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Abstract

A functional quantum computer potentially outperforms any classical machine ex-
ponentially in a number of important computational tasks. Therefore, its physical
implementation has to scale efficiently in the number of qubits, specifically in tasks
such as treatment of external error sources. Due to the intrinsic complexity and
limited accessibility of quantum systems, the validation of quantum gates is fun-
damentally difficult. Randomized Benchmarking is a protocol to efficiently assess
the average fidelity of only Clifford group gates. In this thesis we present a hy-
brid of Randomized Benchmarking and Monte Carlo sampling for the validation
of arbitrary gates. It improves upon the efficiency of current methods while pre-
serving error amplification and robustness against imperfect measurement, but is
still exponentially hard. To achieve polynomial scaling, we introduce a symmetry
benchmarking protocol that validates the conservation of inherent symmetries in
quantum algorithms instead of gate fidelities. Adiabatic quantum computing is
believed to be more robust against environmental effects, which we investigate in
the typical regime of a scalable quantum computer using renormalization group
theory. We show that a k-local Hamiltonian is in fact robust against environmen-
tal influence but multipartite entanglement is limited to combined system-bath
state which we conclude to result in a more classical behavior more susceptible to
thermal noise.
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Zusammenfassung

Ein Quantencomputer wäre in einer Reihe wichtiger Berechnungen exponenziell
effizienter als klassische Computer, unter Vorraussetzung einer fehlerarmen und
skalierbaren Implementierung. Aufgrund der intrinsischen Komplexität und be-
schränkten Auslesbarkeit von Quantensystemen ist die Validierung von Quan-
tengattern ungleich schwerer als die klassischer. Das Randomized Benchmarking
Protokoll leistet dies effizient, ist jedoch beschränkt auf Cliffordgatter. In dieser
Arbeit präsentieren wir ein Hybridprotokoll aus Interleaved Randomized Bench-
marking und Monte Carlo Sampling zur Validierung von beliebigen Gattern. Trotz
Verbesserung gegenüber vergleichbaren Protokollen skalieren die benötigten Res-
sourcen exponenziell. Um dies zu vermeiden entwickeln wir ein Protokoll, welches
die Erhaltung von spezifischen Symmetrien von Quantenalgorithmen untersucht
und dadurch Rückschlüsse auf die Fehlerrate der Quantenprozesse zulässt und de-
monstrieren seine Effizienz an relevanten Beispielen. Der Effekt von Umgebungs-
einflüssen auf adiabatische Quantencomputer wird als weit weniger gravierend an-
genommen als im Falle von konventionellen Systemen, ist jedoch im gleichen Maße
weniger verstanden. Wir untersuchen diese Effekte mithilfe von Renormalisierungs-
gruppentheorie und zeigen, dass k-lokale Hamiltonoperatoren robust sind, vielfach
verschränkte Zustände hingegen nur verschränkt mit der Umgebung existieren.
Wir folgern daraus ein verstärkt thermisches Verhalten des Annealingprozesses.
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A computer is based on classical bits which can assume either of two states ’0’
and ’1’ and hence is fundamentally binary. As such, it is inherently powerful at
logical and mathematical operations on bit strings and consequently on all integers
and decimal numbers. This enables a great number of applications in computation
and communication that are deemed an integral part of modern life. Computers
have proven to be an invaluable asset in technology, science and communication
but also for almost any challenge of a modern society. The scope of its application
has not reached its limits with new fields such as the development of artificial
intelligence still emerging .

Inconveniently nature is not binary. Fundamentally the world is described by
quantum physics1 which in turn is mathematically formulated via unitary oper-
ations on finite and infinite dimensional Hilbert spaces. Numerical simulation
results in a computational overhead severely limiting the complexity of tractable
quantum systems: Just storing the information of n interacting two-dimensional
systems requires O(2n) in classical resources, while the computational power neces-
sary to simulate the dynamics scales even worse. Following that reasoning physicist
Richard Feynman among others proposed that, to simulate a quantum system ef-
ficiently, one has to use a machine that is build upon and relies on properties of a
quantum system [1–3]. This approach established the field of quantum information
processing. Evolving beyond just the simulation of quantum systems, a number of
quantum algorithms have been developed. They are designed to act on quantum
mechanical two-level-system – qubits – which form the foundation of a quantum
computer. The most prominent algorithms are Shor’s algorithm which allows for
factorization of the product of two prime numbers with non-exponential resources.
This result implicates an exponetial speed up in comparison with conventional
computation which is relevant not only to break RSA cryptography [4]. Grover’s
search of unsorted databases also potentially outperforms classical algorithms fun-
damentally [5], adding incentive to the development of quantum algorithms. The
computational power of those is not yet fully understood, however it is conjec-
tured to be based upon the simultaneous application to many input states as well
as many party entanglement.

There are many possible candidates for the physical implementation of qubits
such as superconducting devices or trapped ions. However, there is no free lunch
in quantum computation. For the same reasons it is computationally powerful it is
also difficult to implement. While the two states of classical bits are protected by
an energy barrier that is almost impossible to overcome involuntarily, the state of a
physical qubit is described by continuous parameters and thus much more fragile:
It is easily disturbed by external influence requiring extensive cooling and shielding

1This statement is to be taken with the obvious limitations of the lack of a theory of everything
and the incompatibility with relativity.
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against the environment. It also requires a precise calibration and control as pos-
sible operations are continuous as well and as such prone to small errors while the
control is limited by the properties of the physical system. The readout of quan-
tum gates is additionally subject to the projective nature of measurement. David
DiVincenzo formulated a list of five criteria necessary for constructing a quantum
computer, coining the understanding of a promising candidate for implementation
[6].

Despite these challenges the developement of quantum computers is approach-
ing the stage of what has been called noisy intermediate sized quantum computers
describing systems composed of 50 to several hundred imperfect qubits [7]. This
regime is significant as it cannot be simulated classically and allows for first, possi-
bly useful applications in quantum simulation [8]. It faces a number of additional
challenges in comparison to few qubit systems: It is increasingly hard to address
qubits individually or to generate interaction between specific pairs of qubits. In
this work we focus specifically on the validation of quantum gates and quantum
algorithms as well as their efficiency, as we discuss in part I of this thesis.

The field of quantum computation evolves around mainly two, very distinct
computational models: the conventional gate-based quantum computing and adi-
abatic quantum computation. We implicitly assumed the former so far. While also
based on qubits, the adiabatic approach encodes the solution to a computational
task in the ground state of a controllable system Hamiltonian. This ground state
is reached by varying the Hamiltonian adiabatically starting from a well under-
stood and easy to control configuration [9]. Both approaches are computationally
equivalent with polynomial overhead, however their conceptual differences result
in unique requirements for the construction of an adiabatic quantum computer. Of
particular interest is its sensitivity to the environment, which is believed to be less
harmful than in the case of gate-based machines. As they are also less understood,
these environmental effects are the subject of part II.

In the following we introduce a choice of relevant topics tailored towards the
research presented in this thesis. For a more complete introduction we refer to
respective literature. We present the basic framework to describe a quantum com-
puter in chapter 1 including the definition of a qubit, error channels, quantum
gates and quantum algorithms. In chapter 2 we introduce error correction codes,
discussing how to scale up to larger systems in the context of imperfect imple-
mentation. We discuss adiabatic quantum computation in chapter 3 and we then
define methods and formalisms necessary throughout this work in chapter 4.



Chapter 1

Basics of Quantum Information
and Computation

The mathematical framework to describe a quantum computer is based on the
formulation of quantum mechanics and therefore differs from the description of
conventional classical computation. The field of quantum information and com-
putation also includes a number of distinct notations and conventions which we
introduce in this chapter. We give a short review of the fundamentals, taylored to-
wards the context of this work in the following; for a more exhaustive introduction
see references [10, 11].

1.1 The Qubit

As conventional computers rely on bits to store information, a quantum computer
is build around quantum bits – qubits. While the implementation of physical
qubits varies, the mathematical description of a qubit is always given by a quan-
tum mechanical two-level system. The state vector |Ψ〉 ≡ α |0〉+ β |1〉 on the two
dimensional Hilbert space Hn=1 allows for arbitrary normalized superpositions
of the computational basis states {|0〉 , |1〉} compared to the binary representa-
tion of the classical bit which is assigned either 0 or 1. However this advantage
is accompanied by the challenges and restriction of controlling a quantum sys-
tem. A common representation of the qubit state is given by its vector on the
Bloch sphere: Up to a global phase any qubit state can be written in the form
|Ψ〉 = cos (θ/2) |0〉 + eiφsin (θ/2) |1〉 with angles θ ∈ [0, π] and φ ∈ [0, 2π). The
identification (x, y, z)|Ψ〉 = (sin (θ) cos (φ) , sin (θ) sin (φ) , cos (θ)) assigns each state
a unique vector on the three-dimensional Bloch sphere and vice versa as is demon-
strated in figure 1.1. The Bloch sphere representation will prove to be helpful
to convey an understanding of the single qubit dynamics. In particular it can

5



6 CHAPTER 1. QUANTUM INFORMATION AND COMPUTATION

be shown in a straightforward fashion that the x, y, z−components of the vector
represent the expectation value of the respective Pauli matrices σX, σY, σZ. This
interpretation also links mixed states with vectors which do not reach the surface
of the Bloch sphere. The completely mixed state ρ = 1/2 |0〉 〈0| + 1/2 |1〉 〈1| for
example marks the center of the sphere.

Figure 1.1: Visualization on the Bloch sphere
The pure state |Ψ〉 = cos (θ/2) |0〉+ eiφsin (θ/2) |1〉 is represented
by a point on the surface of the sphere; its position is given by the
angles θ and φ (a). In (b) the quantum gate RX(π/4) is applied
as a π/4-rotation around the σX-axis.

Like its classical counterpart a quantum computer is based on not one but many
bits. The n qubit state vector is described on the 2n dimensional Hilbert space
Hn = H⊗nn=1 and the computational basis states are given by the combinations of
single qubit basis states, i.e., by |a1〉 ⊗ |a2〉 . . . |an〉 ≡ |a1a2 . . . an〉 with ai ∈ {0, 1}.
In contrast, there is no direct generalization of the Bloch sphere representation to
multiple qubits. 1

The readout of qubits is not fundamentally different to the projective mea-
surement of any quantum system. Therefore it is fundamentally different from
the readout of a classical bit as first only partial information can be obtained and
second the state of a qubit is influenced by the measurement. Furthermore, the
readout in current implementations is usually restricted to individual qubits or

1The Bloch sphere representation does rely on the correspondence of rotations in three-
dimensional space and unitary operations on two-level-systems or that the Lie-algebras of SU(2)
and SO(3) are isomorphic. This does not transfer to higher dimensions.
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even to the computational basis of those. This measurement of arbitrary opera-
tors can be realized with the help of quantum gates which will be discussed in the
following section.

1.2 Quantum Gates

The dynamics of qubits is – as for any closed quantum system – described by a
unitary operation. We define the controlled application of such a unitary operation
Ug to one or several qubits as a quantum gate. While a classical single bit gate is
restricted to the four possible mappings {0, 1} → {0, 1}, it exists an infinite number
of viable single qubit gates which are all unitary operations on a two-level-systems,
i.e., all elements of the special unitary group SU(2). In turn, quantum gates are
restricted to being reversible due to their unitary nature. Prominent single qubit
gates are the Pauli gates σX, σY, σZ, the identity 1 ≡ σ0 and the Hadamard gate

UH =

(
1 1
1 −1

)
, (1.1)

which maps the computational basis states onto the eigenstates of σX and vice
versa. On the Bloch sphere any single qubit gate is represented by a rotation
and the multiplications of unitaries maps to a concatenation of those. Specifically
we find that Ri(θ) = exp(−iθ/2σi) with i ∈ {X, Y, Z} implements a θ - rotation
around the corresponding axis as shown in figure 1.1.

Any combination of single qubit gates represents a multiple qubit gate via direct
multiplication or rather simultaneous application to different qubits. However,
these gates do not cover the full scope of gates on more than one qubit – specifically
as they do not create entanglement between different qubits. The most prominent
example of a two-qubit gate that is not in SU(2) ⊗ SU(2) is the controlled-NOT
gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.2)

given in the Computational basis {|00〉 , |01〉 , |10〉 , |10〉}. It inverts the second
(target) qubit if the first (control) is in state |1〉. Other commonly used gates
are CPHASE, SWAP, iSWAP or the Toffoli gate. Many of those are entangling
gates, that is they map product onto entangled states. Specifically, as is depicted
in figure 1.2, a combination of CNOT and the single qubit Hadamard gate maps
the computational basis states onto the Bell states, the historicly most important
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|0〉 UH •
|0〉

Figure 1.2: Generating a Bell state
The quantum circuit visualizing that the entangled Bell state
|Φ+〉 ≡ 1√

2
(|00〉 + |11〉) can be obtained from the computational

ground state via CNOT and a single qubit gate. Time runs from
left to right.

examples of two-qubit entangled states [12, 13]. Entanglement is an essential
prerequisite for quantum information.

A universal quantum computer is in theory able to apply any unitary operation
on a set of qubits. As the implementation and even characterization of arbitrary
gates has proven difficult, the current approach is to implement a universal gate
set from which any unitary can be composed to arbitrary precision [14]. In order
to introduce a universal gate set we first introduce a non universal set of gates:
Be Pn the n- qubit generalization of the Pauli group P = {σ0, σX, σY, σZ} – which
actually forms a group when disregarding global phases2. We define the Clifford
group as the normalizer of the Pauli group, i.e., the set of gates mapping the Pauli
group onto itself, i.e.,

C =
{

C ∈ SU(d)|CσiC† ∈ Pn ∀σi ∈ Pn
}

. (1.3)

The Clifford group is of relevance for a number of applications within quantum
computation. Its significance is based on a number of remarkable properties listed
below.

• The Gottesmann-Knill theorem states that the application of Clifford group
gates on computational basis states can be simulated efficiently on a classical
computer, i.e., in time only polynomial in the number n of qubits [15, 16].
For the proof one relies on that n qubit states are uniquely identified by n
stabilizer operators which leave the state invariant when applied to it. For
the computational basis states those lie in the Pauli group. The effect of the
Clifford operation can be encoded in updating those stabilizers, yielding a
total computational time of order O(n2). Although this theorem is one of
the main reasons for the importance of the Clifford group, it also shows that
the Clifford group does not hold the full power of quantum computation as it
cannot achieve an exponential speedup compared to classical computation.

2More rigorously, one would define the Pauli group with global phases ±1 and ±i.
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• The Clifford group is a unitary two-design [17]. Be f : (SU(2n),SU(2n))→ V
a polynomial function of at most order two mapping two operators onto any
vector space over C - commonly SU or C. Then averaging f(U,U †) over
U ∈ C equals averaging over U ∈ SU using the invariant Haar measure [18]:

1

]C
∑
C∈C

f(C,C†) =

∫
SU
f(U,U†)dU, (1.4)

where ]C denotes the cardinality of C. Corollarily, the Clifford group is also
a unitary one-design: those equal the averaging of the Haar measure only
for functions f of first order; another prominent example for one-designs is
the Pauli group. The concept of unitary designs is particularly useful for the
validation of quantum gates as we show in part I.

• Any gate of the Clifford group can be composed of just two single qubit gates
and one two qubit gate. Specifically, CNOT , the Hadamard and the phase
gate, which is the square root of σZ, form a generating set.

• Together with any additional gate the Clifford group forms a universal gate
set, i.e., a set generating SU . While such a set can theoretically reach any
unitary U ∈ SU to arbitrary precision, the number of gates necessary is
an important resource in the light of constraints to time as well as gate
implementation . The Solovay-Kitaev theorem states that any generating set
of SU(d) containing the inverse of each element has the following property
[19]. Be α > 0 given. Then the l-fold application of its elements forms an
α-net on the special unitary group with l = O(logc(1/α)) and c ≈ 4. An
α-net means that the worst error between any U and the closest element
of the net is smaller than α. Consequently any unitary operation can be
achieved within a reasonably small number of generating gates.

From the Solovay-Kitaev theorem it is common to construct a universal gate
via adding the T or π/8 gate and its inverse, i.e., exp(±iπ/8σZ) to the Clifford
group. This in fact allows for the construction of any gate to arbitrary precision.
However, favorable scaling of the Solovay-Kitaev theorem in the precision defining
α coincides with an exponential scaling in the number of qubits. This scaling pro-
hibits an actual implementation of quantum algorithms via the afforementioned
universal gate set. For example, resource estimations show, that the implementa-
tion of a common algorithm on just a few thousand qubits would require at least
in the order of 1026 gates [20]. Finding an effective generating set for universal
quantum computation however remains on open question: As any single or few
qubit gate can be constructed efficiently with the Solovay-Kitaev algorithm it can
not sponsor exponential speedup in comparison to the Clifford + T generating set.
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Therefore, we believe that efficient generation of universal gates has to rely on
multi qubit gates outside the Clifford group; the validation of those is inherently
more complex which motivates chapter 6.

1.3 Imperfect Implementation – Error Channels

The endeavor to reliably implement quantum bits and quantum gates has sparked
an entire field of research and developed a variety of approaches to quantum com-
putation. Promising candidates for encoding qubits are found in superconducting
circuits [21–25], trapped ions [26–28], Rydberg atoms [29] and semiconductors
[30–33]. As this work is not taylored towards or based upon specific implemen-
tations we do not give a more detailed introduction; an overview of the different
approaches and the current state of research is given in reference [34]. While the
different approaches to implementation bring individual strengths and challenges,
they all have in common that they are imperfect: Any implementation of a quan-
tum gate on a physical system deviates from the ideal unitary evolution. Possible
sources for errors are imperfect characterization of the two-level-system or appli-
cation of changes to its Hamiltonian, as well as influence from the environment
which can often be modeled as an external bath.

For the analysis of possible errors it is important to distinguish between qubit
candidates that naturally consist of just two levels, such as spin 1/2 particles and
those which are defined as a subspace of a larger Hilbert space, for example as
the lowest levels of an altered harmonic potential. The later is prone to unwanted
excitations to higher levels – an additional error source coined as leakage. As we
discuss these leakage errors in detail in chapter 5, we focus on errors acting on just
the two-level-system for this introduction.

We aim to treat errors on the two-level-system within the most general frame-
work. However, we make the exception of assuming the Markov approximation as
is common in the field. Typical time scales of the environment are much shorter
than the time it takes to apply a quantum gate – we make this assumption through-
out this work, specifically in part I where we exclusively treat Markovian errors.
It is, therefore, justified to assume the bath to be independent of the qubit gate
and qubit Hamiltonian at a past point in time. Hence, it is valid to trace out and
discard the degrees of freedom of the bath after application of each quantum gate.
Be USB the unitary evolution of combined system and bath when attempting to
apply a gate Uideal and ρ, ρB the density matrices; the dynamics of the system are
given by the completely positive trace preserving map

ΩU(ρ) = TrB

[
USB (ρ⊗ ρB) U†SB

]
(1.5)
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≡
∑
k

EkρE†k. (1.6)

We introduced the operator sum representation and the Kraus operators Ek which
satisfy

∑
k E†kEk = 1 to be trace preserving. The operator sum representation

combines motivation by external influence with the visualization of concrete effects
to the qubits. To showcase that, we separate unitary and error channel ΛU via

ΩU(ρ) = ΛU(UρU†) (1.7)

ΛU(ρ) = ΩU(U†ρU) (1.8)

Ek → U†Ek (1.9)

where a single Ek = 1 represents the ideal evolution. We will review a number of
single qubit error channels with respect to the operator sum representation, error
sources but also the representation on the Bloch sphere.

The bit flip error translates directly from its classical counterpart which is how-
ever virtually limited to data transfer as classical bits are protected by a sufficiently
high energy barrier. With E1 =

√
1− p 1 and E2 =

√
p σX it causes a switch of

the computational ground states, i.e., the application of σX with probability p.

Λbit flip(ρ) = 1− p ρ+ p σXρσX (1.10)

The Kraus operators do not only define the the error channel but may provide
hints towards possible error mechanisms. The bit flip error is characterized by
the σX operator, it may be caused by a coupling to the environment of similar
form. Similarly a coupling via σZ and miscalibration of or fluctuations in the qubit
frequency are known to result in σZ Kraus operators. We define the corresponding
phase flip or dephasing channel as E1 =

√
1− p 1, E2 =

√
p σZ which weakens

phase relation between the computational states. The bit-phase flip channel with
E2 =

√
p σYZ combines the above effects. We see from the effects on the Bloch

sphere depicted in figure 1.3 that this class of error channels leaves the eigenstates
of its defining Pauli matrices invariant while affecting the eigenstates of the other
Pauli matrices the most.

Accompanying the application of quantum gates a qubit is prone to all possible
error channels, the effects of which are also highly dependent on the applied gates
– e.g. a bit-flip in between Hadamards translates to a phase flip and vice versa.
When left alone, the primary error source of a qubit is often the dissipation of
energy over time into the environment which pushes the qubit towards the ground
state |0〉. While this mechanism can be used to reset the qubit to the ground state,
it is also erroneous to the effort of preserving a quantum state. Its occurrence
is quantified by the relaxation time T1, which originates from nuclear magnetic
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Figure 1.3: Visualization of different error channels I
We see the transformation of the Bloch sphere under bit flip (a),
phase flip (b) and bit-phase flip (c). Each error occurs with prob-
ability p = 30%. The space of density matrices is confined to
ellipsoids; former pure states lie on the surface thereof.

resonance and is often used to describe the maximum coherence time of qubit
candidates. We define amplitude damping via

{Ek} =

{(
1 0
0
√

1− γ

)
,

(
0
√
γ

0 0

)}
; (1.11)

it is visualized in figure 1.4. Note that for finite temperature the error channels also
incorporate transitions to the excited state which causes a slightly more complex
error channel and a stationary state which is not the ground state but a mixed
state determined by Boltzmann factors.

The importance of another single qubit error channel is given not by its cor-
respondence to classical errors or prominent occurrence in physical systems but
rather by its convenient mathematical properties. We define the completely depo-
larizing channel such that a density matrix is mapped onto the totally mixed state
(i.e. completely depolarized) with probability p and left untouched otherwise. It
is described by

Λdep(ρ) = (1− p)ρ+ p
1

2
. (1.12)

The completely depolarizing channel is unique in that it is invariant under uni-
tary transformation and affects any state equally, which will prove useful in the
following. It is also easily transferred to multiple qubits.

We have discussed a number of single qubit error channels. The quantification
of their occurrence does not only convey how faithful a quantum gate is imple-
mented but also hints towards underlying error mechanisms. Their experimental
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Figure 1.4: Visualization of different error channels II
The evolution of the Bloch sphere under amplitude damping for
γ = 30% and γ = 75% is shown in a) and b) respectively. We
see a push towards the ground state hence the deformed sphere
is no longer centered around the origin. c) visualizes a depolariz-
ing channel of p = 50% simply shrinking the Bloch sphere. This
channel is unique in that it is invariant under any unitary trans-
formation.

identification is therefore useful not only for validation but also improvement of
gates. The characterization of two or more qubit error channels, however, is much
more complex due to the missing Bloch sphere representation and an exponen-
tially growing Hilbert space with 8n parameters to describe linear maps on density
matrices.

To treat such error channels we refrain from a detailed characterization but
rather derive an accessible metric for how close Λ is to the identity, hence, how
close the quantum channel Ω is to the desired unitary U. We define the average
fidelity as the average overlap of pure states with themselves after application of
Λ.3

Φ(Λ) =

∫
ρ

Tr [Λ(ρ)ρ] (1.13)

=

∫
SU(d)

Tr
[
Λ(Uρ0U†)U ρ0U†

]
dU (1.14)

= Tr

[∫
SU(d)

U†Λ(Uρ0U†)U dU ρ0

]
(1.15)

where the Haar integration over the special unitary group implements an averaging

3The overlap between two density matrices σ, ρ is defined as Φ(ρ, σ) = Tr
[√√

σρ
√
sigma

]2
which simplifies to the form in equation 1.13 if at least one of the density matrices is pure.
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over all pure states in the d = 2n-dimensional Hilbert space. The density matrix
ρ0 can be chosen to represent any pure state. For consistency with the following,
we set ρ0 to the ground state which is often the default preparation in imple-
mentations. It is sufficient to average pure states due to the facts that quantum
computation is designed for those. While physical implementations deviate from
the designated unitary evolution and inevitably incorporate mixed states, they
do not deviate by much as to be considered eligible for quantum computations.
We simply are less concerned with the fidelity of very bad gates. The fidelity Φ
assumes values in [0, 1], it is invariant to change of the reference system via the
Haar measure and it uniquely peaks for Λ being the identity channel.

We note that quantum channel Λtwirl(ρ) =
∫
SU(d)

U†Λ(UρU†)U dU that is

emerging in equation 1.15 also inherits the invariance to system transformations
from the Haar measure. It is a completely depolarizing channel and defines the
twirl of Λ over the special unitary group [17]. That it coincides with the twirl over
the two-design C will have impact in part I.

The quantity Φ does not give the exact probability of successful application
of a gate to any specific but rather to the average of all viable states. Therefore,
its usefulness to asses the single application of a gate is limited. Typically, how-
ever, quantum gates are not applied in an isolated setting but part of a quantum
algorithm comprised of many gates – as discussed in the following section. The
complexity of these algorithms is characterized by the number of qubits n and the
number of consecutive gates – the depth l.4 For all but very small n and l this
implies a large number of gates and therefore the average fidelity of the individual
gates can be used to assess the success probability of the algorithm. That is be-
cause deviation from the average fidelity is averaged out for all but fringe cases of
coherent interference between a major subset of the error channels. Hence, Φ is a
valid quantity to describe the implementation of a quantum gate.

1.4 Quantum Algorithms

The reason engineering a quantum computer is pursued, is its theoretical potential
to outperform a classical computer and even to perform computations that cannot
be done on a classical computer with all resources accessible to humankind. With
qubits being vastly more fragile and costly to produce and maintain than the clas-
sical bit, this advantage can only be achieved via a favorable scaling in the problem
size. Various algorithms have been proposed: Shor’s algorithm can factorize an in-
teger N in polynomial time in log(N) which is polynomial in the number of qubits

4This is true only when considering a limited set of accessible gates: Defining the unitary
representation of a quantum algorithm as a gate yields l = 1 in any case.
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necessary to reprsent the integer while the best known classical algorithm, the
general number field sieve, takes sub-exponential but super-polynomial time in N
[4, 35, 36]. The Grover algorithm can search unsorted databases in O(

√
N) time

compared to O(N) calls in any classical algorithm [5]. In this section we show-
case the potential of quantum computation at the example of the Deutsch-Josza
algorithm [3, 37, 38].

The Deutsch-Josza algorithm is a quantum algorithm to determine whether a
function f is balanced or constant. We assume a function f : {0, 1}n → {0, 1} to
be either constant 0/1 with f(x) = 0/1 ∀x ∈ {0, 1}n or balanced with f(x) = 0
for exactly half of the elements in {0, 1}n. While this problem still lacks practi-
cal applications it is considered to having laid the foundation for the previously
mentioned algorithms.

To access any information about the function f with a quantum algorithm it
is inevitable that it can be called as a unitary operation. We therefore assume to
be given the black-box (n + 1)-qubit gate Uf , defined to flip an additional target
qubit if f(x) = 1, i.e.

Uf |x〉 |y〉 = |x〉 |y +2 f(x)〉 , (1.16)

with y ∈ {0, 1} and +2 denoting addition modulo 2. The concept of a black-
box is prevalent in (quantum) information theory. However, its implementation
is nontrivial. Nonetheless we assume to have access to both the classical and
quantum version and compare the algorithms by the number of calls of f .

We review the quantum algorithm which is given by

1. Initialize the state |Ψ0〉 = |0〉n |1〉.
2. Apply Hadamard gates to all qubits.

3. Call the black-box operator Uf .

4. Apply Hadamard gates to all qubits.

5. Measure the first n qubits in the computational basis.

The quantum circuit is depicted graphically in figure 1.5. We compute the state
|Ψ〉 throughout the circuit.

|Ψ0〉 = |0〉n |1〉 (1.17)
2.→ |+〉n |−〉 (1.18)

=
1√
2n

∑
x∈{0,1}n

|x〉 |0〉 − |1〉√
2

(1.19)

3.→ 1√
2n

∑
x∈{0,1}n

|x〉 |0 + f(x)〉 − |1 + f(x)〉√
2

(1.20)
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|0〉 UH

Uf

UH

|0〉 UH UH

...
...

...

|0〉 UH UH

|1〉 UH UH |1〉

Figure 1.5: Circuit of the Deutsch-Josza algorithm
The quantum circuit to implement the Deutsch-Josza algorithm
consists of Hadamard gates, a single call of the oracle Uf and
measurement of the first n-qubits.

=
1√
2n

∑
x∈{0,1}n

(−1)f(x) |x〉 |−〉 (1.21)

4.→ 1√
2n

∑
x∈{0,1}n

(−1)f(x)U⊗nH |x〉 |−〉 (1.22)

=
1

2n

∑
x∈{0,1}n

(−1)f(x)
∑

z∈{0,1}n
(−1)xizi |z〉 |−〉 (1.23)

=
1

2n

∑
x,z∈{0,1}n

(−1)f(x)+xizi |z〉 |−〉 (1.24)

We use the Einstein notation for the scalar product of x and z in the application of
the second Hadamards which can be derived in a straightforward fashion. While
not obvious at first sight, the final state in equation 1.24 does distinguish constant
and balanced f with certainty. One way to demonstrate this is to investigate the
probability to measure 0 in the first n qubits. The probability amplitude amounts
to

1

2n

∑
x∈{0,1}n

(−1)f(x). (1.25)

This amplitude sums up to 0 for balanced functions as the summands are evenly
split between 1 and -1 while for constant f equation 1.25 is either 1 or -1. Therefore
measuring all qubits in 0 equals a constant and any other outcome a balanced
function. As any classical algorithm can only test one f(x) per black-box call,
it needs at least 2n−1 + 1 queries to verify a constant function and hence, as the
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Deutsch-Josza algorithm requires a single call, it shows a fundamental advantage
of quantum processing.

Note that the (n+ 1)th qubit does a no point during the algorithm change its
state non trivially or hold any information about f but is only used to apply the
phase to certain states x. Such qubits are denoted ancilla qubits. Note also that the
mentioned algorithms of Shor, Grover and Deutsch-Josza are just a small subset of
quantum algorithms; for example quantum simulations using quantum systems to
emulate other quantum systems form an open field of research with many promising
candidates for useful applications on medium sized quantum computers. As it is
however not the main focus of this work we leave an overview to references [39, 40].





Chapter 2

Scaling and Fault Tolerance

Despite the potential of quantum technologies, their usefulness only comes into
play for a nontrivial number of qubits and gates. While algorithms as presented
in the previous chapter typically require larger quantum computers than quantum
simulations to surpass the capability of classical machines, this threshold is bound
around 50 qubits by the maximum number to be simulated on a classical computer
[41]. Implementing any computation on a quantum computers that a classical
computer cannot solve has been coined quantum supremacy [42, 43]. Furthermore,
noisy intermediate-scale quantum computers of 50 to 100 qubits are expected to
be available in the next decade [7].

It is therefore necessary for any contemporary implementation to involve a
strategy for scaling up in the number of qubits. This scalability of quantum systems
poses nontrivial challenges to quantum architectures. Some of those challenges
involve the arrangement of qubits in a way that allows for individual addressability
when facing frequency crowding [44]; at the same time one aims to allow for as
much connectivity as possible between different qubits and still avoid cross talk,
i.e., involuntarily adressing one qubit while trying to implement a gate on one
ore several others. Those requirements are to be met with as little as possible
resource investment per qubit – costs that are perfectly reasonable for a one or
few qubit prototype may not be for a scaled up machine. The same reasoning
applies to imperfect quantum gates: While the average error of a single gate is
continuously improved upon and becomes more and more negligible [45, 46], for an
increasing number of qubits and gates in a quantum circuits those errors amplify.
In this chapter we introduce the control of error propagation via quantum error
correction schemes.

Quantum error correction is unique to some extend. It poses a much broader
range of challenges compared to classical error correction, which is mainly limited
to data transfer as classical bits are protected by an energy barrier so large that
it makes tunneling virtually impossible. While classical error correction can be

19
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simplified as redundancy and majority vote as for the (3, 1)-Hamming code [47],
it cannot be transferred to qubits for several reasons. First it is impossible to
create additional copies of a quantum state due to the unitary nature of evolution;
this is known as the no-cloning theorem [48–50]. Second qubit measurement dis-
turbs the quantum state and third quantum error channels are not restricted to
simple bit flips but can be much more complex due to the continuity of quantum
states. Subsequently quantum error correction gives rise to an interesting sub field
of quantum information theory, generating various schemes to control quantum
errors.

Initially we review a toy model of a single qubit in a state |Ψ〉 = α |0〉 + β |1〉
which is only subject to bit flip errors at given probability p. It is close to the
classical case and can be solved by the three qubit bit flip code as is presented
in figure 2.1 [10]. The idea is to encode the logical state |Ψ〉 in the three qubit
state |Ψenc〉 = α |000〉 + β |111〉 using CNOT s to differentiate the basis states –
even after a single bit flip. It is straightforward to show that the error correc-
tion after the application maps {|000〉 , |001〉 , |010〉 , |001〉} onto |Ψ′〉 = |0〉 and
{|111〉 , |110〉 , |101〉 , |011〉} onto |Ψ′〉 = |1〉 respectively. Consequently one shows
|Ψ〉 = |Ψ′〉 for zero and one bit flips.

|Ψ〉 • • ΛX • • |Ψ′〉

|0〉 ΛX •

|0〉 ΛX •

Figure 2.1: Circuit of the three qubit bit flip code
A single logical qubit is encoded in three physical qubits. Due
to post ΛX error correction we find |Ψ′〉 = |Ψ〉 for no or just one
qubits flipped.

The three qubit bit flip code effectively changes the probability of flipping
the logical qubit to that of flipping either two or three of the physical qubits,
i.e. 3p2(1 − p) + p3. We define the error threshold at p = 1/2 as it marks the
minimum fidelity necessary to improve the fidelity of the logical state using this
error correction scheme. It is important to note that the above scheme assumes
the possible error to happen at a specific point during the circuit, it does not
account for imperfect encoding and decoding gates or error channels on multiple
qubits. Furthermore it does not correct phase errors; however, as those are just
bit flips in the σX basis, they can be treated by the phase flip code as presented
in figure 2.2. We note that, in turn, the phase flip code is susceptible to bit flips
again. To account for both one can straightforwardly encode each of the three
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|Ψ〉 • • UH ΛZ UH • • |Ψ′〉

|0〉 UH ΛZ UH •

|0〉 UH ΛZ UH •

Figure 2.2: Circuit of the three qubit phase flip code
The additional Hadamard gates allow for the correction of phase
flip instead of bit flip errors. The logical qubit is encoded as
|Ψenc〉 = α |+ + +〉+ β |− − −〉.

qubits of the phase flip with the bit flip code or vice versa – this is known as the
nine qubit Shor code [51]. As a σY or bit phase flip error is just a combined bit
and phase flip error the Shor code does account for those as well as all single qubit
errors consequently. While it arises naturally it is not the most efficient method
to encode against single qubit errors. For instance the Steane code does so only
using seven physical qubits [52], the optimal number is five [53].

Although these error correction schemes can be concatenated to further im-
prove the fidelity of a single logical qubit, they are known to suffer from several
shortcomings that limit the viability in physical settings. As presented above they
do not account for imperfect implementation of the encoding single and multi qubit
gates or state preparation and measurement; they do not include gates on and be-
tween logical qubits. While these restrictions are addressable, they do severely
impact the error threshold.

A different approach, aiming for a higher error threshold, is given by topo-
logical quantum error correction codes such as the surface code [54–56]. These
protocol encode logical qubits using topological properties of thew arrangement
and interaction of an array of qubits. In contrast to the error correction schemes
presented above topological error correction typically relies only on interaction
between neighboring qubits. The surface code, as the name suggests, encodes its
logical qubits on a two dimensional surface comprised of a two dimensional array
of physical qubits.

In this introduction we do not focus on the detailed implementation of topo-
logical error correction to review papers such as reference [57] and focus on the
mathematical formulation of an error corrected system, which is necessary in the
context of chapter 7. As for any error correction code (ECC), a set of n + m
physical qubits is used to encode just n logical qubits which then are accessible for
quantum computation with higher fidelity. The full Hilbert space can be written
as H = {0, 1}⊗n ⊗ {0, 1}⊗m – where the first n describe the logical qubits – via
a unitary transformation given by the topological properties of the ECC. For the
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surface code this, for example, translates to identifying the σX on a logical with
a string of σX on several physical qubits. Generally, this transformation is con-
structed to map the most common single and few qubit errors onto more complex
channels affecting both factors of the Hilbert space. Therefore, preparing the state
in the last m qubits to a known quiescent state |Ψs〉 allows to track and correct
those errors via repeated syndrome measurement in the m ancilla qubits.



Chapter 3

Adiabatic Quantum Computation

In this chapter we discuss an approach to leveraging quantum systems for a com-
putational purpose that is quite distinct from the standard gate-based model.
Adiabatic quantum computation (AQC) aims to encode the solution to a com-
putational problem in the ground state of a controllable quantum system. When
changing the system prepared in the easy-to-reach ground state of a well under-
stood initial Hamitonian to the encoding target Hamiltonian sufficiently slowly,
the evolution follows the instantaneous ground state as described by the adiabatic
theorem [58]. AQC was first introduced as an optimization scheme [59] and coined
as quantum annealing [60]. Remarkably, this inspired the optimization via simu-
lated quantum annealing [61, 62] before the transition to a general computational
context [63] and the proof that AQC can be as powerful as gate-based quantum
computing [64]. We give a short introduction prioritizing topics by relevance for
this work in the following; a more in depth overview is given in reference [9].

To formally define AQC we need to introduce the concept of k-locality: A
Hamiltonian is considered k−local if all of its terms are acting nontrivially on
at most k qubits. We then define H0 and H1 as the initial and target k-local,
n-qubit Hamiltonians of a quantum system. We demand the initial ground state
to be unique as well as to be a product state to allow for its efficient prepa-
ration. We define the annealing schedule a map s : [0, tf ] → [0, 1] satisfying
s(0) = 0 and s(tf ) = 1 so that the time dependent Hamiltonian is defined as
H(s(t)) = (1− s)H0 + sH1 for all times t ∈ [0, tf ].

1 The adiabatic theorem [58]
states that for infinitely slow variation of s, i.e., tf → ∞, the time evolution fol-
lows the ground state of H(s) and hence the final state is the ground state of H1.
Be 1− ε the overlap between target and output state for a given finite tf .

Specification of efficiency is crucial for comparison with classical as well as

1Depending on the specific setting it can be beneficial to introduce an intermediate catalyst
Hamiltonian for 0 < s < 1 [64].

23
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gate-based algorithms. The cost of running an algorithm with maximum error ε
is commonly defined as

K(ε, s) = tfmaxs ‖H(s)‖ . (3.1)

This definition is invariant under rescaling of the Hamiltonian as for multiplication
of H(s) with any factor, dividing tf by that factor results in the same ε; it is
therefore independent of the physical implementation. Assuming the order of
magnitude of the Hamiltonian is limited the cost K directly corresponds to the
run time tf . The minimum eigenvalue gap ∆ between ground and first excited
state is an indicator for the minimal run time which scales as 1/∆3 or even 1/∆2

for a more optimized schedule [65, 66]. Therefore, the efficiency of an adiabatic
quantum algorithm in comparison with classical and gate-based counterparts is
given by the scaling of the minimal gap.

Note that the above reasoning assumes a perfectly closed quantum system
which is per se invalid for any physical device. As for gate-based quantum compu-
tation the qubit state is affected by imperfect implementation and external degrees
of freedom. AQC is believed to be less sensitive against coupling to an environment
or even benefit from that via thermal relaxation back into the ground state after
an unwanted excitation. Those effects are studied comparatively little and still
pose open questions. We will address environmental effects on AQC in part II.

3.1 Universality of AQC

Similar to the concept of universal gate sets the goal for an adiabatic quantum
computer is to be able to access any target state as efficient as possible. We define
a universal adiabatic quantum computer as follows [9]: Any quantum circuit of
depth L represented by its unitary evolution U and its initial state |Ψ0〉. The
annealing Hamiltonian H(t) is universal if it reaches the target state U |Ψ0〉 to
arbitrary precision with annealing qubits na scaling at most polynomial in the
number n qubits of the algorithm and tf is polynomial in n and L. Specifically it
was shown that adiabatic evolution with two-local Hamiltonians is universal [67].

Note that adiabatic universality is based on that of gate sets. In fact it has
been shown that the power and complexity of adiabatic and circuit-based quantum
computation is equivalent up to polynomial overhead [64, 68, 69]. We present the
key ideas to prove that one quantum computer can efficiently simulate the other.
An adiabatic evolution Ua is unitary and can hence be implemented via a universal
gate set. To do so we approximate the time evolution using a piecewise constant
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Hamiltonian given by the annealing schedule, i.e.

Ua ≈
1∏

m=M

exp [−i∆t H (m∆t)] ≡
1∏

m=M

Um (3.2)

For small enough time slices ∆t = tf/M each unitary step is close to the identity
and can be approximated as Um ≈ 1−i∆tH(m∆t) omitting quadratic terms in the
time slices. A k-local Hamiltonian is always composed as a sum of terms coupling
at most k qubits and can be written in the form H =

∑
l Hl. Still relying on the

limit of small ∆t, we can further approximate

Um ≈ 1− i∆t
∑
l

Hl(m∆t) (3.3)

≈
∏
l

(1− i∆t Hl(m∆t)) (3.4)

≈
∏
l

exp (−i∆t Hl(m∆t)) , (3.5)

where the the individual terms of the Hamiltonian can be treated as separate gates
acting on at most k qubits. Those gates can be implemented efficiently via the
Solovay-Kitaev algorithm as discussed in chapter 1. Consequently the annealing
schedule can be simulated via a gate-based quantum algorithm.

Showing the opposite direction is less straightforward and we are discussing
the idea of proof of the original derivation [69]. While we can assume that any
circuit consists of one- and two-qubit gates and acts on the n-qubit ground state,
the ordering of their application – the emulation of time – proves difficult. To
do that we introduce L ancilla qubits with L the total number of consecutive
gates, i.e. the depth of the quantum algorithm. We define the history state
|Ψa(l)〉 = |11, . . . , 1l, 0l+1, . . . , 0L〉 to represent the point in time after the applica-
tion of the l − th gate Ul. The ancillary space can be confined to this form by in-
troducing a penalty. The application of Ul is implemented by coupling |Ψa(l − 1)〉
and |Ψa(l)〉, as is achieved by terms of the form

−Ul |Ψa(l)〉 〈Ψa(l − 1)|+ h.c. (3.6)

Following this concept, it can be shown to enable efficient simulation of the evo-
lution of a gate-based on an adiabatic quantum computer [64]. Consequently the
computational power of both approaches to quantum computation is – in theory
– equivalent.
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3.2 The adiabatic Deutsch-Josza Algorithm

As we have done for the gate-based approach in chapter 1 we highlight the concept
of AQC by presenting the adiabatic version of the Deutsch-Josza algorithm [70].
To do so, we revisit the function f : {0, 1}n → {0, 1} which is promised to be
either balanced or constant. Again aiming to distinguish those possibilities with
minimal number of calls of the function, we set our initial and target Hamiltonian
to be

H0 = 1− |Ψ+〉 〈Ψ+| (3.7a)

H1 = 1− |Ψf〉 〈Ψf | (3.7b)

with

|Ψ+〉 = |+〉n , (3.8)

|Ψf〉 =
µ√
N/2

2n−1−1∑
i=0

|2i〉+
1− µ√
N/2

2n−1−1∑
i=0

|2i+ 1〉 , (3.9)

µ =
1

N

∣∣∣∣∣∣
∑

x∈{0,1}n
(−1)f(x)

∣∣∣∣∣∣ . (3.10)

We find that µ vanishes for a balanced function, as we sum over an equal number
of +1 and -1 summands, while it is 1 for constant f . Consequently |Ψf〉 is a
superposition of all even or all odd states if f is balanced or constant, respectively.
This can be differentiated by a single measurement in the computational basis
revealing an even or odd state. The implementation of the target Hamiltonian can
be seen as the equivalent to the black-box unitary Uf of the gate-based algorithm.
To control the annealing time tf , we use that for an annealing Hamiltonian of the
form of equations 3.7 the minimal energy gap has a lower bound in the overlap of
the defining states [71]. As 〈Ψ+|Ψf〉 = 1/

√
2, energy gap and annealing time are

constant in n, duplicating the performance of gate-based quantum computing.
Both complexity theory as well as the implementation of a specific task do

not show a fundamental advantage of either gate-based or adiabatic quantum
computing despite the vastly different approaches. Which of those approaches,
if any, will prove to be suitable to build large universal quantum computer will
depend on strategies for a faithful, scalable and universal physical implementation.



Chapter 4

Methods and Formalisms

In this chapter we give a non exhaustive review of methods and formalism that are
important in the presentation of the results of this thesis. It is tailored specifically
towards the scope of this thesis.

4.1 Normal Ordering

Normal ordering is a convention to efficiently describe operations comprised of
creation and annihilation operators commonly used in quantum field theory [72].
The idea is to divide an operator O into its expectation value and fluctuation with
respect to a reference state |Ψno〉 describing the entire Hilbert space. To define
normal ordering more rigorously we introduce the contraction

ckl ≡ 〈Ψno|AkAl |Ψno〉 (4.1)

with Ak and Al being either raising or lowering operators.1 Denoted by : O :,
normal ordering of the operator O is then defined by the following rules:

1. Scalars are invariant under normal ordering.

2. Normal ordering is linear.

3. Ak : O : = : AkO : +
∑

l ckl : ∂O
∂Al

:

When normal ordering with respect to the vacuum state, we witness remarkable
properties. First, the expectation values of every normal ordered non constant
operator vanishes as second normal ordering with respect to the vacuum can be

1The contraction could be defined in a more general way e.g. as expectation value of a mixed
state as long as [Ak,Al] = ckl + clk is satisfied, which is, however, not necessary for the scope of
this work.
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simplified to writing creation operators to the left and annihilation operators to
the right. Consequently the normal ordered operator with respect to the vacuum
can be understood to only describe the vacuum fluctuations.

4.2 The Perron-Frobenius Theorem

Be M a positive square matrix, with positive refering to individual matrix entries.
Then the Perron-Frobenius theorem [73–75] states that there is a unique positive
eigenvalue λ1 which is called the Perron root and fulfills λ1 > |λi|, for all other
eigenvalues λi. Furthermore, all entries of the corresponding eigenvector are pos-
itive themselves. In the case of non-negative matrices, the theorem converts to
λ1 ≥ |λi| and that eigenvector has non negative entries.

4.3 Statistical Inequalities

While standard deviation and variance are valid estimators of how precise the mea-
surement of probabilistic quantities is, they do not directly provide a probability
δ of a distribution deviating more than an accuracy α from the actual expectation
value. Such estimations are given Hoeffding’s and Chebyshev’s inequalities which
are introduced here [76, 77].

The Chebyshev or Markov’s inequality limits probability of deviating from
the expectation value based on the variance. Be Z a probabilistic variable with
expectation value [Z] = µ and variance σ. Then

Pr

(
|Z − µ| ≥ σ√

δ

)
≤ δ. (4.2)

In the case when a probability distribution is limited to an interval [a, b] it can be
more feasible to rely on Hoeffding’s inequality instead: Be S the sum of random
variables Yi which are situated in an interval [ai, bi]. Then, the inequality limits

Pr (|S − 〈S〉| ≥ α) ≤ 2exp

(
− 2α2∑

i(bi − ai)2

)
. (4.3)

It is particular powerful in cases only two possible outcomes such as the measure-
ment of a single qubit or the overlap of two states.
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Randomized Benchmarking
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As quantum gates are the fundamental parts of any quantum circuit, a quantum
computer relies on their experimental implementation being a faithful representa-
tion – or at least a close approximation – to the ideal unitary. In fact, circuit-based
machines are often compared primarily by their gate fidelities and the improve-
ment of these is a major task in engineering a quantum computer, involving for
instance optimal control theory. It is therefore essential to access the fidelity of any
gate as efficiently and as reliably as possible. This task is non trivial. As the range
of possible error channels is given by completely positive trace preserving maps
the complete characterization via direct measurement, which is known as quan-
tum process tomography, requires exponentially many resources (O(28n))[78]. It
is therefore impractical for more than one qubit and does not differentiate between
gate errors and those associated with state preparation and measurement (SPAM).
As in most contemporary physical implementations , the latter at least match gate
errors, they potentially mask it completely.

Randomized Benchmarking (RB) is a scalable protocol to characterize the aver-
age gate fidelity of the Clifford group or any unitary two-design in time polynomial
in n via validation of random gate sequences [79, 80]. Due to error amplification
it does so irrespective of SPAM errors. The validation of individual Clifford gates
is realized by interleaving the gate into the sequence [81]. In chapter 5 we give
a short overview over Randomized Benchmarking, including an alternate formal-
ism to describe RB which proves robustness of RB against gate dependent error
channels and leakage. The Clifford group C relies on additional gates to form a
universal gate set – likely more than just single qubit gates are needed for efficient
generation of universal evolution. It is therefore necessary to benchmark arbitrary
gates as efficiently as possible. In chapter 6 we present a protocol for Interleaved
RB of arbitrary quantum gates using Monte Carlo sampling of quantum states.
It preserves key advantages of Randomized Benchmarking such as error amplifica-
tion and independence from SPAM errors. The protocol still scales exponentially
in the number of qubits, however, it is superior to direct Monte Carlo sampling, as
well as process tomography. To avoid exponential scaling, we present a symmetry
benchmarking protocol in chapter 7 that extracts the preservation of algorithm
specific symmetries rather than gate fidelities. It does so via gate sequences of
a unitary one-design engineered for the specific symmetry. We demonstrate its
application in polynomial time for examples originated in quantum simulation.





Chapter 5

Introduction to Randomized
Benchmarking

As discussed in chapter 1 any physical implementation of a quantum gate does
not represent the intended unitary evolution perfectly and hence it introduces an
error. To quantize this imperfection, we revisit the average fidelity Φ of a quantum
channel as described in equation 1.15, which provides a measure on how well a
quantum channel is implemented, i.e. how close its associated error channel Λ is
to the identity. This value, however, is not directly accessible; several challenges
making its extraction far from trivial.

We have seen that any error channel Λ is represented by a completely positive
trace preserving linear map on density matrices and as such is defined by O(24n)
parameters. The original approach to extract the average fidelity is based on the
complete characterization of the full quantum channel via quantum process tomog-
raphy (QPT). To do that, one has to choose d2 pure states meeting two criteria:
First, the density matrices of those form a basis for density matrices of the qubit
Hilbert spaceH and second, they can be prepared in the investigated quantum sys-
tem. A full channel characterization in turn requires the characterization of each
of those states after being subject to the quantum channel by exhaustive measure-
ment of a complete basis set, known as quantum state tomography. Although the
average fidelity can be extracted using this technique, it is highly inefficient since
one has to extract much more information than is actually requested. Apart from
the exponential scaling in the number of qubits, QPT is sensitive to SPAM errors
which, as discussed, often equal or surpass those of individual gates.

There have been several approaches to improve upon the efficiency of fidelity

This chapter contains original work by T.C. which was part of his masters thesis ”Robust
Characterization of Quantum Gates via Randomized Benchmarking” (2015). In particular sec-
tion 5.3 is a short version of the publication ”T. Chasseur and F.K. Wilhelm, Phys. Rev. A 92,
042333 (2015)”. Copyright (2015) by the American Physical Society.
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extraction. Compressed sensing for example provides full tomography with ex-
ponential speedup in comparison to standard QPT or state tomography in the
respective tasks, while still scaling exponentially in the number of qubits [82]. It
is, however, limited to specific states of low rank such as states only affected by
local errors or transitions between these when regarding process characterization.
While local errors can be assumed to dominate in certain scenarios we do not limit
ourselves to those cases for the scope of this work. In contrast, Monte Carlo sam-
pling aims to directly access the average fidelity [83–85]. With optimized sets of
initial states and measurement operators, as well as sampling only over a subset of
those, it achieves exponential speedup via reduction of necessary measurements;
the benchmarking of Clifford gates can even be achieved with resources scaling
polynomially. However, it does not differentiate between gate and SPAM errors,
limiting the precision of the fidelity estimation to that of state preparation and
measurement – a restricting that is inherent to direct measurement approaches.
We will resolve that shortcoming and give a more in depth analysis in chapter 6.

In this chapter we focus on an introduction to Randomized Benchmarking (RB)
[79, 80] which is a mean to scalably and SPAM independently assess the average
error rate of unitary two-designs such as the Clifford group. It does so via random
gate sequences utilizing that averaging over unitary two-designs emulates averaging
over the entirety of unitary operation, as discussed in chapter 1. Furthermore we
present interleaved Randomized Benchmarking, which allows to access the fidelity
of individual gates [81] and introduce an alternate formalism to derive RB, allowing
to prove the robustness against potential loopholes as well as laying the foundation
for the following chapters [86].

5.1 Standard RB

The key idea of Randomized Benchmarking is to apply and validate random Clif-
ford gate sequences of varying length y to determine the average error rate per
gate. We will show, that applying random gates on average prevents interference
between error channels and effectively concatenates a number of depolarizing chan-
nels with equal average error. As the Clifford gates form a mathematical group,
for every possible gate sequence there is a unique Clifford gate Cy+1 which inverts
the sequence and which can be found efficiently via the Gottesmann-Knill theo-
rem. Therefore, by applying the sequence and its inverse to any initial state and
measuring the overlap with that state afterwards, the sequence fidelity is accessible
experimentally. The initial derivation relies on the assumption that there is just
one set error channel Λ, irrespective of the associated gate. This is not per se given
but rather not true for most physical implementations. We further neglect SPAM
errors as well as those of the inverting gate Cy+1, which, however, can be justified
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|Ψ0〉 C1 Λ C2 · · · Cy Λ Cy+1 Λ

Figure 5.1: Circuit representation of an RB sequence
The state Ψ0 is subject to a sequence of random Clifford gates Ci
inverted by Cy+1 and the respective errors. This representation
assumes a fixed error channel Λ and omits SPAM errors. The con-
cluding measurement overlaps with the initial state at an average
probability given by the sequence fidelity Φy.

easily. The circuit of such a random sequence is given in figure 5.1.
By choosing the initial state to be the ground state represented by its density

matrix ρ0 we find the average sequence fidelity to be

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
Cy+1

1∏
j=y

(ΛCj)

)
(ρ0)

]
, (5.1)

where the right-to-left order of the product ensures that gates are applied in the
correct order. We also introduce the notation for a gate U acting on a density
matrix as U(ρ) ≡ UρU†. Writing out part of the product and inserting the identity
1 = C1C

−1
1 we find

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
C−1

1 C−1
2 C̃y+1

3∏
j=y

(ΛCj) ΛC2C1 C
−1
1 ΛC1

)
(ρ0)

]
. (5.2)

C̃y+1 inverts all sequence gates except the first two and is therefore independent
of those. Consequently, C2 only contributes as terms in C2C1. For any given
C1 ∈ C, averaging over C2 assuming all elements of the Clifford group is equivalent
to averaging over C2C1 ∈ C – this is given as CC1 = C. We can therefore rename
the term C2C1 as C2 and find

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
C−1

2 C̃y+1

3∏
j=y

(ΛCj) ΛC2 C
−1
1 ΛC1

)
(ρ0)

]
. (5.3)

Repeating the above deliberation for all j, we conlude that

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
1∏
j=y

C−1
j ΛCj

)
(ρ0)

]
≡ Tr [ρ0Λy

twirl(ρ0)] , (5.4)
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separating the effect of individual random Clifford gates. We identify λtwirl as the
twirl of Λ over the Clifford group introduced in chapter 1. As the Clifford group is
a unitary two-design, the twirl coincides with that over the special unitary group
SU . That is a completely depolarizing channel, as can be shown rigorously using
Schur’s Lemma [87]. As such, it acts as

Λtwirl(ρ) = pρ+
1− p
d

1, (5.5)

with p denoting the probability of preserving a state ρ. The average associated
with the channel Λtwirl amounts to Φ = p+ 1− p/d; the average sequence fidelity
becomes

Φy = Tr

[
ρ0

(
pyρ0 +

1− py
d

1

)]
=
d− 1

d
py +

1

d
. (5.6)

Note that the effects of neglecting SPAM errors and the error channel connected
to Cy+1 are typically small compared to the overall error due to error amplifica-
tion over the sequence length. Furthermore, those errors only result in different
prefactors but do not affect the decay rates and therefore result in a more general
form of equation 5.6. This can be seen mathematically as the sequence fidelity is
just a different linear functional of the exponentiation of the matrix Λtwirl which
has just the two eigenvalues 1 and p derived above.

Φy = Apy +B (5.7)

To access the decay parameter p one has to estimate Φy for several sequence
lengths y by sampling over a small subset of possible sequences for each length. The
size of those subsets can theoretically already be limited to a rather small number
[88], but experimental and numerical data provides reliable error estimations for
even smaller subsets. The average fidelity of the unitary two-design is determined
from a fit of the measurement results to equation 5.7. As the average fidelity only
depends on p rather then the prefactors A,B, the RB protocol is robust against
SPAM errors and since the measured quantities are not miniscule – even if the
gate errors are – due to the error amplification of long sequences, it allows for a
substantially lower measurement accuracy than more direct approaches. Further-
more, it is scalable with respect to the number of qubits in both experimental and
classical computational resources thanks to the Gottesmann-Knill theorem – at
least if the unitary two-design is the Clifford group. Because of those properties
Randomized Benchmarking is widely used in experiment.

5.2 Interleaved Randomized Benchmarking

The RB protocol is designed to identify the average fidelity of a unitary two-
design or rather the Clifford group and hence the average over a set of gates rather
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|Ψ0〉 C1 Λ ΛV V C2 · · · Cy+1 Λ

Figure 5.2: Circuit representation of an interleaved Ran-
domized Benchmarking sequence
The state Ψ0 is again subject to random Clifford gates Ci but also
interleaved specific gates V with the whole sequence inverted by
Cy+1 bar the respective errors. This representation still assumes
the fixed error channel Λ but associates the interleaved gate V
with an individual error channel ΛV .

than the fidelity of a single individual gate. For the engineering and validation
of specific gates this is often inconvenient, especially for gate calibration [89, 90].
In this section we briefly introduce Interleaved Randomized Benchmarking (IRB),
extending the above RB protocol to estimate the fidelities of individual Clifford
gates [81]. The core concept of IRB is to alternate a specific gate V with random
Cliffords as shown in figure 5.2. Separately estimating the fidelity for both the
combined error of group and single gate, as well as the average group error allows
to estimate the error rate of ΛV associated with the individual gate V . The
corresponding sequence fidelity is given by

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
Cy+1

1∏
j=y

(V ΛV ΛCj)

)
(ρ0)

]
(5.8)

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
1∏
j=y

(C−1
j ΛV ΛCj)

)
(ρ0)

]
(5.9)

= ApyCV +B, (5.10)

obtained similar to the above derivation of RB. Note that, as V is a Clifford gate,
the inverting gate Cy+1 is as well and can be found as efficiently as for the non
interleaved case. Furthermore, the above sequences can be used to estimate the
error εCV of the combined channel ΛV Λ: Assuming small errors, an estimated error
of V can be calculated as εV = εCV − εC and lies within the bounds

max (0 , (
√
εCV −

√
εC))

2 ≤ εV ≤ (
√
εCV +

√
εC)

2
. (5.11)

Those limits can be derived in a straightforward way by assuming Λ as well as
Λtwirl to be unitary errors in either same or opposite direction, which leads to the
worst possible over- and underestimation of the gate error rate εV .
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5.3 Alternate Formalism

As discussed, RB allows to efficiently and scalably characterize the average error
of a unitary two-design such as the Clifford group C on any physical candidate for
(gate-based) quantum computation. The above introduction, however, is vulnera-
ble to possible loopholes in the derivation such as additional leakage levels of the
physical qubits or error channels that specifically depend on the gate. As the RB
protocol is used not only for benchmarking, but for closing the loop in experimen-
tal optimal control [89, 90], it becomes increasingly imperative to account for all
possible weaknesses of this protocol. In this section we introduce a formalism that
accounts for these loopholes and lays the foundation for subsequent work on RB.

Many promising candidates for implementing qubits on which RB is applied
such as superconducting qubits [45, 87], NV-centers [91], trapped ions [79] or neu-
tral atoms [92] are not natural two-level-systems making leakage into additional
levels a viable error source. Since the physical qubit is protected from unwanted
interactions with the environment so are in many cases the leakage levels. There-
fore leakage is not accounted for by standard RB, not least because it is a non-
Markovian process. A major consequence of the application of RB sequences is that
there is no coherent interference between errors, including that the error channel
does not maintain any well-defined phase relations between different states. This
is not the case if one considers transitions into even just one non-computational
level per physical qubit while still only applying qubit Clifford gates. For a single
qubit this can be resolved with the rather simple procedure of randomly inserting
phase factors ±1 on the third level to achieve phase randomization and prevent
coherence between computational and non-computational subspaces [93]. This
is not easily generalizable to multiple qubits, as the non-computational subspace
is (3n − 2n)-dimensional and allows for arbitrary uncontrolled unitary evolution.
Consequently a generalization of the Clifford group to the full Hilbert space is not
necessarily a group, hence it is neither guaranteed to be closed nor to contain an
inverse or even a neutral element.

We specifically consider an implementation of the Clifford group C on a physical
system the qubits of which are no natural two-level systems but rather allow for
a non negligible leakage error. Be each Clifford gate C acting close to ideal on
the computational and as a non specified operation on the non computational
subspace. The deviation satisfying this assumption exactly can be contained in
an error channel Λ acting on both qubit and leakage subspace; again we initially
consider the error channel to be independent of the gate. Revisiting equation 5.1,
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the average sequence fidelity is

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
C−1

1 C1Cy+1

2∏
j=y

(ΛCj)ΛC1

)
(ρ0)

]
. (5.12)

Showcasing the initial derivation in the previous section, we relied on C being a
group. As this is no longer true, we cannot rewrite the sequence as a chain of
twirled error channels, however we can take a different approach: With C1Cy+1

being the inverse of all Cliffords but the first, one can see that multiplying C−1
1

from the left and ΛC1 from the right averaged over all C1 in C defines a linear map
TΛ on the Hilbert space of maps on density matrices.1 The resulting sequence
fidelity

Φy =
1

]Cy−1

∑
{Cj}∈Cy−1

Tr

[
ρ0 TΛ

(
C̃y+1

2∏
j=y

(ΛCj)

)
(ρ0)

]
(5.13)

= Tr [ρ0 T
y
Λ(1)(ρ0)] (5.14)

as a linear functional of a matrix exponential is given by

Φy =
∑
i

aiλ
y
i . (5.15)

As in the standard derivation of RB, one aims to describe the fidelity decay by
a preferably simple formula fitted to experimental measurements of random se-
quences. This is complicated by the up to 256n different eigenvalues λi. However
it can be shown that TΛ has only non negative entries and therefore its eigenvalues
are smaller than or equal to one asgiven by the Perron-Frobenius theorem. The
above sequence fidelity can be fitted to a multi exponential decay with just few
real-valued parameters [86], as we demonstrate in figure 5.3. Even just a single
decay parameter can represent the sequence fidelity reasonably well – this explains
the successful application of the RB protocol to physical systems.

In the above calculations we neglected all error channels induced by SPAM,
the robustness to which is a key advantage of RB. To show the validity in leaky
settings, we need to show that this robustness is preserved. Introducing a mea-
surement error however jeopardizes the assumption that the last gate Cy+1 can be
considered the inverse of all previous ones which is only true in the computational
subspace. To assess the accompanying impression we introduce an effective mea-
surement operator: ρM =

∑
k E†kρ0Ek incorporates the effects of a measurement

1Note that the identity Cy+1 = C−11 . . . C−1y technically no longer holds, or rather it is true
only when projecting onto the computational subspace. As there is no further operation between
application of Cy+1 and measurement of the overlap with the initial state, it can be used here.
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Figure 5.3: Decay of the RB sequence fidelity
Average fidelity Φy for a unitary error of 1.354× 10−3 for 40 dif-
ferent random sequences per sequence length y. We verify the
alternate protocol by comparing an extended Clifford set that is
a group (blue points) to a Clifford set that does not transfer the
group properties onto the whole Hilbert space (red). The pro-
tocol estimates average errors of 1.379 × 10−3 and 1.350 × 10−3

respectively. Both two-qubit Clifford sets are generated from the
single qubit Clifford sets and few two-qubit entangling gates [94].
The obtained average sequence fidelities Φy are fitted to the multi
exponential decay function and the average fidelity is calculated
as Φ1/Φ0.

error channel ΛM described by the Kraus operators Ek.
2 We project the effective

measurement operator onto the two subspaces and Cy+1 = C−1
1 . . . C−1

y holds for
the computational space. Also introducing the prepared state ρP = ΛP(ρ0) we find

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
(ρM,comp + ρM,leak)

(
Cy+1

1∏
j=y

(ΛCj)

)
(ρP)

]

= Tr [ρM,comp T
y
Λ(1)(ρP)] +

1

]Cy
∑
{Cj}∈Cy

Tr

[
ρMleak

(
Cy+1

1∏
j=y

(ΛCj)

)
(ρP)

]

2When measuring the overlap of an arbitrary state ρ with the ground state using an imper-
fect measurement, we find Tr[ρ0ΛM(ρ)] =

∑
k Tr[ρ0EkρE†k] =

∑
k Tr[E†kρ0Ekρ], motivating the

definition of ρM.



5.3. ALTERNATE FORMALISM 41

= Tr [ρM,comp T
y
Λ(1)(ρP)] +

1

]Cy
∑
{Cj}∈Cy

Tr

[
ρM,leak
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(CjΛ)C1

)
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1
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Tr

[
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(
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(ΛCj)

)
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]
(5.16)

Again, C1 is inverted by Cy+1 . . . C2 only in the computational subspace and can
hereon be written as C1 = C−1

2 . . . C−1
y+1. Consequently we find a second operator

T̃Λ on quantum channels and

Φy = Tr [ρM,comp T
y
Λ(1)(ρP)] + Tr

[
ρM,leak T̃

y
Λ(1)(ρP,comp)

]
+O(εP(εM + ε))

≡
∑
i

biκ
y
i +O(εP(εM + ε)). (5.17)

Here εP, εM, ε are state preparation, measurement and gate error rates respectively
and hence the deviation from the model is negligibly small and not scaling with
y. We find that accounting for SPAM does not impair the decay of the sequence
fidelity – as for the standard derivation, we account for its effects by extracting
the average fidelity as the ratio Φ = Φ1/Φ0.

The derivations for the RB protocol analyzed so far assume Λ to be indepen-
dent of the preceding gate or more specifically uses an effective gate error. This
assumption is usually not true for any physical system. We reiterate the sequence
fidelity for specifically gate dependent error channel while neglecting SPAM finding

Φy =
1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
Λy+1Cy+1

1∏
j=y

(ΛjCj)

)
(ρ0)

]

≈ 1

]Cy
∑
{Cj}∈Cy

Tr

[
ρ0

(
C−1

1 C1Cy+1

2∏
j=y

(ΛjCj) Λ1C1

)
(ρ0)

]
≡ Tr [ρ0T

y
G(1)(ρ0)] ≡

∑
i

ciτ
y
i . (5.18)

The contained imprecision of the order of ‖Λ‖ � 1 which does not scale with the
length of the sequence. It ,therefore, does not interfere with the fidelity decay,
which is given by the introduction of TG as the average of applying ΛCC before
and C−1 after a quantum channel. Consequently RB accounts for gate dependent
error without adjustment of the protocol beyond fitting for a multi-exponential
decay.
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All of the above findings translate directly to IRB with the additional benefit
that the individual gate V is no longer restricted to be an element of the underlying
unitary two-design. The challenges arising with the then non trivial inversion of
the sequence will be discussed in the following chapter 6.



Chapter 6

Hybrid Benchmarking

In this chapter we present a protocol for Interleaved Randomized Benchmarking
of arbitrary quantum gates using Monte Carlo sampling of quantum states. It is
generally applicable to all gates, including those not in the Clifford group, while
preserving key advantages of Randomized Benchmarking such as error amplifica-
tion as well as independence from state preparation and measurement errors. This
property is crucial for implementations in many contemporary systems. Although
the protocol scales exponentially in the number of qubits, it is superior to direct
Monte Carlo sampling of the average gate fidelity in both the total number of
experiments by orders of magnitude and savings in classical preprocessing, that
are exponential.

A central goal of quantum information science is to engineer a physical system
capable of functioning as a scalable quantum computer that systematically out-
performs classical computers in certain applications. To this end, it is imperative
to drive arbitrary unitary evolution in a suitable quantum system consisting of
n� 1 qubits and to benchmark the implementation of that operation.

Efficient benchmarking protocols, i.e., protocols that scale at most polynomi-
ally in n, are available for quantum operations in the Clifford group C [79, 80,
83, 84], an important subset of quantum operations [10, 17]. In particular, Ran-
domized Benchmarking is a method to estimate the average error of the Clifford
group based on the fidelity of random Clifford gate sequences [79, 80]. RB has
proven itself as a popular and experimentally viable approach not only because of
its scaling properties but also due to its independence from state preparation and
measurement (SPAM) errors [79, 80]. For individual gates of the Clifford group,

This chapter contains original research by T.C. et al. with overlapping contributions from
Masters and Ph.D. It was published in ”T. Chasseur, D.M. Reich, C.P. Koch, and F.K. Wilhelm,
Phys. Rev. A 95, 062335 (2017)”. Copyright (2017) by the American Physical Society. The
majority of research was conducted and the majority of the text written by T.C. Parts of this
paper have been shortened to avoid redundancy within this thesis.
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the fidelity can be estimated with interleaved Randomized Benchmarking (IRB)
[81]. The remarkable RB construction hinges on the Clifford group elements being
distributed sufficiently uniformly on the special unitary group SU(d = 2n). A
central prerequisite for the scalability of RB is that C can be simulated efficiently
on a classical computer [15]. However, for the same reason, quantum algorithms
based on those Clifford gates alone cannot outperform a classical computer. To re-
alize the full potential of quantum computation, one has to access the full unitary
group which is generated by C and one additional non-Clifford gate, e.g., a single
qubit gate such as the π/8 gate. While IRB for example can be generalized to an
arbitrary gate, the fidelity estimation becomes highly challenging [86]: Simulation
and inversion of the sequence becomes increasingly inefficient as alternating Clif-
ford and e.g. π/8 gates generate the full SU(2n) [15]. In order to sample all gates,
including those not in C one needs to rely on strategies whose experimental and
classical resources scale exponentially.

One such generally applicable protocol is given by Monte Carlo Sampling of
the average gate fidelity which allows for the validation of arbitrary quantum gates
[83–85]. It requires significantly less resources than the canonical approach, which
is to extract this information from full quantum process tomography. However,
Monte Carlo sampling is limited by SPAM errors, which for many physical systems
can overshadow the gate error. Moreover its scaling in both experimental and
classical resources, although favorable compared to process tomography, is still
exponential in n. This poses the question whether it is possible to combine the
generality of Monte Carlo Sampling, i.e. going beyond the Clifford group, with
the experimental advantages of RB.

Here, we answer this question and demonstrate the benefit of combining both
methods. We show how arbitrary gates can be benchmarked by replacing the in-
verting gate at the end of each IRB sequence with Monte Carlo sampling of the
resulting quantum state. Our approach outperforms direct Monte Carlo sampling
of the average gate fidelity regarding the number of measurements and yields an
exponential saving in classical computational resources while retaining the inde-
pendence on SPAM errors. Therefore it enables the benchmarking of arbitrary
gates in experimental settings.

We briefly revisit the RB and IRB protocols as described in the previous chap-
ter. RB provides an estimate for the average fidelity of a unitary two-design such
as the Clifford group based on the idea that random sequences of Clifford gates
also randomize the effect of error channels, turning them depolarizing. For every
sequence of y Clifford gates Cj, 1 ≤ j ≤ y, there is a unique Clifford gate Cy+1

inverting the sequence which can be efficiently found via the Gottesmann-Knill
theorem . By applying the sequence and its inverse to an initial state ρ0 and
measuring the survival probability of that state, the sequence fidelity is accessible
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experimentally. Potential loopholes in Randomized Benchmarking, such as gate
dependent errors and leakage can be accounted for by considering linear maps
acting on quantum channels instead of just quantum channels [86].

In this chapter we go beyond the Clifford group. To do so, we rely on the
alternate formalism introduced in chapter 5: as we do no longer rely on the group
properties of C, IRB does not depend on the specific gate V being an element of the
Clifford group. If it is not, the unitary matrix representing an ideal implementation
of the sequence can be quite general since C and V generate a dense subset of the
whole special unitary group. The construction of the inverse Cy+1 would be highly
challenging and defeat the concept of performing quantum computation using a
restricted set of gates.

Alternatively, one could be content to approximate the inverting gate using
the Solovay-Kitaev theorem. However,this turns out to be inadequate for the
following reason: The theorem states that any gate can be composed out of a small
number l of gates depending only logarithmically on the permitted inaccuracy, but
exponentially on the number of qubits [95, 96]. For RB to be reliable, the error rate
εy+1 associated with Cy+1 should be much smaller than the error of the sequence.
Since both sequence and inverting gate are composed of the same gate set, this
is roughly equivalent to l � y. Satisfying this is possible only for εV and εC
sufficiently small, so that y is large while the Hilbert space dimension must be
kept small as it enters the sequence length exponentially in the Solovay-Kitaev
algorithm. In other words, satisfying l � y implies the ability to implement an
arbitrary quantum gate to a relatively high precision, i.e., availability of a universal
quantum computer as a starting point.

To overcome the limitations of these ideas, we present a pragmatic approach to
the problem. Consider the fidelity of a specific sequence, represented by a vector
y of gates.

Φy = Tr

[
ρ0Cy+1

1∏
j=y

(V ΛV ΛjCj)(ρ0)

]
≡ Tr [ρyidρ

y
act] , (6.1)

where ρyid = Cy+1
−1(ρ0) = (

∏1
j=y Cj)(ρ0) is the state ideally generated by the se-

quence and determined on a classical computer and ρyact the one actually realized
by applying the gates V and Cj (including their errors ΛV and Λj) in the exper-
iment. Equation 6.1 is of the form used in Refs. [83–85] to estimate the overlap
of two states via Monte Carlo sampling. To do this, we follow the notation of
Ref. [85] and rewrite the states in the basis of the generalized Pauli matrices on n
qubits normalized for the canonical scalar product defined by the (unnormalized)
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trace, W = {W} = 1√
d
P⊗n. We find the sequence fidelity

Φy = Tr [ρyidρ
y
act] =

d2∑
k=1

Tr [Wkρid] Tr [Wkρact]

≡
d2∑
k=1

χid(k)χact(k) =
d2∑
k=1

χid(k)2χact(k)

χid(k)

≡
d2∑
k=1

Pr(k)Xk , (6.2)

where Pr(k) = χid(k)2 and Xk = χact(k)/χid(k).
∑

k Pr(k) = 1 since
∑

k χid(k)2 =
Tr [ρ2

id] and ρid being a pure state. Therefore, Pr(k) can be used as a sampling
probability where the expectation value of the corresponding sampling is the de-
sired fidelity Φy.

This is the core of our approach: Instead of actually implementing the gate
that inverts the random sequence and measuring the error on identity, we treat
Φy as a state fidelity which is estimated with Monte Carlo sampling. Following
equation (6.2), this amounts to choosing a total of L Pauli measurement operators
Wkl ∈ W , 1 ≤ l ≤ L, according to the sampling probability Pr(k) and measure
Wkl (and hence Xkl) Nl times. We summarize the IRB protocol with Monte Carlo
sampling of quantum states as follows:

1. Perform standard RB to estimate the average error of the Clifford group εC
as a reference point.

2. Choose q different sequence lengths y such that the sequence fidelities Φy

can be assumed to provide a reliable fit. This means the Φy shall neither be
close to one nor to the fidelity limit for long sequences.

3. For each selected sequence length, choose m different sequences y of random
Clifford gates interleaved with the gate V . They are used to estimate the
average fidelity Φy by comparing the actual and ideal state, cf. equation
(6.1), via Monte Carlo sampling.

4. Determine the ideal state on a classical computer, i.e., apply 2y unitary
matrices onto the pure initial state vector. This scales as O(yd2) as it cannot
be done efficiently, since V is not necessarily a Clifford gate.

5. Choose L measurement operators Wk at random, following the distribution
Pr(k) defined in equation 6.2.

6. For each chosen measurement operator apply the sequence y and measure
Wk. This is repeated Nl times.
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7. Determine an estimate for the sequence fidelities Φy by averaging over all
Nl measurements, the Xk for all L measurement operators Wkl and the m
different sequences as given by equation 6.2.

8. Fit Φy to the multi-exponential decay, as derived in the previous chapter,
and derive the combined average error as Φy=1/Φy=0.

9. Calculate the average error of the arbitrary n qubit gate V as εV = εCV − εC
and estimate the lower and upper bounds as max

(
0 ,
(√

εCV −
√
εC
))2

and(√
εCV +

√
εC
)2

as in the original IRB.

The parameters of the protocol are chosen as follows: A valid fidelity estimate
via RB requires sufficient experimental data for a fit to a (multi-)exponential decay;
hence q different values for y, all provided with a substantiated estimate for Φy.
Because it is sufficient to fit to only a few decays, a rather small q suffices. The
amount m of different sequences for each value of y can be upper bounded by a
global constant using the leading order in gate errors, see [86, 88], yielding m not
larger than 100. Higher order corrections to the uncertainty in the error per gate
originating from finite m can be bounded using the fact that Φy lies in the range
[0, 1] and invoking Hoeffding’s inequality [97]. We choose sequence lengths y in a
way that the error is neither too small to be measured efficiently nor so big that
the decaying terms are already close to zero. This condition is satisfied for

εy = O(1), (6.3)

as can easily be seen using the simplified model of a single decay.
In Monte Carlo sampling, there are two sources for inaccurate fidelity assess-

ment, namely the sampling inaccuracy due to a) the incomplete subset of the
measurement operators and b) due to the finite number of measurements. The
inaccuracies can be bounded by Chebyshev’s and Hoeffding’s inequality, respec-
tively to be allowed to exceed α/2 with a probability of at most δ/2. For a given
error bound, this leads to an estimate of the total number of experiments [83–85].

The sampling inaccuracy a) is bounded by Chebyshev’s inequality which pro-
vides an upper limit to the probability of deviating from the mean value of a
distribution, depending on its standard deviation,

Pr

(
|Z − [Z]| ≥ σZ√

δ

)
≤ δ. (6.4)

Here, Z ≡ 1/L
∑

l=1Xkl is the fidelity estimate obtained by the random choice of
measurement operators Wkl and [Z] its classical expectation value, i.e., Φy. The
variance can be estimated as

σ2
Z = [Z2]− [Z]2 =

L∑
l=1

∑
kl

Pr

(
Xkl

L

)2

− Φ2
y (6.5)
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≤ 1

L

∑
k

χact(k)2 =
1

L
Tr
[
ρ2

act

]
≤ 1

L
,

using the fact that ρact is a convex sum of projectors. Thus

Pr

[
|Z − Φy| ≥

√
2

Lδ

]
≤ δ

2
(6.6)

and the choice L = d8/(α2δ)e ensures the intended inequality, where the outer
brackets denote the ceiling function. To limit the deviation b) due to a finite
number of measurements one relies on Hoeffding’s inequality,

Pr (|S − 〈S〉| ≥ α/2) ≤ 2exp

(
− α2

2
∑

i(bi − ai)2

)
. (6.7)

S is the sum over random variables with outcomes in the range [ai, bi], given by the
adequately normalized sum of all

∑
lNl single shot measurements and 〈S〉 = Z.

Since the measurement outcomes of Pauli matrices are bimodal, they are situated
at the boundaries of the respective range [ai, bi]. Therefore, the range over variance
ratio is most suitable for Hoeffding’s inequality. To ensure that the probability to
exceed α/2 is at most δ/2, it suffices to demand

δ

2

!

≥ 2exp

(
− α2

2
∑

l 4Nld−1 (LNlχid(k))−2

)
, (6.8)

which, with the natural choice Nl ∝ χid(k)−2, is satisfied for

Nl =

⌈
8

dLα2χid(k)2 log

(
4

δ

)⌉
. (6.9)

Compared to Refs. [83–85], the total inaccuracy α as well as the probability δ
of exceeding it were chosen smaller by a factor of two to simplify the further
treatment.

The classical average over the total number of experiments can be estimated
as follows using equation 6.9:

[Nexp] = L
d2∑
k=1

Pr(k)Nk

≤ L

(
1 +

8d

Lα2
log

(
4

δ

))
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≤ 1 +
8

α2δ
+

8d

α2
log

(
4

δ

)
. (6.10)

equation 6.10 is also valid for direct Monte Carlo sampling of the average gate
fidelity and represents an exponential speedup in the number of qubits compared
to full process tomography which scales as O(d4) [85]. An important aspect is the
scaling with 1/α2. It is key to the advantageous scaling of IRB with Monte Carlo
sampling of quantum states in comparison with direct Monte Carlo sampling of
the average fidelity as shown below.

For the resource estimate, we aim for an inaccuracy of fidelity measurements
that is one order of magnitude smaller than the error rate ε. Average gate fidelities
are not fundamental quantities of physics but estimators on how good a quantum
algorithm composed of a set of gates performs. Therefore any attempt at an
overly precise characterization of gate errors does not yield a valuable gain in
information. In addition, the systematic uncertainty αIRB of IRB caused by Clifford
gate errors limits the accuracy that can reasonably be achieved; even more so for
other methods not robust against SPAM errors. Based on equation 6.3, Φy ∼ 1−yε
such that uncertainties in its estimation affect the estimate of ε roughly with a
factor of 1/y. Therefore relative errors in Φy approximately translate to relative
errors in ε. Using the above statement and the fact that the inaccuracy of an
IRB based estimation αIRB is aimed to be close to ε, one chooses an inaccuracy
αMC(y) for the Monte Carlo sampling of sequence fidelities Φy that result in an
estimation without unnecessary additional precision compared to αIRB. It scales
linearly with εy which is on the order of 1 . Therefore, αMC(y) varies distinctly
but not excessively over the q different sequence lengths y but depends on neither
the error rate ε nor the Hilbert space dimension d = 2n. For the sake of simplicity,
let αMC be defined as an effective average value for αMC(y) setting an average
on to what precision each sequence fidelity has to be assessed. αMC as a system
independent constant of the protocol, can safely be assumed to not deceed 10−1.5.

The above derivation of αMC(y) ensures the required accuracy for each of the
q×m single sequence fidelities rather than just for the resulting estimate for ε. This
provides a reasonable fit to the decay function as each data point provides sufficient
accuracy. Exploiting that in a more rigorous way may result in an improvement
of prefactors but cannot improve the scaling since q and m are largely system
independent [86, 88].

The total number of experiments then adds up to

[Nexp] ≤ qm

(
1 +

8

α2
MCδ

+
8d

α2
MC

log

(
4

δ

))
, (6.11)

which differs by a factor of qmα2/α2
MC compared to direct Monte Carlo sampling

of the average fidelity [85]. Translating this factor into numbers relating to recent
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advances in the implementation of quantum gates as well as the error threshold
for quantum computing highlights the advantage of our protocol. A specific set
of values taking into account recent experimental results [45, 94, 98] corresponds
to q = 20, m = 50 and ε = 10−3 based on relatively high error rates of two qubit
gates. These values yield α = 10−4 and two orders of magnitude of improvement
in the total number of experiments via the above factor.

Another concern regarding scalability is the use of classical computational re-
sources. Although more easily accessible, classical resources are not infinite and
therefore become relevant eventually, especially for Monte Carlo sampling where
classical resources scale exponentially with a higher exponent than the number of
experiments. The sampling of measurement operators can be done using condi-
tional probabilities, scaling with n2d2 for states and n2d4 for processes and hence
outperforming the naive approach of calculating all Pr(k) [84, 85]. Accounting also
for the necessity to calculate ρid for each sequence, the classical resources needed
for our protocol scale as

Nclass = O
(
qm

α2
MC

(
d2

ε
+ n2d2

))
, (6.12)

compared to O
(

1
α2n

2d4
)

for direct Monte Carlo sampling of the average gate fi-
delity. Hence, we obtain an exponential speedup of O (d2) in classical resources in
addition to the reduction of the number of experiments.

Combining the currently best but individually restricted methods for estimat-
ing quantum fidelities (interleaved Randomized Benchmarking and Monte Carlo
sampling), we have extended the former to arbitrary quantum operations, outside
of the Clifford group, while reducing the enormous overheads and avoiding the
SPAM dependence associated with the latter. The extension to non-Clifford gates
is made possible by treating the RB sequence fidelity as a state fidelity that can
be estimated with Monte Carlo sampling. This avoids the actual accurate physical
implementation of the inverting gate in the RB sequence, which, for a non-Clifford
gate, would require availability of a universal quantum computer. Our protocol in-
herits from IRB robustness with respect to SPAM errors; for current experimental
settings this can completely mask the actual error channel. As a conclusion, the
resulting hybrid algorithm is a viable tool for SPAM independent, robust bench-
marking of arbitrary quantum gates. While non-exponential scaling is still out
of reach and might well be impossible, the proposed protocol reduces the total
number of experiments compared to direct Monte Carlo sampling of the gate fi-
delity due to error amplification and yields exponential savings in the classical
preprocessing resources.



Chapter 7

Symmetry Benchmarking

As quantum devices scale up, many-body quantum gates and algorithms begin to
surpass the abilities of classical simulation. Validation methods which rely on such
classical simulation, such as process tomography and Randomized Benchmarking,
cannot efficiently check correctness of most of the processes involved. In particular,
non Clifford gates are required not only for universal quantum computation but
for any algorithm or simulation that yields fundamental speedup in comparison
with its classical counterpart. We show that it is in fact still possible to efficiently
validate such non-simulable processes, by amplifying deviations from expected or
engineered conservations laws in the system, combined with a unitary one-design
strategy to randomize errors over the computational Hilbert subspace. We show
that in the context of (fault-tolerant) quantum error correction, we can construct
a one-design using the logically encoded Clifford/Pauli group over the engineered
error-free stabilizer subspace to obtain average error for arbitrary logically-encoded
gates and algorithms. In the case of benchmarking simulation of physical sys-
tems, these can potentially have various exotic symmetries over which one-design
strategies can nonetheless be constructed. We give efficient examples for fermionic
systems which conserve particle number, as well as for the Fermi-Hubbard model.
The symmetry benchmarking method preserves the robustness to state preparation
and measurement imperfections of Randomized Benchmarking protocols.

The successful development of quantum technologies requires not only the de-
sign and physical implementation of quantum protocols and algorithms, but the
verification of their faithful operation. To what extent a black-box process can be
characterized is limited by its complexity. For example, quantum cryptographic
security can be validated via Bell tests [13, 99], while potential solutions to NP

This chapter can be found in similar form as the preprint ”T. Chasseur, F. Motzoi,
M. Kaicher, P.-L. Dallaire-Demers and F.K. Wilhelm, Benchmarking non-simulable quantum
processes via symmetry conservation, arXiv:1710.04563 (2017)”. The majority of research was
conducted and the majority of the text written by T.C.

51
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problems are classically verifiable in polynomial time [100]. Yet, full characteriza-
tion (and error determination) of unknown processes through process tomography
scales exponentially with system size, thus it is only tractable for small dimen-
sion or sparse Liouvillians [82, 101–103]. In the middle ground between validation
and characterization, Randomized Benchmarking uses polynomial complexity pro-
cesses to quantify average error due to exponentially complex noise, amplifying it
relative to extraneous noise sources like SPAM.

Complex dynamical protocols such as digital quantum computation [10] and
quantum simulation [8, 104–113] would typically be useful because classical emula-
tion of the same tasks can require significantly more time. Yet most processes that
can be validated to date involve only classically simulable ideal outcomes. As such,
earlier proposals to expand the purview of RB, to include benchmarking individual
operations [81], to remove assumptions about leakage and gate-dependent errors
[86] (see chapter 5) and to test certain non-Clifford gates using a different basis
[114, 115], are nonetheless restricted to processes that have efficient equivalent
classical circuits. The benchmarking of arbitrary evolution, on the other hand,
has shown to be exponentially hard [85, 116](chapter 6).

In this chapter, we present a novel efficient method that does not rely on classi-
cal simulation to benchmark general gates but instead verifies symmetry conserva-
tion laws given by specific gates or algorithms in sequences of arbitrary quantum
operations. We achieve this by randomizing input states only within fulfillment
of those symmetries instead of over the full Hilbert space while in turn omitting
the sequence inversion. Such conservation laws vary between applications, but can
typically be found anywhere from the algorithmic down to the hardware imple-
mentation level.

In the language of random matrix theory [17], we generalize the benchmarking
requirements to eliminate the need for a unitary two-design, for which the ran-
domization over the finite group must be classically simulated and subsequently
inverted (hence any random gate appears twice). In contrast, by constructing a
one-design strategy, we randomize not only the process itself, but also the desired
final outcome within certain given boundaries. These boundaries are set by the
specific symmetry which divides the gate set in block diagonal form. Maintaining
a random phase relationship between blocks then ensures a monotonic exponen-
tial decay from which fidelity and error syndromes can be extracted in magnified
manner. After describing the general methodology, we give examples of individual
gates as well as symmetries that can be found in algorithms and provide specifi-
cally tailored protocols with polynomial scaling in the number of qubits. We close
by applying the method to error correcting codes, where a single symmetry can
be used to extract the (average) physical error associated with arbitrary logical
operations.
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7.1 Symmetry Benchmarking Protocol

Our objective is to reliably quantify the decay out of an ideally preserved subspace
through the error channel(s) of one or several gates. The ideal dynamics of the
system preserve the eigenstates of a conserved operator C, i.e. a stabilizer of the
system. Let λγ be the degenerate eigenvalues of C. To conserve the symmetry,
all operations in the algorithm (gates) must be block-diagonal in the C-eigenbasis,
with the blocks corresponding to the eigenspaces, as any transition between λγ-
eigenspaces would not preserve C. The approach of the proposed protocol is to
find a set D of gates on H =

⊕
γHγ that acts as a unitary one-design on any of

the eigenspaces Hγ. A unitary one-design is defined by having the same proba-
bility distribution as the Haar-measured special unitary group SU for first order
polynomial functions in any gate and its adjoint. In particular this means

1

]D
∑
D∈D

DρD† =

∫
SU

dU UρU†, (7.1)

with ] denoting the cardinality. We define the symmetry breaking µ as the average
population decay out of an initial C-eigenspace caused by an error channel Λ. We
estimate the symmetry preservation Γ = 1 − µ via an RB-like protocol, applying
random one-design sequences of different lengths y and measuring the population
of the initially populated subspace Hγ0 . Using that D is a unitary one-design one
obtains the average symmetry preservation of a sequence as

Γy ≡
1

]Dy
∑

{Dj}∈Dy
Trγ0

[(
1∏
j=y

(ΛDj)

)
(ρ0)

]
. (7.2)

Here Trγ0 [ ] denotes the trace over the preserved subspace Hγ0 , the gates describe
the effect on density matrices (superoperators) and the inverse order of the product
ensures the correct succession of the quantum gates. We make use of the following
definition: the half twirl of Λ over D is Λht ≡ 1/]D∑D∈D ΛD, in contrast to
the usual twirl Λtwirl = 1/]C∑C∈C CΛC−1 over a group C [17]. Similarly to the
arguments in chapters 5 and 6, Λht to the power of y is acted on by a linear
functional, which is given by application to the initial state and a partial trace,
hence the symmetry preservation can be simplified to

Γy = Trγ0 [Λy
ht(ρ0)] =

∑
i

αiλ
y
i . (7.3)

As Λht is a completely positive, trace preserving map, the entries on its matrix
representation are real and positive and hence the absolute values of the λi are
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smaller than or equal to one due to the Perron-Frobenius theorem [73–75]. This
implies that the population decay can be fitted with just a few exponential decays,
despite the maximum number of different eigenvalues scaling as d2 ≡ 22n 1. Finally,
we can extract the averaged violation of symmetry by Λ per time step as

µ = 1−
∫
SU(d0)

Trγ0
[
Λ
(
Uρ0U†

)]
dU (7.4)

= 1− 1

]D
∑
D∈D

Trγ0 [(ΛD) (ρ0)] = 1− Γ1, (7.5)

namely, the symmetry breaking of the gate C. The protocol inherits robustness
against state preperation and mesurement (SPAM) errors, similarly to Clifford
benchmarking protocols [79, 80, 86]. This stabilizer leakage quantifies the error
accumulation for any error channel that causes decays out of it. If error channels
are predominantly manifested via decay out of the conserved subspace (i.e. the
Hamming distance of the stabilized symmetry is large), this gives a metric for the
cumulative average Haar-measure error.

7.2 Benchmarking arbitrary Operations

The error randomization over the one-design allows us to also benchmark opera-
tions outside of the set D. Thus, we introduce a second set of operations that we
want benchmark with respect to the error channel, which we call I, containing one,
several or all possible gates of the algorithm. Inspired by Interleaved Randomized

1The multi-exponential decay of equation 7.3 has exponentially many decay parameters λi
while in practice one needs to have only a small number of parameters li for the fit function.
We show that this is justified by taylor expanding the symmetry preservation in the reasonably
small parameter εy and ommiting terms that are of higher order in εi than in y:∑

αiλ
y
i =

∑
αi(1− εi)y

≈
∑

αi(1− εiy +
1

2
(εiy)2 − 1

6
(εiy)3 + · · ·

while the fit function is given as∑
ail

y
i =

∑
ai(1− ei)y

≈
∑

ai(1− eiy +
1

2
(eiy)2 − 1

6
(eiy)3 + · · · .

As we want these terms to match as close as possible, this provides a system of equations for the
ai and ei; just 3 different exponential decays for the fit function provides congruences up to 5th
order (4th for pathological cases).
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Benchmarking (IRB) [81] we interleave the random D-sequence with random ele-
ments of I to assess a combined stabilizer decay µID. The symmetry preservation
for that combined sequence of length 2y gives

Γy =
1

]Dy]Iy
∑

{Ij},{Dj}

Trγ0

[(
1∏
j=y

(IjΛIΛDDj)

)
(ρ0)

]
(7.6)

=
1

]Dy]Iy
∑

{Ij},{Dj}

Trγ0

[(
1∏
j=y

(ΛIDDj)

)
(ρ0)

]
, (7.7)

where ΛID ≡ ΛIΛD. As before, we can derive Γ1, or Γ1/Γ0, from experimental
values to assess the combined error µID. An estimate for the average decay rate
of I is given by µI ≈ µID − µD. This, as well as strict bounds are derived as
for Interleaved Randomized Benchmarking. However, in this case, we can also
efficiently benchmark errors for operations that cannot be simulated classically,
such as quantum algorithms themselves or specific non-Clifford gates.

7.3 Number Conservation in Quantum Chem-

istry

An example of a prominent symmetry in quantum simulation, as well as in quan-
tum computing architectures, is the conservation of excitation or particle num-
ber. In many-body systems, the symmetry arises when mapping from the para-
fermionic to the fermionic basis with the Jordan Wigner transformation [117–120].
The electron number operator Cn divides the Hilbert space into n+ 1 eigenspaces
Hγ with 0 ≤ γ ≤ n excited qubits and dimension

(
n
γ

)
.

To properly define the conditions for D being a one-design we define a basis for
the Hilbert space Rγ0 of density operators of states in Hγ0 . Rγ0 can be seen as the
union of {|i〉〈i|}|i〉∈Hγ0 , {|i〉〈j|+ |j〉〈i|}|i〉,|j〉∈Hγ0 ,i<j and {−i |i〉〈j|+ i |j〉〈i|}|i〉,|j〉∈Hγ0 ,i<j
which we denote {|Bi〉}, {|Xij〉} and {|Yij〉} respectively. Let D be the one-design
acting on Rγ0 , then

∑
D∈DD maps any density matrix onto the completely mixed

state. The action of the one-design in this basis can then be simply rewritten as

1

]D
∑
D∈D

D |Bi〉 =
1

d0

∑
k

|Bk〉 (§1)∑
D∈D

D |Xij〉 = 0 (§2)∑
D∈D

D |Yij〉 = 0, (§3)
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with dim(Hγ0) = d0. Due to the linearity of equation 7.1, these are the only non-
trivial conditions needed for constructing a unitary one-design. Focusing on (§1),
we want to ensure that by sampling over D, the transition between each two basis
states is realized with equal probability. We implement this using arbitrary qubit
permutations to randomly redistribute the excited qubits’ sites and, therefore,
populate each basis state with equal probability. On average, these permutations
map any basis state to the completely mixed state on the conserved subspace Hγ0

regardless of the initial state, thus satisfying (§1). Note that although qubit per-
mutations implement all transitions between two states, they are not equivalent
to state permutation. This is in fact crucial for the scalability of this solution and
shows importance in the following section.
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Figure 7.1: Symmetry population deacy
Benchmarking the number preservation symmetry on five simu-
lated qubits which are initialized in a state with three of them ex-
cited. Every permutation of qubits consists of iSWAPs which, in
this example, contain predefined errors on the pair of qubits. Said
error channel is derived as a unitary operator close to the identity
acting on a four-qubit Hilbert space, then tracing out two qubits.
The γ = 3 subspace is benchmarked via a fit of the population
decay to have an average population leakage of µ = 0.88% and
Γ1 = 99.12.
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To satisfy the remaining conditions (§2) and (§3), we examine the effect of the
qubit permutations via iSWAPs on the Xij and Yij matrix elements, where each
element again is mapped onto a density operator Xi′j′ , or Yi′j′ on the space Rγ0

correspending to the preserved number of excited qubits. Introducing a uniformly
random ±1 phase between every two states ensures that these mappings occur
with opposite signs equally likely, hence sum up to zero, satisfying (§2) and (§3).
This random phase is not inherently given by the phases included in the iSWAPs
but easily achieved by a probability 1/2 σZ-gate on every qubit. This matches
our intuition that Xij and Yij represent coherent phases between states, so that
randomizing all phases should eliminate them. The results of the above protocol
using the derived unitary one-design are depicted in figure 7.1.

The dynamics of the random sequence can also be viewed in a more accessible
fashion: Since applying the ideal

∑
D∈DD twice is equivalent to a single application

– depolarization does not chance a completely depolarized state – reviewing the
average symmetry preservation of equation 7.2 gives

Γy =
1

]D2y

∑
{Cj}∈Dy

∑
{Dj}∈Dy

Trγ0

[(
1∏
j=y

(CjΛDj)

)
(ρ0)

]
. (7.8)

The updated Λ′ht = 1/]D2∑
C,D CΛD commutes with any unitary evolution within

subspaces Hγ and can therefore be reduced to simple transition rates between
those subspaces. This not only provides a more intuitive concept but also gives
the motivation for the ansätze in the following sections.

7.4 Parity Conservation and the Fermi-Hubbard

Model

Parity conservation is ubiquitous in error correction circuitry and measurement-
based entanglement generation. It also appears physically in models of strongly
correlated electrons, including basic atomic structure and second quantization
[121]. A medium-sized quantum computer can simulate the most costly parts of
the Fermi-Hubbard Hamiltonian [122]. While some of the Hamiltonians employed
in that scheme are number conserving and can be treated using the set D derived
previously, others are not, namely, the terms which induce superconductivity to
the model. However, these terms always change the electron number by two (a
Cooper pair), thereby preserving parity.

As the Fermi-Hubbard model involves an even number n of electron sites/qubits,
the subspaces Heven and Hodd are of equal dimension 2n−1. It is in principle possi-
ble to map the (n− 1) qubit Clifford group onto those subspaces. However, such



58 CHAPTER 7. SYMMETRY BENCHMARKING

a protocol would potentially increase gate complexity exponentially, hence we re-
frain from finding a new unitary one-design for Heven and Hodd but rely on the
transition rates derived for the number conservation. The symmetry preservation
on the even subspace for only one individual gate I and an assumed one-design on
the even subspace is

Γ1 =
1

]D
∑

D∈Deven

Treven [(IΛIΛDD)(ρ0)] (7.9)

=
1

2n−1
Treven [(IΛIΛD)(1even)] , (7.10)

as the average application of the unitary one-design Deven to any even state would
map to the identity matrix on the even subspace. Writing this matrix as sum of
the identities on different subspaces gives

Γ1 =
∑
γ even

dγ
2n−1

∑
D∈D

Treven [(IΛIΛDD)(ργ)] (7.11)

≡
∑
γ even

dγ
2n−1

Γγ1 , (7.12)

where ργ is an initial state in the respective subspace. Each Γγ1 can be derived by
sequences of the usual form; an estimation for µI can be obtained for each subspace
via interleaved symmetry benchmarking and consequently an overall estimation
can be found. As there are only n/2 or (n/2) + 1 different subspaces, this scales
linearly in n and is therefore efficiently scalable in the number of qubits. The
protocol also translates easily to a set I of gates allowing for an efficient symmetry
benchmarking. Figure 7.2 shows an example of benchmarking parity conservation.

7.5 Benchmarking logically encoded Processes

Conserved symmetries play a fundamental role in error correction codes (ECC),
where they are engineered to provide tolerance to error. The vast majority (asymp-
totically speaking) of error leaks through particular ‘syndrome’ states, that is,
avoiding direct transitions between logical stabilizer eigenstates. There are many
examples of engineered redundancy for the purposes of error suppression or mon-
itoring, most notably in (fault-tolerant) ECC, but also in quantum cryptography,
simulation, metrology and adiabatic quantum computation.

We consider here a Hilbert space encoded in the form H = {0, 1}⊗n⊗{0, 1}⊗m
where the degrees of freedom of m qubits are used for syndrome measurements
– typically {0, 1}⊗n and {0, 1}⊗m can not be understood as the Hilbert spaces of



7.5. BENCHMARKING LOGICALLY ENCODED PROCESSES 59

0 50 100 150 200

0.5

0.6

0.7

0.8

0.9

1.0

Sequence Length y

F
id
el
ity

Φ
y

Figure 7.2: Interleaved Symmetry Benchmarking for the
Fermi-Hubbard model on the 6 qubit even subspace for inter-
leaved gate I = σ2σ3 + σ†2σ

†
3 with an exact symmetry breaking

of µI = 0.30%. Extracting µISB = 0.86% and µD = 0.51% pro-
vides an estimate of µI = 0.35%/Γ1 = 0.9965 which is remarkably
close to the actual values as ΛI is not the dominating error term.
This better-than-expected performance is similar to observations
from Interleaved Randomized Benchmarking of Clifford gates [81].

n or m physical qubits. The Hilbert space can be written as H ≡ Hcomp ⊕ Herr

with Hcomp ≡ {0, 1}⊗n ⊗ {|Ψs〉}, such that the quiescent state |Ψs〉 is used to
check for possible errors. We look at logical operations L in the ECC which are
comprised of a subsequence G of (faulty) local gates intended to apply the logical
gate, followed by syndrome measurement M in {0, 1}⊗m and correction feedback
Fj towards Hcomp. Thus, at any time step j, we find Lj = FjMjGj. As before, to
benchmark the preservation of Hcomp, we require that no phase relations are built
up with the Herr, for which we use a generalized operation Rj. The one-design
sequence can then be written as

Γy =
1

]Cy
∑
{Cj}∈Cy

Trcomp

[(
1∏
j=y

(ΛjRjCj)

)
ρ0

]
(7.13)

where Cj are logically-encoded Clifford gates prior to error correction. As for the
general protocol and the examples discussed above, we again ensure we take the
correct group average that reduces our error channel to a depolarizing one; in
the present case we do so achieving a half-twirl using the Clifford group amended
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with phase randomization between the Herr and Hcomp subspaces. In contrast to
the number conservation case we achive this not via implementing random phases
but via syndrome measurements, i.e. Rj = Mj. These syndome measurements
– by construction – validate the integrety of |Ψ〉 and therefore supress all phase
relation between Hcomp and Herr. Another, more subtle, way is to apply both a
syndrome measurement (throwing away the result) and a randomly chosen correc-
tion operation F ′j from amongst the possible correction operations {F ′j}, so that
Rj = F ′jMj. At the end, one obtains an average error per gate estimate of the
compound operations {R} × C, i.e. µRC. Note that since the native error rates
of the logically-encoded Clifford gates Cj are obtainable via standard Random-
ized Benchmarking underlying Clifford operations, we can also derive estimates
for syndrome measurement and error correction feedback as µR ≈ µRC − µC, as
with standard IRB.

Using the above protocol, we now have a means to obtain the decay rate into the
Herr subspace. Note that this decay intoHerr does not correspond to a logical error,
since the vast majority of errors is suppressed by the error correction feedback.
However, these decay rates do give information about physical error statistics,
which the one-design sequence averages over all input states and then amplifies
above the noise level. Moreover, we can use the protocol with interleaved gates to
benchmark arbitrary individual circuits G, e.g. non-Clifford, non-transversal logi-
cal gates needed for universal computation or entire algorithms, obtaining physical
error µG. Under the standard assumption in ECC that correlated errors longer
than the distance d of the code are negligible, we can bound the logical fault rate
as µL . (µF + µM + µG)d with µF , µM and µG the symmetry breaking associated
with feedback, syndrome measurement and gate sequence. With the above proto-
col we do not only provide a means to verify the ECC – which can often be done
in a more direct way with RB [123] – but also provide a more specific validation
of the underlying components. This analysis could be particularly helpful for con-
catenated ECC, where logical errors at one layer correspond to the physical errors
at the level above.

7.6 Conclusion

Both quantum simulation and universal quantum computation involve complex
processes that cannot be efficiently predicted classically. We showed that this
restriction does not prohibit their validation, provided the implementation being
benchmarked can be found or engineered to conserve symmetries in the system.
This is the case for many quantum simulation tasks, such as fermionic systems
and the Fermi-Hubbard model, as well as for fault-tolerant quantum computation,
where stabilizers of error correcting codes are preserved by logical operations. We
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present a symmetry benchmarking protocol relying on randomization via unitary
one-designs on conserved subspaces, that allows assessment of average channel
error while maintaining robustness to state preparation and measurement imper-
fections.





Part II

Environmental Effects on
adiabatic Quantum Computing
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We have discussed two very different approaches to implementing quantum
computation and taking advantage of its unique properties in comparison with
classical machines. These approaches show very different strategies to scaling and
the treatment of environmental influence: While gate-based quantum computing
requires fidelities to meet hard thresholds and relies on error correction codes to
increase fidelities, adiabatic quantum computing is conjectured to be more toler-
ant against coupling to the environment [124] or to even benefit from it [125, 126].
As a result current quantum annealing architectures operate with a larger number
of qubits, but less shielding from the environment [127]. Therefore, its suscepti-
bility to environmental effects is a different but equally important open question,
essential to a scalable implementation.

In fact, the robustness against the environment is limited: It is a known result
in strong coupling physics, that high frequency bath modes correspond to struc-
tural changes of the effective Hamiltonian, e.g., the suppression of coupling in a
two-level-system as shown using renormalization group theory [128, 129] as well
as experimentally [130]. With increasing bath coupling the two-level-system un-
dergoes a dissipative phase transition towards a complete suppression of coupling
between the qubit states – this would mark a breaking point for adiabatic quantum
computation as it would limit its complexity to that of single qubits. In chapter 8
we give an introduction to renormalization group theory and related methods. We
specifically use poor man’s scaling [131] to derive an effective Hamiltonian and re-
duced density matrix, to describe the qubits influenced by Ohmic baths in chapter
9. We go beyond weak coupling, which can be treated with perturbative master
equations [124, 132] but is insufficient for describing a scaled quantum annealer
and rather focus on a more suitable regime, which we coin locally coherent but
globally dephased (LCGD). In chapter 10 we will show that this regime is limited
by an effective dephasing of both system Hamiltonian and reduced density matrix.
We discuss implications for annealing algorithms with regard to the desired ground
state and extractable information as well as potential drawbacks or benefits from
system-bath entangled states.

The content of chapters 9 and 10 has in similar form been submitted for publication in
Nature Communications. It can also be found in the preprint ”T. Chasseur, S. Kehrein, and
F.K. Wilhelm, Environmental effects in quantum annealing, arXiv:1809.08897 (2018)”. The ma-
jority of research was conducted and the majority of the text written by T.C.





Chapter 8

Renormalization Group Methods

The renormalization group describes a family of techniques to address the occur-
rence of vastly varying energy scales in physical systems. While formalized in
particle physics and being substantial to the initial derivation of the Lamb shift
[133], it is applied across fields, e.g., in quantum electrodynamics to solve the
Kondo problem [134, 135]. Renormalization group theory relies on the assumption
that high energy affects the dynamics near the ground state only weakly and/or in
a well controlled fashion. Its approach is to discard the highest energy levels via
reducing a cutoff frequency ωc and translate the effect of the dropped energy level
into a change to the remaining Hamiltonian. Historically, but not necessarily, the
energy range is rescaled by multiplying the Hamiltonian with a constant factor.
The above can be repeated successively, which in the limit of small changes to ω
describes a continuous transformation [136].

In the scope of this thesis we rely on different renormalization techniques which
will be introduced and demonstrated in the following. We employ the single-spin-
Boson model as a sufficiently nontrivial example. It is extensively studied, suitable
to model a dissipative qubit and relates naturally to the multi-spin-Boson model
[128].

8.1 Adiabatic Renormalization

A prominent instance of renormalization group techniques is the adiabatic renor-
malization [128]. It is tailored specificly towards a single spin coupled to a Bosonic
bath. As the two-level-system is frequently reoccurring in quantum physics, either
as spin 1/2 or to approximate larger Hilbert spaces, it is of relevance for a vari-
ety of fields – and especially important throughout this thesis, as it describes the
qubit. We introduce the protocol following the arguments of reference [128]. The

67
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full spin-Boson model is given by the Hamiltonian

H = −∆

2
σX + εσZ +

∑
k

σZ

2
λk(ak + a†k) +

∑
k

ωka
†
kak. (8.1)

The bath frequencies are restricted by the cutoff frequency ωc; the coupling strength
of each mode is mediated by the λk. While the environment can often be mod-
eled by an Ohmic bath [137], we do not impose a restriction to non pathological
distribution of modes.

To realize the renormalization group approach we choose a new highest fre-
quency ω0 which is large compared to the frequencies ∆ and ε of the two-level-
system, but smaller than ωc. As the contribution of high energy bath modes
ω0 < ωk < ωc is dominant we find the two lowest energy eigenstates of the last
three terms, i.e., of

Hpart = εσZ +
σZ

2
λk(ak + a†k) + ωka

†
kak. (8.2)

It is diagonalized by the displacement operator D(σZλk/2ωk) =

exp
(
σZλk/2ωk

(
a†k − ak

))
in optical phase space. Using a variant of the Baker

Campbell Hausdorff formula we find

DHpartD
† = εσZ +

σZ

2
λk(ak + a†k) +

[
σZ

λk
2ωk

(
a†k − ak

)
,
σZ

2
λk(ak + a†k)

]
+ ωka

†
kak +

[
σZ

λk
2ωk

(
a†k − ak

)
, ωka

†
kak

]
(8.3)

= εσZ +
σZ

2
λk(ak + a†k) + const. + ωka

†
kak −

σZ

2
λk

(
a†k + ak

)
(8.4)

= εσZ + ωka
†
kak (8.5)

when omitting constant terms. When restricting the Hilbert space to the lowest
eigenvectors D†(σZ

λk
2ωk

){|0〉 , |1〉}⊗ |0〉k = {|0〉⊗D†( λk
2ωk

) |0〉k , |1〉⊗D†(− λk
2ωk

) |0〉k},
we need to reevaluate the coupling introduced by ∆ between those states. We find

〈0|k D

(
λk
2ωk

)
⊗〈0| − ∆

2
σX |1〉 ⊗D†

(
− λk

2ωk

)
|0〉k

= −∆

2
〈0|k D

(
λk
ωk

)
|0〉k (8.6)

= −∆

2
exp

(
− λ2

k

2ω2
k

)
. (8.7)
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As other bath-modes are unaffected by the displacement of ωk and all terms but
−∆/2 commute with σZ we can apply the above transformation to each ω0 < ωk <
ωc, yielding

∆′ = ∆
∏
ωk≥ω0

exp

(
− λ2

k

2ω2
k

)
(8.8)

as iteration of adiabatic renormalization. With the effective reduction of the qubit
Hamiltonian it allows for a reevaluation of ω0 and successive application. We
note first that adiabatic renormalization relies on the approximation to neglect
the coupling to displaced excited bath modes. This approximation is justified as
these corrections can be shown to be smaller by a factor of λk/ωk [128] and can
therefore be neglected in leading order. Secondly, it is important to remember that
the effective Hamiltonian no longer describes pure qubit states but rather dressed
system and bath ones.

We remark that for an Ohmic distribution of bath modes, i.e. J(ω) =
2αωΘ(ωc − ω) and continuous reduction of ω0 the dynamics of equation 8.8

• for α > 1 result in reduction of ∆ faster than ωc, thus the σX terms effectively
vanish.

• for α < 1 suppress ∆ slower and therefore the adiabatic renormalization
can only be carried out as long as ω0 � ∆ resulting in a nonzero effective
coupling.

• yield a phase transition at α = 1.

The exact derivation of this last step is independent of the renormalization protocol
and can be found in the given references as well as in the next chapter when
discussing poor man’s scaling of the multi-spin-Boson model.

8.2 Poor Man’s Scaling

Poor man’s scaling is a simple, yet effective take on renormalization originating in
the theory of superconductivity [138] and the Kondo problem [139]. Character-
isticly for renormalization techniques, it assumes different energy scales within a
system so that the Hilbert space can be separated into a high energy and lower
energy part, i.e, H ≡ Hl ⊕ Hh. There is no necessity for a distinct gap in the
energy spectrum; just for the energy scales of Hh to be large in comparison to
energies near the ground state energy. The approach of poor man’s scaling is
to derive an eigenvalue equation on the lower energy subspace, resulting in an
effective Hamiltonian: We introduce the protocol in the following.
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Let P(l/h) be projectors onto the respective low and high energy Hilbert spaces
and H(l/h)(l/h)′ = P(l/h)HPl/h′ the respective part of the Hamiltonian. We rewrite
the stationary Schrödinger equation to(

Hll Hlh

Hhl Hhh

)(
|Ψl〉
|Ψh〉

)
= E

(
|Ψl〉
|Ψh〉

)
(8.9)

hence

Hhl |Ψl〉+ Hhh |Ψh〉 = E |Ψh〉 (8.10)

|Ψh〉 = (E − Hhh)−1 Hhl |Ψl〉 (8.11)

and therefore (
Hll + Hlh (E − Hhh)−1 Hhl

)
|Ψl〉 = E |Ψl〉 . (8.12)

equation 8.12 is exact but nonlinear and therefore not easily solvable for E. In the
low energy regime Hhh is the dominant term in (E − Hhh). The standard ansatz
is to approximate E by the ground state energy Egs; however we found that this
gives an unwanted shift in the effective change of the Hamiltonian resulting in non
negligible errors. We therefore refrain from making the approximation while still
assuming that E is small compared to all energy levels of Hh. This leads to a
nonlinear equation for determining E which can be linearized by approximations
better suitable for the problem at hand.

The application to the multi-spin-Boson model is part of original research pre-
sented in chapter 9; the single-spin-Boson model emerges as a special case and
coincides with the findings of adiabatic renormalization in leading order.

8.3 The Flow Equation Approach

The flow equation approach to renormalization was invented independently in
many-particle [140], as well as high-energy physics [141, 142] under the name sim-
ilarity renormalization scheme. It is unique in its ansatz to reduce the maximum
energy difference rather than total energy levels: While the renormalization tech-
niques introduced above discards the highest energy levels, the flow equations
approach aims to eliminate the coupling between levels with the largest difference
in energy, which is depicted in figure 8.1. Its advantage compared to other meth-
ods is that it is not neccessary restricted to the low energy regime. We give an
introduction in the following; a more detailed analysis can be found in reference
[131].

To derive the flow equations we set the system Hamiltonian to be of the form

H = H0 + Hint (8.13)
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Figure 8.1: Visualization of the flow equation approach
We display a schematic representation of the matrix representing
the initial Hamiltonian. Conventional renormalization approaches
such as poor man’s scaling eliminate frequencies above a threshold
ω0 (red) while flow equations aim to successively remove matrix
entries with the highest energy difference (blue). A related visu-
alization has been presented in reference [131].

where we assume H0 to be diagonal and Hint to introduce off diagonal terms that
mediate a coupling between the eigenstates of H0. We aim to introduce a unitary
transformation U that reduces the couplings between pairs of states with maximal
energy gap. Or, rather, we want to derive a continuous U(B) depending on a flow
parameter B that successively removes couplings of decreasingly distant states.
We aim to choose this transformation in a way that H(B) = U(B)HU†(B) equals
the initial Hamiltonian at B = 0 and approaches diagonality for B → ∞. To do
that we define U(B) via the antihermitian generator η(B) such that

dU(B)

dB
= η(B)U(B) (8.14)

dH(B)

dB
= [η(B),H(B)] . (8.15)

When comparing the flow parameter to time, the generator η, up to a factor,
is equivalent to a Hamiltonian sponsoring the unitary evolution U(B) – one can
borrow the intuitive understanding of that evolution. For example, we assume
that the notion of ’flow’ for the change in the off diagonal terms with varying the
time-like parameter B likely sparked the idea for naming the protocol.

To realize a correctly directed flow a suitable choice of η is essential. The
canonical choice η = [H0,Hint] usually achieves the suppression of the most off
diagonal terms. However, it is often not the most elegant choice as it is prone to
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system specific downsides. We elaborate on both advantages and disadvantages of
the canonical generator by calculating the derivative of the Hamiltonian.

dH

dB
= [η,H] (8.16)

= [[H0,Hint] ,H0 + Hint] (8.17)

= [[H0,Hint] ,H0] + [[H0,Hint] ,Hint] (8.18)

Without loss of generality we write H0 =
∑

n εn |n〉〈n| and Hint =
∑

i 6=j cij |i〉〈j|.
Here the real-valued εn denote the energy levels of the H0-eigenstates |n〉 and the
cij = c∗ji a coupling between those. Evaluating the first term of equation 8.18 we
find

[[H0,Hint] ,H0] =

[∑
i 6=j

(εi − εj)cij |i〉〈j| ,H0

]
(8.19)

=
∑
i 6=j

−(εi − εj)2cij |i〉〈j| . (8.20)

It introduces the suppression of couplings increasing with energy gap as intended.
We evaluate the second term to

[[H0,Hint] ,Hint] =

[∑
i 6=j

(εi − εj)cij |i〉〈j| ,Hint

]
=
∑
i 6=j

(εi − εj)cij |i〉〈j| cji |j〉〈i|

−
∑
i 6=j

cji |j〉〈i| (εi − εj)cij |i〉〈j|

+
∑
i 6=j 6=k

(εi − εj)cij |i〉〈j| cjk |j〉〈k|

−
∑
i 6=j 6=k

cki |k〉〈i| (εi − εj)cij |i〉〈j| (8.21)

= 2
∑
i 6=j

(εi − εj) |cij|2 |i〉〈i|

+
∑
i 6=j 6=k

(εi − εj) (cijcjk |i〉〈k|+ h.c.) . (8.22)

While the first term represents a shift in energy levels, we also introduce new
couplings between pairs (|i〉 , |k〉) through a shared coupling to |j〉. This has two
apparent downsides: First, as the intention of the flow equation approach is to
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suppress off-diagonal terms it is important to ensure that the creation does not
outweigh the suppression – at least beyond a set energy gap. This might be highly
nontrivial depending on the system. Second, we are reviewing methods to treat
high dimensional Hilbert spaces, the dynamics of which are often described, at
least approximately, by sparse Hamiltonians. The introduction of exponentially
many new coupling terms can render the Hamiltonian intractable by analytical
and numerical means, or at least make its treatment significantly more complex.
We conclude that, while the canonical generator provides a reasonable ansatz, it
should be adjusted to the specific system to optimize the protocol. To substantiate
this, we revisit the spin-Boson Hamiltonian of equation 8.1 in the special case of
ε = 0.

H = −∆

2
σX +

∑
k

σZ

2
λk(ak + a†k) +

∑
k

ωka
†
kak (8.23)

The identification

H0 = −∆

2
σX +

∑
k

ωka
†
kak (8.24)

Hint =
∑
k

σZ

2
λk(ak + a†k) (8.25)

aims to eliminate the coupling between spin and bath. Note that H0 is not diagonal
but easily diagonalizable. We compute the canonical generator to be

η = [H0,Hint] (8.26)

= iσY

∑
k

f+
k

∆λk
2

(ak + a†k) + σZ

∑
k

f−k
λkωk

2
(a†k − ak) (8.27)

while introducing parameters f+
k , f

−
k , which are equal to one for the canonical

generator but allow to modify η. To understand the flow of the Hamilton we look
at

[η,H0] = −σZ

∑
k

f+
k

∆2λk
2

(ak + a†k) + iσY

∑
k

f+
k

∆λkωk
2

(ak − a†k)

+ iσY

∑
k

f−k
∆ωkλk

2
(ak − a†k)− σZ

∑
k

f−k
λkω

2
k

2
(ak + a†k). (8.28)

To prevent the generation of new coupling terms we set f+
k = fk = −f−k . These

terms arise for the canonical generator due to the energy difference ∆ between
eigenstates of the qubit operator σX; they do not contradict the findings of
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equation 8.20. The commutator of generator and interaction term, completing the
derivative of H(B), is

[η,Hint] = −σX

∑
k,k̃

fk
∆λkλk̃

2
(ak̃ + a†

k̃
)(ak + a†k) +

∑
k

fk
λ2
kωk
2

(8.29)

where the constant shift can be omitted. A striking difference in comparison to
adiabatic renormalization and – as we will see – to poor man’s scaling are the
terms coupling to multiple bath modes. They naturally do not arise in leading
orders when eliminating bath modes one by one. To treat said terms, we apply
normal ordering with respect to the vacuum or some finite temperature

(ak + a†k)(ak′ + a†k′) =: (ak + a†k)(ak̃ + a†
k̃
) : +δk,k̃ 〈2a†kak + 1〉 , (8.30)

an averaging out the fluctuations, thus omitting the normal ordered terms yields

dH

dB
= σZ

∑
k

fk(ω
2
k −∆2)

λk
2

(ak + a†k)− σX

∑
k

fk
∆λ2

k

2
〈2aka†k + 1〉 . (8.31)

All of these terms appear in the initial Hamiltonian; the evolution in B can be
expressed solely through the evolution of prefactors, i.e. their flow. The above
differential equation can be cast in a different set of flow equation describing the
evolution of the flow parameters. We find

dλk
dB

= fkλk
(
ω2
k −∆2

)
(8.32)

d∆

dB
=
∑
k

fk∆λ
2
k 〈2a†kak + 1〉 . (8.33)

Before analyzing these equation we revisit the assumption of Ohmically distributed
bath modes. These can be approximated by a continuous spectral function. The
transition

∑
k λ

2
k →

∫
J(ω)dω is justified for any given spectral density and defined

by J(ω) ≡∑k λ
2
kδ(ω − ωk); the flow equations for the spectral function are given

as

dJ(ω,B)

dB
= J(ω,B)f(ω)

(
ω2 −∆(B)2

)
(8.34)

d∆

dB
=

∫ ωc

ω=0

dω J(ω,B)f(ω)∆(B) 〈2a†k(ω)ak(ω) + 1〉 . (8.35)

As we aim to eliminate terms in Hint, i.e., the coupling between system and bath,
we need to choose f(ω) in a way that f(ω2−∆2) is negative. Looking at large ω this
means negative f and results in a suppression of the qubit term ∆. This finding



8.3. THE FLOW EQUATION APPROACH 75

coincides at least qualitatively with the results derived by adiabatic renormaliza-
tion. For the scope of this thesis, where we examine qubits under the influence
of an environment, the regime of ω � ∆ is dominating and hence determines the
effects. However the above flow equations are not limited to that assumption.
We find that ω < ∆ requires positives f and thus results in an increase in qubit
coupling ∆.

While in the above derivation flow equations are not limited to the regime of
ω � ∆, they are not exact but rely on assumptions on the environment that allow
to omit normal ordered terms. Both approaches are non equivalent and represent
a different understanding of the environment; which is more suitable depends on
the physical system in question. For this work the more decisive difference however
was the applicability to multiple spins on which we focus in the following chapter.





Chapter 9

Multi-Spin-Boson Model

Any physical device geared towards quantum computation is built around a set
of two-level-systems, i.e. qubits which can, within limitations, interact with each
other as well as be controlled and measured by an outside observer. While a circuit
model architecture relies on long qubit lifetimes and high fidelity implementation
of universal gate sets [7, 143], the computational power of quantum annealing is
encoded in the ground state of a widely adjustable Hamiltonian [9]. As such, it
is believed to be more robust against imperfections. The consequently following
faster scaling to larger system sizes comes at the cost of the afforementioned worse
shielding against the environment [127]. To account for this, we describe the
system bath dynamics employing the multi-spin-Boson model, i.e., a number n of
qubits coupled to bath modes

H = Hq +
∑
k

σikZ
2
λk(ak + a†k) +

∑
k

ωka
†
kak. (9.1)

Here Hq is the Hamiltonian solely acting on the qubit system; k denotes the bath
mode with frequency ωk, ik ∈ {1, 2, . . . n} the respective qubit it is coupled to and
λk mediateds the coupling strength. While the above Hamiltonian implies sepa-
rated bath modes for each qubit we will treat the effects of a shared bath as well.
Regardless thereof, an Ohmic distribution of bath modes Ji(ω) = 2αiωΘ(ωc − ω)
has been found suitable to model environmental effects in the regarded frequency
regime and will be used throughout this work [137].

Renormalization group techniques are tools to treat high dimensional quantum
systems with varying energy scales. As discussed, its ansatz is to translate coupling
to strongly off resonant terms into small changes to the Hamilton at a preferred
frequency scale hence reducing the relevant Hilbert space. The generalization from
the single spin case treated in the previous chapter 8 to many qubits, however,
poses a nontrivial challenge: A challenge that we address in this chapter using
mainly poor man’s scaling but also investigating the use of flow equations.
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9.1 Transformation under poor Man’s Scaling

We revisit equation 8.12, describing the poor man’s scaling approach as introduced
in chapter 8. From that we will derive an effective Hamiltonian as well as a reduced
density matrix in the settings of adiabatic quantum computation. To that end, we
look at a quantum system of multiple qubits, coupling via Pauli σZ to a set of bath
modes which we assume to be Ohmically distributed, i.e. a system that is described
by equation 9.1 with Hq ≡

∑
~s ∆~sσs1⊗σs2 . . . σsn acting solely on the qubit system.

We define the Hilbert space separation Hl = Hq ⊗Hωk<ω0 ⊗ {|0〉〈0|}ωk≥ω0 which
excludes all state in which any bath mode above a threshold ω0 is excited from the
lower energy Hilbert space. This separation is not energy ordered, i.e. Hl contains
states with energies larger then the threshold. However, the separation ensures
that any eigenenergy of Hhh is above ω0, which will be vital for the following.
Firstly, we look at

Hlh = PlHqPh + Pl

∑
k

σikZ
2
λk(ak + a†k)Ph + Pl

∑
k

ωka
†
kakPh (9.2)

= Pl

∑
k

σikZ
2
λk(ak + a†k)Ph (9.3)

= Pl

∑
k≥k0

σikZ
2
λkakPh (9.4)

and

Hhl = Ph

∑
k′≥k0

σ
ik′
Z

2
λk′a

†
k′Pl (9.5)

We make the assumption that only terms with k = k′ contribute. This can be
justified by neglecting second order terms of {ak, a†k} in the inversion (E −Hhh)−1

in equation 8.12 or, more rigorously, by applying the poor man’s scaling to every
bath-mode individually. This restricts the inversion problem on the single excita-
tion subspace of a specific mode, i.e., Hh(k′) = Hq ⊗ Hωk<ω0 ⊗ {|0〉〈0|}ω0≤ωk 6=ωk′
⊗{|1〉〈1|}ωk′ . In this subspace we find

Hhh = Hq +
∑
k<k0

σikZ
2
λk(ak + a†k) +

∑
k<k0

ωka
†
kak

+
∑
k≥k0

σikZ
2
λk(ak + a†k) +

∑
k≥k0

ωka
†
kak (9.6)
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H′h= |1〉〈0|k′ Hll |0〉〈1|k′ + 0 + ωk′ . (9.7)

As we focus on the lowest energy eigenstates, ωk′ is the dominant term. Approxi-
mating the inversion in equation 8.12 to first order in Hll and E one finds that

(E − Hll − ωk′)−1 ≈ − 1

ωk′

(
1 +

E

ωk′
− 1

ωk′
Hll

)
(9.8)

and equation 8.12 accordingly transforms

E |Ψl〉 =

(
Hll +

∑
k′≥k0

λ′k
2
σ
i′k
Z

[
− 1

ωk′
(1 +

E

ωk′
− 1

ωk′
Hll

)]
λ′k
2
σ
i′k
Z

)
|Ψl〉 (9.9)

=

(
Hll +

∑
k′≥k0

λ2
k′

4ω2
k′
σ
ik′
Z (Hll − E)σ

ik′
Z

)
|Ψl〉 . (9.10)

Since E is a number, thus commuting with any operator including σ
ik′
Z , one finds

the leading order effective Hamiltonian via recursive application to be

Heff = Hll +
∑
k′≥k0

λ2
k′

4ω2
k′

(
σ
ik′
Z Hllσ

ik′
Z − Hll

)
= Hll +

∑
k′≥k0

λ2
k′

4ω2
k′

(
σ
ik′
Z Hqσ

ik′
Z − Hq

)
. (9.11)

Here, we omitted constant terms and used that all σZ operators commute with
each other. One can see that whether Hq is affected by the above transformation
depends on if it commutes with the σiZ. Here, the definition Hq ≡

∑
~s ∆~sσs1 ⊗

σs2 . . . σsn proves useful as σiZσ~siσ
i
Z = ±σ~si . This implies the transformation of the

∆~s under poor man’s scaling

∆~s → ∆~s

(
1−

ik′∈M∑
k′≥k0

λ2
k′

2ω2
k′

)
(9.12)

with M = {i|[σsi , σZ] 6= 0}, i.e., each Pauli string is affected by only those bath
modes where it does not commute with the σZ of the respective qubit the mode is
coupling. The bath modes that do affect the Pauli string effectively reduce ∆~s.

It is important to note that poor man’s scaling generates an equation to de-
termine eigenenergies as well as the projection of the eigenvectors onto a Hilbert
space of lower dimension. Therefore, the associated transformation neither pre-
serves the orthogonality nor the normalization of the eigenvectors. Consequently,
it is neither unitary nor does it necessarily preserve the Hermitian properties of
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the qubit Hamiltonian. This effect becomes apparent in higher orders. Since the
effective Hamiltonian is no longer a pure qubit Hamiltonian, it is important to
understand the transformation of measurement accessible qubit operators Q. As
those do not couple high and low energy Hilbert spaces, one can employ the ansatz
in equation 8.9 for any eigenvector to find

〈Q〉 = 〈Ψl|Q |Ψl〉+ 〈Ψh|Q |Ψh〉 (9.13)

= 〈Ψl|Q |Ψl〉+ 〈Ψl|Hlh(E − Hhh)−1†Q(E − Hhh)−1Hhl |Ψl〉 (9.14)

= 〈Ψl|Q +
∑
k≥k0

λ2
k

4ω2
k

σikZ QσikZ |Ψl〉+O(
1

ω3
k

). (9.15)

Notably, the transformed operator derived in equation 9.15 acts on the projected
eigenvectors which are no longer normalized. The easiest solution to finding Q for
state vectors of full length is to exploit 〈1〉 = 1: Accordingly, we renormalize Q to

Qeff = Q +
∑
k′≥k0

λ2
k′

4ω2
k′

(
σ
ik′
Z Qσ

ik′
Z −Q

)
, (9.16)

which equals the transformation of the effective Hamiltonian. While this is a
remarkable coincidence, we find that it is not universally true by looking at higher
orders or bath modes coupling to multiple qubits. To describe the transformation
of operators in a compact form, we define the reduced density matrix ρr that
describes the state accessible by qubit measurements such that 〈Qeff〉 = Tr[ρrQ].
As the density matrix undergoes the same transformation, we identify

ρ→
(

1− λ2
k′

4ω2
k′

)
ρ+

λk′

2ωk′
σ
ik′
Z ρ

λk′

2ωk′
σ
ik′
Z (9.17)

as local dephasing of the qubit ik′ [10].

The restriction to just bath modes coupling to a single qubit is – altough
often motivated by the mechanics of the physical system – a simple approach
to incorporate the incoherent nature of the environment. While the qubit-qubit
interaction via bath modes is in fact limited by the coherence of the bath, the
introduction of additional coupling is a known effect [22]. To account for both
effects we incorporate bath modes that are less local, i.e. that couple to multiple
qubits with varying strength. One finds

Hlh = Pl

∑
k′≥k0

(∑
i

σiZ
2
λik′ak

)
Ph (9.18)
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and therefore the effective Hamiltonian of equation 9.11 changes to

Heff = Hll +
∑
k′≥k0

∑
i,j

λik′λ
j
k′

4ωk′

[
1

ωk′

(
σiZHqσ

j
Z − σiZσjZHq

)
− σiZσjZ

]
. (9.19)

While the effects for i = j were discussed in equation 9.11 the remainder of terms
(i 6= j) is dominated by an introduced σZσZ coupling between qubits i and j. These
effects do not interfere as the generated terms commute with the bath coupling.
The remaining terms are weaker by a factor ||Hq||/ωk′ � 1 in the regime where
poor man’s scaling is applicable. We therefore find that for any system where
λiλj � λ2

i does not hold, the bath effects on the Hamilton are dominated by
σZσZ couplings. Thus, either all other bath effects are negligibly small or the
entire effective Hamiltonian is dominated by σZσZ couplings. Hence, we assume
λiλj � λ2

i to hold.
Nonetheless we characterize the terms 1/ωk′(σ

i
ZHqσ

j
Z − σiZσjZHq) qualitatively.

Firstly, we find that they vanish for σsj commuting with σZ. Secondly, they do
not change which of the bath couplings a term commutes with and thirdly for
σsi ∈ {1, σZ} and σsj ∈ {σX, σY} they are antihermitian. Recall, that nonhermitian
terms are just artefacts of truncating the state vector. They do not compromise
the energy eigenvalues.

When including non-local bath modes, we find that the transformation of mea-
sured operators differs from the effective Hamiltonian. Most remarkably, the novel
pure σiZσ

j
Z terms do not arise. However, the renormalization proves to be more

difficult as 〈1〉 now depends on the qubit state. One finds to leading order that

〈Ψl|Qeff |Ψl〉 = 〈Ψl|Q +
∑
k′≥k0

∑
i,j

λik′λ
j
k′

4ω2
k′

(
σiZQσjZ −Q 〈Ψl|σiZσjZ |Ψl〉

)
|Ψl〉 ,

(9.20)

which has to equal Tr[ρrQ] to ensure that the reduced density matrix accurately
describes any expectation value. We find the transition

ρ→
(

1− λik′λ
j
k′

4ω2
k′

Tr[ρσiZσ
j
Z]

)
ρ+

λik′λ
j
k′

4ω2
k′

σiZρσ
j
Z. (9.21)

While this transition is nonlinear, it does preserve the trace of the density matrix
and it describes the dephasing derived above for i = j. The smaller remaining
terms of i 6= j only come into effect for either σsi , σsj ∈ {σZ,1} or σsi , σsj ∈
{σX, σY}, as otherwise the contributions are canceled out by switching i and j.
Like for the transition of the Hamilton operator, we find that any Pauli strings in
Hq is only changed to terms that commute with the same σZ. Consequently the
newly derived terms do not interfere with the predominant dephasing.
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To quantify the effects described above on a physical system, the relevant bath
modes can typically be described by an Ohmic distribution J(ω) = 2αωΘ(ωc−ω)
with cutoff frequency ωc and α describing the coupling strength [137]. We focus on
separated baths Ji for the individual qubits and make a transition from discrete
to continuous modes, i.e.

∑
k λ

2
k →

∑
i

∫
Ji(ω)dω. For an infinitesimal scaling

ω0 = ωc−δω of the effective Hamiltonian of equation 9.11, one finds the transition

∆~s(ωc − δω) = ∆~s(ωc)

1− δω
[σ~s,σ

ik′
Z ]6=0∑
i

αi
ωc

 (9.22)

and

d∆~s

dω0

=
∆~s

ω0

[σ~s,σ
ik′
Z ]6=0∑
i

αi (9.23)

≡ c(~s)∆~s

ω0

(9.24)

∆~s(ω0) = ∆~s(ωc)

(
ω0

ωc

)c(~s)
(9.25)

with 0 < c(~s) <
∑

i αi being a constant specific to the bath couplings the Pauli
string ~s does not commute with. We find ∆~s to be either constant or monotonically
increasing with ω0, i.e., decreasing the effective cutoff frequency ω0 reduces the
contribution of the Pauli strings not commuting with all bath couplings. The
above derivations are valid as long as the high energy frequencies are much larger
than the effects of the qubit Hamiltonian and hence poor man’s scaling can be
applied until this condition is no longer met. As this implies ∆~s � ω0 we examine
the dependencies of ∆~s/ω0 as shown in figure 9.1. We find the following regimes:

• c(~s) = 0: Pauli strings that align with the bath coupling or act as the identity
are not affected by the bath and are therefore independent of ω0. Notably
the bath induced σZσZ terms are unaffected, thus separating both effects.

• 0 < c(~s) = 0 < 1: ∆~s decreases slower than ω0, hence, at some point the
condition ∆~s � ω0 is no longer met, yielding a nonzero effective ∆.

• c(~s) = 1: the ratio ∆~s/ω0 is constant. This case marks the transition between
complete and incomplete suppression of the qubit Hamiltonian.

• 1 < c(~s): ∆~s decreases faster than ω0 and therefore can vanish completely.

It is, however, important to note that for a nontrivial Hamiltonian the condition
∆~s � ω0 has to be treated for the entirety of all Pauli strings.
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Figure 9.1: Suppression of qubit operators
The ratio ∆~s/ω0 for different values of c(~s) starting at ω0 = 30 and
∆ = 1. The indicated validity limit at 0.25 marks the abortion of
poor man’s scaling as ∆c=0 � ω0 no longer holds.

9.2 Second Order Effects

The limitations of the above description stems from the approximate inversion in
equation 9.8. Hence, we include higher (i.e. second) order terms to account for
larger ratios ∆/ω0, thereby covering smaller bath modes. We expect to possibly
introduce more complex dynamics via interaction between the ∆~s. Reiterating the
inversion with second order terms yields

(E − |1〉〈0|k′ Hll |0〉〈1|k′ − ωk′)−1

≈ − 1

ωk′

(
1 +

E

ωk′
− 1

ωk′
|1〉〈0|k′ Hll |0〉〈1|k′

+
1

ω2
k′

(
E2 − 2E |1〉〈0|k′ Hll |0〉〈1|k′ + |1〉〈0|k′ H2

ll |0〉〈1|k′
))

(9.26)

and, via recursive application, an effective Hamiltonian

Heff = Hll +
∑
k′≥k0

λ2
k′

4ω2
k′

(
σ
ik′
Z Hllσ

ik′
Z − Hll + const.

)
−
∑
k′≥k0

λ2
k′

4ω3
k′

(
σ
ik′
Z H2

llσ
ik′
Z − 2σ

ik′
Z Hllσ

ik′
Z Hll + H2

ll

)
. (9.27)

Note that while reiterating the effective Hamiltonian, one cannot omit constant
summands as before as they multiply with nontrivial terms. However, they do
not play an important role in this case, as they result in terms of order ω−4

k′ .
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Furthermore the arising second line of above equation vanishes for all terms of H2
ll

commuting with σ
ik′
Z . We find

σ
ik′
Z H2

llσ
ik′
Z − 2σ

ik′
Z Hllσ

ik′
Z Hll + H2

ll

= σ
ik′
Z H2

qσ
ik′
Z − 2σ

ik′
Z Hqσ

ik′
Z Hq + H2

q

+
∑
k<k0

λk
2

(ak + a†k)
([

Hq, σ
ik
Z

]
+
[
σikZ , σ

ik′
Z Hqσ

ik′
Z

])
(9.28)

and

σ
ik′
Z Hllσ

ik′
Z − Hll = σ

ik′
Z Hqσ

ik′
Z − Hq (9.29)

The resulting effective Hamiltonian can no longer be described by the ∆~s as the
second order terms do not only induce interactions between these but also addi-
tional coupling terms as in equation 9.28. The transition to the ohmic distribution,
as well as infinitesimal scaling ω0 = ωc − δω yields the effective Hamiltonian

Heff = Hll +
n∑
i=1

δω
αi

2ω0

(
σiZHqσ

i
Z − Hq

)
−
∑
i

δω
αi

2ω2
0

(
σiZH2

qσ
i
Z − 2σiZHqσ

i
ZHq + H2

q

+2
∑
k<k0

λk
2

(ak + a†k)
([

Hq, σ
ik
Z

]
+
[
σikZ , σ

i
ZHqσ

i
Z

]))
(9.30)

and hence

dHeff

dω0

(ωc) =
∑
i

αi
2ω0

(Hq − σiZHqσ
i
Z)

+
∑
i

αi
2ω2

0

(
σiZH2

qσ
i
Z − 2σiZHqσ

i
ZHq + H2

q

+2
∑
k<k0

λk
2

(ak + a†k)
([

Hq, σ
ik
Z

]
+
[
σikZ , σ

i
ZHqσ

i
Z

]))
. (9.31)

Note that the inclusion of second order terms does not only affect the qubit Hamil-
tonian and introduces coupling terms, but also that these terms are no longer
limited to only single qubits couplings. Furthermore, these terms again are not
necessarily Hermitian as an artifact of the projection. An ansatz to treat the aris-
ing dynamics would be to determine fixpoints for the flow of ω0 or at least find
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fixpoints within a subspace of equal c(~s). Nontrivial fixpoints however can easily
be precluded by looking at cases of σiZ = σikZ needing [Hq, σ

i
Z] = 0.

Calculation or numerical solution of the full differential equation requires to
keep track of the 4n ∆~s and additionally an equal number of bath coupling pref-
actors. As the matrices describing the dynamics are not sufficiently sparse, we
cannot hope for an efficient simulation. However, we believe that arising terms
might be suppressed by the initial σZ coupling, which we leave for further research
to confirm or repudiate.

9.3 Flow Equations

In the following we employ flow equations, as presented in the previous chapter and
its derivation of the single qubit case based on [131]. We compare the strengths and
drawbacks of either protocol and show why poor man’s scaling is more suitable for
the problem at hand. While restricting ourselves to just two qubits, we separate
the Hamiltonians

H0 =
4∑

m,n=1

∆mnσmn +
∑
k

ωka
†
kak (9.32)

Hint =
∑
k

σikZ
2
λk(ak + a†k) (9.33)

where σmn ≡ σm⊗σn. As in the previous chapter 8, we first calculate the canonical
ansatz for the generator η, which is given by

η = [H0,Hint] (9.34)

=
∑
k

f+
k

∑
mn

∆mnλk
2

[σmn, σ
ik
Z ](ak + a†k)

+
∑
k

f−k
σikZ
2
λkωk(a

†
k − ak). (9.35)

Again, as in the single spin case, introducing f+
k , f

−
k = 1 preemptively to allow for

calibration of η. The flow of the Hamiltonian is given by its commutation relation
with the generator. Hence, we first look at

[η,H0] =
∑
k

f+
k

∑
mnm′n′

∆mn∆m′n′λk
2

[
[σmn, σ

ik
Z ], σm′n′

]
(ak + a†k)

+
∑
k

f+
k

∑
mn

∆mnωkλk
2

[σmn, σ
ik
Z ](ak − a†k)
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+
∑
k

f−k
∑
mn

∆mnωkλk
2

[σikZ , σmn](a†k − ak)

−
∑
k

f−k
λkω

2
k

2
σi

k

Z (ak + a†k). (9.36)

To prevent the newly arising coupling terms in (ak − a†k), we need to specify
f+
k = fk = −f−k eliminating the second and third line of the expression 9.36. The

first line introduces an additional spin bath coupling term; its coupling to the qubit
is not necessarily given by σZ but possibly introduces novel couplings. Note that
first similar terms arise for second order poor man’s scaling however there is no
apparent lower order flow equation. We will address these new couplings later on in
our analysis. Furthermore, terms with σmn = σm′n′ = σ

1(2)
X (while acting trivially

on the other qubit) are analogous to the single qubit case and result in native σZ

coupling to the first (second) qubit – as does the last line. The commutator of
generator and interaction term is given by

[η,Hint] =
∑
k,k′

fk
∑
mn

∆mnλkλk′

4
[[σmn, σ

ik
Z ], σ

ik′
Z ](ak + a†k)(ak′ + a†k′)

+
∑
k

fk
λ2
kωk
2

, (9.37)

where the second term is just a constant shift. Both commutators sum up to the
flow of the Hamiltonian, which we find to be

dH

dB
= [η,H0] + [η,Hint] (9.38)

=
∑
k

fk
∑

mnm′n′

∆mn∆m′n′λk
2

[
[σmn, σ

ik
Z ], σm′n′

]
(ak + a†k)

+
∑
k

fk
λkω

2
k

2
σi

k

Z (ak + a†k)

+
∑
k,k′

fk
∑
mn

∆mnλkλk′

4
[[σmn, σ

ik
Z ], σ

ik′
Z ](ak + a†k)(ak′ + a†k′). (9.39)

A striking difference in comparison to the second order poor man’s scaling of
equation 9.31 are the terms coupling to multiple bath modes. These are inherently
forbidden for poor man’s scaling because modes are treated and eliminated one
by one. To treat said terms we apply normal ordering as presented in chapter 4
with respect to the vacuum or some finite temperature depending on the physical
system

(ak + a†k)(ak′ + a†k′) = : (ak + a†k)(ak′ + a†k′) : +δk,k′ 〈2a†kak + 1〉 . (9.40)
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When omitting bath fluctuations, i.e. the normal ordered terms, we find

dH

dB
=
∑
k

fk
∑

mnm′n′

∆mn∆m′n′λk
2

[
[σmn, σ

ik
Z ], σm′n′

]
(ak + a†k)

+
∑
k

fk
λkω

2
k

2
σikZ (ak + a†k)

+
∑
k

fk
∑
mn

∆mnλ
2
k

4
[[σmn, σ

ik
Z ], σikZ ] 〈2a†kak + 1〉 (9.41)

We now revisit the generation of new coupling terms via [[σmn, σ
ik
Z ], σm′n′ ], the

arising of which marks an additional level of complexity in comparison with the
single qubit case. Specifically, these additional terms are not addressed by the
desired flow parameters: These are the λk and ∆mn which, for a straightforward
implementation of flow equations, we need to be dependent on B and consequently
ω0.

A possible approach would be to not omit terms of m,n 6= m′, n′ from leading
order expression, such as the normal ordered terms of equation 9.40. This could
be justified via treating ω as big, yielding the second row dominant over the first.
Note, however that the omitted terms are of the same order as form,n = m′, n′; the
distinction is made without justification, thus these terms need to be considered
in the following. Furthermore, the approximation ω0 � ∆mn only appears at this
step. Applying it nullifies a valuable advantage in comparison with poor mans’s
scaling which is build upon this approximation. We summarize the omitted, i.e.
non flowing terms as ∆Hnf , yielding

dH

dB
=
∑
k

fk
∑
mn

∆2
mnλk
2

[
[σmn, σ

ik
Z ], σmn

]
(ak + a†k)

+
∑
k

fk
λkω

2
k

2
σikZ (ak + a†k)

+
∑
k

fk
∑
mn

∆mnλ
2
k

4
[[σmn, σ

ik
Z ], σikZ ] 〈2a†kak + 1〉

+ ∆Hnf . (9.42)

We introduce κimn to equal 2 if σmn does not commute with σiZ and 0 otherwise.
The derivative of equation 9.42 then simplifies to

dH

dB
= −

∑
k

∑
mn

fk
∆2
mnλk
2

2κikmnσ
ik
Z (ak + a†k)

+
∑
k

fk
λkω

2
k

2
σikZ (ak + a†k)
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+
∑
k

fk
∑
m,n

∆mnλ
2
k

2
σmnκikmn 〈2a†kak + 1〉

+ ∆Hnf . (9.43)

Except ∆Hnf , the terms in equation 9.43 only change parameters of the original
Hamiltonian, they induce the flow equations

dλk
dB

= fkλk

(
ω2
k − 2

∑
mn

∆2
mnκikmn

)
(9.44)

d∆mn

dB
=
∑
k

∑
mn

fk∆mnλ
2
k

2
κikmn 〈2a†kak + 1〉 . (9.45)

As for poor man’s scaling or the single qubit case, we adapt those findings to a
continuous spectral function. The transition

∑
k λ

2
k →

∫
J(ω)dω is justified by

defining J(ω) ≡∑k λ
2
kδ(ω − ωk); the flow equations for the spectral function are

then given by

dJi(ω,B)

dB
= Ji(ω,B)fi(ω)

(
ω2 − 2

∑
mn

∆2
mnκikmn

)
(9.46)

d∆

dB
=
∑
i

∫
Ji
fi(ω)∆

2
κimn 〈2a†kak + 1〉 . (9.47)

To treat the non flowing parts ∆Hnf we revert to discrete modes. Including those
terms can be done in first order via simple integration. However, that does not
account for their contribution to the derivative, as they have not been considered
for the calculation of the flow equations. The previously neglected terms in the
first line of equation 9.39 are of particular interest. We therefore look at the effect
of the integrated Hnf while not taking normal ordered terms into account. One
finds

Hnf(B) =

∫ B

0

dB′
∑
k

∑
mn 6=m′n′

fk
∆mn(B′)∆m′n′(B

′)λk(B
′)

2[
[σmn, σ

ik
Z ], σm′n′

]
(ak + a†k) (9.48)

[η,Hnf ] =

∫ B

0

dB′
∑
k

∑
mn 6=m′n′

∑
m̃ñ

fk(B)fk(B
′)

∆m̃ñ(B)∆mn(B′)∆m′n′(B
′)λk(B

′)λk(B)

4[
[σm̃ñ, σ

ik
Z ],
[
[σmn, σ

ik
Z ], σm′n′

]]
〈2a†kak + 1〉
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−
∫ B

0

dB′
∑
k

∑
mn 6=m′n′

fk(B)fk(B
′)

∆m̃ñ(B)∆mn(B′)λk(B
′)λk(B)ωk

4{
σikZ ,

[
[σmn, σ

ik
Z ], σm′n′

]}
. (9.49)

Here, the form of η remains unchanged from equation 9.35; it can be chosen freely
to only depend on the flowing parameters. Despite the non-Markovianity of the
above contribution, it only introduces terms not coupled to bath modes, which can
be treated within the native shape of the Hamiltonian. They contribute to specific
∆mn. Including the effects of Hnf , rather than Hnf itself, results in a substantially
less compact but closed expression for the flow of the Hamiltonian,

dH

dB
= −

∑
k

∑
mn

fk
∆2
mnλk
2

2κikmnσ
ik
Z (ak + a†k)

+
∑
k

fk
λkω

2
k

2
σikZ (ak + a†k)

+
∑
k

fk
∑
m,n

∆mnλ
2
k

2
σmnκikmn 〈2a†kak + 1〉

+

∫ B

0

dB′
∑
k

∑
mn 6=m′n′

∑
m̃ñ

fk(B)fk(B
′)

∆m̃ñ(B)∆mn(B′)∆m′n′(B
′)λk(B

′)λk(B)

4[
[σm̃ñ, σ

ik
Z ],
[
[σmn, σ

ik
Z ], σm′n′

]]
〈2a†kak + 1〉

−
∫ B

0

dB′
∑
k

∑
mn 6=m′n′

fk(B)fk(B
′)

∆m̃ñ(B)∆mn(B′)λk(B
′)λk(B)ωk

4

{
σikZ ,

[
[σmn, σ

ik
Z ], σm′n′

]}
. (9.50)

In theory the above expression, together with an appropriate choice for the fk,
solves the flow equation approach to the multi spin Boson model. However, its
little accessible form of non-Markovian flow equations and additional interaction
between Pauli strings, renders it unfeasible for numerical implementation as well
as further calculation. We conclude that for second order poor man’s scaling,
as well as flow equations, the benefits of added precision and less dependence
on large frequency approximation are outweighed by the additional complexity in
comparison to the first order findings presented in section 9.1. We discuss these
findings in the regime of scalable adiabatic quantum computers in the following
chapter.





Chapter 10

Implications for Quantum
Annealing

In quantum annealing, as opposed to circuit-based quantum computing, the so-
lution to a computational problem is encoded in the ground state of a quantum
system. This distinction results in a vastly different treatment of errors. A quan-
tum circuit sets a well defined trajectory for every initial state, every deviation of
which can be quantified via state overlap. Furthermore, the faultiness of a single
gate is given by the average error, the entirety of these errors provides a good
understanding of the reliability of the implementation as well as the output of the
algorithm. While in theory the trajectory of a quantum annealer is given by the
instantaneous ground state, deviations from that path are not considered harmful
as long as the system relaxes back to the ground state before the end of the sched-
ule. The effects of couplings to the environment are therefore harder to quantify
but not less important than for gate-based algorithms.

In previous work, adiabatic quantum computing has been conceived to be less
prone to or even benefiting from coupling to the environment [124–126]. However,
theoretical derivations have been based on master equations and consequently lim-
ited to small effects. We go beyond weak coupling and apply the findings of section
9.1 to describe the effect of Ohmic baths in a regime more suitable to describe scal-
able adiabatic quantum computation. We show qualitative change to the effective
Hamiltonian as well as the reduced qubit density matrix encoding entanglement
between system and bath. An effective dephasing of the reduced density matrix
limits the extractable information from many qubit entangled ground states. We
find that the annealing process is no longer restricted to the qubits and discuss
possible drawbacks or benefits of annealing in the combined system-bath states.
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10.1 LCGD Regime

We revisit the multi spin Boson Hamiltonian of equation 9.1 with the qubit Hamil-
tonian given by a sum of Pauli strings, i.e., Hq ≡

∑
~s ∆~sσs1⊗σs2 . . . σsn to describe

an adiabatic quantum computer under the influence of environmental effects. We
assume the bath modes to be Ohmically distributed and ω0 � ∆~s continuous. In
the previous chapter we have derived

∆~s(ω0) = ∆~s

(
ω0

ωc

)c(~s)
(10.1)

in leading order in ∆/ω0. The suppression of specific Pauli strings in the Hamil-
tonian via poor man’s scaling depends on the combined bath coupling constant
c(~s) =

∑
i∈M αi with M = {i|[σsi , σZ] 6= 0}. Consequently, ∆~s is an either con-

stant or monotonically increasing function of ω0. That is decreasing the effective
cutoff frequency ω0 reduces the contribution of the Pauli strings not commuting
with the σZ coupling to the bath. Note that the more general model of bath modes
coupling to multiple qubits produces additional effects on the qubit Hamiltonian
Hq. However, these are negligibly small compared to those of equation 10.1.

First focusing on individual Pauli strings with c(~s) = 1, one sees that ∆~s

is linear in ω0, thus marking the transition between complete and incomplete
suppression of ∆~s. For Hq ∝ σiX we reproduce the single qubit case with the
known phase transition at α = 1. It is however important to remember that the
above discussion covers special cases where the qubit Hamilton consists of a set
of Pauli strings that sponsor equal c(~s). In more general settings the assumption
ω0 � ‖Hq‖ is evaluated for the ensemble of ∆~s, i.e., dynamics of individual Pauli
strings are only independent as long as the entire qubit Hamiltonian is much
smaller than ω : 0. For examples complete suppression requires all relevant c(~s) ≥
1. However, despite a final ω0 6= 0, Pauli strings with c(~s) ≥ 1 are suppressed
significantly stronger than those with weaker bath coupling representing more
gradual transitions.

It is important to note that while the eigenvalues of the effective Hamiltonian
are the energies of the system, the corresponding eigenstates |Ψl〉 do not describe
full qubit states but rather their renormalized projection onto a Hilbert space with
lower cutoff frequency. This encodes entanglement between the qubit system and
the eliminated bath modes. To account for that, we derive effective qubit operators
Qeff that describe the system as seen by accessible measurement operators Q. Or
rather we derive the reduced density matrix such that 〈Qeff〉 = Tr [ρrQ]. In section
9.1 we show that the transformation of the reduced density matrix under poor
man’s scaling coincides with that of the Hamiltonian described in equation 10.1.
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Notably, one can rewrite the effect of the bath modes interacting with qubit i to

ρ→ 1 + (ω0/ωc)
αi

2
ρ +

1− (ω0/ωc)
αi

2
σiZρσ

i
Z (10.2)

which translates to a dephasing of that qubit with probability 1− (ω0/ωc)
αi . This

notation is equivalent to the operator-sum representation [10]. As the effects on
different qubits commute, we identify the effects of poor man’s scaling with si-
multaneous local dephasing of all qubits. However, it is important to differentiate
between the gradual dephasing associated with the coherence time T2 and the
fixed dephasing occurring in our case, which poses a limit to the measurable phase
correlation on any qubit of the system.

Entanglement is an essential feature of quantum technologies, necessary to al-
low for supremacy in comparison to its classical counterparts; so does a ground
state that is a single qubit product state not provide an advantage for quantum
annealing over classical computation. The classification of multipartite entangle-
ment is less straightforward than for just two parties reflecting the complexity of
increasingly large quantum systems. However, the Greenberger–Horne–Zeilinger
(GHZ) state |Ψ〉GHZ = 1/

√
2(|00 . . . 0〉+ |11 . . . 1〉) is considered to be a maximally

entangled state [144]. Assuming identical αi ≡ α and the GHZ state being the
entangled ground state of an effective Hamiltonian, we find that the dephasing of
equation 10.2, which accompanies the poor man’s scaling, reduces the off-diagonal
elements of the density matrix – and therefore the phase relation between the two
product states – by a factor of (ω0/ωc)

nα. This depends to great extend on the
ratio of initial and final cutoff frequency and therefore the specific system settings;
for large enough n the reduced density matrix converges to a complete mixture of
product states |00 . . . 0〉 and |11 . . . 1〉, which is neither coherent nor entangled. As
many qubit entanglement implies long Pauli strings, we suspect that this multi-
partite entanglement is typically suppressed in the reduced density matrix.

A Hamiltonian is k−local if all of its terms are acting nontrivially on at most k
qubits. These Hamiltonians can be used to engineer systems with arbitrary ground
states for k ≥ 2 [67]. The terms of such a Hamiltonian are only affected by at
most k bath couplings, which can be well controlled in experimental settings even
when scaling to large qubit numbers. In contrast, large n pose a threat to the
integrity of entangled density matrices as

∑
αi grows with the number of qubits.

To further investigate that we are especially interested in the locally coherent but
globally dephased (LCGD) regime, where kα is small but nα is not. This regime
naturally arises with the scaling to larger quantum computers but limited shielding
against the environment. We showcase the regime in figure 10.1. We focus on an
antiferromagnetic Hamiltonian, which is a realistic setting for quantum annealing
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Figure 10.1: The LCGD regime
Diagram of different regimes of the αi ∈ [αmin, αmax] for n qubits.
For simplicity we assume that all αi are either minimal or maxi-
mal. We find that in the weak coupling regime all c(~s) are small,
hence while the transformation changes the ratio between the dif-
ferent couplings it does not prohibit any Pauli strings. In contrast,
many-qubit σX/Y strings are strongly suppressed in the LCGD
regime while k−local interactions are only affected weakly. In the
partially and fully localized regimes, increasingly many k−local
terms are suppressed, thereby limiting the possible ground states
of the system. The classical phase describes a system where all
terms commute and hence the qubits’ effective behaviour can be
described classically.

application [145]. We use the specific example Hamiltonian1

Hafm = (1− s)
∑
i

σiZ + s(1− s)
∑
ij

cijσ
i
Zσ

j
Z + s

∑
ij

cijσ
i
Xσ

j
X (10.3)

with cij ∈ {0, 1} specifying which qubit pairs are coupled and s being the an-
nealing parameter. With an appropriate set of cij 6= 0 this two-local Hamiltonian
can support multipartite entangled ground states. Showcasing a specific 12-qubit
example in figure 10.2, we verify the expected behaviour in the LCGD regime.
When 2α is significantly smaller than one, the effective Hamiltonian is affected
weakly resulting in a combined system bath density matrix ρsb close to the ideal
state. Contrarily, the qubit state as observed via external measurement is affected

1courtesy of Itay Hen



10.1. LCGD REGIME 95

Tr(ρr2)

Tr(ρrρideal)

Tr(ρsbρideal)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.0

0.2

0.4

0.6

0.8

1.0

coupling strength α

fi
d
e
li
ty
/p
u
ri
ty

Figure 10.2: Analysis of an antiferromagnetic Hamilton I
Analysis of the ground state of the antiferromagnetic Hamiltonian
Hafm for a specific 12-qubit example at s = 0.8. We calculated the
ground state for both original and effective qubit Hamiltonian
corresponding to minimal ω0 within Heff(ω0) � ω0. The reduced
density matrix is found by applying the transformation of equation
10.1 to the latter. One finds that while the system-bath state
is relatively close to the intended ground state for α < 0.1 or
2α < 0.2, the measurable state is not only considerably deformed
but also incoherent at α = 0.02 which corresponds to 12α = 0.24.

stronger indicating long Pauli strings in the density matrix. To demonstrate the
prohibition of entanglement, we compute the purity and entropy of ρr as entangle-
ment is limited by coherence. We find that in the regime where effective Hamilton
and its ground state are still intact – 2α is still small – the observable state is
significantly or totally incoherent.

In figure 10.3 a) we depict the entropy for these settings. The simulation
confirms a significant loss of coherence even at α = 0.02. Notably, after a strong
increase, the entropy declines again coinciding with a structural chance of the
effective Hamiltonian: We see in figure 10.3 b) that in the limit of large α ,
i.e., strong effects on both Hamiltonian and reduced density matrix, the reduced
density matrix represents a pure state. If all σXσX terms in the Hamiltonian are
eliminated, it solely consists of σZ terms thus its eigenstates commute with those.
As σZ eigenstates are invariant under dephasing, the reduced density matrix is
pure. However, these states are product states and hence the revival of coherence
does not coincide with a revival of entanglement. In figure 10.4 we observe these
effects for smaller α than in the first example, as the σZ terms of the Hamiltonian
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are stronger for smaller annealing parameter s.
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Figure 10.3: Analysis of an antiferromagnetic Hamilton II
Further analysis of the system examined in figure 10.2. The in-
crease in entropy at small α indicates strong dephasing of a multi-
partite entangled ground state. For larger values of α, purity and
entropy show that the reduced density matrix converges back to
a pure state.

We see that in the LCGD regime, the effective Hamiltonian can sponsor a
multipartite entangled state which, however, does not exist in the qubit space
alone but also represent entanglement between qubit and high-frequency bath
modes. This needs to be taken into account when calculating system dynamics.
Due to the effective dephasing of the reduced density matrix that ground state
appears incoherent under qubit measurement.
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Figure 10.4: Analysis of an antiferromagnetic Hamilton III
An instance of the 12-qubit antiferromagnetic Hamiltonian gener-
ated by a different set of cij at s = 0.7. The deformation of the
system-bath ground state and revival of coherence take place for
smaller α.
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10.2 Discussion

We have investigated the effects of an environment, that is represented by an
Ohmic bath, on quantum annealing using renormalization group theory. We de-
rived the suppression of terms in the qubit Hamiltonian that are not commuting
with the bath coupling, which is increasingly strong for many-qubit terms. The
same suppression can be seen for the reduced density matrix in leading order of
effects, encoding an entanglement between system and bath. We focus on the
LCDG regime, which inevitably arises when scaling to large systems: a robust
k-local Hamiltonian can sponsor any multipartite entangled ground state which
is not accessible by qubit measurement due to strong dephasing of the density
matrix. We discuss the implications for quantum annealing due to inaccessibility
of the ground state as well as the entanglement between system and bath.

The benefits of entanglement to annealing protocols often do not require a many
qubit entangled desired state but rather it may only manifest during the annealing
schedule. For example the adiabatic Grover or Deutsch-Josza algorithms do end
up in product states [124], thus the readout of these is only perturbed weakly in the
LCGD regime. However, many-qubit entangled ground states occur e.g. in many
quantum simulations where the final Hamiltonian represents a physical system that
is hard to solve classically, i.e., is not a product state [146, 147]. Those are limited
in extractable information. More specifically, the LCGD-dephased density matrix
allows for high-fidelity measurements only for k-local operators while many-qubit
correlations are strongly suppressed an thus not represented in the measurement.

While the final Hamiltonian does not generally produce an entangled ground
state, the system passes those on an efficient annealing path [148]. This means
that while one starts and ends with a pure qubit state, the quantum annealing
happens in both system and bath. Contrary to common intuition, this does not
per se prohibit quantum computation and may even be beneficial to the anneal-
ing process. We believe, that the combined system-bath state no longer evolves
adiabaticly, but rather behaves more thermically, which has been shown to be
beneficial [126]. While experiments with low qubit numbers seem to support this
reasoning [149], it remains to be investigated further: First with regard specifics
of system architecture and protocols and second on a device in the LCGD-regime
with n� k.

The multispin Bose model has been extensively studied [150, 151], however,
mostly not focused on spin dynamics which is required to investigate qubit based
applications. Previous work on environmental effects on quantum annealing, how-
ever, relies on perturbative master equations, thus restricts itself to weak coupling
and therefore weak effects [124, 132]. With the renormalization group approach
we go beyond this limit, hence are able to treat the LCGD regime between the
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weak and strong coupling limit investigated by Albash and Lidar [124]. We could
conclude that quantum annealing partially happens in both qubits and environ-
ment and only provides limited access to a multipartite entangled ground state
which, however, is sufficient for a lot of algorithms.



Conclusion

The research involved in apprehending and engineering quantum information tech-
nologies is a quickly evolving field. Only a few decades after their proposal quan-
tum computers approach the 50-100 qubit mark – the limit of what is possible
to simulate on a classical machine. Attempts on adiabatic quantum computation
even reach several thousand qubits, however, the computational power of these
machines is severely limited by connectivity. While the growth in qubit numbers
is fundamental to outperform a classical computer, scaling to larger systems in-
troduces a number of additional challenges to the complex task of engineering and
controlling individual qubits. For instance it becomes increasingly difficult to indi-
vidually address qubits, while simultaneously allowing for sufficient connectivity.
In case of nuclear magnetic resonance the lack of scalability turned a promising
candidate for physical implementation into a dead end. It is not only important
for any approach in building a quantum computer to involve a scaling strategy but
also for that strategy to be efficient in required resources to not lose the potential
advantage over classical computation.

A specific task in gate-based quantum computing that requires scalability is
the assessment of implementations of quantum gates – two main hindrances make
it significantly more complex than for classical gates: First, a quantum channel is
described by exponentially many parameters and second, it is only accessible via
projective measurement. Direct measurement of the full quantum channel param-
eters is denoted as quantum process tomography. Its efficiency can be improved
upon by protocols such as Monte Carlo sampling, however, not avoiding an expo-
nential effort. Randomized Benchmarking is an efficient protocol to experimentally
assess the average gate error of specific sets of gates, such as the prominent Clif-
ford group, via random gate sequences. It does so with effort polynomial in the
number of qubits and is robust against state preparation and measurement errors
due to error amplification as well as leakage outside the computational subspace
and varying error channels for different gates. It allows to benchmark individual
gates via interleaved Randomized Benchmarking but is at this restricted to just
Clifford gates ,which are insufficient for universal quantum computation.

In chapter 6 we built upon previous research of the author to combine the indi-
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vidually restricted methods of interleaved Randomized Benchmarking and Monte
Carlo sampling. We have extended the former to arbitrary quantum operations,
outside of the Clifford group, while reducing the enormous overheads and avoiding
the dependence on state preparation and measurement associated with the latter.
The extension to non-Clifford gates is made possible by treating the sequence fi-
delity of Randomized Benchmarking as a state fidelity that is estimated via Monte
Carlo sampling. This avoids the actual physical implementation of the inverting
gate in the RB sequence which, for a non-Clifford gate, would require availability
of a universal quantum computer. The protocol presented in chapter 6 inherits ro-
bustness with respect to SPAM errors from IRB. For current experimental settings
these errors can completely mask the actual error channel. The resulting hybrid
algorithm reduces the total number of necessary experimental measurements com-
pared to direct Monte Carlo sampling of the gate fidelity due to error amplification
and yields exponential savings in the classical preprocessing resources.

Despite the improvement given by the hybrid benchmarking protocol, both
quantum simulation and quantum algorithms can involve complex processes that
cannot be efficiently predicted classically, especially when scaling to regimes where
these applications outperform classical computers. In chapter 7 we showed that
this restriction does not prohibit validation, provided the implementation being
benchmarked can be found or engineered to conserve symmetries in the system.
Such is the case for many quantum simulation tasks as well as for fault-tolerant
quantum computation, where stabilizers of error correcting codes are preserved by
logical operations. We presented a symmetry benchmarking protocol relying on
randomization via unitary one-designs on conserved subspaces, that allows esti-
mation of average channel error while maintaining robustness to state preparation
and measurement imperfections. We demonstrated the protocol for gate sets that
either preserve the number of excitations or the parity thereof, representing Cooper
pairs. We used a specifically engineered unitary one-design to assess the average
violation of the given symmetries in polynomial time allowing for an estimate of
the gate error.

Current implementations of adiabatic quantum computers typically consist of
more qubits than the gate-base ones. The reason being that quantum annealing
is conceived to be less vulnerable to the influence of environmental effects or even
benefit from external coupling. However, in the adiabatic case, these environ-
mental effects are much less defined and not yet fully understood. An adiabatic
quantum computer can be modeled by the multi spin Boson model, with the Boson
part given by Ohmically distributed bath modes: A model which we investigated
in chapter 9, relying on renormalization group techniques. In particular, we ap-
plied poor man’s scaling to derive the effective suppression of certain terms in
the qubit Hamiltonian, specifically those Pauli strings, which are not commuting
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with the spin bath coupling terms. We specified the strength of the suppression
correlated to how many bath couplings a term does not commute with. In that,
we generalized the known phenomenon of adiabatic renormalization of a single
spin Boson Hamiltonian while going beyond the master equation approach used in
previous research. We also showed that the reduced density matrix undergoes a
similar transformation when reducing the cutoff frequency resulting in an effective
dephasing – this can be interpreted physically as entanglement between system
and bath. We expanded on the renormalization approach by investigating higher
order terms of poor man’s scaling as well as flow equations.

In chapter 10 we focused on the locally coherent but globally dephased regime
which inevitably arises when scaling to larger systems. It describes a range of
coupling strength where k-local Hamiltonian are only affected mildly by environ-
mental effects and hence can sponsor many qubit entangled ground states which
are suppressed in the reduced density matrix. First, this implies that in a scaled
up quantum annealer the access to the ground state is limited to few body corre-
lation, i.e. measurement of k-local operators and, second, that quantum annealing
partially happens in both qubits and environment. These findings, however, are
are not per se prohibitive to adiabatic quantum computations but rather change
the theoretical description of the annealing process which we conclude to be behave
more thermically rather than purely adiabatic.

The field of quantum computing is at the verge of outgrowing the stage of
proof of concept and approaches actual implementations of noisy intermediate size
quantum computer, which can no longer be simulated classically. This transi-
tion to scaled up machines brings up additional challenges – not only quantum
mechanical ones but including different fields of physics and beyond. Some of
these challenges have been addressed in this thesis, specifically with regards to
dealing with imperfect implementations and external effects for both gate-based
and adiabatic quantum computation. How these approaches will develop, which
new challenges will arise with this development as well as what new applications
for quantum devices will emerge – these questions will be of interest for not only
scientists in the near future.
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