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Abstract

This thesis is concerned with the asymptotics of a local empirical process of piece-wise
locally stationary (PLS) time series. In this context we prove a weak limit theorem
that can be seen as analogue of a result for the classical empirical process of stationary
time series provided by Wu (2008). The class of PLS time series, based on the locally
stationary time series model of Zhou and Wu (2009), is illustrated by means of the PLS
linear process and PLS ARCH process.

Moreover, we extend the continuous mapping approach for deriving the asymptotics
of V-statistics of Beutner and Zahle (2014) to multi-sample V-statistics of degree d. In
combination with the weak limit theorem for the local empirical process, this enables
to determine the asymptotic distribution of V-statistics of degree d for non-stationary
time series. We further use our extended continuous mapping approach to investigate
the asymptotic distribution of the skewness of probability distributions.

In addition, we develop a multivariate integration by parts formula and a Jordan
decomposition for functions on R? of locally bounded variation, which is required for
the extension of the approach of Beutner and Zahle.
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Zusammenfassung

Die Arbeit beschéftigt sich mit der Asymptotik eines lokalen empirischen Prozesses
stiickweise lokal stationérer (PLS) Zeitreihen. In diesem Zusammenhang beweisen wir
ein schwaches Grenzwerttheorem, ein Analogon zu einem Resultat fiir den klassischen
empirischen Prozess stationdrer Zeitreihen von Wu (2008). Die Klasse der stiickweise
lokal stationaren Zeitreihen, die auf dem lokal stationaren Zeitreihenmodell von Zhou
and Wu (2009) basiert, wird mittels des PLS linearen Prozesses und des PLS ARCH
Prozesses veranschaulicht.

Dartiber hinaus erweitern wir den Continuous Mapping-Ansatz von Beutner und
Zahle (2014) zur Herleitung der Asymptotik von V-Statistiken auf Mehrfachstichproben-
V-Statistiken von Grad d. Kombiniert mit dem schwachen Grenzwerttheorem fiir den
lokalen empirischen Prozess ermoglicht dies, die asymptotische Verteilung der V-Sta-
tistiken von Grad d nicht-stationérer Zeitreihen zu bestimmen. Des Weiteren wenden
wir unseren erweiterten Continuous Mapping-Ansatz an, um die Asymptotik der Schiefe
von Wahrscheinlichkeitsverteilungen zu untersuchen.

Uberdies wird eine multivariate partielle Integrationsformel und eine Jordanzerle-
gung fiir Funktionen auf R? von lokal beschrinkter Variation hergeleitet, die zur Er-
weiterung des Ansatzes von Beutner und Zihle erforderlich sind.
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Introduction

Locally stationary time series analysis has attracted much attention in the statistics
community over the last two decades. In contrast to a stationary time series {X;}1—0.1.2..
whose joint probability distributions do not change over time or at least whose second
moments are finite for all ¢ and both mean function E[X;] and covariance function
Cov(Xyih, X;) are independent of t for each h, locally stationary time series merely
show a stationary behavior over a short period of time (locally at each point). However,
their parameters and covariances are successively changing in an unspecific way.

The study of these non-stationary time series goes back to Priestley [61] who in-
troduced spectral representations of processes that are time-varying (see also [62]).
While Priestley’s approach describes physically how the process moves on with in-
creasing time, Dahlhaus [19, 20] managed to establish a reasonable asymptotic theory
for non-stationary time series. Instead of letting the time parameter tend to infinity,
Dahlhaus rescaled the time to the interval [0, 1] by observing the process at points i/n
for ¢ = 1,...,n. Hence, with increasing n more and more data of each local structure
is available, which enables the study of asymptotic behavior. From that moment on
locally stationary processes have been investigated from different points of view adopt-
ing this rescaling technique. While Dahlhaus [20] proposed a class of locally stationary
time series based on time-varying spectral representations, Neumann and von Sachs [57]
and Nason et al. [56] studied locally stationary time series via the time varying wavelet
spectrum. In [84], Zhou and Wu formulated locally stationary time series from the per-
spective of a time-varying physical system, and Dahlhaus et al. [22] recently combined
this approach with stationary approximations to present a general theory for locally sta-
tionary time series. We refer to Dahlhaus [21] for a comprehensive survey and additional
references.

In this thesis we will investigate locally stationary time series in the sense of Zhou
[82] who extended the framework of Zhou and Wu [84] to a class of piece-wise locally
stationary time series models allowing both smooth and abrupt changes in the physical
system. The latter class of time series includes some common examples. For instance
the time-varying linear process and the time-varying ARCH-process can be extended in
such a way that they are piece-wise locally stationary, see Subsection 1.2.3. The time-
varying linear process was originally introduced in Dahlhaus [20], whereas the time-



varying ARCH-process is known from Dahlhaus and Subba Rao [23] and investigated
further by Fryzclewicz et al. [35], Fryzclewicz and Subba Rao [36] and others.

Chapter 1 of the thesis is devoted to the study of the asymptotics for the local
empirical process of these piece-wise locally stationary time series with respect to a
nonuniform sup-norm. Empirical processes play a powerful role in mathematical statis-
tics. As many statistical estimators and test statistics are functionals of an empirical
distribution function, weak convergence results for the empirical process serve as fun-
damental tools for deriving the asymptotics of these functionals by means of methods
such as the (extended) continuous mapping theorem or the functional delta method.

To formulate the weak convergence theorem explicitly, let (X, ;)" be a piece-wise
locally stationary time series on some probability space (€2, F,P) that will precisely
be defined in Section 1.1. Suppose that we are interested in (a characteristic derived
from) the distribution of X, ; . for i,, := [pn] for some fixed p € (0,1). Under some
assumptions the distribution function of X, ; ., denoted by F), ,, stabilizes as n — oo.
In Subsection 1.3.1 we will see that indeed F},,, — F}, for some distribution function F),
in some (nonuniform) sup-norm, provided the assumptions are fulfilled. Thus, under
suitable conditions it can be reasonable to use

n

~ i/n—iyn/n

Fpn = an/i<b—p)ll[Xn’i,oo)
i=1 "

as an estimator for F),,, where k : R — R, is a kernel function, b, € R\ {0} is
a bandwidth, and ¢, == 1/>""  k((i/n — ip,/n)/by) is a normalizing constant. In

Chapter 1, we will show that under suitable assumptions

\/n_@t(ﬁp,n(') - Fp,n(')) ~* B, (1>

(with respect to a nonuniform sup-norm) for a non-degenerate Gaussian process By,
where ~»* means convergence in distribution in the Hoffmann-Jgrgensen sense [45]. In
fact we will show that under suitable assumptions

Vb (Fpn() = E[Epa(-)]) ~* B, 2)

and we will discuss additional assumptions under which v/nb,(F,.(-) — E[F\pn()]) —0
(with respect to a nonuniform sup-norm). The convergence in (2) can be seen as the
analogue of Theorem 1 in [78] where a similar result was proven for stationary time
series (and with F,,, replaced by the classical empirical distribution function).

On the one hand, (1) yields consistency and the rate of convergence of the function-
valued estimator F\pﬂ(-) for the distribution function F},,,(-). On the other hand, in view
of tools as the (extended) continuous mapping theorem and the functional delta-method,
(1) can also be seen as a building stone for deriving the asymptotic distribution of the
empirical plug-in estimator T(ﬁpm) for some characteristic T (F, ) derived from F},,. In
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two specific examples in Section 1.3 the asymptotics of weighted empirical quantiles and
weighted von Mises-statistics (or V-statistics for short) of degree 2 will be discussed.
The latter example makes use of the continuous mapping approach to V-statistics of
degree 2 with kernel functions h in Beutner and Zahle [11] and provides an analogous
result to Zhou [83] where V-statistics of degree 2 are studied under similar assumptions
from the perspective of Fourier analysis.

In Chapter 3 we will extend this continuous mapping approach to multi-sample
V-statistics of degree d > 2 with kernel functions h, depending on n. This enables to
study even the asymptotics of weighted V-statistics of degree d > 2 for non-stationary
time series, as we will see in Section 3.4. Apart from that, the asymptotic distribution
of V-statistics is a matter of particular interest.

The theory of V-statistics goes back to the 1940s with pioneering publications of
Halmos [42], Hoeffding [44] and von Mises [74]. Since that time many weak central limit
theorems have been established to determine the asymptotics of V-statistics, where most
efforts have been put on stationary sequences of random variables. We refer for instance
to Beutner and Zahle [10, 11], Beutner et al. [8], Dehling and Taqqu [25], Dehling and
Wendler [26], Dewan and Prakasa Rao [29, 30, 31], Denker and Keller [28], Garg and
Dewan [37, 38], Leucht [52], Sen [65], Yoshihara [80] and Zhou [83] for several approaches
under various (dependence-) conditions.

To describe multi-sample V-statistics of degree d with kernel function h,, let us use
Vy,, to denote the functional playing the role of 7 above. For some Borel measurable
kernel function h, : R? — R the functional Vy, is defined by

th(F(l), . ,F(d)) = /d ho(x1, .. 2q) (Lpo) @+ @ ppw)(d(z1, ..., 2q))
R

on the set of d-tuples of distribution functions F, ... F(@ on the real line for which
the latter integral exists. If EY) is the empirical distribution function of random vari-
ables Xl(j),...,X,gj), j =1,...,d, then th(ﬁ,ﬁl),...,ﬁ,@) is referred to as d-sample
V-statistics of degree d. Chapter 3 is concerned with the question of the asymptotic
distribution of th(ﬁ,ﬁl), o ,ﬁ,ﬁd)) or rather of the weak convergence of the empirical
error

an(vhn(ﬁél)v'“vﬁéd)) _th(F(1)7-'->F(d))> (3)

) is not necessarily the empirical distribution function but any

for some a,, — oo, if ﬁ(ﬂ
(suitable) estimator of F') for every j = 1,...,d and n € N. More precisely, in Section
3.3 we will provide a weak central limit theorem for a vector-valued random variable with
components being of the form (3) for different kernel functions h,, ; : R4 SR, ..., P e
R%* — R, which allows to study also the asymptotic distribution of suitable compositions
of different V-statistics such as the skewness or kurtosis of probability distributions. The

example of the skewness will be discussed in Subsection 3.3.3.
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To determine the limit distribution of (3) via our extended continuous mapping
approach, we primarily need the limit distribution of an(ﬁn —F). If E, is the empirical
distribution function, several weak limit results for the empirical process an(ﬁn - F)
with respect to a nonuniform sup-norm, analogous to (1), can be found in the literature
under various (dependence-) conditions, see for instance Arcones and Yu [4], Beutner et
al. [8], Shao and Yu [69], Shorack and Wellner [70] and Wu [78]. With our approach,
we may thus regain many asymptotic results that exist in the literature concerning one-
sample V-statistics of degree d > 2 for stationary sequences under various dependence
conditions. Moreover, weighted V-statistics of degree d for non-stationary time series
and also multi-sample V-statistics can be dealt with.

We emphasize that the extended continuous mapping approach is only applicable for
kernel functions h,, that are locally of bounded variation. To prove the weak convergence
of the empirical error in (3), we will apply the (extended) continuous mapping theorem
to a special representation of (3) that we obtain by means of a multivariate integration
by parts formula.

In Chapter 2 we will thus develop an integration by parts formula for multivariable
functions of locally bounded variation. For that purpose, we will recall the notions of
d-fold monotonically increasing functions and of functions that are locally of bounded
d-fold variation and their connections to positive and signed Borel measures on R
Moreover, we will prove several auxiliary results including a Jordan decomposition for
functions on R? that are locally of bounded variation.

The results of the first chapter can also be found in the submitted paper [55], jointly
with Professor Henryk Zahle and Professor Zhou Zhou:

Mayer, U., Zahle, H. and Zhou, Z. (2019). Functional weak limit theorem for a
local empirical process of non-stationary time series and its application, submitted.

The results of the third chapter are based on joint work with Professor Eric Beutner
and Professor Henryk Zahle:

Beutner, E., Mayer, U. and Zahle, H., project on the “Extended continuous map-
ping approach to the asymptotics of V-statistics”, work in progress.



Chapter 1

Functional weak limit theorem for a
local empirical process of
non-stationary time series

1.1 Introduction

This chapter is devoted to the study of the asymptotics for the local empirical process
of piece-wise locally stationary time series. The latter class of time series is based on
the approach of Zhou and Wu [84] who formulated locally stationary time series from
the perspective of a time-varying physical system. In Zhou [82], the framework in Zhou
and Wu [84] was extended to the class of the piece-wise locally stationary (PLS) models
of the form (1.2) below by allowing both smooth and abrupt changes in the physical
system.

To define our time series model explicitly, we fix a finite partition 0 = py < p1 < -+ <
pe < pey1 = 1 of the unit interval [0,1]. For every j =0,...,¢, let G; : (pj, pj+1] x RY —
R be any (B((pj, pj+1]) @ B(R)®N, B(R))-measurable map. For everyn € N:={1,2,...},

define by
¢

&, (i, (z)ken) == Y G (i/n, (xr)ren) Lip, ;40 (i/1) (1.1)

J=0

a time dependent filter &,, : {1,...,n} x RY — R. Then, given a two-sided sequence
€ = (e)rez of i.i.d. real-valued random variables on some probability space (2, F,P),
we can define a non-stationary time series (X, ;)i on (2, F,P) by

4

Xni = 6,(i,€) = > Gy(i/n, €)1, 0(/n),  i=1,...n, (1.2)
=0
where €; := (g;,€;_1,€;_2,...). For every j = 1,... ¢, this times series is subject to a
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structural break at the smallest time point ¢ with ¢ > np;. Note that the number of
observations between any two adjacent structural break points increases linearly in n.

Under suitable assumptions on Gy, ..., G, and P, such times series are approxima-
tively stationary in every small (relative to n) time range in between adjacent structural
break points. Meanwhile the series can experience abrupt changes in its data generating
mechanism at break points py, ..., p,. Hence the above PLS framework allows for a very
flexible modeling of complexly time-varying temporal dynamics with both smooth and
abrupt changes. We refer to [82] and [79] for more discussions and examples of the PLS
time series models.

Suppose that we are interested in (a characteristic derived from) the distribution
of Xy, for i,, := [pn] for some fixed p € (0,1). For our mathematical results we
will assume that p ¢ {p1,...,pe}. Let us use F,, to denote the distribution function
of X, ;,,. Under some assumptions F,, stabilizes as n — oo. In Lemma 1.3.1 below
we will see that under some assumptions indeed F},,, — F}, in some (nonuniform) sup-
norm, where F, denotes the distribution function of &, := Zﬁ:o G;(p,€0)L(p; p;40) (D)
Thus, under suitable conditions it can be reasonable to use

n

=~ 1N —lpn /N & T —lpn
Fp,n = C"Zﬁ(%>ﬂ[)ﬂb,ivo@) = CHZI{< b )I]‘[Xn,uoo) (13)

nb,

=1 i=

as an estimator for F, ,,, where x : R — R is a suitable (kernel) function, b, € R\ {0}
is a bandwidth, and ¢, :==1/>"" | k((i/n —ip,/n)/by,) is a normalizing constant. In the
main result of this chapter, Theorem 1.2.4 in conjunction with Remark 1.2.5, we will
show that under suitable assumptions

Epn(-) = Vbu(Fpn() = Fpu()) ~* B, (1.4)

(with respect to a nonuniform sup-norm) for a non-degenerate Gaussian process B,
where ~* means convergence in distribution in the Hoffmann-Jgrgensen sense [45]. In
fact we will show that under suitable assumptions

~ A~

gpm(') = nbn(Fp,n(') _E[F\p,n(')]) ~" By, (1.5)

and we will discuss additional assumptions under which /nb,(F,,.(-) — E[ﬁpn()]) —
0 (with respect to a nonuniform sup-norm). Assertion (1.4) yields consistency and
the rate of convergence of the function-valued estimator F\pm() for the distribution
function F},,,(-). Since many statistical estimators and test statistics are functionals of an
empirical distribution function, the weak limit result in (1.4) can also be seen as building
stone for deriving the asymptotic distribution of the empirical plug-in estimator ’T(ﬁp,n)
for some characteristic 7 (F,,) derived from F,, in view of tools as the (extended)
continuous mapping theorem and the functional delta-method. Two specific examples
will be discussed in Section 1.3.



The rest of the chapter is organized as follows. In Section 1.2, we present our main
result, Theorem 1.2.4. The latter result can be seen as the analogue of Theorem 1 in [78]
where a similar statement was proven for stationary time series (and with F\p,n replaced
by the classical empirical distribution function). The imposed assumptions, that might
look somewhat cumbersome at first glance, are in line with the assumptions imposed
by Wu [78] in the stationary case. We will demonstrate that they are satisfied by two
relevant PLS time series models, namely PLS linear processes and PLS ARCH processes
in Subsection 1.2.3. In Section 1.3, the functional weak limit theorem of Theorem 1.2.4
is applied to derive the asymptotic distribution of point estimators for quantiles and
von Mises-characteristics of F,,. The proof of Theorem 1.2.4 is carried out in Section
1.4. All the others results will be proven in Section 1.5.

1.2 Main result

1.2.1 Physical dependence measure revisited

Before presenting our main result, we recall the definition of the physical dependence
measure introduced by Wu [76] and extended by Zhou and Wu [84]. The dependence
measure (more precisely the objects introduced in (1.6) and (1.7) below) will appear in
assumptions (A5) and (A8) in Subsection 1.2.2. Let £* be a real-valued random variable
on (2, F,P) with P., = P.- and being independent of € = (g4 )rez. If necessary, consider
an enlargement of (Q, F,P). For every i € Z and r € N, let

*

R *
€ ir = (&7 Eiclyerr&irt1,€ 5 Ef—r—15 - )

Note that €, , is a coupled version of €; with ¢;_, replaced by the i.i.d. copy €*. Let
I C R be an interval, and H : I x RY — R be any (B(/) ® B(R)®N, B(R))-measurable
map. For any r € N, ¢ > 0, and ¢ € I, the physical dependence measure (associated

with H(t, -) and €) is defined by

Serg(H:1) = |[H (1, €0) = H(t. 5.,

. (1.6)
where || - ||, := E[| - |9]*/9. Moreover, for any » € N and ¢ > 0, the physical dependence
measure (associated with H and €) is defined by

Oeriq(H) :=sup e ryq(H;t). (1.7)

tel
Note that d¢.q(H;t) and de,.q(H) will not change if in (1.6) €y and € _, are replaced
by €, and €5, respectively, for any k& € Z \ {0}. According to [76], the time series
model (1.2) can be seen as a time-varying physical system with €; being the input and
G,(i/n, €;) being the output (if i/n € (pj, pj+1]), where G; serves as filter or as transform.
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From this perspective, d,.,(G;) quantifies the dependence of G;(i/n, €;) on ¢,_, for any
i =1,...,n by measuring uniformly in ¢ the distance between G;(t, €;) and the coupled
version Gj(t,€;; ). The following Example 1.2.1 was already discussed on page 6 in
[82].

Example 1.2.1 In the setting of Section 1.1, assume that specifically G;(m, (z%)ken) :=
Y oo @js(m)ziqs for some arbitrary functions a;s : (pj, pj+1] = R, s € Ng. Then

Oerg(Gy) = sup lajr(m)(eX, —er)llg < 2feolly  sup fa;n(7)]
7€(pj.pj+1] 7€(pjpj+1]
for every r € N and ¢ > 0. &

1.2.2 Assumptions and main result

As already mentioned in Section 1.1, our main result (Theorem 1.2.4 below) is a variant
of Theorem 1 in [78]. In the latter theorem, Wu studied the case of stationary time
series (i.e. £ = 0 and Gy independent of the first argument), where the role of F,,,, was
played by the classical empirical distribution function. For our result we will impose
nine assumptions, (A1)—(A9). Assumptions (A7) and (A8) are the analogues of Wu'’s
assumptions (6) and (7), respectively. Assumption (A3) is the analogue of a moment
condition on the marginal distribution of the time series in [78], and the analogue of (A6)
was tacitly assumed in [78]. The additional assumptions (A1), (A2), (A4), and (A9)
are due to the non-stationarity of our underlying time series model, and the additional
assumption (A5) is a short range dependence condition.

In Theorem 1.2.4 below we will assume that the following conditions (A3), (A7), and
(A8) hold for a common A > 0. Thus let A > 0 be arbitrary but fixed. We will frequently
use the function ¢, : R — [1,00) defined by ¢,(x) := (1 + |x|)® for different s € R. We

will also use the corresponding nonuniform sup-norm || - ||(s) defined by |[v||(s) == [[v¢s]|s
with ||v]|eo := sup,cg [v(2)|. Please do not confuse the nonuniform sup-norm || - ||(s) for
real-valued functions on R with the Lé-norm || - ||, := E[| - |%]"/? for random variables on
(Q, F,P).

Regarding the kernel and the bandwidth we make the following assumptions.

(A1) The kernel function x is twice continuously differentiable on R with support [—1, 1]
and (without loss of generality) [o x(u)du = 1.

(A2) lim,_,o nb, = oo and lim,,_, b, = 0.

Let j, be the unique index j with p € (p;,pj+1). Then we have for n sufficiently large
(depending only on p;, and p;, 1) that i,,/n € (p;,,pj,+1). For every n € N we use I,,,,
to denote the set of all 7 € {1,...,n} with i/n € (p;,,pj,+1). We make the following
assumptions.



(A3) The distribution of X, ; has a Lebesgue density f,; foranyi=1,... ,nandn € N,
and sup,,cy Maxi<i<p || fnill(y) < 0o for some v € (2X + 1, 00).

(Ad) ||Gj, (T, €0) =G, (1, €)1 < Cp|m—7'| for all m, 7" € (pj,, pj,+1], and some C,, > 0.
(A5) deyriq(Gy,) = O(a") in r € N, for some constants a € [0,1) and ¢ € (2,00).

Here 6 ., refers to the physical dependence measure as defined in (1.7). Thus assertion
(A5) means that d¢,.q(Gj,;7) decays exponentially in r uniformly in 7 € (p;,, pj,+1)-

Now, denote by Px a factorized regular version of the conditional distribution

n,ill€i—1
of X,,; (w.r.t. P) given €;_1, i.e. a probability kernel satisfying Px, ,e,_, (€, B) = P[X,,; €
Blle;-y = x| for P,,_,-a.e. x € RY, for all B € B(R). Define a map §,; : R x RN - R
by

Sn,i(xa w) = ]P)Xn,iﬂei,l(w) (—OO,[L']) ( = E[I]-(foo,x}(Xn,i)Hei—l = m} )7

which we refer to as factorized conditional distribution function of X, ; given €;_;. If
r — Fni(z,x) is twice differentiable for P, -a.e. * € RY, then we may define maps
fni: RxRY - Randf,,: R x RY - R by

fnz(x iB) = { %8’”71(337m) , & gé N,

, B
0 , TE N, and fnz(a: .’IJ) T 8xfn,z(x,m),

respectively, where N;_; € B(R)®N is the respective P, -null set. In this case, we refer
to fn.i as factorized conditional density of X, ; given €;_;, and to f;,”i as its derivative.
We make the following assumptions, where de .2 is defined as in (1.6) and the constant
q in (A7) might differ from the constant ¢ in (A5).

(A6) For any n € N and ¢ € I, the factorized conditional distribution function =
Sni(x, x) is twice continuously differentiable for P, ,-a.e. z € RY.

(A7) For some ¢ € (2, 00) we have lim,,_,o M,(R\ (—w,w)) = 0 and M, (R) < oo, where

My(J) = sup [ max|[f,(z, €- 1)||q/2¢q)\ 14q/2() dz.
neN J g 1€1In;p

(A8) For some « € [0,1] and § € (0,00) we have lim, o M;o(R\ (—w,w)) = 0 and
M; o(R) < oo for i = 1,2 as well as Mg(R) < oo, where

M o(J) = supz max/éﬂ 1:2(Fn,is ) Par—al algz:}l/2

’I’LGN i€ly p

MQ,a(J) = Supz maX/ e,r—1;2 fnz; )¢2)\+o¢ dl‘}l/2

nEN 1€1n;p
1/2
My(®) = SggZ{ggaX/ 2ol ) ooy oy



(A9) The distribution of &, := G}, (p, €0) has a bounded Lebesgue density f,.

Before stating our main result (Theorem 1.2.4), we present two lemmas which are
needed for (the statement of) the main result.

Lemma 1.2.2 Let ky := [ k(x)*dx and assume that (A1)-(A5) and (A9) hold. Then

Wl y) = ko Y C0V<]1<—oo,w1 (G, (P, €r)) =00 (G, (P, 60))> (1.8)

k=—o00

is well-defined for any x,y € R, and the mapping (x,y) — V,(z,y) is symmetric and
positive semi-definite. Moreover limy, oo E[E, 1 (2)Epn(y)] = Yp(z,y) for any x,y € R.

As a consequence of Lemma 1.2.2 there exists a centered Gaussian process with
covariance function v,. This Gaussian process (respectively a suitable modification of
it) will play the role of the limiting process in Theorem 1.2.4 below. Convergence in
distribution will take place in a suitable cadlag space. As cadlag spaces are nonseparable
w.r.t. sup-norms, we regard convergence in distribution as convergence in distribution
“w.r.t. the open-ball o-algebra” (in symbols ~+°) as used in [60, 70]; see also [15, Section
1.6] and the Appendices of [13, 14] for further details on this sort of convergence. Let
D, be the set of all bounded cadlag functions v : R — R with lim, 1 v(z) = 0 and
lv]|(x) (= sup,er [v(x)|dr(2)) < 00. We equip D,y with the nonuniform sup-norm ||-[|(x)
and the corresponding open-Ball o-algebra BEA)' The latter is known to coincide with
the o-algebra generated by the one-dimensional coordinate projections; see e.g. Lemma
4.1 in [13].

Lemma 1.2.3 Assume that assumptions (A1)-(A5) and (A9) hold and let v, be defined
as in (1.8). Then any centered Gaussian process with covariance function -y, possesses
a modification whose paths all lie in the set C yy of all continuous elements of D).

Lemma 1.2.3 ensures that we may and do assume that the Gaussian limiting process
in the following theorem takes values only in a separable and measurable subset of D y).
This is crucial for the claim of the theorem. The processes &, ,, and gpﬂ were defined in
(1.4) and (1.5), respectively.

Theorem 1.2.4 [f conditions (A1)-(A9) hold true for some common A > 0, then

Epn(+) ~° By in (Dony, By |- [lov) (1.9)

for a continuous centered Gaussian process B, with covariance function vy, as defined in
(1.8). In particular, if we assume in addition \/nby|| Fp(-) — E[F,n(-)]]|n) — O,

8p,n(~) ~>° Bp in (D()\),B(())\), || . ||()\)). (1.10)

10



Remark 1.2.5 As the limiting process B, in (1.9) and (1.10) is continuous, we may
replace in either case ~»° by convergence in distribution in the Hoffmann-Jgrgensen
sense [45] (usually denoted by ~»*). This is ensured by part (i) of Theorem 1.7.2 in [73].

&

The following Lemma 1.2.6 provides sufficient conditions for the additional condition
in the second part of Theorem 1.2.4 to hold. It involves the following two conditions.

(B2) limy,_,ee nbTH/ ) —
(B4) |Gy, (7, €0) — Gy, (7', €0)llg < Cpqlm — 7| for all m, 7" € (pj,, pj,+1].

Note that conditions (A2) and (B2) on the bandwidth b,, are simultaneously fulfilled if,

for instance, b, = n~? for some 3 € (%, 1).

Lemma 1.2.6 If (B2), (A3), (B4) hold true for some X € [0,00), q € [\, 00) N (0, 00),
Cpq € [0,00), then lim,_,o0 v/1by, |E[F, ] — )l = 0.

The proofs of Theorem 1.2.4 and Lemmas 1.2.2, 1.2.3, 1.2.6 will be carried out in
Sections 1.4 and 1.5. There we will avail the projection operator Py (-) : L'(Q, F,P) —
LY (Q,0(e;),P) defined by

Pu(Z) = E[Z|e] — E[Z|er_1] (1.11)

for any fixed k € Z. In the proofs we will also frequently use that under (A1) and (A2)

Cp = (’)((nbn)’l) (in particular ¢,+/nb, = (’)((nbn)’lﬂ)), (1.12)
which follows from > | /-@(Z:bi”) = nb, fjll k(u)du+ O(1) under (Al) and (A2).

1.2.3 Illustrating examples
PLS linear processes

Let for any j = 0, ..., ¢ specifically G; (7, (T)ken) 1= Y oo @j,s(T)Tiss for some functions
ajs : (pj,pi+1] = R, s € Ny as in Example 1.2.1. In this case the corresponding process
(Xy.i)f, can be seen as a piecewise locally stationary linear process. Without loss of
generality we assume a;o = 1.

Corollary 1.2.7 Let assumptions (A1) and (A2) be fulfilled. Assume that a;, is con-
tinuously differentiable on (p;,,p;,+1] for any k € N, and that the distribution of eo has
a Lebesque density f. that is twice continuously differentiable. Moreover assume that for
some given \ € [0,00) the following assertions hold.

11



(a) 220:1 Supﬂ'e(pj,pjurﬂ |(],]7]€(7T)| < OO’ j = 07’ te ’£7 a'nd SupﬂG(pjp,pijrl] |a]p=k(7r)| =
O(a*) for some a € [0,1).

<b) ZZO:I SupﬂE(Pjpmij} a;p,k(’”)‘ < 00.
(c) I felly < 00 for some v € (2X + 5, 00).

(d) 121y < 00 and |[fI]|a-x) < oo.

Then (1.9) holds true. Moreover, if in addition condition (B2) is satisfied for q := 2X\+4,
then also (1.10) holds true.

In the proof of Corollary 1.2.7 in Subsection 1.5.5, we will show that the assumptions
of the corollary imply (A3)—(A9) and (B4).

PLS ARCH processes

Recall that the filters &,,, n € N, introduced in (1.1) are generated by Gy, ..., Gy, and
that € = (e;)kez 18 a two-sided sequence of i.i.d. real-valued random variables on some
probability space (2, F,P). Assume that e, k € Z, are nonnegative and that

P
Gi(m x;) = (ajyo(ﬂ)—i—z ajs(m)Gj(m, wi,s))xi for any m € (pj,pj11], Peae. x € RZ
s=1

(1.13)
for any j =0,...,¢ and i € N. Here, P € Nis fixed, a; : [pj,pj+1] = R4, s =0,...,P,
are any functions, and ® := (xy)kez as well as x; := (24, 2;_1,%;_2,...). The existence
of such functions Gy, ..., G, under certain restrictions on a; s and ¢y will be provided in
Lemma 1.2.8 below. In this case, we have in particular

P
Gi(i/n, &) = pnijei P-as, where puij=ajo(i/n)+ > a;.(i/n)G;(i/n, €._,)
s=1

(1.14)
forany j =0,...,¢,neN,and i =1,...,n with i/n € (p;, pj11]. If no structural break
is possible (i.e. £ = 0), then (1.14) can be seen as a variant of the time-varying ARCH
(tvARCH) model introduced by Dahlhaus and Subba Rao [23] (and developed further by
Fryzlewicz et al. [35], Fryzlewicz and Subba Rao[36], and others). In the latter references
the roles of p, ;0 and Go(i/n, €;_s) are played by o? and X? , respectively (similarly as
in [41, p.4] in the stationary case). However we do not only allow for smooth but also
for abrupt changes of the coefficients (i.e. £ > 1).

As before let X,,; be defined by (1.2) (with Gy, ..., G, defined by (1.15) below). In
view of (1.14) and the preceding comments, we refer to the process (X, ;)i as PLS
ARCH(P) process. With regard to applications one might think of X, ; for instance as
the absolute value or squared value of an asset return.

12



Let us give a criterion for (1.13) to be valid (see Lemma 1.2.8 below). To this end
let v(;) refer to the first entry of a vector v € R” and set

[ a;o(m)z ] [ a1 (m)x ajo(m)z ... ajp_i(m)x a;p(m)r ]

1 0 e 0 0

bi(m, x) = 0 ,Aj(m ) = 0 1 0 0
o0 | 0 0 .. 1 0 |

for any m € [0,1] and x € R. Under the validity of assertion (i) of Lemma 1.2.8 below
we may define a function G; : [p;, pj41] X RN — R by

G (7, (21 )ren) (1.15)

s+ (20 { oo Ay(maa) JBy(masa)) o (@ien ¢ N
0 , (Tr)ren €N

k)ke
b;

for some suitable P.-null set N. In this case we have
G]’(ﬂ',ﬁi) (116)

— Bj(ﬂ_,gi)(l) + Z { [HA T, €i—s)|bj (T, Ei—r 1)}(1) for any 7 € (pj, pj1+1], P-a.s.

forany j =0,...,¢ and i € N. Note that (1.16) is in line with the vector representation
of ARCH and GARCH processes considered in [5, 16, 36, 71| and others.

In the following lemma we mean by solution to (1.13) a measurable map G; :
[pj,pj+1) X RY — R for which (1.13) holds for any i € N. We say that two solu-
tions G; and H; generate the same samples almost surely if G;(i/n,€;) = H;(i/n, €;)
forall j =0,....¢,neNandi=1,...,n with i/n € [p;,pj+1] P-a.s. The proof of the
lemma can be found in Subsection 1.5.6.

..... pya] @i,s() < 1 for some q €
[1,00). Then forany 7 =0,...,0 the followmg assertzons hold true.

(i) For any fitedt € N, || SUD e, 1] Yooy A4j(m, gt_s)]l_)j(_w, Et—r—1) }1)llg < 00
and, in particular, P-a.s. the series >~ {[[[5—o As(7, €1—s)]bj(m, €—r—1) } 1) con-

verges for any m € [pj, Dj+1)-
(ii) The function G; defined by (1.15) is a solution of (1.13).

(iii) If another solution H; of (1.13) satisfies |H;(i/n,€o)|l; < oo for alln € N and
i =1,...,n with i/n € [pj,pji1], then H; and G; generate the same samples
almost surely.
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Corollary 1.2.9 Let assumptions (A1) and (A2) be fulfilled. Assume that a;, s is con-
tinuously differentiable on [p;, , pj,+1] for any s = 0,...,P, and that the distribution of
€0 has a Lebesgue density f. that is twice continuously differentiable. Moreover assume
that for some given X € [0,00) the following assertions hold.

<1 for some q € (4\ + 2, 00).
(b) [lfellen + £l < 00 for some v € (2A + 1, 00).

() [1FZ1l0) < o0

Then (1.9) holds true. Moreover, if in addition condition (B2) is satisfied for q from
assumption (a), then also (1.10) holds true.

In the proof of Corollary 1.2.9 in Subsection 1.5.7, we will show that the assumptions
of the corollary imply (A3)-(A9) and (B4).

1.3 Applications

1.3.1 A preliminary result

Theorem 1.2.4 and Lemma 1.2.6 show that the convergence in (1.10) holds true if con-
ditions (A1)—(A9) as well as (B2) and (B4) are satisfied. By the following Lemma 1.3.1
(and Slutsky’s theorem in the form of Corollary A.2 in [14]) we can immediately conclude
that under the same assumptions

Vnbn (Fpn() = Fp(+)) ~° B, in (D, By, [l o), (1.17)
because Lemma 1.3.1 ensures
Vbl Fpn = Fyllny — 0. (1.18)

Here F), refers to the distribution function of ¢, introduced a few lines before (1.3).
Lemma 1.3.1 involves the following condition.

(C2) lim,,_yoe n1—0/0+0)p, = (.
Note that (B2) implies (C2), and that (A2) implies (C2) if ¢ > 1.

Lemma 1.3.1 If (C2), (A3), (B4) hold true for some A € [0,00), q € [\, 00) N (0, 00),
Cpq € [0,00), then (1.18) holds.

In the proof of Lemma 1.3.1 (see Subsection 1.5.8) we will show that (A3) and (B4)
imply || Fyn — Fylly = O(n=9@+1); together with (C2) this ensures the claim of the
lemma. Let us summarize our findings.
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Corollary 1.3.2 Assume that (A1)-(A9) hold for some common A € [0,00). Moreover
assume that (B2) and (B4) hold for some q € [\, 00) N (0,00) with the same X. Then
(1.17) and (1.18) hold.

1.3.2 Weighted empirical quantiles

The (lower) a-quantile functional associated with some given level a € (0,1) is defined
by
Qu(F):=inf{z €R: F(z) > o}

on the set of all distribution functions F' on the real line. Given the time series
Xots--- Xnn, it can be reasonable to use Q,( pn) as an estimator for Q,(F,,). Note
that Q. ( pn) can be seen as a weighted a-quantile. The estimator Fpn is mdeed sup-
ported by the finite set {X,.1,..., X}, but the mass assigned to the individual points
of this set is not uniform. More precisely, denoting by X, 1(n), ..., Xnnm) the order
statistics of X, 1,..., X, we have

k
Qu(Fyn) = Xt for the smallest k € {1,...,n} with Y w,(i(n))
=1

where w,(i(n)) 1= cor (L Zz’") refers to the mass assigned to X, ().
Given (1.17) and (1. 8) we can use the functional delta-method to obtain

Vb (Qa(Fp) — QalFpn)) ~ Z (1.19)

for some centered normally distributed random variable Z with variance

W(Fy H(a), B (@)
Fy(FyHa)?

Var[Z] = (1.20)

under some assumption on F),, where 7, is the covariance function defined by (1.8).

Theorem 1.3.3 Assume that (1.17) and (1.18) hold for X = 0 and that F, is con-
tinuously differentiable in a neighborhood of Fp_l(a) with strictly positive derivative at
F Y («). Then (1.19) holds.

p

Proof In view of (1.17) and Remark 1.2.5, we obtain by Lemma 21.4 and Theorem 20.8
in [72] that v/nb,(Qu(Fpn) — Qu(Fy)) ~ Z, noting that Z := —B,(F, () /FL(F; (a))
is normally distributed with variance as in (1.20). Moreover, in view of (1.18), we obtaln
by another application of Lemma 21.4 and Theorem 20.8 in [72] (to purely deterministic
variables) that v/nb,(Qa(Fpn) — Qu(Fy)) — 0. Along with Slutsky’s theorem this gives
(1.19). O
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1.3.3 Weighted V-statistics

The V-functional (von Mises functional) of degree two associated with some given mea-
surable function h : R? — R (often referred to as kernel) is defined by

// (21, ) i (day )i (ds) (1.21)

on the set F}, of all distribution functions F' on the real line for which the double integral
(with respect to the measure i generated by F) in (1.21) exists. Given the time series
Xty Xnm it can be reasonable to use V,( pn) as an estimator for V;,(F),,). Note
that Vj( pn) can be seen as a weighted V-statistic. It indeed admits the representatlon

Fyu) = Z anu,j)h(Xn,i,Xn,»

i=1 j=1
Given (1.17) and (1.18), we can follow the continuous mapping approach of Beutner

and Zahle [11] to show that under some assumptions (see Theorem 1.3.4 below)

Vb (Va(Fyn) = Vi(Fp)) ~ Z (1.22)

for some centered normally distributed random variable Z with variance

Var[Z //Wp T1, T2) Php, (dxl)th (dz,), (1.23)
where Vp is the covariance function deﬁned by (1 8), and hg, == hi g, + hyp, with
h k(- fR . T2) pip, (drg) and ho p (- fR 1, - ) pr, (day).

Let us collect the assumptions we need for (1.22). Assume F, € Fy, F,,, € F}, and
Je J 1h(z1, 2)|pp, . (doy) pp, (dus) < oo and [, [o [h(z1, x2)|pr, (dz1) pr,,, (dzs) < oo for
any n € N. Assume that h; g, and hy p, are right-continuous and locally of bounded
variation, that h is upper right-continuous and locally of bounded bivariation, and that
ha, (+) := h(xq,-) and hy,(-) := h(-,x2) are locally of bounded variation for every fixed
real z1 and o, respectively. Under some weak additional assumptions (see e.g. Remark
1.3.5) making the tail behavior of hp, and F), and of h and F), compatible, one can derive
from (1.21) the decomposition

~

VB = VilF) = = [ (B = F)) s () (1.24)
+ [ B = B)@r) By = Bz p(dlan )

and its analogue with ﬁp,n replaced by F},,. Then, under (1.17) and (1.18), the contin-
uous mapping theorem (in the form of Theorem 6.4 of [15]) and Slutsky’s theorem (in
the form of Corollary A.2 in [14]) imply the following theorem, where one should note
that Z := — [, B, ) fthy, () is normally distributed with variance as in (1.23).
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Theorem 1.3.4 Assume that (1.17) and (1.18) hold for some \ € [0,00). Moreover
assume that (1.24) and its analogue with F),, replaced by F,, hold for any n € N, and

that [z d-x(2) |t |(dx) < 00 and [, ¢ x(x1)-r(22) [pa|(d(21, 22)) < 00. Then (1.22)
holds.

Remark 1.3.5 The conditions in Lemmas 3.4 and 3.6 in [11] (with F),, F replaced by

~

F, ., F,) provide simple (but lengthy) conditions for (1.24). The analogous assumptions
with F,, replaced by F,, ensure (1.24) with F,,, replaced by F,,,. &

As elaborated in Section 3.2 of [11], the set of kernels h that satisfy the conditions
mentioned in Remark 1.3.5 (and thus admit the representation (1.24)) include the kernels
corresponding to the variance, to Gini’s mean difference, to the Cramér—von Mises
goodness-of-fit test statistic, and to the Arcones—Giné test statistic for symmetry.

In Corollary 1 and Example 2 in [83], Zhou presents the analogue of (1.22) with
Vh(Fp.n) replaced by Vh(E[F\p,n]). More precisely, he proves that the standardized V-
statistic (Vh(ﬁpyn) —E[Vh(ﬁpﬁn)])/Var[Vh(ﬁp,n)]l/z is asymptotically standard normal un-
der similar assumptions.

1.4 Proof of Theorem 1.2.4

In the following we will only show that (1.9) holds true, because (1.10) is a trivial
consequence of (1.9) and Slutsky’s theorem (in the form of Corollary A.2 in [14]). For
(1.9) it suffices to show

Epn ~° 2B, in (D), By, |l - o) (1.25)

(note that || - |0y = || - [|o)- Indeed, the continuous mapping theorem (in the form of
Theorem 6.4 of [15]) and the continuity of the mapping v — v/¢y from (D), | - |l(0))
to (D, || - |l()) together ensure that (1.25) implies (1.9).

To show (1.25), we derive in Subsection 1.4.1 a Donsker-type theorem (see Theorem
1.4.1 below). After a brief introduction to Burkholder’s inequality in Subsection 1.4.2,
we verify in Subsections 1.4.3 and 1.4.4 that conditions (a) and (b) of Theorem 1.4.1
below are satisfied in our setting, so that (1.25) is a direct consequence of Theorem
1.4.1.

1.4.1 Auxiliary result: Donsker-type theorem

The following Donsker-type theorem is a generalization of Theorem V.1.3 in [60].
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Theorem 1.4.1 Let &, be a (D(O),B?O))-valued random variable on some probability
space (S, Frn, Pp) for everyn € N. Let C gy € By be separable, and £ be a (D), BE’O))-
valued random variable on some probability space (2, F,P) such that £ € C o) P-a.s.
Assume that the following two conditions hold.

(a) The finite-dimensional distributions of &, converge in distribution to those of €.

(b) For every € > 0 and 6 > 0 there exist k € N and a partition —oo = xy < 11 <
coe < X < Ty = 00 such that

lim sSup P, AE%&X Sup |€n(x> - gn(xz)| >0 <e

n—oo LU T€[T4,Ti41)

Then &, ~° & in (D(O),BZ’O), |- 1l(0))-

In Subsections 1.4.3 and 1.4.4 we will verify conditions (a) and (b) of Theorem 1.4.1,
if ¢y g‘:,,,n and ¢, B, play the roles of £, and & respectively. We note that ¢, gp,n and
OB, take values in D g and C', respectively. This is ensured by Lemma 1.4.6 ahead
and Lemma 1.2.3, respectively.

For the proof of Theorem 1.4.1, we first need two auxiliary results.

Lemma 1.4.2 For every v € Dy and € > 0 there exist m € N and a partition —oo =
Yo <Y1 < - < Ym < Yme1 = 00 such that

max sup  |v(x) —v(2")] <e. (1.26)
1=0,...,m o2 €[ys,Yit1)

Proof Pick ¢ > 0. Let § be the supremum of those y € R for which one can find
m € N and a partition —oco =4y < 1 <+ < Ym < Ymy1 = y such that (1.26) holds.
Here we use the usual convention supR := oco. Since v as an element of D g satisfies
lim,, «v(z) = 0, we can find some z € R such that |v(—o0) — v(x)| < ¢/2 for all
r < z. Hence sup, .., |v(7) —v(2')| <e. Thusy > z.

Next observe that one can find m € N and a partition —co =9y < y1 < - < Y <
Ym+1 = g such that (1.26) holds, i.e. one can find such a partition for 7 itself. Indeed:
Since ¢ := lim, 5 v(x) exists in R (note that ¢ = 0 if ¥ = 00), we can find some y* €
(—00,7) such that [c—v(z)| < e/2forall x € [y*,7), and thus sup, e, 5) [v(z)—v(2")| <
¢. By definition of ¥ we can find m € N and a partition —co=yo < y1 < - < Yy = y*
such that sup, /ey, 4., 1) [V(¥) —v(2’)| < e holds for i = 0,...,m —1. Hence (1.26) holds
for —co=yo <y1 <+ <Yk <Y = Y* < Yms1 With Y1 =7

Finally suppose that § < oo. Then, since lim,\ 5 v(z) = v(7), one could find some
6 > 0 such that |v(y) —v(z)| < g/2 for all x € [y,y + ), and thus sup, ,cz744) [V(T) —
v(2")] < e. This would lead to a contradiction to the definition of . Hence § = co. O
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For any points 21,...,2 € R, let the map A, . ..} : Do) — Do be defined by

.....

-1
A{Zl ~~~~~ Ze}(v)(') = U(Ziif)ﬂ[zi:z,ziJrl:e)(')7
i=1
where z1., ..., zp, is the order statistics of zq,..., z.

Lemma 1.4.3 There exists a sequence (2,)pen of real numbers such that

lim [[Ag,,. 23 (v) = V|l =0 for allv € C . (1.27)

p—00

Proof Step 1. By the separability of C (0) We can find a countable dense subset C 0 €
C(0). Let (v;)jen be an enumeration of C(p). By Lemma 1.4.2 we can find for every
J,£ € Nan m;, € N and a partition —oo = yg’e < y{"g <. < yiniz < y%,ﬁl = oo such
that

max sup  [vi(x) — v;(2")] < 1/¢. (1.28)

iZO.A.m‘yz YRR N4
B a:;r:’E[yi 7yi+1)

Set Uy(¥;) = {yi", . .. ,yﬁ;:f;z}, J,¢ € N. Note that the left-hand side of (1.28) does not
increase as the partition is getting finer. So we may assume without loss of generality
that

Uy(31) € Uy(3) € Us(31) € Uy(3) € Un(B) € Us(#) C -+ - (1.29)

(here the order of the double indices are determined by Cantor’s diagonal method), and
for any j,¢ € N and any Uy, (v;,) which occurs in between Uy(v;) and Upyq(;) in (1.29)

we have
max sup U (z) —v;(2")| < 1/¢
1=0,..m, 0, Lx/e[yg*,e*’y{:,{z*)
and thus
| Av,, @;,)(07) = Vjlle < max sup  [(x) — o(y)")] < 176 (1.30)
1=0,..., My s me[yf*’l*7yfi’f*)

Now choose the sequence (z,),en as follows. The first #U; (v;) terms are the elements
of Uy (v1), the next #(Uy(v2) \ Uy (v1)) terms are the elements of Uy (v2) \ Uy (01), the next
#(Uy(v1) \ U1 (v2)) terms are the elements of Us(v1) \ Uy (v2), the next # (U (v3) \ Ua(v7))
terms are the elements of U;(v3) \ Us(v71), and so on. Then (1.30) implies

lim |Ap,  .1(0) =0l =0  forallde C). (1.31)
— 00

Step 2. It remains to show that (1.31) extends to (1.27). Let v € Cy and ¢ > 0
arbitrary but fixed. Choose v € C|g) such that ||[v — 7]/, < €/3; recall that C g is a
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dense subset of Cgy. Moreover, by (1.31) we can choose py € N such that ||Ag,, . .1(V)—
U]|oo < e/3 for all p > py. It follows that

||A{z1
< A (0) = Az (O) oo + 1A 23 (0) = Dlfoo + [0 = v]loo
<
<

for all p > py. This gives (1.27). O
Proof of Theorem 1.4.1 According to the Portmanteau theorem in the form of The-

orem 6.3 in [15] it suffices to show

n—o0

lim [ fdP} — / f dP; (1.32)

for any bounded, uniformly continuous and (B, B(R))-measurable function f : D g) —
R. Let f be any such function. Pick £ > 0, and choose ¢ > 0 such that

If(v) — f(w)| <e/4 for any v,w € D(g) with |[v — wl[o < 6. (1.33)

Step 1. By assumption (b) we can find a grid partition —oco =z < 21 < -+ < 2 <
Tr+1 = 00 (depending on ¢ and ) such that

(= tmsupP,| max  sup |€u(x) — &) > /2] )
n—00 i=0,..., T€[Ti,Ti41)
< /(4] f o) (1.34)

Moreover, by Lemma 1.4.3 we can choose a sequence (z,)pen of real numbers such that
(1.27) holds. Since we assumed & € C gy P-a.s., we can conclude that

lirgo lAG 21 (§) =€l =0 P-a.s. (1.35)

.....

A{_zll ..... zp}(BT(U))
— {w (- D(O) . ||A{Zl 77777 Zp}(w) _ UHOO < 7,}

= {w € D) :  max sup |w(z) —ov(z)] <, sup lv(x)] < r}
i=1,...,p—1 T€[2i,2i41) z€(—00,21)U[zp,00)

= {w € D) :  max sup |w(z) —ov(z)| <, sup lv(z)] < 7’}
i=1,...,p—1 x€[z4,2i41)NQ 2€((—00,21)U[zp,00))NQ
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_ {mf;mxe[zi,zm)@ T B 0(2)) s SUD e (oermy o) V()] < 7
0

, otherwise

lies in B?o) for any p € N, v € D) and r > 0; take into account that the projec-
tion map 7. : D) — R is (Bf,, B(R))-measurable for any z € R. It follows that
(&) is (F, DO) measurable for any p € N, and thus ||Ag, .38 — &l =

.....

-----

-----

lim P[|| Ay, 1) — €l =] =0 for all n > 0. (1.36)
p—r00

In view of (1.36), we can choose p. € N (depending on ¢ and 0) such that

Pl Agar,..z03 (€) = Elloo > 0/2] < &/(4]|flloo)- (1.37)

Now if we set U := {z1,..., 2k, 21, ..., 2y, } We obtain the following analogues of (1.34)
and (1.37), with /2 replaced by §:

lim sup Py [[| Az () = &alloe 2 0] < /(4] fllo), (1.38)

P Ay () = &lle = 6] < /(4] flo0)- (1.39)

Step 2. To verify (1.32) we apply the triangle inequality to obtain

‘/fdp?n—/fdﬂ”s! < /!f(»:n)—f(AU(gn))mpn
4 [ ravenar - [ ) a

/!f (Au(€)) — £()] P

For the first summand we obtain by (1.33) and (1.38)

limsup Si(n) < 1imsup/|f(§n)—f(AU(én))lﬂ{gn—AU(moo<<s}dP”

n—oo n—o0

n—0o0

/4 1f ]l i sup P* [l — Au (€)1 = 0]
£/2. (1.41)

—|—limsup/ | f(&n) — F(Au (&) Lje,—Ap )l >sy AP

IN

IN

For the third summand we analogously obtain by (1.33) and (1.39)

/If v () Le—ap©)o<sy AP
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+/|f(§) — fAu ()L {jje—ay ()1 >0y AP

< e/ 1 f Pl = Au(€)lloo > 4]
< g/2. (1.42)
Let m := k+p., and y1, ..., Y, be an enumeration of U := {z1,..., %, 21, ..., 2,, } such

that y; < --- < y,,. For any (ay,...,a,) € R™, let ¢4, a4, : R = R be defined by
Cay.oam (T) 1= Z;i_ol a1y, 4., (), with the conventions ag := 0, yo := —00 and yp41 :=
0o. Then the function g : R™ — R defined by g(ai, ..., an) = f(pa, ) is bounded
and continuous, where the continuity follows from the continuity of f and the continuity

an (+) from R™ to D). Since f(Ay) = g(Ty,,...ym):

----- am

of the mapping (ai, ..., an) — ©q
assumption (a) ensures

.....

fimsup Sy(n) = Lmsup | [ F(Ar(€) " ~ [ F(An() P

n—oo n—o0

— limsup / 9( sy () AP — / 9(my,... ym(f))dp‘

n—o0

= limsup /g(fn(yl),---,ﬁn(ym))dﬁ”"—/g(f(yl),---,f(ym))dp‘

n—o0

= 0. (1.43)

By (1.40)—(1.43) we have limsup,, | [ fdPg — [ fdP¢| < e. Since € > 0 was chosen
arbitrarily, we arrive at (1.32). O

1.4.2 Auxiliary result: Burkholder’s inequality

Many approaches in dealing with asymptotic issues of (piecewise locally) stationary
processes are based on martingale techniques. Let (€2, F,P) be a probability space with
filtration (F,)nen. Recall that a real-valued L'-process (M,),en with M, being F,-
measurable for all n € N is called a martingale, if E[M,,1|F,] = M,, P-a.s. for all n € N.
To verify assumption (a) and (b) of Theorem 1.4.1, we will frequently use the following
Burkholder inequality (cf. Theorem 11.2.1 in [18]).

Lemma 1.4.4 (Burkholder inequality) Let q € (1,00). There exist constants ¢, ==
(¢ —1)/(18¢%?) and C, := 18¢*?/(q — 1)'/? such that for any martingale (M, )nexn

<Zn: (Mz _Mi1)2>1/2 q < || My, < C, <Zn: (Mz _Mi1)2>1/2

1= 1=

Cq
q

In our applications, we only need the upper bound of ||M,||,. We note that the
differences M,, — M, are called martingale differences. By definition a martingale
difference sequence is a real-valued L'-process (Dp)neny with D,, being F,,-measurable
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for all n € N that fulfills E[D,,,|F,] = 0 P-a.s. for all n € N. And indeed, for any
martingale (M, ),en the difference M,, — M,,_; is F,-measurable and E[|M,, — M,,_4|] <
E[|M,|] + E[|M,,—1|] < oo for all n € N. Moreover, E[M,, — M, _1|F,—1] = E[M,|F—1] —
M, 1 =M, 1 — M, ;1 =0P-as. for all n € N so that (M,, — M,,_1)nen fulfills all the
properties of a martingale difference sequence.

Conversely, given a martingale difference sequence (D,,),en, then for all n € N we
obviously have that )" | D; is F,-measurable with E[| >""" | D;|] < co. Since addition-
ally E[31, Di|lFni] = S0 Ds + B[D,|Foh] = S0 Dy P-as. for all n € N, the
process (> Di)nen is a martingale for any martingale difference sequence (D,,)nen.

We thus arrive at the following corollary of Lemma 1.4.4. The third assertion can
also be found as Lemma 3 in [78].

Corollary 1.4.5 Let g € (1,00). There exists a constant C, := 18¢%/%/(q — 1)*/? such
that for every martingale difference sequence (D,,)nen

(i) | S D, < Coll(Zi, D2
(i) | i Dill, < C2 [ 5y D2, o
(iii) H s Di| ;nin{Q,Q} < Céﬂiﬂ{‘]ﬂ} S HDl‘

Proof (i): As previously mentioned, the process (3 ;. ; D;)nen is a martingale. Asser-
tion (i) is thus a direct consequence of Lemma 1.4.4 applied to (31" ; D;)nen-

(ii): Since
> 1/2
qa/2 ’

(29", = =12 2%

assertion (ii) follows immediately from (i).

q7

min{q,2}
g .

(S

(iii): If ¢ > 2, then we obtain by (ii) and Minkowski’s inequality

> Soff| <o, = S pfE (L
i=1 i=1 i=1 i=1

If ¢ <2, then (i) yields

3P

2
< G
q q/2

q
q

IN

Cq

(220", = cxel(352)"]

< R[S D] = cr Yo
=1 =1

Along with (1.44) this implies (ii). O
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1.4.3 Verification of condition (a) of Theorem 1.4.1

Let € = (z1,...,74) € R? be arbitrary but fixed, and assume that z; < --- < 4. Here
we show that (under assumptions (A1)—(A5) and (A9)) we have

(87(21)Epn(1), - - ., oA (T D) Epn(@a)) ~> (d2(21)By(1), ..., dr(24) Bp(za)) ',

where for any vector v € R? we denote by v’ the transpose of v. By the continuous
mapping theorem (in the form of Theorem 6.4 of [15]) it suffices to show that

(Ep,n(xl)v e vgpm(xd))/ ~ (Bp(x1)7 ERE Bp@d))/'

Due to the Cramér—Wold theorem it even suffices to show that
d N d
k=1 k=1

for every A = (A1,...,\q) € R% For the proof of (1.45), we borrow arguments from the
proof of Theorem 1 in [83]. Setting

d . .
Yoi(z. ) = ZAM<Z nbzpn> (mxn,im)(xk) - E[ﬂ[xn’i,oo)(g;k)]»
Yn{,Tn}(wa A) = E Yn,i(wa >‘>|€i:i—mn]

with €;.i—m, = (€i,8i-1, -, Ei—m,+1) and m, = [log(n)], the left-hand side of (1.45)
can be written as

d
> MeEpn(ai)
k=1
= cnmzn,i(m,m
_ b, (Zme)\ ZY{m"}m}\)—i—cn\/nb Zy{mn}xx

=: Sml(w, )\) + Sn,2<£l3, )\) (146)

The summand S, 1 (x, A) converges in probability to 0 by Lemma 1.4.9 ahead and (1.12).
We will now prove that the summand S, »(x, A) converges in distribution to the right-
hand side in (1.45), which is a centered normally distributed random variable with
variance

d d d d d
Var[ZAkBp(xk)} = Zz)\k)\lE[Bp(xk)Bp(xl)] = ZZ)\ >\l ’yp ZL’k7£L'l (147)
k=1

k=1 1=1 k=1 =1

24



Along with Slutsky’s theorem, this gives (1.45).

If the expression in (1.47) vanishes, then S ¢ | A\.B,(z;) = 0 P-almost surely and
lim,, 00 Var[zk 1 )\kf,’pn(mk)] 0 by Lemma 1.2.2. The latter convergence implies
0 | A (1) = 0, i | 5y M) — Sy Moyl = 0.
Thus 3¢, MEpn(k) converges in distribution to S0, A\ B, (1), i.e. (1.45) holds.

Now assume that the expression in (1.47) is strictly greater than 0. Then it suffices

to show that
Smg(ﬂ?, )\)

\/Var[zzzl A By ()]

for a standard normally distributed random variable Z. By Slutsky’s theorem and
Lemma 1.4.12(iv) ahead this is equivalent to

~ Z

Sn,g(il?, )\)
\/V&I'[Smg(a}, A

~ Z. (1.48)

To verify (1.48), we split S, 2(x, A) into sums

[n/sn] [n/sn]

Sna(x, X) = ¢,/ nb, Z R, j(x,X) + ¢,/ nb, Z (T, A) (1.49)
j=1

of [n/s,] many big blocks

ln

R,i(x, ) = ZY{?}"}ns L@ ), =12, [n/s.], (1.50)

=1

and [n/s,] many small blocks

P (1, A) Z Vi @A), =12 [n/s,], (1.51)

i=lp+1

where [, := [v/nb,] and s, := [, + [(logn)?]. Recall m, = [log(n)], and note that
the big blocks are independent since s,, — l,, > m,, — 2, and that the small blocks are
independent since m,, < [,, + 2.

Now, c,v/nb, ijfzz/lan Tn,; (€, A) converges in probability to 0 by (1.76) and (1.12).
Moreover, lim,, o Var[Sng(ac,)\)]/Var[cn\/'rz_bnZ;Z/f’J R, j(x,A)] = 1 by part (ii) of
Lemma 1.4.12 and (1.12). Thus, in view of (1.49) and Slutsky’s theorem, for (1.48) it
suffices to show

ch/ by, iji/f”w R, j(z, A) _ 21[1/15"1 R (@, ) ~ Z.  (1.52)

(Varleav/nby S0 Ry (2, N2 (Var[SIee R (e, M)
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The big blocks, i.e. the random variables in (1.50), are independent and centered. Thus,
in view of Lyapunov’s central limit theorem, for (1.52) it suffices to verify that the Lya-
punov condition holds for Z]{Z/f”w R, j(x,A). For ¢ € (2,00) as in (A5) and sufficiently
large n we have

S B Mg 1 S (e M) g
(Var[zjRw-(alr;,)\)])q/2 B ch/z (nby,)e/?
2
chﬁ( 2nb, — v/nb, ) (Il)12v/nby + O(1))
Cq}\/z Aq /_nbn+log2(n) (nbn)q/g )

where we used Lemma 1.4.13 for the first step and Lemma 1.4.10(ii) for the second step.
The latter bound converges to 0 by (A2) (and ¢ > 2). This shows that the Lyapunov
condition indeed holds. O

<

1.4.4 Verification of condition (b) of Theorem 1.4.1

In this subsection we will show that (under assumptions (A1l)—(A3) and (A6)—(A8))
there exist for every € > 0 and 4 > 0 some k € N and a partition —oo = 29 < 71 <
<o < T < Tpaq = 00 such that

limsupIP’Lz%ax sup ‘gpn(x)gm(x) — gon(xl)gb,\(xl)‘ > 2(5] < 2e.

n—00 =Yy TE€[Ti,Tiv1)

For the proof, we use the same idea as in [78]. Since we can write

gpn(x) = cp/nb, Z H(Z ;blp’"> (H[Xnmoo)(x) — E[]l[xnmoo)(x)})
i=1 "

as Epn(r) = Hpn(z) + Qpn(r) with

=y,
H,,(x) = cn\/nan/f( nb:

(E[Lx, .00 (2)|€i1] — E[Lix, .00 (2)])

(
Qpn(z) = cn\/n_bnzﬁc_ip,n
(

— va") (Bni(z, €i-1) = B[y, .00 (@)]),

=1

it suffices to prove that for every e > 0 and § > 0 there exist ki, ks € N and partitions
— 0 =)< x1 < < Ty <xk1+1:ooand —00 =2y < T <+ < Ty < Tppt1 = X
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with

limsupIP’[ _max [sup )‘ (@) (@) — Hp (@) dx ()] > 5] <e (1.53)
n— 00 =0, L z€(w;,wit1
and
lim supIP’[ _max [sup ) |Qpin ()92 (%) — Qpn ()P (2:)| = 5} <e. (1.54)
n—0o0 E=Useen 2 x€lTi,Tit1

Let € > 0 and 0 > 0 be arbitrary but fixed. By Lemma 1.4.17(ii) and Lemma 1.4.19(ii),
we can find w; . > 0 and ws . > 0 such that

spP[ sup |Hypu(@)|ér(@) 2 6] < supP[ sup |Qpa(a)lgr(z) > 3] < e

neN |z|>w1 e neN |z|>wa, e

Then (1.53) and (1.54) follow directly from Lemma 1.4.17(iii) and Lemma 1.4.19(iii). O

1.4.5 Technical details

We first show that &,, and &,,, can be seen as random variables in (D, Blyy)-

Lemma 1.4.6 If condition (A3) holds true, then we have lim,_, 1 &, n(x)Pr(z) = 0 and
lim, 400 pn( z)pa(x) = 0 for everyn € N. Moreover, the mappings w — &, n(x, w)px(x)
and w Spm(x,w)@( ) are (F, BY))-measurable.

Proof The measurability easily follows from the fact that BFA) coincides with the o-
algebra generated by the one-dimensional coordinate projections. Concerning the first
part, we will prove only the latter convergence. The proof of the former convergence
follows the same line of arguments and is even easier. Let n € N. If z > 1 is sufficiently
large such that = > X,,; forall 7 =1,...,n, then

by (Fpp(x) — E[E, 1 (2)]) 6a(z) = /1y (1 — E[F0(2)]) da(). (1.55)
We have
0 < limsup (1 —E[F},,(2)]) da(x)
= limsupec, Z /1(2 ;blpn> (1 - E[H[Xmi,oo)(aj)]) ¢/\($)
< limsupc ifi(l — ip’”) ! /Oof ((y) dA(y) dy oa(x)
o T—00 " i1 nbn ¢)\(~T) T "
< limsupec, " K L~ o | fosill OO¢ —~(y)dy
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n

| °° i~ iy
< limsup max IIfn,z-Ilm/ r—(y) dy %Z%(n—bn)

=1

e sl [ v

T—00

By assumption (A3) we have maxi<i<p || fuill(v) < 00 and [~ ¢r—y(y) dy < oo (recall
v > 2X+1, so that A —~ < —A—1). Thus the latter expression vanishes, which implies
that the left-hand side of (1.55) converges to 0 as x — 0.

If x < —1 is sufficiently small such that z < X,,; forall ¢ =1,...,n, then

Vb (Fpn (@) = E[Fpn(@)]) ¢2() = —/nby E[F ()] 62 (), (1.56)

Proceeding as above we obtain
> . . _ = > . . _ .
02 1333{35( E[Fpn(2)] %(:c)) > 1;2}}2;( 1ax | fuill o) /_ _nly) dy)
and we can again conclude that the latter expression vanishes, which implies that the

left-hand side of (1.56) converges to 0 as x — —o0. O

Auxiliary results for the proof of assumption (a) in Theorem 1.4.1

Let X}, =Gy, (i/n, €, ) and

TZZZ T

Y'rjzz T' Z)\kﬁ(

for any € = (71,...,74) ERE A= (\,..., ) ERE neN,i=1,...,n, and r € N.

> (IL[XT*L@;FWOO) (xk) - ]E[]]_[X:L,i;ifr’oo)<xk)]) <157)

Lemma 1.4.7 Let assumptions (A1), (A3), and (A5) be fulfilled. Let a € [0,1) and
q € (2,00) be as in (A5), and let X = (\y,...,\q) € R? be arbitrary. Then there
exist constants Cx, > 0 (depending on X and q) and n, € N such that for any x =
(1,...,2q) ERE, n>m,,i=1,...,n, andr € N

Vi@ A) = Y@ )y < Ong (2 ) a7/ (1.58)
Proof By Minkowski’s inequality and Jensen’s inequality, we have

Yoi(a, A) =Y, Al

nzz T

- ()

<]]'[an OO)(I]{:) - :H'[X:11 A )(xk> - E[]]'[an OO)(xk) - :H'[X;Zzt A )(xk>j|)

q
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< Z‘)\H“( an)

<H1 Xpiv00) () — L xx

n,it—r?

@, + [T, 00 (@8) = 1ix;,, o (@]],)

< 2 Z‘)‘k|“< an) L1000 () = Tz, oo) (@), (1.59)

forany x € R%, ne€N,i=1,...,n,and r € N.

As before use j, to denote the unique index j with p € (p;,pj+1), and recall that
I, was defined to be the set of all i € {1,...,n} with i/n € (p;,,pj,+1). Moreover
let It be the set of all i € {1,...,n} with x((i — ipn)/(nb,)) # 0. Note that under
assumption (A1) we have ¢ € I/t only if |i/n — i, /n| < b,. Since |i,,/n —p| < 1/n,
we can conclude that ¢ € I only if |i/n — p| < b, +n~'. Now let n, € N so large so

that the open ball around p with radius b, + n=*

is contained in (pj,,pj,+1). Then, for
any n > n., we have i € [7* only if i € I,,,. That is, [/ C I,,, for any n > n..
In view of (1.59), for (1.58) it remains to show that there exists a constant C, > 0

such that

o (@)l € Cua’®) foralln >n,, i=1,...,n,r€N.

(1.60)
To prove (1.60), we set &, := 0¢ (G, )2, where dc,.,(G;,) is the dependence measure
of X,,; defined in (1.7), and split the left-hand side into two parts:

1 Lix, 0 00) (Th) — Lixs

TLZZ 77

11,0000 () = Lpx oo (@),
< s (@) = T o (@) Tx-x; <o,

(U0 (@) = Lixz o0 (@) L=z 500
= Sl(nazaxk‘a )+52(na7’7$k> ) (161)

For the first summand we have for any n > n,,i=1,...,n,and r € N

. < E| &

Si(n, 4, 28,7) < | L ja—s,<X, i <arro,) Lyix,—xz

n,i;i—rl—

e H 1/ 1 1/(20)
- ( / Frsw)du) ' < (206,)17 = (20)415,,(G,) VP (1.62)

k_a'r

—O0r>An,i>

with C := sup,,cy maxi<i<n || fnillco (recall assumption (A3)). Concerning the second
summand, we can apply Markov’s inequality to obtain

So(nyiyx,r) < | gx,xz. solle = PIXns = X | > 5] (1.63)
< <FE[|X anz 'r| }) = 5_ ||X anz 'r||q < 6€7T§Q(Gjp)1/2'
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By (A5) we may conclude from (1.61)-(1.63) that for any n > n,, i = 1,...,n, and
reN

H]I[Xn,i,oo)<xk) B H[X;,i;i_r,oo) (xk)Hq < (20)1/q él/q ar/(QQ) + éar/2
< ((20)1#151/61 + 5) a’! 29

This gives (1.60) with Cx, := 230 [\|((20)Y1CV1 + C). m
The following lemma involves the projection operator P, defined in (1.11).

Lemma 1.4.8 Let assumptions (A1), (A3), and (A5) be fulfilled. Let a € [0,1) and
q € (2,00) be as in (A5), and let X € RY be arbitrary. Then there exist constants
Cxg > 0 (depending on X and q) and n, € N such that for any x € R?, n > n,,
1=1,...,n, andr € N

1P (Yoi (. ) = V1 (@, 0) ||, < ok,w(i‘,fp’") gmatmnr}/Ca - (1.64)

nop

Proof Below we will show in two steps that the following two inequalities hold true:

||Pifr (Yn,i (:137 )‘> - Yn{;nn}(wa A)) Hq < 26}\,(1 H(i _;Pm) GT/(zq)a (165>
L gm0

— /0

||Pi*r (anl (w7 A) - YTL{,:,nn}(w7 A>) Hq S 26A7q H<Z — ZP’”) 1

1.66
o, (1.66)

for some constant Cy, > 0. Then (1.65)(1.66) imply (1.64) with Cx, := 2Cxq (1 —
g1/(20))-1

Step 1. We first show (1.65). We have
1P (Yoi (e, A) = Y, (@, ) ||
< [P (Y, M) g + 12— (V17 2, X))
= [P (Vi@ M) g + 1P B[V (2, N €si—m,]) g
= [Py (Y, M)lg + B[P (Yoi(, X)) € o
< 2| Py (Y, ) g, (1.67)

where we used the conditional Jensen inequality for the last step. For the third step we
used that

E[E[Yn,iki:i—mnﬂfi—j} = E[E[Yn,ilei:i—mn]|6i—j:i—mn} = E[Y..l€—ji—m.,]
E [E[Yn,ileifj] leifj:ifmn}
= E[E[Yn,ikifj”ei:ifmn] (168)
for all j € Ny (with the convention o(€; 1. ) := {0,Q} if i —j < i —m, + 1); for

(1.68) we used that the random variables ¢, k € Z, are independent.
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Further, note that E[Y,, ;(z, A)|€;—, 1] = E[Y,);, (2, A)|€;—r_1], because &;_, (which
is used for the definition of Y,, ;(x, X)) is independent of €;_,_; and may thus be replaced
by an independent identically distributed copy €*. By means of the conditional Jensen

inequality, we obtain analogously to the proof of Theorem 1(i) and (ii) in [76]

1P (Yai(x M)y = [[EVai(®, Nleis] = E[Y, -, (2 A€l ||,
= |[EYui(z, N)leimr] = E[Y, (2, M€, 5],
= [[E[Yai(@.A) = Yo (@ N)]e]]],
< WY, A) = Yo (2, Ao (1.69)

Now (1.67), (1.69), and Lemma 1.4.7 together imply (1.65).
Step 2. We now show (1.66). By the conditional Jensen inequality

1Pr (Y, A) = Y e, V)
< |[E[Yai(z,A) - Y{m”} (@, A)|ei ] ||, + |EYai(m, A) = V.0 @, M) eira] |,
< 2Vl A) = VI (@ V) g (1.70)

Since for every k € N

Yoi(®,A) = VI @A) = Vi@, A) — E[Yoi(@, A)|€im,]
E[Yn Z(w )‘)’ ] - E[Yn,i(w7>‘)‘€i:ifmn]
- E[Yn Z( )’ ]

—E Yn,z( ) )|€i:i—mn] + E[Yn,z(m7 A)|€i:i—mn—1]
Yo (@, N)|€imm,—1] + E[Yoi(®, A)|€1i—m, 2]

_E[Yn,i(my )\)|€z‘:z‘—mn—k] + E[Yn,i(wa A) |€i:z‘—mn—k—1]
_E[Yn,z(wa A)‘ei:ifmnfkfl]a

and limy 00 E[Y, i (2, A)|€1imm, —k—1] = E[Yn.i(2, A)|€;] P-a.s. (by Corollary 11.1.4 in [18];
see also Theorem 7.4.3 in [32]) we can write

Yoi(@,A) =V, (@, ) = i (B[ i@, Al€si-s] = E[Yai(@, A)lesi—j1]).
j=mn
Plugging this in (1.70) gives
WosleX) =V @A), = | 3 @ Al ]~ BV Ve 1) q
jut
< Z [E[Y,i (2, Al€ii—g] = B[V i(@, A€ ]|,
fut
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Z ||)/7lZ Z, A nm ](33 A)||117 (171>

Jj=mnp

where the last step is valid by the same line of arguments as in (1.69). By Lemma 1.4.7
combined with (1.70) and (1.71), we obtain

My, ~ — n
1P (Vas(e X) = K @ Al < 200, n(*et) > ol

J=mn

i— ip,n) a™mn/(29)
nby, 1 —al/9 "

This proves (1.66). O

S 26)\7(1 Ii(

Lemma 1.4.9 Let assumptions (A1), (A3), and (A5) be fulfilled. Let a € [0,1) and
q € (2,00) be as in (A5). Then for any A € R? and x € R?

H iym.( ZY{’""} — o((nbn)"?).
P
Proof Since
Yoi(®,A) = Y, (@, N)
= E[Yui(z, ) - Y7 (@, N)]€]
_ Ek: (]E [Voi(m, A) = VI (@, A)|e:,] — E[Yai(@, A) — VI (@, A) |ei_r_1}>
T:IE [Yoo(a, A) = Y, (@, M) €i1]
- ZB . — Y, N, X))

+E [V, A) — YJ;”%, A)|€iii]

holds for every k € N and limy_, E[Y,,;(x, A) — Yn{;n”}(a:,)\)|ei,k,1] = E[Y,.i(z,A) —
erv?l"}(m, A)] = 0 P-a.s. (by Corollary 11.1.4 in [18]), we obtain

| Z (Vasl. X) = ¥,17 (@) |

= HZZB e (Yaala, ) = Y, (a, X))

i=1 r=0 a

Z H Z P, — v @ )|

32
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(1.72)
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where the summands P, (Y, (z, X) — Yj;n”}(az,)\)) form a martingale difference se-
quence in ¢ with respect to o(€;_,). By Burkholder’s inequality (in the form of part (iii)
of Corollary 1.4.5), there exists a constant C; > 0 such that

ZHZR r JA) — Y{m"}(a; )\))
< i() (ZHR o (YVi(x, A) — y{mn}( A»Hj)
= Oqé)\,qz ama"{’?mn}/@q)(im(%)z) :

1=

where the last step is valid by Lemma 1.4.8. Since (nb,)~ ' >_1" | K(ZZLZi”)Q converges to

ﬁ1 k(u)?du =: ky as n — oo due to assumption (A1), we have

3130 P (Yot A) Y5 . 0)
r=0 =1
mp—1

< CCM(Z amn/2q+z /ﬁ 2 u + O(1 ))1/2

r=mpy

c, C)\q(m a™n /20 4 gmn/ (20 (1 1) (\/7) O(1))
< Rg Oy Oxg (my, + 1) (1 — aV/C0)=1 qme/CD (/b 1+ O(1)). (1.73)
(

Set Ch g i= +/Fz Cy Crg (1 — a/@9)=1. Then (1.72) and (1.73) imply

q

IN

< Cxg (my + 1) a™/D(\/nb, + O(1)).

q

H i (Yoi(z, X) — Y;,T"}(w, A))
=1

Thus lim,, e (nby,) 2| S0 (Yai(z, A) — Yi’in"}(m,)\))ﬂq = 0, because m,, = [log(n)]
tends to infinity as n — oo. O

Lemma 1.4.10 Let assumptions (A1), (A3), and (A5) be fulfilled. Let a € [0,1) and
q € (2,00) be as in (A5). Then for any X € R? and x € R? there exist constants
Cx,q > 0 (depending on A and q) and n. € N such that for n > n,

(D) (R (2, N2 < Cng iy (St men)® o 5 = 1 [n/s,].
(i) S R, N) (|8 < O 20t (|12 1, + O(1)) 2.
(iid) || S5 () Hj < Opg Z=lonzlod (5, — 1, + O(1)).
(iv) || S Rug(@, A) || < Ong22=te (1, + O(1)).
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Here R, ;(x, A) and r,, ;(x, X) are defined as in (1.50) and (1.51), respectively.

Proof (i): Let j € {1,...,[n/s,|}. For any k € N, we clearly have R, ;j(x,A) =
S Pyonsnts(Rug(@, X)) + E[R, (@, N)|€-1)s, k1) and therefore

2
q

In 5
[Bus(@ N7 < 2| D2 Plysues(Bos (@) |+ 2] BB Ve,
s=—k

l

S Cg Z H-P(j—l)sn—&—s (Rn,j(w) A)) Hz + 2HE[Rn,j(ma A)|€(j—1)sn—k—1]
s=—k

2
q’

where we used Burkholder’s inequality (in the form of Corollary 1.4.5(iii)) applied to
Since limy_,o0 E[Ry, j(, X)|€(j—1)s,—k-1] = E[R, ; (2, A)] = 0 P-a.s. by Corollary 11.1.4 in
[18], and the sequence (|E[R, j(2, A)|€(j—1)s,—k—1]|)ren is bounded by a finite constant
(this follows from the same property of the sequence (| R, ;j(x, A)|)ken), the dominated
convergence theorem ensures that the second summand of the bound above converges
to 0 as k — oo. It follows that || R, (z, A)|2 < C23°0 | Pyo1)s,ss(Bu (@, N)| 12,

S§=—00

and therefore
| Ry j(, A)||2

In In
< C‘? Z HZP(j—1)5n+5(Yj,?;z}nsnﬂ‘(w?A))

§=—00 =1

2

q

= 2HéP(j—nswzn—r(Yi@i}nsm(w"\)) z

= G i“ép vstir (Yol e X)) z

B > R T

- ¢ f; i:; B[Py 1ysuicr (Yoot (@ X)) €G-ttt |

< C;L gi ||P(j—1)sn+i—r (Yn,(j—l)sﬁi(wa )‘)H 2’ (1.74)

where the fourth step is valid by part (iii) of Corollary 1.4.5 applied to the martingale
difference sequence (P(j—l)anri—r(qu?(Zi}nsn Li(®,A)))i=1,...1,, the fifth step is valid by an
analogous argumentation as in (1.68), and the last step is ensured by the conditional
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Jensen inequality. By (1.69) and Lemma 1.4.7 we have for any n > n,

ZZHP] 1)sn+i— 'r (j l)sn—l-z(w )\))Hz

r=0 =1
S ZZ”Y (j— 1)3n+l Yy A) ] Dsp+i;(j—1)sp+i— r<m7A)HZ
r=0 i=1
—1 n_|_ ) n 2
< CMZWZ (v )Snbnl )
N ] zn s i N2
= Gy 2o (1.75)

i=1
with n, as in Lemma 1.4.7. Now (1.74) and (1.75) yield (i) with Cy, := 53\,(1 Cy(1—
al/q)—l
(ii): By assertion (i), we have for any n > n,
[n/sn]

Z (LERICI N

[n/sn]

< Z (CAqZ <( 1)8264;1'—@'},7”)2)(1/2

i=1

L(“””Mb” /ot (= 1)sn -+ —ip.n)/ (nby) a/2
- > i (nbn/ r(u)? du + 0(1)>

[(ip,nt+nbn—In)/sn+1]

l q/2
2 n

< X AL (sl o)

j:((z‘p,n—nbn)/sﬁu n

2 2nbn /2

< 02 20T ()2, + O(1)

n

where we used in the second step that the kernel function s has support on [—1, 1] (recall
(A1)) and we therefore sum over less than [n/s, | many summands.
(iii): For any k € N we have

[n/sn [n/sn]sn [n/sn] [n/sn]
Zrn]a:)\ Z (Zrn]w)\)—HE[Zran)\’ekl}
j=1 s=—k

where lim;HooI['E[z:y:"/f”1 Tnji(@, A)|€_k_1] = E[Ej{i/f”] i(®,A)] = 0 P-a.s. by Corol-
lary 11.1.4 in [18], and where (Ps(3_; 75,j(2, X)) s=—#
sequence. By the same application of Burkholder’s inequality as at the beginning of the

(n/sn]s, 15 @ martingale difference

.....
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proof of (i) we obtain

[n/sn] 9 fn/sn sn [n/sn]
H Zrn,j(w,)\)q < Z HP(ZTM:C)\>
7j=1 S=—00
oo [n/sn]
02 Z H Z P[n/sn] 1)sn— T‘(Tnj(m A))
00" [”/Sn]
02 Z H Z P] 1)sp—7 Tn](w A))

where the projections P;_1)s,—,(7n,;(x, X)) form again a martingale difference sequence
in j for fixed r. Due to part (iii) of Corollary 1.4.5

[n/sn] 2 oo [n/sn]
Y | < Y Y B V)]
j=1 r=sp j=1
oo [n/sn] sn )
- O‘? Z Z H Z P(j*1)3n+3n*7"(Ys,?;ri}l)snﬂ(w?}‘)) .

r=0 j=1  i=lp+1

oo [n/sn] Sn

Oj]l Z Z H Z P(j—1)8n+i—1“(Yn{,?;i}l)sn-n(wvA))

r=0 j=1 i=ln+1

2

q

Applying one more time Burkholder’s inequality (in form of Corollary 1.4.5 (iii)) to the

martingale difference sequence (P(j_l)an_T(YT;{Zﬁ}l)sn (@A) it 41,5, Yields
fn/su] )
DIEER
i=1 !

oo [n/sn]  sn
< Og Z Z Z HP(J'—l)SnH—?" Y{Zn}l)snﬂ(ma)‘))Hz
r=0 j=1 i=l,+1

o |—n/57b.| Sn

= G2 D0 D0 B[P narimr (Yamnssi (@ X)) [egnsusinsorioma ]|,

r=0 j=1 i=lp+1

oo [n/sn]  sn

< XY S 1Pt (Vg i@ V) [

r=0 j=1 i=lp+1

where the second step is valid by the same argumentation as in (1.68) and the third
step by the conditional Jensen inequality. By (1.69) and Lemma 1.4.7, we now obtain
for any n > n,

‘ [n/sn]
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oo [n/sn] s,

Cg Z Z Z HY (j—1) 8n+l )‘) - Y;(j—l)sn—i—i;(j—l)sn-i-i—r(wﬂ)‘) Hz

r=0 j=1 i=lp+1

IN

o] ’Vn/s’ﬂ—l Sn

., j—1) sn + 1=y \2
S YDMED DD (! )
j=1 i=l,+1 bn
L(p,ntmbn)/sn] (jsn—ipn)/(nbn)
. 1 J P,
= C°C}, —— (nbn/ K(u)? du—l—O(l))
I 7q 1- al/q Z ((G=1)sn+ln—ip,n)/(nbn)

J=1(ip,;n—nbn—ln)/sn+1]
1 L(ip,n'i‘”bn)/snj s —l
6 2 °n n
< ARtm X (e o)

J=1(ip,n—nbn—=ln)/sn+1]

< Oy, 2nb,, + 1, — s, (Sn V. (’)(1))

Sn

with Cx 4 := CF 53\7(1 (1 —a"?)~Y(||x||% + 1), where the third step is valid because  has
support on [—1,1]. This proves (iii).

(iv): The fourth assertion can be verified by the same steps as in the proof of (iii).

O

Remark 1.4.11 Recall I,, = [y/nb,] and s, = l,, + [(logn)?]. Thus if in addition to
(A1), (A3), (Ab) also condition (A2) holds true, then parts (iii) and (iv) of Lemma
1.4.10 imply

D3

respectively. In particular,

[n/sn] [n/sn]

= o(nby,) and H Z R,

= O(nb,), (1.76)

[n/sn]
H Zy{m”} (@, ) — Z R, — o(nby), (1.77)
because the left-hand side of (1.77) coincides with || Z][Z/f"] g (XX |2 <&

Lemma 1.4.12 Let m,, = [log(n)| and let assumptions (A1)-(A5) and (A9) be fulfilled.
Then for every @ = (z1,...,74) € RY and X := (A\1,...,\g) € R?
D) [Var[ S0, Yoa(m, A)] — Var[3r, Y @, X)]| = o(nby,).

i=1 " n,

(if) [Var[ 30, Y (@, N)] = Var[ 321 Ry (@, A)] | = o(nby).

(iii) Var[ 1" Ry (2, A)] = O(nby).
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(iv) limy,—e0 Var[c,v/nb, i Y,;{Z””}(w N = Var[ 30 MBy(a)].

Proof (i): Since E[>.", Y,.(z, A)] = 0 and E[3", V""" (@, A)] = 0, we have

i=1 " n,

n

Var Yoi(x, A)] — Var| Y{m"} (z, \)
var[ 3 > )
=1
- \HZW*H —HZY{’””}“H \
< HZYn,Z-(a:,A) —ZY{’”"} (2] (H @N)|,)
i—1 .

By Lemma 1.4.9, || >0, Y, (z,A) — >0, inn"}(a: A)ll2 = o((nb,)'/?). For the proof
of (i), it thus suffices to show that

|3 vte )], + [ v

for some ¢ € [2,00). We let ¢ be as in (A5). For the proof of (1.78), we note that
Y,i(x, A) and YTET”}(w,A) can be written as telescoping sums Y > P, (Y, (x, X))
and Y 7 P 7n(Y{T-""}(:I: A)), respectively, because we have limy_,o, E[Y, ;(x, X)|e_x] =
E[Y,.:(z,A)] = 0 P-as. and limy o0 E[Y,7") (2, A)]e_4] = E[Y,\7" (&, X)] = 0 P-as. by
Corollary 11.1.4 in [18]. Then

|3

’Vl’L

= O((nb,)'?) (1.78)

Y{mn}

n7,

Z H Z Py (Yoa(z, A) q
< G Y (X P asto ) H) +cz(ZHm v ))"

for some constant C; > 0, where we applied Burkholder’s inequality in the form of
Corollary 1.4.5(iii) to the martingale difference sequences (P' (Y{m”}(m, A)))iz1
(P (Yo, A))ic,..
IE[ ,_T(Ym(m,)\))km_mn] < NP (Yai(x, N))]l4 by the condltlonal Jensen mequallty,
we further obtain by means of (1.69) and Lemma 1.4.7

DRACRS
chi(ium :mu)

r=0 =1

IN

i— 'I‘

(z,\))

-----

Y{mn}

1/2
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[e.9]

szqzx;mnwx Vi @)
r=0
& — i\ 2\ 1/2
<20 Y (Ci,qar/q;f@(—i ) )
< 2C,Cx, Z@T/Qq (nb / K(u)? du+(’)(1)>1/2

for any n > n, (with n, as in Lemma 1.4.7). In view of ky := f_ll k(u)*du < oo, this
implies (1.78).
(ii): To prove the second assertion, we observe

[n/sn]

‘Var[ZY{m”} x A} Var[ > Rn,j(m,,\)H
IS renf-13
St - Wj;”Rm“ |,
(v

For g € (2,00) asin (A5) we have | S0, ¥, (&, \) =200 Ry (e, A) g = of(nba)'/?)
by (177), and | S0, ¥ (@, M)l 4] 020 Ry, Wy = O((b) 72) by (1.78) and
(1.76). Along with || - [|2 < || - ||, this gives assertion (ii).

(iii): The third assertion follows directly from

i (@A) Hz

IN

ni (@A) H2>

[n/sn] [n/sn] [n/sn]

Var| 3 Ry, 0)] = HZRM:I:AH <HZR

j=1

(for any ¢ € (2,00)) and (1.76).
(iv): For the proof of the fourth assertion we observe

Var[ MZY{m”} (x )\]

[Z ij"}(w, )\)} — Var [ Z Yoi(z, A)] ‘

i=1 i=1

+Var [cn\/n_bn 2": Y, i(x, )\)] :
i=1

< ci(nbn)
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The first summand converges to 0 as n — oo by part (i) and (1.12). For the second sum-
mand we have Var[c,v/nb, Y i Yni(z,A)] = Zk ! Zz L ANE| pn(xk)€p7n(xl)]. Thus
it converges to S0_ SO0 N v (i, 21) = Var[S20_, MeB,(2x)] as n — oo by Lemma
1.2.2. This finishes the proof. O

Lemma 1.4.13 Let assumptions (A1)-(A5) and (A9) be fulfilled. Then for any x =
(z1,...,24) € RT and X == (Ay,..., \g) € R with ZZ:1 ZL AN (Tk, ) # O there

exist constants cy > 0 and ng € N such that for any n > ng

[n/sn]
1
WVar[ 2 ij(a},)\)} > e (1.79)
]:
Proof Let z, A € R%. The limit lim,,_, Var[(nb,) /23" | Y, i(x, X)] exists and equals
S S NNk, ) (= Var[>2"_; AjBy(x;)] > 0) by Lemma 1.2.2. By assumption
the latter expression is distinct from zero, so that we can find constants ¢y > 0 and
ny € N such that %Var[zyﬂ Y,i(x,A)] > 4cy for any n > ny. Thus

dex < —Var[Zme)\] -

n,t

[n/sn [n/sn]

Z

IN

7Z’L

= Sl(na €T, A) + SQ(”v €T, A)

for any n > ny. For the first summand we have

Sl(na Z, A) S

Z v, ||

nz
q

f”/sﬂ

. HZY{W z,\) Z R,

for any g € [2,00). Letting ¢ € (2,00) be as in (A5), Lemma 1.4.9 and (1.77) en-
sure that both summands on the right-hand side of (1.80) converge to 0 as n — oc.

(1.80)

Therefore, we can find ny > ny such that 2cx < Sy(n;x, A) for any n > ngy. Since
Var[zf”/sﬂ Roy(a, X)) = || 21T Ry (2, A3, this gives (1.79). 0

Auxiliary results for the proof of assumption (b) in Theorem 1.4.1

Choose v € (2X\ + 1,00) in such a way that condition (A3) is fulfilled. Moreover let
g€ 2,0y =1/,
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Lemma 1.4.14 Let assumptions (A1)-(A2) and (A6) be fulfilled. Then there exist
constants Cy 4,Ca4 > 0 and n, € N such that for any x,y € R with v <y and n > n,

| Hpn(y) — Hp,n(x)Hg

< Cg(nby)™"? ( >k (Z ;sz:n ) min{qA}(IP’ [X,: <y] —P[X,; < 2] )min{m/q}) max{1,q/4}

+Coy(y — a:)(q2)/2/ max Ifn.i(u, € 1)Hq/2 du (1 + O((nbn)’qm)). (1.81)

1€1y,

Proof For notational simplicity we set d,,;(z,y) = e E[L{z<x, <y}|€i-1]
for z,y € R with z < y and ¢ = 1,...,n. Since m(”#)dn,i(x,y) form a martingale
difference sequence in 7, we may apply Burkholder s inequality (in the form of part (ii)

of Corollary 1.4.5) to obtain

[ Hpn(y) = Hpn(2) [

- (| Se

Q)q/Z
q

Tl

a( ~2 z—zp,n>2 ‘ 9 )(1/2
< (cnv/nby) < ol 2 /@( b dn,i(z,y) o2
- n i — i) 2 q/2
< 221Gl (eny/nby)" zzjn( ) (il ) ~ Eldus(ry)leca])||
/2-1 a|| L —lpn)? A o ||7?
+29271C8 (/i) §“< 0 ) Eldni(z, y)lei 1] o
B (eu /) (Si(0,2,0) + Sl 0) (152)
We note that /i(%)Q(alm(yc,y)2 — E[d,i(z,y)?|€;—1]) in the first summand form a

martingale difference sequence in i. Applying Burkholder’s inequality in the form of
part (iii) of Corollary 1.4.5 yields

min{q/z,z})q/<2mm{q/z,2}>

q/2

= > o ;zf:’")z(wwz — Eldni(w,y)’]€i1])

42 n i~ dpn\2 ) ) min{q/2,2}\ max{1,q/4}
< (X (552) @itew = Bidustwslec)|| )
W2 (N~ (G \ MO0y
= Cq/2<2m< nb > 2
i=1 n
min{q/2,2} min{q/2,2} Y\ max{l.a/4}
Al )2 255 2+ |[Eldn i, y)2le ][5 }) .
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Cq/2 < Z . (Z —lpn ) min{Qy4}2min{Q/2,2} Hdn,i<$, y)g‘ min{q/gz}) max{1,q/4}

IN

a/2 — nb,, a/2
— /2 & 1 —1 N min{g,4} min{q,4} max{1,q/4}
- 2q/20§/2< H(—nb: ) [EARTED] ) : (1.83)
i=1

Z}i;{q/lz} < ||dni(, y)ZHZ}i;{q/Q’Q} (ensured by the con-

ditional Jensen inequality) for the second-last step. By the conditional Jensen inequality

where we used ||E[d, :(z,y)?|€1]]

it )l < 2 (L, 150+ B [L e, cclei] I 0)

IN

2min{q,4} H H{Z<Xn7,-§y} Hf]nin{qA} — 2min{q,4}E [| 1{1‘<Xn7i§y} H min{1,4/q}
omin{g,4} (IP’ [Xm‘ < y} _P [Xn,i < x] )min{l,‘l/q}‘

Thus, in view of (1.83),

2021 CF (en/nbn)" S1(n, @, y) (1.84)
< Oy )2 (2 () N, < ) B[ <))

1=

with Cy 4 = 2271 CY Cg//;Cq for some suitable constant C' > 0 (such that ¢,v/nb, <
C(nb,) V%, recall (1.12)).
For the second summand, we expand d,, ;(x,y)? and obtain

Ui 2 »
82<n7w7y) - ” ZK/( nbp’ > ]E[]]—{x<Xn7i§y}|€i_1:|(1 — E[]]'{I<Xn,i§y}|6i—l]) o
—1 n
—lipn a/2
S H Z ( ) []]'{z<X7L,i§y}|€i—1] q/2-

By assumption (A6), Holder inequality, and Fubini’s theorem we can conclude that for
any n > n, (with n, as in the proof of Lemma 1.4.7)

So(n,z,y) = H/ Z Zp") fri(u, €i1) du

q/2

q/2

I , — 1 2 /2 2/q1q/2
— (g—2)/ L Lpn ' ' q
< H(y x)\ q(/ﬁE Zl/@( b ) Fr.i(u, €-1) du) o
q/2
= (y—z) @2 < zpn> e )| du
q/2
< q 2)/2 q/2d
< - <Z ( > }g%§||fn7j(u7€j—l)|lq/2> u.
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By (A1) we have lim,, oo (nb,) "' >0, p(Slen)2 — f_ll k(u)? du =: Ky, and (1.12) implies

nby,

(nb,)¥? < C’(cm/nbn)_q for some constant C' > 0. Thus

SQ(na x, y)

@22 [° L (u)? v
< (=02 [ (b [ w0 dus O(D) max (€2 d

1

IN

Yy
90/2-10/% () _ 1)(a=2)/? ((nb,)"? + O(1)) max |I§.5 (e, ej_1)||gg du
T n;p

IN

2Q/2_1/<g/20 (y — x)a=2/2 (cn nbn)fq(l + O((nbn)_qﬂ))
Y
q/2
| max 1§15 (w, €5-1) |1 du

Along with (1.82) and (1.84) this implies (1.81) with Cy, := 2‘1_2;@%/26’03. O

Lemma 1.4.15 There exists a constant Cy > 0 such that for any x € R and n € N

q/2

Hynl)l < Calen/mb) | S0 m(Em) B, < a0 (1 - LX< 2]) )

nb,
(1.85)
In particular, if conditions (A1)-(A3) hold true, sup,cy Y poq 27| Hpn (29) |2 < 0.

1=

Proof For any x € Rand n € N

[ Hpn (@) (1.86)

= (o (| () (o) Blt )}
i=1 "
< e (230 n( ) 1 o) — B[, e )"

nb
i=1 n

< Cf (ca/nba)" (Z (" ;JP)QE (106000 &) ~ B[1px, o @leii] ] )

1=

where we used Burkholder’s inequality in the form of part (iii) of Corollary 1.4.5 for
the first < (note that (k(=2*)(1{z<x,. <yt — E[L{z<x,.<y}|€i-1]))i=1,..,n is a martingale

nby, /\TWESAniSYy T [ TAE<An i SYp It 1=

difference sequence) and [1x, , o)(z) —E[l(x, , o) (z)|€i-1]| < 1 for the second <. By the

tower property of the conditional expectation and Jensen’s inequality we further obtain

E[|16x,00(#) = E[Lix, o0y @lei-a] ]

- E[E[H?Xn,i,m)(l')ki—l} —]E[ﬂ[xn,i,oo)(:vﬂei_l} 2]
< B[l o0@)] = E[Lp, oo (@)]? = P[Xas < 2] (1 PXos < 2]).
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In view of (1.86), this proves (1.85).
For the proof of the second assertion, we observe that by (1.85)

> 2 [ H,n (2]
k=1
< Cf (cn\/nbn)q Z 2’“1)‘{ Z
k=1 i=1

= o (Cn /_nbn)q i 2kq)\{ Xn: /<; Zp, / foily 2/q}q/2.
k=1 '

Since M := sup,,cy Maxi<i<n || frill(y) < 00 by assumption (A3), we have

Z qu)\”Hp,n(Qk) HZ
k=1

< M S (S e

x

() 1 - plx, < 277}

= =1
< (v =1 MC eav/nb)" (n, / i) du+ 0(1)" Y26 (2)
k=1
< 2‘7/2_1(7 — 1)_1MC':]1 (Cnnbn)q(lig + (’)((nbn)_Q/Q)) Z ok(aA=y+1)
k=1

with ko = [ k(u)? du < oo (recall assumption (A1)). The latter expression is bounded
above uniformly in n € N since Y 50 | 28(@ =7+ < o0 (note that g\ — v+ 1 < 0 by our
assumptions on v, A, ¢) and ¢,nb, = O(1) by (1.12). O

Lemma 1.4.16 Let v, := q/2 —max{1, ¢/4} and let assumptions (A1)-(A3) and (AG6)
be fulfilled. Then there exist constants Cy 4, Ca 4 > 0 and n, € N such that for any v € R,
y >0, andn > n,

E[ sup |Hpn(z +s) — Hp,n(‘r)|qi|

0<s<y

ZEIn P

< Chg(nb,) ™ (1 + log(nb,))* (1 + O((nb,)~mxtha/at)) / w max f,;(u) du

T+y
1 (Cay + O((nby) ) )yo/>! / max [f,.i(u. €i1)||")3 du. (1.87)

n;p

Proof Let d, := 1+ [glog(nb,)/((q¢ —2)1log(2))] and h, = h,(y) := y2~% for n € N
and y > 0; the particular choice of d,, will be used only in the last step of the proof (see
(1.90) below). By the monotonicity of the involved indicator functions,

(Lixpi00) (@ + 8) = ELix, 100 (@ + 8)|€i-1]) = (Ljxii00) (@) — E[Lx, 1 00)(@)]€i21])

44



< (IL[XM-,OO) (x4 hnls/hn +1]) — E[B[Xn,i,OO) (@ + hnls/hn + 1J)|€i—1]>
_(H[Xnﬂ,oo) (l’) - E[H[Xn,i,m)<x)|€i—1])
H(E L, (& + L5+ 1) ei1] — E[Lx, o5 + L/ les1])

and

(Lix, 00 (@ +8) = E[Lix, .00 (@ + 8)|€1]) — (Lx,100) (@) — E[L[x,, ;.00 (2)|€i-1])
> (U0 (@ hals/ha)) ~ ElLix, o) (@ + hals/ha)leima])
(I i00) (%) — E[Lix, ;.00) () |€i-1])
~(E[Lpx, ,00/(@ + huls/h + 1])]€i-1] = ElLpx, , 00)(2 + huls/hu])l€i-1])

for any x € R and s > 0. Thus

’ (E[Xn’i,oo)(x +5) = E[l[x,, ;,00) (T + 3)\61-,1]) — (H[Xn7i7oo)($) —E[1x,..00) (a:)|ei,1]) }
< | (Uxys00) (@ 4 |8/ 0 + 1)) = E[lx,, , 00) (€ + b | 5/hn + 1])]€:1])
- (1[Xn,i700) (z) — E[H[Xn,iyoo)(xﬂeifl]) ‘
| (Lt 00 (@ + Pl 5/ ]) = BlI(x, 000 (@ + hn |5/ R ] )|€1])
—(Lix, 1000 (®) = ELix,, ; 00y (%) €51]) |
(B ) (@ P/ + 1)) €i1] = Bl (5, o0z + Fon 5/ ei 1)

for any x € R and s > 0. It immediately follows that for any x € R, y > 0, and n € N
E[ sup |Hpn(z + s) — prn(x)ﬂ
0<s<y

< 3R] sup [Hy (ot hls/hy + 1)) — Hy (o)

0<s<y

43771 E[ sup |Hpp (2 + ho|s/hn)) — Hypn() H + 3471 E[ max ij(x)q]

0<s<y j<24n

. qfl . _ q CI71 . q
< 23 E[]Hggdi |Hp (x4 jhn) — Hyu(2)] } +3 E[;Egji By j(x) }

= 237181 (n,2,y) + 37 S5(n, x,y) (1.88)

with

B, (1) = cnmi H(z‘ ;z:pn>
=1 n

(B[, 00 (7 + jhn)€im1] = E[Lpx,, o0 (@ + (7 = Dhn)|€i-1]).

On the one hand, for any n > n, (with n, as in the proof of Lemma 1.4.7)
Sl (nv X, y) (189>
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mll} ")

[\
——
@m
3
=
_l’_
N
3
D‘
g
s
s
_l’_
l\g

)*q/2

— min{q,4} z+2"mhn min{1,4/¢}\ max{1,q/4}
i zp,n> ( / Fralu) du) >

i—1 nbn 427 (m—1)hnp
z+2"mhy,

~ 1/q\ q
+ Gy (2h) (14 O((nb) ) | mas F, (. ) [2 du} )

427 (m—1)hn i€In;p

~ n ) — 1 min{q,4}\ max{1,q/4} a+2% hn,
Crglnb) (3 w(*—21) ) / ni(u)d
(Z{ 1.9(1bn) ;H b j max fr,i(w) du

r=0

(VAN
/N
/—/H

9

~~
X
-

IN

~ 2)/2 2 v hn /2 L/aya
+ Gy, (QThn)(q_ )/ (1 + (’)((nbn)—Q/ ))/ z‘IgIaX ||§i (e, ei—1>||g/2 du} )

z+424np,,

< i {51’(] (nbn)‘q/2 ( z:; H(z’ ;Z‘:n>min{q,4}>max{1,q/4} / gl;i?; fo) du}l/q

r=0 x

dn
+ Z or(g—2)/(2q)
r=0
z+29nh,

~ _ _ 1/q\4q
'{02,qh$zq 2)/2(1+O((nbn) q/2>)/ max . (us 61‘—1)“3@ du} )

T 1&in;p

IN

IN

1
20711 G (nb,) (b, / ()™ ™01} gy 1 O(1)

-1

z+24nh,
. / max f,;(u) du

1€1n;p

)max{l,q/4}

+ 20710y (20072/Ca) _ qy=a (a1, YD1 L O((nb,) %))

z4+24np, /2
' /x nax 1§ (0, € 1)”3/2 du

an

IN

90~1 gmaxtha/4=1 G (nb,)""4(1 + log(nb,))?

T+y
.(Cq+@<(nbn)—max{1,q/4}))/ max fm( )du

1€1In;p
~ 24—1 9(¢—2)/2
O D — 1y

Tty
(1 i O((nbn)fq/Q)) y(q2)/2/ max || (u, (—:i,l)Hgg du
z 1&in;p

with C, = (f_ll k() mindadt gy )maxtla/tt < oo (recall (A1)), where we used Proposition
1(i) in [77] (for the first step), Lemma 1.4.14 (for the second step), and the choice of d,,
and h,, (for the last step).

On the other hand, for the second summand in (1.88) we obtain for any n > n,
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(with n, as in the proof of Lemma 1.4.7)

52<n7 z, y)

<

IN

IN

IN

IN

<

2dn 9dn
> E[B,;(x) ZE )2 B, ;(x)""?]

j=1

o W%E{{%z (e >}{z<—>

N(E[1x, .00 (@ + jhn)|€i-1] = E[l[x, 00 (@ + (j — 1)hn>’€i_1])}q/2}
o Selfe ()

N(E[1x, .00 (@ + jhn)|€i-1] = E[l[x, ;00 (@ + (j — 1)hn>’€i_1])}q/2}
my ([ ()]
(canby )9/ i[@[({ / T e du}("‘z)/ ‘

o j=1 x+(5—1)

U )"
(Cnnbn)q/zh;q—w i /xﬂh HZ ( an)fnz( U, €1)
j=

z+429np n . :
" i —pn a/2
(cnnbn)q/Qh?/Ql/ ( E /€< nbp7 )||fm(lb, eifl)Hq/?) du

1=

z+24nh, /o
(a0 [ e ) du
z n;p

Tty
9~ dn(a/2=1) (np,, )4/2 gya/2=1 / Hax [[Fn,i (1, €i-1) ||Q/2 du

1&in;p

T4y
_ 2
= / e [ (1, €1)|1 2 (1.90)
T 1&dn;p

where we used Holder’s inequality (for the sixth step), Fubini’s theorem (for the seventh
step), hn, = y2~% (for the second-last step), and 2-%(@/2=1)(np,)9/2 < 1 (for the last
step). Now (1. 88) (1.89), and (1.90) imply (1.87) with Gy, 1= 20392(472)/2(20=2)/C0) —

) qCQq and Cl

_ 2q+max{l q/4}— 13q0 Ol "

Lemma 1.4.17 Let assumptions (A1)-(A3), (A6), and (A7) be fulfilled. Then the

following assertions hold.
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(i) SupneNE[SupzeR |Hp,n($)|q¢q>\(x)] < Q.
(ii) limy oo supneNP[sup|x|2w |Hp ()| r(z) > 6] =0 for all 6 > 0.

(iii) For every e > 0, 6 > 0, and w > 0 there exist a number m € N and a par-
tition —w = x9g < 1 < -+ < Ty = w of the interval [—w,w| such that
lim Supn—mop[maxlgigm Supme[gji,x”l) }Hp, ( >¢)\( ) pn(xz)¢A(xz)| > 5] <e€

Proof (i): We will only prove sup,cy E[sup,q [Hpn(2)|?0gr(7)] < co. The analogue
with x < 0 can be proven in the same way. We have

E | sup |y ()60 (2)] (1.91)
< il@[ S [Hyn(e) 607 (2) | + B sup | Hyn(0)"600()]

< qu(wE[ D (Fy(z) = Hy (2] ()]

k k1)
k=1 €2k 2k+

+iE[ sup \Hp,n(Qk)\q%)\(x)]) + 3q}‘E[ sup ’Hp,n@)’q}

1 x€[2k 2k+1) z€[0,2)

—: 2071(8)(n) + Sa(n)) + 37 S4(n).

It suffices to prove sup,,cy Si(n) < oo for i = 1,2,3. For the first summand we have for
every n > n, (with n, as in Lemma 1.4.7)

Sl(n)

o0

< ZE[ sup ,Hp’n(x)—Hp,n(zk),q(zm)qx}

k=1 I€[2k,2k+l)

]
< 22(1)\ Z 2]“1)\E|: sup |Hp,n<x> - Hp,n<2k) |qi|
$€[2k72k+1)
S 22(1)\ Cl,q
ok—+1

-(nby) 7" (1 + log(nby,))? (1 + O((nbn)_max{l’q/4})) Z 2’“‘”/ max fy,;(u) du

ok 1€1In;p

2k+1

4227 (Caq + O((nbn)_q/z)) Z okarghk(a/2=1) / max Hfm(u € 1)||q/ du
k=1 2

k i€1ln; a/2

o0

924 CLq(nbn)qu(l + 1Og(nbn>>q(1 + O((nbn)fmax{l,q/él})) Z 9k (ﬁfq)\(Qk)

k=1

IA

2k+1

[ e fumon ) du -+ 227 (Coy + O((0) )
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2k+1

- 2
: Z ok(gA—14q/2) ¢—qA+1—q/2(2k) /k max [Ifn.i(w, €i-1) ||Z§2 Pgr—1-+q/2(w) du
k=1 2

nip

< 200y (nba) (1 + log(nb))7 (1 + O((nb)” ™00 [ max foi(u) dyau) du

2 leln 5P

L2 (Cy, + O((nb,) ) / max [ (4, €-1) 123 6gr 1 vq/2(1) du

Enp

< 22AMCy, (nb,) ™ (14 log(nby))? (1 + O((nbn)_max{l’q/4})) / Par— (1) du

o0

+ 92 (027(1 + O((nbn>_q/2)) igg Zréllgi}i ||fnz(u €;_ 1)||q/2 gbq/\ 1+q/2< ) du
with M := sup,cymaxer,, || fill(), where we used Lemma 1.4.16 (with z := 2" and
y := 2¥) for the second step. The latter expression is bounded in n, because M < oo
by (A3), limy, o0 (nby) ™ log(nb,)? = 0, [5° Ggr—r(u) du < oo (since gA — v < —1 by
q < (y—1)/A) and assumption (A7) holds. Hence, sup,,cyS1(n) < oc.

For the second summand we have Sy(n) < 3.7 Elsup,cjor gre1y [ Hpn(2°)]%(2]2])9] <
2200y 2KA|H,,(27)(|2. This expression is bounded above in n by the second asser-
tion in Lemma 1.4.15.

For the third summand, we obtain by Lemma 1.4.15 (assertion (1.85)) and Lemma
1.4.16 (with z := 0 and y := 2) that for any n > n,

Sg(ﬂ)
< 2] sup [Hy(2) = Hyn(O)7] + 207 Hyn(0)2
z€[0,2)
< 29710y g (nby) (1 + log(nby))* (1+ O((nby) ™)) [ max £, :(u) du

0 ’Leln 3P
2

#2771 (Cag = O((0bn) )22 | max[[o(u, €-0)]375 du

0 &inp

+2971C4 (cp/nby)"* ( i Fb(i ;bip,n>2>q/2

1=

IN

29MCy 4(nby,) (1 4+ log(nbn))q(l + O((nbn)fmax{l,q/zl}))
+ 23‘1/2_2]\7((]2’(] + O((nbn)_Q/Q)) + 90 19a/2-1 o (cnnbn) (K3 a/2 | O((nb )—q/2))7

with M := sup,,cy maXier,., || filloo, IV = SUp,en f02 maX;er,., ||fn7i(u,ei_1)\|Z§2 du, and
Ko := fjl k(u)? du. Now ky, M, and N are finite by (A1), (A3), and (A7), respectively.
Moreover, lim,,_,o(nb,) "7 log(nb,)? = 0 and sup,,cy ¢,nb, < 0o by (1.12). Thus Ss(n)
is bounded above in n. This finishes the proof of (i).

(ii): We first observe that for w > 2

E[ sup \Hp,n(m)\q%(x)] (1.92)

|z|>w
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S 2q—1 Z E|: sup |Hp,n<l’) _ Hp,n<2k)|q qux(l')]
k=|logy(w)| z€[2k 2k +1)U(—2k+1 _2k]
+ 2‘1—1 Z E [ sup |Hp,n(2k) |q %A (m)]
k=|logs(w)| ze[2k 2k+1)U(—2k+1 —2k]
< 2q_122q/\ Z quAE[ sup ’Hp7n<x) _ Hp,n<2k)’q:|
k=/logy(w)] wE[2k 2k H1)U(—2k+1, —2K)
+ 2‘1*122% Z 2kq/\ ||Hp,n(2k> ||q
k=|logy(w)]

< 2‘1—122q>\MCLq (nbn)—uq (1 + log(nbn))Q(l + O((nbn)—max{l,q/4}))

’ / Pgr— (1) du
{lu[>w}

+20712°P (o + O((nby) ) / max [|f,;(u, eH)HZfS Par—14q/2(u) du
{ju[>w} 1€ np

+20712200202 7 (o — )T MCY (cunby)? (k2 + O((nby)™9/%)) Y K@D
k=|logy(w)]
for some constants C 4, k2, Cq, Ca g > 0 and M := sup, oy MaXi<i<y || fnill(7), Which can
be shown by using the same arguments as in the proof of (i) and the proof of the second
assertion in Lemma 1.4.15. By Markov’s inequality and (1.92), we obtain for any w > 2

SupP | sup |Hy(@)|6a(x) 2 0]

neN  Ljz>w
1
< sup | sup |Hy(2) %60 (7)|
neN 07 Lig>w
1
g _qQQ—122q)\MCLq / ¢q/\7’y(u) du
0 {lulzw}
. Sug {(nbn>*l/q (1 + 1Og(nbn>>4(1 + O((nbn)fmax{l,qﬂ}))}
ne
1
= 9q—1092qX
—|—5q2 2

. sup {(cg,q +O((nb,)""2)) / et [[fi(ts €127 Ggrcirgp () du}

neN {Ju|>w} 1€ln;p

L a—162q0 /2—1 -1 = E(gA—y+1)
+ = 2071221 (y — 1) M > ke
k=|logy (w)]
- sup {(cnnbn)q (ko + O((nbn)_q/2)) } (1.93)
neN

Now M < oo (by (A3)), sup,cn(nb,) " log(nb,)? < oo, and sup,cyn(c,nb,)? < oo (by
(112)) Along with (A?)7 f{IuIZw} gbq)\_,y(u) du < 00, and Zzo:LlogQ(w)J 2]6((1)\*’74*1) < 00
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(note that g\ —vy+1 < 0), we can conclude that the right-hand side of (1.93) converges

to 0 as w — oo.
(iii): Let €,,w > 0 be fixed. For the moment let also z € (0,1) be fixed (it will be
specified later on). By the subadditivity of P, it suffices to show that
Lw/z]
lim sup Z P sup | Hpn(2)oa(2) — Hpp(j2)or(j2)| > (5} <e (1.94)

no00 L Ywrzf—1 @€+

By Markov’s inequality

lw/z]
limsup > P| sup |Hpa(@)ér(®) = Hpaliz)oa(iz)] = 4] (1.95)
n—00 j=—|w/z|—1 2€[jz,(j+1)z]
Lw/z]
< 4§79 limsup Z E sup | Hpn(2)or(2) — Hpn(2)0r(j2)|" }
n—o00 j=—lw/z) -1 z€[jz,(5+1)z]
S Ow,)\,q(;_q
[w/z]
lim sup Z (E sup |prn(:c) — prn(jz)‘q] + qu[sup \Hp7n(u)|qD
n—00 j=—lw/z]—1 z€[jz,(j+1)z] ueR

with Cyag = 29752 + w)*(X\ + 1), where we used in the second step that for all
x € [jz, (j+1)z] with j € {—|w/z| —1,...,|w/z]|} we have

’Hpn ¢A( ) pn ]Z ¢)\ .]Z)‘q

< 297 (Hp pnﬂz)) L+ |2 + 297 Hpn (2) (1 + |2))* = (1 + [52)Y) |

< » 1<2+wkq| — HyuG)|" + 207 sup Hyo )"+ [ A0+ o) ]
u€ER jz

< 21" 1(2—|—w>‘q| —H,,(j )‘q+Qq_l)\q(Q—l—w)‘I(/\_l)zqsup|Hp7n(u)|q.

u€eR

Applying Lemma 1.4.16 with a := jz and b := z (recall that z € (0,1)) yields for any
n > N

lw/z]
SB[ swp [Hy(e) - Hyli2)|']
j=—|w/z]—1 z€[jz,(j+1)7]

< Cug (nby) (1 + log(nby)) (1 + O((nby)~m=tharth))

Wizl e
TLZ d
> /j o max fu(u)du

j==lw/zl-1
Lw/z] (+1)2
~q/2 q/2-1 , Y24
H(Cagt O((ub) ) 30 [T )2 du
j==lw/z)=1 ”
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w+1

< Ch4(nb,)™" (14 log(nb,))? (1+O((nbn)_max{l’q/4}))/ max fri(w) du
—1 "Sdnp
Lw/zJ 1)z
+(02,q + O((nbn)*Q/Q)) Zq/271 / IélIaX anz(u €;_ 1)“2?3 du
i=lw/zj1 77

IN

(2w + 2)MC4 4(nb,) " (1 4 log(nb,))? (1 4 O((nbn)—maX{LqM}))
N (Co g + O((nb,)~4?)) 29/~

. w—+1
with N := sup,,cy [ maxier,,, ||fui(u, ei_1)||q/ duand M := sup, cy maxier,, || fillco-
Since the constants N and M are finite by assumptions (A7) and (A3), respectively, and
lim,, oo (nb,,) "4 log(nb,)? = 0, this and (1.95) together imply

Lw/z]
lmsup D" P| s |Hyu(@)oa@) = Hyaliz)oalz)]| = 0|

n—00 j=—|w/z|—1 z€ljz,(j+1)7]

1 1
< QC’w,,\qﬁ NC2,qzq/2_1+C’w7,\,qE(2L J+2>zqsupE[sup|Hpn( )| }

neN u€ER

1 1
< Cruwp, a5, 2771 4 Cowngsz 20 !

94 54
with Coprg = Curg(2w + 2) sup,ey Elsup,er [Hpn( u){q (which is finite by (i)) and
Cruwrg = 20, 1¢NC2,. Now we may choose z (€ (0,1)) so small so that the latter
bound is < e. This proves (1.94). O

Lemma 1.4.18 Let assumptions (A1)—(A2) be fulfilled. Then there exist constants C' >
0 and n, € N such that for any v € R, n > n,, A € B(R), and (B(R) @ B(R)*N, B(R))-
measurable maps Sp; RxRY - R (meN,i=1,...,n)

/H%MZ ( an) Sni(z,€) —E[S,i(x, € )Hgd)v }/2

1/2
< C(l—i—@((nbn)flm maX/HB +(Sni(z, €) || ou(x } )

el

Proof Since limy_,oo E[S, (7, €)|€i—k—1] = E[S,.i(x, €;)] P-a.s. by Corollary 11.1.4 in
[18], we may write S, ;(z,€;) — E[S,.i(x,€)] = ZT o Pimr(Sn,i(x,€;)). Thus, letting
A =A(n,v) = {maXzEInp fA | Pizr( m(x 61))” (T )dx}l/Qa

\/nTZ ¢ “’") (Snile,€) ~ BlSui(x, )| outr) dr
= Ci(nbn)/AH;;“(%)B—T(SM(%Q))Hz%(x)dx

52




- con [5G S ) o
< ) [ E[(iA)(iAi{ ‘n () P (S ) } )| o(o) ds

= ci(nbn)(iflr) i ALT /A H i /g(i ;;:m)Pir (Sm-(x, ez)) z (x) dx
1

= /nernﬂm>um

IA
2
SON
)
S

=
WE
=
N——
WE

&

??

(1.96)

for some constant C5 > 0, where used Holder’s inequality for the third step and
Burkholder’s inequality (in form of Corollary 1.4.5 (iii)) applied to the martingale dif-
ference sequence (n(%)H,T(SM(x, €i)))iz1
and the definition of A,

S () [ ISt
< (nbn/_l k() du + O(1) iA— ax/HBr Sni(z,€))|[; @0 (x

1

n for the last step. By assumption (A1)

.....

< nb@—i—@ ZA

for any n > n, (with n. as in Lemma 1.4.7), where #y = [*, #(u)>du < oco. Since

2(nb,) < C(nb,)™* for some constant C' > 0 by (1.12), we may conclude in view of
(1.96)

ear/ b Z ( Zp")(sn,i(az,ei)—E[sn,i(z,ei)])z (z) d

< Wu+owm>w(m > {mps [ 1P (St e fonta) e} )

—o 1€1np

with C':= (ko 6)1/202. O

Lemma 1.4.19 Let assumptions (A1)-(A2) and (A8) be fulfilled. Then the following
assertions hold.

(1) SuanNE[SupzeR |Qp,n(l‘)|2¢2>\(mﬂ < 0.

(i) limy oo SupneNP[sup|m|2w |Qpn(2)|dr(z) > 6] =0 for all 6 > 0.
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(iii) For every e > 0, § > 0, and w > 0 there exist a number m € N and a par-
tition —w = x9g < 1 < -+ < Ty = w of the interval [—w,w| such that
lim Supn—mop[maxlgigm Supxe[gyi,mi+1) }me(x)(b,\(l') - Qp,n(xz)(b)\(xz)‘ > 6} <e

Proof (i): Let w > 0 and « € [0,1]. By Lemma 1 in [78] and Fubini’s theorem, we
obtain

B[ sup [Qpa()om(@)]

|z|>w
< G [ QB s+ Cra [
{ly|zw} {ly|zw}

for some positive constant C) , depending on A and a. Applying Lemma 1.4.18 with
Sni(z,€) = Fni(r,€-1), v :i= 2\ —a and S,,(x,€) = foi(z,€-1), v = 2)\ + a,
respectively, yields for every n > n, (with n, as in Lemma 1.4.7)

1/2
1@ ()13 Gasa() dy }

| su IQp,n(x)Pczﬁm(w)] -

|z|2w

o0

12 ) 1/2
< aie+ ol ™) (3 {m [ IR sty ) B daralw) dy
—o = imr J{y|>w}

o ) 1/2
+3° { max / 1P sy e brrcalw)dy} )
o - e J{lylzw)

Note that || Pi—(Fni(y, €-1))]|5 = 0 and || Pi—,(fni(y, €:i-1))||3 = 0 for » = 0. By the
same arguments as in (1.69) we now obtain

| sup [Qpa(0)om(@)]

|| >w

< CYIC(1+O((nb,) ™)

1/2
max [ Bl €)= Byl 1l oor-al) dy
{ly[zw}

{
o3 [ st e e} )

[e.9]

< 2o+ 0((mb) ™) (sup Y- { max /{| Oer12(Enis ) Gr-a(y) d?f}w
y|>w

1E€Ly,
neN —1 n;p

+ SUPZ { max /| - 53,T_1;2(fn,i; Y) P2rtaly) dy}1/2>. (1.97)

TLEN Zefnp

In view of assumption (A8), we arrive at (i) by setting w := 0.
(ii): By Markov’s inequality, we have for any n > n,

Sup P | sup [Qpn () 2() 2 9|

neN |z|>w

o4



1
< 2
< sup 5 B[ sup [Qpal0) @A(a:)}
1 o 1/2
< 0y ,C?= su 1+ 0O(( max/ (52r_A n.il _a(y)d
A, 52 neg{( ;{ielmp tisup 1,2(3:, Y) Por—a(y) y}

+ (1 T O<(nb”)_1)) Z { gﬁx /{I | }63,“;2(%,1-; y) ¢2/\+a<y) dy}l/z}z,
r=1 P y|>w

where the second step is valid by the same line of arguments as in (i). By assumption
(A8) the latter bound tends to 0 as w — co.

(iii): Let €,6,w > 0 be fixed. Analogously to the proof of Lemma 1.4.17(iii), let
z € (0,1) be fixed for the moment. By the subadditivity of P, it suffices to show that

lw/z]
lim sup E P sup |Qpn oa(z) — Qp,n(jz)@(jz)‘ > (5] <e  (1.98)
n—00 j=—|w/z] -1 z€[jz,(j+1)z

Since for all z € [jz, (j + 1)z] with j € {—|w/z] —1,..., |w/z]} we have

|Qpn ()67 () — Qua(i2)r(2)|°
< 2[(Qpn(®) = Qpn(G2)) (1 + 2D +2|Qpn(G2) (1 + 2 — (1 + 52)M) |

T 2 z 2
< 200 [ @uoaf w2 [ 20w a) sw 0,00
j Vi ue|—w—1w

2(2 +w)*2? sup \Q‘fl),n(u) ’2 + 227 (2 + w)w‘*l) 22 sup |Qpn(u) |2
u€[—w—1,w+1] u€[—w—1,w+1]

2 2
< Cua 7 sup |Q;n(u>‘ + Cuwn 2 sup ’Qpn<u)‘
u€[—w—1,w+1] u€[—w—1,w+1]

IN

(with Cyp oy = 2(X + 1)%(2 + w)*), we obtain by Markov’s inequality

lw/z]
lim sup Z IP[ sup | Qpin(@)r (%) — Qpn(j2)0r(j2)| > 5} (1.99)
n—o0 j=—|w/z]—1 z€ljz,(j+1)7]
Lw/z] )
< 672 limsup Z E[ sup ‘Qpn DA(x) = Qpn(jz)0r(j2)] }
K R P B B AT AR

Clua %(2 2] +2)22

lim sup (E [ sup |Q;n(u) }2] +E [ Sup @pn(w) ﬂ )

n—00 u€[—w—1,w+1] ue[—w—1,w+1]

IA

< Cwy,\%(Zw + 2)z lim sup (E[ sup Q) (u) ‘2] + E[ sup | Qpa(u) ﬂ )

N 0 n—00 u€[—w—1,w+1] u€[—w—1,w+1]

In (i) we proved that E[sup,cg |Qp7n(u)‘2] = O(1). For the proof of (1.98) it thus
remains to show that
E[  sup ]Q;m(u)f] —0(1) (1.100)

u€[—w—1,w+1]
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since we can subsequently choose z (€ (0,1)) so small so that the expression in (1.99)
is less or equal than e.

To prove (1.100), we apply Lemma 4 in [75] with ¢ := —w — 1 and 0 := 2w + 2 and
Fubini’s theorem and obtain for any n > n,

Bl swp [Q), ][]

uw€[—w—1,w+1]

1 . / 2 v " 2
< [ 1QwIBdawn) [ 1@ B

1 v / 2
= 1) Qoo () dy

w1
1) [ 1 WIB6-sw)éal) dy

1 w+17w71 w1

Sl 1@ (W13 D22 4a(y) dy + 4(w + 2)7* /_ . QL ()13 6—5(y) dy

By Lemma 1.4.18 with S, ;(7, €) := fni(7, €-1), v := 2 A+ and S, (7, €) = f,, ;(7, €;_1),
V= _ﬁa

Bl s 1Q0)f]

u€[—w—1,w+1]
< 2C* (1+ O((nb,)™h)
1 & w+ 1/2
(w—_‘_l;{fglfzi/ HPz r(Fni(y, €i-1) H Partaly )dy}
o w+1 1/2
B+1 . ‘ 2
H(w+ ™Y { max / Pt ot dy )
1 o'} w1 i} 9 1/2
< <w—+1 ; { max /w1 i (4, €i-1) = Fnsi (s € 15) || D220 () dy}
00 w+1 1/2
+4(w + Q)ﬂﬂ Z { {ij‘f / Hflm(,% €i-1) — f/n,i<y7 e:—l,i—r) ”; ¢-5(y) dy} )
r=0 P —w—
< 2C*(1+ O((nb,) ™! < supz max/ 52 (Fris ¥) P2rraly )dy}l/2
>~ n w+1nEN i€l er—1;2 n,is 22+al\lY
i o0 1/2
+4(w + 2)7*! sup 2 { max /Oo Oer1(Fiiy) -5(y) dy} > (1.101)

where the second step is valid by the same arguments as in (1.69). Because of our
assumptions, the latter bound is finite for fixed w, which implies (1.100). O
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1.5 Remaining proofs

1.5.1 Some auxiliary results

Lemma 1.5.1 Let assumptions (A5) and (A9) be fulfilled. For every x,y € R and
1,] €L
|COV(1(—OO,£B](Gjp (pa fi)), 1(—oo,y]<Gjp (pa Gj))) ’ < Ca ' a|17]|/4
for some a € [0,1), where C,, is a positive constant depending on a.
Proof For every z,y € R and ¢,j € Z we have
‘COV<]]'(7007I}(GJP <p7 ei))’ 1(*007y}(Gjp (p7 e]))) ‘
= [B[(1 (G (s €)) = B[ (G (0, €0))])

(1ot (G5, 0:€9)) = E[1 oy (G (0 )] ) |

maX{w}
- ’E[ 2 (B Lot (G (0, €0))€r] = E[1 (G (b €0) 1] )
max{i,j}
Z (E[ﬂ(foo,yl(Gjp(ﬂ €i))|€s] = E[Locy (G, (b, Ej))|€s—1]>”

max{i,j } max{i,j}

= [E[ X X Acaa@p.e) P(lenn(@ype))]|. (1102

r=—00 S§=—00

where we used
]E[I]'( 00 Z](G.]P (p7 Ek |€t] —-E [:H‘(—OO,Z}(Gjp <p7 Ek:))‘et—l] (1103)
002]( ]p(p7 €c)) — 1(—oo,z]<Gjp(p, €)) = 0 fort>k

and limy—_ o E[1 (o 5 (G}, (P, €r)) €] = E[1(—o6,2(G}, (P, €))] P-a.s. (see Theorem 7.4.3
in [32]) for the second-last step, and the definition of the projection operator for the last
step. We also have

E[Py(L(-00) (G, (- €))) | €] = E[L(-004(Gj, (P, €))]| €] —E [L(-o0 (G}, (p,€5))| €] = 0
for any r, s € Z with r < s, which implies
E [P (L(-o0)(Gj, (: €))) Pa (L0041 (G, (P €5)))
= E [E [PT (]]'(_00755] (Gjp (p7 62))) PS (IL(—OO,y] (Gjp (p, €;
= E [Pr(l(—oo’z](Gjp (p7 ei)))]E[PS(H(—oo,y](Gjp <p7 €;

)
)
for any r, s € Z with r < s. Analogously E[P,(1(—o.4](Gj, (1; €))) Ps(1 (-0, (G, (P, €5)))] =
0 for any r, s € Z with s < r. Therefore we can conclude from (1.102) and (1.103)

|Cov(1(—000)(Gy, (Ps €)), L= (G, (P, €5))) |
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min{%,j5}
_ ‘ 3" E[P (Lol (G, (9, €))) Pr (L (-oe (G, (1, ej)))}]
min{i,j}
Z HPT(]I(_OOax](GjP(pvei)))Pr(ﬂ(_OOy] Jp p’ 6] )”1

r=—00

IN

min{é,j}
< Y 1P (L) (G, €))L, Pr (oot (G ( €)) [, (1.104)

r=—00

By the same line of arguments as in (1.69) and (1.61)—(1.63) we obtain
[P (L (o0 (G, (0s €))) |,
< ”:[I‘(*Ooyw](Gjp(p? €)) — ]l(fOO,x}(Gjp(n ej;,r))HQ
< { Lol (G, (P €)) = Li—ooa) (G, (12 €52)) Y L6, ()G (et )1 Bes (@012} |
H{ L co0a1 (G, (0, €)) = Lot (G, (0, €6,:)) Y {16, (e -Gy (piet < (esria(@ry )12 |2

~1/2 o (Be.iri2(Gp)) 1/ 1/2
Ouimral )Gy 0. €) = G (o, + ([ Foluw) du)
x*(JE,ifr;Q(Gjp))l/Q

< (5671‘—7“;2(Gjp))1/2+(2||fp”00)1/2(56,2'—7‘;2<Gjp))1/4 < Ca(i_r)M (1-105)

with C = (2]\45)1/2 + 5, where ¢ ;i—r2(Gj,) = Ca™"/? for some positive constant C
by assumption (A5) and M := ||f,||cc < oo by assumption (A9). Therefore, we may

IN

conclude in view of (1.104)

|COV(1(*OO:x}(Gjp (p’ ei))’ ]l(*oovy}(Gjp (pa ej))) ‘

min{i,j}

< Z C2a(i—r)/4a(j—r)/4 _ CQG(i+j—2min{i7j})/4 Zar/2
r=-—00 r=0
= O, q(max{ij}—min{i,j})/4 = C, ali=il/4
with C, := C%*(1 — y/a)™". O

Lemma 1.5.2 Let assumptions (A1)-(A4) be fulfilled. Then for any x € R

e Y

) <]1<foo,m1(Gjp (i/n, €)) — L(—oow)(Gy, (D €)) (1.106)

= 0.

B[ oe1(Gy i/, €)) = 11 (G, (0, €1))] )

Proof We will proceed as for (1.72). To this end we regard the argument of the norm

2

on the left-hand side of (1.106) as a telescoping sum, again using Theorem 7.4.3 in [32].
Then

MZ (Z — an) {1(—oo,x](Gjp(73/"a €i)) = L—o0al (G, (P, €))
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B[ (G i/, €0) — 1o G )]}

5SS R (Y P (1 (G, 0) ~ 1t G €0) |

2
r=0 i=1
< e/ S | R () Py (1 (G (i ) — L (G €0)
r=0  i=1 n
< Cycp\/nby (1.107)
Z<Z,€(Z ;bzpn> HR T( oo,x](Gjp(i/n76i))_ﬂ(—oox] Jp p’el )” >1/2
r=0 =1

for some constant C; > 0, where we applied Burkholder’s inequality (in form of Corollary

1.4.5 (iii)) to the martingale difference sequence (/ﬁ(i;?:”)B,r(]l(,oo,m]((}'jp(i/n, €)) —

=1l,...,

tion holds true, where we use the same notation as in the proof of Lemma 1.4.7.

() There exists a constant C' > 0 such that for any n > n,,r e Ny x € Randi € I/+
(C Tup) we have | Pey(L( seu(G i/, €0)) — LGy (pr ) < Carli8i/"

In view of () and (1.107) we obtain for any n > n,
—lpn ,
en/nby Z () (IL(_oo,x](Gjm/n, €)) = 1 oo (G, (P, )

= B[00 (G, (i/, €)) = G, (. i) )H

< Cl%\/@i(i ( an> r/4b1/4)/

1/2

< CiCVPepn/nby bl/BZ T/g / ) du+O(1 ))
< Cucanby, bl/g(\/—+o %))

with constants C, := C1CY2(1 — a'/®)~" and ky := fjl #(u)? du, where the second step
is valid by assumption (Al). Since ¢, nb, = O(1) by (1.12), the latter bound tends to 0
as n — oo. This proves (1.106).

For the proof of (2), we show that || P;—, (1(—ccq] (G}, (/1, €)) = 1 (—002) (G5, (0, €:))) I3
may be bounded from above in two different ways. On the one hand, we have

| Prer (L (o0} (G, (/7 €)) — L0021 (G, (P, €))) H;
< (1P (Lot (G5, i e |y + (1P (U oo (G (0 €) )
< (Hﬂ(—oo,x](Gjp(i/”a €)) = L(—ooa] (G, (i/n,€ ;)| + Co ar/4>
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< (Cya* + Cra)? < Cyal? (1.108)

for some constants Cy, C3 > 0 and Cy := (Cy+ C3)?. Here, the second step is justified by
the same arguments as for (1.70) and (1.105), and the third step is justified by (1.60).

On the other hand, Minkowski’s inequality and the conditional Jensen inequality
yield

1P (U oo01 (G (i, €)) = Lot (G, (0 €0))
< 2||E[L-o0a(Gy, (i/n, &) — IL(_OO,x](Gjp(p, e))le] |5
+ 2||E[1 (oo (Gj, (i/n, €)) = 1 m]<Gjp(p, e)leir] ||
A1 oo (G, (/7€) = Lo (G, (0, €0) |5
= 4L om(Gy,(i/n, €)) = L—oom (G, (0, €) ||, (1.109)
Note that for n > n, and i € I+ (C I,,), the random variables Gj,(i/n,€;) and

G, (p, €;) have the same distribution as G, (i/n, €) and &, = G;, (p, €), respectively.
Hence, for every n > n,, i € [T and z € R

L (o0 (G, (i/7, €)) — L(—00.2)(Gj, (D, €)1

= E[|T(-c0)(G,(i/1,€0)) = T(—c0) (G, (P, €0))]

< BT (00 (G, (1/7, €0)) = L(—00.2) (G, (D, €)1, (i/m.c0)—C5 (ic0) <503
HE[| 100,01 (G}, (/1 €0)) = L(—o0,01 (G, (s €0)) L1165, 5/m00)~ G (r0) 560}

=: Si(n,i,z) + Ss(n,i,x)

for any ¢,, > 0. For the first summand we have for every n > n,, i € I77 and x € R

$+6n
Sinia) < Plo=0, <Gy li/me) <o+8] = [ ful)dy < G5,
T—0n
with C5 := 2sup, ey maxieq, , || frille < 00 by assumption (A3). Thus, Si(n,i,x) =
O(d,) uniformly in i € ™ and « € R. In exactly the same way we obtain the analogue
for every x € R_. Hence Si(n,i,2) = O(J,) uniformly in ¢ € I7* and x € R. For the
second summand we have for any n > n,, i € I'* and z € R

So(n,i,z) < [|Gap(/n €) — G, (p, €)| > 6, < 6, |G;,(i/n,€) — G, (p, €)1
< 6, 6|2/n—p| < CGC'75;1(bn)

for some constant Cg > 0, where we used Markov’s inequality and assumption (A4).
Recall that for any ¢ € I/ we have |i/n — p| < b, + 1/n < C;b, for some positive
constant C7. Therefore Sz(n i,z) = O(b,0, ') uniformly in i € [J* and x € R, and
altogether [|T(— oo ) (Xni) =1~ 00 (G, (ps €)1 = O(6,)+O(b,,0,, ") uniformly ini € I+
and z € R. Setting 9, := b}/ we obtain from (1.109)

[P (L ooa) (G, (i), €)) = Lo (Gy, (0, €)) |2 < CsbY/? (1.110)
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for some positive constant Cs. Now (1.108) and (1.110) together imply

HPZ r oo:):]( jp(z./na 61)) - IL(700 :z:] jp pa Ez ||2
< mln{C’4 a’'?, Cgbt/?}
< Cya”Pmin{l,C; Csa™ 2% < CyPCh? ar b,

where we used min{1, [t|} < [¢t|'/? in the last step. Setting C' := 1/20 /2 implies (20).
O

Lemma 1.5.3 If assumptions (A1)-(A8) and (A5) hold and in addition /nby, || Fyn(-)—
E[Fpn(-)]llo) = 0, mwhmmmﬁmnﬂﬂém@H—E@m@W,(HM—OﬁTMW$w€
R.

Proof For every z,y € R we have

[Epn(2)Epn(y) — gpn(@gpn(y)Hl
< &) (Epnly) — gpn@))”l + ngxn@)(‘gp,n(x) _gp,n(m))Hl
< N (@lle - 100 W) = Epn®)llz + |Enn (@)l - [1Epn(@) = Epn(@)]l2
=: Si(n,z) - Sa(n,y) + S3(n,y) - Se(n, x)

T

T

by Minkowski’s inequality and the Cauchy-Schwarz inequality. Since Si(n,z) < ||, (z)—
Epn (@) |2+ IEpn(T)]|2 = Sa(n, x)+S5(n, ), it thus suffices to show that lim,, . S2(n, x) =
0 and S3(n,z) = O(1) in n for every x € R. The latter assertion follows directly

from || Y0, Voi(z, A, = O((nb,)'?) (see (1.78)) with d := 1 and A, := 1 (recall
€ (2,00)). Moreover, in view of ||E,n () — Epn(x)]|2 = Vb, |E| pn( )] — Fpn(2)], the
former assertion is valid. O

1.5.2 Proof of Lemma 1.2.2

First of all note that the two-sided series on the right-hand side of (1.8) converges
absolutely for every z,y € R. Indeed, by Lemma 1.5.1 we have

2C,
Z ‘(Cov jp(pﬁk))al(—ooy] Jp (P, €0)) ‘ < Ca Z = 1—ql/4’

k=—o00 k=—o00

taking into account that a € [0,1).

Now, the mapping (z,y) — ]E[%m(x)éz),n(y)] is the covariance function of the L*-
process g}m. Thus it is symmetric and positive semi-definite. As these properties are
preserved under the limit, the mapping (x,y) — 7,(z,y) is symmetric and positive
semi-definite, provided we can show that

lim E[&, ()& (y)] = (2, y) (1.111)

n—oo
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holds for any =,y € R. Hence it remains to show (1.111).

Recall that for n sufficiently large the process gpm depends only on the observations
associated with those ¢ for which i/n lies in (p;,, pj,,,]. Therefore, we may and do assume
without loss of generality that £ = 0 in the definition of X, ;, so that X,,; = G; (i/n, €;)
for some (B((0,1]) ® B(R)®N, B(R))-measurable map G, : (0,1] x RY — R.

Let z,y € R be arbitrary but fixed. Then

nb,

c2 nb, Ii(z _ Zp’n>ﬁ<J ;bzp’n>Cov(ﬂ(_oovx}(Gjp(z'/n, €)); L(—ooy) (G}, (5 /7, ej)))
1 n

T —lpn J—tpn
—ci nb,, /{( nb: )/{( nb: )(Cov(]l(,oo,x](Gjp(p, €)); L—ooy (G, (P, e])))‘

1,j7=1
, n — ip,n 7 — ip,n ' ' ' ]
e nbnijﬂ/@( 0 )i ( 0 )COV (11 (G, (0 €0)), TG (01 €))
7 (%,9)
= Si(n,z,y) + S(n, z,y). (1.112)

We will now show in two steps that Si(n,z,y) and Sa(n,z,y) converge to 0 as n — oo.
Step 1. For the first summand, we have

2 b, Z () ()
-Cov(]l (—o0 z]( Jp (i/n,€)) — l(fw,z](Gjp(Z% €)), ]1(700711](0]'?(‘7‘//”’7 6])))’
OOWICTSHES

. (COV(]].(_OOJ] (Gjp (p, 6i))7 ]l(—oo,y] (Gjp (j/n7 6j)) - :H-(—oo,y] (Gjp (p7 ej))) ‘
= 5171(71, Z, y) + Sl,2(”7 T, y)

Sl(n7$ y S

By Holder’s inequality

S1a(n, z,y)

n/ b Z () {1y €0) = LG, (0,
~E[Lot(G, (i/7,€)) = L-oe.s (G, (p, )] |

eny/nbs Z () {1t (G, (/. €9)) = B e G, G
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IN

\/ﬁz ( an){:n-(—oo,x](Gjp<i/n7 €:)) = L(—oo] (G, (p: €))
(1 oo (G 3/, €0) = 1o (G (0 )]

WZ ( an){ﬂ(—oqy](Gjp(j/”aej))—Em(—oovyl(Gjp(j/”’ej))]}Hz

= Si11(n,z, y) “Siig(n,z,y)

On the one hand, the factor S;;2(n,x,y) is bounded above in n, which follows from
570, Yai(z, A, = O((nb,)Y?) (see (1.78)) with d := 1 and A; := 1 (recall ¢ €
(2,00)). On the other hand, the factor Sii:(n,z,y) converges to 0 as n — oo by
Lemma 1.5.2. As a consequence we have lim,,_,o, S11(n,z,y) = 0. Analogously one can
show that lim,,_,o S12(n,z,y) = 0. Hence lim,,_,o S1(n,z,y) = 0.

Step 2. It remains to show that lim,,_, Se(n, x,y) = 0. Let r,, := —8log(nb,)/log(a)
and observe

s 3w

i=1 {1<j<ns|j—i[>rn}
. COV(H(foo,gg} (Gjp (p, 67;)), ]l(foo,y} (Gjp (p’ ej)))
— Ko Z Cov(ﬂ(_oo,m](Gjp (s €0)), Li—ooy) (G, (P, ek)))’

{k€Z;|k|>rn}

Samds X ()

i=1 {1<j<n;|j—i|<rn}

: COV(H(—oo,x}(Gjp (pa ei))? 1(—0079}(Gjp <p’ €j>))
— Ka Z COV(II(—oo,x](Gjp (p, €0)), 1(—oo,y](Gjp (P, Ek)))’

{JEZ;|k|<rn}
=: Soi1(n,z,y) + Sa2(n, z,y).

SZ(”?':an) S

In the remainder we will show that both summands Sy 1 (n, z,y) and Sy 2(n, z, y) converge
to 0 as n — oo.
For the first summand, we obtain by Lemma 1.5.1

Saa(n,z,y)

ands S ()

=1 {1<5<n;|j—i|>rn}
Cov (11 (G, (0, €0)), 1 oest (G (02 )|
Hre D Cov(Lwn(G, (b)) LG (pr€)|

{]CGZ ‘k‘>’r’n}

<
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S O (6 nb Z < an) Z /{(%)ah_ﬂ/‘l “"Oafo Z a\k\/4
{1<j<nslj—i|>rn} " (kEZi|k|>rn}
Z n u ) — Z n r s r
< C'c nb, Z ( L )Z,{GnTpv)an/ﬁl_i_QCa@Za( ntk) /4
j=1 " k=0

= Cynbya™* + QCGK,QCLT”/ZL Z ak/4,

k=0

where the last step is valid by the definition of c,. Since a™/* = (nb, )2, we obtain

_ 7 2 Calig
5271(77/, x,y) S Ca (nbn> ! + (nbn) 2 m s
and the latter converges to 0 as n — oo.
For the second summand, we obtain
SQ,Z(na xz, y)
S =y, J—pm i—ipn
SRS S () ()
i=1 b {1<j<ns)j—il<rn} nbn nbn
’ (COVUL(*OOJE] (Gjp (p> 6i))> ]1(700 y) (Gjp (p> ej))) ‘
i+Tn
— ipn
+|canbn Z ( - ) > Cov(Toea)(Gi, (b, €)): Lmoeg (G, (1, €5)))
J=i—nrp
“ha Y €OV (G (1 €0)s 1ot (G (01 €1)))|

{keZ;|k|<rn}
= S2,2,1(n7 T, y) + 52,2,2,<n7 Zz, y)

On the one hand, by Lemma 1.5.1 we obtain

So21(n,x,y)

alam S (G) F () ()

{1<5<n;|j—i|<rn}

Cy 2 nb, Z < Zp") /(J ) )du‘

{1<]<n l7—i|<rn} i~ip,n)/(nbn)

C’Mcanj(Z an) Z %

bn {1<5<ns]j—i|<rn}

<

IN

IN

272 128 log?(nb,)
< n o2 § PR < "
< C,M—=2 b, c; nby, < > < CaMlogz(a) b (¢ nby)

with M := sup,cg |r'(y)| < oo (by assumption (Al)). Since c,nb, = O(1) by (1.12)
and log?®(nb,)/(nb,) — 0 as n — 0o, we obtain lim,, ., S20.1(n, x,y) = 0.
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On the other hand, by Lemma 1.5.1 and (1.12) we obtain for n sufficiently large
S222(n, @,Y)

by Y k(=)D Cov(L (G, €0)): Lo (G, (0. €645))

2 D Cov(Len (G (1 €0)). L) (G (0. €))|

: Z Cov (1 (—c0.a (Gj, (Ps €0)); L (=001 (G5, (P, 6])))‘

J=="Tn
1 ™
S Oa C?L nbn(nbn / H(U)2 du + O(l)) — K9 Z a|j|/4
-1 Jj=—7n
1 — a(”n+1)/4
< 20,|(c2 (nby)? — 1)z + O((nb,) ") ‘1_—W
nb, 2 . 1 — a1/4(nbn)—2
< 20, <<—nbn+(’)(1)> — 1)y + O((nby) ) |——— 17
2C, i -
1 gl/4 ((1 +O((nb,)™)) - 1) ko + O((nb,) 1),

where we used in the second-last step that ¢, = (nb, [ k(u)du+ O(1))~" under (Al).
The latter bound converges to 0 as n — oo. Hence lim,,_,, So(n, x,y) = 0. O

1.5.3 Proof of Lemma 1.2.3

Any centered Gaussian process with covariance function -, possesses a continuous mod-
ification if
sup [7,(z,9) — (v, ¥)|/|z — y|’ < 00 for some constant g > 0. (1.113)
Y

This is a well-known consequence of the Kolmogorov—Chentsov criterion. For instance,
one can combine this criterion with Lemma 1.1 in [58], taking into account that for
any centered Gaussian process (B(t)):cr with covariance function v, we have E[(B(t) —

B(‘S))z] = 7P<t7 t) - 2’713(87 t) + 7P<S7 S) < |7P(t7 t) - ’YP(Sa t>| + h/p(sv 8) - fyp(sv t>|
Let z,y € R and assume without loss of generality = < y. Following the same steps
as in (1.104) and applying (1.105) yields

(Y, y) — (2, 9)]

= [re D Cov(Lppy (G, (0, ) Lol (G, (0, €0))) |

k=—o00
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oo min{k,0}

< ke Y Y 1Py (Ghy (0 €)))]| 1P (Lo (G, (0 €0))

k=—00 r=-—00

oo min{k,0}

< Ciky Z Z HPT(H[I,y](Gjp(pvek)))HQQ_TM‘ (1'114)

k=—o00 r=-—00

On the one hand, we obtain by (1.105)

HP’I”(]‘[I ]p paek ||2 >~ HP OOy](Gjp(pa 6k)>>HQ+ ||PT(:H'(*007I}<Gjp(p’ ek)))Hg
< 2C ak r)/4

On the other hand, we may apply the conditional Jensen inequality to obtain

| P (M) (G, (0 €)))|], < B[y (G, (0, €))len] ||, + B[ 1) (G, (0, €x))€r-1] ],
= 2||]1[z,y](Gjp(P,€k))H2 = 2E[1[$,y}(Gjp(p7€k))}l/2

= 28[G,(0) € [el] " < 2 [ hwau)

N

IA

203|y — I|1/2

with Cj : prHl/2 (which is finite by (A9)), where we used in the forth step that
G, (p, €) has the same distribution than G, (p, €)). Hence

Chak—)/4
7 Cgly — J}|1/2}
< 265"y — o110, Pa* P,

1P (L (G, (0, &), < 203!y—:v!1/2min{1

where we used the inequality min{1, ||} < [¢|'/? for the second step. Together with
(1.114) this implies

oo min{k,0}

120072, /8 —r
) = )l € 2Oy — 2 ST ST g

k=—00 r=—00

< 2'%2010;/2021/2@ _ x‘1/4 Z qk—2min{k,0})/8 Zar/zl
k=—oc0 r=0
29 1/2 ~1/2 =
< T OGP Py — kZ aM® < My — xf'/*
with M = 4rko(1 — al/s)*ZC’lC;/QC’;/Z. This proves (1.113) for §:=1/4. O

1.5.4 Proof of Lemma 1.2.6

Below we will show that the following assertion holds true, where we use the same
notation as in the proof of Lemma 1.4.7.
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(°B) There exist constants C' > 0 and ng > n, such that for any n > ng and i € I
(C Ip) we have ||F,; — Fpull oy < C(b,) 7D for some ¢ € [\, 00) N (0, 00).

Here F,,; denotes the distribution function of X,, ;. With the help of (8) one can easily
verify that the claim of the lemma holds true. Indeed, let C' and ny (> n.) be as in (*B).
Then for any n > nyg

HE[ﬁP"] - va”H()\) = Ssup }E[ﬁpn(x)] - Fpn($>|¢>\(x)

z€eR
_ " = ipn .
B ilellg e ; KJ( nbn )E [H[Xn,i,oo) (.Z')] Fp,n(l') ’¢)\ (x)
_ N
T ek Z( b, ) (Fuil@) = Fyn(@)) | 62(2)

IN

(i ipn
anﬁ< TLbf, )HFn,i_Fp,nH()\)

1=

< ¢, Z’i( _va")c<bn)q/(Q+1) < C(bn)q/(qﬂ)'
- noy,

1=

Along with (B2) this gives the claim of the lemma.

It remains to show (B). For n > n, and ¢ € [T (C I,,), the random variables
i = Gj,(i/n, &) and &, := G, (ipn/n, €) have the same distribution as X, ; and
Xni, ., respectively. Thus for any z € R and 7 € [+

|Foi(2) = Fpn(@)] = |E[1(Coo)(Xni) = L(—ooa) (Xnsip)] |
= |E[L(o0u)(éni) = L(-ooai(&pm)]]
< E[(L o001 () = Li=ooa (o)) Lilen i—gpml<oon) ]|
HE[(T(-o0.21 (€n) = Li—o021(Epn)) Liltni—Epinl> 03] |
= Si(n,i,z) + So(n,i, ) (1.115)

for any ¢, > 0. For the first summand we have for any x > 1

Sl(naivx) S ]P)[ZL' - mén S gn,i S T+ xén]

T+20n
= P[m — 20, < Gy (ipn/n, €) <+ x5n] = / Jrsipn () dy.
T—T0n
Assuming that ¢,, is nonincreasing and tends to 0 as n — 0o, we can choose ng € N
with ng > n, such that §,, < 1/2 for all n > ny. Then, for any n > ng and z > 1

z(146n)

(@) S1(n,7) < 6x() / o Frn )y
x(1—0pn

x(140n)

< iyl 6a(2) / o (y) dy

z(1—6p)
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IN

Cioa(z) (226,) sup ¢ (y)
ye(z(1—6n),z(14+65))

< 2016, Prsa(x) sup ¢—(y)
yE(x(1=0n),z(1+0n))
(1 +ﬂf))\+1

20160 a1 (1) 90— (2(L = by)) < 2Ch0, (14+2/2)
1 T A+1
<
2046, (1”/2 + 1”/2) < Cho,,

where Cy := 2C13*! and Cy := sup,cymaxier, , || fuill(y) < oo (recall (A3)). Thus
SUD,e(1,00) S1(1, 7, 2)pa(r) = O(6,) uniformly in i € [F7F. In the same way we ob-
tain the analogue with “z € [1,00)” replaced by “z € (—oo,—1]". Hence we have

IN

SUD,er) (—1,1) S1(1, 1, 7)¢a(x) = O(6,) uniformly in i € 7. For the second summand we
have for any z € R\ {0}

Sa(n,i,z) < P[|Gy,(i/n, €) — G}, (ipn/n, €)] > 26,]
< (x0y) HGJP i/n,€y) — Gjp(z'pm/n,eo)HZ < Cs(x6,) 79 (by)?

for some constants C3 > 0 and g € [\, 00) N (0, 00), where we used Markov’s inequality
and (B4). Thus we have ¢,(x)Ss(n,i,z) < 2°C5(b,d,1)? for any z € R\ [-1,1] and
i € I, and therefore sup,cg\(_1.1) #a(2)S2(n,4,2) = O((b,0,,")?) uniformly in 7 € L7+
Hence sup,cpy(—1.1) @A(2)| Foi(x) = Fpu(x)| = O(3,) + O((b,0,1)?) for all i € I+

By the same line of arguments (but with < zd,, and > xd,, in (1.115) replaced by < 4,
and > 4§, respectively) we obtain sup,c(_y |[Fri(z) — Fpn(2)| = O(0n) + O((bnd,")?)
for any i € IT. Altogether, ||F,; — Fp.llo) = O(6,) + O((b,0,")?) for any ¢ € IT.

Choosing 6, := b we arrive at ||F; — Fpalloy = O0Y ™) for all i € I} O

1.5.5 Proof of Corollary 1.2.7

First of all we note that in the specific setting of the PLS linear process in Subsection
1.2.3 the shape of §,,; is rather explicit. To see this, observe that fori =1,...,n, x € R,
and & = (21, 79,...) € RY

{4 oo
P[Xn,z §$‘|€i,1:w] = P ZZaj’k(%)ei,kﬂ(m pJ+1]( )<Q? €1 :w}
- j=0 k=0
_ { oo
= P ei—l—zz%k( VeikLip, pyan) (£) < 2| € 12:0]
) j:O k=1
= PSZ—l-ZZCL]k xkﬂl’]l’]-&-l}( )<$:|
7=0 k=1
{ oo
= P€i|:(_oo7 x_zzaﬂk xkﬂ(pjpj+1]( )i|j|
7=0 k=1
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{ oo
F(o =30 3 a8 onLim ()

§=0 k=1
where F. denotes the distribution function of 9. Hence, for ¢ = 1,...,n we may define
S$n,i through

Fni(z, @) = F.(z — () (1.116)
with 4, ;(x) = Z] o 2omey @i(E) k1, pyaa)(£). In particular,
fri(z, @) = [ (:U — Em(zc)) and f;m-(x, x) = f! (J; — En,(m)) (1.117)

Moreover,

fm(l') = E[fm(l', €i-1) = E[f.(z —gn,i(ﬁel))] = E[f(z — Y- 1)] (1.118)

provides a Lebesgue density f,; of X,,; for any i = 1,...,n, where Y,,;_1 := {,,;(€;_1).
With the latter definition of Y,,;_1, we also have

Sni(x, €i-1) = Fo(x — Y1) (1.119)

Part 1. The first assertion of Corollary 1.2.7 follows from Theorem 1.2.4, if we prove
that assertions (A3)—(A9) hold true. We will frequently use the inequality

(14 |u+v|) <1+ |u])(1+v]) foru,veR. (1.120)
(A3): Using (1.118) and (1.120), we obtain

SUP fglaX Hfm” 22+4)

= sup mae sup | [ Lo = )(1+ la) Py, (d)

neN 1SiSn geRr

< sup max sup| [ Lo = )1+ l2 = g)P L+ )PPy, ()
ne Sisn ge
< Nsup max E[(1+ [Y,1])**]
neN 1<isn
< 2PFN(1+ sup max E[|Y,—1/***]), (1.121)

neN 1<i<n

where N := sup,cp f(2)(14|2])**** < || f<|l () is finite by assumption (c) and y > 2A+5.
By Minkowski’s inequality we further have

" £ RS
sup &lﬁﬁEUYm ] = Sup max Z_:; ekl (o501 (3) .
V4 0o 22+4
< sup (ZZ S | (7)] H€o|\2A+4)
neN =0 k=1 TE(pj,pj+1]
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= M*eol 5370 (1.122)

where M := Z§:o D het SUPre(p; 514 [@5,5(7)] 18 finite by assumption (a). Moreover,

)\+4) 1/(20+4)
leolloaxsa = </‘y|2)\+4fe(y) /§b2)\+4 ) fe(y >
1/( 2/\+4)
< NI [ ot dy) (1123

By assumption (c¢) and 2\ +4 — v < —1 (recall v > 2\ + 5), the latter bound is finite.
Together with (1.121) and (1.122), this proves (A3) (with v := 2\ +4).
(A4): For any 7, 7" € (p;,,pj,.,) with 7 < 7" we have

1Gj, (7, €0) — Gy, (7', €0) L = HZ @, ajpvk(w/))g_kHl
k=0
< 3| [ dutdflly < Mz w12
k=0 7T

where M := |[eo]l1 D pep SUDye(p;. sy 1] @) 1 (y)| is finite by assumption (b) and (1.123).

(A5): Assertion (A5) follows directly from assumption (a), (1.123), and Example
1.2.1.

(A6): Assertion (A6) is an immediate consequence of (1.116)—(1.117), because f.
was assumed to be continuously differentiable.

(AT): Let g := (4\ +6)/(2\ + 1) so that Agy — 1 +¢x/2 = 2\ + 2. By (1.117) and
(1.118),

sup/{ max ||f,i(z, € 1)”%/2 Prar— 1+QA/2( z)dx

neN J {|z|>w} 1€nip

< Sllp/{ maXE“fs( nz 1)” ¢2/\+2(£C) dx sgﬂg |f€(z)|qx/2—1

neN J{|z|>w} *€lnip

< M/ 1sup/ max | f,; ()| parte(z) do

neN J{jz|>w} €lnp

< 2PN 1]\7/ ¢_o(x) dx,
|I|>w}
where M := sup,cg |f-(2)| and N := sup, .y maxies,,, || fill 2r+4) are finite by (c) and
(1.121), respectively. Since [*° ¢_o(x) da < oo, the latter bound is finite for w = 0 and
converges to 0 as w — o0.

(A8): For the first, second and third assertion of (A8) it suffices to show that the

following conditions (€), (©) and (&) (respectively) are satisfied for some constants
Cl, CQ, Cg € (O, OO)

¢) f{|z\2w} (& Fe(z — U))2 G () dx < Cy arya(u) f{lz\zw} b_o(z) dx
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D) Jjuizuy (3afe(@ = w))? por () dx < Cs horso(u) Jitalswy —2(7) do

) [puy (Zf1a = )" dooa(2) dz < Csdon)(u) [0y G—2(x) da

We will first show that (€) implies the first assertion of (A8); analogously one can

prove that (D) and (&) imply the second and the third assertion of (A8) (we omit the

corresponding details). Thereafter we will verify that (&), (D), and (€) hold true.
Assume that (€) holds true. By Fubini’s theorem and (1.119), we have

Z 5, ra(nsi D)bma(z) ds) (1.125)
sup {max/ cr_12niiT x SC} .
neN €lnp J (125w} 154 2A
> E[(§ui(,€i1) — Fuslr. €1, ) o) o}
= Sup { maX / n,’i x? e'l— n, 7 9 ’L z T X x}
neN =7 N €me J{ja] >w) 1 ' »
S {mak[ [ (Rl Vo) = Fla =V )o@ dd] }
= sup {max [/ H(z—=Y,i1) — i s x x}} .
neN — 1€lnp {|z|>w} ' b 2
Letting 7, (u {f{|z‘>w} 8uF( — u))? pon () dx}l/Z, we obtain for any vy, € R

(assuming Wlthout loss of generality y < ')

/ (F(o — y) — Fo(a— o)) da(o) do
{lz|>w}

- / o / du) dox () dz

w(w) 2
- /{|x>w} / auFE(x_u)> wa(u) du) Pl

(VAN
:\
V
g
&

0?1

8

|
£
N—
o

2
—~| =

£

QU

N

N—

VRS
S~
<

N—

-

¥

>

- (/y )2, (1.126)

where we used the Cauchy-Schwarz inequality in the third step and Fubini’s theorem in
the second-last step. Now, by (1.126) and ()

/{ PGSR y))2don (@) do
< </yy/ {Cl¢2)\+2(u) /{m|>w} P_2(x) dx}lm du>2
— o / " () du) /{ L
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IN

Cily — o P( sup asi(w))? /{ L alds

YE[YY']

< 201y -y (<Z52,\+2(y/) + <Z52,\+2(Z/)) / ¢_o(x) dz.

{lz|2w}

In view of (1.125), we therefore obtain

1/2
sup Z { @Iél[i}f, /{x|2w} 5§,T_1;2(3n,i; $)¢2>\ (x) dx}

1/2
< vV 201(/ ¢—2(z) dx)
{\1|>w}
. . 1/2
Sug Z { IélIaX E |:’Yn i—1 Yn i—1;— r‘ (¢2)\+2(Yn,i*1) + ¢2)\+2(Yn,i—1;i—r))] }
ne t&lnip
1/2 >
S V 201(/ ¢ d‘r) SupZ{maXH n,i—1 Y;z 10— ’I‘) H)\-‘FQ
{le|>w} neN el
e 0 ) (14 )P N
gél]ax n,i—1 n,i—1;i— r (A+2)/(A+1)
< V 201(/ ¢_2($) dx) Supz { max ||Yn1 1= Y;z 15— r||2)\+4
{lz]>w} neN {27 & €
2241 22+2 22+2 12
-2 Zrél;i}; ((1+||Ynz 1”2)\4_4) (1+|| n,i—1;i— r|’2)\+4))}
1/2
< 9A+1 /201 (1 + N(2A+2)/(2A+4))1/2 </ ¢72(x) d:c)
{lz|>w}
. Yn i Y*. ..
ilellN) TZ 7,211?:}5 || 17 dni-1;5 7"“2)\4-4
1/2
< 2)\+1\/ﬁ(1 +N(’\+1)/(2’\+4))</ d_o(x) dm)
{le|Zw}
) l
oY max (3 sup a0 i — & llansal g i/n))
neN — 1€1n;p =0 TI'E(pj,ijrl]
1/2
< P2 /90 (1 4 NN </ b_o(x) dx) lleoll2ata
{lz|zw}
sup a1 (7))
r—1 T€(@jpPip+1]
<

2>\+2\/f0( 1L NOHD /(2A+4)) (/

1/2 >
(e)de) ol Y’

_ 2A+2\/f0 1-a) ( 4 N(A+1)/(2A+4)) (/

{lz[zw}

1/2
6-2(@)dz) " llollarss,
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where the second step holds by Holder’s inequality, N := sup,,cy max;<j<p E[| V1> "]
is finite by (1.122), and C € (0, 00) is chosen such that SUDye ;. o] [Tipr—1 ()] < Car!
(recall assumption (a)). Since ||gg|2r+4 < 00 by (1.123) and [, ¢_s(x) dz < oo, the latter
bound is finite for w = 0 and converges to 0 as w — oco. Hence, we have shown that (€)
implies the first assertion of (A8). Analogously one can show that (©) and (&) imply
the remaining assertions of (A8).

It remains to show (€), (®), and (€&). Using (1.120), we obtain

/{x|>w} <€%F6(x — U))2¢2A(x) dx + /{|x>w} <%fe(x — u))ngz)\(x) dx

_ /{ . (Folz — w)? + f(x — 1)?) Ponsa(2)d—a(z) du
< / (fe(z —w)® + fl(z — u)*) Porsa(@ — w)Porgo(u)P_2(2) da
{lz[>w}

< (C1+Cy) ¢2A+2(U)/ ¢_o(z) dz,

{lz|>w}

where C := ||f£\|%>\+1) is finite by (1.123), and Cy := Hf;”%/\ﬂ) is finite by assumption
(d). This proves (€) and (D). Moreover we also have (&), because

9 pe = w)) domale) da
/{|x|>w} <‘9“ )
- /{|m|>w} fl (@ = u)? poor(2)p_a(2) do

< / Fox —u)® po-or(r — u) dpr—sgy (u)2(x) da
{lz|zw}

< C3¢2/\—2(U)/ ¢_2(x) dx,

{l[>w}
where Cy := || fZ[|},_,) is finite by assumption (d). In the third step we used that by
(1.120) we have ¢o_9x(2) = dor—2(u)(Par—2(2)dar—2(u)) ™" < dor—a(u)(par—o(x —u))~" if
2 -2\ <0, and ¢ o) () < do_on(x — u)Pa_op(u) if 2 —2X > 0.
(A9): Analogously to (1.118) we obtain that f,(z) := E[f.(z—Y,)] with Y, :=§,—¢0
provides a Lebesgue density f, of &,. Thus, since

/ £z — y) Py, (dy)| < sup |f.(2)] < oo

z€R

[fplloc = sup
zeR

by assumption (c), the assertion of (A9) hold true.

Part 2. The second assertion of Corollary 1.2.7 follows directly from Lemma 1.2.6
and the second assertion of Theorem 1.2.4, provided we can show that assumption (B4)
holds for ¢ := 2X 4+ 4. But analogously to (1.124) we obtain

[e.9]

IG5, (7, €0) = Gy, (7, €0)llarsa < |m = 7| [l€ollarsa Y, sup  |a) 4 (F)]
k=0 7N.re(pjp 7pjp+1}
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for any 7, 7' € (p;,, pj,..,]- Assertion (B4) is therefore a direct consequence of assumption

(b) and (1.123). O

1.5.6 Proof of Lemma 1.2.8

(i): We observe that

o0 T

sup Z { [HAj(ﬂ,et,s)] Bj(ﬂ', Etrl)}( :

melpypi+1]l 2o =0 Dilg

sup {[HA T, €4 S] i (T, €4 1)}(1)

r=0 m€[p; va+1}

{HH sup Aj(ﬂ,st_s)] sup (e r_1)

—0 TElpj:pj+1l 7€[pj.pj+1]

<

q

q}u)’

where for any vector v (resp. matrix A) we denote by |||v]||, (resp. |||Al||;) the vector
(resp. matrix) of the entry-wise L? norms of v (resp. A), and sup, in front of a vector
(resp. matrix) refers to the vector (resp. matrix) obtained by taking entry-wise the supre-
mum over 7. The random variables {;}icz and with that sup.cp,, ,,.,] A;(T, &), .-,

SUP e, pa1] A (T3 Et—r) s SUP e, 1) b bi(m,&;_r_1) are independent so that

HH sup A]’(T(_,gt_s):| sup Z_)j(ﬂ-,ft_r_]_)

—o m€lpjpj+1] mE[p;,pj+1]

q

— H|H sup  Aj(mes)|llg ]}H sup l_)j(w,ét,r,l)mq
- 7€[pj.pj+1] TE[P;Pj+1
= T _sw Amlledl)] s B lleraly)

" 5=0 TElP;pj+1] 7€[pj.pj+1]

r r+1 —
= | s Al sw b leoll).

- m€[p;,pj+1] TE[p;.pj+1]
Thus we can find a finite constant C > 0 such that

sup Z{[HA Wéts] (W&trl}l

m€[pj.pj+1] T ep

< (szr“, (1.127)

q

where p; denotes the spectral radius of of sup,p, ..., 4;(7, [|o]ly). For the proof of (i)

it thus remains to show that p; < 1.

The characteristic polynomial of the matrix sup.cp, . ..j 4;(7,[|€ollq) is given by
p(\) = (=1)PAP{1 — ZS | SUD ey 1] @os(T)]€0llgA ™}, We now prove by the way of
contradiction that every eigenvalue A fulfills [A| < (Zle SUD ey, py1] Gis (M) [0 )1/ P
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Assume that |A| > (Zle SUP e (p; 1] a;s(m)|ollq) Y7 " Then we obtain by repeated
application of the reverse triangle inequality that

P

pO = WP{1=3" sw agu(mleollA )

o—1 TE[Pjpj+1]

P P —s/P
> PP{1=Y sw a@leolo (Y sw o a@lol) )

s=1 wE[P;,pj+1] s=1 TEP;jpj+1]
P P _

> PP{1-3 s au@lal(Y s amleds) = o
o—1 TE€[Pjpj+1] s—1 TEP;Pi+1]

which means that there does not exist any eigenvalue. Hence p; < <Zf:1 SUDrefp; pj1]
a;.s(m)|lgoll)P. But the latter bound is strictly smaller than 1 by the assumption of
the lemma.

(ii): Let the function G; be defined by (1.15), and set G;(m, @;) = [G;(m, x;),
Gi(m,@i—1),...,Gi(m,xi—ps1)] (€ RP) for any 7 € [pj, pj11], ¢ € R%, and i € N. Below
we will show that for any i € N

Gj(ﬂ', CCZ) = Ej(ﬂ', .]71) + A]’(T[', l’l)aj (7'(', 331'71) for any mw € [pjapj+1]7 IP’e—a.e. T € RZ.
(1.128)
The first row of the vector equation in (1.128) is

Gj (’/T, a:l) = &j’(](’/'f)l'i -+ |:Clj71<7T).ﬁEi, aj72(7r)xi, Ce ,CLj}p(ﬂ').ﬁL’i} @j (7T, .’Bifl),

which is just a restatement of the equation in (1.13).
To show (1.128), we note that for any i € N and P.-a.e. x € RZ,

Gj (ﬂ', 5131) = Bj(ﬂ', l'z) + Z { [H Aj (71', ZIZ',L',S)]E]'(F, .CEi,Tfl)} for any 7m € (pj,pjﬂ]
r=0 s=0

(1.129)
(this can be verified straightforwardly, using (1.15) and the definition of G;). Plugging
(1.129) (with ¢ — 1 in place of 7) in the right-hand side of (1.128) yields

bi(m, ;) + Aj(m, xi){l_)j(w, Tio1) + Z { [H Aj(m,zisa-s) | by (, I’i_r_g)}}
= by(m @) + Ayl xi){Bj(ﬁ, i)+ Y AT A i) By, xH,l)}}

1 =

= bi(m,zi) + Aj(m,x)bi(mzin) + Y { [T A 2i-0)] b (m, 2imr1) }

= bi(mz)+ Y _{[J[Aim 2-)]bi(m,2ie1)} = G, @),

s=0

1)



so that (1.128) indeed holds.

(iii): Let H; be another solution of (1.13) with finite ¢g-moments (as in assertion
(iil)), and set H;(m, x;) = [H;(m,x;), Hi(m, @i 1), ..., H;j(m,z;_py1)] (€ RP) for any
7 € [pj,pj+1), * € R? and i € N. Let n € Nand i € {1,...,n} with i/n € [p;,pj+1]. In
the following we will show that P-a.s.

Hj(i/n, &) = b;(i/n,e; +Z{ H (i/n,ei-5)]b;(i/n,€imr1) }. (1.130)

The first row of (1.130) shows that H;(i/n,€;) = G;(i/n, €;) P-as.
Since H; solves (1.13), we get that (1.128) (with G; replaced by H;) holds for any
1 € N. Performing this recursion K > 1 times, we obtain that P-a.s.

Hj(i/n, €)= bj(i/n, ;) + i {[1145G/nei-)]b(i/n,eiv1)} + Ry(i/n, € k),

(1.131)
where R;(i/n, €;_x) = [Ty A;(i/n,e;_s)[H;(i/n, €5 _1). By part (i) the second sum-
mand on the right-hand side of (1.131) converges P-a.s. to the second summand on
the right-hand side of (1.130). For the proof of (1.130) it thus suffices to show that
Y w1 PHIR;(i/n, €i—k)|}s) > 1] < oo for any n > 0 and s € {1,...,P}. In view of
Markov’s inequality, for this it in turn suffices to show that for any s € {1,..., P}

Z {7/, €ix) } ||, < oo (1.132)

Since A;(i/n,ei_s),s =0,...,K, and H;(i/n,€_x_,) are independent, we have for any
K eN

| RiGi/m,elll, = [ 145/, &5-) o 1 E i fms o)

= [J</n leoll)] || 5/ € 0) ]

..... P ajs(m) < 1, the spectral ra-
dius p; of A;(i/n, |leolly) is strlctly smaller than 1 (as we have seen in the proof of part
(i)). Since the g-th moments of H; are finite by assumption, we can find a finite constant

C > 0 such that
{Hle(i/nvGi_K)‘Hq}( <CpK+1

for any K € Nand s € {1,...,P}. Since pf“ goes to 0 exponentially fast as K — oo,
(1.132) holds. O
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1.5.7 Proof of Corollary 1.2.9

First of all, we give an explicit description of §,;(x, ) in the specific setting of the
PLS ARCH process in Subsection 1.2.3. We note that for i = 1,...,n, z € R, and
xr = (5(71,.%'2,...) GRN

P[X,; < z|€i 1 = z]

= P> () + Zi}“ﬁs(%)%(%’efs>)ﬂ<w’w+ﬂ<%>} <9

J=0

= Plei < a/Mi(@)] = F(o/Anil)),

where A, ;(x) = Zﬁzo(am(%) + Zle ajs(£)Gi (%, ®s11))Lip, p,40) (%) and F. denotes
the distribution function of ¢y. For i = 1,...,n, we may thus define §, ;(z, ) through

Sni(r,x) = F.(x/An (). (1.133)

As a result

Fui(@, ) = fo(2/Mni(®)) /Ani(®) and  § (2, 2) = f(z/Ani()) /A7 (). (1.134)

Moreover,
fri(@) = E[fni(z,€i1)] = E [fs (x/An,i(EzelD/An,i(61‘71)] (1.135)

provides a Lebesgue density f,; of X,,; forany ¢ =1,...,n.
(A3): Let ¢ and «y be as in conditions (a) and (b) of the corollary. Without loss of

.....

any i = 1,...,n, and 8 > 0 by assumption (a), we obtain in view of (1.135)

[ foillyy = HE[fe(‘/An,i(fifl))//\n,z‘(ez‘—l)]H(v) < %ilelgE[fe(x/An,i(ﬁi1))%(%‘)]

for any i = 1,...,n. By assumption (b), there exists a finite constant ¢ > 0 such that
fe(x)p(x) < cfor all z € R. As a result we have for any z € Randi=1,...,n

fe(w/Mni(€in1)) 05(2) < (@) dr(@/Ani(€im1)) < ¢ max{L, A} (1)} (1.136)

Consequently
c

1fuilley < gE[max{l,Az,xei_l)}] < 5 (U IAni(en) D).

Assertion (A3) follows, if we can show that sup, ¢y maxi<i<n [|[Ani(€;i-1)[|7 < oo. Note
that A, ;(€;—1) coincides with the sum Zﬁzo Gji(, €i1)L(p, p;. ) (i/n), where we set €;,1 1=
(1,ei-1,€i—2,...) and G;(m, €;;1) can be represented analogously to (1.16). It thus suffices

.....

The latter assertion can be shown in the same way as part (i) of Lemma 1.2.8.
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(A4): By (1.13), we have for any 7, 7" € (pj,, pj,+1);

Gjp (7T, 60) — Gjp (7'('/7 60)

= co(aj,0(m) = aj,0(7) + D (a5,,5(7) = a;,4(x) Gy, (7, €) £
P
+3 " a;, () (G, (7, e-s) — Gy, (7, €_4)) 0. (1.137)

By the differentiability of a;, x(7) and the independence between G, (7, €e_s) and e,
there exist two finite constants C; > 0 and C5 > 0 such that [|eq (a;, 0(7) —aj, 0(7")) |1 <
Cy|r — ' and || 327, (aj,.s(m) = aj, (7)) Gy, (7, €_5) €01 < Co|m — 7’|. Furthermore,
observe that, due to the stationarity of the process {€_;}7_, we have ||G;, (7, e_,) —
G, (1" e_5)|l = |Gy, (7, €0) — G, (7', €0)|[1, s = 1,2,...,P. Hence

H Z @5 (1, €-s) = G, (1", €-)) €0

LS amax |Gy (me) = Gy (e

= allGj, (7, €) = Gj, (', €)1,

.....

into (1.137), we have
||Gjp(7r,eg) -G, (7r € ||1 < (C1+Cy) |r —'/(1 — a).

(B4): Assumption (B4) can be shown analogously to (A4); we omit the details.
(A5): We observe that for any r € N

5677‘3‘1

- Sup H{GJP UE 60) Gﬂp(ﬂ- 60 7")}(1)Hq
TE(Pjp Pjp+1]
r—1
= sup {[HAjp(?T,ET_S)}Z_)ijT,&T_T - 6*)

TE(Pjp Pjp+1] =0

+§:< HAJP me )| A (mer — ) ] Aa‘p(”vf—s)]gjp(”’g—t‘l)>}(n

t=r s=r+1

)
q

where [[].

s=r+1 ~
ogously to the proof of part (i) of Lemma 1.2.8, we can find constants C' and C' such

that

A; (m,e_,)] corresponds to the P x P-dimensional identity matrix. Anal-

dera < {1 Ay lll))_swp (2ol
S

TE(Pjp Pip+1] TE(Pjp Pip+1]
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+Z( sup A (mlleoll)]” - sup Ay (m,2leolly)

TE(Pjp Pip+1] TE(Pjp Pip+1]

[ s A lloll)]) B loll)

TE(Pjp Pip+1] 1)

<2 (1w Aymileol)] By lleol))

ter—1 = TEPjp-Pip+1]

< 202pt+1<20§:at+1: ~

t=r—1 t=r—1

Here, p;, denotes the spectral radius of sup, ¢ 7, |leoll4), which is less than

PipPip+1] Ajp(

a = (||ol|q max; SUDre(p; p) 4] Zf:o a;.s(m))"F (as we have seen in the proof of part (i)
of Lemma 1.2.8). Since a < 1 by assumption (a), assertion (A5) follows.

(A7) and (A8): We shall only prove M;,(R) < oo for a = 1 (and thus for any

€ [0, 1]) here since the other claims in (A7) and (A8) (with o = 1) follow by similar

arguments. In the following, we will prove that

er2(fnz737> < Oar/¢2v<x> (1.138)

for some constants @ < 1 and v > A+ /2 + 1/2. Then the assertion that Ms ,(R) < oo
immediately follows by plugging (1.138) into the definition of M ,(R).

Let k := min{1, 3(v — 2A — 1), (4 — 2A — 1)}. Below we will show that there exist
constants 0 < C,Cy < o0 and 0 < a < 1 such that

er2<fﬂ 2 ) 01¢_4)\_2_2k($), (1139)
O pi2 (i ) Cop_op ()" (1.140)

These two inequalities imply (1.138), because

02 o (Fnii ) < Crogr—o-au(x) min {1, (C20_ak(x)a*") /(C1¢—ar—2-2(2)) }

< oMoy P—or2—k)—2—k(2) A"

<
<

The latter step relies on the inequality min{1, z} < z¥/2 for z € R,.

We start with the proof of (1.139). We note that A, ;(€;—1), Ani(€;; ) > B for
all i = 1,...,n, where 3 is as in the proof of (A3). Moreover, || f.||(2a414%) < 00 by
assumption (b) and hence (1.136) holds (with v = 2\ + 1 4 k) for some finite constant

c¢1 (in place of ¢). Consequently

e T Q(fn 29 )
< S{lrGnue)+ 156 )z
2c2

< g -l (o) { | mee {1, A2 (e [ + [ mae {1,424 €50 o}
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< 2c2
< ﬁ
Since 4\ + 2 + 2k < g and hence sup,,cy max<i<n || An,i(€i-1)|lar+a12k < 00 analogously
to the argumentation in the proof of (A3), we may thus find a finite constant C} such

that (1.139) holds.
For the proof of (1.140), we observe

;j(eo) <f5 (:B/An,i(ei_l)) — fe (ﬂf/Am(G:z—T))) Hz

12| o/ Aniler i) (Ank o) — Anbter,n) |
= Si(n,i;7) + So(n,i;r). (1.141)

oo (@ { 1+ [[Anale) [ o+ L+ [ Al [ o -

er2(fnla ) S

Since Ay, i(€i-1), Ani(€f, ) > B foralli=1,...,n and ||f/||x+1) < [[flll() < 0o (hence
|2 (z/y)| i1 (x) < cpmax{1,|y[**1} for any x,y € R, analogously to (1.136)) we obtain
for the first summand

Si(n,i;r)

< 2 H/’”“’ 2 f1(2)

n,i 60
< 52 ¢ ok—2( \33’ H/ y max{l ka}dQH

. 44 <x>{u/"”" S )
> 52 —2k An’i(e;i_r) Yy 9 An’i(e;i_r) Y 9
4¢3 1
= S @{Auie0) — A+ g [ Aniteo) — Auateiin) 31}
42
< g (7 457) 0ne) max [[Anile) = Ans(eii, Iy (1.142)

for some finite constant c,.
For the second summand, there exists a finite constant c3 such that

2
Sa(n,isr) < 263 6a(a)|| max{L, [Anilel, I (A eo) = A ke ) |
< 4 o) {||Azken) — Ak )[3 + [Anitelis AT o) — 1))
42
< 07 D0 [Anilerin) — Anileo)]

where we used that |f.(z/y)|¢1(x) < czmax{l,|y|} for any x,y € R (because of the
boundedness of f.) analogously to (1.136) in the first step and A, ;(€;-1), A (€], ) > B
for all i = 1,...,n in the last step. In view of (1.141) and (1.142), this results in

< oo A — Anale)||” 1.14
er?(f”l’x) ~ C4¢ Qk( )tg{l?i:{}H nz zz 7’) n,z(GO)HQ ( 3)
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for some finite constant c4. For the proof of (1.140) it remains to show that ||A,(€};_,)—
A, (€ H2 is finite. We note that the latter difference coincides with > =0 o (Gi(m €5 1)
— G;(m, €:1)) Lp; p;41)(i/n), where we use the same notation as introduced in (A3) and

define analogously €;, ., := (1,€; ;,_ ). By the same line of arguments as in the proof
of (A5) we obtain

HAnz “ r)_Anz €o H2 S maX sup H{aj(ﬂ-aei;l) @( T, 17, ;1 }(1)H2 S CSar
Ere(p)pi]

for some finite constants ¢; and @ < 1. Along with (1.143) this proves (1.140).
(A9): Analogously to (1.135) we obtain that f,(z) := E[f.(z/A,(€0))/Ap(€0)] with

Ay(€p) = Zﬁzo(am(p) +37 4Gy (p, €-5))1(p, ;.1 (p) provides a Lebesgue density
fp of &,. Since Ay(€y) > 5, we obtain

”fp”oo < 5_1“E[f€(x/Ap(€0))} Hoo < 6_1 SuP|fs(Z)|a

z€R

so that (A9) follows in view of assumption (b). O

1.5.8 Proof of Lemma 1.3.1

As before let j, be the unique index j with p € (p;, pj11). Then, for n sufficiently large
(depending only on p; and pj1), we have i, ,,/n € (p;, pj+1). Without loss of generality
we will only consider n being sufficiently large. Then &, ,, := G, (ipn/n, €) has the same
distribution as X, ;, .. Moreover §, = G, (p, €). Thus for any z € R

|Fp,n<x) - Fp<x>|
= |E[]l(_oo,m] (fpm) — T(Coo] (fp)} |

= |E[L(—o)(G, (ipn/7. €0)) — L—oeal (G, (9, €0))] |

< |E[(L(cs0a)(Gy, (ipn/n, €0)) — Il(— G, (P, €0))) {16, (ipon/moco) -Gy (pico) <o} |
+ ‘E[(]l(_OO,I]<Gjp (ip,n/n, 60)) - ]1( 0o z] p7 60) )1{|Gjp (ip,n/m,€0) Gjp(p760)|>m5n}j| |

= 51n,2) + 5(n, ) (1.144)

for any d,, > 0. For the first summand we have for any x > 1

T+0n

Sl(n,a:) S ]P)[Q? - xan S Gjp(ip,n/na 60) S T+ xén} = / fn,ip,n(y> dy

—x0n

Assuming that d,, is nonincreasing and tends to 0 as n — oo, we can choose ny € N such
that 6, < 1/2 for all n > ngy. Then, for any n > ng and = > 1

x(14-0n)
K@) < 0@ [ h )y

z(1—6p)
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z(1465)

TN / b () dy

z(1—6n)

Crga(x) (220,) sup ¢—(¥)

yE(@(1—6n),x(1465))

2010, ¢r41(7) sup $—(y)
yE€(2(1=0n),x(1+3n))
(1 +ﬂf))\+1

= 20000 ora (26 (2(1 = 00)) < 200 (e

1 T A+1
2 <
Cion (1 +x/2 T —i—a:/2> < Cadn,

INIA

IN

where Cy := 2C13M" and C) := sup,cymaxer, , || fuill(y) < 0o (recall (A3)). Thus
SUD,e(1,00) S1(1 T)PA(7) = O(6,). In the same way we obtain the analogue with “z €
[1,00)” replaced by “z € (—oo,—1]". Hence sup,eg\(-1,1 S1(n, ¥)dx(z) = O(d,). For
the second summand we have for any 2 € R\ {0} and some constant C5 > 0

Sa(n, x) P[|G}, (ipn/n, €0) — G, (D, €0)] > x6,]

<
< (ajfsn)_q”Gjp(ip,n/n?eO)_Gjp<pa GO)HZ < Cs(xd,) 071,

where we used Markov’s inequality and (B4). Thus ¢,(z)Sz(n,z) < 2*C3(nd,) ™9 for
any € R\ [=1,1]. Thus sup,cp\(_11) ¢r(2)S2(n,2) = O((nd,)™), and therefore
SUDgeR\[-1,1] OA(@)[Fpn(@) = Fy(2)] = O(6,) + O((ndn) 7).

By the same line of arguments (but with < zd,, and > x4, in (1.144) replaced by
< 6, and > 4, respectively) we obtain sup,¢(_1 1) [Fpn(7) — (7)) = O(3,) +O((nd,) 7).
Altogether, ||F,,, — F,l|ny = O(8,) + O((nd,)~9). Choosing 4, := n~9@* we arrive at
| Epn — Eplloy = O(n=9/tatD). Together with (C2) this gives the claim. O
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Chapter 2

Integration by parts for multivariate
functions

2.1 Introduction

This chapter is devoted to the development of an integration by parts formula for mul-
tivariable functions of (locally) bounded variation as defined in Section 2.4. In 1917,
Young [81] elaborated such a multivariate integration by parts formula for Riemann-
Stieltjes integrals, where the use of this special type of integrals forced him to assume
continuity of at least one of the involved functions. For Lebesgue-Stieltjes integration,
two-dimensional versions can be found for instance in Gill et al. [40], Dehling and Taqqu
[25], Beutner et al. [8] and in Beutner and Zahle [11]. Recently, Berghaus et al. [7] proved
a two-dimensional integration by parts formula on compact intervals by using a slightly
different type of variation. The generalization thereof to multivariable functions is part
of the recent work of Radulovi¢ et al. [63].

Section 2.6 below provides an integration by parts formula for multivariable functions
of locally bounded variation, which is closely related to [63]. For its formulation we
need some preparation. In Sections 2.2-2.3 we recall the notion of d-fold monotonically
increasing functions and we discuss the connection to positive Borel measures on R,
In Sections 2.4-2.5 we recall the notion of functions that are locally of bounded d-fold
variation and we discuss the connection to signed Borel measures on R

2.2 Multi-monotonically increasing functions

For any @ = (ay,...,aq) and b = (by,...,by) in RY, we will write @ < b if a; < b; for
j=1,....d,and a < bif a; < b; for j = 1,...,d. For any a,b € R? with a < b
we denote by [a,b] the set of all z € R? satisfying @ < = < b. For any a,b € R?
with @ < b we denote by (a,b] the set of all x € R? satisfying a < £ < b. The set
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[a,b] can be seen as a (generalized) closed interval, and the set (a,b] can be seen as a
(generalized) half-open interval. The cardinality of a set .J will be denoted by |J|, using
the convention |@] := 0.

Definition 2.2.1 Let F : RY — R be any function. For a = (ay,...,aq) € R? and
b= (by,...,bs) € R we set

AYF = > (=) P@®™), (2.1)
JC{1,...,d}
where
. , : : b, € J
a;J . (1a;] a;J . a;J | y J
b4 = (b7, ..., b7")  with D] '_{ajj g (2.2)

When a < b, we refer to A2F as the d-fold increase of F' on the interval [a, b].
For illustration, let F} : R — R, i = 1,2, 3, be any functions. Then
AZ§F1 = Fl(b1) - Fl(al)a
AP By = Fy(by,by) + Fa(ar, as) — Fa(ar,by) — Fa(br, az),

(a1,a2)
AN = F3(b1,b2,b3) + F3(b1, az, a3) + Fs(a1, be, a3) + F5(aq, as, bs)
_F3(b17 b27 Clg) - F3(b17 a2, b3) - F3(a17 b27 b3) - F3(a17 a2, a3)

(a1,a2,a3)* 3
for all a;,b; € R, i = 1,2,3. The following remark justifies the name “d-fold increase”
in a sense.

Remark 2.2.2 It is easy to see that

ALF = Db ...DVF

for any a = (ay,...,aq) and b= (by,...,by) in R, where
b . mab b ab . ab by_ ab . pab b ab b, a,b
DY F = Fb, DRESY .= Feb | Dl peb . pab o phipab . Abp
with
Fet(xy, .. xq) = F(by,xa,...,2q) — Flay, @, ..., xq) , (x2,...,1q) € R
Fg"b(xg,...,a:d) = Fby,as, ... 1q) — F&P(ag, 23, ... 2q) , (x3,...,74) € RI2
F;’b(xd) = Fg_’ﬁ(bdq, Tq) — F;ibl<ad71>37d) , g€ RL
In particular, A2 FF = 0 when a; = b; for at least one i € {1,...,d}. O
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Definition 2.2.3 A function F' : R — R is said to be d-fold monotonically increasing
when AYF > 0 for all a,b € R? with a < b. It is said to be d-fold constant when
AbF =0 for all a,b € R with a < b.

Note that in dimension d = 1, a function is d-fold monotonically increasing (resp.
d-fold constant) if and only if it is monotonically increasing (resp. constant) in the
conventional sense, because the 1-fold increase AbF' coincides with the conventional
increase F'(b) — F'(a). In higher dimensions the situation is different. For d > 2 a
d-fold monotonically increasing function F' : R¢ — R is not necessarily monotonically
increasing in the sense that F'(a) < F(b) for all @ < b, and vice versa; see Examples
2.2.5-2.2.6. Also, for d > 2 a d-fold constant function F' : R — R is not necessarily
constant in the sense that F' = ¢ for some constant ¢ € R, which can be seen from part
(iii) of Proposition 2.2.7. These observations correspond to the fact that for d > 2 we do
not have F(b) — F(a) = AYF in general. We rather have the following representation
(2.6), where for any nonempty subset J C {1,...,d} we use the notation

c; = (¢j)jes (ER7) forany c=(ci,...,cq) € R (2.3)

Moreover, we define the function F%”/ : R/l — R by

F*(x) = F(x;a), x = (7;)jes € R’ (2.4)
with
x; , j€J
xsa = (ray,...,v505) and xa-::{ / : 2.5
J (zsay 70q) Ja; o . & (2.5)
for any @ = (a1,...,a4) € RY, & = (z;)je; € R, and any nonempty subset J C

{1,...,d}. Note that the statement of Lemma 2.2.4 can also be found as Proposition
6 in [59] (note that AbsFe/ = (—1)MIAF7F%7) and as formula (8) in the proof of
Theorem 2 in [51].

Lemma 2.2.4 For any function F : R = R and any a,b € R? we have

F(b) = Fla) + Y AyFre/ (2.6)
0AJC{1,...,d}

where F%7 is defined by (2.4).

Proof We will proceed by an induction on d. For dimension d = 1, that is, for
F:R — R, we clearly have

F(by) = F(a) + (F(by) — F(a)) = F(a) + A% F

Now, assume that (2.6) holds up to dimension d — 1 with d — 1 > 1. Let F : R? - R
and @ = (ai1,...,aq),b= (by,...,bs) € RL Then

AbF
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(b17“'7bd71’bd)
A(aly---vad—lyad)

= AR by = AR R ay)

(a1,--,aq—1) (a1,-,aq—1)

A(blv--wbdfl) Flat,ag—1ba){l,..d=1} _ A(blv--wbdfl) Fas{l....d-1}

(a1,--,aq—1) (a1,--,aq—1)

_ (F(a1,...,ad,l,bd);{l,...,dfl}(bl’ b)) — F(a1,..A,ad,l,bd);{l,...,dfl}(ah . aa1)

. Z AbJ (F(al,l..,ad,l,bd);{l,...,d—l})(alw-vad—l)iJ) . A(b17---7bd—1)Fa;{l,.‘.,d—l}
aj (a1,...,ag—1)
0£JC{1,...,d—1}

= (F(bl, Ce ,bdfl, bd) — F(al, e, Qag—1, bd)
. Z Ab] F(a1,...,ad_1,bd);J> o A(bla---7bd—1)Fa;{l,...,d—l}
ajy (a1,--,aq—1) )
0£AJZ{1,....d—1}

where we used the induction assumption for the fourth equality. Adding the telescop-
ing sums > g e a1y Ab o — D 0£ICL,d1) AY F*7 and F(a) — F(a), we may
continue with
= F(by,...,bg-1,bq)
_ Z (AZ.SF(GL---,ad—Lbd);J _ Ag;F(aly---yad—lyad);J> _ Z AZ‘;FG';J
0£JC{1,...d—1} 0£JC{1,....d—1}
- (F(ah <oy Ad—1, bd) - F<a17 ces Ad—1, CLd))
. Agbl,mybdfl) Fas{l.d-1} _ F(al, g, ad)

a1,.,04—1)

= F(bh . 'abd—labd)

DI 7 e DI
PA£JCAL,...,d—1} 0#£JC{1,...,d—1}

— Aba pai{d}

aq

brenbi1) rai{L,ed—
_Agai,---,ai_ll))F A=) F(ay, ..., a41,aq)

= Fib)— >  AYF* - F(a)
0#£JC{1,...,d}

Since ALF is nothing but A% F%7 for J = {1,...,d}, the proof is complete. O

Example 2.2.5 The function F' : R? — R defined by

d
F(zy,...,2q) :== Hx,», (z1,...,24) € R (2.7)

=1
is d-fold monotonically increasing, because AbF = H?Zl(bi —a;) > 0 for all @ =
(ay,...,aq) and b = (by,...,by) with @ < b. However, for d > 2 it is not mono-

tonically increasing in the sense that F'(a) < F(b) for all @ < b. For instance, a < b
but F'(b) < F(a) when choosing a := (—1,—1,1,...,1) and b:= (0,1,1,...,1). &

86



For the following Example 2.2.6 note that

F(b)—F(a) = (F(by,bs,...,by) — F(ay,bs,...,by))
—|—(F(a1,bg,...,bd)—F(al,a2,...,bd))

+ (F(ay,as,...,by) — F(ai,as,...,aq)) (2.8)

holds for any function F : R? — R and a = (ai,...,aq) and b = (by,...,by) in RY,
which implies that F' is monotonically increasing in the sense that F'(a) < F(b) for all
a < b if (and only if) F' is monotonically increasing in each of the d coordinates (when
the other respective d — 1 coordinates are fixed).

Example 2.2.6 Generalizing Example 1.8 in [39], let for some even number d > 2 the
function F : R* — R be defined by

F(iL'l o 33d) = H?:l(‘ri + 1) ) Z?Zl z; <0
o [ (i +2) , Y, 2>0

for (z1,...,2z4) € [—1,1]%, and by
F(z1,...,2q) := F(min{max{zy; —1};1},..., min{max{xy; —1};1})

for (zy,...,74) € [—1,1]% On the one hand, the function F' is monotonically in-
creasing in the sense that F(a) < F(b) for all @ < b. To see this, note that for
any fixed j € {1,...,d} and (z1,...,2j_1,%j41,...,24) € R?! the mapping z —
F(x1,...,2j-1,2,%j41,...,24) from R to R is monotonically increasing, and thus, in
view of (2.8), the mapping @ — F(z) from R? to R is monotonically increasing. On the
other hand, F' is not d-fold monotonically increasing. For instance, @ < b but A2F < 0
when choosing @ := (—1,0,...,0) and b:= (0,1,...,1).
Indeed, for any a,b € R? we observe that

AP o= Y (—D)TIR@®)
JC{1,...,d}
d

= St Y Fe)

k=0 JC{1,...d},|J|=k

d
= CDF@+ S -D S Fe)
k=1 JC{1,...,d},|J|=k,1€]
d—1

+) (=) > F(b7).

k=1 JC{1,....d},| =k, 1¢J
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Ifa:=(-1,0,...,0) and b:= (0,1,...,1), we thus obtain

(0,1,...,1)
A(71,0 ..... o)F
d d
= (-D)'IJ(a; +1)+ > (-1 > bi+2) [T Gi+2]](e+2)
j=1 k=1 JCA{1,....d},|J|=k,1€J ieJ\{1} jeJ
d—1
+3 (-n*t > (a+2) [Te:i+2) [ (a;+2)
k=1 JC{1,...d},|J|=k,1¢J ieJ je¢(Ju{1})
d
— O + Z(_l)d_k Z 2 . Sk—l . 2d—k
k=1 JC{1,....d},|J|=k,1€J
d—1
+) (=n** > 1.3k 247kt
k=1 JC{1,....d},|J|=k,1¢J
d d—1 L d—1
— 1 d—k 3k 12d k+1 - 3k 2d7k71
S0ty )) IS
k=1
d—1 d—1
d—1 d—1
— 2 ( k: >3k: (—Z)d_l_k . Z ( k >3k‘ (_2)d—1—k . (_1)d 2d—1'
k=0 k=0

By means of the Binomial theorem we arrive at

Ay =26 -9 = 3= - (-2 = 1 (-2

which is negative for an even number d > 2. &

Proposition 2.2.7 For any functions F,G : R? — R the following statements hold:
(i) If F and G are d-fold monotonically increasing, then the same is true for o F + 3G
for any o, B > 0.
(ii) If F and G are d-fold constant, then the same is true for « F+ 3G for any a, f € R.

(iii) F is d-fold constant if it is constant in at least one component, that is, if for at
least one i € {1,...,d}

F(.Tl, ey L1, Lgy Ljg 1y - - - ,Id) = F(.Tl, ce 7$i71707$i+17 Ce ,xd) (29)
holds for all xq,..., x4 € R.

(iv) If F' is d-fold constant, then it can be represented as the sum of d functions
Fi, ... F; with F; being independent of the i-th component, that is, there exist
functions Fi, ..., F;: R — R such that

d

F(xy,...,2q) :ZE(:El,...,md) for all (zy,...,14) € RY (2.10)

i=1
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and Fi(xq,...,x4) does not depend on x;, i € {1,...,d}.

(v) F is d-fold monotonically increasing if it has the representation

d
F(x1,...,2q) :Hf,(xz) for all (zy,...,14) € RY (2.11)
i=1
for some monotonically increasing functions f; : R —- R, i=1,... d.

(vi) F s d-fold monotonically increasing if it is d times continuously differentiable with

. . . . . d
nonnegative mized partial derivative F\@ = 9L
Oxg...0T1

Proof Assertions (i) and (ii) are obvious, and assertion (iv) is known from (5.26) in
[64, p. 37].

(iii): If F' is constant in the i-th component, then the difference

AbE — A(ln,4-.,bi_1,bi+1,.-.,bd) Foi{Li=Lit 1, d} _A(bl,-n;bi—l7bi+1r~~7bd) Fras{li=Litl,..d}

a (@15es @i 1,051 50 (@150 1,06 11,0,0a)
vanishes, where the functions Fo{b-i=litlewd} gnd pai{l,i=Litl..d} are defined as in
(2.4). Hence, F' is indeed d-fold constant.

(v): If (2.11) holds, then we have A2 F = H?Zl(fi(bi) — fi(a;)) for all a,b € R? with
a < b. This shows that F'is d-fold monotonically increasing.

(vi): If F' is d times continuously differentiable, then we may apply d times the
fundamental theorem of calculus to obtain

b by
AZF:/ / FD(xy, ... xg)dry---drg (2.12)
ag a1

for every a, b € R? with a < b (cf. (15) in [59]). Since F@ is nonnegative by assumption,
this implies (vi). O

If we fix some arguments of a d-fold monotonically increasing function F' : R — R
and regard it as a new function in the remaining arguments, then the new function is not
necessarily multi-monotonically increasing. The following simple Example 2.2.8 shows
that if F : R? — R is d-fold monotonically increasing, then the function F%? defined
by (2.4) is not necessarily |J|-fold monotonically increasing. Such a situation can also
be derived from part (iii) of Proposition 2.2.7. Indeed, pick any function G : R? — R,
with p < d, that is not p-fold monotonically increasing and regard it as a function from
R? to R.

Example 2.2.8 In Example 2.2.5 we have seen that the function F' : R¢ — R defined by
(2.7) is d-fold monotonically increasing. However, for a = (ay, . . ., ag) the function F'%7 :
RMI — R is not |.J|-fold monotonically increasing when |J| < d and p := [I;zsa; <O.

Indeed, the mapping (x;);es — [[..; x; is |J|-fold monotonically increasing by Example

jeJ
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2.2.5, which implies that the mapping (z;)jcs — F%/((z;)es) = pIl,c;z; cannot have
this property. O

However, under an additional assumption on the function F' we obtain that also the
functions F'%7 are multi-monotonically increasing. For instance, the distribution func-
tion of every Borel probability measure on R? satisfies the assumptions of the following
lemma. Here we use the notation J¢:= {1,...,d}\ J as well as (2.2).

Lemma 2.2.9 Let F : R — R be a d-fold monotonically increasing function, a €
RY, and J C {1,...,d} be nonempty. Assume that F(zy,...,z4) — 0 as (z)jesc —
(—00)jese for any (zj)je; € R7. Then the function F%/ : R? — R defined by (2.4) is
|.J|-fold monotonically increasing.

Proof To prove that F%/ is |J|-fold monotonically increasing we have to show that
AYF%7 > ( for any u,v € R’ with u < v. For any fixed u,v € R’ with u < v, let
u = (uy,...,uq) and © = (v1,...,v4) be defined by

~ U , j€dJ ~ V; , j€J
L= d e
o {xj T2 A {aj Ty

where z; is (arbitrarily) chosen such that z; < a;, j € J°. In particular, w < v. Then
we obtain

AZFa;J _ Z(_l)\J\—|K|Fa;J(,vu;K)

KCJ

= Z(_l)“]‘_uﬂF(Eﬁ;KU({l"“»d}\J))
KCJ

_ Z(_l)d7(|K|+d—\J|)F(%Q;Ku({l,...,d}\J))
KCJ

= ALF— > (-)"HF@E"),

LelL(J)

where IL(J) consists of all subsets L C {1,...,d} that do not contain all of the elements of
J¢. Our assumptions imply that Y, (=1)** F(@™) converges to 0 as (x;)jese —
(—00),ese. Thus, since AZF > 0 holds for each specific choice of (z;);ese (recall that F
is d-fold monotonically increasing), we indeed get A% F%/ > (. a

Definition 2.2.10 A function F : RY — R is said to be completely monotonically
increasing if all functions F%’, a € R, () # J C {1,...,d}, are multi-monotonically
INCreasing.
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Note that completely monotonically increasing functions are Borel measurable; one
can argue as in Theorem 3.2 of [2] where the case of functions on compact intervals is
treated. As an immediate consequence of Lemma 2.2.9 we obtain the following corol-
lary, which shows in particular that the distribution function of every Borel probability
measure on R? is completely monotonically increasing as these distribution functions
satisfy the assumptions of Lemma 2.2.9.

Corollary 2.2.11 Let F : R? — R be a d-fold monotonically increasing function. As-
sume that F(xz1,...,24) = 0 as (zj)jese — (—00),ese for any (z;)je; € R7 and any
nonempty J C {1,...,d}. Then F is completely monotonically increasing.

2.3 Measure generating functions

Let F' : RY — R be any d-fold monotonically increasing function. Denote by Z¢ the
class of all sets (a,b] in R? with a < b, and consider the set function ppza : 7% — Ry
defined by

ppza((a,b]) = ALF, a,beR? with a < b.

Theorem 2.3.2 below shows that 74 extends in a unique manner to a positive measure
on B(R?) when F is in addition right continuous.

Definition 2.3.1 A function F : R? — R is said to be right continuous if it is coordi-
natewise right continuous in each coordinate, at every point © € RY.

Theorem 2.3.2 For any d-fold monotonically increasing and right continuous function
F :RY — R there exists a unique positive measure pup on B(R®) whose restriction to I%
coincides with fipza.

The preceding result can be found in Theorem 1.5.27 of [64] and justifies the following
definition.

Definition 2.3.3 A function F : R — R is said to be a measure generating function
iof it is d-fold monotonically increasing and right continuous. In this case, the measure
wr given by Theorem 2.3.2 is said to be the measure generated by F.

Of course, the measure ur generated by a measure generating function F' is finite
when F is bounded. Conversely, for a finite measure p on B(R?) we obtain by

F,(x) = lim u((an,x]), xR (2.13)
n—oo
(for any (a,) with lim, , ||@,|| = co and 0 > a; > as > ---) a bounded measure

generating function F, : R? — R,. That is, we have a one-to-one correspondence
between a finite measure p on B(R?) and a bounded measure generating function F :
R? — R,.
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Definition 2.3.4 For a finite measure i on B(R?) the function F,, defined in (2.13) is
also referred to as corresponding distribution function.

It is easily seen that the distribution function F), of a finite measure pu on B(R?)
satisfies F,(z1,...,24) — 0 as (z;)je; — (—00)jes for any (z;);e;e € R’ and any
nonempty J C {1,...,d}, and thus by Corollary 2.2.11 it is completely monotonically
increasing (hence Borel measurable). This is not true for every measure generating
function; recall Example 2.2.8.

We emphasize that Theorem 2.3.2 is somewhat different from (the respective special
case of) part (a) of Theorem 3 in the recent paper [1]. Whereas the latter treats the case
of a finite positive Borel measure on a compact interval and assumes that the “measure
generating function” is completely monotonically increasing (in the sense of Definition
2.2.10), the former covers all o-finite positive Borel measures on R? and only requires
that the measure generating function is d-fold monotonically increasing. Also, in [1] the
“measure generating function” depends on the particular compact interval of interest,
whereas in our context the measure generating function can be chosen “globally”. For
instance, a measure generating function for the Borel Lebesgue measure on R? in the
sense of Definition 2.3.3 is given by the function F' defined in (2.7). Example 2.2.8 shows
that this F' is not completely monotonically increasing.

2.4 Functions of locally bounded multi-variation

In this section we will first recall the notion of d-fold variation (or Vitali variation)
of multivariate functions F' : R — R, and we will show later on that any function
F :R? — R that is locally of bounded d-fold variation can be represented as difference
of two d-fold monotonically increasing functions; cf. Theorem 2.4.8 and Corollary 2.4.9.

Definition 2.4.1 For any a = (ai,...,aq) and b = (by,...,by) in R with a < b, a
grid partition of the interval [a, b] is a collection

{<x17i17"'7'rd7id>} = {(.Tl’il,...,xd,id) : O S il S nl,...,O S ’id S nd}

of points in [a,b] with a; = w0 < w1 <o <@y, 1 < Xy, = by for 1 < j < d. The
set of all such partitions will be denoted by P([a, b]).

For any interval [a, b] and any grid partition {(z14,...,%a:,)} € P([a,b]), we have
xll seesld g o b
Z Z (z1 11 1o ’xl‘i“d 1)F - AaFv (214)
11=1 tg=1

because the left-hand side in (2.14) is nothing but A2 F' plus some telescoping sum (see
also Proposition 3 in [59]). In the following definition, and later on, we will use the
notation z* := max{+z,0}.
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Definition 2.4.2 Let a,b € R? such that a < b. For a function F : R? — R the total
d-fold variation, the positive d-fold variation, and the negative d-fold variation on |a, b]
are defined by respectively

n1
Vi(la,b]) = sup o ’ 21 it xd;d F’
{(@1,iy5-%d,ig) YEP([a,]]) ; zdzl Lig—1sTdig—1)
n1 uryi
(]}11‘ seeesld 4 ) +
Vi(la,b]) = sup APty
) (@141 2a1y)yEP((a:b]) 2 dzzl (B a0 )
ni ndg
o (T1,iq 5o Tdig) _
Vi (la,b]) = sup A W R
F {(@1,iy5-%d,ig) YEP([a,b]) P ; ( (%109 =155 d,ig—1) )

It is easily seen that in Definition 2.4.2 the set P([a, b]) can be replaced by the set
P([a, b]) of arbitrary partitions of [a,b] into finitely many disjoint subintervals [a, B].
This was done, for instance, in [51, p. 62].

Definition 2.4.3 A function F : R? — R is said to be locally of bounded d-fold varia-
tion if Vir([a, b]) < oo for all a,b € R? with a < b.

In dimension d = 1 the notion of locally bounded d-fold variation coincides with the
conventional notion of locally bounded variation; observe that the expression Vg ([a, )
is nothing but the conventional variation of a function F' : R — R on the interval [a, b].

Proposition 2.4.4 Let F,G : R? — R be any functions.
(i) Vrig(la,b]) < Vi([a,b]) + Va([a, b]) holds for all a,b € R? with a < b.

(ii) If F and G are locally of bounded d-fold variation, then the same is true for
ol + BG for any o, B € R.

(iii) If F has the representation F' = Fy — Fy for two d-fold monotonically increasing
functions Fy, Fy : R — R, then it is locally of bounded d-fold variation.

(iv) If F is d times continuously differentiable, then it is locally of bounded d-fold
variation.

Proof Assertions (i) and (ii) are obvious.

(iii): If a function G : R? — R is d-fold monotonically increasing, then it is clearly
locally of bounded d-fold variation with Vi([a,b]) = V7 ([a,b]) = A2G for all a,b € R?
with @ < b. For two d-fold monotonically increasing functions Fi, F» : R — R we thus
obtain Vi, _g,([a,b]) < Vg ([a,b]) + Vi, ([a,b]) = A F, + A2, for all a,b € R? with
a < b. Hence F' = F; — F; is locally of bounded d-fold variation.
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(iv): Let F@D (2, ... 24) = O OF (11,...,74), and a,b € R? with @ < b arbitrary

~ Oxg--Ox1
but fixed. Applying d times the fundamental theorem of calculus we obtain

vg V1
|AVF| = ‘/ / F(d)(arl,...,xd)dxl---d:z:d‘
Uq ul

vg v1
< / / |F(d)(x1,...,xd)‘d:v1-~dxd
Ug u1

for every u,v € R? with a < uw < v < b. It follows that Vx([a, b]) is bounded above by
the integral fabj e ffll |F@D(2y,...,24)|dry - dry. Since the latter integral is finite by
the continuity of F@, we obtain Vx([a,b]) < oo. O

The following remark shows that if F : R? — R is locally of bounded d-fold variation,
then the function F%/ : R/ — R defined by (2.4) is not necessarily locally of bounded
|.J|-fold variation.

Remark 2.4.5 If we fix some arguments of a function F' : R — R that is locally
of bounded d-fold variation and regard it as a new function, say G, in the remaining
arguments, then the new function is not necessarily locally of bounded multi-variation.
Indeed, pick any function G : R? — R, with p < d, that is not locally of bounded p-fold
variation and regard it as a function F from R? to R through

F(xy, ..., 2, Tps1, .-, 2a) = G(x1,...,2p), (z1,...,1q) € RY

Then, by part (iii) of Proposition 2.2.7 the function F' : R¢ — R is d-fold constant and
thus by part (iii) of Proposition 2.4.4 also locally of bounded d-fold variation. &

Corollary 2.4.9 below will show that also the converse of part (iii) of Proposition
2.4.4 is true: if a function F : R? — R is locally of bounded d-fold variation, then it can
be represented as difference of two d-fold monotonically increasing functions.

For the proof of Theorem 2.4.8 we need the following two lemmas. The first one is
a generalization of Lemma 1.16 in [39], and can also be found as Lemma 1 in [59].

Lemma 2.4.6 Let a = (ai,...,aq),y = (y1,...,yq), b= (b1,...,bs) € RY, and assume
that a <y < b. Let I,,...,Ia denote the 2% compact intervals of the shape x?zllj
where for j = 1,...,d either I; = |aj,y;] or [y;,b;]. Let F : R? — R be any function.

Then Vi([a, b)) < oo implies Vp(I;) < oo for 1 <i < 2% and we have

Qd

Ve(lab) = > V(L) and  Vi(lab) = 3 ViE(T).  (215)

i=1
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Proof For a grid partition P = {(21,,...,%a,) : 0 <3 <nyq,...,0 <iy <ng} of any
compact interval I, we will use the notation

xl 48719 xdzd F
Z Z‘ (T167—15Tdig—1)" |

111 Zdl

Let P, € P(I;) for 1 < i < 24, Of course, Pi,..., Py together form a grid partition
P € P([a,b]). Then

Vi(la,b], P) = Y Ve(I;, P,). (2.16)
In particular, .
0 < Ve(I;,P) < Vg([a,b],P) < Ve([a,b)) (2.17)

for every P; € P(I;) and 1 < i < 2% This implies Vp(I;, P;) < oo for every 1 <i < 2%,

It remains to show (2.15). We will only show the first equation in (2.15). The anal-
ogous statements for the positive and negative variation follow by the same arguments.
Let @Q € P([a,b]). Then Vr([a,b],Q) < Vr([a,b], P) when P € P([a, b]) is obtained by
adjoining y to (). Since such P can obviously be considered as a grid partition of [a, b]
obtained by collecting the grid points of certain grid partitions of I, ..., Iy, we obtain
by (2.16)

VF([O'?b]aQ) < VF a b ZVF iy z ZVF

Since () was arbitrary, this implies

2d
b)) < ZVF(Ii>- (2.18)
i=1
On the other hand, given any € > 0, we can find grid partitions Pi,..., Py of

I,,..., I, respectively such that

£
Vr(I;) — 51 < Vi(L;, B) (2.19)

for every i = 1,...,2¢. If P denotes the grid partition of [a,b] obtained by collecting
the grid points of the grid partitions Py, ..., Py, then we obtain by (2.19), (2.16), and
(2.17) that

ZVF(L) —e < ZVF(IZ-,B) = Vp(la,b], P) < Vip(la,b]).

Since € > 0 is arbitrary, we conclude Zl Ve(I;) < Ve(la,b]). In view of (2.18), this
completes the proof of the first equation in (2.15). O
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Lemma 2.4.7 Let F:RY >R a

(i) Vr([a,b]) =

Vi (la,b]) + Vi

nd a,b € R? witha < b. Then Vi([a,b]) < oo implies

([a, b]),

(i) AGF = Vi ([a,b]) = Vi ([a, b]),
(iii) Vi ([@,b]) = 5(Vi([a, b]) — AGF),
(iv) Vi ([a,b]) = 5(Vir([a, b]) + AGF).
Proof Part (ii) follows from
Vi ([a, b))
N (A ¥
o LY@l
{(xl,il7...,xd,id>}e7><[a,b1>ilzl dzl (Phia=trTaig-)
ni nq
(1,11 y0sTd i) - (T1,i 5T dyiy)
— sup (Ax_ ) )T AT F)
{(501,z'17...,:cd,id)}673([a7b])ilzl zdzl ( (riamtnaigs) ) i)
ni nq
(wl,il ’“"xdvid) — b
_ sup ( LS (Al —i—AaF)
{(@1,3) 4,1, }EP([a.B]) Zl dzl iz 1tiig=)
ni nq

sup :
{(@1,iy 5 0ma.ig) YEP([@:b]) ;=

Vi (la,b]) + AGF,

> (A

($1,i1,~~-7$d,z‘d)
(®1,i1 =151, ig—1)

F)" +ALF

ig=1

where the third step is valid by (2.14). Using the same argument, we also obtain

Vr(la, b])
SIGTE T
= Z D DI LA
{(xl,il,---xdzd)}ep ((C) ) ig=1 d
ni
(fﬂl ip e 7$dzd) 't (T1,51 5-%dyiy) —)
= + (A o F
{(xl,il,n-xm)}ep [a.b]) ; Z Z< g BT )
_ sup - 2 ( -'Eli17~--,$d,id) F)_+A(-T1,i17~~-,md,id) F>
{(@1,i1-%d,i4) }EP([a,b]) i1=1 = (1t iq 1) (1=t iiq 1)
n1 ng
o (ml,il,m,wd,i ) - b
_ sup ( S oa(aged g +AaF>
{@1iyeoaig)}EP(@b]) 52 5 5
ni ng
xl ila"'zxd,id) - b
= sup EN SN D B iV 4
{(@1,i1,a,iy) }EP([a, b])z:: z:: Lt g 1) ¢

2V ([a, b)) + AL F.
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Together with part (ii) this implies part (i). Equation (iii) can be obtained by subtracting
equation (ii) from equation (i), and equation (iv) can be obtained by plugging equation
(ili) in equation (ii). O

The following theorem provides a sort of Jordan decomposition for a function of
locally bounded d-fold variation. The theorem complements Propositions 2.18 and 2.19
in [46] which provide a similar result in the univariate setting.

In Theorem 2 in [1], Aistleitner and Dick prove a Jordan decomposition for functions
on [0, 1]¢, which enables even the decomposition of a function F' in completely monoton-
ically increasing functions under the additional assumption that the functions £/
are of bounded |J|-fold variation for every J C {1,...,d}. However, only functions on
compact intervals can be treated by Theorem 2 in [1] because the Jordan decomposition

137 that occurs in the definition of the func-

(more precisely the variation of F' and F' (s
tions of the Jordan decomposition) is anchored at one of the endpoints of the compact
interval. The Jordan decomposition in Theorem 2.4.8 below is centered at an arbitrary

point ¢ € R?, which enables to deal with functions on RY.

Theorem 2.4.8 (Jordan decomposition) Let F : R? — R be a function that is
locally of bounded d-fold variation. For any ¢ € R?, let the functions Fey, Fe_, Fey :
R? — R be defined by

Foi(x) = (—=1)“Vlviae®),  xeRY (2.20)
F._(x) = (-1)"V*"lvo(1%), xR (2.21)
Feo(z) = ngu ..... o (=) VIR (zeT), x € RY, (2.22)

where 7 is defined as in (2.2) and we set J¢® :={j € {1,...,d} : ¢; < x;} as well as

I% =I5 x - x [S% with 107 := { Eﬁ ﬂ ’ iﬂ i Zﬂ (2.23)
707 ) J J
Then the following assertions hold:
(i) The function F' has the representation
F=F,, —F._—F, (2.24)

(ii) The function Fep is d-fold constant. Moreover we have F, (x) = F._(x) =0 for
any € = (r1,...,xq) with z; = ¢; for at least one i € {1,...,d} as well as

APF. . =Vi(la,b)) and AbF. =V.(|a,b)) (2.25)

for any a,b € R? with a < b. In particular, the functions F,. . and F._ are d-fold
monotonically increasing.
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(ili) For Feo as defined in (2.22), there do not exist any other functions ﬁc7+ and F. -
satisfying the properties in (i) and (ii).

(iv) If F is right continuous, then F,, F._ and Fe.o are right continuous.

Proof (i): By part (ii) of Lemma 2.4.7 we have

Foi(x) = F,_(x) = (-1 AL F, (2.26)

where %% and t“* refer to the smallest and the largest element of I°®, respectively. By
the definition of J® the right-hand side in (2.26) coincides with F'(x) + F.o(x), which
completes the proof of (2.24).

(i): For any @ = (x1,...,z4) with x; = ¢; for at least one i € {1,...,d} the equalities
Fei(x) = F._(x) = 0 are trivial. Moreover, part (iii) of Proposition 2.2.7 implies that
F. is d-fold constant. It thus remains to show (2.25). We will only consider the case
where for every i € {1,...,d} either ¢; < a; < b; or a; < b; < ¢; (this is not the same
as assuming either ¢; < a; < b; foralli =1,...,d,ora; <b; < ¢; foralli=1,...,d).
In the other case where a; < ¢; < b; for at least one i € {1,...,d} the assertion can be
derived therefrom by considering a grid partition of [a, b] consisting only of intervals of
the form just described. Let a,b € R? be as just described and set

a , ok < ap <bg

= = sy ith =
Pap = (P pa) W P { b, ar <bp <y

as well as

by , cr < ap < by

= =(q1,..., with = )
q:=0qup = (0 qd) i {ak Can<b <

Note that p (resp. q) is just those edge of the rectangle [a, b] with the smallest (resp.
largest) distance to ¢ among all edges. The d-fold increase AZFQi of the function F, .
defined in (2.20)-(2.21) can be rewritten as

AF,. = Ab((-1)IVE(TE)

= ALVE(I)
d

= Y =ptE N vEIeT), (2.27)
k=0 ZC{1,...,d}, | Z|=k

where gPZ is defined as in (2.2). Each of the intervals 159", Z C {1,...,d}, is a finite
union of some of the following subintervals of I“7:

R c,p c,p c,p
I, = 7" xI;Px---x1,

R D,q Cc,p c,p
I, = 7" <137 x---x 1
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Iiyw = IPP < I5P x - x ID1

N p.q P9 pP.q
I = 177 X137 X - X I,

where I57¥ is defined as in (2.23). More precisely,

IEP X ISP X ISP x - x ISP = T,
IDIX P < IEP x - x ITP = T,UI,
P ) I59X ISP x - x ITP = I, UIy
¢,p ¢,p c,p ¢q
IPUx X I5P x o x I57 = LULUL UL,
1
qu C,p Cvp CVq —
177 x I, ><]3 X---X]d = 11UIQUI((11)+1UI(;)+<(11)+1
DI IZIx 5T % x I = Iy U--- Uy,

where the intervals on the left-hand sides are just the intervals I qu;z? Z C{1,...,d}.
Setting W; := Va (I;) for i = 1,...,2% we obtain by Lemma 2.4.6

Vﬁ([f’p X IgP X ISP x - x ITP) = W,
VEIPIx ISP x ISP x --- x ISP) = W, + W,
VEUITP X IS x ISP x - x I$P) = W)+ Wsy

Ve (IPP x IgP x ISP x -+ x I§9) = Wi+ W) 4
1
VEUIPT x I§T X IgP x - x I§P) = W+ Wa+ W3 + W) 42

VFi([f’q X [2041 X [g,p X oo X Ig’q) = Wi+ Wy+ W(f)-i-l + W(g)+<alz)+1

VEIPI X IgT < I§9 x - x I$9) = Wi+ + W,

To compute A2F, . by means of the representation (2.27), we add up the positive
(resp. negative) variations above with the sign depending on the cardinality of Z, that
is depending on the number of intervals I7 in I <a”” " Of course, several W; cancel
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out each other. To specify them, we classify the variations VFi(I c’qp;z) listed above in
d+ 1 blocks with |Z| =k, k =0,...,d, and count how many times W; is a summand of
VAT with |Z] = k.

We start with Wi. Of course, Z = () is the unique subset of {1,...,d} with |Z]| = 0.
In this case we have T%” = I°P_ hence VFi(IC’qp;Z) = VE(I%?) = W,. That is, there
is exactly one subset Z of {1,...,d} with |Z| = 0 for which VFi(IC’qp;Z) contributes a
summand W;. Further, there are exactly ({) subsets Z of {1,...,d} with |Z] = 1 for
which V(I c’qp;Z) contributes a summand W;. More generally, there are exactly (Z)
subsets Z of {1,...,d} with |Z| = k for which Vl;jc(Ic’qp;Z) contributes a summand Wj.

We now turn to Ws. There is obviously no subset of {1,...,d} with |Z| = 0 for
which Vﬁ(I C’qp;z) contributes a summand W,. Further, W5 can appear as summand of
VE(I c’qp;z) only if the first component of the d-dimensional interval I ca”? g given by
I79. So with I79 x I3P x - -+ x I$® there is exactly one interval 1997 with |Z| =1 for
which Vﬁ(I qup;z) contributes a summand W5. More generally, there are exactly (ij)
subsets Z of {1,...,d} with |Z| = k for which VFi(Ic’qp;Z) contributes a summand Wj.
Indeed, given that the first component of the d-dimensional interval 19" is I 79, there
are exactly (Zj) different set-ups where k — 1 of the remaining d — 1 components are

I5? and the other d — k components are ;7.

Analogously we obtain that for every ¢ = 3, ..., (Cll) +1and k € {1,...,d} there are

exactly (Zj) subsets Z of {1,...,d} with |Z| = k for which VFi(Ic’qp;Z) contributes a

summand W;. If we proceed with W; for ¢ = (Cf) +2,...,2% in the obvious way, we can
conclude that in general there are exactly (i:;) subsets Z of {1,...,d} with |Z| =k for

. +/ yc,qPil . ’ ,
which Vi (I ) contributes summands WZ§:1 ()40 WZ}:o (9)- Thus,

J

AZFC,:E
d
= SN vEIeT)
k=0 ZC{1,....d},| Z|=k
— i<_1)dk'{<d)W+i(d_i)<W NIRRT / d)}
— A S AV R Y AR S i o (9)

d

= 3 (i (Z) W+ i(—l)d"“ (Z B D Wyt -

k=0

k=d—1 k=d
d d—1
d d—1
_ _ 1\d—k 1\ (d=1)—k
;( 1) (k>W1+kz:;( 1) ( . )W2+



S g(_l)l—’f (;) Waa—1 + g(—l)o‘k (2) Waa
= W,

where the last step is justified by the Binomial theorem. Since I”? = [a,b] by the
definition of p and g, this implies (2.25).

(iii): Let us suppose that, for F,p as defined in (2.22), the functions F, ; and F, _ in
the Jordan decomposition are not uniquely determined by the properties in (i) and (ii).
Then there exist functions fqi having the same properties as F, . and a point & € R?
with ﬁci(af:) # F..(x). Since ﬁci(y) = F.1(y) = 0 as soon as y; = ¢; for at least
one j € {1,...,d}, this implies AF,, # ATF, . or rather (1) V"I ALLF, | +
(—1) "I ATT F, o where 1 and 7% refer to the smallest and the largest element
of I®”, respectively. Since (2.25) is satisfied for both ﬁc,i and F, 4, this leads to a
contradiction.

(iv): The right continuity of F.q easily follows from the right continuity of F. It
remains to show that F. . is right continuous at every point a € R? We only show
right continuity in the first coordinate since the proof for the other coordinates follows
by the same arguments.

Let @ € R? and [u,v] = [Uac, Vae] C RY with a € [u,v) and ¢ € [u,v]. Then we
define functions G = G;:Z”J(rl) :u,v] > R and G- = G}L,’Z,’g) : [u,v] = R by

Gosl(@) = { limy, oo Fea (1 + €, T2, ..., 2q) , @ € [u,v] and x1 # vy

2.28
chi(l'l,l‘g,...,ﬁd) , & - [U,’U] and Tr1 = U1 ( )

with g, \, 0 as n — 0o. The limit in (2.28) exists since we prove in the following that
there exists an ny € N such that for all n > ng the functions Fi i (1 + e, 22, ..., Tq)
are bounded on [u,v] and monotone in n for any fixed € [u,v]. The boundedness
of Foi(x1 + €, g, ...,24) follows directly from the assumption that F is locally of
bounded d-fold variation. To show the monotonicity, let ng be chosen so small that
for all n > ng and fixed @ either x; + &, < ¢ or y +¢&, > ¢ (recall g, \, 0 as

n — o). If 21 + ¢, < e, the positive variation VI (177" x I5® x -+ x I$%) and
the negative variation Vi (I7*"" x I5® x - -+ x I$®) increase in n as variations on the
increasing interval [z1 + e, ¢1] X I57% x -+ X I$%. If ¢; < 1 + &, they decrease as

variations on the decreasing interval [c1, z1 + &,] X 137" x -+ x I$™. As a consequence

is either monotonically increasing or monotonically decreasing in n depending on the
prefactor (_1)(17“(01&2 ,,,,, cq)s(@1+en @, s g:d)|.

By definition G, is right continuous in the first coordinate, at the point a. For
the right continuity of F, . in the first coordinate, at the point a, it suffices to prove
that G+ coincides with Fi ;. on the interval [u,v]. For this purpose, in view of (iii), it

even suffices to show that G, and G._ are d-fold monotonically increasing functions
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with Ge+(x) = 0 for all € [u,v] with z; = ¢; for at least one i € {1,...,d} that
additionally satisfy
F(x) = Geq(x) — Ge—(x) — Fep(x) (2.29)

for any x € [u,v] and
AYGesr = Vi ([z,y]) (2.30)

for all &,y € [u,v] with < y.

We start with the proof of (2.29). If € [u,v]| with x; = vy, we already know by
definition that G, (x) — Ge_(x) = F.i(x) — F._(x). By means of decomposition
(2.24), this implies (2.29). If x; # vy, then we obtain by (2.28), (2.24) and the right
continuity of F' and Fi( that

Ger(@) = Ge—(x) = 1i_>m (FC7+(551 +En, Toy .oy Ta) — Fe (1 + €y g, . . ,xd))
= li_>m (F(acl +en, Toy .oy Ta) + Fep(@r + €ny 22, . .. ,xd))
= F(x1,22,...,2q4) + Feo(x1, 22, ..., 24),

which proves (2.29).

The d-fold monotonicity of G+ is an immediate consequence of the definition of
G+ and the d-fold monotonicity of Fg ..

For the proof of (2.30) it suffices to show

A(m Y2,eees yd)Gc,i — VF:!:([Zlyvl] % [x27y2] X o0 X [xd’yd]) (231)

(21,22, y2q)
for every x,y € [u,v] with < y and z; € {z1,y1}. Assertion (2.30) follows directly

from (2.31) because

y (V1,Y2,0- yd) A (2, yd)
A:I:chi - A(xl T2,y Gc:t A(y1 X2yeney G

= Vi ([z1, 0] x [$27?J2] o X [fﬁda?/d]) VF ([y1, v1] X [@2,y0] X -+ X 24, y4])
= Vﬁ([ﬂfl,yﬂ X [z, ya] X -+ + X [2a, yd])

by (2.14) and Lemma 2.4.6. For the proof of (2.31) we have on the one hand

VFi([Zlavl] X [z, 12] X -+ X [24,Ya])

NN (A )
. T iy Td,ig +
— sup 2: E :(A(m e F)
yip—1sTd,ig
{(®1,i1 5-Td,iy) YEP([21,01] X [m2,2] X+ X [T4,Y4d]) =1 ig=1
SR eI )
_ Tlyiq s, ig
o Sup Z o Z <A(J»‘1i —15%d,i —1)Gc’+
i1 Td,i P([z1,01] X [22,y2] X X [T45y4]) 5 ; T
{(@1,iy 5T i g) FEP([21,01 ; ayal) i =1 =1
_A(xl,ilv---axd,id) a +
(T1,ig—15esTdyig—1) &7
ni ndg ( )
T1,iq s Td,i
< sup Yy ale) g
ml,zlflrnzxd,zdfl) ’
{(=1,44 7~--,Zd,¢d)}€73([21,1)1} X[@2,y2] XX [T4,y4]) i1=1 ig=1
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_ A(vl’y2"“’yd)Gc¢, (2.32)

(z1,22,...,24)
where we used in the second step that the representation (2.29) holds true and F, is
d-fold constant, in the third step that G, and G. _ are d-fold monotonically increasing
and in the last step that (2.14) is valid. On the other hand, the definition of G+ and
(2.25) yields

(Ulvaa---yyd)G — lim A(v17y2 ----- Yd)

(zlvw?v"vxd) ot o n—oo (zl+5nax27---71'd)Fc’:t

= nlggovﬁ([zl + €y 1] X [T, Y] X -+ X [4,Yal)

< VF:!:([Zlavl] X [wQayQ] Xoeee X [$d7ydD;
where the last step is valid because VZ([2z1 + €,,v1] X [T2,Y2] X -+ X [24, y4]) increases
in n as variation on an increasing interval. Together with (2.32), this implies (2.31).

Finally, we have to show that G.+(x) = 0 for all € [u,v] with z; = ¢; for at least
one i € {1,...,d}. By definition (2.28) we immediately obtain

Gex(x1,29,...,24) =0 if x; = ¢; for at least one i € {2,...,d}. (2.33)

To show Ge i (c1,xa,...,24) = 0 for any & € [u,v] with z; # ¢; for i € {2,...,d}, we
note that

Gex(vi,22,...,24) — Gex(c1, 22, ..., 24q)

— A% x; {1} __ A(Ul,azg,...,md) o d—1—|J(e2red)s (@25, zd)|A(v1,Zg’w,...,Z§‘m)
- c1 (Gcai) - ( Gc,:l: - (_]-) £ c,x GC,:I:

C17027~-~7Cd) (Cl»ég, yelyg )

1 d—1—|J(e2:ca)s (@2, 1d)|A(v1J§’mwl§’w)F A(U171’27---7J»’d)F — AY(F z;{1}
(=1) et = Ag(Fex)

- (Cl»ég’mz"wﬁgym) C,:l: - (017027“'7Cd)

= Fc,:l:(vtha s ,I‘d) = Gc,:l:(vhx% s ,ZL‘d),
where J(¢2-ca)(#27a) is defined analogously to J®, and t>* = (.J*,... 15" and
9% = (177, ..., 157) refer to the smallest and the largest element of I¢® := I7"* x -+ X

I7%, respectively. Here, the second, forth and fifth step is valid by (2.33), (2.30) and
(2.25), respectively. Moreover, we used that F. 4 (y1, %2, ...,v4) = 0if y; = ¢; for at least
one i € {1,...,d} by (ii) for the third- and second-last step and the definition of G +
for the last step. This implies that G () = 0 for all € [u, v] with z; = ¢;.

Hence, the functions G, and G, _ indeed coincide with Fi ; and F. _, respectively,
on the interval [u, v], which completes the proof of (iv). O

In the Jordan decomposition (2.24) we can, of course, allocate the function Fgq to
F. 4 and F,_. The resulting functions are obviously still d-fold monotonically increasing.
If we allocate Fp.( in equal shares to F, . and F; _, then we arrive at the generalization
of the Jordan decomposition given in Proposition 1.17 in [39], or rather at a variant
of Theorem 3 in [51] (also mentioned as Lemma 3 in [1]) for functions on R? that are
locally of bounded d-fold variation.
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Corollary 2.4.9 Let F': R? — R be a function that is locally of bounded d-fold varia-
tion. For any ¢ € R%, let the functions F2+, Fg_ :R* = R be defined by

FO () = %((—1)d_|JC’m|Vp(IC’m)+F(:c)), z € RY, (2.34)
FO (z) = %((—1)61|JC’Z|VF(IC"”)—F(:C)>, z € R (2.35)

with Jo* .= {j € {1,...,d} : ¢; < z;} and I as defined in (2.23). Then the following
assertion hold:

(i) The function F' has the representation

F=F,—F_ (2.36)

and

ASF =AbF., and ALF)_=AlF,._ (2.37)

hold for all a, b € R with a < b, where F, and F,_ are defined by (2.20)-(2.21).

(ii) For any a,b € R? with a < b, we have
ALF), =Vi(la,b]) and AYF)_ =V (a,b]).

In particular, the functions FgJr and Fg_ are d-fold monotonically increasing.
(iii) If F is right continuous, then the same is true for Fg+ and Fgf.
Proof (i): By the definitions of F,, and F,_ in (2.20)-(2.21), and parts (iii)—(iv) of
Lemma 2.4.7, we obtain

Fer(®) = (=1)"IVE(I®) = (=1) %(VF(I”) + AziiiF) (2.38)
and

—|Je®| vy —( 7o e 1 c,x T
Fe(@) = (~1=P IV (1) = (171 L (Ve(Io®) = AZIF), (239)

where ¢“® and %® refer to the smallest and the largest element of I*, respectively.
Moreover, as already noted in the proof of part (i) of Theorem 2.4.8, we have

(1) VTIALLF = F(z) + Feol). (2.40)
Combining (2.38)—(2.40) yields

L Fc,O(w)

1
2
= (=1 %VF(IC@) + %(F(:z:) + Fc,o(ac)) — %Fc,o(;c)

¢z 1 c,x A
For(®@) = SFeo(®@) = (=112 (Vi(Io®) + AZIF) -
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and

Fo_(z)+ =

C,O(m) =

F) () (2.41)

(—1)d-17=" %(VF(IC@) — AZZ:F) + %Fc,o(w)
(1 V(1) = 3 (Fl@) + Fegla)) + 5 Feo(e)
S (Do) — F()

F)_(). (2.42)

Now, (2.36) follows from (2.24) and (2.41)-(2.42). Moreover, (2.37) is an immediate
consequence of (2.41)-(2.42) and the fact that Fy is d-fold constant.
(ii): In view of (2.37), the assertion is an immediate consequence of part (ii) of
Theorem 2.4.8.
(iii): The assertion follows from (2.41)-(2.42) and part (iii) of Theorem 2.4.8. O

Theorem 2.4.10 (Minimality) Let F' : R? — R be a function that is locally of
bounded d-fold variation, and F,, and FQ_ be defined by (2.34)-(2.35) for any c €

R If F,F_ : R = R are two d-fold monotonically increasing functions such that
F=F, —F_ then AbFy > APFD  and AYF_ > AYED _ for all a,b € R? with a < b.

Proof Since F, and F_ are d-fold monotonically increasing, we obtain

Vit ([a, b])

IN

and

{(®1,i9 5o

{(®1,37 50

{(®1,37 5+

AbF,

Qa

Vi (la, b))

{(xl,il yerey

sup
Td,iy) YEP([a,b])

sup
Td,iy) YEP([a,b])

sup
zq,i,)}EP([a,b])

sup
zd,i,)}EP([a,b])

nd

(@131 T d,iy) +
o Z (A(xl,il—17---7~T(i,id—1)F>

1 ig=1

ME

1
SN ) ( )
T1,iq5%d,ig Ja A T1,iq5%d,ig Ja )+
Z (A(l'l,ilfla---vxd,id—l) + (®1,iq =15 sTdyig—1)" ~

1 ig=1

Ms

1
N )

T1,iqsTd,ig F

ZA(xl,irlv--wm,id—l) +

1 ig=1

Ms

11

n1 ng
N (A(xl,ily---vxd,id) F+ _ A(Z'l,zila---vl'd,id)‘ F_)i
Z Z (@161 =155 d,ig—1) (@101 =15 d,ig—1)

=1 ig=1
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IN

(Il,ila---vxd,i )
Z Z (xl,ilflv--wx((ii,idfl)F_
{(1,415-%d zd)}ep [a,b]) i1=1 ig=1
= A‘;F_,
where the last “=" is justified by (2.14) in each case. Together with part (ii) of Corollary
2.4.9 this proves the claim. O

Corollary 2.4.11 Let F : R? — R be a function that is right continuous and locally of
bounded d-fold variation. Then there exist unique positive measures /L%'Jr, ,u?,f on B(RY)
satisfying

prt((a,b]) = AbF.y = ASFO . and iy ((a,b]) = ALF, = ALFY
for all a,b,c € R* with a < b, where F.,F._ are defined by (2.20)-(2.21) and
FO,  FY  are defined by (2.34)-(2.35).

c,+ C,—

Proof The claim is an immediate consequence of Theorem 2.4.8, Corollary 2.4.9, The-
orem 2.4.10 and Theorem 2.3.2. a

2.5 Measure generating functions and integrals with
respect to signed measures

If in the setting of Corollary 2.4.11 at least one of the positive measures M%’J“, pp s
finite, then there exists a unique signed measure pp on B(RY) satisfying

MF<<0’7 b]) = AZF
for all a,b € R? with @ < b. This signed measure is given by

pr = g — g (2.43)

and we will refer to it as signed measure generated by F'. The positive measure |pup| :=
u?ﬁ + ,u%’* will be referred to as total variation measure of pp. If both u%’+ and u%’f are
not finite but only finite on every compact interval [a, b] in R?, then up is well defined
at least on the ring R(R?) of all bounded sets from B(R?). In this case, we will refer
to pup as signed pre-measure generated by F. Note that M%+, ,ugl_ are finite on compact
intervals when F'is bounded on compact intervals. Also note that the right-hand side of
(2.43) is the Hahn—Jordan decomposition of the signed (pre-)measure pp. In particular,
pyt L p%” on compact intervals.
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For a measurable function G : RY — R the integral of G with respect to the signed
measure jip is given by

[ G@nride) = [ Gla)ugtae) ~ [ Gl @e). (244

We say that the integral on the left hand side exists if the integrals [,, G*(x) pyt(de),
Joa G () pg (dz), [pa GH(z) p3 (dz) and [, G~ (x) py~ (dx) are all finite, where G*
and G~ denote the positive and the negative part of G.

We have seen that every right continuous function F' : R¢ — R that is locally of
bounded d-fold variation can be written as difference of two right continuous d-fold
monotonically increasing functions F, and F_. In Corollary 2.4.9, for instance, we
proved that F' = Fy  (x) — FY _(x), where F , (x) and F]_(x) are defined as in (2.34)
and (2.35), respectively. In the following, let F' = F, — F_ be any decomposition
of F' (not necessarily the Jordan decomposition from Corollary 2.4.9) into two right
continuous and d-fold monotonically increasing functions F, and F_. According to
Theorem 2.3.2 there exist positive measures i}, and i on B(R?) such that u%((a, b]) =
AbFy for all a,b with @ < b. Let us stress that uj. and p do not necessarily coincide
with the unique positive measures u?ﬁ and ﬂ‘}:‘ arising from the Jordan decomposition
of F (cf. Corollary 2.4.11) as ALF, > ALF?  and AYF_ > APF _ by Theorem 2.4.10.
However, the signed (pre-)measure defined by

fE = i — g

on B(R?) satisfies
pr((@,b]) = AgFy — AgF. = AGF (2.45)

for all a,b with @ < b and, therefore, coincides with the unique signed measure u%
arising from the Jordan decomposition (recall (2.43)).

According to this, for some (B(R%), B(R))- measurable function G : RY — R the
values of the integrals [, G(x) ujf(de) and [, G(x) pp(dx) are greater than or equal
to the values of the two integrals on the right-hand 81de of (2.44), provided both inte-
grals exist (meaning that [p, G () pf(dx), [o G~ (@) ph(de) and [y, G () pp(de),
fRd x) pp(dx), respectively, are finite, where GT and G~ denote the positive and
negatlve part of G). Nevertheless, if we can ensure the existence of the integrals
fRd x) uj(dx) and fRd x) up(dz), the difference of both integrals corresponds to
the integral of G with respect to the signed measure pp as defined in (2.44). This leads
to the following corollary.

Corollary 2.5.1 Let F : RY — R be any right continuous function that is locally of
bounded d-fold variation. Let F' = F, — F_ be any decomposition in right continuous
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and d-fold monotonically increasing functions and denote by pt and py the positive
measures generated by F. and F_, respectively.

If the integrals [z, G(x) pf(de) and [, G(x) pp(de) exist for some (B(R?), B(R))-
measurable function G : RY — R, then

/RdG(w)ﬂF(dw) = /R G=) pip(da) — / G(x) pp(de).

Rd

2.6 Integration by parts

Let F : R? — R be a function that is right continuous and locally of bounded d-fold
variation. For any ¢ € R? and each nonempty subset J C {1,...,d}, let %/ : R — R
be defined as in (2.4). These functions are not necessarily locally of bounded |J|-fold
variation as we have seen in Remark 2.4.5. On the other hand, in Theorem 2.6.4 below
we will need that the F'%” are locally of bounded |J|-fold variation. For this reason we
will assume that the F'¢/ possess this property.

We note that right continuity of F' clearly implies right continuity of F'%7 for every
nonempty subset J C {1,...,d} and for every ¢ € R?. So the |J|-dimensional ana-
logues of Corollary 2.4.9 to Corollary 2.4.11 ensure the existence of the decomposition
of F&’ = (F/)z, — (F%’)z_ into |J|-fold monotonically increasing functions (F'¢”)z
and (F%”)z_ for some ¢ € RI. In the following we will not insist on this Jordan de-
composition of F¢”. Instead, we allow any decomposition of F&/ = F& — F' into
two right continuous and |J|-fold monotonically increasing functions Ff‘] and F°’. So
there exist (not necessarily unique) positive measures pf.., and .., on B(R’) satisfy-
ing yit..,((a,b]) = ALFSY for all a,b € R’ with @ < b. Moreover, there exist unique
signed (pre-)measures

/,LFC;J = /_,L?'J (246)
on B(RY) with 5’ = pif., — ppe, such that p§’((a,b]) = ALFS for all a,b € R’
with @ < b. In the following, we set x; := (z;)jes for any @ = (z1,...,24) € R and

any nonempty subset J C {1,...,d}. Notice that x; is an element of R”.

For the proof of the integration by parts formula in Theorem 2.6.4, we need the
following two lemmas. The first lemma is an immediate consequence of Lemma 2.2.4 in
view of (2.45) and (2.46).

Lemma 2.6.1 Let F': R — R be any function that is right continuous and locally of
bounded d-fold variation. Moreover assume that the function F%’ defined in (2.4) is
locally of bounded |J|-fold variation for every nonempty subset J C {1,...,d}. Then,
for any a,x € R with a < x, we have

Fl@) = Fla)+ Y pi’((as, =),

0£JC{1,....d}
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which can be rewritten as

F(z) = Fla) + / Ay (2.47)
@#ch ..... (ayz/]

The statement of the following lemma can also be found as Proposition A.1 in [34]
and as formula (42) in the proof of Theorem 15 in [63].

Lemma 2.6.2 Leta,bc R? witha <b. Let F : R? = R and G : R — R be right con-
tinuous functions that are locally of bounded d-fold variation. Further, let the function
F%7 be locally of bounded |J|-fold variation for every nonempty subset J C {1,...,d}.
Assume that the maps (a;,by] 3 Y = ppa,((ay,y]) and (ay,bs] >y — ps(I2%7) are
(B((as,by]), B(R))-measurable and that the integrals f(a’b] s ((ay, 2 ) pE(de) and
f(aJ bl uG(I“bJ) [ pais (dy) ezist for every nonempty subset J C {1,...,d}, where y is
|J|-dimensional (that is, y = (y;)jer),

: : : , : ; bj] jeJ
[90T o 08T s gabd gy qend . [ Wbl
v o T ORI

and Fi;‘] and G are |J|-fold and d-fold monotonically increasing right continuous func-
tions, respectively, satisfying F*' = F¥’ — F*' and G = G, — G_. Then

/( F@)raliz) = Fl@ya(@b) + 3 /( | HalIg ) i ay).

0£JC{1,....d}

Proof We use the representation (2.47) of F' to obtain

/( @ pold)

- [ (ra+ / s )uauw)
(a.b] (Z);éJC{l ..... (a.2]

— Fla)us((a,b)) + /( , / i) (). (249

@;équ ,,,,, d}

By Corollary 2.5.1 we have for every nonempty subset J C {1,...,d}

[ [ et

(a,b] / (ay,x,]
[ [ st~ [ ) ngtde)
(a,b] / (ay,z,] (a,b] J (aj,x,]

] i)+ [ @y eglde). (249
(avb] (a’Jva] (a”b} (a'Jva]
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where ,u;m 75 Mpaiss (i and pg are positive measures that are finite on compact intervals.
Applying Fubini’s theorem for every nonempty subset J C {1,...,d} yields

/ / Wpas (y) i (de)
(a,b] 4 (ay,xz]
- / / aJ Q‘JJ ab]( )M%a,J(dy>/’Lé(dw>
R JRJ

— /RJ /Rd IL(tL],lJﬂ (y>]]-[y7bJ](mJ):H-(aJc7ch]<wJC) ué(dib) M?aJ<dy)
= [ by
(ag,bj]

with J¢:={1,...,d}\ J. Along with (2.48) and (2.49) this finishes the proof. O

For any = € R? and any right continuous function F : R — R with F¢’ being
locally of bounded |J|-fold variation for each nonempty subset J C {1,...,d} and every
c € R?, we define

F(x—) = ?}%F(y) (2.50)

The existence of the left-hand limit in (2.50) is ensured by the following remark.

Remark 2.6.3 If I/ : R? — R is a right continuous function that is locally of bounded
d-fold variation and if additionally the functions F¢” are locally of bounded |.J|-fold
variation for each nonempty subset J C {1,...,d} and every ¢ € RY then the left-
hand limit of F exists at every point & € R? Indeed, by Lemma 2.2.4 we obtain
for any = € R? that limy », F(y) = F(e) + limy D> gsicq, g Def 97 = Fle) +
my o 3 g rcq 0 1$” ((eg,y,]) for some ¢ € R? with ¢ < 2. The existence of the
left-hand limits thus follows from the continuity from below of the (pre-)measures pp
and p5”. O

The integration by parts formula (2.51) in Theorem 2.6.4 below is already known
from Theorem 15 in [63] where Radulovi¢ et al. impose assumptions on the involved
functions that differ from ours. We briefly discuss these differences subsequent to Corol-

lary 2.6.5 dealing with the extension of the integration by parts formula to integrals over
R

Theorem 2.6.4 (integration by parts formula) Let a,b € R? with a < b. Let
F:RY - R and G : RY — R be right continuous functions and assume that the
functions <7 and GS' are locally of bounded |J|-fold variation for every nonempty
subset J C {1,...,d} and for every ¢ = (ci,...,cq) € R with ¢; € {a;,b;} fori =
1,...,d. Further assume that for every such J and ¢ the maps (ay,by] > x; — F& ()
and (ay,b;] > x; — G/ (x;—) are (B((ay,by]), B(R))-measurable and the integrals
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Jray o B2
(a’vaJ] +
are |J|-fold monotonically increasing and right continuous functions satisfying F¢/ =

Fi;J — FS gnd GeJ = Gi%‘] — G%. Then

T 1) Wies (dy) and f(ahb]] GS(xy—) pk.., (dx,) exist, where FS” and GS7

[ F@natd) = 37 ()G Fee (251)

- > (— 1)1 /( G ),
aj,0y

J,KC{1,...,d} disjoint,J#0

where b is defined as in (2.2) and the integration variable y is |.J|-dimensional in the

summand corresponding to J with G(yE"’ —) = limy, », G(u&>”) for
u; -, ] eJ
ul? = (u'f;’f(;‘], e ,ug;’fé‘]) with u;}[b(‘] =< b , jeEK
aj , j¢JUK

We note that for every nonempty subset J C {1,...,d} and every ¢ = (c1,...,¢q) €
R? with ¢; € {a;,b;} for i = 1,...,d, it is sufficient to replace the functions F& and
GS” in Theorem 2.6.4 by the Jordan functions (Fe7)2 . and (G*7)2 , defined in (2.34)
and (2.35), respectively, for some ¢ € RII. However, in applications it might be difficult
to verify that (F*/)%, and (G%”)J . are measurable. That’s why we allow any other
decomposition of F&/ and G$” in |J|-fold monotonically increasing and right continuous
functions at the expense of slightly stronger conditions on the existence of the integrals,
see Corollary 2.5.1 and the discussion beforehand.

Proof of Theorem 2.6.4 To prove the assertion, we proceed as in the proof of Theorem
15 in [63]. In view of Lemma 2.6.2 it suffices to show

)3 / e (12%) 1 (dy)

JCiL, .., 75 bJ]

= > (—1)d'K'/( b]G(y?f‘] ) Y (), (2.52)

J,KC{1,...,d} disjoint

where we use the notation that for J = () the integral on the left-hand side corre-
sponds to F(a)uc((a,b]) and that for J = ) the sum on the right-hand side is given by

Skcna(—DE GOmE) F(BF).
For the proof of (2.52) we obtain by the continuity from below of the signed (pre-)
measure g that

/ HG (1397 1% (dy)
(avaJ]
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JC{L,....dy / (@r:bJl u,/'y

holds, where I; := (u;,b;] if j € J, and I; := (a;,b;] if j € J°. Due to (2.45) and (2.1)
(where J in (2.1) corresponds to (J \ T1) U Ty) we observe

3 / pa(I20) 4% (dy)

JCoL,..., > bJ

— hm AbJUbJCCG a;J d
JQ%.,d} /(GJ bs] ws /Y e ( y)
JC{1,...,d}
/ lim Z Z (_1)d7|J\Tl|7|TQ| G<uT1 U bJ\T1 U QT U bTQ) /’L;’J(dy)

(as.by] WY T\ CJ ThCJe

- v (2.53)
JC{1,....d}
Z Z <_1)d|J\T1T2|/ G((yT1_> U bJ\T1 U a’J°\T2 U bT2) M%’J(dy)
Ty CJ ToCJe (a,by]

with G((yTl_) U bJ\Tl U CLJc\T2 U bT2> = limuTl My G(’U,T1 U bJ\Tl U a]c\T2 U bTQ), where

x; jGJ
ryUyg Uzuukye = (a1,...,0q) with o = ¢ y;, , jEK
zj , jJE(JUK)*

for any subsets J, K C {1,...,d} and z; € RVl y, € RE and z(jux) € RIVIKL

In the next step we use that the integrand of the latter integral in (2.53) does not
depend on y; for j € J\ Ti. Because of the special shape of the measure (as indicated
in Remark 2.2.2) an evaluation of the integral on (a7, b7, results in

3 / e (124) 1 (dy)

JC{1,..., 75 bJ]

= Z Z Z(_l)d—lJ\Tll—lTQ\ Z (—1)\TaI-IK]

JC{1,...,d} T1CJ T CJe KCJ\T\

/( ]G((yT1 )U bJ\Tl U Q je\T, U sz) (bt l(dyT1)
ar, ,br,

= > > Z (=D (=)™ (2.54)

JC{1,..,d} T'CJ KCJ\Ty ToCJe

(bu;K);Tl
G((yp—) U asar U bpqux) U b U bry) pge (dyr,),
(aTl le]

112



a; K. a; . .
where /L(; )T g the measure generated by the function F(® N1 with
a; K.
F(b )T (mTl) = F(bK U aJ\(TluK) U CLJc\T2 U ar, U mTI), T € RITl‘,

for fixed bx U anmur) Uajern Uar, € RIITIL Apparently, some integrals in (2.54)
appear several times. Regardless of whether elements belong to T, or to J \ (17 U K),
if the other subsets 77, K and J¢\ T, stay the same, we obtain the same integral.
However, we will see by case differentiation that the sign changes depending on the
cardinality of Ty and J \ (71 U K) so that multiple summands cancel out each other. In
the following we examine the two types of scenarios that |75 U J \ (77 U K)| is odd and
that |7, U J \ (71 U K)| is even.

If the number of elements in T, U J \ (71 U K) is odd, then the cardinality |T5| is even
(and thus (—1)I"2l = 1) whereas |.J \ (T} U K)| is odd or vice versa. That means, if T}
plays the role of J\ (T3 UK) and J\ (71 U K) plays the role of T3, then the sign changes.
As a consequence the two summands, with J \ (77 U K) and T, changing places, add up
to zero.

If the number of elements in 7o U J \ (17 U K) is even but not equal to zero, we fix
one element jo € To U J \ (17 U K). Without loss of generality assume that jo € T
(the case that jo € J \ (T3 U K) can be proven analogously). Then the cardinality
(T, U J\ (Th U K))\ {Jjo}| is odd and, by the same argumentation as above, those
summands with 75 \ {jo} and J \ (71 U K) reversing roles cancel out each other by the
same argumentation as above.

Since we sum over all subsets in {1,...,d}, all summands with Ty # () and J \ (73 U
K) # () for any fixed K, Ty and J\ T3 vanish. Hence K = J\ T} and (2.54) reduces to

| et i ay)
JC{1,...,d} 7 (@r,bJl

_ a; J\T . |
= Z Z (_1)d J\Tll/ G((yTl_) UasU bJ\Tl) ng D (dyr,)

JC{1,....dy ThCJ (ar, ,br;]

a;K\.
= Z (_1)d_K/ G((yTl_) U aruk)e U bK) uif' )’Tl(dyTl%
(aTlale]

Ty, KC{1,...,d} disjoint

which implies (2.52). O

In dimension d = 2, for instance, the integration by parts formula (2.51) is given by

/ Py, ) pe(d(x, 22)
(al,bl}X(CLQ,bg]
-/ Gl(a1,2)-) (1, 22)
(al,b1]><(a2,b2]
- / Gw1—, b) it (day) + / G(x1—, az) i (day)
(a1,b1] (a1,b1]
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[ G e + [ Glarm) g )
(a2,b2]

(a2,b2]

+F(b1, bg)G(bl, bg) — F(bl, ag)G(bl, (12) — F(al, bg)G(al, bg) + F(al, (12)0(&1, CLQ)

for any a = (a1, as) and b = (b, by) in R?, provided the assumptions of Theorem 2.6.4
are fulfilled.
In the following corollary we use the same notation as introduced in Theorem 2.6.4.

Corollary 2.6.5 Let F : R? — R and G : R? — R be right continuous functions and
assume that the functions F7 and G¢7 are locally of bounded |J|-fold variation for
every ¢ € R% and every nonempty subset J C {1,...,d}. Further assume that for every
c € R? and every nonempty subset J C {1,...,d} the maps ©j — Ff‘](ch) and xj —
G (xy—) are (B(RV), B(R))-measurable and the integrals . F{ (z)) ik, (dz )
and f(aJ’bJ] Gij(mJ—)ufc;J(de) exist for every finite interval (a;,b;] € RV, where
Ff‘] and G_fc;‘] are |J|-fold monotonically increasing and right continuous functions sat-
isfying F¢/ = Ff‘] — F% and G&7 = Gf;‘] — G If the integral Sz F (@) pe(dx) exists
and the limits

li _1\d—|K]| a; K a; K
Al,..ey ad%—oir,ill ,,,,, bg—+00 Z (1) G(b )F(b >’
KC{1,...,d}
li _1)4-IK] abJ N (b))
o dm > ()T GRS e dy)

J,KC{1,...,d} disjoint,J#£D

exist and equal zero, then

| F@natdn) = (<17 [ Gla-)ur(do). (2.55)
R4 R4

Here, we think of the expression “limg, . a,——oobr...by—s+oo(---)" as convergence of the
net (...)(ny, . nag)enzd, With (—ay, ..., —ag4, by, ..., bq) playing the role of (ny,...,n2q).

Proof For any a,b € R? with a < b we have

[ F@mati) = 37 ()G Fee

KC{1,..d}
+ > (—1)* / Gy =) Wl (dy)
JKC{1,....d} disjoint,J#0 (a,bs]
T (-1) /( Gl () (2.56)
a,b

.....

exists because the limit of the integral on the left-hand side of (2.56) exists and the
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limits of the other integrals on the right-hand side of (2.56) exist (and equal zero) by
our assumptions. The assertion follows by letting aq,...,aq — —00,b1,..., by — +00.
O

In the literature, functions F': [a, b] — R with finite total d-fold variation on interval
[a,b] C R are sometimes called of bounded Hardy-Krause variation on [a,b] anchored at
a (resp. at b) if the total | J|-fold variation of the functions F'*7 (resp. F*/) on [ay, by]
is also finite for each nonempty subset J C {1,...,d}. We may thus define functions
F :R% = R to be locally of bounded Hardy-Krause variation if F is of bounded Hardy-
Krause variation on I, anchored at ¢ for every ¢ € R? and I, € Z., where Z. denotes
the set of all compact intervals I.; X --- X I.4 having ¢; as one of the endpoints of
I.jfor 5 =1,...,d. We note that functions F': [@,b] — R of bounded Hardy-Krause
variation (anchored at one of the endpoints) are measurable as they are decomposable
in completely monotonically increasing and thus measurable functions by Theorem 2 in
[1] and Theorem 3.2 in [2] (cf. Theorem 3.1 in [2]).

In [63, Theorem 15], Radulovié¢ et al. present a multivariate integration by parts
formula on compact intervals by supposing the involved functions to be of bounded
Hardy-Krause variation anchored at one of the endpoints of this compact interval. Ex-
tended to integrals on R?, we would probably need to assume that the involved functions
are locally of bounded Hardy-Krause variation. The latter assumption coincides with
our assumption that F'%’ and G¢7 are locally of bounded J-fold variation for every
c € R? and every nonempty subset J C {1,...,d}. But in contrast to Theorem 15 in
[63], we do not automatically obtain the measurability of the functions of the Jordan
decomposition. However, we allow any decomposition of F'¢/ and G4 into two |.J|-fold
monotonically increasing right continuous functions F&/, F” and G/, G| respec-
tively, at the expense of slightly stronger conditions on the existence of the integrals.
Then, in some applications as for instance in Chapter 3, the measurability assumptions
of Theorem 2.6.4 are not difficult to check.
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Chapter 3

Extended continuous mapping
approach to the asymptotics of von
Mises-statistics

3.1 Introduction

The asymptotics of von Mises-statistics, or V-statistics for short, and the closely related
U-statistics were first studied by Halmos [42], Hoeffding [44] and von Mises [74]. The
most common approach to study the limit distribution of these statistics is based on the
Hoeffding decomposition [44]. Using this decomposition many central limit theorems
have been established for non-degenerate and degenerate U- and V-statistics. For inde-
pendent identically distributed sequences of random variables we refer for instance to
the standard textbooks Denker [27], Lee [50], Sen [66, 67] and Serfling [68]. For depen-
dent sequences of random variables, the asymptotics of non-degenerate and degenerate
U- and V-statistics have been studied by means of Hoeffding’s decomposition among
others in Dehling [24], Dehling and Wendler [26], Denker and Keller [28], Sen [65] and
Yoshihara [80] for weakly dependent data under various mixing conditions, in Dewan
and Prakasa Rao [30, 31] and Garg and Dewan [37, 38] for associated random variables,
and in Dehling and Taqqu [25] for strongly dependent data (data with long-memory).
Other approaches to obtain the limit distribution of U- and V-statistics under weak
dependence are for instance based on a spectral (resp. wavelet) decomposition of the
kernel function, see Dewan and Prakasa Rao [29] for non-degenerate and degenerate
U-statistics and Leucht and Neumann [53, 54] (resp. Leucht [52]) for degenerate U- and
V-statistics. Further, Zhou [83] assumes the kernel function to admit a Fourier rep-
resentation and investigates non-degenerate and degenerate V-statistics from a Fourier
analysis point of view. In [10], Beutner and Zahle use quasi-Hadamard differentiability
(introduced in [9]) of the V-functionals to derive the asymptotic behavior of U- and V-
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statistics of weakly dependent data, which is also a suitable method to derive the limit
distribution for a certain class of U- and V-statistics based on long-memory sequences
as shown in Beutner et al. [8].

In [11], Beutner and Zéhle present a new representation for U- and V-statistics so that
the asymptotics of non-degenerate and degenerate U- and V-statistics can be derived
therefrom by a direct application of the continuous mapping theorem. The objective of
this chapter is to put forward this continuous mapping approach. In [11] the authors
restricted themselves to two-sample statistics of degree d = 2 and kernel functions h,, = h
in the setting below. In what follows we will study multi-sample statistics of degree d
with kernels h,, depending on n. However, we will concentrate on V-statistics only. The
corresponding results for U-statistics can be inferred from those for V-statistics because
their asymptotic distributions coincide under suitable assumptions. For instance, one-
sample U- and V-statistics of degree d = 2 have the same asymptotic distribution, if
the kernel function h,, = h satisfies E[|h(X, X)|] < oo for some random variable X with
distribution function F' in the setting below, see Remark 2.5 of [10]. In the following,
we will retain the notation introduced in Chapter 2.

Let d € N. For every n € Ny := {0,1,...}, let h, : RY = R be a Borel measurable
function and consider the functional V,, : F;, — R defined by

Yy, (FY, L F@) = /dhn(xh---,fﬂd) (Hpw @ @ ppw)(d(z,...,24)),  (3.1)
R

where F;, is the set of all d-tuples (F®M), ... F@) of distribution functions on R for
which the integral in (3.1) exists and pp refers to the Borel probability measure generated
by F'. Let (Fo(l), . ,Fo(d)) € Fy, be fixed, and let F? be an estimator of Fo(j) for every
j=1,...,d and n € N such that (ﬁ,(bl), . ,F\,Sd)) € Fy,,, (w-wise) for every n € N. Then

Vi (B, B@) = / (@ wa) (g - @ o) (do, o wa) (32)
R

can provide a reasonable estimator for the expression in (3.1). In the special case
where FY) is the empirical distribution function %sz:l II[X_(j> 50) of random variables
Xl(j), o ,Xvsj), j=1,...,d, the estimator in (3.2) is a d-sample V-statistic of degree d
with kernel h,, i.e.

Vi (FD, . F@) = % S S (XX,
i1=1 tg=1

This expression is a suitable estimator of V},, (Fo(l), N Fo(d)) when ij), o ,quj) are
identically distributed according to Fo(j ), j=1,...,d, (and “sufficiently independent”),
and {Xi(l) Rdseees {Xi(d)}?:1 are independent. However we will not insist on this par-
ticular setting. In the general case the empirical error has the decomposition

th(Ar(Ll)a'-wF\?Ed)) _th(F(gl)ﬂ"wF()(d))



-y / v ((@)ies) (@ meor o )(dl@ien),  (33)

0£JC{1,...d jed

provided the involved integrals all exist, where hp.(1, a7 (1, - - Ta) = hp(21, ..., 2q)
and hy.gr R — R for § # J C {1,...,d} is given by

hn;J,Fo(y) = /]RJC yJw <®’uF(J)> xj ]e‘]c))

jeJe

for y := (y;)jes € RY, & := (21,...,24) € R? and y, @ as defined in (2.5), see Lemma
3.2.2. Recall that J° := {1,...,d} \ J. The analogue of this decomposition for one-
sample V-statistics with symmetric kernel functions is sometimes called von Mises de-
composition of Vi (Fr, ..., Fp) — Vi (Fo, ..., Fy); see [48, p.40].

In Chapter 2 we derived a multivariate 1ntegrat10n by parts formula. Applying this
formula to the integrals in (3.3), we obtain under suitable assumptions (see Lemma 3.2.3
below) that

= Y Y TTE ) = B () i d(@s)se). ()

Note at this point that puy for J C {1,...,d} can be signed measures. In the

n;J, F
following, we will refer to repreosentation (3.4) as generalized von Mises decomposition.
Based on this representation the asymptotic distribution of V-statistics may be derived
by a direct application of the extended continuous mapping theorem. Except for some
minor assumptions, we mainly need the limit distribution of an(ﬂj ) —F (g )) j=1,....d,
to determine the limit distribution of a, (th(ﬁgl), LBy —y, (Fél), . ,Fo(d))) for a

suitable sequence (a,) in (0,00) with a, — oo via this extended continuous mapping

n

approach, provided the assumptions of the generalized von Mises decomposition are
fulfilled.

If 13” is the empirical distribution function, weak convergence theorems (with respect
to weighted sup-metrics) for the empirical process /n(F, — F) have been established
under various conditions. For instance, we refer to Shorack and Wellner [70] for inde-
pendent identically distributed data, to Arcones and Yu [4], Shao and Yu [69] and Wu
[78] for stationary sequences of weakly dependent random variables, and to Beutner et
al. [8] for stationary sequences of strongly dependent random variables. More details
can be found subsequent to Remark 3.3.2.

In Chapter 1, we proved such a weak convergence theorem for the local empirical pro-
cess of piece-wise locally stationary time series. Combined with the extended continuous
mapping approach, this enables to investigate the asymptotic distribution of (weighted)
V-statistics for non-stationary time series. In the literature, U- and V-statistics and their
asymptotics have mainly been studied for stationary sequences of random variables, see
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Dehling and Taqqu [25], Dehling and Wendler [26], Denker and Keller [28], Dewan and
Prakasa Rao [29, 30, 31], Garg and Dewan [37, 38], Leucht [52], Sen [65] and Yoshihara
[80]. In [83], Zhou already treated weighted V-statistics of degree 2 for non-stationary
time series from the perspective of Fourier analysis. With our approach, this result can
be reproduced under similar assumptions and generalized to weighted V-statistics of
higher degree. Moreover, we regain many results existing in the literature concerning
one-sample V-statistics of degree greater than or equal to 2 for stationary sequences
of random variables, which are suitable for kernel functions of bounded variation. In
addition, multi-sample V-statistics of degree d can be dealt with.

The rest of the chapter is organized as follows. In Section 3.2 we clarify the as-
sumptions under which the generalized von Mises-representation holds and give some
illustrating examples. In Section 3.3 we present our main result: the weak limit theorem
for one-sample and multi-sample V-statistics. More precisely, we determine the limit
distribution of the vector-valued random variable

( Vi (BSD, L BEOY) [V (EED, L E) )
an : .

th,k(ﬁgkl), R ﬁgkd’“)) th,k(Fékl)a N 7Fo(kdk))

for different kernel functions h,; : R4 — R, .. g R% — R and distribution
functions FO(H), . ,F()(kdk) with estimators ﬁ,&”’, cee ﬁi’“’“, where in the case of one-
sample V-statistics F) = F\n and Fo(ij) =Fyforalli=1,...;kand j=1,...,d;. Due
to this vector-valued result, also the asymptotic distribution of suitable compositions of
different V-statistics such as the skewness or kurtosis of probability distributions can be
studied. The example of the skewness is carried out in detail in Subsection 3.3.3. In
Section 3.4, we finally investigate the asymptotics of weighted V-statistics of degree d
for non-stationary time series by means of the extended continuous mapping theorem

and the weak convergence theorem of the local empirical process from Chapter 1.

3.2 Generalized von Mises decomposition

3.2.1 Assumptions and proof of representation (3.4)

First of all, we state an assumption on h,, (Fél), .. .,Féd)) and (}*A}El), . ,ﬁ,@) that
ensures the well-definedness of the representation (3.3).

Assumption 3.2.1 For all n € N we have P-a.s. for every subset J C {1,...,d} that
Jia |1, 2)| (®ee e @ Qe 1o ) ([d((25)jees (25)je5)) < 00

We note that we already assumed in the introduction that (EE”, ce ﬁ,&d’) € Fp, (w-
wise) for every n € N, which corresponds to Assumption 3.2.1 for J = {1,...,d}.
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If £ is the empirical distribution function of the random variables X 1(j ), e ,XT(Lj ),
j=1,...,d, then Assumption 3.2.1 is fulfilled for every nonempty subset J C {1,...,d}
and thus boils down to the assumption that (Fo(l), . ,F(d)) €F,, forallneN.

Lemma 3.2.2 Under Assumption 3.2.1, representation (3.3) holds P-a.s. for alln € N.

Proof By Fubini’s theorem, we have

th</\'r$,1)7 tt 7ﬁ'r§,d)) - Vh'n(Fo(l)’ c 7F0(d)>

- /Rd hn(mb s ,l’d) <® (M(ﬁfbj)—Féj)) + :uF(gj))>(d(:U17 s 7$d>> o th(FO(l)7 T F()(d))

= > /Rd (z1,...,4q) <®“ng> ® ®M®j>fFéj>)>(d((xj)jejc, (z;)5e))

JC{1,..., jeJe jeJ

_/Rdh Tiyeoo, X (®MF<J>> (T1,...,2q))
— Z / nisFo ((25)jes <®NF<J> Fo))) d((z5)jer))

0£JC{1,..., jed
P-a.s. for all n € N. O
In line with the notation in Section 2.6, let xx := (xp)rex and let the function

(Mg, )< : RE — R be defined as in (2.4) for any nonempty subsets J, K C {1,...,d}
with K C J, ¢; € RVl and n € N. If we apply for P-almost every w the integration by
parts formula in the form of Corollary 2.6.5 to each summand on the right-hand side of
(3.3), we immediately obtain the following result.

Lemma 3.2.3 Suppose that the following conditions are fulfilled.
(a) Assumption 3.2.1 holds.

(b) For every nonempty subset J C {1,...,d} and every n € N, the function hy,.; g, is
1K s locally of bounded | K |-fold variation for every

right continuous and (hy,.j g, )%
nonempty subset K C J and every fized c¢; € RII

¢) For every nonempty subset J C {1,...,d} and everyn € N, the function (hp.; )5
F ty subset J C {1,...,d} and N, the function (hn.yr)5"

s (B(RIX1), B(R))-measurable for every nonempty subset K C J and every fived
c; € RV, and the integral

/ayb(hn;LFo ( ® ,UJF(l) ® ® MF(J)> xl)leLﬂK, (mj)je(J\L)ﬂK))
K leLNK e(J\L)NK

exists for all subsets K, L C J with K # 0, ¢; € RV and for every finite interval

I = (apnx, brok] % (anpnk, bnnnk] € REL P-a.s., where (Pmogr) S and
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(hmlpo)i”K are | K|-fold monotonically increasing and right continuous functions

satisfying (hn;lFo)CJ;K = (hn;J,Fo)—c&-J;K - (hn;J,Fo)c—J;K'

(d) The following limits exist and equal zero P-a.s. for every nonempty subset J C
{1,...,d} and for every n € N:

lim [Z ‘J‘ |K] H (F\(J) bCLJ K _ Fé]) (b;‘”;K))hn;J,Fg (b3J§K)i|7

{—a;,bj}jes—+o0 KCJ iy

lim [ Z (—1)VI-IK]
{=aj.bi}jer=+oo L,KCJ disjoint, L#)
J] ER @) - FP @) T (F9(ay) — F ()
keK JEJ\(LUK)

a K.

o~ j %L
[ TLE @)~ B ) e
(ar,br] jeL

where we use the convention that [[;.y(...) := 1 and b5” e (b‘” )jes is defined
as in (2.2).

Then the representation (3.4) holds true P-a.s. for all n € N.

Analogously to the notation in Corollary 2.6.5, the expression “lim¢ 4 5}, -500(- - -)”
in Lemma 3.2.3 is understood as convergence of the net (... en2l71, Where

N1, ..., Nyl corresponds to (—a;)jes U (b))jer.

Proof According to condition (a) the representation in (3.3) is valid, see Lemma 3.2.2.
To show that the representation (3.4) holds true P-a.s. for all n € N, it suffices to
prove that for every nonempty subset J C {1,...,d}, n € N and for P-almost every w
the conditions of the integration by parts formula (in form of Corollary 2.6.5) on the
functions [, J( —F G) ) and hy,. s, are satisfied. The claim then follows immediately
from Corollary 2.6.5 applied to each summand on the right-hand side in (3.3) for every
n € N and P-almost every w.

Let J C {1,...,d} be any nonempty subset and n € N. We first note that for P-
almost every w the right continuity of [, J(ﬁ,sj ) — F) follows directly from the right
continuity of the distribution functions £ and Fo(j ),

As a second step, we show that P-a.s. the product (HjeJ(ﬁéj) — Féj)))CJ;K is locally
of bounded |K|-fold variation for every nonempty subset K C J and every c; € RV,
For P-almost every w we observe that

(H(ﬁr(ﬂ) B FO(J.))>CJ;K _ (Z |J\L| HF 1) H 0_] )CJ K (3.5>

jed LCJ leL FEI\L
~, . N NZEY ~ N\ ers K
= ([E -7M) " - (TLE - £)
jeJ * jeJ -
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for all nonempty subsets K C J and all ¢; € Rl with

c; K

<H(ﬁ75j)_F0(j))> — < Z Hﬁél) H F()(j))QI;K (3.6)

. +
jeJ LCJ, el jeJ\L

|J\L| even

and

(TLE - )™ = (S T1RY T1 7)™ (3.7)

jed LCJ, leL jEINL
|J\L[ odd

If we can show that (Hjej(ﬁéj) - Fo(j)))i‘”K and (Hjej(ﬁéj) - Fo(j)))c_‘”K are P-a.s. |K|-
fold monotonically increasing for every nonempty subset K C J and every ¢; € R,
then we can conclude from Proposition 2.4.4(iii) that the expression on the left-hand
side of (3.5) is P-a.s. locally of bounded |K|-fold variation for every nonempty sub-
set K C J and every ¢; € Rl. For the proof that the functions in (3.6) and (3.7)
are P-a.s. |K|-fold monotonically increasing for every nonempty subset K C J and
every ¢; € RVl we note that the product [, 7Y [Tens Féj) is P-a.s. |J|-fold mono-
tonically increasing for every subset L C J by part (v) of Proposition 2.2.7. Hence,
in view of Proposition 2.2.7 (i), the sums > ; ;17 oaa(ILicr 2 [Tens Féj)) and
>_rc L even L e Y [Tens F) are P-as. |.J|-fold monotonically increasing. Par-
ticularly since we consider for P-almost every w in each summand products of distribu-
tion functions that converge to zero if at least one function argument z;, j € J, tends to
—00, Lemma 2.2.9 yields that the functions in (3.6) and (3.7) are indeed P-a.s. |K|-fold
monotonically increasing for every nonempty subset K C J and every ¢; € RII.

Third, the functions in (3.6) and (3.7) are not only P-a.s. |K|-fold monotonically
increasing for every nonempty subset K C J and every c¢; € Rl but also P-a.s. right
continuous as composition of right continuous functions.

In a fourth step, we show that P-a.s. for every nonempty subset K C J and every
fixed ¢; € R the map @y > limy, say ([T, (FY — Fy) 2" (uk) is (BRIF), B(R))-
measurable. In view of (3.6) and (3.7) we obtain that P-a.s.

—~ . . c; K
li ( F(]) _ F(J) )
uKI;‘I:ch H( n 0 ) " (U’K)
jeJ
~ l . |
= > I P ] @ [] FP@-) ] F-)
LCJ, keLN(J\K) leJ\(LUK) i€eLNK JE(J\L)NK

|J\L| even/odd

holds for every nonempty subset K C J and every c¢; € RI/!, where the distribution func-
tions Fél) and F,gl) for i = 1,...,d are P-a.s. monotonically increasing and hence P-a.s.
(B(R), B(R))-measurable. For P-almost every w, the map &y + limy,, g, (HjeJ(F,SJ)—

Féj)»iJ;K(uK) is thus as product of measurable functions (B(R¥!), B(R))-measurable

for every nonempty subset K C J and every ¢; € RV
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Fifth, we observe that P-a.s.

~ N\ en K
/ (TTED = F9)) " )| e (@l (ehenc)
+ n;J,F
(ar,br] ** jeg
_ S [1 EP@ JI Fe
LCJ, keLN(J\K) 1€ J\(LUK)

[J\L| even/odd

/(GK’bK]< IT £ xz—) [ F, )) %W’FO)CJ;K(d((g;k)keK))

leLNK €(J\L)NK

holds for all nonempty subsets K C .J, c; € R/l and every finite interval (ar, bx] C RI¥!
in view of (3.6) and (3.7). The latter integral exists for every nonempty subset K C J,
c; € RVl and for every finite interval (ax,bx] C RIXI, P-as., because for P-almost
every w the functions FY and Féj) are as distribution functions bounded by 1 for
each j=1,...,d and ,ui )CJK((aK,bK]) < 00 (Recall that ”(ihn.JFO)CJ?K((a’K’bK]) =

ALK (i, FO)CJ ™ by deﬁnltlon) Moreover, we have P-a.s.

e K +
L O @)ty o ier)

= > I1 F<><> 1 A

LCJ, e(J\K)N 1€ J\(KUL)
[J\L| even/odd

-/va,b<hjn JFO K < ® MF<L> ® ® /LF@) -Tl)lELﬂK7(CEj)j€(J\L)ﬂK))
K

leLNK €(J\L)NK

for every nonempty subset K C J, ¢; € R and every finite interval (ax, bgx] C RIXI,
where T%® is defined as in assumption (c). The fact that the latter integral exists for
every nonempty subset K C J, ¢; € Rl and every finite interval (ar,br] < RIXI
P-a.s., is thus ensured by assumption (c).

Finally, in view of Assumption 3.2.1, [, Ay () M(HJ_EJ@(IJ-)_FSJ-)))(d((:}:j)jeJ)) ex-
ists P-a.s. because

| o@Dl o (d@s)ier)

= Z / |\ P (27) (®,MF ® ® MFm) (@1)ier, (25)jenL))

LCJ, leL JEJ\L
[J\L| even/odd

Z /lh Ty,...5 T (®NF ®®,UF<J)> (z; lELa(x]) er<))

LCJ, leL jeLs
[J\L| even/odd

IN

P-a.s. by Fubini’s theorem. Since all the other remaining conditions of the integration
by parts formula are satisfied by assumptions (a)-(d), this finishes the proof. 0
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Especially in the case where ﬁn is the empirical distribution function condition (d)
in Lemma 3.2.3 is essentially easier.

Remark 3.2.4 If for every j € {1,...,d}, n € N and for P-almost every w there
exist real numbers z;,(w,n), x;,(w, n) such that F(])(w x) — F(])( ) = —Fé )( ) for
all x < z;0(w,n) and ol )(w x) — Fé])( ) =1-— F( )( ) for all x > z;,(w,n), then
assumption (d) in Lemma 3.2.3 boils down to the assumption that ||h,.; |l < 0o and
SUD (), €RIV\LI fRL T () i (d((z:)ier)) < oo for all n € N and all nonempty

subsets L, J C {1,. d} with L C J. &

Proof of Remark 3.2.4 On the one hand, we have for every n € N, for P-almost

every w and for b; > z;,(w,n) and a; < z;¢(w,n) for each j =1,...,d that
‘ S (=) (ﬁu (b257) — FY) (b;J;KD . (b?;x)’
KCJ jeJ
e :
< D Ml [T (0= FV00) TT (= F7(0))
KCJ keK jEINK

holds. The latter bound converges to zero as {—a;, b; }jc; — 400 under the assumption
that [|hn.7 /|l < oo for every n € N and every nonempty subset J C {1,...,d}.
On the other hand, for every n € N, for P-almost every w and for b; > z;,(w,n) and

a;j <zj(w,n), j=1,...,d, we observe
> W EPe) -FYG) [T (FP@) - £ ()
LKCJ disjoint keK jeJ\(LUK)
L#£0
e ‘ (6577 )L
T E-) - B ) i, <d<<xj>jeL>>(
(ar,br] jer,
k aJ K
< Y He-re) I ) | [, i e ien)
L,KCJ disjoint, keK jeJ\(LUK )
L#0
. .
< > IIe-70) II (-F@)
L,KgJ;lésjoint, keK jeJ\(LUK)
L

+
sup /L (/‘( B,y (E)s€ DL + /‘(h ) Ese L)(d((xj)jeL))’

(zj)je LRI\

We note that L C J such that K # () or (L U K)¢ # (. Hence, the latter bound
converges to zero as {—a;, b;}je; — 400, if the latter supremum over integrals is finite
for all n € N and all nonempty subsets L, J C {1,...,d} with L C J. O

Let ¢ : R — [1,00) be any weight function, i.e. any continuous function being non-
increasing on (—o0,0] and non-decreasing on [0,00). Subsequently, we denote by D,
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the space of all bounded cadlag functions on R satisfying || f|ls := ||f¢|l« < oo and
limjg| o0 | f(2)] = 0. We equip Dy with the weighted sup-metric dy(f, 9) :== ||f — g4,
and we refer to B as the o-algebra on Dy generated by the open balls with respect to

If £ is the empirical distribution function and additionally (Fp ) Fo(j )) € Dy
P-a.s. for every j € {1,...,d} and n € N, then we get weaker conditions on the function
..k, to ensure the validity of assumption (d) of Lemma 3.2.3 in comparison to Remark

3.2.4 by using the fact that ﬁn@)(:c) - Féj)(x) < 1/(25(:1:)”?5” — Féj)Hd, for all z € R.
More generally, when EY is not necessarily the empirical distribution function but

(R — Féj)) € D, P-as. for every j € {1,...,d} and n € N, the following remark holds.

Remark 3.2.5 Let (ﬁ(/) - Fo(j)) € D, P-as. for every j € {1,...,d} and n € N. If for
any nonempty subset J C {1,...,d} and n € N

(A7) limye; 1y 5000 [Lies 1/0(2)) hnssry ((25) je5) = 0,

(d”) hm“xkl}keJ\L"OO erJ\L 1/¢(xx) fRL HjeL 1/9(y;) HE&L”;J,FO)((wk)kGJ);L(d((yj)jeL)) =0
for all nonempty subsets L C J,

then condition (d) of Lemma 3.2.3 holds. &

3.2.2 Examples

The following example for the set-up of a one-sample V-statistic of degree 2 is already
discussed as Example 3.11 in [11].

Example 3.2.6 (Variance) If hy(z1,75) = 3(z1 — 22)? and F has a finite second
moment, then Vy,(F, F) equals the variance of a random variable X with distribution
function F. We assume that F), is an estimator of F' such that (F,, F, ) (w-wise) an
element of Fy, for every n € N, Assumption 3.2.1 is fulfilled, and d¢(Fn,F ) is P-a.s.
finite for all n € N and for some weight function ¢ satisfying [ |z|/¢(x) dz < co. Then

/'LhQ(d(xla 1’2)) = —dx1dxy and Hha gy p (dl’) = (l‘ - E[XD dl‘7 1=1,2,

and the assumptions of Lemma 3.2.3 hold true. <

Further examples for set-ups of one-sample V-statistics of degree 2, under which
representation (3.4) holds, can be found in [11]; for instance, Gini’'s mean difference
(Example 3.10 and Example 3.12 in [11]), Cramér-von Mises Goodness-of-fit test statis-
tics (Example 3.13 in [11]) and Arcones-Giné test statistics for symmetry (Example 3.14
n [11]).

The following example is a generalization of Example 3.2.6 to one-sample V-statistics
of degree m.
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Example 3.2.7 (Central moments of any order) If F' has a finite moment of order
m > 2 and if

1 m m - m\ ,._ m\ . _
e D S0 O B () e G F

i1=1 im=1

+(—1)m<<m”z 1) ~ 1)@, i (3.8)

Vi (F,...,F)=E[(X — E[X])"]

for some random variable X with distribution function F', see Example 1.1.4 in [48]. For

then

m = 3, for instance, the function ks has the following form hs(21, z2, 23) = 5(23 4 23 +
23) — 3(2ws + 2123 + 23wy + 2123 + 2dws 4 v203) + 2w 2005 = (221 — 3 — x3)(— 71 +
2wy — x3)(—x1 — X9 + 2x3) with corresponding measures pip, (d(z1, x2, 23)) = 2 dridrods
and

[ths gy 0 (dT) = ((z — E[X])* — Var[X]) dx, i=1,2,3. (3.9)

The assumptions of Lemma 3.2.3 hold true, if E, is an estimator of F such that
(Fy,..., F,) is (w-wise) an element of F),, for every n € N, Assumption 3.2.1 is fulfilled,
and d¢(ﬁn, F) is P-a.s. finite for all n € N and for some weight function ¢ satisfying
Jg 2|/ (x) dz < oo. &

Proof of Example 3.2.7 We now verify in two steps that the assumptions of Lemma
3.2.3 are fulfilled for all m > 2 and that up,(d(z1, xe, x3)) = 2 dz1dradrs as well as (3.9)
holds true.

Step 1. Let J C {1,...,m} be any nonempty set. Since Assumption 3.2.1 is fulfilled
by assumption we only need to show (b)—(d).

(b) The function hy, ; r is given by a polynomial of degree m in the variables z;,j €
J. Hence, hy,;p is |J| times continuously differentiable, which implies that the latter
function is right continuous and locally of bounded |.J|-fold variation by part (iv) of

criK is | K| times continuously differentiable and

Proposition 2.4.4. Analogously, (fm,r)
therefore locally of bounded | K |-fold variation for every nonempty subset K C J and
every fixed c; € RI see part (iv) of Proposition 2.4.4.

(c) We first note that for any function g : R¥ — R that is k times continuously

differentiable we have that gz, : R¥ — R and gz : R¥ — R defined by

ge.+ () (3.10)
Tk z1 akg + 1 ~
= (1, ..., dyy -+ - dyr, — = — 1)kl (x®?
/Ek /51 (@yk Oy (v yk)) h Ye = 5 JC{lZ... k}( ) 9(x*”)
and
gz, () (3.11)
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/ /1 ayk (91,...,yk))dy1...dyk+% Z (_1)k—\J\g($z;J)

JC{1,...k}

for € = (z1,...,7;) € R* and some ¢ = (¢y,...,¢) € RF are |K|-fold monotonically
increasing and right continuous functions that satisty ¢ = gz+ — ge—. Indeed, for any
¢ € R* we observe

g(x) = A(fl’ g — (AT g — g(x))

a'f Ul s
= [ e i = 3T (1) Mg(a®)

JCIL, k)
= gc—i—( ) 96—( )

where we used (2.12) and (2.1) in the second step. The k-fold monotonicity of gz and
gz, follows from part (vi) of Proposition 2.2.7, if we can show that gz and gz _ are k
times continuously differentiable with —amgci( x) > 0. In that case, gz+ and gz
are additionally right continuous as differentiable functions. Now, ¢ is k£ times continu-

ously differentiable by assumption and also fék . e fél (&/k(?—i‘)ylg(yl’ e yk))i dyy - - - dyp

ﬁf@xlg(%, ..., 2x))* so that the

functions gz . are indeed k times continuously differentiable. We note that the sum

is k times differentiable with continuous derivative (

>oJci,. k}(—l)k*“”g(waﬂ) has no summand depending on all xq,...,zx. As a conse-
quence, - o4 .
¢,
oxy, - - 01 () = <8a7k <01 (a:)) ’ (3.12)
which is nonnegative by definition. With gz, and gz _ we have thus found a suitable
decomposition of g into two right continuous and k-fold monotonically increasing func-
tions.

Now, let K C J be any nonempty subset, ¢; € RVl and ¢x € RIXl. Then
(hmyr)®" " is given by a polynomial of degree m in each x4, k € K, and |K| times
continuously differentiable. In particular, the functions ((Amjr)%*)ey o+ defined as in
(3.10) and (3.11) are | K|-fold monotonically increasing and right continuous and satisfy
(P g )7 = (P r) e s — (M) )z, — as we have seen above.

The (B(R%1), B(R))-measurability of the functions (A, )% )z, + is thus a direct
consequence of the fact that the latter functions are | K| times continuously differentiable
(see above).

Moreover, the functions ((hy,r)%* )z, + are bounded on every finite (ax,bg] C
RIEl due to the continuous differentiability. As a result, we have that

/a?b ’((hmJ:F)CJ;K>EK,:|:< )} <M§\L0KI Q M@\(J\L)ﬂm) (d((xl)leLmIo (%’)je(J\L)mK))

< CambK,CJ H Mﬁn((alvbl]) H MF<<aj7bj]) < CambK,CJ

leLNK je(J\L)NK
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holds for all subsets K, L C J with K # 0, ¢; € R/ and every finite interval I‘;(’b C RIKI,
as defined in assumption (c) of Lemma 3.2.3, where Cq by .c,
satisfying supyeax bye] |((msr) " w2 (¥)] < Cagbyge,- Since the latter bound is
finite for every c; € RI/! and every finite interval (ax,bx] € RI¥I, the integral on the
left-hand side exists for any subsets K,L C J with K # 0, for every c¢; € Rl and
1% C RIKI,

(d) To prove that the first limit in assumption (d) of Lemma 3.2.3 exists and equals

is some finite constant

zero P-a.s. we have to show, according to Remark 3.2.5, that limg, y, ;o0 [[;c 1/d(25)
Py r((x;)jes) equals zero. We note that [ [|™/¢(x)dr < oo by our assumptions,
which implies that |z|™/¢(x) and thus each polynomial of degree at most m in x divided
by ¢(x) converges to 0 as |x| — co. Since hy,;z((2;);cs) is a polynomial of degree m in
the variables x;, j € J, this proves the first assertion.

For the proof that the second limit exists and equals zero P-a.s. it suffices to show
that [T pp1/0(zk) Jre Tler 1/9(y;) uimﬂ((zk)keﬁw(d((yj)jeL) converges to zero as
{|#x|} ke — oo for any nonempty subset L C J by Remark 3.2.5.

Recall that if g : R¥ — R is k-times continuously differentiable with gz + as defined
in (3.10)-(3.11) for some ¢ € R*, the measures p and j, are generated by gz and
gs—, respectively. Since gz + and gz are k times continuously differentiable, as we have
seen in the proof of (c), we obtain in view of (3.12)

%9
oxy -+ - 011

L.
piia) = 9% () —

Oz - - Oy (:;:)) dx (3.13)

for x € R*.

Now, for any nonempty subset L C J the function (h,, J,F)((””k)’fGJ)?L is given by the
polynomial (h, ;) @)l ((y;),c), which is of degree m in each y;, j € L, and in
each xy, k € J\ L. We note that the polynomial has the property that the derivative

(%(hmJVF)(’“"’C)kGJ?L)((yj)jeL) is a polynomial of degree m — |L| in y;, k € L, and
777

in xy, k € J\ L so that ((%(hmlp)(””k)’fe»”L)((yj)jeL))i is piecewise composed
of polynomials of degree at most m — 1 in yx, k € L, and x4, k € J\ L. Along
the lines of the proof of the first limit, the assertion is thus a direct consequence of
Jg 2|/ é(x) de < oo in view of (3.13). This finishes the proof of assumption (d). So all
assumptions of Lemma 3.2.3 are fulfilled.

Step 2. To prove pp,(d(z1,x2,23)) = 2dxdxredrs, we note that the following state-
ment can be derived from part (iii) of Proposition 2.2.7: Any two right continuous
functions f1, fo : R — R that are locally of bounded d-fold variation generate the same
measure on R if and only if fi(xy,...,2q4) = fa(z1,...,24) + 2oozici,.ay 90((5)jer)
for some functions ¢g; : R’ — R. In our specific case, hs and 2z,2,73 generate the same
measure so that up to the coefficient 2 the measure py, coincides with the Lebesgue
measure.
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For the proof of (3.9), we observe that

hsyr(z) = /R2 hs(x, w2, 23) (Hr @ pr)(d(z2, 3))

%:ﬁ + %E[X?’} — 2’E[X] — z(E[X?] — 2E[X)?) — E[X]| E[X?],
which yields Zhsqy p(z) = (22 — 20 E[X] + 2E[X]* — E[X?]). Hence, (3.9) holds for
i =1 in view of (3.12). Due to the symmetry of hs, assertion (3.9) is indeed valid for
each ¢ =1,2,3. O

As we have seen in Subsection 3.2.1, the kernel h,,.; g, has to be locally of |.J|-fold vari-
ation and (h,,.7r, )" has to be locally of bounded |K|-fold variation for any nonempty
subsets K,.J C {1,...,d} with K C J and any c; € R, If the kernel has too many
discontinuities, this might be not fulfilled. Beutner and Zéhle showed in Remark 1.1 in
[12] that the Wilcoxon and Mann-Whitney two-sample test statistics and an asymptoti-
cally equivalent (one-sample) statistic to the Wilcoxon signed rank test statistics do not
fulfill the required assumptions for the generalized von Mises decomposition.

3.3 Weak (central) limit theorems

Let dy,...,dy € N,and let by, 1 : R — R, ... h, : R%* — R be Borel measurable func-
tions for every n € Ny. As before, for every i = 1,..., k we denote by Fy,, , the set of all
di-tuples (FUD, .. F(4)) of distribution functions on R for which V), ,(F@, ... F(d)
exists. For each ¢ = 1,... k let (Fé“), . ,Féidi)) € Fy,, be fixed, and let E be an
estimator of Féij) for every j = 1,...,d; and n € N such that (ﬁ,&il), . ,ﬁ?d”) cFy,,
(w-wise) for every n € N.

Throughout the entire section, we use ||v|| to denote the Euclidean norm of some
vector v € R*.

3.3.1 Weak limit theorem for one-sample V-statistics

In this subsection we focus on one-sample V-statistics, i.e. Fo(ij ) = Fy and ﬁ,&” ) = ﬁn for
eachi=1,...,kand j=1,...,d;. Let (V,dyv) be any metric space. We equip V with
the o-algebra B° generated by the open balls with respect to the metric dy.

Theorem 3.3.1 Let (a,) be a sequence in (0,00) with a, — oo as n — 0o. Suppose
that

(a) for each i = 1,...,k the assumptions of Lemma 3.2.3 with h,, (Fél), o ,Fo(d))
and (Fé”, . Fr(bd)) replaced by hyi, (Fo,...,Fy) and (F,,..., F,), respectively,
are fulfilled,
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(b) the process an(ﬁn—Fo) is a (V, B°)-valued random variable on the probability space
(Q, F,P) for all n € N, and there exists a (V,B°)-valued random variable B on
(Q, F',P') such that B(Y') C S for some separable S € B° and

an(F, — Fy) ~° B in (V,B°,dy),
(c) for each n € N the map "V — RF defined by

) 06 (e O 0 fos s £ ity (A(25)569)
" (f) = s
Sprc g O @ s Ty £(7) gy () 160)

is well-defined with on (an(ﬁn — Fp)) : Q@ = R* being (F, B(R*))-measurable, and
the map ®° : S — R* (with S as in (b)) defined by

) S i T g 1 ()
O(f) = 5
- Zjil R f<$j_) /J’h(),k;{j},FO (dl’])

is well-defined and (B° N S, B(R¥))-measurable,
(d) for any sequence (fn)n C V we have “(T)”(fn) —60(;‘0)\\ — 0 when dy (fn, fo) — 0.

Then we have

( th,1 (ﬁnyyﬁn) th,l (F07---7F0) )
an, : .

th’k(ﬁny-.-qﬁn) th,k(FOV"?FO)

- Z;h:l R B(xj_>luh0,1;{j},F0 (dmj)
~ : in (R*, B(RY)).

d
- Zji1 R B(xj_)luho,k;{j},FO (d]?])

Recall that ~»° denotes convergence in distribution with respect to the open-ball o-
algebra B°. In separable metric spaces such as R* the open-ball o-algebra coincides with
the Borel-o-algebra. In this case, we simply write ~» for the convergence in distribution.

Proof of Theorem 3.3.1 By Lemma 3.2.3 and assumption (a) we obtain

( thl(ﬁn;...,ﬁn) th,1<F07-~'7FO) >
Ay : .

Vi (For o Fn) Vi (Fos -+ Fy)
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Z@;&ch ..... dl} o fRJ jeJ ( Tj—) — Fo(xj_)) Kb 1,7, (d((z5)jer))
Z@#JC{l dk} ‘ | f]RJ jeJ ( _) - FO(:EJ—)) b, 5,7 (d((Ij)jeJ))
= " (an(F, — Fy))

P-a.s. for all n € N so that the claim follows from the extended continuous mapping
theorem (cf. Theorem C.1 in [13]) in view of assumptions (b)—(d). O

If the metric space is given by (D, d,) and h,, = ho for all n € N, then assumptions
(c) and (d) of Theorem 3.3.1 boil down to a condition on the weight function ¢ and the
kernel functions hg 1, ..., ho:

Remark 3.3.2 (i) Let the metric space (V,dy) be given by (Dy,d,), and let h,, = hg
for all n € N. Tf [, [];c; 1/(/15(:1:]-),ufoyiw0 (d((x})jes)) < oo for all nonempty subsets
J CA{1,...,d;} and each i = 1,..., k, then assumption (d) of Theorem 3.3.1 is fulfilled.

(ii) Assumption (c) of Theorem 3.3.1 holds under the conditions of part (i) of this
remark, if additionally assumption (b) is valid. <&

Proof of Remark 3.3.2 (i) For any sequence (f,,), C Dy and any f, € D4 we observe

18" (fa) — @°(fo)||

d;

HE;/R [ fal@i=) = folw;=)| (g 50 1, +Mﬁovi;{j},Fo)(d$j)Le{l k}H

1111

+H[ 3 a;lJ/ H’f ,uhOZJFO—|'H;_Loyi;J‘FO)(d<(xj)j€J))]i€{1 k}H

JC{lndib =2 TR ges T

=: Si(n) + S(n)

-----

For the first summand we obtain

d;
+ j—
H [; 7o = olle /IR 1/¢(z;) ('uhovi;{j},Fo * /”Lho,i;{j},Fo)(dxj)Le{l ..... k}“

for any n € N, where ¢(z) = ¢(x—) holds because of the continuity of ¢. Since for
any j € {1,...,d;} and i € {1,...,k} we have [, 1/d(z;) |Hhg i.5y.5, | (dj) < 00 by our
assumptions, the latter bound converges to 0 when || f,, — folls — 0.

For the second summand we have

[ > @S I - fille IT 16l

JC{Lndi}) J|>2 KCJ jeK te\K
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. /R Lot (il + ugo,i;J’FO)(d((g;j)jeJ))]

I | D DD S VA A T P

JC{L,....d; },|J|>2 KCJ
+ —
- / et (b, + i) @) ] 314)

for any n € N being sufficiently large, where we used in the first step that

5@ < T A=) = fola;=)| + [ folz;—)I}

= S { T te — s} TT 11}
KCJ = jeK JENK

holds and in the second step that ar "' = 0 asn — oo. The integral on the right-hand

side of (3.14) is finite by our assumptions, and ||fo|l, < oo because f, € Dy. The
right-hand side of (3.14) thus converges to 0 when || f,, — foll¢ — 0. Hence, assumption
(d) of Theorem 3.3.3 holds.

(ii) The map ®" is well-defined because for any f € Dy, ne N, ie{l,...,k} and
for every nonempty subset J C {1,...,d;} we have

/R L) i, (@) < 1SS / L1703 i (dl(5)e9)

and the latter bound is finite by our assumptions. Similarly, we observe for any f € Dy,
ie{l,....,k}and j € {1,...,d;}

[ 1@t o) < 150 [ 17002k, d03)

which is finite and, therefore, yields the well-definedness of P,

To show for every n € N the (F,B(R"))- and (B; N S, B(R*))-measurability of
" (a,(F, — Fy)) and °, respectively, we note that B(R¥) = B(R)®* (see e.g. Theorem
14.8. in [47]), so that the o-algebra B(R¥) is generated by the coordinate projections 7; :
RF - Rfori=1,...,k. It thus suffices to show that m;(®"(a,(F, — Fy))) and m;(®°) are
(F, B(R))- and (B3NS, B(R))-measurable, respectively, for all i € {1,...,k} andn € N.
The latter measurability holds because ;(®°) is obviously (dy, || - ||)-continuous under
the assumption that [y, TT,c, 1/6(a;) i, . (d((x;);e))) < 0. For the (F,B(R))-
measurability of Wi(&v)”(an(ﬁn — Fy))) we observe that w an(ﬁn(w,-) — Fo()) is
(F, B;)-measurable for every n € N by assumption (b) of Theorem 3.3.1. Since B
coincides with the o-algebra generated by the one-dimensional coordinate projections
7yt Dy — R,v — v(z) with € R by Lemma 4.1 in [13], we obtain in particular the
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(F, B(R))-measurability of w — an(ﬁn(w, x)—Fy(x)) for every x € R, n € N. Therefore,
mi(P™(an(F, — Fp))) approximated by sums is (F, B(R))-measurable for every n € N as
limit and composition of measurable functions. a

We have seen in Theorem 3.3.1 that we mainly need a weak convergence theorem
for a,(F, — F) in assumption (b) to derive the asymptotics of V-statistics by means
of this extended continuous mapping approach, provided the generalized von Mises
decomposition is valid. If ﬁn is the empirical distribution function, weak convergence
theorems for the empirical process \/ﬁ(ﬁn — F') have extensively been studied. In the

metric space (Dy, || - ||4), where weak convergence of the empirical process with respect
to || - |, means weak convergence of the weighted version y/n(F, — F)¢ with respect
to || - ||, @ weak convergence theorem for independent identically distributed data

can be found for instance in Shorack and Wellner [70, Theorem 6.2.1]. For weakly
dependent data, Shao and Yu studied in [69, Theorems 2.2, 2.3 and 2.4] the asymptotics
of the weighted empirical process for stationary a-, p-mixing and associated sequences
of random variables and Arcones and Yu in [4, Theorem 2.1] the one for stationary
f-mixing sequences of random variable; see Section 3.2 in [10] and Example 4.4 and
Section 5.2 of [13] for details. We refer to [17] and [33] for definitions and examples of
the different mixing conditions and the relations between them. For stationary sequences
of strongly dependent random variables (data with long memory) a weak convergence
theorem for the weighted empirical process was proven for instance in Beutner et al. [8].

In [78, Theorem 1], Wu studied the asymptotic distribution of the weighted empir-
ical process of stationary sequences by supposing a weak dependency condition similar
to assumption (A8) in Subsection 1.2.2. In Chapter 1 we investigated the asymptotic
distribution of the weighted empirical process for non-stationary time series and proved
a variant of Theorem 1 in [78] for locally stationary time series. Combined with the
extended continuous mapping approach, this enables to determine the asymptotic dis-
tribution of weighted V-statistics of degree d. We will come back to this application in
Section 3.4.

If we marginally adjust the maps ®" and ®° in assumptions (c)-(d) and in the
proof of Theorem 3.3.1, then the weak limit theorem for one-sample V-statistics can be
generalized to multi-sample V-statistics.

3.3.2 Weak limit theorem for multi-sample V-statistics

As before, let (V,dy) be any metric space that is equipped with the o-algebra B°
generated by the open balls with respect to the metric dv. For d := dy + --- + di
we set V4 := V x --- x V and denote by B>? the o-algebra on V¢ generated by the
open balls with respect to the metric d{, defined by d%,((xl, e Za), (Y1, - ,yd)) =

134



maXieq1,.. a3 1dv(®i, y;) ). We note that d¢ ((ml, cesq), (Y1, - - ,yd)) — 0 if and only if
dv(z;,y;) — 0 foralli e {1,...,d} .
For any nonempty subset J C {1,...,d}, the metric space (VI/I, B, d‘{,”) is defined

in the same way.

Theorem 3.3.3 Letd :=dy+---+dy and let (a,) be a sequence in (0, 00) with a,, — 0o
as n — 00. Suppose that

(a) for each i = 1,...,k the assumptions of Lemma 3.2.3 with h,, (Fo(l), ce
and (F, Y ,ﬁ,&d)) replaced by hy,;, (FO(“), e Fo(idi)) and (ﬁé“), e ﬁ#di)), Te-
spectively, are fulfilled,

(b) the process (an(F(ll) FO(“)), . .,an(ﬁsidi) - Féidi)))le{l ,,,,, Ky 15 a (V4 B%%)-valued
random variable on the probability space (2, F,P) for alln € N, and there exists a
(V4, B>%)-valued random variable B := (B, ..., Big,)icq1,.. k3 on (', F',P') such
that B(Q') C S for some separable S € B> and

.....

(i il 7(id; id; o
(an(Fé - FO( ))7 . 7an(Fr(Ld) - FO( )))16{1 ..... k} ~ (Bib' - 7Bidi)i€{1 ..... k}

n (V4,B% d%,),

c) for each n € N the map ®" : — efined by
f h N th o" . V4 — RF defined b

Sosscitay (D an LT ]lelx —) Mg (A((25)je))

Z@#Jg{l ..... dk}<_1)|J\ a};lJ\ fRJ HjeJ frj (=) b, 0.1, (d((x)jer))

is well-defined with @”((an(ﬁgij) — Fo(ij)))ze{l ,,,,, k}je{l,o.. ) : Q — RF being
(F, B(R¥))-measurable, and the map ®° : S — R* (wzth S as in (b)) defined by

Zg 1 th( )/’Lh(Jl{]}FO(dxj)
(I)O((fij>ie{1 ..... k},je{l,..., dl-}) = :
- ZJ 1JR fk]( ) luho,k;{j},FO (dl'])

is well-defined and (B>¢ N S, B(R*))-measurable,

when dy (ff}, fiy) = 0 for everyi € {1,... k} and j € {1,...,d;}.
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Then we have

Vo (B, EIY ] [y, (FOD,. FO)
an( : - )
k1 S(kd k1 kd
Vi, (B, EF) Vi, (FSD, . FF)
d
=25 Jr Bui(@=) ting .y 5, (d5)
~ : in (R*, B(RY)).

- Z] 1JR Bk]( ) Mho,k;{j},Fo (dxj)

Proof By Lemma 3.2.3 and assumption (a) we obtain

Vi, (B Bl Vi (F, L F)
Vi (ESD ﬁkdw) vhnk(pgw,_..,pgkdw)
K
S ocrctomany (O oo Thes (B8P (=) = B9 (@=)) 1y ((2) )
= a, :
) (=W Lo Ty (B (=) — B (a-)) (d((2)jes))
0£IC{1,....dj} RJ ]GJ Lj o \ZT Hhay ;5,7 Lj)jed

= qD"((an(Fn(ij)—Fo(m))ieﬁ ..... kY,je{1,..., di})

P-a.s. for all n € N so that the claim follows from the extended continuous mapping
theorem (cf. Theorem C.1 in [13]) in view of assumptions (b)—(d). O

In a next step we show that Theorem 3.3.3 can indeed be seen as generalization
of Theorem 3.3.1. For one-sample V-statistics the statement of Theorem 3.3.1 can be
derived from Theorem 3.3.3 in view of the following result.

Lemma 3.3.4 Let (a,) be a sequence in (0,00) with a, — 0o as n — 00, and suppose
that

(b) the process an(ﬁn—Fo) is a (V, B°)-valued random variable on the probability space
(Q,F,P) for all n € N, and there exists a (V,B°)-valued random variable B on
(Q, F',P') such that B(QY') C S for some separable S € B° and

an(F, — Fy) ~° B in (V,B°, dy).

Then assumption (b) of Theorem 3.3.3 holds (for Fg(ij) = Fy and B = F, for all
i=1,....kandj=1,...,d;).

Proof For simplicity, let &, = (an(ﬁn - Iy),. .. ,an(ﬁn — Fy)) and B := (B,...,B).
In the following we show in three steps the measurability of &, and B, the existence

of a separable space S € B>? so that B(€)) C S, and the convergence &, ~° B in
(V4 B4 dd).
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Step 1. We first prove the (F, B°¢)-measurability of £, : 2 — V9. Since every
open ball Bd%((xl, ...,xq),r) with respect to the metric d{, can be written as pro-
duct Bgy, (z1,7) X -+ X By, (x4,7) of open balls with respect to the metric dy, we have
B4 c (B°)®4. Tt therefore suffices to show that &, is (F, (B°)®?)-measurable. Now, the
o-algebra (B°)®? coincides with the o-algebra on V¢ generated by the coordinate pro-
jections m;, i € {1,...,d}, given by m;(vy,...,vq) := v;. The map &, is then (F, (B°)®9)-
measurable if and only if 7;(&,) is (F, B°)-measurable for any i € {1, ..., d}, see Theorem
7.4. in [6]. This implies the (F, B>?)-measurability of &, because an(ﬁn — Fy) is (F, B°)-
measurable by assumption (b). Analogously, we may deduce the (F’, 8°%)-measurability
of B: Q' — V< from the (F', B°)-measurability of B : ) — V.

Step 2. We now prove the existence of a separable space S € B°¢ such that B(Y') C
S. Let us use S € B° to denote the separable space that fulfills B(€') C S. Then
B(Q) € S x ---x S. It, therefore, suffices to show that S x --- x S is separable.

As separable space, S contains a countable dense subset I. Obviously, I x --- x [ is
also countable. It thus remains to show that I x --- x I is a dense subset of S x ---x S.
Let ® := (z1,...,24) be any point in § X -+ x S and r > 0. Since [ is a dense subset
of S, there exist yi,...,y4 € I such that dy(z;,y;) < r for each j = 1,...,d. Let
¥y = (y1,..-,94). Then y € I x -+ x I and fulfills d¥,((x1,...,2q), (y1,...,92)) =

Step 3. For the proof of (an(F, — F),...,an(F, — F)) converging in distribution to
(B, ..., B) with respect to the open-ball o-algebra, it suffices by Portmanteau’s theorem
(in form of Theorem A.3 in [13]) to show that

Vdf@)P(“"(ﬁ"’F) ..... an(Fory(dT)  — Vdf(w)P/(B ..... p)(dx) (3.15)

for all uniformly continuous functions f € C2(V?), where C2(V?) denotes the set of all
bounded, continuous and (B¢, B(R))-measurable real-valued functions on V<.
Let f € C2(V?) be uniformly continuous. Then we have

77777777

‘Vd

- /Qf(an(}/?\n(w)—F),...,an(ﬁn(w)—F))P(dw)—//f(B(W),--wB(W))P/(dW)‘
= | [ AlalFue) = PP~ [ 5i(B@) P
= | [ 5@ Pipomldn) = [ APyt (3.10

where f; : V. — R is defined as fi(z) := f(z,...,2). We note that f; is uniformly
continuous and bounded, which follows immediately from the uniform continuity and
boundedness of f. Moreover, fi is (B°, B(R))-measurable. We subsequently show that
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a:V = Ve g (z,... x)is (B° B>)-measurable so that f; is measurable as compo-
sition of the measurable functions f and a. Recall that B>¢ C (B°)®?. For the measur-
ability of a it therefore suffices to show that « is (B°, (B°)®¢)-measurable. Since (B°)®¢
coincides with the o-algebra generated by the projections m; : V¢ = V,i=1,...,d, ev-
ery B € (B°)®¢ can be identified with 7; 1(A) for some A € B° and i € {1,...,d}. Hence,
for the pre-image of B under a we obtain a~*(B) = a (7, }(A)) = (m 0 a) ' (A) =
id~'(A) = A € B°, which proves the measurability of a.

Now, the right-hand side in (3.16) converges to 0 in view of assumption (b) and
Portmanteau’s theorem, which proves (3.15). O

At the other extreme, in the case of multi-sample V-statistics of degree d with inde-
pendent estimators instead of one-sample V-statistics of degree d with identical distri-
bution functions and identical estimators, an analogue of Lemma 3.3.4 is valid. More
precisely, assumption (b) of Theorem 3.3.3 can be replaced by an analogous condition
on the components of (an(ﬁéﬂ) —Fo(il)), . ,an(ﬁgidi) —F[)(idi)))ie{l ,,,,, K} if the components

are independent for every n € N.

Lemma 3.3.5 Let (a,) be a sequence in (0,00) with a, — 0o as n — 0o, and suppose
that

(b’) the processes (an(ﬁé\ll) — Féll)))neN, e (an(ﬁgldl) — Fo(ldl)))neN, . (an(ﬁgkl) -
Fo(kl)))neN, ce (an(Fékdk) - Fo(kd’“)))neN are independent sequences of (potentially
dependent) random variables,

(b”) foreachi=1,...,k and j =1,...,d;, the processes an(ﬁ(fj) - Féij)) are (V,B°)-
valued random variables on the probability space (2, F,P) for alln € N, and there
exist (V,B°)-valued random variables B;; on (¥, F',P') such that B;;(Y) C S;;
for some separable S;; € B° and

an(F) — i) 0 B in (V,B°, dvy).

n

Then assumption (b) of Theorem 3.3.3 holds.

Proof For simplicity, let &, = (&, ... ,5,&“’)) = (an(ﬁ(fl) - Fé“)), . ,an(ﬁ}fd” -
FYieqoony and B = (By,...,By) == (Bi,. .., Bia)icq1..43- The (F,B°%)- and
(F', B>%)-measurability of £, : Q@ — V% and B : Q' — V9 respectively, and the
existence of a separable space S := S} x --- x Sy € B>? with B(Q') C S can be proven
just as in Step 1 and 2 in the proof of Lemma 3.3.4.

For the proof of &, converging in distribution to B with respect to the open-ball
o-algebra, we adopt some arguments from the proof of Theorem 3.1(ii) in [13] (see also
the proof of Theorem 2.2 in [49]). By the implication (f)=(a) of Theorem A.3 in [13] it
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suffices to show that

) flx,. .. xq) P, (d(zq, ..., 2q)) —> ) flxy, ... xq) Pr(d(zy, ..., 2q))

v v (3.17)
for all f € BLY?, where BLY” denotes the set of all (B8°¢, B(R))-measurable func-
tions f : V¢ — R satisfying supgeva |[f(z)| < 1 and |f(z) — f(y)] < d&(x,y) for
all z,y € V<. In order to prove this, we identify &, and B with their canonical pro-
cesses. Let i, : VN x -+ x VN — V and 7; : V¥ — V be the projections defined
by mjn((X11,%12,...), -, (Ta1,Ta2, .. .)) = xj, and 7;(xq, ..., 24) = x;, respectively,
for j = 1,...,d and n € N. Further we denote by (Q, F,P) := (V)4 (B*N)®d P; @
.- ®Py) and (@, F, Iﬁﬁ’) = (V4,824 PR ® Iﬁ?’d) the corresponding probability spaces
with P; := P and @j = IP’jBi for j = 1,...,d. In the definitions of (Q,F,P)

(g’r(Lj))nEN
and m;, we used that (E,S,l))neN,...,(&(ld))neN are independent so that the measure
P((Eﬁl))neN ..... ED). ) coincides with the product measure IP’(&(LU)%N Q- ® P(gT(Ld))nGN. In

the following let B = (El,...,éd) with B, = 7T1(B),...,§d = mq(B) and &, =
EW, DY with B = i (EDn)s - Y = wyn((En)n), where we note that

n

(En)n = (&(Ll), . ,&(Ld))neN = ((&(LI))neN, o (EXY,en). Then we have for any f € BL?

f(@) P g

‘ Vd

= f@)Pew s (de)— [ f(@)Pg g, (dz)

Subsequently, let w := (w1, ...,wy) and W' := (W], ...,w)). Moreover, we use the follow-
ing (slightly misleading) notation that &,(w) := (ES) (W), ... ,E(d) (wa)) and B(w') :=

n

(B1(w)), ..., Ba(w))). Adding telescoping sums to the latter difference yields

F@) B o)) — [ F(@) Bl .5, (02)

‘ vd

< | [, /@) (é@)wm

_ /\; vy f((g(w/))gn(“’%{l}) (EDI ® ®@J) (d((wl>w;{1}))

j=2
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where the expression (z')%7 is defined analogously to (2.2) for any x := (z1,...,24) in
(VN o' = (2),....,2)) in V&and 0 # J C {1,...,d}.
For the last summand, Fubini’s theorem yields

Sa(n) < /le

— /Vd_l VNf {d}( nd)(wd))Fd(dwd)
((dX) ) (Wi wgq)),  (3.18)

/ FPEOHD (By(wl))) By(dut))

v

where we used that for any &’ € V¢ the function f*{% .V — R, defined analogously
o (2.4), is (B°, B(R))-measurable. Indeed, the function f is (B¢, B(R))-measurable
by assumption. In other words f~1(B) lies in B> for every B € B(R) and in partic-
ular f7H(B) € (B°)®? in view of B>? C (B°)®?. Now, Lemma 23.1 of [6] states that
,,,,, L={r € V:(x1,...,24) € A} lies in B° for every A € (B°)®?, which implies
that (24N "YB) = (f~YB))a,... ={z; € V: (21,...,74) € f71(B)} lies in B°
for every B € B(R). Therefore, the function f=31dt is (B°, B(R))-measurable. Since in
addition f*14 is bounded and Lipschitz-continuous, we obtain that f*'{# ¢ BL?1 for
any ' € V¢ By assumption (b”) and Portmanteau’s theorem (in form of Theorem
A.3in [13]), we have that | [y, fP@HD (2y) Py (dag) — [y fP@HD (af) Py (daly)] — 0
and, consequently, the integrand of the outer integral of (3.18) converges to 0 for

P-almost every wj,...,w) ;. Then the summand S;(n) also converges to 0 because
sup, ey | [ (1) < supgyeya |f(x)] < 1 for any ' € V¥ with the result that the domi-
nated convergence theorem is applicable.
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For the first summand, we obtain by Fubini’s theorem
fEn(@ {1}( (1) (M)) Py (dw,)

<®IP’ ) (Way .. wyq))

/ FE@H (B, (W) Py (dw})
/ sup fém(w);{l} (37(11 (wl)) Py (dw,)
(VN)dfl meN vN
d
(RP) e, )
j=2

= [ (Byuh) ()
| E ) Prldan)

(é)pj) (d(ws, . ., wa))

IN

IN

/ sup

(V)1 peprot

i/ﬂawmﬁwm
VvV

= dp (P, Py, ),

where dOBL(nghPIBI) 1= SUDpepp ot | [y f(z) 8(1) (dz) — [y f(z') P, (da’)] is referred to
as bounded Lipschitz distance. Here, we used that for any n € N and Pj-almost every
wj, § = 2,...,d, the function fE@3{} lies in the set BLY' of all bounded, Lipschitz
continuous and (B°, B(R))-measurable functions by the same argumentation as for f='+{d
above. The fact that the latter bound converges to 0 then follows from assumption (b”)
and the implication (a)=(g) of Portmanteau’s theorem A.3 in [13].

For the summands Ss(n),...,Ss_1(n) one can argue just as for the first summand.
For any k € {2,...,d — 1}, Fubini’s theorem yields
Sk(n)

<.
Vk—1x(VN)d—

/ﬂmgwmk”wwmwwM% """

f (w!)En @)Lk 1} () (g(k (wk)) Py (dwy)

(®P®éWMMwwl“m """"

j=k+1

f(B(w,))gm(w);{l ~~~~~ kil};{k}(gn (Wk)) @k(dwk)

<[
Vk—lx(vN)d—k meN VN
k—
<® ®®IP> w{l ..... k— 1}))
)

= [ T (B ) B
y j=k+1
(k) =
/ F(E, (wi)) Pr(dwy,
VN

N
Vk—l X(vN)d—k fEBLcl)’l

141



_ /V £ (Bi(w))) Pr(d)

= &y (P&(f) Py)

with f NEm @Itk ) BL{’ >! for any n € N, ]P’ -almost every wi, j =1,...,k—1,
and ]P’J -almost every wj;, 7 = k+1,...,d, by the same argumentatlon as above. Now,
the bounded Lipschitz distance dOBL(IP’g#),IP’jBk) converges to 0 by assumption (b”) and
the implication (a)=-(g) of Portmanteau’s theorem (in form of Theorem A.3 in [13]),
which completes the proof of (3.17). O

3.3.3 Example: Skewness

The skewness measures the asymmetry of the probability distribution of a real-valued
random variable. For any distribution function F' of a random variable X with finite
third moment, the skewness is defined by

v(F) = e5(F)/(ca(F))*?

with ¢ (F) := E[(X — E[X])*]. Hence, in view of Example 3.2.7, the skewness can be
expressed in terms of V-statistics as

Vi (F, F, F)

URG) i

with hy : R2 — R and hs : R® — R as defined in (3.8). Let F), be an estimator for F.
Then V(ﬁn) is a natural estimator for V(F). In particular, the asymptotic behavior of
V(ﬁn) can easily be derived from the asymptotic behavior of F, by an application of
Theorem 3.3.1 in combination with the delta-method.

Corollary 3.3.6 Let (a,) be a sequence in (0,00) with a, — o0 as n — oo, and let
¢ be any weight function that fulfills f |z |2/ ( )dm < 00. Assume (F,F) € Fp, and
(F,F,F) € Fy,, and assume that (Fn,F ) and (Fn,Fn,F ) are w-wise for everyn € N
elements of ¥y, and Fy,, respectively, such that the following assumptions are fulfilled:

(a) Assumption 3.2.1 is fulfilled for both triples (hy, (F, F), (F,, F,)) and (hs, (F, F, F),
(£, Fr, F7)).

(b) The process an(ﬁn — F) is a (Dgy, B})-valued random variable on the probability
space (Q, F,P) for alln € N, and there exists a (D, B})-valued random variable
B on (', F', ') such that B(Y') C S for some separable S € Bg and

an(F, — F) ~° B in (Dg, B3, dg).
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Then
W(VF) V) ~ [ Bla) i, olde) i RE®), (.19

where pp, , .. s the measure generated by the function hasp(x) == JH(V%(F,RF),V@(F,F))-
[=3hsyp(2), =2 hogiy p(2)) and JH ) = [y~ —22y=5/2] is the Jacobian matriz
of the function H(x,y) = x/y*/?.

In particular, if B is a continuous Gaussian process with zero mean and covariance
function ~y, then the right-hand side of (3.19) is a centered normally distributed random
variable with variance [ [o 7(2,Y) thy s o (A2) finy , - (dy).

Proof The function H : R? — R defined by H(z,y) := z/y*? is continuously differ-
entiable with Jacobian JH(,,) = [y~3/? —22y~52]. In terms of this function H, the

convergence in distribution in (3.19) reads

~ o~ o~

a’”<H(Vh3(Fn7FN7Fn>th2(ﬁn7ﬁn>> - H(Vhs(F’ Fu F),Vh2(F, F)))

3f]R Mhsu}p(dx)
2fR Nh2{1}F(d‘r)

with i, » and fp, ., . as defined in (3.9) and in Example 3.2.6, respectively. In the

~  —JHw, (F.FF) V., (FF) (3.20)

th(Fn7Fn7F )

Vi (F, F, F)
an( VhQ(Fn,F) a [ ])M 2 [ B(z— ) Hhy 1y (d)

Vo (F, F)
Then (3.20) results from (3.21) by an application of the delta-method in form of Theorem
3.1 in [72].
For the proof of (3.21) we obtain by Theorem 3.3.1

. _P%mﬂmb““l * 1 e B Mwﬁﬂq,

VhQ(F7 F) ] 1 fR :uhz.{]} F(d.?f )
provided the assumptions of Theorem 3.3.1 are fulfilled. The measures pp, oy.p and

following, we will show that
3f]R Tr— /J’hS{l}F(dx)] (321>

th(ﬁna F\na F\n)
th (FTH Fn)

[hs sy 5 TesDectively, coincide for all j because of the symmetry of the corresponding
functions (see (3.9) and Example 3.2.6) so that the limit process of the latter convergence
is indeed the same limit process as asserted in (3.21).

We now prove that Theorem 3.3.1 is applicable. As shown in Example 3.2.7, the
assumptions of Lemma 3.2.3 are fulfilled. In Remark 3.3.2, we proved that under as-
sumption (b) conditions (c) and (d) of Theorem 3.3.1 follow from the assumption that
fRJ ies 1/o( :Uj)uhm”(d((xj)je])) < oo for all nonempty subsets J C {1,...,m} and

= 2,3. To show that the latter integral is finite under the given assumptions, we note
that P g r is |J| times continuously differentiable so that

alththF
<8((a:j)j€J)
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by (3.13). Analogously to the argumentation for the second limit in the proof of as-
sumption (d) within Example 3.2.7, the positive and negative part of the derivative
(%hm 7.7)((x;)jer) are piecewise composed of polynomials of degree at most m—1
in each x;, j € J, so that the claim follows from the assumption [ |z[™/¢(x) dz < oc.
It remains to show that the limit process is a centered normally distributed random
variable with variance [; [ Y(2,y) pn, 5 p (d)finy , - (dy), if B is a continuous centered
Gaussian process with covariance function 7 Since hg 3 p is continuously differentiable,
we have that [, B(x) pp, , . (dz) = [; B( 8xh2737}7‘)(3§') dx holds. For every a,b € R
with a < blet a =ty < t; < --+ < t, = b be a partition of the interval [a,b], and
set At := max;—o__n-1{tiv1 — t;}. Then f[a’b] B(x) ftn, 4 » (dr) can be approximated by
the Riemann sum BYY := S B(t ti) (Lhasr)(ti) - (tig1 — t;), where B is a Gaus-
sian process and, therefore, (B(ty),...,B(t,—1)) is multivariate normally distributed
for every tg,...,t,—1 € [a,b]. As a consequence the random variable BZ? is normally
distributed with zero mean and variance vy, := 3.7/ Z <<9x hogr)(ti) (Zhog F)(t;) -
(tig1—ti )(t]H t;) v(ti, t;) and the characteristic functlon of B%? is given by P g b( )=

—a?/2 ”At

e By means of the continuous mapping theorem and the dominated convergence

theorem (with 1 bemg the dominating function) we determine the characteristic function
a,b

of the integral [, B(x) ftn, , (dz) and obtain p(a) = E[limg_, o poo limas—o €°*Pat] =
hma—>—oo,b—>oo limas—o 903275(05) = v/
Je Jo V(@ Y) fihg 4 o (dT) finy , - (dy). This proves that the integral [, B(x) jup,, . (dz) is
indeed centered normally distributed with variance [ [o v(2,y) ftny F(dx) gy p(dy).

O

h = i I o=
, where v = Mg 0o, b—soo IHMNAL—0 Upp =

3.4 The case of non-stationary time series

Let X,1,..., X, be a non-stationary time series of the form (1.2) and recall that
F,, denotes the distribution function of X, ; . with i,, := |pn] for some fixed p €
(0,1). Moreover, let F,, be defined as in (1.3). For some given Borel measurable
function h : R — R it can be reasonable to use Vh( D - Fp,n) as an estimator for
Vh(Fpns - - Fpn). We note that Vh( PR Fp,n) can be seen as a weighted V-statistic
as it adrmts the representation

VilFpr o ) = > wnlin, - ia) WXy - Xoy) (3.22)
i1=1 ig=1
with wy(iy, ... ig) = ¢ r(Hgen) o r (M),

Applying Theorern 3.3.1 yields that under suitable assumptions (see Theorem 3.4.2
below)

V1, (Vi (Fpny -y Fpn) = Va(Fps ooy Fpn)) ~ Z (3.23)
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for some centered normally distributed random variable Z with variance

Var[Z] = /R /R Vo, Y) b, (d2) pine (dy),

where 7,(z,y) is the covariance function defined in (1.8), and py,, = Z;.lzl Iy py -
Recall that F), denotes the distribution function of ¢, := Zﬁ:o G;(p, €0)1(p, p,4.)(p) and
that the map hyp, : R7 — R is defined by hir,..ayF, (T1, ..., xa) = h(21, ..., zq) for J =
{1,....d} and by hyp,((25)je0) = [aoe B0 () e5) (e ge 107, ) (d((y5)je¢)) for
() # J C {1,...,d}, see Sectlon 3.1. We now collect the required assumptions for the
generalized von Mises decomposition of the left-hand side of (3.23), and we prove (3.23)
in Theorem 3.4.2 below.

Let ¢5 : R — [1,00) be the specific weight function, defined by ¢s(z) := (1+ |x|)® for
some s € R that we already know from Chapter 1. For brevity, we subsequently write
(Do By || - ) instead of (D, B2, | - ..

Lemma 3.4.1 Let the following assumptions be fulfilled.

(a) Let (Fp,...,Fy) € Fy and (Fyp, ..., Fon) € Fy, for every n € N, and let for all
n € N and for every subset J C {1,...,d}

Jaa | B, za)| () @ pi ) (d((@))jer (27)je0e)) < o0,

(b) For every nonempty subset J C {1,...,d} the function hyp, is right continuous
and (hyr,)"" is locally of bounded | K|-fold variation for every nonempty subset
K C J and every fized c; € RVl

(c) For every nonempty subset J C {1,...,d} the function (hJJT‘p)i‘HK is (B(RIKD),
B(R))-measurable for every nonempty subset K C J and every fived c; € RV,
and the integral

; LNK J\L)NK
[ )2 ) (520 @ O i ()00
K

exists for all subsets K,L C J with K # 0, c;j € RV, n € N and for every
finite interval I3 = (arnk,brak] X (awnonk, bonnnk] S RIEl P-a.s., where
(hJ’Fp)iJ and (hJF )75 are | K |-fold monotonically increasing and right contin-

uous functions satisfying (hy g, )" = (hJ,Fp)i‘”K — (hJ’Fp)c_J;K.

(d) For everyn € N and some X € [0,00), let (Fy,,,—F),) € Dy and (ﬁpm—Fp) € Dy,
P-a.s., and

hm{\xj\}je.J—wo Hjej ¢—A(xj) thFp((xj)j€J> =0,
By e o0 [renn s @2 (2x) Jor [jer #-2(y5) u(h Yehes 2 (d((yj)jer)) =0
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holds for all nonempty subsets L, J C {1,...,d} with L C J.

Then the representation
vh(ﬁp,n,... F, ) Viu(Ep, ..., F)
- 1y / T (o) = Fyay ) s, (0

(Z);éJC{l ..... d}
holds true P-a.s. for alln € N, and for alln € N

vh(F,,m,... ) Vi L EB)

(Fp
- 1 / T (01 = s v, ()
@;«éJC{l ,,,,, d}
Proof The claim follows from Lemma 3.2.3 and Remark 3.2.5 under the given as-

sumptions, if we can show that assumptions (a) and (c) hold with F,,, replaced by
E

p,n-

To show that (Fpn, o ,ﬁp,n) € Fj, (w-wise) for every n € N, we note that on the
one hand (Fpn, o Fpn) is a tuple of distribution functions for every w. On the other
hand, the integral in (3.1) for (Apn, . ,F\p,n) in place of (FW, ... F(4) exists because
it has the representation (3.22).

Analogously to representation (3.22), we have P-a.s.
)| (W2 @ i) ()i, (25)se0)

= ¥ ‘J‘HK( ’pn)

1<ij<n, jeJ jeJ
z1,... Je|
(K X)) )i (324

for all n € N and for every nonempty subset J C {1,...,d}, where ¥ is defined as in
(2.2) for all z,y € R?. Since the integral on the right-hand side of (3.24) exists for P-
almost every w, for all n € N and every nonempty subset J C {1,...,d} by assumption
(a), the integral on the left-hand side of (3.24) exists P-a.s. for all n € N and every
nonempty subset J C {1,...,d}.

In exactly the same way we can show that P-a.s for all subsets K, L C J with K # (),
c; € RVl n € N and for every finite interval I%* C RI¥I the integral

[ a2 @) (2 o gl (e )ennpen)
I3

has a similar representation to the right-hand side of (3.24), so that the existence of
the latter integral follows from assumption (c) for all subsets K,L C J with K # 0,
c; € RVl n € N and for every finite interval I%* C RI¥I P-as. O
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Theorem 3.4.2 Suppose that for some A € [0,00) the assumptions of Lemma 3.4.1
hold and [; [1;c; o-(2;5) ufmp (d((z5)jers)) < oo for all subsets O # J C {1,...,d}. If
additionally lim,,_,o nb, = 00, /1y ||Fpn — Fplly — 0 and \/nbn(ﬁp,n(-) — F,(+)) ~°

By, in (D, By ||+ [l(a) for some continuous centered Gaussian process with covariance
function ~,, then (3.23) is valid.

Proof Accordlng to Lemma 3.4.1, we have that V,,(F,p, ..., Fpn), Vi(EF,, ..., F,) and
Vi(F, S F7 ) (P-a.s.) exist for all n € N so that

=: S1(n)+ Ss(n) (3.25)

P-a.s. for all n € N. For the second summand we obtain by Lemma 3.4.1

|S2(n)|
= ’\/n_bn Z (—1)JI/JH(prn(xj—)—Fp(a:j—))MhJ,Fp(d((xj)jEJ))‘
P£JC{1,..., RS
< Vi 3 / H 1B = Fylloy 0-ai2)) (1, + b, ) (dl()1e0))
0#£JC{L,...,
= Z (nb)1 \JI/
P#£JC{1,...,d}

(VabEn = Bllo)” [ TLo-a(e0) (i, + 61, G310

which converges to 0 because vnby||Fp.n — F,lloy — 0 and the latter integral is finite
by assumption.

For the summand S;(n) we note that \/n_bn(ﬁpn() — F,(-)) ~° B, in the metric
space (D), By [|-llv) by our assumptions. By means of Theorem 3.3.1, the summand
S1(n) converges in distribution to the expression — > %, fR (@) Bngyy p, (dy), if we can
show that the assumptions of Theorem 3.3.1 hold true. In thls case, we could conclude
by Slutsky’s theorem that

Vb, (Va(Epns -y Fpn) = Va( pn,...,Fp,n))M—/RBp(x)thp(dx) (3.26)

with fip, = Z;l:l [thy;, 5 0 view of (3.25). We now verify that the assumptions of
Theorem 3.3.1 hold true. Since BE’)\) coincides with the o-algebra generated by the one-
dimensional coordinate projections 7, : D(yy = R, v — v(z) (recall Lemma 4.1 in [13]),
the (F, B,)-measurability of w — \/n_bn(ﬁp,n(w, ) — F,n(+)) is a direct consequence
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of the (F, B(R))-measurability of w Wx(\/n_l)n(ﬁpm(w, ) = F,.()). Along with our
assumptions, this implies conditions (a) and (b) of Theorem 3.3.1. Assumptions (c) and
(d) follow from the assumption that [o, [];c; ¢-a(7;) /ﬁmp (d((z;)jes)) is finite for all
nonempty subsets J C {1,...,d} in view of Remark 3.3.2.

It thus remains to show that the limit process is a normally distributed random
variable with zero mean and variance [ [, 7, (2, ) fhp, (d2)piny, (dy), where y,(z,y) is
the covariance function defined in (1.8). For every a,b € R with a < b the integral
f[ab ) fin, (da:) can be approximated by > 1" —By(t;)(hp, (tiv1) — hg, (t:)), where
a=ty < t1 < .-+ < t, = bis a partition of the 1nterval la,b]. Since B, is a Gaussian pro-
cess, the random variable (B,(to), ..., By(t,—1)) is multivariate normally distributed for
every to, ..., t, € [a,b]. Hence the sum Z"il — p( )(th( i+1)—hr,(t;)) is normally dis-
tributed Wlth zero mean and variance vy, 1= S Z] 0 (th( i+1) =N, () (hE, (tj41) —
he, () Y (ti ), where 7,(t;, t;) = Cov(B, ( ) Bp(tj)) and At := max;—o__n-1{tir1 —

.....

t;}. Note that v := lim, oo, poo liMat—o UAt fR fR Yoz, y) [ih, (dx) ,th (dy). The
claim now follows from the fact that the characteristic function of [, — ( ) K, (d)

equals p(a) = e /% o which can be shown by the same argumentation as in the proof
of Corollary 3.3.6. O

In view of Lemma 1.2.2, Lemma 1.2.6 and Theorem 1.2.4, Theorem 3.4.2 leads to
the following result.

Corollary 3.4.3 Suppose that the assumptions (A1)-(A9), (B2) and (B4) in Subsec-
tion 1.2.2 hold for some common \ € [0,00). If for the same X\ the assumptions of
Lemma 3.4.1 are fulfilled and [p; [];c, qb_A(mj)MEFp(d((a:j)jeJ)) < 0o for all subsets
0#JCA{L,...,d}, then (3.23) is valid.
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