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Abstract

Indistinguishable single photons are an indispensable resource for various
quantum technological applications. In order to exploit the lowest possible
losses in fiber-based long-haul networks, these photons are required to be at
telecom wavelengths around 1.55 µm. Available sources of indistinguishable
telecom photons, however, are premature as of yet. The present thesis at-
tends to this need using efficient quantum frequency conversion (QFC, device
efficiency > 30 %) to transduce single photons as emitted by InAs semicon-
ductor quantum dots (QD) from 904 nm to 1557 nm. The indistinguishability
is assessed with quantum interference experiments after Hong-Ou-Mandel in
two major settings: first, with photons consecutively emitted by the same
QD, and second, with photons stemming from two independent sources. All
indistinguishabilities observed prior and subsequent to the QFC are in the
order of 30-50 % and consistently explained using available emitter and de-
vice parameters. To that end we derive and use a theoretical model, which
predicts indistinguishabilities assuming homogeneously and inhomogeneously
broadened emission lines as typically encountered for solid state single photon
sources. Based on our results, we conclude that QFC conserves photon indis-
tinguishabilities and that the present scheme provides an efficient tool to aid
the realization of quantum networks.
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Zusammenfassung

Ununterscheidbare einzelne Photonen sind eine unverzichtbare Ressource für
diverse quantentechnologische Anwendungen. Um Verluste in faserbasierten
Langstreckennetzwerken zu minimieren, müssen diese Photonen außerdem
Wellenlängen im Telekommunikationsbereich um 1.55 µm aufweisen. Verfüg-
bare Quellen ununterscheidbarer Telekomphotonen sind jedoch bisher wenig
ausgereift. Die vorliegende Arbeit widmet sich diesem Mangel mit Hilfe ef-
fizienter Quanten-Frequenzkonversion (QFC, Geräteeffizienz > 30 %), um ein-
zelne Photonen, die von InAs Halbleiterquantenpunkten (QD) emittiert wur-
den, von 904 nm nach 1557 nm zu konvertieren. Die Ununterscheidbarkeit wird
mit Hilfe von Quanteninterferenzexperimenten nach Hong-Ou-Mandel in zwei
verschiedenen Szenarien bewertet: mit konsekutiv emittierten Photonen aus
einem QD und mit Photonen aus zwei unabhängigen Quellen. Alle Ununter-
scheidbarkeiten, die vor und nach der Konversion beobachtet wurden, liegen
im Bereich 30-50 % und werden konsistent mit Hilfe verfügbarer Emitter- und
Geräteparameter erklärt. Zu diesem Zweck entwickeln und benutzen wir ein
theoretisches Modell, welches Ununterscheidbarkeiten anhand homogen und
inhomogen verbreiterter Emissionslinien, wie sie oft bei festkörperbasierten
Einzelphotonenquellen angetroffen werden, vorhersagt. Aufgrund unserer Er-
gebnisse schließen wir, dass QFC die Ununterscheidbarkeit von Photonen
erhält und das präsentierte Schema ein überzeugendes Hilfsmittel zur Re-
alisierung von Quantennetzwerken darstellt.
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Chapter 1

Introduction

In order to define the field of quantum technologies, researchers frequently
speak of the second quantum revolution [1], which is motivated by a historic
comparison: The establishment of quantum mechanical theories in the early
20th century paved the way for a deep understanding of physical processes at
the level of single or few atoms, led to the notion of photons, and eventually
triggered numerous technological developments including lasers, transistors,
and microwave atomic clocks throughout the following decades. Considering
the worldwide impact these inventions entailed, this period is referred to as
the first quantum revolution. By now quantum mechanics is a mature disci-
pline. Despite its many predictions that apparently contradict the physical
laws governing our everyday life, it is often quoted as the most successful
physical theory. Technological progress does not only enable us to test these
predictions with increasing precision, but also to engineer coherent and entan-
gled quantum states of matter and light, which do not naturally occur. The
unique properties of such states can be employed for various novel applica-
tions, which would be impossible to realize based on non-quantum systems. It
is these applications that are summarized as quantum technologies and that
currently bring us to the verge of a second quantum revolution.

Placing quantum technologies on the same level with the progress achieved
through fundamental quantum theories is certainly an ambitious comparison
at the current stage. The prospects of quantum technologies, on the other
hand, are indeed profound. An operational universal quantum computer, for
instance, could tackle various numerical problems, which are considered in-
tractable on classical machines [2], such as the quantum chemical simulation
of molecules [3–5]. One possible application, which illustrates the large scale
industrial impact, is the modeling of nitrogenase [6] - an enzyme, which is ca-
pable of fixing atmospheric nitrogen on a small energy budget. Understanding
and controlling the underlying mechanism might lead to a procedure which
supersedes the Haber-Bosch process, whose contribution to the global CO2

emission is currently more than 2 % [7]. An early but very important exam-
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1. Introduction

ple of the supremacy of quantum over classical computers is the fast integer
factorization using Shor’s algorithm [8]. Its implementation would pose a con-
siderable threat to the security of public-key cryptosystems, which rely on the
assumption that no such algorithm exists [9, 10]. Ironically enough, quan-
tum technologies do not only cause this dilemma, but also suggest a solution:
quantum key distribution (QKD) is a sub-discipline of quantum communica-
tion investigating possible protocols on how to share encryption keys encoded
in the state of single or few photons between two distant parties [11]. Ide-
ally, these protocols offer absolute security against eavesdropping based on
fundamental physical laws, which make it impossible for a spy to go unno-
ticed [12–14]. Moreover, both quantum computers and communication are
often associated with the more general concept of a quantum internet [15],
being a system of numerous stationary quantum nodes, which are linked via
quantum channels within a decentralized long-haul network. The resources
and capabilities of a quantum internet exponentially scale with the number
of nodes and channels and quickly overcome size restrictions of local systems.
Such a network is therefore the ideal platform not only to implement secure
communication, but also to approach extremely complex computational tasks.

In view of these and other exciting applications, there are growing efforts
across countries worldwide to push forward the development of quantum tech-
nologies. In particular, several industrial as well as public initiatives aim at
first real-world quantum networks that make use of QKD [16]. Arguably the
most astonishing project is the quantum backbone connecting the four Chi-
nese cities Beijing, Jinan, Hefei, and Shanghai [17, 18]. The overall network
spans more than 2,000 km of optical fiber with each city hosting an additional
metropolitan network of its own. As of now, the backbone is partially opera-
tional and total costs in the order of USD 100 million have been estimated [16].
However, despite its pioneering work, China is certainly not the sole driving
force. In 2015, for instance, the UK established a quantum technology hub
equipped with overall GBP 270 million in order to promote quantum commu-
nication technologies and set up a British backbone connecting Bristol and
Cambridge during a period of 5 years [19]. The US government, on the other
hand, reports annual investments of around USD 200 million in the field [20]
and recently passed the National Quantum Initiative Act releasing another
USD 1.2 billion [21]. It is against this background that the European Com-
mission reacted to a call of its own research community and initiated the
quantum technology flagship programme in 2018, which provides funding in
the order of EUR 1 billion over 10 years [22]. It intends to support fundamen-
tal research in the fields of quantum communication, computation, simulation,
as well as sensing and metrology, but also strongly emphasizes the necessary
technology transfer from academia to commercializable applications.

In a draft of its research agenda [23], the flagship highlights the demon-
stration of fiber-based QKD schemes over distances of more than 500 km as
one of its major objectives. Considering that distances of 400 km have already
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been exceeded [24,25], the progress of this proposal might seem incremental at
best. However, the achieved secure key rates reported in both publications are
severely limited by transmission losses of the employed optical fibers. In [25],
for instance, the key rate is merely 6.5 bits per second, although the exper-
iment is driven at a repetition rate as high as 2.5 GHz. This discrepancy is
shocking, but the result is close to the limit of what is technically feasible: the
experiment has been performed at a wavelength of 1.55 µm, i.e. within the
telecom C-band where losses of optical fibers are minimized. More specifically,
the employed ultralow-loss fiber has an attenuation of 0.17 dB/km [26], which
is the lowest value commercially available as of now. Yet, the overall loss
amounts to 69 dB corresponding to a fiber length of 405 km, which explains
the low rate for the better part. These losses are well known and their im-
pact on various QKD schemes has been intensely studied [27–29]. As it turns
out, the attainable secure key rates of most point-to-point protocols become
too small for practical applications after no more than a few 100 km. Un-
fortunately, this issue cannot be encountered with signal amplification using
classical repeaters, as those destroy the quantum state of the corresponding
photons, which is one of the many consequences of the no-cloning theorem [30].
A possible solution is offered by quantum repeaters (QR) [31–33]. Simply put,
a QR creates a joint entangled state between two local quantum systems at
the site of sender and receiver without any direct interaction. Once the entan-
glement is established, it can be used as a resource, e.g. in order to generate
an encryption key between the two parties. The advantage is that no photon
ever has to travel the entire distance between sender and receiver, but only
up to the QR station located somewhere in between. Consequently, a quan-
tum communication channel including QRs is not as much affected by optical
losses and holds out the prospect of higher key rates [29]. It is for this reason
that the quantum flagship intends to incorporate at least three QRs in their
network. As no full QR has been demonstrated so far, let alone its integration
into a complete QKD scheme, this plan constitutes the actual challenge of the
flagship’s proposal.

The concept of a QR network is based on the distribution of entanglement
across a chain of elementary segments using an operation termed entanglement
swapping [34]. In the original proposal of a QR [31] each segment contains
an EPR-pair (after Einstein, Podolsky, and Rosen [35]), being a set of two
entangled two-level systems, whose physical nature is not further specified.
The most common protocols, however, employ entangled quantum memories
(QM) as EPR-pairs [32, 36, 37]. A QM is a stationary node, which is capable
of storing a quantum state with long lifetime, coherence time as well as high
fidelity and provides suitable read and write mechanisms. They are often
implemented based on ensembles of neutral atoms [38–40] or rare earth ions
in solids [41–43], but also single quantum emitters such as trapped neutral
atoms [44, 45] and ions [46–48] as well as solid state emitters are considered
[49–51]. In order to establish the elementary entanglement link between both
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1. Introduction

QMs of one segment, various possibilities exist, which are for instance well
summarized in [33]. All approaches are typically classified as either one or
two photon detection techniques, of which the following two are arguably the
most prominent ones:

(i) According to the protocols described in [32, 36], both memories emit a
photon, each of which heralds an excited state of its source. The photons
are overlapped on a beam splitter and subsequently detected. If the
probability that both memories are simultaneously excited is negligible,
the detection of a single photon projects the system into an entangled
state of a single excitation delocalized between both memories.

(ii) Another approach after [37, 52] starts with the two memories emitting
each one photon entangled with their internal quantum states. Both
QMs are then projected to an entangled state via two-photon coinci-
dence detection in a Bell-state measurement [53]. The necessary matter-
photon entanglement has been shown for the entire range of emitter
platforms mentioned above [54–57].

There are numerous variations of both methods. Often considered are for in-
stance protocols based on single photons [58] or entangled photon-pairs [59]
with QMs being integrated via absorption processes. All strategies moreover
only work, if the origin of the detected photons cannot be determined, which
implies that the photons of both sources must be mutually indistinguishable.
The indistinguishability can be separately assessed via destructive two-photon
interference (TPI) in an experiment after Hong-Ou-Mandel (HOM) [60]. In
particular TPI between photons from independent sources, as required for
QRs, has been observed in a vast number of experiments for all kinds of
potential QMs [61–68]. Using these methods, the entanglement of distant sta-
tionary nodes has been realized in a number of very successful experiments
based on trapped atomic [69–72] as well as solid state systems [73, 74]. Fur-
thermore, we like to mention the quantum relay, which is a memoryless modifi-
cation of the QR [75–77]. Instead of a QM it employs entangled photon-pairs
as obtained from SPDC sources (abbr. for spontaneous parametric down-
conversion) [78] or via radiative cascades in atomic systems [79, 80]. While
a fundamental entanglement swapping operation between photons from two
independent SPDC-sources has been shown as early as 1998 [81], a very re-
cent experiment demonstrated the functionality of a complex relay network
consisting of six independent SPDC-sources and four Bell-state measurement
stations generating entangled states of four photons [82].

Although these experiments demonstrate some of the most essential func-
tionalities of a QR, one realizes that none of the investigated QMs provides
photons at telecom wavelengths. Instead, most systems emit in the visible
or near infrared range, entailing the anticipated high losses in optical fibers.
As a consequence, the established entanglement-links are typically limited to
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distances of no more than a few 100 m with a maximum of 1.3 km reported
in [83]. In light of this issue, a number of encouraging experiments have been
performed with ensembles of Erbium ions in glass fibers [84] or nanophotonic
structures [85] serving as direct memories for telecom photons. However, these
memories still suffer from low efficiencies and low coherence times as of now.
Moreover, carefully tailored semiconductor quantum dots have been investi-
gated as sources of telecom photons [86, 87], but the corresponding emitters
usually lack the performance of their near infrared emitting counterparts in
terms of brightness, purity, and indistinguishability [88, 89]. A very differ-
ent approach bypasses the intricate search for suitable telecom emitters and
memories altogether: the field of quantum frequency conversion (QFC) [90,91]
deals with various nonlinear optical processes typically based on χ(2) and χ(3)

media [92, 93], which are used to manipulate the spectral properties of single
photons. In particular, they provide the means to shift the carrier frequency of
photons from their short emission wavelength to the telecommunication bands
and vice versa. This allows to combine the best available emitter platforms
with the lowest possible losses in optical fibers. Soon after the initial proposal,
QFC was demonstrated in a first proof-of-principal experiment in 1992 [94],
but for the converters to become a tool of quantum technologies substantial
performance improvements were required. Around two decades later, device
efficiencies in the order of 30 % became accessible [95, 96] owing to state-of-
the-art materials such as periodically poled lithium niobate structured into
waveguides [97–99]. Moreover, Raman scattering [100, 101] and parametric
fluorescence [102] of the optical pump were found to be the sources of se-
vere noise pollution at the target wavelength, which was minimized by careful
process design and rigorous spectral filtering thereafter. Equipped with such
high-efficiency, low-noise devices it became possible to address experiments in-
vestigating the quantum nature of the converted photons. So far, the conserva-
tion of coherence [95], photon-statistics [95,103,104], nonclassical light-matter
correlations [105,106], as well as photon-photon [107–110] and matter-photon
entanglement [96, 111–114] have been successfully demonstrated. We like to
single out an experiment recently reported in [115]. The authors employ two
independent frequency converters to interface two remote atomic ensembles to
the telecom O-band and perform entanglement swapping after transmitting
the converted photons of both memories over several 10 km of optical fiber.
The experiment demonstrates for the first time a complete QR segment in a
long-haul fiber network made possible owing to QFC. By now these promis-
ing results have led researchers to accept QFC as an indispensable enabling
technology for quantum networks [23].

Quantum frequency conversion is not restricted to a specific emitter plat-
form. Solely the experiments mentioned above cover photons obtained from
an ensemble of cold Rb atoms, nitrogen-vacancy centers in diamond, trapped
Ca-ions, and others. In the present work we pursue the frequency conversion
of single photons as emitted from semiconductor quantum dots (QD). Among
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1. Introduction

all available quantum emitters, QDs are a compelling option mostly owing
to advanced fabrication techniques that allow to integrate them into various
nanophotonic structures [116]. In particular QDs embedded into microcavi-
ties [117–119] or waveguides [120, 121] enable directed light emission leading
to highly efficient light-matter interfaces. Combined with the enhanced flu-
orescence decay rate of emitters coupled to high finesse cavities [122–124],
QDs became single photon sources that are extraordinarily bright and can be
operated at high system clock rates [125]. A major issue for QDs, as for all
solid-state systems for that matter, is the coupling to a fluctuating environ-
ment leading to line broadening due to pure dephasing [126,127] and spectral
diffusion [128, 129]. These effects severely limit coherence as well as indistin-
guishability of the emitted photons. However, operating QDs at low tempera-
tures and under strictly resonant excitation conditions [130] as well as the use
of other passive or active mitigation techniques [131–133] helped to achieve
nearly Fourier-limited photon emission in recent years [125, 134]. In order to
exploit QDs as a component in quantum networks, different approaches are
being pursued. First of all single electron or hole spins in QDs are considered
as possible QMs. On that account, basic requirements such as spin-photon
interfaces [135, 136] and spin-photon [57, 137, 138] as well as remote spin-spin
entanglement [74] have been demonstrated. However, the storage capabili-
ties of QDs are currently limited by spin-coherence times of no more than a
few microseconds [139]. Another possibility relies on QDs being sources of
polarization-entangled photons [80]: doubly excited QDs decay in a radiative
cascade emitting two spectrally separate and orthogonally polarized photons.
The polarization states of the photons correspond to the fine-structure com-
ponents of both transitions, which in turn depend on the in-plane ellipticity of
the QD. In case of a perfectly spherical shape the fine-structure components
are degenerate and the emitted photons polarization-entangled. Accordingly,
it is possible to use these QDs as an EPR-pair source for the aforementioned
quantum relay. The emission of polarization-entangled photon-pairs from QDs
has been observed in a number of experiments [140–144], and a quantum relay
scheme based on an electrically driven InAs QD was demonstrated in [145].

The main focus of the QFC experiments in this work is to study the in-
distinguishability of converted single photons. As mentioned before, indis-
tinguishable photons are one of the main requirements of a functional QR,
but also optical quantum computing [146,147] and sensing schemes [148,149]
profit from them. Therefore, understanding whether and how indistinguisha-
bility is affected by QFC is a question relevant to a variety of applications.
Prior to this work, photons from two spectrally distinct transitions around
980 nm of one quantum dot were up-converted to a common wavelength at
600 nm and TPI between both photons could be observed in a subsequent
HOM experiment [104]. A different experiment reported on TPI between
photons emitted by a quantum dot and an independent laser down-converted
from around 910 nm to the telecom C-band [150]. Here, we consider a similar
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down-conversion scheme interfacing the spectral regions around 905 nm and
1557 nm. It will be employed, however, to convert photons from two remote
QDs to a common telecom wavelength. In a subsequent HOM experiment
the indistinguishability of both independently converted telecom photons will
be demonstrated. In view of an entanglement swapping operation, these re-
sults suggest that QFC can be readily used to extend the range of a single
entanglement-link from only a few kilometers to a realistic quantum network
scale of several 10 to 100 km. Another benefit in this scheme stems from the
convenient tunability of the telecom photons during the QFC process. Like all
solid-state sources the emission of QDs exhibits strong inhomogeneous broad-
ening caused by processing uncertainties and interactions between the emitter
and its host matrix. As a consequence, HOM experiments usually require an
additional tuning mechanism to overcome the spectral distinguishability of
distinct emitters, usually realized via a control parameter such as tempera-
ture [151–153], strain [154–156], as well as static electric [64–67] or magnetic
fields [157, 158]. Shifting this task to the QFC step, tuning methods directly
acting on the emitter become unnecessary, which not only avoids a potential
degradation of its spectral properties but also decreases the complexity of the
experiment.

The contents of this thesis is presented in topical order: in Chap. 2 we
first address a selection of fundamentals, which are essential to understand
both theoretical and experimental results of this work. These include infor-
mation on semiconductor quantum dots as single photon sources, spectral line
broadening mechanisms, nonlinear optics with a focus on difference frequency
generation in waveguides, as well as the time-dependent description of two-
photon interference in HOM-type experiments. In Chap. 3 we develop a the-
ory to describe HOM-experiments, whose photons are subject to homogeneous
and inhomogeneous line broadening mechanisms. The resulting formalism is
used throughout the thesis to consistently explain the non-ideal TPI contrasts
observed in experiment. Moreover, the formalism is extended to predict the
performance of partially indistinguishable photons in general linear optical
gates. As QFC is a key component to all experiments of this thesis, Chap. 4
is dedicated to the relevant design and performance aspects of the converter.
Besides a basic description of its integral components, we offer information
on tunability, efficiency, as well as noise characteristics. In Chap. 5 we turn
to HOM experiments with down-converted photons. In this first set of ex-
periments we test the indistinguishability of photons consecutively emitted by
the same quantum dot. The results suggest that QFC conserves photon in-
distinguishabilities and therefore open the way for the experiments presented
in Chap. 6. Here, two identical but independent converters are used to trans-
duce the single photon emitted by two remote quantum dots to the same center
wavelength at the telecom C-band. In a final HOM experiment we show their
mutual indistinguishability and how the conversion step can be used to tune
the independent photons in and out of resonance. In Chap. 7 we theoreti-
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1. Introduction

cally address the impact of limited TPI contrasts in different entanglement
generation schemes. More specifically, we investigate how homogeneous and
inhomogeneous line broadening mechanisms affect the entanglement fidelity
of independent photons via a controlled-NOT gate, and the extent to which
chromatic dispersion in optical fibers degrades possible entanglement rates in
entanglement swapping schemes. Eventually, all results of the present thesis
are reviewed and discussed in Chap. 8.
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Chapter 2

Fundamentals

In this chapter we address a number of fundamentals necessary to understand
the results obtained in the scope of this work as well as their interpreta-
tion. Fig. 2.1 illustrates a segment of the two-photon interference experiment
performed on single photons from remote quantum emitters: single photons
emitted by a semiconductor quantum dot (QD) are transferred from the near
infrared regime (red photons) to the telecom C-band (blue photons) via quan-
tum frequency down-conversion (QFDC) and subsequently overlapped on a
beam splitter with converted photons from a second QD. This arrangement
constitutes a Hong-Ou-Mandel (HOM) experiment and is meant to test the
mutual indistinguishability of both photons.

In the course of our considerations we will discuss pivotal elements of the
shown experiment including spectroscopic features of QDs (Sect. 2.1), single
photon spectra homogeneously and inhomogeneously broadened beyond their
Fourier limit (Sect. 2.2), nonlinear optics with focus on difference frequency
generation in ridge waveguides (Sect. 2.3), as well as the description of HOM
experiments in the time-domain (Sect. 2.4). Note that these fundamentals do
not only cover the experiment with photons from remote QDs as shown in
Fig. 2.1 (Chap. 6), but also with consecutively emitted photons from a single
QD (Chap. 5).

2.1 Semiconductor Quantum Dots

In the presented experiments we use self-assembled semiconductor quantum
dots as sources of single indistinguishable photons. A QD is a small cluster
containing 103 to 105 atoms of a semiconductor material embedded in a host
crystal with wider bandgap. As their size (≈ 10 − 100 nm) is comparable
to the matter wavelength of electrons, QDs give rise to a three-dimensional
confining potential for charge carriers with several localized states and are
therefore often referred to as artificial atoms.

The material platform of the quantum dot samples employed in our work

9



2. Fundamentals
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Figure 2.1. Covered fundamentals in the context of the per-
formed experiments. A sketch of a Hong-Ou-Mandel (HOM) exper-
iment is shown, including emission of single photons from a quantum
dot (QD), their quantum frequency down-conversion (QFDC) to tele-
com wavelengths and the final coalescence with converted photons from
a second QD on a beam splitter. The fundamentals provide details on
QD physics, spectral line broadening mechanisms, nonlinear optics, and
time-resolved measurements of HOM experiments.

is one of the most common, being indium arsenide (InAs) QDs in a gallium
arsenide (GaAs) matrix [159,160]. InAs QDs typically emit in a range of 850-
1000 nm, exhibit radiative lifetimes of around 1 ns and have to be operated at
cryogenic temperatures due to a shallow charge carrier confinement [161].

In the following we describe the most vital basics of semiconductor QD
physics necessary to understand the spectroscopic features encountered in the
scope of this work. In particular, we focus on fabrication, level structure,
optically active transitions, and excitation schemes of QDs. The outline of
this section mostly follows [162] and compiles additional information found in
the comprehensive reviews [161,163,164].

2.1.1 Fabrication

As opposed to colloidal QDs, which are produced in solution [165], self-
assembled QDs are grown by epitaxial methods in bulk, i.e. by consecutive
deposition of two or more different crystalline materials on a solid substrate.
The main parameters defining the mode of growth are the lattice constants of
the involved materials, as a large mismatch leads to significant strain at their
interface. Generally, three different regimes are distinguished, correspond-
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2.1. Semiconductor Quantum Dots
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Figure 2.2. Fabrication of self-assembled quantum dots. (a)
Growing InAs on GaAs corresponds to the Stranski-Krastanov regime:
after the growth of a few layers of InAs (wetting layer, WL), the strain
due to lattice mismatch leads to the formation of small nano-islands - the
quantum dots. (b) The high refractive index of GaAs causes significant
losses (green arrows) due to total internal reflection and the limited
NA of the collection system (finite width of gray lens). The dashed
line represents Snell’s window. Distributed Bragg reflectors (DBR) on
both sides of the sample (right side) form a planar cavity around the
emitter, which enhances emission towards the objective and improves
the collection efficiency (illustrated by darker green color).

ing to (i) a small mismatch, which hardly induces strain and allows smooth
2D-layers to grow (Frank-van der Merwe [166]), (ii) a large mismatch, in
which the deposited material forms small droplets to minimize the contact
area (Volmer-Weber [167]), and (iii) an intermediate regime (Stranski-Kras-
tanov [168]). With a lattice-mismatch of ≈ 7 % InAs QDs are grown on GaAs
in Stranski-Krastanov mode [169]. A resulting QD is schematically depicted
in Fig. 2.2 (a). Deposition of the low-bandgap material (here InAs, red)
on the barrier material (BM, here GaAs, blue) first leads to a few strained
monolayers, commonly known as wetting-layer (WL). At a critical thickness
the energy penalty stemming from strain predominates the surface energy
and small nano-islands start to emerge, in which the strain is relieved. These
nano-islands constitute the actual QD. Prior to the deposition of more BM,
the QDs are often terminated by a capping layer.

Fig. 2.2 (b) illustrates a common problem encountered with solid state
emitter systems: due to the high refractive index of the host crystal, only pho-
tons emitted within a small solid angle-range can be extracted (green cone).
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2. Fundamentals

The rest is lost due to total internal reflection at the surface and the lim-
ited numerical aperture (NA) of the collecting microscope objective. In case
of GaAs, which exhibits n ≈ 3.6 at 900 nm [170], these losses are severe, as
they can exceed 99 % of the overall emission [171]. It is possible, however, to
tailor the direction of light emission towards the objective and thus increase
the extraction efficiency by structuring the QD environment. The QD sample
employed in the present work was embedded between two distributed Bragg
reflectors (DBR, compare Fig. 2.2 (b) right side) made of multiple alternating
layers of GaAs and AlAs, which improves the extracted photon flux by an
order of magnitude to around 10 % [171]. Note that even higher extraction
efficiencies have been achieved using more sophisticated structures, such as
QDs embedded into micropillars [117–119] or waveguides [120, 121], or with
the sample surface shaped into a solid immersion lens [153,172].

Two techniques are employed for the growth of QDs, namely molecular
beam epitaxy (MBE) and metal-organic vapor-phase epitaxy (MOVPE). MBE
vaporizes and deposits material at high to ultra-high vacuum and therefore
achieves high purity at the cost of low rates. In contrast MOVPE employs
a carrier gas slightly below atmospheric pressure to transport metal-organic
compounds to the substrate. Accordingly, MOVPE is a suitable method, if
high deposition rates are necessary, e.g. for the growth of DBRs. On the
downside, MOVPE typically causes a defect density high compared to MBE
grown samples.

2.1.2 Level Structure and Optical Transitions

Light emission from QDs stems from a recombination process of bound elec-
tron-hole pairs, the so-called excitons. Accordingly, the spectrum of emitted
light is determined by the spectrum of available exciton states, which are
typically modeled as eigenstates of a 3D confining potential [173]. Fig. 2.3
(a) and (b) outline one of the most common QD geometries, referred to as
lens-shape. It corresponds to an oblate semi-ellipsoid of thickness a in growth
direction with lateral principal axes bx and by, sitting on top of a WL of
thickness d. As the thickness of the QD varies only slowly within the xy-plane,
the charge carrier movements along the z-direction and perpendicular to it
can be adiabatically decoupled. On that note it is convenient to first consider
the conduction band structure as function of z for a fixed lateral position
as illustrated in Fig. 2.3 (c). At any position the InAs layer constitutes a
simple 1D quantum well with finite walls (red) within the GaAs continuum
(blue). With a thickness of merely a few nm, WL and QD accommodate only
the ground state at energy E0. Due to the varying InAs thickness, the energy
becomes a function of the lateral position, where its minimum can be found at
the QD center (x0, y0) [bottom diagram in (c)]. With the Schrödinger equation
solved with respect to z, we obtain a function E0 (x, y) defining the in-plane
movement, which approximately resembles a 2D-harmonic potential (1D cut
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Figure 2.3. Level structure of self-assembled quantum dots.
Side view (a) and top view (b) of a lens-shaped quantum dot (QD) and
the surrounding wetting layer (WL). Its geometry is defined by height
a, diameters bx and by, as well as WL thickness d. (c) Conduction band
edge along the z-axis. The low-band gap QD material (red) inside the
wide-bandgap barrier material (blue) constitutes a quantum well for the
charge carrier movement in z-direction. In the WL [top diagram, thick-
ness d at position (x1, y0)] and QD [bottom diagram, d + a at (x0, y0)]
only the fundamental modes are allowed with energies E0 (x1, y0) and
E0 (x0, y0), respectively. (d) The energy E0 for the z-movement as a
function of the radial position approximately resembles a 2D-harmonic
potential for the in-plane movement (here the potential is illustrated in
1D for y = y0). The bound states are characterized by a set of quantum
numbers (N, l).

illustrated in Fig. 2.3 (d) as red curve). In the simple case of a rotationally
symmetric QD (bx = by), the eigenenergies can therefore be written as

E (nx, ny) = ~ω (nx + ny + 1) = ~ω (N + 1) , (2.1)
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2. Fundamentals

where ~ω is the ground state energy and nx, ny are non-negative integers. The
eigenstates of a QD are typically identified by the tuple (N, l) with the princi-
pal and angular momentum quantum numbers N = nx + ny and l = nx − ny,
respectively. Sets of eigenstates of constant N are degenerate with respect to
l and commonly referred to as s-, p-, d-shell for N = 0, 1, 2, as N is related to
the number of azimuthal nodes. Up to this point, we implicitly bypassed the
description of holes and only considered electrons moving within the conduc-
tion band. Localized states of holes are obtained in the same manner taking
the inverted structure of the valance band as confining potential [blue curve,
Fig. 2.3 (d)].

As electrons and holes are fermions, each shell can be occupied by up to
two excitons, although for moderate excitation powers the only relevant states
exhibit a single exciton (spectroscopic notation X) or two excitons (XX or X2).
The latter is typically referred to as biexciton. Furthermore, it is possible that
an exciton coexists with a single electron or hole in the s-shell. These states
are called negative trion (X−) and positive trion (X+), respectively. In the
present work, we only encounter emission from the recombination of excitons
and trions in the ground state, as the relaxation of excitons from higher shells
to the s-shell is fast (1 - 100 ps) compared to the recombination dynamics
(100 ps - 1 ns).

To establish selection rules governing the relevant optically active transi-
tions in QDs, it is necessary to understand the angular momentum of excitons,
which we briefly review in the following: due to spin-orbit coupling, electron
and hole states are best described by a total angular momentum quantum
number j. As the conduction band accommodates electrons in s-like states,
they are associated with an angular momentum projection of jz = ±1/2,
where z refers to an arbitrary preferential direction. The valence band, on
the other hand, exhibits p-like states, of which holes occupy the subset with
a total angular momentum of 3/2. Their projections jz = ±1/2 and ±3/2
are accompanied with differing effective masses, resulting in the distinction of
light and heavy holes, respectively. Both are degenerate for vanishing crystal
momentum. The degeneracy is lifted, however, due to material strain inher-
ent to InAs QDs, which causes the holes to be predominantly heavy with
jz = ±3/2. Considering the angular momentum of both electrons and holes,
we find that excitons can have overall angular momentum projections of ±1
and ±2, where the latter is optically inactive and accordingly called a dark
exciton. Bright excitons with a projection of ±1, on the other hand, emit
circularly polarized photons. However, this only holds for rotationally sym-
metric QDs with bx = by [compare Fig. 2.3 (b)]. For the more general case of
bx 6= by, both projections with ±1 mix due to exchange-interaction between
electron and hole leading to a fine-structure splitting of the emission line with
each component emitting linearly polarized light [174, 175]. For InAs QDs
the fine-structure splitting is around 10-100 µeV, which is approximately 2 or-
ders of magnitude smaller than the separation between the respective exciton
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2.1. Semiconductor Quantum Dots

and biexciton transitions (a few meV) [162, 163]. Furthermore, the individ-
ual fine-structure components possess orthogonal linear polarization along the
principal axes of the QD. Note that the fine-structure splitting vanishes for
trions, as the single electron or hole spin prohibits the necessary superposition
state of the exciton following the Pauli exclusion principle (also refer to the
more detailed discussion in Sect. 6.2.1).

2.1.3 Excitation Schemes

Although excitons can be generated electronically by applying DC voltages
across the QD, optical excitation schemes are often preferable, in particular
when Fourier-limited single photons are required. Depending on the energy
of the excitation light three regimes are distinguished, namely non-resonant,
quasi-resonant, and resonant excitation. In the first case the excitation photon
energy is sufficient to lift an electron from the valence to the conduction band
of the barrier material leaving a hole behind, as illustrated in Fig. 2.4. In sub-
sequent phonon-assisted processes, the charge carriers relax to the band-edge,
are captured by the QD into an excited bound state, and relax to the s-shell.
In a final recombination step, a single photon is released with an energy be-
low the excitation light. Non-resonant excitation is convenient, as excitation
and emission light are easily separated by spectral filtering and the excitation
wavelength does not need to be tuned to specific transitions of the QD. It is
detrimental, however, for the coherence properties of the emitted photons, as
the additional relaxation steps add a jitter to the emission time and induce
dephasing. Moreover, the non-resonant excitation creates an excess of free

excitation emission

condunction band

+ WL continuum

valence band
+ WL continuum

p-shell

s-shell

1. 2.

3.

4.

1. 2.

3.

electron

hole

1.

2.

3.

4.

intraband relaxation [fs]

charge carrier capture [ps]

QD relaxation [ps]

recombination and emission [ns]

Figure 2.4. Non-resonant optical excitation and emission from
a quantum dot. The excitation laser lifts an electron from the valence
band to the conduction band in vicinity of the quantum dot and leaves
a hole behind. Electron and hole subsequently relax to the band edge
(1. step, fs-timescale) and are captured by the quantum dot (2. step,
ps-timescale). The exciton now relaxes to the ground-state (3. step, ps-
timescale) and eventually recombines emitting a single photon (4. step,
ns-timescale).
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2. Fundamentals

charge carriers. As a consequence, the QD typically captures more than a
single exciton at a time, whose mutual interactions significantly complicate
temporal and spectral properties of the emitted light. Additionally, the elec-
trostatic environment of the QD is destabilized by the excess charges, which
leads to spectral line broadening and further deteriorates the coherence of the
emitted photons (cf. Sect. 2.2). Both time-jitter and line broadening can be
reduced using resonant excitation schemes. Although resonant generation of
excitons in the s-shell leads to the best achievable coherence properties, it is
inconvenient in practice as spectral separation of excitation and emission is
impossible. Instead techniques that rely on polarization suppression or spa-
tial separation of excitation light must be employed [130, 176, 177] (see also
Sect. 6.2.1). Quasi-resonant excitation constitutes a valuable trade-off: Res-
onantly addressing excitons in the p-shell prevents charge-carriers from being
generated close to the QD, significantly decreasing unwanted line-broadening.
Although the time-jitter is not completely removed, spectral separation of
excitation and emission is still possible, making quasi-resonant excitation a
compelling and often employed method, e.g. in the scope of Sect. 5.1.1. Even-
tually, we like to mention a scheme, in which the excitation laser is tuned to
an energy of (EX +EXX)/2 with EX and EXX being the binding energies of
exciton and biexciton, respectively. The laser is in resonance with neither of
them, but the absorption of two photons simultaneously creates two excitons,
lifting the QD directly into a biexciton state [178]. This method is particularly
interesting for the coherent generation of polarization-entangled photon pairs
from the radiative cascade of a decaying biexciton [141,143].

Furthermore, the excitation laser can be operated in continuous wave (cw)
or pulsed mode. The latter is of central importance for the on-demand genera-
tion of single-photons [159], or more specifically their emission at a well-defined
time. As the experiments presented here require the synchronization of two
independently emitted photons, all experiments are performed under pulsed
excitation.

2.2 Mechanisms of Spectral Line Broadening

Solid state emitters in general and semiconductor QDs in particular are not
closed systems, but subject to various interactions with their environment.
Some of those effects can be exploited in the operation of QDs, such as the
aforementioned phonon assisted carrier capture and transitions between ex-
citonic states. More often than not, however, they are associated with de-
clining optical properties of the emitter. For instance, the coupling to optical
phonons leads to distinct phonon sidebands, while acoustic phonons add a
broad band around the zero phonon line (ZPL) [179, 180]. Furthermore, an
elastic Raman-scattering process involving two acoustic phonons broadens the
ZPL itself [126,127]. An often encountered noise source is the coupling between
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2.2. Mechanisms of Spectral Line Broadening

a QD and charges trapped nearby via fluctuating electrical fields [128, 129].
This noise typically occurs at low frequencies, but with a large amplitude, and
therefore leads to significant inhomogeneous broadening of the ZPL. Similarly,
random spin flips of nuclei in the vicinity of the QD appear as fluctuating mag-
netic fields, which potentially depolarize single electron spins [129, 181] and
thereby impair the application of QDs as spin qubits.

As we will see in the upcoming sections, the contrast of two-photon inter-
ference (TPI) crucially depends on the spectral properties of the emitted pho-
tons and approaches unity only in the Fourier limit. Assessing the outcome of
a TPI experiment therefore requires a profound understanding of spectral line
shapes and the closely related optical coherence. On that note, we here offer
an approach to the formal description of homogeneously and inhomogeneously
broadened ZPLs. Despite their relevance in terms of indistinguishability, we
do not cover the influence of phonon sidebands [182, 183], as they have been
mostly removed by spectral filtering throughout all experiments presented in
this work.

2.2.1 Timescales of Frequency Fluctuations

To get a first insight into the impact of frequency fluctuations on emission
spectra, we outline a few results of the stochastic theory of line shapes, also
known as Kubo model [184,185], guided by the reviews presented in [186,187].
Therein, the momentary frequency ν (t) of an arbitrary light emitting system
is resolved in its mean frequency ν0 = 〈ν (t)〉 and a fluctuating term δν (t)
according to

ν (t) = ν0 + δν (t) with 〈δν (t)〉 = 0. (2.2)

Here 〈·〉 denotes the time average. As δν (t) stems from random fluctuations,
its time dependency is not explicitly known. Most underlying processes, how-
ever, can be modeled by an interaction of the emitter with a large number
of random fluctuators, as we will discuss in some more detail in Sect. 2.2.3.
In this case ν (t) explores a normally distributed frequency region centered
around ν0, which is a direct consequence of the central limit theorem [188,189].
It follows that the frequency correlation function Cδν (τ) = 〈δν (t) δν (t+ τ)〉
exponentially decays according to

Cδν (τ) = σ2 · exp (−|τ |/τc) , (2.3)

where σ is the standard deviation of the underlying normal distribution and
τc the correlation time of the fluctuations. The correlation function Cδν (τ)
yields information on how long the system can memorize its history, i.e. for
τ � τc the momentary frequency is not anymore correlated with the initial
frequency. Although we are interested in photons spontaneously emitted from
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2. Fundamentals

an excited two-level system, it is instructive to first consider a continuously
emitting light source, described by the wave function

ζ (t) = ζ0 · exp [i 2πν (t) t] . (2.4)

In this case, Eq. (2.3) can be used to compute the auto-correlation of ζ (t),
often referred to as optical coherence function, which reads

g(1) (τ) =
〈ζ (t) · ζ∗ (t+ τ)〉
〈ζ (t) · ζ∗ (t)〉

= exp
{

i 2πν0 τ − σ2τ2
c [exp (−|τ |/τc) + |τ |/τc − 1]

}
. (2.5)

Following the Wiener-Khinchin theorem, the coherence function is linked to
the power spectral density S (ν) (PSD, or short spectrum) via a Fourier trans-
formation according to

S (ν) = F
[
g(1) (τ)

]
(ν) =

1√
2π
·
∫ +∞

−∞
g(1) (τ) · e−i 2πν τ dτ . (2.6)

As illustrated in Fig. 2.5, the resulting optical coherence and PSD are best
categorized comparing the amplitude of frequency fluctuations σ to their decay
rate τ−1

c . Here, we find three different regimes:

(i) For short correlation times, i.e. τc � σ−1, the frequency rapidly fluc-
tuates [Fig. 2.5 (b)] causing a fast collapse of the frequency correlation [Fig.
2.5 (a)]. In this limit the optical coherence goes over to an exponential decay

g(1) (τ) = exp (i 2πν0 t− Γ∗ |τ |) with Γ∗ = 4π2σ2τc. (2.7)

Via Fourier transformation (2.6), we find that the spectrum is given by a
Lorentzian peak according to [Fig. 2.5 (c), red]

S (ν) =

√
2

π
· Γ∗

4π2 (ν − ν0)2 + Γ∗2
. (2.8)

Note that the spectrum is narrower than the available frequency range. This
is a consequence of the fast relaxation after any perturbation and commonly
known as motional narrowing, first observed in nuclear magnetic resonance
experiments with hydrogen gas [190], but also relevant for QD emission [191].
As these rapid fluctuations affect every photon in a uniform manner, the
Lorentzian line shape is typically called homogeneously broadened.

(ii) In the intermediate regime τc ≈ σ−1, the frequency noticeably fluc-
tuates, but too slow to adopt every available value of the distribution during
σ−1 [Fig. 2.5 (e)]. As a result, the spectrum is broadened compared to (c),
yet narrower than the overall distribution [Fig. 2.5 (f)]. This will be discussed
in more detail in Sect. 2.2.3.
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Figure 2.5. Impact of frequency fluctuations on emission spec-
tra. The emitter explores a normally distributed frequency space [black
dashed line in (c) and (f)]. Its standard deviation σ is illustrated as red
dashed line in (b), (e), and (h). Three cases are considered comparing
the frequency correlation time τc to σ−1 leading to different frequency
correlations [(a), (d), and (g)] and emission lines [red in (c), (f), and (i)].
For details cf. main text. Adapted with permission from [186].

(iii) The last case corresponds to τc � σ−1, in which the optical coherence
takes on a Gaussian shape reading

g(1) (τ) = exp
(
i 2πν0 t− 2π2σ2t2

)
. (2.9)

This regime stands out due to a highly inert relaxation of a perturbed emitter.
As a result its emission frequency remains quasi-stationary over a long time
[Fig. 2.5 (h)]. For ensembles of many emitters, this implies that at any time
the probability to find an emitter at frequency ν equals the PSD [Fig. 2.5 (i)]

S (ν) =
1√

2πσ2
· exp

[
−(ν − ν0)2

2σ2

]
. (2.10)

As the overall line shape is a consequence of every emitter being in a dif-
ferently perturbed state, it is said to be inhomogeneously broadened. Under
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2. Fundamentals

the assumption of our single QD being an ergodic system, the inhomogeneous
broadening (2.10) describes the frequency distribution of a large number of
consecutively emitted photons, where each individual photon exhibits a con-
stant frequency throughout its lifetime.

We like to conclude with some notes on the nomenclature: All three dis-
cussed cases are limits of the same phenomenon, called spectral diffusion (SD).
In the research field of quantum emitters it became a custom, however, to as-
sociate SD with slowly varying emission frequencies, i.e. the latter two cases.
The opposite limit of homogeneous broadening, on the other hand, is referred
to as pure dephasing (PD) instead. Despite not being accurate in its original
sense, we conform with this standard in the scope of the present work.

2.2.2 Emission from a Perturbed Two-Level System

The considerations of the preceding section have two shortcomings regard-
ing our requirements. First, realistic single photons have a finite lifetime in
contrast to Eq. (2.4), leading to a finite spectral linewidth even in absence of
perturbations. Furthermore, the notion of a single correlation time τc separat-
ing homogeneous from inhomogeneous broadening suggests that both limits
cannot simultaneously affect the emitted photons. It is common, however,
that the underlying noise spectrum is broadband [129, 133] and covers both
regimes [192–195]. Most measurements performed in this thesis are integrated
over a time which is (presumably) long compared to any τc governing the emit-
ter dynamics. Accordingly, each single photon is homogeneously broadened
while the overall measurement averages over the inhomogeneous ensemble dis-
tribution, i.e. we must incorporate both limiting cases into our considerations.
On that account, we now use the wave-function

ζ (t) =
1√
τr

H (t) · exp {−t/2τr − i [2πν t+ ϕ (t)]} , (2.11)

which models single photons as emitted by a radiative decay from a two-level
system with lifetime τr and at a constant carrier frequency ν. The Heaviside-
function H (t) ensures that the emission process only starts after an initial
excitation step at time t = 0. The phase term ϕ (t) is introduced to account
for phase fluctuations corresponding to homogeneous broadening. The optical
coherence is obtained by evaluating

g(1) (τ) =

∫ +∞
−∞ 〈〈ζ (t) · ζ∗ (t+ τ)〉PD〉SD dt
∫ +∞
−∞ 〈〈ζ (t) · ζ∗ (t)〉PD〉SD dt

, (2.12)

where the necessary averaging over the entire time trace in Eq. (2.5) was
substituted by a time-integral covering only a single photon and two ensemble
averages corresponding to PD and SD. The PD average exploits the expression

〈exp [iϕ (t+ τ)− iϕ (t)]〉 = exp (−Γ∗ |τ |) (2.13)
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Figure 2.6. Simultaneous impact of homogeneous and inhomo-
geneous broadening. (a) Optical coherence function and (b) spectra
of photons under the influence of pure dephasing and spectral diffusion.
Shown is the Fourier limited case (dashed) as well as predominantly
homogeneously and inhomogeneously broadened photons (red and blue,
resp.). The parameters Γ∗ and σ′ are chosen such that the overall broad-
ening is ≈ τ−1

r . The spectra are evaluated using the Faddeeva function.

found in [196] with Γ∗ being the pure dephasing rate. To account for SD the
static carrier frequency ν is weighted based on the distribution Eq. (2.10).
The evaluation of Eq. (2.12) is detailed in the supplement of [197] and yields

g(1) (τ) = exp
[
i 2πν0 t− 2π2σ2τ2 − |τ | (1/2τr + Γ∗)

]
. (2.14)

Besides an oscillation at the central frequency ν0, the first order coherence
function is determined by two contributions. The term linear in τ corre-
sponds to homogeneous broadening and now includes the natural linewidth
1/2τr besides the pure dephasing rate. The quadratic term on the other hand
stems from SD and contains the inhomogeneous linewidth σ. To assess the
optical coherence of the emitted photons, it is common to state the coherence
time τcoh, which is defined as half the 1/e-width of

∣∣g(1) (τ)
∣∣ and reads

τcoh = −2 ln 2

π2
· Γh

σ′2
+

√(
2 ln 2

π2
· Γh

σ′2

)2

+
4 ln 2

π2 · σ′2 . (2.15)

Here, we introduced the full width at half maximum (FWHM) of the inho-
mogeneous linewidth distribution σ′ = 2

√
2 ln 2σ as well as the homogeneous

linewidth Γh = 1/2τr+Γ∗. Note that the FWHM of the homogeneous contribu-
tion is given by Γh/π. In order to obtain the PSD, the Fourier transformation
(2.6) needs to be solved. Using the substitutions a (τ) = exp (−Γh |τ |) and
b (τ) = exp

(
−2π2σ2τ2

)
as well as the Fourier-convolution theorem we find
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S (ν) = F [a (τ) · b (τ)] [2π (ν − ν0)]

=
1√
2π
· F [a (τ)] [2πν] ∗ F [b (τ)] [2π (ν − ν0)]

=
1√
2π
·
{√

2

π
· Γh

4π2ν2 + Γ2
h

}
∗
{

exp
[
−(ν−ν0)2/2σ2

]

2πσ

}

=

√
2 ln 2

π2
· Re [w (z)]

σ′
with z =

√
ln 2

π2
· 2π (ν − ν0) + i Γh

σ′
, (2.16)

where ∗ denotes the convolution operator. Furthermore, we used the aforemen-
tioned Fourier-transformations of a (τ) and b (τ) leading to a Lorentzian and
Gaussian peak, respectively. The convolution of both yields a Voigt-function,
which does not have any analytical solution. It can be expressed, however, in
terms of the real part of the Faddeeva function w (z) [198, Chapter 7], which
can be evaluated fast and accurately using the algorithms [199, 200]. In Fig.
2.6 (a) the optical coherence function and (b) the emission spectra are illus-
trated for an arbitrary lifetime τr. Shown are the Fourier-limited case (dashed)
along with predominantly homogeneously (red) and inhomogeneously (blue)
broadened photons. Both model parameters Γ∗ and σ′ are chosen such that
the overall broadening is approximately τ−1

r .

2.2.3 Fluctuator Model

In the course of our TPI experiments using consecutively emitted single pho-
tons we will find that the measured indistinguishability is superior compared
to what can be expected from the corresponding spectral line width (cf.
Sect. 5.3.3). As it turns out, the time lag passing between the respective
emission events is below the correlation time of SD. Therefore, the measure-
ment is sensitive to slow fluctuations that did not yet fully unfold, which is
incompatible with the corresponding assumption made in Sect. 2.2.2. Put
another way, the experiment was performed at the intermediate regime (ii) of
fluctuating frequencies mentioned in Sect. 2.2.1, which we are treating in the
following.

An often used model considers the emitter to be amidst a lattice of 2N
fluctuators, where each fluctuator i can take on two different states ξi (t) =
±1/2 randomly varying in time t [129,189,191,201]. The state ξi (t) can refer to
a nuclear spin or also an empty or full charge trapping site (see also Fig. 2.7).
Assuming a coupling strength κi between the fluctuator and a corresponding
degree of freedom σ of the emitter leads to a shift of the emission frequency

∆ν =
1

2π~
· χ (t)σ with χ (t) =

∑

i

κiξi (t), (2.17)

where χ (t) can be interpreted as a fluctuating (electric or magnetic) field.
In what follows, we consider fluctuating trapped charges as an example and
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Figure 2.7. Illustration of the fluctuator model. The emitter is
within a lattice of fluctuators (red, here exemplary trapped charges)
shifting the emission frequency. At each time step τ one fluctua-
tor changes its state. The probabilities of a charge being released
and becoming trapped are p− and p+. The net trapping probability
∆p = p+−p− = −n/N is linear in the number of excess trapped charges
n, which follows from simple combinatorial considerations. As a result,
the system is always driven towards an equilibrium at p+ = p− = 1/2.

simplify the problem by (i) using an uniform coupling strength κi = κ for all
fluctuators and (ii) assuming equal capture and escape rates for each charge.
In this case, the fluctuations in χ (t) are merely determined by the number
of trapped charges and each charge induces the same frequency shift δν =
κσ/2π~. Consider a time step τ , in which exactly one trapping site changes
its state. If there are initially N + n filled and N − n empty trapping sites,
we find the probabilities

p± =
N ∓ n

2N
=

1

2

(
1∓ n

N

)
(2.18)

of a charge being captured (’+’) or released (’−’). The difference between both
∆p = p+ − p− = −n/N can be understood as a net restoring force that is
linear in n and drives the system towards a state, in which exactly half of the
trapping sites are filled (compare Fig. 2.7 right side)1. These dynamics do not
only remind of Hook’s law, but it was indeed shown that the continuous limit

1Note that this only holds for equal capture and escape rates. The more realistic case
of unequal rates leads to a shifted equilibrium, but does not alter our conclusions.
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of the problem (N →∞, δν → 0, τ → 0) corresponds to the Brownian motion
of a particle in a harmonic potential, also known as an Ornstein-Uhlenbeck
process [202, 203]. Accordingly, the time evolution of the probability density
Sn (n, t) to find an excess of n filled trapping sites at time t is obtained by
solving the corresponding Fokker-Planck equation. Mapping the problem back
from the number of trapped charges to a frequency shift using Eq. (2.17), this
equation reads

∂S

∂t
= −β ∂

∂ν
[(ν − ν0)S] +D

∂2S

∂ν2
. (2.19)

Here, the diffusion constant D = δν2/2τ corresponds to the stochastic force
and β = 1/Nτ � 1/τ indicates strongly overdamped dynamics. The solution
of Eq. (2.19) equals our desired PSD and is given by

S (ν, t) =
1√

2πσ2 (t)
· exp

{
− [ν − νc (t)]2

2σ2 (t)

}
with (2.20)

σ2 (t) = σ2
0 · [1− exp (−2βt)] and

νc (t) = ν0 +
(
ν ′ − ν0

)
· exp (−βt) .

The spectrum is identical to the inhomogeneous SD case given by Eq. (2.10)
with the only difference that standard deviation σ (t) and central frequency
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Figure 2.8. Emission spectrum of a perturbed emitter during
relaxation towards equilibrium. (a) Time evolution of Power spec-
tral density S (ν, t), if the system was at an initial emission frequency
of ν′ = −3σ0. The central frequency slowly converges towards the equi-
librium value ν0 (black solid), while the emission line rapidly broadens
(black dashed). (b) Different spectra at discrete times t. The equilib-
rium is depicted as black dashed line.
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νc (t) now exhibit explicit time-dependencies. Thereby it is possible to describe
the relaxation dynamics of the emitter via rate β, if it was found at a frequency
ν ′ at time t = 0. The time evolution for ν ′ = −3σ0 is illustrated in Fig. 2.8.
It can be seen that the central frequency νc (t) only slowly creeps towards its
equilibrium value ν0 (black solid), while the emission line quickly reaches its
full width σ0 (black dashed).

We here only discussed the shape of the inhomogeneous contribution to
the overall emission line. The result can be used, however, to describe an
emitter, which is homogeneously broadened at the same time. To that end,
it is only necessary to evaluate Eq. (2.16) using σ (t) and νc (t). It is also
noteworthy that the fluctuator model directly results in a Gaussian frequency
distribution and thereby justifies the corresponding initial assumption made
in Sect. 2.2.1.

2.3 Nonlinear Optics

A central intention of the presented experiments is to establish an interface
between near-infrared wavelengths and the telecom C-band in order to take
advantage of both the favorable optical properties of single photons emitted
by QDs and the lowest possible transmission losses in optical fibers. To that
end the wavelength of the photons is altered via quantum frequency down-
conversion (QFDC), being the analogue of a difference frequency generation
(DFG) process at the single photon level. In the following, we provide basic
information on second-order nonlinear optical processes in general as well as
DFG and parametric fluorescence in particular. As all conversion experiments
were performed in ridge waveguides (WG) to obtain high conversion efficien-
cies, we briefly address the computation of fundamental WG modes and the
impact of WG dispersion. All remarks concerning general nonlinear optics
are based on [92], while information specific to DFG in waveguides are taken
from [204].

2.3.1 Three Wave Mixing

The response of matter to external electromagnetic fields is typically described
using its susceptibility χ, which connects a time-dependent incident electrical
field ~E (t) to the induced polarization ~P (t). In the limit of small intensities
the relationship of both quantities is governed by terms linear in the electrical
field, which are sufficient to explain phenomena such as dispersion and ab-
sorption. For increasing intensities, also higher order terms come into play,
giving rise to the regime of nonlinear optics. In case of materials with a lack of
inversion symmetry, the leading nonlinear term describes matter polarization
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quadratically depending on the electrical field according to

P
(2)
i (t) = ε0

∑

jk

χ
(2)
ijkEj (t)Ek (t) , (2.21)

where (2) refers to the second-order and the indices i, j, and k denote the
Cartesian components of the respective fields. Note that the second-order
susceptibility connects three components of three different fields and there-
fore consists of 33 = 27 elements. However, with help of various symmetry
considerations regarding the underlying process and material this number can
be drastically reduced. In fact, we are only interested in second-order processes
mediated by lithium niobate (LN), which exhibits the highest susceptibility
for i = j = k = 3 [205–208]. In this case all incident fields as well as the
generated polarization are directed along the z-axis of the crystal and a single

scalar nonlinear coefficient d33 = χ
(2)
333/2 is sufficient to describe the process.

Note that d33 refers to a commonly used contracted notation of nonlinear co-
efficients, which can be found in [209]. As we only consider the z-component
in the following, we omit the indices of all fields and obtain the expression

P (2) (t) = 2ε0d33E
2 (t) . (2.22)

The next step is to specify the electrical input field, which, for the sake of
simplicity, is assumed to be only dichromatic according to

E (t) = E1e
iω1t + E2e

iω2t + c.c. (2.23)

Plugging Eq. (2.23) into the polarization response (2.22), we find a plethora
of different terms, which oscillate at new frequencies ω3, namely ω3 = 2ω1,2

and ω3 = ω1 ± ω2, as well as a static polarization contribution. Accord-
ing to Maxwell’s equations the time-dependent polarization acts as a source
of electromagnetic fields, which oscillate at ω3 as well. As can be seen, a
second-order nonlinear susceptibility χ(2) couples up to three different fre-
quency components of an electrical field, motivating the often used expression
three wave mixing (TWM). At this point it is worthwhile to visualize the en-
ergy exchange between the participating fields using fundamental photon cre-
ation and annihilation processes in an energy diagram as depicted in Fig. 2.9.
Three processes can occur being second harmonic generation [SHG, (a)], sum
frequency generation [SFG, (b)], as well as difference frequency generation
[DFG, (c)], corresponding to the aforementioned frequency combinations ω3

of the output photon. Furthermore, this picture emphasizes that all processes
obey energy conservation. In the present work, we exploit the DFG scheme
for the desired QFDC: a single input photon at high energy ~ω1 decays into
two new photons at lower energies ~ω2,3 stimulated by the presence of an-
other photon at ~ω2. Accordingly, we will focus on DFG in the remainder
of this section. Also, we will comply with the commonly used nomenclature
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Figure 2.9. Basic three wave mixing processes in the single
photon picture. Depicted are (a) the second harmonic genera-
tion (SHG), (b) sum frequency generation (SFG), and (c) difference
frequency generation (DFG). In a SHG process 2 photons of equal fre-
quency ω1,2 are annihilated, creating a new photon at double frequency
ω3 = 2ω1,2. In SFG both input photons exhibit different frequen-
cies ω1 6= ω2 and the output photon oscillates at the sum frequency
ω3 = ω1 +ω2. A DFG process on the other hand yields a new photon at
the difference frequency ω3 = ω1 − ω2 and second photon at ω2. Note
that for DFG it is always ω1 > ω2.

denoting the fields corresponding to ω1, ω2, and ω3 as signal, pump, and idler,
respectively.

To obtain quantitative results the ansatz (2.23) is insufficient, as it does
not cover the propagation of each wave within the nonlinear material as well
as their spatially varying amplitudes due to conversion. To that end, the
field can be synthesized by three scalar frequency components Ei (z, t) with
i = 1, 2, 3, which read

Ei (z, t) = Ai (z) · ei (kiz−ωit) + c.c., (2.24)

where the amplitude of each component Ai now explicitly depends on the
position along the propagation direction z2. The wavenumbers ki are con-
nected to the respective frequencies via the dispersion relation cki = niωi
with c the speed of light and ni the refractive index of the medium at fre-
quency ωi. Furthermore, according to a DFG process the idler frequency is
given by ω3 = ω1 − ω2. Using Eq. (2.24) in Maxwell’s equation including the

2Note that the propagation direction z does not coincide with the aforementioned crys-
tal’s z-axis. Instead, both are perpendicular with respect to each other.
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second-order polarization yields the coupled mode equations

∂A1 (z)

∂z
= −iκ1A2 (z)A3 (z) e+i ∆k′z,

∂A2 (z)

∂z
= −iκ2A1 (z)A∗3 (z) e−i ∆k′z, and

∂A3 (z)

∂z
= −iκ3A1 (z)A∗2 (z) e−i ∆k′z, (2.25)

whose solution describes the evolution of all field components along the propa-
gation direction. Here we introduced the coupling constants κi = 2ωideff/(nic),
where deff is the effective nonlinear coefficient (deff = d33 in our case). An im-
portant quantity is the phase mismatch

∆k′ = k1 − k2 − k3, (2.26)

which indicates how close a given DFG process is to momentum conservation.
Only in case of ∆k′ = 0 the secondary wavelets generated at each position
within the nonlinear material interfere in phase, thereby leading to a signifi-
cant converted output field. To illustrate that, consider a DFG process in a
nonlinear material of length L. If the signal and pump input intensities I0

1,2

are strong compared to the output intensity of the idler field I3 (L), we can
approximate I1,2 (z) ≈ I0

1,2 and obtain via integration of Eq. (2.25)

I3 (L) ∝ κ2
3 · I0

1I
0
2 · L2sinc2

(
∆k′L

2

)
, (2.27)

which is shown as red curve in Fig. 2.10 (a). Consider first case 1: ∆k′ = 0
implies that the momentum is conserved [compare vector diagram in (c)] and
we obtain the highest possible output intensity of the idler field. However,
due to dispersion, energy and momentum are in general not simultaneously
conserved. Instead, for a given process, we typically find a remaining net
momentum ∆k′ 6= 0 and end up with an inefficient conversion (case 2).

An established way to encounter this issue is known as quasi-phasematch-
ing (QPM). Considering the given case of LN as material platform, the second-
order susceptibility can be connected to a permanent polarization ~pLN of the
crystal, which defines an anisotropy axis and thereby a directionality of the
nonlinear coefficient d33 [see white arrows in Fig. 2.10 (b)]. If the sign of
the polarization ~pLN and accordingly d33 is periodically flipped with a grating
period Λ3, the crystal will absorb an additional momentum given by K =
2π/Λ. The output intensity now follows the modified phase mismatch relation

I3 (L) ∝ L2sinc2

(
∆kL

2

)
with ∆k = ∆k′ −K (2.28)

3Remarks on the practical implementation of periodic poling of LN crystals will be
provided in Sect. 4.1.1.
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Figure 2.10. Conversion efficiency depending on the phase mis-
match. An efficient conversion is generally only possible if the phase
mismatch ∆k′ = k1 − k2 − k3 vanishes as in case 1 [see red curve in (a)
and momentum diagram in (c)]. If ∆k′ 6= 0 (case 2), the underlying
process does not fulfill momentum conservation and is therefore ineffi-
cient. With help of quasi-phasematching (QPM), the anisotropy axis
of the crystal is periodically flipped with a grating period Λ = ∆k′/2π
[see (b)]. The crystal then compensates the net momentum, leading to
a shifted the phase mismatch curve (blue) and thereby enabling efficient
conversion (case 3).

shown as blue curve in Fig. 2.10 (a). Case 3 illustrates that even conversion
processes with ∆k′ 6= 0 can meet the phase matching condition ∆k = 0 with
help of QPM, provided an appropriately chosen Λ.

2.3.2 Difference Frequency Generation in Waveguides

Maximizing the photon-to-photon conversion efficiency is naturally a central
objective in the converter design. Although our previous discussion assumes
no depletion of the signal field and therefore corresponds to the limit of small
efficiencies, it is possible to identify available tuning knobs from Eq. (2.27).
On one hand the output intensity I3 scales with L2, but besides being un-
practical, an increasing crystal length limits the attainable efficiency due to
transmission losses. Another option is to increase the pump intensity I0

2 , which
is typically accomplished by minimizing the cross section of the participating
light fields, more specifically by performing the conversion in optical WGs.

The WGs employed in the present work are of rectangular cross sec-
tion. Although there is no exact analytical solution of the guided modes,
an analytical approximation can be obtained following the method described
in [210,211]. Therein, the WG and its environment is segmented into 5 differ-
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Figure 2.11. Fundamental mode of a waveguide with rectan-
gular cross section. (a) Geometry used for an approximate solution
according to the method presented in [210, 211]. The cross section is
divided into 5 regions: region 1 is the waveguide (WG) with width b and
height d, here made of lithium niobate (LN). Region 2 corresponds to the
substrate [here lithium tantalate (LT)] and region 3-5 describe the sur-
rounding air. (b) Comparison of the refractive index of LN without (red)
and with WG dispersion (blue). The indicated quasi-phasematching pe-
riods Λ correspond to the DFG process defined by 1/905 nm - 1/2175 nm
= 1/1550 nm.

ent regions as shown in Fig. 2.11 (a). We are only interested in the solution
describing the mode in region 1, which corresponds to the core of the WG with
width b and height d. Furthermore, for DFG in LN we can restrict the solution
to its vertically polarized contribution defined by the field components

Ex =
iA

κxβ

(
n2

1k
2 − κ2

x

)
sin [κx (x+ ξ)] cos [κy (y + η)] and

Hy = iA

√
ε0

µ0
n2

1

k

κx
sin [κx (x+ ξ)] cos [κy (y + η)] , (2.29)

where n1 is the refractive index of the material in region 1 and k the vacuum
wavenumber of the field, whose eigenmodes we intend to find. While A is a
free scaling parameter, the transversal wavenumbers κx and κy as well as the
mode’s displacement defined by ξ and η must be determined considering the
materials and dimensions of the WG and its environment, which is detailed
in Appx. A. For our purpose it is important to realize that the confinement
of the field entails finite κx and κy even for the fundamental mode. The
propagation constant

β =
√
n2

1k
2 − κ2

x − κ2
y (2.30)

can then be used to obtain an effective refractive index neff = β/k, which
accounts for WG dispersion besides material dispersion. Consequently, the
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phase mismatch relation given in Eq. (2.28) must be replaced according to

∆k → ∆β = β1 − β2 − β3 −
2π

Λ
. (2.31)

To illustrate that WG dispersion has a tremendous impact on the design of
QPM poling periods, we calculate the fundamental mode for the WG employed
in the present work, i.e. we assume d = 10 µm and b = 10.8 µm (cf. Sect. 4.1.1
for WG dimensions) as well as the refractive indices of LN as WG material
[212], lithium tantalate (LT) as substrate [213] and air for regions 3-5 [214]
at a temperature of 25 ◦C. The intensity of the fundamental mode is given by
the z-component of the Poynting vector reading

Sz =
1

2
Re
[
ExH

∗
y − EyH∗x

]
=

1

2
ExH

∗
y , (2.32)

which is depicted for a wavelength of 905 nm in region 1 of Fig. 2.11 (a). The
refractive index of LN based on [212] is plotted in Fig. 2.11 (b) (red curve)
and compared to the effective index including WG dispersion (blue curve)
in a range from 850 nm to 2200 nm. In the present work, we are concerned
with a DFG process converting light at 905 nm to the telecom C-band at
1550 nm, which requires a pump field at 2175 nm. Considering only material
dispersion results in a QPM period of Λ = 26.3 µm. On the contrary, taking
WG dispersion into account yields Λ = 24.6 µm. In Sect. 4.2 we will see that
this is indeed a vast deviation, as even an offset of as few as 100 nm in the
poling period can hardly be compensated by temperature tuning of the LN
crystal.

The second major modification of the coupled mode equations (2.25) in
the regime of DFG in waveguides affects the coupling constants κi. In contrast
to plane waves, the amplitude of guided modes changes within the transversal
plane. This can be accounted for by substituting the coupling constants with
a spatial average according

κ1 =
ω1ε0deff

2

∫ b

0

∫ 0

−d
E∗x1 (x, y) Ex2 (x, y) Ex3 (x, y) dxdy

and κ1/ω1 = κ∗2/ω2 = κ∗3/ω3, (2.33)

where Exi (x, y) refers to the field (2.29) of frequency component i normalized
to unit power.

Due to the spatial confinement, the field amplitudes Ai (z) in Eq. (2.25)
are significantly enhanced, enabling to achieve high conversion efficiencies even
for moderate pump intensities I0

2 . For the conversion of single photons, we
certainly have I0

2 � I3 (z) as well as I0
2 � I1 (z), i.e. we can still assume I0

2 ≈
const. However, we must allow the signal field to deplete by considering an
explicit dependency on z according to I1 (z). The coupled mode equations can

31



2. Fundamentals

now be solved to obtain the output power P3 of the idler field, which reads

P3 (P2) = P1P2κ
2
3L

2 · sinc2

(√
ω1

ω2
κ2

3P2 + ∆β2/4 · L
)
, (2.34)

where P1 and P2 are the optical input powers of signal and pump, respectively.
Using the photon flux Φi = Pi/(~ωi), we are able to define the photon-to-
photon conversion efficiency η for a quasi-phasematched process (∆β = 0)
as

η (P2) =
Φ3 (P2)

Φ1
= sin2

(√
ω1

ω2
κ2

3P2 · L
)
. (2.35)

In experiment, the ideal conversion efficiencies of η (P2) = 1 cannot be achieved
due inevitable transmission losses or fabrication errors of the QPM poling pe-
riod. Furthermore, the coupling constant κ3 is not accurately known. There-
fore, measurements of the conversion efficiency are typically fitted using the
model function

η (P2) = ηmax sin2
(√

κnormP2 · L
)

(2.36)

instead, where the fitting parameters ηmax and κnorm correspond to the max-
imum attainable efficiency and a normalized coupling constant, respectively.

We like to conclude with remarks on parametric fluorescence. The coupled
mode equations (2.25) suggest that nonlinear optical processes of second order
only work with at least two input fields. However, as we will investigate in
Sect. 4.2, a spectrally broad optical output can be observed at the idler wave-
length, even if the nonlinear crystal was only fed with a signal field at input
power P1. This so-called parametric fluorescence, also known as spontaneous
parametric down-conversion (SPDC), corresponds to a decay of the signal
field and originates from vacuum fluctuations creating virtual photons that
are subsequently amplified via DFG. The spectral distribution of the optical
output is therefore given by the gain of the virtual photons due to parametric
amplification in the limit of no signal depletion, which reads [204]

D (Γ,∆β) = Γ2L2

∣∣∣∣∣∣

sinh
(√

Γ2 −∆β2/4 · L
)

√
Γ2 −∆β2/4 · L

∣∣∣∣∣∣

2

(2.37)

with Γ2 = (ω2ω3/ω
2
1) |κ1|2 P1.

2.4 Two-Photon Quantum Interference

All experiments presented within this thesis revolve around the coalescence
of two indistinguishable photons at a beam splitter (BS), being derivations of
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2.4. Two-Photon Quantum Interference

the famous Hong-Ou-Mandel (HOM) experiment [60]. The coalescence relies
on phase-insensitive destructive interference between both photons and can
therefore not be explained in a purely classical framework. Accordingly, it
is often referred to as quantum interference. In this section, we first revisit
a standard introductory approach to TPI emphasizing its two-photon nature
[215,216]. Thereafter, a formal description of HOM experiments in the time-
domain is established based on [217, 218], which is then used to shed light
on the concept of indistinguishability as well as the frequently encountered
HOM-dip and quantum beats.

2.4.1 Photon Coalescence

The basic situation of a HOM experiment is depicted in Fig. 2.12. Considered
is a symmetric BS with input ports a and b, where symmetric refers to equal
reflectivity R and transmittance T , i.e. R = T = 1/2. Each input port is fed
with a single photon, here shown in red and blue. The photons are labeled
with the numbers i and j, which might refer to a certain degree of freedom or
even their entire quantum state. Using the respective creation operators â†i
and b̂†j it is possible to write the input Fock state as

(a)

a

b

a

b

i

j

(b)

a

b

a

b

i

j

(c)

a

b

a

beiπ

i

j

(d)

a

b

a

beiπ

i

j

Figure 2.12. Illustration of the initial situation of a Hong-
Ou-Mandel experiment. Two photons in quantum states i and
j impinge via two different input ports a and b on a symmetric beam
splitter. Depending on reflection and transmission of the photons four
outcomes are possible, shown from (a) through (d). Due to the phase
shift of π upon reflection in port b, cases (b) and (c) have opposite signs
and cancel each other, if the photons are indistinguishable, i.e. if i = j.
As a result the photons coalesce and no correlations can be measured
between both output ports.
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|Ψin〉 = |1i〉a |1j〉b = â†i b̂
†
j |0〉 . (2.38)

At the beam splitter each photon is either reflected or transmitted. However,
prior to a respective measurement, the photons are mapped to a superposition
state according to

â†i
ÛBS−−→ 1√

2

(
â†i + b̂†i

)

b̂†j
ÛBS−−→ 1√

2

(
â†j − b̂

†
j

)
, (2.39)

where ÛBS represents the unitary BS transformation. Note that the action of a
BS requires a relative phase shift of π between both reflected modes, which we
here introduced upon reflection from input mode b to output mode b. Using
the transformations (2.39), the overall output state can be written as

|Ψout〉 = ÛBS |Ψin〉

=
1

2

(
â†i + b̂†i

)
·
(
â†j − b̂

†
j

)
|0〉

=
1

2

(
â†i â

†
j + â†j b̂

†
i − â

†
i b̂
†
j − b̂

†
i b̂
†
j

)
|0〉

=
1

2

(
|1i1j〉a |0i0j〉b︸ ︷︷ ︸

(a)

+ |0i1j〉a |1i0j〉b︸ ︷︷ ︸
(b)

− |1i0j〉a |0i1j〉b︸ ︷︷ ︸
(c)

− |0i0j〉a |1i1j〉b︸ ︷︷ ︸
(d)

)
, (2.40)

where all contributions to the output state are denoted (a) to (d) according
to the four cases illustrated in Fig. 2.12. The negative sign due to reflection
of the photon in mode b appears in (c) and (d). Furthermore, we realize that
both cases (b) and (c) exhibit an opposite sign and contain exactly one photon
in each output channel. However, both terms differ by the quantum state the
photons are in, which we are elaborating on in the following.

First, assume that i and j refer to two orthogonal quantum states, e.g. the
photons might exhibit horizontal and vertical polarization, but are identical
otherwise. A respective state measurement enables us to determine, whether
a photon detected in either of the two output modes originates from input
mode a or b. Therefore, both photons are said to be distinguishable. The op-
posite case of indistinguishable photons occurs, if i = j, i.e. both photons are
identical in all degrees of freedom. Now (b) and (c) exactly cancel out, leading
to the notion of destructive interference between two photons. Accordingly,
Eq. (2.40) simplifies to

|Ψout〉 = (|2〉a |0〉b − |0〉a |2〉b) /
√

2, (2.41)
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where
(
â†
)2 |0〉 =

√
2 |2〉 was used. The most important experimental tool

to test indistinguishability is a coincidence measurement of detection events
between both output ports. As the BS is symmetric, all cases (a) through
(d) equally contribute to the output state, but only (b) and (c) yield coin-
cidences. Therefore, we simply find a coincidence probability of pcoinc = 1/2

for distinguishable photons. In case of indistinguishable photons, however,
we directly read from Eq. (2.41) that coincidences are impossible, thus it is
pcoinc = 0. Hence, the absence of coincidences implies that the input photons
were indistinguishable.

Although the present approach is hardly useful in order to describe realistic
photons propagating in complex field modes, it reveals a couple of important
properties intrinsic to TPI:

(i) TPI is phase-insensitive: From Eq. (2.40) we see that arbitrary
phases of both input photons only change the global phase of |Ψout〉,
but do not alter the destructive interference of (b) and (c).

(ii) The output state is entangled: the output state (2.41) is non-
separable, i.e. there are no complex coefficients αi and βj so that

|Ψout〉 =

(∑

i

αi |i〉a

)
⊗
(∑

j

βj |j〉b

)
. (2.42)

In other words, detecting a photon in mode a allows the conclusion that
there is no photon in mode b and vice versa. Therefore |Ψout〉 is referred
to as a path-entangled number state [219].

(iii) TPI leads to effective photon-photon interaction: From the trans-
formation Eq. (2.39) we see that reflected and transmitted part of a
photon fed into mode a have a relative phase of zero. In presence of
an indistinguishable photon in mode b, however, the output state (2.41)
reveals that this phase changed to π. This conditional phase flip is com-
monly interpreted as photon-photon interaction and plays a key role in
various linear optical quantum computing schemes (LOQC) [146, 220],
such as the controlled-NOT gate [147].

2.4.2 Time-Resolved Two-Photon Interference

Indistinguishability is not a binary feature, but photons can be only par-
tially indistinguishable as well. Already the original HOM experiment [60]
demonstrated that the coincidence probability can be tuned between its clas-
sical and quantum limits by varying the temporal overlap of both photons.
More generally, indistinguishability can be quantitatively defined as the mean
squared overlap between the wave-functions of two photons and accordingly

35



2. Fundamentals

1

2

1’

2’

δτ δτ

Detection time

τ

|ζ1 (t)|2

|ζ2 (t)|2

Figure 2.13. Hong-Ou-Mandel experiment considering the
temporal input mode. Shown is the same initial situation of a
two-photon interference experiment as described in Fig. 2.12. The in-
put and output modes are renamed to 1 and 2 as well as 1’ and 2’,
respectively. The temporal shape of the input photons is described by
the wave-functions ζ1,2 (t). The model [217] allows to consider param-
eters such as the arrival of both photons with a delay δτ or a carrier
frequency mismatch δν and enables to evaluate the coincidence prob-
ability of detection events in both channels with a time lag of τ (see
green circles). Adapted with permission from [217], © 2003 by Springer
Nature.

varies between zero and one for entirely distinguishable and indistinguish-
able, respectively [221]. In view of our later requirements, we here introduce
the well established formalism reported in [217, 218], which enables to de-
scribe the temporal pattern of HOM coincidence measurements based on the
spectro-temporal properties of the input photons. The results can be used to
extract the coincidence probability and thereby the degree of indistinguisha-
bility. Moreover, the model derived in Chap. 3 will be built upon the consid-
erations presented in the following.

We start by rearranging our nomenclature in a more suitable manner: all
input and output modes are now labeled by numbers i and i′, respectively,
and the corresponding creation operators are denoted â†i and â′†i (compare
Fig. 2.13). To describe photons in temporally extended field modes defined
by normalized wave-functions ζi (t), we employ the field-operators for mode i
reading

Ê+
i (t) = ζi (t) âi and Ê−i (t) = ζ∗i (t) â†i . (2.43)

Accordingly, the BS transformation relations (2.39) for the output modes 1’
and 2’ can be modified to

Ê′+1 (t) = [ζ1 (t) â1 + ζ2 (t) â2] /
√

2 and

Ê′+2 (t) = [ζ1 (t) â1 − ζ2 (t) â2] /
√

2. (2.44)
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The quantity of interest is the joint photon-detection probability Pjoint (t0, τ),
which yields the probability to detect one photon at time t0 in output mode
1’ and the other photon at t0 + τ in output mode 2’ (see green circles in

Fig. 2.13). Using the input state |Ψin〉 = â†1â
†
2 |0〉 and Eq. (2.44) it can be

evaluated to

Pjoint (t0, τ) = 〈Ψin| Ê′−1 (t0) Ê′−2 (t0 + τ) Ê′+2 (t0 + τ) Ê′+1 (t0) |Ψin〉

=
1

4
|ζ1 (t0 + τ) ζ2 (t0)− ζ2 (t0 + τ) ζ1 (t0)|2 . (2.45)

This result is particularly convenient, as the quantum mechanical ansatz is re-
duced to an expression that only requires knowledge of the input photons’ tem-
poral modes. It can be expanded and separated into an incoherent contribu-
tion and an interference term according to Pjoint (t0, τ) = P0 (t0, τ)+Pint (t0, τ)
with

P0 (t0, τ) =
|ζ1 (t0 + τ) ζ2 (t0)|2 + |ζ2 (t0 + τ) ζ1 (t0)|2

4
and

Pint (t0, τ) = −2Re [ζ1 (t0 + τ) ζ2 (t0) ζ∗2 (t0 + τ) ζ∗1 (t0)] . (2.46)

The latter term is responsible for the two-photon interference and converges
towards zero for τ � τcoh, if averaged over an ensemble, where τcoh is the
mutual coherence time of both photons.

2.4.3 Quantum Beats and Hong-Ou-Mandel Dip

To illustrate possible predictions of this model, we here review the discussion
presented in [217], which considers two input photons propagating in normal-
ized Gaussian wave-packets that read (compare Fig. 2.13)

ζ1,2 (t) = 4
√

2/π exp
[
− (t± δτ/2)2 − 2πi (ν ± δν/2) t

]
, (2.47)

where the indices ’1’ and ’2’ refer to ’+’ and ’−’, respectively. The maxima of
both wave-packets are separated by a temporal delay of δτ and their carrier
frequencies are detuned by δν. Plugging these wave-functions into Eq. (2.45),
we obtain the joint detection probability

Pjoint (t0, τ ; δτ, δν) =
cosh (2τδτ)− cos (2πτδν)

π
× exp

[
−4t0 (t0 + τ)− δτ2 − 2τ2

]
, (2.48)

where δτ and δν appear as additional parameters. For a full coincidence
measurement all recorded coincidences are accumulated over a large number
of repetitions yielding the cross-correlation function g(2) (τ), which, in its limit,
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Figure 2.14. Quantum beats observed in a Hong-Ou-Mandel
experiment with Gaussian wave-packets. Shown are examples
according to Eq. (2.49) for no detuning δν = 0 (top row) and δν = 2δt−1

(bottom row), where δt is the width of the wave-packets. Each detuning
is shown with 3 relative delays δτ between the photons. The dashed line
shows the result expected in absence of two-photon interference (TPI),
while the red curves include TPI. The oscillations in the red curves are
known as quantum beats.

equals an integration of Pjoint over all possible detection times t0. The result
of this integration step is

g(2) (τ ; δτ, δν) =

∫ ∞

−∞
Pjoint (t0, τ ; δτ, δν) dt0

=
cosh (2τδτ)− cos (2πτδν)

2
√
π

· exp
(
−δτ2 − τ2

)
,

(2.49)

which is illustrated in Fig. 2.14. Therein, examples for different relative delays
δτ and detunings δν are depicted, where all values are presented in units of
the half width at 1/e maximum of the wave-packet δt. Shown are a black
dashed and red solid curve, which differ by the interference term cos (2πτδν) in
Eq. (2.49) (set to zero for black dashed). In part (a) we see that for δτ = 0 and
δν = 0 no coincidences appear, if the interference term is included (missing
red curve), which corresponds to entirely indistinguishable photons. With
increasing δτ [(a) through (c)] the red curve converges towards its incoherent
limit, revealing decreasing indistinguishability due to a decreasing temporal
overlap of both photons.

In case of an additional detuning [(d) through (f)] the cross-correlation
starts to oscillate with a period of δν−1 in regions where both photons are
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temporally well overlapping. This beat is a signature of the quantum me-
chanical uncertainty which of the two photons has been detected first. The
second photon subsequently propagates in a superposition state of ζ1 (t) and
ζ2 (t). As both field modes evolve at different rates corresponding to δν, their
relative phase changes in time causing classical interference fringes between
both BS outputs. This phenomenon is commonly referred to as quantum beats
and has first been observed in [222]. Note that the quantum beats always start
with both photons being in phase at τ = 0, i.e. it is g(2) (0) = 0. We find that
this is a general result, as Eq. (2.45) predicts Pjoint (t0, 0) = 0 no matter how
different both input photons are. Therefore, it is important to keep in mind
that g(2) (0) 6= 0 is not a sign of a non-ideal indistinguishability, but rather
a timing jitter present in the system, typically caused by limited detector
resolution or the photon emission process.

While Eq. (2.49) yields the probability to obtain two detection events sep-
arated by τ , the overall coincidence probability pcoinc discussed in Sect. 2.4.1
is a cumulative quantity and can be obtained via the integration

pcoinc =

∫ +∞

−∞
g(2) (τ) dτ . (2.50)

Based on the cross-correlation function Eq. (2.49) for the Gaussian input pho-
tons under consideration, this integration leads to

pcoinc (δτ, δν) =
1

2

[
1− exp

(
−δτ2 − π2δν2

)]
, (2.51)

which is plotted against the delay δτ in Fig. 2.15 (a) for no detuning (red
curve) and two non-zero detunings. All three curves converge towards pcoinc =
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Figure 2.15. Coincidence probability for temporal and spectral
detuning. (a) Coincidence probability and (b) two-photon interference
visibility as function of the photon delay δτ for no detuning (red solid),
δν = 0.2δt−1 (blue dashed), and δν = 0.5δt−1 (green dotted). For
increasing δτ and δν both quantities converge towards their classical
limits pcoinc = 0.5 and V = 0. The drop of pcoinc around τ = 0 is known
is HOM dip.
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1/2 for δτ → ±∞, but drop to lower values around δτ = 0, which is known as
HOM dip. The HOM dip indicates that the indistinguishability is maximized
when both photons perfectly overlapping in time. While ideal indistinguisha-
bility can be obtained at δτ = 0 and δν = 0, an additional detuning (blue
dashed and green dotted) leads to a less pronounced HOM dip, showing that
both photons are now partially distinguishable in the frequency domain. Even-
tually it is possible to compute a TPI visibility V based on the coincidence
probability, which reads

V = 1− 2pcoinc. (2.52)

The TPI visibility is illustrated in Fig. 2.15 (b) and resembles an inverted
HOM dip. It is an important figure-of-merit, as it is easily accessible in exper-
iment and identical to the desired indistinguishability under ideal conditions
(symmetric BS, perfect spatial mode overlap) [221].
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Chapter 3

Quantum Interference

of Independent Photons

Copyright notice: All results presented in this chapter except
for Sect. 3.2.3 were originally published in [197] (Copyright ©
2018 The Authors. Published by IOP Publishing Ltd on behalf of
Deutsche Physikalische Gesellschaft).

The main goal of the present work is to investigate the impact of QFDC on
photon indistinguishabilities. Therefore, it is inevitable to quantify all effects
limiting the wave-packet overlap of the photons. In experiment we are able to
ensure a virtually ideal spatial, temporal, as well as polarization mode match,
but are rather limited in manipulating the frequency domain. In particular
frequency fluctuations of solid state emitters as described in Sect. 2.2 are
known to be a limiting factor for quantum interference applications.

Here we establish a theoretical framework based on [217] describing TPI
experiments with arbitrary quantum gates using dissimilar input photons.
The model incorporates differing radiative lifetimes and emission frequencies
as well as spectral diffusion (SD) and pure dephasing (PD). We obtain a set of
equations describing the temporal pattern of cross-correlation measurements
between the gate outputs and the respective overall coincidence probability.
The model goes beyond existing formalisms, which focus only on single beam
splitter TPI measurements with a more restricted parameter space [151, 152,
196, 223]. The results enable us to explain all TPI visibilities presented in
chapters 5 and 6 based on independently measured emitter parameters.

3.1 Derivation

The following derivation adopts the basic ansatz discussed in Sect. 2.4.2 and
2.4.3. Accordingly, further details can be found in [217, 218] as well as the
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supplement of [197].

3.1.1 Joint Detection Probability for Linear Optical Gates

Linear optical quantum computing provides a general framework for quantum
computing solely based on linear optical components, such as beam splitters,
phase shifters and mirrors [220]. Its implementations include boson sam-
pling [224], which is expected to be superior to classical computers for certain
problems, or even universal quantum computers in the scope of the scheme
after Knill, Laflamme, and Milburn [146]. LOQC protocols typically rely
on the conditional phase shift introduced by TPI (compare Sect. 2.4.1) and
therefore directly depend on the indistinguishability of the employed photons.
Accordingly, it is valuable to establish a formalism, which allows to predict
the performance of given photons in elaborate LOQC schemes based on their
assessment using simple HOM experiments. On that note, we here extend the
formalism for time-resolved HOM experiments [217] to arbitrary linear optical
gates. The result will then be integrated for photons as emitted by solid state
emitters under the influence of PD and SD.

A generic linear optical gate is depicted in Fig. 3.1. It consists of N input
and N output modes which are interconnected by a network of beam splitters
and phase shifters. Such a gate can be represented by an N × N unitary
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Figure 3.1. Scattering of two photons at a linear optical gate.
The gate consists of beam splitters and phase shifters connecting N
input and output modes and can be described by a unitary matrix U .
The presented formalism yields the probability to detect two photons at
the outputs k and l with a time difference of τ , if the gate was fed with
two photons via the input i and j propagating in the temporal modes
|ζi,j (t)|2.
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matrix U . Given a set of input field operators Ê±l (t) with l referring to the
respective input mode, the output field operators can be expressed as

Ê
′+
k (t) =

∑

l

UklÊ+
l (t) and Ê

′−
k (t) =

∑

l

U∗klÊ−l (t), (3.1)

where Ukl are the elements of U . Given any input state |Ψin〉, the probability
Pjoint (t0, τ) to detect a photon at time t0 in output mode k and a second
photon at t0 + τ in mode l reads according to Eq. (2.45)1

Pjoint (t0, τ) = 〈Ψin| Ê′−k (t0) Ê′−l (t0 + τ) Ê′+l (t0 + τ) Ê′+k (t0) |Ψin〉 . (3.2)

We now restrict |Ψin〉 to two input photons in modes i and j by setting |Ψin〉 =
|1i1j〉. Furthermore, we employ the transformation relations (3.1) and use the
definition of field operators (2.43), which leads to

Pjoint (t0, τ) =
∑

r,s,u,v

U∗krU∗lsUluUkvζ∗r (t0) ζ∗s (t0 + τ) ζu (t0 + τ) ζv (t0)

× 〈1i1j | â†râ†sâuâv |1i1j〉 . (3.3)

The summation over r, s, u, and v covers all input modes 1 . . . N , which can
be reduced to 16 summands, as the only occupied modes are i and j. In order
to be nonzero, those terms must fulfill r 6= s as well as either r = u and s = v
or r = v and s = u, which is straightforward to verify using â |0〉 = 0 and
corresponding orthogonality relations. Due to this condition we are left with
only 4 terms. Eventually, these can be factorized to

Pjoint (t0, τ) = |UliUkjζi (t0 + τ) ζj (t0) + UljUkiζj (t0 + τ) ζi (t0)|2 , (3.4)

which is equivalent to Eq. (2.45), but applicable to arbitrary linear optical
gates represented by a unitary matrix U . Indeed, for a symmetric 50:50 beam
splitter described by

UBS =

(
U11 U12

U21 U22

)
=

1√
2

(
1 1
1 −1

)
, (3.5)

we find that both expressions agree. In particular, this implies that all quan-
tities, which used to be evaluated based on Eq. (2.45) for single beam splitter
experiments, can be obtained for any linear optical gate using Eq. (3.4) with-
out any further efforts, if only the underlying gate matrix is known.

Note that existing input-output theories of quantum networks such as the
SLH-framework [225] fully cover linear optical gates and even go well beyond
them, as components and architectures such as atoms in cavities or coherent
feedback can be treated. However, the advantage of Eq. (3.4) resides in its
simple implementation, as the quantum mechanical ansatz necessary to treat
TPI applications is reduced to an expression that only requires knowledge of
the wave-functions and gate matrix.

1Note that the dependency of Pjoint (t0, τ) on the input and output modes i, j, k, and l
was omitted in the chosen notation in favor of a legibility.
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3. Quantum Interference of Independent Photons

3.1.2 Cross-Correlation Function

In the following we focus on input fields ζi,j (t) tailored to our needs, i.e.
fields, which describe single photons as emitted by solid state quantum emit-
ters. Therefore, we adopt the wave-function already introduced in Sect. 2.2.2
reading

ζi,j (t) =
1
√
τi,j

H (t) · exp {−t/2τi,j − i [2πνi,j t+ ϕi,j (t)]} . (3.6)

Note that we allow both input photons to differ in radiative lifetime τi,j ,
carrier frequency νi,j , as well as instantaneous phase ϕi,j (t), which enables
us to model independent, dissimilar sources. As before, PD is captured by a
rapidly fluctuating ϕi,j (t) while SD is accounted for by a static distribution of
νi,j . All experiments performed in the scope of this work are based on pulsed
excitation schemes allowing us to synchronize the input photons. Therefore,
it is sufficient to consider both photons starting at t = 0 as in Eq. (3.6). It
is important to keep in mind, however, that due to this restriction our results
are not applicable, if the photon arrival times were uncertain, e.g. in case of
cw-excitation.

In the following we use the abbreviations ΦU = arg (UliUkjU∗kiU∗lj) for the
phase introduced by the gate, ∆ν = νi − νj being the carrier frequency dis-
placement between both emitters, ∆ϕi,j = ϕi,j (t0 + τ)− ϕi,j (t0) the instan-
taneous phase differences, as well as 1/T+ = 1/τi + 1/τj . Thereby, we can
express the joint detection probability via

Pjoint (t0, τ) =
1

τiτj
· f (t0, τ) · g (t0, τ) (3.7)

with the terms

f (t0, τ) = |Uli|2 |Ukj |2 · exp (−τ/τi) + |Ulj |2 |Uki|2 · exp (−τ/τj)
+
∣∣UliUkjU∗kiU∗lj

∣∣ · exp (−τ/2T+) · h (t0, τ) ,

g (t0, τ) =H (t0) H (t0 + τ) · exp (−t0/T+) , and

h (t0, τ) =2 cos (2π∆ντ + ∆ϕi −∆ϕj + ΦU ). (3.8)

According to Eq. (2.49), the cross-correlation function g(2) (τ) can be obtained
from Pjoint (t0, τ) via integration over t0. However, the result is insufficient to
describe a realistic cross-correlation measurement, as SD and PD lead to ran-
domly fluctuating ∆ν and ∆ϕi,j throughout the measurement run. Therefore,
it is necessary to include a statistical averaging step denoted by 〈〈·〉〉 via

G(2) (τ) = 〈〈g(2) (τ)〉〉 =

∫ +∞

−∞
〈〈Pjoint (t0, τ)〉〉dt0, (3.9)

which covers all available frequencies and phases. The models we apply for
both PD and SD describe ergodic stochastic processes (cf. Sect. 2.2 and [186,
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3.1. Derivation

187]), i.e. we can expect that any possible phase or frequency jump which
might occur at a fixed time in an ensemble of identical emitters will also
be encountered when observing a single emitter over a sufficiently long time.
This property of the emitted photon field justifies the interchange of statistical
average and time average in Eq. (3.9). From Eq. (3.8) we recognize that only
h (t0, τ) is phase-sensitive and therefore affected by the statistical average.
Assuming that SD and PD independently act on the emitter, we can write

〈〈h (t0, τ)〉〉 = 〈〈h (t0, τ)〉SD〉PD

= 2〈〈cos (2π∆ντ + ∆ϕi −∆ϕj + ΦU )〉SD〉PD

= 〈ei 2π∆ντ 〉SD〈ei ∆ϕi〉PD〈e−i ∆ϕj 〉PD · ei ΦU

+ 〈e−i 2π∆ντ 〉SD〈e−i ∆ϕi〉PD〈ei ∆ϕj 〉PD · e−i ΦU , (3.10)

where 〈·〉SD and 〈·〉PD denote the averaging due to SD and PD, respectively.
For the PD contribution, we employ Eq. (2.13) and find

〈e±i ∆ϕi,j 〉PD = exp
(
−Γ∗i,j |τ |

)
(3.11)

with Γ∗i,j corresponding to the pure dephasing rate of the photon in mode i
or j. To evaluate 〈·〉SD, we are in need of a distribution % (∆ν), which yields
the probability of both photons having a spectral displacement ∆ν. Assume
the emitters are indeed independent and their frequency range is given by
the normal distributions Si,j (νi,j) with standard deviations σi,j and central
frequencies ν0,i and ν0,j according to Eq. (2.10). In this case, we find the
probability p (ν,∆ν) of emitter i being at frequency νi = ν and emitter j
being at νj = ν + ∆ν as

p (ν,∆ν) = Si (ν) · Sj (ν + ∆ν) (3.12)

=
1

2πσiσj
exp

[
−(ν − ν0,i)

2

2σ2
i

− (ν + ∆ν − ν0,j)
2

2σ2
j

]
.

The desired distribution % (∆ν) simply equals an integration of p (ν,∆ν) over
all occurring frequencies ν, which mathematically corresponds to a cross-
correlation between the individual distributions Si and Sj . Its result is given
by

% (∆ν) =

∫ +∞

−∞
p (ν,∆ν) dν =

1√
2πΣ2

exp

[
−(∆ν + δν)2

2Σ2

]
,

(3.13)

where δν = ν0,i − ν0,j is the relative detuning of both emission lines and
Σ2 = σ2

i +σ2
j . We can use Eq. (3.13) to obtain the required statistical average

〈e±i 2π∆ντ 〉SD =

∫ +∞

−∞
% (∆ν) · e±i 2π∆ντ d∆ν

= exp
(
−2π2Σ2τ2 ∓ i 2πδντ

)
, (3.14)
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3. Quantum Interference of Independent Photons

which is simply the Fourier transformation of % (∆ν) taken at ∓2πτ . Eventu-
ally, Eq. (3.11) and Eq. (3.14) enable us to write the overall statistical average
as

〈〈h (t0, τ)〉〉 = 2 exp
[
−
(
Γ∗i + Γ∗j

)
|τ | − 2π2Σ2τ2

]
cos (2πδντ − ΦU ). (3.15)

As can be seen 〈〈h (t0, τ)〉〉 lost its t0-dependency and so has 〈〈f (t0, τ)〉〉 in
Eq. (3.8) as a consequence. Therefore, the integration over t0 in Eq. (3.9)
only affects g (t0, τ), which is given by

∫ +∞

−∞
g (t0, τ) dt0 = T+ [H (τ) + H (−τ) exp (τ/T+)] . (3.16)

Given Eq. (3.8) and our results (3.15) as well as (3.16) we find the cross-
correlation function to be

G(2) (τ) = G(2)
0 (τ) + G(2)

int (τ) (3.17)

with

G(2)
0 (τ) =

1

τi + τj

{
|Uli|2 |Ukj |2 [H (τ) · exp (−τ/τi) + H (−τ) · exp (τ/τj)] (3.18)

+ |Ulj |2 |Uki|2 [H (τ) · exp (−τ/τj) + H (−τ) · exp (τ/τi)]
}

and

G(2)

int (τ) =
2
∣∣∣UliUkjU∗kiU∗lj

∣∣∣
τi + τj

· exp
(
−γ |τ | − 2π2Σ2τ2

)
· cos (2πδντ − ΦU ), (3.19)

where we introduced γ = γi + γj with γi,j = 1/ (2τi,j) + Γ∗i,j specifying the
width of the homogeneous linewidth contribution of each emitter.

Summarizing, Eq. (3.17) yields the time structure of a cross-correlation
measurements between the outputs labeled k and l of a linear optical gate
described by the unitary matrix U , if the gate was fed with two single photons
via the input modes i and j. While the incoherent contribution G(2)

0 (τ) solely
depends on the gate and temporal envelope of both photons, it can be seen
that the interference term G(2)

int (τ) additionally gives rise to quantum beats
depending on the spectral detuning δν between both emitters. Moreover,
we find that G(2)

int (τ) converges towards zero with increasing γ and Σ, which
indicates a loss of mutual coherence due to PD and SD. Note that we use the
standard deviation σ only in favor of a concise notation. In the following, we
often quantify the inhomogeneous broadening with the more common FWHM
given by σ′ = 2

√
2 ln 2σ instead. It is worth mentioning that the phase of

the quantum beats is determined by the gate via ΦU . In Sect. 2.4.3 we found
that G(2) (0) = 0 is a general property of HOM experiments. Here we realize
that G(2) (0) reaches a local minimum (which is not necessarily zero) only if
ΦU = π, i.e. in case of specific gates and combinations of input and output
modes.
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3.1. Derivation

3.1.3 Overall Coincidence Probability

For the assessment of photons in a given quantum information processing
scheme the cross-correlation function is only of limited value. Instead, the
efficiency of a gate is more commonly determined via the overall probability
to obtain coincidences [226, 227]. According to Eq. (2.50) it can be obtained
via

pcoinc =

∫ +∞

−∞
G(2) (τ) dτ

=

∫ +∞

−∞
G(2)

0 (τ) dτ +

∫ +∞

−∞
G(2)

int (τ) dτ

= pcoinc,0 + pcoinc,int. (3.20)

Evaluating pcoinc using Eq. (3.17) we first find

pcoinc,0 =

∫ +∞

−∞
G(2)

0 (τ) dτ = |Uli|2 |Ukj |2 + |Ulj |2 |Uki|2 . (3.21)

To find the solution for the interference term, we first simplify by using the
abbreviations α = 2πΣ and ω = 2πδν as well as defining the functions a (τ) =
exp (−γ |τ |) and b (τ) = exp

(
−α2τ2/2

)
. This enables us to write

pcoinc,int =

∫ +∞

−∞
G(2)

int (τ) dτ

=

∣∣∣UliUkjU∗kiU∗lj
∣∣∣

τi + τj
·
∫ +∞

−∞
a (τ) · b (τ)

(
eiωτ−i ΦU + c.c.

)
dτ

=

∣∣∣UliUkjU∗kiU∗lj
∣∣∣

τi + τj
·
[
e−i ΦU

∫ +∞

−∞
a (τ) · b (τ) eiωτ dτ

+e+i ΦU
∫ +∞

−∞
a (τ) · b (τ) e−iωτ dτ

]
. (3.22)

Substituting τ → −τ in the first integral and considering that both a (τ) and
b (τ) are mirror-symmetric around τ = 0 leads to

pcoinc,int =
2
∣∣∣UliUkjU∗kiU∗lj

∣∣∣
τi + τj

· cos (ΦU ) ·
∫ +∞

−∞
a (τ) · b (τ) e−iωτ dτ

︸ ︷︷ ︸
=
√

2πF [a(τ)·b(τ)](ω)

. (3.23)

As indicated, the integral constitutes a unitary Fourier transformation of the
product a (τ) · b (τ). In the course of Sect. 2.2.2 we encountered the same
integral while computing the power spectral density of a single photon field
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3. Quantum Interference of Independent Photons

under the influence of PD and SD. Therefore, we adopt the same solution, i.e.
we apply the Fourier convolution theorem and express the result in terms of
the real part of the Faddeeva function w (z) with z = (2πδν + i γ) /

(
2π
√

2Σ
)
,

which results in

pcoinc,int = 2
∣∣UliUkjU∗kiU∗lj

∣∣ · cos (ΦU ) · Re [w (z)]√
2πΣ (τi + τj)

. (3.24)

Eventually, with help of Eq. (3.21) and Eq. (3.24) we find the overall coinci-
dence probability to be

pcoinc = |Uli|2 |Ukj |2 + |Ulj |2 |Uki|2 + 2
∣∣UliUkjU∗kiU∗lj

∣∣ · cos (ΦU ) · Re [w (z)]√
2πΣ (τi + τj)

.

(3.25)

We see that pcoinc follows a Voigt-lineshape as function of the spectral detuning
δν, whose width and height is determined by homogeneous and inhomogeneous
linewidth contributions of both emitters. The following section focuses on pos-
sible predictions for HOM experiments that can be extracted from Eq. (3.17)
and Eq. (3.25). Applications going beyond single beam splitter experiments
will be addressed in Sect. 7.1. An extension of the formalism including asyn-
chronous arrival and a polarization mismatch of both input photons can be
found in the supplement of [197].

3.2 Experiments after Hong-Ou-Mandel

In the present work we are mainly concerned with the fundamental HOM
experiment as introduced in Sect. 2.4. Therefore, we restrict the following
discussions to symmetric beam splitters represented by the unitary matrix
(3.5). In this case we find |U11|2 |U22|2 = |U12|2 |U21|2 = |U11U22U∗12U∗21| = 1/4
as well as ΦU = π. This reduces the cross-correlation function (3.17) to

G(2) (τ) =
1

4 (τ1 + τ2)
·
[
exp (−|τ |/τ1) + exp (−|τ |/τ2)

−2 exp
(
−γ |τ | − 2π2Σ2τ2

)
cos (2πδντ)

]
(3.26)

and the overall coincidence probability Eq. (3.25) to

pcoinc =
1

2
·
(

1− Re [w (z)]√
2πΣ (τ1 + τ2)

)
. (3.27)

In particular, we are interested in the TPI visibility V , which is related to
pcoinc via Eq. (2.52) and accordingly reads

V =
Re [w (z)]√

2πΣ (τ1 + τ2)
. (3.28)
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Figure 3.2. Impact of spectral tuning on the two-photon in-
terference visibility. The illustrated example employs the radiative
lifetimes τ1 = 700 ps, τ2 = 550 ps, pure dephasing rates Γ∗1 = 400 MHz,
Γ∗2 = 200 MHz, and inhomogeneous broadening σ′1 = 600 MHz, σ′2 =
500 MHz. Shown is (a) Two-photon interference visibility as function of
spectral detuning, (b) and (c) corresponding cross-correlation functions
at detunings δν = 0 GHz and δν = 2 GHz, respectively (red). The black

dashed curves correspond to the incoherent limits G(2)
0 (τ). Adapted

with permission from [197], IOP Publishing Ltd on behalf of Deutsche
Physikalische Gesellschaft.

HOM experiments using solid state emitters typically require tuning mech-
anisms to match the emission frequencies of both sources. It is common to
verify an ideal spectral overlap by measuring the TPI visibility V as function of
the detuning δν. A tuning curve of this kind based on Eq. (3.28) is depicted
in Fig. 3.2 (a) for an arbitrarily chosen emitter pair (see caption for para-
meters). Corresponding cross-correlation functions according to Eq. (3.26)
are shown in (b) and (c) as red curves. If both emitters are in tune with each
other [δν = 0 GHz , (b)], a maximum visibility of V = 49 % is obtained. For
a detuning of δν = 2 GHz as shown in (c), the visibility is reduced to only
V = 2 %, reflecting the poor spectral overlap of both photons. Additionally,
quantum beats appear for nonzero detuning rising from the interference term
in Eq. (3.26).

3.2.1 Comparison to Literature

The novelty and advantage of the presented formalism mainly resides in the
simultaneous consideration of PD and SD in a framework for HOM experi-
ments based on compact equations. However, the impact of either of the two
effects separated has been investigated before. In [152], for instance, a pair
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3. Quantum Interference of Independent Photons

of dissimilar photons under the influence of only PD is considered and an ex-
pression for the TPI visibility is derived. The absence of SD corresponds to
Σ = 0, but the answer of Eq. (3.28) in this limit is not obvious. Therefore,
we need to reevaluate the Fourier transformation (3.23) with g (τ) = 1, which
leads to

V =
4

τ1 + τ2
· 1/τ1 + 1/τ2 + 2Γ∗1 + 2Γ∗2

(1/τ1 + 1/τ2 + 2Γ∗1 + 2Γ∗2)2 + 16π2δν2
. (3.29)

This is indeed in agreement with the expression found in [152]. If we further
restrict Eq. (3.29) to two identical photons with τ1,2 = τr, Γ∗1,2 = Γ∗, as well
as δν = 0, we find V = τcoh/(2τr) with the coherence time given by 1/τcoh =
1/(2τr) + Γ∗. This equals the expression derived in [196] for two identical, but
independently dephasing emitters. It is worth noting that this definition of
the optical coherence time is equivalent to the well-known expression [228]

1

T ∗2
=

1

2T1
+

1

T2
(3.30)

for the free induction decay time T ∗2 of electron spins originally introduced
for nuclear magnetic resonance. It is composed of the spin-lattice and spin-
spin relaxation times T1 and T2 describing the decay and decoherence of the
longitudinal and transversal magnetization components, respectively.

In order to theoretically describe the experiments presented in [151] the
authors establish a model for two emitters of equal radiative lifetime that dis-
regards PD, but includes inhomogeneous broadening based on a distribution
comparable to Eq. (3.13). In the scope of our work, this limit is covered by
equations (3.26) and (3.28) by simply setting Γ∗1,2 = 0. However, despite a
similar approach we find that both cross-correlation function and visibility do
not agree with [151]. In particular, one finds that for sufficiently large inhomo-
geneous broadening the formalism in [151] yields negative visibilities. As the
coincidence probability is restricted to pcoinc = 1/2 in its incoherent limit, this
is an impossible outcome suggesting that the underlying derivation might be
erroneous. Indeed, it can be seen that the employed wave-functions and their
frequency distributions are improperly normalized, which might have caused
the wrong result.

Moreover, our formalism can be independently tested by reproducing ex-
perimental TPI visibilities reported in literature. Although a large number of
HOM experiments between photons of independent solid state emitters have
been performed, only some of those are suitable for that purpose. On one
hand, the experiments presented in [64–68, 154] employ non-resonant or cw-
excitation schemes and are therefore exposed to an uncertainty in the photon
arrival time, which is not covered by our equations. For other experiments the
necessary emitter parameters are not given in an unambiguous way, rendering
a reliable application of our equations impossible [152,153,229]. Furthermore,
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Table 3.1. Application of remote HOM formalism to litera-
ture values. Theoretical visibilities Vth obtained from Eq. (3.28) are
compared to experimental visibilities V ref

exp and accompanying theoret-

ical predictions V ref
th . Radiative lifetime τr, coherence time τcoh, inho-

mogeneous linewidth σ′max, and pure dephasing rate Γ∗max are given in
pairs corresponding to emitter 1 / emitter 2. Reproduced with permis-
sion from [197], IOP Publishing Ltd on behalf of Deutsche Physikalische
Gesellschaft.

Ref. τr τcoh σ′max Γ∗max V ref
exp V ref

th Vth

[ps] [ps] [GHz] [GHz] [%] [%] [%]

[151] 670/660 330/420 1.39/1.04 2.28/1.62 39 36 28-32
[155] 256/230 256/256 1.46/1.37 1.95/1.73 51 56 53-57
[156] 155/187 153/123 2.46/3.53 3.31/5.46 41 40 40-44

to the best of our knowledge no report on HOM experiments exists, which
provides a full set of parameters consisting of radiative lifetime τr, pure de-
phasing rate Γ∗ and inhomogeneous linewidth σ′ for both emitters. In case
of the three experiments [151,155,156], however, both radiative lifetimes and
coherence times τcoh are stated instead. From Eq. (2.15) we find that Γ∗ can
be expressed in terms of σ′ according to

Γ∗ =
1

τcoh
− 1

2τr
− π2σ′2τcoh

4 ln 2
. (3.31)

The solution of this equation yields pairs of Γ∗ and σ′ for the given τr and
τcoh. Their maxima Γ∗max and σ′max correspond to the respective boundaries
σ′ = 0 as well as Γ∗ = 0 and are given by

Γ∗max =
1

τcoh
− 1

2τr
and σ′max =

[
4 ln 2

π2τcoh

(
1

τcoh
− 1

2τr

)]1
2
.

(3.32)

Eventually, considering all possible combinations of Γ∗ and σ′ we find a range
of TPI visibilities Vth according to Eq. (3.28) at δν = 0, which are summa-
rized in Tab. 3.1. Comparing Vth to the experimentally obtained visibilities,
we find excellent agreement for [155,156]. In case of [151] our prediction under-
estimates the experimental visibility by almost 10 %, while the accompanying
theoretical value V ref

th matches far better. Note, however, that the theory pro-
vided in [151] is erroneous (see preceding paragraph) and V ref

th therefore not
reliable. The reason for the disagreement between experimental value and Vth,
on the other hand, can not be unambiguously identified.
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3.2.2 Remote HOM Visibility and Coherence Time

In order to shed more light on the simultaneous impact of PD and SD on
TPI visibilities, we restrict ourselves to an ideal scenario of an experiment
with two identical emitters, i.e. we assume τ1,2 = τr, Γ∗1,2 = Γ∗ → γ =

2Γ∗ + 1/τr, σ1,2 = σ → Σ2 = 2σ2, as well as δν = 0. In the following, we
divide both broadening contributions by the decay rate 1/τr, which leads to
the normalized homogeneous and inhomogeneous linewidths ϑPD = γ · τr and
ϑSD = σ′ ·τr. Both parameters enable us to assess the emitter pair independent
of the radiative lifetime. Note that the Fourier limit corresponds to ϑPD = 1
as well as ϑSD = 0 and increasing values indicate a loss of coherence. We are
now able to rewrite the TPI visibility (3.28) as

V =

√
2 ln 2

π
· Re [w (z)]

2ϑSD
with z = i

√
ln 2

2π2
· ϑPD

ϑSD
(3.33)

which is depicted in Fig. 3.3 (a) as contour plot over both ϑPD and ϑSD.
Emitter pairs at the Fourier limit with a TPI visibility of 100 % can be found
at the bottom left corner. The black solid and dashed contour lines indicate
levels of constant visibility and normalized coherence time xc = τcoh/ (2τr).
While the iso-visibility lines were found numerically, the iso-coherence time
lines can be obtained from Eq. (2.15) and read

xc = − ln 2

2π2
· ϑPD

ϑ2
SD

+

√(
ln 2

2π2
· ϑPD

ϑ2
SD

)2

+
ln 2

π2 · ϑ2
SD

. (3.34)
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Figure 3.3. Simultaneous influence of pure dephasing and spec-
tral diffusion on remote HOM visibility. (a) Visibility plotted as
function of normalized homogeneous and inhomogeneous linewidths ϑPD

and ϑSD as defined in main text. Solid and dashed contour lines indicate
levels of constant visibility and normalized coherence time xc, respec-
tively. (b) Visibility over normalized coherence time for the two limiting
cases of no pure dephasing (PD, red) and no spectral diffusion (SD, blue
dashed). Reproduced with permission from [197], IOP Publishing Ltd
on behalf of Deutsche Physikalische Gesellschaft.

52



3.2. Experiments after Hong-Ou-Mandel

Comparing both contour lines we recognize, as expected, that high TPI visibil-
ities generally require high coherence times. In [196] it was shown that for two
identical, but independently dephasing, emitters it is V = xc in absence of SD.
While this indeed holds for ϑSD = 0, we see that V and xc disagree for an in-
creasing inhomogeneous linewidth, i.e. ϑSD > 0. This is further illustrated in
Fig. 3.3 (b). Here, the visibility is plotted against xc in the two limiting cases
of vanishing pure dephasing resulting in VnoPD = V (ϑPD = 1, ϑSD) as well as
vanishing spectral diffusion corresponding to VnoSD = V (ϑPD, ϑSD = 0) = xc.
The graph reveals VnoPD ≥ VnoSD, which indicates that V cannot be generally
expressed as function of xc. The maximum deviation, however, is no more
than ∆Vmax=4.8 % at xc = 0.4 so that VnoSD can be used as a reasonably
accurate lower bound.

From this direct comparison of PD and SD we realize that both homo-
geneous and inhomogeneous line broadening mechanisms corrupt remote TPI
applications to a comparable extent. This might seem counter-intuitive con-
sidering that each individual photon is Fourier-limited in absence of PD. The
impact of an independent frequency-jitter completely unfolds, however, for
long measurement runs, which enable both emitters to explore their entire
frequency ranges.

3.2.3 Quantum Interference of Consecutively Emitted
Photons

Up to this point we restricted ourselves to HOM experiments with photons
emitted by two independent sources, whose emission frequencies are entirely
uncorrelated. In Sect. 5.3 we will encounter a different situation: Following
the experimental scheme first presented in [230], we investigate TPI between
photons consecutively emitted by the same source. With the experimental
details being addressed in Sect. 5.3.1, it is sufficient at this point to consider
that both photons were emitted with a given delay τmzi

2. Typically, τmzi sig-
nificantly exceeds the radiative lifetime τr (e.g. τmzi > 5 · τr in [230]). In this
case any phase correlation between the individual photons is certainly lost
and the treatment of PD as presented in Sect. 3.1.2 can be adopted without
further modifications. In contrast SD diffusion processes act on a time scale
comparable to or larger than τr [192–195] entailing a correlation of the car-
rier frequencies. Accordingly, the static distribution % (∆ν) of the frequency
displacement ∆ν introduced in Eq. (3.13) is not applicable here.

In order to adjust our formalism, we employ the time dependent descrip-
tion of SD given in Sect. 2.2.3 in the following way: Assume that the emission
spectrum is centered around ν0 and exhibits an inhomogeneous width σ0. The
probability p1 (ν ′) of the first emitted photon having a carrier frequency ν ′ is

2Note that the index mzi refers to the Mach-Zehnder interferometer, which was employed
to set the delay throughout all experiments. See Sect. 5.3.1 for further details.
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simply given by the equilibrium distribution

p1

(
ν ′
)

=
1√

2πσ2
0

· exp

[
−(ν ′ − ν0)

2σ2
0

]
. (3.35)

The carrier frequency of the second photon, however, depends on ν ′ and must
therefore be described by Eq. (2.20). In particular, the probability to find it
at ν = ν ′ + ∆ν is

p2

(
ν ′ + ∆ν, τmzi

)
=

1√
2πσ2 (τmzi)

· exp

{
− [ν ′ + ∆ν − νc (τmzi)]

2

2σ2 (τmzi)

}
with

(3.36)

σ2 (τmzi) = σ2
0 · [1− exp (−2τmzi/τsd)] and

νc (τmzi) = ν0 +
(
ν ′ − ν0

)
· exp (−τmzi/τsd) ,

where we substituted τsd = 1/β with τsd being the frequency correlation time
associated with SD (or memory depth [192]). In agreement with Eq. (3.13),
the modified distribution % (∆ν, τmzi) equals the cross-correlation of p1 and p2

reading

% (∆ν, τmzi) =

∫ +∞

−∞
p1

(
ν ′
)
· p2

(
ν ′ + ∆ν, τmzi

)
dν ′ (3.37)

=
1√

2πΣ2 (τmzi)
exp

[
− ∆ν2

2Σ2 (τmzi)

]
with

Σ2 (τmzi) = 2σ2
0 · [1− exp (−τmzi/τsd)] . (3.38)

Comparing Eq. (3.37) to our former result Eq. (3.13), we recognize only two
differences being (i) the absence of detuning, i.e. δν = 0, and (ii) the new
width of the distribution Σ (τmzi), which now includes an explicit dependency
on τmzi according to Eq. (3.38). Taking these modifications into account and
considering τ1,2 = τr as well as Γ∗1,2 = Γ∗ → γ = 2Γ∗ + 1/τr, it is straightfor-
ward to rewrite the cross-correlation function (3.26) as

G(2) (τ) =
1

4τr
·
[
exp (− |τ | /τr)− exp

(
−γ |τ | − 2π2Σ2 (τmzi) τ

2
)]

(3.39)

and the TPI visibility (3.28) as

V (τmzi) =
Re [w (z)]

2
√

2π · τr · Σ (τmzi)
with z = i

1/τr + 2Γ∗

2π
√

2 · Σ (τmzi)
. (3.40)

The resulting visibility is illustrated for an arbitrary emitter in Fig. 3.4
as red curve (see caption for emitter parameters). It can be seen that the
visibility converges towards constant values for both τmzi → 0 and τmzi →∞.
The limit for small τmzi is set by PD, which affects each photon to its full
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Figure 3.4. Dependency of two-photon interference visibility
on emission time delay. Comparison of model presented here (red)
with model derived in [192] (black dashed) for an emitter with τr=1 ns,
Γ∗=200 MHz, σ′0=1 GHz, and τsd=100 ns. The dephasing rate Γ′0 ap-
pearing in [192] was set to 975 MHz to match the limits of both models
for τmzi →∞.

extent independent of the emission time delay, while the influence of SD can
be neglected. For intermediate τmzi the visibility drops due to SD indicating
a progressing loss of frequency correlation between both photons. Accord-
ingly, the limit at large delays corresponds to uncorrelated photons and is
best described by the frequency distributions at equilibrium. Furthermore,
we recognize that for τmzi = τsd SD almost fully unfolded.

An alternative model was proposed in [192], which also has been used to
describe the data presented in [193, 195]. The model does not include SD
as an inhomogeneous broadening of the emission line, but rather as an effect
increasing the PD rate as function of τmzi. On that account, it is split into
two parts: a static contribution, which equals Γ∗ in our model, and a time
dependent term reading

Γ′ (τmzi) = Γ′0 ·
{

1− exp
[
− (τmzi/τsd)2

]}
. (3.41)

It is then possible to write the overall visibility using Eq. (3.29) for two pho-
tons from the same source as

V (τmzi) =
1/τr

1/τr + 2 · [Γ∗ + Γ′ (τmzi)]
. (3.42)

This equation agrees with [192] except for the factor of ’2’, which, however,
only stems from a different definition of the PD rate. The result is plotted in
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3. Quantum Interference of Independent Photons

Fig. 3.4 as black dashed curve based on the previously used parameters. The
visibility exhibits the same limits we observed before, but drops later and more
rapidly instead. As consequence, this model yields small frequency correlation
times compared Eq. (3.40), if used as fitting function for experimental data.
We like to mention that the approach used in [192] is sufficient to qualitatively
describe the visibility as function of τmzi, but significantly overstretches the
scope of pure dephasing. The phase correlation (2.13), which is typically used
to describe the regime of PD, is only valid in the limit of fluctuations, which
are fast compared to τr (see Sect. 2.2.1). Here, it is used, however, for emitter
systems, whose memory depth τsd is several orders of magnitude larger than
τr. Accordingly, we suggest that Eq. (3.40) is more appropriate to model the
time dependent impact of SD on TPI visibilities.

3.3 Summary

In this chapter we established a theoretical framework to describe correla-
tion measurements taken during TPI experiments on arbitrary linear optical
gates. The equations generalize the well-known formalism introduced in [217].
It was then applied to obtain expressions for the cross-correlation function and
overall coincidence probability, if the gate was fed with two independent, dis-
similar photons stemming from solid state emitters being subject to pure de-
phasing and spectral diffusion. The result was discussed in the special case of
HOM experiments and compared to existing formalisms as found in literature.
Eventually, the results were adapted to be applicable to consecutively emit-
ted photons, which exhibit a net correlation between their carrier frequencies.
The main results are additionally summarized in the highlights-box.

Joint Detection Probability

� The well established formal-
ism for HOM experiments
[217] was extended to arbi-
trary linear optical gates rep-
resented by a unitary N ×
N matrix (Sect. 3.1.1 and

Sect. 3.1.3).

� Given two arbitrary input
photons described by dissimi-
lar wave-functions, the result-
ing Eq. (3.4) yields the prob-
ability to obtain two detection
events at times t0 and t0 + τ
at two distinct output modes.

Chapter 3 - Highlights

56



3.3. Summary

Solid State Emitters

� The formalism was applied to
two photons emitted by inde-
pendent solid state emitters
(Sect. 3.1.2).

� The photons exhibit differing
radiative lifetime, relative de-
tuning and an independent
phase- and frequency-jitter to
account for pure dephasing
and spectral diffusion.

� An integration step over the
detection time t0 leads to the
cross-correlation (3.17) func-
tion yielding the probability
to obtain correlated detection
events with a time lag of τ .

� Additional integration over τ
yields the overall probabil-
ity to obtain a coincidence
[Eq. (3.25)], which follows a
Voigt-lineshape as function of
the detuning reflecting the ho-
mogeneously and inhomoge-
neously broadened joint spec-
tra of both photons.

HOM Experiments

� The two-photon interference
visibility for HOM experi-
ments is given by restrict-
ing the result to a symmetric
beam-splitter [Eq. (3.28)]

� A comparison to existing for-
malisms and an application to
experimentally obtained visi-
bilities confirms the validity of
our equations (Sect. 3.2.1).

� Focusing on the joint impact
of homogeneous and inho-
mogeneous broadening mech-
anisms reveals that spectral
diffusion and pure dephas-
ing have a comparable impact
on the interference visibility
(Sect. 3.2.2).

� The formalism was extended
to describe HOM experiments
with consecutively emit-
ted, i.e. non-independent,
photons considering their
carrier-frequency correlation
(Sect. 3.2.3).

Chapter 3 - Highlights continued
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Chapter 4

Frequency Conversion Setup

The frequency converter (FC) is at the heart of all experiments presented in
this work. In the following we outline the setup as a whole and offer de-
tailed information about its principal components and their interplay. Note
that the design shown here corresponds to the frequency converter used for
the quantum frequency conversion (QFC) experiment with indistinguishable
photons from a single QD presented in the next chapter. The setup employed
in Chap. 6 exhibits a number of modifications that will be addressed sepa-
rately. Furthermore, we here discuss measurements quantifying the converter
performance and its limitations.

4.1 Overview

The optical setup is illustrated in Fig. 4.1. Its main component is a magnesium
oxide doped, periodically poled lithium niobate (MgO:PPLN) waveguide chip
designed to support the DFG process defined by 1/905 nm - 1/2175 nm =
1/1550 nm (NTT Electronics, Japan). The signal light at 905 nm is fed
into the setup via an optical fiber and collected by an aspherical lens. We
use a fiber polarization controller to minimize the optical power transmitted
through the subsequent polarizing beam splitter (PBS) in order to ensure the
desired vertical polarization. The pump light field at 2175 nm is delivered by
a Cr2+:ZnS laser in cw-operation (IPG Photonics, USA). A combination of
half-wave plate (HWP) and Glan-Taylor calcite-prism (GTP) are used for two
purposes: (i) to set the initially horizontally polarized pump light to vertical
polarization and (ii) to control the optical power of the pump light to the
level required for maximal conversion efficiency.

Both signal and pump light are overlapped on a dichroic mirror (DM, cus-
tom made item, charge O414G037, Layertec, Germany) and simultaneously
coupled via an anti-reflection coated zinc selenide aspheric lens (ZnSe AL,
II-IV Deutschland, Germany) to the WG. To enable simultaneous optimal
coupling of both beams, an additional spherical lens (SL) is introduced to the
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Figure 4.1. Illustration of the Frequency Converter. The pump
light (red) is provided by a Cr2+:ZnS cw-laser. The combination of a
half-wave plate (HWP) and Glan-Taylor prism (GTP) is used to set
the pump power. Both pump light and signal light (violet) are set to
vertical polarization at the GT and a polarizing beam splitter (PBS),
respectively, where a fiber polarization controller is used for the signal
light. Combined on a dichroic mirror (DM), both light fields are simul-
taneously coupled to the waveguide through a ZnSe aspheric lens (AL).
The spherical lens (SL) in the signal beam path aids the optimal cou-
pling. The converted telecom light (green) is separated from residual
pump light at a second DM and spectrally filtered by a bandpass filter
(BP) and the combination of a fiber based circulator and reflective fiber
Bragg grating (FBG).

signal beam path (details in Sect. 4.3). In order to achieve the maximum con-
version efficiencies the phase-matching condition for the desired DFG-process
has to be met. As periodicity of the periodic poling and WG dimension are
fixed parameters, the only remaining degree of freedom is the crystal tempera-
ture, which is here stabilized with help of a commercially available temperature
controller (model TED200C, Thorlabs, USA). To measure and control the
temperature a thermistor with negative temperature coefficient and a thermo-
electric Peltier element are used, respectively. Eventually, the converted light
at 1550 nm is coupled out of the WG and collimated with an anti-reflection
coated AL.
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4.1. Overview

The last essential step is spectral filtering of the converted photons in
order to isolate them from any other present light field, which may stem from
(i) residual pump light, (ii) light from non-phase-matched nonlinear optical
processes of second and higher order, as well as (iii) parametric fluorescence
[102] and (iv) Raman scattering [101,231] of the pump. In order to minimize
these unwanted contributions we use two different components being an optical
bandpass filter with central wavelength 1550 nm and bandwidth 20 nm (BP,
item 1550BP20, Omega Optical, USA) as well as a system consisting of
fiber Bragg grating (FBG, Aos GmbH, Germany) and circulator acting as
another 120 GHz wide bandpass filter centered at 1557 nm. The relevance of
all noise sources will be detailed in sections 4.5, 5.1.2, and 6.2.2.

4.1.1 Nonlinear Waveguide Chip

All nonlinear optical devices employed in the present work rely on periodi-
cally poled lithium niobate (LN) crystals [97]. The material is known for its
comparatively large nonlinear coefficients [205–208], wide transparency range
from 0.35 µm to >4 µm [207], and ferroelectricity, which enables QPM via fer-
roelectric poling [232] [compare Fig. 4.2 (a)]. Typically LN single crystals are
not available in their stoichiometric composition LiNbO3, but in a congruent
composition, in which up to 3 % of all Li ions are substituted by Nb ions [233].
However, it has been observed that congruent LN is prone to photorefractive
effects, which significantly degrade its nonlinear optical properties [234]. A
common approach to minimize the photorefractive effect is to dope the LN
crystal, for instance with MgO or ZnO. Therefore, we here exclusively use LN
crystals with 5 mol% MgO doping.

Both frequency converters used for the experiments presented in chapters
5 and 6 utilize LN crystals purchased from NTT Electronics, Japan (model
WD-1550-000-A-C-C-S009, S/N 3071357 and 3071358). The LN is bonded on
a 40 mm long, 6 mm wide, and 0.5 mm high lithium tantalate (LT) substrate
[Fig. 4.2 (b) and (c)]. The crystal is z-cut, thus the largest nonlinear coeffi-
cient d33 [205,208] can be exploited if all interacting light fields are vertically
polarized, i.e. their polarization is parallel to the z-axis [compare Fig. 4.2 (a)
and (c)]. To achieve high conversion efficiencies at moderate pump power the
LN crystal is furthermore shaped into WGs by mechanically thinning it to a
thickness of 10 µm and cutting ridge WGs using a dicing saw. Both WG chips
feature 9 groups of WGs with QPM pitches ranging from 24.3 µm to 24.5 µm
in steps of 25 nm. The chosen QPM pitches support the desired DFG process
1/905 nm - 1/2175 nm = 1/1550 nm for moderate temperatures below 100 ◦C.
Each group contains 2 WGs with a width of 10.8 µm and 11.6 µm, respectively.
The input and output facets of the crystal are coated with dielectric coatings
minimizing reflection losses for all participating light fields.
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Figure 4.2. Lithium niobate as platform for nonlinear optics.
(a) Illustration of ferroelectric poling (after [97]): Both Nb and Li ions
have two stable positions along the z-axis of the crystal. In the con-
figuration indicated by solid spheres a positively charged Li ion resides
in the upper part of the unit cell (gray dashed box) causing a dipole
moment ~p anti-parallel to the z-axis. Upon ferroelectric poling the ions
change to the dashed positions. The unit cell now contains a Li ion in
its lower part, i.e. the dipole moment turned by 180 ◦ pointing along
the z-axis. (b) Top view and (c) cross-section of the geometry of the
employed LN WG chips (reproduced based on [235]). The red circle in
(b) is physically present on the chip to indicate its orientation.

4.1.2 Pump Laser System

To stimulate the down-conversion process 905 nm→1550 nm a pump light
source at around 2175 nm is required, which meets a number of criteria:
(i) an output power exceeding 1 W to achieve the maximum conversion ef-
ficiency, (ii) single frequency operation with small linewidth and high coher-
ence time for minimum degradation of the single photon spectral and temporal
properties (QD emission: linewidth O (1 GHz), coherence time O (100 ps), see
e.g. [236]), (iii) single transversal mode operation for high coupling efficiencies
to the WGs and optimal mode overlap with other participating light fields, as
well as (iv) a broad tuning range, as both the exact QD emission wavelength
and converted target-wavelength within the telecom C-band are not known a
priori.

In preceding QFC experiments within our working group [231,237], home-
built optical parametric oscillators (OPO) have been employed for this task, as
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Figure 4.3. Telecom wavelengths accessible with the Cr2+:ZnS
pump laser system. Pump laser wavelength required for conver-
sion of a given QD emission wavelength to the telecom C-band (blue
shaded area, λC-band =1530-1565 nm). Exploiting the available pump
laser tuning range λp =2.1-2.3 µm, it is possible to tune the converted
light from any QD emitting in the range λC-band

QD =897-919 nm across
the entire telecom C-band. Considering the FBG filter-window centered
around λFBG =1557 nm (red curve), QDs with λFBG

QD =894-928 nm can
be converted.

appropriate laser systems were not available. However, recent progress in the
development of lasers based on transition metal doped II-IV chalcogenides led
to laser systems fulfilling all requirements mentioned above [238]. Here, we use
single frequency tunable lasers in cw operation based on Cr2+:ZnS as active
laser medium (model CLT-2175/200-1SF, S/N 1411145 and 1411146, IPG
Photonics, USA). The lasers are optically pumped by an integrated Erbium-
doped fiber laser at 1567 nm (model ELR-20-1567-LP, IPG Photonics, USA)
and deliver linearly polarized light at an optical power of > 1.5 W in a tuning
range from 2.1 µm to 2.3 µm with a spectral linewidth of around 1 MHz [239].
Fig. 4.3 illustrates accessible telecom wavelengths λtel as obtained from the
underlying energy conservation law of a DFG process for different QD emission
wavelengths λQD and considering the available pump laser tuning range. It can
be seen that converted light from QDs with λQD =897-919 nm can be tuned
within the entire telecom C-band (blue shaded area, λtel =1530-1565 nm).
In our experiments the target-wavelength is determined by the FBG-based
bandpass filter with center-wavelength λtel =1557 nm, which corresponds to
λQD =894-928 nm (red curve).
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4.2 Temperature Tuning

In the remainder of this chapter, we present a number of performance tests, all
of which conducted on the first-built frequency converter prior to the exper-
iments shown in Chap. 5. In particular this means that these measurements
were performed using the WG-chip with S/N 3071357 and pump laser with
S/N 1411145.

First we measure SPDC spectra and investigate their temperature depen-
dencies in order to identify ideal operation conditions for each WG. In the
scope of only this section we employ the conventional nomenclature for para-
metric fluorescence, i.e. we denote the light field with highest energy as pump,
as it exhibits by far the highest field amplitudes and drives the process. Ac-
cordingly, we call the other two fields signal and idler, where idler corresponds
to the field with lowest photon-energy. As pump, we use light at λ=904.7 nm
(i.e. around the anticipated QD emission wavelength) with a power of 31 mW
provided by a green-pumped cw singly resonant OPO [231, 240], couple it
into a WG, and measure the spectral distribution of its parametric fluores-
cence at telecom wavelengths using an optical spectrum analyzer (OSA, model
AQ6370B, Yokogawa, Japan). The black curve in Fig. 4.4 (a) shows a typi-
cal spectrum, here taken from WG 1 in group 6 (poling period Λ=24.425 µm,
nominal WG width bnom=10.8 µm) at a crystal temperature of 26.4 ◦C. Its
most prominent feature is the presence of two peaks located at 1415 nm and
1543 nm. It is important to note that these peaks do not correspond to a
signal/idler wavelength-combination, as the idler wavelength is at >2 µm. In-
stead both peaks stem from the signal light-field, i.e. the phase-matching con-
dition ∆β = 0 [cf. sections 2.3.1 and 2.3.2, in particular Eq. (2.31)] is fulfilled
for two different wavelengths and the phase-mismatch reaches an extremum
in between. Moreover, both peaks are extraordinarily broad with a FWHM of
40 nm and 75 nm (compared to ≈ 10 nm in [231,237]), which indicates a small
slope of the phase-mismatch in this region. Figures 4.4 (c) and (d) show the
center-wavelengths of both peaks measured at different temperatures for WGs
with the nominal width bnom=10.8 µm and 11.6 µm, respectively. Only for 10
out of 18 WGs phase-matching was achieved with accessible temperatures
ranging from 20 ◦C to 55 ◦C. However, it can be seen that all of those WGs
enable frequency conversion into the telecom C-band (blue shaded region).

According to our considerations in Sect. 2.3.2, a theoretical description
of these data needs to consider the impact of waveguide dispersion on phase
mismatch ∆β and normalized interaction length ΓL. To that end, we imple-
ment a MatLab-based simulation of SPDC-spectra and tuning curves that
incorporates multiple steps, being

(i) thermal expansion regarding the set-temperature of the WG chip includ-
ing change of width b, thickness d, length L and poling period Λ using
expansion coefficients of LN given in [241],
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WG1: bnom=10.8µm
Group Λ[µm] ∆bfit[nm]

1 24.300 −200
2 24.325 − 90
3 24.350 −123
4 24.375 − 97
5 24.400 +121
6 24.425 − 19

WG2: bnom=11.6µm
Group Λ[µm] ∆bfit[nm]

6 24.425 −130
7 24.450 −483
8 24.475 −383
9 24.500 −333

Figure 4.4. Temperature tunability of SPDC spectra. (a)
Spectral distribution of parametric fluorescence for pump-light at
λ=904.7 nm with 31 mW obtained from WG 1 of group 6 at a crys-
tal temperature of 26.4 ◦C (data black, simulation red). The simulated
phase-mismatch ∆ (blue) shows zero-crossings at two different signal-
wavelengths, leading to two signal-peaks. (b) Refractive index for LN
calculated with various sets of Sellmeier-coefficients. The green curve
corresponds to the modified Sellmeier-coefficients from [212] used for the
presented simulations. (c), (d) Center-wavelengths of both signal-peaks
for WGs with bnom=10.8 µm and bnom=11.6 µm, respectively. Measured
data as marks, simulations as solid lines.

(ii) evaluating refractive indices of all participating light-fields using tem-
perature dependent Sellmeier-coefficients for air [214] and LT [213] as
well as modified coefficients for LN [212],

(iii) numerical solution of the eigenvalue equations given in Appx. A yielding
transversal wavenumbers and displacement of the fundamental guided
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mode, which in turn lead to the transversal electrical field component
Ex Eq. (2.29) and the effective refractive indices neff Eq. (2.30), and

(iv) evaluating phase-mismatch ∆β Eq. (2.31) using neff as well as

(v) the desired SPDC-spectrum Eq. (2.37), where the normalized interac-
tion length ΓL is obtained using Ex and the effective nonlinear coefficient
deff. The latter is approximated based on Miller’s rule [208,242].

Using the nominal WG dimensions given in the datasheet [235] and avail-
able Sellmeier-coefficients [212, 243–245] both simulated spectra and tuning
curves are far off the measurements. However, a fit of the Sellmeier-coefficients
taken from [212] leads to a good qualitative agreement with the spectrum
shown in Fig. 4.4 (a) [corresponding refractive index shown as green curve
in Fig. 4.4 (b), coefficients given in Appx. B]. While these fitted coefficients
are sufficient to explain spectrum and tuning curve of this particular WG,
the tuning curves of all other waveguides still strongly disagree with the data.
Another possibility to adjust the simulations can be found in the WG dimen-
sions: both width b and thickness d differ from their nominal values bnom and
dnom due to a limited precision of the fabrication process, i.e. we assume to
have b = bnom + ∆b and d = dnom + ∆d. These deviations have a signifi-
cant impact on the phase-mismatch, which we exploit in a fitting routine that
treats all ∆b as free parameters. Furthermore, we optimize the WG thickness,
but assume it is the same for each WG. The results are plotted as solid curves
in Fig. 4.4 (a), (c), and (d) and show a good agreement with all data. The
blue curve in Fig. 4.4 (a) corresponds to the simulated phase-mismatch. It
confirms our initial assertions that the phase-matching condition ∆ = 0 is
fulfilled at both signal-peaks. Also, it can be seen that its slope is smaller for
the broader peak at 1543 nm. The obtained deviations ∆bfit are summarized
for all WGs within the legends of Fig. 4.4 (c) and (d). Apart from WG1 in
group 5 all WGs appear to be thinner than stated in the datasheet. In average
we find 〈∆bwg1〉 = −68 nm and 〈∆bwg2〉 = −332 nm for WGs 1 and 2, respec-
tively, which agrees with an estimated margin of error of ±0.1 µm stated by
the manufacturer1.

We like to stress that the applied fit should be treated with some caution,
as the overall model depends on a large amount of input parameters. Although
our selection of free parameters is reasonable, it is also arbitrary to some extent
and therefore likely to be not unique.

4.3 Dichroic Waveguide Coupling

Knowing the appropriate phase-matching temperatures, the next step is to
approach a stimulated DFG-process. On that account it is necessary to com-

1Personal communication: Y. Nishida, NTT Electronics, email, November 20th 2018.
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4.3. Dichroic Waveguide Coupling

bine the signal- and pump field at 905 nm and 2175 nm on the dichroic mirror
and simultaneously couple both to the fundamental mode of the desired WG
(compare Fig. 4.1). A technical complication arises from the wavelength de-
pendent focal length shift of the ZnSe aspheric lens due to dispersion: the
lens is designed to have an effective focal length of fdes =11 mm at the pump
wavelength, while the focal length at 905 nm is only ffoc =10.52 mm [246].
Therefore it is not possible to achieve simultaneous optimal coupling, if both
input beams are initially collimated. In the following we present considera-
tions, which lead to a simple optical assembly that allows for high coupling
efficiencies of both beams.

First, we assume the ZnSe AL to be at a distance of dfoc = fdes =11 mm
to the WG facet, i.e. optimized for the coupling of the pump (see setup
schematic in Fig. 4.5). The distance between PBS and AL for coupling is
dal = 377 mm. It can be varied only in a limited range due to space limitations
of the setup and is therefore considered fixed. The signal light is guided to
the setup in a single mode fiber with a mode field diameter of MFD = 5.0 µm
(type 780HP, Thorlabs, USA) and collected via an aspheric lens with focal
length fcol = 6.31 mm (model C110TMD-B2, Thorlabs, USA). The distance
between fiber facet and lens dcol as well as lens and PBS dpbs are considered free
parameters, which should offer sufficient flexibility to achieve optimal coupling.
However, it turns out that optimal coupling requires the fiber coupler to be
closer to the WG than the PBS, which is not feasible. To compensate this
shortcoming, we introduce an additional spherical lens (SL) with focal length
50 mm at a variable distance of dsl to the PBS.

In order to evaluate the coupling efficiency to the WG, we use the ray trac-
ing method of Gaussian beams [247]. The input beam has an initial radius
of w = MFD/2 = 2.5 µm determined by the fiber and infinite radius of cur-
vature, as the fiber facet constitutes a focal spot. After propagation through
the optical system the input beam at the position of the WG is described
by its electrical field Ein. The coupling efficiency ηcoup can now be evaluated
by [248]

ηcoup =
|〈Ein, Ewg〉|2

〈Ein, Ein〉 · 〈Ewg, Ewg〉
, (4.1)

where Ewg is the fundamental WG mode and 〈Ein, Ewg〉 denotes the spatial
overlap integral of Ein and Ewg. The intensity profile of the guided mode
obtained by the method described in Sect. 2.3.2 is depicted in Fig. 4.5 (c).
It can be seen that the cross section of the mode reproduces the rectangular
shape of the WG, i.e. a unity mode overlap with a rotationally symmetric
Gaussian input beam is impossible to achieve. Fig. 4.5 (a) shows the beam
diameter evolution for optimized coupling efficiency yielding ηcoup = 99 %

2The specified focal length of fcol = 6.24 mm is valid at the design wavelength of 780 nm.
Material dispersion leads to fcol = 6.31 mm at 905 nm.
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Figure 4.5. Optimal coupling of the signal light. Top left:
Schematic of optical system for the signal light, which enters the setup
via an optical fiber and is collimated with an aspheric lens (AL). Other
optical components are the polarizing beam splitter (PBS), a spherical
lens (SL), the ZnSe AL and eventually the waveguide (WG). (a) and
(b) depict the evolution of the beam diameter for our optimization us-
ing ffoc =10.4 mm and the actual focal length ffoc =10.52 mm of the
ZnSe AL, respectively. (c), (d), and (e) are the mode profiles of the
fundamental WG mode and the input modes corresponding to (a) and
(b).

at dcol = 6.56 mm, dpbs = 159 mm, and dsl = 86 mm. The intensity profile
of Ein shown in Fig. 4.5 (d) illustrates the good overlap with WG mode
(c). However, this optimization was performed assuming a focal length of the
ZnSe AL of 10.4 mm, as the correct value of 10.52 mm was unknown at the
time. The actual setup was built using dpbs and dsl as obtained from the op-
timization, while dcol remained a free parameter during setup alignment. In
experiment we measure optical powers of the signal of P2 = 7.36 mW prior
to and P3 = 5.12 mW behind the WG at the positions 2 and 3 as indicated
in Fig. 4.6 (d). Considering the limited transmittance of ≈ 90 % of both
dichroic mirrors and aspheric lenses situated in the optical path, we obtain
a coupling efficiency of 77 %. A simulation with dpbs and dsl taken from the
initial optimization as well as the correct focal length ffoc =10.52 mm as fixed
parameters is presented in Fig. 4.6 (b) and (e). Corresponding to the real con-
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4.4. Stimulated Down-Conversion

figuration the coupling efficiency was only optimized with respect to dcol and
evaluates to ηcoup = 83 %, which compares well to the experimentally achieved
value. This demonstrates that the applied method is a suitable approach to
simultaneously achieve high coupling efficiencies at different wavelengths de-
spite chromatic dispersion. Note that the design of polarization preserving
frequency converters recently established within our working group exploits
and extends this method to simultaneous coupling at three different wave-
lengths [249].

4.4 Stimulated Down-Conversion

In this section we present a first test of stimulated down-conversion with clas-
sical light fields and assess its efficiency. The measurements were performed
with the OPO and pump-laser set to output wavelengths of λs = 905.1 nm
and λp = 2167 nm, respectively, corresponding to a telecom wavelength of
λtel = 1554 nm. For the conversion we employed WG 1 in group 5 at a crystal
temperature of 41 ◦C. Fig. 4.6 (a) shows the spectrum of light collected from
the WG output around the telecom C-band center, measured with the OSA.
The black curve was obtained in absence of pump light and reveals the typical
broad spectral distribution of parametric fluorescence we already encountered
in Sect. 4.2. Once the pump light is added, the spectrum changes to a sharp
peak at the anticipated telecom wavelength (red curve), corresponding to idler
light from the stimulated down-conversion process. It can be seen that the
maxima of both curves coincide, indicating that the crystal temperature is set
at the ideal operating point to achieve phase-matching. Note that the SPDC
spectrum was magnified by a factor of about 108, as the parametric fluores-
cence is significantly weaker than the telecom light from the DFG process
(pW-range vs. mW-range).

The efficiency of a frequency converter is typically assessed by two com-
plimentary quantities: the internal conversion efficiency ηint and the external
device efficiency ηext. While the former is defined as the fraction of signal pho-
tons that are transduced to the idler wavelength during propagation in the
nonlinear medium, the latter can be interpreted as an input-fiber to output-
fiber efficiency of the entire converter. That means it additionally includes all
losses that occur on the signal path between input fiber and WG as well as on
the telecom path between the WG and the output fiber. The external device
efficiency plays a crucial role in the design of fiber-based quantum networks,
as it determines the minimum channel length, which is necessary to benefit
from the implementation of QFC-devices [237].

A direct measurement of the internal conversion efficiency is elaborate and
error-prone, as it requires precise knowledge of coupling efficiencies, losses and
detection efficiencies at both the signal and telecom wavelength. However, a
good approximation can be obtained measuring the signal depletion ηs as a
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Figure 4.6. Analysis of signal depletion at 905 nm. (a) Spectrum
of WG output at the telecom C-band with and without pump laser (red
and black, resp.). The black curve stems from parametric fluorescence.
(b) The presence of pump light depletes the signal (blue curve). Here,
the signal is reduced by 92 % at a pump power of 656 mW. (c) Signal
depletion as function of pump power (data: black dots, fit: red curve).
(d) Illustration of positions, at which optical powers were measured (see
main text).

function of the pump power Pp instead, which is defined by

ηs (Pp) = 1− Ps (Pp)

Ps (0)
. (4.2)

Here, Ps is the optical power of the signal taken at any point behind the WG.
To understand the similarities and distinction between signal depletion and
internal conversion efficiency it is instructive to write Ps as

Ps = T [1− L (Pp)]Pin, (4.3)

where Pin is the input power of the signal and T the pump-power-independent
transmittance accounting for loss channels such as absorption and scattering
as well as nonlinear optical processes that do not include the pump. In contrast
L (Pp) denotes the pump-power-dependent losses, or more specifically losses
due to conversion processes that include the pump. Using this definition and
L (0) = 0 it follows ηs (Pp) = L (Pp), i.e. the signal depletion is a cumulative
measure of all nonlinear optical processes scaling with pump power. Being the
only quasi-phase-matched TWM-process, the desired DFG certainly governs
the signal depletion, thus we expect to find ηs ≈ ηint. However, one should
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4.5. Converter Noise

keep in mind that strictly speaking ηs is only an upper bound for the inter-
nal conversion efficiency, as non-phase-matched processes and phase-matched
processes of higher order also contribute to the signal depletion.

To obtain ηs, we first determine Ps by integrating the corresponding signal
peaks measured on the OSA. Fig. 4.6 (b) shows the spectra of the signal
light at zero pump power (data: black circles, fit: red curve) and at Pp =
656 mW (data: black diamonds, fit: blue curve), yielding a signal depletion
of ηs =(92± 1) %. The black data points shown in Fig. 4.6 (c) correspond
to ηs taken at different pump powers and reveal that the depletion reaches a
maximum at around 700 mW. For higher powers the efficiency drops due to
SFG transferring the telecom light back to the signal wavelength. Assuming
ηs = ηint, the signal depletion follows the same pump power dependency as
the internal conversion efficiency given by [compare Eq. (2.36)]

ηs (Pp) = ηmax sin2
(√

κnormPpL
)
. (4.4)

From a fit to the data (see red curve) we obtain ηmax =(91± 4) % at Pp =
703 mW, which we consider as the maximum achievable internal conversion
efficiency ηmax

int . To estimate the external device efficiency, we additionally
include all losses that occur between converter-input and output, i.e. we write

ηmax
ext = Tnir · ηWG

coup · ηmax
int · Ttel · ηfiber

coup · TFBG. (4.5)

The cumulative transmittances of the unconverted signal and converted tele-
com light through all optical bulk components are Tnir = 92 % and Ttel = 95 %,
respectively. The coupling efficiencies are ηWG

coup = 77 % for the signal light to

the WG (see last section) and ηfiber
coup = 80 % for the telecom light to the out-

put fiber. The FBG-filtering system constitutes a major loss channel with a
transmittance of only TFBG = 60 %, which mainly originates from significant
attenuation in the fiber-based circulator. These values lead to a maximally
attainable external device efficiency of ηmax

ext = 29 % being in good agreement
with all values reported in the following chapters.

We like to note that the pump-power Pp used here and in the following
refers to the optical power inside the WG. As it is typically measured in front
of the WG [position 1 in Fig. 4.6 (d)], the specified power incorporates the
known cumulative transmittance and coupling efficiency of 72 %.

4.5 Converter Noise

As mentioned before, frequency converters add a significant amount of noise
stemming from a plethora of different processes, most of which include the
strong pump field. Despite being very weak compared to macroscopic optical
powers, the noise has a considerable impact at the single photon level and
therefore needs to be removed. In the following we consider contributions
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4. Frequency Conversion Setup

that merely originate from the pump, i.e. noise, which is independent of the
converter’s input light field. Mixing processes of residual QD excitation and
pump light will be discussed in sections 5.1.2 and 6.2.2.

With an optical power of around 500 mW, the residual pump light is by
far the largest potential noise source. However, as the optical path behind the
WG is optimized for the transmission and detection of telecom C-band light,
the pump is strongly attenuated, which can be estimated as follows:

(i) Both dichroic mirrors after the WG have reflectivities of < 1 %.

(ii) Bandpass filter attenuation of the pump of > 30 dB [inset Fig. 4.7 (d)].

(iii) The SMF-28 output fiber is not designed to guide light at wavelengths
> 1625 nm, but assuming properties of a SM2000 fiber we estimate

� a coupling efficiency of 0.3 % mainly limited due to the focal length
shift of collimation and coupling lens from 1550 nm to the pump
wavelength, as well as

� transmission losses of 15 dB (fiber length≈ 100 m with 150 dB/km).

(iv) FBG attenuation of 35 dB outside its reflection band.

(v) The detection efficiency of the employed superconducting-nanowire sin-
gle photon detectors (SNSPD, Single Quantum, Netherlands) is ap-
proximately 1 % at 1700 nm, [250].

All effects combined, we obtain an attenuation of > 165 dB, which corresponds
to around 174 cps of detected noise photons stemming from the pump at an
initial power of 500 mW. As SMF-28 fibers in fact have significant bending
losses at the pump wavelength and the detection efficiency of our SNSPDs is
expected to drop abruptly above 1800 nm3, the actual attenuation certainly
exceeds the value estimated here. Therefore, we believe that residual pump
light does not contribute to the observed noise count rate at all.

Fig. 4.7 (a) to (c) show spectra of the converter output in the range of
1100-1700 nm recorded with help of a grating spectrometer (model SP2500A
with an InGaAs camera, Princeton Instruments, USA). In (a) and (c) the
converter was fed with strongly attenuated OPO-light at 905 nm to emulate
single photon input. Corresponding to a pump wavelength of 2162 nm, the
converted light emerges at 1557 nm (see peak 2). We recorded spectrum (a)
without the C-band bandpass filter and observe a rich peak structure over the
entire measured range. The transmission spectrum of the filter (d) reveals that
light outside a window of 1515-1590 nm is attenuated with more than 30 dB.
Accordingly, only the converted light remains for a measurement employing

3Personal communication: J. Qin-Dregely, Single Quantum., email, November 30th
2018
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Figure 4.7. Noise spectra stemming from pump light. The
converter is fed with OPO-input at 905 nm in spectra (a) and (c). Ac-
cordingly, converted light appears at 1557 nm (peak 3). Plots (a) and (b)
reveal a rich noise spectrum, which is largely removed by the BP-filter
in (c). (d) shows a measured transmission spectrum of the BP-filter.

the filter [compare (c)]. Spectrum (b) was recorded without the OPO-input.
Apart from the now missing converted light (peak 2), the measurement qual-
itatively resembles spectrum (a), from which we conclude that all observable
noise results from processes merely including the pump light.

Both parametric fluorescence [102] and Raman scattering [101, 231] are
known effects that create broadband noise around the pump wavelength stem-
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ming from interactions with the nonlinear medium. Parametric fluorescence
naturally only appears on the long wavelength side of the pump. Therefore, it
can be simply avoided by choosing a DFG process with the pump wavelength
being longer than the target wavelength, as has been done here. Raman
scattering on the other hand can shift the pump field to longer wavelengths
(Stokes-shift) as well as to shorter wavelengths (Anti-Stokes-shift). The de-
tailed analysis of Raman scattering in LN waveguides given in [101,231] reveals
that the largest Anti-Stokes-shift corresponds to a peak at a wavenumber of
574 cm−1, while its tail reaches to approximately 800 cm−1. For the shortest
pump wavelength of 2154 nm employed in our experiments (see Sect. 5.1.2)
this leads to Raman scattered pump light at about 1840 nm, being well above
the telecom C-band. In [100], however, it was shown that broadband Anti-
Stokes Raman light extends until at least 1800 cm−1 (≡ 1553 nm) and presum-
ably continues even further, even though its intensity drops to < 1 % compared
to the strongest Raman transition. In conclusion, parametric fluorescence as
well as Raman scattering of the pump can be mostly ruled out as sources
for the noise observed in Fig. 4.7, with the caveat that a minor contribution
might stem from Anti-Stokes light.

Despite being non-phase-matched, we observed a considerable amount
of SHG light of the pump [O (100 nW)] throughout all experiments, here
at a wavelength of 1081 nm. Using a maximum Stokes-shift of 920 cm−1

(=875 cm−1 peak-center plus estimated tail [101]), its Raman light can stretch
until ≈ 1200 nm [see blue shaded area in Fig. 4.7 (a)-(c)], which offers a
possible explanation of this part of the observed noise. A less predictable,
but equally probable source of noise are nonlinear mixing processes between
any existing Raman light or parametric fluorescence and pump light. These
processes can be phase-matched by higher order QPM and result in peaks
appearing at arbitrary positions. For instance peak 1 is located at 1136 nm
according to SFG of pump light and 2394 nm, which in turn is well within the
Stokes-band of the pump. Peak 3 on the other hand resides at 1638 nm, which
might stem from DFG of pump and 932 nm. The latter possibly originates
from Anti-Stokes scattered SHG light of the pump. More generally, all peaks
might result from similar nonlinear processes of second or higher order and
additionally from cascaded effects, such that a conclusive assignment of the
observed noise is virtually impossible.

4.6 Summary

In this chapter we presented the design considerations and performance as-
sessment of the frequency converter employed for the experiments presented
in Chap. 5. This converter moreover serves as a blueprint for the second one
set up in the scope of the subsequent experiments discussed in Chap. 6. Its
main features are summarized in the following highlights-box.
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Principal Components

� Lithium niobate waveguides
on a lithium tantalate sub-
strate serve as nonlinear
medium. The waveguides
are 40 mm long, 10 µm high,
and 10.8 µm or 11.6 µm wide.
Quasi phase-matching poling
periods ranging from 24.3µm
to 24.5 µm support the DFG
process defined by 1/905 nm
- 1/2175 nm = 1/1550 nm
(Sect. 4.1.1).

� As pump light source driv-
ing the DFG process a single
frequency cw-laser based on
Cr2+:ZnS as active medium is
employed. The laser deliv-
ers optical powers exceeding
1.5 W in a tuning range from
2.1µm to about 2.3µm with
a linewidth of around 1 MHz
(Sect. 4.1.2).

Converter Performance

� Parametric fluorescence spec-
tra of input light at 904.7 nm
for 10 out of 18 available
waveguides were investigated.
The telecom C-band light
exhibits two peaks with a
very broad spectral distribu-
tion (40 nm and 75 nm), indi-
cating a flat phase-mismatch
curve with two zero-crossings
in this region. Temperature
tuning reveals that all investi-
gated waveguides are suitable
for conversion into the tele-
com C-band (Sect. 4.2).

� The spectra and tuning curves
could be reconstructed tak-
ing into account material

and waveguide dispersion.
The material dispersion was
modeled based on Sellmeier-
coefficients found in [212] fit-
ted to our data. It was found
that small processing errors
of the waveguide dimensions
in the range of ±0.1 µm have
a severe impact on the result-
ing phase-mismatch (Sect. 4.2
and Appx. B).

� Stimulated down-conversion
was tested with signal and
pump light at 905.1 nm and
2167 nm, leading to converted
telecom light at 1554 nm. A
signal depletion of 91 % at
a pump power of 703 mW
was measured, which is an
upper bound for the inter-
nal conversion efficiency. The
external device efficiency at
this set point was estimated
to be 29 %, which matches
values reported in literature
[95,96,104] (Sect. 4.4).

� The spectral distribution of
pump light induced noise was
investigated in the range from
1.1 µm to 1.7 µm. A broad-
band noise floor as well as a
plethora of distinct peaks were
observed. Parametric fluo-
rescence as noise source can
be ruled out due to process
design. A minor contribu-
tion might stem from Anti-
stokes Raman scattered pump
light. The distinct peaks most
likely stem from non-phase
matched cascaded conversion
processes. A conclusive as-
signment, however, is not pos-
sible (Sect. 4.5).

Chapter 4 - Highlights
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Chapter 5

Quantum Interference between

Down-Converted Photons

from a Single Quantum Dot

Contributions and copyright notice: The experimental re-
sults presented in the scope of this chapter were obtained within
a collaborative project under the joint supervision of Prof. Pe-
ter Michler (Stuttgart University) and Prof. Christoph Becher.
The investigated sample was designed and fabricated by Robert
Roßbach and Michael Jetter at Stuttgart University. The fre-
quency converter was designed, set up, and operated by Benjamin
Kambs (B.K.) with help of Andreas Lenhard and Matthias Bock
(M.B.). The Michelson interferometer was set up by Richard
Nelz. All experiments were performed by B.K., Jan Kettler (J.K.,
Stuttgart University), M.B. and Jonas Nils Becker at Saarland
University. The data were analyzed by B.K. with input from J.K.
and M.B.

Note that the main results presented in this chapter were orig-
inally published in [251] (Copyright © 2016 by Optical Society of
America).

In this chapter we present results obtained from a HOM-experiment be-
tween photons consecutively emitted by a single InAs QD. The experiment was
designed based on the scheme reported in [230] and performed on unconverted
photons in the near infrared (NIR) regime as well as converted photons in the
telecom C-band. The results reveal that quantum frequency down-conversion
does not impair the indistinguishability of single photons and thereby fill a
gap between experiments demonstrating the same for up-converted single pho-
tons [104] as well as down-converted single photons coalescing with an atten-
uated laser field [150].
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In the course of this chapter we first outline the experimental setup used
to excite the QD sample and extract the emitted photons. After assessing
the conversion efficiency, we offer a detailed analysis of all relevant spectral
and temporal properties of the selected QD with both unconverted and con-
verted photons. Eventually, we describe the HOM-experiment and discuss the
achieved two-photon interference visibilities.

5.1 Single Photon Generation

The TPI experiments presented here rely on a pulsed single photon input to
enable synchronized arrival of exactly two photons at the HOM beam splitter.
In the following we describe the QD sample and the experimental methods
used to obtain single photons at 903.6 nm as well as at the converted target
wavelength of 1557 nm. To assess the brightness of the photon source, we
investigate the achievable photon flux in both wavelength regimes. The ex-
perimental verification of the single photon nature of the emitted light will be
provided as part of the subsequent section on spectral and temporal proper-
ties.

5.1.1 Confocal Microscope and Quantum Dot Selection

The investigated single photons stem from a sample containing InAs quan-
tum dots residing in a GaAs matrix, designed and fabricated using a MOVPE
process at Stuttgart university (sample identifier M5059). The sample is de-
scribed in detail in [252,253]. It exhibits emission in the range from 885 nm to
910 nm, covering the design wavelength of the frequency converter of 905 nm
(compare Sect. 4.1). To improve the directionality of the emitted fluores-
cence, the sample is terminated by GaAs/AlAs DBR mirrors on bottom and
top, which act as a low finesse planar cavity. The layer containing quantum
dots resides about 700 nm under the surface.

The principal components of the setup used to excite the QDs and collect
their fluorescence are illustrated in Fig. 5.1 (a). The sample is mounted
inside a cryostat and cooled to a temperature of T=10 K in order to decrease
lattice vibrations and thus minimize line broadening mechanisms, for instance
caused by pure dephasing or emission into phonon sidebands [126, 179, 180].
For optical excitation we use a pulsed Ti:Sa laser (model Tsunami, Spectra-
Physics, USA) set to an emission wavelength of 884 nm (red beam path),
resonantly creating excitons in the p-shell of the QD. The pulse separation of
the laser emission was measured to be Trep = 12.47 ns, which closely matches
its nominal repetition rate of 80 MHz. Using an intensity autocorrelator the
pulse width was measured to be 4.3 ps, which implies an FWHM pulse duration
of 3.0 ps. The Mach-Zehnder interferometer (MZI) placed in the excitation
beam path is used to obtain double pulses separated by approximately 4 ns.
It is a vital part of the subsequent HOM experiments and will be addressed
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Figure 5.1. Setup for quantum dot excitation and fluorescence
collection. (a) The InAs/GaAs sample is placed within a cryostat at a
temperature of T=10 K. For optical excitation a pulsed Ti:Sa laser is em-
ployed at an emission wavelength of 884 nm (red line, p-shell excitation).
The Mach-Zehnder interferometer is used to generate double pulses with
a spacing of 4 ns within each repetition cycle of the excitation laser. A
microscope objective (100× magnification, NA = 0.8) is used to focus
the excitation light onto the sample and collect the emitted fluorescence
at 904 nm (violet line). The fluorescence is then spectrally filtered by
an etalon, longpass- (LP), as well as a bandpass-filter (BP) before being
coupled to a single mode fiber via an aspheric lens. Microscope objective,
aspheric lens, and single mode fiber constitute a confocal microscope for
spatial quantum dot selection. (b) Fluorescence map of an area of 50 ×
50 µm2 (left) around the investigated quantum dot. On the right a zoom
into an area of 10 × 10 µm2 can be seen. The blue transparent disc illus-
trates the excitation spot with a 1/e2-diameter of approximately 1µm.
(c) Spectrum of the selected QD with a center wavelength of 903.6 nm.
Note that the spectrum shows a very narrow region around the emission
line concealing surrounding spectral features. For a more detailed spec-
trum cf. Fig. 5.5. Adapted with permission from [251], Optical Society
of America.
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5. Quantum Interference with Photons from a Single Quantum Dot

in Sect. 5.3.1. A small fraction of the excitation light is reflected from a
beam sampler towards a microscope objective (100× magnification, NA =
0.8, model LMPLFLN, Olympus, Japan), which focuses the excitation light
onto the sample and collects the emitted fluorescence around 905 nm (violet
beam path). The collimated emission is then transmitted through the beam
sampler and spectrally separated from residual excitation light, undesired QD
transition lines, and broadband background by an etalon (finesse F ≈ 25, free
spectral range 341 GHz), a 900 nm longpass filter (LP), and a 905 nm bandpass
filter (BP, joint transmission of filter components ≈ 42 %). Eventually, the
fluorescence light is coupled via an aspheric lens into a single mode fiber and
forwarded to subsequent experiments.

The configuration of microscope objective, aspheric lens, and optical fiber
constitutes a confocal microscope, imaging fluorescence collected from only a
small segment of the sample surface onto the core of the optical fiber. Although
the focal spot of the excitation laser has a diameter of around dfoc = 1 µm,
the fluorescence stems from a larger confocal area with an estimated diameter
of dcon ≈ 2 µm [compare Fig. 5.1 (c)]. Theoretically, it is dcon ≤ dfoc, but
this assumes an ideally aligned confocal microscope as well as a medium with
a homogeneous refractive index profile. In particular the latter is not given
due to the air-semiconductor interface as well as the DBR-cavity structure
of the sample. To obtain an overall fluorescence map, the sample is scanned
perpendicular to the propagation direction of light, while the collected photons
are detected and pointwise integrated for 50 ms with help of a silicon avalanche
photodiode (Si-APD). Fig. 5.1 (b) shows a representative scan over an area
of 50×50 µm2 with a step size of 0.5 µm. We count 260 QDs in this region,
corresponding to a density of 0.1 QDs per µm2, or an average of 0.08 QDs
per excitation spot (compare blue circle). Note that the fluorescence map was
obtained using p-shell excitation at a fixed wavelength, i.e. not all QDs were
optically addressed. Accordingly, the actual QD density is likely to be higher.
On the right, a zoom into an area of 10×10 µm2 is shown. All experiments
discussed in the following were performed using photons emitted by the QD
situated at its center. The QD emits at a central wavelength of 903.6 nm [Fig.
5.1 (c), cf. Sect. 5.2.3 for a detailed analysis of the spectrum], being suitable
for down-conversion. A detection rate of 38,800 counts per second (cps) could
be achieved at an excitation power of 12 µW. Note that this value was obtained
using double pulse excitation, i.e. at an effective repetition rate of 160 MHz.
Considering the quantum efficiency of 33 % of the Si-APD, this corresponds
to a flux of 117,600 photons per second in the output fiber. Additionally
accounting for the spectral filter and beam sampler transmission of 42 % and
90 %1, respectively, as well as an estimated fiber coupling efficiency of 80 %,

1The stated transmission is calculated using Fresnel equations for unpolarized light im-
pinging on the beam sampler (NBK7, n =1.51 at 904 nm) with an angle of incidence of
45 ◦.
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5.1. Single Photon Generation

we find that with a probability of 0.24 % each excitation pulse yields a photon
collected by the microscope objective. This value is more than one order of
magnitude below typical extraction efficiencies of photons from GaAs samples
terminated by DBR mirrors [171]. It includes, however, further limitations
such as a non-ideal excitation efficiency and radiative quantum yield, which
were not quantified in scope of the present experiment.

5.1.2 Frequency Converter Performance

In order to transduce the fluorescence photons from their initial wavelength
at 903.6 nm to the telecom C-band, we use the output fiber of the confocal
microscope as input of the frequency converter detailed in Chap. 4. Etalon,
longpass- and bandpass-filter in the NIR beam path could be removed through-
out all conversion experiments, as the narrow acceptance bandwidth of the
PPLN waveguide along with both telecom C-band filters described in Sect. 4.1
provide sufficient suppression of undesired background photons entering the
converter (details provided in Sect. 5.2.3). Accordingly, the input photon flux
is increased to Φin =280,000 photons per second [compare Fig. 5.2 (a)]. The
unconverted single photons are coupled to WG1 in group 1 with the WG chip
set to a temperature of 41 ◦C. The pump laser of the frequency converter was
operated at an output wavelength of 2154 nm, which leads to a target wave-
length of 1557 nm [Fig. 5.2 (b)], matching the filter window of the fiber Bragg
grating. Starting from the converter output, the telecom photons propagate
through ≈90 m of optical fiber (SMF-28, 0.2 dB/km at 1550 nm) with a trans-
mission of Ttel =99.6 % and are detected by our SNSPDs (quantum efficiency
ηSNSPD =10 % at 1550 nm, [250]).

Fig. 5.2 (c) shows a measurement of the telecom photon count rate νdet

(right ordinate) as a function of the pump power PP present in the WG. The
flux of telecom photons available at the converter output is given by

Φout =
νdet − νdc

Ttel · ηSNSPD
(5.1)

with the detection dark count rate being νdc=350 cps. Knowing Φout, the
external device efficiency can be obtained via ηext = Φout/Φin, which is plotted
along the left ordinate. The red curve constitutes a fit of model Eq. (2.36)
to the measured data and reveals a maximum external device efficiency of
ηmax

ext =(30.9± 0.5) % at a pump power of 295 mW. At this set point we achieve
a detection count rate of 8,980 cps, respectively a flux of Φout=86,700 telecom
photons per second. The achieved external device efficiency slightly exceeds
the value estimated in Sect. 4.4. This deviation most likely stems from the
SNSPD detection efficiency, which is not known for certain. Other possible
reasons include improved coupling efficiencies to WG as well as output fiber of
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Figure 5.2. External device efficiency for the down-conversion
during single quantum-dot experiments. (a) 280,000 photons/s
at 903.6 nm enter the frequency converter (FC), of which 86,700 pho-
tons/s are down-converted to 1557 nm and available at the converter
output. The detection count rate is reduced due to limited fiber trans-
mission (99.6 %) and detection efficiency (10 %). (b) Spectrum of con-
verted telecom C-band photons centered around 1557 nm, taken by a
grating spectrometer with InGaAs camera. Note that the linewidth is
limited by the spectrometer resolution. (c) A maximum external device
efficiency of ηmax

ext =(30.9± 0.5) % could be achieved at a pump power
of 295 mW. The shown error bars were calculated as twofold standard
error of the measured count rates.

the converter, or a higher internal conversion efficiency of the WG employed
for this experiment2.

Coupling only the pump, but no single photons to the WG at the cho-
sen operating point, the SNSPD detection count rate equals its dark count
level. This suggests that none of the noise peaks or broadband noise dis-
cussed in Sect. 4.5 considerably leak into the filter window. However, this
conclusion should be taken with a grain of salt, as minor noise contributions
(νnoise . 0.1 × νdc) require a long integration of the count rates to be de-
tectable, which was not performed here. A different conceivable noise source is
the QD excitation light centered at 884 nm. Its direct down-conversion leads
to 1499 nm, which is outside the spectral filter windows. Possible two-step
processes such as Raman-scattering or parametric fluorescence transducing

2In this experiment we employed WG1 in group 1, while in Sect. 4.4 we assessed the
device efficiency of WG1 in group 5.
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5.2. Spectral and Temporal Properties

photons from 884 nm to 904 nm and subsequent down-conversion potentially
create noise at the target wavelength. As these noise photons originate from
the pulsed excitation light, they are temporally correlated with the emitted
single photons. In Sect. 5.2.4 we conclude, however, that this type of corre-
lated noise can be completely attributed to background fluorescence emitted
by the QD sample. Accordingly, the excitation laser can be ruled out as noise
source.

5.2 Spectral and Temporal Properties

For a thorough analysis of the HOM experiments a profound knowledge of the
single photons’ properties is essential. In Sect. 3.2 we saw that the mutual
indistinguishability of two photons is mainly determined by their radiative
lifetimes and mechanisms that broaden the emission lines beyond the Fourier
limit. In the scope of this section, these are quantified both for converted
and unconverted photons by time-correlated single photon counting (TCSPC)
and a measurement of the degree of first-order coherence using Michelson
interferometry. Furthermore we estimate the amount of uncorrelated and
correlated background photons superimposed with the single photon field by
an analysis of their spectra as well as a measurement of the degree of second-
order coherence. For all measurements presented in the following, one arm of
the MZI is blocked, i.e. the QD is excited at a repetition rate of 80 MHz.

5.2.1 Radiative Lifetime

To obtain the radiative lifetime we employ TCSPC, being a widespread stan-
dard method for that purpose [254–256]. Both clock-signal of excitation laser
and output pulse of the single photon detector are registered by an electronic
correlation device (model PicoHarp 300, PicoQuant,Germany), which then
computes the time lag τ between their arrival with a resolution of 4 ps. The
time lag is repeatedly recorded throughout multiple excitation cycles and even-
tually plotted as a histogram, which can be seen as black line in Fig. 5.3 (a)
and (b) for unconverted and converted photons, respectively. The data show
the anticipated one-sided exponential decay corresponding to the idealized
model of a two-level quantum emitter and is described by

f (τ) = N0 ·H (τ − τ0) exp

(
−τ − τ0

τr

)
. (5.2)

Here N0 is the amplitude, τr the desired radiative lifetime, and τ0 an offset
stemming from differing travel times of start- and stop-signal. The Heaviside-
function H (τ) accounts for the fact that photons can be emitted only after the
excitation step. From the data it is evident, however, that the instantaneous
rise of f (τ) at τ0 caused by the Heaviside-function is blurred, in particular

83



5. Quantum Interference with Photons from a Single Quantum Dot

904 nm
τr =(970± 1) ps

0 2 4 6 8 10
0

2

4

6

8

10

Time lag τ [ns]

D
et
ec
te
d
ev
en
ts

[×
10

3
] 1557 nm

τr =(887± 3) ps

2 3 4 5 6 7
0

1

2

3

4

Time lag τ [ns]

D
et
ec
te
d
ev
en
ts

[×
10

3
]

(a) (b)

Figure 5.3. Measurement of the radiative lifetime of the quan-
tum dot. TCSPC histogram data are shown as black curves for (a)
unconverted and (b) converted photons. The red and blue shaded ar-
eas constitute fits revealing radiative lifetimes of τr =(970± 1) ps and
τr =(887± 3) ps, respectively.

for Fig. 5.3 (a). This is caused by an uncertainty in the response-time of the
overall detection system and typically referred to as jitter. Here, we model
the detector response as a normal distribution g (τ) assuming an FWHM of
τjit=300 ps for the Si-APD as well as τjit=50 ps for the SNSPD. The final
model function is then obtained by a convolution of Eq. (5.2) with g (τ) and
reads

h (τ) = N0 exp

(
−τ − τ0

τr

)
·
[

1 + erf

(
τ − τ0√

2σjit

− σjit√
2τr

)]
, (5.3)

where it is τjit = 2
√

2 ln 2σjit. Note that N0 is modified compared to Eq. (5.2),
as all constant prefactors appearing during the convolution were merged into
it. The red and blue shaded curves in Fig. 5.3 (a) and (b) constitute a
fit of model (5.3) to the data, where τjit was fixed, but all other param-
eters were treated as free. We find radiative lifetimes of τr =(970± 1) ps
and τr =(887± 3) ps for unconverted and converted photons, respectively.
Both values are in good agreement with typical lifetimes measured for InAs
QDs [161], but differ with respect to each other by almost 10 %. This might
stem from an inaccurate specification of the detector jitter. Including the
jitter as fit parameter, however, does not significantly change the resulting
lifetimes. Apart from a measurement-related origin, it is certainly also possi-
ble that the temporal distribution of detected photons indeed changed between
both measurements. On one hand, the exciton recombination rate depends
on the excitation power [162], which was not explicitly kept constant. On the
other hand, the unconverted photon field contains more background photons
from spectrally distinct transitions (Sect. 5.2.3), which might exhibit different
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lifetimes. As neither has been independently measured, however, the actual
reason cannot be identified beyond any doubt.

5.2.2 Coherence Time

From the TCSPC measurements, the lifetime limited coherence time can be
derived for both wavelength regimes as τcoh = 2τr=1,940 ps and 1,774 ps, cor-
responding to natural linewidths of 1/(2πτr) =164 MHz and 179 MHz. The
emission line is homogeneously and inhomogeneously broadened beyond this
limit, quantified by the pure dephasing rate Γ∗ and FWHM σ′ of the un-
derlying normal distribution, respectively. As discussed in Sect. 3.2, these
linewidth contributions are essential in assessing the photon indistinguishabil-
ity. In the following, we present interferometric measurements of the first-order
coherence function. According to Eq. (2.14), both Γ∗ and σ′ can be extracted
from its temporal shape3.

Fig. 5.4 (a) illustrates the Michelson interferometer (MI) employed for the
measurement. Split up at a non-polarizing BS, the light propagates in two
different arms, is reflected at retroreflectors (RR), and eventually recombined.
The retroreflector RR1 is mounted on a translation stage in order to change
the time delay τmi between both interferometer arms. For any fixed τmi, the
piezoelectric actuator attached to RR2 is repeatedly scanned over a given
voltage range, thereby changing the relative phase ∆Φ between both interfer-
ometer arms. This phase determines the probability with which the photons
leave the BS towards detector or beam block, appearing as interference fringes
in the detected count rate νdet according to

νdet = νdc + ν̄ · (1 + V cos ∆Φ) , (5.4)

where νdc is the detector dark count rate, ν̄ the average count rate, and V the
visibility of the interference pattern. Fig. 5.4 (b) and (c) show representative
measurements in both wavelength regimes and for each at a small and a large
time delay. The solid curves are fits of the measured data to Eq. (5.4). All
visibilities extracted from these fits are plotted against τmi in Fig. 5.4 (d)
and (e). Their error bars correspond to the standard deviation of a set of
visibilities, which were obtained from several fits in different regions of the
measurements. Note that the shown values are normalized to a maximum
visibility of one in order to compensate limitations caused by the interferom-
eter, such as a polarization mismatch between both interferometer arms or a
non-ideal spatial mode overlap at the BS. The observed decrease in visibility
for increasing τmi occurs at a high rate compared to the Fourier-limited case
(compare inset). This is on one hand symptomatic of the elevated probability
of phase jumps occurring between distant points of a single wave train. On

3Note that Eq. (2.14) employs the standard deviation σ instead of the corresponding
FWHM σ′ to account for inhomogeneous line broadening.
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Figure 5.4. Measurement of coherence time. (a) Illustration of
the Michelson-interferometer used for the measurement. The input light
is split up at a beam splitter and in each arm reflected by retroreflec-
tors (RR). RR1 is mounted on a translation stage in order to vary the
delay τmi introduced by the interferometer. The piezoelectric actuator
attached to RR2 is used to scan the relative phase ∆Φ of both arms.
(b) and (c) show measured interference fringes at different τmi for un-
converted and converted photons, respectively (data: black circles, fit:
solid curve). The obtained interference visibilities are plotted against
τmi in (d) and (e). The red solid curve shown in (d) is a fitted coherence
function

∣∣g(1) (τmi)
∣∣ revealing a coherence time of τcoh =(87± 5) ps. At

the inset a comparison of the fitted fringe visibility (red) to the Fourier
limit (black dashed) can be seen. In (e) the data are accompanied by a
plot of

∣∣g(1) (τmi)
∣∣ (blue curve) using the parameters found from the fit

in (d).
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the other hand it also indicates frequency jumps between successive photons,
as the interference fringes were integrated over tens of milliseconds, i.e. over
O
(
106
)

excitation cycles. In other words, the visibility bears the signature of
both pure dephasing and spectral diffusion. With Eq. (2.14) we presented an
expression for the first order coherence function depending on pure dephasing
rate Γ∗ and inhomogeneous linewidth σ′. Its absolute value equals the fringe
visibility V (τmi) (see e.g. [257, Chapter 2]), i.e. it is an appropriate model
function for the presented data. In our case, however, it is not possible to
simultaneously fit both Γ∗ and σ′, as the inhomogeneous broadening exceeds
the homogeneous broadening by two orders of magnitude, thereby mostly con-
cealing the impact of Γ∗. Instead we estimate the dephasing rate using the
approach presented in the supplement of [192]. Therein, Γ∗ is treated propor-
tional to the square of the phonon number within the scope of the Markovian
approximation [258], while the phonon number follows Bose-Einstein statis-
tics. Assuming the model parameters for InAs QDs reported in [192] and
the sample temperature of T=10 K, we obtain Γ∗=47 MHz. Eventually, this
enables us to fit the visibility shown in Fig. 5.4 (d) using the known radiative
lifetime and pure dephasing rate as fixed parameters (see red curve). From
the fit we extract σ′ =(5.9± 0.4) GHz corresponding to a coherence time of
τcoh =(87± 5) ps [cf. Eq. (2.15)]. The inset of Fig. 5.4 (d) compares the fitted
fringe visibility to the Fourier limited case, visualizing that the coherence of
the emitted photons is severely degraded, possibly indicating a very strong
coupling of the QD to its electrostatic environment or non-ideal operating
conditions. Also it has been observed that the coherence is further reduced
when both fine structure components of the emission line are collected [160],
which is the case in the present experiment. The blue curve shown in Fig. 5.4
(e) is a plot of the fit obtained for (d). It is in excellent agreement with the
data obtained from converted photons, thereby confirming the conservation of
the degree of first-order coherence during the down-conversion step reported
in [95].

5.2.3 Spectral Background Analysis

In the upcoming section we present correlation measurements to test the pho-
ton source under investigation for antibunching. We find, however, a non-
negligible amount of simultaneous emission of two or more photons. In prepa-
ration for that, we here investigate the measured spectra in order to quantify
the amount of background photons stemming from the QD sample.

We start from the spectrum of unconverted photons, shown in Fig. 5.5
(a) as red curve. The spectrum was recorded without the etalon and reveals
a plethora of emission peaks besides the main line, in particular in the region
from 906 to 910 nm. Additionally, the transmission spectrum of the etalon
is shown in gray, which was calculated based on equations presented in [259]
and using the specified coating reflectivity of 90 % and thickness of 300 µm
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Figure 5.5. Spectra of unconverted and converted photons. (a)
Measured spectrum of unconverted photons without etalon (red) and cal-
culated transmission spectrum of etalon (gray). (b) Magnification of the
spectrum shown in (a) (blue) along with the spectral, relative conversion
efficiency (black). (c) Measured spectrum with etalon (red) compared
to product of both curves in (a) (black). (d) Measured spectrum of con-
verted photons (blue) compared to the product of both curves shown
in (b) (black). Integration within the bandpass filter window (Fiber-
Bragg-grating window) yields a signal-to-background ratio of SBR=11.5
(17.2). Adapted with permission from [251], Optical Society of America.

as well as the refractive index of fused silica of 1.452 at 904 nm [260]. The
measured spectrum of unconverted photons including etalon filtering and after
subtracting spectrometer dark counts is depicted in Fig. 5.5 (c) as red curve.
Although some peak amplitudes do not fully match, the filtered spectrum is
qualitatively well reproduced by the multiplication of the unfiltered spectrum
and etalon transmission taken from (a), here shown in black. The gray dashed
lines indicate the transmission window of the bandpass filter. Integrating
the spectrum in this region yields a measure of the joint QD emission and
background intensity. Additionally considering the area under the isolated
QD emission line, we find a signal-to-background ratio (SBR) of 11.5.

To obtain a similar estimation for converted photons, we first consider the
narrow spectral region around the QD emission line for unconverted and unfil-
tered photons shown in Fig. 5.5 (b) (blue). The spectrum is accompanied by a
curve illustrating the relative conversion efficiency (black), which was obtained
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for WG1 in group 1 at a WG temperature of 41 ◦C using the same method and
parameters discussed in Sect. 4.2. However, in contrast to the simulation of
SPDC spectra, we here fix the target wavelength of 1557 nm and vary the NIR
input wavelength in the region of interest instead. Multiplying both curves
in (b) and shifting the wavelength to the telecom C-band yields the spectral
distribution of converted photons shown in Fig. 5.5 (d) (black), agreeing well
with the measured spectrum (blue). Integration within the bounds set by
the FBG now yields an SBR of 17.2, considerably improved compared to the
unconverted photons. It is worth noting that this does not stem from the
central linewidth of the filters - both FBG and conversion efficiency exhibit
an FWHM of around 120 GHz, while the etalon linewidth is as low as 14 GHz.
The stronger background at the NIR regime is rather a consequence of vari-
ous emission lines leaking through neighboring transmission peaks as can be
seen in Fig. 5.5 (c). These peaks, however, are well outside the acceptance
bandwidth of the converter and therefore efficiently suppressed.

5.2.4 Antibunching

The key attribute of an ideal on-demand single photon source resides in its
photon statistics. In contrast to light sources, whose emission can be modeled
by classical electromagnetic fields, a single quantum emitter cannot emit more
than one photon at a time [255], which is often referred to as antibunching.
An established method to verify antibunching is to measure the intensity auto-
correlation function g(2) (τ) of the light source using a Hanbury-Brown-Twiss
(HBT) interferometer [261,262]. A theoretical treatment of antibunched light
fields reveals that g(2) (τ) < 1 for τ → 0, assuming g(2) (τ) to be normalized
[255, 263]. For a Fock-state |n〉 with mean photon number n one generally
finds g(2) (0) = 1− 1/n, which motivates the frequently used, but not strictly
unambiguous, criterion for single photon emission g(2) (0) < 0.5.

In the following we show measurements demonstrating antibunched pho-
ton emission from the QD under investigation. The HBT interferometer is
built using a bulk BS and two free-space Si-APDs (quantum efficiency 30 %,
detection jitter 300 ps, dark count rate 300 Hz) in case of unconverted pho-
tons. For converted photons, we use a fiber-based BS and two SNSPDs instead
(quantum efficiency 10 %, detection jitter 50 ps, dark count rate 350 Hz). The
respectively measured g(2) (τ) functions are shown in Fig. 5.6 (a) and (b)
(black circles). Their most prominent feature is the repetitive pattern of
peaks every 12.47 ns stemming from the pulsed excitation. Each peak shows
a double-sided exponential decay, which corresponds to the auto-correlation
of the radiative decay including detector jitter described by Eq. (5.3). All
coincidences within peaks not centered around τ = 0 originate from photons
of distinct excitation cycles, while simultaneously emitted photons produce
coincidences at τ = 0 according to our preceding considerations. To extract a
measure for the antibunching value we evaluate
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Figure 5.6. Measurement of the intensity auto-correlation
function. The coincidence measurements reveal detector dark count
corrected antibunching values of g

(2)
nir (0)=0.153 and g

(2)
tel (0)=0.117 for

unconverted and converted photons, respectively. The shaded areas cor-
respond to Monte-Carlo simulations based on all known emitter param-
eters. Adapted with permission from [251], Optical Society of America.

Table 5.1. Summary of antibunching values. All obtained values
for g(2) (0) are listed, i.e. for unconverted and converted photons, from
measurement and simulation, as well as with and without detector dark
count correction. Note that the SBR limit closely reproduces the dark
count corrected values. Adapted with permission from [251], Optical
Society of America.

904 nm 1557 nm

SBR limit 0.154 0.107

Measured
w/ dark counts 0.171 0.290
w/o dark counts 0.153 0.117

Simulated
w/ dark counts 0.172 0.278
w/o dark counts 0.154 0.109

g(2) (0) =
A0

C
with C =

1

2N

N∑

i=−N
i 6=0

Ai, (5.5)

where Ai is the integrated total number of coincidences under the ith peak.
We choose N = 16, which corresponds to an average over a region of ±200 ns
around the central peak. For the raw data, this leads to g

(2)

nir (0)=0.171 and

g
(2)

tel (0)=0.290 with ’nir’ and ’tel’ referring to values obtained for unconverted
and converted photons, respectively (see also Tab. 5.1 for a summary of all
antibunching values).

Even though both values are below 0.5 and therefore point towards single
photon emission, there is a considerable amount of coincidences around τ = 0.

90



5.2. Spectral and Temporal Properties

Table 5.2. Noise floor estimation. List of all relevant parameters
to evaluate the number of coincidences caused by detector dark counts
per bin Ndc for both wavelength regimes according to Eq. (5.6).

νdet νdc T ∆τ Ndc

[kHz] [Hz] [s] [ps] [1]

904 nm 28.29 300 191 200 0.652
1557 nm 3.73 350 1580 400 1.73

One major source are detector dark counts that occur temporally uncorrelated
to photon detection events and therefore cause a constant noise floor. As
this contribution is only related to the detection system, but not the single
photon field, it is reasonable to subtract it from the raw data. The number of
coincidences per bin Ndc caused by detector noise is given by (derivation in
Appx. C, see also supplement of [141])

Ndc = (2νdet − νdc) · νdcT∆τ, (5.6)

where νdet is the average count rate per detector, T the measurement duration,
and ∆τ the bin width of the histogram. Also, we assumed that both detectors
exhibit equal dark count rates νdc, which is approximately valid. Based on the
known parameters listed in Tab. 5.2 we obtain Ndc,nir=0.652 and Ndc,tel=1.73,

which leads to dark count corrected antibunching values of g
(2)

nir (0)=0.153 and

g
(2)

tel (0)=0.117.
The remaining deviation from zero stems from the area under the peak

centered at τ=0 and therefore indicates a minor contribution of multi-photon
emission. It is possible to relate the SBRs found in Sect. 5.2.3 to an expected
g(2) (0) value via [264]

g(2) (0) = 1−
(

SBR

SBR + 1

)2

, (5.7)

which yields g
(2)

nir (0)=0.154 and g
(2)

tel (0)=0.107 being in excellent agreement
with the dark count corrected values. This finding suggests that the observed
multi-photon emission is not caused by successive emission events from the
transition line at 903.6 nm during a single excitation cycle, but rather by
spectrally distinct transitions [compare Fig. 5.5 (a)]. Accordingly, we conclude
that more rigorous spectral filtering will help to significantly improve the
antibunching of the single photon source at hand.

To independently verify our analysis we perform Monte Carlo simulations,
which reproduce the measured g(2)-functions (see Appx. D for corresponding
MatLab-code). The simulations emulate a large number of excitation cycles,
each of which containing a single photon released from the QD. During each
cycle a set of decisions is made based on appropriately distributed random
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5. Quantum Interference with Photons from a Single Quantum Dot

numbers yielding click lists for both detectors. These decisions determine
(i) the number of background photons nbg and detector dark counts ndc per
excitation cycle, (ii) the path each photon takes at the BS of the HBT inter-
ferometer, (iii) the detection time of each photon relative to the respective
excitation pulse including detector jitter, as well as (iv) the recording time of
dark counts. As the number of dark counts is random, we use a Poissonian
distribution, whose mean value 〈ndc〉 is given by

〈ndc〉 =
1

SNR + 1
with SNR =

νdet − νdc

νdc
(5.8)

in order to comply with the observed dark count rates. The necessary signal-
to-noise ratios (SNR) can be calculated based on the values stated in Tab. 5.2,
which yields SNRnir=93 and SNRtel=9.7. The physical process leading to
background photon emission is not investigated for our sample. Therefore, we
model it as a random process as well using the known SBR instead of SNR in
Eq. (5.8) to obtain 〈nbg〉. While the recording time of detector dark counts
is uniformly distributed within each excitation cycle, the detection time tdet

of QD and background photons must follow the expected exponential decay.
This can be achieved applying the method of inverse transform sampling [265],
for which the inverse of the cumulative distribution function of Eq. (5.2)

tdet = τr · ln
1

1− x (5.9)

has to be evaluated. Here, x ∈ [0, 1] is a uniformly distributed random number
and τr equals the measured value for both QD and background photons. Even-
tually, we add a detector jitter to tdet following a Gaussian distribution with
an FWHM as specified by the manufacturer. Although reflection or trans-
mission at the BS happens prior to detection in experiment, we include it as
a final randomized decision, which writes tdet with equal probability to one
of the click-lists. The desired intensity auto-correlation can now be obtained
from a correlation of the click-lists.

The results of the simulations are depicted as shaded curves in Fig. 5.6
(a) and (b). As all necessary input parameters were known from independent
measurements, no additional fit of simulation to measurement was necessary
except for a normalization. From the simulation we extract raw antibunch-
ing values of g

(2)

nir (0)=0.172 and g
(2)

tel (0)=0.278, while the dark count correction

now yields g
(2)

nir (0)=0.154 and g
(2)

tel (0)=0.109. These values are in perfect agree-
ment with measurement and calculated SBR-limit, supporting our preceding
analysis. While the spread of g(2) (0)-values for unconverted photons is as low
as 0.001, we find that the measured value differs by 0.012 from the simulated
one for converted photons. This is a direct consequence, however, from the
lower SNR encountered at the telecom regime, which was not compensated
by a higher integration time, thereby causing a larger statistical error.
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5.3 Preservation of Indistinguishability during
Quantum Frequency Conversion

We conclude this chapter by presenting our results from HOM experiments
performed on consecutively emitted single photons. The observed TPI visibili-
ties are consistently explained using all available setup and emitter parameters,
allowing the conclusion that QFDC does not alter the indistinguishability of
single photons. Before showing the experimental results and their analysis,
we will briefly review the underlying idea of the experiment.

5.3.1 Experimental Concept

For our HOM experiments we adapt the scheme presented in [230], which is
schematically shown in Fig. 5.7 (a). In both excitation and emission beam
path a Mach-Zehnder interferometer (MZI) is introduced, exhibiting equal de-
lays τmzi. The excitation pulses (red) are split up at the MZI entrance and
reunited at its exit, leading to a temporal pattern of double pulses separated
by τmzi that repeats every Trep=12.47 ns. As will be detailed in the upcom-
ing sections, we here employ τmzi=3.98 ns and 8.03 ns for unconverted and
converted photons, respectively. The subsequently emitted single fluorescence
photons (violet) reveal the same pattern. For a HOM experiment, we need
two photons simultaneously arriving at one BS via distinct input ports, which
is realized by the second MZI. Consider two photons emitted with a delay of
τmzi. If the early photon took the long path and the late photon the short path
at BS1, they will meet at BS2. Whether or not both photons coalesce with a
non-classical probability >0.5 can be tested once more recording and correlat-
ing the detection events at both BS outputs yielding an intensity correlation
function g(2) (τ). In case of ideal indistinguishability no correlated events will
appear around τ = 0. For all considerations regarding the temporal pattern of
g(2) (τ) in the remainder of this section, we assume the photons to be entirely
distinguishable.

Besides the central peak, the resulting intensity correlation has a rich struc-
ture of neighboring peaks, which requires some further clarification. First,
consider two photons that were emitted subsequent to the double pulse exci-
tation of a single excitation cycle. As each photon can take two different paths
at BS1, there are four possible outcomes, all of which illustrated in Fig. 5.7
(b). The left column therein shows where early and late photon go after BS1
(dashed and dotted beam path, resp.). If both photons are either transmitted
or reflected (first and third case), their relative delay does not change during
propagation in the MZI. Accordingly, a coincidence appears at a time bin with
τ = ±τmzi, corresponding to the blue and red bar depicted on the right hand
side. The sign of τ depends on whether the early (positive sign) or late photon
(negative sign) leaves BS2 towards the start-detector 2 as illustrated in the
middle column. Similar considerations show that we obtain coincidences at
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Figure 5.7. Experimental concept of two-photon interference
with consecutively emitted single photons. (a) A Mach-Zehnder
interferometer (MZI) in the excitation beam path (red) creates doubles
pulses separated by τmzi. A second MZI compensates the delay between
consecutively emitted single photons (violet). (b) Depending on the
path the two single photons take at the entrance and exit of the second
MZI, coincidences will appear in 5 different time slots of the resulting
histogram. Only in case the early photon takes the long path and the late
photon the short path both will simultaneously arrive at BS2 making
coalescence possible.
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Figure 5.8. Temporal pattern of intensity correlation in HOM
experiment. (a) Idealized example with well separated peaks corre-
sponding to τmzi=0.15·Trep and τr=0.02·Trep. The peaks of the central
cluster have relative intensities of 1:2:2:2:1, while all neighboring ones ex-
hibit 1:4:6:4:1. We identify each peak by a tuple (n, l), meaning the peak
originates from the cluster centered around n · Trep and is at a relative
position of l ·τmzi. (b) and (c) show the patterns obtained in experiment
with unconverted and converted photons, i.e. using (b) τmzi=0.32·Trep

and τr=0.08·Trep as well as (c) τmzi=0.64·Trep and τr=0.07·Trep. Note
the change in the central-to-adjacent-peak-ratio (CAPR) as a result of
different overlapping peaks (compare notes on top of plot). Also, all cen-
tral peaks are plotted with an intensity of ’2’, corresponding to entirely
distinguishable photons.
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τ = 0 and τ = ±2τmzi when both photons part ways at BS1 with the early
one taking the long and short path, respectively (second and forth case). The
former case leads to the previously discussed and desired initial situation of a
HOM experiment. Altogether we obtain a cluster of 5 coincidence peaks with
relative intensities of 1:2:2:2:1 centered at (-2:-1:0:1:2)τmzi.

Fig. 5.8 (a) shows the full intensity correlation for τmzi=0.15·Trep incor-
porating the temporal shape of each peak corresponding to τr=0.02·Trep. In
this example all peaks are well separated making it easy to understand their
origin and all relative intensities. Besides the central cluster we just discussed,
further clusters can be seen centered around ±Trep, ±2 ·Trep, etc. These stem
from coincidences between photons emitted during distinct excitation cycles
and exhibit relative intensities of 1:4:6:4:1. Besides all contributions consid-
ered in the preceding paragraph, additional coincidences arise, as both photons
might impinge on the interferometer either in the early or late time bin of the
respective excitation cycle. More specifically, two early or two late photons
both being reflected or transmitted at BS1 lead to 8 more coincidences - each
4 at τ = ±Trep. Another 8 coincidences appear for one photon being reflected
and one transmitted at BS1, which are equally distributed to the 4 distinct
time bins at τ = +Trep ± τmzi and τ = −Trep ∓ τmzi. For ideal single photons,
these cases are impossible within a single excitation cycle and therefore do not
appear in the central cluster.

Eventually, we introduce the tuple (n, l) in Fig. 5.8 (a) used to identify
each peak, where n refers to the cluster and l to its relative position, i.e. the
peak is centered at τn,l = n·Trep+l ·τmzi. Fig. 5.8 (b) and (c) show the g(2) (τ)-
functions we expect to measure in the present experiment for unconverted and
converted photons, respectively (see caption for parameters). It is important
to note the change in the intensity ratio of central to adjacent peak. As in
(b) the adjacent peak is composed of (-1,2) and (0,-1), we find a ratio of 2:3
[compare red box denoted CAPR in (b)]. In contrast, the adjacent peak in
(c) is the sum of (-1,1) and (1,-2), leading to 2:5 instead [blue box in (c)].

5.3.2 Mach-Zehnder Interferometers

The MZI in the excitation beam path as well as the emission interferometer for
unconverted photons are built with bulk optics. The emission interferometer
at the telecom regime, on the other hand, is constructed using fiber-based
components. All interferometers are aligned such that they exhibit classical
interference visibilities close to unity, which was assessed using coherent light
sources. Besides an optimization of the spatial mode overlap at the output BS
of the free-space interferometers, this requires a polarization match between
both interferometer arms. On that note the polarization in one arm of each
interferometer was controlled using half-wave plates in case of the free-space
MZIs and a fiber polarization controller for the telecom MZI. In order to
match the delays of both interferometers, the mirrors of the excitation MZI
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Figure 5.9. TCSPC measurements of Mach-Zehnder interfer-
ometer delays. The measurements of the delays τmzi introduced by
excitation and emission Mach-Zehnder interferometers are shown in (a)
and (c) for unconverted and in (b) and (d) converted photons (data
in black, fits and extrapolation in red and blue). The gray areas in-
dicate one full excitation with a length Trep=12.47 ns chosen such that
they start at the fundamental pulse entering the interferometer. The
retarded pulse is accordingly within the gray area.

are shifted with help of a translation stage. As we have seen, the temporal
pattern of the intensity correlation is determined by repetition time Trep, MZI
delay τmzi, as well as radiative lifetime τr. The only parameter we are free
to choose is τmzi, which should be small enough to minimize the overlap of
adjacent clusters, but also large enough compared to τr so that all peaks can be
sufficiently resolved (compare Fig. 5.8 (a) or examples given in [89,150,230]).
Due to the comparatively large lifetime of the QD under investigation, both
conditions cannot be simultaneously met. Therefore, we chose τmzi ≈ 4 ns as
reasonable trade-off, which leads to the pattern already presented in Fig. 5.8
(b).

In order to determine each τmzi we repeat the TCSPC measurements pre-
sented in Sect. 5.2.1 with the associated MZI being integrated to the beam
path. As the measured data in Fig. 5.9 (black) show, we thereby obtain
two exponential decays, whose centers are separated by τmzi. All data are
accordingly fitted using using Eq. (5.3). For the excitation and emission
interferometers used for unconverted photons [(a) and (c), fit: red] we ob-
tain τmzi=3.980 ns and 3.973 ns, respectively. The remaining difference of
δτmzi=7 ps is close to the resolution limit of the correlation electronics (4 ps)
and well below the detector jitter, so that the interferometers can be deemed
as matched. Following the discussion on the asynchronous arrival of photons
given in the supplement of [197], δτmzi corresponds to a reduction of TPI
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contrast of only 1 − exp(−δτmzi/τr)=0.7 %, which will be neglected in the
following.

The equivalent measurements for the converted photon experiment are
shown in Fig. 5.9 (b) and (d). While the excitation interferometer exhibits
τmzi=4.434 ns, there is a twist in the data for the emission MZI, which we
only became aware of in the aftermath of the experiments: The fitted delay of
τfit=4.437 ns does not equal the desired τmzi, but corresponds to the difference
between a pulse retarded in the long arm of the interferometer and the fun-
damental pulse of the subsequent excitation cycle. Therefore, the actual MZI
delay is given by τmzi = Trep − τfit=8.033 ns. This is further visualized by the
gray regions plotted in Fig. 5.9, each of which spanning an entire excitation
cycle starting and ending at a fundamental pulse. While all data shown in (a) -
(c) were recorded within a single cycle, the last measurement extends over two
adjacent cycles. We like to mention that the MZI delay of 8 ns was unintended,
but resulted from an unnoticed mistake in the interferometer design.

Although we are dealing with two differently imbalanced interferometers
for the experiment including QFDC, we still have a valid HOM experimental
situation on hand. As the delays meet the condition Trep = τmzi,em + τmzi,ex,
a pulse, which took the long path in both interferometers, will meet with a
pulse of the subsequent cycle that took two times the short one. In fact, the
situation is completely equivalent to both interferometers having a delay of
8.033 ns, whose correlation pattern we discussed in Fig. 5.8 (c).

5.3.3 Correlation Measurements

The g(2) (τ)-functions measured in the HOM experiment are depicted in Fig.
5.10 (a) and (b) as black circles. The observed structures agree with the pre-
dicted patterns in Fig. 5.8 (b) and (c). Merely the central peak at τ=0 reveals
a reduced intensity, which is particularly evident for the measurement in the
NIR regime. This observation indicates that photons, which simultaneously
arrive at the HOM beam splitter, coalesce with a probability higher than the
classical value of 0.5, being the signature of partial indistinguishability we
expect to encounter.

To extract the TPI contrast from the experiment we perform Monte-Carlo
simulations with the method and parameters presented in Sect. 5.2.4. We
additionally assume two single photons per excitation cycle separated by τmzi

and incorporate the emission MZI to the simulation via two corresponding
reflection/transmission decisions. If both fluorescence photons meet at the
last BS, we have to consider TPI to obtain the correct temporal distribution
of coincidences. In this respect, our simulations follow the cross-correlation
function given by Eq. (3.39), which includes all spectral properties of the
emitter. Its numerical implementation, however, is involved and therefore
separately detailed in Appx. D.
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Figure 5.10. Intensity correlations from two-photon interfer-
ence experiments. (a) and (b) show measured correlations (black cir-
cles) and Monte-Carlo simulations (shaded areas) revealing two-photon
interference visibilities of Vnir=36.4 % and Vtel=24.1 % for unconverted
and converted photons. The visibilities result from a minimization of the
squared mismatch ∆2 between the areas of the center peaks of data and
simulation with respect to the inhomogeneous linewidth σ′. The mini-
mization results are depicted in (c) and (d). Adapted with permission
from [251], Optical Society of America.

The most essential step of our analysis is to account for the different in-
terferometer delays in both wavelength regimes, as they determine the time
passing between the emission events of both photons. As τmzi is in the
same order of or below typical memory depths associated with spectral diffu-
sion [192–195], the effective inhomogeneous linewidth σ′ increases with τmzi,
which causes the TPI contrast to decline. Therefore, our main objective is
to determine the underlying σ′. On that note, we first simulate the ex-
pected correlation measurement for a given guess of σ′ and after proper
normalization evaluate the mismatch between data and simulation via the
squared deviation of the central peak areas ∆2 = (Adata −Asim)2. The mis-
match ∆2 is calculated for various σ′, which is plotted in Fig. 5.10 (c) and
(d). From a fit to a fourth order polynomial, we find minimal deviations
at σ′nir =(0.687± 0.005) GHz and σ′tel =(1.29± 0.01) GHz, which correspond
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5. Quantum Interference with Photons from a Single Quantum Dot

to TPI visibilities of Vnir =(36.4± 0.2) % and Vtel =(24.1± 0.2) %, respec-
tively4. The simulated intensity correlations at these optimized inhomoge-
neous linewidths are shown as shaded areas in Fig. 5.10 (a) and (b). While
the simulation excellently reproduces the data for the unconverted photons,
it clearly underestimates the correlation of converted photons for a few bins
around τ=0. However, it is important to keep in mind that this simulation
corresponds to a best fit regarding the peak area. Indeed it can be seen that
all adjacent bins are overestimated instead. Therefore, we conclude that the
measured time structure of the central peak results from an unfortunate dis-
tribution of correlated events due to insufficient integration time, i.e. a large
statistical error.

In Fig. 5.11 both experimentally determined visibilities are plotted against
the corresponding MZI delay, visualizing the observed drop of V with increas-
ing τmzi. In Sect. 2.2.3 we have seen that a fluctuating occupation of charge
traps in the vicinity of the QD leads to a diffusion of its transition energy fol-
lowing the dynamics of a random walker in a harmonic potential. Accordingly,
the carrier frequencies of two consecutively emitted photons are correlated if
not τmzi � τsd, where τsd is the memory depth of spectral diffusion. Following
our discussion in Sect. 3.2.3, the visibility in this case is given by Eq. (3.40),
which reads5

V (τmzi) =

√
ln 2

2π
· Re [w (z)]

τr · σ′ (τmzi)
with z = i

√
ln 2

2π2
· 1/τr + 2Γ∗

σ′ (τmzi)
(5.10)

with the time-dependent inhomogeneous linewidth

σ′ (τmzi) = σ′0 ·
√

1− e−τmzi/τsd . (5.11)

Taking radiative lifetime τr, pure dephasing rate Γ∗, and inhomogeneous
linewidth σ′0 as determined in Sect. 5.2.1 and 5.2.2, we fit Eq. (5.10) to the
measured visibilities. The result is shown in Fig. 5.11 as red curve and re-
veals τsd =(230± 30) ns, being well within the range of values found in litera-
ture [192–195]. Therefore, we conclude that the change in the interferometer
length between the HOM experiments with unconverted and converted pho-
tons is the source of loss of interference contrast. This implies that quantum
frequency down-conversion does not alter the indistinguishability of single
photons.

From the shape of the curve we furthermore recognize the limits of V .
For small delays, the inhomogeneous broadening vanishes. However, fast pure
dephasing processes remain, so that the visibility will rise no higher than 92 %
corresponding to Γ∗ =47 MHz (compare upper dashed line). In the opposite

4The analysis presented in [251] did not include the explicit time structure of g(2) (τ),
leading to different visibilities obtained therein.

5Note that we here use the FWHM σ′0 instead of the corresponding standard deviation
σ0 in contrast to Eq. (3.40).
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Figure 5.11. Two-photon interference visibility as function of
the timelag between consecutive emission events. The two black
data points correspond to the measured visibilities for unconverted (left)
and converted photons (right). The red curve is a fit of the visibility,
assuming a time-dependency of the line broadening due to spectral dif-
fusion. It reveals a memory depth of τsd =(90± 7) ns. The dashed lines
illustrate an upper and lower bound for the visibility corresponding to
the pure dephasing rate and inhomogeneous linewidth determined in
Sect. 5.2.2.

limit of large delays, the inhomogeneous broadening reaches its equilibrium
value σ′0, resembling a HOM experiment with two photons, whose carrier fre-
quencies explore the same spectral distribution, but in a mutually uncorrelated
fashion. This situation leads to a TPI visibility of around 6 % (lower dashed
line).

5.4 Summary

In the course of this chapter, we have presented experimental results prov-
ing that QFDC does not alter the indistinguishability of single photons. The
experiments were performed using fluorescence photons emitted by an InAs
QD. All spectral and temporal properties necessary to asses the HOM mea-
surements were determined - both for unconverted near-infrared photons as
well as converted photons in the telecom C-band. It was shown that the dif-
ferences in TPI contrast between both wavelength regimes solely result from
setup related parameters and not the down-conversion step itself. An overview
over the primary results and conclusions is given in the highlights-box below.
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5. Quantum Interference with Photons from a Single Quantum Dot

Photon Source

� Investigated were single pho-
ton emitted by an InAs QD at
903.6 nm with a photon flux of
117,600 photons/s after spec-
tral filtering (Sect. 5.1.1).

� The single photons were ob-
tained after p-shell excita-
tion with a pulsed laser at
a repetition rate of 80 MHz
(Sect. 5.1.1).

� The unconverted photons
show a radiative lifetime of
970 ps and a coherence time
of 87 ps. The coherence is
reduced due to pure dephas-
ing at a rate of 47 MHz and
spectral diffusion of the emis-
sion line in a range of 5.9 GHz
(Sect. 5.2.1 and 5.2.2).

� A clear antibunching was ob-
served with an intensity corre-

lation value of g
(2)
nir (0)=0.153.

The deviation from zero can
be related to emission col-
lected from spectrally dis-
tinct transitions. From the
spectra an SBR of 11.5 was
extracted matching the an-
tibunching value (Sect. 5.2.3
and 5.2.4).

Frequency Conversion

� A quantum frequency down-
conversion scheme was ap-
plied mixing the single pho-
tons with a pump field
at 2154 nm inside a PPLN
waveguide, leading to a tar-
get wavelength of 1557 nm
(Sect. 5.1.2).

� The frequency converter was
operated at an external de-
vice efficiency of 30.9 % be-
ing comparable to [95, 96,
104] or better than [103, 105]
values reported in literature.
The process yielded 86,700
telecom photons per second
(Sect. 5.1.2).

� At the telecom regime a
radiative lifetime of 887 ps
was observed. The SBR
improved to 17.2 involving
a smaller antibunching value

of g
(2)
tel (0)=0.117 (Sect. 5.2.1,

5.2.3, and 5.2.4).

� Perfect agreement of mea-
sured antibunching and SBR
limit extracted from spectra
for unconverted as well as
converted photons indicates
ideal conservation of pho-
ton statistics during quan-
tum frequency conversion
(Sect. 5.2.4).

Chapter 5 - Highlights
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5.4. Summary

Two-Photon Interference

� Hong-Ou-Mandel measure-
ments revealed TPI visibil-
ities of 36.4 % and 24.1 %
for unconverted and con-
verted photons, respectively
(Sect. 5.3.3).

� The loss of visibility was
quantitatively attributed to
spectral diffusion of the quan-
tum dot’s emission wave-
length. It has a larger impact
at the telecom regime due to
an increased time lag between
the emission processes of both
photons. Accordingly, the
photon indistinguishability is
conserved throughout quan-

tum frequency conversion.
The memory depth of spec-
tral diffusion was estimated
to be 230 ns (Sect. 5.3.3).

� Both antibunching and Hong-
Ou-Mandel measurements
were additionally emulated
by Monte-Carlo simulations.
The simulations were per-
formed based on indepen-
dently determined model pa-
rameters and perfectly repro-
duce the correlation measure-
ments. This underlines that
all relevant aspects of the
experiments are completely
understood (Sect. 5.2.4 and
5.3.3).

Chapter 5 - Highlights continued
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Chapter 6

Quantum Interference between

Down-Converted Photons

from Remote Quantum Dots

Contributions and copyright notice: The experimental re-
sults presented in the scope of this chapter were obtained within
a collaborative project under the joint supervision of Prof. Pe-
ter Michler (Stuttgart University) and Prof. Christoph Becher.
The investigated sample was designed and fabricated by Robert
Roßbach and Michael Jetter at Stuttgart University. The fre-
quency converter was designed, set up, and operated by Benjamin
Kambs (B.K.) with help of Matthias Bock. All experiments were
performed at Stuttgart University by B.K., Jonas Heinrich Weber
(J.H.W.), Simon Kern, and Simone Luca Portalupi with support
of Jan Kettler (all Stuttgart University except for B.K.). The data
were analyzed by B.K. and J.H.W.

Note that the main results presented in this chapter were orig-
inally published in [266] (Copyright © 2018 The Authors. Pub-
lished by Springer Nature).

In the preceding chapter we provided the experimental proof of princi-
ple that QFDC does not impair the indistinguishability of single photons.
This enables us to implement and test down-conversion schemes in more com-
plex situations, which aim at quantum information processing applications
based on TPI. The coalescence of two photons from independent emitters
at a single beam splitter is a key ingredient for long-haul quantum repeater
networks, which are naturally composed of a large number of remote station-
ary quantum memories [31–33]. This type of experiment has been success-
fully performed on various platforms including spontaneous parametric down-
conversion sources [62], trapped ions [63] and atoms [61], as well as solid state
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6. Quantum Interference with Photons from Remote Quantum Dots

single photon emitters including QDs [65, 151, 152, 155], color centers in dia-
mond [66–68], or single molecules in crystalline materials [64]. In this chapter,
we demonstrate quantum interference with photons from remote InAs QDs,
but additionally integrate two independent frequency converters - one for each
emitter. The HOM experiment is then performed with the converted photons
at the telecom C-band. Besides the commonly quoted advantage of an inter-
face to the low-loss regime of optical fibers, frequency conversion offers yet
another benefit to the overall scheme at hand: in case of solid state sources
the emission frequencies of both emitters typically differ and therefore need
to be actively matched. To that end the emitters can be tuned with help of
various control parameters, such as temperature [151–153], strain [154–156],
as well as static electric [64–67] or magnetic fields [157, 158]. All of those pa-
rameters, however, directly or indirectly act on the electronic structure of the
emitter and thereby potentially degrade the spectral properties of the emitted
photons. In contrast, we tune the C-band photons during down-conversion
via control of the pump-laser frequency instead, which renders invasive tuning
mechanisms unnecessary.

In the following, we will outline the overall experimental scheme and high-
light the main differences in QD excitation, photon extraction, and QFC com-
pared to the experiment presented in Chap. 5. After the assessment of spec-
tral and temporal properties of both single photon sources individually, we
present the mutual HOM experiment and fully explain the outcome based on
all predetermined parameters.

6.1 Experimental Overview

The remote HOM experiment reduced to its principal components is illus-
trated in Fig. 6.1 (a). As single photon source we use two InAs/GaAs quan-
tum dots, here denoted QD1 and QD2, which stem from the same sample
M5059 investigated in the preceding chapter (compare Sect. 5.1.1 for details),
but are located in two distinct fragments of it that are installed in two inde-
pendent cryostats. Based on the measured radiative lifetime and coherence
time presented in Sect. 5.2.1 and 5.2.2, we expect remote HOM visibilities of
no more than τcoh/(2τr) ≈5 % for photons from this sample mainly due to the
large inhomogeneous linewidth of almost 6 GHz. To achieve superior photon
indistinguishabilities we mainly take two measures in the QD operation that
go beyond the methods employed in the preceding experiment: (i) the QDs
are optically excited with π-pulses resonant with the s-shell (as opposed to
p-shell excitation) to minimize interactions between excitons and environment
as well as to reduce the timing jitter in their creation process, and (ii) a weak
above-band cw-laser at 808 nm is added to the excitation light, which gen-
erates free charges in the conduction band. These keep charge traps in the
vicinity of the emitter constantly occupied and thereby further stabilize the
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Figure 6.1. Illustration of the overall remote Hong-Ou-Mandel
experiment. (a) Both quantum dots, denoted QD1 and QD2, are
resonantly excited by the same pulsed laser. The emitted single near
infrared (NIR) photons are detuned with respect to each other (red and
blue color, resp.). The frequency converters FC1 and FC2 are set to con-
vert the photons of both sources to a common wavelength at the telecom
C-band (green photons). Eventually, the photons are overlapped on a
beam splitter to test their indistinguishability in a Hong-Ou-Mandel
(HOM) type experiment. All single photon properties such as emission
spectra, radiative lifetimes, antibunching-values, and indistinguishabil-
ities of consecutively emitted photons are measured with unconverted
photons prior to conversion. (b) Energy scheme of both frequency con-
version processes. The initial NIR photons exhibit a frequency offset
of δνQD = νQD2 − νQD1. If the pump lasers of both converters ful-
fill νFC2 − νFC1 = δνQD, the converted telecom photons are spectrally
overlapped at νtel.

emission frequency [131, 132]. For excitation, a single pulsed laser is used,
which is split at a free space BS and then forwarded via optical fibers to both
confocal microscopes containing the respective QDs. The QD emission lines
are located at the NIR regime and detuned by about δνQD = νQD2 − νQD1 ≈
8 GHz (compare Sect. 6.2.1). However, the spectral width of the excitation
laser light is >160 GHz, i.e. sufficiently large to simultaneously cover both
resonances.

The emitted photons are virtually distinguishable, as the detuning δνQD is
significantly larger than their respective linewidths (illustrated by red and blue
colored photons). To compensate the detuning we employ two independent
frequency converters, FC1 and FC2, both operated at differing pump laser
frequencies νFC1 and νFC2. If these fulfill νFC2−νFC1 = δνQD according to the
energy scheme shown in Fig. 6.1 (b), the converted output photons of both
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6. Quantum Interference with Photons from Remote Quantum Dots

sources will exhibit a common wavelength inside the telecom C-band (green
photons). The telecom photons are then forwarded within optical fibers over
a distance of ≈ 60 m before being overlapped on a symmetric fiber-based BS.
Here, the photons coalesce, if indistinguishable, which is tested by a coinci-
dence measurement between both BS outputs.

The outcome of the remote HOM experiment will be assessed based on
the temporal and spectral properties of both emitters. These include radia-
tive lifetimes, spectral line-broadening contributions, antibunching values, as
well as indistinguishabilities of consecutively emitted photons for each source
individually. The parameters of interest are measured with unconverted pho-
tons prior to the down-conversion step, as their conservation during QFC has
been sufficiently demonstrated elsewhere (see [95] and Chap. 5).

6.2 Single Photon Generation

In the following we describe the confocal microscopes and frequency convert-
ers, which were used to obtain the single photons at telecom wavelengths
necessary for the intended remote HOM experiment. The setup is comparable
to the one presented in Sect. 5.1 for the most part. However, some differences
arise due to the resonant excitation scheme as well as the more rigorous re-
quirements regarding frequency stability of the frequency converters, which
will be discussed in this section. As the confocal microscopes were designed,
set up, and operated by our collaboration partner at Stuttgart University, we
here only elaborate on specific features necessary to understand experimental
aspects relevant to this chapter. A more detailed treatment can be found
in [162].

6.2.1 Confocal Microscope for Resonant Excitation of Trions

A scheme of the employed confocal microscope is depicted in Fig. 6.2 (a). The
InAs/GaAs sample is located inside a flow-cryostat and cooled to a tempera-
ture of 4 K. In Sect. 5.1.1 we have pointed out that the QDs from this sample
emit in a range from 885 nm to 910 nm. Accordingly, we need an excitation
source in the same wavelength regime in order to resonantly address the s-shell
transition. For that purpose we use a Ti:Sa laser (model Mira 900P, Coher-
ent, USA), which emits optical pulses with a duration of around 3 ps at a
repetition rate of 76.2 MHz. The excitation light (200-300 nW) is superim-
posed with light from the aforementioned non-resonant cw-laser (10-20 nW)
and guided through a delay stage before entering the confocal microscope.
The delay stage is inserted only in front of one of the microscopes and used
to synchronize the photons emitted by both QDs for the final remote HOM
experiment. Furthermore, for HOM experiments with consecutively emit-
ted photons from a single QD (compare Sect. 5.3), the delay stage can be
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Figure 6.2. Confocal microscope for resonant excitation of
quantum dots. (a) The sample is located inside a cryostat and
cooled to 4 K. To separate the optical excitation light (red line) from
the emitted photons (red circles) a setup for polarization suppression
is used (see dashed frame). Its principal components are a linear po-
larizer, two polarizing beam splitters (PBS), as well as a quarter and a
half wave plate (QWP and HWP). The steps of the suppression process
are labeled (i) - (iii) and detailed in the main text. The photons are
eventually coupled to a polarization-maintaining single-mode fiber (PM-
SMF). The shown delay stage is used to either synchronize the converted
photons in the final HOM experiment or as Mach-Zehnder interferom-
eter, if the beam block (black bar) is removed. (b) Illustration of the
filter-spectrometer used to spectrally clean up the fluorescence photons.
The photons from QD1 and QD2 enter the spectrometer in s- and p-
polarized states, respectively and are overlapped on a PBS. Both pass
a transmission grating and subsequently disperse. On a second PBS
both polarization components are separated, coupled to a single-mode
fiber and forwarded to the respective frequency converters (FC). The
spectrometer is aligned such that a band of ≈15 GHz around the central
emission frequency of each QD is efficiently coupled to the corresponding
fiber.

converted to a Mach-Zehnder interferometer with variable delay by simply
removing the beam block between both beam splitters (black bar).

The resonant excitation scheme is a necessity to achieve competitive indis-
tinguishabilities, but it entails an experimental inconvenience, as the excita-
tion light can no longer be removed from the fluorescence photons via spectral
filtering. One alternative is to use orthogonal excitation and detection beam
paths, which allow to spatially separate both fields [176]. Furthermore, a
recent experiment demonstrated coherent excitation using dichromatic laser
pulses, which are red- and blue-detuned with respect to the resonance [267].
We follow another option, however, by suppressing the excitation laser via po-
larization rejection [130,177]. The corresponding components of the setup are
shown within the dashed box in Fig. 6.2 (a). The basic suppression process
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6. Quantum Interference with Photons from Remote Quantum Dots

can be reduced to three main steps: (i) The s-polarized, incident excitation
light is reflected from PBS1 and focused via the microscope objective onto
the sample normal to its surface. (ii) Subsequent to the excitation step, the
resonance fluorescence - being in an arbitrary polarization state - is collected
and collimated by the microscope objective and propagates towards PBS1.
Simultaneously, it is superimposed by residual excitation light, which we as-
sume to be still s-polarized. (iii) The p-polarized fraction of the fluorescence
is transmitted through PBS1, while the excitation light is reflected. Thereby,
it is mostly removed from the transmitted fluorescence. The additional op-
tical components depicted in Fig. 6.2 (a) fulfill various tasks to ensure an
operation of the polarization suppression as close to ideal as possible. The
polarizer is employed to generate a clean linear polarization of the excitation
light, which is moreover aligned with the s-polarization axis of PBS1. As mi-
croscope objective, cryostat window, and sample surface alter the polarization
of the impinging light, its back-reflected fraction does not necessarily possess
s-polarization anymore. To partially restore the initial polarization a quarter-
wave plate (QWP) is inserted between PBS1 and objective, which is passed
twice by the excitation light. The maximum suppression attainable with a
single PBS is capped by its extinction coefficient1, which is typically no more
than 30 to 40 dB. To obtain a better suppression, a second polarizing beam
splitter (PBS2) is put in series with PBS1. Note, however, that the suppression
does not benefit from even more PBSs, as each of them partially re-polarizes
the impinging light, which ultimately limits the best possible performance.
Eventually, the fluorescence is coupled into a polarization-maintaining single
mode fiber (PM-SMF). The half-wave plate (HWP) is used to match the flu-
orescence polarization with one of the symmetry axes of the PM-fiber. Using
the shown setup a maximal laser suppression of ≈60 dB is reported in [162].

Fig. 6.3 (a) shows an exemplary spectrum of the fluorescence from QD1 as
collected by the detection fiber, taken with a commercial grating spectrometer
(model SP2500i with an in InGaAs camera, Princton Instruments, USA).
The spectrum reveals a distinct peak at a wavelength of 904.44 nm, which
corresponds to the ZPL of the QD. Additionally, we observe a broad back-
ground signal roughly ranging from 903-906 nm. The background is composed
of residual excitation light and a phonon sideband stemming from acoustic
phonons. As the phonon sideband generally has a complicated asymmetric
structure [179, 180], it is not possible to specify a certain fitting function.
Therefore, we only use a heuristic function consisting of 4 Gaussian peaks -
one of which describes the ZPL, while the others are used to fit the back-
ground. From the resulting fit (red curve) we extract a signal-to-background
ratio (SBR) of 1.6 by integrating over the entire shown spectral range. As this
SBR is not sufficient for any of the subsequent experiments, the fluorescence

1The extinction coefficient is defined as the intensity ratio of p-polarized over s-polarized
transmitted light.
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Figure 6.3. Properties of single photons after polarization sup-
pression. (a) Fluorescence spectrum of QD1 at the output of the
confocal microscope (data: black, fit: red). A sharp fluorescence peak
resides at 904.44 nm, while a broad background stemming from residual
laser light and a phonon sideband ranges from 903-906 nm. Integration
yields signal-to-background ratios (SBR) of 1.6 and 26 before and after
additional filtering by a spectrometer (filter window of 15 GHz shown in
gray). (b) Lifetime measurement of fluorescence photons collected from
an exciton transition of an arbitrary QD. Due to the polarization sup-
pression setup both emitted fine-structure components are projected to
a common polarization leading to a beat in the observed decay. The beat
period is estimated to be τbeat ≈1.1 ns, corresponding to a fine-structure
splitting (FSS) of 3.8 µeV. Due to the undesired beat node of excitons,
all experiments were performed with photons emitted by trions instead.

photons are additionally passed through a homebuilt filter-spectrometer [268],
which is schematically depicted in Fig. 6.2 (b). The spectrometer is designed
such that it can be simultaneously used for the fluorescence from both QDs.
On that account, the arriving photons are fed into the two inputs of a PBS.
Their polarization states are set to be linear, perpendicular with respect to
each other, and matched with the axes of the PBS. This ensures that they can
be combined at the first and separated at the second PBS without any signifi-
cant cross-talk between the individual polarization channels. On the common
beam path, the photons are first guided through a transmission grating and
subsequently disperse. Eventually, following the second PBS, they are coupled
to SMFs and forwarded to the frequency converters. The cores of the SMFs
act as exit slits of the spectrometer leading to an overall passband width of
around 15 GHz [compare narrow gray area centered around the QD peak in
Fig. 6.3 (a)]. Integrating the spectrum within the spectrometer window leads
to a SBR of 26, which is only slightly below the value reported in [162] and
superior to the SBR found in the scope of Sect. 5.2.3.

A unique phenomenon caused by the polarization suppression scheme
emerges in radiative lifetime measurements of photons emitted during the
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Figure 6.4. View on the polarization states of excitation and
fluorescence light in the polarization suppression setup. Com-
parison of the excitation of excitons [(a)-(c)] and trions [(d)-(f)]. The
lab frame is defined by the principal axes |H〉 and |V 〉 of the polariz-
ing beam splitter (PBS) inside the polarization suppression setup. The
principal axes of the quantum dot |HQD〉 and |VQD〉 are rotated by α
with respect to the lab frame. The fluorescence photon state is defined
by |Ψ〉. Three steps in the process are illustrated [also indicated in
Fig. 6.2 (a)]: (i) (a) and (d) show the polarization of excitation light
(red), which (ii) creates an exciton in a superposition state of both fine
structure components of the quantum dot [blue and green in (b) and
(e)]. (iii) Transmission through the PBS projects the photon to hori-
zontal polarization and blocks residual excitation light [(c) and (f)]. In
contrast to the exciton, the trion and emitted photon only consist of a
single frequency and polarization component. For details see main text.

recombination of excitons. Fig. 6.3 (b) shows a corresponding TCSPC mea-
surement of an arbitrary QD. In contrast to the simple one sided exponential
decay according to Eq. (5.3), the decay measured here clearly oscillates. These
oscillations have been observed before and are commonly attributed to a beat
between the fine-structure components of the QD [269,270]. To illustrate this
relation we review the three steps of the laser suppression with a detailed view
on the polarization state of the emitted photon from the exciton transition in
Fig. 6.4 (a)-(c). Therein, the axes of the lab frame are denoted |H〉 and |V 〉,
while the principal axes of the QD and emitted photon |HQD〉 and |VQD〉 form
an angle α with the lab frame and are defined by
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6.2. Single Photon Generation

|HQD〉 = cosα |H〉 − sinα |V 〉 and (6.1)

|VQD〉 = sinα |H〉+ cosα |V 〉 . (6.2)

The s-polarized excitation light is aligned along |V 〉 [red arrow in (a)]. The
excitation process creates an exciton, whose spin is in a superposition state of
both fine structure components [blue and green arrows in (b)]. Subsequently,
the spin state is imprinted on the polarization of the emitted photon, which
can therefore be written as

|Ψ〉 = eiωV t cosα |VQD〉+ eiωH t sinα |HQD〉 (6.3)

prior to PBS1. Here, the amplitudes cosα as well as sinα result from the pro-
jection of the laser light onto the QD axes and the phases of both fine-structure
components evolve at different frequencies ωV and ωH . These frequencies are
connected to the fine-structure splitting (FSS) via EFSS = ~ |ωV − ωH |. Upon
transmission through PBS1 both components are projected along |H〉 leading
to the output state

|Ψ〉 =
(
eiωV t + eiωH t

)
sinα cosα |H〉 . (6.4)

In particular, a TCSPC measurements yields a signal proportional to the
squared modulus of |Ψ〉, for which we find 〈Ψ|Ψ〉 ∝ 1 + cos [(ωV − ωH) t], i.e.
the observed beat signature. From Fig. 6.3 (b) we read a beat period of
τbeat ≈1.1 ns, which corresponds to EFSS ≈ 3.8 µeV.

The fine-structure of excitons does not only complicate the interpretation
of TCSPC and consequently all intensity correlation measurements, but it
also has a negative impact on the intended remote HOM experiment. As
both emitters generally exhibit distinct FSSs, we need to consider four differ-
ent frequency components, of which only two can be matched by tuning the
emission lines. The other components remain detuned, which in turn reduces
the overall indistinguishability. In the scope of our experiments, we therefore
choose to work with trions instead. Simply put, the additional charge present
in the QD occupies one of its fine-structure components and thereby prevents
the emitted photon from oscillating at two different frequencies [compare Fig.
6.4 (d)-(f)].

Fig. 6.5 (a) shows the emission spectra of trion transitions of both QD1
and QD2, which were selected for the remote HOM experiment. The lines
are centered around λQD1 = 904.442 nm and λQD2 = 904.420 nm, respectively,
i.e. they exhibit a detuning of δνQD =8.06 GHz. The spectra suggest that
both emission lines possess a spectral overlap, which implies that a TPI sig-
nature might be observed even without tuning both emitters into resonance.
Note, however, that the apparent spectral overlap only results from the limited
spectrometer resolution of ≈ 6 GHz and not the actual emitter parameters.
This will be detailed in the following Sect. 6.3. Feeding the output of the
filter-spectrometer into a Si-APD, we obtain detection rates of νdet,QD1 =
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Figure 6.5. Emission spectra of both selected quantum dots.
(a) Data (dots) and fit (solid line) of unconverted photons at the NIR
regime for QD1 (red) and QD2 (blue). The emission lines are centered
around λQD1 = 904.442 nm and λQD2 = 904.420 nm and relatively de-
tuned by δνQD =8.06 GHz. (b) Exemplary spectrum of converted pho-
tons at the telecom regime when the relative pump laser detuning is
set to compensate the QD detuning. It can be seen that both photons
appear at the same telecom wavelength.

28-32 kHz and νdet,QD2 = 81-92 kHz. Taking the quantum efficiency of the
detector of ≈ 30 % into account, we find that the QDs yield photon fluxes of
around ΦQD1 = 100,000 and ΦQD2 = 290,000 photons per second within the
output fibers of the confocal microscopes. Note that 5-10 % of these photons
do not stem from the resonant excitation, but are caused by the additional
non-resonant cw-laser, which is used for the stabilization of the resonance.

6.2.2 Frequency Converter Performance

The wavelength of the down-converted telecom photons is determined by the
pump laser employed in the frequency converter. Accordingly, any frequency
fluctuation of its optical output will be imprinted on the converted photons,
which potentially degrades their mutual indistinguishability. In Chap. 5 we
have identified pure dephasing and spectral diffusion as the only sources of fre-
quency noise. Pump laser fluctuations, on the other hand, did apparently not
decrease the measured TPI visibilities, even though significant mode hopping
was observed in the aftermath of the experiments. This suggests that pump
laser instabilities act on a time-scale long compared to the emission delay
of 8 ns between both QD photons, rendering them irrelevant. The situation
has to be reconsidered, however, for the present remote HOM experiment.
Here, both photons are independently converted and we must assume that
the impact of pump laser fluctuations on both telecom photons are no longer
correlated. In this case we obtain an additional contribution to the inhomoge-
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Figure 6.6. Frequency conversion setup with pump frequency
monitoring. The setup mostly conforms with the one presented in
Fig. 4.1. An additional optical isolator was inserted to protect the laser
from light reflected at the waveguide (WG) facet. The residual pump
light transmitted trough the second dichroic mirror (DM) is converted to
≈1.08 µm via second harmonic generation (SHG) in a MgO:PPLN bulk
crystal. After coupling to a fiber, the SHG light of both converters is
alternatingly forwarded to a wavemeter by turns with help of a MEMS
fiber-optic switch. SL and AL: spherical and aspheric lens.

neous broadening of the single photons, quantified by its standard deviation
σpump.

Fig. 6.6 shows a simplified version of the frequency converter already dis-
cussed in Sect. 4.12. The main modification for the present experiment is the
additional optical isolator (model IO-4-2150-HP, Thorlabs, USA) inserted
between the pump laser and dichroic mirror (DM). It protects the laser from
pump light reflected at the facet of the PPLN waveguide (dashed red beam)
and thereby averts the aforementioned mode hopping. Moreover, we need to
determine the relative detuning of the pump lasers δνpump = νFC2− νFC1 and
quantify its stability by measuring σpump. On that account, we first convert

2Missing components compared to Fig. 4.1 are here only omitted for simplicity, but were
still present in the actual setup.

115



6. Quantum Interference with Photons from Remote Quantum Dots

3σ1 = 77 MHz

pump of FC1
731

732

733

3σ2 = 78 MHz
λ0 = 1078 nm

0 100 200 300 400 500 600
660

661

662

663

Time t [min]

λ
S
H
G
−
λ
0

[p
m

]

pump of FC2

3σpump = 20.3 MHz

0 100 200 300 400 500 600
−40

−20

0

20

40

Time t [min]

R
el

.
fl
u
ct

u
at

io
n

∆
ν

(t
)

[M
H

z]

(a) (b)

Figure 6.7. Measurement of long-time stability of both pump
lasers. (a) Time trace of second harmonic generation wavelength
λSHG of the pump lasers for frequency converter 1 (red) and 2 (blue)
over ≈ 11 h. The wavelengths are shifted by λ0 = 1078 nm. It can be
seen that both pump lasers evolve similarly over ranges characterized
by the threefold standard deviations 3σ1 = 77 MHz and 3σ2 = 78 MHz.
(b) The common evolution of both pump lasers becomes more clear in
their relative fluctuation ∆ν (t) = δνpump (t) − 〈δνpump〉, which has a
standard deviation of only 3σpump = 20.3 MHz.

the residual pump light to a wavelength of 1.08 µm by means of second har-
monic generation (SHG), which is then constantly monitored by a wavemeter
(model WS6-200, HighFinesse, Germany) throughout all experiments. The
SHG process takes place in a MgO:PPLN bulk crystal (Photonik-Zentrum
Kaiserslautern e.V., Germany). The crystal is 20 mm long and possesses
poling periods ranging from 31.8 µm to 32.1 µm. To achieve phase matching
for the desired process, it was heated to a temperature of around 240 ◦C. With
a residual pump power of some 100 mW we obtain SHG light at a few µW,
which is a sufficient input level for the wavemeter. Prior to the wavemeter,
a MEMS fiber-optic switch (model SL1x2-9N, Sercalo, Switzerland) is in-
serted, whose two input ports are fed with the SHG light of both converters,
respectively. The switch is operated at a frequency of around 1 Hz and thereby
enables us to simultaneously monitor both pump lasers. Fig. 6.7 (a) shows
the wavelengths λSHG of both FC1 (red) and FC2 (blue) taken over a time of
≈ 11 h. Both frequencies fluctuate in a range with threefold standard devia-
tions of 3σ1 = 77 MHz and 3σ2 = 78 MHz, respectively (compare gray areas).
Assuming that the frequencies of both pump lasers evolve uncorrelated, it is
possible to estimate the fluctuation range of the relative detuning δνpump via
the Gaussian sum σ2

pump = σ2
1 + σ2

2 leading to 3σpump = 110 MHz. It can
be seen, however, that both frequencies are in fact not uncorrelated, but fol-
low almost the same time trace. This might be the case, as both lasers were
placed in the same lab and on the same optical table, i.e. they were subject
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6.2. Single Photon Generation

to the same environmental conditions. For further illustration, the evolution
of δνpump around its mean 〈δνpump〉 is depicted in Fig. 6.7 (b). The relative
frequency fluctuates in a range of no more than 3σpump = 20.3 MHz. Although
this might be the more appropriate error for our purpose, we will assume the
aforementioned 3σpump = 110 MHz as a more careful estimate in the following.

Eventually, we assess the external device efficiency ηext of both converters
using a diode laser (model DL 100, Toptica, Germany), which is tuned to
the QD resonances, as optical input signal. In order for both FCs to have a
common output wavelength at around λtel = 1557 nm within the FBG filter
window [compare Fig. 6.5 (b)], the pump lasers were set to λFC1 = 2157.46 nm
and λFC2 = 2157.32 nm, respectively. Both converters were operated using
WG1 in group 5 of the PPLN waveguide chip. Optimal phase matching was
achieved at temperatures of 29.6 ◦C and 46.7 ◦C for FC1 and FC2, respectively.
To obtain ηext as a function of the pump power Pp we evaluate

ηext (Pp) =
Ptel (Pp)

Psig
· λtel

λQD
, (6.5)

where the input power of the signal Psig is measured at the FC input and
the converted output power Ptel subsequent to the FBG. The factor λtel/λQD

accounts for the differing photon energies of both wavelength regimes. The
measured efficiencies are shown in Fig. 6.8 (a) and (b) for FC1 and FC2,
respectively. The solid curves therein represent fits based on the Eq. (2.36)
and reveal maximal device efficiencies of ηFC1

ext =(34.8± 1.3) % at 488 mW and
ηFC2

ext =(31.4± 0.2) % at 338 mW pump power. As can be seen, the data taken
for FC1 strongly scatter compared to FC2, which was due to an unstable input
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Figure 6.8. External device efficiencies of both frequency con-
verters. Measurements of ηext at different pump powers Pp for (a) FC1
and (b) FC2 are shown. The fits are accompanied by 95 % confidence
bands (shaded areas) and reveal maximum efficiencies of (34.8± 1.3) %
and (31.4± 0.2) %.
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6. Quantum Interference with Photons from Remote Quantum Dots

power of the signal laser. The strong scatter leads to a broader confidence band
(shaded area) and consequently a larger error for ηFC1

ext .
Subsequent to the conversion the telecom photons are forwarded via a

60 m fiber-link to a different lab and pass a short free space section containing
further polarization controlling elements as well as the fiber-BS at which the
HOM experiment takes place. For this section we measure an overall trans-
mission of TQD1 = 60.9 % for QD1 and TQD2 = 63.5 % for QD2. Considering
the SNSPD detection efficiency of ηdet = 30 % and taking the photon fluxes
ΦQD1 and ΦQD2 at the converter inputs as stated in Sect. 6.2.1, we expect to
obtain detection rates of νdet,QD1 = 6.4 kHz and νdet,QD1 = 17.3 kHz according
to

νdet,QD1/2 = ΦQD1/2 · ηFC1/2
ext · TQD1/2 · ηdet. (6.6)

In experiment we observe 5.3 kHz and 24.7 kHz, of which 550 Hz and 390 Hz
can be attributed to background photons created by the pump lasers and
around 50 Hz stemming from detector dark counts. The expected and ob-
served values are in fair agreement. The discrepancy can be mainly attributed
to the fact that the NIR and telecom count rates given in Sect. 6.2.1 and here,
were measured at separate days, with the QDs and setups being in different
conditions. Furthermore, we identify two factors contributing to the deviation:
First, switching the unconverted photons from the APDs to the FCs required
to exchange the output fiber of the filter spectrometer. Therefore, the preci-
sion with which ΦQD1 and ΦQD2 are known is limited by the reproducibility of
the fiber coupling. Second, the detection efficiencies of the SNSPDs are only
specified within the telecom O-band. The C-band efficiency of 30 %, on the
other hand, is merely an estimation provided by the manufacturer and there-
fore subject to an unknown uncertainty. The observed count rates correspond
to 26, 000 and 128, 000 telecom photons/s at the converter outputs, which are
superimposed by around 3,000 and 2,050 background photons/s leading to
SBRs of 8.7 and 62.2, respectively.

Note that in Sect. 5.1.2 we did not observe any pump-laser related back-
ground although the same down-conversion scheme was used. A possible
source are nonlinear mixing processes of the pump with its own Raman-
scattered light or parametric fluorescence leading to distinct noise peaks (see
discussion in Sect. 4.5). As the positions of these peaks are sensitive to the
pump wavelength as well as the chosen WG and its temperature, it is possible
that they leak into the FBG filter window in the present experiment, but did
not play any role in the preceding one.

6.3 Spectral and Temporal Properties

In this section we present measurements of various properties of the QD emis-
sion. These include first of all lifetime measurements and spectral measure-
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6.3. Spectral and Temporal Properties

ments, which resolve all relevant broadening contributions. Based on the
obtained parameters it is possible to assess the achieved remote TPI visibili-
ties using Eq. (3.28). Additionally, we provide antibunching as well as HOM
measurements with consecutive photon emission from each QD individually.
Note that in contrast to Chap. 5 we perform all measurements only with
unconverted photons. Consequently, it is necessary to assume that these pa-
rameters are conserved throughout the down-conversion step when employing
them for the description of our remote HOM measurements. This assertion,
however, has been sufficiently proven in the context of numerous preceding ex-
periments (see e.g. [95, 251]). Note that an improvement of the antibunching
value throughout the down-conversion step as observed in [95] and Sect. 5.2.4
is not anticipated in the present experiment, as the bandwidth of the filter
spectrometer (15 GHz) ensures more rigorous spectral filtering than the ac-
ceptance bandwidth of the frequency converter (≈ 120 GHz).

6.3.1 Radiative Lifetime

The radiative lifetime τr of both emitters is determined by TCSPC measure-
ments equivalent to Sect. 5.2.1. The obtained measured data are shown as
black curves in Fig. 6.9 (a) and (b) for QD1 and QD2, respectively. It can
be seen that both measurements follow the expected one-sided exponential
decay. In particular, we do not observe any beat signature confirming that
the emitted photons indeed stem from the recombination of trions (compare
Sect. 6.2.1). To fit the data we convolute the ideal model Eq. (5.2) with the
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Figure 6.9. Radiative lifetime measurements of both quantum
dots. Measured data (black) and corresponding fits (shaded areas) of
time-correlated single photon counting measurements for (a) QD1 and
(b) QD2 are shown. The data are fitted using a one-sided exponential
decay convoluted with the measured detector response (see inset) leading
to radiative lifetimes of τr =(612± 2) ps and τr =(584± 2) ps for QD1
and QD2.
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6. Quantum Interference with Photons from Remote Quantum Dots

measured detector response, which is depicted as inset in Fig. 6.9 (a). The
results are plotted as red and blue shaded curves and reveal radiative lifetimes
of τr =(612± 2) ps and τr =(584± 2) ps for QD1 and QD2.

6.3.2 High Resolution Emission Spectra

To assess the outcome of the remote HOM experiments it is inevitable to in-
vestigate the spectral line shapes of the involved single photon emitters. In
particular, according to Eq. (3.28), we need to determine the homogeneous
and inhomogeneous linewidths Γh and σ′ besides the radiative lifetime τr. To
that end the available commercial grating spectrometer is not suitable, as its
resolution is in the same order of or even below the broadening contributions
of interest. In Sect. 5.2.2 we solved this issue by means of a coherence time
measurement using a Michelson interferometer, which allowed us to determine
σ′ with a precision of roughly 400 MHz corresponding to the error of the under-
lying fit. Here, we follow a different approach: the single photons collected at
the output of the filter-spectrometer are fed into a scanning Fabry-Pérot inter-
ferometer (FPI, Free spectral range FSR = 15 GHz, Finesse F= 300), whose
transmission is recorded using a Si-APD. The transmission linewidth of the
FPI is given by FSR/F=50 MHz, i.e. sufficiently small to resolve both QD
emission lines even in their Fourier limits of 1/(2πτr) =260 MHz and 273 MHz,
respectively.

The black lines shown in Fig. 6.10 correspond to measured spectra of both
quantum dots. Note that the illustrated spectrum is composed of two mea-
surements of the individual emitters using their known frequency displace-
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Figure 6.10. Highly resolved quantum dot emission spec-
tra. The spectra were recorded with help of a Fabry-Pérot inter-
ferometer and are shown in black. Both emission lines were separately
measured and put together using the known spectral displacement of
δνQD =8.06 GHz. Fits are shown in red and blue for QD1 and QD2, re-
spectively, revealing inhomogeneous linewidths of σ′ =(2.10± 0.11) GHz
and (1.22± 0.04) GHz. The lifetime limited emission lines are illus-
trated as dashed curves for comparison. They possess linewidths of
1/(2πτr) =260 MHz and 273 MHz for QD1 and QD2.
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ment δνQD =8.06 GHz. Both peaks are clearly broader than their lifetime
limited counterparts (dashed lines). Here, we fit the data using the Voigt
profile Eq. (2.16), but fix the pure dephasing rate Γ∗ at zero, i.e. both emit-
ters are merely inhomogeneously broadened. Indeed, the resulting fits (red
and blue shaded curves) perfectly reproduce the data, which indicates that
no further homogeneous broadening is necessary. Moreover, using the same
model employed in the scope of Sect. 5.2.2, we estimate the pure dephasing
rate to be less than 1 MHz at temperatures below 5 K, which is more than 2
orders of magnitude below the natural linewidths and also not resolvable by
the FPI. Averaging the fitted parameters over several spectra taken at dif-
ferent days of the measurement campaign we find inhomogeneous linewidths
of σ′ =(2.10± 0.11) GHz and (1.22± 0.04) GHz for QD1 and QD2, respec-
tively. Here, the stated errors correspond to the standard deviation between
the individual values. Eventually, we like to mention that both peaks shown
in Fig. 6.10 do not overlap. This confirms our assertion that the apparent
overlap in Fig. 6.5 (a) is merely caused by the broad spectral response of the
spectrometer.

6.3.3 Antibunching

To confirm single photon emission from both QDs, we perform antibunching
measurements employing a HBT interferometer as described in Sect. 5.2.4.
The obtained correlation measurements are shown in Fig. 6.11 (a) and (b) as
black dots. The peaks are centered at multiples of the repetition time of the
excitation laser Trep =13.1 ns and exhibit the expected two-sided exponential
decay. It stands out that the central peaks are very small compared to their
neighbors, indicating clean single photon emission. In particular for QD1 it is
obvious that the peaks bunch towards τ = 0, which is a signature of a blinking
emitter [271, 272]. The central peak, however, is not affected by the blinking
dynamics, as the contribution of two fluorescence photons emitted from the
QD during a single excitation cycle is negligible. Therefore, in order to obtain
the desired g(2) (0)-value, it is necessary to normalize the area under the central
peak A0 with respect to the area of a peak at the Poisson level [273], i.e. for
τ → ±∞, according to

g(2) (0) =
A0

A∞
with A∞ = lim

i→±∞
Ai. (6.7)

Fig. 6.11 (c) and (d) show the integrated areas of all peaks up to ±600 ns,
corresponding to the first 45 peaks to either side of τ = 0. Following the
model proposed in [271], we describe the area of the i’th peak (i 6= 0) via

Ai = (A∞ −D) ·
{

1 +B · exp

[
− (|i| − 1) · Trep

τB

]}
+D, (6.8)

where B and τB are the bunching amplitude and bunching time, respectively.
Note that we added the constant D to account for a continuous background.
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Figure 6.11. Antibunching measurements of both quantum
dots under consideration. Measured data are shown as black circles
for (a) QD1 and (b) QD2. The area of each peak is plotted in (c) and (d),
respectively. The peak area reveals clear bunching, which is quantified
by the fitted bunching time τB and bunching amplitude B (fits as red
and blue curves). The bunching parameters are used in (a) and (b) to
reproduce the measured data (shaded curves). Normalizing the central
peak at τ = 0 with respect to the Poisson level (dashed line) reveals

antibunching values of g
(2)
QD1 (0)=0.10 ± 0.03 and g

(2)
QD2 (0)=0.00 ± 0.03.

The inset in (a) illustrates that the majority of measured coincidences
appears in only one bin, pointing towards laser leakage.

Using this notation, A∞ corresponds to the peak area at the Poisson level
including background. We determine D by first averaging the measured co-
incidence counts in between the peaks to obtain the background rate d and
subsequently integrating d for the duration of one excitation cycle according
to D = d · Trep. Treating the parameters and B, τB, and A∞ as free, we
obtain the fits shown as solid curves in (c) and (d). For both emitters we find
bunching time constants of τB = 45 ns.

Eventually, the raw antibunching values can be evaluated using relation
(6.7), leading to g

(2)

QD1 (0)=0.26 ± 0.02 and g
(2)

QD2 (0)=0.20 ± 0.02, where A0

was directly integrated from the measured data. Here, the stated errors were
propagated from the standard error of A0 and the confidence interval of A∞.
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Background-corrected antibunching values according to

g(2)
corr (0) =

A0 −D
A∞ −D

(6.9)

yield g
(2)

corr,QD1 (0)=0.10±0.03 and g
(2)

corr,QD2 (0)=0.00±0.03. From our results,
we reconstruct the overall measured intensity correlation function by

g(2) (τ) = d+
1

2τr

∑

i

(Ai −D) · exp

[
−|τ − i · Trep|

τr

]
, (6.10)

which is illustrated in Fig. 6.11 (a) and (b) as shaded area. The amplitude
of coincidence peaks at the Poisson level can be determined by A∞/(2τr) and
is depicted as dashed line. Eventually, we like to highlight the central peak
measured in the intensity auto-correlation of QD1 [see inset of Fig. 6.11 (a)].
It can be seen that most coincidences appear exactly within the central bin at
τ = 0 leading to a slight disagreement between measured and reconstructed
g(2)-function, although their areas are set to be identical. This suggest that
these coincidences were caused by photons that are shorter in time than 350 ps,
corresponding to the bin-width of the histogram. The only possible source
in this respect is residual excitation light leaking through the polarization
suppression - an issue we will occasionally encounter in the upcoming sections.

6.3.4 Indistinguishability of Consecutively Emitted Photons

As a first consistency check between the measured linewidths and the achiev-
able photon indistinguishabilities, we perform HOM measurements on each
emitter individually. The experiment is set up as described in Sect. 5.3.1
and the corresponding correlation measurements can be seen in Fig. 6.12 (a)
and (b). Due to insufficient integration time, the measurement performed for
QD1 suffers from poor statistics. Accordingly, it is not reliable to extract
the visibility by a direct fit of the central peak using Eq. (3.26). Instead, we
integrate each peak individually. The obtained peak areas along with their
standard errors are depicted in (c) and (d) as black dots. The red and blue
colored bars therein stem from a fit, which considers both bunching due to
emitter blinking as well as the influence of beam splitters with unequal reflec-
tivity and transmission, i.e. R 6= T . The derivation of the underlying fitting
model is nontrivial and offers no valuable insight at this point. It is therefore
omitted here and offered in Appx. E instead. From the fit we extract TPI
visibilities of VQD1 =(34± 18) % and VQD2 =(61± 7) %, where the large error
of VQD1 results from the aforementioned insufficient statistics. As discussed in
Sect. 6.3.2, we assume that both emitters are not affected by phonon-induced
pure dephasing. Accordingly, an effective inhomogeneous linewidth can be
unambiguously assigned to each given visibility following Eq. (3.33) by set-
ting ϑPD = 1 and considering the known radiative lifetime. Here, we obtain

123



6. Quantum Interference with Photons from Remote Quantum Dots

QD1 V =(34± 18)%

−26 −13 0 13 26
0

1

2

3

4

5

Detection time delay τ [ns]

C
oi
n
ci
d
en
ce

co
u
n
ts

[×
10
] QD2 V =(61± 7)%

−26 −13 0 13 26
0

1

2

3

4

Detection time delay τ [ns]

C
oi
n
ci
d
en
ce

co
u
n
ts

[×
10

2
]

QD1

−39 −26 −13 0 13 26 39
0

2

4

Detection time delay τ [ns]

P
ea
k
ar
ea

[×
10

n
s] QD2

−39 −26 −13 0 13 26 39
0

2

4

6

Detection time delay τ [ns]

P
ea
k
ar
ea

[×
10

2
n
s]

(a) (b)

(c) (d)

Figure 6.12. Hong-Ou-Mandel correlation measurements of
consecutively emitted photons. Data are shown as black lines for
(a) QD1 and (b) QD2. The integrated areas of each peak are illustrated
in (c) and (d) as black dots. Fits considering the blinking dynamics
and beam splitter asymmetry are shown as colored bars. From the
fits we extract two-photon interference visibilities of V =(34± 18) %
and V =(61± 7) %. Based on the obtained parameters, the correlation
measurements are reconstructed [red and blue shaded curves in (a) and
(b)].

σ′QD1 =(1.22± 1.68) GHz and σ′QD2 =(0.52± 0.13) GHz, which are well below
the corresponding equilibrium values of 2.10 GHz and 1.22 GHz reported in
Sect. 6.3.2. This observation indicates that SD does not fully unfold within
the time set by the Mach-Zehnder interferometer delay of τmzi = Trep/3 =
4.37 ns. Based on our model for TPI between consecutively emitted photons
(see Sect. 3.2.3), it is possible to extract the memory depth of spectral diffu-
sion τsd by rearranging Eq. (3.38) according to

τsd = −τmzi/ ln

(
1− Σ2

2σ2
0

)
. (6.11)

Here, Σ and σ0 are to be interpreted as effective and equilibrium inhomoge-
neous linewidths, respectively, which yields time constants of τsd,QD1 = 23 ns
and τsd,QD2 = 46 ns. Eventually, we use the effective inhomogeneous linewidths
to reconstruct the time-structure of the measured correlation functions (see
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6.4. Recovering Spectral Indistinguishability via Quantum Frequency Conversion

Appx. E). The results are illustrated as red and blue shaded curves in Fig.
6.12 (a) and (b) and reveal a good agreement with the recorded data.

6.4 Recovering Spectral Indistinguishability via
Quantum Frequency Down-Conversion

From the spectra shown in Fig. 6.10 it is obvious that the fluorescence emitted
by QD1 and QD2 is spectrally disjunct for the most part. Accordingly, a HOM
experiment performed between the photons of both remote emitters does not
hold out the prospect of any observable quantum interference. More specif-
ically, using the known spectral detuning of δνQD =8.06 GHz, the radiative
lifetimes τr,QD1 = 612 ps and τr,QD2 = 584 ps, as well as the inhomogeneous
linewidths σ′QD1 = 2.10 GHz and σ′QD2 = 1.22 GHz, we expect the interference
contrast to be no more than Vrem ≈ 0.1 % following Eq. (3.28). Compensating
the spectral mismatch, on the other hand, leads to a maximized contrast of
about 27 % at δνQD =0 GHz, which is now mainly limited by the inhomoge-
neous broadening of both emission lines.

In the remainder of this chapter we present the results of a set of HOM
measurements performed between the photons from both remote QDs. The
experimental design follows the concept discussed in the outline of this chap-
ter, i.e. we employ FC1 and FC2 to convert the NIR photons to the tele-
com C-band and simultaneously reset their relative detuning to any desired
value by choosing an appropriate pump laser detuning δνpump. First, we will
present the obtained correlation measurements and illustrate the procedure,
which was chosen to extract the desired TPI visibilities. We then discuss
the achieved visibilities with respect to the net-detuning between the telecom
photons δνtel = δνQD − δνpump.

Note that we here only focus on the spectral similarity of the photons,
while all other degrees of freedom are assumed to be identical: (i) an ideal
spatial mode overlap is inherently ensured by use of a fiber-based BS, (ii) the
arrival of both input photons is synchronized prior to the experiment adjusting
the delay stage shown in Fig. 6.2 (a), and (iii) the polarization state of both
input modes is matched using a set polarization controlling optical elements
located in front of the HOM beam splitter.

6.4.1 Correlation Measurements

As has been done for the experiments presented in Sect. 5.3, the desired sig-
nature of quantum interference is obtained by correlating the detection events
recorded at both BS outputs, i.e. by measuring the intensity correlation func-
tion g(2) (τ). Although the resulting coincidence pattern is straightforward
compared to the measurements between consecutively emitted photons [see
e.g. Fig. 5.8 (b) and (c)], it exhibits some unique features that need to be ad-
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Figure 6.13. Explanation of the obtained coincidence pattern.
(a) Coincidences appearing within the central bin at τ = 0 stem from
cross-coincidences, i.e. correlated events between detected photons from
distinct emitters. (b) In case of off-center bins at τ = N × Trep ad-
ditional auto-coincidences contribute to the overall pattern, originat-
ing from photons subsequently emitted by the same source (see bottom
row). (c) Simulation of the pulsed coincidence patter expected for an
ideal single photon source of distinguishable photons. Due to the miss-
ing auto-coincidences, the central peak exhibits only half the height of
all neighboring peaks.

dressed. On that account, we first discuss the anticipated coincidence pattern
in the limit of entirely indistinguishable photons. We further assume that both
emitters are ideal single photon sources. This assumption is well sustained by
our antibunching measurements presented in Sect. 6.3.3 and necessary to en-
sure that no two photons arrive within the same time-bin and same input
mode of the BS. Additionally, we do not include the blinking of both emitters
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6.4. Recovering Spectral Indistinguishability via Quantum Frequency Conversion

for the time being.

All relevant cases contributing to a respective measurement are illustrated
in Fig. 6.13. Accordingly, cases in which both photons take the same BS
output are not shown. First, consider coincidences appearing in the central
time-bin at τ = 0, which we obtain, if there was one photon in each output
mode of the beam splitter at the same time [Fig. 6.13 (a), right side]. In
case of single photons this implies that each emitter contributed one of those
photons and both were either reflected or transmitted [Fig. 6.13 (a), left side].
Assuming unit detection efficiencies, the illustrated possible input situations
lead to coincidences with a probability of pcoinc = R2 and pcoinc = T 2, re-
spectively, and are referred to as cross-coincidences [272]. Correlated events
at multiples of the repetition time Trep stem from photons that were detected
with a delay of τ = N × Trep. In contrast to the situation before, this can
not only be realized by cross-coincidences [Fig. 6.13 (b), top row], but also by
photons subsequently emitted from the same QD (bottom row). The respec-
tive initial situations lead to so-called auto-coincidences with a probability of
pcoinc = R× T .

The resulting overall coincidence pattern is illustrated in (c). The pulsed
structure of the peaks follow the pulsed excitation scheme. In an ideal scenario
all peaks exhibit the same height except for the central peak due to the lack
of auto-coincidences. The number of correlated events A0 and AN found
within the central and all off-center peaks is proportional to the contributing
coincidence probabilities. Accordingly, we find the ratio

% =
A0

AN
=

Pcross

Pcross + Pauto
=

R2 + T 2

R2 + T 2 + 2R× T = R2 +T 2, (6.12)

where the last equality only holds for a BS without excess loss. Therefore,
in case of an ideal symmetric BS with R = T = 1/2, the central peak is
half as high compared to its neighbors. For the fiber-based BS employed in
our experiments, we measure an asymmetry of R : T = 0.47 : 0.53, which
corresponds to % = 0.502. In case of partially indistinguishable photons, we
expect that the experimentally obtained number of coincidences in the central
peak A0,exp is reduced by a factor of 1 − V compared to A0, according to
Eq. (2.52). Setting A0 = A0,exp/ (1− V ) in Eq. (6.12), we can evaluate the
TPI visibility as

V = 1− A0,exp

AN × %
. (6.13)

Fig. 6.14 (a) shows an exemplary correlation measurement between con-
verted telecom photons of both emitters taken at a relative pump laser detun-
ing of δνpump = 8.3 GHz, which leads to a residual detuning between the tele-
com photons of δνtel = δνQD−δνpump = −0.2 GHz. As reported in Sect. 6.2.2
the telecom photon flux of QD2 is almost fivefold higher than the flux of QD1.
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Figure 6.14. Correlation measurement between telecom pho-
tons showing quantum interference. (a) Measurement for telecom
photons at a net-detuning of δνtel = 0.2 GHz, i.e. close to resonance.
The coincidence peaks show clear bunching in a range of about ±50 ns.
(b) Black dots correspond to integrated area under each peak, shown
along with standard error. From a corresponding fit (red curve) we ex-
tract a bunching time of τB = 48 ns and a peak area at the Poisson-level
of A∞ = 784 ns. (c) shows a magnification of the measurement around
the central peak. The upper gray dashed line illustrates the Poisson-
level, the lower dashed line the anticipated central peak level for entirely
distinguishable photons. The missing coincidences of the central peak
indicate quantum interference at the HOM beam splitter, for which a
contrast of Vexp =(28± 3) % can be extracted. The red shaded curve
corresponds to the reconstructed correlation measurement, based on all
known parameters. (d) The central peak is shown along with recon-
structed correlation measurements under the influence of detector jitter
for actual telecom photon parameters (red) as well as distinguishable
photons (blue). The green curve illustrates a measurement with infinite
time resolution.
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The excess photons of the brighter emitter would superimpose the HOM mea-
surement with a simple antibunching measurement and accordingly lead to
overestimated TPI visibilities. Therefore, in the scope of this and the fol-
lowing measurements, we let both telecom photons equally contribute to the
overall count rate by attenuating QD2. Similar to the correlation measure-
ments discussed in Sect. 6.3.3 and 6.3.4, the coincidence peaks clearly bunch
around the time lag of τ = 0. As a consequence our considerations of the
preceding paragraph do not hold for off-center peaks with small N , i.e. for
peaks within the bunching range. Instead, it is necessary to determine the
peak area in the limit of N →∞. On that account, after background subtrac-
tion, we individually integrate each peak except for the central one, leading
to the data shown in (b). The red curve therein corresponds to a fit using
the model function (6.8). From the fit we obtain a bunching time of τB =
48 ns and a peak area at the Poisson level of A∞ =(784± 4) ns. Note that
Eq. (6.8) is intended to describe the blinking dynamics of a single emitter. A
more general model for the present experiments includes two independent sets
of blinking parameters to account for both dissimilar emitters. Based on the
analysis presented in Sect. 6.3.3, we assume that both emitters exhibit equal
τB. Moreover, considering that both emitters contribute to the observed count
rate in equal shares, the general model reduces to an expression, which can
be effectively described by Eq. (6.8).

The central peak along with its 3 adjacent neighbors is shown in Fig. 6.14
(c). From the bunching fit, we obtain the peak amplitude at the Poisson level
C∞ according to

C∞ = f · A∞
τr,QD1 + τr,QD2

, (6.14)

which corresponds to the upper dashed line in (c). Here, 1/ (τr,QD1 + τr,QD2)
simply results from the integration of the two-sided exponential decay in
Eq. (3.26) and f accounts for the reduced peak amplitude due to the de-
tector jitter. The latter was numerically determined to be f = 0.91, assuming
a normally distributed detector response with a FWHM of 200 ps. Following
Eq. (6.12) it is possible to find the amplitude of the central peak for entirely
distinguishable photons via C0 = C∞×%, which is shown as lower dashed line.
Apparently, the central peak stays far below this limit, indicating that both
telecom photons coalesce at the HOM beam splitter with non-classical prob-
ability, being a signature of quantum interference. In order to quantify the
photon indistinguishability, we evaluate the experimentally observed TPI vis-
ibility Vexp using Eq. (6.13). Due to the observed bunching, however, we need
to substitute AN by A∞ as obtained from the corresponding fit. We determine
A0,exp by integrating the area under the central peak from the measured data
and find a visibility of Vexp =(29± 3) %. The stated error is propagated from
the standard error of A0,exp and the confidence interval of A∞. Eventually,
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Figure 6.15. Summary of correlation measurements at 9 dif-
ferent detunings. Shown is the central peak of each measurement
(black circles) along with the reconstruction of the measurement (red
shaded curve) and the limit for distinguishable photons (blue shaded
curve) according to the description in the main text. Each plot con-
tains the net-detuning of the telecom photons δνtel and the obtained
TPI visibility Vexp.

we reconstruct the overall correlation measurement according to

g(2) (τ) = y0 + 2A∞ · % · G(2) (τ) + 2
∑

i 6=0

Ai · G(2)
0 (τ − i · Trep), (6.15)

where all Ai correspond to the fitted peak areas including bunching [red curve
in Fig. 6.14 (b)]. The correlation function G(2) (τ) is taken from Eq. (3.26)
and describes the central peak based on all known emitter parameters. The
off-center peaks are described by G(2)

0 (τ), which equals to G(2) (τ) in the limit

of no TPI. The factor of 2 considers that integration over G(2)
0 (τ) yields 1/2

and y0 accounts for a constant background. Moreover, in order to take the
detector jitter into account, g(2) (τ) is convoluted with a normal distribution
(FWHM = 200 ps). The result is depicted as red shaded area in Fig. 6.14
(c) and (d), revealing good agreement with the data. Additionally, Fig. 6.14
(d) shows the correlation function for entirely distinguishable photons (blue

130



6.4. Recovering Spectral Indistinguishability via Quantum Frequency Conversion

shaded curve) and for a measurement with infinite time resolution, i.e. without
detector jitter (green curve).

This type of correlation measurement was repeated at overall 10 different
detunings δνtel and evaluated according to the preceding discussion. The mea-
sured central peak along with its reconstruction and the limit for entirely dis-
tinguishable photons is depicted in Fig. 6.15 for all measurements except the
one already presented. The corresponding detunings and obtained visibilities
are stated therein. Generally all measurements show a good agreement with
the reconstructed correlation functions. For most of the measurements we ob-
serve that the central bin at τ = 0 contains more measured coincidences than
predicted by the theoretical curve. We attribute them to residual excitation
laser superimposing the single photons, which has already been mentioned in
Sect. 6.3.3. These coincidences generally reduce the experimentally obtained
visibility and can even cause negative values [see Fig. 6.15 (a)].

6.4.2 Relative Spectral Tuning of Converted Telecom
Photons

The correlation measurements and extracted visibilities shown in Fig. 6.14 and
Fig. 6.15 are clearly sensitive to the chosen pump laser detuning. This already
suggests that the fundamental motivation of the present experiment - the
relative tunability of both telecom photons via QFC - works as intended. It is
of vital importance, however, to investigate, whether the obtained tuning data
can be fully understood based on all available information about both emitters
and converters. In particular, any negative impact of the down-conversion step
on the mutual indistinguishability between the telecom photons needs to be
ruled out.

On that account, we first summarize all TPI visibilities Vexp and respective
errors presented in the last section as black dots in Fig. 6.16 as function of the
designated pump laser detuning δνpump (top abscissa) and resulting telecom
photon detuning δνtel = δνQD − δνpump (bottom abscissa). In Sect. 6.2.2
we obtained an upper limit of 110 MHz for the relative frequency stability
between both frequency converters, which we here assume as the error of
δνtel (horizontal error bars). The rightmost data point was taken at a pump
laser detuning of δνpump = 0 GHz, i.e. the telecom photons exhibit the same
spectral detuning as the unconverted NIR photons. As expected we obtain a
vanishing TPI visibility of Vexp =(1± 5) % at this setpoint. The maximum
interference contrast of Vexp =(29± 3) %, on the other hand, is achieved at
δνpump = 8.3 GHz, corresponding to a telecom photon detuning of δνtel =
−0.2 GHz. The remaining data points clearly visualize how both telecom
photons are first tuned in and then again out of resonance with increasing
δνpump. The additional blue diamond-shaped data point was obtained from an

131



6. Quantum Interference with Photons from Remote Quantum Dots

in
re
so
n
an

ce

or
ig
in
al

N
IR

d
et
u
n
in
g

−4 −2 0 2 4 6 8

0

10

20

30

Telecom photon detuning δνtel [GHz]

T
P
I
v
is
ib
il
it
y
V

[%
]

Vmax [%]
telecom data 29 ± 3

NIR data 26 ± 3

model 27 ± 2

12 10 8 6 4 2 0

Pump laser detuning δνpump [GHz]

Figure 6.16. Two-photon interference visibility over spectral
photon detuning. Shown are data of HOM experiment with telecom
photons as performed here (black dots) and with NIR photons from the
same emitter pair as reported in [272] (blue diamond). Error bars cor-
respond to errors given in Fig. 6.15 for Vexp and frequency converter
stability discussed in Sect. 6.2.2 for δνtel. The experimental data are
compared to the model function (3.28) based on the known emitter pa-
rameters (red curve). The rightmost data point was taken at δνpump = 0,
i.e. the telecom photons retain the original detuning of the unconverted
photons.

independent TPI experiment on the same QD pair and is reported in [272]3.
Here, the NIR photons were tuned into resonance by operating QD2 at a
temperature of 11 K, while QD1 was kept at 4 K. At this point a TPI visibility
of Vexp,nir =(26± 3) % was observed, being in good agreement with the telecom
data.

In order to further assess the obtained visibilities, we apply Eq. (3.28)
using the predetermined radiative lifetimes, inhomogeneous linewidths and
emitter detuning as reported in Sect. 6.3 as well as Sect. 6.2.1. The result
is depicted as red curve along with a confidence band (red shaded area),
which was derived from the confidence intervals of all input parameters. The
model shows an overall good qualitative and quantitative agreement with the
data. Besides the already discussed laser leakage, we attribute deviations
between model and theory to long term drifts of the QD emission lines: The
emission spectra presented in Sect. 6.3.2 were integrated for ≈ 30 min, while
the overall tuning series was taken in course of an entire day. Accordingly,

3Note that both emitters are labeled differently in [272]: QD1 and QD2 correspond to
QDR and QDB, respectively.
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slow drifts of the emission frequencies might distort the tuning curve, e.g.
for the measurements taken at δνtel = 1.8, 2.7, and 3.8 GHz. Note that the
decreased visibility of the NIR data compared to the telecom data might stem
from the elevated sample temperature inducing additional lattice vibrations.
According to our estimation given in Sect. 5.2.2, a temperature of 11 K leads
to a pure dephasing rate of ≈ 70 MHz. Taking this additional homogeneous
broadening of one emitter into account, we obtain only a minor reduction of
the visibility of less than 1 %.

It is important to note that the model only incorporates spectral properties
of the QD emission without considering any influence of the down-conversion
step. Therefore, the good agreement between model and data suggests that
QFDC preserves the spectral properties of remotely emitted single photons.
This conclusion is further corroborated by the additional HOM measurements
with unconverted photons using temperature tuning. Furthermore, the results
clearly demonstrate that QFDC is an appropriate tool to tune the telecom
photons into resonance and thereby recover their maximally possible mutual
indistinguishability.

6.5 Summary

In the course of this chapter we have presented experimental results of a two-
photon interference experiment after Hong-Ou-Mandel, which was performed
using the independent emission of two remote quantum dots. Prior to the
HOM experiment the single photons were transduced to the telecom C-band
via quantum frequency down-conversion. Additionally, the down-conversion
step was used to compensate the spectral mismatch between the photons of
both emitters, rendering other tuning mechanisms redundant. Based on a
careful evaluation of all relevant spectral and temporal properties of both
quantum dots, it was possible to fully support the obtained experimental
interference visibilities using the theoretical model derived in Sect. 3.2. Ac-
cordingly, the results demonstrate that QFDC conserves the mutual indistin-
guishability of independently emitted single photons and can simultaneously
be used to reset the relative detuning of the converted photons. Further in-
formation and benchmarks obtained throughout this chapter are summarized
in the following highlights-box.
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Photon Source

� Investigation of single pho-
tons emitted by two InAs
QDs operated in independent
cryostats. Both QDs emit at
904.4 nm with a relative de-
tuning of 8.06 GHz and deliver
photon fluxes of 105 and 2.9×
105 photons/s (Sect. 6.2.1).

� Stability of emission fre-
quency was improved over
Chap. 5 operating the QDs
at 4 K, using s-shell excita-
tion, and an additional non-
resonant cw-laser. Thereby,
inhomogeneous broadening
could be reduced to 2.10 and
1.22 GHz (Sect. 6.3.2).

� Radiative lifetimes of 612 and
584 ps were measured. Ad-
ditional homogeneous broad-
ening contributions could be
ruled out (Sect. 6.3.1 and
6.3.2).

� Efficient polarization suppres-
sion and subsequent narrow
spectral filtering allowed to
mostly remove the resonant
excitation laser, leading to a
signal-to-background ratio as
high as 26. The polariza-
tions suppression required to
use charged QDs, which do
not exhibit any fine-structure
(Sect. 6.2.1).

� Very pure single photon emis-
sion was observed with an-
tibunching values as low as
0.10 ± 0.03 and 0.00 ± 0.03
(Sect. 6.3.3).

� Two-photon interference vis-
ibilities of 34 % and 61 %
were observed using consecu-
tively emitted photons from
the individual emitters, be-
ing well above the limits
of 22 % and 35 % obtained
from the emission line shapes
for uncorrelated photon emis-
sion. From here, spectral dif-
fusion memory depths of 23
and 46 ns could be extracted
(Sect. 6.3.4).

Frequency Conversion

� Successful implementation
of two identical frequency
converters to independently
transduce photons of both
emitters from NIR regime to
1557 nm (Sect. 6.2.2).

� External device efficiencies of
35 % and 31 % were obtained,
leading to photon fluxes of
26×103 and 128×103 telecom
photons/s at the respective
converter outputs, superim-
posed by about 3 × 103 and
2× 103 background photons/s
(Sect. 6.2.2).

� The relative frequency stabil-
ity between both converters
was determined to be as low
as 20 MHz, being almost two
orders of magnitude below
the frequency jitter of both
QDs. A more conservative
estimation assuming uncorre-
lated frequency drift leads to
110 MHz (Sect. 6.2.2).

Chapter 6 - Highlights
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Quantum Interference with
Independent Photons

� A two-photon interference
experiment after Hong-Ou-
Mandel was performed be-
tween the converted tele-
com photons of both emitters
(Sect. 6.4).

� No quantum interference
is expected for the uncon-
verted photons, as their rel-
ative detuning of >8 GHz ex-
ceeds the combined linewidths
(Sect. 6.4).

� The possibility to set the tar-
get wavelength of each con-
verter individually allowed for
relative tuning of the single
telecom photons.

� A maximum interference con-
trast of (29± 3) % was mea-
sured for the telecom photons
at a relative detuning close to
zero. At the original detun-
ing of 8.1 GHz no non-classical

photon-coalescence was ob-
served (Sect. 6.4.2).

� For the same QD pair a
contrast of (26± 3) % is re-
ported in literature, using
unconverted photons and
temperature tuning instead
(Sect. 6.4.2).

� Based on the emitter param-
eters a contrast of (27± 2) %
is theoretically predicted
(Sect. 6.4.2).

� The agreement of all val-
ues shows that quantum fre-
quency down-conversion pre-
serves the mutual indistin-
guishability of independent
photons and can be simultane-
ously used as a tuning mecha-
nism to recover photon indis-
tinguishabilities (Sect. 6.4.2).

� All underlying measured and
theoretically predicted inten-
sity correlations were in excel-
lent qualitative and quantita-
tive agreement (Sect. 6.4.1).

Chapter 6 - Highlights continued

135





Chapter 7

Entanglement Generation Based on

Quantum Interference

Copyright notice: Note that the results discussed in Sect. 7.1
were originally published in [197] (Copyright © 2018 The Au-
thors. Published by IOP Publishing Ltd on behalf of Deutsche
Physikalische Gesellschaft).

A quantum mechanical composite system is said to be entangled, if the
states of its components are mutually dependent [2]. As a consequence, mea-
surements performed on the individual states of an entangled system reveal
strong correlations that go beyond corresponding classical limits. These corre-
lations can be exploited in a number of quantum information processing appli-
cations such as quantum teleportation [274,275], superdense coding [276–278],
and quantum key distribution [13, 33] to name a few. Therefore, it is hardly
surprising that the efficient generation of entangled quantum states is at the
focus of various research activities. Entangled photon pairs, for instance, can
be obtained from spontaneous parametric down-conversion in nonlinear opti-
cal materials [78] or radiative decay cascades in single photon emitters [279].

In the scope of this final chapter, we discuss two alternative approaches
that take advantage of the effective photon-photon interaction offered by quan-
tum interference:

(i) Entangling two photons via their interaction within an all-optical control-
led-NOT gate (CNOT) as proposed in [147]. The CNOT gate is investi-
gated in light of our theoretical considerations presented in Chap. 3 and
assessed with respect to the best available solid state emitter systems
up to date.

(ii) Entanglement swapping as part of standard quantum repeater proto-
cols [31, 32]. In particular, we address the question whether achievable
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entanglement rates in long-haul fiber-based quantum repeater networks
are mainly limited due to attenuation or dispersion.

7.1 Entanglement via a Controlled NOT
Operation

Currently, the most thriving implementation of quantum computers is based
on superconducting qubits, as they can be build and operated with readily
available and mature integrated circuit and radiofrequency technology [280].
Linear optical quantum computing, on the other hand, aims at an all-optical
approach [146,220], which would significantly simplify the integration of quan-
tum computers into quantum communication networks. However, a universal
quantum computer needs to be able to conditionally toggle the state of a qubit,
which can only be achieved by introducing nonlinear optical gates [281]. As
has been suggested by Knill, Laflamme, and Milburn (KLM) [146], the non-
linear phase shift entailing two-photon interference might be exploited on that
account.

As an analogue to the XOR gate employed in classical digital comput-
ing, an all-optical CNOT gate based on the guidelines of the KLM-protocol
has been proposed in [147], while its operation has been demonstrated in a
number of experiments [282–284]. One of the most relevant applications of
a CNOT gate is the entanglement of the two input photons, which is medi-
ated by quantum interference at a single asymmetric beam splitter. In the
following we describe the architecture of an ideal CNOT gate and emulate the
generation of a Bell-state including state preparation, CNOT gate operation,
as well as a final state tomography using our formalism derived in Chap. 3. In
particular, we determine the fidelity of the entangled output state and discuss
the limitations set by emitter parameters.

The considered photonic circuit is depicted in Fig. 7.1. It consists of 6 in-
put and 6 output modes. Two photons enter the gate, which are referred to as
control (C) and target photon (T). Both photons are regarded qubits in dual
rail representation. Accordingly, the states |0〉C and |1〉C of the control photon
occupy modes 2 and 3 (called c0 and c1), while the target states |0〉T and |1〉T
are encoded in modes 4 and 5 (t0 and t1). The terminal modes 1 and 6 are
typically not fed with any photons and therefore referred to as vacuum modes
vc and vt, respectively. The CNOT gate resides at the center of the overall
optical gate. Basically, it is composed of a Mach-Zehnder interferometer mix-
ing both target modes and three asymmetric beam splitters with a reflectivity
of R = 1/3. The most crucial part, however, is the central asymmetric beam
splitter connecting modes c1 and t0, at which the actual interaction between
control and target takes place: In case the control photon is in state |1〉C , TPI
imprints a phase on state |0〉T , which in turn affects the interference between
both target modes at the interferometer output. As a result the state of the

138



7.1. Entanglement via a Controlled NOT Operation

1vc

2c0

3c1

4t0

5t1

6vt

Φ

Φ

Φ

state preparation

Uprep

entanglement generation

UCNOT

state tomography

UXX
tom

|1〉C

|0〉T
pXX

R = 1/3

R = 1/3

R = 1/3

R = 1/2

beam splitter Φ phase shifter

Figure 7.1. Illustration of the overall photonic circuit includ-
ing the controlled NOT gate. The target and control photon enter
the circuit via input modes c1 and t0, respectively. The control pho-
ton is then prepared in a superposition state between modes c0 and
c1 via Uprep. Both photons are entangled with help of the controlled
NOT (CNOT) gate represented by UCNOT, which is designed after [147].
The fidelity of the output state is assessed emulating a state tomogra-
phy (UXX

tom and coincidence detection between output modes 3 and 5).
Adapted with permission from [197], IOP Publishing Ltd on behalf of
Deutsche Physikalische Gesellschaft.

target photon is flipped conditioned on whether |1〉C was occupied or not.
The asymmetric beam splitters are a necessity to make TPI possible. On the
other hand, they cause the interferometer to be lossy so that the CNOT gate
only works as intended in one out of nine cases. Therefore, its operation is
often referred to as probabilistic. The unsuccessful attempts, however, can be
identified and discarded with appropriate coincidence measurements at the
gate outputs. For the remaining successful runs it is then valid to note the
action of the gate via

UCNOT |0〉C |0〉T = |0〉C |0〉T , (7.1)

UCNOT |0〉C |1〉T = |0〉C |1〉T , (7.2)

UCNOT |1〉C |0〉T = |1〉C |1〉T , and (7.3)

UCNOT |1〉C |1〉T = |1〉C |0〉T , (7.4)

where UCNOT is the unitary matrix representing the CNOT gate. Based on
these relations we realize, that both input photons can be entangled via a
CNOT operation, if the target photon enters the gate in a superposition state.
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In particular, we are able to obtain all four Bell-states according to

|Ψ±〉 = UCNOT (|0〉C ± |1〉C) |1〉T /
√

2

= (|0〉C |1〉T ± |1〉C |0〉T) /
√

2 and (7.5)

|Φ±〉 = UCNOT (|0〉C ± |1〉C) |0〉T /
√

2

= (|0〉C |0〉T ± |1〉C |1〉T) /
√

2. (7.6)

As all Bell-states yield the same results regarding the following analysis, we
only consider creation and assessment of |Φ+〉 for simplicity. A small obstacle
arises as our formalisms given by Eq. (3.25) is not applicable to input photons,
which are in superposition states. This can be easily met, however, if we
include an appropriate state preparation to the overall process. We realize this
by feeding the gate with a control photon in state |1〉C, which is transfered to
the desired superposition using an additional beam splitter and phase shifter,
represented by the state preparation matrix Uprep (Fig. 7.1, left side). We can
write the corresponding process as Uprep |1〉C = (|0〉C + |1〉C) /

√
2.

In order to assess the entanglement quality of the output state, we de-
termine its fidelity. In [227] it is shown that the fidelity can be written as a
function of 6 different coincidence probabilities via

FΦ+
= (pHH + pV V + pDD + pAA − pRR − pLL) /2, (7.7)

where the indices of pXX are borrowed from the common notation of po-
larization states, i.e. we identify the base states as horizontal |H〉 = |0〉
and vertical |V 〉 = |1〉 and obtain the superposition states diagonal |D〉 =
(|0〉+ |1〉) /

√
2 and antidiagonal |A〉 = (|0〉 − |1〉) /

√
2 as well as right circular

|R〉 = (|0〉+ i |1〉) /
√

2 and left circular |L〉 = (|0〉 − i |1〉) /
√

2. With that
pXX is defined as the coincidence probability measured between control and
target photon after projecting the overall output state to |X〉C |X〉T. We real-
ize the projection by employing two sets of beam splitter and phase shifter, one
of each connecting both control and both target modes, respectively (Fig. 7.1,
right side). All four linear optical components are represented by the unitary
matrix UXXtom , whose elements are chosen such that

UXXtom |X〉C |X〉T = |1〉C |1〉T . (7.8)

The desired pXX can now simply be obtained by determining the coincidence
probability between the outputs 3 and 5. Summarizing, the procedure is as
follows:

(i) Control and target photon enter the photonic circuit through inputs i =
3 and j = 4,

(ii) the control photon is prepared in the necessary superposition state via
Uprep,
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(iii) both photons are entangled by means of the CNOT gate UCNOT produc-
ing the Bell-state |Φ+〉,

(iv) the output states are rotated via the state tomography matrix UXXtom ,

(v) the coincidence probabilities pXX between the output ports k = 3 and
l = 5 are calculated using Eq. (3.25) and the overall gate matrix Ugate =
UXXtom · UCNOT · Uprep, and

(vi) the desired Bell-state fidelity is eventually obtained applying Eq. (7.7).

The elements of Uprep and UXXtom are adapted from [226], while UCNOT is con-
structed using the elements specified in [147].

It is certainly possible to obtain Bell-state fidelities for arbitrary dissimilar
photon pairs using the described procedure. But for the sake of a concise
presentation of our results, we only focus on photons with identical lifetimes as
well as homogeneous and inhomogeneous line broadening contributions caused
by pure dephasing (PD) and spectral diffusion (SD) and no relative detuning.
In this case we have τ1,2 = τr, Γ∗1,2 = Γ∗ → γ = 2Γ∗ + 1/τr, σ1,2 = σ → Σ2 =

2σ2, as well as δν = 0 and can use the normalized emitter parameters ϑPD =
γ · τr and ϑSD = σ′ · τr already introduced in Sect. 3.2.2. The corresponding
Bell-State fidelity FΦ+

as function of ϑPD and ϑSD is plotted in Fig. 7.2
(a). The white dashed line therein corresponds to photon pairs that yield
FΦ+

= 50 %, being an important limit, as it classifies a given two-photon
state as either separable (FΦ+

< 50 %) or non-separable (FΦ+
> 50 %) [227,

285]. Additionally, (b) illustrates the fidelity as function of the normalized
coherence time xc = τcoh/ (2τr) [compare Eq. (3.34)] for the two limiting cases
of photons that are only inhomogeneously (red solid curve, no PD) or only
homogeneously broadened (blue dashed curve, no SD). Here, it can be clearly
seen that we find FΦ+

= 50 % for a TPI visibility of V = 50 %. Moreover,
it is FΦ+

< V for 50 % < V < 100 %, which emphasizes the high demands
on photon indistinguishabilities necessary to achieve acceptable entanglement
fidelities. Note that the relation between FΦ+

and V found here was directly
obtained from our numerical simulations. They perfectly agree, however, with
the equation FΦ+

= (1 + V )/ [2 · (2− V )] found e.g. in [284].

Eventually, we use these results to estimate Bell-state fidelities that might
be achieved, if the gate was operated with photons from state-of-the-art
solid state emitters reported in literature. In particular, we consider selected
specimen representing the silicon vacancy (SiV) [286] and nitrogen vacancy
(NV) [288] defect centers in diamond, semiconductor QDs [133], as well as
single molecules [195]. Typically, the corresponding emission linewidths are
not resolved in homogeneous and inhomogeneous contributions. Therefore,
using the known radiative lifetime, we numerically find pairs of Γ∗ and σ′ that
yield the stated linewidth assuming the Voigt function defined by Eq. (2.16).
These are translated into a function ϑPD (ϑSD), which is displayed in Fig. 7.2
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Figure 7.2. Simulation results for the entanglement generation
using a controlled NOT gate. (a) Fidelity plotted as function of
normalized homogeneous and inhomogeneous linewidths. The limit of
FΦ+

= 50 % distinguishing separable from non-separable is indicated by
the white dashed line. For the emitter pair investigated in this work
(compare Chap. 6) we find a fidelity of only ≈ 37 %. Fidelities for
selected state-of-the-art emitters shown as black curves: SiV [286], QD
[133], molecules [287]. (b) Fidelity as function of normalized coherence
time for emitters that do not show pure dephasing (red solid) or spectral
diffusion (blue dashed). The curves furthermore indicate that a Bell-
state fidelity of 50 % is achieved at a two-photon interference visibility
of 50 %. Adapted with permission from [197], IOP Publishing Ltd on
behalf of Deutsche Physikalische Gesellschaft.

(a) for SiV center, QD, and molecules as black solid curves. From these para-
meterized linewidth functions, we obtain ranges of possible visibilities [using
Eq. (3.33)] and fidelities [extracted from Fig. 7.2 (a)], which are summarized
in Tab. 7.1. All obtained values consistently reside in a range of moderate fi-
delities from 73-94 %, even though the considered quantum emitters are among
the best available in terms of close-to-Fourier-limited single photon emission.
It is important to emphasize that these limited values can be entirely at-
tributed to the emitter properties, as the overall optical circuit was modeled
as ideal.

In contrast to the other presented emitters, the NV center exhibits a large
radiative lifetime of around 12 ns, corresponding to a lifetime limited linewidth
of no more than 13 MHz. Even comparatively small line broadening can there-
fore drastically reduce its coherence time. The most narrow linewidth we are
aware of was measured for NV-centers in high-quality bulk diamond and can
be found in [221]. Rapidly scanning the excitation laser across the resonance
yielded linewidths of <20 MHz, i.e. close to the Fourier-limit. Repeating these
scans however, reveals that the emission line shows SD in a range of 100 MHz.
In the scope of our simulations, we take the single scan linewidth as an upper
bound for PD, but consider the entire 100 MHz as SD range. This leads to
a TPI visibility of only 21-23 %, corresponding to a Bell-state fidelity of 34-
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Table 7.1. Two-photon interference visibilities and Bell-state
fidelities simulated for selected solid state emitters. Lifetimes
and linewidths are given as stated in literature. Visibilities and fidelities
are extracted from the simulations described in the main text.

Ref. System Lifetime Linewidth V FΦ+

[ns] [MHz] [%] [%]

[221] NV 12a 20/100b 21-23 34-35
[286] SiV 1.72 119 78-91 73-87
[133] QD 0.85 270 84-93 79-91
[287] Molecules 9.5 19 90-96 86-94
aLifetime was obtained from the given Fourier-limited linewidth.
bValue pair denotes single scan linewidth / spectral diffusion range, cf. main text.

35 %. A common strategy to overcome these poor values was applied in [73].
Therein the authors report on the entanglement of two remote NV centers via
a projective Bell-state measurement (BSM). TPI visibilities of up to 80 % were
achieved using rigorous spectral and temporal filtering, leading to Bell-state
fidelities of FΨ− = 73 % and FΨ+

= 64 %. This approach, however, comes
at the cost of a drastically reduced coincidence count rate. Moreover, from
Fig. 7.2 (b) we find that the stated visibility corresponds to a fidelity of 75 %,
being in a good agreement with the experimentally obtained values. This
comparison is valid as both entanglement procedures using a CNOT gate and
a BSM exhibit the same dependency on TPI visibilities as will be elaborated
on in the following section.

Eventually, we like to mention that the presented simulations are meant to
demonstrate the capabilities of our formalisms derived in Chap. 3. The data
shown in Fig. 7.2 (a) correspond to almost 1200 combinations of ϑPD and ϑSD.
For each data point we emulated the scattering of both photons at overall 11
linear optical elements and subsequent coincidence measurements in 6 different
bases. Yet, the entire simulation lasted only ≈2 s owing to the analytical
expression for coincidence probabilities after two-photon scattering at linear
optical gates given by Eq. (3.25). Similar performances can be expected for
more involved gates and procedures, as long as the underlying gate matrices
are known.

7.2 Attenuation and Dispersion in Fiber-Based
Quantum Repeater Networks

The field of quantum key distribution (QKD) investigates various strategies
that exploit fundamental laws of quantum mechanics in order to establish a
secure communication link between two distant parties, which is immune to
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Figure 7.3. Quantum key distribution based on entangled pho-
ton pair sources. (a) As part of the E91 protocol [13] an entangled
photon pair (red circles with gray lemniscate) is generated by an EPR-
source. The photons are separately forwarded to sender (Alice) and
receiver (Bob) via channels a and b. Both parties measure the quantum
states of the photons in random bases. The bases are later compared via
a public channel. (b) To increase the range of quantum key distribution
(QKD) schemes, quantum repeaters are used: two EPR sources produce
two entangled photon pairs. The photons in mode c and d undergo
a projective Bell-state measurement (BSM), which consists of a beam
splitter and two detectors at each output port. Whenever a coincidence
is detected, both photons in the outer modes a and b are projected to
a Bell-state, thus become entangled. The repeater station reports suc-
cessful entanglement to Alice and Bob, who are then able to use the
entangled photons for their QKD protocol.

eavesdropping. One of the most considered approaches is illustrated in Fig.
7.3 (a) and known as the E91-protocol [13], which relies on a source of two
entangled qubits, often referred to as EPR-source (after Einstein, Podolsky,
and Rosen [35]). The two qubits are shared between a sender (Alice) and
a receiver (Bob), who measure the qubit states in randomly chosen bases.
Whenever Alice and Bob pick the same base, both measurement results are
perfectly anticorrelated. Therefore, both parties can agree on a shared quan-
tum key merely by comparing the bases without ever revealing the actual
measurement outcome. If, however, an eavesdropper attempts to intercept the
quantum key exchange, the entanglement and consequently the anticorrelation
are lost. Therefore, it is possible for Alice and Bob to discover eavesdropping
simply by publicly announcing some selected measurement results.

In view of long-haul communication applications, photons as information
carriers are the natural choice and optical fiber networks seem to offer an ideal
infrastructure for QKD. However, as we have discussed in the introduction, the
maximum distance between Alice and Bob is capped at a few 100 km for point-
to-point schemes due to transmission losses [27–29] and one has to resort to
quantum repeaters (QR) [31–33] to exceed this limit. A simplified QR scheme,
which can be understood as a quantum relay [75–77], is depicted in Fig. 7.3
(b): two EPR-sources reside in between Alice and Bob. One photon of each
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source is sent to a central station via the inner modes c and d. The photons are
overlapped on a beam splitter and coincidences between its output modes are
detected. In case the photons are indistinguishable, these coincidences project
the joint state of the distant photons in outer modes a and b into an entangled
Bell-state. This step is commonly referred to as entanglement swapping via
Bell-state measurement (BSM). As soon as the central BSM-station registered
a coincidence, it reports a successful entanglement generation to Alice and
Bob, who are then able to proceed with their quantum key exchange. The
key is to recognize that no photon has to travel the entire distance L between
sender and receiver, but - in a symmetric arrangement - at maximum L/2,
which reduces the impact of attenuation.

As we have mentioned, the entanglement swapping crucially depends on
the indistinguishability of both photons, which are brought to interaction
during the BSM. More specifically, the fidelity of the output Bell-state can be
connected to the underlying TPI visibility. The fidelity, on the other hand,
needs to be close to unity to retain a high level of correlation between the
results of measurements performed by Alice and Bob on the final state. To
elaborate on the relation of photon indistinguishability and fidelity we borrow
a description offered in [289]: First, it is important to realize that the Bell-
states

|Ψ±〉 = (|0〉a |1〉b ± |1〉a |0〉b) /
√

2 and (7.9)

|Φ±〉 = (|0〉a |0〉b ± |1〉a |1〉b) /
√

2 (7.10)

constitute a complete orthonormal basis for the two state, two particle Hilbert
space describing the photons in modes a and b. We now consider the entan-
glement swapping scheme shown in Fig. 7.3 (b), where initially a is entangled
with c and b with d, and assume that both EPR sources emit entangled pho-
tons in a |Ψ−〉 state. It is straightforward to show that the composite state of
the overall system |Ψ〉abcd of four photons can be written as

|Ψ〉abcd =
1

2

∑

|B〉∈M
|B〉ab |B〉cd, (7.11)

where M denotes the set of all four Bell-states. Assuming that all photons
are entirely indistinguishable, we furthermore see that only state |Ψ−〉 is anti-
symmetric (fermionic) upon particle exchange, while |Ψ+〉 and |Φ±〉 are sym-
metric (bosonic). Therefore, only |Ψ−〉 leads to coincidences during the BSM
and consequently projects the composite state |Ψ〉abcd into the entangled Bell-
state |Ψ−〉ab. However, this only works ideally for indistinguishable photons.
For partially distinguishable photons, the projection leads to a mixed state
with decreased fidelity. The fidelity quantifies the probability that a mea-
sured coincidence corresponds to a projection to the desired state |Ψ−〉ab and
therefore is

F =
pΨ−

pΨ+ + pΨ− + pΦ+ + pΦ−
, (7.12)
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where pΨ± and pΦ± denote the probabilities to obtain a coincidence from the
respective Bell-states. Considering the fermionic and bosonic nature of the
Bell-states, it can be understood that these probabilities are given by

pΨ− = (1 + V ) /2 and (7.13)

pΨ+ = pΦ± = (1− V ) /2 (7.14)

with V being the TPI visibility. Eventually, this enables us to determine the
fidelity as

F =
1 + V

2 · (2− V )
. (7.15)

To review the performance of various QR schemes [33] considers a desired final
state fidelity of F ≥ 90 % for all discussions. Even in the most simple and
ideal case of only a single BSM, unit fidelities of the EPR-sources, and noise-
free transmission channels as well as detectors, this demand requires a TPI
visibility of V > 92.9 % following Eq. (7.15). Accordingly, visibilities of typi-
cally less than 90 % as reported in Tab. 7.1 for various solid-state emitters are
clearly insufficient. As we have thoroughly discussed throughout this work,
these visibilities are mainly limited due to different line broadening mecha-
nisms. One approach to achieve superior indistinguishabilities is to couple the
corresponding quantum emitters to high-finesse microcavities [230, 290, 291].
The advantage is even twofold:

(i) Purcell-enhancement increases the natural linewidth, while additional
broadening due to pure dephasing and spectral diffusion remains con-
stant. This improves the relative optical coherence time and thus the
indistinguishability of the emitted photons.

(ii) Moreover, the radiative lifetime is shortened due to Purcell-enhancement,
which allows higher system clock rates to be employed.

Shortening photon lifetimes can be considered the course of action, but a new
potential problem arises: chromatic dispersion is known to distort the shape
of a wave-packet [292]. Group delay dispersion (GDD) for instance, being the
leading dispersive term, causes a frequency chirp and pulse broadening. This
effect is proportional to the square of the spectral bandwidth and increases
linearly with the length of the dispersive medium. Therefore, it is expected to
have a more severe impact on temporally short photons and for long fibers. In
asymmetric QR setups, where the photons in modes c and d travel different
distances prior to the BSM, dispersion will affect both photons to a different
extent and therefore decrease their mutual indistinguishability.

Although optical fibers offer the indispensable advantage of guiding pho-
tons to any desired location, we see they entail attenuation and dispersion,
which ultimately limit the performance of quantum communication. Fig. 7.4
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Figure 7.4. Attenuation and dispersion in a SMF-28 fiber at
telecom wavelengths. The attenuation (red curve) has a global min-
imum of ≈0.18 dB/km at the telecom C-band around 1550 nm, while
dispersion (blue curve) is minimized with the telecom O-band and van-
ishes at 1314 nm (see dashed line). Both curves were obtained from fiber
parameters stated in the datasheet [293].

illustrates both quantities as function of typical telecom wavelengths. The at-
tenuation α (λ) was determined using the Hanson-matrix method [294] based
on matrix elements reported in [295] and attenuation values at specific wave-
lengths given in [293]. The dispersion value D (λ) can be evaluated using

D (λ) =
S0

4
·
(
λ− λ4

0

λ3

)
, (7.16)

where the zero dispersion slope and wavelength are S0 = 0.092 ps/(nm2·km)
and λ0 = 1314 nm, respectively [293]. As can be seen, the attenuation is
minimal within the telecom C-band, while the dispersion vanishes at λ0 in
the telecom O-band. The low losses and availability of Erbium-doped fiber
amplifiers motivated classical optical communication networks to accept the
telecom C-band as default wavelength regime, even though pulse broadening
due to chromatic dispersion causes temporal cross-talk of neighboring time-
bins (briefly addressed below). The negative impact of dispersion on photon
indistinguishabilities, however, is irrelevant to classical schemes. Therefore, in
the scope of quantum communication, the valid question arises, whether and
under which conditions the O-band should be preferred to the C-band due to
the minimized dispersion.

In the following, we approach this question first by quantifying the effect
of dispersion on short single photon pulses using realistic fiber parameters.
As figure-of-merit, we calculate the drop of the coincidence rate in an entan-
glement swapping scheme due to both attenuation and dispersion, if a given
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target-fidelity is to be achieved. The results are then discussed for various
network designs and emitter parameters comparing the performances in the
telecom O- and C-band.

7.2.1 Two-Photon Interference with Dispersed Photons

Dispersion, or more specifically chromatic dispersion, refers to the distortion
of a wave-packet in time due to a frequency dependent phase velocity. The
effect is most easily described using the spectral phase function Φ (ω), which
yields the phase that each frequency component ω acquires when traveling
through a dispersive medium. It is simply related to the refractive index
n (ω) and the length L of the medium via Φ (ω) = n (ω) kL, where k is the
wavenumber in vacuum. It is generally very intricate to treat the impact of
dispersion for a given wave function ζ (t) directly in the time domain. In the
frequency domain, however, dispersion is nothing but a multiplication with a
phase factor that carries Φ (ω) as argument. Accordingly, the dispersed wave
function ζout (t) can be related to its undispersed counterpart ζin (t) via [292]1

ζout (t) = F−1
{
F [ζin] (ω) · ei Φ(ω)

}
(t) , (7.17)

where F (•) denotes the Fourier transformation. In order to simplify the
inverse Fourier transformation, Φ (ω) is often expanded into a Taylor series
around a given central frequency ω0. Its zeroth and first order term are ir-
relevant for wave-packet distortion, as they only shift phase and envelope of
the output pulse. Therefore, we here focus on the second order term, referred
to as group delay dispersion (GDD), which leads to pulse broadening and a
frequency chirp. Accordingly, we consider the spectral phase to be

Φ (ω) ≈ 1

2
Φ(2) (ω0) · (ω − ω0)2 = κ · (ω − ω0)2 , (7.18)

where Φ(2) (ω0) = 2κ is the second derivative of Φ (ω) taken at ω0. For optical
fibers, we find that it can be expressed in terms of the dispersion value D in
Eq. (7.16) according to [296]

Φ(2) (ω0) =
2πcL

ω2
0

·D, (7.19)

where c is the speed of light in vacuum. Even despite the approximation of
Φ (ω), the inverse Fourier transformation in Eq. (7.17) remains complicated
when treating single photons with a one-sided exponential decay as given by
Eq. (3.6). However, for Gaussian input pulses a simple analytical solution is
known. Defining the input wave function as

ζin (t) =
4

√
2σ2

π
· exp

(
−σ2t2 + iω0t

)
, (7.20)

1Note that [292] is generally used as reference for all remarks regarding the description
of dispersed wave functions, if not stated otherwise.
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where σ is the standard deviation of its power spectral density, the output
pulse after the dispersive medium can be described by

ζout (t) = 4

√
1

2πβγ
· exp

[
− t2

4βγ
+ i

(
a

4
t2 + ω0t+

ϑ

2

)]
. (7.21)

Here, the abbreviations

γ = 1 + 16σ4κ2, β =
1

4σ2
,

a =
κ

β2γ
, and ϑ = arctan

(
−κ
β

)
. (7.22)

were used. Gaussian pulses certainly do not lead to the same results as ex-
ponential decays, but they yield a sufficient first estimation of dispersive ef-
fects [292]. To obtain the best possible agreement between a Gaussian pulse
of standard deviation σ and a single photon with radiative lifetime τr, we set

σ =
1

2
√

2 ln 2τr

(7.23)

in the following. In this case the FWHMs of both waveforms are matched in
the frequency domain. Fig. 7.5 (a) shows an example of a Gaussian pulse
with an initial lifetime of τin =10 ps and an arbitrary carrier frequency ω0.
Assuming the dispersion value at the telecom C-band of D = 18 ps/(nm·km)
and an optical fiber length of L = 20 km, the output pulse following Eq. (7.21)
is illustrated in Fig. 7.5 (b). As can be seen the pulse is stretched to a lifetime
of τout =19 ps and the momentary frequency varies across the pulse. The latter
effect is referred to as chirp. The pulse broadening can be simply quantified
by relating the initial to the final pulse width in Eq. (7.20) and Eq. (7.21),
which yields

τout = τin ·
√

1 +

(
λ2D

πc

)2

σ4L2. (7.24)

From here we realize that the pulse broadening scales quadratically with the
spectral bandwidth and linearly with the fiber length in the regime of strong
dispersion. Accordingly, spectrally narrow C-band photons with a lifetime
of 600 ps as investigated in Chap. 6 would only be broadened by about 2 ps
after 100 km of fiber. It is easy to understand that absorption will have a more
severe impact at this regime and the telecom C-band is clearly the best choice.
Accordingly, we will focus on short photons of a few to a few ten picoseconds
as shown in Fig. 7.5 in the following.

In order to include quantum interference into our considerations, we fol-
low the approach already used in Sect. 2.4.2, i.e. we first evaluate the joint
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Figure 7.5. Gaussian pulse propagating through 20 km of op-
tical fiber in the telecom C-band. The black dashed curves depict
the envelope of the pulse, the red and blue shaded curves illustrate the
time-dependent oscillations of the field intensity. (a) shows the initial
pulse with a temporal width of τin =10 ps at the entrance of the fiber.
(b) corresponds to the output pulse after propagation through the fiber,
broadened to a lifetime of τout =19 ps. Additionally, the momentary
frequency of the pulse is chirped, i.e. it varies across the pulse. Note
that the unrealistically small carrier frequency of ω0 ≈ 20× 2πGHz was
only chosen for illustrative purposes.

detection probability after the interaction of two input photons in temporal
modes ζ1,2 (t) at a single symmetric beam splitter given by

Pjoint (t0, τ) =
1

4
|ζ1 (t0 + τ) ζ2 (t0)− ζ2 (t0 + τ) ζ1 (t0)|2 . (7.25)

Assuming two dispersed Gaussian input photons according to Eq. (7.21) with
distinct linewidths σ1,2, GDD parameters κ1,2, and carrier frequencies ω1,2 we
obtain

Pjoint (t0, τ) =
1

2π

√
1

β1γ1β2γ2
· exp

[
− 1

4Γ

(
2t20 + 2t0τ + τ2

)]
(7.26)

× exp

[
i
∆a

4

(
τ2 + 2t0τ

)
+ i ∆ωτ

]

with the new abbreviations

1

Γ
=

1

β1γ1
+

1

β2γ2
, ∆a = a1 − a2 , and ∆ω = ω1 − ω2. (7.27)

The cross-correlation function can now be determined via integration over all
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Figure 7.6. Cross-correlation function between chirped and
unchirped Gaussian pulses at the telecom C-band. (a) Both
photons exhibit τr = 10 ps, but one photon travels through L1 = 50 km
before the HOM experiment. The red (blue) curve shows correlation
with (without) two-photon interference, while the black dashed curve
illustrates the limit without interference, if no photon was sent through
any fiber. The curves correspond to a visibility of 45 %. If only coin-
cidences in a correlation window of w0 = 100 ps are taken into account
(shaded areas), the visibility improves to 64 %. (b) shows the visibility
(red) and coincidence efficiency (blue) for various correlation windows.
If the window is chosen sufficiently small, the visibility can be brought
close to unity, but only at the cost of a low coincidence efficiency.

possible detection times t0, which yields

g(2) (τ) =

∫ ∞

−∞
Pjoint (t0, τ) dt0 (7.28)

=

√
1

8πΣ2
·
[
exp

(
− τ2

2Σ2

)
− exp

(
− τ2

2Ω2

)
· cos ∆ωτ

]

with

Σ2 = β1γ1 + β2γ2 and Ω2 =
4

1/Γ + ∆a2Γ
. (7.29)

A cross-correlation for an identical emitter pair with τr = 10 ps, ∆ω = 0, and
λ = 1550 nm is illustrated in Fig. 7.6 (a) as red curve. One photon traveled
through L1 = 50 km, while the other did not (L2 = 0 km). Accordingly both
photons became partially distinguishable leading to the non-vanishing cross-
correlation. The blue solid curve represents the limit without the interference
term in Eq. (7.28) (second summand). The black dashed curve shows a corre-
sponding measurement without TPI for undispersed photons for comparison
(L1 = L2 = 0).

In order to simplify our equations, we only consider photons without a
carrier frequency offset in the following, i.e. we set ∆ω = 0. Using Eq. (2.50)
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and Eq. (2.52) we extract the TPI visibility from the cross-correlation function
via integration and obtain

V = 1− 2

∫ +∞

−∞
g(2) (τ)

∣∣
∆ω=0

dτ =
Ω

Σ
. (7.30)

In case of the emitter pair presented in Fig. 7.6, we see that Eq. (7.30) leads
to a TPI visibility of merely 45 %, which is only reduced due to the influence
of the optical fiber. As already mentioned in Sect. 7.1, a common strategy to
improve the visibility is to apply a time filter. In this case we do not consider
all recorded correlation events, but only those within a time window of width
w centered around τ = 0 [297]. We first obtain the coincidence probabilities

pcoinc,0 (w) =

∫ +w
2

−w
2

g
(2)
0 (τ)

∣∣∣
∆ω=0

dτ =
1

2
erf

(
w√
8Σ

)
and (7.31)

pcoinc (w) =

∫ +w
2

−w
2

g(2) (τ)
∣∣
∆ω=0

dτ = pcoinc,0 (w)− Ω

2Σ
erf

(
w√
8Ω

)
,

where erf (•) is the error-function and g
(2)
0 (τ) equals g(2) (τ), but does not

include the interference term. These expressions allow us to write the TPI
visibility as function of the time window w according to

V (w) = 1− pcoinc (w)

pcoinc,0 (w)
=

Ω

Σ
·

erf
(

w√
8Ω

)

erf
(

w√
8Σ

) . (7.32)

Eventually, we define the coincidence efficiency ηcoinc (w) as the probability to
measure a coincidence when a time window of width w is applied, normalized
to its limit for w →∞. The efficiency simply reads

ηcoinc (w) =
pcoinc,0 (w)

pcoinc,0 (w →∞)
= erf

(
w√
8Σ

)
(7.33)

and describes the reduction of the attainable coincidence count rate in case a
time filter was used. Applying these expressions to the emitter pair shown in
Fig. 7.6 (a) leads to a visibility of 64 % and a coincidence efficiency of 68 %, if
a window of w0 =100 ps was chosen. A plot of V (w) and ηcoinc (w) for various
w is illustrated in Fig. 7.6 (b) (read and blue curve, respectively). Here, we
recognize that visibilities close to unity require rigorous time filters of only a
few ps, which entail the loss of most coincidences.

7.2.2 Entanglement Efficiencies in Optical Fiber Networks

Entanglement generation rates depend on a plethora of different parameters
such as the emission rate of the EPR-sources, signal latencies, transmission
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losses, and detection efficiencies to name a few [33, 298]. As we are only
interested in the interplay of attenuation and dispersion, we write the overall
rate according to

Rent = R0 · ηfib. (7.34)

Here, the efficiency ηfib describes the loss of entanglement rate due to the
impact of optical fibers, while the rate R0 summarizes all remaining contribu-
tions. Furthermore, we model ηfib as

ηfib = ηcoinc (w) · T (L1) · T (L2) , (7.35)

where ηcoinc (w) is the coincidence efficiency according to Eq. (7.33) and T (L)
is the transmission of a fiber of length L. The lengths L1 and L2 denote the
distances of both EPR-sources to the BSM station. Note that this ansatz
neglects any error correction, i.e. it is only valid, if the detected signal rate is
well above the detector dark count rate [11]. Using the wavelength dependent
attenuation α (λ) as shown in Fig. 7.4, the transmission is

T (L1) · T (L2) = 10−αL1/10 · 10−αL2/10 = 10−αL/10 (7.36)

with L = L1 +L2 being the overall fiber length. Furthermore, we introduce q
as the relative position of the BSM, so that L1 = q · L and L2 = (1− q) · L.

The essence of the following simulation is to compare ηfib in the telecom
O- and C-band for various fiber lengths L, radiative lifetimes τr, as well as
relative positions of the BSM q. We expect the transmission to be ideal in the
telecom C-band. However, at this wavelength range dispersion distorts the
single photons and decreases the TPI visibility in asymmetric arrangements
(q 6= 0.5). Therefore, it is necessary to choose a finite correlation time window
w to achieve a desired target fidelity F of the entangled output state [according
to Eq. (7.15) and Eq. (7.32)]. This, on the other hand, decreases ηcoinc (w)
and accordingly ηfib. In the telecom O-band the situation is vice versa. As
target fidelity we choose F = 90 % throughout all simulations, following the
suggestion in [33].

As a first example, we assume a pair of equal photons with τr = 5 ps and a
transmission distance of L = 40 km in a maximally asymmetric scenario, where
the BSM is performed at the location of EPR-source 1 (q = 0). The obtained
entanglement efficiency ηfib as a function of the wavelength is illustrated in
Fig. 7.7 (red curve) and compared to a scenario, in which only attenuation but
not dispersion plays a role (black dashed curve). While both curves coincide
within the telecom O-band, ηfib significantly drops towards longer and shorter
wavelengths. In these regimes, dispersion takes effect and it becomes necessary
to narrow the coincidence time window w (blue curve) in order to sustain the
desired target fidelity. A direct comparison of C-band to O-band reveals that
the latter yields a gain factor of

g =
ηfib (1314 nm)

ηfib (1550 nm)
≈ 3.3 (7.37)

153



7. Entanglement Generation Based on Quantum Interference

τr = 5 ps

L = 40 km

q = 0

40

80

120

T
im

e
w

in
d
ow

w
[p

s]

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

2

4

6

8

Wavelength λ [µm]

E
n
ta

n
gl

.
eff

.
η fi

b
[×

10
−

2
]

Figure 7.7. Impact of the coincidence time window on the
entanglement efficiency. Shown is the entanglement efficiency ηfib

(red) for an emitter pair with radiative lifetime τr = 5 ps, if only one
photon traveled through 40 km of optical fiber. The black dashed curve
considers the influence of attenuation, but neglects dispersion. Outside
the telecom O-band ηfib clearly drops below this limit, as the coincidence
time window w (blue) has to be narrowed in order to restore the desired
entanglement fidelity of 90 %. In this example the telecom O-band leads
to a gain factor of around 3.3 over the C-band.

for the chosen example.
For a broader view, we consider 4 different radiative lifetimes ranging from

τr =3 ps to 10 ps, as the impact of GDD starts to unfold in this regime. For
each lifetime we evaluate the O-band gain factor g according to Eq. (7.37),
taking fiber lengths of up to 100 km and relative BSM positions between q = 0
and 0.5 into account. The results are shown in Fig. 7.8. Generally, we can
identify 3 distinct regions as highlighted in (b), all of which are separated by
white dashed lines:

� Region I: (red shaded) The gain factor is g > 1, indicating that the tele-
com O-band yields the higher entanglement generation rate and should
be preferred over the C-band.

� Region II: (blue shaded) The gain factor is g < 1, implying that the
C-band performs better. Furthermore, it is ηcoinc (w) < 1 in region
II, i.e. the coincidence measurement needs to be truncated to achieve
F ≥ 90 %. In contrast to region I, however, this loss is overcompensated
by the low attenuation in the C-band.

� Region III: (blue shaded) Like region II, but we find ηcoinc (w) = 1,
meaning that the entanglement rate is only limited due to attenuation,
but not dispersion. Therefore, g does not depend on the location of the
BSM (parameter q) in this region.
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Figure 7.8. Telecom O-band gain factor for different network
architectures. Illustrated are simulations for 4 different radiative
lifetimes τr =3 ps to 10 ps [(a) to (d)]. For all lifetimes the gain factor
g was computed for various fiber lengths L and network asymmetries
q. Three regions can be distinguished, separated by white dashed lines
[compare (b)]: in region I it is g > 1, i.e. the O-band should be preferred.
In region II and III the C-band outperforms the O-band. Additionally,
in region III it is ηcoinc (w) = 1, i.e. the entanglement rate is only
limited by attenuation. In region II dispersion leads to ηcoinc (w) < 1
and therefore further reduces the rate.

The results clearly reveal that under certain conditions the absence of disper-
sion leads to superior entanglement generation rates in the telecom O-band.
As expected the effect is more prominent for short lifetimes and strong asym-
metries. Interestingly, we find that the maximal gain factor within region I is
always at a fiber length of around Lmax = 31 km (almost) independent of life-
time and network asymmetry. As it turns out, this corresponds to the length
at which the ratio between the transmissions at O- and C-band dropped to
1/e, i.e. Lmax is defined by

T (Lmax, λO)

T (Lmax, λC)
= 10−[α(λO)−α(λC)]·Lmax/10 = 1/e (7.38)

with λO = 1314 nm and λC = 1550 nm. Therefore, we conclude that g is max-
imized at Lmax, as the attenuation penalty in the O-band becomes dominant
beyond this point.
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At the maxima (qmax, Lmax) = (0, 31 km), we find gain factors of g = 9.6
and 3.4 for τr =3 ps to 5 ps, respectively. On the contrary, as can be seen in the
plots (c) and (d) the absence of dispersion within the O-band is not of advan-
tage for long lifetimes, according to our initial guess. Therefore, the present
considerations do not matter for a wide range of available emitter systems
that typically operate at τr > 100 ps. Considerable efforts are made, however,
to place quantum emitters in optical microcavities and operate them in the
strong coupling regime, which increases on one hand the source efficiency, but
also the indistinguishability of emitted photons [299, 300]. As mentioned be-
fore, the latter effect is partially caused by a decrease of the radiative lifetime.
In particular for QD emitters lifetimes of no more than a few 10 ps have been
reported [290, 291] and even smaller values are within reach, rendering our
considerations relevant for these systems. Moreover note that our discussions
have been aimed at solid-state single photon sources, as they are the main
subject of the present work. Sources based on spontaneous parametric down
conversion, on the other hand, inherit the temporal properties of the employed
pump laser and therefore often exhibit pulse durations of only a few ps or even
in the fs regime (see e.g. [301–303]). In these cases, dispersion fully unfolds
and our considerations should be taken into account.

A possible strategy to counteract dispersion in the C-band is to tempo-
rally compress the single photon pulses subsequent to the fiber transmission,
e.g. using dispersion-compensating optical fibers or chirped fiber Bragg grat-
ings [304,305]. Both approaches, however, introduce additional losses, reduc-
ing the low-attenuation advantage of the C-band (see e.g. [25]). It is moreover
conceivable to mitigate the impact of dispersion by spectrally compressing the
employed photon pulses prior to fiber transmission using the concept of time
lenses [306, 307]. As this technique in fact requires a dispersive medium, it
might be straightforward to implement into fiber transmission channels. Cur-
rently, the efficiency of this scheme is capped at a few 10 %, mostly due to
losses at the necessary electro-optical modulator. It is also possible to spec-
trally shape single photons using tailored pump pulses that drive a frequency
conversion process [308,309]. In quantum networks that anyway include QFC
to interface atomic with telecom wavelengths, this scheme might entail only a
minor efficiency penalty. To avoid GDD altogether, so-called dispersion-shifted
fibers can be employed [310]. They possess a tailored refractive index profile
such that material dispersion is compensated by waveguide dispersion close
to or within the C-band. But as most existing networks are not equipped
with this type of optical fiber, they can not be considered a general solu-
tion for large-scale networks as of yet. Eventually, we like to mention that
our considerations did not include the impact of a temporal overlap between
photons in neighboring bins caused by dispersion. This effect is commonly
known as inter-symbol interference and leads to an increasing bit error rate, if
neglected [311]. Although it is not a consequence of quantum interference, it
underlines the necessity to take dispersion in the telecom C-band into account.
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7.3 Summary

In this chapter we theoretically investigated two all-optical schemes to gener-
ate entanglement that rely on quantum interference between two independent
photons. In the first example, we considered a photonic circuit containing a
controlled NOT gate after the design presented in [147] and applied the for-
malism derived in Chap. 3 to compute entanglement fidelities attainable with
state-of-the-art quantum emitters. Thereafter, we turned to entanglement
swapping based on Bell-state measurements as employed in quantum repeater
networks [31, 32]. Here, we addressed the question whether the low losses in
the telecom C-band or the low dispersion in the telecom O-band allow for
better entanglement generation rates. The results of both investigations are
summarized in the following highlights-box.

CNOT Gate Entanglement

� Consideration of a network of
11 linear optical components
to create an entangled Bell-
state of two photons.

� The network includes ele-
ments for state preparation, a
CNOT gate, and state tomo-
graphy.

� Application of theory derived
in Chap. 3 to emulate entan-
glement generation and as-
sess fidelity F of output states
with respect to spectral prop-
erties of employed photons.

� Despite a high complexity of
the investigated system the
computation time was as low
as 2 s owing to the analytical
expressions used for the simu-
lation.

� Simulations reveal V > F for
two-photon interference (TPI)
visibility V in the regime of
F > 50 %. This underlines
high demands on employed
single photon sources.

� Best available solid state
sources yield fidelities of only
73-94 %, if no further filtering
or stabilization techniques are
employed.

Chapter 7 - Highlights
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Entanglement Swapping

� Consideration of asymmetric
single quantum repeater net-
works that employ optical
fibers for photon transmis-
sion.

� Derivation of cross-correlation
function and TPI visibilities
in HOM experiments for short
Gaussian input pulses un-
der the influence of a fiber-
induced group delay disper-
sion (Sect. 7.2.1).

� Truncation of cross-
correlation function was taken
into account. Equations for
the ensuing improvement of
TPI visibilities and decline
in the coincidence count rate
were given (Sect. 7.2.1).

� Equations were used to model
the simultaneous impact of at-
tenuation and dispersion on
the entanglement generation
rate in a single quantum re-
peater network. Different

fiber lengths, network asym-
metries, and pulse durations
of single photons were taken
into account (Sect. 7.2.2).

� Dispersion at the telecom C-
band in asymmetric networks
causes partial indistinguisha-
bility - for high entanglement
fidelity, coincidences need to
be truncated. This is a loss
channel that does not exist
in the O-band. Therefore,
the O-band leads to better
entanglement rates for high
asymmetries and short pulses
(Sect. 7.2.2).

� For current emitter systems
with lifetimes > 100 ps the ef-
fect is negligible, as dispersion
is small. For photons from
emitters strongly coupled to a
microcavity as well as SPDC
sources with short and ultra-
short pulse durations, the O-
band leads to a significant
improvement of the entangle-
ment rate (Sect. 7.2.2).

Chapter 7 - Highlights continued
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Chapter 8

Summary and Conclusion

Throughout the course of this thesis we experimentally investigated quantum
frequency conversion (QFC) as tool to transfer indistinguishable photons emit-
ted by InAs semiconductor quantum dots (QD) from the near infrared region
to the telecom C-band. The indistinguishability of unconverted and converted
photons has been assessed in two-photon interference (TPI) experiments after
Hong-Ou-Mandel (HOM) in two distinct settings: (i) with photons consecu-
tively emitted by one QD and (ii) with photons from two remote QDs and
independent frequency converters. Additionally, we established a theoretical
framework to describe the interference pattern and attainable TPI visibili-
ties of HOM experiments using non-Fourier-limited photons. The obtained
equations were used to consistently explain all experimental results.

The theoretical part of this work was motivated by the lack of an analyt-
ical description of HOM experiments, which appropriately covers all spectral
features of the photons under consideration. On that account, we applied a
well-established formalism [218] assuming two independent two-level emitters,
which are subject to both pure dephasing (PD) and spectral diffusion (SD)
causing homogeneous and inhomogeneous line broadening, respectively. We
moreover allowed the emitters to exhibit differing radiative lifetimes and to
be spectrally detuned with respect to each other. Possible phonon-sidebands
were not taken into account, as those are typically removed via spectral fil-
tering in experiment. The impact of phonon-sidebands is for instance covered
in [183, 312, 313]. The resulting equations yield the temporal structure of
cross-correlation measurements taken during a HOM experiment, but also the
overall coincidence probabilities and corresponding interference visibility can
be computed. The latter follows a Voigt profile as a function of the detuning,
whose shape is determined by the joint spectral properties of both emitters.
The obtained model was found to agree with existing theories in the limit
of independent emitters, which are only subject to PD [152, 196]. Further-
more, the model was verified by comparing its predictions to various HOM
experiments with remote solid-state emitters. As our results for the first time
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consider the simultaneous impact of PD and SD on indistinguishability, it was
possible to put a longstanding notion to the test: in [196] it was shown that
optical coherence time and photon indistinguishability are in a fixed relation,
if both emitters are only affected by PD. Here, we realized that it is not possi-
ble to unambiguously assign a given coherence time to an indistinguishability,
if additional SD comes into play. We moreover extended our formalism in two
different ways:

(i) The equations were generalized to describe the scattering of two pho-
tons at an arbitrary linear optical gate instead of only a single sym-
metric beam splitter. This allows to predict the performance of a given
set of emitters in more involved schemes based on the results of simple
HOM experiments. As an example of intermediate complexity we the-
oretically discussed the entanglement of two partially indistinguishable
photons with help of an all-optical CNOT gate [147]. In this context we
could show that state-of-the-art solid-state emitters yield only mediocre
entanglement fidelities, typically well below 90 %, if no further spectral
or temporal filtering is applied.

(ii) Eventually, we relaxed the assumption of independent emitters and con-
sidered photons consecutively emitted by the same source. In this case
both photons are spectrally correlated, if the time delay between the re-
spective emission events τmzi is less or in the order of the memory depth
of SD τsd. We found that for τmzi � τsd the visibility is dominated
by PD, while it converges towards the limit of independent photons
for τmzi � τsd. Our result qualitatively agrees with a model presented
in [192], but is based on a more appropriate description of SD.

At the heart of all experiments was the quantum frequency conversion
transducing single photons with a wavelength of around 905 nm to the telecom
C-band at 1557 nm. The conversion was realized based on difference frequency
generation supported by a periodically poled lithium niobate crystal, shaped
into ridge waveguides. The process has an estimated acceptance bandwidth
of 120 GHz for the near infrared photons while the target wavelength can be
tuned over the entire telecom C-band by changing the crystal temperature.
Efficient conversion moreover requires an intense pump light source with an
output wavelength of around 2.2 µm. For that purpose we employed a com-
mercial single frequency Cr2+:ZnS laser in cw operation, which delivers optical
output powers of >1.5 W over the entire available tuning range from 2.1 µm
to 2.3 µm. Throughout all experiments our converters achieved overall device
efficiencies exceeding 30 % at optical pump powers of a few 100 mW. Main loss
channels were the limited internal conversion efficiency (≈ 90 %), coupling ef-
ficiencies to the waveguide chip and telecom fiber (each ≈ 80 %), as well as
the transmission of the employed fiber Bragg-grating (FBG) at the telecom
regime (≈ 60 %). A significantly improved device efficiencies of almost 60 %
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has recently been reported in [114]. This value could be achieved mainly owing
to a low-loss volume Bragg-grating, which has been used instead of a FBG to
remove conversion noise from the converted telecom photons.

In the first experiment, we considered single photons consecutively emitted
by an InAs QD. The QD was operated in a confocal microscope at a cryo-
genic temperature of 10 K and optically addressed via p-shell excitation at a
repetition rate of 80 MHz. The emitted photons had a center wavelength of
903.6 nm, a radiative lifetime of 970 ps, and a coherence time of 87 ps. The
latter was limited due PD at a rate of 47 MHz as well as SD corresponding to
an inhomogeneous linewidth of 5.9 GHz. In an intensity auto-correlation mea-
surement a detector dark-count corrected antibunching value of g

(2)

nir (0)=0.153
was observed, which was mainly limited due to background photons leaking
through the etalon employed for spectral filtering. This is in a quantitative
agreement with the signal-to-background ratio (SBR) of 11.5 extracted from
the emission spectra. To arrive at the desired target wavelength of 1557 nm,
the converter was set to a pump wavelength of 2154 nm. At this operating
point a maximum conversion efficiency of 30.9 % was achieved. Radiative life-
time and coherence time of the converted photons are in good agreement with
the corresponding near infrared values. The antibunching value improved to
g

(2)

tel (0)=0.117, which can be attributed to the small acceptance bandwidth of
the conversion and subsequent filtering entailing a SBR of 17.2. The HOM
experiment was conducted after a design first reported in [230], in which two
consecutively emitted photons are overlapped on the output beam splitter
of a Mach-Zehnder interferometer. Corresponding to the interferometer im-
balance, the photons exhibited emission time delays of around 4 ns and 8 ns
for the experiments with unconverted and converted photons, respectively.
The HOM measurements revealed two-photon interference visibilities (TPI)
of 36.4 % at the near infrared and 24.1 % at the telecom regime. The loss
of interference visibility directly stems from the increased emission time de-
lay between both experiments, as it is accompanied by a loss of frequency
correlation between the photons due to SD. The respective memory depth of
SD was found to be 230 ns, which compares well to values reported in litera-
ture [192–195]. All intensity correlation measurements, i.e. the antibunching
and HOM experiments, were additionally reproduced by Monte-Carlo simula-
tions based on independently measured model parameters, while only the TPI
visibility was treated as free parameter. The good agreement of measurement
and simulation show that all relevant aspects of the experiment are well un-
derstood. The main goal of this experiment was to show that down-conversion
does not affect the indistinguishability of photons. Although this was strictly
speaking not achieved, the discrepancy between unconverted and converted
photons could be conclusively attributed to the change in the interferometer
design. Accordingly a loss of indistinguishability due to the QFC step was not
observed.

The second experiment was aimed at TPI between photons from remote
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8. Summary and Conclusion

quantum emitters. On this account, two InAs QD samples were placed in
distinct cryostats at temperatures of 4 K. To achieve superior indistinguisha-
bilities the QDs were driven via s-shell excitation at a clock rate of 76 MHz and
by adding weak, non-resonant cw laser light [131,132]. The resonant excitation
light was mostly removed by use of a polarization rejection setup [130,177] and
subsequent spectral filtering, which resulted in a SBR of 26. However, the po-
larization suppression required to resort to charged QDs, which do not exhibit
any fine-structure splitting. Both chosen QDs exhibited an emission wave-
length of around 904.4 nm, but with a relative detuning of 8.06 GHz. The mea-
sured radiative lifetimes of 612 ps and 584 ps correspond to natural linewidths
of 260 MHz and 273 MHz, respectively, which were inhomogeneously broad-
ened by 2.10 GHz and 1.22 GHz. Accordingly, the emission spectra are well
separated and both unconverted photons therefore entirely distinguishable.
The antibunching values of both emitters were determined to be 0.10 ± 0.03
and 0.00 ± 0.03, which were only limited by excitation light leaking through
the polarization suppression. The photons of both QDs were shifted to the
telecom C-band in two identical but independent frequency converters with
device efficiencies of 35 % and 31 %, leading to detected count rates of 5.3 kHz
an 24.7 kHz. Of these, around 550 Hz and 390 Hz can be attributed to pump
light induced converter noise, corresponding to SBRs of 8.7 and 62.2. Even-
tually, the converted telecom photons of both emitters were set to overall 10
distinct relative detunings around the target wavelength of 1557 nm. At each
detuning a separate HOM measurement was performed and the visibility ex-
tracted. For zero detuning a maximum interference contrast of (29± 3) % was
observed. An independent measurement performed with unconverted photons
of the same emitter pair yielded a TPI visibility of (26± 3) % using temper-
ature tuning, which confirms our findings. Note that this experiment was
not part of the present thesis, but reported in [272]. Moreover, the measured
visibility-over-detuning curve was reproduced using the known emitter param-
eters as input for our theoretical model. Both measured and model curve are
in excellent agreement. The fact that the measurements with unconverted
and converted photons yield the same visibility, which moreover can be con-
sistently explained based on the spectral properties of both emitters, suggests
that QFC has no negative impact on the mutual indistinguishability of in-
dependent single photons. Additionally, our results demonstrate that QFC
can be exploited as tuning mechanism to recover spectral indistinguishabili-
ties, which is an interesting option to common schemes for two reasons: (i) it
is noninvasive in contrast to mechanisms directly acting on the emitter and
(ii) it reduces the necessary technical overhead in experimental schemes that
include QFC anyway.

In conclusion, the experimental results presented in this thesis demon-
strate that quantum frequency down-conversion conserves photon indistin-
guishabilities. As such they provide the missing link in the set of manda-
tory experiments, which prove that QFC preserves all relevant single photon
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properties. Owing to the high device efficiencies and low process-induced
noise, frequency converters are not only interesting for academic proof-of-
principle experiments, but constitute a serious option for a variety of applica-
tions. A big step towards this direction has been taken in a recent experiment
demonstrating for the first time a complete quantum repeater segment on a
metropolitan fiber network scale made possible by QFC [115]. The exper-
iment uses both single- and two-photon interference following the protocols
presented in [32] and [37], respectively, to establish entanglement between
two remote Rb ensembles. In particular the latter exploits the preservation
of both indistinguishability and matter-photon entanglement [96] during the
down-conversion step towards the telecom O-band. Future tasks to refine this
scheme might include transferring the photons to the C-band instead and em-
ploy polarization-insensitive QFC [114], which will render the transformation
of polarization to time-bin encoding performed in [115] unnecessary. A more
direct derivation of the present work would be to combine the best available
InAs QDs with our frequency converters to obtain a bright source of indis-
tinguishable telecom photons. The emitter employed for a boson sampling
experiment in [195], for instance, yielded a detected count rate of 6.5 MHz at
a clock rate of 76 MHz. Taking into account the detector system efficiency,
this corresponds to a flux of more than 25× 106 photons per second available
at the output of a single mode fiber. Converting these photons with a device
efficiency of ≈ 30 % as reported in this work would lead to about 7.5 × 106

telecom C-band photons per second that moreover sustain an indistinguisha-
bility of >90 % for consecutive emission with a time separation of up to 14 µs
- an unparalleled performance compared to available telecom photon emitting
quantum dots [88,89]. A different application directly aimed at QKD is to im-
plement QFC in a quantum relay network, which uses polarization-entangled
photon pairs. The device presented in [145], for instance, shares entangled
photons emitted by an electrically driven InAs QD between a Bell-state mea-
surement station and a receiver. A frequency converter used to shift these
photons to the telecom C-band, would need to preserve the photon-photon
entanglement, indistinguishability, as well as the polarization encoding. For
the latter our devices must be modified to a polarization-insensitive scheme,
which approximately reduces the conversion efficiency to 25 %. Due to the
conversion losses, the overall scheme would not benefit from QFC for optical
fibers as short as 350 m, which have been used in [145]. For transmission dis-
tances exceeding 2 km, however, the conversion would result in an exponential
net gain of the coincidence rate.

As past and ongoing research efforts clearly show, QFC has matured into
a versatile tool for quantum technologies, which is regularly integrated into
experiments of increasing complexity. At the current stage it offers the most
direct and advanced route to release quantum communication from its con-
finement to lab scale experiments. Therefore, it may be expected that QFC
continues its streak of success for the foreseeable future.
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Appendices

A Eigenvalue Equations for Rectangular
Waveguide Modes

The following equations are taken from [211]. Their solution yields the transver-
sal wavenumbers κx and κy as well as the mode displacements ξ and η as used
in Sect. 2.3.2 and Sect. 4.2. The refractive indices ni correspond to the re-
spective regions illustrated in Fig. 2.11, d and b are the waveguide dimensions,
and k is the vacuum wavenumber of the considered light field. The overall
procedure starts from the transcendental equations

tanκxd = n2
1κx ·

n2
3γ2 + n2

2γ3

n2
3n

2
2κ

2
x − n4

1γ2γ3
(A.1)

tanκyb =
κy (γ4 + γ5)

κ2
y − γ4γ5

(A.2)

with all γi defined by

γ2
2 =

(
n2

1 − n2
2

)
k2 − κ2

x, (A.3)

γ2
3 =

(
n2

1 − n2
3

)
k2 − κ2

x, (A.4)

γ2
4 =

(
n2

1 − n2
4

)
k2 − κ2

y, and (A.5)

γ2
5 =

(
n2

1 − n2
5

)
k2 − κ2

y. (A.6)

Eq. (A.1) and (A.2) are solved to obtain κx and κy. These are then used to
evaluate ξ and η by solving

tanκxξ = −n
2
3κx
n2

1γ3
and (A.7)

tanκyη = −γ5

κy
. (A.8)
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B Adapted Sellmeier Coefficients for Lithium
Niobate

The refractive index of lithium niobate in Sect. 4.2 as function of wavelength
λ and temperature T was calculated based on modified Sellmeier-coefficients
taken from [212]. The underlying Sellmeier-equation reads

n (λ, T ) = n0 (λ) + ∆n (λ, T ) (B.1)

with the refractive index n0 (λ) at T0 = 20 ◦C and a temperature dependent
correction ∆n (λ, T ) given by

n0 (λ) =

√
a+

b

λ2 − c − dλ
2 and (B.2)

∆n (λ, T ) =

(
α

λ3
− β

λ2
+
γ

λ
+ δ − ελ

)
·
(
∆T + ζ∆T 2

)
× 10−5

(B.3)

with ∆T = T − T0. Both original parameters found in [212] and the fitted
parameters used in Sect. 4.2 are summarized in Tab. B.1. Note that in par-
ticular the modification of a and ζ are responsible for the good agreement
between measured and simulated tuning curves in Sect. 4.2.

Table B.1. Summary of Sellmeier-coefficients. Unmodified pa-
rameters from [212] and fitted parameters from this work as used in
Eq. (B.2) and (B.3). The parameters hold for wavelengths given in µm
and temperatures in ◦C.

[212] this work [212] this work

a 4.54514 4.55849 α 0.4175 0.4175
b 0.096471 0.097819 β 0.6643 0.6643
c 0.043763 0.042794 γ 0.9036 0.9036
d 0.021502 0.021589 δ 3.5332 3.5332

ε 0.0744 0.0744
ζ 0.00138 0.00498

C Continuous Noise Floor in Intensity
Correlations

We here briefly derive Eq. (5.6) used in Sect. 5.2.4, which yields the number
of coincidences per bin in an intensity correlation function g(2) (τ) with timelag
τ stemming from a continuous noise source, which is uncorrelated with the
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C. Continuous Noise Floor in Intensity Correlations

actual signal. For two measured intensities I1 (t) and I2 (t) as function of time
t, the correlation is generally defined as

g(2) (τ) = 〈I1 (t) · I2 (t+ τ)〉, (C.1)

where 〈•〉 denotes the integration with respect to t. It is possible to write
both intensities as a sum of the signal si (t) we are actually interested in and
a noise contribution ri (t). The correlation function can be divided in a signal
and noise part as well according to

g(2) (τ) =g(2)
s (τ) + g(2)

r (τ) with (C.2)

g(2)
s (τ) =〈s1 (t) · s2 (t+ τ)〉 and (C.3)

g(2)
r (τ) =〈r1 (t) · r2 (t+ τ)〉

+ 〈r1 (t) · s2 (t+ τ)〉+ 〈r2 (t) · s1 (t+ τ)〉. (C.4)

Note that the terms in the second line of Eq. (C.4) contribute to the noise
part of the correlation although they contain the signals s1 (t) and s2 (t).
The correlation with ri (t), however, deletes any information on the temporal
pattern of s2 (t) and it appears as uncorrelated. For this reason it is also valid
to model both signal and noise part as rectangular functions following

xi (t) =

{
Xi for− T/2 ≤ t ≤ T/2
0 otherwise

(C.5)

even though si (t) might in fact be a pulsed signal. Here T is the duration of the
overall measurement and xi (t) as well as Xi correspond to either si (t) or ri (t)
with an average rate of Si or Ri. A correlation of two rectangular functions
as given in Eq. (C.4) generally yields a triangular function. However, we are
typically only interested in a region around τ = 0, which is small compared
to T . In this case the correlation reduces to

g(2)
r (τ) ≈〈r1 (t) · r2 (t)〉+ 〈r1 (t) · s2 (t)〉+ 〈r2 (t) · s1 (t)〉

= (R1R2 +R1S1 +R2S1) · T. (C.6)

This result equals a noise rate for the correlation function. To obtain the
number of noise counts Nr within a bin of width ∆τ , g

(2)
r (τ) needs to be

integrated according to

Nr =

∫ τ ′+∆τ

τ ′
g(2)

r (τ) dτ = (R1R2 +R1S1 +R2S1) · T∆τ (C.7)

In Sect. 5.2.4 we assume that the only continuous noise source are the detector
dark counts, which exhibit equal rates νdc for both detectors. Accordingly, we
set Nr → Ndc and R1 = R2 = νdc. Moreover, using the overall detected count
rates νdet = S1 + νdc = S2 + νdc we obtain

Ndc = (2νdet − νdc) · νdcT∆τ, (C.8)

which corresponds to Eq. (5.6) in the main text.
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D Monte Carlo Simulations

All antibunching and HOM measurements presented in Chap. 5 were repro-
duced using Monte Carlo simulations performed with MatLab R2016a. In
the following we offer the employed scripts. For better performance, the over-
all simulation is divided into a number of runs, each of which contains several
of excitation cycles. For each run, click lists are generated and subsequently
correlated. Accordingly, the script can be written in a simplified manner as

<initial definitions>
f o r m = 1 : runs % i t e r a t e through a l l runs

<get click lists>
<correlate click lists>
<build histogram>

end
<sum histograms over all runs>

Antibunching Measurement Simulations

The 〈initial definitions〉 span various setup and emitter parameters as specified
in the main text as well as settings for the simulation itself. In the following we
give the parameters as used for the unconverted antibunching measurement.
The respective parameters for the other simulations can be found in the main
text:

1 % all times and frequencies in s and Hz, resp.

2 %% experimental parameters

3 T = 12.47e-9; % repetition time

4 FWHM = 350e-12; % detector jitter

5 sigma = FWHM /2.355; % fwhm to standard deviation

6 CR = 28290; % average count rate per detector

7 NR = 300; % dark count rate

8 R = 0.5; % refl. of HBT beam splitter

9 tau = 0.969e-9; % radiative lifetime

10 SBR = 11.5; % SBR from spectrum

11
12 %% simulation parameters

13 BS = 200e-12; % binsize of histogram

14 range = 40e-9; % plotrange of histogram

15 SF = 1.3; % plotrange stretch factor

16 bins = ceil(SF*( range/BS)); % number of bins

17 centers = BS*(-bins:bins); % bin centers

18 NoC = 1e5; % cycles per run (one photon / cycle)

19 runs = 50; % number of runs
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20
21 %% derived parameters

22 % probability a detected photons stems from the...

23 pQD = SBR/(SBR+1); % ... quantum dot

24 pBG = 1-pQD; % ... background

25 % noise and background probabilities

26 % normalized to one emitter photon

27 QDrate = 2*(CR -NR)*pQD; % detected counts from QD

28 pnoise = NR/QDrate; % noise probability

29 pBG = pBG/pQD; % background probability

30
31 %% cumulative distributions

32 % CDF: detection times of N photons

33 tdet = @(N) -tau*log(1-rand(N,1));

Note the function tdet defined in line 33. It yields random detection times
tdet with respect to an excitation pulse and is obtained applying the method
of inverse transform sampling [265], which generates random numbers of a
desired probability distribution from a uniformly distributed random number
x. On that account one has to first calculate the cumulative distribution
function (CDF) via

P (tdet) =
1

τ

∫ tdet

0
e−t/τ dt = 1− e−t/τ . (D.1)

The desired random tdet is then obtained by the inverse of P (tdet) = x, which
yields

tdet = −τ ln (1− x) (D.2)

and has already been stated in Eq. (5.9).
The 〈get click lists〉 part within the for-loop, generates the detection events

for background and fluorescence photons as well as detector noise:

1 %% Generate events of current run

2 % the following lists for both detectors

3 % save real detection events and noise

4 list1 = [];

5 list2 = [];

6
7 for k = 1:NoC

8 % N = number of real photons

9 % Poisson distribution for background photons

10 % 'plus one ' for fluorescence photon

11 N = poissrnd(pBG) + 1;
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12
13 % detection times:

14 photons = T*k+tau*log (1./( tau*rand(N,1)));

15 % add detector jitter

16 photons = photons+normrnd(0,sigma ,N,1);

17
18 % distribute photons to both detectors

19 % number of reflected photons:

20 nrefl = sum(rand(N,1) <0.5);

21 events1 = photons (1: nrefl);

22 events2 = photons(nrefl +1: end);

23
24 % Poisson distributed number of noise events

25 % uniformly distributed over one cycle

26 noise1 = T*(k+rand(poissrnd(pnoise) ,1));

27 noise2 = T*(k+rand(poissrnd(pnoise) ,1));

28
29 % add the noise to the rest

30 events1(end +1: end+length(noise1)) = noise1;

31 events2(end +1: end+length(noise2)) = noise2;

32
33 % sort for correct temporal order

34 list1(end+1:end+length(events1)) = sort(events1);

35 list2(end+1:end+length(events2)) = sort(events2);

36 end

The 〈correlate click lists〉- and the 〈build histogram〉-parts are contained in
the following two code snippets. For better performance not all timelags are
evaluated, but only those which are within the region of ±SF*range.

1 %% Evaluate correlation for this run

2 timelag = [];

3 for k = 1: length(list1)

4 [~,j] = min(abs(list1(k)-SF*range -list2));

5 while true

6 timelag(end +1) = list1(k)-list2(j);

7 j = j+1;

8 if j>length(list2)|| timelag(end)<-SF*range

9 break

10 end

11 end

12 end
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1 %% Evaluate the histogram and save the current run

2 timelag(abs(timelag) > SF * range) = [];

3 counts = hist(timelag ,centers);

4 coincidences(m,1: length(counts)) = counts;

The overall histogram is generated by in the 〈sum histograms over all runs〉-
segment, which simply reads coincidences = sum(coincidences);. It can
be plotted against the timelags contained in the variable centers.

HOM Measurement Simulations

The overall structure of the simulations of HOM measurements is identical
to that of antibunching measurements. To account for the additional beam
splitter decision in the emission MZI as well as the temporal pattern of the
central peak including TPI some changes in the parts 〈initial definitions〉 and
〈get click lists〉 are necessary. The initial definitions (for unconverted photons)
now read

1 %% experimental parameters

2 % all times and frequencies in s and Hz, resp.

3 T = 12.47e-9; % repetition time

4 FWHM = 350e-12; % detector jitter

5 sigma = FWHM /2.355; % fwhm to standard deviation

6 delay = 3.978e-9; % Mach -Zehnder delay

7 CR = 19370; % average count rate per detector

8 NR = 300; % dark count rate

9 R = 0.5; % refl. of beam splitter

10 tau = 0.969e-9; % radiative lifetime

11 SBR = 11.5; % SBR from spectrum

12 inh = 687e6; % inhom. linewidth (sigma ')

13 hom = 47e6; % hom. linewidth (Gamma*)

14 dnu = 0; % emitter detuning (delta nu)

15 b = [ tau inh hom tau inh hom dnu ];

16
17 %% simulation parameters

18 BS = 20e-12; % binsize of histogram

19 range = 40e-9; % plotrange of histogram

20 SF = 1.3; % plotrange stretch factor

21 bins = ceil(SF*( range/BS)); % number of bins

22 centers = BS*(-bins:bins); % bin centers

23 NoC = 5e4; % cycles per run (one photon / cycle)

24 runs = 10; % number of runs

25
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26 %% derived parameters

27 % probability a detected photons stems from the...

28 pQD = SBR/(SBR+1); % ... quantum dot

29 pBG = 1-pQD; % ... background

30 % noise and background probabilities

31 % normalized to one emitter photon

32 QDrate = 2*(CR-NR)*pQD; % detected counts from QD

33 pnoise = NR/QDrate; % noise probability

34 pBG = pBG/pQD; % background probability

35
36 %% cumulative distributions

37 % CDF: two photons scattering at a BS

38 MZ = [ ...

39 R^2;... % both reflected

40 (1-R)^2;... % both transmitted

41 R*(1-R);... % late refl., early trans.

42 R*(1-R)]; % early refl., late trans.

43 MZcum = cumsum(MZ); % CDF

44
45 % CDF: central peak with TPI

46 trel = 0.01*BS*( -50:50) '; % timelag within a bin

47 g2 = mean(TPIg2(b,trel+centers)); % g2 with TPI

48 CDFtpi = cumsum(g2)*BS; % CDF

49
50 % CDF: coincidence or no coincidence

51 HOMcum = [... % photons ...

52 CDFtpi(end)... % ... cause coincidence

53 0.5*(1+ CDFtpi(end))... % ... bunch towards det. 1

54 1]; % ... bunch towards det. 2

55 CDFtpi = CDFtpi/CDFtpi(end);% normalize g2 CDF

56
57 % CDF: detection times of N photons

58 tdet = @(N) -tau*log(1-rand(N,1));

Note that we once more define various CDFs, which are later used to generate
appropriate random numbers with inverse transform sampling:

(i) lines 37-43: the discrete distribution MZcum to model the scattering of
two consecutive photons at a single beam splitter.

(ii) lines 45-48 + line 55: CDFtpi as CDF of the cross-correlation function
Eq. (3.26) (evaluated in line 47 by function TPIg2), which here assumes
two identical emitters defined by the parameters contained in vector b.

172



D. Monte Carlo Simulations

(iii) lines 50-54: the discrete distribution HOMcum, which handles the case
that two photons simultaneously arrive at the HOM BS. HOMcum is used
to decide, whether the photons cause a coincidence or bunch.

(iv) line 58: inverse CDF to determine single photon detection times (see
antibunching measurement simulations).

Based on these definitions the 〈get click lists〉 part is given by

1 for k = 1:NoC

2 % clicks of current circle

3 events1 = [];

4 events2 = [];

5
6 %% background photons

7 bg1 = tdet(poissrnd(pBG)); % in early pulse

8 bg2 = delay+tdet(poissrnd(pBG)); % in late pulse

9 bg = [ bg1 ; bg2];

10
11 for l = 1: length(bg) % add background

12 if rand < R % first beam splitter

13 if rand < R % second beam splitter

14 events1(end +1) = bg(l)+delay;

15 else

16 events2(end +1) = bg(l)+delay;

17 end

18 else

19 if rand < R

20 events2(end +1) = bg(l);

21 else

22 events1(end +1) = bg(l);

23 end

24 end

25 end

26
27 %% Both QD photons

28 t1 = tdet (1); % early photon

29 t2 = tdet (1)+delay; % late photon

30 [~,I1] = max((rand < MZcum)); % decision first BS

31 [~,I2] = max((rand < MZcum)); % decision second BS

32 switch I1

33 case 1 % BS 1: both refl.

34 switch I2

35 case 1 % BS 2: both refl.

36 events1(end +1) = t1+delay;
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37 events1(end +1) = t2+delay;

38 case 2 % BS 2: both trans.

39 events2(end +1) = t1+delay;

40 events2(end +1) = t2+delay;

41 case 3 % BS 2: late refl., early trans.

42 events2(end +1) = t1+delay;

43 events1(end +1) = t2+delay;

44 case 4 % BS 2: late trans., early refl.

45 events1(end +1) = t1+delay;

46 events2(end +1) = t2+delay;

47 end

48 case 2 % BS 1: both trans.

49 switch I2

50 case 1 % BS 2: both refl.

51 events2(end +1) = t1;

52 events2(end +1) = t2;

53 case 2 % BS 2: both trans.

54 events1(end +1) = t1;

55 events1(end +1) = t2;

56 case 3 % BS 2: late refl., early trans.

57 events1(end +1) = t1;

58 events2(end +1) = t2;

59 case 4 % BS 2: late trans., early refl.

60 events2(end +1) = t1;

61 events1(end +1) = t2;

62 end

63 case 3 % BS 1: late refl., early trans.

64 switch I2

65 case 1 % BS 2: both refl.

66 events2(end +1) = t1;

67 events1(end +1) = t2+delay;

68 case 2 % BS 2: both trans.

69 events1(end +1) = t1;

70 events2(end +1) = t2+delay;

71 case 3 % BS 2: late refl., early trans.

72 events1(end +1) = t1;

73 events1(end +1) = t2+delay;

74 case 4 % BS 2: late trans., early refl.

75 events2(end +1) = t1;

76 events2(end +1) = t2+delay;

77 end

78 % BS 1: late trans., early refl. (HOM possible)

79 case 4

80 [~,I] = max((rand <HOMcum));

174



D. Monte Carlo Simulations

81 switch I

82 case 1 % BS 2: both refl. or trans.

83 % (no coalescence)

84 [~,I] = max((rand <CDFtpi));

85 events1(end +1) = t1+delay;

86 events2(end +1) = t1+centers(I)+delay;

87 case 2 % BS 2: late refl., early trans.

88 events1(end +1) = t1+delay;

89 events1(end +1) = t2;

90 case 3 % BS 2: late trans., early refl.

91 events2(end +1) = t1+delay;

92 events2(end +1) = t2;

93 end

94 end

95
96 % add jitter to all detection events

97 events1 = events1+normrnd(0,sigma ,size(events1));

98 events2 = events2+normrnd(0,sigma ,size(events2));

99
100 % Poisson distributed number of noise events

101 % uniformly distributed over one cycle

102 noise1 = T*rand(poissrnd(pnoise) ,1);

103 noise2 = T*rand(poissrnd(pnoise) ,1);

104
105 % add the noise to the rest

106 events1(end +1: end+length(noise1)) = noise1;

107 events2(end +1: end+length(noise2)) = noise2;

108
109 % sort for correct temporal order

110 list1(end+1:end+length(events1)) = T*k+sort(events1);

111 list2(end+1:end+length(events2)) = T*k+sort(events2);

112 end

As the distribution of photons to both detectors depends on the scattering
events at both beam splitters and the possibility of TPI requires to simulta-
neously treat both photons of a single cycle, there is no concise way to model
these events, which is comprehensible at the same time. Therefore, we decided
to implement the simulation with the rather bulky sequence of nested switch

-structures given above. Note that the first beam splitter of the emission MZI
is modeled by the outer switch-statement, the second beam splitter by the
inner one. We like to draw attention to case 4 (lines 79-93) of the outer
switch statement. It corresponds to the early and late photon being reflected
and transmitted, respectively, and thereby leads to both photons meeting at
the output beam splitter. In other words, TPI is possible. In line 80 the CDF
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HOMcum is used to decide whether both photons coalesce (case 2 and case 3),
or not (case 1). In the latter case, the photons must be distributed according
to the cross-correlation function Eq. (3.26). This is realized by evaluating a
detection time delay centers(I) used in line 86, which is determined using
the CDF of Eq. (3.26) called CDFtpi (line 84). Note that centers(I) can
be both negative and positive and thereby covers both sides of the central
correlation peak.

E Fitting Model for HOM Measurements

The HOM measurements presented in Sect. 6.3.4 were analyzed by first inte-
grating each individual peak and then fitting the obtained peak areas with a
model, which beside TPI also incorporates bunching due to emitter blinking
and asymmetric beam splitters (BS). In the following, we elaborate on the
applied procedure.

First, in order to find the areas Fi of all peaks from the experimental data
shown in Fig. 6.12 (a) and (b), we divide the cross-correlation measurements
into segments of width τmzi = 4.37 ns corresponding to the Mach-Zehnder in-
terferometer (MZI) delay. The segments are centered around each peak, i.e.
0, ±τmzi, ±2τmzi, . . . corresponding to the indices i = 0, ±1, ±2, . . . . As-
suming each peak to be a two-sided exponential decay, we expect that around
exp [−τmzi/ (2τr)] ≈ 3 % of the overall peak areas lie outside their respective
segment leading to a systematic error. The integrated areas F̃n of the n’th
peak can be written as

F̃i = τmzi

∫ i+ 1
2

i− 1
2

[
D +

Fi−1

2τr
e
− |x−(i−1)|

% +
Fi
2τr

e
− |x−i|

% +
Fi+1

2τr
e
− |x−(i+1)|

%

]
dx

(E.1)

with D being a constant background from sources like detector or conversion
noise that can be approximated averaging the cross-correlation height in be-
tween each peak at ±τmzi/2, ±3τmzi/2, . . . . The parameters % = τr/τmzi and
x = τ/τmzi constitute normalized radiative lifetime and timelag, respectively.
Computing the integral results in

F̃i = Dτmzi + αFi−1 + βFi + αFi+1 (E.2)

with α = exp [−τmzi/ (2τr)] /2 and β = (1− 2α). If the peaks −N to N were
integrated, Eq. (E.2) defines a set 2N+1 inhomogeneous linear equations that
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(a) (b)

∆

BS1 BS2

det1

det2

n · Trep
n · Trep − τmzi

n · Trep
n · Trep + τmzi

τmzi

Figure E.1. Illustration of a sequence of photons used for a
Hong-Ou-Mandel experiment. (a) Two photons, an early and a
late photon, enter a Mach-Zehnder interferometer with a time delay of
∆. They are transmitted or reflected at two beamsplitters (BS1 and
BS2) and eventually detected. (b) Four photons in two double pulses.
For two photons of one double pulse, there is only one combination of
early and late photon. For two distinct double pulses, on the other hand,
there are overall four possible combinations.

can be written as



β α 0 0

α

0 0

α
0 0 α β



×




F−N

F0

FN




=




F̃−N −Dτmzi

F̃0 −Dτmzi

F̃N −Dτmzi



. (E.3)

Solving the system yields the desired Fi, which are plotted in Fig. 6.12 (c)
and (d) as black dots. Note that this correction does not account for the
contribution of the peaks at ± (N + 1) τmzi as well as detector jitter.

To obtain a fitting model for all Fi we need to understand the history of
each photon that contributes to the cross-correlation measurement in more
detail. On that account we recapitulate the explanation given in Sect. 5.3.1,
but in a more general manner: we consider two photons entering a MZI with
a time delay ∆ [Fig. E.1 (a)]. At two consecutive beam splitters BS1 and
BS2 they are either reflected or transmitted and subsequently detected by
detector 1 or 2 (det1 or det2) at a time tdet. For simplicity, we assume that
both BSs are identical but asymmetric, i.e. for reflectivity and transmission
we find R 6= T . There are overall 16 possibilities, of which only 8 yield a
coincidence at a timelag of τ = tdet1 − tdet2 with tdet1 and tdet2 being the
recorded detection times at det1 and det2, respectively. These 8 cases are
summarized in Tab. E.2.

To reconstruct all coincidence peaks we have to distinguish photons stem-
ming from the same excitation cycle and distinct excitation cycles. For pho-
tons stemming from the same cycle the time delay between early and late
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Table E.2. Possible outcomes of 2 photons scattering at a
Mach-Zehnder interferometer. The early and late photon enter the
MZI with a time delay ∆. If a photon is reflected at BS1 its detection
is further delayed by τmzi. Columns BS1 and BS2 show whether the
photons are reflected (R) or transmitted (T ), Det indicates at which
detector the photon is recorded, and tdet is the detection time. Only
cases, where both photons end up at different detectors are listed. The
last column states the resulting timelag τ = tdet1 − tdet2.

early photon late photon timelag τ
BS1 BS2 Det tdet BS1 BS2 Det tdet

R R 1 τmzi R T 2 ∆ + τmzi −∆
R R 1 τmzi T R 2 ∆ −∆ + τmzi

R T 2 τmzi R R 1 ∆ + τmzi ∆
R T 2 τmzi T T 1 ∆ ∆− τmzi

T R 2 0 R R 1 ∆ + τmzi ∆ + τmzi

T R 2 0 T T 1 ∆ ∆
T T 1 0 R T 2 ∆ + τmzi −∆− τmzi

T T 1 0 T R 2 ∆ −∆

photon can only be ∆ = τmzi [compare 2 photons at the right of Fig. E.1 (b)],
which leads to the 8 cases illustrated in Fig. 5.7 (b). These are distributed to
5 peaks centered around τ = 0, ±τmzi, and ±2τmzi with relative intensities of
1:2:2:2:1. The intensities, however, do not yet consider the asymmetric BS and
bunching. To include the BS asymmetry each coincidence must be individu-
ally weighted with the probability of the preceding reflection and transmission
events. The coincidence in the first row of Tab. E.2, for instance, results from
the early photon being two times reflected and the late photon being reflected
at BS1 and transmitted at BS2, which occurs with the overall probability of
R3T . To account for bunching we employ the coincidence probability given in
Eq. (6.8), i.e. a coincidence stemming from two photons being emitted with
a delay of ∆ must be weighted with the factor

A (∆) = 1 +B · exp

[
−|∆| − Trep

τB

]
, (E.4)

where B and τB are bunching amplitude and time. For the five peaks of the
central cluster, we eventually find the relative intensities In,l

I0,−2 = RT 3 ·A (τmzi) (E.5)

I0,−1 = RT
(
R2 + T 2

)
·A (τmzi) (E.6)

I0,0 = RT
(
R2 + T 2

)
·A (τmzi) · (1− V ) (E.7)

I0,1 = RT
(
R2 + T 2

)
·A (τmzi) (E.8)

I0,2 = R3T ·A (τmzi) . (E.9)
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Note that the indices n and l follow our convention introduced in Sect. 5.3.1,
where n refers to the cluster centered at n · Trep and l to a relative timelag of
l ·τmzi within the cluster. The factor (1− V ) accounts for TPI with a visibility
of V . To obtain the intensities of clusters with n 6= 0 one has to consider
four different combinations of early and late photon: two photon pairs exhibit
∆ = n ·Trep and each one photon pair has ∆ = n ·Trep±τmzi [compare Fig. E.1
(b)]. Each of these 4 possibilities lead to the 8 cases listed in Tab. E.2, which
yields overall 32 coincidences. Of these, 16 appear at the cluster at +n · Trep,
the other 16 at −n · Trep. Using the abbreviation An,l = A (n · Trep + l · τmzi)
for convenience, we eventually find the intensities

I±n,−2 = RT 3 ·An,−1 (E.10)

I±n,−1 = 2RT 3 ·An,0 +RT
(
R2 + T 2

)
·An,−1 (E.11)

I±n,0 = 2RT
(
R2 + T 2

)
·An,0 +R3T ·An,−1 +RT 3 ·An,+1 (E.12)

I±n,1 = 2R3T ·An,0 +RT
(
R2 + T 2

)
·An,+1 (E.13)

I±n,2 = R3T ·An,+1. (E.14)

It is noteworthy, that both clusters at ±n · Trep are identical, i.e. they are
not sensitive to the sign of ±n, which is the origin of the asymmetry observed
in Fig. 6.12. Using all intensities Eq. (E.5) to (E.14), we are now able to
compute the area of a peak centered at i · τmzi as

Gi = C ·
∑

(n,l)∈Mi

In,l. (E.15)

The set Mi includes those individual peaks labeled by (n, l), which fulfill
n ·Trep + l · τmzi = i · τmzi and thereby contribute to the i’th peak of the overall
coincidence pattern. As we have Trep = 3τmzi, this condition can be written
as 3n + l = i. In the final least square fit, which minimizes the expression∑

i(Gi−Fi)2, the scaling C and the visibility V (included in I0,0) are treated
as free parameters. The bunching parameters B and τB are kept fixed from our
analysis in Sect. 6.3.3 and the BS asymmetry was set to R : T = 0.47 : 0.53
as stated in Sect. 6.4.1. From the fit, the cross-correlation measurement can
be reconstructed via

g(2) (τ) = D + C ·
N∑

n=−N

2∑

l=−2

In,l · fn,l (τ) with (E.16)

fn,l (τ) =
1

2τr
exp

[
−|τ − (n · Trep + l · τmzi)|

τr

]
, (E.17)

which is shown in Fig. 6.12 (a) and (b) as red and blue shaded curve.
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[121] M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian,
J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lo-
dahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a
Photonic Crystal Waveguide,” Phys. Rev. Lett. 113, 093603 (2014).

[122] E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequen-
cies,” Phys. Rev. 69, 681 (1946).

[123] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and
V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum
Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81,
1110–1113 (1998).

[124] K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).

[125] N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida,
G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory,
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I. Söllner, R. Schott, C. Papon, T. Pregnolato, S. Stobbe, L. Midolo,
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