts with the input
stream uid creates a data slice via the inline invoke stream uid. Whenever the
monitor sees a fresh value for uid in the input, it invokes a new output stream in-
stance for the stream attempts with the parameter bound to the new fresh uid

53

4 Stream Monitoring with Parametric Data

𝑢𝑖𝑑
𝑙𝑜𝑔𝑖𝑛𝑆𝑢𝑐𝑐𝑒𝑠𝑠

1
T
0

1
F
1

2
T
2

3
F
3

3
T
4

1
F
5

2
T
6

4
T
7

2
T
8

2
F
9

3
T
10

1
F
11

4
T
12

…

1
T
0

1
F
1

1
F
2

1
F
3

2
T
0

2
T
1

2
T
2

2
F
3

…

Figure 4.2: Visualization of an login aĴempts example trace. The trace has two in-
put streams, the user identifier uid as an integer and the Boolean login
indication loginSuccess.

value. The local time scale of each data slice is then constructed via the inline extend
stream predicate (uid = user), which extends all those output stream instances for
which the stream results in the value true. Note that stream offset expressions
such as attempts(user)[-1,0] are now interpreted on the local time scale of the
stream instance, as controlled by the extend stream. Finally, the trigger expression
any(bruteforce) tests whether any of the bruteforce output streams has value
true. Optionally, an auxiliary terminate stream can be specified, to define when to
terminate an output stream instance, as a reset mechanism. If a stream instance has
been terminated, it can be freshly invoked again later via a new invoke.

4.1 Parameterized Stream Monitoring

The primary extension to the work in [24] is the notion of template output streams. The
parameters and respective types of the template output streams are syntactically
described after the stream variable name. Then these parameters can be accessed
by name in the stream expression. The binding of the parameters in the stream
instances is performed via its auxiliary invoke, the semantics of the stream offset
references is controlled via its auxiliary (Boolean) extend stream. The auxiliary
(Boolean) terminate stream is used to allow the termination of a stream instance,

54

4.1 Parameterized Stream Monitoring

which may be used to re-bind with the same parameters in a later position and to
control memory usage in the monitor.

Lќљю ₂.₀ Specification
input int i
input bool a
output int acc<int j>: invoke: i;

extend: j=i;
terminate: false

:= ite(a, acc(j)[-1,0], 1 + acc(j)[-1,0])
trigger any(acc) > 5

a
i

acc

acc<v1>
acc<v2>
acc<v3>

trigger �
Figure 4.3: Model of Lќљю ₂.₀ Stream Monitoring.

4.1.1 Syntax

A (classic) Lќљю specification, as described in Chapter 3, is defined as a system of
equations, which is expressed as a set of typed stream variables and their corre-
sponding stream expressions. For the syntax of Lќљю specifications, we refer to
subsection 3.1.1.

ParametricOutput Streams Output stream templates are output streams equipped
with a set of parameters. These parameters which may be instantiated to output
stream instances. Formally, an output stream template is defined as:

output 𝑇 𝑠⟨𝑝 ∶ 𝑇, … , 𝑝𝑙 ∶ 𝑇𝑙⟩
invoke: 𝑠𝑖𝑛𝑣
extend: 𝑠𝑒𝑥𝑡
terminate: 𝑠𝑡𝑒𝑟
∶= 𝑒(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑝, … , 𝑝𝑙)

Observe that ⟨𝑝 ∶ 𝑇, … , 𝑝𝑙 ∶ 𝑇𝑛⟩ denotes the declaration of the parameters 𝑝, … , 𝑝𝑙,
while (𝑝, … , 𝑝𝑙) is a using occurrence of the parameters bound in the stream decla-
ration. As syntactic sugar, the auxiliary streams may be declared inline, as seen in

55

4 Stream Monitoring with Parametric Data

Figure 4.3.
The auxiliary streams 𝑠𝑖𝑛𝑣, 𝑠𝑒𝑥𝑡, 𝑠𝑡𝑒𝑟 control the lifetime and the clock of the asso-

ciated stream instances. For a stream equation template without parameters, we
omit the empty parameter set ⟨⟩. Specifiying the invoke, extend, and terminate
streams of the stream equation template is optional. The default stream expression
for invoke is the empty tuple (), the default stream expression for extend is true,
and the default stream expression for terminate is false, which allows downward-
compatibility with Lќљю, as it matches the behavior of classic Lќљю streams, which
are never terminated and extended in every position.

Stream Expressions A stream expression 𝑒(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑝, … , 𝑝𝑛) is defined
recursively from the following elements:

• For a parameter 𝑝 of type 𝑇 , 𝑒 = 𝑝 is an atomic stream expression of type 𝑇 .

• For a constant 𝑐 of type 𝑇 , 𝑒 = 𝑐 is an atomic stream expression of type 𝑇 .

• For a 𝑘-ary function 𝑓 ∶ 𝑇 ×⋯×𝑇𝑘 → 𝑇 and stream expressions 𝑒, … , 𝑒𝑘 of
matching types 𝑇, … , 𝑇𝑘, 𝑒 = 𝑓(𝑒, … , 𝑒𝑘) is a stream expression of type 𝑇 .

• For a stream expression 𝑏 of type bool, stream expressions 𝑒 and 𝑒 of type
𝑇 , 𝑒 = ite(𝑏, 𝑒, 𝑒) is a stream expression of type 𝑇 .

• For a stream variable 𝑠 with associated type 𝑇 , parameters 𝑝, … , 𝑝𝑛, a con-
stant 𝑑 of type 𝑇 , and a constant 𝑖 of type int, 𝑒 = 𝑠(𝑝, … , 𝑝𝑛)[𝑖, 𝑑] is a stream
expression of type 𝑇 .

• For a template stream variable 𝑠 and an aggregation operator Op of type 𝑇 ,
𝑒 = Op(𝑠) is a stream expression of type 𝑇 . Examples of aggregation operators
are any of type bool, and count of type int.

The type system supports basic types such as bool, int, double, and string, as
well as tuples of the basic types such as (bool,int).

Classic Lќљю specifications can be expressed with stream templates by specifying
an empty set of parameters and using the aforementioned defaults for the auxiliary
stream 𝑠𝑖𝑛𝑣, 𝑠𝑒𝑥𝑡, 𝑠𝑡𝑒𝑟. This ensures that syntactically, every classic Lќљю specification
is also a Lќљю ₂.₀ specification.

4.1.2 Semantics

The semantics of a Lќљю ₂.₀ specification are defined via its corresponding evalu-
ation model on a given trace. Note that without appropriate restrictions, a Lќљю

56

4.1 Parameterized Stream Monitoring

specification in general may have either no evaluation model, a single evaluation
model, or many evaluation models.

Stream Templates, Instances, and Auxiliary Streams A stream template intro-
duces a stream template variable 𝑠 of type 𝑇 with declared parameters 𝑝, … , 𝑝𝑙 of
types 𝑇, … , 𝑇𝑙. For a given parameter valuation 𝛼 = (𝑣, … , 𝑣𝑙) of matching types
𝑇, … , 𝑇𝑙, the instance of 𝑠 under 𝛼 is defined as:

𝑠(𝑣, … , 𝑣𝑙) = 𝑒(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑝, … , 𝑝𝑛)[𝑝/𝑣, … , 𝑝𝑙/𝑣𝑙].

The expression 𝑠𝑖𝑛𝑣 is the invocation stream variable of 𝑠 and has type 𝑇 ×⋯×𝑇𝑙.
Intuitively, if 𝑠𝑖𝑛𝑣 evaluates to a fresh value (𝑣, … , 𝑣𝑙), a new instance 𝑠⟨𝑣, … , 𝑣𝑙⟩ is
invoked.

The expression 𝑠𝑒𝑥𝑡 is the extension stream variable of 𝑠 and has type 𝑇 ×⋯×𝑇𝑙 →
bool. If 𝑠 is invoked with 𝛼 = (𝑣, … , 𝑣𝑙), an extension stream 𝑠𝛼𝑒𝑥𝑡 is invoked with
the corresponding parameter valuation. Intuitively, whenever 𝑠𝛼𝑒𝑥𝑡 evaluates to true,
then 𝑠⟨𝑣, … , 𝑣𝑙⟩ is extended in this position.

The expression 𝑠𝑡𝑒𝑟 is the termination stream variable of 𝑠 and has type 𝑇 ×⋯×
𝑇𝑙 → bool. If 𝑠 is invoked with 𝛼 = (𝑣, … , 𝑣𝑙), a termination stream 𝑠𝛼𝑡𝑒𝑟 is invoked
with the corresponding parameter valuation. Intuitively, whenever 𝑠𝛼𝑡𝑒𝑟 evaluates to
true, then 𝑠⟨𝑣, … , 𝑣𝑙⟩ is terminated.

If a stream instance is terminated and extended at the same time, it does not have
a value at that position.

Formal Semantics LetΦ be a Lќљю ₂.₀ specification with independent (input) stream
variables 𝑡, … 𝑡𝑚 of type 𝑇, … , 𝑇𝑚 and dependent (output) template stream vari-
ables 𝑠, … , 𝑠𝑛 of type 𝑇𝑚+, … , 𝑇𝑚+𝑛. Let 𝑁 denote the length of the input trace,
whose values are denoted by finite subtraces 𝜏𝑖 for 1 ≤ 𝑖 ≤ 𝑚. The value of input
stream 𝑖 at position 𝑗 is denoted by 𝜏𝑖(𝑗).

An evaluation model of Φ on the input streams 𝜏 is a set Γ of stream instances 𝜎
of length 𝑁 with types 𝑇, … , 𝑇𝑚+𝑛. We extend each type 𝑇𝑖 with the symbol ⊥, to
indicate stream positions where a stream instance has not been invoked yet, is not
extended, or has already terminated (and has not been invoked again). We use 𝑠𝛼𝑖
to denote the stream instance of template stream 𝑠𝑖 with parameter valuation 𝛼 and
𝜎𝛼𝑖 to refer to the corresponding stream instance in Γ.

We impose the following conditions on evaluation models in order to ensure that
the set of stream instances in Γ contains all necessary instances and the values in the

57

4 Stream Monitoring with Parametric Data

stream instances 𝜎 are evaluated accordingly:

• A designated constant stream 𝜎 is in Γ and produces the empty tuple () in ev-
ery position 1…𝑁 . This stream serves as an invocation stream for all streams
without parameters.

• For each template stream variable 𝑠𝑖, the stream instances are determined by
its associated invocation stream 𝑠𝑖𝑛𝑣 (we omit 𝑖 from the subscript where the
reference is clear). If Γ contains some stream 𝜎𝑖𝑛𝑣, then Γ must also contain
a stream for every instance of 𝑠𝑖 invoked by 𝜎𝑖𝑛𝑣 at some position; i.e. for all
𝑗 < 𝑁 where 𝜎𝑖𝑛𝑣(𝑗) = 𝛼, 𝜎𝛼𝑖 ∈ Γ.1

To define the lifetime of stream instances, we use the predicate alive(𝑠𝑖, (𝑣, … , 𝑣𝑙), 𝑗),
which evaluates to true at a position 𝑗 if there is an earlier position 𝑗′ ≤ 𝑗where the in-
stance of 𝑠𝑖 with parameter valuation 𝛼 = (𝑣, … , 𝑣𝑙)was invoked, i.e. 𝜎𝑖𝑛𝑣(𝑗′) = 𝛼, the
stream was not terminated in the meantime, i.e. for all 𝑗″, 𝑗′ ≤ 𝑗″ ≤ 𝑗, 𝜎𝛼𝑡𝑒𝑟(𝑗″) = false.

For each stream that is alive in a position and extended in the same position, its
value is determined by evaluating the corresponding stream expression.

For each stream instance 𝜎𝛼𝑖 ∈ Γ with some parameter valuation 𝛼 = (𝑣, … , 𝑣𝑙) of
template stream 𝑠𝑖,

𝜎𝛼𝑖 (𝑗) =

⎧⎪⎪⎨
⎪⎪⎩
val(𝑒𝑖[𝑝/𝑣, … , 𝑝𝑙/𝑣𝑙])(𝑗) if alive(𝑠𝑖, (𝑣, … , 𝑣𝑙), 𝑗) and 𝜎𝛼𝑒𝑥𝑡(𝑗) = true

⊥ otherwise

where the evaluation function val(𝑒𝑖[𝑝/𝑣, … , 𝑝𝑙/𝑣𝑙])(𝑗) is defined recursively over 𝑒𝑖
as following:

• constant expressions:
val(𝑐)(𝑗) = 𝑐

• input streams:
val(𝑡ℎ)(𝑗) = 𝜏ℎ(𝑗) for 1 ≤ ℎ ≤ 𝑚

• function application:
val(𝑓(𝑒, … , 𝑒ℎ))(𝑗) = 𝑓(val(𝑒)(𝑗), … ,val(𝑒ℎ)(𝑗))

• conditional expression:

val(ite(𝑏, 𝑒, 𝑒))(𝑗) =

⎧⎪⎪⎨
⎪⎪⎩
val(𝑒)(𝑗) if val(𝑏)(𝑗) = true

val(𝑒)(𝑗) else

1Note that in general, 𝑠𝑖𝑛𝑣 may itself also be parameterized (the only exception being the designated
constant stream 𝜎), which is omiĴed here to simplify the presentation.

58

4.1 Parameterized Stream Monitoring

• stream access (current position):

val(𝑠ℎ(𝑝, … , 𝑝𝑛)[0, 𝑑])(𝑗) =

⎧⎪⎪⎨
⎪⎪⎩
𝜎(𝑝,…,𝑝𝑛)ℎ (𝑗) if alive(𝑠ℎ, (𝑝, … , 𝑝𝑛), 𝑗)
𝑑 otherwise

• stream access with offset:
val(𝑠ℎ(𝑝, … , 𝑝𝑛)[𝑘, 𝑑])(𝑗) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑 if 𝑗 ≥ 𝑁 or 𝑗 < 0 or ¬alive(𝑠ℎ, 𝛼′, 𝑗)
val(𝑠ℎ(𝛼′)[𝑘 − 1, 𝑑])(𝑗 + 1) if 𝑘 > 0, 𝜎𝛼′𝑒𝑥𝑡(𝑗) = true, alive(𝑠ℎ, 𝛼′, 𝑗)
val(𝑠ℎ(𝛼′)[𝑘 + 1, 𝑑])(𝑗 − 1) if 𝑘 < 0, 𝜎𝛼′𝑒𝑥𝑡(𝑗) = true, alive(𝑠ℎ, 𝛼′, 𝑗)
val(𝑠ℎ(𝛼′)[𝑘, 𝑑])(𝑗 + 1) if 𝑘 > 0, 𝜎𝛼′𝑒𝑥𝑡(𝑗) = false, alive(𝑠ℎ, 𝛼′, 𝑗)
val(𝑠ℎ(𝛼′)[𝑘, 𝑑])(𝑗 − 1) if 𝑘 < 0, 𝜎𝛼′𝑒𝑥𝑡(𝑗) = false, alive(𝑠ℎ, 𝛼′, 𝑗)

for 𝛼′ = (𝑝, … , 𝑝𝑛).

For stream accesses to instances with parameters, note that the parameters need
to have matching types for the substitution, but they may be swapped or replaced
by constant values.

The auxiliary extend stream to every stream instance serves as a local clock to the
stream instance, as illustrated in Figure 4.2 (with ⊥ positions omiĴed).

4.1.3 Fragments and Properties

Dependency Graph To facilitate syntactic checks and properties on Lќљю ₂.₀ spec-
ifications, we extend the notion of the dependency graph of the specification. The
dependency graph for our login aĴempts specification is depicted in Figure 4.4. In-
tuitively, the vertices of the graph represent streams, and the edges represent stream
accesses from the corresponding stream expressions. There are additional stream
accesses for the auxiliary invoke, extend, and terminate streams of the template
stream variables.

Formally, a dependency graph of a Lќљю ₂.₀ specification Φ with input stream
variables 𝑡… 𝑡𝑚, output template stream variables 𝑠…𝑠𝑛, is a directed multi-graph
𝐺 = (𝑉, 𝐸) defined as:

• 𝑉 = {𝑡, … , 𝑡𝑚} ∪ {𝑠, … , 𝑠𝑛}

59

4 Stream Monitoring with Parametric Data

loginSuccessuid

trigger any(bruteforce)

bruteforce

invoke extend attempts

invoke extend

 -1

Figure 4.4: Dependency Graph of Login Specification shown in Figure 4.2. Trigger
streams are illustrated as diamond shapes, input streams have rectan-
gular shape, and output streams are round-shaped. Every edge corre-
sponds to a stream access, and if the offset is unequal to 0, the edge is
labeled with it.

• 𝐸 ∶ 𝑉 × {+, −, 0} × 𝑉 ,

𝐸 = {(𝑣, +, 𝑣′) ∣ 𝑣′ ∈ accesses(𝑣) with positive offset}
∪{(𝑣, −, 𝑣′) ∣ 𝑣′ ∈ accesses(𝑣) with negative offset}
∪{(𝑣, 0, 𝑣′) ∣ 𝑣′ ∈ accesses(𝑣) without offset}

where accesses(𝑣) is the set of stream accesses in the stream expression and
auxiliary streams of 𝑣.

Thus, for every stream access to 𝑣′ in the stream expression of 𝑣with offset 𝑘, the
multi-graph contains an edge from 𝑣 to 𝑣′ annotated with the sign 𝑎 ∈ {+, −, 0} of the
offset 𝑘 or 0. A cycle in a directed multi-graph 𝐺(𝑉, 𝐸) is a finite sequence of vertices
𝑣, … , 𝑣𝑛 such that 𝑣 = 𝑣𝑛, ∀𝑖.𝑣𝑖 ∈ 𝑉 , and ∀𝑖.∃𝑎𝑖.(𝑣𝑖, 𝑎𝑖, 𝑣𝑖+) ∈ 𝐸.

60

4.1 Parameterized Stream Monitoring

Well-formed specifications A Lќљю ₂.₀ specification Φ is well-formed iff its depen-
dency graph 𝐺 does not contain a cycle with the following properties:

• all annotations 𝑎𝑖 are 0, or

• there exists at least one + and at least one − annotation.

The stronger requirements for well-formedness of Lќљю ₂.₀-specifications are due
to the possibly different pace of extend-clocks in the specification.

Efficiently monitorable specifications For classic Lќљю, recall that a Lќљю specifi-
cation Φ is efficiently monitorable, whenever every value of every stream is resolved
within a finite number of steps and it does not contain unbounded lookups into the
future. This definition excludes specifications such as the following:

output bool a = a[1,true]

In order to determine the value of stream a at the first position in an online monitor,
we have to wait for the input stream to terminate, because the stream access looks
one step into the future, and the default value of the stream access only evaluates
to true in the last position of the trace. The monitor only then may propagate this
value backwards step-by-step to evaluate the unresolved stream expressions of the
earlier positions.

This specification property can again be determined by inspecting the cycles of
its dependency graph; If the dependency graph does not contain positive cycles, the
specification is guaranteed to be efficiently monitorable.

Compared to the classic definition, Lќљю ₂.₀ potentially aggravates the problem:
if streams with unbounded future lookup are used as invocation streams, we not
only have to back-propagate a finite number of values, but we may have to retroac-
tively instantiate new stream instances and extend different sets of stream instances
along the way, which may effectively lead to a full monitor reset with respect to
e.g. count trigger expressions. Even bounded future lookups to streams which are
not extended in every step are a potential problem, because the next extension of
the stream may be delayed indefinitely.

Therefore, we significantly extend the definition of efficient monitorability for
Lќљю ₂.₀ specifications and disallow future dependencies within all auxiliary streams
and their dependencies. While bounded future lookups were acceptable in Lќљю,
the aforementioned issues force a stricter definition, since full monitor resets would
lead to unpredictable online monitor execution time per incoming event. Also, this

61

4 Stream Monitoring with Parametric Data

greatly simplifies the monitoring algorithm, as the set of stream instances which
needs to be evaluated can be determined with the available past and current values
of other stream instances.

4.2 Fixpoint-based online monitoring algorithm

For our online monitoring algorithm, we restrict the trace to being available one
event at a time, and we have no a-priori bound on the length of the trace. Output
stream instances and triggers shall be evaluated as soon as possible.

The main data structure of our online monitoring algorithm is an equation store,
which keeps track of the state of the evaluation of stream instances and their ex-
pressions. The algorithm maintains the following sets:

• a set of currently active stream instances 𝑆,

• a set of resolved equations 𝑅,

• a set of unresolved equations 𝑈 ,

• and a set of offset vectors for garbage collection of 𝑅 called GC.

Intuitively, for every step of the monitor, the set 𝑆 determines which stream in-
stance expressions are to be added initially to the set𝑈 . Then, until sets 𝑆, 𝑅, and𝑈
become stable, the monitor simplifies equations in 𝑈 , moving them to 𝑅 if they are
fully evaluated, checks for new invocations, extensions, and terminations of stream
instances with effect on 𝑆 (and potentially 𝑈), and finally removes resolved equa-
tions from 𝑅 whenever the set GC determines they are no longer needed.

More formally, the algorithm performs the following steps per position (starting
at position 𝑗 = 0):

1. For each input stream 𝑡𝑖, add its value 𝜏𝑖(𝑗) to 𝑅.

2. Add the designated default invocation stream value 𝜎(𝑗) = () to 𝑅.

3. Initialize the set 𝑆(_, 𝑗) of active stream instances: For all output stream tem-
plates 𝑠𝑖 and valuations 𝛼 such that 𝛼 ∈ 𝑆(𝑠𝑖, 𝑗 − 1) (𝛼 was previously active), if
𝜎𝛼ter(𝑗) = false, add 𝛼 to 𝑆(𝑠𝑖, 𝑗).

Then repeat the following steps until a fixpoint on the sets 𝑆 and 𝑅 is reached:

62

4.2 Fixpoint-based online monitoring algorithm

1. Evaluate and simplify equations in 𝑈 as much as possible. Once they are
evaluated to a constant value, add them to 𝑅.

2. Check for new invocations, extensions and terminations by the additions to
𝑅.

3. If for any output stream template 𝑠𝑖 the corresponding invocation stream yields
a new valuation, i.e. 𝜎𝛼𝑖,inv(𝑗) = 𝛽 is added to 𝑅, then 𝑆(𝑠𝑖, 𝑗) = 𝑆(𝑠𝑖, 𝑗) ∪ 𝛽 and we
add 𝜎𝛽𝑖 (𝑗) = 𝑒𝛽(𝑗) to 𝑈 .

4. If for any output stream template 𝑠𝑖, the corresponding extension stream eval-
uates to true, i.e. 𝜎𝛼𝑖,ext(𝑗) = true is added to 𝑅, then add 𝜎𝛼𝑖 (𝑗) = 𝑒𝛼(𝑗) to 𝑈 .

For the unresolved equations stored in 𝑈 , we apply the following evaluation
steps:

• Function application: e.g. 0 + 𝑥 → 𝑥, true ∧ false → false, …

• Rewriting conditional expressions: ite(true, 𝑒, 𝑒) → 𝑒, ite(false, 𝑒, 𝑒) → 𝑒

• Resolve stream accesses (to stream 𝑠𝑖 at current position): If 𝜎𝛼𝑖 (𝑗) = 𝑐 in𝑅, then
substitute 𝜎𝛼𝑖 (𝑗) by 𝑐 in every right hand side 𝑈 .

• Resolve stream accesses with offsets: If some 𝜎𝑙,𝛼(𝑗) = 𝑒𝑙 in𝑈 contains a subex-
pression 𝜎𝑖,𝛼(𝑗)[𝑘, 𝑑], 𝜎𝛼ext(𝑗) = 𝑐 is in 𝑅 with either 𝑐 = true or 𝑐 = false, and
𝜎𝛼ter(𝑗) = false then

𝜎𝛼𝑖 (𝑗)[𝑘, 𝑑] →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜎𝛼𝑖 (𝑗) if 𝑘 = 0, 𝜎𝛼ext(𝑗) = true

𝜎𝛼𝑖 (𝑗 + 1)[𝑘 − 1, 𝑑] if 𝑘 > 0, 𝜎𝛼ext(𝑗) = true

𝜎𝛼𝑖 (𝑗 − 1)[𝑘 + 1, 𝑑] if 𝑘 < 0, 𝜎𝛼ext(𝑗) = true

𝜎𝛼𝑖 (𝑗 + 1)[𝑘, 𝑑] if 𝑘 > 0, 𝜎𝛼ext(𝑗) = false

𝜎𝛼𝑖 (𝑗 − 1)[𝑘, 𝑑] if 𝑘 < 0, 𝑗 > 0, 𝜎𝛼ext(𝑗) = false

𝑑 otherwise

• Resolve stream accesses to inactive streams: If some 𝜎𝛼𝑙 (𝑗) = 𝑒𝑙 in 𝑈 contains a
subexpression 𝜎𝛼𝑖 (𝑗)[𝑘, 𝑑], and 𝛼 ∉ 𝑆(𝑠𝑖, 𝑗), then 𝜎𝛼𝑖 (𝑗)[𝑘, 𝑑] → 𝑑.

After each event has been processed, we utilize the set GC to remove entries from
the set𝑅which are no longer needed. For each template output stream, we therefore
initially calculate its cutoff vector, which determines for how many steps resolved
equations remain in 𝑅. The initial value per stream can again be determined by the

63

4 Stream Monitoring with Parametric Data

dependency graph of the specification: for each template output stream, the maxi-
mal negative-weight path over all dependent streams is the longest possible usage
of the determined value. Due to the potentially slow moving pace of individual
stream instances, we keep in GC a vector per stream instance, which on invocation
is set to the initial vector value 0, and then incremented every time the stream in-
stance is extended. Once the stream instance vector reaches the cutoff vector value
for its template output stream, we can safely remove the instance equation from 𝑅.
The stream instance vectors have to maintained dynamically along the stream per
stream instance and cannot be predicted before.

Once a stream instance has terminated either via its auxiliary termination stream
or because the input stream has ended, we replace all open offset expressions look-
ing beyond the final position with the default value and rerun the fixpoint steps
once more.

4.2.1 Memory Requirements

An efficiently-monitorable classic Lќљю specification needs polynomial space in the
size of the specification Φ and constant space in the length of the trace 𝜎 in the case
of online monitoring. The space dependency on the trace again is given modulo
space required for the datatypes and values.

For a Lќљю ₂.₀ specification, the same is not true in general: If an output stream has
for example a parameter of type string, an unbounded number of stream instances
may exist. Thus, the amount of memory needed along the trace grows linear with
the length of the trace.

In practical applications, however, a bound on the number of instances can be
established as part of the design considerations of a monitor and can be monitored
at runtime. The event rate of the system can also be established reasonably at design
time. Then, one could either pre-allocate memory up to the instance bound and use
sufficiently large memory for numeric types or incrementally use the memory along
the trace. Either way, a safe estimate can be found at design time and the overall
memory requirement can be bounded for a specific Lќљю ₂.₀ specification.

This memory requirement is especially important for hardware realizations with
or without external memory.

64

4.3 Efficient implementation

4.3 Efficient implementation

Depending on the use case for Lќљю ₂.₀, different memory vs. computation time
trade-offs can be made in the implementation of the algorithm of the last section.
The performance of the online monitor depends mainly on the size of the set 𝑆 of
maintained active stream instances. If this set is small, the main part of the work
will be spent in the evaluation and simplification of stream equations in the set𝑈 , in
step 1 of the fixpoint. These evaluations can be cached or pre-computed if necessary,
especially with respect to the impact of Boolean inputs on further evaluation steps.
Specifications may also allow to determine a linearization on the evaluation order
without the need for a fixpoint, if the dependency graph forms a tree.

If the set 𝑆 is large, the performance will be dominated by the steps 2 – 4 of the fix-
point. If the monitor has to keep a large set of instances, but only a small number of
equations will be touched in the evaluation process, then efficient lookup structures
from parameter valuations to the corresponding stream instances and the efficient
evaluation of trigger expressions on parametric output streams are key to the per-
formance. The set of dependencies of input streams can again be pre-computed and
does not need to be evaluated on-the-fly in every step.

4.4 Experiments

We have implemented Lќљю ₂.₀ in a prototype command-line tool in C with support
for inverse index structures from inputs to stream instances. The target application
was network monitoring, where a (passive) network monitor observes edge traffic
and reports suspicious IP addresses to a separate firewall component.

Web application Fingerprinting The Lќљю ₂.₀ specification shown in Listing 8 de-
tects web application fingerprinting (i.e. the identification of server-side software
and software version) aĴacks via an indirect method. It relies on the observation
that such fingerprinting aĴacks often yield a large number of server-side responses
with HTTP status codes 404 (“not found”) or 405 (“method not allowed”), since they
essentially blindly probe the request URL, as illustrated in Figure 4.5. While some
HTTP 4xx responses are perfectly normal due to mis-typed URLs, outdated links,
or programming errors, we detect whether a single host issues a large number of
requests resulting in such response codes. Therefore, the counters of malformed
requests are parameterized by destination (since we detect responses in the outgo-
ing traffic) IP address. We also parameterize by source IP address, to account for

65

4 Stream Monitoring with Parametric Data

input string Protocol, Response, Src, Dest
output (string, string) badHttpRequestInvoke:

ext: Protocol="HTTP" & Response="Bad Request" | "Not Found"
:= (Src, Dest)

output bool badHttpRequestExtend<src, dst>:
inv: badHttpRequestInv

:= src=Src & dst=Dest & Response = "Bad Request" | "Not Found"
output bool webAppFingerprintingTerminate<src,dst>:

inv: badHttpRequestInv
:= src=Src & dst=Dest & Response = "OK"

output int webAppFingerprinting<src, dst>:
inv: badHttpRequestInvoke;
ext: badHttpRequestExtend;
ter: webAppFingerprintingTerminate

:= webApplicationFingerprinting(src, dst)[-1,0] + 1
trigger any(webAppFingerprinting > threshold)

Listing 8: Web Application Fingerprinting Specification

multiple HTTP servers on the network.
The specification first matches on the HTTP protocol and the relevant statuses,

and then starts the appropriate counting stream instances. The stream instances are
terminated and the counters therefore reset, if the client manages to form a normal
request with response code 200 (“OK”).

Client Server

GET /typo3/index.php

404 Not Found

GET /wp-admin/index.php

404 Not Found

…

Figure 4.5: Illustration of the network traffic for web application fingerprinting.

TCP SYN Scans The specification shown in Listing 9 detects TCP SYN Scan aĴacks.
In those aĴacks, an aĴacker on the network tries to induce resource exhaustion and
ultimately denial of service (DoS) on a server by opening a larger number of connec-
tions to it and keeping them open. This traffic is illustrated in Figure 4.6. Since the
root case of the problem is the necessary memory allocations in the TCP stack of the
server operating system, one may want to block misbehaving hosts from flooding
the server further. Therefore, a network monitor on the edge of network may detect
such hosts and alleviate the memory pressure by blocking the source IP address on
a firewall.

66

4.4 Experiments

Such aĴacks are usually detected by inspecting network trace files with tools like
Snort [21]. Since those tools are not able to slice the data based on source and des-
tination address of packets and their properties are usually stateless, this results
in many false positives, since sometimes connections drop to many users at once
because of congestion and other problems en route. Our solution is to detect such
TCP SYN scans by behavioural detection: we keep a statistic on open connections
per source and destination IP address pair and detect whether in a short time pe-
riod, we see many open TCP handshakes between individual pairs.

Client Server

TCP SYN

TCP SYN

TCP SYN

TCP SYN

TCP SYN

Figure 4.6: Illustration of the network traffic for TCP SYN Scan aĴacks.

In the specification from Listing 9, this detection is implemented in two phases:
in the first phase, realized via the parametric output stream waitForAck, we detect
single incomplete TCP Handshakes, which set the SYN bit and never set the ACK
bit. These are terminated once the ACK bit is set.

In the second phase, we count further open SYNs from the same host pair via the
parametric output stream tcpSynScan. Then, we set two triggers: one count trigger,
which triggers when the number of concurrent incomplete handshakes reaches a
certain threshold over all host pairs, and one any trigger, which triggers when a
specific host pair has more than threshold open connections.

The multi-phase approach in this specification helps the specification designer,
no need to establish single formula describing the behavior.

The trace files for the experiments with this specification were obtained from the
Malware Capture Facility Project2 and preprocessed to CSV-files via Wireshark3.
The results are summarized in Table 4.7. All experiments were run on a single quad-
core machine with an 3.6GHz Intel Xeon processor with 32 GB RAM. The input trace
files were stored on an internal SSD drive.

2http://mcfp.weebly.com
3http://www.wireshark.org

67

http://mcfp.weebly.com
http://www.wireshark.org

4 Stream Monitoring with Parametric Data

#Packets Snort alerts Time (sec) # Invocations Count Any
Wait Scan Trigger Trigger

901710 613 2550.31 53654 662 660 11
1710373 472 6279.87 95983 521 519 31
1857753 1699 6786.06 107721 550 548 31
1954427 2428 7160.27 115787 695 693 31
2419607 2036 10347.96 146748 1535 1533 31

Figure 4.7: Experimental results for network monitoring of TCP SYN Flood AĴacks.
Snort specification for comparison was set to 100 TCP Requests in 60
seconds. Trace files from Malware Capture Facility Project. Runtime:
8-30 minutes, Memory: 20-50MB. Snort runtime: less than 2 minutes.

Analysis andDiscussion The runtime results show a slow-down due to large num-
ber of stream instances, even though only one of the instances is extended in every
event. This could possibly be improved by more efficient data structure for stream
instance lookups. For a pure software implementation, it can handle a large amount
of open instances.

The bounded instantiation of the stream instances is guaranteed here by the fixed
bitwidth of source and destination IP address, and thus special data structure sup-
port for IP addresses would further help the experimental performance.

From practical perspective, the amount of trigger alerts would result in signifi-
cantly less manual inspection of aĴacks compared to the Snort solution. Data pa-
rameterization keeps the specifications succinct and the implementation works for
reasonably-sized examples in practice.

68

4.4 Experiments

const int threshold1 := 100
const int threshold2 := 2
const int threshold3 := 500

input string Protocol, Syn, Ack, Source, Destination

output bool extend_incompleteHandshakeInvoke <>
:inv: unit
:ext: true
:ter: false
:= Protocol="TCP" & Syn="Set" & Ack="Not set"

output (string, string) incompleteHandshakeInvoke <>
:inv: unit
:ext: extend_incompleteHandshakeInvoke()[0, false]
:ter: false

:= (Source, Destination)

output bool incompleteHandshakeTerminate <string src, string dest>
:inv: incompleteHandshakeInvoke
:ext: true
:ter: incompleteHandshakeTerminate(src, dest)[0, false]

:= Source=src & Destination=dest & Syn="Not set" & Ack="Set"

output int waitForAck <string src, string dst>
:inv: incompleteHandshakeInvoke
:ext: true
:ter: incompleteHandshakeTerminate(src, dst)[0, false]

:= waitForAck(src, dst)[-1, 0] + 1

output bool term_ext_tcpSynInvoke <string src, string dst>
:inv: incompleteHandshakeInvoke
:ext: true
:ter: incompleteHandshakeTerminate(src, dst)[0, false]

:= waitForAck(src, dst)[0, 0] > threshold1

output (string, string) tcpSynInvoke <string src, string dst>
:inv: incompleteHandshakeInvoke
:ext: term_ext_tcpSynInvoke(src, dst)[0, false]
:ter: incompleteHandshakeTerminate(src, dst)[0, false]

:= (src, dst)

output bool tcpSynExtend <string src, string dst>
:inv: tcpSynInvoke
:ext: true
:ter: tcpSynTerminate(src, dst)[0, false]

:= src=Source & dst=Destination & Syn="Set"

output bool tcpSynTerminate <string src, string dst>
:inv: tcpSynInvoke
:ext: true
:ter: tcpSynTerminate(src, dst)[0, false]

:= src=Source & dst=Destination & Syn="Not set" & Ack="Set"

output int tcpSynScan <string src, string dst>
:inv: tcpSynInvoke
:ext: tcpSynExtend(src, dst)[0, false]
:ter: tcpSynTerminate(src, dst)[0, false]

:= tcpSynScan(src, dst)[-1, 0] + 1

trigger count(tcpSynScan) > threshold2
trigger any(tcpSynScan > threshold3)

Listing 9: Network Monitoring Specification to detect SYN-Scan aĴacks.

69

5 Real-time Stream Monitoring

While support for parametric data was added to Lќљю in Chapter 4, the underlying
computation model was still synchronous: the monitor only performs a new round
of stream evaluation whenever a new input event is received, and time advances
in discrete steps. This is perfectly fine for systems with a reliable timing source
for both system and monitor, like hardware circuits, for which Lќљю was originally
developed in [24], and time-triggered embedded systems as demonstrated in [1].
For example, this enables to check if a time limit is exceeded by counting the number
of steps.

On the other hand, asynchronous systems are systems which are driven by exter-
nal events, without a central, reliable timing source. The event rate at which the
system can receive inputs and produce outputs may vary during the execution of
the system and monitor, and only an upper bound may be known at design time.

This timing model introduces significant challenges for any monitoring approach:

• For safety-critical embedded applications, the monitor needs a reliable timing
source for itself, and needs to run independently of the system to be able to
act as a watchdog,

• and notwithstanding the variable input rate, the monitor has to process in-
coming events with bounded resources.

Here, we introduce our monitoring approach RTLќљю, originally introduced in
[35] and illustrated in Figure 5.1. In RTLќљю, we meet these challenges as follows:

• We add native support for real-time references and sliding real-time windows
with aggregation functions to the syntax and semantics of Lќљю ₂.₀,

• we realize an online monitor for the resulting language by combining two
timing models, with an input-synchronous part working on the pace of the
input event rate and a time-triggered second part,

• we take an output-based view to realize the time-triggered second part of the
monitor: a monitor frequency, to be fixed at design time, decouples the eval-

71

5 Real-time Stream Monitoring

uation of output streams from the input event rate, and only evaluates output
streams and sliding windows when at the monitor frequency.

For the important class of efficiently monitorable RTLќљю specifications with ef-
ficient aggregation functions, this output-based view enables a static specification
analysis to compute the bounded memory requirement for a particular specification.
Furthermore, we show that an implementation of RTLќљю, which uses stream in-
stantiation as well as a real-time sliding windows, is also useful for offline data
analysis tasks and can handle realistic input traces and specifications.

For specification languages in runtime monitoring, real-time properties have been
a subject of study for a long time, beginning with real-time variants of temporal
logics [54]. One of the main approaches [27] uses signal temporal logic (STL) over
real-valued signals [28]. Another used a metric variant of first-order temporal prop-
erties in [9], [10] and the tool Aerial [12]. Sliding windows for real-time aggrega-
tions were also used in [11] and the efficient evaluation of sliding windows with
panes was described in [52]. Practical approaches for embedded and low-level
hardware systems were introduced in Copilot [56] and TeSSLA [50], respectively.
For asynchronous stream runtime verification, Striver [40] presents a low-level so-
lution without parametrization.

variable rate
computation

fixed rate com-
putation

i

i

i

i[1s, avg]
i[2s, count]

o
o

trigger �

clock

Figure 5.1: Model of Real-time Lola Stream Monitoring. Input Streams 𝑖,𝑖 and 𝑖
are received by the variable rate (input-triggered) part of the monitor,
whereas the trigger and output streams 𝑜 and 𝑜 are produced by fixed
rate (time-triggered) monitor driven by clock. The streams in the time-
triggered part access input streams via window expressions, in this case
accessing 𝑖 via a one second average and accessing the number of values
of 𝑖 in a two-second period.

72

5.1 Monitoring with Time

An example for a RTLќљю-specification can be seen in Listing 5.1. Here we assume
an input trace which contains a timestamp and a product identifier. The first output
stream sales_by_prod splits the input trace into individual streams per product.
The second output stream sales_frequency then computes a one hour window on
those individual product streams and uses the count aggregation function to count
the number of sale events. Finally, the trigger gives an alert if any product has
been sold more than 100 times within the last hour.

frequency 0.1 Hz
timeinput double timestamp
input int productID

output bool sales_by_prod<int id>
invoke: productID
extend: id = productID
:= true

output int sales_frequency<int id>
invoke: productID
:= sales_by_prod(id)[1h, count, 0]

trigger any(sales_frequency > 100)

Listing 5.1: Identifying frequently sold products on an online shopping platform.

5.1 Monitoring with Time

The two main additions within the syntax of the language are the extension of the
stream offset operator and the real-time sliding window operator. Previously, the
offset operator 𝑠[𝑘, 𝑑] allowed only negative and positive integer values for 𝑘 to in-
dicate the number of discrete steps into the past or future of the accessed stream 𝑠.
Here, we extend the type of 𝑘 to also allow real-time offsets with time units, where
𝑠 is accessed at past offset 𝑘 with a sample-and-hold semantics. Second, we intro-
duce a new real-time sliding window operator 𝑠[𝑘, 𝛾, 𝑑], where 𝑘 is a real-time offset,
𝛾 an aggregation function, and 𝑑 again a default value. This operator computes the
aggregation function 𝛾 over the window of duration 𝑘 on the stream 𝑠.

As illustrated in Figures 5.2 and 5.1, the main feature of RTLќљю is the decoupling
of variable-rate input part of the monitor from the fixed-rate output part. To not un-

73

5 Real-time Stream Monitoring

t

𝐼𝑖− 𝐼𝑖 𝐼𝑖+ 𝐼𝑖+

𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2 𝑖 + 3

𝑤[𝑖] 𝑤[𝑖 + 1] 𝑤[𝑖 + 2] 𝑤[𝑖 + 3]

Figure 5.2: Timeline of input stream with incoming events marked as downward
arrows. Partitioning of the time line into intervals of equal size assuming
a constant rate extension stream for the accessing stream.

necessarily stress computational resources, not every arrival of an input event leads
to a full recomputation of all output streams, but at the same time, the monitor shall
not skip input events. The key addition to the language which enables this decou-
pling are the real-time sliding windows1, which aggregate a variable number of
input events with the aggregation function 𝛾 over the window size 𝑘. Depending
on the fixed rate of the accessing stream, this leads to a fixed a number of intervals,
where the accessing stream needs to be evaluated. This partitioning of the time-
line is depicted in Figure 5.2, where a variable number of input events (downward
arrows) is aggregated within the intervals marked by the dashed lines, which also
represent the fixed, constant rate extension stream of the accessing stream.

The global time reference is either provided by an input stream with timestamps,
or with respect to the local (real-time) clock of the monitor itself.

5.1.1 Syntax

The syntax is closely related to Lќљю ₂.₀ as described in Chapter 4, with the afore-
mentioned extensions in the stream equations and clock handling. A specification
consists of a system of typed stream equations over typed stream variables. As a
first type of stream, input stream definitions are defined as before and only consist
of a type 𝑇 and a chosen stream identifier 𝑡, so the 𝑖-th input stream is defined as:

input 𝑇𝑖 𝑡𝑖
1Remark: The computation of the sliding windows in the way they are defined here is coupled to

the updates of the input streams and the fixed computation rate of the output stream expression
which uses them. A property “every window of 1h contains at least 100 events” is not expressible,
since we would need to trigger an evaluation with 1h delay after every input event. This is not
a fundamental limitation, as one could simply add a delay operator to the language to schedule
such evaluations.

74

5.1 Monitoring with Time

If the input stream contains an external time reference such as a timestamp for
an offline monitor, it is indicated by the keyword timeinput. As a second type of
stream, parameterized output stream templates are syntactically defined as follow-
ing:

output 𝑇𝑚+𝑗 𝑠𝑗 ⟨𝑝 ∶ 𝑇𝑗 , … , 𝑝𝑘 ∶ 𝑇𝑘𝑗 ⟩

invoke ∶ invj

extend ∶ extj

terminate ∶ terj

∶= 𝑒𝑗(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑝, … , 𝑝𝑘)

This describes the 𝑗-th of 𝑛 output stream templates. Each of the templates defines
a template variable 𝑠𝑗 of type 𝑇𝑚+𝑗, which depends on the values of the parameters
𝑝 through 𝑝𝑘. An instance of 𝑠𝑗 with valuation 𝛼 of corresponding types 𝑇𝑗 ×⋯×𝑇𝑘𝑗
can be defined by the substitution

𝑠𝑗(𝑣, … , 𝑣𝑘) = 𝑒𝑗(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑝, … , 𝑝𝑘)[𝑝/𝑣, … , 𝑝𝑘/𝑣𝑘].

The lifetime of these stream instances is controlled by the template variables invj,
extj, and terj, which are the auxiliary streams of 𝑠𝑗 and have the following roles:

• The invocation template stream variable invj of type 𝑇𝑗 ×⋯×𝑇𝑘𝑗 determines
the creation of stream instances. Whenever invj evaluates to a fresh value 𝛼 =
(𝑣, … , 𝑣𝑘), a new instance 𝑠𝑗(𝛼) of 𝑠𝑗 is invoked.

• The extension template stream variable extj of type bool is invoked - per stream
instance - with the same parameter valuation 𝛼whenever a new instance is in-
voked and controls when the stream instance is extended. An instance 𝑠𝑗(𝛼)
is extended whenever its corresponding extension stream extj(𝛼) evaluates to
true. Then, the value of the instance 𝑠𝑗(𝛼) is determined based on the corre-
sponding stream expression 𝑒𝑗(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑣, … , 𝑣𝑘).

• Similarly, the termination template stream variable terj of type bool is also in-
voked per stream instance with the same parameter valuation 𝛼 whenever a
new stream instance is invoked. An instance 𝑠𝑗(𝛼) is terminated whenever its
corresponding termination stream terj(𝛼) evaluates to true.

If the output stream template does not have any parameters, the empty parameter

75

5 Real-time Stream Monitoring

declaration ⟨⟩may be omiĴed. Also, if the invocation template stream is omiĴed, it
defaults to the default invocation stream unit, which produces the empty tuple () in
every position. If the extension template stream is omiĴed, it is set to the constant
stream true, which produces a tick in every position, and if the termination template
stream is omiĴed, it is set to the constant stream false, respectively.

Timing Model Every individual stream instance 𝑠𝑗(𝛼) is paced by a corresponding
local clock defined by its extension stream extj(𝛼). These local clocks themselves
advance on a global reference clock gc, which is extended whenever any new in-
put event arrives for the monitor, and also serves as a clock for the default stream
unit. Thus, for the monitor, time still evolves in discrete ticks by gc, but those ticks
are not equidistant on the real-time axis. Instead, they are the finest granularity of
observation. The type of gc is assumed to be the timestamp of the incoming event,
either coming from a timeinput time reference or an internal clock signal.

The definition of ext𝑗 may be omiĴed from the syntactical description of 𝑠𝑗, and
the default semantics are that 𝑠𝑗 will follow the union (disjunction) of the extensions
streams of the output stream instances and input streams which appear in its ex-
pression. The extension streams of input streams are evaluated at the pace of gc
and evaluate to true whenever a new value for this input stream is available. The
pace of the termination stream ter𝑗 is coupled to the extension stream.

Syntaxof streamexpressions An RTLќљю expression 𝑒𝑗(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑝, … , 𝑝𝑘)
can be constructed recursively from the following sub-expressions:

• For a parameter 𝑝 with type 𝑇 , 𝑒 = 𝑝 is a stream expression of type 𝑇 .

• For a constant 𝑐 of type 𝑇 , 𝑒 = 𝑐 is an atomic stream expression of type 𝑇 .

• For a 𝑘-ary function 𝑓 ∶ 𝑇 ×⋯×𝑇𝑘 → 𝑇 and stream expressions 𝑒, … , 𝑒𝑘 of
matching types 𝑇, … , 𝑇𝑘, 𝑒 = 𝑓(𝑒, … , 𝑒𝑘) is a stream expression of type 𝑇 .

• For a stream expression 𝑏 of type bool, stream expressions 𝑒 and 𝑒 of type
𝑇 , 𝑒 = ite(𝑏, 𝑒, 𝑒) is a stream expression of type 𝑇 .

• For a stream variable 𝑠 with associated type 𝑇 , parameters 𝑝, … , 𝑝𝑘, a con-
stant 𝑑 of type 𝑇 , and a constant 𝑖 of type int, 𝑒 = 𝑠(𝑝, … , 𝑝𝑘)[𝑖, 𝑑] is a stream
expression of type 𝑇 .

• For a stream variable 𝑠with associated type 𝑇 , parameters 𝑝, … , 𝑝𝑘, a constant
𝑑 of type 𝑇 , and a constant 𝑟 (in seconds) of type double, 𝑒 = 𝑠(𝑝, … , 𝑝𝑘)[𝑟, 𝑑]
is a stream expression of type 𝑇 .

76

5.1 Monitoring with Time

• For a stream variable 𝑠with associated type 𝑇 , parameters 𝑝, … , 𝑝𝑘, a constant
𝑑 of type 𝑇 ′, a constant 𝑟 (in seconds) of type double, and any function 𝛾 from
the theories with type 𝑇 ∗ ↦ 𝑇 ′, 𝑒 = 𝑠(𝑝, … , 𝑝𝑘)[𝑟, 𝛾, 𝑑] is a stream expression
of type 𝑇 ′.

• For a template stream variable 𝑠 and an aggregation operator Op of type 𝑇 ,
𝑒 = Op(𝑠) is a stream expression of type 𝑇 .

Additionally, RTLola-specifications may contain a list of trigger-expressions to
generate notifications: trigger 𝜑, 𝜑, … , 𝜑𝑘, where 𝜑, 𝜑, … , 𝜑𝑘 are arbitrary ex-
pressions of Boolean type.

5.1.2 Semantics

The semantics of an RTLќљю-specification on a given trace are defined again via its
corresponding evaluation model. The semantics of the data parameterization corre-
spond to Lola 2.0, but the asynchronous input behavior and the real-time (window)
accesses are added.

For an RTLќљю-specificationΦwith input streams 𝑡, … , 𝑡𝑚 of type 𝑇, … , 𝑇𝑚, out-
put stream templates 𝑠, … , 𝑠𝑛 of types 𝑇𝑚+, … , 𝑇𝑚+𝑛 with their associated parame-
ters 𝑝𝑠𝑖 , … , 𝑝

𝑠𝑖
𝑙𝑖 of type𝑇 𝑠𝑖 , … , 𝑇

𝑠𝑖
𝑙𝑖 (for the output stream template 𝑠𝑖 with 𝑙𝑖 parameters).

Let 𝑁 > 0 denote the length of the global clock stream of the input trace, whose
values are denoted by finite subtraces 𝜏𝑖 for 1 ≤ 𝑖 ≤ 𝑚. The value of input stream 𝑖
at position 𝑗 is denoted by 𝜏𝑖(𝑗). If a value of a stream (instance) is not available in
a position, this is denoted by the default value ⊥, which we add to all types 𝑇𝑖 for
this purpose.

An evaluation model for Φ on 𝜏 is a set Γ of streams of length𝑁 . An output stream
instance of output template stream 𝑠𝑗 with parameter valuation 𝛼 = 𝑣, … , 𝑣𝑙𝑖 is de-
noted by 𝑠𝑗(𝛼), and its corresponding stream in Γ by 𝜎𝛼𝑗 .

Again, Γ has to be constructed such that all relevant stream instances are included
and its stream equations evaluate to the correct values. The elements of Γ are deter-
mined as following:

• 𝜎() ∈ Γ, the designated initial stream, which evaluates to the empty tuple () in
all positions and serves as the default invocation stream.

• For every output stream template 𝑠𝑗 from 𝑠, … , 𝑠𝑛, we have to consider its
associated invocation stream inv𝑗. If Γ contains a stream 𝜎𝛼𝑖𝑛𝑣𝑗 for some 𝛼, then
Γmust also contain a stream instance for each fresh value 𝛽 produced by 𝜎𝛼𝑖𝑛𝑣𝑗

77

5 Real-time Stream Monitoring

at any position, i.e. for all positions 𝑖 < 𝑁 , if 𝜎𝛼𝑖𝑛𝑣𝑗 ≠ ⊥, and 𝜎𝛼𝑖𝑛𝑣𝑗 = 𝛽, then also

𝜎𝛽𝑗 ∈ Γ.

The main difference in the evaluation of stream expressions compared to Lќљю
₂.₀ is the handling of real-time offsets, real-time windows, and non-existent stream
values. For streams, non-existent values accessed by stream offset operators will
follow a sample-and-hold semantics.

It remains to define the value of a stream instance 𝑠𝑗(𝛼)when it has been invoked
and is currently extended and not terminated. This value is determined by the eval-
uation of its stream expression, the main mechanism of specification in RTLќљю.
This is captured by the predicate alive(𝑠𝑗, 𝛼, 𝑖), which is satisfied for stream instance
𝑠𝑗(𝛼) iff (𝜎𝛼𝑖𝑛𝑣𝑗 = true ∧ 𝜎𝛼𝑒𝑥𝑡𝑗 = true) ∨ (𝜎𝛼𝑒𝑥𝑡𝑗 = true ∧ 𝜎𝛼𝑡𝑒𝑟𝑗 = false). Each instantiated
stream expression 𝑒𝛼𝑗 of 𝑒𝑗(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑝, … , 𝑝𝑘)has access to the parameter val-
uation of the current stream instance, as well as access to past and present values of
all input streams and output stream instances.

To handle the timing behavior, we define the following helper functions for clocks,
timestamps, and positions:

• gc refers to the global clock which maps a global position 𝑖 in the evaluation
model to a timestamp.

• A local clock lc for discrete ticks, which maps a stream instance 𝑠𝛼𝑗 and a global
position 𝑖 to the number of times this instance has been extended since it has
been last invoked.

• A function lc2gc, which maps the stream instance, global position and a dis-
crete offset back to its global time position.

• For a stream instance 𝑠𝛼𝑗 , and a timestamp 𝑡, let hold(𝑠𝛼𝑗 , 𝑡) return the largest
global position where 𝑠𝛼𝑗 is extended and has a timestamp equal or smaller
than 𝑡.

• For a stream instance 𝑠𝛼𝑗 , and timestamps 𝑡 and 𝑡, let collect(𝑠𝛼𝑗 , 𝑡, 𝑡) return
the sequence of values of stream instance 𝑠𝛼𝑗 which fall between the time-
stamps 𝑡 and 𝑡, i.e. all values of 𝑠𝛼𝑗 where 𝑠𝛼𝑒𝑥𝑡𝑗 is true and where the corre-
sponding gc-timestamp is greater or equal than 𝑡 and less or equal than 𝑡.

Let 𝑒𝑗(𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛, 𝑝, … , 𝑝𝑙) be the stream expression of stream 𝑠𝑗. Then, for
each stream instance 𝜎𝛼𝑗 ∈ Γ with valuation 𝛼 = (𝑣, … , 𝑣𝑙),

78

5.2 Window Aggregation Functions

𝜎𝛼𝑗 (𝑖) =

⎧⎪⎪⎨
⎪⎪⎩
val(𝑒𝑗[𝑝/𝑣, … , 𝑝𝑙/𝑣𝑙])(𝑖) if alive(𝑠𝑗, (𝑣, … , 𝑣𝑙), 𝑖)
⊥ otherwise

with the following evaluation function val(𝑒[𝑝/𝑣, … , 𝑝𝑙/𝑣𝑙])(𝑖):

• constants:
val(𝑐)(𝑖) = 𝑐

• function application:
val(𝑓(𝑒, … , 𝑒ℎ))(𝑖) = 𝑓(val(𝑒)(𝑖), … ,val(𝑒ℎ)(𝑖))

• conditional expressions:

val(ite(𝑏, 𝑒, 𝑒))(𝑖) =

⎧⎪⎪⎨
⎪⎪⎩
val(𝑒)(𝑖) if val(𝑏)(𝑖) = true

val(𝑒)(𝑖) otherwise

• discrete stream access:

val(𝑠𝑗(𝛼)[ℎ, 𝑑])(𝑖) =

⎧⎪⎪⎨
⎪⎪⎩
𝜎𝛼𝑠𝑗(lc2gc(𝑠

𝛼
𝑗 , 𝑖, ℎ)) if 0 ≤ lc(𝑠𝛼𝑗 , 𝑖) + ℎ < 𝑁

𝑑 otherwise

• real-time stream access:

val(𝑠𝑗(𝛼)[𝑟, 𝑑])(𝑖) =

⎧⎪⎪⎨
⎪⎪⎩
𝜎𝛼𝑠𝑗(hold(𝜎

𝛼
𝑠𝑗 ,gc(𝑗) + 𝑟)) if 0 ≤ hold(𝜎𝛼𝑠𝑗 ,gc(𝑗) + 𝑟) < 𝑁

𝑑 otherwise

• real-time sliding window:

val(𝑠𝑗(𝛼)[𝑟, 𝛾, 𝑑])(𝑖) =

⎧⎪⎪⎨
⎪⎪⎩
𝛾(collect(𝜎𝛼𝑠𝑗 ,gc(𝑗) − 𝑟, gc(𝑗))) if (gc(𝑗) − 𝑟) ≥ 0
𝑑 if gc(𝑗) − 𝑟) < 0

5.2 Window Aggregation Functions

For the evaluation of a real-time sliding window expression 𝑠[𝑟, 𝛾, 𝑑] in the context
of the stream expression of stream 𝑠′, the main sources of time and space complexity
are the aggregation function 𝛾 ∶ 𝑇 ∗ ↦ 𝑇 ′, the window duration 𝑟, and the extension
rate of stream 𝑠′.

In a generic approach, we would store all input events received within the du-
ration 𝑟 in a buffer, and whenever 𝑠′ is extended, recompute 𝛾 over the full buffer
(containing 𝑇 ∗) to compute the value of the sliding window expression for the fur-
ther evaluation of the expression of stream 𝑠′. For the general case of aggregation
functions 𝛾, such as the median-function, this is necessary.

79

5 Real-time Stream Monitoring

In order to ensure a memory guarantee for the monitor, however, storing all pos-
sible input events of a variable rate input stream is infeasible. Furthermore, re-
computing 𝛾 on every extension over the full buffer containing 𝑇 ∗ may typically
share a lot of operations with the previous computation of 𝛾 for 𝑠′. For aggregation
functions 𝛾 with certain properties, this is not necessary, and an optimized paning
approach to the sliding window computation similar to [52] can be followed.

First, the window duration 𝑟 is split into equi-distant time panes 𝑡𝑝, … , 𝑡𝑝𝑟⋅𝑦 ac-
cording to the extension rate 𝑦 of the stream 𝑠′, as illustrated in Figure 5.2. For each
pane 𝑡𝑝, the function 𝛾 is used to pre-aggregate the input values of a pane to an
intermediate value 𝛾(𝑡𝑝); these computations will be performed on the input rate.
Then, the evaluation of the sliding window expression will be performed by com-
puting 𝛾 over the pre-aggregated values 𝛾(𝑡𝑝) of each pane 𝑡𝑝. Since the number of
panes is fixed, this computation is time-deterministic. Also, this computation on the
pre-aggegrates does not need access to the individual input values since they are
summarized in 𝛾(𝑡𝑝) – therefore the space requirement is also pre-determined and
bounded. This is not possible for all types of aggregation functions, only for efficient
aggregation functions. The important property of 𝛾 needed is associativity, as it al-
lows us to re-arrange the order of the evaluation of 𝛾. Most aggregation functions,
such as max, min, sum, integral have the needed property. If the function has also
an inverse operation, the effect of a single pane to the value can be reversed, which
leads to only two operations needing to be performed in the fixed-rate component:
the effect of the outgoing pane needs be reversed, and the pre-aggregated value of
the incoming pane needs to be included.

5.3 Memory Analysis

While in Chapter 4, we could ensure a bounded memory requirement for a monitor
by bounding the number of instantiations, the variable-rate input poses a separate
obstacle for strict memory guarantees.

Our main approach is a constructive one: for practical applications it can be suf-
ficient to define a static analysis for RTLќљю specifications, which can be used to
guide the specification designer towards formalizations of the monitoring proper-
ties which do not lead to unbounded memory usage. This approach still allows to
accept the memory penalty where it is necessary from an application point of view
and allows the full expressiveness of the language. Therefore, we allow to specify
a fixed evaluation rate for the output streams with the keyword frequency.

80

5.3 Memory Analysis

Our approach is based on an extended version of the dependency graph (for clas-
sic Lќљю, see Section 3.1.3) of the specification as an analysis method to find un-
bounded or high memory requirements.

Annotated dependency graph For an RTLќљю specificationΦ, its annotated depen-
dency graph 𝐺 = ⟨𝑉, 𝐸, 𝜋, 𝜆⟩ is a weighted, directed and annotated multi-graph
defined as following:

• A set of vertices 𝑉 representing input streams and stream variables, with 𝑉 =
{𝑡, … , 𝑡𝑚, 𝑠, … , 𝑠𝑛},

• a set of edges 𝐸, which defines the stream accesses and thus dependencies
between the streams, where 𝐸 = {(𝑠𝑖, 𝑣) ∣ 𝑣 ∈ {𝑖𝑛𝑣𝑖, 𝑒𝑥𝑡𝑖, 𝑡𝑒𝑟𝑖} ∨ 𝑒𝑖 accesses 𝑣},

• a vertex annotation function𝜋, which annotates each vertex with its fixed eval-
uation rate, or with var if it is a variable-rate stream,

• an edge annotation function 𝜆, which labels the stream accesses of 𝐸with their
corresponding real-time and discrete offsets and sliding window accesses.

As in Section 3.1.3, 𝑉 and 𝐸 are derived directly from the syntax of the specifi-
cation, with the obvious addition of 𝜆. For the vertex annotation function 𝜋, we
initialize the input stream variables with var. If the output streams have a given,
fixed rate, we initialize them with this rate. For all other streams 𝑣, we define 𝜋(𝑣)
to be the maximal rate of the streams 𝑣 accesses (where var dominates all values).

Computing the memory requirement To compute the memory requirement of
Φ, we will use the two annotation functions 𝜋 and 𝜆 to compute the number of
values which need to be stored by the online monitoring algorithm. For the classic
Lќљю parts, we can compute this by taking the garbage collection vector offsets,
which are directly derived from the maximal (transitive) offset access. For real-time
sliding windows where the stream expression of stream 𝑠′ with rate 𝜋(𝑠′) contains
the sliding window access 𝑠[𝑟, 𝛾, 𝑑], we consider the following situations:

• If 𝜋(𝑠) = var, and 𝛾 is not efficient, then unbounded memory is needed,

• If 𝜋(𝑠) has frequency 𝑦 Hz, and 𝛾 is not efficient, then 𝑦 ⋅ 𝑟 values have to be
stored,

• If 𝜋(𝑠) = var, and 𝛾 is efficient, then 𝜋(𝑠′) ⋅ 𝑟 values have to be stored,

81

5 Real-time Stream Monitoring

• If 𝜋(𝑠) has frequency 𝑦Hz, and 𝛾 is efficient, then𝑚𝑖𝑛(𝜋(𝑠′) ⋅ 𝑟, 𝑦 ⋅ 𝑟) values have
to be stored.

The memory requirement of Φ is the sum of the memory requirements of its out-
put streams, where the requirement for each output stream is multiplied by the
bound on its number of stream instances, as for Lќљю ₂.₀.

5.4 Online Monitoring Algorithm

We split the presentation of the online monitoring algorithm into two components:
the input event-triggered part and the time-triggered part. Both run in concurrent
threads and share a part of their data structures, but writes to the data structures
are disjoint, since the stream evaluations can be split between the two components.

A difference between RTLќљю and Lќљю ₂.₀ is that not all inputs have to arrive at
the same time, so only a subset of the input streams may be extended on an incom-
ing event. For the purpose of the algorithm implementation, the set𝑈 of unresolved
stream expressions is split into further parts to keep track of the stream instances.
In the variable part of the algorithm, we register the incoming input events in their
respective stream instances and sliding windows. An instance is compatible to the
current event if its parameters match with the values of the event. We also keep track
of invocations induced by the current input streams. The list of efficient streams in
this algorithm is a subset of the output streams which can be directly evaluated
without stream accesses with offsets, but with the usual functions, including arith-
metic expressions and equality checks. This allows for the pre-evaluation of more
expressive triggers and auxiliary streams which run on the input rate.

The fixed-rate part of the algorithm is similar to Lќљю ₂.₀, but note that it is trig-
gered by a clock signal, not by an input event. The book-keeping list created in the
variable-rate part is used here to initialize the set of stream instances to be extended
and terminated. Since every fresh stream instance value may again trigger new
invocations, extensions or terminations, we have to run the evaluation in a fixpoint.

Efficent bindings For Algorithm 4, resolving the existential quantifier of Line 14
has a large impact on performance, as the list of stream instances may be large,
but only a comparatively small number of them are usually extended with each
input event. To quickly identify the relevant stream instances to extend, and since
most extension streams are essentially equality checks of input stream values to
parameter values, we keep an extra index for these efficient bindings to support a

82

5.4 Online Monitoring Algorithm

Algorithm 4 Variable-rate part of the online monitoring algorithm for RTLќљю
Input: Incoming Event 𝐸, containing 𝑣𝑖 for subset of input streams 𝑠𝑖,

Timestamp 𝑡𝑠
Output: List of Triggers 𝑇

1: for all (𝑠𝑖, 𝑣𝑖) ∈ 𝐸 do ▷ store input events
2: extend 𝑠𝑖 by fresh value 𝑣𝑖
3: add 𝑠𝑖 to depending window panes with time 𝑡𝑠
4: end for
5: for all 𝑠 invoked by 𝐸 do
6: 𝑠𝛼 ← invoke 𝑠 with valuation 𝛼 compatible with 𝐸
7: if 𝑠 is efficientStream then
8: efficientStreamInstances← efficientStreamInstances ∪ {𝑠𝛼}
9: else

10: outputStreamInstances← outputStreamInstances ∪ {𝑠𝛼}
11: end if
12: end for
13: for all 𝑠 ∈ efficientStreams do
14: if ∃ 𝑠𝛼 ∈ Instances(𝑠) compatible with 𝐸 then
15: 𝑣 ← value(𝑠𝛼) with 𝐸 ▷ extend 𝑇 if appropriate
16: extend 𝑠𝛼 by 𝑣
17: add 𝑣 to depending window panes with time 𝑡𝑠
18: end if
19: end for
20: return active triggers 𝑇

83

5 Real-time Stream Monitoring

Algorithm 5 Fixed-rate part of the online monitoring algorithm for RTLќљю
Input: Clock signal at time 𝑡𝑠, outputStreamInstances
Output: List of Triggers 𝑇 , Outputs 𝑂

1: 𝑂 ← ∅
2: ▷ Initializations from variable-rate part
3: 𝐸𝑥𝑡 ← {𝑠𝛼 ∣ 𝑠𝛼 ∈ outputStreamInstances∧ ext𝛼𝑠 = true}
4: 𝑇𝑒𝑟 ← {𝑠𝛼 ∣ 𝑠𝛼 ∈ outputStreamInstances∧ ter𝛼𝑠 = true}
5: while fixpoint 𝑈 do
6: for all sliding windows 𝑤 do
7: compute value of 𝑤 from panes with aggregation at time 𝑡𝑠
8: end for
9: for all 𝑠𝛼 ∈ Ext do

10: 𝑣 ← (partially) evaluate 𝑠𝛼
11: if 𝑣 is fully evaluated then
12: extend 𝑠𝛼 by 𝑣
13: add 𝑣 to depending window panes with time 𝑡𝑠
14: 𝑂 ← 𝑂∪ {𝑠𝛼, 𝑣}
15: for all 𝑠′𝛼′ invoked by 𝑠𝛼 do ▷ 𝑠𝛼 may invoke many 𝑠′
16: invoke 𝑠′ with valuation 𝛼′ based on 𝑣
17: end for
18: if 𝑣 = true then ▷ 𝑠𝛼 may extend or terminate many 𝑠′𝛼′

19: for all 𝑠′𝛼′ extended by 𝑠𝛼 do
20: 𝐸𝑥𝑡 ← 𝐸𝑥𝑡 ∪ 𝑠′𝛼′

21: end for
22: for all 𝑠′𝛼′ terminated by 𝑠𝛼 do
23: 𝑇𝑒𝑟 ← 𝑇𝑒𝑟 ∪ 𝑠′𝛼′

24: end for
25: end if
26: end if
27: end for
28: for all 𝑠𝛼 ∈ 𝑇𝑒𝑟 do
29: terminate 𝑠𝛼
30: end for
31: end while
32: return active triggers 𝑇 , outputs 𝑂

84

5.5 Experiments

fast lookup for the existential quantifier.

5.5 Experiments

The online monitoring algorithm for RTLќљю was implemented in Swift. All exper-
iments were conducted on a quad-core Intel i7 processor with 2,7 GHz and 16GB
RAM. The input events were read from the internal SSD and piped to the monitor-
ing process.

5.5.1 Memory Requirement vs. Input Rates

A synthetic input trace of 1 million events length with random data was used to
determine the memory and runtime behavior of our implementation. Using rate
control on the input pipe to the monitoring process, we simulated different loads
on the monitoring system. The input rate ranged from 10k events per second to
100k events per second in steps of 10k events.

Runtime and memory consumption were measured with the standard Unix time
utility and are reported in seconds and megabytes, respectively. The RTLќљю spec-
ification used for the experiment is shown in Listing 5.2. It has a monitor frequency
of 100 Hz and calculates the five-second-sums over three input streams and checks
a trigger condition on them. The results of the experiment are shown in Figure 5.3.

input double a,b,c
output double sumabc := (a[5s, sum, 0.0] + b[5s, sum, 0.0] + c[5s, sum, 0.0])
trigger any(sumabc < 0.3)
frequency 100 Hz

Listing 5.2: Specification used for inputrate performance test.

The memory usage in this experiment was constant over the varying input rate.
We can also see that the time does not increase after an event rate of 30k events
per second, which indicates the throughput limit for the monitor for this particu-
lar specification. The corresponding throughput is approximately 25k events per
second.

5.5.2 Data Analysis

To evaluate the performance of the implementation for data analysis tasks with
more challenging and complex specifications, we analyzed web shop product re-

85

5 Real-time Stream Monitoring

 0

2

4

6

8

0

20

40

60

80

100

input rate (events/sec)

m
em

or
y

(M
B)

to
ta

lt
im

e
(s

ec
on

ds
)

memory time

Figure 5.3: Memory usage and computation time vs. input rate for synthetic trace
data. Event size is 24 Bytes per event. Overall trace length is 1 million
events.

view data [43], which contained the review rating for each product. The specifi-
cation for our experiment is depicted in Listing 5.3. This specification takes as in-
puts the identifier of the review (uid), the identifier of the product (pid), and the
1-through-5-star rating of the review stars. The main goal of the specification is to
determine “hot” products, which receive a lot of recent reviews that are beĴer than
their longer running average.

In our experimental results, shown in Figure 5.4, we recorded runtime (in sec-
onds) and memory usage (in GB) per main product category. The input trace lengths
for different product categories went up to 7 million events. The product categories
are indicated on the graph on the 𝑥-axis, where we show the number of unique
product identifiers contained in the dataset. This gives an indication of how many
stream instances have to be maintained by the monitor throughout the dataset.

The results for memory usage measurement for the larger sets is influenced by the
memory management in the monitor. Still, we can see that also data analysis tasks
over large datasets are possible. The maintenance of large sets of stream instances
(100k – 500k) is possible, but heavily influences memory usage.

86

5.5 Experiments

frequency 0.1 Hz
input string uid, pid
input double stars
timeinput double ts
output double stars_by_prod <string prod>

invoke: pid
extend: pid = prod
:= stars

output double star_avg_l <string prod>
invoke: pid
:= stars_by_prod(prod)[100 s, average, 0.0]

output double star_avg_s <string prod>
invoke: pid
:= stars_by_prod(prod)[10 s, average, 0.0]

output double avg_delta <string prod>
invoke: pid
:= star_avg_l(prod)[0, 0.0] - star_avg_s(prod)[0, 0.0]

trigger any(avg_delta > 1.0)

Listing 5.3: Specification to analyse potentially popular products on an online shop-
ping platform. timeinput specifies the time reference input.

0 1 ⋅ 10 2 ⋅ 10 3 ⋅ 10 4 ⋅ 10 5 ⋅ 10
0

2

4

6

8

10

12

0

2,000

4,000

6,000

8,000

10,000

number of unique product IDs

m
em

or
y

(G
B)

tim
e

(s
ec

on
ds

)

memory

time

Figure 5.4: Memory usage and computation time vs. the number unique product
identifiers per trace file for Amazon review rating data. The computa-
tion did not terminate for the two largest categories which include 1.2
and 2.3 million different product due to memory limitations.

87

6 Case Study: Monitoring in UAS

Unmanned aerial systems (UAS) with autonomous decision-making capabilities are
becoming increasingly interesting for civil applications such as logistics and disas-
ter recovery. From these new use cases follow new requirements: integration into
classic, already populated civilian airspace, flying over urban territory, using much
smaller and potentially cheaper aircraft in comparison to classic piloted aircraft.
The safety case for systems in this area will heavily rely on the correctness of the
behavior exhibited by the software and hardware components of the flight system
in its specific application scenario, since there is no onboard pilot to monitor the
system and react. On-ground pilots are limited to visual-line-of-sight (VLOS) ap-
plications. Even without human passengers on board, the stability and correctness
of the system has potentially harmful consequences for human life on the ground.

A research testbed of autonomous UAS is developed and maintained by the Insti-
tute of Flight Systems of the German Aerospace Center (DLR). Within the DLR AR-
TIS platform (Autonomous Research Testbed for Intelligent Systems), a common
flight software platform is used for different classes of aircraft, from fixed-wing air-
craft to rotary-wing aircraft with take-off weights ranging from 1kg to 150kg. Since
ARTIS is primarily a research testbed, only some of the infrastructure is stable (such
as ground station, communication links and a basic flight control), and it supports
experimentation with different flight controllers, sensor configurations, sensor fu-
sion, optical navigation, path planning and mission management. Therefore, the
majority of software components is under constant development.

The systems support high-level autonomy: given a mission plan with a set of
GPS waypoints and a high-level task, such as 3D-mapping an area of interest, the
system will automatically derive and refine (in an online manner) a flight path and
autonomously control the lower-level layers, such as sensors and actuators of the
system. The system architecture follows a standard Guidance-Navigation-Control
(GNC) paĴern, illustrated in Figure 6.2.

In order to bring such autonomous systems closer to use in realistic applications,
there are two approaches: (1) classic certification entails the need to demonstrate
and certify the correctness of the automated software functions, which control the

89

6 Case Study: Monitoring in UAS

autonomous decision-making, for all possible operations, and (2) operation-specific
certification, which takes the specific operation into account and reduces the effort
to certify the potentially complex software functions.

Due to its role as a research platform, the underlying software components are
changed frequently, but the interfaces between many safety-critical components in
the system are more stable. Therefore, we introduced runtime monitoring with
different versions of Lќљю to the ARTIS platform starting with the data flowing on
these component interfaces. This gave a lightweight path to implementation and
instrumentation into the existing software platform.

The monitoring approach was also used to support the development process in
the platform in the form of a debugging tool: existing flight log files were used to
guide the specification development and to identify misbehaving components by
flight operators, which removed the need to involve the module developers for the
initial analysis. Timing specifications were of particular interest for this task, which
identified anomalies in the timing behavior of individual components and allowed
to quickly pinpoint the root cause of problems.

This part of the thesis was carried out within an ongoing cooperation between
Saarland University and the Institute of Flight Systems, DLR Braunschweig. The
chapter is based on [74] and [1].

RelatedWork Runtime monitoring applied to unmanned aerial systems has mainly
been explored in a series of works by Rozier et. al. at NASA and Iowa State [38, 67,
61] in the monitoring approach R2U2. The main differences to the case study de-
scribed here is in the choice of specification language and monitor integration. The
specification language used for R2U2 is based on an extension of linear-time tempo-
ral logic with an enriched assertion language for real-valued signals and a top-level
statistical analysis using bayesian networks. Their monitor is implemented on an
FPGA and integrated via an existing hardware bus and thus only has access to ex-
ternally visible information, whereas our more tightly coupled software integration
gives us access to the internal state of software components.

Other approaches for drone monitoring include the language Copilot, which was
used to monitor specific airspeed sensor properties [57] and SAFEGUARD, a mon-
itoring device specific for geo-fencing properties [26]. For the specific property of
avoiding ground collisions, Auto GCAS has been developed for military applica-
tions [70].

In the context of formal methods for the ARTIS platform, previous work on soft-
ware verification was described in [72], verification and validation of the mission

90

6.1 DLR ARTIS Research Platform

manager component in [71], and model checking in [73].
Some of the adoption barriers of formal methods for realistic applications have

been presented in [25] and especially for formal specification languages in [63].

6.1 DLR ARTIS Research Platform

The UAS research platform ARTIS, maintained by the Institute of Flight Systems
at DLR Braunschweig, is focused on the study of system autonomy, security and
safety to realize intelligent functions within affordable UAS aircraft. The platform
consists of a fleet of UAS with take-off weights from 1kg to 150kg as well as a com-
mon software platform, which is parameterized for each individual aircraft and
configuration.

Figure 6.1: SuperARTIS, with an intermeshing rotor, shown with full sensor setup
and two flight computers. Take-off weight: 85kg

As previously mentioned, the overall system architecture, as shown in Figure 6.2
is split into three main layers:

• The flight control component realizes the control layer, the lowest-level (i.e.
closest to hardware) layer in the architecture. This component uses a closed-
loop controller to command the desired position, height, speed and orienta-
tion of the aircraft, e.g. the 6D-pose of the UAS. Its output signals are the actu-
ator control commands, which drive the actuators, such as the motor throĴle

91

6 Case Study: Monitoring in UAS

actuator and rotor blade pitch actuator. The controller is robust against exter-
nal disturbances such as wind and keeps the aircraft on the given trajectory.

• The navigation filter component realizes the middle, navigation layer of the
architecture. Its main task is to estimate the current state of the aircraft: the
position of the aircraft in its environment (localization). As input signals, the
component receives sensor readings from a multitude of heterogenous sen-
sors, such as GPS, IMU, altimeter, different camera systems, radar systems or
other optical sensors such as LIDAR. Therefore, the primary function of this
component is performing sensor fusion of these sensor readings into consistent
state estimates.

• The mission manager component realizes the topmost, guidance layer of the
system. It performs mission planning and execution. It receives high-level in-
structions and objectives from a ground control station and keeps track of ob-
stacle and mapping information of the potentially unknown flight area, which
is received from a computer vision component. The high-level task of explor-
ing and mapping an unknown area is here broken down into a number of
suitable waypoints and path planning is used to generate an optimal flight
path. Additionally, it receives the current state estimates from the navigation
filter component for online replanning. Then, the generated flight path is used
to compute the target 6D-pose for the flight control component.

Each of the layers in the hierarchy represents a different level of system auton-
omy. ARTIS aircraft have been evaluated in flight tests with respect to closed-loop
motion planning in obstacle-rich environments.

During flight, all of the system components collect extensive logging information
for debugging, post-flight analysis and evaluation. This log information contains
input sensor data, timestamps, and internal states. The data is sent to external stor-
age, and a subset is sent via radio transmission as telemetry data to the ground
control station.

The timestamps collected in these log files have a common time base, since the
complete software platform runs on the same CPU and RTOS. Also, the system
has a time-triggered architecture: all software functions are triggered through a base
task, where the GNC runs at 50 Hz and all other parts via subsequent synchronous
function calls. Therefore, the system has a native synchronous timing model. Since
the components are tightly coupled via function calls, there is no hardware bus in
the system.

92

6.1 DLR ARTIS Research Platform

Figure 6.2: Illustration of the Guidance-Navigation-Control (GNC) architecture
with its main system components (white round boxes) of the DLR AR-
TIS software platform with added monitor instances (grey rectangular
boxes).

Figure 6.3: A simulation of autonomous exploration and mapping of an unkown
area with onboard sensors. The flown path is indicated in red, the sim-
ulated sensor distance in green, and mapped obstacles in grey.

Due to the software architecture, time overruns in software functions along the
effect chain can result in variance in the timestamps in the log files of the compon-

93

6 Case Study: Monitoring in UAS

tens as compared to their ideal frequency (timing jiĴer). This behavior can be used
to pinpoint component faults, as all later components on the chain will receive their
inputs with some delay due to the tight coupling.

6.1.1 Certification of UAS

There are two types of risks associated with the operation of UAS: air risks, i.e. col-
lisions with other manned or unmanned aircraft and ground risks, i.e. for people or
property on the ground. Air risks are currently mainly mitigated by keeping UAS in
separate airspace from manned flight and by mandating visual-line-of-sight flying
for most UAS. Ground risks are mitigated by restricting the flight areas, for exam-
ple by prohibiting flights over crowds or urban areas and restricting the weights of
aircraft. A comprehensive model of the risks of UAS can be found in [46].

The regulatory environment of unmanned aircraft systems (UAS) is not yet fully
established. There has been significant progress in recent years both on an inter-
national level, i.e. through JARUS1 and EU regulations proposed by EASA2 [31,
30, 32] and national implementations, such as the German “Drohnenverordnung”
[75]. However, most of the existing regulation concern small UAS in the so-called
open category: below 25kg take-off weight with heights below 100m in visual-line-
of-sight (VLOS) of the operator, which include most of the currently commercially
available systems.

A second, more challenging category of these EASA/JARUS regulatory proposals
is the specific category of UAS, which contains all aircraft which do not fall into the
limits of the open category (and are not part of the certified category, which contains
fully certified aircraft). Here, the flight permission is based on the specific concept
of operations for the specific aircraft and the specific proposed operation. In order
to obtain such an operation-specific permission, a risk assessment has to be carried
out. The proposed risk assessment method is the so-called specific operations risk
assessment (SORA) [46]. The goal is to allow for a gradual path to certification for
UAS and more and more operations.

Within the risk assessment, safety measures such as geo-awareness and flight
termination systems are one way to support the classification and certification, as
they present a harm barrier to threats such as leaving the operation area, which can
potentially result in a much higher risk than originally specified.

The third category of the proposals is the certified category, which would entail a

1Joint Authorities for Rulemaking on Unmanned Systems
2European Aviation Safety Agency

94

6.1 DLR ARTIS Research Platform

full safety certification of an aircraft before delivery, similar to manned aircraft as
determined by the relevant system and software standards, i.e. DO-178C [58] and
by means of e.g. formal methods [59].

As for all safety-critical systems, when performing a safety assessment, fault de-
tection within components and appropriate fault reactions are an important mea-
sure to achieve a fault-tolerant system design and ensure the safety objectives. There-
fore, dynamically monitoring inputs, outputs and states of components is a stan-
dard technique to ensure the proper behavior of the overall system. For monitors
as system components, however, verification and validation for the monitor com-
ponents themselves are an important issue, since significant trust is placed in the
components, both in terms of the correct specification to be monitored (validation)
and the correctness of the implementation of the monitor (verification).

The case for formal monitoring The validation of monitor specifications is usu-
ally performed through reviewing the specification, independently of whether the
specifications are wriĴen in natural language or in a formal specification language.
The advantages of formal specifications are in this case especially the unambiguity
and well-defined semantics, which have also been recognized in safety standards
and give extra verification credit. In practice, this requires a sufficiently expressive
specification language, such that all relevant requirements can be captured and val-
idated by domain experts.

The verification problem for the monitor component in the case of formal spec-
ification languages can largely be offloaded to a tool qualification problem for the
monitoring tool, which has to be certified to either implementing the semantics of
the language correctly, or to certify that its output, i.e. the generated hardware de-
scription or software source code is correct. Of course, there is some remaining test
effort for the monitor integration to the system.

Beyond monitoring inputs, state, and outputs of individual components, there
are two important aspects of autonomous UAS which require the specification and
monitoring of system-level behavior:

• The concept of operations, which defines operational restrictions for to the
aircraft. These restrictions, such as a maximum flight height or a geo-fence
have to be monitored by the aircraft. A dynamic approach of risk assessment
with geo-fences and Lќљю has been described in [66].

• Autonomous functions implemented in the UAS. Once the control software
takes high-level decisions based on complex sensor inputs, such as selecting

95

6 Case Study: Monitoring in UAS

the next waypoint due to obstacles or changing the time to hover in a loca-
tion, it becomes impossible to exhaustively test all possible environmental
situations of the autonomous UAS to verify its correct behavior. Since we
can neither rely on an on-board pilot or an on-ground UAS operator (a com-
munication link might be unreliable, and flights may need to leave the visual
line of sight), monitoring can be used to assess the current vehicle state and
environment and ensure the correctness of the current situation and decision.

For the path to certification of the systems, the formal monitor specifications and
the monitor tool can be independently assessed by appropriate certification author-
ities, which then supports the safety case of the overall system.

6.1.2 Impact on system development

The software development of the ARTIS software platform is in the context of a
dynamic research environment with an established development process with con-
tinuous integration and testing on multiple system levels. One important benefit
of the specification writing effort within the case study is consistent documentation
about the interface assumptions, the source of signals and the basic error cases of
the components.

While the primary intended use of the specifications was for generating online
monitors for the aircraft, we have also used the specifications for debugging pur-
poses using offline monitoring on previous experimental data, and also used them
within the extensive simulation environment.

The main advantage for the development process comes in extended testing and
debugging support for the system. Unobtrusively monitoring the components dur-
ing test and simulation gives an early indication of where faults are present in the
system. Long test runs with defective software versions can thus be avoided. The
specifications can then be extended to give more debug insight without changing
the system itself, all without significantly changing the real-time behavior, as we
can see in the experimental section.

6.2 Lola Extension

A small number of syntactic and usability improvements have been added to the
language during the case study to adapt it to domain needs:

96

6.2 Lola Extension

• Extended keywords (of static type): position, which gives access to the cur-
rent position on the trace, and maximal values for the numeric types, which
are useful for default values: int_min, int_max, double_min, double_max.

• Absolute offsets: the #-operator in front of a stream access gives the possibility
to access an absolute stream position, which is useful for example to obtain
the initial value of a stream in the first position.3

• switch-operator: To avoid long chains of if-then-else expressions for encoded
state machines, we have introduced a switch-operator which may match in
its condition on an integer expression and can therefore be efficiently imple-
mented, leading to more succinct and readable state machines.

• Floating-point arithmetic and trigonometric functions: the type double and
associated arithmetic functions as well as trigonometric functions were added
to support the specifications needed for geo-information and other physical
measures.

For the monitoring tool, we added a few usability improvements to support the
usage online and offline:

• To improve the online-feedback to the user, the following modes for trigger
output are implemented: trigger, which prints the specified message when-
ever the condition holds, trigger_once, which triggers only in the first in-
stance when the condition holds, trigger_change, which triggers whenever
the condition becomes true, and snapshot, which prints the current values for
all streams.

• To support post-flight analysis and pre-processing, tagging and filtering op-
erators were added for offline analysis, which enabled a multi-stage analysis
of log files by reading a log file and producing a modified log file. A filtering-
operator would only copy events to the output whenever a condition matches,
and a tagging operator would copy the input log file to the output with an ad-
ditional field containing the tag value.

3This can be implemented in finite memory, since a finite specification can only reference finitely
many positions.

97

6 Case Study: Monitoring in UAS

6.3 Specifications in classic Lola

We present in this section representative specifications from [1] for all three layers
of the architecture displayed in Figure 6.2. These are specified in syntactically ex-
tended classic Lќљю, as introduced in the previous section. The specifications have
been obtained and developed from interviews with the responsible engineers of
the software modules and through collaborative specification writing. Initial vali-
dation of the specifications was performed through an offline analysis of previous
flight data sets. The full set of specifications has been documented in [65].

The time-triggered nature of the system design with a target event frequency of
50 Hz gives a new event every 20ms in the ideal case. The incoming events are
timestamped, represented by two fields: time_s and time_micros.

Sensor data validation The sensor data validation specification, shown in List-
ing 10, on a technical level primarily detects short-time sensor deviations of two
sensor signals, the GPS sensor and the IMU sensor. Also, this specification com-
putes frequency measurements on the input signals for debugging purposes. On
an architectural level, it checks plausibility of the output of the navigation filter part
of the sensor fusion component, which is used to estimate the state of the vehicle.
The state of the vehicle is used later on in further software components as part of
the planning for further actuator commands.

In lines 4–10, the input frequency of the monitor events is analyzed, as missing
or delayed event values indicate a problem in the system.

The main part of the specification compares the traveled distance from two sen-
sor sources to detect conflicting information. The first estimation is through the
current velocity vector (line 12) of the IMU measurements ug,vg,wg and the time
passed since the last measurement (lines 30 and 31). The second distance estimation
is through the GPS latitude and longitude with the Haversine formula for point-
to-point distance on a sphere, implemented in lines 13–28, where the conversion
to radians is handled in lines 16–19. Both distances are then compared against a
threshold (lines 32–34), which accounts for signal noise and insignificant height
differences in the GPS signal. Overall, this ensures that significant GPS jumps are
detected via comparison to a more trustworthy local sensor.

All calculations are performed in Lќљю itself, using the introduced trigonomet-
ric functions and floating point support, as well as the snapshot-feature to mark
differences in the sensor signals for later developer interpretation.

98

6.3 Specifications in classic Lќљю

1 input double lat, lon, ug, vg, wg, time_s, time_micros
2 output double time := time_s + time_micros / 1000000.0
3 output double flight_time := time - time#[0,0.0]
4 output double frequency := switch position{
5 case 0 { 1.0 / (time[1,0.0] - time) }
6 default { 1.0 / (time - time[-1,0.0]) } }
7 output double freq_sum := freq_sum[-1,0.0] + frequency
8 output double freq_avg := freq_sum / double(position+1)
9 output double freq_max := max(frequency, freq_max[-1,double_min])

10 output double freq_min := min(frequency, freq_min[-1,double_max])
11

12 output double velocity := sqrt(ug^2.0 + vg^2.0 + wg^2.0)
13 const double R := 6373000.0
14 const double pi := 3.1415926535
15

16 output double lon1_rad := lon[-1,0.0] * pi / 180.0
17 output double lon2_rad := lon * pi / 180.0
18 output double lat1_rad := lat[-1,0.0] * pi / 180.0
19 output double lat2_rad := lat * pi / 180.0
20

21 output double dlon := lon2_rad - lon1_rad
22 output double dlat := lat2_rad - lat1_rad
23 output double a := (sin(dlat/2.0))^2.0 +
24 cos(lat1_rad) *
25 cos(lat2_rad) *
26 (sin(dlon/2.0))^2.0
27 output double c := 2.0 * atan2(sqrt(a), sqrt(1.0-a))
28 output double gps_distance := R * c
29

30 output double passed_time := time - time[-1,0.0]
31 output double distance_max := velocity * passed_time
32 output double dif_distance := gps_distance - distance_max
33 const double delta_distance := 1.0
34 output bool detected_jump := switch position {
35 case 0 { false }
36 default { dif_distance > delta_distance } }
37 snapshot detected_jump with "Invalid GPS signal received!"

Listing 10: The specification used for Sensor Data Validation

Flight PhaseDetection The monitored component in this specification (Listing 11)
is the flight control component. The actual velocity of the aircraft is given as in-
put signals vel_x, vel_y, vel_z, calculated by the navigation filter. The actuator
commands from the flight control component are given as reference input signals
vel_r_x, vel_r_y, vel_r_z to the specification. Additional inputs are the current
baĴery level (power) and the fuel level (fuel).

99

6 Case Study: Monitoring in UAS

Again, to detect possible timing problems in the component, we calculate statis-
tics on the timing of input events in lines 5–11. Phase detection for a flight controller
is of interest to measure and model the fuel and power performance of a controller.

The first main function of the monitor, detecting flight phases, where the aircraft
is approximately stationary for at least three seconds, is specified in lines 13–25.
Here, the current inertial measurement velocity is compared to a dynamic veloc-
ity window specified by velocity_max and velocity_min. Once the window is
larger than vel_bound, the dynamic window resets. The output unchanged keeps
a counter since the last reset, and if it reaches 150 (equivalent to three seconds if
the frequency is 50 Hz), the hover phase is detected. These hover phases can in
post-flight analysis be compared against higher-level commands.

A second main function of the monitor evaluates the performance of the flight
controller and actuators by comparing the commanded velocity vector to the ac-
tual, measured velocity vector in lines 27–34. In dev_sum, we integrate over the
velocity deviation, keep an average as dev_avg, and additionally keep track of the
worst deviating position and value in worst_dev_pos and worst_dev, again for later
inspection by the flight and development engineers.

A third monitor function tracks the fuel level and power usage since the initial
stream position and triggers notifications and alarms based on the levels in lines
36–43.

On a system level, the monitor specification ensures the flight control component
works in a proper manner, and that the actuators actually react to the commanded
velocity commands. Additionally, the monitor performs basic boundary checking
for fuel and power.

Mission Monitoring In the third specification (Listing 12), the high-level mission
manager component is subject to monitoring. The component is responsible to im-
plement the uploaded flight mission which the component and the monitor receives
from the ground control station, based on the state estimate of the vehicle and the re-
sults of the obstacle detection. The component includes an online mission planning
part. In the specification, the different states of the component state machine are
encoded and recovered from the input streams (lines 2–30). The state information
is additionally enriched with information about the entry time into the current state
(lines 32–33). The primary monitoring function is specified in lines 34–38, where a
bounded liveness property is checked: If the state machine switches to state Land-
ing, the OnGround signal becomes ‘1’ within 20 seconds. In an extended version of
the specification, more conditions for state transitions have been checked similarly.

100

6.3 Specifications in classic Lќљю

1 input double time_s, time_micros, vel_x, vel_y, vel_z,
2 fuel, power, vel_r_x, vel_r_y, vel_r_z
3 output double time := time_s + time_micros / 1000000.0
4 output double flight_time := time - time#[0,0.0]
5 output double frequency := switch position{
6 case 0 { 1.0 / (time[1,0.0] - time) }
7 default { 1.0 / (time - time[-1,0.0]) } }
8 output double freq_sum := freq_sum[-1,0.0] + frequency
9 output double freq_avg := freq_sum / double(position+1)

10 output double freq_max := max(frequency, freq_max[-1,double_min])
11 output double freq_min := min(frequency, freq_min[-1,double_max])
12

13 const double vel_bound := 1.0
14 output double velocity := sqrt(vel_x^2.0 + vel_y^2.0 + vel_z^2.0)
15 output double velocity_max := if reset_max[-1,false] { velocity }
16 else { max(velocity, velocity_max[-1,0.0]) }
17 output double velocity_min := if reset_max[-1,false] { velocity }
18 else { min(velocity, velocity_min[-1,0.0]) }
19 output double dif_max := difference(velocity_max, velocity_min)
20 output bool reset_max := dif_max > vel_bound
21 output double reset_time := if reset_max | position = 0 { time }
22 else { reset_time[-1,0.0] }
23 output int unchanged := if reset_max[-1,false] { 0 }
24 else { unchanged[-1,0] + 1 }
25 snapshot unchanged = 150 with "Phase detected!"
26

27 output double vel_dev := difference(vel_r_x,vel_x) + difference(vel_r_y,vel_y)
28 + difference(vel_r_z,vel_z)
29 output double dev_sum := vel_dev + dev_sum[-1,0]
30 output double vel_av := dev_sum / double((position+1)*3)
31 output int worst_dev_pos := if worst_dev[-1,double_min] < vel_dev { position }
32 else { worst_dev_pos[-1,0] }
33 output double worst_dev := if worst_dev[-1,double_min] < vel_dev { vel_dev }
34 else { worst_dev[-1,0.0] }
35

36 output double fuel_p := ((fuel#[0,0.0] - fuel) / (fuel#[0,0.0]+0.01))
37 output double power_p := ((power#[0,0.0] - power) / (power#[0,0.0]+0.01))
38 trigger_once fuel_p < 0.50 with "Fuel below half capacity"
39 trigger_once fuel_p < 0.25 with "Fuel below quarter capacity"
40 trigger_once fuel_p < 0.10 with "Urgent: Refill Fuel!"
41 trigger_once power_p < 0.50 with "Power below half capacity"
42 trigger_once power_p < 0.25 with "Power below quarter capacity"
43 trigger_once power_p < 0.10 with "Urgent: Recharge Power!"

Listing 11: The specification used for Flight Phase Detection

101

6 Case Study: Monitoring in UAS

1 input double time_s, time_micros
2 input int stateID_SC, OnGround
3 const int Start := 0
4 const int MissionControllerOff := 1
5 ...
6 const int HammerHeadTurn := 16
7

8 output double time := time_s + time_micros / 1000000.0
9 output double flight_time := time - time#[0,0.0]

10

11 output bool change_state := switch position {
12 case 0 { false }
13 default { stateID_SC != stateID_SC[-1,-1] } }
14 trigger change_state
15

16 output string state_enum := switch stateID_SC {
17 case 0 { "Start" }
18 case 1 { "MissionControllerOff" }
19 ...
20 case 16{ "HammerHeadTurn" }
21 default{ "Invalid" } }
22 output string state_trace :=
23 switch position {
24 case 0 { state_enum }
25 default { if change_state
26 { concat(concat(state_trace[-1,""]," -> "),state_enum) }
27 else
28 { state_trace[-1,""] }
29 }
30 }
31

32 output double entrance_time := if change_state { time }
33 else { entrance_time[-1,0.0] }
34 const double landing_timebnd := 20.0
35 output double landing_info := if stateID_SC = Landing { 0.0 }
36 else { time - entrance_time[-1,0.0] }
37 output bool landing_error := stateID_SC = Landing & OnGround != 1 &
38 landing_info > landing_timebound

Listing 12: The specification used for Mission Planning and Execution

6.4 Specifications in RTLola

The case study described earlier was developed with a syntactically extended ver-
sion of Lќљю, as described before, but did not use the newer developments of Lќљю ₂.₀
and RTLќљю. We have additionally reformulated and extended specifications from

102

6.4 Specifications in RTLola

1 frequency 50Hz
2 timeinput double time_s + time_ms / 1000000.0
3

4 input double velocity
5

6 output int freq_deviations = if (velocity[20ms,count,0] != 1)
7 then freq_deviations[-1,0] + 1
8 else freq_deviations[-1,0]

Listing 13: Frequency Checks in RTLola

the application scenario using new features, to demonstrate the usefulness of the
extensions in the application scenario and give a comparison to the earlier version
of Lќљю.

Frequency Checks For the time-triggered ARTIS system, frequency checks on the
input signals of the monitor interface were used to identify misbehaving compo-
nents. In Listing 13, we show one way to implement a check for frequency devia-
tions using time windows.

Bounded Landing Time In the mission monitoring specification (Listing 12), a
bounded liveness property (lines 29–33) was checked after entering the Landing
state, where the input signal onGround should be equal to truewithin 20 seconds. A
similar property can be formalized in RTLќљю as shown in Listing 14. The window-
operator is used to determine whether there has been a landing command within
the last 20 seconds and no onGround signal was received in the same time window.

Flight Phase A second example of a more elegant way to specify a property in
RTLќљю is the flight phase detection specification. Before, this dynamic region was

1 input int stateID_SC
2 input bool onGround
3

4 const int eStateSC_Landing := 13
5

6 output bool land_cmd := stateID_SC = eStateSC_Landing
7

8 output bool missed_land := land_cmd[20sec,or,false] & !onGround[20sec,or,false]
9

10 trigger missed_land

Listing 14: Landing time bound in RTLola

103

6 Case Study: Monitoring in UAS

1 input double vel_x, vel_y, vel_z
2

3 output double velocity := sqrt (vel_x^2.0 + vel_y^2.0 + vel_z^2.0)
4

5 const double velocity_bound := 1.0
6

7 output double diff_velocity := difference(velocity[3s,max,0.0],
8 velocity[3s,min,velocity])
9

10 output bool hover := diff_velocity < velocity_bound
11

12 output bool frozen_velocity := vel_x[0.2s,allequal,true]
13 & vel_y[0.2s,allequal,true]
14 & vel_z[0.2s,allequal,true]

Listing 15: Flight Phase Detection in RTLola

specificed in Listing 11 in lines 13–25. Here in Listing 15, we specify a similar prop-
erty in RTLќљю and use window operators to determine the minimum and maxi-
mum within the last three seconds.

Additionally, we add a monitor property frozen_velocity to check for a freeze
in the input signals if they remain unchanged in the last 0.2 seconds.

Dynamic Waypoints This specification example in Listing 16 uses both the real-
time and data parameterization features to check whether a dynamically extendable
list of waypoints is reached by the aircraft. Such a specification would be interest-
ing to monitor as a liveness property in the mission manager component, since the
ground station can extend the mission plan at any point in time.

Note that due to the dynamic nature of the length of the list of waypoints, and the
fact that int cannot be bounded a priori, this specification is not expressible in classic
Lќљю. For a time-triggered system with a known input frequency, it is possible
to express time-bounded reachability properties in classic Lќљю, as we have seen
before, but for a more general class of systems, the expressivity RTLќљю is needed
to express the time bound for each waypoint.

As inputs, the specification needs the current timestamp as well as the current
position of the aircraft and the incoming waypoint with its time-to-reach estimate.
We use a counter (wp_count) as an index to the waypoint list (stored in the default
values of lookup) to parameterize the individual statistics for the timing of the way-
points.

All the specifications of this section are efficiently monitorable.

104

6.4 Specifications in RTLola

1 timeinput int ts
2 input (double,double,double) waypoint
3 input (double,double,double) pos
4 input int estimated_time
5

6 trigger any(wp_reached_c[-1,0] > wp_reached_c)
7

8 output int wp_reached_c <int c>
9 invoke: wp_count

10 terminate: wp_reached
11 := if wp_reached(c) then c else -1
12

13 output bool wp_reached <int c>
14 invoke: wp_count
15 := pos = lookup(c)
16

17 output (int,int) reach_inv := (wp_count, estimated_time)
18

19 output bool wp_reached_intime <int c, int est_time>
20 invoke: reach_inv
21 := (wp_start_time(c) + est_time) < ts
22

23 output int wp_start_time <int c>
24 invoke: wp_count
25 := if !(wp_end_time(c-1)[0,5] = -1)
26 then ts
27 else wp_start_time(c)[-1,-1]
28

29 output int wp_end_time <int c>
30 invoke: wp_count
31 := if wp_reached(c)
32 then ts
33 else wp_end_time(c)[-1,-1]
34

35 output int wp_count := if (waypoint[-1,(0.0,0.0,0.0)] != waypoint)
36 then wp_count[-1,0] + 1
37 else wp_count[-1,0]
38

39 output (double,double,double) lookup <int c>
40 invoke: wp_count
41 := lookup(c)[-1,waypoint]

Listing 16: Dynamic Waypoints in RTLќљю. Note that the last line requires a slight
extension to the semantics to allow dynamic default values for stream accesses.

105

6 Case Study: Monitoring in UAS

6.5 Monitor Integration

Ideally, to achieve non-interference (i.e. unobtrusiveness in the sense of [61]), a mon-
itor would be integrated into the system such that it does not have an impact on the
system execution apart from the monitor outputs. One way to realize this is to use
an existing hardware interface, such as a communication bus, to add the monitor
as a passive bus receiver. As the ARTIS software platform did not have such a bus
with the needed input information, we used the pre-existing logging interface re-
sponsible for writing log data and added function calls to the monitoring interface.
Thus, we add one instrumentation point per system component. The ARTIS soft-
ware platform is implemented in C and C++. Our Lќљю monitor itself is realized in
a multi-threaded C implementation, and the interface and integration is realized in
C++. For stream accesses, we use a ring buffer with array indexing as the main data
structure. Due to the real-time requirements, the monitor only allocates memory
once at startup for effiently monitorable specifications. The monitor threads use
shared memory for stream value computation and monitor output. Since we could
not change the system design to achieve non-interference by design, we instead
measured the impact of the monitor on the system performance and in particular
the timing. The specific experiments and results are described in Section 6.6.2.

6.6 Experiments

The primary goal of the experiments was to establish the suitability of the prototype
tool Lќљю in offline mode for specification development and regression testing, and
in online mode as a real-time capable monitor in this application context.

6.6.1 Offline Trace Analysis

Here, we present experimental data where Lќљю was used as an offline monitor on
previously recorded flight data. Since there are regular test flights with the differ-
ent aircraft and an extensive simulation environment, a large number of flight data
traces were readily available. The offline mode was also used during specification
development to debug specifications or to re-identify already known issues in cer-
tain test flights. Using an additional tool to automate the execution of Lќљю on a
large set of traces, we used the offline mode to derive signal thresholds and bound-
ary values from these traces to obtain initial estimates for the constant values and
offsets in the specifications.

106

6.6 Experiments

0

1

2

3

0 20000 40000 60000 80000 100000 120000

Ru
nt

im
e

in
 S

ec
on

ds

Number of Events

Sensor Data Validation Flight Phase Detection Mission Monitor ing

Figure 6.4: Runtime results for offline trace analysis experiments for a superset of
the specifications from Section 6.3 with input data traces of varying
length.

In offline mode, the command-line binary receives as arguments one or more
Lќљю specifications and the log data file to be processed. As an optional parameter,
an output file for the monitor output may be set. These experiments were run on
a laptop with a 2.6GHz dual-core i5 processor with 8GB RAM, where the input log
data files were on the internal SSD. The runtime results in seconds for log data files
of different length are shown in Figure 6.4. The overall memory consumption was
below 1.5 MB. The actual flight time covered in these traces generated from the
simulation environment was up to fifteen minutes. The specifications used here are
the ones presented in Section 6.3.

The runtime results displayed in Figure 6.4 show that our implementation is ca-
pable of processing reasonably-sized log data files within seconds. Also interesting
is the relative comparison between the three types of specifications: the specifica-
tion for flight phase detection is the most computationally complex of the three.

6.6.2 Hardware-in-the-loop Online Monitoring

The experiments in this section were devised to investigated the performance im-
pact of monitoring the full set of Lќљю specifications in an online manner on the
actual flight hardware. The flight hardware/software setup on the hardware-in-

107

6 Case Study: Monitoring in UAS

Figure 6.5: Hardware-in-the-loop test rig used for online monitoring experiments.

the-loop (HIL) test rig consists of a flight computer with an Intel Pentium Processor
with a 1.8GHz single-core CPU and 1GB RAM, which runs a Unix-based RTOS.
The test rig, shown in Figure 6.5, consists of real UAS aircraft, where the actuators
are plugged into a closed-loop real-time environment simulation of the flight envi-
ronment, which in turn delivers simulated sensor values to the aircraft, based on a
model of the flight dynamics and a pre-computed world model and flight situation.
Visualizations of the flight situations are depicted in Figure 6.6. As a first check, the
actual flight paths of the aircraft with and without monitoring were compared via
visual inspection. In order to measure the performance impact of the monitor on
the system, the monitors were gradually introduced. We measured the average
frequency of the main system loop, computed from the timestamped event data,
either online through the Lќљю specification for the components navigation filter,
flight control and mission manager, or through a post-analysis of the log data for
the other components. The results are displayed in Figure 6.7. These results suggest
that the timing behavior of the system is not affected and thus, the current imple-
mentation is sufficiently fast to monitor all the specifications online on the aircraft
non-intrusively, even with the limited computing power available.

108

6.6 Experiments

Figure 6.6: Visualizations of the missions flown in the online monitoring experi-
ments. The top picture shows a hover-to simulation, the boĴom picture
a fly-to simulation.

monitor avg. freq. (Hz) (post-analysis) avg. freq. (Hz)
Module nav ctrl mgr gps-p gps-v imu mgn

No Monitor 50.0 50.0 50.0 20.0 20.0 100.0 10.0
nav_monitor 50.0 50.0 50.0 20.0 20.0 100.0 10.0
nav_monitor 50.0 - 50.0 20.0 20.0 100.0 10.0
ctrl_monitor - 50.0 - 20.0 20.0 100.0 10.0
nav_monitor 50.0 - - 20.0 20.0 100.0 10.0
ctrl_monitor - 50.0 - 20.0 20.0 100.0 10.0

mgr_monitor - - 50.0 20.0 20.0 100.0 10.0

Figure 6.7: Overview of the results from online monitoring experiments with the
specifications from Section 6.3. The columns identify system compo-
nents, for which the frequency was measured with and without moni-
toring. The first row denotes the baseline without any monitoring. In
the next sections, more monitors are added with each row. Frequency
values in bold have been determined online by Lќљю, the others in a post-
analysis of the respective component log files.

109

7 Conclusion

This thesis presents three improvements to the expressibility of specification lan-
guages for runtime monitoring and a case study to evaluate stream-based specifica-
tion languages for autonomous unmanned aerial systems. Parametric and real-time
extensions to specification languages support a succinct way of specifying monitor-
ing properties ranging from network monitoring, data analysis, and safeguarding
of autonomous unmanned aerial systems.

For parametric linear-time temporal logic, we have described the impact of step
bound parameters for the monitoring problem and identified unambiguity as the
deciding complexity factor for memory-efficient implementations in Chapter 2. Fu-
ture dependencies, a standard feature in languages for design verification, lead to
high complexity for online monitoring. Future dependencies present a trade-off for
online monitoring: If future dependencies can be eliminated from the specification
language, significantly beĴer complexity results can be established.

We have introduced the the stream-based specification language Lќљю ₂.₀ in Chap-
ter 4, which extends Lќљю with data parameters. This allows us to treat individ-
ual substreams in local monitors and used bounded instantiation to support new
classes of specifications. The concept of efficient monitorability, originally defined
for Lќљю, has been adapted for Lќљю ₂.₀ and makes it possible to provide a guaran-
tee for the bounded use of resources in the online monitoring implementation. The
practical usage of the language was demonstrated for network monitoring tasks.

For a real-time system model of stream monitoring, we showed in the specifi-
cation language RTLќљю that sliding windows with efficient aggregation functions
still allow resource bounded monitoring for this important class of systems in Chap-
ter 5. The necessary conditions for the specification to allow the resource bounded
monitoring can be analyzed via a static analysis. In the experiments, we have ob-
tained empirical evidence that the language is capable of expressing data analysis
tasks and that the monitor implementation performs well on large data sets.

In a case study for our benchmark application of autonomous UAS, we have
demonstrated in Chapter 6 that an extension of Lќљю and RTLќљю is sufficiently
expressive to express important functional safety properties of these unmanned air-

111

7 Conclusion

craft systems. The memory guarantees required by the application could be satis-
fied statically for the specifications. We have additionally evaluated the monitor
performance in an experimental evaluation on the flight software of the DLR UAS
fleet and described the impact of monitoring with formal specification languages
on the system development process in a realistic application environment. The for-
malization efforts are able to document the interface assumptions of components
and can also be used for the offline analysis of flight log files for problem analysis
and debugging.

For the field of runtime verification, this thesis demonstrates the possibility of
enhancing the expressivity of specification languages with parameters, provides
realistic stream-based specifications for autonomous unmanned aerial systems, and
shows that resource guarantees can be provided at design time for runtime monitor
implementations which are useful in important embedded applications.

Outlook The benchmark application of unmanned aircraft systems with auton-
omy has validated the general concept of stream-based specification languages for
the properties needed and has inspired further language design. Continuing this
language design to further tailor stream-based specification languages to the appli-
cation described here, but also to related application domains such as autonomous
cars, is an important further step towards usable monitor specification languages.

Since the application of runtime monitoring into regulated domains leads to the
situation where the monitor itself has to be considered as a safety-critical compo-
nent, further work is needed to certify the integrity of the monitor implementation.
The interpreter approach used for the implementations in the experiments of this
thesis would lead to extensive verification effort for the qualification of the imple-
mentations themselves. An easier path to monitor qualification may be to switch
to compiling the specification to an equivalent C program with an accompanying
correctness certificate, and use existing qualified tool chains to compile the C pro-
gram as well as methods from translation validation to independently check the
compilation steps and the certificate. A direct compilation to a hardware descrip-
tion language such as VHDL and a monitor realization on configurable hardware
such as an FPGA is also a promising forward direction.

For complex sensor-processing systems with autonomy, runtime monitoring with
concise and readable formal specifications can play an important role to monitor
system- and component-level functional safety properties. The monitor as a trusted
component ensures that the system behavior follows the specification and can in-
crease user and regulator trust.

112

Bibliography

[1] Florian-Michael Adolf, Peter Faymonville, Bernd Finkbeiner, Sebastian Schir-
mer, and Christoph Torens. “Stream Runtime Monitoring on UAS”. In: Pro-
ceedings of RuntimeVerification - 17th International Conference, RV 2017. Vol. 10548.
Lecture Notes in Computer Science. Springer, 2017, pp. 33–49. ёќі: 10.1007/
978-3-319-67531-2_3. Ѣџљ: https://doi.org/10.1007/978-3-319-
67531-2_3.

[2] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron A. Peled. “Para-
metric Temporal Logic for ’Model Measuring’”. In: Proceedings of Automata,
Languages and Programming, 26th International Colloquium, ICALP’99. Vol. 1644.
Lecture Notes in Computer Science. Springer, 1999, pp. 159–168. ёќі: 10 .
1007/3-540-48523-6_13. Ѣџљ: http://dx.doi.org/10.1007/3-540-
48523-6_13.

[3] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron A. Peled. “Para-
metric temporal logic for ’model measuring’”. In:ACMTrans. Comput. Log. 2.3
(2001), pp. 388–407. ёќі: 10.1145/377978.377990. Ѣџљ: http://doi.acm.
org/10.1145/377978.377990.

[4] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. “Regular Program-
ming for Quantitative Properties of Data Streams”. In: Proceedings of Program-
ming Languages and Systems - 25th European Symposium on Programming, ESOP
2016. Vol. 9632. Lecture Notes in Computer Science. Springer, 2016, pp. 15–
40. ёќі: 10.1007/978-3-662-49498-1_2. Ѣџљ: https://doi.org/10.1007/
978-3-662-49498-1%5C_2.

[5] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E.
Rydeheard. “Quantified Event Automata: Towards Expressive and Efficient
Runtime Monitors”. In: Proceedings of FM 2012: Formal Methods - 18th Inter-
national Symposium. Vol. 7436. Lecture Notes in Computer Science. Springer,
2012, pp. 68–84. ёќі: 10.1007/978-3-642-32759-9_9. Ѣџљ: https://doi.
org/10.1007/978-3-642-32759-9%5C_9.

113

https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/3-540-48523-6_13
https://doi.org/10.1007/3-540-48523-6_13
http://dx.doi.org/10.1007/3-540-48523-6_13
http://dx.doi.org/10.1007/3-540-48523-6_13
https://doi.org/10.1145/377978.377990
http://doi.acm.org/10.1145/377978.377990
http://doi.acm.org/10.1145/377978.377990
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/978-3-662-49498-1%5C_2
https://doi.org/10.1007/978-3-662-49498-1%5C_2
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9%5C_9
https://doi.org/10.1007/978-3-642-32759-9%5C_9

Bibliography

[6] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. “Rule-
Based Runtime Verification”. In: Proceedings of Verification, Model Checking,
and Abstract Interpretation, 5th International Conference, VMCAI 2004. Vol. 2937.
Lecture Notes in Computer Science. Springer, 2004, pp. 44–57. ёќі: 10.1007/
978-3-540-24622-0_5. Ѣџљ: https://doi.org/10.1007/978-3-540-
24622-0%5C_5.

[7] Howard Barringer, David E. Rydeheard, and Klaus Havelund. “Rule Systems
for Run-time Monitoring: from Eagle to RuleR”. In: J. Log. Comput. 20.3 (2010),
pp. 675–706. ёќі: 10.1093/logcom/exn076. Ѣџљ: https://doi.org/10.1093/
logcom/exn076.

[8] David A. Basin, Felix Klaedtke, and Samuel Müller. “Policy Monitoring in
First-Order Temporal Logic”. In: Proceedings of Computer Aided Verification,
22nd International Conference, CAV 2010. Vol. 6174. Lecture Notes in Computer
Science. Springer, 2010, pp. 1–18. ёќі: 10.1007/978-3-642-14295-6_1. Ѣџљ:
https://doi.org/10.1007/978-3-642-14295-6%5C_1.

[9] David A. Basin, Felix Klaedtke, Samuel Müller, and Eugen Zalinescu. “Mon-
itoring Metric First-Order Temporal Properties”. In: J. ACM 62.2 (2015), 15:1–
15:45. ёќі: 10.1145/2699444. Ѣџљ: http://doi.acm.org/10.1145/2699444.

[10] David Basin, Bhargav Nagaraja BhaĴ, and Dmitriy Traytel. “Almost Event-
Rate Independent Monitoring of Metric Temporal Logic”. In: Proceedings of
Tools and Algorithms for the Construction and Analysis of Systems: 23rd Interna-
tional Conference, TACAS 2017. Berlin, Heidelberg: Springer Berlin Heidelberg,
2017, pp. 94–112. іѠяћ: 978-3-662-54580-5. ёќі: 10.1007/978-3-662-54580-
5_6. Ѣџљ: http://dx.doi.org/10.1007/978-3-662-54580-5_6.

[11] David Basin, Felix Klaedtke, and Eugen Zălinescu. “Greedily Computing As-
sociative Aggregations on Sliding Windows”. In: Inf. Process. LeĴ. 115.2 (Feb.
2015), pp. 186–192. іѠѠћ: 0020-0190. ёќі: 10.1016/j.ipl.2014.09.009. Ѣџљ:
http://dx.doi.org/10.1016/j.ipl.2014.09.009.

[12] David Basin, Dmitriy Traytel, and Srđan Krstić.Aerial: Almost Event-Rate Inde-
pendent Algorithms for Monitoring Metric Regular Properties. 2017. Ѣџљ: https:
//www21.in.tum.de/~traytel/papers/rvcubes17-aerial_tool/index.
html.

[13] Andreas Klaus Bauer and Yliès Falcone. “Decentralised LTL Monitoring”. In:
Proceedings of FM2012: FormalMethods - 18th International Symposium. Vol. 7436.
Lecture Notes in Computer Science. Springer, 2012, pp. 85–100. ёќі: 10.1007/

114

https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-540-24622-0%5C_5
https://doi.org/10.1007/978-3-540-24622-0%5C_5
https://doi.org/10.1093/logcom/exn076
https://doi.org/10.1093/logcom/exn076
https://doi.org/10.1093/logcom/exn076
https://doi.org/10.1007/978-3-642-14295-6_1
https://doi.org/10.1007/978-3-642-14295-6%5C_1
https://doi.org/10.1145/2699444
http://doi.acm.org/10.1145/2699444
https://doi.org/10.1007/978-3-662-54580-5_6
https://doi.org/10.1007/978-3-662-54580-5_6
http://dx.doi.org/10.1007/978-3-662-54580-5_6
https://doi.org/10.1016/j.ipl.2014.09.009
http://dx.doi.org/10.1016/j.ipl.2014.09.009
https://www21.in.tum.de/~traytel/papers/rvcubes17-aerial_tool/index.html
https://www21.in.tum.de/~traytel/papers/rvcubes17-aerial_tool/index.html
https://www21.in.tum.de/~traytel/papers/rvcubes17-aerial_tool/index.html
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-642-32759-9_10

Bibliography

978-3-642-32759-9_10. Ѣџљ: https://doi.org/10.1007/978-3-642-
32759-9%5C_10.

[14] Andreas Bauer, Rajeev Goré, and Alwen Tiu. “A First-Order Policy Language
for History-Based Transaction Monitoring”. In: Proceedings of Theoretical As-
pects of Computing - ICTAC 2009, 6th International Colloquium. Vol. 5684. Lec-
ture Notes in Computer Science. Springer, 2009, pp. 96–111. ёќі: 10.1007/
978-3-642-03466-4_6. Ѣџљ: https://doi.org/10.1007/978-3-642-
03466-4%5C_6.

[15] Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. “From Propositional
to First-Order Monitoring”. In: Proceedings of Runtime Verification - 4th Inter-
national Conference, RV 2013. Vol. 8174. Lecture Notes in Computer Science.
Springer, 2013, pp. 59–75. ёќі: 10 . 1007 / 978 - 3 - 642 - 40787 - 1 \ _4. Ѣџљ:
https://doi.org/10.1007/978-3-642-40787-1%5C_4.

[16] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Comparing LTL
Semantics for Runtime Verification”. In: J. Log. Comput. 20.3 (2010), pp. 651–
674. ёќі: 10.1093/logcom/exn075. Ѣџљ: https://doi.org/10.1093/logcom/
exn075.

[17] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Runtime Verifi-
cation for LTL and TLTL”. In: ACM Trans. Softw. Eng. Methodol. 20.4 (2011),
14:1–14:64. ёќі: 10.1145/2000799.2000800. Ѣџљ: https://doi.org/10.
1145/2000799.2000800.

[18] Gérard Berry. “The foundations of Esterel”. In:Proof, Language, and Interaction,
Essays in Honour of Robin Milner. The MIT Press, 2000, pp. 425–454.

[19] Laura Bozzelli and César Sánchez. “Foundations of Boolean stream runtime
verification”. In: Theor. Comput. Sci. 631 (2016), pp. 118–138. ёќі: 10.1016/j.
tcs.2016.04.019. Ѣџљ: https://doi.org/10.1016/j.tcs.2016.04.019.

[20] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. “Lustre: A
Declarative Language for Programming Synchronous Systems”. In: Proceed-
ings of Conference the Fourteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, POPL 1987. ACM Press, 1987, pp. 178–188. ёќі: 10.1145/
41625.41641. Ѣџљ: http://doi.acm.org/10.1145/41625.41641.

[21] Brian Caswell, James C. Foster, Ryan Russell, Jay Beale, and Jeffrey Posluns.
Snort 2.0 Intrusion Detection. Syngress Publishing, 2003. іѠяћ: 1931836744.

115

https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-642-32759-9%5C_10
https://doi.org/10.1007/978-3-642-32759-9%5C_10
https://doi.org/10.1007/978-3-642-03466-4_6
https://doi.org/10.1007/978-3-642-03466-4_6
https://doi.org/10.1007/978-3-642-03466-4%5C_6
https://doi.org/10.1007/978-3-642-03466-4%5C_6
https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1007/978-3-642-40787-1%5C_4
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
http://doi.acm.org/10.1145/41625.41641

Bibliography

[22] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model checking. MIT
Press, 2001. іѠяћ: 978-0-262-03270-4. Ѣџљ: http://books.google.de/books?
id=Nmc4wEaLXFEC.

[23] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte
Schmiĵ, and Daniel Thoma. “TeSSLa: Temporal Stream-Based Specification
Language”. In: Proceedings of Formal Methods: Foundations and Applications -
21st Brazilian Symposium, SBMF 2018. Vol. 11254. Lecture Notes in Computer
Science. Springer, 2018, pp. 144–162. ёќі: 10.1007/978-3-030-03044-5_10.
Ѣџљ: https://doi.org/10.1007/978-3-030-03044-5%5C_10.

[24] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. “LOLA:
Runtime Monitoring of Synchronous Systems”. In: Proceedings of 12th Interna-
tional Symposium on Temporal Representation and Reasoning (TIME 2005). IEEE
Computer Society, 2005, pp. 166–174. ёќі: 10 . 1109 / TIME . 2005 . 26. Ѣџљ:
https://doi.org/10.1109/TIME.2005.26.

[25] Jennifer A. Davis, MaĴhew Clark, Darren D. Cofer, Aaron Fifarek, Jacob Hinch-
man, Jonathan Hoffman, Brian Hulbert, Steven P. Miller, and Lucas Wagner.
“Study on the Barriers to the Industrial Adoption of Formal Methods”. In:
Proceedings of FMICS’13. 2013, pp. 63–77.

[26] Evan T. Dill, Steven D. Young, and Kelly J. Hayhurst. “SAFEGUARD: An as-
sured safety net technology for UAS”. In: Proceedings of 2016 IEEE/AIAA 35th
Digital Avionics Systems Conference (DASC). IEEE, Sept. 2016. ёќі: 10.1109/
dasc.2016.7778009. Ѣџљ: https://doi.org/10.1109/dasc.2016.7778009.

[27] Alexandre Donzé, Thomas Ferrère, and Oded Maler. “Efficient Robust Mon-
itoring for STL”. In: Proceedings of Computer Aided Verification - 25th Interna-
tional Conference, CAV 2013. Vol. 8044. Lecture Notes in Computer Science.
Springer, 2013, pp. 264–279. ёќі: 10.1007/978-3-642-39799-8_19. Ѣџљ:
https://doi.org/10.1007/978-3-642-39799-8%5C_19.

[28] Alexandre Donzé and Oded Maler. “Robust Satisfaction of Temporal Logic
over Real-valued Signals”. In: Proceedings of the 8th International Conference on
FormalModeling and Analysis of Timed Systems. FORMATS’10. Klosterneuburg,
Austria: Springer-Verlag, 2010, pp. 92–106. іѠяћ: 3-642-15296-1. Ѣџљ: http://
dl.acm.org/citation.cfm?id=1885174.1885183.

116

http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5%5C_10
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/dasc.2016.7778009
https://doi.org/10.1109/dasc.2016.7778009
https://doi.org/10.1109/dasc.2016.7778009
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-39799-8%5C_19
http://dl.acm.org/citation.cfm?id=1885174.1885183
http://dl.acm.org/citation.cfm?id=1885174.1885183

Bibliography

[29] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac,
and David Van Campenhout. “Reasoning with Temporal Logic on Truncated
Paths”. In: Proceedings of Computer Aided Verification, 15th International Confer-
ence, CAV 2003. Vol. 2725. Lecture Notes in Computer Science. Springer, 2003,
pp. 27–39. ёќі: 10.1007/978-3-540-45069-6_3. Ѣџљ: https://doi.org/10.
1007/978-3-540-45069-6_3.

[30] European Aviation Safety Agency (EASA). Advance Notice of Proposed Amend-
ment 2015-10, Introduction of a regulatory framework for the operation of drones.
2015.

[31] European Aviation Safety Agency (EASA). Concept of Operations for Drones, A
risk based approach to regulation of unmanned aircraft. 2015.

[32] European Aviation Safety Agency (EASA). Opinion No 01/2018 Introduction of
a regulatory framework for the operation of unmanned aircraft systems in the ‘open’
and ‘specific’ categories. 2018.

[33] Peter Faymonville, Bernd Finkbeiner, and Doron A. Peled. “Monitoring Para-
metric Temporal Logic”. In: Proceedings of Verification, Model Checking, and Ab-
stract Interpretation - 15th International Conference, VMCAI 2014. Vol. 8318. Lec-
ture Notes in Computer Science. Springer, 2014, pp. 357–375. ёќі: 10.1007/
978-3-642-54013-4_20. Ѣџљ: http://dx.doi.org/10.1007/978-3-642-
54013-4_20.

[34] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah.
“A Stream-Based Specification Language for Network Monitoring”. In: Pro-
ceedings of RuntimeVerification - 16th International Conference, RV 2016. Vol. 10012.
Lecture Notes in Computer Science. Springer, 2016, pp. 152–168. ёќі: 10 .
1007/978- 3- 319- 46982- 9_10. Ѣџљ: https://doi.org/10.1007/978-
3-319-46982-9_10.

[35] Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Tor-
fah. “Real-time Stream-based Monitoring”. In: CoRR abs/1711.03829 (2017).
arXiv: 1711.03829. Ѣџљ: http://arxiv.org/abs/1711.03829.

[36] Bernd Finkbeiner and Lars Kuhĵ. “Monitor Circuits for LTL with Bounded
and Unbounded Future”. In: Proceedings of Runtime Verification, 9th Interna-
tionalWorkshop, RV 2009. Vol. 5779. Lecture Notes in Computer Science. Springer,
2009, pp. 60–75. ёќі: 10.1007/978-3-642-04694-0_5. Ѣџљ: https://doi.
org/10.1007/978-3-642-04694-0_5.

117

https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-642-54013-4_20
https://doi.org/10.1007/978-3-642-54013-4_20
http://dx.doi.org/10.1007/978-3-642-54013-4_20
http://dx.doi.org/10.1007/978-3-642-54013-4_20
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
http://arxiv.org/abs/1711.03829
http://arxiv.org/abs/1711.03829
https://doi.org/10.1007/978-3-642-04694-0_5
https://doi.org/10.1007/978-3-642-04694-0_5
https://doi.org/10.1007/978-3-642-04694-0_5

Bibliography

[37] Bernd Finkbeiner and Henny Sipma. “Checking Finite Traces Using Alternat-
ing Automata”. In: Formal Methods in System Design 24.2 (2004), pp. 101–127.
ёќі: 10.1023/B:FORM.0000017718.28096.48. Ѣџљ: https://doi.org/10.
1023/B:FORM.0000017718.28096.48.

[38] Johannes Geist, Kristin Y. Rozier, and Johann Schumann. “Runtime Observer
Pairs and Bayesian Network Reasoners On-board FPGAs: Flight-Certifiable
System Health Management for Embedded Systems”. In: Proceedings of Run-
time Verification - 5th International Conference, RV 2014. Vol. 8734. Lecture Notes
in Computer Science. Springer, 2014, pp. 215–230. Ѣџљ: http://dx.doi.org/
10.1007/978-3-319-11164-3_18.

[39] Dimitra Giannakopoulou and Klaus Havelund. “Automata-Based Verifica-
tion of Temporal Properties on Running Programs”. In: Proceedings of 16th
IEEE International Conference on Automated Software Engineering (ASE 2001).
IEEE Computer Society, 2001, pp. 412–416. ёќі: 10.1109/ASE.2001.989841.
Ѣџљ: https://doi.org/10.1109/ASE.2001.989841.

[40] Felipe Gorostiaga and César Sánchez. “Striver: Stream Runtime Verification
for Real-Time Event-Streams”. In: Proceedings of Runtime Verification - 18th In-
ternational Conference, RV 2018. Vol. 11237. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 282–298. ёќі: 10.1007/978-3-030-03769-7_16.
Ѣџљ: https://doi.org/10.1007/978-3-030-03769-7%5C_16.

[41] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Springer
US, 1993. ёќі: 10.1007/978- 1- 4757- 2231- 4. Ѣџљ: https://doi.org/
10.1007/978-1-4757-2231-4.

[42] Klaus Havelund. “Rule-based runtime verification revisited”. In: International
Journal on Software Tools for Technology Transfer (STTT) 17.2 (2015), pp. 143–
170. ёќі: 10.1007/s10009-014-0309-2. Ѣџљ: https://doi.org/10.1007/
s10009-014-0309-2.

[43] Ruining He and Julian McAuley. “Ups and Downs: Modeling the Visual Evo-
lution of Fashion Trends with One-Class Collaborative Filtering”. In: Proceed-
ings of the 25th International Conference on World Wide Web, WWW 2016. 2016,
pp. 507–517. ёќі: 10.1145/2872427.2883037. Ѣџљ: http://doi.acm.org/10.
1145/2872427.2883037.

[44] ISO. ISO 26262: Road vehicles – Functional safety. Norm ISO 26262. International
Organization for Standardization, 2011.

118

https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
http://dx.doi.org/10.1007/978-3-319-11164-3_18
http://dx.doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7%5C_16
https://doi.org/10.1007/978-1-4757-2231-4
https://doi.org/10.1007/978-1-4757-2231-4
https://doi.org/10.1007/978-1-4757-2231-4
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1145/2872427.2883037
http://doi.acm.org/10.1145/2872427.2883037
http://doi.acm.org/10.1145/2872427.2883037

Bibliography

[45] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu.
“JavaMOP: Efficient parametric runtime monitoring framework”. In: Proceed-
ings of 34th International Conference on Software Engineering, ICSE 2012. IEEE
Computer Society, 2012, pp. 1427–1430. ёќі: 10.1109/ICSE.2012.6227231.
Ѣџљ: https://doi.org/10.1109/ICSE.2012.6227231.

[46] Joint Authorities for Rulemaking of Unmanned Systems (JARUS). JARUSGuide-
lines on Specific Operations Risk Assessment (SORA). Joint Authorities for Rule-
making of Unmanned Systems, 2017.

[47] Ron Koymans. “Specifying Real-Time Properties with Metric Temporal Logic”.
In: Real-Time Systems 2.4 (1990), pp. 255–299. ёќі: 10.1007/BF01995674. Ѣџљ:
https://doi.org/10.1007/BF01995674.

[48] Lectures on Runtime Verification - Introductory and Advanced Topics. Vol. 10457.
Lecture Notes in Computer Science. Springer, 2018.

[49] Edward A. Lee and Sanjit Seshia. Introduction to Embedded Systems, A Cyber-
Physical Systems Approach. Second Edition. MIT Press, 2017. іѠяћ: 978-0-262-
53381-2. Ѣџљ: http://chess.eecs.berkeley.edu/pubs/710.html.

[50] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmiĵ, and Alexan-
der Schramm. “TeSSLa: runtime verification of non-synchronized real-time
streams”. In: Proceedings of the 33rd Annual ACM Symposium on Applied Com-
puting, SAC 2018. ACM, 2018, pp. 1925–1933. ёќі: 10.1145/3167132.3167338.
Ѣџљ: http://doi.acm.org/10.1145/3167132.3167338.

[51] Martin Leucker and Christian Schallhart. “A brief account of runtime verifi-
cation”. In: J. Log. Algebr. Program. 78.5 (2009), pp. 293–303. ёќі: 10.1016/j.
jlap.2008.08.004. Ѣџљ: https://doi.org/10.1016/j.jlap.2008.08.004.

[52] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker.
“No pane, no gain: efficient evaluation of sliding-window aggregates over
data streams”. In: SIGMODRecord 34.1 (2005), pp. 39–44. ёќі: 10.1145/1058150.
1058158. Ѣџљ: http://doi.acm.org/10.1145/1058150.1058158.

[53] Monika Maidl. “The Common Fragment of CTL and LTL”. In: Proceedings of
41st Annual Symposium on Foundations of Computer Science, FOCS 2000. IEEE
Computer Society, 2000, pp. 643–652. ёќі: 10.1109/SFCS.2000.892332. Ѣџљ:
https://doi.org/10.1109/SFCS.2000.892332.

119

https://doi.org/10.1109/ICSE.2012.6227231
https://doi.org/10.1109/ICSE.2012.6227231
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
http://chess.eecs.berkeley.edu/pubs/710.html
https://doi.org/10.1145/3167132.3167338
http://doi.acm.org/10.1145/3167132.3167338
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1145/1058150.1058158
http://doi.acm.org/10.1145/1058150.1058158
https://doi.org/10.1109/SFCS.2000.892332
https://doi.org/10.1109/SFCS.2000.892332

Bibliography

[54] Oded Maler and Dejan Nickovic. “Monitoring Temporal Properties of Con-
tinuous Signals”. In: Proceedings of Formal Techniques, Modelling and Analy-
sis of Timed and Fault-Tolerant Systems, FORMATS 2004. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 152–166. іѠяћ: 978-3-540-30206-3. ёќі:
10.1007/978-3-540-30206-3_12. Ѣџљ: http://dx.doi.org/10.1007/978-
3-540-30206-3_12.

[55] Oded Maler, Dejan Nickovic, and Amir Pnueli. “From MITL to Timed Au-
tomata”. In: Proceedings of Formal Modeling and Analysis of Timed Systems, 4th
International Conference, FORMATS 2006. Vol. 4202. Lecture Notes in Com-
puter Science. Springer, 2006, pp. 274–289. ёќі: 10.1007/11867340_20. Ѣџљ:
https://doi.org/10.1007/11867340%5C_20.

[56] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. “Copilot:
A Hard Real-Time Runtime Monitor”. In: Proceedings of Runtime Verification:
First International Conference, RV 2010. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2010, pp. 345–359. іѠяћ: 978-3-642-16612-9. ёќі: 10.1007/978-3-642-
16612-9_26. Ѣџљ: http://dx.doi.org/10.1007/978-3-642-16612-9_26.

[57] Lee Pike, Sebastian Niller, and Nis Wegmann. “Runtime Verification for Ultra-
Critical Systems”. In: Proceedings of RV. Vol. 7186. Lecture Notes in Computer
Science. Springer, 2011, pp. 310–324.

[58] Radio Technical Commission for Aeronautics (RTCA).DO-178C/ED-12C Soft-
ware Considerations in Airborne Systems and Equipment Certification. 2011.

[59] Radio Technical Commission for Aeronautics (RTCA).DO-333/ED-216 Formal
Methods Supplement to DO-178C and DO-278A. 2011.

[60] Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. “MarQ: Monitor-
ing at Runtime with QEA”. In: Proceedings of Tools and Algorithms for the Con-
struction and Analysis of Systems - 21st International Conference, TACAS 2015.
Vol. 9035. Lecture Notes in Computer Science. Springer, 2015, pp. 596–610.
ёќі: 10.1007/978-3-662-46681-0_55. Ѣџљ: https://doi.org/10.1007/
978-3-662-46681-0%5C_55.

[61] Thomas Reinbacher, Kristin Yvonne Rozier, and Johann Schumann. “Temporal-
Logic Based Runtime Observer Pairs for System Health Management of Real-
Time Systems”. In: Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2014. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2014, pp. 357–372. іѠяћ: 978-3-642-54862-8.

120

https://doi.org/10.1007/978-3-540-30206-3_12
http://dx.doi.org/10.1007/978-3-540-30206-3_12
http://dx.doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/11867340%5C_20
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-16612-9_26
http://dx.doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-662-46681-0%5C_55
https://doi.org/10.1007/978-3-662-46681-0%5C_55

Bibliography

[62] Grigore Rosu and Feng Chen. “Semantics and Algorithms for Parametric Mon-
itoring”. In: LogicalMethods in Computer Science 8.1 (2012). ёќі: 10.2168/LMCS-
8(1:9)2012. Ѣџљ: https://doi.org/10.2168/LMCS-8(1:9)2012.

[63] Kristin Y. Rozier. “Specification: The Biggest BoĴleneck in Formal Methods
and Autonomy”. In: Proceedings of Verified Software. Theories, Tools, and Exper-
iments, VSTTE 2016. Springer International Publishing, 2016, pp. 8–26. іѠяћ:
978-3-319-48869-1.

[64] IEC SC 65A. Functional safety of electrical/electronic/programmable electronic safety-
related systems. Tech. rep. IEC 61508. The International Electrotechnical Com-
mission, 1998.

[65] Sebastian Schirmer. “Runtime Monitoring with Lola”. Master’s Thesis. Saar-
land University, 2016.

[66] Sebastian Schirmer, Christoph Torens, and Florian Adolf. “Formal Monitor-
ing of Risk-based Geofences”. In:Proceedings of 2018AIAA Information Systems-
AIAA Infotech @ Aerospace. American Institute of Aeronautics and Astronau-
tics, Jan. 2018. ёќі: 10.2514/6.2018-1986. Ѣџљ: https://doi.org/10.2514/
6.2018-1986.

[67] Johann Schumann, Patrick Moosbrugger, and Kristin Y. Rozier. “R2U2: Mon-
itoring and Diagnosis of Security Threats for Unmanned Aerial Systems”.
In: Proceedings of Runtime Verification - 6th International Conference, RV 2015.
Vol. 9333. Lecture Notes in Computer Science. Springer, 2015, pp. 233–249.
Ѣџљ: http://dx.doi.org/10.1007/978-3-319-23820-3_15.

[68] Volker Stolz. “Temporal Assertions with Parametrised Propositions”. In: Pro-
ceedings of Runtime Verification, 7th International Workshop, RV 2007. Vol. 4839.
Lecture Notes in Computer Science. Springer, 2007, pp. 176–187. ёќі: 10 .
1007/978-3-540-77395-5_15. Ѣџљ: https://doi.org/10.1007/978-
3-540-77395-5%5C_15.

[69] Volker Stolz and Eric Bodden. “Temporal Assertions using AspectJ”. In: Elec-
tronic Notes in Theoretical Computer Science 144.4 (May 2006), pp. 109–124. ёќі:
10.1016/j.entcs.2006.02.007. Ѣџљ: https://doi.org/10.1016/j.entcs.
2006.02.007.

[70] D. E. Swihart, A. F. Barfield, E. M. Griffin, R. C. Lehmann, S. C. Whitcomb, B.
Flynn, M. A. Skoog, and K. E. Processor. “Automatic Ground Collision Avoid-
ance System design, integration, flight test”. In: IEEE Aerospace and Electronic

121

https://doi.org/10.2168/LMCS-8(1:9)2012
https://doi.org/10.2168/LMCS-8(1:9)2012
https://doi.org/10.2168/LMCS-8(1:9)2012
https://doi.org/10.2514/6.2018-1986
https://doi.org/10.2514/6.2018-1986
https://doi.org/10.2514/6.2018-1986
http://dx.doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-540-77395-5_15
https://doi.org/10.1007/978-3-540-77395-5_15
https://doi.org/10.1007/978-3-540-77395-5%5C_15
https://doi.org/10.1007/978-3-540-77395-5%5C_15
https://doi.org/10.1016/j.entcs.2006.02.007
https://doi.org/10.1016/j.entcs.2006.02.007
https://doi.org/10.1016/j.entcs.2006.02.007

Bibliography

Systems Magazine 26.5 (May 2011), pp. 4–11. іѠѠћ: 0885-8985. ёќі: 10.1109/
MAES.2011.5871385.

[71] Christoph Torens and Florian-Michael Adolf. “Automated Verification and
Validation of an Onboard Mission Planning and Execution System for UAVs”.
In: Proceedings of AIAA Infotech@Aerospace (I@A) Conference. Boston, MA, 19.-
22. Aug 2013. ёќі: doi:10.2514/6.2013-4564. Ѣџљ: http://dx.doi.org/10.
2514/6.2013-4564.

[72] Christoph Torens and Florian-Michael Adolf. “Software Verification Consid-
erations for the ARTIS Unmanned Rotorcraft”. In: Proceedings of 51st AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Ex-
position. American Institute of Aeronautics and Astronautics, Jan. 2013. іѠяћ:
978-1-62410-181-6. ёќі: 10.2514/6.2013-593. Ѣџљ: http://dx.doi.org/10.
2514/6.2013-593.

[73] Christoph Torens and Florian-Michael Adolf. “Using Formal Requirements
and Model-Checking for Verification and Validation of an Unmanned Rotor-
craft”. In: American Institute of Aeronautics and Astronautics, AIAA Infotech @
Aerospace, AIAA SciTech (May 2015). ёќі: doi:10.2514/6.2015-1645. Ѣџљ:
http://dx.doi.org/10.2514/6.2015-1645.

[74] Christoph Torens, Florian Adolf, Peter Faymonville, and Sebastian Schirmer.
“Towards Intelligent System Health Management using Runtime Monitor-
ing”. In: Proceedings of AIAA Information Systems-AIAA Infotech @ Aerospace.
American Institute of Aeronautics and Astronautics (AIAA), Jan. 2017. ёќі:
10.2514/6.2017-0419. Ѣџљ: https://doi.org/10.2514%2F6.2017-0419.

[75] Bundesministerium für Verkehr und digitale Infrastruktur. Verordnung zur
Regelung des Betriebs von unbemannten Fluggeräten. BundesgeseĵblaĴ Jahrgang
2017 Teil I Nr. 17. June 2017.

[76] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, ScoĴ Shenker, and Ion Sto-
ica. “Apache Spark: a unified engine for big data processing”. In: Commun.
ACM 59.11 (2016), pp. 56–65. ёќі: 10.1145/2934664. Ѣџљ: http://doi.acm.
org/10.1145/2934664.

122

https://doi.org/10.1109/MAES.2011.5871385
https://doi.org/10.1109/MAES.2011.5871385
https://doi.org/doi:10.2514/6.2013-4564
http://dx.doi.org/10.2514/6.2013-4564
http://dx.doi.org/10.2514/6.2013-4564
https://doi.org/10.2514/6.2013-593
http://dx.doi.org/10.2514/6.2013-593
http://dx.doi.org/10.2514/6.2013-593
https://doi.org/doi:10.2514/6.2015-1645
http://dx.doi.org/10.2514/6.2015-1645
https://doi.org/10.2514/6.2017-0419
https://doi.org/10.2514%2F6.2017-0419
https://doi.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664

	Introduction
	Monitoring Parametric Temporal Logics
	PLTL Syntax and Semantics
	Offline monitoring
	The online monitoring problem - hardness
	Measuring Automata
	Deterministic PLTL
	From Deterministic PLTL to Measuring Automata
	Correctness

	Unambiguous PLTL
	From Unambiguous PLTL to Measuring Automata

	Monitoring Algorithm
	Experiments

	Stream Monitoring
	Classic Lola
	Syntax
	Semantics
	Properties

	Efficiently monitorable specifications
	Online Monitoring Algorithm
	Time and Memory Requirements

	Embedding PLTL in Lola

	Stream Monitoring with Parametric Data
	Parameterized Stream Monitoring
	Syntax
	Semantics
	Fragments and Properties

	Fixpoint-based online monitoring algorithm
	Memory Requirements

	Efficient implementation
	Experiments

	Real-time Stream Monitoring
	Monitoring with Time
	Syntax
	Semantics

	Window Aggregation Functions
	Memory Analysis
	Online Monitoring Algorithm
	Experiments
	Memory Requirement vs. Input Rates
	Data Analysis

	Case Study: Monitoring in UAS
	DLR ARTIS Research Platform
	Certification of UAS
	Impact on system development

	Lola Extension
	Specifications in classic Lola
	Specifications in RTLola
	Monitor Integration
	Experiments
	Offline Trace Analysis
	Hardware-in-the-loop Online Monitoring

	Conclusion

