
SEARCH AND ANALYTICS
USING SEMANTIC
ANNOTATIONS

Dhruv Gupta

SEARCH AND ANALYTICS

USING SEMANTIC

ANNOTATIONS

Dhruv Gupta

Dissertation
zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

Saarbrücken
2019

EXAMINATION BOARD

Dean Prof. Dr. Sebastian Hack

Colloqium 12.12.2019, Saarbrücken

Supervisor & Reviewer Prof. Dr. Klaus Berberich

Reviewer Prof. Dr. Gerhard Weikum

Reviewer Prof. Dr. Srikanta Bedathur

Chairman Prof. Dr. Jürgen Steimle

Research Assistant Dr. Koninika Pal

v

To my parents,

my brother,

and

all my teachers

“ Whenever you are in doubt, or when the

self becomes too much with you ...

Recall the face of the poorest and

weakest man whom you may have seen, and

ask yourself, if the step you contemplate

is going to be of any use to him ...

Then you will find your doubts and your

self melt away.”

— mahatma gandhi

ABSTRACT

Search systems help users locate relevant information in the form of text
documents for keyword queries. Using text alone, it is often difficult to satisfy
the user’s information need. To discern the user’s intent behind queries, we
turn to semantic annotations (e.g., named entities and temporal expressions)
that natural language processing tools can now deliver with great accuracy.
This thesis develops methods and an infrastructure that leverage semantic
annotations to efficiently and effectively search large document collections.

This thesis makes contributions in three areas: indexing, querying, and
mining of semantically annotated document collections. First, we describe an
indexing infrastructure for semantically annotated document collections. The
indexing infrastructure can support knowledge-centric tasks such as information
extraction, relationship extraction, question answering, fact spotting and
semantic search at scale across millions of documents. Second, we propose
methods for exploring large document collections by suggesting semantic
aspects for queries. These semantic aspects are generated by considering
annotations in the form of temporal expressions, geographic locations, and
other named entities. The generated aspects help guide the user to relevant
documents without the need to read their contents. Third and finally, we
present methods that can generate events, structured tables, and insightful
visualizations from semantically annotated document collections.

xi

KURZFASSUNG

Suchmaschinen helfen Nutzern, relevante Informationen in Textdokumenten
zu finden. Alleine auf Grundlage des textuellen Inhalts der Dokumente ist
es häufig schwierig, die Informationsbedürfnisse der Nutzer zu stillen. Um
diese Informationsbedürfnisse besser zu verstehen, lassen sich semantische
Annotationen der Dokumente (z.B. Zeitausdrücke und Entitäten) ausnutzen,
die von heutigen Methoden der natürlichen Sprachverarbeitung mit hoher
Genauigkeit erzeugt werden können. Diese Dissertation beschreibt eine Infras-
truktur zur Indexierung semantisch annotierter Dokumente, um so auch in
großen Dokumentensammlungen effektiv und effizient suchen zu können.

Die Beiträge dieser Dissertation lassen sich in Methoden zur Indexierung,
Anfragebearbeitung und Analyse von semantisch annotierten Dokumenten-
sammlungen gliedern. Zuerst wird eine Infrastruktur zur Indexierung se-
mantisch annotierter Dokumente beschrieben. Diese Infrastruktur kann ver-
schiedene wissensorientierte Aufgaben (z.B. die automatische Extraktion von
strukturierten Informationen) auch auf Dokumentensammlungen mit Mil-
lionen von Dokumenten effizient unterstützen. Danach wird ein Verfahren
vorgestellt, welches es erlaubt, große Dokumentensammlungen anhand se-
mantischer Annotationen zu durchsuchen. Hierzu extrahiert das Verfahren
semantische Aspekte als Kombinationen semantischer Annotationen (z.B. Zeit-
und Ortsausdrücke sowie andere Entitäten). Diese semantischen Aspekte
erlauben es den Benutzern, direkt zu relevanten Dokumenten zu gelangen,
ohne vorab deren Inhalt zu kennen. Zuletzt wird ein Verfahren beschrieben,
welches es erlaubt, automatisch Ereignisse, strukturierte Tabellen und Visual-
isierungen aus semantisch annotierten Dokumentensammlungen zu generieren.

xiii

SUMMARY

Current information retrieval systems are limited to text in documents for help-
ing users with their information needs. With the progress in the field of natural
language processing, there now exists the possibility of enriching large docu-
ment collections with accurate semantic annotations. Annotations in the form
of part-of-speech tags, temporal expressions, numerical values, geographic loca-
tions, and other named entities can help us look at terms in text with additional
semantics. This doctoral dissertation presents methods for search and analysis
of large semantically annotated document collections. Concretely, we make
contributions along three broad directions: indexing, querying, and mining of
large semantically annotated document collections. In the following paragraphs,
we outline the key contributions made along these three research directions.

Indexing Annotated Document Collections. Knowledge-centric tasks
such as information extraction, question answering, and relationship extraction
require a user to retrieve text regions within documents that detail relationships
between entities. Current search systems are ill-equipped to handle such tasks,
as they can only provide phrase querying with Boolean operators. To enable
knowledge acquisition at scale, we propose gyani, an indexing infrastructure for
knowledge-centric tasks. gyani enables search for structured query patterns by
allowing regular expression operators to be expressed between word sequences
and semantic annotations. To implement grep-like search capabilities over

xv

xvi SUMMARY

large annotated document collections, we present a data model and index design
choices involving word sequences, annotations, and their combinations. We
show that by using our proposed indexing infrastructure we bring about drastic
speedups in crucial knowledge-centric tasks: 95× in information extraction,
53× in question answering, and 12× in relationship extraction.

Hyper-phrase queries are multi-phrase set queries that naturally arise when
attempting to spot knowledge graph facts or subgraphs in large document
collections. An example hyper-phrase query for the fact 〈mahatma gandhi,
nominated for, nobel peace prize〉 is: 〈{mahatma gandhi, m k gandhi,
gandhi }, {nominated for, nominee for, nomination received }, {nobel
peace prize, nobel prize for peace, nobel prize in peace }〉. Efficient
execution of hyper-phrase queries is of essence when attempting to verify and
validate claims concerning named entities or emerging named entities. To do
so, it is required that the fact concerning the entity can be contextualized in
text. To acquire text regions given a hyper-phrase query, we propose a retrieval
framework using combinations of n-gram and skip-gram indexes. Concretely,
we model the combinatorial space of the phrases in the hyper-phrase query to
be retrieved using vertical and horizontal operators and propose a dynamic
programming approach for optimized query processing. We show that using
our proposed optimizations we can retrieve sentences in support of knowledge
graph facts and subgraphs from large document collections within seconds.

Querying Annotated Document Collections. Users often struggle to
convey their information needs in short keyword queries. This often results
in a series of query reformulations, in an attempt to find relevant documents.
To assist users navigate large document collections and lead them to their
information needs with ease, we propose methods that leverage semantic
annotations. As a first step, we focus on temporal information needs. Specifi-
cally, we leverage temporal expressions in large document collections to serve
time-sensitive queries better. Time-sensitive queries, e.g., summer olympics

implicitly carry a temporal dimension for document retrieval. To help users
explore longitudinal document collections, we propose a method that generates
time intervals of interest as query reformulations. For instance, for the query
world war, time intervals of interest are: [1914, 1918] and [1939, 1945]. The
generated time intervals are immediately useful in search-related tasks such as
temporal query classification and temporal diversification of documents.

Time-sensitive queries can be classified into classes that can help serve
their information needs better. For instance, the event described by the query
summer olympics is periodically recurring at the year granularity, and thus
the next event and its related information should be retrieved for the user. To
classify temporal queries at different levels of granularity we perform Bayesian
analysis of the distribution of generated time intervals for multi- modality.
With the help of features designed using the Bayesian analysis, we show that we
can accurately classify queries into temporal classes at different granularities.

History-oriented queries concerning entities and events require that the
presented list of documents cover the history of the entity or describe the

SUMMARY xvii

timeline of the event. To temporally diversify documents, we re-rank the
pseudo-relevant set of documents such that there is at least one document
that refers to a generated time interval of interest for the query. We show that
using our approach we can indeed present a diversified set of documents that
reflect summaries corresponding to history-oriented queries.

As a second and final step, we focus on helping the user in navigating
large document collections by generating semantic aspects. The aspects are
generated using semantic annotations in the form of temporal expressions,
geographic locations, and other named entities. Concretely, we propose the
xFactor algorithm that generates semantic aspects in two steps. In the
first step, xFactor computes the salience of annotations in models informed
of their semantics. Thus, the temporal expressions 1930s and 1939 are
considered similar as well as entities such as usain bolt and justin gatlin
are considered related when computing their salience. Second, the xFactor
algorithm computes the co-occurrence salience of annotations belonging to
different types by using an efficient partitioning procedure. For instance, the
aspect 〈{usain bolt}, {beijing, london}, [2008, 2012]〉 signifies that the entity,
locations, and the time interval are observed frequently in isolation as well as
together in the documents retrieved for the query olympic medalists.

Mining Annotated Document Collections. Large annotated docu-
ment collections are a treasure trove of historical information concerning
events and entities. We leverage annotations present in documents to deter-
mine time intervals of interest for knowledge graph facts; to mine events; to
generate structured tables; and to generate analytical visualizations. First, we
present an approach to determine a ranked list of time intervals of interest for
knowledge graph facts. For instance, for the knowledge graph fact 〈mahatma
gandhi, nomination, nobel peace prize〉, the time intervals of interest are:
[1937, 1937], [1938, 1938], [1939, 1939], [1947, 1947], and [1948, 1948]. To de-
termine the time intervals, our approach first retrieves sentences containing
the natural language representation of the fact with temporal expressions. We
then aggregate the retrieved temporal evidence in an uncertainty-aware time
model to generate relevant time intervals for the knowledge graph fact. We
show the effectiveness of our approach over a benchmark of facts derived from
Freebase and DBpedia.

Second, we present EventMiner, a clustering algorithm, that mines events
for keyword queries by using annotations in the form of temporal expressions,
geographic locations, and other disambiguated named entities present in a
pseudo-relevant set of documents. EventMiner aggregates the annotation
evidences by mathematically modeling their semantics. Temporal expressions
are modeled in an uncertainty and proximity-aware time model. Geographic lo-
cations are modeled as minimum bounding rectangles over their geographic co-
ordinates. Other disambiguated named entities are modeled as a set of links cor-
responding to their Wikipedia articles. For a set of history-oriented queries con-
cerning entities and events, we show that our approach can truly identify event
clusters when compared to approaches that disregard annotation semantics.

xviii SUMMARY

Third, we present jigsaw, an end-to-end query driven system that generates
structured tables for user-defined schema from unstructured text. To define
the table schema, we describe query operators that help perform structured
search on annotated text and fill in table cell values. To resolve table cell
values whose values can not be retrieved, we describe methods for inferring
null values using local context. jigsaw further relies on semantic models for
text and numbers to link together near-duplicate rows. This way, jigsaw is able
to piece together paraphrased, partial, and redundant text regions retrieved in
response to structured queries to generate high-quality tables within seconds.

Fourth and finally, we present DigitalHistorian, a time-sensitive search
engine that allows users to navigate longitudinal document collections using
keyword queries. For an implicit time-sensitive query DigitalHistorian sug-
gests time intervals of interest as query reformulations. In addition to this,
DigitalHistorian diversifies the retrieved document set so that each document
covers at least one of the generated time intervals of interest. Furthermore,
DigitalHistorian generates analytical visualizations in the form of chord
graph and heatmap diagrams that summarize the relationships between named
entities and the generated time intervals of interest.

ZUSAMMENFASSUNG

Heutige Suchmaschinen beschränken sich auf den textuellen Inhalt von Doku-
menten, um die Informationsbedürfnisse der Benutzer zu stillen. Fortschritte
in der natürlichen Sprachverarbeitung haben dazu geführt, dass es nun möglich
ist, auch sehr große Dokumentensammlungen mit hoher Genauigkeit seman-
tisch zu annotieren. Semantische Annotationen in Form von z. B. Wortarten,
Zeit- und Ortsangaben und anderer Entitäten helfen, den Inhalt der Doku-
mente besser zu verstehen. In dieser Dissertation werden Verfahren zur Suche
und Analyse von großen semantisch annotierten Dokumentensammlungen
vorgestellt. Es werden Beiträge zur Indexierung, Anfragebearbeitung und
Analyse von semantisch annotierten Dokumentensammlungen beschrieben, die
im Folgenden genauer skizziert werden.

Indexierung semantisch annotierter Dokumentensammlungen.
Wissensorientierte Aufgaben wie die automatische Extraktion strukturierter
Informationen und Beziehungen erfordern es, Textausschnitte zu identifizieren,
in denen die Beziehung zweiter Entitäten genauer beschrieben wird. Heutige
Suchmaschinen unterstützen solche Aufgaben nur unzureichend, da
ihre Möglichkeiten auf einfache Anfragen beschränkt sind. Um einen
Wissensgewinn auch auf großen Dokumentensammlungen zu ermöglichen,
wird gyani als Infrastruktur zu Indexierung semantisch annotierter
Dokumentensammlungen vorgestellt. gyani unterstützt eine an reguläre

xix

xx ZUSAMMENFASSUNG

Ausdrücke angelehnte Anfragesprache, die es erlaubt, Anforderungen an den
Text sowie die semantischen Annotationen zu kombinieren. Um eine zum
Werkzeug grep ähnliche Funktionalität zu unterstützen, vertraut gyani auf
ein Datenmodell, welches Dokumente als Sequenzen von Wörtern und
semantischen Annotationen betrachtet. Zur Indexierung mit Hilfe eines
invertierten Index setzt gyani auf geschickt ausgewählte Kombinationen
von Wörtern und semantischen Annotationen. Experimente zeigen, dass
die vorgeschlagene Infrastruktur die Zeit zur Anfragebearbeitung für
wissensorientierte Aufgaben drastisch reduzieren kann: 95× bei der Extraktion
strukturierter Informationen, 53× beim Beantworten natürlichsprachiger
Anfragen und 12× bei der Extraktion von Beziehungen zwischen Entitäten.

Anfragen bestehend aus mehreren Mengen von Phrasen sind nützlich, um
Fakten oder Teilgraphen aus Wissensgraphen in großen Dokumentensammlun-
gen zu finden. Um beispielsweise den Fakt 〈mahatma gandhi, nominated for,
nobel peace prize〉 zu finden, ergibt sich die folgende Anfrage: 〈{mahatma
gandhi, m k gandhi, gandhi }, {nominated for, nominee for, nomination
received }, {nobel peace prize, nobel prize for peace, nobel prize

in peace }〉. Solche Anfragen effizient zu bearbeiten ist beispielsweise wichtig,
um Fakten bezüglich von Entitäten verifizieren zu können. Hierzu ist es
notwendig, Textausschnitte zu finden, in denen der Fakt genauer beschrieben
wird. Um solche Textausschnitte effizient finden zu können, wird eine In-
frastruktur zur Indexierung semantisch annotierter Dokumentensammlungen
vorgestellt, die auf einer Kombination verschiedener Indizes beruht. Zudem
wird ein Verfahren vorgestellt, welche einen geeigneten Plan zur Bearbeitung
einer Anfrage mit Hilfe von dynamischer Programmierung bestimmt. Die
Infrastruktur erlaubt es, selbst auf großen Dokumentensammlungen, Textauss-
chnitte zu einem gegebenen Fakt aus einem Wissensgraph in wenigen Sekunden
zu finden.

Anfragen auf semantisch annotierten Dokumentensammlungen.
Benutzer haben oft Probleme, ihr Informationsbedürfnis in Form von Anfragen
prägnant auszudrücken. Oft sind sie gezwungen, die Anfrage mehrfach zu
ändern, um letztlich zu relevanten Dokumenten zu gelangen. Um Nutzern die
Suche und das Navigieren in Dokumentensammlungen zu erleichtern, werden
Verfahren vorgestellt, welche verfügbare semantische Annotationen ausnutzen.
So genannte zeitliche Informationsbedürfnisse (z. B. summer olympics)
lassen sich mit Hilfe von relevanten Zeitintervallen genauer beschreiben. Das
vorgestellte Verfahren nutzt die in Dokumenten enthaltenen Zeitausdrücke aus,
um so automatisch Zeitintervalle als sinnvolle Ergänzungen der ursprünglichen
Anfrage vorzuschlagen. Für die Anfrage world war, als konkretes Beispiel,
würde das Verfahren die beiden Zeitintervalle [1914, 1918] und [1939, 1945] als
sinnvolle Ergänzungen vorschlagen. Die automatisch vorgeschlagenen Zeitin-
tervalle können zudem andere Aufgaben wie die automatische Klassifikation
von Anfragen oder die Diversifizierung von Anfrageergebnissen unterstützen.

Zeitliche Informationsbedürfnisse lassen sich in verschiedene Klassen einord-
nen. Gelingt dies, so kann ein solches Informationsbedürfnis besser gestillt

ZUSAMMENFASSUNG xxi

werden. Stellt man z. B. fest, dass sich die Anfrage summer olympics auf
ein periodisch wiederkehrendes Ereignis bezieht, so können für die Anfrage
Dokumente identifiziert werden, die sich auf das letzte solche Ereignis beziehen.
Um zeitliche Informationsbedürfnisse automatisch zu klassifizieren, wird ein
Verfahren vorgestellt, welches auf einer Bayesschen Analyse der Verteilung zu-
vor identifizierter Zeitintervalle beruht. Mit Hilfe daraus abgeleiteter Merkmale
lassen sich zeitliche Informationsbedürfnisse genauer automatisch klassifizieren,
wie die durchgeführten Experimente zeigen.

Geschichtsorientierte Anfragen mit Bezug zu konkreten Entitäten oder
Ereignissen erfordern, dass die zurückgelieferten Dokumente einen Überblick
über die Entität oder das Ereignis im Zeitverlauf bieten. Um dies zu erreichen,
wird ein Verfahren vorgestellt, welches Anfrageergebnisse automatisch anhand
zuvor identifizierter Zeitintervalle diversifiziert. Ziel ist es, sicherzustellen, dass
sich zu jedem der identifizierten Zeitintervalle mindestens ein relevantes Doku-
ment im Anfrageergebnis befindet. Experimente zeigen, dass das Verfahren in
der Tat zu Anfrageergebnissen führt, die einen Überblick über eine Entität
oder ein Ereignis im Zeitverlauf bieten.

Das letzte der vorgestellten Verfahren zielt darauf ab, Benutzern das
Navigieren großer semantisch annotierter Dokumentensammlungen zu erle-
ichtern. Hierzu generiert es automatisch so genannte semantische Aspekte als
Kombination verschiedener semantischer Annotation. Das Verfahren xFac-
tor generiert semantische Aspekte in zwei Schritten. Im ersten Schritt wer-
den semantische Annotationen bezüglich ihrer gegenseitigen Ähnlichkeit und
Wichtigkeit für die aktuelle Anfrage bewertet. Die beiden Zeitausdrücke 1930s

und 1939 oder die beiden Entitäten usain bolt und justin gatlin würden
so als ähnlich zueinander und wichtig zur Anfrage olympic medalists be-
trachtet. Im zweiten Schritt werden semantische Aspekte identifiziert, wozu
xFactor Verfahren der Assoziationsanalyse geeignet anpasst. Für die vorherige
Anfrage wäre solch ein semantischer Aspekt 〈{usain bolt}, {beijing, london},
[2008, 2012]〉, der anzeigt, dass die beiden Athleten im angegebenen Zeitinter-
vall häufig gemeinsam in zur Anfrage relevanten Dokumenten gesehen wurden.

Analyse semantisch annotierter Dokumentensammlungen. Seman-
tisch annotierte Dokumentensammlungen können helfen, historische Ereignisse
sowie bestimmte Entitäten genauer zu verstehen. Es werden Verfahren vorstellt,
die unter Rückgriff auf semantische Annotationen automatisch Zeitintervalle
zu Fakten aus Wissensgraphen identifizieren, wichtige Ereignisse erkennen,
strukturierte Tabellen generieren und Visualisierungen erzeugen.

Das erste Verfahren schlägt zu einem gegebenen Fakt aus einem Wissens-
graph automatisch sinnvolle korrespondierende Zeitintervalle vor. Für den Fakt
〈mahatma gandhi, nomination, nobel peace prize〉, als konkretes Beispiel,
würde das Verfahren automatisch die Zeitintervalle [1937, 1937], [1938, 1938],
[1939, 1939], [1947, 1947], und [1948, 1948] vorschlagen. Um dies zu erre-
ichen, identifiziert das Verfahren zunächst Sätze, in denen der gegebene Fakt
beschrieben wird. Daraufhin werden in diesen Sätzen gefundene Zeitausdrücke
analysiert, um so sinnvolle Zeitintervalle zu identifizieren. Experimente zeigen,

xxii ZUSAMMENFASSUNG

dass das Verfahren für Fakten aus den Wissensgraphen Freebase und DBpedia
in der Tat sinnvolle Zeitintervalle identifizieren kann.

Das zweite Verfahren EventMiner zielt darauf ab, automatisch wichtige
Ereignisse anhand einer gegebenen Anfrage zu identifizieren. Es beruht auf
einer Cluster-Analyse der zur Anfrage relevanten Dokumente und nutzt hier-
bei die enthaltenen semantischen Annotationen aus. Jede Art semantischer
Annotationen wird hierbei eigenes derart modelliert, dass das Verfahren die
Bedeutung der Annotationen erfassen kann. Zeitausdrücke werden als Men-
gen von Zeitintervallen modelliert; Ortsangaben als Mengen von geographis-
chen Koordinaten; sonstige Entitäten als Mengen von URLs, die sich auf
dem zugehörigen Artikel in der Wikipedia finden. Experimente mit einer
ausgewählten Menge von historisch orientierten Anfragen zeigen, dass das
Verfahren in der Lage ist, automatisch wichtige Ereignisse zu identifizieren.

Das dritte Verfahren jigsaw erlaubt es, automatisch anhand einer gegebenen
strukturierten Anfrage eine Tabelle mit strukturierten Daten zu erzeugen. Als
Teil der Anfrage wird das gewünschte Schema der Tabelle angegeben. jigsaw
identifiziert dann Textausschnitte, die zur Anfrage passen und semantische
Annotationen beinhalten. Diese semantischen Annotationen werden im Fol-
genden analysiert, um so mögliche Zeilen der Tabelle zu identifizieren. Diese
Zeilen werden in einem nächsten Schritt von jigsaw weiterverarbeitet, so dass
zueinander ähnliche Zeilen gruppiert und sinnvoll zusammengefasst werden. So
ist jigsaw in der Lage, in wenigen Sekunden zu einer gegebenen strukturierten
Anfrage eine Tabelle von hoher Qualität zu erzeugen.

DigitalHistorian als letztes der vorgestellten Systeme ist eine Suchmaschine
für zeitliche Informationsbedürfnisse. Benutzer können damit langzeitliche
Dokumentensammlungen (z. B. Zeitungsarchive) mit Hilfe von Anfragen durch-
suchen und die Anfrageergebnisse explorieren. Für Informationsbedürfnisse
ohne expliziten Zeitbezug schlägt DigitalHistorian automatisch sinnvolle
Zeitintervalle als Ergänzungen der Anfrage vor. Zudem ist DigitalHistorian
in der Lage, Anfrageergebnisse automatisch zu diversifizieren, so dass Benutzer
einen Überblick über ein Ereignis oder eine Entität im Zeitverlauf erhalten.
Visualisierungen der in relevanten Dokumenten enthaltenen semantischen An-
notation in Form von Chord-Graphen und Heatmaps helfen Benutzern, einen
Überblick über die Menge der relevanten Dokumente zu erhalten.

CONTENTS

Abstract xi

Kurzfassung xiii

Summary xv

Zusammenfassung xix

1 Introduction 1

1.1 State of the Art 2

1.2 The Big Picture 4

1.3 Publications 9

1.4 Outline 11

2 Preliminaries 13

2.1 Document Models 13

2.2 Information Retrieval Framework 14

2.3 Ranking Documents 16

2.4 Semantic Annotations 17

2.5 Effectiveness Measures 19

xxiii

xxiv CONTENTS

PART I INDEXING ANNOTATED DOCUMENT COLLECTIONS

3 GYANI: An Indexing Infrastructure for Knowledge-Centric Tasks 3

3.1 Introduction 3

3.2 Related Work 6

3.3 GYANI 7

3.3.1 Data Model 7

3.3.2 Query Language 8

3.3.3 Index Design 11

3.3.4 Query Processing 13

3.4 Evaluation 19

3.4.1 Setup 19

3.4.2 Knowledge-Centric Tasks 20

3.4.3 Results 22

3.5 GYANI Demonstration 25

3.6 Conclusion 26

4 Optimizing Hyper-Phrase Queries 33

4.1 Introduction 33

4.2 Related Work 37

4.3 Problem Definition 38

4.4 Data Model 40

4.5 Indexing Documents 42

4.5.1 Indexing Units 42

4.5.2 Dictionaries and Indexes 43

4.6 Query Processing and Operators 44

4.6.1 Basic Query Processing 45

4.6.2 Query Operators 46

4.7 Query Optimization 48

4.7.1 Cost Model 49

4.7.2 Optimization 51

4.8 Evaluation 52

4.8.1 Document Collections 53

4.8.2 Indexes 54

4.8.3 Hyper-Phrase Queries 54

4.8.4 Setup 56

4.8.5 Results 57

4.9 Conclusion 60

CONTENTS xxv

PART II QUERYING ANNOTATED DOCUMENT COLLECTIONS

5 Identifying Time Intervals of Interest for Queries 63

5.1 Introduction 63

5.2 Related Work 65

5.3 Identifying Interesting Time Intervals 65

5.3.1 Document Model 65

5.3.2 Time Model 66

5.3.3 Retrieval Model 67

5.3.4 Time Intervals of Interest 67

5.4 Evaluation 69

5.4.1 Setup and Datasets 69

5.4.2 Results 70

5.5 Conclusion 71

6 Temporal Query Classification at Different Granularities 73

6.1 Introduction 73

6.2 Related Work 75

6.3 Preliminaries 75

6.4 Temporal Class Taxonomy 76

6.5 Bayesian Analysis 79

6.6 Feature Design 80

6.7 Evaluation 81

6.7.1 Document Collection and Queries 81

6.7.2 Setup 82

6.7.3 Results 83

6.7.4 Failure Analysis 84

6.8 Conclusion 84

7 Diversifying Search Results Using Time 85

7.1 Introduction 85

7.2 Related Work 87

7.3 Method 88

7.4 Evaluation 89

7.4.1 Document Collections 89

7.4.2 Collecting History-Oriented Queries 91

7.4.3 Systems and Metrics 91

7.5 Results 93

xxvi CONTENTS

7.5.1 History by Algorithms 94

7.6 Conclusion 97

8 A Probabilistic Framework for Time-Sensitive Search 99

8.1 Introduction 99

8.2 Related Work 101

8.3 Document Collection: Its Analysis and Indexing 103

8.4 System Design 105

8.5 Temporal Intent Disambiguation Subtask 108

8.6 Temporally Diversified Retrieval Subtask 110

8.7 Conclusion 112

9 Generating Semantic Aspects for Queries 113

9.1 Introduction 113

9.2 Related Work 115

9.3 Preliminaries 116

9.4 Generating Factors 117

9.5 The xFactor Algorithm 119

9.6 Properties of the xFactor Algorithm 122

9.7 Evaluation 122

9.7.1 Annotated Document Collections 122

9.7.2 Ground Truth Semantic Aspects and Queries 123

9.7.3 Measures 124

9.7.4 Setup 125

9.7.5 Results for Quality 126

9.7.6 Results for Ranking 128

9.8 Conclusion 130

PART III MINING ANNOTATED DOCUMENT COLLECTIONS

10 Identifying Time Intervals for Knowledge Graph Facts 133

10.1 Introduction 133

10.2 Related Work 134

10.3 Approach 134

10.4 Evaluation 136

10.5 Conclusion 137

CONTENTS xxvii

11 EventMiner: Mining Events from Annotated Documents 139

11.1 Introduction 139

11.2 Related Work 141

11.3 Preliminaries 143

11.3.1 Semantic Annotations 143

11.3.2 Problem Statement 144

11.3.3 Assumptions 145

11.4 Computational Models 145

11.4.1 Time Models 145

11.4.2 Space Model 147

11.4.3 Entity Model 148

11.5 EventMiner Algorithm 148

11.6 Evaluation 151

11.6.1 Setup 151

11.6.2 Results 153

11.6.3 Discussion 154

11.7 Conclusion 154

11.8 Anecdotal Results 155

12 JIGSAW: Structuring Text into Tables 159

12.1 Introduction 159

12.2 Related Work 161

12.3 Problem Definition 162

12.4 Indexes Over Annotated Text 163

12.5 QUERY Operators 164

12.6 Query Processing 165

12.6.1 Query Optimization 166

12.6.2 Assembling the Puzzle (Raw Table) 167

12.7 Semantic LINK Operator 168

12.7.1 Semantic Model for Text 168

12.7.2 Semantic Model for Numbers 170

12.7.3 Local Resolution of NULL Values 170

12.7.4 LINK Operator 171

12.8 ANALYSIS Operators 172

12.9 Evaluation 174

12.9.1 Setup 176

12.9.2 Results 177

12.10 Conclusion 180

xxviii CONTENTS

12.11 Anecdotal Results 181

13 DigitalHistorian: Search and Analytics Using Annotations 183

13.1 Introduction 183

13.2 Related Work 184

13.3 History by Algorithms 185

13.4 Architecture 186

13.5 Demonstration 186

13.6 Conclusion 187

14 Conclusion 191

14.1 Outlook 194

References 197

CHAPTER 1

INTRODUCTION

Information retrieval (IR) systems help users locate relevant information from
vast amounts of text present in large document collections, e.g., news and
web archives. To this end, IR systems have largely relied on terms in text
to serve users’ information needs. With significant progress in the field of
natural language processing (NLP), it is now possible to process large document
collections with accurate semantic annotations in the form of part-of-speech
(POS) tags, named entities, temporal expressions, and numerical values. Such
semantic annotations help impose a lexico-syntactic structure on unstructured
text. In addition to this, annotations give deeper semantics to terms in text,
allowing us to interpret the words in text correctly. With the aid of semantic
annotations, it becomes possible to serve the information need of the user
with relevant documents. In this chapter, we describe the state of the art that
exists in the context of leveraging semantic annotations present in documents,
we then sketch the research problems this thesis addresses, the publications
produced as part of this doctoral dissertation, and an outline for the remainder
of the thesis.

1

2 INTRODUCTION

1.1 State of the Art

We next survey the progress already made in the area of analyzing semantically
annotated document collections.

Important Events in Annotated Corpora

One of the most important works in identifying existing and emerging events
are the tasks defined in the Topic Detection and Tracking (TDT) study [28].
The TDT program aims to “search, organize, and structure” broadcast news
media from multiple sources. The five tasks defined in TDT are topic tracking,
link detection, topic detection, first story detection, and story segmentation.
The first task, topic tracking task, requires the participants to build a system
to detect on topic stories from an evaluation corpus after being trained on
a pre-defined set of topics. The second task, link detection task, involves
answering a Boolean query to decide whether two given stories are related
by a common topic. The third task, topic detection task, requires declaring
new topics from incoming stories that have not been presented to the system.
The fourth task, first story detection task, is another Boolean decision task to
determine whether a given story can be used to create a new topic cluster. The
fifth and final task, story segmentation task, requires converting an incoming
stream of text into stories.

Focusing specifically on extracting and summarizing events in the future,
Jatowt and Yeung [124] present a model-based clustering algorithm. The
clustering method considers both textual and temporal similarities. For
computing temporal similarity, the authors model time using the appropriate
families of distributions that are decided based on whether the temporal
expression is a singular time point, a starting date, or an ending date. The
similarity between two temporal distributions is then computed using Kullback-
Leibler divergence. Radinsky et al. [176] present a query-driven system, Pundit,
which is able to predict future events based on past events reported in news
archives. An event is modeled by time, geographic location, and participating
entities. The algorithm derives these events from external text collection and
builds an abstraction tree using hierarchical agglomerative clustering. In order
to predict the future, Pundit is trained to select the most relevant cluster, as
an event, from the abstraction tree with respect to the input query.

Yeung and Jatowt [207] analyze historical events with the help of Latent
Dirichlet Allocation (LDA). They use LDA to identify topics and their distribu-
tions along time. Thereafter, they perform analysis on the topic distributions
to answer questions such as significant years and topics, triggers that caused
remembrance of the past, and historical similarity between countries. Abujabal
and Berberich [24] present, P2F Miner, a system which identifies important
events in document collections by counting frequent itemsets of sentences con-
taining named entities and temporal expressions. For evaluation, the authors
use Wikipedia’s event directory as ground truth.

STATE OF THE ART 3

Temporal Information Retrieval and Extraction

Comprehensive overview of advances in the field of temporal information
retrieval has been covered by Kanhabua et al. [130] and Campos et al. [53].
Existing work in temporal information retrieval has largely considered only
publication dates associated with documents to improve retrieval effectiveness.
To this end, there have been works using document publications dates to
analyze time-sensitive queries [127, 132], for re-ranking documents [70], and for
diversifying documents [40]. One of the seminal works in extraction of temporal
events was by Ling and Weld [147]. They outline a probabilistic model to
solve the problem of extracting relations from text with temporal constraints.
Generating timeline of events is yet another important temporal information
extraction task. Swan and Allan [191] present an approach for producing
timelines that depicts most important topics and events. Their algorithm
analyzes features based on named entities and noun phrases. The analysis first
constructs a 2× 2 contingency table indicating presence or absence of features.
They then measure the χ2 statistic to establish whether a pair of features
co-occur significantly. Baeza-Yates [33] propose a future retrieval (FR) system
that considers both text and temporal expressions to identify future events
relevant to an input query. Baeza-Yates outlined the components of a FR
system to be composed of an information extraction (IE) module, information
retrieval (IR) module, and a text mining (TM) module. The IE module would
act as a temporal annotator to identify and normalize temporal expressions.
The IR system is designed to incorporate the time dimension in an index, thus
retrieving documents with text and time similarity. The TM module would
identify the most relevant topics given a time period. He then presented a
retrieval model, in which each document consists of multiple temporal events.
A temporal event consists of a time segment and its associated likelihood of
occurring in the future. The score of the document is obtained by its textual
similarity and the maximum likelihood of all the temporal events in that
document.

Geographic Information Retrieval

Events as a means of exploring document collections has also been proposed
by Strötgen and Gertz [187]. Events are modeled by their geographic location
and time of their occurrence. For temporal queries expressed in simple natural
language, they outline an extended Backus-Naur form (EBNF) language that
incorporates time intervals with standard Boolean operations. Geographic
queries can also be modeled in their EBNF language, however the input for
them is a minimum bounding rectangle (MBR). Using this multidimensional
querying model, the user is able to visualize search results in the form of
events that are represented on a map. Giving special attention to geographical
information retrieval, Samet et al. [180] present a system NewsStand, that is
able to resolve and pinpoint a news article based on the geographic information

4 INTRODUCTION

present in its content. To do so, they discuss methods for toponymn resolution
that disambiguate the geographic location based on its surface form in news
content. The system involves a streaming clustering algorithm that keeps track
of emerging news in new locations and presents them on a map.

Semantic Search

Balog [34], gives an extensive overview of entity-oriented search and related
tasks. By disambiguating and linking named entities to knowledge graphs,
Hoffart et al. [116, 117] provide a framework for semantic search and per-
forming entity-centric analytics. The system provides features such as query
reformulations in the form of similar entities and visualizations that depict
entity counts and co-occurrence statistics. Bast and Buchhold [36] outline a
joint index structure over knowledge graphs and text. Their indexing infras-
tructure allows for fast semantic search and also provides context sensitive
auto-complete suggestions.

1.2 The Big Picture

This thesis is built around the following central hypothesis:

Given semantically annotated document collection,
traditional information retrieval models can be
improved by utilizing knowledge about semantic anno-
tations and using them as proxies for information need.

We leverage semantic annotations present in documents in three ways. First,
the lexico-syntactic structure imposed by semantic annotations on text helps
us intelligently index and query annotated document collections for knowledge-
centric tasks (e.g., information extraction, relation extraction, and question
answering). Second, by leveraging the semantics underlying the annotations,
we can help users explore large document collections by suggesting query
reformulations in the form of semantic aspects. Third, by combining multiple
semantic annotations (e.g., named entities, geographic locations, and temporal
expressions), interesting insights (e.g., in the form of events) can be mined
from large document collections. To illustrate these contributions, consider
the example annotated documents in Figures 1.1 and 1.2 for the remainder of
the section.

THE BIG PICTURE 5

Indexing Annotated Document Collections

Journalists and scholars in humanities often undertake knowledge-centric tasks
such as information extraction (e.g., companies such as (nnp)∗), relation-
ship extraction (e.g., [google | search giant] (word)∗ [youtube | picasa]),
and question answering (e.g., [google | search giant] �* acquired (org)).
Such knowledge-centric tasks are of importance for knowledge acquisition, for
instance when populating a knowledge graph. As mentioned earlier, semantic
annotations help us impose a lexico-syntactic structure over text. This lexico-
syntactic structure can assist us in querying text using regular-expression
patterns expressed between annotations and word sequences. In a manner sim-
ilar to grep on Unix, we enable semantic-grep over large annotated document
collections. Publications produced as part of this research are [92, 98, 103].

Facts concerning emerging named entities can not be spotted using an-
notated document collections. As for them, named entity recognition and
disambiguation (NERD) tools can not find an entry in the knowledge graph
for linking. To retrieve text regions that detail relationships between emerging
named entities, we must resort to finding mentions of all their aliases using
only text. For example, to retrieve all sentences that contextualize the acquisi-
tions of google, we need to spot sentences that contain the natural language
representation of this fact:

〈

google

google llc

search giant

,

acquired

acquisition

buys out

bought

slurped up

buying it out

,

youtube

nest

doubleclick

postini

waze

android

picasa

keyhole inc

〉
.

Hyper-phrase queries generalize such information-seeking behavior. In order
to speedup the execution of hyper-phrase queries, we present an optimization
framework that can determine an optimal join-order sequence for processing
the posting lists of documents that witness entities and their relationships.
We show that using our proposed optimization, we can retrieve evidences in
the form of text regions in response to hyper-phrase queries within seconds.
The indexing infrastructure that supports knowledge-centric tasks and the
optimization of hyper-phrase queries are described in Part I of this thesis.
Publications produced as part of this research are [100, 102].

6 INTRODUCTION

D1 2007-04-14

yesterday , the

search giant

bought postini ,

a california

based startup,

to bolster

security on its

networks.

D2 2015-01-15

google stepped

into the mobile

market by

acquiring

android , based

in california ,

in early 2000s .

D3 2007-05-10

this year , to

boost ad revenue

google acquired

doubleclick

(based in

nyc) for three

billion dollars .

D4 2013-01-15

google recently

acquired waze ,

based in israel ,

for a billion

dollars .

D5 2007-05-15

in 2004 the

search giant

bought picasa

(based in

california) for

an undisclosed

sum.

D6 2004-12-25

the latest

acquisition

by the

search giant

is keyhole inc

(based in usa).

D7 2015-01-15

alphabet has

invested

heavily in

nest (based

in america)

during early

2010s before

buying it out .

D8 2017-03-12

google llc

slurped up

boston

dynamics ,

based in

massachusetts ,

last year .

D9 2006-11-01

google acquired

youtube

(based in us)

for over a

million dollars

yesterday .

Figure 1.1: Example document contents with semantic annotations in the form of
named entities, temporal expressions, and numerical values.

THE BIG PICTURE 7

D1 2007-04-14

yesterday , the

search giant

bought postini ,

a california

based startup,

to bolster

security on its

networks.

[2007-04-13, 2007-04-13]

D2 2015-01-15

google stepped

into the mobile

market by

acquiring

android , based

in california ,

in early 2000s .
[2000-01-01, 2010-12-31]

D3 2007-05-10

this year , to

boost ad revenue

google acquired

doubleclick

(based in

nyc) for three

billion dollars .

[2007-01-01, 2007-12-31]

[google|search giant]
�* [bought|acquired]
�* org �* money

ie at scale

D5 2007-05-15

in 2004 the

search giant

bought picasa

(based in

california) for

an undisclosed

sum.

[2004-01-01, 2004-12-31]

D6 2004-12-25

the latest

acquisition

by the

search giant

is keyhole inc

(based in usa).

[2004-12-25, 2004-12-25]

uð

¹

ac
qu
ir
ed

[2
00
0,
20
10
]

a
c
q
u
ir
e
d

[2
0
0
5
,2
0
0
6
]

located in

kg curation mining using
semantic models

minimum bounding
rectangle for usa

D9 2006-11-01

google acquired

youtube

(based in us)

for over a

million dollars

yesterday .
[2006-10-31, 2010-10-31]

Figure 1.2: Leveraging semantic annotations for indexing, querying, and mining of
large document collections. Using semantic annotations, we implement a grep-like
interface for information extraction at scale. With the ability to acquire knowledge
for any combinations of word sequences and annotations, we can augment knowledge
graph facts with additional metadata (e.g., time scopes for KG facts). Finally, we
can model the semantics of annotations (e.g., minimum bounding rectangles for
geographic locations) to compute cohesive clusters of events.

8 INTRODUCTION

Querying Annotated Document Collections

Short and ambiguous queries often result in long lists of irrelevant documents
for the user to explore. This is largely due to inherent ambiguity underlying
natural language: meaning of a word depends on its context. Since, IR
systems largely rely on text, there is bound to be a mismatch between user’s
intent and the information conveyed by the document. Annotations offer us
deeper semantics to understand text in documents. We make use of these
semantic annotations, to assist users in information consumption and leading
them to their information need effortlessly. To this end, we first make use
of semantic annotations in the form of temporal expressions, that can help
us explore longitudinal document collections such as news archives. To do
this, we describe an approach to suggest time intervals of interest to keyword
queries (e.g., the time intervals [2000, 2007] and [2010, 2015] are of relevance for
the query google acquisitions). Building on this work, we then describe
methods to classify temporal queries at different levels of granularity (e.g., the
query google quarterly report is a temporally ambiguous query at month
granularity) and diversify documents retrieved for temporal queries using time
intervals of interest (e.g., re-ranking documents that cover the time interval
[2000, 2007] and [2010, 2015] higher for the query google acquisitions).
The aforementioned contributions appear in [93, 94, 96, 97].

We next consider annotations in the form of geographic locations and
other named entities in addition to temporal expressions, for assisting the
user query annotated document collections. To this end, we describe an
approach that generates semantic aspects for short and ambiguous queries
(e.g., 〈{postini, android, picasa}, {california}, [2000, 2007]〉 for the query
google acquisitions). The semantic aspects generated by our approach,
help expose documents’ key facets, such that the user can explore documents
without the need to read their contents. With the help of semantic aspects,
we therefore have the potential of uplifting unstructured text in documents to
an aspect-structured representation. Methods for assisting users in querying
semantically annotated document collections are described in Part II of this
thesis. Publications that were produced as part of this research are [104, 105].

Mining Annotated Document Collections

Semantic annotations can be further used to mine interesting insights from
large document collections. In this direction, we make four contributions.
First, we make use of temporal information present in documents to augment
knowledge graph (KG) facts. KGs describe relationships between entities
that can often be anchored in time (e.g., see 〈google, acquired, youtube〉
in Figure 1.2). To ascertain the validity of time intervals for such temporal
relations we can extract and aggregate their evidence from annotated document
collections. Second, we can leverage semantic annotations in the form of
named entities, geographic locations, and temporal expressions to mine events

PUBLICATIONS 9

from news archives. To do so, we propose an algorithm that aggregates the
event evidences, retrieved for a keyword query (e.g., google acquisitions),
using semantic models for named entities, geographic locations, and temporal
expressions. Third, we present jigsaw, an end-to-end query driven system
that generates structured tables for user-defined schema from unstructured
text. To generate tables, jigsaw provides operators that help define the
table schema, fill in null cell values, and link together near-duplicate rows
to generate high-quality tables from large annotated document collections.
Fourth and finally, semantic annotations in documents can lend themselves for
insightful analytics. For instance, we can depict the co-occurrence statistics of
named entities and time intervals in documents retrieved for the query google

acquisitions. Such analytics give an visual abstract of the information
contained in large semantically annotated document collections. Contributions
described for mining semantically annotated document collections are described
in Part III of this thesis. Publications produced as part of the aforementioned
contributions are [99, 101, 106, 107].

Applications

The goal of this doctoral dissertation has been to devise intelligent indexing
methods and algorithms that leverage semantic annotations to search large
document collections and for mining insights (e.g., real-world events). The
research has potential applications in digital humanities, where social scientists
are interested in history-oriented study of large born-digital text collections.
Anthropologists are interested in cultural and linguistic shifts that occur in
such collections. Collectively, we can perform computational culturomics [156]
on document collection to study anthropological trends. For instance, events
can be used to link and summarize information in multiple and diverse text
collections. In short, semantic annotations provide us a way to explore large
document collections, which otherwise through manual effort is impossible.

1.3 Publications

The publications produced as part of this doctoral research are categorized
under three broad themes: indexing, querying, and mining of semantically
annotated document collections. The contributions have appeared in fourteen
peer-reviewed publications and are listed below.

I. Indexing Annotated Document Collections

1. Dhruv Gupta. Event Search and Analytics. In WSDM 2016.

2. Dhruv Gupta and Klaus Berberich. GYANI: An Indexing Infrastruc-
ture for Knowledge-Centric Tasks. In CIKM 2018.

10 INTRODUCTION

3. Dhruv Gupta and Klaus Berberich. Structured Search in Annotated
Document Collections. In WSDM 2019.

4. Dhruv Gupta and Klaus Berberich. Efficient Retrieval of Knowledge
Graph Fact Evidences. In ESWC 2019.

5. Dhruv Gupta and Klaus Berberich. Optimizing Hyper-Phrase Queries.
Under Submission.

II. Querying Annotated Document Collections

6. Dhruv Gupta and Klaus Berberich. Identifying Time Intervals of
Interest to Queries. In CIKM 2014.

7. Dhruv Gupta and Klaus Berberich. Temporal Query Classification at
Different Granularities. In SPIRE 2015.

8. Dhruv Gupta and Klaus Berberich. Diversifying Search Results Using
Time - An Information Retrieval Method for Historians. In ECIR 2016.

9. Dhruv Gupta and Klaus Berberich. A Probabilistic Framework For
Time-sensitive Search. In NTCIR-12 2016.

10. Dhruv Gupta, Klaus Berberich, Jannik Strötgen, and Demetrios
Zeinalipour-Yazti. Generating Semantic Aspects for Queries.
In JCDL 2018.

11. Dhruv Gupta, Klaus Berberich, Jannik Strötgen, and Demetrios
Zeinalipour-Yazti. Generating Semantic Aspects for Queries.
In ESWC 2019.

III. Mining Annotated Document Collections

12. Dhruv Gupta and Klaus Berberich. Identifying Time Intervals for
Knowledge Graph Facts. In WWW 2018.

13. Dhruv Gupta, Jannik Strötgen, and Klaus Berberich. EventMiner:
Mining Events from Annotated Documents. In ICTIR 2016.

14. Dhruv Gupta and Klaus Berberich. JIGSAW: Structuring Text into
Tables. In ICTIR 2019.

15. Dhruv Gupta, Jannik Strötgen, and Klaus Berberich. DigitalHisto-
rian: Search & Analytics Using Annotations. In HistoInformatics 2016.

OUTLINE 11

1.4 Outline

The rest of the thesis is organized as follows. In Chapter 2, we cover the
required background for the technical discussion. Part I of the thesis covers
the contributions made towards indexing of annotated document collections.
In Chapter 3, we describe, gyani, the indexing infrastructure that supports
knowledge-centric tasks. In Chapter 4, we propose an optimization framework
to speed up the retrieval of evidences for hyper-phrase queries.

Part II of the thesis covers the contributions made towards querying of an-
notated document collections. In Chapter 5, we describe the generative model
for identifying time intervals of interest to keyword queries. In Chapter 6,
we describe our model for classifying temporal queries at different granular-
ities. In Chapter 7, we describe the diversification of search results using
temporal expressions. In Chapter 8, we describe the Temporalia-2 tasks at
the NTCIR-12 competition and the effectiveness results of our time-sensitive
search engine at those tasks. In Chapter 9, we describe the xFactor algorithm
that generates semantic aspects for short ambiguous keyword queries using
temporal expressions, geographic locations, and other named entities.

Part III of the thesis covers the contributions made towards mining of
annotated document collections. In Chapter 10, we describe our approach that
determines relevant time intervals for knowledge graph facts. In Chapter 11,
we describe EventMiner, a clustering algorithm that considers semantics
of annotations for aggregating event evidences. In Chapter 12, we describe
jigsaw, an end-to-end query-driven system that generates structured tables
for user-defined schema from unstructured text. In Chapter 13, we describe
DigitalHistorian, a complete time-sensitive search engine that allows users to
explore longitudinal document collections via temporal expressions. Chapter 14
concludes this thesis by presenting a summary of contributions this doctoral
dissertation has made to the research community.

CHAPTER 2

PRELIMINARIES

In this chapter, we cover the notations and concepts required for the technical
discussion of the thesis. First, we describe how documents in a collection can
be modeled using text and semantic annotations. Second, we outline the basic
framework of an information retrieval (IR) system and cover the fundamental
data structure required for the storage of documents in a collection. Third,
we describe the models that leverage only text for ranking documents given a
query. Fourth, we describe the semantic annotations we use and how these
can be obtained from natural language processing (NLP) tools. We end this
chapter with a discussion of the effectiveness measures that we use to assess
the quality of results obtained from our methods and systems.

2.1 Document Models

Collection Types. Consider a collection of documents, D = {d1, d2, . . . , d|D|}.
Publicly available document collections can be put into four different categories.
In the first category, there are archives of news articles. Examples of news
archives are: the New York Times Annotated corpus [18], the fifth Edition
of English Gigaword [5], and the GDelt news archives [7]. In the second
category, there are archives of web pages. Examples of web archives are: the
Living Knowledge corpus [15], ClueWeb’09 [1] web archive, and ClueWeb’12 [2]

13

14 PRELIMINARIES

web archive. In the third category, there are archives of books, e.g., Project
Gutenberg [20] stores works that are in the public domain. In the fourth and
final category are encyclopedic collections, for example Wikipedia [23].

Bag-of-Words Document Model. Each document in the collection
d ∈ D can be modeled in several ways. For our contributions, there are three
different ways in which we model the documents. In the first model, each
document d ∈ D contains only a bag of words dV drawn from vocabulary ΣV .
Thus, each document in such a model can simply be represented by the words
it contains disregarding their positional information: d = {dV}.

Bag-of-Annotations Document Model. In the second model, we
can augment the first representation with bags-of-annotations. The bags-
of-annotation can contain annotations for part-of-speech tags, named entities,
or temporal expressions. We shall discuss in detail the annotations that we
utilize and how they are obtained in Section 2.4. For now, let the alphabet
concerning an annotation type be denoted by ΣL. We can then represent
each document in the collection d ∈ D using the second representation for
documents as:

d = {dV , dL1 , dL2 , . . . , dLn}. (2.1)

Lexico-Syntactic Document Model. The first and second representa-
tion for documents disregard the positional information among words and the
annotations. Furthermore, for the second representation we do not keep the
information as to which annotations adorn which words in the document.

In the third model, we add syntactical information regarding words, anno-
tations, and the sentences which contain them to the document model. We
therefore associate positional information regarding the words and annotations
in each document. By doing so, we can then identify which annotations adorn
which word sequences. Within this document model, we assume each annota-
tion (including words) ` are obtained from an alphabet ΣL. Each document in
the collection d ∈ D thus consists of layers of annotations dL. Each annotation
layer is modeled as:

dL = 〈`[i,j], . . . , `[k,l]〉, (2.2)

where, each annotation ` spans the positions described by the interval in
subscript ([i, j] with i ≤ j).

2.2 Information Retrieval Framework

Given a keyword query q, a set of pseudo-relevant documents R for it is
retrieved using the method IR(•). We follow the notational convention in [55]
to describe a simple search system: R = IR(q,Θ,D). IR(•) is a retrieval
method wherein the argument q specifies the query keywords, Θ ∈ Rm specifies
a set of parameters relevant for IR(•), and D specifies the document collection.
We next illustrate how to implement an IR retrieval system using only text
within documents.

INFORMATION RETRIEVAL FRAMEWORK 15

w1 w2 w3 . . . w|Σ|

d1 0 × × . . . ×

d2 × 0 0 . . . ×

d3 0 × 0 . . . ×

.

.

.

.

.

.

.

.

.

.
.
.

. . . .
.
.

d|D| × 0 × . . . ×

(a) Document-Term Matrix.

w1 w2 w3 . . . w|Σ|

d2 d1 d1 . . . d1

.

.

.

d3
.
.
.

d2

.

.

.

d3

.

.

.

(b) Inverted List Representation.

Figure 2.1: Illustration of indexing documents using a simple document-term matrix.
The ×s denote either 1 (a Boolean value indicating presence of terms) or its term
frequency (a non-negative integer). Note that the matrix is sparse, i.e., the number of
zeros is much larger than the number of non-zero values. To avoid materializing the
complete sparse matrix for document retrieval, inverted lists that contain document
identifiers can be created instead.

Document-Term Matrix. The simplest data structure to organize docu-
ments for retrieval is using a matrix. The matrix M|D|×|Σ| stores the association
between documents (as rows) to terms (as columns) (see Figure 2.1). Each
cell in the document-term matrix can then either record a 1 (a Boolean value
indicating presence of terms) or a its term frequency (a non-negative integer).
Absence of terms in documents is simply recorded by a 0. Boolean retrieval
of documents can be done by selecting the documents that correspond to the
query terms (i.e., words in the column). Document-term matrices are useful
in scenarios when its representation can fit into main memory. That is, it is
only useful for a small number of documents. As the collection size grows, the
document-term matrix may turn out to be sparse. That is, the number of zero
values are much larger than non-zero values. In such a case, the amount of
memory required to materialize a dense matrix allocates more memory to zero
values than to non-zero values.

Inverted Indexes. To avoid materializing the complete matrix that is
sparse, we can store the association of document and terms using a hash map or
an inverted index. An inverted index, records for each word in the collection’s
vocabulary, a list of the document identifiers containing that word: wi → ∪ d.
To further save space, the document identifiers in the list can be arranged in
an ascending order and compressed using techniques such as Delta encoding.
Modern IR systems, often require more metadata than just the document
identifiers. Additional metadata in the form of publication dates, positional
offsets, annotations, and term frequencies are then also accommodated along
with compressed lists of document identifiers as payload.

16 PRELIMINARIES

Index Compression. Inverted indexes comprise of posting lists for in-
dexing units that are essentially arrays of sorted integers [50]. As mentioned
before, the lists of integers in inverted indexes can be compressed by computing
the differences (deltas) between subsequent elements and storing the resulting
differences. Improving on this, lists of integers can be further partitioned into
fixed sized pages or blocks to determine the begin and end bounds against
which the deltas need to be computed. This technique known as Frame of Ref-
erence, is used so that the deltas can be stored in a fixed number of bits [56, 87].
Zukowski et al. [216] describe how to determine the page or block size such
that it provides optimal compression. This technique known as Patched Frame
of Reference, amends the Frame of Reference technique to avoid selecting
partitions that contain large values, thus causing more bits to be allocated for
storing the deltas [56]. An excellent implementation of the Patched Frame of
Reference in the Java programming language is provided by Lemire [11].

2.3 Ranking Documents

IR(•) represents a totally ordered relation in R ⊆ D. That is, given d, d′ ∈ R
then either d � d′ or d′ � d [71], where ties are broken arbitrarily. Internally,
IR(•) utilizes a score(•) function to assign relevance of documents for the
given query to produce the total order,

score(dW ,R) : {dW ∈ d | ∀d ∈ R} → R+. (2.3)

Okapi BM25 is an example scoring function that is based on the Binary
Independence Model [50]. The Binary Independence Model assigns relevance
to documents by accounting for the presence of query terms. Two key assump-
tions that the Binary Independence Model posits are: that the terms occur
independent to each other and that a document is relevant to a query if and
only if the query terms are present in the document [50]. The Okapi BM25
is one such derivative of the Binary Independence Model that accommodates
parameters that can be optimized for different types of document collections.
To this end, it provides parameters Θ ∈ Rm to adjust the importance given to
the query terms (k3), document terms (k1), and document length (b). Without
getting into the details of its derivation, the ranking formula for Okapi BM25
can be stated as [150, 178]:

∑

w∈q
log

[|D|
df(w)

]
· (k1 + 1) · tf(w, d)

k1((1− b) + b · |d|/µ(d)) + tf(w, d)
· (k3 + 1) · tf(w, q)

k3 + tf(w, q)
(2.4)

In Equation 2.4, df(w) gives the document frequency of the word in entire
collection D and µ(d) the average document length in the collection [150, 178].

SEMANTIC ANNOTATIONS 17

1 2 3 4 5 6 7 8 9 10 11

$1 × 109

[2006, 2006]

ORG ORG DATE MONEY

NNP VBD RP NNP IN CD IN IN DT CD NNS .
Google took over YouTube in 2006 for over a billion dollars.

Figure 2.2: An example of an annotated text region. Annotations shown are part-of-
speech, named entities, resolved temporal and numerical expressions.

Unigram Language Model with Dirichlet Smoothing is an example
scoring function inspired from probability theory. To rank documents d ∈ R
retrieved for a given query q, a generative model is assumed. The generative
story radically differs from the Binary Independence Model and is as follows.
The document collection represents the distribution of words and documents
represent a sample of words from the collection [150]. Using the documents
as a sample of words, the unigram language model then measures what is
the likelihood of generating the query terms from the document [150]. An
important assumption that unigram language models make is that each word
occurs independent from each other (just like the Binary Independence Model).
That is, dependence or positional information amongst words is discarded [150].
The query likelihood of a given keyword query q can be estimated by using term
frequencies of words in document tf(w, d). Additionally, Dirichlet smoothing
is used to address the zero-probability problem of having words that could
not be found in the document. The unigram language model with Dirichlet
smoothing can be stated as:

P (q | d) =
∏

w∈q

tf(w, d) + k · tf(w,D)
|D|

|d|+ k
, (2.5)

where, P (q|d) the likelihood of generating the query q from document d, |d|
denotes document length, |D| denotes the collection size, and k is a constant.

2.4 Semantic Annotations

Natural language processing (NLP) tools allow us to markup various kinds of
annotations in text. We specifically focus on five fundamental types of semantic
annotations that are commonly provided by off-the-shelf NLP toolkits: part-
of-speech, temporal expressions, numerical values, geographic locations and
other named entities. An example of an annotated text is shown in Figure 2.2.
We describe these five different types of semantic annotations in the following
paragraphs and justify their importance.

18 PRELIMINARIES

Part-of-Speech (PoS) Tags are assigned to a word based on common
linguistic characteristics derived from their surrounding terms [128]. Thus, a
word’s PoS tag can quickly help to describe the context in which it occurs [128].
Examples of PoS tags are: nouns (nn), verbs (vb), and quantities (cd). PoS
tags are significant as they form the basis for many tasks in computational
linguistic. For instance, PoS annotations such as nouns can be used to
generate text summaries. They can also be employed for complex natural
language processing tasks such as named entity recognition and named entity
disambiguation [128].

Temporal Expressions convey mentions of time in text. Natural language
descriptions of time are often convoluted, as time can be explicit as a concrete
date (e.g., July 4, 1776), it can be implicit emphasizing that it is commonsense
knowledge and refers to already known facts (e.g., independence day of the usa),
or it can be relative with respect to dates mentioned in the narrative of the text
(e.g., yesterday). Temporal annotators are able to detect these implicit, explicit,
and relative temporal expressions. Moreover, the detected expressions can be
resolved to definite time intervals by using metadata such as publication dates.
Formally, each temporal expression that is annotated is represented as an
interval (t = [b, e]) with a begin and end time point. Temporal expressions are
significant in computational linguistics as they signify the presence of events.

Numerical Values are resolved values of words tagged as cardinal numbers
(cd) that are not temporal expressions. Examples of such annotations are
percentage values, monetary values, and other numerical figures. Just like
temporal expressions, these numerical values can be explicit (e.g., 95%) or
implicit (e.g., a dozen). Numerical values are useful in quantifying tragic events,
e.g., identifying casualties of a natural disaster or for quantifying financial
events, e.g., profit and loss for a company.

Named Entities are mentions of persons, organization, locations etc. in
text. These annotations are classified based on context surrounding their
mentions. For instance, in the sentence, 〈alan turing was a scientist who lived
in britain〉, the mentions alan turing and britain are classified as person and
location, respectively. Named entities can be further disambiguated to their
canonical entries (URI) in knowledge graphs. Entity annotations allow for
advanced text analytics, e.g., the ability to perform entity summarization by
retrieving all sentences in documents that contain mentions of that entity.

Geographical Locations can be obtained as a subset of named entity an-
notations. Geographic locations such as those known to be cities, countries, or
continents, can be filtered from named entities by using geographical relations
stored in a knowledge graph. These relations can be further used to resolve
the locations to their geographical coordinates. With these set of coordinates,
we can subsequently construct complex models for their representation, e.g.,
minimum bounding rectangles over the coordinates.

These five kinds of annotations offer an immense opportunity for various
text analytics applications that can be developed for linguists, scholars in
humanities, and journalists.

EFFECTIVENESS MEASURES 19

2.5 Effectiveness Measures

To assess the quality of results produced by our methods, we measure precision
and recall of the generated result set R with respected to the acquired ground
truth G. Precision is measured by computing the fraction of results (e.g.,
documents) that are deemed relevant with respect to the ground truth from
the total result set size [150]:

Precision =

∑
1≤i≤|R| 1

(
Ri = Relevant

)

|R| . (2.6)

In the equation above, the indicator function 1(Ri = Relevant) evaluates
whether the document Ri is relevant or not. If the method produces a ranked
list of results, then we can compute precision at k (P@k) by truncating the
list at length k. The precision is then computed as:

Precision@k =

∑
1≤i≤k 1

(
Ri = Relevant

)

k
. (2.7)

Recall, on the other hand, measures the number of relevant results identified
by the system from the total number of relevant results in the associated
ground truth G. This is can be formalized as [150]:

Recall =

∑
1≤i≤|R| 1

(
Ri = Relevant

)

|G| . (2.8)

Again, if the method produces a ranked list of results, then recall at k (R@k)
can be computed by truncating the result list at length k. Both precision and
recall can be summarized by using the F1 measure. The F1 computes the
harmonic mean of precision and recall to combine both measures:

F1 =
2 · Precision · Recall

Precision + Recall
. (2.9)

In ranked list of results, it is often desirable to assess the quality of ranking
by identifying the position of the relevant result. To assess this quality, the
reciprocal rank (RR) metric is used. RR computes the inverse of the position at
which the first relevant result was identified [50] (ignoring zero valued results):

Reciprocal Rank =

(
min

1≤i≤|R|
1
(
Ri = Relevant

)
· i
)−1

. (2.10)

Mean reciprocal rank (MRR) reports the average of the reciprocal rank over
a query workload presented to the system.

PART I

INDEXING ANNOTATED
DOCUMENT COLLECTIONS

CHAPTER 3

GYANI: AN INDEXING
INFRASTRUCTURE FOR
KNOWLEDGE-CENTRIC TASKS

• Dhruv Gupta and Klaus Berberich. GYANI: An Indexing Infrastructure for
Knowledge-centric Tasks. In CIKM 2018, pages 487–496.

• Dhruv Gupta and Klaus Berberich. Structured Search in Annotated Docu-
ment Collections. In WSDM 2019, pages 794–797.

3.1 Introduction

Knowledge-centric tasks such as information extraction rely on meaningful text
regions extracted from the analysis of large semantically annotated document
collections. A semantically meaningful text region connects, for instance, a
named entity to a literal via a paraphrase of a knowledge graph predicate
(e.g., alan turing published papers during the 30s) within a context window of
few sentences. Currently there exists no indexing infrastructure that allows
for interactive querying of such text regions on large annotated document
collections. To enable such complex knowledge-centric tasks at scale, we
are faced with three key challenges. The first challenge is to provide a more
expressive query language to enable knowledge acquisition at scale. The second

3

4 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

challenge is to identify a data model that respects the salient relationships
between sequences of words and semantic annotations. The third challenge is
to identify key indexes as building blocks using which we can then assemble
the required search results quickly. By building such a core infrastructure and
an expressive language for querying such text regions at scale we can provide
more training data for improving the effectiveness of complex machine learning
algorithms that are developed to serve these knowledge-centric tasks.

A flexible and more expressive query language for us is one that goes
beyond simple Boolean operators. What is thus needed is a counterpart to
grep for analysis of large semantically annotated document collections. grep
is a powerful Unix utility that allows for regular expression based search over
text documents. It is an indispensable tool when trying to find and manipulate
lines of text matching a particular regular expression. However, when it comes
to searching millions of annotated documents, a counterpart to grep is missing.
This is challenging, as natural language text, unlike field delimited files (e.g.,
tsv) is not structured. However, with the help of modern natural language
processing tools we can impose a lexico-syntactic structure over text. Such
tools now allow us to annotate large document collections with various kinds of
semantic annotations, such as part-of-speech (e.g., nn), temporal expressions,
(e.g., last year), and named entities (e.g., Alan Turing). The annotations
give deeper semantics to the terms as well as provide canonical linguistic
structure to text. This lexico-syntactic structure thus offers us an opportunity
to implement a counterpart to grep over annotated document collections.

Queries composed of regular expressions over word sequences and annota-
tions offer us an opportunity for knowledge acquisition at scale. With such a
query language we can simplify many knowledge-centric tasks. For instance,
a template to identify n-ary relations about disasters can be expressed as:
〈(number) were killed in (location) on (date)〉. Below we discuss existing
solutions for knowledge-centric tasks and outline how these approaches can
benefit from our infrastructure.

Information Extraction requires one to acquire facts that hold between
named entities from unstructured text [112, 162]. For this task, extraction
templates are employed, e.g., Hearst patterns [112]. A template for identifying
scientists in a document collection, can be written as: 〈scientists such as nnp1 . . .
nnpn〉. To execute this example, documents that contain the terms 〈scientists
such as〉 are retrieved and the sentences are annotated for part-of-speech tags
and subsequently filtered to produce relations. With gyani this can be achieved
interactively by issuing the following query: 〈scientists such as (person)∗〉.

Question Answering. Knowledge Graphs encode relationships or facts in
the form of 〈subject, predicate, object〉 triples. Natural language questions
such as: 〈which countries joined nato and when?〉, need to be transformed into
a structured query using the sparql language [80, 183]. However, knowledge
graphs are rarely complete (e.g., with respect to temporal information) and
thus we are forced to spot the answers for such questions in large annotated
document collections. By providing the facility to formulate a question as a

INTRODUCTION 5

template that expresses the relationship between a named entity and temporal
expression we can provide a large extracted set of sentences as an input to
machine learning algorithms that can further reason about the correct time
interval for this question [99]. For example, with gyani we can extract training
data with the following query: 〈(location) joined nato (date)〉.

Fact Spotting. The inverse task of information extraction is to find textual
evidence in support of the facts in a knowledge graph [154]. To deal with the
linguistic variations in which many of the canonical relations are phrased, para-
phrase dictionaries are employed [162]. To account for the many different ways
a named entity can be mentioned, its surface forms are added to increase the
recall of the pattern-matching procedure. The procedure to perform this task
can be greatly simplified by combining regular expressions, annotations, and
word sequences. This has important consequences when we are trying to spot
out-of-knowledge-graph entities, for which we may have to manually specify
many surface forms for a yet to be canonicalized named entity. For example,
consider the query: 〈[united states | us | usa] to criticize [russia | russland]〉.

Semantic Search. Semantic annotations are an important building block
for many linguistic and information retrieval tasks as they lend themselves for
conveying deeper semantics to the terms in text. Thereby, allowing the user to
convey her information need in a more structured manner [36, 80]. However,
current inverted indexes offer only limited capabilities to search and analyze
semantically annotated text. Using prior art many documents that might
qualify to satisfy the user’s information need are lost due to this semantic gap.
For instance, a user issuing the query 〈nineties decade〉, will miss documents
that also contain the time interval 1990 − 1999 or the query 〈paris hilton〉
may retrieve documents matching the location and hotel when the intent was
related to the celebrity. We propose to bridge the semantic gap by providing
operators to attach meanings to terms. For example, to retrieve sentences in
document collections detailing relationships between the person, paris hilton
and the time period, nineties decade: 〈(paris hilton)⊕(person) (word)∗ (nineties
decade)⊕([1990,1999])〉.

Implementing a grep-like interface over large annotated document collections
poses many challenges. At the modeling level, we need to identify a data
model in which we can represent a text document along with a multitude
of annotations while preserving the sequential order of words. At the index
implementation level, we need to work through all possible choices for indexing
units in the design space such that the index structures provide fast query
execution times (i.e., order of millisecond query execution times for complex
and lengthy queries). To address these challenges, we describe gyani, an
infrastructure that indexes semantically annotated text using a novel data
model and provides a highly expressive language for queries involving regular
expressions over word sequences and annotations. Furthermore, we show how
we model the possible combinations of word sequences and annotations in a
multi-layered data model to process complex and verbose grep-like queries for
knowledge-centric tasks quickly and at scale.

6 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

Outline. First, we describe a novel data model to represent text with
various layers of semantic annotations (Section 3.3.1). Second, we propose
a novel query language involving regular expressions between words and
annotations (Section 3.3.2). Third, we present an efficient implementation of
our data model that provides fast query execution times (Section 3.3.3). Finally,
we construct a comprehensive testbed of knowledge-centric tasks to show the
efficiency of gyani at the tasks of information extraction, relation extraction,
question answering, fact spotting, and semantic search (Section 3.4).

3.2 Related Work

Searching Semi-Structured Text. The earliest attempts in information
extraction from semi-structured text documents relied on region algebras [61,
64, 179]. The pat system [179] supported expressions that could match
SGML tags to match text regions for information extraction. Their approach
also allowed the user to query for regions of text with the help of the region
expressions. Clarke et al. [61] proposed a data model that relied on maintaining
generalized concordance lists to index positional spans for SGML tags. A clear
contrast between these early works and our work is in accommodating semantic
annotations in text.

Lalmas [139] provides an overview of work on XML retrieval including
expressive query languages such as XPath and XQuery. While documents with
semantic annotations could be represented as XML, this would entail a blowup
in space and formulating regular expression queries for knowledge-centric tasks
in the aforementioned languages is all but intuitive.

Miller and Myers [157] were the first to realize the unavailability of popular
Unix delimited-text manipulators such as grep for semi-structured documents.
Their data model represented text regions by Cartesian coordinates. The
authors then leveraged R*-trees to intersect and compute proximity between
rectangles. Cho and Rajagopalan [60] focused on how to allow queries to
contain regular expressions at character level. Their proposal was the concept
of a k-gram index that indexed selective n-grams for efficient regular expression
based search. However, both these approaches do not provide any scope for
handling semantically annotated text.

Searching Annotated Text. Ferrucci and Lally [80] presented Unstruc-
tured Information Management Architecture (UIMA), a comprehensive and
integrated suite of annotators and text analytics pipeline. UIMA supported
modeling implicit annotations present in text as “common analysis struc-
ture” that allowed overlaying of annotations to cover common portions of
text. Cafarella and Etzioni [51] proposed the “neighbor index” that provided
Boolean queries involving phrases, annotations, and functions over annotations.
Both the UIMA framework and “neighbor index” aimed at providing the
functionality of Boolean queries (not regular expressions) over annotated text.

GYANI 7

Li and Rafiei [143] described how to execute queries involving wildcards,
part-of-speech tags, and words. Their implementation relied on commercial
search engines for retrieving text snippets. Bast and Buchold [36] proposed an
index architecture that incorporates both knowledge graph relations associated
with entities and the contextual text containing that entity. This thus allows
for search over a combined index of knowledge graph and unstructured text.
Massung et al. [209] investigated how to index aggregated feature vector
representations of text along with documents for a unified framework for
analysis. A recent survey on information extraction over text and knowledge
graphs [37] lacks any mention of an implementation that allows for structured
search involving word sequences, annotations, and regular expressions.

The computational linguistics community also looked into query languages
for annotated corpora (including additional annotations such as dependen-
cies) [83, 136]. Scalability, though, has not been a focus in those works and
the considered corpora were at least an order of magnitude smaller than the
ones we consider in this work.

Searching Text Using RDBMS. Solutions to enable structured search
over semantically annotated text can also addressed using conventional database
technologies [66, 214]. However, none of these approaches supports wildcard
operators. By adopting the RDBMS approach, Zhou et al. [214] described
a data model that encodes words, annotations, the confidence of the accom-
panying annotations, and its positional span. Queries over this data model
are mapped to SQL queries for execution. Cornacchia et al. [66] considered
the problem of implementing IR systems using array databases with efficient
storage schemes for sparse arrays.

3.3 GYANI

Gyan in Hindi means knowledge and gyani refers to a person who possesses
knowledge. Our proposed infrastructure is named gyani to personify an index
over text that contains knowledge by virtue of semantic annotations adorned
on text. We next describe the data model that consists of layers of annotations
that can be attached to sequences of words, thereby allowing different semantic
interpretations of natural language. We then describe the query language to
perform regular expression based search in semantically annotated text. Lastly,
we discuss the design space of the data structures used for indexing annotated
documents in gyani.

3.3.1 Data Model

Consider a document collection, D = {d1, d2, . . . , dN}. Each document in the
collection d ∈ D consists of layers of sequences containing words or semantic
annotations. Each layer of sequences consists of elements drawn from a
particular vocabulary with their positional span. Concretely, each element ` in

8 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

a layer L is a relation defined over the Cartesian space described by its layer
alphabet ΣL and an interval of natural numbers N indicating their positions
in the sequence. Formally, the definition of an element is,

` ⊂ N× N× ΣL. (3.1)

The word layer in each document consists of words drawn from vocabulary
ΣV with unit length positional spans. Formally,

dV = 〈w[1,1], . . . , w[|d|,|d|]〉, (3.2)

where, |d| denotes the number of words in the document and the interval in
subscript records the unit length spans as positions of the word in the sequence.

Natural language word sequences present in the documents can be prepro-
cessed with various kinds of semantic annotators, e.g., part-of-speech, temporal
expressions, and named entities. Each type of annotation thus signifies an
interpretation (semantics) of the terms by inspecting the signals derived from
its surrounding context. For instance, in the sentence, 〈peace was brokered
between them during 1903〉, the term 1903 will be tagged as a cardinal number
by part-of-speech tagger and as a date by a temporal tagger. We treat each
sequence of annotation derived over a sequence of words as an annotation
layer. An annotation layer dL over a document is denoted by,

dL = 〈`[i,j], . . . , `[k,l]〉, (3.3)

where, each annotation ` spans the positions described by the interval in
subscript ([i, j] with i ≤ j). In short-hand notation, we refer to a sequence
of words as, w〈i:j〉 = 〈w[i,i], . . . , w[j,j]〉, and a sequence of annotations as,
`〈i:l〉 = 〈`[i,j], . . . , `[k,l]〉, where i ≤ j, k ≤ l, and i < k. A text region consists
of word sequences w〈i:j〉 in a document d ∈ D that satisfies conditions imposed
by the query involving word sequences and the semantic annotations. In other
words, a document is considered a match if it contains at least one text region
that meets the constraints specified in the query involving word sequences and
semantic annotations.

Each document is further accompanied by metadata such as its unique
identifier (id) and its timestamp (ts), dM = 〈id, ts〉. The pairs of all valid
〈id, ts〉 pairs in the document collection (D) are denoted by ΣM. Figure 3.1
illustrates how the different annotation layers for part-of-speech tags (dP),
named entities (dE), temporal expressions (dT), and numerical values (dN)
are overlayed over a sequence of words according to our data model.

3.3.2 Query Language

We now describe the language to express queries involving regular expressions
over word sequences and annotations. The complete grammar containing
production rules for query generation is given in Figure 3.2. In the following

GYANI 9

Numerical
Values

Temporal
Expressions

Named
Entities

Part of
Speech

Words

1 2 3 4 5 6 7 8

Alan Turing published seven papers during the 1930s

NNP NNP VBD CD NNS IN DT NNS

PERSON NUMBER DATE

[1930,1939]

7.0

Figure 3.1: Data model showing the text & annotation layers.

paragraphs we discuss the semantics of the operators and how to form queries
using this grammar.

To formalize the semantics of the operators, we use the function gyani(Q) to
represent the mapping between query Q and a set of documents {d1, d2, . . . , dk}
that satisfy the conditions of the query. A document is deemed a match if it
contains a text region matching the query. A text region is considered a match
to a query if and only if the sequence of elements `〈i:l〉 in the query occurs as
a contiguous sequence in the appropriate layer of the document dL. Formally,

`〈i:l〉 = 〈`[i,j] . . . `[k,l]〉 < dL. (3.4)

For instance, 〈alan turing〉<〈computer scientist alan turing〉, while 〈scientist
turing〉 6<〈computer scientist alan turing〉.

Boolean Operators in our query language are: and (∧), or (∨), and
negation (¬). The binary operators and and or act on two sequences of
words such that the resulting documents must contain both or either of the
sequences of words respectively. The negation operator, on the other hand,
is a unary operator and acts on a sequence of words such that the resulting
documents do not contain that sequence of words. For instance, the query:
[〈alan turing〉 ∨ 〈enigma machine〉] ∧ 〈wins war〉 selects those documents that
contain either of the sequences of words 〈alan turing〉 or 〈enigma machine〉 with
the phrase 〈wins war〉.

Stack Operator. With the help of annotations, different interpretations
can be stacked on top of sequences of words in the text layer. This is done
with the help of the stack (⊕) operator. Thus, a particular interpretation
can be attached to a sequence of words, for example: 〈last year〉⊕[1918,1918],
refers to those temporal expressions that resolve to the year 1918. The stack
operator is a unary operator, such that it results in only those documents that
contain the sequences of words with that particular annotation attached to
them. Formally, the semantics can be specified as,

gyani
(
w〈i:j〉 ⊕ `[i,j]

)
=
{
d∈D

∣∣w〈i:j〉 < dV ∧ `[i,j] < dL
}
.

10 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

For example, the query: 〈paris hilton〉⊕(person) retrieves those documents
that contain the sequence of words paris hilton annotated as a person by the
named entity annotator.

Regular Expression Operators. We consider four basic regular expres-
sions in our query language at word or annotation level. These are (based
on [8]), star (*) that allows greater than zero repetition; plus (+) that allows
greater than one repetition; ques (?) that either matches a single word or
annotation or nothing; and dot (�) that acts as a placeholder for any word
or annotation. We also provide the union (|) operator to group together
results for two different word sequences. The semantics of the union operator
is equivalent to that of the or operator. We are particularly interested in
combinations of those regular expressions that join two word or annotation
sequences to match and retrieve text regions. The regular expression operators
that we provide are: dot star (�*), dot plus (�+), dot ques (�?), and dot
(�) operator. We show the semantics of the dot plus operator below:

gyani
(
w〈i:j〉 �+ w〈k:l〉

)
=

d ∈ D

∣∣∣∣∣∣∣

(w〈i:j〉 < dV)∧
(w〈k:l〉 < dV)∧

(k − j ≥ 2)

. (3.5)

Semantics for the other regular expression operators can be obtained simi-
larly by adjusting the gaps between the two word or annotation sequences that
are being joined (i.e., varying the distance (k− j) in Equation 3.5). Concretely,
for the dot star �* operator we have (k−j ≥ 1); for the dot ques �? operator
(k − j ∈ [1, 2]); and for the dot � operator (k − j = 2). The operators �* and
�+ can be greedy in matching multiple sentences in a document that satisfy
the positional constraints. In order, to keep only the shortest possible match,
these can be turned lazy by using ques as a flag. That is, the operators �*?
and �+? match only the shortest positional difference.

Projection Operators. The regular expression operators, �* and �+ will
yield documents that contain text regions spanning multiple sentences. In
many knowledge-centric applications it is desirable that the text regions lie
within a context window of few sentences or be restricted to a single sentence.
To support this operation, we propose the k−project operator πk where k
specifies the number of sentences the positional intervals may span.

We further specifically instantiate operators that project the regular ex-
pression match for words or annotations within a sentence boundary. These
operators consist of phrase star (`*), phrase plus (`+), phrase ques (`?),
and phrase dot (`) operators. The phrase projection operators are obtained
by binding the regular expression to a specific annotation type. The overriding
constraint we impose on these operators is that the resulting positions lie
within sentence boundaries in addition to the positional constraints of the
regular expression. The semantics of one such instance (other instances can
be derived in a similar manner) is stated below:

GYANI 11

operator→ ∧ | ∨ | ¬ | ⊕
reg. expr.→ * | + | ? | . | |

query→ | 〈sequence〉 operator 〈sequence〉 query∗

| 〈sequence〉 reg. expr. 〈sequence〉 query∗

| 〈sequence〉 reg. expr. query∗

| reg. expr. 〈sequence〉 query∗

| [query] | 〈 sequence 〉 | ε
sequence→ Σ+

V | Σ+
P | Σ+

E | Σ+
T | Σ+

N

Figure 3.2: The query language.

gyani
(
w〈i:j〉 `*

)
=

{
d ∈ D

∣∣∣∣∣
(w〈i:j〉 < dV) ∧ (l[p,q] < dL)∧

(j < p) ∧ ([i, q] ⊆ [m,n])

}
.

where, the interval [m,n] encompasses the sentence boundary containing the
word sequence and the annotation in the document. We can further combine
regular expressions and the projection operators to establish the following
equivalence:

wl `+ wr ≡ π1

(
wl �*? ` �*? wr

)
. (3.6)

3.3.3 Index Design

Next, we discuss the design and implementation aspects concerning the data
model. While considering the implementation for gyani we considered three
key aspects: scalability, reliability, and compatibility. Prior work [170, 202]
highlights the utility of using combinations of inverted indexes and augmented
indexes (e.g., next word, phrase, or direct indexes) can provide in answering
phrase queries. In particular, we base our index design on a combination
of inverted and direct indexes. Since, these indexes are present in existing
infrastructure [170], a complete overhaul of the indexes is not required thereby
assuring compatibility of our implementation. Additionally, these indexes can
be sharded (distributed) across a network of commodity hardware, making
them extremely scalable and reliable.

Design Space. We now describe the design space to decide what are
the appropriate indexing units for our data model. The basic queries in our
language consist of word sequences, w〈i:j〉. The word sequences can be stacked
with annotations, w〈i:j〉 ⊕ `[i,j], to specify semantics. Moreover, for queries
involving regular expressions, we need to maintain positional constraints.
Figure 3.3 summarizes the key choices. We now contemplate four different
choices for designing our indexes to support the query language.

12 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

näıve design. A näıve design choice is to implement grep as-is. That is,
given a query traverse the entire document collection to retrieve the required
documents. This can also be achieved by a direct index, that stores the layers
of annotations and word sequence against the document metadata.

inverted index design. The näıve design can be improved by using an
inverted index over elements to narrow down the search space. The inverted
index structure will thus store individual elements with singleton positional
offsets, to indicate unit intervals. As shown in Figure 3.3, this design choice
corresponds to indexing units being unigrams w[i,i] or annotations `[i,i] spanning
unit intervals. The types of queries that can be answered using an inverted
index built on these units are Boolean and wildcard combinations of unigrams
or single annotations. However, there are three shortcomings of adopting
this design choice. First, this approach is lossy, as the positional information
conveyed by intervals is lost. That is, a named entity with positional interval
[i, j] is not equivalent to {i}, {i + 1}, . . . , {j}. For instance, the annotation
(person)[1,2] conveys that the words at positions w[1,1] and w[2,2] is one person
as opposed to (person)[1,1] & (person)[2,2] indicative of two different persons.
Second, retrieving word sequences incurs a high computational cost as the
number of calls to the index is proportional to the size of the sequence. Third,
word sequences stacked with annotations can not be answered in this design
choice. These issues can be mitigated to some degree by combining the inverted
index with the direct index. This combined design mimics the choice made by
Cafarella and Etzioni [51] for their neighbor index. The neighbor index modeled
an inverted index over unigrams and then wraps the annotation layer for the
document containing the unigram as an additional payload to the posting list.

k-fragment design. Going beyond single elements as indexing units, we
can decide on their size with respect to our annotation choices. Since, the
annotations for PoS tags, named entities, temporal expressions, and numerical
values incrementally build on each other, they share positional information
based on the word sequences which they annotate. For example, in Figure 12.2,
the word sequence alan turing is annotated with PoS tags {(nnp)(nnp)} and
named entity tag (person). Thus, we can treat the layers of annotation that
build on the PoS tag as a fragment or as an indivisible unit to index. We
refer to this indivisible unit of variable word sequence attached to its k − 1
annotation layers as a k-fragment. In this design space, semantic queries
can be answered, if and only if the variable-length word sequence and all
the attached annotations for it are known to the user. While, maintaining
complete fragments in an inverted index is cheap, it poses little utility since
the length of the word sequences accompanying a particular annotation is
variable. Therefore, both these design choices are ill suited for implementing
our data model. We thus look at the design space between these two extremes,
which is discussed next.

gyani design. We have already considered the extremes of indexing word
sequences as single words to variable length fragments. A better design
choice, is thus to consider word sequences as combinations of fixed size n-

GYANI 13

grams. The n-gram index, consists of n-grams pointing to a list of post-
ings that contain the metadata (〈id, ts〉) and a list S of positional spans
(s = [i, j]) of the document in which it occurs. Specifically, we construct
unigram (n = 1), bigram (n = 2) and trigram (n = 3) indexes to retrieve
word sequences. In addition, we construct annotation indexes to main-
tain the locations of semantic annotations in the document collection. To
index the variable-length word sequences with their annotations, we con-
sider 2-fragments that are pairwise combinations of the word sequences with
one of the attached annotations. These, binary fragments are the basic in-
dexing units for the 2-fragment indexes. To locate sentence boundaries
and maintaining positional constraints we index all layers in a direct index.

Knowledge-centric tasks such as information extraction rely on extraction
templates leveraging regular expressions between annotations and word se-
quences. Processing regular expression queries involving word sequences and
annotations can be extremely expensive if only annotation indexes are uti-
lized, as the posting lists for each annotation can span the entire document
collections (e.g., 〈(location) city of (location)〉). This is a problem similar to
indexing stopwords in document collections. In order to execute such complex
queries, we additionally index combinations of elements across layers that are
shifted. Indexing units that arise from combination of word sequences and
ordered co-occurring annotations from k − 1 different layers are termed as as
k-stitches. For example by combining a word sequence and named entity we can
create a 2-stitch: 〈city of (location)〉. Thus, we additionally create 2-stitch
indexes that record pair-wise ordered co-occurrences of unigrams, bigrams,
and trigrams with annotations within sentence boundaries. These ordered
co-occurring combinations of word sequences and annotations convey relations
similar to those obtained by dependency parsing. A relation in a dependency
parse tree connects within a sentence two words with a particular relation-
ship which is a subset of the combinations modeled by our 2-stitch indexes.

We further need to store information regarding sentence boundaries in order
to restrain the text regions obtained from the indexes. Sentence boundaries
can be obtained by retrieving them from the direct index (where they are
stored as separate annotations). Or they can be added as an additional payload
to the n-gram indexes. For the latter case, we make the design choice to
store sentence numbers that further allows us to easily compute relaxations to
context windows of more than one sentence.

3.3.4 Query Processing

We now discuss how the indexes in gyani are combined to retrieve documents
for queries expressed in our language.

Retrieving Word & Annotated Sequences. We first illustrate how
the basic tokens in our query language are retrieved. Word sequences are
retrieved from an n-gram index, which requires normalizing the requested
word sequence into a list of n-grams and subsequently merging their positions.

14 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

LAYER2

LAYER1

WORDS

1 2 3 4 5 6 7 8

INVERTED INDEX:
Per element keep
only unit intervals.

GYANI: Combinations of
annotations with n-grams
(e.g., bigrams with NEs).

k-FRAGMENT:
Complete fragments based
on longest annotation.

2-
S
T
IT
C
H

TRIGRAM

ANNOTATION

2
-F
R
A
G
M
E
N
T

Figure 3.3: Design space.

This method of retrieving any arbitrary length word sequence is shown in
Algorithm 1. The retrieval of annotated word sequences using the stack
operator requires directly querying the 2-fragment index, and no additional
processing is required.

Processing Regular Expressions. We now consider how to process
queries involving regular expressions operators. In particular, we consider the
operator �+ in Algorithm 2. The operators �* , �? , and � can be implemented
similarly. The �+ operator is a binary operator that consumes as its left and
right operand two posting lists. The output list contains postings indicating
each occurrence of the element in the left operand is succeeded by the element
in the right operand. This join operation is specified with the help of the
operator 1 �+ . The 1 �+ operator takes as input the positions of the elements in
the left Sl and right operand Sr, and the gap constraint ∆. The gap constraint
∆ indicates the permissible interval size between the elements of the left and

Algorithm 1: Processing word sequences.

Input :Q = 〈w1 . . . wk〉
Output :Posting List, L, containing document metadata 〈id, ts〉 containing

Q and its positions s = [i, j].
1 Function NGramQuery(Q)
2 N ← generate a list of n-grams from Q
3 L ← retrieve posting list for N [0] from n-gram index
4 L′ ← ∅ // temporary variable

5 for (i← 1; i < (k − n+ 1); i+ +) do
6 L′← retrieve posting list for N [i]
7 L←merge positions for postings in L&L′ s.t. each position for a

posting in L is before the position for the same posting in L′

8 return L

GYANI 15

right operand. For the operator �+ , the gap constraint ∆ is equal to 2. For
the operators �* , �? , and � the constraints are, ∆ ≥ 1, ∆ ∈ [1, 2], and ∆ = 2.

Processing Projection Operators. We now consider how to process
queries involving phrase projection operators that project the regular ex-
pression match to within a sentence. Processing these operators can be done
using a combination of different indexes.

First, we can process phrase projection operators using a combina-
tion of direct and n-gram indexes. Here, the direct index is used to
identify sentence boundaries and to identify the positions of the annota-
tions in its respective layer of a document. Since, these regular expres-
sions with annotations or words return results at the sentence level, we
instantiate each operator to expand the suffix (I); or the prefix (J); or
both suffix and prefix (u) of the attached word sequence. For instance,
for the query 〈war started on〉(date), involves processing the word sequence
〈war started on〉 and selecting those sentences in which it occurs with a date
as a suffix. While, the query (word)+ 〈war started on〉 (date) involves ex-
panding both a prefix and suffix expansion. The processing for the suffix
expansion of `+ operator is shown in Algorithm 3. The operators `* , `? , and
` and the associated type of expansion are implemented in a similar manner.

Second, we can implement the query processing for phrase projection op-
erators using 2-stitch and n-gram indexes. The processing of these operators
is done by first looking up the ordered co-occurrences of the word sequences
and annotations from the 2-stitch indexes and then merging them based on
overlaps in the text regions they share within the same sentence. For example,
for the query 〈 (organization) acquired the start-up for (money) 〉, we can
lookup the 2-stitches 〈 (organization) acquired the start-up for〉 and 〈 acquired
the start-up for (money) 〉 and merge them based on overlapping text regions.

Third and finally, we can use a combination of annotation, n-gram, and
direct indexes for processing phrase projection operators. To do so, we
can compute a regular expression join between the word sequence obtained
from the n-gram index and annotation obtained from the annotation index.
After the join, we can restrict the text region to within one sentence using
the π1 operator. The πk operator restricts the positional spans of a posting
list that are input to the operator to lie within a span of k sentences. The
implementation for this operator is given in Algorithm 4. For instance, the
following query π1

(
(location) �*? 〈declared war on〉

)
, yields documents where

the resulting text regions after the �*? operation lie within a sentence of the
retrieved documents.

16 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

Algorithm 2: Processing the �+ operator.

Input :Posting lists Ll and Lr corresponding to the left and right
operands of �+ operator, respectively.

Output :Posting List, L← Ll �+ Lr.
1 Function �+(Ll, Lr)

2 R← find all common metadata for postings in Ll & Lr

3 L← ∅, S← ∅
4 foreach 〈id, ts〉 ∈ R do
5 S←1 �+(positions for 〈id, ts〉 in Ll, positions for 〈id, ts〉 inLr,2)
6 L← L.append(new 〈 〈id, ts〉, S 〉)
7 return L

8 Function 1 �+(Sl, Sr, ∆)

9 S ← ∅
10 if the last interval in Sr lies before the first interval in Sl then
11 return S

12 if first interval in Sr is before the first interval in Sl then
13 Sr ← remove intervals from the front of Sr until the first interval in

it is after the first interval in Sl

14 for (i← 0; i < |Sl|; i+ +) do
15 for (j ← 0; j < |Sr|; j + +) do
16 if (Sl[i] is before Sr[j]) ∧ (Sr[j].end− Sl[i].begin ≥ ∆) then
17 S ← S.append([Sl[i].begin, Sr[j].end])

18 return S

GYANI 17

Algorithm 3: Processing the I+ operator.

Input :Posting list L.
Output :Expanded Posting List, L, using suffix expansion.

1 Function I+(L)
2 S ← ∅ // holds the annotation layer

3 B ← ∅ // holds the sentence boundaries

4 N ← ∅ // holds the new positions after expansion

5 count← 0 // holds the annotation count

6 foreach posting P in list L do
7 S ← retrieve the annotation layer containing ` for the metadata

〈id, ts〉 using the direct index
8 B ← retrieve the sentence boundaries for the metadata 〈id, ts〉 using

the direct index
9 count← 0, N ← ∅

10 foreach position interval [x, y] in posting P do
11 count← count the number of annotations that are equal to `

between the positional interval spanning y and the end of the
sentence using S and B

12 if count > 1 then
13 N ← N.append(expand [x, y] with position of the

annotations found between y and the end of sentence)

14 replace positions of P with expanded positions N

15 return L

18 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

Algorithm 4: Processing πk operator.

Input :Posting List L and sentence window k.
Output :Posting List L′ such that each position lies within a k sentence

window.
1 Function πk (L, k)
2 foreach posting P in list L do
3 S ← ∅ // modified positions for P
4 B ← retrieve the sentence boundaries for the metadata 〈id, ts〉 using

the direct index
5 if k > 1 then
6 B ← coalesce (B, k)

7 foreach position interval [x, y] in posting P do
8 foreach position interval [m,n] in B do
9 if [m,n].contains([x, y]) then

10 S ← S.append([x, y])

11 replace positions of P with modified positions S

12 return L

13 Function coalesce(B, k)
14 S ← ∅ // coalesced positions

15 b, e← −1 // begin and end for intervals

16 for (i← 0; i < |B|.size− (k − 1); i+ +) do
17 b← B[i].begin
18 e← B[i+ k − 1].end
19 S ← S.append([b, e])

20 return S

collection size (gb) ndocuments nwords nsentences

new york times 49.7 1,855,623 1,058,949,098 54,024,146

wikipedia 156.0 5,327,767 2,807,776,276 192,925,710

gigaword 193.6 9,870,655 3,988,683,648 181,386,746

collection npart-of-speech nnamed entity ntime nnumbers

new york times 1,058,949,098 107,745,696 15,411,681 21,720,437

wikipedia 2,807,776,276 444,301,507 97,064,344 82,591,612

gigaword 3,988,683,648 517,420,195 72,247,124 102,299,554

Table 3.1: Document collection statistics. The table shows the sizes of annotated
collections as well as annotation statistics.

EVALUATION 19

3.4 Evaluation

We now describe the evaluation setup of the experiments that includes a
description of the document collections. We then show how the testbeds for
the knowledge-centric tasks were constructed. Finally, we discuss the results
obtained for the experiments.

3.4.1 Setup

Document Collections. We considered three large document collections
to index with gyani. Statistics regarding the collections are summarized
in Table 3.1. The first document collection is the New York Times, which
comprises of news articles published over a twenty year (1987-2007) time
period [18]. The second document collection is the English Gigaword containing
articles collected from seven distinct English news publishers over a sixteen
year (1995-2010) time period [5]. The third and final document collection is the
entire English Wikipedia [23] (we use the snapshot available on March 13th,
2017). An important aspect of all the aforementioned document collections
is that, they are written in well poised grammar and language, so that the
automated annotations obtained via NLP tools are of high quality.

Annotating Document Collections. Each document in the collections
was annotated with four different types of semantic annotations. We utilized
the Stanford Core NLP [151] toolkit to annotate the documents with part-of-
speech, named entities, temporal expressions, and numerical quantities. The
processing for the documents was done as follows. First, each document’s text
content is created by concatenating the headline, the article body, and other
auxiliary keyword or classification terms provided as metadata into one long
document string. Second, the publication date for the news article is obtained;
for Wikipedia pages we used the document creation time. Third, the document
string is fed into the annotation pipeline, which performs sentence boundary
detection, tokenization, and tags each token with the aforementioned types
of annotations. Fourth, for each token we analyze the type of annotation
performed and subsequently create the layer elements. For the parts of speech
tags we keep the tag as the annotation element and unit interval spans as
positions. The Stanford Core NLP named entity annotator provides ten
different classes of entities. We divide these classes as per our requirement. For
the named entity layer, we consider all the class tags as annotation elements:
person, organization, location, date, time, duration, money, percent,
number, and ordinal. For the temporal expressions, we consider for resolution
the classes: date, time, and duration. For the numerical quantities we consider
for resolution the classes: money, percent, number, and ordinal. Finally, the
document string, along with the strings containing the annotation layers as per
our data model are stored together with the metadata information containing
the timestamp (determined using publication date or creation time) and its
identifier (determined using the hash of the publisher supplied identifier string
or the title string).

20 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

Implementation Details. The implementation of the entire infrastructure
was done in Java. All document processing and indexing was done in a
distributed manner over a cluster of twenty machines running the Cloudera
CDH 5.90 distribution of Hadoop. All machines in the cluster were equipped
with Intel Xeon CPUs with up to 24 cores and a clock speed of up to 3.50
GHz, up to 128 GB of primary memory, and up to eight 4 TB hard disks
as secondary storage. We utilized the 1.2.0 CDH 5.9.0 version of HBase for
implementing our indexes.

gyani Indexes. We instantiated the index types discussed in Section 3.3.3
for each of the document collections. Posting lists are compressed using the
PForDelta compression technique [11]. We summarize the index sizes for the
various types in Table 3.2.

index type nyt wikipedia gigaword

direct 18.80 44.80 52.40

n-gram 45.90 126.30 154.40

annotation 2.39 7.65 9.33

2-fragment 6.30 23.10 24.16

2-stitch 141.00 473.00 542.40

Table 3.2: Index sizes in Gigabytes (GB).

3.4.2 Knowledge-Centric Tasks

We next describe the structure of the queries for the five knowledge-centric
tasks used in our evaluation.

Information Extraction (IE) Task. To construct information extraction
templates, we utilize the paraphrases of relations [162] present in the Yago
knowledge graph. The information extraction templates are constructed as
follows. First, for each of the Yago relations the domain of the subject and
the range of the object is identified. For example, for the predicate wasBornIn
the domain of the subject is person and the range of the object is location.
Second, for the given relation, we look up how the relation is expressed in
text using a paraphrase dictionary [162]. For example, the paraphrases for
wasBornIn are grew up, returned to, and raised in. Finally, we combine the
subject, paraphrase of the relation, and the object to form the information
extraction template. For instance, a template for the relation wasBornIn is:
(person) 〈raised in〉 (location).

Relation Extraction (RE) Task. The aim of the relation extraction
task to identify the textual patterns of the predicate given its subject and
object arguments. From the paraphrase dictionary [162], we also have con-
crete instances of subject-object pairs identified in the New York Times and
Wikipedia. However, most of the named entities can be expressed in myriad

EVALUATION 21

surface forms. In order to capture the different surface forms for a given named
entity we turn to the redirectedFrom relation in the Yago knowledge graph. To
create queries for this task we proceed as follows. First, we distill the unique
instances of the subject-object pairs identified by [162] in both news and
encyclopedic sources. Second, we look up surface forms for the named entities
contained in the subject and object arguments from Yago’s redirectedFrom
relation. Third, we combine the named entity and its various surface forms as
union wildcard clause, e.g., [kennedy | jfk]. Finally, we construct the relation
extraction template by combining the subject and objects arguments with `*
operator. For example, [john f. kennedy | jfk | john fitzgerald kennedy] (word)*
[ronald reagan | 40th president of the united states | ronnie reagan].

task nquery µword µannotation

task-ie 56,261 2.50 2.22

task-re-news 116,157 83.77 0.00

task-qa-news 828,208 37.68 1.60

task-fs-news 1,618,377 126.61 0.83

task-re-wiki 861,235 67.89 0.00

task-qa-wiki 18,151,907 19.47 1.48

task-fs-wiki 26,164,545 81.32 0.69

task-sq 4,589 6.15 2.53

Table 3.3: Testbed statistics.

Question Answering (QA) Task. The aim of the question answering
task is to retrieve sentences as candidate answers in response to a query with
annotation wildcards. For this task we consider the textual patterns of the
predicates that occur between the subject-object instances, also available from
the dataset in [162]. To create the queries for this task we carry out the
following steps. First, we consider only the subject’s named entity and its
surface forms from the subject-object pairs. Second, we combine the textual
pattern detected as a predicate for the given subject-object pair [162]. Finally,
we replace the object with its appropriate range type with a ` annotation
wildcard operator. For example, [microsoft | office corporation] to work closely
with (organization).

Fact Spotting (FS) Task. The aim of the fact spotting task is to retrieve
sentences that are evidences of facts from a knowledge graph. The process
of creating queries for this task is similar to that of question answering task
except that we keep the named entity and its surface forms for the object
argument. An example of a query in this task is [microsoft | office corporation]
to crush [netscape | devedge].

Semantic Search (SQ) Task. The aim of the semantic search task
is to demonstrate the ability to express queries containing word sequences
adorned with a semantic meaning. To create queries for this task, we turn to

22 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

a compendium of important events compiled by the New York Times called
“On this Day” events [19]. Each event in this compendium consists of a date
and an accompanying textual description. The steps involved in creating the
queries are as follows. First, each of the event descriptions are run through
an annotation process similar to the one applied to the document collections.
Second, we combine annotations and word sequences from the named entity,
time, and numerical quantity layers to form stacked phrases. Finally, we
combine them with the Boolean ∧ operator to form the semantic query. For
example, (mohandas k. gandhi)⊕(person) ∧ (india)⊕(location).

In Table 3.3 we summarize the entire testbed statistics. As can be noticed
from query length in Table 3.3, the queries in our testbed are quite complex,
lengthy, and verbose. The dataset is publicly available at the following URL:

http://resources.mpi-inf.mpg.de/dhgupta/data/cikm2018/.

3.4.3 Results

We evaluate gyani for efficiency by measuring end-to-end query execution
times. For each of the task we sampled 100 queries from the appropriate
testbed for evaluation. Each sample is executed three times and the average
execution time is reported. We execute each task under two settings: warm
and cold caches. In the warm cache setting, each query is executed once to
bring the relevant posting lists into the main memory of the HBase cluster
and then executed three more times to measure its execution time. In the
cold cache settings, the sample of queries is executed three times by shuffling
the order of query execution between rounds. The time measured consists of
retrieving the posting lists from HBase and further performing the necessary
operations dictated by the tasks, which may further involve accessing the
direct index. In order to minimize interruptions due to garbage collection we
utilize the concurrent garbage-first garbage collector (G1GC). Experiments are
run on two servers capable of handling high I/O bound jobs as our front-end
and the Hadoop cluster acting as our back-end storage. Each server consists
of up to two Intel Xeon processors with up to 96 cores, clocked at 2.66 GHz
and up to 1.48 TB of primary memory.

Baselines. The baselines we evaluate are aligned with respect to the
design choices explored in Section 3.3.3. We first measure the time to scan
the entire document collection without any indexes. This näıve design thus
establishes a lower bound to execute a single query by finding the pattern in
the entire document collection. This simple design thus imitates grep in an
embarrassingly parallel manner. The first baseline implements the inverted
index design and is denoted by texti. This baseline considers only the
word sequences that can be obtained by combining n-gram indexes and the
direct index. With texti we test how efficiently an infrastructure can retrieve
candidate documents relying only on text. To a certain extent, texti simulates
the “neighbor index” [51], where we are forced to access the direct index to
match the context around the words during query processing. To execute the

EVALUATION 23

queries with n-gram indexes and direct index, we identify the sentences (using
the direct index) containing the text only arguments of the query and apply
the and operator between the obtained posting lists to obtain the final result.
The second baseline considers n-gram indexes, annotation indexes, and direct
index to evaluate regular expression queries. We call this baseline anni. The
anni baseline considers posting lists for annotations when evaluating regular
expression queries for the knowledge-centric tasks. It additionally resorts to the
direct index for identifying sentence boundaries when restraining the results
to within one sentence. We evaluate our infrastructure gyani that leverages
the complete set of indexes proposed. With gyani, however, we leverage the
sentence identifiers stored within the n-gram indexes to restrict the regular
expression matches to within one sentence. In order to execute the same
set of queries for all the three infrastructures, we choose those queries where
the predicate does not contain any annotation wildcards and the subject and
object regular expressions are either (person), (organization), or (location).
To execute the queries against texti we replace (person), (organization), or
(location) operator with (word)+. For the semantic query task, only the
texti baseline is applicable where only the n-gram indexes are used to execute
the word-only versions of the semantic queries.

Results. We now discuss the results for texti, anni, and gyani at the five
different tasks over three document collections.

Grepping the Entire Document Collection. We first report the results
for the baseline grep that involves scanning (i.e., matching the �* operator)
the entire document collection on our Hadoop cluster. This is akin to running
grep as an embarrassingly parallel task per query over a large document
collection. We report the time taken to scan the three different document
collections for a single query in Table 3.4. The time required for scanning the
document collections is proportional to the collection’s size. The minimum
amount of time was required for the New York Times which is the smallest
collection amongst the three. While, Gigaword required the most time as it
was the largest amongst the three collections.

new york times wikipedia gigaword

111.00 322.00 396.00

Table 3.4: grep baseline times in seconds.

End-to-end Query Execution Times. We now discuss the results
obtained for query execution times over the three different document collections.
The results are reported in Table 3.5 are in seconds. Note that our system
and the baselines shown in Table 3.5 retrieve equivalent sets of text regions
as results. All values marked with M and N indicate statistically significant
results (p ≤ 0.05) with respect to texti and anni respectively. The significance
was measured using the paired t-test. For the information extraction task
we can see that our proposed infrastructure gyani drastically brings down

24 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

task texti (cold) (s) anni (cold) (s) gyani (cold) (s)

ie 8.38 ± 20.61 12.32 ± 12.41 MN 0.01 ± 0.02

qa 9.68 ± 18.11 9.18 ± 0.82 MN 0.15 ± 0.16

fs 7.10 ± 34.49 0.29 ± 0.57 M 0.29 ± 0.58

re 41.92 ± 122.89 M 2.75 ± 9.98 M 2.41 ± 8.30

n
ew

y
o
r
k
t
im
es

sq 1.22 ± 3.96 − 0.69 ± 2.98

task texti (warm) (s) anni (warm) (s) gyani (warm) (s)

ie 3.53 ± 10.97 11.55 ± 11.15 MN 0.01 ± 0.01

qa 4.81 ± 9.70 9.13 ± 0.42 MN 0.09 ± 0.15

fs 4.39 ± 21.79 0.30 ± 0.55 M 0.29 ± 0.51

re 29.60 ± 111.56 M 2.73 ± 9.90 M 2.42 ± 8.25

n
ew

y
o
r
k
t
im
es

sq 0.96 ± 2.98 − 0.86 ± 3.61

task texti (cold) (s) anni (cold) (s) gyani (cold) (s)

ie 17.73 ± 35.35 51.52 ± 33.08 MN 0.11 ± 0.25

qa 21.10 ± 73.18 28.30 ± 19.33 MN 0.21 ± 0.63

fs 5.76 ± 38.32 0.46 ± 0.96 0.46 ± 0.95

w
ik
ip
ed

ia

re 105.31 ± 298.58 M 2.50 ± 7.00 M 2.16 ± 5.81

sq 2.64 ± 4.50 − 2.50 ± 6.61

task texti (warm) (s) anni (warm) (s) gyani (warm) (s)

ie 7.18 ± 14.88 43.69 ± 19.37 MN 0.06 ± 0.16

qa 8.25 ± 34.22 25.92 ± 1.55 MN 0.14 ± 0.55

fs 2.49 ± 14.33 0.49 ± 0.99 0.46 ± 0.93

w
ik
ip
ed

ia

re 39.73 ± 113.50 M 2.36 ± 6.42 M 2.15 ± 5.81

sq 2.58 ± 4.31 − M 1.43 ± 2.70

task texti (cold) (s) anni (cold) (s) gyani (cold) (s)

ie 36.69 ± 88.43 65.10 ± 51.88 MN 0.07 ± 0.10

qa 57.78 ± 109.89 43.93 ± 2.99 MN 0.39 ± 0.54

fs 52.41 ± 212.42 M 1.31 ± 2.58 MN 1.25 ± 2.47

g
ig
aw

o
r
d

re 316.52 ± 1048.42 M19.33 ± 83.11 M 15.69 ± 61.45

sq 5.25 ± 7.82 − M 3.65 ± 5.96

task texti (warm) (s) anni (warm) (s) gyani (warm) (s)

ie 12.44 ± 33.78 61.88 ± 33.04 MN 0.13 ± 0.96

qa 19.15 ± 38.10 43.11 ± 2.43 MN 0.31 ± 0.50

fs 32.75 ± 172.51 1.27 ± 2.51 1.26 ± 2.46

g
ig
aw

o
r
d

re 256.10 ± 1047.16 M 18.11 ± 75.08 M 15.67 ± 61.13

sq 5.21 ± 7.23 − M 3.48 ± 5.56

Table 3.5: Query execution times in seconds.

GYANI DEMONSTRATION 25

execution times from several seconds (several minutes in case of Gigaword) to
within milliseconds per query. The drastic decrease in execution time can be
attributed to the observation that gyani relies on the 2-stitch indexes and
does not resort to annotation indexes (which anni does) and direct index
(which both anni and texti do). For the question answering task, our proposed
approach again delivers results within milliseconds as compared to the other
two baselines. The gains again can be attributed to the same observation as
with the ie task. For the relationship extraction and fact spotting task the
performance of gyani is better or at par with anni. However, compared to
texti the query execution costs are brought down from several minutes to
few seconds. The gain that gyani attains over the other baselines is due to
the fact that it does not resort to the direct index for identifying sentence
boundaries (it uses the sentence numbers available within the n-gram indexes)
when evaluating the regular expressions between the query arguments. For
the semantic query task, we can see that by directly leveraging the 2-fragment
indexes gyani identifies the result more quickly than the texti baseline, which
uses only n-gram indexes, as it can not disambiguate their semantics.

Summary. Summing up our experimental results across tasks and docu-
ment collections, we observe that the indexes that constitute gyani consume
at most 5.62× the space required by the uncompressed semantically annotated
document collections. sq and fs are the tasks that profit least with speed ups
in response time of 1.12× and 5.41× respectively. For ie, qa, and re, as more
complex tasks, gyani achieves impressive speed ups of at least 95.69×, 53.44×,
and 12.23×, respectively. We designed gyani as a versatile tool supporting
various knowledge-centric tasks. We point out that, should only specific tasks
need to be supported, a subset of indexes would suffice.

3.5 GYANI Demonstration

The graphical user interface (GUI) for gyani is shown in Figure 3.4. The
GUI features a search bar in which the user can enter the query using the
operators described in Section 3.3.2. The user can then select from the different
document collections (see Table 3.1) indexed with gyani to retrieve the relevant
text regions. The retrieved text regions are shown in the results page on the
right-hand side of the GUI. For each text region we show the named entity
annotation layer by highlighting the word sequences which have been annotated
by the Stanford’s CoreNLP named entity recognizer.

Target Users for our demonstration are linguists, journalists, and scholars
in humanities. Often for them structured search capabilities are not offered
by the most accessible commercial search engines. Structured search in large
document collections is crucial for them. For instance, when performing fact
checking, journalists often need to verify claims involving named entities,
temporal expressions, and numerical values. In such instances, the knowledge-
centric tasks discussed in Section 3.1 naturally arise.

26 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

The prototype system allows the user to interactively formulate queries
involving regular expressions, word sequences, and semantic annotations for
the five knowledge-centric tasks (i.e., ie, qa, re, fs, and sq) and obtain text
regions from the indexed document collections. As an example scenario, a user
can query gyani to retrieve all evidences that detail acquisitions by Google:

[google | search giant] �* [invested in | acquired] �* org.

Furthermore, to identify a chronology of important events mentioned in news
regarding Silicon Valley (the location and not the television series) startups
with monetary values, the attendee can formulate the following query:

date �* 〈silicon valley〉⊕location �* money.

Query examples with retrieved text regions are shown in Figures 3.4, 3.5,
3.6, 3.7, and 3.8. Using our prototype implementation, we show that knowledge
acquisition using gyani’s structured search capabilities can indeed be done
interactively and at scale across millions of documents.

3.6 Conclusion

In this chapter, we described gyani, an infrastructure for supporting sophisti-
cated knowledge-centric tasks at scale. We first proposed a novel data model
that accommodates word sequences and layers of semantic annotations asso-
ciated with them. We then proposed a novel language that allows the user
to express queries consisting of regular expressions over word sequences and
annotations. To allow for fast query execution times, we further described the
appropriate indexes to support our query language in a complex design space.
Finally, our experimental results over five knowledge-centric tasks show the
ability of gyani to efficiently support search and analysis of large semantically
annotated document collections for knowledge acquisition at scale.

CONCLUSION 27

F
ig

u
re

3
.4

:
g
ya

n
i’
s

G
U

I.
T

h
e

q
u

er
y,

“
lo

c
at

io
n
〈j
o
i
n
e
d
n
a
t
o
〉d

at
e”

,
u
se

s
th

e
p

ro
je

ct
io

n
o
p

er
a
to

r
`

to
re

tr
ie

v
e

se
n
te

n
ce

s
a
s

ev
id

en
ce

s.

28 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

F
ig

u
re

3
.5

:
R

etriev
ed

tex
t

reg
io

n
s

fo
r

th
e

stru
ctu

red
q
u
ery

“
[g
e
r
m
a
n
y
|
i
t
a
l
y
|
f
r
a
n
c
e

]
(w

o
r
d

)∗
u
n
em

p
loy

m
en

t
ra

te
(n
u
m
b
er

)”
.

CONCLUSION 29

F
ig

u
re

3
.6

:
R

et
ri

ev
ed

te
x
t

re
g
io

n
s

fo
r

th
e

st
ru

ct
u
re

d
q
u
er

y
“
c
z
e
c
h
o
s
l
o
v
a
k
i
a
�*
?
s
p
l
i
t
i
n
t
o

(l
o
c
at

io
n

)+
”
.

30 GYANI: AN INDEXING INFRASTRUCTURE FOR KNOWLEDGE-CENTRIC TASKS

F
ig

u
re

3
.7

:
R

etriev
ed

tex
t

reg
io

n
s

fo
r

th
e

stru
ctu

red
q
u
ery

“
[w
o
r
l
d
w
a
r
i
i
|
w
o
r
l
d
w
a
r
i

]
�*
?
b
e
g
a
n
o
n

(d
at

e)”
.

CONCLUSION 31

F
ig

u
re

3
.8

:
R

et
ri

ev
ed

te
x
t

re
g
io

n
s

fo
r

th
e

st
ru

ct
u

re
d

q
u

er
y

“
[g
o
o
g
l
e
|s

e
a
r
c
h
g
i
a
n
t

]
(w

o
r
d

)∗
[a
c
q
u
i
r
e
d
|a

c
q
u
i
r
e
s

]
(o
r
g
a
n
iz
at

io
n

)”
.

CHAPTER 4

OPTIMIZING
HYPER-PHRASE QUERIES

• Dhruv Gupta and Klaus Berberich. Efficient Retrieval of Knowledge Graph
Fact Evidences. In ESWC 2019, pages 90–94.

• Dhruv Gupta and Klaus Berberich. Optimizing Hyper-Phrase Queries.
Under Submission.

4.1 Introduction

In this chapter, we study how to reduce the time to process a special class of
queries that arise in information extraction (IE) and retrieval (IR) — hyper-
phrase queries (hpqs). A hpq consists of a sequence of phrase sets that are
needed to be matched against a document collection. A relevant match requires
that it contain at least one phrase from each phrase set. Furthermore, to
retrieve only semantically meaningful textual evidences, each match of the hpq
must respect the sequential ordering of the spotted phrases from each phrase
set. As we show, processing a hpq in a näıve manner, using inverted indexes
over words, will be too expensive, as we can not leverage common phrases and
word co-occurrences among the phrase-sets for its execution.

33

34 OPTIMIZING HYPER-PHRASE QUERIES

KG SUBGRAPH

P
H
R
A
S
E

S
E
T

PHRASE

HYPER-PHRASE QUERY (HPQ)

KG FACT

HILLARY CLINTON

WILLIAM JEFFERSON BLYTHE, JR.PRESIDENT OF THE UNITED STATES

BILL CLINTON

william jefferson clinton,
william jefferson blythe iii,
william jefferson blythe,

william clinton,
president clinton,

president bill clinton

SPOUSE

FA
T
H
ER

P
O
S
IT

IO
N

H
E
L
D

clinton, hillary,
hillary rodham clinton,

hilary clinton,
hillary diane rodham clinton

william jefferson blythe,
bill blythe

has father,
parent,

is son of,
is child of,

son of,
child of

president of the us,
the president of the united states,

president of united states,
president of america,

president of usa,
president of the united states of america

married to,
partner,
marry,

marriage partner,
married,
wedded to,

wed,
life partner

political office held,
political seat,
public office,
office held,

position occupied,
holds position

2
re
fe
re
n
ce
s

0
re
fe
re
nc
es

0 references

Figure 4.1: KG subgraph containing relationships of bill clinton to other entities
in Wikidata. A fact connects two entities via a relation in the KG. A hyper-phrase
query for a KG fact corresponds to sequence of phrase sets that contain surface forms
of the subject, predicate, and object. Note that there are no references establishing
the provenance of two facts in Wikidata.

An important application of hpqs that we study in this chapter is that of
spotting provenance for facts in knowledge graphs (KGs). Journalists and
scholars in humanities are often required to verify and validate claims involving
persons and organizations by identifying textual evidence in large document
collections or on the Web [63]. In such scenarios, the journalists require a
search system that helps them spot multiple evidences for known and emerging
named entities as well as their relations. This however is not easy. Due
to the inherent dynamics of natural language, named entities (e.g., persons,
organizations, and locations) can be referred by many aliases. Thus, to retrieve
textual evidence for an entity (e.g., bill clinton), a phrase set query (e.g.,
{bill clinton , william clinton , president clinton . . .}) is required.

To assist journalists and scholars in humanities, large KGs such as Wikidata
have started to substantiate facts concerning named entities with references to
news articles or scientific reports available on the Web. However, there still
exist many facts in Wikidata that are entered manually without any references

INTRODUCTION 35

〈

b
i
l
l
c
l
i
n
t
o
n

w
i
l
l
i
a
m
j
e
f
f
e
r
s
o
n
c
l
i
n
t
o
n

w
i
l
l
i
a
m
j
e
f
f
e
r
s
o
n
b
l
y
t
h
e
i
i
i

w
i
l
l
i
a
m
j
e
f
f
e
r
s
o
n
b
l
y
t
h
e

w
i
l
l
i
a
m
j
.

c
l
i
n
t
o
n

c
l
i
n
t
o
n

w
i
l
l
i
a
m
j
e
f
f
e
r
s
o
n
"
b
i
l
l
"
c
l
i
n
t
o
n

w
i
l
l
i
a
m
c
l
i
n
t
o
n

p
r
e
s
i
d
e
n
t
c
l
i
n
t
o
n

p
r
e
s
i
d
e
n
t
b
i
l
l
c
l
i
n
t
o
n

,

p
o
s
i
t
i
o
n
h
e
l
d

p
o
l
i
t
i
c
a
l
o
f
f
i
c
e
h
e
l
d

p
o
l
i
t
i
c
a
l
s
e
a
t

p
u
b
l
i
c
o
f
f
i
c
e

o
f
f
i
c
e
h
e
l
d

p
o
s
i
t
i
o
n
o
c
c
u
p
i
e
d

h
o
l
d
s
p
o
s
i
t
i
o
n

,

p
r
e
s
i
d
e
n
t
o
f
t
h
e
u
n
i
t
e
d
s
t
a
t
e
s
o
f
a
m
e
r
i
c
a

m
r
.

p
r
e
s
i
d
e
n
t

u
s
p
r
e
s
i
d
e
n
t

p
r
e
s
i
d
e
n
t
o
f
t
h
e
u
s

p
r
e
s
i
d
e
n
t
o
f
t
h
e
u
n
i
t
e
d
s
t
a
t
e
s

t
h
e
p
r
e
s
i
d
e
n
t
o
f
t
h
e
u
n
i
t
e
d
s
t
a
t
e
s

p
r
e
s
i
d
e
n
t
o
f
u
n
i
t
e
d
s
t
a
t
e
s

p
o
t
u
s

p
r
e
s
i
d
e
n
t
o
f
a
m
e
r
i
c
a

p
r
e
s
i
d
e
n
t
o
f
t
h
e
u
.
s
.

p
r
e
s
i
d
e
n
t
o
f
u
s
a

〉

F
ig

u
re

4
.2

:
A

n
ex

a
m

p
le

h
p
q

.
It

is
co

n
st

ru
ct

ed
fr

o
m

th
e

W
ik

id
a
ta

K
G

[2
2
]

a
n
d

co
n
ce

rn
s

th
e

U
S

p
re

si
d
en

t
b
il
l
c
li
n
t
o
n

.

36 OPTIMIZING HYPER-PHRASE QUERIES

or provenance. It has been shown that a Wikidata item has considerably less
references than a Wikipedia article on average: 3.4 versus 7.5 [173]. In order to
establish the origin of a KG fact (e.g., 〈bill clinton, spouse, hillary clinton〉),
we need to retrieve textual evidences using multiple phrase sets (e.g., 〈{bill
clinton , william clinton , . . .}, {married , partner , . . .}, {hillary clinton ,
hillary rodham clinton , . . .}〉). Näıvely scanning large document collections
for all surface forms underlying the subject, predicate, and object can be
extremely time consuming to retrieve their evidences.

To validate KG facts, current approaches either rely on KG refinement
techniques [81, 171] or spotting their evidences in external document collec-
tions [84, 85, 141]. To retrieve evidences for a KG fact, current approaches
utilize commercial search engine APIs that only offer Boolean and phrase
query operators. Using the limited expressibility of such operators, a user
has to tediously issue multiple phrase queries for each alias underlying the
KG fact arguments. Moreover, results returned by such systems may not be
semantically relevant as the aliases of the fact arguments may not be ordered
or occur far apart from each other in the document.

On the Web, hyper-phrase queries arise when answering phrase queries
that can be formulated in many ways (e.g., regarding entities [183, 205]). For
instance, the phrase query icc wc 1990s can be expanded using dictionaries
to sequence of multi-phrase sets 〈{icc, international cricket council }, {wc,
world cup }, {1992, 1996, 1999 }〉. To increase recall, it is necessary that we can
at scale retrieve sentences that contain their mentions to answer users’ queries.
Hyper-phrase queries also arise in the field of Phramacovigilance [140, 182],
where adverse drug reactions to medicines need to be retrieved from large
amounts of text present in scientific literature, medical records, and social
media posts on the Web.

To the best of our knowledge there exists no prior work on optimizing
hpqs in large-scale IR systems. Prior studies in the string processing commu-
nity [32, 45, 67, 82, 159] have studied the problem of variable-length phrase
matching however using only small in-memory indexes to support the matching
algorithms. The key challenges that we overcome for optimizing hpqs are as
follows. First, we need to come up with a data model for phrases and word
co-occurrences along with syntactical information such that we can represent
the combinatorial space for optimizing a hpq. Second, we need to construct
query operators that can retrieve text regions corresponding to a hpq. Third
and finally, we need to design methods that order the query operators in an
efficient query plan to be executed over our data model.

Outline for the remainder of the chapter is as follows. In Section 4.2, we
discuss prior art with respect to our problem setting. In Section 4.3, we formally
describe a hpq and what its corresponding match constitutes. In Section 4.4, we
discuss the data model that assists in retrieving text regions for a given hpq. In
Section 4.5, we derive the indexing units used to construct our dictionaries and
indexes. In Section 4.6, we discuss the design of operators needed to execute a
hpq. In Section 4.7, we describe the algorithms to identify the optimal sequence

RELATED WORK 37

of query operators to process a hpq. In Section 4.8, we discuss an in-depth
evaluation of our proposed methods and discuss the results thus obtained.
Finally, we present the concluding remarks of our research in Section 4.9.

4.2 Related Work

We now discuss prior studies related to variable length pattern matching in
text documents, spotting KG facts using indexes over annotated document
collections, and query optimization in large-scale IR systems.

Variable Length Pattern Matching is an allied area with respect to our
problem setting. Prior works [32, 45, 67, 82, 159] have studied how in-memory
data structures can help in the design of efficient matching algorithms. For
instance, [159] considered “matching-lookup table” while [32] considered a
“wavelet tree” as an in-memory index to to speed up the matching process.
Cho and Rajagopalan [60] and Li et al. [145] presented algorithms to execute
character-level regular expressions to match text regions for many information
extraction tasks. Our work in contrast, leverages large-scale inverted indexes
that are part of modern IR systems to efficiently execute a more difficult
problem.

Indexing Annotated Text. A straight-forward approach to spotting
evidences for KG facts is to index document collections annotated with named
entities linked to KGs. However, using such an approach we can not spot
facts for out-of-KG entities or their emerging relations. An early work for
indexing annotated text was [157]. In that work, text regions were represented
in a two dimensional Cartesian co-ordinate plane. With this data model, an
efficient index was created using R∗-trees and region overlap operations were
specified. Cafarella and Etzioni [51] investigated how to speed up IE tasks
by indexing annotations surrounding words in an inverted index. Bast and
Buchhold [36] studied how to jointly index KG entities that are spotted in text
documents and the KG relations for semantic search. More recently, there has
been work on spotting KG facts using regular expression based operators at
word-level [98, 103]. However, all these approaches disregard any optimization
for efficient execution of hyper-phrase queries.

Fact Spotting. Elbassuoni et al. [75] and Metzger et al. [154] proposed a
system that retrieved witness documents given a KG fact as a query. However,
a limitation of the system was that documents need to be processed apriori
and linked to KG facts for their retrieval. Put another way, out-of-KG facts or
entities can not be processed with their system. Tylenda et al. [199] attempted
to overcome the above limitation by spotting KG facts using surface forms
of named entities and paraphrase dictionaries. However, just like the string-
matching approaches their approaches are not scalable to large document
collections. This is because they make many simplifying assumptions (e.g.,
knowing before hand the relevance of a document for a KG fact) and heuristics
(e.g., specified character distance between arguments of KG fact) for their

38 OPTIMIZING HYPER-PHRASE QUERIES

methods. Our approach solves these issues by relying on a data model that
can represent n-grams, skip-grams, and sentence boundaries. Relying on our
data model, we can then retrieve text regions as evidences for KG facts.

Query Optimization. Ipeirotis et al. [122] investigated how to model
query execution plans with respect to recall of relevant documents and the
query’s execution time. Their approach contrasted between two models:
inverted index based approach versus scanning the entire document collection.
Agrawal et al. [27] described an algorithm that identifies relevant sets of
document for named entities by finding a “token-set-cover” for various surface
forms of the named entity and computing a join of the retrieved documents.
Williams et al. [202] and Panev and Berberich [170] described approaches to
query phrases using combinations of inverted, phrase, nextword, and direct
indexes. Our work in contrast explores ways to compute an optimal plan of
hyper-phrase query execution using dictionaries and indexes over n-grams and
skip-grams.

4.3 Problem Definition

We now define the basic elements underlying the problem of executing hyper-
phrase queries. Key concepts related to the definitions are illustrated in
Figure 4.1. Consider a large document collection, D = {d1, . . . , d|D|}. Each
document in the collection d ∈ D is a sequence of sentences d = 〈s1, s2, . . . , s|d|〉.
Each sentence further consists of a sequence of words drawn from the vocabulary
Σ associated with the collection.

Phrase Query. A basic phrase query is a sequence of words that must
be matched contiguously in a document. For example, consider the phrase
query: 〈bill clinton is son of bill blythe 〉. The entire phrase with each
word occurring in that sequence must be matched in the retrieved document.
Formally, a phrase query p can be defined as:

p ∈ Σ+. (4.1)

A document is a match for a phrase query p if it contains a sentence in
which the words of the phrase occur contiguously. Formally, a sentence s
matches the phrase p if

p < s ≡ ∃1 ≤ i ≤ |s| : ∀1 ≤ l ≤ |p| : s[i+ l − 1] = p[l], (4.2)

and a document d matches a phrase if

p < d ≡ ∃s ∈ d : p < s. (4.3)

Phrase-Set Query. A phrase-set query is one that combines multiple
phrases, for example, consisting of different paraphrases to increase recall in
document retrieval. Consider, as a concrete example, the phrase set query

PROBLEM DEFINITION 39

{〈alumni of 〉〈attended college 〉}. Formally, a phrase set query P can be
defined as a subset of all possible phrases that can be generated from the
vocabulary:

P = {p1, p2, . . . , p|P |} ⊆ Σ+. (4.4)

A document is considered a match for a phrase-set query if at least one of
the phrases in the set is found in the document according to Equation 4.3.
Concretely, this can be put as follows:

P < d ≡ ∃p ∈ P : p < d. (4.5)

Hyper-Phrase Query (hpq) is defined to be a sequence of phrase sets.
An example of a hpq corresponding to a KG fact is shown in Figure 4.2.
Formally, a hpq is a sequence of phrase sets:

P = 〈P1, P2, . . . , P|P|〉. (4.6)

A document is said to match a hpq if one phrase from each phrase set is
matched, and matches for adjacent phrase sets occur within k sentences from
each other in the document. Formally:

P < d ≡ ∃1 ≤ i1 ≤ . . . ≤ i|P| :

∀1 ≤ j ≤ |P| : ∃p ∈ Pj : p < sij ∧
∀1 < j ≤ |P| : (sij+1

− sij) ≤ k
(4.7)

The definition ensures that phrase matches across different sentences have to
occur in the order specified by the hpq. Should more than one phrase set
be matched by the same sentence, we additionally ensure that their order is
respected within the sentence. To reduce formalism, we omit this detail from
the above definition.

Establishing Provenance for KG Facts

Consider the problem of spotting knowledge graph (KG) facts on the Web or in
large document collections [154] as a concrete use case of matching hyper-phrase
queries. A KG consists of facts. Each fact consists of vertices that are either
named entities or literals and edges that define relationships between them.
The facts are usually encoded in the form of a triple, which consists of two
vertices (either named entities or literals) and an edge (predicate or relation-
ship). The triples can be succinctly represented as 〈(s)ubject, (p)redicate,
(o)bject〉. Each component of the triple is a canonical representation of its
various surface forms. Let these surface forms of s, p, and o be denoted
by: {s1, s2, . . . , su}, {p1, p2, . . . , pv}, and {o1, o2, . . . , ow} respectively. A text
region is considered an evidence (thereby establishing provenance for the
fact) if it contains at least one phrase from each of the phrase sets within a
distance of k sentences and with the particular order as expressed in the fact.

40 OPTIMIZING HYPER-PHRASE QUERIES

unigram bigram trigram

skip-gram

1 2 3 4 5 6

8 9 10 11

1

2

Figure 4.3: Indexing units can be obtained by considering ordered contiguous
sequences of words (n-grams) or ordered non-contiguous combinations of words (skip-
grams). Additionally, to maintain context windows and semantically meaningful text
regions we keep track of sentence boundaries. Circular nodes represent words and
the numbers their positions. While the square nodes represent sentence boundaries
and the numbers represent sentence identifiers.

Problem Complexity

Consider the problem of retrieving documents for a hpq P = 〈P1, P2, . . . , P|P|〉,
where each phrase set P can contain at most m surface forms, over a document
collection D. Consider that we have access to a standard dictionary and
inverted index over words in the document collection. From them we can
assemble the text regions for the evidences by looking up the word and
its offsets within the documents. A näıve approach is: first retrieve those
documents that contain the words from each of the m phrases in |P| phrase
sets. As a second step, we can intersect and pool those documents in which
at least one phrase from each phrase set is present. Finally, with this pool of
documents we can then scan each document for potential matches using the
string matching algorithms from [32, 45, 67, 82, 159]. However, this simple
approach is inefficient as we do not leverage common sub-phrases among the
phrases in each phrase set for retrieval of posting lists. Furthermore, we
also do not leverage any co-occurrence of words among phrase sets that can
significantly bring down the cost of processing a hpq.

4.4 Data Model

There are three key challenges that need to be overcome in order to reduce the
cost of processing a hpq. The first challenge is to capture phrases as simpler
combinations of n-grams and skip-grams. Capturing skip-grams is hard as their
number grows polynomially with the sentence length. The second challenge
is coming up with novel ways of maintaining sentence boundaries such that
we can quickly identify the match of two phrases to lie within a distance of k
sentences. Third and finally, the data model must allow us to compute different
ways to represent combinations of phrases. We can then design algorithms to

DATA MODEL 41

optimize the order of processing such operators. Figure 4.3 summarizes the
key elements of our data model. First, we must provide a data model that is
capable of representing text regions within documents.

Modeling Text Regions. A phrase in our data model is defined as a
contiguous sequence of words with their positional span as:

N× N× Σ+. (4.8)

In Equation 4.8, the Cartesian product of natural numbers N×N represents
the text region [i, j] of the phrase 〈wi, . . . , wj〉 ∈ Σ+. First, by restricting the
size of the spans to a constant n we can model n-grams. Thus, it allows us
to represent arbitrary-length phrases as combinations of fixed-size n-grams.
Second, we can also capture skip-grams of bounded gap size with the same
representation. Skip-grams are important as they capture the co-occurrence
statistics needed to maintain long-range sequence information for ordering
phrases.

Incorporating Sentence Boundaries. A text document is explicitly
structured using syntactical structures such as sentences, paragraphs, pages,
sections, chapters etc. In our work, we consider sentences as the maximal unit
for imposing structure on text. Sentence boundaries can be reliably detected
using natural language processing (NLP) tools (e.g., Stanford’s CoreNLP
toolkit [151]).

We now describe design choices on encoding the sentence structure in our
data model. The first design choice corresponds to encoding the sentence
spans in the model for the text regions (Equation 4.8) as follows:

sentence span︷ ︸︸ ︷
N× N ×

phrase︷ ︸︸ ︷
N× N× Σ+ . (4.9)

In Equation 4.9, the first Cartesian product of natural numbers records the
sentence boundaries as positions of the outermost words that mark-off the
sentence in which the phrase spanned by the positions [i, j] is contained. For
example, to represent the bigram in Figure 4.3, we can write the four-tuple
as: (1, 6, 2, 3). The are two disadvantages with this design choice. First, we
double the size of the positions needed to be recorded in the indexes thereby
increasing the sizes of our indexes. Second, we can not compute distance in
terms of number of sentences when relaxing the match of the hpq to lie within
a distance of k sentences.

The second way to incorporate sentence boundaries is to consider punctua-
tion (e.g., period) as an element of the vocabulary. With sentence boundaries
available as words we can then model their association with other words as
skip-grams. Thus, Equation 4.8 need not be modified further. The disadvan-
tage with this design choice is that we require another fetch request from the
indexes whenever matching the hpq to lie within a distance of k sentences.

42 OPTIMIZING HYPER-PHRASE QUERIES

The third and final way to record sentence information is to only encode
the sentence numbers as identifiers along with phrases. The data model with
this augmentation can be represented as:

sentence id︷︸︸︷
N ×

phrase︷ ︸︸ ︷
N× N× Σ+ . (4.10)

For instance, with this approach, we can represent the bigram and the
sentence information in Figure 4.3 as: (1, 2, 3). With this design choice, we
need to keep track of only an additional identifier, as opposed to two positions
in the first design choice, thereby reducing the storage cost. Furthermore, with
this representation, we can easily compute relaxations of phrase matches to lie
within a distance of k sentences. Our implementation utilizes this model of
sentence identifiers.

4.5 Indexing Documents

Documents can be indexed by considering contiguous and non-contiguous
combinations of words in our data model as indexing units. The key indexing
units we consider are n-grams and skip-grams (shown in Figure 4.3).

4.5.1 Indexing Units

n-grams. By considering the contiguous sequence of words of fixed length
we can arrive at unigrams, bigrams, and trigrams as indexing units. These
n-grams can immediately help us spot phrases by decomposing them as an
overlap of two or more n-grams. For example, to retrieve documents for the
phrase “physics nobel prize ”, we can decompose it to be a overlap of bigrams
“physics nobel ” and “nobel prize ”.

skip-grams. To spot a phrase or sequence of phrases it shall be helpful
if in advance we know whether pair of words co-occurs or not. Examples of
skip-grams are also shown in Figure 4.3. However, recording all skip-grams
contained within a sentence can lead to index blowup. To curtail the selection
of skip-grams to only those which are highly discriminative, we note three
choices for their generation. First, we can leverage the concept of point-wise
mutual information from information theory. To record a skip-gram 〈a, b〉, we
first measure their document frequencies:

Pr(a) =
df(a)

|D| , (4.11)

Pr(b) =
df(b)

|D| , (4.12)

Pr(〈a, b〉) =
df(〈a, b〉)
|D| (4.13)

INDEXING DOCUMENTS 43

where, df(a), df(b), and df(〈a, b〉) denote document frequency of a, b, and
〈a, b〉 while |D| denotes the collection size. The mutual information is then
computed by:

MI(〈a, b〉) =
Pr(〈a, b〉)

Pr(a) · Pr(b) . (4.14)

By selecting a suitable threshold for discriminative skip-grams we can reduce
the number of indexing units kept in the index. With this choice for skip-gram
generation, we can lower the size of skip-gram indexes, as we only keep those
skip-grams that are significant. However, to spot out-of-KG entities, we may
require combinations of words that are infrequent (e.g., 50 cent). In other
words, this scheme of skip-gram generation is highly restrictive for spotting
mentions of entities.

Second, we can leverage the presence of noun phrases, verbal phrases, and
more complex relations between part-of-speech tags obtained via dependency
parsing. Such choices can be justified by restricting ourselves to the application
at hand (e.g., relation extraction). We can therefore record skip-grams that are
ordered pair of words between noun phrases or between two part-of-speech tags.

Third and finally, we can leverage the syntactical structure of sentences
within documents to record skip-grams. With this scheme we keep track of only
those ordered co-occurrences of words that are within a sentence and within
fixed separation of ` words. To instantiate our indexes we consider skip-grams
where the word separation is at most ten words (i.e., ` = 10). By limiting the
separation between the skip-grams we also discard those combinations of words
that may be part of different compound sentences and not semantically related
to each other. Since, we keep track of infrequent skip-grams also, we can detect
mentions of emerging entities as well. This however leads to large inverted
index sizes. Since, establishing provenance for KG facts is a recall-oriented
task, we consider this scheme for recording the ordered co-occurrence of words.

4.5.2 Dictionaries and Indexes

Distributed Indexing Infrastructure. Our dictionaries and indexes are
stored in HBase, a modern state-of-the-art distributed extensible record store.
HBase is an open-source variant of the BigTable [59] distributed extensible
record store that forms the backbone of many Web-scale commercial services.
Distributed record stores provide us the advantage of quickly creating our
infrastructure as index build times scale linearly with the number of machines
in the cluster. Furthermore, distributed record stores are fault tolerant and
allow us to maintain multiple copies of indexes. Our indexes in the HBase
record store comprise of tables, where the records contain key-value pairs. In
each key-value pair, the key of a record in the table encodes the indexing unit
while the value stores the compressed payload for the posting list.

Dictionaries. For each n-gram and skip-gram we record their collection
statistics in a dictionary. Each entry in the dictionary stores for each indexing

44 OPTIMIZING HYPER-PHRASE QUERIES

INDEXING ELEMENT
HBASE TABLE KEY

[1 | 4 | {1,2,3,3} | {2,7,10,15} | {3,8,11,16}]

[2 | 4 | {2,3,4,4} | {3,8,11,16} | {4,9,12,17}]

[3 | 4 | {3,4,5,5} | {4,8,12,17} | {5,9,13,18}]

[4 | 4 | {4,5,6,6} | {5,7,12,18} | {6,8,13,19}]

a
b c d

e f g

h i j

k l m

HBASE TABLE VALUE

Figure 4.4: Inverted index structure. Block marked as (a) denotes the document
identifiers which are used for ordering the payloads in the posting lists and are
compressed as a separate blocks. Next each positional payload is stored by recording
the number of occurrences of the indexing element in the document followed by com-
pressed payloads of sentence identifiers (i.e., b, e, h, & k), corresponding compressed
begin (i.e., c, f, i, & l), and end block (i.e., d, g, j, & m) payloads.

unit p: the document frequency df(p) – number of documents containing p
and the collection frequency cf(p) – number of times p was observed in the
entire collection.

Inverted Indexes. The inverted index structure we implement is shown
in Figure 4.4. Each posting consists of compressed lists corresponding to
sorted document identifiers, and sorted lists for sentence identifiers, begin and
end positions of the indexing elements. For the n-gram indexes we can omit
payload corresponding to the end positions as they can be inferred by adding
the n-gram length to the begin positions. The compression technique utilized
is the patched frame of reference [11, 216].

4.6 Query Processing and Operators

We now discuss the design of operators over text regions that we use to
represent the combinatorial space of a hyper-phrase query.

QUERY PROCESSING AND OPERATORS 45

Algorithm 5: Computing a variable-length gap match.

Input :Posting lists Ll and Lr corresponding to the left and right
operands of the variable length match operator and k indicating
the number of sentences the match may span.

Output :Posting List containing the resultant text regions containing the
variable length match.

1 Function match(Ll, Lr, k)
2 R← find all common documents for postings in Ll & Lr

3 L← ∅, S← ∅
4 foreach doc-id ∈ R do
5 S← join(payload for doc-id in Ll, payload for doc-id in Lr,k)
6 L← L.append(new〈doc-id, S〉)
7 return L

8 Function join(Sl, Sr, k)
9 S ← ∅

10 if the last position span in Sr lies before the first position span in Sl then
11 return S

12 if first position span in Sr is before the first position span in Sl then
13 Sr ← remove position spans from the front of Sr until the first

position spans in it is after the first position spans in Sl

14 for (i← 1; i ≤ |Sl|; i++) do
15 for (j ← 1; j ≤ |Sr|; j++) do
16 if |sentence id for Sr − sentence id for Sl| ≤ k then
17 if (Sl[i] is before Sr[j]) then
18 S ← S.append([Sl[i].begin, Sr[j].end])

19 return S

4.6.1 Basic Query Processing

First and foremost, we discuss how to process a hpq to obtain the resulting
text regions. Assume that for a hpq P we have obtained the posting lists
corresponding to each of its constituent phrase sets P . To find the resulting
text regions that contain the evidences for the hpq we apply the binary
variable-length match operator by processing two phrase sets at a time, from
left to right, in P. Algorithm 5 shows how to process a variable-length match
between two posting lists. With Algorithm 5 acting as a general framework
for query processing, we note two avenues for optimization. First, we must
minimize the time spent for retrieving the postings corresponding to each
phrase set P in hpq P. Which in turn implies presenting the variable-length
match operator with a minimum number of documents to process (line 4
in Algorithm 5). Second, we must minimize the time spent for joining the
positions corresponding to each common document (lines 8-19 of Algorithm 5).

Näıve Optimization. A näıve strategy to optimize the execution of the
hpq is to identify a common pool of documents for all the phrase sets P

46 OPTIMIZING HYPER-PHRASE QUERIES

in hpq P before processing them for a variable-length match. Clearly, this
strategy is expensive as explained in Section 4.3. An improvement for matching
phrase sets was proposed by Agarwal et al. [27] for named entity extraction
from text documents. Their method relies on first computing a set cover
over the surface forms of named entities and then utilize Boolean operators
over a word index (i.e., no positional information is used) to obtain a final
superset of potentially matching documents. However, there is much room
for improvement on executing a hpq by exploiting the order of phrases and
optimizing them in our proposed data model.

cde

bcd

abc

s

qrs

opq

mno

p

xyz

vwx

uvw

o

Figure 4.5: Types of operators for matching a hyper-phrase query. A vertical cover
partitions a phrase set in the query by matching common n-grams or skip-grams. A
horizontal order models co-occurrence of words across phrase sets in the query using
skip-grams.

4.6.2 Query Operators

Vertical Cover Operator (�). Given our data model, we can leverage
n-grams and skip-grams to reduce the time spent for retrieving postings for
each phrase. We now describe a vertical cover operator that does this. Let
P be the phrase set and {p1, p2, . . . , pn} the constituent phrases. We can
induce a partitioning for each phrase set using n-grams and skip-grams. The
partition that has minimal cost (see Section 4.7.1) is then used for retrieval of
the posting lists.

Using n-grams, we can decompose each phrase in the phrase set using
unigrams, bigrams, and trigrams. For instance, for the phrase-set {abc, bcd}
the common unigrams are {b, c}, while the common bigrams is {bc}. Using the
common n-grams we can induce partitions over the phrase-set. For example,

QUERY PROCESSING AND OPERATORS 47

the partition induced using unigrams is: {a, b, c, d}; using bigrams the partition
is: {ab, bc, cd}; and using trigrams it is: {abc, bcd}.

Using skip-grams, we can induce the partitions over phrase sets by computing
ordered co-occurrences with respect to an anchor word. To compute skip-grams,
we fix the first word of the phrase as an anchor word and then derive all the
skip-grams with respect to it. For instance, for the phrase set {abc, adc} the
skip-grams induce the partitioning: {〈a, b〉, 〈a, c〉, 〈a, d〉}. Algorithm 6 shows
how to compute skip-grams that can then be used to retrieve posting lists.

Algorithm 6: Vertical cover operator using skip-grams.

Input : hpq P = 〈P1, P2, . . . , Pn〉.
Output : Set of skip-grams that cover the phrase sets P in hpq P.

1 Function cover(P ← 〈P1, P2, . . . , Pn〉)
2 S ← ∅ // Resulting skip-gram cover.

/* Compute the set of skip-grams needed to retrieve postings

for P by keeping all the phrases across phrase sets in one

set. */

3 skipGrams[]← generateSkipGrams(put all phrases of P in an array)
4 return skipGrams

5 Function generateSkipGrams(p[]← {p1, p2, . . . , pm})
6 S ← ∅ // Resulting set of skip-grams.

7 words[]← ∅ // Holds the words for the phrase being processed.

8 foreach p ∈ p[] do
9 words← p.split()

/* If the phrase is one-word only, keep it as is. It will

be retrieved using the unigram index. */

10 if (words.length = 1) then
11 S.put(p[i])
12 continue

13 i← 1
14 for (j← i + 1; j ≤ words.length; j++) do
15 S.put(〈words[i], words[j]〉)

16 return S

Horizontal Order Operator (�). We now discuss how to minimize the
time for performing the joins (lines 8-19 of Algorithm 5). When computing
the variable-length match for a hpq we shall like to process those combinations
that are highly selective, i.e., possess the least number of positions first. In
our data model, we can compute the cost of these join by using skip-grams
between words from phrases belonging to different phrase sets. Concretely,
we select that skip-gram for phrases belonging to different phrase sets that
contains the least number of positions. By summing up all the cardinalities
indicated by the set of skip-grams, output by Algorithm 7, we can determine
the cost of joining two phrase sets. Using the vertical cover and horizontal

48 OPTIMIZING HYPER-PHRASE QUERIES

Algorithm 7: Horizontal order operator using skip-grams.

Input : Sets of n-grams that cover the phrase sets corresponding to the
left and right operand of the variable-length phrase match.

Output : Set of selective skip-grams between phrase sets that are indicative
of the number of positions needed to be merged for the join.

1 Function order(Sl, Sr)
2 S ← ∅ // Resulting skip-gram join cover.

3 wordsl, wordsr ← ∅
4 minCostSkipGram, skipGram← ∅
5 double minCost, cost← −∞
6 foreach (pl ∈ Sl) do
7 wordsl ← pl.split()
8 minCost, cost← 0
9 foreach (pr ∈ Sr) do

10 wordsr ← pl.split()
11 for (i← 1; i ≤ wordsl.length; i++) do
12 for (j← 1; j ≤ wordsr.length; j++) do
13 skipGram← 〈wordsl[i], wordsr[j]〉
14 cost← cost(skipGram)
15 if (minCost ≡ −∞) ∨ (minCost > cost) then
16 minCost← cost

17 minCostSkipGram← skipGram

/* Add the min. cost skip gram. */

18 S.add(minCostSkipGram)

19 return S

order operators we can now model the execution of hyper-phrase queries using
the n-gram and skip-gram indexes. Referring to Figure 4.5, we can represent
the query execution as follows:

(ab � bc � cd � de) � (mno � opq � qrs) � (uv � vw � wx � xy � yz).

Operator Properties. We note the following operator properties that are
helpful in optimizing their order. The vertical cover operator is both associative
((a�b)�c = a�(b�c)) and commutative (a�b = b�a). However, the horizontal
order operator is only associative ((a � b) � c = a � (b � c)). Furthermore,
the vertical cover operator is only left distributive over the horizontal order
operator ((a � b) � (a � c) = a � (b � c)).

4.7 Query Optimization

We now discuss the strategy to select the optimal operator sequence to process
a hyper-phrase query.

QUERY OPTIMIZATION 49

4.7.1 Cost Model

Our cost model depends on two factors. First, we account for the number of
postings to be retrieved from the inverted indexes for a given indexing unit
based on document frequency – Cjoin. Second, we account for the number of
positions in each posting list based on collection frequency – Cmerge. The first
cost Cjoin gives us an estimate on the cardinality of the document sets we must
join for the query operators. The second cost Cmerge gives us an estimate of
the number of positions that we must merge to compute the resulting posting
for the query operators.

Cost of Vertical Cover Operator (�). The cardinality of the result of
the vertical cover operator is directly proportional to the union of the number
of documents associated with the left and right operand. Formally, it can be
expressed in terms of document frequency (df(•)) as follows:

|a� b| ∝
(

df(a) + df(b)− df(a ∩ b)
)
. (4.15)

The cost associated with the vertical cover operator can be determined using
the number of common n-grams (skip-grams) (see cover(•) in Algorithm 6)
that we can uncover from each phrase set of the hpq. In case of no overlap,
cost degenerates to querying the n-gram (skip-gram) inverted indexes for each
n-gram (skip-gram) decomposition of the phrases in each phrase set. We can
put this formally as:

cost(a� b) ∝
∑

x∈cover(a,b)

(
Cjoin · df(x) + Cmerge · cf(x)

)
.

Cost of Horizontal Order Operator (�). The cardinality of the result
of the horizontal order operator is proportional to the intersection of the
number of documents associated with the left and right operand. Formally,
this can be expressed in the number of documents (df(•)) as follows:

|a � b| ∝
(

df(a) + df(b)− df(a ∪ b)
)
. (4.16)

The cost associated with the horizontal order operator depends on the
number of skip-gram combinations generated across the phrase sets. To obtain
the ordering using skip-grams for the horizontal order operator, we need to
generate skip-grams between each two consecutive phrase sets in the hpq (see
order(•) in Algorithm 7). We can model the cost in two ways. First, if it is
required that we optimize both for the number of documents and positions,
we can write the cost as:

cost(a � b) ∝ arg min
x∈order(〈a,b〉)

(
Cjoin · df(x) + Cmerge · cf(x)

)
.

50 OPTIMIZING HYPER-PHRASE QUERIES

P1 P2 P3 P4 P5

P1 100 1400 2125 3400 3790

P2 × 750 1750 3275 4465

P3 × × 175 1975 3415

P4 × × × 725 3975

P5 × × × × 390

P(1,5)

P5P(1,4)

P4P(1,3)

P3P(1,2)

P2P1

Figure 4.6: An illustrative example of generating the optimal execution plan. For
the example, consider the cost constant ratio to be Cjoin/Cmerge = 10 with following
cardinalities of the � operator |P1 � P2| = 50, |P2 � P3| = 75, |P3 � P4| = 100, and
|P4�P5| = 300. Assume that each resulting text regions has only 50 positional spans.

However, if the number of documents are equal in both the operands, then
we are interested in minimizing the number of positions to be merged:

cost(a � b) ∝ arg min
x∈order(〈a,b〉)

(
Cmerge · cf(x)

Cjoin · df(x)

)
. (4.17)

Cost Comparison between � and �. In general, computing the inter-
section over large sets of documents is more expensive than computing the
union. The common document identifiers can be identified via three strategies.
The first strategy uses binary search for looking up an identifier from the first
list in the second list of ordered document identifiers. The second strategy
is to use galloping (interpolation) search in order to speed up the lookups in
ordered lists. The third and final strategy is to use hash-set-based intersections
to reduce the time for intersection at the cost of performance degradation
due to collisions. The first two strategies benefit from data locality however,
on modern hardware architectures, all perform comparably well [69]. Our
implementation uses the third strategy. Furthermore, the horizontal order
operator leads to a Cartesian product of sets if distributed over the vertical
cover operator. That is, (a� b)� (c� d) = (a� c) � (a� d) � (b� c) � (b� d).
Given these two characteristics of the horizontal order operator it is more
expensive to compute than the vertical cover operator. Formally,

cost(�)� cost(�). (4.18)

QUERY OPTIMIZATION 51

4.7.2 Optimization

Let P = 〈P1, P2, . . . , Pn〉 be a hyper-phrase query. Where each phrase set
Pi = {pi1, pi2, . . . , pim} has at most m phrases. Using the aforementioned query
operators we can specify the following operator sequence for executing the
query P:

(p1
1 � p1

2 . . . p
1
m) � (p2

1 � p2
2 . . . p

2
m) � . . . � (pn1 � pn2 . . . p

n
m). (4.19)

We can rephrase the above formulation as follows:

n

�
j=1

Pj =

n

�
j=1

m�
i=1

pji (4.20)

where, P represents the result of the vertical cover operator. At a high level,
it may seem trivial to execute the vertical cover operators (�) first to obtain
the union of the documents representing the phrase sets (Pj) and subsequently
the horizontal order operators (�) to obtain the result of sequences of one
phrase set following the other (Pj−1 � Pj). However, näıvely executing this
query plan may be expensive. This is because, we may end up intersecting
two potentially large posting lists. This can be avoided if we chose to perform
a more selective operand (i.e., operand with fewer postings) with an operand
with a large posting list in order to eliminate those documents that will not
end up in the final result.

To understand this better, consider spotting the following KG fact: 〈 bill
clinton, educated at, usa 〉. Let the hyper-phrase query associated with
this be: 〈{bill clinton, william jefferson clinton, clinton }, {educated at,
studied at }, {united states america, united states }〉. To show the differ-
ence between the number of comparisons incurred when executing different
order of operator sequences consider the following example (where the words in
the phrases are represented by their first letter, subscripts denote the number
of documents, and number of positions per document):

(b � w � j � c)102×10 � (e � s � a)105×102 � (us � a’)10×105 .

If we evaluate the horizontal order between the subject and predicate first
we incur a cost of O(10 × 102) comparisons. However, if we perform the
horizontal order between the predicate and object first we incur a cost of
O(102×105) comparisons. There is an order of 104 extra comparisons incurred
when executing the second operator first.

Optimizing Vertical Cover Operators. We now describe the initial
optimizations that we can perform by leveraging the associativity and com-
mutativity of the vertical cover operator. The first optimization corresponds
to decomposing the phrases using the most cost-effective cover of the phrase-
sets using n-grams or skip-grams. This can be done in a greedy manner by
leveraging the dictionaries.

52 OPTIMIZING HYPER-PHRASE QUERIES

The second optimization that we can make is to keep track of common
phrases across phrase-sets. We therefore reduce the cost of the redundant
retrieval of same posting lists for phrases. This optimization leverages the left
distributive property of the vertical cover operator over the horizontal order
operator.

Optimizing Horizontal Order Operators. The third and final opti-
mization we can make concerns the horizontal order operator. To optimize the
sequence of horizontal order operator �, we first need to uncover the optimal
substructure property underlying the hyper-phrase queries. It is important
to note that a subsequence of phrase sets in a hpq P = 〈P1, P2, . . . , Pn〉 is yet
another hpq. To optimize the original hpq, we must first identify the optimal
sequence of performing the horizontal order operators for sub-hyper-phrase
queries that it contains. This problem is similar to that of identifying the opti-
mal order of multiplying a sequence of compatible matrices [65] and optimizing
the join order for sql queries in relational databases [185]. A näıve method of
computing such an optimal solution is lower bounded by the Catalan Numbers
– Ω(4n/33/2) [65]. Let a sub-hyper-phrase query be denoted by P(i,j) where the
subscripts denote the subsequence (without omissions) of phrase sets from the
original hyper-phrase query P. The optimal join order sequence can then be
stated as:

opt(P(i,j)) =

cost(�m
l=1 p

i
l), if i = j

min
i≤k<j

[
opt(P(i,k)) + opt(P(k+1,j))+

cost
(
P(i,k) � P(k+1,j)

)]
, if i < j.

The equation above decomposes the optimization of a hpq P(1,n) into smaller
hyper-phrase queries. The base case of the inductive hypothesis corresponds to
computing the cost of the vertical cover operator over each individual phrase
set. The induction step builds up the dynamic programming table by first
computing the join between a hyper-phrase query with only two phrase sets.
Thereafter, we seek to intersect the solutions to those hyper-phrase queries
that consist of the least number of documents. Figure 4.6 shows an example
of computing an optimal join order sequence.

4.8 Evaluation

We describe the document collections used to test our approach, how we
generated a testbed of hyper-phrase queries using knowledge graphs, and
finally the baselines and methods put under test. We end the section by
discussing the experimental results obtained.

EVALUATION 53

collection ndocuments nwords nsentences

new york times 1,855,623 1,058,949,098 54,024,146

wikipedia 5,327,767 2,807,776,276 192,925,710

gigaword 9,870,655 3,988,683,648 181,386,746

gdelt 14,320,457 6,371,451,092 297,861,511

Table 4.1: Document collection statistics.

type nyt wikipedia gigaword gdelt

unigram 5.83 22.22 31.10 50.37

bigram 16.27 46.72 68.15 99.05

trigram 39.98 104.77 94.87 147.68

skip-gram 79.62 222.52 191.43 259.10

Table 4.2: Inverted Index build times in minutes.

nyt wikipedia gigaword gdelt

collection size 3.00 21.89 9.10 77.44

index type nyt wikipedia gigaword gdelt

word dictionary 0.04 0.30 0.10 0.14

n-gram dictionaries 4.54 19.80 10.50 19.04

skip-gram dictionary 14.40 25.70 21.30 29.30

word index 5.80 18.00 22.30 35.90

n-gram indexes 45.90 126.30 154.40 234.80

skip-gram index 56.10 180.80 203.60 289.00

Table 4.3: Dictionary and Index sizes in Gigabytes (GB).

4.8.1 Document Collections

We build our proposed indexes over four large document collections. The first
document collection consists of news articles published in the New York Times
and is publicly available [18]. The NYT archive consists of approximately two
million documents published between 1997 and 2007. The second document
collection we utilize is Wikipedia [23]. Wikipedia comprises of around five
million documents and is also publicly available. The third document collection
consists of news articles published by seven major newswire organizations
including the Washington Post, the Associated Press, and the Xinhua News
Agency during the 1995-2010 reporting period [5]. This news archive is publicly
available as the fifth edition of the English Gigaword. It consists of around ten
million documents. The fourth and final document collection is the largest in
our evaluation setup. It comprises of a set of news articles obtained by crawling
the links available on the real-world event repository GDelt [7]. The GDelt
document collection amounts to a total of approximately fourteen million
documents. In total, the four document collections amount to more than thirty
million documents. A summary of the document collection statistics is given
in Table 4.1.

54 OPTIMIZING HYPER-PHRASE QUERIES

4.8.2 Indexes

For each document collection, we created indexes based on the data model
discussed in Section 4.5. For n-grams, we instantiated indexes for unigrams,
bigrams, and trigrams. For skip-grams, we instantiated indexes that record skip-
grams with word separation of up to ten words (i.e., ` = 10). Corresponding to
each collection the dictionary and index sizes in GB are reported in Table 4.3.
We also show the sizes of the word dictionary and inverted index for each of
the collection in Table 4.3. The index build times are shown in Table 4.2. It
can be observed by storing higher length n-grams we blow up our indexes by a
factor of at most 7.91×. While, the blow up for the skip-gram index is at most
10.04× compared to a standard word (unigram) index. Despite the large index
sizes, we observe that by lowering the word separation ` between skip-grams
we can reduce the skip-gram index sizes.

4.8.3 Hyper-Phrase Queries

In order to test the efficiency of our proposed approach we utilize the Wikidata
KG [22] to construct a testbed of hyper-phrase queries. The translation of
facts in the KG to hyper-phrase queries are done via the following scheme:
P ≡ 〈s, p,o〉. We evaluate our proposed method and baselines against two
kinds of tasks: KG fact and KG subgraph spotting task.

Queries for KG Fact Spotting (KG-F) Task

For this task, each test instance consists of a hpq corresponding to a single
KG fact with multiple object arguments. Each query consists of three phrase
sets where each phrase is an alias for the subject, predicate, or object. To
instantiate the instances for this task, we pursued those entities where multiple
objects for the same predicate could be associated. Concretely, we constructed
instances for categories and predicates in Table 4.4. For each instance in this
task we record the time to retrieve the text regions as evidences for each hpq.
An example of an instance in the KG fact spotting task is shown in Figure 4.2.

Queries for KG Subgraph Spotting (KG-S) Task

Journalists and scholars in humanities are seldom interested in retrieving
evidences for a single KG fact. It is often required that one can query for rela-
tionships between multiple entities in a single query. In order to simulate hyper-
phrase queries with more than three phrase sets we consider KG subgraphs. In
particular, we restrict ourselves to subgraphs with a star topology. To construct
queries for the task of KG-S, we take each fact concerning an entity (subject)
as a constituent hpq. Thus, each instance in KG-S task is a list of hyper-phrase
queries, where each hpq represents a fact concerning a common entity. For

EVALUATION 55

category predicates nqueries µwords

writers award received,
notable work

694 57.95

medicine laureates award received,
employer

410 55.02

physics laureates award received,
employer

406 58.48

chemistry laureates award received,
employer

348 56.04

movies cast member,
filming location

114 75.51

all us elections candidate 1 1081.00

all world war i battles location 1 1669.00

all world war ii battles location 1 2563.00

all summer olympics location 1 717.00

all winter olympics location 1 407.00

Table 4.4: Statistics regarding the testbed for KG-F task.

each instance in this task, we retrieve the text regions as evidences for each
hpq in the list and record the total time to execute all of the constituent hpq.

To materialize the instances for the KG-S task we focus on prominent
named entities. The prominence is chosen by restricting ourselves to famous
scientists, artists, and athletes. To select these named entities we looked at the
prestigious awards won by scientists (e.g., the Nobel Prize), artists (e.g., the
Grammy), and athletes (e.g., medal at the Summer Olympics). The concrete
Wikidata object identifiers corresponding to these awards is shown in Table 4.5.
By obtaining a set of entities where the award occurs as an object, we then
focused on common and selective key predicates to further narrow down the
facts concerning these entities. The key predicates that we utilized were: P19

(place of birth), P10 (occupation), P166 (awards received), P69 (educated
at), P800 (notable work), P22 (father), P26 (spouse), P361 (part of), P39
(position held), and P102 (member of political party). The number of facts
thus created are reported in Table 4.5. An illustrative example of an instance
of the KG subgraph spotting task is shown in Figure 4.1.

It is important to note that queries in both KG fact and subgraph spotting
tasks are highly verbose. For instance, the most complex query comprising of
all US elections and their candidates comprises of at least a thousand words
(see Table 4.4). The testbed for the KG-F and KG-S tasks is available at the
following URL:

http://resources.mpi-inf.mpg.de/dhgupta/data/hpq/.

56 OPTIMIZING HYPER-PHRASE QUERIES

category kg object id nqueries µwords

actresses (838) Q103618 1,434 32.72

actors (840) Q103916 1,547 35.00

singers (293) Q41254 327 33.86

writers (743) Q37922 2,316 33.69

president of the us (807) Q11696 367 47.22

physicists (654) Q38104 2,056 34.12

chemists (634) Q44585 1,788 33.99

mathematicians (58) Q28835 189 33.19

economists (84) Q47170 274 37.57

pacifists (593) Q35637 1,945 36.28

olympians (27)

Q15243387

144 31.79Q15889641

Q15889643

Table 4.5: Statistics regarding the testbed for KG-S task.

4.8.4 Setup

Implementation and Hardware Details. The entire indexing infrastruc-
ture has been built from scratch in Java with indexes stored in a cluster of ma-
chines running Cloudera CDH 5.90 version of Hadoop and HBase. Our Hadoop
cluster consists of twenty machines in which all machines have up to 24 core In-
tel Xeon CPUs at 3.50 GHz, up to 128 GB of primary memory, and up to eight 4
TB HDDs. With the Hadoop cluster acting as our storage backend, we evaluate
our queries on a high-memory compute node equipped with 1.48 TB of primary
memory and a 96 core Intel Xeon CPU with processing speed of 2.66 GHz.

Baselines and Systems. We evaluate three baselines against our proposed
approach. We first establish a lower bound on how much time a hpq should
take to answer by scanning the entire document collection on our Hadoop
cluster in an embarrassingly parallel manner Bscan. As a second näıve baseline
Bbigram we retrieve the results corresponding to each individual phrase set in
the hpq using unigram and bigram decomposition only. We use bigrams to
construct the result set for phrases as we do not index stopwords in the word
index. Subsequent to this we compute the result set only for those document
identifiers that are present in all the phrase sets of the hpq. As a third baseline
Bngram we consider the longest possible n-gram decomposition possible with
our indexes. The result is computed in a similar manner as in Bbigram. The
Bbigram and Bngram baselines are in accordance with the discussion presented
in Section 4.3. As our first system, A� we test our approach that searches for
hyper-phrase queries by only leveraging the optimized vertical cover operator
across phrase sets. As our second system A�� we execute each hpq using the
optimized vertical cover and horizontal order operators.

EVALUATION 57

system n-gram
dictionary

n-gram index skip-gram
dictionary

skip-gram
index

Bscan × × × ×
Bbigram × • × ×
Bngram × • × ×
A� • • × ×
A�� • • • •

Table 4.6: Baselines and Systems.

system nyt wikipedia gigaword gdelt

Bscan 111.00 322.00 396.00 604.00

Table 4.7: Results for Baseline Bscan (secs).

Parameters and Setup. For both the KG-F and KG-S task, we sample
100 queries to execute for the two baselines and our systems. For the remaining
baseline Bscan we measure the time required to scan the each document in the
entire document collection once to establish a lower bound. We evaluate the
sampled queries for three rounds with cold cache settings. To simulate the
cold cache setting: we shuffle the order of queries in between rounds. We only
show cold cache run times as they are similar to the warm cache setting results.
Furthermore, for computing the optimal plan of execution we set the constants
ratio (Cjoin/Cmerge) to 1 and we use the cost for horizontal-order operator in
accordance with to Equation 4.17. The rationale for choosing this ratio was to
consider the cost for merging positions same as documents as we have applied
the näıve query optimization to all baselines and systems. We additionally
vary the match between phrase sets to lie within a distance of k ∈ {0, 2, 5}
sentences of the document containing the evidence.

4.8.5 Results

A summary of the dictionaries and indexes used by the baselines and systems
is shown in Table 4.6. We have further computed the statistical significance of
the results using the Student’s paired t-test at significance level α = 0.05. The
systems that produce statistically significant results over the Bbigram baseline
are marked with M and over the Bngram are marked with N. The results for
the first baseline Bscan are shown in Table 4.7. As expected the time to scan
the document collection directly depends on the collection size. The NYT
being the smallest takes the least time while GDelt takes the most time on
our Hadoop cluster to scan.

Results of KG Fact Spotting (KG-F) Task

We first discuss the efficiency results of the KG fact spotting task. In this
task, we are required to retrieve text regions for a sequence of phrase sets
that correspond to a KG fact. The results for the baselines and systems are

58 OPTIMIZING HYPER-PHRASE QUERIES

displayed in Table 4.8. When restricting ourselves to matching phrase sets
within a sentence we notice a speed up of at least 8.97× using bigrams Bbigram

over the simple Bscan baseline. Further using trigrams to spot phrases for
matching a hpq brings about a speed up of at least 42.42× over Bscan. Using
our proposed optimization we can achieve a speed up of at least 1.22× over
Bngram, 4.04× over Bbigram, and 53.31× over Bscan. As we increase the sentence
relaxation k size for matching a hpq we see a speed up of at least 1.15×
over Bngram and 3.72× over Bbigram. It is also important to observe that with
increasing collection sizes the difference between end-to-end runtime results
between the best baseline Bngram and our system A�� increases significantly.

Results of KG Subgraph Spotting (KG-S) Task

We now discuss the efficiency results of the KG subgraph spotting task. In
this task, we are required to retrieve text regions for hpqs that correspond
to multiple facts concerning an entity. The results for the baselines and
systems are displayed in Table 4.9. For the KG subgraph spotting task, when
restricting ourselves to matching each constituent fact of a subgraph to within
a sentence, the baseline Bbigram achieves a speed up of at least 9.00× over Bscan.
While, the baseline Bngram achieves a speed up of at least 17.85× over Bscan.
The improvements offered by our proposed optimizations add up to reflect a
speed up of at least 1.21× and at most 1.71× over Bngram. As we increase

runtime results for kg-f task (secs) for k = 0.

system nyt wikipedia gigaword gdelt

Bbigram 7.77 ± 12.91 24.41 ± 29.43 41.24 ± 62.94 67.34 ± 164.75

Bngram 1.80 ± 2.82 7.59 ± 6.37 7.89 ± 7.16 12.47 ± 17.98

A� M1.92 ± 3.63 M7.21 ± 5.63 M7.74 ± 7.30 M11.57 ± 16.36

A�� MN1.41 ± 2.42 MN6.04 ± 5.57 MN6.45 ± 6.50 MN9.78 ± 15.35

runtime results for kg-f task (secs) for k = 2.

system nyt wikipedia gigaword gdelt

Bbigram 8.61 ± 18.71 21.8 ± 28.25 34.77 ± 48.91 42.19 ± 68.97

Bngram 1.91 ± 3.33 7.11 ± 5.87 8.46 ± 8.66 10.50 ± 11.08

A� M1.82 ± 2.87 M6.97 ± 6.06 M8.21 ± 7.63 M9.90 ± 10.31

A�� MN1.52 ± 2.82 MN5.86 ± 5.44 MN6.92 ± 6.81 MN7.65 ± 8.97

runtime results for kg-f task (secs) for k = 5.

system nyt wikipedia gigaword gdelt

Bbigram 10.45 ± 30.12 35.18 ± 120.41 39.93 ± 59.29 71.81 ± 233.71

Bngram 2.08 ± 4.64 10.02 ± 32.68 8.41 ± 7.42 12.92 ± 22.46

A� M2.56 ± 6.06 M9.47 ± 30.57 M10.17 ± 11.39 M13.71 ± 25.07

A�� MN1.64 ± 4.35 MN8.26 ± 28.87 MN7.07 ± 7.13 MN11.26 ± 23.68

Table 4.8: Results for KG-F Task (secs).

EVALUATION 59

runtime results for kg-s task (secs) for k = 0.

system nyt wikipedia gigaword gdelt

Bbigram 7.50 ± 8.67 35.77 ± 53.78 37.66 ± 76.66 49.70 ± 66.84

Bngram 4.07 ± 4.86 18.04 ± 9.90 15.61 ± 15.92 21.18 ± 17.35

A� M3.96 ± 4.17 M17.26 ± 10.35 M14.71 ± 11.81 M20.52 ± 17.29

A�� M2.91 ± 4.22 MN10.53 ± 7.92 M12.05 ± 10.96 M17.45 ± 14.83

runtime results for kg-s task (secs) for k = 2.

system nyt wikipedia gigaword gdelt

Bbigram 6.20 ± 7.40 32.76 ± 31.72 46.56 ± 107.71 57.10 ± 67.78

Bngram 3.54 ± 4.11 17.79 ± 11.76 15.20 ± 15.74 21.38 ± 17.27

A� M3.32 ± 4.28 M16.97 ± 11.11 M14.39 ± 12.80 M20.00 ± 16.27

A�� M2.98 ± 5.58 MN10.20 ± 7.74 M12.17 ± 13.71 MN15.38 ± 13.60

runtime results for kg-s task (secs) for k = 5.

system nyt wikipedia gigaword gdelt

Bbigram 9.33 ± 10.95 31.19 ± 34.11 38.09 ± 48.21 63.94 ± 72.30

Bngram 4.47 ± 4.29 17.36 ± 12.28 15.12 ± 12.11 24.47 ± 18.47

A� M4.22 ± 4.99 M16.86 ± 11.04 M14.76 ± 12.43 M23.36 ± 18.83

A�� MN3.06 ± 4.06 MN9.91 ± 7.81 MN11.66 ± 9.89 MN18.47 ± 16.06

Table 4.9: Results for KG-S Task (secs).

the sentence relaxation k size for matching phrase sets in a KG subgraph we
observe speed ups of at least 1.19× over Bngram, 2.08× over Bbigram, and 31.57×
over Bscan. Just like the KG fact spotting task, we observe that with increasing
collection size the benefit offered by proposed optimization is significant over
the baselines Bbigram and Bngram.

Summary

At the task of spotting evidences for KG facts, our proposed optimizations
show an improvement of at least 1.15× and at most 1.37× over Bngram across
different levels of sentence separations. At the task of spotting evidences for
KG subgraphs, our proposed optimizations have shown an improvement of at
least 1.19× and at most a speed up of 1.75× over Bngram. We also observe
that as we move across increasing collection sizes the benefit of optimization
also becomes apparent. This speed up however, comes at a cost of maintaining
n-gram indexes and skip-gram indexes that are a factor of at most 7.91× and
10.04× more larger than keeping only a word index. Despite this, we note that
depending upon the application domain, selective choices regarding what kind
of skip-grams to index and n-grams can further bring down the storage cost
and at the same time offer speed ups based on our optimization for executing
hyper-phrase queries.

60 OPTIMIZING HYPER-PHRASE QUERIES

4.9 Conclusion

We have shown how to speed up the processing of verbose hyper-phrase queries
that help in establishing provenance for knowledge graph facts and subgraphs.
Additionally, our approach shall find applications in knowledge acquisition
for relationships and facts regarding out-of-knowledge-graph entities. For
instance, when extracting sentences for adverse drug reactions in the field
of biomedicine. Our solution consists of a data model for text that indexes
n-grams and skip-grams along with their sentence identifiers. Furthermore, we
presented operators to express the complete combinatorial space for optimizing
hyper-phrase queries. We then described a dynamic programming based
algorithm to generate an optimal query plan using the proposed vertical cover
and horizontal order query operators. We showed the efficiency of our system
in spotting evidences for knowledge graph facts and subgraphs in document
collections amounting to more than thirty million documents.

PART II

QUERYING ANNOTATED
DOCUMENT COLLECTIONS

CHAPTER 5

IDENTIFYING TIME INTERVALS
OF INTEREST FOR QUERIES

• Dhruv Gupta and Klaus Berberich. Identifying Time Intervals of Interest to
Queries. In CIKM 2014, pages 1835–1838.

5.1 Introduction

Time has been recognized as an important dimension in Information Re-
trieval [29], and recent years have seen an increased interest in making use of
temporal information associated with documents or information needs. Tasks
that have been tackled include retrieving recent relevant documents [144] as
well as documents relevant to implicitly [155] or explicitly [41, 70] temporal
queries. Beyond that, also web search engines have meanwhile deployed features
to keep up with the changing Web, indexing recently published documents,
and filtering results based on their publication dates.

In this chapter, we address the problem of automatically identifying time
intervals of interest to a given keyword query. For instance, when presented
with the keyword query bill clinton presidency, a good time interval to
determine would be [1993, 2001], which covers the years of Clinton’s presi-
dency. This is a useful building block in temporal information retrieval with

63

64 IDENTIFYING TIME INTERVALS OF INTEREST FOR QUERIES

applications such as (i) temporal query reformulation and expansion – by
adding time intervals of interest to the query, (ii) temporal diversification of
search results – by making sure that the result covers diverse time intervals
of interest to the query, and (iii) providing more structured query results to
users – organized by important time intervals they refer to.

While ours is not the first effort in this direction, it differs from previous
ones [70, 132] in several important aspects. First, our approach generates
time intervals (e.g., [1993, 2001]) as opposed to generating time points at a
fixed temporal granularity (e.g., the years 1993 and 2001) for keyword queries.
Second, we make use of both documents’ publication dates, as part of their
metadata, as well as temporal expressions from their contents. Third, our
approach is not restricted to a fixed temporal granularity but can determine
time intervals of interest at different temporal granularities (e.g., day, month,
and year). Finally, we also consider temporally ambiguous queries for which
more than one time interval is of interest – say george bush presidency or
san francisco earthquake.

The work in this chapter builds on prior research [41], which aims at
improving retrieval effectiveness for explicitly temporal queries such as summer
olympics 2004. Borrowing their formal model for representing temporal
expressions contained in documents (e.g., in the summer of 2004) and capturing
their inherent uncertainty, we put forward a generative model for identifying
time intervals of interest to a given keyword query. Our model is based
on the intuition that a time interval of interest should be often referred to
in relevant documents. More specifically, it considers the top-k documents
retrieved by a unigram language model, treating them as pseudo-relevant,
and analyzes their contents, specifically the temporal expressions therein, for
often referred to time intervals. We describe the design space and consider
different concrete instantiations of our model. To evaluate their performance,
we compile two novel testbeds, consisting of temporally unambiguous and
temporally ambiguous queries obtained from high-quality web sources.

Contributions described in this chapter are:

1. a novel approach to identify time intervals of interest to a given keyword
query;

2. two testbeds consisting of temporally (un)ambiguous queries which are
made publicly available;

3. an experimental evaluation of our approach on The New York Times
Corpus [18], as a publicly-available document collection, on the aforemen-
tioned query testbeds.

Organization. The rest of this chapter is organized as follows. We put our
work in context with prior research in Section 5.2. Section 5.3 then describes
our approach, including a discussion of the design space and details on our
concrete instantiation. Following that, we describe our experimental evaluation
in Section 5.4, before concluding in Section 5.5.

RELATED WORK 65

5.2 Related Work

In this section, we put our work in context with existing prior work. Kanhabua
et al. [132] is the work closest to ours. In contrast to the approach put forward
in this chapter, their method focuses on identifying years of interest to a
keyword query and does so only based on documents’ publication dates. Their
method is thus restricted to time points at year granularity and cannot identify
time intervals at other granularities. Dakka et al. [70] as well as Diaz and
Jones [127], as one building block in their respective research, describe methods
that identify time points of interest to a query. Their methods, though, are
solely based on the publication dates associated with documents and do not
consider temporal expressions from their contents. Again, no time intervals
are considered and the granularity is limited to that of documents’ publication
dates. Strötgen et al. [186] look into the related problem of identifying salient
temporal expressions from a document. Other work has looked into improving
the result quality of implicitly or explicitly temporal queries. For the former,
this includes Metzler et al. [155], who identify implicitly temporal queries within
the query log of a web search engine, and Dakka et al. [70], who analyze the
distribution of publication dates to identify implicitly temporal queries. Peetz
et al. [172] is a related work that leverages bursts in the temporal distribution
of publication dates to improve retrieval effectiveness. Berberich et al. [41], as
the work mentioned in the introduction, targets explicitly temporal queries
and leverages both documents’ publication dates and temporal expressions.
Our work is orthogonal and the time intervals that we identify can be used to
augment the query and obtain better results with one of the aforementioned
approaches. Finally, there has been work on attaching a time point or time
interval to an entire document. Thus, de Jong et al. [72] determine the likely
publication time of a document based on its language; Kanhabua et al. [133]
make use of temporal expressions from documents’ contents to the same end.
Jatowt et al. [123], even in the absence of any temporal expressions, determine
a so-called focus time for a document, which delimits the time period the
document predominantly refers to. For all of these approaches, the focus is on
identifying a single time point or time interval (as opposed to possibly more
than one) for a given document (as opposed to a query in our case).

5.3 Identifying Interesting Time Intervals

In this section, we describe our approach for identifying interesting time
intervals for a given keyword query.

5.3.1 Document Model

We largely adopt the formal model and notation introduced by [41]. Our
document collection is denoted by D. A document d ∈ D consists of a multiset

66 IDENTIFYING TIME INTERVALS OF INTEREST FOR QUERIES

of keywords dtext and a multiset of temporal expressions dtime. We let tf(v, d)
and tf(T, d) denote the term frequency of the keyword v and the temporal
expression T in document d, respectively. We use |dtext| and |dtime| to denote
the multiset cardinalities of the textual and temporal part, respectively. In
the remainder, when it is clear from the context, we simply write d to refer to
either of them. Keywords are drawn from a vocabulary V.

5.3.2 Time Model

To incorporate temporal uncertainty we adopt the time model from [41]. A
temporal expression is a four-tuple, T = 〈bl, bu, el, eu〉. Where, [bl, bu] and
[el, eu], represent the lower and upper bounds on beginning of time interval,
b, and its end, e, respectively. Each component of T is drawn from a time
domain T (usually Z). A temporal expression T may refer to any time
interval [b, e] ∈ T × T with bl ≤ b ≤ bu, el ≤ e ≤ eu, and b ≤ e. For
example the temporal expression “in the 1960s” would be represented as
T = 〈1960− 01− 01, 1969− 12− 31, 1960− 01− 01, 1969− 12− 31〉 and time
interval such as [1965− 05− 10, 1966− 04− 09] can be generated from T . We
treat temporal expressions as a set of time intervals and let |T | denote the
number of time intervals that |T | may refer to. Figure 5.1 illustrates the time
model with uncertainty.

b` bu

e`

eu

O
begin

end

T

[b, e]

Figure 5.1: Graphical representation illustrating how a time interval [b, e] is generated
from T [41].

IDENTIFYING INTERESTING TIME INTERVALS 67

5.3.3 Retrieval Model

As mentioned above, our approach determines time intervals of interest to
a query based on pseudo-relevant documents. To determine those, we use a
unigram language model with Dirichlet smoothing and thus estimate the query
likelihood of a given keyword query q as

P (q | d) =
∏

v∈q

tf(v, d) + µ · tf(v,D)
|D|

|d|+ µ
. (5.1)

Here, D is the document collection, treated as a single document, for the
purpose of smoothing probability estimates.

5.3.4 Time Intervals of Interest

Having identified documents believed to be relevant to the keyword query q,
our approach analyzes their contents to determine time intervals of interest.
We next describe the high-level components of our approach, before discussing
possible instantiations.

Intuitively, a time interval [tb, te] is considered interesting for a keyword
query q, if it is frequently referred to by highly relevant documents. We cast
this intuition into the following generative model:

P ([tb, te] | q) =
∑

d∈ top(q,k)

P ([tb, te] | d)P (d | q) (5.2)

According to this model, first a document d is selected from top(q, k) as the
set of k documents having highest likelihood of generating the keyword query
q. Second, a time interval [tb, te] is generated from the temporal expressions
contained in document d. For each of the two steps, we consider different design
alternatives. To obtain time intervals of interest at different granularities, the
generative model is applied recursively. By doing so, we obtain time intervals
of interest at year, month, and day granularity. This is illustrated in Figure 6.1.

Generating Documents

In the simplest case, in the first step, a document is selected at uniform random
among the top-k results, yielding

P (d | q) = 1/k . (5.3)

Here, the query likelihood P (q | d) is thus not taken into account. While
this may not be a problem for small choices of k, we expect it to deteriorate

68 IDENTIFYING TIME INTERVALS OF INTEREST FOR QUERIES

performance for larger choices. As an alternative, we consider

P (d | q) =
P (q | d)∑

d′ ∈ top(q,k) P (q | d′) , (5.4)

which estimates the probability of selecting a document in the first step as
proportional to its query likelihood estimated according to Equation 5.1.

Generating Time Intervals

For the second step, we can estimate the probability of generating the time
interval [tb, te] from document d as

P ([tb, te] | d) =
1

|dtime|
∑

T ∈ dtime

1([tb, tb, te, te] = T) . (5.5)

The time interval [tb, te] can thus only be generated from documents
containing temporal expressions that exactly map to it. To illustrate this, the
time interval [1992, 1998] can only be generated from documents that contain
from 1992 until 1998 but not from documents containing only in the 1990s.
As a more relaxed advanced alternative, building on the generative model
introduced in [41], we also consider

P ([tb, te] | d) =
1

|dtime|
∑

T ∈ dtime

1([tb, te] ∈ T)

|T | , (5.6)

which takes into account the uncertainty inherent to temporal expressions.
With this model, also a document containing 1990s, formally represented as
〈1990, 1999, 1990, 1999〉, could generate the time interval [1992, 1998].

Query Processing

At query time, our method first determines the set top(q, k) of documents
having highest query likelihoods. It then analyzes the temporal expressions
therein, determining tmin and tmax corresponding, respectively, to the earliest
and latest time mentioned in any of the result documents. Following that,
it enumerates all valid time intervals [tb, te] ⊆ [tmin, tmax] and determines
their probability P ([tb, te] | d). For this last step, combining the two design
alternatives for each of the two steps of our generative model, we obtain four
possible instantiations, which we experimentally evaluate in the following
section. We will use N and A to refer to the näıve and advanced design
alternative for each of the two steps. The method combining Equation 5.4 and
Equation 5.5, for example, will be referred to as AN.

EVALUATION 69

5.4 Evaluation

We now describe the setup of our experiments.

5.4.1 Setup and Datasets

Document Collection. As a document collection, we use The New York
Times Annotated Corpus [18], which consists of about 2 million news articles
published between 1987 and 2007. Publication dates are readily available.
Temporal expressions are obtained from the data provided by [41] – they
used TARSQI [200] to annotate temporal expressions augmented by a handful
of handcrafted regular expressions to go after range expressions (e.g., from
1980 until 1984). Publication dates of documents are taken into account as
additional temporal expressions – thus a document published on March 13,
1988 virtually contains the temporal expression on March 13, 1988.

Sports commonwealth games (21) | asian games (18) | summer olympics

(34) | winter olympics (26) | super bowl winners (48)

Music u2 album (13) | nirvana album (4) | beatles album (52) | red
hot chilli peppers album (11) | michael jackson album (11)

Movies harry potter movie (6) | oscar academy awards (88) | lord of

the rings movie (3)

Politics german federal elections (19) | us presidential elections

(58) | australia federal elections (45)

History iraq war (2) | world trade center bombing (2) | madrid

bombing (9) | earthquake united states of america (73)

Table 5.1: Temporally ambiguous queries

Queries. We use two sets of test cases: (i) temporally unambiguous queries
obtained from the “On this Day” website of The New York Times1. For each
day of the year, this website lists an event of historic significance, including a
concise description. For example, for July 1st, the event is described as “In
1997, Hong Kong reverted to Chinese rule after 156 years as a British colony.”.
We extract the indicated year (here: 1997) for each date to obtain a precise
date at day granularity and keep the rest of the description as a query. This
leaves us with a total of 366 temporally unambiguous queries; (ii) temporally
ambiguous queries from the domains of Sports, Music, Movies, Politics, and
History, which we compiled manually. For each of them, we consult Wikipedia
to find out the associated time intervals at day granularity. The obtained
set of 20 queries is given in Table 5.1. Here, the number of associated time
intervals is given in parentheses, indicating the degree of ambiguity of each

1http://learning.blogs.nytimes.com/on-this-day/

70 IDENTIFYING TIME INTERVALS OF INTEREST FOR QUERIES

query. In the interest of repeatability, both query sets, including associated
time intervals are made available at the following URL:

http://www.mpi-inf.mpg.de/~kberberi/data/cikm2014 .

Methods under comparison are the four combinations of the näıve and
advanced models delineated in Section 5.3, referred to as NN, AN, NA, and
AA. We can not sensibly compare against [132] as a baseline, since their method
is based on publication dates and year granularity. For each of the methods
under comparison, we set the smoothing parameter of the unigram language
model as µ = 1000 and vary the number of pseudo-relevant documents retrieved
as k = { 25, 50, 100 }. We consider three different temporal granularities (day,
month, year) in our experiments. When going for a coarser granularity (e.g.,
year), temporal expressions, which are natively stored at day granularity, are
systematically coarsened. As a concrete example, the temporal expression
〈 1998 − 01 − 01, 1998 − 12 − 31, 1998 − 01 − 01, 1998 − 12 − 31 〉 would
be converted into 〈 1998, 1998, 1998, 1998 〉 at year granularity. The same
procedure is applied to the ground-truth time intervals of our query test cases.

Measures. We use Precision@k (P@k) as a measure of retrieval effective-
ness. For the sake of comparability, we report P@1 and P@5 for both the
unambiguous and ambiguous queries – instead of using mean reciprocal rank
(MRR) for the unambiguous case.

5.4.2 Results

Table 5.2 shows values of P@1 and P@5 obtained for unambiguous queries.
We observe relatively higher precision values for NA and AA, which rely
on the advanced approach to estimate P ([tb, te] | d). Both achieve similar
performance, indicating that our advanced method to estimate P (d |q), taking
into account query likelihoods, is not effective. This is substantiated by the
performance of NN and AN – while the latter uses the advanced method
to estimate P (d | q), its precision values are as low as those obtained by the
completely näıve NN. It can also be seen that methods’ performance varies
with temporal granularity, peaking at month granularity. Finally, we observe
that considering more pseudo-relevant documents only pays off to a point –
for none of the methods performance increases consistently as we go beyond
k = 50.

Results for ambiguous queries are shown in Table 5.3. All four methods
consistently achieve higher values of P@1 and P@5 than for the unambiguous
case. Comparing NN and AN, we again observe that the advanced method of
estimating P (d |q) is not very effective. In contrast, we see good improvements
for NA and AA, indicating that the more advanced handling of temporal
expressions pays off. For ambiguous queries, as a difference from the unam-
biguous case, we observe that all methods achieve their best performance for
year granularity. However, again we do not see consistent improvements as
more pseudo-relevant documents are considered for larger choices of k.

CONCLUSION 71

Day Month Year

p@k P@1 P@5 P@1 P@5 P@1 P@5

kkk 25 50 100 25 50 100 25 50 100 25 50 100 25 50 100 25 50 100

nn .03 .04 .04 .02 .03 .03 .06 .06 .03 .06 .08 .01 .03 .04 .04 .02 .03 .03

an .03 .03 .04 .02 .03 .03 .06 .05 .03 .06 .08 .01 .02 .01 .01 .01 .01 .01

na .07 .06 .09 .04 .04 .04 .18 .18 .18 .10 .10 .05 .14 .17 .10 .11 .11 .08

aa .06 .06 .09 .04 .04 .04 .19 .17 .20 .09 .10 .07 .14 .17 .10 .11 .11 .08

Table 5.2: Temporally unambiguous queries

Day Month Year

p@k P@1 P@5 P@1 P@5 P@1 P@5

kkk 25 50 100 25 50 100 25 50 100 25 50 100 25 50 100 25 50 100

nn .05 .00 .00 .01 .01 .01 .10 .10 .16 .05 .04 .05 .55 .55 .26 .31 .36 .33

an .05 .05 .05 .01 .01 .02 .10 .15 .16 .05 .05 .05 .60 .60 .32 .35 .34 .34

na .10 .10 .16 .05 .10 .10 .35 .50 .42 .25 .26 .31 .75 .75 .74 .59 .58 .54

aa .10 .10 .16 .04 .10 .10 .35 .50 .42 .25 .26 .31 .75 .75 .74 .59 .58 .54

Table 5.3: Temporally ambiguous queries

Summary

Our experiments, using temporally unambiguous and temporally ambiguous
queries as test cases, have shown that NA and AA perform similarly and are
ahead of the other two configurations. Thus, the advanced method to handle
temporal expressions and estimate P ([tb, te] | d) is effective; the advanced
method to estimate P (d | q), on the other hand, has no effect.

5.5 Conclusion

We have proposed a novel approach to identify time intervals of interest for
a given keyword query. Our approach is based on a generative model and
we considered four possible instantiations of it. Experiments on temporally
unambiguous queries and temporally ambiguous queries as test cases showed
that there are effective instantiations of our approach – considering temporal
expressions and their inherent uncertainty pays off; factoring in query likeli-
hoods does not. As part of our future research, we plan to investigate (i) how
users perceive the interestingness of the determined time intervals and (ii) how
retrieval effectiveness is affected when using the determined time intervals in
query expansion.

CHAPTER 6

TEMPORAL QUERY
CLASSIFICATION AT
DIFFERENT GRANULARITIES

• Dhruv Gupta and Klaus Berberich. Temporal Query Classification at
Different Granularities. In SPIRE 2015, pages 156–164.

6.1 Introduction

The information need conveyed in a time-sensitive query can only be served
properly if the temporal class (e.g., temporally ambiguous or unambiguous)
associated with it can be determined. Determining the temporal class of a
query is an important stepping stone to larger components in a time-sensitive
information retrieval system. For instance, selection of retrieval model or
deciding whether to diversify documents along time. Existing work in this
direction has only relied on publication dates while ignoring temporal expres-
sions in document content. Temporal expressions allow us to analyze events
in web collections which may not have reliable publication dates associated
with them. This alleviates the problem of being restricted to the time period
covered by the publication dates of the document collection. Analyzing the
temporal class based on temporal expressions is challenging as they are highly
uncertain (e.g., early 1990’s, during last century) and are present at multiple
granularities (e.g., day, month, and year).

73

74 TEMPORAL QUERY CLASSIFICATION AT DIFFERENT GRANULARITIES

Earlier approaches [70, 125, 127] to determine the temporal class of a
query have three major drawbacks. First, all approaches only use publication
dates associated with documents. This may serve the purpose well for time-
sensitive queries regarding current events covered in the news. But it may be
inadequate for queries covering historic events. Second, prior approaches ignore
the fact that certain events described in a query may be periodically recurring
in nature (e.g., summer olympics or nobel prize physics) or they may
be aperiodically recurring (e.g., economic depression). Third, temporal
ambiguity is considered only at a single level of granularity. However, temporal
ambiguity may vary according to granularity. Consider, as concrete example,
the query summer olympics tokyo athletics. Relying only on publication
dates this query would be incorrectly classified as temporally unambiguous;
whereas it is temporally ambiguous at day granularity. Such an information
need would be best served if these shortcomings can be overcome.

Approach. By addressing the aforementioned problems, we hypothesize
we can improve upon the classification of time-sensitive queries containing: (i)
historical events and entities; (ii) periodic events; and (iii) temporal ambiguity
at a particular granularity. We build on our earlier work [93] which suggests
interesting time intervals using temporal expressions. For classifying queries
we identify multiple features from Bayesian analysis of the time intervals of
interest for a given keyword query. We show the effectiveness of our proposed
approach over prior work on a large testbed of time-sensitive queries.

Contributions described in this chapter are:

1. temporal class taxonomy taking into account multiple granularities and
(a)periodicity of events;

2. determining time intervals as intents for temporally ambiguous queries;

3. effective features that outperform prior approaches; and

4. a large testbed of time-sensitive queries assimilated from previously avail-
able resources such as TREC time-sensitive queries [70], NTCIR Geo-Time
queries [86] and other resources available on the Web, which is made pub-
licly available for future research.

Organization. We next point to the sections that outline the solution to
the problem of temporal query classification at different granularities. First
prior approaches to the problem of temporal query classification are discussed
in Section 6.2. We then cover the necessary preliminaries for explaining
our approach in Section 6.3. We present our temporal class taxonomy in
Section 6.4. We outline the approach for determining the temporal class given
only a keyword query in Sections 6.5 and 6.6. Therein, we cover the Bayesian
analysis utilized and the features derived from the analysis. In Section 6.7, we
describe the datasets, query workloads, baseline, and our experimental setup.
In Section 6.8, we conclude with a discussion of the results obtained.

RELATED WORK 75

6.2 Related Work

In this section, we describe prior approaches that address the task of temporal
query classification. The work by Jones and Diaz [127] describes a taxonomy
of classes for classification of time-sensitive queries. They discuss various
features derived from probability distribution of document publication dates,
e.g., temporal clarity, kurtosis, and auto-correlation. The Temporalia project
described by Joho et al. [125] considers temporal query classification with
a different taxonomy of temporal classes. The temporal classes they target
are qualitatively labeled as past, recency, and future. This has two major
caveats. First, the qualitative categories leave room for ambiguity in temporal
intents. For example, for the query nba playoffs last week the temporal
class can either be past or recent. Second, quantitatively no information
can be discerned about the exact time intervals the temporal class refers
to. Both these problems are addressed in our work. Detecting seasonality
and periodicity associated with web queries has recently been explored by
Kanhabua et al. [131]. They propose to use features acquired from web query
logs. Additionally, akin to existing approaches, they rely on features derived
from signal processing on time series of publication dates from an external
document collection. These may not be adequate to detect the temporal class
at different granularities, as shown in our experiments.

A large chunk of work has also been carried out with regard to incorporating
the temporal class associated with the query during retrieval. In the approach
presented by Berberich et al. [41] the authors leverage temporal expressions
and document publication dates for improving search result quality for explicit
temporal queries. Improving on this approach Kanhabua and Nørv̊ag [132]
look at automatically suggesting years of interest to implicit temporal queries.
To this end they utilize publication dates. Work by Dakka et al. [70] relies
on publication dates of documents to improve the retrieval effectiveness by
analyzing query-frequency histograms.

6.3 Preliminaries

We now introduce the notation used throughout the chapter and the approach
for identifying time intervals of interest.

Notation. Consider a document collection D. Each document d ∈ D
consists of a bag of keywords dtext and a bag of temporal expressions dtime.
We let |dtext| and |dtime| denote the cardinalities of these bags. We use the
time model as described in Section 5.3.2.

Time Intervals of Interest to the given keyword query q are identified
using the approach proposed in [93]. In a nutshell, with R as the set of
pseudo-relevant documents, the approach assigns the probability:

P ([b, e] | q) =
∑

d∈R
P ([b, e] | d)P (d | q),

76 TEMPORAL QUERY CLASSIFICATION AT DIFFERENT GRANULARITIES

to time interval [b, e]. The first probability is estimated as

P ([b, e] | dtime) =
1

|dtime|
∑

T∈dtime

1([b, e] ∈ T)

|T | ,

following [41]. The second probability is estimated from the query likelihoods
P (q|d) under a unigram language model with Dirichlet smoothing, that is:

P (d | q) =
P (q | d)∑

d′∈R P (q | d′) .

6.4 Temporal Class Taxonomy

We propose a new taxonomy taking into account additional classes for period-
icity, aperiodicity, and multiple granularities (day, month, and year). It builds
on the existing taxonomy proposed by Jones and Diaz [127]. The taxonomy,
depicted in Figure 6.2, is arrived at by taking into account the following
observations.

Atemporal queries as per [127] are time-invariant in nature. Thus, an
atemporal query at year granularity also implies that it is atemporal at finer
level of granularity (day and month) and vice versa. Hence, we only need
to ascertain if a query is atemporal at any one of the granularities. This is
illustrated by the distribution of time intervals in Figure 6.3a.

Temporally unambiguous queries are those with a unique time interval
of interest associated with them. If a given query is identified to be unambigu-
ous at day level of granularity then it will also be unambiguous at any coarser
level of granularity (month & year). For instance, an unambiguous query at
day level concorde crash is also unambiguous at year level. However, this
does not imply that a unambiguous query at year level may necessarily be
unambiguous at a month or day level. This is described in Figure 6.3b.

Temporally ambiguous queries are those which may have multiple
time intervals of interest associated with them. Ambiguity associated with
a query may lie at different granularities as illustrated in Figure 6.3c, 6.3d,
and 6.3e. A temporally ambiguous query at a finer granularity may be
unambiguous at coarser granularity. However, we make the distinction that
a query ambiguous at any granularity be deemed temporally ambiguous at
that level of granularity. For example the query summer olympics 2000

rowing is temporally ambiguous at day level granularity. Another aspect
that we investigate is the periodicity and aperiodicity as a temporal intent.
For example the query summer olympics should be classified as a periodic
temporally ambiguous query. In this work, we focus only on periodicity at the
year level.

TEMPORAL CLASS TAXONOMY 77

Figure 6.1: Distribution of time intervals at multiple granularities

Temporal (TX)

Ambiguous (TA)

Year (TAy)

Periodic (TAyp) Aperiodic (TAya)

Month (TAm) Day (TAd)

Unambiguous (TU)

Atemporal (AT)

Figure 6.2: Temporal intent taxonomy with (a)periodicity & multiple granularity

78 TEMPORAL QUERY CLASSIFICATION AT DIFFERENT GRANULARITIES

(a
)

A
tem

p
o
ra

l
(A

T
)

(b
)

T
em

p
o
ra

lly
U

n
a
m

b
ig

u
o
u

s
(T

U
)

(c)
T

em
p

o
ra

lly
A

m
b

ig
u

o
u

s
a
t

Y
ea

r
G

ra
n
u

la
rity

(T
A

y
)

(d
)

T
em

p
o
ra

lly
A

m
b

ig
u

o
u

s
a
t

M
o
n
th

G
ra

n
u

la
rity

(T
A

m
)

(e)
T

em
p

o
ra

lly
A

m
b

ig
u

o
u

s
a
t

D
a
y

G
ra

n
u

la
rity

(T
A

d
)

F
ig

u
re

6
.3

:
D

istrib
u
tio

n
o
f

tim
e

in
terva

ls
a
t

m
u
ltip

le
g
ra

n
u
la

rities
fo

r
d
iff

eren
t

in
ten

ts

BAYESIAN ANALYSIS 79

6.5 Bayesian Analysis

In order to temporally profile a keyword query q we first obtain the time
intervals of interest at all three temporal granularities and the associated
probabilities of relevance P ([b, e]|q) (see Figure 6.1). We only consider time
intervals of size equal to granularity under consideration (e.g., for year granu-
larity [b, e] spans one year). We further smooth P ([b, e]|q) with time intervals
from the entire document collection D to obtain consistent analysis for all
queries,

P̂ ([b, e]|q) = λ · P ([b, e]|q) + (1− λ) · P ([b, e]|D),

where,

P ([b, e]|D) =
1

|Dtime|
∑

T∈Dtime

1([b, e] ∈ T)

|T | .

Detecting Multiple Modes. The generated distribution P̂ ([b, e]|q) is next
analyzed for multi-modality. For this we utilize a Bayesian Mixture Model fitted
using reversible jump Markov Chain Monte Carlo (MCMC) procedure outlined
by Xu et al. [204]. The approach fits an unknown probability distribution by
approximating it as mixture of Gaussian distributions. With this approach
we have the advantage of performing both model selection and model fitting
at the same time. That is, with this approach the number of components k
for the mixture model is determined automatically. The mixture model is
described as follows:

P̂ ([b, e]|q) =
k∑

i=1

wi · N (µi, σi),

such that
∑k
i wi = 1; µi and σi characterize the mean and standard deviation

of the normal distribution N (µi, σi). To assess confidence of our hypothesis
whether P̂ ([b, e]|q) is multi-modal, we take Bayes factor as an objective. Bayes
factor is the ratio of the posterior to prior odds. If the Bayes factor exceeds 100,
we consider the hypothesis, that the probability distribution under observation
has multiple modes, correct. The time intervals with the means µi of the
components of the mixture model are the temporal categories (Si[b,e]) of q:

S = 〈S1
[b,e], S

2
[b,e], . . . , S

k
[b,e]〉.

The temporal categories for q can further be utilized for diversifying search
results along the temporal dimension. This is discussed in detail in Chapter 7.

80 TEMPORAL QUERY CLASSIFICATION AT DIFFERENT GRANULARITIES

6.6 Feature Design

After having determined the number of modes and the temporal categories
from P̂ ([b, e]|q), we need to identify the temporal class it belongs to. This
is done by encoding features derived from the Bayesian mixture model. The
features are: (i) modality, (ii) fuzzy feature, and (iii) p-value of randomness
test. Subsequently we train a decision tree (CART algorithm [49]), a supervised
machine learning algorithm, on the identified features. In this section, we
discuss the features and the motivation behind them.

Modality feature describes the number of modes identified by the Bayesian
mixture model. The intuition is if P̂ ([b, e]|q) is unimodal (|S| = 1), then
the temporal intent should be temporally unambiguous. If the distribution
P̂ ([b, e]|q) is multi-modal (|S| > 1), then it should be temporally ambiguous.

Fuzzy Feature. To analyze the temporally ambiguous query for periodicity
we use the concept of fuzzy numbers. Fuzzy logic is used here to account for
outlier cases in periodic events, e.g., in case of summer olympics anomalous
years would be [1936, 1936] and [1948, 1948]. Specifically, we capture the
membership value of the time lags between the time intervals associated with
different modes against a fuzzy number around the mean of the time lags (Φ̂).
We explain the computational steps next.

We first identify the time lags between the ordered set of temporal categories:

Φi[b,e] = 〈t|t ∈ Si+1
[b,e] − Si[b,e]〉,

with,

Φ̂ =

∑n
i=1 Φi[b,e]

n
.

Difference between intervals is calculated by subtracting corresponding b and
e in each Si[b,e]. Next we construct a triangular fuzzy number with Φ̂ whose
membership function is given by:

µ(x) =

{
1

1+x2 if x 6= Φ̂

1 if x = Φ̂

The motivation is: if µ(x) 6= 0 ∀x ∈ Φ, then issued query is a periodic query
with period approximately equal to that of Φ̂. Otherwise if ∃x ∈ Φ for which
µ(x) = 0 then query could potentially be aperiodic.

Randomness Test. For atemporal queries we check P̂ ([b, e]|q) for ran-
domness. For this, we perform a two-tailed runs up and down test for random-
ness [201] on time lags. We next note the p-value of this test as a feature. This
feature captures if the time lags are randomly generated or not. For a given
query, we construct the feature vector at day, month, and year granularity.
The feature data then used for classification via the decision tree.

EVALUATION 81

6.7 Evaluation

6.7.1 Document Collection and Queries

The document collection and the temporal annotations have been covered in
detail in Section 5.4.1. In brief, the document collection used was The New
York Times Annotated corpus [18]. The temporal annotations for it were
obtained from the authors of [41], where they used TARSQI [200].

Queries. The challenging aspect of evaluating our approach was compiling
a list of queries for temporally ambiguous class at different granularities. To
this end, we use various previously published resources [93], TREC time-
sensitive queries [70], NTCIR Geo-Time queries [86, 129], and also manually
compiled some of them from the Web. We next describe the query sets that
we have used for each temporal class. Table 6.1 summarizes the testbed. This
testbed is publicly available at the following URL:

http://resources.mpi-inf.mpg.de/dhgupta/data/spire2015 .

Temporally Unambiguous Queries were constructed with keywords
describing historical events. Sources used were [70, 86, 93, 129]. Example
queries that belong to this query set are: american civil rights activist

rosa parks died, and concorde crash.
Temporally Ambiguous Queries were constructed for three different

subsets at year, month and day granularity. For year granularity we ac-
cumulated international award events in various domains such as Sports,
Science, Arts. Lists of such events is available in Wikipedia 1,2,3 pages. Since,
these events are periodic in nature, it also serves us the purpose of periodic
queries. Example queries in this set would be: us presidential elections

and nobel prize in literature. Temporally Ambiguous Queries at Month
Granularity considered major sports events in the United States (e.g., NBA
Playoffs) with year of the season, e.g., nba playoffs 1990. Temporally Am-
biguous Queries at Day Granularity were various sporting event competitions
at a specific Summer Olympic games. Since each event competition spans
multiple days but occur within the same month of the year. An example query
would be, summer olympics 1992 archery. Aperiodic Temporally Ambigu-
ous Queries were constructed via keywords that were either broad category of
accidents or natural calamity (e.g., mercy killings, or earthquakes united

states of america). Reliable sources for these queries were from related
work [70, 86, 93, 127, 129]. Since events concerning known figures tend gen-
erally not be periodic in nature (e.g., abraham lincoln), we also considered
several famous personalities as keyword queries in this category. A reliable
source was obtained from Biography Online 4 website.

1http://www.wikipedia.org/wiki/List_of_prizes,_medals_and_awards
2http://www.en.wikipedia.org/wiki/List_of_multi-sport_events
3http://www.en.wikipedia.org/wiki/List_of_literary_awards
4http://www.biographyonline.net/people/famous-100.html

82 TEMPORAL QUERY CLASSIFICATION AT DIFFERENT GRANULARITIES

Set Id Description Size

TX
TA

TAy
TAyp Periodic and ambiguous at year 113
TAya Aperiodic and ambiguous at year 118

TAm Ambiguous at month 64
TAd Ambiguous at day 74
TU Unambiguous 142

AT Atemporal 154

Table 6.1: Query set sizes for our evaluation setup.

Atemporal Queries, consist of general vocabulary words with no temporal
significance (e.g., apple, sardine, and guitar). An English dictionary listing
common food items and musical instruments was used for this purpose.

6.7.2 Setup

We discus various aspects related to the experimental setup next.
Baseline. We use the approach proposed by Jones and Diaz [127] as a

baseline. As mentioned in [127] we selected the best-performing temporal
features to build the baseline classifier. The temporal features considered
by them were: first order autocorrelation, kurtosis, and features derived
from a burst model. We consider these features at year level granularity for
time intervals of interest. Since, we are considering time intervals of interest
generated by the approach by Gupta and Berberich [93]; we take into account
temporal expressions and publication dates at year granularity. This mimics
the effect of the frequency counting of publication dates by Jones and Diaz
but additionally tests the effectiveness of the features proposed by them and
our proposed approach.

Parameters. For identifying time intervals of interest we considered top-50
(|R| = 50) pseudo-relevant documents. The mixing parameter for smoothing
the distribution was set as λ = 0.70. For identifying the modality of the distribu-
tion we performed reversible jump MCMC procedure with 2,200 iterations with
200 initial burn-in iterations. The number of queries are mentioned in Table 6.1.

Implementation. All methods for feature extraction were implemented
in R, a statistical programming language. Procedure for reversible MCMC
sampling was obtained from [204] also in R. The decision tree classifier based
on the CART algorithm was utilized from the R package rpart [197]. The
generative model for time intervals of interest was programmed in Java.

Measures. For the classification task we report the standard measures for
comparing performances – precision, recall, and F1. In order to accurately
gauge the performance we also report the confusion matrix for our classifier.
Statistical significance of our results is reported with the p-value calculated
using McNemar’s test. We also show an unweighted κ statistic for the classifiers.
The κ statistic measures the agreement between the observed accuracy to the
expected accuracy by chance. Higher value of κ indicates better discrimination
between different classes.

EVALUATION 83

Statistics by Class

Precision Recall F1

Class B A B A B A

TX 0.81 0.92 0.79 0.92 0.80 0.92
TA 0.70 0.87 0.64 0.71 0.67 0.78
TAy 0.45 0.80 0.34 0.51 0.39 0.62
TAyp 0.29 1.00 0.26 0.67 0.27 0.80
TAya 0.32 0.55 0.20 0.33 0.24 0.41

TAm 0.24 0.92 0.50 0.71 0.32 0.80
TAd 0.36 0.80 0.22 0.91 0.28 0.85

TU 0.26 0.39 0.33 0.64 0.29 0.48
AT 0.38 0.76 0.41 0.79 0.39 0.78

Macroaverage 0.31 0.74 0.32 0.67 0.30 0.69

p-value 4.5 × 10−2 2.2 × 10−16

κ-value 0.16 0.62

Table 6.2: Statistics by class for decision trees: baseline (B) & proposed approach (A).

6.7.3 Results

Below we report the results for each temporal class. Training and test set were
constructed by sampling without replacement. Train and test set split was
80% : 20% percent of the combined query workload (665 queries).

For the temporally ambiguous class we can classify very accurately at all
levels of granularity. For the atemporal case we can also discern the class with
high precision. However, it is relatively difficult to identify temporally unam-
biguous queries. Another class that is hard to detect is aperiodic. Compared
to the baseline our approach performs better in all categories.

True Class

P
r
e
d
ic

t
e
d

C
la

s
s

TAyp TAya TAm TAd TU AT

TAyp 6 4 0 2 5 4

TAya 2 6 1 5 0 5

TAm 4 7 6 1 3 4

TAd 3 2 0 4 1 1

TU 6 4 1 1 6 5

AT 2 7 4 4 3 13

(a) Baseline (B)

True Class

P
r
e
d
ic

t
e
d

C
la

s
s

TAyp TAya TAm TAd TU AT

TAyp 14 0 0 0 0 0

TAya 0 6 0 0 5 0

TAm 0 0 12 1 0 0

TAd 1 1 0 20 0 3

TU 5 10 2 1 14 4

AT 1 1 3 0 3 26

(b) Proposed approach (A)

Figure 6.4: Confusion matrix for decision tree.

84 TEMPORAL QUERY CLASSIFICATION AT DIFFERENT GRANULARITIES

6.7.4 Failure Analysis

In this section, we give some example queries for the difficult classes for which
our approach did not perform as compared to other classes.

The first class in which our proposed method does not perform well is
temporally unambiguous. One reason that we anticipate for this is that since
we consider pseudo-relevant documents it is inevitable to not consider other
related events, which act as noise, for the keyword query in the probability dis-
tribution. Some misclassified example queries are : chernobyl soviet union

and president nixon associated press orland. The query chernobyl

soviet union was wrongly labeled as aperiodic. This could potentially be
due to discussion of aftermath of the event in the pseudo-relevant documents.
The query president nixon associated press orland was misclassified
as atemporal.

The second class which was hard to classify was aperiodic. Most of the
queries here are misclassified as unambiguous – this can be attributed to very
specific event in the corpus associated with the entity that comprises most
of the queries in this category. Misclassified examples from this category are
george bush jnr, madrid bombing, muhammad ali, and ronald reagan.

6.8 Conclusion

We have proposed how to solve the problem of temporal query classification
at multiple levels of granularity. Additionally, we can predict the recurrence of
events with very high accuracy. Our approach relies on inspecting both content
temporal expressions as well as publication dates of pseudo-relevant documents
given a keyword query. Our approach considers features based on Bayesian
analysis of the time intervals of interest. Experiments clearly indicate that
features identified by us are able to predict the temporal intent for ambiguous
queries really well. In contrast, for unambiguous and aperiodic queries it is
difficult to classify the intent by looking at the pseudo relevant documents.
Overall, our classifier achieves the target of temporal intent classification with
good accuracy.

CHAPTER 7

DIVERSIFYING SEARCH
RESULTS USING TIME

• Dhruv Gupta and Klaus Berberich. Diversifying Search Results Using Time.
In ECIR 2016, pages 789–795.

7.1 Introduction

Large born-digital document collections are a treasure trove of historical
knowledge. Searching these large longitudinal document collections is only
possible if we take into account the temporal dimension to organize them. In
this chapter, we present a method for diversifying search results using temporal
expressions in document contents. Our objective is to specifically address the
information need underlying history-oriented queries; we define them to be
keyword queries describing a historical event or entity. An ideal list of search
results for such queries should constitute a timeline of the event or portray
the biography of the entity. The approach described will prove to be useful for
scholars in history and humanities who often search large text collections for
history-oriented queries without knowing relevant dates for them apriori.

85

86 DIVERSIFYING SEARCH RESULTS USING TIME

With growing amounts of information on the Web, modern retrieval system
focus more on recently published documents by using their creation time or
publication dates. However, little attention is given to the temporal expres-
sions in document contents which can help us uncover a trove of historical
knowledge. This is particularly challenging as temporal expressions may occur
implicitly or explicitly. For example, “during the last three years of his pres-
idency” [16]; the temporal expression last three years is implicit and should
be resolved and normalized. Temporal expressions are usually mentioned
in a relative sense and are highly uncertain in nature. As an example con-
sider, early 1990s; here the exact time interval conveyed by the temporal
expression 1990s is not clearly demarcated. Finally, temporal expressions
can be present at different granularities of time. Consider the example, “ On
July 25, 2000, Bush . . . at the 2000 Republican National Convention ” [16]; here
we have 2000 present at year level of granularity while at day level of granu-
larity we have July 25, 2000. Therefore, incorporating statistics about such
temporal expressions in a search diversification method can be highly complex.

No work, to the best of our knowledge, has addressed the problem of
diversifying search results using temporal expressions in document contents.
Prior approaches in the direction of diversifying documents along time have
relied largely on publication dates of documents. However a document’s
publication date may not necessarily be the time that the text refers to. It is
quite common to have articles that contain a historical perspective of a past
event from the current time. Hence, the use of publication dates is clearly
insufficient for history-oriented queries.

In this chapter, we propose a probabilistic framework to diversify search
results using temporal expressions (e.g., 1990s) from their contents. First, we
identify time intervals of interest to a given keyword query, using our earlier
work (see Chapter 5), which extracts them from pseudo-relevant documents.
Having identified time intervals of interest (e.g., [2000,2004] for the keyword
query george w. bush), we use them as aspects for diversification. More
precisely, we adapt a well-known diversification method [25] to determine
a search result that consists of relevant documents which cover all of the
identified time intervals of interest.

Evaluation of historical text can be highly subjective and biased in na-
ture. To overcome this challenge, we view the evaluation of our approach
from a statistical perspective and take into account an objective evaluation
for automatic summarization to measure the effectiveness of our methods.
We create a large history-oriented query collection consisting of long-lasting
wars, important events, and eminent personalities from reliable encyclopedic
resources and from prior available research. As a ground truth we utilize
articles from Wikipedia 1 concerning the queries. We evaluate our methods on
two large document collections, the New York Times Annotated corpus and

1https://en.wikipedia.org/

RELATED WORK 87

the Living Knowledge corpus. Our approach is thus tested on two different
types of textual data. One being highly authoritative in nature, in the form
of news articles. Another being authored by real-world users, in the form of
web documents. Our results show that using our method of diversifying search
results using time, we can present documents that serve the information need
in a history-oriented query very well.

Outline. The remainder of the chapter is structured as follows. Section 7.2
covers related work in the context of temporal information retrieval and
text analytics. Section 7.3 presents our adapted probabilistic framework for
diversifying search results along time. Section 7.4 covers in detail our evaluation
framework. We discuss the results and some anecdotal results in Section 7.5.
Finally, we end with concluding remarks in Section 7.6.

7.2 Related Work

Our research bridges a gap between two very important research themes:
temporal information retrieval and temporal text analytics. Temporal IR
centric methods have largely avoided leveraging complex temporal expressions
in favor of document publication dates. Temporal text analytical methods on
the other hand have largely relied on these temporal expressions for mining
time-sensitive facts. We discuss some of these works next.

Temporal Information Retrieval. Diversifying search results using time
was explored in [40]. In their preliminary study the authors limited themselves
to using document publications dates. However they posed the open problem
of diversifying search results using temporal expressions in document contents
and the challenging problem of evaluation. Both these aspects have been
adequately addressed in our work. More recently, Nguyen and Kanhabua [164]
diversify search results based on dynamic latent topics. The authors study how
the subtopics for a multi-faceted query change with time. For this they utilize
a time-stamped document collection and an external query log. However for
the temporal analysis they limit themselves to document publication dates. A
recent survey of temporal information retrieval by Campos et al. [53] also high-
lights the lack of any research that address the challenges of utilizing temporal
expressions in document contents for search result diversification along time.

Temporal Text Analytics. Using text analytics and temporal expres-
sions, Yeung and Jatowt [207] study how the past is remembered. They study
varying trends of topics identified via Latent Dirichlet Allocation along time in
a document collection. Special emphasis has been laid on predictions of future
events. In the seminal work by Baeza-Yates [33], the author explores how to
model a future retrieval system that would take in to account temporal expres-
sions in a document body. More recently, Jatowt and Yeung [124] explore this
research direction by proposing a model-based clustering algorithm for extract-
ing representative summaries for future events from the Google news archive.

88 DIVERSIFYING SEARCH RESULTS USING TIME

7.3 Method

We now describe the probabilistic framework to diversify search results using
temporal expressions mentioned in their contents. The probabilistic framework
consists of three key components. The first key component is the representation
of time that incorporates temporal uncertainty. The second key component,
described elsewhere, is that of generating time intervals of interest for the given
keyword query. The final key component is the objective function for determin-
ing the maximal subset of documents that covers the time intervals of interest.

Time Model

We consider a document collection D. Each document d ∈ D consists of a
multiset of keywords dtext drawn from vocabulary V and a multiset of temporal
expressions dtime. Cardinalities of the multisets are denoted by |dtext| and
|dtime|. To model temporal expressions such as 1990s where the begin and end
of the interval can not be identified, we utilize the work by Berberich et al. [41].
They allow for this uncertainty in the time interval by associating lower and
upper bounds on begin and end. Thus, a temporal expression T is represented
by a four-tuple: 〈bl, bu, el, eu〉 where time interval [b, e] has its begin bounded
as bl ≤ b ≤ bu and its end bounded as el ≤ e ≤ eu. The temporal expression
1990s is thus represented as 〈1990, 1999, 1990, 1999〉. More concretely, elements
of temporal expression T are from time domain T and intervals from T × T .
The number of such time intervals that can be generated is given by |T |.

Time Intervals of Interest

Time interval of interest to the given keyword query qtext are identified us-
ing our earlier work [93]. A time interval [b, e] is deemed interesting if its
referred frequently by highly relevant documents of the given keyword query.
This intuition is modeled as a two-step generative model. Given, a set of
pseudo-relevant documents R, a time interval [b, e] is deemed interesting with
probability:

P ([b, e] | qtext) =
∑

d∈R
P ([b, e] | dtime)P (dtext | qtext).

To diversify search results, we keep all the time intervals generated with their
probabilities in a set qtime.

Temporal Diversification

Our aim is to present documents that cover a variety of historical aspects
underlying a history-oriented query. To this end we use the identified interesting
time intervals as explicit temporal aspects that need to be satisfied by the
documents. The diversified set of documents must thus try to cover these time
intervals in proportion to the frequency of their occurrence.

EVALUATION 89

To diversify search results we adapt the approach proposed by Agrawal et
al. [25]. Formally, the objective is to maximize the probability that the user
sees at least one result relevant to her time interval of interest. We thus aim
to determine a query result S ⊆ R that maximizes

∑

[b,e]∈qtime

(
P ([b, e] | qtext)

(
1−
∏

d∈S

(
1−P (qtext | dtext)P ([b, e] | dtime)

)))
.

The probability P ([b, e] | qtext) is estimated as described above and reflects the
salience of time interval [b, e] for the given query. We make an independence
assumption and estimate the probability that document d is relevant and
covers the time interval [b, e] as P (qtext | dtext)P ([b, e] | dtime). To determine
the diversified result set S, we use the greedy algorithm described in [25],
which is known to give a (1− 1

e) approximation guarantee.

7.4 Evaluation

We next describe the setup of our experimental evaluation.

7.4.1 Document Collections

We used two document collections, one from a news archive and one from a
web archive. The Living Knowledge [15] corpus is a collection of news and
blogs on the Web amounting to approximately 3.8 million documents [125].
The documents are provided with annotations for temporal expressions as well
as named entities. The New York Times (NYT) Annotated [18] corpus is a
collection of news articles published in The New York Times. It reports articles
from 1987 to 2007 and consists of around 2 million news articles. The temporal
annotations for it were done via SUTime [58]. Both explicit and implicit
temporal expressions were annotated, resolved, and normalized using SUTime.

Temporal Analysis. We did a simple analysis of temporal expressions
in both document collections. This involved computing document frequency
of temporal expressions at year granularity across the collections. The plots
are shown in Figure 7.1. For the Living Knowledge corpus the kurtosis of the
distribution of document frequency ordered by time is 421.4 and skewness
of 19.9. For the NYT Annotated corpus the kurtosis is 6.8 and skewness is
2.8. This shows that the Living Knowledge corpus has a highly skewed nature
of distribution of temporal expressions. Also take note of the time scale on
the x−axis of both plots (7.1a, 7.1b). The NYT Annotated corpus has a
wider temporal coverage in contrast to the Living Knowledge corpus. Given
these observations we can conclude that the Living Knowledge corpus is not a
true longitudinal corpus as the time-period the corpus covers is limited and
distorted. These aspects affect any probabilistic analysis performed on the
Living Knowledge corpus. The resulting effects show up in our results; which
we discuss later.

90 DIVERSIFYING SEARCH RESULTS USING TIME

(a) Living Knowledge corpus.

(b) New York Times Annotated corpus.

Figure 7.1: Distribution of temporal expressions at year granularity by document
frequency.

EVALUATION 91

Indexing. The document collections were preprocessed and subsequently
indexed using the ElasticSearch software [4]. As an ad-hoc retrieval baseline
and for retrieval of pseudo-relevant set of documents we utilized the state-of-
the-art Okapi BM25 retrieval model implemented in ElasticSearch.

7.4.2 Collecting History-Oriented Queries

In order to evaluate the usefulness of our method for scholars in history,
we need to find keyword queries that are highly ambiguous in the temporal
domain. That is multiple interesting time intervals are associated with the
queries. For this purpose we considered three categories of history-oriented
queries: long-lasting wars, recurring events, and famous personalities. For
constructing the queries we utilized reliable sources on the Web and data
presented in prior research articles [93, 153]. We describe the details next.

Queries for long-lasting wars were constructed from the WikiWars cor-
pus [153]. The corpus was created for the purpose of temporal information
extraction. The keywords for the wars are given in Table 7.1a. For ambiguous
important events we utilized the set of ambiguous queries used in our earlier
work [93]. The queries used are listed in Table 7.1b. For famous personalities
we utilized a list of most influential people available on the USA Today 2 web-
site. The names of these famous personalities were used based on the intuition
that there would be important events associated with them at different points
of time. The list of all the entities is given in in Table 7.1c.

The objective of our method is to present documents that depict the
historical timeline or biography associated with the keyword query describing
the event or the named entity. We thus treat the diversified set of documents
as a historical summary of the query. In order to evaluate this diversified
summary we obtain the corresponding Wikipedia3 pages of the queries as
ground truth summaries. The entire testbed of history-oriented queries along
with their corresponding Wikipedia articles is made publicly available at the
following URL:

http://resources.mpi-inf.mpg.de/dhgupta/data/ecir2016/.

7.4.3 Systems and Metrics

Baselines. We considered three baselines, in order of increasing sophistication.
As a näıve baseline, we first consider the pseudo-relevant documents retrieved
for the given keyword query. The next two baselines utilize a well known
implicit diversification algorithm maximum marginal relevance (MMR) [55].
Formally it is defined as:

argmax
d/∈S

(
λ · sim1 (q, d)− (1− λ) ·max

d′∈S
sim2 (d′, d)

)
.

2http://usatoday30.usatoday.com/news/top25-influential.htm
3https://en.wikipedia.org/

92 DIVERSIFYING SEARCH RESULTS USING TIME

Americas | american civil war | american revolution | mexican
revolution

Europe | world war II | world war I | french revolution | punic
wars | spanish civil war | russo-polish war | second italo

abyssinian war

Africa | french algerian war | biafran nigerian civil war

Asia | vietnam war | korean war | iraq war | persian wars |
chinese civil war | iran iraq war | russian civil war | french
indochina war | russo-japanese car

(a) Wars.

Sports | commonwealth games | asian games | summer olympics |
winter olympics | super bowl winners

Music | u2 album | nirvana album | beatles album | red hot

chilli peppers album | michael jackson album

Movies | harry potter movie | oscar academy awards | lord of

the ring movie

Politics | german federal elections | us presidential elections |
australia federal elections

(b) Events.

Business | bill gates | sergey brin | larry page | howard
schultz | sam walton

Science | stephen hawking | francis collins | craig venter

Politics | ronald reagan | mikhail gorbachev | george w. bush |
deng xiaoping | nelson mandela | bill clinton | hillary clinton

Arts | j. k. rowling | oprah winfrey | russell simmons | bono
Religion | pope john paul II

Sports | lance armstrong | michael jordan

Other | ryan white | homer simpson | osama bin laden

(c) Entities.

Table 7.1: History-oriented queries.

RESULTS 93

MMR was simulated with sim1 using query likelihoods and sim2 using cosine
similarity between the term-frequency vectors for the documents. The second
baseline considered MMR with λ = 0.5 giving equal importance to query
likelihood and diversity. While the final baseline considered MMR with λ = 0.0
indicating complete diversity. To initialize set S, we use the first document from
pseudo-relevant set of documents. For all methods the summary is constructed
by concatenating all the top-k documents into one large document.

Parameters. There are two parameters to our system. The first one is the
number of documents considered for generating time intervals of interest |R|.
The second parameter is the number of documents considered for historical
summary |S|. We consider the following settings of these parameters: |R| ∈
{100, 150, 200} and |S| ∈ {5, 10}.

Metrics. We use the Rouge-N measure [208] (implemented in [146]) to
evaluate the historical summary constituted by a diversified set of documents
with respect to the ground truth. Rouge-N is a recall-oriented metric which
reports the number of n-grams matches in the candidate summary S and the
reference summary G with respect to the reference summary G:

recall =

∑
g∈ngram(G)

∑
s∈ngram(S) 1(s = g)

| ngram(G) | ,

where, ngram(·) returns n-grams for piece of text, | ngrams(·) | gives the total
number n-grams, and 1(·) is an indicator function that tests the equivalence of
n-grams. Note that n in ngram is the length of the gram to be considered; we
limit ourselves to n ∈ {1, 3}. The precision is calculated in a similar manner
although with respect to the candidate summary S. To combine both measures,
Fβ is used:

Fβ =

(
1 + β2

)
· recall · precision

recall + β2 · precision

7.5 Results

Results are shown for three different categories of history-oriented queries per
document collection. For each category of history-oriented query we show recall,
precision, and Fβ=1.0 scores for Rouge-1 and Rouge-3 metrics. Fβ=1.0 is a
balanced metric that gives equal weight to both precision and recall. All values
are reported are percentages of the metrics and averaged over all the queries in
a group. The results for the New York Times Annotated corpus are presented
in Tables 7.2 and for the Living Knowledge corpus are shown in Table 7.3.

Given a history-oriented query, an ideal list of documents should either
give a timeline overview of the event or portray the biography of the entity.
Therefore all the documents that the system presents must recall as many
facts as possible when compared to a ground truth summary. The precision
as it is computed with respect to the system generated summary may vary as

94 DIVERSIFYING SEARCH RESULTS USING TIME

we increase the number of pseudo-relevant documents. Regardless of this we
present the Fβ=1.0 scores that give equal weight to both precision and recall.

For the New York Times Annotated corpus we can clearly see that our
method Time-Diverse outperforms all three baselines by a large margin in
recalling most important facts concerning the history-oriented queries. This
shows that using retrieval method informed by temporal expressions presents
documents that are retrospectively relevant for history-oriented queries. The
slightly higher precision values for baseline system in all the findings above can
be attributed to the fact that most of the baseline summaries tended to be of
shorter length than the summaries produced by Time-Diverse method. When
increasing the size of |R| we notice that recall also increases for Time-Diverse
as compared to the baselines. Since the increase in |R| also implies an increase
in the length of the summary, the precision also drops.

For the Living Knowledge corpus we see that our method performs better
than the baselines when considering the Fβ=1.0 scores. When considering recall
it performs at par with MMR (λ = 0.0). While looking at the precision of the
summaries our method Time-Diverse constantly outperforms the baselines;
considering that the length of the summaries in this case tend to be uniform
for all methods. As discussed in Section 7.4.1, Living Knowledge presents us
with the challenge of having a skewed and biased distribution of temporal
expressions. Even taking into account this factor; our method shows an overall
improvement over the baselines. This again empirically shows that our method
is highly sensitive to temporal expressions and aids in temporal diversification.

There is no clear correlation between a good summary and the number of
top-k documents |R| considered for generating time intervals of interest; in
most cases though it seems increasing the size of pseudo-relevant set genera-
tion of time intervals hurts the performance of the diversification algorithm.
Considering a larger number of documents that are presented to the user |S|
increases the performance; indicating |S| = 10 as an optimal value. Overall,
the results conclusively show that using our diversification algorithm taking
into account temporal expressions gives us a better retrospective overview of a
history-oriented query.

7.5.1 History by Algorithms

Here we present anecdotal results for two example history-oriented queries.
Queries considered were george w. bush and economic depression. The
results shown in Figures 7.2 and 7.3 are from the New York Times Annotated
corpus. Individual results are shown with their article headline and their
contained temporal expressions. In addition we show the time intervals
identified and used for diversification.

For the query george w. bush the identified time intervals include the
time intervals [2000, 2000] and [2000, 2004] marking the year of his first election
and his first presidential term. This is covered by documents D1117027, D1461580,
and D1255229 returned by our diversification method. The second term of his

RESULTS 95

C
a
te

g
o
ry

H
is

to
ri

ca
l

W
a
rs

H
is

to
ri

ca
l

E
v
en

ts
H

is
to

ri
ca

l
E

n
ti

ty

M
et

ri
c

R
P

F
β
=
1
.0

R
P

F
β
=
1
.0

R
P

F
β
=
1
.0

R
o
u

g
e-

N
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3

N
ä
ıv

e
3
0
.5

1
2
.0

6
2
.7

2
3
.5

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.4

1
5
.7

2
1
.0

8
.4

1
9
.9

7
.9

7
4
.6

2
9
.8

2
4
.4

9
.8

|R
|=

1
0
0

M
M

R
(λ

=
0
.5

)
3
0
.5

1
2
.0

6
2
.8

2
3
.6

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.6

1
5
.6

2
1
.1

8
.4

2
0
.0

7
.9

7
4
.3

2
9
.6

2
4
.6

9
.8

M
M

R
(λ

=
0
.0

)
3
0
.5

1
2
.0

6
2
.8

2
3
.6

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.6

1
5
.6

2
1
.1

8
.4

2
0
.0

7
.9

7
4
.3

2
9
.6

2
4
.6

9
.8

|S
|=

5
T

im
e
-D

iv
e
r
se

4
6
.4

1
7
.5

5
5
.7

2
1
.1

4
1
.0

1
5
.5

5
6
.7

2
2
.0

3
5
.9

1
3
.0

2
6
.3

9
.9

3
5
.3

1
3
.4

6
7
.0

2
5
.3

3
4
.5

1
3
.1

N
ä
ıv

e
4
8
.0

1
8
.4

5
1
.0

1
8
.9

3
9
.2

1
5
.0

5
7
.6

2
2
.9

3
3
.4

1
2
.0

2
3
.1

8
.7

3
5
.4

1
3
.6

6
7
.4

2
6
.7

3
4
.4

1
3
.5

|R
|=

1
0
0

M
M

R
(λ

=
0
.5

)
4
8
.4

1
8
.5

5
0
.6

1
8
.8

3
9
.2

1
5
.0

5
7
.5

2
2
.9

3
3
.4

1
1
.9

2
3
.1

8
.7

3
5
.8

1
3
.7

6
7
.2

2
6
.8

3
4
.7

1
3
.6

M
M

R
(λ

=
0
.0

)
4
8
.4

1
8
.5

5
0
.6

1
8
.8

3
9
.2

1
5
.0

5
7
.5

2
2
.9

3
3
.4

1
1
.9

2
3
.1

8
.7

3
5
.8

1
3
.7

6
7
.2

2
6
.8

3
4
.7

1
3
.6

|S
|=

1
0

T
im

e
-D

iv
e
r
se

6
4
.8

2
4
.4

4
3
.2

1
6
.5

4
2
.6

1
6
.3

6
6
.1

2
4
.3

2
7
.1

8
.9

2
3
.1

8
.0

4
8
.2

1
7
.8

5
6
.9

2
1
.1

3
6
.8

1
3
.7

N
ä
ıv

e
3
0
.5

1
2
.0

6
2
.7

2
3
.5

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.4

1
5
.7

2
1
.0

8
.4

1
9
.9

7
.9

7
4
.6

2
9
.8

2
4
.4

9
.8

|R
|=

1
5
0

M
M

R
(λ

=
0
.5

)
3
0
.5

1
2
.0

6
2
.8

2
3
.6

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.6

1
5
.6

2
1
.1

8
.4

2
0
.0

7
.9

7
4
.3

2
9
.6

2
4
.6

9
.8

M
M

R
(λ

=
0
.0

)
3
0
.5

1
2
.0

6
2
.8

2
3
.6

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.6

1
5
.6

2
1
.1

8
.4

2
0
.0

7
.9

7
4
.3

2
9
.6

2
4
.6

9
.8

|S
|=

5
T

im
e
-D

iv
e
r
se

4
8
.2

1
8
.6

5
5
.1

2
1
.1

4
2
.0

1
6
.2

5
8
.1

2
2
.6

3
3
.4

1
2
.2

2
5
.7

9
.6

3
8
.0

1
4
.1

6
5
.3

2
3
.9

3
6
.7

1
3
.7

N
ä
ıv

e
4
8
.0

1
8
.4

5
1
.0

1
8
.9

3
9
.2

1
5
.0

5
7
.6

2
2
.9

3
3
.4

1
2
.0

2
3
.1

8
.7

3
5
.4

1
3
.6

6
7
.4

2
6
.7

3
4
.4

1
3
.5

|R
|=

1
5
0

M
M

R
(λ

=
0
.5

)
4
8
.5

1
8
.6

5
0
.7

1
8
.8

3
9
.3

1
5
.1

5
7
.5

2
2
.9

3
3
.4

1
1
.9

2
3
.1

8
.7

3
5
.7

1
3
.7

6
7
.3

2
6
.8

3
4
.7

1
3
.7

M
M

R
(λ

=
0
.0

)
4
8
.5

1
8
.6

5
0
.7

1
8
.8

3
9
.3

1
5
.1

5
7
.5

2
2
.9

3
3
.4

1
1
.9

2
3
.1

8
.7

3
5
.7

1
3
.7

6
7
.3

2
6
.8

3
4
.7

1
3
.7

|S
|=

1
0

T
im

e
-D

iv
e
r
se

6
5
.4

2
4
.9

4
2
.1

1
6
.4

4
2
.2

1
6
.3

6
7
.0

2
4
.9

2
6
.4

9
.2

2
3
.1

8
.1

5
4
.2

2
0
.1

5
5
.7

2
0
.9

4
0
.8

1
5
.5

N
ä
ıv

e
3
0
.5

1
2
.0

6
2
.7

2
3
.5

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.4

1
5
.7

2
1
.0

8
.4

1
9
.9

7
.9

7
4
.6

2
9
.8

2
4
.4

9
.8

|R
|=

2
0
0

M
M

R
(λ

=
0
.5

)
3
0
.5

1
2
.0

6
2
.8

2
3
.6

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.6

1
5
.6

2
1
.1

8
.4

2
0
.0

7
.9

7
4
.3

2
9
.6

2
4
.6

9
.8

M
M

R
(λ

=
0
.0

)
3
0
.5

1
2
.0

6
2
.8

2
3
.6

3
3
.9

1
3
.2

4
3
.3

1
8
.0

4
2
.6

1
5
.6

2
1
.1

8
.4

2
0
.0

7
.9

7
4
.3

2
9
.6

2
4
.6

9
.8

|S
|=

5
T

im
e
-D

iv
e
r
se

5
1
.7

2
0
.0

5
3
.2

2
0
.3

4
3
.7

1
6
.8

5
9
.4

2
3
.0

3
4
.8

1
2
.7

2
7
.7

1
0
.4

3
9
.6

1
5
.2

6
4
.6

2
3
.8

3
7
.6

1
4
.5

N
ä
ıv

e
4
8
.0

1
8
.4

5
1
.0

1
8
.9

3
9
.2

1
5
.0

5
7
.6

2
2
.9

3
3
.4

1
2
.0

2
3
.1

8
.7

3
5
.4

1
3
.6

6
7
.4

2
6
.7

3
4
.4

1
3
.5

|R
|=

2
0
0

M
M

R
(λ

=
0
.5

)
4
8
.5

1
8
.6

5
0
.7

1
8
.8

3
9
.3

1
5
.1

5
7
.5

2
2
.9

3
3
.4

1
1
.9

2
3
.1

8
.7

3
5
.7

1
3
.7

6
7
.3

2
6
.8

3
4
.7

1
3
.7

M
M

R
(λ

=
0
.0

)
4
8
.5

1
8
.6

5
0
.7

1
8
.8

3
9
.3

1
5
.1

5
7
.5

2
2
.9

3
3
.4

1
1
.9

2
3
.1

8
.7

3
5
.7

1
3
.7

6
7
.3

2
6
.8

3
4
.7

1
3
.7

|S
|=

1
0

T
im

e
-D

iv
e
r
se

6
6
.4

2
4
.8

3
8
.2

1
4
.3

3
9
.4

1
4
.8

6
9
.5

2
5
.9

2
5
.2

8
.8

2
4
.1

8
.7

5
4
.7

2
0
.0

5
4
.2

1
9
.5

4
1
.5

1
5
.3

Table 7.2: Results for the New York Times Annotated corpus.

96 DIVERSIFYING SEARCH RESULTS USING TIME

C
a
te

g
o
ry

H
is

to
ri

ca
l

W
a
rs

H
is

to
ri

ca
l

E
v
en

ts
H

is
to

ri
ca

l
E

n
ti

ty

M
et

ri
c

R
P

F
β
=
1
.0

R
P

F
β
=
1
.0

R
P

F
β
=
1
.0

R
o
u

g
e-

N
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3

N
ä
ıv

e
1
4
.5

1
.7

6
2
.0

1
6
.8

1
8
.4

2
.3

2
1
.5

6
.4

5
3
.2

1
6
.4

2
2
.4

6
.5

4
.6

1
.2

8
0
.2

3
7
.0

7
.6

2
.0

|R
|=

1
0
0

M
M

R
(λ

=
0
.5

)
1
4
.5

1
.7

6
2
.0

1
6
.6

1
8
.4

2
.4

2
1
.3

6
.4

5
2
.6

1
5
.9

2
2
.3

6
.6

4
.6

1
.2

7
9
.0

3
4
.6

7
.7

2
.0

M
M

R
(λ

=
0
.0

)
2
8
.3

1
.8

4
9
.7

6
.8

2
3
.4

1
.7

3
7
.5

6
.7

3
8
.5

5
.2

2
4
.9

3
.6

1
4
.1

1
.5

6
6
.5

9
.3

2
0
.2

2
.1

|S
|=

5
T

im
e
-D

iv
e
r
se

2
6
.1

1
.9

5
2
.1

6
.1

2
4
.9

1
.9

3
6
.7

6
.9

4
0
.7

5
.8

2
6
.9

4
.1

1
5
.0

1
.5

6
8
.8

1
2
.7

1
9
.9

2
.0

N
ä
ıv

e
2
4
.8

2
.9

5
5
.0

1
1
.3

2
5
.7

3
.3

3
8
.2

1
1
.2

4
2
.9

1
1
.5

2
7
.7

7
.0

9
.2

2
.0

7
7
.0

3
2
.1

1
3
.1

3
.1

|R
|=

1
0
0

M
M

R
(λ

=
0
.5

)
2
5
.4

2
.9

5
4
.7

1
0
.8

2
6
.4

3
.3

3
8
.4

1
1
.2

4
2
.6

1
0
.2

2
8
.0

7
.0

9
.5

2
.0

7
5
.4

2
8
.6

1
3
.5

3
.1

M
M

R
(λ

=
0
.0

)
4
0
.7

3
.3

4
0
.8

4
.2

2
9
.4

2
.5

5
0
.3

1
1
.3

3
2
.7

4
.4

2
6
.5

4
.1

2
2
.4

2
.4

6
2
.5

8
.5

2
7
.1

2
.9

|S
|=

1
0

T
im

e
-D

iv
e
r
se

3
9
.2

3
.4

4
3
.0

4
.8

3
0
.6

2
.7

5
0
.6

1
1
.7

3
4
.1

4
.8

2
9
.4

4
.7

2
2
.5

2
.5

6
4
.6

1
0
.5

2
5
.8

3
.0

N
ä
ıv

e
1
4
.8

1
.7

6
0
.7

1
4
.3

1
8
.8

2
.4

2
1
.5

6
.4

5
3
.2

1
6
.4

2
2
.4

6
.5

4
.3

1
.1

8
1
.4

3
9
.2

7
.2

2
.0

|R
|=

1
5
0

M
M

R
(λ

=
0
.5

)
1
4
.8

1
.7

6
0
.6

1
4
.2

1
8
.8

2
.4

2
1
.3

6
.4

5
2
.6

1
5
.9

2
2
.3

6
.6

4
.4

1
.1

8
0
.4

3
6
.9

7
.4

2
.0

M
M

R
(λ

=
0
.0

)
3
1
.5

2
.3

4
6
.5

4
.5

2
6
.2

1
.9

4
0
.3

7
.1

3
7
.3

4
.7

2
4
.0

3
.3

1
5
.1

1
.5

6
3
.2

9
.1

1
9
.7

2
.1

|S
|=

5
T

im
e
-D

iv
e
r
se

2
8
.6

2
.1

4
9
.9

4
.5

2
7
.5

2
.1

3
6
.7

6
.8

3
9
.2

5
.8

2
5
.6

4
.1

1
6
.4

1
.5

6
6
.5

9
.0

2
0
.7

2
.0

N
ä
ıv

e
2
4
.8

2
.9

5
5
.0

1
1
.3

2
5
.7

3
.3

3
8
.2

1
1
.2

4
2
.9

1
1
.5

2
7
.7

7
.0

9
.2

2
.0

7
7
.0

3
2
.1

1
3
.1

3
.1

|R
|=

1
5
0

M
M

R
(λ

=
0
.5

)
2
5
.4

3
.0

5
4
.8

1
0
.8

2
6
.5

3
.3

3
8
.8

1
1
.2

4
2
.4

1
0
.2

2
8
.1

7
.0

9
.5

2
.0

7
5
.3

2
8
.6

1
3
.5

3
.1

M
M

R
(λ

=
0
.0

)
4
2
.9

3
.8

3
9
.1

3
.8

3
0
.5

2
.6

5
3
.5

1
1
.8

3
1
.4

3
.9

2
6
.6

3
.8

2
5
.4

2
.6

5
8
.9

7
.3

2
8
.1

2
.9

|S
|=

1
0

T
im

e
-D

iv
e
r
se

4
1
.5

3
.6

4
1
.2

3
.7

3
2
.3

2
.7

5
0
.0

1
1
.7

3
3
.2

4
.8

2
8
.1

4
.7

2
5
.1

2
.6

6
1
.3

7
.8

2
8
.0

2
.9

N
ä
ıv

e
1
4
.8

1
.7

6
0
.7

1
4
.3

1
8
.8

2
.4

2
1
.5

6
.4

5
3
.2

1
6
.4

2
2
.4

6
.5

4
.3

1
.1

8
1
.4

3
9
.2

7
.2

2
.0

|R
|=

2
0
0

M
M

R
(λ

=
0
.5

)
1
4
.8

1
.7

6
0
.4

1
3
.9

1
8
.9

2
.4

2
1
.3

6
.4

5
2
.6

1
5
.9

2
2
.3

6
.6

4
.4

1
.1

8
0
.4

3
6
.9

7
.4

2
.0

M
M

R
(λ

=
0
.0

)
3
1
.5

2
.3

4
5
.3

4
.1

2
6
.1

1
.9

3
8
.5

6
.8

3
6
.9

4
.9

2
3
.3

3
.2

1
8
.2

1
.5

6
1
.3

7
.3

2
1
.7

1
.8

|S
|=

5
T

im
e
-D

iv
e
r
se

3
0
.2

2
.1

4
8
.8

4
.3

2
7
.8

2
.0

3
8
.3

7
.0

4
1
.0

5
.5

2
7
.4

4
.1

1
5
.0

1
.4

6
8
.4

8
.9

2
0
.7

2
.0

N
ä
ıv

e
2
4
.8

2
.9

5
5
.0

1
1
.3

2
5
.7

3
.3

3
8
.2

1
1
.2

4
2
.9

1
1
.5

2
7
.7

7
.0

9
.2

2
.0

7
7
.0

3
2
.1

1
3
.1

3
.1

|R
|=

2
0
0

M
M

R
(λ

=
0
.5

)
2
5
.4

3
.0

5
4
.7

1
0
.7

2
6
.5

3
.3

3
8
.8

1
1
.2

4
2
.4

1
0
.2

2
8
.1

7
.0

9
.5

2
.0

7
5
.3

2
8
.6

1
3
.5

3
.1

M
M

R
(λ

=
0
.0

)
4
3
.0

3
.7

3
7
.9

3
.3

3
0
.5

2
.4

5
4
.0

1
1
.7

3
0
.7

3
.8

2
7
.0

3
.7

2
7
.9

2
.5

5
6
.8

6
.2

2
8
.7

2
.6

|S
|=

1
0

T
im

e
-D

iv
e
r
se

4
2
.3

3
.6

4
0
.1

3
.6

3
1
.0

2
.6

5
3
.2

1
2
.1

3
3
.3

4
.5

2
9
.4

4
.4

2
5
.4

2
.6

6
1
.6

7
.1

2
9
.5

3
.0

Table 7.3: Results for the Living Knowledge corpus.

CONCLUSION 97

presidency is marked by the category [2004, 2004] and [2004, 2007] (corpus cov-
ers the time period 1987-2007) described by the document D1610342. The last
temporal category is [1992, 1992] in which George W. Bush worked as campaign
advisor for his father’s presidential campaign. The 1992 presidential campaign
of his father is given in D537116. This is a more temporally diverse set of docu-
ments as compared against the baseline set of documents centered around 2000.

For the query economic depression identified time intervals explicitly
cover the various periods when a downturn occurred. The periods [1990,
1991] & [1990, 1995] represent the early 90’s depression covered by documents
D491246, D113808, & D741011 ; [1987, 1987] covers the Black Monday when
stock markets crashed, the story is reported in D88390 and finally [1930,1930]
marks the year that begins the Great Depression covered in document D1349556.
Clearly, this is a more temporally diverse and interesting set of documents
output by our approach as compared to the baseline where documents focus
more on the slump in markets in the 1990s.

7.6 Conclusion

In this chapter, we considered the task of diversifying search results by using
temporal expressions in document contents. Our proposed probabilistic frame-
work utilized time intervals of interest derived from the temporal expressions
present in pseudo-relevant documents and then subsequently using them as
aspects for diversification along time. To evaluate our method we constructed
a novel testbed of history-oriented queries derived from authoritative resources
and their corresponding Wikipedia entries. We showed that our diversification
method presents a more complete retrospective set of documents for the given
history-oriented query set. This approach described is largely intended to help
scholars in history and humanities to explore large born-digital document col-
lections quickly and find relevant information without knowing time intervals
of interest to their queries.

98 DIVERSIFYING SEARCH RESULTS USING TIME

Query: george w. bush

Identified Time Intervals: [2000, 2000] ; [2000, 2004] ; [2004, 2004] ; [2004, 2007] ; [1992, 1992]

Näıve Time-Diverse

D1181696 – Heir Apparent? – 2000 D1117027 – Ideas & Trends; Republicans Stalk
a Slogan, Hunting for Themselves – 1999;
1992; 1996

D1142543 – Rival Biographies of Bush Are
Rushing to Print – 1999; 1992

D1461580 – The World: A Calling to Heal;
Getting Religion on AIDS – 2003; 1999; 1986;
1991; 1995

D1242996 – THE 2000 CAMPAIGN: THE
CANDIDATES; In Final Days, Rallying Sup-
porters and Attempting to Sidestep a Volatile
Issue – 2000; 1996

D1610342 – THE 2004 CAMPAIGN: THE
DEMOCRATIC NOMINEE; Kerry Invokes
the Bible In Appeal for Black Votes – 2004;
2000

D1609737 – A Ketchup Too Spicy for the
G.O.P. – 2004

D1255229 – THE 43rd PRESIDENT: THE
MOOD IN TEXAS; Victory Celebration Is
Tempered by Bush’s Need to Focus on Rec-
onciliation – 2000

D1255563 – The George Bush I Knew – 2000;
mid-1960’s

D537116 – THE MEDIA BUSINESS: ADVER-
TISING; Bringing Madison Avenue Polish to
Bush’s Campaign Ads – 1992; 1988; 1974

Figure 7.2: Top-5 results for george w. bush

Query:economic depression

Identified Time Intervals: [1990, 1990] ; [1990, 1995] ; [1987, 1987] ; [1930, 1930] ; [1998, 1998]

Näıve Time-Diverse

D175692 – Economic Scene; Forecasters’ Art
In 1929 and Now – 1988; 1920’s ;1929 ; 1930-31
; 1929 ; mid-1931 ; 1929-30

D491246 – U.N. Report Warns of Crisis in
Eastern Europe – 1988; 1929 to 1933 ; 1992
; 1992

D653581 – Costs of Depression Are on a Par
With Heart Disease, a Study Says – 1993; 1990

D113808 – WASHINGTON TALK: BRIEF-
ING; ’The Great Correction’ – 1988

D317417 – The Reagan Boom - Great-
est Ever – 1990; 1930’s;1980’s;1989; 1982;
1990’s;1960’s;1990; 1970 to 1982; 1982; 1983;
1980’s

D741011 – Let’s Look at Biases in the History
Standards; Skewed Economics – 1995; 1920’s
;1995

D741011 – Let’s Look at Biases in the History
Standards; Skewed Economics – 1995; 1920’s
;1995

D88390 – THE ECONOMIC HISTORI-
ANS’ VIEW: Comparing the Collapses; C.P.
Kindleberger: Watch Prayerfully – 1987; 1929;
18th and 19th century; 1836; 1857; 1873; 1907;
1929; 1987; 1920

D327066 – Economic Scene; High Hopes And
Deep Fears – 1990;1991

D1349556 – Don’t Blame Wall Street – 2001;
1929; 1920’s;early 20’s;90’s;1921; 1991; 1920-21;
1921; 1913; 1927; 1912; 1920 to 1929; 1931; 1929;
1955; 1969; 1998; 1989; 1926; 1990’s; 1939

Figure 7.3: Top-5 results for economic depression

CHAPTER 8

A PROBABILISTIC FRAMEWORK
FOR TIME-SENSITIVE SEARCH

• Dhruv Gupta and Klaus Berberich. A Probabilistic Framework for Time-
Sensitive Search: MPII at the NTCIR-12 Temporalia-2 Task. In NTCIR-12.

8.1 Introduction

Temporal Information Retrieval (T-IR) is a field concerned with organization of
longitudinal document collections by utilizing the temporal information in them.
In order to identify relevant documents for time-sensitive queries, a system
must understand the temporal annotations present in the document contents.
Näıve approaches that utilize document metadata such as creation time or
publication date may be insufficient to address information needs for time-
sensitive queries (e.g., history of rap). Analysis of temporal expressions in
document contents is critical for any time-sensitive search engine. However,
analysis of temporal expressions is difficult as they can vary with granularity
(e.g., 1960 versus May 19, 1960) and further they can be highly uncertain (e.g.,
1960s). Moreover given a implicitly time-sensitive query, where the temporal
intent is not explicitly specified, prior art which largely relied on the signals

99

100 A PROBABILISTIC FRAMEWORK FOR TIME-SENSITIVE SEARCH

derived from publication dates may fail. The temporal expressions again must
be accounted by any method that attempts to retrieve or diversify documents
by time. Advances in the field of T-IR have many benefits for scholars in
humanities who need to analyze massive born-digital document collections for
anthropological, historical, and linguistic trends.

In this chapter, we describe TimeSearch a probabilistic framework that
utilizes temporal expressions in document contents to generate interesting time
intervals for implicit time-sensitive queries. Further it utilizes the identified
time intervals to re-rank and diversify documents along the temporal dimension.
The system described is completely unsupervised in nature, i.e., it needs no
training labels to function. The Temporalia-2 tasks that we participated in
were: temporal intent disambiguation and temporally diversified retrieval.

Temporal Intent Disambiguation subtask required the participants to
estimate the likelihood that the query has an information need in the classes:
past, recent, future, and atemporal given a keyword query. Formally stated as:

Problem Temporal Intent Disambiguation. Given, classes C =
{past, recent, future, atemporal} and keyword query q, estimate P (C|q).

Temporally Diversified Retrieval subtask required the participants to
identify temporally relevant search results for a query in the classes: past,
recent, future, and atemporal from the document collection Living Knowledge.
Formally, we can state this subtask as follows:

Problem Temporally Diversified Retrieval. Given, keyword query
q and document collection D, estimate P (d|q, C).

System Overview. Our probabilistic framework consists of models con-
structed from our earlier research [93, 94, 96]. In a nutshell, our system
analyzes the statistics of frequently occurring temporal expressions in relevant
documents retrieved for a keyword query. Time is modeled so as to account
for its inherent uncertainty [41]. Using this model we then generate interesting
time intervals (in contrast to only time points in prior art) [93]. This analysis
is carried out at multiple levels of temporal granularity. The time intervals
are then used in a time-sensitive language model [41] and a time-sensitive
diversification algorithm [96]. The integral components of the system in an
overview are depicted in Figure 8.1.

Outline. The remainder of the chapter is structured as follows. We put
our work into context with respect to prior art in Section 8.2. Section 8.3
describes the distribution of temporal expressions in the document collection
used for the competition and how we pre-process the data for our methods.
Section 8.4 describes the TimeSearch system. In Section 8.5 we describe our
method and its performance in the temporal intent disambiguation subtask.
In Section 8.6 we illustrate our approach and its results for the temporally
diversified retrieval subtask. We present concluding remarks in Section 8.7.

RELATED WORK 101

Figure 8.1: Given a keyword query qtx, TimeSearch uses a pseudo-relevant set of
documents R to identify interesting time intervals qti using the time intervals of
interest model (TII). The time intervals qti are subsequently used for query expansion
to obtain a temporally diversified set of documents RD by temporal diversification
model (TID). They are also used for retrieving temporally relevant documents RC
using the temporal language model (TIR).

8.2 Related Work

Temporal information retrieval is now a well established field of information
retrieval which tries to analyze text and its accompanying temporal expressions.
It has received substantial attention given the fact that around 1.5 % of web
queries are explicitly time-sensitive in nature [168] and around 7 % of web
queries are implicitly time-sensitive in nature [155]. We begin by what types of
temporal expressions in text can be identified and which tools can be used to
detect them. We then present the relevant prior art for the Temporalia-2 [126]
task that belong to two broad classes: understanding time-sensitive queries
and time-sensitive document retrieval.

Temporal Expressions in text can be of three types [53]: explicit, implicit,
and relative. Explicit temporal expressions are exact mentions of date and
time (e.g., April 1, 2005). Furthermore, these explicit temporal expressions
may occur at different levels of granularity say, day (e.g., May 15, 1990), month
(e.g., May, 1990), or year (e.g., 1990) level. Implicit temporal expressions are
conveyed by words that carry a latent temporal intent behind them, e.g., spring.
Relative temporal expressions may occur relative to a temporal expression
elsewhere in text, e.g., last year. Temporal taggers such as SUTime [58] and
HeidelTime [188] offer the capability to detect and resolve these temporal
expressions to human-interpretable dates.

102 A PROBABILISTIC FRAMEWORK FOR TIME-SENSITIVE SEARCH

Understanding Time-Sensitive Queries. One of the early works in
temporal query classification was by Jones and Diaz [127]. The authors
described a taxonomy for temporal classes; which were ambiguous, unambigu-
ous and atemporal. Their machine learning approach incorporated signals
from the distribution of document publication dates. Some of these features
were temporal clarity, kurtosis, and auto-correlation. The first edition of the
Temporalia competition [125] considered temporal query classification with a
qualitative set of temporal classes, namely: past, recency, and future. More
recently additional classes have been explored by us [94] and by Kanhabua et
al. [131]. Kanhabua et al. [131] study the case of seasonality and periodicity
associated with web queries. They use features acquired from web query logs,
and publication date distribution of an external document collection. In our
earlier work [94], we additionally considered the task of disambiguating the
temporal class of a query at multiple levels of granularity and also determining
its temporal (a)periodicity. Our approach looked at publication dates as well
as temporal expressions in document contents.

Time-Sensitive Document Retrieval. Berberich et al. [41] presented a
time-sensitive language model that answers explicit temporal queries by ana-
lyzing temporal expressions in document contents. Building on this Kanhabua
and Nørv̊ag [132] look at automatically suggesting years of interest to implicit
temporal queries. To this end, they only utilize document publication dates.
Work by Dakka et al. [70] relies on document publication dates to improve the
retrieval effectiveness by analyzing their frequency histograms. A comprehen-
sive survey of temporal information retrieval by Campos et al. [53], also notes
the lack of any active research in the area of diversifying search results using
temporal expressions. In our prior work [96], we presented an algorithm for
diversifying search results that utilizes temporal expressions. This approach
has been used in the larger system, TimeSearch, described in this chapter.
An alternative approach would be to anchor documents in time which Jatowt
et al. [123] address. They look at the problem of estimating the time period
which the document focuses on. They do this by constructing a weighted
undirected graph which captures the associations between terms and time.

Applications. We now discuss applications that leverage temporal ex-
pressions in document contents. Swan and Allan [191] investigate how to
automatically generate timelines using text-based features. To do so, they first
constructing a timeline of the corpus at day granularity. They then test the sig-
nificance of the features, e.g., named entities and noun phrases via χ2 statistic.
Alonso et al. [30] specifically look at the temporal information contained in doc-
uments to organize and explore them along timelines constructed at multiple
granularities. Furthermore, the authors propose the concept of temporal docu-
ment profiles using which document clustering and re-ranking can be performed.
Yeung and Jatowt [149] use temporal expressions and Latent Dirichlet Alloca-
tion (LDA) to study how the past is remembered in text collections. Using the
distributions of topics along time, the authors identify significant topics in years,
evolution of events over time, and historical similarities between countries.

DOCUMENT COLLECTION: ITS ANALYSIS AND INDEXING 103

8.3 Document Collection: Its Analysis and Indexing

For the subtasks in Temporalia, the Living Knowledge [15] Web collection was
used. It comprises of news articles and blogs amounting to approximately 3.8
million documents [125]. The documents are provided with annotations for
temporal expressions as well as named entities.

Temporal Analysis

We did a simple temporal analysis of the Living Knowledge document collection;
by computing the document frequency of various temporal expressions at year
granularity across the collection. The resulting plot is shown in Figure 7.1a. As
can be seen from Figure 7.1a there is a large number of documents containing
temporal expressions in the year “2011” and “2012”. Table 8.1 gives the top-5
frequently occurring years with their relative document frequency to the total
number of temporal expression containing documents. The kurtosis of the
distribution is 421.39 and skewness of 19.85. This highly skewed nature of
the distribution affects any probabilistic analysis that is performed on the
Living Knowledge document collection. We take this background distribution
of temporal expressions into account when analyzing time-sensitive queries.

Pre-processing and Indexing

We utilized the temporal expressions provided with corpus for analysis. We did
not utilize any external temporal annotator. Each document was pre-processed
using Hadoop map-reduce framework to a JSON document representation. The
schema used for encoding each document is detailed in Figure 8.2. We store
all the metadata (category, host, pubDate, url) along with all the temporal
expressions (allTime) in the document. We also do not utilize the named
entity annotations in provided with the document collection. We indexed the
documents along with their temporal expressions using the ElasticSearch [4]
software. For retrieval of a pseudo-relevant set of documents we used its
built-in implementation of the Okapi BM25 method with parameters k1 = 2.00
and b = 1.00.

An Illustrative Example

In order to illustrate the workings of the various models in TimeSearch,
consider the following fictitious toy example illustrated in Figure 8.3. The
likelihood of generating the query q given the document d (document score for
the given query) is näıvely measured as a value proportional to the normalized
product of term frequency of query terms in document. We will use this as a
running example for explaining TimeSearch.

104 A PROBABILISTIC FRAMEWORK FOR TIME-SENSITIVE SEARCH

Time Frequency

2011 0.31

2012 0.25

2010 0.10

2009 0.04

2008 0.04

2013 0.03

Table 8.1: Top-5 frequently occurring years with their relative frequency in the Living
Knowledge document collection.

{
"lk": {
"mappings": {

"docs": {
"properties": {

"allTime": {
"properties": {

"value": {
"type": "string"

}
}

},
"category": {

"type": "string"
},
"docId": {

"type": "string"
},
"host": {

"type": "string"
},
"pubDate": {

"type": "string"
},
"source": {

"type": "string"
},
"text": {
"type": "string"

},
"url": {

"type": "string"
}

}
}

}
}

}

Figure 8.2: JSON schema for a document in our index.

SYSTEM DESIGN 105

8.4 System Design

In this section, we outline the various components that were used to solve the
subtasks in Temporalia-2. The entire system was programmed in Java.

Preliminaries

We consider a document collection D. Each document d ∈ D consists of a
bag of keywords dtx and a bag of temporal expressions dti. We let |dtx| and
|dti| denote the cardinalities of these bags. Also, let tf(v, d) denote the term
frequency of the keyword v, drawn from vocabulary V , in document d. Let,
qtx denote the keywords of the query. To retrieve the pseudo-relevant set of
documents R, we utilize a retrieval method:

R = IR(D, qtx, k,Θ),

where, D is the document collection, k is the number of top-k results required
and Θ ∈ Rm denotes a set of parameters. Each document d ∈ R is further
accompanied by a document score. To represent and model temporal expres-
sions we leverage the work by Berberich et al. [41]. The uncertainty-aware
time model has been described in Section 5.3.2.

Time Intervals of Interest

Given a keyword query, we first identify interesting time intervals, which
are used for predicting its temporal intent and subsequently for retrieval of
documents that satisfy the temporal intent. Time intervals of interest to
a given keyword query qtx are identified using our earlier work [93]. The
probability that a time interval [b, e] is deemed interesting for a given keyword
query qtx is modeled as a two-step generative model:

P ([b, e] | qtx) =
∑

d∈R
P ([b, e] | dti) · P (d | qtx).

The first step involves involves retrieving a pseudo-relevant set of documents
R using the keyword query qtx. The probability P (d|qtx) thus measures the
likelihood of generating the document given the query. This is estimated by
using the document scores given by the retrieval method. In the second step,
a time interval [b, e] is in turn generated from each of the temporal expressions
in d:

P ([b, e] | dti) =
1

|dti|
∑

T∈dti

1([b, e] ∈ T)

|T | .

Generating time intervals immediately at day granularity is an expensive
operation; since it may require discretization of the temporal dimension into
hundreds of thousands of days. Subsequently representing each interval in our
time model increases the space complexity quadratically. Thus, to overcome

106 A PROBABILISTIC FRAMEWORK FOR TIME-SENSITIVE SEARCH

Query: summer olympics

Id Contents Score

d1 summer olympics 2008 took place in beijing, china. 0.25

d2 summer olympics 2012 took place in london, england. 0.25

d3 summer olympic games during 1990s were very competitive. 0.25

d4 summer olympic games during August, 1992 to September, 1992 were
very competitive.

0.25

d5 olympic games were competitive during 1973. 0.17

Figure 8.3: A toy example showing an ordered-set of pseudo-relevant documents
returned for the keyword query summer olympics.

the problem we apply the generative model recursively to obtain time intervals
of interest at year, month, and day granularity. That is, we first identify inter-
esting years, for those years we generate interesting months and subsequently
the interesting days in those months. The time intervals generated for a given
keyword query qtx are kept in set qti. For determining the intent we utilize
the time intervals at year granularity.

Let us apply this model to the toy example given in Figure 8.3 to understand
the intuition. Assume all documents are in the pseudo-relevant set, i.e.,
R = {d1, d2, d3, d4, d5}. Since the scores of documents {d1, d2, d3, d4} are
larger than d5; this indicates that the temporal expressions in them have a
higher relevance to the temporal intent behind the keyword query.

Next all temporal expressions in the documents are represented in our time
model and time intervals are generated. Consider the interesting case of {1990s;
August, 1992; September, 1996}. The time interval [08− 1992, 09− 1996] gets
a higher relevance to the query then the other temporal expressions present
due to high redundancy (see Figure 8.4). Thus the top-3 time intervals will
be 〈[08 − 1996, 09 − 1992], [2008, 2008], [2012, 2012]〉, with [2008, 2008] and
[2012, 2012] having equal likelihood (but less than [08− 1996, 09− 1996]) of
being generated from the documents.

Figure 8.4: Graphical illustration of how the temporal expressions {1990s; August,
1992; September, 1996} overlap in our time model. The grayed-out region below the
diagonal represents invalid time intervals.

SYSTEM DESIGN 107

Temporal Language Model

Having obtained a set of interesting time intervals qti, we use them for retrieving
documents that lie in these time intervals as explained next. Given a query qtx,
we utilize the approach previously developed by Berberich et al. [41] for re-
scoring the documents after expanding it with time intervals from qti. Assume
an independence between generation of textual qtx and temporal intents qti
of query. The probability of generating the query q can be written as [41]:

P (q|d) = P (qtx|dtx) · P (qti|dti).
The first probability P (qtx|dtx) can be estimated as described earlier using
document scores. The second probability gives the likelihood of generating a
time interval of interest [b, e] ∈ qti from the document’s temporal expressions
dti as follows:

P (qti|dti) =
∏

[b,e]∈qti
P ([b, e] | dti).

To understand this model, let us return to the toy example. The current
document ranking is 〈d1, d2, d3, d4, d5〉. Let the query summer olympics be
expanded with the time interval [08 − 1996, 09 − 1996]. Since documents
{d3, d4} both have temporal expressions that contain the interesting time
interval [08−1992, 09−1992] they will be promoted up in the rankings, followed
by 〈d1, d2〉; and finally with 〈d5〉 at the end with no temporal expression that
mentions a interesting time interval. Thus, the final ranking with this model
will be 〈d3, d4, d1, d2, d5〉.

Temporal Diversification

The set of interesting time intervals qti can also be used as temporal intents
to perform temporal diversification, as described in our work [96]. This is
done by adapting the work of Agarwal et al. [25], to maximize the following
objective function over the temporal intents:

∑

[b,e]∈qti
P ([b, e] | qtx)

(
1−

∏

d∈RD

(
1−P (qtx | dtx)P ([b, e] | dti)

))
.

The objective maximizes the probability that at least one document from each
temporal intent is in the diversified set of results RD. The importance of the
temporal intent is given by the probability P ([b, e]|qtx) as described earlier.
The probability that a document satisfies this temporal intent is estimated by:

P (qtx | dtx)P ([b, e] | dti).

Lets apply this model on the toy example. Assume that we require only top-2
documents in our diversified set |RD| = 2. In the set of documents we will see
that the pairs {d1, d3}, {d1, d4}, {d2, d3}, and {d2, d4} are the only optimal

108 A PROBABILISTIC FRAMEWORK FOR TIME-SENSITIVE SEARCH

sets for the objective function above. This is because each document in them
represents at least one of the temporal intents. Hence we can choose any one
of them as RD.

8.5 Temporal Intent Disambiguation Subtask

We next discuss our approach to address the Temporal Intent Disambiguation
subtask. In this section, we describe the query set description, our method
and the metrics used for evaluation.

Query Set. The organizers of the Temporalia-2 task made available to
the participants a total of 93 queries in the dry run; consisting of 73 training
queries and 20 queries for testing. For the formal run; we were provided 300
queries in total. Each query consists of the following fields: query keywords,
query issue time and and probabilities for four different classes (training data).
A sample query with the markup is displayed in Figure 8.5.

Method. In the Temporal Intent Disambiguation subtask, we were asked
to estimate P (C | q) given the classes C = {past, recent, future, atemporal}.
For this we used the probability distribution P ([b, e]|q) of unit time intervals at
the year granularity. For the atemporal class, we can compute the probability
P (C = atemporal|q) as:

P (C = atemporal|q) =
√
|T | max

[b,e]∈T
|P ([b, e]|q)− P ([b, e]|Dti)|,

which is essentially a two-sample Kolmogorov-Smirnov test [152] between the
distribution of unit time intervals estimated by our model and the distribution
of unit time intervals occurring in the background document collection. It
tests whether these two samples were generated by a common distribution.
For this we utilized the implementation in Apache Commons Math 3.6 API1.
For the past, recent and future class, we utilize the query issue time at year
granularity tissue. We specifically look at the orientation of the interesting
time intervals with respect to the query issue time to determine whether the
temporal intent lies in past, present or future. Thus the probabilities for the
different classes are measured as follows:

P (C = past |q) =
1

|T |
∑

[b,e]∈T
1(tissue < b),

P (C = recent|q) =
1

|T |
∑

[b,e]∈T
1(b ≤ tissue ≤ e),

P (C = future|q) =
1

|T |
∑

[b,e]∈T
1(tissue > e).

1https://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/

math3/stat/inference/KolmogorovSmirnovTest.html

TEMPORAL INTENT DISAMBIGUATION SUBTASK 109

<query>
<id>033</id>
<query_string>

weather in London
</query_string>
<query_issue_time>

May 1, 2013 GMT+0
</query_issue_time>
<probabilities>

<Past>0.0</Past>
<Recency>0.9</Recency>
<Future>0.1</Future>
<Atemporal>0.0</Atemporal>

</probabilities>
</query>

Figure 8.5: Sample query from TID subtask

Metrics. The organizers of the task provided the participants with two
metrics, loss and similarity, for evaluating the participating systems. The
loss and similarity metrics are computed per query and then averaged to
obtain the final system performance. Loss between two k-discrete probability
distribution M and N is measured as:

loss =
1

k
·
k∑

i=1

| mi − ni | .

Similarity between two k-discrete probability distribution M and N is
measured by treating each distribution as a vector in k-dimensional space and
computing the cosine of the angle between them:

sim =

∑k
i=1mi · ni√∑k

i=1m
2
i ·
√∑k

i=1 n
2
i

.

Results. At each stage of the competition we kept the same system
configuration by utilizing the top-1000 documents per query for determining
the time intervals of interest. As an initial experiment we utilized all the 73
training queries for testing our system. This was possible since our method
is unsupervised in nature. A rudimentary baseline for our system can be a
uniform distribution assigned to all four classes, i.e., P (C|q) = 0.25. The
results for this training experiment is shown in Table 8.2. Results for the two
systems named Mpii-Tid-Train and Baseline corresponding to our method
and the baseline respectively are reported in Table 8.2. For the dry-run we
submitted a single run for the set of 20 queries in the dry-run query set. Our
systems performance is reported against the system named Mpii-Tid-Dry in
Table 8.2. For the formal-run we again submitted a single run for the set of
300 queries provided for the formal-run. The results for this stage are report
against the system named Mpii-Tid-Formal in Table 8.2.

110 A PROBABILISTIC FRAMEWORK FOR TIME-SENSITIVE SEARCH

System Loss Similarity #Queries

Mpii-Tid-Formal 0.35 0.35 300

Mpii-Tid-Dry 0.34 0.39 20

Mpii-Tid-Train 0.30 0.48
73

Baseline 0.26 0.66

Table 8.2: Results for our proposed system at different stages of the temporal intent
disambiguation subtask.

Discussion. The proposed method for predicting the probabilities of the
temporal classes overall shows poor performance as compared to a näıve base-
line. One potential reason we suspect is the temporal bias in the distribution
as discussed in Section 8.3. For most queries the interesting time intervals
arose in the time interval [2011, 2013]. For queries such as: uk 2009 balance

of payments, the advantages of hosting the olympic games, freedom

of information act, when did ww2 start, how did bin laden die, when
was television invented, history of slavery, susan miller 2012, and
occupy wall street movement our system predicted the temporal class dis-
tribution with high similarity and low loss. This shows us that given an explicit
temporal query or a history-oriented query, our method can predict the distribu-
tion quite well. However, for queries such as: naming university buildings

with commercial brands, body posture alteration, dressing code in

job interview, badminton games, advanced english, and time warner

austin the predicted distribution deviated from the human-provided dis-
tribution. This observation leads us to suspect that comparing the distribution
of time intervals of interest with respect to the background distribution for
the atemporal class may not work for all atemporal queries. An alternative
approach will be to resort to a learning approach whereby the distribution for
the atemporal class can be induced from the training set of queries.

8.6 Temporally Diversified Retrieval Subtask

This subtask required the participants to retrieve documents for each four
of the temporal classes as well a diversified set of documents along time for a
given query topic. In this section, we describe the query set, our method and
the results obtained for our system at various stages of the competition for
the temporally diversified retrieval subtask.

Query Set. The organizers provided us with 8 queries in the dry run and
50 queries in the formal run to evaluate. Each query consisted of the following
fields: query title; query description; query issue time; and query subtopic
description for past, recent, future and atemporal. A sample query from this
set is shown in Figure 8.6. As an input to our system we chose only to use the
keywords from the query title field.

TEMPORALLY DIVERSIFIED RETRIEVAL SUBTASK 111

<topic>
<id>002</id>
<title>

Junk food health effect
</title>
<description>

I am concerned about the health effects of junk food in general.
I need to know more about their ingredients, impact on health,
history, current scientific discoveries and any prognoses.

</description>
<query_issue_time>

Mar 29, 2013 GMT+0:00
</query_issue_time>
<subtopics>

<subtopic id="002a" type="atemporal">
How junk foods are defined?

</subtopic>
<subtopic id="002p" type="past">

When did junk foods become popular?
</subtopic>
<subtopic id="002r" type="recency">

What are the latest studies on the effect of junk foods on our health?
</subtopic>
<subtopic id="002f" type="future">

Will junk food continue to be popular in the future?
</subtopic>

</subtopics>
</topic>

Figure 8.6: Sample query from TDR subtask

Temporal Ranking and Diversification of Documents. For retrieval
of time-sensitive documents we utilized the temporal language model (outlined
in Section 8.4). For retrieving time-sensitive documents, we first determine
qti for the given keyword query as follows. For the class recent, we utilized
tissue, i.e., qti = tissue. For the class atemporal, the retrieved documents
were the same as given by Okapi BM25 retrieval scheme. For classes past
and future, we considered interesting time intervals that lie before tissue and
after tissue respectively. Temporal Diversification of documents was done by
considering top-5 identified interesting time intervals as temporal categories
for the diversification algorithm.

Evaluation Metrics. For the evaluation of this task the organizers used
the standard Cranfield methodology. This is done by first pooling all relevant
documents from the submitted runs of participants. Subsequently their rel-
evance grade is identified via online crowdsourcing methods. To assess the
quality of ranking in specific classes (e.g., past, recent, future, and atempo-
ral), the organizers used nDCG to measure retrieval effectiveness. While for
diversified list of documents, α-nDCG and D#-nDCG was used.

Results. For each stage of the competition we submitted a single run
comprising of top-100 documents for each temporal class and for the diversified
set of documents. We report the results in Table 8.3 and 8.4 for metrics that
we discussed above for the dry-run and formal-run stage of the competition
for our systems.

112 A PROBABILISTIC FRAMEWORK FOR TIME-SENSITIVE SEARCH

Category
Dry-run Formal-run

nDCG@20 nDCG@20

Atemporal 0.17 0.34

Past 0.19 0.39

Recent 0.05 0.34

Future 0.02 0.34

All 0.11 0.35

Table 8.3: Results for our proposed system for retrieving time-sensitive documents
at different stages of the temporally diversified retrieval subtask.

Stage nDCG@20 D#-nDCG@20

Dry-run 0.18 0.41

Formal-run 0.33 0.57

Table 8.4: Results for our proposed system for diversifying time-sensitive documents
at different stages of the temporally diversified retrieval subtask.

Discussion. Concerning the temporal retrieval of documents; from the
results we observe that for the dry run stage our system performed very well
in the future and past classes. However, it did not perform well for the recent
class. On the other hand for the formal run our system performed well for
the class past and equally well for the rest of the classes. As for the temporal
diversification of documents; our system performed well in formal run stage as
compared to the dry run stage. Overall comparing to the organizers’ system,
our method did not fare as well. This can be attributed largely to two insights:
the role of the retrieval method for producing an initial set of pseudo-relevant
documents and the role that temporal expressions play in our approach. In
order to improve our system we can attempt to replace the current Okapi BM25
method with other state-of-the-art retrieval methods. We also did not use any
external temporal annotator and opted in favor for the annotations provided
with the document collection. The provided annotations had a temporal bias
which we discussed in Section 8.3, which we suspect may be the reason our
system does not perform well.

8.7 Conclusion

In this chapter, we described TimeSearch a probabilistic framework for
time-sensitive search. It understands the temporal uncertainty in time, which
we leverage to generate time intervals of interest to a given keyword query.
These time intervals are then used to retrieve time-sensitive documents or
to generate a temporally diverse set of documents. Our methods for the
Temporalia-2 task utilize this system in order to identify the temporal intent in
past, recent, future, atemporal classes and to retrieve time-sensitive documents
in those classes.

CHAPTER 9

GENERATING SEMANTIC
ASPECTS FOR QUERIES

• Dhruv Gupta, Klaus Berberich, Jannik Strötgen, and Demetrios Zeinalipour-
Yazti. Generating Semantic Aspects for Queries.
In JCDL 2018, pages 335–336.

• Dhruv Gupta, Klaus Berberich, Jannik Strötgen, and Demetrios Zeinalipour-
Yazti. Generating Semantic Aspects for Queries.
In ESWC 2019, pages 162–178.

9.1 Introduction

When querying large document collections or the Web, it is challenging to
guide the user to relevant documents. This is because short and ambiguous
keyword queries posed to information retrieval (IR) systems represent many
possible information needs [62]. This is a known acute problem; it has been
shown that around 46% of users issue reformulated queries [113]. To assist users
in refining their search, existing approaches use related terms [181], named
entities in knowledge graphs (KGs) [48] or hand-crafted knowledge-panels [115].
Still with these aids, the user must read and consult individual documents in
the ranked list to check for their relevance. What is therefore needed is a way of

113

114 GENERATING SEMANTIC ASPECTS FOR QUERIES

Query: olympic medalists

Time Entities Entity Type

[1980,1988] yago:sergei-grinkov, yago:maya-usova,
yago:marina-klimova, yago:evgeni-platov,
yago:oksana-grishuk, yago:sergei-ponomarenko,
yago:ekaterina-gordeeva

wiki-category: olympic
medalists in figure
skating

[1992,1992] yago:leroy-burrell, yago:jon-drummond,
yago:dennis-mitchell, yago:michael-marsh-(athlete)

wiki-category: american
sprinters

[1996,1996] yago:dominique-dawes, yago:shannon-miller,
yago:kerri-strug

wiki-category: olympic
medalists in gymnastics

[1998,1998] yago:jenni-meno, yago:kyoko-ina, yago:todd-eldredge,
yago:todd-sand, yago:nicole-bobek

wiki-category: figure
skaters at the 1998
winter olympics

Table 9.1: Generated semantic aspects for the query olympic medalists from the
New York Times document collection (covering 1987-2007). Each row in the table
corresponds to one semantic aspect.

uplifting the unstructured text in documents to a structured representation that
exposes its key aspects. To this end, we propose the novel concept of semantic
aspects (e.g., 〈{michael phelps}, {athens, beijing, london}, [2004,2016]〉)
that help users posing ambiguous queries (e.g., olympic medalists) explore
document collections without reading their contents.

To generate semantic aspects for ambiguous keyword queries, we turn
to natural language processing (NLP) tools that can help us enrich text
with annotations. In particular, we make use of annotations in the form of
named entities (persons and organizations), geographic locations, and temporal
expressions. These are extremely important annotations in the domain of
IR [91, 211]: 71% of Web queries were found to mention named entities,
while 30.9% of Web queries were either explicitly or implicitly temporal in
nature. Generation of meaningful semantic aspects and their evaluation is
challenging. To generate them, we must first model and interpret the semantics
underlying the annotations. For example, temporal expressions can be highly
uncertain (e.g., 90s) and two locations or named entities in a KG can be
related by many facts, e.g., ‘Maria Sharapova lives in US but represents Russia
in sports’ [17]. Moreover, queries can signify different kinds of ambiguities:
temporal ambiguity (e.g., tokyo summer olympics – 1964 or 2020), location
ambiguity (e.g., rome – many US cities are named after European cities), or
entity ambiguity (e.g., spitz – Mark or Elisa Spitz). Moreover, since semantic
aspects are more than “related terms” or facts in KGs there currently exists
no benchmark for their automatic evaluation.

Approach Outline. To solve the above challenges, we propose the fol-
lowing solutions in this chapter. To generate semantic aspects, we describe
the xFactor algorithm (Section 9.5). xFactor takes as an input a large set
of annotated documents retrieved for a keyword query and outputs a set of
semantic aspects. xFactor generates the semantic aspects in three steps. First,
it partitions the input document set by identifying salient sets of annotations
in formal models that capture the semantics of an annotation type (e.g., named

RELATED WORK 115

entities). Second, xFactor additionally considers salient co-occurrences of
annotations with different semantics (e.g., named entities and temporal expres-
sions) by virtue of them being present in the same document partition. Third,
it outputs all possible ways of analyzing the initial ambiguity behind the query.
This is done by permuting the order in which the annotations are considered
for partitioning the initial set of documents. Table 9.1 shows examples of
generated semantic aspects for the ambiguous query olympic medalists. To
perform automated evaluation of the generated semantic aspects, we provide
a novel evaluation benchmark compiled from Wikipedia with new measures to
the research community (Section 9.7).

9.2 Related Work

Structuring Text for Search. Hearst and Plaunt [114] proposed TextTiling,
an algorithm for identifying coherent passages (subtopics) in text documents.
Koutrika et al. [135] utilized LDA to identify topics in documents for their
structured representation. However, both approaches were not informed of
semantic annotations, which we leverage to identify aspects for structuring
text for search.

Faceted Search. Faceted Search systems allow a user to navigate doc-
ument collections and prune irrelevant documents by displaying important
features about them. Dou et al. [74] and Kong and Allan [134] rely only on
text to mine keyword lists present in pseudo-relevant documents for generating
aspects. Ben-Yitzhak et al. [39] discussed various algorithms that allowed
business intelligence aggregations and advanced dynamic discovery of corre-
lated facets across multiple dimensions. Li et al. [142] leveraged semantic
metadata present in Wikipedia such as entities and their associated category
for automated generation of facets for exploring Wikipedia articles. Grau
et al. [88] considered the use of named entities and their relationships in
graphs for generating facets in DBpedia abstracts. Our approach, in contrast,
considers the underlying semantics for each annotation during the generation
of aspects. We additionally consider temporal expressions and geographic
locations as annotations. Moreover, we model the co-occurrences between
different annotation types for generating aspects.

Temporal Search. Tran et al. [198] analyzed annotated documents for
recommending related entities given an entity and an associated text. For this,
the authors used temporal expressions, KGs and word embeddings. In a similar
vein, Bianchi et al. [44] looked into incorporating temporal knowledge into
embeddings for KGs. Nguyen et al. [165] on the other hand, analyze query logs
to recommend time intervals for queries about events. In contrast, our approach
models the uncertainty behind temporal expressions when generating query
aspects. Our xFactor algorithm is additionally extensible to other annotation
types (e.g., locations, numbers, and sentiment). Moreover, xFactor allows
query pivoting, thereby disambiguating query intent using different annotation
types.

116 GENERATING SEMANTIC ASPECTS FOR QUERIES

Entity Search. Reinanda et al. [177] leverage search-engine query logs to
mine and suggest entities of relevance given an entity-oriented query. They con-
sider metadata associated with the queries in the query log for their approach,
e.g., user clicks, user sessions, and query issue timestamps. Schuhmacher et
al. [184] propose a method for recommending related entities for entity-centric
queries using pseudo relevance feedback from retrieved documents and KGs.
Their work, however, does not tap into the document contents or temporal
expressions for generating aspects.

9.3 Preliminaries

Document Model. Consider, a large annotated document collection D =
{d1, d2, . . . , d|D|}. Each document d ∈ D is processed with natural language
processing (NLP) annotators that tag sequences of words in the document
with annotations from a given type X (e.g., temporal expressions). Formally,
let each document be represented by n bags-of-annotations:

d = {dX1
, dX2

, . . . , dXn}. (9.1)

Specifically, for this work, we consider the following semantic annotations:
temporal expressions, geographic locations, and other named entities (per-
sons and organizations). Thus, our document model refers to the bags-of-
annotations for entities (dE), locations (dG), and temporal expressions (dT):

d = {dE , dG , dT }.

Aspect Model. Let an ambiguous query q reflect the information need
of a user. An information retrieval (IR) method in response to the query q
returns a set of pseudo-relevant documents R ⊂ D. The document set R
conveys many implicit information needs. The user’s information need may be
a subset of those reflected by the documents [62]. Our aim is to extract an
ordered set of semantic aspects A that make these implicit information needs
explicit, thereby pointing the user to the relevant documents:

A = 〈a1, a2, . . . , a|A|〉. (9.2)

An aspect a (e.g., 〈{michael phelps}, {athens, beijing, london}, [2004,
2016]〉) is determined by considering the salience of annotations sharing the
same semantics (e.g., temporal expressions) as well as co-occurrence with
annotations of different semantics (e.g., temporal expressions and named
entities). An aspect a ∈ A is modeled as:

a = 〈x1, . . . , xn〉,
where, x (e.g., time interval) corresponds to salient annotation(s) from type

X (e.g., temporal expressions). For this work, the aspects are modeled as:
a = 〈aE , aG , aT 〉.

GENERATING FACTORS 117

Annotation Models. For large-scale enrichment of text documents with
semantic annotations we utilize two different NLP tools. First, we make use
of a named entity recognition and disambiguation (NERD) tool Aida [118] to
annotate and disambiguate mentions of named entities to canonical entries
in KGs (i.e., Yago [190]). Second, to resolve expressions of time in text we
leverage a temporal tagger HeidelTime [188] that can annotate them with high
precision. We next explain the formal models for each of the annotation types.

Named Entities and Entity Model. Named entities in text are modeled
as canonical entries of a KG (e.g., Yago [190]). These annotations are obtained
by using NERD tools (e.g., Aida [118]). We differentiate between locations and
other named entities, by the presence of geographic coordinates in their KG
entry. Let, G and E denote the type information associated with locations and
other entities, respectively. Named entities may share common relationships
that convey a degree of their relatedness. For example, tokyo and beijing

are related as they both lie in asia. These relationships in Wikipedia are
encoded in the form of an explicit link structure. Concretely, each named
entity mention disambiguated by Aida, is linked to its Wikipedia article. Each
Wikipedia article contains links to other Wikipedia articles, indicating their
semantic relatedness. We model each named entity by its Wikipedia link
structure. Formally, each named entity e can be described by the links ` its
article We has to other articles in Wikipedia W :

We = {`1, `2, . . . , `|W |}. (9.3)

Temporal Expressions and Time Model. Temporal expressions in
documents can be annotated using temporal taggers (e.g., HeidelTime [188]).
Such annotators are able to identify and resolve explicit, implicit, relative,
and underspecified temporal expressions using metadata such as publication
dates [188]. Let, T denote the type information associated with temporal
expressions. Each annotation in T (i.e., dates) is represented by their UNIX
time epochs (i.e., number of milliseconds since 01-January-1970). To model
temporal expressions, we utilize the time model that incorporates uncertainty
(see Section 5.3.2). With the uncertainty-aware time model each temporal
expression can be represented as a four-tuple of time elements as:

T = 〈b`, bu, e`, eu〉. (9.4)

For example, 1990s can now be represented as: 〈1990, 1999, 1990, 1999〉.

9.4 Generating Factors

To generate semantic aspects for a given query, we first need to compute salience
of annotations in models informed of their semantics. Thus, we are not simply
counting annotations but rather considering the salience of entities, locations,
and temporal expressions in their respective semantic models. We denote

118 GENERATING SEMANTIC ASPECTS FOR QUERIES

the methods that compute salience as factor methods and the resulting
salient annotations as factors (e.g., sets of locations or time intervals). We
next describe how to find factors associated with each annotation type X in
a document set R by using its factoring method, factor(X ,R). Algorithm 8
outlines how factor methods use the salience computation for a given document
partition and annotation type.

Factoring Named Entities - factor(XG ,R) and factor(XE ,R). The fac-
tor method for named entities outputs sets of entities and locations where
each entity in the set is related to the others in highly relevant documents.
Concretely, to create the factors (i.e., sets of locations and entities) we first
compute: sim(e, e′), semantic relatedness between entities e and e′. This is
done by calculating the Jaccard coefficient of links shared by the Wikipedia
entries of e and e′:

sim(e, e′) =
|We ∩We′ |
|We ∪We′ |

, (9.5)

We make use of the Jaccard coefficient as an entity relatedness measure, as it
has shown good performance over other relatedness measures [57]. Second, we
weight the entity-entity relatedness by the document relevance s(d,R) (given
by the IR method during retrieval) that contains them to compute entity
salience s(e,R). That is,

s(e,R) =
∑

d∈R
s(d,R) ·

∑

e′∈dE
sim(e, e′). (9.6)

Factoring Time - factor(XT ,R). Temporal expressions are challenging
to analyze. For instance, uncertain temporal expressions such as the 90s can
refer to an infinite number of time intervals. Thus, it becomes quite difficult
to identify salient time intervals. To overcome these limitations, we use the
approach described in Chapter 5 to generate factors for time. In brief, salient
time intervals (time factors) in R (i.e., s([b, e],R)) can be found by generating
overlaps of the temporal expressions in the uncertainty-aware time model and
weighting them by the document’s relevance, which contains the temporal
expressions:

s([b, e],R) =
∑

d∈R
s(d,R) · sim([b, e], dT), (9.7)

where, s(d,R) denotes the document relevance and sim([b, e], dT) denotes
the salience of the time interval [b, e] in the document’s bag of temporal
expressions dT . The value of sim([b, e], dT) is computed as follows:

sim([b, e], dT) =
1

|dT |
·
∑

T∈dT

1([b, e] ∈ T)

|T | . (9.8)

In Equation 9.8, the cardinality |T | denotes the number of time intervals T
can generate and the indicator function 1(•) tests the membership of [b, e] in T .

THE XFACTOR ALGORITHM 119

9.5 The xFactor Algorithm

In addition to annotation salience, we consider the co-occurrence salience of
annotations from different types to generate semantic aspects. To this end,
we propose the xFactor algorithm. Our xFactor algorithm is inspired by
the Apriori algorithm for frequent itemset mining [26]. The Apriori algorithm,
however, is not informed of annotation semantics. Thus, its direct application,
will not capture any semantic co-occurrence among different annotation types.

Consider, a document set R and its n annotation types {X1,X2, . . . ,Xn}.
A set of salient aspects A can be derived by iteratively partitioning R for
different annotation factors:

Basis Step : {x1} = factor(X1,R) (9.9)

Inductive Step : {xk} = factor(Xk,R(k−1)...(1)). (9.10)

First and foremost, the salience of a factor (e.g., time interval) in each aspect
is obtained by the factor method (Section 9.4) that considers a semantic model
corresponding to its annotation type (e.g., temporal expressions). Second,
each factor for an annotation type allows us to partition the document set R
into documents that contain annotations that helped derive the factor and
those documents which did not help. Thus, by iteratively applying the factor
methods for the different annotation types, we can identify the salience between
factors by virtue of their co-occurrence in the same partition. Mathematically
given by:

factor(X1,R) : {dX1
∈ d | ∀d ∈ R} → 2X1 , (9.11)

factor(Xk,R(k−1)...(1)) : {dXk ∈ d | ∀d ∈ R(k−1)...(1)} → 2Xk . (9.12)

Third and finally, we create a partition index that keeps track of factors
that were generated by a particular partition of the pseudo-relevant set of
documents R. The partition index for iteration i of the recursive algorithm
keeps track of:

Partition Index: 〈{xk}i, R(k−1)...(1)
i 〉. (9.13)

By concatenating the factors of different annotation types, from the same
document partition, we can generate the aspects. Figure 9.1 exemplifies the
recursive xFactor algorithm and how the aspects are generated. The xFactor
algorithm thereby allows us to extract a subset of aspects that contain salient
relationships among their factors from all possible combinations of different
annotation types:

A ⊂ 2X1×X2×...×Xn .

Algorithm 9 illustrates a tail-recursive version of the xFactor algorithm.

120 GENERATING SEMANTIC ASPECTS FOR QUERIES

query: q

d1 d2 d3 d4 d5
a〈 ,−−,−−〉

d1 d5

a〈 , ,−−〉

d1 d5

a〈 , , 〉
d1

R

R(T)
• R(E)

•R(G)
•

R(T)(G)
• R(G)(E)

•
R(T)(E)
•

R(T)(G)(E)
•

Figure 9.1: The lattice structure for aspect generation by the xFactor algorithm is
shown. Shapes in documents d represent annotation types. While colors represent
different annotation values for same annotation type. Each element in the lattice
corresponds to the partition of documents that arises by applying the factor method
for that annotation type. For example, R(T)

• is generated by factoring R along
time. The time factor a = 〈 ,−,−〉 is generated by documents {d1, d5} ∈ R(T)

• .
Continuing in this recursive manner over the geographic annotation type G we get
a = 〈 ,�,−〉. The sequence of factoring operations can be permuted to obtain

different partitions; R(T)(G)(E)
• corresponds to time→ geography→ entity (traversing

the bold edges).

THE XFACTOR ALGORITHM 121

Minimum Salience and Aspect Ranking. The xFactor algorithm is
still computationally expensive if we were to consider every factor for each
annotation type. To prune the recursion depth, we utilize a minimum salience
criteria. For a given value of minimum salience σ ∈ [0, 1], a factor is deemed
salient if and only if: s(x,R) ≥ σ. Using the salience we furthermore rank the
aspects presented to the user as:

s(a, d) =
∏

xi∈a
s(xi, d).

Algorithm 8: Generate Factors.

1 Function factor(X ,R, σ)
2

⋃〈x,R′〉 ← generate pairs of: factors using the semantic

model for X and the originating document partition.

3 factors← ∅
4 foreach (〈x,R′〉 ∈ ⋃〈x,R′〉) do
5 if (s(x,R′) ≥ σ) then
6 factors.add(x)
7 PartitionIndex.put(〈x,R′〉)

8 return factors

Algorithm 9: The xFactor Algorithm.

1 Function xFactor(X1,X2, . . . ,Xn,R, σ)
// The set of aspects to return

2 A ← ∅
3 xnFactors← factor (Xn,R, σ)
4 foreach (xnFactor ∈ xnFactors) do
5 R′ ← PartitionIndex.get(xnFactor)
6 xn−1Factors← factor(Xn−1,R′, σ)
7 . . .
8 foreach (x2Factor ∈ x2Factors) do
9 R′ ← PartitionIndex.get(x2Factor)

10 x1Factors← factor(X1,R′, σ)
// Generate aspects

11 foreach (x1Factor ∈ x1Factors) do
12 A ← A∪ 〈x1Factor, . . . , xnFactor〉

13 . . .

14 return A

122 GENERATING SEMANTIC ASPECTS FOR QUERIES

9.6 Properties of the xFactor Algorithm

Structured Representation of Documents. The aspects which are assim-
ilated from multiple documents can be used to transform the semi-structured
documents with annotations (i.e., d = {dE , dG , dT }) into a structured represen-
tation of aspects (i.e., d = 〈a1, a2, . . . , an〉). This structured representation of
documents using aspects is then immediately useful for applications in search
tasks, such as result diversification. To represent documents using aspects,
we can obtain the inverse mapping of documents to aspects by looking for all
a ∈ A associated with a particular document d in the partition index.

Query Pivoting. If the order in which the annotation types are factored
are permuted then the xFactor algorithm will produce different sets of aspects.
This is because the factor methods rely on a given document partition to
generate the factors. For instance, for three annotation types, we can realize
six different sets of aspects by permutation of the different factor methods.
This in turn provides us different ways of analyzing three different kinds
of initial ambiguity underlying the query: temporal ambiguity, e.g., tokyo
summer olympics ; geographical ambiguity, e.g., springfield ; and named
entity related ambiguity, e.g., george bush. If the sequence of factor methods
is time → entity → geography, then the resulting set of aspects will be
denoted by A〈T ,E,G〉. The other five possibilities are: A〈T ,G,E〉, A〈G,T ,E〉,
A〈G,E,T 〉, A〈E,T ,G〉, and A〈E,G,T 〉. Using the illustration in Figure 9.1, these
six factor sequences can be obtained by following different paths in the lattice.

Summarizing Entity Sets. For each of the generated aspects, we can
summarize the resulting factors (e.g., named entities) using background knowl-
edge (e.g., KG) into broader semantic classification types (e.g., categories from
Wikipedia). For instance, in Table 9.1, we have summarized all the named
entities into categories from Wikipedia. Concretely, to arrive at the types for
named entities, we look up all the types that an entity belongs to (following
rdfs:type and rdfs:subClassOf links). Thereafter, we select the summary
type as the one that covers most of the entities in the entity factor.

9.7 Evaluation

We next describe the setup and results of our experimental evaluation.

9.7.1 Annotated Document Collections

We test our algorithm on two different types of document collections. The first
category of document collections consists of news articles. News archives have
the benefit of being accompanied by rich metadata in the form of accurate
publication dates and well-written text. This can aid NLP tools to provide
accurate annotations. For example, temporal taggers can resolve relative
temporal expressions (e.g., yesterday) and implicit temporal expressions (e.g.,
good friday) with respect to the publication date. We consider two document

EVALUATION 123

Collection #Documents Avg. Time Avg. Entities Avg. Locations

NewYorkTimes 1,679,374 12.50 16.25 8.65

Stics 4,075,720 10.09 10.89 5.93

ClueWeb’09 50,220,423 30.59 8.23 9.49

ClueWeb’12 408,878,432 5.80 7.74 5.61

Table 9.2: Collection statistics.

collections in this category. One of them is a collection of approximately two
million news articles published in the New York Times between 1987 and 2007.
It is publicly available as the New York Times Annotated Corpus [18]. The other
one is a collection of approximately four million news articles collected from
various online sources during the period of 2013 to 2016, called Stics [117].

The second category of document collection consists of web pages. Web
crawls unlike news articles have unreliable metadata and ill-formed language.
This hampers us in obtaining high-quality semantic annotations for them. For
example, we cannot resolve relative and underspecified temporal expressions, as
the document creation time for Web pages may not reflect their true publication
dates. We consider two web crawls [1, 2] from 2009 and 2012, which are publicly
available as ClueWeb’09 and ClueWeb’12 document collections, respectively.
Statistics for the document collections are summarized in Table 9.2.

Annotating Documents. Semantic annotations are central to our ap-
proach. To obtain them, we utilize publicly available annotations for the
document collections or automatically generate them using NLP tools. For
the news archives and for ClueWeb’09, we utilized Aida [118], which performs
named entity recognition and disambiguation. Each disambiguated named
entity is linked to its canonical entry in the Yago KG and Wikipedia. As a
subset of these named entities, we can obtain geographic locations. We keep
only those documents in the news archives and ClueWeb’09 where at least one
disambiguated named entity occurs. For ClueWeb’12, we utilized the FACC
annotations [77] provided by Google. The FACC annotations contain the
offsets of high precision entities spotted in the web pages. Temporal expres-
sions for all the document collections were obtained using the HeidelTime
temporal tagger [188]. In Table 9.2, we additionally report the average counts
of the three types of semantic annotations found in at most 10,000 documents
retrieved for each query in our testbed.

9.7.2 Ground Truth Semantic Aspects and Queries

To evaluate our system, we extracted 5,122 aspects from Wikipedia. This
was done considering their diversity along annotation types of time, locations,
and other named entities for a set of twenty-five keyword queries. The broad
topics of the aspects along with the specific keyword queries and the number
of aspects generated are listed in Table 9.4.

124 GENERATING SEMANTIC ASPECTS FOR QUERIES

Years Description Locations

2008

to

2016

Usain Bolt won total of 9

Olympic medals during the

Summer Olympic games in the

years he was active.

Beijing, London, and

Rio de Janeiro

2004

to

2016

Michael Phelps has won a

record number of 23 gold

medals at various Olympic

games during his career.

Athens, Beijing, London,

and Rio de Janeiro

Table 9.3: An example table of events generating ground truth.

For each query, we constructed a set of ground-truth aspects by consid-
ering the table of events present on the Wikipedia page corresponding to
the query [13, 42]. For the table, we considered each row consisting of time,
locations, and other entities as an aspect. If no locations or entities were
mentioned, we extracted them from the associated event page of the row, by
running Aida on the introductory paragraph of the event’s Wikipedia page.
For instance, consider Table 9.3 as an example Wikipedia table for Olympic
medalists. Treating each row as a ground truth aspect, we look for temporal
expressions, e.g., [2008, 2016] as a time factor; locations, e.g., Beijing, London,
and Rio de Janeiro as a location factor; and other named entities, e.g., Usain
Bolt as an entity factor. Similarly, for the second row in Table 9.3, the ex-
tracted aspect is: 〈[2004,2016] , {athens, beijing, london, rio de janeiro},
{michael phelps}〉. The testbed is publicly available at the following URL:

http://resources.mpi-inf.mpg.de/dhgupta/data/eswc2019/.

9.7.3 Measures

The two key characteristics for evaluating aspects are: their correctness with
respect to a ground truth and their novelty with respect to other aspects in the
set. These two characteristics taken together ensure that our aspect sets are
meaningful and non-redundant. We next describe the measures of correctness
and novelty.

Similarity computation between aspects is central to both the correctness
and novelty. To compute the similarity between the two aspects, a (system
generated) and b (ground truth), we consider their similarity dimension-wise:

sim(a, b)=
1

3

(
|a[b,e] ∩ b[b,e]|
|a[b,e]|

+
|aE ∩ bE |
|aE |

+
|aG ∩ bG |
|aG |

)
,

where, for temporal similarity we coarsen the time intervals at year granu-
larity to make them comparable. The temporal overlaps are computed using
the uncertainty-aware time model [41] by converting the time intervals to
the four-tuple notation. While for the other two dimensions the similarity is
akin to computing the overlap between bag-of-locations and bag-of-entities.

EVALUATION 125

Entity - A〈E,•,•〉 : nobel prize [114] |oscars [1, 167] |space shuttle

missions [155] |olympic medalists [48] |paralympic medalists [24]

Location - A〈G,•,•〉 : aircraft accidents [513] | avalanches [56]
| epidemics [211] | famines [133] | genocides [35] | volcanic

eruptions [171] | hailstorms [39] | landslides [85] | earthquakes
[39] | nuclear accidents [26] | oil spills [140] | tsunamis [88]

Time - A〈T ,•,•〉 : assassinations [130] | cold war [81] | corporate
scandals [44] | proxy wars [34] | united states presidential

elections [57] | terror attacks [316] | treaties [1, 057] | wars [359]

Table 9.4: Query categories with factor operation sequences and aspect counts (in
brackets).

Note that the similarity computation is done with respect to the system gen-
erated aspect (a in the denominator). This is done to avoid matching (and
thereby not rewarding) those system aspects a with a very large time interval,
bag-of-locations or bag-of-entities, to every ground truth aspect (b).

Correctness. Given a set of aspects A generated by our algorithm for a
query q and the set of aspects B corresponding to the ground truth derived
from the Wikipedia page for the same query, correctness is given by:

correctness(A,B)=
1

|A|
∑

a∈A

1

|B|
∑

b∈B
sim(a, b).

Novelty for the set of aspects A can be intuitively thought of measuring
the dissimilarity with respect to A itself:

novelty(A)=
1

|A|
∑

a∈A

1

|A|
∑

(a′∈A/{a})

(
1− sim(a, a′)

)
.

We can additionally conform the correctness measure to the standard
information retrieval measures such as precision and recall as follows:

precision=
1

|A|
∑

a∈A
max
b∈B

(
sim(a, b)

)
and recall=

1

|B|
∑

b∈B
max
a∈A

(
sim(a, b)

)
.

9.7.4 Setup

Baselines and Systems. We consider two baselines to compare our proposed
approach. As a näıve baseline, we treated each document in the pseudo-relevant
set to represent an aspect. This is equivalent to presenting the user a ranked
list of documents to satisfy her information need. The equivalent aspect for
a document is constructed by considering the earliest and latest time point
in the document as its time interval and bag-of-locations and bag-of-entities
to represent the other two dimensions. As a second baseline, we consider

126 GENERATING SEMANTIC ASPECTS FOR QUERIES

Latent Dirichlet Allocation (LDA) [47]. With this baseline, we want to cluster
together those documents that are semantically similar using only text. Using
LDA, we discover k topics from the pseudo-relevant set of documents. From
each topic’s partition of documents, we derive the corresponding semantic
aspect by considering the earliest and latest time point in the partition as
its time interval and bag-of-entities and bag-of-locations to represent the two
remaining dimensions. We refer to this baseline as LDA-k. For the xFactor
algorithm, we considered the specific sequence of factor operations that were
deemed meaningful for that query (as shown in Table 9.4). For instance, since
the query earthquakes is oriented towards locations we considered the factor
sequence operations A〈G,E,T 〉 and A〈G,T ,E〉.

Parameters. For each query in Table 9.4, we retrieve at most 10,000
documents with disjunctive operator using Okapi BM25 as the retrieval method.
We used the standard parameters, b = 0.75 and k1 = 1.20, for its configuration.
For the LDA baseline, we followed Griffiths and Steyvers [90] for setting its
parameters. Specifically, β was set to 0.1 and α was set to 50/|topics|. We
considered three topic set sizes for LDA namely, |topics| ∈ {50, 100, 200} and
the same number of top-k documents for each topic, e.g., for |topics| = 50, we
picked top-50 documents for each topic as its generating partition. For our
method, the minimum salience was set to σ = 0.001.

9.7.5 Results for Quality

Results for News Archives. We first consider the results of the systems in
terms of correctness and novelty as reported in Table 9.5. We additionally
report the average number of aspects µ|A| for each system under compari-
son. Note that the Okapi BM25 baseline gives us an upper bound for the
value of correctness that can be obtained against the ground-truth. As, ulti-
mately we generate the LDA topics and aspect from this set of documents.
For the New York Times collection, our method identifies the most correct
aspects with respect to the ground truth as compared to the LDA base-
lines. Despite the observation that Okapi BM25 wins in terms of novelty
by considering all pseudo-relevant documents, our method still achieves a
high degree of novelty, thereby identifying the most non-redundant set of
aspects and is able to partition the set of pseudo-relevant documents to the
greatest degree. For the Stics news collection, our method outperforms the
LDA baselines in terms of correctness and is close to the upper bound that
can be achieved from the given set of pseudo-relevant documents. Okapi
BM25 achieves a higher novelty value, however, the increase compared to
our method is not significant. Observing both correctness and novelty our
method excels in providing both relevant and non-redundant sets of aspects
when compared to the LDA baselines which can only achieve high novelty.

EVALUATION 127

NewYorkTimes Stics

µ|A| C N µ|A| C N

BM25 3,096 .0237 .4269 3,797 .0204 .4227

LDA-50 50 .0067 .2634 50 .0102 .2910

LDA-100 100 .0053 .2107 100 .0080 .2404

LDA-200 200 .0046 .1497 200 .0063 .1639

xFactor 2,261 .0161 .4201 503 .0190 .3862

Table 9.5: Results for correctness (C) and novelty (N) on news archives.

NewYorkTimes Stics

µ|A| P R µ|A| P R

BM25 3,096 .1577 .2749 3,797 .1414 .2828

LDA-50 50 .0471 .0160 50 .0634 .0311

LDA-100 100 .0432 .0102 100 .0483 .0207

LDA-200 200 .0400 .0070 200 .0456 .0129

xFactor 2,261 .2804 .1777 503 .2400 .1427

Table 9.6: Results for precision (P) and recall (R) on news archives.

Now, consider precision and recall for the systems, as reported in Table 9.6.
For the New York Times, while considering precision, our system consists of
more relevant aspects compared to the baselines. With respect to recall, the
Okapi BM25 baseline wins by considering the entire pseudo-relevant set of
documents. Note that the LDA baselines and our algorithm xFactor can
not achieve this value as they discard many annotations, favoring precision
over recall. Therefore, considering both precision and recall together, our
system presents a balanced performance: high precision and recall. While the
baselines achieve high recall only. For the Stics collection, when considering
precision and recall, our method again shows significant improvements over
the baselines. Thus, by taking all the four measures, correctness, novelty,
precision, and recall, our method allows us to distill interesting aspects which
can guide the user to navigate through a large number of documents.

Results for Web Collections. Web archives give us more challenging
documents to test the effectiveness of our approach. Particularly, since they
are not well-formed, they have a lower average number of annotations per
document, the annotations in them are prone to more errors, and the size of
the web archives is magnitudes larger than news archives. Hence, they present
a challenging real-world scenario to test our methods. We first consider the
results for the web archives when measuring correctness and novelty that are
reported in Table 9.7. For ClueWeb’09, our method outperforms both baselines
in terms of novelty. In particular, for correctness our method comes close to
the upper bound established by Okapi BM25. For ClueWeb’12 our method

128 GENERATING SEMANTIC ASPECTS FOR QUERIES

ClueWeb’09 ClueWeb’12

µ|A| C N µ|A| C N

BM25 9,580 .0155 .3958 9,742 .0266 .4531

LDA-50 50 .0123 .3275 50 .0177 .3478

LDA-100 100 .0092 .2880 100 .0126 .3025

LDA-200 200 .0064 .2441 200 .0097 .2554

xFactor 1,822 .0146 .4239 616 .0173 .4176

Table 9.7: Results for correctness (C) and novelty (N) on web collections.

ClueWeb’09 ClueWeb’12

µ|A| P R µ|A| P R

BM25 9,580 .1151 .3595 9,742 .1494 .4018

LDA-50 50 .0734 .0999 50 .0930 .1049

LDA-100 100 .0560 .0808 100 .0718 .0770

LDA-200 200 .0433 .0502 200 .0585 .0500

xFactor 1,822 .2218 .1880 616 .2433 .1648

Table 9.8: Results for precision (P) and recall (R) on web collections.

performs at par with baselines in terms of novelty. When considering the
measures in isolation, for correctness the LDA baseline wins over our method
and Okapi BM25 baseline has higher novelty than our method. However, when
considering both correctness and novelty together, xFactor is consistent in
providing more correct and novel aspects as opposed to the LDA baselines.

Next, we consider the second set of experimental results for web collections
when measuring precision and recall that are reported in Table 9.8. For
ClueWeb’09, our method in terms of precision and recall outperforms the LDA
baselines significantly. For ClueWeb’12, our method outperforms both baselines
with respect to precision. However, in terms of recall Okapi BM25 outperforms
our method when considering all the pseudo-relevant documents. Despite of
this, our method provides a balanced performance with high precision and
moderate recall as compared to the baselines which have high recall but very
low precision.

9.7.6 Results for Ranking

Results for News Archives. The results of precision and recall at k =
{10, 25, 50} for the news archives are shown in Table 9.9. As we can observe,
the ranking provided by xFactor surpasses both the Okapi BM25 and LDA
baselines in terms of precision for both the New York Times and Stics archives.
While, our proposed algorithm provides a high level of recall for both the news
archives when compared to LDA baseline.

EVALUATION 129

NewYorkTimes Stics

P@10 P@25 P@50 P@10 P@25 P@50

BM25 .1874 .1863 .1909 .1380 .1394 .1461

LDA-50 .0453 .0464 .0471 .0592 .0590 .0634

LDA-100 .0426 .0431 .0430 .0487 .0481 .0476

LDA-200 .0396 .0397 .0400 .0440 .0434 .0440

xFactor .2283 .2450 .2366 .1690 .1869 .1740

R@10 R@25 R@50 R@10 R@25 R@50

BM25 .2593 .2672 .2510 .2732 .2834 .2700

LDA-50 .0172 .0148 .0133 .0310 .0294 .0270

LDA-100 .0130 .0104 .0092 .0216 .0192 .0174

LDA-200 .0101 .0075 .0062 .0148 .0126 .0113

xFactor .1729 .1691 .1633 .1274 .1295 .1237

Table 9.9: Results for precision and recall at k = {10, 20, 50} on news archives.

ClueWeb’09 ClueWeb’12

P@10 P@25 P@50 P@10 P@25 P@50

BM25 .1111 .1183 .1217 .1436 .1451 .1521

LDA-50 .0792 .0770 .0734 .0982 .0961 .0930

LDA-100 .0714 .0634 .0601 .0876 .0828 .0756

LDA-200 .0591 .0526 .0485 .0697 .0644 .0602

xFactor .1771 .1909 .1919 .1999 .1990 .2018

R@10 R@25 R@50 R@10 R@25 R@50

BM25 .3632 .3973 .3380 .3867 .4357 .3727

LDA-50 .1000 .1036 .0894 .0963 .1153 .0940

LDA-100 .0864 .0856 .0750 .0722 .0832 .0681

LDA-200 .0524 .0571 .0450 .0446 .0534 .0421

xFactor .1523 .1649 .1532 .1469 .1607 .1362

Table 9.10: Results for precision and recall at k = {10, 20, 50} on web collections.

Results for Web Collections. The results of precision and recall at
k = {10, 25, 50} for the Web collections are shown in Table 9.10. Similar to
the observations made in the case of news archives, we see that the aspects
extracted by xFactor at increasing ranks result in higher precision than
both the baselines. Our algorithm further provides high recall at increasing
rank positions as compared to the LDA baselines, while the Okapi BM25,
considering all the annotations in each document outperform our system and
the LDA baseline.

130 GENERATING SEMANTIC ASPECTS FOR QUERIES

Overall Summary

Our experiments on two large news archives show that annotations in the form
of temporal expressions, locations, and other entities can be used to identify
semantic aspects that are correct and novel for document exploration. On Web-
scale corpora, where quality annotations are few, xFactor can also identify
precise aspects for information consumption. Moreover, using annotation
and co-occurrence salience, xFactor shows it can produce ranked list of
highly-relevant aspects.

9.8 Conclusion

In this chapter, we discussed the xFactor algorithm that leverages semantic
annotations such as temporal expressions, geographic locations, and other
named entities to generate semantic aspects. The xFactor algorithm consists
of factor methods that model the semantics of annotations in order to compute
their salience. xFactor additionally considers the co-occurrence salience of
annotations of different types to generate semantic aspects. Furthermore, the
factor methods can be applied in different orders to disambiguate different types
of ambiguities underlying the query and thereby identifying the most relevant
set of semantic aspects for it. Our experiments on two types of document
collections that include news archives and Web collections, show that the
xFactor algorithm allows the user to navigate through messy unstructured
text in a structured manner.

PART III

MINING ANNOTATED
DOCUMENT COLLECTIONS

CHAPTER 10

IDENTIFYING TIME INTERVALS
FOR KNOWLEDGE GRAPH FACTS

• Dhruv Gupta and Klaus Berberich. Identifying Time Intervals for Knowledge
Graph Facts. In WWW 2018, pages 37–38.

10.1 Introduction

Journalists often face the challenging task of substantiating an investigative
story with temporal facts in order to convey the validity of certain arguments.
The tool of choice for many such scenarios are commercial search engines. The
journalist often collects many documents using keyword queries, manually
accesses and inspects documents for temporal facts and then compiles a
spreadsheet of the observed dates. However, this manual process becomes
impossible if the temporal evidence is spread over thousands of document and
if multiple facts need to be verified.

In this work, we leverage temporal expressions in document contents to
identify time intervals for temporal facts in knowledge graphs (KGs). A
temporal fact is a sentence that connects an entity (person, organization, or
location) via a temporal predicate to a temporal expression. Computational

133

134 IDENTIFYING TIME INTERVALS FOR KNOWLEDGE GRAPH FACTS

analysis of temporal expressions is challenging as they can be present at
different granularities from precise timestamps to coarse level mentions of
decades, e.g., the 60s. Furthermore, temporal expressions can be implicit
and relative to dates mentioned elsewhere in the text, e.g., last sunday.

In short, our approach overcomes the above challenges as follows. First, we
extract temporal facts using information extraction templates that rely on word
sequences and temporal expressions. Second, we model the temporal expres-
sions identified for the facts in a time model that understands uncertainty and
incorporates temporal granularity. Third and finally, we aggregate the temporal
evidence found and rank the time intervals that are of interest to the KG fact.

10.2 Related Work

Temporal information associated with KG facts is of high importance. A
notable attempt in this direction was by Talukdar et al. [193]. Their method
to identify the temporal scope of a KG fact counted frequency of publication
dates associated with the documents containing its mention. For validating
the temporal scopes of facts Gerber et al. [85] rely only on year granularity
temporal expression tokens. Thus, they disregard the rich temporal information
that is conveyed by implicit and relative temporal expressions. More recently,
Kuzey et al. [137] aimed at leveraging the temporal information associated with
facts in the Yago KG and temporal expressions associated with the mention
of the fact in document collection for tagging “temponymns”. However, all
these approaches utilize a rather näıve notion of time, i.e., simple frequency
of timestamps. Without modeling the inherent uncertainty and dynamics
associated with the temporal expressions, these prior approaches can not
identify concrete time intervals associated with KG facts.

10.3 Approach

We next define concrete definitions and steps of our approach.
Temporal Facts. A temporal fact spotted in a document collection consists

of natural language representation of a KG fact with a co-occurring temporal
expression. Formally,

(f)act ≡ 〈(s)ubject, (p)redicate, (o)bject〉[time]. (10.1)

A natural language representation of a KG fact 〈s, p,o〉 is obtained by
looking at all possible surface forms of all three arguments of a fact from
paraphrase and surface form dictionaries. Thus, to detect a KG fact we have
to detect its equivalent natural language representation:

f ≡
〈{
s1, s2, . . . , sm

}
,
{
p1, p2, . . . , pn

}
,
{
o1, o2, . . . , ol

}〉
. (10.2)

APPROACH 135

Query Processing. For each surface form or paraphrase of the predicate
in the natural language representation of the fact (Equation 10.2) we utilize an
inverted index over phrases that detects the positional span of each mention of
the named entity or predicate. By intersecting the document identifiers of the
mentions we obtain a set of candidate documents that contain the surface forms
of the arguments of the KG fact. We restrict ourselves to those documents in
which the positional spans of the surface forms and predicate paraphrases that
occur within a sentence of the document. We further distill this candidate
set of sentences by considering only those sentences that contain a temporal
expression that co-occurs with the other arguments of the fact. Thus, with
this final candidate set of sentences S we have identified all sentences in which
the fact is materialized in natural language and an evidence in the form of a
temporal expression is present.

Time Model. As mentioned earlier, temporal expressions are challenging
to analyze as they are present at different granularities and are inherently
uncertain in nature. For instance, the temporal expression the 60s is highly
uncertain as to which time interval it refers to: is it referring to [1962, 1965] or
[1963, 1967]? However, if we can model every possible time interval referred
by such temporal expressions then we can rely on more precise evidence in
form of fine granular temporal expressions (e.g., 1963 to 1965) that can
help us ascertain the time interval the fact may refer to. In order to model
this uncertainty we rely on the uncertainty-aware time model proposed by
Berberich et al. [41]. Each temporal expression T is modeled by a four-tuple
that contains bounds to: when the time interval could have begun [b`, bu]
and when the time interval could have ended [e`, eu]. Thus, the temporal
expression T is represented by the following four-tuple:

T = 〈b`, bu, e`, eu〉. (10.3)

Temporal expressions found co-occurring with the natural language represen-
tation of KG facts are then compared in this time model to aggregate and
identify the time interval of relevance for the fact.

Identifying Time Intervals. Our hypothesis is that the time scope of
a KG fact f can be found by aggregating all the temporal expressions T ,
found to co-occur with its mention (Equation 10.2) in text, in the uncertainty-
aware time model (Equation 10.3). Following our earlier work [93], we define
the probability of a time interval being relevant to a given fact f as follows:

P ([b, e] | f) =
1

|S| ·
∑

s∈S
P ([b, e] | stime), (10.4)

where, s ∈ S denotes a sentence containing the fact f and stime denotes the
temporal expressions associated with the sentence s. The likelihood of a time
interval being relevant to the fact f given the sentence s is aggregated as
(following [41]):

136 IDENTIFYING TIME INTERVALS FOR KNOWLEDGE GRAPH FACTS

P ([b, e] | stime) =
1

| stime |
∑

T∈stime

1([b, e] ∈ T)

| T | . (10.5)

10.4 Evaluation

We next describe the evaluation setup for the experiments and a discussion of
the obtained results.

Document Collections and Annotations. We utilized two news docu-
ment collections that together comprise of more than eleven million documents.
Sentence splitting and temporal expressions for all the documents in these
collections were obtained by using the SUTime component of the Core NLP
toolkit [151]. Each time annotation is normalized to a time interval in the
following format: [(b)egin = yyyy-MM-dd, (e)nd = yyyy-MM-dd]. Further-
more, we translate these annotations into the uncertainty-aware time model
as follows: [b, e] ≡ 〈b, e, b, e〉. Annotation and collection statistics are given in
Table 10.1.

Knowledge Graph Facts. We utilize the temporal fact benchmark by
Gerber et al. [85] for experimental evaluation. Since our approach is completely
unsupervised in nature we considered all the positive examples in train and
test splits in the benchmark. Furthermore, for reasons of efficiency and recall
we disregard the paraphrases of the predicates and only consider spotting the
surface forms of the subject and object within a sentence of a document. For
the baseline we considered the time interval correct when the begin and end
year of the temporal expression matched to that of the ground truth begin
and end years. For our proposed method, we considered the time interval
determined correct if the overlap between generated time interval and the
ground truth time interval, which is at the year granularity, was over 75%
with respect to the generated time interval.

Systems and Baselines. As a baseline, we consider a method that simply
ranks the time annotations, when coarsened to year granularity, by its frequency.
For each temporal fact in the benchmark, if the number of sentences matched
exceeds a threshold we sample a small subset of sentences to execute our
method and the baseline. Note that each sentence can contain more than
one temporal expression. We set the threshold of the maximum number of
evidences considered as 25.

Metrics. We evaluate to observe at what rank we can identify the correct
time interval for a given fact. This is measured by the mean reciprocal rank
(MRR). Furthermore, we evaluate if we can identify the correct ground truth
time interval at rank 1, 5, and 10. That is, we measure precision at rank 1
(P@1), rank 5 (P@5), and rank 10 (P@10). We report averages over these
metrics for the temporal facts in the benchmark.

CONCLUSION 137

collection ndocuments nsentences ntemporal expressions

new york times 1,855,623 54,024,146 15,411,681

gigaword 9,870,655 181,386,746 72,247,124

Table 10.1: Document collection statistics.

new york times

system P@1 P@5 P@10 MRR

baseline 0.21 0.12 0.12 0.25

proposed method 0.26 0.12 0.12 0.30

gigaword

system P@1 P@5 P@10 MRR

baseline 0.24 0.13 0.12 0.29

proposed method 0.34 0.16 0.15 0.39

Table 10.2: Results obtained for different collections.

Results. The results for the two document collections are given in Ta-
ble 10.2. For the New York Times document collection we were able to evaluate
526 temporal facts in the benchmark, while for the Gigaword collection we
were able to evaluate 740 temporal facts out of 1,500 facts in the benchmark.
The remaining facts could not be evaluated by our method since we could not
spot sentences containing the entity surface forms for them in the document
collections. From Table 10.2 we see that our method identifies the correct
time interval for the facts at around rank three. Considering precision at
one, our method outperforms the baseline for both collections. The results
thus show that our method identifies the correct time intervals for facts by
leveraging uncertainty and modeling complex temporal expressions at different
granularity.

10.5 Conclusion

In this work, we described an approach to determine the time intervals of
interest to temporal facts in knowledge graphs. To do so, our approach first
rewrites the temporal facts into a natural language representation and retrieves
text evidences containing temporal expressions for them. Our approach then
leverages a time model that incorporates uncertainty to aggregate the temporal
evidence. Using a probabilistic generative process, we can determine a ranked
list of time intervals of relevance to the knowledge graph fact. Based on
our evaluation we find that by carefully modeling the uncertainty behind
temporal expressions we can determine time intervals to temporal facts with
high precision.

CHAPTER 11

EVENTMINER: MINING EVENTS
FROM ANNOTATED
DOCUMENTS

• Dhruv Gupta, Jannik Strötgen, and Klaus Berberich. EventMiner: Mining
Events from Annotated Documents. In ICTIR 2016, pages 261–270.

11.1 Introduction

Real-world events are signified by time, locations, and entities. These event
dimensions also frequently occur in queries issued to commercial search engines.
Concretely, 17.1% of Web queries are implicitly temporal [211]; 12.7% of the
queries in Yahoo! query logs contain geographic locations [213]; and 71% of
Web queries contain named entities [91]. Events as a collective representation
of time, locations, and entities can thus be an important feature to navigate
large document collections or the Web. An example of a textually realized
event, is presented in Figure 11.1. With marked accuracy and scalability of
natural language processing (NLP) tools that can provide semantic annotations
in the form of temporal expressions, geographic locations, and named entities,
scalable extraction of real-world events is now possible.

139

140 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

Cold war was a conflict involving Soviet Union〈GEO:Soviet Union〉 and the
US〈GEO:USA〉 under the presidency of Mikhail Gorbachev〈WIKI:Mikhail Gorbachev〉

and Ronald Reagan〈WIKI:Ronald Reagan〉 respectively, during late

1980s〈01−01−1985,31−12−1989〉.

Figure 11.1: Sample text with semantic annotations.

Understanding the semantics underlying the annotations of time, locations,
and entities is essential to detect events. Temporal expressions can be highly
uncertain (e.g., late 1980s) and vague (e.g., last spring). Mentions of
locations in text can also be highly ambiguous and thus difficult to anchor on
a map (e.g., springfield). A document may describe events about a single
entity in entirety or may shift its focus between different events concerning
related entities. Thus, to determine the importance of events from documents,
we have to carefully model and consider the semantics of the annotations in
text. Prior approaches such as [30, 138, 175, 187] to mine events disregard
annotation semantics when mining events from text.

In this chapter, we describe EventMiner, a probabilistic framework which
leverages text and semantic annotations in the form of temporal expressions,
geographic locations, and other named entities to mine events. EventMiner is
based on a family of Dirichlet process mixture models to cluster semantically
annotated text to mine events. The notion of importance in our algorithm is
measured by statistical frequency. In order to analyze these annotations, we
present mathematical models for notions of time, locations, and entities that
can aid in computing cohesive clusters. Concretely, our model of time takes
into account temporal uncertainty as well as temporal proximity in order to
identify events that might occur very close to each other on a timeline (e.g.,
1990 is close to 1991). We model geographic locations so that events happening
at locations that neighbor each other are also captured (e.g., usa neighbors
canada). We take into account similarity behind named entities (e.g., ronald
reagan is related to nancy reagan) when identifying important events. We
evaluate our methods by comparing the summary of events computed for
history-oriented queries [95] with their Wikipedia page.

Applications. In the context of digital humanities, there is a need for
tools to analyze large text collections. Given keyword only queries related to
(historical) entities or events, EventMiner is able to mine these important
events which can be further used to explore the retrieved documents.

Outline. The remainder of the chapter is structured as follows. We first
survey the related work in Section 11.2. We then formally define the problem
setting in Section 11.3. We describe computational models for annotations
in Section 11.4 and EventMiner in Section 11.5. Our evaluation setup and
experimental findings are given in Section 11.6. Conclusions drawn from the
study are summarized in Section 11.7.

RELATED WORK 141

11.2 Related Work

In this section, we describe prior work with respect to our problem setting.
Related Models. Prior work [174, 215] are examples of clustering al-

gorithms that compute document similarity based on text and contextual
temporal expressions. Both have leveraged the framework of Dirichlet process
mixture (DPM) models. Zhu et al. [215] present a time-sensitive Dirichlet
process mixture model. The authors consider the use case of organizing an
email inbox by using the arrival time of these emails. For computing similarity
between different instances, they utilize an exponential decay function which
gives more weight to recent emails. Building on this work, Qamra et al. [174]
develop a content-community-time model that tries to identify similar blogs in
a community of blogosphere. While utilizing the framework of DPM models, we
expand on the notion of temporal similarity by taking into account uncertainty
and proximity. Additionally, we incorporate similarity along the geographic
dimension and also similarity between named entities in an ontology.

Temporal Information Retrieval is a sub-field of IR with special empha-
sis on temporal information present in documents in the form of metadata (e.g.,
publication dates or creation dates) and temporal expressions [53]. Anchoring
documents or queries in time is an integral part of a time-sensitive search
engine. Jatowt et al. [123] address the problem of estimating the time period
which the document focuses on. To do so, they construct a weighted undirected
graph which captures the associations between terms and time. Gupta and
Berberich [93] address the problem of providing interesting time intervals to a
keyword query by using temporal expressions in pseudo- relevant document
set. Building on this they can also classify keyword queries to determine if it’s:
i. (a)temporal ii. temporally unambiguous iii. temporal ambiguity at different
granularities (e.g., year, month, or day) iv. temporally (a)periodic [94].

Timeline Generation. One of the initial works for automatic timeline
generation was by Swan and Allan [191]. To generate timelines their model
used relative frequency of important features such as named entities and
noun phrases. The method involved calculating the frequency of the features
at different time points and capturing the significance of its frequency by
computing χ2 statistic. In [30], the authors specifically pay attention to the
temporal expressions in the documents for constructing temporal document
profiles. These profiles are then used for clustering and re-ranking of documents.

Event Detection. A large body of work exists in analyzing different
kinds of semantic annotations in isolation. However, we address the interplay
between different kinds of semantic annotations, which in the past has received
markedly little attention. Topic detection and tracking (TDT) [28] was a
seminal initiative in event extraction. TDT tasks focused on organizing an
incoming stream of text first into topics, composed of stories describing events.
However, initial approaches described in [28] did not have access to reliable
NLP annotators. In light of these advancements in NLP, several works have
incorporated semantic annotations for event extraction [24, 124, 138, 175].

142 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

Kuzey et al. [138] address the task of event extraction from news archives
for ontology population. To do so, they construct a multi-view attribute
graph using: document text, publication date, and named entities (e.g., peo-
ple, organization, and location) in documents with their semantic types (e.g.,
protest, hurricane). They then mine the multi-view attribute graph for impor-
tant events. [24] mines events from annotated corpora by utilizing frequent
itemset mining. Both approaches disregard any special treatment for time
and geographic location; which has been adequately addressed in our work.

Focusing specifically on predicting the future, Radinsky et al. [175] developed
the Pundit algorithm. Events are modeled as a tuple of state, actor, objects,
instrument, location, and time. Pundit predicts future events by performing
hierarchical agglomerative clustering on events. The similarity between events
is computed by using distances in a semantic network. The aim is to derive
future events via causality in events that have already occurred. Utilizing only
temporal data, Jatowt and Yeung [124] also present a model-based clustering
algorithm for predicting future events. They capture the inherent uncertainty
in temporal expressions by modeling them as probability distributions. The
model-based clustering subsequently derives the similarity between these
distributions using the Kullback-Leibler (KL) divergence.

Yeung and Jatowt [207] study how topics change with time. They analyze
the Google news archive for a twenty year time period (1990-2010) for thirty
two different countries. For analysis, they extract temporal expressions and also
topics by using Latent Dirichlet Allocation. They then study the distributions
of temporal expressions that refer to the past. Specifically, they look at how
topics change over time, what caused the re-collection of past events, how
events were forgotten over time, and how countries are similar with respect to
their topic distribution over time.

Event-Centric Search. [180, 187, 189] are example works that leverage
semantic annotations for document clustering and exploration. All these
approaches however do not make use of ontological named entities in form of
person or organization. Strötgen and Gertz [187] present methods for event
extraction using using only temporal expressions and geographic locations.
They model an event as a co-occurrence of temporal expression and geographic
location. Building on this notion of event they provide a extended Backus-
Norm-Form (EBNF) query language for event exploration. Another work by
Strötgen and Gertz [189] re-ranks documents for a given query by computing
similarity and proximity with respect to text, time, and geography. Samet et
al. [180] discuss NewsStand, a system that allows users to find news anchored
by its location on a map. NewsStand does this by detecting and resolving
toponyms. Their method makes use of a streaming clustering algorithm. Some
of the features used for ranking the clusters are the size of the clusters, number
of news sources, cluster’s rate of propagation, and its timestamp.

PRELIMINARIES 143

11.3 Preliminaries

We next describe the annotations we use; how we pre-process and annotate
document collections; and we also formalize the event extraction problem.

11.3.1 Semantic Annotations

Consider Figure 11.1 as an illustrative example for the following discussion.

Temporal Expressions

Temporal expressions are highly ambiguous in nature. They can be categorized
as explicit, implicit, relative, and underspecified [53, 97, 188]. An explicit tem-
poral expression in Figure 1 is late 1980s. As with all temporal expressions,
explicit temporal expressions can be present at different granularities, e.g.,
May 5, 2001 or 1992. Implicit temporal expressions may not be immediately
identifiable as they are characterized by words that carry a latent temporal
meaning, e.g., Christmas. Words whose temporal meaning can only be re-
solved with respect to some other time point (e.g., the publication date) are
known as relative (e.g., yesterday) or underspecified if the relation to the refer-
ence time has to be determined additionally (e.g., April). NLP tools that can
extract and normalize such types of temporal expressions are HeidelTime [188]
and SUTime [58] which we used in this work to resolve temporal expressions.

Geographic Locations and Other Named Entities

We use Aida [118] to identify, disambiguate, and link named entities in text
documents to an external ontology. Aida performs named entity recognition
and disambiguation by leveraging statistical popularity of named entities and
contextual similarity to disambiguate them. Examples of named entities in
Figure 11.1 are mikhail gorbachev and ronald reagan which have been
disambiguated and linked to the Yago ontology [190]. Geographic locations
mentioned in text are called toponyms [180]. The process of resolving these
toponyms to a specific location is known as toponym resolution. We use the
geographical locations obtained as part of the detected and disambiguated
named entities by Aida. Examples of disambiguated locations in Figure 11.1
are soviet union and us.

Document Collection

We used the New York Times Annotated corpus [18] which consists of around
two million news articles published between 1987 and 2007. We utilized a
news archive for evaluating our methods since it has been shown in prior
work [95, 124] that they cover historic events very well. All the annotations
along with text are preprocessed using the Hadoop map-reduce framework
and subsequently indexed using the ElasticSearch [4] software.

144 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

11.3.2 Problem Statement

Consider a document collection D consisting of N documents d:

D = {d1, d2, . . . dN}

further each document d ∈ D consists of sentences s:

d = 〈s1, s2, . . . sn〉

Each sentence s then contains a multiset of temporal expressions sT , geographic
locations sG , named entities sE , and words sW from a vocabulary V:

s = 〈sT , sG , sE , sW〉.

The cardinalities of these multisets are given by |sT |, |sG |, |sE |, and |sW |. The
aim is to design an algorithm:

EventMiner(S,Q,Λ),

where, S is a set of input sentences, Q is a keyword query, and Λ consists
of a set of parameters Λ ∈ Rm. The input set of sentences S is obtained
from the pseudo-relevant set of documents R obtained via an information
retrieval engine using the keyword query Q (following the notational convention
from [55]):

R = Ir(D,Q,K,Θ),

where, Θ is set of parameters and K specifies the number of documents to
be returned by the retrieval method. The algorithm should output a totally
ordered set of events:

C = 〈c1, c2, . . . ck〉,
where, ci is an event. The ordering of events in C is done by using the scores
obtained for each cluster given by the EventMiner algorithm. Using C we
re-rank R to obtain a set of documents R̂ so that the user sees at least one
document from each event c ∈ C.

An event that can be detected in text, is defined to involve related named
entities cE , occurring during a time interval [b, e] ∈ cT at related locations
g ∈ cG , and described by words cW . Thus each event c ∈ C can be modeled as:

c = 〈cT , cG , cE , cW〉.

We hypothesize that using events as proxies for user intents we can improve
the retrieval effectiveness of traditional information retrieval methods, which
have largely relied on term statistics [95].

COMPUTATIONAL MODELS 145

11.3.3 Assumptions

We make three assumptions while designing our EventMiner algorithm. First,
each semantic annotation occurs independent of each other. Hence, we can
consider a sentence to contain a multiset of temporal expressions sT , geographic
locations sG , and named entities sE . Second, a multiset of geographic locations
sG or named entities sE can be empty. However, they cannot be empty
simultaneously in a sentence. A multiset of temporal expressions sT in a
sentence cannot be empty. In case no temporal expression occurs in a sentence
we utilize the document publication date. Third, geographic annotations are a
subset of named entity annotations, that is sG ⊆ sE .

11.4 Computational Models

Here we describe the computational models used to represent and compute sim-
ilarities between annotations for time, geographic locations, and named entities.

11.4.1 Time Models

We next explain the two time models that we use in the EventMiner algorithm.
Figure 11.2 gives an illustrative explanation of these models.

Uncertainty-aware Time Model (Utm)

Utm is a time model for uncertain temporal expressions [41], for instance 1990s,
where begin and end of the time interval [b, e] cannot be clearly identified.
Utm models this uncertainty by allowing for a lower and upper bound in the
start (end) of the interval. Formally, a temporal expressions is modeled as a
four-tuple:

t = 〈b`, bu, e`, eu〉,
where, b ≤ e, b` ≤ b ≤ bu and e` ≤ e ≤ eu. The elements of t are obtained
from a time domain T. Thus, [b, e] ∈ T×T. The number of time intervals that
can be generated from t is denoted by |t|. Using this model, we can represent
1990s as 〈1990, 1999, 1990, 1999〉. The probability of generating a time interval
[b, e] from temporal expression t is estimated as [41]:

P ([b, e]|t) =
1([b, e] ∈ t)
|t| .

Thus, the likelihood of generating t′ from t is:

P (t′|t) =
1

|t′|
∑

[b,e]∈t′
P ([b, e]|t). (11.1)

146 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

b` bu

e`

eu

O
begin

end

t
[b, e]

[b′, e′]

Figure 11.2: Graphical representation illustrating how a time interval [b, e] is gener-
ated from t using Utm. It also represents graphically how the time interval [b′, e′]
obtains zero probability from Utm but a non-zero probability using Ptm.

Following the uncertainty-aware time model, we can generate the time
interval [1995, 1998] from the temporal expression 〈1990, 1999, 1990, 1999〉.
However, a proximate time interval [2000, 2001] will receive zero probability
given the same temporal expression.

Proximity-aware Time Model (Ptm)

In Utm a time interval [b, e] /∈ t obtains zero probability. However, time
intervals that are temporally close to time intervals in t should obtain non-zero
probability [189]. This is required for computing similarity between events that
have close but non-overlapping time intervals of occurrence (e.g., 1990 and
1991). We compute the proximity by multivariate kernel density estimates.
Concretely,

P ([b, e]|t) =
1

|t|
∑

[b′,e′]∈t
KA([b, e]− [b′, e′]),

where, KA is a multivariate kernel estimator with bandwidth matrix A. The
difference between time intervals is carried out element-wise, i.e., [b, e]−[b′, e′] =
[b− b′, e− e′]. The kernel density estimator KA is defined as [110]:

KA(•) =
1

|A|K
(
A−1 •

)
,

where, the bandwidth matrix A is:

A2×2 = k · I2×2 =

k 0

0 k

 ,

COMPUTATIONAL MODELS 147

(a) Plot of coordinates of UK. (b) Plot of the MBRs of UK.

Figure 11.3: Depiction of how MBRs are computed using a set of geographic
coordinates. For each dense region of coordinates we compute a MBR.

where, |A| represents the matrix determinant and A−1 its inverse. Proximity
between t′ and t can be estimated by:

P (t′|t) =
1

|t′|
∑

[b,e]∈t′

1

|t|
∑

[b′,e′]∈t
KA([b, e]− [b′, e′]). (11.2)

For KA(•), we utilized the Epanechnikov kernel, since its support is [−1, 1]
and density at a point is computed using the values lying in the cube sur-
rounding it [110]. This kernel can be written as [110]:

KA(v) =
3

4
(1− vT v)1(|

√
vT v| ≤ 1),

where, v = [b, e] is a time interval and the indicator function 1(•) evaluates to
one if and only if the argument is true. The proximity between two temporal
expressions can be varied by scaling k in the bandwidth matrix A. The
proximity model thus allows us to associate a non-zero probability with non-
overlapping temporal expressions. Therefore, the time interval [2000, 2001]
can now be generated from the temporal expression 〈1990, 1999, 1990, 1999〉.

11.4.2 Space Model

Each geographic location g in our model is represented as a minimum bounding
rectangle (MBR) with coordinates for its lowermost coordinate ` and uppermost
coordinate u: g = 〈`, u〉. Each coordinate lies in a two dimensional geodesic
space, that is ` = (x`, y`) and u = (xu, yu). For any two geographic locations
described by their MBRs we can find similarity by computing the area overlap
in the geodesic space. Similarly proximity can be found by their closeness in

148 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

the geodesic space. Using the geodesic system to represent MBRs helps in
avoiding distortion along the poles. Figure 11.3 shows how a MBR for united
kingdom (uk) is obtained from its set of coordinates. For an efficient indexing
and querying of geographic locations, we utilize a R-Tree [108]. Each location’s
MBRs are indexed in an R-Tree. We can subsequently query the R-Tree for
containment or proximity queries.

11.4.3 Entity Model

Each entity disambiguated by Aida [118] is linked to the Yago [190] ontology
which in turn linked to its Wikipedia entry. To compute the similarity between
two entities e and e′ we thus look at the relatedness in terms of Wikipedia
links. This similarity is known as Milne-Witten entity-entity relatedness:
MWSim(e, e′) [158]. Formally, with We and We′ being the sets of articles
that are linked to the Wikipedia articles corresponding to the entities e and
e′, respectively. Let W represent all articles in Wikipedia; the similarity is
computed as [158]:

MWSim(e, e′)=
log(max (|We|, |We′ |))− log (|We ∩We′ |)

log (|W |)− log (min (|We,We′ |))

11.5 EventMiner Algorithm

The EventMiner algorithm is a probabilistic model that takes into account the
similarity between the semantic annotations in order to mine important events.
It is based on the family of Dirichlet process mixture (DPM) models [31, 174,
215]. The rationale behind using DPM models is two-fold. First, they allow us
to jointly model the marginal distributions underlying the event annotations.
Second, they allow to model an infinite number of clusters without knowing
their number apriori. Each cluster identified by EventMiner is treated as an
important event for the given keyword query. We next describe how the various
semantic similarities are considered together and how to perform inference
over the probabilistic model.

Generating Sentences. Let V be the vocabulary associated with the
document collection. Further, let the event clusters that are identified by
EventMiner be described by a multinomial θc distributed over V . We describe
the probability of generating the sentence si given θc as [174, 215]:

P (si|θc) =
∏

v∈V
θc(v)tf(v,si),

where, the probability of obtaining the term v from cluster c is denoted by
θc(v) and the term frequency of v in sentence si is denoted by tf(v, si). Given
a term distribution over sentences, we now consider the similarity between the
various semantic annotations.

EVENTMINER ALGORITHM 149

Temporal Similarity. To compute the temporal similarity of a sentence
s to an existing existing event cluster c, we consider the similarity between
their temporal expressions sT cT . This is done by considering the temporal
similarity of t ∈ sT with all the temporal expressions t′ ∈ cT in the event
cluster c as:

wt(s, c) =
1

|cT |
∑

t′∈cT

1

|sT |
∑

t∈sT
1(t ∈ t′),

where, the function 1(t ∈ t′) indicates likelihood of generating the temporal
expression t from t′ by using either uncertainty-aware time model (Equa-
tion (11.1)) or proximity-aware time model (Equation (11.2)).

Geographic Similarity. Similarly, given an event cluster c, to consider
the similarity of a sentence along the geographical dimension we compute:

wg(s, c) =
1

|cG |
∑

g′∈cG

1

|sG |
∑

g∈sG
1(g ∈ g′),

where, the function 1(g ∈ g′) indicates the likelihood of generating the geo-
graphic location g from the geographic location g′.

Entity Similarity. On similar lines, we can compute the similarity between
named entities in a sentence with an event cluster c as follows:

we(s, c) =
1

|cE |
∑

e′∈cE

1

|sE |
∑

e∈sE
1(e ∼ e′),

where, the function 1(e ∼ e′) computes the relatedness between the entities
e and e′ using MwSim(•). The motivation for computing the average entity-
entity relatedness (as compared to maximum entity-entity relatedness) between
sentence s and cluster c is to maintain the cluster coherence.

Joint Similarity. We combine all the semantic similarities in a weighted
average. This can be written as:

w(s, c) =
ρ1 · wt(s, c) + ρ2 · wg(s, c) + ρ3 · we(s, c)

ρ1 + ρ2 + ρ3
.

Chinese Restaurant Process. To incorporate the different semantic
similarities in the Dirichlet process mixture model framework, we need to
consider the clustering behavior of Dirichlet processes [194]. We briefly explain
the framework next, following its description in [194, 196]. Consider a Dirichlet
process (DP), G0 ∼ DP (α,H0), with a prior (base) distribution H0 [194, 215].
Further, let the prior follow a Dirichlet distribution, H0 ∼ Dir(βm); where, m
is the normalized term frequency vector over V and β is a hyperparameter [120,
148, 194, 215]. Let, the sample multinomial distributions be drawn iid from
G0 be θ1, θ2, . . . , θi. For the predictive distribution θi+1 it has been shown
in [46, 194, 196] that:

150 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

H0 G0 θi si zi wi

i = 1, 2, . . . , n

α

Figure 11.4: Graphical representation of the EventMiner algorithm based on [215].
It shows a Dirichlet process G with concentration parameter α and its base measure
H0. Where, a sentence is denoted by s, its cluster label is denoted by z, and the joint
similarity incorporating time, geographic location, and named entities is denoted by
w. The duplicated random variables are represented in the box; with i denoting the
multiplicity. Observed node is shaded in yellow.

θi+1|θ1, . . . , θi, α,H0 ∼
i∑

`=1

1

i+ α
δθ` +

α

i+ α
H0,

where, δθ` is a Dirac delta at θ`. From the equation above, we see that if a
sample is drawn more than once, it shall have a higher probability of being
drawn again leading to a “positive reinforcement effect” or equivalently “rich
gets richer effect” [120, 194, 196]. This phenomenon is more often described in
the literature as the Chinese Restaurant Process: consider unlimited tables to
sit at a Chinese restaurant; a new customer will sit at a table in the restaurant
with probability that is dependent on the count of customers already occupying
that table [194]. Following this framework, we can incorporate the probability
of assigning sentence si to cluster c, given all the other event cluster assignments
as follows:

P (zi = c|z−i) =

{
w(si,c)∑

c′ w(si,c′)+α
, if c is in cluster set

α∑
c′ w(si,c′)+α

, if c is a new cluster

where, α is the concentration parameter.
Inference. To infer the cluster label z given the semantically annotated

text, we use the following inference:

P (zi = c|z−c, S) ∝ P (zi = c|z−i)P (si|s−i ∈ zi = c),

where, z−c is used to denote all the cluster assignments except zc, and s−i ∈
zi = c denotes all the sentences in cluster c except s−i [174, 215]. Since each
type of expression is associated with a multiset, the order, in which semantic
annotations are observed, can safely be ignored. Thus the first term, P (zi|z−i),
can be computed by taking zi as last in the order [174, 194].

EVALUATION 151

The second term, P (si|s−i ∈ zi = c), can be computed with the help of the
Dirichlet process described earlier. It has shown to be equal to [148, 174, 215]:

P (si|s−i ∈ zi = c) =

∫
p(si|θ)p(θ|s−i ∈ zi = c)dθ

=

(
Γ(
∑
v tf(v, s−i ∈ zi = c) + β)∏

v Γ(tf(v, s−i ∈ zi = c) + βmv)

)

(∏
v Γ(tf(v, si) + tf(v, s−i ∈ zi = c) + βmv)

Γ(
∑
v tf(v, si) +

∑
v tf(v, s−i ∈ zi = c) + β)

)

where, the Gamma function is denoted by Γ(•), the term frequency of v in
the set of sentences (excluding si) in cluster c is given by tf(v, s−i ∈ zi = c),
and the term frequency of v in sentence si is given by tf(v, si).

The graphical model corresponding to our EventMiner algorithm, is illus-
trated in Figure 11.4. We utilized a modified Gibbs Sampler based on [215]
for a single machine implementation. Similar to their implementation, our
modified Gibbs Sampler also has time complexity of O(|S|2).

Exploring Search Results with Event-Clusters. For each event-
cluster c we can associate the documents from which the sentences were derived.
This can thus be used to explore the search results in an event-centric manner.

11.6 Evaluation

In this section we first describe the experimental setup and then discuss the
results of the experiments.

11.6.1 Setup

History-Oriented Queries. In order to test the effectiveness of our method,
we utilize history-oriented queries that have multiple important events associ-
ated with them. Specifically, we considered three types of query categories,
namely: events [93], entities1, and wars [153]. The keywords corresponding to
these queries are shown in Table 7.1. This dataset of history-oriented queries
and corresponding Wikipedia articles has been made publicly available as part
of the research work carried out by Gupta and Berberich [95].

Metrics. For each history-oriented query, our aim is to detect as many
important events as possible. This task can be considered equivalent to
producing a summary for a given topic. However, in our setting we disregard
the grammatical structure or temporal ordering. Rather our focus is specifically
on precision and recall of information. We consider the frequent words in each
event cluster W as a sentence and concatenate them from top-ranked clusters

1http://usatoday30.usatoday.com/news/top25-influential.htm

152 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

to form a system-generated summary. In order to test this objectively, we
utilized the Rouge-N measure [208] for evaluating the quality of summaries
produced by our methods. We used the Wikipedia entry corresponding to the
history-oriented query as the gold-standard summary. Rouge-N then computes
the overlap of n-grams between the gold standard summary and the summary
produced by the system under test. We report the Rouge-N precision, recall,
and F1.

Systems. We evaluate three variations of EventMiner algorithm with
increasing sophistication. For the first system, we consider a näıve variation of
EventMiner that computes similarities of various semantics by only considering
surface-level equivalence. That is two semantic annotations are considered to
be similar if and only if their tokens match. For example, 1995 and 1990s are
not similar to each other. We call this system EMBaseline. For the second
system, we compute the temporal similarity using uncertainty-aware time
model Utm; the geographic similarity by computing area overlap in MBRs;
and entity-entity similarity with MWSim. Therefore, in this system, 1995
and 1990s are similar; as are new york and usa; and also ronald reagan
and nancy reagan. We call this system EMSimilar. For the final system we
compute the similarity between temporal expressions using proximity-aware
time model Ptm; the geographic similarity by computing closeness between
MBRs; and entity-entity similarity with MWSim. Therefore, this system
considers 1999 and 2000 proximate; also canada and usa are considered to be
proximate. We refer to this system as EMProximity.

Parameter Tuning. We performed the experiments by retrieving top-25
pseudo-relevant documents, i.e., K = 25 for every keyword query in the testbed.
We choose this as a conservative estimate for the number of highly relevant
documents given the keyword query. For retrieving these documents, we used
the Okapi BM25 method with standard parameter settings k1 = 1.2 and
b = 0.75. These documents are subsequently split at sentence-level granularity.

The different EventMiner systems are next executed with these sentences
as input. Weights for different similarities are: ρ1 = 0.50, ρ2 = 0.25, and
ρ3 = 0.25, giving more importance to temporal similarity as compared to the
other two similarities. This was due to the observation that annotations for time
were more accurate as compared to named entity annotations. Hence, temporal
similarity was given a higher weight in computing joint similarity to obtain
coherent clusters. Further, the concentration parameter was set to α = 0.1 and
the strength of prior for text similarity β = 0.1. The concentration parameter
is directly proportional to the probability of creating a new event cluster. Both
these values were set by observing their effect on three sample queries, namely:
summer olympics, us presidential elections, and george w bush. We
perform Gibbs Sampling for a total of 50 iterations, with early termination
of the algorithm if cluster assignments do not change between subsequent
iterations. We limited ourselves to a moderate number of iterations keeping
in mind the quadratic complexity of the EventMiner algorithm. For each
system, we picked top-5 clusters ranked by their scores.

EVALUATION 153

Category System
Rouge-1

Recall Precision F1

Event

EMBaseline 0.31 0.24 0.17

EMSimilar 0.29 0.26 0.17

EMProximity 0.25 0.28 0.18

War

EMBaseline 0.15 0.31 0.17

EMSimilar 0.15 0.32 0.17

EMProximity 0.11 0.36 0.15

Entity

EMBaseline 0.13 0.49 0.16

EMSimilar 0.12 0.50 0.15

EMProximity 0.10 0.52 0.15

Table 11.1: Rouge-1 scores for various systems which are grouped by different
categories of history-oriented queries. Precision, recall and F1 scores are averaged for
all queries in that category for each system. Across query categories, we can clearly
see an increase in the values of precision as we consider more advanced models for
time and space that incorporate proximity.

After obtaining the top-most clusters, we next take the most frequent
keywords in each cluster and concatenate them into one sentence and then
each of the sentences is concatenated into a system-generated summary. We
compare this system summary with the model or ground truth summary from
the corresponding Wikipedia entry of the issued keyword query. For comparing
the summaries, we use the Rouge-1 score which tests the overlap of unigrams
between the two summaries and provides us with precision, recall and F1 scores
averaged over all the queries in that category. Note that the order of the words
appearing in each summary has no consequence on the scores. The Rouge
software package2 was utilized for this purpose. We computed these scores by
stemming all the words and by removing all stopwords in all the summaries.
Further, 1000 samples were considered for its bootstrap re-sampling. The
results reported are within 95% confidence intervals.

11.6.2 Results

In this section, we describe the results obtained for the evaluation setup
presented earlier.

Results for the three different categories of the history-oriented queries are
shown in Table 11.1. The results for the history-oriented queries concerning
events show that considering EventMiner algorithm with similarity-based
models for semantic annotations increases precision as compared to the base-
line method considering only surface level similarity. However, this comes
at marginal cost of decrease in recall. Taking into account time and geo-

2http://www.berouge.com/Pages/default.aspx

154 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

graphical model that considers proximity increases the precision of the events
identified by the EventMiner algorithm again at small decrease in recall.
This trend is replicated in other history-oriented queries concerning wars and
entities. We additionally present anecdotal results generated by EventMiner
in Section 11.8.

11.6.3 Discussion

In conducting this research, we faced several pitfalls which we aim to solve in
future.

Quality of Annotations. We noticed that empirically the quality of anno-
tations for temporal expressions and for geographic locations is of significantly
better quality than for other named entities. Thus, there is a need of restricting
the analysis to only high precision annotations.

Cluster Coherence. Considering a joint similarity between time and
geographic locations can cause cluster coherence to decrease. This might arise
due to the fact that some keyword queries may have large temporal ambiguity
but little or no geographic ambiguity and vice-versa.

Dependencies between Annotations. Clearly making an independence
assumption between the annotations has not helped us in recalling more events.
Our model thus needs to incorporate this aspect.

Scalability. Worst-case time complexity of the EventMiner algorithm
is quadratic; this is not desirable if analysis is required for large number of
documents. To tackle this, one potential solution is to use hierarchical Dirichlet
process mixture models [195, 196].

Evaluation Metrics. Our evaluation metric was highly objective and
based on overlap of n-grams computed from text. However, Rouge metric can
additionally be modified to take into account similarity between summaries in
terms of time, geography and named entities in an ontology. Another avenue
to explore will be to have subjective crowd-sourced based evaluation for the
identified events.

11.7 Conclusion

In this chapter, we presented EventMiner, an algorithm that clusters sentences
in a semantically annotated corpus to identify important events. Our proposed
method is based on the framework of Dirichlet process mixture models. We
adapted this framework to incorporate similarity along time that leverages
uncertainty and proximity in temporal expressions. It also considers similarity
and proximity between geographic expressions. Finally, it also accounts for
similarity between named entities in an ontology. We tested our method on
a collection of history-oriented queries and their corresponding Wikipedia
pages to show that considering proximity between temporal and geographic
dimension as well as similarity between named entities in an ontology can
recall accurate events.

ANECDOTAL RESULTS 155

11.8 Anecdotal Results

Next we discuss some anecdotal results for a few history-oriented queries,
namely: george w. bush, bill clinton, ronald reagan, ryan white, us
presidential elections, deng xiaoping, pope john paul ii, stephen

hawking, iraq war, iraq iran war, soviet afghanistan war, and lord

of the rings movie, . Each result shows the most coherent and representa-
tive cluster with its ten most frequent keywords, geographic locations and time
intervals that appear in that cluster. The results were obtained by executing
the EMProximity system with 150 iterations of Gibbs Sampling and rest
settings same as used for the experimental setup. The captions accompanying
Tables 11.2 to 11.13 elaborate on the event depicted.

Keywords [bush][wife][campaign][george][washington]
[marvin][gore][al][st][louis]

Time [12-Apr-2000 , 12-Apr-2000][04-Aug-2000 , 04-Aug-2000]
[01-Jan-2000 , 31-Dec-2000]

Locations none

Entities [YAGO:George W. Bush] [YAGO:Republican Party (United States)]
[YAGO:Republican National Convention]

Table 11.2: An event cluster for query george w. bush. The event identified is that
of the inaugural presidential campaign of George W. Bush, whose political affiliation
was to the Republican Party.3

Keywords [clinton][bill][top][address][news][page][africa]
[front][african][home][hillary]

Time [01-Jan-1999 , 01-Jan-1999][23-Aug-1998 , 23-Aug-1998]
[03-Apr-1998 , 03-Apr-1998] [01-Jan-1999 , 31-Dec-1999]

Locations [YAGO:Africa] [YAGO:White House] [YAGO:United States]

Entities [YAGO:Bill Clinton] [YAGO:Monica Lewinsky] [YAGO:Hillary Rodham Clinton]
[YAGO:White House] [YAGO:Africa] [YAGO:United States]

Table 11.3: An event cluster for query bill clinton. The event identified Bill
Clinton’s impeachment from presidency due to the affair with Monica Lewinsky in
1999.4

3https://en.wikipedia.org/wiki/George_W._Bush
4https://en.wikipedia.org/wiki/Bill_Clinton
5https://en.wikipedia.org/wiki/Ronald_Reagan
6https://en.wikipedia.org/wiki/Deng_Xiaoping
7https://en.wikipedia.org/wiki/Pope_John_Paul_II
8https://en.wikipedia.org/wiki/A_Brief_History_of_Time
9https://en.wikipedia.org/wiki/Soviet-Afghan_War
10https://en.wikipedia.org/wiki/The_Lord_of_the_Rings_(film_series)
11https://en.wikipedia.org/wiki/Iraq_War
12https://en.wikipedia.org/wiki/Iran-Iraq_War

156 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

Keywords [reagan][ronald][legacy][opinion][top][government][social]
[politics][corrections][wilson][attack]

Time [27-Jun-2004 , 27-Jun-2004][01-Jan-2004 , 01-Jan-2004]
[07-Jun-2004 , 07-Jun-2004] [01-Jan-1911 , 01-Jan-1911]
[11-Jun-2004 , 11-Jun-2004][14-Jan-1993 , 14-Jan-1993]

Locations [YAGO:Palo Alto, California] [YAGO:California] [YAGO:United States]

Entities [YAGO:Ronald Reagan] [YAGO:California] [YAGO:Nancy Reagan]
[YAGO:United States] [YAGO:Palo Alto, California]
[YAGO:Culture of the United States] [YAGO:Dick Cheney] [YAGO:Ron Reagan]

Table 11.4: An event cluster for query ronald reagan. Ronald Reagan passed away
on June 5, 2004 in California.8 The cluster reports his funeral which took place on
June 11, 2004.5

Keywords [presidential][elections][2000][election][government]
[quest][gore][al][pres][vice][politics][campaign]

Time [01-Jan-2000 , 01-Jan-2000][01-Jan-2000 , 31-Dec-2000]

Locations [YAGO:United States]

Entities [YAGO:United States] [YAGO:Al Gore]

Table 11.5: An event cluster for query us presidential elections. The cluster
points to the US Presidential Elections in 2000 for which Al Gore ran as vice president.

Keywords [top][china][deng][lee][news][li][asia][world][government][nicholas]

Time [17-Jun-1989 , 17-Jun-1989][03-Jan-1996 , 03-Jan-1996]
[01-Jan-1970 , 31-Dec-1970] [23-Jul-1989 , 23-Jul-1989]

Locations [YAGO:China] [YAGO:Australia] [YAGO:New York City]
[YAGO:Ithaca, New York]

Entities [YAGO:China] [YAGO:Australia] [YAGO:Fang Lizhi] [YAGO:New York City]
[YAGO:Tiananmen Square protests of 1989] [YAGO:Deng Xiaoping]
[YAGO:Overseas Chinese] [YAGO:Ithaca, New York]

Table 11.6: An event cluster for query deng xiaoping. It reports the Tiananmen
Square protests of 1989; in which Fang Lizhi and Deng Xiaoping were key named
entities.6

Keywords [pope][opinion][savior][cahill][thomas][paul][john][ii][editor]
[top][catholic][april][saddened]

Time [08-Apr-2005 , 08-Apr-2005][02-Apr-2005 , 02-Apr-2005]
[05-Apr-2005 , 05-Apr-2005] [03-Apr-2005 , 03-Apr-2005]

Locations [YAGO:Florida] [YAGO:West Palm Beach, Florida]

Entities [YAGO:Pope John Paul II] [YAGO:Thomas Cahill] [YAGO:Kingdom of Italy]
[YAGO:Camillo Ruini] [YAGO:Catholic Church] [YAGO:Judaism]
[YAGO:Florida] [YAGO:West Palm Beach, Florida]

Table 11.7: An event cluster for query pope john paul ii. The event described is
that of his death on April 2, 2005.7

13https://en.wikipedia.org/wiki/Ryan_White

ANECDOTAL RESULTS 157

Keywords [dr][black][hawking][hole][gilliam][physicist][time][york][caltech][mr]

Time [01-Nov-1998 , 30-Nov-1998][01-Jan-1999 , 31-Dec-1999]
[01-Jan-1900 , 01-Jan-1900] [03-Apr-1988 , 03-Apr-1988]
[01-Jan-1988 , 31-Dec-1988]

Locations [YAGO:University of Cambridge] [YAGO:Wildwood, New Jersey] [YAGO:Arizona]

Entities [YAGO:Larry Doyle (writer)] [YAGO:University of Cambridge]
[YAGO:Leonard Susskind] [YAGO:Robert Redford] [YAGO:William Morris]
[YAGO:A Brief History of Time] [YAGO:Wildwood, New Jersey] [YAGO:Arizona]
[YAGO:Associated Press] [YAGO:Random House] [YAGO:Lou Gehrig]

Table 11.8: An event cluster for query stephen hawking. The cluster shows the
dates on which first edition of his book “A Brief History of Time” was released –
1988 and tenth anniversary edition of the book was released – 1998.8

Keywords [soviet][afghanistan][war][military][beginning]
[party][forces][union][exhibition][mixed]

Time [01-Jan-1938 , 01-Jan-1938][01-Jan-1980 , 01-Jan-1980]
[29-Apr-1988 , 29-Apr-1988] [01-Jan-1979 , 01-Jan-1979]
[01-Apr-1988 , 01-Apr-1988]
[29-Jul-1987 , 29-Jul-1987] [01-Jan-1950 , 01-Jan-1950]

Locations [YAGO:Soviet Union] [YAGO:Afghanistan] [YAGO:Moscow] [YAGO:Kabul]
[YAGO:United States]

Entities [YAGO:Soviet Union] [YAGO:Afghanistan] [YAGO:Mohammad Najibullah]
[YAGO:Moscow] [YAGO:Bosniaks] [YAGO:Kabul] [YAGO:United States]

Table 11.9: An event cluster for query soviet afghanistan war. It depicts the
Soviet-Afghanistan conflict that lasted from 1979 to 1989.9

Keywords [lord][rings][top][movie][motion][opinion][pictures]
[article][elvis][jackson][trilogy][movies]

Time [15-Dec-2002 , 15-Dec-2002][01-Jan-1987 , 01-Jan-1987]
[25-Jan-2004 , 25-Jan-2004]
[12-Nov-2002 , 12-Nov-2002][01-Jan-2003 , 31-Dec-2003]
[01-Jan-1982 , 01-Jan-1982] [11-Jan-2004 , 11-Jan-2004][28-Dec-2002 ,
29-Dec-2002]
[07-Sep-2003 , 07-Sep-2003] [01-Dec-2003 , 31-Dec-2003]

Locations [YAGO:Weldon, Northamptonshire] [YAGO:Wellington]

Entities [YAGO:J. R. R. Tolkien] [YAGO:Weldon, Northamptonshire] [YAGO:Wellington]
[YAGO:Carol Ann Lee] [YAGO:Peter Jackson]

Table 11.10: An event cluster for query lord of the rings movie. It captures the
location where the movie was shot – Wellington and the author of the book on which
the movie is based on – J. R. R. Tolkien.10

Keywords [iraq][states][united][war][opinion][top][international]
[relations][defense][armament] [president][time][fearful][david]

Time [13-Apr-2006 , 13-Apr-2006][15-Jun-2005 , 15-Jun-2005][16-Jul-2003 ,
16-Jul-2003] [16-Oct-2003 , 16-Oct-2003][30-Jun-2005 , 30-Jun-2005]

Locations [YAGO:New York City] [YAGO:Port Washington, Wisconsin]
[YAGO:Radcliff, Kentucky] [YAGO:Iraq] [YAGO:United States]

Entities [YAGO:Iraq] [YAGO:United States Army] [YAGO:Donald Rumsfeld]
[YAGO:United States Department of Defense] [YAGO:George W. Bush]
[YAGO:Jim Folsom] [YAGO:New York City] [YAGO:Port Washington, Wisconsin]
[YAGO:Radcliff, Kentucky] [YAGO:United States]

Table 11.11: An event cluster for query iraq war. The cluster shows the start of
Iraq War in 2003.11

158 EVENTMINER: MINING EVENTS FROM ANNOTATED DOCUMENTS

Keywords [iraq][iran][war][oil][international][top][faw]
[port][east][world][delegate][rafsanjani]

Time [01-Mar-1986 , 31-Mar-1986][01-Sep-1980 , 01-Sep-1980]
[01-Sep-1980 , 30-Sep-1980] [01-Jan-1970 , 31-Dec-1970]
[01-Jan-1980 , 01-Jan-1980][23-Sep-2003 , 23-Sep-2003]
[25-Jan-1991 , 25-Jan-1991][01-Aug-1988 , 31-Aug-1988]
[17-Mar-2006 , 17-Mar-2006] [01-Jan-1000 , 01-Jan-1000]
[01-Jan-1988 , 31-Dec-1988][02-Oct-2003 , 02-Oct-2003]

Locations [YAGO:Iran] [YAGO:Iraq] [YAGO:Geneva]

Entities [YAGO:Iran] [YAGO:Iraq] [YAGO:United Nations]
[YAGO:Akbar Hashemi Rafsanjani] [YAGO:Iranian peoples] [YAGO:Gulf War]
[YAGO:Geneva] [YAGO:United Nations Security Council] [YAGO:Fao Landing]
[YAGO:Western world] [YAGO:Persian people] [YAGO:Iran-Iraq War]
[YAGO:National Iraqi News Agency]

Table 11.12: An event cluster for query iraq iran war. It describes the conflict
between Iran and Iraq that lasted from 1980 to 1988.12

Keywords [ryan][school][white][senior][friends][mother][kokomo][edward]
[president][riley][attendance][family]

Time [01-Jan-1984 , 01-Jan-1984][01-Jan-1199 , 31-Dec-1199]

Locations [YAGO:New York] [YAGO:Kingston, New York] [YAGO:Cicero, Illinois]
[YAGO:Indianapolis] [YAGO:Kokomo, Indiana]

Entities [YAGO:Megan] [YAGO:Saint Joseph] [YAGO:Edward VI of England]
[YAGO:New York] [YAGO:Matt Ryan] [YAGO:Ronald Reagan] [YAGO:Nancy Reagan]
[YAGO:Hamilton Heights School Corporation] [YAGO:Cicero, Illinois]
[YAGO:Indianapolis] [YAGO:Kokomo, Indiana] [YAGO:Taco Bell]
[YAGO:Kelly Ryan] [YAGO:Ryan White] [YAGO:Kingston, New York]
[YAGO:Kelly Osbourne]

Table 11.13: An event cluster for query ryan white. It depicts the event when
Ryan White was not allowed to attend school due to health concerns related to
his HIV/AIDS infection.13The time interval [01-Jan-1199, 31-Dec-1199] is mined
due to erroneous annotation by the temporal annotator.

CHAPTER 12

JIGSAW: STRUCTURING TEXT
INTO TABLES

• Dhruv Gupta and Klaus Berberich. JIGSAW: Structuring Text into Tables.
In ICTIR 2019, pages 237–244.

12.1 Introduction

Tables are structured summaries obtained from multiple documents. Tables
already present in documents or web tables are an important resource for tasks
such as question answering, fact checking, and analytics. Manually generating
tables is a laborious task. Teams of journalists often collaborate to curate
tables using spreadsheet tools (e.g., Google Fusion Tables) [89]. To reduce this
human effort, we need an information retrieval (IR) system that instead of
presenting ten blue links, generates structured tables in response to queries.

159

160 JIGSAW: STRUCTURING TEXT INTO TABLES

〈
![google |google inc. |google llc], ![acquired |takeover |bought], {!ORG, ?TIME, ?MONEY}

〉
NO. SCORE ORG TIME MONEY

1. 0.721 motorola mobility [2014, 2014] [$ 2.22× 108 , $ 1.95× 1010]
2. 0.057 boston dynamics [2013, 2013] [$ 1.20× 109 , $ 3.60× 109]
3. 0.036 youtube [2006, 2006] [$ 1.00× 109 , $ 1.50× 109]
4. 0.014 skybox imaging [2014, 2014] [$ 2.78× 108 , $ 8.33× 108]
5. 0.008 redwood robotics [2004, 2004] [$ 2.00× 105 , $ 4.00× 105]
6. 0.007 quickoffice [2012, 2012] [$14.99× 100 , $14.99× 100]
7. 0.006 gecko design [2014, 2014] [$ 1.00× 109 , $ 1.00× 109]
8. 0.006 imperium [2013, 2013] [$ 4.50× 106 , $ 1.50× 107]
9. 0.005 makani power [2013, 2013] [$ 1.90× 1010, $ 1.90× 1010]

10. 0.005 nortel [2011, 2011] [$ 4.50× 109 , $ 4.50× 109]

Figure 12.1: Table generated by jigsaw from the GDelt news archive for Google
acquisitions. The structured query contains aliases for Google, paraphrases for the
predicate “acquisitions” and contains bindings org, time, and money that are to be
filled in for each acquisition.

Results in the form of structured snippets [10], knowledge panels [115], and
lists of related entities [119] are gaining prominence in search results. To create
them, structured data in the form of knowledge graphs (KGs) [9, 68] and
web tables [52, 212] are leveraged. These approaches are limited as they can
only use fixed schema associated with individual web tables or KG schema
in the form of 〈s,p,o〉 triples. To generate tables for user-defined schema
from text: we need an expressive query language that can define arbitrary
relationships between entities and an IR system that can retrieve concise text
regions containing such relationships.

To generate tables from unstructured text collections, we leverage se-
mantic annotations that natural language processing (NLP) tools can now
provide accurately. Concretely, annotations in the form of part-of-speech
(e.g., google⊕nnp), named entities (e.g., larry page⊕person), temporal
(e.g., 2020s⊕[2020, 2029]), and numerical expressions (e.g., a million

dollars⊕$1× 106) help us impose a lexico-syntactic structure over unstruc-
tured text. Using this insight, we can perform structured search over large
document collections and put together tables using redundant, partial, and
paraphrased pieces of text spread across millions of documents.

Contributions and Outline. jigsaw structures text into tables, for user-
defined schema within seconds. To assemble tables, jigsaw uses gyani as an
indexing infrastructure for structured search over large annotated document
collections [98]. The key contributions this work makes are:

1. To speed up the retrieval from the inverted indexes, we describe a greedy
query optimizer (Section 12.6). Thus, unlike open information extraction
(open-IE) based approaches, that require an entire scan of the document
collection, we can extract relevant annotated text regions for a query
using indexes over annotated text.

RELATED WORK 161

2. To generate tables we describe three operator classes: QUERY, LINK, and
ANALYZE. The operators in QUERY describe the table schema and help
shape each retrieved annotated text region into a row for the table. The
QUERY operators (Section 12.5) additionally link the row to its originating
document, which helps us in estimating null values (i.e., values for which
we can not spot annotation values) from its context. This is not possible
with existing open-IE approaches, as no provenance information is kept
for facts during extraction.

3. The LINK operators (Section 12.7) reconcile near-duplicate mentions of
named entities, temporal, and numerical expressions by taking into account
their semantics (e.g., 2020s and 2025 should be considered similar).

4. Finally, the ANALYZE operators (Section 12.8) allow for aggregation and
ranking over the linked rows in the table. Fig. 12.1 shows an example of
a generated table by jigsaw for acquisitions by Google.

12.2 Related Work

Annotated document collections have been leveraged by several studies [61, 98,
145] for mining valuable data. Li et al. [145] proposed key operators to analyze
annotated text corpora using relational databases. Clarke et al. [61] and Gupta
and Berberich [98] describe efficient algorithms to perform search in tagged
text corpora using inverted index operations. However, none of the above
systems support table generation capabilities that can aggregate redundant,
partial, and paraphrased text evidences. A recent survey on the use of web
tables [52], describes the impact web tables have had on commercial search
engines. The authors also describe progress that has been made in terms of
augmenting web tables from additional data sources such as KGs. Cannaviccio
et al. [54] aim to link predicates from KGs to relations between attributes in
web tables in order to understand their schema. Yang et al. [206] and Zhang and
Balog [212] generate tables from KGs to answer keyword queries. The above
approaches focus on leveraging existing structured resources (e.g., web tables
and KGs) but not to generate tables from unstructured text. Knowledge graph
population techniques rely on identifying salient extractions from documents
or the Web [35]. Key works in this direction are [73, 160, 161, 166, 210].
Nakashole et al. [161] rely on distributed itemset mining for determining
salient triples to be added to KGs. Niu et al. [166] and Zhang et al. [210] use
Markov logic to reconcile and canonicalize triples. Dong et al. [73] verify the
correctness of the extracted triples by using a combination of prior-knowledge
learned using random-walks and neural-networks. The work by Mitchell et
al. [160] uses a suite of machine learning methods including embedding-based
methods to verify the quality of triples to be added to its KG. However, all
these methods are bound to a fixed schema for extraction. Furthermore, the
discussed methods solely rely on offline methods of pre-computing the KG.
jigsaw, on the other hand, allows table generation for user-defined schema
efficiently and interactively in a query-driven manner.

162 JIGSAW: STRUCTURING TEXT INTO TABLES

12.3 Problem Definition

jigsaw generates a table, given its schema, from large annotated document
collections. As input, we are given a structured query Q that describes the
table schema:

Structured Query: Q = 〈a1, a2, . . . , aN 〉, (12.1)

where, each attribute a can be specified with the help of word sequences
(e.g., 〈took over 〉), annotations (e.g., money) or a combination of both word
sequences and annotations (e.g., 〈youtube 〉⊕org). Let Σi denote the domain
of values that attribute ai ∈ Q can take. The table schema R is then defined
by the query attributes. Concretely, a row r ∈ T has the following structure:

Row Structure: r ⊂ 2Σ1 × 2Σ2 × . . .× 2ΣN . (12.2)

In Equation 12.2, an attribute of query ai ∈ Q can refer to multiple elements
from its domain Σ. Thus, tables generated by our approach can contain cells
with multiple values (zero normal form). To construct the final table T
we proceed in two steps. First, we construct a raw table T . To construct
T , we retrieve text regions that match the query template Q. Using the
retrieved text regions we create a raw table that is a collection of rows that
contain document metadata did, text region span in document text(·), and
value(s) c (for simplicity consider singular values in Equation 12.3) for the
query template:

Raw Table: T =
⋃
r =

⋃(
did, text(·), c1, c2, . . . , cN

)
. (12.3)

In the raw table T , we allow for relaxed matches to the query template
that will result in unknown values (null) as cell values. We resolve null
values using two approaches: local and global resolution. Local resolution uses
the document which establishes the provenance of the row to determine the
missing values. Whereas, global resolution relies on other similar rows in the
raw table (thereby leveraging cross-document evidences) to infer null values.

Second, having generated the raw table T , we link and aggregate rows
that mention similar text, entities, relations, temporal or numerical values by
leveraging the semantics of annotations in the cell values to arrive at the final
table T . Each aggregated row in the final table is assigned a score(r) that
reflects its prominence in the document collection. Furthermore, the rows in
table T can be ranked using its originating context (provenance) rank(r) and
diversified amongst other rows in the table diversify(r). Structure of the
final table can be defined as:

T =
⋃
r =

⋃(
∪ did,∪ text(·), score(·), c1, c2, . . . , cN

)
.

INDEXES OVER ANNOTATED TEXT 163

12.4 Indexes Over Annotated Text

Annotated Text Model

Consider, a large document collection D = {d1, . . . , d|D|}. Each document
d ∈ D consists of sentences d = 〈s1, s2, . . . , s|d|〉 which further consist of a
sequence of words s = 〈w1, w2, . . . , w|s|〉 drawn from the vocabulary of the
collection ΣV . NLP tools can now deliver high-quality annotations over text in
the form of parts-of-speech, named entities, numerical quantities, and temporal
expressions. Consider, a NLP annotator L that further tags the sequence of
words 〈wi . . . wj〉 (i ≤ j) in documents with elements ` from its annotation
alphabet ΣL. This way we obtain layers-of-annotation over text in documents
(see Figure 12.2). Semantic annotations help us impose a lexico-syntactic
structure over text. This in turn helps us perform structured search over
annotated document collections. To do so, we leverage gyani [98], as our
backend indexing infrastructure. We briefly describe the indexes we use to
support our query operators.

Inverted Indexes

Text Indexes help locate and compute statistics for text regions. To this
end, we first create n-gram indexes and dictionaries. n-gram indexes record
unigrams, bigrams, and trigrams with their positional spans. While, the dic-
tionaries record the document frequency (df) and collection frequency (cf) of
n-grams. The n-grams are derived from the sentences in each document of D.
Furthermore, to speed up the retrieval of surface forms that are slight variations
of a complete label (e.g., [youtube video website | youtube website]) we
create skip-gram indexes and dictionaries. Skip-gram indexes record ordered
co-occurrences of words within a context of ten words. Annotation Indexes
record for each annotation layer its element and positional span (e.g., money
with span [8, 11] in Figure 12.2). Annotated Text Indexes record positional
spans for pair-wise and ordered combinations of word sequences and annota-
tions. For each such combination in a sentence of a document, we create two
indexes: 2-fragment and 2-stitch indexes. Where, 2-fragments are anno-
tated word sequences (e.g., 〈Google⊕ org〉 in Figure 12.2) and 2-stitches
are ordered co-occurrences of word sequences with other annotations in the
sentences (e.g., 〈YouTube, date〉 in Figure 12.2).

Direct Index

The inverted indexes help us retrieve positional spans corresponding to text
regions for a given structured query. However, to retrieve the resolved annota-
tion values (e.g., the resolved annotation value > $1× 109 for the phrase over

a billion dollars) we need to access the different layers of annotation for
a given text region. To this end, we store the documents with all annotation
layers and sentence boundaries in a direct index.

164 JIGSAW: STRUCTURING TEXT INTO TABLES

12.5 QUERY Operators

We next describe the operators that help define the table schema.
Binding Operator (!` and ?`) are unary operators that specify the

annotations or word sequences that should be part of the table schema. The
binding operator can be specified using annotations, e.g., 〈 !person, !org 〉 or
word sequences, e.g., !〈acquired 〉. The !` operator requires that the values
must be present in the text regions being retrieved to populate a column in
the table. Whereas, ?` operator can perform a relaxed query match. That is,
the !` operator can not result in null values, whereas the ?` can be relaxed
to a null value. Semantics of !` and ?` can be specified as:

match(`〈i,j〉, s) = {s ∈ d | d ∈ D ∧ `〈i,j〉 < s},

where, `〈i,j〉 represents the text region 〈wi, . . . , wj〉 tagged with annotation
` and < denotes that `〈i,j〉 is a contiguous subsequence in sentence s. Bindings
can be decorated with markers to increase recall. These markers are: union,
wildcard, and multiplicity.

Union Marker (|) helps to specify paraphrases for a word sequence binding,
e.g., ![acquired | takeover | buy out]. The union marker applies the Boolean
disjunctive semantics to the text regions matched for each of the paraphrases
in the set.

Wildcard Marker (∗) helps to indicate variable-length gaps in word
sequences. With the ∗ marker the corresponding cell values for the binding
contain the text regions that fill in the wildcard. An example query using ∗
marker is: ?〈obtained ∗ award 〉.

Multiplicity Marker (×{m,n}) helps to associate multiple annotation
values in a cell value for the binding. The multiplicity marker specifies the
minimum number m and maximum number n of annotation type ` a cell
can contain for the binding. As an example query consider:

〈
!〈google ∗

acquired 〉, !org ×{1, 3}
〉
.

Stack Operator (⊕) is a binary operator that helps in attaching additional
semantics to word sequences, e.g., !〈paris⊕location〉. The semantics for the
stack ⊕ operator are:

match(w〈i,j〉 ⊕ `, s) = {s ∈ d | d ∈ D ∧ `〈i,j〉 < s ∧ w〈i,j〉 < s},

where, the annotation ` and the word sequence w〈i,j〉 occupy the same
positional span [i, j] in the sentence of a document s ∈ d.

A structured query containing !` or ?` will match annotated text re-
gions that contain their arguments in an ordered sequence. A sequential
order amongst the arguments of the query a ∈ Q helps to curate tables for
asymmetric relations. For instance, in the table for the query, 〈!org1, !〈has
acquired 〉, !org2〉, the matches for org1 and org2 can not be exchanged.

QUERY PROCESSING 165

1 2 3 4 5 6 7 8 9 10 11

> $1 × 109[2006, 2006]

ORG ORG DATE MONEY

ANNOTATION

N-GRAM 2-FRAGMENT2-STITCH

NNP VBD RP NNP IN CD IN IN DT CD NNS .
Google took over YouTube in 2006 for over a billion dollars.

Figure 12.2: Inverted indexes over the annotated text model.

Unorder Operator ({•}) is a n-ary operator that allows matching text
regions irrespective of the order in which its arguments are mentioned. For
example, the query, 〈!org, !〈has acquired 〉, {!org, ?money, ?date}〉, treats
the bindings for org, money, and date in an unordered manner. The unorder
operator is useful for creating tables for symmetric relations where the order
amongst the bindings is not important, e.g., {!person, !married, !person}.

12.6 Query Processing

We next discuss how to derive a query execution plan for retrieval of annotated
text regions for a structured query Q.

Query Graph. The structured query Q, represents a template to be
matched against the annotated text model. This sequence of query operators
and their arguments can be succinctly represented in a graph. Let, G(V,E)
represent a directed graph corresponding to the query Q, where the set of
vertices V represents the arguments (e.g., word sequences or annotation types)
and E be a set of directed edges that represents the query operator semantics.
We associate a function q(e) with each edge e ∈ E, that defines either sequential,
stacking, unorder, or multiplicity semantics between the connecting vertices.
Figure 12.3 shows an example of a query graph.

Sequential Semantics inherent in the query structureQ = 〈a1, a2, . . . , ak〉
are represented by a directed edge between two of the query arguments.
Sequential semantics can also be specified with the help of the bindings
operator. The sequential semantics q(e) ≡ q(ai → aj) ensure that the mention
of the argument ai is before that of aj in the annotated text model:

q(e) ≡ q
(
ai → aj

)
=
{
s ∈ d|d ∈ D ∧ `i〈m,n〉 ∈ s

∧`j〈p,q〉 ∈ s ∧ (m ≤ n) ∧ (n < p) ∧ (p ≤ q)
}
,

where, `i〈m,n〉 represents the annotation matching ai and `j〈p,q〉 represents

the annotation matching aj . The multiplicity marker constraints additionally
imply that the number of argument value lie within bounds conveyed along
with the marker.

166 JIGSAW: STRUCTURING TEXT INTO TABLES

Stacking Semantics specified by the stack operator q(e) ≡ q(ai
⊕−→ aj)

conveys that the arguments to the ⊕ operator occupy the same positions in
the sentence but adorn different annotation layers in the text model:

q(e) ≡ q
(
ai
⊕−→ aj

)
=
{
s ∈ d|d ∈ D ∧ `i〈m,n〉 ∈ s

∧`j〈p,q〉 ∈ s ∧ (m ≤ n) ∧ (p ≤ q) ∧ (m = p) ∧ (n = q)
}
.

Unorder Semantics specified by the {aj , . . . , ak} operator q(e) ≡ q(ai ∗−→
{aj , . . . , ak}) specifies that any of the arguments specified by aj , . . . , ak can
follow ai in the annotated text model (for simplicity, we show only aj from
{aj , . . . , ak} below):

q(e) ≡ q
(
ai
∗−→ aj

)
=
{
s ∈ d|d ∈ D ∧ `i〈m,n〉 ∈ s

∨`j〈p,q〉 ∈ s ∧
(
(m ≤ n) ∨ (p ≤ q) ∨ (n < p)

)}
.

12.6.1 Query Optimization

We next discuss how we can process the query graph.
Graph Partitions. We partition the graph G into a set of subgraphs S

such that each subgraph S ∈ S either consists of a single vertex or a vertex pair
(u, v) where vertex v is reachable from u. That way, each subgraph corresponds
to an indexing unit for which we can retrieve its corresponding posting list from
the five different indexes described in Section 12.4. Concretely, for a subgraph
where the vertex pair consists of a word sequence and annotation, we retrieve
their results using the 2-stitch index (e.g., in Figure 12.3, subgraph (1, 2)). For
a subgraph, where the vertex is an annotation, we can retrieve their results using
the annotation indexes. For a vertex that contains the wildcard marker ∗ , we
can either directly lookup their posting lists from the skip-gram index or com-
pute the resultant posting list using n-gram indexes. For a vertex that contains
the stack operator, we can retrieve its posting list using the 2-fragment indexes.

Greedy Graph Partitioning and Optimization. In a graph partition-
ing, certain attribute combinations can be retrieved more quickly than others,
e.g., (org → acquired) versus (org → money). Since, there can exist mul-
tiple graph partitions, we opt for that one which contains subgraphs whose
corresponding posting lists are shortest in the indexes. Thus, a näıve decom-
position of the graph into subgraphs in which each vertex is adjacent to each
other (e.g., S = {(1, 2), (2, 3), (3, 4), (3, 5)} in Figure 12.3) may not correspond
to an efficient query execution plan. To speedup the query processing, we
partition the graph in a greedy manner. Specifically, we seek anchor vertices,
that correspond to bindings for n-grams (e.g., trigrams) and bindings for
annotation types (e.g., money) whose document frequency is less than other

QUERY PROCESSING 167

Q =
〈
!ORG, !〈invested in〉, !ORG×{1, 3}, {?MONEY, ?TIME}

〉
1 2 3 4 5

Query Graph: G

1 2 3

4

5

×{1,3}
∗

∗

Graph Partitioning: S =
{
(1, 2), (2, 3), (2, 4), (2, 5)

}
Figure 12.3: An example query, its graph, its partitioning, and assembly. Square
nodes correspond to anchor vertices. Each graph partition S ∈ S is highlighted in
color in the query graph G.

bindings in G. Therefore, a subgraph (indexing unit) whose single vertex
comprises of an anchor vertex shall have overall document frequency less than
the anchor vertex by itself. Concretely, we first identify anchor vertices whose
document frequencies are least amongst the bindings in the query graph G
using dictionaries. Second, we compute subgraphs of vertex pairs: one of
which is an anchor vertex and the other is reachable from the anchor vertex.
Consider the query in Figure 12.3, where the anchor node corresponds to the
bigram invested in. Using this anchor vertex, we can partition the query
graph as S = {(1, 2), (2, 3), (2, 4), (2, 5)}, where each vertex is reachable from
the anchor vertex. Direct Index can be further used in conjunction with the
inverted indexes to speed up the processing of the query graph. We do this
by keeping track of the number of common documents when processing the
subgraphs in the graph partitioning S. When this number is small (e.g., ≤ 25),
we can switch over to the direct index to inspect the annotation layers for
the remaining subgraphs in the partition.

12.6.2 Assembling the Puzzle (Raw Table)

Using the posting lists for the subgraphs in the partitioned graph, we assemble
the complete text regions as evidences. This is done by computing the overlaps
of the positional spans for the text regions in each document, with respect to
the anchor vertex. This process of assembling the text regions as evidences
is illustrated in Figure 12.3. The assembled text regions help us to generate
the raw table T . The text regions gathered as evidences however contain only
the positional spans. At this stage, we consider only those positional spans
that are short and span a sentence. We prefer concise sentences as they yield
semantically meaningful rows in the table. To do this, we first rank positional
spans by increasing length. Then, we check that they lie within a sentence

168 JIGSAW: STRUCTURING TEXT INTO TABLES

for a billion dollars

for over a billion dollars

for under a billion dollars

for around a billion dollars

≡
≡
≡
≡

$109

> $109

< $109

∼ $109

≡
≡
≡
≡

[
109, 109

]

[
109, 109 + ∆

]

[
109 − ∆, 109

]

[
109 −∆, 109 +∆

]

Figure 12.4: Modeling uncertainty in numerical expressions.

using the sentence boundaries stored in the direct index. These positional
spans are next filled in with values for the various bindings in the structured
query Q. To fill in the values, we turn to the direct index that stores within
it the values for the annotations and the word sequences corresponding to the
assembled positional spans. To generate the raw table, we instantiate a table
with the number of columns equal to the number of bindings present in the
structured query Q. For each retrieved text region, we create a row in the
table. Then, for each binding we lookup its cell value using the direct index.
At this step, we additionally verify the multiplicity constraints, if present.
Also, if no value for a binding could be found, we fill its corresponding cell
value as null. The null values are inferred from other near-duplicate rows
using LINK and ANALYSIS operators.

12.7 Semantic LINK Operator

LINK operators group together near-duplicate mentions of text, entities, tem-
poral, and numerical values in the raw table to generate the final table. The
LINK operators provide functionality that is similar to that of deduplication in
databases [76, 163]. However there the focus has been on linking records using
only surface forms of attribute values. In contrast, our LINK operators take into
account the context (or document) from which the row has been derived and
collection-level statistics. Furthermore, we model the semantics behind the
annotations that are part of the table schema when applying LINK. We model
two kinds of semantics: text and numerical (Section 12.7.1 and Section 12.7.2).
We model the semantics of text for the annotation types of: part-of-speech
and named entities of types person, organization, location, and misc. We
model the semantics of numbers for the annotation types: date, time, money,
percent, and number. Additionally, we can locally resolve null values (lo-
cal null resolution) (Section 12.7.3) by using the provenance of each row.

12.7.1 Semantic Model for Text

To link word sequences that refer to the same entity (person, organization,
and location) or concept (misc) in different rows we rely on three similarity
computations: surface, contextual, and global.

SEMANTIC LINK OPERATOR 169

Surface Similarity

Surface similarity establishes similarity between two strings in cell values using
traditional edit-distance based measures. To this end, we use the Jaro-Winkler
similarity [203], to compute the similarity between two text cell values c1
and c2 containing text . We denote this surface level similarity measure by:
simsurface(c1, c2). For example,

sim
surface

(motorola, motorola mobility) = 0.91.

Contextual Similarity

Contextual similarity computes the similarity between the originating text
regions of the cell values. For example, we can link together the word se-
quences, youtube and video sharing based on the similarity of their contexts,
e.g., google acquired the video website youtube and google buys out

video sharing platform, youtube. Concretely, the local text similarity is
defined below:

sim
context

(c1, c2) =
| text(c1) ∩ text(c2) |
| text(c1) ∪ text(c2) | . (12.4)

Equation 12.4 captures the Jaccard coefficient between the bag of words
for the matched text regions, text(c1) and text(c2), that help derive the cell
values, c1 and c2.

Global Similarity

Global similarity computes text similarity by leveraging co-occurrence statistics
aggregated over the entire document collection. For instance, we can link
the entities referred by the phrases, youtube and video sharing based on
the co-occurrence counts of {youtube, video } and {youtube,sharing }. To
compute this similarity we leverage the skip-gram dictionaries that contain the
document frequencies (df) of word pairs {w1, w2}. This global text similarity
is defined below:

sim
global

(c1, c2) =
1

Z
·

∑

w1∈words(c1)

∑

w2∈words(c2)

df({w1, w2})
|D| , (12.5)

where, Z = |words(c1)| · |words(c2)| is a normalization constant. The
equation above captures the global similarity by computing the co-occurrence
frequency of words in the cell values c1 and c2. The complete text similarity
between two cell values c1 and c2 can now be defined as:

sim
text

(c1, c2)=
1

3

[
sim

surface
(c1, c2) + sim

context
(c1, c2) + sim

global
(c1, c2)

]
. (12.6)

170 JIGSAW: STRUCTURING TEXT INTO TABLES

We make the above design choice primarily for scalability reasons. Our
method leverages pre-computed word co-occurrence statistics, which avoids
computing transformed text representations (e.g., for neural embedding meth-
ods) at query time, thus speeding up the similarity computation.

12.7.2 Semantic Model for Numbers

Numerical values in the form of mentions of money, percentages, date, and
time can be very vague and uncertain. For instance, the numerical mention in
Figure 12.2 is disambiguated to > $1×109. This numerical expression can refer
to an infinite number of uncertain intervals. Similarly, a temporal expression
such as the 60s can refer to a multitude of time intervals. Therefore, it
becomes essential that we model their uncertainty to compute similarity
between numerical values when applying the LINK operator.

To incorporate uncertainty in numerical values, we model a numerical
expression, whose values belong to a domain ΣN , by associating an interval
with it: [b, e], where b denotes the begin and e the end. A temporal expression
(or date) can be converted to a numerical expression by representing the dates
as UNIX epochs (number of milliseconds passed since 1970-01-01). We model
the uncertainty based on the annotation type (e.g., date or numerical) and
its value. Figure 12.4 shows how uncertainty in numerical expressions can be
modeled. The uncertainty ∆ for annotations of date and time is determined
by the difference between two consecutive time elements at a given granularity
(e.g., ∆ = 1 year). The uncertainty ∆ for the rest of the numerical annotations
is equal to half of the value being modeled (e.g., for the percent annotation
value of 50%, ∆ is equal to 25%). The similarity between two numerical cell
values c1 and c2 is:

sim
number

(c1, c2) =
|c1 ∩ c2|
|c1 ∪ c2|

. (12.7)

The denominator in Equation 12.7 represents the number of numerical
values at a fixed granularity that can be referenced by the union of the interval
representation for c1 and c1. The numerator computes the extent of agreement
in values between c1 and c2.

12.7.3 Local Resolution of NULL Values

null values in the raw table arise if the ?` operator is used to relax the match
for the bindings. Unlike traditional imputation techniques in databases [38, 78]
and open-IE approaches, jigsaw can leverage the provenance of a raw row to
infer or estimate the null value. To resolve null values, we make a narrative
assumption: the provenance for the row bearing the null value is contained
in a document that describes a narrative of related events or concepts. For
instance, an acquisition made by Google for an undisclosed amount may be
described by a news article by comparing it to related acquisitions. To resolve
the null value locally we describe three methods: scoping, proximity, and
semantic redundancy.

SEMANTIC LINK OPERATOR 171

0 1 2 3 4 5 6 7 8 9

TIME MONEY TIME MONEY

Figure 12.5: Inferring null values using the context surrounding the matched text
region. Circular nodes represent sentence boundaries. Shaded region corresponds to
the matched text region.

Scoping

Scoping for resolving null values relies on frequency for named entity anno-
tation type in the document containing the evidence. While, for numbers
and time, the null value is resolved by constructing an interval using the
minimum and maximum values of the same annotation type in the document
containing the evidence. For instance, in Figure 12.5 a null for annotation
type of time can be estimated by constructing an interval using the annotation
values present on position 0 and 8.

Proximity

Proximity for resolving null values considers only nearby annotation values
for estimation. This way, we can restrict ourselves to few (e.g., three) nearby
values for resolving the null values. For example, in Figure 12.5 we can resolve
a null value for money by looking at only the annotation at position 2 as the
first nearest value.

Semantic Redundancy

Semantic redundancy for resolving null values considers frequency in semantic
models for text or numbers. Thus, for estimating the null values for named
entity types for person, org, and loc we consider the semantic similarity
measures discussed in Section 12.7.1. For estimating the null values for
annotation types of numbers and time, we consider the similarity measures
described in Section 12.7.2.

The user can select based on the application domain from the above three
methods for filling in the null values to yield the best table. For instance, for
entity-centric queries, the proximity method, works well (in a manner similar
to that of co-reference resolution). For event-centric queries, the semantic
redundancy method is more suitable for local resolution of null values.

12.7.4 LINK
(T , {a1, a2, . . . , an}, θ

)
Operator

The operator LINK (T , {a1, a2, . . . , an}, θ) takes as an input the raw table T ;
an attribute set {a1, a2, . . . , an} to link by; and a threshold θ to determine
the degree of similarity between rows. The LINK operator outputs sets of rows
that are near-duplicates.

172 JIGSAW: STRUCTURING TEXT INTO TABLES

Linking of rows in the raw table T by attributes is done as follows. First,
each row in the raw table T is considered related to every other row. That
is, we model the raw table as a complete undirected graph. Each undirected
edge in the graph is weighted by a similarity value that is computed attribute-
wise. That is, corresponding attributes from both rows are compared using
Equation 12.6 for text-based attributes and Equation 12.7 for numerical
attributes:

sim(r1, r2) =
1

N
·

∑

a∈{a1,...,ak}
sim

(
value(r1, a), value(r2, a)

)
, (12.8)

where, the function value(r, a) returns the cell value in the row r for the
attribute a and N denotes the total number of attributes (or columns in the
table). Our model for a row in a table r ∈ T (see Equation 12.2) allows for
multiple cell values. To compute similarity between rows that contain multiple
cell values for a single attribute, we compute their average pair-wise similarity:

sim(r1, r2) =
1

N
·

∑

a∈{a1,...,ak}

1

Y
·

∑

c1∈value(r1,a)

∑

c2∈value(r2,a)

sim
(
c1, c2

)
,

where, Y = |value(r1, a)| · |value(r2, a)| is a normalization factor. Note that,
the similarity of a cell value to a null value, that could not be resolved using
local context, is defined to be zero:

sim(null, c) = 0. (12.9)

Second, we find connected components in the weighted undirected graph
representing T . A subgraph is considered connected if each edge in it has an
edge weight greater than or equal to a threshold θ. Put another way, connected
components can be found by removing all the edges in weighted graph that
have weight less than the threshold θ. The remaining subgraphs are then
clusters of related rows with respect to their attribute-wise similarity.

12.8 ANALYSIS Operators

The LINK operator groups together near-duplicate raw rows using semantics
of text and numbers. The ANALYSIS operators work in conjunction with LINK

operators to flatten the group of rows into a representative row and to assign
a score to each representative row for ranking. Additionally, when flattening
a group of rows we can infer null values, those which could not be resolved
locally, from other near-duplicate rows (global null resolution). We next
describe these three operators: FLAT, SCORE, and RANK.

ANALYSIS OPERATORS 173

Algorithm 10: FLAT and SCORE operators.

Input :Connected Component, S = {r1, r2, . . . , rn}.
1 Function FLAT(S = {r1, r2, . . . , rn})
2 rrep ← ∅ // Create a new representative row for S.
3 for ai ∈ rrep do
4 value←arg max(sim(ci,∀cj ∈ S.values(ai) \ ci))
5 rrep.put(ai, value)

6 return rrep

Input :The Final Table, T = {r1, r2, . . . , rn}.
7 Function SCORE(T)

// Compute support for each row in the final table.

8 for r ∈ T do
9 r.score = #raw rows forming r/#total rows in raw table T

10 Sort(T) // Sort the rows in table by descending support.

11 Tnew ← ∅
12 while T is not empty do
13 Tnew.append(arg max((1− sim(ri, ∀rj ∈ Tnew \ ri)/|T |)))
14 remove the row appended to Tnew from T
15 return Tnew

FLAT(S = {r1, r2, . . . , rk}) Operator. The final table T consists only of rep-
resentative rows r ∈ T derived from each connected component {r1, r2, . . . , rk}
∈ T discovered by LINK. Each representative row r ∈ T , consists of cell values
from different rows in the connected component. The selection of the cell
values for the representative row is done by computing the similarity of a cell
value from a row to all the other cell values for that attribute in the set S.
The cell value that is most similar to the others is chosen to be part of the
representative row. In this step, the representative row can infer the value for
nulls, that could not be resolved using local context, from other rows’ cell
values; we refer to this as global resolution of null values. The global
null resolution thus resolves nulls using cross-document evidences. We make
the above design choice primarily to resolve null values independently from
other attributes. Alternative design choices (e.g., selecting the most similar
row in its entirety from the group) are less helpful in global null resolution.
The FLAT operator is described in Algorithm 10.

SCORE(S = {r1, r2, . . . , rk}) Operator. For each connected component
S ∈ T (or r ∈ T), the SCORE operator assigns a value indicating: the size of S
and the novelty of S amongst other connected components in T :

score(r ∈ T) = support(r ∈ T) · diversify(r ∈ T),

where, support(r ∈ T) ≡ support(S ∈ T) = |S|/|T |. To diversify the
representative rows in the final table T , the objective is to order rows in the
final table such that a row is highly dissimilar to the rows above it. The SCORE

operator is also described in Algorithm 10.

174 JIGSAW: STRUCTURING TEXT INTO TABLES

collection size (gb) #documents #words #sentences

nyt 49.7 1,855,623 1,058,949,098 54,024,146

gigaword 193.6 9,870,655 3,988,683,648 181,386,746

gdelt 296.2 14,320,457 6,371,451,092 297,861,511

collection #part-of-speech #named entity #time #numbers

nyt 1,058,949,098 107,745,696 15,411,681 21,720,437

gigaword 3,988,683,648 517,420,195 72,247,124 102,299,554

gdelt 6,371,451,092 640,812,778 94,009,542 104,964,085

Table 12.1: Annotated document collection size and statistics.

RANK Operator. We can order the rows in the final table by two methods.
First, we can simply rank r ∈ T by the scores generated by the SCORE operator:
rankscore. Second, we can rank by the average length of the annotated text
regions (text) supporting the row r ∈ T . Rank by length can be defined as
the average inverse length of the annotated text region span:

rank
length

(r ∈ T) ≡ rank
length

(S ∈ T) =
1

|S|
∑

r∈S

1

| text(r) | .

Thus, each row in the final table r ∈ T , contains rows that have been pieced
together from partial, redundant, and paraphrased information from the text
regions obtained for a structured query Q from large annotated document
collection.

12.9 Evaluation

In this section, we describe the evaluation setup of our experiments.

Annotated Document Collections and their Indexes

To evaluate jigsaw, we considered three large news archives. The New York
Times annotated corpus consists of around two million articles published during
1997-2007 [18]. The fifth edition of the English Gigaword consists of around
ten million articles from seven different sources published during 1995-2010 [5].
GDelt news archive comprises of around fourteen million articles related to
events available at the GDelt project website [7]. All three document collections,
were preprocessed with the Stanford CoreNLP toolkit to obtain annotation
for part-of-speech, named entity, temporal expressions, and numerical values.
Statistics for the annotated document collections are displayed in Table 12.1.
For each collection, we created the five indexes and the direct index (see
Section 12.4). We store our indexes using HBase, a distributed and extensible
record store. We list the indexes and their sizes for each document collection
in Table 12.2.

EVALUATION 175

index type nyt gigaword gdelt

direct index 18.80 52.40 82.30

n-gram dictionaries 4.54 10.50 19.04

skip-gram dictionary 14.40 21.30 29.30

skip-gram index 56.10 203.60 289.00

n-gram indexes 45.90 154.40 234.80

annotation indexes 2.39 9.33 16.03

2-fragment indexes 6.30 24.16 36.84

2-stitch indexes 141.00 542.40 677.10

Table 12.2: Index sizes in Gigabytes (GB).

category #entities predicate bindings example entity

olympians 265 participant of !location, ?time Usain Bolt

marriage 237 spouse !person , ?time Bob Dylan

footballers 101 sports team !org , ?time Kaká

ceos 87 ceo !person , ?time Google

acquisitions 58 acquire !org , ?time, ?money Takeda

Table 12.3: Query testbed statistics.

Jigsaw Puzzles (Query Testbed)

jigsaw can provide multiple answers in the form of a table for a query where
many answers are correct (e.g., google acquisitions). To measure the
quality of the generated table, we need to identify queries for which we need
to link text, time, or numbers. To this end, we constructed a testbed of 748
tabular queries concerning acquisitions, CEOs, Olympians, footballers, and
marriages for popular entities. We obtained companies and their acquisitions
from CrunchBase [3]. These prominent 58 organizations were identified us-
ing Fortune 500 [6], large software [14] and manufacturing [12] companies
lists. For the remaining categories, we constructed the tables from the Wiki-
data Knowledge Graph. Specifically to generate these queries, we restrict
ourselves to prominent named entities in Wikidata. Where, the prominence
of an entity in Wikidata is determined using the concept of sitelinks [21].
To instantiate the structured queries, we use the following query template:
〈entity, predicate,unordered bindings〉. The template is then filled with
aliases of entities (e.g., [google | search giant]), paraphrases for the pred-
icates (e.g., [acquired | takeover]) from Wikidata and bindings for the
requisite category (e.g., org, time, and money for acquisitions). For example,
a query for acquisitions (see Table 12.3) is shown below:

〈
![google |google inc. |google llc], ![acquires |acquired |acquisition |

takeover |bought |buys |scoops up |to buy |slurps], {!org, ?time, ?money}
〉
.

176 JIGSAW: STRUCTURING TEXT INTO TABLES

Quality of Generated Tables

Quality of the generated tables is measured by comparing against the ground
truth extracted from Crunchbase and Wikidata. That is, for each row in the
ground truth table rtrue ∈ Ttrue, we seek its equivalent row in the generated
table and compare them in their respective semantic models of representation.
We can therefore establish the notions of precision and recall using the semantic
similarity measures discussed in Section 12.7.

Precision between the generated table T and the ground truth table Ttrue

is computed by checking that each row in the generated table r ∈ T finds a
corresponding equivalent row in the ground truth table rtrue ∈ Ttrue. This can
be written as:

precision(T , Ttrue) =
1

|T |
∑

r∈T
argmax
rtrue∈Ttrue

sim(r, rtrue), (12.10)

where, the similarity between two rows, sim(r, rtrue), is computed using
Equation 12.8 described in Section 12.7.4. For text based attributes, we
seek the maximum similarity match between the generated cell attribute and
possible aliases in the ground truth.

Recall between the generated table T and the ground truth table Ttrue

measures how many rows from the ground truth table are found in the generated
table. This can be stated as:

recall(T , Ttrue) =
1

|Ttrue|
∑

rtrue∈Ttrue

argmax
r∈T

sim(r, rtrue). (12.11)

12.9.1 Setup

Currently, there exists no system that can generate tables for user-defined
schema over annotated document collections. To evaluate jigsaw, we consider
alternative design choices using various building blocks in our system.

Baseline Basic resolves null values for temporal and numerical expressions
using scoping. Linking of rows, relies on surface level similarity and redundancy.
Flattening of connected components is done by considering the most frequent
textual cell value; while for numbers and time, minimum and maximum of the
cell values in the group is considered. For ranking, only support is considered.

Baseline Advanced resolves null values for temporal and numerical ex-
pressions using proximity. Baseline Advanced links rows based on text using
surface and contextual similarity as discussed in Section 12.7.1. Whereas, link-
ing for numerical expressions is based on simple interval overlaps. Flattening
of connected components is done by considering the most frequent textual
cell value, while for numbers and time the most frequent interval is chosen as
representative. For ranking, here also only support is considered.

EVALUATION 177

Systems jigsaw and jigsaw++, are our proposed systems. jigsaw
applies the semantic redundancy method for local null value resolution. jig-
saw++ considers the semantic redundancy method for event-centric queries
(i.e., acquisitions and Olympians) and proximity method for entity-centric
queries (i.e., CEOs, footballers, and marriages). For flattening a group of
rows, jigsaw considers semantic redundancy and relatedness for numerical
values and frequency for text attributes. jigsaw++ considers the same method
for event-centric queries. For entity-centric queries jigsaw++ considers the
frequency based method for both text and numerical attributes. For ranking,
both support and diversity are considered.

Significance Tests results between the baseline Basic and jigsaw are
shown by M. Statistically significant results between baseline Advanced and
jigsaw are marked by N. The significance was computed using the two-tailed
paired t-Test at α = 0.05.

Hardware. The storage for the indexes is a cluster of twenty machines
running Cloudera CDH 5.90 version of Hadoop and HBase. Each machine in
the Hadoop cluster is equipped with up to a 24 core Intel Xeon CPU with 3.50
GHz processing speed, up to 128 GB of RAM, and up to eight 4 TB worth
of secondary storage. We perform all evaluations on a high-memory compute
node, with 96 core Intel Xeon CPU at 2.66 GHz processing speed and 1.48
TB of RAM.

12.9.2 Results

We executed the baselines and systems for all of the queries in each query
category in Table 12.3. We considered three different values of similarity
thresholds θ ∈ {0.25, 0.50, 0.75} for the LINK operator, to determine its best
value. We then computed precision, recall, and F1 (harmonic mean of precision
and recall) at values of top-k ∈ {10, 25, 50}. The results for precision and recall
averaged over all query categories for each collection are shown in Table 12.4
and 12.5. We summarize the F1 values over all collections in Table 12.6. The
best value of the measures is highlighted for the corresponding threshold value.
For the collections NYT, Gigaword, and GDelt we were able to generate 344,
444, and 414 tables respectively. The number of tables vary per collection
due to varying time periods of their reporting. For example, NYT does not
contain any acquisitions for Twitter whereas Gigaword and GDelt do.

Effectiveness Results

In terms of precision (see Table 12.4), we observe that overall jigsaw achieves
the best performance. In terms of recall (see Table 12.5), we observe that
jigsaw performs at par or better when compared to the baselines. Note that
perfect recall is not possible due to: temporal coverage of collections and
KG incompleteness. When considering the F1 score (see Table 12.6), jigsaw
provides a balanced performance of high precision and good recall as compared

178 JIGSAW: STRUCTURING TEXT INTO TABLES

New York Times

top-k 10 25 50

θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

basic 0.04 0.04 0.23 0.02 0.02 0.17 0.01 0.01 0.12

advanced 0.04 0.17 0.23 0.01 0.10 0.18 0.01 0.06 0.14

jigsaw 0.05 MN 0.22 MN 0.24 0.02 N 0.16 MN 0.20 MN 0.01 0.12 MN 0.17 MN

jigsaw++ 0.05 MN 0.22 MN 0.25 0.02 N 0.17 MN 0.21 MN 0.01 0.13 MN 0.18 MN

Gigaword

top-k 10 25 50

θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

basic 0.04 0.04 0.27 0.01 0.02 0.23 0.01 0.01 0.18

advanced 0.04 0.22 0.29 0.02 0.15 0.25 0.01 0.09 0.21

jigsaw 0.05 MN 0.27 MN 0.26 0.02 M 0.23 MN 0.25 0.01 0.20 MN 0.23 MN

jigsaw++ 0.05 MN 0.28 MN 0.27 0.02 M 0.24 MN 0.25 0.01 0.20 MN 0.24 MN

GDelt

top-k 10 25 50

θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

basic 0.04 0.05 0.27 0.02 0.02 0.19 0.01 0.01 0.15

advanced 0.04 0.17 0.27 0.02 0.12 0.21 0.01 0.08 0.17

jigsaw 0.06 MN 0.24 MN 0.30 MN 0.02 0.19 MN 0.26 MN 0.01 0.15 MN 0.24 MN

jigsaw++ 0.06 MN 0.25 MN 0.31 MN 0.02 0.20 MN 0.27 MN 0.01 0.15 MN 0.25 MN

Table 12.4: Precision over all categories in the testbed.

to the baselines that excel only in recall. The good performance of jigsaw
can be attributed to three key system design choices. First, the baselines are
more sensitive to θ as they rely only on surface (Baseline Basic) or contextual
(Baseline Advanced) similarities for text. Whereas, jigsaw leverages surface,
contextual, and global text similarities to link rows. Second, jigsaw uses
semantic redundancy for null value resolution that provides higher precision.
However, the null resolution techniques utilized by the baselines produce less
reliable estimates for temporal and numerical attributes. Third and finally, the
techniques adopted by the baselines for flattening linked rows result in broader
temporal and numerical representations that are less precise. In addition to
this, jigsaw is more robust and achieves higher precision at different similarity
thresholds θ.

EVALUATION 179

New York Times

top-k 10 25 50

θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

basic 0.31 0.32 0.38 0.31 0.32 0.39 0.31 0.32 0.40

advanced 0.29 0.35 0.36 0.29 0.36 0.38 0.29 0.36 0.39

jigsaw 0.29 0.35 M 0.33 0.29 0.36 M 0.35 0.29 0.37 MN 0.35

jigsaw++ 0.30 N 0.36 MN 0.36 0.30 N 0.38 MN 0.38 0.30 N 0.39 MN 0.39

Gigaword

top-k 10 25 50

θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

basic 0.29 0.30 0.40 0.29 0.30 0.43 0.29 0.30 0.44

advanced 0.29 0.37 0.39 0.29 0.38 0.42 0.29 0.38 0.44

jigsaw 0.29 0.37 M 0.35 0.29 0.40 MN 0.37 0.29 0.42 MN 0.39

jigsaw++ 0.30 N 0.39 MN 0.37 0.30 N 0.42 MN 0.41 0.30 MN 0.44 MN 0.43

GDelt

top-k 10 25 50

θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

basic 0.32 0.32 0.40 0.32 0.32 0.42 0.32 0.32 0.43

advanced 0.32 0.37 0.38 0.32 0.39 0.41 0.32 0.39 0.43

jigsaw 0.31 0.38 M 0.37 0.31 0.40 M 0.39 0.31 0.42 MN 0.41

jigsaw++ 0.32 0.39 MN 0.40 0.32 0.42 MN 0.43 0.32 0.44 MN 0.44

Table 12.5: Recall over all categories in the testbed.

overall

top-k 10 25 50

θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

basic 0.07 0.08 0.30 0.03 0.03 0.25 0.02 0.02 0.21

advanced 0.07 0.24 0.30 0.03 0.17 0.26 0.01 0.12 0.23

jigsaw 0.09 MN 0.28 MN 0.30 0.04 MN 0.24 MN 0.28 MN 0.02 N 0.21 MN 0.27 MN

jigsaw++ 0.09 MN 0.29 MN 0.31 M 0.04 MN 0.25 MN 0.29 MN 0.02 N 0.22 MN 0.28 MN

Table 12.6: F1 for all testbed categories and all collections.

180 JIGSAW: STRUCTURING TEXT INTO TABLES

nyt gigaword gdelt

111.00 396.00 604.00

Table 12.7: Time in seconds taken to scan a collection on our cluster.

collection basic advanced jigsaw jigsaw++

nyt 3.68 ± 6.16 3.86 ± 6.85 7.63 ± 15.63 7.95 ± 16.28

gigaword 8.81 ± 11.12 9.09 ± 10.84 16.30 ± 20.85 16.45 ± 22.09

gdelt 17.33 ± 35.15 17.90 ± 36.22 28.37 ± 43.48 27.99 ± 42.56

Table 12.8: Run-times in seconds for our system jigsaw.

Efficiency Results

We evaluated jigsaw for efficiency by executing a sample of 100 queries from
the query testbed three times in cold-cache setting for each collection. To
simulate cold caches, we shuffle the queries in between rounds. To contrast the
performance of our query-driven system with existing open-IE systems: we
measure the time needed to scan the entire collection on our Hadoop cluster
once. This thus simulates the minimum amount of time an open-IE system
shall take to just retrieve all the sentences for a query in an embarrassingly
parallel manner. The results for the scan baseline are shown in Table 12.7. The
results for the end-to-end run-times for our system jigsaw and the baselines
Basic and Advanced are shown in Table 12.8. From Table 12.7 we see that
scanning the entire collection for each query is in the order of minutes. From
Table 12.8, we see that end-to-end run times for generating tables using the
baselines or our system jigsaw are significantly less than a simple scan. From
Table 12.8, we observe that jigsaw takes more time to generate tables than
the baselines. This is because the baselines only leverage surface-level and
contextual similarities that are quick to compute as they only require in-
memory operations. On the other hand, jigsaw additionally leverages global
similarity, that relies on lookups from the dictionaries. This additional time
however provides us improved linking of raw rows. Overall, we see that we gain
at least an order of 13.96× speedup and at most an order of 44.95× speedup
over a simple scan of the collections.

12.10 Conclusion

We presented jigsaw, a system that generates tables from unstructured text
for user-defined schema. To do so, we described QUERY operators to define
the table schema. To speedup query processing we described a greedy query
optimizer. To generate high-quality tables, we described LINK and ANALYSIS

operators that leverage semantic models for text and numbers to group together
near-duplicate rows. Our evaluation demonstrates that jigsaw can generate
high-quality tables from over 25 million documents efficiently.

ANECDOTAL RESULTS 181

12.11 Anecdotal Results

We next present tables, as anecdotal results, generated by jigsaw for a few
structured queries from our testbed.

NO. SCORE ORG TIME MONEY

1. 0.511 micros systems [2014, 2015] [$1.36× 108 , $1.90× 1010]

2. 0.092 cisco [2010, 2011] [$3.00× 109 , $9.00× 109]

3. 0.021 homestead technologies [2012, 2013] [$3.50× 109 , $3.50× 109]

4. 0.016 datalogix [2014, 2015] [$4.68× 108 , $1.40× 109]

5. 0.012 tekelec [2013, 2014] [$3.00× 109 , $9.00× 109]

6. 0.012 ericsson [2004, 2005] [$1.80× 108 , $2.70× 108]

7. 0.009 cnw group/manulife
financial corporation

[2011, 2014] [$1.05× 1010 , $1.05× 1010]

8. 0.008 pillar data systems [2011, 2012] [$8.04× 102 , $8.04× 102]

9. 0.008 blue kai [2010, 2011] [$3.10× 109 , $3.10× 109]

10. 0.008 rightnow technologies [2013, 2014] [$3.50× 107 , $3.50× 107]

Figure 12.6: Top-10 rows of the table generated by jigsaw from the GDelt news
archive for acquisitions made by Oracle. The structured query used to define the table
schema was:

〈
![oracle corporation |oracle], ![acquires |acquired |acquisition |

takeover |bought |buys |scoops up |to buy |slurps], {!org, ?time, ?money}
〉
.

NO. SCORE PERSON TIME

1. 0.990 mark zuckerberg [2010, 2018]

2. 0.003 sheryl sandberg [2013, 2014]

3. 0.002 obama [2014, 2014]

4. 0.001 durov [2013, 2013]

5. 0.001 benjamin joe [2014, 2015]

6. 0.001 elon musk [2013, 2014]

Figure 12.7: Table generated by jigsaw from the GDelt news archive for the
CEO of Facebook. The structured query used to define the table schema was:〈
![facebook inc. |facebook |fb], ![chief executive |ceo |executive director],
{!person, ?time}

〉
. The table correctly lists Mark Zuckerberg as the CEO of Facebook.

The table also lists Sheryl Sandberg, the COO of the company. Other rows that are
erroneously listed have insignificant scores.

182 JIGSAW: STRUCTURING TEXT INTO TABLES

NO. SCORE PERSON TIME

1. 0.851 winnie madikizela [2010, 2010]

2. 0.029 evelyn ntoko [1957, 1995]

3. 0.007 thabo mbeki [2003, 2003]

4. 0.005 zondi [1955, 2005]

5. 0.003 nompumelelo ntuli zuma [1973, 2010]

6. 0.003 nkosazana zuma [1995, 1995]

7. 0.002 elita georgiades [1998, 1998]

8. 0.002 philip [1960, 1996]

9. 0.002 desmond tutu [2010, 2010]

10. 0.002 kibaki [2009, 2009]

Figure 12.8: Top-10 rows of the table generated by jigsaw from the Gigaword news
archive for spouses of Nelson Mandela. The structured query used to define the table
schema was:

〈
![nelson mandela |nelson rolihlahla mandela |mandela |madiba |

prisoner 46664 x vidios], ![husband |wife |married to |consort |partner |marry
|marriage partner |married |wedded to |wed |life partner], {!person, ?time}

〉
.

The generated table correctly lists two of his spouses in the first two rows: Winnie
Madikizela and Evelyn Ntoko.

CHAPTER 13

DIGITALHISTORIAN: SEARCH
AND ANALYTICS USING
ANNOTATIONS

• Dhruv Gupta, Jannik Strötgen, and Klaus Berberich. DIGITALHISTORIAN:
Search & Analytics Using Annotations. In HistoInformatics 2016 co-located
with DH 2016, pages 5–10.

13.1 Introduction

Large born-digital document collections cannot be analyzed by manual human
effort. However, they can be automatically annotated with temporal expres-
sions and named entities for their navigation. Time has been found to be a
very important part of generic Web queries; recent studies [130] estimate that
around 17.1% of them are implicitly time-sensitive in nature. In the context
of digital humanities, these figures can be expected to be much higher. The
desiderata that we believe many commercial search engines do not currently
meet and which will be useful for scholars in digital humanities are:

1. the ability to automatically suggest interesting time intervals for history-
oriented queries;

183

184 DIGITALHISTORIAN: SEARCH AND ANALYTICS USING ANNOTATIONS

2. the ability to diversify or re-rank documents using temporal expressions;

3. the ability to establish relationships between the time intervals of interest
for query and other evidences in text such as named entities;

4. the ability to visually analyze the different relationships established be-
tween the annotations in documents.

In this chapter, we demonstrate DigitalHistorian, a system that leverages
the semantic information in documents to retrieve better search results for
history-oriented queries. We define history-oriented queries to consist of
keywords that describe an entity (e.g., george w. bush) or an event (e.g.,
economic depression). Our search system analyzes temporal expressions
in documents to identify interesting time intervals, and subsequently uses
them for diversifying search results. The interesting time intervals can also be
selected to expand the query to gather search results concerning that particular
time interval. Furthermore, DigitalHistorian can construct visualizations
that display frequent named entities in interesting time intervals identified for
the history-oriented query.

Organization. The sections that are concerned with the DigitalHistorian
system are as follows. We first put our system in context to related systems in
Section 13.2. In Section 13.3, we give a brief description of the key methods
applied for mining interesting time intervals, and how these are used for
search result re- ranking and diversification. In Section 13.4, we describe the
technical building blocks of DigitalHistorian. In Section 13.5, we describe
how DigitalHistorian can be utilized to explore document collections. We
summarize the contributions presented in this chapter in Section 13.6.

13.2 Related Work

There exists few demonstrations that utilize named entities and temporal
expressions for search and analysis of documents. None of them put any
emphasis on the understanding and analysis of temporal expressions in doc-
ument contents as we have done in this chapter. Some of the challenges
that we addressed, have been described in detail by Tahmesebi et al. from
the digital humanities perspective [192]. Hoffart et al. [117] demonstrated
a search system that utilized named entities in the Yago knowledge graph
for retrieval of documents. To this end, they use named entities and their
categorical types for auto-complete suggestion to queries. They, however, rank
documents based on publication dates. In their subsequent work, Hoffart et
al. [116] perform analytics by using a combination of document publication
dates and the entities contained therein. Yeung and Jatowt [149] use LDA
topics over time in text to assist historians in answering various queries. In
contrast to these systems, we have looked at temporal expressions in document
contents in order to generate a deeper analysis for search results. Similarly,

HISTORY BY ALGORITHMS 185

Strötgen and Gertz [187] extract content temporal expressions and geographic
locations to anchor news articles on a map, and Odjik et al. [169] present an
interface to explore different document collections using temporal expressions
and text. However unlike both these systems, we have utilized disambiguated
named entities in a knowledge graph to contextualize interesting time intervals.
Other systems such as Wahsp [121] use sentiment in text, and the system
histoGraph uses social relations in photographic collections [167].

13.3 History by Algorithms

The underlying methods for temporal search in DigitalHistorian are derived
from our prior research [41, 93, 94, 96]. We next give a brief description of
these methods.

Understanding Time. Temporal expressions in documents can be highly
uncertain, for example 1990s. For such temporal expressions it is unclear
how the time interval should be constructed for further analysis. In order
to represent such ambiguities in time, we use the time model proposed by
Berberich et al. [41] which allows for relaxations on the begin and end of
time intervals. Thus, 1990s may convey a time interval that can begin
anywhere from [1990,1999] and end anywhere from [1990, 1999]. This
new representation thus allows us to perform mathematical manipulations on
uncertain and ambiguous temporal expressions.

Time Intervals of Interest to Queries. Given a history-oriented query
such as george w. bush, our approach [93] can identify interesting time
intervals (e.g., [2000,2004], [2004,2008]) by analyzing the temporal ex-
pressions in its pseudo-relevant set of documents. This is achieved in two steps.
First, by counting the frequency of time intervals in the uncertainty-aware time
model described earlier. Second, by weighting each frequent time interval with
relevance of the document to the query. This is done recursively to generate
interesting time intervals at year, month, and day level granularity.

Re-ranking Documents Using Time. The ranking of the initial set
of pseudo-relevant documents can be refined by using one of the interesting
time intervals for query expansion. Consider for example the query george

w. bush reformulated with the time interval [2000,2004]. The documents
which contain temporal expressions that can generate the time interval in the
query more frequently and also have a higher textual relevance to the query
will be promoted in the rankings [41]. Hence, all documents that are relevant
to the time interval will be higher in the rankings.

Diversifying Documents Using Time. The time intervals of interest
can be considered to reflect different temporal aspects underlying the query.
The initial pseudo-relevant set of documents can then be diversified so as to
contain at least one document relevant to the different temporal aspects [96].
The temporally diverse set of documents can thus be viewed as a biography of
an entity or a timeline of an event.

186 DIGITALHISTORIAN: SEARCH AND ANALYTICS USING ANNOTATIONS

Counting Frequent Named Entities. The time intervals of interest can
further be used as a basis for aggregating different annotations in text. In
particular, we aggregate the occurrence of unique named entities. For example,
for the query george w. bush and the time interval [2000,2004], we obtain
the aggregate counts of co-occurring named entities such as al gore.

13.4 Architecture

The key building blocks of DigitalHistorian are: a document collection,
semantic annotators, an information retrieval framework, a visualization engine,
and the graphical user interface. We describe each of them briefly in the
following paragraphs.

Document Collection. We used the The New York Times Annotated
Corpus [18], a collection of news articles published in The New York Times
between 1987 to 2007. It comprises of roughly two million news articles. As
metadata, we used only the publication dates.

Semantic Annotators. For annotating temporal expressions we utilized
the HeidelTime temporal tagger [188]. HeidelTime annotates implicit, explicit,
and relative temporal expressions. For disambiguating and linking named
entities to the Yago[190] knowledge graph, all documents were processed with
Aida [118].

Information Retrieval Framework. All the documents along with their
annotations were indexed with the ElasticSearch [4] framework. As a baseline
retrieval model for pseudo-relevant documents we used the Okapi BM25
method implemented in ElasticSearch. All our methods for temporal search
and aggregation were implemented in the Java language.

Visualization and GUI. For generating visualizations, we used the Brunel
Visualization1 API. The entire graphical user interface was programmed using
Java’s Swing API.

13.5 Demonstration

As outlined in the following, there are two key use cases that we demonstrate
with DigitalHistorian. We also describe how the users will be able to interact
with DigitalHistorian using illustrations for the different use cases.

Exploring Search Results. The foremost task that we address with
DigitalHistorian is that of exploring the document collection using the
interesting time intervals identified for the query. The main view (Figure 13.1)
of the DigitalHistorian addresses this by providing the user with a search
field to issue keyword queries. Subsequent to the search operation, various
interesting time intervals are displayed in a list on the left hand-side of the
interface. The list of time intervals are ordered by their interestingness, i.e.,

1https://github.com/Brunel-Visualization/Brunel

CONCLUSION 187

how frequently they are generated by the temporal expressions in document
contents for the given query. A diversified set of documents is shown in the
main display which gives a temporal overview of documents for the query.
Each document in the list is depicted by its headline, its URL, a snippet
from its contents, and the normalized temporal expressions in its contents.
Furthermore, the users can double-click the various time intervals in the list to
expand the query, so as to obtain more documents concerning it. Unlike many
commercial search engines, all of this is done automatically, without imposing
any sliders or check-boxes to manually specify relevant time intervals.

Analytical Visualizations. We further construct informative visualiza-
tions by contextualizing the interesting time intervals with co-occurring named
entities. Currently, there are two analytical visualizations available. Both
of them show the frequency of various named entities that occur in different
time intervals. The first visualization is a chord diagram (Figure 13.2), where
an arc is drawn between a time interval and a corresponding named entity
that occurs in that time interval. The thickness of the arc is in proportion to
the frequency of the named entity in that time interval. The user can also
hover over to each individual chord in the graph to see the time interval and
the entity it connects and the corresponding aggregate count. The second
visualization is a heatmap diagram (Figure 13.3), where on the x-axis the
different time points and on the y-axis different named entities are plotted.
The intensity of the cell in the heatmap shows the frequency of that named
entity in that time point. The user can further drill up from years to decades
and drill down from years to days by scrolling on the time axis to inspect the
different time intervals with their respective frequency of named entities.

13.6 Conclusion

In this chapter, we demonstrated DigitalHistorian, a system that is able
to analyze temporal expressions in document content to generate interesting
time intervals which are subsequently used to re-rank and diversify documents
to give a historic overview for the issued query. It also offers capabilities to
analyze frequent named entities in the Yago knowledge graph for informative
visualizations. DigitalHistorian thus provides scholars in digital humanities an
informative and innovative way of exploring semantically annotated document
collections.

188 DIGITALHISTORIAN: SEARCH AND ANALYTICS USING ANNOTATIONS

F
ig

u
re

1
3
.1

:
T

h
e

G
U

I
o
f
D
ig
ita

lH
ist

o
r
ia
n

.
U

sers
ca

n
ty

p
e

in
k
ey

w
o
rd

q
u

eries
in

th
e

sea
rch

tex
t

fi
eld

a
n

d
D
ig
ita

lH
ist

o
r
ia
n

w
ill

a
u
to

m
a
tica

lly
d
eterm

in
e

in
terestin

g
tim

e
in

terva
ls

fo
r

it.
T

h
e

u
sers

ca
n

a
lso

d
o
u
b
le-click

o
n
e

o
f

th
e

m
a
n
y

in
terva

ls
in

th
e

list
to

ex
p
a
n
d

th
e

q
u

ery
a
n

d
retriev

e
th

e
sea

rch
resu

lts
w

ith
th

a
t

tim
e

in
terva

l.
In

th
e

illu
stra

tio
n

it’s
sh

ow
n

h
ow

th
e

u
ser

selects
th

e
tim

e
in

terva
l

[
2
0
0
3
,
2
0
0
4
]

to
ex

p
a
n
d

th
e

q
u
ery

i
r
a
q
w
a
r

a
n
d

o
b
ta

in
s

sea
rch

resu
lts

fo
r

th
a
t

p
a
rticu

la
r

tim
e

in
terva

l.

CONCLUSION 189

Figure 13.2: Chord diagram for the query iraq war. In the chord diagram, we can
see the key entities by large chords corresponding to iraq, george w. bush, and
iran. Iraq was involved in multiple conflicts which can be seen in the highlighted
boxes, i.e., the American invasion of Iraq in 2003 and the Iran-Iraq war of 1980-1988.
The most frequent entities are highlighted in the legend.

190 DIGITALHISTORIAN: SEARCH AND ANALYTICS USING ANNOTATIONS

Figure 13.3: Heatmap diagram for the query iraq war. In the heatmap diagram,
each cell shows the frequency of the named entity in the corresponding time point.

CHAPTER 14

CONCLUSION

Current information retrieval systems are ill-equipped to handle user’s in-
formation needs expressed via short keyword queries. In order to serve the
user’s information need better, we turn to semantic annotations that natural
language processing tools can now provide with great accuracy and reliability.
Having large document collections tagged with semantic annotations in the
form of part-of-speech tags, named entities, temporal expressions, and numeri-
cal values presents us with many unique opportunities for search and analytics.
Concretely, to help in the search and analysis of large semantically annotated
document collections, we described contributions along the following three
research directions: indexing, querying, and mining of annotated document
collections. We next summarize the contributions this thesis has made to the
research community.

191

192 CONCLUSION

Indexing Annotated Document Collections

Knowledge-centric tasks such as information extraction, relationship extraction,
and question answering rely on retrieval of text regions expressed via grep-like
patterns containing regular expressions, annotations, and word sequences.
However, current information retrieval systems do not support grep-like op-
erators (e.g., regular expressions) to be expressed between word sequences
and annotations. To assist, journalists and scholars in humanities for whom
knowledge-centric tasks are of importance, we describe gyani, an indexing
infrastructure for annotated document collections. Our experiments show that
gyani returns text regions for knowledge-centric tasks with significant speedups:
95× for information extraction, 53× for question answering, and 12× for rela-
tionship extraction. gyani thus truly enables knowledge acquisition at scale.

Knowledge graphs are rich information repositories as they encode rela-
tionships between real-world entities. However, due to limitations at the
data modeling level, knowledge graphs can only encode facts in the form of
〈subject, predicate,object〉 triples. In cases where the information does not
exist in the knowledge graph, its is required that we can put such facts into
context by spotting them in text documents. Natural language representations
of knowledge graph facts can be modeled as a sequence phrase sets – which we
refer to as hyper-phrase queries. To speed up the retrieval of text regions in
support of such hyper-phrase queries, we showed how the combinatorial space
of the phrases can be modeled using n-grams and skip-grams. Furthermore,
to minimize the time needed to merge the posting lists corresponding to the
phrases, we proposed a join-order optimization using dynamic programming.
Our evaluation on document collections amounting to more than thirty million
documents show that we can retrieve evidences for knowledge graph facts and
subgraphs within seconds.

Querying Annotated Document Collections

Users’ often express their information needs via short keyword queries. To
narrow down their search, users reformulate their queries by adding words from
the documents obtained from the previous query. This process can often be too
cumbersome for the user. To simplify this process, we described methods that
leverage semantic annotations to help the user navigate to their information
need easily. First, we focused on temporal information needs, where the
user’s query has a temporal dimension to it. For instance, for the query
summer olympics, the user will be glad to know the time intervals in which
the Olympics took place and thereby narrow down her search to a particular
time interval. To do so, we proposed methods to identify time intervals of
interest to keyword queries. This was done by a computing the salience of
temporal expressions, obtained from the pseudo-relevant set of documents,
in an uncertainty-aware time model. Our experiments show that using the

193

uncertainty-aware model for identifying time intervals of interest is more
effective than a näıve method of simply counting frequent temporal expressions.

Second, we leverage the time intervals of interest for classification of temporal
queries at different levels of granularities. For instance, for a query such as
summer olympics, it is helpful to know that it is periodically recurring event
at the year granularity, so that information concerning the next Olympics can
be retrieved. To determine the temporal class of a query, we use Bayesian
analysis of the generated time intervals of interest for multi-modality. Using our
proposed features derived from this analysis of multi-modality, we show that
we can indeed determine the temporal class of the query in a new taxonomy
with greater precision and recall as compared to existing methods.

Third, we leverage the time intervals of interest for temporal diversification
of search results. Concretely, we address the information needs for history-
oriented queries that require retrieved results cover the timeline of events or
sketch biography for an entity. To this end, the diversification objective is to
identify a subset of documents from the pseudo-relevant set such that there
exists at least one document that covers one of generated time intervals of
interest for the history-oriented query. Our experiments show that using our
temporal diversification objective is more useful for constructing historical-
summaries as opposed to text-only based methods that reward textual novelty.

Fourth, we proposed a method on helping the user navigate large annotated
document collections via the novel concept of semantic aspects. The semantic
aspects generated in response to short and ambiguous keyword queries reflect
salient annotations that co-occur frequently in the pseudo-relevant set of
documents. The semantic aspects thus uplift the unstructured text into a
structured representation, allowing the user to navigate them without the
need to read their contents. Our experiments on news and web archives,
amounting to more than 450 million documents, show that our approach
leveraging semantic annotations can generate quality aspects as compared to
simple text clustering techniques.

Mining Annotated Document Collections

Interesting insights can be mined by leveraging the saliency of annotations
present in large document collections. We proposed four methods of leveraging
annotations present in large document collections for mining insights. First, we
proposed a method that identifies time intervals of interest for knowledge graph
facts. To do so, our method leverages the gyani indexing infrastructure for
retrieving text regions corresponding to knowledge graph facts with temporal
predicates. Our approach then computes a ranked list of temporal scopes for
the input knowledge graph fact. Our experimental findings, show that using
the uncertainty-aware model for determining the time intervals of interest for
knowledge graph facts leads to higher precision as opposed to simply counting
frequent temporal expressions.

194 CONCLUSION

Second, we proposed the EventMiner algorithm for mining events from a
set of annotated documents. Concretely, given a keyword query, EventMiner
retrieves a pseudo-relevant set of documents and clusters the annotations in
event clusters. The clustering is done by leveraging similarity functions that em-
body semantic models for time, geography, and entities. Our evaluation shows
that by considering the annotation semantics during clustering we can perform
better than simply counting annotation frequency for generating event clusters.

Third, we presented jigsaw, an end-to-end query-driven system that pieces
together unstructured text from large semantically annotated document col-
lections into structured tables. To piece together text into tables, jigsaw relies
on efficient query processing over the gyani indexing infrastructure that allows
scalable extraction of annotated text regions in support of a structured query.
To generate tables and describe their schema jigsaw provides three operator
classes: QUERY, LINK, and ANALYZE. The QUERY operators shape text into rows.
The LINK operators reconcile near-duplicate mentions of entities, predicates,
temporal expressions, and numerical values in the table by considering their
semantics. When a value doesn’t exist (null), LINK estimates it, using the con-
text or provenance of the extracted row. The ANALYZE operator allows the user
to aggregate and rank the linked rows in the table for information consumption.
We showed that we can generate high-quality tables from annotated collections
amounting to more than twenty five million documents within seconds.

Fourth, we presented a complete time-sensitive search system, DigitalHisto-
rian. Using DigitalHistorian, the user can enter keyword queries and obtain
a ranked list of time intervals of interest to help her navigate the document
collection. In addition to this, the documents presented are diversified along
time, giving the user a historical overview of the query issued. DigitalHis-
torian also provides analytical visualizations that present a glimpse of the
connections between the identified list of time intervals of interest and the
disambiguated named entities present in the pseudo-relevant set of documents
for the given history-oriented query.

14.1 Outlook

Limitations. We now discuss three shortcomings of the works proposed in
this thesis. First, gyani efficiently supports scalable retrieval of text regions in
support of structured queries consisting of word sequences, annotations, and
regular expressions. However, our infrastructure does not take into account
automatic synonym discovery for entities and predicates. To address this
shortcoming an additional set of indexes and dictionaries are needed to be
maintained that can automatically populate a structured query pattern with
additional aliases to increase recall of retrieved text regions. This approach of
search over structured resources (e.g., relational databases) has been proposed
before [43, 111]. By additionally using this augmentation from prior work [43,
111], we can automate the query template generation.

OUTLOOK 195

Second, our probabilistic framework for time-sensitive search currently
addresses the uncertainty behind temporal expressions, e.g., 1930s, by associ-
ating an uniform likelihood to all possible time intervals. Contextual modifiers
around temporal expressions can further help disambiguate the uncertainty
associated with them. For instance, for the temporal expression late 1930s,
we do not need to consider every possible time interval modeled by the four-
tuple 〈1930,1939,1930,1939〉. Since, the context late conveys that there is
higher likelihood of the time interval to lie in [1935, 1939], we can further
associate a heavy-tail distribution for this expression of time rather than
considering a uniform likelihood for all intervals in [1930, 1939]. Leveraging
the contextual semantics for modeling temporal expressions has been looked
at before [124]. However, in [124] this was done in a limited scope without
modeling the uncertainty behind temporal expressions. By combining both
these approaches [41, 124] of modeling time, we expect a further increase in
precision of our proposed approaches.

Third and finally, our event mining algorithm can only identify event
clusters in isolation for a keyword query about an entity or event. Currently,
our approach lacks the ability to weave together the event clusters into a
story, as envisaged by the original Topic Detection and Tracking study. Event
threading has been investigated before [79], however there no attention was
paid to modeling of semantic annotations for event clustering. With such
an ability built into our EventMiner algorithm, we can further see how the
events evolved over time in the news archives for a given keyword query.

Future Work. The thesis presented ways to shape unstructured text into
events, aspects, tables, and analytical visualizations for easy navigation of
search results. Despite this, it is never clear as to what the user’s information
need is via simple keyword querying (too broad) or via more structured
querying approaches (too narrow). Information needs are varied and a single
answer to query is almost never enough. To this end, further research is needed
in the direction of user interfaces and result presentation that builds on the
work presented in this thesis.

REFERENCES

1. The ClueWeb09 Dataset.
Last Accessed: July 1, 2019.
URL: http://lemurproject.org/clueweb09/.

2. The ClueWeb12 Dataset.
Last Accessed: July 1, 2019.
URL: http://lemurproject.org/clueweb12/.

3. Crunchbase.
Last Accessed: July 1, 2019.
URL: https://www.crunchbase.com/.

4. Elastic — Revealing Insights from Data (Formerly Elasticsearch).
Last Accessed: July 1, 2019.
URL: https://www.elastic.co/.

5. English Gigaword Fifth Edition.
Last Accessed: July 1, 2019.
URL: https://catalog.ldc.upenn.edu/LDC2011T07.

6. Fortune.
Last Accessed: July 1, 2019.
URL: http://fortune.com/fortune500/.

7. The GDELT Project.
Last Accessed: July 1, 2019.
URL: https://www.gdeltproject.org/.

8. GNU Grep 3.0.
Last Accessed: July 1, 2019.
URL: https://www.gnu.org/software/grep/manual/grep.html.

9. Google Tables.
Last Accessed: July 1, 2019.
URL: https://research.google.com/tables.

197

198 REFERENCES

10. Introducing Structured Snippets, Now a Part of Google Web Search.
Last Accessed: July 1, 2019.
URL: https://ai.googleblog.com/2014/09/introducing-structured-snippets-

now.html.

11. JavaFastPFOR: A Simple Integer Compression Library in Java.
Last Accessed: July 1, 2019.
URL: https://github.com/lemire/JavaFastPFOR.

12. List of Largest Manufacturing Companies by Revenue - Wikipedia.
Last Accessed: July 1, 2019.
URL: https://en.wikipedia.org/wiki/List_of_largest_manufacturing_

companies_by_revenue.

13. List of Lists of Lists.
Last Accessed: July 1, 2019.
URL: https://en.wikipedia.org/wiki/List_of_lists_of_lists.

14. List of the Largest Software Companies - Wikipedia.
Last Accessed: July 1, 2019.
URL: https://en.wikipedia.org/wiki/List_of_the_largest_software_

companies.

15. Living Knowledge Corpus.
Last Accessed: July 1, 2019.
URL: https://web.archive.org/web/20171226132758/http://livingknowledge.

europarchive.org/index.php.

16. George W. Bush — Wikipedia, The Free Encyclopedia, 2015.
Last Accessed: July 1, 2019.
URL: https://en.wikipedia.org/wiki/George_W._Bush.

17. Maria Sharapova.
Last Accessed: July 1, 2019.
URL: https://en.wikipedia.org/wiki/Maria_Sharapova.

18. The New York Times Annotated Corpus.
Last Accessed: July 1, 2019.
URL: https://catalog.ldc.upenn.edu/LDC2008T19.

19. The New York Times: On This Day.
Last Accessed: July 1, 2019.
URL: https://learning.blogs.nytimes.com/on-this-day/.

20. Project Gutenburg.
Last Accessed: July 1, 2019.
URL: https://www.gutenberg.org.

21. Wikidata: Sitelinks.
Last Accessed: July 1, 2019.
URL: https://www.wikidata.org/wiki/Help:Sitelinks.

22. Wikidata - The Free Knowledge Base.
Last Accessed: July 1, 2019.
URL: https://www.wikidata.org/.

23. Wikipedia: The Free Encyclopedia.
Last Accessed: July 1, 2019.
URL: https://www.wikipedia.org/.

24. Abujabal, A., and Berberich, K. Important Events in the Past, Present, and
Future. In Proceedings of the 24th International Conference on World Wide Web
Companion, WWW 2015, Florence, Italy, May 18-22, 2015 - Companion Volume
(2015), pp. 1315–1320. URL: http://doi.acm.org/10.1145/2740908.2741692.

REFERENCES 199

25. Agrawal, R., Gollapudi, S., Halverson, A., and Ieong, S. Diversifying Search
Results. In Proceedings of the Second International Conference on Web Search and
Web Data Mining, WSDM 2009, Barcelona, Spain, February 9-11, 2009 (2009),
pp. 5–14. URL: http://doi.acm.org/10.1145/1498759.1498766.

26. Agrawal, R., and Srikant, R. Fast Algorithms for Mining Association Rules in
Large Databases. In VLDB’94, Proceedings of 20th International Conference on
Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile (1994),
pp. 487–499.

27. Agrawal, S., Chakrabarti, K., Chaudhuri, S., and Ganti, V. Scalable Ad-
Hoc Entity Extraction from Text Collections. PVLDB 1, 1 (2008), 945–957. URL:
http://www.vldb.org/pvldb/1/1453958.pdf.

28. Allan, J., Ed. Topic Detection and Tracking: Event-Based Information Organization.
Kluwer Academic Publishers, Norwell, MA, USA, 2002.

29. Alonso, O., Gertz, M., and Baeza-Yates, R. A. On the Value of Temporal
Information in Information Retrieval. SIGIR Forum 41, 2 (2007), 35–41.

30. Alonso, O., Gertz, M., and Baeza-Yates, R. A. Clustering and Exploring Search
Results using Timeline Constructions. In Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, Hong Kong, China, November
2-6, 2009 (2009), pp. 97–106. URL: http://doi.acm.org/10.1145/1645953.1645968.

31. Antoniak, C. E. Mixtures of Dirichlet Processes with Applications to Bayesian
Nonparametric Problems. Ann. Statist. 2, 6 (11 1974), 1152–1174. URL: http:

//dx.doi.org/10.1214/aos/1176342871.

32. Bader, J., Gog, S., and Petri, M. Practical Variable Length Gap Pattern
Matching. In Experimental Algorithms - 15th International Symposium, SEA
2016, St. Petersburg, Russia, June 5-8, 2016, Proceedings (2016), pp. 1–16. URL:
https://doi.org/10.1007/978-3-319-38851-9_1.

33. Baeza-Yates, R. Searching the future. In SIGIR Workshop MF/IR (2005).

34. Balog, K. Entity-Oriented Search, vol. 39 of The Information Retrieval Series.
Springer, 2018. URL: https://doi.org/10.1007/978-3-319-93935-3.

35. Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni,
O. Open Information Extraction from the Web. In IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007 (2007), pp. 2670–2676. URL: http://ijcai.org/Proceedings/
07/Papers/429.pdf.

36. Bast, H., and Buchhold, B. An Index for Efficient Semantic Full-Text Search. In
22nd ACM International Conference on Information and Knowledge Management,
CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013 (2013), pp. 369–
378. URL: http://doi.acm.org/10.1145/2505515.2505689.

37. Bast, H., Buchhold, B., and Haussmann, E. Semantic Search on Text and
Knowledge Bases. Foundations and Trends in Information Retrieval 10, 2-3 (2016),
119–271. URL: http://dx.doi.org/10.1561/1500000032.

38. Batini, C., Cappiello, C., Francalanci, C., and Maurino, A. Methodologies
for Data Quality Assessment and Improvement. ACM Comput. Surv. 41, 3 (2009),
16:1–16:52. URL: https://doi.org/10.1145/1541880.1541883.

39. Ben-Yitzhak, O., Golbandi, N., Har’El, N., Lempel, R., Neumann, A., Ofek-
Koifman, S., Sheinwald, D., Shekita, E. J., Sznajder, B., and Yogev, S. Beyond
Basic Faceted Search. In Proceedings of the International Conference on Web Search
and Web Data Mining, WSDM 2008, Palo Alto, California, USA, February 11-12,
2008 (2008), pp. 33–44. URL: http://doi.acm.org/10.1145/1341531.1341539.

40. Berberich, K., and Bedathur, S. Temporal Diversification of Search Results. In
Proceedings of Workshop on Time-aware Information Access (TAIA 2013) (2013).

200 REFERENCES

41. Berberich, K., Bedathur, S. J., Alonso, O., and Weikum, G. A Language
Modeling Approach for Temporal Information Needs. In Advances in Information
Retrieval, 32nd European Conference on IR Research, ECIR 2010, Milton Keynes,
UK, March 28-31, 2010. Proceedings (2010), pp. 13–25. URL: http://dx.doi.org/
10.1007/978-3-642-12275-0_5.

42. Bhagavatula, C. S., Noraset, T., and Downey, D. TabEL: Entity Linking in
Web Tables. Springer International Publishing, Cham, 2015, pp. 425–441.

43. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan, S.
Keyword Searching and Browsing in Databases using BANKS. In Proceedings of the
18th International Conference on Data Engineering, San Jose, CA, USA, February
26 - March 1, 2002 (2002), pp. 431–440. URL: https://doi.org/10.1109/ICDE.2002.
994756.

44. Bianchi, F., Palmonari, M., and Nozza, D. Towards Encoding Time in Text-
Based Entity Embeddings. In The Semantic Web - ISWC 2018 - 17th International
Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings,
Part I (2018), pp. 56–71. URL: https://doi.org/10.1007/978-3-030-00671-6_4.

45. Bille, P., Gørtz, I. L., Vildhøj, H. W., and Wind, D. K. String Matching
with Variable Length Gaps. Theor. Comput. Sci. 443 (2012), 25–34. URL: https:
//doi.org/10.1016/j.tcs.2012.03.029.

46. Blackwell, D., and MacQueen, J. B. Ferguson Distributions Via Polya Urn
Schemes. Ann. Statist. 1, 2 (03 1973), 353–355. URL: http://dx.doi.org/10.1214/
aos/1176342372.

47. Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent Dirichlet Allocation. J. Mach.
Learn. Res. 3 (Mar. 2003), 993–1022. URL: http://dl.acm.org/citation.cfm?id=
944919.944937.

48. Bordino, I., Lalmas, M., Mejova, Y., and Laere, O. V. Beyond Entities: Promot-
ing Explorative Search with Bundles. Inf. Retr. Journal 19, 5 (2016), 447–486. URL:
http://dx.doi.org/10.1007/s10791-016-9283-5.

49. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. Classification and
Regression Trees. Wadsworth, 1984.

50. Büttcher, S., Clarke, C. L. A., and Cormack, G. V. Information Retrieval
- Implementing and Evaluating Search Engines. MIT Press, 2010. URL: http:

//mitpress.mit.edu/books/information-retrieval.

51. Cafarella, M. J., and Etzioni, O. A Search Engine for Natural Language Ap-
plications. In Proceedings of the 14th International Conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14, 2005 (2005), pp. 442–452. URL:
http://doi.acm.org/10.1145/1060745.1060811.

52. Cafarella, M. J., Halevy, A. Y., Lee, H., Madhavan, J., Yu, C., Wang, D. Z.,
and Wu, E. Ten Years of WebTables. PVLDB 11, 12 (2018), 2140–2149. URL:
http://www.vldb.org/pvldb/vol11/p2140-cafarella.pdf.

53. Campos, R., Dias, G., Jorge, A. M., and Jatowt, A. Survey of Temporal
Information Retrieval and Related Applications. ACM Comput. Surv. 47, 2 (2014),
15:1–15:41. URL: http://doi.acm.org/10.1145/2619088.

54. Cannaviccio, M., Barbosa, D., and Merialdo, P. Towards Annotating Relational
Data on the Web with Language Models. In Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018
(2018), pp. 1307–1316. URL: http://doi.acm.org/10.1145/3178876.3186029.

55. Carbonell, J., and Goldstein, J. The Use of MMR, Diversity-Based Reranking
for Reordering Documents and Producing Summaries. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and Development in

REFERENCES 201

Information Retrieval (New York, NY, USA, 1998), SIGIR ’98, ACM, pp. 335–336.
URL: http://doi.acm.org/10.1145/290941.291025.

56. Catena, M., Macdonald, C., and Ounis, I. On Inverted Index Compression for
Search Engine Efficiency. In Advances in Information Retrieval - 36th European
Conference on IR Research, ECIR 2014, Amsterdam, The Netherlands, April 13-16,
2014. Proceedings (2014), pp. 359–371. URL: https://doi.org/10.1007/978-3-319-
06028-6_30.

57. Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., and Trani, S. Learning
Relatedness Measures for Entity Linking. In 22nd ACM International Conference
on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA,
October 27 - November 1, 2013 (2013), pp. 139–148. URL: https://doi.org/10.
1145/2505515.2505711.

58. Chang, A. X., and Manning, C. D. SUTime: A Library for Recognizing and
Normalizing Time Expressions. In Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC-2012), Istanbul, Turkey, May 23-
25, 2012 (2012), pp. 3735–3740. URL: http://www.lrec-conf.org/proceedings/

lrec2012/summaries/284.html.

59. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows,
M., Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A Distributed Storage
System for Structured Data. In 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2006), pp. 205–218.

60. Cho, J., and Rajagopalan, S. A Fast Regular Expression Indexing Engine. In
Proceedings of the 18th International Conference on Data Engineering, San Jose,
CA, USA, February 26 - March 1, 2002 (2002), pp. 419–430. URL: http://dx.doi.
org/10.1109/ICDE.2002.994755.

61. Clarke, C. L. A., Cormack, G. V., and Burkowski, F. J. An Algebra for
Structured Text Search and a Framework for its Implementation. Comput. J. 38, 1
(1995), 43–56. URL: http://dx.doi.org/10.1093/comjnl/38.1.43.

62. Clarke, C. L. A., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkan, A.,
Büttcher, S., and MacKinnon, I. Novelty and Diversity in Information Retrieval
Evaluation. In Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2008, Singapore,
July 20-24, 2008 (2008), pp. 659–666. URL: http://doi.acm.org/10.1145/1390334.
1390446.

63. Cohen, S., Li, C., Yang, J., and Yu, C. Computational Journalism: A Call to Arms
to Database Researchers. In CIDR 2011, Fifth Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings
(2011), pp. 148–151. URL: http://cidrdb.org/cidr2011/Papers/CIDR11_Paper17.
pdf.

64. Consens, M. P., and Milo, T. Algebras for Querying Text Regions - Expressive
Power and Optimization. J. Comput. Syst. Sci. 57, 3 (1998), 272–288. URL:
http://linkinghub.elsevier.com/retrieve/pii/S0022000098915641.

65. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to
Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001.

66. Cornacchia, R., Héman, S., Zukowski, M., de Vries, A. P., and Boncz, P. A.
Flexible and Efficient IR Using Array Databases. VLDB J. 17, 1 (2008), 151–168.
URL: http://dx.doi.org/10.1007/s00778-007-0071-0.

67. Crochemore, M., Iliopoulos, C. S., Makris, C., Rytter, W., Tsakalidis, A. K.,
and Tsichlas, T. Approximate String Matching with Gaps. Nord. J. Comput. 9, 1
(2002), 54–65.

68. Crow, D. Google Squared: Web Scale, Open Domain Information Extraction and
Presentation. In European Conference on Information Retrieval, Industry Day (2010).

202 REFERENCES

69. Culpepper, J. S., and Moffat, A. Efficient Set Intersection for Inverted Indexing.
ACM Trans. Inf. Syst. 29, 1 (2010), 1:1–1:25. URL: http://doi.acm.org/10.1145/
1877766.1877767.

70. Dakka, W., Gravano, L., and Ipeirotis, P. G. Answering General Time-Sensitive
Queries. IEEE Trans. Knowl. Data Eng. 24, 2 (2012), 220–235. URL: http://doi.
ieeecomputersociety.org/10.1109/TKDE.2010.187.

71. Davey, B. A., and Priestley, H. A. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, 1990. URL: http://www.worldcat.org/search?qt=

worldcat_org_all&q=0521367662.

72. de Jong, F. M. G., Rode, H., and Hiemstra, D. Temporal Language Models for
the Disclosure of Historical Text. In Humanities, Computers and Cultural Heritage:
Proceedings of the XVIth International Conference of the Association for History and
Computing (AHC 2005), Amsterdam, The Netherlands (Amsterdam, The Netherlands,
September 2005), Royal Netherlands Academy of Arts and Sciences, pp. 161–168.

73. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K.,
Strohmann, T., Sun, S., and Zhang, W. Knowledge vault: A Web-Scale Ap-
proach to Probabilistic Knowledge Fusion. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014 (2014), pp. 601–610. URL: http://doi.acm.org/10.
1145/2623330.2623623.

74. Dou, Z., Hu, S., Luo, Y., Song, R., and Wen, J. Finding Dimensions for Queries. In
Proceedings of the 20th ACM Conference on Information and Knowledge Management,
CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011 (2011), pp. 1311–1320.
URL: http://doi.acm.org/10.1145/2063576.2063767.

75. Elbassuoni, S., Hose, K., Metzger, S., and Schenkel, R. ROXXI: Reviving
Witness Documents To Explore Extracted Information. PVLDB 3, 2 (2010), 1589–
1592. URL: http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/

D19.pdf.

76. Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S. Duplicate Record
Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19, 1 (2007), 1–16. URL:
https://doi.org/10.1109/TKDE.2007.250581.

77. Evgeniy Gabrilovich, M. R., and Subramanya, A. FACC1: Freebase Annotation
of ClueWeb Corpora, Version 1 (Release date 2013-06-26, Format version 1, Correction
level 0), June 2013. http://lemurproject.org/clueweb12/.

78. Fellegi, I. P., and Holt, D. A Systematic Approach to Automatic Edit and
Imputation. Journal of the American Statistical Association 71, 353 (1976), 17–35.
URL: http://www.jstor.org/stable/2285726.

79. Feng, A., and Allan, J. Incident Threading for News Passages. In Proceedings
of the 18th ACM Conference on Information and Knowledge Management, CIKM
2009, Hong Kong, China, November 2-6, 2009 (2009), pp. 1307–1316. URL: https:
//doi.org/10.1145/1645953.1646118.

80. Ferrucci, D., and Lally, A. UIMA: An Architectural Approach to Unstructured
Information Processing in the Corporate Research Environment. Nat. Lang. Eng. 10,
3-4 (Sept. 2004), 327–348. URL: http://dx.doi.org/10.1017/S1351324904003523.

81. Fionda, V., and Pirrò, G. Fact Checking via Evidence Patterns. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. (2018), pp. 3755–3761. URL:
https://doi.org/10.24963/ijcai.2018/522.

82. Fredriksson, K., and Grabowski, S. Efficient Algorithms for Pattern Matching
with General Gaps, Character Classes, and Transposition Invariance. Inf. Retr. 11, 4
(2008), 335–357. URL: https://doi.org/10.1007/s10791-008-9054-z.

REFERENCES 203

83. Frick, E., Schnober, C., and Banski, P. Evaluating Query Languages for a
Corpus Processing System. In Proceedings of the Eighth International Conference on
Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, May 23-25, 2012
(2012), pp. 2286–2294. URL: http://www.lrec-conf.org/proceedings/lrec2012/

summaries/800.html.

84. Gad-Elrab, M. H., Stepanova, D., Urbani, J., and Weikum, G. ExFaKT: A
Framework for Explaining Facts over Knowledge Graphs and Text. In Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, WSDM
2019, Melbourne, VIC, Australia, February 11-15, 2019 (2019), pp. 87–95. URL:
https://doi.org/10.1145/3289600.3290996.

85. Gerber, D., Esteves, D., Lehmann, J., Bühmann, L., Usbeck, R., Ngomo, A. N.,
and Speck, R. DeFacto - Temporal and multilingual Deep Fact Validation. J. Web
Semant. 35 (2015), 85–101. URL: https://doi.org/10.1016/j.websem.2015.08.001.

86. Gey, F., Larson, R., Kando, N., Machado, J., and Sakai, T. NTCIR-GeoTime
Overview: Evaluating Geographic and Temporal Search. In Proc. NTCIR-8 Workshop
Meeting (2010), pp. 147–153.

87. Goldstein, J., Ramakrishnan, R., and Shaft, U. Compressing Relations and
Indexes. In Proceedings of the Fourteenth International Conference on Data Engi-
neering, Orlando, Florida, USA, February 23-27, 1998 (1998), pp. 370–379. URL:
https://doi.org/10.1109/ICDE.1998.655800.

88. Grau, B. C., Kharlamov, E., Marciuska, S., Zheleznyakov, D., and Arenas,
M. SemFacet: Faceted Search over Ontology Enhanced Knowledge Graphs. In
Proceedings of the ISWC 2016 Posters & Demonstrations Track co-located with 15th
International Semantic Web Conference (ISWC 2016), Kobe, Japan, October 19,
2016. (2016). URL: http://ceur-ws.org/Vol-1690/paper75.pdf.

89. Gray, J., Bounegru, L., and Chambers, L. The Data Journalism Handbook. 08
2012.

90. Griffiths, T. L., and Steyvers, M. Finding Scientific Topics. Proceedings of the
National Academy of Sciences 101, Suppl. 1 (April 2004), 5228–5235.

91. Guo, J., Xu, G., Cheng, X., and Li, H. Named Entity Recognition in Query. In
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July
19-23, 2009 (2009), pp. 267–274.

92. Gupta, D. Event Search and Analytics: Detecting Events in Semantically Annotated
Corpora for Search & Analytics. In Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, San Francisco, CA, USA, February
22-25, 2016 (2016), p. 705. URL: https://doi.org/10.1145/2835776.2855083.

93. Gupta, D., and Berberich, K. Identifying Time Intervals of Interest to Queries. In
Proceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management, CIKM 2014, Shanghai, China, November 3-7, 2014
(2014), pp. 1835–1838. URL: https://doi.org/10.1145/2661829.2661927.

94. Gupta, D., and Berberich, K. Temporal Query Classification at Different Granulari-
ties. In String Processing and Information Retrieval - 22nd International Symposium,
SPIRE 2015, London, UK, September 1-4, 2015, Proceedings (2015), pp. 156–164.
URL: https://doi.org/10.1007/978-3-319-23826-5_16.

95. Gupta, D., and Berberich, K. Diversifying Search Results Using Time. Tech. rep.,
Max Planck Institute for Informatics, 2016.

96. Gupta, D., and Berberich, K. Diversifying Search Results Using Time - An
Information Retrieval Method for Historians. In Advances in Information Retrieval -
38th European Conference on IR Research, ECIR 2016, Padua, Italy, March 20-23,
2016. Proceedings (2016), pp. 789–795. URL: https://doi.org/10.1007/978-3-319-
30671-1_69.

204 REFERENCES

97. Gupta, D., and Berberich, K. A Probabilistic Framework for Time-
Sensitive Search: MPII at the NTCIR-12 Temporalia-2 Task. In Proceed-
ings of the 12th NTCIR Conference on Evaluation of Information Access
Technologies, National Center of Sciences, Tokyo, Japan, June 7-10, 2016
(2016). URL: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/
pdf/ntcir/TEMPORALIA/02-NTCIR12-TEMPORALIA-GuptaD.pdf.

98. Gupta, D., and Berberich, K. GYANI: An Indexing Infrastructure for Knowledge-
Centric Tasks. In Proceedings of the 27th ACM International Conference on Informa-
tion and Knowledge Management, CIKM 2018, Torino, Italy, October 22-26, 2018
(2018), pp. 487–496. URL: https://doi.org/10.1145/3269206.3271745.

99. Gupta, D., and Berberich, K. Identifying Time Intervals for Knowledge Graph
Facts. In Companion of the The Web Conference 2018 on The Web Conference
2018, WWW 2018, Lyon , France, April 23-27, 2018 (2018), pp. 37–38. URL:
https://doi.org/10.1145/3184558.3186917.

100. Gupta, D., and Berberich, K. Efficient Retrieval of Knowledge Graph Fact Evi-
dences. In The Semantic Web: ESWC 2019 Satellite Events - ESWC 2019 Satellite
Events, Portorož, Slovenia, June 2-6, 2019, Revised Selected Papers (2019), pp. 90–94.
URL: https://doi.org/10.1007/978-3-030-32327-1_18.

101. Gupta, D., and Berberich, K. JIGSAW: Structuring Text into Tables. In Proceedings
of the 2019 ACM on International Conference on the Theory of Information Retrieval,
ICTIR 2019, Santa Clara, CA, USA, October 2-5, 2019 (2019), pp. 237–244. URL:
https://doi.org/10.1145/3341981.3344228.

102. Gupta, D., and Berberich, K. Optimizing Hyper-Phrase Queries. Under Submission.

103. Gupta, D., and Berberich, K. Structured Search in Annotated Document Collec-
tions. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining, WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019
(2019), pp. 794–797. URL: https://doi.org/10.1145/3289600.3290618.

104. Gupta, D., Berberich, K., Strötgen, J., and Zeinalipour-Yazti, D. Generating
Semantic Aspects for Queries. In Proceedings of the 18th ACM/IEEE on Joint
Conference on Digital Libraries, JCDL 2018, Fort Worth, TX, USA, June 03-07,
2018 (2018), pp. 335–336. URL: https://doi.org/10.1145/3197026.3203900.

105. Gupta, D., Berberich, K., Strötgen, J., and Zeinalipour-Yazti, D. Generating
Semantic Aspects for Queries. In The Semantic Web - 16th International Conference,
ESWC 2019, Portorož, Slovenia, June 2-6, 2019, Proceedings (2019), pp. 162–178.
URL: https://doi.org/10.1007/978-3-030-21348-0_11.

106. Gupta, D., Strötgen, J., and Berberich, K. DIGITALHISTORIAN: Search &
Analytics Using Annotations. In Proceedings of the 3rd HistoInformatics Workshop
on Computational History (HistoInformatics 2016) co-located with Digital Humanities
2016 conference (DH 2016), Krakow, Poland, July 11, 2016. (2016), pp. 5–10. URL:
http://ceur-ws.org/Vol-1632/paper_1.pdf.

107. Gupta, D., Strötgen, J., and Berberich, K. EventMiner: Mining Events from
Annotated Documents. In Proceedings of the 2016 ACM on International Conference
on the Theory of Information Retrieval, ICTIR 2016, Newark, DE, USA, September
12-16, 2016 (2016), pp. 261–270. URL: https://doi.org/10.1145/2970398.2970411.

108. Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-21,
1984 (1984), pp. 47–57. URL: http://doi.acm.org/10.1145/602259.602266.

109. Han, J., Kamber, M., and Pei, J. Data Mining: Concepts and Techniques, 3rd ed.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.

110. Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. Nonparametric and
Semiparametric Models. Springer Series in Statistics. Springer-Verlag, New York,
2004. URL: http://dx.doi.org/10.1007/978-3-642-17146-8.

REFERENCES 205

111. He, H., Wang, H., Yang, J., and Yu, P. S. BLINKS: Ranked Keyword Searches
on Graphs. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14, 2007 (2007), pp. 305–316. URL:
https://doi.org/10.1145/1247480.1247516.

112. Hearst, M. A. Automatic Acquisition of Hyponyms from Large Text Corpora.
In Proceedings of the 14th Conference on Computational Linguistics - Volume 2
(Stroudsburg, PA, USA, 1992), COLING ’92, Association for Computational Linguis-
tics, pp. 539–545. URL: http://dx.doi.org/10.3115/992133.992154.

113. Hearst, M. A. Search User Interfaces, 1st ed. Cambridge University Press, New
York, NY, USA, 2009.

114. Hearst, M. A., and Plaunt, C. Subtopic Structuring for Full-Length Document
Access. In Proceedings of the 16th Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval. Pittsburgh, PA, USA, June 27 -
July 1, 1993 (1993), pp. 59–68. URL: http://doi.acm.org/10.1145/160688.160695.

115. Henry, J. Providing Knowledge Panels With Search Results, May 2 2013. US Patent
App. 13/566,489. URL: https://www.google.com/patents/US20130110825.

116. Hoffart, J., Milchevski, D., and Weikum, G. AESTHETICS: Analytics with
Strings, Things, and Cats. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014 (2014), pp. 2018–2020. URL: http://doi.acm.org/10.
1145/2661829.2661835.

117. Hoffart, J., Milchevski, D., and Weikum, G. STICS: Searching with Strings,
Things, and Cats. In The 37th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’14, Gold Coast , QLD, Australia
- July 06 - 11, 2014 (2014), pp. 1247–1248. URL: http://doi.acm.org/10.1145/
2600428.2611177.

118. Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol,
M., Taneva, B., Thater, S., and Weikum, G. Robust Disambiguation of Named
Entities in Text. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (Stroudsburg, PA, USA, 2011), EMNLP ’11, Association for
Computational Linguistics, pp. 782–792. URL: http://dl.acm.org/citation.cfm?
id=2145432.2145521.

119. Hong, P. J., Gupta, P. K., Gaylinn, N. J., Kazhiyur-Mannar, R., Goel, K. J.,
Bar-or, O., Menzel, J. W., Dhanaraj, C. R., Levy, J. L., Thakur, S. A., et al.
Related entities, Feb. 15 2018. US Patent App. 15/798,175.

120. Hu, L., Li, J., Li, X., Shao, C., and Wang, X. TSDPMM: Incorporating Prior Topic
Knowledge into Dirichlet Process Mixture Models for Text Clustering. In EMNLP
(2015), L. Màrquez, C. Callison-Burch, J. Su, D. Pighin, and Y. Marton, Eds., The
Association for Computational Linguistics, pp. 787–792. URL: http://dblp.uni-
trier.de/db/conf/emnlp/emnlp2015.html#HuLLSW15.

121. Huijnen, P., Laan, F., de Rijke, M., and Pieters, T. A Digital Humanities
Approach to the History of Science - Eugenics Revisited in Hidden Debates by
Means of Semantic Text Mining. In Social Informatics - SocInfo 2013 International
Workshops, QMC and HISTOINFORMATICS, Kyoto, Japan, November 25, 2013,
Revised Selected Papers (2013), pp. 71–85. URL: http://dx.doi.org/10.1007/978-
3-642-55285-4_6.

122. Ipeirotis, P. G., Agichtein, E., Jain, P., and Gravano, L. To Search or to Crawl?:
Towards a Query Optimizer for Text-Centric Tasks. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Chicago, Illinois, USA,
June 27-29, 2006 (2006), pp. 265–276. URL: http://doi.acm.org/10.1145/1142473.
1142504.

123. Jatowt, A., Au Yeung, C.-M., and Tanaka, K. Estimating Document Focus
Time. In Proceedings of the 22nd ACM International Conference on Conference on

206 REFERENCES

Information and Knowledge Management (New York, NY, USA, 2013), CIKM ’13,
ACM, pp. 2273–2278. URL: http://doi.acm.org/10.1145/2505515.2505655.

124. Jatowt, A., and man Au Yeung, C. Extracting Collective Expectations About the
Future from Large Text Collections. In Proceedings of the 20th ACM Conference on
Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom,
October 24-28, 2011 (2011), pp. 1259–1264. URL: http://doi.acm.org/10.1145/
2063576.2063759.

125. Joho, H., Jatowt, A., and Blanco, R. NTCIR Temporalia: A Test Collection
for Temporal Information Access Research. In 23rd International World Wide Web
Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, Companion
Volume (2014), pp. 845–850. URL: http://doi.acm.org/10.1145/2567948.2579044.

126. Joho, H., Jatowt, A., Blanco, R., Yu, H., and Yamamoto, S. Overview of
NTCIR-12 Temporal Information Access (Temporalia-2) Task. In Proceedings of the
12th NTCIR Conference on Evaluation of Information Access Technologies (2016).

127. Jones, R., and Diaz, F. Temporal Profiles of Queries. ACM Trans. Inf. Syst. 25, 3
(July 2007). URL: http://doi.acm.org/10.1145/1247715.1247720.

128. Jurafsky, D., and Martin, J. H. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition,
2nd Edition. Prentice Hall series in artificial intelligence. Prentice Hall, Pearson
Education International, 2009. URL: http://www.worldcat.org/oclc/315913020.

129. Kando, N. Overview of the Eighth NTCIR Workshop. xi–xviii. URL:
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings8/NTCIR/01-

NTCIR8-OV-KandoN.pdf.

130. Kanhabua, N., Blanco, R., and Nørv̊ag, K. Temporal Information Retrieval.
Foundations and Trends in Information Retrieval 9, 2 (2015), 91–208. URL: http:
//dx.doi.org/10.1561/1500000043.

131. Kanhabua, N., Nguyen, T. N., and Nejdl, W. Learning to Detect Event-Related
Queries for Web Search. Proceedings of the 5th Temporal Web Analytics Workshop
(TempWeb’2015) at WWW’2015 (2015).

132. Kanhabua, N., and Nørv̊ag, K. Determining Time of Queries for Re-Ranking Search
Results. In Research and Advanced Technology for Digital Libraries, M. Lalmas,
J. Jose, A. Rauber, F. Sebastiani, and I. Frommholz, Eds., vol. 6273 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 261–272. URL:
http://dx.doi.org/10.1007/978-3-642-15464-5_27.

133. Kanhabua, N., and Nørv̊ag, K. Using Temporal Language Models for Document
Dating. In ECML/PKDD (2) (2009), pp. 738–741.

134. Kong, W., and Allan, J. Extracting Query Facets from Search Results. In The 36th
International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR ’13, Dublin, Ireland - July 28 - August 01, 2013 (2013), pp. 93–102.
URL: http://doi.acm.org/10.1145/2484028.2484097.

135. Koutrika, G., Liu, L., and Simske, S. J. Generating Reading Orders Over Document
Collections. In 31st IEEE International Conference on Data Engineering, ICDE
2015, Seoul, South Korea, April 13-17, 2015 (2015), pp. 507–518. URL: http:

//dx.doi.org/10.1109/ICDE.2015.7113310.

136. Krause, T., Leser, U., and Lüdeling, A. graphANNIS: A Fast Query Engine for
Deeply Annotated Linguistic Corpora. Corpus Linguistic Software Tools 31, 1 (2016),
1–25.

137. Kuzey, E., Setty, V., Strötgen, J., and Weikum, G. As Time Goes By: Com-
prehensive Tagging of Textual Phrases with Temporal Scopes. In Proceedings of
the 25th International Conference on World Wide Web, WWW 2016, Montreal,

REFERENCES 207

Canada, April 11 - 15, 2016 (2016), pp. 915–925. URL: http://doi.acm.org/10.
1145/2872427.2883055.

138. Kuzey, E., Vreeken, J., and Weikum, G. A Fresh Look on Knowledge Bases:
Distilling Named Events from News. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, CIKM
2014, Shanghai, China, November 3-7, 2014 (2014), pp. 1689–1698. URL: http:
//doi.acm.org/10.1145/2661829.2661984.

139. Lalmas, M. XML Retrieval. Synthesis Lectures on Information Concepts, Retrieval,
and Services. Morgan & Claypool Publishers, 2009. URL: https://doi.org/10.2200/
S00203ED1V01Y200907ICR007.

140. Lardon, J., Abdellaoui, R., Bellet, F., Asfari, H., Souvignet, J., Texier, N.,
Jaulent, M.-C., Beyens, M.-N., Burgun, A., and Bousquet, C. Adverse drug
reaction identification and extraction in social media: a scoping review. Journal of
medical Internet research 17, 7 (2015), e171.

141. Lehmann, J., Gerber, D., Morsey, M., and Ngomo, A. N. DeFacto - Deep Fact
Validation. In The Semantic Web - ISWC 2012 - 11th International Semantic Web
Conference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part I (2012),
pp. 312–327. URL: https://doi.org/10.1007/978-3-642-35176-1_20.

142. Li, C., Yan, N., Roy, S. B., Lisham, L., and Das, G. Facetedpedia: Dynamic
Generation of Query-dependent Faceted Interfaces for Wikipedia. In Proceedings
of the 19th International Conference on World Wide Web (New York, NY, USA,
2010), WWW ’10, ACM, pp. 651–660. URL: http://doi.acm.org/10.1145/1772690.
1772757.

143. Li, H. Data Extraction from Text Using Wild Card Queries. Masters Abstracts Inter-
national (2006). URL: http://webdocs.cs.ualberta.ca/~drafiei/papers/vldb06.
pdf.

144. Li, X., and Croft, W. B. Time-Based Language Models. In Proceedings of the
Twelfth International Conference on Information and Knowledge Management (New
York, NY, USA, 2003), CIKM ’03, ACM, pp. 469–475. URL: http://doi.acm.org/
10.1145/956863.956951.

145. Li, Y., Reiss, F., and Chiticariu, L. SystemT: A Declarative Information Extraction
System. In The 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011,
Portland, Oregon, USA - System Demonstrations (2011), pp. 109–114. URL: http:
//www.aclweb.org/anthology/P11-4019.

146. Lin, C.-Y. ROUGE: Recall-Oriented Understudy of Gisting Evaluation. A Software
Package for Automated Evaluation of Summaries, 2015. URL: http://www.berouge.
com/Pages/default.aspx.

147. Ling, X., and Weld, D. S. Temporal Information Extraction. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, July 11-15, 2010 (2010). URL: http://www.aaai.org/ocs/index.

php/AAAI/AAAI10/paper/view/1805.

148. MacKay, D. J. C., and Peto, L. C. B. A Hierarchical Dirichlet Language Model. Nat-
ural Language Engineering 1 (9 1995), 289–308. URL: http://journals.cambridge.
org/article_S1351324900000218.

149. man Au Yeung, C., and Jatowt, A. Studying How the Past is Remembered:
Towards Computational History through Large Scale Text Mining. In CIKM (2011),
pp. 1231–1240.

150. Manning, C. D., Raghavan, P., and Schütze, H. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA, 2008.

151. Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and
McClosky, D. The Stanford CoreNLP Natural Language Processing Toolkit. In

208 REFERENCES

Association for Computational Linguistics (ACL) System Demonstrations (2014),
pp. 55–60. URL: http://www.aclweb.org/anthology/P/P14/P14-5010.

152. Massey, F. J. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the
American Statistical Association 46, 253 (1951), 68–78. URL: http://www.jstor.
org/stable/2280095.

153. Mazur, P. P., and Dale, R. WikiWars: A New Corpus for Research on Temporal
Expressions. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2010, 9-11 October 2010, MIT Stata Center, Mas-
sachusetts, USA, A Meeting of SIGDAT, a Special Interest Group of the ACL (2010),
pp. 913–922. URL: http://www.aclweb.org/anthology/D10-1089.

154. Metzger, S., Elbassuoni, S., Hose, K., and Schenkel, R. S3K: Seeking Statement-
Supporting Top-K Witnesses. In Proceedings of the 20th ACM Conference on In-
formation and Knowledge Management, CIKM 2011, Glasgow, United Kingdom,
October 24-28, 2011 (2011), pp. 37–46. URL: http://doi.acm.org/10.1145/2063576.
2063587.

155. Metzler, D., Jones, R., Peng, F., and Zhang, R. Improving Search Relevance for
Implicitly Temporal Queries. In Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York, NY,
USA, 2009), SIGIR ’09, ACM, pp. 700–701. URL: http://doi.acm.org/10.1145/
1571941.1572085.

156. Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., , Pickett, J. P.,
Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. A.,
and Aiden, E. L. Quantitative Analysis of Culture Using Millions of Digitized Books.
Science 331, 6014 (2011), 176–182. URL: http://science.sciencemag.org/content/
331/6014/176, arXiv:http://science.sciencemag.org/content/331/6014/176.full.pdf.

157. Miller, R. C., and Myers, B. A. Lightweight Structured Text Processing. USENIX
Annual Technical Conference, General Track (1999). URL: http://dblp.org/rec/
conf/usenix/MillerM99.

158. Milne, D., and Witten, I. H. An Effective, Low-Cost Measure of Semantic Related-
ness Obtained from Wikipedia Links. In Proceeding of AAAI Workshop on Wikipedia
and Artificial Intelligence: an Evolving Synergy (July 2008), AAAI Press, pp. 25–30.
URL: https://www.aaai.org/Papers/Workshops/2008/WS-08-15/WS08-15-005.pdf.

159. Min, F., Wu, X., and Lu, Z. Pattern Matching with Independent Wildcard Gaps.
In Eighth IEEE International Conference on Dependable, Autonomic and Secure
Computing, DASC 2009, Chengdu, China, 12-14 December, 2009 (2009), pp. 194–199.
URL: https://doi.org/10.1109/DASC.2009.65.

160. Mitchell, T. M., Cohen, W. W., Jr., E. R. H., Talukdar, P. P., Yang, B.,
Betteridge, J., Carlson, A., Mishra, B. D., Gardner, M., Kisiel, B., Krish-
namurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios,
E. A., Ritter, A., Samadi, M., Settles, B., Wang, R. C., Wijaya, D., Gupta, A.,
Chen, X., Saparov, A., Greaves, M., and Welling, J. Never-Ending Learning.
Commun. ACM 61, 5 (2018), 103–115. URL: http://doi.acm.org/10.1145/3191513.

161. Nakashole, N., Theobald, M., and Weikum, G. Scalable Knowledge Harvesting
with High Precision and High Recall. In Proceedings of the Forth International
Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China,
February 9-12, 2011 (2011), pp. 227–236. URL: http://doi.acm.org/10.1145/

1935826.1935869.

162. Nakashole, N., Weikum, G., and Suchanek, F. M. PATTY: A Taxonomy of
Relational Patterns with Semantic Types. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea
(2012), pp. 1135–1145. URL: http://www.aclweb.org/anthology/D12-1104.

REFERENCES 209

163. Naumann, F., and Herschel, M. An Introduction to Duplicate Detection. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2010. URL: https:
//doi.org/10.2200/S00262ED1V01Y201003DTM003.

164. Nguyen, T. N., and Kanhabua, N. Leveraging Dynamic Query Subtopics for Time-
Aware Search Result Diversification. In Advances in Information Retrieval - 36th
European Conference on IR Research, ECIR 2014, Amsterdam, The Netherlands,
April 13-16, 2014. Proceedings (2014), pp. 222–234. URL: http://dx.doi.org/10.
1007/978-3-319-06028-6_19.

165. Nguyen, T. N., Kanhabua, N., and Nejdl, W. Multiple Models for Recommending
Temporal Aspects of Entities. In The Semantic Web - 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings (2018), pp. 462–
480. URL: https://doi.org/10.1007/978-3-319-93417-4_30.

166. Niu, F., Zhang, C., Ré, C., and Shavlik, J. W. Elementary: Large-Scale Knowledge-
Base Construction via Machine Learning and Statistical Inference. Int. J. Se-
mantic Web Inf. Syst. 8, 3 (2012), 42–73. URL: https://doi.org/10.4018/jswis.
2012070103.

167. Novak, J., Micheel, I., Melenhorst, M. S., Wieneke, L., Düring, M., Mo-
ron, J. G., Pasini, C., Tagliasacchi, M., and Fraternali, P. HistoGraph - A
Visualization Tool for Collaborative Analysis of Networks from Historical Social
Multimedia Collections. In 18th International Conference on Information Visu-
alisation, IV 2014, Paris, France, July 16-18, 2014 (2014), pp. 241–250. URL:
http://dx.doi.org/10.1109/IV.2014.47.

168. Nunes, S., Ribeiro, C., and David, G. Use of Temporal Expressions in Web Search. In
Advances in Information Retrieval, C. Macdonald, I. Ounis, V. Plachouras, I. Ruthven,
and R. White, Eds., vol. 4956 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 580–584. URL: http://dx.doi.org/10.1007/978-3-540-78646-
7_59.

169. Odijk, D., Gârbacea, C., Schoegje, T., Hollink, L., de Boer, V., Ribbens,
K., and van Ossenbruggen, J. Supporting Exploration of Historical Perspectives
Across Collections. In Research and Advanced Technology for Digital Libraries - 19th
International Conference on Theory and Practice of Digital Libraries, TPDL 2015,
Poznań, Poland, September 14-18, 2015. Proceedings (2015), pp. 238–251. URL:
http://dx.doi.org/10.1007/978-3-319-24592-8_18.

170. Panev, K., and Berberich, K. Phrase Queries with Inverted + Direct Indexes. In
Web Information Systems Engineering - WISE 2014 - 15th International Conference,
Thessaloniki, Greece, October 12-14, 2014, Proceedings, Part I (2014), pp. 156–169.
URL: http://dx.doi.org/10.1007/978-3-319-11749-2_13.

171. Paulheim, H. Knowledge Graph Refinement: A Survey of Approaches and Evaluation
Methods. Semantic Web 8, 3 (2017), 489–508. URL: https://doi.org/10.3233/SW-
160218.

172. Peetz, M., Meij, E., and de Rijke, M. Using Temporal Bursts for Query Modeling.
Inf. Retr. 17, 1 (2014), 74–108. URL: https://doi.org/10.1007/s10791-013-9227-2.

173. Piscopo, A., Vougiouklis, P., Kaffee, L., Phethean, C., Hare, J. S., and
Simperl, E. What do Wikidata and Wikipedia Have in Common?: An Analysis of
their Use of External References. In Proceedings of the 13th International Symposium
on Open Collaboration, OpenSym 2017, Galway, Ireland, August 23-25, 2017 (2017),
pp. 1:1–1:10. URL: https://doi.org/10.1145/3125433.3125445.

174. Qamra, A., Tseng, B. L., and Chang, E. Y. Mining Blog Stories Using
Community-Based and Temporal Clustering. In Proceedings of the 2006 ACM
CIKM International Conference on Information and Knowledge Management, Ar-
lington, Virginia, USA, November 6-11, 2006 (2006), pp. 58–67. URL: http:

//doi.acm.org/10.1145/1183614.1183627.

210 REFERENCES

175. Radinsky, K., Davidovich, S., and Markovitch, S. Learning Causality for News
Events Prediction. In Proceedings of the 21st World Wide Web Conference 2012,
WWW 2012, Lyon, France, April 16-20, 2012 (2012), pp. 909–918. URL: https:
//doi.org/10.1145/2187836.2187958.

176. Radinsky, K., Davidovich, S., and Markovitch, S. Learning to Predict from
Textual Data. J. Artif. Intell. Res. (JAIR) 45 (2012), 641–684. URL: http://dx.
doi.org/10.1613/jair.3865.

177. Reinanda, R., Meij, E., and de Rijke, M. Mining, Ranking and Recommending
Entity Aspects. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Santiago, Chile, August 9-13,
2015 (2015), pp. 263–272. URL: http://doi.acm.org/10.1145/2766462.2767724.

178. Robertson, S. E., and Jones, K. S. Relevance Weighting of Search Terms. JASIS
27, 3 (1976), 129–146. URL: https://doi.org/10.1002/asi.4630270302.

179. Salminen, A., and Tompa, F. W. PAT Expressions: An Algebra for Text Search. Acta
Linguistica Hungarica (1994). URL: http://users.jyu.fi/~airi/papers/COMPLEX-
1992.pdf.

180. Samet, H., Sankaranarayanan, J., Lieberman, M. D., Adelfio, M. D., Fruin,
B. C., Lotkowski, J. M., Panozzo, D., Sperling, J., and Teitler, B. E. Reading
News with Maps by Exploiting Spatial Synonyms. Commun. ACM 57, 10 (2014),
64–77. URL: http://doi.acm.org/10.1145/2629572.

181. Santos, R. L. T., Macdonald, C., and Ounis, I. Search Result Diversification.
Foundations and Trends R© in Information Retrieval 9, 1 (2015), 1–90. URL: http:
//dx.doi.org/10.1561/1500000040.

182. Sarker, A., Ginn, R., Nikfarjam, A., O’Connor, K., Smith, K., Jayaraman, S.,
Upadhaya, T., and Gonzalez, G. Utilizing Social Media Data for Pharmacovigilance:
A Review. Journal of Biomedical Informatics 54 (2015), 202 – 212. URL: http:
//www.sciencedirect.com/science/article/pii/S1532046415000362.

183. Savenkov, D., and Agichtein, E. When a Knowledge Base Is Not Enough: Question
Answering over Knowledge Bases with External Text Data. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016 (2016), pp. 235–244. URL:
http://doi.acm.org/10.1145/2911451.2911536.

184. Schuhmacher, M., Dietz, L., and Ponzetto, S. P. Ranking Entities for Web
Queries Through Text and Knowledge. In Proceedings of the 24th ACM International
Conference on Information and Knowledge Management, CIKM 2015, Melbourne,
VIC, Australia, October 19 - 23, 2015 (2015), pp. 1461–1470. URL: http://doi.acm.
org/10.1145/2806416.2806480.

185. Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price,
T. G. Access Path Selection in a Relational Database Management System. In
Proceedings of the 1979 ACM SIGMOD International Conference on Management
of Data, Boston, Massachusetts, USA, May 30 - June 1. (1979), pp. 23–34. URL:
https://doi.org/10.1145/582095.582099.

186. Strötgen, J., Alonso, O., and Gertz, M. Identification of Top Relevant Temporal
Expressions in Documents. In 2nd Temporal Web Analytics Workshop, TempWeb
’12, Lyon, France, April 16-17, 2012 (2012), pp. 33–40. URL: https://doi.org/10.
1145/2169095.2169102.

187. Strötgen, J., and Gertz, M. Event-Centric Search and Exploration in Document
Collections. In Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital
Libraries, JCDL ’12, Washington, DC, USA, June 10-14, 2012 (2012), pp. 223–232.
URL: http://doi.acm.org/10.1145/2232817.2232859.

188. Strötgen, J., and Gertz, M. Multilingual and Cross-domain Temporal Tagging.
Language Resources and Evaluation 47, 2 (2013), 269–298.

REFERENCES 211

189. Strötgen, J., and Gertz, M. Proximity2-Aware Ranking for Textual, Temporal,
and Geographic Queries. In Proceedings of the 22Nd ACM International Conference
on Information & Knowledge Management (New York, NY, USA, 2013), CIKM ’13,
ACM, pp. 739–744. URL: http://doi.acm.org/10.1145/2505515.2505640.

190. Suchanek, F. M., Kasneci, G., and Weikum, G. YAGO: A Large Ontology
from Wikipedia and WordNet. Web Semant. 6, 3 (Sept. 2008), 203–217. URL:
http://dx.doi.org/10.1016/j.websem.2008.06.001.

191. Swan, R. C., and Allan, J. Automatic Generation of Overview Timelines. In
SIGIR 2000: Proceedings of the 23rd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, July 24-28, 2000, Athens,
Greece (2000), pp. 49–56. URL: https://doi.org/10.1145/345508.345546.

192. Tahmasebi, N., Borin, L., Capannini, G., Dubhashi, D., Exner, P., Forsberg,
M., Gossen, G., Johansson, F. D., Johansson, R., Kågebäck, M., Mogren, O.,
Nugues, P., and Risse, T. Visions and Open Challenges for a Knowledge-Based
Culturomics. International Journal on Digital Libraries 15, 2 (2015), 169–187. URL:
http://dx.doi.org/10.1007/s00799-015-0139-1.

193. Talukdar, P. P., Wijaya, D. T., and Mitchell, T. M. Coupled Temporal Scoping
of Relational Facts. In Proceedings of the Fifth International Conference on Web
Search and Web Data Mining, WSDM 2012, Seattle, WA, USA, February 8-12, 2012
(2012), pp. 73–82. URL: http://doi.acm.org/10.1145/2124295.2124307.

194. Teh, Y. W. Dirichlet Process. In Encyclopedia of Machine Learning. 2010, pp. 280–
287. URL: https://doi.org/10.1007/978-0-387-30164-8_219.

195. Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. Sharing Clusters
among Related Groups: Hierarchical Dirichlet Processes. In Advances in Neu-
ral Information Processing Systems 17 [Neural Information Processing Systems,
NIPS 2004, December 13-18, 2004, Vancouver, British Columbia, Canada] (2004),
pp. 1385–1392. URL: http://papers.nips.cc/paper/2698-sharing-clusters-

among-related-groups-hierarchical-dirichlet-processes.

196. Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. Hierarchical Dirichlet
Processes. Journal of the American Statistical Association 101, 476 (2006), 1566–1581.

197. Therneau, T., Atkinson, B., and Ripley, B. rpart: Recursive Partitioning and
Regression Trees, 2014. R package version 4.1-8. URL: http://CRAN.R-project.org/
package=rpart.

198. Tran, N. K., Tran, T. A., and Niederée, C. Beyond Time: Dynamic Context-Aware
Entity Recommendation. In The Semantic Web - 14th International Conference,
ESWC 2017, Portorož, Slovenia, May 28 - June 1, 2017, Proceedings, Part I (2017),
pp. 353–368. URL: https://doi.org/10.1007/978-3-319-58068-5_22.

199. Tylenda, T., Kondreddi, S. K., and Weikum, G. Spotting Knowledge Base Facts
in Web Texts. In Proceedings of the 4th Workshop on Automated Knowledge Base
Construction (2014), pp. 1–6.

200. Verhagen, M., Mani, I., Sauri, R., Littman, J., Knippen, R., Jang, S. B.,
Rumshisky, A., Phillips, J., and Pustejovsky, J. Automating Temporal Annota-
tion with TARSQI. In ACL 2005, 43rd Annual Meeting of the Association for Com-
putational Linguistics, Proceedings of the Conference, 25-30 June 2005, University
of Michigan, USA (2005). URL: http://acl.ldc.upenn.edu/P/P05/P05-3021.pdf.

201. Wald, A., and Wolfowitz, J. On a Test Whether Two Samples are from the Same
Population. The Annals of Mathematical Statistics 11, 2 (1940), pp. 147–162. URL:
http://www.jstor.org/stable/2235872.

202. Williams, H. E., Zobel, J., and Bahle, D. Fast Phrase Querying with Combined
Indexes. ACM Trans. Inf. Syst. 22, 4 (Oct. 2004), 573–594. URL: http://doi.acm.
org/10.1145/1028099.1028102.

212 REFERENCES

203. Winkler, W. E. String Comparator Metrics and Enhanced Decision Rules in the
Fellegi-Sunter Model of Record Linkage.

204. Xu, L., Bedrick, E. J., Hanson, T., and Restrepo, C. A Comparison of Statistical
Tools for Identifying Modality in Body Mass Distributions. Journal of Data Science
12, 1 (2014), 175–196.

205. Yahya, M., Barbosa, D., Berberich, K., Wang, Q., and Weikum, G. Relationship
Queries on Extended Knowledge Graphs. In Proceedings of the Ninth ACM Inter-
national Conference on Web Search and Data Mining, San Francisco, CA, USA,
February 22-25, 2016 (2016), pp. 605–614. URL: http://doi.acm.org/10.1145/

2835776.2835795.

206. Yang, M., Ding, B., Chaudhuri, S., and Chakrabarti, K. Finding Patterns in a
Knowledge Base using Keywords to Compose Table Answers. PVLDB 7, 14 (2014),
1809–1820. URL: http://www.vldb.org/pvldb/vol7/p1809-yang.pdf.

207. Yeung, C. A., and Jatowt, A. Studying How the Past is Remembered: Towards
Computational History through Large Scale Text Mining. In Proceedings of the
20th ACM Conference on Information and Knowledge Management, CIKM 2011,
Glasgow, United Kingdom, October 24-28, 2011 (2011), pp. 1231–1240. URL: http:
//doi.acm.org/10.1145/2063576.2063755.

208. yew Lin, C. Rouge: a Package for Automatic Evaluation of Summaries. In Proceedings
of the ACL Workshop: Text Summarization Braches Out 2004 (01 2004), pp. 25–26.

209. Zhai, C., and Massung, S. Text Data Management and Analysis: A Practical
Introduction to Information Retrieval and Text Mining. Association for Computing
Machinery and Morgan & Claypool, New York, NY, USA, 2016.

210. Zhang, C., Ré, C., Cafarella, M. J., Shin, J., Wang, F., and Wu, S. DeepDive:
Declarative Knowledge Base Construction. Commun. ACM 60, 5 (2017), 93–102.
URL: https://doi.org/10.1145/3060586.

211. Zhang, R., Konda, Y., Dong, A., Kolari, P., Chang, Y., and Zheng, Z. Learning
Recurrent Event Queries for Web Search. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing (Stroudsburg, PA, USA,
2010), EMNLP ’10, Association for Computational Linguistics, pp. 1129–1139. URL:
http://dl.acm.org/citation.cfm?id=1870658.1870768.

212. Zhang, S., and Balog, K. On-The-Fly Table Generation. In The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval,
SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018 (2018), pp. 595–604. URL:
http://doi.acm.org/10.1145/3209978.3209988.

213. Zhang, V., Rey, B., Stipp, E., and Jones, R. Geomodification in Query Rewriting.
In GIR ’06: Proceedings of the Workshop on Geographic Information Retrieval,
SIGIR 2006 (2006).

214. Zhou, M., Cheng, T., and Chang, K. C.-C. Data-oriented Content Query System
- Searching for Data into Text on the Web. Proceedings of the Third International
Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY,
USA, February 4-6, 2010 (2010), 121–130. URL: http://portal.acm.org/citation.
cfm?doid=1718487.1718503.

215. Zhu, X., Ghahramani, Z., and Lafferty, J. Time-Sensitive Dirichlet Process
Mixture Models. Tech. rep., DTIC Document, 2005.

216. Zukowski, M., Heman, S., Nes, N., and Boncz, P. Super-Scalar RAM-CPU
Cache Compression. In Proceedings of the 22nd International Conference on Data
Engineering (Washington, DC, USA, 2006), ICDE ’06, IEEE Computer Society,
pp. 59–59. URL: http://dx.doi.org/10.1109/ICDE.2006.150.

