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Abstract 

The glucocorticoid-induced leucine zipper (GILZ) is an immunomodulatory, ubiquitously 

expressed protein, with multiple roles in different pathophysiological processes. Aim of the 

present study was to evaluate the role of GILZ and glucocorticoid (GC) metabolism in two 

different settings: 

Statins, the most prescribed class of drugs for prevention of cardiovascular disease, exert 

beneficial lipid-lowering independent effects, as well as muscle-related adverse effects, by 

mechanisms not fully understood. The role of GILZ in these mechanisms was investigated. 

Statins were able to induce GILZ expression in skeletal muscle, endothelial cells, and 

macrophages. Moreover, using in vitro, ex vivo and in vivo approaches, we demonstrated that 

GILZ is an important mediator of statin-induced muscle damage. 

The second part of this study focused on aging, which is characterised by a chronic, low-grade 

inflammatory state —termed “inflammaging”— that contributes to age-related pathogenesis. 

The elucidation of the mechanisms that modulate this state is of interest to geroscience. 

Evaluation of the age-associated changes in the myeloid compartment of mice, focusing on 

glucocorticoid metabolism, showed reduced levels of circulating GCs that, together with 

perturbations in GC pre-receptor metabolism in aged macrophages, result in dysregulation of 

the anti-inflammatory networks in these innate immune cells and, thus, might promote the 

inflammaging phenotype.
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Zusammenfassung 

Der Glukokortikoid-induzierte Leucin Zipper (GILZ) stellt ein ubiquitär exprimiertes Protein 

dar und spielt eine Rolle in verschiedenen pathophysiologischen Prozessen. Ziel der 

vorliegenden Studie war es, die Beteiligung von GILZ und des Glukokortikoid (GC)-

Metabolismus in zwei Ansätzen zu untersuchen.  

In der Prävention kardiovaskulärer Erkrankungen stellen Statine die meistverordnete 

Substanzklasse dar. Neben ihrer Lipid-senkenden Wirkung zeichnen sie pleiotrope Effekte 

sowie muskelschädigende Nebenwirkungen aus. Zunächst wurde die Hypothese überprüft, dass 

GILZ für die Vermittlung dieser Prozesse eine Rolle spielt, die nicht in direktem 

Zusammenhang mit der Lipid-Senkung stehen. Statine führten zu einer Erhöhung der GILZ-

Expression in Muskelzellen, Endothelzellen und Makrophagen. Darüber hinaus konnte gezeigt 

werden, dass GILZ als wichtiger Mediator in der Statin-induzierten Muskelschädigung agiert. 

Der zweite Teil der Studie fokussierte auf Alterungsprozesse, die sich durch eine chronische, 

Entzündung auszeichnen. Die Untersuchung alterungsbedingter Änderungen im myeloiden 

Kompartiment von Mäusen zeigte im Hinblick auf deren GC Metabolismus reduzierte Spiegel 

zirkulierender GCs. Zusammen mit Störungen im GC Prä-Rezeptor Metabolismus, wie er in 

alten Mäusen zu finden ist, führt dies zu einer Dysregulation des anti-inflammatorischen 

Netzwerks dieser Immunzellen, welches zum entzündlichen Phänotyp des Alterns beitragen 

könnte.
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1. Introduction 
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1.1 Cardiovascular disease 

The term cardiovascular disease (CVD) comprises a group of disorders of the heart, brain 

vasculature, and blood vessels, such as ischaemic heart disease (or coronary artery disease), 

stroke, and hypertension (Mendis et al., 2011). CVD is the leading cause of mortality and 

disability worldwide, accounting for an estimated 31% of global deaths per year (World Health 

Organization, 2018).  

 

The main pathophysiological condition leading to CVD is atherosclerosis, a chronic 

inflammatory process that occurs in medium and large blood vessels (Mendis et al., 2011). The 

pathogenesis of atherosclerosis involves lipid deposition, activation of dysfunctional 

endothelium, and release of pro-inflammatory cytokines and chemoattractant molecules; 

subsequent leukocyte recruitment, activation and transmigration (primarily monocyte-derived 

macrophages that later form foam-cells, and T-cells); platelet aggregation; and smooth-muscle 

cell migration and proliferation as a result of cytokine and growth factor secretion (Tousoulis 

et al., 2014). Among the most important risk factors for atherosclerosis and CVD are advancing 

age and high atherogenic lipid burden, i.e. cholesterol and its lipoprotein carriers (Catapano et 

al., 2016; Grundy et al., 2018; Mendis et al., 2011). 

 

1.2 Statins 

Statins are the first line of treatment in the management of hyperlipidaemias and prevention of 

CVD (Catapano et al., 2016; Stone et al., 2014). Since their introduction in 1987, statin 

prescription has risen, as shown by several studies in different populations (Nolte et al., 2010; 

Salami et al., 2017; Vancheri et al., 2016). Thus, statins are positioned among the most 

prescribed drug classes worldwide, in a tendency that seems to be maintained. 

 

1.2.1 Pharmacological and pharmacokinetic aspects 

Statins are competitive inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 

reductase enzyme, the rate-limiting enzyme in the mevalonate biosynthetic pathway. As a 

consequence, they block the biosynthesis of cholesterol in the liver, enhancing clearance of 

circulating low density lipoprotein (LDL)-cholesterol (Sirtori, 2014). Inhibition of the 

mevalonate pathway by statins also impairs biosynthesis of its other products, such as 

isoprenoid metabolites, important for the post-translational modifications of several proteins, 

and ubiquinone (Figure 1.1 A). 

 

First discovered as fungal secondary metabolites (Endo, 2010), statins are either classified 

according to their origin in natural/semi-synthetic (lovastatin, simvastatin and pravastatin), and 

synthetic statins (atorvastatin, rosuvastatin, fluvastatin, pitavastatin, and cerivastatin); or 
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according to their lipophilicity. They are administered as the active hydroxy-acid, except for 

lovastatin and simvastatin, which are lactone prodrugs (Gazzerro et al., 2012; Sirtori, 2014). 

The chemical structure and lipophilic properties of statins are summarised in Figure 1.1 B. 

 

A 

 

 

B 

 

Figure 1.1. General aspects of statins. The mevalonate pathway, simplified schema (A). Statins inhibit HMG-CoA 

reductase, the rate limiting enzyme of the pathway. PP, pyrophosphate. The structure of the 8 therapeutically 

approved statins (B). The lipophilic properties and standard daily dose are specified. *Withdrawn from the market. 
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1.2.2 Pleiotropic effects of statins 

Extended research has shown that statins exert beneficial effects independent from their lipid-

lowering action. In the cardiovascular system, these so called “pleiotropic” effects include 

improvement of endothelial function, inhibition of vascular inflammation and thrombogenesis, 

and atherosclerotic plaque stabilisation (Almeida and Budoff, 2019). Furthermore, statins 

showed immunomodulatory and antioxidant actions, neuroprotective effects, and beneficial 

effects in lipid-independent diseases, such as rheumatoid arthritis, multiple sclerosis, bone loss, 

and cancer (Gazzerro et al., 2012; Margaritis et al., 2014; Oesterle et al., 2017). 

 

Several cellular and molecular mechanisms underlie statin pleiotropy, the majority of them 

attributed to inhibition of Ras, Rho and Rac small GTPase function, as a result of reduced 

isoprenylation (Huacuja Álvarez et al., 2006). Studies have shown that statins increase the 

expression of the atheroprotective transcription factor Krüppel-like factor 2 (KLF2) and 

improve nitric oxide (NO) activity in the vascular endothelium, inhibit nuclear factor (NF)-κB 

transcriptional activity in different cell types, inhibit cell proliferation, decrease reactive oxygen 

species (ROS) generation, and inhibit the major histocompatibility complex (MHC) II in T-

cells, among other effects (Gazzerro et al., 2012; Margaritis et al., 2014; Oesterle et al., 2017). 

 

1.2.3 Statin-associated muscle symptoms 

It is generally considered that the benefits of statin therapy largely outweigh the risks of adverse 

effects (Collins et al., 2016), of which the most relevant are newly diagnosed type 2 diabetes 

mellitus, hepatotoxicity, and statin-associated muscle symptoms (SAMS) (Newman et al., 

2019). SAMS are a class effect, dose-dependent and not correlated to the hypolipidemic effect 

of the statin (Kobayashi et al., 2008; Vaklavas et al., 2009). They constitute one of the principal 

causes of non-adherence to treatment, in fact, muscle toxicity was the reason for cerivastatin 

withdrawal from the market in 2001 (Taha et al., 2014). With a prevalence of 5–29% in clinical 

practice, SAMS can range from mild myalgia without elevation of creatine kinase (CK) to, in 

very rare cases, fatal rhabdomyolysis (Grundy et al., 2018; Stroes et al., 2015).  

The molecular mechanisms that lead to muscle impairment are still not fully understood. 

Several HMG-CoA-related and non-related mechanisms have been proposed (recently 

reviewed by du Souich et al., 2017): isoprenoid depletion (particularly of GGPP) cause 

apoptosis and proteolysis mediated by inhibition of the protein kinase Akt and the 

transcriptional coactivator peroxisome-proliferator-activated receptor coactivator (PGC)-1α; 

direct impairment of mitochondrial respiration, ROS production, and calcium homeostasis in 

the myocyte also trigger apoptosis. Moreover, reduced resting chloride channel conductance 

and decreased lactate efflux could cause muscle fatigue. In addition to their myotoxicity, statins 

impair muscle regeneration via GGPP depletion, and impaired insulin-like growth factor-1 
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(IGF-1) signalling (Baba et al., 2008; Ogura et al., 2007; Trapani et al., 2012). Further research 

in the field can improve the understanding of these mechanisms and allow for identification of 

risks and biomarkers associated with SAMS (Muntean et al., 2017). 

 

1.3 The glucocorticoid-induced leucine zipper (GILZ) 

GILZ was first identified as a dexamethasone-inducible gene (Tsc22d3) encoding for a 137-

amino acid (aa) protein in murine thymocytes (D’Adamio et al., 1997). Later, other splice 

variants of murine GILZ were described, encoding for proteins of 201 aa, 43 aa, 80 aa 

(Soundararajan et al., 2007), and 234 aa (Bruscoli et al., 2010). Human GILZ is a 134-aa protein 

with 97% similarity in the coding region with its murine orthologue (Cannarile et al., 2001). 

Different transcript variants coding for other isoforms are also annotated for the GILZ gene and 

have been observed experimentally (NCBI “Gene”; Köberle et al., 2012).  

 

GILZ consists of three domains: The N-terminal domain (residues 1–75), a central leucine 

zipper (LZ) domain (residues 76–97), and the C-terminal domain, which includes a 

proline/glutamate-rich (PER) region (residues 98–137). The N- and C-terminal regions are 

responsible for the interaction of GILZ with its targets, while the LZ-domain mediates the 

protein homodimerization (Figure 1.2 Ayroldi et al., 2014; Fan and Morand, 2012a). 

 

 
Figure 1.2. GILZ structure and functional domains. Modified from (Ayroldi et al., 2014). 
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GILZ is ubiquitously expressed in human and mouse tissues (Cannarile et al., 2001; 

Soundararajan et al., 2007). Besides its immunomodulatory function, it plays multiple roles in 

other glucocorticoid (GC)-mediated as well as non-GC-mediated cellular processes. The anti-

inflammatory action of GILZ is mainly exerted via inhibition of NF-кB transcriptional activity, 

as well as interaction with activator protein (AP)-1. Anti-proliferative, anti-oncogenic, pro-

apoptotic and anti-apoptotic functions of GILZ in different cell types have also been reported 

(reviewed by Ayroldi et al., 2014). 

 

1.4 Aging and age-related diseases 

Aging, defined as the functional decline that occurs during the lifespan of an organism, 

constitutes a risk factor for several human pathologies (López-Otín et al., 2013). For instance, 

the prevalence and mortality associated with CVD is expected to grow exponentially, as the 

world population continues to age (Costantino et al., 2016). The recent field of geroscience 

intends to understand the mechanisms driving aging and age-related chronic disease, how they 

interact and overlap, in order to provide therapeutic opportunities to extend human lifespan by 

targeting aging itself (Kennedy et al., 2014). In this context, seven pillars of aging have been 

identified (Figure 1.3). These are not independent factors, but rather constitute an integrated 

network that, interestingly, converge on inflammation (Franceschi et al., 2018; Kennedy et al., 

2014). Indeed, longitudinal studies have shown a correlation between inflammation and 

longevity, capability, and cognition in the aged population (Arai et al., 2015). 

 

 
 

Figure 1.3. The seven pillars of aging. After Kennedy et al., 2014. 
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1.4.1 Inflammaging 

The changes in the immune system associated with aging, globally known as 

immunosenescence, affect both innate and adaptive immunity. Rather than solely detrimental, 

such changes represent an adaptive/remodelling response that results in dysregulated 

homeostasis not only of immunity, but of other systems that influence and are influenced by 

the immune system, like the nervous and endocrine systems (Fulop et al., 2018).  

 

The chronic, low-grade systemic inflammatory state observed with advancing age, termed 

“Inflammaging” (Franceschi et al., 2000), involves functional alteration of immune cells as a 

consequence of different mechanisms, including cellular senescence, oxidative stress, 

mitochondrial dysfunction, defective autophagy and mitophagy, inflammasome activation, and 

dysbiosis (Franceschi et al., 2018). Population studies have shown that aged individuals have 

elevated circulating levels of pro-inflammatory mediators/markers, such as tumour necrosis 

factor α (TNF-α), interleukin (IL)-6 and C-reactive protein (CRP), that correlate with increased 

risk of morbidity and mortality (Bandaranayake and Shaw, 2016; Minciullo et al., 2016). The 

global pro-inflammatory state, however, is not the only determinant of successful/unsuccessful 

aging, as a compensatory, anti-inflammatory response, is observed in parallel to inflammaging, 

particularly in very long-lived individuals (centenarians). The mediators associated with anti-

inflammaging include transforming growth factor (TGF)-β, IL-10, dehydroepiandrosterone 

(DHEA), and cortisol (Baylis et al., 2013; Minciullo et al., 2016). It is considered that, 

ultimately, the ability of the anti-inflammatory network to cope with and modulate chronic 

inflammation is determinant to either attain healthy aging and longevity, or for the onset of 

chronic inflammatory diseases. 

 

1.5 Glucocorticoid function and metabolism 

1.5.1 Regulation of glucocorticoid response and function 

Endogenous GCs are master regulators of several physiological functions, including 

metabolism, development, cardiovascular function, response to stress, and immune function 

(Kharwanlang and Sharma, 2017). The synthesis of GCs is regulated in a circadian manner, and 

in response to stressors (including pro-inflammatory cytokines), by the hypothalamic-pituitary-

adrenal (HPA) axis, a component of the neuroendocrine system (Gupta and Morley, 2014). 

Activation of the HPA axis starts with release of corticotropin-releasing hormone (CRH) and 

arginine vasopressin (AVP) from the hypothalamus, which stimulate the secretion of 

adrenocorticotropic hormone (ACTH) from the anterior pituitary gland. ACTH enters the 

circulation and stimulates synthesis of GCs through steroidogenesis in the adrenal cortex. 

Secreted GCs, in turn, cause a decrease in the release of CRH and ACTH, in a negative feedback 

loop (Figure 1.4 A). GCs circulate bound in a 95% to corticosteroid-binding globulin (CBG). 
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Free GCs can diffuse through cell membranes and exert their action by binding to the widely 

expressed glucocorticoid receptor (GR) through genomic mechanisms (transactivation, 

transrepression, and composite glucocorticoid response element (GRE) binding), or non-

genomic effects (Cain and Cidlowski, 2017). 

 

While the HPA axis controls systemic GC release, the bioavailability and activity of GCs is 

controlled at the intracellular, pre-receptor level, by two enzymes: 11β-hydroxysteroid 

dehydrogenase (11β-HSD) 1 and 2, that catalyse the interconversion of active cortisol and 

inactive cortisone (Chapman et al., 2013). 11β-HSD1 functions mainly as a reductase, 

catalysing the NADPH-dependent reduction of cortisone to cortisol in the endoplasmic 

reticulum, although it can also act as an NADP-dependent dehydrogenase, inactivating cortisol. 

11β-HSD2, on the contrary, functions solely as a NAD-dependent reductase (Figure 1.4 B). 

 

 
 

Figure 1.4. Regulation of cortisol levels. The HPA axis, see text for details (A). Intracellular levels of cortisol are 

controlled by the interconversion of cortisone and cortisol by 11β-HSD isozymes (B). In the endoplasmic reticulum 

(ER), 11β-HSD1 reduces cortisone to cortisol using the NADPH generated by hexose 6-phosphate dehydrogenase 

(H6PDH) as cofactor. H6PDH catalyses the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconate 

(6GP). 

1.5.2 Glucocorticoids in inflammation 

Although GCs are well established anti-inflammatory agents in pharmacological therapy, they 

cannot be defined as strictly immunosuppressive in normal physiology. The anti-inflammatory 

action of GCs occurs at all stages of inflammation. During the alarm phase, GCs attenuate the 

secretion of pro-inflammatory mediators by inhibiting NF-кB and AP-1 activity, decrease 

histamine release by mast cells, and reduce vascular permeability. In the mobilization phase, 
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they attenuate leukocyte extravasation by reducing the secretion of chemokines and adhesion 

molecules. Finally, during the resolution phase, they promote an anti-inflammatory, phagocytic 

phenotype in macrophages, to allow for tissue clearance (Cain and Cidlowski, 2017). On the 

other hand, GCs can also increase the expression of genes associated with the detection of insult 

and initiation of the inflammatory response, i.e. pattern recognition receptors (PRRs), 

chemokine/cytokine receptors, and complement factors, in what is thought to be a mechanism 

to sensitise immune cells so that they respond rapidly and effectively to insult. Once the 

inflammatory response is triggered, elevated concentrations of GCs (in response to stress) 

restrain the extent of inflammation, suppress the adaptive immune response, and help restore 

homeostasis (Busillo and Cidlowski, 2013; Cain and Cidlowski, 2017). This biphasic 

immunostimulant/immunosuppressive action highlights the main role of endogenous GCs in 

regulation of immunity, and how the dysregulation of GC secretion and function (e.g. during 

chronic stress associated with aging) might directly impair immune function. 
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1.6 Aim of the present work 

Statins are the cornerstone of CVD prevention and treatment. As CVD remains the leading 

cause of morbidity and mortality worldwide, and a growing portion of the population already 

is or will be under statin treatment, the study of the molecular mechanisms that mediate their 

beneficial and deleterious effects remains of importance. In the first part of this work, we aimed 

to elucidate such mechanisms, focusing on the role of GILZ. First, its potential role in the onset 

of SAMS, the most common adverse effect associated with statin use, was investigated. 

Secondly, its potential role as an anti-inflammatory mediator of the pleiotropic effects of statins 

in vascular inflammation was evaluated. 

 

The aging population is at high risk of suffering from cardiovascular events, as well as other 

age-related diseases. Chronic inflammation is one of the pillars that underlie the functional 

decline associated with age, thus, identification of the pathways that control/fuel the so called 

“inflammaging” process is relevant for the design of preventive and therapeutic strategies for 

age-related diseases. Aim of the second part of this work was to evaluate the age-associated 

changes in gene expression and glucocorticoid metabolism across tissues, as well as in the 

myeloid compartment of mice, to improve the current understanding of the molecular 

mechanisms that modulate inflammaging.
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2. Materials and Methods 

  



Materials and Methods 

 

14 

 

2.1 Chemicals and reagents 

Cell-culture grade dimethyl sulfoxide (DMSO), atorvastatin, simvastatin, cerivastatin, 

pravastatin, and mevalonic acid lithium salt were obtained from Sigma-Aldrich (St Louis, MO, 

USA). Simvastatin sodium salt, geranylgeranyl pyrophosphate (GGPP), and farnesyl 

pyrophosphate (FPP) were obtained from Cayman Chemicals (Ann Arbor, MI, USA). 20 mM 

statin stock solutions were prepared in DMSO and stored at -20 °C. Unless stated otherwise, 

experiments performed with simvastatin refer to the active acid form of the drug. 100 mM stock 

solution from mevalonic acid was prepared in sterile water and stored at -20 °C. Foetal bovine 

serum (FBS), horse serum, trypsin-EDTA, accutase, high glucose DMEM, and RPMI 1640 

were from Sigma-Aldrich. Penicillin/streptomycin and glutamine were from PAA (Pasching, 

Austria). MCDB 131 medium was from Thermo Fisher Scientific (Waltham, MA, USA). 

Endothelial Cell Growth Medium (ECGM) and endothelial cell growth medium 

SupplementMix were obtained from PromoCell (Heidelberg, Germany). DNA oligos and 

Sanger sequencing services were provided by Eurofins Genomics (Ebersberg, Germany). All 

other chemicals were obtained either from Sigma Aldrich or Carl Roth (Karlsruhe, Germany), 

unless stated otherwise. 

 

2.1.1 General Buffers 

PBS: 2.7 mM KCl, 1.8 mM KH2PO4, 137 mM NaCl and 10 mM Na2HPO4 in distilled water. 

The pH was adjusted to 7.4 and the solution was adjusted to a final volume of 1 l. PBST was 

prepared by adding 0.1% tween-20 to PBS. 

 

TBS: 20 mM Tris and 137 mM NaCl in distilled water. The pH was adjusted to 7.6 and the 

solution was adjusted to a final volume of 1 l. TBST was prepared by adding 0.1% tween-20 to 

TBS. 

 

TBE: 90 mM Tris, 90 mM H3BO3, 2 mM EDTA disodium in distilled water, in a final volume 

of 1 l. 

 

Sodium phosphate buffer, 1 mM, pH 5.6: 65.05 mg NaH2PO4∙H2O, 4.05 mg Na2HPO4 in 

distilled water. The pH was adjusted to 5.6 and the solution was adjusted to a final volume of 

500 ml. 

 

Electrophoresis buffer: 25 mM Tris, 192 mM glycine, 0.1% SDS in distilled water, to a final 

volume of 1 l. 

 

Blotting buffer: 25 mM Tris, 192 mM glycine, and 5% methanol in distilled water, to a final 

volume of 1 l.  
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2.2 Cell culture 

2.2.1 Cell lines 

C2C12 cells (ECACC 91031101) were maintained in high glucose DMEM (growth medium, 

GM) at a maximum confluency of 65%, HEK-293T cells (ATCC® CRL-3216) were 

maintained in high glucose DMEM, RAW 264.7 cells (ATCC® TIB-71) were maintained in 

RPMI 1640, and HMEC-1 cells (ATCC® CRL-3243) in MCDB 131 medium. All cell culture 

media were supplemented with 10% FBS, penicillin/streptomycin (100 U / 100 µg/ml), and 

2.0 mM glutamine, unless stated otherwise. For inducing differentiation of C2C12 into 

myotubes, confluent cell layers were cultured in high glucose DMEM supplemented with 2% 

horse serum, penicillin/streptomycin and glutamine (differentiation medium, DM), with 

medium change every other day. All cells were cultured at 37 °C in a humidified atmosphere 

with 5% CO2. Cells were subcultured according to the ATCC recommendations. Briefly, cells 

were washed with PBS and detached with trypsin-EDTA. Digestion was stopped with culture 

medium, the cell suspension was centrifuged for 5 minutes at 200 x g and resuspended in 

medium. The resulting suspension was used for seeding cells for experiments, and appropriate 

aliquots were used for passaging.  

 

2.2.2 Cell freezing / thawing 

For freezing, cells were washed and detached as for splitting. The cell suspension was 

centrifuged for 5 minutes at 200 x g and cells were resuspended in freezing medium (FBS with 

10% DMSO). Cells were aliquoted into cryovials, frozen at -80 °C for 2 days, and transferred 

to liquid nitrogen for long-term storage.  

For thawing, frozen cells were warmed up in a 37 °C water bath, and quickly transferred into 

pre-warmed medium. The resulting suspension was centrifuged for 10 minutes at 200 x g, the 

cell pellet was resuspended in culture medium and cells were cultured as described above. 

 

2.2.3 Primary cells 

Isolation of primary cells in the laboratory was performed with technical assistance from Theo 

Ranßweiler, Dr. Jessica Hoppstädter, and Anna Dembek. 

 

Human umbilical endothelial vein cells (HUVECs): HUVECs were isolated from umbilical 

cords as described previously (Weber et al., 2003). In brief, the umbilical cord vein was digested 

with a 0.01% collagenase A solution (#10103586001, Roche, Basel, Switzerland) for 45 

minutes. Cells were suspended in ECGM supplemented with endothelial cell growth medium 

SupplementMix, 10% FBS, penicillin/streptomycin (100 U / 100 µg/ml), and kanamycin 

(50 µg/ml), and plated in a 25 cm2 cell culture flask. On the next day, cells were washed twice 
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with PBS, the medium was renewed, and cells were cultured as described above. Cells were 

used for experiments in passages 2–3. 

 

Murine bone marrow-derived macrophages (BMMs): BMMs were isolated from male 

C57BL/6J wildtype (WT) or GILZ knockout (KO) mice, following a previously published 

method (Hoppstädter et al., 2015). In brief, femurs and tibias were flushed with RPMI 1640 

medium supplemented with penicillin/streptomycin. After centrifugation for 10 minutes at 

200 x g, the cell pellet was resuspended in hypotonic buffer (155 mM NH4Cl, 10 mM KHCO3 

and 0.1 mM EDTA disodium in distilled water, to a final volume of 1 l) for erythrocyte lysis, 

during 3 minutes in a 37 °C water bad. Cells were centrifuged and resuspended in RPMI 1640 

medium supplemented with 10% FBS (PAN Biotech, Aidenbach, Germany), 

penicillin/streptomycin, glutamine, and 50 ng/ml M-CSF (#99906, Biomol, Hamburg, 

Germany), plated in a 75 cm2 cell culture flask, and allowed to adhere overnight. Non-adherent 

cells were then transferred into a 175 cm2 cell culture flask and cultured for another 5 days 

before use in experiments. 

 

Murine peripheral blood leukocytes (PBL): whole blood from young and aged C57BL/6 

mice was collected in PBS-EDTA (5 mM EDTA in PBS) containing tubes, and centrifuged for 

20 minutes at 500 x g and 4 °C. The cell pellet was resuspended in 1 ml erythrocyte lysis buffer 

and incubated for 15 minutes on ice. After 5 minutes of centrifugation at 500 x g and 4 °C, the 

supernatant was discarded and the PBL pellet was frozen at -80 °C.  

 

Murine peritoneal macrophages (PMs): PMs were isolated from young and aged C57BL/6J 

mice by washing the peritoneal cavity with cold PBS-EDTA. The fluid was collected and 

centrifuged for 10 minutes at 350 x g and 4 °C. Cells were resuspended in RPMI-1640 medium 

supplemented with 10% FBS (PAN Biotech), penicillin/streptomycin, and glutamine, seeded 

in a 35 mm cell culture dish, and allowed to adhere for 2 hours. After this time, non-adherent 

cells were removed by washing with PBS and PMs were detached with accutase. The cell 

suspension was centrifuged, and the pellets were frozen at -80 °C. When used for treatment, 

cells were resuspended and plated in RPMI-1640 medium without FBS and, after removing the 

non-adherent cells at the end of 1 hour, treated as specified below. 

 

Flexor digitorum brevis (FDB) muscle fibres: FDB fibres were isolated from WT or GILZ 

KO C57BL/6J mice by Dr. Jessica Hoppstädter in the laboratory of Professor Carlo Riccardi 

(Department of Medicine, University of Perugia), following a protocol adapted from the 

literature (Keire et al., 2013; Park et al., 2014; Weisleder et al., 2012). The FDB muscles were 

dissected under a stereo microscope and digested in a 0.2% collagenase A solution in DMEM 

for 60 minutes. Then, the myofibres were carefully separated under a stereo dissecting 

microscope, dispersed in DMEM containing 10% horse serum by drawing through a series of 
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pipette tips with gradually decreasing diameter, and purified by sedimentation steps. Pure fibres 

were plated in laminin (#L2020, Sigma Aldrich)-coated cell culture dishes, and cultured in 

DMEM supplemented with 20% serum replacement 2 (#S9388, Sigma Aldrich), 1% horse 

serum, penicillin/streptomycin, and glutamine. 

 

Murine primary myoblasts: Primary myoblasts were isolated from hindlimbs of male 3-day-

old WT or GILZ KO C57BL/6J mice by Dr. Jessica Hoppstädter in the laboratory of Professor 

Carlo Riccardi (Department of Medicine, University of Perugia). The muscle was dissected and 

shredded, washed in PBS and digested with trypsin-EDTA for 60 minutes. After filtering 

through a 70 µm cell strainer, the cell suspension was diluted in DMEM supplemented with 

10% FBS and centrifuged for 20 minutes at 200 x g and 4 ºC. The resuspended cells were pre-

plated for 1 hour to allow fibroblast adhesion. Non-adherent cells were collected, centrifuged 

for 10 minutes at 200 x g and 4 ºC, resuspended in F-10-based primary myoblast growth 

medium (Ham’s F-10 nutrient mixture, #N6013, Sigma-Aldrich, supplemented with 20% FBS, 

penicillin/streptomycin, and glutamine), and plated onto collagen I (#C3867, Sigma-Aldrich)-

coated cell culture dishes. Further enrichment of the myoblasts was achieved by dislodging and 

pre-plating the cells onto collagen-coated dishes every fourth day for 1-2 weeks. Afterwards, 

myoblasts were cultured in growth medium (40% DMEM, 40% Ham’s F-10 nutrient mixture, 

20% FBS), supplemented with penicillin/streptomycin and glutamine. 

 

2.3 Bacterial culture 

The following E. coli strains were used as host organisms for plasmid amplification: 

 

TOP10 (Invitrogen, Carlsbad, CA, USA). Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) 

φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) 

endA1 λ- 

 

GT116 (Invivogen, San Diego, CA, USA). Genotype: F¯ mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacX74 recA1 endA1 Δdcm ΔsbcC-sbcD. 

 

Plasmids obtained from Addgene (Cambridge, MA, USA) were received and cultured in 

DH5α strain. Genotype: F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 

(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ-. 

 

Liquid cultures of bacteria were prepared in lysogeny broth medium (LB, 10% tryptone, 5% 

yeast extract, 5% NaCl, in water, pH 7.5), with or without antibiotic selection marker 

(ampicillin 100 µg/ml, Sigma-Aldrich), and cultured at 37 °C in an incubator shaker. Agar 

plates were prepared by adding 30% of agar to the culture medium. 
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2.3.1 Generation of competent E. Coli 

Competent E. coli were generated using the calcium chloride method. Briefly, 5 ml of an 

overnight culture were diluted to 100 ml with LB and allowed to grow to an OD600 = 0.4. The 

culture was then placed on ice for 30 min, centrifuged at 2,000 x g and 4 °C, and resuspended 

in 10 ml ice cold CaCl2 solution (75 mM CaCl2, 15% glycerol, in water). After 30 minutes of 

incubation on ice, cells were centrifuged at 2,000 x g and 4°C, resuspended in 2.5 ml CaCl2, 

aliquoted, and stored at -80 °C. 

 

2.3.2 Plasmid isolation 

Plasmids were isolated from overnight liquid cultures using either the High Pure Plasmid 

Isolation Kit (#11754777001, Roche), or the QIAprep Spin Miniprep Kit (#27106 Qiagen, 

Hilden, Germany), following the manufacturer’s instructions. 

 

2.4 Mice  

Mice were housed in a 12/12 hours light/dark circle with food and water ad libitum. GILZ KO 

mice were generated as previously described (Bruscoli et al., 2012; Hoppstädter et al., 2015). 

For aging studies, young (10 weeks) or aged (80–100 weeks) C57BL/6 mice were either non-

treated or treated with one intraperitoneal injection of 5 mg/kg LPS (#tlrl-smlps, InvivoGen, 

San Diego, CA, USA) or vehicle (DPBS) for 4 hours before sacrifice (approval number from 

animal welfare committee GB 3-2.4.2.2-06/2016). Tissues were removed and stored at -80 °C 

for RT-qPCR analysis. Serum, BMMs, PBLs, and PMs were also collected for analysis  

 

2.5 RNA isolation and reverse transcription 

Total RNA from cultured cells was isolated using the High Pure RNA Isolation Kit 

(#11828665001, Roche), following the manufacturer’s instructions. The RNA concentration 

was measured using a NanoDrop™ Lite spectrophotometer (Thermo Fisher Scientific). 

Samples with an A260/A280 ratio higher than 1.8 were used for further analysis. 

 

Total RNA from murine tissue was isolated using the QIAzol lysis reagent (#79306, Qiagen) 

following the manufacturer’s instructions. Residual genomic (g) DNA contamination was 

removed using the DNA-free™ DNA Removal Kit (#AM1906, Thermo Fisher Scientific). To 

verify the absence of gDNA, a SINE-PCR was performed using the GenScript Taq DNA 

polymerase (#E00007, GenScript Inc., Piscataway, NJ, USA). The primer sequences were: 

forward 5’-CTTCTGGAGTGTTTGAAGAC-3’, reverse 5’-CTGGAACTCACTCTGAAG 

AC-3’. The reaction was carried out in a T100 thermal cycler (Bio-Rad Laboratories, Hercules, 

CA, USA) using the following program: 
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Denaturation  5 min 94 °C  

Denaturation  1 min 94 °C  

 Annealing  1 min 56 °C  30 cycles  

Elongation  1 min 72 °C  

Final elongation  10 min 72 °C  

 

RNA was considered free of gDNA contamination when no product was detected by agarose 

gel electrophoresis. A 2% agarose gel containing 0.04% ethidium bromide was used for 

detection. Upon addition of a suitable volume of 10 x loading buffer (40 mM EDTA disodium, 

0.05% bromophenol blue, 0.05% xylene cyanol, 70% glycerol, in water ad 50 ml), DNA was 

loaded onto a gel and separated in TBE at 100 V. To determine the DNA fragment sizes, a 

50 bp ladder (#SM0372, Thermo Fisher Scientific) was used. The DNA bands were detected 

using a UV transilluminator and the software ArgusX1 (Biostep, Stollberg, Germany). 

 

RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription Kit 

(#4368813, Thermo Fisher Scientific), in the presence of RNase inhibitor (RNaseOUT™, 

#10777019, Thermo Fisher Scientific), following the manufacturer’s instructions. 

 

2.6 Quantitative Polymerase Chain Reaction (qPCR) 

qPCR was performed on cDNA samples using the 5xHotFirePol EvaGreen qPCR Mix (no 

ROX, #08-25-00020, Solis BioDyne, Tartu, Estonia) in a 20 µl format. The primer sequences 

and annealing temperatures for each transcript are detailed in table 2.1. The reaction was 

conducted in a CFX96 touch™ Real-Time PCR detection system running the CFX Manager 

2.1 software (Bio-Rad Laboratories), using the following program: 

 

Denaturation 15 min 95 °C 

Denaturation 0:15 min 94 °C 

 Annealing 0:20 min 
40 cycles 

Elongation 0:20 min 72 °C 

Plate read  

Melt curve 65 °C – 95 °C 

 

Data were analysed either by absolute quantification, using a standard curve of the PCR product 

cloned into the pGEM-T Easy vector (Promega, Madison, WI, USA), or with the comparative 

ΔΔCt method. Housekeeping genes were chosen based on the literature, or after evaluating the 

expression stability of at least three candidate genes under the experimental conditions, using 

the geNorm, NormFinder, and BestKeeper Software tools. Absolute amounts of transcript were 

normalised to the corresponding housekeeping genes. 
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Table 2.1. Primer sequences and annealing conditions for the transcripts evaluated in this study 

Gene 

NCBI 

Accession 

number 

Forward primer 

sequence 5´-3´ 

Reverse primer sequence 

5´-3´ 

µl primer 

[10 µM] / 

reaction 

Annealing 

T (°C) 

Human 

ACTB NM_001101.3 
TGCGTGACATTAAGG

AGAAG 

GTCAGGCAGCTCGTA

GCTCT 
0.5 60 

KLF2 NM_016270.2 
AGACCACGATCCTCCT

TGAC 

AAGGCATCACAAGCC

TCGAT 
0.5 60 

NOS3 

(eNOS) 
NM_00603.4 

CCTCACCGCTACAACA

TCCT 

ACGTTGATTTCCACTG

CTGC 
0.5 60 

TSC22D3 

(GILZ) 
NM_004089.3 

TCCTGTCTGAGCCCTG

AAGAG 

AGCCACTTACACCGCA

GAAC 
0.5 60 

Mouse 

Anxa1 NM_010730.2 
TGGAAAGCCCTTGGAT

GAAGT 

AAGTCCCTTCATGGCA

CCAC 
0.5 60 

Cdkn1a NM_007669.5 
GACCAGCCTGACAGA

TTTCTA 

TGGGCACTTCAGGGTT

TTCT 
0.5 60 

Cdkn2a NM_009877.2 
CGGGGACATCAAGAC

ATCGT 

GCCGGATTTAGCTCTG

CTCT 
0.5 60 

Cebpa 
NM_0012875

23.1 

TTCGGGTCGCTGGATC

TCTA 

TCAAGGAGAAACCAC

CACGG 
0.5 60 

Cebpb 
NM_0012877

39.1 

GGAGACGCAGCACAA

GGT 

AGCTGCTTGAACAAG

TTCCG 
0.5 60 

Csnk2a2 NM_009974.3 
GTAAAGGACCCTGTGT

CAAAGA 

GTCAGGATCTGGTAG

AGTTGCT 
0.8 60 

GR-β HM236293.1 
AAAGAGCTAGGAAAA

GCCATTGTC 

CTGTCTTTGGGCTTTT

GAGATAGG 
0.5 61 

H19 NR_130973.1 
CAGAGGTGGATGTGC

CTGCC 

CGGACCATGTCATGTC

TTTCTGTC 
0.5 60 

H6pd NM_173371.4 
ATAGATGCGGAAGGT

CGGGC 

ACCAGCGTGAGGATC

TCAGT 
0.5 60 

Hdac3 NM_010411.2 
GCATTCGAGGACATG

GGGAA 

TTTCGGACAGTGTAGC

CACC 
0.5 60 

Hsd11b1 NM_008288.2 
GGAACCCAGGAAGGA

AGATCA 

CAGGCAGGACTGTTCT

AAGAC 
0.5 60 

Hsd11b2 NM_008289.2 
AACCTCTGGGAGAAA

CGCAAG 

GGCATCTACAACTGG

GCTAAGG 
0.5 60 

Il1b NM_008361.3 
CCAAAAGATGAAGGG

CTGCTT 

GGAAGGTCCACGGGA

AAGAC 
0.5 60 

Il6 NM_031168.2 
AAGAAATGATGGATG

CTACCAAACTG 

GTACTCCAGAAGACC

AGAGGAAATT 
0.4 60 

Klf2 NM_008452.2 
CCTTGCACATGAAGCG

ACAC 

ACTTGTCCGGCTCTGT

CCTA 
0.5 60 

Mkp1 NM_013642.3 
CTCCAAGGAGGATAT

GAAGCG 

ACTAGTACTCAGGGG

GAGGC 
0.5 60 

Mmp9 NM_013599.3 
GCCGACTTTTGTGGTC

TTCC 

TACAAGTATGCCTCTG

CCAGC 
0.5 60 

Nr3c1 NM_008173.3 
AAAGAGCTAGGAAAA

GCCATTGTC 

TCAGCTAACATCTCTG

GGAATTCA 
0.5 61 
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Ppia NM_008907.1 
GGCCGATGACGAGCC

C 

TGTCTTTGGAACTTTG

TCTGC 
0.5 58 

Rn18s NR_003278.3 
AGGTCTGTGATGCCCT

TAGA 

GAATGGGGTTCAACG

GGTTA 
0.5 61 

Sgk1 
NM_0011618

45.2 

GAGGCCATGTGTCAAT

CATGC 

TTCTTTCACTTCACAC

CCAGGTT 
0.5 60 

Sirt1 NM_019812.3 
TGGAGCAGGTTGCAG

GAATC 

GGCACCGAGGAACTA

CCTGAT 
0.5 60 

Tnf NM_013693.2 
CCATTCCTGAGTTCTG

CAAAGG 

AGGTAGGAAGGCCTG

AGATCTTATC 
0.5 60 

Tsc22d3 NM_010286.4 
GGGATGTGGTTTCCGT

TAAACTGGA 

TGCTCAATCTTGTTGT

CTAGGGCCA 
0.4 61 

Tsc22d3 NM_010286.4 
GCTGCTTGAGAAGAA

CTCCCA 

GAACTTTTCCAGTTGC

TCGGG 
0.5 60 

Zebrafish 

actb2 NM_181601.4 
AAATTGCCGCACTGGT

T 

ACGATGGATGGGAAG

ACA 
0.5 60 

elf1 NM_131159.2 
CTCAAATGGCATGGAT

GTTGCCCA 

GGTCTTGGTTTGCGCA

CTTTGGTT 
0.5 60 

fbxo32 NM_200917.1 
GGAGCACCAAAGAGC

GTCAT 

AGTTGGGACTTGGCG

ATGAG 
0.5 60 

hatn10 NA 
TGAAGACAGCAGAAG

TCAATG 

CAGTAAACATGTCAG

GCTAAATAA 
0.5 60 

rn18s KY486501.1 
CCGCTAGAGGTGAAA

TTCTTG 

CAGCTTTGCAACCATA

CTCC 
0.5 60 

tsc22d3 NM_200569.2 
AACAACCAGCTGGAG

CGCGAA 

GCAGAGCCCGTGCTG

CTGTATT 
0.5 60 

 

2.7 Western blot 

Protein lysates were prepared either in SB lysis buffer (50 mM Tris-HCl, 1% SDS, 10% 

glycerol, 5% β-mercaptoethanol, 0.004% bromophenol blue, in water) or RIPA buffer (50 mM 

Tris-HCl, 1% triton X-100, 0.1% SDS, 0.5% sodium deoxycholate, 150 mM NaCl, in water), 

supplemented with a protease inhibitor cocktail (cOmplete® Mini, # 04693124001, Roche). 

Samples were sonicated for 5 s and stored at -80 °C for further analysis. The protein 

concentration in RIPA lysates was measured using the Pierce™ BCA Protein Assay Kit 

(#23225, Thermo Fisher Scientific). 

 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using polyacrylamide 

gels (4% stacking gel and 12% resolving gel) and the Mini PROTEAN system (Bio-Rad 

Laboratories). Samples were thawed on ice and denatured at 95 °C for 5 minutes before loading 

into the gel. For samples prepared in RIPA buffer, an appropriate volume of loading buffer 

(Roti®-Load 1, #K929, Carl-Roth) was added before denaturation. To estimate protein size, a 

prestained protein ladder was run in parallel to the samples (PageRuler™, #26616, Thermo 

Fisher Scientific). Samples were transferred onto an Immobilon®-FL PVDF membrane 

(#IPFL00010, Merck, Darmstadt, Germany) using a Mini Trans-Blot® cell (Bio-Rad 
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Laboratories). After blotting, the membrane was allowed to air-dry. Afterwards, it was soaked 

in methanol and rinsed with distilled water, before continuing with the immunodetection.  

 

2.7.1 Near-Infrared detection 

The membrane was blocked for 1 to 2 hours in blocking buffer for fluorescent western blotting 

(RBB, #MB-070, Rockland Immunochemicals, Limerick, PA, USA) before incubation with 

primary antibody at 4 °C overnight. Antibody sources and dilutions are indicated in table 2.2. 

The membrane was washed 4 times for 5 minutes with PBST (or TBST) and incubated with the 

appropriate IRDye-conjugated secondary antibody, at room temperature for 90 minutes. After 

washing, the signal was detected using an Odyssey® Near-Infrared Imaging System and 

software (LI-COR Biosciences, Lincoln, NE, USA). 

 

2.7.2 Chemiluminescent detection 

Chemiluminescent immunodetection was performed in the laboratory of Professor Carlo 

Riccardi (Department of Medicine, University of Perugia), using the HRP-coupled secondary 

antibodies listed in table 2.2 and the Clarity™ Western ECL Blotting Substrate (Bio-Rad 

Laboratories), according to the manufacturer’s instructions. 

 

Table 2.2. Antibodies used in this study for western blot 

Antibody Dilution Cat. Number Supplier 

Mouse anti α-tubulin [DM1A] 

mAb 

1:1,000 in 5% milk powder 

– PBST 
T 9026 Sigma-Aldrich 

Polyclonal goat anti 11β-HSD1 1:400 in RBB AF3397 
R&D Systems, 

Minneapolis, MN, USA 

Rat anti GILZ [CFMKG15] 

mAb 

1:1,000 in 5% milk powder 

– TBST 
14-4033-80 Thermo Fisher Scientific 

Mouse anti GADPH [OTI2D9] 
1:2,000 in 5% milk powder 

– TBST 
TA802519  

OriGene Technologies, 

Rockville, MD, USA  

Mouse anti Akt (pan) [40D4] 

mAb 

1:2,000 in 5% milk powder 

– TBST 
2920 

Cell Signalling 

Technology 

Danvers, MA, USA 

Rabbit anti phospho-Akt 

(Ser473) 

[D9E)] XP® mAb 

1:2,000 in 5% milk powder 

– TBST 
4060 

Polyclonal rabbit anti phospho-

FoxO3a (Ser253) 

1:2,000 in 5% milk powder 

– TBST 
9466 

Mouse anti FoxO3a [D12] 

mAb 

1:1,000 in gelatine buffer 

(0.75% gelatine A, 0.1% 

tween-20, 20 mM Tris, 

137 mM NaCl, pH 7.5) 

sc-48348 X 
Santa Cruz Biotechnology 

Dallas, TX, USA 

Mouse anti myogenin [5FD] 

mAb 
1:200 in TBST sc52903 Santa Cruz Biotechnology 

Polyclonal rabbit anti cleaved 

Caspase-3 
1:1,000 in TBST 

ALX-210-

807-C100 

Enzo Life Sciences 

Farmingdale, NY, USA 
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IRDye® 680RD goat anti 

rabbit IgG 
1:10,000 in RBB 926-68071 

LI-COR Biosciences, 

Lincoln, NE, USA 

IRDye® 800CW goat anti 

mouse IgG 
1:10,000 in RBB 926-32210 

IRDye® 800CW donkey anti 

goat IgG 
1:10,000 in RBB 926-32214 

Goat anti rat IgG (H+L), HRP 1:5,000 in TBST 31470 

Thermo Fisher Scientific Goat anti mouse IgG (H+L), 

HRP 
1:5,000 in TBST 31430 

Goat anti rabbit IgG, HRP 1:10,000 in TBST 12-348 Merck 

 

2.8 Cytotoxicity measurement 

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay was 

used to determine cell viability after statin treatment. Cells were seeded in 96-well plates at a 

density of 1x104 cells/well (or 2x104 cells/well for C2C12 differentiation), allowed to adhere 

overnight, and treated with test compounds at the indicated concentrations. Cells incubated 

without any treatment were used as growth controls, cells incubated with solvent at the 

maximum concentration present in the assay (0.25%) served as negative controls, and wells 

with treatment but without cells were used as blank. At the end of treatment, cells were 

incubated for 3 hours with MTT solution (0.5 mg/ml in medium) and lysed. The absorbance 

was measured at 550 nm in a microplate reader (XFluor4 SunriseTM, TECAN), using a reference 

wavelength of 690 nm. The relative viabilities were calculated related to the negative control; 

the comparison between the viability of growth control and negative control showed that the 

solvent had no statistically significant effect on cell viability (data not shown). 

 

For evaluating the cell viability in FDBs treated with statin, fibres isolated from 2 mice were 

pooled and treated with test compounds at the indicated concentrations. At the end of treatment, 

the number of living and non-living myofibres was evaluated using the trypan blue exclusion 

method. 

 

2.9 Effects of statins on C2C12 differentiation 

C2C12 myoblasts were seeded at a density of 1.0x105 cells/well in 24-well plates and induced 

to differentiate in the absence or presence of non-toxic concentrations of atorvastatin (5 µM), 

pravastatin (50 µM), simvastatin (1 µM) and cerivastatin (0.1 µM) for 5–6 days. Myotube 

formation was evaluated via Jenner-Giemsa staining and IF of myosin heavy chain. Similarly, 

primary myoblasts of WT and GILZ KO mice, as well as stable C2C12scr or C2C12shGILZ cells 

(see 2.15) were induced to differentiate in the absence or presence of statins. 
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2.10 Jenner-Giemsa staining 

To measure the myogenic differentiation of C2C12 myotubes Jenner-Giemsa staining was 

performed, following a previously published protocol (Veliça and Bunce, 2011). In brief, cells 

were fixed in ice-cold methanol for 5 minutes, air-dried, and stored at 4 °C until analysis. For 

staining, wells were incubated with Jenner’s stain solution (Santa Cruz Biotechnology; diluted 

1:3 in 1 mM sodium phosphate buffer pH 5.6) for 5 minutes at room temperature, washed with 

distilled water, and subsequently incubated with Giemsa solution (Carl Roth, diluted 1:20 in 

the same buffer) for 10 minutes at room temperature. Wells were observed in a phase contrast 

microscope equipped with a digital camera (ZEISS Axiovert 40 CFL with Canon EOS 400D), 

and each well was photographed in 3 randomly selected regions. Images were analysed using 

the free image-processing software Fiji (“Fiji Is Just ImageJ”, Schindelin et al. 2012). 

 

2.11 Immunofluorescence 

Myosin heavy chain immunofluorescence (MHC IF) was performed on C2C12 myotubes. Cells 

were cultured and differentiated onto glass coverslips that were previously treated for 10 

minutes in a 1:1 mixture of 70% ethanol and 0.1 N HCl (Andrés and Walsh, 1996). At the end 

of treatment, cells were pre-fixed by adding paraformaldehyde solution (4% in PBS) directly 

into the culture medium. After 2 minutes, the pre-fixation culture medium was replaced with 

paraformaldehyde solution and cells were fixed for 15 minutes at room temperature. Cells were 

washed with PBS and permeabilized with an 0.2% triton X-100 solution in PBS for 10 minutes 

at room temperature, washed, blocked in a 5% BSA solution in PBS for 1 hour at room 

temperature, and incubated with primary monoclonal anti-myosin heavy chain antibody (MF20, 

deposited by Donald A. Fischman to the Developmental Studies Hybridoma Bank, The 

University of Iowa, Department of Biology, Iowa City, IA, USA) diluted 1:50 in dilution buffer 

(1% BSA in PBS), at 4 °C overnight. After washing, cells were incubated with Alexa Fluor® 

488 goat anti-mouse secondary antibody (#A11017, Thermo Fisher Scientific) diluted 1:800 in 

dilution buffer, for 1 hour at room temperature. Then, cells were washed and counterstained 

with DAPI (#D9542, Sigma-Aldrich) for 15 minutes at room temperature, mounted with 

FluorSave™ (Merck) and observed with an Axio Observer Z1 epifluorescence microscope, 

equipped with an AxioCam Mr3 and AxioVision software (Zeiss, Oberkochen, Germany). 

Photographs from randomly selected regions were analysed using the Fiji software, and the 

fusion index was calculated as the percentage of total nuclei incorporated into myotubes, 

defined as myosin-expressing cells containing 3 or more nuclei. 
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2.11.1 Whole-zebrafish immunofluorescence 

Whole zebrafish embryos were stained following a protocol based on the literature (Cao et al., 

2009). Zebrafish embryos were fixed in paraformaldehyde solution at 4 °C overnight, and then 

stored in methanol at -20 °C for at least four hours. Embryos were permeabilized in acetone for 

30 minutes at -20 °C, washed, blocked in a 1% BSA solution in PBST for 2 hours at room 

temperature, and incubated with primary monoclonal anti-myosin heavy chain antibody (F59, 

deposited by Frank E. Stockdale to the Developmental Studies Hybridoma Bank, The 

University of Iowa, Department of Biology, Iowa City, IA, USA) diluted 1:100 in blocking 

buffer at 4 °C overnight. After washing in PBST, the embryos were incubated with Alexa 

Fluor® 594 goat anti-mouse secondary antibody (1:200; # A-11005 Thermo Fisher Scientific) 

at room temperature for 4 hours, washed again, and observed on a Leica SP8 Confocal 

microscope using the 40X magnification. 

 

2.12 GILZ induction under statin treatment 

To evaluate the ability of statins to induce GILZ in different cell types, HUVECs and C2C12 

cells were seeded in 12-well plates at a density of 1.5x105 and 1.0x105 cells/well, respectively, 

and BMMs were seeded at 2.5x105 cells/well in 24-well plates. Cells were treated with 3 µM 

atorvastatin and frozen at different time points for RT-qPCR analysis. 

 

In a second set of experiments, C2C12 or primary murine myoblasts were seeded at 

2.0x105 cells/well in 12-well plates and induced to differentiate in the absence or presence of 

non-toxic concentrations of atorvastatin (5 µM), pravastatin (50 µM), simvastatin (1 µM) and 

cerivastatin (0.1 µM) for up to 72 hours. Cells were frozen at different time points for RT-qPCR 

or western blot analysis.  

 

For evaluating the effect of toxic concentrations of statins on GILZ expression levels, C2C12 

myoblasts (5x104 cells/well) and 72-hour myotubes (1x105 cells/well) seeded in 24-well plates 

were treated with 50 µM statins for 6 hours, in the absence or presence of mevalonate (100 µM). 

Gene expression was evaluated via RT-qPCR, and protein via western blot. Primary murine 

myoblasts were similarly treated with atorvastatin and harvested for western blot analysis. In 

an analogue experiment, C2C12 myoblasts were treated with statin in the absence or presence 

of GGPP and FPP (10 µM). 

 

HUVECs were seeded in 24-well plates at 7x104 cells/well and treated with statins in the 

absence or presence of mevalonate (100 µM) for 24 hours. HMEC-1 cells were seeded in 24-

well plates at a density of 1x105 cells/well and treated with statins for 24 hours. Cells were 

frozen for RT-qPCR analysis. 
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2.13 Gene expression in zebrafish embryos under statin treatment 

Zebrafish embryos from the AB wildtype strain were obtained from the laboratory of Professor 

Rolf Müller (Helmholtz Institute for Pharmaceutical Research Saarland). The developmental 

stage was determined by embryo morphology, in hours post fertilization (hpf, Kimmel et al. 

1995) by observation under a stereo microscope. To examine the effects of statins, embryos at 

19–22 hpf were sorted and placed at a density of 2–3 embryos/cm2 in 6-well plates, and 

incubated at 28 °C in Danieu’s solution (17 mM NaCl, 2.0 mM KCl, 1.5 mM HEPES pH 7.1–

7.3, 1.8 mM Ca(NO3)2, 1.2 mM MgSO4, 1.2 µM methylene blue, in water) containing 1 µM 

statin or solvent control. 12 hours after treatment, 10–20 embryos were pooled, flash-frozen in 

liquid nitrogen, and stored at -80 °C for RNA isolation and RT-qPCR analysis.  

 

2.14 Chromatin immunoprecipitation (ChIP) 

The ChIP assay was performed by Dr. Jessica Hoppstädter in the laboratory of Professor Carlo 

Riccardi (Department of Medicine, University of Perugia), using the EZ-ChIP™ Kit (#17-371, 

Merck) according to the manufacturer’s instructions. In brief, C2C12 cells were fixed in 1% 

paraformaldehyde for 10 minutes, lysed, and sonicated on ice. Precleared lysates from 1x106 

myoblasts in a volume of 100 µl were incubated overnight at 4 C° with 10 µg monoclonal anti-

FoxO3 antibody (D12, #sc-48348 X, Santa Cruz Biotechnology) or 10 µg normal mouse IgG 

(#12-371B, Merck). Immunocomplexes were purified, and qPCR analysis was performed using 

the SYBR® Select Master Mix (#4472908, Thermo Fisher Scientific) and The Applied 

Biosystems 7300 qPCR system to determine the abundance of specific Gilz promoter regions. 

The primers used to quantify forkhead response elements (FHRE)-containing sequences and a 

non-FHRE sequence within the Gilz promoter are listed in table 2.3. 

 

Table 2.3. Primers used in the ChIP assay 

 
Forward primer sequence 5´-3´ Reverse primer sequence 5´-3´ 

FHRE1 TGGCCCAGTTAAACCACATCC GCTGAACTGTTTACAGTCCCTGA 

FHRE2 TAACCGTGTAAACAGGAGCCAG GGAACTCCTGGGGAAATCCTA 

FHRE3 AGCATGGGCAGAAAAAGGAATAAG CTGGTTTGGTTGGTGTAAACAGT 

FHRE4 (IRE, insulin-

response element,) 
AGAGCTTTCTTGGTCTGAGAGAAT AATTTTGAGGTGAGTAGCAGTAGT 

non-FHRE GTATTCGGCCTTCTCCTTGC CTGCTGCGTGGTGAAAAACA 
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2.15 Lentiviral transductions and stable cell line generation 

All lentiviral plasmids were obtained from Addgene. The packaging plasmid psPAX2 

(#12260), and the envelope plasmid pMD2.G (#12259), were a gift from Didier Trono. FUW-

tetO-loxP-hKLF2 was a gift from Rudolf Jaenisch (#60850, Theunissen et al., 2014). The 

pLKO.1-TRC cloning vector was a gift from David Root (#10878, Moffat et al., 2006). 

pLKO.1-scramble shRNA was a gift from David Sabatini (#1864, Sarbassov et al., 2005). 

LentiCas9-Blast was a gift from Feng Zhang (#52962, Sanjana et al. 2014).  

 

Two different sequences of short hairpin (sh) RNA targeting murine GILZ were used for 

generating lentiviral particles. shGILZ1 (5’-GGAGTACTGACTGGTCTCTTA-3’) was 

designed using the siRNA Wizard™ v3.1 software tool (InvivoGen). shGILZ2 (5’-ACAGCTT 

CACCTGACAATG-3’) was previously published (Bruscoli et al., 2010). Sequences were 

cloned into the pLKO.1-TRC cloning vector, following the protocol available from Addgene 

(Addgene, 2006), with minor modifications. In brief, the cloning vector was digested with 

AgeI-HF and EcoRI-HF (New England BioLabs, Ipswich, MA, USA) and purified from an 

agarose gel using the NucleoSpin® Gel and PCR Clean-up Kit (#740609, Macherey-Nagel, 

Düren, Germany). The annealed oligos were then ligated into the vector using T4 DNA ligase 

(#M0202, New England BioLabs) overnight at room temperature. The ligation mix was 

transformed into GT116 E. coli, and ampicillin-resistant clones were screened for inserts by 

sequencing, using the pLKO.1 sequencing primer (5’-GACTATCATATGCTTACCGT-3’). 

 

2.15.1 Lentivirus generation 

Lentiviral particles were produced following Addgene’s protocol. Briefly, 5x105 HEK-293T 

cells plated onto 6-cm cell culture dishes in medium without antibiotics were transfected at 50–

80% confluency with the transfer, packaging and envelope plasmids (1000:750:250) using the 

fuGENE® 6 Transfection Reagent (#E2691, Promega). 12–15 hours after transfection, the 

medium was replaced with complete DMEM. The lentivirus-containing media were then 

harvested at 24 and 48 hours, pooled, centrifuged at 200 x g for 5 minutes, aliquoted, and stored 

at -20°C. 

 

2.15.2 Lentiviral titre  

Non-biological titration of the lentiviral vectors was performed by determining the viral particle 

content in the harvested supernatants, using a protocol adapted from the literature (Geraerts et 

al., 2006; Scherr et al., 2001). Genomic viral RNA was purified from 200 µl of freshly harvested 

lentivirus stock using the High Pure Viral RNA Kit (#11858882001, Roche), following the 

manufacturer’s instructions. After digestion of residual DNA with the DNA-free™ DNA 

Removal Kit (Thermo Fisher Scientific), 10-fold serial dilutions of the purified viral RNA were 
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reverse transcribed and amplified via qPCR, using primers for the 5’LTR region (forward 5’-

AGCTTGCCTTGAGTGCT TCA-3’, reverse 5’-TGACTAAAAGGGTCTGAGGGA-3’), and 

the 5’-end of the gag gene (forward 5’-GGAGCTAGAACGATTCGCAGTTA-3’, reverse 5’-

TGTAGCTGTCCCAGTATTTGTC-3’). The copy number (viral particles, VP) contained in 

the supernatant was calculated from comparison against a plasmid standard curve, and the titre 

calculated as viral particles per ml of supernatant (VP/ml). 

 

The biological titration of the vectors was performed either via limiting dilution, following the 

protocol developed by the MISSION® RNAi Team (Sigma-Aldrich); or by qPCR, following a 

procedure modified from the protocol of the Laboratory of Virology and Genetics at the EPFL 

(École Polytechnique Fédérale De Lausanne), as follows: HEK-293T cells were seeded in 12-

well plates at a density of 8x104 cells/well and transduced with increasing amounts of lentiviral 

supernatant in the presence of 8 µg/ml polybrene (#H9268, Sigma-Aldrich). 96 hours after 

transduction, gDNA was extracted using the GenElute Mammalian gDNA Miniprep Kit 

(#G1N70, Sigma Aldrich) according to the manufacturer’s recommendations, and qPCR of 

5’LTR and gag was performed, using ACTB as housekeeping gene. For each dilution, the HIV 

copy number integrated per genome was calculated as the ratio of 5’LTR or gag copies to 

ACTB, and the viral titre was determined as the number of transducing units per ml of 

supernatant (TU/ml).  

 

For each lentivirus, the ratio from biological to non-biological titre was established and used 

for estimation of the functional titre (TU/ml) for all further preparations that were only titrated 

via the gRNA method. This functional titre was then used to determine the volume of viral 

supernatant needed for infecting cells at a given multiplicity of infection (MOI, defined as the 

number of TU per cell). 

 

2.15.3 Antibiotic kill curve 

The optimal concentration of antibiotic needed for selection of transduced cells was determined 

by performing an antibiotic kill curve. In brief, cells seeded at the same relative densities used 

for transduction in 24-well plates, were treated with increasing antibiotic concentrations. Cells 

were cultured with medium change every-other day and observed daily. The minimum 

concentration of antibiotic that resulted in complete cell death after 3–5 days was chosen for 

selection in the experiments. 

 

To determine whether the cells were able to grow starting as single cells, the kill curve was 

performed on a 96-well plate, in a matrix that combined decreasing concentrations of antibiotic 

(in rows) with decreasing cell numbers (in columns), from 1,000 to 1 cell/well. Cells were 



Materials and Methods 

 

29 

 

considered to be able to grow as single clones when growth was observed after 10 days in the 

antibiotic control wells containing less than 4 cells on average. 

 

2.15.4 Generation of C2C12shGILZ stable cell lines 

Stable, polyclonal C2C12 cell lines were generated by reverse transducing 7.5x104 cells in 6-

well plates with scramble shRNA, shGILZ1, or shGILZ2 lentiviral particles at an MOI of 10 in 

the presence of polybrene, following the protocol for generation of stable cell lines available 

from Addgene. 24 hours after transduction the medium was changed, and 48 hours after 

infection puromycin (2 µg/ml, #540411, Merck) was added to select for transduced cells. The 

puromycin resistant cells were expanded for 2 to 3 weeks, after which they were harvested for 

analysis of gene and protein expression, and cell stocks were frozen. Further culture and 

experiments were done in 1 µg/ml puromycin-containing medium. A non-transduced control 

was run in parallel to confirm no viable cells were present after selection. 

 

2.15.5 KLF2 overexpression 

The FUW-tetO-loxP-hKLF2 transfer vector uses the Tet-On system to allow for doxycycline-

inducible overexpression of human KLF2. For overexpression in HUVECs, cells were seeded 

at 2x104 cells/well in a 24-well plate and transduced with hKLF2 lentivirus at an MOI of 10 

and 20 in the presence of polybrene. 24 hours after transduction, medium containing 2 µg/ml 

doxycycline (#ab141091, Abcam, Cambridge, UK) was added to the cells, to induce expression 

of the transgene. 72 hours after doxycycline addition, cells were harvested for RT-qPCR 

analysis. 

 

2.15.6 Generation of RAW 264.7Cas9 cells 

A RAW 264.7 macrophage cell line stably expressing Cas9 was generated for further use in 

CRISPR/Cas9 mediated gene editing experiments (see 2.18), following a protocol adapted from 

the literature (Joung et al., 2017). 5x105 cells were placed in a 6-well plate, Cas9 lentiviral 

particles were added at an MOI of 0.4 in the presence of polybrene, and cells were spinfected 

by spinning the plate at 1,000 x g for 2 hours at 33 °C. After 24 hours the medium was changed, 

and 48 hours after infection blasticidin S (12.5 µg/ml, #10264913, Fisher Scientific) was added 

to select for transduced cells. The blasticidin resistant cells were expanded for 2 to 3 weeks, 

after which cells stocks were frozen. A non-transduced control was run in parallel to confirm 

no viable cells were present after selection. 
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2.16 Short interfering (si) RNA-mediated gene knockdown 

For silencing KLF2 expression in HUVECs, 5x104 cells were transfected in a 24-well format 

with an siPOOLTM targeting the KLF2 gene, or a negative control siPOOLTM (siTools Biotech, 

Planegg/Martinsried, Germany), using the riboxxFECT transfection reagent (Riboxx, 

Radebeul, Germany). A reverse transfection protocol, according to the manufacturer’s 

instructions, was followed. The final concentration of siRNA was 3–10 nM. 

 

2.17 Morpholino-mediated Gilz silencing and mRNA-mediated overexpression in 

zebrafish 

The gene silencing/overexpression experiments in zebrafish were performed by the research 

group of Professor William K.F. Tse (Faculty of Agriculture, Kyushu University, Fukuoka, 

Japan). Zebrafish from the AB wildtype strain were raised and staged as previously described 

(Kimmel et al., 1995). All experimental procedures were approved by the Animal Experimental 

Committee, Kyushu University. 

 

2.17.1 Morpholino (MO) design and mRNA synthesis 

The Gilz MO and mRNA experiments were performed as previously published (Tse et al., 

2013). The sequence of tsc22d3 MO, targeting the ATG site, was 5′-GATTTTTGAACATCTC 

CGTGCTCAT-3′ (Gene Tools, Philomath, OR, USA). Its efficiency and specificity were 

confirmed by splicing MO, mRNA rescue, and Western blot analysis. 

 

tsc22d3 mRNA was amplified from full-length cDNA using Pfu DNA polymerase (Agilent 

Technologies, Santa Clara, CA, USA) and the following primers: forward 5′-

CCGAATTCATGAGCACAGAGATGTTCAA-3′, reverse 5′-CCCTCGAGTTATACAGCAG 

AGCCCCGT-3′, that contain EcoRI and XhoI restriction sites, respectively. The digested PCR 

products were ligated into the pCS2+ vector to generate the pCS2+tsc22d3 expression 

construct. The construct vector was linearized by digestion with NotI, and capped RNA was in 

vitro transcribed with the mMESSAGE mMACHINE™ SP6 Transcription Kit (#AM1340, 

Thermo Fisher Scientific), following the manufacturer’s instructions. 

 

2.17.2 MO and mRNA Injection  

Two pmol of tsc22d3 MO or 1,200 pg of mRNA were injected into 1- or 2-cell stage embryos. 

Embryos from 4 different fish pairings were used for each injection. At 24 hpf, embryos were 

collected and fixed for whole-mount immunofluorescence staining, as described under 2.11. 
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2.18 CRISPR/Cas9-mediated GILZ knockout 

The clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated 

(Cas) 9 technique was used to disrupt the GILZ gene in HMEC-1 and C2C12 cells, using a 

transient transfection and clonal expansion approach. Validated synthetic TrueGuide™ single 

guide (sg) RNAs were obtained from Thermo Fisher Scientific. Target sequences were for 

TSC22D3 5’-ACTTACACCGCAGAACCACC-3’, and for Tsc22d3 5’-GATGTACGCTGTG 

AGAGAGG-3’. 

 

Cells at 30–70% confluency were transfected in a 12-well format with the synthetic sgRNA and 

a recombinant Cas9 protein (TrueCut™ Cas9 Protein v2, #A36496, Thermo Fisher Scientific), 

using the Lipofectamine™ CRISPRMAX™ Cas9 transfection reagent (#CMAX00001, 

Thermo Fisher Scientific), following the manufacturer’s instructions. 48 hours after 

transfection, cells were detached and counted. A fraction of the cells was used for clonal 

expansion, following the limiting dilution cloning procedure for HMEC-1 (seeding cells at 

0.8 cells/well in 96-well plates), or using cloning discs for isolation of single colonies from 

C2C12 seeded at low density (50, 250, 1,000 and 5,000 cells) in 6 cm cell culture dishes 

(Domann and Martinez, 1995). The remaining cells were used for gDNA extraction and 

verification of editing efficiency. The surviving clones after clonal expansion were harvested 

for gDNA extraction, PCR amplification of the edited region and sequencing analysis, 

amplified and kept either in culture or frozen, until confirmation of the knockout was achieved.  

 

2.18.1 Verification of editing efficiency 

The T7E1 endonuclease assay was performed on gDNA from control and transfected cells to 

verify the CRISPR genome editing in the mixed population. The assay is based on the ability 

of T7E1 to cleave mismatched DNA heteroduplexes, formed between WT and CRISPR-

mutated DNA strands after denaturation and reannealing of a PCR product amplified from the 

genomic target region. To this end, the Alt-R™ Genome Editing Detection Kit (#1075931, 

Integrated DNA Technologies, Skokie, IL, USA) was used according to the manufacturer’s 

instructions. The primers used for PCR amplification of the edited region were: TSC22D3 

forward 5’-GCTTGGTGTTACTAGGCCCC-3’, reverse 5’-AGGATAGAGCTTCAGGCA 

CAA-3’, Tsc22d3 forward 5’-ACAGAAGGCTGACTTGGCTC-3’, reverse 5’-GGCCAC 

GATGGCTAAGGAAT-3’. The annealing temperature for the PCR, run with the 5xHotFirePOl 

EvaGreen qPCR Mix under the program described in 2.6, was set at 64.4 °C.  

 

2.18.2 Sequencing analysis 

gDNA was extracted with QuickExtract® DNA Extraction Solution (#101094, Biozym, 

Hessisch Oldendorf, Germany). PCR of the edited region was performed as mentioned above, 
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the PCR products were purified and sent for analysis via Sanger sequencing. The sequencing 

primer sequences were: TSC22D3 5’-GCCACGATGGCTAAGGAATG-3’, Tsc22d3 5’-GAT 

AGAGCTTCAGGCACAATATAG-3’. Analysis of the sequencing files for indel detection was 

performed with assistance of the CRISP-ID web application (Dehairs et al., 2016), and the ICE 

analysis tool (Synthego, Redwood City, CA, USA). 

 

2.19 Serum Analysis 

Serum collected from young and aged mice was sent to the “Zentrallabor des 

Universitätsklinikums des Saarlandes” for clinical chemistry analysis. The determination of 

corticosterone and 11-dehydrocorticosterone (11-DHC) levels in serum was performed by the 

research group of Professor Markus Meyer (Centre for Molecular Signalling (PZMS), Saarland 

University), as described under 2.22. 

 

2.20 Thiobarbituric acid reactive substances (TBARS) assay 

Products of lipid peroxidation were measured in liver tissue from young and aged mice, 

following a previously described protocol (Simon et al., 2014). The total TBARS are expressed 

as µmol malondialdehyde (MDA) equivalents per µg of total protein, quantified using the 

Pierce™ BCA Protein Assay Kit. 

 

2.21 Determination of 11β-HSD1 activity in peritoneal macrophages 

The determination of 11β-HSD1 activity was performed by Rebecca Linnenberger and Dr. 

Jessica Hoppstädter. The activity of 11β-HSD1 in PMs from young and aged mice was 

measured incubating cells with 0.1 µM or 1 µM cortisone-D8 for 24 hours. At the end of 

treatment, supernatants were collected and analysed as described under 2.22 to measure 

cortisone-D8 and cortisol-D8 levels. The conversion to cortisol-D8 was expressed as percentage 

of the total steroid measured, and is presented per µg of total protein, quantified using the 

Pierce™ BCA Protein Assay Kit. 

 

2.22 Determination of steroid levels via LC-HRMS/MS 

The determination of steroid levels was performed by the research group of Professor Markus 

R. Meyer (Centre for Molecular Signalling (PZMS), Saarland University), using liquid 

chromatography–high resolution mass spectrometry (LC-HRMS/MS). Samples were mixed 1:1 

with an internal standard (cortisol-D4, 100 µg/ml in acetonitrile containing 0.1% formic acid), 

and centrifuged for 10 min at 18,407 x g and -10 °C. The supernatant was transferred into an 

MS vial and a volume of 5 µl was used for analysis. 
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Chromatographic separation of the analytes was carried out on a Dionex Ultimate UHPLC 

System (Thermo Fisher Scientific) using an AccucoreTM Phenyl Hexyl LC column (100 mm x 

2.1 mm, 2.6 µm) heated to 40 °C. Mobile phase A was water with 0.1% formic acid and 

ammonium formate, mobile phase B was acetonitrile with 0.1% formic acid. The LC gradient 

was as follows: starting with 2% solvent B over 0.1 min, the gradient was increased to 98% 

solvent B until 5 min, maintained at 98% until 7.5 min, and decreased to 2% until 10 min. The 

flow rate was set to 600 µl/min. Detection of analytes was achieved via high resolution mass 

spectrometry on a ThermoFisher Q-Exactive Plus equipped with a heated electrospray 

ionization (HESI)-II source. The HESI-II source conditions were as follows: sheath gas, 

nitrogen, at 55 arbitrary units; auxiliary gas, nitrogen, at 15 arbitrary units; temperature, 450 °C; 

spray voltage, 3.50 kV; ion transfer capillary temperature, 275 °C; and S-lens RF level, 55.0. 

Mass spectrometry was done in positive polarity mode using targeted single ion monitoring 

(tSIM) mode. The settings for tSIM mode were as follows: resolution, 35,000; microscans, 1; 

AGC target, 5e4; maximum IT, 200 ms; isolation window, 2.0 m/z; normalised collision energy 

(NCE), 35; scan range, m/z 150–900; spectrum data type, profile; and underfill ratio, 0.5%. The 

peak areas of the analytes were normalised using the internal standard peak area ratio. 

 

2.23 Statistics 

Results are expressed as mean ± SEM (standard error of the mean). Statistically significant 

differences between means were determined using the GraphPad Prism 6.0 or Origin 2019 

software. Unless stated otherwise, an unpaired Welch’s t-test was performed for the comparison 

of two groups, and the comparison of three or more groups was carried out by one or two-way 

analysis of variance (ANOVA) followed by Bonferroni’s post-hoc analysis for individual 

differences. Where specified, median comparison of two groups was performed using Mann 

Whitney U Test; and median comparison of three or more groups was carried out by Kruskal-

Wallis test followed by Dunn’s post-hoc analysis. Results were considered significant at 

P<0.05. 
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3. Chapter I  

 

The glucocorticoid-induced leucine zipper (GILZ) 

mediates statin-induced muscle damage 
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3.1 Introduction 

Statins are the first line of treatment in the management of hyperlipidaemia and prevention of 

CVD (Catapano et al., 2016; Grundy et al., 2018). These drugs are inhibitors of the HMG-CoA 

reductase enzyme, preventing the biosynthesis of cholesterol in the liver by blocking the 

mevalonate pathway and, as a consequence, enhancing clearance of circulating LDL-

cholesterol (Sirtori, 2014). Since their introduction in 1987, statin prescription rates have risen, 

as shown by several studies in different populations (Nolte et al., 2010; Salami et al., 2017; 

Vancheri et al., 2016), positioning them among the most prescribed drug classes worldwide. 

Given the high prevalence of CVD, and the favourable data on CVD prevention by 

statins (Heller et al., 2017; Taylor et al., 2013), this tendency seems to be maintained. 

 

Statins have a satisfactory safety profile, their most relevant adverse effect being skeletal 

muscle toxicity (Grundy et al., 2018). SAMS have an incidence of 5–29% in clinical practice 

(Grundy et al., 2018; Stroes et al., 2015), can range from mild myalgia to, in rare cases, fatal 

rhabdomyolysis (Moßhammer et al., 2014), and are a frequent cause for non-adherence to 

treatment or its discontinuation (Laufs et al., 2017). Although several studies have been 

conducted, and a number of risk factors that contribute to the onset of SAMS have been 

described, such as sex, pharmacokinetic differences, or genetic factors (Needham and 

Mastaglia, 2014; du Souich et al., 2017), the molecular mechanisms leading to myopathy are 

still not fully understood.  

 

GILZ was first described as a dexamethasone-induced, immunomodulatory protein (D’Adamio 

et al., 1997). Since then, it has been shown that GILZ  expression is not restricted to immune 

cells but is extended to several tissues and cell types, including skeletal muscle (Cannarile et 

al., 2001). GILZ plays multiple roles in both, glucocorticoid and non-glucocorticoid-mediated 

cellular processes (Ayroldi and Riccardi, 2009) beyond its immune-modulating function. For 

instance, studies demonstrated a role for GILZ in inhibition of adipocyte differentiation (Shi et 

al., 2003), in sodium homeostasis in the kidney, where it is robustly induced by aldosterone 

(Rashmi et al., 2017; Soundararajan et al., 2005), and in spermatogenesis, where lack of GILZ 

leads to hyperactivity of Ras signalling pathway and apoptosis during meiosis (Bruscoli et al., 

2012). Of particular interest is the role described for GILZ in the regulation of skeletal muscle 

differentiation: it was shown that GILZ is strongly induced after dexamethasone treatment. In 

this setting, GILZ mediated dexamethasone anti-myogenic action via inhibition of the 

transcriptional activity of an early myogenic regulatory factor (MRF), MyoD (Bruscoli et al., 

2010). 
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We analysed different publicly available gene expression profiling datasets that suggest statins 

were able to induce GILZ in different cell types (GEO accession numbers GDS2987, 

GSE32547, GSE4883). Interestingly, the analysis of a transcription profiling of human 

quadriceps femoris muscle following statin treatment suggested a moderate increase in GILZ 

expression in biopsies from patients receiving atorvastatin and simvastatin for 8 weeks, 

compared with those receiving placebo (ArrayExpress dataset E-TABM-116 (Laaksonen et al., 

2006), Figure 3.1). In the present study, we aimed to test the hypothesis that GILZ plays a role 

in the onset of SAMS, focusing on both, myotoxic and anti-myogenic effects. 

 

 

Figure 3.1. Analysis of the publicly available ArrayExpress dataset E-TABM-116: transcription profiling of 

human quadriceps femoris muscle following statin treatment. GILZ mean expression (NCBI RefSeq 

NM_004089.3; scan REFs GI_37622900-A, GI_37622900-I) is shown as fold of baseline. Connected data points 

represent patients before and after intervention. 
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3.2 Results 

3.2.1 Statins are toxic towards skeletal muscle cells 

We used the MTT assay to measure cell viability of C2C12 myoblasts and differentiating 

myotubes treated with increasing concentrations of atorvastatin, cerivastatin, simvastatin in its 

lactone and acid forms, and pravastatin, for 24 hours. All statins were toxic towards myoblasts, 

although higher concentrations of the hydrophilic statin pravastatin were needed to cause a 

significant decrease in cell viability (Figure 3.2 A). In myotubes, neither pravastatin nor 

simvastatin acid was significantly toxic at the evaluated concentrations (Figure 3.2 B). 

 

Figure 3.2. Statin cytotoxicity towards muscle cells. C2C12 myoblasts (A) or 48-hours myotubes (B) were treated 

with increasing concentrations of atorvastatin (Ator), cerivastatin (Ceri), pravastatin (Prav), simvastatin (Sim) acid 

or simvastatin lactone for 24 hours. The cell viability was measured via MTT assay. Data show the mean of three 

independent experiments performed in replicates ± SEM. **P < 0.01, ***P < 0.001 for the lowest concentration 

that caused a significant decrease in viability relative to the control. 

In accordance with the literature (Skottheim et al., 2008; Taha et al., 2016), comparison of the 

dose-response curves also showed that the lactone form of simvastatin was more toxic towards 

muscle cells than the active acid form of the drug [statin main effect, myoblasts F(1,24)=115.8, 

P<0.001; myotubes F(1,24)=21.16, P<0.001]. 

 

3.2.2 Non-toxic concentrations of statin induce GILZ in skeletal muscle cells 

To first evaluate whether GILZ expression was modified in muscle cells in the presence of 

statins, we treated C2C12 myoblasts with a non-toxic concentration of atorvastatin (3 µM) for 

up to 24 hours and measured the levels of Gilz mRNA at different time points. A significant 
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increase compared with the control was detected after 8 hours of treatment, to a level of 

induction that was maintained until the end of treatment (Figure 3.3). 

 

 
Figure 3.3. Effect of statin treatment on Gilz mRNA expression in C2C12. C2C12 myoblasts were treated with 

atorvastatin (3 µM) for up to 24 hours. Gilz expression was normalised against the housekeeping gene (Rn18s) 

and is presented as fold change of control. Data show the mean of 3 independent experiments performed in 

replicates ± SEM. *P<0.05, **P<0.01, relative to the control. 

3.2.3 Toxic concentrations of statin induce GILZ expression  

Next, we treated myoblasts and myotubes with 50 µM atorvastatin, simvastatin, or cerivastatin. 

At this concentration all statins were cytotoxic after 24 hours, but not at 6 hours (Figure 3.2 and 

data not shown). We detected an increase in Gilz mRNA expression after 6 hours of treatment 

with all statins, which was reversed by the addition of mevalonate (100 µM) to the medium, 

indicating that the mechanism of GILZ induction relates to the inhibition of HMG-CoA 

reductase (Figure 3.4 A–B). In myotubes, the increase in Gilz expression was modest compared 

with that of myoblasts. Western blot analysis showed an elevated expression of GILZ protein 

in both, C2C12 and primary murine myoblasts treated with toxic concentrations of statins 

(Figure 3.4 C–F). 

 

3.2.4 GILZ induction can be reversed by geranylgeranyl pyrophosphate 

The inhibition of HMG-CoA by statins not only impairs cholesterol biosynthesis, but also other 

biosynthetic pathways. Of main importance is the inhibition of protein prenylation resulting 

from decreased synthesis of the isoprenoid derivatives GGPP and FPP. Thus, we evaluated 

whether GILZ induction could be reversed by the addition of any, or both, of these mediators 

to the medium. Co-treatment of C2C12 myoblasts with 10 µM GGPP in addition to simvastatin 

completely reversed Gilz induction, while FPP had no effect (Figure 3.4 G). 
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Figure 3.4. Effect of statin treatment at toxic concentrations on GILZ expression in muscle cells. C2C12 myoblasts 

(A) or 72-hour myotubes (B) were treated with 50 µM statin in the absence or presence of mevalonate (MVA, 

100 µM) for 6 hours, Gilz mRNA expression was measured. GILZ protein expression was measured in C2C12 

(C) and primary murine (D) myoblasts after treatment with 50 µM statin for 6 hours. One representative blot is 

shown. Densitometric analysis, normalised to the housekeeping protein (E,F). C2C12 myoblasts were treated with 

50 µM simvastatin in the absence or presence of GGPP and FPP (10 µM) for 6 hours, Gilz mRNA levels were 

measured (G). mRNA expression was normalised against the housekeeping gene (Csnk2a2) and is presented as 

fold change of control. Data show the mean of at least 2 independent experiments performed in replicates ± SEM. 

**P<0.01, ***P<0.001 relative to the corresponding control, +++ P<0.001 relative to the non-MVA condition. 

3.2.5 Statin-induced impairment of myogenesis is accompanied by GILZ induction 

Myogenesis is a multistep, tightly regulated process that leads to the formation of skeletal 

muscle, both during embryonic development as well as in adult life, to maintain muscle 

homeostasis and repair muscle after injury (Bentzinger et al., 2012). Statins are not only toxic 

towards skeletal muscle fibres but might also impair the muscle regeneration process (Baba et 

al., 2008; Ogura et al., 2007; Trapani et al., 2012). To examine these effects, we induced 

differentiation of C2C12 myoblasts by switching confluent cell layers to differentiation medium 

(DM) in the absence or presence of statins, and evaluated myotube formation by Jenner-Giemsa 

staining and myosin heavy chain (MHC) immunofluorescence. We observed that treatment of 

C2C12 cells with sub-toxic concentrations of statins during differentiation resulted in less 
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myotube formation, and a significantly reduced fusion index after 6 days, where fully 

differentiated myotubes were visible in the control (Figure 3.5). 

 

 

Figure 3.5. Effect of statins on C2C12 differentiation. C2C12 were induced to differentiate for 6 days in the 

absence or presence of atorvastatin (5 µM), pravastatin (10 µM), cerivastatin (0.1 µM), and simvastatin (1 µM), 

and subjected to MHC IF (A, scale bar, 50 µm) or Jenner-Giemsa staining (C, scale bar, 100 µm). Representative 

images are shown. The degree of differentiation was quantified by measuring the fusion index in IF images (B), 

and myotube density in Jenner-Giemsa images (D). Correlation between the degree of Gilz mRNA induction after 

72 hours of statin stimulation (Figure 3.6 A) and fusion index (E). Data show the mean of 3 independent 

experiments performed in replicates ± SEM. *P<0.05, **P<0.01, ***P<0.001 relative to the control.  
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We analysed GILZ expression levels in differentiating C2C12 and primary murine myotubes 

treated with statins, finding that the impairment in myogenesis was also accompanied by GILZ 

induction on both, mRNA and protein level (Figure 3.6). Pearson correlation analysis showed 

a negative correlation between the fold increase in Gilz mRNA levels, and the fusion index 

(r2=0.8575). Since GILZ has been shown to mediate the anti-myogenic effects of 

dexamethasone (Bruscoli et al., 2010), we hypothesised that it might also be involved in the 

effects observed after statin treatment. 

 

 

Figure 3.6. Effect of statins on GILZ expression during myogenesis. C2C12 were induced to differentiate for 72 

hours in the absence or presence of atorvastatin (5 µM), pravastatin (10 µM), cerivastatin (0.1 µM), and simvastatin 

(1 µM). Gilz expression data was normalised against the housekeeping gene (Csnk2a2) and is presented as fold 

change of control (A). GILZ protein levels in C2C12 (B) and primary murine (C) myotubes treated with 

atorvastatin (5 µM) during myogenesis. Representative blots are shown. Data show the mean of 3 independent 

experiments ± SEM. *P<0.05; **P<0.01, ***P<0.001 relative to the control. 

3.2.6 GILZ knockout abolishes the cytotoxic effects of statins 

To assess whether loss of GILZ could rescue statin-induced cytotoxicity, we isolated primary 

myoblasts from WT and GILZ KO mice, treated them with increasing doses of statins, and 

measured cell viability after 24 hours. Comparison of the dose-response curves obtained 

showed significant differences between genotypes: GILZ KO myoblasts were significantly less 

sensitive towards atorvastatin, cerivastatin, and simvastatin treatment than their WT 

counterparts [cell type main effect F(1,124)=10.06, P=0.002; F(1,124)=26.24, P<0.0001; and 

F(1,116)=24.18, P<0.0001, respectively, Figure 3.7 A–C].  

 

Due to the importance of the PI3K/Akt signalling pathway in statin-induced 

myotoxicity (Bonifacio et al., 2015; Mallinson et al., 2009), we hypothesised that the resistance 

to cell death from GILZ KO myoblasts might be related to modulation of the Akt 

phosphorylation status. Indeed, atorvastatin treatment induced dephosphorylation of Akt and 

activated the apoptotic pathway, as observed by cleaved caspase-3 detection, in WT myoblasts. 
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On the other hand, Akt phosphorylation levels were restored to that of the control in statin-

treated GILZ KO cells, and the active form of caspase-3 was undetectable (Figure 3.7 D–E). 

 

 
Figure 3.7. Effect of GILZ knockout on statin-induced myotoxicity. WT and GILZ KO primary murine myoblasts 

were treated with atorvastatin (A), simvastatin (B) or cerivastatin (C) in increasing concentrations for 24 hours. 

The cell viability was measured via MTT assay and differences between curves were analysed by two-way 

ANOVA. Myoblasts were treated with atorvastatin (50 µM) for 6 hours, Akt phosphorylation and caspase-3 

activation were measured by western blot. One representative blot is shown (D). The ratio of phosphorylated to 

total Akt was measured by densitometric analysis and normalised to the corresponding control (E). Data show the 

mean of at least 3 independent experiments performed in replicates ± SEM. *P<0.05, **P<0.01, ***P<0.001 

relative to the control. 

As an ex vivo model for the evaluation of statin myotoxicity, we used flexor digitorum brevis 

myofibres isolated from WT and KO animals. These short fibres can be isolated, dissociated, 

and cultured, representing a more mature system for evaluation of statin effects than cell culture 

systems, since myoblasts in vitro can differentiate to myotubes but are unable to form fully 

differentiated myocytes and, therefore, do not exactly resemble the features of mature muscle 

(Ravenscroft et al., 2007; Sakamoto and Kimura, 2013). Treatment of FDB fibres from WT 

mice with atorvastatin, simvastatin, and cerivastatin induced vacuolation at 72 hours. After 5 

days the sarcomere structures were no longer visible, the fibres were swollen, ruptured, and 

blebs appeared (Figure 3.8 A and data not shown). Viability analysis using the trypan blue 

exclusion method after 5 days indicated that statins induced fibre death in a dose-dependent 
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manner. Loss of GILZ prevented the morphological changes indicative of myotoxicity and 

made the fibres resistant towards statins: in KO fibres, there were no significant differences in 

viability between the control and treatments at any of the concentrations evaluated (Figure 3.8 

A–B). 

 

 

Figure 3.8. Effect of GILZ knockout on statin-induced FDB myofibre toxicity. WT and GILZ KO FDB myofibres 

were treated with cerivastatin (1 µM) for up to 120 hours and imaged for morphological analysis, representative 

pictures are shown (A). Scale bar, 20 µm. Cell viability was measured after 120 h of treatment, using the trypan 

blue exclusion method (B). Data show the mean of 4 independent experiments performed in replicates ± SEM. 

*P<0.05, ***P<0.001 relative to the corresponding control. 
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3.2.7 GILZ contributes to statin-induced inhibition of myogenesis 

To investigate the contribution of GILZ to statin-induced inhibition of myogenesis, we 

differentiated WT and GILZ KO myoblasts in the presence of statins and evaluated the 

expression of the MRF myogenin, which is required in cells committed to the myogenic 

program for driving their fusion and terminal differentiation (Bentzinger et al., 2012). We 

observed a decrease in myogenin protein levels in WT primary murine myoblasts induced to 

differentiate for 72 hours in the presence of atorvastatin. By contrast, the expression of 

myogenin in atorvastatin treated GILZ KO cells was restored to that of the control (Figure 3.9), 

providing evidence that GILZ acts as a mediator of the anti-myogenic effects of statins. 

 

 
Figure 3.9. Effect of GILZ knockout on statin-induced anti-myogenic effects. Primary murine myoblasts from 

WT and GILZ KO animals were induced to differentiate for 72 hours in the absence or presence of atorvastatin 

(5 µM). Myogenin levels were measured via western blot, one representative blot is shown (A). Densitometric 

analysis (B). Data show the mean of 3 independent experiments ± SEM. **P<0.01 relative to the control. 

To further analyse the role of GILZ in these effects, we generated C2C12 cell lines stably 

expressing scrambled or GILZ shRNA constructs by lentiviral transduction. The C2C12shGilz1 

and C2C12shGilz2 cell lines showed a degree of gene knockdown of approximately 70% and 

60%, respectively, whereas in the scrambled control cell line, C2C12scr, Gilz expression was 

unaffected (Figure 3.10).  
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Figure 3.10. Gilz expression in stable C2C12shGilz cell lines. Scrambled and shGILZ-silenced C2C12 cell lines 

were generated by lentiviral transduction, Gilz mRNA expression was normalised against the housekeeping gene 

(Csnk2a2) and is presented as fold change of the control. Data show the mean of 3 independent experiments ± 

SEM. **P<0.01 relative to scrambled cells.  

We hypothesised that, as a result of restored myogenin expression, Gilz silencing should 

reinstate the ability of the myoblasts to differentiate in the presence of statins. Importantly, we 

found that C2C12shGilz1 and C2C12shGilz2 cells displayed terminally differentiated myotubes 

already after 4 days in DM, whereas C2C12scr cells were not fully differentiated yet (Figures 

3.11 A and 3.12 A, upper panels). GILZ knockdown, however, could only partially reverse the 

impairment in differentiation caused by statins: although Jenner-Giemsa staining showed 

myotube formation in the C2C12shGilz lines (Figure 3.12, lower panels), these cells were not 

differentiated to the same extent as their controls. Nevertheless, fusion index analysis of MHC-

stained cells showed an improvement in myotube formation from C2C12shGilz cells compared 

with the C2C12scr line (Figure 3.11 B). 
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Figure 3.11. Effect of GILZ absence on statin-induced anti-myogenic effects, as measured by MHC IF. Scrambled 

(Scr)- and shGILZ-C2C12 cell lines were induced to differentiate for 4 days in the absence or presence of 

atorvastatin (5 µM), cerivastatin (0.1 µM), or simvastatin (1 µM), and subjected to MHC IF, representative images 

are shown (A). Scale bar, 50 µm. The degree of differentiation was quantified by measuring the fusion index (B) 

and is presented relative to the controls. Bars show the mean of at least 3 independent experiments performed in 

replicates ± SEM, data points correspond to each quantified field. Comparison was performed using Kruskal-

Wallis test followed by Dunn’s post-hoc analysis. *P<0.05. 
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Figure 3.12. Effect of GILZ absence on statin-induced anti-myogenic effects, as measured by Jenner-Giemsa 

staining. Scrambled (Scr)- and shGILZ-C2C12 cell lines were induced to differentiate for 4 days in the absence or 

presence of atorvastatin (5µM), cerivastatin (0.1 µM), or simvastatin (1 µM), and subjected to Jenner-Giemsa 

staining, representative images are shown (A). Scale bar, 100 µm. The degree of differentiation was quantified by 

measuring the myotube density and is presented as fold of the corresponding controls (B). Bars show the mean of 

at least 3 independent experiments performed in replicates ± SEM, data points correspond to each quantified field.  
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3.2.8 FoxO3 mediates GILZ induction by statins in muscle 

In the search for potential upstream regulators of GILZ expression after statin treatment in 

muscle, we focused on the Forkhead Box O3 (FoxO3) protein. FoxO3 is a direct 

phosphorylation target of Akt, and our observations in skeletal muscle tissue from FoxO3 KO 

mice, where Gilz expression levels were significantly lower than in WT animals, hinted towards 

FoxO3 as a transcriptional regulator of GILZ in this tissue (Figure 3.13 A). Like in primary 

myoblasts, we observed that treatment of C2C12 myoblasts with statins led to Akt 

dephosphorylation and, in line with this, to reduced levels of phosphorylated FoxO3 protein, in 

parallel to GILZ induction (Figure 3.13 B–D). Hence, we performed chromatin 

immunoprecipitation to evaluate whether FoxO3 activated Gilz transcription in myoblasts by 

binding to the forkhead responsive elements (FHRE) in its promoter following statin treatment. 

Indeed, we found sequences corresponding to three of the four FHRE present in the Gilz 

promoter in immunoprecipitates from atorvastatin-treated myoblasts, indicating that GILZ 

induction in muscle follows dephosphorylation, nuclear translocation, and activation of FoxO3 

(Figure 3.13 E).  

 

3.2.9 Statins induce Gilz in zebrafish embryos, and deregulation of Gilz expression 

impairs somitogenesis 

The zebrafish is a powerful and versatile in vivo model for the study of developmental and 

physiological processes that has been used for the elucidation of statin effects on muscle 

development (Campos et al., 2016) and homeostasis (Hanai et al., 2007; Huang et al., 2011; 

Pasha and Moon, 2017). Given that the zebrafish expresses a GILZ orthologue (Tse et al., 

2013), we chose it as an in vivo model to study the effects of statins on GILZ expression. 

 

In line with our in vitro findings, treatment of zebrafish embryos at 20 hpf with statins at 

concentrations that have been described to cause major muscle damage, led to an up-regulation 

of gilz mRNA (Figure 3.14 A). To characterise the effects of increased Gilz expression in 

zebrafish muscle development, we performed myosin IF in Gilz overexpressing embryos. 

Compared with control animals, we found a diffuse MHC staining with loss of septa, a clear 

sign that Gilz impairs embryonic muscle development. To causally link Gilz expression with 

statin-induced muscle damage, we considered performing gene silencing via MO injection to 

evaluate the effects of statin treatment in WT vs morphant embryos. gilz morphants, however, 

showed similar features to that of the overexpressing embryos in muscle, as observed by myosin 

staining (Figure 3.14 B), indicating that Gilz plays an important role in the regulation of 

somitogenesis. 
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Figure 3.13. Involvement of FoxO3 in statin-induced GILZ expression. Gilz expression on skeletal muscle from 

FoxO3 KO mice (A). mRNA expression data was obtained from WT and KO mice (n=5), normalised against the 

housekeeping gene (Csnk2a2), and is presented as fold change of WT in box-plots showing the 25–75th percentiles, 

mean (square), median (line) and range (whiskers). Western blot analysis C2C12 myoblasts treated with 50 µM 

statin for 6 hours, a representative blot is shown (B). Densitometric analysis of ratio of phosphorylated to total 

FoxO3 (C). ChIP analysis was used to detect the binding of FoxO3 to the Gilz promoter region (D). Expression 

data is presented as fold enrichment over IgG. Data show the mean of 3 independent experiments ± SEM. *P<0.05; 

**P<0.01, ***P<0.001 relative to the control. 
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Figure 3.14. Effect of statins on gene expression in zebrafish, and effect of gilz deregulation in zebrafish muscle 

development. Zebrafish embryos at 20 hpf were treated with cerivastatin or simvastatin lactone (1 µM) for 12 

hours (A). mRNA expression was normalised against the housekeeping gene (actb2) and is presented as fold 

change of control. MHC IF of gilz-overexpressing and gilz-morphant zebrafish embryos at 24 hpf, representative 

pictures are shown (B). Panels are side views, anterior, left. White dotted lines in Co outline the V-shape pattern 

of somites. Bar, 40 µm. Data show the mean of 3 independent experiments performed in replicates ± SEM. 

*P<0.05, **P<0.01, relative to the control. 
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3.3 Discussion 

More than 30 years after their introduction to the market, statins remain the cornerstone of the 

pharmacological management of hyperlipidaemia and CVD prevention. In light of their 

importance and extended use, the understanding of the mechanisms underlying the onset of 

SAMS is of highest relevance (Stroes et al., 2015). In the present study, we report a role for 

GILZ as a pivotal mediator of the myotoxic and anti-myogenic effects of statins. We first 

demonstrate that treatment of murine myoblasts with different statins, at concentrations typical 

for in vitro studies on SAMS (Bouitbir et al., 2012; Hanai et al., 2007; Schirris et al., 2015), 

induces GILZ expression. Since SAMS are a class effect, and several of the mechanisms 

underlying muscle toxicity are directly related to the inhibition of HMG-CoA (Osaki et al., 

2015; Trapani et al., 2012), we evaluated whether GILZ expression depended on this pathway 

as well. Indeed, we found GILZ induction to be mevalonate-dependent, more specifically, on 

geranylgeranylation.  

 

The significantly lower myotoxicity of the hydrophilic statin pravastatin (Gadbut et al., 1995; 

Kaufmann et al., 2006; Kobayashi et al., 2008; Schirris et al., 2015), might be the result of 

reduced cellular uptake in our in vitro setting, that also accounts for the rather modest levels of 

Gilz induction observed in comparison to the other statins. The hydrophilicity of the molecules 

is also of relevance when comparing the cytotoxic effects of the lactone vs hydroxy acid forms 

of statins towards muscle, given that the former are significantly more lipophilic than the latter 

(Skottheim et al., 2008). It has been reported that patients with atorvastatin-induced myopathy 

have increased levels of the lactone form of the drug in plasma (Hermann et al., 2006), and in 

vitro studies also demonstrated that physiological conditions that favour the conversion of 

statins to their lactone form, such as acidosis, increase statin myotoxicity (Taha et al., 2016).  

 

Several molecular mechanisms of statin-induced myotoxicity have been proposed, describing 

their deleterious effects on mitochondrial function, calcium homeostasis, and cell survival in 

the myocyte (du Souich et al., 2017). In our hands, statins caused Akt dephosphorylation and 

activation of the apoptotic cascade in undifferentiated myoblasts. This effect agrees with 

previous findings in cultured myotubes (Bonifacio et al., 2015; Johnson et al., 2004). Our 

observations suggest a crucial role for GILZ in mediating this action. First described in 

thymocytes as an anti-apoptotic protein (D’Adamio et al., 1997), GILZ can exert anti- or pro-

apoptotic effects depending on the cell type: for instance, GILZ has been shown to promote 

apoptosis through Mcl-1 downregulation in neutrophils (Espinasse et al., 2016), or by inhibition 

of the Akt/mTOR signalling pathway, in myeloma cells (Joha et al., 2012).  

 

There are discrepancies, however, in the mechanism by which statins induce cell death in 

cultured myoblasts/myotubes vs mature fibres. For instance, statins trigger apoptosis in cultured 
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cells, whereas mature skeletal muscles show necrotic features (Sakamoto and Kimura, 2013). 

Hence, instead of using terminally differentiated cultured myotubes, we chose isolated FDB 

myofibers as an ex vivo model to evaluate the effects of the absence of GILZ in statin toxicity 

towards mature muscle. We noticed that treatment of murine FDB fibres with atorvastatin, 

simvastatin, and cerivastatin caused cell death with similar features as those previously 

described for fluvastatin-treated rat FDB fibres (Sakamoto et al., 2011). Furthermore, in 

accordance with our observations in proliferating myoblasts, GILZ was of crucial importance 

in mediating statin-induced fibre breakdown. 

 

FoxO3 is a transcription factor involved in different aspects of muscle homeostasis, like 

regulation of mitochondrial metabolism, activation of protein breakdown via the ubiquitin-

proteasome and autophagy pathways, and inhibition of muscle precursor cell 

proliferation (Sanchez et al., 2014). In statin-induced myopathy, reports have shown that 

FoxO3 activation results in expression of the muscle atrophy-related protein MAFbx/atrogin-1 

and other genes implicated in muscle proteolysis in vitro and in vivo (Hanai et al., 2007; 

Mallinson et al., 2009). Moreover, FoxO3 has been reported as a transcriptional regulator of 

GILZ in T cells, where it drives IL-2 withdrawal-induced GILZ expression (Asselin-Labat et 

al., 2005). We found statin-induced GILZ expression in muscle to be FoxO3-dependent and, as 

mentioned above, GGPP dependent. These results are in accordance with previous studies that 

linked SAMS to reduced geranylgeranylation, but not farnesylation, of different small GTPases 

like Rac1, Rap1, and Rab1 (Baba et al., 2008; Cao et al., 2009; Johnson et al., 2004; Sakamoto 

et al., 2007). Our findings suggest that the inhibition of protein geranylgeranylation by statins 

downregulates the Akt signalling pathway, leading to FoxO3-driven GILZ induction, which in 

turn further decreases Akt phosphorylation and promotes apoptosis.  

 

The fact that GILZ is expressed in skeletal muscle, as observed by us and reported in earlier 

studies (Cannarile et al., 2001), might denote a role in muscle tissue homeostasis. Indeed, an 

earlier study showed that GILZ and its longer isoform, L-GILZ, modulate myogenesis in the 

absence of pharmacological intervention, and mediate glucocorticoid-induced inhibition of 

myogenesis by decreasing MyoD-mediated myogenin transcription, thus impairing myoblast 

fusion (Bruscoli et al., 2010). For this reason, we investigated the role of GILZ in the anti-

myogenic effects of statins. We found that all statins were able to induce GILZ transcription, 

an effect that seemed to correlate with the anti-myogenic effect of the statin used. A previous 

study reported no differences in myogenin mRNA levels in simvastatin-treated C2C12 (Baba 

et al., 2008). We, however, found myogenin protein expression to be impaired in primary 

differentiating myoblasts treated with atorvastatin. Moreover, our results in GILZ KO 

myoblasts indicate that statin-induced GILZ expression, and the consequent myogenin 

transcriptional repression, is a mechanism by which this class of drugs impairs myogenesis. 
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GILZ silencing by shRNA caused the resulting C2C12shGilz cell lines to differentiate 

considerably faster than the C2C12scr control, even to a higher degree than observed for WT 

cells after terminal differentiation. This supports the importance of GILZ itself as a modulator 

of myogenesis and corresponds to our observations in zebrafish embryos, where Gilz 

overexpression severely impaired somitogenesis. Importantly, zebrafish embryos represent a 

frequently used in vivo model for the mechanistic study of SAMS (Campos et al., 2016, 2015; 

Huang et al., 2011; Pasha and Moon, 2017). The regulatory role played by Gilz in zebrafish 

embryonic development is rather complex: the study that first described the presence of a GILZ 

orthologue in zebrafish, showed that manipulation of Gilz expression in this model, either via 

MO silencing or mRNA overexpression, causes significant defects in embryonic development, 

altering the dorsoventral patterning, segmentation, and brain development processes (Tse et al., 

2013). In rodents, however, GILZ-independent regulatory pathways are most likely involved in 

the modulation of skeletal muscle development, since GILZ KO mice do not exhibit altered 

muscle features (unpublished observations). 

 

Even though myogenin expression was rescued in the absence of GILZ, we could not observe 

a complete recovery in myotube formation after statin treatment in C2C12shGilz cells. This might 

be related to residual GILZ expression in the silenced cells, or to additional pathways that 

mediate the anti-myogenic effects observed, such as the IGF-1/PI3K/Akt pathway (Ogura et 

al., 2007). Our observations indicate that GILZ is critical for statin-induced inhibition of 

myogenin, an MRF crucial for myoblast fusion and terminal differentiation (Asfour et al., 

2018). Additional factors, however, may also contribute to the inhibition of muscle regeneration 

by statins.  

 

Taken together, our data point towards GILZ as an essential mediator of the molecular 

mechanisms leading to statin-induced muscle damage and impairment of muscle regeneration. 

This study contributes to a better understanding of the molecular mechanisms underlying statin-

induced myopathy, a necessary step towards the development of prevention strategies and safer 

therapy approaches for a class of drugs that remains a pillar in the treatment of cardiovascular 

disease. 
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4. Chapter II 

 

A potential role for GILZ in the pleiotropic effects 

of statins 
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4.1 Introduction 

Statin therapy improves adverse outcomes in CVD patients (Almeida and Budoff, 2019), and 

is beneficial in primary prevention of CVD (Taylor et al., 2013). It has been suggested that the 

overall benefit of statin use is attributable not only to reduction of LDL-cholesterol but also to 

a plethora of pleiotropic effects, exerted on different cell types involved in cardiovascular 

homeostasis (Oesterle et al., 2017). Although the clinical significance of these effects is still 

debated (Labos et al., 2018), it is clear that statins reduce systemic inflammation, as 

demonstrated by different trials where reductions in high-sensitivity CRP are observed in 

patients with or without concomitant hyperlipidaemia (Ridker et al., 2008). 

 

Atherosclerosis, the main pathophysiological condition driving CVD, is considered a chronic 

inflammatory disease (Mendis et al., 2011; Tousoulis et al., 2014). Indeed, the key role of 

inflammation in this pathology could be confirmed with the results from the CANTOS trial, 

where therapeutic targeting of the pro-inflammatory cytokine IL-1β with canakinumab led to a 

significantly lower rate of recurrent cardiovascular events (Ridker et al., 2017). Development 

of the atherosclerotic plaque involves endothelial dysfunction, monocyte and T-cell recruitment 

and activation, lipid accumulation, and smooth muscle cell proliferation (Novikova et al., 2018; 

Ross, 1999). Statins have shown different beneficial, anti-inflammatory effects in these cell 

types: for example, reduction in expression of adhesion molecules in endothelial and smooth 

muscle cells (Chung et al., 2002), in matrix metalloproteinase (MMPs) secretion in 

macrophages and smooth muscle cells (Luan et al., 2003), or reduced inflammasome activation 

in endothelial cells (Wang et al., 2017). These effects are attributed to inhibition of Rho 

GTPase-mediated pro-inflammatory activity, of oxidative stress, and the activity of pro-

inflammatory transcription factors, like NF-кB (Huacuja Álvarez et al., 2006; Oesterle et al., 

2017; Tousoulis et al., 2014). 

 

GILZ is an immunomodulatory, anti-inflammatory protein (Ronchetti et al., 2015). Altered 

endogenous GILZ expression has been reported in different inflammation-related conditions, 

like obesity (Lee et al., 2016; Robert et al., 2016), rheumatoid arthritis (Beaulieu et al., 2010), 

endotoxin tolerance (Hoppstädter et al., 2015) and, interestingly, vascular inflammation (Hahn 

et al., 2014). Studies in different cell types indicate that GILZ exerts its anti-inflammatory 

activity via inhibition of NF-кB transcriptional activity (Ayroldi et al., 2001; Cheng et al., 2013; 

Yang et al., 2008). Of notice, apart from glucocorticoids, GILZ can be induced in response to 

other anti-inflammatory compounds like curcumin in macrophages (Hoppstädter et al., 2016), 

as well as by vascular protective conditions, such as laminar shear stress in endothelial cells 

(Hahn et al., 2014). We aimed at evaluating the hypothesis that statins can induce GILZ in two 

cell types involved in vascular inflammation, i.e. endothelial cells and macrophages, and that 

this protein plays a role in the anti-inflammatory, pleiotropic effects of statins. 
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4.2 Results 

4.2.1 Statin cytotoxicity towards endothelial cells and macrophages 

Evaluation of statin toxicity towards endothelial cells and macrophages was performed by 

treatment of HUVECs and BMMs with increasing concentrations of atorvastatin, cerivastatin, 

simvastatin in lactone and acid form, and pravastatin. The effects on cell viability were 

measured via MTT assay. Similar to the findings in skeletal muscle (Chapter I), pravastatin was 

the least toxic of statins, while the other statins were toxic already at low concentrations (Figure 

4.1). For this reason, concentrations in the nanomolar–low micromolar range were used for 

further experiments. The viability of BMMs was not affected by statin treatment at the 

evaluated concentrations (data not shown). 

 

 
Figure 4.1. Statin cytotoxicity towards endothelial cells. HUVEC were treated with atorvastatin, cerivastatin, 

pravastatin, simvastatin lactone or simvastatin sodium salt in increasing concentrations for 24 hours. The cell 

viability was measured via MTT assay. Data show the mean of three independent experiments ± SEM. *P<0.05, 

**P<0.01, ***P <0.001 for the lowest concentration that caused a significant decrease in viability relative to the 

control. 

4.2.2 Atorvastatin induces GILZ expression in endothelial cells and macrophages 

To assess the effects of statin treatment on GILZ expression in endothelial cells and 

macrophages, HUVECs and BMMs were treated with a non-toxic concentration of atorvastatin 

(3 µM) for up to 24 hours, to measure the levels of GILZ mRNA at different time points. 

Atorvastatin induced GILZ expression in endothelial cells already at 2 hours of treatment, the 

induction was significant at 8 hours and continued to increase until the end of treatment (Figure 
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4.2 A). Furthermore, a moderate increase in Gilz expression was observed in BMMs, 

statistically significant at 16 hours (Figure 4.2 D). The shear stress-inducible, atheroprotective 

transcription factor KLF2, is known to be upregulated by statins (Parmar et al., 2005; Tuomisto 

et al., 2008), and endothelial nitric oxide synthase (eNOS) is one of the key targets of statins in 

vascular endothelium (Margaritis et al., 2014); both mRNAs were also measured as positive 

controls. As expected, atorvastatin treatment induced KLF2 and eNOS expression in a time-

dependent manner (Figure 4.2 B–C, E). 

 

Figure 4.2. Effect of statin treatment on mRNA expression in endothelial cells and macrophages. HUVECs (A–

C) and BMMs (D–E) were treated with atorvastatin (3 µM) for up to 24 hours, mRNA expression levels were 

measured. Gene expression was normalised against the housekeeping gene (A–C ACTB; D–E Rn18s) and is 

presented as fold change of control.  Data show the mean of 3 independent experiments performed in replicates 

with cells derived from different donors ± SEM. *P<0.05, **P<0.01, ***P<0.001 relative to the control. 
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4.2.3 Statin-induced GILZ expression in HUVECs is mevalonate-dependent 

To evaluate the dependence of GILZ induction on HMG-CoA inhibition, HUVECs were treated 

with non-toxic concentrations of statins in the absence or presence of mevalonate. As shown in 

Figure 4.3, all statins induced GILZ expression after 24 hours of treatment. The effect was 

reversed by coincubation with mevalonate. 

 

 
Figure 4.3. Effect of mevalonate on statin-induced GILZ expression in endothelial cells. HUVECs were treated 

with atorvastatin (1 µM), pravastatin (50 µM), cerivastatin (100 nM), or simvastatin (200 nM) in the absence or 

presence of mevalonate (100 µM) for 24 hours. GILZ expression was normalised against the housekeeping gene 

(ACTB) and is presented as fold change of control.  Data show the mean of 2 independent experiments performed 

in replicates with cells derived from different donors ± SEM. *P<0.05, **P<0.01, ***P<0.001 relative to the 

control. + P<0.05 +++ P<0.001 relative to the non-MVA condition 

4.2.4 KLF2 is not involved in the regulation of GILZ expression in endothelial cells 

Given the main role played by KLF2 as mediator of the cardiovascular beneficial effects of 

statins, and the parallel upregulation of both genes observed upon atorvastatin treatment, it was 

of interest to evaluate whether regulation of KLF2 expression influenced GILZ expression in 

endothelial cells. The notion of KLF2 as transcriptional activator of GILZ expression was 

supported by in silico analysis of the murine Gilz promoter, where KLF2-binding sites were 

found (data not shown). Knockdown of the KLF2 gene in HUVECs was performed using an 

siRNA approach. In addition, overexpression was achieved by means of a doxycycline-

inducible lentiviral expression system. siRNA knockdown resulted in a 50% decrease in gene 

expression (Figure 4.4 A) but had no effects on baseline expression of GILZ in transfected 

HUVECs, compared with the scramble controls (Figure 4.4 B). Similarly, lentiviral 

overexpression at two different MOIs resulted in a 10–15-fold induction of KLF2 expression 

but had no effects on GILZ (Figure 4.4 C).  
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Figure 4.4. Effect of KLF2 knockdown and overexpression on GILZ expression in endothelial cells. HUVECs 

were transfected with siRNA targeting KLF2 at different concentrations for 24 hours, KLF2 levels were determined 

(A). GILZ levels were measured at the concentrations where significant KD was found (B). HUVECs were 

transduced with hKLF2 lentivirus and allowed to overexpress KLF2 for 72 hours before harvesting for mRNA 

analysis (C). mRNA expression was normalised against the housekeeping gene (ACTB) and is presented as fold 

change of control. Data show the mean of 3 independent experiments performed in replicates with cells derived 

from different donors (A–B) or a single experiment performed in duplicate (C) ± SEM. *P<0.05 relative to the 

control. 

4.2.5 Development of a GILZ-KO endothelial cell line model via CRISPR/Cas9 editing 

For analysis of the functional implications of GILZ induction by statins in vascular 

endothelium, a cell model with GILZ loss of function would be of interest. To this end, 

CRISPR/Cas9 technology, a highly versatile and efficient tool for gene editing (Boettcher and 

McManus, 2015), was used for the establishment of an endothelial GILZ-KO cell line. 

HUVECs are primary cells, hence not suitable for stable cell line generation. Therefore, the 

human dermal microvascular endothelium cell line HMEC-1 was chosen for CRISPR/Cas9 

mediated GILZ deletion. Statin treatment significantly induced GILZ expression in these cells 

to a similar extent as in primary cells (Figure 4.5). To avoid the caveats of plasmid cloning, 

transfection/transduction, and expression of the CRISPR components in the cells, a system that 

involved direct delivery of Cas9 recombinant protein and the synthetic sgRNA was chosen. The 
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gene editing experiment was also performed in C2C12 myoblasts and murine RAW 264.7 

macrophages, in parallel to HMEC-1 cells.  

 

 
Figure 4.5. Effect of statin treatment on GILZ expression in an endothelial cell line. HMEC-1 cells were treated 

with simvastatin or atorvastatin at 1 µM for 24 hours, GILZ mRNA expression was normalised against the 

housekeeping gene (ACTB) and is presented as fold change of control. Data show the mean of 2 independent 

experiments performed in replicates ± SEM. ***P<0.001 relative to the control. 

The GILZ gene is located on the X chromosome. For HMEC-1 and RAW264.7 cells, lines of 

male origin, this means only one allele needs to be edited by non-homologous end joining 

(NHEJ). C2C12, on the other side, is a female cell line with a hypo tetraploid karyotype —

including 4 copies of the X chromosome— (Casas-Delucchi et al., 2011), which makes it 

difficult to obtain a clone with complete knockout. The validated murine and human sgRNA 

sequences were located in the last exon of their corresponding gene (Figure 4.6 A-B). Off-target 

analysis performed with the GT-scan software tool (O’Brien and Bailey, 2014) showed no 

predicted off-target effects in exonic regions of the genomes, thus, specific editing could be 

expected. The T7E1 mismatch assay performed in the bulked cell population after transfection 

indicated cutting by Cas9 in C2C12 and HMEC-1, but not in RAW 264.7 (Figure 4.6 C). After 

clonal expansion, none of the 20 C2C12 clones screened had indels in all alleles, while the 3 

HMEC-1 clones that survived showed successful genomic 1 and 34-bp deletions (Figure 4.7). 

The growth of these clones, however, was impaired. For this reason, the cells could not be 

further expanded for characterization. As for the RAW264.7 macrophage model, the lack of 

editing could be due to poor transfection efficiency, common for this cell line. Hence, to 

facilitate the screening for functional sgRNAs and the generation of KO cell lines, a Cas9-

expressing cell line was developed by a lentiviral approach (data not shown). 
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Figure 4.6. CRISPR/Cas9 – mediated GILZ knockout in cell lines. Schematic representation of the human (A) 

and murine (B) GILZ genes, black arrows indicate the approximate position of the sgRNAs. Genome editing 

efficiency in bulked population of edited RAW 264.7, C2C12, and HMEC-1 cells (C). The target genomic region 

from control and transfected cells was amplified by PCR and subjected to mismatch T7E1 assay, products were 

separated on an agarose gel for analysis. Cleavage efficiency was estimated from the intensities of the parental and 

cleaved bands. 
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Figure 4.7. Validation of CRISPR/Cas9-mediated genome editing in HMEC-1 and C2C12 clones via Sanger 

sequencing. Sequence of three edited HMEC-1 clones was obtained, chromatogram analysis shows a single allele 

sequence. Clones 1 and 5 have the same 1 bp deletion (A) clone 2 has a 34 bp deletion (B). Example sequence of 

a non-pan-allelic edit obtained in C2C12 clone 17, two sequences are observed in the chromatogram, one 

corresponding to the WT sequence, and one with a 4 bp deletion (C). Sequences were deconvoluted using the 

CRISP-ID web application, first rows correspond to the reference, WT cells, and bottom rows to the observed 

sequencing results. 
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4.3 Discussion 

The benefits of statin treatment on CVD are indisputable. Nevertheless, further study of the 

molecular mechanisms underlying the actions of statins in vascular inflammation are still 

needed (Almeida and Budoff, 2019). Here it is demonstrated that statins induce the anti-

inflammatory protein GILZ in two cell types of critical importance in atherogenesis (Novikova 

et al., 2018), i.e. endothelial cells and macrophages. The induction was mevalonate-dependent, 

that is, specific to their mechanism of action. Based on the results in muscle cells (chapter I), it 

might be possible that statin-induced GILZ expression occurs via inhibition of protein 

prenylation in these cell types as well. The role of GILZ in inflammation has been characterised 

in different tissues and cell types, and more recently it has been shown that GILZ peptide 

analogues have therapeutic potential for treatment of chronic inflammatory diseases in the 

central nervous system (Gu et al., 2018; Srinivasan et al., 2016). Therefore, one might expect 

GILZ induction to be at least partially responsible for the pharmacological effects of statins in 

vascular inflammation.  

 

A well-recognised mediator of the pleiotropic effects of statins is KLF2 (Parmar et al., 2005; 

Sen-Banerjee et al., 2005; Tuomisto et al., 2008), a transcription factor that can also be induced 

by glucocorticoid receptor activation in macrophages, in what has been proposed to be an 

important cooperation for the control of inflammatory processes (Chinenov et al., 2014). 

Although the induction patterns of KLF2 and GILZ after atorvastatin treatment were very 

similar in HUVECs, the exploratory findings presented here do not support the hypothesis that 

KLF2 acts as an upstream regulator of GILZ expression in endothelium. Whether GILZ might 

act as an upstream regulator of KLF-2 expression remains to be investigated. 

 

It was possible to successfully introduce genomic edits in the GILZ gene in HMEC-1 cells by 

using CRISPR/Cas9 technology, establishing a protocol for generation of knockouts in our 

laboratory that can be of use to evaluate the functional aspects of GILZ induction by statins. 

The three HMEC-1 clones with validated deletions exhibited impaired growth, which might be 

indicative of a role for GILZ in endothelial cell proliferation. Since the validated target sgRNA 

sequence was in the last exon of the gene, constitutive to all transcript variants but at the C-

terminal portion of the protein, it is likely that the clones did not have abolished expression of 

GILZ. For CRISPR/Cas9 mediated KO generation it is recommended targeting portions near 

the N-terminus of the protein, or 5’ constitutive exons, to increase the probability of a frameshift 

mutation that leads to nonsense-mediated mRNA decay or a non-functional protein product 

(Doench et al., 2014; Joung et al., 2017). The deletions obtained here, however, may cause 

alterations in the C-terminal portion of GILZ, responsible for interaction with NF-кB (Di Marco 

et al., 2007). Further work in generation of GILZ KO HMEC-1 cells might clarify this issue.  
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Although still a matter of discussion, a body of evidence points towards pleiotropic effects of 

statins as major contributors to their beneficial effects on the cardiovascular system. The 

findings presented in this study open the opportunity to investigate the potential role of GILZ 

as mediator of the anti-inflammatory actions of statins in the cardiovascular system.
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5. Chapter III 

 

Macroph-aging: role of glucocorticoid metabolism 
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5.1 Introduction 

Aging is characterised by a gradual decline of the immune function that results in a chronic, 

low-grade systemic inflammatory state, termed “Inflammaging” (Franceschi et al., 2000). This 

chronic inflammation, fuelled by continuous exposure to a number of exogenous and 

endogenous antigens during lifespan, is considered by geroscience one of the seven pillars of 

aging, and largely determines the onset of age-related diseases (Franceschi et al., 2018).  

 

Different factors, like cell senescence, endocrine, and metabolic alterations, contribute to 

sustain inflammaging (Bandaranayake and Shaw, 2016). Among these, the macrophage is 

considered a key cell type driving age-related inflammation. Indeed, since its origins, the theory 

of inflammaging has been intertwined with “macroph-aging”, that is, the chronic activation of 

macrophages with age (Franceschi et al., 2000; Prattichizzo et al., 2016). Macrophages are a 

widely distributed, heterogeneous, plastic cell population, with central roles as effector and 

mediator of the innate and adaptive immune response (Janeway et al., 2001; Wynn et al., 2013). 

Several studies in humans and animals have reported age-related alterations in different 

macrophage functions, such as phagocytic activity, pro-inflammatory cytokine secretion, and 

antigen presentation (Jackaman et al., 2017; Sebastián et al., 2005). Furthermore, loss of 

macrophages has been associated with improved inflammatory-induced pathology and survival 

after systemic immunostimulation (Bouchlaka et al., 2013), and with reduced 

neurodegeneration (Yuan et al., 2018) in murine models of aging. 

 

Endogenous GCs are main regulators of the immune function (Cain and Cidlowski, 2017). GC 

secretion is regulated in a circadian manner, and in response to stress, by the HPA axis, the 

function of which is dysregulated with advancing age (Gupta and Morley, 2014). Although 

sometimes contradictory, literature reports regarding altered cortisol secretory profiles in 

humans often describe elevations in cortisol levels in aged subjects that correlate with negative 

health outcomes (Gaffey et al., 2016). Noticeably, increased cortisol levels seem to be a 

phenotypic feature of centenarians, subjects who are able to cope with inflammation and have 

achieved longevity by mounting an effective anti-inflammaging response (Franceschi et al., 

2007; Genedani et al., 2008; Sergio, 2008). Thus, the balance between pro- and anti-

inflammatory mediators is what ultimately determines successful aging. Because of their role 

in modulation of the inflammatory response (Busillo and Cidlowski, 2013), one might 

hypothesise that alterations in GC metabolism affect the function of immune cells, including 

macrophages, during aging. 

 

Previous work in our group found a pro-inflammatory phenotype in aged (85 weeks) C57BL/6 

mice compared with their young (10 weeks) counterparts. This phenotype was characterised by 

higher levels of circulating pro-inflammatory cytokines, like TNF-α, and lower levels of total 
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corticosteroids in serum (Figure 5.1 A–B). Likewise, flow cytometry analysis showed 

decreased expression of the GC-inducible, anti-inflammatory protein GILZ in the myeloid 

compartment of different organs, in PBLs, and in PMs from aged animals (Data not shown and 

figure 5. C). Given the importance of macrophage activation and GC response in the aged 

immune system, we aimed to further evaluate the age-associated changes in gene expression 

and GC metabolism across tissues, as well as in the myeloid compartment of mice, to improve 

the current understanding of “macroph-aging”. 

 

 
Figure 5.1. Aged mice show a pro-inflammatory phenotype. Levels of TNF-α (A) and total corticosteroids (B) in 

serum from young (10 weeks) and aged (85 weeks) C57BL/6 mice (n=12–15), as determined by ELISA. Flow 

cytometry analysis of GILZ levels in PMs isolated from young and aged mice (C, n=8–10). Box-plots show the 

25–75
th

 percentiles (Box), mean (square), median (line) and range within 1.5 IQR (whiskers). **P<0.01, 

***P<0.001 relative to young mice.   
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5.2 Results 

5.2.1 Lipid peroxidation and clinical chemistry analysis 

To further characterise the aged-related changes of C57BL/6 mice, TBARS assay was 

performed to measure the oxidative stress levels of young and aged animals in liver tissue. 

Contrary to what could be expected, there were lower levels of malondialdehyde in livers from 

aged mice, compared with the young controls (Figure 5.2). Serum analysis of aspartate and 

alanine transaminases, triglycerides, cholesterol, albumin, and uric acid levels did not reveal 

age-related significant differences among groups (Table 5.1). 

 

 
Figure 5.2. Oxidative stress levels in livers from young and aged mice. TBARS assay was performed in liver 

tissues from young (10 weeks) and aged (85 weeks) C57BL/6 mice (n=8). MDA concentrations were normalised 

to total protein content in the sample and are presented in Box-plots showing the 25–75th percentiles (Box), mean 

(square), median (line) and range within 1.5 IQR (whiskers). **P<0.01 relative to young mice.  

Table 5.1. Clinical chemistry analysis in serum from young and aged C57BL/6 mice.  

 Female Male 

Young (n=3) Aged (n=6) Young (n=9) Aged (n=6) 

AST (U/l) 1005 (420-1450) 555 (390-800) 1015 (450-1205) 592.5 (515-890) 

ALT (U/l) 95 (50-135) 107.5 (60-190) 175 (70-425) 132.5 (75-320) 

Triglycerides (mg/dl)  105 (90-110) 82.5 (65-110) 140 (135-175) 102.5 (95-135) 

Cholesterol (mg/dl) 60 (60-65) 60 (-) 75 (65-80) 65 (60-70) 

Albumin (g/l) 35 (-) 37.5 (35-40) 30 (30-35) 35 (30-35) 

Uric acid (mg/dl) 7.5 (5-8) 8 (7-8) 7 (6-9.5) 7.5 (7-8) 

Data are presented as median (IQR). Comparison was performed with Mann Whitney U Test. No significant 

differences were detected. 
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5.2.2 Cytokine expression in tissues from aged mice 

Measurement of mRNA expression of three pro-inflammatory mediators, namely Tnf, Il1b, and 

Il6, was performed at baseline and after treatment with 5 mg/kg LPS, in different tissues from 

young and aged mice. There were no consistent differences in the expression of these mediators 

in tissue that correlated with the elevated serum cytokine levels observed by ELISA in previous 

experiments. At baseline, Tnf levels were significantly elevated in lung but decreased in lymph 

nodes of aged mice, while Il1b expression was increased in both, liver and lymph nodes (Figure 

5.3 A,C). After LPS stimulation, significant differences between groups were only found for 

Tnf expression in liver and spleen (Figure 5.3 B,D). Il6 expression was very low in all tissues, 

what impedes to draw significant conclusions from the data obtained (Appendix). 

 

5.2.3 Altered glucocorticoid homeostasis in myeloid cells from aged mice 

Further analysis focused on changes in gene expression of PMs and PBLs isolated from young 

and aged mice, given that no major differences between groups could be detected in whole 

tissues. The expression of GC-responsive genes other than GILZ was evaluated in these cells, 

finding significantly decreased levels of the dual specificity phosphatase 1 (Dusp1) gene, but 

not of Anxa1 or Sgk1 (Figure 5.4). The reduced levels of GILZ protein and Dusp1 gene 

expression might be indicative of a decreased ability of myeloid cells to respond to GC 

stimulation. Since altered regulation of genes responsible for GC homeostasis within cells could 

account for dysregulated GC-responsiveness in aging, the expression of such genes was 

investigated.  
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Figure 5.3. Expression of pro-inflammatory cytokines in tissues from young and aged mice. mRNA expression of 

Tnf and Il1b was measured in heart, liver, lung, lymph nodes, skeletal muscle, and spleen tissues from young (10 

weeks) and aged (80–100 weeks) C57BL/6 mice at baseline (A,C, n=9–13), or in liver, lung, lymph nodes, and 

spleen after treatment with 5 mg/kg LPS for 4 hours (B,D, n=4–6). mRNA expression was normalised against the 

housekeeping gene (Ppia) and is presented as fold change of young. Box-plots show the 25–75th percentiles (Box), 

mean (square), median (line) and range within 1.5 IQR (whiskers). *P<0.05, **P<0.01 relative to equally treated 

young mice. 
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Figure 5.4. Expression of GC-responsive genes in PM/PBL from young and aged mice. mRNA expression of 

Anxa1, Sgk1 and Dusp1 was measured in PMs and PBLs from young (10 weeks) and aged (80–100 weeks) 

C57BL/6 mice (n=13–14). Gene expression was normalised against the housekeeping gene (Ppia) and is presented 

as fold change of young. Box-plots show the 25–75th percentiles (Box), mean (square), median (line) and range 

within 1.5 IQR (whiskers). *P<0.05, **P<0.01 relative to young mice. 

GCs exert their action through binding to the ubiquitously expressed glucocorticoid receptor 

(GR). Therefore, changes in cellular GR expression determine GC-responsiveness (Oakley and 

Cidlowski, 2013; Ramamoorthy and Cidlowski, 2013). mRNA expression analysis, however, 

indicated that GR levels remained unchanged with aging in PMs and PBLs (Figure 5.5 A). At 

pre-receptor level, the intracellular action of GCs is largely determined by the activity of the 

two isozymes 11β-HSD1 and 11β-HSD2, that catalyse the interconversion of active 

cortisol/corticosterone and inactive cortisone/11-dehydrocorticosterone (11-DHC), thereby 

modulating GC availability (Tomlinson et al., 2004). Hsd11b1 expression was significantly 

decreased in aged mice compared with young controls, not only in PMs and PBLs, but also in 

liver, where the enzyme is most abundant (Figure 5.5 B–C). The findings at mRNA level were 

confirmed at protein level in PMs and bone-marrow derived macrophages (BMM, Figure 

5.5 D–F). Expression of the hexose-6-phosphate dehydrogenase gene (H6pd) was upregulated 

in aged PMs and PBLs. In the cell, H6PDH is the source of NADPH, needed as cofactor for 

11β-HSD1 reductase (cortisone to cortisol) activity (Atanasov et al., 2004). On the other hand, 

the gene expression of Hsd11b2, the isozyme that exerts dehydrogenase (cortisone to cortisol) 

activity, remained unchanged in PMs and PBLs from aged mice, compared with young controls 
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(Figure 5.5 G–H). These findings are indicative of alterations in intracellular GC metabolism 

in the macrophages of aged mice.  

 

 

Figure 5.5. Alterations in glucocorticoid metabolism in aged mice. Expression of GR mRNA (Nr3c1) in PMs and 

PBLs from young (10 weeks) and aged (80–100 weeks) C57BL/6 mice (n=13–14, A). Hsd11b1 expression in 

PMs, PBLs, and liver tissue from young and aged mice (B–C). 11β-HSD1 protein expression was measured in 

BMMs (D, n=4) and PMs (E, n=11–12). Representative blots are shown. Densitometric analysis, normalised to 

the housekeeping protein (α-Tubulin, E). mRNA levels of H6pd and Hsd11b2 were also measured in PMs and 

PBLs (G–H). Gene expression was normalised against the housekeeping gene (Ppia) and is presented as fold 

change of young. Box-plots show the 25–75th percentiles (Box), mean (square), median (line) and range within 

1.5 IQR (whiskers). Bars show the mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 relative to young mice. 
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5.2.4 Reduced corticosterone levels and 11β-HSD1 activity in aged mice 

Analysis of the functional implications of reduced 11β-HSD1 expression was first performed 

by measurement of the levels of corticosterone and 11-DHC, the main GCs in rodents (Gong et 

al., 2015), in serum from young and aged mice. In line with the previous ELISA findings, aged 

mice displayed reduced levels of both corticosteroids in serum (Figure 5.6 A–B). The ratio of 

active corticosterone to inactive 11-DHC, however, remained unchanged in both groups (data 

not shown). 

 

Since 11β-HSD1 regulates the intracellular availability of active GCs, alterations in 11β-HSD1 

reductase activity were evaluated by measuring the conversion rate of deuterated cortisone to 

cortisol in isolated young and aged PMs. As could be expected, the downregulation of the 

enzyme resulted in less intracellular conversion to cortisol (Figure 5.6 C). Hence, one might 

hypothesise, in the in vivo setting reduced 11β-HSD1 expression translates into less 

corticosterone available to activate the GR in aging macrophages. 

 

 
Figure 5.6. Differences in serum glucocorticoids and 11β-HSD1 activity in young and aged mice. Serum levels 

of corticosterone and 11-DHC from young (10 weeks, n=15) and aged (80–100 weeks, n=7) male C57BL/6 mice 

were measured by LC-HRMS/MS (A,B). PMs isolated from young and aged animals (n=10) were incubated for 

24 hours with 0.1 µM and 1 µM cortisone-D8, the conversion to cortisol-D8 was measured in supernatants by LC-

HRMS/MS (C). Conversion percentages were normalised to total protein content in the sample. Box-plots show 

the 25–75th percentiles (Box), mean (square), median (line) and range within 1.5 IQR (whiskers). Bars show the 

mean ± SEM. *P<0.05, **P<0.01, relative to young mice.  

5.2.5 Upstream regulators of 11β-HSD1 are downregulated in aged macrophages 

Transcription of Hsd11b1 is regulated by members of the CCAAT/enhancer binding protein 

(C/EBP) family of transcription factors (Chapman et al., 2013). As a first insight into the 

mechanisms leading to 11β-HSD1 downregulation in aged PM and PBL, mRNA levels of 

C/EBPα and C/EBPβ were measured. Both genes were significantly downregulated in PMs 
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from aged animals. In PBLs, a similar tendency for Cebpa expression was observed, while the 

expression of Cebpb remained unchanged (Figure 5.7). 

 

 
Figure 5.7. Gene expression of upstream regulators of 11β-HSD1. Cebpa (A) and Cebpb (B) mRNA levels were 

measured in PMs and PBLs from young (10 weeks) and aged (80–100 weeks) C57BL/6 mice (n=13–14). Gene 

expression was normalised against the housekeeping gene (Ppia) and is presented as fold change of young. Box-

plots show the 25–75th percentiles (Box), mean (square), median (line) and range within 1.5 IQR (whiskers). 

**P<0.01, ***P<0.001 relative to young mice.  
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5.3 Discussion 

The aging process represents a gradual deterioration of the function and homeostasis of 

different systems that are closely linked with the onset of chronic diseases, and ultimately 

determine survival. The present work shows evaluation of the phenotype of aging C57BL/6 

mice, and reports alterations in the intracellular GC homeostasis of macrophages and PBLs 

from these mice.  

 

Oxidative stress has been signalled as a determinant factor that contributes to age-related 

inflammation (De la Fuente and Miquel, 2009). In serum (Balkan et al., 2002) and erythrocytes 

(Kawamoto et al., 2005) of aged subjects, increased levels of endogenous lipid peroxidation, 

indicative of oxidative stress, have been reported. On the other hand, the literature about lipid 

peroxidation on mammal tissues is conflicting, and the results are species-, sex-, and tissue-

dependent (Khansari et al., 2009). In this setting, age was associated with reduced hepatic lipid 

peroxidation —and thus oxidative stress— similar to previous reports in 22-month C57BL/6 

mice (Selman et al., 2008). The reduced MDA levels found in aged mice may be explained by 

conserved or improved antioxidant capacity in the liver, as previously shown for old female 

Fischer 344 rats (Rikans et al., 1991). This aspect, however, was not evaluated in the present 

study. 

 

The involvement of GC signalling and metabolism in chronic inflammation and stress-related 

disorders, two phenomena that occur with aging, has been a topic of interest for the last decades 

(Herriot et al., 2017). Literature reports indicate associations between both, higher and lower 

GC levels, and negative health outcomes (Gaffey et al., 2016; Raison and Miller, 2003). In 

rodents, increase (Kizaki et al. 2002), no differences (Morano et al., 1994) and, more recently, 

decrease (Zambrano et al., 2015) of serum corticosterone with age has been reported. Given 

that GCs have an anti-inflammatory and immunosuppressive function, it is logical to think that 

the reduced total circulating GCs, and particularly corticosterone, found in our study might 

contribute to the pro-inflammatory phenotype observed in aged mice. Nevertheless, cellular 

GC-responsiveness is ultimately determined by the intracellular availability of active GCs, as 

well as the expression of GRs. Aged PMs and PBLs, indeed, showed reduced levels of two GC-

inducible genes with important roles in the regulation of the inflammatory response: GILZ 

downregulation has been associated with increased pro-inflammatory activation of 

macrophages (Hoppstädter et al., 2015), and DUSP-1 has been shown to reduce their pro-

inflammatory cytokine expression upon LPS-activation (Abraham et al., 2006; Chen et al., 

2002).  

 

Although a previous study reported elevated GR mRNA expression in peritoneal exudate cells 

from aged mice (Kizaki et al., 1998), our findings suggest that alterations in GC-homeostasis 
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from PMs are not associated with altered GR expression but with reduced intracellular 

activation of 11-DHC by 11β-HSD1. There might be different functional implications of 

blunted 11β-HSD1 signalling in aged macrophages: it has been shown that 11β-HSD1-

defficient mice are more susceptible to endotoxemia, and macrophages derived from these mice 

are hyperresponsive to LPS stimulation (Zhang and Daynes, 2007). Loss of 11β-HSD1 in 

macrophages has also been associated with delayed phagocytic capacity (Gilmour et al., 2006). 

 

Various studies have addressed the changes in 11β-HSD1 expression and activity in different 

tissues and cell types with aging. For example, elevated expression in hippocampus from aged 

C57BL/6J mice was related to impaired cognitive function (Holmes et al., 2010). Similarly, 

protein expression was elevated in skeletal muscle from aged female volunteers, and correlated 

with reduced grip strength and insulin resistance (Hassan-Smith et al., 2015). Age-related 

elevations in 11β-HSD1 have also been reported for brown adipose tissue (Doig et al., 2017), 

skin (Tiganescu et al., 2013), and CD4+ T lymphocytes (Zhang et al., 2005). Interestingly, 11β-

HSD1 was regulated in the opposite fashion not only in PMs, but also in PBLs, a mixed 

population of granulocytes, lymphocytes, and monocytes. To our knowledge, this is the first 

report on age-induced changes in 11β-HSD1 expression in macrophages.  

 

In summary, the present data provide insight into the alterations in GC metabolism in 

macrophages during aging. The reduced circulating corticosterone levels, together with a 

decreased availability of active GC within cells as a consequence of reduced 11β-HSD1, might 

contribute to the imbalance between pro- and anti-inflammatory signalling in macrophages 

from aged mice, thus promoting the inflammaging phenotype. 

  



Chapter III 

 

78 
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Macroph-aging: Role of glucocorticoid metabolism 

 

J. Vanessa Valbuena Perez; Anna Dembek; Rebecca Linnenberger; Carlo Riccardi, Ph.D.; 

Stefano Bruscoli, Ph.D.; Markus R. Meyer, Ph.D.; Alexandra K. Kiemer Ph.D.; and Jessica 

Hoppstädter. Ph.D.
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6. Summary and Conclusions  
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Statins are essential in the pharmacotherapy for prevention of the most important cause of death 

globally, i.e. cardiovascular disease. These drugs are generally considered safe and exert a 

plethora of beneficial effects in the vasculature. SAMS, however, still represent an important 

reason for non-adherence to treatment. Because of their widespread use, even a low incidence 

in SAMS would represent a substantial number of patients affected. In the present study, GILZ 

was identified as an essential mediator of the molecular mechanisms underlying statin-induced 

muscle damage and impairment of muscle regeneration. We confirmed the importance of 

impaired protein geranylgeranylation, Akt signalling, and FoxO3 activation in statin-induced 

myotoxicity, and demonstrated that loss of GILZ can prevent statin-induced cell death.  

 

The effects of statins in muscle differentiation have been less investigated than their 

myotoxicity. This work demonstrated that GILZ induction by statins is also involved in their 

deleterious effects on myoblast differentiation, since GILZ depletion was able to partially 

rescue myogenesis in the presence of statins. Moreover, the involvement of endogenous GILZ 

in the regulation of skeletal muscle development and regeneration appears as an interesting 

topic for further research. 

 

The functional implications of GILZ induction by statins are, nonetheless, not only negative, 

since GILZ is also induced in vascular endothelial cells and macrophages, two cell types in 

which the anti-inflammatory function of this protein is well characterised. To which extent 

GILZ contributes to the pleiotropic, anti-inflammatory actions of statins, remains to be 

investigated. 

 

In conclusion, the first part of this study contributes to a better understanding of the molecular 

mechanisms underlying statin-induced myopathy, a valuable step towards the development of 

prevention strategies and safer therapy approaches for this class of drugs. Furthermore, the 

findings presented here open the opportunity to investigate the potential role of GILZ as a 

mediator of the anti-inflammatory actions of statins in the cardiovascular system. 

 

The onset of CVD and other chronic inflammatory diseases is largely predicted by age. Indeed, 

the field of geroscience considers that aging and age-related diseases share a molecular basis, 

in which inflammation plays a key role. The comprehensive investigation of the mechanisms 

that fuel, maintain, and modulate inflammaging is therefore necessary to understand its 

potential role in age-related pathogenesis and identify points for intervention. Macrophages are 

the central cell type driving the inflammatory response, and maladaptive function of aged 

macrophages largely contributes to inflammaging. The second part of this work investigated 

whether GC regulation was altered with age in this cell type, given that GCs are main 

modulators of the immune function and stress response. The data obtained provide insight into 

the alterations in GC metabolism in macrophages during aging. Reduced circulating GC levels, 
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together with a decreased availability of active GC within cells as a consequence of reduced 

11β-HSD1, might contribute to the imbalance between pro- and anti-inflammatory signalling 

in macrophages from aged mice, thus promoting the inflammaging phenotype. 
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Appendix 1  

Gene expression in tissues from young and aged WT mice. Gilz, Il6, and GR (Nr3c1) mRNA 

expression levels were measured in heart, liver, lung, lymph nodes, skeletal muscle, and spleen 

tissues from young (10 weeks) and aged (80–100) weeks C57BL/6 mice at the baseline (A,C,E, 

n=9–13), or in liver, lung, lymph nodes, and spleen after treatment with 5 mg/kg LPS for 4 

hours (B,D,F, n=4–6). Gene expression was normalised against the housekeeping gene (Ppia) 

and is presented as fold change of young. Box-plots show the 25–75th percentiles (Box), mean 

(square), median (line) and range within 1.5 IQR (whiskers). Levels below LOD in A and B 

were assigned as zero-points for illustrational purposes. **P<0.01 relative to equally treated 

young mice. 
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Gene expression in tissues from young and aged GILZ KO mice. mRNA expression was 

measured in tissues after treatment with 5 mg/kg LPS for 4 hours (n=4–6), normalised against 

the housekeeping gene (Ppia) and is presented as fold change of equally treated young WT. 

Data show mean (95% CI). *P<0.05 relative to equally treated young WT mice, as determined 

by Welch’s t-test. 

 

  

  Relative mRNA expression [x-fold] 

Tnf  Il1b Il6 Nr3c1 

Young 

KO 

Liver 2.16 (0.73-3.58) 1.27 (0.43-2.10) 0.92 (0.02-1.82) 1.72 (0.17-3.26) 

Lung 0.81 (0.38-1.24) 1.05 (0.39-1.72) 1.45 (-0.25-3.15) 
2.05  

(0.92-3.19)* 

Lymph nodes 2.24 (0.98-3.50) 1.23 (0.44-2.02) 0.88 (-0.41-2.17) 1.27 (0.15-2.39) 

Spleen 
0.63  

(0.38-0.89)* 
2.48 (0.07-4.90) 0.98 (-0.10-2.06) 0.79 (0.28-1.30) 

Aged KO 

Liver 3.51 (1.52-5.49) 1.30 (0.34-2.26) 1.49 (0.98-2.00) 11.8 (9.53-14.2) 

Lung 0.85 (0.28-1.42) 1.95 (0.39-3.51) 0.75 (-0.04-1.53) 1.22 (0.65-1.78) 

Lymph nodes 0.45 (0.27-0.63) 0.84 (0.33-1.36) 12.9 (-1.13-26.9) 1.76 (0.55-2.97) 

Spleen 0.56 (0.36-0.76) 1.60 (-0.08-3.27) 2.60 (0.36-4.83) 1.06 (0.53-1.60) 
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Appendix 2  

Gene expression in PM/PBL from young and aged WT mice. mRNA expression levels were 

measured in PMs and PBLs from young (10 weeks) and aged (80–100 weeks) C57BL/6 mice 

(n=13–14). Gene expression was normalised against the housekeeping gene (Ppia) and is 

presented as fold change of young. Box-plots show the 25–75th percentiles (Box), mean 

(square), median (line) and range within 1.5 IQR (whiskers). ***P<0.001 relative to young 

mice. 
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Gene expression in PM/PBL from young GILZ KO mice. mRNA expression levels were 

measured in PMs and PBLs from young (10 weeks) GILZ KO mice (n=11). Gene expression 

was normalised against the housekeeping gene (Ppia) and is presented as fold change of young 

WT. Data show mean (95% CI). **P<0.01, ***P<0.001 relative to young WT mice, as 

determined by Welch’s t-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Gene PM PBL 

Tnf 1.26 (0.32-2.20) 0.66 (0.53-0.80) 

Mmp9 1.31 (0.89-1.73) 1.31 (1.03-1.60) 

Nr3c1 0.86 (0.73-1.00) 1.73 (1.37-2.10)** 

Anxa1 1.66 (1.28-2.04)** 3.16 (1.88-4.44)** 

Dusp1 1.38 (0.63-2.13) 1.04 (0.68-1.40) 

Sgk1 1.63 (1.19-2.07) 0.91 (0.50-1.32) 

Hsd11b1 0.62 (0.36-0.89) 0.96 (0.77-1.15) 

Hsd11b2 1.14 (0.70-1.57) 1.12 (0.78-1.46) 

H6pd 0.23 (0.18-0.28)*** 1.06 (0.64-1.47) 

Cebpa 0.85 (0.49-1.22) 1.10 (0.62-1.59) 

Cebpb 0.98 (0.70-1.26) 1.23 (0.76-1.69) 

Cdkn1a 1.02 (0.67-1.37) 1.37 (0.63-2.11) 

Cdkn2a 1.49 (0.98-2.00) 1.89 (0.92-2.87) 

Sirt1 0.96 (0.64-1.29) 0.87 (0.60-1.15) 
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Appendix 3 

Gene expression in skeletal muscle from young and aged mice. mRNA expression levels were 

measured in skeletal muscle tissue from young (10 weeks) and aged (80–100 weeks) C57BL/6 

mice (n=13–14). Gene expression was normalised against the housekeeping gene (Ppia) and is 

presented as fold change of young. Box-plots show the 25–75th percentiles (Box), mean 

(square), median (line) and range within 1.5 IQR (whiskers). 
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