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Abstract

While large amounts of epigenomic data are publicly available, their retrieval in a form
suitable for downstream analysis is a bottleneck in current research. In a typical analy-
sis, users are required to download huge files that span the entire genome, even if they
are only interested in a small subset (e.g., promoter regions) or an aggregation thereof.
Moreover, complex operations on genome-level data are not always feasible on a local
computer due to resource limitations.
The DeepBlue Epigenomic Data Server mitigates this issue by providing a robust server
that affords a powerful API for searching, filtering, transforming, aggregating, enrich-
ing, and downloading data from several epigenomic consortia. Furthermore, its main
component implements scalable data storage and Manipulation methods that scale with
the increasing amount of epigenetic data, thereby making it the ideal resource for re-
searchers that seek to integrate epigenomic data into their analysis workflow.
This work also presents companion tools that utilize the DeepBlue API to enable users
not proficient in scripting or programming languages to analyze epigenomic data in
a user-friendly way: (i) an R/Bioconductor package that integrates DeepBlue into the R
analysis workflow. The extracted data are automatically converted into suitable R data
structures for downstream analysis and visualization within the Bioconductor frame-
work; (ii) a web portal that enables users to search, select, filter and download the epige-
nomic data available in the DeepBlue Server. This interface provides elements, such as
data tables, grids, data selections, developed for empowering users to find the required
epigenomic data in a straightforward interface; (iii) DIVE, a web data analysis tool that
allows researchers to perform large-epigenomic data analysis in a programming-free en-
vironment. DIVE enables users to compare their datasets to the datasets available in the
DeepBlue Server in an intuitive interface, which summarizes the comparison of hundreds
of datasets in a simple chart. Furthermore, these tools are integrated, being capable of
sharing results among themselves, creating a powerful large-scale epigenomic data anal-
ysis environment.
The DeepBlue Epigenomic Data Server and its ecosystem was well received by the Inter-
national Human Epigenome Consortium and already attracted much attention by the
epigenomic research community with currently 160 registered users and more than
three million anonymous workflow processing requests since its release.
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Kurzfassung

Während große Mengen epigenomischer Daten öffentlich verfügbar sind, ist ihre
Abfrage in einer für die Downstream-Analyse geeigneten Form ein Engpass in der
aktuellen Forschung. Bei einer typischen Analyse müssen Benutzer riesige Dateien
herunterladen, die das gesamte Genom umfassen, selbst wenn sie nur an einer kleinen
Teilmenge (z.B., Promotorregionen) oder einer Aggregation davon interessiert sind.
Darüber hinaus sind komplexe Vorgänge mit Daten auf Genomebene aufgrund von
Ressourceneinschränkungen auf einem lokalen Computer nicht immer möglich.

Der DeepBlue Epigenomic Data Server behebt dieses Problem, indem er eine leis-
tungsstarke API zum Suchen, Filtern, Umwandeln, Aggregieren, Anreichern und
Herunterladen von Daten verschiedener epigenomischer Konsortien bietet. Darüber
hinaus implementiert der DeepBlue-Server skalierbare Datenspeicherungs- und manip-
ulationsmethoden, die der zunehmenden Menge epigenetischer Daten gerecht wer-
den. Dadurch ist der DeepBlue Server ideal für Forscher geeignet, die die aktuellen
epigenomischen Ressourcen in ihren Analyse-Workflow integrieren möchten.

In dieser Arbeit werden zusätzlich Begleittools vorgestellt, die die DeepBlue-API ver-
wenden, um Benutzern, die sich mit Scripting oder Programmiersprachen nicht ausken-
nen, die Möglichkeit zu geben, epigenomische Daten auf benutzerfreundliche Weise zu
analysieren: (i) ein R/ Bioconductor-Paket, das DeepBlue in den R-Analyse-Workflow inte-
griert. Die extrahierten Daten werden automatisch in geeignete R-Datenstrukturen für
die Downstream-Analyse und Visualisierung innerhalb des Bioconductor-Frameworks
konvertiert; (ii) ein Webportal, über das Benutzer die auf dem DeepBlue Server ver-
fügbaren epigenomischen Daten suchen, auswählen, filtern und herunterladen kön-
nen. Diese Schnittstelle bietet Elemente wie Datentabellen, Raster, Datenselektio-
nen, mit denen Benutzer die erforderlichen epigenomischen Daten in einer einfachen
Schnittstelle finden können; (iii) DIVE, ein Webdatenanalysetool, mit dem Forscher um-
fangreiche epigenomische Datenanalysen in einer programmierungsfreien Umgebung
durchführen können. Mit DIVE können Benutzer ihre Datensätze mit den im Deep-
Blue Server verfügbaren Datensätzen in einer intuitiven Benutzeroberfläche vergleichen.
Dabei kann der Vergleich hunderter Datensätze in einem Diagramm ausgedrückt wer-
den. Aufgrund der großen Datenmenge, die in DIVE verfügbar ist, werden Metho-
den bereitgestellt, mit denen die ähnlichsten Datensätze für eine vergleichende Anal-
yse vorgeschlagen werden können. Alle zuvor genannten Tools sind miteinander in-
tegriert, so dass sie die Ergebnisse untereinander austauschen können, wodurch eine
leistungsstarke Umgebung für die Analyse epigenomischer Daten entsteht.

Der DeepBlue Epigenomic Data Server und sein Ökosystem wurden vom International
Human Epigenome Consortium äußerst gut aufgenommen und erreichten seit ihrer
Veröffentlichung große Aufmerksamkeit bei der epigenomischen Forschungsgemein-
schaft mit derzeit 160 registrierten Benutzern und mehr als drei Millionen anonymen
Verarbeitungsanforderungen.
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1
Introduction

In 2001, two drafts of the human genome sequence first became available (Lander et al.
2001; Venter et al. 2001), holding the promise of quickly advancing our understanding
of gene regulation and disease mechanisms. However, researchers have soon realized
that they have to look beyond the genome to understand the complex behavior observed
between different cell types that all share the same genetic information. Epigenetic re-
search focuses on understanding factors influencing gene regulation that are not coded
in DNA and yet some of which are heritable. The field covers various cellular mech-
anisms such as DNA methylation, histone modification, RNA function, and transcrip-
tion factor binding sites. Recent advances in high-throughput profiling technologies
allow for systematically collecting data on each of these mechanisms in large-scale ex-
periments (P. J. Park 2009; Tsompana and Buck 2014; Y. Li and Tollefsbol 2011).

These efforts are fostered and concerted by international collaborations, such as the
International Human Epigenome Consortium (IHEC) (Stunnenberg et al. 2016) and its mem-
ber projects’, such as BLUEPRINT Epigenome Project (Adams et al. 2012; Martens and
Stunnenberg 2013), DEEP (http://www.deutsches-epigenom-programm.de), NIH
Roadmap Epigenomics Mapping Consortium (REMC) (Roadmap Epigenomics Consortium
et al. 2015), and The Encyclopedia of DNA Elements (ENCODE) (ENCODE Project Consor-
tium 2012). As a result of these collaborations, researchers can exploit massive amounts
of publicly available epigenomic1 data on dozens of cell types, cell lines and tissues.
Access to these data is streamlined by existing data portals (Bujold et al. 2016; J. M.
Fernández et al. 2016; Sloan et al. 2015) and, in principle, allows for answering critical
biomedical questions. However, few researchers possess the necessary technical skills
and time to operate on such large datasets.

Moreover, working with such data requires a suitable computational infrastructure
not accessible ubiquitously. The difficulties for accessing the publicly available epige-
nomic data creates a severe bottleneck in research and, as a result, data from these costly
experiments are currently underused. To address the current epigenomic data deluge,
the DeepBlue Epigenomic Data Server and its companion libraries and analysis software,
such as DIVE were developed.

The DeepBlue Epigenomic Data Server and its ecosystem provide straightforward access
to the public epigenomic data produced by the IHEC member projects’ and reprocessed
by the ChIP-Atlas (Oki et al. 2018a). Access to DeepBlue is facilitated through a powerful
API, a data portal, and a data analysis software. The API does not only allow for data
access but also allows performing complex operations on epigenomic data directly on

1 In this thesis, the term “epigenetic” describes the changes, characteristics, and mechanisms, while
“epigenomic” refers to the collective of epigenetic events in a specific entity, e.g. a single cell, a cell
line, a cell type, tissue, organ, or organism). For this reason, the term “epigenomic data” refers to the
epigenomic information to a specific epigenetic entity.

http://www.deutsches-epigenom-programm.de
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the server. It empowers researchers to perform large-scale data analysis without the
need for sophisticated hardware and software.

1.1 Thesis goals and outline

This thesis seeks to achieve three goals:
• Organize the public epigenomic data such that researchers can answer their ques-

tions more easily
• Provide means for finding, operating, and analyzing the existing and currently

generated epigenomic data in a way that matches the current pace of epigenomic
data generation

• Empower researchers with methods and techniques for performing large-scale
epigenomic data analysis

The DeepBlue Epigenomic Data Server and its ecosystem were developed with the in-
tent to answer the previous goals. The result was an ecosystem of tools and libraries
empowering users to finding, retrieve, manipulating, and analyzing public epigenomic
data.

This thesis is divided into eight chapters plus the appendices. It is structured as fol-
lows:

• Chapter 1 introduces into the topic.
• Chapter 2 presents the necessary background for understanding current epige-

nomic data analysis questions. It presents the main data producers, commonly
used data formats, and major access and analysis issues.

• Chapter 3 introduces the reader to methods and software for storing, analyzing,
and exploring epigenomic data. This chapter also presents the requirements for
large-scale epigenomic data analysis tools.

• Chapter 4 presents the DeepBlue Epigenomic Data Server. It presents its main con-
cepts, and how it is structured, how the data is stored, its API, and its main meth-
ods.

• Chapter 5 presents the R/Bioconductor package DeepBlueR, a package that allows
users to perform data analysis in the R/Bioconductor environment.

• Chapter 6 presents the DeepBlue Web Portal, a web data portal where users can
easily find and download the needed epigenomic data.

• Chapter 7 presents DIVE, a powerful web application that allows users to perform
large-scale epigenomic data analysis directly in their web browser.

• Chapter 8 gives perspectives and outlook on the exciting field of computational
epigenetics and offer insights into how the methods and tools developed in this
thesis may help to elucidate the pressing epigenomic questions.

• In the appendix, Chapter A provides lists the data imported into the DeepBlue
Server, implementation details of the DeepBlue Epigenomic Data Server components,
the usage examples and use cases source code, and the DeepBlue Server API.



2
Computational Epigenetics

This chapter introduces the reader to the main aspects of epigenetics and epigenomics.
Section 2.1 provides a general introduction to epigenetics, its regulatory mechanisms,
and elements. Section 2.2 describes epigenomic data, how they are obtained, and
the data volume growth. Section 2.3 presents the epigenome mapping consortia and
projects for reprocessing the public available data.

2.1 Epigenetics

The sequencing of the human genome which yielded two first drafts of the whole
genome, one of them, publicly available in February 2001 came to be a cornerstone in the
field of life sciences (Lander et al. 2001). Scientists believed to have found the answer to
how human cells are programmed. But in the following years, it has become clear that
genes are not the only factors to regulate the many different functions of the human
body. Virtually all cells in our body contain the same DNA, but how do humans have
more than 200 different cell types? How is it possible that each cell type has a different
molecular and phenotypic make up and gene expression profile?

Through the study of epigenetics such question can be answered. The term epigenetics
is composed of the word “genetics” and the Greek prefix “epi” meaning “in addition to”,
in other words, an additional layer of information and control to the existing genomic
information.

Epigenetics deals with the mechanisms in our cells that regulate the expression of our
genes. Virtually1, each single cell contains the complete ‘genetic recipe’ of an individual
human being. Given the high degree of specialization of different cell types, only a part
of the genetic information is read and encoded to proteins.

Epigenetics can be explained through an analogy: the DNA is a ‘big recipe book’,
containing genes, recipe, of each protein. The recipe book is the same across all cells of
an organism, but the way it is read and interpreted depends on each restaurant. Our
recipe book contains recipes of different traditional food styles: Indian food, Italian food,
German food, and so on. However, some recipes are prepared in only some specific
restaurants, the same applies to the genes that their expression depends on their cell
type. So, epigenetics controls how and which genes are expressed in each cell of our
body.

Goldberg et al. 2007 gives a more formal definition of epigenetics as “the study of any po-
tentially stable and, ideally, heritable change in gene expression or cellular phenotype that occurs
without changes in Watson-Crick base-pairing of DNA”. It means that modifications in the

1 As an exception, erythrocytes (red blood cells) do not carry genetic material
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epigenomic structure are reflected by the gene expression and in the cellular phenotype,
but not directly in the DNA sequence.

Epigenetics also plays a fundamental role in cell differentiation. The control of the
genes being switched on or off depends directly on the epigenetic mechanisms of the
cell. These mechanisms depend on the cell memory that is “stored” using epigenetic
marks, such as DNA methylation. The influence or the changes of the epigenetic marks
in the cell differentiation are a well studied subject in haematopoiesis (Farlik et al. 2016)
and embryonic development (Sarmento et al. 2004).

In the recent past, it has become evident that epigenetic programming is closely linked
to human health. Epigenetic aberrations have significant implications for widespread
diseases like diabetes, mental disorders, and cancer. When it comes to understand how
and why changes in gene expression occur, scientists and physicians are one step closer
to provide better treatments and prevent those diseases. Thus, customized treatments
can be offered according to the epigenetic profile of the individual patient. This would
be a breakthrough in personalized medicine, a clinical approach which has proven very
promising in recent years.

2.1.1 Epigenetic Elements

The DNA in the cells is tightly packed. If unfolded and stretched, the total length of
DNA of each human cell, with all 6.4 billion basepairs (bps), would be roughly two
meters. Due to its many levels of packing, the DNA fits in the cell nucleus. Figure 2.1
shows the different levels of chromatin organization, starting from the beads-on-a-string
in the nucleosomes until the chromosomic conformation during the cell division.

The regulation of gene expression is closely connected to how the DNA is packaged
inside the cell nucleus. Martens and Stunnenberg 2013 summarize: “this packaging
is orchestrated via chromatin, the complex of DNA, RNA and proteins that provides
functionality to the genome ”. In contrast to the DNA, the chromatin is highly dynamic,
with multiple changes happening simultaneously in different places and levels during
the cell life cycle. The chromatin plasticity is achieved by the methylation of cytosines
in the DNA, process named as DNA methylation, and by modification in the chemical
structure of the histones that compose part of the nucleosomes, the histone marks (or
modifications)2.

Histone Marks

Epigenetic marks are modifications in the chromatin that control the gene expression of
the cell and consequently, its phenotype. Figure 2.2 illustrates these epigenetic elements
and how they control the chromatin structure and gene accessibility.

The nucleosome core particle consists of approximately 146 bp of DNA wrapped
around a histone octamer, consisting of eight histones, two copies of each H2A, H2B,
H3, and H4. The histone H1 and its variants influence the chromatin compaction. These
histones are subject to chemical modifications (Figure 2.3) which, as previously men-
tioned, directly influence the chromatin conformation, and thus the gene expression.

2 In this thesis, the terms histone marks and histone modification are used interchangeably.
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Figure 2.1: Levels of chromatin organization. Reprinted from Müller 2017.

The chromatin conformation influences directly the gene expression level: when the
chromatin is open the gene can be expressed. Hence, by modifying the chromatin con-
formation, histone modifications can generate synergistic or antagonistic interactions
on gene expressions, strongly affecting organism traits.

Histone modifications control the chromatin state, turning genomic regions tran-
siently active or silent. The pattern in which the histone modifications influence gene
expression, is named “histone code”. It is proposed that this epigenetic marking system
represents a fundamental regulatory mechanism that has an impact on most, if not all,
chromatin-template processes, with far-reaching consequences for cell fate decisions in
both normal and pathological development (Jenuwein and Allis 2001). It is still in dis-
cussion if the histone modifications are causative or just correlations (Calo and Wysocka
2013). Table 2.1 summarizes the general effects of the most well-known histone marks.

DNA methylation

DNA methylation is an epigenetic modification by which a methyl group is added to
cystosine or adenine in the DNA molecule. DNA methylation plays a fundamental role
in regulating gene expression and therefore a broad range of biological processes and
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Figure 2.2: Schematic overview of epigenetic modifications and effects on chromatin
structure and accessability of genes. Reprinted from Martens and Stunnen-
berg 2013. Obtained from the Haematologica Journal website http://www.
haematologica.org.

diseases (Yong et al. 2016), like genomic imprinting (E. Li et al. 1993), x-chromosomal
inactivation (A. J. Sharp et al. 2011), repression of transposable elements (Ikeda and
Nishimura 2015), cell differentiation (Khavari et al. 2010), aging (Ciccarone et al. 2018),
and carcinogenesis (Nakajima et al. 2008; Akhavan-Niaki and Samadani 2013).

This epigenetic modification usually occurs in regions with a high abundance of CpG
dinucleotides, named CpG islands. When CpG islands are located in a gene promoter,
DNA methylation typically acts to repress gene transcription. In mouse and human,
around 60‒70% of genes have a CpG island in their promoter region and most of these
CpG islands remain unmethylated independently of the transcriptional activity of the
gene, in both differentiated and undifferentiated cell types (Weber et al. 2007)

Figure 2.4 provides an overview of the epigenetic regulation of active gene expression:
the RNA polymerase II (RNAPII) complex binds to the promoter region of a gene. Ac-
tive promoters frequently carry the H3K4me3 histone modification as well as low levels

http://www.haematologica.org
http://www.haematologica.org
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Figure 2.3: Schematic overview of histone modifications. Reprinted from Martens and
Stunnenberg 2013. Obtained from the Haematologica Journal website http:
//www.haematologica.org.

Histone Mark Effect Reference
H3K27me3 facultatively repressed gene Barski et al. 2007
H3K27ac distinguishes active from poised enhancers Creyghton et al. 2010
H3K4me1 actively transcribed promoters Heintzman et al. 2007
H3K4me2 actively transcribed promoters Pekowska et al. 2010
H3K4me3 actively transcribed promoters Koch et al. 2007
H3K9me3 constitutively repressed genes Barski et al. 2007
H3K36me3 actively transcribed gene bodies Pu et al. 2015
H3K9ac actively transcribed promoters Gates et al. 2017
H3K14ac actively transcribed promoters Karmodiya et al. 2012

Table 2.1: Main histone marks and their effects.

of DNA methylation and are associated with nucelosome-depleted regions. Transcrip-
tional elongation is associated with H3K36me3 and DNA methylation in gene bodies.
Active enhancers (usually marked by histone acetylation and H3K4me1) can be located
dozens of kilobases upstream or downstream of a gene and come in close proximity
to promoter regions via loop structures. Transcription factors (TFs) can localize in pro-
moter regions or distal elements in order to regulate the assembly of the transcriptional
machinery (Müller 2017).

2.2 Epigenomic Data

Next Generation Sequencing (NGS) are technologies capable of high-throughput sequenc-
ing millions of short DNA reads and revolutionized the methods of producing epige-
nomic data. Sequencing costs have decreased significantly, from billions to a few thou-
sand dollars (National Human Genome Research Institute 2016), and sequencing the
entire genomes, from bacteria to mammalians, became a common task in research (Met-
zker 2010; Goodwin et al. 2016).

Development and improvements in the sequencing protocols extended their use be-
yond the scope of genomes, leading to the improvement of epigenome mapping tech-
niques. For example, in the last decade, technologies for mapping different epigenetic
marks were developed (Figure 2.5).

Due to these new technologies, thousands of epigenomic data files are regularly being
generated and available for researchers for studying epigenomic regulation processes.

http://www.haematologica.org
http://www.haematologica.org
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Figure 2.4: Epigenetic regulation of active gene expression: RNAPII complex binds the
promoter region of a gene. Active promoters frequently carry the H3K4me3
histone modification as well as low levels of DNA methylation and are associ-
ated with nucelosome depleted regions. Transcriptional elongation is associ-
ated with H3K36me3 and DNA methylation in gene bodies. Active enhancers
(marked by histone acetylation and H3K4me1) can be located dozens of kilo-
bases upstream or downstream of a gene and contact promoter regions via
loop structures. TFs can localize in promoter regions or distal elements in or-
der to regulate the assembly of the transcriptional machinery. (Reprinted from
Müller 2017).

In 2013, roughly 2, 000 sequencing instruments in laboratories and hospitals around
the world collectively sequenced 15 quadrillion nucleotides per year, which equals
about 15 petabytes of compressed genetic data (Schatz and Langmead 2013). The
amount of produced data increased with the emergence of microarray and NGS tech-
nologies. These DNA sequencing techniques are used in the epigenomic mapping as-
says for generating the epigenomic data.

As shown in Figure 2.6, during the year of 2003, less than 1 gigabyte of processed
epigenomic data were openly available. In 2009, this number exceeded 1 terabyte. By
2015, the amount of this type of data grew by a factor 20. Nowadays, the amount of data
is almost doubling each year, reaching almost 50 terabytes in 2017, and it is expected to
reach 80 terabytes in 2019.

The following section presents the main technologies for mapping epigenetic marks.

2.2.1 Gene expression

Different RNA-sequencing (RNA-seq) techniques are employed for quantifying gene ex-
pression. These techniques use the reverse transcriptase enzyme for converting the RNA
to complementary DNA (cDNA) (Telesnitsky and Goff 1997) from which a sequence li-
brary is built. Different protocols are necessary for obtaining the RNA from different
regions of the cells: nucleus, cytosol, or the entire cell.
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Figure 2.5: Sequencing techniques for mapping epigenetic marks. Colors indicate dif-
ferent epigenetic marks and the corresponding techniques (Reprinted from
Müller 2017).

The RNA reads are then mapped to a reference genome, followed by identifying the
genes and isoforms, and quantifying their expression level using the number of reads
mapped to each gene and its isoform. Garber et al. 2011 present a selection of tools and
pipelines for gene expression quantification.

2.2.2 Transcription factors and histone modifications

Chromatin Immunoprecipitation (ChIP) followed by sequencing is a technique for genome-
wide profiling of DNA-binding proteins, histone modifications or nucleosomes (P. J.
Park 2009). A typical Chromatin Immunoprecipitation-Sequencing (ChIP-seq) experiment
results in a map of the histone modification or transcription factors across the entire
genome. ChIP-seq involves crosslinking DNA-binding proteins to DNA by treating cells
with formaldehyde and fragmenting chromatin by sonication or enzymatic digestion.
Immunoprecipitation of the crosslinked chromatin is performed using an antibody that
recognizes a specific transcription factor or histone modification, which results in the
identification of binding sites in the genome for the factor or histone modification of
interest. After purification of the precipitated fragments, the sample can be analyzed
by Polymerase Chain Reaction (PCR) to study particular genes. ChIP-seq can be performed
genome-wide (Farnham 2009). Figure 2.7 presents an overview of ChIP-seq methods.
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Figure 2.6: Epigenomic data deluge: less than 1 gigabyte of processed epigenomic data
were openly available in 2003. Only in 2009, this number exceeded 1 terabyte.
It was close to 50 terabytes in 2017, and it is expected to reach 80 terabytes in
2019.

After the amplified sequence fragments are sequenced, the result is stored in a
FASTQ3 file, and the sequence fragments are mapped to a reference genome using a
genome alignment tool (Escalona et al. 2016) resulting in a Binary Alignment/Map (BAM)
file4. With the BAM file, the signal strength is calculated using the count of fragments in
a given genomic location. This signal can be normalized using the input signal, which
is obtained using an analogous sequencing experiment, using the same biological mate-
rial, but not using the immunoprecipitation step. Then, the signal data is stored using
the Wiggle Track Format (WIG)5 file format.

Finally, peak calling software (Y. Zhang et al. 2008; Heinig et al. 2015) identifies genome
regions where the signal has statistical significance. These software methods vary in
their distributional assumptions and employed statistical models (Koohy et al. 2014; R.
Thomas et al. 2016). The peak regions can be stored using the Browser Extensible Data
(BED) 6 format or some other custom column-based file format.

2.2.3 Chromatin Accessibility

Identifying DNA regions accessible to the transcription machinery is crucial for the
characterization of the gene expression regulatory process. Chromatin accessibility ap-
proaches measure the effect of chromatin structure modifications on gene transcription,
in contrast to using ChIP-seq for measuring histone occupancy (Tsompana and Buck

3 http://maq.sourceforge.net/fastq.shtml
4 https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/#bam-files
5 https://genome.ucsc.edu/goldenpath/help/wiggle.html
6 https://genome.ucsc.edu/FAQ/FAQformat.html#format1

https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/#bam-files
https://genome.ucsc.edu/goldenpath/help/wiggle.html
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
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Figure 2.7: Genome-wide mapping of histone modifications and other DNA‒protein in-
teractions has relied on next generation sequencing (NGS) technologies (ie,
ChIP-Seq) which have provided more precise and comprehensive landscapes
of histone modifications in the entire genome. (Reprinted and modified from
Ku et al. 2011).

2014). Currently, the four most used techniques for quantifying chromatin accessibility
are:

DNaseI-Sequencing (DNaseI-seq) uses the deoxyribonuclease I (DNase I) (Weintraub and
Groudine 1976; Song and Crawford 2010; John et al. 2013) for cut-
ting the DNA in its open regions. It is a well established but labo-
rious technique and requires many cells (1 to 10 million).

Formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) is based on the phenol-
chloroform separation of nucleosome-bound and free sonicated
areas of a genome, in the interphase and aqueous phase, respec-
tively. It is a simpler technique, already applicable using fewer
cells (100, 000 to 10 million) but the low-signal-to-noise ratio can
make the data interpretation very difficult (Giresi et al. 2007; Giresi
and Lieb 2009; J. M. Simon et al. 2012; J. M. Simon et al. 2013).
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Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-seq) is a simpler proto-
col than DNaseI-seq, requiring fewer cells (500 to 500, 000) but the
cells must be freshly isolated. It has the benefit of mapping open
chromatin, transcription factors, and nucleosome occupancy in the
same protocol execution (Buenrostro et al. 2015; Cusanovich et al.
2015).

Nucleosome Occupancy and Methylome-Sequencing (NOMe-seq) is a different technique
from the previously presented. The input DNA is treated with a
GpC Methyltransferase (M.CviPI) that specifically methylates cy-
tosines in GpC context in regions of accessible chromatin. The
NOMe-seq technique also allows for quantification of the DNA
methylation levels for the GpCs in the same protocol execu-
tion (Kelly et al. 2012).

Similar to ChIP-seq protocols, peak callers are used for identifying open chromatin
regions (Koohy et al. 2014). These regions are stored in a BED-like format, where it is
possible to obtain the accessible genomic regions for analyzing open chromatin data.

2.2.4 DNA methylation

Sequencing-based methods for profiling DNA methylation can be broadly categorized
into protocols based on selective enrichment, specific cleavage by restriction enzymes or
treatment with sodium bisulfite (Müller 2017). Benchmarking studies show that there
is generally high agreement between the various protocols (Bock et al. 2010; R. A. Har-
ris et al. 2010). An extensive list of reviews about DNA methylation quantification are
available at Parle-Mcdermott and Harrison 2011; Bock 2012; Dahl and Guldberg 2003;
Yong et al. 2016; Kurdyukov and Bullock 2016. Teschendorff and Relton 2018 describe
techniques for integrating DNA methylation data with other epigenetic marks.

For the scope of this work, most frequently used DNA methylation mapping and pro-
filing techniques7 are presented:
Bisulfite sequencing is a technique in which DNA is first treated with bisulfite that con-

verts cytosines to uracil but leaves 5-methylcytosine unaffected, leaving
only methylated cytosines. It is used for measuring the DNA methyla-
tion level and estimates the methylation ratio rather than enrichment
levels. It is the gold-standard technology for detection of DNA methy-
lation because it provides a qualitative, quantitative and efficient ap-
proach to identify 5-methylcytosine at single base-pair resolution (Y. Li
and Tollefsbol 2011).

Whole Genome Bisulfite Sequencing (WGBS) measures the ratio of methylated and un-
methylated molecules across the whole genome. In general, this method
yields the best results but requires resequencing the entire genome mul-
tiple times for every experiment (Stevens et al. 2013). It is the most de-
sirable technique but requires many resources, being not suitable for
projects with many samples.

Reduced Representation Bisulfite Sequencing (RRBS) is similar to WGBS, but it uses restric-
tion enzymes to limit the enrichment and analysis of specific genomic

7 Array methods are not presented because they are not supported by the DeepBlue Epigenomic Data Server



2.2 Epigenomic Data 13

regions that have a high CpG content, reducing the amount of DNA
needed to be sequenced, thus, reducing the final cost (Meissner et al.
2005).

Whole genome shotgun bisulfite sequencing (WGSBS) is a technique similar to WGBS but us-
ing bisulfite with shotgun sequencing, where the DNA is broken up into
short fragments which are then sequenced in parallel (Anderson 1981).

NOMe-seq is used for quantifying the DNA methylation rate and also the chromatin
accessibility. Its output contains the chromatin accessibility and DNA
methylation values in the fraction of methylated and unmethylated cy-
tosines (Lay et al. 2018).

MeDIP-seq/MRE is a combination of the Methylated DNA Immunoprecipitation Sequenc-
ing (MeDIP-seq) (Weber et al. 2005) with the methylation-sensitive restric-
tion enzyme digestion (MRE) (Maunakea et al. 2010) technique. The data
from these experiments is processed by specific software, such as the
methylMnM package (B. Zhang et al. 2013) and tool methylCRF (Stevens
et al. 2013) that reports fractional methylation in the range from 0 to 1 (D.
Li et al. 2015).

The processed DNA methylation data files are divided into two main groups: data
files with the DNA methylation level across the genome or the regions of interest, and
files containing the hypomethylated and hypermethylated regions. The DNA methyla-
tion level data files usually are stored in WIG or BED-like data files and are accompanied
with metadata files reporting the coverage (how many times a genomic region was se-
quenced). The hypo/hyper-methylated data is derived from the previous files using
specific tools (Assenov et al. 2014). Such derived data contains disjoint genomic regions
with their methylation levels and is stored in BED-like files.

2.2.5 Chromatin States Segmentation

As previously explained, the chromatin structure and its accessibility are strongly con-
trolled by histone modifications. These epigenetic marks are co-located in the genome,
making it necessary to computationally summarize the pattern of multiple histone
marks and their implication on the genomic region, to segment the genome into mean-
ingful biological units, each one being associated with a chromatin state.

Tools like ChromHHM (Ernst et al. 2011; Ernst and Kellis 2012; Ernst and Kellis 2017)
were developed to perform such tasks. They segment the genome into regions of vary-
ing chromatin states using a multivariate Hidden Markov Model (HMM) that explicitly
models the observed combination of histone marks (Ernst et al. 2011). The used tech-
nique, named Chromatin State Segmentation (CSS), defines chromatin states based on dif-
ferent combinations of histone modifications, and associates each different genomic re-
gions with a specific chromatin state. CSS is broadly used in epigenomic data analysis.
For facilitating further data analysis interpretation, Appendix A.1 provides tables with
the chromatin states provided by the BLUEPRINT, REMC, and ENCODE datasets.

2.2.6 Data Processing

It is plausible to classify the epigenomic data into raw and processed data. The raw data
is the data generated from the laboratory instruments, such as, the DNA sequencing
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machines. Due to its complexity, bias, and quality issues, the raw data cannot be directly
analyzed. Rather, it is necessary to be pre-processed first.

The epigenomic data pre-processing is composed of sequential steps, creating a data
flow similar to a pipeline or workflow8. It is possible to build such data processing
pipelines by developing simple programming scripts which afford the communica-
tion between the data processing tools. For facilitating the data processing, tools like
Galaxy (Giardine, Riemer, Hardison, Burhans, Elnitski, Shah, Y. Zhang, Blankenberg,
Albert, Taylor, et al. 2005a; Goecks et al. 2010; Blankenberg et al. 2010) and Taverna (Wol-
stencroft et al. 2013) provide intuitive interfaces, but they also require a complicated
initial set-up.

Ebert et al. 2015 propose a simple and straightforward approach, where each pipeline
step is described in a XML file. The description contains fundamental information like
the software name, version, and input (raw data files and configurations) and output
files (processed data and metadata). This approach also performs automatic consistency
checks and metadata handling, where the XML files containing the processing steps are
stored and available together with the metadata and processed files.

The processed epigenomic data is typically stored into WIG and BED files. WIG files
contain the signal data, for storing contiguous regions of the genome, across the entire
genome. Due to the amount of information, a single WIG file of a WGBS experiment
requires 2 to 3 gigabytes of disk space.

Due the size of the WIG files, the bigWig is a binary format developed for storing the
signal data. The bigWig9 file is smaller than its counterpart WIG, and it has an index,
facilitating quick retrieval of the signal from specific genomic locations.

As a complement of the WIG files, BED files store disjoint regions of the genome that
result from filtering and transforming the signal data. Such filtering reduces the amount
of data to comparably few disjoint regions with putative biological relevance.

In the context of this thesis, from here, the term epigenomic data means preprocessed
epigenomic data.

2.3 Epigenomics mapping consortia

Due to technical advances described in Section 2.2, massive volumes of molecular data
are now routinely generated by different epigenome mapping projects. However, even
if a single project may have resources for mapping a subset of human cell types, due
to the complexity of the human epigenome, more data and analysis efforts involving
different epigenomes are necessary for understanding the complex connections in the
healthy and diseased states.

The amount of resources to collect epigenomes for all tissues is enormous. Besides,
a single epigenetic mark, e.g., DNA methylation is not enough to elucidate the existing
questions about gene expression, cell development, and implications in health, therefore
needing different experimental data and thus demanding more resources.

In this case, more data, samples and experimental data from different projects must
be collected, aiming to build an epigenome atlas and to perform integrative analysis

8 Workflows are structurally more complicated than sequential pipelines
9 https://genome.ucsc.edu/goldenpath/help/bigWig.html
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on this data; hence collaboration is the best approach for the task of deciphering the
different epigenomes of the human cells.

To support this task, the International Human Epigenome Consortium (IHEC) (Stun-
nenberg et al. 2016) was established to promote cooperation between these different
epigenome mapping projects. The principal goals of IHEC are to coordinate the produc-
tion of reference maps of human epigenomes for key cellular states relevant to health
and disease, to facilitate rapid distribution of the data to the research community, and to
accelerate the translation of this knowledge for improving human health. A critical com-
ponent of IHEC is to coordinate the development of common bioinformatics standards,
data models and analytical tools to organize, integrate and display the epigenomic data
generated (Stunnenberg et al. 2016). The cooperation between the IHEC members is
structured into working groups on the following topics:
Data standards defines the assays required, which epigenetic marks are mapped, and

to define standardized protocols and Quality Control (QC) metrics for each
experiment.

Metadata standards defines the structure of the metadata for samples, experiments, and
analysis results. The definition applies to the format and content of the meta-
data as well as which controlled vocabularies and ontologies must be used for
describing the data semantically.

Integrative analysis focuses on tools for data analyses and performing data analysis inte-
grating the data from the different IHEC member projects’.

Data Ecosystem promotes the sharing of the datasets produced by the IHEC members
defining methods and standards for such task. Here the goal is to enable the
reuse of epigenomic data in different purposes, e.g. integrative data browsing,
visualization, and data analysis.

Bioethics addresses the ethical foundation of epigenetic science, and provide advice on
policy.

Communication coordinates the communication activities between the committees and
the working groups, as well as ensuring that IHEC activities and achievements
are communicated effectively to the rest of the community and the wider pub-
lic.

During the writing of this text, the IHEC member projects are:
DEEP funded by the BMBF from 2012 to 2017 is focused on the analysis of

cells connected to complex diseases with high socio-economic impact, in
their case: metabolic diseases as well as inflammatory diseases. It gen-
erates reference epigenomes for DNA methylation and histone modifica-
tion maps as well as transcriptome data for white blood cells (lympho-
cytes, macrophages, and monocyte) cells, fat cells, and liver cells. (http:
//www.deutsches-epigenom-programm.de)

BLUEPRINT Epigenome Project funded by the European Union from 2011 to 2016 is fo-
cussed on hematopoietic cells from healthy individuals and their ma-
lignant leukemic counterparts. It generated DNA methylation, histone
marks, and transcriptome data. The BLUEPRINT involves 42 European
universities, research institutes, and industry partners from 12 coun-
tries. (Adams et al. 2012; Martens and Stunnenberg 2013, http://www.
blueprint-epigenome.eu)

http://www.deutsches-epigenom-programm.de
http://www.deutsches-epigenom-programm.de
http://www.blueprint-epigenome.eu
http://www.blueprint-epigenome.eu
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Canadian Epigenetics Environment and Health Research Consortium (CEEHRC) funded by the
CIHR from 2011 to 2018 is composed of two epigenome mapping centers
located in Vancouver and Montreal. It produces reference epigenomes for
DNA methylation and histone modification, as well as transcriptome data.
Whole genome sequences, small RNA, and other data types are also avail-
able for some samples. It produces reference epigenomes of the human
blood, breast, brain, fat, kidney, muscle, skin, sperm, iPS cells, tonsils, in-
testine cells, and thyroid. (http://www.epigenomes.ca)

REMC funded by the NIH from 2008 to 2017 generates maps of DNA methyla-
tion, histone modifications, chromatin accessibility and small RNA tran-
scripts in stem cells and primary ex vivo tissues selected to represent the
normal counterparts of tissues and organ systems frequently involved in
human disease. (Roadmap Epigenomics Consortium et al. 2015, http://
www.roadmapepigenomics.org/)

NHGRI ENCODE funded by the NIH from 2003 and it is currently in its fourth phase, is
the most comprehensive epigenome mapping project. The project gener-
ates transcriptomes, RNA binding, genotyping, DNA binding, DNA methy-
lation, histone modification, and accessibility; and 3D chromatin structure
maps of human tissues, cell types, and cell lines. (ENCODE Project Consor-
tium 2012, https://www.encodeproject.org/)

IHEC Team Japan funded by AMED and CREST from 2011 to 2018 produces reference
epigenomes for DNA methylation and histone modification maps as well as
transcriptome data for the human gastrointestinal epithelial cells, vascular
endothelial cells, and cells of reproductive organs. (http://crest-ihec.
jp)

Hong Kong Epigenomics Project started in 2016 and it is still ongoing has the goal of gener-
ating reference epigenome maps of normal and diseased cells and making
the data publicly available in order to accelerate scientific discoveries on the
fields of neurobiology, aging, muscle biology, liver biology, and regenera-
tive medicine. (http://epihk.org)

KNIH Korea Epigenome Project was launched in 2012 and it is still ongoing has the goal
of producing 50 epigenomic datasets containing DNA methylation, ChIP-
seq, and transcriptomes maps data of the pancreas, fat, kidney, muscle, and
adipose tissue. (http://152.99.75.168/KEP/)

Singapore Epigenome Project established in the Genome Institute of Singapore is an ongo-
ing project and aims to explore the epigenomes of human diseases starting
with heart failure and autism spectrum disorder. It generates DNA methy-
lation profiles, cardiac chromatin organization, and interaction between
cardiac genes and their regulatory elements. (http://ihec-epigenomes.
org/about/ihec-countries/sg/)

2.4 Other initiatives

Various independent groups are generating epigenomic data for helping them to an-
swer their biological questions. For a research to be published, the data used in the
manuscripts must be deposited in public repositories, like the Gene Expression Omnibus

http://www.epigenomes.ca
http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
https://www.encodeproject.org/
http://crest-ihec.jp
http://crest-ihec.jp
http://epihk.org
http://152.99.75.168/KEP/
http://ihec-epigenomes.org/about/ihec-countries/sg/
http://ihec-epigenomes.org/about/ihec-countries/sg/
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(GEO)10, DNA Data Bank of Japan (DDBJ)11, European Nucleotide Archive (ENA)12, and Ar-
rayExpress13.

In order to be usable by different research groups, epigenomic data must not only be
deposited and accompanied by meaningful metadata, but the data must be processed
using the same processing pipeline, including same parameters, software, and their
respective versions14.

A vast variety of parametrizations of workflows comprising numerous tools is possi-
ble, hindering the comparison of data from data stored in the public repositories. For
easing this problem, the projects Remap (Chèneby et al. 2017) and ChIP-Atlas (Oki et al.
2018b) are reprocessing the epigenomic data with uniform pipelines and enabling the
free used òf the processed data:
Remap Atlas reprocessed 485 datasets containing TFs, Transcription Coactivator

(TCAs), and Chromatin-Remodeling Factors (CRFs). The processed
datasets are available for browsing or download at its web page http:
//tagc.univ-mrs.fr/remap/.

ChIP-Atlas reprocessed the public ChIP-seq data submitted to the Sequence Read
Archives (SRA): National Center for Biotechnology Information (NCBI), DDBJ,
and ENA. It offers more than 69, 000 experimental datasets reprocessed in
an unified pipeline in their web page http://chip-atlas.org. It also
provides web-tools for analyzing and exploring the data.

10 https://www.ncbi.nlm.nih.gov/geo/
11 https://www.ddbj.nig.ac.jp/index-e.html
12 https://www.ebi.ac.uk/ena
13 https://www.ebi.ac.uk/arrayexpress/
14 Ideally, even by the same wet lab protocols and tools, but this would not be feasible.

http://tagc.univ-mrs.fr/remap/
http://tagc.univ-mrs.fr/remap/
http://chip-atlas.org
https://www.ncbi.nlm.nih.gov/geo/
https://www.ddbj.nig.ac.jp/index-e.html
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/arrayexpress/
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Accessing and analyzing epigenomic data

Generating epigenomic data is just the very first step for answering biological questions.
It is followed by the data analysis process, where a researcher (i) searches in the data
portals for the needed data; (ii) downloads the data files manually or using complex
scripts; (iii) converts and filters the data into the desired format and content; (iv) ana-
lyzes the data using tools in their local computers, or analyzes the data directly in web
applications. This analysis usually starts with data exploration followed, if necessary,
by prediction methods and (v) the results are analyzed based on statistical methods.

This chapter presents methods and tools for accessing and analyzing epigenomic
data. Section 3.1 presents the primary methods for accessing the public epigenomic
data. Section 3.2 introduces the tools used for analyzing the epigenomic data locally,
while Section 3.3 presents tools for exploring the data, focusing on online web tools. The
chapter finishes with Section 3.4, which presents the tools and methods for performing
predictions on the epigenomic data.

3.1 Accessing epigenomic data

Data portals are the most frequently used channel for distributing epigenomic data.
They started as plain web pages listing the available data and links to the current
data and, when available, to the metadata files. The UCSC Table Browser Retrieval
Tool (Karolchik et al. 2004) was one of the first epigenomic data portals to be widely used.
The Table Browser contains a simple web page where users can select and download the
desired (epi)genomic datasets. It contains genomic annotations, like CpG islands, repet-
itive elements, as well as datasets from the initial ENCODE (ENCODE Project Consor-
tium 2004) releases.

Although only a rudimentary way for finding, accessing, and retrieving data, epige-
nomic data portals are still the main epigenomic data distribution hubs. For example,
the initial ENCODE data portal1 was its main data distribution hub from 2007 to 2012,
after being replaced by a new data portal2 (Sloan et al. 2015), which supports full-text
search, faceting searches using metadata segmentation, and an API that provides ac-
cess to the files’ metadata programmatically. Other projects, like BLUEPRINT3 and
ROADMAP4, DEEP5, and CEEHRC67 also provide their own data portals.

1 http://genome.ucsc.edu/encode/downloads.html
2 https://www.encodeproject.org/
3 http://dcc.blueprint-epigenome.eu/)
4 https://egg2.wustl.edu/roadmap/web_portal/
5 http://deep.dkfz.de
6 http://www.epigenomes.ca/data-release/hg38/
7 http://epigenomesportal.ca/edcc/index.html

http://genome.ucsc.edu/encode/downloads.html
https://www.encodeproject.org/
http://dcc.blueprint-epigenome.eu/
https://egg2.wustl.edu/roadmap/web_portal/
http://deep.dkfz.de
http://www.epigenomes.ca/data-release/hg38/
http://epigenomesportal.ca/edcc/index.html
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The presented data portals offer processed epigenomic data with their metadata, but
they do not have a common metadata format and the metadata files content is not fully
integrated with their respective data files. For improving this situation, the IHEC data
portal8 (Bujold et al. 2016) centralizes the data generated by its member projects as well
as enforces a common metadata format9 with an API for listing and searching datasets
based on their metadata.

Another effort, the The Epigenome Reference Registry (EpiRR) provide a repository of
datasets metadata grouped by their BioSource and epigenetic marks, including links to
the raw data (rather than to the processed data) in public sequence archives. But they
are not easily analyzed, requiring a processing workflow to transform this data into data
ready for data analysis.

Finally, these data portals provide terabytes of data. Generally, users are interested in
only a fraction of them, but it is not possible to work on this data without downloading
whole files, for local data filtering, and then, analysis.

3.2 Data analysis tools

After downloading the epigenomic data, it is necessary to filter for content of interest
and also format the data to the desired format. The filtering and formating can be per-
formed using scripts, usually developed in scripting programming languages such as R,
Perl, and Python. In combination with these scripts, command line tools for filtering and
combining epigenomic data such as BED Tools (Quinlan and Hall 2010; Quinlan 2014),
BEDOPS (Neph et al. 2012), Tabix (H. Li 2011), and WiggleTools (Zerbino et al. 2014) are
widely used.

Software libraries are being developed for empowering the development of bioinfor-
matics tools and data analysis scripts. Usually, these libraries are organized under an
umbrella project. For example, there is Bioconductor (Gentleman, V. J. Carey, Bates, Bol-
stad, Dettling, Dudoit, Ellis, Gautier, Ge, Gentry, et al. 2004a) for the R programming
language and BioPython (Cock et al. 2009) for Python. Bioconductor and BioPython are
developed and tailored specific to bioinformatics problems, such as loading, visualiz-
ing, analyzing, and performing predictions on the data. Although they are a major help
in epigenomic data analysis, command line tools and libraries require that users have
programming proficiency. Hence, the average biomedical researchers cannot make use
of them.

Besides programming and command line tools, which require experienced bioinfor-
maticians to operate them, tools like Taverna (Wolstencroft et al. 2013) and Galaxy (Giar-
dine, Riemer, Hardison, Burhans, Elnitski, Shah, Y. Zhang, Blankenberg, Albert, Taylor,
et al. 2005b) provide a visual interface, where researchers can develop their data work-
flow, from acquiring the data, processing, and analyzing it in a visual and programming-
free environment.

8 http://epigenomesportal.ca/ihec/
9 https://github.com/IHEC/ihec-metadata/blob/master/specs/Ihec_metadata_
specification.md

http://epigenomesportal.ca/ihec/
https://github.com/IHEC/ihec-metadata/blob/master/specs/Ihec_metadata_specification.md
https://github.com/IHEC/ihec-metadata/blob/master/specs/Ihec_metadata_specification.md
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In short, the data analysis can be performed by (i) developed scripts, using existing
libraries and command line tools, or (ii) using visual data workflows. These two meth-
ods usually require the download of massive datasets for selecting only a fraction. Fur-
thermore, due to the data size, its manipulation is not feasible on a local workstation,
requiring more powerful computational environments, not available to all researchers.
Existing tools need data in specific formats, such that usually users must convert their
data for fitting the tools’ requirements.

Finally, many of these tools do not scale with the growing amount of epigenomic data.
They require vertical computational scaling, which means that each computational node
needs to scale with the data volume. It results in the acquisition of more powerful,
and consequently, more expensive computational resources. An opposite approach, the
horizontal scaling is based on increasing the number of available computer resources,
where the computational power of the nodes stays constant and the number of nodes
scales. Consequently, many of the epigenomic data analysis tools are not ready for cloud
computing, where the computational resources scale horizontally.

3.3 Data exploration tools

Data exploration is the first analysis to be applied to new datasets or with new questions.
This process uses visual elements to facilitate the interpretation of the data and guide
the researcher through its understanding. Presently, epigenomic data can be explored
using genome browsers, local tools, and web tools. In the following sections, these three
general techniques are presented together with their main tools.

3.3.1 Genome Browsers

Genome browsers (Stein et al. 2002) were the first tools for visually exploring epige-
nomic data. Genome browsers provide a graphical interface for users to browse, search,
retrieve and analyze the genomic sequence and annotation data (J. Wang et al. 2012).
Figure 3.1 shows the UCSC Genome Browser displaying information around the gene
HOXA1 with some epigenetic marks.

Different genome browsers are in widespread use. The two most frequently used
genome browsers are UCSC Genome Browser (Kent et al. 2002) and Ensembl Genome
Browser (Hubbard et al. 2002; Stalker et al. 2004; X. M. Fernández and Birney 2010).
Genome browsers can also be embedded in other projects, such as GBrowser (Donlin
2009) and JBrowser (Skinner et al. 2009).

Even though Genome browsers are widely used, they rely strongly on the experience
and knowledge of the researcher, and only a small fraction of the available data can
be visualized simultaneously. Genome browsers are not scalable because they cannot
cope with the growing amount of epigenomic data, not only in the sense of storing and
manipulating the existing (epi)genomic data, but also for visualizing, comparing, and
analyzing these data.
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Figure 3.1: UCSC Genome Browser displaying information around the gene HOXA1.
It displays the gene body, transcription region, histones marks (H3K4Me1,
H3K4mM3, H3K27Ac), and DNaseI hypersensitive site regions.

3.3.2 Local analysis tools developed in the framework of DEEP

Many tools have been developed for analyzing epigenomic data locally. Here, two tools
developed in the context of the DEEP project with the goal of providing automatic re-
ports on the epigenomic data are presented: deepTools10 (Ramı́rez et al. 2014; Ramı́rez
et al. 2016) and RnBeads11 (Assenov et al. 2014).

deepTools

The software suite deepTools is a set of tools developed for analyzing ChIP-seq, RNA-seq
or MNase-seq data. This package provides command line tools and an API that may
be used to integrate the tools into a Galaxy Workflow. The components of deepTools
handle raw data files (FASTQ and BAM) as well as processed data (BED and WIG), and can
(i) calculate the correlation between different data files, which may represent different
epigenetic marks or BioSources; (ii) visualize the genome coverage of a data file; (iii)
check the CG bias; (iv) assess the strength of ChIP-seq signal data. Figure 3.2 presents
the analysis workflow that can be performed by deepTools and its steps: data quality
analysis and downstream analysis.

RnBeads

RnBeads is a package for comprehensive analysis of DNA methylation data. The tool
implements an analysis workflow with functionalities that go beyond the previously
existing tools. RnBeads has two main advantages: (i) it is user-friendly, in that the users
must only inform where the data is and start the workflow; (ii) the analysis result docu-
ment is a self-contained readable hypertext report; (iii) it scales to large sample sizes. The
tool also offers state-of-the-art normalization techniques, experimental quality control,
CpG and sample filtering, batch effect, phenotype identification, and analysis charac-
terization of differential methylation between groups of samples. Figure 3.3 presents
10 https://deeptools.readthedocs.io
11 https://rnbeads.org/

https://deeptools.readthedocs.io
https://rnbeads.org/
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Figure 3.2: The deepTools analysis workflow analyses the data and generates plots for the
data quality, correlation between different data files, and heatmaps and pro-
files for downstream analysis. (https://deeptools.readthedocs.io).

the RnBeads workflow: from the input files from different formats and content, the pre-
processing and quality control process, and the analysis steps, finishing with the reports
and output data files.

Figure 3.3: RnBeads workflow: the input data can have different sources and formats.
The tool affords preprocessing, generating quality controls and preprocessing
reports, followed by another set of analysis, producing reports on covariance,
also for exploratory analyses and differential methylation, and creating data
files that can be used in other data analysis tools (https://rnbeads.org/).

3.3.3 Web analysis tools in the context of DEEP and BLUEPRINT

The previously presented tools perform analysis using local infrastructure, which comes
with inconveniences, for example, the time to set up the software and the need of having
all the data locally. Besides, it is hard to keep in pace with the growing amount of avail-
able epigenomic data, for which it is necessary to build a computational and software
infrastructure for storing and processing this data.

Adding to the technical issues, the local tools are usually not suitable for analyzing
and comparing hundreds or even thousands of data files simultaneously. Their analysis
and visualization methods do not scale for such an amount of data.

https://deeptools.readthedocs.io
https://rnbeads.org/
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Here, two data exploration web tools, developed in the context of DEEP and
BLUEPRINT, are presented: The BLUEPRINT Data Analysis Portal12 (J. M. Fernández
et al. 2016) and EpiExplorer13 (Halachev et al. 2012).

BLUEPRINT Data Analysis Portal

The BLUEPRINT Data Analysis Portal provides an online interface for the compara-
tive analysis of epigenomes of hematopoietic cell types generated by the BLUEPRINT
project. Its interface affords an interactive exploration of genomic regions, genes, and
pathways. Figure 3.4 shows the start screen, where users can type (epi)genomic terms
and genomic locations for exploring its relationship with other (epi)genomic elements.

Figure 3.4: The BLUEPRINT Data Analysis Portal provides a web interface where users
can type (epi)genomic terms and genomic locations for exploring its relation-
ship with other (epi)genomic elements (http://blueprint-data.bsc.es).

EpiExplorer

EpiExplorer is a web data analysis tool that enables researchers to explore datasets
using large reference epigenome datasets without complex scripting or laborious pre-
processing. EpiExplorer provides an intuitive interface, where users can perform
programming-free analysis, only clicking on web interface visual elements. Further-
more, due to the data preprocessing and indexing scheme, analyses are performed dy-
namically within seconds.

EpiExplorer brought a paradigm shift to the field of epigenomic data analysis: rather
than focusing on a single genomic location, such as a gene, it provides a global analysis
of the entire (epi)genomic space. This means that researchers have an overview of all

12 http://blueprint-data.bsc.es
13 https://epiexplorer.mpi-inf.mpg.de

http://blueprint-data.bsc.es
http://blueprint-data.bsc.es
https://epiexplorer.mpi-inf.mpg.de
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epigenetic marks and genomic elements in the entire genome, making it possible to
analyse the relationship between different elements on a global scale.

Figure 3.5 shows the initial web page of EpiExplorer, displaying the comparison of
two datasets, CpG Islands and 5hmC modifications, in relation to other (epi)genomic
elements.

Figure 3.5: EpiExplorer’s initial web page, showing the comparison of two datasets,
CpG Islands and 5hmC modifications, in relation to other (epi)genomic ele-
ments (https://epiexplorer.mpi-inf.mpg.de).

These tools provide ways for analyzing epigenomic data in a programming-free envi-
ronment, but they work on pre-processed datasets. New epigenomic questions require
analyzing of many different region-sets, usually not available in such tools. Further-
more, they are not ready for the increasing amount of data, since their visualization
methods do not cope with large datasets, and they require initial pre-processing of the
data for analysis, which is not feasible when considering thousands of experiments.

3.4 Predictive analysis tools

Predictive analytics is a set of statistical techniques from data mining, modelling, and
machine learning, which analyze the data to make predictions about unknown events.
In the epigenomic context, they are used for making predictions about the epigenomic
data, for example, predicting DNA methylation levels, gene expression, and finding and
quantifying the similarity between epigenomic datasets.

EpiGRAPH (Bock et al. 2009) was one of the first tools for performing prediction anal-
ysis on (epi)genomic data. EpiGRAPH applies machine learning to (epi)genetic datasets
for the purpose of identifying sequence regions with similar characteristics. As usage ex-
ample: (i) predict DNA methylation based on the DNA sequence and structure; (ii) dis-
cover the characteristics of Polycomb Response elements in mammals when compared
to Drosophila using ChIP-seq data. In general, EpiGRAPH is a powerful tool, performing

https://epiexplorer.mpi-inf.mpg.de


many types of statistical analyses by applying machine learning to the epigenomic data.
But the tool is complex, requiring detailed knowledge of machine learning on the side
of the user. It also requires a complicated set up for performing the data analysis and
prediction.

In the direction of facilitating the epigenomic data analysis, LOLA (Sheffield and Bock
2016) is an R/Bioconductor package that provides methods for analyzing genomic re-
gion overlaps between public and custom datasets. The tool compares genomic region
files (BED files) with the regions of interest against a database of other datasets (from
different studies and projects) to test for enrichment in their overlaps. The user can re-
late newly generated data and public datasets, create new hypotheses and annotate the
new datasets. The LOLA method is described in detail in Section 4.5.7.

Enrichment analysis is used to investigate if there are more elements with certain
properties than expected by chance, or if one set is overrepresented in a larger collection.
One well-known example in bioinformatics is the gene-set over-representation analysis
that assesses if a set of genes, for example, from a pathway, is overrepresented in a set of
differentially expressed genes. Locus Overlap Enrichment Analysis (LOLA) expands this
idea moving from genes to genomic regions.

As LOLA is an R package, it is necessary to have some knowledge in this programming
environment. Besides, users must download and convert the required datasets to the
format required by LOLA. LOLA results are stored in an R data structure, and thus not
easy to visualize. For handling such issues, EpiAnnotator (Pageaud et al. 2018) was
developed as a web interface, developed in R/Shiny that enables researchers to use the
LOLA method in an intuitive interface.

Similarly, to LOLA, GIGGLE (Layer et al. 2018) is an (epi)genomic search engine that
finds and ranks genomic locations shared by the query regions and regions presented
in the database. It claims to scale to billions of genomic regions and is faster than ex-
isting methods. Similar to LOLA, it is possible to use the data from public epigenomic
mapping projects to build the user’s database, facilitating the data integration and hy-
pothesis generation. In the same way as LOLA, it is required that users find, download,
and convert the data to the format expected by GIGGLE.

Obtaining a biological insight from the epigenomic data is a complex task. Hence the
boundaries between epigenomic data exploration and predictions become uncertain. In
this direction, tools like GenometriCorr (Favorov et al. 2012) and daVIE (Fejes et al. 2014)
empower users to explore the epigenomic data with the support of statistical methods.
Another tool, eFORGE (Breeze et al. 2016) provides a web interface for analysis and in-
terpretation of Epigenome-Wide Association Study (EWAS) data. Its input is a list of EWAS
array probes for performing overlap enrichment analysis using 454 DNaseI hypersensi-
tive site samples, helping to identify disease-relevant genomic regions in different cell
types for several common diseases.

These tools strongly rely on local non scalable processing. Furthermore, there is no
“one size fits all” tool in bioinformatics. Different problems need a different set of tools,
and two important aspects are the quality of the tools and the communication and in-
terchange of data between them. In this direction, R/Bioconductor and Python with sta-
tistical and machine learning packages provide powerful environments for analyzing
and performing data prediction on the (epi)genomic data while visual and web tools
provides a first overview and hypothesis generation on the users’ data.
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3.5 Requirements for large-scale epigenomic data analysis tools

The generated epigenomic data have the potential of unraveling the complexity of epige-
nomic regulation. However, the lack of simple access and analysis mechanisms hinder
the practical use of this data. This chapter elaborates on open challenges in the large-
scale epigenomic data analysis.

First, users must manually search the experimental metadata in different data portals
to identify the ones that are valuable for their analysis. Therefore, it is imperative to
provide a unified searching tool for the data and metadata generated by the IHEC
member projects.

Second, the data and metadata of the experiments are not connected, making the
identification of the ideal datasets a cumbersome task. Hence, it is necessary to integrate
the epigenomic data and metadata.

Third, users need to perform manually or to develop one-time-use scripts for down-
loading gigabytes of data spawned in hundreds of files, only to extract the regions of
interest corresponding to a fraction of the entire downloaded data. Moreover, it may be
necessary to manipulate the data across many files, being essential to provide methods
for filtering and transforming the data before being downloaded.

Fourth, many epigenomic data analysis tools require that the data is locally available.
For this purpose, the data must be transformed, but complex operations on these data
are not always feasible on a local computer due to resource limitations, making it nec-
essary to provide means of investigating the epigenomic data in environments with
limited resources.

Fifth, the use of cloud computing is growing and becoming standard for dealing with
different types of data. Large-scale epigenomic analyses may benefit from such infras-
tructure, but it is necessary to develop tools that are scalable and cloud-ready.

Sixth, connecting data from different formats and sources is an unwieldy task, caus-
ing researchers to spend a considerable amount of time and resources. Therefore, it is
imperative to handle and to provide (epi)genomic data in configurable formats, and
to deal with heterogeneous data.

Seventh, current technological advances shifted the gene-centric studies to trans-
genomic or genome-wide analysis. Consequently, new tools must access, manipulate,
and analyze data dynamically from regions of the whole genome.

Eight, many epigenomic data analysis processes involves the development of numer-
ous software (scripts), and for this, learning at least one programming language is re-
quired. The user also needs to be able to apply data analysis methods on the data,
whereby different programming languages provide different forms of performing these
tasks. For facilitating the scripts development, it is necessary to provide a comprehen-
sive set of operations accessible from different programming languages.

Ninth, epigenomic data analysis is a complex task particularly for researchers without
programming skills. For facilitating the use of the epigenomic data for researchers with-
out programming skills, it is fundamental to provide tools for analyzing epigenomic
data in a programming-free environment and user-friendly interface.

Finally, tenth, new technologies are producing more data than researchers can an-
alyze. Tools that cope with the amount of generated epigenomic data, not only in
finding and manipulating but also for visualizing and analyzing it are necessary.
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The DeepBlue Epigenomic Data Server and its ecosystem aim to fulfill these require-
ments and represent a robust and comprehensive set of tools for large-scale epigenomic
data analysis. The DeepBlue Epigenomic Data Server provides a set of tools which each
one has the goal of providing one or more of the previously listed requirements. This
thesis presents the entire DeepBlue Epigenomic Data Server ecosystem in the following
chapters, showing how the DeepBlue tools and methods fulfill these requirements.



4
DeepBlue Epigenomic Data Server

This chapter describes the DeepBlue Epigenomic Data Server and its
components. They were implemented by the author with support of Fabian
Reinartz and Natalie Wirth. The usage example in the Section 4.6.4 was
performed with support of Dr. Masanori Honsho. The DeepBlue Epige-
nomic Data Server was published in Albrecht et al. 2016.

Epigenome mapping projects are generating large volumes of epigenomic data with
the promise of improving the understanding of cell regulation. Obtaining and orga-
nizing this data is a cumbersome task. Currently, epigenomic data is only accessible
through web portals that offer access to experimental data files and their metadata but
these web portals still lack adequate mechanisms for searching and obtaining these data
programmatically, it means through a software code, rather than through a user inter-
face. Moreover, the absence of metadata standardization complicates the use and inte-
gration of data from different sources in a single study. Finally, researchers must process
and analyze terabytes of epigenomic data, which is not effective on local computers.

The DeepBlue Epigenomic Data Server was developed to support researchers in finding,
handling, and obtaining the necessary (epi)genomic data for their analysis. The Deep-
Blue Epigenomic Data Server solves the issues of searching, manipulating, and download-
ing the epigenomic data by providing: (i) a collection of (epi)genomic experiments and
annotations files with their metadata; (ii) means for finding and selecting the appropri-
ate epigenomic data; (iii) data operations in the form of a comprehensive API, where
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users can find, select, filter, manipulate, enrich, and retrieve the relevant (epi)genomic
data programmatically; (iv) an online server that processes the epigenomic data directly.

This chapter presents the DeepBlue Epigenomic Data Server, and it is structured as
follows: Section 4.1 introduces the reader to the DeepBlue Epigenomic Data Server and
its ecosystem. Section 4.2 presents the DeepBlue Server, the central component of the
DeepBlue Epigenomic Data Server ecosystem. Section 4.3 explains how the data is stored
into and retrieved from the DeepBlue Server. Section 4.4 introduces the populator, the
tool used to import the (epi)genomic data from different sources. Section 4.5 presents
the DeepBlue Server API. Section 4.6 demonstrates the DeepBlue Server functionalities
through a set of use cases. Section 4.7 discusses the capabilities and usage of the Deep-
Blue Epigenomic Data Server. Appendix A.2 contains implementation details.

4.1 Overview

Epigenomic mapping consortia are generating thousands of epigenomic data files, each
containing kilobytes to gigabytes of data, totalling dozens of terabytes of epigenomic
data ready to be analyzed and used. Usually, researchers need only a small fraction of
the available epigenomic data to answer their biological questions. Using the currently
available data repositories to obtain the necessary data requires users to download sev-
eral files amounting to gigabytes of data that afterwards need to be handled locally, e.g.,
filtered, merged, transformed, and aggregated. Storing such an amount of data and ap-
plying data transformation on it usually requires extensive computational resources,
which are not regularly found on local computers.

The DeepBlue Epigenomic Data Server was developed to facilitate access to and analysis
of publicly available epigenomic datasets. Its main component, the DeepBlue Server has
as primary responsibilities: (i) storing and organizing the (epi)genomic data and (ii)
making this data readily accessible for researchers.

These responsibilities are fulfilled by the DeepBlue Server by providing a collection
of experiment and annotation files with their metadata information. The server also
provides a comprehensive API which supports users in listing, searching, selecting and
operating on, the data programmatically directly on the server, downloading only the
results containing the necessary data.

The API also enables users to perform complex data operations, such as filtering, sum-
marizing, and performing enrichment analyzes on the (epi)genomic data. The API oper-
ations can be combined into custom workflows, thus offering nearly the same degree of
flexibility as a local programming environment. Therefore, the DeepBlue Server merges
the facilities of accessing the epigenomic data from different projects in a single location
with a comprehensive API.

Access to the DeepBlue Server is facilitated by XML-RPC and RESTful protocols, both
of which are web standards. These protocols are supported by major programming
languages, making DeepBlue a language-agnostic system. However, the DeepBlue Epige-
nomic Data Server ecosystem also supports users that have little or no expertise in pro-
gramming with a user-friendly web portal for browsing and downloading the available
data (Chapter 6) and a powerful data analysis web tool (Chapter 7).

The DeepBlue Server keeps track of all user operations and assigns query IDs to each
step of an analysis. These IDs can be used flexibly between different API endpoints.
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This means that experiment files of interest to the user can be selected in the web portal
and subsequently be used in other platforms such as in programming scripts to retrieve
the data for follow-up analysis. A complete use case is presented in Section 6.3.1.

The DeepBlue Server provides access to more than 60, 000 experimental epigenomic
files from the major epigenome projects: AMED-CREST, CEEHRC, DEEP, BLUEPRINT
Epigenome Project, REMC, ENCODE, and ChIP-Atlas. The DeepBlue Server was devel-
oped following established IHEC standards and the DeepBlue Server development team
engaged in frequent exchange with IHEC members for including additional data. Deep-
Blue Server also provides gene models, annotations such CpG island, DNA sequences,
and ontologies. A list of the imported data is available in Appendix A.1.

The DeepBlue Server contains an extensive documentation, including a user manual1,
coding examples2, use cases3 and Jupyter notebooks4, and a complete API5 reference.
While the online coding examples are implemented in Python, the R/Bioconductor pack-
age (Chapter 5) provides documentation and examples in R programming language.

4.1.1 DeepBlue Epigenomic Data Server ecosystem

The DeepBlue Epigenomic Data Server and its ecosystem is composed of six components:
(i) the data server, named DeepBlue Server; (ii) the data importer, named Populator (Sec-
tion 4.4); (iii) the Web Middleware (Section A.2.5), (iv) the Web Portal (Section 6.2), (v) the
Web Epigenomic Data Exploration Tool: DIVE (Chapter 7); and (vi) the Bioconductor/R
package (Section 5). Figure 4.1 shows all these components and how they are connected
to each other. Each component is described individually in the following sections and
chapters.

4.2 DeepBlue Server

The DeepBlue Server is the central component of the DeepBlue Epigenomic Data Server
ecosystem. It manages and controls data access, handles user operations, and processes
the requests. Section A.2 contains implementation details. The DeepBlue Server imple-
ments more than 250 software integration tests6. Each integration test executes a set of
DeepBlue Server API operations and the operation results are compared to expected re-
sult, that are previously obtained by manually executing the same tasks. These tests are
implemented in Python. All DeepBlue Server API operations have at least one integration
test associated with it. The use of tests improve the DeepBlue Server software quality by
reducing the chance of development flaws being introduced during the software devel-
opment.

1 https://deepblue.mpi-inf.mpg.de/manual/
2 https://deepblue.mpi-inf.mpg.de/examples.php
3 https://deepblue.mpi-inf.mpg.de/use_cases.php
4 https://deepblue.mpi-inf.mpg.de/notebooks
5 https://deepblue.mpi-inf.mpg.de/api.php
6 Software integration test is a type of testing where software modules are combined and tested as a group.

https://deepblue.mpi-inf.mpg.de/manual/
https://deepblue.mpi-inf.mpg.de/examples.php
https://deepblue.mpi-inf.mpg.de/use_cases.php
https://deepblue.mpi-inf.mpg.de/notebooks
https://deepblue.mpi-inf.mpg.de/api.php
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Figure 4.1: DeepBlue Epigenomic Data Server ecosystem overview: this diagram shows
the DeepBlue Server as the central piece of the DeepBlue Epigenomic Data Server
ecosystem. The Populator inserts the data from the epigenomic portals, and the
server makes it available to the users via programming scripts (R and Python),
Web Portal, and DIVE.

4.2.1 DeepBlue Server Components

The DeepBlue Server is composed of three main components: (i) an XML-RPC Server that
receives and handles user requests; (ii) a Processing Engine that performs operations on
the data; (iii) a Database Access point that is connected to a MongoDB database instance
and is responsible for storing and retrieving data. Figure 4.2 shows the DeepBlue Server
architecture and its sub-components, which are detailed in the following sections.

XML-RPC Server

The DeepBlue Server is accessed using the XML-RPC protocol. It is a Remote Procedure
Call (RPC) protocol which uses XML to serialize and the HTTP protocol to transport the
operation calls and answers between users and the DeepBlue Server.

The XML-RPC protocol was chosen because it is simple to use and transparent, where
XML-RPC operation calls appear as local operation calls for the users. Besides, it is sim-
ple to implement a server compatible its specification. But the most important feature
of this protocol is that virtually all main programming languages support it: access and
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Figure 4.2: DeepBlue Server Architecture: the DeepBlue Server is composed of: (i) an XML-
RPC server that receives and handles user operations. It is composed of the
HTTP server that provides the communication with the user. As the commu-
nication is made through the XML-RPC protocol, the XML-RPC Server also
contains a XML parser and writer; (ii) a Processing Engine that performs opera-
tions on the data. This component is responsible for managing and executing
the requests, as well as perform the data and operations access control; (iii) a
Database Access component that stores and access the data using the MongoDB
database.

usage of DeepBlue Server was performed in Python 2, Python 3, JavaScript, TypeScript, PHP,
R, and Java programming languages.

The DeepBlue Server embedded XML-RPC Server is implemented using Boost ASIO7

library for providing the HTTP server and the Expat library8 for parsing the XML con-
tent. The HTTP server implements a subset of the HTTP protocol, accepting solely the
HTTP POST method.

The XML-RPC Server receives requests containing the operations to be executed using
the HTTP protocol. The XML parser extracts the request’s XML content. The content
is converted to an internal representation that is executed by the Processing Engine (Sec-
tion 4.2.1). After the request execution, the result is returned to the XML-RPC Server,
where the XML writer serializes the result to a XML representation compatible with the
XML-RPC protocol, and this content is returned to the user using the HTTP protocol.

Processing Engine

The Processing Engine executes all DeepBlue Server operations. As the first execution step,
it uses the Access Control component for verifying whether the user has permission for
performing the requested operation. If this is not the case, an error message is returned
to the user. DeepBlue Server operations can be divided into two main execution cate-
gories: synchronous and asynchronous. Synchronous operations are processed, and

7 https://www.boost.org/doc/libs/1_62_0/doc/html/boost_asio.html
8 https://libexpat.github.io/

https://www.boost.org/doc/libs/1_62_0/doc/html/boost_asio.html
https://libexpat.github.io/
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the result is returned immediately to the user after completion. Usually, these opera-
tions do not require complex processing and their execution time never exceeds a few
seconds. In contrast, asynchronous operations are more complex and are executed us-
ing the Asynchronous Engine.

Synchronous operations are executed directly by the Operations executor. Examples of
synchronous operations are the list_experiments and info operations that are presented
in Section 4.5. The Operations executor uses the Database Access component for accessing
the data and processing the requests.

The Asynchronous Engine uses the Request manager for queueing and executing oper-
ation requests: new requests are included in a queue, named jobs queue, and a request
identifier is returned to the user. This identifier is used for obtaining the status of the
request and for downloading the processed result. The Request manager is also respon-
sible for storing the results from the Request processor in the database and for removing
old requests.

The Request processor is responsible for processing all DeepBlue asynchronous re-
quests. It retrieves the operations enqueued by the Request manager from the jobs queue,
processes them, and delivers the result to the Request manager that stores the result using
the Database Access. The Request Processor can execute multiple requests simultaneously,
where the number of simultaneous requests is configured at startup (Section A.2.1). The
asynchronous processing results are stored and can be accessed instantly after the pro-
cessing is finished. The time limit and maximum memory consumption are also config-
urable.

Database Access

The Database Access component facilitates storing and retrieving data from the database.
It facilitates storing and retrieving (epi)genomic data, metadata, user information,
and operation requests including their results. The Database Access uses a MongoDB
database instance for data storage. Section 4.3 details how this component stores the
data and uses the MongoDB database.

4.2.2 Scalability

Due to the massive increase in available epigenomic data, scalability is an important is-
sue. Existing tools must be prepared to handle massive growth in the amount of data.
Acknowledging this issue, the DeepBlue Server was developed to cope with the increas-
ing amount of available (epi)genetic data, being scalable in two respects: data storage
and data processing. The data storage scalability relies on the MongoDB scalability fa-
cilities (Section 4.3), and the data processing scalability depends upon the existence of
multiple independent processing nodes.

In the DeepBlue Epigenomic Data Server ecosystem, a processing node is an executing
instance of the DeepBlue Server. It is required to have at least one executing DeepBlue
Server instance, but several instances can be executed on the same or a different com-
puter, connected to the same MongoDB instance. When using more than one DeepBlue
Server instance, the additional instances can have their XML-RPC servers deactivated in
order to act as a unique processing node. The processing nodes access the jobs queue,
where they obtain the requests, process them, and store the result back to the MongoDB
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instance. If a DeepBlue Server instance is receiving too many processing requests, more
processing nodes can be activated in different computers, distributing its computation
load.

Figure 4.3 shows an overview of a DeepBlue Server configured as a processing node.
It is important to note the absence of the XML-RPC server. Furthermore, the data and
metadata are accessed only for reading. In this example, the processing node obtains
the processing requests from Requests queue and results component. This component uses
the jobs queue stored in the MongoDB instance. After obtaining a processing request, the
processing node handles it, and saves the result to the database using again the Requests
queue and results component.

Processing Engine

Access control

Asynchronous Engine

Requests 
manager

Requests 
processor MongoDB

Database Access

Requests queue 
and results

Data and metadata 
access

DeepBlue Data Server - Worker

Figure 4.3: DeepBlue Processing Node: this DeepBlue Server instance is configured as pro-
cessing node, without an XML-RPC server. It is solely responsible for han-
dling the requests. It uses the Requests queue and results components for ob-
taining the requests stored in the job queue, which are stored in the MongoDB
database instance.

As shown, the DeepBlue Server has a scalable architecture, in which multiple DeepBlue
Server instances can be executed on different hardware servers, working as a computa-
tional cluster, for improving the processing of the requests stored in the jobs queue. A
typical DeepBlue Server cluster arrangement has a master instance that receives the XML-
RPC requests, processes the synchronous requests, and enqueues the asynchronous re-
quests. Other DeepBlue Server instances are responsible for accessing the job queue and
processing its requests.

Figure 4.4 shows an example with three different hardware servers: DeepBlue Server
instance 1, 2, and 3. Instance 1 has a DeepBlue Server with the XML-RPC server enabled,
but the Requests Processor is disabled. Instance 1 receives the processing requests from
the users and enqueues them to the jobs queue using the Processing manager. Simulta-
neously, instances 2 and 3 access the jobs queue, each one retrieves a different process-
ing request, perform the necessary computation, and store the result using the Requests
queue and results component. This configuration also ensures that the XML-RPC server
instances remain responsive even under high workload, because it is possible to include
new Processing Node instances in additional hardware to increase the cluster throughput,
and thus, minimizing the waiting time of the enqueued processing requests.
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Figure 4.4: DeepBlue Server Cluster Example: three DeepBlue Servers working simultane-
ously, where the DeepBlue Server instance 1 is responsible to answer the XML-
RPC requests and the servers 2 and 3 are responsible for processing the re-
quests stored in the jobs queue.

4.2.3 Access control

Access control is facilitated with a user_key that is sent to the DeepBlue Server as a pa-
rameter in almost all operations. Users can obtain the user_key by registration or use an
anonymous user key (anonymous_key).

Registered users have the benefit of storing private data, accessing previous process-
ing analysis, and requesting more resources for executing DeepBlue Server API opera-
tions, for example, more processing time and memory.

The anonymous key can be used in all operations, such that users do not need to reg-
ister in the DeepBlue Server before using it. The anonymous user has access to the public
data available in DeepBlue Server and all its data selection and manipulation operations.

DeepBlue has a super user account that is created when a DeepBlue Server is initial-
ized for the first time. This account is used for adding and removing users. The super
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user account has access to all DeepBlue Server data and operations and it must be used
carefully.

4.2.4 Entities

An entity is any content in the DeepBlue Server that can be individually accessed or
named, for example, epigenomic experiments, genomic annotations, metadata content,
biological sources, epigenetic marks, column types, and Gene Ontology (GO) terms.

These entities are categorized into two groups: data and metadata entities. The data
entities are divided in several sub-groups: experiments, genomic annotations, gene
models, gene expressions, and DNA sequences. These entities are used to store their
respective (epi)genomic data.

The data entities are described using metadata that is a set of mandatory and op-
tional terms organized in a key-value pairs data structure. For example, an experiment
metadata consists of a unique name, the genome assembly name, the epigenetic mark,
the sample ID, the technique, the project, the file format (the columns), and a set of
optional key-value pairs. Annotation metadata consists of a unique name, genome as-
sembly name, a description, the file format, and a set of optimal key-value pairs. The
gene model metadata is also composed of a unique name, genome assembly, and a de-
scription. Similar metadata content applies to other data entities.

Metadata entities can also describe other metadata entities. For example, a sample
is formed by a biosource name, and optional key-value pair terms that describe this
sample content. Another example is the experiments and annotations content format,
a list of columns describes this data content, each one representing a column of the
original input file, and each column contains a name, data type, and other mandatory
information.

For enforcing consistency in the metadata content, each mandatory metadata value is
restricted to terms that were registered in their respective controlled vocabularies. For
example, it is only possible to use the genome names that were previously recorded
in the genomes controlled vocabulary. The same applies to other mandatory metadata
fields: epigenetic marks, biosources, experimental techniques, projects, and columns.
New terms can be easily added using their appropriate metadata insertion operation.
Therefore, the DeepBlue Server can cope with new genomes, epigenetic marks, and bio-
logical sources.

4.2.5 Metadata Entities

The DeepBlue metadata entities are described in the following sections.

Genome

In the DeepBlue Server, a Genome refers to a specific genome assembly, for example hg19
or GRCh38. It contains the genome assembly name, a description, and a list of chromo-
somes containing their names and lengths.
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BioSource

In the DeepBlue Server, a BioSource is used to name the biological source (cell line, cell
type, tissue, or organ) of a given Sample. The BioSources names used in DeepBlue fol-
lows the IHEC policy and are imported from the Cell Type Ontology (CL) (Bard et al. 2005),
Experimental Factor Ontology (EFO) (Malone et al. 2010), and UBERON (C. J. Mungall et al.
2012).

The ontology terms are imported together with their synonyms and hierarchy. A
BioSource term can be used to obtain all experiments related to its sub-terms. As an
example, Figure 4.5 shows the hierarchy of the term blood in the UBERON ontology. In
this ontology, the term blood is less specific and encompasses umbilical cord blood, arterial
blood, venous blood, capillary blood, and it is more specific than organism substance. Using
the hierarchical content, DeepBlue Server users can access experiments from different bi-
ological sources using the more general terms, for example, using the term blood, users
can access all its more specific terms easily. As the DeepBlue Server also imports the
synonyms of the terms, it is possible to access the term blood using one of its synony-
mous terms: vertebrate blood and portion of blood, while the DeepBlue Server manages the
relationships between the names automatically.

– anatomical entity
– material anatomical entity

– organism substance
• bodily fluid
• haemolymphatic fluid
• blood plasma
• blood serum
• lymph
– blood

• umbilical cord blood
• arterial blood
• venous blood
• capillary blood

Figure 4.5: Example of the hierarchy of an UBERON term. In the UBERON ontology, the
term blood is more general than umbilical cord blood, arterial blood, venous blood,
capillary blood, and more specific than organism substance.

Sample

In the DeepBlue Server, a Sample refers to a biological sample of an epigenomic experi-
ment. A sample mandatorily contains a biosource and it can additionally be annotated
with optional key-value pairs. Even though all fields with the exception of BioSource are
optional, the DeepBlue Server indexes them, allowing users to find specific samples, and
consequently, epigenomic data. Figure 4.6 presents an example of a Sample imported
into the DeepBlue Server.
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BioSource neutrophilic myelocyte
BIOMATERIAL_PROVIDER Sanquin Amsterdam
BIOMATERIAL_TYPE Primary Cell
CELL_TYPE neutrophilic myelocyte
DISEASE None
DONOR_AGE 80 - 85
DONOR_ETHNICITY NA
DONOR_HEALTH_STATUS Healthy
DONOR_ID BM060814
DONOR_REGION_OF_RESIDENCE -
DONOR_SEX Female
SAMPLE_ID ERS640348
SAMPLE_NAME S00VCUH1
SPECIMEN_PROCESSING -
SPECIMEN_STORAGE -
TISSUE_TYPE bone marrow

Figure 4.6: Example of a DeepBlue Server Sample.

Epigenetic Mark

In the DeepBlue Server, an Epigenetic Mark refers to the epigenetic mark that is the sub-
ject of the epigenomic experiment. The most common types of epigenetic marks are
the DNA methylation, histone marks, transcription factors binding sites, and chromatin
accessibility. The DeepBlue Server also uses RNA and its variants as epigenetic marks,
as well as Chromatin State Segmentation (CSS). In short, the DeepBlue Server groups all
information about chromatin modifications, status, and product (e.g., RNA) as epige-
netic marks. The goal is to simplify the usage of the data for the user by reducing the
metadata complexity.

Technique

In the DeepBlue Server, a Technique refers to the experimental technique used in the epige-
nomic experiment. The metadata of an experiment contains its technique because, as
shown in the Section 2.2, it is fundamental to define how the data was obtained and how
it can be compared to other datasets.

Project

In the DeepBlue Server, a Project refers to the project that generated the epigenetic data
file, for example, DEEP or BLUEPRINT. Projects can be public or private, where public
projects can be accessible by all the users and private, only by its members.

Column Type

In the DeepBlue Server, a Column Type refers to the columns in the original experiment or
annotation data file. A column type is composed of a name, description, and data type.
Figure 4.7 lists the data types that can be used in the column types. It is important to
distinguish column types, which are the columns used for describing an experiment or
annotation file format, to their respective data types, which are the column content type.
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For example, the column type CHROMOSOME specifies that the content of this column
are of the data type string.

string any text, usually for defining a name.
Columns example: CHROMOSOME, NAME

integer a value, usually for defining a count or position.
Columns example: START, END

double a real value, usually for defining scores and proportions.
Column example: VALUE, SCORE, SIGNAl_VALUE

range a range between two real values.

category a list of available strings.
Column example: STRAND

calculated a short script that calculates the column value at run-time.

Figure 4.7: DeepBlue column data types. This table presents the data types that can be
used in a DeepBlue Server column type.

For example, in the experiment format “CHOMOSOME, START, END, NAME,
SCORE, STRAND”, the column type CHROMOSOME is a string, START and END are
integers, NAME is a string, SCORE is a double, and STRAND is a category accepting the
values “+”,“-”, and “.” (dot).

If, during the process of data import, the column content does not match the defined
type, for example, a string where it is supposed to be an integer, the entire data file
import process is canceled. This rigorous rule is fundamental for improving the quality
of the data and metadata stored in the DeepBlue Server.

Gene Ontology

The DeepBlue Server uses GO (Ashburner et al. 2000; Consortium 2018) terms for anno-
tating the imported genes. Users can select and filter genes by their GO terms, as well
as perform enrichment analysis using this metadata content (Section 4.5.7). In contrast
to BioSources, GO terms are imported without their hierarchical information.

4.2.6 Data Entities

As listed before, the DeepBlue Server has five types of data entities: experiments, anno-
tations, gene models, gene expressions, and DNA sequence. Experiments contains the
data (i) extracted from epigenomic experiments, e.g. DNA methylation or ChIP-seq; (ii)
derived from existing epigenomic experiments data, e.g. CSS, or (iii) related to the epi-
genetic state of the cell, e.g. RNA-seq data. Annotations are the data used to augment
the information of the genome, e.g. CpG island and repetitive regions.

In the DeepBlue Server, a gene model is a collection of the identified genes for a specific
genome assembly. The DeepBlue Server imports the gene models from GENCODE (Har-
row et al. 2012). The gene expression is a gene-centric expression data, usually in frag-
ments per kilobase of transcript per million mapped reads (FPKM) or transcript per million
(TPM) values. It uses a gene model for converting the gene-centric expression values to
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genomic regions. The DNA sequence is the genome sequence that is accessed in opera-
tions for finding DNA patterns or can also be retrieved by meta-fields (Section 4.5.5).

The experiments and annotations are composed of a set of genomic regions, organized
into chromosomes, and a genome. Each region contains its genomic location (chromo-
some, start, and end). It may also contain the region strand which contains the region
direction.

The experiment metadata is formed by a unique name, the genome assembly name,
the epigenetic mark, the sample ID, the technique, the project, the file format, and a set
of optional key-value pairs. Annotation metadata consists of a unique name, genome
assembly name, a description, the file format, and a set of optional key-value pairs.

The metadata field format describes the experiment or annotation regions’ columns.
For example, the format: “CHROMOSOME, START, END, NAME, SCORE, STRAND”
specifies that all rows of this experiment or annotation have these six column types. As
previously described, a column type must be registered in the column types controlled
vocabulary before being used.

The metadata used to describe epigenomic datasets from different projects are hetero-
geneous: epigenomic experiments from different consortia have different organizations
and contents. For handling this issue, the DeepBlue Server organizes experiments, anno-
tations, and gene models metadata by mandatory and optional fields. The mandatory
fields represent a subset of all available metadata, and they are the minimum required
information for describing an epigenomic experiment and its data set. The provided
metadata content that cannot be mapped to these fields is stored in the extra-metadata
content, a key-value map that accepts any values, and allows the DeepBlue Server to save
all available information about the entity.

All DeepBlue Server entities have an unique ID. The IDs are formed by a prefix with
one or more letters, given by the entity type, and a number as suffix. For example, all
experiments IDs start with an e, which is followed by a number. Table 4.1 shows some
prefixes of the DeepBlue entities IDs. The operation info can be used for obtaining the
information and metadata about an entity ID.

Experiment e
Annotation a
Genome g
Gene model gs
User u
Biosource bs
Sample s
Technique t
Project p
Gene gn
Column Type ct
Operation q
Processing Request r

Table 4.1: Example of DeepBlue Server entities IDs prefixes.
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4.3 Storing and Retrieving Epigenomic Data and Metadata

The DeepBlue Server contains a system for storing and handling (epi)genomic data. This
complete data storage system can be divided into three parts: (i) storage system - how
the data is stored; (ii) data model - how the data is organized; (iii) data access - how
the data is retrieved. This section dissects the DeepBlue Server storage system and its
components.

4.3.1 Storage System

The DeepBlue Server uses a MongoDB database9 for storing its entities: metadata and
data content. The MongoDB database software was selected due to its horizontal scala-
bility, that is the ability to increase the computational capacity by connecting multiple
hardware or software entities so that they work as a single logical unit. MongoDB pro-
vides horizontal scalability through the use of sharding. MongoDB also provides a flex-
ible data model centered on the concept of documents in which it is possible to include
arbitrary information as key-value pairs.

In a classical relational database it would be challenging to store the data and meta-
data of the epigenomic experiments, since they are generally not homogeneous and
structured differently for each of the contributing consortia. Using MongoDB allows the
inclusion of standardized properties common to all data sources as well as additional
information specific to each dataset. The DeepBlue Server’s data and metadata are stored
in MongoDB as documents, following the BSON specification. BSON10 is binary rep-
resentation of the JSON format, which is a lightweight data-interchange format. These
documents are grouped in collections that have a behavior similar to SQL database tables.
Figure 4.8 shows a collection with three exemplary BSON documents.

Figure 4.8: MongoDB collections with documents. Source: https://docs.mongodb.
com/manual/core/databases-and-collections/.

MongoDB also provides other features that align with the DeepBlue Server needs, such
as: (i) bulk insertions —it is possible to insert a set of data in a single and atomic op-
eration, being essential for adding the epigenomic data efficiently; (ii) data distribu-
tion (sharding) —dividing the data into sections and storing these sections on different
MongoDB servers, performing horizontal scaling; (iii) handling terabytes of data —it is

9 https://www.mongodb.org
10 http://bsonspec.org/

https://docs.mongodb.com/manual/core/databases-and-collections/
https://docs.mongodb.com/manual/core/databases-and-collections/
https://www.mongodb.org
http://bsonspec.org/
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able to cope with vast amounts of epigenomic data, allowing the DeepBlue Server to store
current and future epigenomic data.

When starting the DeepBlue Epigenomic Data Server project, the MongoDB database
was compared with other noSQL databases such as CouchDB11 and Redis12. For each
database, its scalability, flexibility, API usage, installation process, and the possible use
with epigenomic data were analyzed. After the evaluation, MongoDB was chosen be-
cause of its horizontal scalability through sharding, flexible data model based on docu-
ments, an API with several language drivers, like Python and C++, and easy installation
and use.

As presented in Section 4.2.1, the MongoDB database is accessed through the Database
Access component. This component abstracts and facilitates the use of the MongoDB C++
Driver. In principle, it is possible to connect another database that implements the same
document-oriented storage system in place of MongoDB, but currently, DeepBlue Server’s
source code is strongly coupled with the MongoDB C++ driver code.

4.3.2 Data Model

Section 4.2.4 introduced the DeepBlue entities used to organize the (epi)genomic data
and metadata information. Figure 4.9 gives an overview of the DeepBlue Server Data
Model: experiments and annotation metadata are composed of their names, controlled
vocabulary terms, and extra-metadata. The experiments and annotations data are com-
posed of a set of regions, where each region is linked to the corresponding metadata
by the dataset ID and each region contains a start and end, as well as the content of the
data file columns. The regions are grouped and stored in their respective genome and
chromosome collections (further details in Section 4.3.2). Genes from the gene models
and the DNA sequence are stored separately from the other (epi)genomic data, in their
own collections. All this information, data and metadata, must be serialized from and
to BSON documents for being inserted into the database and thus available to the users,
which is explained in the following sections.

4.3.3 Metadata serialization

The DeepBlue Server creates a BSON document for each metadata entity. These docu-
ments are grouped into collections, having one collection for each type of metadata. For
example, the DeepBlue Server has the following collections for storing the metadata enti-
ties: genomes, biosources, epigenetic_marks, projects, samples, techniques, and column_types.
Figure 4.10 shows an example of BioSource stored into the MongoDB database: as pre-
viously described in Section 4.2.4, each BioSource has an ID, name, description, ID of
the user responsible for its inclusion, and extra-metadata containing the additional info
that does not fit in the other fields.

Two extra fields were included in the document by the DeepBlue Server: norm_name
and norm_description. The norm prefix means normalized, where the text was trans-
formed to a normalized text representation. This transformation involves: removal of
white spaces and special characters and transformation of the remaining text to lower
case, for example, the text DNA methylation becomes dnamethylation. Normalized text is
11 http://couchdb.apache.org/
12 https://redis.io/

http://couchdb.apache.org/
https://redis.io/
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Figure 4.9: DeepBlue Server Data Model: The experiments and annotation metadata are
composed of their names, controlled vocabulary terms, and extra-metadata. Ex-
periments and annotations data are composed of region-sets, where its regions
are grouped by chromosomes, and then by genomes. Each region is linked to
the corresponding metadata by its ID field and contains a start and end, as well
as additional attributes found in the data files. Links between experiment and
annotation metadata fields to controlled vocabularies are omitted for clarity.
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1 {
2 "_id": "bs1",
3 "name": "prostate duct",
4 "norm_name": "prostateduct",
5 "description": "The minute canals that pass the prostatic secretions to the thra.",
6 "norm_description": "theminutecanalsthatpasstheprostaticsecretionstotheurethra",
7 "extra_metadata": {
8 "comment": "",
9 "namespace": "uberon",

10 "ontology_id": "UBERON:0002485",
11 "url": "http://purl.obolibrary.org/obo/UBERON_0002485"
12 },
13 "user": "u2"
14 }

Figure 4.10: Example of BioSource document stored into the database.

used for performing searches in the database: when a user executes a search, its input
text is also normalized and then compared to the normalized text stored in the metadata
fields. In this way, the searching component can find the searched content even when
the input differs in details like the letter case, empty spaces, or special text marks (e.g.,
commas and dots). Besides text normalization, the DeepBlue Server uses the MongoDB
index-text13 capacities to index and full-text search all its metadata.

4.3.4 Storing epigenomic data

The (epi)genomic data insertion is composed of three steps: (i) parsing the file content
to an internal data structure; (ii) converting the data structure to a BSON format; (iii)
inserting the BSON data into the appropriate database collection. Each of these steps is
performed by a different component. However, the user only needs to use the insertion
operations provided by the DeepBlue Server API and is not concerned with these details.

The API operations add_experiment and add_annotation expect that the input data are
in BED or WIG file formats. In the first step, the parser component reads the input
data and converts it to an internal representation. Subsequently, this representation is
converted to a list of regions. WIG files can be converted to an optimized format that
requires less disk space.

The DeepBlue Server stores the regions as BSON documents in the database. In initial
versions, the DeepBlue Server stored each region as an individual BSON document be-
cause it was the most straightforward way for storing such data. But due to the overhead
generated by storing each region individually, especially in signal data files which are
composed of million of regions, the regions storing system was optimized for storing
multiple regions in a single document.

As the initial version is still used for storing genes from gene models, both versions
are explained in the following sub-sections. For the sake of simplicity, the initial version
is explained first, and then the optimized version. The Appendix A.2.1 contains the
collections size using the initial and optimized version.

13 https://docs.mongodb.com/manual/core/index-text/

https://docs.mongodb.com/manual/core/index-text/
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Serializing epigenomic regions

Initially, the DeepBlue Server serialized each region as a separate BSON document. This
document contains the region dataset ID, start, end, and the region attributes from the
file columns of the BED format, or one attribute, named VALUE for the signal data.
Figure 4.11 depicts a region from a BED document, which is converted to the BSON
document during the input data processing. The converted BSON document is shown in
Figure 4.12. The region BSON documents are stored in collections defined by their entity
(experiment or annotation), genome, and chromosome. In this way, it is not necessary to
explicitly include the genome and chromosome in each BSON document that represents
a region.

1 chr1 12372 12731 Region 1 0.721 +

Figure 4.11: Example of part of a BED file. The file columns are: CHROMOSOME, START,
END, NAME, SCORE, and STRAND.

1 {
2 "_id": "region1",
3 "DATASET": 210693,
4 "START": 12372,
5 "END": 12731,
6 "NAME": "Region 1",
7 "SCORE": 0.721,
8 "STRAND": "+"
9 }

Figure 4.12: Example of BSON document containing the information of a Region. The
genome and chromosome are implicit in the collection name where this re-
gion is stored, for example, collection hg19.chr1.

The BSON documents are stored with their keys and values, the keys became redun-
dant14 and use a substantial amount of memory. For this reason, the DeepBlue Server
compresses the key names, storing the minimal necessary name. For example, the key
DATASET becomes D, the START becomes S, SCORE becomes S1, and STRAND be-
comes S2. An auxiliary collection stores the keys and their compressed names. Fig-
ure 4.13 shows a BSON document using compressed keys. Comparing the disk space
required: the document in Figure 4.12 occupies 115 bytes and the compressed docu-
ment in Figure 4.13 occupies 93 bytes, which corresponds to a decrease in size of ap-
proximately 20%.

Database systems provide data indices for optimizing data retrieval. MongoDB offers
three types of indexes: full-text, hash, and B-trees. The DeepBlue Server uses full-text for
indexing the metadata text, hash for categorical indexing data, and B-trees for indexing
epigenomic data. These indices optimize the access to the stored epigenomic regions,
but also generate overhead in disk and memory utilization.

DeepBlue uses database indices extensively for optimizing data retrieval. The regions
are indexed by their unique identifier, by the start and end, and genomic location start
14 An improvement in the version 3.4 from MongoDB facilitated that the key compression is automatically

performed.
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1 {
2 "_id": "region1",
3 "D": 210693,
4 "S": 12372,
5 "E": 12731,
6 "N": "Region 1",
7 "S1": 0.721,
8 "S2": "+"
9 }

Figure 4.13: Example of BSON region with compressed key.

and end. MongoDB does not provide a direct way of calculating the memory and disk
overhead generated by the index usage, but estimates show that each individually stored
region uses 140 bytes on disk and memory to keep the three previously listed indexes.
Thus, a single region document presented in Figure 4.14 requires 66 bytes for the region
itself and 140 bytes for the indices, i.e. 200 bytes in total. Considering that a single
signal file contains between 1, 000, 000 to 100, 000, 000 regions, the required disk space is
between 200 megabytes to 18 gigabytes for a single file, where 13 gigabytes must stay in
the main memory, which is impractical. For reducing these requirements, the DeepBlue
Server uses different techniques that are explained in the following sub-section.

1 {
2 "_id": "region1",
3 "S": 52126,
4 "E": 57323,
5 "V": 1.27
6 }

Figure 4.14: Example of BSON document containing the information of a Region com-
pressing the key names.

Data Blocks

Storing individual regions in the BSON format provides numerous benefits. The imple-
mentation is straightforward, as is data retrieval: the filtering of regions is fully executed
by the database, retrieving only regions that match the given criteria. Furthermore,
counting regions that match the input query can be performed directly in the database.
This approach works well for peak files, but it is not practical for signal data due to the
overhead for the indices.

To improve data indexing, the DeepBlue Server uses data blocks for handling signal data
efficiently. Rather than storing each region individually, DeepBlue builds an array of
continuous regions, named data block (Figure 4.15). Data blocks are compressed using
the LZO15 algorithm, which is a lossless data compression algorithm that is focused
on decompression speed. Thus, compressing the data blocks saves valuable disk space
without compromising data retrieval performance. A BSON document acts as an enve-
lope of these regions, containing the block’s information, such as start, end, count, and
content type. This envelope is stored in the database regions collection respective to
15 http://www.oberhumer.com/opensource/lzo/

http://www.oberhumer.com/opensource/lzo/
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its genome and chromosome, and it is accessible by the DeepBlue Server data retrieval
component.

{
 " S" :  52100,
 " E" :  52110,
 " V" :  1. 27
} ,  {
 " S" :  52110,
 " E" :  52120,
 " V" :  1. 20
} , {
 " S" :  52120,
 " E" :  52130,
 " V" :  1. 13
} , {
 " S" :  52130,
 " E" :  52140,
 " V" :  1. 15
} , {
 " S" :  52140,
 " E" :  52150,
 " V" :  1. 14
}

{
 " S" :  52100,
 " E" :  52150,
 " C" :  5
 " D" :  

}

Figure 4.15: Regions Data Block: The envelope document contains the identifier of the
dataset, start and end positions of the block, and the count of regions. For
clarity, internal attributes like the type of the stored regions, dataset ID, block
size, and the flag for informing if block is compressed were omitted.

The DeepBlue Server also uses data blocks in peak regions, even though this results
in a smaller gain when compared to the signal data. Besides the impressive reduction
in index size, this strategy also improves data retrieval performance. The reason is that
MongoDB has access to all continuous regions in the same location, and these regions
are sent as an atomic data block to the DeepBlue Server, without the need to gather the
information across the database. Furthermore, the transfer of the region-set data from
MongoDB to the DeepBlue Server is optimized because the block content is compressed.

Gene models

The DeepBlue Server imports the gene models from GENCODE using the operation
add_gene_model. This operation parses the gene model file content, which must be in
GTF format and creates a BSON document for each gene, which is stored separately,
rather than in blocks, in the genes collection. The reason for independently storing each
gene is that genes are accessed individually or by small groups using their identifiers
and names, not their genomic location.

Due to the various forms of accessing genes, the DeepBlue Server indexes the gene
collections with more than ten indices. Each gene-model has approximately 60, 000
genes/regions, totalling 266, 711 genes for currently four imported gene models, using
255 megabytes for storing the documents and 450 megabytes for the indices, a very small
fraction of the total data stored in the DeepBlue Server.
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Quantified gene expression data

Together with the RNA data stored as signal, the DeepBlue Server also provides the ex-
pression data quantified by gene, not by genomic location. This data contains the FPKM
and TPM of the expressed genes together with other information provided by the quan-
tification tool, which can be either: Cufflinks (Trapnell et al. 2010), Grape (Knowles et al.
2013), or Salmon (Roberts and Pachter 2013). Due to the small amount of RNA data
quantified by genes, where it is currently 40 millions quantified genes that use 20 giga-
bytes for the data and index, and the access being made individually through the gene
identifiers, data blocks are not used and each quantified gene expression value is stored
in a single BSON document, similarly to the individual genes from the gene models.

4.3.5 Genomic data storage

The DeepBlue Server provides genomic sequence data for helping with the analysis and
integration of epigenomic data. These sequences are used for performing motif analysis
or motif search. For example, it is possible to access all genomic locations where such a
motif (given in the form of a regular expression) matches the DNA sequence, or to count
how many times a motif occurs in the given genomic region.

The genomic sequences are inserted into the DeepBlue Server using the operation up-
load_chromosome, which requires a genome, chromosome, and a genomic sequence in
the FASTA format, with the DNA sequence of the selected chromosome. Each genome,
chromosome, and genomic sequence triplet is stored in the MongoDB database using
its GridFS16 functionalities, which provide means for inserting each genomic sequence
as an individual file and for retrieving portions of this file.

4.3.6 Epigenomic data insertion

The epigenomic data insertion process is divided into the following steps:
1. Metadata content verification
2. Epigenomic data transformation

a) data parsing
b) regions creation
c) data blocks generation

3. Metadata and data insertion
a) metadata insertion
b) data blocks insertion

4. Return of the data identifier
The verification step (1) confirms that the metadata contains all necessary attributes

and that these attributes are presented in their respective controlled vocabularies.
The epigenomic data transformation step (2) parses the data file (2.a),(2.b) builds the

internal representation of the genomic regions, and (2.c) generates the data blocks, com-
presses them, and includes them in the envelope BSON document. The parser performs
lexical, syntactic, and semantic analysis of the data content. The lexical analysis checks
if the text is valid, for example, confirming that the data contains only valid characters.
16 https://docs.mongodb.com/manual/core/gridfs

https://docs.mongodb.com/manual/core/gridfs
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The syntax analysis verifies that the tab character separates its columns and checks if
the data file has the number of columns defined in its format. Finally, the semantic anal-
ysis verifies that each row-column content obeys the selected data format. For example,
neither an empty value nor a string are acceptable if the format specifies ’integer’ or
’double’. The DeepBlue Server data parser is strict, and the entire process is canceled if a
single content does not match the specified format.

In the next step (3), the metadata and data blocks are inserted into the database. Dur-
ing the insertion, the epigenomic data receives a unique identifier following the rules
presented in Section 4.2.6.

For minimizing memory consumption of the data insertion process, the DeepBlue
Server creates the data blocks while reading the data files and inserts them directly in
the database. The data insertion process updates the metadata when the entire process
is finished. If a problem occurs, e.g., invalid data is encountered, the already inserted
data is deleted and the DeepBlue Server returns an error message. Otherwise, in the step
(4) the (epi)genomic data identifier is returned.

4.3.7 Epigenomic data and metadata retrieval

The (epi)genomic metadata is retrieved when users wish to obtain information about a
given experiment data file using its identifier, or when users want to select epigenomic
data that matches some filtering criteria. Hence, for retrieving data, the respective meta-
data must be found and extracted.

The simplest case is when a user requests information about an experiment. In this
case, the operation info is used with the experiment identifier. Internally, the DeepBlue
Server executes a query in the MongoDB database for the experiment that contains the
given identifier. The experiment BSON document content found is returned to the user.

In contrast to requesting epigenomic experiment metadata information, handling
epigenomic data requires complex metadata queries and data retrieval procedures. This
procedure is composed of three steps: (i) finding the relevant experiments in the exper-
iments metadata collection; (ii) obtaining the data blocks that contain the required re-
gions; (iii) extracting and filtering the regions from the data blocks, and returning them
to the user. The following paragraphs detail this procedure.

The first step is to prepare a metadata filtering query, containing all user-defined fil-
tering criteria, e.g. filtering by epigenetic mark, genome, and other metadata attributes,
with internal criteria, e.g. which data the user has permission to access. This query ac-
cess the experiments metadata collection, and the DeepBlue Server collects the identifiers
from all experiments that match the query criteria for using in the second step.

In the second step, DeepBlue prepares a filtering query, specifying the location of
the regions (start, and end) and the experiments IDs found in the first step. The data
filtering query access each chromosome collection specified by the query, obtaining a
set of BSON data blocks.

In the third step, the regions are extracted from the data blocks and filtered by the
DeepBlue Server using the given genomic location ranges or by the regions’ attributes,
e.g., if a given column match the filtering criteria (P_VALUE >= 0.06, or NAME ==
5_Strong_Enhancer). The resulting regions are converted to the internal DeepBlue re-
gion data structure, and then used in the subsequent operations.
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4.4 DeepBlue Populator

The DeepBlue populator sets up the DeepBlue Server configurations, imports the annota-
tions and experiments data and metadata, and ensures that the DeepBlue Server data is
kept up to date. It executes all necessary operations independently and automatically,
without the need of any manual intervention on the DeepBlue Server. It periodically
examines the data sources of relevant epigenome projects and imports the data auto-
matically. The populator is implemented in Python and has approximately 8, 500 lines
of code. Appendix A.2.2 provides additional implementation details and instructions
for configuring and executing the populator.

The core responsibilities of the populator are: (i) setting up a new DeepBlue Server con-
figuration, (ii) importing metadata entity terms, (iii) importing the (epi)genomic data,
(iv) and keeping the data up-to-date. In this section, the following responsibilities are
explained in more detail:

• Initiating the DeepBlue Server and create initial users
• Importing controlled vocabularies for epigenetic marks and techniques
• Importing BioSources from the ontologies
• Importing genomes
• Inserting genomic DNA sequences
• Inserting genomic annotations
• Inserting genes and gene ontologies
• Importing epigenomic experiments

Initiating the DeepBlue Server and create initial users

The primary responsabiliy of the populator is to initialize the DeepBlue Server. It executes
the administrative operation init which creates the MongoDB database instance with its
initial collections and required indexes. This operation also creates the administrator
and anonymous accounts. The populator uses the administrator account for creating
the populator user which is used in all populator operations, such as metadata and data
insertion.

Importing Epigenetic Marks and Techniques controlled vocabularies

The populator source code contains a list of epigenetic marks that must be inserted
into the DeepBlue Server. The histones from this list are imported from the HIstome
database (Khare et al. 2011), the Transcription Factor Binding Site (TFBS) from the ENCODE
Project and ChIP-Atlas. Other epigenetic marks, such as the DNA methylation, are im-
ported from literature.

Importing BioSources from the ontologies

The populator imports the BioSources terms and their hierarchy from Cell Type Ontology
(CL) (Bard et al. 2005), Experimental Factor Ontology (EFO) (Malone et al. 2010), and Uber
Anatomy Ontology (UBERON) (C. J. Mungall et al. 2012) ontologies. These ontologies are
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stored in the Web Ontology Language (OWL) format17, which needs to be processed and
organized before being inserted into the DeepBlue Server.

During processing, the populator extracts term names, synonyms, and their hierar-
chy. While extracting term names and synonyms are relatively straightforward tasks,
extracting hierarchy can be more complex due to the existence of different types of re-
lationships. For example, the populator requires that the relationship between terms
is expressed in the form of a term A being more specific than a term B. But ontologies
provide the relationships in this form and also in the opposite form, where a term A
is less specific than term B. Hence, it is necessary to verify how this information is pro-
vided and, if necessary, to correct the relationship information. For this, the populator
keeps a blacklist of invalid and a whitelist of valid term relationships. The BioSources
importing method is one of the most complex parts of the DeepBlue Server and its imple-
mentation is found in the DeepBlue-Populator/src/owl_loader.py source code file. Due to
its independence from the main populator code, the OWL extractor and parser can be
reused in other projects as well.

Importing Genomes

The populator imports mouse genome assembly GRCm38 and the human genome as-
semblies GRCh38, hg19, and hs37d5. All genome assemblies are imported with their
respective chromosome names and sizes. The populator uses the operation add_genome
to include a new genome assembly. Internally, the DeepBlue Server creates a MongoDB
collection where the regions data is stored for each genome and chromosome. Adding a
new genome assembly to the DeepBlue Server is trivial, as only the name of the assembly
and its chromosome names and sizes are required. Table A.1 in Section A.1 contains the
source URLs of the imported genomes and their respective DNA sequences.

Inserting Genomes DNA sequences

The populator includes genomes’ DNA sequences that can be accessed and analyzed
directly in the DeepBlue Server. Each genome-chromosome pair is included individually
using the operation upload_chromosome. This operation requires the genome assembly
name, chromosome, and the DNA sequence in FASTA format. Internally, the DeepBlue
Server verifies the DNA sequence content and its length.

Inserting (Epi)genomic Annotations

The populator includes commonly used annotations such as GpG Islands, Repetitive Re-
gions, and the ENSEMBL regulatory build (Zerbino et al. 2015). It uses the operation
add_annotation to include the annotation data. Additional annotations can be easily
added in the DeepBlue Server using the same operation.

17 https://en.wikipedia.org/wiki/Web_Ontology_Language

htt ps://en.wikipedia.org/wiki/Web_Ontology_Language
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Inserting Genes and Genes Ontologies

The populator imports genes from the GENCODE versions 19, 22, and 23 for human
genome, and the M1 and M13 for the mouse genomes. Each imported GENCODE ver-
sion, with all its genes, is organized in a DeepBlue entity collection named gene-model.
Table A.2 in Section A.1 contains the source URLs of the imported genome assemblies.

The human genes are annotated with GO (Ashburner et al. 2000; Consortium 2018)
terms that are used in regions enrichment by GO terms or for finding specific genes.

As GO data is mapped to protein identifiers rather than to gene identifiers, its im-
port process requires pre-processing. The GO data import process is performed by the
following steps: (i) obtaining the GO terms and their hierarchy from the GO OWL file;
(ii) loading the ID mapping from the proteins IDs and GO IDs; and (iii) annotating the
genes with the mapped GO terms. The implementation is available in the DeepBlue-
Populator/src/gene_ontology.py source code file.

Importing the epigenomic experiments

Importing epigenomic experiments from the epigenomic projects18 is the main and most
complex task of the populator. These steps compose the experiment insertion process:

1. Read the metadata from the different data sources, e.g., epigenomic project por-
tals.

2. Store each dataset’s metadata as a BSON document in the MongoDB populator
database.

3. Query these documents by their experiment data (signal or peak data) and by their
metadata.

4. Convert documents to a general DeepBlue metadata content using a project-
specific mapper19. The mapper extracts the project-specific metadata information
from the stored document and builds a DeepBlue’s metadata representation.

5. Download and convert the experiment data into a textual format, e.g. from bigBed
to BED or WIG to WIG or bedgraph file formats.

6. Insert the experiment data and metadata into the DeepBlue Server using the opera-
tion insert_experiment.

7. Repeat this process for all configured data sources and for all experiments of each
data source that matches the insertion criteria.

Extracting the metadata content from the project metadata files is a cumbersome task
because the metadata file format varies from project to project. For example, the ini-
tial ENCODE (ENCODE Project Consortium 2004; ENCODE Project Consortium 2012)
metadata data files20 were key-value pairs with a simple description of the experiment
data file. Nowadays, ENCODE provides a powerful API (Sloan et al. 2015) for query-
ing its data, which is dealt with by a special class in the populator21. The BLUEPRINT

18 List of projects in Appendix A.1
19 Implementation of the project-specific mapper are in DeepBlue-Populator/src/datasources
20 Implementation in DeepBlue-Populator/src/encode_repository_ftp.py
21 Implementation in DeepBlue-Populator/src/encode_repository.py
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Epigenome project (Adams et al. 2012; Martens and Stunnenberg 2013) provides a ta-
ble file with the metadata of its experiment files, thereby requiring a different imple-
mentation22 for accessing and handling this metadata. Similarly DEEP, RoadMap and
ChIP-Atlas data also needs special classes for handling metadata. Fortunately, the IHEC
Data Portal (Bujold et al. 2016) has a standard metadata format, where, a priori, all IHEC
member projects’ have the same metadata standard. As noted before, after reading the
metadata from the data source, the populator stores a BSON document containing the
metadata and data file localization for each found dataset file.

It is straightforward to extend the populator to import data from a new epigenomic
project. It is only necessary to provide a method for accessing the experiments metadata,
transforming this metadata to the DeepBlue Server representation, and downloading the
experiment data.

4.5 Application Programming Interface (API)

The API is a central piece of the DeepBlue Epigenomic Data Server. The DeepBlue API com-
prises a comprehensive set of operations provided by the DeepBlue Server. The primary
goal of the API is to offer a programmatic interface to the epigenomic data and metadata
stored in the DeepBlue Server, as well as to allow users to access and handle the data effi-
ciently. The API can be used anonymously with access to all public data. Besides, users
can create an account to have access to their operations history, to upload their own
data, and to access or share privately managed data in their DeepBlue Server workspace.

The API is accessible by all programming languages that support the XML-RPC
or RESTful protocols, which includes Python, R, Matlab, Java, Perl, C++, PHP, and
JavaScript. The next chapters and sections present examples that demonstrate the Deep-
Blue Server API versatility: the DeepBlue Web Portal (Chapter 6) was developed using
HTML, JavaScript, and PHP; the visual exploratory tool DIVE (Chapter 7) was devel-
oped in HTML and TypeScript; the Batch Effect Analysis Tool (Section 5.3.4) was de-
veloped in R; and many use cases were developed using Python and R. Furthermore,
external groups also used the DeepBlue ServerAPI for developing (epi)genomic data anal-
ysis tools, such as the BLUEPRINT Data Analysis Portal (J. M. Fernández et al. 2016),
developed in Perl, and deepTools (Ramı́rez et al. 2016), developed in Python.

The DeepBlue Server API comprises two types of usage: administration and end user.
The administration operations include operations for including new metadata terms,
new experiments, removing data or metadata, creating projects, and registering users.
These operations are executed solely by the Populator tool (Section 4.4) or by the Deep-
Blue Server administrator rather than by the user.

From the user point of view, the API operations can be divided into seven main cate-
gories: metadata information retrieval, list and search, selection, manipulation, enrich-
ment, requesting, and downloading results. Table 4.2 summarizes the main operations
found in these categories. Appendix A.4 contains the full list of API operations.

Access control is regulated with user_keys. A user_key is a user’s individual identi-
fication, and it is used in every request made to the DeepBlue Server. Users must keep
their user_key private. The DeepBlue Server also provides a generic user_key, the anony-
mous_key, that can be adopted by any researcher who does not wish to create a personal
22 Implementation in DeepBlue-Populator/src/blueprint_repository.py
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Category Operation Description

Entity Information info Obtain the metadata information about an entity

List & Search

list_genomes List all registered genomes
list_biosources List all registered biosources
list_samples List all registered samples
list_epigenetic_marks List all registered epigenetic marks
list_experiments List all available experiments
list_annotations List all available annotations
faceting_experiments Summarize experiments by metadata
is_biosource Verify if the given name is a valid BioSource
search Perform a full text search

Selection

select_regions Select regions from experiments
select_experiments Select regions from experiments
select_annotations Select regions from annotations
select_genes Select genes as regions
select_expressions Select genes expression as regions
tiling_regions Generate tiling regions
input_regions Upload and use a small region sets

Manipulation

aggregate Aggregate and summarize regions
filter_regions Filter regions using their attributes
flank Generate flanking regions
intersection Filter overlapping regions
merge_queries Merge two region-set

Enrichment
enrich_regions_overlap Enrich regions by overlaps count
enrich_regions_fast Enrich regions using bitmap representations
enrich_regions_go_terms Enrich regions with gene ontology terms

Request
count_regions Count selected regions
score_matrix Request a score matrix
get_regions Request the selected regions

Download get_request_data Obtain the requested data

Table 4.2: The DeepBlue Server API categories and main operations for each category. A
typical workflow starts with experiment search, followed by data selection. Op-
tionally, selected data can be manipulated before being counted or retrieved.
The results can be downloaded as a formatted table, or a score matrix.
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account. With the anonymous_key, users have access to all public datasets and can per-
form all non-administrative operations. Additionally, registered users can: insert and
access private data, share private data with other users through private projects, access
previously executed operations and requests. Registered uses also have permission for
longer workflows execution time and higher memory usage.

All API operations return a value pair: (status, result). For successful operations,
the variable status contains the string "okay" and result contains the operation result.
If some error happened, status contains the string "error" and result contains an error
description.

The API categories and the most frequently used operations are presented in the fol-
lowing sections. Not all operations are discussed, but a comprehensive list of the API
operations is presented in Appendix A.4

4.5.1 Entities information operation

All DeepBlue Server entities, e.g., experiments, annotations, controlled vocabulary terms,
and processing request, have a unique identifier, which can be used to obtain detailed
information through the info operation. This operation is very versatile: it is used to
obtain the metadata of a set of experiments, sample information, or the status of a pro-
cessing request. In short, the info operation is the main source of metadata and status
information in the DeepBlue Server for the users. It can be used with a single or a set of
IDs, being optimized to return the information of thousands of different IDs in a feasible
time frame of a few seconds.

4.5.2 Listing and searching operations

The DeepBlue Server stores a large number of controlled vocabulary terms. These terms
are divided into entities used for annotating thousands of (epi)genomic datasets. Due
to the large amount, the API provides listing and searching operations for finding meta-
data terms and/or the desired (epi)genomic data. The listing and searching operations
are divided into three types: (i) listing, (ii) text-search, and (iii) faceting.

The listing operations query the DeepBlue Server for the entities that match the spec-
ified criteria. For example, the list_genomes operation returns a list of all genome as-
semblies registered in the DeepBlue Server. The same concept extends to other list
operations, such as list_experiments, which lists all experiment files that match the
given filtering parameters. Virtually, all entities have a listing operation: list_genomes,
list_epigenetic_marks, list_samples, list_techniques, and list_projects.

The API also provides a set of operations that uses the Levenstein distance for
finding entity names using similar names. For example, executing the operation
list_similar_epigenetic_marks with the input DNA meth returns DNA methylation, or using
H3Kac returns H3K27ac and other epigenetic marks with similar names. These opera-
tions are useful in visual interfaces for verifying the user input and suggesting correct
names.

While list_experiments is used to obtain a list of all experiments that match the given
filtering criteria, it does not group the experiments by their metadata content. For such
purposes, the faceting_experiments operation allows users to list the desired experiments,
and return a list of the selected experiments grouped by their metadata content. This



4.5 Application Programming Interface (API) 57

operation gives users an overview of the data available in the DeepBlue Server that match
the searching criteria.

Listing 4.1 shows an output example of the faceting_experiments operation. This op-
eration returns a dictionary containing metadata fields that annotate the experiments
matching the filtering parameters. Each metadata field contains a list of terms and the
counts of experiments that are annotated by this term.

1 >>> server.faceting_experiments("GRCh38", "peaks", None,
2 "CD14-positive, CD16-negative classical monocyte",
3 None, "chip-seq", "BLUEPRINT Epigenome", user_key)
4
5 # Result:
6 ['okay', {
7 'biosources': [['bs16177', 'CD14-positive, CD16-negative classical monocyte', 66]],
8 epigenetic_marks': [['em100', 'H3K9/14ac', 1],
9 ['em64', 'H3K27me3', 10],

10 ['em67', 'H3K36me3', 7],
11 ['em79', 'H3K9me3', 11],
12 ['em70', 'H3K4me1', 13],
13 ['em72', 'H3K4me3', 10],
14 ['em60', 'H3K27ac', 14]],
15 'genomes': [['g7', 'GRCh38', 66]],
16 'projects': [['p2', 'BLUEPRINT Epigenome', 66]],
17 'samples': [['s10855', '', 12],
18 ['s10907', '', 7],
19 ['s10867', '', 5],
20 ['s10483', '', 7],
21 ['s10531', '', 8],
22 ['s10484', '', 5],
23 ['s10498', '', 8],
24 ['s10885', '', 7],
25 ['s10861', '', 5],
26 ['s10904', '', 2]],
27 'techniques': [['t5', 'ChIP-seq', 66]],
28 'types': [['', 'peaks', 66]]}
29 ]

Listing 4.1: Example of the faceting_experiments operation: it presents the result of
the operation faceting_experiments filtering by the genome GRCh38, peaks
experiments, biosource CD14-positive, CD16-negative classical monocyte, ChIP-
seq technique from the BLUEPRINT Epigenome project. This operation returns
a dictionary with the metadata entities used to annotate the experiments. Each
dictionary key represents a metadata entity and the dictionary values contain
a list of terms and count of how many experiments are annotated by this term.

The API also provides a full-text search operation that allows users to search in all
DeepBlue Server data and metadata entities using a simple full-text entry, similarly to a
Google search. This operation is built on top of the MongoDB’s Index-Text23. The in-
put text may use special characters for qualifying the text. For example, a hyphen (-) in
front of a word denotes that this word must not be contained in the indexed metadata,
in opposite, single quotes (’) must embrace the designed word for marking it as manda-
tory. The search operation returns a list of lists of results, where each list contains three
elements: entity ID, entity name, and entity collection. Further information about the
entity can be obtained using the info operation.

23 MongoDB’ Index-Text documentation: https://docs.mongodb.com/manual/core/index-text/

https://docs.mongodb.com/manual/core/index-text/
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1 >>> server.search("'H3K27ac' 'blood' -CD4 'peak' 'Roadmap'", "experiments", user_key)
2 ['okay', [
3 ['e19426', 'E047-H3K27ac.narrowPeak.bed', 'experiments'],
4 ['e19788', 'E048-H3K27ac.narrowPeak.bed', 'experiments'],
5 ['e19421', 'E047-H3K27ac.gappedPeak.bed', 'experiments'],
6 ['e19439', 'E047-H3K27ac.broadPeak.bed', 'experiments'],
7 ['e19783', 'E048-H3K27ac.gappedPeak.bed', 'experiments'],
8 ['e19798', 'E048-H3K27ac.broadPeak.bed', 'experiments']]
9 ]

Listing 4.2: Example of the search operation: top five results of the full-text search for
H3K27ac, blood, -CD4, peak, Roadmap in the collection experiments. The search
operation returns up to 50 entries that are most similar to the query with their
ID, name, and collection.

Besides the searching and listing operations, it is possible to verify if a given name is a
valid BioSource term through the operation is_biosource. This operation receives a name
and return "okay", if the term is a valid BioSource, or "error", if it is an invalid term.

The preview_experiment operation receives the name of an experiment, and directly
returns the first 5 lines of this experiment’s content. In this way, users can have a preview
of the experimental data, without the need to retrieve the whole experiment through the
DeepBlue Server’s data processing workflow.

4.5.3 Server-side data processing workflow

The DeepBlue Server enables users to perform operations on (epi)genomic data effi-
ciently, where its API is designed for operating and manipulating (epi)genomic region-
sets directly on the server. The functionalities of the API include the following
(epi)genomic data operations: selecting regions by their location or their dataset meta-
data, filtering regions by their content, detecting overlaps, aggregating regions and pro-
viding summary statistics, searching for DNA motifs, and counting, retrieving, and en-
riching regions. When extracting the information of a region, the result can be down-
loaded in a tabular (BED file format like), or matrix format.

The DeepBlue Server operates on defined genomic sets of regions, which are selected
by the selection operations. Each data selection execution returns an unique ID, which
is used as input for the region-set data manipulation operations, for example: aggregat-
ing, filtering regions by their content, generating flanking regions, finding overlapping
regions, or merging different region-sets based on additional criteria. Each of these
operations returns a new unique ID, which are also used as input for following data op-
erations. The concatenation of operations through their IDs allows users to build and
execute complex (epi)genomic data processing workflows, where in the end, a request
ID is used for downloading the final results.

In the end of the workflow building process, when a user sends a processing request,
the DeepBlue Server processes it asynchronously. This means that rather than blocking
the connection while waiting for the processing be finished, the server returns a request
identifier (request_id), which is used to retrieve the request processing status and its re-
sult. The request_id is used in the info operation for obtaining the status of a processing
request, and for obtaining the processed data through the operation get_request_data.
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Figure 4.16 shows an overview of how the processing workflow is constructed and
executed in the DeepBlue Server, where a typical workflow is composed of data selec-
tion (4.5.4), data manipulation (4.5.5), and data retrieval (4.5.6).
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Figure 4.16: DeepBlue processing workflow: the DeepBlue Server facilitates combining
data operations into a data processing workflow. For each operation, an ID
is returned and the final data is accessible through the request ID. (Figure
modified from Albrecht et al. 2017)

4.5.4 Data selection

The DeepBlue Server API provides operations for selecting the desired (epi)genomic data.
In the following, these operations and other data selection methods are presented and
explained.

Experiments data selection

As previously described, the DeepBlue Server workflow operates on a set of regions
and the selection of such regions is the first step of any workflow. The operation se-
lect_experiments is the most straightforward experiment data operation, where users se-
lect the experiments by their names.

The operation select_regions is a more powerful variant where users can select all
genomic regions associated to the metadata filtering criteria. This operation is very
powerful, because it allows the selection of a large amount of (epi)genomic data in a
simple operation. As an example, the source code (status, q_h3k27ac_blueprint)= server.

select_regions ("", "GRCh38", "H3K27ac", samples_id, "ChIP-seq", "BLUEPRINT project", ["chr1",

"chr2", "chr3"], None, None, "anonymous_key") selects all regions annotated by the genome
assembly GRCh38, epigenetic mark H3K27ac, and the sample ID stored in the variable
sample_id, from from BLUEPRINT project, located in the chromosomes chr1, chr2, and
chr3.

The command select_regions does not make any distinction between peaks and sig-
nal regions. For distinguishing the regions’ type, the operation query_experiment_type is
used in combination with the data selection operations: (status, q_h3k27ac_blueprint_peaks

)= server.query_experiment_type (q_h3k27ac_blueprint, "peaks", "anonymous_user"), where the
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query_id q_h3k27ac_blueprint_peaks references the subset of the q_h3k27ac_blueprint re-
gions that are peaks.

Annotations data selection

The API provides the operation select_annotations for selecting annotation regions.
This operation has similar behavior as the select_experiments operation, but select-
ing region-sets from annotation files rather than experiment files. For example, the
source code: (status, cpgs_id)= server.select_annotations("CpG Islands", "hg19", ["chr21", "

chr22"], None, None, user_key) selects the genomic regions of the CpG Islands annotation,
from the genome hg19, located on chromosomes chr21 and chr21.

Gene data selection

The DeepBlue Server also handles genes directly. Genes are selected with the operation
select_genes. With this operation, users can select genes by their names, GO terms, and
by genomic location. In this way, users can perform analysis on genes lists, GO terms,
or genes located in a specific genomic location.

Processed gene expression data selection

The DeepBlue Server provides two types of gene expression data: (i) RNA experimental
files, located within other (epi)genomic experiments, and (ii) RNA expression quantified
by gene. Mapping projects usually provide this data in FPKM or TPM data format files,
which do not contain genomic locations, but the IDs of the quantified genes. For this
reason, these data files are stored and accessed differently by the DeepBlue Server API.

RNA expression data quantified by genes is accessed through the select_expressions op-
eration. This operation has the following parameters: expression_type, a list of sample_ids,
replicas, identifiers, and gene_model. The expression_type contains the type of expression
data, but currently, only the type ”genes” is available. The sample_ids are used to select
the data via sample, facilitating the selection of the data of the same sample from other
(epi)genomic experiments. The replica parameter inform which experiment replica must
be used. The parameter identifiers allows the user to select the expression of individual
genes by their Ensembl IDs or ENSB names. Finally, the gene_model parameter reports
which gene-model is used to map the gene expressions to their genomic locations, a
task that is completely transparent to the user. With exception of gene_model, the other
parameters are optional and can be freely combined.

DNA motif regions

The DeepBlue Server API provides different methods for accessing and linking the
(epi)genomic data to DNA sequences. For example, it is possible to access DNA se-
quences using meta-fields (Section 4.5.5), e.g. @SEQUENCE and @COUNT.MOTIF, or
by the API operations such as filter_by_motif , which filter the regions that overlap to a
DNA sequence motif. Furthermore, the operation find_motif constructs genomic regions
in run-time that match a specific DNA sequence motif.
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Tiling regions selection

Tiling regions are consecutive regions with the same size that span the complete
genome. The DeepBlue Server uses tiling regions as bins to discretize (epi)genomic data,
usually as result of aggregation operations. It is possible to generate tiling regions at
run-time through the operation tiling_regions.

Uploading regions

The input_regions operation allows users to upload genomic regions for being used in
the processing workflow. This operation has only two main parameters: the genome to
which these regions belong, and the regions themselves. The input format is automati-
cally deduced from the following possible list of formats:

• CHROMOSOME, START, END, SCORE
• CHROMOSOME, START, END, NAME
• CHROMOSOME, START, END, SCORE, NAME
• CHROMOSOME, START, END, NAME, SCORE, STRAND, SIGNAL_VALUE, P_VALUE, Q_VALUE, PEAK
• CHROMOSOME, START, END, NAME, SCORE, STRAND, THICK_START, THICK_END,ITEM_RGB, BLOCK_COUNT,BLOCK_SIZES, BLOCK_STARTS

After the regions inclusion, they are accessed through a query ID.

4.5.5 Data manipulation

As a counterpart to the previous (epi)genomic data selection methods, the DeepBlue
Server provides a set of operations for manipulating data directly on the server. These
operations are classified in: filtering, transformation, and statistics. Before diving deep
in the data manipulation operation, this section first presents the meta-fields.

Meta-fields

The meta-fields are complementary operations used with the API operations. They sup-
port the tasks of manipulating and retrieving (epi)genomic data. Meta-fields are pseudo
data columns that, rather than accessing an (epi)genomic data column, execute an op-
eration in the context of the individual genomic region.

Table 4.5.5 presents all meta-fields available in the DeepBlue Server. This table sepa-
rates the meta-fields by their category, such as, accessing the regions metadata, obtain-
ing the correspondent region DNA sequence, obtaining the gene GO annotations, and
calculating values during run-rime. This table also shows what each meta-field returns.

The Region information meta-fields are used to obtain region-specific information: its
length (@LENGTH) and the region strand (@STRAND). The DNA sequence meta-fields
helps to obtain the DNA sequence (@SEQUENCE) associated with the genomic region
and to count how many times a regular expression matches the corresponding region’s
DNA sequence (@COUNT.MOTIF). For example, the meta-field @COUNT.MOTIF((TATA|GAGA

)) returns how many times the patterns TATA or GAGA appear in the region’s DNA
sequence. The Genes and GO meta-fields allow users to access genes and GO meta-
data respectively. In similar way, Experiment metadata meta-fields provide means for
accessing the regions’ experiment metadata. For example, it is possible to obtain the
experiment’s name (@NAME) or the experiments biosource name associated to such re-
gion (@BIOSOURCE) directly. If the region does not belong to an experiment, only the
@NAME meta-field returns a value, all other Experiment metadata meta-fields returns an
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Category Meta-field Type Return

Region information @LENGTH integer Region’s length
@STRAND string Region’s strand

DNA sequence @SEQUENCE string Region’s DNA sequence
@COUNT.MOTIF integer Motif count in the Region’s DNA sequence

Genes and GO

@GENE_ATTRIBUTE string Gene attributes
@GENE_ID string Gene ID
@GENE_NAME string Gene name
@GENE_EXPRESSION double Gene expression value
@GO_IDS string Gene ontology IDs
@GO_LABELS string Gene ontology labels

Experiment metadata

@NAME string Entity (Experiment, Annotation) name
@EPIGENETIC_MARK string Experiment’s Epigenetic Mark
@PROJECT string Experiment’s Project
@BIOSOURCE string Experiment’s BioSource
@GENOME string Experiment’s Genome
@SAMPLE_ID string Experiment’s Sample ID

Aggregation Results

@AGG.MIN double Minimum aggregated value
@AGG.MAX double Maximum aggregated value
@AGG.SUM double Sum of aggregated values
@AGG.MEDIAN double Median of aggregated values
@AGG.MEAN double Mean of aggregated values
@AGG.VAR double Variance of aggregated values
@AGG.SD double Standard deviation of aggregated values
@AGG.COUNT double Count of aggregated regions

Calculated values @CALCULATED string

Table 4.3: Description of the DeepBlue Server meta-fields.

empty string. The Aggregation Results meta-fields are used for obtaining the results of
the aggregate operation, which is presented further in this section.

Calculated values

With Calculate columns users can generate custom columns content at run-time. Cal-
culated columns can be accessed by the meta-field @CALCULATED() or by creating a
calculated column using the operation create_column_type_calculated.

The @CALCULATED() meta-field allows users to execute a short script that performs
calculations on the current region at run-time. For example, the code @CALCULATED(

return math.log(value\_of('SCORE')) returns the log values of the column SCORE, and the
code: @CALCULATED(em = value\_of('@EPIGENETIC_MARK')if em == 'DNA Methylation'then return '

it is DNA Methylation'else return 'it is not methylation'end) obtains the region epigenetic
marks and returns a different text in case of it being DNA methylation or not.

The scripts are written in Lua programming language, because the DeepBlue Server has
an embedded Lua (Ierusalimschy 2006) interpreter. For security reasons, the Lua code is
executed in a sandbox environment, which means that users cannot access all Lua API
and functionalities due to security issues, but still can execute the mathematical, string
manipulation, and types conversion functions. A list of available commands is presented
in Table A.10 in the Annex A.2.1 together with additional information about the Lua
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interpreter. In addition, the sandbox protects the DeepBlue Server against abusive usage
by limiting the interpreter memory usage and execution time.

Filtering (epi)genomic regions

The DeepBlue Server API provides operations for filtering the (epi)genomic data regions
based on the region columns content and based on overlapping regions. In the follow-
ing, both methods and associated operations are presented and examples are given.

Filtering by regions content

The DeepBlue Server API enables filtering regions by their content through the operation
filter_regions. For example, this operation can be applied to DNA methylation data re-
gions and filters the regions, which have a DNA methylation level higher or lower than
a defined threshold. A similar approach can be used for ChIP-seq data.

The filter_regions operation requires (i) the query_id of the data that should be filtered;
(ii) the name of the column on which filtering is applied; (iii) the comparison opera-
tion, == or != for string type columns or ==,!=,>,>=,<, or <= for numeric columns; (iv)
the value to which the column value will be compared; (v) and the type of the afore-
mentioned value (number or string). The command filter_regions is a versatile and useful
operation for filtering specific (epi)genomic regions. Millions of regions can be selected
in the first step of a workflow and a specific filtering can be applied for finding the
regions that match its column content. Furthermore, it is possible to filter regions by
multiple queries connecting the filtering operation by their output query_id. Listing 4.3
exemplifies the filtering operation in different columns.

1 # Selecting the data from 2 experiments, and the data in the chromosome 1.
2 (status, query_id) = server.select_experiments (["BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38

.20150527.bed", "S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed"], "chr1", None,
None, user_key )

3
4 # Filter the regions where the SIGNAL_VALUE is higher than 10
5 (status, query_id_filter_signal) = server.filter_regions (query_id, "SIGNAL_VALUE", ">", "10"

, "number", user_key )
6
7 # Filter the regions where the PEAK value is higher than 1000
8 (status, query_id_filters) = server.filter_regions (query_id_filter_signal, "PEAK", ">", "

1000", "number", user_key )

Listing 4.3: Example of the filter_regions operation: Line 2 selects the genomic regions from
the experiments that are in the chromosome 1. After the regions that have
the value of the column SIGNAL_VALUE higher than 10 are selected (Line
5), follows another filter (line 8). This last filter ensures that the value of the
column PEAK is higher than 1000.

Meta-fields can be used by the filter_regions operation. For example, the code (status

,q_long_id)= server.filter_regions(data_id,"@LENGTH",">=",1000","number","anonymous_user") se-
lects the regions which are at least 1000 bp long. It is also possible to filter regions by their
experiment metadata information: (status,q_dnameth_id)=server.filter_regions(data_id,"

@EPIGENETIC_MARK","==","DNA Methylation","string","anonymous_user"). Another useful applica-
tion is to filter regions by their CG content in the DNA sequence: (status,q_cg_id)= server

.filter_regions(data_id,"@COUNT.MOTIF(CG)",">","10","number","anonymous_user"), which selects
the regions that have at least ten CG in its DNA sequence.
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Filtering by DNA sequence motif

The operation filter_by_motif allows users to filter for regions whose DNA sequence
matches a specific regular expression pattern. In this operation, the DeepBlue Server
accesses the DNA sequence of each region and verifies if its content matches the given
regular expression. This operation is specially useful for finding regions of specific TFBS
patterns or with CpG content. Listing 4.4 demonstrates the use of this operation.

1 # Filter the regions that DNA Sequence match the pattern [CG]+
2 (status, query_cg_motif) = server.filter_by_motif(query_id_filters, "[CG]+", user_key)
3
4 # Filter the regions that DNA Sequence match the pattern ACTAAAA
5 (status, query_acta_motif) = server.filter_by_motif(query_cg_motif, "ACTAAAA", user_key)

Listing 4.4: Example of the filter_by_motif operation: it is a continuation of Listing 4.3
source code after filtering by the regions column content. It filters the
regions by their respective DNA sequence that must match the regular
expression pattern [CG]+, followed by another filtering where the DNA
sequence must matches the pattern ACTAAAA. Regions referenced by the
query ID query_acta_motif overlap a DNA sequence containing sub-sequences
that match both patterns.

Filtering by intersecting and overlapping

The DeepBlue Server provides the functionality of filtering regions by overlapping
similar to BEDTools (Quinlan and Hall 2010), WiggleTools (Zerbino et al. 2013), and
BEDOPS (Neph et al. 2012). The API provides two operations for this task: intersection
and overlap.

The intersection operation is the simplest. It requires two queries IDs: one is referenc-
ing the data regions that contain the regions of interest and another is referencing the
filtering region, which is used for filtering, for example, the CpG island annotation. The
return value of this operation is a query ID that refers to the subset of the data regions
that overlap with at least one of the filtering regions. Listing 4.5 presents an example,
which uses the find_motif operation for generating a list of regions and use these regions
for filtering region-sets from an epigenomic experiment24.

1 # Find all locations where the motif TATAAA appears in the genome
2 (status, tataa_id) = server.find_motif("TATAAA", "GRCh38", "chr1", None, None, False,

user_key)
3
4 # Selecting the data from 2 experiments: BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38.20150527.bed

and S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed
5 # It selects the area in the chromosome 1, position 0 to 50.000.000.
6 (status, query_id) = server.select_experiments (["BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38

.20150527.bed", "S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed"], "chr1", 0,
50000000, user_key )

7
8 # Intersect the experiment regions with pattern
9 (status, intersected_id) = server.intersection(query_id, tataa_id, user_key)

Listing 4.5: Example of find_motif and intersection operations: it finds the regions in two
epigenomic experiments that intersect with the pattern TATAAA. The variable
intersected_id in line 9 refers to all query_id regions that overlapped to at least
1 bp of a tataa_id regions.

24 It is a simple illustrative example and such a task can be replaced by the filter_by_motif operation
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The intersection operation is useful, but usually a fine-tunning in the overlapping cri-
teria is necessary, e.g. concerning the length of the overlap or performing an inverse fil-
tering by removing the overlapping regions rather than keeping them. For cases where
the intersection operation does not fulfill the user needs, the overlap operation is a more
complex option for filtering regions regarding overlap criteria. This operation allows
users to specify if the region must or must-not overlap, how much it must overlap, or
how distant two regions must be in case of non-overlapping. This last constraint can be
given in bp or in fraction of the region length.

The two first parameters of the overlap operation are the same as for the intersection
operation (a pair of query IDs), but its third parameter specifies whether the regions
must (True) or must-not (False) overlap. For example, the source code: (res, qid_3)=

server.overlap(qid_1, qid_2, False, 0, "bp", user_key) removes all regions from the qid_1
that overlap at least with one qid_2 region.

The forth and fifth parameters for the overlap operation specify how many bp must
overlap to be filtered. While the operation intersection accepts all overlaps, even if by
just 1 bp, the overlap allows users to define how many bp must overlap. This option is
demonstrated in Listing 4.6, where the overlap must be 6 bp long (line 9).

1 # Find all locations where the motif TATAAA appears in the genome
2 (status, tataa_id) = server.find_motif("TATAAA", "GRCh38", "chr1", None, None, False,

user_key)
3
4 # Selecting the data from 2 experiments: BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38.20150527.bed

and S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed
5 # It selects the area in the chromosome 1, position 0 to 50.000.000.
6 (status, query_id) = server.select_experiments (["BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38

.20150527.bed", "S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed"], "chr1", 0,
50000000, user_key )

7
8 # Overlap the experiment regions with pattern and the overlap must be at least 6 bp long
9 (status, intersected_id) = server.overlap(query_id, tataa_id, 6, "bp", user_key)

Listing 4.6: Example of find_motif and overlap operations: it finds the regions that fully
overlap the pattern TATAAA.

The overlap width can be defined proportionally to the length of the regions. In this
case, it is necessary to use ‘%’ in the fifth parameter and specify the percentage in the
fourth parameter. For example, the source code: (res, qid_3)=server.overlap(qid_1, qid_2,

True, 25, "%", user_key) , specifies that at least 25% of the region in the qid_1 must overlap
with a region of the qid_2.

When using the operation overlap for filtering regions with no overlap, it is possible to
specify the minimum distance between the regions. For example, the source code (res,

q_peaks_far_cgi_id)=server.overlap(q_chip_peaks_id, q_cgi_id, False, 1000, "bp", user_key) fil-
ter all regions in the q_chip_peaks_id that are at least 1000 bp distant to any region in
the q_cgi_id. This example can be perceived as the regions in q_chip_peaks_id as ChIP-
seq regions and q_cgi_id regions as CpG islands, therefore, this code filters the ChIP-seq
regions that are distant to any CpG island.

Furthermore, for defining the distance between non-overlapping regions, the overlap
operation allows to use percentages proportional to the length of the regions rather than
constant values. For example, the source code (res, q_far_id)=server.overlap(qid_1, qid_2

, False, 250, "%", user_key) specifies that the qid_1 regions must be at least 2, 5 times its
own length away from any qid_2 region.
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Region transformation

The DeepBlue Server API also allows to transform the region directly on the server, which
enables extending the regions or generating flanking regions.

The extend operation allows for extending regions in the forward, backward, and both
directions. This operation receives a query_id, the length of the expected extension, and
the direction: FORWARD, BACKWARD, or BOTH. For example, the operation (res,

q_extended_both_id)=server.extend(regions_id, 25000, "BOTH", False, user_key) extends the re-
gions referenced by the variable regions_id by 25000 bp in both directions. The constant
BOTH can be changed to FORWARD, for extending only from the ending position, or
to BACKWARD, for extending from the starting position. This operation considers the
region strand if the forth parameter is set as True and if this information is present in the
region.

The flank operation generates flanking regions based on the existing regions. This
operation requires a query_id that references the original region set, the starting position
of each flanking region with respect to the original regions, the length of the flanking
regions, and the information whether it must use the original regions STRAND column
for defining the start and end of each region. The parameter start may have a negative
value, for flanking before the region start, or a positive value, for flanking after the end
of the region.

The promoter regions generation at run-time is one of the most convenient use cases
for the flank operation. Listing 4.7 (line 20) exhibits an example where a list of genes is
selected and their promoters are generated by the DeepBlue Server. In this example, the
promoters start 2500 bp before the genes Transcription Start Site (TSS) and are 2000 bp
long. In line 23 of the same example, another set of flanking regions are generated,
starting 1500 bp after the gene body and have 500 bp length.

1 # Select genes by name
2 # For selecting all genes, set gene_names as None
3 gene_names = ["RNU6-1100P", "CICP7", "MRPL20", "ANKRD65", "HES2", "ACOT7", "HES3", "ICMT"]
4
5 # Select the gene from gencode v23
6 (status, q_genes) = server.select_genes(gene_names, None, "gencode v19", None, None, None,

user_key)
7
8 # Generate flanking region that starts 2500 bp before the regions start and have 2000 bp.
9 # This region can be considered as promoter regions.

10 # The 4th argument ensures that DeepBlue must consider the region strand (column STRAND)
11 # to calculate the new region, so, the promoter region will be consist to the region start
12
13 (s, gene_promoters_id) = server.flank(q_genes, -2500, 2000, True, user_key)
14 (s, after_flank_id) = server.flank(q_genes, 1500, 500, True, user_key)
15
16 # Merge both flanking regions set and genes set
17 (s, all_merge_id) = server.merge_queries(q_genes, [gene_promoters_id, after_flank_id],

user_key)

Listing 4.7: Example of select_genes, flank, and merge operations: it generates flanking
regions before and after the genes, and merges all regions query IDs.

Merging queries

The merge_queries operation combines region sets of different query_ids into one query_id.
This operation receives one query ID as the first parameter, and a list of query IDs. It
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returns a query ID that references a region-set containing the regions of all merged query
IDs. Listing 4.7 (line 26) exhibits an example where three query IDs are merged into a
single query ID.

Summarizing region-sets

The aggregate operation aggregates the regions of a query ID using another query ID re-
gions as boundaries. The aggregation results are accessed through the @AGG.* meta-
fields listed in Table 4.5.5.

Listing 4.8 exemplifies the use of the aggregate operation: the first line selects the exper-
iment to be aggregated. In this example, only one experiment is being selected, but any
region set defined by a query ID can be used. The boundary regions are selected in line 4,
where the CpG island annotation is selected. The aggregate operation is executed in line
7, summarizing the values of the column VALUE. The aggregation result is obtained
through the query ID stored in the variable agg_id, which is used in line 10 for filtering
the summarized regions that aggregate at least one region (@ACC.COUNT > 0). In this
example, only the meta-field @AGG.COUNT is used but other meta-fields are available,
for example: @AGG.MIN, @AGG.MAX, @AGG.SUM, @AGG.MEDIAN, @AGG.MEAN,
@AGG.VAR, and @AGG.SD. All these meta-fields are explained in Table 4.5.5.

1 (status, experiments_id) = server.select_experiments (["GC_T14_10.CPG_methylation_calls.
bs_call.GRCh38.20160531.wig"], "chr1", None, None, user_key )

2
3 # Select the CpG Islands annotation from GRCh38
4 (status, cpg_islands_id) = server.select_annotations("CpG Islands", "GRCh38", "chr1", None,

None,user_key)
5
6 # Aggregate the regions using the column VALUE
7 (status, agg_id) = server.aggregate (experiments_id, cpg_islands_id, "VALUE", user_key )
8
9 # Select the summarized regions that aggregated at least one region

10 (status, flt_id) = server.filter_regions(agg_id, "@AGG.COUNT", ">", "0", "number", user_key)

Listing 4.8: Example of aggregate and filter operations: it aggregates the DNA methylation
levels by CpG island regions.

Caching operation

In many cases, the data referenced by a query ID is re-used by different workflows. For
improving the efficiency of the data retrieval and processing time, the DeepBlue Server
API provides the query_cache operation, which caches the region set temporarily in the
DeepBlue Server main memory.

The operation’s cache stores up to 16 operation results25 and follows the Least recently
used (LRU) policy. The LMR policy defines that the least accessed cached result set is
removed when a new result set must be stored in the cache.

The query_cache operation operation is a recommendation for the DeepBlue Server to
cache the query ID result set, but there is no guarantee that the query ID result stored
in the cache will be available when it be requested. This operation does not influence a
workflow result besides improving the processing time.

25 This number can be modified in the DeepBlue Server source code.
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4.5.6 Data retrieval

The DeepBlue Server API provides different operations for retrieving a query ID region-
set. These regions can be counted, enriched, retrieved as a score matrix or as a tabular
file. In the following, the operations for such tasks are presented and explained. These
operations do not return a query ID but a request ID, which represents a workflow pro-
cessing request. The status of a request ID can be verified using the info operations, and
its result is downloaded using the get_request_data operations. The get_request_data op-
eration requires that the workflow processing is finished, so, it is necessary to verify the
request status before executing it.

Listing 4.9 presents a useful function, __wait_and_get_data(), which waits for the work-
flow processing to finish and then returns the resulting data. This function is used in
the following examples for downloading the workflow results.

1 # Wait for the server processing and return the data
2 def __wait_and_get_data(request_id, user_key):
3 (status, info) = server.info(request_id, user_key)
4 request_status = info[0]["state"]
5 while request_status != "done" and request_status != "failed":
6 time.sleep(1)
7 (status, info) = server.info(request_id, user_key)
8 request_status = info[0]["state"]
9

10 return server.get_request_data(request_id, user_key)

Listing 4.9: Example of get_request_data operation: it waits for a workflow processing
finishes and then download its data. The function __wait_and_get_data is
used in all following examples.

The following sections present the operations used for retrieving the workflow data.

Counting regions

The count_regions operation counts how many regions are referenced by a query_id. It
is a straightforward operation, which receives a query ID and counts how many regions
are referenced by it. Listing 4.10 exemplifies its usage.

1 # Selecting the data from 2 experiments
2 (status, query_id) = server.select_experiments (["BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38

.20150527.bed", "S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed"], None, None, None,
user_key )

3
4 # Count how many regions were selected
5 (status, request_id) = server.count_regions(query_id, user_key)
6
7 # Function for waiting and downloading the data
8 (status, count) = __wait_and_get_data(request_id, user_key)
9

10 print "The two experiments have", count["count"], "regions"

Listing 4.10: Example of select_experiments and count_regions operations: it shows how to
count the number regions referenced by a query ID.

Calculating statistical values by binning

The binning operation provides a simple statistical analysis which groups the regions’
column values into a group of ”bins” and returns the count of items in each bin, working
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as a generalization of a histogram. For example, using a DNA methylation experiment
data, it is possible to create bins to obtain the distribution of the DNA methylation val-
ues among the different levels contained in the selected regions. The binning operation
requires three parameters: a query ID with the regions to be binned, the name of the
column whose values are binned, and the number of bins. Listing 4.11 presents a use
case where the values of the column SIGNAL_VALUE of two experiments are binned in
20 bins.

1 # Selecting the data from 2 experiments, and the data in chromosome 1.
2 (status, query_id) = server.select_experiments (["BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38

.20150527.bed", "S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed"], "chr1", None,
None, user_key)

3
4 (status, request_id) = server.binning (query_id, "SIGNAL_VALUE", 20, user_key)
5
6 # Function for waiting and downloading the data
7 (status, bins) = __wait_and_get_data(request_id, user_key)
8
9 # Result: bins

10 # {'binning':
11 # {'ranges': [2.3601, 5.513, 8.6658, 11.8187, 14.9716, 18.1245, 21.2774,
12 # 24.4303, 27.5832, 30.7361, 33.889, 37.0419, 40.1948, 43.3477,
13 # 46.5006, 49.6535, 52.8064, 55.9593, 59.1122, 62.2651, 65.418],
14 # 'counts': [5016, 3195, 1294, 716, 379, 252, 169, 104, 69, 48, 36, 21,
15 # 12, 6, 3, 3, 3, 0, 0, 0]}}

Listing 4.11: Example of the binning operation: it bins the PEAK_SIGNAL from ChIP-seq
experiments in 20 bins.

Computing coverage

The coverage operation computes the coverage of the query ID regions in relation to a
genome and its chromosomes. It merges all regions, calculates the total length, and
returns a dictionary with the individual coverage (from 0.0 to 1.0) by chromosome, the
chromosome total length, and the total coverage in bp. Listing 4.12 demonstrates the use
of the coverage operation for computing the coverage of the CpG island in the genome
hg19.

1 (res, cpg_id) = server.select_annotations("Cpg Islands", "hg19", None, None, None, user_key)
2
3 status, req = server.coverage(qid, "HG19", user_key)
4
5 status, coverage = __wait_and_get_data(req, user_key)
6
7 ## Result:
8 #{'coverages':
9 # {'chr1': {'coverage': 0.7549, 'size': 249250621, 'total': 1881629},

10 # 'chr10': {'coverage': 0.7134, 'size': 135534747, 'total': 966963},
11 ## Removed for sake of space
12 # 'chrX': {'coverage': 0.4718, 'size': 155270560, 'total': 732552},
13 # 'chrY': {'coverage': 0.1951, 'size': 59373566, 'total': 115810}}}

Listing 4.12: Example of the coverage operation: it calculates the coverage of the annotation
CpG island in relation to the genome assembly hg19.
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Obtaining the distinct column values

The distinct_column_values operation obtains the distinct values for a given column. For
example, Listing 4.13 demonstrates how to obtain the distinct states names from a CSS
region-set.

1 status, csss_query_id = server.select_regions(None, "GRCh38", "Chromatin State Segmentation",
None, None, None, None, None, None, user_key)

2
3 (status, csss_names_request_id) = server.distinct_column_values(csss_query_id, "NAME",

user_key)
4
5 (status, state_names) = __wait_and_get_data(csss_names_request_id, user_key)
6
7 ## Output:
8 # {'distinct': {'10_Distal_Active_Promoter_2Kb_High': 2795055,
9 # '11_Active_TSS_High_Signal_H3K4me3_H3K4me1': 3606067,

10 # '12_Active_TSS_High_Signal_H3K4me3_H3K27Ac': 1995138,
11 # '1_Repressed_Polycomb_High': 1210683,
12 # '2_Repressed_Polycomb_Low': 4374048,
13 # '3_Low_signal': 12858129,
14 # '4_Heterochromatin_High': 4331726,
15 # '5_Transcription_High': 5671586,
16 # '6_Transcription_Low': 11313902,
17 # '7_Genic_Enhancer_High': 1825808,
18 # '8_Enhancer_High': 13427456,
19 # '9_Active_Enhancer_High': 3985090}}

Listing 4.13: Example of the distinct_column_values operation: it obtains the CSS names
from a region-set.

Obtaining the experiments used in a region set

The get_experiments_by_query operation list the experiments that contain regions ref-
erenced by the given query ID. For example, a user selected data for a given epige-
netic mark and then applied some filtering operations on this region set. Using the
get_experiments_by_query operation is possible to obtain the experiments which have re-
gions in the resulting filtered region-set.

Retrieving a region-set in tabular format

The get_regions operation outputs a column formatted file containing the region-sets
referenced by the query ID. The output columns are configurable, where users can select
the columns or use meta-fields (Section 4.5.5) for define the desired output.

This operation has two main parameters: the query ID that references the regions
and the format. The format specifies the columns amd meta-fields that must be included
in the output. Listing 4.14 exhibits a complete workflow example: selecting, filtering,
retrieving, and downloading a region set.
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1 (status, samples) = server.list_samples("myeloid cell", {"source" : "BLUEPRINT genome"},
user_key)

2
3 # Get the samples ID
4 samples_id = server.extract_ids(samples)[1]
5
6 # Select the regions from from chromosom 1, position 0 to 50.000
7 (status, query_id) = server.select_regions ("", "GRCh38", None, samples_id, None, None, "chr1

", 0, 50000, user_key )
8
9 # Select the peak regions

10 (status, query_peaks_id) = server.query_experiment_type (query_id, "peaks", user_key )
11
12 # Retrieve the experiments data
13 # The @NAME meta-column is used to include the experiment name and @BIOSOURCE for experiment'

s biosource
14 (status, request_id) = server.get_regions(query_id, "CHROMOSOME,START,END,@NAME,@SAMPLE_ID,

@BIOSOURCE", user_key)
15
16 # Wait and download the data
17 (status, regions) = __wait_and_get_data(request_id, user_key)
18
19 print regions

Listing 4.14: Example of a workflow obtaining ChIP-seq data in a tabular format using the
select_regions operation: this example lists, selects, and retrieves epigenomic
data. First, it filters epigenomic experiments by their metadata: the
list_samples operation obtains all samples of the biosource myeloid cell from the
BLUEPRINT project, returning a list of samples with their IDs and description
(line 9). The operation extract_ids extracts the IDs from this (line 12). These IDs
are used it in the select_regions operation (line 15). The select_regions operation
selects the genomic regions that are in the chromosome 1, position 0 to 50, 000
in all experiments that have the selected samples IDs. Then, it uses the
get_regions operation (line 21) with the parameters: query_id returned by the
select_regions and the desired columns. The columns @NAME, @SAMPLE_ID,
and @BIOSOURCE include the name, sample ID, and BioSource of the
experiment in the output. The get_regions operation is asynchronous, so the
user receives a request_id and should use the info operation to check the status
of this request. Then, the method __wait_and_get_data facilitates the data
download (line 24). Finally, the regions are printed to the user.

Retrieving a region set in a score matrix format

The score_matrix operation builds a matrix containing the aggregation result of the ex-
periments data separated by the aggregation boundaries. This operation is similar to
the aggregate operation, i.e., it requires a query ID with the regions’ data to aggregate,
and a query ID with the boundaries of the regions. However rather than returning a
query ID it returns a request ID that references the constructed score matrix.
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1 experiments = ["GC_T14_10.CPG_methylation_calls.bs_call.GRCh38.20160531.wig", "C003N351.
CPG_methylation_calls.bs_call.GRCh38.20160531.wig", "C005VG51.CPG_methylation_calls.
bs_call.GRCh38.20160531.wig", "S002R551.CPG_methylation_calls.bs_call.GRCh38.20160531.
wig", "NBC_NC11_41.CPG_methylation_calls.bs_call.GRCh38.20160531.wig", "bmPCs-V156.
CPG_methylation_calls.bs_call.GRCh38.20160531.wig", "S00BS451.CPG_methylation_calls.
bs_call.GRCh38.20160531.wig", "S00D1DA1.CPG_methylation_calls.bs_call.GRCh38.20160531.
wig", "S00D39A1.CPG_methylation_calls.bs_call.GRCh38.20160531.wig"]

2
3 experiments_columns = {}
4 for experiment_name in experiments:
5 experiments_columns[experiment_name] = "VALUE"
6
7 (status, cpgs) = server.select_annotations("Cpg Islands", "hg19", None, None, None, user_key)
8 (status, request_id) = server.score_matrix(experiments_columns, "mean", cpgs , user_key )
9 (status, score_matrix) = __wait_and_get_data(request_id, user_key)

Listing 4.15: Example of the score_matrix operation: it builds a score matrix containg the
DNA methylation experiments summarized by the CpG island annotation.

4.5.7 Data enrichment

The DeepBlue Server can perform data enrichment analysis. It offers two types of en-
richment analysis: by overlapping regions and by overlapping genes annotated by Gene
Ontology (GO) terms. In the following, these methods are presented and also how they
are implemented and optimized for the DeepBlue Server use cases.

Enrichment by overlapping regions

The enrich_regions_overlap operation performs enrichment analysis by processing the
overlapping between region sets. This operation implements the Locus Overlap En-
richment Analysis (LOLA) (Sheffield and Bock 2016)26 method directly on the server27.
The DeepBlue Server implementation has improvements on the original implementation,
such as multi-threading and lower memory consumption.

Algorithm 4.1 presents the LOLA algorithm. It has three inputs: the query region-set,
the universe region set, and a list of datasets. The universe is used to define which regions
are basis of the analysis. For example, the universe can be composed of all promoter
regions, or genes, but it can be also tiling regions for simpler analysis. The datasets are
used for enriching the query regions. In the DeepBlue Server, the query regions and uni-
verse regions are represented by query IDs, which means that the user can perform a
data selection, filtering, and subsequently, the enrichment directly on the server. The
datasets input is a list containing experiment names or query IDs. Section 4.6.3 presents
a complete use case of regions enrichment using the enrich_regions_overlap operation.

The LOLA algorithm, implemented in the enrich_regions_overlap operation processes
the overlaps between the universe regions and query region to redefine the query region-
set and then count the overlaps between the query and each dataset regions. With these
values, a contingency matrix is build, and the Fisher exact test applied to it. The p-value,
natural log, and odds score are calculated for each dataset. The datasets are ranked for
each of these values and an average rank is calculated, totaling four results. Finally, the
datasets are are returned to the user with their ranking results.
26 Source-code: https://github.com/nsheff/LOLA/blob/master/R/calcLocEnrichment.R
27 Implementation file: DeepBlue/server/src/processing/lola.cpp

https://github.com/nsheff/LOLA/blob/master/R/calcLocEnrichment.R
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Algorithm 4.1: Locus Overlap Enrichment Analysis (LOLA) in the DeepBlue Server
Input:

Q, query regions
U, universe regions ▷ background regions
DS, datasets

Output:
V E, a vector of combined ranking scores for each dataset

rQ← overlap (U, Q) ▷ redefine Q to U regions that overlap to Q regions
for i ∈ {1, . . . , DS} do

supporti ← countOverlaps (rQ, DSi)
UoDi ← countOverlaps (U, DSi)
bi ← UoDi − supporti
ci ← |rQ| − supporti
di ← |U| − supporti − bi − ci
pValuei ← fisherExactTest (supporti, bi, ci, di)
naturalLogi ←−(log10(pValuei))

oddsScorei ←
ai/bi

ci/di
V Ei ← (DSi, pValuei, naturalLogi, oddsScorei) ▷ Store the result

end for

Fast enrichment analysis by regions bitmap

The enrich_regions_overlap performs reliable regions enrichment analysis, but it is not fast
enough for interactive data analysis performed by tools like DIVE (Chapter 7). For this
purpose, the DeepBlue Server provides the enrich_regions_fast operation. This operation
uses an algorithm (Algorithm 4.2) similar to LOLA. But each region set, including the
query, universe, and datasets, is converted to a bitmap that rather than comparing region
sets through overlapping, the converted bitmaps are compared through an and bitwise
operation. The overlaps count is calculated by counting how many bits are true in the
bitwise operation result.

For improving its operation processing time when this operation compares a region
set for the first time, the region set is processed, generating a bitmap, which is stored in
the database. In this way, each region-set (experiment, annotation, query ID) bitmap is
processed only once. The bitmap memory requirement is low: a bitmap with 220 bits
requires 128 kilobytes. Considering the overhead with the encapsuling BSON document
and its content, the memory, and disk consumption per region-set bitmap is lower than
200 kilobytes.

A main difference between enrich_regions_overlap and enrich_regions_fast, is that the
latter does not use the concept of universe and it does not receive a list of datasets to be
enriched, but parameters for selecting the experimen ts to be used for the enrichment
based on their metadata content.

The enrich_regions_fast operation also builds a contingency matrix for executing
Fisher’s exact test, returning the same mathematical values and ranks as the LOLA
method. This operation does the same processing as LOLA if the LOLA universe pa-
rameter is defined as tiling regions of the same size as genomeLength/220.
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Algorithm 4.2: Fast Locus Overlap Enrichment Analysis
Input:

Q, query regions
DM, datasets selection metadata
BIT MAP_SIZE, size of the bitmap ▷ DeepBlue uses 220

Output:
V E, a vector of combined ranking scores for each dataset

bmQ← bitmap (Q, BIT MAP_SIZE) ▷ build the query regions bitmap
cQ← countTrue (DSi) ▷ count the number of peaks
DS← loadDataSets (DM) ▷ load datasets that match the given metadata
for i ∈ {1, . . . , DS} do

bmDSi ← bitmap (DSi, BIT MAP_SIZE) ▷ build the dataset regions bitmap
supporti ← bmQi ∧ bmDSi

cDSi ← countTrue (DSi)
bi ← cDSi − supporti
ci ← cQ− supporti
di ← BIT MAP_SIZE− supporti − bi − ci
pValuei ← fisherExactTest (supporti, bi, ci, di)
naturalLogi ←−(log10(pValuei))

oddsScorei ←
ai/bi

ci/di
V Ei ← (DSi, pValuei, naturalLogi, oddsScorei) ▷ Store the result

end for

The enrich_regions_fast operation compresses the region set in bitmaps of the same size
(220). Bitmaps of the same size are compared in a O(1) (constant time), while LOLA re-
quires O(n) (n being the number of regions) comparisons. The region sets compression
procedure is straightforward:

1. Define bitmap size (BITMAP_SIZE). (Currently, it is 220.)
2. Divide the total genome size in bp by BITMAP_SIZE and obtain the tilingLength
3. Generate tiling regions (tiling_regions) using the tilingLength value
4. For each region set (query and selected datasets):

a) Overlap the input region set with the tiling regions, marking the overlapped
tiling regions

b) Iterate through the marked tiling regions and set the corresponding bitmap
bit to True

c) Store the generated bitmap into the database
Finally, this operation is useful for fast and interactive enrichment, where the overlap-

ping approximation results are enough for an overview of the data. A meaningful use
case is when the user wants to perform an enrich analysis on the regions referenced by
query ID against the available datasets. This case is performed by DIVE (Section 7.5.1)
when searching for similar datasets.
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Enrichment analysis by Gene Ontology

Besides the analysis of enrichment by by overlapping regions, the DeepBlue Server anal-
ysis of GO-term enrichment through the enrich_regions_go_terms operation. This oper-
ation has only two main parameters: the query ID and the gene-model that is used to
enrich the regions.

Algorithm 4.3 displays the Gene Ontology Enrichment Analysis. This algorithm starts
with loading the gene regions and GO terms from these genes. After, overlaps between
genes and query regions are processed, and the GO terms of the overlapping genes are
obtained. In the next step, the algorithm iterates over the GO terms, calculating their
p-value and odds score based on the count of overlaps.

Algorithm 4.3: Gene Ontology Enrichment Analysis
Input:

Q, query regions
GM, gene model

Output:
V E, a vector of combined ranking scores for each gene ontology term

AllGenes← LoadGenes (GM)
AllGoTerms← GetGOTerms (AllGenes)
OverlappedGenes← overlap (AllGenes, Q)
OverlappedGoTerms← GetGOTerms (OverlappedGenes)
for i ∈ {1, . . . , OverlappedGoTerms} do

supporti ← OverlapCount (OverlappedGoTermsi)
bi ← TotalCount (OverlappedGoTermsi) - supporti
ci ← |OverlappedGenes| − supporti
di ← |AllGenes| − supporti − bi − ci
pValuei ← fisherExactTest (supporti, bi, ci, di)
naturalLogi ←−(log10(pValuei))

oddsScorei ←
ai/bi

ci/di
V Ei ← (DSi, pValuei, naturalLogi, oddsScorei) ▷ Store the result

end for

A much simplified analysis can be performed with the count_gene_ontology_terms op-
eration, which returns how many times a GO term appears in the given data selection.

4.5.8 Data and metadata insertion and maintenance

The DeepBlue Server API provides a set of operations for inserting and maintaining its
metadata entities content. These operations are executed only by the administrator or
by authorized users. Table 4.4 presents an overview of these operations, Appendix A.4
provides all available operations.

Among these operations, the clone_dataset operation provides a facilitated way for
curating the (epi)genomic data stored in the DeepBlue Server. This operation duplicates
a dataset (experiment or annotation) allowing the user to specify new metadata content
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for the cloned dataset, without losing the old dataset information. Furthermore, the
existing regions are not duplicated, but the new dataset references the existing data.

Category Operation Description

Vocabularies terms

add_epigenetic_mark Include new Epigenetic Mark
add_biosource Include new BioSource
add_sample Include new Sample
add_genome Include new Genome
add_technique Include new Technique
add_project Include new Project

(epi)genomic data add_annotation Include a new Annotation
add_experiment Include a new Experiment

Genes and GO
add_gene_model Include a new Gene Model
add_gene_ontology_term Include a new Gene Ontology Term
annotate_gene Annotate a gene with a GO Term

Column types

create_column_type_simple New simple column
create_column_type_category New categorical column
create_column_type_range New range column
create_column_type_calculated New calculated column

Experiments change_extra_metadata Change an experiment metadata
clone_dataset Clone a dataset

Remove remove Remove a DeepBlue Server entity

Table 4.4: DeepBlue Server operations to include and maintain metadata and data.

4.6 Usage examples

To illustrate the wide range of applications in which the DeepBlue Server can be used for
the efficient retrieval of epigenomic data, this section presents five typical usage exam-
ples that had to be performed manually in epigenetic studies until now: (i) identification
of TFBSs that overlap with H3K4me3 peaks and promoter regions; (ii) calculating DNA
methylation levels across H3K4me3 peak regions; (iii) enriching Differentially Methylated
Regions (DMRs) by Chromatin States; (iv) obtaining gene-specific (epi)genomic infor-
mation from different tissues; (v) summarizing gene expression measurements from
hepatocyte experiments. This section presents the central concepts, description, and
results of the usage examples, while Appendix A.3 contains their source code with a
comprehensive description. Furthermore, these usage examples are illustrative cases of
how the DeepBlue Server can be used, and they be easily extended to different biological
questions.

4.6.1 Identification of TFBSs that overlap H3K4me3 peaks and promoter regions

This usage example aims to answer which TFs are active by looking at the H3K4me3
peaks. The location of the TFBSs is known, but it is also necessary to verify if they
are accessible. For this task, this usage case selects the TFs that overlap with H3K4me3
which is known to signal accessibility and activity in promoter regions (Koch et al. 2007).
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The selected regions are filtered for promoter regions in order to remove possible false
positives.

This example demonstrates how the DeepBlue Server can operate on several data
sources in the same workflow. First, the regions from 306 BLUEPRINT datasets an-
notated with H3K4me3 peaks are selected. Afterwards, these regions are filtered by
overlapping with promoter regions. The resulting regions are filtered again, this time,
by overlapping with TF binding sites of SP1 from the 44 ENCODE datasets. Finally, the
columns of interest are selected, and the resulting regions are downloaded. Figure 4.17
shows the workflow diagram of this usage example and Appendix A.3.1 presents List-
ing A.2 with the complete source code of this example.

Download the data

Select H3K4me3 
peaks regions from 

BLUEPRINT 

Select the signal 
regions of the TF

SP1 from ENCODE

Select regions from 
the promoter 
annotation

Request regions

Intersect and filter 
the H3K4me3 that 
overlap with the 

promoters

Intersect and 
filter the TF regions 
that overlap with the 

previously filtered 
regions

Figure 4.17: Workflow diagram for the identification of 3Kme3 peaks that overlap with
promoters in any of the BLUEPRINT datasets and subsequent identification
of TFBS peaks that overlap with these promoters in any of the ENCODE
datasets. The different colors represent different types of operation, i.e. green
for data selection, red for data manipulation, purple for processing requests,
and gray for download.

This usage example demonstrates how the DeepBlue Server facilitates collecting large-
scale data, in which all the H3K4me3 peaks data from the BLUEPRINT Epigenome
project were accessed and compared to dynamically generated promoter regions, as
well as to data from another epigenomic project. This was achieved in approximately
40 lines of code and total runtime of 33 seconds. This usage example returns to the user
a list of TFBSs ready to be operated in a data analysis environment.
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4.6.2 Calculating DNA methylation levels across H3K4me3 peak regions

This usage example demonstrates how to obtain summarized data from different
BioSources and epigenetic marks, summarizing DNA methylation data from liver tis-
sues in terms of H3K4me3 peaks derived from embryonic stem cells (ESCs). The H3K4me3
histone mark was selected because it acts as a marker for transcriptionally active pro-
moters (Koch et al. 2007), whereas DNA methylation serves as a repressive mark when
located in the gene promoters (Weber et al. 2007).

This usage example exemplifies how to obtain and summarize DNA methylation data
using the DeepBlue Server. In this usage example, liver and hepatocyte samples, selected
for illustrative purpose, are aggregated by H3K4me3 peaks, where each generated data
file contains the summarized regions of one sample.

Figure 4.18 shows the processing flow of this usage example: (i) list and select the
regions from H3K4me3 and ESCs experiments, for later use as summarizing boundaries;
(ii) list all liver and hepatocyte experiments data file; (iii) for each experiment data file,
aggregate its DNA methylation signal using the previously obtained H3K4me3 peaks,
download the results from the server, and store the summarized data in file.

The usage example source code is provided in Appendix A.3.1 ( Listing A.3) together,
with a full explanation of the source code. For potential future usages, parameters such
as BioSources and epigenetic marks can be easily modified for obtaining different data.
A future application of the data obtained in this usage example is correlating this data
with gene expression data, or even building a gene expression predictor based on DNA
methylation data.

4.6.3 Enrichment Analysis of DMRs regarding Chromatin States

DMRs are genomic regions with different DNA methylation levels across different sam-
ples,which result in a putative change of the transcription regulation genes. DMRs can
either be hypomethylated, i.e. the DNA methylation level is lower than the methylation
DMRs in a reference condition, or hypermethylated, meaning a higher DNA methyla-
tion level.

In this example, an enrichment analysis is performed with the goal of obtain-
ing new insights on the sets consisting of DMRs, such as investigating which chro-
matin states are found in hypomethylated DMR. The DeepBlue Server API provides
the enrich_regions_overlap operation that performs enrichment analysis similar to the
LOLA (Sheffield and Bock 2016) method. The enrich_regions_overlap is detailed in the
Chapter 4.5.7.

For meeting the goal of this usage example, it is also demonstrated how to dynam-
ically generate CSS states region sets using the existing CSS data files. Listing A.4 in
Appendix A.3.1 contains the usage example source code.

This usage example is divided into two parts: (i) extraction of CSS states regions from
the experiments and construction of a region set containing the regions of each CSS state;
(ii) selecting, filtering and enriching the region set. The extraction of the CSS states re-
gion is necessary because each CSS experiment contains all states, but the enrichment
methods requires that each region set contains only one CSS state. Therefore, it is neces-
sary to extract the region states of each experiment and group them in new region-sets.
This task generates a set of tuples, each one contains an experiment name, a CSS state
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Download the data

List H3K4me3 
experiments of 
H1-hESC cells 

Select regions of the 
peak experiment

List liver and 
hepatocytes 
experiments

For each listed 
experiment

Select  experiment 
regions

Aggregate 
experiment regions 
using the H3K4me3 
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Figure 4.18: Workflow diagram for summarizing DNA methylation levels in liver tissue
across H3K4me3 peaks regions derived from human embryonic stem cells.
The different colors represent different types of operation, i.e. green for data
selection, red for data manipulation, purple for processing requests, and gray
for download.

name, and the region-set extracted from this experiment and state. The process of gen-
erating the CSS states for the genome GRCh38 can be performed dynamically (function
build_chromatin_state_files in Listing A.4) by the DeepBlue Server. The following steps
summarize this process:

1. Select all CSS experiment files from the GRCh38 genome.
2. Obtain all CSS states contained in selected files. (Function get_chromatin_states in

Listing A.4).
3. For each file:

a) For each CSS state, filter the CSS file regions by this state obtaining a query ID
related to the experiment and state filtering. (Function split_file in Listing A.4).

4. Create a dictionary containing the CSS experiment file names as keys and a list of
query IDs. Each query ID is associated to the regions of a CSS state in the file.
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The enrichment analysis is then performed as follows:
1. Select the DMR file to be analyzed. For illustrative purpose, this usage ex-

ample uses the file S00VEQA1.hypo_meth.bs_call.GRCh38.20150707.bed from the
BLUEPRINT epigenome project, but any DMR data file can be used.

2. Filter the DMR file regions which the values of the column AVG_METHYL_LEVEL
is lower than 0.0025.

3. Execute the enrichment operation enrich_regions_overlap using the filtered regions
and dictionary defined .

The last lines of Listing A.4 sort the enrichment result by the most highly enriched
states and print the results. Due to the output size, the raw results are omitted here28.
The most enriched state is the 12_Active_TSS_High_Signal_H3K4me3_H3K27Ac (in the
top 20 states), followed by 11_Active_TSS_High_Signal_H3K4me3_H3K4me1, and the low-
est ranked state is 4_Heterochromatin_High. These findings are consistent with the gen-
eral consensus of the gene regulation process, where CpG islands of actively transcribed
genes are usually largely unmethylated to make them accessible to transcription fac-
tors (Lokk et al. 2014).

4.6.4 Obtaining gene-specific (epi)genomic information from different tissues

This usage example explores the expression difference of the fatty acyl-CoA reductase 1
protein by the FAR1 gene in the liver and brain tissues. The goal of this example is to
demonstrate the simplicity of obtaining the epigenomic modification that may play a
role in the expression of a specific gene.

Far1, a peroxisomal C-tail anchored protein, is the enzyme responsible for the synthe-
sis of long chain alcohols. The Far1 protein regulates the biosynthesis of ethanolamine
plasmalogen (PlsEtn), which is found in several organs, such as the brain, kidney, heart,
and liver. In heart, PlsEtn constitutes approximately 50% of Etn-containing phospho-
lipids, whereas in the liver, plasmalogens are only slightly detectable (Honsho and Fu-
jiki 2017). For this reason it is assumed that the FAR1 gene has a higher expression in
the brain than in the liver. Based on this assumption, this usage example obtains the
(epi)genomic data related to the FAR1 gene and surrounding regions that are defined
below.

In this usage example, data from the ROADMAP Epigenomic Project of tissues re-
lated to the brain (Neurosphere Cultured Cells Cortex Derived, Neurosphere Cultured Cells
Ganglionic Eminence Derived, Brain Germinal Matrix, Brain Hippocampus Middle, Fetal Brain
Female) and to the liver (Adult Liver, HepG2 Hepatocellular Carcinoma) are obtained. From
these tissues, gene expression, gene accessibility (DNaseI), DNA methylation (RRBS
and WGBS), and histone modification (H3K36me3, H3K4me3, H3K27me3, H3K4me1,
H3K9me3, H3K27ac) data of the gene body and surrounding regions are obtained. The
surrounding regions here refer to the promoter regions (starting 2, 500 bp before the TSS
with the length 2, 000 bp) and after the gene body (starting 1, 500 bp after the gene body
with the length of 500 bp).

28 The example source code with the output is available at https://github.com/
MPIIComputationalEpigenetics/DeepBlue/blob/master/examples/Enrichment%20by%
20Chromatin%20States.ipynb

https://github.com/MPIIComputationalEpigenetics/DeepBlue/blob/master/examples/Enrichment%20by%20Chromatin%20States.ipynb
https://github.com/MPIIComputationalEpigenetics/DeepBlue/blob/master/examples/Enrichment%20by%20Chromatin%20States.ipynb
https://github.com/MPIIComputationalEpigenetics/DeepBlue/blob/master/examples/Enrichment%20by%20Chromatin%20States.ipynb
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The usage example and its source code, presented in Appendix A.3.1, can be divided
into five sections: (i) loading packages and defining the generic function for download-
ing data from the DeepBlue Server; (ii) loading the FAR1 gene location and determining
the surrounding regions; (iii) defining the data of interest; (iv) obtaining the samples
and experiments of the defined biological sources; (v) obtaining the data from the ex-
periments, summarizing them by the gene body and surrounding regions, and writing
the results in a file, where each file contains the data of an epigenetic mark.

Despite the limited number of samples used, some interesting insights can be gained
(Table 4.5). First, indeed, the FAR1 gene is expressed less highly in the liver than in
the brain, but the difference is not very large. J. B. Cheng and Russell 2004 show a
higher difference of the FAR1 gene between brain and liver in different mammals29.
This difference may have been caused by the fact that the publication uses tissues from
different animals and averages the results, whereas our usage example is based on data
from a single human sample. It is important to note that the cell line HepG2 expresses
this gene to a much smaller extent than tissue obtained directly from the liver. The
DNA methylation is higher in the promoters of the liver cells, probably acting as a gene-
expression repressor. Other repressive marks, such as H3K27me3 and H3K9me3 are also
more prevalent in the liver samples, with a larger difference in H3K27me3. Observing
exclusively the HepG2 cell line and brain samples, the values in the H3K9me3 data do not
show a clear distinction between these two groups. When observing the histone marks
for active gene expression H3K4me3, H3K27ac, H3K4me1, there is a observable difference
between the liver and brain cells but the marks H3K9me3 and H3K36me3 do not show a
noticeable difference.

Due to space restrictions in the Table 4.5, the sample sources are referenced by their
ROADMAP ID. For better visual recognition, the ROADMAP IDs are colored following
the source of the sample, as shown in Table 4.6.

To summarize, this usage example shows how to investigate differences in the ex-
pression and regulation of the FAR1 gene between the liver and brain samples. With
the help of approximately 100 lines of code, it was possible to obtain the available data
from the ROADMAP Epigenome project and verify the original biological assumption.
This example can be easily modified for different genes, epigenetic marks, samples, and
projects.

4.6.5 Summarize gene expression from hepatocyte experiments

This usage example demonstrates how to obtain and combine gene expression data from
multiple experiments. It illustrates how to make the data collected from the DeepBlue
Server available for analysis with the library NumPy30 and to plot charts on this data
using the matplotlib31. Listing A.6 in Appendix A.3.1 presents this usage example source
code.

A set of genes highly expressed in the hepatocyte cells (ADH1A, ADH1C, ADH4,
ADH5, ADH6, ADH7, GSTA1, GSTA2, GSTA3, GSTA4) is used by this example. The

29 J. B. Cheng and Russell 2004 shows that FAR1 gene has the expression level 63 times higher in the ana-
lyzed brain samples than in the analyzed liver samples.

30 http://www.numpy.org/
31 https://matplotlib.org/

http://www.numpy.org/
https://matplotlib.org/
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Location E053 E054 E066 E070 E071 E082 E118
Promoter 0.06
Gene Body 2.11 2.58 1.69 3.32 5.59 2.07 0.17RNA
After gene 0.15 0.20 0.42 0.39
Promoter - - - - - 10.56 0.95
Gene Body - - - - - 4.370 1.28DNase
After gene - - - - - 1.170 0.57
Promoter 0.25 0.24 0.40 0.22 0.18 - -
Gene Body 0.78 0.72 0.73 0.73 0.73 - -

DNA
methylation

(WGBS) After gene 0.95 0.98 0.95 0.97 0.95 - -
Promoter 0.59 0.33 3.69 1.64 0.19 0.36 0.52
Gene body 0.10 0.16 1.51 0.90 0.12 0.11 0.32H3K27me3
After gene 0.46 0.14 0.96 0.64 0.003 0.16 0.89
Promoter 90.01 68.37 6.00 52.02 55.08 86.88 0.28
Gene body 39.57 38.39 0.94 19.50 12.34 35.63 0.17H3K4me3
After gene 0.26 0.16 0.32 0.14 0.07 0.18 0.42
Promoter - - 4.84 - 22.63 - 0.18
Gene body - - 1.54 - 5.61 - 0.16H3K27ac
After gene - - 0.26 - 0.10 - 0.23
Promoter 4.18 1.28 0.92 1.29 8.15 1.23 0.15
Gene body 1.49 0.83 0.36 0.41 2.90 0.67 0.13H3K4me1
After gene 0.64 0.16 0.39 0.16 0.05 0.39 0.18
Promoter 0.39 0.26 1.37 0.52 0.40 0.21 0.31
Gene body 0.33 0.24 0.53 0.38 0.31 0.25 0.17H3K9me3
After gene 0.59 0.11 0.29 0.59 0.10 0.14 0.17
Promoter 0.19 0.39 0.26 0.24 0.43 0.13 0.20
Gene Body 1.09 1.17 0.97 0.70 1.59 1.16 0.20H3K36me3
After gene 0.91 0.52 0.28 0.57 0.29 0.44 0.29

Table 4.5: (Epi)genomic data obtained about the FAR1 gene.

RNA-seq data of these genes are obtained from eight hepatocyte experiment files32

from the AMED-CREST project. The gene expression values are computed using the
score_matrix operation, where the inputs are the experiment names and genes’ location
obtained using the get_regions operation.

The computed score matrix containing the gene expression values is used as input
for the NumPy library, which constructs an array with facilitators for manipulating the
score matrix data. This array serves as input for the matplotlib that draws the box plot
displayed in Figure 4.19, showing the genes and their respective expression values.

This example demonstrates how the DeepBlue Server can empower users by facilitat-
ing the development of data visualization scripts that present summarized (epi)genomic
data. Furthermore, this example can be easily modified for different gene sets or exper-
iment data.

4.7 Discussion

Large volumes of epigenomic data are being generated, for instance, by the various IHEC
members and reprocessing projects. These data hold the promise of revolutionizing our
understanding of cell regulation and human diseases. However, studies aimed at ful-
filling this promise are faced with the complexity of data acquisition and processing.
32 Section 6.3.1 contains the DeepBlue Web Portal usage example demonstrating this data selection.
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Sample Source ROADMAP ID Source
Neurosphere Cultured Cells Cortex Derived E053 Brain
Neurosphere Cultured Cells Ganglionic Eminence E054 Brain
Adult Liver E066 Liver
Brain Germina E070 Brain
Brain Hippocampus E071 Brain
Fetal Brain Female E082 Brain
HepG2 E118 Liver

Table 4.6: ROADMAP IDs used for obtaining data on FAR1 gene with the colors that are
used in the following table.

Figure 4.19: Summarize gene expression from hepatocyte experiments.

These steps are time-consuming due to the lack of suitable programmatic access. Cur-
rently, epigenomic data is only accessible through web portals, which are set up by the
respective consortia. These portals offer access to region-set data and metadata but lack
effective mechanisms for searching, filtering and processing of these data programmat-
ically. Moreover, a lack of metadata standardization complicates the use of data from
different sources in a single study. In a typical epigenomics analysis, such routine pre-
processing steps are thus often more time-consuming than the following analyses and
consequently hinder effective research in the field. Furthermore, researchers have ac-
cess to terabytes of epigenomic data. This creates a strong demand for data processing
and analysis, which is not effective on local computers due to the volume of the data.

The DeepBlue Epigenomic Data Server was developed to mitigate the problems de-
scribed above. It is a data server that enables users of epigenomic data to find, select,
manipulate, enrich, summarize, and retrieve region-set data from several epigenomic
consortia, namely BLUEPRINT, DEEP, ENCODE, and REMC. The DeepBlue Server hosts
peaks files, signal files, with their corresponding metadata, currently amounting to
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64, 113 experiments data files from 6, 398 samples, and 100 annotations of various types
of genomic regions.

The DeepBlue Server programmatic access through its API allows selecting and ma-
nipulating epigenomic data efficiently, making DeepBlue highly effective regarding an-
swering specific research questions with comparably little effort. Users can combine
simple data operations into complex workflows for automated retrieval of aggregated
results relevant for the research question at hand. DeepBlue does not only streamline
access to important research data but also fosters reproducibility, recording of the oper-
ations executed in each workflow.

Access to DeepBlue is possible anonymously. Nevertheless, the software has close to
160 registered users, mainly from Germany and European countries, but also from USA,
Canada, Egypt, Israel, India, New Zealand, and Australia, who benefit from additional
features such as access to private data, more computational resources, and a history of
their activity. In addition to individual users, it is observed that DeepBlue is getting
traction as a resource for organizing and retrieving data in other tools such as DEEP-
Tools (Ramı́rez et al. 2016) and the BLUEPRINT Data Analysis Portal (J. M. Fernández
et al. 2016).

DeepBlue has been under active development and extensive testing since 2014. It has
been openly available for users outside our institute since September 2015, initially with
30 gigabytes of (epi)genomic data, increasing to 27 terabytes at present. Since that date,
The DeepBlue Server has processed more than 3, 570, 000 workflow processing requests.
From these requests, approximately 3, 250, 000 were made by anonymous users and the
remaining by registered users.

Due to the large amount of stored and handled (epi)genomic data, optimizations were
made in the DeepBlue Server in four main respects: (i) compressing the region sets data;
(ii) indexing the regions for fast retrieval; (iii) using efficient algorithms that can han-
dle large data volumes; (iv) implementing the data operations using parallel computing
code. As a result of these software level optimizations, requests that involve the aggrega-
tion of millions of region-sets can typically be computed in a few minutes. The software
also makes use of scalable solutions to cope with the increasing amount of data, such as
(i) data processing: multiple instances of the DeepBlue Server on different servers can be
started when the processing load is high; (ii) data storage: the MongoDB database facil-
itates the inclusion of new computer nodes in the database clusters to increase capacity.

The DeepBlue Server also addresses software architecture challenges, such as (i) scal-
ability: the system needs to be able to cope with the currently available data as well
as with the growing volume of epigenetic data that will be generated in the upcom-
ing years; (ii) metadata standardization: it is imperative to handle all data accessible in
a standardized form to increase the efficiency of future epigenomic data analysis and
software development; (iii) usability: DeepBlue provides a simple API that users can
access to operate on epigenomic data using any of a number of common programming
languages; (iv) cloud computing: its architecture aligns with the current cloud computing
paradigm, where it can be installed in a cloud environment and DeepBlue Server instances
can be dynamically started when it receives workflow processing requests; (v) compati-
bility: access is provided through the XML-RPC or RESTful protocols, maximizing the
compatibility with various programming languages.
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For optimal user support, DeepBlue provides a user manual, API reference guide,
step by step tutorials, code examples, and practical use cases. This allows users to
quickly familiarize themselves with the relevant parts of our API. DeepBlue also pro-
vides a user-friendly and interactive web portal (Chapter 6), which serves as an example
for a software application that utilizes the DeepBlue Server API efficiently and, in addi-
tion, enables users without programming expertise to search, browse, and download
epigenomic data.

DeepBlue serves as a comprehensive online resource for the epigenomic community.
It is unique in its ability to handle epigenomic data from different consortia in a single
workflow. This is particularly advantageous for large-scale data analysis involving many
different BioSources. However, there are limitations to this type of analysis caused by
the differences in the raw data processing pipelines. Such pipelines differ across and
even within the various consortia. For instance, using a different set of tools or even
the same tools with different versions or parameters can have a significant impact on
the results and lead to batch effects. Similarly, the use of data from different reference
genome assemblies impacts on the exact location of the regions, introducing bias in
the results. While this is an issue that cannot be immediately addressed, it is expected
that the current efforts from the IHEC consortium members achieve a higher degree of
data processing standardization, making multi-projects epigenomic data analyses more
robust.

The development of DeepBlue was motivated by the author’s involvement in the
DEEP and BLUEPRINT projects, which also allowed him to closely communicate with
the epigenomics community. As a result, DeepBlue has already received substantial in-
terest from several members of the IHEC community. DeepBlue has the potential of
finding widespread adoption as a tool for epigenomic data retrieval and processing both
in software and in analysis pipelines used in future studies involving epigenomic data.
Finally, DeepBlue has a stable API and implementation built on five years of experience
in handling epigenomic data. With the features currently offered, DeepBlue has the
potential of driving future computational epigenomic research.





5
DeepBlue in R/Bioconductor

The DeepBlueR Package is joint work with Dr. Markus List. The use ex-
ample in Section 5.3.3 was conceptualized by Dr. Christoph Bock. The
metadata cleanup and batch effect analysis (Section 5.3.4) was developed by
Fawaz Dabbaghieh under the supervision of Markus List and the author.
The DeepBlue R Package was published in Albrecht et al. 2017.

The R/Bioconductor environment is particularly popular for data analyses. The pack-
age DeepBlueR1 was developed to streamlines access to the DeepBlue Server API through
features like data compression, caching, and transparent data conversion from the Deep-
Blue Server into R data structures.

This chapter presents the DeepBlueR package, starting by an overview in Section 5.1,
examples in Section 5.2, use cases in Section 5.3, and conclusion in Section 5.4. Ap-
pendix A.2.3 presents the DeepBlueR installation instruction and implementation details.

5.1 Overview

The DeepBlue Server provides a powerful API for handling (epi)genomic data. The R/Bio-
conductor environment (R Core Team 2013; Gentleman, V. J. Carey, Bates, Bolstad, Det-
tling, Dudoit, Ellis, Gautier, Ge, Gentry, et al. 2004b) is a popular environment for per-
forming (epi)genomic data analysis. Even though it is possible to access the DeepBlue

1 https://bioconductor.org/packages/release/bioc/html/DeepBlueR.html

https://bioconductor.org/packages/release/bioc/html/DeepBlueR.html
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Server from virtually all programming language, its access from the R/Bioconductor en-
vironment was not optimal. The reason resided in the R XML-RPC protocol2 imple-
mentation which was not efficient and not fully compatible with the XML-RPC specifi-
cations (Winer 1999). For solving this issue, the DeepBlueR package was developed to
streamline the (epi)genomic data processing workflow, starting from the data retrieval
from the DeepBlue Server to downstream analysis performed in the R/Bioconductor en-
vironment. It enables users to quickly gather and transform epigenomic data from se-
lected experiments for analysis in the Bioconductor ecosystem. The DeepBlueR package
is included in the Bioconductor package repository, simplifying its installation.

DeepBlueR users combine commands in custom workflows for operating on the epige-
nomic data in the DeepBlue Server. With the exception of the Data and Metadata insertion
and maintenance commands (sub-section 4.5.8), all operations available in the DeepBlue
Server are available in DeepBlueR. Moreover, DeepBlueR provides new commands for
efficiently downloading the data from the server and for saving the data into files. Deep-
BlueR has been optimized for speed, which includes an optimized XML-RPC protocol
implementation, data compression, local caching of results, and converting the data to a
different genome assembly (liftover). One of the most import features is the transparent
conversion of the data retrieved from DeepBlue into suitable R data structures, such as
GenomicRanges (Lawrence et al. 2013).

The integration of the DeepBlue into the R/Bioconductor environment adds access to
many useful features to the DeeBlue users. The following list presents some examples.
Data visualization : GViz (Hahne et al. 2012; Hahne and Ivanek 2016) is a library for visu-

alizing genomic and regulatory annotations. The ggplot2 (Wickham 2009) is
a powerful charting library widely used.

Annotation : AnnotationHub is a library that provides access to hundreds of different
genomic annotations.

Integrative analysis : TCGAbiolinks (Colaprico et al. 2015) is a library for accessing The Can-
cer Genome Atlas (TCGA) data and for performing integrative analysis on this
data.

Data manipulation : matrixStats is a library performing functions on rows and columns
of matrices.

Machine learning : glmnet (J. Friedman et al. 2010; N. Simon et al. 2011) is library for for
fitting the entire lasso or elastic-net regularization path for linear regression,
logistic and multinomial regression models.

5.2 Usage examples

DeepBlueR provides all data searching, listing, selecting, manipulating, sumarizing, en-
riching, and downloading operations provided by the DeepBlue Server API. It has three
small differences: (i) the incorporation of the prefix deepblue_ in the operation names; (ii)
all optional parameters are assigned the value NULL, 0, or an empty string, by default;
(iii) operation parameters can be accessed by their names. The DeepBlueR package also
comprises other convenient features, such as an options handler with pre-configured
values for the DeepBlue Server URL or the anonymous user key. It is possible to change
these parameters using the command deepblue_options(user_key="my_user_key").
2 The package XMLRPC was deprecated and removed from Bioconductor
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DeepBlueR provides full integration with R data structures and commands. As an
example, Listing 5.1 presents the use of the full-text search command, followed by the
info command, and extraction of the required metadata.

1 # Select the experiments with terms 'H3k27AC', 'blood', and
2 # 'peak' in the metadata.
3 experiments_found = deepblue_search(
4 keyword="'H3k27AC' 'blood' 'peak'", type="experiments")
5
6 custom_table = do.call("rbind", apply(experiments_found, 1, function(experiment){
7 experiment_id = experiment[1]
8 # Obtain the information about the experiment_id
9 info = deepblue_info(experiment_id)

10
11 # Print the experiment name, project, biosource, and epigenetic mark.
12 with(info, { data.frame(name = name, project = project,
13 biosource = sample_info$biosource_name, epigenetic_mark = epigenetic_mark)
14 })
15 }))
16
17 head(custom_table)
18
19 # name project biosource epigenetic_mark
20 # 1 E038-H3K27ac.narrowPeak.bed Roadmap Epigenomics BLOOD H3K27ac
21 # 2 E047-H3K27ac.narrowPeak.bed Roadmap Epigenomics BLOOD H3K27ac
22 # 3 E048-H3K27ac.narrowPeak.bed Roadmap Epigenomics BLOOD H3K27ac
23 # 4 E037-H3K27ac.narrowPeak.bed Roadmap Epigenomics BLOOD H3K27ac
24 # 5 E045-H3K27ac.narrowPeak.bed Roadmap Epigenomics BLOOD H3K27ac
25 # 6 E040-H3K27ac.narrowPeak.bed Roadmap Epigenomics BLOOD H3K27ac

Listing 5.1: Command search example, followed by the execution of the command info.

The example in Listing 5.2 demonstrates how epigenomic data can be selected with
the command deepblue_select_experiments and subsequently, how the selected regions
can be counted with the command deepblue_count_regions. Workflows in DeepBlueR fol-
lows the structure presented in the DeepBlue API Section (4.5), where commands are
connected by query IDs.

The deepblue_count_regions command is executed asynchronously: the user receives
a request ID and should check the status of this request. In contrast to the DeepBlue
API command get_request_data, DeepBlueR contains the package-specific command deep-
blue_download_request_data that waits for the processing to finish and then downloads
its data. Moreover, this command converts the downloaded regions to GenomicRanges
objects.

1 query_id = deepblue_select_experiments(
2 experiment_name=c("BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38.20150527.bed",
3 "S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed"))
4 # Count how many regions where selected
5 request_id = deepblue_count_regions(query_id=query_id)
6 # Download the request data as soon as processing is finished
7 requested_data = deepblue_download_request_data(request_id=request_id)
8 print(paste("The selected experiments have", requested_data, "regions."))

Listing 5.2: Example of the select_experiments and count_regions commands.

Listing 5.3 contains a complete example of selecting experiments and genes, filtering
by the regions content and by overlapping, extending, and downloading the regions. It
uses the deepblue_select_experiments command for selecting genomic regions from two
specific experiments that are in chromosome 1, position 0 to 50, 000, 000. Then, it gener-
ates promoters regions, first loading all the genes from GENCODE v23, filtering them by
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the gene attribute gene_type matching the string protein_coding, and finally, generating
flanking regions that start 2500 bp before the TSS, and are 2000 bp long. The selected ex-
periments’ regions are filtered by intersecting them with the promoter regions. Finally,
the resulting regions are obtained through the command deepblue_get_regions.

1 query_id = deepblue_select_experiments(
2 experiment_name = c("BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38.20150527.bed",
3 "S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed"),
4 chromosome="chr1", start=0, end=50000000)
5
6 q_genes = deepblue_select_genes(gene_model="gencode v23")
7
8 q_protein_genes = deepblue_filter_regions(query_id=q_genes,
9 field="@GENE_ATTRIBUTE(gene_type)", operation="==",

10 value="protein_coding", type="string")
11
12 promoters_id = deepblue_flank(query_id=q_protein_genes,
13 start=-2500, length=2000, use_strand=TRUE)
14
15 intersect_id = deepblue_intersection(
16 query_data_id=query_id, query_filter_id=promoters_id)
17
18 request_id = deepblue_get_regions(
19 query_id=intersect_id,
20 output_format="CHROMOSOME,START,END,SIGNAL_VALUE,PEAK,@NAME,@BIOSOURCE")
21
22 regions = deepblue_download_request_data(request_id=request_id)
23 regions
24
25 ## GRanges object with 226 ranges and 4 metadata columns:
26 ## seqnames ranges strand | SIGNAL_VALUE PEAK
27 ## <Rle> <IRanges> <Rle> | <character> <integer>
28 ## [1] chr1 [ 923976, 924329] * | 4.7201 109
29 ## [2] chr1 [1019133, 1019366] * | 4.4460 156
30 ## ... ... ... ... . ... ...
31 ## [225] chr1 [46307396, 46307685] * | 4.5767 142
32 ## [226] chr1 [47333183, 47335172] * | 18.9772 857
33 ## @NAME @BIOSOURCE
34 ## <character> <character>
35 ## [1] S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed myeloid cell
36 ## [2] S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed myeloid cell
37 ## ... ... ...
38 ## [225] BL-2_c01.ERX297416.H3K27ac.bwa.GRCh38.20150527.bed BL-2
39 ## [226] S008SGH1.ERX406923.H3K27ac.bwa.GRCh38.20150728.bed myeloid cell

Listing 5.3: Example of selecting, filtering, and downloading epigenomic data using the
deepblue_select_experiments, generating gene promoters dynamically by the
commands deepblue_select_genes and deepblue_flank and filtering regions with
deepblue_filter_regions and deepblue_intersection.

It is straightforward to import the DeepBlue downloaded regions into other R/Bio-
conductor packages because DeepBlueR transparently converts them to GenomicRanges
region sets. Listing 5.4 uses the GViz library for displaying the downloaded ge-
nomic regions. It combines the regions in two groups based on the regions
@BIOSOURCE(myeloid or BL-2 cells) content, and display the regions of a segment of
the chromosome 1 (Figure 5.1).
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1 library(Gviz)
2 atrack <- AnnotationTrack(regions, name = "Intersecting regions",
3 group = regions$`@BIOSOURCE`, genome="hg38")
4 gtrack <- GenomeAxisTrack()
5 itrack <- IdeogramTrack(genome = "hg38", chromosome = "chr1")
6 plotTracks(list(itrack, atrack, gtrack), groupAnnotation="group", fontsize=18,
7 background.panel = "#FFFEDB", background.title = "darkblue")

Listing 5.4: Connecting downloaded regions to GViz library.

Figure 5.1: Constructed plot containing the retrieved genomic regions divided in two
groups by their BioSource: myeloid and BL-2 cells.

Listing 5.5 aggregates genomic regions into tiling regions of 100, 000 bps length. It
uses the deepblue_tiling_regions command to generate the tiling regions and the com-
mand deepblue_aggregate summarizes the query_id regions using their values stored in
the column VALUE and the CpG island regions as regions summary boundaries. The
resulting regions are visualized using the GViz library (Figure 5.2), where it is possible
to observe the missing data in the chromosome centromere which is generally difficult
to map due to repetitive regions.



92 5 DEEPBLUE IN R/BIOCONDUCTOR

1 # Select experiment data:
2 query_id = deepblue_select_experiments(
3 experiment=c("GC_T14_10.CPG_methylation_calls.bs_call.GRCh38.20160531.wig"),
4 chromosome="chr1")
5
6 # Tiling regions of 100.000 base pairs
7 tiling_id = deepblue_tiling_regions(size=100000,
8 genome="GRCh38", chromosome="chr1")
9

10 # Aggregate
11 overlapped = deepblue_aggregate (data_id=query_id,
12 ranges_id=tiling_id, column="VALUE")
13
14 # Retrieve the experiments data (The @NAME meta-column is used to include the
15 # experiment name and @BIOSOURCE for experiment's biosource
16 request_id = deepblue_get_regions(query_id=overlapped,
17 output_format="CHROMOSOME,START,END,@AGG.MEAN,@AGG.SD")
18
19 regions = deepblue_download_request_data(request_id=request_id)
20 regions
21
22 ## GRanges object with 2489 ranges and 2 metadata columns:
23 ## seqnames ranges strand | @AGG.MEAN @AGG.SD
24 ## <Rle> <IRanges> <Rle> | <numeric> <numeric>
25 ## [1] chr1 0-100000 * | 0.6677 0.3639
26 ## [2] chr1 100000-200000 * | 0.8358 0.2414
27 ## ... ... ... ... . ... ...
28 ## [2488] chr1 248700000-248800000 * | 0.8425 0.1846
29 ## [2489] chr1 248800000-248900000 * | 0.6572 0.4079
30 ## -------
31
32 library(ggplot2)
33 plot_data <- as.data.frame(regions)
34 plot_data[,grepl("X.", colnames(plot_data))] <-
35 apply(plot_data[,grepl("X.", colnames(plot_data))], 2, as.numeric)
36 AGG.plot <- ggplot(plot_data, aes(start)) +
37 geom_ribbon(aes(ymin = X.AGG.MEAN - (X.AGG.SD / 2),
38 ymax = X.AGG.MEAN + (X.AGG.SD / 2)), fill = "grey70") +
39 geom_line(aes(y = X.AGG.MEAN))
40 print(AGG.plot)

Listing 5.5: Command score_matrix example.

DeepBlueR also integrates the results of the deepblue_score_matrix command into the
R/Bioconductor environment. Listing 5.6 presents an example where the regions data of
nine experiments are aggregated using the CpG islands annotation as boundaries. The
resulting score matrix is plotted using the ggplot2 library, and the result is displayed in
Figure 5.3.
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Figure 5.2: Constructed plot containing the resulting regions. The chromosomic location
is depicted on the x-axis and the log of the average DNA methylation value is
depicted on the y-axis.

1 experiments =
2 c("GC_T14_10.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",
3 "C003N351.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",
4 "C005VG51.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",
5 "S002R551.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",
6 "NBC_NC11_41.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",
7 "bmPCs-V156.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",
8 "S00BS451.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",
9 "S00D1DA1.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",

10 "S00D39A1.CPG_methylation_calls.bs_call.GRCh38.20160531.wig")
11
12 experiments_columns = list()
13 for (experiment_name in experiments) {
14 experiments_columns[[experiment_name]] = "VALUE"
15 }
16
17 cpgs = deepblue_select_annotations(
18 annotation_name="Cpg Islands",
19 chromosome="chr22", start=0, end=18000000, genome="GRCh38")
20
21 request_id = deepblue_score_matrix(
22 experiments_columns=experiments_columns,
23 aggregation_function="mean", aggregation_regions_id=cpgs)
24
25 score_matrix = deepblue_download_request_data(request_id=request_id)
26
27 library(ggplot2)
28 score_matrix_plot = tidyr::gather(score_matrix,
29 "experiment", "methylation", -CHROMOSOME, -START, -END)
30 score_matrix_plot$START <- as.factor(score_matrix_plot$START)
31 ggplot(score_matrix_plot, aes(x=START, y=experiment, fill=methylation)) +
32 geom_tile() +
33 theme(axis.text.x=element_text(angle=-90))

Listing 5.6: Example of building a score matrix.
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Figure 5.3: Plotting deepblue_score_matrix command result with ggplot.

5.2.1 Data Export

DeepBlueR allows users to conveniently save results to the local hard disk. All results can
be saved as tab-delimited files using the deepblue_export_tab command. For example, a
user can save the score matrix generated in Listing 5.6 executing the command: deepblue
_export_tab(score_matrix, file.name = "processed_score_matrix").

Results obtained with the command deepblue_get_regions are of the type Genomi-
cRanges and can be exported as tab-delimited files preserving all columns or as BED
files, where a specific column can optionally be selected to populate the column score
presented in the BED file specification. To demonstrate this feature, the result from the
example (Listing 5.5) is exported to the local hard disk in Listing 5.7.

1 request_id = deepblue_get_regions(query_id=overlapped output_format="CHROMOSOME,START,END,
@AGG.MEAN,@AGG.SD")

2
3 regions = deepblue_download_request_data(request_id=request_id)
4 deepblue_export_bed(regions,
5 file.name = "my_tiling_regions",
6 score.field = "@AGG.MEAN")

Listing 5.7: Example of exporting (epi)genomic data to the local hard disk using the
command deepblue_export_bed.

Furthermore, metadata associated with an entity can be stored locally using the deep-
blue_export_meta_data command. Listing 5.8 demonstrates this feature by first obtaining
an experiment ID by the command deepblue_name_to_id and then exporting its metadata
through the command deepblue_export_meta_data. The same command can be used to ex-
port the metadata of other entities, such as BioSources or processing requests.

1 exp_id <- deepblue_name_to_id(
2 "GC_T14_10.CPG_methylation_calls.bs_call.GRCh38.20160531.wig",
3 collection = "experiments")$id
4
5 deepblue_export_meta_data(exp_id, file.name = "GC_T14")

Listing 5.8: Example of exporting metadata with the command deepblue_export_meta_data.
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The deepblue_export_meta_data command can export the metadata of a lists of IDs:
deepblue_export_meta_data(list("e30035", "e30036"), file.name = "test_export")

In some cases, a user performs a sequence of processing requests and wishes to store
the processed data locally. For this purpose, the command deepblue_batch_export is used
to store these results and their associated metadata in the local disk in one straightfor-
ward command execution. This command automatically saves each requesting content
as soon the DeepBlue Server successfully processes it. Listing 5.9 provides an example.

1 experiments = deepblue_list_experiments(type="peaks", epigenetic_mark="H3K4me3",
2 biosource=c("inflammatory macrophage", "macrophage"),
3 project="BLUEPRINT Epigenome")
4 experiment_names = deepblue_extract_names(experiments)
5
6 request_ids = foreach(experiment = experiment_names) %do%{
7 query_id = deepblue_select_experiments(experiment_name = experiment,
8 chromosome = "chr21")
9

10 request_id = deepblue_get_regions(query_id =query_id,
11 output_format = "CHROMOSOME,START,END")
12 }
13 request_data = deepblue_batch_export_results(request_ids,
14 target.directory = "BLUEPRINT macrophages chr21")

Listing 5.9: Example of storing multiple requests data using the command
deepblue_batch_export.

5.2.2 Data Caching

DeepBlueR also provides a data caching mechanism in that it automatically stores the
data downloaded from the DeepBlue Server. The caching has proven useful when a re-
searcher performs a data analysis which requests the same data often from the DeepBlue
Server or in a setting of limited network bandwidth. It is possible to switch off caching,
configure the cache size, and delete an individual DeepBlue Request data or clear the
entire cache.

5.3 Use cases

This section presents three use cases that illustrate the functionalities of DeepBlueR. The
use cases are: (i) clustering blood samples by their DNA methylation data; (ii) predict-
ing gene expression based on histone marks; (iii) constructing cell type signatures; (iv)
metadata and batch effect analysis.

5.3.1 Clustering blood samples by their DNA methylation data

DNA methylation is a well suited epigenetic mark for studying cellular differentiation
because its patterns are cell type-specific and retain an epigenetic memory of a cell’s
developmental history (Farlik et al. 2016). Using machine learning methods, Farlik et
al. 2016 performed an in vivo dissection of human hematopoiesis, reconstructing the
human blood cells genealogy, from Homatopoietic Stem Cell (HSC) to Megakaryocytes,
Monocytes, Neutrophils, B Cells, and T Cells.
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This use case demonstrates how DeepBlueR can be used to gather the necessary data to
perform a simpler analysis in just a few lines of code. It generates an overview heatmap
of summarized genomic regions data in more than 200 BLUEPRINT DNA methylation
experiments and clusters the samples by their DNA methylation profile. It is divided
into three parts: (i) the DNA methylation experiments (deepblue_list_experiments) are
selected; (ii) a score matrix (deepblue_score_matrix) is constructed using the average DNA
methylation score (beta value) in all regulatory elements defined in the BLUEPRINT
regulatory build (modified from Zerbino et al. 2015) across all BLUEPRINT samples. Each
experiment data file has between 120 to 180 megabytes, totaling more than 20 gigabytes
of data that are processed directly on the server; (iii) the package ggplot2 is used to create
a heatmap using the score matrix data processed by the DeepBlue Server, showing the
most variable regions (rows) across samples (columns). Moreover, it clusters samples
by their pairwise Spearman correlation coefficients.

Figure 5.4 displays the clustering result. Through visual inspection, it is possible to
see that similar biosources are clustered together, and that clusters reflect the biological
meaning defined in the haematopoiesis process. The complete source code of this use
case is available in Section A.3.2.

Figure 5.4: Clustering blood samples by their DNA methylation data: This heatmap con-
tains the average DNA methylation values of variable (variance > 0.05) regions
of the BLUEPRINT regulatory build across 206 BLUEPRINT epigenomes com-
prising 47 different cell types.

This use case demonstrates how DNA methylation data can be gathered effortlessly
in R/Bioconductor via the DeepBlueR package. Moreover, it shows how visualization tech-
niques in R can be leveraged to study this data. However, this is just a stepping stone
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for further analysis using R’s rich ecosystem for statistical learning as it is seen in the
following use case.

5.3.2 Predicting gene expression based on histone marks

Predicting gene expression from epigenomic data sources is a biological problem that
helps researchers to obtain a better understanding of how epigenetic mechanisms con-
tribute to regulating gene expression. For instance, it is well known that some histone
marks act as repressors while others enhance gene expression (Table 2.1). This use case
demonstrates how to use DeepBlueR to reaffirm this knowledge.

This use case uses histone marks data for predicting gene expression. Moreover, it
identifies the most informative histone marks and their genomic location, i.e. the regu-
latory regions encompassing the gene that impact at most in this gene expression. Gene
expression prediction based on histone marks is a well-established problem (Karlić et al.
2010). More recently, a new approach using deep learning (Singh et al. 2016), achieved
an AUC of 0.80 for classifying the gene expression level as high and low. This use case
also predict the gene expressions from histone marks, but with a simpler statistical learn-
ing method, the elastic net (J. Friedman et al. 2009), implemented in R in the glmnet (J. H.
Friedman et al. n.d.) package.

This use case uses six different epigenetic marks: H3K4me3,H3K36me3, H3K27ac,
H3K4me1, H3K27me3, H3K9me3 from six samples from the BioSource CD4-positive, alpha-
beta T cell, totaling 36 ChIP-seq signal data files. Gene expression data was obtained from
the same samples, in total, six files containing the gene expression in TPM values. Fi-
nally, this use case uses GENCODE v22 for gene annotations. The source code of this
use case is presented in Appendix A.3.2 and it is divided into the following parts:

• Obtain promoter region bins:
– Select promoter regions (2500 bp before the TSS, 5000 bp long)
– Split genome into 100bp bins
– Intersect promoter regions with genome bins

• Mean aggregation of the ChIP-seq signal data in each bin and request result
• Request TPM values of all protein coding genes
• Download gene expression and histone data
• Match gene expression and ChIP-seq data
• For each histone mark:

– Use the histone and gene expression data as input of the elasticnet classifier
with the following parameters:

* alpha = 0.5
* 10 times cross validation
* function cv.glmnet of the glmnet package

– Obtain the prediction result and AUC values
– Discretize the gene expression predicted values in high and low expression

Figure 5.5 shows the most informative histone marks with their respective AUC. The
AUC values are between 0.772 to 0.873. Figure 5.6 shows the most informative bins
for predicting gene expression. It is important to note that the bins coefficient corre-
late to the known biological histone mark code, where the bins of repressive histone
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marks (H3K9me3 and H3K27me3) have a negative coefficient, and active histone marks
(H3K4me3 and H3K4me1) have mainly positive coefficients.

Figure 5.5: Histone marks AUC for gene expression prediction.

This use case provides a better performance than the deep learning approach reported
in Singh et al. 2016 with AUC of 0.80). One reason may lie in the high data quality
used. But another reason for the good performance could be that all of the samples
were from the same or a similar cell type. With a result of such a high quality, this
use case is a starting point for an in-depth comparison of different machine learning
strategies for predicting gene expression. Moreover, this analysis is limited to only six
samples, having more data from different BioSources may yield a better understanding
of cell type specific effects of histone marks on gene regulation.

5.3.3 Constructing cell signatures

Establishing a comprehensive list of genomic regions and marks can help to identify and
lead to the development of cell type-specific epigenomic biomarkers (Garcı́a-Giménez
et al. 2016; Toska and Sanz 2016). As an example, DNA methylation of different regions
of the genome is used as a biomarker in prostate cancer (Ferro et al. 2017; Ramalho-
Carvalho et al. 2016), lung cancer (Sandoval and Serra 2016; Diaz-Lagares et al. 2016),
breast cancer (Cervera et al. 2016; Tang et al. 2016), asthma and allergies (DeVries and Ver-
celli 2016), and obesity (Crujeiras and Diaz-Lagares 2016). Other epigenetic marks are
also suitable as biomarkers, like histone modifications, and Micro RNA (miRNA) (Garcı́a-
Giménez 2015).
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Figure 5.6: Most informative genome location for predicting gene expression. The bins
coefficient correlate to the known biological histone mark code.

The current development of biomarkers requires manual work and a priori knowl-
edge of the potential genomic locations and epigenetic marks. For improving the de-
velopment of new biomarkers, their development process must be systematized and
automated. For this purpose, the first step is to generate signatures of the cell types,
based on cell-type specific regions.

This use case demonstrates the process of systematically generating cell type signa-
tures. It uses DNA methylation data from the BLUEPRINT project for generation of cell
type signatures of blood cell types. For this purpose, 167 experiment files were used.
Listing A.10 contains the source code of this use case. Due to its complexity, this use
case is divided into three main tasks:

1. Select cell types
2. Obtain region-specific DNA methylation data from selected experiments
3. Systematic selection of cell type specific biomarkers

The first task (Listing A.10-lines 1 to 59) loads experiments and their metadata, all in
the form of BLUEPRINT DNA methylation files, and writes the result in an Microsoft
Excel spreadsheet. Next, it pauses the execution, allowing the user to edit the spread-
sheet, selecting the experiment files which are necessary. Figure 5.7 shows the number
of experiments for each selected cell type.

The second task (Listing A.11) obtains the DNA methylation data from the previously
selected experiments. The data is retrieved using the deepblue_score_matrix command3.
The second task performs the following steps:

1. Summarize the experiments data in a score matrix using the ENSEMBL regulatory
build:

3 As a performance statement, it does took approximately two hours for processing all 167 samples.
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Figure 5.7: Cell types used for generating cell type signatures.

• For each ENSEMBL regulatory region compute the mean and standard devi-
ation of the DNA methylation values for all samples of each cell type

2. Export the resulting score matrix
The third task (Listing A.12) selects the cell type specific biomarkers, i.e., the regions

that contain significant differences between the cell types. This process has the following
steps:

1. Based on the score matrix produced in the second task, add for each cell type the
following calculated measures of cell type specificity:

• number of cell types in which the region’s mean DNA methylation is lower
than the region’s DNA methylation in the selected cell type

• number of cell types in which the region’s mean DNA methylation minus 1x
the standard deviation is lower than the region’s mean DNA methylation in
the selected cell type
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• number of cell types in which the region’s mean DNA methylation minus 2x
the standard deviation is lower than the region’s mean DNA methylation in
the selected cell type

2. Rank the regions based on the worst rank of the three metrics (each one ranked
individually and then using the row-wise maximum)

3. Return the top 500 regions that are hypomethylated in the selected cell type based
on the consensus ranking

4. Repeat steps 1 to 3 with a focus on hypermethylated regions in selected cell types
For ensuring the script code correctness, this use case uses automatic testing (List-

ing A.14) that verifies if the hypo and hyper methylation values are correctly computed.
Figure 5.8 shows the clustering of the experiments using the identified hypomethy-

lated regions, and Figure 5.9 shows the clustering using the hypermethylated regions.
In both cases, it is possible to observe a separation between different cell types, showing
that those regions are valid signatures.

Figure 5.8: Cell types signatures: DNA hypomethylated regions heatmap.

For future improvements, we suggest that modifications such as a pre-filtering for
regions with high variance across cell types may improve the results. This use case
provides a framework for epigenetic cell type signatures that can be used as initial in-
formation for biomarker development.



102 5 DEEPBLUE IN R/BIOCONDUCTOR

Figure 5.9: Cell types signatures: DNA hypermethylated regions heatmaps chart.

5.3.4 Metadata and batch effect analysis

Metadata are an Achilles’ heel of reproducible research: resources are spent generating
data, and this data can become useless if they are not correctly annotated with complete
and standardized metadata. Even complete metadata may have problems, for example,
inconsistent use of terms (e.g., ChIPseq vs. ChIP-seq), files formatting or encoding prob-
lems, and different vocabularies for annotating the metadata fields. As a result, data
analysis often focuses on a small set of well-described datasets.

The problem of sharing and maintaining consistent metadata is not new. There are
many software packages developed to tackle exactly these tasks, usually called Labora-
tory Information Management System (LIMS). Such software is available commercially or
open-source. For example OpenLabFramework 4 is an open-source LIMS for managing
samples, storing information about media and buffers, and using smart QR bar-codes.
LIMS systems work well if the different laboratories involved in the research agree upon
their usage in the beginning of the project. However, usually, each laboratory starts on
using its own system for storing information, and consequently, each laboratory mem-
ber uses different keywords for describing the same process. Later on, when the datasets
are merged in one repository, organizing and having consensus between all different
metadata is a challenging task, especially if controlled keys and controlled vocabularies
were not enforced from the beginning of the project. Farnel and Shiri 2014 describe that

4 http://nanocan.github.io/OpenLabFramework/

http://nanocan.github.io/OpenLabFramework/
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the use of controlled vocabularies and unique identifiers are central components for
data and metadata in scientific research, and having a controlled vocabulary for each
factor is extremely helpful when applying the mathematical models of batch effect de-
tection and analysis on the data, as consistency in metadata is required for these models
to work.

The importance of correct metadata comes with the fact that research has been moving
towards larger multi-institutional collaborations, which are becoming essential for pro-
ducing large and robust datasets that are crucial in answering important scientific ques-
tions. However, collaborative studies add more difficulties in managing, sharing and
keeping data consistent between different laboratories and teams, and reusing the gen-
erated data is profoundly affected and influenced by the level of metadata consistency
and interoperability (Garoufallou and Papatheodorou 2014). Again, keeping metadata
in a structured and consistent form is a challenging task, especially in large consortia.
Typically, these issues are solved manually and only partially.

In this work, the DEEP project is used as an example for of metadata cleanup. The
project has produced high-throughput data that involves different laboratories, instru-
ments, and software, which can introduce variation and batch effects in the data (Leek
et al. 2010). The DeepBlueR package is used for querying the metadata of the DEEP ex-
periment files.

The initial goal of this work was to analyze data generation batch effects systemati-
cally, but it was hindered by usual problems with the metadata content that must be
dealt with before further studies. Moreover, it faced the following issues:

Wrong Formatting Some metadata files differ from the previously agreed format (two-
columns, tab-separated files, or comma separated files (CSV)). The
format consistency is necessary to be able to read, merge, and analyze
these data in automatic pipelines. Content might be misinterpreted,
causing execution problems in the pipeline, such as loss of time or
data due to being unable read the metadata content.

Different Encoding As many different teams and laboratories are involved in the research
project, different operating systems have been used to generate the
metadata files. Different operating systems might have different text
files encodings, for example, UTF-8, UTF-16, or ISO-8859. Again, this
might cause problems when trying to read the content of different
metadata files automatically.

Missing Values Human or machine errors are inevitable: humans may forget to docu-
ment an experiment process step, or mix the values of a specific buffer
concentration can happen. Besides, technical difficulties, like hard-
ware failures, might cause one or more observation to go missing or
introduce errors.

Inconsistent nomenclatures Inconsistency between the metadata terms names may hap-
pen when no controlled vocabulary scheme is enforced during the
initial project phase. For example, ChIPseq vs ChIP-seq and DNase vs
DNAse. For humans, this is not a problem, but problems occur when
using the metadata in automated pipelines. These discrepant values
might be considered as two different factors rather than one, generat-
ing inconsistencies in the data processing and analysis workflows.
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All these issues directly affect the building of statistical models for the detection and
correlation of batch effects. For this reason, it proved necessary to clean the metadata
before analysis. For fixing the previously listed issues, a semi-automated pipeline was
implemented with steps for processing, clearing, and producing a uniform metadata
content. As a complement to the metadata clearing pipeline, a tool for analyzing the
batch effect from different datasets was developed.

In research that is dealing with massive datasets and many institutions and scientists,
considering batch effects, confounding factors, and biases are significant. Batch effects
are caused by variability in the data that are introduced by external sources related to
the sample preparation, instruments, or data processing. For example gene expression
measurement are sensitive to external variables, such as buffers used, laboratory’s tem-
perature, or the way of handling the instrument. The same applies to other external
causes, such as the conditions for sample storing and preparation, the status of the de-
vices, and software version and parameters used in the data processing. Confounding
factors can impact actual correlations and associations in the data, impact which would
cause false associations (Skelly et al. 2012). Biases can occur during different steps of
research, whether it was during planning, measuring and data collection, or statistical
models used for downstream data analysis.

These introduced factors can affect data variability and might give false correlations
and conclusions when using statistical models during analysis. Batch effects and con-
founding factors can complicate the process of establishing links and causal effects in
the data. However, these factors can be detected, and the data can be adjusted accord-
ingly using statistical models (Leek et al. 2010). In this use case, the primary importance
of correcting the metadata here is the use for adjusting the data for batch effects and
confounding factors.

Metadata clean-up pipeline

The DEEP experiments metadata are tab-separated text files with two columns in a key-
value fashion. The keys are agreed upon, which helps to merge different metadata files
and to compare different experiments and samples. Even in such a straightforward en-
vironment, mistakes were made when filling the metadata content and must be fixed
before further data analysis.

For solving the previously mentioned metadata issues, a mechanism is required that
ensures that the same mistake does not occur again by verifying new metadata content.
For addressing the formatting and encoding, a script can fix the problematic files. It is
important to note that the developed script is dependent on the data content and can
vary from one project to another.

Human interaction is required for fixing missing values. It is crucial to contact the
team members responsible for the metadata generation and, with their help, to fill the
missing values of the essential metadata factors. However, for inconsistent nomencla-
tures, a simple method can be used to keep track of the manual changes made to the
data, saving these changes and rules where they were applied, for future repetition to
the different metadata files that might contain the same mistakes. In addition, having
the set of modifications saved separately can help track down the changes made when
it is required to revise or modify them.
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Figure 5.10: Fixing metadata encoding and formating issues: The first step is the fixing of
the formatting and encoding problems, e.g., the comment in file2.tsv has a tab
separator in the value column that was introduced by mistake. Formatting
issues are solved by reading the metadata files in the right encoding, and also
verifying if characters can be read correctly. The data fixer functions output
individual corrected metadata files that are merged into a unique table, which
is the input for the further processing made with the OpenRefine software.

Figure 5.10 shows the first step of the metadata clearing pipeline: fixing the metadata
encoding and format. After, using the data fixer function, a new set of metadata files,
with their encoding and content corrected, is generated. The metadata files are then
merged into a table that is the input for further processing.

The developed semi-automatic pipeline uses the user-friendly OpenRefine5 tool for or-
ganizing the metadata and documenting the performed changes in a JSON file, which
it is interface is a web application developed for filtering and manipulating data sheets.
This tool was formerly developed by Google to organize disordered data, and to help
cleaning and to modify large files content. Using OpenRefine brings the following ben-
efits: (i) a visual interactive environment that a non-programmer can easily operate;
(ii) tracking of all executed operations. The tool stores the performed operations in a
JSON file that can be separately stored, manually edited, and easily re-applied on the
data; (iii) the pipeline script easily integrates the generated JSON file that contains the

5 http://openrefine.org/

http://openrefine.org/
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operations performed on the metadata. This allows the OpenRefine execution externally,
automatically performing the operations and correcting metadata files.

Figure 5.11 shows the combined metadata files table that is generated by the previous
pipeline step. OpenRefine imports this table for further metadata corrections, such as
correcting the value ChIPseq to the corrected ChIP-seq and modifying the value 5E7 to a
consistent value of 50x106. The central concept in the OpenRefine step is to perform the
manual work only once. Later, new metadata files can be cleaned automatically using
the previously performed operations that are stored in a JSON file. Besides, this file
provides a catalog of manual processes, helping the reproducibility by documenting of
what has been changed, and also, easily allowing to include or remove data manipula-
tion operations.

Figure 5.11: Fixing metadata content with OpenRefine: users manipulate the metadata con-
tent where all steps are stored in a JSON file, which is used in future metadata.
The output is a table with fixed metadata values, for example: in the file1 the
value ChIPseq was corrected to ChIP-seq, and in file3 the value 5E7 was modi-
fied to be consistent with other numerical values as 50x106.

After fixing the files’ metadata content with OpenRefine, the pipeline converts the table
back to individual files. Figure 5.12 shows the pipeline step that automatically evaluates
the fixed metadata files, ensuring that their content is correct before they are included in
the database. This pipeline step used the fixed metadata files, and two additional files
that are manually produced. One file is a regular expressions dictionary, having keys
similar to the metadata keys and values that are regular expressions, defining which
content is valid for each specific key. The other file contains a black-list of metadata key
names which their values content are not regulated.

As previously observed, the use of controlled vocabulary and unique identifiers are
central components for ensuring the metadata quality. For this reason, the pipeline uses
controlled vocabularies built using the previously fixed metadata files. These controlled
vocabularies contain all keys with their content that are not blacklisted or defined by
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Figure 5.12: Ensuring the correctness of the metadata files: the pipeline converts the ta-
ble back to individual files and then verifies their content using regular ex-
pressions. For example, the key DONOR_ID only accepts values that start by
two digits followed by an underscore then followed by two or more letters or
numbers. If a problem is detected, a user must perform a manual correction.
Otherwise, the corrected metadata file is stored into the DeepBlue Server.

regular expression. These controlled vocabularies are used for generating automatic re-
ports on the corrected metadata files, which is an essential tool for examining the quality
of the metadata files before being stored in a database or shared with other teams. The
assumption here is that most new metadata files do not introduce new keys and values
but reuse existing ones. Consequently, differences observed here are likely errors.

After the corrected metadata files have been reviewed and approved, they are in-
serted, with their respective samples and experiments, into the DeepBlue Server. As
DeepBlue enables users to access and operate on relevant epigenomic experimental data,
it is crucial that these data contains clean and correct metadata.

Batch effect analysis

As a continuation to the metadata clearing pipeline, a tool for analyzing batch effects
in epigenomic data was developed. This tool provides a visual interface where users
select data available in the DeepBlue Server and easily use one of the three batch effect
normalization and analysis packages: SVA (Leek and Storey 2007; Leek et al. 2012a; Leek
et al. 2012b), RUV (Risso et al. 2014), and ComBat (W. E. Johnson et al. 2007).

The SVA package contains methods for removing artifacts both by: (i) identifying and
estimating surrogate variables for unknown sources of variation in high-throughput
experiments and (ii) directly removing known batch effects using ComBat. RUV re-
move unwanted variation that uses factor analysis to adjust for nuisance technical ef-
fects, based on counts (or residuals counts) for either negative control genes or negative
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Figure 5.13: Selecting experiments in the batch analysis tool: users can choose a genome
and according to the choice, projects are presented. For the DEEP data, user
can remove the coverage files, or use regular expression for refining the file
search.

control samples that is, genes or samples that are not expected to be influenced by the
biological covariates of interest (Risso et al. 2014).

The DeepBlueR package is used to obtain the experiments data and metadata, and to
process their data in a score matrix format that is used for the batch analysis cleanup
and processing.

The batch analysis tool has a straightforward and intuitive interface. Figure 5.13
shows the interface for selecting the data, and Figure 5.14 shows the information about
the metadata content of the selected files.

After selecting the experiments, users must define the selected score matrix param-
eters, which is computed using the operation deepblue_score_matrix (Figure 5.15). The
options for processing a score matrix are:

• Regions boundaries:
– Tiling Regions
– Genomic Annotations (CpG Island, Promoters)

• Chromosomes:
– Whole genome
– Specific chromosomes

• Aggregation function:
– minimum value
– maximum value
– values sum
– values mean
– values variance
– values standard deviance
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Figure 5.14: Users can select experiments and obtain their metadata content.

– values median
– values count
– boolean - if a value is in such boundary

• Filtering method:
– Remove incomplete rows
– Remove rows with low variance (it is possible to define the minimum vari-

ance value)

Figure 5.16 shows the interactive PCA plot that is available after the score matrix has
been processed. The chart allows coloring points based on any metadata, and it can be
downloaded as a static PDF file or as an interactive web page file.

Figure 5.17 shows the next step in the tool, the batch correction processing. For this
purpose, several batch effect correction methods are available: ComBat, SVA, Super-
vised SVA and RUV. Users can perform several tests and store the results in the Batch
Corrected Matrices list, and continue the analysis with the selected method. The inter-
face shows the experiments with their corrected values, which can also be downloaded.
Optionally, a user can remove outlier experiments before calculating the batch effect.

Figure 5.18 shows the final step, the comparison of the batch effect correction result
with the original values. This interface allows the comparison of the results in an inter-
active chart, containing the data from the original and the corrected matrix next to each
other. This chart can be downloaded as a static and interactive file.

Summary

The presented pipeline gives a strategy on how to process inconsistent metadata that
many teams and laboratories produce in the context of multi-laboratory and collabora-
tive projects. At the same time, the use of OpenRefine helps to keep track of any changes
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Figure 5.15: Defining the parameters for building the score matrix in the batch analysis
tool.

Figure 5.16: Batch analysis tool interactive PCA chart: it contains the experiments values
based on the computed score matrix values. Coloring the experiments based
on any metadata field is possible. In this figure, they are colored according
to their BioSource (biosource_name field).
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Figure 5.17: Configuring and executing the batch effect correction. Different methods are
available: ComBat, SVA, Supervised SVA and RUV. The tool help page de-
scribes each method. In this interface, users can define the parameters of the
method and remove outliers before performing the batch effect correction.

Figure 5.18: Batch correction result comparison. This interface allows users to compare
the corrected to the original results in an interactive PCA chart. The initial
values are presented on the left side and the corrected are on the right side.
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to the data for reproducibility and efficiency. Moreover, maintaining a controlled vocab-
ulary can help test newly generated metadata before it is submitted or added to Deep-
Blue; all these factors combined provide a flexible and reliable strategy that can easily
be implemented at the beginning of a project, which makes sure that any metadata file
added is up-to-date and the occurrence of mistakes are minimized. This strategy was
successfully applied within DEEP and can be extended to other projects.

The tool for analyzing and correcting batch effects tackles a common issue in multi-
institutional consortia. It provides a straightforward and intuitive interface for users to
analyze and visualize the batch effect in the data, and correct the values before down-
stream analysis.

Finally, this use case presented a complete data and metadata analysis and correc-
tion tools. First with a metadata cleaning pipeline and them with the interactive tool
for analyzing and correcting batch effect on epigenomic data. Both tools use the Deep-
BlueR package for accessing and processing (epi)genomic data, showing the power of
the combination of the R/Bioconductor environment with the DeepBlue Server.

5.4 Conclusion

Public data portals enable researchers to gain access to terabytes of epigenomic data.
This large amount of available data creates a strong demand for data analysis in statisti-
cal environments such as R, but it is not effective on local computers due to the volume
of the data. The DeepBlueR Bioconductor/R package enables R users to tap directly into
the DeepBlue Server to operate on large epigenomic datasets. DeepBlue transparently
transforms the results to R data structures that are directly used with R/Bioconductor
packages for visualization (Gviz), statistical learning (glmnet) or data analysis (ComBat).
DeepBlueR contains additional examples and documentation in its vignette package6. Fi-
nally, as demonstrated in dozen examples and the four complete use cases, DeepBlueR
is a powerful tool to study the epigenomics complexities, having the support of the data
and operations available in the DeepBlue Server in the powerful R/Bioconductor environ-
ment.

6 https://bioconductor.org/packages/release/bioc/html/DeepBlueR.html

https://bioconductor.org/packages/release/bioc/html/DeepBlueR.html


6
Accessing DeepBlue data from the web-browser

This chapter describes the DeepBlue Web Portal that is a companion tool
for the DeepBlue Server. This tool was implemented by the author with
support of Obaro Odiete.

Accessing public epigenomic data is a cumbersome task: users need to access different
data portals, manually search for the experiments data files through different metadata
formats, download the files, and them filtering the data from these files for the desired
genomic regions. Efforts such as the IHEC data portal (Bujold et al. 2016) provide a
unified data portal containing the IHEC members’ data, which however lacks features
such as complete metadata search, downloading all data on a specific epigenomic mark
or sample, or downloading subsets of the regions contained in the selected data files.

In contrast, the DeepBlue Server API provides a rich set of operations for finding, list-
ing, retrieving, and analyzing epigenomic data, but it is better suited for researchers
with programming knowledge. The DeepBlue Web Portal1 was developed for filling the
gap between the powerful DeepBlue Server API and researchers without a background
in programming. The DeepBlue Web Portal allows for searching and downloading the
(epi)genomic data available in the DeepBlue Server using a web interface.

The DeepBlue Web Portal is composed of visual components like grids, data tables, full-
text search interface, and download wizards for facilitating the full usage of the data
available in the DeepBlue Server. It serves as a companion tool of the DeepBlue Server,
where researchers can find and select the data to be used in the DeepBlue Server or to be
downloaded and analyzed directly.

6.1 Accessing public epigenomic data

Accessing the public epigenomic data is a cumbersome task: users need to access dif-
ferent data portals, such as, DEEP2, BLUEPRINT3, ENCODE4, ROADMAP5, CEEHRC6,
1 http://deepblue.mpi-inf.mpg.de
2 http://deep.dkfz.de
3 http://dcc.blueprint-epigenome.eu
4 https://www.encodeproject.org
5 http://www.roadmapepigenomics.org/data
6 http://epigenomesportal.ca/edcc/index.html

http://deepblue.mpi-inf.mpg.de
http://deep.dkfz.de
http://dcc.blueprint-epigenome.eu
https://www.encodeproject.org
http://www.roadmapepigenomics.org/data
http://epigenomesportal.ca/edcc/index.html
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for finding the necessary data for their analysis. In this process, users must visit many
web pages, search manually through the web page containing the metadata in different
formats, using the infamous CTRL+F command, download files without knowing their
content a priori, extract the relevant data, and finally, filter and manipulate the data.

The process of finding the desired epigenomic data is divided into the following steps:
(i) access epigenomic data portals; (ii) manually search lists of metadata files; (iii) find
the files that match the required metadata; (iv) download the files (usually gigabytes of
data); (v) check if the files contain the desired data; (vi) filter and manipulate parts of
the files required for the analysis.

The IHEC data portal7 improves this situation by providing a centralized repository
with data and semi-unified metadata. Here, we say semi-unified rather than unified be-
cause many projects do not follow the IHEC metadata specification8. Furthermore, the
IHEC data portal provides files for download, but it is not possible to select and down-
load a collection of files, or only parts of specific files.

Due to the increasing amount of available epigenomic data, a more accessible, and
faster way of accessing the epigenomic data is necessary; otherwise, it will not be possi-
ble to perform large-scale epigenomic data analysis in a reasonable amount of time and
resources, both computational and human.

6.2 DeepBlue Web Portal

The DeepBlue Web Portal was implemented with the goal of streamlining access to the
public epigenomic data provided by the DeepBlue Server and gives users an overview of
the (epi)genomic data available in the DeepBlue Server. It also allows them to perform
simple data selection and filtering for further download. It provides a web interface
to a subset of the DeepBlue Server API operations, focusing on the activities for finding,
searching, and downloading the data.

This web portal is a companion tool of the DeepBlue Server and its API, providing
visual components like grids, data tables, full-text search, and download wizards for
facilitating the full usage of the epigenomic data available in the DeepBlue Server.

Similar to the DeepBlue Server, the DeepBlue Web Portal supports both anonymous and
controlled access via a simple user registration. Anonymous users have access to all
public data, and to all operations for retrieving the data. Registered users, depending
on their permission privileges, can upload, curate, or remove data. In addition, the user
interface supports an interactive learning approach by automatically showing a tutorial-
style guide to first-time users. The principal functionalities of the DeepBlue Web Portal
are presented and described in the following sub-sections.

Dashboard

When accessing the DeepBlue Web Portal, the first interface is a data dashboard which
gives an overview of the available data (Figure 6.1). It provides charts showing how
the data is distributed among the projects, genomes, biosources, epigenetic marks, and

7 http://epigenomesportal.ca/ihec/
8 https://github.com/IHEC/ihec-metadata

http://epigenomesportal.ca/ihec/
https://github.com/IHEC/ihec-metadata
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Figure 6.1: The dashboard provides an overview on the available data, segmenting it by
its metadata content.

techniques. Besides visualizing the data distribution, users can also use these charts for
selecting and downloading the data.

Experiments Grid

The experiments grid allow users to visualize all data available. It supports filtering
by the experiments metadata, e.g., genome, epigenetic mark, and biosource. Figure 6.2
shows the grid interface, displaying all ChIP-seq peak data from the BLUEPRINT project.
Besides visualizing the available data, the experiments grid provides a data export func-
tionality, where users can select experiments and export the list of chosen experiments
to a programming script in the R or Python programming languages. By using this func-
tionality, user benefit from selecting the data in an easy interface and performing data
analysis in their favorite programming language. Section 6.3.1 presents a use case that
exemplifies this functionality.

Full-text search

The web portal provides a convenient full-text search interface through which users
can search epigenomic, annotation, or metadata records similarly to performing a web
search in ”google”. The web full-text search usage is simple: users type the query words
that must be in the target content description: metadata for experiments or annotations,
or fields of the metadata entities. Extra querying elements can be included, for example,
double quotes to form query terms with more than one word, such as ”DNA methylation”
or ”ChIP-seq”. A plus signal (+) is used in front of a word that must be contained in the
content, and a minus signal (-) is used to define a word that must not appear in the results
content. In addition, the queries are case insensitive. For example, Figure 6.3 shows the
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Figure 6.2: The grid interface provides a visualization of all available data in a simplified
grid format. This example shows all ChIP-seq peak data from the BLUEPRINT
project.

query ”DNA methylation” +BLOOD -coverage +GRCH389 on all experiments that contain
DNA methylation, blood, and GRCh38 in their metadata, but not coverage. Internally, this
web interface uses the DeepBlue Server search operation, where all requests are handled
on the server in a few seconds.

Entities info

The entities info interface is a simple interface that envelopes the info operation. This
interface answers simple questions about any DeepBlue Server content, where users can
obtain the full information of any DeepBlue ID, from metadata fields to processed re-
quests.

Experiments data table

The experiments data table provides a straightforward way of obtaining information
and accessing the data and metadata of the experiment stored in the DeepBlue Server.
It is a data table that shows the experiments’ mandatory metadata fields as individual
columns, contains an extra column with the extra-metadata content, and a button for easy
access to preview the data. Users can use the text input in the header of each column
for quickly filtering the table content. Figure 6.4 shows the filtering process: users type
the values and an auto-complete ComboBox is displayed to assist the user in finding the
right metadata field. The filtered result is shown instantly, such that users can quickly
explore the data provided by the DeepBlue Server. This interface is also the entry point
for downloading experiments data via the web portal. The use case in Section 6.3.2
explores the data downloading process using this interface.

9
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Figure 6.3: The full-text interface provides a straightforward way for finding (epi)genomic
data and metadata content stored in the DeepBlue Server. This figure shows the
query ”DNA methylation” +BLOOD -coverage +GRCH38 on all experiments that
contain DNA methylation, blood, and GRCh38 in their metadata, but not coverage.

Figure 6.4: The experiments data table provides a convenient access to all DeepBlue Server
experiments with their metadata. This figure shows filtering the experiments
by its epigenetic mark.
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Figure 6.5: The experiments data table provides a data preview functionality. This figure
shows the preview of an experiment data and its columns.

The experiments data table also provides a data preview functionality where users can
visualize the first five lines of an experiment data instantly (Figure 6.5). In this way, users
do not need to download the data for seeing their content, but can instead just check the
content of any data file with a single click. This functionality uses the DeepBlue Server
preview_experiment operation.

Auxiliary data listing

The DeepBlue Web Portal also provides similar data tables for auxiliary data like annota-
tions, metadata entities, column types, and genes. By these data tables, users can easily
verify if some annotation or metadata field is available in the DeepBlue Server, as well as
obtain detailed information on various entities, e.g., the description of a column type.

BioSources hierarchy

The BioSources hierarchy interface provides visualization to the BioSources hierarchy
provided by the DeepBlue Server. The interface shows a data tree where users can visu-
alize and select experimental data. First, users can explore the nodes of the tree, each
representing a BioSource term. Then, users can select the BioSource nodes for choosing
their respective samples. When selecting a node, all its inner nodes are also selected,
and a list of available samples is displayed on the right-hand of the web interface (Fig-
ure 6.6). Samples can be selected and unselected, and their respective experiments are
displayed in a data table, which can be used for downloading their data.

Access to previous processing requests

An interface is provided for accessing to the previous processing requests. This interface
contains a data table where registered users can access all their previous requests. It is
possible to obtain information about the request date and to download its processed
data. Due to privacy reasons, this functionality is not available to anonymous users
because a user could see what other users are processing in the DeepBlue Server.

Data insertion

The data insertion has two interfaces: one for uploading new annotations and another
for inserting new column types without requiring the use of programming scripts. Both
interfaces are simple to use, requesting only a minimum amount of information about
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Figure 6.6: The BioSources hierarchy interface allows users to visualize the relationship
between BioSources. This figure shows the selection of ESC and the samples
that are annotated with this BioSource.

the data to be included. These interfaces were developed as an experiment to verify
if users prefer to use a web interface or scripting programs to upload their data into
DeepBlue Server. The conclusion was that due to the large number of annotation datasets,
scripting was the best option. In any case, these interfaces are still available for users
with permission for inserting data into the DeepBlue Server.

Data curation

The data curation interface provides a straightforward way of correcting the metadata
content of a set of experiments. This functionality requires that the user is registered
and has permission for changing and inserting data into the DeepBlue Server. When ac-
cessing this interface, users select a set of experiments by their metadata content. In the
next step, users can modify the selected experiment metadata, changing its content, in-
cluding or removing extra-metadata fields, and altering the column types. The interface
uses the clone_dataset operation for storing the changes on the server. This operation
does not change or duplicate the original experiment data, but creates another experi-
ment, with the new metadata content that references the original data. In this way, the
original data is neither lost nor unnecessarily duplicated.

Data removal

The data removal interface provides an easy way for privileged and privileged users to
remove data from the DeepBlue Server. It uses the remove operation, allowing to remove
any entity by its ID.
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Documentation & Users’ feedback

The two last interfaces are the documentation and users’ feedback. The documenta-
tion web interface is a hub to all available DeepBlue Epigenomic Data Server ecosystem
documentation, including API reference, examples, use cases, and user manual. The
users’ feedback is a direct link to the User Echo service10. Using this service, users can
write comments, feedback, and bugs reports11. In short, the users’ feedback is a chan-
nel where users can communicate with the developers and help improving the DeepBlue
Epigenomic Data Server ecosystem.

6.3 Usage examples

Here, two use cases are detailed demonstrating the usefulness of the DeepBlue Web Por-
tal: (i) using the grid interface for selecting and exporting data to a python script; (ii)
selecting and downloading specific regions from multiple experiments.

6.3.1 Visually selecting and exporting data to a Python script

For supporting users with the cumbersome task of finding and downloading the neces-
sary epigenomic data, this use case demonstrates how to perform such task using the
grid interface. Here, we explain how the experiments for the DeepBlue Server use case
Summarize genes expression from hepatocytes experiments (Section 4.6.5) are found.

The first step is to open the Experiments grid interface in the web portal. There, select
the option signal in Data type, CREST in Projects, GRCh38 in Genome, mRNA in Epigenetic
Marks, Hepatocyte in BioSources, and RNA-seq in Techniques (Figure 6.8). The grid contains
only one cell (Figure 6.8), holding the number 8, representing the eight experiments that
match these criteria.

The following steps are executed in the grid interface for obtaining a source code in
R or Python containing the selected experiments name:

• Click on the exhibited grid cell for selecting its experiments.
• Scroll the interface to its bottom, where the data table with the selected experi-

ments is located (Figure 6.9).
• Click on the button Export data, displaying the generated source code in R.
• Click on the Python text in the top for displaying the Python code (Figure 6.10).
• Click on the button Copy to Clipboard for copying its content, then, paste it in the

Python script with the data analysis script.
Finally, this use case and the use case presented in Section 4.6.5 present an integrated

use of the web interface together with a programmatic analysis. This demonstrates how
users can have the best of both worlds: an intuitive interface for searching and finding
the required data, and a powerful API for epigenomic data manipulation.

10 https://deepblue.userecho.com/
11 It is encouraged to report bugs in the DeepBlue’s GitHub repository: https://github.com/
MPIIComputationalEpigenetics/DeepBlue

https://deepblue.userecho.com/
https://github.com/MPIIComputationalEpigenetics/DeepBlue
https://github.com/MPIIComputationalEpigenetics/DeepBlue
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Figure 6.7: DeepBlue Web Portal Grid: This figure shows the filtering options applied to
the data for selecting DNA methylation data from CREST for further analysis.

Figure 6.8: DeepBlue Web Portal Grid: This figure shows the filtering result where the
grid contains a single cell displaying the eight filtered hepatocytes experi-
ments.
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Figure 6.9: DeepBlue Web Portal Grid: selected experiments data in the grid are displayed
in the data table.

Figure 6.10: DeepBlue Web Portal Grid: export selected data to Python.

6.3.2 Selecting and downloading specific regions from multiple experiments

Retrieving epigenomic data from multiple experiments is a complex task, especially
when only a subset of this data is required, e.g., regions overlapping a specific anno-
tation. Currently, epigenomic data portals only provide the download of individual
files, where users must download files individually, manually merge, and them select
the regions of interest.

The DeepBlue Web Portal provides an easy way of downloading the required epige-
nomic data. The download process takes three steps and all have visual guidance: (i)
selecting experiments, (ii) selecting columns, chromosomes, and overlapping regions;
(iii) requesting and downloading the regions.

This use case demonstrates how to use the Experiments data table interface (Section 6.2)
for selecting regions from ChIP-seq of precursor B cell experiments that overlap with CpG
islands:

• Select the experiments by filtering the data table with the following metadata at-
tributes: peaks as Type, H3K27ac as Epigenetic mark, precursor B cell as Biosource, and
ChIP-seqas technique (Figure 6.11).

• After the data table filtering, 13 experiments are left.
• Select these experiments by double-clicking each row.
• Scroll to the bottom of the web page where the list of selected experiments is dis-

played at the bottom of the web page. If necessary, an experiment can be dese-
lected by double-clicking its row.
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Figure 6.11: DeepBlue Web Portal: selecting data with the experiments data table.

• Click on the button Proceed to the download page for proceeding to the next data
selection and filtering step.

The Download experiments interface (Figure 6.12) allows users to select the content of
the data that is retrieved. It also allows to select the experiments columns and to anno-
tate regions with meta-fields. In the presented use case, the sequence of commands are
the following:

• Select the columns CHROMOSOME, START, END, NAME, P_VALUE, and
Q_VALUE.

• Annotate the regions with the meta-field @SAMPLE_ID for identifying the source
of each region.

• Filter the regions by overlapping with CpG island. If necessary, it is possible to
select regions by their chromosome or genomic location.

• Click the button Request Download. This button triggers the processing in the Deep-
Blue Server and redirect the user to the Request Status interface.

The DeepBlue Server processes the request on demand. This means that users must
wait for the processing to finish before they can download the data. The request gener-
ated with the use case presented above takes about eight seconds to process. Figure 6.13
shows the request processing status interface, which provides information such request
ID, the selected data, start, and end time. When processing the request is finished, the
user must click on the button Download for downloading the generated data file. It is
possible to access the selected data directly in R or Python using the get_request_data
operation, or deepblue_download_request_data command in DeepBlueR, with its request
ID (r3444577).
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Figure 6.12: DeepBlue Web Portal Grid: selecting data columns and regions.

Figure 6.13: DeepBlue Web Portal request info interface displays information and allows
users to download the data of a request ID.
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The presented use case demonstrates how simple it is to use DeepBlue Web Portal for
selecting and filtering epigenomic data without the need of downloading a set of exper-
iments and manually filtering them. It showed that the data selection is performed by
a few clicks and then processed in the DeepBlue Server, providing precisely the required
data for further analysis.

6.4 Conclusion

The amount of available epigenomic data is steadily increasing, but as presented in Sec-
tion 6.1, methods for accessing these data follow the old paradigm of the one file, one
experiment, one download. They are forcing users to search in many different data portals
for the required data, and to download dozens of files for analyzing a small portion of
them.

The DeepBlue Web Portal provides an elegant interface by which users can search, list,
and efficiently download epigenomic data. Besides the data, the Web Portal provides
facilities for accessing DeepBlue metadata entities and also to curate experiments meta-
data.

Overall, the DeepBlue Web Portal is a convenient interface and companion tool for the
DeepBlue Server, being used by hundreds of users. The Web Portal is a powerful tool, but
it does not provide all operations needed for complex epigenomic data analysis using an
web interface. Offering more sophisticated ways for complex epigenomic data analysis
is the domain of the tool DIVE, which is presented next in Chapter 7.





7
Large scale interactive analysis of epigenomes

DIVE is a web application compatible with all modern web browsers. It was
developed by the author. The use case in the Sections 7.5.1 and 7.5.2 were
developed with support of Dr. Shinya Oki. The use case in the Section 7.5.3
was developed during the author’s visit in the Professor Dr. Mikita Suyama
laboratory.

Large scale epigenomic data analysis has to deal with three fundamental difficulties:
locating the necessary experiments, extracting the data of interest from these experi-
ments, and analyzing the data. The DeepBlue Server facilitates obtaining the required
data, and also provides some basic analysis capabilities such as gene and overlapping en-
richment methods (Section 4.5.7). The DeepBlue Web Portal simplifies finding the desired
data set, but it lacks data analysis functionalities. Furthermore, retrieving and analyzing
hundreds of different files is not efficiently possible using a standard desktop computer.
For handling these issues, and consequently, improving large-scale (epi)genomic data
analysis, the web tool DIVE was developed.

This chapter presents DIVE, a web tool for large-scale epigenomic data analy-
sis. While users needs to have knowledge in programming when using the Deep-
Blue API (Section 4.5), and the Web Portal (Chapter 6) provides a subset of the Deep-
Blue API, DIVE aims to provide a comprehensive, dynamic, and visual interface for
analyzing large-scale epigenomic data.

DIVE is a dynamic analysis web application that uses the DeepBlue Server metadata,
data, and API without requiring the user to have any programming skills. Users can
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perform analysis in hundreds of epigenomic data files in seconds with a few mouse
clicks.

7.1 Web tools for analyzing epigenomic data

Web tools for analyzing (epi)genomic data are being used routinely. Based on the use
mode, these tools can be classified in four groups: (i) genome browsers: UCSC Genome
Browser (Kent et al. 2002) and Ensembl Genome Browser (X. M. Fernández and Birney
2010); (ii) workflow managers: Galaxy (Giardine, Riemer, Hardison, Burhans, Elnitski,
Shah, Y. Zhang, Blankenberg, Albert, Taylor, et al. 2005b; Giardine, Riemer, Hardison,
Burhans, Elnitski, Shah, Y. Zhang, Blankenberg, Albert, Taylor, et al. 2005a; Goecks et al.
2010; Blankenberg et al. 2010); (iii) machine learning and enrichment: EpiGraph (Bock
et al. 2009) and EpiAnnotator (Pageaud et al. 2018); (iv) whole genome analysis: EpiEx-
plorer (Halachev et al. 2012).

Genome Browsers are “web-based application for displaying genomic annotations and
other features” (Stein et al. 2002). Genome Browsers are de facto tools for inspecting
genomic annotations, like epigenetic marks, CpG islands, and genes. Their major draw-
back is that users must manually screen along the genome, inspecting the genomic lo-
cations and annotations individually, which requires comprehensive knowledge about
the research question at hand to interpret the presented information. In short, these
tools strong rely on human interaction and data interpretation, which does not scale
with the growing amount of experiment files.

Workflow managers are software that connects different data processing and analysis
tools to form a data processing and analysis pipeline. Workflow managers provide con-
nectors to existing software, providing links between different software packages, and
configuring their interlinked their execution. The two most frequently used workflow
managers in bioinformatics are Taverna (Wolstencroft et al. 2013), a desktop applica-
tion, and Galaxy, a command line and web application. Both tools provide access to
dozens of different data sources and software tool repositories. However, users must
(i) manually find the data from various sources; (ii) verify the data quality; (iii) build
the data workflow. These tools do not require any programming skills, but users must
know the required data and required software tools for constructing the data processing
and analysis workflows. Furthermore, workflow managers usuallz scale by distributed
computing, the scalability of individual workflow components is less of an issue. In this
way, workflow managers retrieve dozen to thousands of data files, for examining only
a fraction of their content.

EpiExplorer is one of the first tools for whole (epi)genome analysis. It is a point-and-
click web application that allows users to inspect epigenomic region sets by overlapping
them with genomic annotation, e.g., with CpG islands or known TFBSs, thus, obtaining
insights about this region set. As opposed to Genome Browsers, EpiExplorer compares
the region set to the whole genome and exhibits the annotations with their number of
overlaps. EpiExplorer provides dozens of pre-processed datasets (histone modifications,
chromatin accessibility, DNA methylation, CSS, TFBS, CpG island, lamina-associated
domains, conservation, repeat elements, and Genes and annotations). Due to its ease
of use, EpiExplorer was well received in the community, having thousands of users. The
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main issues with EpiExplorer are the need for pre-processing the region set, which can
take several hours to complete and also limits the query flexibility for the users.

The machine learning and enrichment analysis methods are mathematical meth-
ods for obtaining insights on the (epi)genomic data in a semi-automatized way. Epi-
Graph (Bock et al. 2009) is one of the first web tools that enabled users to use machine
learning methods for epigenomic data enrichment (Section 3.4). In EpiGraph, users must
define the features and parameters for calculating the enrichment, a task that is complex
for biologists and bioinformaticians because it requires knowledge in statistics and in
machine learning. Another tool, EpiAnnotator (Pageaud et al. 2018) provides a more
straightforward user interface, where users can enrich genomic overlapping regions
with existing datasets, using the LOLA (Sheffield and Bock 2016) method, but besides
its ease of use, its functionality is limited to enrichment analysis.

As previously presented, the DeepBlue Server provides mechanisms for data selec-
tion and operation, where users can build whole-genome (epi)genomic data processing
workflows directly in the data server. It also provides operations for performing overlap-
ping enrichment analysis (Section 4.5.7). One of the main advantages of using DeepBlue
is the ability to process hundreds of epigenomic data files simultaneously. It enables
users to explore, analyze, and obtain insights from large-scale datasets, not only regard-
ing the number of experiments but also regarding the variety, obtaining data from many
different samples and epigenetic marks. DeepBlue allows for comparing a region set
with all its imported datasets, similarly to what EpiExplorer, LOLA, and EpiAnnotator
perform. But users must develop scripts using the DeepBlue API, which renders analy-
sis prohibitive for users without any programming skills.

DIVE was developed for supporting users in performing large-scale epigenome anal-
ysis without the need to implement code. DIVE empowers scientists by providing a
complete visual interface where they can obtain insights as well as to formulate a scien-
tific hypothesis on their epigenomic data.

7.2 DIVE - Diving in the epigenomic data

DIVE is an intuitive web-based epigenomic data analysis tool with the primary objec-
tive to support researchers in analysis of large-scale epigenomic datasets. DIVE’s main
functionality is similar of EpiExplorer: a set of genomic regions is compared regarding
overlap with existing datasets, and the results are visualized as bar charts. But DIVE
can perform these comparisons dynamically, without the need of pre-processing the
data. Thus, the tool provides flexibility regarding the queries that users can visually
build with only a few mouse clicks.

The region set that the user wants to analyze is called query in DIVE. For the analysis,
users select additional region sets as the so-called comparison sets. The query and compari-
son region sets can be compared to all datasets available in DIVE (in the following: DIVE
datasets). Figure 7.1 shows the main DIVE interface, pointing out the elements, query,
comparison region-sets, and DIVE region-set. The query regions can be filtered by their
length, content, or by overlapping with a given DNA sequence motif. The filtering steps
results are displayed (Figure 7.1-B). The result from a filtered step can also be used as a
comparison region-set, allowing users to select which regions are used for comparison.
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Figure 7.1: DIVE interface main elements: (A): the query region-set that is being analyzed,
in this case; (B): list of the filters that are being applied to the query region-
set; (C) filtering options based on region lengths and overlapping by DNA
pattern that can be applied to the query region-set; (D) access to the genes
enrichment analysis, gene ontology enrichment analysis, and overlapping en-
richment analysis, also access to the datasets available for overlapping compar-
ison (Chromatin Accessibility, Gene Expression, Control Data, Histone Modi-
fication, and Chromatin State Segmentation); (E) List of the comparison region-
sets, where their color corresponds to the colors in the charts; (F) bar charts
with the counts of overlaps of the query and comparison region-sets to the se-
lected region sets (H3K27me3 experiments), where each group represents a
distinct BioSource.

7.3 Main features

DIVE presents several innovations to web-based epigenomic large-scale data analysis:
ability to analyze a large amount of data in a few seconds, guided data analysis, flexible
queries processed at run-time, dynamic region-sets, multiple region-sets source, and
enrichment analysis. DIVE’s main analysis functionalities are detailed in the following
sections.

Full visual interface

DIVE is a visual and intuitive web application. Users do not need knowledge in pro-
gramming, and all operations are performed in DIVE’s graphical interface, with instan-
taneous feedback to the user. Its visual interface is built using User Interface (UI) ele-
ments like wizards1, data tables, dynamic menus, and charts displaying the analyzed
data, for users visualizing and analyzing their data.

1 https://uxplanet.org/wizard-design-pattern-8c86e14f2a38

https://uxplanet.org/wizard-design-pattern-8c86e14f2a38
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Large amount of data ready to use

All public data in DeepBlue is automatically available for analysis. Although DIVE
works only with region-based datasets, this nevertheless means that, at the time of writ-
ing, more than 35, 000 experiments from six reference genomes and more than 2, 000
biosources can be analyzed. Moreover, dozens of genomic annotation datasets and five
gene models are available to the user, providing diverse starting points for in-depth
epigenomic data analysis. Furthermore, DIVE can operate on multiple samples from
the same BioSource, improving the quality of the analysis as compared to the single-
sample approach implemented in EpiExplorer.

Guided data analysis

Due to the substantial number of datasets available in DIVE, the tool guides users
through the analysis, helping them to choose the datasets for data comparison and en-
richment. When users access DIVE, the tool initializes a wizard guiding them through
the process of selecting the genome, annotations , and data. During this process,
DIVE automatically suggests the most similar and dissimilar BioSources to potentially
broaden the scope of the intended analysis. At the end of this guided setup, all parame-
ters for the analysis are available and the analysis run can be started with a single mouse
click. If necessary, these parameters can be easily changed during the data analysis.

When selecting a similar or dissimilar BioSources, DIVE also suggests the inclusion
of its sub-terms, based on the ontologies, in the data analysis (Figure 7.2).

Figure 7.2: DIVE suggesting sub-terms when selecting a BioSource: clicking on the pluripo-
tent stem cell term, DIVE shows a menu asking if it must include the sub-terms
for automatically selection in the overlapping interfaces.

Run-time data processing

DIVE converts information provided by the user to DeepBlue API operations, which
are processed, and the results are presented in the form of charts and tables. To this
end, DIVE uses the DeepBlue Server for processing queries at run-time, without the need
of pre-processing data. In short, users can upload their datasets and start analyzing
the data immediately. In case of an analysis request that cannot be processed instanta-
neously, the interface is updated with preliminary results. Besides, all operation results
are permanently stored to speed up future requests that use the same data again.
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Flexible queries

Since all queries are processed at run-time, users can build and execute flexible queries.
Besides the usual functionality of filtering regions by overlapping regions from other
region-sets, it is also possible to filter regions based on their content, genomic location,
overlap with DNA sequence patterns, genes, or genes annotated with specific GO terms.
The queries also have adjustable parameters, for example, the filtering by overlap with
a DNA sequence pattern is not limited to pre-defined patterns but can apply any valid
regular expression content.

Furthermore, it is possible to build on a query using its result as input for another
query. Hence, DIVE allows user to build queries chain for probing the epigenomic data
with more intricate research hypotheses.

Dynamic region-sets

DIVE provides thousands of datasets but, in addition, users can generate new region-
sets from existing datasets. For example, it is possible to compute flanking regions from
gene regions, such that researchers can define promoter regions as appropriate for their
analysis. It is also possible to generate several derived region sets and compare the
results. Besides flanking regions, it is possible to create tiling regions with configurable
length, or to select gene sets based on GO annotations. It is also possible to transform a
region-set by extending its regions.

DIVE also generates CSS region-sets dynamically. Usually, the experimental data is
organized by samples, where each file contains the whole-genome CSS per sample. To
facilitate the analysis, DIVE organize the region sets by their chromatin states. This is
realized by finding all distinct chromatin states in all data files (Section 4.5.6 and sub-
sequent filtering of regions by their chromatin state (Section 4.5.5). In this way, DIVE
generates on-the-fly new region-sets based on the existing chromatin states.

Multiple region-sets sources

Different sources can be used for providing the query and comparison region-sets. These
input sources are:

Experiments and Annotations from DeepBlue can be directly accessed in DIVE. The only
limitations are that the experiments data must be peaks and also public.

Tiling regions with configurable length can be generated at run-time.
DNA sequence motif can be used for generating a region-set on the fly that is composed

of genomic regions matching the specified DNA sequence motif.
DeepBlue’s query ID can be used to load the region-set referenced by the given query ID.
Genes and GO terms can be used to build a region-set from the genes selected by their

names, ID, or annotated by GO terms.
User files can be uploaded to be analyzed in DIVE.

As highlighted above, DIVE supports many data sources, also allowing users to use
region-sets from previous analyses performed with the DeepBlue API. The opposite di-
rection is also possible, i.e., user can filter and analyze a region-set in DIVE, and later
access this region-set in a programming environment using the DeepBlue API.
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Enrichment analysis

DIVE provides a simple overlap analysis using genes and also three types of enrichment
analyses: (i) GO; (ii) LOLA (Section 4.5.7); (iii) fast overlapping enrichment analysis (Sec-
tion 4.5.7).

The genes enrichment analysis is a straightforward method where the query and com-
parison region-sets are overlapped with the gene models provided by DeepBlue, and the
number of overlapped genes is returned to the user. With this functionality, researchers
can observe how many of their regions overlap with genes and regions around the genes.
It is also possible to generate region-sets based on the gene locations, for example, pro-
moter region-sets based on different values for the distance to the gene TSS and its re-
gions length.

The GO enrichment analysis is similar to the gene enrichment, but a second step
counts the GO terms that annotate the overlapped genes. The results are displayed in a
bar plot, containing the options for filtering the GO terms by three properties: (i) mini-
mum number of overlapping genes with this GO term; (ii) minimum fraction of overlap-
ping genes in relation to the total number of genes annotated with the same GO term;
(iii) GO term overlaps P-value. Users can easily modify these three filtering attributes to
focus on more specific GO terms. Figure 7.3 illustrates a use case of performing the GO
enrichment analysis on a CpG island region-set. It is possible to filter the query to the
overlapping genes annotated with a specific GO term by simply clicking on the GO bar.

Figure 7.3: DIVE: Gene Ontology Enrichment: this image shows the result of a GO enrich-
ment analysis followed by manual filtering the results through three param-
eters: minimum number of overlapping genes with the GO term; minimum
ration of overlapping genes with the total number of genes; GO term overlaps
P-value. All these parameters can be modified and the results are exhibited
instantly, which in this case, four GO terms that 69 to 95 genes annotated with
these terms overlap with the query regions.

The LOLA enrichment analysis uses the DeepBlue API operation enrich_regions_overlap
(Section 4.5.7). DIVE provides a wizard interface, which guides the user through the
process of selecting the background data and comparison datasets. The user can select
data from all previously listed input sources, including all peaks experiments available in
the DeepBlue Server. Figure 7.4 exhibits the enrichment result of the CpG island against
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the CSS region-sets, where it is possible to notice that the higher ranked are the Ac-
tive TSS High Signal, which is in line with reports in the literature by Deaton and Bird
2011: “Recent work has uncovered a large class of CGIs that are remote from annotated
transcription start sites (TSSs), but nevertheless show evidence for promoter function
(Illingworth et al. 2010; Maunakea et al. 2010)”. In this interface, the user can sort the en-
richment analysis results by different attributes and ranks, giving the ability to inspect
the results from different perspectives.

Figure 7.4: DIVE: LOLA Enrichment Analysis: this figure exhibits the enrichment result
of the CpG island against the CSS region-sets, where it is possible to notice
that the better ranked are the Active TSS High Signal.

The fast overlapping enrichment analysis uses the enrich_regions_overlap operation
(Section 7.5). This method used by DIVE is explained in Section 7.4.3. In short, this
method is used to list the most similar and dissimilar BioSources during the data se-
lection wizard. Figure 7.5 shows the BioSources most dissimilar from the experiment
file E066-H3K27ac.broadPeak.bed from the Roadmap Epigenomics project that has Liver as
BioSource and the histone modification H3K27ac. The goal of this interface is to guide
users through the most similar and dissimilar BioSources, helping them to find and focus
on the putatively informative experiments to be used as comparison region-sets and the
DIVE region-sets to be compared to.

The fast overlapping enrichment analysis is also used to display the most similar and
dissimilar BioSources and Epigenetic Marks in a box plot chart that provides a guide to
the direction that the users must follow for analyzing their query region-set. Figure 7.6
shows the most similar Epigenetic Marks. The most important attribute of this plot is
the list of Epigenetic Marks rather than their ranking because the rank can be affected
by the number of experiments or by some poorly ranked experiments as explained in
Section 7.4.3.

Sharing analysis results

DIVE allows users to share the analysis with colleagues by sharing a Uniform Resource
Locator (URL) address. Any collaborator can open the shared URL and the query and
comparison datasets, including all the previously applied filtering steps.
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Figure 7.5: DIVE: Most dissimilar BioSources of the experiment E066-
H3K27ac.broadPeak.bed from the Roadmap Epigenomics project that has Liver as
BioSource and the histone modification H3K27ac.

Figure 7.6: DIVE: Most similar Epigenetic Marks to the experiment E066-
H3K27ac.broadPeak.bed.

7.4 Major features

DIVE empowers researchers to analyze a large amount of (epi)genetic using a simple
point-and-click interface. DIVE uses operations from the DeepBlue Server and improved
methods of accessing these operations to realize its analysis capabilities. In this section,
the three most important methods are explained: (i) regions overlap analysis, (ii) uti-
lizing and displaying multiple samples per BioSource, (iii) computing experiments data
similarity, which uses the fast enrichment analysis processing.

These methods aim to make the data provided by the DeepBlue Server easily accessible
to users focusing on the following three key aspects: (i) providing fast processing of the
data and quick results to users;(ii) offering better epigenomic data analysis using mul-
tiple samples per BioSource; (iii) supporting users to find the right data to be compared
to in the vast amount of data available.

7.4.1 Overlapping regions

The overlap analysis is performed using the DeepBlue operation overlap for each pair of
query or comparison and DIVE region-set. To emphasize the efficiency of DIVE together
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with DeepBlue, one can consider an exemplary case of a single query and two comparison
datasets being overlapped with 40 DIVE region-sets. In this scenario, a total of 120 (3 x 40)
DeepBlue workflows have to be processed, each consisting of at least two data selections
and one overlap operation. Ideally, all these operations have to complete within fractions
of a second to provide the user with essentially instantaneous analysis results.

The previous example contains a small number of region-sets. In DIVE, it is usual
for users to select 25 BioSources, where each one has approximately six samples, totaling
in 150 DIVE region-sets. Still, if each of these 150 region-sets can processed in a matter
of seconds, the total amount of time surpasses the range of minutes, which it is a long
time for waiting. So, even though the DeepBlue Server algorithms are optimized, in the
current implementation of DIVE and DeepBlue Server, it is not feasible to process all
450 overlapping computations in real time. Furthermore, even if the processing time
could be reduced, the amount of available data is growing continuously, which easily
outweighs any performance gains on the algorithmic level.

For these reasons, DIVE implements a paradigm called process-and-display that dis-
plays the overlapping results as soon they are available. The process-and-display im-
plementation consists of three different components: DIVE, middleware, and DeepBlue
Server: (i) DIVE sends a request to the middleware to trigger the overlap computation.
It provides the Query ID and a list of experiment IDs, and, if necessary, a list of filters
that must be applied to the experiment’s data; (ii) the middleware executes the oper-
ation overlap in the DeepBlue Server for each pair of query or comparison region-set and
datasets; (iii) the middleware monitors the processing using the operation info and re-
trieves the results when the workflow is finished. (iv) Concurrently, DIVE keeps probing
the middleware for new results, receiving the partial results, and continuously updates
the overlapping chart.

The process-and-display method allows users to visualize the results of large-scale
datasets while they are still being processed, which avoids the undesirable ”idling” stage
for the user. The same method is used for finding the similar Epigenetic Marks (Fig-
ure 7.6) and BioSources (Figure 7.5) , and it can be extended to other DIVE components.

7.4.2 Sample aggregation

As an improvement over previous tools, DIVE has built-in support for analyzing multi-
ple samples per BioSource. As shown in Figure 7.1, DIVE groups experiments by their
BioSource. Each query or comparison region-set and BioSource bar is composed of one or
more samples, and consequently, one or more experiment data files. The results of these
multiple experiments are summarized in a bar chart enriched with a box plot.

Figure 7.7 shows parts of the DIVE interface, focusing on a bar chart with three bars
enriched with a box plot. For constructing this chart, each pair formed by a query or com-
parison region-set and a sample is processed by the DeepBlue Server using the operation
overlap. DIVE first groups the results by BioSource, and then uses these results for calcu-
lating the average, median, and the first and third quartile values for each BioSource. The
average is used for the bar chart while the other values, together with the minimum and
maximum, are used in the box plot. Users can select individual samples for performing
overlap operations by clicking on these charts. In this way, users can obtain an overview
of the overlap results of the selected BioSources, as well as identify potential outliers.
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Figure 7.7: DIVE: Multiple samples per BioSource: this chart contains three bar charts en-
riched with a box plot. Showing the average overlapping for each BioSource
and the samples with the lowest and highest number of overlaps, the first and
third quartile, and the median.

7.4.3 Finding similar experiments

Listing similar BioSources and Epigenetic Marks for a given region-set is one of the most
exciting features in DIVE. This method enriches the query region-set using all available
experiments annotated with the same Genome. In this setting, the use of the original
LOLA method is infeasible due to its substantial memory consumption and compara-
tively slow processing speed. For this reason, the DeepBlue Server implements an ap-
proximate and faster version of this method in the operation enrich_regions_fast (Sec-
tion 4.5.7). This operation can compute regions overlap enrichment of a region-set con-
taining thousands of regions against a set of thousands of datasets in a matter of minutes
rather than hours or even days when using the original LOLA method.

The enrich_regions_fast operation is fast, but it still requires seconds to minutes for
its complete processing of a region-set containing thousands of regions against thirty
thousands of datasets2. Due to this reason, it also uses the process-and-display approach.
Using this approach, rather than executing the operation enrich_regions_fast once with
all available experiments, many executions of enrich_regions_fast are performed, where
the experiments are separated by BioSources or Epigenetic Marks, choosing the one
that provides the lower granularity. It means that DIVE aims to executing more en-
rich_regions_fast operation with a smaller number of experiments in each of these execu-
tions. This choice exploits the DeepBlue Server parallelism, allowing to execute multiple
workflows simultaneously and obtaining new results faster, hence, continually updat-
ing the UI with new results as soon as they are received by DIVE.

Processing the enrichment is the first step of finding the similar BioSources and Epige-
netic Marks. The second step is to use the enrichment results for calculating the similarity
rank of an experiment. The following steps summarize the rank calculation process:

1. Obtain the enrichment results (partial or all)
2. Sort results by the average of the p-value, odds-ratio, and support ranks.3

3. Select the top N% results

2 number of peak experiment datasets annotated with the genome hg19 in the DeepBlue Server
3 Inverting the sort order returns the most dissimilar values.
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4. Group experiments by BioSource and Epigenetic Mark
5. Calculate the average scores for each BioSource and Epigenetic Mark group
6. Sort the group scores
7. Return the scores to the UI and display them to the user

These operations are executed repeatedly after receiving new results and are pro-
cessed in the web browser, immediately updating the UI with the results charts. Fur-
thermore, users can cancel the processing, or change the parameters; for example, the
cut-off value used in the third step for selecting the top n% results. When this parame-
ter is modified, the calculation is executed in the user web browser, displaying the new
results immediately.

7.5 Use cases

To illustrate the usefulness of DIVE for analyzing epigenomic data, here presents three
typical use cases that until now had to be performed programmatically and manually
in epigenetic studies: (i) analyzing the enrichment of chromatin states for finding im-
portant transcription factors in cell pluripotency; (ii) analyzing transcription factors by
overlapping with chromatin states; (iii) comparing data from different consortia.

7.5.1 Analyzing the enrichment of chromatin states for finding important transcription
factors in cell pluripotency

TFs have important roles in the regulation of gene expression. This use case aims at dis-
covering which TFs preferentially co-locate with chromatin states representing strong
enhancer regions.

The use case starts by utilizing the visual interface for visualizing similar data. This
interface gives an overview of the most similar epigenetic marks and BioSources regard-
ing the query region set. In the next step, the enrichment analysis provided by the LOLA
method is used for analyzing the enrichment of the active chromatin state regions us-
ing TF experiments. Using the enrichment results, the most similar and dissimilar TFs,
comparing to the query region set, are selected for performing an overlap analysis using
all selected chromatin states region-sets for double-checking the findings.

For this purpose, this use-case uses the BioSource H1-hESC, which is a cell line derived
from HSCs, and select four chromatin states as region-sets: Strong Enhancers (4)4 as main
query region-set, and Strong Enhancer (5)5, Active Promoters (1), and Poised Enhancers (3)
as comparison region-set. After selecting the region-sets, DIVE performs a fast enrich-
ment analysis for finding similar experiments (Section 7.4.3) for obtaining the similar
epigenetic marks and BioSources.

The Similar epigenetic marks chart (Figure 7.8) shows the epigenetic marks with peaks
most strongly colocalizing with the Strong Enhancer (4) from a H1-hSC sample. The result
supports with the biological literature, with DNA accessibility being the most prominent

4 These number represents the ENCODE chromatin states codes: http://rohsdb.cmb.
usc.edu/GBshape/cgi-bin/hgTables?db=hg19&hgta_group=regulation&hgta_track=
wgEncodeBroadHmm&hgta_table=wgEncodeBroadHmmNhekHMM&hgta_doSchema=describe+table+
schema

5 The states Strong Enhancer (4) and Strong Enhancer (5) are different states

http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgTables?db=hg19&hgta_group=regulation&hgta_track=wgEncodeBroadHmm&hgta_table=wgEncodeBroadHmmNhekHMM&hgta_doSchema=describe+table+schema
http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgTables?db=hg19&hgta_group=regulation&hgta_track=wgEncodeBroadHmm&hgta_table=wgEncodeBroadHmmNhekHMM&hgta_doSchema=describe+table+schema
http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgTables?db=hg19&hgta_group=regulation&hgta_track=wgEncodeBroadHmm&hgta_table=wgEncodeBroadHmmNhekHMM&hgta_doSchema=describe+table+schema
http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgTables?db=hg19&hgta_group=regulation&hgta_track=wgEncodeBroadHmm&hgta_table=wgEncodeBroadHmmNhekHMM&hgta_doSchema=describe+table+schema
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epigenetic information, with other marks and TFs responsible for by controlling the gene
expression and development, such as the TF NIPBL, which plays an important role in
human limbs development (Muto et al. 2014), H3K9/14ac, and the TF CTCF.
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Figure 7.8: Overview on the Strong Enhancer regions of the h1-hSC: this chart shows the
epigenetic marks with peaks most strongly colocalizing with the Strong En-
hancer (4) from a h1-hSC sample. The result supports the biological literature,
with DNA accessibility being the most prominent epigenetic information, with
other marks and TFs responsible for by controlling the gene expression and
development, such as the TF NIPBL, H3K9/14ac, and the TF CTCF.

The fast enrichment analysis for obtaining experiments (Section 7.4.3) is also used for
obtaining the most similar BioSources. The three most similar BioSources regarding the
query region-set are: L1-S8R, which is an induced pluripotent stem cell line, NT2/D1
derived from lung cancer, and pluripotent stem cell that this analysis uses.

The following step consists of performing an enrichment analysis using TFs. TFs
from ENCODE and Chip-Atlas are selected and their enrichment is analyzed in the query
region-sets (Strong Enhancers (4) regions). From this analysis, sorting the results by their
Odds Ratio, the highest ranked TF is POU5F1 that is specifically expressed in ESC and
necessary for pluripotency (G. Shi and Jin 2010). This protein acts together with SOX2
and NANOG (Boyer et al. 2005) that are top ranked in the list of TFs.

The lowest ranked TF is EZH2, which is a TFs involved in transcriptional repression
via methylation of ’Lys-9’ (H3K9me) and ’Lys-27’ (H3K27me) of histone H3 (Kirmizis et
al. 2004), leading to transcriptional repression of the affected target gene.

It is also interesting that the TF FOXP1 is the second lowest ranked TF. It is inter-
esting because FOXP1 may act as a tumor suppressor (Koon et al. 2007), which tumor
suppressors are usually repressed in HSC because they inhibit regenerative capacity by
promoting cell death or senescence in stem cells (Pardal et al. 2005).

The previous enrichment analysis yielded the most common TFs that preferentially
co-locate with active sites in the genome. The next step is to analyze the previously
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selected three states (active, strong enhancer, and poised). First, these states are com-
pared with the TF POU5F1 from the BioSources pluripotent stem cell and H1-hESC (Fig-
ure 7.9). This figure shows that the strong enhancer state overlaps with the largest number
of POU5F1 regions and the repressive poised state overlaps with the smallest number,
which is in line with the current biological knowledge (Boyer et al. 2005; X. Chen et al.
2008).
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Figure 7.9: Overlapping to the chromatin states of POU5F1 of experiment SRX1053369:
this chart shows that the Strong Enhancers (4 and 5) state, both in yellow color,
overlaps with the largest number of POU5F1 regions and the repressive poised
state overlaps with the smallest number, aligning to the current biological
knowledge.

This use case demonstrates how simple it is to perform an enrichment analysis in
DIVE for finding important TFs for the pluripotency in HSC, such as POU5F1, SOX2, and
NANOG. For a deeper understanding, the next use case focuses on analyzing individual
experiment data from these TFs.

7.5.2 Analyzing transcription factors by overlapping with chromatin states

This use case aims at visualizing the differences between stem cell BioSources and other
BioSources regarding chromatin states and TFs partially responsible for pluripotency.

To this end, we select experiments from POU5F1, NANOG, and SOX2, which are TFs
specifically expressed in stem cells and necessary for the pluripotency (Boyer et al. 2005).
In addition, data from EZH2, which is a TF involved in transcriptional repression (Kir-
mizis et al. 2004), and EP300 that is broadly activating in enhancers (Arbel et al. 2019), is
selected. Table 7.1 shows the selected TFs with the respective experiment, the TF func-
tion, and the color which the TF is presented in the following charts. The following
charts presents the TFs bars following the order that they are listed in the following
table.

The analysis consists of overlapping the selected experiments with the chromatin state
Strong Enhancer of the BioSource fibroblast of lung, GM12878, H1-hESC, HepG2, HMEC,
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Transcription Factor Experiment Name Function Bar Color
POU5F1 SRX1053369 pluripotency factor Green
EZH2 SRX317590 transcriptor repressor factor Red
EP300 SRX027482 broadly activated in enhancers Purple
NANOG SRX702041 pluripotency factor Green
SOX2 SRX512370 pluripotency factor Green

Table 7.1: Transcription factors selected for the overlap analysis using chromatin states.
The color code indicated in the last column is used throughout the remainder
of this use case.

Human umbilical vein endothelial cell (HUVEC), K652, and NHEK. Figure 7.10 shows the
results of the overlap operation, where it can be observed that the TF EP300 has the
highest amount of overlaps in all BioSources. But an important finding is that the TFs
responsible for pluripotency is considerably higher in the H1-hESC and EZH2, the tran-
scriptional repressor, is almost zero in the same BioSource.
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Figure 7.10: Overlapping transcription factors with the chromatin state Strong Enhancer:
this chart shows that the TFs responsible for pluripotency have more overlaps
in the chromatin state Strong Enhancer of the H1-hESC than in the HUVEC. It
also shows a small count of overlaps of the transcriptional repressor TF EZH2
in the H1-hESC these chromatin state regions. The author verified that the
high variance of some results is due the low quality of some experiments data
provided by ChIP-Atlas.

A second analysis is made using the chromatin state ehn (from enhancer) that is pro-
vided by ENCODE project. The result presented in Figure 7.11 allows to draw a similar
conclusion. This second analysis contains embryonic stem cell and also induced pluripo-
tent stem cell, both of which show similar behavior, with a larger number of overlaps in
the pluripotency TFs and lowest levels in the transcription repressor. It is interesting to
observe that the BioSource animal ovaries shows a high count in the repressor TF EZH2,
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which is aberrantly overexpressed in ovarian cancer (Wen et al. 2017) and is a target for
ovarian cancer (Jones et al. 2018).
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Figure 7.11: Overlapping transcription factors with the chromatin state Enh (Enhancer
from ENCODE): this chart shows that the TFs responsible for pluripotency
have more overlaps in the chromatin state Strong Enhancer of the embryonic
stemcell and induced pluripotent stem cell than in the other BioSources. It also
shows a low amount of overlaps of the transcription repressor TF EZH2 in
the two previously mentioned BioSources when considering these chromatin
state regions. The author verified that the high variance of some results is due
the low quality of some experiments data included in ChIP-Atlas.

While the previous use case re-identified TFs partly responsible for maintaining the
pluripotency state in stem cells, this use case aimed to visualize the difference of stem
cells to many other different BioSources using chromatin state information. It should be
pointed out that both use cases do not require any programming skills and achieve their
goals with only a few mouse clicks in the DIVE web interface.

7.5.3 Comparing data from different consortia

This use case describes a framework for comparing datasets from different epigenomic
mapping projects. Even that mapping projects follow the standards provided by IHEC,
Section 5.3.4 explained how batch effects can be introduced in the data by wet lab and
data processing procedures. It leads to an important question: how comparable are the
datasets generated by different epigenome mapping projects?.

This use case compares the DNA methylation data from hepatocyte cells from DEEP
and CREST. The comparison of datasets coming from different sources is complicated
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by several challenges: (i) the available data is signal, not peaks; (ii) due to the data res-
olution, some files have more than 6 million data points, which make it prohibitive to
analyze these data in DIVE. For solving these problems, the data is firstly pre-processed
using the DeepBlue API and then loaded into DIVE for visual analysis using CSS data.

Due to these challenges, this use case is composed of two parts: data pre-processing
and a visual analysis using DIVE. The pre-processing uses a Python script for discretiz-
ing and filtering the experiments’ data. Listing A.15 available in Appendix A.3.3 pro-
vides the full source code and complete explanation. In general, this code selects two
experiments from each project (DEEP and CREST), summarize the data in the promoter
regions, and for each experiment, and for each experiment file, it constructs two region-
sets: one containing hypomethylated regions and the other containing hypermethylated
regions. In this use case, hypomethylated are regions which their DNA methylation
level is lower or equal to 15 (from a range of 0 to 100), and hypermethylated regions
have this value equal or higher to 85. In the end of its execution, the script provides
eight query IDs that must be loaded in DIVE.

The script output is6:
41_Hf03_LiHe_Ct_WGBS_S_1.THBv2.20150424.GRCh37.cpg.filtered.CG.bedgraph q7702348 q7702349

41_Hf01_LiHe_Ct_WGBS_S_1.THBv2.20150424.GRCh37.cpg.filtered.CG.bedgraph q7702350 q7702351

HPC8_cpg.rate.bedgraph q7702352 q7702353

HPC28_cpg.rate.bedgraph q7702354 q7702355

The script output contains the name of the four files, two from DEEP and two from
CREST and the respective query IDs. The first query ID after the experiment name refers
to the promoter regions having a DNA methylation level lower than 15 and the second
region references the promoter regions which the DNA methylation level is higher than
85.

The second step of this use case is to load these query IDs into DIVE for analyzing
the data. DIVE allows easy and seamless import from the DeepBlue query IDs. For this
purpose, as shown in Figure 7.12, in the select query step in DIVE, it is possible to load a
DeepBlue query ID. If the user provides the query ID, and presses Display Data and DIVE
shows the workflow referenced by this query ID. After entering the query ID to be loaded,
the user has to click on the button Load Query to load this query into DIVE and use it.

In the previous step, the first of the eight query IDs needed for this analysis is loaded.
The others are loaded in the select comparison region-set step, using the same interface for
selecting data from DeepBlue’s query ID.

Due to the large number of comparison region-sets, it is advisable to select distinct
colors to facilitate interpretation of the generated charts. For changing the colors, click
on the region-sets names and in the panel with the information, click on the box on the
side of the experiment name for choosing its color. In this use case, the following color
coding is used: purple for CREST low methylated, green for DEEP low methylated, red
for CREST high methylated, and yellow for DEEP high methylated.

Figure 7.13 shows the comparison of these region-sets to regions annotated as Tss-
Biv (TSS bivalent regions) (Yen and Kellis 2015) that are regions that may act as repress-
ing or activating epigenetic regulators. Bivalent chromatin domains are commonly as-
sociated with promoters of genes coding for transcription factors expressed at low lev-
els (Bernstein et al. 2006). The main plot shows a strong correlation between the CREST

6 (the query IDs may vary due to changes in the DeepBlue Server)
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Figure 7.12: Loading a DeepBlue query ID into DIVE: DIVE provides an interface for load-
ing DeepBlue queries, showing the workflow referenced by them before load-
ing it.

and DEEP experiments in all three analyzed BioSources: blood, brain, and liver. It is
possible to observe that both lowly methylated promoter region-sets (blue and green
bars) have a larger overlap count and the highly methylated region-sets (red and yel-
low) have a lower count. Showing that DEEP and CREST data have a similar pattern.

Figure 7.14 shows the comparison of the region-sets to the chromatin state enh, which
represents enhancer regions. In this case, the difference of the overlap count between
the liver samples and the other BioSource samples is smaller. But more importantly, it
is possible to observe the correlation between DEEP in this figure. Both projects have a
similar overlap count in lowly and highly methylated region-sets for all observed com-
parisons to the BioSources. This figure also shows another DIVE feature: exporting the
charts as images.

This use case demonstrates the power of connecting the DeepBlue Server API with
DIVE: users can perform data pre-processing, e.g., converting signal data to disjoint
regions using the DeepBlue Server API, and then, visually analyse these regions in DIVE.
It should be pointed out that the DeepBlue Server performed more than 1000 overlap
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Figure 7.13: Comparing CREST and DEEP data: overlapping to TSS bivalent regions: this
chart shows the distinct two region-set groups (low and high DNA methy-
lated regions). It is possible to observe that the low methylated regions have
a higher number of overlaps in the live samples. In addition, the selected data
from DEEP correlates to the selected CREST data.
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Figure 7.14: Comparing CREST and DEEP data: overlapping to enhancer regions: again,
it is possible to observe a distinct difference between the low and high methy-
lated regions and the correlation between the CREST and DEEP region-sets.

operations to generate the data for the previous chart, where each of the eight generated
region-sets were compared to approximately 125 region-sets.

From the data analysis perspective, this use case shows that the analyzed CREST and
DEEP data correlates when overlapping with the selected BioSources. But it shows a
small batch effect, where the CREST samples have very similar results among them and
the DEEP samples likewise, resulting in a slight difference between these two region-
sets groups. In conclusion, these data is comparable for high-level analysis, such as,
overlap counts, but higher attention is required for complex data analyses.

7.6 Conclusion

DIVE is a web application for epigenomic data analysis that allows researchers to an-
alyze datasets by comparing them to the thousands of experiments and annotations
available in the DeepBlue Server.
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The region-sets overlapping in DIVE is inspired by EpiExplorer, but it brings new
functionalities, such as guided data analysis, run-time data processing, fully flexible
queries, dynamic region-sets, multiple samples per BioSources, and multiple region-sets
sources. DIVE also brings data enrichment: one available enrichment method is the im-
plemented LOLA method in the DeepBlue Server. But DIVE also uses a faster method
that is used for guiding users through the data analysis.

DIVE has been used for analyzing hundreds of region-sets. Different use cases (Sec-
tion 7.5), demonstrate its flexibility, and capabilities for analyzing large-scale epige-
nomic data in different scenarios.

DIVE is open source, and its modular source code (Appendix A.2.6) is based on com-
ponents that can be reused to easily extend DIVE’s functionalities. Hence, DIVE is also
a framework for developing tools for large-scale epigenomic data analysis.

Finally, DIVE is a unique tool, which merges the tremendous amount of data provided
by DeepBlue, with its powerful API, in a comprehensive, dynamic, programming-free,
and visual web interface for analyzing large-scale epigenomic data.
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Summary and outlook

IHEC member projects have generated more than 50, 000 epigenomic datasets. Ana-
lyzing all this data is difficult due to limitations in the current methods for searching,
manipulating, and retrieving epigenomic data. The primary objective of the DeepBlue
Epigenomic Data Server ecosystem is to empower researchers by offering easy-to-use tools
for the large-scale analysis of epigenomic data.

The DeepBlue Server has more than 160 registered users1, which were responsible for
5% of all 3, 570, 000 workflow execution processes, where anonymous users executed the
remaining. The DeepBlue community is growing, with more than 15 new users in 2019.
During 2019, a year which its development was not highly active, more than 120, 000
workflow executions were performed (8, 000 by registered users and 112, 000 by anony-
mous users).

The DeepBlue Epigenomic Data Server ecosystem consists of the following components:

DeepBlue Server main components, responsible for storing and handling the
(epi)genomic data and its metadata, and for processing user re-
quests (Section 4.2).

DeepBlue Populator imports the metadata entities content and (epi)genomic data to
the DeepBlue Server (Section 4.4).

DeepBlueR R package that streamlines communication between the Deep-
Blue Server and the R/Bioconductor environment (Chapter 5).

DeepBlue Web Portal web portal for searching and accessing the data provided by the
DeepBlue Server (Chapter 6).

DIVE web tool for analyzing epigenomic data (Chapter 7).
DeepBlue Middleware intermediate component realizing the data exchange between

DeepBlue Web Portal/DIVE and the DeepBlue Server (Sec-
tion A.2.5).

Each of the listed components has a defined functionality that covers loading the data
into the server, answering user requests, connecting the data with existing tools and
libraries, and providing intuitive interfaces for data searching, download, and analysis.

The goal of such a complete ecosystem is to empower researchers with various back-
grounds to perform a wide range of analysis tasks. Specifically, the DeepBlue Epigenomic
Data Server ecosystem targets the following user groups:

Software developers can use the DeepBlue Server API for developing or extending their
own epigenomic data analysis tools. Examples include, deepTools (Ramı́rez et al. 2016)
and the BLUEPRINT Data Analysis Portal (J. M. Fernández et al. 2016). In addition,

1 The usage information presented here was obtained on June 20th, 2019

147
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DIVE’s code base is strictly organized by components, which facilitates developers to
easily extend its functionalities or use its components in other projects.

Experienced data analysts can use the DeepBlue Server API directly or through the Deep-
BlueR package for performing complex (epi)genomic data analysis. They can perform
data aggregation or enrichment directly on the server and connect these results to the
existing data analysis tools using programming languages such as Python and R.

Biomedical researchers can use DIVE for analyzing their epigenomic data in an intuitive
and programming-free environment. They can upload their data and compare it to
thousands of (epi)genomic experiments and annotations.

The conception and development of the DeepBlue Epigenomic Data Server ecosystem
along with multiple completed (epi)genomic data analysis brought a better understand-
ing about the needs and requirements in large-scale epigenomic data analysis that is
used here for answering the three goals stated in Section 1.1:

• Organize the public epigenomic data such that researchers can answer their questions more
easily

The proposed solution is to organize the public data with a minimum of manda-
tory metadata, complemented by optional values that contain information pro-
vided by specific epigenome mapping projects. Both mandatory and optional
metadata must be indexed, for direct and full-text access, and available through
simple operations or by an intuitive web interface.

• Provide means for finding, operating, and analyzing the existing and currently generated
epigenomic data in such a way that matches the current pace of epigenomic data generation

From the user viewpoint, this objective has been realized by implementing an API
that can access multiple files and supports selecting regions of interest from these
files in a straightforward set of operations. From the infrastructure perspective,
the system must be able to start new instances on demand and the data must be
deposited in a scalable database.

• Empower researchers with methods and techniques for performing large-scale epigenomic
data analysis

This work provides tools for different user profiles and environments. For ex-
ample, R/Bioconductor for users with programming skills and web interfaces for
biomedical researchers that need a non-programmatic way of accessing and ana-
lyzing the data. Furthermore, these tools cope with the large-data volume, focus-
ing on the global data analysis rather than specific genomic locations.

Coping with the open challenges in large-scale epigenomic data analysis

The DeepBlue Epigenomic Data Server and its ecosystem were developed to cope with the
existing challenges in the large-scale epigenomic data analysis presented in Chapter 3.5,
each of these challenges is addressed in the following paragraphs.
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The DeepBlue Server provides a unified searching mechanism for the data and meta-
data generated by the IHEC member projects’, and integrates the epigenomic data
and metadata of such projects. It allows users to search for the epigenomic data in a sin-
gle location using standardized operations and metadata content. Furthermore, a web
portal is provided facilitating searching and downloading such data.

The DeepBlue Server also provides methods for filtering and transforming the data
before being downloaded. Users can access this server directly by its API or through
its R/Bioconductor package in their personal computer for investigating the epigenomic
data in environments with limited resources.

The DeepBlue Server has been developed to be scalable and cloud-ready. It can handle
and provide (epi)genomic data in configurable formats and it handles heterogeneous
different data allowing users to specify which columns to be included in the output, as
well, to inform the file format when uploading it. Its API allows to access, manipulate,
and analyze data from regions of the whole genome, not being fixed to gene or or other
pre-specified locations. Users define which regions are interesting for their search.

DIVE is a tool for analyzing epigenomic data in a programming-free environment
with a user-friendly interface. In this way, the DeepBlue Epigenomic Data Server ecosys-
tem copes with the amount of generated epigenomic data, not only in finding and
manipulating but also for visualizing and analyzing it.

Existing workflows for epigenomic data processing and analysis are inflexible. Re-
searchers are usually interested in only a specific portion of the epigenomic data for their
research. Complex scripts implement these workflows, lacking flexibility for adapting
them for the new epigenomic questions. In the current epigenomic studies, new re-
search questions are being addressed, thus, it is not possible to depend on a system
with static and pre-processed data. DeepBlue Server changes this landscape by provid-
ing a flexible API integrated into a vast collection of (epi)genomic data and metadata.
With this flexible API, users can learn to access and build workflows for searching, ma-
nipulating, enriching, and retrieving terabytes of epigenomic data. For researchers that
do not have programming knowledge, the DeepBlue Epigenomic Data Server ecosystem of-
fers DIVE, which, besides providing a data analysis portal, can also be used for building
data filtering workflows in a graphical user interface environment.

With all the characteristics and features presented previously, the DeepBlue Epige-
nomic Data Server ecosystem is setting the state of the art for large-scale epigenomic data
analysis.

8.1 Outlook

To stabilized the DeepBlue Ecosystem as a long term resource, it was installed in the Ger-
man Network for Bioinformatics Infrastructure (de.NBI) infrastructure. DeepBlue is offered
to IHEC and it is under scrutiny by this consortia.

Single-cell data analysis has the potential of redefining the (epi)genomic data analy-
sis landscape. It is imperative to be prepared for a dramatic increase in the amount of
epigenomic data and new types of entities, such as aggregations of hundreds of cells.
Large-scale epigenomic data analysis of today will be the routine analysis in the near fu-
ture, pushing the limits of tools and methods development even further. Consequently,
it is even more important to have powerful resources that cope with this data increase,



150 8 SUMMARY AND OUTLOOK

and for analyzing all of these data, the DeepBlue Epigenomic Data Server requires the fol-
lowing improvements:

• The DeepBlue Server can distribute workflow requests over several cluster in-
stances. But the processing of the individual workflows happen in a single server
instance. Hence, its processing parallelization must be able to distribute the pro-
cessing of internal requests for coping with the increasing size of the epigenomic
data.

• The required (epi)genomic regions are loaded at the beginning of the workflow
processing, consuming memory and preventing the analysis of arbitrarily large
epigenomic datasets due to memory limitations. A required approach is to use
data iterators that provide the data for processing by the DeepBlue Server on de-
mand.

• The quality of data provided by the DeepBlue Server depends directly on the data
imported by the Populator. It is desirable to have a manual or programmatic data
curation step. Ideally, this step should remove low-quality datasets, as well, anno-
tate the experiments columns, and fix and organize sample information, such as
their BioSources names. The usage of ontologies was a significant step towards a
better sample annotation, but more manual work is required.

• The GO terms are imported without the hierarchy, but more complex data selec-
tion and analysis can benefit from the use of hierarchy similarly to BioSources.

• Converting region-sets from different genome versions is useful for combining
data from various projects. DeepBlueR uses an external library for providing such
functionality locally, but it is desirable to have such a feature embedded in the
DeepBlue Server.

• Implementing downstream analysis methods in the DeepBlue Server such as clus-
tering and also imputation methods for improving the support in single cell epige-
nomic data.

• The DeepBlueR package does not implement the methods for storing user data in
the DeepBlue Server. It could be interesting to have this feature, such that users can
easily save their analysis results and other datasets in private spaces. Allowing
users to perform analysis using their data for comparison, and also sharing it with
collaborators.

• DIVE has been developed with extensibility in mind. However, DIVE still lacks
functionalities such as loading DNA sequences in both strands efficiently or per-
forming overlap analysis by genomic regions based on DNA motifs. Besides, cur-
rently the data comparison process executed by the user is performed by choos-
ing an epigenetic mark and then the BioSources. It is useful to be able to choose
the BioSources and then its epigenetic marks for performing the overlap analysis.
Thus, facilitating the analysis that requires comparing different histone marks or
chromatin states.

• It is desirable to support other data types, such as Variant Call Format (VCF) data for
handling Single Nucleotide Polymorphism (SNP) information. Furthermore, connect-
ing these new data content with changes in the epigenomic data of the same sam-
ple, and the consequences of these changes on the gene expression levels, would
culminate in supporting the Genotype-Tissue Expression (GTEx) data.
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• Currently, the DeepBlue Epigenomic Data Server is hosted at the Max Planck Insti-
tute for Informatics, with future installation planned in the de.NBI infrastructure.
For easy scalability and data sharing among users, it would be helpful to have it
installed in an external cloud computing system, where new DeepBlue Servers can
be started on demand, and also the infrastructure costs be shared among its users.
An approach for facilitating the installation of the DeepBlue Server in different lo-
cations and the cloud is to provide self-contained containers for virtualization sys-
tems such as Docker2, Singularity3, and Kubernetes4.

These improvements should not be seen as weak points in the DeepBlue Epigenomic
Data Server and its ecosystem, but as opportunities of providing better support in the
field of computational epigenetics, where better and more robust methods and tools are
required for the ever-growing epigenomic data deluge.

2 https://www.docker.com
3 https://singularity.lbl.gov/
4 https://kubernetes.io

https://www.docker.com
https://singularity.lbl.gov/
https://kubernetes.io
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Glossaries

List of Abbreviations

3C Chromosome Conformation Capture
450K Illumina Infinium HumanMethylation450 BeadChip
4C Circularized Chromosome Conformation Capture
5C Carbon-Copy Chromosome Conformation Capture

ATAC-seq Assay for Transposase-Accessible Chromatin using
Sequencing

AUC Area under Curve

BAM Binary Alignment/Map
BED Browser Extensible Data
BMBF German Federal Ministry of Education and

Research (Bundesministerium für Bildung und
Forschung)

bp basepair

cDNA complementary DNA
CEEHRC Canadian Epigenetics Environment and Health Research

Consortium
ChIP Chromatin Immunoprecipitation
ChIP-seq Chromatin Immunoprecipitation-Sequencing
chr Chromosome
CL Cell Type Ontology
CRF chromatin-remodeling factor
CSS Chromatin State Segmentation

DDBJ DNA Data Bank of Japan
de.NBI German Network for Bioinformatics Infrastructure
DEEP Deutsches Epigenom Programm
DMR Differentially Methylated Region
DNaseI-seq DNaseI-Sequencing

EFO Experimental Factor Ontology
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EGA European Genome-phenome Archive
ENA European Nucleotide Archive
ENCODE The Encyclopedia of DNA Elements
EpiRR The Epigenome Reference Registry
eRNA Enhancer RNA
ESC embryonic stem cell
EWAS Epigenome-Wide Association Study

FAIRE-seq formaldehyde-assisted isolation of regulatory elements
FPKM fragments per kilobase of transcript per million mapped

reads

GEO Gene Expression Omnibus
GO Gene Ontology
GTEx Genotype-Tissue Expression

HMM Hidden Markov Model
HSC Homatopoietic Stem Cell
HUVEC Human umbilical vein endothelial cell

ICGC International Cancer Genome Consortium
IHEC International Human Epigenome Consortium
iPSC Induced Pluripotent Stem Cell

JIT just-in-time

LIMS Laboratory Information Management System
LMR Low-Methylated Region
lncRNA Long Non-Coding RNA
LOLA Locus Overlap Enrichment Analysis
LRU least recently used

MeDIP-seq Methylated DNA Immunoprecipitation Sequencing
miRNA Micro RNA
MNase-seq Micrococcal Nuclease Sequencing
MRE methylation-sensitive restriction enzyme digestion
mRNA Messenger RNA
µWGBS Low-input Whole Genome Bisulfite Sequencing

NCBI National Center for Biotechnology Information
ncRNA Non-Coding RNA
NGS Next Generation Sequencing
NOMe-seq Nucleosome Occupancy and Methylome-Sequencing
nt Nucleotide

OWL Web Ontology Language
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PCA Principal Component Analysis
PCR Polymerase Chain Reaction

QC Quality Control

REMC NIH Roadmap Epigenomics Mapping Consortium
RNA-seq RNA-sequencing
RNAi RNA Interference
RNAPII RNA polymerase II
RPC Remote Procedure Call
RRBS Reduced Representation Bisulfite Sequencing

scWGBS Single-Cell Whole Genome Bisulfite Sequencing
siRNA Small Interfering RNA
snoRNA Small Nucleolar RNA
SNP Single Nucleotide Polymorphism
SRA Sequence Read Archives
SVA Surrogate Variable Analysis
SVM Support Vector Machine

TCA Transcription Coactivator
TCGA The Cancer Genome Atlas
TE transposable Element
TF transcription factor
TFBS Transcription Factor Binding Site
TPM transcript per million
TSS Transcription Start Site

UBERON Uber Anatomy Ontology
UI User Interface
UMR Unmethylated Region
URL Uniform Resource Locator

VCF Variant Call Format

WGBS Whole Genome Bisulfite Sequencing
WGSBS Whole genome shotgun bisulfite sequencing
WIG Wiggle Track Format
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Glossary

API
An Application Programming Interface “provides an abstraction for a problem
and specifies how clients should interact with the software components that im-
plement a solution to that problem” (Reddy 2011).

BED
BED (Browser Extensible Data) is a data format that provides a flexible way to de-
fine the (epi)genomic data. BED files are based on columns, having three required
fields (chromosome,start,and end) and additional optional fields. The number of
fields per line must be consistent accross the entire file.

bedGraph
The bedGraph format allows display of continuous-valued data in track format.
This track type is similar to the WIG format, but unlike the WIG format, data ex-
ported in the bedGraph format are preserved in their original state.

bigBed
A BigBed file is created initially from BED type files. The resulting bigBed files are
in an indexed binary format.

biomarker
A biomarker is a measurable (molecular) indicator for a given (disease) condition
or state.

BioSource
A BioSource defines the biological source of a sample. The biological source can
be a cell line, a cell type, tissue, or organ.

bitmap
A bitmap is a vector of bits, where the values are in the form of true or false. One of
the main advantages of bitmaps is lower memory and disk space consumed and
fast computational operations in its content.

BSON
BSON is a bin ary-en coded seri al iz a tion of JSON-like doc u ments. Like JSON,
BSON sup ports the em bed ding of doc u ments and ar rays with in oth er doc u ments
and ar rays (http://bsonspec.org/). In BSON, the documents are bin ary-
en coded, improving its used memory and disk space, as well, the access to the
data content.

CpG
The CpG is a DNA dinucleotide consisting of cytosine followed by guanine, linked
by phosphate.

CpG island
A CpG island is a a genomic region particularly rich in CpG dinucleotides. Multi-
ple alternative definitions and algorithms for defining them exist. The most widely
used definition was introduced by Gardiner-Garden and Frommer 1987.

http://bsonspec.org/
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dictionary
A dictionary, or associative array, map, hash table, is an abstract data type com-
posed of a collection of key and value pairs, such that each possible key appears
at most once in the collection.

DNaseI hypersensitive site
DNaseI hypersensitive site is an accessible genomic region frequently cleaved by
DNaseI nucleases. Typically indicates open chromatin and low nucleosome occu-
pancy.

enhancer
Enhancer is a genomic region containing TFBSs located distal or proximal to gene
promoters involved in transcriptional activation. Active enhancers are typically
characterized by the presence of H3K4me1, H3K4me2, H3K27ac, DNaseI hyper-
sensitivity and p300 occupancy (Ong and Corces 2011).

epigenetic mark
An epigenetic mark is a chromatin modifications such as DNA methylation and
histone post-translation modifications that influentiate the cell’s gene expression
and its phenotype.

FASTA
FASTA format is a text-based format for representing either nucleotide sequences
or peptide sequences, in which nucleotides or amino acids are represented using
single-letter codes. The format also allows for sequence names and comments to
precede the sequences.

gene-model
A gene-model is a set of genes imported from a GENCODE Harrow et al. 2012;
Derrien et al. 2012 release, for example, GENCODE v19.

GTF
GTF/GFF (General Feature Format) format consists of one line per feature, each
containing 9 columns of data, plus optional track definition lines (https://www.
ensembl.org/info/website/upload/gff.html).

haematopoiesis
Haematopoiesis is the Process by which all mature blood cells are produced.

hypermethylated
A hypermethylated region is region which contains a higher DNA methylation
level in a given condition compared to a reference condition.

hypomethylated
A hypomethylated region is region which contains a lower DNA methylation level
in a given condition compared to a reference condition.

index
An index is a data structure that organizes the data that can be searchable effi-
ciently.

https://www.ensembl.org/info/website/upload/gff.html
https://www.ensembl.org/info/website/upload/gff.html
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JSON
JavaScript Object Notation or JSON is an open-standard file format that uses
human-readable text to transmit data objects consisting of attribute‒value pairs
and array data types (or any other serializable value).

Lua
Lua is a powerful, dynamic and light-weight programming language. It may be
embedded or used as a general-purpose, stand-alone language.

LuaJIT
LuaJIT is a Just-In-Time Compiler (JIT) for the Lua programming language. It is
an open-source project and it is available at http://luajit.org/.

LZO
Lempel‒Ziv‒Oberhumer (LZO) is a lossless data compression algorithm that
is focused on decompression speed developed (http://www.oberhumer.com/
opensource/lzo).

meta-field
Meta-fields are pseudo data columns that do not provide access to the
(epi)genomic data column, but to its metadata content, such experiment name or
biosource. Using them, it is also possible to execute a command in the context of
the individual genomic region, rather than in the set of the regions. The Table 4.5.5
shows all meta-fields present in the DeepBlue Server.

peak
A peak is a discrete region in the genome, defined by the chromosome, start, and
end. Peaks are used to annotate genome regions, for example, CpG Islands, his-
tone modification locations, open chromatin, transcription factors biding site, and
genes.

populator
The populator is a tool for including metadata and data into DeepBlue.

promoter
A promoter is a genomic region located near the TSS to which the transcriptional
machinery is recruited. Typically defined to extend from a few kilobases upstream
of the TSS to a few hundred bases downstream of the TSS.

region
Region is the central data structure for organizing the (epi)genomic data in the
DeepBlue Server. It contains the region start, end, and additional optional fields.
Regions are organized in lists, where each lists contains the regions of a given
chromosome.

regular expression
A regular expression or regex is a formal language that define a search pattern.
Usually this pattern is then used by string searching algorithms.

signal
Signal is a set of continuously genomic locations that are used for annotating the
genome. Signal data is used with histone modifications, open chromatin, and
Transcription factors biding sites.

http://luajit.org/
http://www.oberhumer.com/opensource/lzo
http://www.oberhumer.com/opensource/lzo
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user_key
A user_key is private key that is used by a user for accessing DeepBlue.

WIG
The bigWig is a data format useful for dense and continuous data. BigWig files
are created from WIG type files. The bigWig files are in an indexed binary format.

WIG
The wiggle (WIG) format is a data format for storing and displaying dense, contin-
uous, and equally sized (epi)genomic data. Wiggle data must be continuous and
consist of equally sized elements. If your data is sparse or contains elements of
varying sizes, use the bedGraph format instead of the wiggle format.

XML-RPC
XML-RPC is a Remote Procedure Call method that uses XML passed via HTTP
as a transport. Its specification is available at http://xmlrpc.scripting.com/
spec.html.

http://xmlrpc.scripting.com/spec.html
http://xmlrpc.scripting.com/spec.html
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A.1 Data imported by the DeepBlue Server

This section gives an overview of the data available in the DeepBlue Server. For more
specific questions, it is suggested to access the DeepBlue Web Portal(http://deepblue.
mpi-inf.mpg.de).

Table A.1 contains the genome assemblies available in the DeepBlue Server.

Genome URL
hg19 http://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19
mm9 http://genome.ucsc.edu/cgi-bin/hgGateway?db=mm9
mm10 http://genome.ucsc.edu/cgi-bin/hgGateway?db=mm10
hs37d5 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
GRCm38 http://www.ensembl.org/Mus_musculus/Info/Index

Table A.1: Genome assemblies available in the DeepBlue Server.

Table A.2 contains the gene models available in the DeepBlue Server.

Gene Model URL
hg19 http://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19
mm9 http://genome.ucsc.edu/cgi-bin/hgGateway?db=mm9
mm10 http://genome.ucsc.edu/cgi-bin/hgGateway?db=mm10
hs37d5 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
GRCm38 http://www.ensembl.org/Mus_musculus/Info/Index

Table A.2: Gene models available in the DeepBlue Server.

Table A.3 presents the number of experiment files imported into the DeepBlue Server.
With the exception of DEEP (Private), this data is available for all users, totaling 58402
publicly available experiment files.

Project Number of files Project URL
DEEP (Private) 4073 www.deutsches-epigenom-programm.de/
DEEP (from IHEC data portal) 341 www.deutsches-epigenom-programm.de/
BLUEPRINT Epigenome 5975 www.blueprint-epigenome.eu
ENCODE 28484 www.encodeproject.orgXXX
REMC 5633 www.roadmapepigenomics.org
CREST 299 crest-ihec.jp
CEEHRC 2696 www.epigenomes.ca
ChIP-Atlas 14974 chip-atlas.org

Table A.3: Experiment files available in the DeepBlue Server.

161

http://deepblue.mpi-inf.mpg.de
http://deepblue.mpi-inf.mpg.de
http://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19
http://genome.ucsc.edu/cgi-bin/hgGateway?db=mm9
http://genome.ucsc.edu/cgi-bin/hgGateway?db=mm10
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http://www.ensembl.org/Mus_musculus/Info/Index
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crest-ihec.jp
www.epigenomes.ca
chip-atlas.org
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Table A.4 presents the annotations available in the DeepBlue Server with their respec-
tive genome. Gene and promoter annotations can be obtained from the gene-models,
but their files are kept in the annotations for backward compatibility with scripts that
were developed before this feature was implemented.

Annotation Genome
repeat_masker hg19
Cpg Islands hg19
Genes hg19
Promoters hg19
Probes450k hg19
lamin_b1 hg19
conservation_primates hg19
conservation_placental hg19
RepeatFree_1kb_autosomes mm10
RepeatMasked_1kb_autosomes mm10
gene_protcod_3kbprom_autosomes mm10
gene_protcod_full_autosomes mm10
transcripts_protcod_3kbprom_autosomes mm10
transcripts_lincRNA_full_autosomes mm10
transcripts_miRNA_full_autosomes mm10
transcripts_snRNA_full_autosomes mm10
transcripts_snoRNA_full_autosomes mm10
Blueprint Ensembl Regulatory Build GRCh38
CpG Islands GRCh38
Promoters GRCh38

Table A.4: Experiment files available in the DeepBlue Server.

Table A.5 presents the imported ontologies used for naming the BioSources.

Ontology Description URL Date/Version

CL
Controlled vocabulary

for cell types in
animals

http://www.ontobee.org/ontology/CL 2016-02-01

EFO

Systematic description
of many experimental

variables available
in EBI databases

https://www.ebi.ac.uk/efo/ version 2.72

UBERON

Integrated cross-species
anatomy ontology
covering animals

and bridging multiple
species-specific ontologies

http://uberon.github.io/ 2016-05-11

Table A.5: Experiment files available in the DeepBlue Server.

Table A.6, Table A.7, and Table A.8 provide the list of chromatin states provided by
REMC, BLUEPRINT, and ENCODE CSS files.

The histone mark names are imported from HIstome database (Khare et al. 2011) and
other epigenomic targets are imported from the targets page of the ENCODE Search
(https://www.encodeproject.org/targets/).

https://www.encodeproject.org/targets/
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State No. Mnemonic Description
1 TssA Active TSS
2 TssAFlnk Flanking Active TSS
3 TxFlnk Transcr. at gene 5’ and 3’
4 Tx Strong transcription
5 TxWk Weak transcription
6 EnhG Genic enhancers
7 Enh Enhancers
8 ZNF/Rpts ZNF genes & repeats
9 Het Heterochromatin
10 TssBiv Bivalent/Poised TSS
11 BivFlnk Flanking Bivalent TSS/Enh
12 EnhBiv Bivalent Enhancer
13 ReprPC Repressed PolyComb
14 ReprPCWk Weak Repressed PolyComb
15 Quies Quiescent/Low

Table A.6: Chromatin States used in the ROADMAP project for the genome hg19. Source:
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.
html.

State No. Description
1 Repressed Polycomb High signal H3K27me3
2 Repressed Polycomb Low signal H3K27me3
3 Low signal
4 Heterochromatin High Signal H3K9me3
5 Transcription High signal H3K36me3
6 Transcription Low signal H3K36me3
7 Genic Enhancer High Signal H3K4me1 & H3K36me3
8 Enhancer High Signal H3K4me1
9 Active Enhancer High Signal H3K4me1 & H3K27Ac
10 Distal Active Promoter (2Kb) High Signal H3K4me3 & H3K27Ac & e1
11 Active TSS High Signal H3K4me3 & H3K4me1
12 Active TSS High Signal H3K4me3 & H3K27Ac

Table A.7: Chromatin States used in the BLUEPRINT project for the genome GRCh38.
Source: http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/
20140811/homo_sapiens/secondary_analysis/Segmentation_of_
ChIP-Seq_data/README_ChromHmm_release_20140811.

A.2 Implementation details

This section provides insights on the DeepBlue Server API implementation. The entire
DeepBlue Epigenomic Data Server ecosystem source is open and free to use, under the GPL
3 (GNU General Public License version 3) restrictions. The following sections presents
the main parts, methods, and source code of the DeeBlue Epigenomic Data Server ecosys-
tem, where the source code is available in the following repositories:
Server https://github.com/MPIIComputationalEpigenetics/DeepBlue
Populator https://github.com/MPIIComputationalEpigenetics/DeepBlue-Populator
Middleware https://github.com/MPIIComputationalEpigenetics/DeepBlue-Middleware
Web Dashboard https://github.com/MPIIComputationalEpigenetics/DeepBlue-Web
Dive https://github.com/MPIIComputationalEpigenetics/Dive

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/20140811/homo_sapiens/secondary_analysis/Segmentation_of_ChIP-Seq_data/README_ChromHmm_release_20140811
http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/20140811/homo_sapiens/secondary_analysis/Segmentation_of_ChIP-Seq_data/README_ChromHmm_release_20140811
http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/20140811/homo_sapiens/secondary_analysis/Segmentation_of_ChIP-Seq_data/README_ChromHmm_release_20140811
https://github.com/MPIIComputationalEpigenetics/DeepBlue
https://github.com/MPIIComputationalEpigenetics/DeepBlue-Populator
https://github.com/MPIIComputationalEpigenetics/DeepBlue-Middleware
https://github.com/MPIIComputationalEpigenetics/DeepBlue-Web
https://github.com/MPIIComputationalEpigenetics/Dive
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State No. Description
1 Active Promoter
2 Weak Promoter
3 Inactive/poised Promoter
4 Strong enhancer
5 Strong enhancer
6 Weak/poised enhancer
7 Weak/poised enhancer
8 Insulator
9 Transcriptional transition
10 Transcriptional elongation
11 Weak transcribed
12 Polycomb-repressed
13 Heterochromatin; low signal
14 Repetitive/Copy Number Variation
15 Repetitive/Copy Number Variation

Table A.8: Chromatin States used in the ENCODE project for the genome hg19. Source:
http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgTrackUi?db=hg19&
g=wgEncodeBroadHmm.

R Package http://bioconductor.org/packages/release/bioc/html/DeepBlueR.
html

A.2.1 DeepBlue Server

The DeepBlue Server is implemented in C/C++11, having around 51, 000 lines of code. To
ensure its quality, the DeepBlue Server has 251 integration tests implemented in Python.
Each integration tests performs a set of operations in the DeepBlue Server and its result
is compared to the expected output. The DeepBlue Server uses the following libraries:

• MonbgoDB cxx driver legacy (1.1.2) for accessing the MongoDB server - github.
com/mongodb/mongo-cxx-driver/archive/legacy-1.1.2.zip

• Boost C++ libraries provides miscellaneous support, such as the network connec-
tion and data interface compression - www.boost.org

• Expat XML Parser for reading the XML content from the XML-RPC requests -
libexpat.github.io

• Bzip2 for high compression rates used to store fast enrichment bitmap regions -
sourceforge.net/projects/bzip2/

• minilzo for real-time compressing and loading regions blocks from the database
- www.oberhumer.com/opensource/lzo/

• cppformat for formating strings - github.com/cppformat/cppformat
• LuaJIT provides the Lua embedded environment - luajit.org/
• StrTk for tokenizing string, used in the files readers - www.partow.net/
programming/strtk/

• jemalloc for memory allocation - github.com/jemalloc/jemalloc
• urdl for accessing external URLs - think-async.com/Urdl/doc/html/index.
html

• MDBQ is highly adapted for the DeepBlue Server needs - github.com/
temporaer/MDBQ

http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHmm
http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHmm
http://bioconductor.org/packages/release/bioc/html/DeepBlueR.html
http://bioconductor.org/packages/release/bioc/html/DeepBlueR.html
github.com/mongodb/mongo-cxx-driver/archive/legacy-1.1.2.zip
github.com/mongodb/mongo-cxx-driver/archive/legacy-1.1.2.zip
www.boost.org
libexpat.github.io
sourceforge.net/projects/bzip2/
www.oberhumer.com/opensource/lzo/
github.com/cppformat/cppformat
luajit.org/
www.partow.net/programming/strtk/
www.partow.net/programming/strtk/
github.com/jemalloc/jemalloc
think-async.com/Urdl/doc/html/index.html
think-async.com/Urdl/doc/html/index.html
github.com/temporaer/MDBQ
github.com/temporaer/MDBQ
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The DeepBlue Server uses the MongoDB version 3.2. It is recommended to not use
version 3.4 or later, because they are not compatible with the MongoDB C++ Driver
(Legacy version 1.1.2) that it is used.

Data layers

For organizing the (epi)genomic data collection, the DeepBlue Server organizes its entire
data content, not only (epi)genomic data, into four layers:

Relationships contains the controlled vocabularies with the terms used in the metadata.
Metadata describes the data.
Data contains the regions and are annotated by the metadata.
Genomic Regions compose the data. They are the regions that are operated by the oper-

ations and returned to users.

This data division has proven very useful and flexible. For example, it easily enables
obtaining the genomic locations that contain information from a given relationship, for
example, a gene ontology term or the DNA methylation from a biosource. It also allows
for building more complex relationships, for example, to map gene expression files to
genomic locations using a gene model. Figure A.1 shows the four data layers with their
components.

(Epi-)genomic elements
Regions of interest with information

Gene Model
Gencode 21, Gencode v22

Epigenomic Experiments
ChIP-seq, NoME, WGBS, RRBS

Gene OntologyBioSource 
Ontologies Genome assemblyControlled 

vocabularies

Genomic Annotations
CpG Islands, Repetitive elements, DNA motifs

Genes
NPTN, NOX4

Metadata

Data

Location Genomic Regions 
chromosome, start, end

Relationship

Gene Expression
Quantification

Figure A.1: DeepBlue Server Data Layer: DeepBlue has 4 layers of data: Relationships,
Metadata, Data, and Genomic Regions. From bottom to up: The Genomic Re-
gions compose the data that is described by the metadata using the relation-
ship items.

Due to this data division, it is possible to combine information from different types of
data for answering users’ queries. Figure A.2 shows how the DeepBlue Server integrate
data from different layers to answer the hypothetical question that select all genes that
match que following criteria:

• Chromosome 1, from the genomic location 0 to 70, 000
• Annotated with a GO term, for example, a biological process that we want to ana-

lyze
• Overlap with some ChIP-seq peaks, like a TFBS
• Highly methylated regions, with an average DNA ,methylation level above 0.80

The data integration and operations are possible because ultimately all data are trans-
lated to regions, which are the central data structure in the DeepBlue Server.
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Figure A.2: DeepBlue Server integrates heterogeneous data for answering users’ queries,
for example, the hypothetical question that select all genes that match que fol-
lowing criteria: (a) Chromosome 1, in the genomic location 0 to 70, 000; (b)
Annotated with a GO term, for example, a biological process that we want to
analyze; (c) overlap with some ChIP-seq peaks, like a Transcription factor bind-
ing sites; (d) average DNA methylation level > 0.80, it means, regions highly
methylated. In this case, returning the hypothetical gene IV.

Regions

Regions are the most important data structure in the DeepBlue Server. They are imple-
mented via the AbstractRegion interface and extended for special cases in file datatype-
s/regions.hpp.

The most frequently used implementation classes are SimpleRegion for regions con-
taining only the dataset ID, chromosome, start, and end; BedRegion for all BED regions,
WigRegion for all WIG regions, GeneRegion for the genes, and AggregateRegion for aggre-
gation results.

It is important to note that Region instances are responsible for to the most significant
part of the memory used by the DeepBlue Server, making it imperative that they are opti-
mized for reducing their memory consumption. Hence, their different implementation
allows for tuning their structure and methods in the for faster data access and lower
memory consumption.

The DeepBlue Server loads all regions used by a workflow during the beginning of the
workflow execution. Thus, if a workflow loads a set of regions followed by a filtering op-
eration, the DeepBlue Server loads all regions from the MongoDB and then, the DeepBlue
Server applies the filter on them. The loading process is executed in parallel, divided
by the region genome and chromosome, requiring many small memory allocations, one
for each region. For the memory allocation and management tasks, the DeepBlue Server
uses the library jemalloc that coordinates the memory allocation, improving the regions
loading time as well as decreasing the memory fragmentation and consequently, the
total memory use.

An essential future improvement in the DeepBlue Server lies in replacing the näive
approach of loading all the regions at the beginning of the workflow execution by an
iterator that loads these regions on demand. It is possible but requires notable changes
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in the DeepBlue Server implementation, demanding significant software engineering ef-
forts.

DeepBlue operation execution

This section describes how the DeepBlue Server receives an operation execution request
from the user, how it is processed, and returned, with the central classes involved in the
process.

When the DeepBlue Server is executed, it starts (main.cpp) an HTTP server
(httpd/server.cpp) that listens for users requests on the configured port (defined by the
command line parameter -P/–port). When a user sends a request, the server instan-
tiates a Connection object (httpd/connection.hpp) that is responsible for reading the data
from the socket, reading the HTTP headers (httpd/request_parser.cpp), and parsing the
request parameters that are encapsulated in an XML (httpd/xmlrpc_parser.cpp) content.

The DeepBlue Server XML parser instantiates an XmlrpcRequest (httpd/xmlrpc_request.hpp)
object. This object contains the operation request parameters: operation name and its
parameters. The XmlrpcRequestHandler (httpd/xmlrpc_request.cpp) deliver XmlrpcRequest
object to the Processing Engine (engine/engine.hpp) that executes the operation.

The Processing Engine (engine/engine.cpp) obtains the operation name and parameters
from the XmlrpcRequest object. First, it verifies if an operation with the given name exists.
Next, it verifies if the user request contains the correct parameters. An error is returned
if any of the verifications fail, otherwise, the Processing Engine executes the class which
implements the operation.

The DeepBlue Server operation implementations are located in the commands/ directory,
where each operation is implemented in its own source code file. All operations inherit
the class Command (engine/commands.cpp). The operation description, input parameters,
and return types are defined in the own operation implementation class. The operation
logic is implemented in the run() method, which receives the operation parameters and
an object for storing its results. The run() method returns true when the operation was
successfully executed, otherwise it returns false and an error message is inserted in the
result object.

Finally, the XmlrpcRequestHandler (httpd/xmlrpc_request.cpp) verifies the result content,
and return a XML containing the serialized result. The content is returned to the user
by the Connection object and the connection is closed.

Start-up parameters

It is possible to obtain all DeepBlue Server start-up parameters by executing the software
with the parameter –help or -H. The essential parameters are:
-T/–threads : how many threads the XML-RPC server has in this DeepBlue Server instance.

The default value is 10, and the XML-RPC server can be switch off by using
the value 0.

-R/–processing_threads : how many concurrent workflow processing requests are pro-
cessed simultaneously in the in this DeepBlue Server instance. The default
value is 4, and no processing thread is started when using the value 0.

-O/–processing_max_memory : the maximum memory available for processing each work-
flow request. Its default value is 8589934592 (8 gigabytes). It is important that
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its parameter value multiplied by the processing_threads parameters do not ex-
ceed more than 80% of the total available memory of the computer server.
This value is important to prevent the abuse of computational resources and
can be changed for individual registered users.

-I/–old_request_age_in_sec : how old, in seconds, must be a request result for being re-
moved by the janitor. The default value is 2592000 that corresponds to 30
days. Higher values can be used if data storage is not an issue.

Through these parameters it is easy to configure an instance that only process users
requests through the XML-RPC server and store the workflow requests in the process-
ing queue that is processed by other instances configured for only processing workflow
requests.

DeepBlue Server resources requirements

The required resources correlate directly with the amount of data stored in DeepBlue
Server. For example, a basic setup with 7, 000 peak files (BED) requires less than 30 gi-
gabytes of disk space, but installations with signal data (WIG) may require terabytes of
disk space.

As a rule of thumb, each file containing peak regions in the BED format requires two
times its compressed size when stored in the DeepBlue Server. For example, a compressed
file containing peaks in the BED format has the size of 3 megabytes, requires 6 megabytes
to be stored in the DeepBlue Server. The overhead is lower for signal files, demanding 1.5
times their size, but it is necessary to remember that these files are two or three orders
of magnitude larger, where their sizes span from 100 megabytes to gigabytes.

MongoDB is a memory demanding software. The main DeepBlue Server installation
stores 15 terabytes of signal files and 500 gigabytes of peak files. This does not include
the overhead for storing and organizing the data, e.g., the experiments data objects and
indexes. In the total, the current DeepBlue Server MongoDB instance uses 27 terabytes
of disk space, 280 gigabytes of RAM, including 200 gigabytes for the data indexes. It
is important that the indexes fit in the memory, otherwise the system will suffer a big
performance impact.

The central DeepBlue Server installation is executed with 16 threads for the XML-RPC
server, eight threads for workflow processing, allowing each workflow processing to
use until 16 gigabytes of RAM, which is enough to hold more than 500 million regions.
The server in full usage requires 128 gigabytes of memory. The DeepBlue Server also
requires approximately 5 gigabytes of memory for caching highly accessed data, such
as BioSources names and relationship, experiments metadata, and genome sequences.

Even with higher memory requirements, a DeepBlue Server instance can be hosted in
a computational server with 32 gigabytes of RAM. It is only required to inform in the
startup parameters the number of parallel workflows processing requests and the max-
imum amount of memory that they can use. Besides, many hardware can be combined
in a cluster for increasing the throughput of executed processing requests.
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Access methods

The communication to the DeepBlue Server is performed through the XML-RPC and
RESTful protocols. A XML-RPC server is implemented in the DeepBlue Server and REST-
ful requests are converted to XML-RPC requests by the Middleware (Section A.2.5). The
XML-RPC requests must be made to the URL http://deepblue.mpi-inf.mpg.de/
xmlrpc and the RESTful requests to http://deepblue.mpi-inf.mpg.de/api.

Data Formats

The DeepBlue Server supports data files in the following formats:
BED/Columns Format is used for peak experiments and annotation files. The content of

this file must be described using Column types controlled vocabulary terms.
wig is used for experiments signal data
bedgraph is used for experiments signal data
fasta is used for genome sequences
gtf is use for importing gene-models from GENCODE
cufflinks is used for gene expression data
grape2 is used for gene expression data
salmon is used for gene expression data

Index overhead in the regions blocks

The experiments regions are organized in blocks for reducing the database index over-
head and improve the data transfer between the MongoDB instance and the DeepBlue
Server (Section 4.3.4). Different block sizes were analyzed during the development of
the DeepBlue Server. Table A.9 summarizes the overhead values from three cases: not
using region blocks, blocks containing 1000 regions, and blocks containing 100 regions.

Blocks Size Regions Count Object Count Index Size Overhead per Region
Without 13, 254, 208 13, 254, 208 1, 787 megabytes ∼ 141 bytes
1000 13, 254, 208 14, 727 17 megabytes ∼ 0.3 bytes
100 13, 254, 208 133, 975 3 megabytes ∼ 1.3 bytes

Table A.9: Index overhead in different region blocks size: this table shows the overhead
generated by indexing the regions individually, by blocks of 1, 000 regions,
and 100. Even that blocks of 100 regions shows a higher overhead than blocks
of 1, 000 regions, this value is used because it shows a good tradeoff between
index overhead and data retrieval speed.

Currently, DeepBlue Server uses blocks of 100 regions, which presents the best tradeoff
between the index overhead and quickness for finding the required experiment regions
inside a block. The block size is important because if a block is too large, it may delay
the data access when only a fraction of the regions block is needed.

http://deepblue.mpi-inf.mpg.de/xmlrpc
http://deepblue.mpi-inf.mpg.de/xmlrpc
http://deepblue.mpi-inf.mpg.de/api
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Embedded Lua Interpreter

The DeepBlue Server embedded a Lua1 interpreter that is used by the meta-field (@CAL-
CULATED) and the calculated column type (Section 4.5.5). Lua is a scripting program-
ming language that is easy to learn and use. It is fast, has low memory consumption
footprint, and it is easy to be embedded in other software, such as in the DeepBlue Server.

Rather than using the original Lua interpreter, the DeepBlue Server uses LuaJIT (http:
//luajit.org/), which implements Lua version 5.1 functionalities. The main reason
for using LuaJIT is because it contains a just-in-time (JIT) compiler that compiles the Lua
code to machine code at run-time, allowing faster execution of the Lua code. In the
DeepBlue Server, the Lua environment(lua/sandbox.cpp) is executed in a sandbox. Due
to security reasons, the sandbox limits the access to the original Lua API not allowing
users to access all its commands.

Table A.10 list the most useful commands available in the DeepBlue’s Lua environ-
ment. A complete Lua reference can be found at https://www.lua.org/manual/5.
1/manual.html.

A.2.2 DeepBlue Populator

The Populator is developed in Python 2. It uses the MongoDB database for storing the
files metadata that should be imported into the DeepBlue Server and for tracking which
experiments were already imported. For executing the Populator, it is required to in-
stall the libraries PyMongo (interface between Populator and the MongoDB database),
requests (facilitators for downloading files), and flatdict (useful data structures).

The Populator must configured using its configuration file (src/settings.py):
• variable ROOT contains the full path to the populator source code
• variables MDB_HOST and MDB_PORT contain the URL and port of the used Mon-

goDB instance
• variables DEEPBLUE_HOST and DEEPBLUE_PORT contain the URL and port of

the target DeepBlue Server instance
• variables max_downloads and max_threads define how many experiment down-

loads and insertions can be executed simultaneously.
The Populator entry point is the src/main.py file. Just execute this file with

python (python main.py) for obtaining the its execution parameters. An usual parameters
is –full, which inserts all the data: all ontology terms, genes, annotations, and import the
experiments from all data sources configured in the file src/data_sources.py. Note that de-
pending the imported data size, mainly the number of experiment and their sizes, the
data import process can last days or even weeks. The –full parameter can be used for in-
serting new data as well. Other options, such as –ontology, –gene_ontology, –annotations,
and –datasets are used for inserting or updating only the entities in their scope.

The Populator source code is organized as:
• data/ - Initial data used by the Populator

– annotations/ - Annotations file (CpG Island, Regulatory Build, Repeat Re-
gions)

– cv/ - Controlled vocabulary files from ENCODE

1 http://www.lua.org/

http://luajit.org/
http://luajit.org/
https://www.lua.org/manual/5.1/manual.html
https://www.lua.org/manual/5.1/manual.html
http://www.lua.org/


A.2 Implementation details 171

Category Command Description

Region value_of(column_name) Return the column value

String

string.find(s,motif) Return the first match of motif in the string
string.format(fmt,...) Return a formatted string
string.gmatch(s,motif) Return the next captures from motif over string s
string.len(s) Return string length
string.upper(s) Return a copy of a string with allletters changed to uppercase
string.lower(s) Return a copy of a string with allletters changed to lowercase
string.reverse(s) Return a reverse copy of the string
string.sub(s,i,[,j]) Return a substring

Math

math.abs(x) Return the absolute value of x
math.ceil(x) Return the smallest integer larger than or equal to x
math.exp(x) Return the value ex

math.floor(x) Return the largest integer smaller than or equal to x
math.fmod(x,y) Return the remainder of the division of x by y
math.log(x) Return the natural logarithm of x
math.log10(x) Return the base-10 logarithm of x
math.max(x,...) Return the maximum value among its arguments
math.min(x,...) Return the minimum value among its arguments
math.modf(x) Return two numbers, the integral and the fractional part of x
math.pi Return the value of pi
math.pow(x,y) Return xy

math.random([m,[n]]) Return a random integer in the range [m, n]
math.sqrt(x) Return the square root of x

Conversion
type(o) the type of the variable
tonumber(o) Convert the value to a number
tostring(o) Convert a number to a string

OS calls
os.clock
os.difftime
os.time

Debugging print Print variable for server debugging
pcall Call a function in protective mode for server debugging

Table A.10: Lua commands available in the DeepBlue Server.

– genomes/ - Genomic data (chromosome sizes and sequences)
– ontologies/ - Imported ontologies (CL, EFO, UBERON)

• src/ - Populator source code
– download/ - Data downloaded by the Populator

• third_party/ - Third party tools

A.2.3 DeepBlueR

Installation

As the DeepBlueR is integrated in the R/Bioconductor environment, it can be installed in
two commands: source("https://bioconductor.org/biocLite.R") and biocLite("DeepBlueR"). Af-
ter the installation is completed, the DeepBlueR library is loaded through the command
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library(DeepBlueR), and it can be tested using the command deepblue_info("me"). This com-
mand returns a data structure containing information about the user, in this case, the
anonymous user.

Implementation

DeepBlueR is implemented in R and Python. Where the R code is divided into the auto-
generated and pure R source code. The pure R code contains examples, an optimized
implementation of the XML-RPC protocol, data caching, data types conversion between
XML-RPC and R, and requests splitting for improving the performance in genome-scale
requests. The auto-generated source code contains the code that envelopes the DeepBlue
Server operation requests, where each operation has its auxiliary code.

The Python source code automatically generates R code. It follows a workflow, where
firstly obtains all available commands from the DeepBlue Server API and generates the
appropriated R code for encapsulating their usage. The R code generation has the fol-
lowing steps:

1. Execute the operation commands for obtaining the DeepBlue Server API operations
2. Interpret API definitions and generate the R code that encapsules each command
3. Insert the previously developed code examples
4. Execute and test the examples
5. Build the documentation (Vignettes files)
6. Commit the changes

This workflow minimizes the chance of errors, performs automatic code verification
and testing, and provides a faster release cycle, coping with the evolution of the DeepBlue
Server.

A.2.4 DeepBlue Web Portal

The DeepBlue Web Portal is implemented using standard web tools technologies: HTML,
CSS, PHP and JavaScript. It also uses the following external libraries:

• SmartAdmin is the templates content that was used as skeleton for the web portal.
• Bootstrap provides web components for constructing web interfaces -getbootstrap.
com/

• JQuery provides auxiliary web components - jquery.com/
• DataTables provides data tables - datatables.net/
• Fonts Awesome provides icons - fontawesome.com
• morris.js provides charts - morrisjs.github.io/morris.js/
• Sweet Alert provides alert boxes - sweetalert.js.org/
• Select2 provides data selection boxes - select2.org/
• Bootstro.js provides an online user guidance - clu3.github.io/bootstro.js
• Incutio XML-RPC provides the communication between the PHP code and the

DeepBlue Server - scripts.incutio.com/xmlrpc

getbootstrap.com/
getbootstrap.com/
jquery.com/
datatables.net/
fontawesome.com
morrisjs.github.io/morris.js/
sweetalert.js.org/
select2.org/
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The Web Portal access the DeepBlue Server through its PHP and JavaScript code: the
PHP code access DeepBlue using the XML-RPC protocol, while the JavaScript uses REST-
Ful protocol with AJAX2.

The DeepBlue Server API operation datatable was implemented for exclusively support-
ing the web portal. This operation was developed and tailored for being compatible
with the datatables library. The datatables web interface sends their RESTful requests to
the DeepBlue Middleware. The DeepBlue Middleware translates the requests to XML-RPC
requests, which are sent to the DeepBlue Server. The DeepBlue Server processes these
requests in real-time, providing fast replies to the interactions between users and the
DeepBlue Web Portal datatables.

The DeepBlue Web Portal can be served by an Apache HTTP server with PHP installed.
The DeepBlue Web Portal URL and the DeepBlue Server location must be informed in the
configuration file template/lib/server_settings.php.

A.2.5 DeepBlue Middleware

The DeepBlue Middleware is a DeepBlue Server proxy. It is implemented in JavaScript and
TypeScript3 and executed in the Node.js4 environment.

The DeepBlue Middleware was initially developed as data cache for improving the Web
Portal response time and for converting RESTful to XML-RPC requests. Currently, it also
contains the DIVE server-side functionalities, such as workflows orchestration (more in
Section app:dive:implementation).

A.2.6 DIVE

DIVE has been developed using modern and open technologies, such as the Angular
Framework5, used for web applications development, the TypeScript programming lan-
guage, used in the UI and server, and the Node.js for executing the server applications.
In this case, the Node.js is used by the DeepBlue Middleware that contains the DIVE server-
side methods.

The UI web application is developed using Angular 5, PrimeNG6, Highcharts7, ngx-
datatable8, angular-archwizard9, and randomcolor10.

DIVE implementation is divided into two parts: (i) the UI web implementation con-
tains the source code of the application that is executed in the user web browsers; (ii)
server implementation that extends the DeepBlue Middleware and is developed in Type-
Script.

2 http://api.jquery.com/jquery.ajax/
3 https://www.typescriptlang.org/
4 https://nodejs.org
5 https://angular.io/
6 https://www.primefaces.org/primeng/
7 https://www.highcharts.com/
8 https://swimlane.github.io/ngx-datatable/
9 https://www.npmjs.com/package/angular-archwizard
10 https://github.com/davidmerfield/randomColor

http://api.jquery.com/jquery.ajax/
https://www.typescriptlang.org/
https://nodejs.org
https://www.primefaces.org/primeng/
https://www.highcharts.com/
https://swimlane.github.io/ngx-datatable/
https://www.npmjs.com/package/angular-archwizard
https://github.com/davidmerfield/randomColor
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UI components

Epigenomic data analysis is changing quickly, with new assay types and data. Hence,
it is fundamental to ease the future development of DIVE. For keeping in pace with
new technologies, implementing new analysis and visualization methods, DIVE is de-
veloped using individual components. These individual components are used for con-
structing the entire DIVE’s UI, from buttons, menus, tables, charts, to groups of elements
that interact together, to the to the complete interface.

DIVE UI elements are implemented as independent components and their source
code are stored in the src/app/view directory. The advantages of having DIVE’s UI source
code separated into different component are: (i) it improves the reuse of the component
in different parts of DIVE or even in different applications; (ii) it allows independent
modifications and testing of each component; (iii) it facilitates extending DIVE and fu-
ture improvements.

In overall, DIVE components can be categorized as: (i) screens; (ii) main-screen com-
ponents; iii in-context components. The following lists presents an overview of the DIVE
UI components:

• Screen components: these are the backbones of the interface, where the UI is built
upon. Two types of screen components are available:
Screens are the component that connects all components for form-

ing a complete interface
Wizards provides interfaces that guide users through data selec-

tion and methods configuration options
• Main-screen components perform fundamental tasks:

Filtering Stack is the stack where the current region-set is exhibited
with its applied filters

Comparison Datasets is the top menu which shows the comparison region-
sets

Menu is the menu, which loads its options dynamically
from the existing datasets, such as, histone marks and
CSS items

• In-context components perform special tasks:
Data Selection are drop-boxes and lists for visualizing and select-

ing data
Charts provides the framework for the overlapping and

similar datasets charts

UI Services

DIVE contains different services (src/app/service) that perform and process requests to
the DeepBlue Middleware, control the current status of the data presented in the UI, and
perform mathematical operations. DIVE has services for the following tasks:

• request metadata information to the DeepBlue Middleware
• manage the processing requests made to the DeepBlue Middleware.
• control the selected data
• control the comparison data
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• control filters values and apply on the data
• calculate statistical values

Server side processing

The DeepBlue Middleware (Appendix A.2.5) was initially developed as a middleware be-
tween the DeepBlue Web Portal and the DeepBlue Server. With the development of DIVE,
it was perceived that this tool also needs functionalities that orchestrate the requests
made to the DeepBlue Server.

The middleware was extended to provided functionalities such as the execution of
hundreds to thousands of data operations in the DeepBlue Server. It orchestrates their ex-
ecutions and returns only the final results to the DIVE UI, thus, speeding up the overall
execution through minimizing the number of RESTful calls between the web application
and the DeepBlue Server.

The DeepBlue Middleware part that process DIVE requests is developed in TypeScript,
which is compiled to JavaScript, and is included in the DeepBlue Middleware codebase,
which is executed using Node.js.

Concluding, DIVE’s implementation allows easy extendability of its functionalities
and optimization of the existing ones for future changes in the epigenomic data land-
scape. Finally, besides being a data analysis tool, it is a framework which allows the
development of new functionalities, aligning to the future needs of the epigenomic large-
scale data analysis.

A.3 Usage example and use cases source code

A.3.1 DeepBlue Server

Listing A.1 defines a function named __wait_and_get_data that queries the DeepBlue
Server for information in the given request_id each second until its processing is done
or failed, then it returns its result.

1 import xmlrpclib
2 import time
3
4 DEEPBLUE_URL = "http://deepblue.mpi-inf.mpg.de/xmlrpc"
5
6 # Wait for the server processing and return the data
7 def __wait_and_get_data(request_id, user_key):
8
9 server = xmlrpclib.Server(DEEPBLUE_URL, allow_none=True)

10 (status, info) = server.info(request_id, user_key)
11 request_status = info[0]["state"]
12
13 while request_status != "done" and request_status != "failed":
14 time.sleep(1)
15 (status, info) = server.info(request_id, user_key)
16 request_status = info[0]["state"]
17
18 return server.get_request_data(request_id, user_key)

Listing A.1: Auxiliar function _wait_and_get_data which waits for the workflow processing
finishes and then returns the resulting data. This function is used in the usage
examples for downloading the workflow results.
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Usage Example 1: Identification of TFBSs that overlap H3K4me3 peaks and promoter regions

Listing A.2 source code shows how to obtain the active TFBSs by overlapping a set of
TFBSs to H3K4me3 peaks, an active mark, and after, to the dynamic generate promoter
regions. It provides a list of TFBSs annotated with the experiment source and biosource
that match the previous criteria.

1 import xmlrpclib
2 import time
3 from pprint import pprint
4
5 url = "http://deepblue.mpi-inf.mpg.de/xmlrpc"
6 user_key = "anonymous_key"
7
8 server = xmlrpclib.Server(url, allow_none=True)
9

10 # Select all peaks regions from H3k37ac from BLUEPRINT
11 (status, exps) = server.select_regions("", "GRCh38", "H3K4me3", "", "",
12 "BLUEPRINT Epigenome", "chr1",
13 None, None, user_key)
14 (status, exps_peaks) = server.query_experiment_type(exps, "peaks", user_key)
15
16 # Select promoters
17 (status, q_genes) = server.select_genes(
18 None, None, "gencode v23", None, None, None, user_key)
19 (s, promoters) = server.flank(q_genes, -2500, 2000, True, user_key)
20
21 # Intersect the H3K4me3 peaks with the gene promoters.
22 (status, exps_promoters) = server.intersection(exps_peaks, promoters, user_key)
23
24 # Select the SP1 peaks regions from ENCODE
25 (status, tf) = server.select_regions("", "hg19", [
26 "SP1"], "", "", "ENCODE", "chr1", None, None, user_key)
27 (status, ts_signals) = server.query_experiment_type(tf, "peaks", user_key)
28
29 # Intersect the SP1 regions with the H3K4me3 peaks that overlaps with promoters.
30 (status, final) = server.intersection(tf, exps_promoters, user_key)
31
32 # Obtain and annotate regions with the
33 # experiment name (@NAME) and Biosource (@BIOSOURCE).
34 (status, request_id) = server.get_regions(final,
35 "CHROMOSOME,START,END,@NAME,@BIOSOURCE",
36 user_key)
37
38 regions = __wait_and_get_data(request_id, user_key)

Listing A.2: This source code shows how to obtain the active TFBSs by overlapping a set of
TFBSs to H3K4me3 peaks, an active mark, and after, to the dynamic generate
promoter regions: Lines 1 - 8 import the necessary libraries and assign to
the variable server to a XML-RPC object for accessing the DeepBlue Server.
Lines 10 - 13 selects all the H3K4me3 from the BLUEPRINT project. Lines
17 - 19 select the genes from the Gene Model GENCODE v23 and generate
the promoter regions. Line 22 filters the H3K4me3 regions that overlap with a
promoter region. Lines 25 - 27 selects the TFs SP1 from ENCODE project. Line
30 filters the TFs regions that overlap with the previously filtered H3K4me3
region. The lines 34 - 36 requests the regions, where each region contains its
chromosome, start, end, experiment name, epigenetic mark, and biosource.
Line 38 download the regions data.
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Usage Example 2: Calculating DNA methylation levels across H3K4me3 peak regions

Listing A.3 summarizes DNA methylation levels in liver tissue across H3K4me3 peaks
regions derived from human embryonic stem cells. It generates a list of files which con-
tains the DNA methylation summarized for each found liver tissue signal experiment.

1 import xmlrpclib
2 import time
3 import os.path
4
5 user_key = 'anonymous_key'
6 url = "http://deepblue.mpi-inf.mpg.de/xmlrpc"
7 server = xmlrpclib.Server(url, encoding='UTF-8', allow_none=True)
8 print server.echo(user_key)
9

10 # List H1-hESC samples from ENCODE
11 (status, H1_hESC_samples) = server.list_samples("H1-hESC",
12 {"source":"ENCODE"}, user_key)
13 H1_hESC_samples_ids = server.extract_ids(H1_hESC_samples)[1]
14
15 # List peaks experiments from H3K27ac with the H1-hESC samples
16 (status, experiments) = server.list_experiments("hg19", "peaks", "H3K4me3", "",
17 H1_hESC_samples_ids, None,
18 "ENCODE", user_key)
19
20 # Find the experiment in bed format
21 experiments_id = server.extract_ids(experiments)[1]
22 (status, exps_infos) = server.info(experiments_id, user_key)
23 h1_hESC_H3K4me3_experiment_name = [e["name"] for e in
24 exps_infos if e["extra_metadata"]['original_file_url'].endswith("bed.gz")]
25 if len(h1_hESC_H3K4me3_experiment_name) != 1:
26 print "It was expected only one h1_hESC_H3K4me3 experiment"
27 h1_hESC_H3K4me3_exp = h1_hESC_H3K4me3_experiment_name[0]
28
29 # Obtain regions from the H1-hESC H3k4me3 peaks
30 (status, h1_hESC_H3K4me3) = server.select_experiments(h1_hESC_H3K4me3_exp,
31 None, None, None,
32 user_key)
33
34 # List liver and hepatocyte experiments
35 ss, liver_experiments = server.list_experiments("hg19", "",
36 "DNA Methylation",
37 'liver',
38 None, "RRBS", "ENCODE", user_key)
39 liver_experiments_names = server.extract_names(liver_experiments)[1]
40 print liver_experiments_names
41
42 # Retrieve summarized
43 requests = []
44 request_id_experiment = {}
45
46 # Perform for each liver or hepatocyte experiment
47 for liver_experiment in liver_experiments_names:
48 print "Processing", liver_experiment
49 # Select the experiment regions
50 (status, q_liver_data) = server.select_experiments(liver_experiment,
51 None, None, None,
52 user_key)
53
54 # Perform aggregation
55 (status, agg_id) = server.aggregate(q_liver_data, h1_hESC_H3K4me3,
56 'SCORE', user_key)
57
58 # Filter the aggregate regions that summarized at least 1 region
59 (res, q_filter) = server.filter_regions(agg_id, "@AGG.COUNT", ">", "0",
60 "number", user_key)
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61
62 # Request regions
63 status, req = server.get_regions(q_filter,
64 "CHROMOSOME,START,END,@AGG.MEAN,@AGG.COUNT,@AGG.MAX,@AGG.MIN", user_key)
65 print liver_experiment, status, req
66 request_id_experiment[req] = liver_experiment
67 requests.append(req)
68
69 if not os.path.isdir("data/"):
70 os.mkdir("data/")
71
72 # Waiting for the workflow processed requests be finished
73 # Store results in individual files and print the request info in case of error
74 while len(requests) > 0:
75 for req in requests[:]:
76 (s, ss) = server.info(req, user_key)
77 if ss[0]["state"] == "done":
78 print ss[0]
79 print "getting data from " + ss[0]["_id"]
80 (s, data) = server.get_request_data(req, user_key)
81 with open("data/"+request_id_experiment[req]+".bed", 'wb') as f:
82 f.write(data)
83 requests.remove(req)
84 if ss[0]["state"] == "failed":
85 print ss
86 requests.remove(req)
87 time.sleep(1.0)
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Listing A.3: Processing flow of this usage example: (i) list and select the regions from
H3K4me3 and ESCs experiments, these regions are used as summarizing
boundaries; (ii) list all liver and hepatocyte experiments data; (ii) for each
experiment, summarize it using the previously obtained H3K4me3 peaks and
store the data in a file: Lines 1 - 7 import the necessary libraries and assigns
the variable server to an XML-RPC object for accessing the DeepBlue Server.
Line 8 tests the connection to the server with the operation echo. Lines
10 - 13 list and extract all samples IDs with the biosource H1-hESC from
the ENCODE project. Line 16 lists all peaks experiments that contain the
previously selected samples IDs, the histone modification H3K4me3 from the
ENCODE project. Lines 21 - 24 extract the IDs from the listed experiments,
obtain information about the experiment using the ID, and generate a list
of experiments that the original file name ends with bed.gz. Lines 25 -
26 verify if it found only one experiment file because it requires only one
experiment regions for summarizing the data. Line 30 selects the regions
of the selected h1-hESC H3K4me3 experiment. Lines 35 - 40 list and extract
the names of the DNA methylation experiments that are annotated with
liver or hepatocyte biosource. Lines 47 - 52 iterate over each selected DNA
methylation experiment, selecting its regions. Lines 55 - 56 aggregate the
selected regions using H1-hESC regions. It performs the aggregation on the
column SCORE. Lines 59 - 60 filters and remove the aggregated regions that
did not aggregate any region. Lines 63 - 67 request the regions with the
desired columns. It stores the experiment name with the associated request
ID, and also the request ID in a list of IDs. Lines 69 - 70 create a directory
to store the data downloaded. Lines 74 - 87 download the data, checking
each request status: if the request is done, its data is downloaded, stored in a
file, and the request is removed from the requests list. It is repeated until all
requests are processed.

Usage Example 3: Enriching DMR regions via Chromatin States

Listing A.4 enriches DMR regions using chromatin states regions dynamically obtained
from all CSS files in the genome GRCh38. This example is divided into two parts: con-
structing the CSS region-sets, selecting and filtering the hypomethylated regions, and
performing the enrichment on them.

1 import xmlrpclib
2 import time
3 import os.path
4 import errno
5
6 from collections import defaultdict
7 from pprint import pprint
8 from multiprocessing import Pool
9 from socket import error as socket_error

10
11 import cPickle
12
13 # Internal configurations
14 MAX_REQUEST_SIMULTANEOUS = 16
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15 CACHE_PATH = ".cache"
16 STATES_CACHE_FILE = "css_queries_cache.deepblue"
17 DEEPBLUE_URL = "http://deepblue.mpi-inf.mpg.de/xmlrpc"
18 USER_KEY = 'anonymous_key'
19
20 GENOME = 'GRCh38'
21 # Experiment that will be enriched
22 EXPERIMENT_NAME = "S00VEQA1.hypo_meth.bs_call.GRCh38.20150707.bed"
23
24
25 def split_file(data):
26 server_worker = xmlrpclib.Server(DEEPBLUE_URL, allow_none=True)
27
28 [css_file, states] = data
29 result = []
30
31 _, css_file_query_id = server_worker.select_experiments(
32 css_file, None, None, None, USER_KEY)
33 # Use query cache for optimizing the processing because the same experiment
34 # data will be used many times.
35 _, css_file_query_cache_id = server_worker.query_cache(
36 css_file_query_id, True, USER_KEY)
37 for state in states:
38 _, css_file_filter_query_id = server_worker.filter_regions(
39 css_file_query_cache_id, "NAME", "==", state, "string", USER_KEY)
40 result.append((state, css_file_filter_query_id))
41
42 return css_file, result
43
44
45 def get_chromatin_states(genome, user_key):
46 status, csss_query_id = SERVER.select_regions(
47 None, genome, "Chromatin State Segmentation",
48 None, None, None, None, None, None, user_key)
49
50 status, csss_names_request_id = SERVER.distinct_column_values(
51 csss_query_id, "NAME", user_key)
52 distinct_values = __wait_and_get_data(csss_names_request_id)
53
54 return distinct_values['distinct']
55
56
57 def build_chromatin_state_files(server, genome, user_key):
58 cache_file = os.path.join(CACHE_PATH, STATES_CACHE_FILE)
59
60 if os.path.exists(cache_file):
61 _file = open(cache_file, "r")
62 queries = cPickle.load(_file)
63 return queries
64 else:
65 _, css_files_list = server.list_experiments(
66 genome, "peaks", "Chromatin State Segmentation", None, None, None, None, user_key

)
67 _, css_files_names = server.extract_names(css_files_list)
68 states = get_chromatin_states(genome, user_key)
69
70 css_files = []
71 for css_file in css_files_names:
72 css_files.append([css_file, states])
73
74 pool = Pool(MAX_REQUEST_SIMULTANEOUS)
75 queries = pool.map(split_file, css_files)
76 pprint(queries)
77 datasets = defaultdict(list)
78
79 for query in queries:
80 for state in query[1]:



A.3 Usage example and use cases source code 181

81 datasets[query[0]].append([state[1], state[0]])
82
83 datasets = dict(datasets)
84
85 pool.close()
86 pool.join()
87
88 # Save the processed states in a file.
89 try:
90 os.makedirs(CACHE_PATH)
91 except OSError as exc: # Python >2.5
92 if exc.errno == errno.EEXIST and os.path.isdir(CACHE_PATH):
93 pass
94 else:
95 raise
96 _file = open(cache_file, "w+")
97 cPickle.dump(datasets, _file)
98
99 return datasets

100
101
102 SERVER = xmlrpclib.Server(DEEPBLUE_URL, allow_none=True)
103
104 # Query data
105 # Select the hypo methylated regions where the AVG methyl level is lower than 0.0025
106 _, QUERY_ID = SERVER.select_experiments(EXPERIMENT_NAME, None, None, None, USER_KEY)
107 _, QUERY_ID = SERVER.filter_regions(
108 QUERY_ID, "AVG_METHYL_LEVEL", "<", "0.0025", "number", USER_KEY)
109 print QUERY_ID
110
111 # Universe will be tiling regions of 1000bp
112 _, UNIVERSE_QUERY_ID = SERVER.tiling_regions(1000, "grch38", None, USER_KEY)
113
114 # Datasets will be the chromatin segmentation files divided by segments
115 DATASETS = build_chromatin_state_files(SERVER, GENOME, USER_KEY)
116 print "total of " + str(len(DATASETS)) + " datasets"
117
118 # Obtain the data
119 __, ENRICH_REQUEST = SERVER.enrich_regions_overlap(
120 QUERY_ID, UNIVERSE_QUERY_ID, DATASETS, "grch38", USER_KEY)
121 print "Processing enrich_region_overlap: ", ENRICH_REQUEST
122
123 ENRICHMENT_RESULT = __wait_and_get_data(ENRICH_REQUEST)
124
125 # Obtain the ranks
126 state_rank = [(k["description"], k["mean_rank"])
127 for k in ENRICHMENT_RESULT["enrichment"]["results"]]
128 pprint(state_rank)
129
130 # [('12_Active_TSS_High_Signal_H3K4me3_H3K27Ac', 30.6667),
131 # ('12_Active_TSS_High_Signal_H3K4me3_H3K27Ac', 33.3333),
132 # ('12_Active_TSS_High_Signal_H3K4me3_H3K27Ac', 37.6667),
133 # ('12_Active_TSS_High_Signal_H3K4me3_H3K27Ac', 40.3333),
134 # ('12_Active_TSS_High_Signal_H3K4me3_H3K27Ac', 40.6667), ...
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Listing A.4: It enriches DMR regions using chromatin states regions dynamically obtained
from all CSS files in the genome GRCh38. This example is divided into
two parts: constructing the CSS region-sets, selecting and filtering the
hypomethylated regions, and performing the enrichment on them. Lines 1
to 22 load the necessary libraries and set-up the variables names containing
the parameters used during the processing. Line 25 - 42 contain the function
split_file which receives a CSS file name and split it into multiple request IDs,
each one referencing to chromatin state and a sub-set of the file. Line 45 - 54
obtains all chromatin states presents in the genome CSS files. Line 57 - 99 build
divides all CSS files presents in the genome by their states, generating n×m
region-sets (m is the count of available CSS experiments and n is the count of
chromatin states). Line 97 uses the cPickle library for storing the CSS region-
sets locally for improving the next executions of this script. (The stored data
is loaded in line 62). Line 115 stores the region-sets in the variable DATASETS
that is used in line 119 by the enrich_regions_overlap operation. This operation
uses the variable QUERY_ID which is the hypomethylated experiment filtered
in lines 107 - 108. Line 123 waits for the enrichment processing and downloads
its result. Lines 126 - 128 obtain the enrichment results, sort them by their
mean rank and print the sorted result.

Usage Example 4: Obtaining (epi)genomic information from different tissues

Listing A.5 provides data for comparing the FAR1 gene epigenomic information in the
liver and brain tissues.For that, it obtains the gene genomic location and generates flank-
ing regions, for promoters and region after the gene. Using them for summarizing the
different epigenetic marks data. As result, it provides a set of files, each of a different epi-
genetic mark, containing the epigenetic mark data summarized by the defined genomic
regions.

1 import re
2
3 from collections import defaultdict
4
5 DEEPBLUE_URL = "http://deepblue.mpi-inf.mpg.de/xmlrpc"
6 USER_KEY = 'anonymous_key'
7
8 server = xmlrpclib.Server(DEEPBLUE_URL, allow_none=True)
9

10 # Select gene and build the surrounding regions.
11 # Select the gene region and also the promoter
12 status, q_genes = server.select_genes(
13 "FAR1", None, "gencode v19", None, None, None, USER_KEY)
14 # If error, print the error message
15 if status != "okay":
16 print q_genes
17 (s, before_flank_id) = server.flank(q_genes, -2500, 2000, True, USER_KEY)
18 (s, after_flank_id) = server.flank(q_genes, 1500, 500, True, USER_KEY)
19 (s, flank_merge_id) = server.merge_queries(
20 before_flank_id, after_flank_id, USER_KEY)
21 (s, q_genes_and_promoters) = server.merge_queries(
22 q_genes, flank_merge_id, USER_KEY)
23
24
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25 # Data of interest
26 epi_marks = ["H3K36me3", "H3K4me3", "H3K27me3", "H3K4me1", "H3K9me3",
27 "H3K27ac", "DNA Methylation", "DNaseI", "RNA"]
28 biosources = ["brain", "liver"]
29 data_type = "signal"
30 project = "Roadmap Epigenomics"
31 genome = "hg19"
32
33
34 # Manually selected these Epigenomes from Roadmap
35 roadmap_samples = set(['E071', 'E054', 'E070', 'E053', 'E082', 'E066', 'E118'])
36
37 em_by_sample = defaultdict(list)
38 sample_em_exp = defaultdict(lambda: defaultdict(list))
39 experiment_biosource = {}
40
41
42 for epigenetic_mark in epi_marks:
43 em_name = None
44 for biosource in biosources:
45 status, exps = server.list_experiments(
46 genome, data_type, epigenetic_mark, biosource, None, None, project, USER_KEY)
47 exps.sort()
48 for exp in exps:
49 exp_name = exp[1]
50
51 (exp_id, em) = re.split("[-._]", exp_name, 1)
52 (em_name, compl) = re.split("\.", em, 1)
53 if epigenetic_mark == "RNA":
54 em_name = "RNA_"+compl
55
56 experiment_biosource[exp_id] = biosource
57 em_by_sample[em_name].append(exp_id)
58 sample_em_exp[em_name][exp_id] = exp_name
59 if em_name:
60 em_by_sample[em_name] = set(
61 em_by_sample[em_name]).intersection(roadmap_samples)
62 else:
63 print 'missing', epigenetic_mark
64
65 for epigenetic_mark in em_by_sample:
66 samples = em_by_sample[epigenetic_mark]
67
68 experiments = []
69 for sample in samples:
70 experiment_name = sample_em_exp[epigenetic_mark][sample]
71 experiments.append(experiment_name)
72
73 experiments_columns = {}
74 for experiment_name in experiments:
75 experiments_columns[experiment_name] = "VALUE"
76
77 (status, request_id) = server.score_matrix(
78 experiments_columns, "mean", q_genes_and_promoters, USER_KEY)
79 data = __wait_and_get_data(request_id, USER_KEY)
80 f = open("__"+epigenetic_mark+".cvs", "w+")
81 f.write(data)
82 f.close()
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Listing A.5: It can be divided in 4 parts: Lines 1 - 8 load the libraries and defining variables
for accessing the DeepBlue Sever. Lines 12 - 22 load the gene FAR1 location and
define surrounding regions. Lines 26 - 35 define the data of interest. Lines
42 - 63 obtain the samples and experiments of the selected BioSources. Lines
65 - 82 obtain the data from the experiments, summarizing them by the gene
body and surrounding regions, and writing the results in a file, where each
file contains the data of an epigenetic mark.

Usage Example 5: Summarize gene expression from hepatocytes experiments

Listing A.6 summarizes the expression of a set of pre-selected genes using different hep-
atocytes samples from the CREST project. It presents the summarization result in the
form of box plot.

1 import matplotlib.pyplot as plt
2 from io import BytesIO
3 import numpy as np
4 import time
5 import xmlrpclib
6
7 url = "http://deepblue.mpi-inf.mpg.de/xmlrpc"
8 deepblue = xmlrpclib.Server(url, allow_none=True)
9

10 USER_KEY = "anonymous_key"
11
12 # List all mRNA experiments from Hepatocytes and from the CREST project.
13 status, experiments = deepblue.list_experiments("GRCh38", "signal",
14 "mRNA", "hepatocyte",
15 None, None, "CREST",
16 USER_KEY)
17 # Extract the names from the ID,name pair
18 status, experiment_names = deepblue.extract_names(experiments)
19
20 # Some genes manually selected.
21 # These genes are active in the hepatocytes
22 genes = ["ADH1A", "ADH1C", "ADH4", "ADH5", "ADH6", "ADH7",
23 "GSTA1", "GSTA2", "GSTA3", "GSTA4"]
24
25
26 (status, q_genes) = deepblue.select_genes(genes, None,
27 "gencode v23", None, None, None, USER_KEY)
28
29 # Obtain the genes from the server.
30 # It is necessary to obtain the genes in "genomic order".
31 # The gene names are obtained using the the meta-field @GENE_NAME
32 (status, request_id) = deepblue.get_regions(q_genes,
33 "@GENE_NAME(gencode v22)",
34 USER_KEY)
35
36 genes_ordered = __wait_and_get_data(request_id)
37
38 # Build score matrix
39
40 # Create a dictionary, with the experiment names as key and the column name as value.
41 # For this case, it uses the column named "VALUE" that is the default value column in the

DeepBlue signal data.
42 experiments_columns = {}
43 for experiment_name in experiment_names:
44 experiments_columns[experiment_name] = "VALUE"
45
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46 # Build the score_matrix using the defined experiments_columns where it calculates the mean
value by the regions defined in the q_genes.

47 status, score_matrix_request = deepblue.score_matrix(experiments_columns,
48 "mean",
49 q_genes,
50 USER_KEY)
51 # Download the data
52 score_matrix_genes = __wait_and_get_data(score_matrix_request)
53
54
55 # Importing the data into numpy
56 # Import the data into a numpy data structure.
57 # Use tabs as delimiters, skipping the first row (the header), and using columns from the 3rd

position (chr, start, end)
58 experiments_count = len(experiment_names)
59 data = np.genfromtxt(BytesIO(score_matrix_genes), delimiter="\t",
60 skip_header=1,
61 usecols=range(3, experiments_count+3))
62
63
64 # Plotting the data
65 # Use the matplotlib for generating a boxplot of the gene expressions.
66 fig = plt.figure(1, figsize=(14, 10))
67 plt.xlabel('Gene')
68 plt.ylabel('Expression level')
69
70 # Create an axes instance
71 ax = fig.add_subplot(111)
72
73 # Create the boxplot
74 bp = ax.boxplot(data.transpose(),
75 labels=genes_ordered.split("\n"))
76
77 plt.show()

Listing A.6: Summarizes the expression of a set of pre-selected genes using different
hepatocytes samples from the CREST project and presents the result in the
form of box plot. Lines 1 to 10 load the libraries define the variables for
accessing the DeepBlue Server. Lines 13-14 list and extract the names of all
mRNA hepatocyte experiments of the CREST project. Lines 22 - 36 defines the
genes which are analyzed, load their information, and obtain their list from
the DeepBlue Server ordered by their genomic location. Lines 42 - 52 obtain
a score matrix containing the genes mRNA expression levels. Lines 58 - 61
load the score matrix data into a NumPy matrix that is used in lines 66 - 77 for
plotting a bar chart that is exhibited to the user.

A.3.2 DeepBlueR

Listing A.7 presents the summarization and clustering of the DNA methylation data
level across 206 BLUEPRINT blood samples. Displaying a heatmap to the user.

Blueprint methylation

1 library(DeepBlueR)
2 library(foreach)
3 library(stringr)
4 library(matrixStats)
5 library(gplots)
6 library(RColorBrewer)
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7
8 ## 1) Select data and columns
9 # Select experiments

10 blueprint_DNA_meth <- deepblue_list_experiments(genome = "GRCh38",
11 epigenetic_mark = "DNA Methylation",
12 technique = "Bisulfite-Seq",
13 project = "BLUEPRINT EPIGENOME")
14
15 # Filtering for call files (remove the coverage files)
16 blueprint_DNA_meth <- blueprint_DNA_meth[grep("CPG_methylation_calls.bs_call",
17 deepblue_extract_names(blueprint_DNA_meth)),]
18
19 # Define the colum (VALUE) that will be used for summarization
20 exp_columns <- deepblue_select_column(blueprint_DNA_meth, "VALUE")
21
22
23 ## 2) Select individually the chromosomes of the anotation Blueprint Ensembl Regulatory Build
24 # list all available chromosomes in GRCh38
25 chromosomes_GRCh38 <- deepblue_extract_ids(
26 deepblue_chromosomes(genome = "GRCh38")
27 )
28 # keep only the essential ones
29 chromosomes_GRCh38 <-
30 grep(pattern = "chr([0-9]{1,2}|X)$", chromosomes_GRCh38, value = TRUE)
31
32 # Split the request by chromosome to avoid hitting the memory limit of DeepBlue
33 blueprint_regulatory_regions <-
34 foreach(chr = chromosomes_GRCh38, .combine = c) %do%
35 deepblue_select_annotations(
36 annotation_name = "Blueprint Ensembl Regulatory Build",
37 chromosome = chr,
38 genome = "GRCh38"
39 )
40
41 ## 3) Generate the score matrix
42 # Request the processing of score matrices
43 request_ids <- foreach(query_id = blueprint_regulatory_regions,
44 .combine = c) %do%
45 deepblue_score_matrix(
46 experiments_columns = exp_columns,
47 aggregation_function = "mean",
48 aggregation_regions_id = query_id)
49
50 # Obtain the score matrix results
51 score_matrix <- data.table::rbindlist(
52 deepblue_batch_export_results(request_ids),
53 use.names = TRUE)
54
55 ## 4) Processing the input data
56 # Remove the first three columns (CHROMOSOME, START, END) and convert the data frame to a

numeric matrix.
57 filtered_score_matrix <- as.matrix(score_matrix[,-c(1:3), with=FALSE])
58
59 # Compute the variance of each row and retain only genomic regions with variance > 0.05 for

plotting
60 filtered_score_matrix_rowVars <- rowVars(filtered_score_matrix, na.rm = TRUE)
61 filtered_score_matrix <- filtered_score_matrix[which(filtered_score_matrix_rowVars > 0.05),]
62
63 # To be able to cluster samples, remove regions that have missing values in at least one of

the experiments.
64 filtered_score_matrix <- filtered_score_matrix[which(complete.cases(filtered_score_matrix)),]
65
66 # It is collected the metadata for each experiment
67 experiments_info <- deepblue_info(deepblue_extract_ids(blueprint_DNA_meth))
68
69 # Obtain the experiment names
70 exp_names <- unlist(lapply(experiments_info, function(x){ x$name}))
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71
72 # IMPORTANT: The order of columns in the score matrix is not the same as in the exp_columns

list used in the request. It has to order the matrix by the experiment names in the
color map. This is crucial to make sure it assigns the correct cell type to each sample.

73 filtered_score_matrix <- filtered_score_matrix[,exp_names]
74
75 ## 5) Generating a heatmap
76 # Metadata and colors
77 getPalette <- colorRampPalette(brewer.pal(9, "Set1"))
78
79 # Obtain the biosource names
80 biosource <- unlist(lapply(experiments_info, function(x){ x$sample_info$biosource_name}))
81
82 # Replace positive with + and negative with - for saving space
83 biosource <- str_replace_all(biosource, "-positive", "+")
84 biosource <- str_replace_all(biosource, "-negative", "-")
85
86 # For same reasion, the ', terminally differentiated' text is removed
87 biosource <- str_replace(biosource, ", terminally differentiated", "")
88
89 # Assing unique color to each BioSource
90 color_map <- data.frame(biosource = unique(biosource),
91 color = getPalette(length(unique(biosource))))
92
93 # Assign colors to the experiments
94 biosource_colors <- data.frame(name = exp_names, biosource = biosource)
95 biosource_colors <- dplyr::left_join(biosource_colors, color_map, by = "biosource")
96 # Transform this data frame into a vector that is compatible with the heatmap function.
97 color_vector <- as.character(biosource_colors$color)
98 names(color_vector) <- biosource_colors$biosource
99

100 ## 6) Ploting
101 # It plots a heatmap in which the variable regions are shown across all samples.
102 # On top of the columns, it creates a dendrogram based on Pearson correlation.
103 heatmap.2(filtered_score_matrix,labRow = NA, labCol = NA,
104 trace = "none", ColSideColors = color_vector,
105 hclust=function(x) hclust(x,method="complete"),
106 distfun=function(x) as.dist(1-cor(t(x), method = "pearson")),
107 Rowv = TRUE, dendrogram = "column",
108 key.xlab = "beta value", denscol = "black", keysize = 1.5,
109 key.title = NA)
110
111 plot.new()
112
113 # Plot the legend
114 legend(x = 0, y = 1,
115 legend = color_map$biosource,
116 col = as.character(color_map$color),
117 text.width = 0.6,
118 lty= 1,
119 lwd = 6,
120 cex = 0.7,
121 y.intersp = 0.7,
122 x.intersp = 0.7,
123 inset=c(-0.21,-0.11))
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Listing A.7: Summarization and clustering of the DNA methylation data level across 206
BLUEPRINT blood samples. Returning a heatmap to the user. Lines 1 - 6
load the required libraries. Line 10 obtains a list of all DNA methylation
files provides by the BLUEPRINT project. This list is filtered in lines 16-
17 for selecting only the methylation levels experiment files. Lines 25 - 29
build the list of chromosomes that are used in the analysis. Lines 33 -
39 selects the BLUEPRINT ensembl regulatory build that is used for the data
aggregation. Lines 43 to 53 request the score matrix. The requests are
divided by chromosome for improving the processing time through the data
processing parallelization that is provided by the DeepBlue Server. Lines 57 -
64 filter the score matrix, removing the rows with empty values and with low
variance. Lines 70 - 98 build the colors map used by the heatmap. Lines 103 -
123 plot the heatmap.

Predicting gene expression from histone marks

This use case predicts gene expression based on a set of histone marks. Due to its com-
plexity, it is divided into two files: Listing A.8 load the data from the DeepBlue Server
and generate the data file that is used by Listing A.9 which execute the predictions using
the glmnet library and plot the charts containing the prediction results.

1 library(DeepBlueR)
2 library(data.table)
3 library(foreach)
4 library(GenomicRanges)
5 library(iterators)
6 library(dplyr)
7 library(tidyr)
8 library(stringr)
9

10 load(file = "matched_gene_expression_and_histone_data.RData")
11
12 #get histone data for the following histones
13 histone_marks <- c("H3K4me3", "H3K36me3", "H3K27ac", "H3K4me1", "H3K27me3", "H3K9me3")
14
15 #use specific biosource
16 selected_biosource = "CD4-positive, alpha-beta T cell"
17
18 #find out which samples have both gene expression and histone data
19
20 #samples with expression data
21 blueprint_samples_with_expr <- deepblue_info(deepblue_list_expressions(
22 project = "BLUEPRINT Epigenome",
23 expression_type = "gene")$id)
24
25 #get donor ids
26 blueprint_donors_with_expr <- unlist(lapply(blueprint_samples_with_expr,
27 function(x){x$sample_info$DONOR_ID}))
28
29 #experiments with histone data (optionally filter for specific cell type)
30 blueprint_experiments_with_histone <- deepblue_info(deepblue_extract_ids(
31 deepblue_list_experiments(genome = "GRCh38",
32 type = "signal",
33 project = "BLUEPRINT Epigenome",
34 epigenetic_mark = histone_marks,
35 biosource = selected_biosource)))
36
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37 #collect some info on these experiments
38 blueprint_donors_with_histone <- rbindlist(
39 lapply(blueprint_experiments_with_histone,
40 function(x){data.frame(experiment_name = x$name,
41 sample = x$sample_id,
42 donor = x$sample_info$DONOR_ID,
43 histone_mark = x$epigenetic_mark,
44 biosource = x$sample_info$biosource_name)}))
45
46 #keep experiments with data on all six histone marks on a single donor/biosource
47 #combo.
48 blueprint_donors_with_all_histone_marks <- blueprint_donors_with_histone %>%
49 group_by(donor, biosource) %>% filter(n() == 6)
50
51 #which donors have both expression data and data for six histone marks
52 donors_with_histone_data_and_gene_expr_data <- intersect(
53 blueprint_donors_with_expr, blueprint_donors_with_all_histone_marks$donor)
54
55 #subset histone meta data for donors that have also expression data
56 blueprint_all_histone_marks_and_expr <-
57 dplyr::filter(blueprint_donors_with_histone,
58 donor %in% donors_with_histone_data_and_gene_expr_data)
59
60 #build metadata for gene expression data
61 blueprint_gene_expr <- rbindlist(lapply(blueprint_samples_with_expr[
62 which(blueprint_donors_with_expr %in%
63 donors_with_histone_data_and_gene_expr_data)], function(x){
64 data.frame(exprs_id = x$`_id`, exprs_sample = x$sample_id,
65 donor = x$sample_info$DONOR_ID,
66 biosource = x$sample_info$biosource_name)
67 })) %>% filter(biosource == selected_biosource)
68
69 #list all protein coding genes. Could also select genes differently or provide
70 #a user-defined list.
71 all_genes <- deepblue_list_genes(gene_model = "gencode v22")
72
73 protein_coding_genes <- all_genes[gene_type == "protein_coding" & source == "HAVANA"]
74 protein_coding_genes_id <- protein_coding_genes$gene_id
75 protein_coding_genes_name <- protein_coding_genes$gene_name
76
77 protein_coding_genes_query <- deepblue_select_genes(
78 genes = protein_coding_genes_name,
79 gene_model = "gencode v22")
80
81 #request gene expression data from DeepBlue
82 gene_expr_data_request_ids <- foreach(gene_expr_sample = as.character(
83 blueprint_gene_expr$exprs_sample),
84 .inorder = TRUE,
85 .final = function(x)
86 setNames(x, as.character(
87 blueprint_gene_expr$exprs_sample))) %do% {
88
89 blueprint_gene_expr_query <- deepblue_select_expressions(
90 expression_type = "gene",
91 sample_ids = gene_expr_sample,
92 identifiers = protein_coding_genes_id,
93 gene_model = "gencode v22")
94
95 blueprint_gene_expr_request_id <- deepblue_get_regions(
96 query_id = blueprint_gene_expr_query,
97 output_format ="CHROMOSOME,START,END,@STRAND(gencode v22),@GENE_NAME(gencode v22),

TPM")
98
99 return(blueprint_gene_expr_request_id)

100 }
101
102 #prepare getting histone data
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103
104 #define promoter region
105 promoter_window <- deepblue_flank(protein_coding_genes_query, -2500, 5000)
106 #promoter_window <- deepblue_select_annotations("promoters", "GRCh38")
107
108 #general tiling regions of 100 bps
109 tiling_regions <- deepblue_tiling_regions(size = 100,
110 genome = "GRCh38")
111
112 #tiles in the promoter region
113 tss_tiling_regions <- deepblue_intersection(query_data_id = tiling_regions,
114 query_filter_id = promoter_window)
115
116 #request data for each histone mark
117 histone_request_ids <- foreach(hmark = histone_marks, .inorder = TRUE) %do%{
118
119 #filter for experiments for the current histone mark
120 blueprint_histone <- blueprint_all_histone_marks_and_expr %>%
121 dplyr::filter(histone_mark == str_to_lower(hmark))
122
123 #get request ids from DeepBlue
124 histone_data_request_ids <- foreach(histone_exp = as.character(
125 blueprint_histone$experiment_name),
126 .inorder = TRUE,
127 .final = function(x)
128 setNames(x, as.character(
129 blueprint_histone$experiment_name))) %do% {
130
131 data_id <- deepblue_select_experiments(
132 experiment_name=histone_exp)
133
134 query_id <- deepblue_aggregate(
135 data_id = data_id,
136 ranges_id = tss_tiling_regions,
137 column = "VALUE")
138
139 request_id <- deepblue_get_regions(
140 query_id, "CHROMOSOME, START, END, @AGG.MEAN")
141
142 return(request_id)
143 }
144 }
145 names(histone_request_ids) <- histone_marks
146
147 #check DeepBlue progress for gene expression data
148 if(any(deepblue_info(unlist(gene_expr_data_request_ids))$state %in% c("failed", "error"))){
149 stop("at least one gene expression data request failed")
150 } else if(any(deepblue_info(unlist(gene_expr_data_request_ids))$state != "done")){
151 stop("at least one gene expression data request is not finished yet")
152 } else{
153 message("gene expression data requests were processed successfully")
154 }
155
156
157 #download gene expression data and assign strand
158 gene_expr_data <- foreach(rid = gene_expr_data_request_ids,
159 .inorder = TRUE,
160 .final = function(x)
161 setNames(x, names(gene_expr_data_request_ids))) %do%
162 {
163 regions_data <- deepblue_download_request_data(rid)
164 strand(regions_data) <- regions_data$`@STRAND(gencode v22)`
165 return(regions_data)
166 }
167
168 #check DeepBlue progress for each histone mark
169 foreach(hmark = histone_marks, .inorder = TRUE) %do%{
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170
171 current_state <- deepblue_info(unlist(histone_request_ids[[hmark]]))$state
172
173 if(any(current_state %in% c("failed", "error"))){
174 stop(paste0("at least one gene expression data request failed for ", hmark))
175 }
176 else if(any(current_state != "done")){
177 stop(paste0("at least one gene expression data request is not finished yet for ", hmark))
178 }
179 else{
180 message(paste0("histone data requests were processed successfully for ", hmark))
181 }
182
183 }
184
185 #download and process data for each histone mark
186 histone_data <- foreach(hmark = histone_marks, .inorder = TRUE) %do%{
187
188 #filter for experiments for the current histone mark
189 blueprint_histone <- blueprint_all_histone_marks_and_expr %>%
190 dplyr::filter(histone_mark == str_to_lower(hmark))
191
192 #get request ids from above
193 histone_data_request_ids <- histone_request_ids[[hmark]]
194
195 #combine with gene expression meta data to obtain correct matches
196 #note that in case of several biological replicates all possible
197 #combinations are included.
198 metadata <- dplyr::inner_join(blueprint_histone, blueprint_gene_expr,
199 by = c("donor", "biosource"))
200
201 #download results
202 histone_tile_data <- foreach(rid = histone_data_request_ids,
203 .inorder = TRUE,
204 .final = function(x)
205 setNames(x, names(histone_data_request_ids))) %do%
206 {
207 deepblue_download_request_data(rid)
208 }
209
210 #map tiling regions to genes.
211 #Do this for one pair only, indices will be the same for other instances.
212 map_tiles_to_genes <- GenomicRanges::findOverlaps(
213 makeGRangesFromDataFrame(histone_tile_data[[1]]),
214 promoters(gene_expr_data[[1]],
215 downstream = 2500, upstream = 2500))
216
217 foreach(sample_pair = iter(metadata, by = "row")) %do%
218 {
219 gene_expr_sample <- gene_expr_data[[as.character(sample_pair$exprs_sample)]]
220 histone_sample <- histone_tile_data[[as.character(sample_pair$experiment_name)]]
221
222 combined <- cbind(histone_sample[as.data.frame(map_tiles_to_genes)$queryHits,],
223 as.data.frame(gene_expr_sample)[as.data.frame(map_tiles_to_genes)$

subjectHits,])
224
225 spread_combined <- combined %>%
226 group_by(`X.GENE_NAME.gencode.v22.`) %>%
227 filter(n() >= 49, n() <= 51) %>%
228 mutate(tile_number = row_number()) %>%
229 select(gene = `X.GENE_NAME.gencode.v22.`, TPM, mean_signal = ` @AGG.MEAN`, tile_number)

%>%
230 spread(key = tile_number, value = mean_signal, convert = TRUE, fill = 0)
231
232 return(spread_combined)
233 }
234 }
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235
236 names(histone_data) <- histone_marks
237 save.image(file = "matched_gene_expression_and_histone_data.RData")

Listing A.8: Predicting gene expression from histone data: loading the data from the
DeepBlue Server. The source code is well annotated providing the details in
each step.

1 library(glmnet)
2 library(tidyr)
3 library(ggplot2)
4 library(pROC)
5
6 #elastic net binomial regression with cross validation
7 models <- foreach(hmark = histone_marks, .inorder = TRUE) %do% {
8 hdata <- rbindlist(histone_data[[hmark]])
9 x <- log2(as.matrix(hdata[,3:53]) + 1e-6)

10 y <- log2(as.numeric(hdata$TPM) + 1e-6)
11 discrete_y <- rep(0, length(y))
12 discrete_y[which(y > median(y))] <- 1
13 discrete_y <- as.factor(discrete_y)
14
15 elnet_model <- cv.glmnet(x = x, y = discrete_y,
16 family = "binomial", alpha = 0.5, type.measure = "auc")
17 elnet_roc <- roc(response = discrete_y,
18 predictor = predict(elnet_model, newx = x, type = "response")[,1])
19 return(list(elnet_model, elnet_roc))
20 }
21
22 #plot ROC curves
23 plot(models[[1]][[2]], col = 1, xlim = c(1,0), ylim = c(0,1))
24 roc_legend <- paste(histone_marks[1], "(AUC = ",round(models[[1]][[2]]$auc,3),")",sep="")
25 for(i in 2:length(models)){
26 lines(models[[i]][[2]], col = i)
27 roc_legend <- c(roc_legend, paste(histone_marks[i], "(AUC = ",round(models[[i]][[2]]$auc,3)

,")",sep=""))
28 }
29 legend("bottomright", roc_legend, lty = 1, col = seq_len(length(histone_marks)), inset =

0.05)
30
31
32 #plot coefficients for each tile and histone marks as heatmap
33 names(models) <- histone_marks
34
35 coefficients <- rbindlist(lapply(models, function(x){ as.data.frame(t(as.matrix(coef(x[[1]]))

)) }), idcol = "histone mark")
36 plot_data <- tidyr::gather(coefficients, key = "tile_id", value = "coefficient", 3:51)
37 plot_data$tile_id <- as.integer(plot_data$tile_id)
38
39 ggplot(plot_data, aes(x = tile_id, y = `histone mark`, fill = coefficient)) +
40 geom_tile() +
41 theme_bw() +
42 scale_fill_gradient2(low = "purple", high = "orange", mid = "white") +
43 geom_vline(aes(xintercept = 25.5)) +
44 geom_text(aes(x = 24, y = 1, label = "TSS")) +
45 labs(x = "tile number (100 bp each)")

Listing A.9: Predicting gene expression from histone data: building the models, executing
the predictions, and displaying the results. The source code is well annotated
providing the details in each step.
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Constructing cell signatures

This use case aims to generate signatures of different BioSources for biomarkers identi-
fication. Due to its complexity, this use case is divided into five files:

• Listing A.10 is the main that loads the data, execute the functions provided by the
other files, and show results in the form of heatmaps.

• Listing A.11 provides functions for retrieving the score matrices containing sum-
marized data, as well for merging the data from the same BioSource providing
information such as the score matrix mean for and standard deviation.

• Listing A.12 provide functions for computing the BioSource score and for gener-
ating their signatures.

• Listing A.13 contains the functions for plotting the heatmap, used for visual in-
spection.

• Listing A.14 provides a set of tests that verify if the filtering and ranking methods
are correctly implemented.

1 # Load all package dependencies. install if missing!
2 library(DeepBlueR)
3 library(ggplot2)
4 library(dplyr)
5 library(foreach)
6 library(xlsx)
7 library(matrixStats)
8 library(stringr)
9 library(data.table)

10 library(gplots)
11 library(RColorBrewer)
12 library(doParallel)
13 library(testthat)
14
15 #register parallel processing, enable for speeding up signatures computation
16 #num_of_cores <- 37 #adjust as needed
17 cl <- parallel::makeCluster(4, outfile = "")
18 registerDoParallel(cl)
19
20 # Goal: establish a comprehensive list of marker regions that epigenetically identify a cell

type of interest (e.g. for the development of cell type specific biomarkers)
21
22 ### Use Case 4: Obtaining region-specific DNA methylation data for a custom selection of cell

types ###
23
24 # 1. Export a summary table that lists metadata for all samples that have sufficient DNA

methylation data to be included in the analysis
25 # 2. The user manually adds a new column "custom_cell_type" to this table (in Excel),

defining which biologically related samples should be aggregated into which cell types
("NA" for cell samples that are to be ignored)

26 # 3. The annotation table is imported into DeepBlue, and the use case continues with step 2
of Use Case 1.

27
28 # first identify suitable biosource terms
29 biosource_blood <- deepblue_get_biosource_related("hematopoietic cell")
30
31 # Identify experimental files in BLUEPRINT for those biosource terms
32 selected_experiments <- deepblue_list_experiments(genome = "GRCh38",
33 biosource = deepblue_extract_names(

biosource_blood),
34 project = "BLUEPRINT Epigenome",
35 epigenetic_mark = "DNA methylation")
36
37 # keep only 'call' files
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38 selected_experiments <- selected_experiments[grepl(pattern = "call\\.", selected_experiments$
name),]

39
40 # keep only CpG methylation calls
41 selected_experiments <- selected_experiments[grepl(pattern = "CPG_methylation", selected_

experiments$name),]
42
43 # download meta data
44 experiments_meta <- deepblue_meta_data_to_table(deepblue_extract_ids(selected_experiments))
45 experiments_meta$user_celltype <- experiments_meta$biosource_name
46
47 # write to XLSX
48 write.xlsx(experiments_meta, file = "experiments_metadata.xlsx")
49
50 # wait for user to edit the file and add custom cell type names
51 readline("Press enter when you are finished editing the metadata file experiments_metadata.

xlsx")
52
53 # read edited meta data
54 experiments_meta <- read.xlsx(file = "experiments_metadata.xlsx", sheetIndex = 1)
55
56 # plot cell type sample numbers
57 plot_data <- experiments_meta %>% group_by(user_celltype) %>% summarize(count = n())
58
59 ggplot(plot_data, aes(x = user_celltype, y = count)) + geom_bar(stat = "identity") +
60 theme_bw() +
61 theme(axis.text.x = element_text(angle = 90, hjust = 1))
62
63
64 ### Use Case 1: Obtaining region-specific DNA methylation data for blood cell types ###
65 # 1. Within cell_type_class=blood, group all samples by cell_type
66 # 2. Select a region set of interest (e.g. a 1kb tiling of the genome or the Ensembl

segmentation map)
67 # 3. Annotate each region with the mean and standard deviation (alternatively: median, 5th

percentile, and 95th percentile) of the region's DNA methylation status in all samples
of a given cell_type

68 # 4. Export the resulting [region] x [cell_type] table for manual filtering in R
69
70 # NOTE: not sure what you mean by grouping by cell type. grouping is not supported in

DeepBlue and has to be done
71 # after downloading the data in R. please elaborate how it should group multiple samples, e.g

. mean of the median and SD?
72
73 # Split the matrix generation by chromosome to make it more efficient.
74 # First it asks DeepBlue for the chromosome names it uses.
75 # NOTE: could be you also would want to remove the sex chromosomes here but it left them in
76
77 source("usecase1.R")
78
79 dna_meth_request_ids <- usecase_1_request_score_matrices(selected_experiments = selected_

experiments,
80 column_name = "VALUE",
81 reference_genome = "GRCh38",
82 experiments_meta = experiments_meta)
83
84 check_status(dna_meth_request_ids)
85
86 dna_meth_data <- usecase_1_download_score_matrices(request_ids = dna_meth_request_ids,
87 experiments_meta = experiments_meta)
88
89 ### Use Case 2: Automated selection of cell-type specific biomarkers (this could also be done

in R) ###
90
91 # 1. Based on the table produced in Use Case 1, add for each cell_type the following

calculated measures of cell-type specificity:
92 # - number of cell types in which the region's mean DNA methylation is lower than the region'

s DNA methylation in the selected cell_type



A.3 Usage example and use cases source code 195

93 # - number of cell types in which the region's mean DNA methylation minus 1x the standard
deviation is lower than the region's mean DNA methylation in the selected cell_type

94 # - number of cell types in which the region's mean DNA methylation minus 2x the standard
deviation is lower than the region's mean DNA methylation in the selected cell_type

95 # 2. Rank the regions based on the worst rank of the three metrics (each one ranked
individually and then taking the row-wise maximum)

96 # 3. Return the top-500 regions that are hypomethylated (lower methylation) in the selected
cell_type based on the consensus ranking

97 # 4. Repeat steps 1 to 3 with a focus on hypermethylated regions (higher methylation) in the
selected cell_type

98
99 source("usecase2.R")

100
101 hypo_meth_ranks <- compute_cell_type_scores(dna_meth_data$mean_matrix,
102 dna_meth_data$sd_matrix)
103
104 hyper_meth_ranks <- compute_cell_type_scores(dna_meth_data$mean_matrix,
105 dna_meth_data$sd_matrix,
106 invert = TRUE)
107
108 #check if the rank computations are correct using a random region and cell type
109 source("testing.R")
110 testing(dna_meth_data$mean_matrix, dna_meth_data$sd_matrix, hypo_meth_ranks, hyper_meth_ranks

)
111
112 #get unique biosources for extracting signatures
113 unique_biosources <- as.character(unique(experiments_meta$user_celltype))
114
115 #min.num.of.regions -> include at least 500 regions, include remaining regions with the same

rank score
116 #max.num.of.regions -> if more than x regions have been selected draw a random subset of x
117 #choose small x for example to make heatmaps feasible.
118 hyper_signatures <- generate_cell_type_signatures(unique_biosources, dna_meth_data$regions,
119 hyper_meth_ranks$`worst rank`,
120 min.num.of.regions = 100,
121 max.num.of.regions = NULL)
122 hypo_signatures <- generate_cell_type_signatures(unique_biosources, dna_meth_data$regions,
123 hypo_meth_ranks$`worst rank`,
124 min.num.of.regions = 100,
125 max.num.of.regions = NULL)
126
127 #plot size of individual signatures and heatmaps of a subset of the signatures
128
129 # plot number of signature regions for each cell type.
130
131 hyper_signatures_df <- rbindlist(hyper_signatures, idcol = "cell_type")
132 hyper_signatures_df$status <- "hyper"
133
134 hypo_signatures_df <- rbindlist(hypo_signatures, idcol = "cell_type")
135 hypo_signatures_df$status <- "hypo"
136
137 ggplot(data = rbind(hypo_signatures_df, hyper_signatures_df),
138 aes(x = cell_type)) +
139 geom_bar(stat = "count") +
140 theme_bw() +
141 facet_wrap(~status, ncol = 1) +
142 theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
143
144 # bonus: plot a heatmap with smaller signatures
145
146 hyper_signatures_heatmap <- generate_cell_type_signatures(unique_biosources, dna_meth_data$

regions,
147 hyper_meth_ranks$`worst rank`,
148 min.num.of.regions = 100,
149 max.num.of.regions = 100)
150 hypo_signatures_heatmap <- generate_cell_type_signatures(unique_biosources, dna_meth_data$

regions,
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151 hypo_meth_ranks$`worst rank`,
152 min.num.of.regions = 100,
153 max.num.of.regions = 100)
154
155
156 source("heatmap.R")
157 plot_heatmap(signatures = hypo_signatures_heatmap,
158 mean_df_matrix = dna_meth_data$mean_df,
159 experiments_meta = experiments_meta,
160 signature_score_numeric = signature_score_numeric,
161 filename = "DNA_meth_hypo")
162
163 plot_heatmap(signatures = hyper_signatures_heatmap,
164 mean_df_matrix = dna_meth_data$mean_df,
165 experiments_meta = experiments_meta,
166 signature_score_numeric = signature_score_numeric,
167 filename = "DNA_meth_hyper")
168
169
170 #cleanup
171 if(exists("cl")) stopCluster(cl)

Listing A.10: Generating biosource signatures for biomarkers identification: the main file
loads the data, execute the functions provided by the other files, and show
results in the form of heatmaps.

1 usecase_1_request_score_matrices <- function(selected_experiments, column_name,
2 reference_genome = "GRCh38",
3 experiments_meta)
4 {
5 chromosomes <- grep("_", deepblue_extract_ids(deepblue_chromosomes(reference_genome)),

invert = TRUE, value = TRUE)
6
7 # It also need to define the name of the column it need in the WIG files
8 experiments_columns <- deepblue_select_column(selected_experiments, column_name)
9

10 request_ids <- foreach(chromosome = chromosomes,
11 .final = function(x) setNames(x, chromosomes)) %do% {
12
13 #Select BLUEPRINT Ensembl regulatory build regions
14 #deepblue_list_annotations(genome = reference_genome) for all

annotations
15 ensembl_reg_build <- deepblue_select_annotations(annotation_name =

"Blueprint Ensembl Regulatory Build",
16 genome =

reference_
genome,

17 chromosome =
chromosome)

18
19 #alternatively if you want to use 1kb tiling
20 #deepblue_tiling_regions(size = 1000, genome = reference_genome,

chromosome = chromosome)
21
22 # request the score matrices
23 experiments_mean_request_id <-
24 deepblue_score_matrix(experiments_columns = experiments_columns,
25 aggregation_function = "mean",
26 aggregation_regions_id = ensembl_reg_build

)
27
28 experiments_sd_request_id <-
29 deepblue_score_matrix(experiments_columns = experiments_columns,
30 aggregation_function = "sd",
31 aggregation_regions_id = ensembl_reg_build

)
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32
33 #collect all request ids in pairs
34 list(experiments_mean_request_id, experiments_sd_request_id)
35 }
36 return(request_ids)
37 }
38
39 check_status <- function(request_ids){
40 table(unlist(lapply(deepblue_info(unlist(request_ids)), function(x) x$state)))
41 }
42
43 usecase_1_download_score_matrices <- function(request_ids,
44 experiments_meta)
45 {
46 #check status of all requests
47 state <- check_status(request_ids)
48
49 while(names(state) != c("done")){
50 print(state)
51 message("At least one request is not completed. Waiting...")
52 Sys.sleep(10)
53 }
54
55 # once finished, download the score matrices and merge them
56 download_and_combine_score_matrices <- function(request_ids, i){
57 # NOTE bind_rows will match columns by name such that it don't have to worry about column

order
58 foreach(pair_of_request_ids = request_ids, .combine = bind_rows) %do%
59 {
60 request_id <- pair_of_request_ids[[i]]
61 if(deepblue_info(request_id)$state != "done")
62 stop(paste(request_id, "is not reported as done. Please check its (error) state."))
63 deepblue_download_request_data(request_id)
64 }
65 }
66 experiments_mean_score_matrix <- download_and_combine_score_matrices(request_ids, 1)
67 experiments_sd_score_matrix <- download_and_combine_score_matrices(request_ids, 2)
68
69 # extract regions coordinates
70 regions <- experiments_mean_score_matrix[,1:3]
71
72 # convert the score matrix to a numeric matrix (omitting chr, start, end columns)
73 experiments_mean_score_numeric <- as.matrix(experiments_mean_score_matrix[,4:ncol(

experiments_mean_score_matrix)])
74 experiments_sd_score_numeric <- as.matrix(experiments_sd_score_matrix[,4:ncol(experiments_

sd_score_matrix)])
75
76 # the column order is not guaranteed to be identical in these two matrices, thus it

reorders the second one
77 experiments_sd_score_numeric <- experiments_sd_score_numeric[,colnames(experiments_mean_

score_numeric)]
78
79 # group by cell type
80 unique_biosources <- unique(experiments_meta$user_celltype)
81
82 # multiple columns in the matrices correspond to the same cell type. here it merges them by

mean, omitting NAs.
83 aggregate_by_cell_type <- function(score_matrix){
84 foreach(biosource = unique_biosources,
85 .combine = cbind,
86 .final = function(x) {
87 colnames(x) <- unique_biosources;
88 return(x)}) %do% {
89 experiments_with_current_biosource <- experiments_meta[which(experiments_meta

$user_celltype == biosource), "name"]
90 subset_of_matrix <- score_matrix[,experiments_with_current_biosource]
91 if(is.null(ncol(subset_of_matrix))) return(subset_of_matrix)
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92 else return(rowMeans(subset_of_matrix, na.rm = TRUE))
93 }
94 }
95
96 biosources_mean_score_matrix <- aggregate_by_cell_type(experiments_mean_score_numeric)
97
98 #we replace NAs with zeros
99 biosources_mean_score_matrix[is.na(biosources_mean_score_matrix)] <- 0

100
101 #we identify regions without methylation signal in any of the cell types
102 signal_regions <- which(rowSums(biosources_mean_score_matrix) > 0)
103
104 #and keep only those
105 biosources_mean_score_matrix <- biosources_mean_score_matrix[signal_regions,]
106
107 #follow the same strategy for the SD matrix
108 biosources_mean_sd_matrix <- aggregate_by_cell_type(experiments_sd_score_numeric)
109 biosources_mean_sd_matrix[is.na(biosources_mean_sd_matrix)] <- 0
110 biosources_mean_sd_matrix <- biosources_mean_sd_matrix[signal_regions,]
111
112 #make sure to also filter the regions coordinates data table
113 regions <- regions[signal_regions,]
114
115 return(list(mean_df = experiments_mean_score_matrix,
116 mean_matrix = biosources_mean_score_matrix,
117 sd_df = experiments_sd_score_matrix,
118 sd_matrix = biosources_mean_sd_matrix,
119 regions = regions))
120 }

Listing A.11: Generating biosource signatures for biomarkers identification: this file
retrieves the data in the form of score matrices, containing summarized data,
as well for merging the data from the same BioSource providing information
such as the score matrix mean for and standard deviation

1 #hypomethylated regions
2
3 compute_cell_type_scores <- function(mean_score_matrix, sd_score_matrix, invert = FALSE){
4
5 if(invert){
6 sign_for_score <- -1
7 direction <- "higher"
8 sign_for_label <- "+"
9 }

10 else{
11 sign_for_score <- 1
12 direction <- "lower"
13 sign_for_label <- "-"
14 }
15 #the three metrices described above. The first one is simply the rank
16 mean_score <- t(apply(sign_for_score * mean_score_matrix,
17 1, rank, ties.method = "max") - 1)
18
19 #the other two are more complicated since they need to get the rank of the average
20 #DNA methylation in the matrix that was modified by subtracting the SD...
21 #It thus adds the average DNA methylation to the SD modified matrix and rank them together
22 #This has to be done for each cell type indivdually.
23
24 compute_ranks_in_sd_matrix <- function(multiplier){
25
26 overall_result <- foreach(cell_type_index = seq_len(ncol(mean_score_matrix)),
27 .export = c("mean_score_matrix", "sd_score_matrix", "sign_for_score"),
28 .combine = cbind,
29 .inorder = TRUE, #otherwise the cell types would be mixed up in paralellization
30 .final = function(x) {
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31 colnames(x) <- colnames(mean_score_matrix)
32 rownames(x) <- rownames(mean_score_matrix)
33 return(x)
34 }) %dopar%
35 {
36 current_cell_type <- mean_score_matrix[,cell_type_index]
37 result <- t(apply(sign_for_score * cbind(current_cell_type,
38 (mean_score_matrix[,-cell_type_index] - multiplier * sd_score_matrix[,-cell_type_

index])),
39 1, rank, ties.method = "max") - 1)
40
41 return(result[,1]) #return only first column with ranks of the respective cell type
42 }
43 return(overall_result)
44 }
45
46 mean_1_sd <- compute_ranks_in_sd_matrix(1)
47 mean_2_sd <- compute_ranks_in_sd_matrix(2)
48
49 #the worst rank
50 worst_rank <- pmax(mean_score, mean_1_sd, mean_2_sd)
51
52 #combine regions with ranks
53 result <- list(mean_score, mean_1_sd, mean_2_sd, worst_rank)
54 names(result) <- c(paste("number of cell types with score", direction, "than average"),
55 paste("number of cell types with score", direction, "than (average",

sign_for_label, "SD)"),
56 paste("number of cell types with score", direction, "than (average",

sign_for_label, "2*SD)"),
57 "worst rank")
58 return(result)
59 }
60
61 #generate a list of cell type signatures
62 generate_cell_type_signatures <- function(unique_biosources, regions, ranks,
63 min.num.of.regions = 500,
64 max.num.of.regions = NULL){
65 if(!is.null(max.num.of.regions))
66 if(min.num.of.regions > max.num.of.regions)
67 stop("max.num.of.regions needs to be equal to or larger than min.num.of.regions.")
68
69 foreach(biosource = unique_biosources,
70 .final = function(x) setNames(x, unique_biosources)) %do% {
71 regions_ranks <- cbind(regions, ranks)
72 result <- regions_ranks %>%
73 select(CHROMOSOME, START, END, celltypes_scoring_better = UQ(biosource)) %>%
74 top_n(min.num.of.regions, -celltypes_scoring_better)
75 if(!is.null(max.num.of.regions)){
76 #return a random sample of regions
77 result <- result %>% sample_n(min(nrow(result), max.num.of.regions))
78 }
79 return(result)
80 }
81 }

Listing A.12: Generating biosource signatures for biomarkers identification: this file
provides the functions for computing the BioSource scores and generating
their signatures.

1 plot_heatmap <- function(signatures, mean_df_matrix, experiments_meta,
2 signature_score_numeric, filename)
3 {
4 signature_regions <- rbindlist(signatures) %>% select(CHROMOSOME, START, END) %>% distinct

()
5
6
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7 # filter the DNA methylation matrix for those signature regions
8 signature_score_matrix <- dplyr::semi_join(mean_df_matrix,
9 signature_regions,

10 by = c("CHROMOSOME", "START", "END"))
11 signature_score_numeric <- as.matrix(signature_score_matrix[,4:ncol(signature_score_matrix)

])
12 signature_score_numeric[is.na(signature_score_numeric)] <- 0
13
14 rownames(experiments_meta) <- experiments_meta$name
15 unique_biosources <- unique(experiments_meta$user_celltype)
16
17 # define cell types and colors
18 getPalette <- colorRampPalette(brewer.pal(9, "Set1"))
19
20 color_map <- data.frame(biosource = unique_biosources,
21 color = getPalette(length(unique_biosources)))
22
23 exp_names <- colnames(signature_score_numeric)
24 biosource_colors <- data.frame(name = exp_names, biosource = experiments_meta[exp_names, "

user_celltype"])
25 biosource_colors <- left_join(biosource_colors, color_map, by = "biosource")
26 color_vector <- as.character(biosource_colors$color)
27 names(color_vector) <- biosource_colors$biosource
28
29 #plot heatmap using pearson correlation for hierarchical clustering
30 pdf(file = paste0(filename, "_heatmap.pdf"), paper = "a4")
31 heatmap.2(signature_score_numeric,labRow = NA, labCol = NA,
32 trace = "none", ColSideColors = color_vector,
33 hclust=function(x) hclust(x,method="complete"),
34 distfun=function(x) as.dist(1-cor(t(x), method = "pearson")), Rowv = TRUE,

dendrogram = "column",
35 key.xlab = "beta value", denscol = "black", keysize = 1.5,
36 key.par = list(mar = c(8.5, 2.5, 1, 1)), key.title = NA)
37
38 # Next, it adds a legend showing which cell type has which color
39 plot.new()
40 legend(x = 0, y = 1,
41 legend = color_map$biosource,
42 col = as.character(color_map$color),
43 text.width = 0.6,
44 lty= 1,
45 lwd = 6,
46 cex = 0.7,
47 y.intersp = 0.7,
48 x.intersp = 0.7,
49 inset=c(-0.21,-0.11))
50 dev.off()
51 }

Listing A.13: Generating biosource signatures for biomarkers identification: this file
provides functions for displaying results in the form of heatmaps.

1 testing <- function(mean_matrix, sd_matrix, hypo_meth_ranks, hyper_meth_ranks){
2 mean_test <- mean_matrix[12345,]
3 sd_test <- sd_matrix[12345,]
4 mean_1_sd_test <- mean_test - sd_test
5 mean_2_sd_test <- mean_test - 2 * sd_test
6
7 #test hypo methylation results
8 testthat::expect_equal(hypo_meth_ranks$`number of cell types with score lower than average

`[12345,],
9 (rank(mean_test, ties.method = "max" )-1))

10
11 testthat::expect_equal(hypo_meth_ranks$`number of cell types with score lower than (average

- SD)`[12345,5],
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12 (rank(c(mean_test[5], mean_1_sd_test[-5]), ties.method = "max" )-1)
[1])

13
14 testthat::expect_equal(hypo_meth_ranks$`number of cell types with score lower than (average

- 2*SD)`[12345,35],
15 (rank(c(mean_test[35], mean_2_sd_test[-35]), ties.method = "max" )

-1)[1])
16
17 #test hyper methylation results
18 testthat::expect_equal(hyper_meth_ranks$`number of cell types with score higher than

average`[12345,],
19 (rank(-mean_test, ties.method = "max" )-1))
20
21 testthat::expect_equal(hyper_meth_ranks$`number of cell types with score higher than (

average + SD)`[12345,5],
22 (rank(c(-mean_test[5], -mean_1_sd_test[-5]), ties.method = "max" )

-1)[1])
23
24 testthat::expect_equal(hyper_meth_ranks$`number of cell types with score higher than (

average + 2*SD)`[12345,35],
25 (rank(c(-mean_test[35], -mean_2_sd_test[-35]), ties.method = "max" )

-1)[1])
26 }

Listing A.14: Generating biosource signatures for biomarkers identification: this file tests
the executed filtering and calculation method, ensuring a better method and
code quality.

A.3.3 DIVE

DeepBlue and DIVE integration example: Comparing data from DEEP and CREST

One of DIVE limitations is the lack of out of the box support for signal files. It is possible
to overcome this limitation by developing a script for processing the signal files using the
DeepBlue Server API. Listing A.15 shows how to aggregate and filter DNA methylation
data for analyzing in DIVE. This source code uses two experiments from DEEP and
two from CREST, filtering each one for hypomethylated and hypermethylated regions,
generating in the total 8 query IDs that can be easily loaded into DIVE for further analysis.

1 import xmlrpclib
2
3 url = "http://deepblue.mpi-inf.mpg.de/xmlrpc"
4 deepblue = xmlrpclib.Server(url, allow_none=True)
5
6 USER_KEY = "anonymous_key"
7
8 GENOME = "hg19"
9 GENE_MODEL = "gencode v19"

10
11 def get_promoters(gene_model):
12 (_, q_genes) = deepblue.select_genes(
13 None, None, gene_model, None, None, None, USER_KEY)
14 (_, promoters) = deepblue.flank(q_genes, -2500, 2000, True, USER_KEY)
15 return promoters
16
17 def get_data_id(project, genome):
18 # Obtain the promoters
19 promoters = get_promoters(GENE_MODEL)
20
21 # List all mRNA experiments from Hepatocytes and from the CREST project.
22 _, experiments = deepblue.list_experiments(genome, "signal",
23 "DNA Methylation", "hepatocyte",
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24 None, None, project,
25 USER_KEY)
26 # Remove the coverage files
27 selected_exps = [e_name for [_, e_name]
28 in experiments if "coverage" not in e_name.lower()]
29
30 # Use only two experiments of each project
31 for selected_exp in selected_exps[0:2]:
32 _, e_query = deepblue.select_experiments(
33 selected_exp, None, None, None, USER_KEY)
34
35 # Aggregate the regions using the column VALUE
36 (_, agg_id) = deepblue.aggregate(
37 e_query, promoters, "VALUE", USER_KEY)
38
39 _, low_id = deepblue.filter_regions(
40 agg_id, "@AGG.MEAN", "<=", "15", "number", USER_KEY)
41 _, high_id = deepblue.filter_regions(
42 agg_id, "@AGG.MEAN", ">=", "85", "number", USER_KEY)
43
44 # Just for speed up the data loading in DIVE
45 deepblue.count_regions(low_id, USER_KEY)
46 deepblue.count_regions(high_id, USER_KEY)
47
48 print selected_exp, low_id, high_id
49
50 get_data_id("DEEP (IHEC)", GENOME)
51 get_data_id("CREST", GENOME)

Listing A.15: Pre-processing data for comparing data from DEEP and CREST in DIVE:
this source code is straightforward, where in lines 1 - 9 load the
required libraries and set the parameters used in the data processing.
Lines 11-15 provides a function that return a query ID which references
promoter regions. The function get_data in lines 17 - 48 obtain the
promoters, than the list of experiments, which is filtered for removing
the DNA methylation coverage files, two of the remaining files are
individually aggregated by the promoter regions, and the aggregation
results are filtered for hypomethylated (DNAmethylationlevel <= 15) and
hypermethylated (DNAmethylationlevel >= 85) regions. The filtering query
IDs are displayed to the user, which must load them in DIVE. LineS 50-51
execute the get_data function for the public DEEP and CREST data.
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A.4 DeepBlue Server API

The DeepBlue Server API has 96 operations. These operations are divided into 19 cate-
gories: Status, Column Types, Genomic Regions Operations, Requests, BioSources rela-
tionship, Epigenetic marks, Utilities, Genes, Genomes, Data Modification, General Infor-
mation, BioSources, Experiments, Samples, Genomic Regions Enrichment, Expressions,
Annotations, Projects, Techniques.

The API operations documentation can be programmatically retrieved using the com-
mands() operation. As an example, the following operations list was generated by a
python script.

In the following, each category is presented with with its respective operations.

Annotations

Inserting and listing annotations

add_annotation(name, genome, description, data, format, extra_metadata, user_key)
Add a custom annotation of genomic regions such as, for instance, promoters, transcription factor binding sites, or

genes to DeepBlue. Annotations are a set genomic regions such as, for instance, promoters, transcription factor binding
sites, or genes to DeepBlue.

find_motif(motif , genome, chromosomes, start, end, overlap, user_key)
Find genomic regions based on a given motif that appears in the genomic sequence.

list_annotations(genome, user_key)
List all annotations of genomic regions currently available in DeepBlue.

BioSources

Inserting and listing biosources

add_biosource(name, description, extra_metadata, user_key)
Add a BioSource to DeepBlue. A BioSource refers to a term describing the origin of a given sample, such as a tissue

or cell line.

list_biosources(extra_metadata, user_key)
List BioSources included in DeepBlue. A BioSource refers to a term describing the origin of a given sample, such

as a tissue or cell line. It is possible to filter the BioSources by their extra_metadata fields content. These fields vary
depending on the original data source.

list_similar_biosources(name, user_key)
List all BioSources that have a similar name compared to the provided name. A BioSource refers to a term describing

the origin of a given sample, such as a tissue or cell line. The similarity is calculated using the Levenshtein method.

BioSources relationship

Set the relationship between different biosources

create_experiments_set(name, description, public, experiment_name, user_key)
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Create a set of experiments to be shared among other users

get_biosource_children(biosource, user_key)
A BioSource refers to a term describing the origin of a given sample, such as a tissue or cell line. These form a hier-

archy in which children of a BioSource term can be fetched with this command. Children terms are more specific terms
that are defined in the imported ontologies.

get_biosource_parents(biosource, user_key)
A BioSource refers to a term describing the origin of a given sample, such as a tissue or cell line. These form a hier-

archy in which the parent of a BioSource term can be fetched with this command. Parent terms are more generic terms
that are defined in the imported ontologies.

get_biosource_related(biosource, user_key)
A BioSource refers to a term describing the origin of a given sample, such as a tissue or cell line. These form a hierar-

chy in which the children of a BioSource term and its synonyms can be fetched with this command. Children terms are
more specific terms that are defined in the imported ontologies. Synonyms are different aliases for the same biosource.

get_biosource_synonyms(biosource, user_key)
Obtain the synonyms of the specified biosource. Synonyms are different aliases for the same biosource. A BioSource

refers to a term describing the origin of a given sample, such as a tissue or cell line.

set_biosource_parent(parent, child, user_key)
Define a BioSource as parent of another BioSource. This command is used to build the BioSources hierarchy. A

BioSource refers to a term describing the origin of a given sample, such as a tissue or cell line.

set_biosource_synonym(biosource, synonym_name, user_key)
Define a synonym for a BioSource. BioSources can have multiple synonyms. This command for can be used multiply

to add several synonyms. A BioSource refers to a term describing the origin of a given sample, such as a tissue or cell
line.

Column Types

Inserting and listing different column types

create_column_type_calculated(name, description, code, user_key)
Create a calculated column type in DeepBlue.A calculated column can use existing columns and transform or

summarize them through mathematical operations or string operations using the programming language LUA. Ex-
amples: the following ’code’ parameter can be used to calculate the square root of the column VALUE: ’return
math.sqrt(value_of(’VALUE’))’. Another example is dividing the value of the column ’VALUE’ by the region length:
’return value_of(’VALUE’) / (value_of(’END’) - value_of(’END’))’.

create_column_type_category(name, description, items, user_key)
Create a categoric column type in DeepBlue from a set of items. As example, the STRAND column is a category

column that contain the items: ’+’, ’-’, and ’.’ .

create_column_type_range(name, description, minimum, maximum, user_key)
Create a range column type in DeepBlue. For example, a METHYLATION_BETA_VALUE column where accepted

values are from 0.0 to 1.0 .

create_column_type_simple(name, description, type, user_key)
Create a simple column type (string, integer, double) in DeepBlue.

list_column_types(user_key)
Lists the ColumnTypes included in DeepBlue.
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Data Modification

Operations that modify the data content

change_extra_metadata(id, key, value, user_key)
Modify the extra/metadata content of experiments, annotations, biosources, and samples. Use this command with an

extra-metadata key without value for removing this key. Extra-metadata fields are optional non-standardized fields that
are created during the import process. Only files uploaded by the user can me modified. The command ’clone_dataset’
must be used if the user wants to modify a files that does not belong to him.

clone_dataset(dataset_id, new_name, new_epigenetic_mark, new_sample, new_technique, new_project, descrip-
tion, format, extra_metadata, user_key)

Clone a dataset optionally changing its metadata and extra_metadata values. This command must be used in data
curation because users do not have permission to change the metadata values of the Annotations and Experiments that
were not uploaded by them.

Epigenetic marks

Inserting and listing epigenetic marks

add_epigenetic_mark(name, description, extra_metadata, user_key)
Include an Epigenetic Mark such as, for instance, a specific type of histone modification, in DeepBlue.

list_epigenetic_marks(extra_metadata, user_key)
List Epigenetic Marks included in DeepBlue. This includes histone marks, DNA methylation, DNA sensitivity, etc.

It is possible to filter the Epigenetic Marks by their extra_metadata field content.

list_similar_epigenetic_marks(name, user_key)
List all Epigenetic Marks that have a similar name compared to the provided name. The similarity is calculated using

the Levenshtein method.

Experiments

Inserting and listing experiments

add_experiment(name, genome, epigenetic_mark, sample, technique, project, description, data, format, ex-
tra_metadata, user_key)

Add an Experiment in DeepBlue. An Experiment describes the characteristics of a specific Epigenetic Mark with
respect to a single sample. The technology used and project must be informed as well. Extra-metadata can be specified
in addition to the mandatory meta information.

collection_experiments_count(controlled_vocabulary, genome, type, epigenetic_mark, biosource, sample,
technique, project, user_key)

Count the number of experiments that match the selection criteria in each term of the selected controlled_vocabulary.
The selection can be achieved through specifying a list of BioSources, experimental Techniques, Epigenetic Marks, Sam-
ples or Projects.

faceting_experiments(genome, type, epigenetic_mark, biosource, sample, technique, project, user_key)
Summarize the controlled_vocabulary fields, from experiments that match the selection criteria. It is similar to the

’collection_experiments_count’ command, but this command return the summarization for all controlled_vocabulary
terms.

list_experiments(genome, type, epigenetic_mark, biosource, sample, technique, project, user_key)
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List the DeepBlue Experiments that matches the search criteria defined by this command parameters.

list_recent_experiments(days, genome, epigenetic_mark, sample, technique, project, user_key)
List the latest Experiments included in DeepBlue that match criteria defined in the parameters. The returned experi-

ments are sorted by insertion date.

list_similar_experiments(name, genome, user_key)
List all Experiments that have a similar name compared to the provided name. The similarity is calculated using the

Levenshtein method.

preview_experiment(experiment_name, user_key)
List the DeepBlue Experiments that matches the search criteria defined by this command parameters.

Expressions

Expression data

add_expression(expression_type, sample_id, replica, data, format, project, extra_metadata, user_key)
Include Expression data in DeepBlue.

list_expressions(expression_type, sample_id, replica, project, user_key)
List the Expression currently available in DeepBlue. An expression is a set of data with an identifier and an expres-

sion value.

select_expressions(expression_type, sample_ids, replicas, identifiers, projects, gene_model, user_key)
Select expressions (by their name or ID) as genomic regions from the specified model.

General Information

Commands for all types of data

cancel_request(id, user_key)
Stop, cancel, and remove request data. The request processed data is remove if its processing was finished.

info(id, user_key)
Information about a DeepBlue data identifier (ID). Any DeepBlue data ID can be queried with this command. For

example, it is possible to obtain all available information about an Experiment using its ID, to obtain the actual Request
processing status or the information about a Sample. A user can obtain information about him- or herself using the
value ’me’ in the parameter ’id’. Multiple IDs can be queried in the same operation.

is_biosource(biosource, user_key)
Verify if the name is an existing and valid DeepBlue BioSource name. A BioSource refers to a term describing the

origin of a given sample, such as a tissue or cell line.

list_in_use(controlled_vocabulary, user_key)
List all terms used by the Experiments mandatory metadata that have at least one Experiment or Annotation using

them.

name_to_id(name, collection, user_key)
Obtain the data ID(s) from the informed data name(s).

remove(id, user_key)
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Remove a DeepBlue data by using its ID.

search(keyword, type, user_key)
Search all data of all types for the given keyword. A minus (-) character in front of a keyword searches for data without

the given keyword. The search can be restricted to the following data types are: Annotations, Biosources, Column_types,
Epigenetic_marks, Experiments, Genomes, Gene_models, Gene_expressions, Genes, Gene_ontology, Projects, Samples,
Techniques, Tilings.

Genes
Gene models and genes identifiers

add_gene_model(gene_model, genome, description, data, format, extra_metadata, user_key)
Include a Gene Model in DeepBlue. The data must be in the GTF format. Important: this command will include only

lines where the column ’feature’ is ’genes’.

add_gene_ontology_term(go_id, go_label, description, namespace, user_key)
Add a Gene Ontology Term to DeepBlue. A Gene Ontology Term refers to a term use to describe the genes functions.

annotate_gene(gene_ensb_id, go_term_id, user_key)
Annotate a Gene with a Gene Ontology Term.

count_gene_ontology_terms(genes, go_terms, chromosome, start, end, gene_model, user_key)
Summarize the controlled_vocabulary fields, from experiments that match the selection criteria. It is similar to the

’collection_experiments_count’ command, but this command return the summarization for all controlled_vocabulary
terms.

list_gene_models(user_key)
List all the Gene Models currently available in DeepBlue. A gene model is a set of genes usually imported from

GENCODE. For example Gencode v22.

list_genes(genes, go_terms, chromosome, start, end, gene_model, user_key)
List the Genes currently available in DeepBlue.

select_genes(genes, go_terms, gene_model, chromosome, start, end, user_key)
Select genes (by their name or ID) as genomic regions from the specified gene model.

set_gene_ontology_term_parent(parent_go_id, parent_go_id, user_key)
Define a BioSource as parent of another BioSource. This command is used to build the BioSources hierarchy. A

BioSource refers to a term describing the origin of a given sample, such as a tissue or cell line.

Genomes
Inserting and listing genomes

add_genome(name, description, data, user_key)
Add a (reference) Genome assembly to DeepBlue.

chromosomes(genome, user_key)
List the chromosomes of a given Genome.

list_genomes(user_key)
List Genomes assemblies that are registered in DeepBlue.

list_similar_genomes(name, user_key)
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Lists all Genomes that have a similar name compared to the provided name. The similarity is calculated using the
Levenshtein method.

upload_chromosome(genome, chromosome, data, user_key)
Upload the DNA sequence of a chromosome.

Genomic Regions Enrichment
Enrich the genome regions

enrich_regions_fast(query_id, genome, epigenetic_mark, biosource, sample, technique, project, user_key)
Enrich the regions based on regions bitmap signature comparison.

enrich_regions_go_terms(query_id, gene_model, user_key)
Enrich the regions based on Gene Ontology terms.

enrich_regions_overlap(query_id, background_query_id, datasets, genome, user_key)
Enrich the regions based on regions overlap analysis.

Genomic Regions Operations
Operating on the data regions

aggregate(data_id, ranges_id, column, user_key)
Summarize the data_id content using the regions specified in ranges_id as boundaries. Use the fields @AGG.MIN,

@AGG.MAX, @AGG.SUM, @AGG.MEDIAN, @AGG.MEAN, @AGG.VAR, @AGG.SD, @AGG.COUNT in ’get_regions’
command ’format’ parameter to retrieve the computed values minimum, maximum, median, mean, variance, standard
deviation and number of regions, respectively.

binning(query_data_id, column, bins, user_key)
Bin results according to counts.

count_regions(query_id, user_key)
Return the number of genomic regions present in the query.

coverage(query_id, genome, user_key)
Send a request to count the number of regions in the result of the given query.

distinct_column_values(query_id, field, user_key)
Obtain the distict values of the field.

extend(query_id, length, direction, use_strand, user_key)
Extend the genomic regions included in the query. It is possible to extend downstream, upstream or in both direc-

tions.

filter_by_motif(query_id, motif , user_key)
Filter the genomic regions by a regular expression motif.

filter_regions(query_id, field, operation, value, type, user_key)
Filter the genomic regions by their content.

flank(query_id, start, length, use_strand, user_key)
Create a set of genomic regions that flank the query regions. The original regions are removed from the query. Use

the merge command to combine flanking regions with the original query.
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get_experiments_by_query(query_id, user_key)
List the experiments and annotations that have at least one genomic region in the final query result.

get_regions(query_id, output_format, user_key)
Trigger the processing of the query’s genomic regions. The output is a column-based format with columns as defined

in the ’output_format’ parameter. Use the command ’info’ for verifying the processing status. The ’get_request_data’
command is used to download the regions using the programmatic interface. Alternatively, results can be download
using the URL: http://deepblue.mpi-inf.mpg.de/download?r_id=<request_id>&key=<user_key>.

input_regions(genome, region_set, user_key)
Upload a set of genomic regions that can be accessed through a query ID. An interesting use case for this command

is to upload a set of custom regions for intersecting with genomic regions in DeepBlue to specifically select regions of
interest.

intersection(query_data_id, query_filter_id, user_key)
Select genomic regions that intersect with at least one region of the second query. This command is a simplified

version of the ’overlap’ command.

merge_queries(query_a_id, query_b_id, user_key)
Merge regions from two queries in a new query.

overlap(query_data_id, query_filter_id, overlap, amount, amount_type, user_key)
Select genomic regions that overlap or not overlap with with the specified number of regions of the second query.

Important: This command is still experimental and changes may occour.

query_cache(query_id, cache, user_key)
Cache a query result in DeepBlue memory. This command is useful when the same query ID is used multiple times

in different requests. The command is an advice for DeepBlue to cache the query result and there is no guarantee that
this query data access will be faster.

query_experiment_type(query_id, type, user_key)
Filter the query ID for regions associated with experiments of a given type. For example, it is possible to select only

peaks using this command with the ’peaks’ parameter.

score_matrix(experiments_columns, aggregation_function, aggregation_regions_id, user_key)
Build a matrix containing the aggregation result of the experiments data by the aggregation boundaries.

select_annotations(annotation_name, genome, chromosome, start, end, user_key)
Select regions from the Annotations that match the selection criteria.

select_experiments(experiment_name, chromosome, start, end, user_key)
Selects regions from Experiments by the experiments names.

select_regions(experiment_name, genome, epigenetic_mark, sample_id, technique, project, chromosomes, start,
end, user_key)

Selects Experiment regions that matches the criteria informed by the operation parameters.

tiling_regions(size, genome, chromosome, user_key)
Generate tiling regions across the genome chromosomes. The idea is to ”bin” genomic regions systematically in or-

der to obtain disjoint regions over which one can aggregate. Using the ’score_matrix’ command, these bins (tiles) can
be compared directly across experiments.
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Projects
Inserting and listing projects

add_project(name, description, user_key)
Add a Project to DeepBlue. A Project is used to group Experiments and to define their origin.

add_user_to_project(user, project, set, user_key)
Add a user as Project member.

list_projects(user_key)
List Projects included in DeepBlue.

list_similar_projects(name, user_key)
List Projects that have a similar name compared to the provided name. The similarity is calculated using the Leven-

shtein method.

set_project_public(project, set, user_key)
Define a project as public. This means that all DeepBlue users can then access its data. You must be the project owner

to perform this operation.

Requests
Requests status information and results

get_request_data(request_id, user_key)
Download the requested data. The output can be (i) a string (get_regions, score_matrix, and count_regions), or (ii) a

list of ID and names (get_experiments_by_query), or (iii) a struct (coverage).

list_requests(request_state, user_key)
List the Requests made by the user. It is possible to obtain only the requests of a given state.

reprocess(request_id, user_key)
Reprocess the request. Useful when the request was cancelled or removed.

Samples
Inserting and listing samples

add_sample(biosource, extra_metadata, user_key)
Add a Sample to DeepBlue that is related to a BioSource.

add_sample_from_gsm(biosource, gsm_id, user_key)
Add a Sample to DeepBlue that is related to a BioSource and can be linked to an existing GSM identifier (from a GEO

repository.

list_samples(biosource, extra_metadata, user_key)
List Samples included in DeepBlue. It is possible to filter by the BioSource and by extra_metadata fields content.

Status
Checking DeepBlue status

commands()
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List all available DeepBlue commands.

echo(user_key)
Greet the user with the DeepBlue version.

Techniques
Inserting and listing techniques

add_technique(name, description, extra_metadata, user_key)
Add an experimental Technique to DeepBlue.

list_similar_techniques(name, user_key)
List Techniques that have a similar name compared to the provided name. The similarity is calculated using the

Levenshtein method.

list_techniques(user_key)
List the Techniques included in DeepBlue.

Utilities
Utilities for connecting operations

extract_ids(list)
A utility command that returns a list of IDs extracted from a list of ID and names.

extract_names(list)
A utility command that returns a list of names extracted from a list of ID and names.
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