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Abstract

In the present thesis we establish Banach space counter-
parts for several results known for Toeplitz operators on
H2(∂D) for suitable domains D ⊂ Cd.
A classical result of Brown and Halmos, stating that
the Toeplitz operators on the Hardy space H2(T) with
bounded measurable symbol are precisely the solutions
X of the operator equation T ∗zXTz = X, inspired Di-
das, Eschmeier and Everard to construct Toeplitz pro-
jections for Toeplitz operators associated with regular
A-isometries. We use their methods in a suitable Ba-
nach space setting to construct Toeplitz projections for
Toeplitz operators acting on a general class of Hardy-
type spaces Hp(∂D) (1 < p <∞) over suitable domains
D ⊂ Cd. These Toeplitz projections provide a general
framework for Brown-Halmos type characterizations of
Toeplitz operators and allow us to prove a Banach space
version of a classical spectral inclusion theorem of Hart-
man and Wintner.
In the final chapter we show that a multivariable spec-
tral mapping theorem of Eschmeier remains true for
Toeplitz tuples on Hardy spaces Hp(∂D) over strictly
pseudoconvex domains D ⊂ Cd with smooth boundary.
As an application we derive a spectral mapping theo-
rem for truncated Toeplitz systems which generalizes a
one dimensional spectral mapping theorem proved by
Bessonov for the Hardy space H2(T) on the unit disc.





Zusammenfassung

In der vorliegenden Arbeit zeigen wir, dass einige aus-
gewählte Sätze über Toeplitzoperatoren auf Hardy-Hil-
berträumen auch in einer entsprechenden Banachraum-
situation richtig bleiben.
Inspiriert durch ein klassisches Resultat von Brown
und Halmos, welches Toeplitzoperatoren auf dem Har-
dyraum H2(T) mit beschränktem messbaren Sym-
bol genau als die Lösungen X der Operatorgleichung
T ∗zXTz = X identifiziert, konstruierten Didas, Es-
chmeier und Everard Toeplitzprojektionen für eine
allgemeine Klasse mehrdimensionaler Toeplitzopera-
toren. Wir benutzen die gleichen Methoden in einer
geeigneten Banachraumsituation, um Toeplitzprojektio-
nen auf Hardyräumen Hp(∂D) (1 < p < ∞) über
geeigneten Gebieten D ⊂ Cd zu konstruieren. Diese
Projektionen liefern einen allgemeinen Rahmen für
Sätze vom Brown-Halmos Typ und ermöglichen es uns,
einen klassischen spektralen Inklusionssatz von Hart-
man und Wintner in unserer Situation zu formulieren
und zu beweisen.
Im zweiten Teil der Arbeit zeigen wir, dass ein mehrdi-
mensionaler spektraler Abbildungssatz von Eschmeier
auch für Tupel von Toeplitzoperatoren auf Hardyräu-
men Hp(∂D) über streng pseudokonvexen Gebieten D ⊂
Cd mit glattem Rand richtig bleibt. Als Anwendung
leiten wir einen spektralen Abbildungssatz für Tupel von
trunkierten Toeplitzoperatoren her. Letzterer verallge-
meinert ein eindimensionales Resultat von Bessonov.
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Introduction

During the last century Toeplitz operators on Hardy spaces have evolved into one of the
most prominent example for the fruitful interplay between complex analysis, operator
theory and the theory of Banach algebras. A Toeplitz operator on the Hardy space
H2(T) on the unit circle T ⊂ C with bounded measurable symbol f ∈ L∞(T) is defined
as the compression

X = PH2(T)Mf |H2(T) ∈ L(H2(T))

of the multiplication operator Mf : L2(T) → L2(T), Mfg = fg. A classical result
of M. Riesz [16, Theorem 3.3.5] shows that, for 1 < p < ∞, the restriction of the
orthogonal projection PH2(T) : L2(T) → H2(T) to the subspace C[z, z] |T ⊂ L2(T) of
all trigonometric polynomials is Lp-continuous and extends to a continuous projection
Lp(T)→ Hp(T) onto the Hardy space Hp(T) ⊂ Lp(T). Hence the definition of a Toeplitz
operator for H2(T) given above can naturally be extended to define Toeplitz operators
T pf ∈ L(Hp(T)) on the Hardy spaces Hp(T) ⊂ Lp(T) (1 < p <∞). This class of operators
has been studied extensively not only on the unit disc, but also on more general single and
multidimensional domains. A detailed exposition of the analysis of Toeplitz operators
on the Hardy spaces Hp(T) with many historical remarks can be found in the monograph
[13] of A. Böttcher and B. Silbermann.

Compared with the extremely rich theory of Toeplitz operators on Hardy-Hilbert
spaces much less is known in the Banach space case. Therefore, a natural question
is whether results known in the Hilbert space setting remain true in the more general
context of Banach spaces.

We shall address some of these questions using as basic tools the existence of Toeplitz
projections on Hardy spaces Hp(∂D) for suitable multivariable domains D ⊂ Cd and
results from the interpolation theory for compact operators. Our approach is mainly
based on recent articles of J. Eschmeier and K. Everard [34] and J. Eschmeier [31] in
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Introduction

which the Hilbert space case is treated.

A classical result of A. Brown and P. R. Halmos [14] states that the Toeplitz operators
on H2(T) are precisely the solutions X ∈ L(H2(T)) of the algebraic operator equation

T ∗zXTz = X,

where Tz ∈ L(H2(T)) denotes the unilateral shift on H2(T). If one replaces Tz and T ∗z

on H2(T) by T pz and T pz on Hp(T), one obtains a well known characterization of Toeplitz
operators on Hp(T). Thus the classical Brown-Halmos characterization has a counterpart
for Hp(T). On the other hand the Brown-Halmos condition described above inspired B.
Prunaru [61] and M. Didas, J. Eschmeier, K. Everard [26], [34] to study more general
classes of Toeplitz operators that are defined as fixed points of operator equations

TθXTθ = X,

where the symbols θ run through a sufficiently large class of inner functions. The general
framework described in the latter articles contains a general notion of Hardy-Hilbert
spaces which can be similarly defined for arbitrary values of 1 < p <∞.

Fix a positive integer d ≥ 1, let K ⊂ Cd be a compact set and let A ⊂ C(K)

be a closed subalgebra of the space C(K) of all complex-valued, continuous functions
on K that contains the restrictions C[z] |K of all holomorphic polynomials in d complex
variables z = (z1, . . . , zd). Furthermore, fix a positive regular Borel measure µ ∈ M+ (∂A)

on the Shilov boundary ∂A ⊂ K of A. For 1 < p <∞, we denote by (Lp(∂A), ‖ · ‖p) the
Banach space of (equivalence classes) of all p-integrable functions with respect to µ. We
call the closure

Hp(∂A) = A
‖ · ‖p ⊂ Lp(∂A)

in Lp(∂A) of A a Hardy-type space induced by A, provided that (A, ∂A, µ) is regular in
the sense of A. B. Aleksandrov [3] and that there exists a family (Pp)1<p<∞ of bounded
linear projections Pp : Lp(∂A) → Lp(∂A) onto Hp(∂A) (1 < p < ∞) that is compatible
with the inclusion mappings ipq : Lp(∂A) → Lq(∂A) (1 < q < p < ∞) in the sense that
ipqPp = Pqipq for all 1 < q < p < ∞. Natural examples of such Hardy-type spaces are
the Hardy spaces Hp(∂B), Hp(Td), Hp(∂D) over the unit ball B ⊂ Cd, the unit polydisc
Dd ⊂ Cd or a strictly pseudoconvex domain D ⊂ Cd with C2-boundary (see Section 1.3).
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For f ∈ L∞(∂A), the Toeplitz operator T pf ∈ L(Hp(∂D)) with symbol f is defined as the
compression

T pf = PpM
p
f |Hp(∂A)

of the multiplication operator Mp
f ∈ L(Lp(∂A)). In the case p = 2 we use the shorter

notation Tf = T 2
f . We write H∞(∂A) = A

τw∗ ⊂ L∞(∂A) for the weak* closure of A in
L∞(∂A) = L1(∂A)′ and denote by

Iµ = {θ ∈ H∞(∂A) | |θ| = 1 µ-almost everywhere on ∂A}

the family of all µ-inner functions on ∂A. Under a suitable regularity assumption on the
triple (A, ∂A, µ) due to A. B. Aleksandrov [3] which ensures the existence of sufficiently
many µ-inner functions, it is shown in [26] that the Brown-Halmos condition

T ∗θXTθ = X for every θ ∈ Iµ

characterizes the family T =
{
Tf ∈ L(H2(∂A))

∣∣ f ∈ L∞(∂A)
}
among all operators X ∈

L(H2(∂A)) and that, under the same condition, there exists a unital continuous projection
Φ: L(H2(∂A))→ L(H2(∂A)) onto the subspace T . In [34] the projection Φ is constructed
as the pointwise ultraweak limit of operators of the form

Φk(X) =
1

kk

∑
1≤i1,...,ik≤k

T ∗
θ
ik
k ...θ

i1
1

XT
θ
i1
1 ...θ

ik
k

in L(H2(∂A)), where I = (θk)k≥1 is a sequence in Iµ with the property that

L∞(∂A) = alg(I ∪ I∗)
τw∗

is the weak* closure of the subalgebra alg(I∪I∗) ⊂ L∞(∂A) generated by the functions in
I and their complex conjugates. If one replaces the Hilbert space H2(∂A) by the Banach
space Hp(∂A) ⊂ Lp(∂A), a suitable modification of the above construction can be used
to prove the existence of a Toeplitz projection on Hp(∂A) (see Chapter 2):
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Theorem 2.9.
For every 1 < p <∞ and every family I = (θk)k≥1 of µ-inner functions
on ∂A with the property that L∞(∂A) = alg(I ∪ I∗)

τw∗ , there exists an
associated unital continuous projection Φ: L(Hp(∂A))→ L(Hp(∂A)) onto
the subspace

T p =
{
T pf ∈ L(Hp(∂A))

∣∣ f ∈ L∞(∂A)
}
⊂ L(Hp(∂A)).

The projection in the last theorem will be called the Toeplitz projection for Hp(∂A).
This result has a number of consequences which we will summarize now. Our proof of
Theorem 2.9 shows at the same time that

T p =
{
X ∈ L(Hp(∂A))

∣∣∣ T p
θ
XT pθ = X for all θ ∈ I

}
.

Thus we obtain Hp-versions of the Brown-Halmos characterization of Toeplitz operators
on Hardy-type spaces. Since the Hardy spaces Hp(∂B), Hp(Td), Hp(∂D) are Hardy-type
spaces in the sense described above, one regains results proved for p = 2 on these spaces
(see, e.g., [77] for the case of Toeplitz operators on H2(∂B)). In particular, if one applies
Theorem 2.9 to the family

I = {z1, . . . , zd, z1, . . . , zd, . . . }

of coordinate functions zi : Cd → C, one obtains the following Brown-Halmos theorem
for the Hardy space Hp(Td) on the unit polydisc in Cd. For the Hilbert space case p = 2,
this result was proved by A. Maji, J. Sarkar and S. Sarkar in [51, Theorem 3.1].

Corollary 2.11.
For 1 < p <∞, an operator X ∈ L(Hp(Td)) is a Toeplitz operator if and
only if T pziXT

p
zi

= X for i = 1, . . . , d.

For a unital closed subalgebra B ⊂ L∞(∂A), denote by

T p(B) = alg
{
T pf
∣∣ f ∈ B} ⊂ L(Hp(∂A))

4



the smallest norm-closed subalgebra containing all Toeplitz operators T pf ∈ L(Hp(∂A))

with symbol f ∈ B. Using the Toeplitz projection we show that the algebra T p(B) has
the direct sum decomposition

T p(B) =
{
T pf
∣∣ f ∈ B}⊕ SCp(B),

where SCp(B) is the norm-closed ideal in T p(B) generated by all semi-commutators
T pf T

p
g − T

p
fg (f, g ∈ B).

As a last application we prove a version of the spectral inclusion formula due to P.
Hartman and A. Wintner [41] and I. B. Simonenko [69] in our setting. Our theorem
reads as follows:

Theorem 2.21.
Assume that µ ∈ M+ (∂A) has no atoms. Then, for every 1 < p < ∞
and every f ∈ L∞(∂A), the spectral inclusion formula

R(f) ⊂ σe(T
p
f )

holds.

Here, for f ∈ L∞(∂A),

R(f) = {z ∈ C | µ ({x ∈ X | |f(x)− z| < ε}) > 0 for all ε > 0}

denotes the essential range of the symbol f and σe(T
p
f ) is the essential spectrum of the

Toeplitz operator T pf ∈ L(Hp(∂A)).

In Chapter 3 we use results from complex interpolation theory for compact operators
on Banach spaces to prove compactness results for commutators of Toeplitz operators on
Hardy-type spaces Hp(∂A). For 1 < p < ∞, let us denote by Cp

f = [Mp
f , Pp] = Mp

fPp −
PpM

p
f ∈ L(Lp(∂A)) the commutator of the multiplication operator Mp

f ∈ L(Lp(∂A))

and the projection Pp ∈ L(Lp(∂A)) onto Hp(∂A). Furthermore, we write Hp
f = (1 −

Pp)M
p
f |Hp(∂A) ∈ L(Hp(∂A),Lp(∂A)) for the Hankel operator with symbol f ∈ L∞(∂A).

Using a classical interpolation theorem of M. A. Krasnoselski (see Theorem 3.1) we
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prove that the set

QC =
{
f ∈ L∞(∂A)

∣∣ Cp
f ∈ L(Lp(∂A)) is compact

}
=
{
f ∈ L∞(∂A) | Hp

f and Hp

f
are compact

}
is a unital C∗-subalgebra of L∞(∂A) that does not depend on the choice of the exponent
p ∈ (1,∞). The observation that, for f ∈ QC and g ∈ L∞(∂A), the semi-commutator

T pg T
p
f − T

p
gf = −PpMp

gH
p
f ∈ L(Hp(∂A))

is compact, leads us to the following corollary.

Corollary 3.4.
For 1 < p <∞ and f ∈ QC, the commutators [T pf , T

p
g ] ∈ L(Hp(∂A)) are

compact for every function g ∈ L∞(∂A).

It is an obvious question whether conversely, for f ∈ L∞(∂A), the condition that
[T pf , T

p
g ] ∈ L(Hp(∂A)) is compact for all g ∈ L∞(∂A) is also sufficient for f to belong

to QC. Under certain additional assumptions (see Theorem 3.5 and Corollary 3.7) on
the Hardy-type spaces Hp(∂A) (1 < p < ∞), which are needed in order to apply an
extrapolation result of M. Cwikel (see Theorem A.3), we give an affirmative answer to
this question in Corollary 3.7.
In Chapter 4 we use Corollary 3.4 to extend a multidimensional spectral mapping

theorem due to J. Eschmeier [31] to the case of Toeplitz tuples T pf = (T pf1
, . . . , T pfm) ∈

L(Hp(∂D))m with symbol f in the closed subalgebra

H∞(∂D) + C(∂D) = {f + g | f ∈ H∞(∂D), g ∈ C(∂D)} ⊂ L∞(∂D)

on strictly pseudoconvex domains D ⊂ Cd with C∞-boundary. Since, for such domains
D ⊂ Cd, the continuous functions C(∂D) on ∂D are contained in the C∗-algebra QC,
Corollary 3.4 shows that the Toeplitz tuple T pf essentially commutes. By a standard
construction in multivariable operator theory (see Section 1.2), one can associate with
the tuple T pf a commuting tuple (T pf )e ∈ L(Hp(∂D)e)m in a canonical way. The essential

6



Taylor spectrum σe(T
p
f ) of T pf is defined as the ordinary Taylor spectrum σ((T pf )e) of

the tuple (T pf )e. If F = (P [f1], . . . ,P [fm]) : D → Cm denotes the tuple of real Poisson
transforms of the components fi of a tuple f = (f1, . . . , fm) ∈ L∞(∂D)m, then we obtain
the following Hp-version of Theorem 4 in [31].

Theorem 4.6.
For f ∈ (H∞(∂D) + C(∂D))m, the formula

σe(T
p
f ) =

⋂(
F (U ∩D);U ⊃ ∂D open

)
holds.

The proof of the inclusion

σe(T
p
f ) ⊂

⋂(
F (U ∩D);U ⊃ ∂D open

)
follows the same lines as the one given in [31]. We use general Gelfand theory together
with Corollary 3.4 and a spectral mapping theorem due to M. Andersson and S. Sandberg
[6, Theorem 1.2]. The verification of the reverse inclusion turns out to be more involved
and requires a different approach, since the arguments of J. Eschmeier (see Lemma 2 in
[31]) rely heavily on Hilbert space techniques. In spite of this difficulty, we obtain the
desired inclusion by a duality argument.
Assume that 0 ∈ Cm is contained in the intersection on the right-hand side of the

formula claimed in Theorem 4.6. By the definition of the essential Taylor spectrum of
T pf , it suffices to show that the row operator (Hp(∂D)e)m → Hp(∂D)e induced by the
multioperator (T pf )e is not onto. Let q ∈ (1,∞) be such that 1

p
+ 1

q
= 1. By using

general duality theory for Banach spaces one sees that the above assertion follows if one
can show that the column operator Hq(∂D)→ Hq(∂D)m induced by the operator tuple
T q
f
∈ L(Hq(∂D))m has infinite dimensional kernel or non-closed range. The latter is

verified exhibiting a joint approximate eigensequence for the tuple T q
f
converging weakly

to zero.
In the last section of Chapter 4 we apply Theorem 4.6 to calculate essential Taylor

spectra for a general class of truncated Toeplitz tuples. Truncated Toeplitz operators on

7
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the Hardy space H2(T) were first systematically studied by D. Sarason [68] in 2007. These
operators arise as compressions of ordinary Toeplitz operators Tf ∈ L(H2(T)) to the
orthogonal complement Kθ = H2(T)	θH2(T) of an invariant subspace θH2(T) ⊂ H2(T)

of the unilateral shift Tz ∈ L(H2(T)), given by an inner function θ ∈ H∞(T). In 2015 R.
V. Bessonov [10] proved the following spectral mapping theorem for truncated Toeplitz
operators.

Theorem (Bessonov, 2015).
Let θ ∈ H∞(T) be an inner function. For f ∈ H∞(T)+C(T), the formula

σe(T
θ
f ) =

{
λ ∈ C

∣∣∣∣∣ there exists D 3 zk
k−→ z ∈ T such that

limk→∞ F (zk) = λ and limk→∞Θ(zk) = 0

}

holds.

Here F and Θ are the Poisson transforms of the symbol f ∈ L∞(T) and the inner
function θ ∈ H∞(T), respectively. An application of Theorem 4.6 leads to a multivariable
version of Bessonov’s result for truncated Toeplitz systems with symbols in H∞(∂D) +

C(∂D).
Let D ⊂ Cd be a strictly pseudoconvex domain with C∞-boundary and let θ ∈

H∞(∂D) be an inner function. The Toeplitz operator S = T pθ ∈ L(Hp(∂D)) is an isom-
etry with left inverse R = T p

θ
. Then Pθ = SR is a projection onto the closed subspace

ImS ⊂ Hp(∂D). We identify the topological direct complement Im(1 − Pθ) ⊂ Hp(∂D)

of ImS with the quotient space Hp
θ(∂D) = Hp(∂D)/θHp(∂D) via the topological iso-

morphism ρ : ImS → Hp
θ(∂D), x 7−→ [x]. For f ∈ L∞(∂D), we call the bounded linear

operator
T p,θf = ρ(1− Pθ)T pf ρ

−1 ∈ L(Hp
θ(∂D))

the truncated Toeplitz operator with symbol f . According to Corollary 3.4, for f =

(f1, . . . , fm) ∈ (H∞(∂D) + C(∂D))m the tuples T pf = (T pf1
, . . . , T pfm) ∈ L(Hp(∂D))m and

(T pf , T
p
θ ) = (T pf1

, . . . , T pfm , T
p
θ ) ∈ L(Hp(∂D))m+1 essentially commute. It follows that also

the truncated Toeplitz tuple T p,θf = (T p,θf1
, . . . , T p,θfm ) ∈ L(Hp

θ(∂D))m essentially commutes.
As an application of Theorem 4.6 and standard methods from homological algebra (see
Lemma 4.10) we calculate the essential spectrum of the essentially commuting tuple T p,θf .

8



Theorem 4.13.
Let θ ∈ H∞(∂D) be an inner function and f ∈ (H∞(∂D) + C(∂D))m.
Then the formula

σe(T
p,θ
f ) =

{
λ ∈ Cm

∣∣∣∣∣ there exists D 3 zk
k−→ z ∈ ∂D such that

limk→∞ F (zk) = λ and limk→∞Θ(zk) = 0

}

holds.

The latter theorem can be slightly improved if one observes that the arguments used
to prove Theorem 4.13 only require θ ∈ H∞(∂D) to be invertible in L∞(∂D), since then
T pθ is left invertible. This even slightly improves the one dimensional result of Bessonov
stated above.
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1 Preliminaries

The aim of the present chapter is to introduce the notation and to provide preliminary
results and basic constructions that are used throughout this thesis. First of all, for
normed vector spaces (X, ‖ · ‖1) and (Y, ‖ · ‖2), we denote by L(X, Y ) the normed vector
space of all bounded, linear operators T : X → Y , where the norm on L(X, Y ) is given
by the usual operator norm that is induced by ‖ · ‖1 and ‖ · ‖2. In the case (X, ‖ · ‖1) =

(Y, ‖ · ‖2) we will write L(X) instead of L(X,X). In addition we use the notation X ′ for
the topological dual space of X.

1.1 Multiplication Operators on Lp-Spaces

For an arbitrary set M and a bounded function f : M → C, we denote by ‖f‖M =

supz∈M |f(z)| the supremum norm of f . Let (X,A, µ) be a measure space. For 1 ≤ p ≤
∞ we write Lp(X) = Lp(X,A, µ) for the Banach space of (equivalence classes1) of all
p-integrable functions if p < ∞, and of all essentially bounded measurable functions if
p =∞, equipped with the norms

‖f‖p =

(∫
X

|f |p dµ
) 1

p

(p <∞), ‖f‖∞ = inf
µ(N)=0

‖f‖X\N .

For p, q ∈ (1,∞) with 1
p

+ 1
q

= 1, we use the sesquilinear form

〈·, ·〉 : Lp(X)× Lq(X) −→ C, (f, g) 7−→
∫
X

fg dµ

to identify Lq(X) with the topological dual space of Lp(X).

1Two measurable functions f : X → C and g : X → C are called equivalent if f = g µ-a.e. on X

11
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Proposition 1.1.
For 1 < p <∞, the mapping

ρ : Lq(X) −→ Lp(X)
′
, h 7−→ 〈·, h〉

defines an antilinear isometric isomorphism.

Proof. This follows directly from the definition of the sesquilinear form 〈·, ·〉 and standard
Lp − Lq duality (Theorem 4.5.1 in [17]).

Using the above sesquilinear form we define the adjoint T ∗ ∈ L(Lq(X)) of an operator
T ∈ L(Lp(X)). For T ∈ L(Lp(X)), we denote by T ′ ∈ L(Lp(X)′) the Banach space
adjoint of T .

Lemma 1.2.
For T ∈ L(Lp(X)), there exists a unique continuous linear operator T ∗ ∈ L(Lq(X)) which
makes the diagram

Lq(X) Lp(X)
′

Lq(X) Lp(X)
′

ρ

T ∗ T ′

ρ

commutative, that is, such that

〈f, T ∗g〉 = 〈Tf, g〉 (1.1)

for all f ∈ Lp(X), g ∈ Lq(X). The map

L(Lp(X)) −→ L(Lq(X)), T 7−→ T ∗

is isometric, antilinear and satisfies

(TS)∗ = S∗T ∗ and (T ∗)∗ = T for T, S ∈ L(Lp(X)).

12
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Proof. The map defined by

T ∗ = ρ−1T ′ρ : Lq(X) −→ Lq(X)

is continuous linear with ‖T ∗‖ = ‖T‖ and

〈f, T ∗g〉 = ρ(T ∗g)(f) = T ′(ρ(g))(f) = ρ(g)(Tf) = 〈Tf, g〉

for all f ∈ Lp(X), g ∈ Lq(X). Obviously T ∗ is uniquely determined by (1.1) and the
map T 7→ T ∗ has the stated properties.

With respect to the sesquilinear form 〈·, ·〉 : Lp(X)×Lq(X)→ C we define orthogonal
complements of sets M ⊂ Lp(X), N ⊂ Lq(X) in the usual way

M⊥ = {h ∈ Lq(X) | 〈g, h〉 = 0 for all g ∈M} ,
⊥
N = {g ∈ Lp(X) | 〈g, h〉 = 0 for all h ∈ N} .

Proposition 1.3.
For a closed subspace M ⊂ Lp(X), the mapping

Lq(X)/M⊥ −→M
′
, [h] 7−→ ρ(h)|M

defines an antilinear isometric isomorphism of Banach spaces and for T ∈ L(Lp(X)),
the identity

(ImT )⊥ = kerT ∗

holds.

Proof. Obviously ρ(M⊥) = {u ∈ Lp(X)′ | u|M = 0}. By basic Banach space duality the
composition

Lq(X)/M⊥ ρ̂−→ Lp(X)′/ {u ∈ Lp(X)′ | u|M = 0} u 7→ u|M−−−−−→M ′

is an antilinear isometric isomorphism. Since 〈Tg, f〉 = 〈g, T ∗f〉 for all g ∈ Lp(X),
f ∈ Lq(X), we have f ∈ kerT ∗ if and only if f ∈ (ImT )⊥.

13



1 Preliminaries

For f ∈ L∞(X), the multiplication operator with symbol f

Mp
f : Lp(X) −→ Lp(X), g 7−→ fg

defines a bounded linear operator Mp
f ∈ L(Lp(X)) with

∥∥Mp
f

∥∥ = ‖f‖∞. In the Hilbert
space case p = 2 we will always suppress the exponent and write Mf = M2

f for f ∈
L∞(X).

It is well known (see e.g. [44, Example 5.1.6] or [40, Problem 65]) that the von
Neumann algebra

{
Mf : L2(X)→ L2(X)

∣∣ f ∈ L∞(X)
}
⊆ L(L2(X))

consisting of all multiplication operators on L2(X) with essentially bounded symbol is
maximal abelian. The same arguments show that also in the case p 6= 2 the subalgebra

M(Lp(X)) =
{
Mp

f : Lp(X)→ Lp(X)
∣∣ f ∈ L∞(X)

}
⊂ L(Lp(X)).

coincides with its commutant in L(Lp(X)).

Proposition 1.4.
Let 1 ≤ p < ∞. If T ∈ L(Lp(X)) commutes with all multiplication operators M ∈
M(Lp(X)), then T ∈M(Lp(X)).

Proof. From the equation

Mp
fT = TMp

f (f ∈ L∞(X))

we get
fT (1) = Mp

fT (1) = TMp
f (1) = Tf (1.2)

for all f ∈ L∞(X). We show that the function g = T (1) ∈ Lp(X) is essentially bounded
with |g| ≤ ‖T‖ µ-almost everywhere. Let ε > 0 and assume that there exists a set M ∈
B(X) with µ(M) > 0 and |g(x)| > ‖T‖ + ε for all x ∈M . Then χM ∈ L∞(X) ⊂ Lp(X)

14
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and

‖TχM‖pp =

∫
X

|χMg|p dµ =

∫
M

|g|p dµ ≥ (‖T‖ + ε)p µ(M) > ‖T‖p ‖χM‖pp .

This contradiction implies that |g| ≤ ‖T‖ + ε µ-almost everywhere for every ε > 0.
Hence |g| ≤ ‖T‖ µ-almost everywhere. By (1.2) we know that Mp

g = T on the dense
subspace L∞(X) ⊂ Lp(X). As both Mp

g and T are bounded, the assertion follows.

We finish this section with the observation that, under the additional assumption that
the measure µ possesses no atoms2, there exist no non-trivial compact multiplication
operators on Lp(X).

Proposition 1.5.
Assume that µ has no atoms and let f ∈ L∞(X). Then the multiplication operator
Mp

f ∈M(Lp(X)) is compact if and only if f = 0.

Proof. Assume that f : X → C is a bounded measurable function such that Mf ∈
L(Lp(X)) \ {0} is compact. Choose ε > 0 such that the set

S = {x ∈ X | |f(x)| > ε} ∈ B(X)

has positive µ-measure. Then

U = {g ∈ Lp(X) | g = 0 µ− a.e. on X \ S} ⊂ Lp(X)

is an infinite-dimensional, closed subspace of Lp(X) that is invariant under Mp
f . Indeed,

since µ has no atoms, there is a decreasing sequence (Si)i≥0 of sets in A such that S0 = S

and 0 < µ(Si+1) < µ(Si) for all i ≥ 0. Then an elementary argument shows that the
family (χSi)i≥0 is linearly independent in U ⊂ Lp(X). With U defined as above the
restriction Mp

f |U ∈ L(U) is a compact operator. Furthermore it has the bounded left

2A set A ∈ B(X) is called an atom if µ(A) > 0 and for every subset B ∈ B(X) of A we have µ(B) = 0
or µ(B) = µ(A).
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inverse Mp
h |U ∈ L(U), where h ∈ L∞(X) is given by

h(x) =

 1
f(x)

, x ∈ S,

0, x ∈ X \ S,

which is a contradiction.

We finish this section with the remark that, in the case that the space Lp(X) is
separable, it possesses a Schauder basis3 (see [12, p. 296]). The last fact will be crucial
in the proof of Theorem 2.18.

3see Appendix A of this thesis.
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1.2 Taylor’s joint Spectrum

1.2 Taylor’s joint Spectrum

In this section we recall the notion of the joint spectrum for a commuting tuple T =

(T1, . . . , Tn) ∈ L(X)n of bounded linear operators Ti : X → X (i = 1, . . . , n) on a complex
Banach space X due to J. L. Taylor [72].

For each k = 0, . . . , n, we set Λk
nX = X⊗ΛkCn, where ΛkCn denotes the k-th exterior

power with respect to the standard basis {e1, . . . , en} of Cn. Since the vector space Λk
nX

is isomorphic to the direct sum X(nk), it becomes a Banach space in a canonical way.

Since T is commuting, the sequence

0 Λ0
nX Λ1

nX . . . Λn−1
n X Λn

nX 0
δ0
T δ1

T δn−2
T δn−1

T

with differentials δpT : Λp
nX → Λp+1

n X acting as

∑
1≤i1<...<ip≤n

xi1...ipei1 ∧ . . . ∧ eip 7−→
∑

1≤i1<...<ip+1≤n

p+1∑
ν=1

(−1)ν−1Tiνxi1...̂iν ...ip+1
ei1 ∧ . . . ∧ eip+1

is a well-defined complex of Banach spaces called the Koszul complex K•(T,X) of T .
We shall write the elements in the spaces Λk

nX as (xI)|I|=k where xI ∈ X and I =

(i1, . . . , ik) ∈ Nk ranges over all tuples of non-negative integers with 1 ≤ i1 < i2 < . . . <

ik ≤ n. The quotient vector spaces

Hp(T,X) = ker δpT / Im δp−1
T (p = 0, . . . , n)

are called the cohomology groups of the Koszul complex of T . Here by definition δ−1
T =

0 = δnT .

We write z − T = (z1 − T1, . . . , zn − Tn) ∈ L(X)n for z = (z1, . . . , zn) ∈ Cn and
T = (T1, . . . , Tn) ∈ L(X)n.

Definition 1.6.
Let T ∈ L(X)n be a commuting tuple of bounded linear operators on a Banach space X.

(a) The set
σ(T ) = {z ∈ Cn | K•(z − T,X) is not exact}

17
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is called the (Taylor) spectrum of T .

(b) The set

σe(T ) = {z ∈ Cn | dim Hp(z − T,X) =∞ for at least one p = 0, . . . , n}

is called the essential (Taylor) spectrum of T .

The study of essential Taylor spectra σe(T ) can be reduced to the study of the Taylor
spectra σ(T̃ ) of suitably defined commuting tuples T̃ ∈ L(X̃)n. We recall one such
construction. For a Banach space X, denote by X∞ the Banach space of all bounded
sequences in X equipped with the supremum norm and write Xpc for the closed subspace
of X∞ consisting of all precompact sequences in X, i.e., all sequences (xk)k∈N in X with
the property that each subsequence of (xk)k∈N has a convergent subsequence. Then the
quotient Xe = X∞/Xpc equipped with the quotient norm is a Banach space. Let Y be
another Banach space. For every T ∈ L(X, Y ) the mapping

T e : Xe −→ Y e, [(xk)k∈N] 7−→ [(Txk)k∈N]

defines an operator T e ∈ L(Xe, Y e). For T = (T1, . . . , Tn) ∈ L(X)n write T e =

(T1
e, . . . , Tn

e) and observe that T e ∈ L(Xe)n is a commuting tuple whenever T is. An
iterated application of [36, Lemma 2.6.5] yields the following characterization of the
essential Taylor spectrum.

Lemma 1.7.
Let T ∈ L(X)n be a commuting tuple on the Banach space X. Then σe(T ) = σ(T e).

For an arbitrary tuple T = (T1, . . . , Tn) ∈ L(X)n, the induced tuple T e ∈ L(Xe)n

is commuting if and only if all commutators [Ti, Tj] = TiTj − TjTi (i, j = 1, . . . n) are
compact. In this case we define the essential Taylor spectrum of T by σe(T ) = σ(T e).
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1.3 Hardy-type Spaces

Fix a positive integer d ≥ 1. We write

〈z, w〉 =
d∑

k=1

zkwk, (z = (zk)
d
k=1, w = (wk)

d
k=1 ∈ Cd)

for the scalar product on Cd and denote by

| · | : Cd −→ [0,∞), z 7−→
√
〈z, z〉,

the Euclidean norm on Cd. We write

B = Bd =
{
z ∈ Cd

∣∣ |z| < 1
}

and Dd =
{
z ∈ Cd

∣∣ max
i=1,...,d

|zi| < 1
}

for the unit ball and unit polydisc in Cd.
Let K ⊂ Cd be a compact set and A ⊂ C(K) a closed subalgebra that contains the

restrictions C[z] |K of all holomorphic polynomials in d complex variables z = (z1, . . . , zd).
We denote by ∂A ⊂ K the Shilov boundary of A, that is, the smallest closed subset of
K such that ‖f‖K = ‖f‖∂A for all f ∈ A. Now let µ ∈ M+ (∂A) be a positive, regular
Borel measure4 such that (A, ∂A, µ) is a regular triple in the sense of A. B. Aleksandrov
[3]. Let Lp(∂A) be the Lp-space formed with respect to the measure µ. We define
Hp(∂A) = A

Lp ⊂ Lp(∂A) as the Lp- closure of the algebra A ⊂ Lp(∂A) and make the
additional assumption that there is a family (Pp)1<p<∞ of projections Pp ∈ L(Lp(∂A))

with ImPp = Hp(∂A) and
isrPs = Prisr

for all 1 < r < s < ∞, where the mappings isr : Ls(∂A) → Lr(∂A) are the canonical
inclusion mappings. Furthermore, we suppose that P = P2 ∈ L(L2(∂A)) is the orthogonal
projection onto H2(∂A). We define H∞(∂A) = A

τw∗ ⊂ L∞(∂A) as the weak* closure of
A in L∞(∂A) = L1(∂A)

′ . We call Hp(∂A) a Hardy-type space induced by A. The
regularity assumption of the triple (A, ∂A, µ) is a sufficient condition ensuring H∞(∂A)

to have a rich supply of inner functions. We shall use this fact in later sections.

4Observe that, for measures of this kind, the corresponding Lp-spaces are separable (use, for example,
Proposition 3.4.5 in [17]) and hence, as indicated at the end of Section 1.1, possess Schauder bases.

19



1 Preliminaries

Lemma 1.8.
For p, q ∈ (1,∞) with 1

p
+ 1

q
= 1, we have

P ∗p = Pq.

Proof. By Stone-Weierstraß and standard measure theory (see Proposition 7.4.3 in [17]),
the subspace C[z, z] |∂A ⊂ Lr(∂A) is dense for all 1 ≤ r < ∞. Let us denote by
γr : C[z, z] → Lr(∂A) the inclusion mappings. Note that, for p > 2 and f ∈ Lp(∂A),
g ∈ L2(∂A),

〈ip2f, g〉L2(∂A) =

∫
∂A

fg dµ = 〈f, i2qg〉 .

Hence, for f, g ∈ C[z, z] |∂A , we obtain

〈Ppγp(f), γq(g)〉 = 〈Ppγp(f), i2qγ2(g)〉 = 〈ip2Ppγp(f), γ2(g)〉L2(∂A)

= 〈Pip2γp(f), γ2(g)〉L2(∂A) = 〈ip2γp(f), Pγ2(g)〉L2(∂A)

= 〈γp(f), i2qPγ2(g)〉 = 〈γp(f), Pqi2qγ2(g)〉

= 〈γp(f), Pqγq(g)〉 .

Since the sesquilinear form 〈·, ·〉 : Lp(∂A) × Lq(∂A) → C is continuous, it follows that
P ∗p = Pq in this case. To prove the assertion in the case p < 2, note that by arguing as
above with the roles of p and q exchanged, one obtains

〈γp(f), Pqγq(g)〉 = 〈Pqγq(g), γp(f)〉 = 〈γq(g), Ppγp(f)〉 = 〈Ppγp(f), γq(g)〉

for all f, g ∈ C[z, z] |∂A .

The compatibility condition

isrPs = Prisr (1 < r < s <∞)

is only needed in Section 2.3. Up to Section 2.2 it suffices to know that there is a family of
projections Pr ∈ L(Lr(∂A)) (1 < r <∞) onto the subspaces Hr(∂A) ⊂ Lr(∂A) satisfying
the duality relation

P ∗p = Pq

(
1

p
+

1

q
= 1

)
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from Lemma 1.8.

Proposition 1.9.
Let 1 < p < q <∞. Then the inclusions H∞(∂A) ⊂ Hq(∂A) ⊂ Hp(∂A) hold. Furthermore
H∞(∂A) ⊂ L∞(∂A) is a subalgebra with the property that, for every θ ∈ H∞(∂A), the
inclusion

θHp(∂A) = {θ · f | f ∈ Hp(∂A)} ⊂ Hp(∂A)

holds.

Proof. The inclusion Hq(∂A) ⊂ Hp(∂A) directly follows from the definition of Hq(∂A) and
Hp(∂A), respectively. Obviously H∞(∂A) ⊂ L∞(∂A) is a subalgebra. Let θ ∈ H∞(∂A)

and (θα)α be a net in A that converges to θ in the weak* topology of L∞(∂A) = L1(∂A)′.
Since Lq(∂A) ⊂ L1(∂A) the net (θα)α converges to θ in the weak* topology of Lp(∂A) =

Lq(∂A)′. As a norm closed convex subset of the reflexive Banach space Lp(∂A) the
subspace Hp(∂A) is also closed with respect to the weak* topology. Hence θ ∈ Hp(∂A).
Since θf ∈ H∞(∂A) ⊂ Hp(∂A) for every f ∈ A another straight forward approximation
argument shows that θHp(∂A) ⊂ Hp(∂A).

The Lp − Lq-duality can be used to calculate the dual spaces of the Hardy spaces
Hp(∂A) for 1 < p <∞.

Proposition 1.10.
Let p, q ∈ (1,∞) be real numbers. The mapping

ρH : Hq(∂A) −→ Hp(∂A)′, h −→ 〈·, h〉Hp,Hq ,

where 〈·, ·〉Hp,Hq : Hp(∂A)× Hq(∂A)→ C is the sesquilinear form defined by

〈g, h〉Hp,Hq =

∫
∂A

gh dµ,

is an antilinear topological isomorphism.
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Proof. By the bounded inverse theorem, we know that

Φ: Lq(∂A)/ kerPq −→ ImPq = Hq(∂A), [h] 7−→ Pqh

is a topological isomorphism. By Proposition 1.3 we have

kerPq = (ImPp)
⊥ = Hp(∂A)⊥.

Using the antilinear isometric isomorphism from Proposition 1.3 with M = Hp(∂A), we
see that the composition

σ : Hq(∂A) Lq(∂A)/Hp(∂A)⊥ Hp(∂A)
′Φ−1

is an antilinear topological isomorphism. Checking the definitions we find that

σ(Pqh) = ρ(h)|Hp(∂A) = 〈 · , h〉 |Hp(∂A)

for h ∈ Lq(∂A). Since h−Pqh ∈ kerPq = Hp(∂A)⊥, we have that σ(Pqh) = 〈 · , Pqh〉 |Hp(∂A)

for every h ∈ Lq(∂A). Thus ρH = σ is an antilinear topological isomorphism.

As in Lemma 1.2 we can use the identification ρH : Hq(∂A) → Hp(∂A)′ to interprete
the Banach space adjoint of an operator T ∈ L(Hp(∂A)) as an operator T ∗ ∈ L(Hq(∂A)).

Lemma 1.11.
For T ∈ L(Hp(∂A)), there is a unique continuous linear operator T ∗ ∈ L(Hq(∂A)) for
which the diagram

Hq(∂A) Hp(∂A)
′

Hq(∂A) Hp(∂A)
′

ρH

T ∗ T ′

ρH

is commutative, or equivalently, which satisfies the identity

〈f, T ∗g〉Hp,Hq = 〈Tf, g〉Hp,Hq

for all f ∈ Hp(∂A), g ∈ Hq(∂A). The mapping T 7→ T ∗ is antilinear and satisfies

(i) (TS)∗ = S∗T ∗, (T ∗)∗ = T
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(ii) 1
‖Pp‖ ‖T‖ ≤ ‖T

∗‖ ≤ ‖Pp‖ ‖T‖

for all S, T ∈ L(Hp(∂A)).

Proof. For T ∈ L(Hp(∂A)), define T ∗ = ρ−1
H T ′ρH . We only indicate why the estimates

claimed in (ii) hold for T ∗. The remaining properties are easily checked. For T ∈
L(Hp(∂A)), the adjoint of the operator TPp ∈ L(Lp(∂A)), formed in the sense of Lemma
1.2, satisfies

(1− Pq)(TPp)∗ = (1− Pq)((TPp)Pp)∗ = (1− Pq)Pq(TPp)∗ = 0.

Thus (TPp)
∗Hq(∂A) ⊂ Hq(∂A). Since

〈f, (TPp)∗g〉Hp,Hq = 〈f, (TPp)∗g〉 = 〈(TPp)f, g〉 = 〈(TPp)f, g〉Hp,Hq

for all f ∈ Hp(∂A), g ∈ Hq(∂A), it follows that T ∗ = (TPp)
∗|Hq(∂A). But then

‖T ∗‖ ≤ ‖(TPp)∗‖ = ‖TPp‖ ≤ ‖Pp‖ ‖T‖

and the remaining estimate follows by reversing the roles of T and T ∗.

We briefly discuss two particular examples. Let K = B be the closed unit ball in
Cd and A = A(B) ⊂ C(K) the ball algebra, i.e., the closed subalgebra consisting of
all functions f ∈ C(K) that are holomorphic on B. An elementary exercise using the
maximum principle shows that the Shilov boundary of A(K) is the topological boundary
S = ∂B of B. Let σ be the surface measure on S. By results of A. B. Aleksandrov [3]
the triple (A(K), S, σ) is regular.

The Hardy space Hp(B) (1 ≤ p <∞) on the unit ball of Cd consists of all holomorphic
functions f : B→ C such that

sup
0<r<1

∫
S

|fr|p dσ <∞,
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where fr : S → C is given by fr(ζ) = f(rζ). The norm

‖ · ‖Hp : Hp(B) −→ [0,∞), f 7−→ sup
0<r<1

‖fr‖p

turns Hp(B) into a Banach space.

Let Hp(S) be the closure of A (B) |S ⊂ Lp(S) in the p-norm. A classical result from
the theory of Hardy spaces (see Theorem 5.6.8 in [64]) states that the map

(Hp(B), ‖ · ‖Hp) −→ (Hp(S), ‖ · ‖p), f 7−→ f ∗

associating with each function f ∈ Hp(B) its Koranyi limit f ∗ (see Section 5.4 in [64]),
is an isometric isomorphism of Banach spaces. Let

C : B× S −→ C, (z, ζ) 7−→ 1

(1− 〈z, ζ〉)d

be the Cauchy-Szegő kernel of the unit ball, and for f ∈ Lp(S), denote by C[f ] the
Cauchy transform of f , that is, the analytic function on B defined by

C[f ](z) =

∫
S

C(z, ξ)f(ξ) dσ(ξ) (z ∈ B).

For 1 < p <∞, Corollary 6.3.1 in [64] implies that C[f ] ∈ Hp(B) and that the map

Pp : Lp(S) −→ Lp(S), f 7−→ C[f ]∗,

defines a bounded linear projection from Lp(S) onto the closed subspace Hp(S) ⊂ Lp(S).
The map P = P2 : L2(S) → L2(S) is the orthogonal projection of L2(S) onto H2(S)

(Theorem 5.6.9 in [64]).

Obviously, the family (Pp)1<p<∞ satisfies the compatibility condition

isrPs = Prisr (1 < r < s <∞)

demanded in the section leading to Lemma 1.8. In particular, we have

P ∗p = Pq
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for p, q ∈ (1,∞) with 1
p

+ 1
q

= 1.

The unit ball B serves as a prototype for the class of strictly pseudoconvex domains
of Cd. We make a few remarks concerning those domains. Let D ⊂ Cd be a strictly
pseudoconvex domain with C2-boundary and let σ be the normalized surface measure
on ∂D. A well known result on the existence of peaking functions ([33, Korollar 11.24])
shows that ∂D = ∂A is the Shilov boundary of the domain algebra

A = A (D) =
{
f ∈ C(D)

∣∣ f |D ∈ O(D)
}

of D. By results of A. B. Aleksandrov [4, Theorem 3] and E. Løw [50, Theorem 3] the
triple (A, ∂D, µ) is regular for each positive regular Borel measure µ on ∂D (for details,
see the proof of Corollary 2.1.3 in [23]). Let ω : ∂D → (0,∞) be a positive continuous
function and let ωdσ be the regular Borel measure with Radon-Nikodym density ω on
∂D. For 1 < p <∞, define the associated Hardy space by

Hp(∂D, ωdσ) = A
Lp(∂D,ωdσ)

.

The Cauchy-Szegő projection P : L2(∂D, ωdσ)→ L2(∂D, ωdσ) is defined as the orthog-
onal projection of the Hilbert space L2(∂D, ωdσ) onto the closed subspace H2(∂D, ωdσ).
A recent result of L. Lanzani and E. M. Stein ([47], [48]) shows that, for 1 < p <∞, there
is a (unique) bounded linear operator Pp : Lp(∂D, ωdσ)→ Lp(∂D, ωdσ) that extends the
Cauchy-Szegő projection in the sense that

ip2Pp = Pip2 for p > 2 and Ppi2p = i2pP for p < 2

(Theorem 16 in [48]). Furthermore, the operators Pp ∈ L(Lp(∂D, ωdσ)) (1 < p <∞), de-
fine continuous linear projections onto the closed subspaces Hp(∂D, ωdσ) ⊂ Lp(∂D, ωdσ)

(Proposition 13 in [47]). From these two intertwining relations one can easily deduce the
compatibility condition

isrPs = Prisr for 1 < r < s <∞.

In particular, we obtain again the duality relation P ∗p = Pq for p, q ∈ (1,∞) with
1
p

+ 1
q

= 1.
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Let σd =
⊗d

i=1 σ be the d-fold product measure of the normalized Lebesgue measure σ
on the unit circle T ⊂ C. The Hardy spaces Hp(Dd) and Hp(Td) (1 < p <∞) are defined
in an analogous way as the spaces Hp(B) and Hp(S), respectively. It is also known (see
Chapters 2 and 3 in [63]) that Hp(Td) consists precisely of the non-tangential boundary
values f ∗ ∈ Lp(Td) of the functions f ∈ Hp(Dd) and that the corresponding boundary
mapping ∗ : Hp(Dd) → Hp(Td) is an isometric isomorphism of Banach spaces. We now
briefly outline how the family (Pp)1<p<∞ of projections is constructed.

For given functions f1, . . . , fd : T→ C, we denote by f1⊗. . .⊗fd : Td → C the function
defined by

(f1 ⊗ . . .⊗ fd)(z1, . . . , zd) = f1(z1) · . . . · fd(zd).

Clearly, if [f1], . . . , [fd] ∈ Lp(Td), then the equivalence class of f1 ⊗ . . . ⊗ fd in Lp(Td)
only depends on [f1], . . . , [fd]. Hence we can define [f1]⊗ . . .⊗ [fd] = [f1 ⊗ . . .⊗ fd].

For d = 1 and 1 < p <∞, the Cauchy-Szegő projection

P : Lp(T) −→ Lp(T), f 7−→ C[f ]∗

is a well defined continuous linear projection from Lp(T) onto Hp(T). An inductive
application of Theorem 7.9 in [22] shows that there is a unique continuous linear map
Pp : Lp(Td)→ Lp(Td) with

Pp(f1 ⊗ . . .⊗ fd) = P (f1)⊗ . . .⊗ P (fd) (f1, . . . , fd ∈ Lp(T)).

Let

C : Dd × Dd −→ C, (z, ξ) 7−→
d∏

ν=1

(1− zνξν)−1

be the Cauchy kernel on the unit polydisc. For f ∈ L1(Td), we write

C[f ] : Dd −→ C, z 7−→
∫
Td
f(ξ)C(z, ξ) dσd(ξ)

for the Cauchy transform of f . Since, for z ∈ Dd, the series expansion

C(z, ξ) =
∑
α∈Nd

zαξ
α
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converges uniformly for ξ ∈ Td, we obtain for j, k ∈ Nd and z ∈ Dd,

C[ξjξ
k
](z) =

∑
α∈Nd

(∫
Td
ξjξ

k+α
dσd(ξ)

)
zα = zj−k.

Here by definition zj−k = 0 if j−k 6∈ Nd. Hence the Cauchy transform of each polynomial
f ∈ C

[
ξ, ξ
]
|Td in ξ and ξ extends to an analytic polynomial on Cd which we again denote

by C[f ]. In particular,

Pp(ξ
jξ
k
) = P (ξj11 ξ

k1

1 )⊗ . . .⊗ P (ξjdd ξ
kd
d ) = C[ξjξ

k
]|Td

for all j, k ∈ Nd. Since C
[
ξ, ξ
]
|Td ⊂ Lp(Td) is dense, we have

Pp(L
p(Td)) ⊂ C[z] |Td

Lp(Td)
= Hp(Td).

Since Pp(f) = C[f ]|Td = f for each polynomial f ∈ C[z] |Td , it follows that Pp is a
continuous linear projection from Lp(Td) onto Hp(Td).
Let f ∈ Lp(Td) and define F = Pp(f) ∈ Hp(Td). Let (fk)k∈N be a sequence in

C
[
ξ, ξ
]
|Td with f = limk→∞ fk in Lp(Td). Then F = limk→∞(C[fk]|Td) in Lp(Td) and

C[f ](z) = lim
k→∞

C[fk](z) = lim
k→∞

C[C[fk]|Td ](z) = C[F ](z)

for any z ∈ Dd. But since each function in Hp(Td) is the radial limit almost everywhere of
its Cauchy integral (see [63]), it follows that C[f ]∗ = C[F ]∗ = F = Pp(f). Thus exactly
as in the case of the unit ball we have constructed a family (Pp)1<p<∞ of projections
Pp ∈ L(Lp(Td)) from Lp(Td) onto Hp(Td) which act as

Pp(f) = C[f ]∗ (p ∈ (1,∞), f ∈ Lp(Td))

and are compatible with the inclusion mappings isr : Ls(Td)→ Lr(Td) in the sense that
isrPs = Prisr for 1 < r < s <∞. As in the case of the unit ball (Theorem 5.6.9 in [64]),
it follows that P2 ∈ L(L2(Td)) is the orthogonal projection onto H2(Td). We repeat the
elementary argument. For z ∈ Dd, the function

uz : Dd −→ C, ξ 7−→
d∏

ν=1

(1− ξνzν)−1

27
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belongs to the polydisc algebra A
(
Dd
)
. Let f ∈ L2(Td) be given. Then f = g + h with

g ∈ H2(Td), h ∈ H2(Td)⊥. Since

C[h](z) =

∫
Td
huz dσd = 0 (z ∈ Dd),

we find that
P2(f) = C[f ]∗ = C[g]∗ = g.

In particular, the projections Pp satisfy the duality relations P ∗p = Pq for p, q ∈ (1,∞)

with 1
p

+ 1
q

= 1.
We want to point out that for general bounded symmetric domains D ⊂ Cd, the Szegő

projection need not be bounded on Lp(∂D)(see, e.g., [7]). These domains will not be
taken into account in this thesis.
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2 Toeplitz Projections on

Hardy-type Spaces

2.1 Toeplitz Operators on Hardy-type Spaces

In this section we give an overview over some classical results concerning Toeplitz oper-
ators on Hardy spaces. First we give the definition of a Toeplitz operator in the general
setting that was expounded in Section 1.3.

Definition 2.1.
Fix 1 < p < ∞ and a compact set K ⊂ Cd and let Hp(∂A) be a Hardy-type space
induced by the closed algebra A ⊂ C(K), which contains the holomorphic polynomials.
For f ∈ L∞(∂A) the compression

T pf : Hp(∂A) −→ Hp(∂A), g 7−→ PpM
p
f g

of the multiplication operator Mp
f ∈ L(Lp(∂A)) is called the Toeplitz operator with

symbol f .

In the case p = 2, for f ∈ L∞(∂A), we will always write Tf = T 2
f . The following basic

algebraic relations between Toeplitz operators hold.

Lemma 2.2.
For f ∈ L∞(∂A) and θ ∈ H∞(∂A), we have

(T pf )∗ = T q
f
, T pf T

p
θ = T pfθ and T p

θ
T pf = T p

θf
.

In the year 1963 A. Brown and P. R. Halmos gave in [14] an algebraic characterization
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2 Toeplitz Projections on Hardy-type Spaces

of Toeplitz operators on the Hardy-Hilbert space H2(T) over the unit circle T ⊂ C.
They showed that an operator T ∈ L(H2(T)) is Toeplitz if and only if T ∗zXTz = X. An
analogue of this result is true for Toeplitz operators acting on Hp(T) for p ∈ (1,∞) (see,
e.g. Theorem 2.7 in [13]).

Theorem 2.3 (Brown, Halmos).
For p ∈ (1,∞), an operator X ∈ L(Hp(T)) is a Toeplitz operator if and only if T pzXT pz =

X.

As a corollary we get

Corollary 2.4.
For p ∈ (1,∞), an operator X ∈ L(Hp(T)) is a Toeplitz operator if and only if T p

θ
XT pθ =

X for every inner function θ ∈ H∞(T).

The Brown-Halmos condition has undergone extensive research and proved to be the
starting point for further applications. We want to mention here the perturbation theory
of Toeplitz operators that was developed in [76] and [27]. Theorem 2.3 also prompted the
attempt to leave the setting of classical Hardy spaces towards more abstract notions of
Toeplitz operators (see, for example Murphy [57], Sz.-Nagy and Foias [71], Tolokonnikov
[73], Karlovich and Shargorodsky [45], Eschmeier and Everard [34] or Eschmeier and
Langendörfer [35]). The purpose of the next section is to show that one can adapt
the methods used in [34] to get a version of the Brown-Halmos Theorem for Toeplitz
operators acting on Hardy-type spaces Hp(∂A).
The methods presented in [34] also faciliate the formulation of a spectral inclusion

formula for Toeplitz operators acting on the Hardy-type spaces Hp(∂A). In the case of
the Hardy space H2(T) over the unit circle T ⊂ C this goes back to P. Hartman and A.
Wintner [41] and I. B. Simonenko [69] (see also Theorem 2.30 in [13]).
Let (X,A, µ) be a measure space. For f ∈ L∞(X), we denote by

R(f) = {z ∈ C | µ ({x ∈ X | |f(x)− z| < ε}) > 0 for all ε > 0}

the essential range of f . This set coincides with the spectrum of the function f in the
C*-algebra L∞(X).

30



2.1 Toeplitz Operators on Hardy-type Spaces

Theorem 2.5 (Hartman/Wintner, 1954).
Let f ∈ L∞(T) and p ∈ (1,∞). Then the spectral inclusion

R(f) ⊂ σe(T
p
f )

holds.

We show in Theorem 2.21 that this result is true for arbitrary Hardy-type spaces
Hp(∂A) (1 < p <∞) where the underlying measure is non-atomic.
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2 Toeplitz Projections on Hardy-type Spaces

2.2 The Construction of a Toeplitz Projection

on Hardy-type Spaces

If not stated otherwise, we make the following assumptions. Let K ⊂ Cd be a compact
set and let A ⊂ C(K) be a closed subalgebra containing the restrictions p|K of all holo-
morphic polynomials p ∈ C[z] in d complex variables. Recall that the Shilov boundary of
A is denoted by ∂A ⊂ K. Let µ ∈ M+ (∂A) be a positive regular Borel measure such that
(A, ∂A, µ) is a regular triple in the sense of Aleksandrov. Fix 1 < p <∞ and let Hp(∂A)

be a Hardy-type space as explained at the beginning of Section 1.3. Building on the work
of Prunaru [61], Eschmeier and Everard constructed in [34] Toeplitz projections for reg-
ular A-isometries T ∈ L(H)n on a Hilbert space H and used these projections to extend
various classical results on Toeplitz operators to the setting of abstract T−Toeplitz op-
erators (see Definition 3.1 in [26] for the notion of abstract T−Toeplitz operators). We
adapt the methods developed in [34] to show that in an analogous way one can associate
a Toeplitz projection ΦTz : L(Hp(∂A)) → L(Hp(∂A)) with the tuple T pz = (T pz1 , . . . , T

p
zd

)

of multiplication operators

T pzi : Hp(∂A) −→ Hp(∂A), f 7−→ zif.

We apply this result to prove Hp-versions of the Brown-Halmos characterization of
Toeplitz operators and to derive extensions of the spectral inclusion formulas of Hartman-
Wintner and Simonenko (see, e.g. Theorem 2.30 in [13]). First we recall some results
from Banach space theory concerning the spaces Lp(∂A) (1 ≤ p <∞).

The space L(Lp(∂A)) can be isometrically identified with the topological dual of a
canonically formed Banach space Z. We briefly recall this construction in a more general
setting (see Chapter 7 in [60]). Let X, Y be Banach spaces. For x ∈ X, y ∈ Y , define

x⊗ y : L(X, Y ′) −→ C, T 7−→ 〈y, Tx〉

and denote by
Z = LH {x⊗ y | x ∈ X and y ∈ Y } ⊆ L(X, Y ′)′

the smallest closed subspace containing the functionals x⊗y ∈ L(X, Y ′)′. One can show
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2.2 The Construction of a Toeplitz Projection on Hardy-type Spaces

that the bilinear mapping

〈·, ·〉 : Z × L(X, Y ′) −→ C, (u, T ) 7−→ 〈u, T 〉 = u(T )

induces an isometric isomorphism

Φ: L(X, Y ′) −→ Z ′, T 7−→ 〈 · , T 〉 .

By definition the BW-topology τBW of L(X, Y ′) is the topology τ on L(X, Y ′) for which
the mapping

Φ: (L(X, Y ′), τ) −→ (Z ′, τw∗)

is a homeomorphism. It is well known that a norm-bounded net (Tα)α in L(X, Y ′) is
τBW-convergent to an operator T ∈ L(X, Y ′) if and only if Tα(x)

α→ Tx in (Y ′, τw∗) for
every x ∈ X. By the theorem of Alaoglu-Bourbaki each norm-closed ball

Br = {T ∈ L(X, Y ′) | ‖T‖ ≤ r} ⊂ L(X, Y ′)

is τBW-compact. Since Φ is norm-continuous, the norm topology on L(X, Y ′) is finer
than the BW-topology.

Let X be a reflexive Banach space. Then the canonical embedding j : X → X ′′ is an
isometric isomorphism. Hence also the induced map

J : L(X) −→ L(X, (X ′)′), T 7−→ j ◦ T

is an isometric isomorphism. We equip the space on the right-hand side with the BW-
topology explained above and define the BW-topology τBW on L(X) as the unique topol-
ogy for which the map

J : (L(X), τBW) −→ (L(X, (X ′)′), τBW)

is a homeomorphism. Then a norm-bounded net (Tα)α in L(X) is τBW-convergent to an
operator T ∈ L(X) if and only if

〈u, jTα(x)〉 α−→ 〈u, jT (x)〉
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2 Toeplitz Projections on Hardy-type Spaces

for all x ∈ X and u ∈ X ′ or, equivalently, if

u(Tαx)
α−→ u(Tx)

for all x ∈ X and u ∈ X ′. The Alaoglu-Bourbaki theorem implies that each norm-closed
ball

Br = {T ∈ L(X) | ‖T‖ ≤ r}

is τBW-compact.

Remark 2.6.
By construction there is an isometric isomorphism τ : L(X) → Z ′ onto the dual of a
Banach space Z such that τ : (L(X), τBW) → (Z ′, τw∗) is a homeomorphism. If X and
Y are reflexive Banach spaces, then a linear map A : (L(X), τBW) → (L(Y ), τBW) is
continuous if and only if τBW − limαA(Tα) = A(T ) for each norm-bounded net (Tα)α in
L(X) with τBW− limα Tα = T . This follows from a well-known characterization of weak*
continuous linear maps between Banach spaces (see e.g. Lemma 1.16 in [37]).

Lemma 2.7.
Let X, Y be reflexive Banach spaces and let A ∈ L(X), B ∈ L(Y,X), C ∈ L(X, Y ). Then
the mappings

LA : (L(X), τBW) −→ (L(X), τBW), T 7−→ AT,

RA : (L(X), τBW) −→ (L(X), τBW), T 7−→ TA

and
MC,B : (L(X), τBW) −→ (L(Y ), τBW), T 7−→ CTB

are continuous.

Proof. Let (Tα)α be a norm-bounded net in L(X) with τBW- limα Tα = T . Then (ATα)α

and (TαA)α are norm-bounded nets in L(X) with

u(ATαx) = (u ◦ A)(Tαx)
α−→ (u ◦ A)(Tx) = u(ATx)
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and
u(TαAx)

α−→ u(TAx)

for all x ∈ X, u ∈ X ′. Hence τBW- limαATα = AT and τBW- limα TαA = TA. Similarly,
we obtain

u(CTαBy) = (u ◦ C)(Tα(By))
α−→ (u ◦ C)(T (By)) = u(CTBy)

for all y ∈ Y and u ∈ Y ′. Hence τBW- limαCTαB = CTB.

We will now define a projection ΦMz : L(Lp(∂A)) → L(Lp(∂A)) onto the subspace
M(Lp(∂A)) consisting of all multiplication operators Mp

f ∈ L(Lp(∂A)) with bounded
measurable symbols. We write

Iµ = {θ ∈ H∞(∂A) | |θ| = 1 µ-almost everywhere}

for the set of µ-inner functions. By results of A. B. Aleksandrov [3] (see also Corollary
2.5 in [24]) the set Iµ generates L∞(∂A) as a von Neumann algebra. More precisely, we
have

L∞(∂A) = W ∗(Iµ) = LH
w∗

({η · θ | η, θ ∈ Iµ}) .

By the Alaoglu-Bourbaki theorem and since L1(µ) is separable, the closed unit ball

BL∞(∂A) =
{
f ∈ L∞(∂A)

∣∣∣ ‖f‖L∞(∂A) ≤ 1
}

equipped with the relative weak* topology of L∞(∂A) = L1(µ)
′ is a compact metrizable

space. Hence by elementary topology BL∞(∂A) and its subset Iµ are separable metrizable
spaces in the relative weak* topology. For a given subset I ⊂ L∞(∂A), we define I∗ ={
f
∣∣ f ∈ I} and we denote by alg(I) ⊂ L∞(∂A) the unital subalgebra generated by I.

In the following let I = {θk | k ∈ N∗} ⊂ Iµ be a fixed countable subset such that

L∞(∂A) = alg(I ∪ I∗)
τw∗
.

Note that each countable weak* dense subset of Iµ satisfies this condition. For X ∈
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L(Lp(∂A)), the averages

ΦMz ,k(X) =
1

kk

∑
1≤i1,...,ik≤k

Mp

θ
ik
k ·...·θ

i1
1

XMp

θ
ik
k ·...·θ

i1
1

∈ L(Lp(∂A))

form a sequence (ΦMz ,k(X))k≥1 in B‖X‖ = {T ∈ L(Lp(∂A)) | ‖T‖ ≤ ‖X‖}. Since by the
Alaoglu-Bourbaki theorem the ball B‖X‖ equipped with the relative topology of the τBW

topology of L(Lp(∂A)) is a compact topological space, Tychonoff’s theorem yields that
the topological product

∏
X∈L(Lp(∂A))(B‖X‖ , τBW) is compact. Convergence in the product

topology is equivalent to componentwise convergence. Hence there is a subnet (ΦMz ,kα)α

of the sequence (ΦMz ,k)k≥1 such that the τBW limits

ΦMz(X) = τBW- limα ΦMz ,kα(X) ∈ L(Lp(∂A))

exist simultaneously for every X ∈ L(Lp(∂A)). Let us fix such a subnet (ΦMz ,kα)α and
let us consider the induced map

ΦMz : L(Lp(∂A)) −→ L(Lp(∂A)), X 7−→ τBW- limα ΦMz ,kα(X).

By construction ΦMz is a linear contraction.

Theorem 2.8.
The mapping

ΦMz : L(Lp(∂A)) −→ L(Lp(∂A)), X 7−→ ΦMz(X)

is a unital projection with
Im ΦMz =M(Lp(∂A)). (2.1)

Proof. Obviously the mappings ΦMz ,k and hence also ΦMz act as the identity operator
on M(Lp(∂A)) ⊂ L(Lp(∂A)). Thus to show that ΦMz defines a unital projection onto
this closed subalgebra, it suffices to check that Im ΦMz ⊂ M(Lp(∂A)). Now fix X ∈
L(Lp(∂A)). We have to show that ΦMz(X) is a multiplication operator. According
to Proposition 1.4 it suffices to show that ΦMz(X) commutes with all multiplication
operators Mp

f (f ∈ L∞(∂A)). For 1 ≤ j ≤ k and i = (i1, . . . , ij−1, ij+1, . . . , ik) ∈
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{1, . . . , k}k−1, we write
Rij = Mp

θ
i1
1 ...θ

ij−1
j−1 θ

ij+1
j+1 ...θ

ik
k

and
Rij = Mp

θ
i1
1 ...θ

ij−1
j−1 θ

ij+1
j+1 ...θ

ik
k

.

Then for X ∈ L(Lp(∂A)), the estimate

∥∥∥Mp

θj
ΦMz ,k(X)Mp

θj
− ΦMz ,k(X)

∥∥∥ =
1

kk

∥∥∥∥∥∑
i

Rij

(
k∑

µ=1

Mp

θ
µ+1
j

XMp

θµ+1
j

−Mθ
µ
j
XMθµj

)
Rij

∥∥∥∥∥
≤ kk−1

kk
2 ‖X‖ =

2 ‖X‖
k

holds for every k ≥ 1 and 1 ≤ j ≤ k. Using Lemma 2.7 we obtain

Mp

θj
ΦMz(X)Mp

θj
= τBW- limαM

p

θj
ΦMz ,kα(X)Mp

θj
= ΦMz(X).

Thus ΦMz(X) commutes with all multiplication operators of the form Mp

θj
and Mp

θj
for

j ≥ 1. Since the commutant of ΦMz(X) in L(Lp(∂A)) is a unital τWOT-closed subalgebra
containing the operators Mp

θj
and Mp

θj
for all j ≥ 1 and since the mapping

(L∞(∂A), τw∗) −→ (L(Lp(∂A)), τWOT), f 7−→Mp
f

is a unital continuous algebra homomorphism, our hypothesis that

L∞(∂A) = alg(I ∪ I∗)
τw∗

implies that ΦMz(X) commutes with all multiplication operators Mp
f with f ∈ L∞(∂A).

This observation completes the proof.

For k ∈ N, define Nk = {1, . . . , k}k. To simplify the notation, we use the abbreviations

θ(i) = θi11 · . . . · θ
ik
k and θ(i) = θ

i1
1 · . . . · θ

ik
k

for i = (i1, . . . , ik) ∈ Nk. For k ≥ 1, let ΦTz ,k : L(Hp(∂A))→ L(Hp(∂A)) be the bounded
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linear operator defined by

ΦTz ,k(X) =
1

kk

∑
i∈Nk

T p
θ(i)
XT pθ(i).

For X ∈ L(Hp(∂A)), we define X̃ = XPp ∈ L(Lp(∂A)). Then

ΦTz ,k(X) =
1

kk

∑
i∈Nk

T p
θ(i)
XT pθ(i)

=
1

kk

∑
i∈Nk

PpM
p

θ(i)
XPpM

p
θ(i)|Hp(∂A)

= Pp

(
1

kk

∑
i∈Nk

Mp

θ(i)
X̃Mp

θ(i)

)∣∣∣∣
Hp(∂A)

= PpΦMz ,k(X̃)|Hp(∂A)

for X ∈ L(Hp(∂A)) and k ≥ 1. Using Lemma 2.7 we find that the τBW-limit

ΦTz(X) = τBW- limα ΦTz ,kα(X)

= τBW- limα PpΦMz ,kα(X̃)|Hp(∂A)

= PpΦMz(X̃)|Hp(∂A)

(2.2)

exists in L(Hp(∂A)). Our next aim is to show that the set

T =
{
X ∈ L(Hp(∂A))

∣∣∣ T p
θ
XT pθ = X for all θ ∈ Iµ

}
consists precisely of all Toeplitz operators on Hp(∂A). It follows from Lemma 2.2 that{
T pf
∣∣ f ∈ L∞(∂A)

}
⊂ T . We use Theorem 2.8 to prove the reverse inclusion.

Theorem 2.9.
The mapping

ΦTz : L(Hp(∂A)) −→ L(Hp(∂A)), X 7−→ ΦTz(X)

is a unital continuous projection with

Im(ΦTz) = T =
{
T pf
∣∣ f ∈ L∞(∂A)

}
. (2.3)
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Proof. By Theorem 2.8 and (2.2) we obtain that Im ΦTz ⊂
{
T pf
∣∣ f ∈ L∞(∂A)

}
⊂ T .

From the definition of T it follows that ΦTz(X) = X for all X ∈ T . Combining these
two remarks we find that (2.3) holds and that ΦTz is a unital projection. Since

‖ΦTz(X)‖ ≤ ‖Pp‖ ‖X̃‖ ≤ ‖Pp‖2 ‖X‖ (X ∈ L(Hp(∂A))),

the projection ΦTz is continuous with ‖ΦTz‖ ≤ ‖Pp‖
2.

Remark 2.10.
An analysis of the proof of Theorem 2.9 shows that

{
T pf
∣∣ f ∈ L∞(∂A)

}
=
{
X ∈ L(Hp(∂A))

∣∣∣ T p
θ
XT pθ = X for all θ ∈ I

}
.

Indeed by the construction of the projection ΦTz it easily follows that every operator X
contained in the set on the right-hand side, satisfies the fixed point equation ΦTz(X) = X.

In the case of the regular triple (A(S), S, σ) (see Section 1.3), Theorem 2.9 yields the
multivariable version of Corollary 2.4. Since for a long time even the existence of non-
trivial inner functions on the unit ball has been an open problem1, this generalization of
Corollary 2.4 is of course of a more theoretical nature. In contrast, in the case of the unit
polydisc in Cd it is possible to derive a concrete characterization of Toeplitz operators
from Theorem 2.9 that is closer in spirit to the original result of Brown and Halmos. In
the case p = 2 the following Corollary 2.11 was already observed by A. Maji, J. Sarkar
and S. Sarkar in [51, Theorem 3.1]. Alternatively one can derive it from Theorem 3.1 of
[34] with arguments similar to those used here.

Corollary 2.11.
For 1 < p < ∞, an operator X ∈ L(Hp(Td)) is a Toeplitz operator if and only if
T pziXT

p
zi

= X for i = 1, . . . , d.

Proof. Since the polynomials C[z, z] in z = (z1, . . . , zd) and z = (z1, . . . , zd) form a weak*

1This problem is called the inner function problem and it was solved simultaneously by A. B. Alek-
sandrov [3] and E. Løw [49] in 1982.
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2 Toeplitz Projections on Hardy-type Spaces

dense subset of L∞(Td), the set I = {θk | k ∈ N∗} given by the sequence

(θk)k∈N∗ = (z1, . . . , zd, z1, . . . , zd, . . . )

satisfies our hypothesis that

L∞(Td) = alg(I ∪ I∗)
τw∗
.

Thus the assertion follows as an application of Remark 2.10.

We want to point out that it also would have been possible to prove the last corollary
by following the lines in the proof of [51, Theorem 3.1]. One simply has to replace the
scalar product 〈·, ·〉L2(Td) by the corresponding sesquilinear form 〈·, ·〉 on Lp(Td)×Lq(Td).
There exists yet another algebraic characterization of Toeplitz operators on the Hardy
space H2(S) on the unit sphere S ⊂ Cd that was proven by A. M. Davie and N. P. Jewell
in [21, Theorem 2.6] which states that an operator T ∈ L(H2(S)) is a Toeplitz operator
on H2(S) if and only if the identity

∑d
k=1 TzkTTzk = T holds. Since, for d > 1, the

coordinate functions z1, . . . , zd are no inner functions for the sphere S ⊂ Cd, the theory
of Toeplitz projections on Hardy-type spaces that we presented in this section seems
not to be applicable to derive an Hp version of this theorem. We do not know if such a
generalization exists.

Proposition 2.12.
For 1 < p <∞, the identity

Lp(∂A) = LH
Lp(∂A) ({

θ · η
∣∣ θ, η ∈ Iµ})

holds.

Proof. Define V = LH
Lp(∂A) ({

θ · η
∣∣ θ, η ∈ Iµ}). Let f ∈ L∞(∂A) and (fα)α be a net in

LH
({
θ · η

∣∣ θ, η ∈ Iµ}) ⊆ L∞(∂A) ⊆ Lp(∂A) that converges to f in the weak* topology
of L∞(∂A) = L1(∂A)

′ . Since Lq(∂A) ⊆ L1(∂A) the net (fα)α converges to f in the weak*
topology of Lp(∂A) = Lq(∂A)′. As a norm closed convex subset of the reflexive Banach
space Lp(∂A) the subspace V is also closed with respect to the weak* topology. Hence
L∞(∂A) ⊆ V . The density of L∞(∂A) in Lp(∂A) now yields the assertion.
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2.2 The Construction of a Toeplitz Projection on Hardy-type Spaces

Define as before X̃ = XPp ∈ L(Lp(∂A)) for X ∈ L(Hp(∂A)) and

π̂ : L(Hp(∂A)) −→ L(Lp(∂A)), X 7−→ ΦMz(X̃),

C : L(Lp(∂A)) −→ L(Hp(∂A)), X 7−→ PpX|Hp(∂A).

Lemma 2.13.
The compression mapping C induces a topological isomorphism

ϕ : M(Lp(∂A)) −→ T , X 7−→ PpX|Hp(∂A)

with inverse given by

T −→M(Lp(∂A)), X 7−→ π̂(X).

Proof. Obviously the mapping ϕ is continuous linear. Let X ∈ kerϕ. Then, for
θ1, θ2, η1, η2 ∈ Iµ, we have

〈
X(θ1η1), θ2η2

〉
= 〈X(θ2η1), θ1η2〉 = 〈PpX(θ2η1), θ1η2〉 = 0.

Hence Proposition 2.12 shows that X = 0, thus ϕ is injective. Using Theorem 2.9 and
the definition of ΦTz we obtain

ϕ(π̂(T pf )) = PpΦMz(T̃
p
f )|Hp(∂A) = ΦTz(T

p
f ) = T pf

for all f ∈ L∞(∂A). Thus the injective map ϕ is also surjective and π̂ : T →M(Lp(∂A))

defines the inverse of ϕ : M(Lp(∂A))→ T .

The preceding lemma implies in particular that π̂(T pf ) = Mp
f for all f ∈ L∞(∂A).

Theorem 2.14.
The continuous linear mapping

π̂ : L(Hp(∂A)) −→ L(Lp(∂A)), X 7−→ ΦMz(X̃)
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2 Toeplitz Projections on Hardy-type Spaces

has image Im π̂ =M(Lp(∂A)). It is multiplicative in the sense that the identity

π̂
(
XT pf

)
= π̂(X)π̂

(
T pf
)

holds for X ∈ L(Hp(∂A)) and f ∈ L∞(∂A). Furthermore we have:

(i) Pp (π̂(X)) |Hp(∂A) = X for every X ∈ T ,

(ii) π̂
(
T pf1

. . . T pfr
)

= Mp
f1...fr

for all f1, . . . , fr ∈ L∞(∂A).

In particular, for f1, . . . , fr ∈ L∞(∂A), we have the identity

ΦTz(T
p
f1
. . . T pfr) = T pf1...fr

.

Proof. By Theorem 2.8 and the remark preceding Theorem 2.14 we have

Im π̂ =M(Lp(∂A))

and π̂(T pf ) = Mp
f for all f ∈ L∞(∂A). Lemma 2.13 implies that

Ppπ̂(X)|Hp(∂A) = X

for X ∈ T . Let X ∈ L(Hp(∂A)), f ∈ L∞(∂A), h ∈ Hp(∂A), g ∈ Lq(∂A) and η ∈ Iµ be
given. Using the characterization of norm-bounded τBW-convergent nets given at the
beginning of Section 2.2 and the fact that π̂(XT pf ) ∈M(Lp(∂A)), we obtain

〈
π̂(XT pf )Mp

ηh, g
〉

= lim
α

〈
Mp

ηΦMz ,kα((XT pf )∼)h, g
〉
.

For θ ∈ Iµ, we have

Mp

θ
(XT pf )∼Mp

θ h = Mp

θ
XPpM

p
fM

p
θ h = Mp

θ
XPpM

p
θ π̂(T pf )h.

Using the definition of π̂(X) = ΦMz(X̃) and using the same arguments as above, we find
that 〈

π̂(XT pf )Mp
ηh, g

〉
=
〈
Mp

η π̂(X)π̂(T pf )h, g
〉

=
〈
π̂(X)π̂(T pf )Mp

ηh, g
〉
.

Using Proposition 2.12 we obtain that π̂(XT pf ) = π̂(X)π̂(T pf ) holds. For finitely many
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2.2 The Construction of a Toeplitz Projection on Hardy-type Spaces

f1, . . . , fr ∈ L∞(∂A), it follows that

π̂(T pf1
. . . T pfr) = π̂(T pf1

. . . T pfr−1
)π̂(T pfr) = . . . = π̂(T pf1

) . . . π̂(T pfr) = Mp
f1...fr

and hence that ΦTz(T
p
f1
. . . T pfr) = Ppπ̂(T pf1

. . . T pfr)|Hp(∂A) = T pf1...fr
.

For a unital norm-closed subalgebra B ⊂ L∞(∂A), we denote by

T p(B) = alg
{
T pf
∣∣ f ∈ B} ⊂ L(Hp(∂A))

the smallest norm-closed subalgebra containing all Toeplitz operators T pf with symbol
f ∈ B. We define the semi-commutator ideal SCp(B) of T p(B) as the norm-closed ideal
in T p(B) generated by the operators of the form

T pf T
p
g − T

p
fg (f, g ∈ B).

Let ρ : M(Lp(∂A)) → L∞(∂A) be the inverse of the isometric algebra isomorphism
L∞(∂A)→M(Lp(∂A)), f 7→Mp

f .

Corollary 2.15.
Let B ⊂ L∞(∂A) be a unital closed subalgebra. Then

ΦTz(T p(B)) =
{
T pf
∣∣ f ∈ B} ⊂ T p(B).

The map
σ : T p(B) −→ B, X 7−→ ρ ◦ π̂(X)

is a surjective continuous morphism of unital Banach algebras with σ(T pf ) = f for f ∈ B
and

ker(σ) = (1− ΦTz)(T p(B)) = ker ΦTz |T p(B) = SCp(B).

In particular, we obtain the direct sum decomposition

T p(B) =
{
T pf
∣∣ f ∈ B}⊕ SCp(B).

Proof. Note that T p(B) is the closed linear span of operators of the form T pf1
. . . T pfr
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2 Toeplitz Projections on Hardy-type Spaces

(r ∈ N, f1, . . . , fr ∈ B). The multiplicativity of π̂ proven in Theorem 2.14 shows that σ is
a surjective continuous morphism of unital Banach algebras. By Lemma 2.13 the Toeplitz
operators with symbol in B form a norm-closed subalgebra

{
T pf
∣∣ f ∈ B} ⊂ L(Hp(∂A)).

By the last part of Theorem 2.14 we know that

ΦTz(T p(B)) =
{
T pf
∣∣ f ∈ B} ⊂ T p(B).

It follows from Theorem 2.9 that the restriction Φ0 : T p(B)→ T p(B) of ΦTz to T p(B) is
a unital projection. Next, from the injectivity of the compression mapping

{
Mp

f

∣∣ f ∈ B} −→ {
T pf
∣∣ f ∈ B} , X 7−→ PpX|Hp(∂A)

and the mapping ρ, we conclude

kerσ = ker π̂|T p(B) = ker Φ0 = (1− ΦTz)(T p(B)).

Since kerσ is a norm-closed ideal in T p(B) containing all semi-commutators T pf T
p
g − T

p
fg

(f, g ∈ B) we have SCp(B) ⊂ kerσ. To prove the reverse inclusion we check that
X − Φ0(X) ∈ SCp(B) for every X ∈ T p(B). By definition of the algebra T p(B) and the
continuity of Φ0 we only have to verify the above claim for finite products X = T pf1

. . . T pfr
with r ∈ N∗ and f1, . . . , fr ∈ B. We assume r ≥ 3 since the cases r = 1 and r = 2 are
obvious. By inserting suitable summands and by using Theorem 2.14, we expand

X − Φ0(X) = T pf1
. . . T pfr − T

p
f1...fr

= T pf1
. . . T pfr−2

(T pfr−1
T pfr − T

p
fr−1fr

)

+ T pf1
. . . T pfr−3

(
T pfr−2

T pfr−1fr
− T pfr−2fr−1fr

)
+ . . .+ T pf1

. . . T pfr−l

(
T pfr−l+1

T pfr−l+2...fr
− T pfr−l+1fr−l+2...fr

)
+ . . .+ T pf1

T pf2...fr
− T pf1...fr

.

Since all summands of the latter expression are clearly included in SCp(B) we have X−
Φ0(X) ∈ SCp(B). From what we have shown so far we get the direct sum decomposition

T p(B) =
{
T pf
∣∣ f ∈ B}⊕ SCp(B).
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2.3 The Spectral Inclusion Theorem of Hartman-Wintner

2.3 The Spectral Inclusion Theorem of

Hartman-Wintner

For an arbitrary Banach space X, we denote by K(X) the closed two-sided ideal of the
compact operators on X. We write [T ] for the image of an operator T ∈ L(X) in the
Calkin algebra

C(X) = L(X)/K(X)

onX under the canonical quotient mapping L(X)→ C(X). Denote by r([T ]) the spectral
radius with respect to the algebra C(X) and write ‖T‖e = ‖[T ]‖ for the essential operator
norm of T , that is, the quotient norm of [T ] in C(X).

Proposition 2.16.
For f ∈ L∞(∂A) it holds

r
([
Mp

f

])
=
∥∥Mp

f

∥∥
e

=
∥∥Mp

f

∥∥ .
Proof. Fix f ∈ L∞(∂A). The inequality

∥∥Mp
f

∥∥
e
≤
∥∥Mp

f

∥∥ follows immediately from the
definition of the norm of C(Lp(∂A)). To show the reverse inequality let u ∈ Lp(∂A) be
an arbitrary unit vector and K ∈ L(Lp(∂A)) be a compact operator. By a well known
approximation theorem of Aleksandrov (see [3, Corollary 2.9] or [24, Proposition 2.1])
there exists a weak* zero sequence (θk)k∈N of µ-inner functions. Then (Mp

θk
u)k∈N is a

weak zero sequence and therefore the compactness of K implies limk→∞
∥∥KMp

θk
u
∥∥
p

= 0.
The estimate

∥∥Mp
f −K

∥∥ ≥ ∥∥∥Mp

θk
(Mp

f −K)Mp
θk
u
∥∥∥
p

=
∥∥∥Mp

fu−M
p

θk
KMp

θk
u
∥∥∥
p

(k ∈ N)

yields ∥∥Mp
f −K

∥∥ ≥ lim
k→∞

∥∥∥Mp
fu−M

p

θk
KMp

θk
u
∥∥∥
p

=
∥∥Mp

fu
∥∥
p
.

Since this holds true for every unit vector u ∈ Lp(∂A) and every compact operator
K ∈ L(Lp(∂A)), we conclude that

∥∥Mp
f

∥∥ =
∥∥Mp

f

∥∥
e
. To verify the spectral radius equation∥∥Mp

f

∥∥
e

= r
(
[Mp

f ]
)
, observe that∥∥∥(Mp

f

)k∥∥∥
e

=
∥∥∥Mp

fk

∥∥∥
e

=
∥∥∥Mp

fk

∥∥∥ =
∥∥fk∥∥∞ = ‖f‖k∞ =

∥∥Mp
f

∥∥k =
∥∥Mp

f

∥∥k
e

45
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and use the spectral radius formular to compute

r
(
[Mp

f ]
)

= lim
k→∞

k

√∥∥∥(Mp
f

)k∥∥∥
e

=
∥∥Mp

f

∥∥
e
.

Our proof of the essential spectral inclusion formula will be based on the observation
that the Toeplitz projection ΦTz annihilates the compact operators. The arguments that
we use to prove ΦTz |K(Hp(∂A)) ≡ 0 allow us to calculate at the same time the essential
commutant of the algebraM(Lp(∂A)) ⊂ L(Lp(∂A)).
For an arbitrary subset M ⊂ L(X) of the algebra of all bounded linear operators on

a Banach space X, we define the essential commutant of M by

M ec = {A ∈ L(X) | AT − TA ∈ K(X) for all T ∈M} .

Proposition 2.17.
Let T ∈M(Lp(∂A))ec be given. Define

F : L∞(∂A) −→ L(Lp(∂A)), f 7−→Mp
fT − ΦMz(T )Mp

f .

Then the following holds:

(P1) F is pointwise boundedly SOT-continuous, that is, for every bounded sequence
(fk)k∈N in L∞(∂A) converging pointwise µ-almost everywhere to some function
f ∈ L∞(∂A), we have F (f) = τSOT- limk→∞ F (fk),

(P2) If F (L∞(∂A)) 6⊂ K(Lp(∂A)), then there exist a positive real number ρ > 0 and a
sequence (fk)k≥1 in C(∂A, [0, 1]) of functions with pairwise disjoint supports such
that

‖F (fk)‖ > ρ

for all k ≥ 1.

Proof. To prove (P1) fix a bounded sequence (fk)k∈N in L∞(∂A) that converges pointwise
µ-almost everywhere to some function f ∈ L∞(∂A). By Theorem 2.8 we can choose a
function g ∈ L∞(∂A) with ΦMz(T ) = Mp

g . Then the dominated convergence theorem
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implies that

lim
k→∞
‖(F (fk)− F (f))h‖pp = lim

k→∞
‖(fk − f)(Th− gh)‖pp

= lim
k→∞

∫
∂A

|(fk − f)(Th− gh)|p dµ = 0

for every function h ∈ Lp(∂A). To prove (P2), suppose that there exists a function
f ∈ L∞(∂A) such that F (f) is not a compact operator. Since f can be uniformly
approximated by step functions, there is a characteristic function χ ∈ L∞(∂A) of some
Borel set in ∂A such that F (χ) is not compact. Hence the number ρ = ‖F (χ)‖e /2 is
strictly positive. To prove condition (P2) we shall use a version of the Allan-Douglas
localization principle due to Simonenko. We use [62] as a reference.

First let us observe that Lp(∂A) is a Banach space of local type in the sense of Simo-
nenko (see Definition 2.5.4 together with Example 2.5.5 in [62]). Since T ∈M(Lp(∂A))ec,
it follows that

F (χ)Mp
f −M

p
fF (χ) = Mp

χTM
p
f −M

p
gM

p
χM

p
f −M

p
fM

p
χT +Mp

fM
p
gM

p
χ

= Mp
χ[T,Mp

f ] ∈ K(Lp(∂A)).

for all f ∈ L∞(∂A). Hence by Theorem 2.5.6 in [62] the operator F (χ) is of local type
(see Definition 2.5.3 in [62]). Thus we can apply Theorem 2.5.12 together with Lemma
2.5.9 of [62] to F (χ) to obtain the identity

‖F (χ)‖e = max
ζ∈∂A

inf
{∥∥Mp

fF (χ)
∥∥
e

∣∣∣ f ∈ C(∂A), f(ζ) = 1
}
.

In the next step we prove the existence of a sequence (gk)k≥1 of continuous functions
gk ∈ C(∂A, [0, 1]) with pairwise disjoint supports such that ‖F (gkχ)‖ > ρ for all k ≥ 1.

The above observations allow us to choose a point z0 ∈ ∂A such that

∥∥Mp
fF (χ)

∥∥
e
> ρ (2.4)

for all f ∈ C(∂A) with f(z0) = 1. We construct the sequence (gk)k≥1 inductively and
only focus on the induction step. Suppose that g1, . . . , gk ∈ C(∂A, [0, 1]) are functions
with pairwise disjoint supports such that ‖F (gjχ)‖ > ρ and z0 6∈ supp gj for j = 1, . . . , k.
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Using Urysohn’s lemma we can choose a function f ∈ C(∂A, [0, 1]) with f(z0) = 1 and
supp f ∩ supp gj = ∅ for all j = 1, . . . , k as well as a sequence of functions (κj)j≥1

in C(∂A, [0, 1]) with z0 6∈ supp(κj) for all j ≥ 1 and such that limj→∞ κj(z) = 1 for
all z ∈ ∂A \ {z0}. By construction (κjfχ)j≥1 is a bounded sequence in L∞(∂A) which
converges pointwise µ-almost everywhere to the function fχ. Using (P1) we see that

Mp
fF (χ) = F (fχ) = τSOT- lim

j→∞
F (κjfχ).

Hence there is an integer j ≥ 1 with ‖F (κjfχ)‖ > ρ. Define gk+1 = κjf . Inductively we
obtain a sequence (gk)k≥1 in C(∂A) with the desired properties. Next we apply Lusin’s
theorem (cf. Theorem 7.4.4 and Proposition 3.1.3 in [17]) to get a sequence (hj)j≥1

of continuous functions hj ∈ C(∂A, [0, 1]) converging to χ µ-almost everywhere. Again
using (P1) we deduce

F (gkχ) = τSOT- lim
j→∞

F (gkhj)

for every k ≥ 1. Hence for every k ≥ 1, there is an integer jk ∈ N such that ‖F (gkhjk)‖ >
ρ. The functions fk = gkhjk (k ∈ N∗) are as desired.

In the next theorem we will make use of the fact that the spaces Lp(∂A) (1 < p <∞)
possess Schauder bases (see [12, p. 296]). This fact will allow us to apply Lemma
A.2 with X = Lp(∂A). In the proof we use fixed bounded measurable representatives
of the µ-inner functions θk ∈ H∞(∂A) such that ‖θk‖∂A ≤ 1 and define the products
θ(i) = θi11 · . . . · θ

ik
k for i = (i1, . . . , ik) ∈ Nk.

Theorem 2.18.
Let T ∈M(Lp(∂A))ec. Then T − ΦMz(T ) ∈ K(Lp(∂A)).

Proof. Let F : L∞(∂A)→ L(Lp(∂A)) be the mapping defined in Proposition 2.17. Since
T − ΦMz(T ) = F (1), it suffices to show that F (L∞(∂A)) ⊂ K(Lp(∂A)). Assume that
this inclusion does not hold and choose a sequence (fk)k≥1 as in Proposition 2.17. By
construction the operator F (fj) is the τBW-limit of a net of operators of the form

Mp
fj
T − 1

kk

∑
i∈Nk

Mp

θ(i)
TMp

θ(i)M
p
fj

=
1

kk

∑
i∈Nk

Mp

θ(i)

(
Mp

fjθ(i)
T − TMp

fjθ(i)

)
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with suitable inner functions θ(i) ∈ H∞(∂A). Thus there exist u ∈ Lp(∂A) and v ∈ Lq(∂A)

with ‖u‖p ≤ 1, ‖v‖q ≤ 1 and an integer k ≥ 1 such that

ρ <

∣∣∣∣∣∣
〈

1

kk

∑
i∈Nk

Mp

θ(i)

(
Mp

fjθ(i)
T − TMp

fjθ(i)

)
u, v

〉
Lp,Lq

∣∣∣∣∣∣
≤ 1

kk

∑
i∈Nk

∥∥∥Mp
fjθ(i)

T − TMp
fjθ(i)

∥∥∥ .
Hence we find a multiindex ij ∈ Nk such that θ(ij) ∈ Iµ fulfils∥∥∥Mp

fjθ(ij)
T − TMp

fjθ(ij)

∥∥∥ > ρ.

In other words, for each j ≥ 1 the function hj = fjθ(ij) ∈ L∞(∂A) satisfies

‖hj‖∂A ≤ 1, hj ≡ 0 on ∂A \ supp(fj),
∥∥[Mp

hj
, T
]∥∥ > ρ

and the commutatorsKj =
[
Mp

hj
, T
]
∈ L(Lp(∂A)) are compact. Since ρ < ‖Kj‖ ≤ 2 ‖T‖,

by passing to a subsequence, we can achieve that the limit

c = lim
j→∞
‖Kj‖ ∈ [ρ, 2 ‖T‖]

exists. Fix a subsequence
(
Kj(k)

)
k∈N of (Kj)j≥1 and set ϕN =

∑N
k=0 hj(k) ∈ L∞(∂A)

for N ∈ N. We already know that the functions hj(k) ∈ L∞(∂A) (k ∈ N) have disjoint
supports and fulfil

∥∥hj(k)

∥∥
∂A
≤ 1. Therefore ‖ϕN‖∂A ≤ 1 for all N ∈ N and the sequence

(ϕN)N∈N converges pointwise on ∂A to the function ϕ =
∑∞

k=0 hj(k) ∈ L∞(∂A). The
dominated convergence theorem implies that

SOT−
∞∑
k=0

Kj(k) = τSOT- lim
N→∞

[
Mp

ϕN
, T
]

=
[
Mp

ϕ, T
]
.

Since K∗j =
[
T ∗,M q

hj

]
for all j ≥ 1, it follows in exactly the same way that

SOT−
∞∑
k=0

K∗j(k) =
[
T ∗,M q

ϕ

]
.
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2 Toeplitz Projections on Hardy-type Spaces

In particular,
τSOT- lim

j→∞
K∗j = 0.

We apply Lemma A.2 to the sequence (Kj)j≥1 to see that, by passing to a subsequence,
one can achieve that K = SOT−

∑∞
j=0 Kj is not compact. On the other hand, we

already know, as shown above, that K =
[
Mp

h , T
]
∈ K(Lp(∂A)) with a suitable function

h ∈ L∞(∂A). This contradiction finishes the proof.

As an obvious consequence of the preceding theorem we obtain the announced de-
scription of the essential commutant of the subalgebraM(Lp(∂A)) ⊂ L(Lp(∂A)).

Corollary 2.19.
For 1 < p <∞, the identity

M(Lp(∂A))ec =M(Lp(∂A)) +K(Lp(∂A))

holds.

As a second application we show that ΦMz and ΦTz annihilate the compact operators.

Corollary 2.20.
Suppose that µ ∈ M+ (∂A) has no atoms. Then we have

ΦMz(K(Lp(∂A))) = {0} and ΦTz(K(Hp(∂A))) = {0}.

Proof. Let T ∈ K(Lp(∂A)). Then Theorem 2.18 yields ΦMz(T ) = T −F (1) ∈ K(Lp(∂A)).
Together with Theorem 2.8 we get that ΦMz(T ) is a compact multiplication operator on
Lp(∂A). As an application of Proposition 1.5 we find that ΦMz(T ) = 0. If T ∈ K(Hp(∂A)),
then X̃ = XPp ∈ K(Lp(∂A)) and

ΦTz(X) = PpΦMz(X̃)|Hp(∂A) = 0.

We are now ready to prove a multivariable version of the spectral inclusion formula of
Hartman-Wintner and Simonenko.
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2.3 The Spectral Inclusion Theorem of Hartman-Wintner

Theorem 2.21.
Assume that µ ∈ M+ (∂A) has no atoms. Then, for f ∈ L∞(∂A), the spectral inclusion
formula

R(f) ⊂ σe(T
p
f )

holds.

Proof. It suffices to prove that a function f ∈ L∞(∂A) is invertible as an element in the
C∗-algebra L∞(∂A) whenever T pf is invertible in the Calkin algebra C(Hp(∂A)). Suppose
that Y ∈ L(Hp(∂A)) is a linear operator such that Y T pf −1 ∈ K(Hp(∂A)). Using Theorem
2.14 we get

π̂(Y )Mp
f = π̂(Y )π̂(T pf ) = π̂(Y T pf ) = 1 + π̂(Y T pf − 1).

By Corollary 2.20 we know that

π̂(Y T pf − 1) = ΦMz

(
(Y T pf − 1)Pp

)
= 0.

By Theorem 2.8 there is a function g ∈ L∞(∂A) with

π̂(Y ) = φMz(Ỹ ) = Mp
g .

Thus we find that Mp
gM

p
f = π̂(Y )Mp

f = 1, or equivalently, that gf = 1 µ-almost every-
where on ∂A.

The proof of Theorem 2.21 shows that the function f ∈ L∞(∂A) is invertible in L∞(∂A)

whenever T pf ∈ L(Hp(∂A)) is left invertible in the Calkin algebra C(Hp(∂A)).

Corollary 2.22.
Suppose that µ ∈ M+ (∂A) has no atoms. Let f ∈ L∞(∂A) be given. Then

∥∥T pf ∥∥e ≥ ‖f‖∞ .
For f ∈ H∞(∂A), ∥∥T pf ∥∥ =

∥∥T pf ∥∥e = ‖f‖∞ .
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2 Toeplitz Projections on Hardy-type Spaces

Proof. By Theorem 2.21 we have

∥∥T pf ∥∥e ≥ {|w| ∣∣ w ∈ σe(T
p
f )
}
≥ {|w| | w ∈ R(f)} = ‖f‖∞ .

For f ∈ H∞(∂A), it follows that

‖f‖∞ =
∥∥Mp

f

∥∥ ≥ ∥∥T pf ∥∥ ≥ ∥∥T pf ∥∥e ≥ ‖f‖∞ .
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3 Compactness of Commutators of

Toeplitz Operators

This section is devoted to the study of commutators of Toeplitz operators. The results
stated here will be used in the subsequent section which deals with multidimensional
spectral mapping theorems for Toeplitz tuples with symbol in suitable subalgebras of
L∞(∂A). Let Hp(∂A) be a Hardy-type space as defined at the beginning of Section 1.3.
We start with an application of an interpolation theorem for compact operators going
back to M. A. Krasnoselski (see Theorem 4.2.9 in [8]). We restate it in a version that is
suitable for our purpose.

Let i : Y → X be an injective continuous linear operator between Banach spaces. Let
T ∈ L(X) be a bounded operator with T (Im i) ⊂ Im i. Then the closed graph theorem
shows that the induced operator S : Y → Y , that is, the unique map with iS = Ti, is
continuous again.

Theorem 3.1 (M. A. Krasnoselski).
Let 1 < p0 < p < p1 be real numbers and let

i1 : Lp1(∂A) −→ Lp0(∂A) and i : Lp(∂A) −→ Lp0(∂A)

be the inclusion mappings. Suppose that T0 : Lp0(∂A) → Lp0(∂A) is a bounded lin-
ear operator such that T0(Im i1) ⊂ Im i1 and such that T0 or the induced operator
T1 : Lp1(∂A) → Lp1(∂A) is compact. Then T0(Im i) ⊂ Im i and the induced operator
T : Lp(∂A)→ Lp(∂A) is compact again.

Let 1 < p0 < p < p1 be real numbers and let f ∈ L∞(∂A) be given. Since the
commutator Cp0

f = [Mp0

f , Pp0 ] : Lp0(∂A) → Lp0(∂A) maps the linear subspace Lp1(∂A) ⊂
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3 Compactness of Commutators of Toeplitz Operators

Lp0(∂A) into itself, it follows from Theorem 3.1 that the compactness of Cp0

f or Cp1

f

implies the compactness of Cp
f for every real number p ∈ (p0, p1). For simplicity, we write

Cf , P,Mf , Tf instead of C2
f , P2,M

2
f , T

2
f . As a straightforward application one obtains the

following consequence.

Theorem 3.2.
The set

QC =
{
f ∈ L∞(∂A)

∣∣ Cp
f ∈ K(Lp(∂A))

}
⊂ L∞(∂A)

is a unital C*-subalgebra that does not depend on the choice of p ∈ (1,∞).

Proof. The remarks preceding the theorem show that the definition of QC does not
depend on the choice of p. Since the map

L∞(∂A) −→ L(L2(∂A)), g 7−→ Cg

is continuous linear, the set QC ⊂ L∞(∂A) is a closed linear subspace. For φ, ψ ∈ QC,
the identity

[Mφψ, P ] = Mφ(MψP − PMψ) + (MφP − PMφ)Mψ

shows that φψ ∈ QC. Finally the identity

C∗f = (MfP − PMf )
∗ = −(MfP − PMf ) = −Cf

shows that QC ⊂ L∞(∂A) is a C*-subalgebra.

For f ∈ L∞(∂A), we define the Hankel operator with symbol f on Hp(∂A) as the
operator

Hp
f = (1− Pp)Mp

f : Hp(∂A) −→ Lp(∂A).

We simply write Hf = H2
f for the Hankel operator with symbol f on H2(∂A).

Corollary 3.3.
For 1 < p <∞, we have

QC =
{
f ∈ L∞(∂A)

∣∣∣ Hp
f and Hp

f
are compact.

}
.
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Proof. Fix a function f ∈ QC. Then the operator

(1− Pp)Mp
f |Hp(∂A) = Mp

f |Hp(∂A) − (Mp
fPp)|Hp(∂A) + Cp

f |Hp(∂A) = Cp
f |Hp(∂A)

is compact. Since also f ∈ QC, we have shown that Hp
f and Hp

f
are compact. To prove

the converse, note first that, for a fixed function f ∈ L∞(∂A) and for 1 < p0 < p1, the
bounded operator

Lp0(∂A) −→ Lp0(∂A), g 7−→ fPp0(g)− Pp0(fPp0(g))

maps Lp1(∂A) into itself. Thus exactly as before, Krasnoselski’s interpolation theorem
implies that the compactness of the operator Hp

fPp = (1− Pp)Mp
fPp : Lp(∂A)→ Lp(∂A)

does not depend on the choice of p ∈ (1,∞). Suppose that f ∈ L∞(∂A) is a function
such that Hp

f and Hp

f
are both compact. Let q ∈ (1,∞) be the conjugate exponent of p.

Then the operator

(PpM
p
f (1− Pp))∗ = (1− Pq)M q

f
Pq = Hq

f
Pq ∈ L(Lq(∂A))

and hence also the operator

Cp
f = (1− Pp)Mp

fPp − PpM
p
f (1− Pp)

is compact.

Corollary 3.4.
For 1 < p < ∞ and f ∈ QC, the commutators [T pf , T

p
g ] ∈ L(Hp(∂A)) are compact for

every function g ∈ L∞(∂A).

Proof. By the preceding corollary the Hankel operator Hp
f ∈ L(Hp(∂A),Lp(∂A)) is com-

pact. Hence for g ∈ L∞(∂A), the semi-commutator

T pg T
p
f − T

p
gf = PpM

p
gT

p
f − PpM

p
gf |Hp(∂A)

= PpM
p
g (PpM

p
f −M

p
f )|Hp(∂A)

= −PpMp
gH

p
f ∈ L(Hp(∂A))
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3 Compactness of Commutators of Toeplitz Operators

is compact. Since also f ∈ QC, we obtain the compactness of

T pf T
p
g − T

p
fg = (T qg T

q

f
− T q

gf
)∗ ∈ L(Hp(∂A)),

where as usual q ∈ (1,∞) denotes the conjugate exponent of p. Hence [T pf , T
p
g ] is compact

for every g ∈ L∞(∂A).

If K = D ⊂ Cd is the closure of a bounded strictly pseudoconvex domain with smooth
boundary, A = {f ∈ C(K) | f |D is holomorphic} is the domain algebra of D and µ

is the normalized surface measure on ∂D = ∂A, then H2(∂A) = H2(∂D) is the usual
Hardy space on D. In this case Tz = (Tz1 , . . . , Tzd) ∈ L(H2(∂A))d is essentially normal1

(Theorem 4.2.24 in [74]), all Hankel operators Hf = (1 − P )Mf |H2(∂A) with symbol
f ∈ C(∂A) are compact (Lemma 3.9 in [26]) and hence C(∂A) ⊂ QC. For D = Bd ⊂ Cd,
it is well known (Section 6 in [75]) that QC consists precisely of all bounded measurable
functions f : ∂Bd → C with vanishing mean oscillation2. For d = 1, the set QC is the
largest C∗-algebra contained in H∞(T) + C(T) (see [66]). A result of A. M. Davie and
N. P. Jewell [21, Proposition 4.1] shows that QC is not contained in H∞(∂Bd) + C(∂Bd)
for d > 1.

For A = A
(
Dd
)
, the Shilov boundary is the distinguished boundary ∂A = Td. If

µ = σd is the d-fold product measure of the normalized Lebesgue measure σ on T, then
H2(∂A) = H2(Td), the tuple Tz ∈ L(H2(Td))d is essentially normal if and only if d = 1.
For d > 1, the C∗-algebra QC consists just of the constant functions, that is, QC = C.3

Using compactness results of commutators of singular integral operators on spaces of
homogeneous type, S. G. Krantz and S-Y. Li [46] proved that also on bounded strictly
pseudoconvex domains D ⊂ Cd with smooth boundary, the commutators [Mp

f , Pp] are
compact for all functions f ∈ L∞(∂D) ∩ VMO(∂D).4

1A tuple T = (T1, . . . , Tm) ∈ L(H)m of operators Ti ∈ L(H) on a Hilbert space H is called essentially
normal if TiT ∗i − T ∗i Ti is compact for i = 1, . . . ,m.

2The notion of a function with vanishing mean oscillation was first introduced by D. Sarason [67] in
1975. See [75] for a definition that matches our setting.

3This result is well known. It follows, for instance, from a result of M. Cotlar and C. Sadosky (see [18,
Corollary 5] or [1, Theorem 2.5]), stating that the symbol f ∈ L∞(Td) of a compact Hankel operator
Hf ∈ L(H2(Td)) must lie in H∞(Td).

4Here VMO(∂D) denotes the space of all functions on ∂D with vanishing mean oscillation.
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Using the identity

Hp
fg = Hp

fT
p
g + (1− Pp)Mp

fH
p
g (f, g ∈ L∞(∂A)),

one sees that the symbol class

A =
{
f ∈ L∞(∂A)

∣∣ Hp
f is compact

}
⊂ L∞(∂A)

forms a norm-closed subalgebra of L∞(∂A). Since Hp
f = (1− Pp)Mp

f |Hp(∂A) is compact if
and only if its trivial extension

Hp
fPp = (1− Pp)Mp

fPp ∈ L(Lp(∂A))

is compact, an application of Krasnoselski’s interpolation theorem shows exactly as be-
fore that also the definition of the symbol class A does not depend on the choice of the
exponent p ∈ (1,∞). For the Hardy spaces on the unit circle T, a theorem of Hartman
(see Theorem 2.2.5 in [58]) shows that A = H∞(T) + C(T). By the result of A. M. Davie
and N. P. Jewell cited above, the inclusion H∞(∂Bd) + C(∂Bd) ⊂ A is strict in the ball
case for d > 1.

It is an obvious question whether, for f ∈ L∞(∂A), the condition that [T pf , T
p
g ] ∈

K(Hp(∂A)) for all g ∈ L∞(∂A) is also sufficient for f to belong to QC. Under certain
additional conditions on the Hardy-type spaces Hp(∂A) we can give an affirmative answer
to this question. In the sequel we use standard notation from interpolation theory as
explained in the appendix. For a more elaborate exposition of interpolation theory on
Banach spaces we refer the reader to [9].

The space L0(∂A) = {f | f : ∂A → C is measurable} /N , where measurable means
Borel measurable and N consists of all measurable functions vanishing µ-almost ev-
erywhere, equipped with the topology induced by the metric

d([f ], [g]) = inf {r > 0 | µ({|f − g| ≥ r}) ≤ r}

is a Hausdorff topological vector space. A sequence ([fn])n∈N in L0(∂A) converges to
[f ] ∈ L0(∂A) if and only if (fn)n∈N

n−→ f in measure (cf. Proposition A.2.4 in [43]).
For 1 < p0 < p1 < ∞, the pair (Lp0(∂A),Lp1(∂A)) together with the inclusion mappings
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3 Compactness of Commutators of Toeplitz Operators

ij : Lpj(∂A) → L0(∂A) (j = 0, 1) is a compatible couple of Banach spaces. It is well
known that their complex interpolation space with parameter θ ∈ (0, 1) is given by

Lθ = [Lp0(∂A),Lp1(∂A)]θ = Lp(∂A)

(
1

p
=

1− θ
p0

+
θ

p1

)
(3.1)

with equality of norms (see Theorem 5.1.1 in [9]). Since the measure µ is finite, we have
that Lp0(∂A) + Lp1(∂A) = Lp0(∂A) and Lp0(∂A) ∩ Lp1(∂A) = Lp1(∂A) as Banach spaces
with equivalent norms.

Let 1 < p0 < p1 < ∞. Then the pair (Hp0(∂A),Hp1(∂A)) together with the restric-
tions ιj = ij|Hpj (∂A) of the inclusion mappings ij from above is a compatible couple
of Banach spaces. From Proposition 1.9 we see Hp0(∂A) + Hp1(∂A) = Hp0(∂A) and
Hp0(∂A) ∩ Hp1(∂A) = Hp1(∂A) as Banach spaces with equivalent norms. Now we know
(see the Appendix) that the interpolation spaces Hθ = [Hp0(∂A),Hp1(∂A)]θ and Lθ of
the compatible couples (Hp0(∂A),Hp1(∂A)) and (Lp0(∂A),Lp1(∂A)), respectively, form an
interpolation pair of exponent θ for every real number θ ∈ (0, 1). Since the inclusion
operator

j : (Hp0(∂A), ‖ · ‖p0
) −→ (Lp0(∂A), ‖ · ‖p0

)

is an admissible operator for the couples (Hp0(∂A),Hp1(∂A)), (Lp0(∂A),Lp1(∂A)), it follows
that j(Hθ) ⊂ Lθ and ‖j‖L(Hθ,Lθ) ≤ 1.

The following theorem is a slight generalization of Theorem 4.38 in [78].

Theorem 3.5.
Suppose that

Hr(∂A) ∩ Ls(∂A) = Hs(∂A) (3.2)

for 1 < r < s < ∞. Then, for 1 < p0 < p < p1 < ∞ with 1
p

= 1−θ
p0

+ θ
p1

for some
θ ∈ (0, 1),

Hθ = Hp(∂A)

with equivalent norms.

Proof. In view of (3.1), for f ∈ Hθ, we have f = j(f) ∈ Lθ = Lp(∂A). Thus f ∈
Hp0(∂A) ∩ Lp(∂A) = Hp(∂A) and ‖f‖Hp = ‖f‖p ≤ ‖f‖Hθ . To prove the reverse inclusion,
fix f ∈ Hp(∂A) ⊂ Lp(∂A). Then by (3.1) there exists a function g ∈ A(Lp0(∂A),Lp1(∂A))
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such that g(θ) = f . Since g : S → Lp0(∂A) + Lp1(∂A) = Lp0(∂A) is continuous, also the
map

h : S −→ Hp0(∂A) + Hp1(∂A) = Hp0(∂A), ξ 7−→ Pp0(g(ξ))

is well-defined and continuous. From the properties of the map g and the identities

h(it) = Pp0(g(it)) ∈ Hp0(∂A),

h(1 + it) = Pp0(g(1 + it)) = Pp0(ip1p0(g(1 + it))) = ip1p0Pp1(g(1 + it)) ∈ Hp1(∂A),

where t ∈ R, we conclude that h ∈ A(Hp0(∂A),Hp1(∂A)). Moreover, we have

h(θ) = Pp0(g(θ)) = Pp0(f) = Pp0(ipp0(f)) = ipp0Pp(f) = f.

Hence f ∈ Hθ. That the norms ‖ · ‖Hθ and ‖ · ‖p on Hθ = Hp(∂A) are equivalent, follows
from the bounded inverse theorem.

Condition (3.2) of Theorem 3.5 is fulfilled for Hardy spaces Hp(∂D) over strictly pseu-
doconvex domains D ⊂ Cd with C2-boundary (see Corollary 2 in [47]) and for the Hardy
spaces Hp(Td) over the unit polydisc Dd ⊂ Cd (see Theorem 2.1.3 (c) and Exercise 3.4.4
(c) in [63]). Cwikels extrapolation result (see Theorem A.3) has the following conse-
quences.

Corollary 3.6.
Suppose that condition (3.2) from Theorem 3.5 holds. Then, for any symbols fji ∈
L∞(∂A) (j = 1, . . . , s, i = 1, . . . , pj), the compactness of the operator

T p =
s∑
j=1

pj∏
i=1

T pfji ∈ L(Hp(∂A))

does not depend on the choice of the exponent p ∈ (1,∞). If µ ∈ M+ (∂A) has no atoms
and T p ∈ L(Hp(∂A)) is compact, then

∑s
j=1

∏pj
i=1 fji = 0.

Proof. Fix 1 < p0 < p1 < ∞ and symbols fji ∈ L∞(∂A) (j = 1, . . . , s, i = 1, . . . , pj). It
suffices to show that the compactness of the operator

T p =
s∑
j=1

pj∏
i=1

T pfji ∈ L(Hp(∂A))
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3 Compactness of Commutators of Toeplitz Operators

does not depend on p ∈ (p0, p1). Since the compactness of linear operators is preserved
when passing to equivalent norms, the assertion follows from Theorem 3.5 and Theorem
A.3. If T p ∈ L(Hp(∂A)) is compact, then by Corollary 2.15 and Corollary 2.20 it follows
that

s∑
j=1

pj∏
i=1

fji = σ(T p) = 0.

Corollary 3.7.
Suppose that condition (3.2) from Theorem 3.5 holds, µ ∈ M+ (∂A) has no atoms and
that Tz = (Tz1 , . . . , Tzd) ∈ L(H2(∂A))d is essentially normal. Then, for 1 < p <∞,

QC =
{
f ∈ L∞(∂A)

∣∣ [T pf , T
p
g ] ∈ K(Hp(∂A)) for all g ∈ L∞(∂A)

}
and

A =
{
f ∈ L∞(∂A)

∣∣ [T pf , T
p
g ] ∈ K(Hp(∂A)) for all g ∈ H∞(∂A)

}
.

Proof. Suppose that f ∈ L∞(∂A) satisfies [T pf , T
p
g ] ∈ K(Hp(∂A)) for all g ∈ L∞(∂A). By

Corollary 3.6 the same holds for p = 2. Since Tz ∈ L(H2(∂A))d is an essentially normal
regular A-isometry in the sense of [26] and since in particular [Tf , Tg] ∈ K(H2(∂A)) for all
g ∈ H∞(∂A), it follows from Corollary 5.1 in [34] that there exist a function g ∈ A and
an operator K ∈ K(H2(∂A)) such that Tf = Tg + K. Using Theorem 2.9 and Corollary
2.20 we find that

Tf = ΦTz(Tg +K) = Tg.

But then Theorem 2.21 shows that f = g ∈ A. Choose q ∈ (1,∞) with 1
p

+ 1
q

= 1. since

[T q
f
, T qg ] = −[T pf , T

p
g ]∗ ∈ K(Hq(∂A))

for all g ∈ L∞(∂A), also f ∈ A. It follows from Corollary 3.3 that f ∈ QC. The second
assertion follows from the first part of the proof.

For a strictly pseudoconvex domain D ⊂ Cd with smooth boundary and µ ∈ M+ (∂D)

equal to the surface measure of ∂D the tuple Tz = (Tz1 , . . . , Tzd) ∈ L(H2(∂D))d is
essentially normal and therefore all assumptions of Corollary 3.7 are fulfilled for these
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types of Hardy spaces.
As in Section 2.2, for a unital closed subalgebra B ⊂ L∞(∂A), let us denote by

T p(B) = alg
{
T pf
∣∣ f ∈ B} ⊂ L(Hp(∂A))

the smallest norm-closed subalgebra containing
{
T pf
∣∣ f ∈ B}.

Theorem 3.8.
Suppose that µ ∈ M+ (∂A) has no atoms.

(a) The subset

T p(A) +K(Hp(∂A)) =
{
T pf
∣∣ f ∈ A}⊕K(Hp(∂A)) ⊂ L(Hp(∂A))

is the smallest norm-closed subalgebra containing
{
T pf
∣∣ f ∈ A} ∪ K(Hp(∂A)).

(b) The mapping

ρp : A −→ (T p(A) +K(Hp(∂A))) /K(Hp(∂A)), f 7−→ [T pf ]

is a topological algebra isomorphism onto an inverse closed5 Banach subalgebra of
the Calkin algebra C(Hp(∂A)).

Proof. Fix a real number p ∈ (1,∞). Obviously the map

ρ : L∞(∂A) −→ C(Hp(∂A)), f 7−→ [T pf ]

is well-defined and continuous linear. It follows from Theorem 2.21 that ρ is bounded
below ∥∥[T pf ]

∥∥ ≥ r([T pf ]) ≥ ‖f‖∞ (f ∈ L∞(∂A)).

Using the identity (see the proof of Corollary 3.4)

T pg T
p
f − T

p
gf = −PpMp

gH
p
f (f, g ∈ L∞(∂A)),

5A subalgebra B ⊂ A of an unital algebra A is called inverse closed if f−1 ∈ B holds whenever f ∈ B
has an inverse f−1 ∈ A
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3 Compactness of Commutators of Toeplitz Operators

we find that ρ induces a topological isomorphism of Banach algebras

A −→ ρ(A), f 7−→ ρ(f) = [T pf ].

Let π : L(Hp(∂A))→ C(Hp(∂A)) be the quotient map. Then

B = π−1(ρ(A)) =
{
T pf
∣∣ f ∈ A}+K(Hp(∂A)) ⊂ L(Hp(∂A))

is a norm-closed unital subalgebra. Since by Corollary 2.22 there exist no compact
Toeplitz operators T pf with f ∈ L∞(∂A) \ {0}, the latter sum is direct. It follows that

B = T p(A) +K(Hp(∂A)) ⊂ L(Hp(∂A))

is the smallest norm-closed subalgebra containing
{
T pf
∣∣ f ∈ A} ∪ K(Hp(∂A)) and that

ρp : A −→ B/K(Hp(∂A)), f 7−→ ρ(f) = [T pf ]

is a topological isomorphism of Banach algebras. It remains to be shown that

B/K(Hp(∂A)) ⊂ C(Hp(∂A))

is inverse closed. Let [T ] ∈ B/K(Hp(∂A)). Then there is a function f ∈ A with [T ] =

[T pf ]. Suppose that there is an operator X ∈ L(Hp(∂A)) such that XT pf −1 ∈ K(Hp(∂A)).
Using the definitions of the mappings ΦTz and π̂ given in Section 2.2 we find that

ΦTz(X) = Ppπ̂(X)|Hp(∂A).

Hence an application of Theorem 2.14 yields that

ΦTz(XT
p
f ) = Ppπ̂(X)π̂(T pf )|Hp(∂A)

= Ppπ̂(X)Ppπ̂(T pf )|Hp(∂A) + Ppπ̂(X)(1− Pp)π̂(T pf )|Hp(∂A)

= ΦTz(X)T pf + Ppπ̂(X)Hp
f .

Since ΦTz annihilates the compact operators and since Hp
f is compact, we obtain

1− ΦTz(X)T pf = ΦTz(XT
p
f )− ΦTz(X)T pf ∈ K(Hp(∂A)).
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Choose a function g ∈ L∞(∂A) with ΦTz(X) = T pg . Then by the last part of Theorem
2.14

T pgf = ΦTz(T
p
gf + (T pg T

p
f − T

p
gf )) = ΦTz(T

p
g T

p
f + (1− ΦTz(X)T pf )) = 1

and hence gf = 1. The identity

0 = Hp
gf = Hp

gT
p
f + (1− Pp)Mp

gH
p
f

shows that Hp
gT

p
f is compact. Now let us suppose in addition that [T ] ∈ B/K(Hp(∂A))

is invertible in C(Hp(∂A)). Then also K = T pfX − 1 ∈ K(Hp(∂A)) and therefore

Hp
g = Hp

gT
p
fX −H

p
gK

is compact. It follows that [T pg ] ∈ B/K(Hp(∂A)) and

[T pg ][T ] = [ΦTz(X)][T pf ] = [1].

Hence [T ] is also invertible in B/K(Hp(∂A)).

Combining Corollary 2.15 and Theorem 3.8 we get the following corollary.

Corollary 3.9.
Suppose that µ ∈ M+ (∂A) has no atoms and let B ⊂ A be a unital closed subalgebra.
Then the subset

T p(B) +K(Hp(∂A)) =
{
T pf
∣∣ f ∈ B}⊕K(Hp(∂A)) ⊂ L(Hp(∂A))

is the smallest norm-closed subalgebra containing
{
T pf
∣∣ f ∈ B} ∪ K(Hp(∂A)) and the

equality
SCp(B) = T p(B) ∩ K(Hp(∂A))

holds.

Proof. If one replaces A by B in the proof of part (a) of Theorem 3.8 one gets the first
assertion. Then by Corollary 2.15 we have the direct sum inclusion

T p(B) =
{
T pf
∣∣ f ∈ B}⊕ SCp(B) ⊂

{
T pf
∣∣ f ∈ B}⊕K(Hp(∂A)).
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3 Compactness of Commutators of Toeplitz Operators

Thus, for fixed T ∈ SCp(B), there exist f ∈ B, K ∈ K(Hp(∂A)) such that T = T pf + K.
Then K = T − T pf ∈ T

p(B) and since ker ΦTz |T p(B) = SCp(B) (see Corollary 2.15)
Corollary 2.20 yields K ∈ SCp(B). This means T pf = 0, that is T ∈ T p(B) ∩ K(Hp(∂A)).
By Corollary 2.20 we have

T p(B) ∩ K(Hp(∂A)) ⊂ ker ΦTz |T p(B) = SCp(B),

which proves the reverse inclusion.

On a strictly pseudoconvex domain D ⊂ Cd with smooth boundary ∂D (equipped
with its surface measure) the algebra T (A) = alg {Tf | f ∈ A} ⊂ L(H2(∂D)) contains all
compact operators and T (A)/K(H2(∂D)) ⊂ C(H2(∂D)) is a maximal abelian subalgebra
(see [25]). Although we have not been able to decide wether the subalgebra T p(A) +

K(Hp(∂A)) ⊂ C(Hp(∂A)) is maximal abelian, the weaker result proved in Theorem 3.8
still yields the following spectral mapping results.

Corollary 3.10.
Assume that µ ∈ M+ (∂A) has no atoms and let f ∈ A and g ∈ QC be arbitrary functions.
Then we have:

(a) σe(T
p
f ) = σA(f),

(b) σe(T
p
g ) = σA(g) = σQC(g) = R(g).

Proof. By Theorem 3.8 B = T p(A) + K(Hp(∂A)) ⊂ L(Hp(∂A)) is a closed subalgebra
such that the quotient B/K(Hp(∂A)) ⊂ C(Hp(∂A)) is inverse closed and topologically
isomorphic to the Banach algebra A via the map

ρp : A −→ B/K(Hp(∂A)), h 7−→ [T ph ].

Thus, for f ∈ A, σe(T
p
f ) = σ([T pf ]) = σA(f). Using Theorem 2.21 and the fact that

QC ⊂ A is a C∗-subalgebra of L∞(∂A), we find that

R(g) ⊂ σe(T
p
g ) = σA(g) ⊂ σQC(g) = σL∞(∂A)(g) = R(g).

Thus also the second assertion has been proved.
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In the particular case of the unit ball, part (a) of Corollary 3.10 can be used to improve
the essential spectral inclusion theorem (Theorem 2.21) for Toeplitz operators T pf with
symbol f ∈ A. For f ∈ L∞(S), let F = P [f ] : B→ C,

P [f ](z) =

∫
S

f(ξ)
(1− |z|2)d

|1− 〈z, ξ〉|2d
dσ(ξ)

be its Poisson-Szegő transform. The set

Cl(F ) =
⋂(

F (U ∩ B);U ⊃ S open
)
,

known as the cluster set of F , is easily seen to contain the essential range of f . Making
explicit use of the rich conformal group of the unit ball it was shown in [32] that Cl(F ) ⊂
σA(f) for all f ∈ A. Thus Corollary 3.10 shows that

Cl(F ) ⊂ σe(T
p
f ) (f ∈ A).

Let f ∈ H∞(S) be a non-constant inner function and F = P [f ] ∈ H∞(B). For d > 1, it
is well known (see Theorem 1.2 in [65]) that Cl(F ) = D while R(f) ⊂ T. In this case,
the Toeplitz operator T pf is an isometry and R(f) ( σe(T

p
f ) = D. This example also

shows that the algebra A ⊂ L∞(S) is not inverse closed.

One can use Corollary 3.10 and arguments from [32] to calculate the maximal ideal
space of the commutative C∗-algebra QC ⊂ L∞(S). Let β(B) be the Stone-Čech com-
pactification6 of the unit ball B ⊂ Cd. For f ∈ L∞(S), the Poisson-Szegő transform
F = P [f ] : B → C has a unique extension to a continuous function F β : β(B) → C.
In [32] it is shown that every point Λ ∈ β(B) \ B gives rise to a multiplicative linear
functional

δΛ : A −→ C, f 7−→ F β(Λ)

and that {δΛ | Λ ∈ β(B) \ B} ⊂ ∆A is a closed subset of the maximal ideal space ∆A of
the commutative Banach algebra A such that

Cl(F ) = {δΛ(f) | Λ ∈ β(B) \ B}

6see §38 in [56]
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3 Compactness of Commutators of Toeplitz Operators

for all f ∈ A (Theorem 6 in [32]). For d = 1, the equality

∆A = {δΛ | Λ ∈ β(B) \ B}

holds (Theorem 7 in [32]). It is an open question whether this equality holds for d > 1.
We conclude this section by showing that the above multiplicative linear functionals at
least determine the maximal ideal space of the commutative C∗-algebra QC.

Corollary 3.11.
The maximal ideal space of the commutative C∗-algebra QC is given by

∆QC = {δΛ|QC | Λ ∈ β(B) \ B} .

Proof. We endow the maximal ideal spaces ∆A and ∆QC with their corresponding
Gelfand topologies. In the proof of Theorem 6 from [32] it is shown that the set
β(B) \ B ⊂ β(B) is compact and that the mapping

j : β(B) \ B −→ ∆A, Λ 7−→ δΛ

is continuous. Since the restriction mapping

r : ∆A −→ ∆QC , δ 7−→ δ|QC

is also continuous, the set

∆ = {δΛ|QC | Λ ∈ β(B) \ B} = (r ◦ j)(β(B) \ B)

is a compact subset of the maximal ideal space ∆QC . Using Theorem 6 from [32] and
Corollary 3.10 we find that

f̂(∆QC) = σQC(f) = R(f) ⊂ Cl(F ) = f̂(∆) ⊂ f̂(∆QC)

for all f ∈ QC, where f̂ ∈ C(∆QC) denotes the Gelfand transform of f with respect to
the C∗-algebra QC. Since {f̂ | f ∈ QC} = C(∆QC), an application of Urysohn’s Lemma
now yields ∆QC = ∆.
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4 Spectral Mapping Theorems for

Toeplitz Tuples

4.1 Essential Spectra of Toeplitz Tuples with

Symbol in H∞ + C

In [31] Eschmeier proved the following spectral mapping formula for essentially commut-
ing tuples of Toeplitz operators on the Hardy space H2(∂D) over a strictly pseudoconvex
domain D ⊆ Cd with C∞-boundary.

Theorem (Eschmeier, 2012).
For f ∈ (H∞ + C)m, the formula

σe(Tf ) =
⋂(

F (U ∩D);U ⊃ ∂D open
)

holds.

Here F = (F1, . . . , Fm) = (P [f1], . . . , P [fm]) denotes the Poisson-Szegő transform of
a tuple f = (f1, . . . , fm) ∈ L∞(∂D)m. By using Proposition 3.4 and by imitating the
proofs of [31] and [52], respectively, we will show that the above spectral formula still
holds true for Toeplitz tuples with symbols in H∞(∂D) + C(∂D) on the Banach space
Hp(∂D) (1 < p <∞).
Let D ⊂ Cd be a strictly pseudoconvex domain with C∞-boundary. Then there is a

strictly plurisubharmonic defining function for D, that is, a strictly plurisubharmonic
function r ∈ C∞(Cd,R) with grad r(z) 6= 0 for all z ∈ ∂D and

D =
{
z ∈ Cd

∣∣ r(z) < 0
}
.
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4 Spectral Mapping Theorems for Toeplitz Tuples

Let Gz : D\{z} → R be the Green’s function1 forD with pole z ∈ D. For y ∈ ∂D, denote
by ny the outward unit normal to ∂D at y. Let U ⊃ ∂D be an open neighbourhood
such that grad r(z) 6= 0 for all z ∈ U . Then D ∩ U c = D ∩ U c is compact and t0 =

− sup {r(z) | z ∈ D ∩ U c} > 0. For 0 < t < t0, the set

Dt =
{
z ∈ Cd

∣∣ r(z) < −t
}
⊂ Cd

is open with Dt ⊂ D and ∂Dt ⊂ U . Thus Dt ⊂ Cd is a strictly pseudoconvex domain
with C∞-boundary and defining function rt = r + t. In particular, for 0 < t < t0,
the boundary ∂Dt ⊂ Cd is a compact real hypersurface of class C∞. Let us denote by
σt ∈ M+ (∂Dt) and σ ∈ M+ (∂D) the normalized surface measures.
For 1 ≤ p <∞, we define the Hardy space Hp(D) as the set of all functions f ∈ O(D)

for which
sup

0<t<t0

∫
∂Dt

|f(ξ)|p dσt(ξ) <∞.

Then Hp(D) ⊂ O(D) is a linear subspace independent of the choices of r and t0. Via a
suitable boundary map the vector space Hp(D) is isomorphic to a norm-closed subspace
Hp(∂D) ⊂ Lp(∂D, σ). More precisely, for α > 1 and w ∈ ∂D, define the approach regions

Γα(w) = {z ∈ D | |z − w| < α dist(z, ∂D)} .

For each f ∈ Hp(D), there is a function f ∗ ∈ Lp(∂D, σ) such that

lim
z→w

z∈Γα(w)

f(z) = f ∗(w)

for σ-almost every w ∈ ∂D. The subset Hp(∂D) ⊂ Lp(∂D, σ) consisting of all equivalence
classes of functions f ∗ arising in this way is a norm-closed subspace and the map

rp : Hp(D) −→ Hp(∂D), f 7−→ [f ∗]

is a vector-space isomorphism. Equipped with the norm ‖f‖Hp(D) = ‖f ∗‖Lp(∂D,σ) the
spaces Hp(D) become Banach spaces such that convergence in Hp(D) implies uniform
convergence on all compact subsets. The inverse of rp : Hp(D) → Hp(∂D) is given by

1see [42] for a description of potential theory in Rn.
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4.1 Essential Spectra of Toeplitz Tuples with Symbol in H∞ + C

the Poisson integral from real potential theory

(rp)−1(f)(z) = P [f ](z) =

∫
∂D

f(w)P(z, w) dσ(w) (f ∈ Hp(∂D), z ∈ D),

where
P : D × ∂D −→ R, (z, w) 7−→ ∂Gz

∂nw
(w)

denotes the Poisson kernel of D. If f ∈ C(∂D) and u(z) = P [f ](z) (z ∈ D), then u

is harmonic on D and extends to a continuous function u : D → C with u|∂D = f . By
Theorem 10 in [47] the subspace A (D) |∂D ⊂ Hp(∂D) is dense. As explained in Section
1.3 the spaces Hp(∂D) are Hardy-type spaces satisfying all conditions listed in the section
leading to Proposition 1.9.
The space H2(D) equipped with the norm ‖f‖2 = ‖f ∗‖L2(∂D,σ) is a functional Hilbert

space. Its reproducing kernel is given by the Szegő kernel S ∈ C(D × D) of D. Since
every boundary point p ∈ ∂D of D is of finite type in the sense of J. P. D’Angelo
(see Definition 2.18 and Corollary 5.8 in [20]) the following proposition is an immediate
consequence of a result of H. P. Boas [11, Corollary 5.2].

Proposition 4.1.
For every p ∈ ∂D, there exists an open neighbourhood U ⊂ Cd of p such that S|(U∩D)×D

extends to a continuous function

S ∈ C((U ∩D)×D \ {(w, z) ∈ ∂D × ∂D | w = z}).

From this we see that the Szegő kernel S ∈ C(D×D) extends to a continuous function
S : D×D → C. It follows that, for every z ∈ D, Sz = S( · , z)|∂D ∈ A (D) |∂D. We need
the following additional properties of the Szegő kernel.

Lemma 4.2.

(i) For each λ ∈ ∂D, there is a real number δ0 > 0 such that, for all 0 < δ < δ0,

sup
{
|S(w, z)|

∣∣∣ (z, w) ∈ (B δ
2
(λ) ∩D)× (Bδ(λ)c ∩ ∂D)

}
<∞.

(ii) For every 1 < q <∞, we have limz→∂D ‖Sz‖q =∞.
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4 Spectral Mapping Theorems for Toeplitz Tuples

Proof. For λ ∈ ∂D, use Proposition 4.1 to choose an open neighbourhood U ⊂ Cd of λ
such that S ∈ C((U ∩D)×D \ {(w, z) ∈ ∂D × ∂D | w = z}). The observation that the
compact set B δ

2
(λ) ∩D × (Bδ(λ)c ∩ ∂D) is contained in the domain of the continuous

function S for all sufficiently small numbers δ > 0 finishes the proof of part (i).
Fix 1 < q < ∞ and assume that there exists a sequence (zk)k∈N in D converging

to some boundary point z ∈ ∂D such that supk∈N ‖Szk‖q < ∞. Then by the theorem
of Alaoglu-Bourbaki and the separability of Lp(∂D), where p ∈ (1,∞) is chosen such
that 1

p
+ 1

q
= 1, we may suppose that the sequence (Szk)k∈N converges to some function

u ∈ Lq(∂D) in the weak topology of Lq(∂D). Then, for g ∈ H∞(D), we have

〈rp(g), u〉 = lim
k→∞
〈rp(g), Szk〉 = lim

k→∞

〈
r2(g), r2(S( · , zk))

〉
L2,L2

= lim
k→∞
〈g, S( · , zk)〉 = lim

k→∞
g(zk).

Since every boundary point of the smoothly bounded strictly pseudoconvex domain D
is a peak point2, there is a function f ∈ H∞(D) with f(D) ⊂ D and limw→z f(w) = 1.
By passing to a subsequence we can achieve that (f(zk))k∈N is an interpolating sequence
for H∞(D)3, that is,

{((g ◦ f)(zk))k∈N | g ∈ H∞(D)} = l∞(N).

But then
{(g(zk))k∈N | g ∈ H∞(D)} = l∞(N)

which is impossible, since as shown above limk→∞ g(zk) = 〈rp(g), u〉 for all g ∈ H∞(D).

The Poisson-Szegő transform F = P [f ] : D → C of a function f ∈ L2(∂D) is defined
by

P [f ](z) =

∫
∂D

P (z, ξ)f(ξ) dσ(ξ) (z ∈ D),

where

P : D × ∂D → R, (z, ξ) 7−→ |Sz(ξ)|
2

S(z, z)

2see Theorem 2.3 in [59]
3see Theorem 9.2 in [30]
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4.1 Essential Spectra of Toeplitz Tuples with Symbol in H∞ + C

denotes the Poisson-Szegő kernel of D. The Poisson-Szegő transform reproduces func-
tions in H2(D), that is P [r2(f)] = f for all f ∈ H2(D) (see [70, p. 19]). Therefore
P [r2(f)] = P [r2(f)] for every f ∈ H2(D). We want to point out that, for arbitrary
dimension d > 1, the kernels P and P are different from each other even in the case
of the unit ball B ⊂ Cd (see [70] for more details on this topic). We use the nota-
tion F = (F1, . . . , Fm) = (P [f1], . . . ,P [fm]) to denote the Poisson transform of a tuple
f = (f1 . . . , fm) ∈ L∞(∂D)m (m ≥ 1). Let 1 < p < ∞ be given. For z ∈ D, we define
continuous linear functionals

ε(p)
z : Hp(∂D)→ C, f 7−→ F (z).

Theorem 4.3.
Let p, q ∈ (1,∞) be real numbers with 1

p
+ 1

q
= 1. For z ∈ D, the functions k(q)

z =∥∥ε(p)
z

∥∥−1
Sz ∈ Hq(∂D) satisfy:

(a) There is a constant cq > 0 such that

c−1
q ≤

∥∥k(q)
z

∥∥
q
≤ cq

for all z ∈ D.

(b) For f ∈ H∞(∂D) and F = P [f ] : D → C, we have

(T pf )∗k(q)
z = F (z)k(q)

z (z ∈ D).

(c) The functions k(q)
z converge to 0 weakly in Hq(∂D) as z → ∂D.

Proof. Since, for f ∈ A (D),

ρH(Sz)(f |∂D) =

∫
∂D

f(ξ)Sz(ξ) dσ(ξ) = 〈f |∂D, Sz〉H2(∂D)

=
〈
r2(f |D), r2(S( · , z))

〉
H2(∂D)

= 〈f |D, S( · , z)〉H2(D)

= f(z) = ε(p)
z (f |∂D),

it follows that ρH(Sz) = ε
(p)
z . Since ρH : Hq(∂D) → Hp(∂D)

′ is a topological isomor-
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4 Spectral Mapping Theorems for Toeplitz Tuples

phism, there is a constant cq > 0 such that

1

cq

∥∥ε(p)
z

∥∥ ≤ ‖Sz‖q ≤ cq
∥∥ε(p)

z

∥∥.
This shows part (a). For f ∈ H∞(∂D) and g ∈ A (D) |∂D, the computation

〈
g, (T pf )∗k(q)

z

〉
Hp,Hq

=
〈
fg, k(q)

z

〉
Hp,Hq

=
1∥∥ε(p)
z

∥∥ 〈fg, Sz〉Hp,Hq
=

1∥∥ε(p)
z

∥∥ε(p)
z (fg) =

1∥∥ε(p)
z

∥∥P [fg](z) =
1∥∥ε(p)
z

∥∥P [f ](z)P [g](z)

=
1∥∥ε(p)
z

∥∥F (z)G(z) =
〈
g, F (z)k(q)

z

〉
shows that

(T pf )∗k(q)
z = F (z)k(q)

z .

Furthermore, for f ∈ A (D) and any sequence (zk)k∈N in D converging to some boundary
point z ∈ ∂D, part (ii) of Lemma 4.2 yields

〈
f |∂D, k(q)

zk

〉
=

1∥∥ε(p)
zk

∥∥ 〈f |∂D, Szk〉 =
f(zk)∥∥ε(p)
zk

∥∥ k→∞−−−→ 0.

Since A (D) |∂D ⊂ Hp(∂D) is dense, it follows that
(
k

(q)
zk

)
k∈N is a weak zero sequence in

Hq(∂D).

Since
H∞(∂D) + C(∂D) ⊂ A = {f ∈ L∞(∂D) | Hf is compact} ,

Theorem 3.8 implies that the tuple T pf = (T pf1
, . . . , T pfm) ∈ L(Hp(∂D))m is essentially

commuting for every symbol tuple f = (f1, . . . , fm) ∈ (H∞(∂D) + C(∂D))m. Hence its
essential Taylor spectrum is defined as

σe(T
p
f ) = σ((T pf )e),

where (T pf )e ∈ L(Hp(∂D)e)m is a commuting tuple on the Banach space Hp(∂D)e =

Hp(∂D)∞/Hp(∂D)pc (cf. Section 1.2). In a first step, we show the following inclusion
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4.1 Essential Spectra of Toeplitz Tuples with Symbol in H∞ + C

formula.

Lemma 4.4.
For f ∈ (H∞(∂D) + C(∂D))m, the inclusion formula⋂(

F (U ∩D);U ⊃ ∂D open
)
⊆ σe(T

p
f ) (4.1)

holds.

Proof. Suppose that 0 is contained in the intersection on the left-hand side. We show
that 0 ∈ σe(T

p
f ) = σ((T pf )e). Since the last map in the Koszul complex of the operator

tuple (T pf )e is given by the row operator

(Hp(∂D)e)
m −→ Hp(∂D)e,

it suffices to show that this map is not onto. To see this, let q ∈ (1,∞) be such
that 1

p
+ 1

q
= 1 and fix a sequence (λj)j∈N in D such that limj→∞ λj = λ ∈ ∂D and

limj→∞ F (λj) = 0 and assume for a moment that

lim
j→∞

T
(q)

f
k

(q)
λj

= 0, (4.2)

where T (q)

f
denotes the column operator

Hq(∂D) −→ Hq(∂D)m, h 7−→
(
T q
f i
h
)m
i=1

.

In part (a) and (c) of Theorem 4.3 we have shown that infj∈N‖k(q)
λj
‖q > 0 and that

(k
(q)
λj

)j∈N converges to 0 weakly in Hq(∂D). Then by Lemma A.1 the operator T (q)

f
has

infinite dimensional kernel or non-closed range. Since ρH : Hq(∂D) → (Hp(∂D))
′
is a

topological isomorphism, the commutative diagram

Hq(∂D) Hq(∂D)m

Hp(∂D)
′ (

Hp(∂D)
′)m

T
(q)

f

ρH
⊕
ρH
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4 Spectral Mapping Theorems for Toeplitz Tuples

yields that the lower horizontal map

Hp(∂D)′ −→ (Hp(∂D)
′
)m, ϕ 7−→

( (
T pfi
)′

(ϕ)
)m
i=1

has infinite dimensional kernel or non-closed range. Since (Hp(∂D)m)
′ ∼=

(
Hp(∂D)

′)m
the same holds for the adjoint of the row operator

Hp(∂D)m
T pf−→ Hp(∂D).

By general duality theory for Banach spaces it follows that

dim Hp(∂D)/ ImT pf =∞.

But then Proposition 2.6.4 in [36] shows that

(Hp(∂D)e)
m ∼= (Hp(∂D)m)e

(T pf )
e

−−−→ Hp(∂D)e

is not onto. It remains to show that (4.2) holds. Write f = g+h with g ∈ H∞(∂D)m and
h = (h1, . . . , hm) ∈ C(∂D)m. Then β = limj→∞H(λj) = H(λ) and −β = limj→∞G(λj)

exist and

T q
f
k

(q)
λj

= T q
h
k

(q)
λj

+ T qg k
(q)
λj

= T q
h
k

(q)
λj

+H(λj)k
(q)
λj
−H(λj)k

(q)
λj

+ T qg k
(q)
λj

= T q
h−H(λj)

k
(q)
λj

+ (H(λj) + T qg )k
(q)
λj
.

By Lemma 2.2 and Theorem 4.3 (a) + (b) we have

(H(λj) + T qg )k
(q)
λj

=
(
H(λj) +

(
T pg
)∗)

k
(q)
λj

=
(
H(λj) +G(λj)

)
k

(q)
λj

j→∞−→ 0. (4.3)

Now fix an index i ∈ {1, . . . ,m} and let ε > 0. Use part (i) of Lemma 4.2 and the
continuity of Hi on D to choose δ > 0 such that at the same time

K = sup
{
|S(w, z)|

∣∣∣ (z, w) ∈ (B δ
2
(λ) ∩D)× (Bδ(λ)c ∩ ∂D)

}
<∞
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and
|Hi(λ)−Hi(η)| < ε

2

for all η ∈ D ∩ Bδ(λ). Let N ∈ N be large enough such that λj ∈ B δ
2
(λ) for all j ≥ N .

Then we get

|hi(ξ)−Hi(λj)| ≤ |Hi(ξ)−Hi(λ)|+ |Hi(λ)−Hi(λj)| < ε

for all ξ ∈ ∂D ∩ Bδ(λ) and all j ≥ N and the estimate

∣∣k(q)
λj

(ξ)
∣∣ =

1∥∥ε(p)
λj

∥∥ |S(ξ, λj)| ≤
cqK∥∥Sλj∥∥q (j ≥ N, ξ ∈ ∂D ∩ Bδ(λ)c)

shows that
(
k

(q)
λj

)
j≥N converges to zero uniformly on ∂D ∩ Bδ(λ)c as j → ∞. Hence by

another application of Theorem 4.3 (a) we get

∥∥T q
hi−Hi(λj)

k
(q)
λj

∥∥q
q
≤ ‖Pq‖q

∥∥hi −Hi(λj)k
(q)
λj

∥∥q
q

= ‖Pq‖q
∫
∂D

|hi −Hi(λj)|q
∣∣k(q)
λj

∣∣q dσ
= ‖Pq‖q

(∫
∂D∩Bδ(λ)

|hi −Hi(λj)|q
∣∣k(q)
λj

∣∣q dσ
+

∫
∂D∩Bδ(λ)c

|hi −Hi(λj)|q
∣∣k(q)
λj

∣∣q dσ)
≤ ‖Pq‖q (εq

∥∥k(q)
λj

∥∥q
q

+ 2q ‖Hi‖q∂D ε
q)

≤ ‖Pq‖q (cqq + 2q ‖Hi‖q∂D)εq

for all sufficiently large j ≥ N . This together with (4.3) shows that

lim
j→∞

T
(q)

f
k

(q)
λj

= 0.

Thus the proof is complete.

We recall some results from Gelfand theory. Consider a unital algebra homomorphism
Φ: M → L(X) from a unital commutative Banach algebra M into the algebra of all
bounded operators on a Banach space X. A spectral system on B = Φ(M) is a rule σ
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4 Spectral Mapping Theorems for Toeplitz Tuples

that assigns to each finite tuple a ∈ Br a compact subset σ(a) ⊂ Cr which is contained
in the joint spectrum σB(a) = {z ∈ Cr | 1X 6∈

∑r
i=1(zi − ai)B} of a in B and which is

compatible with projections in the sense that

p(σ(a, b)) = σ(a) and q(σ(a, b)) = σ(b),

where p and q are the projections of Cr+s onto its first r and last s coordinates.

For a given set M , let us denote by c(M) the set of all finite tuples of elements in
M . Standard results going back to J. L. Taylor (see, e.g., Proposition 2.6.1 in [36]) show
that, for a spectral system σ as above, the set

∆Φ,σ =
{
λ ∈ ∆M

∣∣∣ f̂(λ) ∈ σ(Φ(f)) for all f ∈ c(M)
}

is the unique closed subset of the maximal ideal space ∆M ofM with f̂(∆Φ,σ) = σ(Φ(f))

for all f ∈ c(M). Here Φ(f) = (Φ(f1), . . . ,Φ(fr)) and the Gelfand transform f̂ =

(f̂1, . . . , f̂r) are formed componentwise for f ∈Mr.

Let Φ0 : M0 → L(X) be the restriction of Φ to a unital closed subalgebraM0 ⊂ M
and let σ0 denote the spectral system on B0 = Φ(M0) obtained by restricting σ. An
elementary exercise, using the uniqueness property of ∆Φ0,σ0 , shows that the restriction
map

r : ∆Φ,σ −→ ∆Φ0,σ0 , λ 7−→ λ|M0

is well-defined, surjective and continuous (relative to the Gelfand topologies). We apply
the above remarks to the Banach algebrasM0 = H∞(∂D),M = H∞(∂D) + C(∂D) and
the algebra homomorphism

Φ: M−→ L(Hp(∂D)e), f 7−→ (T pf )e

(see Theorem 3.8 and the remarks at the end of Section 1.2). Let σ be the spectral
system on B = Φ(M) associating with each tuple a ∈ Br its Taylor spectrum as a
commuting tuple of bounded operators on Hp(∂D)e. Write σ0 for the restriction of σ to
B0 = Φ(M0).

It was shown by M. Andersson and S. Sandberg [6, Theorem 1.2] that the spectral
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mapping formula

σ(Φ(f)) = σe(T
p
f ) =

⋂(
F (U ∩D);U ⊃ ∂D open

)
holds for every tuple f ∈ c(H∞(∂D)). Let π = (π1, . . . , πd) be the tuple of coordinate
functions. Using Theorem 1 in [28] we obtain that

f̂(λ) ∈
⋂(

F (U ∩D);U open neighbourhood of π̂(λ)
)

for f ∈ c(H∞(∂D)) and every functional λ ∈ ∆Φ0,σ0 .

Proposition 4.5.
For g ∈ H∞(∂D)r, h ∈ C(∂D)s and f = (g, h), the spectral inclusion formula

σe(T
p
f ) ⊂

⋂(
F (U ∩D);U ⊃ ∂D open

)
holds.

Proof. Suppose that 0 ∈ σe(T pf ). It suffices to show that 0 is contained in the intersection
on the right-hand side. By the remarks preceding the proposition there is a functional
λ ∈ ∆φ,σ with 0 = f̂(λ) = (ĝ(λ), ĥ(λ)). Since λ|C ∈ ∆C , there is a point z0 ∈ ∂D with

λ(ϕ) = ϕ(z0) (ϕ ∈ C(∂D))

(see, e.g., Corollary 3.4.2 in [44]). In particular it follows that limz→z0 H(z) = h(z0) = 0.
The above cited results from [6] and [28] imply that

0 = ĝ(λ) ∈
⋂(

G(U ∩D);U open neighbourhood of z0 = π̂(λ)
)
.

Hence there is a sequence (zk)k≥1 in D with limk→∞ zk = z0 and

lim
k→∞

(G(zk), H(zk)) = 0.

This observation completes the proof.

Now we show that the last proposition remains true for arbitrary symbols f ∈ (H∞(∂D)

+ C(∂D))m.
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4 Spectral Mapping Theorems for Toeplitz Tuples

Theorem 4.6.
For f ∈ (H∞(∂D) + C(∂D))m, the formula

σe(T
p
f ) =

⋂(
F (U ∩D);U ⊃ ∂D open

)
(4.4)

holds.

Proof. Let f = g + h ∈ (H∞(∂D) + C(∂D))m be given with g ∈ H∞(∂D)m and h ∈
C(∂D)m. Using a particular case of the analytic spectral mapping theorem for the
Taylor spectrum (see, e.g., Theorem 2.5.10 in [36]), we obtain that

σe(T
p
f ) = σe(T

p
g + T ph ) = σ((T pg )e + (T ph )e)

=
{
z + w

∣∣ (z, w) ∈ σ((T pg )e, (T ph )e)
}

=
{
z + w

∣∣ (z, w) ∈ σe(T pg , T
p
h )
}
.

If (z, w) ∈ σe(T pg , T
p
h ), then by Proposition 4.5 there is a sequence (uk)k∈N inD converging

to some point u ∈ ∂D such that

(z, w) = lim
k→∞

(G,H)(uk).

But then
z + w = lim

k→∞
(G+H)(uk) = lim

k→∞
F (uk).

Hence σe(T pf ) is contained in the intersection on the right-hand side of (4.4). The reverse
inclusion has been shown in Lemma 4.4.

The following corollary is contained in the last theorem as a special case.

Corollary 4.7.
For f ∈ C(∂D)m the spectral formula σe(T

p
f ) = f(∂D) holds.

Proof. Using the continuity of F : D −→ Cm one obtains that⋂(
F (U ∩D);U ⊃ ∂D open

)
= F (∂D) = f(∂D).

Thus the assertion follows from Theorem 4.6.
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General interpolation results for the Taylor spectrum of commuting m-tuples of Ba-
nach space operators have been proved by E. Albrecht in [2]. In particular it is shown
that the Taylor spectrum and essential Taylor spectrum of an admissible commuting
tuple is upper semicontinuous with respect to the parameter θ ∈ (0, 1) for the complex
interpolation method.
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4.2 A Remark on the Maximal Ideal Space of

H∞(∂B) + C(∂B)

In Chapter 3 (Corollary 3.11) we proved that on the unit ball B ⊂ Cd the maximal ideal
space of the C∗-algebra

QC =
{
f ∈ L∞(S)

∣∣∣ Hp
f and Hp

f
are compact

}
is given by the point evaluations of the Poisson-Szegő transform of functions f ∈ QC at
points of the Stone-Čech corona β(B) \ B of B:

∆QC = {δΛ|QC | Λ ∈ β(B) \ B} .

We show that the question whether the corresponding result holds for the Banach algebra
H∞(S) + C(S) ⊂ L∞(S) is equivalent to the corona problem4 on the unit ball B ⊂ Cd.
For simplicity, we define H∞ = H∞(S), C = C(S) and write Co(B) = β(B) \ B for
the Stone-Čech corona of B. For f ∈ L∞(S), we denote by F = P [f ] : B → C its
Poisson-Szegő transform. The map

B −→ ∆H∞ , λ 7−→ ελ,

where ελ : H∞ → C is defined by ελ(f) = F (λ), is easily seen to be a homeomorphism
onto an open subset of ∆H∞ . By general properties of the Stone-Čech compactification5

this map has a unique continuous extension q : β(B) → ∆H∞ . The image Im q ⊂ ∆H∞

is given by
K = {ελ | λ ∈ B}

τw∗ ⊂ ∆H∞

and the corona problem on the unit ball is the question whether K = ∆H∞ .

Let Λ ∈ Co(B). Choose a net (λα)α in B with Λ = limα λα. Then q(Λ) = limα q(λα) =

τw∗- limα ελα . Since q : B→ q(B) is a homeomorphism, we have q(Λ) 6∈ {ελ | λ ∈ B}. By
definition

δΛ(f) = F β(Λ) = lim
α
F (λα) = lim

α
ελα(f)

4see [29] for an exposition of the corona problem
5see Theorem 38.4 in [56]
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for every f ∈ H∞. Thus it follows that

K \ {ελ | λ ∈ B} = q(Co(B)) = {δΛ|H∞ | Λ ∈ Co(B)} .

A result of G. McDonald (Theorem 4 in [53]) shows that the restriction map

∆H∞+ C −→ ∆H∞ \ {ελ | λ ∈ B} , δ 7−→ δ|H∞

is a well defined homeomorphism.

For z ∈ B, denote by ϕz : B → B the usual involutional, conformal mapping of the
unit ball with ϕz(0) = z6. As in Chapter 3 let F β ∈ C(β(B)) be the unique continuous
extension of the Poisson-Szegő transform F : B→ C of a function f ∈ L∞(S).

Suppose that (λα)α is a net in B such that the limit λ = limα λα ∈ S exists. By
Tychonoff’s theorem the space

β(B)B =
∏
B

β(B)

equipped with the product topology is compact. By passing to a subnet, we can achieve
that the net (ϕλα)α converges pointwise to some ϕ ∈ β(B)B. Since B ⊂ Cd is a compact-
ification of B, there exists a surjective continuous map h : β(B) → B with h(z) = z for
all z ∈ B. It follows that

λ = lim
α
ϕλα(z) = lim

α
h(ϕλα(z)) = h(ϕ(z))

for every z ∈ B. In particular, we find that ϕ(B) ⊂ Co(B).

The following proposition is a multivariable version of Theorem 6 in [32] which can be
proven exactly in the same way.

Proposition 4.8.
For m ∈ N∗ and f = (f1, . . . , fm) ∈ Am let F = (F1, . . . , Fm) and f̂ = (f̂1, . . . , f̂m) ∈
C(∆A)m. Then the identity

Cl(F ) = f̂({δΛ | Λ ∈ Co(B)})

6see Chapter 2.2 in [64]
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4 Spectral Mapping Theorems for Toeplitz Tuples

holds.

Proof. Let Λ ∈ Co(B) and choose a net (λα)α in B with limα λα = Λ in β(B). Then
the limit λ = limα λα = limα h(λα) = h(Λ) belongs to S. For every open set U ⊂ Cd

containing S there exists α0 ∈ A such that λα ∈ U ∩ B for all α ≥ α0. It follows that

f̂(δΛ) = (δΛ(f1), . . . , δΛ(fm)) = (F β
1 (Λ), . . . , F β

m(Λ)) = lim
α
F (λα) ∈ F (U ∩ B),

thus f̂(δΛ) ∈ Cl(F ).
For z ∈ Cl(F ) use the remarks preceding Proposition 4.8 to choose a net (λα)α in B

with z = limα F (λα) such that λ = limα λα ∈ S exists and such that (ϕλα)α converges
pointwise on B to some function ϕ ∈ β(B)B. Bearing in mind that ϕ(0) ∈ Co(B), we get

z = lim
α
F (λα) = lim

α
F (ϕλα(0)) = lim

α
(F β

1 (ϕλα(0)), . . . , F β
m(ϕλα(0))) = f̂(ϕ(0)).

Theorem 4.9.
Let 1 < p <∞ be arbitrary. The following are equivalent:

(i) K = ∆H∞,

(ii) ∆H∞+ C = {δΛ|H∞+ C | Λ ∈ Co(B)},

(iii) ∆H∞ \ {ελ | λ ∈ B} = {δΛ|H∞ | Λ ∈ Co(B)},

(iv) σe(T
p
f ) = σH∞+ C(f) for all f ∈ c(H∞+ C),

(v) σe(T
p
f ) = f̂(∆H∞ \ {ελ | λ ∈ B}) for all f ∈ c(H∞).

Proof. Suppose that (i) is true and let δ ∈ ∆H∞+ C. From the remarks preceding
Proposition 4.8 and the assumption we get δ|H∞ = δΛ|H∞ for some Λ ∈ Co(B). Since
H∞+ C ⊂ A, we have δ = δΛ|H∞+ C. The reverse inclusion in (ii) is obvious.
Now assume that (ii) holds. Together with the fact that the restriction map ∆H∞+ C −→

∆H∞ \ {ελ | λ ∈ B} is a homeomorphism (see Theorem 4 in [53]), we see that every
δ ∈ ∆H∞ \ {ελ | λ ∈ B} is of the form δ = δΛ|H∞ for some Λ ∈ Co(B). Conversely, we
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have already established that

{δΛ|H∞ | Λ ∈ Co(B)} = K \ {ελ | λ ∈ B} ⊂ ∆H∞ \ {ελ | λ ∈ B} .

Hence (ii) implies (iii). If we suppose (iii) to be true, then according to the remarks
preceding Proposition 4.8, we know that ∆H∞ \{ελ | λ ∈ B} = K \{ελ | λ ∈ B} and thus
K = ∆H∞ . Therefore the first three statements are equivalent.

Next observe that by Proposition 4.8 we have

Cl(F ) = f̂({δΛ | Λ ∈ Co(B)})

for all f ∈ c(A), where F = (F1, . . . , Fm) and f̂ = (f̂1, . . . , f̂m) ∈ C(∆A)m for f =

(f1, . . . , fm) ∈ Am. Theorem 4.6 yields that statement (iv) is equivalent to

f̂(∆H∞+ C) = σH∞+ C(f) = σe(T
p
f )

= Cl(F ) = f̂({δΛ | Λ ∈ Co(B)})

= f̂({δΛ|H∞+ C | Λ ∈ Co(B)})

(4.5)

for all f ∈ c(H∞+ C) and that (v) is equivalent to

f̂(∆H∞ \ {ελ | λ ∈ B}) = σe(T
p
f ) = f̂({δΛ|H∞ | Λ ∈ Co(B)}) (4.6)

for all f ∈ c(H∞). Observe that ∆H∞ \ {ελ | λ ∈ B} ⊂ ∆H∞ is closed. In Theorem 6
in [32] it is shown that {δΛ | Λ ∈ Co(B)} ⊂ ∆A is closed, hence compact. Since the
restriction mappings

∆A −→ ∆H∞ , δ 7−→ δ|H∞ and ∆A −→ ∆H∞+ C, δ 7−→ δ|H∞+ C

are continuous, the sets {δΛ|H∞ | Λ ∈ Co(B)} ⊂ ∆H∞ and {δΛ|H∞+ C | Λ ∈ Co(B)} ⊂
∆H∞+ C are closed. By general Gelfand theory (see the remarks preceding Proposition
4.5)

∆ =
{
λ ∈ ∆H∞+ C

∣∣∣ f̂(λ) ∈ σe(T
p
f ) for all f ∈ c(H∞+ C)

}
is the unique closed subset of ∆H∞+ C with f̂(∆) = σe(T

p
f ) for all f ∈ c(H∞+ C). This

together with (4.5) shows the equivalence of the statements (ii) and (iv). Using the
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uniqueness property of the set{
λ ∈ ∆H∞

∣∣∣ f̂(λ) ∈ σe(T
p
f ) for all f ∈ c(H∞)

}
together with (4.6) one obtains that (iii) and (v) are equivalent.
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4.3 Essential Spectra of Truncated Toeplitz Systems

4.3 Essential Spectra of Truncated Toeplitz

Systems

In this chapter we will illustrate how Theorem 4.6 can be used to obtain a spectral
mapping theorem for certain quotient Toeplitz tuples T p,θf ∈ L(Hp(∂D)/θHp(∂D))m

induced by an inner function θ ∈ H∞(∂D) over a strictly pseudoconvex domain D ⊂ Cd

with C∞-boundary. This will lead to a generalization of a spectral mapping theorem of
R. V. Bessonov [10, Theorem 1] for truncated Toeplitz operators on the Hardy space
H2(T) over the unit circle T ⊂ C.
In the following we will use some methods from homological algebra. We refer the

reader to [36, Appendix 2] for the relevant definitions and results. Let T = (T1, . . . , Tm) ∈
L(X)m be a commuting tuple on a Banach space X. Recall that we denote by Hi(T,X)

(i = 0, . . . ,m) the cohomology groups of the Koszul complex K•(T,X) of T and as
in the preliminaries we define T e = (T1

e, . . . , Tm
e) ∈ L(Xe)m. Let S ∈ {T1, . . . , Tm}′

be an operator in the commutant of T . Then T induces a commuting tuple TS =

(TS,1, . . . , TS,m) on the quotient vector space XS = X/SX with components

TS,j : XS −→ XS, [x] 7−→ [Tjx].

Lemma 4.10.
Let T = (T1, . . . , Tm) ∈ L(X)m be a commuting tuple on a Banach space X and S ∈
{T1, . . . , Tm}′ be an injective operator. Then there are vector space isomorphisms

Hi−1(TS, X) −→ Hi((T, S), X) (i = 0, . . . ,m+ 1).

Proof. Denote by K = (Kl,k)l,k∈Z the double complex

0 Λ0
mX Λ1

mX . . . Λm
mX 0

0 Λ0
mX Λ1

mX . . . Λm
mX 0,

δ0
T

∂0

δ1
T

∂1

δm−1
T

∂m

δ0
T δ1

T δm−1
T

i.e., Kl,k = Λl
mX for l = 0, . . . ,m and k = 0, 1 and Kl,k = 0 otherwise, where the rows

(k = 0, 1) are given by the Koszul complex of the operator tuple T ∈ L(X)m and the
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vertical maps ∂l (l = 0, . . . ,m) are the injections

∂l : Λl
mX −→ Λl

mX, (xI)|I|=l 7−→ (−1)l(SxI)|I|=l

induced by S ∈ L(X). Let us denote by K• = Tot(K) the total complex of the double
complex K. By definition the spaces in the complex K• are

K l = Λl−1
m X ⊕ Λl

mX (l = 0, . . . ,m+ 1)

and the differentials act as

K l −→ K l+1, (yl−1, xl) 7−→ (δl−1
T (yl−1) + ∂l(xl), δ

l
T (xl)).

Modulo the isomorphisms

Λl
m+1X −→ K l, (xI)|I|=l 7−→ ((xi1...il−1,m+1)1≤i1<...<il−1≤m, (xi1...il)1≤i1<...<il≤m)

the complexK• coincides with the Koszul complex of the (m+1)-tuple (T, S) ∈ L(X)m+1

and therefore we have
Hl((T, S), X) ∼= Hl(K•) (4.7)

for l = 0, . . . ,m + 1. Standard double complex methods (see [36, Lemma A2.6]) or
elementary diagram chasing can be used to show that the mappings

Hl(K•) −→ Hl−1(TS, XS), [(yl−1, xl)] 7−→ [ỹl−1],

where ỹl−1 ∈ Λl−1
m XS is the (l − 1)-form obtained from yl−1 ∈ Λl−1

m X by replacing
its coefficients by their equivalence classes in XS = X/SX, are vector space isomor-
phisms. Thus we obtain vector space isomorphisms Hl((T, S), X) ∼= Hl−1(TS, XS) for
l = 0, . . . ,m+ 1.

Let S ∈ L(X) be a left invertible operator. In the following let R ∈ L(X) be a fixed
left inverse of S. Then P = SR is a projection onto the closed subspace ImS ⊂ X and
Q = 1− P defines a projection onto a topological direct complement of ImS in X. For
T ∈ L(X), we form the compression

TQ = QT |ImQ ∈ L(ImQ).
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Lemma 4.11.
If T1, T2 ∈ L(X) are bounded operators such that T1, T2, S essentially commute, then also
the operators TQ1 and TQ2 essentially commute.

Proof. The assertion follows from the identities

[TQ1 , T
Q
2 ] = QT1QT2|ImQ −QT2QT1|ImQ

= Q[T1, T2]|ImQ −QT1PT2|ImQ +QT2PT1|ImQ

= Q[T1, T2]|ImQ −Q[T1, S]RT2|ImQ +Q[T2, S]RT1|ImQ.

Modulo the topological isomorphism

ρ : ImQ −→ X/ ImS, x 7−→ [x]

the operator TQ is similar7 to the operator TS = ρTQρ−1 ∈ L(X/ ImS). The reader
should be aware that TS depends on the choice of the fixed left inverse R of S.
Let T = (T1, . . . , Tm) ∈ L(X)m be a tuple of bounded operators on X such that the

(m + 1)-tuple (T, S) = (T1, . . . , Tm, S) ∈ L(X)m+1 is essentially commuting. Let us
consider the short exact sequence

0 ImS X X/ ImS 0,i q

where i is the inclusion and q is the quotient map. Since the e-functor preserves exactness
(see the remarks preceding Corollary 2.6.9 in [36]), the induced sequence

0 (ImS)e Xe (X/ ImS)e 0,ie qe

remains exact. Writing S as the composition

X ImS X,S i

7Two bounded linear operators T1 ∈ L(X) and T2 ∈ L(Y ) on Banach spaces X and Y , respectively,
are called similar if there exists a topological isomorphism ρ : X → Y such that ρT1 = T2ρ.

87



4 Spectral Mapping Theorems for Toeplitz Tuples

and using the fact that the e-functor preserves topological isomorphisms, we find that
ie(ImS)e = Im(Se). Hence, by the bounded inverse theorem, the topological epimor-
phism qe : Xe → (X/ ImS)e induces a topological isomorphism

Xe/ Im(Se) = Xe/ie(ImS)e = Xe/ ker (qe) ∼= (X/ ImS)e

that is given by

Φ: Xe/ Im(Se) −→ (X/ ImS)e, [x] 7−→ qe(x).

Modulo this topological isomorphism the quotient tuple T e/ ImSe ∈ L(Xe/ Im(Se))m

with components

Ti
e/ ImSe : Xe/ Im(Se) −→ Xe/ Im(Se), [x] 7−→ [Ti

e(x)] (i = 1, . . . ,m)

and the tuple (TS)e = ((TS,1)e, . . . , (TS,m)e) ∈ L((X/ ImS)e)m are similar. To verify this
assertion, note that the operators

qTi − qQTiQ = qTi − q(1− SR)Ti(1− SR)

= qTi − qTi(1− SR)

= qTiSR = q[Ti, S]R

are compact for i = 1, . . . ,m. Hence the intertwining relations

(TS,i)
eqe = (TS,i ◦ q)e =

(
ρQTiρ

−1q
)e

= (qQTiQ)e = (qTi)
e = qeTi

e

hold for i = 1, . . . ,m. Thus Φ defines a similarity between T e/ ImSe ∈ L(Xe/ Im(Se))m

and (TS)e ∈ L((X/ ImS)e)m.

By applying Lemma 4.10 to the commuting tuple (T e, Se) ∈ L(Xe)m+1 we obtain that

Hi((T, S)e, Xe) ∼= Hi−1(T e/ Im (Se), Xe/ Im(Se)) ∼= Hi−1(TS
e, (X/ ImS)e)

for i = 0, . . . ,m + 1. Thus 0 ∈ σe(TS) if and only if 0 ∈ σe(T, S). Since, for λ ∈ Cm,
everything remains true with T replaced by λ−T , one can calculate the essential Taylor
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spectrum of the truncated tuple TS ∈ L(X/ ImS)m using the essential spectrum of
(T, S) ∈ L(X)m+1.

Corollary 4.12.
With the notations from above, the essential Taylor spectrum of TS ∈ L(X/ ImS)m is
given by

σe(TS) = {λ ∈ Cm | (λ, 0) ∈ σe(T, S)} .

Let D ⊂ Cd be a strictly pseudoconvex domain with smooth boundary. We apply
the above results to calculate the essential spectra of truncated Toeplitz tuples with
symbols in H∞(∂D) + C(∂D). Let θ ∈ H∞(∂D) be a fixed inner function. Then S =

T pθ ∈ L(Hp(∂D)) is an isometry with left inverse R = T p
θ
. According to Corollary 3.4,

for f = (f1, . . . , fm) ∈ (H∞(∂D) + C(∂D))m the Toeplitz tuples T pf = (T pf1
, . . . , T pfm) ∈

L(Hp(∂D))m and (T pf , T
p
θ ) = (T pf1

, . . . , T pfm , T
p
θ ) ∈ L(Hp(∂D))m+1 essentially commute.

By applying the above constructions to the Toeplitz tuple T pf (relative to S = T pθ and
its left inverse R = T p

θ
) one obtains the "truncated" Toeplitz tuples

T p,θf = (T pf )S ∈ L(Hp
θ(∂D))m,

where Hp
θ(∂D) = Hp(∂D)/θHp(∂D). As an application of Theorem 4.6 and Corollary

4.12 we can calculate the essential spectrum of the essentially commuting tuple T p,θf .

Theorem 4.13.
Let θ ∈ H∞(∂D) be an inner function and f ∈ (H∞(∂D) + C(∂D))m. Then the formula

σe(T
p,θ
f ) =

{
λ ∈ Cm

∣∣∣∣∣ there exists D 3 zk
k−→ z ∈ ∂D such that

limk→∞ F (zk) = λ and limk→∞Θ(zk) = 0

}

holds.

Proof. By Corollary 4.12 we have

σe(T
p,θ
f ) =

{
λ ∈ Cm

∣∣ (λ, 0) ∈ σe(T
p
f , T

p
θ )
}
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and Theorem 4.6 yields

σe(T
p
f , T

p
θ ) =

⋂(
(F,Θ)(U ∩D);U ⊃ ∂D open

)
.

Suppose now that (λ, 0) ∈ Cm × C is an element in the right-hand side of the last
equation. Since

Uk =
{
z ∈ Cd

∣∣ dist(z, ∂D) < 1/k
}

(k ∈ N∗)

are open supersets of ∂D whose intersections with D are not empty, there exist points
zk ∈ Uk ∩ D such that |(F, θ)(zk)− (λ, 0)| < 1/k. Then the sequence (zk)k≥1 fulfils
limk→∞ F (zk) = λ and limk→∞Θ(zk) = 0. Since (zk)k≥1 is contained in the compact set
D, it has a convergent subsequence, say with limit z ∈ D, that will again be denoted by
(zk)k≥1. It follows that

dist(z, ∂D) = lim
k→∞

dist(zk, ∂D) = 0,

hence z ∈ ∂D. Thus the inclusion

σe(T
p,θ
f ) ⊂

{
λ ∈ Cm

∣∣∣∣∣ there exists D 3 zk
k−→ z ∈ ∂D such that

limk→∞ F (zk) = λ and limk→∞Θ(zk) = 0

}

holds. Since the reverse inclusion is obvious, the proof is finished.

Remark 4.14.
Let θ ∈ H∞(∂D) be an inner function and let X = Hp(∂D)/θHp(∂D). Using the def-
initions one sees that, for f = (f1, . . . , fm) ∈ H∞(∂D)m, the truncated Toeplitz tuple
T p,θf ∈ L(X)m coincides with the quotient tuple T pf /θHp(∂D) ∈ L(X)m with components

T pfi/θHp(∂D) : X −→ X, [g] 7−→ [T pfig] (i = 1, . . . ,m).

A result of M. Andersson and H. Carlsson [5, Corollary 2.3] shows that

σ(T pf , T
p
θ ) = (F,Θ)(D).
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Thus an application of Lemma 4.10 yields the equality

σ(T pf /θHp(∂D)) =
{
λ ∈ Cm

∣∣ (λ, 0) ∈ σ(T pf , T
p
θ )
}

=

{
λ ∈ Cm

∣∣∣∣∣ there exists a sequence (zk)k∈N in D with
limk→∞ F (zk) = λ and limk→∞Θ(zk) = 0

}
.

Note that Theorem 4.13 and the result stated in Remark 4.14 remain valid if the
inner function θ ∈ H∞(∂D) is replaced by a function θ ∈ H∞(∂D) that is invertible in
L∞(∂D). Indeed, if g ∈ L∞(∂D) is the inverse of θ in L∞(∂D), then T pg T

p
θ = T pgθ = 1 and

hence T pθ is left invertible. This is the only condition that is needed to apply Corollary
4.12. By the remark following Theorem 2.21, for θ ∈ H∞(∂A), the left invertibility of T pθ
is equivalent to the invertibility of the symbol θ in L∞(∂A).

For an inner function θ ∈ H∞(∂D), the operator P = TθTθ ∈ L(H2(∂D)) is the or-
thogonal projection onto the closed subspace θH2(∂D) of H2(∂D). Let Pθ ∈ L(H2(∂D))

be the projection onto the orthogonal complement Kθ = H2(∂D)	 θH2(θ) of θH2(∂D)

in H2(∂D). Then the truncated Toeplitz operator8 T θf ∈ L(Kθ) is defined as the com-
pression T θf = PθTf |Kθ of the Toeplitz operator Tf ∈ L(H2(∂D)). By the construction
preceding Corollary 4.12 the operator T 2,θ

f ∈ L(H2(∂D)/θH2(∂D)) is unitarily equivalent
to T θf via the unitary operator

ρ : Kθ −→ H2(∂D)/θH2(∂D), f 7−→ [f ].

Therefore, Theorem 4.13 has the following consequence.

Corollary 4.15.
Let θ ∈ H∞(∂D) be an inner function. For f ∈ (H∞(∂D) + C(∂D))m, the formula

σe(T
θ
f ) =

{
λ ∈ Cm

∣∣∣∣∣ there exists D 3 zk
k−→ z ∈ ∂D such that

limk→∞ F (zk) = λ and limk→∞Θ(zk) = 0

}

holds.

8Truncated Toeplitz operators on the Hardy space H2(T) were first introduced by D. Sarason in [68].
See also the survey article [38] of S. R. Garcia and W. T. Ross.
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The last corollary contains results of R. V. Bessonov [10, Theorem 1] and K. Guo and
Y. Duan [39, Theorem 3.4] as special cases.
Let θ ∈ H∞(∂D) be an inner function. We finish this section with the observation

that a truncated Toeplitz operator T p,θf ∈ L(Hp
θ(∂D)) with symbol f ∈ A is compact if

and only if f ∈ θA. For p = 2 and D = D, this was proven by R. V. Bessonov in [10,
Proposition 2.1]. Let P θ

p = T pθ T
p

θ
∈ L(Hp(∂D)).

Proposition 4.16.
Let θ ∈ H∞(∂D) be an inner function and 1 < p <∞. Then the mapping

ρp,θ : A −→ C(Hp
θ(∂D)), f 7−→ [T p,θf ]

is a continuous unital algebra homomorphism with

ker ρp,θ = θA.

Proof. It follows from Theorem 3.8 and Lemma 4.11 that ρp,θ is a unital continuous
algebra homomorphism. Obviously θ ∈ ker ρp,θ. Hence the inclusion θA ⊂ ker ρp,θ

follows. Let f ∈ A be a function such that the truncated Toeplitz operator T p,θf is
compact. Since also the Hankel operator Hp

f is compact and

PpM
p

θ
Pp = (PqM

q
θPq)

∗ = (M q
θPq)

∗ = PpM
p

θ
,

the computation

Mp
θH

p

θf
−Hp

f = Mp
θ (1− Pp)Mp

θf
|Hp(∂D) − (1− Pp)Mp

f |Hp(∂D)

= PpM
p
f |Hp(∂D) −Mp

θPpM
p

θf
|Hp(∂D)

= PpM
p
f |Hp(∂D) − PpMp

θPpM
p

θ
PpM

p
f |Hp(∂D)

= PpM
p
f |Hp(∂D) − T pθ T

p

θ
PpM

p
f |Hp(∂D)

= (1− P θ
p )T pf

shows that the operator Mp
θHθf |(1−P θp ) Hp(∂D) is compact. But then also the operator

Hp

θf
(1− P θ

p ) = Hp

θf
− (1− Pp)Mp

θf
T pθ T

p

θ
= Hp

θf
− (1− Pp)Mp

fT
p

θ
= Hp

θf
−Hp

fT
p

θ
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and hence Hp

θf
is compact. It follows that f = θθf ∈ θA.
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Appendix A

Tools from Banach space theory

Lemma A.1.
Let T ∈ L(X, Y ) be a bounded linear operator between Banach spaces (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ) such that there exists a weak zero sequence (xn)n∈N in X with infn∈N ‖xn‖X > 0

and limn→∞ ‖Txn‖Y = 0. Then T has infinite dimensional kernel or non-closed range.

Proof. Let T ∈ L(X, Y ) and (xn)n∈N be given as above and assume that T has finite
dimensional kernel and closed range. By the last assumption an application of the inverse
mapping theorem yields a constant C > 0 such that

inf {‖x− y‖X | y ∈ kerT} ≤ C ‖Tx‖Y

for all x ∈ X. Therefore, since limn→∞ ‖Txn‖Y = 0, there exists a sequence (yn)n∈N in
kerT with

lim
n→∞

‖xn − yn‖X = 0. (A.1)

As a weak zero sequence (xn)n∈N is bounded in norm by the uniform boundedness princi-
ple. But then from (A.1) it follows that (yn)n∈N is a norm-bounded sequence in the finite
dimensional Banach space kerT and hence possesses a convergent subsequence (ynk)k∈N,
say with limit y ∈ kerT . From (A.1) we see that limk→∞ ‖xnk − y‖X = 0. Bearing in
mind that (xnk)k∈N is also a weak zero sequence, we have y = 0, which contradicts the
hypothesis that infk∈N ‖xnk‖X > 0.

We now formulate a Banach space version of Lemma 2.1 in [55]. Recall that a Schauder
basis of a complex Banach space (X, ‖ · ‖X) is a sequence (xk)k∈N in X such that, for
every x ∈ X, there exists a unique sequence (αk)k∈N of scalars such that the series
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∑∞
k=0 αkxk converges in the norm ‖ · ‖X to x. If (xk)k∈N is a Schauder basis for X with

coefficient functionals

x∗k : X −→ C,
∞∑
i=0

αixi 7−→ αk (k ∈ N),

then the nth natural projection Pn ∈ L(X) associated with the basis (xk)k∈N is defined
by

Pn(x) =
n∑
k=0

〈x, x∗k〉xk,

where 〈·, ·〉 : X ×X ′ → C denotes the usual dual pairing between X and its topological
dual X ′. The number M = supn∈N ‖Pn‖ is finite and is called the basis constant for the
basis (xk)k∈N of X. If, in addition, X is reflexive, the sequence (x∗k)k∈N is a Schauder
basis of X ′ with coefficient functionals

〈xk, ·〉 : X ′ −→ C, u 7−→ 〈xk, u〉 (k ∈ N)

and associated natural projections P ∗n =
∑n

k=0 〈xk, ·〉x∗k (see, e.g., Corollary 4.4.16 in
[54]). We refer the reader to [54] for a detailed exposition of the concept of Schauder
bases.

Lemma A.2.
Let X be a reflexive Banach space such that X possesses a Schauder basis (xk)k∈N with
basis constant M > 0. Let (Bn)n∈N be a sequence in K(X) such that

(i) τSOT- limn→∞B
∗
n = 0 in L(X∗),

(ii) c = limn→∞ ‖Bn‖ exists,

(iii) SOT−
∑∞

k=0 Bn(k) ∈ L(X) exists for each subsequence
(
Bn(k)

)
k∈N of (Bn)n∈N.

Then there is a strictly increasing sequence (µ(k))k∈N in N such that, for each subsequence
(n(k))k∈N of (µ(k))k∈N, we have∥∥∥∥∥SOT−

∞∑
k=0

Bn(k)

∥∥∥∥∥
e

≥ c

2M
.
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Proof. Let (xk)k∈N be a Schauder basis of X with basis constant M > 0 and coefficient
functionals (x∗k)k∈N. Let Pn =

∑n
k=0 〈 · , x∗k〉xk and P ∗k =

∑n
k=0 〈xk, ·〉x∗k (n ∈ N) be the

natural projections associated to the Schauder bases (xk)k∈N and (x∗k)k∈N, respectively. In
a first step we show that there are strictly increasing sequences (µ(k))k∈N and (N(k))k∈N

of natural numbers such that the projections

E0 = PN(0), Ek = PN(k) − PN(k−1) (k ≥ 1)

satisfy ∥∥(1− Ek)Bµ(k)

∥∥ +
∥∥Bµ(k)(1− Ek)

∥∥ < 2−k

2M
(A.2)

for k ∈ N. Define µ(0) = 0. Since

‖(1− Pk)B0‖ + ‖B0(1− Pk)‖ = ‖(1− Pk)B0‖ + ‖(1− P ∗k )B∗0‖
k−→ 0,

there is a natural number N(0) such that

∥∥(1− PN(0))B0

∥∥ +
∥∥B0(1− PN(0))

∥∥ < 1

2M
.

Thus condition (A.2) holds for k = 0. Suppose that natural numbers µ(0) < µ(1) <

. . . < µ(n) and N(0) < N(1) < . . . < N(n) have been chosen such that condition (A.2)
holds for k = 0, . . . , n. Since

∥∥BkPN(n)

∥∥ +
∥∥PN(n)Bk

∥∥ =
∥∥BkPN(n)

∥∥ +
∥∥B∗kP ∗N(n)

∥∥ k−→ 0,

there is an integer µ(n+ 1) > µ(n) with

∥∥Bµ(n+1)PN(n)

∥∥ +
∥∥PN(n)Bµ(n+1)

∥∥ < 2−k−2

2M
.

Similarly, one finds an integer N(n+ 1) > N(n) with

∥∥(1− PN(n+1))Bµ(n+1)

∥∥ +
∥∥Bµ(n+1)(1− PN(n+1))

∥∥ < 2−k−2

2M
.

The estimates
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∥∥(1− En+1)Bµ(n+1)

∥∥ +
∥∥Bµ(n+1)(1− En+1)

∥∥
≤
∥∥(1− PN(n+1))Bµ(n+1)

∥∥ +
∥∥Bµ(n+1)(1− PN(n+1))

∥∥
+
∥∥PN(n)Bµ(n+1)

∥∥ +
∥∥Bµ(n+1)PN(n)

∥∥
<

2 · 2−k−2

2M
=

2−(k+1)

2M

show that condition (A.2) holds for k = n + 1. This completes the inductive definition
of the sequences (µ(k))k∈N and (N(k))k∈N. Using the identities

EkBµ(k)Ek = Bµ(k) −Bµ(k)(1− Ek)− (1− Ek)Bµ(k)Ek

we find that the sequences (Ek)k∈N and (Bµ(k))k∈N satisfy the estimates∥∥EkBµ(k)Ek
∥∥ ≥ ∥∥Bµ(k)

∥∥ − 2M
(∥∥Bµ(k)(1− Ek)

∥∥ +
∥∥(1− Ek)Bµ(k)

∥∥)
>
∥∥Bµ(k)

∥∥ − 2−k
(A.3)

for all k ∈ N. Let (ki)i∈N be a strictly increasing sequence in N. Then, for N ∈ N,

N∑
i=0

Bµ(ki) =
N∑
i=0

Ki +
N∑
i=0

EkiBµ(ki)Eki

with compact operators

Ki = Bµ(ki)(1− Eki) + (1− Eki)Bµ(ki)Eki .

Since
‖Ki‖ ≤ 2M

(∥∥Bµ(ki)(1− Eki)
∥∥ +

∥∥(1− Eki)Bµ(ki)

∥∥) < 2−ki

for all i ∈ N, it follows that K = ‖ · ‖ −
∑∞

i=0Ki ∈ K(X) is a well-defined compact
operator. Since by hypothesis the series SOT−

∑∞
i=0Bµ(ki) converges, also the series

A = SOT−
∞∑
i=0

EkiBµ(ki)Eki

yields a well-defined operator A ∈ L(X). The estimates proved in (A.3) allow us to
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choose, for each i ∈ N, a unit vector zi ∈ X with

∥∥EkiBµ(ki)Ekizi
∥∥ > ∥∥Bµ(ki)

∥∥ − 2−ki .

The latter estimates remain true if the vectors zi are replaced by the vectors hi = Ekizi.
Since ‖hi‖ ≤ 2M and

|〈hi, u〉| =
∣∣〈hi, E∗kiu〉∣∣ ≤ ‖hi‖ ∥∥P ∗N(ki)

u− P ∗N(ki−1)u
∥∥

for all u ∈ X ′ and i ≥ 1, the sequence (hi)i∈N is a weak zero sequence in X. For
L ∈ K(X) and j ∈ N,

‖L+ A‖ ≥
∥∥∥(L+ A)

hj
2M

∥∥∥
≥
∥∥∥(L+ EkjBµ(kj)Ekj

) hj
2M

∥∥∥
≥
∥∥Bµ(j)

∥∥ − 2−kj

2M
−
∥∥∥L hj

2M

∥∥∥ j−→ c

2M
.

We conclude that ∥∥∥∥ SOT−
∞∑
i=0

Bµ(ki)

∥∥∥∥
e

= ‖A‖e ≥
c

2M
.

Thus the proof is complete.

In the remainder of this section we recall some tools from interpolation theory for
Banach spaces. First we recap the complex interpolation method due to A.-P. Calderón
[15] and then we will formulate an extrapolation result for compact operators on Banach
spaces that was proved by M. Cwikel in [19].
Let E be a Hausdorff topological vector space. We call a linear subspace X ⊂ E a

Banach subspace of E if X is equipped with a complete norm topology such that the
inclusion mapping X → E is continuous.
A compatible couple (X0, X1) of Banach spaces consists of Banach spaces (X0,

‖ · ‖X0
), (X1, ‖ · ‖X1

) together with injective continuous linear maps ij : Xj → E (j =

0, 1) into a fixed Hausdorff topological vector space E. If (X0, X1) is a compatible couple
of Banach spaces, then

X0 +X1 = i0(X0) + i1(X1) ⊂ E,
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X0 ∩X1 = i0(X0) ∩ i1(X1) ⊂ E

equipped with the norms

‖x‖X0+X1
= inf

{
‖x0‖X0

+ ‖x1‖X1

∣∣ xj ∈ Xj (j = 0, 1) with x = i0(x0) + i1(x1)
}
,

‖x‖X0∩X1
= max{‖x0‖X0

, ‖x1‖X1
} if x = i0(x0) = i1(x1)

are Banach subspaces of E. An intermediate space for (X0, X1) is by definition a
Banach subspace X ⊂ E such that the inclusion mappings

(X0 ∩X1, ‖ · ‖X0∩X1
)→ X → (X0 +X1, ‖ · ‖X0+X1

)

are continuous. Let (X0, X1), (Y0, Y1) be compatible couples of Banach spaces. A linear
map T : X0 + X1 → Y0 + Y1 is called admissible if Tij(Xj) ⊂ ij(Yj) for j = 0, 1 and
if the unique operators Tj : Xj → Yj (j = 0, 1) with ijTj = Tij are continuous. A
pair (X, Y ) of intermediate spaces X for (X0, X1) and Y for (Y0, Y1) is said to be an
interpolation pair if TX ⊂ Y for each admissible operator T . In this case the operator
T : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) is continuous by the closed graph theorem. We denote its
norm by ‖T‖L(X,Y ). An interpolation pair (X, Y ) as above is said to be of exponent
θ ∈ (0, 1) if

‖T‖L(X,Y ) ≤ ‖T0‖1−θ ‖T1‖θ .

for each admissible operator T : X0 +X1 → Y0 +Y1. Let (X0, X1) be a compatible couple
of Banach spaces. Let X0∩X1, X0 +X1 be equipped with the complete norms explained
above. Define

S = {z ∈ C | 0 < Re z < 1} .

The space A(X0, X1) consisting of all continuous functions f : S → X0 + X1 such that
f |S ∈ O(S,X0 +X1) and such that

R→ X0, t 7→ f(it) and R→ X1, t 7→ f(1 + it)

are well-defined bounded continuous functions is a Banach space with respect to the
norm

‖f‖ = max

{
sup
t∈R
‖f(it)‖X0

, sup
t∈R
‖f(1 + it)‖X1

}
.
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Here we have identified X0 and X1 with the Banach subspaces i0(X0), i1(X1) ⊂ E with
norms ‖ij(x)‖ = ‖x‖Xj (j = 0, 1). For θ ∈ (0, 1) the complex interpolation space

Xθ = [X0, X1]θ ⊂ X0 +X1

is defined as the linear subspace of X0 +X1 consisting of all vectors x such that f(θ) = x

for some f ∈ A(X0, X1). Equipped with the norm

‖x‖Xθ = inf {‖f‖ | f ∈ A(X0, X1) with f(θ) = x}

the space Xθ is a Banach space such that the inclusion mappings

X0 ∩X1 −→ Xθ −→ X0 +X1

are well-defined contractions. If (X0, X1) and (Y0, Y1) are compatible couples of Banach
spaces, then (Xθ, Yθ) is an interpolation pair of exponent θ for every real number θ ∈
(0, 1).

Theorem A.3 (M. Cwikel).
Let (X0, X1) and (Y0, Y1) be compatible couples of Banach spaces. Let T : X0 + X1 →
Y0 + Y1 be a linear operator such that T induces bounded operators Tj : Xj → Yj (j =

0, 1) and such that T : [X0, X1]θ∗ → [Y0, Y1]θ∗ is compact for one θ∗ ∈ (0, 1). Then
T : [X0, X1]θ → [Y0, Y1]θ is compact for all θ ∈ (0, 1).
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