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Abstract

Antibiotics are drugs which inhibit the growth of bacterial cells. Their
discovery was one of the most significant achievements in medicine:
it allowed the development of successful treatment options for severe
bacterial infections, which has helped to significantly increase our life
expectancy. However, bacteria have the ability to adapt to changing
environmental conditions through genetic modifications, and can,
therefore, become resistant to an antibiotic. Extensive use of antibi-
otics promotes the development of antibiotic resistance and, since
some genetic factors can be exchanged between the cells, emergence
of new resistance mechanisms and their spread have become a serious
global problem.

Counteractive measures have been initiated, focusing on the dif-
ferent factors contributing to the antibiotic resistance crisis. These
include the study of bacterial isolates and complete microbial com-
munities using whole-genome sequencing (WGS) data. In both cases,
there are specific challenges and requirements for different analytical
approaches. The goal of the present thesis was the implementation
of multiple resources which should facilitate further microbiological
studies, with a focus on bacteria and antibiotic resistance. The main
project, GEAR-base, included an analysis of WGS and resistance data
of around eleven thousand bacterial clinical isolates covering the main
human pathogens and antibiotics from different drug classes. The
dataset consisted of WGS data, antibiotic susceptibility profiles and
meta-information, along with additional taxonomic characterization
of a sample subset. The analysis of this isolate collection allowed
for the identification of bacterial species demonstrating increasing
resistance rates, to construct species pan-genomes from the de novo
assembled genomes, and to link gene presence or absence to the
available antibiotic resistance profiles. The generated data and results
were made available through the online resource GEAR-base. This
resource provides access to the resistance information and genomic
data, and implements functionality to compare submitted genes or
genomes to the data included in the resource.

In microbial community studies, the metagenome obtained through
WGS is analyzed to determine its taxonomic composition. For this
task, genomic sequences are clustered, or binned, to represent se-
quences belonging to specific organisms or closely-related organism
groups. BusyBee Web was developed to provide an automatic bin-
ning pipeline using frequencies of k-mers (subsequences of length k)
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and bootstrapped supervised clustering. It also includes further data
annotation, such as taxonomic classification of the input sequences,
presence of know resistance factors, and bin quality.

Plasmids, extra-chromosomal DNA molecules found in some bac-
teria, play an important role in antibiotic resistance spread. As
the classification of sequences from WGS data as chromosomal or
plasmid-derived is challenging, demonstrated by evaluating four tools
implementing three different approaches, having a reference dataset
to detect the plasmids which are already known is therefore desir-
able. To this end, an online resource for complete bacterial plasmids
(PLSDB) was implemented.

In summary, the herein described online resources represent valu-
able datasets and/or tools for the analysis of microbial genomic data
and, especially, bacterial pathogens and antibiotic resistance.



Zusammenfassung

Antibiotika sind Medikamente, die das Wachstum von Bakterienzellen
hemmen. Ihre Entdeckung war eine der bedeutendsten Leistungen
der Medizin: Es erlaubte die Entwicklung von erfolgreichen Behand-
lungsmöglichkeiten von schwerwiegenden bakteriellen Infektionen,
was geholfen hat, unsere Lebenserwartung zu erhöhen. Allerdings
sind Bakterien in der Lage sich den wechselnden Umweltbedingungen
anzupassen und können dadurch resistent gegen ein Antibiotikum
werden. Der extensive Gebrauch von Antibiotika fördert die Entwick-
lung von Antibiotikaresistenzen und, da einige genetische Faktoren
zwischen den Zellen ausgetauscht werden können, sind das Auf-
tauchen von neuen Resistenzmechanismen und deren Verbreitung zu
einem seriösen globalen Problem geworden.

Gegenmaßnahmen wurden ergriffen, die sich auf die verschiede-
nen Faktoren fokussieren, die zur Antibiotikaresistenzkrise beitra-
gen. Diese umfassen Studien von bakteriellen Isolaten und ganzen
Mikrobengemeinschaften mithilfe von Gesamt-Genom-Sequenzierung
(GGS). In beiden Fällen gibt es spezifische Herausforderungen und
Bedürfnisse für verschiedene analytische Methoden. Das Ziel dieser
Dissertation war die Implementierung von mehreren Ressourcen, die
weitere mikrobielle Studien erleichtern sollen und einen Fokus auf
Bakterien und Antibiotikaresistenz haben. Das Hauptprojekt, GEAR-
base, beinhaltete eine Analyse von GGS- und Resistenzdaten von
ungefähr elftausend klinischen Bakterienisolaten und umfasste die
wichtigen menschlichen Pathogene und Antibiotika aus verschiede-
nen Medikamentenklassen. Neben den GGS-Daten, Empfindlichkeit-
sprofilen für die Antibiotika und Metainformation, beinhaltete der
Datensatz zusätzliche taxonomische Charakterisierung von einer Teil-
menge der Proben. Die Analyse dieser Sammlung an Isolaten erlaubte
die Identifizierung von Spezies mit ansteigenden Resistenzraten, die
Konstruktion von den Spezies-Pan-Genomen aus den de novo assem-
blierten Genomen und die Verknüpfung vom Vorhandensein oder
Fehlen von Genen mit den Antibiotikaresistenzprofilen. Die gener-
ierten Daten und Ergebnisse wurden durch die Online-Ressource
GEAR-base bereitgestellt. Diese Ressource bietet Zugang zur Re-
sistenzinformation und den gesammelten genomischen Daten und
implementiert Funktionen zum Vergleich von hochgeladenen Genen
oder Genomen zu den Daten, die in der Ressource enthalten sind.

In den Studien von Mikrobengemeinschaften wird das durch GGS
erhaltene Metagenom analysiert, um seine taxonomische Zusam-
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mensetzung zu bestimmen. Dafür werden die genomischen Sequen-
zen in sogenannte Bins gruppiert (Binning), die die Zugehörigkeit
von den Sequenzen zu bestimmten Organismen oder zu Gruppen von
nah verwandten Organismen repräsentieren. BusyBee Web wurde en-
twickelt, um eine automatische Binning-Pipeline anzubieten, die die
Häufigkeitsprofile von k-meren (Teilsequenzen der Länge k) und eine
auf dem Bootstrap-Verfahren basierte Methode für die Gruppierung
der Sequenzen nutzt. Zusätzlich wird eine Annotation der Daten
durchgeführt, wie die taxonomische Klassifizierung der hochgelade-
nen Sequenzen, das Vorhandensein von bekannten Resistenzfaktoren
und die Qualität der Bins.

Plasmide, DNA-Moleküle, die zusätzlich zum Chromosom in eini-
gen Bakterien vorhanden sind, spielen eine wichtige Rolle in der
Verbreitung von Antibiotikaresistenzen. Die Klassifizierung von Se-
quenzen aus der GGS als von einem Chromosom oder einem Plasmid
stammend ist herausfordernd, wie es in einer Evaluation von vier
Tools, die drei verschiedene Ansätze implementieren, demonstriert
wurde. Deshalb ist das Vorhandensein von einem Referenzdatensatz,
um schon bekannte Plasmide zu detektieren, sehr wünschenswert.
Zu diesem Zweck wurde eine Online-Ressource von vollständigen
bakteriellen Plasmiden implementiert (PLSDB).

Die hier beschriebenen Online-Ressourcen stellen nützliche Daten-
sätze und/oder Werkzeuge dar, die für die Analyse von mikrobiellen
genomischen Daten, insbesondere von bakteriellen Pathogenen und
Antibiotikaresistenzen, eingesetzt werden können.
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1
The threat of antibiotic resistance

1.1 Bacteria

All living organisms on Earth are classified into two major groups —
prokaryotes and eukaryotes [6]. The latter are organisms with cells
containing organelles enclosed by a membran such as nucleous or mi-
tochondria [6]. These organisms include fungi, protozoa, eukaryotic
algae, plants, and animals [6]. Organisms lacking internal membranes
and thus not possessing such organelles are termed prokaryotes [6].
Prokaryotes are further divided into archaea and bacteria, forming
together with the Eucarya (eukaryotes) the "three domains of life"
(Figure 1.1) — a concept proposed by Woese et al. in 1990 [7]. In
general, organisms which cannot be seen by the naked human eye are
also grouped together under the term microbes (or microorganisms)
which include, besides viruses, fungi and protozoa, all archaea and
bacteria [8].

Figure 1.1: Three domains of life,
adapted from [7].

Occurring almost everywhere, with an estimated total number of
9.2 × 1029 to 31.7 × 1029 of prokaryotic cells on Earth [9], microbes
are involved in many fundamental processes in ecological systems.
Bacteria are present in virtually all ecological environments, including
such extreme habitats as sea ice, hot springs, and hypersaline and
alkaline lakes [10–12]. Many bacterial species interact with eukaryotic
cells establishing commensal, symbiotic, mutualistic, parasitic or
pathogenic relationships with their host [13]. Some bacteria are known
to reside within the host cell as endosymbionts [13] while others are
found outside of the host cells, e.g. on outer or inner organ surfaces
such as skin [14] and colon [15]. The symbiont-host relationship can
be harmless (commensalism) and, additionally, beneficial for one
(symbiosis) or both (mutualism) organisms. In contrast, a parasitic or
pathogenic relationship is characterized by detrimental consequences
for the host [16].

An environment is generally not colonized by a single bacterial
organism but by bacterial communities (microbiota) [17; 18]. The
collection of genes and genomes of all the associated microorganisms
is referred to as the metagenome [17]. Together, the metagenome of a
microbiota and the colonized environment constitute the microbiome
[17]. In humans, bacterial communities can be found on different
parts of the body, including our skin, oral cavity, airways and gas-
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trointestinal tract [19]. According to a recent estimation, the ratio
of bacterial and human cells in a "reference man" is 1.266̄ : 1 with
approximately 3.8 × 1013 bacterial and 3.0 × 1013 human cells [20].
We maintain a mutualistic, symbiotic relationship with our microbes
[21]. While we provide them with space and nutrients, the microbes
play an important role in digestion, immune system development,
and protect us from pathogens [22]. Therefore, the integrity of the
microbial community within us has a great impact upon our health.

1.1.1 Discovery and classification of bacteria

In 1676, Antony Leeuwenhoek reported his discovery of small living
organisms in a water sample using a microscope of his own design
[23]. However, the theory that these microorganisms are responsible
for many diseases (the "germ theory of disease") was only developed
in the nineteenth century [24]. The "golden age of microbiology"
started after the discovery of Bacillus anthracis, a pathogen causing
anthrax in livestock and humans, by Robert Koch in 1876 [24]. Over
the next 30 years, many other bacterial pathogens were identified,
including those responsible for tuberculosis, cholera, and plague [24].
Subsequent discoveries in molecular biology and the development
of new technologies deepened our knowledge and understanding
of bacterial infections and bacteria in general. Advances in genome
sequencing had a profound impact on the study of bacterial organ-
isms. Today, the sequencing of specific genomic regions or complete
genomes of single organisms or communities is a fundamental tool
for the identification, characterization, and analysis of microbes [25].

Figure 1.2: Main taxonomic ranks and
their hierarchy (left) with an example for
the Escherichia coli species (right). There
are also other ranks above (kingdom and
domain), below (e.g. sub-species), and
between (e.g. sub-order) those shown
herein.

In order to identify and characterize bacteria, a taxonomy system
is required. Taxonomies include guidelines for nomenclature, classifi-
cation criteria, and a hierarchical representation of organism groups
using multiple taxonomic ranks (Figure 1.2). The first bacterial tax-
onomy system, produced by Ferdinand Cohn in 1872, was based on
morphological characteristics of the cells (e.g. cell size and shape)
[26]. A different system, considering the physiological properties of
bacteria, was proposed by Orla-Jensen in 1909 [26]. Various classifica-
tion systems were then developed using modified versions of Cohn’s
morphology-based approach [26]. The discovery of DNA and the
development of sequencing technologies brought substantial changes:
towards the end of the 20th century, DNA-DNA hybridization and
analysis of ribosomal RNA (rRNA) gene sequences (in particular
the 16S rRNA gene) have been applied to delineate bacterial species
[27–29] (see also 1.4.5). The current taxonomic classification relies on
a polyphasic approach taking into account different traits including
phenotypic and genomic characteristics [30].

It is important to note that taxonomic descriptions are not fixed,
but constantly revised [31]. This results in multiple synonymous
names, the merging and splitting of existing taxa, and changes in
the placement of the bacterial organisms within the taxonomic hi-
erarchy. The taxonomic classification approaches currently in use
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are not optimal [32] and, as the number of completely sequenced
bacterial genomes increases, new classification procedures and cri-
teria have been proposed. These include the estimation of genomic
relatedness using average nucleotide identity (ANI) [33] and creating
new groupings using ubiquitous single-copy proteins found in all
bacterial genomes [34].

1.1.2 Bacterial infections

Besides commensal microbes colonizing our bodies, there are also
pathogenic bacteria responsible for many, often deadly, diseases which
pose a major risk to public health. As mentioned above, the discovery
of the causative organisms of bacterial infections began towards the
end of the nineteenth century (Table 1.1). Some infectious diseases,
such as cholera and plague, had a devastating impact on human
populations through epidemics and pandemics [35, pp. 969–979]. For
example, Yersinia pestis caused several plague pandemics, with the
most recent one resulting in over 10 million deaths [36].

Disease Pathogen

Anthrax Bacillus anthracis
Suppuration Staphylococcus
Gonorrhea Neisseria gonorrhoeae

Typhoid fever Salmonella typhi
Suppuration Streptococcus
Tuberculosis Mycobacterium tuberculosis

Cholera Vibrio cholerae
Diphtheria Corynebacterium diptheriae

Tetanus Clostridium tetani
Diarrhea Escherichia coli

Pneumonia Streptococcus pneumoniae
Meningitis Neisseria meningtidis

Food poisoning Salmonella enteritidis
Gas gangrene Clostridium perfringens

Plague Yersinia pestis
Botulism Clostridium botulinum

Dysentery Shigella dysenteriae
Paratyphoid Salmonella paratyphi

Syphilis Treponema pallidum
Whooping cough Bordtella pertussis

Table 1.1: Main bacterial pathogens dis-
covered during the "golden age of mi-
crobiology", adapted from [37].

Today, socomial (community-acquired) and nosocomial (hospital-
acquired) bacterial infections still have a large impact on morbidity
(presence of a medical condition) and mortality (death) rates [38; 39].
Among the most frequent infections are pneumonia [40], tuberculosis
[41], urinary tract infections [42], food-borne infections [41], and
infections associated with medical interventions [43].

For some bacterial diseases, preventive measures, such as improved
sanitation and hygiene, and the development of vaccines have helped
to decrease the number of infections. Today, vaccination against
diphtheria, tetanus, and other preventable diseases are included into
the vaccination recommendations for the EU [44] and the US [45].
Nevertheless, if an infection occurs and the host’s immune system
is unable to defeat it, effective treatment is required to eliminate the
pathogens.
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1.2 Antibiotics

Antibiotics are drugs which inhibit the growth of bacterial cells, and
occur naturally produced by some fungi and bacteria [46]. The first
antibiotic, penicillin, was discovered by Alexander Fleming in 1928

[47]. Since then, a broad range of antibiotic classes have ben dis-
covered and introduced (Figure 1.3), particularly between 1940 and
1960, a period referred to as the "golden age of antibiotics research"
[48]. However, the number of new drug classes reported since 1990 is
significantly smaller than in previous years.

Lantibiotics
(Nisin)

Penicillins Sulfonamides

Aminoglycosides
(Streptomycin)

Nitrofurans

Tetracyclines
(Chlortetracycline)

Chloramphenicol

Polymyxins
(Aerosporin)

Cephalosporins

Pleuromutilins

Isoniazid

Macrolides
(Erythromycin)

Nitroimidazoles
(Azomycin)

Streptogramins

Glycopeptides
(Vancomycin)

Streptolydigin

Rifamycins

Fusidic acid

Lincosamides

Quinolones

Trimethoprim
(first use)

Fosfomycin

Mupirocin

Carbapenems
(Thienamycin)

Glycolipodepsipeptides
(Pantomycin)

Oxazolidinones

Monobactams
(Sulfazecin, Isosulfazecin)

Alpha-pyrone antibiotics
(Myxopyronin)

Lipoglycopeptides

Cyclic lipopeptides
(Daptomycin)

Platensimycin

Teixobactin

Malacidins

1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Figure 1.3: Antibiotics timeline: the (ap-
proximate) year of discovery, reporting
or introduction of the major drug classes
or its representatives, and antibiotics
which do not belong to a specific class.
The placement of the points and labels
along the vertical axis is for readability
purpose only. The information depicted
was compiled from [49–72].

Antibiotics can be divided into categories based on their modes of
action. The major drug classes include inhibitors of cell wall synthesis,
compounds interacting with the outer and/or cytoplasmic membrane,
inhibitors of DNA and RNA synthesis, inhibitors of protein synthesis,
and inhibitors of the folic acid metabolism (Figure 1.7). Antibiotics
can further be differentiated based on their chemical structure (e.g. the
β-lactams which all have a β-lactam ring system [73]) and application
spectrum (i.e. specific bacterial groups or even single species). In the
following, an overview of antibiotic targets is given by describing the
relevant cell components and processes, and how these are affected
by antibiotics.

1.2.1 Bacterial cell structure and antibiotic targets

Bacterial cell size ranges from 0.3 µm to 750 µm [74], they demonstrate
a variety of shapes including spheres, rods and spirals (Figure 1.4) [75],
and form groups creating aggregates of different structures (e.g. pairs,
chains and clusters, Figure 1.5) [76, ch. 2]. In nature, bacteria often
form biofilms, which is a consortium of bacteria in a multi-layered
structure attached to a surface and enclosed by a matrix [77].

Bacteria have a relatively simple cell composition when compared
to Eukarya (Figure 1.7). On the surface, some bacterial cells pos-
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sess flagella — hair-like structures used for motility with a species-
characteristic distribution which can serve for organism identification
[76, ch. 2]. There are also other surface filaments called pili or fim-
briae which are involved in adhesion, co-aggregation, and cell-to-cell
contact (sex pili) [78]. A bacterial cell is enclosed by multiple layers
including, in some cases, a capsule and/or a gel layer, a cell wall, and
a cytoplasmic membrane [76, ch. 2].

Figure 1.4: Schematic illustration of
some bacterial cell shapes, adapted from
[35, p. 60] and [76, ch. 2].

Figure 1.5: Schematic illustration of
some aggregates, adapted from [76,
ch. 2].

The interior of the cell — the cytoplasm or cytosol — contains a
high number of ribosomes [76, ch. 2]. Often, there are also inclusions
used as storage for specific compounds (e.g. glycogen) [35, p. 92].
Some bacteria which live in seas and lakes have gas vesicles, which
allow them to move up and down in the water [35, p. 93]. Though
bacteria do not have the organelles found in eukaryotic cells, some
bacterial species possess microcompartments which could be seen as
their functional analogues [79]. These cellular structures, enclosed by
a protein-membrane separating them from the cytosol, have diverse
functions and are linked, in some pathogenic bacteria, to virulence
which provides an advantage in host colonization [79].

Bacteria generally have one circular chromosome, but some bacte-
rial species have multiple [80] and/or linear chromosomes [81]. The
chromosome is localized in a pseudo-compartment in the cytoplasm,
the nucleoid [82], and is densely compacted demonstrating multiple
levels of organization: the DNA-binding nucleoid-associated proteins
affect the folding of the DNA and also gene expression [83]; there
are multiple domains of negatively supercoiled loops of 20 kbp to
100 kbp separated from the rest of the DNA molecule by domain
barriers and maintained by topoisomerases [84; 85]; DNA interactions
are preferably localized within macrodomains which encompass large
DNA regions (in the order of megabases) [86]. The organization of
the chromosome is dynamic and changes with respect to the current
state of the bacterial cell [82].

Cell wall and cytoplasmic membrane Bacterial cells are enclosed by a
cell wall whose primary function is protection against osmotic lysis
and maintenance of the cell shape [87]. Moreover, nearly all bacteria
can be divided into two categories, Gram-positive and Gram-negative,
based on the staining procedure developed by Hans Christian Gram
[76, ch. 2].

The cell walls of Gram-positive bacteria have a thick multilayer
shell (20 nm to 80 nm) composed of peptidoglycan (Figure 1.6) [87].
Peptidoglycan, or murein, consists of two linked sugar derivatives
(N-acetylglycosamine and N-acetylmuramic acid), and amino acids
attached to the second sugar [35, pp. 70–71]. A peptidoglycan layer
has a repeating structure formed by the linked sugars [35, pp. 70–71].
The shell is formed of multiple peptidoglycan layers which are cross-
linked through the peptide chains [35, pp. 70–71], and there are vari-
ous polymers associated with this structure, including (lipo)teichoic
acids [76, ch. 2]. The inner (cytoplasmic) membrane is a phospho-
lipid bilayer which also contains some membrane-bound molecules;
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it plays a significant role in active transport and biosynthesis in both
Gram-positive and Gram-negative bacteria [76, ch. 2].

Figure 1.6: Cell wall structure of Gram-
positive and Gram-negative bacteria,
adapted from [35, pp. 74, 77].

Gram-negative bacteria have a thinner peptidoglycan layer (1 nm
to 7 nm) located between an outer membrane and an inner membrane
(Figure 1.6) [87]. Braun’s (or murein) lipoproteins (BLPs) connect
the outer membrane and the peptidoglycan layer [76, ch. 2]. While
the inner (cytoplasmic) membrane of Gram-negative bacteria is a
bilayer composed of phospholipids as in Gram-positive bacteria, the
outer membrane consists of phospholipids (lower/inner layer) and
of lipopolysaccharides (LPSs) (upper/outer layer) [76, ch. 2]. The
outer membrane can be crossed by some small hydrophilic molecules
through porins: These are water-filled channels which can be un-
specific or contain a binding site allowing only specific molecules to
pass through [35, pp. 76–77]. The area between the outer and inner
membranes, where the peptidoglycan layer is located, is called the
periplasm (or periplasmic space) [35, pp. 77–78]. It is the location for
proteins involved in degradation processes, substrate transport, and
chemotaxis response (moving to or away from a chemical gradient)
[35, pp. 77–78].

Many antibiotics inhibit the process of cell wall synthesis, thus pre-
venting the replication of cells. The most prominent drug class target-
ing this process are β-lactams which include penicillins, cephalosporins,
monobactams, and carbapenems. Penicillin-binding proteins (PBPs)
are involved in the synthesis of the peptidoglycan layer by polymer-
ization (transglycosylation) and cross-linking (transpeptidation) of the
layers; different types of PBPs can be found in bacterial cells, which
can be broadly classified into high and low molecular mass PBPs
[88]. β-lactams bind to PBPs, hindering them in their function [89].
Glycopeptide antibiotics have a different mode of action: they bind
to peptidoglycan intermediates, and prevent transglycosylation and
transpeptidation reactions [90]. Finally, some antibiotics interfere with
the cytoplasmic membrane, e.g. daptomycin [91] and polymyxins [92].
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DNA synthesis (replication) Bacteria reproduce by replication of their
genetic material and segregation into daughter cells. The process is
initiated by making DNA strands accessible for the replication com-
plex, consisting of the bacterial initiation protein (DnaA), the helicase
loader (DnaC), the replicative helicase (DnaB), and other components
[85]. Two replication forks are formed, and the replication progresses
bidirectionally until the terminus region is reached, i.e. when both
forks meet [82]. During this process, the proceeding of the replica-
tion forks results in overwinding of the unreplicated DNA (positive
supercoils) in front of the forks and intertwining (pre-catenanes) of
the sister duplexes behind the forks. These need to be dissolved,
which is achieved by two type-II topoisomerases: DNA gyrase and
topoisomerase IV. Topoisomerase IV is also involved in separation
of the two sister chromosomes at the end of the replication process
[93; 94].

Figure 1.7: Overview of the main cell
components and processes targeted by
different antibiotic classes or antibiotics,
adapted from [95–99].

Fluoroquinolones inhibit the replication process by binding to
subunit A of DNA gyrase (GyrA) and subunit A of topoisomerase IV
(ParC) [89]. Both enzymes, DNA gyrase and topoisomerase IV, act
by binding to the DNA, breaking the double strand to pass through
another DNA double strand, and joining the broken strands back
[100]. The re-joining process is hindered by fluoroquinolones, which
bind to the enzyme in the enzyme-DNA complex [100]. Depending



28

on the bacterium and the antibiotic, either GyrA or ParC is more
sensitive to the drug [89; 100; 101].

RNA synthesis (transcription) The first step for gene expression in
all organisms is transcription — the synthesis of RNA from a DNA
template by a RNA polymerase. The transcription is initiated through
binding of the RNA polymerase to a σ initiation factor, enabling the
subsequent binding to a promoter region and formation of a (closed)
promoter complex [102]. The DNA double strand is then unwound
upstream of the transcription start site (open promoter complex)
and the template strand is guided towards the active center of the
RNA polymerase [102]. The elongation complex is created through
dissociation from the promoter region and the σ initiation factor
[102; 103]. The transcription process is finished when a termination
sequence is reached or through binding to a termination factor [102;
103]. As during replication, positive supercoils are created in front
of the transcription complex [104] which are resolved by the gyrase
[101].

The RNA polymerase is a target for multiple antibiotics such
as rifamycins, sorangicin, streptolydigin, and myxopyronin [105].
Rifamycins and sorangicin bind to the RNA polymerase and prevent
the growth of the nascent RNA molecule [105]; streptolydigin inhibits
transcription initiation and elongation, and pyrophosphorolysis [106];
myxopyronin hinders transcription by preventing the formation of
the initiation complex [107]. Finally, as the gyrase is also involved in
the process, RNA synthesis can also be hindered by fluoroquinolones
[108].

Protein synthesis (translation) During translation, the ribosome is one
of the key players directly involved in protein synthesis. In bacteria,
this is the 70S ribosome, which is composed of two sub-units: the 30S
sub-unit is a complex of 16S rRNA and 21 proteins, and the 50S sub-
unit consists of two rRNAs, 5S and 23S, and 36 proteins [62]. Prior to
the translation’s start, the 70S complex is split into its sub-units 30S
and 50S through binding of the initiation factors IF3 and IF1 to 30S
[109]. Then, IF2, mRNA, and fMet-tRNA (initiator tRNA) form the
pre-initiation complex with 30S [109]. It is subsequently transformed
into the 70S initiation complex by dissociation of the initiation factors
and binding to the 50S sub-unit [109]. During the elongation phase,
the mRNA is moved through the ribosome and the protein product is
synthesized [109]. After reaching a stop codon, the translation stops
releasing the created protein and the mRNA [109].

Various antibiotic classes inhibit the protein synthesis in bacteria
by binding to the rRNAs in the ribosomal sub-units. The antibiotic
target sites can be grouped into three main categories: antibiotics
targeting the ribosomal decoding site on the 30S sub-unit which
hinder codon recognition (e.g. aminoglycosides), drugs binding to the
peptidyl transferase center in the 50S sub-unit which stop generation
of the peptide bonds (e.g. oxazolidinones and chloramphenicol), and
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antibiotics interfering with the peptide exit tunnel on the 50S sub-unit
which inhibit the synthesis of the translated protein (e.g. tetracyclines)
[110].

Folic acid metabolism The biosynthesis of folic acid (or folate) is es-
sential for most bacterial cells [97]. The resulting compound is used
to produce some amino acids, thymidine and purine [97], and is
thus essential for the synthesis of DNA, RNA and proteins and, con-
sequently, for cell growth and division. In the folate biosynthesis
pathway, guanosine triphosphate is transformed to tetrahydrofolate
(tetrahydropholic acid) through multiple steps involving, among other
enzymes, dihydropteroat synthase (DHPS) and dihydrofolate reduc-
tase (DHFR) [97]. These two enzymes are the targets of sulfonamides
and diaminopyrimidines (e.g. trimethoprim), which disrupt the folate
synthesis. While sulfonamides compete with the substrate for DHPS,
diaminopyrimidines bind to DHFR [111].

1.3 Antibiotic resistance

Despite the discovery of antibiotics, the risk of severe bacterial infec-
tions has not been eliminated, because of emerging and spreading
antibiotic resistance. The term "antibiotic resistance" describes the
phenomenon of bacterial cells being non-susceptible to the applied
antibiotic. It is important to note that this phenotype is not a bi-
nary but a quantitative trait which is usually expressed in the terms
of the drug concentration tolerated by the organism considered. A
commonly used measure for the degree of antibiotic susceptibility
or resistance is the minimal inhibitory concentration (MIC) value,
defined as the minimum concentration of the drug required to inhibit
visible growth [112]. Depending on the number of antibiotics and
antibiotic classes to which a pathogen is resistant, it can be classified
as multi-drug resistant (MDR, resistant to several antimicrobials or
drug classes), extensively resistant (XDR, a more extreme case of
multi-drug resistance), and pan-drug resistant (PDR, resistant to all
antibiotics). However, no consistent definition of these terms exists,
and different variations of them can be found in the literature [113].

Some bacteria can be intrinsically resistant to an antibiotic agent.
Intrinsic resistance mechanisms include the absence of the antibiotic
target (e.g. by having a version of the molecule which is insensitive to
the drug), efflux pumps removing the drug from the cell, and an outer
membrane which is impermeable to the drug [114]. Gram-negative
bacteria, for example, are intrinsically resistant to vancomycin, a
glycopeptide antibiotic, because the outer membrane hinders the
drug from entering the cell and reaching its target [114].

Bacteria can, however, also acquire resistance factors [115]. The
development of antibiotic resistance is thus a natural process of adap-
tion of bacteria to the environment [115]. The application of a drug
creates a selective pressure on the microbial community favoring the
growth and replication of bacteria less susceptible to the agent used
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[115]. The next sub-sections describe the main resistance mechanisms,
the plasticity of the bacterial genome allowing fast adaption to an-
tibiotic exposure, the processes contributing to resistance emergence
and dissemination, and the implications of rising levels of antibiotic
resistance.

1.3.1 Resistance mechanisms

There are four main strategies by which bacterial cells can survive
when exposed to an antimicrobial agent: prevention of drug accumu-
lation, drug modification, target modification, and bypass (Figure 1.8)
[115; 114].

Drug accumulation prevention A bacterial cell can protect itself from
an antibiotic by becoming impermeable to the drug [115]. For exam-
ple, porins (1.2.1) are often used by hydrophilic antibiotic agents to
reach the interior of the bacterial cell: a change in their type, number,
and efficiency can affect the ability of the drug to penetrate the outer
membrane [115]. The antibiotic can also be removed from the cell by
efflux systems which can pump out a specific drug (e.g. TetA efflux
pumps, which can cause high-level resistance to tetracycline [116]), or
a broad range of antibiotic compounds (e.g. the multi-drug resistance
efflux pump MexAB-OprM in Pseudomonas aeruginosa [117]).

Drug modification Specific enzymes can either degrade the drug
molecule or change its chemical structure hindering the drug from
binding to its target [115]. For example, β-lactamases, a large group of
enzymes with many classes demonstrating different substrate speci-
ficity, mediate resistance to β-lactams as they destroy the antimicrobial
[118]. In the case of aminoglycosides, the drug’s structure can be mod-
ified by specific enzymes through acetylation, phosphorylation, or
adenylation, which decreases its affinity to the target molecule [110].

Target modification The binding between the antibiotic and its tar-
get can also be prevented by acting on the target itself. This can
be achieved through "target protection", where another molecule re-
moves the antimicrobial from the target or competes with it for the
target’s binding site [115]. An example of the first case are the tetra-
cycline resistance factors Tet(M) and Tet(O), which dissolve the bond
between tetracycline and its target, the ribosome [115]. The quinolone
resistance protein Qnr falls into the second category — it protects the
quinolone targets GyrA and ParC by binding to them [119]. Moreover,
this resistance factor also facilitates the emergence of chromosomal
mutations in the targets leading to higher levels of resistance [120].

A modification of the target’s structure can also prevent the an-
tibiotic from binding to it. This can be achieved through a mutation
of the DNA sequence of the target, as it was observed for rifamycin,
where mutations in the rpoB gene, which encodes a subunit of the
RNA polymerase, reduced the binding affinity of the drug to the RNA
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polymerase [102]. The target’s structure can also be altered through
an enzyme. For example, the erythromycin ribosomal methylation
enzyme performs a methylation of a residue in the 23S rRNA (part of
the 50S sub-unit of the bacterial ribosome) resulting in resistance to
macrolides, among other antibiotics [115].

Bypass The effect of an antibiotic can be avoided by increasing the
expression level of the target or by producing molecules which have
the same function as the target molecule, but are not affected by the
drug [115]. A good example of the first case is the over-expression
of DHFR (1.2.1), which is achieved through a mutation in the associ-
ated promoter [69]. Bacterial cells overproducing DHFR can achieve
resistance to trimethoprim [69]. An example of the second case is the
resistance to most β-lactams in Staphylococcus aureus, which can be
gained through acquisition of the mecA gene which encodes PBP2a, a
specific PBP. This protein has a low affinity to many β-lactams, such
that these antibiotics cannot inhibit the cell wall synthesis [115].

Figure 1.8: An overview of the antibiotic
resistance mechanisms, adapted from
[121].

1.3.2 Bacterial genome, adaption, and resistance emergence

As mentioned above, acquired resistance is the result of an adaption
process to environmental changes. A good example of the resistance
evolution over time was shown by Baym et al. by using large plates
with a medium containing successively increasing concentrations of
an antibiotic [122]. The experiment showed the emergence of new
mutants during the advancement of E. coli cells from a drug-free
region to the region with the highest drug concentration, over the
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course of several days [122]. The bacteria owe their remarkable adap-
tion ability to their genome plasticity. Through mutations, genomic
rearrangements, and accommodation of new genetic material, they
can survive in environments with conditions which were initially
lethal for them. As demonstrated by Baym et al. , this can also occur
over a relatively short timespan [122].

Bacterial genome The size of bacterial genomes is greatly variable.
Currently, from the complete set of bacterial genomes stored at
the National Center for Biotechnology Information (NCBI) 1, Can-1 Data was obtained from on 27.06.2019

https://www.ncbi.nlm.nih.gov/

genome/browse#!/prokaryotes/ using
the filters "Kingdom" (set to "Bac-
teria") and "Assembly level" (set to
"Complete").

didatus Hodgkinia cicadicola has the smallest genome, at ∼ 0.1 Mbp
(CP025310.1), Minicystis rosea has the largest genome, at ∼ 16 Mbp
(CP016211.1), and the average genome size is about 4 Mbp. GC con-
tent, the proportion of guanine/cytosine bases in the genome, varies
greatly between different species, ranging from 13.5 % (Candidatus
Zinderia insecticola CARI, CP002161.1) to 75.3 % (Cellulomonas sp. Z28,
NZ_CP039291.1, CP039291.1). Lower GC content is also associated
with smaller genome size [123].

Genes have an average sequence length of about 1 kbp [123], with a
typical average density of 0.8 to 1.2 genes per 1 kbp [124]. The organi-
zation density of a genome can also be expressed in terms of the length
of the intergenic regions, which vary from 0 bp and to over 1 kbp [124].
Larger regions usually contain repeats (e.g. CRISPR repeats) and pseu-
dogenes (gene copies affected by gene decay, e.g. through mutations
etc. [125]) [124].

The gene content of a bacterium is not fixed, i.e. not all genes
are found in all bacteria belonging to the same species; some genes
may be unique to a specific bacterial strain. This is the result of
the ability of bacteria to lose, gain, and exchange genetic material.
Genes can be broadly divided into two groups: core (essential) genes
and accessory (dispensable) genes. The first group includes genes
shared by all the organisms of a bacterial group, usually including
highly conserved genes involved in essential cellular functions such
as replication and growth [126]. Accessory genes include all non-
ubiquitous genes which usually contribute to the adaption ability of
the bacterial cell [126].

The collection of all genes observed within a bacterial group is
called the pan-genome [126]. A pan-genome can be characterized
in terms of whether it is closed (finite) or open (infinite) [126; 127].
Closed pan-genomes require only a minimal number of genomes
to be completely described (i.e. including a new genome would not
provide any new genes), while open pan-genomes can be extended
by adding a new genome which increases the pool of the accessory
genes [126; 127]. Bacterial species demonstrating a less pronounced
specialization to a specific environment have an open pan-genome
[126] as, for example, E. coli, which can be found both within the
animal gastrointestinal tract and in non-host environments [128].
Species with a high degree of specialization (e.g. B. anthracis, an
obligate vertebrate pathogen [76, ch. 15]) have a more conserved

https://www.ncbi.nlm.nih.gov/genome/browse##!/prokaryotes/
https://www.ncbi.nlm.nih.gov/genome/browse##!/prokaryotes/
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genome and thus a closed pan-genome [126].
There are various adaption mechanisms which shape the bacterial

genome, helping the organism to adjust itself to new environmental
conditions.

Mutations Mutations occur continuously over the life cycle of a cell
with an observed rate of adaptive mutations of about 10−5 events
per cell generation and with a higher frequency (10−3 to 10−5 per
cell generation) for mutations resulting in genomic rearrangements
[129]. Since only a small portion of mutations is advantageous for the
bacterium, the mutation rate is the result of an equilibrium between
the negative effects of these changes and their potential benefits [130].
Under specific conditions, strains with a high mutation rate (so-called
"mutators") can have a selective advantage. Mutators arise from
strains with altered genes responsible for DNA repair and replication
[130], such as in dnaQ (a DNA polymerase III subunit) [131].

Mutations directly linked to antibiotic resistance include those
which result in increased gene expression or structural changes of
the associated protein, affecting the interaction with the antibiotic
(e.g. drug uptake or its binding to the target). If the target is encoded
by multiple gene copies, mutations in only one or few of them may
only result in a titration effect.

An example of mutations affecting drug uptake can be found
in P. aeruginosa: resistance to imipenem can be achieved through a
mutation in the oprD gene which encodes an outer membrane porin
used by carbapenems to enter the bacterial cell; mutations changing
the structure of this channel result in a decreased drug influx [132].

Fluoroquinolone resistance is a good example of mutations pre-
venting drug binding. The resistance to this antibiotic class is often
linked to mutations in the target site of the genes gyrA and parC [133],
which have an impact on the protein structure and, therefore, also on
the binding affinity to the antibiotic [100].

Genomic rearrangements Genomic rearrangements include events
which remove or add sequence segments (deletions and insertions),
change the copy number of a segment (duplications and amplifica-
tions), invert a sequence (inversions), and move sequences to other
locations (translocations) [134]. These modifications can affect the
chromosome structure and the expression rate, and function and copy
number of a gene; they can also disrupt gene sequences and add a
new sequence to the genome [134]. The sequence segment involved in
a rearrangement event can vary in length and contain, when spanning
an intergenic region, a few or many genes and even complete operons
(clusters of genes controlled together) [135].

HGT Horizontal gene transfer (HGT) is a process whereby the ge-
netic material is not transferred vertically, i.e. from the parent to an
offspring, but through a lateral transfer [136]. For bacteria, there are
several ways in which this process can be mediated: DNA can be
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absorbed from the cell’s environment (transformation), transported
from one cell to another by bacteriophages (transduction), exchanged
between bacterial cells connected by a pilus (conjugation) or through
nanotubes, transferred by specific gene transfer agents, and collected
by the uptake of membrane vesicles carrying genomic sequences
[134].

A successful HGT event requires integration of the new DNA
segment into the recipient bacterial genome [137]. Moreover, to with-
stand the selective pressure the acquired gene needs to be expressed
and, optimally, provide its host with an adaption advantage [134].
Otherwise, the new DNA sequence can again be removed from the
genome [134; 137].

HGT generally takes place between cells which co-exist in the
same environment. It can even transfer genetic material between
distantly related organisms, though it is less frequent than between
closely related bacteria, as a dissimilarity in sequence composition
may hinder or hamper expression of the new genes [134]. Overall,
acquisition and utilization of foreign DNA is limited by factors such
as the ability of the host bacterium to accommodate DNA from the
environment or from other bacteria, possible degradation by the host’s
restriction enzymes (endonucleases), and successful maintenance
(replication) and expression [138].

Mobile elements Mobile elements contribute to the genomic rear-
rangement events and HGT. As their names suggests, they move
DNA segments either within or between genomes, can undergo re-
combination events with each other, and encompass a variety of
different elements [139; 134], as described below. 22 The following summary of mobile ele-

ments (up to the end of this paragraph)
is based on an extensive review of Dar-
mon and Leach [134]. Thus, this refer-
ence is omitted in the subsequent text
passages and only other additional ref-
erences are listed.

Insertion sequences (ISs) are DNA sequences containing a trans-
posase gene (which mediates the mobility of the IS [140]) flanked by
short terminal inverted repeats. Their insertion can affect the expres-
sion (positively or negatively) of a gene or neighboring genes, and
lead to genomic rearrangements; their inexact removal can result in
insertions or deletions.

Miniature inverted-repeat transposable elements are small (up to
0.5 kbp) and AT-rich DNA sequences with short terminal inverted
repeats. They can have a similar effect on the genome as the insertion
sequences.

Repetitive extragenic palindromic sequences (REPs) are sequences
of palindrom (forward sequence is the same as its reverse comple-
ment) repeats. These palindroms are imperfect and have a length
of 20 b to 40 b. REPs frequently occur in pairs or clusters, and a
pair of REPs found in inverse order with a linker sequence between
them is also called a bacterial interspersed mosaic element. The dis-
tribution of the REPs and bacterial interspersed mosaic elements is
organism specific, and these elements are assumed to be involved in
evolutionary processes and affect genome stability.

Transposons represent the DNA sequences of several kilobases
(usually between 2.5 kbp and 60 kbp) containing multiple genes flanked
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by long terminal inverted repeats. The changes induced by trans-
posons are analogous to those of ISs, but they also can mediate the
insertion of new genes into the host’s chromosome.

Transposable bacteriophages are viruses which infect bacterial cells
and integrate their DNA into the genome of the host. They can either
enter a lysogenic cycle and remain in the host’s genome, or start
producing new phages which ends in the lysis of the host cell (lytic
cycle).

Genomic islands (GIs) are DNA sequences spanning between
10 kbp and 200 kbp, which are found in some bacterial strains but
not in other closely-related strains. These DNA segments are usu-
ally located on the bacterial chromosome, and demonstrate different
sequence-based characteristics (e.g. codon usage and GC content) to
the rest of the genome, which indicates their "foreign" origin. GIs
carry multiple accessory genes which are beneficial to their hosts.

There are also other genomic sequences which can, according to
Darmon and Leach, be classified as mobile elements, including inteins
and retroelements. An additional and important group of mobile
elements are plasmids, which are described subsequently.

Plasmids New genetic material can also be acquired in form of plas-
mids, DNA molecules which can replicate autonomously (replicons)
[139; 134]. Plasmids are generally circular and smaller than bacterial
chromosomes [139], and usually contain some conserved genes (the
"backbone") and accessory genes [141]. The latter often encompass
genes which might be useful to the host, including virulence and
antibiotic resistance factors, while the "backbone" genes are linked to
the plasmid’s replication and mobility mechanisms [139; 141]. Plas-
mids sharing similar replication and segregation mechanisms cannot
co-exist in the same cell, as they interfere with each other during cell
division. In this case, they are labeled incompatible [142]. A plasmid
can also posses multiple replication mechanisms, enabling it to repli-
cate across a broader range of different bacterial hosts [142]. Plasmids
are usually exchanged between bacterial cells through conjugation,
though transformation is also an option [138]. Depending on whether
they posses the genes required for this process, plasmids can be classi-
fied as conjugative (all genes needed are present), mobilizable (other
conjugative elements are needed for transfer) or non-mobilizable (not
able to transfer through conjugation) [142; 143]. The transmission
frequency of plasmids can be influenced by multiple factors leading
to higher or lower dissemination rates [142]. These factors include
co-integration (recombination of co-existing plasmids), which can also
enable the transmission of non-mobilizable plasmids [142].

The recent discovery of the plasmid-mediated gene mcr-1 illustrates
not only the spread of a relevant resistance factor through plasmids,
but also the emergence of a new resistance determinant. The gene was
first described by Liu et al. in 2015, who found it in Enterobacteriaceae
isolated from livestock animals [144]. It confers resistance to colistin,
a polymyxin, considered to be one of the "last resort" antibiotics
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[144]. Previously, only chromosome-located resistance mechanisms
had been reported [144]. After the discovery of mcr-1, the gene was
detected in different Enterobacteriaceae species worldwide [145], and
other studies reported new variants of this gene [146–153].

It has been hypothesized that the main origin of resistance de-
terminants are environmental bacteria which harbor many of these
factors on their chromosomes [154]. The more specialized pathogenic
bacteria were initially susceptible to antibiotic exposure [154]. How-
ever, the extensive production and use of antibiotics has promoted
the acquisition of resistance factors by pathogens, also favoring their
dissemination and exchange [154].

1.3.3 Implications of growing antibiotic resistance

Rising levels of antibiotic resistance lead to less effective or failing
treatment for bacterial infections, and have become a serious threat
worldwide [155]. The major pathogens which cause most nosocomial
infections are Enterococcus faecium, S. aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, P. aeruginosa, and Enterobacter species — ab-
breviated to ESKAPE pathogens [156]. These and some additional
pathogens (Clostridium difficile, Neisseria gonorrhoeae, Campylobacter,
Salmonella, Shigella, Streptococcus pneumoniae, Mycobacterium tuberculo-
sis) were considered as "threatening" (ranked from "urgent" to "con-
cerning") to the US Centers for Disease Control and Prevention (CDC)
in 2013 [157]. A similar list of pathogens was published in 2017 by the
World Health Organization (WHO), highlighting bacteria and the as-
sociated resistance phenotype which would require the development
of new antibiotics [158].

According to a recent report by Jason et al. , infections caused by
multi-drug resistant organisms were the third highest cause of deaths
in the US in 2010 [159]. A review on antimicrobial resistance com-
missioned by the UK government and published in December 2014

estimates 300 million deaths due to resistant pathogens and a sub-
stantial negative impact on the world’s GDP between 2014 and 2050

[160]. Moreover, studies which have been considered in this review
and model the increase in antimicrobial resistance may underestimate
the true costs, because of a lack of available data about (bacterial)
infections [160]. For example, the RAND report included focused only
on hospital-acquired infections caused by E. coli, K. pneumoniae and
S. aureus, and drug resistance related to HIV, tuberculosis and malaria
[161]. Other implications described in the review consider the overall
effect of the increasing frequency of resistant pathogens on medical
procedures which rely heavily on antibiotics for prophylaxis [160].
Interventions with a high infection probability (e.g. surgery) or those
suppressing the immune system (e.g. some cancer therapies) would
become much more dangerous for the patient [160]. In summary, the
review urges taking action in order to tackle the resistance problem
and limit its negative consequences [160].
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1.4 Fighting bacterial resistance

The problem with antibiotic resistance is multifactorial, including
antibiotics misuse (prescriptions for non-bacterial infections) and
overuse [162], the extensive use of antibiotics in agriculture and
livestock farming [162], factors affecting infection transmission such as
population density, sanitation (access to clean water, sewage systems
etc.) and travel [163], and a stagnation in the development of new
antibiotics [164].

There are a number of strategies to counteract the implications of
antibiotic resistance. Since there are multiple aspects contributing to
the problem it has to be looked at from different angles, including
preventive measures to reduce the number infections, surveillance
projects to observe resistance trends, diagnosis and therapy devel-
opment to increase treatment effectiveness, and research projects
studying bacterial pathogens.

1.4.1 Vaccination

Vaccination targeting the relevant bacterial pathogens, such as My-
cobacterium tuberculosis, S. aureus and A. baumannii [165], would reduce
the number infections and antibiotic use, thus lowering selective pres-
sure promoting the emergence of resistance. Currently, vaccines for
Haemophilus influenzae [166], Salmonella typhi [167], and S. pneumoniae
[168] are already available. Additionally, vaccines against other in-
fectious diseases can contribute to a decrease in antibiotic misuse
[169]. As antibiotics are often prescribed for conditions not caused by
bacterial pathogens, e.g. influenza, preventing these infections could
help in minimizing unnecessary antibiotic treatments [169].

1.4.2 Therapy development and optimization

Effective therapies are one of the key components in combating infec-
tious diseases. Besides the development of new antibiotics, there are
also other approaches such as therapy optimization and alternative
treatment strategies using bacteriophages, antimicrobial peptides and
monoclonal antibodies.

New antibiotics The discovery and development of new antibiotic
agents would extend the palette of available drugs, providing more
options for the effective treatment of bacterial infections. As men-
tioned previously, however, the antibiotic development has stagnated.
Candidates for new drugs are mostly derived from the already dis-
covered classes [164] and the few new classes, which were launched
between 2000 and 2012, were only for Gram-positive bacteria [170].
Moreover, it has been argued that the number of groups working at
pharmaceutical companies and looking for new antibiotic drugs has
decreased due to mergers of these companies [41]. In addition to the
shortage of new compounds, the complete pipeline of drug discovery,
optimization, testing and approval requires several years and major
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investments [41]. As a result, some companies have backed out of
antibiotic discovery and focused on medication required for chronic
diseases (e.g. high blood pressure), this being a much more stable
source of income [41]. Initiatives have been launched to encourage
and facilitate the development of new antibiotics such as, for example,
the GAIN ("Generating Antibiotic Incentives Now") project started
in the United States in 2012 and ND4BB ("new drugs for bad bugs"),
started by the European Innovative Medicines Initiative in the same
year [41].

Spaulding et al. argue that there is also a need for "precision an-
timicrobials" [21]. The application of broad-spectrum antibiotics has
an adverse impact on a patient’s health: severe changes in the host’s
microbiota can lead to opportunistic infections and contribute to
antibiotic resistance development [21]. These problems should be
avoided through a more targeted approach, which would eliminate
specific pathogens without affecting other microbes [21]. However,
the development of these antibiotics faces even greater challenges
than in the general case, as it defines strict constraints on the expected
properties of the active agent [21].

Drug combinations When considering the mode of action for the
antibiotics and the known resistance factors, the observation was
made that antibiotics targeting only a single protein are less successful
than those interacting with multiple or complex targets [171; 89]. A
resistance can manifest much more easily if a single change in the
target is sufficient to prevent the antibiotic from interfering with
it; modifications of multiple targets or those affecting all the gene
copies of a target are less likely to occur [171]. While this favors the
use and development of multi-target drugs, another implication is
that combining multiple antimicrobials can also improve treatment
effectiveness. The administration of antibiotics has generally been
a monotherapy, and using a combination of drugs could extend the
application spectrum and prevent resistance emergence [171]. Tyers
and Wright describe in their review three classes of combinations
with improved antibacterial effect: congruous combinations where the
individual active agents have an antimicrobial effect (e.g. combination
of penicillin and streptomycin), syncretic combinations where one
of the compounds is not an antibiotic (e.g. compounds inhibiting β-
lactamases), and coalistic combinations where none of the compounds
is an antibiotic but their combination has an antimicrobial effect [171].
The development of effective drug combinations is challenging, with
increasing complexity for higher-order combinations, though it is an
important strategy when considering the rising levels of resistance
[171].

Other approaches Antibiotics represent only one possible way of fight-
ing bacterial infections, and there are many other approaches which
could be applied alone or combined with antibiotic treatment.

In phage therapy, bacteriophages (see 1.3.2) are used to treat bac-
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terial infections [172]. Though some of these viruses can enhance
the virulence of the bacteria [173], there are also phages which kill
their host by entering a lytic life cycle, leading to the lysis of the
bacterial cell [172]. The virus replicates by exploiting the host: after a
successful infection, replication processes are induced, the host’s cell
membrane is dissolved, and the newly-created phages are released
into the environment [174]. The main advantages of this form of ther-
apy are the amplification of the active agent through the cells which
it should eliminate, and the host specificity of some phages [174].
However, there are also challenges and drawbacks, such as the need
to account for emerging phage-resistance, the requirement of a phage
susceptibility test to ensure effective treatment, the risk that bacterial
cell lysis can also release harmful substances, and the problem that
not all infections can be treated with phage therapy (e.g. those where
bacteria infect eukaryotic cells which cannot be entered by phages)
[174].

Antimicrobial peptides are naturally-occurring molecules of 15
to 50 amino acids which can be found in many species and are
involved in host defense against pathogens [175; 176]. These natural
antimicrobials can have a direct effect on the pathogens or an indirect
effect by hindering the formation of biofilms or destroying them
[177]. A special group of antimicrobial peptides are bacteriocins,
antimicrobials produced by some bacteria [178], though others argue
that they are "full-blown" proteins rather than peptides [175].

Another alternative approach is targeted therapy with monoclonal
antibodies which were used before the discovery of antibiotics ("serum
therapy") but have been replaced by them, due to their ease of pro-
duction and administration [179]. Potential targets of the antibodies
are molecules released by bacterial cells (e.g. toxins) and cell surface
components [180]

Recently, Ragheb et al. proposed the treatment strategy of "inhibit-
ing evolution" [181]. For many drugs, antibiotic resistance is caused
by de novo mutations which are facilitated through "evolvability fac-
tors" [181]. Inhibiting these would negatively affect the adaptability of
bacteria, preventing the emergence of resistance associated mutations
[181]. When administrated together with an antibiotic, evolution
inhibitors could improve the effectiveness of antimicrobial therapies
[181].

1.4.3 Diagnosis: pathogen identification

In diagnosis, the identification of the pathogen responsible for the
infection is vital in order to select an optimal therapy. It starts by
differentiating between bacterial and viral infections to avoid unnec-
essary use of antibiotics. Further characterization of the bacterial
pathogen, such as its strain type and the resistance factors contained
in its genome, can help to determine which antibiotics are likely to be
ineffective against it, thus reducing their use.

The classical pathogen identification procedure involves sample
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collection, organism isolation and culturing, followed by identifica-
tion [182]. Automated systems which facilitate diagnosis have been
developed such as Vitek 2 (bioMérieux, Marcy l’Etoile, France) and
Phoenix (BD Diagnostics, San Jose, CA, USA) [183]. MALDI-TOF
mass spectrometry (MS) systems have been proposed and applied, in-
cluding the Bruker Microflex Biotyper (Bruker Corporation, Billerica,
MA, USA) and the bioMérieux VITEK MS [184].

As culturing is a time-consuming process, culture-independent
approaches have been developed. These detect specific DNA regions
(usually amplified by PCR) or antigens [185]. Culture-independent
tests have multiple advantages compared to culture-based tests: they
decrease the required costs and time, are easier to apply (thus promot-
ing their use), can have higher sensitivity, are applicable if there is a
pathogen with no established culturing protocol, and have the ability
to detect multiple organisms (multiplex tests) [186; 187; 185]. How-
ever, there is also a major drawback: these tests do not provide further
characteristics of the pathogens which are relevant for surveillance
projects [187; 186].

When a more detailed characterization of the bacteria is required,
e.g. information on the strain types for epidemiological studies, geno-
typing becomes necessary, which can be done using non-sequence-
based and sequence-based methods [188]. However, only whole-
genome sequencing (WGS) can provide the complete genetic informa-
tion of an isolate (see 1.4.5). It allows for taxonomic characterization,
exhaustive sub-typing of the samples, detection of relevant genetic
factors such as virulence and resistance genes, and comparison of the
samples to infer possible transmission of the pathogens during an
outbreak [188].

The value gained from performing WGS comes at the cost of de-
pending, again, on the culturing step. Culture-independent metage-
nomic analysis can be used to obtain genomic data of microbes found
in a sample while bypassing culturing and not limiting focus to a
specific organism [186]. Though this approach is promising and
has already been applied in clinical setting [189–191], its applica-
tion remains challenging. Problems include host contamination and
sample-specific factors, such as the sample type (e.g. urine, blood)
which affects the processing procedure [186], and high variance in
community composition even among healthy individuals [192]. There
are also further challenges regarding the analysis of sequencing data,
which are discussed in more detail in 1.4.5.

1.4.4 Antibiotic resistance surveillance and stewardship

The implementation of effective preventative and counteractive mea-
sures requires an exhaustive knowledge of bacterial resistance mecha-
nisms, and information on their emergence, spread and prevalence.
The collection and analysis of the associated information is therefore
crucial to limiting and combating the implications of antibiotic resis-
tance. Systematic monitoring of bacterial infections allows for the
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recognition of trends of rising resistance rates and the prevalence
of specific pathogens. Worldwide, healthcare agencies have started
surveillance programs to collect data about (nosocomial) infections
and antibiotic use. There are surveillance projects on antimicrobial
resistance and antimicrobial consumption in Europe by the European
Centre for Disease Prevention and Control (ECDC) [193], and similar
initiatives are being conducted by CDC in the United States [157];
in 2015, the WHO launched the GLASS (Global Antimicrobial Re-
sistance Surveillance System) project to track resistant pathogens in
different countries [194]. More extensive action plans have also been
initiated, such as the One Health Action Plan against antimicrobial
resistance in the EU [195] and the "National action plan for combating
antibiotic-resistant bacteria" in the US [196].

1.4.5 Study of bacterial isolates and communities

As detailed over the previous sub-sections, knowledge about resis-
tance mechanisms and other characteristics of bacteria is vital to
prevent and cure infectious diseases. Therefore, studies of specific
bacterial species, especially human pathogens, and complete bacterial
communities should be seen as one of the essential steps towards a
solution to the antibiotic resistance crisis.

Bacterial isolates Analysis of bacterial isolates has been widely ap-
plied for association studies [197; 198] and follow-up studies of out-
breaks [199; 200]. A common approach is to perform WGS of the
isolates, followed by a reconstruction and analysis of their genomes.
Short-read sequencing has often been performed using Illumina in-
struments (e.g. MiSeq and NextSeq), producing reads with a maximal
length of 300 bp and an accuracy of around 99.9 % [201]. As short
reads cannot span repeats, the reconstructed genome assemblies often
remain fragmented [201]. Long-read sequencing with lower accuracy
but much longer reads allows for the creation of complete, i.e. full-
length, genome assemblies and can be done using the SMRT platform
from PacBio and the MinION from Oxford Nanopore Technology’s
[201]. Also, a hybrid approach, which combines the data produced
by the Illumina and MinION platforms, has been applied to resolve
the structure of bacterial genomes [201].

Given the sequencing data, it is possible to use reference-based,
reference-guided, and reference-free methodologies. If the sample
is known to be closely related to a specific reference genome and
only minor discrepancies are expected between them, the sequencing
reads can be directly mapped to that reference genome. In other
cases, if no suitable reference genome is available or the choice of a
reference genome is not straightforward, reference-free approaches
are more appropriate. De novo assembly of the genomes is then
usually performed, followed by assembly annotation including the
identification of protein coding sequences. Downstream processing of
the collected data can include comparison to other isolates, taxonomic
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characterization and strain typing (e.g. multi-locus sequence typing
(MLST)), and detecting the presence of specific genomic features
(e.g. virulence genes). Additional data, such as the phenotype or
sample metadata (e.g. collection date and location), can be linked
with the genomic information for further analysis.

In the context of antibiotic resistance, WGS data is linked to resis-
tance profiles of the isolates to one or multiple drugs. Profiles are
determined by antibiotic susceptibility testing (AST). Classical AST
methods are phenotype-based approaches, where bacterial cultures
are exposed to an antibiotic visually detecting their growth [202]. The
conventional methods include disk diffusion, manual broth microdi-
lution, gradient tests, agar dilution and breakpoint tests [202]. A
commonly-used measure of resistance is the MIC value, which is then
interpreted using guidelines in which thresholds for susceptible and
resistant phenotypes are defined for relevant bacterial groups and
drugs [202]. The analysis of the bacterial genomes coupled with the
associated resistance profiles can help to identify genomic features
which correlate to the phenotype. Moreover, predictive models can be
build to infer resistance profiles for new samples. This can facilitate
the development of pathogen identification test arrays by combining
relevant genetic features to be detected in the samples.

In addition to dedicated projects for performing such analyses,
initiatives for collecting whole genome data and the associated re-
sistance profiles for public use create a solid basis for resistance
association studies. For example, NCBI allows for the submission of
resistance profiles linked to a biological sample, and thus provides the
possibility of compiling datasets containing genomic and resistance
data. There also also other platforms dedicated to providing access
to bacterial genomes, such as the PATRIC database which collects
and processes genomes and metadata from GenBank, RefSeq and
collaborators [203].

Bacterial communities The microbial communities found on and in
our body play a crucial part in our health. Their composition has
been linked to multiple diseases such as type 2 diabetes, obesity and
colorectal cancer [204]. The microbiota colonizing our environment,
including soil and water, can also be relevant with regard to bacterial
infections, as these communities may function as a reservoir of antibi-
otic resistance genes (1.3.2). The characterization of microbiota is a
challenging task as the communities are usually very complex, with
hundreds of species in highly variable abundance [205]. For example,
more than 100 microbial species can be found in one milliliter of
water, more than 400 in the human gut, and thousands in just one
gram of soil [206].

Many microbiota studies are currently carried out by sequencing
specific sub-regions (variable regions) of the 16S rRNA gene [210].
The 16S rRNA gene is present in almost all bacteria [211; 212] as part
of the bacterial ribosome (1.2.1) and contains conserved and variable
domains (Figure 1.9); the latter being used to differentiate between
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Figure 1.9: Secondary structure of the
16S rRNA, from E. coli with highlighted
variable regions: V1 (69–99), V2 (137–
242), V3 (433–497), V4 (576–682), V5

(822–879), V6 (986–1041), V7 (1117–
1173), V8 (1243–1294), and V9 (1435–
1465) [207]. The secondary structure was
predicted for the 16S rRNA gene rrsH
(NCBI Gene ID 944897) by RNAfold
web server (version 2.4.11) using the
minimum free energy algorithm [208].
The secondary structure was visualized
using the Forna web server [209]. Se-
quence numbering and nucleotide labels
were omitted in the interests of simplic-
ity.
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microbes [212]. Specific primers are designed to target and amplify
a variable region prior to next-generation sequencing (NGS) [213].
Operational taxonomic units (OTUs) are subsequently defined by
clustering the sequences according to their similarity, e.g. using a
minimum threshold of 97 % [214]. However, this approach also has a
major drawback, namely an inherently limited taxonomic resolution,
i.e. it does not allow for any differentiation between (genera and)
species [215; 216]. A possible solution would be to perform full-
length 16S rRNA gene sequencing, which can be achieved by the
use of the new third-generation sequencing technologies, such as the
platforms offered by PacBio [217] and Oxford Nanopore Technologies
[218]. The use of the 16S rRNA gene has also another drawback: the
number of rrn operons (rRNA gene clusters) varies between organisms
[206] which can create a bias during the sequence amplification step
towards organisms harboring many copies [219].

As specific phenotypic traits can be encoded by genes belonging
to the accessory and not to the core genome, capturing the complete
genomic information contained in a sample has a clear advantage
over 16S rRNA sequencing. Therefore, the metagenomic analysis of
microbial communities has gained popularity over the last years [220].
Nevertheless, 16S rRNA sequencing has not yet been fully replaced
by WGS, as it has its own challenges. One of these is community
composition reconstruction, also referred to as "binning" [3]. The
objective of the procedure is the assignment of sequences (e.g. long
reads or contigs) to different clusters (bins), which should represent
organisms or groups of closely-related organisms [3]. Current bin-
ning approaches generally differ in terms of whether they rely on a
reference database (supervised) or are reference-independent (unsu-
pervised), and in the type of features used, such as the nucleotide
composition (usually five-mer frequencies) and coverage information
[3; 221–223]. The quality of the bins can be assessed by estimating
their purity (whether the cluster contains one or multiple organisms)
and completeness (whether the cluster contains all the genomic se-
quences of an organism) [224].

Microbiome approaches are considered to be a new promising
diagnostic tool in clinical microbiology [225; 226]. They enable the
identification of pathogens in patient samples, with higher sensitivity
than the currently applied methods. For example, Sathiananthamoor-
thy et al. demonstrated the benefits of 16S rRNA gene sequencing
when compared to routine midstream urine culture analysis, as per-
formed in the UK, for the diagnosis of urinary tract infections [215].
In a retrospective study, Loman et al. showed that high-throughput
sequencing can be applied to identifying outbreak pathogens [227].
Moreover, metagenomic approaches can be used for antibiotic resis-
tance surveillance by studying the microbiota composition of relevant
environments, such as urban sewage and hospitals [228].

Bacterial plasmids In the context of antibiotic resistance, the analysis
of plasmids found in bacterial isolates or communities is of particular
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interest. It can help to identify which resistance and virulence factors
might be transferred to other cells using these mobile elements. For
plasmids known to harbor highly-relevant resistance and virulence
features, it is crucial to know their transmission rate, and whether
they can be exchanged between relevant (human) pathogens and
persist in the absence of selection pressure [144].

Finding plasmids in the WGS data of bacterial isolates or micro-
biota is a challenging task. The classification of genomic sequences
as chromosomal or plasmid-derived can be facilitated by using re-
sources of known plasmids. However, this can be insufficient for
the identification of novel plasmids. Many existing approaches for
chromosome/plasmid classification rely on differences in sequence
composition and coverage between bacterial chromosomes and plas-
mids [229–232]. Nevertheless, there is still no gold-standard approach
for the reliable detection of plasmid-borne sequences in WGS data.

Given a plasmid sample, PCR-based replicon typing has been
commonly applied for plasmid characterization [233]; an alternative
approach is MOB typing targeting not the replicons but relaxases [141].
The analysis can be also performed in silico on plasmid sequences,
obtained either through direct sequencing of the plasmid or from a
WGS sample [234; 235]. As with all marker-based approaches, these
typing methods have the disadvantage of not considering the other
genetic content found on the plasmid. Moreover, not all plasmids are
type-able because the marker may be novel and not included in the
resource used, or because it is absent. A more precise and specific
identification can be done by using the resources of all the known
bacterial plasmids, not relying on one specific genomic feature. Such
resources would also have the advantage of being able to store other
information related to the plasmids, e.g. collection location and host.





2
Goals of the PhD thesis

As outlined in the previous chapter, antibiotic resistance is a multi-
faceted problem and there are several key components which can help
in addressing it. This thesis focused on the points outlined in 1.4.5:
the study of bacterial isolates, microbial communities, and plasmids.
The two main objectives were the analysis of a large collection of
bacterial isolates and their antibiotic resistance profiles, and the devel-
opment of resources enabling further studies of bacterial pathogens
(Figure 2.1).

The herein analyzed sample collection contains about eleven thou-
sand bacterial clinical isolates, including their WGS data, resistance
profiles, meta-information, and, for a subset of isolates, additional
taxonomic characterization by MALDI-TOF MS. The studies were
performed in collaboration with Siemens AG (who collected the iso-
lates), Curetis GmbH (who acquired the dataset), and Ares Genetics
GmbH, a Curetis Group Company. This extensive dataset was used
to perform various analyses, answering questions related to bacte-
rial pathogens and antibiotic resistance: the evaluation of different
WGS-based tools for taxonomic characterization of bacterial isolates
and a comparison with the MS-based results (see 3.1) [1], the assess-
ment of resistance rates with respect to different bacterial species
and antibiotics, construction and analysis of bacterial pan-genomes,
and linking genomic data and resistance profiles (see 3.2) [2]. A web
server, GEAR-base, was implemented to provide access to the isolates
collection and generated results, with the aim of extending this re-
source with new data by collaborating with hospitals and industrial
partners (see 3.2) [2].

The other projects presented herein are not directly related to
GEAR-base, and include the following three publications: a web
server for binning metagenomic sequences using five-mer frequency
profiles (BusyBee Web, in 3.3) [3], a review of different tools for plas-
mid prediction from WGS data of bacterial isolates (tools evaluation
was performed on a subset of samples from GEAR-base, in 3.4) [4],
and a resource of known complete bacterial plasmids (PLSDB, in 3.5)
[5].
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Figure 2.1: Overview of the imple-
mented resources, including some of
their functions and/or additional stud-
ies performed using their data (marked
with an asterisk (*)).



3
Results

This cumulative thesis is based on five peer-reviewed publications
whose published versions are included in this chapter.
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Abstract
Whole-genome sequencing (WGS) is gaining importance in the analysis of bacterial cultures derived from patients with
infectious  diseases.  Existing  computational  tools  for  WGS-based  identification  have,  however,  been  evaluated  on
previously defined data relying thereby unwarily on the available taxonomic information.

Here,  we  newly  sequenced  846  clinical  gram-negative  bacterial  isolates  representing  multiple  distinct  genera  and
compared the performance of five tools (CLARK, Kaiju, Kraken, DIAMOND/MEGAN and TUIT). To establish a faithful ‘gold
standard’,  the  expert-driven  taxonomy  was  compared  with  identifications  based  on  matrix-assisted  laser
desorption/ionization  time-of-flight  (MALDI-TOF)  mass  spectrometry  (MS)  analysis.  Additionally,  the  tools  were  also
evaluated using a data set of 200 Staphylococcus aureus isolates.

CLARK and Kraken (with k=31) performed best with 626 (100%) and 193 (99.5%) correct species classifications for the
gram-negative and S.  aureus isolates, respectively. Moreover, CLARK and Kraken demonstrated highest mean F-measure
values (85.5/87.9% and 94.4/94.7% for the two data sets, respectively) in comparison with DIAMOND/MEGAN (71 and
85.3%), Kaiju (41.8 and 18.9%) and TUIT (34.5 and 86.5%). Finally, CLARK, Kaiju and Kraken outperformed the other tools
by a factor of 30 to 170 fold in terms of runtime.

We conclude that the application of nucleotide-based tools using k-mers—e.g. CLARK or Kraken—allows for accurate and
fast taxonomic characterization of bacterial isolates from WGS data. Hence, our results suggest WGS-based genotyping to
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be a  promising alternative to the MS-based biotyping in  clinical  settings.  Moreover,  we suggest  that complementary
information should be used for the evaluation of taxonomic classification tools, as public databases may suffer from
suboptimal annotations.

Key words: bacteria, taxonomy, MALDI-TOF MS, whole-genome next-generation sequencing

Introduction
In the light of the global increase of antibiotic-resistant microorganisms, rapid and accurate pathogen characterization—
i.e.  their  classification  into  organism groups—is  essential  for  an  effective  treatment  of  infectious  diseases  [1].  This
facilitates patient stratification and personalized therapies.

Several  approaches  have  been  developed  for  the  taxonomic  characterization  of  bacterial  isolates.  The  classical
microbiological approaches are built on a large basis of constantly revised expert knowledge and typically involve Gram
staining,  analysis of culture growth, phenotype and biochemical reaction patterns [2]. These methods are increasingly
augmented by high-throughput molecular methods such as 16S ribosomal RNA (rRNA) gene sequencing [3]. However, the
taxonomic resolution based on the 16S rRNA gene alone is limited [3, 4]. Another alternative is taxonomic analysis using
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) where the obtained protein
mass spectra are compared against a reference database [5]. This proteome-based approach is characterized by high
accuracy [5–7], low operating costs and quick turn-around times [8, 9]. Usually, MALDI-TOF MS-based analysis is applied
to pure cultures, but there are studies performing taxonomic classification of mixed microbial communities [10, 11]. The
reference spectra  are  typically  not  disclosed by  the  manufacturers,  thus hampering  the  study  and expansion  of  the
existing references [12]. However, several attempts to create a publicly available database exist [13, 14] with the database
‘Spectra’ [15], curated by the Public Health Agency of Sweden, providing a sizeable data source containing >5000 spectra
of bacteria and fungi. Although various factors might negatively affect the analysis outcome, e.g. sample preparation or
age, limiting the result comparability between laboratories [7, 12, 16, 17], MS-based pathogen identification is applied in
many diagnostic laboratories [1].

In part, driven by decreasing costs and faster turn-around times, whole-genome sequencing (WGS) has gained importance
for the identification of  pathogens as well  as for antimicrobial  resistance analyses and outbreak monitoring [2].  The
existing sequencing-based taxonomic classification tools can be organized into two groups—tools relying on specific
marker genes/sequences (e.g. MetaPhlAn [18] and MetaPhyler [19]) and whole-genome-based tools. The whole-genome-
based approaches assign input sequences to taxa using alignments (e.g. DIAMOND [20] and TUIT [21]), k-mer matching
(e.g. CLARK [22], Kaiju [23] and Kraken [24]) or alignment-free methods (e.g. Vervier et al. [25], RAIphy [26] and PhyloPythia
[27–29]). While the tools’ performances are evaluated in the respective publications, these performance evaluations rely
on  publicly  available  data  typically  generated  in  independent,  earlier  experiments.  Hence,  incomplete  or  suboptimal
annotations,  e.g.  because  of  contaminating  sequences,  are  expected  to  exert  negative  effects  on  the  evaluations.
Importantly, the use of complementary information, such as MALDI-TOF MS-based taxonomic classification, is missing.
This is of particular importance in the context of clinically relevant pathogen identification [2].

Here, we newly sequenced 846 pathogenic, gram-negative bacterial clinical isolates [including, among others, Escherichia
spp. (22%),  Proteus spp. (14%),  Klebsiella spp. (16%),  Pseudomonas spp. (11%),  Enterobacter spp. (6%),  Salmonella spp.
(8%)  and  Acinetobacter spp.  (6%)]  and  evaluated  the  classification  performance  of  a  set  of  WGS-based  taxonomic
classification tools (CLARK, DIAMOND/MEGAN, Kaiju, Kraken and TUIT). The ‘ground truth’ taxonomic assignments were
established by confirming the expert-driven taxonomy using a Bruker Biotyper MALDI-TOF MS system. Moreover, we newly
sequenced 200 Staphylococcus aureus isolates and performed the same analysis as for the gram-negative bacteria where
the ‘ground truth’ comprised only the MS-based taxonomy. Our results demonstrated that certain WGS-based approaches
allow for  an  accurate  taxonomic  classification,  and  thus,  can  be  considered  as  promising  alternatives  to  MS-based
biotyping. Moreover, the complementary information of the protein mass spectra is a powerful alternative to relying on
existing, yet potentially misleading, publicly available data.

Materials and methods

Bacterial isolates
Our first data set consisted of 846 gram-negative bacterial clinical isolates collected for diagnostic purposes. The isolates
were characterized by microbiologists from the respective laboratory according to the institutional guidelines for routine
clinical microbiological testing, which was state of the art at the time of testing (Supplementary Table S1). The overview of
the taxonomic assignments was created with Krona [30]  (Figure 1).  The samples are part  of the microbiology strain
collection  of  Siemens  Healthcare  Diagnostics  (West  Sacramento,  CA).  For  240  isolates,  the  data  set  included  the
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collection date (Supplementary Figure S1), and for 783 isolates, the collection location (country or continent) was provided
(Supplementary Table S1).

The second data set included 200 S. aureus clinical isolates, which are part of the S. aureus strain collection of Saarland
University Medical Center. For all isolates, the location of the isolation (country) and the isolation year (except for one
sample) were provided (Supplementary Table S2, Supplementary Figure S1).

DNA extraction
Four streaks of each gram-negative bacterial isolate were cultured on trypticase soy agar containing 5% sheep blood, and
cell  suspensions  were  made  in  sterile  1.5  ml  collection  tubes  containing  50  µl  Nuclease-Free  Water  (AM9930,  Life
Technologies).  Bacterial  isolate  samples  were  stored  at  −20°C  until  nucleic  acid  extraction.  The  Tissue  Preparation
System (TPS) (096D0382-R 02_01_B, Siemens) and the VERSANT® Tissue Preparation Reagents (TPR) kit (10632404B,
Siemens) were used to extract DNA from these bacterial isolates. TPS for nucleic acid extraction has been described
previously [31–33]. Before extraction, the bacterial isolates were thawed at room temperature and were pelleted at 2000g
for 5 s. The DNA extraction protocol DNAext was used for complete total nucleic acid extraction of samples. The total
nucleic acid eluates were then transferred into 96 well quantitative polymerase chain reaction (qPCR) detection plates
(401341, Agilent Technologies) for RNase A digestion,  DNA quantitation and plate DNA concentration standardization
processes.  Rnase A (AM2271,  Life  Technologies),  which  was diluted in  nuclease-free water  following manufacturer’s
instructions, was added to 50 µl of the total nucleic acid eluate for a final working concentration of 20 µg/ml. Digestion
enzyme and eluate mixture were incubated at 37°C for 30 min using Siemens VERSANT® Amplification and Detection
instrument. DNA from the RNase-digested eluate was quantitated using the Quant-iT™ PicoGreen dsDNA Assay (P11496,
Life  Technologies)  following the assay kit  instruction,  and fluorescence was determined on the Siemens VERSANT ®
Amplification and Detection instrument. In total, 25 µl of the quantitated DNA eluates were transferred into a new 96 well
PCR plate for plate DNA concentration standardization before library preparation. Elution buffer from the TPR kit was used
to adjust DNA concentration. The standardized DNA eluate plate was then stored at −80°C until library preparation.

Pure isolates from the S. aureus data set were grown overnight in brain heard infusion liquid culture with regular shaking (3
ml, 150 rpm). In total, 1 ml of overnight culture was centrifuged (10 min at 5000g), and the pellet was resuspended in P1
buffer (Qiagen), supplemented with 4 µl lysostaphin (10 mg/ml, frozen stock solution, Sigma) and incubated at 37°C (30
min, 900 rpm) for enzymatic digestion of  S.  aureus cell walls. Protein K extraction was performed at 56°C (30 min) by
adding 300 µl lysis buffer and protein K solution (Maxwell 16 LEV Blood DNA kit, Promega). Following automated nucleic
acid isolation (Promega Maxwell) culture extracts were eluted in 75 µl nuclease-free water. Quality of high molecular DNA
without DNA degradation was confirmed by standard agarose gel electrophoresis.

Next-generation sequencing
Before library preparation, quality control of isolated bacterial DNA was conducted using a Qubit 2.0 Fluorometer (Qubit
dsDNA  BR  Assay  Kit,  Life  Technologies)  and  an  Agilent  2200  TapeStation  (Genomic  DNA  ScreenTape,  Agilent
Technologies).  Next-generation  sequencing  libraries  were  prepared  in  96  well  format  using  NexteraXT DNA  Sample
Preparation Kit and NexteraXT Index Kit for 96 indexes (Illumina) according to the manufacturer’s protocol. The resulting
sequencing libraries were quantified in a qPCR-based approach using the KAPA SYBR FAST qPCR MasterMix Kit (Peqlab)
on  a  ViiA  7  Real-Time  PCR  System  (Life  Technologies).  In  total,  96  samples  were  pooled  per  lane  for  paired-end
sequencing (2×100 bp) on Illumina Hiseq2000 or Hiseq2500 sequencers using TruSeq PE Cluster v3 and TruSeq SBS v3
sequencing chemistry (Illumina). Basic sequencing quality parameters were determined using the FastQC quality control
tool for high-throughput sequence data [34], and the reports were summarized using MultiQC (version 0.8) [35] for the
gram-negative isolates and S. aureus, respectively (Supplementary Tables S3 and S4, Supplementary Figures S2 and S3). A
subset of gram-negative samples was resequenced because of low read coverage in the initial run; data of both runs were
subsequently merged (Supplementary Table S1).

Proteome-based identification
Bacterial isolates were cultured on trypticase soy agar containing 5% sheep blood (BD BBL) and incubated at 35°C for 18–
24 h. Isolates were subjected to MALDI-TOF MS analysis using the Bruker Biotyper 3.1.65 (Bruker Daltonics,  Bremen,
Germany). Isolated colonies were directly smeared onto a polished steel target plate (Bruker Daltonics). Matrix ( α-cyano-4-
hydroxycinnamic acid,  Bruker Daltonics),  reconstituted as recommended by the manufacturer (50% acetonitrile,  47.5%
water and 2.5% trifluoroacetic acid), was added to the cellular material on the target plate.

Following successful calibration with the Bacterial Test Standard (Bruker Daltonics), bacterial isolates were tested on the
Bruker Biotyper (flexControl version 3.3.108.0 and flexAnalysis 3.3.80.0) following the manufacturer’s instructions. Mass
spectra were obtained,  and scores were generated.  Scores of  ≥2.0 were considered probable species identifications,
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scores of  ≥1.7 but  <2.0 were considered probable genus identifications and scores <1.700 were considered not reliable
identifications, i.e. as not identified. The used cutoff values were defined according to the manufacturer’s guidelines.

From 846 isolates analyzed with the Bruker Biotyper system, 100 samples were retested in a second run because they
were not identified or yielded ambiguous classification in the first run. Best hits of the first and the second run were
considered as the classification results. These included either species- or genus-level assignments with respect to the
score cutoff values as described above. For all species assignments, the corresponding genus was determined using the
R-package taxize [36] and the NCBI taxonomy database [37] (accessed 4 October 2016). The results of both runs were
consolidated as follows: if the runs disagreed on the species level but not on the genus level, then only the genus was
saved; if the runs disagreed on the genus level, the sample was considered as unclassified; and if a sample was classified
at  the  species level  in  one run but  only  at  the genus level  in  the other  run and both  genus-level  assignments were
concordant,  then  the  species-level  assignment  was  saved.  Detailed  information  on  each  sample  can  be  found  in
Supplementary Table S1.

The identification of the isolates from the S. aureus data set was performed by a MALDI-TOF MS analysis using standard
protocol (Bruker Biotyper, Bruker Daltonics).

Genome-based identification of bacteria
We  applied  five  tools  for  whole-genome-based  taxonomic  classification:  BLAST-based  tools  DIAMOND  [20]  Lowest
Common Ancestor (LCA) assignment using MEGAN [38]) and TUIT [21], and k-mer-based approaches CLARK [22], Kaiju
[23] and Kraken [24].

CLARK:  Version 1.1.3 was used,  and the database was created with the respective script  at  the species level  using
finished bacterial genomes from the NCBI RefSeq database (2 November 2015). The tool was run in default mode, k-mer
lengths were set to 21, 25, 29 or 31 and forward and reverse paired-end reads were used as input.  Report files were
created using ‘getAbundance’ with default parameters.

Kaiju: Version 1.4-7 was used with the default database of complete genomes downloaded from NCBI FTP server (30
June 2016). Paired-end reads were used as input with the default run mode Maximum Exact Matches (MEM). Report files
on species level were created using ‘kaijuReport’.

Kraken:  Version 0.10.4-beta was used with the default  database containing finished genomes from the NCBI RefSeq
database (13 January 2015). The k-mer lengths were set to 21, 25, 29 or 31, and forward and reverse paired-end reads
were used as input. Report files were created from the raw output using ‘kraken-report’.

DIAMOND/MEGAN: As DIAMOND has no direct support for paired-end reads, we used only forward reads as input. Version
0.6.13.48 was used with BLASTX search against the NCBI nonredundant protein sequence database (nr) (27 February
2015) with default parameters. The output was further processed using the LCA method implemented in MEGAN (version
5.10.6, tool blast2lca with default parameters and GenInfo Identifier (GI) number taxon mapping from March 2015) and
summarized by counting the number of mapped sequences for each listed taxon.

TUIT: As in the case of DIAMOND, only forward reads were used as input. Furthermore, the FASTQ file was converted to
FASTA format using FASTX-Toolkit  [39]  (version 0.0.14,  with  ‘-Q 33’),  and unique reads were collapsed to reduce the
number  of  input  sequences.  TUIT (version  1.0.3.2)  was  used  with  local  BLAST search  against  the  NCBI  nucleotide
collection (nt) (4 April 2014) and default parameters. The output was summarized as described for DIAMOND/MEGAN.

Result summaries
From the individual tools’ reports, the following information was computed: species taxon with maximal percentage of
mapped sequences (first best species hit with respect to all reported sequences), the number of sequences mapped to the
best hit species taxon, the number of sequences classified at the species level and the number of sequences mapped to
the expected species taxon, i.e. taxa obtained by the merged MS-based analysis results in case of the gram-negative
isolates. The total number of sequences was set to the number of input sequences, i.e.  the number of reads for the
CLARK, DIAMOND/MEGAN, Kaiju and Kraken results, and the number of FASTA sequences after converting FASTQ files
into FASTA files for the results of TUIT. The summarized results can be found in Supplementary Tables S1 and S2.

Performance measures
For each WGS-based summary file, the following performance measures were calculated: the sensitivity, precision and F-
measure values with respect to the best species hit and expected species taxon (Supplementary Table S1). Sensitivity was
defined as the ratio of reads assigned to the species taxon and the total number of reads. Precision was defined as the
ratio of reads assigned to the species taxon and reads classified at the species level (i.e. assigned to any species taxon).
F-measure was defined as 2 × (sensitivity ×  precision)⁄(sensitivity + precision).

53



Runtime analysis
To compare the runtimes of the tools, we randomly selected five gram-negative samples whose number of reads was
between 100 000 and 1 000 000 to reduce computational cost. For each sample and each tool, the elapsed (wall clock)
time was estimated three times using ‘GNU time’ (version 1.7). Before measuring the time, the tools were ‘pre-run’ on a
single sample. The tools were called in the same way as described above with the following additional settings:  the
number of threads was set to 30 using the parameter ‘–threads’ for Kraken and DIAMOND, ‘-n’ for CLARK and ‘-z’ for Kaiju.
For TUIT, only the number of threads for the BLAST search can be set manually through the parameter ‘NumThreads’ in the
supplied property file. This parameter was also set to 30. Furthermore, we used the option ‘–preload’ for Kraken. The
analysis was performed on a server with 500 Gb RAM and 64 processors [AMD Opteron™ Processor 6378] with 1400 MHz.
The time spent  on downloading and creating the databases was not  considered.  The final  runtime per  sample  was
computed as the mean over the three repetitions and normalized by the number of read pairs in the corresponding FASTQ
files.

Effect of read processing on results of CLARK and Kraken
CLARK and Kraken were additionally run on paired reads pre-processed with Trimmomatic [40] as described below. K-mer
length was set to 31. All other parameters and output processing were kept as described above.

Identification of species contained in the reference databases
Whether the expected species were represented by the used reference databases of the WGS-based tools was determined
as follows:  for  CLARK,  Kaiju,  Kraken and TUIT,  the  GI  numbers were extracted from used nucleotide  sequences and
mapped to the taxonomy names using the taxonomy mapping files of NCBI; then we checked whether the expected taxa
were contained in the set of retrieved taxonomy names; for DIAMOND/MEGAN, the sequence titles were extracted from
the used nr database, filtered to retrieve only those with one unique taxonomy name and used to search for the expected
taxa.

Identification of candidate mixtures
To detect samples containing genomic data of more than one organism, we performed a homogeneity analysis based on
the  WGS  data.  The  raw  reads  were  trimmed  using  Trimmomatic  [40]  (version  0.35,  command  line  parameters:  PE
ILLUMINACLIP:NexteraPE-PE.fa:1:50:30  LEADING:3  TRAILING:3  SLIDINGWINDOW:4:15  MINLEN:36),  assembled  into
scaffolds using SPAdes [41] (version 3.6.2, command line parameters: -k 21,33,55 –careful) and annotated by PROKKA
[42] (version 1.11, command line parameters: –gram neg –mincontiglength 200). The homogeneity of individual samples
was assessed using a set of ‘essential genes’. These genes are in single copy and conserved in 95% of all sequenced
bacteria [43]. A sample was considered a candidate mixture if >10 of the essential genes were found in multiple copies
(Supplementary Tables S1 and S2).

Multilocus sequence typing
Multilocus sequence typing (MLST)  profiles for each isolate were obtained using a pipeline implemented by Torsten
Seeman [44] (version 2.6) and PubMLST schemes [45] (8 August 2016). The scaffold FASTA files obtained by PROKKA
(mentioned earlier) were used as input. The output contained the closest PubMLST scheme, the corresponding sequence
type (ST; if available) and the allele IDs (Supplementary Table S3). Results containing more than one missing allele were
considered as unreliable.

Validation set
A validation set of gram-negative isolates used to access the performance of WGS-based results was defined as follows.
It included only samples identified at species level by MS-based analysis and whose species taxon was supported by the
expert-driven taxonomy. If the expert-driven taxonomy contained two species taxa, then it was sufficient that one of them
was the same as the MS-based taxon. If the expert-driven taxonomy included only genus, then it was required to be the
same as the genus MS-based species taxon. Furthermore, samples were excluded if their assembly failed or if they had
<200 000 reads or if they were identified as candidate mixtures (Supplementary Table S1) resulting in 656 samples in total.
For S. aureus, the validation set contained 194 isolates after removing samples because of failed assembly or if they had
<200 000 reads or if they were identified as candidate mixtures (Supplementary Table S2).
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Results

Gram-negative isolates
Our data set consisted of 846 gram-negative bacterial  clinical isolates collected and identified by microbiologists for
diagnostic purposes (Figure 1).  These isolates were part of the microbiology strain collection at Siemens Healthcare
Diagnostics (West Sacramento, CA). We sequenced whole genomes of all 846 isolates using an Illumina HiSeq system
and performed WGS-based taxonomic classification using in silico methods. Additionally, a Bruker Biotyper MALDI-TOF
MS system was used for taxonomic characterization where a subset of 100 isolates was reclassified in a second run. For
240 isolates, the date of collection was available covering a time span from 1986 to 2011 ( Supplementary Figure S1).
Furthermore, for 783 isolates, the data set included the collection location: a majority of samples was collected in North
America (738), followed by Japan (23), Europe (21) and Australia (1).

In the MS-based analysis of the 846 isolates,  eight (0.9%) samples in the first run and four from the 100 reanalyzed
samples (4%) were not identified. Only two samples remained unclassified after both runs. In total, 734 of 846 (86.8%) and
86 of 100 (86%) isolates were resolved to the species level in the first and second run, respectively, while 104 of 846
(12.3%)  and  10  of  100  (10%)  were  classified  at  the  genus  level  only.  The  score  values  varied  from  1.73  to  2.57
(Supplementary Figure S4). For the 74 samples identified at the species level in both MS runs, 52 (70.3%) had concordant
results. From the remaining 22 samples with divergent species taxa, 16 were assigned to the same genus. Among these,
11 samples were identified as Serratia ureilytica in the first run but reclassified as Serratia marcescens in the second run. A
stronger concordance of 83 of 90 samples (92.2%) was observed at the genus level. After merging the results of both
runs, 723 from 846 samples (85.5%) were classified at the species level, 114 (13.5%) at the genus level only and 9 (1.1%)
were considered as unclassified (Supplementary Table S1).

Next, we examined the agreement between the MS-based results and the expert-driven taxonomy over all isolates (846).
Concordant species assignments (in case of two taxa, one match was sufficient) were observed in 646 (76.4%) cases

Figure 1. Taxonomic composition of the 846 gram-negative isolates based on expert-driven taxonomy.
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(Figure 2, Supplementary Figure S5). Moreover, the MS-based results were supported by all WGS-based tools (for CLARK
and Kraken, k=31) in 602 (71.2%) cases where 24 (2.8%) assignments were not supported by the expert-driven taxonomy.
The validation set for the evaluation of the WGS-based tools was defined comprising 656 isolates with verified species
classification  (Supplementary  Table  S1).  The  taxonomy  of  the  selected  isolates  was  additionally  confirmed  by  the
assembly-based MLST results.  For species with available MLST schemes in  the PubMLST database,  for all  samples,
except  one  Klebsiella pneumoniae isolate,  the  closet  reported  scheme  belonged  to  the  expected  species  taxon
(Supplementary Figure S6), and in 354 of 458 cases, a ST could be assigned (Supplementary Table S1). In the following, if
not stated otherwise, only the isolates from the validation set were used for the analysis of the WGS-based results.

CLARK and Kraken require the k-mer length to be fixed when building the respective reference databases. In both cases,
the values was set to 31, the default value of Kraken. In an additional analysis, we confirmed the observation made for
Kraken and CLARK that higher k-mer values are associated with higher precision and lower values with higher sensitivity
[22, 24] (Supplementary Figure S7). We examined the results obtained from CLARK, DIAMOND/MEGAN, Kaiju, Kraken and
TUIT regarding the wrongly assigned species taxa and their presence in the reference data sets of the used tools (Figure
3). The numbers of incorrect classifications per species were comparable among all five tools with some exceptions: 5
Citrobacter koseri and 19  Enterobacter aerogenes samples were misclassified by DIAMOND/MEGAN and TUIT, whereas

Figure 2. Euler diagram of the species taxa of the expert-driven
and MS-based identifications.  In cases where two species taxa
were given by the expert-driven taxonomy, a match to one of the
taxa  was  sufficient  to  report  concordance.  The  third  set  lying
within the MS-based taxa set represents assignments supported
by CLARK (31-mers), Kaiju, DIAMOND/MEGAN, Kraken (31-mers)
and TUIT. Its difference with the set of the expert-driven species
taxa  includes  three  isolates  without  an  expert-based  species
assignment.

Figure 3. A number of misclassified samples from the validation
set  per  species for  CLARK (31-mers),  Kaiju,  DIAMOND/MEGAN,
Kraken (31-mers)  and TUIT.  Only  the expected species taxa for
which at least one tool yielded a misclassification were included.
The number  of  misclassifications is provided within each cell—
the higher the value, the darker the background color. For CLARK,
Kaiju  and Kraken,  the numbers of  species missing in  the used
databases  are  printed  in  bold  and  are  highlighted  by  a  black
rectangle.  The  genus  taxa  were  abbreviated  by  the  first  three
letters.
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CLARK, Kaiju and Kraken yielded no misclassifications for these species; TUIT assigned all 17 Klebsiella oxytoca samples
to K.  pneumoniae but had only two wrong assignments for Proteus vulgaris, whereas the other tools misclassified 11 P.
vulgaris samples. For CLARK and Kraken, in all 30 cases of incorrect species classifications, the expected taxon was not
contained in the respective reference databases. For Kaiju, this was the case for only 4 of the 18 incorrect assignments.
The databases used for DIAMOND and TUIT contained all expected species taxa. To perform a fair comparison of the
tools, only isolates belonging to species included in the reference data sets of all five tools (626 samples) were considered
if not stated otherwise.

The overlap of species assignments between all four tools was 92.3% (578 of 626 samples) (Supplementary Figure S8).
CLARK  and  Kraken  obtained  same  species  assignments  for  all  samples,  while  the  lowest  concordance  was  found
between Kaiju and TUIT (92.3%). As next, we compared the results of CLARK, DIAMOND/MEGAN, Kraken and TUIT with
respect  to the expected species taxa.  For  each of  the five tools,  the percentage of  correct  species-  and genus-level
assignments was computed (Supplementary Figure S9). The best results were obtained by CLARK and Kraken with 100%
of  correctly  assigned  species  taxa  followed  by  Kaiju  (99.5%),  DIAMOND/MEGAN  (96%)  and  TUIT  (92.7%).  We  then
considered the mean classification performance computed with respect to the expected species taxa. CLARK and Kraken
demonstrated  comparable  mean  sensitivity  values  of  79.1  and  81.7%,  respectively;  DIAMOND/MEGAN  had  a  mean
sensitivity of 64.6 % followed by Kaiju (31.4%), and TUIT (25.8%) (Figure 4). The highest mean precision was achieved by
Kraken (96.2%) followed by CLARK (94.5%), TUIT (87.5%), Kaiju (87.2) and DIAMOND/MEGAN (79.2%). Regarding the F-
measure, best mean performance was achieved by Kraken (87.9%) followed by CLARK (85.5%), DIAMOND/MEGAN (71%),
Kaiju (41.8) and TUIT (34.5%). Finally, we examined the distribution of the best hit performance values for correctly and
wrongly classified isolates (Supplementary Figure S10). We observed that isolates assigned to wrong species taxa tended
to have a combination of lower sensitivity and precision values compared with correctly classified isolates. However, there
was no clear separation of both groups. Moreover, it should be noted that the pairwise sensitivity and precision values of
DIAMOND’s results were often almost identical.

Besides the classification performance, computational runtime is a relevant factor in choosing which software to use,
especially when analyzing large-scale data sets. Hence, we compared the runtimes of the tools based on five randomly
selected samples (Figure 4). Among the herein used tools, TUIT was the slowest with an average of 169 min per 1 million
reads followed by DIAMOND (32.6 min). CLARK, Kaiju and Kraken achieved the best results requiring <3 min per 1 million
reads, with Kaiju being the fastest (<1 min).

Finally, we investigated whether adapter and quality trimming of the raw reads would adversely affect the classification
results with the focus on CLARK and Kraken, as they demonstrated comparable results and achieved better performance
than the other tools. We compared the results obtained using raw or processed reads (for  k=31).  Regarding the best
species hits of all  samples from the validation set  (656),  all  assignments stayed consistent when using CLARK and
Kraken. Moreover, we compared the percentages of raw and trimmed reads assigned to the best hit and expected species

Figure 4. The mean runtime (n=5) per 1 million reads measured using five randomly chosen gram-
negative samples, and the mean sensitivity, precision and F-measure percentages computed with
respect to the expected species taxa for CLARK (31-mers), DIAMOND/MEGAN, Kaiju, Kraken (31-
mers) and TUIT. Only samples from the validation set and with expected species present in all
used reference databases were used. The x-axis is square root transformed.
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taxa, respectively. The distribution of the absolute differences (Supplementary Figure S11) was inspected, and the 99th
percentile (at the value of 2.6 for CLARK and 2.5 for Kraken) was defined as the cutoff for outlier detection: The numbers
of outliers for the best hits and expected species taxa, respectively, were seven for CLARK and Kraken.

Staphylococcus aureus isolates
We whole genome sequenced 200 S.  aureus clinical isolates from the  S.  aureus strain collection of Saarland University
Medical Center.  The samples were collected between 1976 and 2014 (Supplementary Figure S1).  The majority of the
isolates (187) was collected from Germany, 11 were from Mozambique, 1 from Switzerland and 1 from the United States
(Supplementary Table S2). In the assembly-based MLST analysis, for all isolates, except one, in the validation set, the
closest reported MLST scheme belonged to S. aureus, and 173 isolates were assigned to known MLST profiles.

We performed an analogous analysis as for the gram-negative isolates to compare the WGS-based results. The tools were
concordant with the assignments of all isolates in the validation set except for one case where Kaiju disagreed with the
other tools (Supplementary Figure S12). Only one isolate was not assigned to  S.  aureus by CLARK, DIAMOND/MEGAN,
Kraken and TUIT; two isolates were misclassified by Kaiju (Supplementary Figure S13). CLARK and Kraken achieved high
mean sensitivity values of 90.8% and 91.3%, respectively (Supplementary Figure S14). Lower values were observed for
TUIT (77.1%), DIAMOND/MEGAN (75.9%) and Kaiju (10.9%). CLARK, DIAMOND/MEGAN, Kraken and TUIT demonstrated
high-precision values of >97%, whereas Kaiju had a lower value of 85.9%. Accordingly, CLARK and Kraken had highest F-
measure values of 94.4 and 94.7%, respectively, followed by TUIT (86.5%), DIAMOND/MEGAN (85.3%) and Kaiju (18.9%).

Discussion
Rapid and accurate pathogen characterization is essential  for  an effective treatment  of infections facilitating patient
stratification and personalized therapies. WGS is gaining importance in the analysis of bacterial cultures derived from
patients with infectious diseases. Various computational approaches have been developed to perform taxonomic analysis
based on  WGS data.  However,  evaluations  using  newly  sequenced  clinical  samples  and  complementary  information
confirming the taxonomy are missing. Here, we performed WGS-based taxonomic analysis of 846 gram-negative bacterial
isolates and validated the results by comparing with MS-based classifications obtained using a Bruker Biotyper MALDI-
TOF MS system and confirmed by expert-driven taxonomy. Our data set included species which are frequently found to be
responsible for nosocomial (hospital-acquired) infections,  such as  Acinetobacter baumannii,  Escherichia coli,  Klebsiella
spp. and Pseudomonas aeruginosa [46]. Additionally, we included a data set of 200 S. aureus isolates.

To determine the concordance between the expert-driven and MS-based taxonomy of the gram-negative isolates, we first
analyzed the MS-based results to determine samples with uncertain or ambiguous classifications. In general, possible
limitations of MS-based analysis include, but are not restricted to, the limited differentiation of E. coli and some Shigella
spp.  Isolates [7,  9,  47–49],  and also inaccurate differentiation of species in  other groups such as  Acinetobacter [48],
Citrobacter [50] and  Enterobacter cloacae complex [48] and the missing identification of  Salmonella isolates below the
genus level [51]. In our MS-based analysis, most samples (about 86%) were classified at the species level and the taxa of
samples classified only at the genus level included, among others, the genera imposing particular challenges to MS-based
biotyping as mentioned above (Supplementary Table S1). We found that both MS runs produced concordant results in 52
of 74 (70.3%) and 84 of 90 (93.3%) cases at the species and at the genus level,  respectively. From the 22 discordant
species-level  assignments,  11 isolates were first identified as  S.  ureilytica and then reclassified as  S.  marcescens.  S.
ureilytica is a relatively new species [52] whose identification by a MALDI-TOF MS system was shown to be challenging
[50, 53], potentially explaining the observed ambiguities. In the final taxonomic assignment, the reported inconsistencies
were resolved such that 723 samples were classified at the species level, 115 at the genus level only and 8 samples were
considered as unclassified because of divergent assignments or failed identification. We then compared the resulting
species taxa with the expert-driven results and observed a high concordance of 76.4%. However, in ca. 3% of the cases, all
tested  WGS-based  tools  were  concordant  with  the  MS-based  result,  which  was  not  supported  by  the  expert-driven
classification. We could assume that in these cases, the expert-driven taxonomy was incomplete (no species taxon) or
incorrect, which demonstrates the importance of using complementary information to confirm the identification results.

Subsequently, we defined a validation set including only samples with confirmed taxonomy to be used for the evaluation of
the WGS-based results. For any taxonomic classification approach, the availability and quality of the reference data are
crucial for an accurate identification. Sequence-based tools for taxonomic classification generally rely on publicly available
data sources. CLARK and Kraken construct their k-mer databases from finished genomes of the NCBI RefSeq database
[54, 55], which included 2785 bacterial data sets (containing chromosome and/or plasmid DNA sequences) in this study.
DIAMOND and TUIT use the NCBI nonredundant protein (nr) and nucleotide (nt) collections [56], respectively. The NCBI nr
collection includes data from GenBank, RefSeq, UniProtKB/Swiss-Prot, PDB and PRF; and the nt collection includes data
from RefSeq and GenBank except EST, GSS, STS and HTG [56]. Kaiju can use complete genomes from the NCBI RefSeq
database  or  the  nr  collection.  In  this  study,  Kaiju  was  run  using  proteins  extracted  from  5135  complete  genomes.
Considering the presence of expected species in the different reference data sets, in only few cases, the availability of the
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respective species was sufficient for correct classifications (Figure 3). Only TUIT was able to correctly identify most of the
P.  vulgaris isolates, though this species was also contained in the reference data sets of DIAMOND and Kaiju. For the
single P. vulgaris genome used by Kaiju (NZ_CP012675.1), we found that the nucleotide sequence of the rpoB gene (DNA-
directed RNA polymerase sub-unit beta, WP_004246906.1), shown to be appropriate to distinguish Proteus spp. [57], was
100% identical to the rpoB gene from the complete Proteus mirabilis genome (NZ_CP012674.1, ALE23450). Furthermore,
the  average  nucleotide  identity  value  [58]  (http://enve-omics.ce.gatech.edu/ani/index)  of  both  genomes was  >99.9%.
Based on  these findings,  we assumed that  NZ_CP012675.1  was  misclassified explaining why  Kaiju  was  not  able  to
correctly identify the  P.  vulgaris isolates. We hypothesized that similar reasons may be responsible for other incorrect
assignments  where  the  expected  species  was  present  in  the  used  database  but  whose  isolates  were  nevertheless
misclassified. Focusing only on species presumably contained in all  databases, our analysis demonstrated that WGS-
based identification approaches can yield highly accurate results. All tools classified >92% (best result 100%) of the gram-
negative  samples  correctly.  CLARK  and  Kraken  demonstrated  best  mean  sensitivity  about  80%  followed  by
DIAMOND/MEGAN  with  64.4%.  Kaiju  and  TUIT  had  a  comparably  low  mean  sensitivity  (31.4  and  25.8%)  but  better
precision (87.2 and 87.5%) than DIAMOND/MEGAN (79.2%). The highest precision was observed for Kraken (96.2%) and
CLARK (94.5%). The low sensitivity of TUIT may be because of missing matches to the reference database or because the
default TUIT cutoff values used during the assignment of the LCAs, were too strict. The authors of TUIT suggest a trial-
and-error procedure to adjust the cutoffs [21], but this was prohibited by the high computational runtime of the tool. In
contrast, the default parameters used for assignment filtering and LCA assignment with MEGAN for the DIAMOND results
appeared to be too permissive, as the sensitivity and precision values were close to each other. Furthermore, it should be
noted that CLARK, Kaiju and Kraken may have benefited from using paired-end data, while DIAMOND and TUIT were run on
forward reads only. Moreover, DIAMOND and Kaiju are only able to classify protein-coding sequences, as the reads are
matched to protein databases affecting their sensitivity. Though we observed a tendency of lower performance values for
incorrectly classified isolates,  some wrongly and correctly assigned isolates demonstrated comparable sensitivity and
precision values. We hypothesized that these cases may either include not detected contaminated isolates or isolates
belonging to a species missing in the database but closely related to other species of the same genus with available
reference data.  These isolates would  require  a closer  examination,  e.g.  considering all  taxa exceeding  a  reasonable
abundance cutoff.  The  overall  results  demonstrate  the  importance of  a  comprehensive  and representative  reference
database for a successful and precise taxonomic classification, which is even more crucial within a clinical setting.

The performance of the WGS-based tools on the S. aureus data set was comparable with the observations made for the
gram-negative isolates: at least 99% of all samples were classified as S. aureus; the exceptions were one sample (ID 191)
classified as Enterococcus faecium by Kaiju and one sample (ID 80) identified as Staphylococcus carnosus by all five tools.
In the latter case, we could assume that the MS-based taxon was wrong or that a wrong probe was used for WGS. Highest
sensitivity was achieved by CLARK and Kraken (>90%), and all tools except Kaiju had a mean precision >97%.

Considering the runtime of the tested WGS-based tools, CLARK, Kaiju and Kraken were substantially faster than DIAMOND
and TUIT requiring only a few minutes to process a million of reads. Furthermore, we also evaluated the robustness of
CLARK and Kraken with respect to adapter and quality trimming of the raw reads and observed that this procedure had
only marginal effects on the classification results.

In summary, the k-mer and exact matching-based tools CLARK and Kraken appear to be the primary choices with respect
to classification performance, usability and runtime among the herein tested approaches. Kaiju represents an appealing
alternative, as it was faster than CLARK and Kraken, and requires no parameters to be set to create a reference database.
But it should be kept in mind that the tool can classify only protein-coding sequences. Overall, taxonomic classification of
bacterial isolates based on WGS data provides highly accurate results, and thus, represents a promising alternative to MS-
based biotyping.  WGS would  also enable further analyses,  such  as phylogenetic  analysis  and genotyping,  which are
mandatory for surveillance of outbreaks and antimicrobial resistance. However,  multiple issues have to be addressed
before  WGS-based  approaches  can  be  applied  in  clinical  settings.  The  effect  of  different  library  preparation  and
sequencing  methods  on  the  quality  of  the  identification  results  should  be  investigated  and  quantified.  As  the
comprehensiveness and the quality  of  the reference database has a high  impact  on  the reliability  of  the taxonomic
assignments,  a  careful  selection  and validation  of  the  reference data  would  be  necessary.  This  holds especially  for
organisms represented by only one genome as seen in case of the (most likely mislabeled) P. mirabilis genome used by
Kaiju. Large-scale efforts, such as the ‘Genomic Encyclopedia of Bacteria and Archaea’ [59] and its pilot studies, and the
‘100K Foodborne Pathogen Genome Project’ [60] are expected to greatly expand the volume and diversity of available
reference genomes. An additional aspect is the genomic variability of bacteria and in particular the differences between
pathogenic and nonpathogenic species. The lifestyle of a bacterium influences to a great extent its genome size and
variability. Pathogenic species represent specialized organisms leading an allopatric lifestyle and are characterized by a
significantly reduced genome compared with species from a sympatric environment [61, 62]. Furthermore, the genome of
a bacterial strain can be seen as a composition of ‘core’ genes, conserved among many strains of the same species, and
‘accessory’ genes, which vary between different strains [62]. The set of all genes found in a species is referred to as a pan-
genome [63]. The core genome similarity is considered to be a good approach to define bacterial species relevant for
humans [62]. However, it has also been proposed to apply pan-genome analysis to redefine bacterial species [64, 65].
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Another important point is the fact that many bacterial organisms cannot be grown in the laboratory, thus challenging their
identification [66]. Single-cell sequencing is considered to be a promising solution for this problem [67]. In our analysis, we
focused on cultured isolates as their accurate identification can be seen as a necessary requirement for future, culture-
independent studies. Regarding the underlying concept of the classification tools, we focused in this study on alignment-
based methods.  But  there  also  exist  alignment-free  approaches (e.g.  PhyloPythia/S/S+  [27–29],  RAIphy  [26]  and the
approach of Vervier et al. [25]), and approaches combining alignment-based and alignment-free similarity measures (e.g.
Borozan et al. [68]). Finally, exhaustive testing procedures using high-quality validation data should be performed including
relevant human pathogens to access the reliability and accuracy of the implemented method.

Key Points
• Kmer-based  taxonomic  information  derived  from  WGS  data  allows  for  accurate  and  fast  classification  of

bacterial clinical isolates at species level, and is thus, an appealing alternative to MS-based analysis.

• Establishing a high-quality reference database as well as its continuous extension is vital for the correctness of
the taxonomic classifications.

• The  evaluation  of  taxonomic  classification  tools  should  include  complementary  information  to  confirm  the
taxonomy of the underlying data.
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Abstract Emerging antibiotic resistance is a major global health threat. The analysis of nucleic acid

sequences linked to susceptibility phenotypes facilitates the study of genetic antibiotic resistance

determinants to inform molecular diagnostics and drug development. We collected genetic data

(11,087 newly-sequenced whole genomes) and culture-based resistance profiles (10,991 out of the

11,087 isolates comprehensively tested against 22 antibiotics in total) of clinical isolates including

18 main species spanning a time period of 30 years. Species and drug specific resistance patterns

were observed including increased resistance rates for Acinetobacter baumannii to carbapenems

and for Escherichia coli to fluoroquinolones. Species-level pan-genomes were constructed to reflect

the genetic repertoire of the respective species, including conserved essential genes and known resis-

tance factors. Integrating phenotypes and genotypes through species-level pan-genomes allowed to

infer gene–drug resistance associations using statistical testing. The isolate collection and the

analysis results have been integrated into GEAR-base, a resource available for academic research

use free of charge at https://gear-base.com.

Introduction

The development of new antimicrobial drugs has largely stag-

nated over the last few decades [1], while the drug resistance
rates of many pathogens have at the same time been increasing
[2–4]. Various large-scale efforts have been launched to inves-

tigate the emerging drug resistance, such as the Meropenem
Yearly Susceptibility Test Information Collection (MYSTIC)
program [2], the Canadian National Intensive Care Unit
(CAN-ICU) study [5], the Canadian National Surveillance

(CANWARD) study [6,7], the Center for Disease Dynamics,
Economics and Policy (CDDEP) study [3], and the European
Antimicrobial Resistance Surveillance Network (EARS-Net)

survey [8]. The results of these studies have shed light on the
most common bacterial pathogens and resistance rates for reg-
ularly administered antibiotics, with the primary focus on the

trend analysis of specific bacterial groups, periods of time, or
locations [2,3,9–12]. The global challenge of emerging drug
resistance is further exacerbated by the rising prevalence of
microorganisms with multidrug resistance (MDR) phenotypes

[13]. Accordingly, identifying and administering the most
effective drug in each individual case is of even greater impor-
tance for successful treatment of bacterial infections. However,

these studies did not investigate the genetic repertoire of the
pathogens, which represents an important source of informa-
tion—e.g., the resistance genotype may be readily revealed

while the respective phenotype is misleading or not expressed
under artificial laboratory conditions [14,15].

Simultaneously, the recovery of genomic information from

microorganisms via high-throughput sequencing approaches
has become a routine task. This not only allows the high-
resolution study of individual organisms’ genomes, but also
the aggregated study in the form of ‘‘pan-genomes”—the uni-

ted genetic repertoire of a clade [16]. Pan-genomes can be used
to identify common genetic potential—i.e., the ‘‘core” genes of
a clade—as well as genes that are less broadly conserved

(‘‘accessory” or ‘‘singleton” genes) [16]. This facilitates the

identification of essential genes or genes that provide adapta-
tion advantages. Multiple computational approaches are avail-
able for the systematic creation of pan-genomes, e.g., Roary

[17], EDGAR [18], and panX [19]. As a result, a variety of bac-
terial pan-genomes, typically at the species-level, have thus far
been constructed [20–23]. However, most pan-genome studies

focus on distinct species and do not always cover clinically rel-
evant species. For example, MetaRef represents a resource that
provides information about pan-genomes from multiple spe-
cies and integrates approximately 2800 public genomes [24].

Although the diversity of the therein included organisms is
particularly broad, the depth is limited in relation to clinically
relevant bacteria—e.g., seven Klebsiella pneumoniae genomes.

Moreover, individual isolates included in the studies often
span narrow time frames and/or have limited geographic
spread.

While pan-genomic studies typically focus on the genetic
information alone, efforts combining genomic and phenotypic
information, in particular from antibiotic resistance testing,

for the study of conserved or emerging resistance mechanisms
are becoming increasingly prevalent [25–28]. There are many
antibiotic resistance resources available [29], however only
few link genomic and phenotypic information of bacterial iso-

lates. One of such resources is the Pathosystems Resource Inte-
gration Center (PATRIC) [30], which represents a rich service
for the study of >80,000 genomes [31]. Yet, antimicrobial

resistance information is available only for about 10% of the
genomes. Furthermore, as the genomes and the associated
metadata of PATRIC are imported from public resources,

which are populated by individual research efforts, data stan-
dardization or normalization is challenging. Finally, individual
taxa may be underrepresented and thus warrant expansion—
e.g., the number of Escherichia spp. genomes with antimicro-

bial resistance metadata is almost two orders of magnitude
smaller than that of Mycobacterium spp. genomes [31].

Motivated by the importance of linking resistance pheno-

types with genomic features, we collected whole-genome
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sequencing data of 11,087 clinical isolates representing, inter
alia, 18 main bacterial species. The samples were collected in
North America, Europe, Japan, and Australia over a period

of 30 years, and processed in a concerted effort, thereby reduc-
ing experimental bias. Culture-based resistance testing was
performed for 10,991 out of the 11,087 isolates against 22

antibiotic drugs. Furthermore, species-level pan-genomes were
constructed on the basis of per-isolate de novo assemblies and
were used to infer gene–drug resistance associations. This

wealth of information is integrated into an online resource,
Genetic Antibiotic Resistance resource, or in short,
GEAR-base (Figure 1). Providing broad organismal, antibiotic
treatment and temporal coverage, GEAR-base is expected to

support the pan-genome-based study of bacteria and to
advance research on known or emerging antibiotic resistance
mechanisms. GEAR-base is available for academic research

use free of charge at https://gear-base.com.

Results

Resistance testing of cultured bacterial isolates

The present dataset of 11,087 bacterial isolates covered a total
of 6 families, 14 genera, and 20 species (considering species
with at least 50 isolates, Table S1) and comprised two datasets:

1001 isolates from the Staphylococcus aureus strain collection
and 10,086 isolates from the Gram-negative collection. From
the S. aureus strain collection, 993 isolates were tested for

methicillin resistance and susceptibility (see Methods section).
For 9998 isolates from the Gram-negative collection, culture-
based antimicrobial susceptibility testing (AST) for 21

commonly-prescribed Food and Drug Administration
(FDA)-approved antibiotics from 8 drug classes was
performed to determine the respective minimum inhibitory
concentrations (MICs) (Figure 2A). The resistance profiles

were determined for each isolate in accordance with the
European Committee on Antimicrobial Susceptibility Testing

(EUCAST) guidelines (v. 4.0) for a total of 182 drug concen-
trations (7–11 concentrations per drug; Tables S2 and S3,
Figure 2B). Whole-genome sequencing (WGS)-based

taxonomic identification was performed for all isolates [32].
In the following content, we focused on the analysis results
of the MICs and resistance profiles of the 9998 isolates from

the Gram-negative collection.
All patient-derived isolates were collected in clinics located

in North America, Europe, Japan, or Australia from 1983 to

2013 (Figure S1). Varying degrees of resistance were observed
among the isolates (Figure 2B). The majority of species
demonstrated relatively low resistance rates (<20%) to
aminoglycosides (gentamicin and tobramycin) and carbapen-

ems (ertapenem, imipenem, and meropenem), except for
Acinetobacter baumannii (� 29% for aminoglycosides and
meropenem), Pseudomonas aeruginosa (26% for gentamicin),

and Klebsiella pneumoniae (26% for tobramycin). These rates
were compared against two independent large-scale studies—
CDDEP (USA-based results; CDDEP ResistanceMap,

https://resistancemap.cddep.org/AntibioticResistance.php,
accessed on September 26, 2017) [3] program and the MYSTIC
program [2], for matching species and drug data. Both studies

report low (<20%) resistance rates for the aminoglycosides
and carbapenems during the observation period (1999–
2012/2014 for CDDEP and 1999–2007/2008 for MYSTIC)
except for A. baumannii (CDDEP: >20% since 2005 for car-

bapenems and >35% during 1999–2012 for aminoglycosides;
MYSTIC: >37% in 2007/2008 for carbapenems and >20%
during most years for aminoglycosides). For K. pneumoniae

and tobramycin (aminoglycosides for CDDEP), MYSTIC
and CDDEP reported >10% resistance rates since 2005 with
only one value of above 20% observed by MYSTIC in 2007.

Finally, for P. aeruginosa and gentamicin, MYSTIC reported
a resistance rate of only around 10%. The rate of isolates resis-
tant to multiple antibiotic drugs, i.e., resistant to at least three

drugs from different drug classes (CDDEP ResistanceMap),
was highest for A. baumannii (44%) and for Enterobacter
spp. (41%–45%). For the remaining species and drug classes,

Figure 1 GEAR-base workflow and structure

Schematic overview of data collection, processing and integration into GEAR-base.
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the MDR rates were at least 20%, except for Acinetobacter cal-
coaceticus (0%), Salmonella enterica (11%), and Shigella spp.

(0%–3%). In addition to the investigation of individual spe-
cies–drug combinations, we analyzed whether drug pairs
showed correlating MIC profiles among all isolates (Figure S2).

In general, the highest correlations were expectedly found
within separate drug classes — e.g., for fluoroquinolones,
aminoglycosides, and carbapenems. While for some species,

e.g., Burkholderia cenocepacia, a clear clustering according to
drug classes and their mechanism of action was observed,

other species, such as S. enterica, showed less pronounced clus-
ter structures.

Subsequently, we compared resistant and non-resistant iso-
lates with respect to their collection year in order to identify
potential trends of de-/increasing antibiotic resistance rates

(Figures S3 and S4, and Table S4). The following species–drug
pairs were found to exhibit particularly low P values [WMW-
test, false discovery rate (FDR) adjusted P < 1E�17], as well

as increases in resistance over time: K. pneumoniae to cefepime,
K. pneumoniae and A. baumannii to carbapenems, and E. coli to

Figure 2 Overview of resistance profiles

Heatmaps of log-transformed (base 2) median MIC values (A) and resistance rates (B) for all species with at least 50 isolates. Drugs labels

were grouped relative to their class. The cells are coded in color gradient from blue to red with blue for lower values and red for higher

values. White color in panel B corresponds to the cases where no breakpoints are available from the used guidelines. MIC, minimum

inhibitory concentration.
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fluoroquinolones. Similar trends were reported by the CDDEP
[3] program (CDDEP ResistanceMap) and the MYSTIC pro-
gram [2], including increasing resistance rates for A. baumannii

to carbapenems (43% from 1999 to 2014 in the USA, CDEEP),
and for E. coli to fluoroquinolones (30% from 1999 to 2014 in
the USA, CDEEP; >20% from 1999 to 2008, MYSTIC).

While the culture-based analyses provide species-resolved
information about resistance rates over time and corroborate
previous findings on the global increase in antibiotic resistance,

genetic features represent important factors and were thus con-
comitantly considered.

Whole-genome de novo assembly of isolates and species pan-

genomes

A total of 11,087 bacterial isolates were whole-genome
sequenced using Illumina Hiseq2000/2500 sequencers, result-

ing in a median number of 1,517,147 paired reads per isolate
(1,609,533 ± 620,481). De novo assemblies were successfully
created for 11,062 (99.8%) isolates (Figure 3) and of these,

the assembled genomes of 10,764 (97.3%) isolates passed the
stringent assembly quality criteria. Moreover, the assembled
genomes of 9206 (83% of 11,087) isolates fulfilled the quality

criteria for taxonomic assignment. A total of 8729 isolates,
representing 18 main species having �50 isolates, were used
after stringent quality filtering (see Methods for sample filter-

ing details) in the subsequent analyses and in the construction
of species-level pan-genomes (Table S3).

First, the presence/frequency of genes from a set of 111
single-copy marker genes, which were defined as essential

genes by Dupont et al. [33], was used as a proxy to estimate
the genome completeness of individual de novo assemblies.
Overall, the assemblies were found to be largely complete. 92

essential genes (82.9%) were identified in at least 99% of the

Figure 3 Assembly quality overview

Assembly summary statistics for the 11,062 isolates with a de novo assembly. The isolates were grouped by their species taxon, and isolates

not belonging to any of the main 18 species used for pan-genome construction were grouped into ”Other”. The box plots show the GC

content (A), mean assembly coverage (B), number of contigs (C), L50 value (D), and N50 value (E) for contigs of at least 200 bp. The

assembly quality cut off values are illustrated by dotted lines (1000 for the number of contigs; 200 for L50; and 5000 bp for N50). The plot

area satisfying the respective filtering criterion is colored in green. Percentages of isolates passing the respective criterion as well as all

criteria are shown to the right.
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8729 isolates (Figure S5) that were used to construct a phylo-
genetic tree of these isolates (Figure S6). Furthermore, species-
specific presence/absence patterns were frequently observed

(Figure S7A). For example, TIGR00389 (glycine–tRNA
ligase) was only found in S. aureus, whereas TIGR00388 (gly-
cine–tRNA ligase, alpha subunit) was not present in this spe-

cies. Four genes, TIGR00408 (encoding the proline–tRNA
ligase), TIGR02387 (encoding the DNA-directed RNA poly-
merase, gamma subunit), TIGR00471 (encoding the pheny-

lalanine–tRNA ligase, beta subunit), and TIGR00775
(encoding the Na+/H+ antiporter, NhaD family), were not
found in any of the isolates, except for sporadic hits in Pseu-
domonas aeruginosa for TIGR00408.

In the next step, Resfams core-based resistance factors [34]
were annotated in the isolate assemblies in order to study the
species-level distribution of these genetic features. The number

of covered Resfams (mean count of hits �1) varied between
species from 4.1% (5 of 123 Resfams, Morganella morganii)
to 11.4% (14 of 123 Resfams, A. baumannii and Shigella son-

nei) (Figure S8). Three Resfams were found in at least 90%
of all considered isolates. These are all antibiotic efflux pumps,
which include RF0007 [ATP-binding cassette (ABC) type],

RF0107 (ABC type), and RF0115 [resistance-nodulation-cell
division (RND) type], with the latter having a mean count of
hits of �5 for 14 out of 18 species.

The multi-locus sequence typing (MLST) analysis revealed,

that in all species with a typing scheme included in the used
version of PubMLST, isolates were assigned to at least 6 differ-
ent sequence types (STs), except for S. sonnei, and new STs

could be identified, except for Shigella flexneri and S. sonnei
(Figure S9). Among these species, the proportion of isolates
without a confident assignment was high (�10%) for B. ceno-

cepacia, Enterobacter cloacae, Klebsiella oxytoca, and Steno-
trophomonas maltophilia.

The size of the species pan-genomes (i.e., the number of cen-

troids) ranged from 5838 (S. aureus, total pan-genome length
<5 Mb) to 42,046 (E. cloacae, total pan-genome length
>30 Mb) (Figure S10). A centroid refers here to the representa-

tive gene of a homologous gene cluster with �90% pair-wise
amino acid sequence identity (Methods). Most centroids were
found in<10%or in�90%of the isolates (Figure 4).Moreover,

all pan-genomes were found to be open based on the analysis of
the number of centroids in relation to the number of included
genomes (Figure S11, Table S5). The two-dimensional embed-
ding of the core centroids from the pan-genomes revealed many

taxon-specific patterns (Figure S12) with distinct clusters for B.
cenocepacia, M. morganii, A. baumannii, Proteus mirabilis, S.
aureus, S. maltophilia, P. aeruginosa, and Serratia marcescens.

We compared the number of (core) centroids in our pan-
genomes to the numbers reported by panX [19] (http://pangen-
ome.tuebingen.mpg.de, accessed on January 29, 2018). The

number of centroids present in at least 90% of the analyzed gen-
omes was consistent for all matching species (Table S6). How-
ever, the pan-genome size, i.e., the total number of centroids

described in GEAR-Base, was similar for E. coli and S. aureus,
but exceeded substantially the number of centroids described in
panX for A. baumannii, K. pneumoniae, P. aeruginosa, and S.
enterica (Table S6). With respect to the presence of essential

genes in the species-level pan-genomes, themean number of cen-
troids containing at least one matching gene was one, that is,
these essential genes were mostly found in only one centroid

cluster (Figure S7B). However, the mean number of centroids
was �1.25 for eight essential genes, i.e., in some species these
genes were found in multiple centroid clusters.

Figure 4 Centroid frequency

Number of centroids in each pan-genome of the 18 main species in relation to their frequency. The first column contains centroids that are

present in <10% of the isolates, and the last one contains centroids that are present in �90% of the isolates. Cells are coded in color

gradient to indicate the log10-transformed number of centroids. The bar plot on the right shows the number of isolates used to construct

the respective pan-genomes.

174 Genomics Proteomics Bioinformatics 17 (2019) 169–182

69



In the following section, the resistance phenotypes and
genomic features were linked and significantly associated
centroids were further studied, with respect to their overlap

to known resistance genes from the Resfams core database.

Resistance associations by linking phenotype and genotype

We used binary information in the form of centroid presence/
absence to test for significant centroid–drug associations per
species. The number of found associations ranged from below

10 to above 500; most associations (�500) were found for
P. aeruginosa and tobramycin, and K. pneumoniae and gentam-
icin (Figure 5). Furthermore, the drug resistance-associated

centroids encoding for a resistance gene were investigated.
From the Resfams core database, 45 of the 123 factors were
found in at least one centroid (Figure S13). Among these,
the top ten Resfams genes from both analyses covered various

resistance mechanism classes – nucleotidyltransferases,
phosphotransferases, acetyltransferases, beta-lactamases, and
major facilitator superfamily (MFS) transporters

(Figure S13B).

GEAR-base online resource

The GEAR-base resource is freely accessible at https://gear-
base.com for academic research use and currently provides
two modules for browsing of the database—a culture-based
module and a pan-genome module—as well as a module for

the analysis of user-provided data. The culture-based module
is focused on the Gram-negative isolate collection and pro-
vides an interactive view of the taxonomic composition,

MIC, and resistance profiles, as well as additional meta-data,
e.g., collection year or isolate distributions. The pan-genome
module provides general statistics, such as assembly quality

of the included isolates, pan-genome size, and resistance

association analysis overview, for both the Gram-negative
and the S. aureus isolates. Gene nucleotide sequences can be
downloaded for each individual pan-genome centroid and a

batch-download of all centroid nucleotide sequences is avail-
able. Moreover, pan-genome centroids can be browsed online
for specific gene products and filtered by their presence in the

isolates. In addition, centroid clusters can be viewed including
associated gene annotations, the hits to the Resfams core data-
base, and information about potential resistance associations

against the set of herein included drugs. GEAR-base’s analysis
module allows the user to query individual gene sequences
against the pan-genome centroid sequences using Sourmash
[35], against hidden Markov models (HMMs) of pan-genome

centroid clusters and Resfams core database using HMMER
(http://hmmer.org/), and against the NCBI nt/nr database
using BLASTp [36]. Furthermore, a genome-scale search

against the present clinical isolate collection, the finished gen-
omes from the NCBI RefSeq database [37], as well as the
National Collection of Type Cultures (NCTC) 3000 genomes

project from the Public Health England and the Wellcome
Trust Sanger Institute (http://www.sanger.ac.uk/
resources/downloads/bacteria/nctc/, accessed on October 18,

2017) can be performed online using Mash/MinHash [38].
We used a recently-published K. pneumoniae genome [39]

(strain 1756, NCBI assembly accession ID GCF_
001952835.1_ASM195283v1) to demonstrate the analysis func-

tionalities of GEAR-base. In a first step, the chromosome and
plasmid sequences were uploaded and a perfect match was
found to the genome’s NCBI entry, as expected. The next-

best matches were to a K. pneumoniae isolate from the current
collection of clinical isolates (828/1000 shared hashes, distance
of 4.71E�3), and to a Klebsiella sp. genome (ERS706555) from

the NCTC 3000 database (709/1000 shared hashes, distance of
8.89 E-3). In a second step, all coding DNA sequences (CDS)
were searched against the pan-genome centroids in GEAR-

base using Sourmash and against the Resfams core database.

Figure 5 Number of significant results of the resistance association analysis

Significant results (adjusted P < 1E�5) of the resistance association analysis based on the presence/absence of centroids. The heatmap

shows the number of significant results (in color gradient with lighter blue for smaller numbers and darker blue for larger numbers) per

taxon and drug. Drugs are sorted according to their class.
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The majority of the pan-genome hits were related to K. pneu-
moniae (6206 hits of 11,267) followed by E. aerogenes (1537
hits) and K. oxytoca (1014 hits). S. aureus, a Gram-positive

species, served as an outgroup and no hits to its pan-genome
were found. In total, 37 hits to 21 unique Resfams (core data-
base) were found in the query genome CDS with 23 hits on the

chromosome and 14 on the plasmid. The top three most occur-
ring Resfams were RF0115 (8 hits, RND antibiotic efflux
pump), RF0098 (3 hits, multidrug efflux RND membrane

fusion protein MexE, RND antibiotic efflux), and RF0053
(3 hits, class A beta-lactamase). Furthermore, the CDSs of
eight antibiotic resistance genes reported in the original gen-
ome announcement were investigated. The HMM-based

search of pan-genome centroids resulted in the identification
of two chromosomal CDSs, WP_076027158.1 (multidrug
efflux RND transporter periplasmic adaptor subunit OqxA)

and WP_004146118.1 (FosA family fosfomycin resistance glu-
tathione transferase), being classified as K. pneumoniae-derived
centroids according to their top hits (with respect to the full

sequence score). The top hits of the remaining genes
(5 plasmid-derived and 1 chromosome-derived) included
centroids from other Gram-negative species. However, the

centroid cluster annotations matched the expected protein
functions for all eight CDSs independent of the species. The
top three hits for WP_004146118.1 were centroids from
K. pneumoniae, E. aerogenes, and K. oxytoca, matching the

expected annotation and present in almost all isolates
(>98%) of the respective pan-genomes. This high prevalence
matches the observations made by Ryota et al. reporting sim-

ilarly high frequency (>96%) of fosA in these species [40]. For
the beta-lactamases WP_004176269.1 (class A broad-spectrum
beta-lactamase SHV-11) and WP_000027057.1 (class A broad-

spectrum beta-lactamase TEM-1), the top hits in Klebsiella
were associated with resistance to penicillins and
cephalosporins. And for the aminoglycoside transferases

WP_000018329.1 (aminoglycoside O-phosphotransferase
APH(30)-Ia), WP_032491824.1 (ANT(300)-Ia family aminogly-
coside nucleotidyltransferase AadA22), and WP_000557454.1
(aminoglycoside N-acetyltransferase AAC(3)-IId), the top hits

in K. pneumoniae were associated with resistance to aminogly-
cosides. Moreover, all three chromosome-derived CDSs
(WP_004176269.1, WP_076027158.1, and WP_004146118.1)

matched to centroids found in >92% of the K. pneumoniae
isolates, two of the five plasmid-derived CDSs
(WP_032491824.1 and WP_000027057.1) matched to centroids

with a frequency of >25%, while the remaining CDSs
matched to centroids with a frequency of <12%.

Discussion

To facilitate the studies on antibiotic resistance, we have built
GEAR-base, a resource incorporating paired data on resis-

tance phenotypes and genomic features for an extensive, longi-
tudinal collection of clinical isolates from various bacterial
species. This concerted effort is expected to reduce experimen-

tal bias and the present resource provides a portal for informa-
tion retrieval as well as data analysis.

Species-level antibiotic resistance phenotypes can be
inspected using the culture-based module in GEAR-base.

Specifically, resistance rates and trends across multiple species
and antibiotic drugs can be assessed on a large scale, which

we believe is important for current and future antibiotic resis-
tance research. Although some effect of potential sampling
bias cannot be excluded, our findings on the increased resis-

tance rates corroborate previously reported trends. In addi-
tion to this phenotypic information, genomic information is
included in the pan-genome module. Such information can

be used independent of the phenotypic information, i.e.,
purely from a pan-genomic perspective, e.g., for the study
of inter- or intra-species gene conservation. The observed

number of core centroids was consistent with the statistics
reported by panX. However, GEAR-base pan-genomes are
based on significantly higher sample number and are substan-
tially larger in size, thus giving access to a comprehensive col-

lection of the genome heterogeneity for human bacterial
pathogens. In addition, GEAR-base links these two informa-
tion layers through centroid–drug associations. These associ-

ations can subsequently be explored to study resistance
mechanisms. Furthermore, individual researchers can com-
pare genes or genomes of interest to the present resource,

thereby providing an independent layer of support. This func-
tionality was demonstrated using a recently published
carbapenem-resistant K. pneumoniae isolate. While the taxo-

nomic classifications of the genome and of a set of
chromosome-derived antibiotic resistance genes are consistent
with the expected taxonomy of the isolate, the plasmid-
derived antibiotic resistance genes exhibit ambiguous taxo-

nomic assignments, which is not unexpected for plasmid-
borne genes. Moreover, the extensive collection of isolates
included herein enables the study of the overall conservation

degrees and the time-resolved frequencies of this exemplary
antibiotic resistance gene set.

The analysis functionality in GEAR-base covers external

genome databases (NCBI RefSeq as well as the NCTC 3000
genomes project from Public Health England and the Well-
come Trust Sanger Institute) in addition to the present collec-

tion of clinical isolate genomes. However, because the majority
of external genomes are not linked to antibiotic resistance
information and centroid–drug associations are considered a
key component of the present resource, the pan-genome mod-

ule is restricted to the present isolates. Additionally, the
species-level pan-genome centroids in GEAR-base are avail-
able for download and provide a great opportunity for subse-

quent integration with external genomes for further study.
Emerging antibiotic resistance represents a multi-

disciplinary and global challenge. We believe that GEAR-

base will serve as a valuable resource enabling the detailed
analysis of resistance-associated genomic features. GEAR-
base includes a comprehensive selection of clinically highly rel-
evant human microbial pathogens and will thus be of great use

for the research and clinical communities.

Materials and methods

Bacterial isolates

The dataset of 11,087 isolates consisted of 1001 isolates from
the S. aureus strain collection of Saarland University Medical
Center and a collection of 10,086 Gram-negative bacterial clin-

ical isolates that form part of the microbiology strain collec-
tion of Siemens Healthcare Diagnostics (West Sacramento,
CA) [32]. DNA extraction using the Siemens VERSANT�

176 Genomics Proteomics Bioinformatics 17 (2019) 169–182

71



sample preparation system [41] and whole-genome next-
generation sequencing were performed for all isolates as
described in Galata et al. [32] (2 � 100 bp paired-end on Illu-

mina Hiseq2000/2500 sequencers).

Methicillin susceptibility of S. aureus isolates

For 993 isolates from the S. aureus strain collection, detec-
tion of methicillin-resistant or methicillin-susceptible Staphy-
lococcus aureus (MRSA/MSSA) isolates was performed. The

specimen were plated on CHROMagar MRSA detection
biplates (Mast, Reinfeld, Germany). All MRSA-positive cul-
ture isolates were further confirmed using a penicillin-

binding protein 2a latex agglutination test (Alere, Köln,
Germany).

Susceptibility testing and resistance profiles of Gram-negative

isolates

For 9998 isolates from the Gram-negative isolate collection,
AST was performed. Frozen reference AST panels were pre-

pared following Clinical Laboratory Standards Institute
(CLSI) recommendations [42]. The antimicrobial agents
included in the panels are provided in Table S2. Prior to use

with clinical isolates, AST panels were tested and considered
acceptable for testing with clinical isolates when the QC results
met QC ranges described by CLSI [42].

Isolates were cultured on trypticase soy agar with 5% sheep

blood (Bethesda Biological Laboratories, Cockeysville, MD)
and incubated in ambient air at 35 ± 1 �C for 18–24 h. Iso-
lated colony panels were inoculated according to the CLSI rec-

ommendations (CLSI additional reference) and incubated in
ambient air at 35 ± 1 �C for 16–20 h. Panel results were read
visually, and MICs were determined.

MIC value processing

The bacterial culture may not grow for the lowest drug concen-
tration tested (expressed as �x) or show no significant growth

decrease for the highest concentration tested (expressed as
>x), where x represents the drug concentration tested. To
allow consistent processing, these MIC values were trans-

formed as follows: in the former case, the MIC value was set
to be x/2 (e.g., ‘‘�0.25” was set to ‘‘0.125”), and in the latter
case, the MIC value was set to be x * 2 (e.g., ‘‘>64” was set

to ‘‘128”). Additionally, we considered only the MIC value
of the first agent in case of drug combinations (e.g., ‘‘32/16”
was set to ‘‘32”).

Drug information

The 21 drugs used in this study were grouped into 8 drug
classes based on their category in the EUCAST guidelines
[43]. Among them, 7 drugs belong to cephalosporins (cefazolin

and cephalotin – 1st generation; cefuroxime – 2nd generation;
cefotaxime, ceftazidime, and ceftriaxone – 3rd generation; and
cefepime – 4th generation), 4 to penicillins, 3 to carbapenems,

2 to fluoroquinolones, 2 to aminoglycosides, and 1 to tetracy-
cline. In addition, 1 drug is a monobactam and the remaining 1
drug falls into the category ‘‘miscellaneous” (Table S2).

Resistance classification

EUCAST guidelines [43] (v. 4.0) were used for MIC value clas-

sification. Isolates were classified as resistant, intermediate, or
susceptible. An isolate was considered to be resistant if the cor-
responding MIC value was greater than the resistance break-

point. If the MIC value was below or equal to the
susceptibility breakpoint, the isolate was considered to be sus-
ceptible. If the MIC value was between the two breakpoints,

the isolate was considered as ‘‘intermediate”. If no breakpoint
was available for a specific drug and bacterial group, no clas-
sification was performed.

Genome-based taxonomic classification

Kraken [44] (v. 0.10.4-beta) was used with the default database
containing finished genomes from the NCBI RefSeq database

(accessed on January 13, 2015) and a k-mer length of 31.
Report files were created from the raw output using
‘‘kraken-report” and processed to retrieve the information,

including (1) the first best species hit relative to the percentage
of mapped sequences; (2) the number of sequences mapped to
best hit; (3) the number of sequences classified at species level;

(4) the number of unclassified sequences; and (5) the total
number of reported sequences. In addition, sensitivity values,
precision values, and percentages of unassigned sequences
were calculated. Sensitivity was defined as the ratio of reads

assigned to the best hit over the total number of reported
reads. Precision was defined as the ratio of reads assigned to
the best hit over reads classified at species level. For each sam-

ple, the taxonomic lineage from the species to the class level
was retrieved using the R package ‘‘taxize” [45] and the NCBI
[46] taxonomy database (accessed on February 8, 2016). An

overview of the taxonomic composition of the dataset was
created using Krona [47].

Read processing and assembly pipeline

The raw sequencing reads were trimmed using Trimmomatic
[48] (v. 0.35, command line parameters: PE
ILLUMINACLIP:NexteraPE-PE.fa:1:50:30 LEADING:3

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36).
Trimmed paired-end reads were assembled de novo into
scaffolds (from now on called contigs for simplicity) using

SPAdes [49] (v. 3.6.2, parameters: -k 21,33,55 --careful) and
annotated by Prokka [50] (v. 1.11, parameters: --gram neg
--mincontiglength 200). Assembly quality was assessed using

QUAST [51] (v. 3.2, parameters: --contig-thresholds
0,100,200,500,1000 --min-contig 200).

Mean assembly coverage

Trimmed reads were mapped to the contigs (minimal length of
200 bp) using BWA [52] (v. 0.7.12) and SAMtools [53] (v. 1.2;
command line: bwa mem –M –t <cores> <contigs> <for-

ward reads> <reverse reads> | samtools view @ <cores>
-bt <contigs> - | samtools sort -@ <cores> - <bam>).
Then coverage histogram was computed using BEDtools [54]
(v. 2.25; parameters: bedtools genomecov –ibam <bam>

-g <contigs> > <hist>). Finally mean coverage was
computed over all contigs.
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Essential genes

Essential genes as defined by Dupont et al. [33] were down-

loaded (https://github.com/MadsAlbertsen/multi-metagen-
ome/raw/master/R.data.generation/essential.hmm, accessed
on March 7, 2017) and searched in the present assemblies (pro-

tein FASTA files of translated CDS; *.faa) using hmmsearch
from the HMMER software package (http://hmmer.org/,
v. 3.1b2, parameters: --cut-tc). Only hits with at least one

domain satisfying the reporting thresholds (column ‘‘rep” in
table output files) were considered. Best hits for each isolate
and essential gene were determined with respect to the
E-value of reported full sequences. Finally, each considered

hit was assigned to a centroid, i.e., the centroid covering the
gene from the corresponding hit.

Resistance factors

The Resfams core database [34] of HMMs (v1.2) was used to
identify known resistance factors in the present assemblies
(*.faa, FASTA file of protein annotations) using hmmsearch

from the HMMER software package (http://hmmer.org/,
v. 3.1b2, parameters: hmmsearch --cut_ga --tblout output.
tblout Resfams.hmm input.faa > output.hmmout).

MLST profiles were determined using the BLASTn search-
based tool mlst (https://github.com/tseemann/mlst, accessed
on August 8, 2016, v. 2.9, parameters: --minid 99 --mincov

75 --minscore 99) on assembled contigs (minimal length of
200 bp).

Sample filtering

First, the bacterial isolate samples were filtered on the basis
of their taxonomic assignment and assembly quality. For the
taxonomic assignments, the minimal sensitivity was set to

50% (0% for Shigella), the minimal precision to 75%
(60% for Shigella), and the minimal percentage of unclassi-
fied reads to 30%. The cutoff values were ‘‘relaxed” for Shi-

gella because of the well-known problem of high genetic
similarity between the Shigella species and E. coli [55], mak-
ing it difficult to differentiate between these organisms at the

nucleotide level, which affects the taxonomic sensitivity. For
the de novo assemblies, we used the criteria defined by
RefSeq [37]: number of contigs �1000, N50 �5000, and
L50 �200. Isolates that passed both filtering steps were

grouped by their species taxon, and only species containing
at least 50 isolates were further considered. As a result, the
following 18 species (referred to as ‘‘main species” in the

manuscript) passed the filtering step. These include
A. baumannii, B. cenocepacia, Citrobacter koseri,
E. aerogenes, E. cloacae, E. coli, K. oxytoca, K. pneumoniae,

M. morganii, P. mirabilis, P. aeruginosa, S. enterica,
S. marcescens, Shigella boydii, S. flexneri, S. sonnei,
S. aureus, and S. maltophilia. Additionally, samples contain-

ing more than 10 essential genes in multiple copies were
examined further by running Kraken (k = 31) on the
nucleotide sequences of the annotated genomic features
(*.ffn). Report files were created from filtered assignments

(kraken-filter, threshold 0.05) and inspected manually in
order to determine whether a large percentage of sequences

was assigned to unexpected species. In total, 8729 isolates
remained assigned to the 18 main species mentioned above.

Pan-genome construction

Roary [17] (v. 3.5.7, parameters: -e -n -i 90 -cd 90 -a -g 70,000
-r -s -t 11) was used to construct the species-level pan-genomes.

Centroid HMMs

The protein sequences were extracted from the FASTA files of
translated CDS (*.faa) created by Prokka [50]. For non-CDS

sequences, protein sequences were created by translating the
corresponding nucleotide sequences from the nucleotide
FASTA files (*.ffn) using BioPython (parameters: table = 11,

stop_symbol=‘‘*”, to_stop = False, cds = False). Multiple
sequence alignments were created using MUSCLE [56]
(v. 3.8.31, parameters: -maxiters 1 -diags -sv -distance1

kbit20_3). HMM profiles were calculated using hmmbuild from
the HMMER software package (http://hmmer.org/, v. 3.1b2).

Database

The GEAR-base was implemented using the Python web
framework Django (v. 1.9.5) and MySQL (v. 15.11) as the
database management system. HMM search in Resfams core

database and centroid HMM profiles is implemented using
package/library HMMER (http://hmmer.org/, v. 3.1b1).
Moreover, sketches of centroid nucleotide sequences were

computed using Sourmash [35] (v. 2.0.0.a1, sketching parame-
ters: sourmash compute --dna --singleton --scaled 10 --seed 42
--ksizes 21, indexing parameters: sourmash index --dna --ksize

21). Mash/MinHash [38] (v. 1.1.1, default parameters) was
used to create sketches of GEAR-base isolates, finished bacte-
rial genomes from the NCBI RefSeq database, and assembled
bacterial genomes from the NCTC 3000 database of Public

Health England and the Wellcome Trust Sanger Institute.
The genomes from the NCBI RefSeq database included 7118
genomes and were downloaded on June 17, 2017 using the

NCBI genome downloading scripts of Kai Blin (https://
github.com/kblin/ncbi-genome-download, accessed on
October 18, 2017, v. 0.2.2) with the setting ‘‘ncbi-genome-

download --section refseq --assembly-level complete
--human-readable --parallel 10 --retries 3 --verbose bacteria”
with ‘‘--format fasta” and ‘‘--format cds-fasta”). The bacterial

genomes from the NCTC 3000 database were downloaded on
July 10, 2017 and included 1052 genomes.

Resistance profile analysis of cultured isolates from the Gram-

negative collection

Drug correlations

Considering only species with �50 isolates, pairwise drug cor-
relations were computed using the MIC value profiles (Spear-
man’s correlation coefficient, all isolates and for each species

taxon separately). Drugs with a single MIC value across all
considered isolates were removed prior to correlation compu-
tation. To visualize possible drug–drug associations, hierarchi-
cal clustering using Euclidean distance and average linkage

was applied.
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Association between isolate collection year and resistance profiles

Two-sided WMW-test (R package exactRankTests, v. 0.8-29)

was applied to the isolates with assigned collection year avail-
able and belonging to a species taxon with �50 isolates (in
total 8768 isolates from 18 taxa). The isolates were divided into

resistant and non-resistant (susceptible and intermediate)
groups. No test was performed if either group included <10
isolates or all isolates in a group were collected in the same

year. All P values were adjusted using FDR.

Phylogenetic analysis

Essential genes, found in �99% of the isolates that were
used to construct the pan-genomes, were identified. Protein
sequences for the corresponding best hits were extracted
for each essential gene and isolate. Multiple sequence align-

ments were computed using MUSCLE [56] (v. 3.8.31,
parameters: -maxiters 1 -diags -sv -distance1 kbit20_3) for
each essential gene separately and concatenated into one

alignment. If an isolate did not have any matches, an empty
alignment sequence (i.e., containing only gap characters) was
added. RAxML [57] (v. 8.2.9, raxmlHPC-PTHREADS) was

used to construct a phylogenetic tree from the aggregated
alignment. After removing sequence duplicates (2297 in
total) and alignment columns containing only undetermined
values, i.e. ambiguous characters, (147 in total), the tree was

built using the CAT model (parameters: -p 12,345 -m
PROTCATAUTO -F -T 30).

Pan-genome analysis

Centroid rate estimation

The centroid presence–absence tables created by Roary were
used to estimate the median number of total, new, unique,
and core centroids in species-level pan-genomes relative to

the number of isolates used (rarefaction). For each pan-
genome, the columns (isolates) of the table were permuted
100 times. Starting from the first isolate, centroid counts were
calculated in a cumulative manner for each permutation. The

centroid categories were defined as follows: total centroids
comprise centroids found in at least one of the included gen-
omes; new centroids refer to the centroids found only in the

last included genome; unique centroids are centroids found
only in one of the included genomes; and core centroids are
centroids found in �90%, �95%, and �99% of all included

genomes to cover different levels of conservation. The median
centroid counts were computed over all permutations. The
curve of the total number of centroids was fitted using nonlin-

ear least-squares estimates (R method ‘‘nls”) of the power law
function n ¼ a �Nc (where n is the total number of centroids, N
is the number of included genomes, and a and c are constants)
to the median counts.

Two-dimensional embedding of pan-genome centroids

BusyBee Web [58] was used to represent the pan-genome cen-
troids in two dimensions (2D). In brief, pentanucleotide fre-

quencies were computed and transformed into 2D using
Barnes–Hut stochastic neighbor embedding [59]. Due to the
use of centroids rather than contigs or long reads, the border

point threshold and cluster point threshold were set to 500.
Individual pan-genomes were mixed in silico, centroids with
a frequency �90% were used as input to BusyBee Web, and

the 2D coordinates were downloaded. Here, in addition to
the sample frequency overlay, centroids were colored accord-
ing to the respective species of the source pan-genome of the

centroid.

Resistance association analysis

Association between resistance profiles and centroid presence

All isolates that were used to construct the pan-genomes and

had resistance profiles available were considered. Binary cen-
troid presence/absence matrices were used as features. A spe-
cies–drug combination was not analyzed if >90% of the
isolates were resistant or non-resistant. The predictors were

first filtered to remove (nearly) constant and correlated fea-
tures and features with many missing values. All predictors
with >95% missing values or with >95% of the entries hav-

ing the same value (missing values ignored) were removed.
Correlated features were removed by computing pairwise fea-
ture correlations (fastCor from R-package HiClimR, v. 1.2.3),

clustering them using hierarchical clustering (distance =
1 – cor^2, average linkage), cutting the resulting tree at height
0.0975 (1–0.952), and keeping only medoids (minimal average
distance to other cluster members) within each obtained clus-

ter. All features were scored using EIGENSTRAT [60]
(v. 6.0.1) to correct for possible population structures. First,
principal component analysis (PCA) was run to compute the

top 50 principal components using only retained features.
Then, the number of components (k) used for the subsequent
computation was chosen such that the estimated genomic infla-

tion factor (lambda) was <1.1 for the smallest possible k. If
none of the computed lambda values was <1.1, then k with
the smallest lambda value was chosen. The value of k was

successively increased from k = 1 to k = 50 by an increment
of 2. With the chosen value of k, test statistics were generated
for all features and P values were computed using the
Chi-squared distribution with one degree of freedom. Finally,

FDR adjustment was applied.

Number of Resfams covered by the significant resistance association

results

For each centroid with a significant resistance association
result (adjusted P < 1E�5), all hits from the centroid cluster
members to the Resfams core database were retrieved. Subse-

quently, for each Resfam, the number of unique centroids
including �1 cluster member with a hit to the corresponding
Resfam was counted.

Application example

The assembly of the complete K. pneumoniae genome published

by Kao et al. [39] (NCBI assembly No. ASM195283v1, RefSeq
assembly accession No. GCF_001952835.1) was included in the
collection of the finished bacterial genomes downloaded from
the NCBI RefSeq database as described above. The genomic

FASTA file containing the chromosome and plasmid sequences
was uploaded to the GEAR-base web-server for genome
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analysis using default parameters (https://gear-base.com/
gear/pangenome/genomesearch/job=b568c458-f68a-4aa1-b78b-
dad72dddfd5a/). The FASTA file containing the nucleotide

sequences of all CDSs was uploaded for gene-based analysis
with only Resfams search and Sourmash search in centroids
enabled and using default parameters (https://gear-base.com/

gear/pangenome/genesearch/job=0e42e149-a70d-4796-b40a-
7f7168dc5077/). The nucleotide sequences of eight resistance
genes reported previously [39], including WP_004176269.1,

WP_076027158.1, WP_004146118.1, WP_000018329.1,
WP_032491824.1, WP_000557454.1, WP_000976514.1, and
WP_000027057.1, were saved in a separate FASTA file, which
was uploaded for gene-based analysis with all options

enabled and default parameters (https://gear-base.com/
gear/pangenome/genesearch/job=d8792c0e-bbe7-4936-a7b7-
c2846b727afe/).

Availability

GEAR-base is freely available for academic research use after
the user has registered and accepted the terms of use available
at https://gear-base.com. Because of the sheer size and further
legal and ethical constrains, we cannot make all data fully

accessible for batch download. If users are interested in getting
access to the raw sequencing data, a special request in this
respect is required. For this, we provide a respective request

details on the GEAR-base homepage. The sequences of pan-
genome centroids can be downloaded directly from the
GEAR-base homepage. Custom scripts used for processing,

analyzing and plotting the data can be found at https://
github.com/VGalata/gear_base_scripts/.

Authors’ contributions

VG performed the computational analysis, implemented the
database, and drafted the manuscript together with CCL.

CCL and CB also contributed to the data analysis. GH-S and
AF performed the next-generation sequencing of the isolates.
MH and LvM provided the S. aureus isolate collection. AEP,

SS, CS, and AP provided the Gram-negative isolate collection.
EM, RM, and AK reviewed the manuscript and provided com-
ments. All authors read and approved the final manuscript.

Competing interests

CS and AEP were employees of Siemens Healthcare during the

period of the study. SS is an employee of Siemens Healthcare.
AEP and AP are Managing Directors of Ares Genetics GmbH,
a wholly owned subsidiary of Curetis GmbH. Ares Genetics

GmbH is the sole owner of any and all rights to the data pre-
sented in the manuscript and in the web resource at https://
gear-base.com. Those who are interested in commercial appli-

cations or collaboration are invited to contact Ares Genetics at
contact@ares-genetics.com.

Acknowledgments

Research for this study was supported by Siemens Healthcare,

the Curetis Group, and in parts by the Best Ageing Program

from the European Union (Grant No. 306031) as well as the

Austrian Research Promotion Agency (Grant Nos 866389
and 863729). We would like to thank Siemens Healthcare
and the Curetis Group for their support and for the datasets

provided. We are grateful to Laura Smoot, Andrea L. Mrotz,
Khoa D. Nguyen, Michael A. Andora, Jose Enrique Fernan-
dez, Nicholas E. Terzakis, Paula Swiatkowski, Usha Vajapey,
and Stacie Ho for technical support. We also would like to

thank Andy Ying and Gabriel Rensen for their support.

Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gpb.2018.11.002.

References

[1] Bax RP. Antibiotic resistance: a view from the pharmaceutical

industry. Clin Infect Dis 1997;24:S151–3.

[2] Rhomberg PR, Jones RN. Summary trends for the meropenem

yearly susceptibility test information collection program: a 10-

year experience in the United States (1999–2008). Diagn Micro-

biol Infect Dis 2009;65:414–26.

[3] Center for Disease Dynamics, Economics & Policy. The State of

the World’s Antibiotics, 2015. [Internet]. Washington DC: Center

for Disease Dynamics, Economics & Policy; 2015, http://cddep.

org/publications/state_worlds_antibiotics_2015.

[4] World Health Organization. Antimicrobial resistance: global

report on surveillance. [Internet]. Geneva, Switzerland: World

Health Organization; 2014, http://apps.who.int//iris/handle/

10665/112642.

[5] Zhanel GG, DeCorby M, Laing N, Weshnoweski B, Vashisht R,

Tailor F, et al. Antimicrobial-resistant pathogens in intensive care

units in Canada: results of the Canadian National Intensive Care

Unit (CAN-ICU) study, 2005–2006. Antimicrob Agents Che-

mother 2008;52:1430–7.

[6] Zhanel GG, DeCorby M, Adam H, Mulvey MR, McCracken M,
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ABSTRACT

Metagenomics-based studies of mixed microbial
communities are impacting biotechnology, life sci-
ences and medicine. Computational binning of
metagenomic data is a powerful approach for
the culture-independent recovery of population-
resolved genomic sequences, i.e. from individual or
closely related, constituent microorganisms. Exist-
ing binning solutions often require a priori character-
ized reference genomes and/or dedicated compute
resources. Extending currently available reference-
independent binning tools, we developed the Busy-
Bee Web server for the automated deconvolution
of metagenomic data into population-level genomic
bins using assembled contigs (Illumina) or long
reads (Pacific Biosciences, Oxford Nanopore Tech-
nologies). A reversible compression step as well
as bootstrapped supervised binning enable quick
turnaround times. The binning results are repre-
sented in interactive 2D scatterplots. Moreover, bin
quality estimates, taxonomic annotations and anno-
tations of antibiotic resistance genes are computed
and visualized. Ground truth-based benchmarks of
BusyBee Web demonstrate comparably high per-
formance to state-of-the-art binning solutions for
assembled contigs and markedly improved perfor-
mance for long reads (median F1 scores: 70.02–
95.21%). Furthermore, the applicability to real-world
metagenomic datasets is shown. In conclusion, our
reference-independent approach automatically bins
assembled contigs or long reads, exhibits high sen-
sitivity and precision, enables intuitive inspection of
the results, and only requires FASTA-formatted in-
put. The web-based application is freely accessible
at: https://ccb-microbe.cs.uni-saarland.de/busybee.

INTRODUCTION

Metagenomic sequencing, i.e. whole genome sequencing
of DNA indiscriminately extracted from mixed microbial
communities, was successfully used to study the taxonomic
composition as well as the functional potential of environ-
mental microbiomes (1–4). The independence of prior iso-
late culturing steps is often considered an advantage as this
independence allows reduction in costs and time, as well
as the potential to characterize microorganisms that, thus
far, have resisted culturing attempts under artificial labora-
tory conditions (5,6). While metagenomic sequencing has
been mostly used for basic research, its potential in clini-
cal settings has been demonstrated recently (7,8). Moreover,
third generation-sequencing technologies, e.g. from Pacific
Biosciences (PacBio) or Oxford Nanopore Technologies
(ONT), are emerging and enable the long read-based study
of mixed microbial communities (9–11).

The recovery of genomic sequences resolved at the level
of individual organisms (or populations of closely re-
lated organisms) from metagenomic sequencing data us-
ing computational solutions is termed ‘binning’. The cur-
rent body of binning approaches can be roughly subdivided
into (i) reference-dependent approaches and (ii) reference-
independent approaches. Reference-dependent binning ap-
proaches are typically characterized by very low run-
times as well as high degrees of sensitivity and precision
(12–16). However, these approaches, by design, perform
best for sequences derived from organisms that are part
of or are closely related to the references present in a
database, and are challenged by genomic sequences derived
from hitherto uncharacterized microorganisms. In contrast,
reference-independent binning approaches do not rely on
prior knowledge as they infer sequence cluster structures
from the input data only (17–20) and are mostly based on
sequence composition, with approaches relying on abun-
dance co-variation across multiple samples emerging re-
cently (21–24). Due to their reference independence, these
approaches are of particular use for the analysis of envi-
ronments with limited representations in the current ref-
erence genome databases, frequently allowing resolution
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of ‘unclassified’ sequences. However, reference-independent
binning often requires substantial amounts of CPU hours,
sequence lengths above a certain threshold, e.g. 1000 bp,
and/or multiple, ideally independent, samples. While var-
ious binning web servers exist, these are mostly based on
reference-dependent approaches (15,25–27), or require up-
front computations which results in the need for dedicated
computing resources and/or user training (28,29).

Here, we extend the currently available reference-
independent binning tools by presenting the BusyBee Web
server, a web application implementing bootstrapped super-
vised binning (BSB) of metagenomic sequencing datasets.
Our binning approach combines unsupervised and super-
vised machine learning approaches by ‘bootstrapping’ the
training data from the input rather than relying on refer-
ence databases. BusyBee Web only requires a single FASTA-
formatted file as input and performs automated deconvolu-
tion of the sequences into population-resolved bins. Dur-
ing BSB, clusters are defined de novo on a subset of the se-
quences using an unsupervised approach (30–32). This step
is followed by the training of a random forest-based classi-
fier using the cluster labels as the response/dependent vari-
ables (supervised part). To further accelerate the binning,
an optional ‘compression’ step is implemented in which
data points are randomly sampled serving as representa-
tives for their nearest neighbors (associates) during the un-
supervised part (compression). The representatives as well
as their associates are subsequently used during the su-
pervised part in combination with the respective represen-
tatives’ de novo cluster labels (decompression). Thus, the
training set size is increased compared to only using the
randomly sampled, representative data points. Ultimately,
every sequence (≥500 bp, by default) is assigned a label us-
ing the bootstrap-trained classifier, thereby defining the fi-
nal set of bins. For inspection of the clustering/binning re-
sults, a 2D scatterplot of the data-inherent as well as the
inferred structures is presented to the user. To complement
this, estimates of bin quality, i.e. degrees of completeness,
contamination and strain heterogeneity, are computed and
visualized. Moreover, sequences are taxonomically anno-
tated using Kraken and functional annotation of antibi-
otic resistance genes is performed. Because all of the bin-
ning and annotation steps are automatically executed by the
web server transparently to the user, no dedicated comput-
ing resources or special user training is required. Further-
more, custom per-sequence annotations can be uploaded by
the user, e.g. to highlight specific sequences of interest, and
BusyBee Web offers the option to download the generated
results should specialized downstream analyses be required,
e.g. population-resolved annotation of KEGG pathways.
Ground truth-based benchmarks comparing our BSB ap-
proach to state-of-the-art binning approaches are provided
for assembled contigs (Illumina) and long reads (ONT).
Moreover, the applicability of our web server for the analy-
sis of real-world metagenomic datasets (Illumina or PacBio)
is demonstrated. The BusyBee Web server is available free-
to-use at https://ccb-microbe.cs.uni-saarland.de/busybee.

IMPLEMENTATION

Workflow

When a new job is initiated, the user has to provide a
FASTA-formatted file of nucleotide sequences, e.g. assem-
bled contigs or long sequencing reads, as the only manda-
tory input. By default, population-level genomic bins are
automatically defined by BSB of the input sequences fol-
lowed by bin quality assessment. Moreover, BusyBee Web
can optionally compute taxonomic annotations and anno-
tations of antibiotic resistance genes. Custom, per-sequence
annotations can also be provided by the user, e.g. to high-
light specific sequences of interest. Importantly, as BSB is
a reference-independent approach, population-level resolu-
tion is achieved even in the absence of taxonomically anno-
tated reference genomes, e.g. for environments with limited
representations in current reference databases. Robust de-
fault values for all BSB parameters are pre-set but can be
adjusted by the user. Upon completion of all computational
steps, the user can explore the results through interactive
visualizations directly in the browser (HTML, JavaScript),
e.g. to identify bins that are enriched for specific antibiotic
resistance genes or bins that represent candidate hitherto
uncharacterized microorganisms (Figure 1). Individual re-
sults can be shared using the unique job ID or the URL
of the results page. Moreover, a zipped archive of the re-
sults can be downloaded for downstream processing. This
archive includes the binning results (in particular, per-bin
FASTA files), results from the bin quality assessment, as
well as results from the optional taxonomic and functional
annotation steps.

Bootstrapped supervised binning

BSB is reference-independent and combines unsupervised
as well as supervised machine learning approaches using
genomic signatures in the form of oligonucleotide frequen-
cies as the feature set (Supplementary Materials and Sup-
plementary Figure S1). Supervised binning approaches are
often equated with reference-dependent approaches, in par-
ticular, using reference genomes derived from microbial iso-
lates for a priori training. However, more generally, a super-
vised machine learning approach uses training data to gen-
erate a model which is subsequently used for the classifica-
tion of test data. The training data can be inferred from the
input data as it is effectively done in our approach by first
using an unsupervised machine learning approach (Supple-
mentary Figure S1A). Accordingly, BSB can be seen as an
extension of a classifier trained on a specific set of refer-
ences, albeit bootstrapping the training data from the in-
put data (19), rather than relying on previously character-
ized reference sequences (13,33). In brief, sequences are size-
selected and separated into border points, cluster points and
remaining points according to the user-specified parameters
(border points sequence length threshold, tb and the clus-
ter points sequence length threshold, tc). Each sequence is
then represented by its genomic signature, using pentanu-
cleotide frequencies (default). Optionally, the border points
and the cluster points are ‘compressed’ which will reduce
the runtimes of both, the 2D embedding and the automated
clustering. Following this, the 2D embedding is computed
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Figure 1. Overview of individual components of the BusyBee Web results page. (A) Input sequences are represented as individual points (according to
the thresholds tb and tc) in the 2D scatterplot. Convex hulls (black polygons) delineate the predicted clusters. If the optional taxonomic and functional
annotations were enabled, taxon and antibiotic resistance-related information is shown to the right of the scatterplot. Individual clusters, bins or taxa can
be shown or hidden and sequences encoding for specific antibiotic resistance genes can be highlighted using points of larger size and dark color, here, for
the vanB gene. A left-click on a point reveals detailed information about the respective sequence, e.g. the taxonomic lineage or encoded antibiotic resistance
genes. The user can pan and zoom the plot using the mouse, e.g. to focus on a region of interest, and point sizes are easily adjusted using sliders below the
2D scatterplot. (B) Bin quality estimates (completeness, contamination, strain heterogeneity) are provided as a sortable table, here, sorted by decreasing
completeness. An excerpt representing the five most complete bins is shown. (C) The optional taxonomic compositions of the clusters/bins are shown
as stacked bar charts. The taxonomic rank, e.g. genus, can be selected and a second chart can be shown to compare the compositions of the individual
clusters/bins at different ranks, e.g. genus versus family.
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(20,32). Subsequently, automated clustering (30,31) is per-
formed on the cluster points only, while the border points
are supposed to help push individual clusters further apart
and, thus, improve the automated segregation into distinct
sequence clusters (Supplementary Figure S1B). The clus-
tering information is used to train a random forest-based
classifier, which predicts cluster assignments for the input
sequences (≥500 bp; default), thereby defining the final set
of bins (Supplementary Figure S1). In this context, it is im-
portant to highlight the difference between a ‘cluster’ and
a ‘bin’. While both represent sequence sets, a ‘cluster’ is an
intermediate sequence set and a ‘bin’ is a final sequence set.
Consequently, a cluster may represent only a limited frac-
tion of a population-level genome, while a bin tries to max-
imize the recovery of genomic information derived from the
respective population.

While generally robust default parameters are provided
in BusyBee Web, the user might need to specify custom set-
tings based on the characteristics of the input data. For ex-
ample, given highly fragmented assemblies or datasets with
narrow sequence length distributions, the border points se-
quence length threshold, tb and the cluster points sequence
length threshold, tc, may be set to equal values, e.g. decreas-
ing tc to the value of tb. The ‘minPts’ parameter value may
be decreased to allow the identification of small-sized clus-
ters. In this context, if the degree of compression is set too
high and the ‘minPts’ parameter is not decreased accord-
ingly, clusters might be missed. This typically becomes ap-
parent as distinct groups of points in the 2D visualization
lacking a convex hull, i.e. not delimited by a polygon. More-
over, increasing the minimum sequence length can avoid the
annotation of short sequences and thus decrease the frac-
tion of incomplete genes. Detailed parameter descriptions
are provided in the Supplementary Materials and as online
tooltips.

Annotations

Taxonomic annotation. Kraken (v0.10.5-beta) in combi-
nation with the Minikraken database, i.e. a reduced-size
database constructed from complete bacterial, archaeal and
viral genomes in RefSeq as of 8 December 2014 (https://
ccb.jhu.edu/software/kraken/dl/minikraken.tgz), is used to
compute taxonomic annotations for the input sequences
(14). The reduced-size database was chosen due to its low
memory requirements. However, the integration of a larger
database is possible in the future to increase the sensitivity
of the taxonomic annotations.

Annotation of antibiotic resistance genes. Prokka (v1.11)
with the ‘––fast’ option is used for gene (CDS) calling
(34,35) on all input sequences. The translated CDS se-
quences are then searched against the ResFams collection
of antibiotic resistance genes (36) using hmmsearch from
HMMER (v3.1b2; http://hmmer.janelia.org/).

Custom annotations. Custom annotations can be up-
loaded to highlight individual sequences or sequence sets.
The former can, for example, be used for sequences en-
coding genes with a particular function and the lat-
ter for sequences annotated with a custom reference

genome database or characterized according to their ge-
nomic or transcriptomic fold-coverage, or ratio of both
(high/medium/low) (37). To enable this option, a tab-
separated text file containing the sequence ID in the first
column and the respective annotation in the second column
should be provided by the user.

Bin quality assessment. CheckM (v1.0.7) is used to eval-
uate the quality (degrees of completeness, contamination
and strain heterogeneity) of the individual bins using a cus-
tom set of marker genes (‘essential genes’) (38–40). The
default memory requirement of CheckM (≥16 GB RAM)
is prohibitive for use in a web application serving multi-
ple users concurrently. Hence, the use of a custom set of
marker genes which reduces the memory requirements of
CheckM considerably by bypassing the reference genome-
tree placement. While the currently implemented custom
set is bacteria-specific, extended sets can be integrated into
BusyBee Web in the future to represent microorganisms
from other domains, e.g. archaea.

Representation of the results

BusyBee Web provides interactive visualizations of the re-
sults (Figures 1 and 2). The automated clustering/binning
results are represented as a 2D scatterplot, with individual
points colored according to their assignment (cluster, bin or
noise; Supplementary Figure S1) and each point represent-
ing an input sequence with length ≥tb. Convex hulls are ad-
ditionally plotted to help in delineating the individual clus-
ters. Suboptimal automatically defined clusters can thus be
identified visually, e.g. distinct clusters which have been ar-
tificially joined. Clicking on individual points provides de-
tailed information on the point’s optional annotations, i.e.
the predicted taxonomy and antibiotic resistance genes en-
coded by the respective sequence. Moreover, the user can
change the size of the points as well as pan and zoom the
plot. Individual clusters, bins or taxonomic groups (e.g. at
the genus-level or at the species-level) can be selected. Un-
selected points are plotted with reduced opacity. Similarly,
groups of sequences encoding specific antibiotic resistance
genes or sharing individual, user-provided annotation can
be shown or hidden. The number of contigs per cluster and
per bin is shown as a bar chart. This allows the user to see
how many sequences represented a cluster during the train-
ing phase and how many sequences were assigned to a bin
by the trained classifier. Furthermore, bin quality estimates
(completeness, contamination, strain heterogeneity) are dis-
played as a bar chart and as a sortable table. The taxonomic
compositions per cluster and per bin are shown as stacked
percent bar charts and a second chart of taxonomic compo-
sitions can be opened, thereby allowing the comparison of
cluster/bin taxonomic compositions at different taxonomic
ranks, e.g. at the family-level and the genus-level. A zipped
archive of the results, including per-bin FASTA-formatted
files and per-sequence taxonomic annotations among oth-
ers, can be downloaded.

Metagenomic datasets to evaluate BusyBee Web

Two metagenomic datasets of short read-assembled contigs
(Shakya2013 (41), Gregor2016 (13); Illumina) as well as one
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Figure 2. Screenshots of the interactive scatterplots for (A) ground truth-based Illumina (Shakya2013), (B) ground truth-based ONT, (C) small-scale
Illumina and (D) PacBio metagenomic data. (A) A compression of 1 (‘1NN’) as well as sequence chunks (3 kbp chunk-length) derived from the full-length
contigs were used. (B) Only sequences with species-level taxonomic assignments are shown. (C) Sequences encoding for class A CTX-M beta-lactamases
(CTXM-RF0059) are highlighted. (D) A compression of 1 (‘1NN’) was used. The convex hulls (black polygons) delineate the individual sequence clusters.
Descriptions at the top of each plot represent job names; if none is specified, a unique job ID is shown. Colors are based on species-level taxonomic
assignments.

raw, long read sequencing-based dataset (ONT) represent-
ing microbial communities of known composition (42–48)
(Table 1, Supplementary Materials and Supplementary Ta-
ble S1), i.e. representing ground truth data, were used to
quantitatively assess the performance of our BSB approach
and to compare it against two state-of-the-art binning ap-
proaches, MaxBin2 and MetaBAT (23,24).

Three additional metagenomic datasets were used to
demonstrate the versatility of the BusyBee Web server: two
Illumina-based datasets (small-scale (49), large-scale (39))

and a PacBio-based dataset (10) were used as originally pro-
vided (Table 1). The PacBio dataset consisted of Circular
Consensus Sequences (CCS) which provide increased se-
quence quality by repeatedly sequencing the same molecule
(50), thereby correcting for sequence errors. However, no
additional error correction nor assembly were performed on
the CCS reads.
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Table 1. BusyBee Web runtimes reported in minutes for the herein studied ground truth and real-world datasets

# sequences Total length [bp] Binning runtime [min] Total runtime [min]

Ground truth Shakya2013 24 974 179 063 212 8 30
Gregor2016 14 393 142 556 476 6 23
ONT 21 000 97 715 136 11 20

Real-world Small-scale Illumina 859 50 964 782 1 6
Large-scale Illumina‡ 133 149 399 132 179 28 75
PacBio† 71 029 93 937 106 18 27

Runtimes were determined manually based on the progress interface in the browser and were rounded to the next full minute. The minimum sequence
length threshold was 1 kbp for the large-scale Illumina dataset and 500 bp for the other datasets.
†Compression of 1 was used.
‡Compression of 2 was used.

RESULTS AND DISCUSSION

To cover the heterogeneity of currently available sequenc-
ing technologies, we applied BusyBee Web to Illumina-,
PacBio- and ONT-based sequencing data. Moreover, we
compared the binning performance of BusyBee Web against
MaxBin2 and MetaBAT on three ground truth datasets.

Ground truth-based evaluation of BSB

We used two Illumina-based (Shakya2013, Gregor2016)
and one ONT-based metagenomic dataset of defined
composition to evaluate our BSB approach (Table 1).
The numbers of bins inferred by BSB were 45/38
(Shakya2013/Gregor2016), with 58/45 expected species
(Supplementary Notes and Supplementary Tables S2–5).
Normalization of the cluster density by using sequence
chunks (3 kbp chunk-length) derived from the full-length
contigs (49,51) resulted in 60/50 bins. Moreover, the sensi-
tivity, precision and F1 values were substantially increased
(Supplementary Tables S3 and 5). For example, the me-
dian precision value was almost 20% higher using sequence
chunks (91.49%; Figure 2A) instead of the full-length con-
tigs (71.99%; Supplementary Figure S2), and the median F1
score increased to 90.09 from 70.02% for the Shakya2013
dataset.

For the ONT-based ground truth data (tb = tc = 500 bp),
our approach reported 23 bins, with the large bins repre-
senting the six constituent bacterial organisms (Figure 2B).
The influenza A virus-derived sequences formed at least
three major bins. The bin quality assessment yielded no rep-
resentative results which may be due to the increased error-
rate of the raw, nanopore sequencing-based reads (52–54)
and the use of read subsamples for this dataset (Supple-
mentary Table S6). About 31.91% (6701/21 000) of the se-
quences remained unclassified at the phylum-level, which is
likely due to their increased error-rate. Nevertheless, Busy-
Bee Web created representative bins for all the included iso-
lates resulting in mean/median F1 scores of 89.00/92.66%
(Supplementary Table S7). Processing only the influenza A
virus-derived (subsampled) sequences revealed eight bins
(Supplementary Figure S3). While an in-depth study of the
individual bins was beyond the scope of the current work,
this serves as an example of using BusyBee Web to inspect
microbial isolate-derived genomic sequences or bins gen-
erated by a complementary binning tool for the presence
of multiple sequence clusters, e.g. due to multiple chromo-
somes or possible contaminations.

Benchmarking against existing binning tools using ground
truth data

We compared the results of our BSB approach to two
state-of-the-art approaches, MaxBin2 and MetaBAT. These
tools were selected as they both support single sample-
based binning. As described above, BSB identified 45/38
(Shakya2013/Gregor2016) bins for the Illumina-based
ground truth data. In comparison, MetaBAT produced
63/41 bins and MaxBin2 produced 58 bins for the
Shakya2013 data but was omitted for the Gregor2016
data due to missing coverage information. While MetaBAT
typically had high precision values for both Illumina-
based ground truth datasets, the sensitivity was often low
(Supplementary Tables S3 and 5). MaxBin2 had higher
mean/median sensitivity compared to MetaBAT on the
Shakya2013 data, yet had low mean/median precision
(59.76/57.09%). Using our BSB approach, the highest me-
dian F1 scores were reached with 90.09 and 95.21% for the
Shakya2013 and Gregor2016 chunked datasets, respectively
(Supplementary Notes).

For the ONT data, MetaBAT and MaxBin2 returned
18 and 2 bins, resulting in mean/median F1 scores of
58.35/56.92% and 40.26/34.56%, respectively (Supplemen-
tary Table S7). MaxBin2 and MetaBAT use an empirically
determined probability distribution for the tetranucleotide
frequency distances (23,24). This distribution is learned a
priori on high quality reference genomes. The increased se-
quence error rate of third generation-sequencing data is
likely to negatively impact the distance calculations, i.e. two
sequences might have larger tetranucleotide frequency dis-
tances despite being derived from the same genome. Conse-
quently, this is likely to have negatively affected the binning
performance in MaxBin2 and MetaBAT. Moreover, cover-
age values are a mandatory input to MaxBin2, yet were un-
available for the unassembled, long read ONT data. Hence,
surrogate, unit coverage values were used for MaxBin2
while MetaBAT defaulted to coverage-free binning us-
ing tetranucleotide frequencies. While coverage information
provides important information for binning and bin refine-
ment (1,21,23,24,51), an initial assembly is required onto
which reads can be mapped to compute the fold-coverage
of the assembled contigs. However, if the reads are suffi-
ciently long, e.g. >1000 bp, the binning can be performed
prior to the assembly, thereby facilitating population-level
assemblies. Accordingly, our BSB approach can be used to
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pre-partition raw, metagenomic, long reads, thus enabling a
‘divide and conquer’ approach.

Real-world metagenomes

For the small-scale Illumina-based dataset (Figure 2C and
Table 1), a total of 11 bins was identified with 7 near-
complete bins (≥90% complete) and 4 partially complete
bins (≥50%). A total of 5 of the 11 bins had contamination
degrees ≥20% with 2 of the 5 bins showing high degrees of
strain heterogeneity (≥80%). This indicates that sequences
derived from closely related organisms were grouped to-
gether while sequences derived from more distantly related
organisms were separated. Class A CTX-M �-lactamases
were highlighted to demonstrate the antibiotic resistance
gene annotation functionality (Figure 2C). A total of 6
of the 11 bins were found to contain sequences encoding
for the respective genes. For the large-scale Illumina-based
dataset (Table 1) a compression of 2 was used, resulting in
51 bins (Supplementary Figure S6) of which 11 were ≥90%
complete and 33 were ≥50% complete. The average/median
degrees of completeness, contamination and strain hetero-
geneity were found to be 62.36/74.77%, 85.96/11.71% and
22.75/9.81%, respectively.

For the analysis of the PacBio dataset (Table 1), a com-
pression of 1 was used and the border points and cluster
points thresholds were set to 500 bp due to the small av-
erage read length of 1319 bp. A large bin (bin number 1),
including sub-structures that were not resolved by the au-
tomatic clustering step, dominated the results visualization
(Figure 2D; center of the scatterplot). However, the interac-
tive visualization in BusyBee Web enables the user to easily
identify suspect bins, e.g. bins with suboptimal automated
deconvolution. A detailed inspection and refinement (55–
57) of the suspect bins can be subsequently performed using
a user-driven binning approach, such as anvi’o or VizBin
(29,32). Overall, the bins were less complete compared to
the Illumina-based dataset (3 bins ≥50%). It should be
noted that the Illumina-based data was derived from the se-
quencing of 11 samples (∼2.4 Gbp per sample) (49), while
the PacBio-based data consisted of 94 Mbp of CCS reads
derived from 8 flow cells (10). About 90.82% (32 255/35
515; after compression) of the sequences could not be clas-
sified at the phylum level using Kraken in combination with
the Minikraken database. However, our BSB approach as-
signed 91.16% (64 753/71 029) of the total of sequences to
the five largest bins.

The total runtimes for the herein studied datasets were
between 6 and 75 min (Table 1) and the BSB step required
<30 min for the largest dataset (133 149 sequences; 399 132
179 bp). While the taxonomic annotation step is fast (below
5 min for the large-scale Illumina dataset), a considerable
and highly variable proportion of the runtime is spent by the
bin quality control. The high variability might be explained
by varying amounts of identified single copy marker genes.

CONCLUSION

Metagenomic sequencing has become a widely used ap-
proach for the culture-independent study of mixed mi-
crobial communities and is often coupled with in silico

deconvolution of metagenomic sequence fragments into
population-resolved genomic bins (‘binning’) in order to
study the constituent micro-organisms at an organismal
level. While several binning approaches have been devel-
oped, they mostly require previously characterized refer-
ences, substantial computing resources and/or prior user
training. Here, we presented the BusyBee Web server for the
automated, reference-independent binning and visualiza-
tion of metagenomic data in the form of assembled contigs
(Illumina) or long reads (PacBio, ONT). The web-based in-
teractive representations, including a 2D embedding of ge-
nomic signatures, bin quality assessment using single copy
marker genes and optional taxonomic assignments, allow
for intuitive inspection of the results. This can help the user
to build confidence in the individual bins while simultane-
ously facilitating the identification of sequence groups re-
quiring special attention. In addition, automatically gener-
ated annotations of antibiotic resistance gene-encoding se-
quences or user-provided, per-sequence annotations are op-
tionally overlaid on the 2D embeddings, e.g. with the former
allowing to identify population-level genomes enriched for
genes possibly conveying specific antibiotic resistances. The
only mandatory input consists of a FASTA-formatted nu-
cleotide sequence file and all computations are performed
online and transparently to the user. Hence, no special user
training, software installation or dedicated computing re-
sources are required and individual results can easily be
shared via the web. Moreover, BusyBee Web was evaluated
on ground truth and real-world metagenomic data, with
the ground truth-based benchmarks demonstrating com-
parable performance to state-of-the-art binning approaches
for assembled contigs and markedly improved performance
for long reads when using our approach. Overall, Busy-
Bee Web facilitates population-level resolved analyses of
metagenomic data, thereby being of service for the study
of mixed microbial communities derived from various envi-
ronments and sequencing technologies.
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Pérez-Cobas,A.E., Gosalbes,M.J., Knecht,H.,
Martı́nez-Martı́nez,M., Seifert,J., Von Bergen,M. et al. (2013)
Functional consequences of microbial shifts in the human
gastrointestinal tract linked to antibiotic treatment and obesity. Gut
Microbes., 4, 306–315.

5. Iverson,V., Morris,R.M., Frazar,C.D., Berthiaume,C.T.,
Morales,R.L. and Armbrust,E.V. (2012) Untangling genomes from
metagenomes: revealing an uncultured class of marine
Euryarchaeota. Science, 335, 587–590.

6. Vartoukian,S.R., Palmer,R.M. and Wade,W.G. (2010) Strategies for
culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett., 309, 1–7.

7. Loman,N.J., Constantinidou,C., Christner,M., Rohde,H.,
Chan,J.Z.-M., Quick,J., Weir,J.C., Quince,C., Smith,G.P., Betley,J.R.
et al. (2013) A culture-independent sequence-based metagenomics
approach to the investigation of an outbreak of Shiga-toxigenic
Escherichia coli O104:H4. JAMA, 309, 1502–1510.

8. van der Helm,E., Imamovic,L., Hashim Ellabaan,M.M., van
Schaik,W., Koza,A. and Sommer,M.O.A. (2017) Rapid resistome
mapping using nanopore sequencing. Nucleic Acids Res.,
doi:10.1093/nar/gkw1328.

9. Tsai,Y.-C., Conlan,S., Deming,C. and NISC Comparative
Sequencing ProgramNISC Comparative Sequencing Program,
Segre,J.A., Kong,H.H., Korlach,J. and Oh,J. (2016) Resolving the
complexity of human skin metagenomes using single-molecule
sequencing. Mbio, 7, doi:10.1128/mBio.01948-15.

10. Frank,J.A., Pan,Y., Tooming-Klunderud,A., Eijsink,V.G.H.,
McHardy,A.C., Nederbragt,A.J. and Pope,P.B. (2016) Improved
metagenome assemblies and taxonomic binning using long-read
circular consensus sequence data. Sci. Rep., 6, 25373.

11. Brown,B.L., Watson,M., Minot,S.S., Rivera,M.C. and Franklin,R.B.
(2017) MinION™ nanopore sequencing of environmental
metagenomes: a synthetic approach. Gigascience, 6, 1–10.

12. Rosen,G.L., Reichenberger,E.R. and Rosenfeld,A.M. (2011) NBC:
the naive Bayes classification tool webserver for taxonomic
classification of metagenomic reads. Bioinformatics, 27, 127–129.
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Abstract
High-throughput next-generation shotgun sequencing of pathogenic bacteria is growing in clinical relevance, especially for
chromosomal DNA-based taxonomic identification and for antibiotic resistance prediction. Genetic exchange is facilitated
for  extrachromosomal  DNA,  e.g.  plasmid-borne  antibiotic  resistance  genes.  Consequently,  accurate  identification  of
plasmids  from  whole-genome  sequencing  (WGS)  data  remains  one  of  the  major  challenges  for  sequencing-based
precision  medicine  in  infectious  diseases.  Here,  we  assess  the  heterogeneity  of  four  state-of-the-art  tools  (cBar,
PlasmidFinder, plasmidSPAdes and Recycler) for the  in silico prediction of plasmid-derived sequences from WGS data.
Heterogeneity, sensitivity and precision were evaluated by reference-independent and reference-dependent benchmarking
using 846 Gram-negative clinical isolates. Interestingly, the majority of predicted sequences were tool-specific, resulting in
a  pronounced  heterogeneity  across  tools  for  the  reference-independent  assessment.  In  the  reference-dependent
assessment, sensitivity and precision values were found to substantially vary between tools and across taxa, with cBar
exhibiting the  highest  median  sensitivity  (87.45%) but  a  low median  precision (27.05%).  Furthermore,  integrating the
individual tools into an ensemble approach showed increased sensitivity (95.55%) while reducing the precision (25.62%).
CBar and plasmidSPAdes exhibited the strongest concordance with respect to identified antibiotic resistance factors.
Moreover, false-positive plasmid predictions typically contained only few antibiotic resistance factors. In conclusion, while
high degrees of heterogeneity and variation in sensitivity and precision were observed across the different tools and taxa,
existing  tools  are  valuable  for  investigating  the  plasmid-borne  resistome.  Nevertheless,  additional  studies  on
representative clinical data sets will be necessary to translate  in silico plasmid prediction approaches from research to
clinical application.

Key words: bacteria; plasmids; prediction; next-generation sequencing

Introduction
Bacterial plasmids play important roles in the emergence and spread of antibiotic resistance [1]. These genetic elements
vary in size, are mostly circular, can replicate independently and often encode resistance- and/or virulence-related genes
[1–4]. Moreover, the dissemination of pathogens is facilitated by inter-species plasmid exchange [5]. A prominent example
is  the  plasmid-encoded  mcr-1 gene  inducing  colistin  resistance  originally  reported  by  Y.  Liu  and  Y.  Wang  for
Enterobacteriaceae samples collected in  China [6].  The  mcr-1 gene was subsequently  found in  bacteria  collected in
Europe,  Laos,  Thailand  and  Nigeria  [7].  Therefore,  plasmid  detection  and  classification  are  crucial  steps  for  the
identification and characterization of plasmid-mediated phenotypes.

Polymerase chain reaction-based replicon typing (based on elements of the replication machinery) [8, 9] and MOB typing
(based on conserved motifs of the relaxase gene) are frequently used to detect and classify plasmids [10, 11]. Limitations
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of these approaches are, among others, that the available typing schemes do not cover all plasmids and that the complete
genetic repertoire of the plasmid(s) remains unknown, as the focus of these approaches is on a specific set of genes [12].
In contrast, whole-genome sequencing (WGS) indiscriminately resolves the chromosomal and extrachromosomal genetic
complements. Subsequent annotation of  de novo assembled sequences enables the characterization of chromosome-
and plasmid-derived functional potential  in addition to taxonomic identification of the studied organism. In a detailed
review of plasmid classification within the context of antibiotic resistance epidemiology,  Orlek  et al. [12] describe the
potential  of  the  in  silico analysis  of  WGS data  to  address  the  limitations  of  replicon  and  MOB typing.  Furthermore,
Arredondo-Alonso  et  al. [13]  reviewed computational  solutions for  the  automated plasmid  prediction  on  a  set  of  42
reference genomes. The existing  in silico approaches can be divided into three main categories: marker-gene search-
based approaches, e.g. searching for replicons in the sequences (PlasmidFinder [14]);  approaches based on genomic
signatures,  e.g.  k-mer frequencies,  of  plasmid-derived and chromosomal  DNA (cBar  [15]);  and approaches identifying
plasmids based on k-mer coverage differences and/or circular paths in the assembly graph (PlasmidSPAdes [16], Recycler
[17]). However, repetitive regions and/or genes found on multiple genomic units (chromosomes and plasmids) challenge
the  de novo assembly of short-read sequencing data,  resulting in fragmented assemblies and mis-assemblies [17].  In
accordance with studies reporting on the improved contiguity of genome assemblies based on or augmented by long
reads [18–21],  Arredondo-Alonso  et al. conclude that long-read sequencing data are expected to greatly assist  in the
resolution of chromosomal and extrachromosomal sequences. Unarguably, full-length genomic resolution is ultimately
desirable, but despite advances in long-read sequencing, short-read-based approaches currently dominate the WGS space
and can provide crucial diagnostic information. Therefore, the analysis of a cohort of clinical samples will allow improved
assessment of the variance in the predictions across different taxa but also between the individual tools. 

Here, we analyzed the short-read WGS data of 846 Gram-negative, clinical bacterial isolates using four existing in silico
plasmid prediction tools (cBar, PlasmidFinder, plasmidSPAdes and Recycler) and an ensemble approach that integrates
the  individual  tools’  predictions.  The  heterogeneity  between  the  individual  tools  was  first  assessed  using  reference-
independent approaches. Subsequently, an ad hoc ground truth was defined. This was necessary as the herein included
isolates were patient-derived and the closest reference genome needed to be identified first. De novo assembled contigs
were then aligned against the respective reference chromosome(s) and plasmid(s) to identify plasmid-positive samples.
This information was used to evaluate the sensitivity and precision of the individual tools and the ensemble approach.
Furthermore, the differences in k-mer coverage of chromosome and plasmid sequences in plasmid-positive samples were
compared. Finally, we analyzed the concordance between the predictions and the ground truth with respect to plasmid-
borne antibiotic resistance genes.

Materials and methods

WGS and preprocessing
Batches of  96 samples were  sequenced per  lane for  paired-end sequencing (2  × 100 bp)  on  Illumina Hiseq2000 or
Hiseq2500 sequencers using TruSeq PE Cluster v3 and TruSeq SBS v3 sequencing chemistry (Illumina) as previously
described in detail [22]. A total of 2 705 458 738 raw reads and a median of 2 987 123 reads per sample were generated.
Trimmomatic  version  0.35  was used  with  the  command line  parameters:  ‘PE ILLUMINACLIP:NexteraPE-PE.fa:1:50:30
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36’ [23]. Only the trimmed, paired-end reads were used herein, if
not stated otherwise.

De novo assembly
SPAdes version 3.10.1 [24] was used to assemble the trimmed, paired-end reads with the following parameters: ‘--careful -t
6 -k 21,33,55’.

Predicting plasmid sequences
plasmidSPAdes: ‘plasmidspades.py’ from SPAdes version 3.10.1 [16, 24] was used to assemble the trimmed, paired-end
reads to identify candidate plasmid sequences, with the following parameters: ‘--careful -t 6 -k 21,33,55’.

PlasmidFinder:  Sequences  for  the  Enterobacteriaceae  were  downloaded  from
https://bitbucket.org/genomicepidemiology/plasmidfinder_db/src (commit ID: d5a49e9b01b0) [14]. A BLASTN database
was built using ‘makeblastdb’ of ncbi-blast-2.6.0+.

cBar: Version 1.2 was used [15].

Recycler:  Version  0.62  was  used  [17].  The  required  BAM  file  was  generated  using  bwa-0.7.15.  Recycler’s
‘make_fasta_from_fastg.py’  was  used to  generate  the  FASTA file  (from the  ‘assembly_graph.  fastg’  file  generated by
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SPAdes) required to build the bwa index [25, 26]. The trimmed paired-end reads were aligned against the resulting index
with ‘bwa mem’, and the SAM output was directly converted to BAM format using ‘samtools view -buS -j samtools view -bF
0x0800 -j samtools sort –’ (samtools version 0.1.19-96b5f2294a) [27]. The resulting BAM file was indexed using ‘samtools
index’. Finally, Recycler was run with the following options: ‘-g assembly_graph.fastg -k 55 -b assembly_graph.bam -i True’.

Ensemble approach: To increase the sensitivity, we implemented a straightforward ensemble approach. The candidate
plasmid sequences, as predicted by cBar, plasmidSPAdes, PlasmidFinder and Recycler, were pooled and clustered using
‘cd-hit-est’  from  CD-HIT  version  4.6.6  and  the  default  parameters  [28,  29].  Accompanying  code  can  be  found  at
https://github.com/claczny/2017_plasmid_prediction_review.

Pairwise correlation of the individual tools’ predictions
Sourmash [30] version 2.0.0a1 was used to compute signatures for each tool’s predicted sequences (‘compute -k 31 –
scaled 50 –track-abundance’). As plasmid-derived sequences are typically much shorter than chromosomal sequences, a
small scaling factor was chosen accordingly. Subsequently, for all tools, all predictions within each tool were compared
against each other using sourmash’s ‘compare’ function.  The resulting similarity  matrices per tool  were converted to
distance matrices (1—similarity value),  and all  pairwise tool combinations were correlated using the ‘mantel’  function
(‘method=”"pearson”, permutations=999, parallel=30’) in the vegan R package [31] for samples occurring in both of the
predictions of the respective tool pair. The superheat-function in the superheat R package was used for plotting.

Complete reference genomes
Nucleotide FASTA files of complete bacterial genomes were downloaded from the NCBI RefSeq database (ncbi-genome-
download, https://github.com/kblin/ncbi-genome-download, version 0.2.2,  parameters: --section refseq --format fasta --
assembly-level  complete  --human-readable  --parallel  5  --retries 3  --verbose  bacteria,  on  24  May 2017).  In  total,  6901
genomes were retrieved; sequences containing the word ‘plasmid’ in their FASTA header were considered as plasmids
resulting in 5611 plasmid and 7415 non-plasmid sequences in total.

Defining the ad hoc ground truth data
Lacking dedicated, finished genomes for the present clinical, i.e. patient-derived in contrast to reference material, isolates,
sourmash version 2.0.0a1 was used to identify the most similar, complete reference genome. Specifically, signatures were
first computed for each complete reference genome and the contigs of each successful de novo assembly (‘compute -k 31
--scaled  2000  --track-abundance  -o  SEQ.sig  SEQ.fa’).  The  reference  genomes’  signatures  were  indexed  (‘index
REFIDXPREFIX  -k  31  --traverse-directory  PATH_TO_REF_SIGNATURES’).  Subsequently,  for  each  de  novo assembly,  the
index was searched (‘search -k 31 ASSEMBLY.sig REFIDXPREFIX.sbt.json -o ASSEMBLY.best_only_hits.txt --best-only’), and
the top hit returned by sourmash was used as the respective reference. For each isolate-reference pair, the isolate’s  de
novo contigs were aligned against the reference to identify plasmid or chromosome sequences using BLASTN (ncbi-blast-
2.6.0+, format: ‘6 std qcovs qcovhsp qlen slen’) [32]. For each query sequence, the subject (reference sequence) with the
longest alignment length and highest query-coverage-by-subject was selected. If multiple hits existed, the hit with the
highest bit-score was chosen. If multiple hits remained, the first subject representing a plasmid was chosen. Thus, each
de novo contig was assigned a label whether it represents a plasmid, and contigs not matching a sequence of the closest
reference genome were considered ‘unclassified’.

Evaluating the predictions
Reference-independent analysis of heterogeneity: Sequences were clustered as described for the ‘Ensemble approach’.
The ‘clstr2txt.pl’ script from CD-HIT version 4.6.6 was used to reformat the cluster output. The reformatted output was
used to compute the fraction of the cumulative length of the cluster centroids that was represented by one, two, three or
all four tools. It should be noted that the length of the cluster centroid was used here as a proxy. However, the actual
shared fraction could be lower if cluster members are of shorter length than the cluster centroid.

Reference  sequence  coverage:  PlasmidSPAdes  and  Recycler  generate  their  own  set  of  contigs,  whereas  cBar  and
PlasmidFinder directly identify candidate plasmid sequences on the de novo assembled contigs. Thus, to stay consistent
between all tools, the predicted sequences were linked with the  ad hoc ground truth sequences by using the former as
queries and the latter as the subjects in BLASTN (ncbi-blast-2.6.0+, format: ‘6 std qcovs qcovhsp qlen slen’). Similar to the
approach used for defining the ground truth data, for each query sequence, the subject (de novo contig) with the longest
alignment length and highest query-coverage-by-subject was selected. If multiple hits existed, the hit with the highest
bitscore was chosen. If multiple hits remained, the longest subject was chosen. Should still multiple hits remain, the first
subject representing a plasmid was chosen. Unclassified sequences were ignored. Based on the resulting prediction-to-
ground-truth mapping, the sensitivity and precision were computed using the following definitions:
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• P = cumulative length of ground truth plasmid sequences

• TP = ∑ length(subject); if query was predicted plasmid and subject was ground truth plasmid

• FN = P − TP

• N = cumulative length of ground truth chromosome sequences

• FP = ∑ length(subject); if query was predicted plasmid and subject was ground truth chromosome

• TN = N − FP

• Sensitivity = TP ⁄ P

• Precision = TP ⁄ (TP + FP)

The following edge cases were considered and handled accordingly:

• The sample contained no plasmids and the tool predicted no plasmids: P = 0, TP = 0, FN = 0, FP = 0, TN = N

• The sample contained plasmids and the tool predicted no plasmids:  TP = 0, FN = P, FP = 0, TN = N

• The sample contained no plasmids and the tool predicted plasmids:  P = 0, TP = 0, FN = 0

Antibiotic resistance genes:  Prokka version  1.11 was used to annotate  the  genes of  the predicted  and ground truth
plasmid sequences [33]. Translated coding DNA sequences were searched against the ResFams core database using
hmmsearch version 3.1b2 (‘--cut_tc --tblout’) [34, 35]. The counts of ResFams hits per-sample-and-tool were compared
with the respective counts of the ground truth for samples common to the respective tool and the ground truth.  The
Spearman correlation was computed using the ‘cor’ function in R version 3.3.2 [36]. For each comparison, a linear model
including confidence intervals was fitted using the ‘geom_smooth’ function from the ggplot package version 2.2.1 in R
version 3.3.2 [37].

Results and discussion
Cultured isolates of Gram-negative bacteria from 846 clinical samples were sequenced as described in Galata et al. [22],
and  de novo assemblies were successfully created for 844 samples. We evaluated the performance of four plasmid-
prediction tools: cBar, PlasmidFinder, plasmidSPAdes and Recycler. Moreover, we integrated the individual tools into an
ensemble approach by merging and clustering the predictions according to their nucleotide sequence identity to remove
redundant  sequences.  In  addition  to  evaluating  the  predictions  using  reference-independent  as  well  as  reference-
dependent approaches,  the concordance between the predictions and the ground truth with respect to plasmid-borne
antibiotic resistance genes was analyzed.

Figure 1. Cumulative lengths of the predicted plasmid sequences per tool. The y-axis uses
a log10 scale. The median values are shown and the boxplots represent the median, two
hinges, two whiskers and all outlier points individually.
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Reference-independent assessment of plasmid predictions
In a first analysis, we were mainly interested in the heterogeneity of the predictions between the individual tools. We thus
performed the predictions and compared them with each other. Interestingly, all tested tools substantially varied in their
number of predicted plasmid-positive samples, i.e. samples predicted to contain at least one plasmid-derived sequence.
CBar predicted all 844 samples to be plasmid-positive, while plasmidSPAdes, PlasmidFinder and Recycler predicted 766,
446 and 375 plasmid-positive samples, respectively. Moreover, the cumulative lengths of the predicted sequences per
sample were found to vary markedly: cBar was found to have the largest cumulative lengths, while Recycler had the lowest
(Figure 1).

Moreover,  the tools were tested for their pairwise correlations across the predictions. CBar and plasmidSPAdes were
found to exhibit the highest correlation value (0.82), suggesting that these two approaches resulted in somewhat related
predictions (Figure 2). In contrast, plasmidSPAdes and Recycler were found to have the lowest pairwise correlation (0.3).
Based on the clustering of the individual tools’ predictions using the ensemble approach, the tools’ heterogeneity was
furthermore evaluated with respect to the shared fraction of the cumulative plasmid lengths. The largest fraction was
represented by sequences predicted by a single tool (Figure 3). Conversely, all four tools were infrequently found to show
pronounced overlap in their prediction. Furthermore, strong variations were observed in the fraction of cumulative length
predicted by one or by two tools. This indicates a distinct heterogeneity between the individual tools’ predictions.

Reference-dependent assessment of sensitivity and precision
A complete reference genome could be identified for 818 of the 846 samples. The ad hoc definition of the ground truth
was required because of the lack of dedicated, finished genomes, e.g. using complimentary long-read sequencing data, for
the  present  set  of  clinical  isolates.  The  median  cumulative  lengths  of  chromosome  contigs,  plasmid  contigs  and
unclassified contigs were 4 907 449, 114 954 and 27 733 bp, respectively (Supplementary Figure S1). Seven samples had
>1 Mbp of unclassified contigs and were thus excluded from further analyses, resulting in median lengths of 514.0, 437.5
and 118.0 bp, for chromosome contigs, plasmid contigs and unclassified contigs, respectively (Supplementary Figure S2).
A  total  of  347  samples  were  considered  to  be  plasmid-positive  according  to  the  ad  hoc ground  truth  and  were
subsequently  used  to  compute  the  sensitivity  and  precision  of  the  individual  tools  and  of  the  ensemble  approach
(Supplementary Figure S3).

CBar  was  found  to  be  the  most  sensitive  (median  sensitivity:  87.45%)  among  the  individual  tools,  followed  by
plasmidSPAdes  (81.49%)  and  PlasmidFinder  (36.47%)  (Figure  4).  Recycler’s  predictions  generally  had  overall  low
cumulative  lengths  (Figure  1),  consequently  resulting  in  extremely  low  sensitivity  values  (median  sensitivity:  0.00%).
Importantly, Recycler was designed to recover circular sequences, and the present results suggest that their number was
minimal in our de novo assemblies. The ensemble approach resulted in a median sensitivity value of 95.55%.

Resolving the prediction performances by genus revealed strong variations, both within and between the individual tools
(Supplementary  Figure  S4).  For  example,  while  cBar  was  found  to  exhibit  overall  high  sensitivity  values,  plasmid
sequences of Acinetobacter spp. were less well detected. Moreover, the sensitivity of plasmidSPAdes varied strongly for
the Citrobacter spp.,  Enterobacter spp. and Salmonella spp. samples. PlasmidFinder exhibited particularly low sensitivity
for  Acinetobacter spp., which is to be expected, as this genus is a member of the Moraxellaceae family and, thus, not
covered by PlasmidFinder’s Enterobactericeae-specific database. The sensitivity of the ensemble approach was found to
be on par or better compared with the individual tools.

Figure 2. Correlation of the tools’ predictions. For each tool, a distance matrix with respect
to the tool’s predictions was computed. Pairwise distance matrix correlation was computed
and is shown in the heatmap. The color indicates the correlation degree and correlation
values are shown in each cell.
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While  cBar  had  the  highest  median  sensitivity,  its  median  precision  (27.05%)  was  below  the  median  precision  of
PlasmidFinder (100%) and plasmidSPAdes (52.70%), indicating that cBar frequently misclassifies chromosomal contigs as
being plasmid-derived (false positives). The median precision of the ensemble approach was 25.62%. Importantly, the
ensemble approach included all the false-positive predictions of the individual tools, which explains the low precision.
Similar to the sensitivity results resolved by genus, the precision of the individual tools varied substantially ( Supplementary
Figure  S4).  Notably,  the  highest  median  precisions  were  observed  for  Klebsiella spp.  In  contrast,  the  precision  was
extremely  low for  Acinetobacter spp.,  regardless of the approach being reference-dependent  (cBar,  PlasmidFinder)  or
reference-independent  (plasmidSPAdes,  Recycler).  Hierarchical  clustering  of  the  individual  tools  and  the  ensemble
approach with respect to their true-positive values revealed cBar and the ensemble approach to be the most similar,
followed by plasmidSPAdes (Figure 5).

Figure 3. Fraction of  cumulative lengths shared by the tested tools.  The fraction of the
cumulative length is shown on the x-axis, and the number of tools exhibiting overlap of the
respective sequence(s) is shown on the y-axis. The lengths of the cluster centroids were
taken  as  proxies.  Points  are  jittered  randomly  vertically  per  tool
for  representation  purposes.  The  boxplots  represent  the  median,  two  hinges  and  two
whiskers.

Figure  4.  Prediction  performances  of  the  tested  tools  and  the  ensemble  approach  for
plasmid-positive  samples  based  on  the  ad  hoc ground  truth.  Sensitivity  (‘Sens’)  and
precision (‘Prec’) are shown. The median values are shown and the boxplots represent the
median, two hinges and two whiskers.

Figure 5. Hierarchical clustering of individual tools according to their true-positive values.
True-positive values represent the cumulative base pair length correctly  covered by the
individual  tools  and  were  scaled  and  centered  before  computing  the  hierarchical
clustering.
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Differential coverage between chromosome and plasmid sequences
Plasmids  can  independently  replicate  [3,  4]  and  thus  can  occur  in  different  copy  numbers  than  the  bacterial
chromosome(s).  PlasmidSPAdes  uses  this  information  to  identify  assembly  graph  components  with  (substantially)
differing  coverage,  considering  these  components  as  candidate  plasmids.  However,  this  approach  is,  by  design,
challenged by plasmids occurring in similar copy numbers as the chromosome(s) (false negatives), or by components
within the graph that exhibit coverage differences despite representing chromosomal sequences (false positives), e.g.
because of bacterial cells at different stages in the replication cycle [38]. To study how frequently plasmid sequences
significantly differed in their copy numbers from the chromosome sequences, we analyzed the k-mer coverage of the de
novo assembled contigs. Of the 811 isolates (818 − 7 samples with >1 Mbp of unclassified sequences), 28.11% (228 of
811) showed statistically significant results (alpha  = 0.05; false discovery rate-adjusted: 185 of 811) when tested for
unimodality of the k-mer coverage distributions (Supplementary Figure S5), suggesting that these distributions could be
considered mutimodal. However, only 31.70% (110 of 347) of the plasmid-positive samples were likely multimodal in their
k-mer coverage distributions. Moreover, 61.10% (212 of 347) of the plasmid-positive samples significantly differed in their
k-mer coverages of the plasmid sequences and chromosome sequences (Wilcoxon-Mann-Whitney-test, P < 0.05). It should
be  noted  that  plasmidSPAdes  median  sensitivity  was  higher  (81.29%;  Figure  4);  yet,  this  was  computed  using  the
sequence coverage of plasmid sequences rather than number of samples. Correctly predicted, long-assembled sequences
will increase the true-positive value, thereby leading to higher sensitivity values.

Antibiotic resistance factors encoded in plasmid sequences
The in silico separation of genomic sequences into ‘chromosome-derived’ or ‘extrachromosome-derived’ has proven to be
a challenging task as demonstrated herein as well as in [12, 13]. Nevertheless, the identification of candidate plasmid-
derived sequences in fragmented assemblies is relevant. Specifically, the functional potential can thus be assessed for the
candidates. To this end, antibiotic resistance genes included in ResFams were identified on the predicted and ground truth
plasmid sequences of plasmid-positive samples. The number of ResFams hits was found to vary within and between the
individual  tools  but  also for  the  ground truth  (Figure  6).  PlasmidFinder  and Recycler  recovered few of  the  expected
ResFams hits, which is in accordance with the reduced sensitivity observed herein (Figure 4). CBar and plasmidSPAdes
were found to more closely represent the ground truth distribution of the ResFams hits. Only plasmidSPAdes exhibited a
higher number of hits than found in the ground truth.  These extra hits might represent chromosome-borne antibiotic
resistance  genes.  As  plasmidSPAdes  uses  coverage  information  for  its  predictions,  it  could  be  speculated  that  the
respective chromosomal regions exhibited differential coverage to the remainder of the chromosome. While there are
various potential  reasons as to  why  this  could  occur,  e.g.  competitive advantage under  antibiotic  pressure and thus
increased replication, the exact reason is currently unknown. Moreover, the ResFams hit counts were compared pairwise
between the ground truth and the individual tools, and the respective Spearman correlations were computed (Figure 7).
CBar  and plasmidSPAdes were  found to  be  the  closest  to  represent  the  ground truth,  with  cBar  exhibiting  a  higher
correlation (0.68 versus 0.56), likely because of the increased variation toward low or high counts for plasmidSPAdes.

Figure 6. ResFams hits counts of plasmid-positive samples. The number of samples per tool
is shown in parentheses. Only plasmid-positive samples with at least one ResFams hit are
shown. Points are jittered randomly horizontally per tool for representation purposes. The
boxplots represent the median, two hinges and two whiskers.
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Conclusion
The importance of  WGS has been repeatedly  demonstrated  for  taxonomic identification  of  microorganisms,  with  its
application in infectious disease diagnostics and in epidemiological studies providing direct benefits to individuals and the
general public [39–41]. Furthermore, the indiscriminate extraction of the entire microbial genomic complement enables
concurrent sequencing of chromosomal and extrachromosomal sequences, e.g. plasmids in bacteria. This is especially
relevant as plasmid-encoded functions can strongly  affect the bacterial  phenotype,  thus providing crucial  information
beyond chromosomes and taxonomy [42–45]. To this end, the present study analyzed the performances of four plasmid
prediction tools  on  de novo assemblies of  846 Gram-negative WGS clinical  isolates using reference-independent  and
reference-dependent evaluation approaches. With respect to the latter, the use of patient-derived isolates, in contrast to
reference material, required the definition of an ad hoc ground truth. This approach was found to be robust for the plasmid-
positive  samples,  as  the  cumulative  length  of  unclassified  sequences  was  limited.  However,  plasmid  sequences,  in
particular  if  they  were  recently  acquired,  might  have  been  missed;  yet,  this  would  not  negatively  affect  the  present
evaluation,  as  unclassified  sequences  were  ignored.  Moreover,  plasmid  sequences  recently  introduced  in  the
chromosome(s) or plasmid sequences homologous to chromosome sequences might represent confounding factors in
the  definition  of  the  ad  hoc ground  truth.  This  further  highlights  the  importance  of  full-length  assemblies/reference
genomes, which were, however, unavailable for the herein included isolates, and the generation of this complementary
data was beyond the scope of the current study.

Overall,  no  single-best  approach  was identified  and  pronounced  variations  in  heterogeneity  between  the  tools  were
observed, with cBar and plasmidSPAdes showing the strongest correlation. Moreover, the diversity of the present samples
comprised 11 genera of at  least 20 samples and allowed to reveal taxon-dependent variation,  both,  within tools and
between tools. Interestingly,  Acinetobacter-borne plasmids were less well detected by cBar, resulting in a low sensitivity,
which may be because of a limited representation of this genus in the reference database that was originally used for
cBar’s training. Furthermore, the generally low precision for this specific genus suggests that Acinetobacter spp. infections
may require  dedicated analyses and attention,  e.g.  in  the  case of  plasmid-carrying,  multidrug-resistant  Acinetobacter
baumannii organisms [46–48].  The taxon-dependent variation in the tools’  performances highlights the importance of

Figure 7. Comparison of ResFams hits against the ad hoc ground truth. ResFams hits counts of the four herein tested tools
are plotted against the respective counts in the ground truth for paired samples. A linear model was fitted (black line) and
confidence intervals are shown (in orange). Moreover, a two-dimensional density estimate is plotted with transparency
increasing with decreasing point density.
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concurrent identification of taxonomy and functional potential and the need for reference databases with an increased
diversity,  e.g.  improved  coverage  of  Acinetobacter spp.  by  cBar  and PlasmidFinder.  Moreover,  we showed that  copy
numbers of plasmid sequences need not necessarily vary significantly to the copy number of the chromosome(s), thereby
limiting coverage-based approaches. Accordingly, the use of complementary approaches that could lend mutual support,
e.g. using cBar and plasmidSPAdes, appears sensible. 

In addition to the individual tools,  an ensemble approach integrating the four independent predictions was evaluated.
Overall, the sensitivity was found to be increased and less variable. However, the combination of the individual tools also
led to reduced precision. Accordingly,  the ensemble approach represents an interesting solution if the objective is to
maximize  the  sensitivity,  and false  positives  are  acceptable  and/or  can  be  removed downstream,  e.g.  by  identifying
sequences with exceptionally high or low fold-coverage or by identifying sequences encoding relevant factors, such as
antibiotic resistance genes. This approach is, however, not intended to replace the development of improved databases
and prediction algorithms in the future.  An example of the fast developments in this field is PlasmidTron, which was
published,  while  the  present  manuscript  was  in  revision  [49].  Moreover,  PLACNET  represents  a  recently  published
approach  for  the  plasmid  reconstruction  from WGS data  [50].  It  was  excluded  from the  present  evaluation  of  fully
automated tools because of a manual pruning step in PLACNET’s workflow.

The reconstructed genomic sequences,  including the plasmid  sequences,  remained fragmented in  the  present  study,
which is in accordance with the results reported by Arredondo-Alonso et al. [13]. While long-read-based sequencing greatly
improves the contiguity of genome assemblies [18, 19, 51], plasmid prediction tools can strongly reduce the search space
for short-read-based data. Importantly, despite the frequent prediction of false positives, the accordance in the number of
antibiotic resistance genes with respect to the ground truth was found to be high for cBar and plasmidSPAdes. Overall, this
is  expected  to  support  precision  medicine  by  reducing  the  time  and  work  burden  required  for  data  examination.
Furthermore, the present study illustrates that specific objectives are met by specific approaches and, thus, systematic
benchmarking on extensive and curated data sets is important for the translation of bioinformatics tools from research to
clinical application.

Key Points
• Extrachromosomal  DNA  in  the  form  of  plasmids  can  carry  phenotype-relevant  information,  e.g.  antibiotic

resistance factors.

• Next-generation sequencing of isolates allows linkage of taxonomy and extrachromosomal functional potential
via concurrent resolution of chromosomal and extrachromosomal DNA.

• Existing  in silico plasmid-prediction approaches showed limited agreement as well  as strong inter-  and intra-
taxon variability on a set of 846 WGS clinical bacterial isolates.

• Combining the individual predictions resulted in increased sensitivity while reducing precision.

• Antibiotic resistance gene counts on predicted plasmid sequences were not strongly affected by false-positive
predictions.
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ABSTRACT

The study of bacterial isolates or communities re-
quires the analysis of the therein included plasmids
in order to provide an extensive characterization of
the organisms. Plasmids harboring resistance and
virulence factors are of especial interest as they
contribute to the dissemination of antibiotic resis-
tance. As the number of newly sequenced bacterial
genomes is growing a comprehensive resource is
required which will allow to browse and filter the
available plasmids, and to perform sequence anal-
yses. Here, we present PLSDB, a resource contain-
ing 13 789 plasmid records collected from the NCBI
nucleotide database. The web server provides an
interactive view of all obtained plasmids with addi-
tional meta information such as sequence charac-
teristics, sample-related information and taxonomy.
Moreover, nucleotide sequence data can be uploaded
to search for short nucleotide sequences (e.g. spe-
cific genes) in the plasmids, to compare a given
plasmid to the records in the collection or to de-
termine whether a sample contains one or multi-
ple of the known plasmids (containment analysis).
The resource is freely accessible under https://ccb-
microbe.cs.uni-saarland.de/plsdb/.

INTRODUCTION

Naturally occurring bacterial plasmids are a key consider-
ation when studying bacterial isolates or communities as
they can contain genes giving their host an adaption ad-
vantage (1). In the context of bacterial pathogens, antibi-
otic resistance and virulence genes located on these extra-
chromosomal DNA molecules are of particular interest.
As the plasmids can be exchanged between bacterial cells,
the knowledge about their distribution is crucial to study
the spread of plasmids harboring relevant genetic markers
(2). Thus, newly sequenced plasmids need to be compared
to the already published sequences to determine whether
they have been already detected in other organisms. The
importance of tracking clinically relevant plasmid or gene
sequences was recently demonstrated after the discovery

of the first plasmid-mediated resistance mechanism against
colistin (MCR-1) in Enterobacteriaceae (3).

As the number of sequenced plasmids grows constantly
together with the number of sequenced bacterial genomes
and metagenomes (4), there is a need for a comprehen-
sive overview of the already discovered plasmids provid-
ing information on their characteristics and distribution
among different organisms. Though, NCBI already pro-
vides a list of plasmids from the RefSeq database (https:
//www.ncbi.nlm.nih.gov/genome/plasmids/) further utilities
for the analysis using only this subset of records are cur-
rently not available. For example, the table can only be
sorted but not filtered or searched, there is no informa-
tion on associated samples and assemblies, and there is no
BLAST database option available to search in these plasmid
records only. Moreover, some of the NCBI records tagged as
plasmids are mislabeled chromosomal sequences and many
entries do not represent complete records making a filter-
ing of these entries challenging (4). At the same time, the
number of alternative plasmid resources is limited. The Ad-
dgene Repository stores plasmids used in the lab (5) and
thus does not primarily focus on naturally occurring bacte-
rial plasmids. The Plasmid Genome Database (PGD) was
published as a resource of all fully sequenced plasmids (6);
however, it seems that it is not maintained anymore as it is
not accessible (http://www.genomics.ceh.ac.uk/plasmiddb/,
accessed on 7 August 2018). Orlek et al. created a dataset
of complete plasmids collected from the NCBI nucleotide
database but it is limited to records from the family Enter-
obacteriaceae (7). Another dataset of finished bacterial plas-
mids was created by Robertson and Nash to be used as ref-
erence data in a software suit for processing plasmids from
draft assemblies (8). A much more comprehensive collec-
tion of bacterial plasmids among the herein listed resources
is offered by the recently launched web server pATLAS
(http://www.patlas.site/). But, this resource does currently
not allow for sequences to be uploaded and searched against
the plasmids in the database; only the results obtained us-
ing the pATLASflow pipeline can be submitted (https://
github.com/tiagofilipe12/pATLASflow, accessed on 1 Au-
gust 2018).

To this end, we implemented a resource, PLSDB, in-
cluding an extensive set of complete bacterial plasmids
from the NCBI database covering records from RefSeq
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and INSDC (which includes DDBJ, EMBL-EBI and Gen-
Bank). The plasmid records were annotated using ARG-
ANNOT (9), CARD (10), ResFinder (11) and VFDB
(12), and characterized by PlasmidFinder and pMLST
(13). Also, additional metadata such as taxonomy, se-
quence features and sample information was incorpo-
rated. The database provides a user-friendly and interac-
tive overview of the plasmid sequences which can be fil-
tered and searched by various parameters. It also offers
an option to search for short nucleotide sequences (e.g.
genes) using BLASTn (14), to compare a plasmid sam-
ple represented by one or multiple nucleotide sequences
to all included plasmids using Mash (15) and to per-
form a containment analysis (16), i.e. the identification of
plasmids present within a sample representing a mixture
of chromosome- and/or plasmid-derived sequences (https:
//genomeinformatics.github.io/mash-screen). The user can
upload the sequence data to the web server or download the
required BLAST database and Mash sketch files to run the
analysis locally for batch analyses. We describe how PLSDB
can be used for the analysis of sequencing data and compare
our resource to the existing alternatives listed above.

PLASMID COLLECTION

All plasmid records were collected from the NCBI nu-
cleotide database (https://www.ncbi.nlm.nih.gov/nuccore)
from the resources INSDC (which includes DDBJ, EMBL-
EBI and GenBank) and RefSeq using command line utili-
ties EDirect (17) (version 9.80). The herein described data
were retrieved on 14 September 2018.

Data retrieval and processing pipeline

Data collection. Plasmid records were searched in the
NCBI nucleotide database by using the query from Orlek
et al. (4) and filtering the results to have ‘plasmid’ as lo-
cation tag, being assigned to a bacterial organism and be-
ing from the specified resource (INSDC or RefSeq). Doc-
ument summary was fetched for each hit and the follow-
ing information was extracted if available: UID, caption
(accession without the version number), title (sequence de-
scription), creation date, topology (e.g. circular or linear),
completeness, taxon ID, genome tag and sequence length.
For the record taxon IDs, the associated name and rank,
the complete lineage and the taxon ID and name for the
ranks species, genus, family, order, class, phylum and su-
perkingdom were obtained. For each BioSample ID linked
to a plasmid record, the location name and coordinates,
and the isolation source were extracted. The retrieved lo-
cation coordinates were processed and if these were not
available the location name was queried using the API of
OpenCageData (https://opencagedata.com/). In the latter
case, the mapped coordinates were manually checked to cor-
rect assignments deviating significantly from the expected
location (e.g. wrong continent or country). For each assem-
bly ID linked to a plasmid record, its completeness status,
sequence release and submission date were extracted, and
whether it is the latest assembly version. If a plasmid record
was linked to multiple assembly IDs only the assembly with
the tag ‘latest’ was assigned to this record. If none of the

linked assemblies had this tag the newest one was chosen
based on the sequence release date.

Record filtering. Subsequently, the collected plasmid
records were filtered in several steps to remove incomplete
or mislabeled chromosomal sequences. First, the plasmid
records were filtered by their description using the regular
expression defined by Orlek et al. (4), by their completeness
and assembly completeness tags, and by their taxonomy to
remove non-bacterial sequences. The record was required
to have the completeness tag ‘complete’ and its assembly
the tag ‘Complete Genome’; if no assembly was associated
with the record then only the record tag was used and
vice versa; empty completeness tags were ignored, i.e. only
the non-empty ones were used to remove the records.
In the second step, the records were deduplicated: pairs
of likely equal records were created using Mash (15) by
computing the sketches of the plasmid sequences and their
pair-wise distances. The sequences of pairs with a distance
of zero were compared and identical records were grouped
together. For each group, one record was chosen, similar
to the approach described by Orlek et al. (4), by preferring
RefSeq records over the INSDC records and by preferring
records with additional information (mapped location
coordinates and having a linked assembly). In ambiguous
cases, the record with the older creation date was chosen.
In the third filtering step, putative chromosomal sequences
were identified and removed. A list of candidates was
created by performing an in silico rMLST analysis (18), i.e.
searching the 53 rps genes, downloaded from PubMLST
(19) (https://pubmlst.org/rmlst/, 14 September 2018), in the
plasmid records using BLASTn (14) (version 2.7.1+). The
advantage of these markers for the detection of putative
chromosomal sequences is their presence in all bacteria,
their distribution around the chromosome, and their
functional conservation (18). For the BLAST hits, the
subject coverage was computed as 100 · (alignment length
− total number of gaps)/subject length and only hits with
100% identity and subject coverage were kept. As in
some cases the rps genes can also be located on plasmids
(20), only plasmid records having hits to more than 5
unique rps genes (i.e. more than 10% of the 53 genes) were
subjected to a remote BLAST search (megablast) in the
NCBI nr/nt database using an Entrez query to exclude
non-chromosomal subject sequences. Any record having
at least one hit with at least 99% identity and 80% query
coverage was excluded from the plasmid collection.

Record annotation. The sequences were annotated by
performing a BLASTn search for resistance factors
from ARG-ANNOT (9), CARD (10) and ResFinder
(11) with minimal identity and coverage of 95%, vir-
ulence factors from VFDB (12) with minimal identity
and coverage of 95%, and replicons from PlasmidFinder
(13) using the Enterobacteriaceae and the Gram-positive
datasets with minimal identity of 80% and minimal
coverage of 60%. For PlasmidFinder, the identity and
coverage cutoffs were set according to authors’ recom-
mendations (13). The tool ABRicate, implemented by
Seemann (https://github.com/tseemann/abricate, ver-
sion 0.8.7), was used to download and prepare the
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databases which was done on 14 September 2018, except
for VFDB which was updated on 17 September 2018.
For the sequence search, an approach analogous to
the one implemented by the PlasmidFinder web server
(https://cge.cbs.dtu.dk/services/PlasmidFinder/) was ap-
plied. A script from the Center for Genomic Epidemiology
core module (https://bitbucket.org/genomicepidemiology/
cge core module) was used to run BLAST search and
pre-process the hits resulting in one best hit per subject.
The hits were then filtered based on the given cutoff values.
At last, overlapping hits were removed. Plasmids with repli-
cons having a corresponding pMLST scheme (IncA/C,
IncF, IncHI1, IncHI2, IncI1 or IncN) were subjected to
in silico pMLST analysis (13) using schemes and profiles
from PubMLST (19) (https://pubmlst.org/plasmid/, 14
September 2018). The command line tool mlst, imple-
mented by Seemann (https://github.com/tseemann/mlst,
version 2.10), was applied using minimal identity of
85% and minimal coverage of 66% as recommended by
Carattoli et al. (13). For the IncF plasmids, the sequence
type was assigned according to the FAB formula (21).
If the found allele hits were not exact (in terms of locus
length and identity) or ambiguous (multiple exact hits)
then the allele ID was not set. If more than one of the
FIC/FII replicons had at least one exact allele match
then the first part of the sequence type was set to ‘−−’,
i.e. ambiguous FIC/FII replicon hits; if none of these
replicons had an exact allele hit then ‘F-’ was used. Next,
Mash (15) (version 2.0) was applied to create sketches of
the plasmid nucleotide sequences using parameters -i
-S 42 -p 20 -k 21 -s 1000. The 2D embedding
of the plasmid sequences was computed using UMAP
(22) (version 0.2.5). First, pairwise distances between the
sequences were computed from the created Mash sketches.
Then, UMAP was applied to the distance matrix using
parameters n neighbors=50, n components=2,
init='random', metric='precomputed'. Unique
pairs of similar plasmids were identified by computing
pairwise distances with Mash with a distance cutoff of
0.00123693 which corresponds to have at least 950 of 1000
shared hashes. At last, a BLAST database was created
using makeblastdb from the BLAST+ executables (14)
(version 2.7.1+) called with the parameters -input type
fasta -dbtype nucl.

Overview of collected plasmids

In total, 13 789 plasmid records (2945 from INSDC and 10
844 from RefSeq) were retrieved from the NCBI nucleotide
database. According to the date when the record was cre-
ated, the number of plasmids increased drastically in the last
years with more than 1000 unique sequences per year since
2015 (Figure 1). Moreover, the records collected since 2015
cover more than 60% of the dataset (9544 records). The se-
quence length of the obtained plasmid records ranged from
655 to 2 580 084 bp with a median of 52 830 bp. Further-
more, the created collection covered 1753 distinct species,
488 genera, 201 families, 98 orders, 42 classes and 22 phyla.
The location coordinates could be obtained for 6171 records
(44.8%). Using PlasmidFinder 5452 records (39.5%) could

Figure 1. Number of plasmid records included into the collection grouped
by the year of their creation. The y-axis scale is square root transformed.

be characterized of which 2617 were subjected to in silico
pMLST analysis.

Resource implementation

The PLSDB was implemented as a document oriented
resource using Django Python Web framework (https://
djangoproject.com/) for the web server implementation.
For user jobs, Celery (http://docs.celeryproject.org), a dis-
tributed task queue, is used together with Redis (https:
//redis.io/) as broker. The project was set up using Cook-
ieCutter (https://cookiecutter.readthedocs.io/) and Docker
(https://www.docker.com/). Plots are drawn using the High-
Charts library (https://www.highcharts.com/); the list of
other used libraries can be found on the resource website.
The resource update will be performed semi-automatically
every 3 months together with the update of the used anno-
tation databases. The web server code version, and the code
version and date of data retrieval are provided for reference
on the resource page.

DATABASE FUNCTIONALITY

Interactive overview of plasmids

A user-friendly and interactive view of the collected plas-
mid records is implemented (Figure 2). It includes a ta-
ble showing the most relevant record information such as
topology, record creation date, BioSample location and iso-
lation source, PlasmidFinder and pMLST analysis results,
nucleotide sequence length and GC content, and taxonomic
information. Moreover, the 2D embedding of the records is
shown together with a world map displaying records with
available location information from the associated BioSam-
ple. At last, a summary of the shown records is provided
including the number of records per year based on their
creation date, sequence topology, the distribution of the
sequence length and GC content, and the percentage of
10 most frequent species taxa. The taxonomic composi-
tion of all collected plasmid records is provided by an in-
teractive Krona plot (23) showing the count and percent-
age of records for different taxa and ranks in the complete
dataset and for each used resource (INSDC and RefSeq).
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Figure 2. Interactive overview of collected plasmid records. Record AP018833.1 is selected in the table and highlighted (red diamond shaped symbol) in
the embedding plot and on the world map.
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The records can be filtered and searched through the ta-
ble toolbar using any of the displayed table columns. The
embedding, world map, and summary plots, except for the
Krona plot, are then updated based on the filtering results.
Each plasmid record has also a more detailed individual
view which additionally includes plasmids associated with
the same BioSample, plasmids being identical to the re-
spective record (excluded from the dataset during the dedu-
plication step) and similar plasmids (based on Mash dis-
tance), a table of hits to known resistance and virulence
factors, and an interactive view of the sequence annota-
tions provided through the NCBI sequence viewer (https:
//www.ncbi.nlm.nih.gov/projects/sviewer/).

Sequence search in plasmids

The PLSDB web server implements three options for se-
quence search: (i) short nucleotide sequences, e.g. genes,
can be searched in the plasmid records using BLASTn (14).
(ii) A potential plasmid represented by one or multiple nu-
cleotide sequences (e.g. long or short reads, or contigs) can
be searched in the resource by using Mash’s distance es-
timation approach (15). Here, the sketches of the plasmid
records are compared to the sketch of the uploaded sample
to calculate their similarity. (iii) At last, the user can per-
form a containment analysis, also implemented by Mash
(15). Here, the tool estimates the containment of each plas-
mid record in the uploaded nucleotide sequences by count-
ing the number of shared hashes.

Application examples

In the following, we demonstrate how the PLSDB resource
can be used in different scenarios for sequence data analysis.

Gene search. The first plasmid mediated bacterial resis-
tance mechanism against colistin was reported by Liu et al.
in 2016 describing the gene MCR-1 (3). The resistance fac-
tor was located on a plasmid found in an Escherichia coli
strain extracted in the course of a surveillance project on an-
timicrobial resistance. The nucleotide sequence of MCR-1
(plasmid RefSeq accession KP347127.1, positions 22 413 to
24 038) was searched using BLASTn in the plasmid records
with minimal identity and minimal query coverage per HSP
set to 98% (Supplementary Table S1).

The search resulted in 253 hits. The plasmids included in
the hits were mostly from E. coli (79.8%) and the remaining
from other Enterobacteriaceae species; the corresponding
records were included into the NCBI nucleotide database
between 2015 and 2018. Most records were extracted from
samples collected in China (31 of 58 records with location
information) and most were labeled as collected from clin-
ical patients (8 records of 51 records with isolation source
information). In the latter case, the true number is likely to
be higher as other labels (e.g. ‘blood’, ‘urine’, etc.) could
also refer to clinical patient samples. The most frequently
found replicons assigned by PlasmidFinder (13) were IncI2
(124 records), IncX4 (69 records) and IncHI2 (34 records).
The retrieved plasmids could be used in a subsequent down-
scale analysis, e.g. by investigating the plasmids’ genomic
features in more detail.

Comparing plasmids. Li et al. (24) sequenced plasmids
known to encode multi-drug resistance extracted from 12
bacterial strains (referred to as RB01 to RB12): 9 E. coli, 1
Salmonella typhimurium, 1 Vibrio parahaemolyticus, and 1
Klebsiella pneumoniae. In total, 21 plasmids could be assem-
bled with 1–5 plasmids per sample for 11 of the 12 bacterial
strains (sample R08, a S. typhimurium, was contaminated
by chromosomal DNA). The nucleotide sequences of these
plasmids were compared to the plasmid records stored in
PLSDB using Mash (15) (command dist) with maximal
P-value and distance thresholds set to 0.1 (Supplementary
Table S2).

The taxonomy of the plasmid records from the best hit
per query plasmid (hits were sorted by distance and num-
ber of shared hashes) matched the species taxon of the
host bacteria in 15 of the 21 cases. Interestingly, two E.
coli plasmids (from samples RB05 and RB06) had a per-
fect match (distance of 0, 1000 of 1000 shared hashes)
to two distinct IncA/C2 plasmids extracted from V. para-
haemolyticus (accessions MF627444.1 and MF627445.1).
According to NCBI, these two Vibrio plasmids were
found in cephalosporin-resistant V. parahemolyticus in re-
tail shrimps in China. Both plasmids harbor the beta-
lactamases blaCTX − M − 55 (ARO:3001917) and blaOXA − 10
(ARO:3001405). However, the resistance factor CTX-M-
15, also a beta-lactamase (ARO:3001878), present in sam-
ples RB05 and RB06, was not found in MF627444.1 or
MF627445.1 (neither in the hits to known resistance factors
nor in the feature names of the NCBI annotations) show-
ing that there are differences in the gene content between
the queries and the matched plasmids. These results demon-
strate how the comparison analysis can help to identify po-
tentially related plasmids found in other species.

Containment analysis. Schmidt et al. performed a study
where they investigated the capability of MinION se-
quencing to identify pathogens in bacterial DNA enriched
from urine of clinical patients (25). The raw MinION
reads from this study were downloaded from the ENA
web server (project accession PRJEB16761). From the in-
cluded nine samples (CU4 - CU7, CU9, CU10, SU1,
SU2 and S1D), only clinical urine (CU) samples were
selected except for CU4 as its sequencing run was de-
scribed as failed due to the poor quality of the used
flow cells. The reads were extracted to FASTA files us-
ing Poretools (26) (version 0.6.0, poretools fasta --
type all reads.fast5 > reads.fasta) and only
the ‘pass’ reads were used for further analysis. For the five
selected samples containment analysis was performed us-
ing Mash (15) (command screen) with maximal P-value
set to 0.1 and minimal identity set to 0.99 (Supplementary
Table S3).

From the five analyzed samples, hits were obtained
only for CU6 and CU10. For CU6, plasmid records
NZ CP018990.1 and NZ CP018964.1 were reported with
838 and 827 of 1000 shared hashes, respectively. Both plas-
mids were found in E. coli, were characterized as IncF
plasmids and harbor multiple resistance factors includ-
ing some of the genes found in CU6 by Schmidt et al.:
aadA5 and dfrA17. For CU10, one E. coli (NZ CP011334.1)
and five K. pneumoniae records (KY271405.1, KY271404.1,
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Table 1. Comparison of pATLAS and PLSDB

Category Sub-category pATLASa PLSDB

Resource RefSeq RefSeq, INSDC (DDBJ, EMBL-EBI,
GenBank)

Plasmid filtering By specific words in FASTA
headerb

a query, genomic location and organism using
edirect, by a regular expression on record
description, completeness and taxonomy,
de-duplication; removed putative chromosomal
sequences

Number of plasmids 12 746 13 789
Plasmid overview Presentation Distance-based network,

metadata table, summary
plots

Metadata table, embedding, world map,
summary plots, Krona plot

Filtering Sequence length, taxonomy,
annotations

Any column shown in metadata table

Metadata Sequence Plasmid name, length,
taxonomy

Description/title (incl. plasmid name), length,
GC content, taxonomy, topology, creation date

BioSample ✗ Location, isolation source
Annotation ARG-Annot ✗ �

CARD � �
ResFinder � �
VFDB � �
PlasmidFinder � �
pMLST ✗ �

Search Local requirements Install and run provided
pipeline

Download Mash sketches and BLAST DB,
download tool binaries

Data upload ✗c �
Search strategyd Mapping �(Bowtie2) ✗

Distance estimation �(Mash) �(Mash)
Containment �(Mash) �(Mash)
Genes ✗ �(BLASTn)

apATLAS version 1.5.2 (last DB update from 20 July 2018), accessed on 1 August 2018.
bDerived from code review (https://github.com/tiagofilipe12/pATLAS/patlas/MASHix.py, commit 0f6dfa5).
cSearch results must be generated locally by the user using the pipeline provided by pATLAS. The results can be uploaded to the web server.
dFor pATLAS, the information was derived from code review (https://github.com/tiagofilipe12/pATLASflow, commit f3e9f2f).
Bold text indicates differences between features; check mark indicates same/similar features and cross symbol a missing feature.

NZ CP024500.1, NZ CP024483.1 and NZ CP024516.1)
were obtained as hits. The E. coli plasmid was rather
short with 2954 bp containing only four genomic anno-
tations described as incomplete or frameshifted accord-
ing to the NCBI nucleotide database. The five K. pneumo-
niae records were assigned to the same two replicons (‘Inc-
FIB(K) 1 Kpn3, JN233704’ and ‘IncFII(K) 1, CP000648’)
and were longer than 220 kbp except for KY271405.1 which
was 133 069 bp. All of these five plasmids had hits to multi-
ple resistance factors including genes identified in CU10 by
Schmidt et al.: blaCTX − M − 15, blaOXA − 1, blaTEM, aac(6’)Ib-
cr, dfrA14, strB and qnrB (more specifically qnrB1). These
findings indicate a potential presence of plasmids bearing
multiple antibiotic resistance factors in at least two of the
analyzed samples and provide candidates for further anal-
ysis, e.g. to preform read alignment in order to determine
whether the plasmids are fully covered, especially in the re-
gions containing the resistance determinants.

COMPARISON TO EXISTING RESOURCES

The number of available resources providing a collection of
known bacterial plasmids is limited.

The Addgene Repository is a database of plasmids gener-
ated by scientists and covering different organisms includ-
ing bacteria (5). Though this is a highly extensive and valu-
able resource its purpose is not the compilation of naturally

occurring bacterial plasmids but rather a platform for sci-
entists to share plasmids used in the lab.

The PGD was created to include all fully sequenced
plasmids (6). The records were collected from the NCBI
database and included additionally to the bacterial plas-
mids also sequences from Archaea and Eukaryotes. But,
this database is most likely not maintained anymore as its
website is not accessible (http://www.genomics.ceh.ac.uk/
plasmiddb/, accessed on 7 August 2018).

Orlek et al. (7) compiled a dataset of Enterobacteriaceae
plasmids covering 2097 sequences in total and providing the
protein sequences of translations in all six possible frames.
However, this resource includes only data of a specific bac-
terial family and offers no web-based platform for data ma-
nipulation and analysis. The latter applies also to the dataset
of 12 095 finished bacterial plasmids (accessed on 11 Octo-
ber 2018) created by Robertson and Nash for a software suit
for processing plasmids from draft assemblies (8).

The pATLAS web server developed by Jesus, Gonçalves,
Silva, Ramirez and Carriço (http://www.patlas.site, version
1.5.2, last DB update from 20 July 2018, accessed on 1 Au-
gust 2018) includes bacterial plasmids extracted from NCBI
RefSeq database (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/
plasmid/), annotated using ABRicate (https://github.com/
tseemann/abricate) and compared using Mash (15). The
plasmids are represented as a network where two plasmids
are connected if their distance is below 0.1 and the asso-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/D

1/D
195/5149885 by Saarlaendische U

niversitaets-u Landesbibliothek/ M
ed. Abteilung,  valentina.galata@

uni-saarland.de on 27 June 2019
104



Nucleic Acids Research, 2019, Vol. 47, Database issue D201

ciated P-value is below 0.05. The links in the network can
be filtered and colored, and the nodes (i.e. plasmids) can
be filtered by various parameters. Plasmids can be searched
in high throughput sequencing data using Bowtie2 (27)
(mapping based approach) or Mash (15) (distance estima-
tion or containment analysis). In summary, pATLAS pro-
vides a comprehensive set of bacterial plasmids with an in-
teractive network-based view and rich functionality. Com-
pared to this resource, PLSDB additionally provides plas-
mid records from the INSDC resource which includes en-
tries from DDBJ, EMBL-EBI and Genbank. As not all
plasmids from INSDC are necessarily already included in
RefSeq at the time of data retrieval, using both resources
can provide a more complete set of records. Moreover,
the meta-information in PLSDB includes further categories
such as isolation location and source derived from the asso-
ciated BioSamples. While pATLAS offers a mapping-based
search which is not implemented in PLSDB, we offer the op-
tion to run a BLASTn search for short sequences, e.g. spe-
cific genetic markers such as resistance or virulence factors.
Finally, in case of PLSDB, the user can upload the query
sequences directly to the web-server. As the upload file size
is limited, the required files can also be downloaded to run
the search locally in case of having large datasets including
many samples and/or sequences. A more detailed compar-
ison of both resources can be found in Table 1.

CONCLUSION

The analysis of plasmids is essential for characterization
of bacterial isolates and communities. Carrying different
resistance and virulence factors, they also play a crucial
role in dissemination of antibiotic resistance. We presented
here PLSDB, an extensive resource of complete bacterial
plasmids retrieved from the NCBI database. The imple-
mented web server allows to browse the included plasmid
records and to upload nucleotide sequences to be searched
in the database using one of the three implemented op-
tions: search of short sequences such as genes, compari-
son of a plasmid sample to available plasmid records and
containment analysis. The resource is freely accessible at
https://ccb-microbe.cs.uni-saarland.de/plsdb.

CODE AND DATA AVAILABILITY

The code used to collect and process the data can be found
at https://github.com/VGalata/plsdb. All relevant data files
can be downloaded from the database website including
plasmid metadata and annotations, mash sketches and
BLAST database files. The resource can be accessed under
the following URL: https://ccb-microbe.cs.uni-saarland.de/
plsdb.
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4
Discussion and conclusions

WGS is increasingly applied in microbiology research to study mi-
crobial communities and bacterial isolates. In particular, the study of
antibiotic resistance has gained in importance due to the emergence
of highly resistant bacterial pathogens. The growing amount of data
requires the development of reference databases and new tools to
facilitate the analysis.

This thesis covered the analysis of a collection of bacterial isolates
and the implementation of computational resources to process mi-
crobial genomic data with a strong focus on bacterial pathogens and
antibiotic resistance.

GEAR-base project A large-scale dataset of around eleven thousand
clinical bacterial isolates collected at different locations over the world
and over a time span of 30 years allowed for an analysis of antibiotic
resistance data and genomic features from different bacterial species
known to be relevant human pathogens. First, WGS-based tools for
taxonomic classification were evaluated on a subset of samples of the
isolate collection, for which MS-based taxonomic information was
available. The Kraken tool, which was among the best-performing
tools, was used to classify all the isolates of the GEAR-base project,
providing a consistent WGS-based taxonomic characterization. Then,
various analyses of the resistance profiles, meta-information and
genomic data were performed, focusing on different bacterial species.
An online resource, GEAR-base, was also implemented, providing the
collected and generated data through three main modules: the culture-
based module, the pan-genome module, and the analysis module.
The culture-based module included an overview of the antibiotic
resistance and sample metadata. It provides summaries of median
MIC values, resistance percentages, and the number of resistant
and susceptible samples with respect to different taxa and taxonomy
ranks, collection location and collection year. The pan-genome module
contains the newly constructed pan-genomes, including all identified
gene clusters (centroids). The centroids of a pan-genome can be
filtered by their frequency in the sample cohort and function, and
resistance-related information is shown for each centroid, if it was
collected originally. The analysis module implements different options
for a search of genes or genomes uploaded by the user in the data
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included in the resource.
No apparently new resistance factors could be discovered in the

dataset which indicates that these are either not contained in the data
or that the chosen methods were not able to detect them, e.g. because
of their low frequency in the samples. Nevertheless, GEAR-base
constitutes a valuable data resource as it provides an extensive collec-
tion covering relevant human pathogens and antibiotics, and further
studies can be performed to potentially complement the hitherto
identified resistance factors. The herein described centroid-based
approach considers only the presence of coding sequences in bacterial
genomes. However, mutations and non-coding genetic regions can
also contribute to the development of a resistance phenotype. Using
k-mers (subsequences of length k) would allow for finding, besides
the presence of specific genes, mutations and other small structural
changes in coding and non-coding sequences. Recently, multiple tools
have been published for performing genome-wide association analy-
ses using k-mers for large bacterial datasets [236–238]. Additionally,
not only taking into account the presence of genomic features but
also their frequency in the genomes would enable the identification
of resistance factors whose copy number can be correlated with the
resistance phenotype. The insights gained from the available data
and new analyses can be used to determine sets of genomic features
for predicting antibiotic resistance. This kind of analysis was done
by Davis et al. , who trained k-mer-based classifiers using bacterial
genomes from the PATRIC database [239]. The in silico identified
genomic features can then serve as a basis for the development of
resistance tests to be applied in clinic and for antibiotic surveillance
purposes.

Since new resistance determinants can emerge and spread, it is cru-
cial to keep a database storing the related data up-to-date. It would
therefore be of great benefit to extend the GEAR-base isolate collec-
tion by new clinical samples provided by industrial and academic
partners, and healthcare facilities. As metagenomics and long-read
sequencing are increasingly applied to study antibiotic resistance and
bacterial infections, including such data into the resource requires the
selection and implementation of suitable analysis approaches. In both
cases, dedicated tools are required for sequencing data processing,
taxonomic profiling, de novo assembly and annotation, and further
downstream analysis.

Metagenomic binning One of the main tasks in the processing of
metagenomic data is binning of the given genomic sequences into
clusters, which are then used in further downstream analyses. The
web server BusyBee Web provides an online tool for metagenomic bin-
ning, which does not require any further data besides the nucleotide
sequences of a metagenomic sample. The implemented approach
is based on sequence derived features (i.e. five-mer frequencies), a
non-linear embedding of the five-mer profiles into a two-dimensional
space, and a bootstrap supervised binning step, where clusters are
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learned from a pre-defined subset of the input sequences and the
remaining sequences are assigned to these clusters to create the final
bins. Additionally, the bins are evaluated to estimate their complete-
ness and purity, and the results can also include taxonomic annotation
and detection of known resistance genes from the Resfams database.

One shortcoming of the current implementation of the web server
is that it allowed to process only one metagenomic sample, without
offering the possibility to compare the results of multiple jobs, or to
upload a multi-sample dataset. But, comparing sample groups or
data from different time points is a frequent objective in metagenomic
studies. The problem which arises when uploading multiple sam-
ples together would be a significant increase to the running time for
the embedding step. A potential solution would be to perform the
embedding on a subset of the input sequences, and to project the
remaining sequences into the computed space. While the currently
used implementation of the embedding BH-SNE approach [240] does
not provide methods for accomplishing this task, a latterly intro-
duced UMAP approach [241] offers this functionality. The results of
the multi-sample analysis can be further processed to highlight the
distribution of the sample-sequences in the embedding plot and to
compare the found organisms between the samples or sample groups.

The available sequence and bin annotation options can be further
extended to provide a more detailed characterization of the analyzed
sample. These could include other resistance gene databases, such
as the Comprehensive Antibiotic Resistance Database (CARD) [242],
virulence factor databases, such as the Virulence Factor Database
(VFDB) [243], and plasmid databases, such as the herein presented
PLSDB resource [5].

Bacterial plasmids Bacterial plasmids are one of the key factors in an-
tibiotic resistance emergence and spread. Currently, there are various
tools for classifying genomic sequences as originating from a chro-
mosome or a plasmid. Four plasmid prediction tools were reviewed,
covering three different approaches (assembly-based, marker based,
and k-mer based) and applied to a sample subset from the GEAR-
base isolate collection. The results demonstrated high heterogeneity
between the tested tools and taxon-dependent variation.

As there is no gold-standard approach to recovering plasmid se-
quences from WGS data, it is desirable to at least be able to detect
known plasmids. This would require a collection of known bacterial
plasmids which could also be used for the identification and character-
ization of "pure" plasmid samples. To this end, we implemented the
PLSDB resource, which contains complete bacterial plasmids submit-
ted to NCBI. In addition to the plasmid records provided, this resource
also includes further metadata for the related biological sample and
assembly records, and annotation information such as plasmid typing,
resistance and virulence genes. The PLSDB resource offers multiple
analysis options for genomic data uploaded by a user: detection of
known plasmids in WGS data of bacterial isolates or metagenomes,
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comparison of plasmids to the ones stored in the resource, and listing
plasmids containing given genomic features (e.g. specific genes).

While PLSDB provides a view of the aggregated meta-information
of a set of plasmids, there is currently no option for comparing their
genetic content. The plasmid typing data (replicon typing and pMLST
[234]) and the estimated genetic dissimilarity (using a k-mer and
MinHash-based tool Mash [244]) constitute only an approximation
of true relationships between the plasmids. A more comprehensive
approach is to represent the shared genetic content of the plasmids
through a network [245]. This can be accomplished by using a varia-
tion graph which encodes a set of sequences (e.g. genomes), reflecting
their genetic differences (variations) [246]. The plasmids stored in
PLSDB could be used to construct such variation graphs for the plas-
mid groups of interest, to study their relationships, and to be used as
references for whole-genome sequencing data.

In summary, in this thesis, we have presented multiple online
resources which provide valuable data collections and/or tools for
the analysis of microbial or bacterial genomic data, with a focus on
antibiotic resistance. Given the increased use of sequencing data in
microbial research, the herein presented body of work is expected to
benefit the community through the ease-of-use and breadth of these
data collections and tools.
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