
Plane and Simple: Using Planar
Subgraphs for Efficient Algorithms

A dissertation submitted towards the degree
Doctor of Natural Science

of the Faculty of Mathematics and Computer Science of
Saarland University

by Andreas Schmid

Saarbrücken / 2019

Day of Colloquium: 2. December 2019
Dean of the Faculty: Prof. Dr. Sebastian Hack

Chair of the Committee: Prof. Dr. Markus Bläser
Reporters

First reviewer: Prof. Dr. Dr. h.c. Kurt Mehlhorn
Second reviewer: Prof. Dr. Parinya Chalermsook

Academic Assistant: Dr. Antonios Antoniadis

ii

Abstract

Abstract In this thesis, we showcase how planar subgraphs with special structural
properties can be used to find efficient algorithms for two NP-hard problems in combi-
natorial optimization.

In the first part, we develop algorithms for the computation of Tutte paths and show
how these special subgraphs can be used to efficiently compute long cycles and other
relaxations of Hamiltonicity if we restrict the input to planar graphs. We give an O(n2)
time algorithm for the computation of Tutte paths in circuit graphs and generalize it
to the computation of Tutte paths between any two given vertices and a prescribed
intermediate edge in 2-connected planar graphs.

In the second part, we study the Maximum Planar Subgraph Problem (Mps) and
show how dense planar subgraphs can be used to develop new approximation algorithms
for this problem. All new algorithms and arguments we present are based on a novel
approach that focuses on maximizing the number of triangular faces in the computed
subgraph. For this, we define a new optimization problem called Maximum Planar
Triangles (Mpt). We show that this problem is NP-hard and quantify how good an
approximation algorithm for Mpt performs as an approximation for Mps. We give a
greedy 1

11 -approximation algorithm for Mpt and show that the approximation ratio can
be improved to 1

6 by using locally optimal triangular cactus subgraphs.

Zusammenfassung In dieser Dissertation zeigen wir, wie planare Teilgraphen mit
speziellen Eigenschaften verwendet werden können, um effiziente Algorithmen für zwei
NP-schwere Probleme in der kombinatorischen Optimierung zu finden.

Im ersten Teil entwickeln wir Algorithmen zur Berechnung von Tutte-Wegen und
zeigen, wie diese verwendet werden können, um lange Kreise und andere Lockerungen der
Hamilton-Charakteristik zu finden, wenn wir uns auf Graphen in der Ebene beschrnken.
Wir beschreiben zunächst einen O(n2)-Algorithmus in Circuit-Graphen und verallgemei-
nern diesen anschließend für die Berechnung von Tutte-Wegen in 2-zusammenhngenden
planaren Graphen.

Im zweiten Teil untersuchen wir das Maximum Planar Subgraph Problem (Mps)
und zeigen, wie besonders dichte planare Teilgraphen verwendet werden können, um
neue Approximationsalgorithmen zu entwickeln. Unsere Ergebnisse basieren auf einem
neuartigen Ansatz, bei dem die Anzahl der dreieckigen Gebiete im berechneten Teil-
graphen maximiert wird. Dazu definieren wir ein neues Optimierungsproblem namens
Maximum Planar Triangles (Mpt). Wir zeigen, dass dieses Problem NP-schwer ist und
quantifizieren, wie gut ein Approximationsalgorithmus für Mpt als Approximation für
Mps funktioniert. Wir geben einen 1

11 -Approximationsalgorithmus für Mpt und zeigen,
wie dies durch die Verwendung von lokal optimaler Kaktus-Teilgraphen auf 1

6 verbessert
werden kann.

iv

Acknowledgments

I want to thank Parinya Chalermsook for being a great adviser during my whole Ph.D.
and for always valuing my personal happiness as high as my professional interests. I
also need to thank Kurt Mehlhorn who was the first person in academia who saw my
unconventional CV and thought of it as interesting and not as a drawback. These two
advisers created an environment that allowed me to find research topics for which I
have a real passion and develop a way of conducting research that always keeps me
motivated. Another important role in my research career was played by Jens Schmidt,
who introduced me not only to the world of Graph Theory but especially to Tutte paths
which turned out to be one of the main topics in my research.

I am also very grateful to have had friends like Daniel, Gorav, Pavel, and Thatchaphol
during my studies and the process of writing this dissertation. Without them, I would
probably have given up on my algorithms and theory courses long before starting a Ph.D.
in theoretical computer science. Even after we finished our courses I could always rely
on you to bounce off new research ideas or discuss related topics.

vi

Contents

1 Introduction 1

I Computing Tutte Paths in Polynomial Time 3

2 Introduction to Tutte Paths 5

2.1 Our Results . 8

2.2 Preliminaries . 9

2.3 Important Properties of Circuit Graphs 10

2.4 Finding Long Cycles Using Tutte Paths 11

3 Computing Tutte Paths in Circuit Graphs 15

3.1 Setting up the Decomposition . 15

3.2 Avoiding Overlapping Subgraphs . 16

3.3 Extending the Decomposition . 19

3.4 A Quadratic Time Bound . 28

4 Tutte Paths in 2-Connected Planar Graphs 29

4.1 Two Easy Cases . 30

4.2 Moving from a Chain of Blocks to the Entire Graph 32

4.3 A Constructive Proof for Thomassen’s Result 35

4.4 The Three Edge Lemma . 42

4.5 A Constructive Proof for Sanders’s Theorem 43

4.6 A Quadratic Time Algorithm . 47

5 Conclusion 51

II A New Approach for the Maximum Planar Subgraph Problem 53

6 Introduction to the Maximum Planar Subgraph Problem 55

6.1 Our Results . 56

6.2 Preliminaries . 58

6.3 Hardness of Maximum Planar Triangles 58

6.4 From MPT to MPS . 60

6.5 On the Strength of our Extremal Bound 61

7 Greedy Approximation Algorithms for MPT 65

7.1 Match-And-Merge . 65

7.2 Analyzing Previous Algorithms in our Framework 66

7.3 A New Greedy Approximation Algorithm for MPS 70

8 Computing the Number of Triangular Faces via Local Search 73
8.1 Taking Advantage of Local Optimality 73
8.2 How to Prove our Extremal Bound . 75
8.3 Reduction to Heavy Cacti . 89
8.4 A Classification Scheme for Factor Seven 98
8.5 A Classification Scheme for Factor Six 105

9 Conclusion 127

viii

CHAPTER 1

Introduction

Many combinatorial optimization problems that appear in the real world are commonly
modeled using graphs. For example, finding the most profitable route for a traveling
salesman or assigning medical students to teaching hospitals. These problems are among
the oldest problems in algorithms and theoretical computer science in general. Once we
model problems using graphs, we are often able to identify crucial structural properties of
the underlying graphs that allow us to build provably efficient algorithms. Unfortunately,
for many of the most famous combinatorial problems, it is not possible to find an efficient
algorithm that computes the optimal solution for every input (unless P=NP). As efficiency
often has the highest priority in practice, we either have to sacrifice the optimality of the
output or build algorithms that can only handle a subset of all possible input instances.
In this thesis, we explore two approaches for handling NP-hard problems and combine
them with the study of structural graph theory to make two notoriously hard problems
accessible in practice.

In the first approach, we restrict the input to a less general set of instances and then
try to prove that the problem is less difficult on that set of inputs. Here we investigate
the longest cycle problem together with some of its relaxations, and we restrict the input
to planar graphs. The largest possible solution to this problem in a given graph is a cycle
that goes through every vertex exactly once. Such a cycle is called a Hamiltonian cycle
and we say a graph is Hamiltonian if it contains a Hamiltonian cycle. The longest cycle
problem is a special case of the traveling salesman problem; if all cities that he may visit
yield the same profit and all roads that the salesman takes to get there have the same
cost, then the problem reduces to finding the longest route without having the salesman
visit any place twice. This problem is known to be NP-hard and it would be interesting
to know for which set of planar graphs we can prove the existence of a cycle of a certain
length as we already know that not all planar graphs are Hamiltonian. In addition, we
would want to know whether there exists an efficient algorithm to compute it.

The graph structure used in this thesis to attack the longest cycle problem in the
described manner is called a Tutte Path. At its core, a Tutte Path gives us the information
we need to split the original problem into smaller subproblems and then combine their
solutions into a solution for the original input graph. Part one of this Thesis covers
the algorithmic complexity of finding Tutte paths in planar graphs and highlights some
algorithmic applications in the context of finding long cycles.

The second approach to handling NP-hard problems in practice is to design fast
algorithms whose output is not necessarily optimal but guarantees a certain quality. Such
algorithms are known as approximation algorithms. Our focus here lies on graph drawing
problems. The most famous such problem is probably the crossing number problem, in
which we are given a graph and want to draw it with as few edge-crossings as possible. As
for many other graph drawing problems, the best-known algorithmic strategy relies on

Chapter 1. Introduction

first finding a large planar subgraph of the input graph and then drawing the remaining
graph. This problem alone is known as the Maximum Planar Subgraph Problem and will
be in the focus of the second part of this Thesis. Here, the linear matroid parity problem
plays an important role. As a generalization of the matching problem, algorithms for
linear matroid parity can also be used to solve the previously mentioned assignment of
medical students to teaching hospitals. We will inspect various subgraph structures and
different ways to assemble them from the input graph and analyze their usability for
approximating the Maximum Planar Subgraph problem.

2

PART I

Computing Tutte Paths in Polynomial
Time

This part is the result of a close collaboration with Jens M. Schmidt. It
is based on two articles. The first was published in the proceedings of the
Symposium on Theoretical Aspects in Computer Science (STACS) 2015 [61],
and the journal ACM Transactions on Algorithms [62]. The second article
was published in the proceedings of the 45th International Colloquium on
Automata, Languages, and Programming (ICALP) 2018 [63].

4

CHAPTER 2

Introduction to Tutte Paths

The question of whether a graph G = (V,E) is Hamiltonian is among the most fundamen-
tal graph problems. Whitney [74] proved that every 4-connected maximal planar graph
is Hamiltonian. A connected graph is called k-connected for some positive integer k if we
have to remove at least k vertices to disconnect it and maximal planar if adding any edge
would make it non-planar. Tutte extended this to arbitrary 4-connected planar graphs
by showing that every 2-connected planar graph contains a Tutte path [72, 73]. Figure
2.1 shows how the 2-connected, 4-connected, and the other classes of planar graphs men-
tioned in this chapter are related. Unfortunately, there are numerous examples proving
that 3-connected planar graphs are not necessarily Hamiltonian; in fact, even deciding
whether a 3-connected 3-regular planar graph is Hamiltonian is NP-hard [32]. In general,
one may ask how “close” 3-connected planar graphs are to Hamiltonicity. As a result
many relaxed notions of Hamiltonicity have been studied in the past.

2-Connected Planar Graphs

Circuit Graphs

3-Connected Planar

3-Connected Planar
with at most three

3-Separators

Essentially
4-Connected Planar

4-Connected
Planar

Figure 2.1: A diagram of the relation between classes of planar graphs that we consider
in this thesis. The 2-connected planar graphs are the most general class, while the
4-connected planar graphs form the most restricted class.

A k-walk is a walk that visits every vertex in a graph at least once and at most k
times (edges may be visited multiple times). A walk is called closed if it has the same
start- and endvertex. Thus, a closed 1-walk is a Hamiltonian cycle. Jackson and Wormald
conjectured in [38] that every 3-connected planar graph contains a closed 2-walk. In a
seminal result [29], Gao and Richter proved this conjecture in 1994 in the affirmative.
Barnette [2] proved that every 3-connected planar graph contains a 3-tree, i.e., a spanning

Chapter 2. Introduction to Tutte Paths

tree with maximum degree at most three, while a Hamiltonian path is equivalent to a
2-tree. Interestingly, a 3-tree can be directly obtained from a closed 2-walk in linear time,
as shown in [38, Lemma 2. 2(ii)]. By itself, a 3-tree can be computed in linear time as
shown in the Ph.D.-thesis of Strothmann [65]. Biedl showed that 3-trees (and in fact,
more special variants of them) can also be computed by canonical orderings [4]. Finally,
one might try to prove that even if a given graph is not necessarily Hamiltonian, we
can always find a cycle of at least a certain length. Jackson and Wormald [39] showed
that every essentially 4-connected planar graph (we give the definition of these graphs
in Section 2.4) contains a cycle of length at least 2n+4

5 . They also gave an upper bound
by showing that there exists an infinite family of essentially 4-connected planar graphs,
whose longest cycle has length 2n+8

3 .
For planar graphs and graphs embeddable on higher surfaces, Tutte paths have proven

to be one of the most successful tools for attacking Hamiltonicity problems and problems
on long cycles. For this reason, there is a wealth of existential results in which Tutte
paths serve as the main ingredient; in chronological order, these are [73, 70, 67, 17, 58,
59, 68, 76, 40, 69, 31, 35, 47, 56, 55, 42, 61, 24, 7]. A central concept for Tutte paths
is the notion of H-bridges (see [73] for some of their properties): For a subgraph H
of a plane graph G with outer-face boundary CG. an H-bridge of G is either an edge
that has both endvertices in H but is not itself in H or a component K of G − H
together with all edges (and the endvertices of these edges) that join vertices of K with
vertices of H. A vertex of an H-bridge L is an attachment of L if it is in H, and an
internal vertex of L otherwise. An outer H-bridge of G is an H-bridge that contains
an edge of CG. A Tutte path (Tutte cycle) of a plane graph G, is a path (a cycle) P
of G such that every outer P -bridge of G has at most two attachments and every P -
bridge at most three attachments. Thomassen [70] proved the following generalization
of Tutte’s result, which also implies that every 4-connected planar graph with n vertices
is Hamiltonian-connected, i.e. contains a path of length n− 1 between any two vertices.

Theorem 2.1 (Thomassen [70]). Let G be a 2-connected plane graph, x ∈ V (CG),
α ∈ E(CG) and y ∈ V (G)− x. Then G contains a Tutte path from x to y through α.

Sanders [59] then generalized Thomassen’s result further by allowing to choose both
endvertices of the Tutte path arbitrarily.

Theorem 2.2 (Sanders [59]). Let G be a 2-connected plane graph, x ∈ V (G), α ∈ E(CG)
and y ∈ V (G)− x. Then G contains a Tutte path from x to y through α.

On top of the previously mentioned series of fundamental results, Tutte paths have
been used in two research branches: while the first deals with the existence of Tutte
paths on graphs embeddable on higher surfaces [67, 8, 68, 76, 69, 42], the second [38, 29,
8, 30, 40, 31, 53] investigates generalizations or specializations of Hamiltonicity such as
long cycles, Hamiltonian connectedness and k-walks.

In [30, 31] Gao, Richter, and Yu published a refined decomposition that utilizes
Tutte paths to give the existence of a special closed 2-walk, namely one in which every
vertex visited twice is contained in a 3-separator. To achieve this, the authors proved
the existence of a Tutte path T with T -bridges B1, B2, . . . , Bk, for which a set S =
{s1, s2, . . . , sk} of vertices exists such that si is an attachment of Bi for each i. The set
S is called system of distinct representatives (SDR) of the T -bridges. In fact, the result

6

is shown for the class of circuit graphs, which contain all 3-connected planar graphs
(illustrated in Figure 2.1); a circuit graph (G,CG) is a plane graph G with a (simple)
cycle CG as outer-face boundary such that the following property is satisfied: For every
vertex v in G \ CG, G contains three independent paths from v to distinct vertices in C.
We refer to this property by the 3-path property.

Theorem 2.3 ([30, 31]). Let (G,CG) be a circuit graph, let x, u, y ∈ V (CG) with x 6= y
and let a ∈ {x, u}. Then there is a Tutte path P of G from x to y through u and an SDR
S of the non-trivial P -bridges such that a /∈ S.

Theorem 2.3, as stated here, is slightly weaker than the one in [30, 31] (in which
y ∈ V (G)), but is still sufficient to first find a Tutte cycle and then compute a closed
2-walk in any given circuit graph.

Corollary 2.4 ([30, 31]). Let (G,CG) be a circuit graph and let x, y ∈ V (CG). Then
there is a Tutte cycle T of G and an SDR S of the non-trivial T -bridges in G with
x, y ∈ V (T) and x, y /∈ S.

The closed 2-walk constructed from the Tutte cycle given by Corollary 2.4 forms a
Hamiltonian cycle if the graph is 4-connected and, hence, generalizes Tutte’s theorem
to 3-connected planar graphs.

Theorem 2.5 ([30, 31]). Let (G,CG) be a circuit graph and let x, y ∈ V (CG). Then
there is a closed 2-walk W in G visiting x and y exactly once such that every vertex
visited twice is contained in either a 2-separator or an internal 3-separator of G.

Unfortunately, in all the results that utilize Tutte paths mentioned so far, very little is
known about the complexity of actually finding a Tutte path. This is crucial, as the task
of finding Tutte paths is almost always the only reason that hinders the computational
tractability of the problem. The main obstruction so far is that Tutte paths are found by
decomposing the given graph into overlapping subgraphs, on which induction is applied.
Although this is enough to prove existence results, these overlapping subgraphs do not
allow to bound the running time polynomially (as argued in [33]).

On the other hand, inspired by Tutte’s classic result, Gouyou-Beauchamps [33] showed
that a Hamiltonian cycle in a 4-connected planar graph can be computed in polynomial
time. Asano, Kikuchi, and Saito showed that a Hamiltonian cycle can be computed in
linear time when the 4-connected planar input graph is additionally maximal planar [1].
Thomassen claimed that one could also derive a polynomial time algorithm from his
more general existence proof in [70]. In [17] it was shown that this statement was too
optimistic, as the subgraphs arising from his decomposition may again overlap in big
parts. Chiba and Nishizeki [18] showed that this problem can be avoided for 4-connected
planar graphs and gave a linear time algorithm to compute a Hamiltonian cycle for these
graphs.

The much more general problem of overlapping subgraphs when computing Tutte
paths in 3-connected planar graphs has recently been resolved in [60] where it was shown
how to extend the decomposition in [30, 31] to avoid big overlapping subgraphs. Only
this year it was shown how to compute a Tutte path with both endvertices on the outer
face of a given 2-connected plane graph in linear time Unfortunately, the authors point
out that this approach cannot be used to give an algorithm for Sanders’s result, which
is mandatory for some of the previous mentioned existential results.

7

Chapter 2. Introduction to Tutte Paths

2.1 Our Results

Our motivation is two-fold. First, we want to make Tutte paths accessible to algorithms.
We will show that Tutte paths can be computed in time O(n2) in any planar graph. This
has an impact on almost all the applications using Tutte paths listed above. Second, we
aim for computing the strongest possible known variant of Tutte paths, encompassing the
many incremental improvements on Tutte paths made over the years. We will, therefore,
develop an algorithm for Sander’s existence result [59], which was proven to be the best
possible in many aspects. For example, Sanders [59] showed that it is only possible to
prescribe an edge if it is contained in CG. Jackson et al. [40] showed that every circuit
graph contains even a Tutte cycle through any two prescribed vertices and an edge on
the outer face. However, Sander’s result is still best-possible, as this cannot be expected
from 2-connected graphs, as Figure 2.2 shows.

e

x

y

Figure 2.2: A 2-connected planar graph that has no Tutte cycle through x, y and e.

We show how to overcome the problem of overlapping subgraphs by extending the
known decomposition for finding Tutte paths in planar graphs. We start with the de-
composition given by Gao, Richter, and Yu for circuit graphs and modify it such that
all arising subgraphs will be edge-disjoint. The new decomposition immediately yields a
description of a polynomial time algorithm for computing Tutte paths in circuit graphs
and allows us to bound its running time. This is captured in the following theorem.

Theorem 2.6. Let (G,CG) be a circuit graph, then the Tutte cycle T of Corollary 2.4
can be computed in time O(n2).

This leads to a cubic time algorithm that computes the special closed 2-walk of [30, 31].

Theorem 2.7. Let (G,CG) be a circuit graph and let x, y be vertices of CG. A closed
2-walk of G such that x and y are visited exactly once and every vertex visited twice is
contained in either a 2-separator or an internal 3-separator of G can be computed in time
O(n3).

The relation between Tutte paths and 2-walks is highlighted in Section 2.4 as one
of the examples on how to compute long cycles and relaxations using Tutte paths.
The decomposition used for this was also part of [60], but we refine and simplify the
decomposition resulting in an exact description of the algorithmic tasks necessary to be
resolved. This, in turn, allows us to give an upper bound on the running time of the
resulting algorithm. In [60] it was only shown that there must exist an algorithm to
compute the special closed 2-walk as introduced in [30, 31].

We then move on to all 2-connected planar graphs by giving decompositions that
refine the original ones used for Theorem 2.1 and Theorem 2.2, and allows to decompose

8

2.2. Preliminaries

a given graph into graphs that pairwise intersect in at most one edge. We show that
this small overlap does not prevent us from achieving a polynomial running time for the
computation of Tutte paths. All arising graphs in this decomposition will again be plane
and simple. We proceed by showing how this decomposition can be computed efficiently
in order to find the Tutte path of Theorem 2.2. Our main result in this part of the thesis
is hence the following, giving the first polynomial time algorithm for computing Tutte
paths as stated in Theorem 2.2 in any 2-connected planar graph.

Theorem 2.8. Let G be a 2-connected plane graph, x ∈ V (G), α ∈ E(CG) and y ∈
V (G)−x. Then a Tutte path of G from x to y through α can be computed in time O(n2).

Sanders’s result has also an immediate extension to all connected planar graphs that
contain a simple path from x to y through α [55], which can be computed simply and
efficiently from our result by using block-cut trees. Chapter 4 presents the decomposition
with small overlap that proves the existence of Tutte paths. On the way to Theorem 2.8,
we give full algorithmic counterparts of the approaches of Thomassen and Sanders; for
example, we describe small overlap variants of Theorem 2.1 and of the Three Edge
Lemma [67, 58], which was used in the purely existential result of Sanders [59] as a black
box.

2.2 Preliminaries

We assume familiarity with standard graph theoretic notations as in [23]. Let deg(v) be
the degree of a vertex v. We denote the subtraction of a graph H from a graph G by
G−H and the subtraction of a vertex or edge x from G by G− x.

A k-separator of a graph G = (V,E) is a subset S ⊆ V of size k such that G− S is
disconnected. A graph G is k-connected if |V | > k and G contains no (k − 1)-separator.
For a path P and two vertices x, y ∈ P , let xPy be the smallest subpath of P that
contains x and y. For a path P from x to y, let inner(P) := V (P)−{x, y} be the set of
its inner vertices. Paths that intersect pairwise at most at their endvertices are called
independent.

A connected graph without a 1-separator is called a block. A block of a graph G is
an inclusion-wise maximal subgraph of G that is a block. Every block of a graph is thus
either 2-connected or has at most two vertices. It is well-known that the blocks of a
graph partition its edge-set. A graph G is called a chain of blocks if it consists of blocks
B1, B2, . . . , Bk such that V (Bi) ∩ V (Bi+1), 1 ≤ i < k, are pairwise distinct 1-separators
of G and G contains no other 1-separator. In other words, a chain of blocks is a graph,
whose block-cut tree [36] is a path.

A plane graph is a planar embedding of a graph. Let C be a cycle of a plane graph G.
For two vertices x, y of C, let xCy be the clockwise path from x to y in C. For a vertex
x and an edge e of C, let xCe be the clockwise path in C from x to the endvertex of
e such that e /∈ xCe (define eCx analogously). Let the subgraph of G inside C be the
subgraph induced by E(C) and all edges intersecting the open disc-homeomorph of the
plane interior of C.

Given a plane graph G, let CG denote the boundary of its outer face. For vertices
x, y and an edge α ∈ CG, let an x-α-y-path be a Tutte path from x to y that contains
α. We may use x-y-path, for simplicity, to denote an x-α-y-path for which an arbitrarily

9

Chapter 2. Introduction to Tutte Paths

edge α ∈ CG can be chosen. We end this section with a simple observation on Tutte
paths.

Observation 2.9. Let T be a Tutte path of a 2-connected planar graph. If |V (T)| ≥ 4,
then the attachments of any T -bridge form a separator in G.

2.3 Important Properties of Circuit Graphs

A subgraph inside a cycle of a 3-connected plane graph G is not necessarily 3-connected;
however, its only 2-separators must have both vertices on the outer face. Since we will
often use induction on such subgraphs when describing the decomposition, we will deal
with circuit graphs instead of 3-connected plane graphs.

Equivalently to the 3-Paths property, a planar graph is a circuit graph if it can be
obtained from a 3-connected graph by deleting a vertex. Clearly, circuit graphs are 2-
connected and generalize 3-connected plane graphs. In the following, we will give several
lemmas about circuit graphs that will be used throughout the first part of this thesis.
The next two lemmas are probably folklore.

Lemma 2.10 ([60]). Let {u, v} be a 2-separator of a circuit graph (G,CG). Every
component of G \ {u, v} contains a vertex of CG.

Proof. Assume to the contrary thatG\{u, v} has a componentK with V (K)∩V (CG) = ∅.
Since K does not contain a vertex of CG, each path from a vertex w ∈ V (K) to CG
contains u or v. Thus, there are no three independent paths from w to C, contradicting
the 3-Paths Property.

Lemma 2.11 ([60]). Let {u, v} be a 2-separator of a circuit graph (G,C). Then u and
v are contained in C and G \ {u, v} has exactly two components.

Proof. First, assume that u or v, say u, is not contained in C. As {u, v} is a 2-separator of
G, G \ {u, v} has at least two components. Since u /∈ V (C), one component of G \ {u, v}
must contain all remaining vertices of C. This contradicts Lemma 2.10. For the second
claim, observe that G \ {u, v} has at most two components that contain vertices of C, as
C \ {u, v} is the union of at most two paths. Thus, a third component would contradict
Lemma 2.10.

Next, we state several lemmas on how a circuit graph can be decomposed into smaller
circuit graphs.

Lemma 2.12 ([29]). Let {u, v} be a 2-separator of a circuit graph (G,CG). For each
nontrivial {u, v}-bridge H of G, H ∪ uv is a circuit graph.

Lemma 2.13 ([29]). Let C be any cycle in a circuit graph (G,CG) and let H be the
subgraph inside C. Then (H,C) is a circuit graph.

A key idea in the decomposition of circuit graphs is that deleting a vertex of the
outer face boundary results in a plane chain of blocks. Every block in this chain will
either be just an edge or a circuit graph due to Lemma 2.13.

10

2.4. Finding Long Cycles Using Tutte Paths

Lemma 2.14 ([29]). Let (G,C) be a circuit graph and let v ∈ V (C). Then G \ v is a
plane chain of blocks B1, B2, . . . , Bk and, if k > 1, one of the neighbors of v in C is in
B1 \B2 and the other is in Bk \Bk−1.

If the outer face boundary of the circuit graph is a triangle we can find an even more
special structure.

Lemma 2.15 ([30, 60]). Let (G,C) be a circuit graph such that C = {v, w, z} is a
triangle and G 6= C. Then G \ v is a circuit graph and G \ {v, w} is a plane chain of
blocks B1, B2, . . . , Bk and, if k > 1, z is in B1 \B2 and one neighbor of w is in Bk \Bk−1.

Proof. Due to Lemma 2.14, G \ v is a plane chain of blocks with z ∈ B1 and w ∈ Bk.
According to the 3-Paths Property, G contains independent paths from every vertex in
G \ V (C) to v, w and z. Thus, G′ := G \ v is a block and therefore forms a circuit graph
(G′, C ′). Applying Lemma 2.14 to (G′, C ′) gives that G′ \ w is a plane chain of blocks
with z ∈ B1 and a neighbor of w in Bk.

According to Lemma 2.10, both vertices of a 2-separator of any circuit graph must lie
on the outer face boundary. The following lemma utilizes Observation 2.9 to strengthen
this statement for the 2-separators that are attachments of T -bridges, for some Tutte
path T of (G,CG).

Lemma 2.16 ([60]). Let (G,C) be a circuit graph with a Tutte path T from x ∈ V (C)
to y ∈ V (C). Then every T -Bridge with two attachments has either both attachments on
xCy or both on yCx.

Proof. Assume otherwise. Let J be a T -bridge with two attachments {c, d}, c ∈ xCy \
{x, y} and d ∈ yCx \ {x, y}. By Observation 2.9, {c, d} is a 2-separator in G. Thus,
G \ {c, d} contains exactly two components X and Y with x ∈ X and y ∈ Y that cover
C \{c, d}, according to Lemma 2.11. Due to Lemma 2.10, X and Y must contain at least
one vertex of C each. It follows that the inner vertex set of J is either X or Y . In both
cases, J contains an edge of T , which contradicts that J is a T -bridge.

2.4 Finding Long Cycles Using Tutte Paths

Several of the results mentioned in the introduction (for example [67, 58, 68, 42]) are
constructive up to the point where they apply Theorem 2.1 or Theorem 2.2 on subgraphs
when decomposing the given graph. Thus using our Algorithm from Theorem 2.8 as a
subroutine immediately implies polynomial time algorithms where no efficient algorithms
were published before. We present three other applications that illustrate how our result
can be used on a 3-connected planar graph when we have various restrictions on the
structure of its separators.

Long Cycles in Essentially 4-Connected Planar Graphs: A 3-separator S of a
graph G is called trivial if G \ S has at least one component that consists of exactly
one vertex. A graph is called essentially 4-connected if it is 3-connected and each of
its 3-separators is trivial. As mentioned in the introduction, Jackson and Wormald [39]
showed that every essentially 4-connected planar graph contains a cycle of length at least

11

Chapter 2. Introduction to Tutte Paths

2n+4
5 . In [24] Tutte paths were used to show that every essentially 4-connected graph

contains a cycle of length at least n+4
2 . This lower bound was further improved to 3n+6

5
in [26], and the authors illustrate in a separate section how to use the algorithm from
Theorem 2.8 to compute such a cycle in time O(n2). In a recently published preprint,
the same authors [25] improved this lower bound even further to 5n+10

8 and stated that
the algorithmic description as given in [26] can be applied for the new result as well.

Hamiltonian Cycles in Graphs with at most two 3-Separators: In [7] it was
shown that every 3-connected planar graph having at most three 3-separators is Hamil-
tonian. To achieve this result the authors use the result by Jackson and Yu [40], which
in circuit graphs is stronger than Theorem 2.2. Unfortunately, at this point, we do not
know of any polynomial time algorithm that computes the Tutte cycle as shown to exist
by Jackson and Yu. Here we will show that if a 3-connected planar graph contains at
most two 3-separators, then the algorithm from Theorem 2.8 can be used to compute
a Hamiltonian cycle in time O(n2). The key idea is to ensure that the Tutte cycle we
compute crosses each 3-separator of the given graph. In turn, we will show that there
cannot exist any bridges of the computed Tutte cycle and thus that it actually is a
Hamiltonian cycle.

LetG be a 3-connected planar graph with at most two 3-separators. IfG does not have
any 3-separator, then G is 4-connected, and we can use Theorem 2.8 (or the linear time
algorithm from [18]) to compute a Hamiltonian cycle. This is based on the fact that the
attachments of any bridge of the computed Tutte path would form a separator of order
less than four, the existence of a bridge would therefore contradict the 4-connectivity
of the given graph. Therefore, we assume that there exists at least one 3-separator and
denote it by A = {u, v, w}. Any 3-connected planar graph has a unique embedding,
thus when embedding G the only choice we have is which face of G serves as the outer
face CG. It is important to choose the outer-face carefully as Theorem 2.8 allows us to
prescribe one edge of the outer-face to be contained in the computed Tutte cycle. How
to choose this edge depends on whether there exists a second 3-separator in G. If A
is the only 3-separator in G, then let a denote any vertex in V \ {u, v, w} and a′ an
arbitrary neighbor of a in G \ {u, v, w}. If otherwise there exists a second 3-separator
B 6= A with vertices {x, y, z} in G, then A and B can intersect in at most two vertices.
We may assume that x is not in A and u is not in B. We will have to choose a and a′

more carefully, in this case, to ensure that the Tutte Cycle we compute actually crosses
both 3-separators of G. As G is 3-connected there are exactly two nontrivial A-bridges
in G, otherwise, the three A-bridges and their common attachments would imply the
existence of a K3,3 minor in G, contradicting its planarity. Let e be any edge incident to
u in the A-bridge of G that does not contain x. We choose any of the two faces incident
to e as our outer-face CG and embed G accordingly on the plane. Again, G has exactly
two nontrivial B-bridges one of which contains u. Let a′ denote any neighbor of a in the
B-bridge of G that does not contain u. At least one such neighbor must exist.

By Theorem 2.8 we can find a Tutte path P from a to a′ through e in O(n2) time.
It remains to show that there does not exist any P -bridge in G, and therefore, P + aa′

forms a Hamiltonian cycle in G.

Theorem 2.17. P is a Hamiltonian path in G.

12

2.4. Finding Long Cycles Using Tutte Paths

Proof. As G is 3-connected, any P -bridge of G must have three attachments. By Obser-
vation 2.9 any set of attachments is equal to a 3-separator in G. As G has at most two
3-separators A and B, it suffices to show that there does not exist a P -bridge of G with
attachments equal to the vertices in A or B.

Assume for contradiction that there exists a P -bridge L of G with attachments
{u, v, w}. As argued above, there are exactly two nontrivial A-bridges of G. By construc-
tion one of them Je contains e and the other Ja contains a. We first show that L can not
contain internal vertices of both Ja and Je at the same time and thus must be a subset of
either Ja or Je. Assume otherwise that there are vertices p, q ∈ L, such that p ∈ Ja and
q ∈ Je. By definition L \ {u, v, w} must be a connected component, and therefore, there
must be a path in L \ {u, v, w} from p to q, which contradicts that A is a 3-separator of
G. Without loss of generality, we assume that L ⊆ Ja, then note that as a was one of
the prescribed vertices when computing P , we have that a is in P , and therefore, not in
L. As G is 3-connected, there must be three independent paths from a to the endvertex
of e not in A. Each one of these paths goes through a different vertex in A. In addition,
these three paths can intersect L only in its attachments as otherwise there would exist
a fourth attachment of L. Now we can construct a K3,3, from G by contracting all edges
in these three independent paths except for the ones incident to the endvertices and the
vertices in A and contracting Je and L to one vertex each. This contradicts that G is a
planar graph. If G contains a second 3-separator B, we can use the same argument as
above for B, where a′ would serve as a and u as the endvertex of e not in A.

Corollary 2.18. We can find a Hamiltonian cycle in graphs with at most two 3-
separators in time O(n2).

Computing 2-Walks from Tutte paths and cycles [60]. It was shown by Gao,
Richter, and Yu [30, 31] that in order to find a closed 2-walk in a circuit graph, it suffices
to find a Tutte path that has a system of distinct representatives. We briefly recall the
argument of [30, 31] below.

According to Lemma 2.14, G \ x is a plane chain of blocks. By computing a Tutte
path for every such block and extending the union of these Tutte paths to x (using the
two incident edges in C), we immediately obtain a Tutte cycle of G (as in Corollary 2.4).
Note that the time for computing this Tutte cycle is dominated by the computation of
the Tutte paths.

To compute a closed 2-walk we will use the vertices of the SDR S as branch vertices at
which the walk deviates from T into 2-walks of the T -bridges, which exist by induction.
The constructed closed 2-walk will, therefore, have special properties for the vertices
that are visited twice. Let an internal 3-separator S of a circuit graph (G,CG) be a
3-separator such that G− S contains a component disjoint from C.

Let T be a Tutte cycle and S be an SDR as given in Corollary 2.4. If G is a triangle,
T is itself the desired 2-walk W of Theorem 2.5; otherwise, we use induction on the
number m of edges in G. For every T -bridge L of G and its representative s in S, we
consider a plane chain of blocks as follows.

If L has exactly two attachments (thus, L contains an edge of CG), let t be the
attachment different from s. Then {s, t} is a 2-separator of G and L ∪ st is a circuit
graph, according to Lemmas 2.11 and 2.12. According to Lemma 2.14, (L ∪ st) \ t, and

13

Chapter 2. Introduction to Tutte Paths

therefore, also L \ t is a plane chain of blocks B1, . . . , Bl such that s ∈ B1 and t′ ∈ Bl
for the neighbor t′ of t in C ∩ L. Set v0 := v and vl := t′.

If L has exactly three attachments {s, t, z}, L ∪ {st, tz, zs} is a circuit graph due
to the 3-Path Property. By Lemma 2.15, L ∪ {st, tz, zs} \ {t, z} = L \ {t, z} is a plane
chain of blocks B1, . . . , Bl such that s ∈ B1 and z′ ∈ Bl for the neighbor z′ of z on the
boundary of L in direction s. Set v0 := s and vl := z′.

Let vi be the 1-separator Bi ∩Bi−1 of the constructed plane chain of blocks for every
i. Each Bi is either an edge or a circuit graph. If Bi is an edge, we define an artificial walk
vi−1, vi−1vi, vi, vivi−1, vi−1 for Bi; otherwise, there is a 2-walk in Bi by induction with
x := vi−1 and y := vi. In both cases, vi is visited exactly once, implying that the union
WL of these walks is a 2-walk of the plane chain of blocks, in which v is visited exactly
once. Finally, we obtain the desired 2-walk W by traversing T from one representative s
of a T -bridge to the next and detouring into WL every time. Note that every s is visited
exactly twice, once by T and once by WL, as it is a representative in S.

For all steps taken in the description above, except for the computation of Tutte
paths and the computation of suitable circuit subgraphs (i.e., the above plane chains
of blocks) for the recursion on L, the corresponding existence proofs give immediately
linear time algorithms.

We next show that a polynomial time computation of a Tutte path implies a poly-
nomial time computation of a 2-walk. Assume that a Tutte cycle T of G and its SDR
S can be computed in time cmk for some integers c and k. If the 2-walks in the T -
bridges have already been computed by recursion, taking the union of T and these
2-walks needs only linear time. Let time(m) denote the running time of the resulting
algorithm. We number all blocks of the plane chains of blocks that were constructed
for T -bridges in G from 1 to j. Let mi denote the number of edges in block i. As all
these blocks are edge-disjoint and T contains at least one edge,

∑j
i=1mi < m. Thus,

time(m) = cmk +
∑j

i=1 time(mi) ≤ cmk+1, as we always recurse on strictly smaller
subgraphs and the recursion depth is at most m. Therefore, a proof of Theorem 2.6 as
given in the following chapter implies Theorem 2.7.

14

CHAPTER 3

Computing Tutte Paths in Circuit
Graphs

We will prove Theorem 2.3 by extending the decomposition of Gao, Richter, and Yu. The
extended decomposition will only branch into edge-disjoint circuit graphs and thus turn
out to be algorithmically accessible. In the following sections, we will first review some
steps given in [30, 31] needed to set up the decomposition, then explain how we can
avoid overlapping subgraphs, and finally give the details of the extended decomposition.

3.1 Setting up the Decomposition

x u

u1vl

K
Pˊ

y

z
Lˊ

B D

B
+ D

+

F
J

α(J)

cr

c d
cd

Figure 3.1: A circuit graph (G,CG), in which the plane chain of blocks K is depicted
in dark gray (red) and gray (orange), and F is the subgraph induced by xCGu and the
vertices of light grey (yellow) and gray subgraphs. Here, F and K overlap in the gray
subgraphs B+ and D+. The part P ′ from u1 to y of the desired Tutte path of G can be
computed by induction on the blocks of K.

We review the initial steps taken for the original decomposition in [30, 31]. Let
(G,CG) be a circuit graph, let x, u, y ∈ V (CG) with x 6= y and let a ∈ {x, u}. We want to
find a Tutte path from x to y through u. The vertex a acts as a place-holder that allows
us to prevent x or u to be in the SDR S; this will be useful for the induction. We first
eliminate some symmetric cases. If u = x, we can choose any other vertex v ∈ V (CG) \x
and assign u = v. The same holds if u = y and a 6= u. If a = u = y, we interchange the
roles of x and y and proceed as above. Thus we can assume that u /∈ {x, y}. We will need
y to be in uCGx in a later step. Therefore if y ∈ xCGu, we flip the current embedding
of G such that in the new embedding y ∈ uCGx.

Chapter 3. Computing Tutte Paths in Circuit Graphs

The proof of Theorem 2.3 proceeds by induction on the number of edges in G. If
|E(G)| = 3, G is a triangle. In that case, the Tutte path we are looking for is xuy, the
corresponding SDR S is empty. For the induction step, let u1 be the neighbor of u in
uCGx. In the special case that u1 = y, we define K := u1. Otherwise, we define K as the
minimal connected union of blocks of G\xCGu that contains u1 and y, where minimality
is with respect to the number of blocks (see Figure 3.1). The blocks of K form a tree;
by minimality, K will be a plane chain of blocks. Let B1, . . . , Bl be the blocks of K such
that u1 ∈ B1 and y ∈ Bl and let CBi be the external face boundary of Bi. We number
the 1-separators in K from v1 to vl−1, i.e., the blocks Bi and Bi+1 intersect exactly in vi.
In addition, we set v0 := u1 and define vl as the vertex in Bl nearest to x in u1CGx. For
simplicity, we divide the external face boundary CBi of any block Bi of K into its lower
part, which is vi−1CBivi, and its upper part, which is viCBivi−1. The lower boundary of
K is then the union of the lower parts of all blocks of K, and the upper boundary of K
is the union of the upper parts of all block of K.

3.2 Avoiding Overlapping Subgraphs

In the original proof of Theorem 2.3 given in [30, 31], the authors define a second con-
nected subgraph F that overlaps with K and then recurse on both subgraphs separately
by constructing Tutte paths of every block of these subgraphs (see Figure 3.1). The
recursively constructed Tutte paths of F (giving a path from x to u) and in K (giving a
path from u1 to y) are then concatenated with uu1 to get the desired Tutte path of G.
The overlapping parts of F and K may, therefore, receive multiple recursive calls, which
prevents to bound the running time of this decomposition. However, the description of F
in [30, 31] suggests that an overlapping subgraph in this decomposition consists always
of the inner vertex set of some bridge of the Tutte path computed for K. In the following,
we will compute a Tutte path from u1 to y, but instead of doing this in K, we will do
this in a slightly modified subgraph η(K). This augmentation will allow us to identify
and exclude possible overlapping subgraphs in advance.

Contrast to the approach of [30, 31]: We explain the idea for our decomposition;
the precise decomposition will be given in the next section. Let T be a Tutte path from
u1 to y of K and consider any T -bridge J of K. In the decomposition of [30, 31], by
planarity, J can only take part in an overlapping if it intersects the upper external face
boundary of K. Then J has exactly two attachments c and d, according to the definition
of a Tutte path and the fact that J contains a boundary edge of some block of K. By
Observation 2.9 and Lemma 2.11, c and d must be as well on the boundary of K. In fact,
c and d are on the upper boundary of K by Lemma 2.16. In summary, the only parts of
K that would have possibly overlapped in the original decomposition are the T -bridges
with exactly two attachments on the upper boundary of K (drawn in gray (orange) in
Figure 3.1). Thus, if we find for some block Bi of K all 2-separators in viCBivi−1 before
we compute a Tutte path of this block, we have identified all subgraphs of this block
which would have possibly overlapped in the original decomposition.

Now we give the details of this approach, which itself is a refined version of the proof
given in [60]. Let {c, d} be a 2-separator of a block Bi such that c and d are in viCBivi−1

16

3.2. Avoiding Overlapping Subgraphs

(here we denote the vertex that appears first in viCBivi−1 by c and the other by d). Let
further B+

cd be the {c, d}-bridge in Bi that contains the path cCBid (see Figure 3.1). We
call a 2-separator {c, d} in viCBivi−1 maximal in viCBivi−1 if there is no other 2-separator
{c′, d′} in viCBivi−1 with c and d in c′CBid

′. Note that in the special case vivi−1 ∈ CBi

two maximal 2-separators {vi, c′} and {d′, vi−1} may occur that interlace, i.e. for which
viCBic

′ ∩ d′CBici−1 6= ∅. This is the only case in which two maximal 2-separators can
interlace, since if otherwise vivi−1 /∈ CBi , {vi, vi−1} would be a 2-separator of Bi such that
viCBivi−1 would contain both viCBic

′ and d′CBivi−1, which contradicts their maximality.
We resolve this special case of having two interlacing maximal 2-separators by always
using the one of these two that contains vi in the following description and ignoring
the other. Because of this, the maximal 2-separators taken for every block Bi will be
consecutive on viCBivi−1. For the computation of a Tutte path of Bi, we will first find
all maximal 2-separators in CBi . Possible smaller 2-separators inside them will only be
computed if necessary.

Let {c, d} be a 2-separator of Bi with c and d in viCBivi−1 and let v be an inner vertex
of B+

cd. Then cl and cr are defined as the vertices in xCGu closest to x and u, respectively,
that are reachable from v in G by a path not containing any vertex of {c, d} ∪ V (CG)
as inner vertex (possibly cl = cr). Figure 3.3 shows two examples where cl 6= cr. For a
2-separator {c, d} of Bi with c and d in viCBivi−1, let F ′cd be the {c, d, cl, cr}-bridge that
contains B+

cd and let Fcd := F ′cd \ {c, d}. (Continuing the above contrast to [30, 31], the
graph Fcd contains the possibly overlapping parts of K of the original decomposition.)

In order to modify K to η(K), we iterate through all maximal 2-separators {c, d}
of every block of K and “cut off” some B+

cd in a predefined way. This will allow us to
compute Tutte paths for every block of η(K) and iteratively detour these Tutte paths to
the subgraphs B+

cd if necessary. For some B+
cd, we will add a special edge to η(K) whose

containment in the previously computed Tutte path will decide whether such a detour
is needed. The exact definition of η(K) is dependent on the existence of a 1-separator
in Fcd. For the relevant case cl 6= cr, we will prove that a vertex b is a 1-separator of
Fcd if and only if {b, c, d} is a 3-separator of G (see Figure 3.2). If such a 1-separator b
exists, we will show that b can actually be chosen in such a way that the subgraph of
Fcd “above” b is a block; such a vertex will additionally be unique.

Lemma 3.1. Let cl 6= cr. A vertex b ∈ Fcd is a 1-separator of Fcd if and only if {b, c, d}
is a 3-separator of G. No 1-separator of Fcd is contained in clCGcr.

Proof. Let b be any 1-separator of Fcd. We first show that b /∈ clCGcr, giving the second
claim. Let J be the clCGcr-bridge of Fcd containing the connected graph B+

cd \ {c, d}.
By definition of cl and cr, J contains cl and cr 6= cl as attachments. Every other clCGcr-
bridge in Fcd does not touch K and therefore has at least three attachments on clCGcr
by the 3-Paths Property. Since clCGcr is a path, deleting any vertex of clCGcr in Fcd
leaves a connected graph.

Consider any component of Fcd \ b that does not contain clCGcr. This component
can have at most the neighbors {b, c, d} in G. Since the component does not contain any
vertex of CG, its neighbor set in G must be exactly {b, c, d}, according to the 3-Paths
Property. Thus, {b, c, d} is a 3-separator of G.

Let {b, c, d} be a 3-separator of G. Then b /∈ clCGcr, as otherwise G \ {b, c, d} would
be connected by definition of cl and cr 6= cl. Consider any component of Fcd \ b that does

17

Chapter 3. Computing Tutte Paths in Circuit Graphs

b

b

c d

Bi

vi-1vi

A

cl cr

Figure 3.2: Two 1-separators b and b′ of Fcd. The 1-separator b is the unique one
contained in A.

not contain clCGcr. Since this component contains no vertex of CG, its neighbor set in
G is exactly {b, c, d}. Thus, b separates some vertex of that component from clCGcr in
Fcd and is therefore a 1-separator of Fcd.

Lemma 3.1 implies that there is a block of Fcd that contains clCGcr. We call this
block A. Note that there may be many 1-separators in Fcd (see Figure 3.2). However,
there is exactly one such 1-separator that is contained in A.

Lemma 3.2. Let cl 6= cr and let Fcd contain a 1-separator. Then Fcd contains a unique
1-separator b such that b ∈ A.

Proof. Since Fcd has a 1-separator and by the maximality of the blockA of Fcd,A contains
at least one 1-separator b of Fcd. Assume to the contrary that A contains a 1-separator
b′ 6= b of Fcd. Let H1 and H2 be components of Fcd − b and Fcd − b′, respectively, that
do not contain clCGcr. As 1-separators that are contained in the same block A separate
disjoint components from A (as implied by the block-cut-tree), H1 and H2 are disjoint;
moreover, both do not contain any vertex of CG. By the 3-Paths Property, H1 and H2

are neighbored exactly to {b, c, d} and {b′, c, d} in G, respectively. Then the union of CG
and the set of three paths from H1 and from H2 to CG due to the 3-Paths Property
form a K3,3, which contradicts the planarity of G.

In the following, whenever dealing with a maximal 2-separator {c, d} of K, the vari-
ables Fcd, F

′
cd, cl, cr, Bi, A will always refer to the previously defined objects and b will

refer to the unique 1-separator of Fcd defined in Lemma 3.2. We are now ready to define
η(K).

Definition 3.3. Let η(K) be the graph obtained from K by performing the following for
every maximal 2-separator {c, d} 6= {vi, vi−1} of every block Bi of K.

Case 1: cl = cr
Do nothing.

18

3.3. Extending the Decomposition

Case 2: cl 6= cr and Fcd contains a 1-separator (see Figure 3.3(a))
Replace B+

cd with B+
cd \A.

Case 3: cl 6= cr and Fcd contains no 1-separator (see Figure 3.3(b))
Delete all inner vertices of B+

cd and add the edge cd if cd does not already exist.

η(Bi)

b

c d

A

cl cr

vi-1vi

(a) Case 2: cl 6= cr and Fcd con-
tains a 1-separator b. We replace
B+
cd with B+

cd \A.

c de

i

B
+

cd
B
+
cd

cd

η(Bi)

cl cr

vi-1vi

(b) Case 3: cl 6= cr and Fcd does not
contain a 1-separator. We delete all
inner vertices of B+

cd and add the
edge cd if it does not already exist.

Figure 3.3: The two cases of modifying K to η(K). In both cases, the remaining part
of B+

cd is the dark gray (red) subgraph, i.e., the gray (orange) part of B+
cd is deleted.

For a block Bi of K, let η(Bi) be the corresponding block of η(K). Let η(CBi) be
the external boundary of η(Bi). Note that η(K) is no longer a plane chain of blocks of
G \ xCGu, as the modified blocks η(Bi) are no longer maximal in G. However, every
η(Bi) that is not just an edge is still a circuit graph, as shown next.

Lemma 3.4. Every η(Bi) that is not an edge is a circuit graph.

Proof. Clearly the claim is true when η(Bi) = Bi, thus assume the contrary. We consider
a Bi after one Case 2 or Case 3 modification of Definition 3.3; the arguments extend
readily to multiple such modifications.

Consider a Case 2 modification. Let b be the unique 1-separator of Lemma 3.2.
According to Lemma 3.1, {b, c, d} is a 3-separator of G. Let H denote the (unique)
{b, c, d}-bridge of G that does not contain a vertex of CG. By the definition of bridges,
H \ b is connected. We show that the boundary part of H \ b from CG to d that contains
all former neighbors of b is a path. Otherwise, an clockwise boundary traversal from CG
to d would visit some vertex z twice, which gives a 2-separator {z, b} that contradicts
Lemma 2.11. Thus, the claim follows directly from extending this path by dCBic (which
is internally disjoint) and applying Lemma 2.13.

Consider a Case 3 modification. Then B+
cd∪ cd is a circuit graph by Lemma 2.12.

3.3 Extending the Decomposition

We extend the decomposition described so far. From now on, we will name the input
graph (G′, CG′) instead of (G,CG), but keep all other notation such as K,Bi, x, y, u, u1.

19

Chapter 3. Computing Tutte Paths in Circuit Graphs

For every (K ∪ xCG′u)-bridge L in G′, L intersects K in at most one vertex, as
otherwise, a block of K would not be maximal. We call this vertex, if it exists, α(L).
Note that the edge uu1 is not a (K ∪ xCG′u)-bridge by definition. It is however possible
that there is a (K ∪ xCG′u)-bridge that contains vlCG′x. If so, we denote this special
bridge by L′ (otherwise, vlCG′x is just an edge). The bridge L′ is special among the
(K ∪ xCG′u)-bridges, as it is the only one that may have exactly two attachments; all
other bridges have at least three attachments by the 3-Path Property.

For a (K ∪ xCG′u)-bridge L, let CG′(L) be the shortest path in vlCG′u that contains
all attachments of L in vlCG′u. When considering such L, the endvertices of CG′(L)
closest to vl and u in vlCG′u are called cl and cr, respectively (cl = cr is possible). For
such L, let J(L) denote the {cl, cr}-bridge of G′ that contains L.

A (K ∪xCG′u)-bridge L 6= L′ in G′ is isolated if α(L) does not exist (i.e., L∩K = ∅),
and its 2-separator {cl, cr} of xCG′u is maximal in xCG′u with respect to the 2-separators
of all other such bridges. Thus, L is different from L′ and has at least three attachments
on xCG′u.

We now transform the input graph (G′, CG′) into a graph (G,CG) that does not
contain L′ anymore. If L′ does not exist in G′, then we simply set G := G′. Otherwise,
we apply the following modification on G′ that depends on the number of attachments of
L′. If L′ has exactly two attachments (namely, vl and x), obtain G from G′ by replacing
L′ with the edge vlx. Otherwise, L′ has at least the three attachments vl, x, cr (as is the
case in Figure 3.1). Let L∗ := (L′ ∪ CG′(L′)) \ vl. Note that L∗ may not be 2-connected.
We obtain G from G′ by contracting L∗ to one vertex cr (which will be x in G) and
subsequently deleting multiedges.

Note that K and η(K) are the same for G and G′. In Section 3.3, we will find a Tutte
path of η(K) and an SDR S of its bridges. In Section 3.3, this Tutte path of η(K) will
be modified to a Tutte path of G. Eventually, we show in Section 3.3 how to deal with
the special bridge L′ in G′ and thereby extend the Tutte path and its SDR found in G
to a Tutte path of G′.

Finding a Tutte Path of η(K)

We continue the decomposition of the circuit graph (G,CG) (as described in Section 3.1)
by computing a Tutte path Pη(K) of η(K) from u1 to y and an SDR Sη(K) of the Pη(K)-
bridges. For each block η(Bi) of η(K), we compute Pη(Bi) and an SDR Sη(Bi) of the
Pη(Bi)-bridges as follows.

If η(Bi) is just an edge vi−1vi, set Pη(Bi) := vi−1vi and Sη(Bi) := ∅. Otherwise, if
i < l, compute by induction a Tutte path Pη(Bi) of η(Bi) from vi−1 to vi and an SDR
Sη(Bi) of all Pη(Bi)-bridges such that vi /∈ Sη(Bi) (as intermediate vertex, an arbitrary
vertex in V (CBi) \ {vi−1, vi} can be chosen). If i = l, compute a Tutte path Pη(Bl) of
η(Bl) from vl−1 to y through vl and an SDR Sη(Bl) of all Pη(Bl)-bridges. Since we may
need vl ∈ Bl as representative for L′ in Section 3.3, we have to ensure that vl does not
become a representative for any Pη(Bl)-bridge in η(Bl). Thus, apply the induction on

η(Bl) such that vl /∈ Sη(Bl). Then Pη(K) = ∪li=1Pη(Bi) is the desired Tutte path of η(K)

from u1 to y and Sη(K) = ∪li=1Sη(Bi) is an SDR of Pη(K)s bridges in η(K).

Every Pη(Bi)-bridge with three attachments in η(Bi) is also a Pη(Bi)-bridge with
three attachments in G. Every internal vertex of such a Pη(Bi)-bridge has the same

20

3.3. Extending the Decomposition

neighborhood in η(Bi) as in G. Therefore, each such bridge preserves its number of
attachments in G. The same argument holds for the Pη(Bi)-bridges in η(Bi) that have
exactly two attachments and contain an edge of CG. In fact, these two observations do
not only hold for Pη(Bi), but for any Tutte path PH of some circuit graph H ⊂ G. We will
therefore only discuss PH -bridges in the remainder of this thesis, that have exactly two
attachments in H and do not contain any edge of CG. We will show that these bridges
have exactly three attachments in G.

Finding a Tutte Path of G

In order to find the desired Tutte path P of (G,CG) and an SDR S for its bridges, we
initially set P := xCGu1 ∪Pη(K) and S := Sη(K), and then modify P and S step by step
such that the final path P is a Tutte path of (G,CG), does not contain any edge cd that
was added in Case 3 of the definition of η, and S is an SDR of all P -bridges. We will
decompose G into smaller circuit graphs on which we apply induction. These graphs
will pairwise intersect in at most one vertex, i.e., they are edge-disjoint. By carefully
choosing a when applying the induction, we will ensure that the intersection vertex
is a representative in at most one intersecting graph. The modification of P starts by
handling the (K ∪ xCGu)-bridges that have an attachment on K, but are not contained
in any Fcd. We next show useful details of these bridges.

Let L be any (K ∪ xCGu)-bridge for which α(L) exists and which is not contained
in some Fcd.

Lemma 3.5. α(L) ∈ η(K) and α(L) ∈ Pη(Bi).

Proof. For the first claim, assume to the contrary that α(L) ∈ K is not in η(K). Then
α(L) lies on the boundary of K on a path between the vertices of a maximal 2-separator
{c, d} and thus must be part of Fcd, contradicting the assumption.

Next, we assume α(L) /∈ Pη(Bi). As α(L) is on the boundary of η(Bi), α(L) must be
contained in a Pη(Bi)-bridge in η(Bi) with two attachments {c′, d′}. By Observation 2.9,
{c′, d′} is a 2-separator of η(Bi). As L is not contained in some Fcd, {c′, d′} is not a
maximal 2-separator ofBi. Thus, there exists a maximal 2-separator {c, d} with c′CBid

′ ⊆
cCBid. This gives a contradiction, as then by construction α(L) /∈ η(K).

Let J ′ be the union of L,CG(L) and all CG(L)-bridges of G which have all their
attachments in CG(L). Let J = J ′ \ α(L).

Lemma 3.6. J is a circuit graph.

Proof. We first prove that J is 2-connected: L has an inner vertex by the definition of a
bridge and thus at least two attachments on CG by the 3-Paths Property. Hence, |V (J)| ≥
3. Starting with CG(L) and adding the two paths to CG(L) from every remaining vertex
in J due to the 3-Paths Property gives an open ear decomposition [75]. Thus, J is
2-connected. It follows that the boundary of J is a cycle and J is a circuit graph.

We are now ready to describe an algorithm that, given the circuit graph (G,CG),
vertices x, u, y ∈ V (CG) and the preliminary Tutte path P as defined above, outputs a
Tutte path of G and an SDR of its bridges in G.

Algorithm 1: FindTuttePath((G,CG), x, u, y, P, S)

21

Chapter 3. Computing Tutte Paths in Circuit Graphs

Input : (G,CG), x, u, y, P, S, where P is the preliminary Tutte path xCGu1 ∪ Pη(K)

from x to y and S = Sη(K) the corresponding SDR.

Output : A Tutte path of (G,CG) and an SDR of its bridges in G stored in P and
S respectively.

(1) For every (K ∪ xCGu)-bridge L in G with α(L) ∈ η(K) (see Figure 3.4):

• According to Lemma 3.5, α(L) ∈ Pη(Bi) for some Bi.

• Let J ′ be the union of L,CG(L) and all CG(L)-bridges of G which have all
their attachments in CG(L). Let J = J ′ \ α(L). By Lemma 3.6, J is a circuit
graph.

(a) Compute a Tutte path PJ from cl to cr and an SDR SJ of all PJ -bridges by
induction such that depending on a, either cl or cr is not in SJ : if a = x, apply
the induction such that cl /∈ SJ ; otherwise, if a = u, apply the induction such
that cr /∈ SJ .

(b) Set P := P \ CG(L) ∪ PJ and S := S ∪ SJ .

• By the 3-Paths Property, every PJ -bridge in J that has exactly two
attachments and does not contain an edge of CG must contain a vertex
that in G is a neighbor of α(L). Each such PJ -bridge will therefore become
a P -bridge with exactly three attachments in G.

c d

L1 L2

Pη(Bi)

B
+
cd

vi-1vi

(a) Only the (K ∪ xCGu)-bridges L1

and L2 have an attachment in η(K).

L1 L2

c d

ˊ ˊ

Pη(Bi)

B
+
cd

vi-1vi

(b) From L1 and L2, circuit graphs
L′1 and L′2 are constructed. We com-
pute a Tutte path in each of them.

Figure 3.4: Step 1 of FindTuttePath. We consider the (K ∪ xCGu)-bridges that have
an attachment in Pη(Bi) (dashed line).

(2) For every maximal 2-separator {c, d} of K satisfying Case 1 of Definition 3.3:

• Let J be any Pη(Bi)-bridge in η(Bi) that contains an edge of cη(CBi)d (recall
that η(CBi) denotes the external boundary of η(Bi)). We show that every such
J becomes a P -bridge in G with exactly three attachments. By the 3-Path
Property, there is a path from every inner vertex of J to some vertex in CG
that contains neither CG nor d. In this case the only possible such vertex is

22

3.3. Extending the Decomposition

cl = cr. Thus, J is a P -bridge in G with exactly three attachments, one of
which is cl and its representative in S will be as chosen in Sη(Bi).

(3) For every maximal 2-separator {c, d} of K satisfying Case 2 of Definition 3.3 (see
Figure 3.5):

(a) Compute a Tutte path PA of the block A of Fcd from cl to cr through b and
an SDR SA of all PA-bridges. If a = x, apply the induction such that cl /∈ SJ .
Otherwise, if a = u, apply the induction such that cr /∈ SJ .

L1 L3

cl cr

L2

Pη(Bi)

c d

b

B+cd

vi-1vi

(a) A maximal 2-separator {c, d} of
Bi such that cl 6= cr and Fcd con-
tains a 1-separator. The unique 1-
separator of Fcd in A ⊂ Fcd is b.

c db

A

cl cr

L1 L3L2

(b) The block A of Fcd that contains
clCGcr (dashed edges are not part of
A). We compute a Tutte path PA of A
from cl to cr through b.

Figure 3.5: Step 3 of FindTuttePath

(b) Set P := P \ clCGcr ∪ PA and S := S ∪ SA.

• Let H be the {b, c, d}-bridge in G that does not contain clCGcr, according
to Lemma 3.1.

• Consider any PA-bridge J with exactly two attachments in A that does
not contain an edge of CG. By the 3-Paths Property, J must contain an
inner vertex that has a neighbor in G \A. Since b is a 1-separator of Fcd
in A and b ∈ PA, the set of all such neighbors is either {c}, {d} or {c, d}.
We will show that the last case is not possible. Namely, as PA is a Tutte
path and J has only two attachments, J contains an edge of the external
boundary of A. By planarity and the existence of (the connected) {b, c, d}-
bridge H in G, J cannot be adjacent to both, CG and d. Hence, every
such PA-bridge will become a P -bridge with exactly three attachments
in G.

• In the case that Pη(Bi) contains an edge of H, there may exist a Pη(Bi)-
bridge J ⊆ H \ b with two attachments having both attachments in
cη(CBi)d. By the 3-Path Property, there is a path from every inner vertex
of J to some vertex in CG that contains neither CG nor d. As J ⊂ H, this
path contains b. Thus, J is a P -bridge in G with exactly three attachments,
one of which is b.

• By applying the induction depending on the value of a, we ensure that
a is not a representative of any bridge in the final SDR S. Furthermore,

23

Chapter 3. Computing Tutte Paths in Circuit Graphs

it ensures that the vertex in the intersection of two subgraphs Fcd and
Fc′d′ is used as a representative in the result of at most one induction call
made by the algorithm.

(4) For every maximal 2-separator {c, d} of K satisfying Case 3 of Definition 3.3:

(a) If cd /∈ Pη(Bi) (see Figure 3.6):

• Let f be the face in Bi that contains cd and an inner vertex of B+
cd.

• Let R be the path obtained from the boundary of B+
cd in f by deleting

CG and d.

c d

cl cr

Pη(Bi)

cd

B+cd

vi-1vi

d′

(a) A maximal 2-separator {c, d} of
Bi such that cl 6= cr and Fcd con-
tains no 1-separator. In this case,
cd is not contained in Pη(Bi).

c d
bR

cl cr

Fcd

f

d′

(b) The subgraph Fcd (not containing
dashed edges). We compute a Tutte
path PFcd

of Fcd from cl to cr through
b ∈ R (the fat line depicts the path R).

Figure 3.6: Step 4(a) of FindTuttePath

i. Choose an arbitrary vertex b in R.

ii. Compute a Tutte path PFcd
of Fcd from cl to cr through b by induction

on Fcd and an SDR SFcd
of all PFcd

-bridges. If a = x, apply the induction
such that cl /∈ SJ . Otherwise, if a = u, apply the induction such that
cr /∈ SJ .

iii. Set P := P \ clCGcr ∪ PFcd
and S := S ∪ SFcd

.

• Consider any PFcd
-bridge J with exactly two attachments in Fcd that

does not contain an edge of CG. By the 3-Paths Property, the inner
vertex set of J is neighbored to either {c}, {d} or {c, d}. We show that
the last case is not possible, which proves that every such PFcd

-bridge
becomes a P -bridge in G with exactly three attachments. By the
choice of R, the only vertex that may be adjacent to CG and d is b (in
that case, R = {b}). However, b is not a neighbor of an inner vertex
of J , as b ∈ PFcd

. This proves the claim.

(b) If cd ∈ Pη(Bi) (see Figure 3.7):

• Recall that cd was possibly added during the construction of η(K) and
may therefore not be in G. We aim to replace cd in Pη(Bi) with a Tutte

path of B+
cd from CG to d.

24

3.3. Extending the Decomposition

• This case is more complicated than the previous ones due to the fact
that both CG and d could already be representatives in S. The induction
hypothesis allows us to protect only one vertex by choosing the parameter
a. In the following, we will therefore apply induction on a modification of
the graph B+

cd ∪ Fcd such that d is not contained in this graph and c /∈ S
in the end.

• According to Lemma 2.12, B+
cd ∪ cd is a circuit graph.

• Let d′ be the neighbor of d on the boundary of B+
cd ∪ cd that is different

from CG.

• Let K ′ := (B+
cd ∪ cd) \ d. According to Lemma 2.14, K ′ is a plane chain

of blocks B′1, B
′
2, . . . , B

′
l′ such that d′ ∈ B′1 and c ∈ B′l′ . Note that K ′ is

a subgraph of G, as it does not contain cd.

• By planarity, every (K ∪ xCGu)-bridge L in G that is contained in Fcd
has its attachment α(L) (if exists) on the upper boundary of K ′ (see
Figure 3.7(b)), while every neighbor of d is on the lower boundary of K ′.

• We will replace cd ∈ Pη(Bi) with the union of the edge dd′ and a Tutte
path of η(K ′) from d′ to CG; the Tutte path is constructed in the very
same way as we did for K, i.e., by first computing η(K ′), then Tutte
paths of the blocks of η(K ′) and then branching into the different steps
of FindTuttePath. This will iterate on the maximal 2-separators of K ′,
which are the sets of next smaller 2-separators of K. Note that η(K) and
η(K ′) are edge-disjoint.

• Technically, η() is defined on a given circuit graph. We face this problem
by constructing the following artificial circuit graph G, which allows for
a proper definition of η(K ′).

– Let G be the union of K ′ ∪ clCGcr, all (K ∪ xCGu)-bridges that are
contained in Fcd, and the new edges ccl and crd

′. Clearly,G is a circuit
graph (G,CG). Let x′ := cl, u

′ := cr, u
′
1 := d′ and y′ := c.

– Then K ′ is consistent to our previous definition, i.e., the minimal
connected union of blocks of G \ x′CGu′ that contains y′ and u′1, and
η(K ′) is well-defined in dependence of G and {x′, u′, y′}.

i. Compute η(K ′) from K ′.

ii. For each block η(B′i) of η(K ′), compute a Tutte path Pη(B′i)
and an SDR

Sη(B′i)
of the Pη(B′i)

-bridges in η(B′i) by induction, as described in Sec-
tion 3.3.

iii. Set P ′ := clPcr ∪ Pη(B′1) ∪ · · · ∪ Pη(B′
l′)
∪ crd′.

iv. Set S′ := Sη(B′1) ∪ · · · ∪ Sη(B′
l′)

.

v. Apply FindTuttePath((G,CG)), x′, u′, y′, P ′, S′).

vi. Set P := P \ clCGcr \ cd ∪ xPcl ∪ clP ′cr ∪ crPd ∪ dd′ ∪ d′P ′c ∪ cPy.

vii. Set S := S ∪ S′.
• By construction, (G,CG) contains neither an L′-bridge nor an isolated

bridge; moreover, P ′ is exactly the preliminary Tutte path of (G,CG)
computed in Section 3.3. Thus, FindTuttePath((G,CG)), x′, u′, y′, P ′)

25

Chapter 3. Computing Tutte Paths in Circuit Graphs

c d

cl cr

vi-1vi

Pη(Bi)

Fcd

cd
d′

L1 L2 L3

(a) A maximal 2-separator {c, d}
of Bi such that cl 6= cr and Fcd
contains no 1-separator. In this
case, cd is contained in Pη(Bi).

d′c

d

cl cr

B1′B2′B3′

L1 L2 L3

K′

(b) The circuit graph (G′, CG′) (not containing
dashed edges), which contains the plane chain of
blocks K ′. We iterate the computation of a Tutte
path on η(K ′) in (G′, CG′), which corresponds to
iterating on the next smaller maximal 2-separators
of K.

Figure 3.7: Step 4(b) of FindTuttePath

outputs a Tutte path of (G,CG) and stores it in P ′. The above con-
struction of P then applies the changes that were made for P ′ to
P .

• Since P ′ is a Tutte path of (G,CG), the only P ′-bridges with two
attachments that do not contain an edge of CG must have an inner
vertex that is a neighbor of d by the 3-Paths Property. As d ∈ P , such
P ′-bridges will become P -bridges with exactly three attachments in
G.

(5) For every isolated (K ∪ xCGu)-bridge L in G:

• Any isolated bridge L that is contained in some Fcd for a maximal 2-separator
{c, d} of K has already been part of a recursive call that computed the Tutte-
path PFcd

. Therefore, it does not have to be considered again and we restrict
ourselves to isolated bridges that are not contained in some Fcd.

• Any path from x to u in G \K must pass through J(L) and, in particular,
through the vertices {cl, cr} of L. In G, P contains clCGcr. Recall that J(L)
is a circuit graph. We aim for replacing the subpath clCGcr in P with a Tutte
path of J(L) from cl to cr.

• As cl or cr may already be in S, we have to be careful about how we apply
the induction. In Steps 1(a), 3(a) and 4(a), we applied the induction on all
Fcd subgraphs depending on the vertex a; hence, we know that not both cl
and cr are already in S. In order to ensure that we do not add a to S in the
case that a ∈ J(L) (for example if a = x) and neither reuse cl nor cr as a
representative, we will apply the induction in the same fashion depending on
a.

(a) Compute a Tutte path PJ(L) of J(L) from cl to cr by induction on J(L) and
an SDR SJ(L) of all PJ(L)-bridges. If a = x, apply the induction such that

26

3.3. Extending the Decomposition

cl /∈ SJ(L). Otherwise, if a = u, apply the induction such that cr /∈ SJ(L).

(b) Set P := P \ clCGcr ∪ PJ(L) and S := S ∪ SJ(L).

• Since L is an isolated bridge, every PJ(L)-bridge has no neighbor in G \
J(L), and therefore does not change its number of attachments as a bridge
of P in G.

Dealing with L’

We show how to deal with the bridge L′ that we removed in advance. In the graph G, let
P be a Tutte path from x to y through u with SDR S of all P -bridges in G, as computed
by Algorithm 1. Assume that the bridge L′ exists in G′, as otherwise there is nothing to
do. If L′ has exactly two attachments in G′ (namely x and vl), then vl ∈ P and vl /∈ S
by the construction of P . In that case, P is a Tutte path of G′, L′ is a P -bridge of G′

with two attachments, and we simply add vl to S as the representative of L′.

Otherwise, L′ has at least the three attachments vl, x, cr in G′ (see Figure 3.1). Let
L∗ := (L′ ∪CG(L′)) \ vl. Note that L∗ may not be 2-connected. The following steps will
extend the subpath crPy of P and the SDR S computed by Algorithm 1 to a Tutte path
from x to y and SDR of G′.

(1) If L∗ is not 2-connected:

• Every 1-separator z of L∗ is contained in vlCGcr\vl (note that vl /∈ L∗), as oth-
erwise {z, vl} would be a 2-separator with z /∈ CG, contradicting Lemma 2.11.
Furthermore, z ∈ vlCGx \ vl, as otherwise z ∈ xCGcr \ x would imply that
{z, vl} is a 2-separator that violates the choice of L′ (e.g., cr would not be an
attachment of L′).

(a) Let z be the 1-separator of L∗ in vlCGx \ vl closest to x (possibly z = x).

(b) Let L∗B be the {z}-bridge of L∗ containing cr.

(2) If L∗ is 2-connected:

(a) Let z be the neighbor of vl in CG ∩ L∗.
(b) Let L∗B := L∗.

(3) Compute a Tutte path PL∗B of L∗B from x to cr through z and an SDR SL∗B of all
PL∗B -bridges in L∗B by induction.

• In both cases, L∗B is 2-connected and thus a circuit graph due to Lemma 2.13.

• We apply the induction such that, depending on the value of a, either x or cr
is not in SL∗ .

(4) Obtain the Tutte path P := PL∗B ∪ crPy of G′ with SDR S := SL∗B ∪ S.

• If L∗ is not 2-connected, then the part of L∗ that is not contained in L∗B
becomes a P -bridge with attachments vl and z. As Algorithm 1 ensures
vl /∈ S, we can add vl to S as the representative of that P -bridge.

27

Chapter 3. Computing Tutte Paths in Circuit Graphs

3.4 A Quadratic Time Bound

We consider the overall algorithm A on the circuit graph G′ with m edges, which modifies
G′ to a graph G having no special bridge L′ (see beginning of Section 3.3), then computes
a preliminary Tutte path P of G (see Section 3.3), and eventually invokes Algorithm 1
to extend P . Let time(m) be the running time of Algorithm A on G′. We need to show
that time(m) = O(m2) = O(n2).

Clearly, all recursive calls of Algorithm A are made on pairwise edge-disjoint circuit
graphs. For detecting blocks and chains of blocks, we use any algorithm such as [64]
that is able to compute the 2-connected components of a graph in linear time. Every
single step of Algorithm A that is not a recursive call uses elementary graph operations
or computes maximal 2-separators and can, therefore, be done in time O(m).

It thus suffices to show that the number of recursive calls of A is linear in m and
that we did not add too many new edges for every recursive call. If j recursive calls were
invoked on G′, let Gi be the circuit graph of the ith such call and let mi := |E(Gi)| for
all 1 ≤ i ≤ j.

If we would not add any new edge during the computation of A, every Gi would be
a subgraph of G′ and we would have the recurrence time(m) = O(m) +

∑j
i=1 time(mi).

Let w be the neighbor of vl in vlCGx. As all Gi are edge-disjoint and do not contain the
edges uu1 and vlw, we have

∑j
i=1mi ≤ m− 2. Solving the recurrence above gives then

time(m) = O(m1+1) = O(n2).
However, we may have added a new edge cd in Algorithm A only when constructing

η(K) (in Case 3 of Definition 3.3), either during the computation of the preliminary
Tutte path P or before the recursive call of Algorithm 1 in Case 4(b)i. Every such new
edge cd is part of exactly one recursive call made for G′ on a graph Gi that is a block of
ηK (see Section 3.3). However, for every such Gi and cd, the unique edge dd′ (as shown
in Figure 3.6(a)) is not contained in any recursive call made for G′. Since this edge dd′

compensates the additional edge cd, this restores the validity of the above argument.
This proves Theorem 2.6 and hence Theorem 2.7. The most crucial open question is

how the given cubic running time for computing a special closed 2-walk can be improved
to a polynomial of lower order.

28

CHAPTER 4

Tutte Paths in 2-Connected Planar
Graphs

In this chapter, we shift our focus from circuit graphs to all 2-connected plane graphs. For
this, we broadly follow the idea of [18] and construct a Tutte path that is based on the
appearance of certain 2-separators in the graphs constructed during our decomposition
of the given graph. This depends on many structural properties of the input. In [18], the
necessary properties to compute a Tutte path in linear time follow from the restriction
to the class of internally 4-connected planar graphs, the restriction on the endvertices
of the desired Tutte path, and the fact that the Tutte paths computed recursively are
actually Hamiltonian paths. In contrast, here we give new insights into the much wider
structural variety of Tutte paths of 2-connected planar graphs. In addition, as stated
in Theorem 2.8, we allow x, y /∈ CG, and hence extend the techniques used in [18]. We
show that based on the prescribed vertices and edge, there is always a set of unique
2-separators that must be contained in any Tutte path of the given graph. We then
use this set of 2-separators to iteratively construct a preliminary Tutte path and apply
this iterative procedure such that we avoid overlappings of more than one edge while
decomposing the input graph. Other than in the previous chapter we will not be able to
compute an SDR for the constructed Tutte path, as such a system does not necessarily
exist for every Tutte paths in 2-connected planar graphs (Figure 4.1 shows a simple
example where this is the case).

x

y

Figure 4.1: An example of a 2-connected plane graph where there is no SDR for the
bridges of any Tutte cycle through the vertices x and y. Any such cycle would have at
least three bridges with the same two attachments.

We start by excluding two instances for which it is easy to show that Theorem 2.2
holds. With these two easy cases out of the way, we assume that our input instance does
not fall into one of them and show how this assumption allows us to extend a Tutte

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

path given for just a subgraph can be extended to a Tutte path of the entire graph. We
then show how this technique can be utilized to prove Thomassen’s Theorem 2.1 and
also Sander’s result (Theorem 2.2) such that only small overlaps occur.

Whenever we prove the existence of a Tutte path in a plane graph, we will do it by
induction on the number of vertices in the given graph. The induction base will always be
a triangle, for which the desired Tutte paths can be found trivially; thus, we will assume
in these proofs by the induction hypothesis that graphs with fewer vertices contain Tutte
paths. All graphs appearing in the inductive proof will be simple. Note that if we are
given endvertices x, y and intermediate edge α such that α = xy, the desired path is
simply xy; thus, we assume α 6= xy. Also, since G is 2-connected, CG must be a cycle.

4.1 Two Easy Cases

For the cases covered in this section, let G be a simple plane 2-connected graph with outer
face CG and let x ∈ V (G), α ∈ E(CG) and y ∈ V (G)− x be given as part of the input.
We say that G is decomposable into GL and GR if it contains subgraphs GL and GR such
that GL∪GR = G, V (GL)∩V (GR) = {c, d}, x ∈ V (GL), α ∈ E(GR), V (GL) 6= {x, c, d}
and V (GR) 6= {c, d} (or the analogous setting with y taking the role of x) (see Figure 4.2).
In particular, GL 6= {c, d}, even if x ∈ {c, d}. Hence, {c, d} is a 2-separator of G. There
might exist multiple pairs (GL, GR) into which G is decomposable; we will always choose
a pair that minimizes |V (GR)|. Note that GR intersects CG (for example, in α), but GL
does not have to intersect CG. In [70], it was shown that any 2-connected plane graph
G that is decomposable into GL and GR contains a Tutte path, without using recursion
on overlapping subgraphs. It turns out the statement is independent of whether x and y
are in CG.

Lemma 4.1 ([70]). If G is decomposable into GL and GR, then G contains an x-α-y-
path.

Proof. Let G′L and G′R be the plane graphs obtained from GL and GR, respectively, by
adding the edge cd, if this does not already exist (see Figure 4.2). Let G∗R be the graph
obtained from G′R by subdividing cd with a new vertex z. Clearly, all of the graphs G′L,
G′R and G∗R are 2-connected and contain fewer vertices than G.

ɑ

x

c

d

y

x

c

d

y

cd ɑ

c

d

cd ɑ

c

d

z

a) b) c) d)

Figure 4.2: a) shows a graph G that is decomposable into GL and GR. The figures b)
to d) show the graphs G′L, G

′
R and G∗R (in this order).

Assume first that y ∈ GL. By induction, G′L contains an x-cd-y-path PL and G′R
contains a c-α-d-path PR 63 cd (this requires to find a plane embedding ofGR′ whose outer
face contains α; here and later, such an embedding can always be found by stereographic

30

4.1. Two Easy Cases

projection). Then P := (PL − cd) ∪ PR is an x-α-y-path of G, as {c, d} is a 2-separator,
and thus every PL-bridge of G′L and every PR-bridge of G′R has the same attachments
as its corresponding P -bridge of G.

Otherwise, y ∈ GR−{c, d}. We split this case in two sub-cases. First, assume x ∈ {c, d}
and without loss of generalization x = c. By induction, G′R contains an x-α-y-path PR.
Suppose PR does not contain d. Then d is contained in a PR-bridge K of G′R as internal
vertex and cd ∈ K. Since cd ∈ CG′R , K has exactly two attachments (one of which is
x), and these form a 2-separator implying that G is decomposable into a smaller graph
than GR, which contradicts our choice of the decomposition. Hence, d ∈ PR. If cd /∈ PR,
PR is a Tutte path of G, as d ∈ PR implies that GL − cd is a PR-bridge of G having
two attachments. If cd ∈ PR, let e be any edge in GL ∩CG; by induction, GL contains a
c-e-d-path PL. Then PL ∪ (PR − cd) is an x-α-y-path of G.

Now assume x /∈ {c, d}. We will again merge two Tutte paths by induction, but have
to ensure that cd is not contained in any of them; to this end, we use G∗R instead of G′R.
By induction, there is a z-α-y-path PR in G∗R; PR contains either zc or zd, say without
loss of generalization zc. By the same argument as in the previous case, we have d ∈ PR.
By induction, G′L contains an x-cd-d-path PL. Then P := (PL − d) ∪ (PR − z) is an
x-α-y-path of G, as {c, d} = PL ∩ PR and since every PL- or PR-bridge of GL or GR,
respectively, has the same attachments as its corresponding P -bridge of G.

Even if G is not decomposable into GL and GR, G may contain other 2-separators
{c, d} that allow for a similar reduction as in Lemma 4.1 (for example, when modifying its
prerequisites to satisfy {x, α, y} ⊆ GR − {c, d}). We give our own proof as the following
lemma is not explicitly stated in [70].

Lemma 4.2. Let {c, d} be a 2-separator of G and let J be a {c, d}-bridge of G having an
internal vertex in CG such that x, y and α are not in J . Then G contains an x-α-y-path.

Proof. Let G′ be the plane graph obtained from G by deleting all internal vertices of J .
Since x /∈ J , G′ contains at least three vertices. First, consider the case E(CG)−E(J) =
{α}. Then G′ is 2-connected, as the 2-connectivity of G and the deletion of the internal
vertices of J for G′ imply that any 1-separator z of G′ must separate c from d. By
induction, G′ contains an x-α-y-path P . Since c, d ∈ P and J has two attachments, P is
also an x-α-y-path of G.

In the remaining case E(CG)−E(J) 6= {α}, we add the edge cd to G′ where CG ∩ J
used to be embedded, unless cd is already contained in G′. Clearly, G′ is 2-connected
and |V (G′)| < n, since J contains an internal vertex. By induction, G′ contains an
x-α-y-path P . If cd /∈ P , cd is contained in a P -bridge of G′ that has two attachments
and its corresponding P -bridge of G has exactly the same attachments, so that P is also
an x-α-y-path of G.

Now assume cd ∈ P and let J∗ := J ∪{cd} such that cd is embedded where G−V (J)
used to be embedded. Then J∗ is 2-connected and |V (J∗)| < n. Let αJ∗ denote an
arbitrary edge in CJ∗ − cd. By induction, J∗ contains a c-αJ∗-d-path PJ∗ . Then the path
obtained from P by replacing cd with PJ∗ is an x-α-y-path of G, as {c, d} separates the
P - and PJ∗-bridges of G.

For simplicity, we will call a graph non-decomposable if we can neither apply Lemma
4.1 nor Lemma 4.2 to it.

31

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

4.2 Moving from a Chain of Blocks to the Entire Graph

In this section, we will assume that we are given a path Q := q1CGq2 with endvertices q1

and q2 and a Tute path P in a plane chain of blocks in G−Q. We will then show how to
modify Q such that any (P ∪Q)-bridge of G has at most three attachments and two if it
contains an edge of q1CGq2. As P ∪Q is not necessarily connected, this modification will
not immediately result in a Tutte path of G, but as it was shown in the original proofs
for Theorem 2.1 and Theorem 2.2, if we choose the endvertices of P and Q depending
on x, y and α it is easy to connect P and Q such that their union is a Tutte path of G.
The details of this will be covered in the following sections.

To be more formal, let G be a 2-connected plane graph. Let p1 6= p2 be two vertices
in V (G) \ {q1, q2}. Let K be a plane chain of blocks in G − Q that contains p1 and
p2 and let P be a Tutte path of K from p1 to p2. In addition, let K and Q be such
that V (Q ∪ (CG ∩K)) = V (CG). Let T := P ∪Q, we will next show how to modify T .
Consider any nontrivial T -bridge J of G. Let CG(J) denote the shortest path in CG ∩Q
that contains all vertices in J ∩Q. Let lJ be the endvertex of CG(J) closest to q1 and
let rJ be the other endvertex of CG(J) If J has all of its attachments in CG(J), then
|V (J ∪ CG(J))| < |V (G)|, J ∪ CG(J) is 2-connected and by Theorem 2.2 contains a
lJ − rJ path QJ . In this case we modify T by replacing lJQrJ with QJ . Note that this
modification does not change the number of attachments for any QJ -bridge of G nor
any other T -bridge of G as the neighborhood of any vertex in J ∪ CG(J) − {lJ , rJ} is
the same as in G. On the other hand, if J has all of its attachments in P ⊆ K it follows
that J ⊆ K.

Lemma 4.3. If J has no attachments in Q, then J ⊆ K and J has at most three
attachments in P .

Proof. Let PJ denote the shortest connected path in P that contains all attachments
of J . Note that J ∪ PJ must be 2-connected as any of its 1-separators would also be a
1-separator of G (contradicting that G is 2-connected). In addition, J ’s attachments are
all in P ⊆ K and the blocks in K are maximal in G − Q. Therefore, it follows that J
must be a subgraph of K. As P is a Tutte path of K, J must have at least two and at
most three attachments in P .

Hence, by Lemma 4.3, to show that any T -bridge of G has at most three attachments
and exactly two if it contains an edge of q1CGq2, it suffices to only consider T -bridges
that have attachments in both P and Q. The following lemma showcases some properties
of these T -bridges of G (also see Figure 4.3 for an illustration).

Lemma 4.4. Let G be a 2-connected plane graph, Q a path in CG, K a plane chain of
blocks of G − Q and P a Tutte subgraph of K. If J is a (P ∪ Q)-bridge of G that has
at least one attachment in both P and Q, then either J ∩ K is one vertex in P or J
contains exactly one nontrivial outer P -bridge L of K. In particular, J has at most two
attachments in P .

Proof. If J does not contain an internal vertex of any P -bridge of K, then J can have at
most one attachment in P . Assume for contradiction that J does have another attachment
in P . By the definition of bridges, there must exist a path in J (and therefore in G−Q)

32

4.2. Moving from a Chain of Blocks to the Entire Graph

connecting both attachments. As we assume that J does not intersect K, other than in
its attachments in P , this path contradicts the maximality of the blocks in K. Therefore,
in the case where J does not contain an internal vertex of any P -bridge of K, J ∩K is
exactly the attachment of J in P .

Next, we assume that J contains at least one internal vertex v of some P -bridge L
of K. We first prove that there is no other P -bridge of K contained in J . Assume to
the contrary that there exists a vertex v′ in J that is also part of a second P -bridge
L′ 6= L of K. By definition the internal vertices of J induce a connected subgraph of G,
therefore J − (P ∪Q) contains a path from v to v′. As this path is also a subgraph of
G−Q and it connects two vertices in K, itself must also be part of K. The existence of
such a path contradicts that L and L′ are actually two different P -bridges of K.

It remains to show that L is an outer P -bridge of K and therefore has exactly two
attachments in P . This follows from the assumption that the embedding of K was not
changed from the embedding of G when computing P and the fact that G is planar. As v
is part of L and L ⊆ K any path from v to a vertex in CG must intersect CK in at least
one vertex. If for all such paths all intersections with CK are also in P , then J − (P ∪Q)
would not be connected, and therefore contradict that a bridge like J even exits. Thus,
there must exist a path from v to Q in G, which does not intersect P . As this path has
to intersect CK in some vertex, this vertex must be part of L in K as well. Therefore, L
must be an outer P -bridge of K.

ɑ

x=q1

y=p2=v2

p1=v0

q2

B1

B2

v1

J

P1

D

vj

c

d

lJ rJ lD rD

P2

QJ QD

Figure 4.3: K consists of all subgraphs colored gray (B1, B2 and D). Here we have two
(P ∪Q)-bridges J and D of G, J has exactly one attachment vJ in P , and D has exactly
two attachments {c, d} in P that are the attachments of a nontrivial outer P -bridge of
K.

Because Lemma 4.2 is not applicable to G, there is no other T -bridge than J that
intersects (J ∪ CG(J)) − P − {lJ , rJ}; in other words, J ∪ CG(J) is everything that is
enclosed by the attachments of J in G. In order to obtain the path T , we will compute
a Tutte path QJ of J from lJ to rJ such that any (QJ ∪ P)-bridge of G that intersects
(J ∪CG(J))−P −{lJ , rJ} has at most three attachments and at most two if it contains
an edge of Q.

33

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

If CG(J) is a single vertex, we can set QJ := CG(J), as then J ∪ CG(J) does not
contain an edge of Q and has at most three attachments in total (one in Q and at most
two in P by Lemma 4.4). If CG(J) is not a single vertex, then by Lemma 4.4, it suffices
to distinguish two cases, namely whether J has one or two attachments in P . In [70, 17],
the following lemma was proven for fixed p1, p2, q1 and q2 in order to prove Theorem 2.1.
We cover these cases in a more general form in order to be able to reuse the lemma in
later proofs of this thesis.

Lemma 4.5. Let G be a 2-connected plane graph, Q a connected subgraph of CG and P
a subgraph of G− (V (Q) \ {q1, q2}) and J be any (P ∪Q)-bridge of G that has either one
or two attachments in P and at least two in Q. Then (J ∪CG(J))−P contains a path QJ
from lJ to rJ such that any (QJ∪P)-bridge of G that intersects (J∪CG(J))−P−{lJ , rJ}
has at most three attachments and at most two if it contains an edge of CG.

Proof. Assume first that J has only one attachment v in P (see Figure 4.3). Let J ′ :=
J ∪ CG(J) ∪ {rJv} (without introducing multi-edges). Note that |V (J ′)| < |V (G)| and
that J ′ is 2-connected. The first claim simply follows from the fact that |V (P)| ≥ 2 and
J∗ intersects P in only one vertex.

For proving that J ′ is 2-connected, consider the outer face CJ ′ of J ′ and let F be the
unique inner face of G that contains v and lJ . Since G is 2-connected, F is a cycle, and
hence vCJ ′ lJ is a simple path in G. Therefore, CJ ′ is actually the union of vCJ ′ lJ , CG(J)
and {rJv}, which implies that CJ ′ is a cycle. Hence, if we assume for contradiction that
there exists a 1-separator w of J ′, then w must be in J ′ − CJ ′ . This assumption would
also imply that there exists a component S in J ′ − w that does not intersect the cycle
CJ ′ . As J ′ and J differ at most by the edge rJv, the neighborhood of S in G is would be
the same as in J ′, which implies that w would also be a 1-separator in G. As this would
contradict our assumption that G is 2-connected, J ′ must also be 2-connected.

By Theorem 2.1, J ′ contains a lJ -rJv-v-path QJ ′ . We set QJ := QJ ′ − v; then
QJ ∩ P = ∅ and the neighborhood of every internal vertex of every QJ ′-bridge of J ′

is the same in J ′ as in G. Thus, every QJ -bridge of G corresponds to a QJ ′-bridge of
J ′, which ensures that the number of attachments of every QJ -bridge of G intersecting
(J ∪ CG(J))− P − {lJ , rJ} is as claimed.

Assume now that J has exactly two attachments c and d in P . Since J is connected
and contains no edge of CG(J), there must exist some cycle in J ∪ CG(J) that contains
CG(J). Since G is 2-connected and this cycle is also part of G, the subgraph of G induced
by the vertices in this cycle and the vertices of G embedded inside this cycle must be
2-connected as well. This implies that there exists a block D in J ∪CG(J) that contains
all vertices of CG(J)(see Figure 4.3).

Consider a (D ∪ {c, d})-bridge L′ of J ∪CG(J). Then L′ has at least one attachment
in D, as otherwise L′ itself would be a {c, d}-bridge of G, which contradicts that L′ is
contained in J ∪ CG(J). Moreover, L′ has exactly one attachment in D, as a second
attachment would contradict the maximality of D. By planarity, there is at most one
(D ∪ {c, d})-bridge L that has three attachments c, d and, say, vL ∈ D.

We distinguish two cases. If L exists, set vD := vL. If L does not exist, let R be the
minimal path in CD − inner(CG(J)) that contains the attachments of all (D ∪ {c, d})-
bridges of J that are in D. Then R contains a vertex vD that splits R into two paths Rc
and Rd such that Rc ∩ Rd = {vD}. Moreover, any (D ∪ {c, d})-bridge of J having c as

34

4.3. A Constructive Proof for Thomassen’s Result

one of its two attachments has its other attachment in Rc, and any (D ∪ {c, d})-bridge
of J having d as one of its two attachments has its other attachment in Rd. In either
case for the vertex vD, we define β as an edge of CD that is incident to vD.

As D is 2-connected, by Theorem 2.1 there exists an lJ -β-rJ -path QD of D. Any outer
QD-bridge of D therefore maybe gain either c or d as third attachment when considering
this bridge in G, but not both; if L exists, L has still only the three attachments {c, d, vL}
in G. Thus, QD is the desired path QJ .

We replace lJCGrJ in T with QJ for every (P ∪ Q)-bridge J . Since lJ and rJ are
contained in T , no (P∪Q)-bridge ofG other than J is affected by this “local” replacement,
which proves its sufficiency for obtaining the desired path Q.

4.3 A Constructive Proof for Thomassen’s Result

We now prove that any 2-connected plane graph G contains an x− α− y path for any
x ∈ V (CG), y ∈ V (G)− x and α ∈ E(CG). For simplicity, if y is not in V (CG) but has
degree two and both of its neighbors are in V (CG), then we change the embedding of G
(, and therefore CG) such that y belongs to the outer face. If Lemma 4.1 or Lemma 4.2
can be applied, we obtain such a Tutte path directly, so assume their prerequisites
are not met. Let lα be the endvertex of α that appears first when we traverse CG in
clockwise order starting from x, and let rα be the other endvertex of α. If y ∈ xCGlα,
we interchange x and y (this does not change lα); hence, we have y /∈ xCGlα. If y = rα,
we mirror the embedding such that y becomes lα and proceed as in the previous case;
hence, y /∈ xCGrα.

In order to apply the technique showcased in Section 4.2, we define two paths P and
Q in G, whose union will be modified into a Tutte path of G. Let Q := xCGlα and let
H := G− V (Q); in particular, y /∈ Q and, if x is an endvertex of α, Q = {x}. Since G
is non-decomposable, we have deg(rα) ≥ 3, as otherwise the neighborhood of rα would
be the 2-separator of such a decomposition. Since deg(rα) ≥ 3, rα is incident to some
edge e /∈ CG that shares a face with α. Let B1 be the block of H that contains e. It
is straight-forward to prove the following about B1 (see Thomassen [70]), which shows
that every vertex of CG is either in Q or in B1.

Lemma 4.6 ([70]). B1 contains CG − V (Q) and is the only block of H containing rα.

Consider a component A of H that does not intersect B1. Then all vertices in the
neighborhood of A in G must be in Q. This implies that there exists a subpath in Q
that contains all neighbors of A in G and its endvertices form a 2-separator of G. Hence,
either y ∈ A and we can apply Lemma 4.1 or y /∈ A and we can apply Lemma 4.2. Since
both contradicts our assumptions, H is connected and contains B1 and y. Let K be the
minimal plane chain of blocks B1, . . . , Bl of H that contains B1 and y (hence, y ∈ Bl).
Let vi be the intersection of Bi and Bi+1 for 1 ≤ i ≤ l − 1; in addition, we set v0 := rα
and vl := y.

Consider any (K ∪ CG)-bridge J . Since Lemma 4.2 cannot be applied to G, J has
an attachment vJ ∈ K. Further, J cannot have two attachments in K, as this would
contradict the maximality of the blocks in K.

35

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

ɑ

x

y=v3

rɑ=v0

lɑ

e
B1

B2

B3

v2

v1

c

dBcd
+

J

J

Q

P1

P2

P3

Figure 4.4: The paths Q and P = P1 ∪ P2 ∪ P3, the subgraph H of G and its minimal
chain of blocks K = B1 ∪B2 ∪B3, and a (K ∪CG)-bridge J . A (K ∪CG)-bridge like J ′

cannot exist due to Lemmas 4.1 and 4.2.

4.3.1 Decomposing along Maximal 2-Separators

At this point we will deviate from the original proof of Theorem 2.1 in [70], which
continues with induction on every block of K that leads to overlapping subgraphs in
a later step of the proof. Instead, we will show that a v0-vl-path P of K can be found
iteratively such that the graphs in the induction have only small overlap.

For every block Bi 6= B1 of K, we choose an arbitrary edge αi = lαirαi in CBi .
In B1 we choose α1 such that α1 is incident to the endvertex of CB1 ∩ CG that is
not rα. As done for G, we may assume for every Bi that lαi is the endvertex of αi
that is contained in vi−1CBiαi and that vi /∈ vi−1CBirαi and (by mirroring the planar
embedding and interchanging vi and vi−1 if necessary). However, unlike G, some Bi may
satisfy the prerequisites of Lemmas 4.1 and 4.2. Note that by the induction hypothesis
of Theorem 2.1, Bi contains a vi−1-αi-vi-path Pi, but we do not apply the induction
hypothesis just yet. In [70] applying the induction hypothesis at this point results in
the fact that the outer Pi-bridges of Bi are not only being processed here but also in a
later induction step when modifying Q. We avoid such overlapping subgraphs by using
a new iterative structural decomposition of Bi along certain 2-separators on CBi . This
decomposition allows us to construct Pi iteratively such that the outer Pi-bridges of
Bi are not part of the induction applied on Bi. Eventually, P :=

⋃
1≤i≤l Pi will be the

desired v0-vl-path of K.
The outline is as follows. After explaining the basic split operation that is used by

our decomposition, we give new insights into the structure of the Tutte paths Pi of
the blocks Bi. These are used in Section 4.3.2 to define the iterative decomposition of
every block Bi into a modified block η(Bi), which will in turn allow to compute every
Pi step-by-step. This gives the first part P of the desired x-α-y path of G. Subsequently,
we will use Lemma 4.5, as outlined in Section 4.2, to obtain the second part.

For a 2-separator {c, d} ⊆ CB of a block B, let B+
cd be the {c, d}-bridge of B that

contains cCBd and let B−cd be the union of all other {c, d}-bridges of B (note that B+
cd

contains the edge cd if and only if B+
cd is trivial); see Figure 4.4. For a 2-separator

{c, d} ⊆ CB, let splitting off B+
cd (from B) be the operation that deletes all internal

36

4.3. A Constructive Proof for Thomassen’s Result

vertices of B+
cd from B and adds the edge cd if cd does not already exist in B. Our

decomposition proceeds by iteratively splitting off bridges B+
cd from the blocks Bi of

K for suitable 2-separators {c, d} ⊆ CBi (we omit the subscript i in such bridges B+
cd,

as it is determined by c and d). The following lemma restricts these 2-separators to be
contained in specific parts of the outer face.

Lemma 4.7. Let P ′ be a Tutte path of a block B. For any two vertices a and b in
P ′ ∩ CB, any outer P ′-bridge J of B has both attachments in aCBb or both in bCBa. If
additionally J is nontrivial and P ′ 6= ab, the attachments of J form a 2-separator of B.

Proof. Note that the first claim is trivially true if at least one of J ’s attachments is
in {a, b}, therefore we assume that J has attachments c, d /∈ {a, b}. As J is an outer
P ′-bridge of B, we know that c and d are both in CB. Further, as CB is a cycle and
removing two vertices from a cycle can produce at most two components, we know that a
and b must be in the same component of CB−{c, d}. Therefore, this component contains
either aCBb or bCBa, and thus c, d must be in either aCBb or bCBa, respectively. For the
second claim, let z be an internal vertex of J . Since P ′ 6= ab, P ′ contains a third vertex
v /∈ {a, b}. As v is not contained in J , {c, d} separates z and v and is thus a 2-separator
of B.

For every block Bi 6= Bl of K, let the boundary points of Bi be the vertices vi−1,lαi ,rαi

and vi, and let the boundary parts of Bi be the inclusion-wise maximal paths of CBi that
do not contain any boundary point as inner vertex (see Figure 4.5a; note that boundary
parts may be single vertices). Hence, every boundary point will be contained in any
possible vi−1-αi-vi-path Pi, and there are exactly four boundary parts, one of which is
αi. Now, if Pi 6= αi, applying Lemma 4.7 for all boundary points a, b ∈ {vi−1, lαi , rαi , vi}
and α′ := αi implies that the two attachments of every outer nontrivial Pi-bridge of Bi
form a 2-separator that is contained in one boundary part of Bi. For this reason, our
decomposition will split off only 2-separators that are contained in boundary parts.

vi vi-1Bi

αi

vl-1Bl

αl

vlw1

w2

wp

a) b)

Figure 4.5: a) The boundary points and parts of a block Bi 6= Bl. b) An instance in
which the block Bl contains a 2-separator {w1, wp} that splits off vl.

In principle, we will do the same for the block Bl. If vl ∈ CBl
, we define the boundary

points of Bl just as before for i < l. However, Bl is special in the sense that vl may not be
in CBl

. Then we have to ensure that we do not loose vl when splitting off a 2-separator, as
vl is supposed to be contained in Pl (see Figure 4.5b). To this end, consider for vl /∈ CBl

the 2-separator {w1, wp} ⊆ CBl
of Bl such that B+

w1,wp
contains vl, the path w1CBl

wp is
contained in one of the paths in {vl−1CBl

αl, αl, αlCBl
vl−1} and w1CBl

wp is of minimal

37

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

length if such a 2-separator exists. The restriction to these three parts of the boundary
is again motivated by Lemma 4.7: If Pl 6= αl and there is an outer nontrivial Pl-bridge of
Bl, its two attachments are in Pl, and thus we only have to split off 2-separators that are
in one of these three paths to avoid these Pl-bridges in the induction. If the 2-separator
{w1, wp} exists, let w1, . . . , wp be the p ≥ 2 attachments of the w1CBl

wp-bridge of Bl
that contains vl, in the order of appearance in w1CBiwp; otherwise, let for notational
convenience w1 := · · · := wp := lαi . In the case vl /∈ CBl

, let the boundary points of Bl be
vl−1, lαl

, rαl
, w1, . . . , wp and let the boundary parts of Bl be the inclusion-wise maximal

paths of CBl
that do not contain any boundary point as inner vertex.

Lemma 4.8. If the 2-separator {w1, wp} exists, it is unique and every vl−1-αl-vl-path
Pl of Bl contains the vertices w1, . . . , wp.

Proof. Let J ⊂ B+
w1,wp

be the w1CBl
wp-bridge of Bl that contains vl and has attach-

ments w1, . . . , wp. For the first claim, assume to the contrary that there is a 2-separator
{w′1, w′p′} 6= {w1, wp} of Bl having the same properties as {w1, wp}. By the connectivity
of J and the property that restricts {w′1, w′p′} to the three parts of the boundary of
Bl, {w′1, w′p′} may only split off a subgraph containing vl if w1CBl

wp ⊂ w′1CBl
w′p′ . This

however contradicts the minimality of the length of w′1CBl
w′p′ .

For the second claim, let Pl be any vl−1-αl-vl-path of Bl. Assume to the contrary
that wj 6∈ Pl for some j ∈ {1, . . . , p}. Then wj is an internal vertex of an outer Pl-bridge
J ′ of Bl. By Lemma 4.7, both attachments of J ′ are in CBl

. However, since J contains
a path from wj /∈ Pl to vl ∈ Pl in which only wj is in CBl

, at least one attachment of J ′

is not in CBl
, which gives a contradiction.

Lemma 4.8 ensures that the boundary points of any Bi are contained in every Tutte
path Pi of Bi. Every block Bi 6= Bl has exactly four boundary parts and Bl has at least
three boundary parts (three if vl /∈ CBl

and {w1, wp} does not exist), some of which
may have length zero. For every 1 ≤ i ≤ l, the boundary parts of Bi partition CBi , and
one of them consists of αi. This implies in particular that Bi has at least two boundary
parts of length at least one unless Bi = αi. We need some notation to break symmetries
on boundary parts. For a boundary part Z of a block B, let {c, d}∗ ⊆ Z denote two
elements c and d (vertices or edges) such that cCBd is contained in Z (this notation
orders c and d consistently to the clockwise orientation of CB); if cCBd is contained in
some boundary part of B that is not specified, we just write {c, d}∗ ⊆ CB.

We now define which 2-separators are split off in our decomposition. Let a 2-separator
{c, d}∗ ⊆ CB of B be maximal in a boundary part Z of B if {c, d} ⊆ Z and Z does
not contain a 2-separator {c′, d′} of B such that cCBd ⊂ c′CBd

′. Let a 2-separator
{c, d}∗ ⊆ CB of B be maximal if {c, d}∗ is maximal with respect to at least one boundary
part of B. Hence, every maximal 2-separator is contained in a boundary part, and 2-
separators that are contained in a boundary part are maximal if they are not properly
“enclosed” by other 2-separators on the same boundary part.

Let two maximal 2-separators {c, d}∗ and {c′, d′}∗ of B interlace if {c, d}∩{c′, d′} = ∅
and their vertices appear in the order c, c′, d, d′ or c′, c, d′, d on CB (in particular, both
2-separators are contained in the same boundary part of B). In general, maximal 2-
separators of a block Bi of K may interlace; for example, consider the two maximal
2-separators when Bi is a cycle on four vertices in which vi−1 and vi are adjacent.

38

4.3. A Constructive Proof for Thomassen’s Result

However, the following lemma shows that such interlacing is only possible for very
specific configurations.

Lemma 4.9. Let {c, d}∗ and {c′, d′}∗ be interlacing 2-separators of Bi in a boundary part
Z such that c′ ∈ cCBid and at least one of them is maximal. Then d′CBic = vi−1vi = αi.

Proof. Since {c, d} is a 2-separator, Bi − {c, d} has at least two components. We argue
that there are exactly two. Otherwise, Bi − {c, d} has a component that contains the
inner vertices of a path P ′ from c to d in Bi − (CBi − {c, d}). Then Bi − {c′, d′} has
a component containing (P ′ ∪ CBi) − {c′, d′} and no second component, as this would
contain the inner vertices of a path from c′ to d′ in Bi − ((P ′ ∪ CBi) − {c′, d′}), which
does not exist due to planarity. Since this contradicts that {c′, d′} is a 2-separator, we
conclude that Bi − {c, d}, and by symmetry Bi − {c′, d′}, have exactly two components.

By the same argument, inner(cCBid) and inner(dCBic) are contained in different
components of Bi − {c, d} and the same holds for inner(c′CBid

′) and inner(d′CBic
′)

in Bi − {c′, d′}. Hence, the component of Bi − {c, d′} that contains inner(cCBid
′) 6= ∅

does not intersect inner(d′CBic). If inner(d′CBic) 6= ∅, this implies that {c, d′} ⊆ Z
is a 2-separator of Bi, which contradicts the maximality of {c, d} or of {c′, d′}. Hence,
inner(d′CBic) = ∅, which implies that d′CBic is an edge. As Z is not an edge, d′CBic = αi.
Since c and d′ are the only boundary points of Bi, either {c, d′} = {vi−1, vi} or Bi = Bl,
vl /∈ CBl

, {c, d′} = {vi−1, w2}, vi−1 = w1 and w2 = wp. However, the latter case is
impossible, as then {c, d′} would be a 2-separator that separates inner(cCBid

′) 6= ∅ and
vl, which contradicts the maximality of {c, d} or of {c′, d′}. This gives the claim.

If two maximal 2-separators interlace, Lemma 4.9 thus ensures that these two are
the only maximal 2-separators that may contain vi−1 and vi, respectively. This gives the
following direct corollary.

Corollary 4.10. Every block of K has at most two maximal 2-separators that interlace.

Note that any boundary part may nevertheless contain arbitrarily many (pairwise
non-interlacing) maximal 2-separators. The next lemma strengthens Lemma 4.7.

Lemma 4.11. Let Pi be a vi−1-αi-vi-path of Bi. Let J be a nontrivial outer Pi-bridge
of Bi and let e be an edge in J ∩ CBi. Then the attachments of J are contained in the
boundary part of Bi that contains e.

Proof. Let c and d be the attachments of J such that e ∈ cCBid and let Z be the
boundary part of Bi that contains e. If Pi = αi, vi−1 = lαi and vi = rαi are the only
boundary points of Bi. Then c and d are the endvertices of Z = viCBivi−1 3 e, which
gives the claim.

Otherwise, let Pi 6= αi. By applying Lemma 4.7 with a = lαi and b = rαi , {c, d}
is a 2-separator of Bi that is contained in CBi . By definition of w1, . . . , wp, there are
at least three independent paths between every two of these vertices in Bi; thus, {c, d}
does not separate two vertices of {w1, . . . , wp}. Since all other possible boundary points
(vi−1, lαi , rαi , vi) are contained in Pi, applying Lemma 4.7 on these implies that {c, d}
does not separate two vertices of these remaining boundary points. Hence, if {c, d} 6⊆ Z,
we have Bi = Bl and vl /∈ CBl

such that {c, d} separates {w1, . . . , wp} from the remaining
boundary points. Since the Pi-bridge J does not contain αl ∈ Pi, cCBl

d ⊆ J contains

39

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

{w1, . . . , wp}, but inner(cCBl
d) does not contain any other boundary point. As vl ∈ Pi,

at least one of {w1, wp} must be in Pi, say wp by symmetry. Then d = wp, as wp ∈ Pi
cannot be an internal vertex of J . Now, in both cases p = 2 (which implies c 6= w1, as
{c, d} 6⊆ Z = w1CBl

w2) and p ≥ 3, J contains the edge of Pi that is incident to vl. As
this contradicts that J is a Pi-bridge, we conclude {c, d} ⊆ Z.

Now we relate nontrivial outer Pi-bridges of Bi to maximal 2-separators of Bi. In
the next subsection, we will use this lemma as a fundamental tool for a decomposition
into subgraphs having only small overlaps, which will eventually construct P .

Lemma 4.12. Let Pi be a vi−1-αi-vi-path of Bi such that Pi 6= αi. Then the maximal
2-separators of Bi are contained in Pi and do not interlace pairwise. If J is a nontrivial
outer Pi-bridge of Bi, there is a maximal 2-separator {c, d}∗ of Bi such that J ⊆ B+

cd.

Proof. Consider the first claim. Since Pi 6= αi implies αi 6= vi−1vi by contraposition,
no two maximal 2-separators interlace due to Lemma 4.9. Assume to the contrary that
there is a maximal 2-separator {c, d}∗ of Bi such that c or d is not in Pi, say c /∈ Pi by
symmetry (otherwise, we may flip Bi). Let Z be the boundary part of Bi that contains
{c, d}. Now consider the nontrivial Pi-bridge J of Bi that contains c as internal vertex.
Since c ∈ Z, J contains an edge of Z and is thus a nontrivial outer Pi-bridge. Let c′ and d′

be the attachments of J such that c′CBid
′ ⊆ J . By Lemma 4.7, {c′, d′} is a 2-separator of

Bi. By Lemma 4.11, {c′, d′} ⊆ Z. Then Lemma 4.9 implies that {c′, d′} and the maximal
2-separator {c, d} do not interlace. Since J contains the incident edge of c in dCBic, we
conclude cCBid ⊂ c′CBid

′, which contradicts the maximality of {c, d}. This shows the
first claim holds.

For the second claim, let c′ and d′ be the attachments of the given Pi-bridge J and
let Z be the boundary part of Bi that contains some edge e ∈ J ∩ CBi . By Lemma 4.7,
{c′, d′} is a 2-separator of Bi. By Lemma 4.11, {c′, d′} ⊆ Z. Hence, there is a maximal
2-separator {c, d}∗ of Bi in Z such that {c′, d′} ⊆ cCBid and we conclude J ⊆ B+

cd.

4.3.2 The Construction of P

Naturally, we do not know the entire path Pi in Bi in advance. However, Lemma 4.12
ensures under the condition Pi 6= αi that we can split off every nontrivial outer bridge J
of Pi by a maximal 2-separator, no matter how Pi looks like. This allows us to construct
Pi iteratively by decomposing Bi along its maximal 2-separators. Since maximal 2-
separators only depend on the graph Bi , we can access them without knowing Pi itself.
This fact also allows us to reuse this construction of P in other proofs, where we need
to find a Tutte path of a given plane chain of blocks. We now show the details of such a
decomposition given K.

Definition 4.13. For every 1 ≤ i ≤ l, let η(Bi) be αi if αi = vi−1vi and otherwise the
graph obtained from Bi as follows: For every maximal 2-separator {c, d}∗ of Bi, split off
B+
cd. Moreover, let η(K) := η(B1) ∪ · · · ∪ η(Bl).

If for all Bi ∈ K, αi 6= vi−1vi, then αi cannot be a vi−1-αi-vi-path of Bi; hence,
the maximal 2-separators of K that were split in this definition do not interlace due to
Lemma 4.12. This implies that the order in which the splits are performed is irrelevant.

40

4.3. A Constructive Proof for Thomassen’s Result

In any case, we have V (Cη(Bi)) ⊆ V (CBi) and the only 2-separators of η(Bi) must be
contained in some boundary part of Bi, as there would have been another split otherwise.
See Figure 4.6 for an illustration of η(Bl). The following lemma highlights two important
properties of every η(Bi).

a) b)

vl-1Bl

αl

vlw1

w2

wp

c

d

d η(Bl)

αl

vlw1

w2

wp

c

d

d

vl-1Pl
η

Figure 4.6: a) A block Bl with boundary points vl−1, lαl
, rαl

, w1, . . . , w3 that has two
maximal 2-separators on the same boundary part. b) The graph η(Bl).

Lemma 4.14. Every η(Bi) is a block. Let P ηi be a vi−1-αi-vi-path of some η(Bi) such
that P ηi 6= αi. Then every outer P ηi -bridge of η(Bi) is trivial.

Proof. If αi = vi−1vi, η(Bi) = αi is clearly a block. Otherwise, Bi has at least three
vertices and is thus 2-connected; consider two independent paths in Bi between any two
vertices in η(Bi). Splitting off B+

cd for any maximal 2-separator {c, d}∗ (we may assume
that not both independent paths are contained in B+

cd) preserves the existence of such
paths by replacing any subpath through B+

cd with the edge cd. Hence, η(Bi) is a block.

For the second claim, we first prove that P ηi contains all boundary points of Bi. By
definition, P ηi contains lαi , rαi , vi−1 and vi. The only possible remaining boundary points
w1, . . . , wp may occur only if i = l, vl /∈ CBl

and the 2-separator {w1, wp} exists. In
that case, we argue similarly as for Lemma 4.8: Let J be the w1CBl

wp-bridge of Bl that
contains vl; clearly, J exists also in η(Bl). Now assume to the contrary that wj 6∈ η(Pl)
for some j ∈ {1, . . . , p}. Then wj is an internal vertex of an outer η(Pl)-bridge J ′ of η(Bl).
As η(Bl) is a block, we can apply Lemma 4.7, which implies that both attachments of
J ′ are in Cη(Bl). However, since J contains a path from wj /∈ η(Pl) to vj ∈ η(Pl) in
which only wj is in Cη(Bl), at least one attachment of J ′ is not in Cη(Bl), which gives a
contradiction.

Assume to the contrary that there is a nontrivial outer P ηi -bridge J ′′ of η(Bi) and
let c, d be its two attachments. Lemma 4.7 implies that {c, d} is a 2-separator of η(Bi)
that is contained in CBi . If c and d are contained in the same boundary part of Bi, a
supergraph of B+

cd would therefore have been split off for η(Bi), which contradicts that
J ′′ is nontrivial. Hence, c and d are contained in different boundary parts of Bi. Then
inner(cCBid) contains a boundary point of Bi and, as this boundary point is also in P ηi ,
this contradicts that J ′′ is an outer P ηi -bridge.

The next lemma shows how we can construct a Tutte path P of K iteratively using
maximal 2-separators. We will provide the details of an efficient implementation in
Section 4.6.

41

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

Lemma 4.15 (Construction of P). Given P ηi for every 1 ≤ i ≤ l, a vi−1-αi-vi-path
Pi of Bi can be constructed such that no nontrivial outer Pi-bridge of Bi is part of an
inductive call of Theorem 2.1.

Proof. The proof proceeds by induction on the number of vertices in Bi. If Bi is just
an edge or a triangle, the claim follows directly. For the induction step, we therefore
assume that Bi contains at least four vertices. If αi = vi−1vi, we set Pi := αi, so
assume αi 6= vi−1vi. In particular, η(Bi) 6= αi and αi is no vi−1-αi-vi-path of η(Bi). As
|V (η(Bi))| < n, we may apply an inductive call of Theorem 2.1 to η(Bi), which returns
a vi−1-αi-vi-path P ηi 6= αi of η(Bi). This does not violate the claim, since η(Bi) does not
contain any nontrivial outer P ηi -bridge by Lemma 4.14.

Now we extend P ηi iteratively to the desired vi−1-αi-vi-path Pi of Bi by restoring
the subgraphs that were split off along maximal 2-separators one by one. For every
edge cd ∈ Cη(Bi) such that {c, d}∗ is a maximal 2-separator of Bi (in arbitrary order),
we distinguish the following two cases: If cd /∈ P ηi , we do not modify P ηi , as in Bi the
subgraph B+

cd will be a valid outer bridge. If otherwise cd ∈ P ηi , we consider the subgraph
B+
cd of Bi. Clearly, B := B+

cd ∪ {cd} is a block. Define that the boundary points of B
are c, d and the two endvertices of some arbitrary edge αB 6= cd in CB. This introduces
the boundary parts of B in the standard way, and hence defines η(B). Note that B may
contain several maximal 2-separators in cCBd that in Bi were suppressed by {c, d}∗, as
{c, d}∗ is not a 2-separator of B. In consistency with Lemma 4.12, which ensures that
no two maximal 2-separators of Bi interlace, we have to ensure that no two maximal
2-separators of B interlace in our case αi 6= vi−1vi, as otherwise η(B) would be ill-defined.
This is however implied by Lemma 4.9, as αB 6= cd. Since |V (η(B))| < |V (Bi)|, a c-αB-
d-path PB of B can be constructed such that no nontrivial outer PB-bridge of B is part
of an inductive call of Theorem 2.1. Since αB 6= cd, PB does not contain cd. We now
replace the edge cd in P ηi by PB. This gives the desired path Pi after having restored all
subgraphs B+

cd.

Applying Lemma 4.15 on all blocks of K and taking the union of the resulting paths
gives the desired Tutte path P of K. Following the instructions in Section 4.2 we can
modify Q such that P ∪{α}∪Q becomes a Tutte path of G. By Lemma 4.15, no nontrivial
outer P -bridge of K was part of any inductive call of Theorem 2.1 so far, which allows
us to use these bridges inductively for the modification of Q via Lemma 4.5, while the
existence proof in [70] used these arbitrarily large bridges in inductive calls for both
constructing P and modifying Q.

4.4 The Three Edge Lemma

Next, we show how Thomassen’s result implies the existence of a Tutte cycle through any
three given edges in CG and how we can use the tools developed in the previous sections
to give a constructive proof. That such a Tutte cycle always exists was already proven
in [67] or [58], and the result itself is known as the Three-Edge-Lemma. Our approach
is novel in the fact that we can find this Tutte cycle without constructing overlapping
subgraphs in the process.

42

4.5. A Constructive Proof for Sanders’s Theorem

Lemma 4.16 (Three-Edge-Lemma). Let G be a 2-connected plane graph and let α, β
and γ be three arbitrary edges of CG. There exists a Tutte cycle C in G that contains α,
β and γ.

Proof. We denote the endvertices of α, β and γ by {α1, α2}, {β1, β2} and {γ1, γ2} respec-
tively such that α = α1CGα2, β = β1CGβ2 and γ = γ1CGγ2. Without loss of generality,
we may also assume that α, β and γ appear in this order when traversing CG starting
from α1 in clockwise direction (see Figure 4.7). The proof proceeds by induction on the
number of vertices in G. In the base-case, G is a triangle and the claim is true.

ɑ

B1

a u

β

a u
ɣ

B3 B2 B1

v1v2

Q

Figure 4.7: A graph G with edges α, β, γ that contains a plane chain of blocks K, as
used in the Three Edge Lemma.

Let Q := α2CGβ1 and K be a minimal plane chain of blocks B1, . . . , Bl of G−Q that
contains α1 and β2, and let 1 ≤ k ≤ l be the index such that γ ∈ Bk. Let vi := Bi ∩Bi+1

for 2 ≤ i ≤ l − 1, v0 := β2 and vl := α1. For every block Bi 6= Bk in K let δi be an
arbitrary edge in Bi ∩CG. In Bk let δk := γ. In addition, we denote the endvertices of δi
by ldeltai and rδi . For every block Bi of K, let the boundary points of Bi be the vertices
vi−1, lδi , rδi , vi and let the boundary parts of Bi be the inclusion-wise maximal paths
of CBi that do not contain any boundary point as inner vertex. Note that this suffices
to define η(Bi) for every i, which allows us to apply Lemma 4.15 on each block in K.
Therefore, we construct iteratively an β2-γ-α1-path P of K such that no nontrivial outer
P -bridge of K is part of an inductive call of Theorem 2.1. By Lemma 4.5 we can modify
Q such that the union of P,Q, α and β forms the desired Tutte cycle that contains α, β
and γ.

4.5 A Constructive Proof for Sanders’s Theorem

At this point we are ready to prove Theorem 2.2 constructively. We mostly follow the proof
given in [59] but use the Three Edge Lemma (Lemma 4.16) and the tools developed for
the constructive proof of Theorem 2.1 at crucial points to avoid constructing overlapping
subgraphs. As before, we consider a 2-connected plane graph G and the proof will be
by induction on the number of vertices in G (again, the base case is the triangle-graph,
for which the claim can easily be verified). Together with G we are given vertices x and
y both not in CG and an edge α ∈ CG. If in the induction step either x or y are in
CG, then the claim follows directly from Theorem 2.1. Therefore, from here on we may
assume that x and y are not in CG. In addition, if G is decomposable into GL and GR,

43

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

Theorem 2.2 holds by Lemma 4.1. The same holds if Lemma 4.2 can be applied to G.
Therefore, we assume that G is non-decomposable. If there is an edge e ∈ E(G) such
that at least one of x or y is contained in CG−e, the assumption that Lemma 4.1 and
Lemma 4.2 are both not applicable on G imply that G− e is 2-connected. This, in turn,
allows us to construct an x-α-y-path of G− e (and thus of G) by applying Theorem 2.1
on G− e. Thus, we assume no such edge e exists.

The previous observations show that there is no 2-separator in G that has both
vertices in CG and separates x and y. Hence, x and y are in the same component of
G−CG. Let K be the minimal plane chain of blocks B1, B2, . . . , Bl in G−CG such that
x ∈ B1 and y ∈ Bl. Let vi := Bi ∩ Bi+1 for every 1 ≤ i ≤ l − 1 and set v0 := x and
vl := y.

Let J be any (K ∪ CG)-bridge. In our proof for Theorem 2.1, we chose the vertex
rα ∈ K∩CG as reference vertex in order to define CG(J) consistently. Here, the situation
is more complicated, as K and CG are disjoint and thus no vertex in K ∩ CG exists.
Instead, we use any vertex s ∈ CG as reference vertex, which shares a face with some
vertex of K (note that this may not be true for all vertices in CG). Now let CG(J) be
the shortest path in CG that contains all vertices in J ∩ CG and does not contain s as
an inner vertex.

a) b)

L J

B1 B2 B3

x

y

s

lL

lJrL rJ

vL vJ

vL2

vJ2

L2 J2

v1 v2 η(B1)
x

y

vL vJ

vL2

vJ2

v1 v2

α αH

eL eJ

η(B2) η(B3)

Figure 4.8: a) Decomposing G when both x and y are not in CG. Here K consists of 3
blocks, KI = B1 ∪B2 and L,J are both of cardinality two. b) Shows the resulting η(H)
for the example in a).

By Lemma 4.2, Theorem 2.2 holds if there is a (K∪CG)-bridge ofG whose attachments
are all in CG. Therefore, we assume that any (K ∪ CG)-bridge J of G has exactly one
attachment in K and at least one attachment in CG. Further, there must exist at least
two (K∪CG)-bridges of G (although they might all be trivial), as K∩CG = ∅, and G is 2-
connected. Let J be either the (K∪CG)-bridge for which CG(J) contains α, or, if no such
bridge exists, the (K∪CG)-bridge for which lJ lies the closest counterclockwise to α on CG
(see Figure 4.8). LetL be the (K∪CG)-bridge for which rL lies the closest counterclockwise
to lJ on CG (possibly rL = lJ) such that lL 6= lJ . Let J := {J1, J2, . . . , Jp} be the set
of all (K ∪ CG)-bridges Ji for which lJi = lJ . Let L := {L1, L2, . . . , Lq} be the set of
all (K ∪ CG)-bridges Lj for which rLj = rL and lLj 6= lJ . Then J = Ji for some i and
since lL 6= lJ , L ∈ L; hence, both L and J are non-empty. For any bridge Lj ∈ L we
denote by vLj its unique attachment on K, and use a similar notation for the bridges in

44

4.5. A Constructive Proof for Sanders’s Theorem

J . Let I be the minimal set of consecutive indices in {1, . . . , l} such that KI :=
⋃
i∈I Bi

contains all attachments in K of the (K ∪CG)-bridges in L∪J . Let f and g denote the
minimal and maximal indices of I.

To construct the desired x-α-y-path of G, we want to use the same strategy as in
the previous sections (this is, define Q as a subpath of CG and compute a Tutte path P
of K iteratively). For this proof, this is slightly more complicated as the Tutte path we
want to compute has to leave and reenter K in order to contain α. Therefore, we have
to do some more preparation before we can apply Lemma 4.15 and Lemma 4.5. For this
purpose we construct a second plane chain of blocks H from K and the (K∪CG)-bridges
in L ∪ J .

Initially, let H consist of K, two new artificial vertices a and b and the edge ab. For
every Lj ∈ L, we add an edge eLj := vLja to H (recall that vLj is the unique vertex
Lj ∩K) and for every Ji ∈ J , we add an edge eJi := vJib to H. We embed H on the
plane by following the embedding of G and placing a and b into the outer face. If rL 6= lJ ,
we are done with the construction of H and set αH := ab. Otherwise, we contract the
edge ab of H and set αH := vJ1b (note that in this case q = 1). In both cases, H is a
plane chain of blocks such that one block HI contains the subgraph of G induced by the
vertices in KI ,L and J . Any other block in H is equivalent to some block Bi of K with
i < f or i > g. For every block Bi other than BI , let αi be an arbitrary edge of CBi .

If H consists of at least two blocks, then we define the boundary points for each block
in H as follows:

• For Bi, when 1 < i < f or g < i < l: Let the boundary points of Bi be the
vertices vi−1, lαi , rαi , vi and let the boundary parts of Bi be the inclusion-wise
maximal paths of CBi that do not contain any boundary point as inner vertex.

• For B1 and Bl if they are not contained in BI : If vl is in CBl
we define the

boundary points of Bl and parts in the same way as in the previous case. The
same holds for B1 if v1 ∈ CB1 . As in our proof of Theorem 2.1, the case where
vl /∈ CBl

depends on whether there exists a 2-separator in Bl that separators vl−1

and vl. Therefore, consider for vl /∈ CBl
the 2-separator {w1, wp} ⊆ CBl

of Bl such
that B+

w1,wp
contains vl, the path w1CBl

wp is contained in one of the paths in
{vl−1CBl

αl, αl, αlCBl
vl−1} and w1CBl

wp is of minimal length if such a 2-separator
exists. If the 2-separator {w1, wp} exists, let w1, . . . , wp be the p ≥ 2 attachments of
the w1CBl

wp-bridge of Bl that contains vl, in the order of appearance in w1CBiwp;
otherwise, let for notational convenience w1 := · · · := wp := lαi . In the case vl /∈ CBl

,
let the boundary points of Bl be vl−1, lαl

, rαl
, w1, . . . , wp and let the boundary parts

of Bl be the inclusion-wise maximal paths of CBl
that do not contain any boundary

point as inner vertex. As it might happen that v1 /∈ CB1 we define the boundary
points and parts symmetric to Bl if vl /∈ CBl

.

• For BI : Note that as at least one of vf−1 and vg must be in CBI
as H consists of

at least two blocks. If both vf−1 and vg are in CBI
, then let the boundary points of

BI be the vertices vf−1, lαI , rαI , vf , vJ , vL and let the boundary parts of BI be the
inclusion-wise maximal paths of CBI

that do not contain any boundary point as
inner vertex. If vf−1 or vg is not in CBI

, we again look for a 2-separator {w1, wp}
as defined in the similar case for B1 and Bl. We then set the boundary points

45

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

for BI asvf−1, lαI , rαI , vL, vJ and w1, . . . , wp (if {w1, wp} exists). Let the boundary
parts of BI be the inclusion-wise maximal paths of CBI

that do not contain any
boundary point as inner vertex.

This defines η(H) and by Theorem 2.1 the blocks B1, . . . , Bf , Bg, . . . , Bl of η(H)
contain a vi−1 − αBi − vi-path P ηBi

and η(BI) has a vf − αH − vg-path P ηBI
.

In the case that H itself is a block it might occur that both x and y are not in CH .
In this case, we cannot apply Theorem 2.1. We will, therefore, use induction for that
case. Besides, there might exist a 2-separator in H that separates both x and y from αH .
We next show how to choose the boundary points in this case.

There might exists a 2-separator {u1, uq} ⊆ CH of H such that H+
u1,uq contains x, the

path u1CHuq is contained in one of the paths in rαHCH lαH and u1CHuq is of minimal
length. Similarly, there might exists a 2-separator {w1, wp} ⊆ CH of H such that H+

w1,wp

contains y, the path w1CHwp is contained in one of the paths in rαHCH lαH and w1CHwp
is of minimal length. It might happen that {u1, uq} = {w1, wp}, but it is impossible for
the two 2-separators to interlace. Let the boundary points of H be v1, vl (if they are in
CH),lαH , rαH and u1, . . . , up, w1, . . . , wp (if the 2-separators {u1, uq} and {w1, wp} exist)
and let the boundary parts of H be the inclusion-wise maximal paths of CH that do not
contain any boundary point as inner vertex. This suffices to fulfill the definition of η(H).
If v0 or vl is in CH , then we can apply Lemma 4.15 on H to construct a v0−αH−vl-path
PH of H. If this is not the case, then we will use induction on η(H) to construct an
x− αH − y-path P ηH in η(H). Since CG contains at least three vertices, it follows that
|V (η(H))| < |V (G)| and thus we can apply the induction in that way. Let PH be the
result of applying Lemma 4.15 on η(H) and P ηH .

a) b)

Lj Ji

lL lJrL rJ

vL vJ

αj j

j

i i

i

λ

λ

N e

e Lj Ji

lL lJrL=

vL vJ

αj j

j

i i

i

λ
N

e

e

F F

Figure 4.9: Two examples for the subgraphs N and F . In a) rLj 6= lJi , while in b)
rLj = lJi .

So far PH is not a subgraph of G, as it contains edges vLja and vJib. Each of these
edges represent a (K∪CG)-bridge of G. In the following, we show how to find Tutte paths
PJi and PLj in Lj and Ji, respectively. Note that by forcing PH through αH we ensured
that PH contains exactly two of these artificial edges. If Lj or Ji are just single edges,
let PJi := Ji and PLj := Lj , respectively. If Ji is not just a single edge, let e := vJirJi
and F := Ji ∪C(Ji)∪{e}, where e is embedded such that C(Ji) is part of the outer face
of F . Let e′ 6= e be an edge in CF incident to lJ (see Figure 4.9 for an example). Clearly,
F is 2-connected and |V (F)| < |V (G)|. If α ∈ E(F) (i.e. Ji = J), then by Lemma 4.16
there is a Tutte cycle P ′ that contains e, e′ and α. If α /∈ Ji, then by Theorem 2.1 there
is a vJi-rJi-path P ′ in F through e′. In either case, let PJi := P ′ − e.

46

4.6. A Quadratic Time Algorithm

It remains to show what to do if Lj is not just an edge. If rLj 6= lJ , let λ := vLj lLj

and N := Lj ∪ C(Lj) ∪ {λ}, where λ is embedded such that C(Lj) is part of the outer
face of N . Let λ′ be an incident edge to rLj that is different from λ of the outer face
of N . Figure 4.9 shows an example for the construction of N . By Theorem 2.1 there is
a vLj -λ

′-lLj -path PN of N . If otherwise rLj = lJ , then rLj is already part of PJi in Ji
and we have to ensure that we do not include it as an internal vertex of PN as well. Let
λ := vLjrLj and N := Lj ∪ C(Lj) ∪ {λ}, where λ is embedded such that CLj is part
of the outer face of N . By Theorem 2.1, there is a lLj -λ-rLj -path PN of N and we set
PLj := PN − λ. Note that if we consider the union of PLj and PJi , then any PLj -bridge
in Lj that has rLj as an attachment will also have it as an attachment in Lj ∪ Ji.

At this point we can remove a and b from PH , note that this disconnects PH . By
adding PJi and PLj we end up with a path Px from x to lLj and Py from rJi to y. Let
Q := rJiCGlLj , to complete the proof of Theorem 2.2, we need to modify Q such that any
(Px ∪ Py ∪Q)-bridge of G has at most three attachments and exactly two if it contains
an edge of CG.

As G is such that Lemma 4.2 cannot be applied, there cannot be any (Px ∪Q ∪ Py)-
bridge with all its attachments in Q. Thus any (Px∪Q∪Py)-bridge of G has at least one
attachment in Px or Py. At this point we want to apply the lemmas from Section 4.2 to Q.
One of the prerequisites of that section is that Q and the given plane chain of blocks in
GQ are such that they cover all vertices in CG. We can achieve this in the current setting
by contracting all internal edges of the bridges in L and J to one of their attachments
in CG. We call the resulting graph G∗. Once we modified Q we will reverse this process,
which does not change the number of attachments of any (Px ∪Q ∪ Py)-bridge of G as
the internal vertices of the bridges in L and J do not share any vertices other than
their attachments with any subgraph that is touched during this step. As the process
in Section 4.2 guarantees that Q is not changed in these vertices, adding these bridges
back to G∗ does not change the number of attachments of any (Px ∪Q ∪ Py) in G.

By Lemma 4.4, any (Px∪Q∪Py) of G∗ can have at most two attachments in Px∪Py.
By Lemma 4.5, every (Px∪Q∪Py)-bridge J of G∗ contains a lJ−rJ -path QJ . We replace
lJCGrJ in Q with QJ for every such (Px ∪Q∪Py)-bridge. Since lJ and rJ are contained
in Q, no (Px ∪Q∪Py)-bridge of G∗ other than J is affected by this “local” replacement.
Finally, after transforming G∗ back to G, Px ∪Q∪Py- is the desired x−α− y-path of G.

4.6 A Quadratic Time Algorithm

In this section, we give an algorithm based on the decompositions shown in Chapter 4
(see Algorithm 4.1). Note that the description of Algorithm 4.1 only changes in the
definition of K and Q when we want to compute either Theorem 2.1 or Theorem 2.2.
It is well known that there are algorithms that compute the blocks of a graph and the
block-cut tree of G in linear time, see [64] for a very simple one. Using this on G−Q in
either case, we can compute the blocks B1, . . . , Bl of K in time O(n).

We now check if Lemma 4.1 or 4.2 is applicable at least once to G; if so, we stop
and apply the construction of either Lemma 4.1 or 4.2. Checking applicability involves
the computation of special 2-separators {c, d} of G that are in CG (e.g., we did assume
minimality of |V (GR)| in Lemma 4.1). In order to find such a {c, d} in time O(n), we
first compute the weak dual G∗ of G, which is obtained from the dual of G by deleting its

47

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

outer face vertex, and note that such pairs {c, d} are exactly contained in the faces that
correspond to 1-separators of G∗. Once more, these faces can be found by the block-cut
tree of G∗ in time O(n) using the above algorithm. Since the block-cut tree is a tree, we
can perform dynamic programming on all these 1-separators bottom-up the tree in linear
total time, in order to find one desired {c, d} that satisfies the respective constraints (e.g.
minimizing |V (GR)|, or separating x and α).

Now we compute η(K). Since the boundary points of every Bi are known from K,
all maximal 2-separators can be computed in time O(n) by dynamic programming as
described above. We compute the nested tree structure of all 2-separators on boundary
parts due to Lemma 4.12, on which we then apply the induction described in Lemma 4.15.
Hence, no nontrivial outer P -bridge of K is touched in the induction, which allows us
to modify Q along the induction of Lemma 4.5.

Algorithm 4.1 TPATH(G, x, α, y) . method, running time without induction

1: if G is a triangle or α = xy then return the trivial x-α-y path of G . O(1)

2: if Lemma 4.1 or 4.2 is applicable at least once to G then . weak dual block-cut
tree, O(n)

3: apply TPATH on GL and GR as described and return the resulting path. O(1)

4: if there is a 2-separator {c, d} ∈ CG of G then
5: do simple case 2

6: Compute the minimal plane chain K of blocks of G . block-cut tree of G−Q, O(n)
7: Compute η(K) . dyn. progr. on weak dual block-cut tree, O(n)
8: Compute P by the induction of Lemma 4.15 . dyn. progr. precomputes all possible
B+
cd, O(n)

9: Modify Q by the induction of Lemma 4.5 . traversing outer faces of bridges, O(n)
10: return P ∪ {α} ∪Q

In our decomposition, every inductive call is invoked on a graph having fewer vertices
than the current graph. The key insight is now to show a good bound on the total number
of inductive calls to Theorem 2.2. To obtain good upper bounds, we will restrict the
choice of αi for every block Bi of K(which was almost arbitrary in the decomposition)
such that αi is an edge of CBi − vi−1vi. This prevents several situations in which the
recursion stops because of the case α = xy, which would unease the following arguments.
The next lemma shows that only O(n) inductive calls are performed. Its argument is,
similarly to one in [18], based on a subtle summation of the Tutte path differences that
occur in the recursion tree.

Lemma 4.17. The number of inductive calls for TPATH(G, x, α, y) is at most 2n− 3.

Proof. Let r be the number of inductive calls for TPATH(G, x, α, y). Let d(i), 1 ≤ i ≤ r,
be the number of smaller graphs into which we decompose the simple 2-connected plane
graph of the ith inductive call. Let r′ be the number of inductive calls that satisfy d(i) = 1.
Let t be the number of graphs in which we can find the desired Tutte paths trivially
without having to apply induction again (i.e., triangles or graphs in which α = xy).

Thus, in the directed recursion tree, t is the number of leaves and r is the number of
internal nodes, r′ out of which have out-degree one. Since in a binary tree the number of

48

4.6. A Quadratic Time Algorithm

internal nodes is one less than the number of leaves, the tree has at most t− 1 internal
nodes of out-degree two or more. Thus we have

r ≤ t− 1 + r′.

To complete the proof, we will give an upper bound for t that depends on n. The
t instances in the leaves come in three different shapes: a triangle, a graph in which
K consists of only one trivial block and Q can be found without applying induction
(i.e., a cycle of length four) or a graph in which α = xy. Any other instance is either
decomposable into GL and GR or K contains at least one nontrivial block on which we
have to apply induction. If the graph in a leaf instance is just a triangle the trivially
found Tutte path will be of length two and we denote the number of such leaves by t1.
If a leaf represents a cycle of length four, then the trivially found Tutte path will be of
length three. Let t2 denote the number of such leaves. If the graph in the leaf instance
is such that α = xy, then the Tutte path returned for this instance will be of length
one. Note that this case can only appear in the root instance. This follows from the fact
that we always choose alpha such that alpha 6= xy before we apply induction on a graph
constructed in our decomposition. Thus if there is a leaf in which alpha = xy then the
tree consists of exactly one node and the claim is trivially true. Therefore, we assume
that there is no such leaf from here on. Then there are t = t1 + t2 leaves and the sum
over all paths lengths in the leaves is exactly 2t1 + 3t2. In addition, a Tutte path in G
has length at most n− 1. Combining these two facts, an upper bound on 2t1 + 3t2 can
be derived by going through every internal node of the recursion tree and adding the
differences between the length of the Tutte path in the current node and the sum of
lengths of the Tutte paths in its children nodes to n− 1.

If G is decomposable into GL and GR , then d(i) = 2 and the Tutte path P of G is
either (PL ∪PR)− cd or (PL− d)∪ (PR− z). In the first case, PL and PR intersect in cd,
and therefore |E(PL) + |E(PR)| − |E(P)| = 1 = d(i)− 1. In the latter case, PL contains
cd and PR contains one edge incident to z, which both will not be part of P ; therefore,
|E(PL) + |E(PR)| − |E(P)| = 2 = (d(i)− 1) + 1.

Otherwise, the graph G of inductive call i is decomposed along certain 2-separators
and d(i) depends on the number of blocks in K, the number of such 2-separators and
the resulting (P ∪Q)-bridges in G. The following argument will also hold for inductive
calls when we apply Lemma 4.2, as the construction, is similar to the case when K
consists of only one block and there is exactly one 2-separator in K. Note that only the
inductive calls on the graphs split off from K increase the difference between the length
of the Tutte path of G and the sum off Tutte path lengths found in the children of i, as
only in this case the graphs in the parent node and its child overlap by one edge (the
decomposition shows that this is the only possible overlap).

When constructing P using the induction of Lemma 4.15, we start with one inductive
call for every block of η(K). Every such block and every graph split off from K that needs
an inductive call represents another child in the recursion tree. Initially, P is a Tutte path
in η(K) formed by the union of the Tutte paths P η1 , . . . , P

η
l , found in η(B1), . . . , η((Bl),

where l is the number of blocks in K. As Pj and Pj+1, 1 ≤ j ≤ l − 1, do only intersect

in one of their endvertices, the difference in
∑l

j=1 |E(Pj)| and |E(P = P1 ∪ · · · ∪ Pl)| is
zero. For every graph that creates a child j that is split off from K, we remove one edge
from P and replace it with a Tutte path Pj of j. As P and Pj do not intersect in any

49

Chapter 4. Tutte Paths in 2-Connected Planar Graphs

edge, |E(P)|+ |E(Pj)| − |E(P ∪Pj)| = 1. Thus, the difference between the length of the
Tutte path computed in i and the sum of lengths of Tutte paths computed in its children
nodes is equal to the number k of graphs we split off from K and apply induction on.
As k ≤ d(i)− 1 the difference therefore is at most d(i)− 1 in this case.

If d(i) = 1, then the Tutte path found in the child note must be at least one edge
shorter than the Tutte path in the parent node. Combining all of these differences shows
that the total length of paths found in the t leaves is at most

2t1 + 3t2 ≤ n− 1 +
∑

1≤i≤r
(d(i)− 1) + I − r′ = n− 1 + r + t− 1− r + I − r′

2t+ t2 ≤ n+ t+ I − r′ − 2,

where I is the number of inductive calls on graphs that are decomposable into GL
and GR. This implies that

t+ t2 ≤ n+ I − r′ − 2

t ≤ n+ I − r′ − t2 − 2 ≤ n− r′ + I − 2

Plugging this into the previous upper bound for r, we get r ≤ n+ I − 3. Note that
no 2-separator can be used in more than one inductive call that decomposes the graph
into GL and GR. Therefore, we obtain I ≤ n which concludes r ≤ 2n− 3.

Hence, Algorithm 4.1 has overall running time O(n2), which proves Theorem 2.8. We
obtain as well the following direct corollary of the Three Edge Lemma 4.16.

Corollary 4.18. Let G be a 2-connected plane graph and let α, β, γ be edges of CG.
Then a Tutte cycle of G that contains α, β and γ can be computed in time O(n2).

50

CHAPTER 5

Conclusion

In this thesis, we have successfully refined the decomposition of circuit graphs into edge-
disjoint subgraphs given in [60]. As a result, we were able to give an algorithm that
computes a Tutte Path and from this a 2-walk in O(n2) and O(n3) time respectively. It
remains open if there exists a way to bound the number of vertices visited twice in such
a 2-walk and therefore make the computed structure even closer to a Hamiltonian Path
of the given graph. The question of whether such a bound exists was risen in [53], where
the authors show a similar bound for the number of degree three vertices in a 3-tree of
the given circuit graph. As we can always construct a 3-tree from a 2-walk of the same
graph, this question arises naturally.

We then showed that for both Thomassen’s and Sanders’s existence results on Tutte
Paths in 2-connected planar graphs, there exists an O(n2) time algorithm that computes
the promised Tutte paths. It remains open if the running time of our algorithm can be
improved or if there exists a completely different algorithm to compute a Tutte path
as promised in Theorem 2.2 in linear time. As evidenced by [5] finding more restricted
Tutte paths can be done in O(n) time even in 2-connected planar graphs. This question
remains relevant as there are still new applications surfacing for Tutte paths and for
some older applications we need an algorithm that can compute Theorem 2.2 efficiently,
as Theorem 2.1 is not strong enough to derive them.

The key for our proof of Theorem 2.8 was the ability to identify additional vertices
and edges of the given graph, which must be part of any Tutte path computed in it
(other than the prescribed vertices). Here these were the vertices contained in maximal 2-
separators of the blocks appearing in our decomposition. In the future we should aim for
a better understanding on which vertices and edges must always be part of a Tutte path
in a given planar graphs. A better understanding of which parts of the graph have to be
contained in any Tutte path would not only open the door for new applications, but also
improve our understanding on how Tutte paths can be constructed algorithmically. So
far all known algorithms follow a divide and conquer strategy where for every constructed
subgraph we only know that the resulting Tutte path will contain the prescribed vertices
and edge. For everything in-between we more or less rely on a blackbox to choose what
will be part of the final output.

Another direction for future research, related to longest cycles in 3-connected planar
graphs, would be extending the notion of a System of Distinct Representatives. If the
given graph is such that we can limit the size of every bridge of a given Tutte path,
then the existence of an ordinary SDR already gives a guarantee of the existence of a
cycle whose length depends on the size of the bridges. Thus if we show that for certain
3-connected planar graphs we can not only find a SDR but even a system of multiple
representatives we will immediately get new bounds for longest cycles and paths in
3-connected planar graphs.

Chapter 5. Conclusion

52

PART II

A New Approach for the Maximum
Planar Subgraph Problem

This part is the result of a close collaboration with Parinya Chalermsook and
Sumedha Uniyal. It is based on two articles, the first appeared in the pro-
ceedings of the 11th International Conference and Workshop on Algorithms
(WALCOM’17) [14]. The second article was published in the proceedings
of the 36th International Symposium on Theoretical Aspects of Computer
Science (STACS 2019) [15].

54

CHAPTER 6

Introduction to the Maximum Planar
Subgraph Problem

In the Maximum Planar Subgraph Problem (Mps) the objective is to compute a
planar subgraph with a maximum number of edges from a given graph. This problem has
proven to be useful in several real-world applications, including for instance, architectural
floor planning, and electronic circuit design. Besides the practical applications, the prob-
lem is fundamentally interesting in theory as it has often been used as a subroutine in
solving other basic graph drawing problems: Graph drawing problems generally ask for
an embedding of a given graph with respect to some optimization criterion. To draw the
graph, one often starts with a drawing of a planar subgraph and then adds the remaining
edges, yet missing from the input graph, such that they satisfy the criterion. Naturally,
if following this strategy, one would like to start with a planar subgraph that contains
the maximum number of edges.

Mps is known to be NP-hard [49], therefore past research has been heavily focused on
approximation algorithms. Călinescu et al. showed that Mps is actually APX-hard [10].
That the problem is hard to approximate might come as a surprise considering the
following fact: By Euler’s formula, any planar graph with n vertices can have at most
3n − 6 edges. This means that simply outputting a spanning tree of the given graph
immediately yields a 1

3 -approximation algorithm. In an effort to overcome this barrier,
many heuristics were proposed [19, 9, 22], but even though these strategies were more
involved than simply computing a spanning tree, none was able to give better than a
1
3 -approximation guarantee.

The breakthrough came when Călinescu et al. (implicitly) proposed to augment a
spanning tree by edge-disjoint triangles. Adding one such triangle to a spanning tree
gives one more edge to our Mps solution, so it is only natural to aim for adding as many
triangles as possible. The authors showed that a simple algorithm based on greedily
adding disjoint triangles achieves a 7

18 -approximation guarantee and also devised a 4
9 -

approximation algorithm by first computing a maximum triangular cactus subgraph.
The factor of 4

9 , however, is also shown to be the limit of this approach, as there exists a
graph for which even a maximum triangular cactus subgraph contains only a 4

9 -fraction
of the number of edges of an optimal solution for Mps. This approach was based on
the work by Lovász [50] from 1980, where he initiated the study of β(G) (sometimes
referred to as the cactus number of G), the maximum value of the number of triangles in
a cactus subgraph of G, and showed that it generalizes the Maximum Matching problem
and can be reduced to linear matroid parity. This implies that the cactus number of any
given graph is polynomial time computable. In fact, there are many efficient algorithms
for matroid parity (both randomized and deterministic), e.g. [16, 51, 54, 28]. When we
study β(G), notice that a cactus subgraph that achieves the maximum value of β(G)

Chapter 6. Introduction to the Maximum Planar Subgraph Problem

would only need to have cycles of length three (triangles).
Certain special cases of Mps also have received attention, partly due to their connec-

tion to extremal graph theory. For instance, [27] shows that the problem is APX-hard
even in cubic graphs. In [45], Kühn et al. showed a structural result that when the graph
is dense enough (i.e. has a large minimum vertex degree), then there is a triangulated
planar subgraph that can be computed in polynomial time. Therefore, Mps is polynomial
time solvable when the minimum vertex degree is large. The proof of this result relies
on Szemerédi’s Regularity Lemma.

More recently, [11] shows an approximation algorithm for weighted Mps in which
we are given a weighted graph G, and the goal is to maximize the total weight of a
planar subgraph of G. In [12] maximum series-parallel subgraphs are considered and a
7
12 -approximation algorithm is given. In combinatorial optimization, there are several
problems closely related to Mps. For instance, finding a maximum series-parallel sub-
graph [12] or a maximum outer-planar graph [10], as well as the weighted variant of these
problems [11]; these are the problems whose objectives are to maximize the number of
edges. Perhaps the most famous extremal bound in the context of cactus is the min-max
formula of Lovász [50] and a follow-up formula that is more illustrative in the context
of cactus subgraphs [66]. All these formulas generalize the Tutte-Berge formula [3, 71]
that has been used extensively both in research and curriculum.

Another related set of problems has the objectives of maximizing the number of
vertices, instead of edges. In particular, in the maximum induced planar subgraphs (i.e.
given a graph G, one aims at finding a set of vertices S ⊆ V (G) such that G[S] is planar
while maximizing |S|.) This variant has been studied under a more generic name, called
maximum subgraph with hereditary property [52, 48, 34]. This variant is unfortunately
much harder to approximate: Ω̃(|V (G)|) (the term Ω̃ hides asymptotically smaller factors)
hard to approximate [37, 43]; in fact, the problems in this family do not even admit any
FPT approximation algorithm [13], assuming the gap exponential time hypothesis.

6.1 Our Results

The state of the art techniques for solving Mps have, more or less, reached their limitations
already twenty years ago. In this thesis, we introduce a new viewpoint that highlights the
essence of the previously known algorithmic results. This allows us not only to give better
explanations on previous results but also to suggest potential directions for breaking the
long-standing 4

9 barrier.
First, we quantify the connection between the number of triangular faces in a subgraph

and its size as a solution for Mps by introducing a new optimization problem that we call
Maximum Planar Triangles (Mpt): Given a graph G, compute a subgraph H and
a embedding with a maximum number of triangular faces. We show, in particular, that
a 1

4 -approximation for Mpt would immediately imply a (1
2 −O(1/n))-approximation for

Mps and that a (1
6 + ε)-approximation algorithm would suffice for improving the best

known approximation factor. Unlike the question of finding disjoint triangles, maximizing
possibly overlapping triangles can be hard to compute, as we show that Mpt is NP-hard.

Since Mpt captures the previous approaches of finding triangular structures, many
known algorithms for Mps can also be seen as algorithms for Mpt; this includes the
greedy algorithm by Călinescu et al.[10] and those by Poranen [57] who proposed two

56

6.1. Our Results

greedy algorithms aiming at incorporating triangles that are not necessarily edge-disjoint
(and conjectured that these two heuristics would achieve a 4

9 -approximation guarantee).
In particular, we introduce a systematic study of a greedy framework, that we call
Match-And-Merge. Roughly speaking, the algorithms in this class iteratively find
isomorphic copies of “pattern graphs” and merge connected components in the so far
computed subgraph until no pattern can be applied. The algorithm in this class can
be concisely described by a set of merging rules and the iterations to apply them. This
class of algorithms is relatively rich: All known greedy algorithms for Mps can be cast
concisely in this framework and analyzed for their performance for Mpt. The analysis of
this result is tight, i.e., we show examples of graphs for which these heuristics would not
give better approximations for Mpt, than their proven upper bounds. Besides, we show
that there is a simple Match-And-Merge algorithm that achieves a factor of 1

11 for
Mpt, therefore being the first greedy algorithm that performs better than 7

18 for Mps.

Theorem 6.1. There is a simple greedy 1
11 and 13

33 -approximation for Mpt and Mps
respectively.

Despite not being able to break the 4
9 barrier, our greedy algorithm sheds some light

on how overlapping triangles can be of an advantage.
We then shift our attention away from greedy algorithms to the study of the extremal

properties of β(G). The 4
9 -approximation for Mps was achieved through an extremal

bound of β(G) when G is a planar graph. In particular, it was proven that β(G) ≥
1
3(n − 2 − t(G)), where n = |V (G)| and t(G) = (3n − 6) − |E(G)| (i.e., the number of
edges missing from a triangulation of G). Our main result of this part is summarized in
the following theorem.

Theorem 6.2. Let G be a plane graph. Then β(G) ≥ 1
6f3(G) where f3(G) denotes the

number of triangular faces in G.

It is not hard to see that f3(G) ≥ 2n− 4− 2t(G), therefore Theorem 6.2 also implies
the result of [10].

Corollary 6.3. β(G) ≥ 1
3(n − 2 − t(G)). Hence, any polynomial time linear matroid

parity algorithm gives a 4
9 -approximation for Mps.

On the other hand, we show that the extremal bound provided in [10] alone is
not sufficient to derive a approximation algorithm for Mpt. By invoking the shown
connection between Mpt and Mps, Theorem 6.2 implies the following result for Mpt.

Corollary 6.4. Any polynomial time algorithm for linear matroid parity gives a 1
6

approximation for Mpt.

Our result further highlights the extremal role of the cactus number in finding a dense
planar structure, as illustrated by the fact that our bound on β(G) is more “robust” to the
change of objectives from Mps to Mpt. It allows us to reach the limit of approximation
algorithms that linear matroid parity provides for both Mps and Mpt.

In addition, our work implies that local search arguments alone are sufficient to
“almost” reach the best-known approximation results for both Mps and Mpt in the
following sense: Matroid parity admits a PTAS via local search [46]. Therefore, combining
this with our bound implies that local search arguments are sufficient to get us to a 4

9 +ε
approximation for Mps and a 1

6 + ε approximation for Mpt. Therefore, this suggests
that a local search strategy might be a promising candidate for such problems.

57

Chapter 6. Introduction to the Maximum Planar Subgraph Problem

6.2 Preliminaries

Let G = (V,E) be a graph. For any subset S ⊆ V , we use G[S] to denote the induced
subgraph of G on S. We denote by V (G) and E(G) the set of nodes and edges of G
respectively. We denote by the length of a face in a plane graph, the number of edges in
its boundary. Moreover, if G is a plane graph we use f(G) to denote the number of faces
of G and by fj(G) the number of faces of G with length j. Let t(G) denote the number
of edges necessary to turn G into a maximal plane graph. By Euler’s formula it follows
that |E(G)|+ t(G) = 3|V (G)| − 6 and therefore t(G) does not depend on the embedding
of G. The following lemma was proven in [10].

Lemma 6.5. [10] For any plane graph G, f3(G) ≥ 2|V (G)| − 4− 2t(G).

As the number of faces in a graph is always at least the number of triangular faces
in that graph, the next lemma follows trivially from Euler’s formula, but it is crucial to
show the connection between approximation algorithms for Mps and Mpt.

Lemma 6.6. Let H be any connected subgraph of a connected plane graph. Then
|E(H)| ≥ |V (H)|+ f3(H)− 2.

For our analysis of the different approaches to approximating Mpt we will often
invoke the following simple lemma, which was proven in [10] as part of the analysis
of greedy approximation algorithms for Mps. It relates the number of triangles to the
number of vertices in each component of a cactus subgraph.

Lemma 6.7. [10] Let X be a connected cactus graph, then we have |V (X)| = 2p + 1
where p is the number of triangles in X.

For the remainder of this thesis, whenever we discuss Mps or Mpt on a graph G,
we will denote by OPTmps the number of edges in a maximum planar subgraph H of G,
and by OPTmpt the maximum number of triangular faces in a plane subgraph H ′ of G.
As only triangular faces contribute to the solution of Mpt, all cactus subgraphs used in
this thesis will be triangular cactus subgraphs and we will simply denote them by cactus
subgraphs from hereon.

6.3 Hardness of Maximum Planar Triangles

In this section, we prove that Mpt is NP-hard, as a by-product we are able to simplify
the NP-hardness proof for Mps by Liu and Geldmacher [49].

Theorem 6.8. Mpt is NP-hard.

Our reduction is from the Hamiltonian path problem in bipartite graphs. In [44], it is
shown that the Hamiltonian cycle problem in bipartite graphs is NP-complete; it follows
easily that the same holds for the Hamiltonian path problem.

58

6.3. Hardness of Maximum Planar Triangles

Construction: Let G be an instance of the Hamiltonian path problem, i.e. G is a
connected bipartite graph with n vertices. Note that G is triangle-free. Let G′ be a
copy of G, augmented with two vertices s and t, where s and t are both connected to
every vertex in V (G); we call the edges that connect vertices in G to {s, t} auxiliary
edges. More formally, V (G′) = V (G) ∪ {s, t} and E(G′) = E(G) ∪ {(s, v) : v ∈ V (G)} ∪
{(t, v), v ∈ V (G)}.

Analysis: We argue that there exists a spanning subgraph H of G′ and an embedding
φH of H with 2n − 2 triangular faces, if and only if G has a Hamiltonian path. First,
assume thatG has a Hamiltonian path P . We show how to construct a spanning subgraph
H ofG′, that has an embedding φH with 2n−2 triangular faces. Let V (H) = V (P)∪{s, t}
and E(H) = E(P) ∪ {(s, v) : v ∈ V (P)} ∪ {(t, v) : v ∈ V (P)}. For φH simply embed P
on the plane on a vertical line, placing s and t on the left and right side of the line
respectively.

To prove the converse, now assume that there exists a spanning subgraph H of G′ and
an embedding φH of H with at least 2n− 2 triangular faces. Notice that each triangular
face in H must be formed by an edge in E(G) (called supporting edge) together with
two auxiliary edges as G is triangle-free. Denote by H ′ = H \ {s, t}, which is a subgraph
of G. We will show that there exists a Hamiltonian path in H ′ and therefore also in G.

Let Es and Et be the sets of edges in H ′ that support triangles formed with s and t
in H respectively. Notice that the number of triangles in φH is |Es|+ |Et|. We need the
following structural lemma.

Lemma 6.9. The subgraph (V (G), Es) (respectively (V (G), Et)) of H ′ has the following
properties:

i The maximum degree of a vertex in (V (G), Es) is at most two.

ii If (V (G), Es) contains a cycle C, then Es \ E(C) = ∅.

Proof. We first prove (i). Assume otherwise that some vertex v is adjacent to three
supporting edges vv1, vv2, vv3 for s. Suppose that the triangular faces (s, v, v1) and
(s, v, v2) are adjacent in φH , sharing the edge sv. Then the triangle (s, v, v3) cannot be
a face, as it must contain one of the two faces in {(s, v, v1), (s, v, v2)}, a contradiction.

For (ii) note that every edge in Es is incident to at least one triangular face in H.
Assume now that Es contains a cycle C and Es \ E(C) 6= ∅. As Es ⊆ E(H ′) ⊆ E(G)
and G is bipartite |V (C)| ≥ 4. Note that by planarity s and the edges in Es \E(C) must
be embedded on the same side of C (inside or outside of C). Once we embed C, s and
all auxiliary edges between C and s, every edge in E(C) is incident to a triangular face
(one of which is the outer face of the current graph) formed with the auxiliary edges and
the face on the other side of C. Embedding any edge of Es \E(C) on the same side as
s and adding the auxiliary edges from its endvertices to s results in destroying one of
these triangular faces.

Lemma 6.9 implies that all subgraphs in H ′ induced by the endvertices of supporting
edges for s (or t) must either be a disjoint union of paths or a cycle. Therefore Es and
Et contribute at most n edges each to the triangular faces in H. At the same time, we
know that to form at least 2n− 2 triangular faces in φH , one of them must have size at

59

Chapter 6. Introduction to the Maximum Planar Subgraph Problem

least n− 1. To complete the proof of Theorem 6.8 we consider the possible compositions
of edges from Es and Et in H ′:

• If Es or Et induces a cycle C of length n, G contains a Hamiltonian path.

• If one of Es and Et has size at least n− 1 and at the same time induces a single
path in H ′, then this path is also a Hamiltonian path in G.

• It remains to analyze the case where both Es and Et induce a cycle of length n− 1
in H ′. Let C be the cycle induced by Es in H ′ and u be the vertex in V (G) \V (C).
As G is connected there is a vertex v in C that is a neighbor of u in G. Let P be
a path starting in u and ending in one of the neighbors of v in C. Clearly, P is a
Hamiltonian path in G.

6.4 From MPT to MPS

We now show that any approximation algorithm for Mpt can also be used to approximate
Mps. Let G be an input instance for Mps, and H be a planar subgraph of G that
corresponds to an optimal solution for Mps in G. For simplicity we abbreviate |E(H)|
and |V (H)| by m and n respectively. We can always write m in terms of (1 + γ)n for
some γ ≥ 0.

Theorem 6.10. If there is a β-approximation algorithm for Mpt, then there is min(1
2 ,

1
3+

2β
3 −O(1

n))-approximation algorithm for Mps.

Proof. By Euler’s formula, m = 3n − 6 − t(H), so t(H) = (2 − γ)n − 6. If we fix an
embedding of H, then by Lemma 6.5, the number of triangular faces in H must be
at least 2n − 4 − 2t(H) = 2n − 4 − 2(2 − γ)n + 12 > (2γ − 2)n, what implies that
OPTmpt ≥ (2γ − 2)n. This term is only meaningful when γ ≥ 1, so we distinguish
between the following two cases that would imply Theorem 6.10.

• If OPTmps < 2n: This implies that any spanning tree is a 1
2 -approximation algo-

rithm.

• Otherwise if OPTmps ≥ 2n, then γ ∈ [1, 2] (notice that γ can never be more than
2) and as argued above there are at least (2γ − 2)n triangular faces in H. Then if
we run a β-approximation algorithm for Mpt, we will get a plane subgraph H ′ of
G with f3(H ′) ≥ β(2γ−2)n. We may assume that H ′ is connected: Otherwise, one
can always add arbitrary edges to connect components without affecting planarity.
By Lemma 6.6, |E(H ′)| ≥ β(2γ − 2)n+ n− 2 = (1 + β(2γ − 2))n− 2. The worst
approximation factor is obtained by the infimum of the following term:

inf
γ∈[1,2]

1 + β(2γ − 2)

1 + γ
.

To analyze this infimum, we first write a function g(γ) = 1+β(2γ−2)
1+γ . The derivative

dg
dγ can be written as 4β−1

(1+γ)2
. As long as β ∈ (0, 1/4], we have dg

dγ < 0, so this function

is decreasing in γ. This means that the infimum is achieved at the maximum value
of γ, i.e. at the boundary γ = 2. Plugging in γ = 2 gives the infimum as 1+2β

3 ,

leading to the approximation ratio of 1+2β
3 − 2/n, as desired.

60

6.5. On the Strength of our Extremal Bound

6.5 On the Strength of our Extremal Bound

The integral part to derive the improved approximation ration for Mps in [10] was
to show that for any connected planar graph G = (V,E) with n = |V | vertices and
|E| = 3n− 6− t(G) edges, the following holds.

Theorem 6.11 ([10]). If G is a connected planar graph with n ≥ 3 vertices, then
β(G) ≥ 1

3(n− t(G)− 2).

We can show that a simple observation, Euler’s formula and Theorem 6.2 together
imply Theorem 6.11. By Euler’s formula, a triangulated planar graph with n vertices
has exactly 2n− 4 faces. As removing one edge from a planar graph merges exactly two
of its faces, removing k edges can destroy at most 2k triangular faces. Therefore, for any
connected planar graph G we can easily give a lower bound on f3(G) that depends on
t(G).

Lemma 6.12. If G is a connected planar graph, then f3(G) ≥ 2n− 4− 2t(G).

Our extremal bound from Theorem 6.2 says that for any connected planar graph G,
β(G) ≥ 1

6f3(G). Combining this with Lemma 6.12 yields

6β(G) ≥ f3(G) ≥ 2n− 4− 2t(G),

and therefore the same bound on β(G) for a connected planar graph G as Theorem 6.11.
One might wonder if the reverse is true as well, i.e., can we use Theorem 6.11 to

connect β(G) to the number of triangular faces in a planar graph (and in turn directly use
it to approximate Mpt). To this end we construct a graph in which 1

3(n− t(G)− 2) ≤ 0,
even though f3(G) = Θ(n) and thereby show that Theorem 6.11 alone is not enough for
this task. Let G be a connected planar graph with n vertices, where n

2 vertices form a
triangulated planar subgraph. Let v be any of the three vertices on the outer-face of this
triangulated structure. We embed the remaining n

2 vertices of G in the outer-face and
for each such vertex we add an edge to G, which connects it to v (see Figure 6.1 for an
illustration of this construction). By Euler’s formula, the initial triangulated subgraph
with n

2 vertices has 3n
2 − 6 edges. In the next step, we added n

2 edges to connect the
remaining vertices to v. Thus the resulting graph has exactly 2n − 6 edges. Clearly,
t(G) is n in this graph. Using Euler’s formula again, we can derive that the number of
triangular faces in G is f3(G) = 2(n2)− 4− 1 = n− 5 (all triangular faces of this graph
are part of the initial triangulated subgraph, where we destroyed one triangular face by
embedding the n

2 remaining vertices).
To prove Theorem 6.2 we use local search arguments, which work as follows. Let G

be a plane graph, and let C be a cactus subgraph of G whose triangles correspond to
triangular faces of G. The local search operation t-swap tries to replace up to t triangles
in C by triangular faces of G such that the resulting cactus subgraph contains at least
one more triangle than before. To be more formal: If there exists a collection X ⊆ C
of t edge-disjoint triangles and a collection Y of at least t+ 1 edge-disjoint triangles in
G \E(C) such that (C \X) ∪ Y is a cactus subgraph of G, than set C := (C \X) ∪ Y . A

61

Chapter 6. Introduction to the Maximum Planar Subgraph Problem

v

Figure 6.1: A graph that shows that an extremal bound as given by Theorem 6.11 for
Mps does not necessarily imply a similarly strong result for Mpt.

cactus subgraph is called t-swap optimal, if it can not be improved by a t-swap operation.
An important point for the proof of Theorem 6.2 is that it suffices to only pick triangular
faces from G as triangles in the computed cactus subgraph.

Using the gadget shown in Figure 6.2 one can illustrate the power of the local search
arguments. Here, the triangular faces drawn with black solid lines form a 2-swap optimal
cactus. By repeatedly adding copies of this gadget and merges them in the right way,
one can construct an infinite family of graphs where any member G contains a 2-swap
optimal cactus with at most 1

6f3(G) triangular faces. This implies that the upper bound
we show in Theorem 6.2 can already be met with a 2-swap optimal cactus subgraph. In
fact, the gadget depicted in Figure 6.2 can also be slightly modified and then used to
show that there exists an infinite family of graphs where for any member G there exists
a 1-swap optimal cactus subgraph, that does not contain more than 1

7f3(G) triangles.

We end this section by showing that there exists a graph G for which β(G) ≤
(1

6 + o(1))f3(G), therefore, showing that moving from a 2-swap optimal to a maximum
cactus subgraph only improves the approximation factor slightly. A cactus subgraph C
of a given graph G is called maximal, if there is no triangle T in E(G) \E(C) such that
C ∪ T is again a cactus subgraph of G. We now show that a maximal cactus subgraph
might only contain 1

12f3(G) triangles for some connected planar graph G.

Lemma 6.13. There is a family of n-vertex planar graphs {Hn}n∈Z for which there

exist a maximal cactus subgraph Cn of Hn such that f3(Cn)
f3(Hn) = 1

12 + on(1).

Proof. We start the construction of Hn with a cactus graph Ck consisting of k triangles
that is embedded arbitrarily on the plane. We will augment Ck in two steps such that the
resulting graph Hn will fulfill the claimed bound with respect to Ck. As this construction
can be easily adapted for k and n growing to infinity, it will also describe an infinite

62

6.5. On the Strength of our Extremal Bound

v1v2v3v4v5v6v7v8v9 v0

Figure 6.2: A gadget that can be used to construct a graph G where a 2-swap optimal
cactus subgraph contains at most 1

6f3(G) triangles.

family of graphs for which the claim will hold. First, we triangulate Ck by adding
the necessary new edges and call the resulting graph C ′. By Euler’s formula C ′ has
2(2k + 1)− 4 = 4k − 2 faces. Then for each face of C ′ we add a vertex inside that face
and connect it to the three vertices of the face boundary. The resulting graph Hn must,
therefore, have 2k+1+4k−2 = 6k−1 vertices, what we from hereon denote by n. Given
n depending on k and using Euler’s formula to determine the number of triangular faces
in Hn, we get f3(Hn) = 2n − 4 = 2(6k − 1) − 4 = 12k − 6. As limn→∞

k
12k−6 = 1

12 we

can express f3(Ck)
f3(Hn) by 1

12 + on(1) for some constant that decreases if k (and therefore n)
grows to infinity.

We next show that in general a maximum cactus subgraph compared to a maximal
cactus subgraph can have at most twice the number of triangles. This implies that even
a maximum cactus subgraph can not have more than 1

6 + on(1) triangles in Hn and
thereby shows that Theorem 6.2 is tight up to a small constant.

Lemma 6.14. Let G be a planar graph and let C be a maximal cactus subgraph of G.
Then the number of triangles in C is at least 1

2β(G).

Proof. Let C be a maximal cactus subgraph of G with k triangles. Let C∗ be a maximum
cactus subgraph ofG with β(G) triangles. We assume for contradiction that β(G) ≥ 2k+1,
then |V (C∗)| ≥ 2β(G) + 1 ≥ 4k + 3. Let V ′ denote the set of vertices in V (C∗) \ V (C).
From Lemma 6.7 it follows that |V (C)| ≥ 2k+1, thus we can easily derive a lower bound

63

Chapter 6. Introduction to the Maximum Planar Subgraph Problem

on the number of vertices in V ′ as follows:

|V ′| = |(V (C∗) \ V (C))| ≥ |(V (C∗)| − |V (C))| ≥ 4k + 3− 2k − 1 = 2k + 2.

Note that any triangle in C∗ can contain at most one vertex of V ′. Otherwise, there
would exist a triangle in G that intersects C in at most one vertex and thus could be
added to C to form a larger cactus subgraph of G, contradicting the maximality of C.
Therefore, for every vertex in V ′ there must exist one triangle in C∗ that contains one
vertex of V ′ and two vertices of V (C). Let E′ ⊆ E(C∗) be the set of edges in C∗ that
connect the two vertices in each of these triangles with one vertex in V ′. As C∗ is a cactus
subgraph any edge in E′ can only be incident to one triangle in C∗, and therefore the
graph induced by E′ in V (C) must be a forest. As this forest has exactly 2k+ 1 vertices,
there can be at most 2k triangles in C∗ containing a vertex in V ′, contradicting that
|V ′| ≥ 2k + 2 (as C∗ is a cactus every vertex in V (C∗) must be in some triangle).

64

CHAPTER 7

Greedy Approximation Algorithms for
MPT

We begin this chapter by formally introducing our Match-And-Merge framework for
greedy algorithms for Mpt. Afterwards, we analyze the approximation ratios of previously
known algorithms for Mps in the context of Mpt by rephrasing them in our new
framework. In the final section of this chapter, we introduce a new greedy algorithm
that outperforms all previously known greedy approximation algorithms for Mps. As
discussed earlier, the Mpt abstraction allows a cleaner analysis for algorithms in our
framework, and therefore from hereon, we will focus on the case of Mpt instead of Mps.

7.1 Match-And-Merge

To achieve a 4
9 -approximation for Mps in [10] the authors reduced Mps to the linear

matroid parity problem. The reduction is constructive except for the process of picking
the triangles for the final solution, which is done by the black-box that solves the linear
matroid parity problem. We introduce a class of simple greedy algorithms so that we
can focus on studying the advantage of picking (potentially) overlapping triangles.

First, we formally define the term merging rules. Let G be an input graph. At any
point of execution of the algorithm, let E′ be a subset of edges in E(G) that have been
included so far and C be the connected components in G′ = (V (G), E′). Let H be a
graph (that we refer to as pattern) and P = (V1, V2, . . . , Vk) be a partition of V (H). We
say that an (H,P)-rule applies to G′ if there is a subgraph H ′ in G that is isomorphic
to H and such that, if we break H ′ into components based on C to obtain U1, . . . , U`,
then ` = k and H ′[Ui] is isomorphic to H[Vi]. When the rule is applied, all H-edges
joining different components of C will be added. If P is a collection of singletons, we only
use the abbreviation H-rule instead of (H,P)-rule: In this case, the rules would look for
isomorphic copies of H where vertices come from different components in C. Next, we
will show how previously proposed algorithms fit into this framework. These algorithms
are referred to as CA0, CA1 and CA2 respectively 1.

• K3-rule: The K3-rule, when applied to G′, will merge three connected components
C1, C2, C3 ∈ C such that there are v1 ∈ C1, v2 ∈ C2, v3 ∈ C3 where {v1, v2, v3}
induces K3. This rule has been used in many algorithms. The CA0 algorithm
in [12] can be concisely described in our framework as follows: Iteratively apply
K3-rule until it cannot be applied any further.

1In [57], Călinescu et al.’s algorithm was called CA, we change the name here to make it consistent
with the names of the other algorithms in this thesis.

Chapter 7. Greedy Approximation Algorithms for MPT

• Poranen’s rule: The (K3, {{1, 2}, {3}})-rule would look for a triangle (v1, v2, v3)
such that an edge (v1, v2) belongs to one component C1 ∈ C and vertex v3 to another
component C2 ∈ C. The purpose of this rule is obvious: It will create triangles that
are not necessarily disjoint. This rule has been used in two algorithms, CA1 and
CA2, suggested by Poranen [57]. Both CA1 and CA2 use the same set of rules,
except that they differ in the conditions on which the rule is applied. Lemma 7.3
shows that having more rules does not necessarily improve the performance of a
greedy algorithm as CA1 and CA2 are proven to have the same lower bound.

7.2 Analyzing Previous Algorithms in our Framework

The first algorithm (called CA0) we analyze for its performance in Mpt was introduced
in [10] as the first algorithm to exceed the trivial 1

3 -approximation ratio for Mps. CA0

can be phrased in the Match-And-Merge framework as follows:

(1) Repeatedly apply the K3-rule until it cannot be applied anymore.

As this strategy does not guarantee more than that the resulting cactus subgraph is
maximal in G, we can assume that the cactus subgraph constructed by CA0 on one of the
graphs Hn shown in Lemma 6.13 is exactly the cactus Ck. Therefore the approximation
guarantee of CA0 can not exceed 1

12 . In the following lemma we give a matching lower
bound for this.

Lemma 7.1. The approximation ratio of Algorithm CA0 for Mpt is 1
12 .

Proof. Let H ⊆ E(G) denote the planar subgraph that CA0 computed after the K3-rule
stops applying. Any component in H is either a collection of triangular faces or just a
single vertex. Let C = {C1, . . . , Cr} be a collection of all components in H that contain
at least one triangular face. Let pi be the number of triangular faces found in component
Ci, and p be the number of triangular faces found in S1, so p =

∑r
i=1 pi.

Let G∗ be an optimal solution for Mpt in G and G∗i the plane subgraph of G∗

induced on Ci. It is easy to make the following observation.

Observation 7.2. No triangle in G∗ joins three different components of C.

Let ∆in(Ci) denote the number of triangular faces in G∗ that have all three vertices
in V (Ci) and let ∆out(Ci) be the number of triangular faces in G∗ with two vertices
in V (Ci) and a vertex not in V (Ci). Then

∑r
i=1(∆in(Ci) + ∆out(Ci)) = f3(G∗), due to

Proposition 7.2. Now notice that,

p

f3(G∗)
=

∑r
i=1 pi∑r

i=1(∆in(Ci) + ∆out(Ci))
≥ min

i

pi
∆in(Ci) + ∆out(Ci)

.

Therefore, it suffices to show locally that pi
∆in(Ci)+∆out(Ci)

≥ 1/12. Note that every

edge in G∗i can be incident to at most two triangular faces in G∗. By Euler’s formula there
are at most 3|V (G∗i)| − 6 edges in G∗i . Therefore ∆in(Ci) + ∆out(Ci) ≤ 6|V (G∗i)| − 12. In
addition, Lemma 6.7 implies that |V (Ci)| = 2pi + 1 for all i. Thus, ∆in(Ci) + ∆out(Ci) ≤
6|V (Ci)| − 12 = 12pi + 6− 12 = 12pi − 6, and pi

∆in(Ci)+∆out(Ci)
≥ 1

12 for every i.

66

7.2. Analyzing Previous Algorithms in our Framework

We continue our study of greedy strategies for Mpt with the algorithms CA1 and
CA2 given in [57] by Poranen. CA1 can easily be phrased in the (in Match-And-Merge
framework):

(1) Check if (K3, {{1, 2} , {3}})-rule applies

(2) If not, check if K3-rule applies.

(3) If at least one of the rules applies, go back to (1).

It is easy to see that the output of CA1 will always contain a maximal cactus subgraph
of G as a subgraph and therefore will always perform at least as good as CA0 for Mpt
(i.e. at least 1

12 -approximation for Mpt). The algorithm CA2 is the same as CA1 with the
restriction, that the (K3, {{1, 2} , {3}})-rule will only be applied if the edge {1, 2} is part
of at most one triangle so far. This small difference results in CA2 possibly producing
non-outerplanar subgraphs while CA1 will always output an outerplanar subgraph of
G. In practice this makes CA2 perform better than CA1, but as we will show here,
it does not help to prove a better approximation guarantee in theory. Based on their
empirical successes in the experiments performed in [57], the author conjectured that
they can even reach a 4

9 -approximation ratio in Mps matching the currently best-known
algorithm given in [10]; this would hint to a 1

6 -approximation for Mpt. We give a bad
example where both algorithms can be as bad as a 1

12 -approximation for Mpt and a
7
18 -approximation for Mps.

Lemma 7.3. There is a graph G such that running CA1 or CA2 on G may yield at
most 1

12OPTmpt triangular faces, and 7
18OPTmps edges.

Proof. Assume that CA1 on some input graph G, through poor choices when applying
the K3-rule, never gets the opportunity to apply the (K3, {{1, 2} , {3}})-rule. Then the
resulting subgraph S of G will be a collection of edge-disjoint triangles that form a
maximal cactus subgraph of G. We may assume that S consists of exactly one component
with 2k+4 triangles where any triangle intersects at most two other triangles and for any
three triangles the intersection is empty. It is easy to find an embedding of S such that
every triangle is also a triangular face. Note that we can assume that S is not spanning
over all vertices of G, we will use this fact to construct another subgraph of G where
only a constant number of edges is missing for it to be a triangulation. Afterwards, we
will use the vertices in V \ V (S) to introduce even more triangular faces to this new
subgraph. All of these modifications will be made such that they do not contradict the
assumption that CA1 was not able to apply the (K3, {{1, 2} , {3}})-rule at any point in
time when constructing S. As this rule was not applied at all, G also serves as a lower
bound for CA2, as both algorithms only differ in the way they apply this specific rule.
As G must have at least as many edges and vertices as the newly constructed subgraph,
comparing its size to S will imply that CA1 and CA2 only give a 1

12 -approximation for
Mpt and a 7

18 -approximation for Mps.
For simplicity assume that S is embedded on the plane on two parallel horizontal

lines, i.e., any vertex in which two triangles intersect is put on the bottom line and the
vertices that are not part of an intersection are on the top line (this is illustrated in
Figure 7.1). We denote the triangular faces in this embedding of S in the following way.

67

Chapter 7. Greedy Approximation Algorithms for MPT

15 228201014

2 3 23

9 11

4 21 5

12

116 7 13

l2k ml2

l1

r2

r1

r2k

l2k−1l2k+1 r2k−1 r2k+1

L1 M3

RkLk

M1 M2 M4 R1

Figure 7.1: We may assume that CA1 picks 2k + 4 edge-disjoint triangles from G in a
specific order.

Starting from the most left triangle we number the first k triangular faces from Lk to
L1. For 1 ≤ i ≤ k − 1 let l2i denote the vertex in which Li and Li+1 intersect and l2i−1

the vertex that does not intersect with another triangle. In Lk let l2k−1 and l2k+1 denote
the two vertices that do not intersect with Lk−1. The four triangles to the right of L1

play an important role in constructing the desired graph G, let them be denoted by M1

to M4 (from left to right) and denote the vertex in the intersection of M2 and M3 by m.
We denote the remaining k triangles from left to right by R1 to Rk and the vertices by
r1 to r2k according to the same rules as done with the vertices in L1 to Lk.

We assume that the algorithm picked the triangles S in a certain order. CA1 started
with picking the four triangles M1,M2,M3,M4 first and then L1,L2,. . .,Lk,R1,R2,. . . , Rk).
As CA1 could not apply the (K3, {{1, 2} , {3}})-rule, we know that there is no triangle
in G that contains a vertex in V \ V (S) and shares an edge with some triangle in S.
Anyway, G can still contain many triangles other than M2 and M3 that contain m and
intersect S in one edge. The algorithm was not able to use any of these triangles as in
any point of time S consists of only one component and m is part of this component
from the start. The same holds for triangles in G that contain an edge in S and l1. In
addition, there can still be many triangles left in G that contain two vertices that are in
different triangles in S and contain a third vertex in V \ V (S). We will use these three
observations to construct our bad example subgraph G′.

Initially let V (G′) = V (G) and E(G′) = {E(L1)∪E(M1)∪E(M2)∪E(M3)∪E(M4)}.
For i in 1, . . . , 2k let E(G′) = E(G′)∪{liri, l1ri,mli,mri}. For 1 ≤ i ≤ 2k−1 we connect
ri with li+1 in G′. For i in 5, . . . , 2k we additionally add l1li to E(G′). Note that we
cannot add such edges from l1 to l3 and l4 as their existence in G would have allowed CA1

to add triangles using the (K3, {{1, 2} , {3}})-rule, which it would have preferred over the
assumed collection of triangles. We embedG′ as follows in the plane. We place the vertices
from l1, l2, . . . , lk and r1, r2, . . . , rk in an alternating order (i.e., l1, r1, l2, r2, . . . , lk, rk) on
a horizontal line andm somewhere above this line. Then we embed all edges that have one
endvertex in ri or li and the other in m as a straight line. The edges l1l5, l1l6, . . . , l1lk and
l1r2, l1r3, . . . , l1rk can be embedded as curves underneath the helper line. An embedding
of G′ as described above is shown in Figure 7.2.

Consider the subgraphH ofG′ induced by the vertices l1∪l2∪. . . l2k∪r1∪r2∪. . . r2k∪m.
Let n′ denote the number of vertices in H. We know that there are only three edges
missing in H for it to be triangulated, therefore by Euler’s formula H has 3n′−6−3 edges
and 2n′−4−6 triangular faces (as every missing edge destroys two triangular faces), where

68

7.2. Analyzing Previous Algorithms in our Framework

2 5 1 7 12136181715111416

8

10 9

3 430 32

3331

l1 r1 r2k−1 l2k r2kl2k−1r2k−2l2k−2r2k−3l2k−3r2k−4l2k−4l2

m

M2 M3M1 M4

Figure 7.2: The subgraph G′ of H induced by the vertices in S could look like this.

n′ = 4k+1. Therefore H has 8k−8 triangular faces. Assume that |V \V (S)| = 8k−8 and
put one of the vertices in V \ V (S) into each of these faces. In addition, we add an edge
from this vertex to each of the vertices in the face boundary. Clearly after this modification
of H the number of triangular faces in the resulting graph is 3 · (8k − 8) = 24k − 24. If
we also add M1,M2,M3 and M4 to H and this embedding and compare the number of
triangles in H and S we get

lim
k→∞

2k + 4

24k − 20
=

1

12
.

To see the performance of CA1 in Mps we also have to consider the edges that the
algorithm would have added in the next step to connect all vertices in V \ V (S) to
S. Therefore the number of edges in the graph constructed by CA1() in G would be
3·(2k+4)+8k−8 = 14k+4. Recall thatH initially had 3n′−6−3 = 3·(4k+1)−9 = 12k−6
edges. For every triangular face, we then added one vertex and three more edges to H.
Therefore E(H) = 12k − 6 + 3 · (8k − 8) = 36k − 30. For increasing k we get an
approximation ratio of

lim
k→∞

14k + 4

36k − 30
=

7

18
.

The proofs of Lemma 7.1 and Lemma 7.3 conclude our studies of the previously best-
known approximation algorithms for Mps and together gives us the following theorem.

Theorem 7.4. The three algorithms CA0, CA1 and CA2 are 1
12 -approximations for

Mpt.

69

Chapter 7. Greedy Approximation Algorithms for MPT

7.3 A New Greedy Approximation Algorithm for MPS

We now propose a new rule that leads to a better approximation ratio. Let D4 be the
diamond graph (i.e. K4 with one edge removed). This pattern graph intuitively captures
the ideas of having two triangles sharing an edge. Our algorithm CA3 proceeds in the
following steps:

(1) Keep applying the D4-rule until it cannot be applied any further.

(2) Keep applying the K3-rule until it cannot be applied.

Now we analyze the performance of CA3 in Mpt. Let H be an optimal solution for
Mpt on a given graph G. Let G′ = (V,E′) be the subgraph of G with E′ as computed by
CA3 after leaving the second loop and C = {C1, . . . , Cr} be the collection of connected
components in G′. Let C′ be the connected components in G′ formed after leaving the
first loop; we call them dense components. (Notice that the components formed by
diamonds are denser than those formed by adding triangles.) Notice that components
in C are obtained by combining components in C′. The fact that CA3 can neither apply
the D4 nor the K3-rule anymore implies that the following properties hold at the end of
executing the algorithm.

Proposition 7.5. • For any four distinct dense components X,Y, Z,W ∈ C′ and
four vertices x ∈ X, y ∈ Y, z ∈ Z,w ∈ W , the induced subgraph G[{x, y, z, w}] is
not a diamond.

• For any three distinct components X,Y, Z ∈ C and three vertices x ∈ X, y ∈ Y, z ∈
Z, the induced subgraph G[{x, y, z}] is not a triangle.

For some connected component C in C, we denote by ∆in(C) the number of triangular
faces in H whose three vertices belong to the induced subgraph G[C]. In addition, we
denote by ∆out(C) the number of triangular faces in H that have an edge in G[C] and
one vertex in V \ V (C). The following lemma follows easily.

Lemma 7.6. f3(H) =
∑

C∈C (∆in(C) + ∆out(C)).

Proof. Each triangular face t = {v1, v2, v3} of H such that v1, v2, v3 belong to the same
component is accounted for in

∑
C ∆in(C). If two out of three vertices in t belong to the

same component, triangle t is counted in the term
∑

C ∆out(C). The remaining case when
all vertices belong to different components cannot happen, due to Proposition 7.5.

For a fixed component C ∈ C, let ∆(C) denote the sum ∆in(C) + ∆out(C).

∆(C) = ∆in(C) + ∆out(C) = (3∆in(C) + ∆out(C))− 2∆in(C) ≤ 2|E(H[C])| − 2∆in(C).

The last inequality follows from the fact that each triangle contributing to ∆in(C) uses
three edges in C, while triangles in ∆out(C) use only one edge.

70

7.3. A New Greedy Approximation Algorithm for MPS

Diamond clusters and triangular cacti: Fix some component C of C. We can break
C into several parts based on the structure of C′. LetDC be the collection of non-singleton
dense connected components in C, i.e. DC = {C ′ ∈ C′ : C ′ ⊆ C and |V (C ′)| > 1}. Each
non-singleton subcomponent X ∈ DC is called a diamond cluster inside C; notice that

|V (X)| ≥ 4. Let F = E(G′[C]) \
(⋃

X∈DC
E(G′[X])

)
be the edges remaining after

removing edges in induced subgraphs of components in DC . Observe that the graph
(C,F) consists of connected components that are formed by applying the K3-rule. Let
TC be such a collection of non-singleton connected components. Each Y ∈ TC is a
connected triangular cactus in the component C. Notice that the components in DC are
disjoint, and the same holds for TC . For each X ∈ DC and Y ∈ TC , let c(X) and l(Y) be
the number of triangles in G′[X] and that in G′[Y] respectively.

Now we want to express the number of vertices |V (C)| in terms of the sizes of the
connected triangular cacti and diamond clusters in C. To simplify the following proofs
we denote by p the number of triangles contained in diamonds of C and by l the number
of non-diamond triangles in C (,i.e., p =

∑
X∈DC

c(X) and l =
∑

Y ∈TC l(Y)).

Lemma 7.7. The number of vertices in C can be written as

|V (C)| = 3

2
p+ 2l + 1.

Proof. We will show this by induction on the number of triangles in C. The equation
is trivially true if p = l = 0. In the induction step, we take advantage of the treelike
structure of C. By construction, any cycle in C has length at most four and is either a
triangle or part of a diamond subgraph of G. This means that there always exists some
triangles or diamonds in C that intersect other triangles or diamonds with at most one
of their vertices. We call such triangles or diamonds the leaves of C. Note that if we take
any leaf t from C and delete its vertices that do not intersect with other triangles or
diamonds of C, then the resulting subgraph C ′ of C differs to C by either

(1) two vertices and one non-diamond triangle or

(2) three vertices and two diamond triangles.

Depending on whether t was a non-diamond or a diamond of C. If t is a non-diamond
triangle, then by induction C ′ has 3

2p + 2(l − 1) + 1 = 3
2p + 2l − 1 vertices. As C has

only two vertices more than C ′ we get that |V (C)| = 3
2p+ 2l+ 1. If t is a diamond of C,

then by induction C ′ has 3
2(p− 2) + 2l + 1 = 3

2p− 3 + 2l − 1 vertices. As C has exactly
three vertices more than C ′ we get that |V (C)| = 3

2p+ 2l + 1.

The following is the main lemma that crucially exploits the new diamond rule.

Lemma 7.8. ∆out(C) ≤ 15p+ 8l − 6k.

Proof. Each triangle that contributes to ∆out(C) must have an edge that appears in
H[C]; we call them supporting edges. Let E∗ be the set of such edges. Denote by E∗1
the set of supporting edges whose two endvertices belong to the same diamond cluster
X ∈ DC . Let E∗2 denote E∗ \ E∗1 .

Claim 7.9. The subgraph (V (C), E∗2) is triangle-free.

71

Chapter 7. Greedy Approximation Algorithms for MPT

Proof. Assume otherwise that there is a triangle (v1, v2, v3) in (C,E∗2). By definition
of E∗2 , it must be the case that v1, v2 and v3 must all lie in different diamond clusters.
Moreover, since the edge (v1, v2) supports some triangle counted in ∆out(C), we must
have a vertex v4 6∈ C such that (v1, v4), (v2, v4) ∈ E(H). But then v1, v2, v3, v4 are joined
by a diamond and belong to different components in C′, contradicting Proposition 7.5.

Now since (V (C), E∗2) is triangle-free, Euler’s formula together with the upper bound
on |V (C)| imply that |E∗2 | ≤ 2|V (C)| − 4 ≤ 3p + 4l − 2. Moreover, we can bound the
edges in E∗1 by applying Euler’s formula to each diamond cluster X ∈ DC . That is,
|E∗1 | ≤

∑
X∈DC

(3|V (X)| − 6) =
∑

X∈DC

(
9
2c(X)− 3

)
= 9

2p− 3k. Next, ∆out(C) ≤ 2|E∗|
since each edge in E∗ can only support at most two triangles. Plugging in the values of
|E∗1 | and |E∗2 | gives

∆out(C) ≤ 2(|E∗1 |+ |E∗2 |) ≤ 2(
9

2
p− 3k + 3p+ 4l − 2) ≤ 15p+ 8l − 6k.

We are now ready to prove the approximation guarantee of CA3.

Lemma 7.10. CA3 gives a 1
11 -approximation for Mpt.

Proof. We will bound the approximation ratio locally, i.e. for each connected component
C, we argue that p+l ≥ 1

11∆(C), which will imply that when summing over all components
in C the number of triangles is at least 1

11f3(H). Using Euler’s formula, we get

∆ ≤ 2|E(H[C])| − 2∆in ≤ 6|V (H[C])| − 12− 2∆in ≤ 9p+ 12l − 6− 2∆in. (7.1)

The first inequality follows by a simple counting argument. Note that the last inequal-
ity follows from Lemma 7.7, which states that |V (H[C])| ≤ 3

2p+2l+1. From Lemma 7.8,
we have that

∆ = ∆in + ∆out ≤ 15p+ 8l − 6k + ∆in. (7.2)

Adding (7.1) with twice of (7.2) gives us 3∆ ≤ 39p+28l, which implies that ∆ ≤ 13p+10l.
Finally, we can combine this with (7.1) to get ∆ ≤ 11(p+ l).

72

CHAPTER 8

Computing the Number of Triangular
Faces via Local Search

In this chapter, we show how a local search argument can be used to show that the
cactus number for a given connected planar graph G is always at least one sixth of the
triangular faces of G. For this, we start by explaining the necessary terminology and
the key techniques we use in Section 8.1. In Section 8.2, we give a detailed overview of
the proof by induction for Theorem 6.2. Section 8.4 focuses on showing the inductive
argument and reducing the general case to proving the base case of the induction. In
Section 8.4, we show a slightly weaker version of the base case that implies β(G) ≥ 1

7f3(G),
and in Section 8.5, we prove the original base case to finally arrive at Theorem 6.2.

8.1 Taking Advantage of Local Optimality

Our proof for Theorem 6.2 is highly technical, although the basic idea is very simple
and intuitive. Therefore, we first give a high-level overview of the analysis. Let C be a
2-swap optimal cactus subgraph of a given connected planar graph G. We argue that the
number of triangles in C is at least f3(G)/6. For simplicity, let us assume that C has only
one non-singleton component. In general, one can repeat the following arguments for all
other non-singleton components in C. Let S ⊆ V (G) be the vertices in this connected
component.

Let t be a triangle in C. Notice that removing the three edges of t from C breaks
the cactus subgraph into at most three components, say C1 ∪ C2 ∪ C3 that are pairwise
vertex-disjoint. Let S1.S2 and S3 denote the vertex sets of C1, C2 and C3. Recall that
we would like to upper bound the number of triangular faces in G by six times ∆,
where ∆ is the number of triangles in the cactus C. Notice that f3(G) is comprised of
f3(G[S1])+f3(G[S2])+f3(G[S3])+q′, where q′ is the number of triangular faces in G that
span“across” the components S1, S2 and S3 (i.e., those triangular faces whose vertices
intersect with at least two sets Si and Sj , where i 6= j). Therefore, if we could give a
nice upper bound on q′, e.g. if q′ ≤ 6, then we could inductively use f3(G[Sj]) ≤ 6∆j ,
where ∆j is the number of triangles in Cj , to show that

f3(G) ≤ 6(∆1 + ∆2 + ∆3) + 6 = 6(∆− 1) + 6 = 6∆.

and this would proof Theorem 6.2. Unfortunately, it is not possible to give such a
nice upper bound on q′ that holds in general for all situations. We will show, though, that
such a bound can be proven for some suitable choices of t: Roughly speaking, removing
such a triangle t from C will create only a small “interaction” between the components
C1, C2 and C3 (i.e. small q′). We say that such a triangle t is a light triangle; otherwise,
we say that it is heavy. As long as there is a light triangle left in C, we would remove its

Chapter 8. Computing the Number of Triangular Faces via Local Search

edges from C (thus breaking C into C1, C2, C3) and then use induction on each component.
Therefore, we have reduced the problem to that of analyzing the base case of a cactus in
which all triangles are heavy. Handling the base case of the inductive proof is the biggest
challenge of our result.

We sketch here the two key ideas. First, we describe a way to exploit (in certain
parts of the graph G[S]) that we are given a locally optimal solution. We want to point
out; the fact that all triangles in C are heavy is crucial in this step. Recall that, each
heavy triangle is such that its removal creates three components C1, C2, C3 with many
“interactions” (i.e. many triangular faces of G span across these components) between
them. However, intuitively, one would think that if there exist many triangles spanning
across these components, then some of them could be used for making local improvements.
Thus, the fact that there are many interactions will become our advantage in the local
search analysis.

We briefly illustrate how we take advantage of heavy triangles. Let T be the set of
triangular faces in G that are not contained in

⋃
iG[Si], thus each triangle in T has

vertices in at least two subsets Sj , Si where j 6= i. The local search argument will allow
us to say that all triangles in T have one vertex in Si, one in Sj . with i 6= j, and one
vertex not in S1 ∪ S2 ∪ S3. This idea is illustrated in Figure 8.1(a). Moreover, we will
even argue that there are not too many triangular faces in G[S]. One example of how
to use a local search argument to show that certain types of triangular faces can not
appear in G[S] is illustrated in Figure 8.1(b).

t

t1

t2

t1

t2

(a) A 1-swap operation. If there exist
two triangles t′1 and t′2 in T between
two different pairs of components Si, Sj
(where i 6= j) of C \ E(t), then we cam
remove t from C and add t′1, t′2 to con-
struct a cactus subgraph with a larger
number of triangles.

t1 t2

t3

t1

t2

t1

t2

t3

(b) A 2-swap operation. Let t1 and t2
be two adjacent triangles in C. If there
exists an edge between vertices in t1 and
t2 (with distance two), and triangles t′1
and t′2 in T as drawn in this figure, then
there exists a local improvement by re-
moving t1 and t2 from C and adding t′1,
t′2 and t3 to C.

Figure 8.1: Two examples which yield local improvements.

Finally, the ideas illustrated in both figures are only applied locally in a certain
“region” inside the given connected planar graph G, therefore we still need a way to
connect these regions to the number of triangular faces in all of G. Our final ingredient
is a way to decompose the regions inside a plane graph into various “atomic” types. For
each such atomic type, the local exchange argument is sufficient to argue about how
close to optimality the number of triangles in a local optimal solution is compared to the

74

8.2. How to Prove our Extremal Bound

number of triangular faces in that region in G. Combining the bounds on these atomic
types gives us the desired result. This is the most technically involved part of this chapter,
and we present it gradually by first showing the analysis that gives β(G) ≥ 1

7f3(G). For
this, we need to classify the regions into five atomic types. To prove Theorem 6.2, that
β(G) ≥ 1

6f3(G), we need a more complicated classification into thirteen atomic types.

8.2 How to Prove our Extremal Bound

In this section, we give a formal overview of the structure of the proof of Theorem 6.2.
Let our input G be a plane graph and let C be a 2-swap optimal cactus subgraph of G.
Let ∆(C) denote the number of triangles in C, which correspond to triangular faces of
G. We will show that ∆(C) ≥ f3(G)/6. In general, we will use the function ∆ : G→ N
to denote the number of triangular faces in any plane graph G.

We partition the vertices in G into subsets based on the connected components of
C, i.e., V (G) =

⋃
i Si where C[Si] is a connected cactus subgraph of C. For each i, where

|Si| ≥ 1, let q(Si) denote the number of triangular faces in G with at least two vertices
in Si. The following proposition follows from the definition of q(Si) and the fact that
C is a maximal cactus subgraph of G (which is implied by its 2-swap optimality). The
proposition implies that f3(G) =

∑
i q(Si).

Proposition 8.1. If ∆(Ci) ≥ 1
6q(Si) for all i, then ∆(C) ≥ 1

6f3(G).

Therefore, it is sufficient to analyze one component C[Si] at a time, where C[Si]
contains at least one triangle (if the component does not contain at least one triangle
it is just a single vertex) and show that ∆(Ci) ≥ 1

6q(Si). Thus, from now on, we fix one
such component C[Si] and denote Si simply by S, q(Si) by q(S), and ∆(C[Si]) by p. We
will show that q ≤ 6p through several steps.

Step 1: Reduction to Heavy Cactus

First, we will show that the general case can be reduced to the case where all triangles
in C are heavy (to be defined below). We refer to different types of vertices, edges, and
triangles in the graph G as follows:

• Cactus: All edges, vertices and triangles that are part of the cactus subgraph C[S]
of G are called cactus edges, -vertices and -triangles respectively.

• Cross: Edges of G with one endvertex in S and one endvertex in V (G) \ S are
called cross edges. Triangles in G that contain one vertex from V (G) \ S and
two vertices from S are called cross triangles. Each cross triangle has exactly one
edge in G[S], we say this edge is the supporting-edge of this cross triangle. The
component C[Sj] that contains the vertex v outside of S of a given cross triangle
t is called the landing component of t. Similarly the vertex v alone is called the
landing vertex of t.

• type-i edges: An edge in G[S] that is not a cactus edge and does not support a
cross triangle is called a type-0 edge. An edge in G[S] that is not a cactus edge and
supports i cross triangle(s) is called a type-i edge.

75

Chapter 8. Computing the Number of Triangular Faces via Local Search

Therefore, each edge in G[S] is either a cactus, type-0, type-1 or type-2 edge. The
introduced naming convention makes it easier to make important observations like the
following (see Figure 8.2 for an illustration of our naming convention).

Observation 8.2. Triangles that contribute to the value of q are of the following types:
(i) the cactus triangles; (ii) the cross triangles; and (iii) the “remaining” triangles that
connect three cactus vertices using at least one type-0, type-1 or type-2 edge, and do not
have a cross triangle embedded inside.

t''

t1
t2

y

x

t'
u

w
v

Landing vertices
Cactus vertices
Cactus edges
Cross edges
Type-0 edges
Type-1 or
Type-2 edges

Figure 8.2: Various types of edges, vertices, and triangles. Here the cross triangles t′′

and t1 have the same landing component.

Using this classification of all the edges in G[S], we can derive important information
about the embedding of G and especially the landing components outside of G[S].

Observation 8.3. Any circuit C in G, which comprises of only cactus, type-0, type-1
and type-2 edges and cactus vertices, divides the plane into several regions (two if C is a
cycle) such that any cross triangle which is embedded in one of the regions cannot share
its landing component with any other cross triangle embedded in some different region.

As for the edges in G[S], we assign a type to every triangle in G[S] and the cross
triangles supported by edges in G[S].

Types of cactus triangles and definition of split-cacti: Let t be a triangle in
C[S]. For i ∈ {0, 1, 2, 3}, we say that t is of type-i if exactly i of its edges support a cross
triangle. Let pi denote the number of type-i cactus triangles in C[S], thus we have that
p0 +p1 +p2 +p3 = p. We denote the operation of deleting the edges of t from a connected
cactus C[S] by splitting C[S] at t. The resulting three smaller triangular cacti (denoted
by {Ctv}v∈V (t)) are referred to as the split-cacti of t. For each v ∈ V (t), let Stv := V (Ctv)
be the split-components containing v. For vertices u, v ∈ V (t) : u 6= v, we denote by Bt

uv

the set of type-1 or type-2 edges having one endvertex in Stu and the other in Stv.

76

8.2. How to Prove our Extremal Bound

Using the different types of edges and triangles in G, we are finally ready to describe
the concept of heavy and light cactus triangles, which will be heavily used in our analysis.

Heavy and light cactus triangles: We say that a cactus triangle t of C[S] is heavy,
if either there are at least four cross triangles supported by edges in E(t)∪

⋃
uv∈E(t)B

t
uv

or there are at least three cross triangles supported by the edges in one set Bt
uv ∪ uv

for some uv ∈ E(t) and no cross triangle supported by the other sets Bt
ww′ ∪ ww′ for

each ww′ ∈ E(t). Otherwise, t is light. Intuitively, the notion of a light cactus triangle
t captures the fact that, after removing t, there is only a small amount of “interaction”
between its split-components.

As another ingredient to bound the interaction in G between the components of C,
we define a function over the edges of the outer face of C[S].

Function φ: Denote by `(S) the length of the outer-face fS of the graph G[S]. We
define φ(S) as the number of edges on the outer-face that do not support any cross
triangles of G embedded in the outer-face of C[S], thus we have 0 ≤ φ(S) ≤ `(S).

The main ingredients of Step 1 are encapsulated in the following theorem.

Theorem 8.4 (Reduction to heavy triangles). Let γ ≥ 6 be a real number, and φ be as
described above. If q(S) ≤ γp(S) − φ(S), for any connected component C[S[of C such
that C[S] is a connected cactus subgraph of G that contains only heavy triangles, then
q(S) ≤ γp− φ(S) for all connected components of C.

Therefore, it suffices to show the bound q(S) ≤ γp − φ(S) for the heavy cactus
subgraphs of G. From this follows that q ≤ γp in general (due to the non-negativity of
the function φ). In other words, Theorem 8.4 gives a reduction from the general C[S] to
the case when all cactus triangles in C[S] are heavy.

Step 2: The Skeleton Graph and Surviving Triangles

From hereon, we focus on the case when there are only heavy triangles in C[S] and we
will give a formal overview of the key idea we use to derive the bound q(S) ≤ 6p− φ(S).
This bound in combination with Theorem 8.4 then implies Theorem 6.2.

Structural properties of heavy triangles: Using the local optimality of C one
can show, that the light and heavy triangles in C behave in a very well structured manner.
The following proposition summarizes these structural properties of heavy triangles (we
delay the proof of this proposition to Subsection 8.2.1).

Proposition 8.5. Let t be a cactus triangle in the cactus subgraph C[S] of G.

• If t is heavy, then t is either type-0 or type-1.

• If t is a heavy type-1 triangle, where the edge uv ∈ E(t) supports the cross triangle
supported by t, then Bt

ww′ = ∅ for all ww′ ∈ E(t) \ {uv} and the total number of
cross triangles supported by edges in Bt

uv is at least two.

77

Chapter 8. Computing the Number of Triangular Faces via Local Search

• If t is a heavy type-0 triangle, then there is an edge uv ∈ E(t) such that Bt
ww′ = ∅

for all ww′ ∈ E(t)\{uv} and the total number of cross triangles supported by edges
in Bt

uv is at least three.

By Proposition 8.5 there can only exist type-0 and type-1 cactus triangles in C[S].
Moreover, for each such heavy cactus triangle t, the type-1 or type-2 edges in G[S] only
connect vertices of two split-components of t.

Skeleton graph H: Let ai be the number of edges of type-i in G[S]. Notice that
the number of non-cactus edges in G[S] is exactly

∑
i ai = |E(G[S])| − 3p. Let A be

the set of all type-0 edges in G[S]. Let H := G[S] \ A be a new graph that we call the
skeleton graph of G. By definition H contains only cactus, type-1 or type-2 edges and
every face f of H possibly contains multiple faces of G, thus we will refer to a face of H
as a super-face of G. At high-level, we aim to analyze each super-face f and provide an
upper bound on the number of triangular faces of G embedded inside f . Denote by F
the set of all super-faces (except for the p faces corresponding to cactus triangles).

Let f be a super-face of H. We denote by survive(f) the number of triangular faces
of G[S]. embedded inside of f that do not contain any cross triangles in G. Next, we use
a simple counting argument to derive q using the skeleton graph H based on three facts:

(1) There are p cactus triangles in G[S].

(2) There are p1 + a1 + 2a2 cross triangles supported by edges in G[S].

(3) There are
∑

f∈F survive(f) triangular faces in G[S] that were not counted in (1)
or (2).

Combining these properties, we obtain:

q ≤ p+ (p1 + a1 + 2a2) +
∑
f∈F

survive(f). (8.1)

The first and second terms are expressed nicely in terms that describe the size of
G[S], thus the key is to achieve the best upper bound on the third term in terms of
the same parameters. Roughly speaking, the intuition is the following: When a2 or a1

is high (meaning there are many edges in G[S] supporting cross triangles), the second
term becomes higher. However, each cross triangle needs to be embedded inside some
super-face in H, therefore decreasing the value of the term

∑
f∈F survive(f). Similar

arguments can be made for p1. Therefore, the key to a tight analysis is to understand
this trade-off and the structure of the super-faces of H.

The structure of super-faces: Let f ∈ F be a super-face of H. Recall that an
edge in the boundary of f is either a type-1, type-2 or a cactus edge. We aim for a
better understanding of the value of survive(f). In general, this value can be as high as
|E(f)|−2, e.g. if the additional edges in G[V (f)] are type-0 edges and such that G[V (f)]
is a triangulation of the region bounded by the super-face f . However, if some edge in
the boundary of f supports a cross triangle whose landing component is embedded inside
of f in G, then the possible value of survive(f) decreases by one. So speaking, the edge

78

8.2. How to Prove our Extremal Bound

supporting a cross triangle is killing the triangular face adjacent to it, hence the term
survive. The following observation is crucial for our analysis:

Observation 8.6. For some super-face f of H, consider any edge e ∈ E(f). Then e is
either

• of type-1, type-2 or a cactus edge and supports a cross triangle embedded in f or

• of type-1, type-2 or a cactus edge and does not support a cross triangle embedded
in f .

Edges lying in the first case of Observation 8.6 are called occupied edges (the set
of such edges in E(f) is denoted by Occ(f)). The edges in the boundary of f that
are not occupied are called free edges in f (the set of free edges in E(f) is denoted
by Free(f)). By Observation 8.6, the number of edge in the boundary of f can be
expressed by |E(f)| = |Occ(f)|+ |Free(f)|. A very important quantity for our analysis
is µ(f) = 1

2 · |Occ(f)|+ |Free(f)|, which roughly bounds the value of survive(f) (within
some small constant additive terms).

We will assume without loss of generality that survive(f) is the maximum possible
value of surviving triangles that can be obtained by embedding type-0 edges in f , thus
µ(f) is a function that depends only on the bounding edges in f . We define gain(f) =
µ(f) − survive(f), which is again a function that only depends on bounding edges of
f . Intuitively, the higher the term gain(f), the better for us (since this would lower the
value of survive(f)), and in fact, it will later become clear that gain(f) roughly captures
the “effectiveness” of a local exchange argument on the super-face f . Hence, it suffices
to show that

∑
f∈F gain(f) is sufficiently large. The following proposition makes this

precise:

Proposition 8.7.
∑

f∈F survive(f) = (3p− 1
2p1 + 3

2a1 + a2)−
∑

f∈F gain(f)

Proof. Notice that
∑

f∈F µ(f) can be analyzed as follows:

• Each cactus triangle is counted three times (once for each of its edges), and for
a type-1 triangle, one of the three edges contribute only one half. Therefore, this
accounts for the term 3p− 1

2p1.

• Each type-1 or type-2 edge is counted two times (once per super-face containing it
in its boundary). For a type-2 edge, the contribution is always half (since it always
is accounted in Occ(f)). For a type-1 edge, the contribution is half on the occupied
case, and full on the free case. Therefore, this accounts for the term 3

2a1 + a2.

Overall we get,
∑

f∈F µ(f) = 3p− 1
2p1 + 3

2a1 + a2, which finishes the proof.

Combining this proposition with Equation 8.1, we get:

q ≤ 4p+
1

2
p1 +

5

2
a1 + 3a2 −

∑
f∈F

gain(f). (8.2)

79

Chapter 8. Computing the Number of Triangular Faces via Local Search

Using the gain function to prove a weaker bound on q: To recap, after
Step 1 and Step 2, we have reduced the analysis to the question of lower bounding∑

f∈F gain(f). We first illustrate that we could get a weaker (but nontrivial) result
compared to Theorem 6.2 by using a generic upper bound on the gain function. In Step
3, we will show how to substantially improve this bound, allowing us to achieve the ratio
of Theorem 6.2.

Lemma 8.8. For any super-face (except for the outer-face) in F , we have gain(f) ≥ 3
2 .

We denote by f0 the outer (super-)face of H. As f0 is special, we can achieve a lower
bound on the quantity gain(f0) that depends on φ(S). This is captured by the following
lemma, which we prove in subsection 8.2.2 at the end of this section.

Lemma 8.9. For the outer-face f0, we have that gain(f) ≥ φ(S)− 1.

Combining Lemma 8.8 and Lemma 8.9 we get the following lower bound on the sum
over all gain values of the super-faces in H.∑

f∈F
gain(f) ≥ φ(S)− 1 +

3

2
(|F| − 1) = φ(S) +

3

2
|F| − 1

2
. (8.3)

The following lemma upper bounds the number of skeleton faces (i.e. super-faces of
the skeleton).

Lemma 8.10. |F| = a1 + a2 + 1 ≤ 2p− 2.

Proof. Proposition 8.5 allows us to modify the graph H into another simple planar graph
H̃ such that the claimed upper bound on |F| will follow simply from Euler’s formula. Let
t be a cactus triangle where V (t) = {u, v, w} and uw ∈ E(t) be such that the edge set
Bt
uw is empty, as guaranteed in Proposition 8.5. For every cactus triangle t we contract

the edge uw into one new vertex W . Note that this operation creates two parallel edges
with endvertices W and v in the resulting graph. To avoid multi-edges in the resulting
graph H̃ we remove one of them (see Figure 8.3 for an illustration of this operation).
Since Bt

uw is empty, this operation cannot create any other multi-edges in H̃. In addition,
the contraction of an edge maintains planarity, hence after each such transformation, the
graph remains simple and planar. As a result of applying the above operation to all cactus
triangles, the graph H̃ has p + 1 vertices and p edges corresponding to the contracted
triangles. By Euler’s formula the number of edges in H̃ is at most 3(p+ 1)− 6 = 3p− 3,
which implies that a1 +a2 ≤ 2p−3, and as |F| = a1 +a2 +1 we get that |F| ≤ 2p−2.

t

Sw

u v

w

W v
Su SvSu Sv

t

tt t

t

t

Figure 8.3: An example of the contraction transformation.

80

8.2. How to Prove our Extremal Bound

Combining the trivial gain (i.e. Inequality 8.3) with Inequality 8.2, we get

q ≤ (4p+
1

2
p1 +

5

2
a1 +3a2)−(φ(S)+

3

2
(a1 +a2 +1)− 5

2
) = 4p+

1

2
p1 +a1 +

3

2
a2−φ(S)+1.

Now, using Lemma 8.10 and the trivial bound that p1 ≤ p, we get q(S) ≤ 9
2p+ 3

2(a1 +
a2)− φ(S) + 1 ≤ 15

2 p− φ(S), therefore implying a factor 15
2 upper bound.

Step 3: upper bounding Gain via Super-Face Classification

In this final step, we show another crucial ingredient on the way to reach the factor
six ratio of Theorem 6.2. Intuitively, the most difficult part of lower bounding the total
gain is the fact that the value of gain(f) varies, depending on the composition of each
super-face in H, and we cannot expect a strong “universal” bound that holds for all cases.
For instance, Figure 8.4 shows a super-face with gain(f) = 3

2 , thus strictly speaking, we
cannot improve the generic bound of 3

2 . This is why we now introduce a classification
scheme for the super-faces in H. The goal here is to partition the super-faces in F into
several types, such that all super-faces of one type have the same gain.

Figure 8.4: A super-face f ∈ F having gain(f) = 3
2 as µ(f) = 3

2 and survive(f) = 0.

Super-face classification scheme: We aim to define a set of rules Φ that classify
F into a fixed number of types. We say that the set of rules Φ is a d-type classification if the
rules classify F into d sets F =

⋃d
j=1F [j]. Let ~χ be a vector such that ~χ[i] = |F [i]|. For

each such set, we will prove a lower bound on the sum over all gain values of the contained
super-faces. We define the gain vector by

−−→
gain where

−−→
gain[i] = minf∈F [i] gain(f). The

total gain can be rewritten as: ∑
f∈F

gain(f) =
−−→
gain · ~χ.

Notice that, the total gain value
−−→
gain · ~χ is written in terms of the ~χ[j] variables, thus

we need another ingredient to lower bound this in with respect to the variables p, p1, a1

and a2. Therefore, another component of the classification scheme is a set of valid linear
inequalities Ψ of the form

∑d
j=1Cj~χ[j] ≤

∑
j∈{0,1} djpj +

∑
j∈{1,2} d

′
jaj . This set of

inequalities will allow us to map the formula in terms of ~χ[j] into one with respect to
the variables p, p1, a1 and a2.

81

Chapter 8. Computing the Number of Triangular Faces via Local Search

A classification scheme is defined as a pair (Φ,Ψ). We say that such a scheme
certifies the proof of factor γ if it can be used to derive q(S) ≤ γp− φ(S). Given a fixed
classification scheme and a gain vector, we can check whether it certifies a factor γ by
using an LP solver (although in our proof, we will show this derivation).

For the proof of Theorem 6.2 we will present a classification scheme that certifies a
factor six. Since the proof is very complicated, we also provide a simpler, more intuitive
proof that certifies a factor seven first.

Theorem 8.11. There is a 5-type classification scheme, such that q(S) ≤ 7p− φ(S).

We remark that the analysis of factor seven only requires a cactus subgraph of G
that is 1-swap optimal.

Theorem 8.12. There is a 13-type classification scheme, such that q(S) ≤ 6p− φ(S).

In both proofs the classification scheme allows us to identify the super-faces that
benefit the most from the local optimality of C and separate them from those that do
less. For some good cases, we can obtain a much better gain than for others, e.g., in one
of our classification types, gain(f) is as high as 9

2 . In the bad cases, we will have to use
the lower bound of 3

2 for the gain, that holds in general for any super-face.

8.2.1 Proof of Proposition 8.5

Observation 8.3 immediately leads to a simple lemma which will prove helpful for the
proof of Proposition 8.5.

Lemma 8.13. Let e := uv be a type-2 edge in G[S], then the cross triangles t1 and t2
supported by e can not have the same landing component.

Proof. Since both u and v are in S, there exists a path P from u to v in G[S] containing
only cactus edges and vertices. Hence, the cycle D := uPv ∪ vu consists of only type-1,
type-2 or cactus edges and cactus vertices, such that the two cross triangles supported
by e will be embedded in different regions corresponding to D. Thus, by Observation 8.3
the two cross triangles supported by e cannot have the same landing component.

The 1-swap operation illustrated in Figure 8.1(a) and the 2-swap optimality of C
imply the following lemma.

Lemma 8.14. Let t be a cactus triangle with vertices u, v and w and let there exist at
least two cross triangles t1 and t2 in G such that (V (t1)∪V (t2))∩Stx 6= ∅, for x ∈ {u, v, w},
then

(1) t1 and t2 must have the same landing component,

(2) any edge e in Bt
uv ∪Bt

uw ∪Bt
vw is of type-1,

(3) |Bt
uv|, |Bt

uw|, |Bt
vw| ≤ 1 and

(4) any set of edges {xy} ∪Bt
xy for xy ∈ E(t) support at most one cross triangle.

82

8.2. How to Prove our Extremal Bound

Proof. To prove Property (1), assume for contradiction that t1 and t2 do not share the
same landing component. In this case we can increase the number of triangles in C by
removing t from C and adding t1 and t2 to C in its place. As the landing components are
disjoint this operation does not introduce any new cycle to C other than the supported
cross triangles, and therefore the resulting structure is a cactus subgraph of G. This
contradicts that C is 2-swap optimal.

Property (2) follows from Property (1). Assume for contradiction that there exists a
type-2 edge e ∈ Bt

uw (the same argument will hold for Bt
uv and Bt

vw). Only one of t1 and
t2 can have its two cactus vertices in the same split-components of t as the endvertices of
e. We may assume that this is not the case for t1. Let t′ and t′′ denote the cross triangles
supported by e. By Property (1) t′ and t1 must have the same landing component, the
same holds for t′′ and t1. But by Lemma 8.13 t′ and t′′ can not have the same landing
component, thus we reach a contradiction.

We will prove Property (3) also by contradiction. Assume that |Bt
vw| ≥ 2 and let

e1, e2 ∈ Bt
vw be any two type-1 edges (the same argument will hold for Bt

uv and Bt
uw).

As both endvertices of e1 are cactus vertices, there exists a path in C[S] connecting both
the endvertices, thus there is a cycle C1 in G[S] containing e1 and only cactus edges
otherwise. Similarly, there exists a cycle C2 in G[S] that contains e2 and only cactus
edges otherwise. In G either e1 is embedded in the inside of the closed region bounded by
C2 or e2 is embedded in the inside of the closed region bounded by C1 (see Figure 8.5).
For this proof we assume the former case. The proof for the latter case is symmetric.

t

Sw

u

w

Su Sv

t

t t

v

e1

e2

Buw

Buv

Bvw

t

t

t

Figure 8.5: The split-components Stu, S
t
v, S

t
w and the sets Bt

uv, B
t
uw, B

t
vw for a cactus

triangle t. By Lemma 8.14 Property (3), the edges e1 and e2 cannot exist in a 2-swap
optimal cactus subgraph.

Only one of t1 and t2 can have its two cactus vertices in the same split-components of
t as the endvertices of e1. We may assume that this is not the case for t1. By Property (1)
the cross triangle supported by e1 and t1 must have the same landing component. Note
t1 can not lie in the inside of the region bounded by C1 in G. Therefore, the landing
component shared by the two cross triangles must lie on the outside of C1. However,
by Property (1) the cross triangle supported by e2 and t1 must have the same landing
component. We reach a contradiction using Observation 8.3.

83

Chapter 8. Computing the Number of Triangular Faces via Local Search

We prove Property (4) also by contradiction. Assume that the set of edges {uv}∪Bt
uv

supports two cross triangles (the same argument will hold for {uw}∪Bt
uw and {vw}∪Bt

vw).
Property (3) implies that there is only one type-1 edge in Bt

uv hence uv will support
the other cross triangle. Let t′ be the triangles supported by uv, t′′ be the cross triangle
supported by an edge e′ ∈ Bt

uv. Only one of t1 and t2 can have its two cactus vertices in
the same split-components of t as the endvertices of e. We may assume that this is not
the case for t1. By Property (1), t′ and t1 must have the same landing component. But
this is also true for t′′ and t1. In addition, there is a cycle C in H that contains e and a
path P from u′ to v′ in C[S] (where u′v′ = e) containing only cactus vertices and edges
such that t′ is embedded in its inside in G and Stw outside of it. As t1 intersects Stw it
must be embedded outside of C in G. But by Observation 8.3, t′ and t2 cannot have the
same landing component and we reach a contradiction.

Further we can show that the following holds if a cactus triangle t of C supports two
cross triangles.

Lemma 8.15. If t supports cross triangles t1 and t2, where u denotes their common
cactus vertex, then Bt

uv and Bt
uw are both empty.

Proof. By Lemma 8.14, Property (1), t1 and t2 must have the same landing component.
Note that if t1 and t2 have a common landing vertex, then the claim is trivially true, as
then u is incident to exactly three faces, namely t,t1 and t2 which by definition are all
empty and thus Bt

uv and Bt
uw are empty in this case. Thus, we assume that t1 ∩ t2 = u.

t

Sw

u

w

Su Sv

t

t t

v

e1

e2

t1

t2

Figure 8.6: If t supports two cross triangles that intersect in a vertex u ∈ S, then by
Lemma 8.15, Bt

uv and Bt
uw must both be empty.

Let u1 and u2 denote the landing vertices of t1 and t2 respectively. As t1 and t2 have
the same landing component (say S′), G must contain a path P from u1 to u2 consisting
of edges only in C[S′]. Furthermore uu1 ∪ P ∪ u2u forms a cycle C with only one cactus
vertex u and cross edges and edges in C[S′]. Note that the fact that t, t1 and t2 are empty
in G, implies that the two cactus edges of t incident to u, as well as the edges uu1 and
uu2 are consecutive in the circular edge incident list of u in G. This observation gives us

84

8.2. How to Prove our Extremal Bound

two important facts. First, as C contains uu1 and uu2, any other edge incident to u in G
must be embedded in the region bounded inside of C in G. Second, any split-components
Stx, for x ∈ {v, w}, must be embedded outside of C in G. Assume for contradiction that
there exists an edge e with endvertices u and z ∈ Stx, with x ∈ {v, w}, by the previous
observation e has to cross C in G, and therefore the existence of e contradicts that G is
a plane graph. Similarly, there cannot exist any edge e with one endvertices in Stu \ {u}
and another endvertices in Stx, with x ∈ {v, w} since all these vertices are embedded
strictly inside of C and Stx’s, with x ∈ {v, w}, are embedded strictly outside of C.

We are now ready to prove the different properties of heavy triangles claimed in
Proposition 8.5. In the following, we will prove one lemma for every such claim.

Lemma 8.16. Any cactus type-3 triangle t in G[S] is light.

Proof. For any vertex v in t, there is a pair of cross triangles supported by t such that
their intersection is v, thus by Lemma 8.15, Bt

vv′ must be empty for any v′ ∈ V (t) \ v.
Hence, the number of cross triangles supported by E(t) and ∪ww′∈E(t)B

t
ww′ is less than

four and each edge vv′ ∈ E(t) supports one cross triangle, thus t is a light triangle.

Lemma 8.17. Any cactus type-2 triangle t in G[S] is light.

Proof. Let t be a type-2 triangle, such that each of the cactus edges uw and vw support
cross triangles t1 and t2 respectively (see Figure 8.7). By Lemma 8.15, Bt

uw and Bt
vw

must be empty. By Lemma 8.14 properties (2) and (3) there is at most one edge in
Bt
uv and if it exists it must be of type-1. Thus, there are at most three cross triangles

supported by t and the edge in Bt
uv and in addition at least two edges in E(t) support a

cross triangle, thus t is a light triangle.

t

Sw

u

w

Su
Sv

t

t tv

t1
t2

t3

Figure 8.7: A type-2 light triangle t and an illustration of the third property of Propo-
sition 8.21.

Lemma 8.18. If t is a heavy type-1 triangle, with V (t) = {u, v, w}, let uv denote the
edge in E(t) that supports the cross triangle supported by t, then Bt

ww′ = ∅ for all
ww′ ∈ E(t) \ {uv} and the total number of cross triangles supported by edges in Bt

uv is
greater than or equal to two.

85

Chapter 8. Computing the Number of Triangular Faces via Local Search

Proof. We first show that Bt
ww′ is empty for every ww′ ∈ E(t) \ uv. Let t′ denote the

cross triangle supported by t. Assume for contradiction, that there exists an edge e in
some Bt

ww′ for some edge ww′ ∈ E(t) \ uv. As t′ and the cross triangle supported by e
fulfill the requirements of Lemma 8.14, Property (4) implies that there are at most three
cross triangles supported by edges in E(t)∪vv′∈E(t)B

t
vv′ , which contradicts the definition

of a heavy triangle.
As Bt

uw and Bt
vw are empty there must be at least two cross triangles in G supported

by edges in Bt
uv, as otherwise t would be light.

Lemma 8.19. If t is a heavy type-0 triangle, then there is an edge uv ∈ E(t) such that
Bt
ww′ = ∅ for all ww′ ∈ E(t) \ {uv} and the total number of cross triangles supported by

edges in Bt
uv is greater than or equal to three.

Proof. We will first show that at most one of Bt
uu′ for uu′ ∈ E(t) can be non-empty.

Assume for contradictions that there are two sets Bt
uv and Bt

uw which are non-empty.
Then the cross triangles supported by the edges in these two sets fulfill the requirements of
Lemma 8.14. Hence, |Bt

uv|, |Bt
uw|, |Bt

vw| ≤ 1 and the number of cross triangles supported
by E(t) ∪Bt

uv ∪Bt
uw ∪Bt

vw is at most three, contradicting the fact that t is heavy.
Therefore, we know that there is only one edge uv ∈ E(t) such that Bt

uv is non-empty.
As t is heavy Bt

uv must contain edges that support at least three cross triangles as
otherwise t would be light.

8.2.2 Analyzing the Outer-Face f0 (Proof of Lemma 8.9)

In this subsection, we will prove that survive(f0) ≤ µ(f0) − φ(S) + 1. From this we
easily follow that φ(S) − 1 ≤ µ(f0) − survive(f0) = gain(f0). If φ(S) ≤ 3, this bound
can easily be achieved by enumerating all possible compositions of the face boundary of
f0. If φ(S) > 3, the φ(S) term in the bound we want to prove becomes more significant
and hence this case needs special treatment.

In contrast to the other super-faces in F , the number of surviving triangles in f0 also
depends on φ(S). We first give an intuition on how this term influences the number of
surviving triangles in f0 and then use the idea behind it to prove Lemma 8.9. Starting
from G[S], we can construct an auxiliary graph G̃ by modifying the outer-face fS , such
that this part of the graph is fully triangulated using type-0 edges, such that in total
we obtain φ(S) − 2 extra triangles. Also, in this process the structure of the free and
occupied edges of the outer-face (say f̃0) of the subgraph H̃ := G̃ \A (where A is the set
of type-0 edges) of G̃ remains exactly the same as that of the original outer-face f0 of H.
Finally, we use the trivial upper bound given by Lemma 8.38 on the number of triangular
faces embedded inside the outer-face f̃0 in graph G̃, which in turn gives us the −φ(S)
term for the bound on the number of triangular faces embedded inside the outer-face f0

in graph G[S]. Notice that the modified graph G̃ is created only for counting purposes
and the modification does not change the structure of our original graph G in any way.
The following lemma formalizes this idea of triangulating the outer-face.

Lemma 8.20. For the graph G[S] with outer-face fS having φ(S) > 3 free edges, there

exists another simple planar graph G̃ with outer-face f̃S, such that

• The graphs G̃ and G only differ inside the outer-face fS of G[S].

86

8.2. How to Prove our Extremal Bound

• The structure of the outer-face f̃0 of the graph H̃ := G̃ \ A (where A is the
set of type-0 edges) is the same as that of f0, i.e., |Occ(f0)| = |Occ(f̃0)| and
|Free(f0)| = |Free(f̃0)|.

• There are at least φ(S)− 2 extra surviving triangles embedded inside the outer-face
f̃0 in G̃ as compared to the outer-face f0 in G[S].

Proof. To prove this lemma, we will transform G[S] to G̃ by creating at least φ(S)− 2
new surviving triangles in fS by first pre-processing and then triangulating fS using
extra type-0 edges in a specific way.

First we decouple the supported cross triangles embedded inside fS which share their
landing components by adding a dummy landing vertex for each such cross triangle and
making the new dummy vertex its landing component. Notice that the decoupling step
makes the induced graph G[V (fS)] an outer-planar graph, where V (fS) are the vertices
contained in face fS . Also, it does not change the structure of the graph G anywhere else
except inside face fS . Since G[V (fS)] is outer-planar, there exists a vertex u1 ∈ V (fS),
such that the degree of u1 in G[V (fS)] is two. Now we number the vertices in the face
fS in clockwise order as u1, u2, . . . u`S , where u1 is the degree two vertex in G[V (fS)].
Next, we triangulate the outer-face fS by adding a star of type-0 edges with vertex u1 as
the root of it and vertices u3, u4 . . . u`S−1 as the leaves of the star (see Figure 8.8). This

completes the construction of our auxiliary graph G̃. Notice that this operation cannot
create a parallel edge in G̃, implied by the way we fixed u1. Also, the decoupling and
triangulation will maintain the planarity of G̃. Finally, it is easy to see that the occupied
and the free edges of the outer-face f̃0 of graph H̃ are the same as that of the original
outer-face f0, hence the second property is satisfied.

fS f0

u1

~

Figure 8.8: The decoupling and triangulation of the face fS . On the left fS is identical
to the outer face of the drawn graph after deleting all cross edges and the landing
component. On the right f̃0 can be formed by deleting all type-0 and cross edges.

Each of the triangles (u1, u2, u3) and (u`S−1, u`S , u1) could either survive if both the
edges coming from fS are free or not survive if at least one of these edges is occupied.
Any triangle of the form (u1, ui, ui+1) for 2 < i < `S−1 will survive if the (ui, ui+1) edge
is free. Now if both the triangles (u1, u2, u3) and (u`S−1, u`S , u1) do not survive, then at

87

Chapter 8. Computing the Number of Triangular Faces via Local Search

most two out of the φ(S) free edges can be a part of these triangles and hence there will
be at least φ(S)− 2 triangles of the form (u1, ui, ui+1) for 2 < i < `S − 1 which survive.
If one of the triangles (u1, u2, u3) and (u`S−1, u`S , u1) survives, then at most three out
of the φ(S) free edges can be part of these triangles and hence there will be at least
φ(S)− 3 triangles of the form (u1, ui, ui+1) for 2 < i < `S − 1 which survive. Else both
of the (u1, u2, u3) and (u`S−1, u`S , u1) triangles survive, then four out of the φ(S) free
edges will be part of these triangles and hence there will be at least φ(S)− 4 triangles
of the form (u1, ui, ui+1) for 2 < i < `S − 1 which survive. Hence, overall in each case,
φ(S)− 2 triangles survive and the lemma follows.

Note that, |E(f0)| ≥ `S ≥ φ(S) since fS is formed after including all the a0(f) edges
embedded inside f0 in G (see Figure 8.9).

fSf0

Figure 8.9: On the left, the outer face boundary resulting from deleting all type-0 edges
corresponds to the outer super-face f0 of H. On the right, the outer face corresponds to
the outer face fS of G[S].

Now, we are ready to present the proof of Lemma 8.9. We split the analysis into two
cases:

• First, consider the case when |E(f0)| = 3. The worst case then is when φ(S) =
3, which implies |Free(f0)| = 3, |Occ(f0)| = 0 and µ(f0) = 3. In this case,
survive(f0) = 1, which gives the inequality.

Otherwise, when φ(S) ≤ 2, we have survive(f0) = 0 (there would be an occu-
pied edge that supports a cross triangle in f0 which kills it), |Free(f0)| ≤ 2 and
|Occ(f0)| ≥ 1. This gives µ(f0) ≥ 3

2 , and µ(f0)− φ(S) + 1 ≥ 1
2 > survive(f0).

• If |E(f0)| > 3 and φ(S) ≤ 3, then the trivial bounds given by Lemma 8.38 and
8.39 imply the inequality.

From now on we assume that φ(S) > 3. For this case, we use Lemma 8.20 on G[S]
to get the auxiliary graph G̃ with at least φ(S) − 2 extra surviving faces in its
outer-face, totaling to survive(f0) + φ(S)− 2. Now using the trivial bound given
by Lemma 8.38 on the outer-face f̃0 for the corresponding graph H̃, we get

survive(f0) + φ(S)− 2 ≤ survive(f̃0) ≤ µ(f̃0)− 2 ≤ µ(f0)− 2,

which concludes the proof of Lemma 8.9.

88

8.3. Reduction to Heavy Cacti

8.3 Reduction to Heavy Cacti

In this section, we will prove Theorem 8.4. For this, we assume that the bound q(S) ≤
γp− φ(S) holds for some γ ≥ 6 and all S where the cactus subgraph C[S] contains only
heavy triangles. We will show that this bound then also holds for any S that contains
an arbitrary number of light triangles. We will prove this by induction on the number of
light triangles in C[S]. The proof does not require us to use the skeleton-graph H of G,
we will, however, reuse some of the terminology introduced in the previous section. The
base case (when all triangles are heavy) follows from the precondition and the trivial
base case when |S| = 1 is clearly true. Now assume that C[S] contains at least one light
triangle t. Our plan is to apply the induction hypothesis on the subgraphs {G[Stv]}v∈V (t)

since each C[Stv] contains less light triangles than C[S].

Since we now deal with a cactus subgraph that does not only consist of heavy triangles,
we first show the following proposition (whose proof will be presented in Subsection 8.3.2)
about important structural properties of G that come with light triangles.

Proposition 8.21 (Structure of light triangles). If t is a light triangle in C[S], then the
following statements hold:

• If t is a light type-0 triangle and uv ∈ E(t), such that Bt
ww′ = ∅ for all ww′ ∈

E(t) \ {uv}, then the total number of cross triangles supported by edges in Bt
uv is

at most two.

• If t is a light type-1 triangle and the edge uv ∈ E(t) supports the cross triangle
supported by t and Bt

ww′ = ∅ for all ww′ ∈ E(t) \ {uv}, then the total number of
cross triangles supported by edges in Bt

uv is at most one.

• If t is a light triangle where edges in
⋃
uv∈E(t)B

t
uv∪E(t) support either two or three

cross triangles such that at least two different set of edges {uv}∪Bt
uv for uv ∈ E[t]

supports a cross triangle each, then each set of edges {uv} ∪Bt
uv supports at most

one cross triangle and all the supported cross triangles have the same landing
component.

Free and occupied edges: We call the edges in the outer-face fS of G[S] that
contribute to φ(S) free (,i.e., the edges on the outer-face that do not support any cross
triangle of G) and every other edge in fS that is not free is called occupied. Let o(S) be
the total number of occupied edges in fS . It follows that φ(S) = `(S)− o(S).

8.3.1 Inductive proof

We now show how to prove the induction step. Consider a light cactus triangle t ∈ C[S]
with vertices V (t) = {u, v, w}. To upper bound q(S), we break it further into two distinct
terms q′ + q′′:

Definition of q′ and q′′: The term q′ counts all triangles in G[S] that have all
three vertices in the same split-component of t, and the cross triangles in G[S] that are
supported by edges or triangles in G[Stx] for some x ∈ {u, v, w}. As each split-components

89

Chapter 8. Computing the Number of Triangular Faces via Local Search

of t is also a cactus subgraph, by induction we have for G[Stx] for all x ∈ {u, v, w}:
q(Stx) ≤ γp(Stx)− φ(Stx). As q′ is equal to the sum over q(Stx) for all x ∈ {u, v, w} we get

q′ ≤ γ(p− 1)− (φ(Stu) + φ(Stv) + φ(Stw)) = γp− (φ(Stu) + φ(Stv) + φ(Stw))− γ.

The term q′′ counts all remaining triangles in q(S), i.e., the triangles whose vertices
belong to at least two different split-components of t. We will proceed to show that

q′′ ≤ 6 + φ(Stu) + φ(Stv) + φ(Stw)− φ(S).

hence, upper bounding q′ + q′′ by the desired quantity for any γ ≥ 6.
To this end, we again split q′′ into two terms and upper bound their contributions

separately. The first term, q′′1 , is the number of cross triangles supported by the edges in
Bt
uv ∪Bt

uw ∪Bt
vw plus the cross triangles supported by t plus one for t itself. The second

term, q′′2 , is the number of “surviving” triangular faces in G[S] \ (
⋃
x∈V (t)G[Stx]), that

do not have any cross triangles of G embedded inside of it.
Note that by the definition of the light triangles, there are at most three cross triangles

supported by the edges in Bt
uv ∪ Bt

uv ∪ Bt
vw and t itself. Now we consider two cases of

how these cross triangles can be composed, based on the value of q′′1 .

• (There exist at most two cross triangles supported by the edges in Bt
uv ∪ Bt

uv ∪
Bt
vw ∪ E(t)): In this case q′′1 can be at most three, i.e., t itself and the supported

cross triangles. Hence, showing that q′′2 ≤ 3+φ(Stu) + φ(Stv) + φ(Stw)− φ(S), would
complete the proof of the induction step.

• (There exist exactly three cross triangles supported by the edges in Bt
uv ∪ Bt

uv ∪
Bt
vw∪E(t)): In this case q′′1 = 4, i.e., we count t itself and the three supported cross

triangles. Hence, showing that q′′2 ≤ 2 +φ(Stu) + φ(Stv) + φ(Stw)− φ(S) in this case,
will complete the proof of the induction step.

The following lemma (which proof can be found in Subsection 8.3.3) covers both of
these cases in the described way and therefore completes the proof of Theorem 8.4.

Lemma 8.22. For any light triangle t, the number of surviving triangles q′′2 is at most
3+φ(Stu)+φ(Stv)+φ(Stw)−φ(S). Moreover, if there are three cross triangles supported by
the edges in Bt

uv∪Bt
uw∪Bt

vw and t itself, then q′′2 is at most 2+φ(Stu)+φ(Stv)+φ(Stw)−φ(S).

8.3.2 Proof of Proposition 8.21

In this subsection, we will prove the properties stated in Proposition 8.21 about light
triangles. Recall that for a light triangle the edges in E(t) ∪uv∈E(t) B

t
uv support at most

three cross triangles.

Lemma 8.23. If t is a light type-0 triangle with one edge uv ∈ E(t) such that Bt
ww′ = ∅

for all ww′ ∈ E(t) \ {uv}, then the total number of cross triangles supported by edges in
Bt
uv is at most two.

Proof. This simply follows from the definition of heavy triangles. If there where more than
two cross triangle supported by the edges in Bt

uv, then t would be a heavy triangle.

90

8.3. Reduction to Heavy Cacti

Lemma 8.24. If t is a light type-1 triangle where uv supports the cross triangle supported
by t and Bt

ww′ = ∅ for all ww′ ∈ E(t) \ {uv}, then the total number of cross triangles
supported by edges in Bt

uv is at most one.

Proof. This simply follows from the definition of heavy triangles. If there was more than
one cross triangle supported by the edges in Bt

uv, then t would be a heavy triangle.

Lemma 8.25. If t is a light triangle where the edges in
⋃
uv∈E(t)B

t
uv∪E(t) support

either two or three cross triangles such that at least two different sets of edges {uv}∪Bt
uv

for uv ∈ E[t] support a cross triangle each, then each set of edges {uv} ∪Bt
uv supports

at most one cross triangle and all the supported cross triangles have the same landing
component.

Proof. For any pair of cross triangles supported by edges in two different sets in {uv} ∪
Bt
uv for uv ∈ E[t], Lemma 8.14 implies that both cross triangles must have the same

landing component. Since there exists at least one pair of such triangles, by Lemma 8.14
Property (4), the claim of this lemma follows.

8.3.3 Proof of Lemma 8.22

To facilitate the counting arguments that we will use to prove Lemma 8.22, we will be
working with an auxiliary graph G̃ instead of G[S]. Let Γx denote the face boundary (in
particular, the set of edges on the facial walk) of the outer-face of G[Stx] for x ∈ {u, v, w}
and let Γ denote the face boundary of the outer-face of G[S] (so Γ contains exactly all the
outer-edges). Because C[S] is a connected triangular cactus, there cannot be any repeated
edge in these facial walks, hence Γ, Γi’s are circuits; some vertices may occur multiple
times in Γx or Γ. Now we cut open each of the circuits Γ,Γx, for each x ∈ {u, v, w} to
convert them to simple cycles. The idea is to make copies of each vertex contained in
the circuit (the number of copies will be equal to the number of times it appears in the
corresponding circuit) and joining the edges incident to the original vertex to one of the
copies, such that important structures of the original embedding are preserved. We also
make sure that there exists a triangular face corresponding to t containing some copy of
each of the vertices in {u, v, w}. After we cut-opened, Γx, for each x ∈ {u, v, w} will be
an empty cycle in G̃. Notice that the values of φ as well as the types of edges on these
cut-opened cycles are preserved.

Note that the surviving triangles that contribute to q′′2 correspond exactly to the
triangles embedded in the regions of G exterior of Γx for all x ∈ {u, v, w} but in the
interior of Γ. Also, t is embedded inside of Γ. In order to bound q′′2 we construct an

auxiliary graph G̃ as follows. For each x ∈ {u, v, w}, we remove all edges and vertices
embedded in the interior of cycle Γi from G[S]. The resulting graph after such a removal
is our G̃, such that V (G̃) = V (Γ) ∪ V (Γu ∪ Γv ∪ Γw) = V (Γu ∪ Γv ∪ Γw). Any triangle
that contribute to the term q′′2 also exist as triangular faces in G̃, thus we only need to

upper bound f3(G̃).

Claim 8.26. If E(Γ) \ (E(t) ∪ E(Γu ∪ Γv ∪ Γw)) = ∅, then the bound for q′′ holds.

Proof. If the set is empty, then q′′2 = 0 and φ(S) ≤ φ(Stu) + φ(Stv) + φ(Stw) + 3 in gen-
eral. In the three cross triangles case, having no such edge implies that t is a type-

91

Chapter 8. Computing the Number of Triangular Faces via Local Search

3 triangle, because all three cross triangles have to be supported by E(t) and hence
φ(S) = φ(Stu) + φ(Stv) + φ(Stw).

Now we continue with the case where there exists at least on edge in E(Γ) \ (E(t) ∪
E(Γu ∪Γv ∪Γw)). Clearly, G̃ is a subgraph of G[S] and any surviving triangle in G must
be embedded in a region of G̃. To bound the number of surviving triangles corresponding
to q′′2 , we will first identify these regions and then make a region-wise analysis to get the

full bound. For this purpose, we remove any non-cactus edge from G̃ that is embedded
in the interior of Γ and does not belong to one of Γu,Γv or Γw to form another auxiliary
graph G̃′. The faces in the graph G̃′ which are embedded inside the cycle Γ and outside
every cycle Γx (except the triangular face t), will correspond to the regions in G̃ which we
would analyze later. First, we state the following claim which quantifies the structure of
these regions (see Figure 8.10 which illustrates all possible compositions of these regions).
We will give the prof for the claim in a later subsection.

t Γ

Γu

Γv Γw

u v

w

t Γ

Γu

Γv Γw

u v

w

R1 R1

R2

t Γ

Γu

Γv Γw

u v

w

R1

R2R3

Figure 8.10: An illustration of the three possible shapes for k ∈ {1, 2, 3} and the faces
R1, . . . Rk of G̃′.

Claim 8.27. If R1, . . . , Rk (except the triangular face t) are the faces in G̃′ which are
embedded inside Γ and outside every cycle Γx for each x ∈ {u, v, w}, then 1 ≤ k ≤ 3.

92

8.3. Reduction to Heavy Cacti

Moreover, every such face contains exactly one edge of Γ.

Let R1, . . . , Rk (for 1 ≤ k ≤ 3) be the regions in G̃ which are the faces of G̃′ given
by the above claim (see Figure 8.10 for an illustration). We denote by `(Ri)

1 the overall
number of edges and by o(Ri) the number of occupied edges in the boundary of Ri (these
are the edges belonging to some cycle Γx for x ∈ {u, v, w}). In the next step, we will
upper bound the number of surviving triangles that exist in G in each such region Ri.

Observation 8.28. Any face in the graph G̃ which is embedded inside one of the regions
Ri contains vertices from at least two cycles Γx,Γy for x, y ∈ {u, v, w} and x 6= y.

How many surviving triangles can there be in region Ri? Intuitively, if we triangulate
Ri by adding edges in its interior, we would have `(Ri)−2 triangular faces. Among these
faces, o(Ri) of them would not be surviving since the edge bounding the face is occupied.
In certain cases, we would get an advantage and the term would become −3 instead of
−2.

Claim 8.29. The number of surviving triangles embedded inside Ri in G̃ are at most
`(Ri) − o(Ri) − 2. Moreover, if the common landing component L of the three cross
triangles supported by Bt

uv ∪ Bt
vw ∪ Bt

uw ∪ E(t) is embedded inside Ri, then we get the
stronger bound of `(Ri)− o(Ri)− 3.

The proof of this claim relies on a standard triangulation trick used in the context
of planar graphs. We defer the proof to later in Subsection 8.3.5.

Now we are ready to complete the proof of Lemma 8.22. Let 1tS ∈ {0, 1} be the
indicator variable such that 1tS = 1 if we are in the case when there exists exactly three
cross triangles supported by Bt

uv ∪ Bt
vw ∪ Bt

uw ∪ E(t) such that the common landing
component L of these triangles is embedded inside some region Ri, otherwise 1tS = 0.
Using the bounds for each region from Claim 8.29 we can upper bound q′′2 by summing
over the number of surviving triangles in each region.

q′′2 ≤
k∑
i=1

(`(Ri)− o(Ri)− 2)−1tS

≤
k∑
i=1

`(Ri)−
k∑
i=1

o(Ri)− 2k−1tS . (8.4)

Next, we take a closer look at the `(Ri) term in the sum. By Claim 8.27, each region

Ri contains exactly one edge of Γ, and Ri ⊆ Γ∪E(t)∪
(⋃

x∈V (t) Γx

)
. Therefore, we can

decompose the length of face Ri into three parts:

`(Ri) = 1 +
∑

x∈V (t)

|E(Ri) ∩ Γx|+ |E(Ri) ∩ E(t)|.

By plugging this into Equation (8.4) we get,

1Notice that we slightly abuse the notation `(·) here. Before, we use `(S) where S is a subset of cactus
vertices, and now we are using `(R) where R is a cycle bounding a region.

93

Chapter 8. Computing the Number of Triangular Faces via Local Search

q′′2 ≤
k∑
i=1

(1 +
∑

x∈V (t)

|E(Ri) ∩ Γx|+ |E(Ri) ∩ E(t)|])−
k∑
i=1

o(Ri)− 2k−1tS (8.5)

≤
k∑
i=1

(
∑

x∈V (t)

|E(Ri) ∩ Γx|+ |E(Ri) ∩ E(t)|)−
k∑
i=1

o(Ri)− k−1tS . (8.6)

Note that t can not contribute more than its three edges to the boundaries of all k
regions, thus

∑k
i=1 |E(Ri) ∩ E(t)| ≤ 3. Using this in Equation (8.5), we get

q′′2 ≤ 3 +
k∑
i=1

∑
x∈V (t)

|E(Ri) ∩ Γx| −
k∑
i=1

o(Ri)− k−1tS . (8.7)

Claim 8.30.
∑k

i=1

∑
x∈V (t) |E(Ri) ∩ Γx| = `(Stu) + `(Stv) + `(Stw)− `(S) + k

Proof. Notice that the sum on the left-hand-side counts all edges in (
⋃
x∈V (t) Γx) \ Γ

where each edge is counted exactly once, and this contribution is
∑

x∈V (t) `(S
t
x)− `(S).

Additionally, by Claim 8.27, each edge in Γ \ (
⋃
x∈V (t) Γx) is also counted exactly once

as well, and this contribution is +k.

Combining all of this with Inequality (8.7) we get,

q′′2 ≤ 3 + `(Stu) + `(Stv) + `(Stw)− `(S)−
k∑
i=1

o(Ri)−1tS . (8.8)

.
Let otacross(S) be the number of occupied edges among the o(S) occupied edges

belonging to Γ such that they do not belong to any of the Γx for x ∈ {u, v, w}. These edges
are the ones which are embedded across two different cycles Γx,Γy for x, y ∈ {u, v, w} and
x 6= y (potentially some of the edges embedded in double-line style in Figure 8.10). Hence,
otacross(S) captures precisely the number of occupied edges in Γ \ (E(t)∪

⋃
x∈V (t) Γx) for

which the supported cross triangles are embedded in the exterior of Γ. By the way we
define o(Ri), the following equality holds.

k∑
i=1

o(Ri) = o(Stu) + o(Stv) + o(Stw)− (o(S)− otacross(S)). (8.9)

Using this in Inequality (8.8) we get,

q′′2 ≤ 3 + `(Stu) + `(Stv) + `(Stw)− `(S)− (o(Stu) + o(Stv) + o(Stw)− (o(S)

− otacross(S)))− 1tS

≤ 3 + (`(Stu)− o(Stu)) + (`(Stv)− o(Stv)) + (`(Stw)− o(Stw))− (`(S)− o(S))

− otacross(S)− 1tS .

94

8.3. Reduction to Heavy Cacti

Since `(Stx) = φ(Stx) + o(Stx) for every x ∈ {u, v, w}, we get

q′′2 ≤ 3 + φ(Stu) + φ(Stv) + φ(Stw)− φ(S)−otacross(S)−1tS . (8.10)

The general inequality q′′2 ≤ 3 + φ(Stu) + φ(Stv) + φ(Stw)− φ(S) for Lemma 8.22 triv-
ially follows from the above inequality. The following claim will complete the proof.

Claim 8.31. If there are three cross triangles supported by edges in
⋃
uv∈E(t)B

t
uv ∪E(t)

with the common landing component L, then otacross(S) + 1tS ≥ 1.

Proof. There could be two sub-cases: (i) The landing component L is in the exterior of
Γ. In this case, by the definition of otacross(S) ≥ 1, all three edges which support one of
the three cross triangles will contribute to otacross(S) (see Figure 8.11 for illustration);
and (ii) The cross triangles are embedded inside Γ. In this case, we have that 1tS = 1. In
any case, we have otacross(S) + 1tS ≥ 1, thus proving the lemma.

t

u v

w

R1

Γu

Γ

Γw

ΓvR2

R3

Figure 8.11: An example where three cross triangles are embedded in the exterior of
Γ. This can only happen if there exist regions R1, R2 and R3.

8.3.4 Proof of Claim 8.27

By the assumption that there exists at least one edge in E(Γ) \ (E(t)∪E(Γu ∪Γv ∪Γw)).
Let ab := e ∈ E(Γ) \ (E(t) ∪ E(Γu ∪ Γv ∪ Γw)) be one such edge.

To prove the claim, we will show that for any such edge, there exists a unique face
R satisfying the conditions of the claim and it contains at least one edge from E(t). As
each edge of t is also incident to the face bounded by t, this would imply that there can
not be more than three such faces in G̃′ and since there exists the edge e, hence we will
be done.

95

Chapter 8. Computing the Number of Triangular Faces via Local Search

Let a ∈ Γx for some x ∈ {u, v, w}. We will always use the fact that since e ∈ E(Γ),
there are two directions starting from a to traverse the boundary of Γx, such that in one
direction edges of Γx belongs to Γ and in the other they are embedded in the interior of
Γ. Now we split into two possible cases.

• (b ∈ Γy for some y ∈ {u, v, w} such that y 6= x): Since a, x ∈ Γx, there exists a path
Px from a to x containing edges of Γx such that all these edges are embedded in
the interior of Γ (possibly x = a and Px is a zero length path). Similarly there exist
a path Py going from b to y containing edges of Γy such that all these edges are
embedded in the interior of Γ. Hence, the circuit C which includes the edge e, the
edge xy ∈ E(t) and two paths Px and Py, is embedded inside of Γ (except the edge
e which is on the boundary of Γ). Clearly, there cannot be any other edge from
Γ which is embedded inside C, hence any face embedded inside C can contain at
most the edge e from E(Γ) \ (E(t)∪E(Γu ∪ Γv ∪ Γw)). Also, by the way we define
G̃′, there cannot be any other edge inside C embedded across different Γi cycles.
Now if t is embedded outside of C, then C itself is the face R of G̃′ satisfying
our requirements. Otherwise, the whole of Γz for z 6= x and z 6= y, is embedded
inside of C. This means that region inside the circuit C can be decomposed into
the triangular face t, the cycle Γz and another face R whose boundary comprises
of edges xz, zy ∈ E(t), the edge of Γz, the edge e and two paths Px and Py. Hence,
R is the face corresponding to e which we require.

• (b ∈ Γx): Notice that in this case, the circuit comprising of edge e along with a path
Px from a to b containing edges of Γx such that all these edges are embedded in the
interior of Γ, will enclose the triangle t and the other two cycles Γy,Γz such that
y, z ∈ {u, v, w} and x 6= y 6= z 6= x. Similar to the previous case, there cannot be
any other edge from Γ which is embedded inside C, C is embedded in the interior
of Γ (except the edge e which is on the boundary of Γ) and also no other edge is
embedded across different Γi cycles inside of C. Hence, any face embedded inside
C can contain at most the edge e from E(Γ) \ (E(t) ∪ E(Γu ∪ Γv ∪ Γw)). Also, C
can be decomposed into the triangular face t, the cycles Γy,Γz and another face
R whose boundary comprises of edge e, all three edges of t, all the edge of Γy,Γz
and two paths P and P ′ from a to x and x to b containing edges of Γx embedded
inside Γ. Hence, R is the face corresponding to e which we require.

8.3.5 Proof of Claim 8.29

To prove Claim 8.29 we will perform a series of monotone operations within the region
Ri in graph G̃, such that in each operation the number of surviving triangles embedded
within Ri cannot reduce. In the end, we will reach a structure for which the bound holds
trivially. Since the operations here are monotone, the bound which we get also holds for
the original number of surviving triangles embedded within Ri. Notice that we make
these modifications in the auxiliary graph G̃ only for counting purposes and never change
the structure of our graph G.

In the first step, except for the three cross triangles supported by the edges in
Bt
uv ∪Bt

vw ∪Bt
uw ∪E(t), we decouple all the other supported cross triangles embedded

inside Ri which share their landing components by adding a dummy landing vertex for

96

8.3. Reduction to Heavy Cacti

t

Γw

Γv

u v

w

R1

e3

e1e2

Γu

Γ

Figure 8.12: The case when there are three cross triangles embedded in the interior of
Γ. This can only happen if there exists only region R1.

each such cross triangles and making the new dummy vertex its landing component.
Note that the decoupling step allows us to get a full triangulation of Ri in its interior
(except the face containing the common landing component L) and at the same time
does not affect the number of surviving triangles embedded inside Ri in G̃.

After this we triangulate the interior of Ri by adding extra type-0 edges, such that
the endvertex for each additional edge lies in two different Γx and Γy for x 6= y. This
is possible to achieve due to Observation 8.28 and also this operation is monotone and
cannot reduce the number of surviving triangles embedded inside Ri in G̃. Also, all the
faces inside Ri are triangular faces except the one containing L in graph G̃. The way we
triangulate the regions of Ri ensures that the Observation 8.28 continues to hold which
implies that any face in Ri can contain at most one edge from the boundary of Γx for
any x ∈ {u, v, w}. Also, G̃ will remain a simple planar graph since the added type-0 edge
connect vertices from the boundary of two different cycles Γx and Γy for x 6= y. In the
end, we have at most `(Ri)− 2 triangular faces and any occupied edge counted in o(Ri)
(i.e., occupied edges in Ri which belongs to some cycle Γx for x ∈ {u, v, w}) can kill at
most one triangle, hence the claimed upper bound follows in the general case.

Now in the case where we have the three cross triangles supported by the edges
in Bt

uv ∪ Bt
vw ∪ Bt

uw ∪ E(t), we will prove that the face (say f) of Ri inside which the
common landing component L is embedded, contains at least one more edge in addition
to the three edges from Bt

uv ∪Bt
vw ∪Bt

uw ∪E(t) which supports the three cross triangles.
This implies that this face has length at least four and the triangulation of Ri misses
at least two triangular faces. Also, in the worst case, the fourth edge which we consider
here could contribute to the term o(Ri). Hence, overall, we get at least 1 less surviving
triangular face than the previous bound and the claim follows.

97

Chapter 8. Computing the Number of Triangular Faces via Local Search

To prove the claim for face f , first recall that (by Proposition 8.21) the three edges in
Bt
uv ∪Bt

vw ∪Bt
uw ∪E(t) which supports the cross triangles are embedded across different

pair of cycles Γu,Γv,Γw. Let e1 ∈ Bt
vw ∪ vw, e2 ∈ Bt

uw ∪ uw and e3 ∈ Bt
uv ∪ uv be

the three edges supporting the three cross triangles. There is a cycle C comprising of
edges e1, e2, e3 and paths Pu, Pv, Pw joining the two ends of these edge in Γu,Γv,Γw
respectively, such that the triangle t is embedded inside C and the exterior of the Γ is
outside of C. Now since Ri is a bounded region in graph G̃ hence the face f is a bounded
face. Now we show that for f to be a bounded face, its length has to be at least four. In
the corner case when e1 = vw, e2 = uw, e3 = uv, C is precisely the triangular face t and
the edges are e1, e2, e3 are touching f from the outside of t. Hence, for f to be bounded,
there should exist at least one more edge to complete the loop going from Γu to Γv to Γw
and back to to Γu. Otherwise, assume e1 6= vw (other cases are symmetric). Since the
cross triangles supported by e1, e2, e3 share their landing component, and there exists a
cycle C ′ containing only cactus/type-0/type-1/type-2 edges including edges e1, vw and
paths in Γv and Γw connecting the endvertices of e1 and vw, such that the face f should
be embedded outside of C. Now again for f to be bounded, it should contain one more
edge and we are done.

8.4 A Classification Scheme for Factor Seven

In this section, we will present a classification scheme that allows us to prove Theorem 8.11.
For simplicity, from now on we will use q instead of q(S). More precisely, the aim is to
prove the following lemma.

Lemma 8.32. There is a 5-type classification scheme for which

−(
∑
f∈F

gain(f)) ≤ −φ(S) + (2p+
1

2
p1 −

5

2
a1 − 3a2 −

3

2
).

First, we show that Lemma 8.32 is sufficient for proving Theorem 8.11. For this, we
substitute the bound from Lemma 8.32 into Inequality (8.2) to get:

q ≤ (4p+
1

2
p1 +

5

2
a1 + 3a2)− φ(S) + (2p+

1

2
p1 −

5

2
a1 − 3a2 −

3

2
) = 6p+ p1 − φ(S)− 3

2
.

This implies q ≤ 7p− φ(S) as desired. In order to define the classification schemes,
we further classify the edges, vertices, and split-components for any heavy triangle t in
G[S] into several types.

Further classification of cactus vertices, edges and split-components: The
cactus edges of each heavy triangle are further classified into free and base edges as
follows: For any heavy triangle t, with vertices V (t) = {u, v, w}. Let uv ∈ E(t) be an
edge for which Bt

uv 6= ∅. By Proposition 8.5 there is exactly one such edge in E(t). We say
that the edge uv is the base edge and both u and v are called base vertices. We say that
the other two edges in E(t) \ uv are free, and the vertex w is called a free vertex. Both
Stu and Stv are called occupied components and Stw is a free component. See Figure 8.13
for an illustration. The following claim follows from the properties of heavy type-0 and
type-1 triangles shown in Proposition 8.5.

98

8.4. A Classification Scheme for Factor Seven

Claim 8.33. The two free cactus edges of any cactus triangle are part of the same
super-face in F .

Proof. Let vw and uw be the free edges in E(t). Assume for contradiction that there is
a super-face f ∈ F that only contains uw but not vw. Any super-face boundary needs
to contain at least one type-1 or type-2 edge in order to form a cycle. Therefore, a path
along the super-face f , not including the edge uw, from u to w must leave Stw using a
type-1 or type-2 edge, a contradiction to the fact that for a heavy triangle, Bt

vw and Bt
uw

are empty in graph H.

t

Sw

u v

w

Su Sv

t

t t

t

Sw

u v

w

Su Sv

t

t t

Figure 8.13: An illustration on how we classify cactus edges and split-components, based
on a heavy triangle t and the type-1 and type-2 edges going across its split-components.
The split-components Stu, S

t
v are occupied components and Stw is the free component of t.

For a type-1 triangle (left figure), we know that the edge uv must also supports a cross
triangle.

We will upper bound the number of surviving triangles inside any super-face f ∈ F
based on the characteristics of the edges bounding f (see Figure 8.14).

Classification of Edges in the Face Boundaries of H: Edges that bound f are
further partitioned into the following types:

• The two free edges of each cactus triangle. Let pfree0 (f) and pfree1 (f) denote the
total number of type-0 and type-1 triangles respectively whose free edges participate
in f .

• The base edges of the cactus triangles. Let pbase0 (f) and pbase1 (f) denote the total
number of such triangles whose base edges participate in f .

• The type-2 edges. Let a2(f) denote the total number of such edges on f .

• The type-1 edges whose supported cross triangle are embedded inside f . This side
of any type-1 edge is referred to as the occupied side. Let aocc1 (f) denote the total
number of such edges in the boundary of f .

• The type-1 edges whose supported cross triangles are embedded in G in some
region bounded by a super-face other than f . This side of any type-1 edge which

99

Chapter 8. Computing the Number of Triangular Faces via Local Search

does not support a cross triangle is referred to as the free side. We denote the
number of such edges by afree1 (f).

f

p1 (f)
free

p0 (f)
free

a2(f)

a1 (f)
occ

p0 (f)
base

p1 (f)
base

a1 (f)
free

Figure 8.14: An example for the different types of edges in a super-face f ∈ F (to
see the actual region, one has to ignore all cross edges in this graph). For each type we
indicate to which quantity they contribute.

Notice that |F| > 1 since all cactus triangles in G[S] are heavy, hence a1 + a2 ≥ 1.
Since C is a triangular cactus and |F| > 1, the following can be observed.

Observation 8.34. For any super-face f ∈ F , a2(f) + a1(f) ≥ 1.

Let pfree(f) := pfree0 (f) + pfree1 (f), pbase(f) := pbase0 (f) + pbase1 (f) and a1(f) :=

aocc1 (f) + afree1 (f).

Observation 8.35. Any surviving triangular face cannot be incident to any type-2 edge,
the occupied side of a type-1 edge or the base side of a type-1 triangle.

By Observation 8.35 and 8.34, |E(f)| = 2pfree(f) + pbase(f) + a2(f) + a1(f). Also,

|Free(f)| = 2pfree(f) + afree1 (f) + pbase0 (f) and |Occ(f)| = aocc1 (f) + a2(f) + pbase1 (f).

8.4.1 Classification Rules

Now we are ready to define the classification rules for our analysis. Since the bound on
the number of surviving triangles (hence the gain(f) quantity) that can be embedded
inside each super-face heavily depends on the type of edges contained in its face boundary,
we classify each super-face f ∈ F (except the outer-face f0) into three broad categories,
based on the total number of edges that contribute to pbase1 (f) + a2(f) + a1(f). We also
sub-categorize each super-face f ∈ F for which pbase1 (f) + a2(f) + a1(f) = 1 into further

classes, based on whether it contains an afree1 (f) edge or not.

100

8.4. A Classification Scheme for Factor Seven

Classifications of super-faces: A super-face f will be of type-[i, j] if pbase1 (f)+a2(f)+

a1(f) = i and afree1 (f) = j. If there is no restriction on some dimension, then we put a
dot ([•]) there. Following is the precise categorization for the super-faces in F \ {f0}.

• A super-face f is of type-[1, •]), if pbase1 (f) + a2(f) + a1(f) = 1. In addition,

– f is of type-[1, 0] , if afree1 (f) = 0 or

– of type-[1, 1]), if afree1 (f) = 1.

• A super-face f is of type-[2, •], if pbase1 (f) + a2(f) + a1(f) = 2

• A super-face f is of type-[≥ 3, •], if pfree1 (f) + a2(f) + a1(f) ≥ 3

Let the set F [i, j] ⊆ F be the subset of type-[i, j] super-faces in H and analogously let
η[i, j] = |F [i, j]| for each type-[i, j] super-face. Notice that F [1, •] ∪ F [2, •] ∪ F [≥ 3, •] ∪
{f0} = F and F [i, •]∩F [j, •] for any i 6= j, which implies, |F| = 1+η[1, •]+η[2, •]+η[≥
3, •]. Also, F [1, j] ⊆ F [1, •] for any j ∈ {0, 1}, hence, η[1, •] = η[1, 0] + η[1, 1].

The following lemma (whose proof will appear in Subsection 8.4.3) gives lower bounds
on the quantity gain(f) for each type of super-face in F\f0. For f0 we will use Lemma 8.9.

Lemma 8.36. For any super-face f ∈ F , the following holds:

(1) If f is of type-[1, 0]), then gain(f) ≥ 5
2 .

(2) If f is of type-[1, 1]), then gain(f) ≥ 2.

(3) If f is of type-[2, •]), then gain(f) ≥ 2.

(4) If f is of type-[≥ 3, •]), then gain(f) ≥ 3
2 .

Notice that the bounds in Lemma 8.36 for the gain of super-faces of type-[1, 0], type-
[1, 1] and type-[2, •] are better than the trivial bound of 3

2 , which leads to the improvement
from 15

2 to seven.

8.4.2 Proof for Lemma 8.32

We apply Lemma 8.9 and Lemma 8.36 to
∑

f∈F gain(f), depending on the type of each
super-face: In particular, this includes the lower bounds for each super-face of type-[1, 0],
type-[1, 1], type-[2, •], type-[≥ 3] and the outer-face f0.

−(
∑
f

gain(f)) ≤ (1− φ(S))−
∑

f∈F [1,0]

5

2
−

∑
f∈F [1,1]

2−
∑

f∈F [2,•]

2−
∑

f∈F [≥3,•]

3

2

= 1− φ(S)− 5

2
η[1, 0]− 2η[1, 1]− 2η[2, •]− 3

2
η[≥ 3, •].

Here we use the fact that |F| = η[1, •] + η[2, •] + η[3, •] + 1.

−(
∑
f

gain(f)) ≤ 1− φ(S)− 5

2
(|F| − 1) + 1

2η[1, 1] + 1
2η[2, •] + η[≥ 3, •]

= 3.5− φ(S)− 5

2
|F|+ 1

2η[1, 1] + 1
2η[2, •] + η[≥ 3, •] . (8.11)

101

Chapter 8. Computing the Number of Triangular Faces via Local Search

Next, we deal with the “residual terms” highlighted in the formula above by the box.
For this purpose, we present various upper bounds on the number of super-faces of a
certain type:

Lemma 8.37 (Two upper bounds on the number of super-faces). The following upper
bounds hold:

(1) η[1, 1] ≤ a1.

(2) η[2, •] + 2η[≥ 3, •] ≤ p1 + |F| − 2.

Proof. We start by proving the first upper bound. Since afree1 (f) = 1 for a type-[1, 1]

super-face f and each type-1 edge can contribute to afree1 (f) to exactly one super-face
in F , we have that η[1, 1] ≤ a1.

The second upper bound can be proven by a simple charging argument. To each
super-face f ∈ F , we give one unit of money to a certain set of edges on the super-face.
In particular, each of the following types of edges gets a unit: (i) base of the type-1 cactus
triangle, (ii) type-1 edge, and (iii) type-2 edge. Therefore, the total amount of money
put into the system is exactly:∑

f∈F
(pbase1 (f) + a1(f) + a2(f)) = p1 + 2a1 + 2a2 = p1 + 2|F| − 2.

Counting from a different viewpoint, each super-face of type-[j, •] receives at least j
units of money, thus the total amount is at least 1 + η[1, •] + 2η[2, •] + 3η[≥ 3, •] =
|F|+ η[2, •] + 2η[≥ 3, •]. This immediately implies the inequality:

|F|+ η[2, •] + 2η[≥ 3, •] ≤ p1 + 2|F| − 2.

After applying Lemma 8.37 to Inequality (8.11), we get that

−(
∑
f

gain(f)) ≤ 3.5− φ(S)− 5

2
|F|+ 1

2
(a1 + p1 + |F| − 2)

=
5

2
− φ(S)− 2|F| +

1

2
a1 +

1

2
p1. (8.12)

Using equality |F| = a1 + a2 + 1 in Inequality (8.12), we have:

−(
∑
f

gain(f)) ≤ 5

2
− φ(S)− 2a2 −

3

2
a1 − 2 +

1

2
p1

=
1

2
− φ(S) + a1 + a2 −

5

2
a1 − 3a2 +

1

2
p1. (8.13)

And finally by using Lemma 8.10 in Inequality (8.13) we reach:

−(
∑
f

gain(f)) ≤ 1

2
−φ(S)+2p−2−5

2
a1−3a2+

1

2
p1 = −φ(S)+(2p+

1

2
p1−

2

5
a1−3a2−

3

2
).

102

8.4. A Classification Scheme for Factor Seven

8.4.3 Analyzing the Non-Outer-Faces (Proof of Lemma 8.36)

We split the proof of Lemma 8.36 into three parts. First, we show an upper bound for the
number of surviving triangles if a super-face f has |E(f)| > 3 or afree1 (f) + pbase0 (f) > 0.

Then we show that survive(f) ≤ µ(f) − 3
2 , if |E(f)| = 3 and afree1 (f) + pbase0 (f) = 0.

Finally, we combine both results to give the upper bound for the number of surviving
triangles in each type of super-face in F .

Lemma 8.38. Let f ∈ F , if |E(f)| > 3 or afree1 (f) + pbase0 (f) > 0 we have

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 2.

Proof. If |E(f)| = 3 and afree1 (f) + pbase0 (f) ≥ 1, it is easy to enumerate all possible
compositions of the face boundary of f and check for each case that the claimed bound
holds.

• (afree1 (f)+pbase0 (f) = 1:) In this case, survive(f) = 0, |Free(f)| = 1 and |Occ(f)| =
2.

• (afree1 (f) + pbase0 (f) = 2:) In this case, survive(f) = 0, and |Free(f)| = 2.

• (afree1 (f) + pbase0 (f) = 3:) In this case, survive(f) = 1, |Free(f)| = 3, and
|Occ(f)| = 0.

Now consider the case where |E(f)| > 3. To bound survive(f) in this case, we locally
modify the internal structure for a fixed f in a special way. Notice that we make these
modifications only for counting purposes and they do not change the structure of our
graph G in any way. First, we decouple the supported cross triangles embedded inside
f which share their landing components by adding a dummy landing vertex for each
such cross triangle and making the new dummy vertex its landing component. Then
using additional type-0 edges we triangulate the super-face f in an arbitrary way. Note
that the decoupling step allows us to get a full triangulation for f and at the same
time this operation does not reduce the value of survive(f) for f (see Figure 8.15 for
illustration). Hence, any bound which we get after performing this operation also holds
for the original quantity survive(f). This triangulation of the super-face f has exactly
|E(f)| − 2 triangular faces. Starting with this bound, we use the particular structure of
f to achieve the desired bound for survive(f).

By Observation 8.35 no edge of type-2, occupied side of a type-1 edge or base side of
a type-1 triangle can be adjacent to any triangular face in survive(f). Also, at most two
of these edges could belong to any triangular face in f . Hence, out of all the potential

|E(f)| − 2 faces in the triangulate super-face f , at least
⌈
|Occ(f)|

2

⌉
faces will be killed

and hence we get the claimed bound on survive(f).

103

Chapter 8. Computing the Number of Triangular Faces via Local Search

ff

Figure 8.15: The decoupling and triangulation operation for a super-face f ∈ F . Notice
that we make these modifications only for counting purposes and that they maintain the
structure of our original graph G.

For some other cases, we can still get a slightly weaker bound.

Lemma 8.39. Otherwise, if |E(f)| = 3 and afree1 (f) + pbase0 (f) = 0, then we have

survive(f) ≤ µ(f)− 3

2
.

Proof. Notice that |E(f)| = 3 implies pfree(f) = 0. Hence, the first inequality is trivially

true by substituting the value aocc1 (f) + a2(f) + pbase1 (f) = 3 and 2pfree(f) + afree1 (f) +
pbase0 (f) = 0.

Now, we are ready to complete the proof of Lemma 8.36. For any type-[1, 0] super-face
f , |Occ(f)| = 1 and |E(f)| > 3, hence using Lemma 8.38, we get

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 2 = |Free(f)|+ |Occ(f)|

2
− 5

2
= µ(f)− 5

2
.

For any type-[1, 1] or type-[2, •] super-face f we have that |E(f)| > 3, hence by Lemma
8.38, we get

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 2 ≤ |Free(f)|+ |Occ(f)|

2
− 2 = µ(f)− 2.

For any type-[≥ 3, •] super-face f , if |Occ(f)| = |E(f)| = 3, then Lemma 8.39 implies

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 3

2
≤ |Free(f)|+ |Occ(f)|

2
− 3

2
= µ(f)− 3

2
.

Otherwise using Lemma 8.38 we get

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 2 ≤ |Free(f)|+ |Occ(f)|

2
− 2 = µ(f)− 2.

104

8.5. A Classification Scheme for Factor Six

8.5 A Classification Scheme for Factor Six

The classification scheme of the super-faces in H given in Section 8.4 did not take
advantage of the fact yet that C[S] is a 2-swap optimal cactus subgraph of G. We
will show a classification scheme that certifies the factor six bound by extending the
classification scheme of Section 8.4 by super-face types that heavily exploit this fact.
The important observation that leads to a better bound is to derive a better gain for
super-faces of type-[1, •] and type-[2, •] from the previous classification. We notice that,
for a certain sub-class of these super-faces, a better bound can be obtained.

A New Super-face Classification: Now we sub-categorize type-[1, •] and type-[2, •]
super-faces into further classes, based on the values of afree1 (f) and pbase0 (f). A super-face

f will be of type-[i, j, k] if pbase1 (f) + a2(f) + a1(f) = i, afree1 (f) = j and pbase0 (f) = k. If
there is no restriction on a particular dimension, then we put a dot ([•]) there. Following
is the categorization of super-faces which we use.

• type-[1, •, •]: pbase1 (f) + a2(f) + a1(f) = 1.

– type-[1, 0, •]: afree1 (f) = 0.

∗ type-[1, 0, 0]: pbase0 (f) = 0.

∗ type-[1, 0,≥ 1]: pbase0 (f) ≥ 1.

– type-[1, 1, •]: afree1 (f) = 1.

∗ type-[1, 1, 0]: pbase0 (f) = 0.

∗ type-[1, 1,≥ 1]: pbase0 (f) ≥ 1.

• type-[2, •, •]: pbase1 (f) + a2(f) + a1(f) = 2.

– type-[2, 0, •]: afree1 (f) = 0.

∗ type-[2, 0, 0]: pbase0 (f) = 0.

∗ type-[2, 0,≥ 1]: pbase0 (f) ≥ 1.

– type-[2, 1, •]: afree1 (f) = 1.

– type-[2, 2, •]: afree1 (f) = 2.

• type-[≥ 3, •, •]: pbase1 (f) + a2(f) + a1(f) ≥ 3.

Let the subset F [i, j, k] ⊆ F be the set of type-[i, j, k] super-faces and analogously let
η[i, j, k] = |F [i, j, k]|. It is easy to see that the categorization partitions the set F \ {f0},
F [i, j, k] ⊆ F [i, j, •] ⊆ F [i, •, •] for any i, j, k, which implies, |F| = 1+η[1, •, •]+η[2, •, •]+
η[≥ 3, •, •]. Also, η[i, •, •] =

∑
j η[i, j, •] for each i, η[i, j, •] =

∑
k η[i, j, k] for each i, j.

We classify a sub-class of type-[1, 0, 0], type-[1, 1, 0], and type-[2, 0, 0] super-faces that
admits an improved bound via several new notions.

105

Chapter 8. Computing the Number of Triangular Faces via Local Search

Adjacent triangles, edges and friends: Let t1 and t2 be two cactus triangles that
share a vertex. Denote their vertices by V (ti) = {ui, vi, wi}, where v1 = v2 (say v). In
this case, we call them adjacent triangles. Let wi be a free vertex of ti. If there is a way
to embed an edge w1w2 such that the region bounded by (v, w1, w2) is empty, we say
that these triangles are strongly adjacent (see Figure 8.16 for an example).

S S

SS

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

Figure 8.16: An example of two strongly-adjacent triangles in H.

Otherwise, the two triangles are called weakly adjacent (as shown in Figure 8.17.
Furthermore, if t1 and t2 are strongly adjacent in H and w1w2 ∈ E(G[S]), then we say
that t1 and t2 are friends or friendly triangles (as depicted in Figure 8.18.

Observation 8.40. The free sides for any pair of triangles that are strongly-adjacent
or friends are part of the same super-face in F .

S S

SS

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

S S

SS

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

Figure 8.17: Two examples where two triangles in H are weakly-adjacent.

We will crucially rely on the following lemma, whose proof is provided later in
Subsection 8.5.4

Lemma 8.41 (Friend Lemma). The following properties hold:

• No type-1 heavy triangle is friends with any other heavy cactus triangle.

• For any pair of type-0 triangles which are friends, their corresponding base sides
belong to a common super-face in F .

106

8.5. A Classification Scheme for Factor Six

S S

SS

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

Figure 8.18: Two adjacent triangles which are friends in G[S]. In H these two triangles
will be strongly-adjacent.

As Lemma 8.41 states that no type-1 triangle in C[S] is friends with another triangle,
from hereon, whenever we argue about friends, we always refer to a pair of type-0 triangles.

Friendly super-faces: We call a super-face f ∈ F of type-[1, 0, 0], [1, 1, 0] or [2, 0, 0]
a friendly super-face if it contains at least one pair of cactus triangles that are friends.
Let Ffri[1, 0, 0] ⊆ F [1, 0, 0], Ffri[1, 1, 0] ⊆ F [1, 1, 0] and Ffri[2, 0, 0] ⊆ F [2, 0, 0] be
the set of friendly super-faces of type-[1, 0, 0], [1, 1, 0] and [2, 0, 0] respectively. Also, let
ηfri[i, j, k] = |Ffri[i, j, k]|. Let ηfri = ηfri[1, 0, 0] + ηfri[1, 1, 0] + ηfri[2, 0, 0].

The following lemmas (which are proven in later subsections) give us stronger bounds
on survive(f) for super-faces of type-[1, 0, 0], [1, 1, 0] or [2, 0, 0] which are not friendly.

Lemma 8.42. For any type-[1, 0, 0] super-face f ∈ F [1, 0, 0] \ Ffri[1, 0, 0], the following
bound holds for gain(f).

gain(f) ≥ 9

2
.

Lemma 8.43. For any type-[1, 1, 0] super-face f ∈ F [1, 1, 0] \ Ffri[1, 1, 0], the following
bound holds for survive(f).

gain(f) ≥ 4.

Lemma 8.44. For any type-[2, 0, 0] super-face f ∈ F [2, 0, 0] \ Ffri[2, 0, 0], the following
bound holds for survive(f).

gain(f) ≥ 3.

We have successfully identified a set of super-faces for which we obtain an improved
bound. For the remaining super-faces, we will rely on trivial upper bounds.

Lemma 8.45. For any super-face f ∈ F , the respective bounds hold for gain(f)

• type-[1, 0,≥ 1]:

gain(f) ≥ 5

2
.

• (f ∈ Ffri[1, 0, 0]):

gain(f) ≥ 5

2
.

107

Chapter 8. Computing the Number of Triangular Faces via Local Search

• type-[1, 1,≥ 1]:

gain(f) ≥ 2.

• (f ∈ Ffri[1, 1, 0]):

gain(f) ≥ 2.

• type-[2, 0,≥ 1]:

gain(f) ≥ 2.

• (f ∈ Ffri[2, 0, 0]):

gain(f) ≥ 2.

• type-[2, 1, •]:

gain(f) ≥ 5

2
.

• type-[2, 2, •]:
gain(f) ≥ 2.

• type-[≥ 3, •, •]:

gain(f) ≥ 3

2
.

Proof. For any type-[1, 0, •] or type-[2, 1, •] super-face f , |Occ(f)| = 1 and |E(f)| > 3,
hence using Lemma 8.38, we get

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 2 = |Free(f)|+ |Occ(f)|

2
− 5

2
= µ(f)− 5

2
.

For any type-[1, 1, •] or type-[2, 0, •] or type-[2, 2, •] super-face f , |E(f)| > 3, hence using
Lemma 8.38, we get

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 2 ≤ |Free(f)|+ |Occ(f)|

2
− 2 = µ(f)− 2.

For any type-[≥ 3, •, •] super-face f , if |Occ(f)| = |E(f)| = 3, using Lemma 8.39, we get

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 3

2
≤ |Free(f)|+ |Occ(f)|

2
− 3

2
= µ(f)− 3

2
.

Else, using Lemma 8.38, we get

survive(f) ≤ |Free(f)|+
⌊
|Occ(f)|

2

⌋
− 2 ≤ |Free(f)|+ |Occ(f)|

2
− 2 = µ(f)− 2.

108

8.5. A Classification Scheme for Factor Six

8.5.1 Valid Inequalities

We present various upper bounds on the number of super-faces of a certain type. We
denote by Φ the following system of linear inequalities.

Lemma 8.46 (Various upper bounds on the number of super-faces). The following
bounds hold:

• η[2, •, •] + 2η[≥ 3, •, •] ≤ p1 + |F| − 2.

• η[1, 1, •] + η[2, 1, •] + 2η[2, 2, •] ≤ a1.

• ηfri + η[1, 0,≥ 1] + η[1, 1,≥ 1] + η[2, 0,≥ 1] ≤ p0.

Proof. The first bound is derived in the same manner as in Lemma 8.37. The second
bound is also similar. Consider the sum:∑

f∈F [1,1,•]∪F [2,1,•]∪F [2,2,•]

afree1 (f) ≤ a1.

Notice that each super-face of type-[1, 1, •] or type-[2, 1, •] gets the contribution of at
least one, while the other type gets the contribution of two, thus we have that the sum
is at least η[1, 1, •] + η[2, 1, •] + 2η[2, 2, •].

Finally, for the third bound, we give a combinatorial charging argument. First, we
imagine giving one unit of money to each type-0 triangle. Therefore, p0 units of money are
placed into the system. We will argue that we can “transfer” this amount such that each
super-face in Ffri[1, 0, 0]∪Ffri[1, 1, 0]∪Ffri[2, 0, 0]∪F [1, 0,≥ 1]∪F [1, 1,≥ 1]∪F [2, 0,≥ 1]
receives at least one unit of money, hence establishing the desired bound.

• For each face f ∈ Ffri[1, 0, 0]∪Ffri[1, 1, 0]∪Ffri[2, 0, 0], we know that there must
be at least one pair of friends. By Lemma 8.41, no type-1 triangle is friends with
any other heavy cactus triangle. The super-face f receives one unit of money from
each such triangle in the pair, thus we have two units on each such super-face.

• Now consider a super-face f ∈ F [1, 0,≥ 1] ∪ F [1, 1,≥ 1] ∪ F [2, 0,≥ 1]. On such
super-face, there is at least one type-0 triangle, and such cactus triangle would (i)
pay super-face f if it still has the money, or (ii) the “extra” money would be put
in the system to pay f if no cactus triangle in f has money left with it.

In the end, all such super-faces would have at least one or two units of money, thus
the total money in the system is at least 2ηfri + η[1, 0,≥ 1] + η[1, 1,≥ 1] + η[2, 0,≥ 1].
The total payment into the system is at most p0 plus the extra money. There can be at
most ηfri units of extra money spent: Due to Lemma 8.41, i.e. whenever a face contains
a triangle that spent in the first step, it must also contain its pair of friends, thus there
can be at most ηfri such faces that cause an extra spending. This reasoning implies that

2ηfri + η[1, 0,≥ 1] + η[1, 1,≥ 1] + η[2, 0,≥ 1] ≤ p0 + ηfri.

109

Chapter 8. Computing the Number of Triangular Faces via Local Search

Deriving the factor six: Now that we have both the inequalities and the gain bounds,
the following is an easy consequence (e.g. it can be verified by an LP solver). For
completeness, we produce a human-verifiable proof in Subsection 8.5.5.

Lemma 8.47.

q ≤ 4p+
1

2
p1 +

5

2
a1 + 3a2 −

−−→
gain · ~χ ≤ 6p− φ(S).

8.5.2 Gain Analysis for Other Cases

In this subsection, we analyze the gain for various types of super-faces of H where we
get improved bounds over the types used in Section 8.4.

Analyzing Super-Faces of Type F [1, 0, 0] \ Ffri[1, 0, 0] (Proof of Lemma 8.42)

A super-face in this set turns out to behave in a very structured way, i.e., the edges of
the cactus triangles bounding this face look like a “fence”, which is made precise below.

Cactus fence: A cactus fence of size k is a maximal sequence of cactus triangles
(t1, . . . , tk) such that any pair ti and ti+1 are strongly adjacent. Moreover, for each
triangle t, if w ∈ V (t) is a free vertex of t, then Stw is a singleton.

Figure 8.19: A cactus fence structure of size five.

Lemma 8.48 (Fence lemma). Any super-face f ∈ F [1, 0, 0] \ Ffri[1, 0, 0] is bounded by
free sides of a cactus fence together with one edge e that is of type-2.

The proof of this lemma is quite intricate and is deferred to the upcoming Sub-
section 8.5.3. Moreover, from the definition of the set F [1, 0, 0] \ Ffri[1, 0, 0], each
pair of cactus triangles on this face is not a pair of friends. It suffices to show that
survive(f) ≤ |E(f)| − 5: Since |Occ(f)| = 1, this will imply survive(f) ≤ |E(f)| − 5 =
|Free(f)|+|Occ(f)|−5 = |Free(f)|+|Occ(f)|/2− 9

2 = µ(f)− 9
2 which proves Lemma 8.42.

For obtaining the bound on survive(f), we construct an auxiliary graph H ′ on V (f)
by modifying the inside of the super-face f . First, we decouple the supported cross
triangles embedded inside f which share their landing components by adding a dummy
landing vertex for each such cross triangle and making the new dummy vertex its landing
component. Then the inside of f is fully triangulated using additional type-0 edges such
that in total it contains |E(f)| − 2 triangular faces. Notice that, this process cannot
decrease the number of survive(f) triangles embedded inside of f in H ′.

110

8.5. A Classification Scheme for Factor Six

Lemma 8.49. If a super-face f : |E(f)| ≥ 5 contains a single cactus fence structure and
only one additional edge, then any triangulation of f using type-0 edges must contain
the free sides for at least one pair of cactus triangles which are friends.

Proof. The lemma follows easily using the facts that in any triangulation of a polygon
there are at least two triangles each containing two sides of the polygon and no two base
vertices can be joined by an edge inside super-face f as this will create a multi-edge,
hence there should be at least one triangular face containing two adjacent free edges each
belonging a different cactus triangle from a pair of strongly adjacent cactus triangles.

It is clear that |E(f)| ≥ 5, hence by Lemma 8.49, H ′ contains an edge e′ joining
strongly adjacent pair of cactus triangles. Hence, e′ ∈ E(H ′) but not embedded inside f
in G (since G cannot contain any pair of friends), thus H ′ \ e′ still contains all surviving
faces in the original graph and has only |E(f)| − 4 triangular faces inside f . Since the
friends edge e′ goes across the two free vertices of two cactus triangles, but e joins two
base vertices of two cactus triangles, hence they cannot form a triangle together. This
implies at least one more triangular face which is bounded by e, does not survive, which
proves Lemma 8.42.

Analyzing Super-Faces of Type F [1, 1, 0] \ Ffri[1, 1, 0] (Proof of Lemma 8.43)

We can use the same reasoning as in the proof of Lemma 8.42 to prove Lemma 8.43. The
only difference is that a2(f)+a1(f)+pbase1 (f) = 1 and afree1 (f) = 1 implies |Occ(f)| = 0.
We can show survive(f) ≤ |E(f)| − 4 = µ(f) − 4 by simply using the absence of the
edge e′ (from Lemma 8.49), and therefore the missing of two surviving faces from the
triangulation in the interior of the super-face f .

Analyzing Super-Faces of Type F [2, 0, 0] \ Ffri[2, 0, 0] (Proof of Lemma 8.44)

Here it suffice to show that survive(f) ≤ |E(f)| − 4: As |Occ(f)| = 2, this implies that
survive(f) ≤ |E(f)|−4 = |Free(f)|+|Occ(f)|−4 = |Free(f)|+|Occ(f)|/2−3 = µ(f)−3
which proves the lemma.

Similarly, to the proof of Lemma 8.42, let H ′ be the maximal auxiliary graph on
V (f) that contains all edges embedded in the interior of f in G. Then H ′ has |E(f)| − 2
triangular faces inside of f . Since pbase1 (f) + a2(f) + aocc1 (f) = 2, let e1 and e2 be the two
edges bounding f that contribute to this sum. If e1 and e2 bound different faces of H ′,
then we are done since the number of surviving faces of H ′ is at most |E(f)| − 4.

Now, assume that e1 and e2 bound the same face of H ′. We give the proof of the
following lemma in Subsection 8.5.3.

Lemma 8.50 (The second fence lemma). For any super-face f ∈ F [2, 0, 0] \Ffri[2, 0, 0],
if the two edges corresponding to pbase1 (f) + a2(f) + a1(f) are adjacent, then the face
consists of a cactus fence of size pfree(f) together with two edges e1 and e2 that contribute
to the sum pbase1 (f) + a2(f) + a1(f).

Since, both e1 and e2 bound the same triangular face of H ′, they must be adjacent.
Let e be the third edge which bounds the triangular face adjacent to both e1 and e2

embedded inside of f in H ′. Now, consider the graph H̃ = H ′ \ {e1, e2}, thus H̃ consists

111

Chapter 8. Computing the Number of Triangular Faces via Local Search

of a cactus fence together with e. Using Lemma 8.49, H̃ must contain an edge joining a
strongly adjacent pair of cactus triangles. This edge cannot exist in the original graph
since f contains no pair of friends, thus H̃ \ e still contains all surviving faces of the
original graph. But it contains at most |E(f)| − 5 surviving faces.

8.5.3 Proving the Fence Lemmas

In this section, we prove the two fence lemmas used in deriving the gain bounds in the
previous section. An important notion that we will use is that of the trapped triangles.

Trapped and free triangles: We further classify heavy cactus triangles based on
whether their free component is a singleton or not. Let f be a face that contains free
sides of heavy triangle t. If the free component of heavy triangle t is a singleton, then
we call t a free triangle, else it will be a trapped triangle inside f .

The following lemma is a generalization of both Lemma 8.48 and Lemma 8.50, which
we used in the previous subsections.

Lemma 8.51. For any super-face f ∈ F with pbase(f) = 0, if a1(f) + a2(f) = 1 or if
a1(f) + a2(f) = 2 but the two type-1 and type-2 edges are adjacent:

• Then, there can be no triangle trapped inside f and

• Every pair of adjacent triangles is strongly adjacent.

Proof. We argue in two steps. First we show that every triangle is not trapped inside f .
Assume otherwise, that some t : V (t) = {u, v, w} is trapped, and the free component Stw
is not a singleton. Since Stw is a free component, we have that Bt

wu ∪Bt
wv is empty. By

using Observation 8.34 on Stw, there is at least one type-1 or type-2 edge, say e, bounding
the outer-face of the graph H[Stw] and edge e also bounds the face f (see Figure 8.20).

S

t

w

t
w f f

Figure 8.20: The contraction operation when f contains a trapped triangle’s free side.

Now consider the contracted graph that contracts Stw into a single vertex. Let f ′ be
the residual super-face corresponding to f and S′ be the residual component after the
contraction of Stw. Notice that, the graph H[S′] contains only heavy triangles: For any
cactus triangle t′ in H[S′], no type-1 or type-2 edge that contributes to its “heaviness”
was contracted. This implies that the super-face f ′ of H ′[S′] contains at least one type-1
or type-2 edge, say e′ (by Observation 8.34). It is easy to verify that e and e′ are not
adjacent.

112

8.5. A Classification Scheme for Factor Six

Next we prove the second property. Let t1 and t2 be an adjacent pair of triangles
whose free sides bound the super-face f . We will argue that t1 : V (t1) = {u1, v1, w1}
and t2 : V (t2) = {u2, v2, w2} are strongly adjacent, with wi being the free vertex of ti
and v1 = v2 being the common vertex. Assume that they were not strongly adjacent.
Notice that, since the free sides for both t1 and t2 bound a common super-face f , this
can only happen if St1v1 has a connected component S′ : S′ ⊆ St1v1 ∩ S

t2
v2 embedded inside

f (see Figure 8.21). Observe that C[S′] contains only heavy cactus triangles: Any type-1
or type-2 edge with exactly one endvertex in S′ can only be incident to v1 and must be
embedded in the exterior of f . Again, as in the previous case, we can do the contraction
trick to argue that there exist two type-1 or type-2 edges e and e′ bounding face f such
that e 6= e′ and they are not adjacent.

t2t1

f

t2t1

f

Figure 8.21: The contraction operation when f contains a pair of free sides which
corresponds to a pair of weakly-adjacent triangles.

8.5.4 Proof of the Friend Lemma (Proof of Lemma 8.41)

We now present the proof of Lemma 8.41. We will rely on the three following structural
observations.

Lemma 8.52. Let f ∈ F and t = (u, v, w) be any heavy cactus triangle such that
E(t)∩E(f) 6= ∅, and uv ∈ E(t) be its (unique) cactus edge for which Bt

uv 6= ∅. Then, we
have |E(f) ∩Bt

uv| = 1.

Proof. Let P2 be a maximal trail along the boundary of f starting from u and only
visiting vertices in Stu in graph H. Notice that P2 may use cactus edges or type-1 or
type-2 edges. Let u2 be the other endvertex of P2 and u2u3 be the next edge on the
boundary of f , such that u3 ∈ Stv ∪ Stw. First, notice that u3 cannot be in Swt , for
otherwise, we would have the free sides of t on different super-faces. Therefore, u3 ∈ Stv .
Now, let P3 be a maximal trail from u3 along the boundary of f , visiting only vertices in
Stv. We claim that P3 must contain v: Otherwise, let v′ be the last vertex on P3 and e′ be
the next edge on f incident to v′. Consider a region R bounded by (i) the sides of t on
super-face f ,(ii) trail P2u3P3,and (iii) any path from v′ to v using only cactus edges in
Stv. This close region must contain super-face f , thus e′ must be embedded inside R (see
Figure 8.22). This is a contradiction since e′ cannot connect v′ to a vertex in Stw (same
reasoning as before), and similarly it cannot connect v′ to Stu (this would contradict the
choice of u2 or the edge u2u3).

113

Chapter 8. Computing the Number of Triangular Faces via Local Search

t

Sw

u

w

Su Sv

t

t t

v

t

Sw

u

w

Su Sv

t

t t

v

u2 u3

u2 u3

Figure 8.22: An illustration of the regions containing the free sides or base sides of a
heavy triangle t in the proof of Lemma 8.52.

Observation 8.53. For any heavy triangle t, the free and the base edges will be adjacent
to two different super-faces in F .

Let t be a heavy triangle. Let f, f ′ ∈ F be the two different super-faces from Obser-
vation 8.53, that contain the base and free edges of t respectively. Then we can show the
following.

Lemma 8.54. Let e, e′ be the unique type-1 or type-2 edges on f and f ′ across the
occupied components of t (which must exist by Lemma 8.52). Then e 6= e′.

Proof. Assume otherwise that e = e′, thus the super-faces f and f ′ are adjacent at e.
This means that there is only one type-1 or type-2 edge across the occupied components,
contradicting the fact that t is heavy (see Figure 8.23 for an illustration).

t

Sw

u

w

Su Sv

t

t t

v

t

Sw

u

w

Su Sv

t

t t

v

e

e
e

e

Figure 8.23: Two possible compositions of super-faces containing the free and base
edges of a heavy triangle t.

Components for two adjacent heavy triangles: Now we fix the labeling for the
new components created by the operation of removing edges for two adjacent heavy
triangles from C[S], which we will use in the rest of this section. Every time when

114

8.5. A Classification Scheme for Factor Six

we argue about two adjacent heavy triangles we will denote them by t1 and t2 such
that V (t1) = {u1, v1 = v, w1} and V (t2) = {u2, v2 = v, w2}, where w1, w2 will be the
corresponding free vertices and v the common base vertex of t1 and t2. The vertices
of the new components formed by removing edges E(t1) ∪ E(t2) from C[S] will be
St1w1

, St2w2
, St1u1 , S

t2
u2 , Sv, such that w1 ∈ St1w1

, w2 ∈ St2w2
, u1 ∈ St1u1 , u2 ∈ St2u2 and v ∈ Sv.

Notice that the free components of t1 and t2 are St1w1
, St2w2

respectively, the occupied
components of t1 are St1u1 , S

t1
v1 = Sv ∪ St2w2

∪ St2u2 and the occupied components of t2 are
St2u2 , S

t2
v2 = Sv ∪ St1w1

∪ St1u1 .

Lemma 8.55. Let f ∈ F be a super-face. Let t1, t2 : V (ti) = (ui, vi, wi) be two adjacent
heavy cactus triangles with V (t1) ∩ V (t2) = v1 = v2 (say v) such that E(ti) ∩ E(f) 6= ∅
for i ∈ {1, 2}. For each i, let uivi ∈ E(ti) be the base edge and Bti

uivi ∩ E(f) = {ei}
(unique due to lemma 8.52).

(1) e1 = e2 := e if and only if the common edge e goes across St1u1 and St2u2.

(2) e1 6= e2 if and only if both e1, e2 are incident to Sv.

Proof. The first direction for item (1) is easy to see by the way St1u1 , S
t2
u2 are defined and

by the fact that e goes across the occupied components for both t1 and t2. In the other
direction, if e1 goes across St1u1 , S

t2
u2 , hence it also goes across the occupied components

St2u2 , S
t2
v2 for t2. This along with the fact that e1 belongs to f and Lemma 8.52, it implies

that e2 = e1.
One direction for item (2) follows from the negation of item (1) because if any one

of e1 or e2 goes across St1u1 , S
t2
u2 , then it implies e1 = e2. On the other hand, if one of e1

or e2 is incident to Sv, then they cannot be same by item (1).

S S

S
Sv

S

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

Figure 8.24: The structure of split-components formed by removing two adjacent
triangles.

Let f ∈ F be a super-face. Let t1, t2 : V (ti) = (ui, vi, wi) be two adjacent heavy
cactus triangles with v1 = v2 (say v) such that both of whose free sides belong to f .
Then we can show the following.

Lemma 8.56. If the base sides for t1 and t2 belong to two different super-faces f1, f2 ∈ F
and for each i, let Bti

uivi ∩ E(fi) = {ei} (unique due to lemma 8.54). Then at least one
of e1 or e2 is incident to some vertex in Sv, which in turn implies e1 6= e2.

115

Chapter 8. Computing the Number of Triangular Faces via Local Search

Proof. As t1 and t2 are adjacent, we use the notations defined above for the various
components corresponding to two adjacent heavy triangles. First, assuming that at least
one of e1 or e2 is incident to some vertex in Sv, we prove that e1 6= e2.

By contradiction, let e1 = e2 := u′v′. Now we show that there will be a cycle in
C[S] sharing an edge with t1, contradicting the fact that C is a triangular cactus (see
Figure 8.25). By the above claim, this edge is incident to Sv (say v′ ∈ Sv). Also, by the
way e1 and e2 are defined, the other endvertex u′ belongs to both St1u1 and St2u2 . Hence,
in C[S] \ (E[t1] ∪ E[t2]), using only cactus edge, there is a path P1 from u′ to u1 and
another path P2 from u′ to u2. Hence, u′P1u1 ∪ u1v ∪ vu2 ∪ u2P2u

′ is a cycle in C[S]
sharing edge u1v with t1, contradicting the fact that C is a triangular cactus.

S S

S
Sv

S

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

v

u

Figure 8.25: An illustration of the argument used to reach a contradiction in the proof
of Lemma 8.56. There exists a cycle in C[S] sharing the edge u1v with t1, if we assume
e1 = e2 := u′v′.

Finally, we prove that at least one of e1 or e2 is incident to some vertex in Sv. For
contradiction assume none of e1, e2 are incident to Sv. Notice that since free sides of t1
and t2 belong to the same super-face f , we can partition the component Sv into two parts
S′v, S

′′
v (with an exception that v is a common vertex), such that S′v is embedded inside

f , S′′v outside of f and v lies on f . Starting with vertex u1 and the base side u1v create a
maximal trail P1 in H along the boundary of f1 by visiting type-1, type-2 or cactus edges
and vertices only from S′′v . This trail should end at some vertex v′ ∈ Sv (possibly v), such
that there is a type-1 or type-2 edge leaving S′′v incident to v′ (say v′u′). If not, then the
trail would end at v and the base side vu2 will be the next edge belonging to super-face
f1 in the graph H, which contradicts our assumption. Notice that since St1w1

, St2w2
are the

free components, hence either u′ ∈ St1u1 or u′ ∈ St2u2 . In case when u′ ∈ St1u1 , it implies
that v′u′ is an edge going across the components of t1 and also belongs to f1. But by
Lemma 8.52, it implies that e1 = u′v′, contradicting our assumption (see Figure 8.26).

In the other case, when u′ ∈ St2u2 , we look at the original graph H. Since both
v′, v ∈ S′′v , there exists a path Pv from v′ to v using only cactus edges and vertices from
S′′v . Similarly, since u′, u2 ∈ St2u2 , there exists a path Pu′ from u′ to u2 using only cactus

116

8.5. A Classification Scheme for Factor Six

edges and vertices from St2u2 . Hence, the region R bounded by v′Pvv∪vu1∪u2Pu′u
′∪u′v′

contains only the vertices from S′′v ∪St2u2 at its boundary and also contains the base edge
vu2 from the side outside of f . This implies that the super-face f2 can only be embedded
inside R and can only contain vertices from S′′v ∪ St2u2 and hence for e2 to go across the
occupied components of t2, the only possibility is to go across S′′v and St2u2 , contradicting
our assumption (see Figure 8.26).

S S

S
Sv

S

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

e1

e2

S S

S
Sv

S

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

e1 e2

S S

S
Sv

S

t1 t2

w1

u1

w2

u2

v

t1

t1

t2

t2
u2

w2w1

u1

e1

e2

Figure 8.26: The possible embeddings when two adjacent heavy cactus triangles t1 and
t2 are such that their base sides belong to two different super-faces f1, f2 ∈ F . Here, e1

and e2 are the corresponding edges for t1 and t2 given by Lemma 8.52.

Using the presented structural properties, we are now able to prove the first property
of Lemma 8.41.

Claim 8.57. No type-1 heavy triangle is friends with any other heavy cactus triangle.

Proof. We assume for contradiction that t1 and t2 are friends where t2 is a type-1 triangle.
We will argue that there exists an improving 2-swap, contradicting the fact that C is the
optimal cactus. As t1 and t2 are adjacent, we use the notations defined above for the
various components corresponding to two adjacent heavy triangles.

117

Chapter 8. Computing the Number of Triangular Faces via Local Search

Let t′ be the supported cross triangle of t2 and let t3 be the empty triangle formed by
vertices {w1, w2, v}. Also let e1, e2 (possibly same) be the type-1 or type-2 edges belonging
to the super-face f going across the occupied components of t1 and t2 respectively (exists
by Lemma 8.52). Also, let e′2 be the edge going across the occupied components of t2
which belongs to the super-face f2 containing the base side for t2 (exists by Lemma 8.52).
By Lemma 8.54, e2 6= e′2.

Now there could be two cases based on the landing components for supported cross
triangles t′, t′1. The second case will be further divided into sub-cases based on the way
e1 is embedded in φH .

• (e1 is a type-1 edge and different landing components for supported cross triangles
t′1, t

′): We modify our cactus by C′ = (C[S] \ (E(t1)∪E(t2)))∪E(t′)∪E(t′1)∪E(t3)
(see Figure 8.27). Note that t′ will attach St22 to Sv, t3 will attach Sv with St1w1

and
St2w2

and finally t′1 will attach St1u1 to this structure, hence C′ will be a triangular
cactus with one more cactus triangle, which contradicts the optimality of C.

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

t

t 1

S
Sv

S

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

t

t 1

Figure 8.27: There exists a 2-swap, if e1 given by Lemma 8.52 is a type-1 edge and the
cross triangles supported by e1 and t2 have different landing components.

• (e1 is a type-1 edge and t′1, t
′ share a common landing component): Since e1 is

the unique edge belonging to f going across the occupied components of t1 (see
Lemma 8.52), there could be two sub-cases.

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

t3

t

e2

e1

Figure 8.28: The case when e1 given by Lemma 8.52 is a type-1 edge and the cross
triangles supported by e1 and t2 have the same landing component.

118

8.5. A Classification Scheme for Factor Six

– (e1 goes across St1u1 , S
t2
u2): From Lemma 8.55 it implies that e1 = e2 =: e. Now

if we focus on t2, the base side of it must belong to a super-face f2 such that
e′2 goes across its occupied components such that f 6= f2 and e′2 6= e (by
Observation 8.53, Lemma 8.52 and 8.54). Also, by the uniqueness of the edge
e′2, the edge e cannot belong to f2. But this implies that t′ is embedded inside
f2 and t′1 is embedded outside it, hence by Observation 8.3 t′1, t

′ cannot share
their landing components, contradiction.

– (e1 goes across St1u1 , Sv): By Lemma 8.55, it implies e2 6= e1 and both e1, e2

are incident to Sv. Now let u′v′ := e2 such that u′ ∈ St2u2 and v′ ∈ Sv. Since
both v′, v ∈ Sv, there exists a path Pv′ from v′ to v using only cactus edges
and vertices from Sv. Similarly, since u′, u2 ∈ St2u2 , there exists a path Pu′

from u′ to u2 using only cactus edges and vertices from St2u2 . Hence, the
region R bounded by v′Pv′v ∪ vu2 ∪ u2Pu′u

′ ∪ u′v′ contains only the vertices
from Sv ∪ St2u2 at its boundary and also contains the base edge vu2 (see
Figure 8.29). This implies that the super-face f2 can only be embedded inside
R and consecutively the triangle t′ is embedded inside R. This implies that e1

should be embedded outside R and consecutively t′1 is embedded outside R,
hence by Observation 8.3, t′1 and t′ cannot share their landing components,
contradiction.

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

t

e2

v
u

Figure 8.29: The setting before we reach a contradiction in the proof of Claim 8.57 for
the case when e1 given by Lemma 8.52 is a type-1 edge and the cross triangles supported
by e1 and t2 have the same landing component.

We conclude the proof of Lemma 8.41 by showing that the second property holds.

Claim 8.58. For any pair of type-0 triangles which are friends, their corresponding base
sides belong to a common super-face in F .

Proof. For contradiction we assume that t1 and t2 are friends. Again t1 and t2 are adja-
cent, hence we use the notations defined above for the various components corresponding
to two adjacent heavy triangles. Let t3 be the triangle formed by vertices {w1, w2, v}.
Also let e1 be the unique type-1 or type-2 edge belonging to the super-face f1 containing

119

Chapter 8. Computing the Number of Triangular Faces via Local Search

base side of t1 going across occupied components of t1 (exists by Lemma 8.52) and e2 be
the unique type-1 or type-2 edge belonging to the super-face f2 containing base side of
t2 going across occupied components of t2 (exists by Lemma 8.52). Let e′1, e

′
2 (possibly

same) be the unique type-1 or type-2 edges belonging to the super-face f going across
occupied components of t1 and t2 respectively (exists by Lemma 8.52 and the fact that
f contains free sides for both t1 and t2). By Lemma 8.54 and 8.56, e1 6= e2, e1 6= e′1 and
e2 6= e′2.

Now we fix the cross triangles t′1, t
′
2, t
′′
1 each supported by e1, e2, e

′
1 respectively, as

follows. The idea here is to fix these supported cross triangles in such a way that their
landing components are as different as possible. If e′1 supports a cross triangle embedded
inside f , then we fix t′′1 to be that triangle, otherwise t′′1 is any supported cross triangle
of e′1. If there exists a cross triangle supported by e1 which does not share its landing
component with t′′1 then we fix t′1 to be that triangle, otherwise t′1 is any supported cross
triangle of e1. Similarly, we choose the supported cross triangle t′2 of e2 such that it
does not share its landing component with any of t′′1 or t′1 (or both), otherwise t′2 is any
supported cross triangle of e2.

By the way t′1, t
′
2, t
′′
1 are chosen, it ensures that all three of them can share a landing

component if and only if all three e1, e2, e
′
1 are type-1 edges (by Lemma 8.13). Now there

could be three cases.

• (t′1, t
′
2 have different landing components): Since the base sides of t1 and t2 are in

different super-faces, Lemma 8.56) implies that at least one of e1, e2 is incident
to Sv (by renaming assume e1). Hence, if the triangles t′1, t

′
2 do not share their

landing components then we modify our cactus by C′ = (C[S] \ (E(t1) ∪E(t2))) ∪
E(t′1) ∪E(t′2) ∪E(t3) (See Figure 8.30). Note that t′1 will attach St1u1 to Sv, t3 will
attach Sv with St1w1

and St2w2
and finally t′2 will attach St2u2 to this structure, hence

C′ will be a triangular cactus with one more cactus triangle, which contradicts the
optimality of C.

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

t2

t 1

t1

e1 e2 S
Sv

S

w1

u1

w2

u2
v

t1 t2
u2

u1

t3

t2t1

e1 e2

Figure 8.30: A improving 2-swap, if there exist two cross triangles t′1, t
′
2 supported by

e1, e2 (as assumed to exist for the first case of the proof of Claim 8.58), respectively, such
that their landing components are different.

• (t′′1 has a different landing component than the common landing component for
t′1, t

′
2): In this case we know that t′1, t

′
2 share their landing components but the

landing component for t′′1 is different. Again, since the base sides of t1 and t2 are
in different super-faces, Lemma 8.56) implies that at least one of e1, e2 is incident
to Sv. Now there are two sub-cases:

120

8.5. A Classification Scheme for Factor Six

– (e2 incident to Sv): In this case, we modify our cactus by C′ = (C[S]\ (E(t1)∪
E(t2)))∪E(t′2)∪E(t′′1)∪E(t3) (See Figure 8.31). Again t′2 will attach Sv with
St2u2 , t3 will attach Sv with St1w1

and St2w2
and finally t′′1 will attach St1u1 to this

structure, hence C′ will be a triangular cactus with one more cactus triangle,
which contradicts the optimality of C.

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

t2

t 1

t1

e1 e2 S
Sv

S

w1 w2

v
t1 t2

u2
u1

e1

t3

t 1

t2

e2

Figure 8.31: An improving 2-swap, if there exists two cross triangles t′2, t
′′
1 supported

by e2, e
′
1 (as assumed to exist for the second case of the proof of Claim 8.58), respectively,

such that their landing components are different and e2 incident to Sv.

– (Only e1 incident to Sv): In this case e2 goes across St1u1 , S
t2
u2 .

∗ (e′1 incident to Sv): The modification C′ = (C[S] \ (E(t1) ∪ E(t2))) ∪
E(t′2) ∪ E(t′′1) ∪ E(t3) gives us the contradiction since t′1 will attach St1u1
to Sv, t3 will attach Sv with St1w1

and St2w2
and finally t′2 will attach St2u2 to

this structure, hence C′ will be a triangular cactus with one more cactus
triangle, which contradicts the optimality of C.
∗ (e′1 goes across St1u1 , S

t2
u2): The modification C′ = (C[S] \ (E(t1)∪E(t2)))∪

E(t′1) ∪ E(t′′1) ∪ E(t3) (see Figure 8.32) gives us the contradiction since
t′1 will attach St1u1 to Sv, t3 will attach Sv with St1w1

and St2w2
and finally

t′′1 will attach St2u2 to this structure, hence C ′ will be a triangular cactus
with one more cactus triangle, which contradicts the optimality of C.

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

t 1

t1

e1

e2

t2

S
Sv

S

w1 w2

v
t1

t2
u2

u1

e1

t3

t 1

t1

e1

Figure 8.32: An improving 2-swap, if there exists two cross triangles t′2, t
′′
1 supported

by e2, e
′
1 (as assumed to exist for the second case of the proof of Claim 8.58), respectively,

such that their landing components are different and e′1 goes across St1u1 , S
t2
u2 .

121

Chapter 8. Computing the Number of Triangular Faces via Local Search

• (All three triangles t′1, t
′
2, t
′′
1 share their landing components): In this case, all three

e1, e2, e
′
1 are type-1 edges. Also by Lemma 8.56, at least one of e1, e2 will be incident

to Sv. And since St1w1
, St2w1

are free components, none of the three edges e1, e2, e
′
1

can be incident to St1w1
, St2w1

. Based on these facts, there could be two sub-cases:

– (Exactly one of e1 or e2 is incident to Sv): We will argue that this case cannot
occur, by showing that there is no way for t′′1 to share the same landing
component with t′1, t

′
2. Since t1 and t2 are friends, all the vertices of Sv (except

v) are embedded outside t3. This also implies that there is a trail P starting
from vertex u1, using all the cactus/type-1/type-2 edges on the outer-face
for H[Sv] and finally reaching u2, such that the only repeated vertex in the
trail is v. Since exactly one of e1 or e2 is incident to Sv, this implies that the
other one goes across St1u1 , S

t2
u2 (say u′v′) such that u′ ∈ St1u1 and v′ ∈ St2u2 . This

means that there exists a circuit C comprising of only cactus/type-1/type-2
edges formed by concatenating the trail P , the path Pu′ between u′ and u1

using cactus edges/vertices only from St1u1 , the path Pv′ between v′ and u2

using cactus edges/vertices only from St2u2 and the type-1 or type-2 edge u′v′.
It is easy to see that this circuit partitions the plane into two regions, say
R1, R2, such that all the vertices of Sv are embedded inside R1 as a hole and
the free sides for t1 and t2 are embedded in R2 such that the only vertex
from Sv on the boundary for these regions is v. Also, the presence of the
edge w1w2 does not allow the vertex v to be a part of any type-1 or type-2
edge embedded inside R2. This implies that the edge out of e1, e2 which is
incident to Sv will be embedded inside R1 and e′1 will be embedded outside
R2, which contradicts the fact that all three supported cross triangles t′1, t

′
2, t
′′
1

share their landing component.

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

t 1

t1

e1

e2

t2

u v

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

t 1

t1

e1

e2

t2
u v

Figure 8.33: The setting before we reach a contradiction in the proof of Claim 8.58, if all
three edges e1, e2, e

′
1 are type-1 and the landing component for the respective supported

cross triangles t′1, t
′
2, t
′′
1 is the same.

– (Both e1 and e2 are incident to Sv): Now we focus on t1, which is a heavy type-
0 triangle and look at the type-1 or type-2 edges going across t1’s occupied
components. The two type-1 edges e1 and e′1 are surely going across the
occupied components of t1. By Proposition 8.5, t1 should have at least one

122

8.5. A Classification Scheme for Factor Six

more such type-1 or type-2 edge (say e′′1 := u′v′). Now let u′ ∈ St1u1 and v′ ∈ St1v1 .
This means that there is a path Pu′ from u′ to u1 in C[S] and another path Pv′

from v′ to v1 = v in C[S] such that the cycle C1 := u′Pu′u1∪u1v∪vPv′v′∪u′v′
is made of only cactus/type-1/type-2 edges and cactus vertices such that it
divided the plane into two regions such that one region contains the base side
of t1 and another contains the free side for t1. Since, e1, e

′
1 see the base and

free sides for t1 respectively, hence they have to be embedded in the different
region bounded by C1. Hence, the cross triangles t′1, t

′′
1 supported by e1, e

′
1

cannot share their landing components, which is a contradiction.

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

e1 e2

u
v

e1

S
Sv

S

t1 t2

w1

u1

w2

u2
v

t1
t2
u2

u1

e1

t3

e1 e2

u v

e1

Figure 8.34: The setting before we reach a contradiction in the proof of Claim 8.58, if
the edges e1, e2, e

′
1 are type-1 and the landing component for the respective supported

cross triangles t′1, t
′
2, t
′′
1 is the same. Also, both e1 and e2 are incident to Sv.

8.5.5 Proof of Lemma 8.47

Below, we analyze the contribution from non outer-faces.

Coordinates Value

~χ[1] |F [1, 0, 0] \ Ffri[1, 0, 0]|
~χ[2] |Ffri[1, 0, 0]|
~χ[3] |F [1, 0,≥ 1]|
~χ[4] |F [1, 1, 0] \ Ffri[1, 1, 0]|
~χ[5] |Ffri[1, 1, 0]|
~χ[6] |F [1, 1,≥ 1]|
~χ[7] |F [2, 0, 0] \ Ffri[2, 0, 0]|
~χ[8] |Ffri[2, 0, 0]|
~χ[9] |F [2, 0,≥ 1]|
~χ[10] |F [2, 1, •]|
~χ[11] |F [2, 2, •]|
~χ[12] |F [≥ 3, •, •]|

Table 8.1: Definition of characteristic vector of F

123

Chapter 8. Computing the Number of Triangular Faces via Local Search

This is simply an algebraic manipulation. First, we write

−−→
gain · ~χ ≥ 9

2
(1T ~χ)− (0, 2, 2,

1

2
,
5

2
,
5

2
,
3

2
,
5

2
,
5

2
, 2,

5

2
, 3)T ~χ.

We will gradually decompose the vector

(0, 2, 2,
1

2
,
5

2
,
5

2
,
3

2
,
5

2
,
5

2
, 2,

5

2
, 3)T ~χ.

into several meaningful terms that we could upper bound. First, we focus on the coordi-
nates that correspond to the ηfri (highlighted in blue):

(0, 2, 2,
1

2
,
5

2
,
5

2
,
3

2
,
5

2
,
5

2
, 2,

5

2
, 3)T ~χ = 2ηfri + (0, 0, 2,

1

2
,
1

2
,
5

2
,
3

2
,
1

2
,
5

2
, 2,

5

2
, 3)T ~χ,

where we simply applied the fact that ηfri[1, 0, 0] + ηfri[1, 1, 0] + ηfri[2, 0, 0] = ηfri. Next,
we focus on the components of η[2, •, •] and η[3, •, •] (shown in red).

(0, 0, 2,
1

2
,
1

2
,
5

2
,
3

2
,
1

2
,
5

2
, 2,

5

2
, 3)T ~χ ≤ 3

2(p1 + |F| − 2)

+ (0, 0, 2,
1

2
,
1

2
,
5

2
, 0,−1, 1,

1

2
, 1, 0)T ~χ,

where we applied the upper bound from Lemma 8.46 (first bound). We further extract
the “components” of η[1, 1, 0], η[2, 1, •] and η[2, 2, •]:

(0, 0, 2,
1

2
,
1

2
,
5

2
, 0,−1, 1,

1

2
, 1, 0)T ~χ =

1

2
(η[1, 1, 0] + η[2, 1, •] + 2η[2, 2, •])

+ (0, 0, 2, 0, 0, 2, 0,−1, 1, 0, 0, 0)T ~χ

≤ 1
2a1 + (0, 0, 2, 0, 0, 2, 0,−1, 1, 0, 0, 0)T ~χ

the inequality was obtained by applying Lemma 8.46 (second bound). Now, we extract the
components of η[1, 1,≥ 1], η[2, 0,≥ 1] and η[1, 0,≥ 1] (the 3rd, 6th, and 9th coordinates
respectively).

(0, 0, 2, 0, 0, 2, 0,−1, 1, 0, 0, 0)T ~χ = 2(η[1, 0,≥ 1] + η[1, 1,≥ 1] + η[2, 0,≥ 1])

+ (0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0)T ~χ

≤ 2(p0 − ηfri) + (0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0)T ~χ

≤ 2(p0 − ηfri) .

Here we applied the third bound of Lemma 8.46, and the fact that all coordinates of
vector ~χ are non-negative. Finally, by summing over all terms in the boxes, we get the
upper bound of

2ηfri +
3

2
(p1 + |F| − 2) +

1

2
a1 + 2(p0 − ηfri) = 2p− 1

2
p1 + 2a1 +

3

2
a2 −

3

2
.

124

8.5. A Classification Scheme for Factor Six

Now, since 1T ~χ = a1 + a2 and gain(f0) ≥ φ(S)− 1, we have that∑
f∈F

gain(f) ≥ 9

2
(a1 + a2)− (2p− 1

2
p1 + 2a1 +

3

2
a2 −

3

2
) + φ(S)− 1.

Hence, −(
∑

f∈F gain(f)) ≤ −φ(S) + (2p− 1
2p1 − 3a2 − 5

2a1 − 1
2).

We substitute the bound from the lemma into Equation 8.2, we would get:

q ≤ (4p+
1

2
p1 +

5

2
a1 + 3a2)− φ(S) + (2p− 1

2
p1 − 3a2 −

5

2
a1 −

1

2
).

This gives q ≤ 6p− φ(S)− 1
2 as desired.

125

Chapter 8. Computing the Number of Triangular Faces via Local Search

126

CHAPTER 9

Conclusion

The new approach for solving Mps by concentrating on triangles, introduced in this thesis,
allowed us immediately to improve over the previously best-known greedy algorithms
for Mps. In addition, the results shown in this part imply that a natural local search
algorithm gives a (4

9 + ε)-approximation for Mps and a 1
6 + ε approximation for Mpt.

To be more precise, when given any graph G, we follow the t-swap local search strategy
for t = O(1/ε): Start from any cactus subgraph H. Try to improve it by removing t
triangles and adding (t + 1) triangles in a way that ensures that the graph remains a
cactus subgraph. A local optimal solution will then always be a (4

9 + ε) approximation
for Mps and a (1

6 + ε) approximation for Mpt.
Knowing this fact, there is an obvious candidate algorithm for improving over the

long-standing best approximation factor for Mps. We call a graph H a diamond-cactus
if every block in H is either a diamond or a triangle. Start from any diamond-cactus
subgraph H of G and then try to improve it by removing t triangles from H and adding
(t+1) triangles, maintaining the fact thatH is a diamond-cactus subgraph. We conjecture
that this algorithm gives a better than 4

9 -approximation for Mps, but we suspect that
the analysis will require substantially new ideas.

Another interesting direction is to see whether there is a general principle that
captures a denser planar structure than cactus subgraphs by going above matroid parity
in the hierarchy of efficiently computable problems. For instance, are diamond-cactus
subgraphs captured by matroid parity? Or can it be formulated as an even more abstract
structure than matroids (e.g. commutative rank [6]) that can still be computed efficiently?
We believe that studying this direction will lead to a better understanding of algebraic
techniques for finding dense planar structures.

Finally, the absence of LP-based techniques in this problem domain seems rather
unfortunate. There have been some experimental studies recently [41, 20, 21], but the
theoretical understanding of what can be proven formally in the context of power of
relaxation is certainly lacking. Is there a convex relaxation that allows us to find a
relatively dense planar subgraph (e.g. (3 − ε)-approximation for Mps using LP-based
techniques)?

Chapter 9. Conclusion

128

Bibliography

[1] T. Asano, S. Kikuchi, and N. Saito. A linear algorithm for finding Hamiltonian cycles
in 4-connected maximal planar graphs. Discrete Applied Mathematics, 7(1):1–15,
1984.

[2] D. Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–
736, 1966.

[3] C. Berge. La theorie des graphes. Paris, France, 1958.

[4] T. Biedl. Trees and co-trees with bounded degrees in planar 3-connected graphs.
In 14th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT’14),
pages 62–73, 2014.

[5] T. Biedl and P. Kindermann. Finding Tutte Paths in Linear Time. In C. Baier,
I. Chatzigiannakis, P. Flocchini, and S. Leonardi, editors, 46th International Col-
loquium on Automata, Languages, and Programming (ICALP 2019), volume 132
of Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1–23:14,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[6] M. Bläser, G. Jindal, and A. Pandey. Greedy strikes again: A deterministic PTAS for
commutative rank of matrix spaces. In 32nd Computational Complexity Conference,
CCC 2017, July 6-9, 2017, Riga, Latvia, pages 33:1–33:16, 2017.

[7] G. Brinkmann and C. T. Zamfirescu. A Strengthening of a Theorem of Tutte on
Hamiltonicity of Polyhedra. ArXiv e-prints, 2016.

[8] R. Brunet, M. N. Ellingham, Z. C. Gao, A. Metzlar, and R. B. Richter. Spanning
planar subgraphs of graphs in the torus and Klein bottle. Journal of Combinatorial
Theory, Series B, 65(1):7–22, 1995.

[9] J. Cai, X. Han, and R. E. Tarjan. An O(m log n)-time algorithm for the maximal
planar subgraph problem. SIAM Journal on Computing, 22(6):1142–1162, 1993.

[10] G. Călinescu, C. G. Fernandes, U. Finkler, and H. Karloff. A better approximation
algorithm for finding planar subgraphs. Journal of Algorithms, 27(2):269–302, 1998.

[11] G. Călinescu, C. G. Fernandes, H. J. Karloff, and A. Zelikovsky. A new approxi-
mation algorithm for finding heavy planar subgraphs. Algorithmica, 36(2):179–205,
2003.

[12] G. Călinescu, C. G. Fernandes, H. Kaul, and A. Zelikovsky. Maximum series-parallel
subgraph. Algorithmica, 63(1-2):137–157, 2012.

[13] P. Chalermsook, M. Cygan, G. Kortsarz, B. Laekhanukit, P. Manurangsi,
D. Nanongkai, and L. Trevisan. From gap-eth to fpt-inapproximability: Clique,
dominating set, and more. In Foundations of Computer Science (FOCS), 2017
IEEE 58th Annual Symposium on, pages 743–754. IEEE, 2017.

Bibliography

[14] P. Chalermsook and A. Schmid. Finding triangles for maximum planar subgraphs.
In WALCOM: Algorithms and Computation, 11th International Conference and
Workshops, (WALCOM’17), Proceedings., pages 373–384, 2017.

[15] P. Chalermsook, A. Schmid, and S. Uniyal. A Tight Extremal Bound on the Lovász
Cactus Number in Planar Graphs. In R. Niedermeier and C. Paul, editors, 36th In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS 2019),
volume 126 of Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1–
19:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[16] H. Y. Cheung, L. C. Lau, and K. M. Leung. Algebraic algorithms for linear matroid
parity problems. ACM Transactions on Algorithms (TALG), 10(3):10, 2014.

[17] N. Chiba and T. Nishizeki. A theorem on paths in planar graphs. Journal of Graph
Theory, 10(4):449–450, 1986.

[18] N. Chiba and T. Nishizeki. The Hamiltonian cycle problem is linear-time solvable
for 4-connected planar graphs. Journal of Algorithms, 10(2):187–211, 1989.

[19] T. Chiba, I. Nishioka, and I. Shirakawa. An algorithm of maximal planarization of
graphs. In Proc. IEEE Symposium on Circuits and Systems, 1979, pages 649–652.

[20] M. Chimani, I. Hedtke, and T. Wiedera. Exact algorithms for the maximum planar
subgraph problem: New models and experiments. In 17th International Symposium
on Experimental Algorithms, SEA 2018, June 27-29, 2018, L’Aquila, Italy, pages
22:1–22:15, 2018.

[21] M. Chimani and T. Wiedera. Cycles to the Rescue! Novel Constraints to Compute
Maximum Planar Subgraphs Fast. In Y. Azar, H. Bast, and G. Herman, editors,
26th Annual European Symposium on Algorithms (ESA 2018), volume 112 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 19:1–19:14, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[22] R. Cimikowski and D. Coppersmith. The sizes of maximal planar, outerplanar, and
bipartite planar subgraphs. Discrete Math., 149(1-3):303–309, Feb. 1996.

[23] R. Diestel. Graph Theory. Springer, fourth edition, 2010.

[24] I. Fabrici, J. Harant, and S. Jendrol. On longest cycles in essentially 4-connected
planar graphs. Discussiones Mathematicae Graph Theory, 36:565–575, 2016.

[25] I. Fabrici, J. Harant, S. Mohr, and J. M. Schmidt. Even longer cycles in essentially
4-connected planar graphs. arXiv preprint arXiv:1806.09413, 2018.

[26] I. Fabrici, J. Harant, S. Mohr, and J. M. Schmidt. Longer cycles in essentially
4-connected planar graphs. Discussiones Mathematicae Graph Theory, to appear.

[27] L. Faria, C. M. H. De Figueiredo, and C. F. Mendonça. On the complexity of
the approximation of nonplanarity parameters for cubic graphs. Discrete applied
mathematics, 141(1):119–134, 2004.

130

Bibliography

[28] H. N. Gabow and M. Stallmann. An augmenting path algorithm for linear matroid
parity. Combinatorica, 6(2):123–150, 1986.

[29] Z. Gao and R. B. Richter. 2-Walks in circuit graphs. Journal of Combinatorial
Theory, Series B, 62(2):259–267, 1994.

[30] Z. Gao, R. B. Richter, and X. Yu. 2-Walks in 3-connected planar graphs. Aus-
tralasian Journal of Combinatorics, 11:117–122, 1995.

[31] Z. Gao, R. B. Richter, and X. Yu. Erratum to: 2-Walks in 3-connected planar
graphs. Australasian Journal of Combinatorics, 36:315–316, 2006.

[32] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit
problem is NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

[33] D. Gouyou-Beauchamps. The Hamiltonian circuit problem is polynomial for 4-
connected planar graphs. SIAM Journal on Computing, 11(3):529–539, 1982.

[34] M. M. Halldórsson. Approximations of weighted independent set and hereditary
subset problems. In Graph Algorithms And Applications 2, pages 3–18. World
Scientific, 2004.

[35] J. Harant and S. Senitsch. A generalization of Tutte’s theorem on Hamiltonian
cycles in planar graphs. Discrete Mathematics, 309(15):4949–4951, 2009.

[36] F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen,
13:103–107, 1966.

[37] J. H̊astad. Clique is hard to approximate withinn 1- ε. Acta Mathematica, 182(1):105–
142, 1999.

[38] B. Jackson and N. C. Wormald. k-Walks of graphs. Australasian Journal of
Combinatorics, 2:135–146, 1990.

[39] B. Jackson and N. C. Wormald. Longest cycles in 3-connected planar graphs.
Journal of Combinatorial Theory, Series B, 54(2):291–321, 1992.

[40] B. Jackson and X. Yu. Hamilton cycles in plane triangulations. Journal of Graph
Theory, 41(2):138–150, 2002.

[41] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Prac-
tical layout tools. Algorithmica, 16(1):33–59, Jul 1996.

[42] K. Kawarabayashi and K. Ozeki. 4-connected projective-planar graphs are
Hamiltonian-connected. Journal of Combinatorial Theory, Series B, 112:36–69,
2015.

[43] S. Khot and A. K. Ponnuswami. Better inapproximability results for maxclique,
chromatic number and min-3lin-deletion. In International Colloquium on Automata,
Languages, and Programming, pages 226–237. Springer, 2006.

131

Bibliography

[44] M. S. Krishnamoorthy. An NP-hard problem in bipartite graphs. ACM SIGACT
News, 7(1):26–26, 1975.

[45] D. Kühn, D. Osthus, and A. Taraz. Large planar subgraphs in dense graphs. Journal
of Combinatorial Theory, Series B, 95(2):263–282, 2005.

[46] J. Lee, M. Sviridenko, and J. Vondrák. Matroid matching: the power of local search.
SIAM Journal on Computing, 42(1):357–379, 2013.

[47] T. Leighton and A. Moitra. Some results on greedy embeddings in metric spaces.
Discrete & Computational Geometry, 44(3):686–705, Oct 2010.

[48] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties
is np-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

[49] P. Liu and R. Geldmacher. On the deletion of nonplanar edges of a graph. In Proc.
10th Southeastern Conference on Combinatorics, Graph Theory, and Computing,
pages 727–738, 1977.

[50] L. Lovász. Matroid matching and some applications. Journal of Combinatorial
Theory, Series B, 28(2):208–236, 1980.

[51] L. Lovász and M. D. Plummer. Matching theory, volume 367. American Mathemat-
ical Soc., 2009.

[52] C. Lund and M. Yannakakis. The approximation of maximum subgraph problems.
In International Colloquium on Automata, Languages, and Programming, pages
40–51. Springer, 1993.

[53] A. Nakamoto, Y. Oda, and K. Ota. 3-trees with few vertices of degree 3 in circuit
graphs. Discrete Mathematics, 309(4):666 – 672, 2009.

[54] J. B. Orlin. A fast, simpler algorithm for the matroid parity problem. In Interna-
tional Conference on Integer Programming and Combinatorial Optimization, pages
240–258. Springer, 2008.

[55] K. Ozeki. A shorter proof of Thomassen’s theorem on Tutte paths in plane graphs.
SUT Journal of Mathematics, 50:417–425, 2014.

[56] K. Ozeki and P. Vrána. 2-edge-Hamiltonian-connectedness of 4-connected plane
graphs. European Journal of Combinatorics, 35:432–448, 2014.

[57] T. Poranen. Two new approximation algorithms for the maximum planar subgraph
problem. Acta Cybern., 18(3):503–527, 2008.

[58] D. P. Sanders. On Hamilton cycles in certain planar graphs. Journal of Graph
Theory, 21(1):43–50, 1996.

[59] D. P. Sanders. On paths in planar graphs. Journal of Graph Theory, 24(4):341–345,
1997.

132

Bibliography

[60] A. Schmid. 2-walks in 3-connected planar graphs are polynomial time computable.
2014.

[61] A. Schmid and J. M. Schmidt. Computing 2-walks in polynomial time. In
Proceedings of the 32nd Symposium on Theoretical Aspects of Computer Science
(STACS’15), pages 676–688, 2015.

[62] A. Schmid and J. M. Schmidt. Computing 2-walks in polynomial time. ACM Trans.
Algorithms, 14(2):22:1–22:18, Apr. 2018.

[63] A. Schmid and J. M. Schmidt. Computing Tutte Paths. In I. Chatzigiannakis,
C. Kaklamanis, D. Marx, and D. Sannella, editors, 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 98:1–98:14, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[64] J. M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Information
Processing Letters, 113(7):241–244, 2013.

[65] W.-B. Strothmann. Bounded degree spanning trees. PhD thesis, FB Mathe-
matik/Informatik und Heinz Nixdorf Institut, Universität-Gesamthochschule Pader-
born, 1997.

[66] Z. Szigeti. On a min-max theorem of cacti. In International Conference on Integer
Programming and Combinatorial Optimization, pages 84–95. Springer, 1998.

[67] R. Thomas and X. Yu. 4-connected projective-planar graphs are Hamiltonian.
Journal of Combinatorial Theory, Series B, 62(1):114–132, 1994.

[68] R. Thomas and X. Yu. Five-connected toroidal graphs are Hamiltonian. Journal
of Combinatorial Theory, Series B, 69(1):79–96, 1997.

[69] R. Thomas, X. Yu, and W. Zang. Hamilton paths in toroidal graphs. Journal of
Combinatorial Theory, Series B, 94(2):214–236, 2005.

[70] C. Thomassen. A theorem on paths in planar graphs. Journal of Graph Theory,
7(2):169–176, 1983.

[71] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 1(2):107–111, 1947.

[72] W. T. Tutte. A theorem on planar graphs. Transactions of the American Mathe-
matical Society, 82:99–116, 1956.

[73] W. T. Tutte. Bridges and Hamiltonian circuits in planar graphs. Aequationes
Mathematicae, 15(1):1–33, 1977.

[74] H. Whitney. A theorem on graphs. Annals of Mathematics, 32(2):378–390, 1931.

[75] H. Whitney. Non-separable and planar graphs. Transactions of the American
Mathematical Society, 34(1):339–362, 1932.

133

Bibliography

[76] X. Yu. Disjoint paths, planarizing cycles, and spanning walks. Transactions of the
American Mathematical Society, 349(4):1333–1358, 1997.

134

	Introduction
	I Computing Tutte Paths in Polynomial Time
	Introduction to Tutte Paths
	Our Results
	Preliminaries
	Important Properties of Circuit Graphs
	Finding Long Cycles Using Tutte Paths

	Computing Tutte Paths in Circuit Graphs
	Setting up the Decomposition
	Avoiding Overlapping Subgraphs
	Extending the Decomposition
	A Quadratic Time Bound

	Tutte Paths in 2-Connected Planar Graphs
	Two Easy Cases
	Moving from a Chain of Blocks to the Entire Graph
	A Constructive Proof for Thomassen's Result
	The Three Edge Lemma
	A Constructive Proof for Sanders's Theorem
	A Quadratic Time Algorithm

	Conclusion

	II A New Approach for the Maximum Planar Subgraph Problem
	Introduction to the Maximum Planar Subgraph Problem
	Our Results
	Preliminaries
	Hardness of Maximum Planar Triangles
	From MPT to MPS
	On the Strength of our Extremal Bound

	Greedy Approximation Algorithms for MPT
	Match-And-Merge
	Analyzing Previous Algorithms in our Framework
	A New Greedy Approximation Algorithm for MPS

	Computing the Number of Triangular Faces via Local Search
	Taking Advantage of Local Optimality
	How to Prove our Extremal Bound
	Reduction to Heavy Cacti
	A Classification Scheme for Factor Seven
	A Classification Scheme for Factor Six

	Conclusion

