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Abstract

The subject of this thesis are q-Gaussian variables and its relations with
two kind of matrix models: the Sachdev-Ye-Kitaev (SYK) model and Wigner
matrices with q-Gaussian entries. The results are divided into two sections.

In the first part, we extend the results of Feng-Tian-Wei [12, 13] to the
multivariate setting. As a consequence, we show that the dynamical version of
the SYK model approximates the q-Brownian motion. We also characterize the
asymptotic limit of fluctuations for the SYK model.

In the second part, we characterize the fluctuations for Wigner matrices
with q-Gaussian entries, and present a generalization of fluctuations for the
case of block matrices. This is connected with the recent work of Belinschi-
Diaz-Mingo [1]. Wigner matrices with q-Gaussian entries and the SYK model,
under some parameter assumptions, approximate semicircular variables. We
compare the results for fluctuations obtained in this thesis with the fluctuations
of the Gaussian Unitary Ensemble, which is the canonical matrix model that
approximate semicircular variables.
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Zusammenfassung

Das Thema dieser Doktorarbeit sind q-Gaußsche Variablen und ihre Be-
ziehung zu zwei Zufallsmatrixenmodellen: dem Sachdev-Ye-Kitaev-Modell (SYK)
und Wignermatrizen mit q-Gaußschen Einträgen. Die Arbeit ist dementsprechend
in zwei Teile unterteilt.

Im ersten Teil erweitern wir die Resultate von Feng-Tian-Wei [12, 13] auf
den multivariaten Fall. Insbesondere erhalten wir daraus, dass die dynamis-
che Version des SYK-Modells die q-Brownsche Bewegung approximiert. Wir
charakterisieren weiterhin den asymptotischen Limes von Fluktuationen des
SYK-Modells.

Im zweiten Teil charakterisieren wir die Fluktuationen von Wignermatrizen
mit q-Gaußschen Einträgen, sowie eine Verallgemeinerung auf den Fall von
Blockmatrizen; letzteres stellt eine Beziehungen zu jüngeren Arbeiten von Belinschi-
Diaz-Mingo [1] dar. Wignermatrizen mit q-Gaußschen Einträgen sowie das
SYK-Modell für gewisse Parameter approximieren Halbkreiselemente. Wir ver-
gleichen unsere Resultate über Fluktuationen mit den Fluktuationen des GUE
Ensembles, welches das kanonische Matrizenmodell zur Approximation von Hal-
bkreiselementen ist.

3



4



Acknowledgments

First and foremost I would like to thank my supervisor Prof. Dr. Roland
Speicher for his support and patience throughout my time as his student. During
this time I have learned a lot from him. I really appreciate his advice and ideas
that were the guide during all these years. It has been an honor for me to belong
to his research group in Free Probability.

Many thanks to all current and former members of this research group. You
all contribute to create a friendly and stimulating working environment. In
particular, I would like to thank Sheng Yin with whom I shared this experience
as PhD students.

I also want to thank Prof. Dr. Moritz Weber and Dr. Octavio Arizmendi
Echegaray who kindly agreed to be co-referees of this thesis.

I am very grateful to Prof. Victor Perez-Abreu Carrion, Dr. Octavio Ariz-
mendi Echegaray and Dr. Mario Dı́az Torres for their valuable mentoring and
for giving me the motivation to continue with an academic career.

I am very grateful to Oscar Montiel Gonzalez who opened my eyes to the
world of mathematics and encouraged me to start my mathematical education.

I want to thank my dear friend Luis Enrique Osorio Puentes for the encour-
agement that he provided me when I most needed. I am also grateful to the “Los
Mutantes” theater group for the wonderful times we shared during my time in
Saarbrücken.

I also wish to thank Luz Victoria Hernandéz Jiménez for all her sacrifices
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Chapter 1

Introduction

The main topic of this thesis are q-Gaussian variables and their relations with
the asymptotic distribution of two kinds of matrix models: the Sachdev-Ye-
Kitaev (SYK) model and Wigner matrices with q-Gaussian entries. We showed
that a dynamical version of the SYK model converges towards the q-Brownian
motion. Also, we studied the convergence of fluctuation moments and higher
cumulants of these models. For Wigner matrices with q-Gaussian entries we also
extended these results to block matrices. This part is connected with the work
of Belinschi-Diaz-Mingo [1] on the asymptotic fluctuations for block matrices
with Gaussian entries.

The q-Gaussian distribution was introduced in [6, 8] by Bozejko, Kümmerer
and Speicher as the finite dimensional distribution of a generalized Brownian
motion (GBM). A GBM G = (G(f))f∈H is a family of self-adjoint operators
G(f) where f ∈ H for some real Hilbert space H, together with a state ϕt in
the algebra generated by the G(f) and is given by

ϕt (G(f1) · · ·G(fn)) =


0 if n is odd∑

π∈P2(n)

t(π)
∏

(l,r)∈π

〈fl, fr〉 if n even,
(1.1)

where P2(n) denotes the set of pair partitions and t(π) is a weight function. The
mapping G(f) is the non-commutative analog of the function

W (f) =

∫
R+

f(t)dBt, for f ∈ L2(R+),

where (Bt)t≥0 is the classical Brownian motion. The random variables W (f) are
also known as “generalized increments”. They also turn out to have Gaussian
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distribution, so their mixed moments are given by the Wick formula

E [W (f1) · · ·W (f2n)] =
∑

π∈P2(2n)

∏
(l,r)∈π

〈fl, fr〉.

The Wick formula characterizes Gaussian distribution. So, Equation (1.1) can
be interpreted as: the increments G(f) of the GBM are Gaussian with respect
to ϕt. The concrete structure of a GBM depends on the weight function t(π).
However, we also require the linear functional ϕt to be positive definite. It is
still an open problem to characterize the weight functions t(π) that give rise to
positive linear functionals ϕt. The general theory for this kind of functions was
started in [7].

The q-Brownian motion Bq = (Bq(f))f∈L2(R+) is defined as a GBM with
weight function

tq(π) = qcr(π),

where cr(π) is the number of crossings of π. The positivity of the linear func-
tional ϕq := ϕtq was proven in [6] for q in the interval [−1, 1]. The increments
Bq(f) of this process are called q-Gaussian variables. The construction of the
q-Brownian motion is presented in Section 2.7. Other examples of GBM can be
found in [7, 5].

One can see from Equation (1.1) that for q = 1 the q-Brownian motion
reduces to the classical Brownian motion. Another important subcase is the
value q = 0. In this case the process B0 is the free Brownian motion and its
increments form a semicircular family in the sense of free probability. Concretely
this means

ϕ0 (B0(f1) · · ·B0(f2n)) =
∑

π∈NC2(2n)

∏
(l,r)∈π

〈fl, fr〉,

where NC2(2n) is the set of non-crossing pair partitions. In both cases q = 0, 1
the orthogonality of f1, . . . , fn translate into in classical and free independence,
respectively.

The distribution of one q-Gaussian variable x = Bq(f) is well understood.
For simplicity let us assume ||f || = 1. From the spectral theory for self-adjoint
operators we know that there exists a probability measure µq on R such that for
n ≥ 0

ϕq(x
n) =

∫
R
tndµq(t).

The existence of such a probability measure relies on the positivity of the linear
functional ϕq. Actually, this is why we need the linear functional to be positive.
Many things are known for the measure µq. For example µq has a continuous
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density for −1 < q ≤ 1 supported on
[
−2√
1−q ,

2√
1−q

]
and is given by

fq(t) =

√
1− q
2π

√
4− (1− q)t2

∞∑
k=1

(−1)k−1q
k(k−1)

2 U2k−2

(
x
√

1− q
2

)
,

where Uk is the kth Chebyschev polynomial of the second kind. In particular for
the cases q = −1, 0, 1 the above formula reduces to

µ−1 =
1

2
(δ−1 + δ1), µ0(t) =

√
4− t2
2π

dt, µ1(t) =
e−

t2

2

√
2π
dt,

that is symmetric Bernoulli, Semicircular and Gaussian distributions. A more
convenient description of µq is given by its Cauchy transform

Gq(z) =

∫
R

1

z − t
dµq(t) =

1

z − 1

z− 1+q

z− 1+q+q2

z−...

for q ∈ [−1, 1].

However, the analytic description of several q-Gaussians remains to be an open
problem. See for example [29, Section 6]. The only joint description is given by
Equation (1.1).

One of the most remarkable properties of the Gaussian distribution and of
the Brownian motion is that it appears as the limit object in the Central Limit
Theorem (CLT). It is natural to ask whether the q-Gaussian distribution and
the q-Brownian motion also appear as a CLT.

Before discussing the question, let us have a look at the classical theory. In
classical probability, a CLT is a statement about the convergence of the distribu-
tion of X1+···+Xn√

n
to the distribution of a random variable X, where the (Xn)n≥1

is a family of independent random variables. In general, the distribution of X
is either trivial or an infinite divisible distribution. Since we are interested in
Gaussian variables, we assume the random variables (Xn)n≥1 to be characterized
by their moments, then X has Gaussian distribution.

The crucial requirement for a non-commutative version of the CLT is to
replace the independence of the variables, by some other kind of property. This
can be tensor, boolean, free independence, or other kind of rule for computing
mixed-moments, for instance, the factorization of naturally ordered products
[37] or the factorization of pyramidally ordered products [23, 6]. Independence
can be also replaced by exchangeability plus the singleton factorization property
[22].

A non-commutative CLT for the q-Brownian motion was provided by Spe-
icher in [37]. The statement is a non-commutative version of the passage from
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random walks to Brownian motion. He assumes some technical assumptions on
a sequence of selfadjoint variables (Xn)n≥1 and showed that

X1 + · · ·+Xn√
n

n→∞−−−→ x,

where x is a q-Gaussian variable. The property that we want to highlight here
is that the variables (Xn)n≥1 commute or anti-commute. Thus, the q-Gaussian
distribution arise as a CLT for a mixture of commuting and anti-commuting
variables. This observation is important for us because the SYK model can be
also seen as a sum of variables that commute or anti-commute. See Lemma 1.
Then up to some point it is natural to expect that the limit distribution of the
SYK model is the q-Gaussian distribution.

The theory of free probability was introduced by Voiculescu in a series of
papers [38, 39, 40]. It can be described as non-commutative probability plus a
notion of independence called freeness. The characteristic that makes free prob-
ability special among other approaches to non-commutative probability is the
connection with random matrices. Voiculescu showed [41] that classical inde-
pendent Wigner matrices converge in distribution to free semicircular variables.
This result is known as asymptotic freeness. Thus, random matrix theory ap-
pears as a bridge between classical and free probability. For the purpose of
this thesis, we will consider Wigner matrices with Gaussian entries. This kind
of random matrix model is commonly known as Gaussian Unitary Ensemble
(GUE). In particular, the result of asymptotic freeness says that independent
GUE approximate free semicirculars.

Now the natural question is: is there a random matrix model that approxi-
mates q-Gaussian variables? Śniady provides an affirmative answer to this ques-
tion in [35] by constructing a sparse random matrix model that approximates or-
thonormal q-Gaussian variables. An alternative exposition to this matrix model
can be found in [9].

Another matrix model that approximates q-Gaussians for small q are the so
called Gibbs measures. They were introduced by Guionnet-Shlyakhtenko [17] in
the context of free transport theory. To the knowledge of the author, this is the
only non-sparse random matrix model that approximates q-Gaussian variables.

There is also a random matrix model for q-circular systems. The model was
introduced by Mingo-Nica [25]. The q-circular system is a “complex version” of
q-Gaussian variables. An interesting feature of the model is that it can be used
to approximate z-circular systems, where the parameter z is a complex number
with |z| < 1.

Another matrix model that approximates q-Gaussian variables is the Sachdev-
Ye-Kitaev (SYK) model. The model was proposed in 1993 by Sachdev-Ye [33]
as a model of quantum random spin system. Later on, in 2015, it was promoted
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by Kitaev [20] as a model for quantum holography. It is interesting to us that
the origins of the SYK model are completely independent from the development
of GBM and q-deformations.

The SYK model has two parameters n and qn, where n is a positive even
integer and 1 ≤ qn ≤ n. The model is defied by

Hn,qn :=

√
−1
bqn/2c(

n
qn

)1/2 ∑
1≤i1<···<iqn≤n

Ji1,...,iqnψi1 · · ·ψiqn , (1.2)

where the coefficients Ji1,...,iqn are random variables and the ψ1, . . . , ψn are anti-
commuting variables known as Majorana fermions. See Definition 3.2 for precise
details. A similar model related to density states in quantum spin glasses was
also considered by Erdös-Schröder [11].

It seems to be of great interest in the analysis of the model when qn = 4
for all n ≥ 1. For instance, the SYK model proposed by Kitaev in [20] had
qn = 4. Other authors [14, 15, 10] consider the double scaled limit. This means
n, qn →∞ and assume the existence of the limit

q2
n

n
−→ λ ∈ [0,∞]. (1.3)

The authors of [14, 15, 10] observe that under the hypothesis (1.3) we have

E
[

1

2n/2
Tr(H2k

n,qn)

]
n,qn→∞−−−−−→

∑
π∈P2(2k)

e−2λcr(π). (1.4)

Based on the work of Erdös-Schröder [11], Feng-Tian-Wei [12] presented a rig-
orous version of (1.4). Observe that on the right side of (1.4) are the moments
of the q-Gaussian variable for q = e−2λ. One can also choose the sign of q by
fixing the parity of the sequence qn. We extend this result to the multivariate
situation.

The main result of this thesis is.

Theorem 1. The joint distribution of independent copies of the SYK model
(H1, · · · , Hp) converges in distribution to the joint distribution of orthonormal
q-Gaussian variables (x1, · · · , xp) under the hypothesis of double scaled limit
(1.3).

As a consequence we obtain

Corollary 1. Consider the dynamical version of the SYK model

Hn,qn(t) :=

√
−1
bqn/2c(

n
qn

)1/2 ∑
1≤i1<···<iqn≤n

Bi1,...,iqn (t)ψi1 · · ·ψiqn , for t ≥ 0,
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where Bi1,...,iqn (t) are independent classical Brownian motions. The processes
(Hn,qn(t))t≥0 converge to the q-Brownian motion.

We also investigate the asymptotics of classical cumulants for the SYK model.
These quantities also appear in the physics literature [16, 2, 3] under the name of
n-point correlator functions. In particular, Berkooz and collaborators computed
the 2-point and 4-point correlator functions [2, 3]. The second cumulant had also
been considered in a second paper by Feng-Tian-Wei [13]. We extended their
result and characterized the asymptotic limit of classical cumulants (cm)m≥1 of
all orders.

Theorem 2. Assume the random coefficients Ji1,...,iqn of the SYK model (3.2)
to be independent copies of a centered Gaussian random variables with variance
one. Then(

n

qn

)m−1

cm
(
tr(Hk1 , . . . , tr(Hkm)

) n→∞−−−→
∑

π′∈P2(k)
π′≤θ

∑
π∈P2(k)
π∨θ=1k

|π∨π′|= k
2
−m+1

qcr(π
′).

Theorem 2 is a direct consequence of Theorem 9, where we consider the most
general case of cumulants of traces of products of independent copies of the SYK
model. See section 3.3 for more details.

Our result about the convergence of independent SYK matrices to orthonor-
mal q-Gaussian variables resembles the well known result of Voiculescu of asymp-
totic freeness. Actually, for q = 0 we obtained the asymptotic freeness of inde-
pendent SYK matrices. The motivation for our study of fluctuation moments
and higher order cumulants of the SYK model was to compare the former with
the canonical fluctuations for semicircular variables, i.e., fluctuations coming
from independent copies of the Gaussian Unitary Ensemble (GUE). In spite of
the fact that under some parameter assumptions, namely

q2
n

n

n,qn→∞−−−−−→∞, (1.5)

the SYK model has the same asymptotic distribution as independent GUE ma-
trices, they have different fluctuation moments. The fluctuations for the SYK
model under assumption (1.5), are described by two pair partitions one of them
is non-crossing but the another may have crossigns. See the Figure 1.1.

We also analyze the fluctuations of another matrix model that approximates
semicircular variables and that is connected to q-Gaussian variables, namely,
Wigner matrices with orthogonal q-Gaussian entries. See Section 4.1 for detais
of the matrix model. It was shown by Voiculescu in the beginnings of free
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Figure 1.1: An example of the kind of partitions that appears in the description
of c3 (tr(H4, tr(H6), tr(H4)). On top there are two pair-partitions, the external
pair partition π on the left and the internal pair-partition π′ on the right. The
diagram below represents π ∨ π′. Observe that |π ∨ π′| ≤ 14

2
− 3 + 1 = 5.

probability that Wigner matrices with free semicircular entries are themselves
semicirculars. Later on, it was observed by Shlyakhtenko that the same result
is true, asymptotically, if we replace free semicircular by orthogonal q-Gaussian
variables. In this thesis we study the fluctuations for Wigner matrices with
q-Gaussian entries.

The kind of fluctuations that show up in the case of Wigner matrices with
q-Gaussian entries are similar to the ones of GUE matrices. Both fluctuation
moments are described in terms of annular pairings but in the former case, we
also have to consider the information of the number of crossings of each annular
pairing. See Figure 1.2.

For the sake of simplicity, we present here the result we obtain for fluctuations
of Wigner matrices with q-Gaussian entries in the case of one matrix. The
multivariate version is fully developed in Section 4.2.
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Figure 1.2: Annular non-crossing pair partitions can have crossings when are
drawn in a linear way.

Theorem 3. Let k1, . . . , km be positive integers and XN a Wigner matrix with
q-Gaussian entries. The asymptotics for cumulants in powers of XN are given
by

N2−mcm
(
Tr(Xk1

N ), . . . ,Tr(Xkm
N )
) N→∞−−−→

∑
π∈NC2(k1,...,km)

qcr(π)

where cr(π) stands for the number of crossings of π when is consider as an
ordinary pair partition.

The above statement can be also lifted to the case of block matrices with corre-
lated Wigner blocks. This can be done by choosing carefully the notation. See
Section 4.3 for more details regarding to this extension. In particular, for the
case q = 1 we recovered some of the results of Belinschi-Diaz-Mingo [1] about the
asymptotics for the second cumulant of Block Gaussian matrices. See Remark
7 for more details about the connection with the work of Belinschi-Diaz-Mingo
[1].

The thesis is organized as follows. In the following section we present the
necessary background for the thesis. In Chapter 3 we present the construction
of the SYK model and analyze the asymptotic distribution and fluctuations for
the model. The Chapter 4 is devoted to the study of Wigner matrices with q-
Gaussian entries. The chapter ends with a final comment about the connections
with the work of Belinschi-Diaz-Mingo [1].
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Chapter 2

Preliminaries

In this chapter we give the basic definitions of non-commutative probability,
and use them as a common framework to present some results of random matrix
theory, Free Probability and its extensions.

2.1 Non-commutative probability

Let us review the basic definitions of classical probability theory.

Definition 1. A σ-algebra F on a non-empty set Ω is a collection of subsets of
Ω such that

(1) Ω ∈ F .

(2) If A ∈ F , then Ac ∈ F .

(3) If An ∈ F for n ≥ 1, then
∞⋃
n=1

An ∈ F .

The pair (Ω,F) is also known as a measure space.

Elements in a σ-algebra are commonly known as events. If the set Ω is equipped
with a topology τ , then we define the Borel σ-algebra on Ω as the smallest σ-
algebra that contains τ . We denote it by B(Ω). In particular, the Borel σ-algebra
on R with respect to the usual topology is denoted by B(R).

Definition 2. A function f : Ω1 → Ω2 between measure spaces (Ω1,F1) and
(Ω2,F2) is said to be measurable if for every A ∈ F2 we have X−1(A) ∈ F1.

A σ-algebra is also the natural domain of definition for a probability measure.
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Definition 3. A probability measure P on a measure space (Ω,F) is a function
P : F → [0, 1] such that

(1) P(Ω) = 1.

(2) Let An ∈ F be such that An ∩ Am = ∅ for n 6= m, then

P

(
∞⋃
n=1

An

)
=
∞∑
n=1

P(An).

Property (2) is known as σ-additivity.

Definition 4. A classical probability space is a triplet (Ω,F ,P), where Ω is a
non-empty set, F is a σ-algebra of subsets of Ω and P is a probability measure
on (Ω,F).

The non-commutative version of a classical probability space is obtained by
looking at a special class of functions.

Definition 5. Let (Ω,F ,P) be a probability space.

(1) A function X : Ω→ R is said to be a random variable if for every A ∈ B(R)
we have that X−1(A) ∈ F .

(2) The expected value of a random variable X is defined as the Lebesgue
integral

E[X] :=

∫
Ω

X(ω)dP(ω) (2.1)

whenever it exists.

(3) For n ≥ 1 the n-th moment of a random variable X is defined by

E [Xn] =

∫
Ω

Xn(ω)dP(ω)

whenever it exists.

Conceptually, there is no difference between measurable functions and random
variables. However, it is common to use the name “random variable” when we
want to emphasize that we are in a probability space.
The expected value defined in (2.1) can be defined as a linear functional on a
large class of random variables.

Notation 1. (1) Let Lp(Ω,F ,P) be the set of random variables in (Ω,F ,P)
such that E[|X|n] <∞ for n = 1, . . . , p.
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(2) Denoted by

L−∞(Ω,F ,P) :=
⋂

1≤p<∞

Lp(Ω,F ,P),

the set of random variables with moments of all orders.

Then the expected value defined in (5(3)) can be seen as a linear functional
E : L−∞(Ω,F ,P)→ R. The pair (L−∞(Ω,F ,P),E) is the canonical example of
a non-commutative probability space.

Definition 6. A non-commutative probability space (ncps) is a tuple (A, ϕ),
where A is a unital algebra and ϕ : A → C is linear functional such that
ϕ(1) = 1.

A very important class of random variables are the so called characteristic func-
tions.

Definition 7. Let (Ω,F) be a measure space. For every element A ∈ F we
define the characteristic function of A by

1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A.

In some sense, characteristic functions encode the information of F . We can
also encode the probability measure, by taking expected values of this class of
functions. Namely, for every A ∈ F

P(A) = E[1A].

This leads us to the definition of distribution for a random variable.

Definition 8. Let X be a random variable on a probability space (Ω,F ,P), then
the distribution µX of X is a probability measure on (R,B(R)) given by

µX(A) := P(X−1(A)) = E[1X−1(A)], (2.2)

where A is an element in the Borel σ-algebra B(R).

A closer look at (2.2) shows that∫
R
1A(t)dµX(t) =

∫
Ω

1X−1(A)(ω)dP(ω), (2.3)

where A is a Borel set in R. Observe that by canonical methods (2.3) can be
extended to ∫

R
f(t)dµX(t) =

∫
Ω

Y (ω)dP(ω), (2.4)

13



where Y = f(X), for some Borel measurable function f : R→ R such that the
integrals exist. Equation (2.4) is also known as the Image measure Theorem
[21, Theorem 4.10] and can be extended to L−∞(R,B(R), µX). In this way our
definition of distribution extends to

Definition 9. The (extended) distribution of a random variable X : Ω→ R on
a probability space (Ω,F ,P) is the linear functional

µX : L−∞(R,B(R), µX)→ R

defined by

µX(f) := E[f(X)] =

∫
R
f(t)dµX(t).

Remark 1. The pair (L−∞(R,B(R), µX), µX) fits in the definition of ncps. The
linear functional µX is positive, namely, for any f ∈ L−∞(R,B(R), µX) with
f ≥ 0 we have µX(f) ≥ 0.

There are examples of ncps that do not come from classical probability.

Example 1. Let d be a positive integer and let Md(C) be the set of square
matrices. For a matrix A = (ai,j)

d
i,j=1 denoted by

Tr(A) = a1,1 + · · ·+ ad,d and tr(A) =
Tr(A)

d
.

Then the pair (Md(C), tr) is a ncps.

In the previous example we can observe some additional structure. The first
is positivity. For any matrix A = (ai,j)

d
i,j define the canonical involution A∗ =

(aj,i)
d
i,j. Then observe that tr(AA∗) =

∑d
i,j=1 |ai,j|2 ≥ 0. Second, the trace has

the so called trace property, namely, tr(AB) = tr(BA). This property is also
presented in Remark 1. However, it is hidden in the commutativity of R. This
motivates the following definition.

Definition 10. (1) A non-commutative distribution is a linear functional µ :
C〈X1, · · · , Xn〉 → C such that

(i) µ(1) = 1.

(ii) µ(PP ∗) ≥ 0 for any P ∈ C〈X1, · · · , Xn〉.
(iii) µ(PQ) = µ(QP ) for any P,Q ∈ C〈X1, · · · , Xn〉.

(2) Let (A, ϕ) be a ncps and a1, . . . , an ∈ A. The joint distribution of (a1, . . . , an)
is given by

µa : C〈X1, · · · , Xn〉 −→ C
P 7−→ µa(P ) := ϕ(P (a1, . . . , an)).
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Example 2. (1) Let X be a random variable in a probability space (Ω,F ,P).
The functional µX defined in Definition 9 satisfies the axioms of non-
commutative distribution.

(2) Given the matrices A1, . . . , An ∈Md(C), their joint distribution µ is given
by

µ : C〈X1, · · · , Xn〉 −→ C
P 7−→ µ(P ) := tr(P (A1, . . . , An)).

It follows from the properties of the trace that µ satisfy conditions (i)−(iii)
in Definition 10.

2.2 Gaussian matrices and Wigner Law

In the previous section we presented two of the fundamental examples of ncps,
namely, (L−∞(Ω,F ,P),E) and (Md(C), tr). Now we put these two examples to-
gether and present random matrices from the point of view of non-commutative
probability.

Example 3. Consider the algebra

M = Md

(
L−∞(Ω,F ,P)

)
and the linear functional

ψ = E⊗ tr .

The pair (M, ψ) is the ncps of random matrices of size d× d.

Not every random matrix fits in the previous example. However, the random
matrix models that we study in this thesis can be seen as elements in M for
some probability space and positive integer d.
One of the random matrix models that has been extensively studied in the
literature is the Gaussian Unitary Ensemble (GUE). We use the results known
for GUE matrices to guide the research in this thesis.

Definition 11. The Gaussian unitary ensemble (GUE) is a sequence of random

matrices (XN)N≥1, such that for every N ≥ 1 the entries of XN =
(
x

(N)
i,j

)N
i,j=1

are specified according to

(1) x
(N)
i,j = x

(N)
j,i .

(2) The diagonal entries x
(N)
i,i are Gaussian random variables with mean zero

and variance one.
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(3) The off-diagonal entries are complex random variables whose real <
(
x

(N)
i,j

)
and imaginary =

(
x

(N)
i,j

)
parts have Gaussian distribution and

E
[
x

(N)
i,j

]
= 0 and E

[∣∣∣x(N)
i,j

∣∣∣2] =
1

N
,

for any 1 ≤ i < j ≤ N .

(4) For any N ≥ 1 the variables
{
x

(N)
i,i

}
1≤i≤N

∪
{
<
(
x

(N)
i,j

)
,=
(
x

(N)
i,j

)}
1≤i<j≤N

are independent.

One of the first results in random matrices was the identification of the moments
of GUE matrices.

Theorem 4. (Wigner Law, Wigner 1955). Let XN be a GUE. We have
that

E
[

1

N
Tr (Xn

N)

]
N→∞−−−→

{
Cn/2 if n is even

0 if n is odd,

where C0 = C1 = 1 and for n ≥ 2

Cn =
1

n+ 1

(
2n

n

)
.

The elements in the sequence (Cn)n≥1 are known as Catalan numbers.

It was also noted by Wigner that the Catalan numbers are the moments of the
semicircular distribution. For that reason Theorem 4 is also known as Wigner
semicircular law.

Notation 2. The centered semicircular distribution of radius r is a a probability
measure µr on R, supported in the interval [−r, r] and defined by

µr(dx) =
2

πr2

√
r2 − (dx)2.

The standard semicircular distribution is the centered semicircular distribution
with radius r = 2. Unless stated otherwise, we will use the name semicircular or
semicircular distribution for the standard semicircular distribution. In particular
for n ≥ 1 ∫ 2

−2

x2n

π

√
4− x2dx = Cn.
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2.3 Free Probability

The theory of Free Probability started in the 1980s with the work of Voiculescu
[38, 39, 40]. Free Probability can be thought of as non-commutative probability
plus a notion of independence called freeness. One of the key concepts in classical
probability is the notion of independence. The simplest formulation of classical
independence goes as follows

Definition 12. Let (Ω,F ,P) be a classical probability space and J an index set
with cardinality bigger than two.

(1) A family of events {Ai}i∈J in F is said to be classical independent or
independent if for any finite subset F ⊂ J we have

P

(⋂
i∈F

Ai

)
=
∏
i∈F

P(Ai).

(2) A family of σ-algebras {Fi}i∈I contained in F is said to be independent if
for every choice Ai ∈ Fi (i ∈ J) the family {Ai}i∈J is independent.

(3) A family {Xi}i∈J of random variables is independent if the σ-algebras
{X−1

i (B(R))}i∈J are independent.

This notion of independence can be also encoded in the ncps (L−∞(Ω,F ,P),E).
The encoding is also better suited for an algebraic generalization.

Proposition 1. Let (Ω,F ,P) be a classical probability space and let {Xi}i∈I be
a family of random variables. The following are equivalent:

(1) The family {Xi}i∈I is independent.

(2) For any bounded Borel measurable functions fi : R → R and finite subset
F ⊂ I we have that

E

[∏
i∈F

fi(Xi)

]
=
∏
i∈F

E [fi(Xi)] .

Proposition 1 is a general characterization of classical independence. It remains
true when we consider general Borel measurable functions if the random variables
have bounded support. This equivalent formulation of independence can be
abstracted in the framework of ncps.
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Definition 13. (1) Let (A, ϕ) be a ncps and and Ai ⊂ A for i ∈ I a family
of unital subalgebras of A. The algebras {Ai}i∈I are said to be tensor
independent if for any choice ai ∈ Ai

ϕ

(∏
i∈F

ai

)
=
∏
i∈F

ϕ(ai),

where F ⊂ I is any finite subset.

(2) A family of variables ai ∈ A for i ∈ I is called tensor independent if the
unital algebras Ai := alg{1, ai} are tensor independent.

The canonical way to construct independent classical random variables is by
taking Cartesian products of classical probability spaces. In the same way we
can construct tensor independent random variables by tensoring ncps. The
concept of free independence arises when we change the tensor product for a
new operation on algebras: the free product. In [38] Voiculescu introduced the
notion of free product for C∗-algebras. This operation on C∗-algebras can be
also performed on unital algebras over C. See [28, Definition 6.1]. The precise
construction and definition of free product can be consulted in [28, Lectures 6
and 7]. Similar to classical and tensor independence, the definition of freeness
does not involve directly the definition of free product.

Definition 14. Let (A, ϕ) be a ncps and Ai ⊂ A for i ∈ I a family of unital
subalgebras of A. The algebras (Ai)i∈I are called free independent if for any
positive integer n and a1 ∈ Ai1 , . . . , an ∈ Ain with i1 ≤ i2 6= · · · 6= in we have
that:

ϕ(a1) = · · · = ϕ(an) = 0

implies

ϕ(a1 · · · an) = 0.

In classical probability, the central limit theorem (CLT) appears when we take
sums of independent random variables with finite moments. The same distribu-
tion appears when we use tensor independence. The situation is different when
we replace tensor by free independence. In the latter case we obtain the semicir-
cular distribution. A discussion on the free and tensor CLTs can be consulted
in [28, Lecture 8].
Non-commutative variables with semicircular distribution play a central role in
free probability. They are the free analogs of Gaussian variables.

Definition 15. Let (A, ϕ) be a ncps.
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(1) An element in S ∈ A is said to be a centered semicircular element of
variance σ2 if

ϕ (sn) =

{
Ck σ

2k if n = 2k for k ≥ 1
0 otherwise.

For short we will say that S is semicircular or a semicircular variable if S
is a centered semicircular element of variance one.

(2)

In 1991, Voiculescu [41] showed the connection between free probability and
random matrices. This result provides a deep insight on Wigner Law. More
precisely, Wigner Law says that GUE matrices approximate semicircular vari-
ables. A big achievement of Voiculescu was that he identified that independent
GUE matrices approximate free independent semicirculars.

Theorem 5. (Asymptotic freeness, Voiculescu 1991). Let X
(p)
N for p ∈

I be a family of independent copies of a GUE and (S(q))p∈I a family of free
independent semicircular variables in a ncps (A, ϕ). Then for any p1, . . . , pn ∈ I

E
[

1

N
Tr
(
X

(p1)
N · · ·X(pn)

N

)]
N→∞−−−→ ϕ

(
S(p1) · · ·S(pn)

)
.

Also, the convergence holds almost surely.

The statement of asymptotic freeness that we present in this thesis is definitely
not the most general. We emphasize the use of GUE matrices for the purpose of
this work. In Chapter 4 we present a proof of asymptotic freeness for a matrix
model that is a generalization of the GUE.

2.4 Cumulants

Free cumulants are the key concept in the combinatorial side of free probability.
The combinatorial approach to freeness was inspired by the work of Rota [31,
32] about cumulants in classical probability. Free and classical cumulants are
multilinear functionals that can be defined in any ncps. Their key property
is that free (respectively classical) independence can be characterized via free
(respectively classical) cumulants. The theory of cumulants is groundend in the
theory of Möbius functions on lattices of partitions. We primarily follow the
monographs [28, 36].

Notation 3. (1) For a positive integer k < n we denote [l, n] = {k, k +
1, . . . , n}. In the particular case k = 1 we also use the notation [1, n] = [n].
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(2) The set of partitions of [n] is denoted by P(n). This means that if π =
{V1, . . . , Vr} ∈ P(n), then V1, . . . , Vr are non-empty pairwise disjoint sets
whose union is [k]. The sets V1, . . . , Vr are called the blocks of π.

(3) The set of pair partitions P2(k) is defined for

P2(n) = {π ∈ P(n)| ∀ V ∈ π, |V | = 2} ,

where |V | denotes the size of the set V . If n is odd then P2(n) = ∅.

(4) We say that a partition π ∈ P(n) has a crossing if there exist two different
blocks V1, V2 ∈ π and 1 ≤ a < b < c < d ≤ n, such that a, c ∈ V1 and b, d ∈
V2. A partition π is said to be non-crossing if it has no crossings. The set
of non-crossing partitions of [n] is denoted by NC(n). In particular, the
set of non-crossing pair partitions is defined by

NC2(n) = NC(n) ∩ P2(n).

(5) Given partitions π, σ ∈ P(n) we write π ≤ σ if every block of π is contained
in a block of σ.

The language of partitions is quite useful when dealing with non-commutative
variables. For this purpose we introduce the following notations that will be
often used in the next chapter.

Notation 4. (1) Consider a family {Xs}s∈A of non-commutative variables.
Given α : [k]→ A we denote

Xα := Xα(1) · · ·Xα(k). (2.5)

(2) In case we have several families of non-commutative variables {X(r)
s }s∈A

for r ∈ B we will also use similar notations. That is, given α : [k] → A
and ε : [k]→ B we denote

Xε
α := X

(ε(1))
α(1) · · ·X

(ε(k))
α(k) . (2.6)

(3) It will be useful to specify the functions α : [k]→ A via partitions. For this
purpose we define for every function α : [k]→ A between discrete spaces

kerα := {α−1(a)| a ∈ A and α−1(a) 6= ∅}.

(3) Given B ∈ kerα, we will denote the common value of α in B by

α(B) := α(b1) = · · · = α(br), (2.7)

where B = {b1, . . . , br}.
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Lattices are particular cases of partially ordered sets where a notion of “maxi-
mum” and “minimum” exists. The order structure introduced in Notation 3 (5)
turns the set of partitions (as well as the set of non-crossing partitions) into a
lattice.

Proposition 2. (1) The relation ≤ is a partial order that turns P(n) into a
lattice. This means that for every π, σ ∈ P(n) there exist unique partitions
π ∧ σ and π ∨ σ in P(n) with the properties:

(i) For every partition ρ ∈ P(n), with π ≤ ρ and σ ≤ ρ, we have π∧σ ≤
ρ.

(ii) For every partition ρ ∈ P(n), with ρ ≤ π and ρ ≤ σ, we have ρ ≤
π ∨ σ.

We call π∧σ and π∨σ the maximum and minimum of π and σ, respectively.

(2) The relation ≤ restricted to NC(n) is also a partial order that turns NC(n)
into a lattice. In particular this means that the maximum and minimum
can be taken as well in NC(n).

There is a Möbius function attached to every partially ordered set. This function
is defined in a recursive way.

Definition 16. The Möbius function on a lattice (P,≤) is a function

µP : {(π, σ) ∈ P 2| π ≤ σ} −→ C

defined recursively by the relation∑
ρ∈P

π≤ρ≤σ

µP (π, ρ) =

{
1 if π = σ
0 if π < σ.

The partially ordered sets P(n) and NC(n) play a central role in the defini-
tions of cumulants. They are also characterized by their Möbius function.

Example 4. The Möbius functions on (P(n),≤) and (NC(n),≤) are given by

µP(n)(π, 1n) = (−1)|π|−1(|π| − 1)!,

and
µNC(n)(0n, 1n) = (−1)n−1Cn−1.

For the definition of cumulants we need some additional notation.
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Notation 5. Let (A, ϕ) be a ncps. For every partition π ∈ P(n) denote

ϕπ(a1, . . . , an) =
∏
V ∈π

V={i1<···<ir}

ϕ(ai1 · · · air).

In Chapter 4 we present a matrix valued generalization of the functionals ϕπ.
See Notation 9.

Definition 17. Let (A, ϕ) be a ncps.

(1) Classical cumulants are the multilinear functionals

cn(a1, . . . , an) =
∑

π∈P(n)

ϕπ(ai, . . . , an)µP(n)(π, 1n).

(2) Free cumulants are the multilinear functionals

κn(a1, . . . , an) =
∑

π∈P(n)

ϕπ(ai, . . . , an)µNC(n)(π, 1n).

The key property of free and classical cumulants is that they characterize free
and classical independence. The proof of the following result can be consulted
in [28, Theorems 11.16 and 11.32].

Theorem 6. Let (A, ϕ) be a ncps and (Ai)i∈I be subalgebras of A.

(1) The algebras (Ai)i∈I are free independent in (A, ϕ), iff for all n ≥ 2 and
a1 ∈ Ai1 , . . . , an ∈ Ain with i1, . . . , in ∈ I we have that

κn(a1, . . . , an) = 0,

whenever there exists 1 ≤ r < s ≤ n such that ir 6= is.

(2) The commutative algebras (Ai)i∈I are tensor independent in (A, ϕ), iff for
all n ≥ 2 and a1 ∈ Ai1 , . . . , an ∈ Ain with i1, . . . , in ∈ I we have that

cn(a1, . . . , an) = 0,

whenever there exists 1 ≤ r < s ≤ n such that ir 6= is.
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2.5 Fluctuations for GUE matrices

Now we want to have a closer look at the result of asymptotic freeness for GUE
matrices. Let X

(p)
N for p ∈ I be independent GUE matrices. We have seen in

Theorem 5 that

1

N
Tr
(
X

(p1)
N · · ·X(pn)

N

)
N→∞−−−→ ϕ

(
S(p1) · · ·S(pn)

)
,

almost surely.
Following ideas from Johansson [18] it was shown by Mingo-Speicher [27]

that the random variables

F (X
(p1)
N · · ·X(pn)

N ) := Tr
(
X

(p1)
N · · ·X(pn)

N

)
−Nϕ

(
S(p1) · · ·S(pn)

)
converge in distribution to centered Gaussian random variables. They also char-
acterize the covariance between F (X

(p1)
N · · ·X(pn)

N ) and F (X
(r1)
N · · ·X(rm)

N ) for ar-
bitrary choices of p1, . . . , pn, r1, . . . , rm ∈ I. This gives rise to the definition of
fluctuation moments.

Definition 18. Let I be an index set. For every p ∈ I consider the sequence
of matrices (Y

(p)
N )N≥1 where Y

(p)
N is and N × N matrix for every N ≥ 1. The

fluctuation moments of the family (Y
(p)
N )N≥1,p∈I are defined by

c2

(
Tr
(
Y

(Y1)
N · · ·Y (pn)

N

)
,Tr

(
Y

(r1)
N · · ·Y (rm)

N

))
,

where p1, . . . , pn, r1, . . . , rm ∈ I.

The characterization of covariances for the random variables F (X
(p1)
N · · ·X(pn)

N )
was given in terms of annular permutations.

Annular permutations can be seen as an extension of the concept of non-
crossing partitions. There is a natural way to embed the set of non-crossing
partitions NC(n) into the set of permutations Sn. For the embedding we need
to consider for every r ≥ 1 the one cycle permutations γr = (1, 2, . . . , r). We
identify π = {V1, . . . , Vs} ∈ NC(n) with the permutation π̃ = γ|V 1| · · · γ|Vs|,
where every cycle γ|Vr| acts on the corresponding block Vr. Since π and π̃ are
quite similar we will use the same notation for both objects. Also, we use the
same notation NC(n) for the set of non-crossing partitions and for its embedding
in Sn.

Given a permutation σ ∈ Sn let us denote by #(σ) the number of cycles in σ.
It was observed by Biane [4] that the subset NC(n) ⊂ Sn can be also described
as the set of permutations π ∈ Sn that satisfy

#(π) + #(π−1γn) = n+ 1. (2.8)
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The above equations has a nice “geodesic interpretation” in term of the distance
function

d(σ, τ) = n−#(σ−1τ), for σ, τ ∈ Sn.

The proof that d is symmetric and satisfy d(σ, σ) = 0 follows directly from
definition. The triangle inequality follows from the observation that n − #(σ)
equals the minimum non-negative integer k such that σ can be written as a
product of k transpositions. Using the triangle inequality we get that for every
π ∈ Sn we have that

n− 1 = d(e, γn) ≤ d(e, π) + d(π, γn) = n−#(π) + n−#(π−1γn),

where e is the identity in Sn. As a consequence

#(π) + #(π−1γn) ≤ n+ 1, for every π ∈ Sn. (2.9)

For this reason Equation (2.8) is also known as Biane’s geodesic condition.
Later on, inequality (2.9) was generalized by Mingo-Nica [24] to the case of

two permutations

#(π) + #(π−1σ) + #(σ) ≤ n+ 2 ·#(π ∨ σ), for every π, σ ∈ Sn, (2.10)

where #(π ∨ σ) is the number of orbits into which [n] is split by the joint
action of π and σ. They use this inequality to define the annular non-crossing
permutations.

Definition 19. Let k1, . . . , km be positive integers and set k = k1 + · · ·+km. Let
γ be the permutation in Sk with cycles (1, . . . , k1) · · · (k1 + · · ·+km−1 + 1, . . . , k).

(1) We say that a permutation π ∈ Sk is a (k1, . . . , km)-annular permutation
if satisfy the following condition

#(π) + #(π−1γ) = k −m+ 2 ·#(π ∨ γ).

(2) We say that a permutation π ∈ Sk is (k1, . . . , km)-connected if

#(π ∨ γ) = 1.

(3) The set of (k1, . . . , km)-annular permutations that are also (k1, . . . , km)-
connected is denoted by NC(k1, . . . , km).

(4) The set of (k1, . . . , km)-annular pair permutations is defined by

NC2(k1, . . . , km) = {π ∈ NC(k1, . . . , km) | π2 = e}.
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The characterization for fluctuations and higher cumulants of GUE matrices is
the following.

Theorem 7. Let X
(p)
N for p ∈ I be a family of independent copies of a GUE and

S(p) for p ∈ I is a family of free independent semicircular variables in a ncps
(A, ϕ). Let γ be the permutations with cycles (1, . . . , k1) · · · (k1 + · · · + km−1 +
1, . . . , k), where k = k1 + · · ·+km. Consider ε : [k]→ I and ε1 the restriction of
ε to [1, k1] and for i = 2, . . . ,m let εi be the restriction of ε to [k1+· · ·+km+1, k].
Then we have

cm

(
Tr (Xε1

N ) , . . . ,Tr
(
X

(εm)
N

))
N2−m

N→∞−−−→
∑

π∈NC2(k1,...,km)

∏
(l,r)∈π

ϕ
(
S(ε(l))S(ε(r))

)
,

where
Xε1
N := X

ε1(1)
N · · ·X(ε1(k1))

N ,

as in Notation 4.

In this thesis we present analogue results for the SYK model and for Wigner
matrices with q-Gaussian entries.

2.6 Operator-valued Free Probability

Another concept that play a crucial role in classical probability is the one of
conditional independence. It turns out that this important concept can be also
defined in an algebraic way.

Definition 20. Let A be a unital algebra and B ⊂ A be a subalgebra with 1 ∈ B.
A linear map E : A → B is a conditional expectation if

E[b] = b ∀b ∈ B

and
E[b1, ab2] = b1E[a]b2 ∀a ∈ A, ∀b1, b2 ∈ B.

An operator-valued ncps is then a triplet (A, E,B) where E : A → B is a
conditional expectation. In this setting an operator-valued distribution of x ∈ A
is the collection of operator-valued moments

E[b0xb1 · · · bn−1xbn] = b0E[xb1, · · · bn−1x]bn ∈ B.

Many results and definitions from Free Probability can be lifted to operator-
valued versions. In particular the combinatorial approach to Free Probability
displays its whole power in the operator-value setting. See the monograph [36]
for concrete details. We present here the definition that we use in Chapter 4.
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Definition 21. Let (A, E,B) be an operator-valued ncps.

(1) The operator-valued free cumulants

κBn : An −→ B, n ≥ 1

are define by the moment-cumulant formula

E(a1 · · · an) =
∑

π∈NC(n)

κBπ (a1, · · · , an),

where the arguments of κBπ are distributed according to the blocks of π
respecting its nested structure.

(2) The multiplicative family (κBπ )n≥1,π∈NC(n) is defined by

κBπ (a1, . . . , an) =
∑

σ∈NC(n)
σ≤π

Eσ(a1, . . . , an),

where the arguments of Eσ are distributed according to the blocks of σ
respecting its nested structure.

(3) We say that S ∈ A is an B-values semicircular if

κBn(S, b1S, . . . , Sbn−1, S) = 0

for all n 6= 2 and all b1, . . . , bn−1 ∈ B.

2.7 q-Gaussian variables

Consider a real Hilbert space HR and its complexification H := H ⊕ iHR, for
us the inner product of H is linear in the first entry. In this thesis we will fix a
unit vector Ω ∈ H, also called the vacuum vector. On the algebraic Fock space

Falg(H) := CΩ⊕
∞⊕
n=1

H⊗n,

consider for q ∈ [−1, 1] and f1, · · · , fn, g1, · · · , gm ∈ H the sesquilinear form

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉q := δnm
∑
σ∈Sn

qi(σ)

n∏
k=1

〈fk, gσ(k)〉, (2.11)
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where i(σ) is the number of inversions of σ, i.e.,

i(σ) := #{(i, j) ∈ {1, · · · , n}2|i < j, σ(i) > σ(j)}.

The non trivial part is to show that (2.11) is positive definite. This is equivalent
to the fact that the function σ 7→ qi(σ) is positive definite, i.e. for every r : Sn →
C ∑

π,σ∈Sn

qi(π
−1σ)r(σ)r(π) ≥ 0.

The Full Fock is defined as the completion of the algebraic Fock space with
respect to the inner product (2.11), that is

Fq(H) := Falg(H)
〈 , 〉q

.

On the algebra of bounded operators over Fq(H) consider the following linear
functional:

ϕ : B(Fq(H)) −→ C
T 7−→ 〈TΩ,Ω〉q.

In particular ϕ(1) = 1, then the tuple (B(Fq(H), ϕ)) is a non-commutative
probability space. Now for h ∈ H we define the q-creation operator a∗(h), given
by

a∗(h)Ω = h,

a∗(h)h1 ⊗ · · · ⊗ hn = h⊗ h1 ⊗ · · · ⊗ hn.

Its adjoint (with respect to the q-inner product), the q-annihilation operator
a(h), is given by

a(h)Ω = 0,

a(h)h1 ⊗ · · · ⊗ hn =
n∑
r=1

qr−1〈hr, h〉h1 ⊗ · · · ⊗ hr−1 ⊗ hr+1 ⊗ · · · ⊗ hn.

These operators satisfy the q-commutations relations

a(f)a∗(g)− qa∗(g)a(f) = 〈f, g〉 · 1 (f, g ∈ H).

For q = 1, q = 0 and q = −1 this reduces to the CCR-relations, the Cuntz
relations, and the CAR-relations, respectively. With the exception of the case
q = 1, the operators a∗(f) are bounded. Operators of the form

sq(f) := a(f) + a∗(f)

for f ∈ H are called q-Gaussian (or q-semicircular) elements.We will say that
the q-Gaussian variables sq(f1), · · · , sq(fk) are orthogonal (orthonormal) if the
corresponding vectors f1, · · · , fk ∈ H are orthogonal (orthonormal) in H.
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Definition 22. The (multivariate) q-Gaussian distribution is defined as the
non commutative distribution of a collection of q-Gaussians with respect to the
vacuum expectation state.

It was shown in [6], for orthonormal h1, . . . , hp ∈ H the joint distribution of
sq(h1), . . . , sq(hp) with respect to τ can be described in the following way: for
any ε : {1, . . . , k} → {1, . . . , p} we have

τ
(
sq(hε(1)) · · · sq(hε(k))

)
=
∑

π∈P2(k)
π≤ker ε

qcr(π).

For p = 1, the q-Gaussian distribution is a probability measure on the interval
[ −2√

1−q ,
2√
1−q ] and is given by

fq(t) =

√
1− q
2π

√
4− (1− q)t2

∞∑
k=1

(−1)k−1q
k(k−1)

2 U2k−2

(
x
√

1− q
2

)
,

For the special cases q = 1, q = 0, and q = −1, this reduces to the clas-
sical Gaussian distribution, the semicircular distribution, and the symmetric
Bernoulli distribution on ±1, respectively.

The multivariate q-Gaussian distribution can actually be seen as the incre-
ments of a q-version of a Brownian motion. Namely, if we take as our underly-
ing Hilbert space H = L2(R+

0 ) and as indexing vectors the family 1[0,t] (t ≥ 0)
of characteristic functions of intervals [0, t], then the process ((Bq(t))t≥0 with
Bq(t) = sq(1[0,t]) is called q-Brownian motion. In the case q = 1 it is indeed
classical Brownian motion (in the sense that it has the same expectation values
as classical Brownian motion), and in the case q = 0 it is free Brownian motion.
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Chapter 3

The Sachdev-Ye-Kitaev model

The Sachdev-Ye-Kitaev model (SYK) was introduced in 1993 by Sachdev and
Ye [33] as a model for quantum spin systems. Later on, in 2015, it was promoted
by Kitaev [20] as a model for quantum holography.

In 2014, a similar model for quantum spin systems was analyzed in the
mathematical literature by Keating [19] and extended in the same year by Erdös-
Schröder [11]. In 2018, Feng-Tian-Wei realized that the model used by Erdös-
Schröder was closely related to the SYK model.

The generalization made by Erdös-Schröder exhibits a phase transition be-
tween the Gaussian and Semicircular distributions. Feng-Tian-Wei [12] in turn
used similar methods as in [11] to show that the SYK model presents a phase
transition between Gaussian, Semicircular and symmetric Bernoulli distribu-
tions. Some of the results in [11, 12] had been proven in the physics community.
See for example [14] and the references given there. However, the mathematical
proofs were given in [11, 12].

In the context of non-commutative probability the transition between Gaus-
sian, Semicircular and symmetric Bernoulli appeared in 1991 in the work of
Bozejko, Kümmerer and Speicher [6, 8] under the name of q-Gaussian distribu-
tion. The q-Gaussian distribution depends on a parameter q that can take on
any value [−1, 1]. The Gaussian, Semicircular and symmetric Bernoulli distri-
butions appear as particular cases of the q-Gaussian variables when q equals 1,
0 and −1, respectively.

In [6] Bozejko and Speicher provided a combinatorial description of several
orthonormal q-Gaussian variables. The same combinatorial description was used
by Feng-Tian-Wei in [12] to describe the asymptotic empirical eigenvalue distri-
bution of one copy of the SYK model.

We were motivated by the work of Feng-Tian-Wei and extended it to the
miltivariate situation. The main result of our work, presented in this chapter, is
that we have shown that the asymptotic eigenvalue distribution of several inde-
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pendent copies of the SYK model can be described by orthonormal q-Gaussian
variables.

The main tool used in this chapter is the moment method. We adapt the
computations made in [11, 12] and provide a concrete description of how the
parameter q arises from a “double scaling” in the SYK model. See Lemma 4
below. As a biproduct, we also compute mix cumulants of traces of products for
the multivarite SYK model. See Theorem 9 below. This extends a result from
Feng-Tian-Wei [13] about fluctuations for the SYK model.

3.1 The SYK model

In this section we present the random matrix model that will be the central
object in this chapter. For this purpose we need the following definition.

Definition 23. The Majorana fermions are a family of anti-commuting vari-
ables ψ1, · · · , ψn that are also roots of the identity, i.e., they satisfy the following
equations

ψiψj + ψjψi = 2δij for 1 ≤ i, j ≤ n. (3.1)

For an even number n, there is a way to construct n Majorana ferminons with
square matrices of size 2n/2. The construction uses Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
in the following fashion: for n = 2r each Majorana fermion is constructed as an
r-fold tensor product

ψ1 = σ1 ⊗ 1⊗ · · · ⊗ 1 ψr+1 = σ2 ⊗ 1⊗ · · · ⊗ 1

ψ2 = σ3 ⊗ σ1 ⊗ · · · ⊗ 1 ψr+2 = σ3 ⊗ σ2 ⊗ · · · ⊗ 1

... ,
...

ψr = σ3 ⊗ σ3 ⊗ · · · ⊗ σ1 ψ2r = σ3 ⊗ σ3 ⊗ · · · ⊗ σ2

where the 1 in the tensor products represents the 2 × 2 identity matrix. In
particular, for n = 2 the above expressions are reduce to ψ1 = σ1 and ψ2 = σ2.
In this way the ψ1, · · · , ψn Majorana fermions are realized as square matrices of
size 2n/2.

The SYK model is a random matrix model, constructed as a random linear
combination of products of Majorana fermions
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Definition 24. The SYK model Hn,qn depends on two parameters n and qn,
where n is an even number and qn is a integer number between 1 and n

2
, and is

given by

Hn,qn :=
ibqn/2c(
n
qn

)1/2 ∑
1≤i1<···<iqn≤n

Ji1,...,iqnψi1 · · ·ψiqn , (3.2)

where the random coefficients Ji1,...,iqn are independent real random variables with
moments of all orders and

E[Ji1,...,iqn ] = 0, E[J2
i1,...,iqn

] = 1.

In the main theorem we do not assume the variables Ji1,...,iqn to be identically
distributed, but we require uniformly bounded moments. For the result about
fluctuations we require identical distribution. It will be important to distinguish
the parity of qn, see Theorem 8.

We are interested in products of independent copies of the SYK-model. For
this purpose it is convenient to have a compact notation for (3.2). This motivates
the following notation: for 1 ≤ qn ≤ n

2
consider the set of tuples

In := {(i1, · · · , iqn)|1 ≤ i1 < · · · < iqn ≤ n},

and for each R = (i1, · · · , iqn) ∈ In denote JR := Ji1,··· ,iqn and consider the new
variables

ΨR := ψi1 · · ·ψiqn i
bqn/2c. (3.3)

Then for 1 ≤ qn ≤ n
2

we rewrite the SYK-model as

Hn,qn :=
1

|In|1/2
∑
R∈In

JRΨR.

We collect some properties of the variables (3.3) in the following lemma. See
Section 3.4 for the proof.

Lemma 1. For every R,Q ∈ In with R 6= Q we have the identities

Ψ2
R = I, (3.4)

and
ΨQΨR = (−1)qn+|Q∩R|ΨRΨQ. (3.5)

So, for two different multi-indices Q and R the variables ΨQ and ΨR commute or
anti commute depending on the parity of qn and on the size of the intersection
of the multi-indices. The variables (3.3) also behave well with respect to the
trace, see Lemma 2.
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3.2 Asymptotic distribution

In this section we present a multi-variable as well as a dynamical version of a
result from [12] and [11].

Theorem 8. Consider p independent and identically distributed copies
H1, · · · , Hp of the SYK model Hn,qn, with uniformly bounded random coefficients
(3.2). We assume the existence of the limit

q2
n

n
→ λ ∈ [0,∞], as n→∞,

and describe this in terms of a number q ∈ [−1, 1] in the following form:

i) If (qn)n≥1 is a sequence of even positive integers, then q = e−2λ.

ii) If (qn)n≥1 is a sequence of odd positive integers, then q = −e−2λ.

Then (H1, · · · , Hp) converges in distribution to a tuple of q-Gaussian variables
(sq(h1), . . . , sq(hp)) for an orthonormal system h1, . . . , hp. Concretely, this means
that for every positive integer k and for every ε : [k]→ [p], we have that

lim
n→∞

E
[
tr(Hε(1) · · ·Hε(k))

]
=
∑

π∈P2(k)
π≤ker ε

qcr(π) = τ
(
sq(hε(1)) · · · sq(hε(k))

)
. (3.6)

The right side of (3.6) should be understood as zero when k is odd.

Corollary 2. Consider the following dynamical version of the SYK model:

H(t) :=
ibqn/2c(
n
qn

)1/2 ∑
1≤i1<···<iqn≤n

Ji1,...,iqn (t)ψi1 · · ·ψiqn , (3.7)

where the Ji1,...,iqn (t) (with n ∈ N, 1 ≤ i1 < · · · < iqn ≤ n) are independent
classical Brownian motions, and the qn and q are as in Theorem 8. Then, the
process (H(t))t≥0 converges, for n → ∞, to the q-Brownian motion (Bq(t))t≥0,
in the sense that we have for all 0 ≤ t1, . . . , tk that

lim
n→∞

E [tr(H(t1) · · ·H(tk))] = τ (Bq(t1) · · ·Bq(tk)) . (3.8)

Proof. In order to see that the processes (H(t))t≥0 converges towards the q-
Brownian motion, we have to check that for 0 = t0 < t1 < · · · < tp, the finite
dimensional distribution (H(t1), . . . , H(tp)) of the process (H(t))t≥0, converges
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towards the finite dimensional distribution (B(t1), . . . , B(tp)) of the q-Brownian
motion (B(t))t≥0. Since we can find a matrix A such that

 H(tp)
...

H(t1)

 = A


H(tp)−H(tp−1)√

tp−tp−1

...
H(t1)−H(t0)√

t1−t0

 ,

it is enough to show the convergence of normalized increments:
H(tp)−H(tp−1)√

tp−tp−1

...
H(t1)−H(t0)√

t1−t0

 n→∞−−−→


B(tp)−B(tp−1)√

tp−tp−1

...
B(t1)−B(t0)√

t1−t0

 . (3.9)

The left side above has the same distribution as a tuple (H1, . . . , Hp) of indepen-
dent copies of H(1). The right side has the distribution of orthogonal q-Gaussian
variables. The convergence in (3.9) follows from Theorem 8

Proof. (Theorem 8)
For this consider the following expansion for the left side of (3.6)

E [tr (Hε)] =
1

|In|k/2
∑

α:[k]→In

E [Jεα] tr (Ψα) (3.10)

The variables ΨR, for R ∈ In, were introduced in (3.3). We are also using
notation for products of non-commutative variables introduced in (2.5) and (2.6).
We can split the sum in (3.10) as∑

α:[k]→In

=
∑

α:[k]→In
| kerα|<k/2

+
∑

α:[k]→In
| kerα|=k/2

+
∑

α:[k]→In
| kerα|>k/2

.

If | kerα| > k/2 then kerα has a block of size one, then E [Jεα] = 0.
For the other cases we need the following lemma

Lemma 2. For every α : [k]→ In we have the following

i) If kerα has a block of odd size, then Tr(Ψα(1) · · ·Ψα(k)) = 0.

ii) If every block in kerα has even size, then Ψα(1) · · ·Ψα(k) = ±I, where I is
the identity matrix.
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iii) For π ∈ P2(k) with kerα = π we have the identity

tr(Ψα) = (−1)qncr(π)+
∑
|α(V )∩α(W )|,

where the sum is taken over all pairs {V,W} of crossing blocks in π. We
are using here notation (2.5) and (2.7). Also, for Q,R ∈ In we denote by
Q ∩R, the set of indices that Q and R have in common.

The proof for Lemma 2 can be found in Section 3.4.
For the case | kerα| < k/2, by Lemma 2 get the bound∣∣∣∣∣∣∣∣

1

|In|k/2
∑

α:[k]→In
| kerα|<k/2

E [Jεα] tr (Ψα)

∣∣∣∣∣∣∣∣ ≤ ck
|In|k/2−1

|In|k/2
=

ck
|In|

. (3.11)

The constant ck comes from the uniform bound condition on the random coef-
ficients in (3.2). For the last part we will consider a random variable Xn with
hypergeometric distribution, i.e. for every non negative integer s

P(Xn = s) =

(
qn
s

)(
n−qn
qn−s

)(
n
qn

) , for 0 ≤ s ≤ qn. (3.12)

Lemma 3. For π ∈ P2(k) we have the following identity(
(−1)qnE

[
(−1)Xn

])cr(π)
=

1

|In|k/2
∑

α:[k]→In
kerα≥π

tr(Ψα).

The proof for Lemma 3 can be found in Section 3.4.
For the case | kerα| = k/2 we can assume kerα ∈ P2(k), otherwise kerα has a
block of size one, then E [Jεα] = 0. Also the condition kerα ∈ P2(k) implies

E [Jεα] =

{
1 if kerα ≤ ker ε,
0 otherwise.

This together with Lemma 3 yields

1

|In|k/2
∑

π∈P2(k)

∑
α:[k]→In
kerα=π

E [Jεα] tr (Ψα)

=
∑

π∈P2(k)
kerα≤ker ε

(
(−1)qnE

[
(−1)Xn

])cr(π) − 1

|In|k/2
∑

π∈P2(k)
kerα≤ker ε

∑
α:[k]→In
kerα>π

tr (Ψα) . (3.13)
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With Lemma 2 we find a bound for the correction term∣∣∣∣∣∣∣∣
1

|In|k/2
∑

π∈P2(k)
kerα≤ker ε

∑
α:[k]→In
kerα>π

tr (Ψα)

∣∣∣∣∣∣∣∣ ≤
∑

π∈P2(k)
kerα≤ker ε

|In||π|−1

|In|k/2
=

(k − 1)!!

|In|
.

Combining equations (3.10), (3.11) and (3.13) we obtain

E [tr (Hε)] =
∑

π∈P2(k)
kerα≤ker ε

(
(−1)qnE

[
(−1)Xn

])cr(π)
+O(|In|−1)

It remains to show that E
[
(−1)Xn

]
converges to a real number q ∈ [−1, 1], when

n and qn go to infinity. The next lemma shows that this is the case under some
condition on E(Xn).

Lemma 4. For a random variable Xn with hypergeometric distribution, as in
(3.12), we have the following:

i) The first moment of Xn is

E [Xn] =
q2
n

n
.

ii) If E [Xn]→ 0 then Xn → δ0 in distribution and then

E
[
(−1)Xn

]
→ 1.

iii) If E [Xn]→ λ <∞ then Xn converge in distribution to the Poisson distri-
bution with parameter λ and then

E
[
(−1)Xn

]
→ e−2λ.

iv) If E [Xn]→∞ then

E
[
(−1)Xn

]
→ 0.

The proof of (i) is well known result, which can be consulted for example in [30].
For the proof of (ii) see Section 3.4. The proofs of (iii) and (iv) can be found
in [11] and [12], respectively.
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3.3 Fluctuations

The classical cumulants are a family (cm)m∈N of multilinear functionals, given
by

cm(a1, . . . , am) =
∑

σ∈P(m)

Eσ [a1, . . . , am]µ(σ, 1m), (3.14)

where Eσ stands for

Eσ [a1, . . . , am] =
∏
B∈σ

B={i1,...,ir}

E [ai1 · · · air ] ,

and µ(σ, 1m) = (−1)|σ|−1(|σ|−1)! is the Möbius function. This family of function-
als characterizes tensor independence. See for example [28] for more details on
the characterization of tensor independence, an also for background on Möbius
functions.

In this section we will identify the convergence of cm(Hε1 , . . . , Hεm), in a
similar way as in Theorem 8. Theorem 9 is an extension of a result that originally
appeared in [13].

Theorem 9. Let (Hk)k∈N be independent copies of the SYK model Hn,qn with
centered Gaussian random coefficients of variance one. For positive integers
m, k1, . . . , km denote T1 = [1, k1], T2 = [1 + k1, k1 + k2], . . . , Tm = [1 + k1 + · · ·+
km−1, k1 + · · ·+ km] and set

k := k1 + · · ·+ km and θ = {T1, . . . , Tm}.

Given a function ε : [1, k] → N, let us denote by εi the restriction of ε to Ti.
Under the same assumptions on n and qn as in Theorem 8, we have(

n

qn

)m−1

cm (tr(Hε1), . . . , tr(Hεm))
n→∞−−−→

∑
π′∈P2(k)
π′≤θ

∑
π∈P2(k)
π∨θ=1k
π≤ker ε

|π∨π′|= k
2
−m+1

qcr(π
′).

The parameter q is obtained in the same way as in Theorem 8.

Proof. First expand the expression for the cumulant

cm (tr(Hε1), . . . , tr(Hεm)) = (3.15)

1

|In|
k
2

∑
αi:Ti→In
1≤i≤m

cm(Jε1α1
, . . . , Jεmαm) tr(Ψα1) · · · tr(Ψαm).
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Using the formula for cumulants with products as entries and the Gaussianity
of the random variables J we get

cm(Jε1α1
, . . . , Jεmαm) =

∑
π∈P2(k)
π∨θ=1k

cπ

(
J

(ε(1))
α(1) , . . . , J

(ε(k))
α(k)

)
, (3.16)

where for every collection (αi : Ti → In)1≤i≤m we define α : [1, k] → In in the
same way as ε.
If in the right side of equation (3.16) we have that π ∧ kerα has a block of size
one, then by independence of the J ’s we have

cπ

(
J

(ε(1))
α(1) , . . . , J

(ε(k))
α(k)

)
= 0.

Then we can assume that every block in π ∧ kerα have size bigger that one.
Since π is a pair-partition this implies that π = π ∧ kerα and then

π ≤ kerα. (3.17)

In particular this implies that the value of cπ

(
J

(ε(1))
α(1) , . . . , J

(ε(k))
α(k)

)
do not depend

on α

cπ

(
J

(ε(1))
α(1) , . . . , J

(ε(k))
α(k)

)
=

{
1 if π ≤ ker ε
0 if π � ker ε

. (3.18)

Now observe that from Lemma 2 we have that tr(Ψα1) · · · tr(Ψαm) 6= 0, if and
only if all blocks in kerα1, . . . , kerαm have even size. This implies that there
exist pair-partitions π′i ∈ P2(Ti) such that π′i ≤ kerαi for every 1 ≤ i ≤ m and
as a consequence

π′ :=
m⋃
i=1

π′i ≤ kerα ∧ θ. (3.19)

Observe that π′ is also an element of P2(k). From Equations (3.17) and (3.19)
we get that

π ∨ π′ ≤ kerα. (3.20)

Conditions π′ ≤ θ and π ∨ θ = 1k implies that

|π ∨ π′| ≤ k

2
−m+ 1. (3.21)

To see this we have to observe that π has at least m− 1 blocks such that each
of then connect two different blocks from π′.
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Using Equations (3.16) and (3.18) we can simplify Equation (3.15) in the fol-
lowing way:(

n

qn

)m−1

cm (tr(Hε1), . . . , tr(Hεm))

=
∑

α:[k]→In

∑
π∈P2(k)
π∨θ=1k

cπ

(
J

(ε(1))
α(1) , . . . , J

(ε(k))
α(k)

) tr(Ψα1) · · · tr(Ψαm)

|In|
k
2
−m+1

=
∑

π∈P2(k)
π∨θ=1k
π≤ker ε

∑
α:[k]→In

tr(Ψα1) · · · tr(Ψαm)

|In|
k
2
−m+1

.

Now using Equations (3.19) and (3.20) we express the second sum above as

=
∑

π∈P2(k)
π∨θ=1k
π≤ker ε

∑
π′∈P2(k)
π′≤θ

∑
α:[k]→In

kerα≥π∨π′

tr(Ψα1) · · · tr(Ψαm)

|In|
k
2
−m+1

.

Using the restriction (3.21) we obtain that

=
∑

π∈P2(k)
π∨θ=1k
π≤ker ε

∑
π′∈P2(k)
π′≤θ

|π∨π′|= k
2
−m+1

∑
α:[k]→In

kerα≥π∨π′

tr(Ψα1) · · · tr(Ψαm)

|In|
k
2
−m+1

+O(|In|−1)

=
∑

π∈P2(k)
π∨θ=1k
π≤ker ε

∑
π′∈P2(k)
π′≤θ

|π∨π′|= k
2
−m+1

∑
α:[k]→In
kerα≥π′

tr(Ψα1) · · · tr(Ψαm)

|In|
k
2

+O(|In|−1).

Now we can use Lemma 3 and rewrite the third sum in the following way

=
∑

π∈P2(k)
π∨θ=1k
π≤ker ε

∑
π′∈P2(k)
π′≤θ

|π∨π′|= k
2
−m+1

(
(−1)qnE

[
(−1)Xn

])cr(π′)
+O(|In|−1)

Lemma 4 completes the proof.

n,qn→∞−−−−−→
∑

π′∈P2(k)
π′≤θ

∑
π∈P2(k)
π∨θ=1k
π≤ker ε

|π∨π′|= k
2
−m+1

qcr(π
′).
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Remark 2. In this remark we provide a description of the pair (π′, π) of pair-
partitions that appears in statement of Theorem 9. This description is close to
the description of higher order freeness.
First we observe that given π′, π ∈ P2(k) with π′ ≤ θ and π ∨ θ = 1k we have
that

|π′ ∨ π| ≤ k

2
−m+ 1.

An example of π′ ∨ π is represented in Figure 3.1.
The partitions π′ and π can be also read from the diagram. For this we have

1

23

4 5

6

78

9

10

12

11

13

14

Figure 3.1: The doted circles represent the partition θ =
{(1, 2, 3, 4), (5, 6, 7, 8, 9, 10), (11, 12, 13, 14)}. The loops represent the blocks of
π′ ∨ π where π′, π ∈ P2(k) with π′ ≤ θ, π ∨ θ = 1k and |π′ ∨ π| = 14

2
− 3 + 1 = 5.

to differentiate between the internal and the external part. See Figure 3.2. The
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14

=

Figure 3.2: Separation of π′ ∨ π into its internal π′ and external π structures.

contribution of the pair (π′, π) depends only on the internal part, i.e., in the case

39



of Figure 3.1 the contribution is qcr(π
′) = q. Observe that the representation of π

also has a crossing but this is not considered in Theorem 9. We actually do not
know how to give a mathematical definition of the external crossings in Figure
3.1.
The description of the fluctuations for the case of independent copies of the SYK
model is similar, we just have to add the information of the function ε : [k]→ N
by coloring the points on the circles. See Figure 3.3 for an example of the kind of
partitions that appear in the description of cm (tr(H2

1H
2
2 ), tr(H2H

2
1H2H1H2), tr(H3

2H1)).
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Figure 3.3: The external structure must connect blocks of the same color. For
the internal structure there are no restrictions.
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3.4 Proof of the lemmas

Proof of Lemma 1. For R = (i1, . . . , iqn) ∈ In, a direct computation yields

Ψ2
R = (ψiq1 · · ·ψiqn )(ψiq1 · · ·ψiqn )i2b

qn
2
c

= (−1)b
qn
2
c(−1)qn−1(−1)qn−2 · · · (−1)qn−qnI

= (−1)b
qn
2
c(−1)

qn(qn−1)
2

= I,

where I is the identity matrix. In the last equation we used that b qn
2
c and

qn(qn−1)
2

have the same parity.
Now let R = (i1, . . . , iqn) and Q = (j1, . . . , jqn) be in In, observe that

(ψiq1 · · ·ψiqn )ψj1 =


ψj1(ψi1 · · ·ψiqn )(−1)qn if j1 /∈ {i1, . . . , iqn}

ψj1(ψi1 · · ·ψiqn )(−1)qn+1 if j1 ∈ {i1, . . . , iqn}

Then by iteration we get

ΨRΨQ = i2b
qn
2
c(ψi1 · · ·ψiqn )(ψj1 · · ·ψjqn )

= i2b
qn
2
c(−1)q

2+|Q∩R|(ψj1 · · ·ψjqn )(ψi1 · · ·ψiqn )

= (−1)qn+|Q∩R|ΨQΨR,

where |Q ∩R| stands for the number of common indices in Q and R.

Proof of Lemma 2. For α : [k] → In with kerα = {V1, · · · , Vr}, it follows from
the anti-commutation relation (3.5) that

Ψα(1) · · ·Ψα(k) = ±Ψ
|V1|
α(V1) · · ·Ψ

|Vr|
α(Vr)

. (3.22)

Notation α(V ) was introduced in (2.7).

i) Because of property (3.4), we can assume without loss of generality, that
the |V1|, . . . , |Vr| are all odd, then it follows from (3.22) that

Ψα(1) · · ·Ψα(k) = ±Ψα(V1) · · ·Ψα(Vr). (3.23)

Form the definition of the variables ΨR and the relation ψiψj+ψjψi = 2δij,
we get that

Ψα(V1) · · ·Ψα(Vr) = ±ψi1 · · ·ψil irb
qn
2
c,

for some different indices 1 ≤ i1, . . . , il ≤ n. So, it is enough to check the
product of different ψ1, . . . , ψl. For l even we have ψ1 · · ·ψl = −ψlψ1 · · ·ψl−1,
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then applying the trace and using the trace property we get the result.
For l odd we take ψx different from all ψ1, . . . , ψl, this element always
exist because n is always even. Then by the anti-commutation relations
ψ1 · · ·ψl = −ψxψ1 · · ·ψlψx. Evaluating the trace in the last equation and
applying the trace property we get the result.

ii) It follows from (3.4) and (3.22) that, if the |V1|, . . . , |Vr| are all even, then

Ψ
|Vi|
α(Vi)

= I.

iii) We now assume kerα ∈ P2(k) and we want to determine the sign in (3.22).
If kerα ∈ NC2(k) := {π ∈ P2(k)|cr(π) = 0}, then Ψα = I. This comes
from the iterative characterization of elements in NC2(k); see, for example,
[28, Remark: 9.2]. If kerα /∈ NC2(k), then we need to apply the relation
(3.5) to each crossing in kerα, and reduce Ψα(1) · · ·Ψα(k) to the identity. In
this processes we obtain (−1)qn+|α(V )∩α(W )| for each pair {V,W} of crossing
blocks in kerα.

Proof of Lemma 3. Consider the classical probability space (Ωn,Fn,Pn), where

Ωn : = {ω : [k]→ In| kerω ≥ π},

Fn is the power set of Ωn, and Pn the counting measure. For each pair of different
blocks {V,W} in π define the random variable

XVW (ω) = |ω(V ) ∩ ω(W )|.

Then from Lemma 2 we get

1

|In|k/2
∑

α:[k]→In
kerα≥π

Tr(Ψα(1) · · ·Ψα(k))

2n/2
=

(−1)qncr(π)

|In|k/2
∑

α:[k]→In
kerα≥π

(−1)
∑
XVW (α)

= (−1)qncr(π)E
[
(−1)

∑
XVW

]
, (3.24)

where the sum
∑
XVW is taken over all crossing pairs {V,W} of blocks in π.

For each block V ∈ π define the random variable XV (ω) := ω(V ). Notice that
{XV }V ∈π is a family of independent random variables with uniform distribution
on In, and XVW = |XV ∩XW |. It follows from the symmetric definition of XVW

that these variables are identically distributed for different blocks V 6= W . For
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r ∈ {0, 1, 2, · · · , qn} and different blocks V,W we have

P(XVW = r) =
1

|In|
∑
R∈In

P(XVW = r|XV = R)

=
1

|In|
∑
R∈In

(
qn
r

)(
n−qn
qn−r

)(
n
qn

)
=

(
qn
r

)(
n−qn
qn−r

)(
n
qn

) , (3.25)

so the variables XVW have hypergeometric distribution (3.25). Now from the
independence of the XV , it follows that for different blocks V1, . . . , V4 the vari-
ables XV1V2 and XV3V4 are independent. It also follows from the independence
of the XV that XVW and XWZ are independent given {XW = R} for some
R ∈ In.Then we have

P(XVW = r,XWZ = s) =
1

|In|
∑
R∈In

P(XVW = r,XWZ = s|XW = R)

=
1

|In|
∑
R∈In

(
qn
r

)(
n−qn
qn−r

)(
n
qn

) (
qn
s

)(
n−qn
qn−s

)(
n
qn

)
= P(XVW = r)P(XWZ = s).

So, the variables {XVW}V,W∈π, V 6=W are independent. The statement of the
lemma follows now from (3.24).

Proof of Lemma 4. We only have to prove part (ii). For this observe that

E
[
(−1)Xn

]
= 1 +

qn∑
s=1

(−1)sP(Xn = s)→ 1.

The convergence follows from the estimate∣∣∣∣∣
qn∑
s=1

(−1)sP(Xn = s)

∣∣∣∣∣ ≤
qn∑
s=1

P(Xn = s)

= P(Xn > 0) ≤ E [Xn]→ 0.

Also P(Xn > 0)→ 0 implies Xn → δ0 in distribution.
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Chapter 4

Fluctuation for matrices with
q-Gaussian entries

In this chapter we study fluctuations of another matrix model that approxi-
mate semicircular variables, namely, hermitian matrices with q-Gaussian entries.
Also, motivated by the recent work of Diaz et al [1] we extend the results for
global fluctuations in this model, to global fluctuations for block matrices with
q-Gaussian entries.

Hermitian matrices with semicircular entries were considered by Voiculescu
[38] in the beginnings of free probability. He showed that hermitian matrices
with free semicircular entries are themselves semicirculars. It was observed later
by Shlyakhtenko [34] that this result is still true when we replace free semicircular
entries by orthonormal q-Gaussian (or q-semicircular) entries. In particular, the
asymptotic limit distribution of this kind of matrices is also semicircular.

Our motivation for the study of hermitian matrices with q-Gaussian entries
comes from the description of the fluctuations of GUE matrices in terms of sec-
ond order freeness. This description was given by Mingo-Nica [24] in terms of
annular non-crossing permutations. The annular non-crossing permutations in-
volved in the description can be pictured as non-crossing annular pair partitions.
In spite of the fact that annular non-crossing pair partitions have no crossings
when they are drawn in the annulus, they have crossings when they are drawn
in a linear way. See figure 4.1 for an example.

We have seen so far that q-Gaussian variables are described in terms of pair
partitions and their crossings. This suggests that the global fluctuations for
hermitian matrices with q-Gaussian entries may depend on the parameter q.
This situation differs from the result of Shlyakhtenko [34] about the asymptotic
distribution of matrices with q-Gaussian entries, where the parameter q did not
play any role in the limit distribution. We clarify this dependency in Theorem
11. This result is used to understand global fluctuations for block matrices with
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1 2 3 4 5 6

1

2

34

5 6 7
8

7 8

Figure 4.1: Annular (5, 3) and linear representations of the partition π =
{(1, 6), (2, 3), (4, 7), (5, 8)}. The linear representation (right) has three crossings
but the annular representation (left) has none.

q-Gaussian entries in Theorem 12.

4.1 Matrix model

Let (A, ϕ) and (S, φ) be non-commutative probability spaces.

Notation 6. (1) For p,N ≥ 1 and 1 ≤ i, j ≤ N let x
(p)
i,j ∈ A be a family of

q-Gaussian variables with covariance given by

ϕ(x
(p)
ij x

(r)
kl ) = δilδjkσ(p, r), (4.1)

for some fixed covariance function

σ : N2 → C. (4.2)

(2) The object of study in this chapter is the following matrix model

X(p) :=
1√
N

(
x

(p)
i,j

)N
i,j=1

, p ≥ 1. (4.3)

(3) For p ≥ 1 let Sp ∈ S be a semicircular family covariance σ as in (4.2),
i.e.

φ(SpSr) = σ(p, r), for p, r ≥ 1. (4.4)

The matrices X(p) for p ≥ 1 are considered in the non-commutative probaility
space (

MN(A), ϕ⊗ Tr

N

)
.
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Observe that for q = 1 the distribution of the matrix model defined in (4.3),
coincides with the distribution of the GUE. The standard way to construct
matrices as in (4.3) is by imitating the construction of GUE matrices. See
Definition 11. But replacing independent Gaussian by orthogonal q-Gaussian.
In particular the matrices (4.3) are selfadjoint.
It was shown by Shlyakhtenko [34], that the matrices defined in (4.3) converge
to (Sp)p≥1. For completeness, we present here an elementary proof, which we
use it as a guideline for the generalization in the next section.

Theorem 10. The joint distribution of X(p) for p ≥ 1, converges to the semi-
circular family (Sp)p≥1 with covariance as in (4.4), i.e.,

ϕ

(
Tr
(
X(p1) · · ·X(pn)

)
N

)
N→∞−−−→

∑
π∈NC2(n)

φπ(Sp1 , . . . , Spn),

where φπ is the multiplicative extension of φ, more precisely

φπ(Sp1 , . . . , Spn) =
∏

(l,r)∈π

σ(pl, pr).

Proof. Let γ be the cycle permutation (1, 2, . . . , n). Observe that

ϕ

(
Tr
(
X(p1) · · ·X(pn)

)
N

)
=

1

N
n
2

+1

N∑
i1,...,in=1

ϕ
(
x

(p1)
i1,i2
· · ·x(pn)

in,i1

)
=

1

N
n
2

+1

N∑
i1,...,in=1

∑
π∈P2(n)

qcr(π)
∏

(l,r)∈π

ϕ
(
x

(p1)
il,iγ(l)

x
(pr)
ir,iγ(r)

)

=
1

N
n
2

+1

∑
π∈P2(n)

qcr(π)

N∑
i1,...,in=1

∏
(l,r)∈π

δil,iγ(r)δiγ(l),irσ (pl, pr)

=
1

N
n
2

+1

∑
π∈P2(n)

qcr(π)N#(γπ)
∏

(l,r)∈π

σ(pl, pr) (4.5)

N→∞−−−→
∑

π∈NC2(n)

∏
(l,r)∈π

σ(pl, pr).

In equation 4.5 we used the identity

N∑
i1,...,in=1

∏
(l,r)∈π

δil,iγ(r)δir,iγ(l) = N#(γπ).
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Here we are using the canonical identification of pair partitions with idempotent
permutations in [1, n]. #(πγ) stands for the number of cycles in the permutation
πγ. The equation says: the product is non zero only when the indices are
constant on the cycles of γπ, i.e., for every (l, r) = (l, π(l)) ∈ π

δil,iγ(r) = δil,iγ(π(l)) ⇒ il = iγπ(l).

For taking the limit we used the triangle inequality which asserts that

#(π) + #(π−1γ) ≤ n+ 1,

for all permutations π ∈ Sn. See Equation (2.9) In our case #(π) = n
2

and
π−1 = π, then

#(γπ) ≤ n

2
+ 1.

So in (4.5) the only terms that survive in the limit N → ∞ are those pair
partitions π that satisfy #(γπ) = n

2
+ 1. Thus according to Biane’s geodesic

condition (2.8), only non crossing pair partitions survive in the limit.

Remark 3. In particular, if the covariance is diagonal, i.e., σ(p, r) = δp,r,
equation (4.5) simplifies according to∏

(l,r)∈π

σ(h(l), h(r)) =

{
1 if π ≤ kerh
0 otherwise

.

In this case we have convergence to a free semicircular family.

4.2 Fluctuations

In this section we analyze the fluctuations of the matrix model introduced in
4.3. Theorem 11 resembles the result from Mingo-Nica [24] of the fluctuations
for GUE matrices.

The main difference between fluctuations of GUE matrices and fluctuations
of matrices with q-semicircular entries is that, in the later case, we have to
consider annular and linear representations of pair partitions. More precisely, in
Theorem 11 fluctuations are expressed as a sum over non-crossing annular pair
partitions as in [24] and weigh each term in the sum according to the number
of crossings in its linear representation.

We illustrate this with an example. In Figure 4.2 we showed three different
representations of pair partitions of four elements. We see that the partition
represented in the third column has a crossing when it is represented in a linear
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1 2 3 4 1 2 3 4 1 2 3 4

1

23

4

1

23

4

1

23

4

1

2

3 4

1 1

3 4 3 4

2 2

Figure 4.2: Linear, NC2(3, 1) and NC2(2, 2) representations for P2(4). Observe
that in the third column the annular representations have no crossings whereas
the linear have one crossing.

way (firs row), but has no crossings when it is represented as an element in
NC2(3, 1) or NC2(2, 2).
In general, not every pair partition in P2(k) can be represented as an element in
NC2(k1, k2) with k1 + k2 = k. For an example see Figure 4.3. In this work, we
deal only with non-crossing annular pair partitions. However, the description of
annular crossings and their potential relations with non-commutative probability
remain to be an open question.

In this section we use the classical cumulants in (A, ϕ)

cm(a1, . . . , am) =
∑

σ∈P(m)

ϕσ(a1, . . . , am)µ(σ, 1m) (4.6)

where µ(σ, 1m) = (−1)|σ|−1(|σ| − 1)! is the Möbius function in the lattice P(m),
to analyze traces of products of the matrices X(p), defined in (4.3).

Notation 7. (1) For positive integers m, k1, . . . , km we set k := ki + · · ·+ km
and k0 = 0. Consider the following partition

θ = {T1, . . . , Tm}, (4.7)

where T1 = [1, k1], T2 = [1 + k1, k1 + k2], . . . , Tm = [1 + k1 + · · ·+ km−1, k].
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Figure 4.3: Different representations for the same pair partition. The four rep-
resentations have crossings.

(2) Given a function
ε : [1, k]→ N

and 1 ≤ i ≤ m, we denote by εi the restriction of ε to Ti.

(3) The shorthand notation for products

Xε = X(ε(1)) · · ·X(ε(k))

= Xε1 · · ·Xεm

where
Xεi := X(εi(k1+···+ki−1+1)) · · ·X(εi(k1+···+ki)),

is also used in the rest of this chapter.

The following Theorem follows ideas from second order free probability. What
we are doing here is identifying the second order distribution of the matrices
X(p) (p ∈ N).

Theorem 11. Let m be a positive integer and k1, . . . , km, k and ε : [i, k]→ N as
above. The asymptotics for cumulants in the variables X(p) for p ≥ 1 are given
by

N2−mcm (Tr(Xε1) · · ·Tr(Xεm))
N→∞−−−→

∑
π∈NC2(k1,...,km)

qcr(π)φπ(Sε(1), , . . . , Sε(k)),

where
φπ(Sp1 , . . . , Spn) =

∏
(l,r)∈π

σ(ε(l), ε(r)),
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and (Sp)p≥1 is a semicircular family with covarianceσ. See Notation 6.

Proof. Let γ be the permutation γ = (1, · · · , k1)(k1 + 1, · · · , k1 + k2) · · · (k1 +
· · ·+ km−1 + 1, · · · , k). First we find an expression for the moment

ϕ (Tr(Xε1) · · ·Tr(Xεm)) =
1

Nk/2

N∑
i1,...,ik=1

ϕ(x
(ε(1))
i1iγ(1)

· · ·x(ε(k))
ikiγ(k)

)

=
∑

π∈P2(k)

qcr(π)N#(γπ)−k/2
∏

(l,r)∈π

σ(ε(l), ε(r)) (4.8)

Now for every partition σ ∈ P(m) we define σ̂ ∈ P(k) by

σ̂ = {
⋃
s∈B

Ts|B ∈ σ}. (4.9)

The sets Ti were defined in (4.3). Then it follows directly from equation (4.8)
that for σ ∈ P(m)

ϕσ (Tr(Xε1), . . . ,Tr(Xεm)) =
∏
B∈σ

ϕ

(∏
b∈B

Xεb

)
(4.10)

=
∑

π∈P2(k)
π≤σ̂

qcr(π)N#(γπ)−k/2
∏

(l,r)∈π

σ(ε(l), ε(r)).

The product
∏

b∈BX
εb in the right side of equation (4.10) has to be under-

stood as an ordered product according to the order in block B. Then from the
definition of cumulants we have

cm (Tr(Xε1), . . . ,Tr(Xεm)) =
∑

σ∈P(m)

ϕσ (Tr(Xε1), . . . ,Tr(Xεm))µ(σ, 1m)

=
∑

σ∈P(m)

µ(σ, 1m)
∑

π∈P2(k)
π≤σ̂

qcr(π)N#(γπ)−k/2
∏

(l,r)∈π

σ(ε(l), ε(r))

=
∑

π∈P2(k)

qcr(π)N#(γπ)−k/2
∏

(l,r)∈π

σ(ε(l), ε(r))
∑

σ∈P(m)

π≤σ̂

µ(σ, 1m) (4.11)

For every partition π ∈ P(k) we define a partition in π̃ ∈ P(m) in the following
way: The indices i, j ∈ [m] lie in the same block of π̃ if and only if there exists
a block of π that connects [1 + k1 + · · · ,+ki−1, k1 + · · · + ki] with [1 + k1 +
· · · ,+kj1 , k1 + · · · + kj]. Notice that this is the inverse of the mapping σ 7→ σ̂.
Now observe that for π ∈ P2(k) and σ ∈ P(m) we have

π ≤ σ̂ iff π̃ ≤ σ.
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Now we can use the fundamental property of Möbius functions:∑
σ∈P(m)

π̃≤σ

µ(σ, 1m) =

{
1 if π̃ = 1m,
0 otherwise.

Then equation (4.11) becomes

cm (Tr(Xε1), . . . ,Tr(Xεm)) =
∑

π∈P2(k)
π̃=1m

qcr(π)N#(γπ)−k/2
∏

(l,r)∈π

σ(h(l), h(r)). (4.12)

From [24] we take the following inequality as valid for every permutation τ ∈ Sk

#(τ) + #(γτ−1) ≤ k −m+ 2#(γ ∨ τ), (4.13)

where #(γ ∨ τ) is the number of orbits into which {1, . . . , k} is split under the
joint action of τ and γ. In the context of (4.12), inequality (4.13) means that

#(γπ)− k

2
≤ 2 #(γ ∨ π)−m.

The condition that π̃ = 1m means that γ and π act transitively on [k], then
#(γ ∨ π) = 1, so we get

#(γπ)− k

2
≤ 2−m. (4.14)

It is possible to interpret the set of pair partitions with the set of permutations
of order two

P2(k) ∼= {π ∈ Sk | π2 = e }.

According with inequality (4.14). If we multiplying both sides of (4.12) by
N−(2−m) then, the only permutations that remain in the large N limit are those
permutations π ∈ P(k) such that

#(γπ)− k

2
= 2−m.

Those are the annular non-crossing permutations NC2(k1, . . . , km).

Remark 4. (1) For q = 1, the Theorem 11 recovers the result of Mingo-Nica
[24] for fluctuations of GUE matrices.

(2) In the case q = 0. The partitions in NC2(k1, . . . , km) that contribute in
the limit are those linear and annular non-crossing. This kind of partitions
where identified by Diaz et al [1] under the name of “ double line pairings”.
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87

Figure 4.4: On top is display a double line pair partition in twelve points. On the
second row, the same pair partition with its linear and annular representations.
Observe that all representations have no crossings.

In particular the second order Cauchy transform for the matrix model X(p)

defined in Notation 6

GX(p)(z, w) =
∞∑

k,l≥1

αk,l
zk+1wl+1

,

where

αk,l = lim
N→∞

Cov
((
X(p)

)k
,
(
X(p)

)l)
=
∣∣∣NC2(k + l)

⋂
NC2(k, l)

∣∣∣ .
is the number of double line pairings in two lines with k and l points.
Figure 4 for an example of a double line pair partition.
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4.3 Block matrices with q-Gaussian entries

In this section we use Theorems 10 and 11 to give a description for the global
fluctuations of block matrices with q-Gaussian entries. The goal is to obtain a
block matrix version of Theorem 11. At the moment, we do not have a theory of
operator-valued second order freeness. We hope that this work may give some
insight on this line of research.

We keep working with the ncpss (A, ϕ) and (S, φ). But we relabel the q-
Gaussian variables and the semicircular family, in a way that is more convenient
to work with block matrices.

Notation 8. (1) Let x
(k,l)
i,j ∈ A for (i, j, k, l ∈ N) be a family of q-Gaussian

variables with covariance given by

ϕ(x
(k,l)
i,j x(r,s)

v,w ) = δiwδjvσ(k, l; r, s), (4.15)

for some covariance function σ.

(2) Let d be a positive integer. For each pair 1 ≤ k, l ≤ d we define the
matrices

X(N)(k, l) =
1√
N

(
x

(k,l)
i,j

)N
i,j=1

,

and the d × d-block matrix X ∈ MNd(A) with blocks X(N)(k, l) ∈ Md(A),
i.e., for matrix units ei,j in Md(C) we have that

XN =
d∑

k,l=1

ek,l ⊗X(N)(k, l). (4.16)

(3) Let Sp,r ∈ S for p, r ≥ 1 be a semicircular family with covariance

φ(Sk,lSr,s) = σ(k, l; r, s). (4.17)

for the same covariance function σ as in (4.15).

(4) Consider the operator-valued ncps (Md(S), E,Md(C)), where we identified

Md(S) ∼= Md(C)⊗ S

and defined
E := idMd(C) ⊗ φ.

Let S ∈Md(S) be the operator-valued semicircular element

S :=

 S1,1 · · · S1,d
...

. . .
...

S1,1 · · · Sdd

 . (4.18)
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We have seen in Theorem 10 that for every 1 ≤ k, l ≤ d

X(N)(k, l)
N→∞−−−→ Sk,l

when the matrices X(N)(k, l) are considered as elements in
(
MN(A), ϕ⊗ Tr

N

)
.

From here we can conclude that

XN =

 XN(1, 1) . . . XN(1, d)
...

. . .
...

XN(d, 1) . . . XN(d, d)

 N→∞−−−→

 S1,1 · · · S1,d
...

. . .
...

S1,1 · · · Sd,d

 = S,

in distribution, when XN is considered as an element in the operator-valued ncps(
Md (MN(A) ) , Eϕ ◦

1

N
ETr, Md(C)

)
.

Where we identify

Md (MN(A) ) ∼= Md(C)⊗MN(C)⊗A,

and define the conditional expectations

ETr := idMd(C) ⊗ Tr⊗1A,

Eϕ := idMd(C) ⊗ ϕ.

The following diagram summarizes the operator-valued ncps that we use in this
section

Md(MN(A)) Md(S)

Md(A) Md(C)

1
N
ETr E

Eϕ

In some sense, there is also an horizontal arrow from Md(MN(A)) to Md(S),

given by the convergence XN
N→∞−−−→ S.

Now we turn our attention to the operator-valued fluctuations of XN . First we
have to define classical cumulants in an operator-valued ncps. For this purpose
we follow [28] and introduce the following notation.

Notation 9. (1) For every n ≥ 1 and for π ∈ P(n)

ϕπ : An −→ C
(a1, . . . , an) 7−→

∏
V ∈π

ϕ(V ) [a1, . . . , an] ,

where for V = {i1 < · · · < is} we denote

ϕ(V ) [a1, . . . , an] := ϕ(ai1 · · · ais).
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(2) We introduce here a matrix-valued version of (9), in the following way:
for every n ≥ 1 and π ∈ P(n) we define

Eϕπ : Md(A)n −→ Md(C)

(Y (1), . . . , Y (n)) 7−→

 ∑
i1,...,in−1=1

ϕπ

(
Y

(1)
i,i1
, · · · , Y (n)

in−1,j

)d

i,j=1

Remark 5. (1) Observe that Eϕπ is the natural generalization of

Eϕ
(
Y (1) · · ·Y (n)

)
=

 ∑
i1,...,in−1=1

ϕ
(
Y

(1)
i,i1
· · ·Y (n)

in−1,j

)d

i,j=1

.

(2) In the case that π is a non crossing partition, it is possible to write Eπ
(
Y (1) · · ·Y (n)

)
in a simpler form using products and compositions, e.g., for π = {(1, 2), (3, 6), (4, 5)}
we have

Eπ
(
Y (1), . . . , Y (5)

)
= E

(
Y (1)

)
Y (2)E

(
Y (3)E

(
Y (4)

)
Y (5)

)
.

For a general π ∈ P(n) we do not know whether is possible to write Eπ
using products and compositions. The advantage of Notation 9 (2) is that
it makes sense for an arbitrary partition π.

We now use Notation 9 to define matrix-valued classical cumulants.

Definition 25 (Matrix-valued classical cumulats). For matrices Y (1), . . . Y (n) ∈
Md(A), we define the matrix-valued classical cumulants in (Md(A), Eϕ,Md(C))
by

cEϕn (Y (1), . . . , Y (n)) =
∑

π∈P(n)

µ(π, 1n)Eϕπ
[
Y (1), . . . , Y (n)

]
(4.19)

where µ(π, 1n) is the Möbius function in P(n).

This notation has appeared before in the free probability literature. See for
example [26, Section 9.3].

Remark 6. (1) Definition 25 is a compact notation for cumulants in the en-
tries of Y (1), . . . , Y (n). We can see this by looking at one of the entries in
the matrix defined in (4.19).[
cEϕn (Y (1), . . . , Y (n))

]
i,j

=
∑

π∈P(n)

µ(π, 1n)
∑

i1,...,in−1=1

ϕπ

(
Y

(1)
i,i1
, · · · , Y (n)

in−1,j

)
=

∑
i1,...,in−1=1

cn

(
Y

(1)
i,i1
, · · · , Y (n)

in−1,j

)
.
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(2) A justification for the name matrix-valued classical cumulant, is that the
moment-cumulant formula can be lifted to this matrix-valued version.

Eϕ
(
Y (1) · · ·Y (n)

)
=

 ∑
i1,...,in−1=1

ϕ
(
Y

(1)
i,i1
· · ·Y (n)

in−1,j

)d

i,j=1

=

 ∑
i1,...,in−1=1

∑
π∈P(n)

cπ

(
Y

(1)
i,i1
, · · · , Y (n)

in−1,j

)d

i,j=1

=
∑

π∈P(n)

 ∑
i1,...,in−1=1

cπ

(
Y

(1)
i,i1
, · · · , Y (n)

in−1,j

)d

i,j=1

=
∑

π∈P(n)

cEϕπn (Y (1), . . . , Y (n)).

The main result of this section is a matrix-valued version of Theorem 11.
Before stating the result let us introduce the following notation.

Notation 10. (1) We identifyMd(C) with the subalgebraMd(C)⊗In ⊂Md(A).
For A ∈Md(C) we denote Ã := A⊗ IN .

(2) Let m, k1, . . . , km be positive integers and set k := k1 + · · · + km. For
matrices A(1), . . . , A(k) ∈Md(C) denote

P1 :=XN Ã
(1) · · ·XN Ã

(k1),

...

Pm :=XN Ã
(1+k1+···+km−1) · · ·XN Ã

(k).

The following is the main result of this section:

Theorem 12. Let XN be as in equation (4.16) with covariance (4.15). For m ∈
N and P1, . . . , Pm as above, the asymptotic behavior of matrix-valued cumulants
satisfy

c
Eϕ
m (ETr[P1], . . . , ETr[Pm])

Nm−2

N→∞−−−→
∑

π∈NC2(k1,...,km)

qcr(π)Eπ
(
SA(1), . . . , SA(k)

)
,

where Eπ is the multiplicative extension of E : Md(S)→Md(C) in the sense of
Notation 9, and S is the operator-valued semicircular element defined in (4.18).
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For the proof of Theorem 12 we need the analogous of the genus expansion.
Observe that this is a matrix-valued version of Equation (4.5).

Proposition 3 (Genus expansion). For matrices A(1), . . . , A(k) ∈ Md(C) we
have that

Eϕ

[
ETr

[
XN Ã

(1) · · ·XN Ã
(k)
] ]

=
∑

π∈P2(k)

qcr(π)Eπ
[
SA(1), . . . , SA(k)

]
N#(γπ)− k

2 ,

where γ = (1, 2, . . . , k) is the one-cycle permutation, and π ∈ P2(k) can be seen
as a product of commuting transpositions (one transposition for each block) in
Sk. The expression #(γπ) denotes the number of cycles in γπ.

Proof. First observe that Ã(i) =
d∑

s,t=1

es,t ⊗ A(i)
s,tIN , then

XN Ã
(i) =

d∑
p,r=1

d∑
s,t=1

ep,res,t ⊗X(N)(p, r)A
(i)
s,t

=
d∑

p,r,t=1

ep,t ⊗X(N)(p, r)A
(i)
r,t.

Observe that X(N)(p, r) is an N ×N matrix and A
(i)
s,t is a scalar.

Iterating the above procedure we get

XN Ã
(1) · · ·XN Ã

(k)

=
d∑

i1,...,i2k+1=1

ei1,i2k+1
⊗X(N)(i1, i2)A

(1)
i2,i3
· · ·X(N)(i2k−1, i2k)A

(k)
i2k,i2k+1

. (4.20)

58



Now consider a fixed tuple 1 ≤ i1, . . . , i2k+1 ≤ d, and observe that

Eϕ ◦ ETr

[
ei1,i2n+1 ⊗X(N)(i1, i2)A

(1)
i2,i3
· · ·X(N)(i2k−1, i2k)A

(k)
i2k,i2k+1

]
Eϕ

[
ei1,i2n+1 ⊗ Tr

(
X(N)(i1, i2)A

(1)
i2,i3
· · ·X(N)(i2k−1, i2k)A

(k)
i2k,i2k+1

)]
=

1

Nk/2

N∑
t1,...,tk=1

ei1,i2n+1 ⊗ ϕ
(
x

(i1,i2)
t1,t2 A

(1)
i2,i3
· · ·x(i2k−1,i2k)

tk,t1
A

(k)
i2k,i2k+1

)

=
1

Nk/2

N∑
t1,...,tk=1

∑
π∈P2(k)

qcr(π)

 ∏
(l,r)∈π

δl,γ(r)γr,γ(l)


ei1,i2n+1 ⊗ ϕπ

(
x

(i1,i2)
t1,t2 A

(1)
i2,i3

, . . . , x
(i2k−1,i2k)
tk,t1

A
(k)
i2k,i2k+1

)
=

∑
π∈P2(k)

qcr(π)N#(γπ)− k
2

ei1,i2n+1 ⊗ φπ
(
Si1,i2A

(1)
i2,i3

, . . . , Si2k−1,i2kA
(k)
i2k,i2k+1

)
In the last equation we are using the entries of S that have the same covariance
as the blocks of XN .
Taking the sum over all possible tuples 1 ≤ i1, . . . , i2k+1 ≤ d we obtain

Eϕ ◦ ETr

[
XN Ã

(1) · · ·XN Ã
(k)
]

=
∑

π∈P2(k)

qcr(π)Eπ
[
SA(1), . . . , SA(k)

]
N#(γπ)− k

2 .

Proof. (Proof for Theorem 12)
Given a partition σ ∈ P(m) we have to compute

Eϕσ (ETr[P1], . . . , ETr[Pm])

in the same way as we did in Equation (4.10). For this purpose we denote σ̂
the canonical embedding of P(m) in P(k). For a precise definition see Equation
(4.9). Observe that we are using a uniform notation for the positive integers
m, k1, . . . , km and k = k1 + · · ·+ km.
It follows from Equation (4.20) that for 1 ≤ r ≤ m

ETr[Pr] =
d∑

i
(r)
1 ,...,i

(r)
2kr+1=1

e
i
(r)
1 ,i

(r)
2kr+1

⊗ Tr

(
X(N)(i

(r)
1 , i

(r)
2 )A

(1)
i2,i3
· · ·X(N)(i

(r)
2kr−1, i

(r)
2kr

)A
(kr)

i
(r)
2kr

,i
(r)
2kr+1

)
.
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Then by a relabeling of subscripts we get

ETr[P1] · · ·ETr[Pm]

d∑
i1,...,i2k+1=1

ei1,i2k+1
⊗ Trθ

(
X(N)(i1, i2)A

(1)
i2,i3

, · · · , X(N)(i2kr−1, i2k)A
(k)
i2k,i2k+1

)
,

where θ is the partition

θ = {T1, . . . , Tm},

with T1 = [1, k1], T2 = [1 + k1, k1 + k2], . . . , Tm = [1 + k1 + · · ·+ km−1, k] and Trθ
is the multiplicative extension of Tr as defined in Notation 9.
Let γ be the permutation with cycles γ = (1, . . . , k1) · · · (1 + k1 + · · ·+ km−1, k).
For convenience, let us denote by Z the vector

Zi1,...,i2k+1
:=
(
X(N)(i1, i2)A

(1)
i2,i3

, · · · , X(N)(i2kr−1, i2k)A
(k)
i2k,i2k+1

)
∈MN(A)m.

Then we have

Eϕσ (ETr[P1], . . . , ETr[Pm])

=
d∑

i1,...,i2k+1=1

ei1,i2k+1
⊗ ϕσ

(
Tr(T1)(Zi1,...,i2k+1

), . . . ,Tr(Tm)(Zi1,...,i2k+1
)
)
.

(4.21)

We refer to Notation 9.(1) for a precise definition of Tr(T1)(Zi1,...,i2k+1
).

Now using the same argument as in Equation (4.10) we get that for a fixed tuple
1 ≤ i1, . . . , i2k+1 ≤ d

ϕσ
(
Tr(T1)(Zi1,...,i2k+1

), . . . ,Tr(Tm)(Zi1,...,i2k+1
)
)

=
∑

π∈P2(k)
π≤σ̂

qcr(π)N#(γπ)− k
2 φπ

(
Wi1,...,i2k+1

)
(4.22)

where

Wi1,...,i2k+1
:=
(
Si1,i2A

(1)
i2,i3

, · · · , Si2kr−1,i2kA
(k)
i2k,i2k+1

)
∈ Sm.

When we replace Zi1,...,i2k+1
by Wi1,...,i2k+1

we also replace ϕ by φ, this is because
the blocks of XN have the same covariance structure that the entries of S.
Now from the definition of matrix-valued cumulant, Definition 25, and from
Equations (4.21) and (4.22), we have that taking the sum over all partitions in
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P(m) produce

cEϕm (ETr[P1], . . . , ETr[Pm]) =
∑

σ∈P(m)

µ(σ, 1m)Eϕσ (ETr[P1], . . . , ETr[Pm])

=
∑

σ∈P(m)

µ(σ, 1m)
d∑

i1,...,i2k+1=1

ei1,i2k+1
⊗ ϕσ

(
Tr(T1)(Zi1,...,i2k+1

), . . . ,Tr(Tm)(Zi1,...,i2k+1
)
)

=
∑

σ∈P(m)

µ(σ, 1m)
d∑

i1,...,i2k+1=1

∑
π∈P2(k)
π≤σ̂

qcr(π)N#(γπ)− k
2 ei1,i2k+1

⊗ φπ
(
Wi1,...,i2k+1

)

=

 d∑
i2,...,i2k=1

∑
σ∈P(m)

µ(σ, 1m)
∑

π∈P2(k)
π≤σ̂

qcr(π)N#(γπ)− k
2 φπ

(
Wi1,...,i2k+1

)
d

i1,i2k+1=1

=
∑

σ∈P(m)

µ(σ, 1m)
∑

π∈P2(k)
π≤σ̂

qcr(π)N#(γπ)− k
2

(
d∑

i2,...,i2k=1

φπ
(
Wi1,...,i2k+1

))d

i1,i2k+1=1

=
∑

π∈P2(k)
π̃=1m

qcr(π)N#(γπ)− k
2Eπ

(
SA(1), . . . , SA(k)

)
(4.23)

The last equation follows from the same argument as in Equation (4.12). Mul-
tiplying both sides in Equation (4.23) by N−(2−m), and using inequality (4.14)
we get that in the large N limit, the only partitions that contributes in the limit
are those π ∈ P2(k) such that

#(γπ)− k

2
= 2−m.

Those are the annular non-crossing permutations NC2(k1, . . . , km).

Remark 7. (1) The matrix model XN defined in Equation (4.16) possesses
four parameters: the parameter q ∈ [−1, 1] for q-Gaussian entries, a
positive integer d that denotes the number of blocks in XN , a positive
integer N that denotes the size of each block and a covariance function
σ : [d]× [d]→ C that codifies the joint distribution of the entries in differ-
ent blocks of XN .
Theorem 10 says that the limit distribution of XN when N goes to infinity
converges to the distribution of an operator-valued semicircular element S,
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defined in (4.18). The matrix model S depends only of two parameters:
the size of the matrix d and the covariance function σ that describes the
joint distribution of the entries of S.
The information of S is not enough if we are interested in asymptotic lim-
its of classical cumulants. As Theorems 10 and 11 shows, we need to add
the information of the parameter q.

(2) The quantity
cEϕm (ETr[P1], . . . , ETr[Pm])

contains additional parameters: a positive integer m for the degree of the
cumulant c

Eϕ
m and positive integers k1, . . . , km that denote the degree of the

monomials

P1 :=XN Ã
(1) · · ·XN Ã

(k1),

...

Pm :=XN Ã
(1+k1+···+km−1) · · ·XN Ã

(k1+···+km).

We do not consider the matrices A(1), . . . , A(k) ∈ Md(C) where k := k1 +
· · ·+ km, as parameters because Theorem 12 remains true for an arbitrary
choice of these matrices. Remember that we denote Ã = A⊗ IN .

(3) Theorem 12 contains Theorems 10 and 11. Theorem 11 is recovered when
we set d = 1 and Theorem 10 is recovered when we set d = 1 and m = 1.
The relevance of Theorem 10 is that it is itself an extension of the result of
asymptotic freeness for GUE matrices. In the same way, Theorem 11 is an
extension of the results for the second order distribution of GUE matrices.

(4) Theorem 12 for q = 1 and m = 2 was shown by Belinschi-Diaz-Mingo in
[1, Proposition 10]. The key point to perform the extension of these results
to the case m > 2 is the introduction of Notation 9 and the matrix-valued
“multiplicative extension” of the conditional expectation E : Md(S) →
Md(C).

(5) The matrix-valued classical cumulants c
Eϕ
m introduced in Definition 25 are

similar to the cumulants defined by Belinschi-Diaz-Mingo in [1, Definition
24] and [1, Proposition 7]. However the ones defined in this thesis satisfy a
moment-cumulant formula. The proof of this fact is an easy computation
presented in Remark 6 (2).

(6) The main result obtained by Diaz et al in [1] is that they found a functional
equation for the second order Cauchy transform in the case q = 1. This
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means that they put all the fluctuation moments

αn,m := c
Eϕ
2

(
ETr

[
(XN Ã)n

]
, ETr

[
(XN B̃)m

])
into one power series

G(A,B) =
∑
r,s≥1

αn,m
Ar+1Bs+1

and obtained a functional equation for G(zIN , wIN), where IN is the iden-
tity matrix. We showed the connection between the “double-line pairings”
and pair partitions that are annular and linear non-crossing. See Figure 4
for an example.

There are still two open questions related to the matrix-valued cumulants
introduced in this thesis. First, whether it is possible to use the matrix-
valued cumulants to simplify the result of Belinschi-Diaz-Mingo [1]. Sec-
ond, whether it is possible to extend their results to the case q 6= 1. The
case q = 0 is also considered in [1, Definition 28] under the name of
“double-line Cauchy transform”.
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