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Abstract

Single-atom–based quantum memories have proven to be among the most promising can-
didates for large-scale quantum networks. This architecture consists of material quantum
memories, represented by single trapped atomic ions, interconnected by photonic quan-
tum channels. The communication protocol requires a bi-directional interface between
atomic and photonic qubits as well as the implementation of a quantum-repeater scheme
for long-haul state transmission.

In the current work, I present experiments that form a fundamental step towards the
realization of a quantum network, based on single trapped 40Ca+ ions, in particular the
implementation of an atom-photon quantum interface combined with the polarization-
state–preserving single-photon conversion into the telecom regime.

The theoretical part comprises a discussion of the fundamental properties of the 40Ca+

ion, followed by a treatment of the dipole emission pattern to gain a deeper understanding
of the absorption and emission process.

Subsequently, the experimental implementation of two protocols for an atom-photon
quantum interface at 393 nm and 854 nm is demonstrated. For the latter, I additionally
demonstrate the quantum-state–preserving quantum frequency conversion of the single
photon into the telecom O-band at 1310 nm.

Finally, we conducted an experiment as a first step towards a global entangling atomic
two-qubit gate, represented by the Mølmer-Sørensen gate, needed for quantum-repeater
applications.
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Zusammenfassung

Einzelatombasierte Quantenspeicher gehören zu den aussichtsreichsten Kandidaten für
ausgedehnte Quantennetzwerke. Diese Architektur besteht aus ortsgebundenen Quan-
tenspeichern in Form gefangener atomarer Ionen, die durch photonische Quantenkanäle
verbunden sind. Das Kommunikationsprotokoll benötigt eine bidirektionale Schnittstelle
zwischen atomaren und photonischen Qubits sowie die Implementierung eines Quanten-
repeater-Schemas für langreichweitigen Zustandstransfer.

In der vorliegenden Arbeit präsentiere ich Experimente, die einen fundamentalen Schritt
hin zur Umsetzung eines auf einzelnen gefangenen 40Ca+-Ionen basierenden Quanten-
netzwerks darstellen, insbesondere die Implementierung einer Atom-Photon-Schnittstelle,
kombiniert mit polarisationserhaltender Einzelphotonenkonversion in den Telecom-Bereich.

Der theoretische Teil umfasst die Diskussion der fundamentalen Eigenschaften des 40Ca+-
Ions, gefolgt von einer Abhandlung der Dipolemissioncharakteristik, um ein tieferes Ver-
ständnis der Absorptions- und Emissionsprozesse zu erlangen.

Anschließend wird die Implementierung zweier Atom-Photon-Schnittstellen-Protokolle
bei 393 nm, und 854 nm vorgestellt. Für letztere zeigen wir zudem die Quantenzustands-
erhaltende Frequenzkonversion des Einzelphotons in das Telecom-O-Band bei 1310 nm.

Letztlich zeigen wir erste Schritte zur Realisierung lokaler verschränkender Zwei-Qubit-
Gatter, dargestellt durch ein Mølmer-Sørensen-Gatter, als Baustein zur Umsetzung von
Qantenrepeater-Anwendungen.

iv



Contents

Introduction 1

Journal publications 9

1. The 40Ca+ ion 11
1.1. Level scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Experimental setup 15
2.1. Ion-trap system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. The Paul trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2. Trap potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3. Photo ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4. Trap setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2. Laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1. Laser sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2. Transfer locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3. Pound-Drever-Hall technique . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4. Qubit laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5. High-finesse ULE cavity . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3. Experiment control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3. Experimental methods 33
3.1. Laser cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2. Optical pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3. Coherent manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1. Atomic single-qubit rotations . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2. Coherent manipulations on the optical quadrupole transition . . . . 41
3.3.3. Coherent manipulations on the radio-frequency transition . . . . . . 41
3.3.4. Light shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4. Atomic state analysis by fluorescence detection . . . . . . . . . . . . . . . . . 43
3.5. Zeeman splitting and Larmor phase . . . . . . . . . . . . . . . . . . . . . . . 47
3.6. Coherence time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4. Single-atom–single-photon interaction 53
4.1. Spontaneous Raman scattering in a three-level system . . . . . . . . . . . . . 54

v



4.2. Emission properties of optical dipoles . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1. Optical dipole transitions . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2. Spatial dependence of the photon polarization . . . . . . . . . . . . . 59
4.2.3. Free-space collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.4. Single-mode coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.5. Mode matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3. Quantum-mechanical formalism . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4. Influence of the polarization directionality . . . . . . . . . . . . . . . . . . . . 69

5. Programmable atom-photon interface 73
5.1. Atom-photon interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2. Photon-to-atom state transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3. Atom-to-photon state transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4. Atom-photon entanglement at 393 nm . . . . . . . . . . . . . . . . . . . . . . 88

6. Experiments for quantum-repeater applications 93
6.1. The quantum repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2. Atom-photon entanglement at 854 nm . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1. Generation of an entangled atom-photon state at 854 nm . . . . . . . 96
6.2.2. Atom-photon state tomography . . . . . . . . . . . . . . . . . . . . . 100

6.2.2.1. State reconstruction . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.2.2. Maximum-likelihood estimation . . . . . . . . . . . . . . . . 103
6.2.2.3. Experimental results . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2.4. Error budget . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3. Quantum frequency conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2. Converter setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3. Polarization-independent single-photon conversion . . . . . . . . . . 111

6.4. Atom-photon entanglement in the telecom band . . . . . . . . . . . . . . . . 111
6.5. Atom-to-photon state transfer in the NIR . . . . . . . . . . . . . . . . . . . . 114

6.5.1. Experimental sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.2. Quantum-process tomography . . . . . . . . . . . . . . . . . . . . . . 117
6.5.3. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5.4. Error budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7. Prospect: Towards local atomic two-qubit gates 125
7.1. Single-ion addressing and single-qubit gates . . . . . . . . . . . . . . . . . . 125

7.1.1. Addressed single-qubit σx rotations . . . . . . . . . . . . . . . . . . . 126
7.1.2. Addressed single-qubit σz,σx rotations . . . . . . . . . . . . . . . . . . 127

7.2. The Mølmer-Sørensen gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.2. Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

vi



7.2.3. Experimental parameters . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.4. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8. Conclusion and outlook 141

A. Appendix 145
A.1. Dipole-emission properties and photon collection . . . . . . . . . . . . . . . 145

A.1.1. Spatial dependence of the photon polarization . . . . . . . . . . . . . 145
A.1.2. Free-space collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.1.3. Single-mode coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.1.4. Mode matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.2. Single-qubit state reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.3. Linear entangled-state reconstruction . . . . . . . . . . . . . . . . . . . . . . 155
A.4. Maximum-likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.5. Numerical simulation of the Mølmer-Sørensen gate . . . . . . . . . . . . . . 160
A.6. Mølmer-Sørensen gate on the radial sidebands . . . . . . . . . . . . . . . . . 164

Bibliography 177

vii





Introduction

Probably one of the most important technological advancement of the last century is the
development of semiconductor-based computers [1, 2] and with it the invention of the
internet [3], facilitating the world-wide distribution and availability of information. Of
course, the proliferation of the internet in the modern world, comprising nearly all aspects
of our daily lives, makes it more and more vulnerable towards malicious cyber-attacks,
requiring yet more elaborate cryptographic [4, 5] methods for secure communication. At
the same time, increasingly complex data processing and computational tasks demand for
increasing computational power or novel techniques.

In the early 20th century, a revolutionary new concept appeared with the development of
quantum physics [6, 7, 8, 9] that represents a potential solution for both of these challenges.
The emergence of quantum technologies around the end of the last and the beginning of
the new century initiated a process where new applications for these technologies were
sought. One of the founders of quantum computation was Richard Feynman, who, back in
1982, proposed an architecture for quantum gates for computation purposes [10, 11]. This
process eventually led to the development of quantum algorithms, whereof the Deutsch-
Jozsa [12], Shor [13], and Grover algorithm [14] are probably the most prominent ones, but
also other implementations such as quantum simulators [15, 16, 17, 18, 19] emerged.

First important impulses towards modern quantum-information processing were given
when Deutsch presented a method for the implementation of a universal quantum com-
puter [20], based on Feynman’s pioneering work.

Peter Shor realized in 1994 that quantum mechanics can be utilized to find the prime-
factor decomposition and calculate discrete logarithms much more efficiently than with
any classical computer. This discovery raised quite some attention as the hardness of
prime-factor decomposition of large numbers and discrete logarithms were of great im-
portance for some cryptographic principles [5].

Further progress was made when Grover developed a quantum-enhanced algorithm
to find elements in an unsorted database which proved to be polynomially faster than
any classical algorithm known to that point. Over the years, many other, mostly very
specialized, quantum algorithms developed and are still being developed. However, for
a long period in time, these algorithms remained merely theoretical constructs due to the
lack of a suitable platform for the physical implementation.

In recent years, significant progress has been made concerning the control of isolated
quantum systems such as single trapped ions, single atoms, or single photons, and in that
context, the realization of fundamental quantum processors became possible, demonstrat-
ing for instance a basic implementation of Shor’s algorithm [21] or the Grover search algo-
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Introduction

rithm on a programmable quantum computer [22].
Due to their controllability and good isolation from environmental influences and the

comparably high flexibility and facile programmability of complex quantum gates, single
trapped ions arose as one of the most promising platforms for quantum computers and
closely related quantum-communication protocols. They were shown to allow for very
high gate fidelities [23, 24] and coherence times while simultaneously achieving nearly un-
limited storage times [25]. Single-ion–based quantum computers utilize strings of trapped
ions as a quantum register [26] for quantum-information processing [27]. Important mile-
stones were achieved with the demonstration of the Deutsch-Jozsa algorithm [28], the
quantum Fourier transform [29], and the implementation of a universal quantum com-
puter [30].

Though achieving impressive results concerning the storage and processing of quantum
information on the single-ion platform, the size of the quantum registers is limited due to
the repulsive interaction between the ions, inherently yielding great challenges regarding
the scalability of these systems. Various approaches are pursued to tackle this limitation,
including the miniaturization of the ion traps [31, 32, 33] to implement a number of quan-
tum sub-processors [34] that are connected via photonic interaction [35, 36], or shuttling
of individual ions to transfer quantum information from one sub-processor to an other
[37, 38, 39, 40, 41].

Alternative to these local approaches, other strategies like non-local distributed quan-
tum computing [42, 43], connecting small remote processing units via quantum channels
to carry out quantum-computation tasks at different locations, emerged. Thinking this
ansatz further results in the idea of a quantum internet as proposed by Kimble in 2008 [44].
A crucial element for distributed quantum computing (DQC) or even a fully developed
quantum internet is an efficient quantum channel to establish the connection between the
sub-units. For larger distances, photonic quantum channels represent the only viable pos-
sibility for fast, efficient and robust quantum communication.

Quantum communication

The link between the individual nodes of a DQC network or a general large-scale quantum
network is typically established via photonic quantum channels that couple the stationary
qubits either via direct quantum-state transfer [45, 46, 47], indirectly utilizing photonic
interaction in a projective-Bell-state measurement (BSM) [48, 49], or via quantum telepor-
tation [50, 51, 52]. Different strategies for the photon transfer exist, e.g. satellite-based free-
space transmission [53, 54, 55] or schemes building upon the already established earth-
bound fiber infrastructure [56].

Apart from applications in the context of DQC, the distribution of quantum information
via photonic quantum channels opens the door to a whole range of other applications, of
which quantum key distribution (QKD), a technique for the intrinsically secure generation
of private keys for the encryption of information sent via (principally vulnerable) classical
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Introduction

communication channels, is probably the most eminent in times where the exchange of
large amounts of sensitive information becomes more and more important.

The perhaps most prominent representatives of QKD protocols are BB84 [57], named
after its inventors Charles H. Bennett and Gilles Brassard and the year it was first pre-
sented, and the similar protocol E91 (proposed by Artur Ekert in 1991 [58]), which shall
be briefly discussed in the following. Simply spoken, E91 (and likewise BB84) exploits
the no-cloning theorem of quantum mechanics to recognize an attacker eavesdropping the
communication channel. For the generation of a secure encryption key, two communica-
tion partners, traditionally named Alice and Bob, share pairs of entangled particles (the
original proposal for the E91 protocol assumes entangled photon pairs, but the protocol is
as well applicable to other entangled systems like pairs of entangled atomic ions). Both,
Alice and Bob, randomly and independently choose a measurement basis and store the
outcome of the measurement for later usage. In the case of entangled photon pairs, a typi-
cal set of measurement bases are the two linear basis pairs H/V (horizontal/vertical) and
D/A (diagonal/anti-diagonal). Subsequently, Alice and Bob publish their measurement
bases and omit the events where the respective bases did not coincide.

The basic idea to make the protocols tap-proof is the projective nature of a quantum-
mechanical measurement. Therefore, an eavesdropper – called Eve – intercepting Bob’s
photon, being fully ignorant of Alice’s and Bob’s basis choice, destroys the quantum state
of the measured photon. Hence the photon state which Eve sends to Bob that mimics the
original photon, is no longer correlated with Alice’s photon, thus the quantum statistics
measured by Alice and Bob is altered and the eavesdropper is detected when Alice and Bob
communicate a (sufficiently long) random sub-set of their measured results via a classical
communication channel1.

Once the secure communication is verified, Alice and Bob generate their private keys
from the remaining valid measurements (i.e. the measurements where both choose the
same measurement basis), knowing their own result and hence, due to the quantum en-
tanglement of the pairs, also the result of their communication partner. This key is utilized
to encrypt a massage which is then sent through a (potentially insecure) classical commu-
nication channel. Even if the classical channel is exposed to an eavesdropping attack, the
massage is still inherently secure as only the two designated communication users Alice
and Bob share the key for decryption.

The ability of the QKD protocols to detect an eavesdropping attack relies on the fact that
all errors, up to a certain threshold, can be attributed to an eavesdropper and not to in-
formation loss like depolarization or detector dark counts. It is therefore essential for the
feasibility of the protocols to achieve low-loss photon transmission to attain a high signal-
to-background ratio. However, exponential damping due to absorption or scattering in

1A number of methods to exploit a weakness in avalanche photo diodes to hack the in principle secure
photon-based quantum-cryptography protocols have been proposed and demonstrated [59]. These vul-
nerabilities can in principle be avoided by, for instance, using pairs of entangled atomic ions instead of
photons. However, of course, transfer and storage efficiencies then play a crucial role.

3



Introduction

standard optical fibers impedes the fulfillment of that requirement, even in the low-loss
telecom spectral regime for realistic communication distances of several hundreds of kilo-
meters. A quantum-repeater network might represent a solution for efficient long-haul
quantum communication and establishment of entanglement between remote qubits, ei-
ther photonic or atomic.

Quantum repeaters

Quantum repeaters, especially quantum-memory–based quantum repeaters, provide an
elegant method to counteract inevitable photon losses in long photonic quantum channels.
Since simple amplification of the signal (the single photons) like in classical repeaters, i.e.
the creation of an exact copy of the signal photon, is impossible due to the no-cloning
theorem (which, if it wasn’t impossible, would render the whole cryptography protocol
useless), a solution suitable to the conditions of the quantum world has to be found.

Instead of using a single long quantum channel, the deployment of memory-based quan-
tum repeaters allows to split the channel into separate sub-channels, whose length is re-
duced accordingly, connected via quantum-repeater units. These quantum-repeater units
store the quantum information encoded in the photons until the corresponding partner
photon has arrived and its state is mapped into the quantum memory as well. Local op-
erations subsequent to the quantum-state storage2 then establish a link between consecu-
tive repeater nodes (cf. section 6.1). Eventually, entanglement (or state transfer) between
the two target qubits is established. Owing to the reduced sub-quantum-channel length,
the signal-transmission efficiency is, given several circumstances, increased and with it
the signal-to-background ratio (SBR), crucial to the viability of the quantum-cryptography
protocols.

Of course, a net gain in the SBR is only achieved if the signal-loss reduction due to
the lower channel length overcompensates the non-ideal quantum-state–transfer efficiency
from the photonic qubit to the repeater quantum memory. This requires reliable, efficient
and high-rate quantum interfaces between the single photons and the quantum mem-
ories (represented e.g. by single trapped ions or single neutral atoms). There exists a
number of different platforms for quantum-repeater memories, comprising single systems
like quantum dots, defects in crystals (like nitrogen-vacancy or silicon-vacancy centers),
or single atoms or atomic ions, or ensemble systems like cold atoms. For single atomic
ions, several approaches exist for the implementation of quantum interfaces, compris-
ing cavity-coupled systems [63, 64, 65, 66] or free-space coupling using high-numerical-
aperture lenses [67, 68]. Due to their good isolation from environmental influences like
uncontrolled interactions with nearby atoms and the relatively good controllability, we
in our group decided to work with trapped single atomic ions, and hence the following
description is tailored to this kind of system.

2The most recent results can be found, e.g., in [60, 61, 62]
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The second requisite, apart from the implementation of a quantum-repeater scheme, to
facilitate long-haul QKD is the reduction of channel-transmission losses between the re-
peater nodes. Building upon an already set-up fiber infrastructure, this means that the
photon wavelength ideally lies withing the telecom range between between 1260 nm and
1625 nm, where fiber losses are particularly low. Depending on the physical system, this
condition is not always fulfilled. Considering for instance single-ion–based quantum re-
peaters, the transition wavelengths are determined by the atom species and do very often
not lie in the desired wavelength region. Nonetheless, there exist tools to resolve that ob-
stacle. An obvious but challenging approach, which has been implemented only recently
and is an active field of investigation [69, 70, 71, 72], is to deploy quantum frequency con-
version to translate the wavelength of the quantum-information–bearing single photon,
originally not in the telecom band, into the desired wavelength region.

This work

For the above-mentioned applications, efficient quantum interfaces between the stationary
quantum-processing units and the photonic quantum channels as well as low-loss photon
transmission play a crucial role for the physical implementation. This thesis primarily
focuses on the conception and experimental implementation of single-photon–single-atom
entanglement between a single 40Ca+ ion and a telecom photon, employing high-efficiency,
low-loss quantum-state–preserving single-photon quantum frequency conversion (QFC)
[73, 74] to address the challenge of long-range quantum communication. Furthermore,
first steps towards local entangling two-ion gates – a prerequisite for the realization of
single-ion–based quantum repeaters – are presented.

The 40Ca+ ion itself is the topic of the first chapter, where its level structure and all
relevant transitions are presented.

The second chapter gives an overview over the experimental setup; at its heart the ion-
trap apparatus – a linear Paul trap – surrounded by a complex overhead, comprising vari-
ous diode-laser systems and electronic devices for experimental control. The laser systems
are necessary to address the different transitions, lying in the visible and near-infrared
(NIR) spectral region, of the 40Ca+ ion which forms the working horse of our experiments.
Of particular interest is the narrow-band qubit laser at 729 nm that coherently drives a
quadrupole transition of 40Ca+.

In the third chapter, coherent qubit manipulations on the quadrupole and radio-frequency
transitions, as well as the effect of external fields onto the ion, like Zeeman splitting, light
shifts, and magnetic decoherence are treated. Furthermore, common experimental tech-
niques like Doppler cooling and frequency-resolved optical pumping are discussed.

Finally, single-photon-single-atom interaction and the spatial emission and absorption
characteristics of dipole transitions are investigated in the fourth chapter before the exper-
imental results are presented in the further course of the thesis.

Chapter 5 briefly recapitulates the experimental implementation of a universal, pro-
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grammable quantum interface, built on the coherent manipulation of a single trapped
40Ca+ ion. The interface is capable of transferring quantum information encoded in the
polarization state of a single NIR photon at 854 nm onto the electronic state of the ion by
controlled absorption. The process is heralded by the detection of a single 393 nm photon
that signals the success of the state mapping. In a similar manner, the mapping of a qubit
initially stored in the atomic state onto a single blue photon at 393 nm is realized. In ad-
dition, the interface scheme allows for the generation of an entangled atom-photon state
between the ion and the emitted photon at 393 nm.

Due to the rather unfavorable wavelength of the 393 nm photon in the previous scheme,
which exhibits adverse properties like strong absorption in optical fibers, an alternative
interface protocol has been developed in the course of this work, presented in Chapter 6.
Instead of working with single photons in the blue spectrum, we generated atom-photon
entanglement and atom-to-photon state mapping in the near infrared at 854 nm. This mile-
stone gave rise to the possibility for the implementation of quantum frequency conversion
from 854 nm to 1310 nm to facilitate atom-photon entanglement between the 40Ca+ ion and
a photon in the low-loss telecom band.

The greater vision behind this work is the demonstration of a proof-of-principle quantum-
repeater–based quantum network. Besides the photonic part and the quantum interface,
which both are the topic of the previous chapters, a quantum repeater, which reduces the
effective quantum-channel length, requires local entangling multi-qubit gates for the pro-
cessing of quantum information between single ions3. The last chapter shows first steps
towards this missing link based on the Mølmer-Sørensen gate, including several necessary
experimental techniques like single-ion addressing, and discusses possible sources and
problem-solving approaches for the observed gate imperfections.

This work forms a substantial advancement within the scope of a series of experiments
and developments, which, starting various years ago, still are part of an ongoing pro-
cess that will extend further into the future. Therefore, all results presented here are
not the achievement of a single person, but rather represent the joint effort of a dynam-
ically evolving team and is based on the work of generations of scientists in our group
and beyond. Many enthusiastic people contributed over the years to build and improve
the technical set-up this work is based upon (chapter 2). Their work formed the funda-
mental for all results obtained since and is described in detail in their respective theses
[75, 76, 77, 78, 79, 80]. Apart from the hardware, the development of methods routinely
used in the experiment was of great importance and a very valuable legacy from the for-
mer generations of students. These methods are briefly depicted in chapter 3.

Of course, the progress did not stop after these people left the group, and so further
improvement was undertaken to achieve the next milestones. My dedicated part from a
technical perspective was the rearrangement of the optical setup in the proximity of the
ion trap, e.g. the replacement of the former photomultiplier tubes (PMT) by two avalanche

3Through entanglement swapping from a local pair of ions onto a remote ion pair (see section 7 for details)
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photo diodes (APD) for improved detection efficiency of single 393 nm photons or the im-
plementation of a 729 nm beam line for single-ion addressing to make the experiment suit-
able for future applications. In addition to the development and implementation of many
new experimental sequences, I acquired and installed a new 393 nm diode laser which
made most of the experiments presented in chapter 6 possible.

Efficient realization of the quantum-interface protocols treated in this thesis requires a
profound understanding of the underlying absorption and emission processes. For that
purpose, I did a detailed analysis of the spatial dependence of the polarization of photons
emitted on an optical dipole transition, which is presented in chapter 4. Some of these
results are based on the work of Philipp Müller, being described in full detail in his PhD
thesis [81].

Earlier work in the context of this PhD project lead to the realization of a programmable
ion-photon interface at a wavelength of 393 nm, which partially already appeared in Christoph
Kurz’ dissertation thesis [79] and is summarized in chapter 5 and in [82].

Chapter 6 constitutes the major content of this thesis and essentially represents my
main contribution. Certainly, also other people participated in the success of that exper-
iment. In particular, this comprises the collaboration with Matthias Bock from the group
of Christoph Becher, who built and operated the frequency-converter. An overview of the
quantum-frequency converter is given in that chapter. The fully-detailed description will
be given in Matthias’ thesis [73].

Eventually, the final chapter 7 describes first steps towards local two-ion gates. Although
the chapter itself is short compared to others, Matthias Kreis and I spent a significant
amount of time in the laboratory while conducting these experiments and searching for
the source of the gate-fidelity reduction

7





Journal publications

Part of the work of this thesis has been published in refereed journals:

High-fidelity entanglement between a trapped ion and a telecom photon via quantum fre-
quency conversion
M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, J. Eschner
Nat. Commun. 9, 1998 (2018)

Programmable atom-photon quantum interface
C. Kurz, P. Eich, M. Schug P. Müller, J. Eschner
Phys. Rev. A 93, 062348 (2016)

Further associated work:

Doubly-heralded single-photon absorption by a single atom
J. Brito, S. Kucera, P. Eich, P. MÃ¼ller, J. Eschner
Appl. Phys. B, 122:36 (2016)

Telecom-heralded single-photon absorption by a single atom
A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, J. Eschner
Phys. Rev. A 92, 063827 (2015)

Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer
C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, J. Eschner
Nat. Commun. 5, 5527 (2014)

Quantum interference in the absorption and emission of single photons by a single ion
M. Schug, C. Kurz, P. Eich, J. Huwer, P. Müller, J. Eschner
Phys. Rev. A 90, 023829 (2014)

9





1. The 40Ca+ ion

Singly-ionized alkaline-earth-metal atoms are a well-established quantum system for a va-
riety of applications [19, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92], in particular for quantum net-
works and quantum-repeaters and, very recently, even for the development of commercial
quantum computers [93], due to their rather simple and well understood level structure
and optical addressability of atomic transitions in the visible or (near) infrared spectral
region for laser cooling and qubit manipulations.
What makes these alkaline-earth ions so exceptional is the fact that they exhibit only one
valence electron which simplifies theoretical and experimental considerations significantly.

In our experiment, we work with singly-charged Calcium-40. 40Ca has a nuclear spin of
I = 0 and thus shows no hyperfine splitting. Although hyperfine splitting (as occurring for
instance in 43Ca+) is beneficial for certain aspects like microwave gates and the existence of
clock states with long coherence times, it usually requires the presence of additional lasers
for cooling and repumping, which makes it impractical for our purposes.

This chapter briefly treats the level structure of the 40Ca+ ion, showing the atomic states
and transitions that are relevant in the experimental framework.

1.1. Level scheme

40Ca+ shows five (easily accessible) states, 42S1/2, 42P1/2, 42P3/2, 32D3/2, and 32D5/2, of
which two, 32D3/2 and 32D5/2, are metastable with a lifetime of more than one second.
These states are further split by an external magnetic field according to the projection of
their total angular momentum j, characterized by the magnetic quantum number mj. This
Zeeman splitting opens up the possibility of frequency-selective addressing of individual
quadrupole transitions and coherent manipulations of the ground-state qubit and is there-
fore crucial for the viability of our experimental protocols, but at the same time entails
vulnerability towards magnetic-field fluctuations so that additional effort has to be put
into the elimination of magnetic noise.

Two short-lived states, 42P3/2 and 42P1/2, with a lifetime in the order of 7 ns, rapidly
decay into either the metastable states or, most likely, into the energetic ground state
42S1/2 upon excitation. The short-lived states can be regarded as auxiliary states for cool-
ing, fluorescence-assisted state discrimination on the S1/2 ↔ P1/2 transition at 397 nm,
and single-photon generation on the transition from P3/2 to the meta-stable D5/2 state at
854 nm, as explained later in this thesis. In the latter case, the S1/2 ↔ P3/2 transition at
393 nm is used for excitation into the short-lived state.
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1. The 40Ca+ ion

Additional dipole transitions involved in the experiment are those from D3/2 to P1/2 at
866 nm, which is used for repumping from the meta-stable D3/2 state during Doppler cool-
ing (cf. section 3.1) and fluorescence generation at 397 nm, and the 850 nm transition from
D3/2 to P3/2, which is currently used for the alignment of the quantization axis.
The quadrupole transition from S1/2 to D5/2 at 729 nm plays a special role in the experiment
as it is used for coherent manipulations on the optical S-D qubit. For manipulations of the
ground-state qubit between the two Zeeman sublevels in S1/2, typically in the order of
8 MHz, we installed a radio-frequency coil below the trap chamber.
There exists an other quadrupole transition S1/2 ↔ D3/2 which is not used in the current
experiments.

All states involved in the present experiments are displayed in fig. 1.1 along with their
Landé factors, the precise lifetime values, the transitions between these states and their
respective (reduced) Einstein coefficients.
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gj = 6/5, τ = 1.168 s

40Ca+

Figure 1.1.: Relevant level scheme of the 40Ca+ ion. gj and τ denote the Landé factors and the
natural lifetimes of the states, respectively. Arrows depict optical transitions between the levels,
together with their wavelengths and the reduced Einstein coefficients A/2π.

The Einstein coefficients correspond to the oscillator strengths for the transition from an
initial state |i〉 into a state |g〉 and were measured with high precision for 40Ca+ [94, 95].

The sum of all Einstein coefficients Ai→g for the decays from |i〉 into all other states gives
the total decay rate Γi (where i denotes the individual states, i.e. P3/2, P1/2 etc.) which
is directly related to the natural lifetime τi via Γi =

1
τi

(and therefore also corresponds to
the linewidth of transitions coupling to the state). The ratio of the Einstein coefficients for
different decays from the same excited state is called the branching ratio and represents
the ratio of the probabilities for decay along the respective channels. A perhaps slightly
more intuitive quantity is the branching fraction Ai→g/Γ which can be interpreted as the
probability that the ion "chooses" a certain decay branch.

Non-zero branching ratios, i.e. the existence of multiple decay channels, imply a time-
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1.1. Level scheme

bandwidth product above the Fourier limit for photons along that transition, as it is par-
ticularly the case for single photons emitted on the infrared transitions at 850 nm, 854 nm,
and 866 nm. The latter can be understood intuitively in the following picture: if there is
more than one decay channel, it takes on average more than one excitation cycle to gener-
ate a photon on a particular transition, while the spectral bandwidth of that photon is by
the single-photon–generation time, i.e. the time for the generation of a photon on any of
the transitions. This circumstance is discussed again in section 4.1.

The decay rates for the relevant levels and their transition wavelengths λ and branching
fractions are summarized in tab. 1.1 (as found in [78]).

State τ Γ Transitions λ Branching fraction

P3/2 6.924 ns 2π·22.986 MHz P3/2 → S1/2 393.4775 nm 93.47%
P3/2 → D5/2 854.4433 nm 5.87%
P3/2 → D3/2 850.0361 nm 0.66%

P1/2 7.098 ns 2π·22.423 MHz P1/2 → S1/2 396.9590 nm 93.565%
P1/2 → D3/2 866.4515 nm 6.435%

D5/2 1.168 s 2π·136 mHz D5/2 → S1/2 729.3473 nm 100%

D3/2 1.176 s 2π·135 mHz D3/2 → S1/2 732.5903 nm 100%

Table 1.1.: Relevant levels, lifetimes τ and total decay rates Γ. The possible decay channels, their
wavelengths and the branching fractions for the respective decays are listed.

Within the transition from one state |i〉 to another state |g〉 (e.g. from P3/2 to D5/2 at
854 nm), a substructure appears due to the splitting of the Zeeman sublevels by their mag-
netic quantum number m. The oscillator strength for the transition |i, mi〉 → |g, mg〉 (as
long as it is dipole-allowed, i.e. when ∆m = 0,±1 is fulfilled) is then determined by the
Clebsch-Gordan coefficient (CGC) for the transition |mi〉 → |mg〉. The Clebsch-Gordan
coefficients arise due to the coupling of orbital angular momentum and spin and their re-
spective magnetic quantum numbers (that is, their projections onto the quantization axis)
to the total angular momentum and its magnetic quantum number. In other terms, they
originate from a basis transformation from the uncoupled to the coupled eigenbases of the
system. A detailed discussion is, for example, found in [96], a table of commonly appearing
CGCs is given in [97]. Fig. 1.2 shows the Clebsch-Gordan coefficients for the D5/2 ↔ P3/2
(854 nm) and the P3/2 ↔ S1/2 (393 nm) transitions which have the highest relevance for our
experimental protocols.
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2. Experimental setup

The heart and soul of each quantum-optical work is the experimental setup which usually
grows organically with the complexity of the performed measurements. A (stationary)
qubit constitutes the center of all quantum-optical information technology. Single atomic
ions have proven to be suitable candidates as stationary qubits or quantum memories in a
quantum network [98, 99, 100] due to their long coherence time [101, 102, 103], good isola-
tion from the environment, long storage times (in the order of days to weeks, depending on
the experimentalist’s enthusiasm and patience), the relatively easy manipulation of quan-
tum information stored in the ion [77, 104, 105, 106], and their ability to reliably couple to
"flying" qubits, i.e. optical photons [82, 107, 108].

The ion used in the experiments presented in this thesis is 40Ca+, which was discussed
in more detail in chapter 1. 40Ca+ exhibits six optical transitions that are addressed in
the experiments. Furthermore, two additional laser systems for the photo ionization of
atomic Calcium (see section 2.1.3) and our laser-locking scheme (section 2.2.2) are needed,
summing up to eight laser systems in total.

In addition to the lasers needed to cool and manipulate the ion, the ion-trap apparatus,
based on a linear Paul trap in a vacuum chamber, embodies the second building block for
the ion experiments.

This first part of this chapter treats the linear Paul trap, including a theoretical descrip-
tion, the photo-ionization process of the atomic Calcium, and the optical setup surrounding
the trap.
In the second part, the diode-laser systems are presented, together with the narrow-band
qubit laser and our transfer-locking scheme for laser-frequency stabilization.

2.1. Ion-trap system

The key ingredient for modern single-ion–based quantum-optics technology dates back to
the year 1953, when Wolfgang Paul developed an electrical quadrupole mass spectrometer
[109] which was later extended to today’s Paul traps [110]. The Paul trap facilitated the
storage and manipulation of single ions and has thus become a widely-used tool for quan-
tum optics [111], quantum computation [22, 112, 113], quantum simulations [114, 115, 19],
and quantum metrology [116, 117].

Single atomic ions are generated by a laser-assisted two-photon photo-ionization process
that will be described in the course of this section.

The integration of single ions into larger-scale quantum networks requires an optical
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2. Experimental setup

atom-photon interface and the ability of single- and multi-qubit manipulations of the ions.
Manipulation of the trapped ions is carried out by laser and radio-frequency pulses, while
coupling of the ions to single photons and collection of single photons emitted by the ions
is implemented by two high-numerical-aperture laser objectives (HALO) situated in close
proximity to the ions.
The description of the optical setup represents the final part of this section.

2.1.1. The Paul trap

The Paul trap consist of four electrodes aligned along the trap axis to which an oscillating
radio-frequency voltage is applied, and two DC electrodes at both ends of the linear trap,
generating a quasi-static potential inside the trap. A charged particle, e.g. a single atomic
ion, entering the trap potential, is confined inside the trap.
The realization of a linear Paul trap in our setup, originally designed and partially man-
ufactured in the group of Prof. Rainer Blatt at the University of Innsbruck [118], is shown
in fig. 2.1. The trap is built of two pairs of electrode blades, one pair held at ground, while

Utip

Utip

URF cos(WRF t) Ground

(a) (b)

Figure 2.1.: (a) Schematic depiction of the linear Paul trap, consisting of four blade electrodes for
the radial and two end tips for the axial confinement of the ions. (b) Picture of the actual Paul trap.
The distance between two opposite blades is 1.6 mm, the end-tip electrodes are separated by 5 mm.
(From [77, 75])

an oscillating radio-frequency voltage is applied to the other blade pair. Two end-tip elec-
trodes add a static electric field along the trap axis. The oscillating RF field and the static
field sum up to a quasi-harmonic potential (see fig. 2.2) that gives rise to motional degrees
of freedom of the trapped ions in axial and radial trap direction. The oscillation of the
trapping field with the radio frequency leads to a fast oscillation of the ion in the trap, the
so-called micromotion, that yields beneficial [119] and adverse effects [120]. A detailed
description of the resulting trap potential and the experimental parameters is given in the
next section. Further information about the Paul traps are found in [75].
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2.1. Ion-trap system

Figure 2.2.: Depiction of the oscillating quadrupole potential of the linear Paul trap. A charged
particle such as a single ion (blue circle) experiences an oscillating saddle potential, here shown at
two instances separated by half the period of the radio-frequency drive. (From [75])

2.1.2. Trap potential

The necessity for oscillating fields in order to trap charged particles derives from Earn-
shaw’s theorem [121], which states that, based on Laplace’s equation, there is no static mag-
netic or electric field that is capable of confining single charged particles in all three spatial
dimensions. To overcome this limitation, the linear Paul trap, as described above, uses a
combination of a static voltage, applied to the end tips, and a rotating radio-frequency volt-
age, applied to one pair of the blades, while the other pair is connected to ground. Defining
the symmetry axis of the trap to point along the z-axis, the resulting time-dependent elec-
tric field in the vicinity of the origin is then given by

Φ = ΦRF + Φendtip =
URF

2r2
0
(x2 − y2) cos(ΩRFt) +

α′Uendtip

2`2 (2z2 − x2 − y2), (2.1)

with r0, ` being the distance from the center of the trap to the RF electrodes and end tips,
respectively. The empirically determined geometry factor α′ takes shielding effects of the
electrodes into account.

Using the resulting force ~F = −e∇Φ = m ·~̈r onto a particle of charge e, the equations of
motion are derived as

Fx = −e
∂Φ
∂x

= −e
(

URF

r2
0

cos(ΩRFt)− α′Uendtip

`2

)
x = m ẍ (2.2)

Fy = −e
∂Φ
∂y

= −e
(

URF

r2
0

cos(−ΩRFt)− α′Uendtip

`2

)
y = m ÿ (2.3)

Fz = −e
∂Φ
∂z

= −e
(

2
α′Uendtip

`2

)
z , (2.4)

which can be transformed into the Mathieu equation

d2ri

dt2 + (ai − 2qi cos(ΩRFt))
Ω2

RF
4

ri = 0 (2.5)
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by using the substitutions

ax = ay = −1
2

az = −
4eα′Uendtip

m`2Ω2
RF

, qy = −qx =
2eURF

mr2
0Ω2

RF
, qz = 0 . (2.6)

A stable (i.e. trapped) solution for eq. (2.5) is obtained for |a|, q2 � 1 which simplifies the
approximate radial solutions of the Mathieu equation to

ri(t) = r0,i cos(ωit)
(

1− qi

2
cos(ΩRFt)

)
. (2.7)

This solution describes a slow secular motion of the ion with the radial trap frequency ωi
that is superimposed by a fast micromotion at the driving frequency ΩRF. In the pseudopo-
tential approximation [122], the fast micromotion oscillations (ωi � ΩRF) are averaged out
to obtain the radial secular frequencies

ωx =
ΩRF

2

√
ax +

q2
x

2
, ωy =

ΩRF

2

√

ay +
q2

y

2
. (2.8)

In a similar way, the axial trap frequency is calculated as

ωz =
ΩRF

2
√

az =

√
2eα′Uendtip

m`2 . (2.9)

With eq. (2.9), (2.8) can be rewritten as

ωr =

√
ω2

0,r −
1
2

ω2
z , (2.10)

where ω0,r denotes the bare radial frequency (i.e. for Uendtip = 0).
In the present setup, the experimental parameters Uendtip = 400 V, URF = 1449 V, r0 =

0.8 mm, ` = 2.5 mm, and ΩRF = 26.127 MHz result in the single-ion trap frequencies
ωz/2π = 1.1956 MHz and ωr/2π = 3.647 MHz, respectively.

In the case of two trapped ions, additional oscillation modes appear. Besides the center-
of-mass mode (COM), where both ions oscillate in phase with the frequencies ωz and
ωx,y, respectively, the axial oscillation (which were used in later experiments) reveals an
additional ’breathing’ mode which exhibits a frequency of ωBreath

z =
√

3 ωCOM
z = 2π ·

2.0708 MHz. Accordingly, the two-ion radial motion features four oscillation modes (two
COM modes and two ’rocking’ modes). In contrast to the axial motion, the higher-order
radial modes (i.e. the ’rocking’ modes) show lower energies than the COM modes.

2.1.3. Photo ionization

All work presented in this thesis requires the trapping of single 40Ca+ ions. In our setup,
these ions are generated in a two-photon resonance-enhanced photo-ionization process
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2.1. Ion-trap system

[75], where neutral 40Ca atoms evaporated from an oven are excited by laser light at 423 nm,
originating from a frequency-doubled diode laser at 846 nm1, on the 4s2 1S0 → 4s4p 1P1
transition. Subsequent absorption of light at 390 nm, stemming from an LED2 with an
emission spectrum centered around 380 nm and a full-width at half maximum (FWHM)
of 30 nm, excites the atoms into a Rydberg state from which the atom is ionized by strong
electric fields within the Paul trap. Once fluorescence from a trapped ion is detected on an
EMCCD camera3 or photomultiplier tubes4 (PMT), the photo-ionization process is inter-
rupted to avoid trapping of further ions. With this technique, we achieve loading times on
the order of several minutes.

2.1.4. Trap setup

To avoid atom loss due to collisions with background gas, the Paul trap is embedded into
an ultra-high–vacuum vessel as shown in fig. 2.3.

Figure 2.3.: Photograph of the vacuum chamber that contains the Paul trap.

The vacuum inside the chamber is held at a value of about 10−10-10−11 mbar. Optical access
is ensured by 8 viewports in the table plane, situated at the faces of the octagonally shaped
chamber, and one additional viewport at the bottom of the vessel for the photo-ionization
light. The helical resonator for the coupling of the trap radio frequency is placed on top
(large copper-colored cylinder in fig. 2.3). Further details on the vacuum setup are found
in [75].

1TOPTICA Photonics, DL pro
2Nichia, NCCU001-LED
3Andor, DV887DCS-BV
4Hamamatsu, H7422P-40 SEL
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2. Experimental setup

The trap itself is surrounded by two high-numerical-aperture laser objectives5 (HALO)
(see fig. 2.4) that serve the purpose to both, tightly focus single photons and laser beams,
especially for single-ion addressing, onto the ion, as well as efficiently collecting single
photons emitted by the ion. The objectives have a numerical aperture (NA) of 0.4, hence
covering a solid angle of about 4%. The precise collection efficiencies for photons emitted
on the different atomic transitions will be discussed in chapter 4.

Figure 2.4.: Paul trap between the two HALOs mounted on their three-directional translation
stages. (Adapted from [77])

The HALOs are mounted on three translation stages6 for sub-micrometer positioning. The
HALOs consist of an arrangement of four lenses made from different materials that are
anti-reflective coated for 397 nm, 423 nm and 866 nm and yield a transmittance for the rele-
vant wavelengths between 95.7 % for 397 nm and 98.8 % for 850–866 nm. The working dis-
tance ranges from 11.8 mm at 397 nm to 13.2 mm at 866 nm (to avoid contact of the metal
housing of the HALO lenses with the RF blade electrodes) which, given[123]

d = 1.22
λ

NA
, (2.11)

leads to focal-spot sizes between d = 1.2 µm (397 nm) and d = 2.6 µm (866 nm).
The quantization axis is defined by a magnetic field of 2.8 G applied to the ion. This field

is generated by a set of three orthogonally oriented coils or coil pairs of which one pair
typically determines the main axis while the other coils are used to compensate residual
magnetic fields, e.g. the magnetic field of the Earth, that otherwise distort the precise ori-
entation of the quantization axis. In the context of the experiments presented in this thesis,

5Linos Photonics, HALO 25/0.4
6Attocube, ANPx100
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2.1. Ion-trap system

the B field was aligned along the HALO axis for reasons that will become obvious in the
course of this work.

Manipulations of the ion are carried out by laser and radio-frequency pulses that enter
the vacuum vessel from various directions, as schematically shown in fig. 2.5.

B 397 
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854 
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nm

729 nm

393 nm

~

DM BS

SM fiber

DM

Wollaston prism

393/397 nm photons

AOD

DM

729 nm addressing 

beam

SM fiber
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APD
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to PMT

to APD

Flip mirror

EMCCD camera

854 nm photons

397 nm photons

Figure 2.5.: Schematic depiction of the trap setup and its surrounding optical elements, including
the beam paths for laser light and single photons. An individual description of the single elements
is given in the text.

The cooling-laser beams at 397 nm and 866 nm, being overlapped at a dichroic mirror (DM),
incide from 90◦ (where 0◦ is defined as parallel to the B-field direction along the HALO axis
in fig. 2.5). Their polarization (vertically polarized) is chosen such that no optical pumping,
i.e. decoupling from the light fields, occurs. The 854 nm repumping beam is overlapped
with the 866 nm beam at a non-polarizing beam splitter (BS). An additional laser beam at
393 nm for the excitation of the S1/2 → P3/2 transition is sent from the opposite direction
(270◦). The focal-spot sizes for all these lasers are in the order of 100 µm, therefore the
alignment of the beams is rather uncritical and robust.

Global excitation, that is, simultaneous excitation of all ions stored in the trap, of the
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quadrupole qubit transition at 729 nm is realized by a beam under 45◦ with a spot size
of about 80 µm. Tilting of the trap by 22.5◦ with respect to the table plane allows for the
frequency-selective addressing of all motional modes, i.e. the axial and both radial modes
of a single ion by tuning the laser to the respective motional sideband of the bare atomic
transition.

Single-ion addressing for operating the trap with multiple ions is achieved by the "AOD
beam" under 0◦, i.e. through the HALO (needed to obtain the necessary small focus size),
named after the acousto-optic deflector7 (shown in the bottom of fig. 2.5). The deflection
angle varies with the RF frequency applied to the AOD, thus enabling switching between
the individual ions.
To ensure reliable spatial modes of all laser fields, the coupling of the beams onto the ion
is realized via single-mode optical fibers for the respective wavelengths.

Besides the separate manipulation of the ions via a tightly focused laser beam, the HA-
LOs are predominantly deployed to collect single photons emitted from the ion. Due to
different diffraction indices, the focal lengths of the HALO systems differ for the differ-
ent wavelengths. Therefore, the objectives have to be adjusted for the desired collection
wavelength to guarantee the imaging quality of the ion image onto the photon detectors
or fiber end facets. The HALO at the "Sitges" side8 of the vacuum chamber (the bottom
side of the picture) is set to collimate light at 854 nm, whereas additional correction lenses
are needed for proper beam shaping of the light paths for photons at other wavelengths,
particularly at 393 nm and 397 nm. 854 nm photons collected by the Sitges HALO pass the
first dichroic mirror that separates red light (854 nm, 729 nm) from blue light at 397 nm
and 393 nm, and are then reflected by the second dichroic mirror, which is coated to ex-
hibit a high reflectivity at 854 nm and a high transmittance at 729 nm. A telescope, built
from commercially available off-the-shelf lenses, subsequently reduces the beam diame-
ter to meet the requirements for the following single-mode–fiber coupling. Subsequent
polarization-state analysis of the photons, if employed, is performed by a usual projection
setup, consisting of three waveplates (λ/4 / λ/2 / λ/4) and a polarizer, and an avalanche
photo diode (APD)9 for single-photon detection.

Atomic state detection is usually carried out by state-depedent 397 nm fluorescence of
the ion. For that purpose, fluorescence is collected by the HALO on the Sitges side and
coupled into a multi-mode fiber by the first dichroic mirror. As mentioned before, the
telescope for the 397 nm photons has to be set up in a non-confocal configuration to com-
pensate for the convergence of the light mode, caused by the focusing of the HALO which
is optimized for 854 nm collimation. The multi-mode fiber is connected to a PMT10 to de-
tect the photons. Depending on the number of photon counts, the ion is either considered

7Gooch & Housego, R46080-3-LTD
8Named after the town of Sitges near Barcelona. The denotation stems from the time when the experiment

was still located at ICFO at that side of the setup pointed towards Sitges. Analogously, the opposite side of
the setup is called "Barcelona".

9Perkin Elmer, SPCM-AQR-14
10Hamamatsu, H7422P-40 SEL
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2.2. Laser system

"dark" or "bright" (see section 3.4).
Single-ion–resolved readout of the atomic state is realized by imaging the fluorescence of
an ion chain (typically consisting of two ions) onto the surface of an EMCCD camera11

through the HALO (adjusted to 393 nm collimation) on the Barcelona side. By the time the
experiment was set up, hardly any to no wavelength-separation mirrors for 393 nm/397 nm
where available, therefore we included a flip mirror to switch between the monitoring of
397 nm fluorescence on the camera and the projection and detection of single photons at
393 nm.

The latter is done by removing the flip mirror to let the 393 nm single photons pass
through a telescope setup to reduce the diameter of the beam from about 2 cm to roughly
0.5 cm to fit the photons through the Wollaston prism12 placed right behind the telescope13.
The prism separates the photons according to their polarization, enabling us to project
the photon polarization onto the two Eigenbases of the prism, horizontally and vertically
polarized. The two polarizations are split by an angle of 20◦ and sent onto two APDs14

(one per output arm).
In addition to the lasers for optical manipulation of the atom, a radio-frequency coil

is installed below the trap. The coil is driven by a radio frequency that is tuned to the
|S1/2, m = −1/2〉 ↔ |S1/2, m = +1/2〉 transition between the two Zeeman-split sublevels of
S1/2 for coherent manipulation of the ground-state qubit.

2.2. Laser system

Singly-charged Calcium ions are nearly ideal quantum memories regarding their con-
trollability, as they possess optical transitions in the visible or near-infrared spectral re-
gion which can easily be addressed by commercially available diode-laser systems. In
the present experiments, we primarily work on four dipole transitions (393 nm, 397 nm,
854 nm, and 866 nm) with spectral widths of about 20 MHz, placing little demands on the
laser linewidths. The frequency-locking scheme for these lasers is discussed later in this
section.
Moreover, two ancilla lasers for photo ionization (846 nm/423 nm), B-field alignment (850 nm),
and a laser that serves as master oscillator for our locking scheme (852 nm) are employed.

Aside from the dipole transitions, 40Ca+ features two quadrupole transitions in the vis-
ible, |S1/2〉 ↔ |D3/2〉 at 732 nm and |S1/2〉 ↔ |D5/2〉 at 729 nm, of which we utilize the
latter for coherent qubit manipulations. Since this transition exhibits a natural linewidth
of 2π · 136 mHz, the requirements for a narrow-band laser linewidth in the Hz regime can
no longer be fulfilled by the conventional frequency-stabilization technique applied to the

11Andor, DV887DCS-BV
12Thorlabs, WP10
13We learned that it is important to shine a collimated beam onto the Wollaston prism to avoid strong defor-

mation of the beam at the outputs.
14Laser Components, COUNT-50B
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other lasers, but a more elaborate locking setup has to be deployed. Both, the qubit laser
itself as well as its stabilization are presented in the last two sections of this chapter.

2.2.1. Laser sources

The following list provides a brief overview over the laser sources that are operated in the
laboratory (with the exception of the qubit laser at 729 nm which will be treated separately
in a later section).
The laser sources, except for the 845 nm laser, are situated on a separate optical table, where
amplitude, frequency (and phase) are adjusted. Frequency matching of the laser light with
the resonance frequency of the respective transitions is obtained by tuning the laser fre-
quency using acousto-optical modulators (AOMs) that enable us to shift the frequency in
a range between 50 and 100 MHz. The light is then coupled into polarization-maintaining
single-mode fibers and guided to the optical table where the ion trap is placed.

It is mentioned in the previous chapter that Doppler cooling is employed on the dipole
transition |S1/2〉 ↔ |P1/2〉 at 397 nm, which is also used for fluorescence generation to
detect the internal state of the ion (see section 3.4). To avoid pumping into the metastable
|D3/2〉 manifold, an additional repumping laser at 866 nm that couples onto the |D3/2〉 ↔
|P1/2〉 transition, is switched on during cooling and fluorescence generation.

Generation of single photons at 854 nm requires excitation of the ion to |P3/2〉 and subse-
quent decay into the meta-stable |D5/2〉. A diode laser at 393 nm is used for the excitation
from the ground state to |P3/2〉. Repumping from |D5/2〉 is performed by an additional
laser at 854 nm, which is also used for optical pumping (see sec. 3.2).

The frequency-stabilization scheme for the lasers resonant on the atomic dipole transi-
tions is based on a master laser at 852 nm which is resonant on an atomic transition of a
Cesium vapor cell that serves as a frequency reference. In addition, a laser at 846 nm is
employed for photo ionization of the atomic Calcium atoms, and a 850 nm laser, resonant
on the |D3/2〉-to-|P3/2〉 dipole transition, is used for the alignment of the magnetic field and
thus the quantization axis.

The requirements regarding the linewidth of the lasers coupling to the dipole transitions
are rather relaxed due to the atomic transition linewidth in the order of 20 MHz, hence
laser widths of a few MHz or less are sufficient to achieve adequate coupling. The 729 nm
laser, which couples to the narrow-band quadrupole transition |S1/2〉 ↔ |D5/2〉, must be
able to frequency-resolve the transitions between the different Zeeman sublevels, resulting
in higher demands with concerning the spectral width. Therefore, this system is described
separately in more detail in section 2.2.4.

397 nm

The |S1/2〉 ↔ |P1/2〉 transition at 397 nm is used for Doppler cooling and fluorescence-
based state readout.
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Due to the lack of blue laser diodes at the time most of the lasers were purchased, the
system15 consists of three stages. Initially a grating-stabilized laser diode produces light at
794 nm which is then amplified by a tapered amplifier (TA) and subsequently frequency-
doubled by second-harmonic generation in a nonlinear crystal inside a bow-tie cavity.
We achieve a maximum output power of 200 mW for the blue light, but reduce the power
to 40 mW to increase the TA lifetime. The free-running laser linewidth is specified by the
manufacturer as 300 kHz for 5 µs integration time.

866 nm

Because of spontaneous decay from P1/2 into the metastable D3/2 state during cooling and
fluorescence integration, an additional repumping laser16 has to be incorporated that cou-
ples to the transition from D3/2 to P1/2 at 866 nm. We typically work with 20 to 50 µW of
866 nm power at the ion, therefore the 30 mW direct output power of the laser diode is
by far sufficient for our purposes. The free-running linewidth of 150 kHz allows for the
frequency-stabilization of the laser onto an optical cavity (see section 2.2.2) without further
measures.

854 nm

Repumping from the metastable D5/2 state at the end of an experimental run and gen-
eration of single 393 nm photons is carried out by the fundamental light of a TA-SHG
pro at 854 nm. The major part of the fundamental light, after amplification in a TA, is
frequency-doubled to 427 nm to operate the newly built SPDC photon-pair source [124]
while 10-15 mW are split off and sent to the ion. After passing two AOMs in double-pass
configuration, the remaining power arriving at the ion lies in the order of 500 µW.

393 nm

The DL pro at 393 nm is the newest system in our setup. It is the first laser that is con-
trolled by the novel DLC pro laser-control unit which features an improved temperature
stability of the laser head, enabling free-running operation of the laser during the ex-
periments, although a frequency stabilization is currently developed. The diode delivers
40 mW laser power, while the linewidth of <2 MHz is sufficiently narrow compared to the
atomic linewidth (2π·23 MHz) of the transition from D3/2 to P1/2 at 393 nm.

852 nm master laser

The laser-locking scheme, described in section 2.2.2, is based on a atomic Cesium reference

15TOPTICA Photonics, TA-SHG pro
16TOPTICA Photonics, DL pro

25
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onto which a master laser is stabilized. The frequency stability of that laser is then trans-
ferred onto the other lasers via a locking chain. This scheme requires a laser source that is
resonant on the Cs D2 line at 852 nm which is embodied by a diode-laser system 17 whose
output power was measured to be around 120 mW.

846 nm photo-ionization laser

Photo ionization, as described in section 2.1.3, is assisted by a free-running laser18 at 846 nm
that delivers 120 mW of output power at a linewidth of < 1 MHz. The light is frequency
doubling in a single-pass ppKTP crystal for frequency matching with the atomic transition,
yielding 35 µW of light power and a bandwidth of < 2 MHz.

850 nm ancilla

The 850 nm ancilla laser19, resonant on the D3/2 ↔ P3/2 transition, is primarily used for the
alignment of the quantization axis since the acquisition of the 393 nm laser. It is built of a
single grating-stabilized diode.

Some details on the lasers in the context of the frequency-locking scheme and the photo
ionization are found in [125] and [126], respectively. A more detailed description is found
in [75] (section 2.2) and [78] (section 1.2).

2.2.2. Transfer locking

The stabilization of the lasers onto a common atomic reference requires a sophisticated
locking scheme [125], built upon a chain of consecutive cavity locks to indirectly connect
the laser frequency to the D2 line of the Cs reference.
The chain starts with Doppler-free absorption spectroscopy of a Cs vapor cell by the master
laser at 852 nm. Prior to the spectroscopy, the laser is locked to a temperature-stabilized
low-finesse cavity [76] (F = 270, cavity linewidth ∆ = 1.9 MHz) via Pound-Drever-Hall
technique (see section 2.2.3) using commercial electronics20. The light is then utilized to
lock the cavity itself to the Cs line at 852.33493 nm.
The 866 nm laser is directly Pound-Drever-Hall locked to this cavity. To overcome spatial
limitations21, two additional cavities22 are installed to bridge the gap between 852 nm and
794 nm (the fundamental laser for 397 nm light) and 854 nm, which are frequency-locked
to the 852 nm laser. The lasers are locked to their respective cavities by PDH technique,

17TOPTICA Photonics DL 100
18TOPTICA Photonics, DL 100
19TOPTICA Photonics, DL pro
20TOPTICA Photonics, DigiLock 110
21Spatial separation of the individual laser beams becomes challenging for more than two beams.
22F794 ≈ 100, F854 ≈ 100

26
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where feedback is applied to a piezo actuator controlling the cavity grating of the laser as
well as to the diode current for fast feedback up to 5 MHz.

Frequency matching of the cavity modes and the target frequency of the laser (close to
the atomic transitions) is achieved by tuning the temperature of the cavities or shifting the
frequency of the 852 nm reference light with the help of an auxiliary AOM. The remain-
ing frequency deviation from the laser light to the atomic transitions is compensated by
acousto-optical modulators.

An equivalent stabilization setup for the 393 nm laser is currently being set up where
stabilized 397 nm light serves as reference for the cavity lock of a blue transfer cavity.
The setup for the locking scheme, though slightly modified in the meantime, is shown in
more technical detail in [76].

2.2.3. Pound-Drever-Hall technique

As mentioned in the previous section, laser locking in the present experiments is realized
by the commonly used Pound-Drever-Hall technique. This technique was first developed
for microwave oscillators [127] and later extended to optical frequencies [128]. Here, an
optical cavity serves as a frequency-dependent phase shifter. To utilise this property, the
laser light is phase-modulated by applying a modulation signal of frequency Ωm/2π =
12.5 MHz or 25 MHz to the diode current or onto an external electro-optical modulator
(EOM) in the case of the 729 nm laser.

Below, a brief derivation, adopted from [129], of the PDH error-signal generation is pre-
sented.
Let Φ0 be the modulation depth, then the resulting electric laser field becomes

E(t) = E0

(
ei (ωct+Φ0·sin Ωmt)

)
(2.12)

with the carrier frequency ωc of the laser and the field amplitude E0. Using Bessel functions
Ji, it is expanded to [129]

E(t) ≈ E0

(
J0(Φ0) ei ωct + J1(Φ0) ei (ωc+Ωm) t − J1(Φ0) ei (ωc−Ωm) t

)
(2.13)

for small modulation depths Φ0, representing a carrier and two modulation sidebands at
frequencies ±Ωm. An incident light field Einc that is reflected from a (symmectric and loss-
less) Fabry-Pérot cavity experiences a modification of its magnitude which is characterized
by the frequency-dependent reflection coefficient F(ω), defined as the ratio of incoming
and reflected field

F(ω) =
Einc

Ere f
=

r
(

exp
(

i ω
∆νFSR

)
− 1
)

1− r2 exp
(

i ω
∆νFSR

) , (2.14)
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where r is the amplitude-reflection coefficient (not to be confused with the reflection coef-
ficient F(ω)) and ∆νFSR is the free spectral range of the cavity. Applying eq. (2.14) to the
modulated field (eq. (2.13)), the reflected field from the optical resonator reads

Ere f ≈ E0

(
F(ωc)J0(Φ0) ei ωct

)
+ F(ωc + Ωm)J1(Φ0) ei (ωc+Ωm) t

− F(ωc −Ωm)J1(Φ0) ei (ωc−Ωm) t
(2.15)

and accordingly, using Pre f ∝ |Ere f |2, the reflected power becomes

Pre f ∝∼ |E0 J0(Φ0)|2|F(ωc)|2 + |E0 J1(Φ0)|2
(
|F(ωc + Ωm)|2 + |F(ωc + Ωm)|2

)

+ 2
√
|E0 J0(Φ0)|2|E0 J1(Φ0)|2

[
<
(

F(ωc)F∗(ωc + Ωm)

− F∗(ωc)F(ωc −Ωm)
)

cos Ωmt

+= (F(ωc)F∗(ωc + Ωm)− F∗(ωc)F(ωc −Ωm)) sin Ωmt
]

.

(2.16)

If the modulation sidebands are far-off resonance, F(ωc ±Ωm) becomes approximately −1
and eq. (2.16) simplifies to

Pre f ∝∼ |E0 J0(Φ0)|2|F(ωc)|2 + 2|E0 J1(Φ0)|2 + 2
√
|E0 J0(Φ0)|2|E0 J1(Φ0)|2=

(
F(ωc)

− F∗(ωc)
)

sin Ωmt

= |E0 J0(Φ0)|2|F(ωc)|2 + 2|E0 J1(Φ0)|2

− 4
√
|E0 J0(Φ0)|2|E0 J1(Φ0)|2= (F(ωc)) sin Ωmt .

(2.17)

The reflected power is measured with a (sufficiently fast) photo diode and fed into an
electronic mixer, where it is mixed with a reference oscillator at the modulation frequency
Ωm. Usually, a phase shifter has to be included to match the phases of both inputs. Low-
pass filtering of the output, retaining only the sin Ωmt term in eq. (2.17), reveals the error
signal

E(ωc) ≈ −4
√
|E0 J0(Φ0)|2|E0 J1(Φ0)|2= (F(ωc)) sin Ωmt (2.18)

which features a steep slope around the cavity resonance for small deviations of the laser
frequency from that resonance. Feedback onto the laser is then generated from this error
signal after prior processing by a controller element, e.g. a PID controller.

2.2.4. Qubit laser

Manipulations on the optical qubit is conducted on the quadrupole transition between
S1/2 and D5/2 at 729 nm. Due to the long lifetime of 1.17 s, the according transition reveals
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a narrow linewidth of 2π·136 mHz. Consequently, the width of the driving laser has to
be of the same order of magnitude for efficient coherent manipulation and prevention of
excitation of unwanted neighboring transitions. The transfer-locking scheme presented
before no longer satisfies these requirement, which is why a different approach for the
laser stabilization, namely a Pound-Drever-Hall lock onto a high-finesse cavity, presented
in section 2.2.5, is adopted.

The laser itself is composed of a laser diode embedded in a grating-based feedback cavity
in Littrow configuration. This way, a free-running linewidth of some 100 kHz is attained.
Further reduction of the linewidth to the order of tens of Hz is achieved by a fast feedback
loop acting on both, the grating for low-frequency drifts, restricted by the bandwidth of
the piezo actuator that controls the angle of the grating, and the current through the diode
for noise cancellation at frequencies up to some MHz.

The weak coupling strengths of the atomic quadrupole transmissions requires laser power
of 10 to 100 mW. To obtain these powers, laser light coming from the diode has to be am-
plified by a tapered amplifier which delivers an output power of about 430 mW behind the
optical isolator. Subsequently, the light is distributed among the various AOM lines that
serve the different beams guided to the ion.

A small fraction of the light (≈ 2 mW) is split up before the TA and is used to lock the
laser to an external high-finesse ULE cavity. First, the locking beam is sent through an
AOM23, running at about 290 MHz and set up in double-passage configuration, to bridge
the gap between the target frequency of the laser and the nearest cavity mode. The light
is then passing through a self-built EOM, running at 20 MHz, which are generated by the
PDH module24 that come with the laser, to imprint the necessary phase-modulation side-
band onto the field, and then sent onto the ultra-low–expansion (ULE) cavity, described
in the next section, for a PDH-type locking. Narrowing of the laser linewidth is facilitated
by feedback onto the laser from a fast analog controller25. More details on the qubit-laser
system are found in [77].

A well-known phenomenon in closed feedback loops is the emergence of so-called servo
bumps. They are caused by the limited bandwidth of the servo loop that leads to a phase
shift of the feedback signal for higher frequencies. Once the phase shift exceeds 180◦, noise
at that frequency and above is amplified instead of suppressed. In diode-laser systems,
these broad servo bumps typically lie in the vicinity of 1 MHz around the carrier, coincid-
ing with the axial trap frequency, and their magnitude lies between 25 dB and 30 dB below
the carrier, if no counter measures are adopted. In the current setup, we observe the ap-
pearance of servo bumps as well. They are characterized explicitly in chapter 7 and their
influence on gates that operate on the motional sidebands is investigated.

23Brimrose, TEF-270-100-729
24TOPTICA Photonics, PDD 110
25TOPTICA Photonics, FALC 110
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2.2.5. High-finesse ULE cavity

The high-finesse ULE cavity was set up in the context of Jan Huwer’s doctoral thesis
[77] to enable narrow-linewidth frequency stabilization. The cavity is standing upright
on three Teflon spacers to reduce thermal conductivity from the environment and mini-
mize coupling to mechanical vibrations. To ensure passive stabilization, it is enclosed in
a temperature-regulated vacuum chamber which for its part is sitting inside an isolated,
temperature-stabilized Aluminum box. Mechanical perturbation is damped out by a pas-
sive vibration-damping platform26 onto which the vacuum chamber is placed. In addition,
the vacuum of about 5 · 10−10 mbar provides a considerable isolation against acoustic noise.
The inside of the Aluminum box can be seen in fig. 2.7.

Figure 2.6.: 3D model of the high-finesse
cavity. The cavity is mounted upright on
three Teflon rods for mechanical and thermal
decoupling. (From [77])

Figure 2.7.: A picture of the inside of the
Aluminum box containing the HF cav-
ity. The vacuum chamber is resting on a
vibration-damping platform. Locking light
is coupled from below. A vacuum pump,
seen on the left, retains the vacuum. (From
[77])

The cavity is constructed from ultra-low-expansion–glass spacer27 with a zero-expansion
point of 21◦ C. It is built in a Fabry-Pérot-like layout with two mirrors separated by a

26Minus K, 100BM-4
27manufactured by Corning
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distance of 77.5 mm in non-confocal configuration. It consists of one planar mirror and
one concave mirror with a radius of curvature (ROC) of 50 cm. The resulting free spec-
tral range was measured to be ∆νFSR = 1.935(3)GHz and the finesse was determined as
F = 479 000± 1000, hence

∆νcav =
∆νFSR

F (2.19)

yields a cavity linewidth of ∆νcav = 4.034(5) kHz.
Due to material properties of the ULE glass, the cavity exhibits a linear drift of its reso-

nance frequency of 80 mHz/s or 7 kHz per day. Therefore, the RF-drive frequency of the
compensation AOM for the laser lock is adjusted from time to time.

2.3. Experiment control

Increasing complexity in the protocols for quantum-information application demands pre-
cise control over the experimental sequences. Therefore, more and more elaborate control
units are required.
We deploy a commercially available system that constitutes the second-generation ver-
sion of its predecessor "HYDRA" [130] originally developed in the group. The device is
manufactured and distributed by Keysight28. It is based on FPGA-controlled arbitrary-
waveform generators (AWG) to generate RF signals of up to 1 GS/s that drive the AOMs
for the individual laser beams. Additional digital-input-output (DIO) and time-to-digital–
converter (TDC) modules facilitate the usage as single-photon counter with a time reso-
lution of 150 ps, furthermore allowing for conditional operation of the experiment which
leads to a tremendous speed-up of the sequential execution time, and to apply feedback to
the AOMs for intensity stabilization.

28formerly Signadyne
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Even the most complex experimental sequence in the context of this work requires a com-
prehensive set of fundamental experimental methods for reliable initialization, manipula-
tion, and detection of quantum states. This tool box comprises well-established techniques
like Doppler cooling [131], Ramsey-type measurements [132] and fluorescence-based state
discrimination.

The implementation of some of these techniques in the present experimental setup dates
back to earlier work in the group; for instance the Doppler cooling presented in section 3.1
and atomic state analysis by fluorescence detection (sec. 3.4), which were already described
in [75], and coherent manipulations on the optical and ground-state qubit (sections 3.3.2
and 3.3.3) as well as the usage of Ramsey experiments for the determination of the atomic
coherence time (see section 3.6), that were topic of Jan Huwer’s dissertation thesis [77].
A modified scheme for frequency-resolved optical pumping, presented in section 3.2, the
deployment of the atomic light shift for single ion addressing, discussed in sec. 3.3.4, and
an approach for the suppression of magnetic-field noise, were newly established in the
course of this thesis and related work1.

In addition, the concept of Zeeman splitting and the appearance of the (time-dependent)
Larmor phase are briefly discussed in sec. 3.5 as they are essential for the understanding
of some of the phenomena encountered in the following.

3.1. Laser cooling

Apart from internal electronic states mentioned in chapter 1, the overall quantum state is
also characterized by its quantized motional degrees of freedom. For a single ion trapped
in a linear Paul trap, these are represented by the motional quantum numbers nax, nrad,x
and nrad,y for the axial and both radial trap modes, respectively.

After trapping, the ion is in a high-lying thermal state of motion whose spatial wavepacket
is strongly delocalized, making laser cooling necessary.
An established cooling technique that combines high cooling rates and moderate experi-
mental effort is Doppler cooling which will be described in the following. Even though it
suffers from a minimal achievable temperature well above zero2 and is therefore not suit-

1The feed-forward technique for the magnetic-noise cancellation was developed by Matthias Kreis during
his Master’s thesis [133].

2Typically, the number of motional quanta in the system after Doppler cooling lies in the order of 10, depend-
ing on the trap frequencies.
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able for ground-state cooling, it has proven to be sufficient for all tasks in our context of
atom-photon-interfaces so far.

In the following, the ion is assumed to be already pre-cooled to the Lamb-Dicke regime3,
where the spread of the atomic wavepacket is small compared to the wavelength of the
external light field (or rather its projection onto the motional mode under consideration),

or in other terms, where
√

2〈n〉+ 1 η � 1 holds, when η = k
√

h̄
2mωT

is the Lamb-Dicke
parameter with the laser wave number k, the ion mass m and the trap frequency ωT, and
where 〈n〉 is the mean motional quantum number.

In addition to the carrier transition, a trapped two-level atom exhibits sideband transi-
tions at frequencies N · ωT, N ∈ N, from the carrier, that couple to the motional state of
the ion. Hence two competing cooling/heating processes occur when the atom is driven
by laser light: absorption on the red sideband (i.e. at frequency ωC − ωT, where ωC is the
transition carrier frequency and ωT is the trap frequency), relieving a phonon and resulting
in cooling of the ion, and absorption on the blue sideband (ωC + ωT) or emission on the
red sideband, which counteracts the cooling and adds a phonon into the system.

It is intuitive that a net cooling is accomplished when the absorption rate on the red
sideband is higher than the rate on the blue sideband. For a further understanding of
the cooling dynamics, we have to distinguish between two regimes, the resolved-sideband
regime, where ωT � Γ holds so that the motional sidebands can be addressed individually,
on the one hand, and the case ωT � Γ on the other hand, where the transition is much
broader than the distance of the sideband from the carrier. Doppler cooling, discussed in
this chapter and deployed in the experiment, operates in the latter regime.

Ideal parameters for Doppler cooling are determined by the ratio of cooling rate vs. heat-
ing rate, i.e. we want to find a detuning ∆ for the driving laser for which we achieve large
cooling rates while simultaneously reducing the heating. For that purpose, an analytical
expression for the cooling and heating rates has to be derived. Following the procedure in
[134], we find the rates R± for a scattering event on the blue and red sideband, respectively,
to be R− = nA− and R+ = (n + 1)A+, with the rate coefficients

A± =
Ω2

Γ
η2 (cos2 θ W(∆∓ωT) + αW(∆)

)
, (3.1)

W(∆) =
1

4 ∆2

Γ2 + 1
, (3.2)

the motional quantum number n, and the Rabi frequency Ω in the regime of weak cou-
pling, i.e. for Ω � Γ. The angle θ in eq. (3.2) represents the angle between the direction
of propagation of the cooling light and the orientation of the motional mode. α describes
the average component of the spontaneous-emission recoil energy on the motional axis,
weighted with the dipole pattern of spontaneous emission [134, 135]. Isotropic emission

3which is not a necessary condition for Doppler cooling, but it simplifies the mathematical treatment by
assuming that two-phonon processes are strongly suppressed.
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results in α = 1/3. The first term in R+(R−) corresponds to absorption on the blue (red)
sideband and subsequent emission on the carrier, while the second term describes absorp-
tion on the carrier and emission of a photon on the blue (red) sideband transition [134].
Note that absorption and subsequent emission on a sideband is strongly suppressed by a
factor of η2 and therefore neglected.

The mean vibrational quantum number 〈n〉 is given by

〈n〉 =
∞

∑
n=0

pnn , (3.3)

where pn represents the probability to find the ion in |n〉 when we sum over all electronic
states and is typically described by a thermal distribution. The temporal derivative of this

number is then determined by the total cooling rate Rtot =
∞
∑

n=0
pn
(

R+(n)− R−(n)
)
, i.e.

d
dt
〈n〉 =

∞

∑
n=0

pn
(

R+(n)− R−(n)
)

=
∞

∑
n=0

pn
(
(n + 1)A+ − nA−

)
=

∞

∑
n=0

pnn(A+ − A−) + A+

= (A+ − A−)〈n〉+ A+ ,

(3.4)

where we have to take into account that the cooling efficiency, i.e. the probability for a
cooling event, depends on the motional quantum number.
From eq. (3.4) we derive the temporal evolution for the mean vibrational number,

〈n〉(t) = 〈n〉(0) e(A+−A−) t + 〈n〉(∞)
(

1− e(A+−A−) t
)

. (3.5)

〈n〉(∞) is the steady-state solution, assuming A− > A+, and is deduced from d
dt 〈n〉(∞) = 0

as (cf. eq. (3.4))

〈n〉(∞) =
A+

(A− − A+)
. (3.6)

Minimization of eq. (3.6) leads to the optimal detuning for Doppler cooling:

d
d∆
〈n〉(∞)

!
= 0⇒ ∆opt = −

Γ
2

. (3.7)

We see that 〈n〉(∞) exhibits a finite value for ∆ = ∆opt. This value represents the Doppler
limit. Cooling below this threshold would require more advanced cooling techniques like
resolved-sideband cooling [136] or EIT4 cooling [137].

In the experimental implementation, we employ Doppler cooling on the S1/2 ↔ P1/2
transition at 397 nm. Since the real ion is not an ideal two-level system, but exhibits several

4electromagnetically induced transparency
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transitions and decay into the metastable D3/2 manifold, an additional laser at 866 nm is
required for repumping from D3/2. As mentioned before, both lasers (397 nm and 866 nm)
are vertically polarized to avoid optical pumping.
From the experimental parameters for cooling of the axial mode, θ = 22.5◦, η = 0.163,
ωT = 2π · 1.195 MHz, and α = 1/3 (assuming isotropic spontaneous emission), eq. (3.6) ex-
hibits an expectation value for the population of the axial motional mode of 〈nax〉(∞) = 6.

Temperature measurements using the red sidebands of the quadrupole transition5 S1/2 ↔
D5/2 reveal a mean population of the (axial) motion of 〈nax〉 ≈ 15. The experimental value
is higher than the ideal minimum mean occupation of the motional modes after Doppler
cooling. This effect is primarily traced back to the (false) assumption of an ideal two-
level system in the theoretical description. In the actual implementation, the coupling of
all 8 levels involved in the cooling process (two sub-levels in S1/2, two sub-levels in P1/2,
and the four sub-levels in D3/2) by the cooling laser at 397 nm and the repumping laser at
866 nm leads to the occurrence of dark resonances that significantly alter the conditions for
the cooling dynamics. An analysis of the cooling dynamics in multi-level systems is found
in Jan Huwer’s dissertation thesis [77].

Although we also conducted experiments where we used resolved-sideband cooling
prior to the actual experimental pulse sequence (specifically for the Mølmer-Sørensen-type
two-qubit gates presented in chapter 7), we saw no improvement in the outcome and thus
restricted ourselves to Doppler cooling for all measurements presented henceforth in favor
of higher repetition rates.

3.2. Optical pumping

Due to a modified geometry of the trap-table setup (see chapter 2) compared to earlier ex-
periments [77, 78, 79], polarization-selective optical pumping on the S1/2 ↔ P1/2 transition
at 397 nm is no longer applied to avoid damage of the single-photon detectors. For that
reason, an alternative pumping scheme, based on the frequency-selective depopulation
of one Zeeman sublevel of S1/2 on the narrow quadrupole transition at 729 nm, is imple-
mented. Repumping from D5/2 is provided by simultaneously driving the ion with 854 nm
laser light. Decay from P3/2 to S1/2 either transfers the ion into the target state, where it is
decoupled from the 729 nm light, or into the undesired sublevel, where it undergoes the
pumping cycle again until the ion eventually ends up in a pure state with high probability.
The pumping procedure is again schematically shown in fig. 3.1.

To avoid a lengthy empirical optimization process for the pumping parameters, we es-
timate the optimal laser powers (or the respective Rabi frequencies) in advance, where we
keep in mind that the potential 729 nm power is limited to avoid erroneous excitation of
neighboring transitions. A typical scenario restricts the Rabi frequency of the quadrupole
laser to a FWHM6 of about 2π·100 kHz and the laser power has to be chosen accordingly.

5for details on the temperature-measurement scheme see [77]
6Full width at half maximum
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Figure 3.1.: Frequency-selective optical pumping into |S1/2,−1/2〉 (a) and |S1/2,+1/2〉 (b). The
854 nm repumper, incident under 90◦ to the quantization axis, is vertically polarized and couples
exclusively to the σ± transitions.

The power broadened FWHM of the line is given by [138]

∆ω1/2 = AS→D

√
1 + 2

Ω2
729

A2
S→D

(3.8)

with AS→D = 2π·136 mHz being the Einstein coefficient for the S1/2 → D5/2 transition and
Ω729 the Rabi frequency of the driving laser on said transition. If we allow for a FWHM
of 250 kHz, we obtain an optimal Rabi frequency of Ω729 = 2π·177 kHz (with the 854 nm
laser switched off).

The width of the D5/2 level is determined by its effective lifetime which is directly con-
nected to the resonant repumping rate [78]

RD→S =
Ω2

854

Γ2
P3/2

+ 2Ω2
854

AP→S , (3.9)

governed by the 854 nm laser power, via τP3/2 = 1
RD→S

for RD→S � ΓD5/2 . In analogy to
eq. (3.8), Ω854 and AP→S are the Rabi frequency (D5/2 → P3/2 transition) and the Einstein
coefficient (P3/2 → S1/2 transition), respectively, and ΓP3/2 is the total decay rate for P3/2.
Numerical simulations show that the optimal value for the Rabi frequency on D5/2 ↔ P3/2
is Ω854 = 2 ·Ω729 = 2π · 344 kHz. The underlying model for the simulation is presented in
section 4.1.

Assuming we start from a symmetrical mixture of both Zeeman sublevels in the S1/2
ground state (which is not entirely true due to the more complex level structure of the
cooling transitions that results in a small population imbalance) and accounting for the
unequal Clebsch-Gordan coefficients of both decay paths, the minimum number of scat-
tering events for a desired pumping efficiency ηpump can easily be derived as

N = log3

(
1

2 · (1− ηpump)

)
. (3.10)
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For a target efficiency of 99.9% we obtain a minimum of 4 scattering events for our given
experimental parameters which corresponds to a simulated theoretical pumping time of
33 µs (fig. 3.2). In practice we work with a moderately increased pumping time of 60 µs to
100 µs to be more robust towards imperfections. With that we achieve pumping efficiencies
of typically 99.6% [139].

Figure 3.2.: Numerical simulation of the populations in |D5/2,−3/2〉, |P3/2,−1/2〉, and both ground
states |S1/2,±1/2〉 during optical pumping in a simplified four-level system. The Rabi frequencies
for the simulation were Ω729 = 2π · 177 kHz and Ω854 = 2π · 344 kHz. We assume a balanced initial
population in the ground states. The Clebsch-Gordan coefficients for the decay from |P3/2,−1/2〉 to
S1/2,±1/2〉 were taken into account.

The pumping efficiency is limited by off-resonant coupling to neighboring transitions.

3.3. Coherent manipulations

Optical pumping prepares the atom in a pure quantum state that forms the basis for further
applications. The ability for coherent manipulation of the system plays a key role in most
protocols. Over time, we have developed an elaborate quantum-mechanical tool box for
these tasks which will be presented in the following sections.

3.3.1. Atomic single-qubit rotations

Despite involving some theory, understanding the atomic dynamics is of particular impor-
tance for the experimenter to gain control over its system7. Here we will concentrate on the
effect of coherent resonant and off-resonant excitation of an ideal two-level system. Spon-
taneous emission is neglected for now since it plays no role in the context of quadrupole
and RF transitions that are discussed later in the chapter.

7and, of course, also to tackle the various problems that appear in the course of an experiment.
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3.3. Coherent manipulations

First we treat resonant state rotations and will later see how off-resonant excitation is
easily incorporated. Coherent manipulation of a single-qubit quantum state is described
by rotations of the quantum-state vector on the Bloch sphere which is a representation of
the states that span the one-qubit Hilbert space.

Coherent (near-)resonant excitation in the atomic reference frame (e.g. by a coherent laser
field or RF drive) is described by the rotation operator

R̂(θ, φ) = exp
(
− i

h̄
~θ~S
)
= exp

(
− i

θ

2
(
cos φ σx + sin φ σy

)
︸ ︷︷ ︸

Σ̂

)
, with

~θ = θ




cos φ

sin φ

0


 , ~S =

1
2

h̄~σ ,~σ =




σx
σy
σz


 ,

(3.11)

acting on the (pure) qubit state |ψ〉0 = cos ϑ
2 |0〉 + eiϕ sin ϑ

2 |1〉. σx,y,z are the Pauli matri-
ces. The angle φ defines the orientation of the rotation axis in the equatorial plane of the
Bloch sphere and θ determines the rotation angle around that axis (see fig. 3.3). In vector

representation, the states |0〉 and |1〉 are written as |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
.

|1〉

|0〉

φ

|ψ〉
θ

Figure 3.3.: Depiction of a state rotation on the Bloch sphere. The angle φ defines rotation axis in
the equatorial plane, θ determines the rotation angle along that axis.

To study the effect of R̂ on |ψ〉0, we first rewrite |ψ〉0 in terms of the eigenvectors of Σ̂, |s1〉
and |s2〉:

|0〉 = γ1|s1〉+ γ2|s2〉 , γ1, γ2 ∈ C

|1〉 = δ1|s1〉+ δ2|s2〉 , δ1, δ2 ∈ C .
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With the eigenvalues E1, E2 of Σ̂ defined as

Σ̂|s1〉 = E1|s1〉 ,

Σ̂|s2〉 = E2|s2〉
we get

R̂|s1〉 = e−i θ
2 E1 |s1〉 ,

R̂|s2〉 = e−i θ
2 E2 |s2〉

and hence

R̂|ψ〉0 = R̂
(

cos
ϑ

2
|0〉+ eiϕ sin

ϑ

2
|1〉
)

= R̂
(

cos
ϑ

2
γ1|s1〉+ cos

ϑ

2
γ2|s2〉+ ei ϕ sin

ϑ

2
δ1|s1〉+ ei ϕ sin

ϑ

2
δ2|s2〉

)

= e−i θ
2 E1

(
cos

ϑ

2
γ1 + ei ϕ sin

ϑ

2
δ1

)
|s1〉+ e−i θ

2 E2

(
cos

ϑ

2
γ2 + ei ϕ sin

ϑ

2
δ2

)
|s2〉 .

(3.12)

Figure 3.4.: The plot shows a simulation of a resonant single-qubit rotation (blue) with Rabi fre-
quency Ω = 2π · 1 MHz, and an off-resonant excitation at the same Rabi frequency but detuned
by ∆ = 4 Ω (red). The off-resonant driving exhibits a fast oscillation of significantly decreased
amplitude.

Eq. (3.12) is true for resonant excitation. Including off-resonant driving of the transi-
tion is simply included by making ϑ and ϕ (and consequently also |s1〉 and |s2〉) time-
dependent. The time-derivative is directly given by the relation dϑ

dt = Ω with the resonant
Rabi frequency Ω, while the rotation axis defined by ϕ oscillates in the equatorial plane.
The time-varying oscillation angle depends on the detuning ∆ via ϕ(t) = ϕ0 + ∆ · t. The
system dynamics of an initial state are then deduced from these quantities. A simulation
of the temporal evolution of the populations for resonant and off-resonant excitation is
shown in fig. 3.4.
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3.3. Coherent manipulations

3.3.2. Coherent manipulations on the optical quadrupole transition

Coherent manipulations on the narrow qubit transition at 729 nm pose a very important
tool for state preparation and state analysis. For the success of our protocols it is crucial to
have very good control over these laser pulses and their effect on the ion.

Here we adapt the theory developed in the previous section to optical manipulations of
the real system and investigate their influence onto the state dynamics. For that purpose,
we prepare the ion in a defined magnetic quantum state, i.e. a specific m-state, perform a
state-rotation pulse of varying length or power and read out the result by means of fluo-
rescence detection.

Starting in a specific m-state in S1/2, e.g. |S1/2,−1/2〉, the population transfer to D5/2
after a time τ is given by the covered pulse area Ω729 · τ via pD = sin2(Ω729

2 τ) with the Rabi
frequency

Ω729 = γ ·
√

A2
S→D I729

2 Isat
(3.13)

on that transition. As before, AS→D = 2π · 136 mHz is the Einstein coefficient for the
S1/2 → D5/2 quadrupole transition, where the factor γ accounts for the Clebsch-Gordan
coefficient on that specific transition (e.g. |S1/2,−1/2〉 ↔ |D5/2,−5/2〉). I729 is the laser
intensity at the ion and

Isat =
AS→D

6
h̄c
λ3 (3.14)

is the saturation intensity of the transition. Full state transfer is performed after a pulse du-
ration τπ = π/Ω729 (a "π pulse"). In the experiment, we usually work with a π-pulse time
of 10 µs which has proven to be a good trade-off between transfer infidelity and relatively
fast gate times.

To maintain the timings during the experiment, instead of scanning the pulse length, in
fact the pulse duration τ is kept fix while the pulse amplitude (and hence Ω729) is varied.
Such a pulse-amplitude scan is presented in fig. 3.5. Optimal pulse amplitude and transfer
efficiency are deduced from a fit to the data.

3.3.3. Coherent manipulations on the radio-frequency transition

Coherent manipulations on the Zeeman-split ground-state qubit in S1/2 can be conducted
by far-detuned optical Raman pulses on an electrical dipole transition [140]. In our case,
we decided to directly drive the transition with the help of a magnetic RF field that is
produced by a magnetic-field coil located beneath the vacuum chamber. The applied RF
drive is tuned to the resonance frequency of the ground-state transition at about 8 MHz.
This approach has the advantage that it is very robust and easy to control, as amplitude,
frequency, duration and phase of the RF pulse are easily adjusted. Scanning the pulse-
frequency over the transition reveals the resonance frequency, optimal pulse parameters
for the targeted state rotation are obtained similarly to the procedure described in section
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Figure 3.5.: Scan of the AOM amplitude the for a pulse resonant on the |S1/2,+1/2〉 → |D5/2,+3/2〉
transition while the pulse duration is fixed. The D5/2 population after the optimal pulse is typi-
cally in the order of 99%, which, accounting for the pumping efficiency of 99.6%, yields a transfer
efficiency of approximately 99.4%.

3.3.2, except for another "shelving" pulse at 729 nm at the end of the RF pulse. This pulse
transfers the population in one of the S1/2 Zeeman sublevels into the "dark" (i.e. decoupled
from the cooling lasers and therefore dark during fluorescence detection) D5/2 manifold.
This shelving pulse is necessary for the fluorescence-based state read-out following the RF
rotation.

With this technique, we achieve π-pulse times of up to 5 µs (or 2.5 µs for a π
2 basis-

rotation pulse, mentioned in section 3.4). Again, we rather scan the RF amplitude instead
of the pulse duration to obtain the optimal timing in the experimental sequences. Fig. 3.6
shows the result of a typical RF pulse-amplitude scan as performed on a daily basis in the
laboratory.

3.3.4. Light shift

In section 3.3.1 we assumed the energy splitting between the eigenstates of the qubit sys-
tem to be constant, hence the σz rotation was disregarded. However, in reality, driving
a two-level system off-resonantly results in a shift of the energy levels caused by the AC
Stark effect, depending on detuning ∆ and (carrier) Rabi frequency Ω of the driving field,
that gives rise to an additional σz term in the Hamiltonian describing the system. This can
be understood quite intuitively: The time-dependent phase of a superposition of the eigen-
states is determined by the energy difference between these states. Therefore, a change in
this energy splitting results in an additional phase after a given time which corresponds to
a σz rotation on the Bloch sphere.
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3.4. Atomic state analysis by fluorescence detection

Figure 3.6.: Result of an RF pulse-amplitude scan. The maximum D5/2 population in this scan
was 98.5%. Taking pumping and shelving efficiencies into account, this corresponds to a transfer
efficiency of 99.5% for the RF pulse.

The magnitude of this light shift is described by the expression [141]

∆AC = −∆
2
+

sgn ∆
2
√

2

√√√√Ω̃2 − Γ2

4
+

√(
Ω̃2 − Γ2

4

)2

+ ∆2Γ2, (3.15)

with the effective Rabi frequency Ω̃ =
√
|Ω|2 + ∆2 and the natural transition linewidth Γ.

Avoidance of unwanted excitation on the carrier is guaranteed by the condition ∆ � Ω, Γ
and is necessary to achieve a pure σz gate.

Assuming a Rabi frequency of Ω = 10 kHz, a detuning of ∆ = 100 kHz and a linewidth
of Γ = 2π · 136 mHz, a phase shift of π is accumulated after a time τ = 1 ms which corre-
sponds to a "flipping" of a superposition state in the equatorial plane.8

An experimental implementation of this technique is presented in chapter 7.

3.4. Atomic state analysis by fluorescence detection

Atomic state analysis usually represents the last element of an experimental cycle. In the
context of our setup, it is conducted by an optional basis-rotation pulse followed by state-
dependent fluorescence generation. The basis rotation is required for a full quantum-state
tomography, where measurements in the σz basis are not sufficient. Measurements in the
σx-σy bases (i.e. the superposition bases) are realized by applying a π

2 radio-frequency pulse
prior to the state discrimination to translate the superposition phase into population of

8Remember that the energy shift acts on both levels in opposite direction, hence the factor of 2.
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the energy eigenstates. If the qubit is encoded into an other state than the ground-state
superposition, it is coherently transferred to S1/2 before the further analysis. Fluorescence-
based internal-state discrimination is facilitated by shelving the population in one of the
two S1/2 states (usually the |+ 1/2〉 population) into the dark D5/2 manifold.

P3/2

D5/2

S1/2

π
2 , φ

Figure 3.7.: Atomic state analysis in the ground-state qubit. If measured in a superposition basis,
an (optional) radio-frequency rotation pulse, mapping the superposition phase onto the population
of | ± 1/2〉, is applied. Subsequently, a 729 nm pulse shelves the |+ 1/2〉 population to D5/2. State
discrimination is then performed by fluorescence detection at 397 nm under excitation with the
397nm and 866nm lasers. If the qubit is encoded in a different state (e.g. a superposition in the D5/2
manifold), it is coherently transferred to the ground state beforehand.

Fluorescence detection itself is carried out by switching on the cooling lasers (at higher
power to increase the scattering rate) and detecting the scattered 397 nm photons with a
photo-multiplier tube. The fluorescence is integrated for a time τint with typical values
of τint = 100 µs. The integrated number of counts allows for a decision whether the ion
stayed in the (bright) ground state after the shelving pulse or is projected onto the (dark)
D5/2 manifold. If in S1/2, the ion exhibits a detected fluorescence rate rb between 135 000
and 150 000 1/s, while the detected dark rate rd, consisting of detector dark counts and laser
stray light, is about 100 1/s. The probabilistic nature of the process yields a distribution of
the detected counts as illustrated in fig. 3.8.
To distinguish between both results we define a threshold nth up to which the result counts
as dark, i.e. the ion is assumed to be in the dark state which is decoupled from the exciting
laser. If the number of detection events exceeds that threshold, the ion is assumed to be
in the corresponding bright state. The goal is to find the threshold for which the decision
error is minimized for a given integration time.

The error estimation is based on [79]. For integration times small compared to the nat-
ural life time of D5/2, i.e. where we assume that the ion stays in the dark state over the
whole integration process9, and assuming no a-priori information on the atomic state and
uniform temporal distribution of the detection events, the decision error is approximated
as

ε =
1
2

(
F(nth , 〈nb〉) +

(
1− F(nth , 〈nd〉)

))
(3.16)

with the expectation values 〈nb〉 = rbτint and 〈nd〉 = rdτint for the number of detected

9a treatment including decay of the dark state is presented in [79]
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3.4. Atomic state analysis by fluorescence detection

Figure 3.8.: Distribution of accumulated detection events for 100 µs integration time and bright and
dark count rates of 155 000 1/s and 100 1/s, respectively (overlayed for illustration). The computation
of the optimal threshold for state distinction is discussed in the main text. (From [77])

counts in the bright and dark case and the Poisson cumulative distribution function

F(nth , 〈n〉) = e−〈n〉
nth

∑
k=0

〈n〉k
k!

(3.17)

which describes the probability of detecting less than nth + 1 events for a Poissonian dis-
tribution that exhibits a mean of 〈n〉 events.

For typical experimental parameters rb = 140 000 1/s, rd = 100 1/s and τint = 100 µs, we
obtain an optimal threshold nth = 1 with a decision error ε = 3.4 · 10−5.

For a reliable estimation of the populations in a certain basis, the experimental sequence
followed by fluorescence detection described above is repeated a number of times. From
the outcome of this experiment (k dark results) we deduce the probability p to find the
atom in the dark state, that is, the probability that p correctly reproduces the observed
result. Given k dark decisions, this yields the probability distribution

P(p|k) = P(k|p) P(p)
P(k)

, (3.18)

where we deployed Bayes theorem. P(p) denotes the probability that p correctly de-
scribes the system. Without any initial knowledge, all p are equally probable and we set
P(p) = const. = 1. The probability for finding k dark events, P(k), is expressed as the
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probability for k findings given an underlying probability p, P(k|p), weighted with P(p)
and integrated over all p,

P(k) =
1∫

0

P(k|p) P(p) dp . (3.19)

The probability P(k|p) is described by the binomial distribution

P(k|p) =
(

n
k

)
pk (1− p)n−k (3.20)

for k dark events out of n measurements.
With eq. (3.19) and (3.20), (3.18) is rewritten as

P(p|k) =

(
n
k

)
pk (1− p)n−k

(
n
k

) 1∫
0

pk (1− p)n−k dp
=

pk (1− p)n−k

1∫
0

pk (1− p)n−k dp
. (3.21)

Inserting
1∫

0

pk (1− p)n−k dp =
Γ(k + 1) Γ(n− k + 1)

Γ(n + 2)
(3.22)

with the Γ function
Γ(x) = (x− 1)! (3.23)

we obtain

P(p|k) = (n + 1)!
k! (n− k)!

pk (1− p)n−k . (3.24)

From that result he expectation value for p is determined:

〈p〉 =
1∫

0

p P(p|k) dp =

1∫

0

p
(n + 1)!

k! (n− k)!
pk (1− p)n−k dp

=
(n + 1)!

k! (n− k)!

1∫

0

pk+1 (1− p)n−k dp =
(n + 1)!

k! (n− k)!
(k + 1)! (n− k)!

(n + 2)!

=
k + 1
n + 2

(3.25)

with the standard deviation

∆p =
√
〈p2〉 − 〈p〉2 , (3.26)
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where

〈p2〉 = (n + 1)!
k! (n− k)!

1∫

0

pk+2 (1− p)n−k dp =
(n + 1)!

k! (n− k)!
(k + 2)! (n− k)!

(n + 3)!

=
(k + 2)(k + 1)
(n + 3)(n + 2)

.

(3.27)

Equations (3.25)-(3.27) allow for the estimation of the state populations and the respec-
tive reliability for that value. As a consequence, (3.25)-(3.27) are used to compute the re-
quired number of measurement repetitions for a given desired confidence interval of the
result.

3.5. Zeeman splitting and Larmor phase

The quantization axis in the present experiment is defined by a constant magnetic field
aligned along the HALO axis. A collateral effect is the splitting of the respective substates
of the level manifolds according to their magnetic moment in the external field due to the
Zeeman effect. The frequency shift for a state of magnetic quantum number m in a field of
magnitude B is given by the well-known formula

∆νZeeman =
µB

h
· g ·m · B (3.28)

with the Landé factor g, depending on the state manifold, and the Bohr magneton µB.
For the S1/2 ground state, with a Landé factor of g ≈ 2 and magnetic quantum numbers
m = ±1/2, a magnetic field of B = 2.8 G results in a ground-state splitting ∆ν = 7.84 MHz,
defining the qubit frequency. Lifting the frequency degeneracy enables coherent qubit ma-
nipulation by RF pulses resonant with the ground-state transition.

A superposition of states |0〉 and |1〉 with energies E0 and E1 exhibits a phase that pre-
cesses with the Larmor frequency ωL = E1−E0

h̄ .
The radio frequency, tuned to the ground-state transition, serves as reference frame in the

experiment that rotates with the atomic qubit frequency in S1/2. However, if a distortion of
the local magnetic field causes fluctuations of the qubit frequency which the experimenter
is not aware of, the reference oscillator will start to rotate out of phase, causing decoherence
of the system (see section 3.6).

If the qubit is encoded in a different superposition than the ground state, it acquires an
additional Larmor phase according to the difference in the respective frequency splittings,
until it returns to the ground state. Therefore, the precise instant of the transfer to the
S1/2 qubit has to be known so the additional phase can be taken into account for further
processing. The time-dependent Larmor phase is reflected as an oscillatory behavior of the
populations in |S1/2,±1/2〉 after the basis-rotation pulse as a function of the return time to
the ground state.
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3.6. Coherence time

Quantum information can only be stored as long as the coherence time of a quantum mem-
ory permits. Therefore, for larger quantum networks it is essential to obtain long coherence
times to ensure reliable operation.

|1〉

|0〉
Figure 3.9.: Illustration of decoherence due to magnetic-field fluctuations. The B-field noise induces
a fluctuating energy splitting between the qubit states, causing the phase of an atomic superposi-
tion (depicted as state vector on the Bloch sphere) to oscillate at different frequencies and thus to
accumulate differing phases over time. If these phase deviation are unknown to the experimenter,
they add up incoherently and drag the atomic state vector towards the origin of the sphere, i.e.
towards a mixed state.

Decoherence, in a sense, describes the loss of knowledge over the collective quantum
state of a system, e.g. due to undetected scattering of photons that carry information about
the physical state, or unknown perturbations of the system Hamiltonian. In our case, the
storage time of quantum information is primarily limited by the latter effect. In particular,
a fluctuating local magnetic field leads to a fluctuation of the energy levels due to the
Zeeman effect and thus to an additional unknown phase contribution to the superposition
state in the qubit subspace, reducing the purity of the outcoming state, as depicted in fig.
3.9.

The main sources of B-field noise are the electronic overhead surrounding the trap table
and noise on the current through the field coils, delivered by a DC power supply. The
magnetic-field noise can be decomposed into two contributions, white noise and harmon-
ically oscillating variations at 50 Hz and higher harmonics thereof. The latter manifests as
Bessel "bumps" in visibility–vs.–waiting-time plot of Ramsey-type scans (see fig. 3.10) and
is eliminated by applying a phase-shifted field of the same frequency and magnitude. A
more extensive discussion of both types of B-field noise and their effect onto the coherence
time is found in [77].
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Figure 3.10.: Visibility vs. waiting time for a series of RF Ramsey scans from the "ancient days"
(taken from [77]) when no B-field–noise elimination was used. The T∗2 coherence time was mea-
sured to be 279(9) µs. The Bessel fringes for higher waiting times are clearly visible.

A convenient way to deduce the coherence time is provided by a Ramsey experiment
(or rather a series of Ramsey experiments). A Ramsey experiment or Ramsey phase scan
consists of four steps, illustrated also in fig. 3.11. First, the ion is initialized in an energy
eigenstate by optical pumping, for instance in |0〉 = |S1/2, m = −1/2〉, followed by a π

2
pulse of defined phase ϕ0 that rotates the state into a symmetric superposition |0〉+ ei ϕ0 |1〉
on the equatorial plane of the Bloch sphere. For simplicity we assume ϕ0 = 0. The superpo-
sition now evolves for a time τRamsey, where it might pick up an undesired phase deviation
caused by perturbations of the energy distance between |0〉 and |1〉. Subsequently a second
π
2 pulse with variable phase ϕ is applied. The phase offset between atomic superposition
and second pulse determines the resulting rotation. Fluorescence detection finally reveals
the population in S1/2 and D5/2, respectively (explained in the previous section).

Pumping RF pulse
π
2 , 0

◦ τRamsey
RF pulse
π
2 , ϕ

Shelving Fluorescence

t

Figure 3.11.: Schematic visualization of a Ramsey sequenced as explained in the main text. The
outcome of this Ramsey-type measurement is shown in fig. 3.12.

Scanning the phase of the second pulse with respect to the first one exposes an oscillatory
behavior of the excited-state population (fig. 3.12) whose visibility depends on the coher-
ence.
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Figure 3.12.: Ramsey-type phase scan on the RF transition in S1/2 for a waiting time of 10 µs be-
tween the consecutive RF pulses and 500 repetitions per phase point. Shown is the number of
dark decisions after the shelving pulse. The slight imbalance derives from imperfect pumping and
shelving.

The coherence time is then estimated by a series of these Ramsey phase scans for differing
waiting times (fig. 3.10 and 3.13). We achieve a distinct increase of coherence by compensat-
ing for periodic magnetic-field noise at 50 Hz and higher harmonics, originating from the
power line, by installing an additional feed-forward coil along the quantization axis. The
coil is driven by an AC current at 50 Hz and 150 Hz, phase-locked to the power line, with
adjustable amplitude and phase. Amplitude and phase are then optimized by maximizing
the visibility of the Ramsey fringes for a particular waiting time on the first negative slope
of a signal as the one shown in fig. 3.10. Detail on the feed-forward technique is found
in the Master’s thesis of Matthias Kreis [133] who was responsible for the conception and
realization.
Applying this feed-forward technique increases the coherence time in the ground-state
qubit from values as low as≈ 200 µs to values of typically about 700 µs (as seen in fig. 3.13)
or sometimes even up to 1 ms10.

The experimental tools deduced in this chapter are widely used in the work presented
in the following. Doppler cooling is employed for trapping of the ion and preparation
of the thermal state that allows for coherent manipulation on the optical qubit transition
and as such builds the backbone of all experiments demonstrated here. The frequency-
selective optical-pumping scheme developed in the course of this thesis allows pure-state
preparation of the ion independent of the spatial orientation of the (quadrupole-transition)
pumping beam and forms an essential block for the quantum interface presented in chapter

10the actual coherence time varies from day to day and seems to depend on the overall noise on the power
line, as we experienced longer coherence times on the weekends.
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Figure 3.13.: Visibility vs. waiting time nowadays. The feed-forward compensation for magnetic-
field–noise cancellation was switched on, improving the coherence time to 647(11) µs.

5 and the two-ion quantum gate (chapter 7). Coherent manipulations of the atomic qubit,
either on the optical quadrupole or on the radio-frequency ground-state transition, are, in a
sense, the basic tool in in our toolbox. Reliable single-qubit rotations are used for coherent-
state preparation and state analysis and are therefore encountered in all of the following
chapters. Future multi-ion protocols like ion-to-ion quantum-state teleportation will need
(laser-phase independent) single-qubit operations in a string of two or more ions. For the
implementation of the latter, we employed a scheme based on the shift of the transition
frequency caused by coupling onto a light field as described in section 3.3.4. The according
measurements are demonstrated in section 7.1.2. Each of the experiments shown in this
work requires fluorescence-based atomic state analysis11 described in 3.4. Prediction and
reconstruction of the atomic dynamics as needed for all experimental results, presented
in the chapters 5, 6, and 7, requires the understanding of the magnetic-field dependent
splitting of the atomic energy levels, treated in 3.5. Finally, the ability to store quantum
information or preserve entanglement in the present experiments is limited by the atomic
coherence time. The mechanism for coherence-time reduction, the Ramsey phase scan as a
tool for the determination of the current coherence time and measures for its improvement
are briefly depicted in 3.6.

11Either for the evaluation of the viability of the respective operations or as part of the protocol itself, e.g. as a
projective measurement.
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Large-scale quantum networks, based on stationary qubits represented by atomic quan-
tum memories for quantum-information storage and processing, and photonic quantum
channels between these nodes, inherently require atom-photon interfaces that act as inter-
connections between flying qubits and their stationary counterpart. Therefore, accurate
control over single-photon–emission and absorption processes with high fidelity is of vital
interest for every future quantum-network architecture.
Understanding these processes is the key to gaining control over them and thus an essential
element in the realization of a single-atom–single-photon–based quantum interface.

This chapter has two goals in particular. First, we would like to understand the process
of spontaneous Raman scattering in a three-level system as an adequate model for the
dynamics of the real system and develop a quantum-mechanical model for the absorption
and emission of single photons by a single atomic ion. We will encounter the results of
this analysis again in chapters 5 and 6 when we estimate the influence of undesired atomic
decay on the final quantum state. Hence, the first part of this chapter treats spontaneous
Raman scattering of a single photon in a simplified three-level model and investigates the
temporal and spectral properties of the emitted photon.
The estimation of the single-process success probability for the experiments conducted in
the course of this thesis, i.e. atom-to-photon state transfer, photon-to-atom state transfer,
and atom-photon entanglement in chapters 5 and 6, requires knowledge about the photon
collection efficiencies and, in that context, to find an analytical expression for the emission
properties of an optical dipole. This represents the second goal of the present chapter. For
that purpose, the absorption and emission properties of optical dipole transitions, their
spatial dependence and the influence on the photon polarization is discussed in the second
part of this chapter. We will derive an expression for multi-mode and single-mode photon-
coupling efficiency for different atomic transitions and evaluate this expression for our
experimental parameters to find the expected values in our implementation. In addition,
the effect of the finite solid angle of the HALO lenses for both cases, single- and multi-mode
or free-space coupling, onto the final state is discussed.

The formulation of the three-level spontaneous Raman scattering has been treated in a
similar way by Michael Schug in his dissertation thesis and builds the basis for section 4.1.
The calculation of the dipole-emission characteristics is inspired by the treatment in the
same thesis and has been extended to complex fields and single-mode coupling for this
work. The quantum-mechanical description of the single-photon emission and absorption
process was originally developed by Philipp Müller and is published in [142].
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4.1. Spontaneous Raman scattering in a three-level system

In most of our protocols, the atomic dynamics is well approximated by that of a three-level
system in Λ configuration, which allows us to develop a simple model for the temporal
behavior of the system. The Λ configuration consists of a high-lying, short-lived excited
state, representing P3/2, and two stable, low-lying ground states, representing either S1/2
and D5/2, or two Zeeman sublevels in D5/2. The treatment of D5/2 as a stable state is
justified by its lifetime of more than 1 s which is large compared to the typical time scales
involved in the dynamics of the system.

The evolution of atomic populations, more precisely the population of the excited state,
reflects the temporal properties of the single Raman-scattered photon. The population
dynamics, and hence the photonic wave packet, is modeled by means of three-level rate
equations that will then be solved numerically, inspired by the treatment in [78].

In the present experiment, we will encounter three excitation schemes,

(1.) initial preparation of the ion in D5/2, excitation to P3/2, and generation of a single
393 nm photon on the P3/2-to-S1/2 transition,

(2.) initial preparation of the ion in S1/2, excitation to P3/2, and generation of a single
854 nm photon on the P3/2-to-D5/2 transition, and

(3.) initial preparation of the ion in D5/2, excitation to P3/2, and generation of a single
854 nm photon on the P3/2-to-D5/2 transition,

that will be discussed in the following.
For the generation of single 393 nm photons (1.), the ion is initialized in D5/2. A laser at

854 nm continuously excites the population to P3/2 with the transfer rate r854 (fig. 4.1 (a)).
From there it decays to the ground state S1/2 with rate A393 by emitting a photon at 393 nm
or back to D5/2 with rate A854. In addition, the stimulated transfer from P3/2 back to D5/2
must be taken into account. The resulting rate equations for the populations pS, pP and pD
for S1/2, P3/2 and D5/2 are then derived as

d
dt

pS(t) = A393 pP(t) , (4.1)

d
dt

pP(t) = −(A393 + A854 + r854) pP(t) + r854 pD(t) , (4.2)

d
dt

pD(t) = −r854 pD(t) + A854 pP(t) + r854 pP(t) . (4.3)

These rate equations are fed into a numerical simulation whose result is presented in fig.
4.1 (b), where the photon-emission rate rPh is directly proportional to the evolution of pP
via rPh,393 ∝ A393 · pP. It should be noted that decay into and reexcitation from other D5/2
Zeeman sublevels is omitted in the simulation and has to be taken into account in a more
realistic model, where additional losses would occur due to this effect. Mainly, it leads to
a reduction of the efficiency of photon generation by a few percent.
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393 nm

854 nm

S1/2

P3/2

D5/2

(a) (b)

Figure 4.1.: (a) Simplified level scheme for the generation of single 393 nm photons. The ion is
initialized in D5/2 and pumped into S1/2 by applying a 854 nm laser pulse. (b) Temporal evolution
of the populations in S1/2 (black), P3/2 (blue) and D5/2 (red). The population-transfer rate r854 from
D5/2 to P3/2 is chosen as r854 = 2π · 3 MHz. The temporal shape of the 393 nm-photon wave packet
is proportional to the population in P3/2 (see main text).

The rate equations for the generation of single 854 nm photons, starting from S1/2 (2.)
are deduced in a similar fashion. We deploy a 393 nm laser, driving the S1/2 ↔ P3/2 transi-
tion at rate r393, to scatter a photon at 854 nm via decay from P3/2 to D5/2, as illustrated in
fig. 4.2 (a). Again constraining the considerations to the three-level system, we obtain

d
dt

pS(t) = (A393 + r393) pP(t)− r393 pS(t) , (4.4)

d
dt

pP(t) = r393 pS(t)− (r393 + A393 + A854) pP(t) , (4.5)

d
dt

pD(t) = A854 pP(t) . (4.6)

The numerical solution for the respective populations is visualized in fig. 4.2 (b). Note that
the photon length of the 854 nm photon, i.e. the decay time constant of the P3/2 population,
is substantially increased compared to the 393 nm photon for identical population-transfer
rates r854 = r393. This is attributed to the unequal Einstein coefficients A854 and A393. In
other words, the ion will decay back to S1/2 several times before it eventually ends up in
D5/2. One consequence of this additional scattering is that the time-bandwidth product of
the 854 nm photon will not be Fourier limited. This effect is extensively discussed in [81].

The third scheme is again the generation of a 854 nm photon, this time starting in D5/2
(3.). More precisely, we start in one of the Zeeman sublevels in D5/2 and transfer the pop-
ulation into a second D5/2 sublevel by switching on a laser at 854 nm that couples the
transition from D5/2 to P3/2 (fig. 4.3 (a)) at rate r854. It has to be mentioned that there exists
an additional decay channel (shown in the previous figures), specifically the (strong) decay
from P3/2 into S1/2 that leads to loss out of the three-level system. Therefore, this loss has
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393 nm

854 nm

S1/2

P3/2

D5/2
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Figure 4.2.: (a) The population S1/2 is coupled to the excited, short-lived P3/2 state via the 393 nm
laser, from where it eventually decays to the meta-stable D5/2 state by scattering a Raman photon at
854 nm. (b) Despite the same transfer rate r393 = 2π · 3 MHz of the exciting laser, the population is
transferred much slower into its final state, implying an increase of the length of the Raman photon.
This is traced back to the repeated decay back into the ground state before the final transfer into
D5/2, which means that the ion scatters on average a number of blue photons, corresponding to
the branching ratio of both decay channels, before a red photon is emitted, repealing the Fourier
limitation of the time-bandwidth product.

to be taken into account in the rate equation to reproduce reliable results. We obtain the
three-level rate equations for the populations pD,3/2, pP, and pD,5/2 of |D5/2,+3/2〉 (initial
state), P3/2, and |D5/2,+5/2〉 (final state), respectively:

d
dt

pP(t) = r854 pD,3/2 − (A393 + A854 + r854) pP(t) , (4.7)

d
dt

pD,3/2(t) = (
4
15

A854 + r854) pP(t)− r854 pD,3/2 , (4.8)

d
dt

pD,5/2(t) =
10
15

A854 pP(t) , (4.9)

where we included the Clebsch-Gordan coefficients for the P3/2 ↔ D5/2 transitions and the
loss into S1/2 given by the term−A393 pP(t) in eq. (4.7). Loss into a third D5/2 Zeeman sub-
level is indirectly included in the model by using the full Einstein coefficient for the 854 nm
decay in eq. (4.7). Looking at the outcome of the simulation (fig. 4.3 (b)), an interesting ef-
fect arises: The time-bandwidth product of the outgoing 854 nm photon wave packet is
again (nearly) Fourier limited, as it is apparent from the fact that the wave-packet length
at identical coupling rates for 854 nm coincides with the Fourier-limited wave packet at
393 nm from the first scheme, albeit at the cost of efficiency. From the simulation, we
deduce a generation efficiency of approximately 4% for 854 nm photons on the desired
|P3/2,+3/2〉 → |D5/2,+5/2〉 transition.

The aforementioned model can be extended by coupling both ground states via a driving
field (e.g. a laser field at 729 nm), as it has been done to simulate the pumping dynamics in
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P3/2
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+3/2
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Figure 4.3.: (a) Population in one Zeeman sublevel of D5/2 is depleted by the laser field at 854 nm.
Deacy into a second D5/2 sublevel re-emits a red photon. (b) Numerically solving eqs. (4.7)–(4.9)
for a transfer rate of r854 = 2π · 3 MHz reveals the population of the considered states over time. It
is noticeable that the length of the photon wave packet (directly proportional to the population in
P3/2) is of the same length as in fig. 4.1, while the overall transfer efficiency, reflected in the steady-
state population in the final D5/2 substate (red) is significantly decreased due to population loss
into S1/2.

section 3.2. In that case, eqs. (4.1)–(4.3) have to by modified and we obtain the four-level
rate equations

d
dt

pS,+(t) =
2
3

A393 pP(t) , (4.10)

d
dt

pS,−(t) =
1
3

A393 pP(t)− r729 pS,−(t) + r729 pD(t) , (4.11)

d
dt

pP(t) = r854 pD(t)− (A854 + r854 +
2
3

A393 +
1
3

A393) pP(t) , (4.12)

d
dt

pD(t) = r729 pS,+(t) + (r854 + A854) pP(t)− (r729 + r854) pD(t) , (4.13)

with the populations pS,± for both ground states S1/2,±1/2〉, and pP and pD for the popu-
lations in P3/2 and D5/2, respectively. The transition from S1/2,+1/2〉 to D5/2 at 729 nm is
driven at rate r729 and the CGCs for the decay from P3/2 into the respective ground states
are taken into account.

The rate equations presented here produce reliable results as long as the coupling to
transitions or decay into states not regarded in the model is negligible and effects like light
shifts or interference between individuals transition paths [143] do not occur or have neg-
ligible influence. This assumption is justified for the scenarios presented in this section, at
least for reasonably low coupling strength of the driving laser and proper polarization ad-
justment, such that the coupling to neighboring transitions is very weak. For more complex
level schemes, an 18-level Bloch-equation simulation [81] was developed in the group.
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4.2. Emission properties of optical dipoles

Aside from the temporal properties, the characterization of single photons comprises the
remaining degrees of freedom, spatial direction of propagation and polarization. In the
following, we will limit ourselves to photons absorbed and emitted on optical dipole tran-
sitions. The dipole-allowed transitions are discussed and their influence on the photon
polarization for different directions of observation are investigated. Eventually, the col-
lection efficiencies in our setup for free-space collection and single-mode–coupled photon
collection are calculated theoretically from the previously-derived models.

The calculations presented in this section are closely related to those in [144] and then
extended to a full amplitude-based description, following the recipes mentioned in [100]
and [145].

4.2.1. Optical dipole transitions

The probability for spontaneous transition from state i to k in a unit time interval is pro-
portional to the Einstein coefficient [146]

Aik =
2
3

e28π3ν3
ik

ε0 c2 h
|Mik|2 (4.14)

with the electron charge e, the transition frequency νik and the transition dipole moment

Mik =
∫

ψ∗i ~r ψk d3r . (4.15)

ψi,k denote the electron’s wave function for the states i and k, respectively.
In spherical representation, the electronic wave function ψn`m(~r) for the principal quan-

tum number n, the angular momentum quantum number ` and the magnetic quantum
number m, can be decomposed into a radial component Rn`(r) and an angular component
Y`m(θ, ϕ), i.e. ψn`m(~r) = Rn`(r) · Y`m(θ, ϕ). Rn`(r) and the spherical harmonics Y`m(θ, ϕ)
are given by

Rn`(r) =

√(
2Z
na0

)3 (n− `− 1)!
2n · (n + 1)!

e−ρ/2 ρ` · L2`+1
n−`−1 (ρ) , ρ =

2Zr
n a0

(4.16)

with the Bohr radius a0, the proton number Z and the generalized Laguerre polynomials
L2`+1

n−`−1, and

Y`m(θ, ϕ) =
1√
2π

Pm
` (cos θ) ei mφ , (4.17)

where Pm
` (cos θ) is the associated Legendre polynomial.

A (partially) quite lengthy calculation, which is beyond the scope of this section, reveals
the selection rules for optical dipole transitions,

∆` = `i − `k = ±1 (4.18)
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∆m = mi −mk = 0, ±1 . (4.19)

For other combinations of |i〉 = |ni `i mi〉 and |k〉 = |nk `k mk〉, eq. (4.15) vanishes and hence
the transition is "dipole-forbidden". If we additionally demand that ∆s = 0 for the change
in the spin quantum number, we obtain in spin-orbit coupling

∆j = 0, ±1 (4.20)

for the total angular momentum~j = ~̀ +~s, whereby j = 0→ j = 0 is forbidden.
The case ∆m = 0 (π transition) in eq. (4.19) corresponds to the non-vanishing z com-

ponent of the transition dipole moment ((Mik)x = (Mik)y = 0), i.e. to an atomic dipole
oriented along the quantization axis, whereas ∆m = ±1 (σ± transition) correspond to
(Mik)x ± i (Mik)y, i.e. dipoles that rotate (counter-)clockwise in the x-y plane perpendicu-
lar to the quantization axis. This geometrical interpretation will help to gain an intuitive
picture of the directionality of the polarization properties discussed in the next section.

4.2.2. Spatial dependence of the photon polarization

The goal of this section is the development of a formalism to derive the photon polarization
measured in the reference frame of the observer for a given orientation of the atomic dipole.
A detailed calculation is given in appendix A.1.1, the key results are summarized in this
section.

Naturally there are two reference frames involved in the consideration, the atomic (at)
and photonic (ph) frame, which are defined such that ê(at)

z is oriented along the quantization
axis and ê(at)

x lies in the table plane, and ê(ph)
z ‖ ~k, with the photonic wave vector~k being

parallel to the propagation direction of the light, as depicted in fig. 4.4.
Defining the right- and left-hand circular-polarization unit vectors ê(ph)

+ and ê(ph)
− , respec-

tively, the horizontal and vertical polarizations are written as

ê(ph)
H = − 1√

2

(
ê(ph)
+ − ê(ph)

−
)

, and ê(ph)
V = i

1√
2

(
ê(ph)
+ + ê(ph)

−
)

. (4.21)

The relation between both reference frames, i.e. the transformation from the atomic to
the photonic frame, is described by (c.f. [144])

ê(at)
q′ = eiq′ ϕ

1

∑
q=−1

d1
q′,q(−θ) ê(ph)

q . (4.22)

d describes the Wigner (small) matrices dj
q′,q(ϑ), and the (atomic) unit vectors are given by

ê(at)
0 =




0
0
1


 and ê(at)

+ = − 1√
2




1
i
0


 , ê(at)

− =
1√
2




1
−i
0


 . (4.23)
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z(ph)

x(ph)

y(ph)

z(at)

y(at)

x(at)

k

Figure 4.4.: Coordinate systems for the atomic (at) and photonic (ph) reference frame. The wave
vector~k coincides with the direction of observation. The transformation rule from the atomic into
the photonic frame is described in the main text.

That formalism allows to derive the direction-dependent polarization amplitudes for
a given orientation of the atomic dipole, i.e. for a given atomic transition, of which the
π transition, corresponding to ê(at)

0 , and the σ+ and σ−, corresponding to ê(at)
+ and ê(at)

− ,
respectively, are relevant for the present treatment.

A brief calculation (see A.1.1) reveals the (un-normalized) polarization amplitude ~A(ph)
π

for the atomic π transition in the basis of the linear photonic polarizations H and V:

~A(ph)
π = − sin θ ê(ph)

H . (4.24)

Eq. (4.24) shows that light emitted on a π transition exhibits solely a horizontal polar-
ization component (in the photonic frame). The spatial intensity characteristic features a
toroidal (or "doughnut"-like) shape, i.e. the intensity of the light is maximal perpendicular
to the orientation of the atomic dipole, while emission into the direction of the symmetry
axis is entirely suppressed.

Analogously, the polarization amplitudes for the atomic σ± transitions, as seen by a
observer whose direction of observation is determined by the angles θ and ϕ, are found
as1

~A(ph)
σ+ =

eiϕ
√

2

(
cos θ ê(ph)

H + i ê(ph)
V

)
(4.25)

1A detailed derivation is given in A.1.1.
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and

~A(ph)
σ− =

e−iϕ
√

2

(
cos θ ê(ph)

H − i ê(ph)
V

)
. (4.26)

Along the symmetry axis of the dipole (the quantization axis), we find the polarization
of the photon emitted on the σ± transitions to coincide with right- and left-hand polar-
ization R and L, thus being completely distinguishable. For observation perpendicular to
the quantization, on the other hand, only vertically-polarized light is observed for both
transitions, σ+ and σ−, leaving the observer fully unaware of which transition took place.

The emitted intensity is maximal along the quantization axis and reduced to 1/2 of the
maximum value perpendicular to the quantization axis. The overall intensity distribution
obeys the law I = cos2 θ + 1, reminding of a peanut.

Including the normalization following the derivation in appendix A.1.1, we obtain the
normalized polarization amplitudes in the photonic reference frame for the atomic π, σ+

and σ− transitions,

~A(ph)
π = −

√
3

8π
sin θ ê(ph)

H , (4.27)

~A(ph)
σ+ =

√
3

8π

eiϕ
√

2

(
cos θ ê(ph)

H + i ê(ph)
V

)
, and (4.28)

~A(ph)
σ− =

√
3

8π

e−iϕ
√

2

(
cos θ ê(ph)

H − i ê(ph)
V

)
. (4.29)

We have seen that the three atomic dipole transitions result in different emission charac-
teristics, both in intensity and polarization in the photonic or observer reference frame. A π

transition results in the emission purely horizontally polarized light, which fully vanishes
along the quantization axis and shows maximal intensity perpendicular to it. Light emit-
ted on the σ± transitions exhibits maximal intensity along the quantization axis, where the
polarization of the photons corresponds to right- and left-hand-circular polarization and
is fully distinguishable. Perpendicular to the quantization axis, the intensity is reduced by
a factor of 2 and the light is vertically polarized for both cases, resulting in full indistin-
guishability between both transitions.

These properties are used in the later course of the work, e.g. for the generation of en-
tangled atom-photon-states, where the correlation between atomic transition and photon
polarization is employed

4.2.3. Free-space collection

With the polarization amplitudes derived in the previous section, it is now possible to
calculate the collection efficiencies in our experiment for photons scattered on a certain
transition. We have to distinguish between two cases, free-space collection, where the
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entire power scattered into a given solid angle is integrated, and single-mode–coupled
collection, where spatial interference effects have to be taken into account.

In this section, we investigate the free-space collection, which corresponds to the case
where the collected photons are coupled into a multi-mode fiber or directly imaged onto
the sensitive area of a single-photon detector.

For the sake of compactness, this section recapitulates the essential results and a detailed
analysis is left to the appendix A.1.2.

Photons emitted by the single ion are collected by the HALO lens stack with a numerical
aperture of 0.4, such that a cone with an opening angle of 2α = 2 · 23.75◦ is covered by
the collection setup. From purely geometrical considerations, this corresponds to 4.23%
of the full solid angle. For the actual collection efficiency, the directionality of the dipole
emission, as discussed in section 4.2.2, has to be regarded.

The normalized probability amplitude for photon emission into the direction determined
by the angles θ and ϕ is defined as the square modulus of the probability-field amplitude,
I(θ, ϕ) = |~A(θ, ϕ)|2. Inserting the polarization amplitudes from eqs. (4.27)-(4.29) and in-
tegrating over the opening angle of the HALOs, the multi-mode-collection efficiencies for
photon emission on the π and σ± transitions are derived as

ηMM
π =

α∫

θ=0

2π∫

ϕ=0

|~Aπ(θ, ϕ)|2 sin θ dθ dϕ = 2π
3

8π

α=23.75◦∫

θ=0

sin3 θ dθ ≈ 0.53% . (4.30)

and

ηMM
σ =

α∫

θ=0

2π∫

ϕ=0

|~Aσ(θ, ϕ)|2 sin θ dθ dϕ =
3
8

α=23.75◦∫

θ=0

(
cos2 θ + 1

)
sin θ dθ ≈ 6.09% , (4.31)

i.e. the collection of π light is suppressed by more than one order of magnitude with respect
to the collection of σ light, while the latter is enhanced compared to the covered solid angle
of the HALO by a factor of 3

2 , when the HALO is aligned along the quantization axis. The
suppression of collection for π emission is even increased when the light is coupled into a
single-mode fiber due to interference effects, as it is demonstrated in the next section.

4.2.4. Single-mode coupling

For some experiments conducted in the context of this thesis, it is of importance to inves-
tigate the influence of single-mode coupling onto the collection efficiencies for our single
photons. In contrast to the previous section, interference of the individual light fields be-
comes important in the case of single-mode collection, i.e. when the collected photons are
coupled into a single-mode fiber. This section gives an overview of the results. A more
elaborate version is given in the appendix (sec. A.1.3).
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For reasons of comparability, first we assume a single-mode fiber whose mode coincides
exactly with the non-Gaussian light mode leaving the HALO2. For a more realistic treat-
ment, the mode overlap between the (Gaussian) fiber mode and the HALO mode would
have to be included, as it is presented in sec. 4.2.5.

All calculations in this section are conducted in the laboratory (atomic) reference frame,
hence the superscripts (at) and (ph) are omitted.

For a non-extended light source in the focus of the HALO, which approximately repre-
sents the situation in our experiment with the ion acting as single point source, the light
field leaving the HALO becomes flat. Thus, we re-write the electrical-field amplitudes3 for
atomic π and σ± transitions in cylindrical coordinates (z, ϕ, $):

~Eπ = − i√
f 2 + $2

√
3

8π

$√
f 2 + $2

ê$ , (4.32)

~Eσ± =
i√

f 2 + $2

√
3

8π

e±iϕ
√

2

(
f√

f 2 + $2
ê$ ± i êϕ

)
(4.33)

with

ê$ =




cos ϕ

sin ϕ

0


 and êϕ =



− sin ϕ

cos ϕ

0


 . (4.34)

Here, f denotes the focal length of the HALO. In this simplified treatment we first con-
sider the fiber mode ~G [100] to perfectly match the top-hat mode of the HALO, i.e.

~G = Θ($0 − $)




α

β

0


 , |α|2 + |β|2 = 1 (4.35)

with the Heaviside function Θ($0 − $). The coupling efficiency into the single-mode fiber
is determined by the overlap between the electrical-field mode ~E and the fiber mode: [100]

ηSM =

∣∣∣∣∣
$0∫

$=0

2π∫
ϕ=0

~E · ~G $ cos(θ($))d$dϕ

∣∣∣∣∣

2

∞∫
$=0

2π∫
ϕ=0

∣∣∣~E
∣∣∣
2

$ cos(θ($))d$dϕ
∞∫

$=0

2π∫
ϕ=0

∣∣∣~G
∣∣∣
2

$ cos(θ($))d$dϕ

. (4.36)

2Assuming a point source lying in the focus of the HALO, as it is approximately the case for the the properly
aligned ion-HALO system.

3in the physical dimension of probability per solid angle
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Therefore, the single-mode fiber coupling efficiency for an atomic σ± transition becomes

ηSM
σ± =

∣∣∣∣∣∣

$0∫
$=0

2π∫
ϕ=0

f $

f 2+$2 e±iϕ


 f√

f 2+$2




cos ϕ
sin ϕ

0


± i



− sin ϕ
cos ϕ

0








α
β
0


 d$dϕ

∣∣∣∣∣∣

2

∞∫

$=0

2π∫

ϕ=0

(
f 2

( f 2 + $2)2 +
1

f 2 + $2

)
f $√

f 2 + $2
d$dϕ

︸ ︷︷ ︸
= 8π

3

$0∫

$=0

2π∫

ϕ=0

f $√
f 2 + $2

d$dϕ

︸ ︷︷ ︸
=2π

(
f
√

f 2+$2
0− f 2

)

≈ 6.09% . (4.37)

Compared to the multi-mode coupling (c.f. eq. (4.31)), the single-mode collection of σ±

photons is unchanged if assuming the idealized fiber mode.
In some experiments in this work, e.g. the atom-photon entanglement or atom-to-photon

state transfer in chapter 6, it is essential to collect photons emitted in the σ transitions, while
the detection of π photons reduces the final state fidelity significantly. In section 4.2.3 we
have seen that, though being reduced due to the spatial emission properties of the atomic
dipole, the collection-efficiency for π photons still accounts for about 10% compared to
photons emitted on the σ transitions in the case of multi-mode coupling. For single-mode
coupled photons, however, the collection efficiency completely vanishes:

ηSM
π =

∣∣∣∣∣∣

$0∫
$=0

2π∫
ϕ=0

1√
f 2+$2

$√
f 2+$2




cos ϕ

sin ϕ

0


Θ($0 − $)




α

β

0


 f $√

f 2+$2
d$dϕ

∣∣∣∣∣∣

2

∞∫
$=0

2π∫
ϕ=0

$2

( f 2+$2)2
f $√
f 2+$2

d$dϕ
$0∫

$=0

2π∫
ϕ=0

f $√
f 2+$2

d$dϕ

= 0 (4.38)

The latter effect can also be understood in a more intuitive picture. Due to the rotational (a-
)symmetry of the field amplitude ~Eπ with respect to the quantization axis, the field contri-
butions for ϕ and ϕ + π cancel each other, resulting in an effective destructive interference
for the coupling into the single-mode fiber.

Thus, when collection of π light is unwanted, coupling of the emitted photons in a
single-mode fiber offers enormous advantages as the polarization purity of the single-
mode-coupled photons is significantly increased.

It will become obvious in later chapters that it is of particular interest to analyze the
situation of a superposition of two atomic dipoles emerging from a σ+ and a σ− transition,
respectively. The resulting emitted field consequently consists of a superposition of the σ+

and σ− field contributions and becomes

~Eσ =
1√
2

(
~Eσ+ + eiφ~Eσ−

)
, (4.39)

where φ describes the relative phase between the dipoles. An analogue calculation as in
eq. (4.37) (see also appendix A.1.3) reveals the coupling efficiency ηSM

σ ≈ 6.09%. We see
that the collection efficiency stays unchanged and is independent of φ.
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4.2. Emission properties of optical dipoles

For the (slightly unrealistic) scenario investigated here, where we assumed single-mode
coupling into a fiber whose mode coincides with the output mode of the HALO for a point
source in the focus of the HALO input, we concluded that coupling of light emitted on a π

transition and collected along the quantization axis is fully suppressed, while the coupling
efficiency for σ± photons remains unaltered compared to free-space or multi-mode cou-
pling. In addition, we investigated the coupling efficiency for a superposition of light from
σ+ and σ− transitions. The coupling efficiency for the superposition stayed unchanged
compared to the case of emission on a single σ transition. This means that each superposi-
tion of light emitted on σ± transitions exhibits a single-mode coupling efficiency of 6.09%,
independent of the superposition amplitude and phase.

4.2.5. Mode matching

In reality, the single-mode fiber is not so gracious as to provide a mode that perfectly
matches our collection mode, but rather exhibits an approximately Gaussian shape. This
means, for a realistic estimation of the coupling efficiency, the ~G used in eq. (4.35) has to be
modified accordingly and we obtain [145]

~G =

√
2

w0
√

π
eiψ exp

(
− $2

w2(z)

)


α

β

0


 . (4.40)

ψ denotes the Gouy phase, w0 is the beam waist, and w(z) describes the beam radius in the
measurement plane. In our situation, w(z) coincides with the maximum beam radius $0.

The fiber mode ~G exhibits a rotation symmetry and is therefore independent of ϕ. As
in sec. 4.2.4, the field contributions of ϕ and ϕ + π cancel out for light emitted on a π

transition, resulting in a single-mode coupling efficiency of 0.
To evaluate the coupling efficiency into the (more realistically modeled) single-mode fiber
for the case of photons originating from a ∆m = ±1 (σ±) transition, we have to compute
eq. (4.36) for the fiber mode (4.40) and the field amplitude (4.33). The detailed analysis is
given in app. A.1.4. Due to reasons of compactness, only the result is given here. We find
an overall coupling efficiency of approximately 2.43% for the Gaussian fiber mode, corre-
sponding to a mode-matching efficiency of about 40% between HALO and fiber mode.

The theoretically derived value of 2.43% overall coupling efficiency4 for photons from
a σ transition (corresponding to 40% mode-matching efficiency times 6.09% collection ef-
ficiency) is in good agreement with the value of 39% mode-matching efficiency (or 2.36%
overall coupling efficiency) observed in the experiment (c.f. sec. 6.2.1), showing that the
simple model is indeed too simple to reproduce realistic results, but proves to be useful to
learn the fundamental concept.

4i.e. from ion to fiber
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4. Single-atom–single-photon interaction

4.3. Quantum-mechanical formalism

In section 4.1 we introduced the spontaneous Raman scattering in single atoms and derived
a model for the wave packet of the emitted single photon based on three-level rate equa-
tions. As that approach only considered the population of the states, the quantum prop-
erties of the photons remained unknown. To gain insight into the quantum mechanical
phase involved in the process of single-photon scattering, here we formulate a quantum-
mechanical description for the absorption and emission of single photons by a single atom
[142].
The underlying motivation for the development of the quantum-mechanical description is
the prediction of the expected quantum state of an atom following the absorption or emis-
sion process of a single photon in the experimental realization of the quantum-interface
operations discussed in chapters 5 and 6.

For the formalism presented in this section, we assume the ion to start in a general su-
perposition between two initial states |i1〉 and |i2〉, |ψi〉 = α|i1〉+ β|i2〉, with |α|2 + |β|2 = 1.
Upon absorption of a single photon, the ion is transferred into an auxiliary excited state |e〉
(or a superposition of two excited states |e1〉 and |e2〉), from where it decays into a ground-
state superposition α′|g1〉 + β′|g2〉. Again the final superposition is normalized5 by the
condition |α′|2 + |β′|2 = 1.
For varying experimental conditions, like different start or end levels, the model is modi-
fied accordingly.

In an alternative form, the complex amplitudes α and β of the initial superposition state
|ψi〉 can be written in terms of the populations pi,1 and pi,2 and the (time-dependent) rela-
tive phase φi(t) between the states,

|ψi〉 =
√

pi,1 |i1〉+ eiφi(t)√pi,2 |i2〉 . (4.41)

Henceforth we assume absorption from and emission into a well-defined spatial direc-
tion and effects of the finite solid angle due to light collection with the HALO are so far
neglected.

To account for single-photon absorption, we extend the system under investigation and
find the joint atom-photon state

|ΨAP
i 〉 = |ψi〉 ⊗ |ψab.

Ph〉 , (4.42)

with the polarization state |ψab.
Ph〉 of the incoming photon, described by

|ψab.
Ph〉 = cos

ϑ

2
|+〉(ph) + eiφPh sin

ϑ

2
|−〉(ph) (4.43)

5The normalization assumes an ideal situation where no decay into levels not taken into account in the model
occurs. For the case when loss channels are considered, attenuation of the state populations is incorporated
by reducing the factor accordingly, i.e. |α|2 + |β|2 < 1.
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with the photonic states |±〉(ph), corresponding to ê(ph)
± from section 4.2.2, and the polar-

ization angle φPh. Following the treatment in [142], we model the absorption of a single
photon utilizing the absorption operator6

Â = ∑
mi ,me

C
mi ,m

(ab.)
Ph ,me

|me〉〈mi|〈m(ab.)
Ph | , (4.44)

where mi and me denote the magnetic quantum numbers of the initial and excited state and
the photonic spin projection m(ab.)

Ph is determined by m(ab.)
Ph = me −mi = ±1 (depending on

mi and me). The C
mi ,m

(ab.)
Ph ,me

are the Clebsch-Gordan coefficients for the transition |i, mi〉 →
|e, me〉.

In general, the absorbed photon can be off-resonant to the transition from mi to me by a
detuning δ, therefore eq. (4.44) has to be expanded by including a factor

cmi ,me(δ) = a(δ) eiφδ(δ) (4.45)

with the detuning-dependent real amplitude factor a(δ) and an additional phase term
eiφδ(δ). In sum, the combined absorption operator becomes

Â = ∑
mi ,me

C
mi ,m

(ab.)
Ph ,me

cmi ,me(δ) |me〉〈mi|〈m(ab.)
Ph | . (4.46)

For the sake of coherence of the theoretical description, it is more convenient to introduce
a detuning ∆ from the "line center" between two manifolds, i.e. the transition frequency for
a vanishing external magnetic field. With that, the absorption operator becomes

Â = ∑
mi ,me

C
mi ,m

(ab.)
Ph ,me

cmi ,me(∆) |me〉〈mi|〈m(ab.)
Ph | . (4.47)

In a similar way, the emission of a photon during decay from the excited-state superpo-
sition into the ground-state manifold is formulated. The emission operator describing the
transition from |e〉 to |g〉 and the generation of a single photon is written as

Ê = ∑
mg,me

C
me,m(em.)

Ph ,mg
|m(em.)

Ph 〉|mg〉〈me| (4.48)

with the spin projection m(em.)
Ph = mg −me of the emitted single photon.

The effect of a photon absorption followed by emission on an initial joint atom-photon
state

|ΨAP
i 〉 = |ψi〉 ⊗ |ψab.

Ph〉

=
(√

pi,1 |mi,1〉+ eiφi(t)√pi,2 |mi,2〉
)
·
(

cos
ϑ

2
|+〉(ph),ab. + eiφPh sin

ϑ

2
|−〉(ph),ab.

) (4.49)

6We assume the photon to be absorbed along the quantization axis, so that only the σ± transitions are ad-
dressed, i.e. |±〉(ph) directly correspond to the atomic σ± dipoles. For absorption under an arbitrary angle,
the photon state (in the atomic reference frame) has to be modified accordingly, as discussed in section
4.2.2.
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is then

ÊÂ|ΨAP
i 〉 = Ê

(
∑

mi ,me

C
mi ,m

(ab.)
Ph ,me

cmi ,me(∆) |me〉〈mi|〈m(ab.)
Ph |

(√
pi,1 |mi,1〉+ eiφi(t)√pi,2 |mi,2〉

)
·

(
cos

ϑ

2
|+〉(ph),ab. + eiφPh sin

ϑ

2
|−〉(ph),ab.

))

(4.50)

and likewise for the application of the emission operator. For a typical experimental sce-
nario, most transitions do not exist or are not allowed, hence most CGC become zero,
simplifying the situation significantly, e.g. to the one depicted in fig. 4.5.

m
(ab.)(1)
P h m

(ab.)(2)
P h

m
(em.)(1)
P h m

(em.)(2)
P h

m(1)
g m(2)

g

m
(1)
i m

(2)
i

m(1)
e m(2)

e

|g〉

|i〉

|e〉

Figure 4.5.: Example for a photon-absorption and subsequent emission process inspired by one of
the schemes used in the experiment. The atom is initialized in a superposition in |i〉 and transferred
into an excited-state superposition via absorption of a single photon in the polarization state |ψab.

Ph 〉.
Note that there exist only two allowed excitation paths (but the sublevels in the respective mani-
folds may be non-degenerate). Subsequent decay to the ground-state manifold releases a second
single photon. The resulting atom-photon state is derived in the main text.

In that case, the resulting state after photon absorption becomes

Â|ΨAP
i 〉 = ∑

mi ,me

C
mi ,m

(ab.)
Ph ,me

cmi ,me(∆) |me〉〈mi|〈m(ab.)
Ph |

(√
pi,1 |mi,1〉+ eiφi(t)√pi,2 |mi,2〉

)
·

(
cos

ϑ

2
|+〉(ph),ab. + eiφPh sin

ϑ

2
|−〉(ph),ab.

))

= Cmi,1,+1,mi,1+1 cmi,1,mi,1+1(∆)
√

pi,1 cos
ϑ

2
|e, mi,1 + 1〉

+ Cmi,2,−1,mi,2−1 cmi,2,mi,2−1(∆)
√

pi,2 eiφi(t) eiφPh sin
ϑ

2
|e, mi,2 − 1〉

(4.51)

for m(ab.)(1)
Ph = +1 and m(ab.)(2)

Ph = −1. The subsequent decay on the channels |e, m(1)
e 〉 →
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|g, m(1)
g = m(1)

e + 1〉 and |e, m(2)
e 〉 → |g, m(2)

g = m(2)
e − 1〉 creates the atom-photon state

ÊÂ|ΨAP
i 〉 = ∑

mg,me

C
me,m(em.)

Ph ,mg
|m(em.)

Ph 〉|mg〉〈me|Â|ΨAP
i 〉

= Cmi,1+1,−1,mi,1+2Cmi,1,+1,mi,1+1 cmi,1,mi,1+1(∆)
√

pi,1 cos
ϑ

2
|g, mi,1 + 2〉|−〉(ph),em.

+ Cmi,2−1,+1,mi,2−2Cmi,2,−1,mi,2−1 cmi,2,mi,2−1(∆)
√

pi,2 eiφi(t) eiφPh sin
ϑ

2
|g, mi,2 − 2〉|+〉(ph),em. ,

(4.52)

where we assumed m(em.)(1)
Ph = −1 and m(em.)(2)

Ph = +1. For 〈g, mi,1 + 2|g, mi,2 − 2〉 = 0
and photon collection along the quantization axis, eq. (4.52) describes an entangled atom-
photon state whose phase is determined by both, the initial atomic state and the polariza-
tion of the absorbed photon.

The formalism developed here will be adapted to problems treated in the later course
of this work to predict the expected quantum state of an atom following the absorption or
emission process of a single photon.

4.4. Influence of the polarization directionality

Entanglement and state transfer in the experiment is carried out by mapping atomic transi-
tions onto photonic polarizations. In section 4.3 we developed a formalism to describe the
generation of an entangled atom-photon state, where collection perfectly along the quanti-
zation axis was assumed. In a realistic implementation, the finite collection angle has to be
considered. Here we investigate the impact of the off-axis collection onto the mapping pro-
cess. Ideally, decay on a σ± transition will be translated into right- and left-hand–circular
polarization.

From section 4.2.2 we know that |σ±〉 transforms into the polarization states

|σ±〉 =
√

3
8π

e±iϕ
√

2

(
cos θ |H〉(ph) ± i |V〉(ph)

)
. (4.53)

With the definitions for right- and left-hand circular light,

|R〉(ph) = − 1√
2

(
|H〉(ph) + i |V〉(ph)

)
and |L〉(ph) =

1√
2

(
|H〉(ph) − i |V〉(ph)

)
, (4.54)

we derive the projections of the ideal onto the actual polarization of the collected photon:

〈R|σ+〉 = −
√

3
32π

eiϕ (〈H| − i 〈V|) (cos θ |H〉+ i |V〉)

= −
√

3
32π

eiϕ (cos θ + 1)

(4.55)
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and

〈L|σ−〉 =
√

3
32π

e−iϕ (〈H|+ i 〈V|) (cos θ |H〉 − i |V〉)

=

√
3

32π
e−iϕ (cos θ + 1) .

(4.56)

Likewise, we obtain the projections onto the unwanted polarizations:

〈L|σ+〉 =
√

3
32π

eiϕ (〈H|+ i 〈V|) (cos θ |H〉+ i |V〉)

=

√
3

32π
eiϕ (cos θ − 1)

(4.57)

and

〈R|σ−〉 = −
√

3
32π

e−iϕ (〈H| − i 〈V|) (cos θ |H〉 − i |V〉)

= −
√

3
32π

e−iϕ (cos θ − 1) .

(4.58)

With eqs. (4.57) and (4.58) we find the probability for a false projection as

p f =

α=23.75◦∫

θ=0

2π∫

ϕ=0

|〈R|σ−〉|2 sin θ dθ dϕ =

α=23.75◦∫

θ=0

2π∫

ϕ=0

|〈L|σ+〉|2 sin θ dθ dϕ

=
3

32π

α=23.75◦∫

θ=0

2π∫

ϕ=0

(cos θ − 1)2 sin θ dθ dϕ ≈ 0.0038% .

(4.59)

The result shows that the contribution of collection of wrong polarizations to the infi-
delity of a quantum process is negligible compared to other experimental error sources.

To summarize, two main topics were discussed in this chapter. The first part consisted
of a derivation of the expected temporal shape of the single-photon wave-packet, based on
three-level rate equations, for three excitation schemes that are used in the later course of
the work:
For the first scheme, i.e. the initial preparation of the ion in D5/2, excitation to P3/2, and
generation of a single 393 nm photon on the P3/2-to-S1/2 transition, we obtained a nearly
Fourier-limited photon with a generation efficiency close to 1, but at an unfavorable wave-
length of 393 nm.
The second scheme, where the ion is initially prepared in S1/2, excited to P3/2, followed by
the generation of a single 854 nm photon on the P3/2-to-D5/2 transition, exhibits a photon
wavelength in the infra-red regime, more favorable for long-range transmission, and gen-
eration efficiency close to 1, but the generated photon is not Fourier-limited due to decay
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back to the ground state S1/2.
The initial preparation of the ion in D5/2, excitation to P3/2, and generation of a single
854 nm photon on the P3/2-to-D5/2 transition represents the third scheme. Here the pho-
ton is in the infra-red regime at 854 nm and Fourier-limited, but at the cost of a lowered
generation efficiency in the order of 4%.

The second part of this chapter treats the spatial characteristics of the atomic dipole
emission (sec. 4.2.2) and its influence on the photon-collection efficiency (sections 4.2.3 to
4.2.5) and the process fidelity (sections 4.3 and 4.4). For free-space or multi-mode collection
along the quantization axis, as utilized in the experiment, we find collection efficiencies of
approximately 6.1% for photons emitted on atomic σ± (∆m = ±1) transitions and about
0.5% for (in our case unwanted) photons emitted on a π (∆m = 0) transition. It is then
shown that photon coupling into a single-mode fiber enables full suppression of π-photon
collection while the coupling efficiency for photons from the ∆m = ±1 is only reduced
by a factor of 2.5 to 2.43%. This provides significant potential for the improvement of the
photon-state purity as long as the detection of photons with the wrong polarization (and
not detector dark counts) represents the limiting factor for the purity in the experiment.

The results derived here are used in chapters 5 and 6 to estimate the expected state
fidelity and the success rate for the implementation of the quantum-interface protocols
discussed there.
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The distribution of quantum information within a quantum network requires an interface
to connect stationary qubits that serve for storing and processing the quantum information
to photonic flying qubits that transfer information between the nodes. These interfaces
have to fulfill three requisites to represent a fully operational bidirectional connection be-
tween node and communication channels:

• Quantum-state transfer from the memory onto the photon,

• Re-conversion from the quantum information stored in the photonic degrees of free-
dom into information stored in the memory, and

• Generation of entanglement between the memory and the photon.

In single-atom–based systems, several approaches have been used to address these is-
sues, including deep parabolic mirrors [147, 148], optical resonators [149, 150], and high-
numerical-aperture objectives [151, 152]. We deploy the latter for the implementation of
our interface.

In the following, the realization of a comprehensive programmable atom-photon quan-
tum interface [82], based on a single trapped ion and high-numerical-aperture optics, is
presented. Depending on its mode of operation, the interface allows for photon-to-atom
quantum-state transfer, atom-to-photon state transfer, and the generation of atom-photon
entanglement.

The measurements were conducted primarily in collaboration with Christoph Kurz, who
also wrote the evaluation, and are published in [153] and [82], although a lot of group
members contributed to the experiments, ranging from discussions during the concep-
tional phase to building the basic experimental setup. A comprehensive re-evaluation of
the results was performed by Philipp Müller and will be presented in his thesis [81].
In this thesis, a complete summary of the full interface operation, together with a theoreti-
cal description of the protocol, is given.

5.1. Atom-photon interface

The basis for the atom-photon quantum interface is the development of our versatile in-
terface protocol, employing a coherent superposition in the metastable D5/2 manifold, fol-
lowed by single-photon absorption and emission. The protocol was initially implemented
for high-fidelity heralded transfer of a photonic polarization qubit onto the qubit state of
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a single ion [153] and has later been extended to a programmable, bidirectional interface
between a single ion and single photons in order to fulfill the aforementioned conditions.

For each operation mode – atom-to-photon state transfer, photon-to-atom state transfer,
and atom-photon entanglement – the ion is initially prepared in a superposition of the two
Zeeman sublevels | ± 5/2〉 (or | ± 3/2〉) in D5/2. The state initialization is carried out by
optical pumping into a pure state, typically into the | − 1/2〉 sublevel of the ground state,
followed by a radio-frequency pulse, resonant on the transition frequency between both
ground-state sublevels, of adjustable phase and pulse area ((1) in fig. 5.1 (a)). The phase
of the radio frequency is synchronized with the clock of the control electronics. Thus, the
atomic superposition is also in phase with the RF drive (as long as the ion stays in the
ground-state superposition and the RF drive is resonant on the ground-state transition).
Subsequent application of two resonant π pulses on the narrow-band quadrupole transi-
tion at 729 nm coherently transfers the state into D5/2 ((2) and (3) in fig. 5.1 (a)). The initial
phase of the D5/2 superposition depends on the phase of the RF drive and the phase differ-
ence between the two 729 nm pulses and is controllable via these magnitudes. Depending
on the desired application (atom-to-photon state transfer, photon-to-atom state transfer, or
atom-photon entanglement), the qubit is either encoded into the atomic state or we start
with a known, fixed state, as it will be explained in more detail later.

Once the atom state is transferred to D5/2, the ion is able to absorb photons resonant on
the D5/2 ↔ P3/2 transition at 854 nm (see fig. 5.1 (b)).
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Figure 5.1.: (a) Scheme for the atomic state preparation. The details are explained in the main text.
(b) Scheme for the interface protocol. Initially, the ion is prepared in a general superposition in
the two ±5/2 Zeeman sublevels of the metastable D5/2 state, followed by absorption of a resonant
photon at 854 nm in the polarization state |ψ854〉. Decay from the excited P3/2 state transfers the ion
into the ground-state qubit |ψS〉 in S1/2 and leads to the emission of a single blue photon at 393 nm
of polarization |ψ393〉. The mode of operation decides which states are fixed, projected, or used as
carrier of quantum information.
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Following the formalism from section 4.3, an absorption event is described by applying
the absorption operator Â onto the initial atomic statestate 1 (or, to be more precise, onto
the combined initial atom-photon state)

|ψD〉 = cos
ϑD

2
|D,−5/2〉+ sin

ϑD

2
eiϕD |D,+5/2〉 . (5.1)

With the polarization state of the absorbed red photon,

|ψ854〉 = cos
ϑ854

2
|854,R〉+ sin

ϑ854

2
eiϕ854 |854,L〉

= cos
ϑ854

2
|854,+〉+ sin

ϑ854

2
eiϕ854 |854,-〉

(5.2)

in the left- and right-hand–circular polarization basis and absorption along the quantiza-
tion axis2, Â becomes

Â = |P,+3/2〉〈D,+5/2|〈854,L|+ |P,−3/2〉〈D,−5/2|〈854,R| , (5.3)

and hence

Â|ψD〉|ψ854〉 = cos
ϑ854

2
cos

ϑD

2
|P,−3/2〉+ sin

ϑ854

2
sin

ϑD

2
eiϕD eiϕ854 |P,−3/2〉 . (5.4)

The detuning-dependent factor in the absorption operator has been neglected as the pho-
ton frequency is constant and equally detuned from the both atomic transitions, such that
c(∆) just gives a constant known phase offset. A detailed analysis of the photon-frequency
dependency of the final atomic state is found in [141].

Decay on the σ± transitions into a superposition into S1/2 triggers the emission of a sin-
gle photon at 393 nm. The polarization of the blue photon is connected to the transition on
which it was emitted, thus the photon state is correlated to the state of the P3/2 superpo-
sition or, eventually, to the final atomic ground-state qubit. In a mathematical sense, this
process is described by the emission operator Ê, which is in that case represented by

Ê = |393,L〉|S,−1/2〉〈P,−3/2|+ |393,R〉|S,+1/2〉〈P,+3/2| . (5.5)

for emission along the quantization axis3, where the polarizations are defined along the

1In the situation when the ion is initially prepared in a superposition of | ± 3/2〉 instead of | ± 5/2〉, the ac-
cording D5/2 sub-states have to be substituted.

2For absorptions from other directions, the operator has to be modified accordingly. For instance, exciting the
D5/2 ↔ P3/2 transition under 90◦ with respect to the quantization axis leads to an equivalent expression as
(5.3) for vertically polarized photons, while the projection of the input photons onto horizontal polarization
couples to the π transition which does not exist in this scheme.

3We have seen in section 4.4 that the effect of the finite collection angle due to the HALO onto the resulting
polarization of the collected photons is negligible, thus it is legitimate to assume collection solely on the
quantization axis for the moment.
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direction of propagation. With (5.5), we obtain the resulting joint atom-photon state

|ψfinal〉 = ÊÂ|ψD〉|ψ854〉

= cos
ϑ854

2
cos

ϑD

2
|393,L〉|S,−1/2〉

+ sin
ϑ854

2
sin

ϑD

2
eiϕD eiϕ854 |393,R〉|S,+1/2〉 .

(5.6)

It is evident that the amplitudes and the phase, i.e. ϑD and ϕD, of the initial atomic state
as well as the polarization state of the absorbed photon, i.e. ϑ854 and ϕ854, enter into the
final atom-photon state. This state forms the basis for the protocol, as we will see in the
following sections.

For certain operational modes it is mandatory to project the atomic state via fluorescence-
based state detection onto a basis that leaves us ignorant of the qubit states of the remainder
of the quantum system, i.e. the polarization state of the blue photon, or vice versa. Very
generally, even if no atomic projection is necessary, atomic state analysis has to be con-
ducted in order to evaluate reliability or fidelity of the quantum process or the generated
entangled state.

The process of atomic state analysis is depicted in fig. 5.2. After the qubit superposition

a) P3/2

D5/2

S1/2

729 nm
2

1

π
2 , φ

b)

Figure 5.2.: Atomic state analysis for state projection and state tomography. An optional basis-
rotation pulse, resonant on the transition between the ground-state sublevels, transforms the su-
perposition phase into populations of | ± 1/2〉 for projective measurements in the σx and σy bases. A
729 nm π pulse transfers the population in |+ 1/2〉 into the D5/2 manifold, followed by fluorescence-
based state discrimination. For a full tomography, the atom is measured in the three different σx,
σy, and σz bases.

is formed in the ground-state manifold, an optional π
2 radio-frequency pulse with phase

φ is applied to facilitate measurements in the σx and σy superposition bases. This pulse
translates the atomic superposition phase into populations in |S1/2, m = ±1/2〉 (see section
3.3.1), depending on the relative phase between RF and atomic superposition. State read-
out is then conducted by shelving the population in one of the two substates, typically
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|+ 1/2〉, into the meta-stable D5/2 state and subsequently performing the state discrimina-
tion by fluorescence detection, as described in section 3.4. Full atomic state tomography
is carried out by measuring in the three different σx, σy, and σz bases, where the RF pulse
is switched off for the σz measurement to solely obtain the state occupations. The recon-
structed atomic state is then deduced from the outcome of these measurements (explained
in more detail in A.2).

5.2. Photon-to-atom state transfer

The first operation under investigation is the transfer of a photonic qubit, imprinted into
the polarization state of the photon, onto the stationary node of the quantum network,
i.e. onto the state of the single ion. The work is presented in detail in Christoph Kurz’
dissertation thesis [79] and [153], but presented briefly here for reasons of completeness.
Additionally, the ideas developed for the evaluation of the state-transfer protocol are fun-
damental for the understanding of the evaluation process for other experiments.

To prove the viability of our interface, we used laser photons as carriers for the polar-
ization state to be transferred [153]. Photon-state transfer with heralded single photons,
originating from a photon-pair source based on spontaneous parametric down conversion
(SPDC) are presented in [154], [155], and [124].

In the present experiment, a laser beam along the quantization axis provides polarized
photons at 854 nm. In fact, the quantization axis was rotated by 90◦ with respect to the
HALO axis for the present demonstration, as shown in fig. 5.3. This configuration poses
no fundamental difference to the usual alignment, where the quantization axis points along
the HALO axis, as we could as well have oriented the B field along the HALOs and sent
the laser beam through the same, but that beam was not set up at the time the experiment
was conducted.

A PBS and two waveplates are inserted into the 854 nm beam to adjust the photonic po-
larization state. The experimental sequence starts, as described before, with optical pump-
ing of the ion into the |S1/2, m = −1/2〉 Zeeman sublevel, followed by coherent state prepa-
ration in a (fixed) superposition in D5/2 (see section 5.1). Once the atom is initialized, it is
exposed to photons resonant on the D5/2 ↔ P3/2 transition, stemming from the laser beam
mentioned before. Upon absorption of a photon, the ion is excited into P3/2, from where it
rapidly decays to the ground state via the emission of a single photon at 393 nm, leaving
the atom-photon system in an entangled spin-polarization state. To map the state of the
absorbed photon onto the atomic state, the polarization state of the blue photon has to be
projected out. The photonic state projection is realized by an adjustable optical polarizer
that, conditioned on detection, projects the 393 nm photon onto a linear polarization, i.e. a
superposition of right- and left-hand circular polarization, such that no information on the
atomic state is gained due to the photon detection. In addition, the photon detection serves
as a herald for a successful transfer event. The latter allows for high-fidelity gate operation
even for the low photon-detection efficiencies, typically in the order of 1%, which would
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Figure 5.3.: Experimental setup for the photon-to-atom state transfer. The quantization axis, given
by the B field, is oriented perpendicular to the HALOs to be parallel to the propagation direction
of the 854 nm laser photons. A polarizing beam splitter (PBS) and two waveplates (λ/2 and λ/4) are
used to adjust the polarization of the 854 nm beam for state transfer. State projection of the scattered
393 nm photons is carried out by a polarizer before they are detected by a photo-multiplier tube
(PMT). (taken from [79]).

otherwise (i.e. without heralding) lead to nearly complete loss of information and hence to
a nearly entirely mixed final state.
The protocol used here is a slight variation of the one presented in fig. 5.1 as the atomic
qubit is imprinted in a superposition in |D5/2,±3/2〉 to increase the coherence time, but the
operational principle stays the same.

The transfer scheme is again summarized in fig. 5.4.
The heralding property of the detection of the blue photon serves a second purpose that

has not been mentioned so far. In eq. 5.6 we have neglected the time dependency due to
the Larmor precession. In fact, the atomic-phase term eiϕD consists of a constant (and ex-
perimentally controllable) part eiϕD,0 and a temporally oscillating phase contribution eiϕL

caused by the Zeeman splitting between both D5/2 sub-levels. Since the experimental ref-
erence frame oscillates with the radio frequency resonant on the ground-state transition,
the atom acquires a Larmor phase (relative to the experimental reference) until it returns
to the ground-state superposition due to absorption of a 854 nm photon, followed by the
emission of a 393 nm photon. Hence, the additional Larmor phase depends on the mo-
ment of the photon emission. Without heralding by detection of the 393 nm photon, we are
entirely ignorant of the instant when the ion is transferred into the ground-state superpo-
sition, leading to incoherent mixing of the Larmor phases and thus to a statistical mixture
for the final atomic state. Therefore, it is a vital requirement to precisely know when the
transfer happened, so we can either correct for the acquired Larmor phase by an additional
phase-rotating pulse, or take the additional phase into account for further operations. In
this experiment, we pursue the second approach. Thus, the phase of the final superposi-
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Figure 5.4.: Schematic protocol for the photon-to-atom state transfer. The qubit is encoded in the
polarization of the red photons at 854 nm. The ion starts in a fixed superposition in |D5/2,±3/2〉,
enabling the absorption at the D5/2 ↔ P3/2 transition. Upon absorption, the ion releases a photon
at 393 nm which transfers the ion into the ground-state superposition. Projection of the blue photon
onto horizontal polarization maps the photonic input state onto the spin qubit in the ground state.

tion state oscillates, depending on the detection time of the blue photon which projects the
atom into the ground state. For a fixed angle of the polarizer, this results in an oscillatory
pattern in the arrival-time distribution (ATD) of the photon when the polarization is pro-
jected onto H (atomic π transitions) and detection events are conditioned on the projection
of the ion onto two orthogonal superposition bases, i.e. on a bright or dark fluorescence
detection after RF and 729 nm pulse. A representative photon wave form is shown in fig.
5.5 [153]. As a side-effect, the sharp temporal projection of the photon arrival time erases
the spectral distinguishability of the photons scattered on the different decay channels.

Knowing the oscillation period, given by the splitting of the Zeeman states, allows us to
merge the detection events into bins of equal phase and calculate the state probabilities (i.e.
the probabilities to end up in±1/2 following the basis-rotation pulse) to obtain a histogram
as shown in fig. 5.6. To reduce the effect of erroneous multi-photon absorptions in the
case of laser excitation and improve the signal-to-background ratio while simultaneously
maintaining reasonable success probabilities, we only take the first 450 ns of the photon
wave packet into consideration.

From the visibility V of the oscillating fringes shown in fig. 5.6 we deduce the projec-
tion of the resulting atomic state after the transfer process onto a perfectly symmetric and
coherent superposition of the two energy Eigenstates | ± 1/2〉. The phase of the atomic
state after the transfer is directly reconstructed from the phase of the oscillation fringe. For
linear input polarizations, we expect an ideal mapping onto the symmetric atomic super-
positions |ψS〉 = | − 1/2〉+ eiφ|+ 1/2〉. From that we finally extract the overlap fidelity F of
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Figure 5.5.: Arrival-time distribution of the emitted 393 nm photon, conditioned on the outcome of
the atomic state projection onto two orthogonal superposition bases for linearly polarized 854 nm
photons. The prominent oscillation is used to reconstruct the projection of the resulting atomic
output state onto the equatorial plane of the Bloch sphere, as explained in the main text (from
[153]).

Figure 5.6.: Probability to find the ion in |+ 1/2〉 after the basis-rotation RF pulse as a function of
the phase equivalent to the arrival time of the heralding photon for different input polarizations.
The solid lines represent sinusoidal fits (from [153]).

the resulting states with respect to the atomic target states,

F =
1
2
(V + 1) . (5.7)

Since we consider deviations between the measured and expected phase values not to
result from the mapping process itself, only the fringe visibility enters into the fidelity of
the atomic state [79]. For the four linear photonic-qubit polarizations H, V, D, and A, we
achieve fidelities of 96.4(1)%, 96.7(1)%, 97.0(2)% and 96.9(1)%, respectively.

For measurements in the σz basis, the RF pulse is simply skipped and the projection
onto the energy eigenstates is derived in the same way as explained in section 3.4. A typ-
ical arrival-time distribution, analyzed in the σz basis, for right-hand circularly polarized
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854 nm photons is shown in fig. 5.7. The full atomic state for a given photonic input state

Figure 5.7.: Projection onto |+ 1/2〉 (blue) and | − 1/2〉 (green) for right-hand–circular input polar-
ization without basis-rotation pulse (from [153]).

is reconstructed from the combination of both measurements (see [156] and section A.2).
Including the measurements for the circularly polarized input states, whose fidelities are

analogously to (5.7) given by the probabilities p±1/2 to find the ion in the energy eigenstates
| ± 1/2〉, as

F±1/2 = p±1/2 , (5.8)

we obtain an average state-transfer fidelity F̄ of 96.9(1)%.
For the characterization of the transfer process, the mapped atomic state is evaluated

for four different photonic input polarizations (H, D, R, and L) and the quantum-process
matrix χ is derived from the results. χ describes the modification of an initial quantum
state due to a quantum process and is defined by the completely positive map ε(ρ) that
fully characterizes the transformation of the input state ρ into the output state ε(ρ) after
undergoing the quantum process. ε itself can be re-written in terms of χ as

ε(ρ) =
4

∑
i,j=1

χi,j σi ρ σj (5.9)

with the Pauli matrices σi and σ1 = 1. From the data of the four input polarizations H, D, R,
and L, the quantum-process matrix shown in fig. 5.8 is computed following the procedure
described in [157].

Ideally, a quantum process does not alter the state of a system, therefore we define the
identity contribution of the process-tomography matrix, χ11, as the quantum-process fi-
delity. From the process matrix, we find a quantum-process fidelity of 95.0(2)%.

Note that the average state fidelity and the process fidelity are generally linked by the
relation [81]

F̄ =
2 χ11 + 1

3
. (5.10)
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Figure 5.8.: Moduli of the entries of the quantum process-tomography matrix for the photon-to-
atom state transfer. The identity contribution, χ11, is defined as the quantum-process fidelity
(adopted from [79]).

The discrepancy between the measured values for F̄ and χ11 derives from the fact that, in
the present evaluation, the average state fidelity was evaluated from all six input states,
while only four input states entered into the calculation for the process fidelity.

In analogy to the detailed treatment given in chapter 6, decay from P3/2 back to D5/2,
releasing an undetected 854 nm photon, followed by re-excitation results in an incoherent
contribution to the final S1/2 qubit. Neglecting decay to D3/2, this effect accounts for a
reduction in the process fidelity of 1.4% for a 450 ns time window and the given photon-
wave-packet length (see [153] and [79]).
In addition, detector dark counts that mimic the detection of a blue photon leave us ig-
norant of the actual time, direction, and polarization of the emitted photon, dragging the
transferred state towards a statistical mixture and thus further degrade the transfer fidelity.
Overall, another 1.7% decrease of the process fidelity is attributed to dark-count events (see
[153, 79]).
The remaining reduction of the process fidelity is attributed to decoherence due to magnetic-
field noise as discussed in 3.6. Briefly estimated, the expected transfer-fidelity reduction
in the 450 ns time window and a state-preparation time of about 20 µs for the observed
atomic-qubit coherence time of about 670 µs (c.f. [79], section 4.1.9, keeping in mind that
the sensitivity against magnetic-field noise is reduced to 60% for the scheme treated here
and assuming a coherence time of 400 µs for the σ scheme presented in [79]) is 1.5%. From
eq. (5.10) and assuming linearity4, this value corresponds to a process-fidelity reduction of
2.2%.
Further error contributions, like the decay to D3/2 during the excitation process or the

4Which is justified for the small values treated here.
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erroneous detection of light scattered on the σ transitions that passes the polarizer due to
the finite collection angle of the HALO and the spatial emission characteristics of an optical
dipole, have no significant influence on the state fidelity and are neglected.
Linearly adding up the error contributions, we obtain an overall process-fidelity reduction
of 5.3%, which is in good agreement with the experimental results.

5.3. Atom-to-photon state transfer

Bidirectional operation of the quantum interface requires the ability to release a photon
that carries the quantum information formerly encoded in the atom for storage and pro-
cessing. Again we employ the protocol presented in 5.1. The qubit, initially stored in the
ground-state manifold, is coherently transferred into a superposition in |D5/2,±5/2〉 by two
resonant laser pulses at 729 nm. A laser at 854 nm, driving the transition from D5/2 to P3/2,
of fixed linear polarization and incident under 90◦ to the quantization axis, triggers the
emission of a single photon at 393 nm which is at first entangled with the ion. Projection
of the atomic state onto a fixed symmetric superposition of both Zeeman sublevels | ± 1/2〉
maps the atomic state onto the polarization state of the scattered 393 nm Raman photon.
Fig. 5.9 shows the experimental setup for the atom-to-photon state transfer.

Fiber to
PMT 393 nm

854 nm

HALO

B

Fiber to
PMT 397 nm

Polarizer

RF coil

729 nm

Wave plates

HALO

Figure 5.9.: Experimental setup for the atom-to-photon state transfer. The quantization axis, given
by the B field, is oriented along the HALO axis. Upon absorption of a vertically polarized laser
photon at 854 nm from 90◦ to the quantization axis, the ion is excited on the D5/2 ↔ P3/2 transition
and subsequently releases a single blue photon at 393 nm. For the characterization of the state
transfer, two waveplates (λ/2 and λ/4) and a polarizer facilitate photonic-polarization projection
before photon detection on the PMT (from [82]).

The general principle is depicted again in fig. 5.10.
The characterization of the state-transfer process is performed by preparing the atom

in both energy eigenstates |D5/2,±5/2〉 and in a superposition of variable phase and mea-
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Figure 5.10.: The atomic qubit, initially stored in S1/2, is coherently transferred into a superposition
in D5/2, |ψD〉 = α | − 5/2〉 + β | + 5/2〉 (full green circles). Absorption of a photon at 854 nm of
fixed linear polarization, originating from a laser beam from 90◦ with respect to the quantization
axis, triggers the emission of a single photon at 393 nm. After projection of the atomic state onto
a symmetric superposition basis with the help of a basis-rotation RF pulse and fluorescence-based
state detection, the emitted photon carries the atomic qubit state (together with a known additional
phase).

suring the polarization state of the Raman photon. The overall atomic phase in |D5/2〉
before photon emission is composed of a fixed and experimenter-defined contribution that
originates from the state preparation and an temporally oscillating part due to the energy
splitting of both |D5/2〉 sublevels. Consequently, the phase of the atomic superposition and
hence the phase of the entangled atom-photon state after emission (see eq. (5.6)) depends
on the duration between preparation and return into the ground state, i.e. the time be-
tween state transfer to D5/2 and detection of the blue photon5, and also a known and fixed
contribution from the polarization of the absorbed 854 nm photon. Projecting the ion onto
a symmetric superposition state in S1/2 by applying a basis-rotation RF pulse of known
phase and a shelving pulse at 729 nm as before thus maps the atomic qubit state in the
D5/2 superposition onto the polarization state of the blue photon. Depending on the result
of the projection measurement, i.e. which of the two orthogonal ground-state superposi-
tions the ion has been projected on, an additional but known phase of π is imprinted on the
mapped photonic state (which becomes evident when we re-write the atomic contribution
in eq. (5.6) in the superposition basis and apply a projection onto either of the two possible
superposition states |S,−1/2〉 ± eiϕD |S,+1/2〉, while ϑ854 and ϕ854 are kept constant).

For atomic qubits purely encoded into one of the two energy eigenstates | ± 5/2〉, it
is obvious that the mapped photonic qubit also exhibits purely circular polarization as

5Since the radio frequency, being resonant on the transition between both ground-state sublevels, serves
as reference oscillator, the atom effectively does not acquire a phase while residing in the ground-state
superposition.

84



5.3. Atom-to-photon state transfer

there are no other decay channels to S1/2. This result becomes apparent when writing
down the effect of the absorption and emission operator from section 5.1 onto the initial
state (c.f. eq. (5.6)) and projecting the 393 nm polarization onto |ψ393〉 = cos ϑ393

2 |393,L〉+
sin ϑ393

2 eiϕ393 |393,R〉:

〈ψ393|ÊÂ|D,+5/2〉|ψ854〉 = sin
ϑ393

2
sin

ϑ854

2
eiϕ393 |S,+1/2〉 (5.11)

and
〈ψ393|ÊÂ|D,−5/2〉|ψ854〉 = cos

ϑ393

2
cos

ϑ854

2
|S,−1/2〉 , (5.12)

where the factors cos ϑ854
2 and sin ϑ854

2 reflect the relative absorption probabilities in depen-
dence of the polarization of the 854 nm photon.

If, however, the atom starts in a superposition between | ± 5/2〉, the 393 nm polarization
should be in a superposition of R and L after atomic state projection according to (5.6).
The polarization angle of the photonic superposition is determined by the atomic phase
upon photon absorption. This should manifest as a detection-time–dependent rotation of
the blue polarization or an oscillation when the photon is projected onto a linear polar-
ization. In the theoretical description, the respective (normalized) expression according to
(5.6) becomes

√
1
2

(
〈393,L|+ 〈393,R|

)
ÊÂ|ψD〉|ψ854〉 = cos

ϑD

2
|S,−1/2〉

+ sin
ϑD

2
eiϕD eiϕ854 |S,+1/2〉

(5.13)

with the temporally oscillating phase eiϕD and cos ϑD
2 , sin ϑD

2 6= 0 for projection onto the

linear polarizaztion
√

1
2

(
|393,L〉+ |393,R〉

)
(and analogously for he other linear polariza-

tions). In the experiment, we see exactly that oscillating behavior, as shown in fig. 5.11.
In analogy to section 5.2, we calculate the reduced phase for the oscillation inherent in the
photon from the Larmor period of about 64 ns to deduce the phase histogram presented
in fig. 5.12. As a trade-off between state fidelity and detection efficiency, we choose a time
window of 450 ns of the photonic wave-packet (gray shade in fig. 5.11).

Amplitude and phase of the oscillations for the linear bases reveal the projection of the
photonic state onto the plane spanned by the linear polarizations in the Poincaré sphere. As
expected, the oscillation for projections onto the circular polarizations is nearly completely
suppressed, which is seen on the resulting atom-photon state after absorption of the red
and subsequent emission of the 393 nm photon, followed by projection onto the circular
polarizations |393,R/L〉:

〈393,R|ÊÂ|ψD〉|ψ854〉 = sin
ϑD

2
sin

ϑ854

2
eiϕD |S,+1/2〉 (5.14)

and
〈393,L|ÊÂ|ψD〉|ψ854〉 = cos

ϑD

2
cos

ϑ854

2
|S,−1/2〉 . (5.15)
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Figure 5.11.: Photon arrival-time histogram for projection of the photon onto the polarization bases
H (blue) and V (green). The events are conditioned on the atomic-state projection onto the |+ 1/2〉
state following the RF basis-rotation pulse. The red curve represents the sum of both histograms
and corresponds to the unconditioned arrival-time distribution. The gray-shaded area indicates the
time windows of 450 ns used in the evaluation (from [82]).

Figure 5.12.: Poincaré components of the resulting photon state vs. reduced Larmor phase for the
atom prepared in a linear superposition in D5/2, extracted from measurements shown in fig. 5.11.
The ellipticity of the polarization (R/L component) is close to zero, with a slightly visible oscillation
originating from an imperfect calibration of the wave plates. The solid lines are sinusoidal fits (from
[82]).

From the measurements in the circular and linear bases we perform a full state tomogra-
phy to reconstruct the mapped photonic states for the different atomic input qubit states (in
both energy eigenstates and the symmetric superpositions thereof with the starting phases
ϕD = 0, π

2 , π, 3
2 π) to obtain the characterization of the quantum process in the same manner

as described in 5.2.
The quantum process-tomography matrix, calculated as described in [153], (fig. 5.13)

exhibits a χ11 component, identified as the process fidelity, of 90(1)%. Averaged over all
six input states, the average state fidelity of the transferred state is 92.4(3)%, which, within
the error, agrees to the expected value according to eq. (5.10).
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Figure 5.13.: Moduli of the quantum-process matrix characterizing the state mapping. The
quantum-process tomography is depicted in the main text (section 5.2) and explained in detail
in the appendix. The identity contribution χ11, defined as the process fidelity, is found to be 90(1)%
in the present experiment (from [82]).

The main contributions to the infidelity are discussed in the following:

At the time the experiment was conducted, the feed-forward compensation of magnetic-
field fluctuations was not yet installed, magnetic-field noise during the storage time of
the atomic state of about 30µs has a non-negligible influence on the state-transfer fidelity.
Further sources of infidelity are the decay from P3/2 back to D5/2, which contributes 1.4%,
and detector dark counts that account for additional 1.7% for the 450 ns time window.
The remaining infidelity is attributed to imperfect calibration of the 393 nm waveplates. It
has been shown in section 4.4 that the influence of collection of the wrong polarization is
negligible. Collection of π light is irrelevant as a π transition simply does not appear in
this scheme.

One way to improve the quality of the state transfer is the implementation of a magnetic-
field stabilization, which has been realized in the meantime. The influence of decay back
to D5/2 can be reduced by decreasing the photon time window, which however reduces
the success probability at the same time.

More recently, we developed a protocol for atom-to-photon state transfer onto a photon
at 854 nm, presented in the next chapter, that allows for conversion of the photonic qubit
into the low-loss telecom regime at 1310 nm and inherently exhibits a higher transferred-
state fidelity (see section 6.5).
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5. Programmable atom-photon interface

5.4. Atom-photon entanglement at 393 nm

We have demonstrated the transfer of quantum information from a photon onto a sta-
tionary trapped ion on the one hand and the reverse operation, the atom-to-photon state
transfer, on the other hand. What remains to show is the entanglement between atom and
photon, like it is required as a resource for certain schemes for entanglement distribution
within a quantum network [158].

Our protocol is intrinsically capable of providing atom-photon entanglement. In fact, in
the atom-photon state transfer shown in section 5.3, we already generated atom-photon
entanglement, where we had to project the atomic state in order to map the state onto the
photon.

In this section we investigate the resulting entangled state when neither the atom, nor the
photon is projected. It is not surprising that the experimental setup for the entanglement
operation resembles the one shown in fig. 5.9, although it has to be mentioned that the
waveplates for the polarization analysis of the 393 nm photons were replaced in between.
Actually, in a chronological sense, the entanglement measurement was performed earlier
and the waveplates were replaced for the state-transfer measurement by a set of more
reliable ones after we found out that they acted as a source of infidelity.

We begin by preparing a fixed symmetric superposition in the | ± 5/2〉 sublevels in D5/2
in the usual manner, i.e. by optically pumping the ion into |S1/2,−1/2〉, generating the
coherent superposition in S1/2 by a π

2 RF pulse and subsequently coherently transferring
the superposition into D5/2 by two consecutive pulses at 729 nm.

After the preparation, a vertically polarized 854 nm laser pulse initiates the emission of a
single 393 nm photon, whose polarization is entangled with the spin state of the atom after
emission, i.e. in the ground-state manifold (see fig. 5.14).

The viability of the entanglement operation is verified by standard two-qubit tomogra-
phy, following the instruction in [156], through correlation measurements in the product
bases of photonic and atomic qubits. The tomography is explained again in detail in ap-
pendix A.3, but shall be briefly recapitulated here.

Generally, a two-qubit state, described by the density matrix

ρ̂ =
1
4

3

∑
i1,i2=1

ri1 ri2 σ̂i1 ⊗ σ̂i2 , ri1 , ri2 ∈ R , (5.16)

where σ̂ik denotes the i-th Pauli matrix for the k-th qubit, and ⊗ denotes the tensor prod-
uct, can be reconstructed by 16 measurements µ̂i ⊗ µ̂j (i, j = 0, 1, 2, 3). A typical set of
measurement bases is given in A.3.

Relabeling the 16 measurement bases σ̂i ⊗ σ̂j = Γ̂ν, ν = 1, ..., 16 according to [156], ap-
pendix A, we find the matrices M̂ν defined in [156], appendix B, and derive the linearly
reconstructed density matrix

ρ̂ =
16
∑

ν=1
M̂νnν/

4
∑

ν=1
nν (5.17)
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Figure 5.14.: Protocol for the generation of atom-photon entanglement as part of the programmable
atom-photon quantum interface. Both input states, the atomic and photonic, are fixed in a symmet-
ric superposition of |D5/2,±5/2〉 and R/L, respectively. Absorption of the 854 nm and subsequent
emission of a 393 nm photon transfers the ion into the ground-state manifold, whose spin state is
entangled with the polarization state of the emitted photon.

from the experimentally obtained coincidence counts nν. ν = 1 to ν = 4 correspond to
the coincidence measurements in the bases 〈HH|ρ̂|HH〉, 〈HV|ρ̂|HV〉, 〈VV|ρ̂|VV〉, and
〈VH|ρ̂|VH〉6.

We employ a maximum-likelihood approach (described in A.4) to reconstruct the phys-
ical quantum state which produces the experimental data with the highest probability.

From the theoretical treatment in 5.1, we expect the ideal entangled state

|ψideal〉 =
1√
2
|393,L〉|S,−1/2〉 − 1√

2
eiϕD |393,R〉|S,+1/2〉 (5.18)

according to eq. 5.6.
The experimentally derived atom-photon density matrix after maximum-likelihood re-

construction is shown in fig. 5.15. From the experimental outcome, we find an overlap
fidelity with the expected state (5.18) of 84.6(2)% for the photon time window of 450 ns,
which clearly exceeds the classical threshold of 2

3 by more than 80 standard deviations.
The reduction in fidelity is traced back to, once again, primarily the lack of magnetic-

field stability that accounts for a significant amount of phase insecurity. For our qubit
storage time of about 30 µs, we estimate a decrease in fidelity to about 96%. Another 1.4%
loss in fidelity result from decay from P3/2 back to D5/2, and further 1.9% originate from
detector dark counts (taking into account that signal-to-background ratio is decreased by a

6The notations |H〉 and |V〉 do not necessarily only describe the photonic polarizations, but generally denote
the superpositions between the qubit eigenstates |0〉 and |1〉, |H〉 = |0〉+ |1〉 and |V〉 = |0〉 − |1〉
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Figure 5.15.: Moduli of the density matrix for the entangled ion-photon state. The generated state
exhibits an overlap fidelity with the targeted maximally entangled Bell state of F = 84.6(2)%. The
sources of infidelity are discussed in the main text.

factor of two due to the transmission of photons (signal) through the polarization-analysis
setup that result in a signal attenuation of 50%). The remaining infidelity is attributed
to imperfect calibration of the waveplates for photonic state analysis, especially for the
circular bases.

The photon-detection efficiency for this experiment amounts to 0.353(1)%, including that
only 50% of the arriving photons are transmitted through the polarization analyzer. With
a sequence-repetition rate of 11 kHz and the quantum efficiency of 28(1)% of the PMT, we
obtain 140(5) fiber-coupled photons per second.

In conclusion, we demonstrated a proof-of-principle implementation of a fully programmable
atom-photon quantum interface, a key ingredient for a photon-coupled quantum network.
The interface offers three operational modes: atom-to-photon state transfer (from the atom
onto a 393 nm photon), photon-to-atom state transfer (from a 854 nm photon onto the
atom), and the generation of atom-photon entanglement (between atom and 393 nm pho-
ton). All operations begin with the controlled generation of a coherent superposition in the
meta-stable D5/2 manifold with adjustable population amplitude and phase7, followed by
the heralded absorption of a photon at 854 nm (either in e known polarization state in the
case of atom-to-photon state transfer and atom-photon entanglement or carrying quantum
information encoded in its polarization state in the case of photon-to-atom state transfer).

7In an implementation of the atom-to-photon state transfer within a larger quantum network, the atomic
qubit state might already be stored in the ion instead of being generated for the purpose of process charac-
terization.
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Projection of the atomic state onto a symmetric superposition offers the mapping of the
initial atomic state onto the blue photon (for the atom-to-photon transfer) or vice versa (for
the photon to atom transfer). If the generation of atom-photon entanglement is intended,
no projection is conducted and the atom-photon system remains in an entangled state.

In the next chapter, an enhanced variation of such an interface is presented that allows
for quantum-interface operations (photon-to-atom state transfer, atom-to-photon state trans-
fer, atom-photon entanglement) in the spectral telecom range at 1310 nm, appropriate for
long-haul quantum communication due to strongly decreased loss in optical fibers.
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6. Experiments for quantum-repeater
applications

Long-distance quantum communication or distribution of entanglement amongst a large-
scale quantum network requires reliable, low-loss transmission of quantum information.
Unfortunately, this requisite is obstacled by losses within the quantum channel, e.g. due to
photon loss or depolarization, resulting in dramatically reduced rate of information trans-
mission at long distance. For example, the attenuation in optical fibers in the near-infrared
region at 854 nm is already 1.3 dB/km. That means that a single photon as a carrier of
quantum information, emitted in Saarbrücken and sent to the closest 40Ca+ experiment in
Mainz, situated a bit more than 100 km to the north-east, would suffer losses of 130 dB, i.e.
the probability to detect the photon is 0.00000000001%. It is obvious that it would require
generations of PhD students to even transmit one single photon, not to mention the signal-
to-background ratio for that kind of experiment. All in all, this approach seems not to be
practical.

To overcome these limitations, it would be desirable to find a quantum-mechanical ana-
log to a classical signal repeater used in communication technology to break down the long
communication channel into a number of shorter channels, coupled by quantum-repeater
nodes. Due to the no-cloning theorem of quantum physics, the sent photon cannot simply
be amplified, but alternative approaches have emerged that will be presented in the next
section.

Of course, a realistic quantum repeater suffers from imperfections, thus the fidelity of the
transferred information will be lower the larger the number of required repeater nodes be-
comes. Therefore, a feasible repeater-assisted communication channel is only applicable if
the overall channel losses can be drastically decreased. This is facilitated by the conversion
of the photonic qubits into the low-loss telecom spectral range. An atom-photon quantum
interface that couples single trapped 40Ca+ ions and photons in the telecom region is the
topic of this chapter.

Our attempt of local two-qubit gates with trapped ions, necessary for single-ion–based
quantum repeaters, is presented in chapter 7.

This chapter is split into four major parts. After a brief depiction of the concept of a
single-ion based quantum repeater in section 6.1, I present the realization of atom-photon
entanglement in the near-infrared regime at 854 nm. The developement and experimen-
tal realization of this entanglement protocol, together with the conception and imple-
mentation of atom-to-photon state transfer at 854 nm, described in section 6.5, constitutes
mainly my contribution to this experiment. All experiment presented in this chapter were

93



6. Experiments for quantum-repeater applications

conducted in collaboration with Matthias Bock (a member of the quantum optics group
of Christoph Becher), who also built and operated the setup used for polarization-state-
preserving single-photon conversion. The latter is briefly depicted in section 6.3. Atom-
photon entanglement in the telecom range (section 6.4), employing single-photon quantum
frequency conversion, represents the main result of the present chapter. An alternative nu-
merical evaluation for the reconstruction of quantum processes was written by Stephan
Kucera. The evaluation is summarized in sec. 6.5.2 and briefly described in Stephan’s dis-
sertation thesis [124]. A more detailed description is found in Philipp Müller’s dissertation
thesis [81].

The results derived in this chapter were published in [159]. The quantum frequency
conversion and the converter setup are treated in detail in [73, 80].

6.1. The quantum repeater

The concept of a quantum repeater was first proposed by Briegel, Dür, Cirac and Zoller in
1998 [160]. The original proposal employs a combination of entanglement swapping and
purification to overcome the limitation of exponential scaling of the error probability in
noisy quantum channels. The initial channel is divided into a number of sub-channels be-
tween individually entangled Einstein-Podolsky-Rosen (EPR) pairs. Entanglement swap-
ping is repetitively applied to finally obtain entanglement between both end-points of the
quantum channel. As a drawback, the protocol requires the generation of a number of
copies of each EPR pair for entanglement purification.

Over time, various approaches for quantum repeaters emerged [161], of which those
employing quantum memories as intermediate nodes [162] proved to be among the most
promising [163, 164]. In our experiment, we pursue the latter approach. The principle of
these protocols is depicted in the following.

A common method for the generation of remote entanglement is a projective Bell-state
measurement (BSM) on the photonic part of two pairs of entangled atom-photon pairs [48],
as indicated in fig. 6.1 (a). Assuming, for simplicity, only photon loss, a node-node distance
` implies a photon-arrival probability of e−λ `

2 from one node to the Bell-measurement de-
vice, where λ denotes the attenuation factor of the photonic channel. The probability to
detect a coincidence of photons from both nodes is then pcoinc = e−λ`. If we generate
entangled atom-photon pairs at rate r, we obtain an atom-atom-entanglement rate

R = ηAPE pcoinc
r
2
= ηAPE

r
2

e−λ` , (6.1)

Where the factor 1
2 derives from the projection-measurement efficiency for a typical BSM

setup, consisting of a non-polarizing beam splitter, two polarizing beams splitters and four
single-photon detectors, and ηAPE is the atom-photon-entanglement-generation efficiency
(determined e.g. by the photon-collection efficiency and fiber coupling). For larger dis-
tances, the rate rapidly drops below any viability threshold, rendering the entanglement
distribution impractical.
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6.1. The quantum repeater

BS
SPDSPD

(a) Naive approach for the entanglement of two remote atoms. Both atoms generate a
photon, entangled with the respective atom, which are subsequently sent to a projec-
tive Bell-state measurement to swap the entanglement onto the atom-atom pair. The
entanglement probability suffers from the necessity for simultaneous incidence of the
photons at the BSM setup, which is drastically reduced for longer atom-atom distances
due to photon loss.

(b) Inclusion of a pair of quantum memories in the middle of the quantum channel
facilitates the separation of the quantum-channel between both target nodes into two
sub-channels of half length, resulting in a reduction of the channel losses by a factor of
e1/2. Once entanglement between two nodes is established, it is stored until the whole
channel is finally entangled.

BSM

(c) Eventually, a local atomic Bell-state measurement between both ancilla nodes
swaps the entanglement onto both target nodes.

Figure 6.1.: Simple example of the working principle of a quantum-memory–based quantum re-
peater. In a realistic scenario, the chain of sub-channels can be extended according to the desired
communication length.
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6. Experiments for quantum-repeater applications

Including a number of N intermediate atomic ancilla nodes (see fig. 6.1 (b)) reduces
the inter-node distance to `′ = `/(N + 1). The modified entanglement-generation rate
between two auxiliary nodes becomes

Ranc = ηN
APE p′coinc

r
2
= ηN

APE
r
2

e−λ`′ = ηN
APE

r
2

e−λ`/(N+1) . (6.2)

Since the entanglement between two qubits along a sub-channel is stored once it is es-
tablished, the individual entanglement generations become independent. Once entangle-
ment between all subsets of ancilla nodes is established, entanglement between both target
nodes is generated by repetitive application of entanglement swapping by local two-atom
Bell-state measurements (fig. 6.1 (c)). Thus, the rate at which entanglement between both

end nodes is generated, is enhanced by the factor γ = η
(N−1)
APE eλ` N

(N+1) .
Of course, two-atom–gate infidelities limit the number of auxiliary nodes to not distort

the final entangled state between both target nodes too much. Additionally, the entan-
glement fidelity of the generated intermediate atom-photon pairs, and the photon loss
between the ancilla nodes, have a strong impact on the resulting entanglement-transfer fi-
delity and rate. In the next sections, we will present an implementation of an atom-photon
quantum interface, extended by a single-photon frequency-converter setup, to address the
latter two challenges.

6.2. Atom-photon entanglement at 854 nm

The implementation of the aforementioned quantum-repeater scheme requires three main
building blocks: the generation of entanglement between a quantum memory and a pho-
ton, the conversion of the photon into the telecom-wavelength band to overcome high
losses in the fiber infrastructure for node-to-node communication, and local entangling
two-atom gates. This chapter covers the first two points, while a possible realization of the
local gates is described in the next chapter.

First steps have been undertaken to connect the ultra-violet (UV) and telecom band [165],
but these devices still suffer from comparatively low conversion efficiency and relatively
high background count rates, and still lack the possibility for down-conversion from the
UV to the telecom spectrum. Therefore we decided to pursue a different strategy: instead
of converting the single photons at 393 nm presented in chapter 5, we create entanglement
between the ion and single photons at 854 nm, which can be converted much more easily.
This entangled state serves as the foundation for our protocol [159].

6.2.1. Generation of an entangled atom-photon state at 854 nm

One prerequisite for our protocol is the generation of atom-photon entanglement in the
near infrared (NIR). At first glance, the P3/2 ↔ D5/2 transition at 854 nm seems quite un-
suitable for that task due to the disadvantageous branching ratios between P3/2 ↔ D5/2

96
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and P3/2 ↔ S1/2, which strongly favors the emission of a blue photon at 393 nm over the
decay to D5/2. In fact, this circumstance appeared discouraging also for us in the beginning.
The key to overcome this obstacle lies in the projective nature of a quantum-mechanical
measurement.

Since the benefits from optical pumping into a single substate of S1/2 are marginal in
the current implementation, the sequence directly starts by 8 µs of Doppler cooling and
repumping from D5/2, leaving the ion in a mixture between the |m = ±1/2〉 Zeeman sub-
states in S1/2. Starting from that mixed states, the ion is excited to P3/2 by a 5 µs long
horizontally polarized laser pulse at 393 nm, incident under 90◦, which couples solely to
the π transitions | − 1/2〉 → | − 1/2〉 and |+ 1/2〉 → |+ 1/2〉 (see figures 6.2 and 6.3). Back-
decay into S1/2 simply causes re-excitation until the ion ultimately ends up in D5/2 with a
few exceptions when a decay into D3/2 appears (11.1% of the cases). The wave-packet of
the 854 nm photon emitted during the process has already been simulated in section 4.1.

393nm, π-pol.

729nm

HALO

B-field

 

 
 

854nm

Figure 6.2.: Atom-photon entanglement is generated between a single trapped 40Ca+-ion confined
in a linear Paul trap and a single photon at 854 nm. The photons are collected through a HALO
("High numerical-Aperture Laser Objective") and coupled to a single mode fiber. A 729 nm laser
beam under 45◦ is used for coherent manipulation on the narrow-band quadrupole transition.
Single-photon generation is facilitated by a horizontally-polarized 393 nm laser perpendicular to
the quantization axis.

Each excitation path exhibits three decay channels,
|P3/2,−1/2〉 → |D5/2,−3/2〉, |P3/2,−1/2〉 → |D5/2,−1/2〉, and |P3/2,−1/2〉 → |D5/2,+1/2〉
(or |P3/2,+1/2〉 → |D5/2,−1/2〉, |P3/2,+1/2〉 → |D5/2,+1/2〉, and |P3/2,+1/2〉 → |D5/2,+3/2〉
for excitation to |P3/2,+1/2〉). Since the photon is collected along the quantization axis
and coupled into a single-mode fiber, collection of photons emitted on the π transitions
is suppressed and we effectively end up with photon emission on both σ transitions with
orthogonal photon polarization R and L, such that the final atomic state is entangled with
the photon polarization. As the ion starts in a mixture in the ground state, the final state
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6. Experiments for quantum-repeater applications

also will consist of a mixture of two entangled atom-photon states, as indicated in fig. 6.3.
Therefore, we have to eliminate one of these two states by projecting the ion onto the de-
sired superposition by means of fluorescence-based state discrimination. For that purpose,
we apply two resonant pulses at 729 nm of 50 µs length1 to transfer the population in the
unwanted superposition (| − 1/2〉 and | + 3/2〉) into the ground state, and subsequently
switch on the cooling lasers for 200 µs of fluorescence detection. If the ion stays dark, it
is projected onto the desired superposition of | − 3/2〉 and | + 1/2〉, otherwise the data is
discarded and the sequence is restarted. A successful generation of an entangled pair is
followed by atomic and photonic state analysis.

P3/2

D5/2

S1/2

π π

σ+
√

2
3

σ−√
1
3

−1
2

−3
2 +1

2

−1
2

Figure 6.3.: Schematic depiction of the principle for the generation of atom-photon entanglement.
Initially in a statistical mixture in S1/2, the ion is excited to P3/2 by a 393 nm laser pulse whose
polarization is adjusted to drive only the π transitions. Upon emission of a 854 nm photon, the ion
arrives in one of two possible superpositions (depending on the initial state).

Conditioning of the state-analysis process onto the detection of the red photon and short
cooling times allow for high repetition rates of 58 kHz. Taking into account the collection
efficiency of 6%2, single-mode–fiber coupling of 39%, a correction factor of 89.9% due to
the decay into D3/2

3 (which is projected out afterwards if the 866 nm laser is switched off
during the generation), a factor of 1/2 caused by the fact that we start in a mixed state,
and an additional factor of 65% as we take only a part of the photon wave-packet into con-
sideration, we expect a success rate of 238 1/s fiber-coupled entangled atom-photon pairs.
In the experiment, we measure 27.6 1/s pairs after projection and detection (with an addi-
tional factor of 1/2 due to the polarization projection), corresponding to 236 1/s entangled

1We choose the large pulse length to avoid excitation of neighboring transitions and ensure reliable popula-
tion transfer.

2Note that this collection efficiency describes the collection conditioned on the emission of a σ polarized
photon. If decay along the π transition is taken into account, the resulting collection efficiency reduces to
3.6%.

3The ratio of generated 854 nm compared to the generation of 850 nm photons is given by η854 = A854
A854+A850

=
0.899.

98



6.2. Atom-photon entanglement at 854 nm

fiber-coupled pairs, which compares well with other trapped-ion systems [166]. Here we
assumed a quantum efficiency of the APDs of 30%, a transmission of 78% through the po-
larizer and a factor of 50% as the emitted photons are (mostly) unpolarized. A summary
of the efficiency factors is given in table 6.1.

Probability for photons on σ transitions 60%

Collection efficiency for photons emitted on σ transitions 6%

Single-mode–fiber coupling 39%

Correction factor due to the decay into D3/2 89.9%

Correction factor due to initially starting in a mixed state 50%

Fraction of the photon wave-packet taken into consideration 65%

Polarization projection 50%

Transmission of polarizer 78%

APD quantum efficiency 30%

Σ 0.05%

Table 6.1.: Efficiency factors for the detection of single 854 nm photons in the context of atom-
photon entanglement. The photons are collected along the quantization axis, coupled into a single-
mode fiber, and subsequently measured in different polarization bases using a polarizer setup and
a APD for single-photon detection. The resulting overall detection efficiency is 0.05%. For a repeti-
tion rate of 58 kHz, we expect 29.75 1/s detection events.

Close examination reveals an imbalance in the transition probability for the two decay
channels caused by different Clebsch-Gordan coefficients, as displayed in fig. 6.3. This
imbalance results in a distinguishability of both decay channels as the decay along one
channel is more probable than the decay along the other one, hence the expected over-
lap fidelity with a maximally entangled Bell state is reduced. For a quantitative analysis,
we first derive the expected state after photon emission. Assuming the atom to start in
|S1/2,−1/2〉, excitation to P3/2 on the π transition and subsequent decay into D5/2 leaves
the joined atom-photon system in the state

|ψexp〉 =
√

2
3
| − 3/2, σ+〉+

√
1
3
|+ 1/2, σ+〉 (6.3)

for single-mode photon collection along the quantization axis. As a figure of merit, we
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calculate the overlap fidelity with the maximally entangled Bell state

|Φ+〉 =
√

1
2 | − 3/2, σ+〉+

√
1
2 |+ 1/2, σ+〉 as

|Fexp〉 = 〈Φ+|ρ|Φ+〉 = 〈Φ+|ψexp〉〈ψexp|Φ+〉

=
1
2

(
1 +

2
√

2
3

)
≈ 97% ,

(6.4)

which is surprisingly large regarding the fact that the imbalance in the CGCs is 1:2. To
circumvent the limitation of the fidelity by different CGCs, we might think of attenuating
the stronger decay path by a factor of two, lifting the distinguishability and thus obtaining
an (ideally) maximally entangled atom-photon state. This strategy was implemented in
a later experiment where single-photon frequency conversion into the telecom band was
included.

In the present realization, we conducted two slightly different experimental sequences,
where the difference lies in the application of 866 nm light during the generation of the
854 nm photon. The reason is the generation of 850 nm photons that are collected and
mimic the detection of a 854 nm photon, resulting in an additional mixed contribution
in the final state. Switching the 866 nm laser off during the generation leaves the atom
in D3/2 after the emission of a 850 nm photon and the events are filtered out during the
fluorescence generation for the discrimination of the wrong superposition4. The results for
both sequences are presented in sec. 6.2.2.3.

6.2.2. Atom-photon state tomography

In the actual experiment, we additionally perform atomic state analysis to characterize the
entanglement process. To avoid significant decoherence, the (optional) state rotation is
performed prior to the projection for elimination of the wrong state. As before, the desired
superposition is coherently transferred into the ground-state manifold by two resonant
729 nm pulses (fig. 6.4). A π/2 radio-frequency pulse, resonant on the transition between
both ground-state sub-levels, of varying phase facilitates the measurement in the atomic
superposition bases, as it translates the superposition phase into population of both Zee-
man levels. Afterwards, the population is transferred back to D5/2. The populations of
|D5/2,−3/2〉, |D5/2,−1/2〉, |D5/2,+1/2〉, and |D5/2,+3/2〉 are then determined by a series
of four consecutive 729 nm π pulses, tuned to the respective transition from each of the
four D5/2 Zeeman sub-levels to the S1/2 ground state and with adjusted pulse areas, each
followed by fluorescence detection.

4Since both, the 397 nm and the 866 nm laser are switched on during the fluorescence generation, any popu-
lation in D3/2 results in a "bright" ion, i.e. the generation of 397 nm photons.
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Figure 6.4.: Atomic state analysis is performed by measurements of the desired superposition (| −
3/2〉,|+ 1/2〉) in the usual six atomic bases. For measurements in the superposition bases, the atomic
state is coherently transferred into the ground state and a π/2 RF pulse of variable phase is applied
before the superposition is brought back to D5/2. Decay events into the wrong superposition are
evaded by fluorescence detection after the population in these states is transferred to S1/2. If the
ion stays dark, the desired superposition is finally analyzed in the usual way.

6.2.2.1. State reconstruction

To perform quantum-state tomography, ion and photon are measured in all 9 combinations
of the Pauli operators σx, σy, and σz for photon and ion (corresponding to the projection
onto (2 · 3)2 = 36 eigenstates), where σz represents the eigenbasis (|R〉/|L〉 for the photon
and | − 3/2〉/|+ 1/2〉 for the ion) and σx/σy the superpositions of the latter. The tomogra-
phy setup for 854 nm photons is inserted into the beam path via a flip mirror and consists
of QWP, HWP, polarizer and a silicon APD. The APD 5 has a quantum efficiency of ηAPD
= 30% and a dark-count rate of γDC, APD = 117.7 counts/s. The waveplates are motor-
ized and remote-controlled via Ethernet to allow for automation of the measurement. The
atomic state analysis is conducted in the usual way, i.e. by coherently transferring popula-
tion using the quadrupole transition at 729 nm and applying an optional radio-frequency
pulse for basis rotation in the ground-state qubit, followed by fluorescence detection for
state discrimination (see Fig. 6.4). The joint atom-photon state, represented by its density
matrix, is then reconstructed from the combination of measurements in different atom-
photon bases via linear state reconstruction6 and subsequent application of the maximum-
likelihood technique.

5Perkin Elmer, SPCM-AQR-14
6From the 9 combinations of the Pauli operators σx, σy, and σz for both, ion and photon, we obtain 36 values

for the projections onto the eigenstates of the respective Pauli operators (see main text), from which we
deduce the relative frequencies used to calculate the joint-state expectation values.
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The state reconstruction is adapted from [153, 82, 156] while the MATLAB program for
the evaluation is based on a script written by Stephan Kucera [124].

We measure the atom-photon system in the 9 combinations of photonic polarization
bases |H〉/|V〉, |D〉/|A〉, |R〉/|L〉 and atomic bases, represented by the Pauli matrices ±σx,
±σy, and ±σz. Specifically this means that we obtain 36 values for the coincidence events
between photon detections in the mentioned polarization states and projection of the ion
in the respective atomic states (facilitated by fluorescence-based state detection preceded
by an optional RF basis-rotation pulse). Two exemplary measurements are shown in Fig.
6.5. Fig. 6.5 a) shows the photonic arrival-time distribution (ATD) for projection onto |L〉,
conditioned on the measurement of the atomic state in the two σz eigenbases |m = −3/2〉
(red curve) and |m = 1/2〉 (blue curve), respectively. In Fig. 6.5 b), the photon is projected
onto a linear polarization, namely onto |V〉, and its ATD is conditioned on simultaneous
projection of the atom onto the superposition bases, determined by the relative phase be-
tween basis-rotation pulse and atomic superposition phase. The latter can be understood
by keeping in mind that the absolute phase of the RF pulse, as well as the instant it is ap-
plied, is fixed, while the atomic phase starts to oscillate as soon as the photon is emitted
and the entanglement is established. The oscillation in the ATD, caused by the Larmor
precession of the atom, can then be viewed as an emission-time–dependent atomic phase,
or, from a different perspective, as measurements in different superposition bases.

(a) (b)

Figure 6.5.: Coincidences between 854 nm photon-detection events and bright events from the
atomic state analysis. (a) 854 nm photon and ion are projected onto one of the eigenbases, i.e.
the photon is projected to |R〉 and the ion to σz. Thus, no π/2 radio-frequency (RF) pulse resonant
to the |S1/2, m = −1/2〉 → |S1/2, m = +1/2〉 transition is applied. (b) Projection into one of the
superposition bases, i.e. the photon is projected to |H〉 and the ion to σx/σy, realized by the RF
π/2-pulse.

From these measurements, we evaluate the joint expectation values Si,j = 〈σi ⊗ σj〉 with
the Pauli matrices

{
1, σx, σy, σz

}
. For the atomic eigenbases (σz), the expectation values

correspond to the number of coincidences in the 300 ns time window, while for the atomic
superpositions, the expectation values are extracted from the amplitude and phase of the
Larmor fringes, obtained from a fit to the data, analogue to the method described in section
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5.2. With the Si,j we get the density matrix

ρ =
1
4

3

∑
i,j=0

Si,jσi ⊗ σj . (6.5)

To ensure that the density matrix is physical, a maximum-likelihood estimation is per-
formed afterwards with the linear reconstructed matrix as initial guess. This final density
matrix is utilized to calculate the fidelities and purities stated in section 6.2.2.3. The error
bars of the latter are derived via a finite difference-quotient method assuming a Poissonian
distribution of the detection events.

6.2.2.2. Maximum-likelihood estimation

The linear reconstruction of the density matrix may deliver states that are not physical, i.e.
states that violate the properties of positivity, Hermiticity, or normalization. These recon-
structed state are obviously not a plausible representation of the underlying physical state.
The idea behind the maximum-likelihood estimation [156] (MLE) is to find the physical
state which reproduces the measured experimental data with the highest probability. For
that purpose, we define a two-qubit density matrix $̂P(t1, ..., t16) which is physical by con-
struction, and formulate that 4× 4 matrix as a function of 16 real parameters t1, ..., t16 (see
A.4 for details), of which 15 are independent.

Assuming a Gaussian distribution of the coincidence counts, one obtains a likelihood
function which reflects the probability that the measurement result is correctly predicted
by the current density matrix. For reasons of computational speed-up, we do not maximize
the direct likelihood function, but use its (negative) logarithm

L(t1, ..., t16) =
16

∑
ν=1

(N〈ψν|$̂P(t1, ..., t16)|ψν〉 − nν)
2

2N〈ψν|$̂P(t1, ..., t16)|ψν〉
, (6.6)

which ought to be minimized in order to find the physical state that optimally reproduces
the experimental data. N = ∑4

ν=1 nν is the normalization factor that we already encoun-
tered in sec. 5.4, ψν is the vector representation of the measurement basis (i.e. |HH〉, |HV〉
and so on), and nν describes the number of coincidence counts for the measurement in the
ν-th basis. Minimization of (6.6) reveals the density matrix $̂P,opt.(t1,opt., ..., t16,opt.) of the
optimal physical state.

The current evaluation exhibits, based upon a MATLAB script written by Stephan Kucera,
slight modifications to this method, described in more detail in sec. A.4.

6.2.2.3. Experimental results

The results presented in this section are also summarized in [159]. To determine the qual-
ity of our quantum interface, we perform standard atom-photon state tomography subse-
quent to the entanglement generation, as described in the previous section. Conditioned
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on the detection (and prior polarization projection) of the 854 nm photon, the atomic state
is read out as described in section 6.2.2. For measurements in the atomic superposition
bases (σx,y), an additional RF π/2 pulse is applied to obtain an oscillatory fringe in the
conditioned photon-arrival-time distribution (see fig. 6.5 (b)) when the photon is projected
onto a linear polarization due to the Larmor precession. Knowing the oscillation period,
which is given by the Zeeman splitting, we can sum up the detection events into a phase
histogram like the one shown in fig. 6.6. From the histogram, we deduce the visibility and
the phase from a fit to the data, and hence can derive the projection of the resulting atomic
state onto the equatorial plane of the Bloch sphere.

Figure 6.6.: Atomic-state projection onto the eigenstates | − 3/2〉/|+ 1/2〉 after the application of the
π/2 radio-frequency pulse as a function of the reduced phase, calculated from the photon-arrival
time, for the photonic-state projection onto horizontal polarization. Visibility and phase, used for
the reconstruction of the projection onto the equatorial plane of the Bloch sphere, are derived from
a sinusoidal fit.

We perform this measurement for all photonic state projections (|H〉, |V〉, |D〉, |A〉, |R〉,
and |L〉) each time in the atomic eigenbases (| − 3/2〉, | + 1/2〉) and in the superposition
bases.

As mentioned earlier, we employed two slightly different implementations of this ex-
periment, which differ by the application (or lack thereof) of 866 nm laser light during the
generation of the 854 nm photon7. The difference in these two schemes lies in the gener-
ation, detection and consideration of 850 nm photons emitted in the course of the 854 nm
generation.

7From a chronological point of view, we first ran the sequence with the 866 nm laser switched on, then in-
cluded the single-photon conversion, explained later in the course of this chapter, where we experienced
a significant improvement of the entanglement fidelity, and then concluded that the 850 nm photons that
might be emitted during the generation process have a larger effect than we expected. Thus, we decided to
switch the 866 nm laser off and perform the entanglement measurement without conversion once again.
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6.2. Atom-photon entanglement at 854 nm

With the Einstein coefficients for the transitions at 854 nm and 850 nm, the ratio between
decay along these two channels is r850 = A850

A850+A854
= 10.1%, that is the probability to expe-

rience an erroneous decay is about 10%. Detection of the emitted 850 nm photon mimics
the detection of a photon at 854 nm, thus mixing the resulting state. If the 866 nm laser is
switched off during the photon generation, the ion will remain in D3/2 after the emission of
a 850 nm photon, hence we will see a fluorescence signal in the course of the elimination of
the undesired superposition states, and the events will be ignored. If, however, the 866 nm
is switched on, the ion will be transferred back to the ground-state after decay into D3/2,
re-excited and might finally end up in the "right" superposition (by emitting an undetected
854 nm photon), but with random phase and therefore results in a mixed-state contribution
to the final atomic state.

First we examine the resulting atom-photon state when the 866 nm laser is switched
on, and then repeat the measurement with the laser switched off to see if we achieve an
improvement in the state fidelity and purity.

Applying the aforementioned atom-photon–state tomography onto the joint atom-photon
state (866 nm laser switched on), we obtain the reconstructed density matrix shown in
6.7. The imbalance of the two Clebsch-Gordan coefficients is clearly visible in the different

Figure 6.7.: Reconstructed atom-photon density matrix for the atom-photon entanglement at
854 nm. The 866 nm laser was switched on during the photon generation. Shown are the mod-
uli of the matrix entries.

heights of the diagonal elements (i.e. the populations of | − 3/2, σ+〉 and |+ 1/2, σ+〉, respec-
tively). Maximum-likelihood reconstruction reveals an overlap fidelity F = 〈ψBell|ρ|ψBell〉
of 90.2(2)% with the maximally entangled target Bell state |ψBell〉 =

√
1
2 | − 3/2, σ+〉 +√

1
2 |+ 1/2, σ+〉, which, of course, is reduced by the imbalanced CGCs. It is therefore also
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of interest to know the overlap with the expected state |ψexp〉 =
√

2
3 | − 3/2, σ+〉+

√
1
3 |+

1/2, σ+〉 in order to estimate the quality of our operation. In that case, the overlap fidelity
is increased to 92.7(2)%.

Another quantity of interest is the purity P = tr(ρ2) as a measure for the depolarization
of the quantum state. In the present experiment, we obtain a state purity of (86.1 ± 1.2)%
for the sequence without switching off the 866 nm laser.

Note that the numbers presented here are obtained after subtracting the detector dark
counts as we are interested in the viability of the protocol itself rather than that of the
whole experimental setup. Including the current setup into a realistic repeater scenario,
the detector dark counts have to be included. Without the dark-count subtraction, the
fidelities become 90.2(2)% and 87.9(2)% for the overlap with the expected state and the Bell
state, respectively, and the purity reduces to (81.7 ± 1.2)%.

Switching off the 866 nm laser results in a considerable increase in the fidelities and puri-
ties. In that case, the generated state, presented in 6.8, exhibits overlap fidelities of 95.5(3)%
and 98.3(3)% for the overlap with the Bell state and the expected state, and a purity of (96.7
± 1.6)%.

Figure 6.8.: Moduli of the reconstructed density matrix for the atom-photon entanglement at
854 nm with the 866 nm laser switched off during the photon generation.

An upper bound of the fidelity for a given purity is Fmax = 1
2 (1+
√

2P− 1) = 98.3%, in-
dicating that the fidelity is solely limited by depolarization and not by undesired unitary
rotations of the state [167]. The sources for depolarization are discussed in the next section.
Without background subtraction, we achieve overlap fidelities of 93.3(3)% and 95.9(3)%
and a state purity of (92.1 ± 1.6)%.

The experimentally achieved entanglement-generation rate was determined from a total
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number of 114,200 photon-detection events in an overall measurement time of 4,123 s.
Only the signal events excluding the APD dark counts are considered for the generation
rate. The photon-detection window is 300 ns corresponding to 65% of the photonic wave-
packet. Thus we get for the detected entanglement rate after projection

γ854,det =
114, 200 events

4132 s
= 27.64 events/s . (6.7)

The generated rate is calculated to

γ854,gen =
27.6 events/s

ηPol,trans · ηPol,ab · ηAPD
= 236 events/s (6.8)

which is in very good agreement with the theoretically derived value of 238 events/s (see
6.2.1). Here we used the transmission of the polarizer ηPol,trans = 78%, the quantum effi-
ciency of the APD ηAPD = 30%, and an additional factor ηPol,ab = 50% accounting for the
fact that the photons are unpolarized (due to the entanglement), resulting in the transmis-
sion of only 50% of the photons.

From the number of S854 = 114,200 signal events and BG854 = 3,868 background events
(inside the 300 ns time window) in a total of 4,132 s measurement time, we calculate a
signal-to-background ratio of 29.5. The background originates solely from APD dark counts,
as it becomes apparent when we calculate the expected number of background events,

BG854, theo = DCAPD · 300 ns · ηMix · η850 · γrep · 4, 132 s = 3, 803 , (6.9)

being in good agreement with the experimentally determined background. DCAPD denotes
the APD dark-count rate of 117.7 photons/s, γrep is the sequence-repetition rate of 58 kHz,
ηMix accounts for the already mentioned reduction by a factor of 1/2 due to the fact that
the ion starts in a mixture in S1/2 instead of a pure state, and η850 = A854

A850+A854
= 89.9% is

derived from the branching ratio between 854 nm and (undesired) 850 nm decay.

6.2.2.4. Error budget

As stated in section 6.2.2.3, the infidelities in the present experiment are primarily traced
back to depolarization of the 854 nm photon. Depolarization is mainly caused by polarization-
dependent loss in the optics behind the ion trap and loss of atomic coherence due to
magnetic-field noise; minor contributions arise from non-perfect readout pulses. The ef-
fect of decoherence is estimated by an independent measurement of the coherence time
of the ground-state qubit and then extrapolated to our situation. From the ground-state
coherence time of approximately 800 µs (varying during the measurement due to chang-
ing conditions), derived from a Ramsey measurement, we estimate a contribution to the
infidelity of 0.5% within the 108 µs from the state generation to the RF basis-rotation pulse
(3 µs generation, 2× 50 µs for both 729 nm pulses, 5 µs RF pulse).
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6.3. Quantum frequency conversion

So far we have presented a method for the generation of atom-photon entanglement in the
near infrared spectral region at 854 nm. Though doubtlessly highly interesting from a tech-
nological and fundamental point of view, its practical applicability in a large-scale quan-
tum network is limited by the still rather large losses inside optical fibers of 1.3 dB/km
that makes the NIR wavelengths unsuitable for long-haul fiber-communication channels
(see fig. 6.9).

Figure 6.9.: Signal attenuation in standard optical fibers as a function of the photon wavelength.
The figure is adopted from [168].

Significantly lower fiber attenuations are achieved in the so-called telecom bands be-
tween 1260 nm and 1625 nm. Here two bands are of particular interest, the C band which
shows the lowest loss factor, and the telecom O band that exhibits the lowest dispersion.

However, the transition wavelengths of the ion are a fundamental property and can not
be changed (at least not by the amount that would be necessary to shift it into the telecom
range). Therefore, we have to find a way to convert the frequency of the emitted single
photon from the NIR into the telecom regime, ideally without altering its other degrees of
freedom, like polarization or the spectro-temporal properties.

An effective method to perform this task is given by the quantum frequency conversion
(QFC) which was realized and implemented by Matthias Bock and will be described in
detail in his dissertation thesis [73]. A brief description of the concept of QFC shall be
given in the next sections.

6.3.1. Theory

The theory presented in this section is a short recapitulation of the respective chapter found
in Andreas Lenhard’s dissertation thesis [80]. The QFC we employ is based on difference-
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frequency generation (DFG) [74] in a periodically-poled Lithium-niobate (PPLN) ridge
waveguide [169], where we employ the DFG process 1

854 nm - 1
2456 nm = 1

1310 nm which is
depicted in fig. 6.10.

854 nm 1310 nm

2450 nm

Figure 6.10.: "Level scheme" for the DFG process in the PPLN waveguide. A strong pump field
at 2450 nm, stemming from a home-built optical parametric oscillator, stimulates the splitting of
the higher-energy photon at 854 nm (called signal) into two photons at 1310 nm (idler) and 2450 nm
(pump).

Stimulated by a strong light field at 2450 nm, the input photon at 854 nm (signal) is split
into two photons at 1310 nm (idler) and 2450 nm (called pump). Following the description
in [80] (which itself is based on [170]), the interaction Hamilton operator for the three light
fields inside the waveguide is expressed as

Ĥ = ih̄η âs â†
p â†

i − ih̄η∗ â†
s âp âi , (6.10)

or
Ĥ = ih̄η âs A∗p â†

i − ih̄η∗ â†
s Ap âi (6.11)

if we replace the pump photons by the amplitude Ap of the classical pump field, which is
justified due to its high power. âs, âp, and âi are the annihilation operators of the three fields
involved, i.e. of the signal-, pump-, and the idler field, respectively, and η is the coupling
constant of the process. Solving the dynamics described by the "equations of motion" of
the time-dependent photon operators, derived from the Heisenberg relation

dâs,i

dt
=

i
h̄
[
Ĥ, âs,i

]
, (6.12)

yields

âs(t) = âs(0) cos(|ηAp| t)− eiΦP âi(0) sin(|ηAp| t) and (6.13)
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âi(t) = âi(0) cos(|ηAp| t) + eiΦP âs(0) sin(|ηAp| t) , (6.14)

where ΦP is the phase of the pump field. After the time τ = π/2|ηAp|, an initial Fock
state with one photon in the signal mode and zero photons in the idler mode is ideally
completely converted into the inverted state with one photon in the idler and no photon in
the signal mode.

6.3.2. Converter setup

The setup for the single-photon conversion, designed by Andreas Lenhard and Matthias
Bock and described in their respective theses [80, 73] and in [159], is shown in the right part
of fig. 6.11. The incoming photon, after passing the 99:1 beam splitter used for the stabiliza-
tion of the setup, is split according to its polarization (i.e. the horizontal and vertical com-
ponents) at the first polarizing beam splitter (PBS). Both "half" photons are separated by a
dichroic mirror and guided into the periodically-poled Lithium-niobate waveguide from
two opposite directions, where the polarization of the part transmitted at the PBS (horizon-
tally polarized) is rotated to vertical polarization using a half-wave plate (HWP) to match
the polarization of the pump light at 2456 nm. The latter is guided and focused into the
waveguide chip by a ZnSe aspherical lens. The transmitted pump light through the waveg-
uide is back-reflected and recoupled into the chip by a second aspherical lens. The pump
power, controlled via a HWP and a polarizer, is chosen such that the conversion efficiencies
are equal for both directions (see [159] for details on the optimization process). Coupling
the pump field back from the opposite direction facilitates the polarization-independent
single-photon conversion as both polarization components of the 854 nm photon, incident
from both sides into the waveguide, are converted with equal probability and are therefore
not distinguishable after the conversion. The generated 1310 nm photons are subsequently
separated by two dichroic mirrors, that also filter out the pump light, and superimposed
at a second PBS. To reconstruct the original polarization state, the polarization of the "left"
part of the photon, i.e. the part that was transmitted at the first PBS, is rotated back to hor-
izontal before it’s overlapped with the reflected path at the second PBS. Following the re-
combination, the 1310 nm photon passes a band-pass filter centered around 1300 nm (and a
width of 25 nm) and a telescope setup to mode-match the photon mode into a single-mode
fiber. A tunable fiber Bragg grating (FBG) with an FWHM (full width at half maximum)
of 25 GHz is utilized to additionally clean the telecom photons from residual background
from the conversion process.

A second 99:1 beam splitter, designed for 1310 nm, behind the second PBS, is used to
split a small fraction of the laser light sent during the stabilization period onto the optical-
pathway analysis, consisting of a quarter-wave plate (at 22.5◦), a PBS and two InGaAs
photo diodes. A change in the path length between both arms is related to a variation of the
phase between both polarization components H and V and is observed by measuring the
signal at both photo diodes. The resulting change in the contrast

(
I1−I2
I1+I2

)
of the measured
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intensities at the two photo diodes is used as the error signal for a PID lock, which is then
fed back onto a piezo actuator at the mirror right behind the first PBS.

The chopper wheel is needed to block the laser light during the conversion period to
avoid exposure of the single-photon detectors.

The strong pump field at 2456 nm, needed for the DFG process, is produced by a home-
built continuous-wave optical parametric oscillator (OPO) which is described in more de-
tail in [74, 80, 159].

The converter setup exhibits an external conversion efficiency (defined as the "fiber-to-
fiber" efficiency) of 26.5% for both polarizations, which can, compared to other QFC exper-
iments [171, 172, 70], be regarded as state of the art.

6.3.3. Polarization-independent single-photon conversion

The conversion process is characterized using a laser to perform a full process tomography
[157]. Four different input states {H, V, D, L} were prepared and the Stokes vector of the
output state for each of the input states were measured. The process matrix χ in the usual
Pauli basis is calculated from the results. In the ideal case, χ possesses only one single
non-zero entry χ11, denoting the identity operation. This entry can be identified as process
fidelity, which in our case is F = (99.75 ± 0.18)%, confirming the coherent conversion of
the polarization state. The error in F is deduced from a Poissonian distribution and arises
from power fluctuations of the input and the pump field. Details on the characterization
are found in [159].

6.4. Atom-photon entanglement in the telecom band

With all tools at hand, the next consequent step is the interconnection of ion- and converter
setups to implement a combined quantum interface for the generation of entangled atom-
photon pairs in the telecom regime. The full setup, comprising the ion, situated in our
laboratory, and the converter part, set up in the laboratory of the group of Christoph Becher
and operated by Matthias Bock, is shown in fig. 6.11.

Generation of entanglement between the atom and the NIR photon at 854 nm is em-
ployed as before (see section 6.2.1). The fiber-coupled single photons are first sent to an an-
cilla setup from where they are either guided to the state-analysis setup for 854 nm, includ-
ing the APDs (see sec. 6.2.2.3), or coupled into a 90 m long single-mode fiber (polarization-
isotropic) that connects the ion laboratory with the converter laboratory. Three wave plates
(λ/4, λ/2, λ/4) are utilized to compensate for polarization rotations occuring on the photon’s
way from the ion to the polarization-analysis setup. For that purpose, a laser beam of
known polarization is sent along the same path and the three wave plates are adjusted
such that the resulting laser polarization at the analysis setup corresponds to its original
polarization state. In addition, a fraction of the laser light at 854 nm is also sent to the same
lab for the stabilization of the converter setup. Both, the photons and the laser beam are
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Figure 6.11.: Combined full setup for generation and analysis of atom-photon entanglement at
854 nm (lower left part of the setup) and 1310 nm (right part of the setup) (from [159]). More details
on the setup are found in the main text.

passing through a non-polarizing 99:1 beam splitter, while a chopper wheel ensures that
either the laser light or the single photons are sent through the converter.

Following the polarization-independent and state-preserving conversion process, de-
scribed in the previous section, both polarization components of the single incident pho-
tons are recombined at the second PBS, pass a band-pass filter (BPS), and are coupled into
a single-mode telecom fiber. The fiber-coupled telecom photons are frequency-filtered by a
fiber Bragg grating to eliminate background from the conversion process and subsequently
guided through a polarization-tomography setup, consisting of two wave plates (λ/4 and
λ/2 as seen from the converter) and a Wollaston prism serving as a polarizer. Both output
arms of the prism are fiber-coupled again and sent to two superconducting single-photon
detectors8 (SSPD) with quantum efficiencies of 70(2)% and 62(2)%, respectively, and dark-
count rates of 58.7 1

s and 56.4 1
s .

Apart from the obvious advantages of the quantum frequency conversion, another ben-
eficial effect is the fact that we do not have to take 850 nm photons, emitted during the
generation of 854 nm photons, into consideration, as the conversion of these is strongly
suppressed and therefore a filtering comes with the process for free.

The atomic and photonic state analysis are not different for both operations, i.e. for the
entanglement generation at 854 nm or 1310 nm, and hence also the two-qubit state tomog-
raphy presented in sec. 6.2.2 can directly be applied to the case with single-photon conver-
sion implemented.

8Single Quantum
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The density matrix of the ion-photon state after photon conversion is shown in Fig. 6.12.

Figure 6.12.: Absolute values of the density-matrix entries for the atom-photon state after single-
photon conversion. The density matrix is derived by standard state tomography, described in sec.
6.2.2. The unequal transition probabilities for σ+ and σ− are manifested as different heights of the
diagonal elements.

As the typical figures of merit, we compute the overlap fidelity with the target Bell state,
FBell, the overlap fidelity with the expected state (6.3), F, and the obtained purity P =
tr(ρ2). The generated state yields F = (97.7± 0.2)%, FBell = (94.8 ± 0.2)%, and P = (95.8±
1.3)%. Excluding the background subtraction, the fidelities and the observed purity are
reduced to F = (94.8± 0.2)%, FBell = (92.2± 0.2)%, and P = (90.3± 1.2)%. The created Bell
state exhibits, within the error, the same purity as the originally generated atom-photon
state, indicating that the conversion process does not significantly alter the polarization of
the photon. The fidelity reduction of 0.6% compared to the unconverted ion-photon state
is higher than one would expect from the process fidelity9. This is attributed to power
fluctuations of the pump laser and long-term polarization drifts in the fiber connecting the
setups [159].

We achieve an entanglement-generation rate of 43.5 pairs/s (corresponding to 24.8 pro-
jected and detected photons per second), with a signal-to-background ratio of 24.3 (29.5 for
the protocol without conversion), where the background is primarily resulting from SSPD
dark counts (93.5%) and only a minor part (6.5%) is originating from conversion-induced
background photons. The comparatively small reduction in the SBR derives from the fact
that the conversion loss is partially compensated by the increased detection efficiency and

9Although one should note that, taking into account the error bars, the numbers for the purity before and
after conversion are almost in accordance.
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the decreased background of the SSPDs compared to the APDs.
A slight drawback of all above-mentioned protocols is the limitation of the maximally

achievable fidelity due to the imbalanced Clebsch-Gordan coefficients for both decay chan-
nels at the 854 nm transition. The converter setup provides a way to overcome this limita-
tion by introducing polarization-dependent loss in the conversion process, thus allowing
for a better approximation to a fully-entangled atom-photon state. For that purpose, right-
and left-hand circular polarized 854 nm photons emitted by the ion are rotated to possess
vertical and horizontal polarization at the input PBS of the converter setup in fig. 6.11 with
the help of the three rotation-compensation wave plates, such that the R and L compo-
nents of the polarization of the emitted photon correspond to both interferometer arms of
the converter setup. After being split up according to their polarization (where photons
emitted on the σ− transition take the "left" path through the waveguide and vice versa for
the part of the photon emitted on the σ+ transition) and being converted in the waveguide,
both branches are again superimposed at the second PBS. The CGC compensation occurs
at this second PBS. The half-wave plate in the left branch of the interferometer is set to ro-
tate the photon to an (anti-)diagonal polarization, such that we artificially introduce loss in
that arm and thereby compensate for the stronger σ+ transition. This happens at the cost
of one third of the photons. After the recombination of both arms, we obtain a (ideally)
maximally entangled state. Before impinging onto the polarization-projection setup, the
original polarization state is restored by a second set of λ/4, λ/2 and λ/4 wave plates (not
shown in the figure) which are adjusted accordingly.

The resulting measured density matrix is displayed in fig. 6.13. The asymmetry in the
diagonal elements is drastically reduced, indicating balanced probabilities for photon de-
tection from both transitions, and we obtain FBell = (98.2± 0.2)% and P = (96.7± 1.4)%,
or FBell = (93.4± 0.2)% and P = (87.8± 1.3)% without background subtraction. Note that
fidelity and purity in this measurement are also in accordance with the process fidelity,
which we attribute to a slightly more stable operation of the converter.

As before, the infidelity is mainly caused by depolarization of the photonic part of the
entangled atom-photon pair and by decoherence of the atom caused by magnetic-field
noise (see 6.2.2.4).

6.5. Atom-to-photon state transfer in the NIR

In section 5.3 we demonstrated the conception and realization of an experimental pro-
tocol for atom-to-photon quantum-state transfer as it could be employed in quantum-
communication schemes. Despite the technological progress that has been initiated by that
development, the protocol suffers from its unfavorable wavelength regime which renders
its practical applicability possible only for very short communication lengths. Fortunately,
a small modification of the named protocol provides the solution to the problem. Exploit-
ing the emission of 854 nm generated during the transfer process, which were previously
treated as an unwanted side effect, allows us to map the atomic state onto he polariza-
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Figure 6.13.: Moduli of the elements of the atom-photon density matrix in the telecom range after
implementing the CGC compensation described in the main text. Compared to fig. 6.12, the diag-
onal elements are clearly more balanced, resulting in a significant increase in the overlap fidelity
with the maximally entangled Bell state.

tion of a photon with a much more suitable wavelength. In addition, quantum frequency
conversion (cf. sec. 6.3) can be employed to reduce the transmission losses even more and
make the transfer protocol appropriate for long-haul quantum communication. The ex-
perimental protocol, a novel alternative scheme for the quantum-process tomography, the
experimental results, and an estimation of the error budget are presented in the following
sections.

6.5.1. Experimental sequence

The experimental sequence is depicted in fig. 6.14. To characterize the state-transfer quan-
tum process, we prepare a set of four different atomic input states, two eigenstates

|S1/2,−1/2〉 and |S1/2,+1/2〉 , and the two superpositions
|S1/2,−1/2〉+ |S1/2,+1/2〉√

2
and
|S1/2,−1/2〉+ i |S1/2,+1/2〉√

2
.

The preparation of atomic input states starts with optical pumping. Depending on the
desired state, the ion is either pumped into |S1/2,−1/2〉, as shown in fig. 6.14 a) (for the
preparation of | − 1/2〉 and the two superpositions), or into |S1/2,+1/2〉 by adjusting the
pump frequencies accordingly.

Once the pumping, lasting for 50 µs, is accomplished, an optional RF π
2 pulse of vari-

able phase and a pulse length of 5 µs is applied for the generation of the superposition
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Figure 6.14.: Experimental sequence for the atom-photon state transfer protocol. (a) The sequence
starts with optical pumping of the ion into the pure state |S1/2,−1/2〉. (b) The state to be mapped
into the photon is generated by a coherent RF π

2 pulse with variable phase φ (in the case of an initial
superposition) or encoded into one of the eigenstates |S1/2,±1/2〉 by optical pumping (see (a)), and
is subsequently coherently transferred into the D5/2-manifold sub-levels | ± 3/2〉. In an implemen-
tation of the protocol into a real quantum network, the steps (a) and (b) would be skipped as the
states would already be stored in the ion. (c) Applying a horizontally polarized 854 nm laser pulse
under 90◦ to the quantization axis excites the ion to the P3/2 state along the π transition, from where
it decays into the outermost D5/2 sub-states, generating an entangled atom-photon pair. Decay into
S1/2 (being most likely) is eliminated by fluorescence detection adjacent to the generation ((d)).
(e) Atomic-state projection onto an atomic superposition is carried out by coherently transferring
the atomic state back to S1/2 and applying an RF π

2 pulse with a fixed phase φ0, followed by two
state-shelving pulses and two fluorescence detections ((f) and (g)).

states. Two consecutive resonant 729 nm pulses of 10 µs length coherently transfer the
population in the ground state into the respective state in the |D5/2,±3/2〉 sub-space. A
horizontally-polarized laser pulse at 854 nm (3 µs), incident under 90◦ to the quantization
axis, excites the ion to the short-lived P3/2 manifold. Direction and polarization of the
854 nm ensures excitation solely along the π transitions |D5/2,−3/2〉 → |P3/2,−3/2〉 and
|D5/2,+3/2〉 → |P3/2,+3/2〉. Upon absorption of a laser photon, the ion decays into the
outermost D5/2 levels under emission of a single photon at 854 nm. Due to the coupling
of photon polarization and atomic transition, the decay results in the generation of an en-
tangled atom-photon state, where the complex population amplitudes of the initial atomic
state enter into the entangled state.

Decay occurring on the P3/2 → S1/2 transition is detected by fluorescence generation
for 20 µs that discriminates these events with 99% probability. If a fluorescence photon is
detected, the data is discarded and the sequence is restarted. Decay into one of the inner
D5/2 sub-levels is eliminated in a later stage by projection of the atom onto one of the states
| ± 5/2〉.

To map the initial atomic state onto the polarization state of the 854 nm photon, it is nec-
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essary to project the atom onto a symmetric superposition state to erase the information on
the initial qubit from the atomic sub-system and fully transfer the state onto the photonic
part. This is realized by coherently transferring the atomic state back into S1/2 assisted by
two 729 nm pulses (2× 10 µs) and applying an RF basis-rotation π

2 pulse. State projection
is conducted by shelving of the | − 1/2〉 population into the D5/2 manifold and subsequent
fluorescence generation (50 µs). If the ion stays dark during the fluorescence detection, the
population is transferred back from D5/2 into the ground state and another fluorescence
detection takes place. If the ion stays dark during both read-outs, the data is discarded
and the sequence is restarted, thus eliminating unwanted decay into the inner D5/2 sub-
levels. If the ion becomes bright in one of the two fluorescence detections, the state has
successfully been projected and the initial atomic state is mapped onto the photon.

In the actual sequence, two additional shelving pulses, |S1/2,−1/2〉 → |D5/2,−5/2〉 and
|S1/2,+1/2〉 → |D5/2,+5/2〉 and another fluorescence detection (where the sequence is only
continued if the ion stays dark), are included after step (e) in fig. 6.14 to be more robust
against imperfect 729 nm pulses. State discrimination is then conducted by consecutively
transferring the population of | ± 5/2〉 back to the ground state and analyze the population
by fluorescence detection.

Following the pulse sequence, the ion is Doppler cooled for 10 µs before the sequence
is restarted. During Doppler cooling, 854 nm laser light is applied to repump remaining
population in D5/2 back to S1/2. The cooling can be reduced to the rather short duration
of 10 µs since the probability for two consecutive fluorescence generations (i.e. for two
consecutive photon-detection events) is small and the effective cooling time is much larger
than the 10 µs. In sum, conditioning the state-analysis process on the detection of an 854 nm
photon, we achieve an overall sequence-repetition rate of 8.3 kHz including the analysis
pulses and fluorescence detections.

6.5.2. Quantum-process tomography

In this section, we will explore an alternative approach for the evaluation of a quantum
process (i.e. the state-mapping process in the case of this experiment), which has originally
been proposed in [157], in addition to the usual quantum-process–matrix formulation. The
numerical implementation in the form of the underlying MATLAB script has been written
by Stephan Kucera. One should note that both formulations are fully equivalent, as it will
be briefly depicted in this section and is shown in detail in [157], and we will apply both
for the characterization of the state mapping.

Generally speaking, a quantum process ε can be describes by its action onto an input
state~λ, obeying to the prescription~λ ε→ ~λ′ = M~λ +~c. Here, M is a 3× 3 matrix describing
the rotation and compression of the three-dimensional input-state Bloch vector, leading to
the resulting state ~λ′, and ~c corresponds to a translation in the state space. Compression
of the output-state vector ~λ′ with respect to the input state ~λ corresponds to decoherence
introduced by the quantum process ε and is reflected in the singular values si of M.
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A MATLAB script is used to find the best-matching values of M and ~c to describe the
transformation from a set of prepared input states into a set of measured output states.
Due to the Larmor precession of the initial atomic superposition (given that the atom is
not prepared in one of the energy eigenstates), the atomic phase oscillates with time and
allows for the scanning of different input states. As before, the photon-arrival time is trans-
lated into the phase of the input state, and the probability for projection of the photon state
onto the two possible outcomes for the different photonic measurement bases (H/V, D/A,
and R/L) is derived from the detection events via Bayesian estimation. Starting from an
initial guess for M and ~c, the script runs an iterative optimization algorithm to find the
photonic output states that best reproduces the measured results for a set of known atomic
input states, which are assumed to be ideally prepared. For each iteration, the program
examines if the step produces a physical state and if an improvement regarding the proba-
bility to reproduce the measured results has been achieved. If both conditions are fulfilled,
the new state is adopted, otherwise it is revoked10. As mentioned before, the method is
also described in Stephan Kucera’s thesis [124] and summarized in more detail in Philipp
Müller’s dissertation thesis [81].

In the experimental implementation, we prepare the ion in both energy eigenstates |D5/2,±3/2〉,
and in the (temporally oscillating) superposition | − 3/2〉+ eiϕ(t)|+ 3/2〉 between these two
states. Despite not necessarily required, we also include the measurement for the super-
position | − 3/2〉+ eiϕ(t)ei π

2 |+ 3/2〉with an additional phase of π
2 into the measurement as a

proof of principle to demonstrate the possibility to purposefully imprint a phase onto the
mapped photonic state.

We infer the mean overlap fidelity of atomic input and photonic output state (not tak-
ing into account a known state rotation, which can easily be compensated for) from the
singular values of M according to

F̄ =
s̄ + 1

2
, (6.15)

where s̄ = ∑3
i=1 si denotes the mean of the singular values si.

After some maths, we find the relation between M and~c and the quantum-process ma-
trix χ [81]:

ci = 4R(χ1i) , (6.16)

Mij = (2χ11 − 1) δij + 2R(χij)− 2
3

∑
k=1

εijkI(χ1k) . (6.17)

Here, εijk is the Levi-Civita symbol, δij is the Kronecker delta, and R(...) and I(...) denote
the real and imaginary parts. χmn describe the components of the quantum-process matrix

10Though there is a certain probability defined within the script that a new state is adopted nonetheless,
even if it shows no improvement towards the previous state. This has been implemented to prevent the
optimization to be trapped in a local extremum.

118



6.5. Atom-to-photon state transfer in the NIR

χ defined by

ρout =
4

∑
m,n=1

χmnσ̂mρinσ̂†
n , (6.18)

with the Pauli matrices σ̂2,3,4 and σ1 = 1.
The characterization methods presented here will be applied to the experimental results
shown in the next section.

6.5.3. Experimental results

We benchmark the state-mapping process by preparing four atomic input states (two eigen-
states and two superposition states with initial phases 0◦ and 90◦). For each input state,
we perform full state tomography on the mapped photonic polarization state to deduce the
Matrix M, extracting the rotation and deformation (compression) of the input state, and the
translation of that state in the Bloch-sphere representation given by the three-dimensional
vector~c.

Due to the Larmor precession of the superposition states, the instant of the photon emis-
sion determines the additional time-dependent phase of the transferred state, i.e. an addi-
tional polarization rotation. This is reflected in an oscillation of the conditioned photon-
arrival-time distribution, similar to the wave-packet shown in section 6.2.2.1, when the
photon is projected onto a linear polarization. Summing the photon detections into events
with equal (reduced) phase, we obtain the histogram shown in fig. 6.15. As expected, the

Figure 6.15.: Conditioned photon-detection histogram for projection of the 854 nm photon onto the
linear bases D and A and projection of the atom onto a fixed superposition state for different atomic
input states. (a) Initializing the atom in the superposition state with a starting phase of 0◦. (b)
Starting phase set to 90◦. The oscillation occurs due to the Larmor precession of the atomic super-
position state. The phase shift of the mapped photonic state caused by the different initial atomic
superposition phases is nicely visible.

initial superposition phase is directly mapped onto polarization phase of the photon, prov-
ing our ability of state transfer. Additionally, the photon is measured in the circular bases
for full state tomography.
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In the experimental realization, we achieve a sequence-repetition rate of 8.33 kHz. Caused
by the branching ratios between the decay along the 854 nm, 850 nm and 393 nm transition,
an excitation cycle results in a probability η854 of 5.87% for the emission of a single 854 nm
photon. Further reduction of the 854 nm-photon–emission probability on the desired de-
cay path of ηCGC = 2/3 occurs due to the Clebsch-Gordan coefficients that cause decay
into other but the outermost D5/2 Zeeman sub-levels which will be projected out in a later
step. Additional photon-loss contributions are the collection efficiency ηHALO of the HALO
of 6%, the single-mode–fiber coupling ηFC of 40% and a transmission efficiency ηtrans from
the ion to the detection setup, which has been estimated to be 80% for the 854 nm state
transfer, as well as a factor ηPhot of about 65% that accounts for the fact that we only use
200 ns of the photon wave-packet. With the (average) quantum efficiencies ηAPD of 30%
for the APDs, we expect an overall detection efficiency of η(854 nm) = η854 · ηCGC · ηPhot ·
ηHALO · ηFC · ηtrans · ηAPD ≈ 0.15% for the atom-to-photon state transfer. In the actual exper-
iment, we obtain a total of 48616 signal events (i.e. detected photons after correcting for the
background) in 3 · 108 experimental runs, corresponding to a transfer efficiency of 0.16%,
being slightly higher than our estimated value, which we attribute to higher-than-expected
overall transmission efficiency. With the repetition rate of 8.33 kHz, we get a state-transfer
success rate of 1.35 detected successful mapping events per second. From the experimen-
tal results, we extract 485 background events in the measured 854 nm photon wave-packet,
yielding a signal-to-background ratio of SBR854 = 48616/485 = 100(5).

Performing the state-transfer tomography presented in the previous section, we obtain
M and~c using the MATLAB script described in [124], which is depicted in a Bloch/Poincaré-
sphere representation in fig. 6.16 (a). The plot represents the rotation, damping and trans-
lation of the input states after the mapping process. From the singular values s1 = 0.983,
s2 = 0.919, and s3 = 0.881, we calculate the mean overlap fidelity of the mapped state with
the ideal state following eq. (6.15) as F̄ = (96.4± 1.0)%. From M and~c we infer the process
matrix χ shown in fig. 6.16 (b). The identity component χ11, defined as the process fidelity,
is 94.5%. From the connection between χ11 and F̄, given by eq. 5.10, we expect a mean
fidelity of 96.4%, which is in good agreement with the result obtained from the singular
values of M. Furthermore we estimate the mean purity P̄ of the mapped state from Fmax =
1
2 (1+
√

2P− 1) as P̄ ≥ (2F−1)2+1
2 ≈ (93.1± 1.9)%.

The results presented here were obtained after correcting for detector dark counts as
we want to evaluate the viability of the quantum interface independent of the detection
setup. Including the background into the evaluation, we obtain F̄ = (94.9± 1.2)%, P̄ ≥
(90.3± 2.1)%, and χ11 = 93.8%.

As the error estimation proves to be rather tricky, we employ an additional approach for
the determination of the mean mapped-state overlap fidelity. In particular, we reconstruct
the mapped photonic state for each fixed and known atomic input state and calculate the
overlap fidelities between the respective input and output states. From that, we obtain a
mean overlap fidelity including the error interval from the standard deviation.

Using this method, we get a mean overlap fidelity of 〈F〉 = (97.2± 1.7)%, corresponding
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Figure 6.16.: (a) Visualization of the combined effect of M and~c, describing the state-mapping pro-
cess, onto the photonic output state. The plot shows the rotation, translation and compression
(decoherence) of the mapped states with respect to the atomic input states which we assume to
be pure. (b) Quantum-process–matrix representation of the mapping process from the atomic in-
put state onto the polarization state of the emitted 854 nm photon. The unity component χ11 is
identified as the process fidelity.

to a mean state purity of P̄ ≥ (94.6 ± 3.2)%, which is, withing the error bars, in good
agreement with the previously determined numbers. Reverse calculation of the process
fidelity χ11, using

χ11 =
3〈F〉 − 1

2
, (6.19)

exhibits a value of χ11 = (95.8± 2.6)%, where the error is derived from error propagation.
Without background correction, we get 〈F〉 = (96.9± 1.6)%, P̄ ≥ (89.5± 4.5)%, and χ11 =
(95.4± 2.4)%.

Directly calculating the mean purity 〈P〉 = 〈tr(ρ2)〉 for the different input states, we
obtain 〈P〉 = (90.6± 4.7)%, which at first glance appears too low to explain the observed
mean fidelity. However, taking the rather large error margin into account, the numbers are
in accordance again.

6.5.4. Error budget

To identify potential for further improvement of the interface, an estimation of the error
sources and their influence onto the quantum process has to me made. In this experiment,
the infidelities are attributed to three main contributions:

(i) polarization-dependent losses on the photonic beam path from the emitting ion to
the detection/projection setup,
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(ii) magnetic-field noise that leads to decoherence of the atomic Zeeman qubit, and

(iii) atomic back-decay and re-excitation into and from the initial sub-levels in D5/2,

which shall be discussed in the following.
(i) The effect of depolarization has already been discussed in 6.2.2.4. Polarization-dependent
losses bias the atom-photon state towards one of the polarization eigenaxes, allowing an
observer to extract the photon state to a certain degree, reducing the overlap with the max-
imally entangled state. Since the potentially polarizing elements are the same for both ex-
periments, we can estimate the same amount of reduction of 1.8% of the Bell-state overlap
fidelity. Including the QFC process, the depolarization is comparable to the one presented
in in 6.2.2.4, resulting in a fidelity reduction of 1.3%.
(ii) The atomic coherence time is derived from a set of Ramsey-type measurements on the
ground-state RF transition. From the ground-state coherence time, 800 µs, we calculate
the effective coherence time for the involved superpositions11 as 400 µs. For the overall
mapping-process duration of 53 µs, this corresponds to an expected fidelity reduction of
0.9%.
(iii) The contribution of the back-decay is estimated by a rate-equation model. Assuming
we start from the coherent atomic superposition α|D5/2,−3/2〉+ β|D5/2,+3/2〉, which we
denote as |i〉c. α and β are the (complex and normalized) amplitudes describing the state.
Excitation along the π transition into |P3/2,±3/2〉 results in decay along one of three pos-
sible paths (where we subsume decay into any other D5/2 sub-level than the outermost,
which primarily occurs into | ± 3/2〉, as one path to obtain an upper bound for the deco-
herence): 1) Decay into the "garbage" state S1/2 (and less likely also into D3/2), where the
ion is decoupled from the driving field. We call that state | f 〉g. These events represent
the majority of decay processes and are eliminated in a later state-discrimination phase.
2) The (desired) decay into | ± 5/2〉, generating entanglement between the polarization
state of the emitted 854 nm photon and the coherent atomic state | f 〉c = α′|D5/2,−5/2〉+
β′|D5/2,+5/2〉. 3) Adverse effects appear when the ion decays back to its initial state, i.e.
| ± 3/2〉, or, to a smaller degree, into | ± 1/2〉. This causes an incoherent contribution to the
initial superposition, |i〉i. Upon re-excitation, the ion again undergoes decay along one of
the three channels. As the ion now starts from an incoherent state, decay to | ± 5/2〉 conse-
quently transfers the atom into an incoherent final state | f 〉i. Repeated decay to |i〉i leads to
re-excitation followed by subsequent decay, and so on. The probabilities for the three pro-
cesses are determined by the branching ratio between the transitions at 393 nm and 854 nm
and the respective CGCs of the individual sub-transitions within one transition.

To find a quantitative solution for the temporal dynamics of the system, i.e. the amount
of decoherence caused by transfer of the incoherent initial part into the final state versus
the percentage of the photon wave-packet that is taken into consideration, we formulate
the problem in terms of rate equations for the five initial and final states |i〉c, |i〉i, | f 〉c, | f 〉i,
and | f 〉g.

11The coherence time for the eigenstates is not of relevance as they do not decohere from magnetic-field noise.
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Taking that the driving field excites the ion to the short-lived upper state with rate R,
and the total decay rate of said excited state is Γ. Γ consists of three rates, Γg, describing
the decay into S1/2, Γ f for the decay into | f 〉c and | f 〉i, and Γi, representing the decay back
into the initial starting levels. If we assume that p(|•〉•) describes the populations of the
respective states, the formulation of the corresponding rate equations is fairly instructive:

d
dt

p(|i〉c) = −Rp(|i〉c) (6.20)

d
dt

p(|i〉i) = R
Γi

Γ
p(|i〉c) + R

Γi

Γ
p(|i〉i)− Rp(|i〉i) (6.21)

d
dt

p(| f 〉c) = R
Γ f

Γ
p(|i〉c) (6.22)

d
dt

p(| f 〉i) = R
Γ f

Γ
p(|i〉i) (6.23)

d
dt

p(| f 〉g) = R
Γg

Γ
p(|i〉c) + R

Γg

Γ
p(|i〉i) . (6.24)

Initially starting from a fully coherent state, i.e. p(|i〉c)(t = 0) = 1, the equations (6.20)-
(6.24) yield the solutions

p(|i〉c) = e−Rt (6.25)

p(|i〉i) = e−R(1−Γi/Γ)t − e−Rt (6.26)

p(| f 〉c) =
Γ f

Γ

(
1− e−Rt

)
(6.27)

p(| f 〉i) =
Γ f

Γ (1− Γi/Γ)

(
e−Rt

(
1− Γi

Γ

)
+

Γi

Γ
− e−R(1−Γi/Γ)t

)
(6.28)

p(| f 〉g) =
Γg

Γ (1− Γi/Γ)

(
1− e−R(1−Γi/Γ)t

)
. (6.29)

Fig. 6.17 displays the solutions for the relevant populations p(| f 〉c), p(| f 〉i), and p(|i〉) =
p(|i〉c) + p(|i〉i), where we inserted the experimental parameters Γg/Γ = 0.9413, Γi/Γ =
0.0196, Γc/Γ = 0.0391, and R ≈ 1/200 ns = 5 MHz12. We see that after 1/e of the photonic
wave-packet, the percentage of the incoherent part to the entire final state (i.e. |D5/2,±5/2〉)
is 0.8%, corresponding to a reduction of 0.4% in the expected mapped-state overlap fidelity.

In total, we obtain an expected mapped-state fidelity of 100%− 1.8%− 0.4%− 0.9% =
96.9%, which nicely agrees with the experimentally observed values.

12The precise value is not too important for this calculation as we interested in the decoherence for a certain
fraction of the photonic wave-packet.

123



6. Experiments for quantum-repeater applications

(a)

(b)

Figure 6.17.: Coherent (blue) and incoherent (green, caused by back-decay and re-excitation) contri-
bution to the final atomic superposition | f 〉c = α′|D5/2,−5/2〉+ β′|D5/2,+5/2〉 (see main text) after
the state-mapping process. Also shown is the population of the initial (coherent) superposition state
(black), which is exponentially depleted due to the exciting laser. After 1/e of the photonic wave-
packet (corresponding to a decrease of 1/e in the initial-state population), we expect an incoherent
percentage of 0.8% to the final state.
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7. Prospect: Towards local atomic two-qubit
gates

The combination of our universal quantum interface for the generation of atom-photon
entanglement and the bi-directional atom-to-photon and photon-to-atom quantum-state
transfer with the possibility of polarization-state preserving quantum frequency conver-
sion facilitates the distribution of quantum information or quantum entanglement over
some kilometers of distance with reasonably low losses. However, this is only one building
block for the implementation of a quantum-memory–based quantum-repeater network.

The realization of the memory-based quantum repeaters additionally requires local (de-
) entangling two-atom gates to perform the atomic Bell-state measurements needed for
the entanglement-swapping process. Our approach for these gates lies in the Mølmer-
Sørensen (MS) gate, operating on the motional sideband transitions of the trapped ions.
The theory concerning the MS gate, the experimental implementation, and the discussion
of experimental challenges are the topic of section 7.2.

On top of the entangling two-qubit gate, we need the ability for single-ion addressing to
selectively perform single-qubit rotations on the individual atoms for practical reasons. For
that purpose, an addressing beam at 729 nm was set up. Focusing that beam through the
HALO allows us to reach spot sizes below the inter-ion distance, thus enabling us to drive
one ion while the other one stays nearly unaltered. The simple approach for an addressed
single-ion rotation is presented in section 7.1.1, where the addressing beam is directly used
for resonant state manipulations. However, this approach exhibits some drawbacks, as
it requires interferometric stability between the addressing beam and the global 729 nm
beam under 45◦, which is, though not impossible, technically demanding.

Therefore, we developed an alternative ansatz to circumvent the necessity for interfero-
metric stability by operating the addressing beam off-resonantly to the atomic transition,
introducing a single-atom phase shift, which can then be used to effectively perform a
rotating pulse on one ion while the other ion returns into its initial state after the pulse
sequence. This technique is discussed in section 7.1.2.

7.1. Single-ion addressing and single-qubit gates

Characterization of the two-ion entangling gate requires local operations on the individual
atoms to perform joint atom-atom-state measurements in different two-atom bases. For
that purpose, an additional 729 nm beam, directed onto the ion through the HALO (0◦),
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7. Prospect: Towards local atomic two-qubit gates

was set up (cf. fig. 2.5). The achieved focal spot size owing to the HALO of about 2 µm lies
below the typical inter-ion distance of 5 µm, thus allowing for the separate addressing of
the ions. Switching between the ions is facilitated by an acousto-optic deflector1 (AOD), set
up in single-pass configuration in the beam line and tilted by 22.5◦ to match the orientation
of the trap axis. Depending on the applied RF frequency, the beam is deflected under
a different angle. Choosing the appropriate frequencies thus switches between the two
(or more) ions. The additional frequency offset due to the addressing is compensated by
applying the opposite frequency difference onto the "detuning" AOM in the beam path (not
shown in the picture), which is used to match the laser frequency to the atomic transition
frequency (or set a detuning to the transition).

In the following two sections, two approaches for the single-ion addressing are pre-
sented.

7.1.1. Addressed single-qubit σx rotations

The intuitive method for single-ion addressing is the direct manipulation of an individual
ion while leaving the other ion nearly unaffected. This method brings some drawbacks
that will be discussed in the next section. However, they pose a good option for testing the
addressing itself and the resolution power of our optical setup, i.e. by which amount the
state of the non-addressed ion is unintentionally disturbed during the process.

We first trap a single ion and perform a usual frequency scan to deduce the atomic res-
onance. In the second step, we trap a second ion and run a frequency scan of the AOD
frequency for fixed laser power (the frequency shift being compensated by the additional
detuning AOM), effectively corresponding to a scan of the beam focus along the trap axis.

The experimental result for that scan is shown in fig. 7.1. From the slightly different
height and shape of the curves, we see that the alignment was still not optimal (we suspect
that the tilting angle of the AOD did not perfectly match the tilting of the trap), but the
results still exhibit a rather good suppression of unwanted excitation of the unaddressed
ion. Also it has to be mentioned that the AOD was not fully symmetrized, that is the power
was slightly higher for lower frequencies. The D5/2-population ratios are (77.1±0.5)% (ion
1) to (1.99±0.05)% (ion 2) for the excitation of ion 1 and (67.5±0.5)% (ion 2) to (0.60±0.01)%
(ion 1) for the excitation of ion 2.

One approach to reduce erroneous excitation of the wrong ion further is to switch the
beam to the other ion after a pulse of desired pulse area on the target ion and apply a
second pulse with a shifted phase by 180◦ and rotate the undesired population back to 0. If
ε1,2 are the unwanted-coupling parameter (i.e. the D5/2 population of the other ion after a π

pulse on the target ion, assuming both ions initially start in S1/2), the population mismatch
on the target ion after both pulses only scales with ε1ε2 and is therefore negligible in most
experimental situations.

1Gooch & Housego, R46080-3-LTD
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7.1. Single-ion addressing and single-qubit gates

Figure 7.1.: Frequency scan of the acousto-optical deflector for fixed power and pulse length and a
string of two trapped ions, oriented along the trap axis. The deflection angle of the AOD changes
with the applied RF frequency, allowing for scanning of the spatial orientation of the laser beam
after passing the AOD. Choosing the AOD frequency accordingly allows for the individual ad-
dressing of single ions. The dark/bright decisions are extracted from the camera picture used to
distinguish between both ions. The dashed-dotted lines are Gaussian fits to the data.

7.1.2. Addressed single-qubit σz,σx rotations

The addressing methods presented in the previous section, though being elegant, possess
one fundamental disadvantage. The resonant coupling imprints the laser phase onto the
atomic state. Working with more than one 729 nm laser beam, as it is the case in the present
experiments, reveals the necessity for phase stabilization between these beams at the po-
sition of the ion, which proves to be experimentally demanding. Instead, we pursue a
different solution to this problem by using only the global beam (i.e. the beam that simul-
taneously drives both ions) under 45◦ to the HALO and quantization axis on resonance
and realize single-ion manipulations by local off-resonant single-ion pulses using the 0◦

beam. These off-resonant pulses induce a phase shift which are then utilized to obtain the
desired rotations.

For example, if we want to perform a π pulse on ion 1 while leaving ion 2 in its original
state, we first apply a global π

2 pulse on both ions, then a local off-resonant pulse on ion
2, whose detuning, power and duration are chosen such that the resulting phase shift is
exactly 180◦ with respect to ion 1, and subsequently apply a second π

2 pulse on both ions.
Ion 1 will then undergo a full π pulse. Ion 2, however, will be rotated back to its initial
state due to its acquired phase shift to the driving field, effectively corresponding to a
usual π pulse on ion 1 and no rotation on ion 2, but not requiring phase stability between
the different 729 nm beams.

The experimental realization of that sequence, starting with both ions in the ground
state, is presented in fig. 7.2. We see that ion 1 is fully flipped (D5/2 population: pD5/2 =
(97.2 ± 0.3)%) when ion 2 returns into its initial state (D5/2 population: pD5/2 = (4.5 ±
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7. Prospect: Towards local atomic two-qubit gates

Figure 7.2.: D5/2 population of ion 1 (blue) and ion 2 (green) after a sequence of two resonant global
π
2 pulses, enclosing a local single-ion σz phase-rotation pulse. Detuning, power and duration of the
σz pulse are adjusted to induce a 180◦ phase shift on ion 2.

0.3)%).
To make sure that the observed effect actually stems from the single-ion σz gate, we

run two additional measurements. First we switch off the single-ion phase-rotation pulse,
resulting in the data illustrated in fig. 7.3 (a). To verify that we do not transfer population
with the local σz pulse, we perform another measurement where the second global π

2 pulse
is skipped, which should result in half the population being in D5/2 for both ions if the local
pulse does not affect the population, but only the phase. Indeed, this is what we observe,
as presented in fig. 7.3 (b).

These methods can be employed in future experiments to fully characterize the action of
the Mølmer-Sørensen gate using standard two-qubit state tomography.

7.2. The Mølmer-Sørensen gate

A fully comprehensive quantum repeater or quantum network requires the implementa-
tion of local entangling and de-entangling multi-qubit gates. A versatile protocol to meet
these requisites is provided by the so-called Mølmer-Sørensen gate [173, 174], named after
Klaus Mølmer and Anders Sørensen, who proposed a robust entangling two-qubit gate
which is, within certain restrictions, independent of the joint motional state. The MS gate
is widely incorporated by many groups in the ion-trapping community [175, 176, 177, 178,
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(a) (b)

Figure 7.3.: (a) Same measurement as in fig. 7.2, but switching off the local σz gate. (b) Switching
on the local phase-rotation pulse, but skipping the second global π

2 pulse. Details are found in the
main text.

179] and is built upon the simultaneous off-resonant excitation of two motional-sideband
transitions, thus coupling the electronic atom-states with their collective states of motion.

Section 7.2.1 treats the theory behind the Mølmer-Sørensen gate. A numerical simulation
is presented in section 7.2.2, followed by the derivation of the experimental parameters in
section 7.2.3. Finally, the experimental results are shown in section 7.2.4 and experimental
error sources and imperfections are discussed.

7.2.1. Theory

The theory behind the Mølmer-Sørensen gate was first developed by its namesakes Klaus
Mølmer and Anders Sørensen, published in two consecutive articles [173] and [174], and
is also nicely elaborated in [176] and [180], which are the primary sources this section is
based upon.

The principle of the entangling gate relies on the coupling of two (or more) ions via their
joint state of motion in the ion trap, driven by a bi-chromatic laser field tuned close to the
motional-sideband transitions between a ground state |g〉 and a (meta-stable) excited state
|e〉. The key element is the irradiation of the ion chain by light that can not be absorbed
by the individual ions, but requires mutual excitation of two ions from |g〉 to |e〉, which
corresponds to an effective two-photon transition.

The energy of the isolated i-ions system is given by the energy of the collective center-
of-mass motion of vibration frequency ν2 and the internal electronic energy, described by

2Note that the vibrational frequency, despite denoted by the letter ν, is not a technical, but an angular fre-
quency.
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the Hamiltonian

Ĥ0 = h̄ν

(
â† â +

1
2

)
+

h̄ωeg

2 ∑
i

σ̂zi , (7.1)

where â† and â are the generation and annihilation operators of motional quanta, ωeg de-
notes the resonance frequency between the states |g〉 to |e〉, and σ̂zi describe the Pauli ma-
trices on ion i.

The ions are exposed to a bichromatic light field with frequencies ωj (j = 1, 2), tuned
close to the motional-sideband transitions as depicted in fig. 7.4. Assuming equal interac-

|gg , n〉

|ee, n〉

|eg , n〉 |ge, n〉
|eg , n − 1〉 |ge, n − 1〉

|eg , n + 1〉 |ge, n + 1〉

ωeg

ωeg

−ν
+ν

δ

δ

ω1

ω2

ω1

ω2

ω2

ω1

ω2

ω1

Figure 7.4.: Depiction of the transition paths in a Mølmer-Sørensen-type entangling two-ion gate.
Choosing detuning, coupling strength and pulse duration appropriately, interference between the
individual paths leads to decoupling from the motional state and ideally leaves the ions in an en-
tangled state between the joint states |gg〉 and |ee〉 (see main text).

tion strengths Ω1 = Ω2 = Ω for both frequency components, the field induces the interac-
tion Hamiltonian

Ĥint = ∑
i,j

h̄Ω
2

(
σ̂
(i)
+ (t)ei(η(â†(t)+â(t))−ωjt) + H.c.

)
(7.2)

with the Lamb-Dicke parameter η for the two-ion axial COM mode. The time-dependent
Pauli operator σ̂

(i)
+ (t) on ion i is defined by

σ̂
(i)
± (t) = (σ̂

(i)
x (t)± iσ̂(i)

y (t))/2 = (σ̂
(i)
x ± iσ̂(i)

y )e±iωegt/2 (7.3)

and consequently
(

σ̂
(i)
+ (t)

)†
= σ̂

(i)
− (t). Its action onto a two-ion state is described by

σ̂
(1)
+ |g•〉 = |e•〉 , σ̂

(1)
− |e•〉 = |g•〉 , (7.4)
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σ̂
(2)
+ | • g〉 = | • e〉 , σ̂

(2)
− | • e〉 = | • g〉 . (7.5)

Analogously, the time-dependent vibrational generation and annihilation operators are
written as

â†(t) = â†eiνt , â(t) = âe−iνt . (7.6)

Using the Taylor expansion

e±i(η(â†(t)+â(t))) ≈ 1± iη
(

â†(t) + â(t)
)
= 1± iη

(
â†eiνt + âe−iνt

)
, (7.7)

(7.2) becomes

Ĥint ≈∑
i,j

h̄Ω
2

(
σ̂
(i)
+ ei(ωeg−ωj)t

(
1 + iη(â†eiνt + âe−iνt)

)
+ H.c.

)
. (7.8)

With ωeg − ω1 = ν + δ (cf. fig. 7.4) and ωeg − ω2 = −(ν + δ), applying the rotating-wave
approximation (RWA) to omit all terms except those in eiδt yields3

Ĥint ≈
η

2 ∑
i

Ω
(

ieiδtσ̂
(i)
+ â + ie−iδtσ̂

(i)
+ â† + H.c.

)
. (7.9)

This Hamiltonian is used to determine the system dynamics (as explicated in sec. A.5).
From (7.9), we deduce the evolution of different initial states under the influence of the

Mølmer-Sørensen gate for an interaction time T as

|gg〉 → cos
(

Ω̃T
2

)
|gg〉+ i sin

(
Ω̃T

2

)
|ee〉 (7.10)

|ee〉 → cos
(

Ω̃T
2

)
|ee〉+ i sin

(
Ω̃T

2

)
|gg〉 (7.11)

|ge〉 → cos
(

Ω̃T
2

)
|ge〉 − i sin

(
Ω̃T

2

)
|eg〉 (7.12)

|eg〉 → cos
(

Ω̃T
2

)
|eg〉 − i sin

(
Ω̃T

2

)
|ge〉 (7.13)

with Ω̃ = (ηΩ)2

2δ (see also [174]).
It has to be noted that the results obtained above do not depend on the mean motional

quantum number n, showing that the Mølmer-Sørensen gate works even if no ground-state
cooling is implemented.

3A treatment including light shifts and a possible offset of the laser carrier frequency to the atomic resonance
is given in A.5.
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7.2.2. Numerical simulations

Being able to predict the outcome of a measurement in advance bears the advantage that
potential discrepancies between measured and expected results can be recognized imme-
diately. Moreover, imperfections that degrade the gate fidelity might (and did) appear in
an experimental environment. It is therefore intuitive to carry out a simulation of the ex-
periment prior to the actual measurement (and then of course, if the experimental results
are not in agreement with the simulation, try to adapt the simulation to reproduce the
experimental results and thus gain an insight on possible error sources).

The theoretical and numerical foundation for the simulation of the Mølmer-Sørensen
gate are elaborated in section A.5. Based on the methods developed there, the simulated
results are presented in this section. To anticipate the experimental results from the next
section, we experience a decrease of the visibility which we (also) attribute to the adverse
effect of servo bumps in the laser spectrum that couple to the carrier transition and signif-
icantly reduce the gate fidelity. To estimate this effect, we include the carrier coupling into
the simulation as described in detail in app. A.5.

These servo bumps appear at the edge of the feedback-loop bandwidth for the frequency
stabilization, typically at about 1 MHz, where signal phase shift leads to noise amplifica-
tion instead of suppression. Since the noise background of diode lasers is rather high
compared to, e.g., solid-state systems like Ti:Sa lasers, these servo bumps may represent a
non-negligible contribution to the gate dynamics. The servo bumps were measured by a
beat measurement with a stabilized Ti:Sa laser4, tuned to match the frequency of the qubit
laser. The beat signal is detected with a fast photo diode and frequency-analyzed by an
RF spectrum analyzer5. The beat spectrum in a linear scale is shown in fig. 7.5. The servo-
bump suppression with respect to the carrier is 28 (14.5 dB), which, taking into account
the larger coupling strength of the carrier transition, shows the significant contribution of
the servo bumps. This value seems very small (which would correspond to strong servo
bumps) and might be caused by an inadvertent change of the locking parameters (as we
discovered a loose contact in the cable connections afterwards), but values of 25 dB to 30 dB
(in the power spectrum) are typical for the diode-laser servo bumps.

Following the procedure described in appendix A.5, we simulate the effect of the Mølmer-
Sørensen gate onto a two-ion crystal with both ions starting in the ground state, both with-
out and including the carrier coupling due to the servo bumps. As in the experiment, we
scan both, gate time and the detuning of the bichromatic beam from the motional side-
bands as well as the gate time and the overall offset from the central frequency of the laser
and the atomic carrier resonance.

First we investigate the ideal situation without disturbances, i.e. without coupling to the
carrier. Fig. 7.6 shows a gate-duration scan for different frequency spreads of the bichro-
matic beam, where its center frequency always coincides with the atomic resonance. In
that context, Detuning denotes the frequency deviation of the laser frequencies from the

4Sirah, Matisse TX
5Agilent, N9320B
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7.2. The Mølmer-Sørensen gate

Figure 7.5.: Spectral-density beat signal of the reference Ti:Sa laser with the qubit laser. The laser
beams are overlapped at a beam splitter and detected by a fast photo diode. The output of the photo
diode is fed into a spectrum analyzer (resolution bandwidth: 100 kHz, video bandwidth: 10 kHz,
spectral span: 10 MHz). The servo bumps from the frequency-stabilization feedback at the typical
frequency of 1.1 MHz from the carrier are clearly visible. The lasers were detuned by 190.5 MHz to
each other to assist the data analysis.

theoretically derived optimal value for the frequency detuning from the carrier transition
ν + δ (cf. sec. 7.2.3). The fully-entangling gate operation is reached after a gate time of
62.5 µs, indicated by the vanishing dark-bright and bright-dark population (i.e. the cases

Figure 7.6.: Numerical simulation of a gate-duration scan of the Mølmer-Sørensen gate for different
detunings and a constant offset of 0 kHz. Here, detuning denotes the frequency deviation of the
laser frequencies from the expected ideal values ν + δ (see main text and sec. 7.2.3). Shown are the
populations for both ions remaining in the ground state S1/2 (bright-bright), exactly one ion being
excited into D5/2 (bright-dark + dark-bright), and both ions being excited (dark-dark).
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Figure 7.7.: Simulated populations for a Mølmer-Sørensen pulse-length scan for varying detunings
(offset = 0 kHz), taking into account the coupling to the atomic carrier transition due to the laser
servo bumps. For the servo-bump suppression of -30 dB assumed here, the gate fidelity is already
considerably reduced.

where exactly one ion was excited).
Taking carrier coupling into account, the outcome of the simulation changes substan-

tially. For a servo-bump suppression of 30 dB (i.e. a factor of 10−3), we obtain the distri-
bution shown in fig. 7.7. The gate fidelity is severely decreased. The best parameter set is
identifies for zero detuning from ν + δ and zero offset (i.e. the difference between the sum
of the frequencies of both laser sidebands from the atomic carrier transition) for a gate
duration of 78.7 µs, though the coherence might be affected further6. The dark-dark and
bright-bright populations (both ions in D5/2 and both ions in S1/2, respectively) are reduced
to 34.1% and 34.2%, respectively, while the parasitic dark-bright and bright-dark popula-
tions are increased to 24.8%. As we will se in section 7.2.4, these numbers approximately
correspond to what we observe in the actual experimental realization.

Increasing the carrier coupling to -20 dB leads to the results shown in fig. 7.8. It is appar-
ent that the gate robustness towards variations of detuning, offset or gate time is remark-
ably reduced, while the gate infidelity remains roughly at the previous low level.

Additionally, we run a set of measurements where we vary the offset instead of the
detuning while scanning the gate time, again for no carrier coupling and -20 dB and -30 dB
servo-bump suppression, for a constant detuning of 0 kHz. The corresponding simulation
results are found in the figures 7.9, 7.10 and 7.11.

6Note that the data presented here shows only the populations
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Figure 7.8.: Simulation of the population distribution for the Mølmer-Sørensen gate, scanning pulse
length and detuning while keeping the offset constant at 0 kHz. The laser servo-bumps intesity at
the atomic carrier frequency are suppressed by a factor of -20 dB with respect to the target frequency.

Figure 7.9.: Simulation of the Mølmer-Sørensen gate without coupling to the carrier, scanning gate
duration and offset for a fixed zero detuning.
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Figure 7.10.: Simulation of the Mølmer-Sørensen gate, scanning gate duration and offset for a fixed
zero detuning, for a servo-bumps suppression of -30 dB.

Figure 7.11.: Simulation of the Mølmer-Sørensen gate, scanning gate duration and offset for a fixed
zero detuning, for a servo-bumps suppression of -20 dB.
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7.2.3. Experimental parameters

The realization of an atom-atom–entangling gate operation mediated by the harmonic-
oscillator mode in the trap potential requires decoupling of the internal atomic states from
their motion while simultaneously maintaining the entanglement between both particles.
Following the theoretical treatment in [24, 180], this gate action is achieved after a gate
duration of

τMS = 2π/|δ| , (7.14)

where the detuning7 δ from the motional sidebands is determined by the experimental
conditions. The optimal detuning is derived according to the formula

ηΩ ≈ δ

4
, (7.15)

where Ω is the experimentally determined Rabi frequency on the carrier, and η denotes the
two-ion Lamb-Dicke parameter. The latter is defined by

η =
2π

λ
cos β

√
h̄

2MωT
(7.16)

and exhibits a value of η = 0.044. β denotes the angle between the incident light beam and
the orientation of the oscillation axis and is calculated in our experimental configuration
as 49.2◦ for the axial mode. M is the effective mass of the particle (i.e. twice the mass of a
single 40Ca+ ion) and ωT indicates the frequency of the harmonic-oscillator mode, which
is 1.1956 MHz for the axial COM mode for our experimental parameters.

In general, off resonant excitation of the carrier transition leads to fast oscillations of
the resulting state when Ω � ν + δ no longer holds, which strongly depend onto the
laser phase [176]. However, adiabatically switching on and off the laser pulse provides
independence of the gate from the current laser phase, which is achieved by Blackman-
shaping the intensity profile of the laser pulse, where the rise and fall time covers a few
cycles of the frequency describing the laser detuning from the carrier, (ν + δ)/2π, which
we typically choose to be 4 µs.

7.2.4. Experimental results

The experimental sequence used for the measurements presented in the following is shown
in figure 7.12. Both ions are initialized in the | − 1/2〉 Zeeman sub-level of the ground state
to ensure starting from a pure two-qubit state. Subsequently, the intensity-shaped (see sec.
7.2.3) bichromatic laser pulse, tuned close to the red and blue axial COM sideband of the
|S1/2,−1/2〉 → |D5/2,−5/2〉 transition, of varying pulse duration and detuning or offset (cf.
7.2.2) is applied, followed by fluorescence-based atomic state analysis. The fluorescence is

7Be aware that the notation in these publications differs from the one used in this work.
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P3/2

D5/2

S1/2

Figure 7.12.: Experimental sequence for the Mølmer-Sørensen gate. The sequence starts with op-
tical pumping into |S1/2,−1/2〉, followed by the actual intensity-shaped bichromatic Mølmer-
Sørensen pulse. Subsequently, the two-atom state is read out by fluorescence generation, detected
by an EMCCD camera to distinguish between both ions, or a PMT, distinguishing between dark
(dark-dark) and bright (dark-bright, bright-dark, bright-bright) events.

detected either with the EMCCD camera, allowing for resolved single-ion state detection,
or with the PMT, which was much faster, but only allowed, due to practical reasons, to
distinguish between the dark-dark and all remaining states. The experiments presented in
this section are analyzed using the latter method.

The bichromatic light field is generated by imprinting two frequencies onto a single laser
beam passing through an AOM in single-pass configuration. Alternatively, the application
of two RF frequencies at the AOM can be seen as an amplitude-modulated beam. Caution
has to be taken on the nonlinearity of the AOM. We run an optimization process before-
hand to compensate for the nonlinearities and avoid unwanted sidebands in the photonic
spectrum.

In the experimental realization, in accordance to the simulations (or rather vice versa),
we run two different measurements to deduce the optimal parameters for the entangling
gate and to determine the gate quality. In both cases, the pulse duration is scanned. In
the first scenario, the detuning, i.e. the deviation of the actual laser frequencies from the
expected optimal value ν+ δ for the detuning from the atomic carrier transition, is scanned.
In the second scenario, the detuning is kept fixed at the expected value and the offset is
varied.

Usually, we first scan offset and pulse length for the expected optimal detuning calcu-
lated from the Lamb-Dicke parameter and the measured Rabi frequency. A typical experi-
mental run is shown in fig. 7.13. From this measurement, the optimal offset, which occurs
due to light shifts of the atomic carrier transition8, is extracted and used for the follow-
ing measurements. The reduced visibility compared to the ideal situation depicted in fig.
7.9 is already apparent. Rather, the experimental results show, to a certain degree, a re-
semblance with the simulation including the servo bumps, which are suppressed by 30 dB
(cf. fig. 7.10), although some features like the fast-oscillating pattern do not appear in the

8To be precise, due to off-resonant coupling of the laser field onto other transitions that couple to the | −
1/2〉 Zeeman sub-level of the ground state, hence affecting also the center frequency of the atomic target
transition.
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Figure 7.13.: Gate-duration scan of the bichromatic Mølmer-Sørensen pulse for varying offsets and
the theoretically expected detuning. The measured carrier-transition Rabi frequency for the laser
power used in the experiment was 2π · 197 kHz and the zero-point for the detuning was chosen
accordingly (cf. sec. 7.2.3). The horizontal lines appearing in some stages of the measurement cor-
respond to periods where the ions were hot. Compared to fig. 7.9, the contrast of the typical features
is reduced, which we trace back to unwanted coupling to the atomic carrier transition caused by
the laser background spectrum (servo bumps).

measurement. This indicates that other, not yet fully understood disturbances appear in
parallel.

Setting the offset to the previously determined value, the detuning (together with the
gate duration) is scanned in the next step. The outcome of this scan is presented in fig.
7.14. Again, the contrast of the typical features is substantially reduced as in the numerical
simulations considering the servo-bump distortion (see fig. 7.10), from which we infer that
laser noise represents one of the major error sources in the experiment.

This chapter addressed first experiments towards a local atomic two-ion gates as a miss-
ing corner stone for the implementation of a basic quantum repeater in the laboratory. In
section 7.1, I demonstrated a technique for the addressing of single ions within a chain of
ions (in our case a two-ion chain)9. In the next section, I presented the results of our im-
plementation of a Mølmer-Sørensen gate and discussed possible causes for the observed
gate infidelity, which we attribute to a large spectral noise background of the quadrupole
laser10, resulting in coupling to the atomic carrier transition during the gate operation. In
that context, simulations including carrier coupling were conducted which show qualita-
tive agreement with the experimental results, supporting our hypothesis. Knowing (and

9Which is not neccessary for the entangling two-ion gate itself, but facilitate the characterization of said gate.
10Newer findings showed that residual magnetic-field noise might be a second relevant source of fidelity

reduction [186].

139



7. Prospect: Towards local atomic two-qubit gates

Figure 7.14.: For the optimal offset deduced from a measurement as the one shown in fig. 7.13, the
Mølmer-Sørensen measurement is ran again, scanning gate duration and detuning, i.e. the devia-
tion from the theoretically expected value. Unsurprisingly, the contrast is reduced as well, qualita-
tively resembling the simulation shown in fig. 7.7.

hopefully shortly eliminating) the sources for the gate infidelity represents a crucial step
towards the realization of an entangling two-ion gate and thus towards the demonstration
of a functional laboratory-scale quantum repeater.
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Summary

The experiments described in this work represent a fundamental step towards the phys-
ical implementation of a basic quantum-repeater–based quantum network incorporating
single trapped 40Ca+ ions as network nodes and quantum memories for the repeaters. An
essential building block for these networks are quantum interfaces between the atomic
network nodes, formed by the 40Ca+ ions, and the photonic quantum channels intercon-
necting the nodes or the quantum-repeater units in between. For a fully versatile quantum
interface, three conditions have to be fulfilled:

• Mapping of a photonic state, for example stored in the polarization degree of free-
dom, onto an atomic state, typically by photon absorption. This process either has to
occur with near-unity probability or a heralding event that signals a successful state
mapping is required.

• Reverse state transfer from the atomic quantum memory onto a single photon via
indirect interaction (such as teleportation) or direct photon emission.

• The generation of atom-photon entanglement.

In this thesis, I presented the conception and experimental realization of two interface pro-
tocols. The first protocol (cf. chapter 5) builds upon the absorption of (single) photons at
854 nm, triggering the emission of a heralding photon at 393 nm. Through suitable prepa-
ration of the ion, the photonic polarization state is mapped into the atomic qubit by the
absorption process, and the success of the mapping is indicated by the detection of the
heralding photon.This protocol can be utilized to also implement the remaining two inter-
face operations. If the qubit is not stored in the photon polarization but in the initial atomic
state, and the state of the absorbed infrared photon is known, the atomic state is transferred
into the polarization state of the emitted heralding photon, which then serves as carrier of
quantum information if the atomic state is projected onto a known superposition. If the
atomic state is not projected, we end up with an entangled state between the atom and the
polarization of the 393 nm photon, satisfying the third interface condition.

It is apparent that this interface scheme is only suitable for short distances due to the
comparably high transmission losses for the working wavelength and the high cost of
high-quality optics for blue, which limits the practical applicability of this scheme. For
that reason, an alternative method for the implementation of an atom-photon quantum in-
terface has been developed and demonstrated in the course of this work that allows for the
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8. Conclusion and outlook

atom-to-photon state transfer onto an infrared photon at 854 nm. The wavelength in the
NIR spectral region facilitates the implementation of QFC to convert the photon into the
telecom regime, making this state-transfer scheme much more appropriate for the intended
application of long-range quantum communication.

As the remaining task for a universal quantum interface, an implementation for atom-
photon entanglement at 854 nm was demonstrated. The primary advantage of the new
entanglement-generation protocol compared to the original proposal, working at 393 nm,
is the possibility to include quantum frequency conversion, based on difference-frequency
generation in a periodically-poled Lithium-niobate waveguide, to down-convert the NIR
photons into the telecom O-band at 1310 nm, thus coupling the 40Ca+ ion, with its tran-
sitions not lying in the desired wavelength region, to the low-loss telecom regime, result-
ing in a significant reduction of fiber-transmission losses. Experimental results including
polarization-preserving QFC were presented, revealing high-efficiency, low-background
conversion with near-unity quantum-process fidelity (i.e. the original quantum state is,
within the error margin, not affected by the conversion process). These results represent
a crucial step towards long-haul fiber-based quantum communication and quantum net-
works.

All protocols demonstrated here require precise control over the quantum state of the
ions and methods for coherent manipulation of the state and specific preparation of the
atomic qubit in a pure initial state. Both is achieved by frequency-selective optical pumping
utilizing the narrow quadrupole transition between the ground state and the meta-stable
D5/2 state, and coherent Rabi rotations by means of coupling to a narrow-band laser at
729 nm, tuned on resonance with the respective Zeeman transitions between ground and
meta-stable state. Alternatively, the atomic state is encoded into a Zeeman qubit in the
ground state, split due to an external magnetic DC field of about 3 G, and manipulated by
a radio-frequency coil below the trap that addresses the transition between both spin states
in S1/2. We demonstrated coherent control over the internal state of the ion, high-efficiency
pure-state preparation and full atomic state tomography.

The storage time of quantum information in the atomic qubit is limited by magnetic
decoherece, i.e. due to unknown fluctuations of the Zeeman-qubit energy levels caused
by fluctuations of the ambient magnetic field that we do not control. A brief depiction
of a method for active feed-forward compensation of the periodical perturbation of the
residual magnetic field, originating primarily from the 50 Hz (and higher harmonics) from
the power lines is given1. A three- to four-fold improvement of the coherence time was
achieved by this method.

Finally, first steps towards local entangling two-ion gate operations were presented, re-
quired for the realization of a quantum-memory–based quantum repeater network. First,
our method for selective single-ion addressing in a two-ion chain was shown, followed
by a theoretical description and our experimental implementation of a Mølmer-Sørensen-
type two-ion quantum gate. A comparison between theoretical and experimental results

1A detailed description is found in [133]
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was given and possible sources for the observed gate infidelity were discussed.
The theoretical fundamentals treated in this thesis comprised, apart from a discussion of

the properties of the 40Ca+ ion, a comprehensive description of spatial dependency of the
dipole emission and absorption properties. The latter is of particular importance for the
understanding of the single-mode fiber coupling and the photon-to-atom quantum-state
mapping.

Outlook

Of course, an experiment like ours is never finished and improvements and further ex-
tension are a continuous process. Therefore, the progress does not end with this thesis.
Various ideas have already been developed within our team what will be set up and which
experiments will be conducted in the next steps.

One of the first measures that will follow is the replacement of the current qubit laser
at 729 nm with a new Ti:Sa system that exhibits a lower spectral background (cf. supple-
mental information of [181]), hopefully facilitating the realization of a working Mølmer-
Sørensen gate, which would bring the realization of remote state teleportation into reach.
Alternatively, we could extend the existing laser system and employ a so-called injection-
locking scheme [182, 183], where the light leaving the laser diode is first spectrally filtered
by an optical cavity before it is amplified by the tapered amplifier. Eventually, positive
experiences of other groups regarding Ti:Sa systems and the technically demanding im-
plementation of injection locking made us opting for the Ti:Sa solution.

To ensure line-narrowing and spectral purity of the laser, also other noise sources have
to be eliminated. An often underestimated effect are thermal and acoustical distortions of
the optical fibers, locally changing the refractive index and thus inducing phase noise. A
method to counteract this noise by double-pass fiber-noise measurement and cancellation
has already been established by other groups, described e.g. in [184, 185]. We plan to
implement this technique for further linewidth narrowing.

Other work in progress includes the replacement of the currently used magnetic-field
coils for the definition of the quantization axis by permanent magnets to reduce noise on
the ambient field. We expect an increase of coherence time from this measure. Yet, prelim-
inary results indicate that there are further magnetic fluctuations affecting the experiment
that cannot be suppressed this way [186].

In addition, it is planned to incorporate an optical cavity around the Paul trap to increase
the absorption efficiency in single-photon–absorption experiments. Higher absorption ef-
ficiencies enable new experiments, like distant-ion entanglement employing our photon-
pair source (see next section), which so far were impractical due to estimated measurement
times in the order from several weeks to months.

The prospects for milestones in the near future (i.e. in the next one or two years) are
depicted in the following. The implementation of an operating Mølmer-Sørensen gate for
local two-ion Bell-state measurements forms the foundation for future experiments. Once
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that is achieved, the second trap apparatus will be put into operation. Constituting atom-
photon entanglement simultaneously in both traps, the respective photons from both re-
mote ions are collected and overlapped at a photonic Bell-state–measurement (BSM) setup,
consisting of a non-polarizing beam splitter (nPBS) and a polarizing beam splitter (PBS) at
each output arm of the nPBS. A single-photon detector is placed at each of the four output
ports of the polarizing beam splitters. Depending on which of the possible detection-event
combinations is detected, the two-photon state is projected onto the according Bell state2

and hence the original atom-photon entanglement is swapped onto entanglement between
the two distant ions [48, 187, 188]. This projective Bell-state measurement will firstly be
conducted utilizing atom-photon entanglement (APE) at 393 nm before it is planned to
switch to APE at 854 nm, including QFC in a next step.

Combining both techniques eventually allows us to teleport the quantum state, stored
in the data ion, onto a second target ion situated in a distant trap [189, 190, 51, 191]. For
that purpose, a third ancilla ion, stored in the same trap as the data ion, is employed.
The quantum state is initially encoded into the internal state of the data ion, where it is
protected until the connection to the target ion is established. The latter is realized by
conducting a projective BSM between ancilla and target ion as explained before, creating
entanglement between these two. Subsequently, a local projective BSM between ancilla and
data ion by applying the Mølmer-Sørensen gate finally transfers the quantum information
from the data onto the target ion without revealing its original state.

2With this setup, the detection of two out of four Bell states, namely the two orthogonal |Ψ〉 states, is possible.
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A. Appendix

A.1. Dipole-emission properties and photon collection

The understanding of the dipole-emission properties of single atoms is crucial for the atom-
photon-interface protocols presented in this thesis, as it allows an evaluation of the viability
of said protocols. Additionally, the collection of light emitted into different spatial modes
acts as a possible source of infidelity in the experiment, therefore it is important to under-
stand the influence of the spatial emission. These effects are discussed in the following.

A.1.1. Spatial dependence of the photon polarization

In the following we will derive the relation between the photon polarization measured
by a observer as a function of atomic-dipole orientation and direction of observation, as
depicted in section 4.2.2

We have to distinguish between two reference frames, the atomic, which we define such
that ê(at)

z is oriented along the quantization axis (and, for the sake of consistency, ê(at)
x lies

in the table plane), and the photonic system for which ê(ph)
z ‖ ~k, where the wave vector~k

describes the propagation direction of the photon. The transformation between both bases
is depicted in fig. 4.4.

The polarization amplitude as seen from an observer, whose orientation towards the
atomic (laboratory) z-axis is defined by the angles θ and φ, for an atomic dipole which
oscillates in the direction ê(at), is given by the projections onto the horizontal and vertical
polarization in the photonic reference frame, i.e.

~A(ph)
H =

(
ê(at) · ê(ph)

H

)
ê(ph)

H , ~A(ph)
V =

(
ê(at) · ê(ph)

V

)
ê(ph)

V . (A.1)

From fig. 4.4 it is apparent that ê(ph)
H and ê(ph)

V correspond to the spherical unit vectors

ê(ph)
H = ê(ph)

x = ê(at)
θ =




cos θ cos ϕ

cos θ sin ϕ

− sin θ


 , and ê(ph)

V = ê(ph)
y = ê(at)

ϕ =



− sin ϕ

cos ϕ

0


 (A.2)

in the atomic reference frame. Furthermore, we define the remaining unit vectors in the
laboratory system as

ê(at)
z =̂ê(at)

0 =




0
0
1


 , ê(at)

x =




1
0
0


 , ê(at)

x =




0
1
0


 (A.3)
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and

ê(at)
+ = − 1√

2




1
i
0


 , ê(at)

− =
1√
2




1
−i
0


 , (A.4)

where ê(at)
0 corresponds to a π transition and ê(at)

± to the σ± transitions.
For analogous definitions in the photonic frame, we rewrite the horizontal and vertical

polarization components as

ê(ph)
H = ê(ph)

x = − 1√
2

(
ê(ph)
+ − ê(ph)

−
)

, and ê(ph)
V = ê(ph)

y = i
1√
2

(
ê(ph)
+ + ê(ph)

−
)

. (A.5)

ê(ph)
± describe the circular polarizations R and L1.

To obtain an expression for the transformation from the atomic into the photonic refer-
ence frame, we deploy [144]

ê(at)
q′ = eiq′ ϕ

1

∑
q=−1

d1
q′,q(−θ) ê(ph)

q (A.6)

with the Wigner (small) d matrices dj
q′,q(ϑ). Additionally, some useful properties of the

Wigner d matrices (or the components thereof) should be kept in mind:

dj
q′,q(ϑ) = (−1)q−q′ dj

q,q′(ϑ) , and dj
q′,q(ϑ) = dj

−q,−q′(ϑ) . (A.7)

With that at hand, the projections onto the photonic H and V polarizations for different
atomic dipole orientations are then calculated. First we examine the π transition, which is
described by a dipole oscillating along ê(at)

0 . The (un-normalized) direction-dependent po-
larization amplitude ~A(ph)

π for the atomic π transition is decomposed into the two orthog-
onal horizontal (H) and vertical (V) contributions ~A(ph)

H,π and ~A(ph)
V,π , which are computed

according to
~A(ph)

H/V,π =
(

ê(at)
0 · ê

(ph)
H/V

)
ê(ph)

H/V (A.8)

Using eq. (A.6), we write ê(at)
0 in the photonic basis as

ê(at)
0 = d1

0,−1(−θ) ê(ph)
− + d1

0,0(−θ) ê(ph)
0 + d1

0,1(−θ) ê(ph)
+

= −sin θ√
2

ê(ph)
− + cos θ ê(ph)

0 +
sin θ√

2
ê(ph)
+ .

(A.9)

1Where the definition of left- and right-hand circular may vary throughout the literature due to the different
definitions of the reference frame, pointing along the propagation direction of the photon or the observation
direction anti-parallel to it.
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Inserting eqs. (A.5) and (A.9) into (A.8), we obtain

~A(ph)
H,π =

((
−sin θ√

2
ê(ph)
− + cos θ ê(ph)

0 +
sin θ√

2
ê(ph)
+

)
·
(
− 1√

2

(
ê(ph)
+ − ê(ph)

−
)))

ê(ph)
H

= − sin θ ê(ph)
H

(A.10)

and

~A(ph)
V,π =

((
−sin θ√

2
ê(ph)
− + cos θ ê(ph)

0 +
sin θ√

2
ê(ph)
+

)
·
(

i
1√
2

(
ê(ph)
+ + ê(ph)

−
)))

ê(ph)
V

=

(
−i

sin θ

2
+ i

sin θ

2

)
ê(ph)

V = 0 .

(A.11)

In sum, the full polarization amplitude is given by

~A(ph)
π = ~A(ph)

H,π + ~A(ph)
V,π = − sin θ ê(ph)

H . (A.12)

Analogously, the transformations for ê(at)
± (σ± transitions) are derived as

ê(at)
+ = eiϕ

(
d1
−1,1(−θ) ê(ph)

− + d1
0,1(−θ) ê(ph)

0 + d1
1,1(−θ) ê(ph)

+

)

= eiϕ
(

1− cos θ

2
ê(ph)
− − sin θ√

2
ê(ph)

0 +
1 + cos θ

2
ê(ph)
+

) (A.13)

and

ê(at)
− = e−iϕ

(
d1
−1,−1(−θ), ê(ph)

− + d1
0,−1(−θ) ê(ph)

0 + d1
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+

)

= e−iϕ
(

1 + cos θ

2
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− +

sin θ√
2
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1− cos θ

2
ê(ph)
+

)
,

(A.14)

respectively. The resulting polarization amplitudes become

~A(ph)
H,σ+ =

(
ê(at)
+ · ê

(ph)
H

)
ê(ph)

H

=
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− eiϕ
√
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2
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2
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2
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+

)
·
(
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+
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ê(ph)

H =
eiϕ
√

2
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(A.15)

and
~A(ph)

V,σ+ =
(
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+ · ê

(ph)
V
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=

(
ieiϕ
√
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2
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+
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(A.16)
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and thus the combined polarization amplitude is deduced as

~A(ph)
σ+ = ~A(ph)

H,σ+ + ~A(ph)
V,σ+ =

eiϕ
√

2

(
cos θ ê(ph)

H + i ê(ph)
V

)
. (A.17)

In an analogue way, employing eq. (A.14), we obtain

~A(ph)
H,σ− =

(
ê(at)
− · ê

(ph)
H

)
ê(ph)

H =
e−iϕ
√

2
cos θ ê(ph)

H , and (A.18)

~A(ph)
V,σ− =

(
ê(at)
− · ê

(ph)
V

)
ê(ph)

V = − ie−iϕ
√

2
ê(ph)

V , (A.19)

and in sum
~A(ph)

σ− = ~A(ph)
H,σ− +

~A(ph)
V,σ− =

e−iϕ
√

2

(
cos θ ê(ph)

H − i ê(ph)
V

)
. (A.20)

What we have dismissed so far is the normalization condition for unpolarized light (i.e.
light with equal fractions from all three polarizations) that must form a perfect spherical
wave in emission which exhibits a probability of 1 to observe the emitted photon when
integrated over the full solid angle 4π. This yields the constraint

1
3
|~Aπ|2 +

1
3
|~Aσ+ |2 + 1

3
|~Aσ− |2 !

=
1

4π
∀ θ, ϕ , (A.21)

which is only satisfied when the polarization amplitudes ~Aπ, ~Aσ+ and ~Aσ− are normalized

by a factor of
√

3
8π . We then get the normalized polarization amplitudes

~A(ph)
π = −

√
3

8π
sin θ ê(ph)

H , (A.22)

~A(ph)
σ+ =

√
3

8π

eiϕ
√

2

(
cos θ ê(ph)

H + i ê(ph)
V

)
, and (A.23)

~A(ph)
σ− =

√
3

8π

e−iϕ
√

2

(
cos θ ê(ph)

H − i ê(ph)
V

)
. (A.24)

A.1.2. Free-space collection

Estimation of the success probability for an experimental sequence in the context of this
work requires the knowledge about the collection efficiencies of the single photons. Here
we investigate the free-space collection, as already briefly treated in sec. 4.2.3, i.e. the di-
rect collection of photons without the coupling into a single-mode fiber. In that case, it
is sufficient to consider only the intensities (as opposed to the single-mode coupled case,
discussed in section 4.2.4 and appendix A.1.3, where the complex field has to be regarded).

Single photons from the ion are collected by the HALO lens stack which covers an open-
ing angle of 2α = 2 · 23.75◦, corresponding to 4.23% of the full solid angle. Together with
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the directionality of the dipole emission from section 4.2.2 and appendix A.1.1, we are then
able to calculate the expected photon-collection efficiency.

To determine the collection efficiency, we define the "intensity" I(ph) = |A(ph)|2 of the
normalized field as the square modulus of the polarization amplitude. It has to be stated
that I(ph) denotes a probability intensity, which is proportional to the usual intensity, but
exhibits a different physical dimension (probability per solid angle rather than power per
area), where the integration over the full solid angle reveals a probability of 1.

For pure π emission, we get

Iπ(θ, ϕ) = |~Aπ|2 =
∣∣∣−
√

3
8π

sin θ ê(ph)
H

∣∣∣
2
=

3
8π

sin2 θ (A.25)

and the free-space or multi-mode collection efficiency is given by

ηMM
π =

α∫

θ=0

2π∫

ϕ=0

Iπ(θ, ϕ) sin θ dθ dϕ = 2π
3

8π

α=23.75◦∫

θ=0

sin3 θ dθ ≈ 0.53% . (A.26)

In the case of a σ transition with

Iσ±(θ, ϕ) = |~Aσ± |2 =
∣∣∣
√

3
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√

2

(
cos θ ê(ph)

H ± i ê(ph)
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3
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(
cos θ ê(ph)
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) (
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=

3
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1
2
(
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)
(A.27)

the collection efficiency reads

ηMM
σ =

α∫

θ=0

2π∫

ϕ=0

Iσ(θ, ϕ) sin θ dθ dϕ =
3
8

α=23.75◦∫

θ=0

(
cos2 θ + 1

)
sin θ dθ ≈ 6.09% . (A.28)

A.1.3. Single-mode coupling

For photons coupled into a single-mode fiber, it is not sufficient to consider only the in-
tensity, but the complex field, i.e. intensity and phase of the light field, hast to be taken
into account. Here we investigate the coupling efficiency for photons emitted by the ion
and collected hy the HALO lens system, assuming a fiber mode that perfectly matches the
top-hat shaped HALO light mode. A calculation of the coupling efficiency including a
Gaussian fiber mode is given in the next section.

All calculations in this section are conducted in the laboratory (atomic) reference frame,
thus the superscripts (at) and (ph) are omitted.

When the light emitted by the ion is collimated by the HALO, the field wavefront be-
comes flat and we transform the electrical-field amplitudes2 for the dipole transitions from

2Be aware that this quantity does not exhibit the physical unit of, but is directly proportional to the actual
electrical field.
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spherical coordinates,

~Eπ = − ieikr

r

√
3

8π
sin θ êθ , (A.29)

~Eσ± =
ieikr

r

√
3

8π

e±iϕ
√

2

(
cos θ êθ ± i êϕ

)
, (A.30)

with k = 1/λ being the absolute value of the wave vector, into cylindrical coordinates
(z, ϕ, $). If the ion is placed in the focus of the HALO with focal length f , the distance r
from the ion to the collimation-lens plane is r =

√
f 2 + $2, where $ is the distance from

the z axis, i.e. from the quantization axis. After collimation, the wavefront of the photonic
wave packet will be flat, i.e. the terms in eikr in (A.29) and (A.30) will be constant and
without loss of generality set to 1. Light formerly polarized in the êθ direction is polarized
in ê$ direction, while the polarization component parallel to êϕ remains unaltered. With

cos θ =
f√

f 2 + $2
and sin θ =

$√
f 2 + $2

(A.31)

the field amplitudes become

~Eπ = − i√
f 2 + $2

√
3

8π

$√
f 2 + $2

ê$ (A.32)

and

~Eσ± =
i√

f 2 + $2

√
3

8π

e±iϕ
√
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f√

f 2 + $2
ê$ ± i êϕ

)
(A.33)

with

ê$ =




cos ϕ

sin ϕ

0


 and êϕ =



− sin ϕ

cos ϕ

0


 . (A.34)

The coupling efficiency into the single-mode fiber is attained by the overlap between the
electrical-field mode ~E and the fiber mode ~G [100],

ηSM =

∣∣∣∣∣
$0∫

$=0

2π∫
ϕ=0

~E · ~G $ cos(θ($))d$dϕ

∣∣∣∣∣

2

∞∫
$=0

2π∫
ϕ=0

∣∣∣~E
∣∣∣
2

$ cos(θ($))d$dϕ
∞∫

$=0

2π∫
ϕ=0

∣∣∣~G
∣∣∣
2

$ cos(θ($))d$dϕ

, (A.35)

where the factor cos(θ($)) = f√
f 2+$2

accounts for the projection of the spherical surface

element onto the surface element of the measurement plane. $0 is the maximal diameter
of the collimated light, determined by $0 = tan(α) · f . For the effective focal length f =
25 mm, we get $0 = 11 mm.
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In a first approach, the approximately Gaussian shape of the fiber mode is disregarded
and we assume a fiber that matches the HALO mode. The fiber mode is modeled as

~G = Θ($0 − $)




α

β

0


 , |α|2 + |β|2 = 1 (A.36)

with the Heaviside function Θ($0 − $), resulting in the fiber-coupling efficiencies
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and

ηSM
σ± =
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. (A.38)

Solving eq. (A.38) yields

ηSM
σ± ≈

|0.0136 m|2
8π
3 · 0.00363m2

≈ 6.09% . (A.39)

We see that the collection of σ light is unaltered compared to the multi-mode collection,
while the collection of π photons is suppressed. Hence, when the collection of photons
emitted on a σ transition is desired, while π photons are unwanted, single-mode collection
does significantly increase the polarization purity of the fiber-coupled photons.

It is of particular interest to analyze the situation of a superposition of two atomic dipoles
emerging from a σ+ and a σ− transition, respectively.

The field amplitude for the emitted field becomes

~Eσ =
1√
2

(
~Eσ+ + eiφ~Eσ−

)

=
i√

f 2 + $2

√
3

32π

(
f
(
eiϕ + eiφe−iϕ)
√

f 2 + $2
ê$ +

(
ieiϕ − ieiφe−iϕ

)
êϕ

)
,

(A.40)
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where φ describes the relative phase between the dipoles. Inserting (A.40) into (A.35) and
numerically solving the equation reveals the coupling efficiency

ηSM
σ ≈ 6.09% . (A.41)

We see that the collection efficiency stays unchanged and is independent of φ.

A.1.4. Mode matching

In a realistic estimation of the single-mode coupling efficiency, the fiber mode ~G used in
eq. (A.36) has to be modified to exhibit a Gaussian shape: [145]

~G =

√
2

w0
√

π
eiψ exp

(
− $2

w2(z)

)


α

β

0


 . (A.42)

ψ denotes the Gouy phase, w0 is the beam waist, and w(z) describes the beam radius in the
measurement plane. In our situation, w(z) coincides with the maximum beam radius $0.

As ~G remains independent of ϕ, it is directly apparent that

ηSM
π =

∣∣∣∣∣
$0∫

$=0

2π∫
ϕ=0

~Eπ · ~G f $√
f 2+$2

d$dϕ

∣∣∣∣∣
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∞∫
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2π∫
ϕ=0

∣∣∣~G
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2 f $√

f 2+$2
d$dϕ

= 0 (A.43)

as the integral in the numerator vanishes.
The computation of the coupling efficiency for a σ transition is slightly more involved.

The integral in the numerator yields
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· 0.006092 m2 .

(A.44)
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Both terms in the denominator become
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and
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2π∫
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w2
0
· 0.000029 m2

(A.46)

respectively. Merging eqs. (A.44), (A.45) and (A.46) unfolds the coupling efficiency

ηSM
σ± =

3
w2

0 8π2 · 0.006092 m2

1
2 · 4

w2
0
· 0.000029 m2

=
3

16π2
0.006092

0.000029
≈ 2.43% . (A.47)

Compared to the idealized fiber, the coupling efficiency is reduced to 40% of the opti-
mal value, which nicely agrees with our measurements. However, it becomes apparent
that the assumption of a top-hat shaped fiber mode is not sufficient for reproducing the
experimental results and a more realistic model like a Gaussian mode has to be employed.
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A.2. Single-qubit state reconstruction

A single qubit, e.g. the polarization state of a single photon or the internal or motional
state of a single trapped atom, can not be measured directly due to the projective nature of
a quantum-mechanical measurement. However, if it is possible to create multiple copies
of the qubit (e.g. by very well controlled state preparation), a set of tomography measure-
ments in different bases allows for the reconstruction of the qubit state. [156] provides
a convenient and straightforward recipe for a single-qubit state reconstruction for single
photons, which can easily be adapted to other quantum systems. For the sake of consis-
tency, we adopt the photonic nomenclature of the bases |R〉, |L〉, |H〉, |V〉, |D〉, |A〉. In the
context of an atomic qubit with internal eigenstates |0〉 and |1〉, |R〉 and |L〉 become |1〉 and
|0〉, and |H〉, |V〉, |D〉, and |A〉 become the respective superposition states of |0〉 and |1〉.

The state tomography is facilitated by measurements in different projection bases, and
the number of detection events is recorded for each basis (assuming an equal number of ex-
perimental runs for each basis). For the single-qubit tomography, it is sufficient to measure
in 4 different bases, e.g. |R〉+ |L〉, |H〉, |D̄〉 = (|H〉 − |V〉)/

√
2, and |R〉.

From the number of detection events in these bases,

n0 = n|R〉+|L〉 =
N
2

(〈R|ρ̂|R〉+ 〈L|ρ̂|L〉) (A.48)

n1 = n|H〉 = N (〈H|ρ̂|H〉) (A.49)

n2 = n|D̄〉 = N (〈D̄|ρ̂|D̄〉) (A.50)

n3 = n|R〉 = N (〈R|ρ̂|R〉) (A.51)

with the (to be determined) single-qubit density matrix ρ̂ and a normalization factor N
that accounts for the detection efficiency (in the case of photonic qubits).

With the Stokes parameters defined by

S0 = 2n0 , S1 = 2(n1 − n0)

S0 = 2(n2 − n0) , S0 = 2(n3 − n0) ,

we deduce the density matrix via the relation

ρ̂ =
1
2

3

∑
i=0

Si

S0
σ̂i (A.52)

with the Pauli operators σ̂1,2,3 and the identity operator σ̂0.
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A.3. Linear entangled-state reconstruction

The two-qubit state tomography has already been briefly depicted in section 5.4 and shall
be explained in more detail in this section.

In general, a two-qubit state is described by the density matrix

ρ̂ =
1
4

3

∑
i1,j2=0

ri1 rj2 σ̂i1 ⊗ σ̂j2 , ri1 , rj2 ∈ R . (A.53)

σ̂ik denotes the i-th Pauli matrix for the k-th qubit and ⊗ denotes the tensor product. [156]
provides a recipe for the determination of the 42 = 16 real parameters ri1 , ri2 , that fully
describe the state. In analogy to the single-qubit case, we need a set of 16 measurements
µ̂i1 ⊗ µ̂j2 (i1, j2 = 0, 1, 2, 3).

Given a yet unknown two-qubit density matrix ρ̂, the expected coincidence counts nk =
ni,j in the joint measurement basis µ̂k = µ̂i1 ⊗ µ̂j2 (k = 1, ..., 16) are given by the expression

nk = N tr(ρ̂µ̂k) (A.54)

or
nk = N 〈ψk|ρ̂|ψk〉 , (A.55)

where the experimentally determined constant N accounts for the detection efficiencies
and µ̂k = |ψk〉〈ψk|. Table A.3, taken from [156], shows one possible set of measurement
bases in the photonic nomenclature.For measurements of atomic qubits, the states have to
be adapted, e.g. with |R〉 = |1〉, |L〉 = |0〉 and the linear bases defined accordingly.

k |ψk〉 k |ψk〉
1 |H〉 ⊗ |H〉 9 |D〉 ⊗ |R〉
2 |H〉 ⊗ |V〉 10 |D〉 ⊗ |D〉
3 |V〉 ⊗ |V〉 11 |R〉 ⊗ |D〉
4 |V〉 ⊗ |H〉 12 |H〉 ⊗ |D〉
5 |R〉 ⊗ |H〉 13 |V〉 ⊗ |D〉
6 |R〉 ⊗ |V〉 14 |V〉 ⊗ |L〉
7 |D〉 ⊗ |V〉 15 |H〉 ⊗ |L〉
8 |D〉 ⊗ |H〉 16 |R〉 ⊗ |L〉

Table A.1.: List of the two-qubit measurement bases for the state tomography.

From the experimentally obtained numbers nk for measurements in these bases, the un-
derlying density matrix is calculated from

ρ̂ =
16
∑

k=1
M̂knk/

4
∑

k=1
nk , (A.56)
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where the matrices M̂k are found as

M̂1 =
1
2




2 −(1− i) −(1 + i) 1
−(1 + i) 0 i 0
−(1− i) −i 0 0

1 0 0 0


 (A.57)

M̂2 =
1
2




0 −(1− i) 0 1
−(1 + i) 2 i −(1 + i)

0 −i 0 0
1 −(1 + i) 0 0


 (A.58)

M̂3 =
1
2




0 0 0 1
0 0 i −(1 + i)
0 −i 0 −(1− i)
1 −(1− i) −(1 + i) 2


 (A.59)

M̂4 =
1
2




0 0 −(1 + i) 1
0 0 i 0

−(1− i) −i 2 −(1− i)
1 0 −(1 + i) 0


 (A.60)

M̂5 =
1
2




0 0 2i −(1 + i)
0 0 (1− i) 0
−2i (1 + i) 0 0
−(1− i) 0 0 0


 (A.61)

M̂6 =
1
2




0 0 2i −(1 + i)
0 0 (1− i) 2i
0 (1 + i) 0 0

−(1− i) −2i 0 0


 (A.62)

M̂7 =
1
2




0 0 0 −(1 + i)
0 0 −(1− i) 2
0 −(1 + i) 0 0

−(1− i) 2 0 0


 (A.63)

M̂8 =
1
2




0 0 2 −(1 + i)
0 0 −(1− i) 0
2 −(1 + i) 0 0

−(1− i) 0 0 0


 (A.64)

M̂9 =




0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0


 (A.65)
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M̂10 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 (A.66)

M̂11 =




0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0


 (A.67)

M̂12 =
1
2




0 2 0 −(1 + i)
2 0 −(1 + i) 0
0 −(1− i) 0 0

−(1− i) 0 0 0


 (A.68)

M̂13 =
1
2




0 0 0 −(1 + i)
0 0 −(1 + i) 0
0 −(1− i) 0 2

−(1− i) 0 2 0


 (A.69)

M̂14 =
1
2




0 0 0 −(1− i)
0 0 −(1− i) 0
0 −(1 + i) 0 −2i

−(1 + i) 0 2i 0


 (A.70)

M̂15 =
1
2




0 −2i 0 −(1− i)
2i 0 (1− i) 0
0 (1 + i) 0 0

−(1 + i) 0 0 0


 (A.71)

M̂16 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 . (A.72)
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A.4. Maximum-likelihood estimation

The tomographic reconstruction (based on the treatment in [156]) of the density matrix
might produce a state that is not physical. The maximum-likelihood estimation is em-
ployed to find the closest physical state that reproduces the measured data with the highest
probability.

First, we construct a density matrix that is physical. This physical density matrix $̂P(t1, ..., t16)
is of the form

$̂P(t1, ..., t16) =
T̂†T̂

tr(T̂†T̂)
(A.73)

with

T̂(t1, ..., t16) =




t1 0 0 0
t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4


 . (A.74)

In the next step, we derive a likelihood function to determine the probability that the cur-
rent density matrix reproduces the set of measured data, i.e. how well the density matrix
describes the underlying physical state.

Assuming a Gaussian probability distribution of the coincidence counts, we obtain the
probability to measure the set of experimental coincidence counts for the measurements in
the 16 bases, n1, ..., n16, for the current density matrix $̂P(t1, ..., t16)

P(t1, ..., t16) =
1
N

16

∏
ν=1

exp

(
−
(
N〈ψν|$̂P(t1, ..., t16)|ψν〉 − nν

)2

2N〈ψν|$̂P(t1, ..., t16)|ψν〉

)
, (A.75)

where 1
N accounts for the normalization,N〈ψν|$̂P(t1, ..., t16)|ψν〉 is the model-state–dependent

coincidence-counts expectation value, andN =
4
∑

ν=1
nν. Here we used that the standard de-

viation is approximately
√
N〈ψν|$̂P(t1, ..., t16)|ψν〉.

To find the optimal set of optimization parameters t1, ..., t16, we maximize the function
(A.75). Since the latter is computationally slow, it is more efficient to minimize the (nega-
tive) logarithm of P(t1, ..., t16),

L(t1, ..., t16) =
16

∑
ν=1

(N〈ψν|$̂P(t1, ..., t16)|ψν〉 − nν)
2

2N〈ψν|$̂P(t1, ..., t16)|ψν〉
. (A.76)

Our implementation of this method works with the joint atom-photon expectation val-
ues wν for measurements in the ν-th basis. The uncertainties uν of wν are derived from
error propagation of the individual uncertainties in the conditioned expectation values
wion

ij = tr(σi ⊗ $j), where σ1,2,3 denotes the Pauli matrices (without the identity) and $j
describes the atomic density matrix conditioned on the detection of the photon in state
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j (|H〉,|D〉,|V〉,|A〉,|R〉, and |L〉), derived from a finite difference quotient, and the uncer-
tainty of the photon-detection probability pph,k in the k-th basis, derived from Bayesian
statistics. A summary of the entries of wν is given in tab. A.4.

ν σion σphoton wν

1 σ0 (1) σ0 1
2 σ0 (1) σ1 (H/V) pph,H - pph,V
3 σ0 (1) σ2 (D/A) pph,D - pph,A
4 σ0 (1) σ3 (R/L) pph,R - pph,L
5 σ1 (σx) σ0 wion

x,H · pph,H + wion
x,V · pph,V

6 σ1 (σx) σ1 (H/V) wion
x,H · pph,H - wion

x,V · pph,V

7 σ1 (σx) σ2 (D/A) wion
x,D · pph,D - wion

x,A · pph,A

8 σ1 (σx) σ3 (R/L) wion
x,R · pph,R - wion

x,L · pph,L

9 σ2 (σy) σ0 wion
y,H · pph,H + wion

y,V · pph,V

10 σ2 (σy) σ1 (H/V) wion
y,H · pph,H - wion

y,V · pph,V

11 σ2 (σy) σ2 (D/A) wion
y,D · pph,D - wion

y,A · pph,A

12 σ2 (σy) σ3 (R/L) wion
y,R · pph,R - wion

y,L · pph,L

13 σ3 (σz) σ0 wion
z,H · pph,H + wion

z,V · pph,V

14 σ3 (σz) σ1 (H/V) wion
z,H · pph,H - wion

z,V · pph,V

15 σ3 (σz) σ2 (D/A) wion
z,D · pph,D - wion

z,A · pph,A

16 σ3 (σz) σ3 (R/L) wion
z,R · pph,R - wion

z,L · pph,L

Table A.2.: List of the joint atom-photon expectation values wν for measurements in different bases.

With these, we modify the expression for the likelihood function (A.76) accordingly and
obtain

L(t1, ..., t16) =
16

∑
ν=1

(〈ψν|$̂P(t1, ..., t16)|ψν〉 − wν)
2

uν
=

16

∑
ν=1

(tr(σν ⊗ $̂P)− wν)
2

uν
, (A.77)

with σν = σion,i ⊗ σphoton,j when i and j are chosen appropriately, i.e. according to tab. A.4.
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A.5. Numerical simulation of the Mølmer-Sørensen gate

The numerical simulation closely orients on the theoretical framework developed in sec.
7.2.1. To reproduce a more realistic scenario, we introduce (undesired) coupling to the
carrier transition caused by the servo-bump sidebands in the laser spectrum. Hence, the
interaction Hamiltonian from eq. (7.2) is modified accordingly and we obtain

Ĥint = ∑
i,j

h̄Ω
2


σ̂

(i)
+ (t)ei(η(â†(t)+â(t))−ωjt) +

σ̂
(i)
+ ΩC

h̄Ω︸ ︷︷ ︸
Carrier coupling

+H.c.


 , (A.78)

where ΩC is the Rabi frequency describing the coupling of the laser servo bumps to the
atomic carrier transition. As before, we apply the Taylor decomposition

e±i(η(â†(t)+â(t))) ≈ 1± iη
(

â†(t) + â(t)
)
= 1± iη

(
â†eiνt + âe−iνt

)
(A.79)

to approximate the Hamiltonian as

Ĥint ≈∑
i,j

h̄Ω
2

(
σ̂
(i)
+ ei(ωeg−ωj)t

(
1 + iη(â†eiνt + âe−iνt)

)
+

σ̂
(i)
+ ΩC

h̄Ω
+ H.c.

)
. (A.80)

We include another extension compared to section 7.2.1 to allow for a global detuning of
the center frequency (ω1 + ω2)/2 to the atomic carrier-transition frequency ωeg, e.g. due
to light shift of the addressed transition, denoted by ∆, as depicted in fig. A.1.

ω

ωeg

−ν νδ δ

∆

Figure A.1.: Schematic depiction of the relevant atomic transitions and the frequencies of the bi-
chomatic laser field. The atomic carrier-transition frequency is denoted by ωeg, and the two axial
sidebands appear at frequencies ±ν from the carrier. The bichromatic light field again is addition-
ally detuned by ±δ to the red and blue axial sideband, and its center frequency, ideally exactly
at the carrier-transition frequency, can exhibit an offset ∆ from the carrier, caused for instance by
light-shift effects.
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With that, we get

ωeg −ω1 = ν + δ + ∆ (A.81)

ωeg −ω2 = −(ν + δ) + ∆ (A.82)

and hence

Ĥint ≈∑
i

h̄Ω
2

(
σ̂
(i)
+

(
ei(ν+δ+∆)t + ei(−(ν+δ)+∆)t)(1 + iη(â†eiνt + âe−iνt)

)
+

σ̂
(i)
+ ΩC

h̄Ω
+ H.c.

)
.

(A.83)
Rewriting (A.83) yields

Ĥint ≈∑
i

h̄Ω
2

(
σ̂
(i)
+

(
ei(ν+δ+∆)t + ei(−(ν+δ)+∆)t + iη â†ei(2ν+δ+∆)t + iη â†ei(∆−δ)t

+iη âei(δ+∆)t + iη âei(−(2ν+δ)+∆)t)+ σ̂
(i)
+ ΩC

h̄Ω
+ H.c.

)
.

(A.84)

Applying the rotating-wave approximation, we omit all terms but those in ∆± δ to obtain

Ĥint ≈∑
i

(
h̄Ω
2

(
σ̂
(i)
+

(
iη â†ei(∆−δ)t + iη âei(δ+∆)t)+ H.c.

)
+

1
2

σ̂
(i)
+ ΩC +

1
2

σ̂
(i)
− ΩC

)
, (A.85)

using that ΩC = Ω†
C. Defining

Ai,1(t) = Ω ei(δ+∆)t , (A.86)

Ai,2(t) = Ω ei(δ−∆)t , (A.87)

(A.85) is formulated as

Ĥint/h̄ ≈∑
i

(
iη
2

(
Ai,1(t)σ̂

(i)
+ â + Ai,2(t)σ̂

(i)
+ â† − A†

i,1(t)σ̂
(i)
− â† − A†

i,2(t)σ̂
(i)
− â
)

+
ΩC

2

(
σ̂
(i)
+ + σ̂

(i)
−

))
.

(A.88)

Using

σ̂
(1)
+ = 2|g•〉〈e • | , σ̂

(1)
− = 2|e•〉〈g • | , (A.89)

σ̂
(2)
+ = 2| • g〉〈•e| , σ̂

(2)
− = 2| • e〉〈•g| (A.90)
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and defining the servo-bump Hamiltonian

ĤSB/h̄ =
ΩC

2

(
σ̂
(1)
+ + σ̂

(1)
− + σ̂

(2)
+ + σ̂

(2)
−

)

= ΩC

(
|g•〉〈e • |+ |e•〉〈g • |+ | • g〉〈•e|+ | • e〉〈•g|

)
,

(A.91)

we evaluate the action of the interaction Hamiltonian

Ĥint/h̄ ≈ iη
(

A1,1(t)â|g•〉〈e • |+ A1,2(t)â†|g•〉〈e • | − A†
1,1(t)â†|e•〉〈g • | − A†

1,2(t)â|e•〉〈g • |

−A2,1(t)â| • g〉〈•e| − A2,2(t)â†| • g〉〈•e|+ A†
2,1(t)â†| • e〉〈•g|+ A†

2,2(t)â| • e〉〈•g|
)

+ΩC

(
|g•〉〈e • |+ |e•〉〈g • |+ | • g〉〈•e|+ | • e〉〈•g|

)

(A.92)

onto a general initial state

|ψ〉 =
∞

∑
n=0

(αn|gg, n〉+ βn|eg, n〉+ γn|ge, n〉+ δn|ee, n〉) , (A.93)

where n denotes the number of motional quanta in the system.
The system dynamics is described by Schrödinger’s equation in the rotating atomic ref-

erence frame
Ĥint/h̄|ψ〉 = i

∂

∂t
|ψ〉 . (A.94)

The temporal derivative of the initial state is given by

∂

∂t
|ψ〉 =

∞

∑
n=0

(α̇n|gg, n〉+ β̇n|eg, n〉+ γ̇n|ge, n〉+ δ̇n|ee, n〉) . (A.95)

Using

â| • •, n〉 =
√

n| • •, n− 1〉 , (A.96)

â†| • •, n〉 =
√

n + 1| • •, n + 1〉 , (A.97)

application of Ĥint/h̄ to |ψ〉 then, after some maths, reveals the differential equations for
the coefficients αn, βn, γn and δn, describing the temporal evolution, including the carrier
coupling, from comparison of the respective coefficients:

α̇n = η
(

A1,1(t)βn+1
√

n + 1 + A1,2(t)βn−1
√

n + A2,1(t)γn+1
√

n + 1
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+ A2,2(t)γn−1
√

n
)
− iΓC

(
βn + γn

)
,

β̇n = η
(
− A†

1,1(t)αn−1
√

n− A†
1,2(t)αn+1

√
n + 1 + A2,1(t)δn+1

√
n + 1

+ A2,2(t)δn−1
√

n
)
− iΓC

(
αn + δn

)
,

γ̇n = η
(

A1,1(t)δn+1
√

n + 1 + A1,2(t)δn−1
√

n− A†
2,1(t)αn−1

√
n

− A†
2,2(t)αn+1

√
n + 1

)
− iΓC

(
δn + αn

)
,

δ̇n = η
(
− A†

1,1(t)γn−1
√

n− A†
1,2(t)γn+1

√
n + 1− A†

2,1(t)βn−1
√

n

− A†
2,2(t)βn+1

√
n + 1

)
− iΓC

(
βn + γn

)
.
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A.6. Mølmer-Sørensen gate on the radial sidebands

Sometimes it might be desirable to perform the Mølmer-Sørensen gate not on the axial side-
bands3, but on the radial sidebands, e.g. to eliminate axial sidebands in the spectrum, thus
reducing erroneous coupling to neighboring transitions. However, this approach exhibits
some experimental challenges, as instead of one sideband (or two if we consider both, the
red and blue sideband), we drive four (or eight) transitions simultaneously, two motional
eigenmodes (center-of-mass (COM) and rocking) for two radial trap frequencies, which all
have to undergo the same dynamics, i.e. for which the motion has to be decoupled from
the internal atomic state after the entangling-gate time.

To fulfill that condition, a more elaborate pulse sequence, where the complex Rabi fre-
quency becomes time-dependent, has to be implemented. Starting from the idea proposed
in [192], the calculation for the optimal pulse shape is carried out.

We assume that the Rabi frequency Ω(t) and the four Lamb-Dicke parameters ηm, m ∈
{1, 2, 3, 4}, for the four radial modes are equal on both ions. Furthermore assuming the
four radial frequencies ωm to be equal for both ions (i.e. ω

(1)
m = ω

(2)
m ), according to the

treatment in [193], a bichromatic pulse at the detuning δ from the carrier frequency ω0 of
pulse duration τ results in the following interaction Hamiltonian:

Û(τ) = exp

(
2

∑
i=1

φ̂i(τ)σ
(i)
x + i ∑

i 6=j
χi,j(τ)σ

(i)
x σ

(j)
x

)
. (A.98)

The first term is the qubit-motion coupling on ion i, where

φ̂i(τ) =
4

∑
m=1

(
αm(τ)â†

m − α∗m(τ)âm

)
, (A.99)

â†
m(âm) being the raising (lowering) operator for the m-th radial mode, and σ̂i

x is the Pauli-X
operator of the i-th qubit. The factors αm(τ) are calculated as

αm(τ) = iηm

∫ τ

0
Ω(t) sin (δt) eiωmtdt . (A.100)

The second term of (A.98) describes the entangling interaction between qubits i and j, with

χi,j(τ) = 2
4

∑
m=1

η2
m

τ∫

t=0

t∫

t′=0

Ω(t′)Ω(t) sin (δt′) sin (δt) sin
(
ωm(t− t′)

)
dt′dt . (A.101)

The time-dependent Rabi frequency Ω(t) is used as a control parameter for the optimiza-
tion of the gate.
In order to achieve an entangling XX gate, we have to realize a pulse shape that fulfills

Û(τ) = exp
(

iπσ̂
(1)
x σ̂

(2)
x /4

)
. (A.102)

3Which in our case are addressed by the beam under 45◦.
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This requires χ1,2(τ) = π/4 and αm(τ) = 0. Thus, we have to separate the time-dependent
Rabi frequency Ω(t) into 2 · 2 + 1 = 5 equally long segments of duration τ/5 with Rabi
frequencies Ωk, k = 1, 2, 3, 4, 5. We obtain

αm(τ) = iηm

5

∑
k=1

k
5 τ∫

k−1
5 τ

Ωk sin (δt) eiωmtdt

= iηm

5

∑
k=1

( k
5 τ∫

k−1
5 τ

Ωk sin (δt) cos
(
ωmt

)
dt

+ i

k
5 τ∫

k−1
5 τ

Ωk sin (δt) sin
(
ωmt

)
dt

)

= iηm

5

∑
k=1

(
Ωk

[
− ωm sin (ωmt) sin (δt) + δ cos (ωmt) cos (δt)

δ2 −ω2
m

] k
5 τ

t= k−1
5 τ

+ Ωk

[
ωm cos (ωmt) sin (δt)− δ sin (ωmt) cos (δt)

δ2 −ω2
m

] k
5 τ

t= k−1
5 τ

)

= iηm

5

∑
k=1

Ωk

(
− ωm sin (ωm

k
5 τ) sin (δ k

5 τ) + δ cos (ωm
k
5 τ) cos (δ k

5 τ)

δ2 −ω2
m

+
ωm sin (ωm

k−1
5 τ) sin (δ k−1

5 τ) + δ cos (ωm
k−1

5 τ) cos (δ k−1
5 τ)

δ2 −ω2
m

+
ωm cos (ωm

k
5 τ) sin (δ k

5 τ)− δ sin (ωm
k
5 τ) cos (δ k

5 τ)

δ2 −ω2
m

− ωm cos (ωm
k−1

5 τ) sin (δ k−1
5 τ)− δ sin (ωm

k−1
5 τ) cos (δ k−1

5 τ)

δ2 −ω2
m

)

:= iηm

5

∑
k=1

Ωkak,m

!
= 0

(A.103)

and

χ1,2 = 2
4

∑
m=1

η2
m

( 1
5 τ∫

t=0

t∫

t′=0

Ω1Ω1 sin (δt′) sin (δt) sin
(
ωm(t− t′)

)
dt′dt
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+
5

∑
k=2

k
5 τ∫

t= k−1
5 τ

( k−1

∑
l=1

l
5 τ∫

t′= l−1
5 τ

ΩkΩl sin (δt′) sin (δt) sin
(
ωm(t− t′)

)
dt′dt

+

t∫

t′= k−1
5 τ

ΩkΩk sin (δt′) sin (δt) sin
(
ωm(t− t′)

)
dt′dt

))

= 2
4

∑
m=1

η2
m

( 1
5 τ∫

t=0

−Ω1Ω1 sin (δt)
[sin (ωmt + (δ−ωm)t′)

2(δ−ωm)
+

sin (ωmt− (δ + ωm)t′)
2(δ + ωm)

]t

t′=0
dt

+
5

∑
k=2

k
5 τ∫

t= k−1
5 τ

( k−1

∑
l=1
−ΩkΩl sin (δt)

[sin (ωmt + (δ−ωm)t′)
2(δ−ωm)

+
sin (ωmt− (δ + ωm)t′)

2(δ + ωm)

] l
5 τ

t′= l−1
5 τ

−ΩkΩk sin (δt)
[sin (ωmt + (δ−ωm)t′)

2(δ−ωm)
+

sin (ωmt− (δ + ωm)t′)
2(δ + ωm)

]t

t′= k−1
5 τ

)
dt

)

= 2
4

∑
m=1

η2
m

( 1
5 τ∫

t=0

−Ω1Ω1 sin (δt)
{

sin (δt)
2(δ−ωm)

+
sin (−δt)
2(δ + ωm)

− sin (ωmt)
2(δ−ωm)

− sin (ωmt)
2(δ + ωm)

}
dt

+
5

∑
k=2

k
5 τ∫

t= k−1
5 τ

( k−1

∑
l=1
−ΩkΩl sin (δt)

{sin (ωmt + (δ−ωm)
l
5 τ)

2(δ−ωm)
+

sin (ωmt− (δ + ωm)
l
5 τ)

2(δ + ωm)

− sin (ωmt + (δ−ωm)
l−1

5 τ)

2(δ−ωm)
− sin (ωmt− (δ + ωm)

l−1
5 τ)

2(δ + ωm)

}

−ΩkΩk sin (δt)
{ sin (δt)

2(δ−ωm)
+

sin (−δt)
2(δ + ωm)

− sin (ωmt + (δ−ωm)
k−1

5 τ)

2(δ−ωm)

− sin (ωmt− (δ + ωm)
k−1

5 τ)

2(δ + ωm)

})
dt

)
. (A.104)

With

•

1
5 τ∫

t=0

sin (δt) sin (δt)dt =
[

t
2
− sin (2δt)

4δ

] 1
5 τ

t=0
=

τ

10
− sin ( 2

5 δτ)

4δ
, (A.105)
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•
1
5 τ∫

t=0

sin (δt) sin (ωmt)dt =
[

ωm sin (δt) cos (ωmt)− δ cos (δt) sin (ωmt)
δ2 −ω2

m

] 1
5 τ

t=0

=
ωm sin (δ τ

5 ) cos (ωm
τ
5 )− δ cos (δ τ

5 ) sin (ωm
τ
5 )

δ2 −ω2
m

,

(A.106)

•
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (ωmt + (δ−ωm)X)dt , X =
l
5

τ,
l − 1

5
τ,

k− 1
5

τ

=
1
2

[
sin ((δ−ωm)(t− X))

δ−ωm
− sin ((δ + ωm)t + (δ−ωm)X)

δ + ωm

] k
5 τ

t= k−1
5 τ

=
1
2

{
sin ((δ−ωm)(

k
5 τ − X))

δ−ωm
− sin ((δ + ωm)

k
5 τ + (δ−ωm)X)

δ + ωm

− sin ((δ−ωm)(
k−1

5 τ − X))

δ−ωm
+

sin ((δ + ωm)
k−1

5 τ + (δ−ωm)X)

δ + ωm

}
,

(A.107)

•
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (ωmt− (δ + ωm)X)dt

=
1
2

[
sin ((δ−ωm)t + (δ + ωm)X)

δ−ωm
− sin ((δ + ωm)(t− X))

δ + ωm

] k
5 τ

t= k−1
5 τ

=
1
2

{
sin ((δ−ωm)

k
5 τ + (δ + ωm)X)

δ−ωm
− sin ((δ + ωm)(

k
5 τ − X))

δ + ωm

− sin ((δ−ωm)
k−1

5 τ + (δ + ωm)X)

δ−ωm

+
sin ((δ + ωm)(

k−1
5 τ − X))

δ + ωm

}
,

(A.108)

•
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (δt)dt =
[

t
2
− sin (2δt)

4δ

] k
5 τ

t= k−1
5 τ

=
k

10
τ− sin ( 2k

5 δτ)

4δ
− k− 1

10
τ+

sin ( 2(k−1)
5 δτ)

4δ

(A.109)
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we get

χ1,2 = 2
4

∑
m=1

η2
m

(
−Ω1Ω1

{
1

2(δ−ωm)

[
1
5 τ∫

t=0

sin (δt) sin (δt)dt
]
− 1

2(δ + ωm)

[
1
5 τ∫

t=0

sin (δt) sin (δt)dt
]

− 1
2(δ−ωm)

[
1
5 τ∫

t=0

sin (δt) sin (ωmt)dt
]
− 1

2(δ + ωm)

[
1
5 τ∫

t=0

sin (δt) sin (ωmt)dt
]}

+
5

∑
k=2

( k−1

∑
l=1
−ΩkΩl

{
1

2(δ−ωm)

[
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (ωmt + (δ−ωm)
l
5

τ)dt
]

+
1

2(δ + ωm)

[
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (ωmt− (δ + ωm)
l
5

τ)dt
]

− 1
2(δ−ωm)

[
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (ωmt + (δ−ωm)
l − 1

5
τ)dt

]

− 1
2(δ + ωm)

[
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (ωmt− (δ + ωm)
l − 1

5
τ)dt

]}

−ΩkΩk

{
1

2(δ−ωm)

[
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (δt)dt
]
− 1

2(δ + ωm)

[
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (δt)dt
]

− 1
2(δ−ωm)

[
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (ωmt + (δ−ωm)
k− 1

5
τ)dt

]

− 1
2(δ + ωm)

[
k
5 τ∫

t= k−1
5 τ

sin (δt) sin (ωmt− (δ + ωm)
k− 1

5
τ)dt

]}))

= 2
4

∑
m=1

η2
m

(
−Ω1Ω1

{
1

2(δ−ωm)

[ τ

10
− sin ( 2

5 δτ)

4δ

]
− 1

2(δ + ωm)

[ τ

10
− sin ( 2

5 δτ)

4δ

]

− 1
2(δ−ωm)

[ωm sin (δ τ
5 ) cos (ωm

τ
5 )− δ cos (δ τ

5 ) sin (ωm
τ
5 )

δ2 −ω2
m

]
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− 1
2(δ + ωm)

[ωm sin (δ τ
5 ) cos (ωm

τ
5 )− δ cos (δ τ

5 ) sin (ωm
τ
5 )

δ2 −ω2
m

]}

+
5

∑
k=2

( k−1

∑
l=1
−ΩkΩl

{

1
2(δ−ωm)

[1
2

(
sin ((δ−ωm)(

k
5 τ − l

5 τ))

δ−ωm
− sin ((δ + ωm)

k
5 τ + (δ−ωm)

l
5 τ)

δ + ωm

− sin ((δ−ωm)(
k−1

5 τ − l
5 τ))

δ−ωm
+

sin ((δ + ωm)
k−1

5 τ + (δ−ωm)
l
5 τ)

δ + ωm

)]

+
1

2(δ + ωm)

[1
2

(
sin ((δ−ωm)

k
5 τ + (δ + ωm)

l
5 τ)

δ−ωm
− sin ((δ + ωm)(

k
5 τ − l

5 τ))

δ + ωm

−sin ((δ−ωm)
k−1

5 τ + (δ + ωm)
l
5 τ)

δ−ωm
+

sin ((δ + ωm)(
k−1

5 τ − l
5 τ))

δ + ωm

)]

− 1
2(δ−ωm)

[1
2

(
sin ((δ−ωm)(

k
5 τ − l−1

5 τ))

δ−ωm
− sin ((δ + ωm)

k
5 τ + (δ−ωm)

l−1
5 τ)

δ + ωm

− sin ((δ−ωm)(
k−1

5 τ − l−1
5 τ))

δ−ωm
+

sin ((δ + ωm)
k−1

5 τ + (δ−ωm)
l−1

5 τ)

δ + ωm

)]

− 1
2(δ + ωm)

[1
2

(
sin ((δ−ωm)

k
5 τ + (δ + ωm)

l−1
5 τ)

δ−ωm
− sin ((δ + ωm)(

k
5 τ − l−1

5 τ))

δ + ωm

−sin ((δ−ωm)
k−1

5 τ + (δ + ωm)
l−1

5 τ)

δ−ωm
+

sin ((δ + ωm)(
k−1

5 τ − l−1
5 τ))

δ + ωm

)]}

−ΩkΩk

{

(
1

2(δ−ωm)
− 1

2(δ + ωm)

)[ k
10

τ − sin ( 2k
5 δτ)

4δ
− k− 1

10
τ +

sin ( 2(k−1)
5 δτ)

4δ

]

− 1
2(δ−ωm)

[1
2

(
sin ((δ−ωm)(

k
5 τ − k−1

5 τ))

δ−ωm
− sin ((δ + ωm)

k
5 τ + (δ−ωm)

k−1
5 τ)

δ + ωm

− sin ((δ−ωm)(
k−1

5 τ − k−1
5 τ))

δ−ωm
+

sin ((δ + ωm)
k−1

5 τ + (δ−ωm)
k−1

5 τ)

δ + ωm

)]

− 1
2(δ + ωm)

[1
2

(
sin ((δ−ωm)

k
5 τ + (δ + ωm)

k−1
5 τ)

δ−ωm
− sin ((δ + ωm)(

k
5 τ − k−1

5 τ))

δ + ωm

− sin ((δ−ωm)
k−1

5 τ + (δ + ωm)
k−1

5 τ)

δ−ωm
+

sin ((δ + ωm)(
k−1

5 τ − k−1
5 τ))

δ + ωm

)]}

))
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:= 2
4

∑
m=1

η2
m

(
−Ω2

1bm +
5

∑
k=2

( k−1

∑
l=1
−ΩkΩlck,l,m −Ω2

kdk,m

))
!
=

π

4
, (A.110)

where we used the substitutions

ak,m := −ωm sin (ωm
k
5 τ) sin (δ k

5 τ) + δ cos (ωm
k
5 τ) cos (δ k

5 τ)

δ2 −ω2
m

+
ωm sin (ωm

k−1
5 τ) sin (δ k−1

5 τ) + δ cos (ωm
k−1

5 τ) cos (δ k−1
5 τ)

δ2 −ω2
m

+
ωm cos (ωm

k
5 τ) sin (δ k

5 τ)− δ sin (ωm
k
5 τ) cos (δ k

5 τ)

δ2 −ω2
m

− ωm cos (ωm
k−1

5 τ) sin (δ k−1
5 τ)− δ sin (ωm

k−1
5 τ) cos (δ k−1

5 τ)

δ2 −ω2
m

,

(A.111)

bm :=
1

2(δ−ωm)

[ τ

10
− sin ( 2

5 δτ)

4δ

]
− 1

2(δ + ωm)

[ τ

10
− sin ( 2

5 δτ)

4δ

]

− 1
2(δ−ωm)

[ωm sin (δ τ
5 ) cos (ωm

τ
5 )− δ cos (δ τ

5 ) sin (ωm
τ
5 )

δ2 −ω2
m

]

− 1
2(δ + ωm)

[ωm sin (δ τ
5 ) cos (ωm

τ
5 )− δ cos (δ τ

5 ) sin (ωm
τ
5 )

δ2 −ω2
m

]
,

(A.112)

ck,l,m :=
1

2(δ−ωm)

[1
2

(
sin ((δ−ωm)(

k
5 τ − l

5 τ))

δ−ωm
− sin ((δ + ωm)

k
5 τ + (δ−ωm)

l
5 τ)

δ + ωm

− sin ((δ−ωm)(
k−1

5 τ − l
5 τ))

δ−ωm
+

sin ((δ + ωm)
k−1

5 τ + (δ−ωm)
l
5 τ)

δ + ωm

)]

+
1

2(δ + ωm)

[1
2

(
sin ((δ−ωm)

k
5 τ + (δ + ωm)

l
5 τ)

δ−ωm
− sin ((δ + ωm)(

k
5 τ − l

5 τ))

δ + ωm

−sin ((δ−ωm)
k−1

5 τ + (δ + ωm)
l
5 τ)

δ−ωm
+

sin ((δ + ωm)(
k−1

5 τ − l
5 τ))

δ + ωm

)]

− 1
2(δ−ωm)

[1
2

(
sin ((δ−ωm)(

k
5 τ − l−1

5 τ))

δ−ωm
− sin ((δ + ωm)

k
5 τ + (δ−ωm)

l−1
5 τ)

δ + ωm

− sin ((δ−ωm)(
k−1

5 τ − l−1
5 τ))

δ−ωm
+

sin ((δ + ωm)
k−1

5 τ + (δ−ωm)
l−1

5 τ)

δ + ωm

)]

− 1
2(δ + ωm)

[1
2

(
sin ((δ−ωm)

k
5 τ + (δ + ωm)

l−1
5 τ)

δ−ωm
− sin ((δ + ωm)(

k
5 τ − l−1

5 τ))

δ + ωm

−sin ((δ−ωm)
k−1

5 τ + (δ + ωm)
l−1

5 τ)

δ−ωm
+

sin ((δ + ωm)(
k−1

5 τ − l−1
5 τ))

δ + ωm

)]
,

(A.113)
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and

dk,m :=
(

1
2(δ−ωm)

− 1
2(δ + ωm)

)[ k
10

τ − sin ( 2k
5 δτ)

4δ
− k− 1

10
τ +

sin ( 2(k−1)
5 δτ)

4δ

]

− 1
2(δ−ωm)

[1
2

(
sin ((δ−ωm)(

k
5 τ − k−1

5 τ))

δ−ωm
− sin ((δ + ωm)

k
5 τ + (δ−ωm)

k−1
5 τ)

δ + ωm

− sin ((δ−ωm)(
k−1

5 τ − k−1
5 τ))

δ−ωm
+

sin ((δ + ωm)
k−1

5 τ + (δ−ωm)
k−1

5 τ)

δ + ωm

)]

− 1
2(δ + ωm)

[1
2

(
sin ((δ−ωm)

k
5 τ + (δ + ωm)

k−1
5 τ)

δ−ωm
− sin ((δ + ωm)(

k
5 τ − k−1

5 τ))

δ + ωm

− sin ((δ−ωm)
k−1

5 τ + (δ + ωm)
k−1

5 τ)

δ−ωm
+

sin ((δ + ωm)(
k−1

5 τ − k−1
5 τ))

δ + ωm

)]

=

(
1

2(δ−ωm)
− 1

2(δ + ωm)

)[ 1
10

τ − sin ( 2k
5 δτ)

4δ
+

sin ( 2(k−1)
5 δτ)

4δ

]

− 1
2(δ−ωm)

[1
2

(
sin ((δ−ωm)

1
5 τ)

δ−ωm
− sin ((δ + ωm)

k
5 τ + (δ−ωm)

k−1
5 τ)

δ + ωm
+

sin (2δ k−1
5 τ)

δ + ωm

)]

− 1
2(δ + ωm)

[1
2

(
sin ((δ−ωm)

k
5 τ + (δ + ωm)

k−1
5 τ)

δ−ωm
− sin ((δ + ωm)

1
5 τ)

δ + ωm
− sin (2δ k−1

5 τ)

δ−ωm

)]
.

(A.114)

Eq. (A.110) yields

χ1,2 = 2
4

∑
m=1

η2
m

(
−Ω2

1bm +

[
−Ω2Ω1c2,1,m −Ω2

2d2,m

]

+

[
−Ω3Ω1c3,1,m −Ω3Ω2c3,2,m −Ω2

3d3,m

]

+

[
−Ω4Ω1c4,1,m −Ω4Ω2c4,2,m −Ω4Ω3c4,3,m −Ω2

4d4,m

]

+

[
−Ω5Ω1c5,1,m −Ω5Ω2c5,2,m −Ω5Ω3c5,3,m −Ω5Ω4c5,4,m −Ω2

5d5,m

])

(A.115)
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= Ω2
1

(
− 2 ∑

m
η2

mbm

)
+ Ω2Ω1

(
− 2 ∑

m
η2

mc2,1,m

)
+ Ω2

2

(
− 2 ∑

m
η2

md2,m

)

+ Ω3Ω1

(
− 2 ∑

m
η2

mc3,1,m

)
+ Ω3Ω2

(
− 2 ∑

m
η2

mc3,2,m

)
+ Ω2

3

(
− 2 ∑

m
η2

md3,m

)

+ Ω4Ω1

(
− 2 ∑

m
η2

mc4,1,m

)
+ Ω4Ω2

(
− 2 ∑

m
η2

mc4,2,m

)
+ Ω4Ω3

(
− 2 ∑

m
η2

mc4,3,m

)
+ Ω2

4

(
− 2 ∑

m
η2

md4,m

)

+ Ω5Ω1

(
− 2 ∑

m
η2

mc5,1,m

)
+ Ω5Ω2

(
− 2 ∑

m
η2

mc5,2,m

)
+ Ω5Ω3

(
− 2 ∑

m
η2

mc5,3,m

)
+ Ω5Ω4

(
− 2 ∑

m
η2

mc5,4,m

)

+ Ω2
5

(
− 2 ∑

m
η2

md5,m

)
.

(A.116)

Substituting

γ1,1 =

(
− 2 ∑

m
η2

mbm

)
, γ2,1 =

(
− 2 ∑

m
η2

mc2,1,m

)
,γ2,2 =

(
− 2 ∑

m
η2

md2,m

)
,

γ3,1 =

(
− 2 ∑

m
η2

mc3,1,m

)
,γ3,2 =

(
− 2 ∑

m
η2

mc3,2,m

)
,γ3,3 =

(
− 2 ∑

m
η2

md3,m

)
,

γ4,1 =

(
− 2 ∑

m
η2

mc4,1,m

)
,γ4,2 =

(
− 2 ∑

m
η2

mc4,2,m

)
,γ4,3 =

(
− 2 ∑

m
η2

mc4,3,m

)
,γ4,4 =

(
− 2 ∑

m
η2

md4,m

)
,

γ5,1 =

(
− 2 ∑

m
η2

mc5,1,m

)
,γ5,2 =

(
− 2 ∑

m
η2

mc5,2,m

)
,γ5,3 =

(
− 2 ∑

m
η2

mc5,3,m

)
,γ5,4 =

(
− 2 ∑

m
η2

mc5,4,m

)
,

γ5,5 =

(
− 2 ∑

m
η2

md5,m

)
,

(A.117)

we rewrite

χ1,2 = γ1,1Ω2
1 + γ2,1Ω2Ω1 + γ2,2Ω2

2 + γ3,1Ω3Ω1 + γ3,2Ω3Ω2 + γ3,3Ω2
3 + γ4,1Ω4Ω1 + γ4,2Ω4Ω2

+ γ4,3Ω4Ω3 + γ4,4Ω2
4 + γ5,1Ω5Ω1 + γ5,2Ω5Ω2 + γ5,3Ω5Ω3 + γ5,4Ω5Ω4 + γ5,5Ω2

5
!
=

π

4
.

(A.118)

The four conditions for αm are

αm = iηm

(
Ω1a1,m + Ω2a2,m + Ω3a3,m + Ω4a4,m + Ω5a5,m

)
!
= 0 ∀m ∈

{
1, 2, 3, 4

}
(A.119)

or

iηm

(
Ω1a1,m + Ω2a2,m + Ω3a3,m + Ω4a4,m

)
!
= −iηmΩ5a5,m ∀m ∈

{
1, 2, 3, 4

}
. (A.120)
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Eq. (A.120) can be written in the form




a1,1 a2,1 a3,1 a4,1
a1,2 a2,2 a3,2 a4,2
a1,3 a2,3 a3,3 a4,3
a1,4 a2,4 a3,4 a4,4




︸ ︷︷ ︸
:=A




Ω1
Ω2

Ω3

Ω4


 = −Ω5




a5,1
a5,2

a5,3

a5,4


 . (A.121)

Thus




Ω1
Ω2

Ω3

Ω4


 = −Ω5 A−1 ·




a5,1
a5,2

a5,3

a5,4


 . (A.122)

We define

A−1 := G =




g1,1 g2,1 g3,1 g4,1
g1,2 g2,2 g3,2 g4,2
g1,3 g2,3 g3,3 g4,3
g1,4 g2,4 g3,4 g4,4


 (A.123)

to obtain

Ω1 = −
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

Ω5

Ω2 = −
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)

Ω5

Ω3 = −
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)

Ω5

Ω4 = −
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)

Ω5

(A.124)
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Inserting (A.124) into (A.118) yields

χ1,2 = Ω2
5

(
γ1,1 ·

(
g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4

)2

+ γ2,1 ·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)
·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

+ γ2,2 ·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)2

+ γ3,1 ·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)
·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

+ γ3,2 ·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)
·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)

+ γ3,3 ·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)2

+ γ4,1 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)
·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

+ γ4,2 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)
·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)

+ γ4,3 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)
·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)

+ γ4,4 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)2

− γ5,1 ·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

− γ5,2 ·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)

− γ5,3 ·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)

− γ5,4 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)

+ γ5,5

)

:= Γ Ω2
5 ,

(A.125)

with

Γ = γ1,1 ·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)2

+ γ2,1 ·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)
·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

+ γ2,2 ·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)2

+ γ3,1 ·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)
·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

+ γ3,2 ·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)
·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)

+ γ3,3 ·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)2

+ γ4,1 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)
·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

+ γ4,2 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)
·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)

+ γ4,3 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)
·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)
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+ γ4,4 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)2

− γ5,1 ·
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)

− γ5,2 ·
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)

− γ5,3 ·
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)

− γ5,4 ·
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)

+ γ5,5 ,

(A.126)

and hence

χ1,2 = Γ Ω2
5

!
=

π

4

⇒ Ω5 =

√
π

4Γ
.

(A.127)

(A.127) results in

Ω1 = −
(

g1,1a5,1 + g2,1a5,2 + g3,1a5,3 + g4,1a5,4
)√ π

4Γ
(A.128)

Ω2 = −
(

g1,2a5,1 + g2,2a5,2 + g3,2a5,3 + g4,2a5,4
)√ π

4Γ
(A.129)

Ω3 = −
(

g1,3a5,1 + g2,3a5,2 + g3,3a5,3 + g4,3a5,4
)√ π

4Γ
(A.130)

Ω4 = −
(

g1,4a5,1 + g2,4a5,2 + g3,4a5,3 + g4,4a5,4
)√ π

4Γ
. (A.131)
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