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ABSTRACT

In this thesis we theoretically explore the perspectives of control of the
quantum dynamics of experimentally relevant systems for quantum
technological applications.

In Part Il we analyze a quantum memory for single photons consisting
of a single atom confined in an optical cavity and driven by a laser. We
optimize the absorption of the single photon into an atomic excitation
by suitably tailoring the laser pulse.

In Part III we analyze a monolithic diamond structure which embeds
a nitrogen-vacancy center. We identify the parameters regime and the
processes that lead to radiative cooling of a mechanical mode of the
diamond structure by laser-driving the NV-center.

In Part IV we investigate spontaneous spin-spatial pattern formation
in an ensemble of laser driven thermal atoms confined in an optical
cavity and explore the perspectives of using this system as quantum
simulator of quantum magnetism.

ZUSAMMENFASSUNG

In dieser Arbeit erforschen wir theoretisch die Perspektiven die Dyna-
mik von Quantensystemen zu kontrollieren. Systeme, die relevant fir
quanten-technologische Anwendungen sind, liegen dabei im Fokus die-
ser Arbeit.

In Abschnitt IT untersuchen wir Quantenspeicher fiir einzelne Photo-
nen, bestehend aus einem einzelnen Atom, welches sich in einem opti-
schen Resonator befindet und durch einen Laser angetrieben wird. Wir
optimieren die Absorption des einzelnen Photons in eine atomare Anre-
gung durch geeignetes Manipulieren der Form des Laserpulses.

In Abschnitt III untersuchen wir eine monolithische Diamantstruktur,
welche ein Stickstoff-Fehlstellen-Zentrum einbettet. Wir identifizieren
das Parameterregime und die Prozesse, die durch das Laser angetriebe-
ne Stickstoff-Fehlstellen-Zentrum zu einer Kithlung der mechanischen
Mode der Diamantstruktur fiithren.

In Abschnitt IV untersuchen wir die spontane Entstehung von spin-
raumlichen Mustern in einem Ensemble, bestehend aus thermischen
Atomen, welche sich in einem optischen Resonator befinden und durch
einen Laser angetrieben werden. Wir erforschen die Perspektiven zur
Nutzung dieses Systems als Quantensimulator im Bereich des Quanten-
magnetismus.

ii






PUBLICATIONS

[1] L.Giannelli, R. Betzholz, L. Kreiner, M. Bienert, and G. Morigi.
“Laser and cavity cooling of a mechanical resonator with a nitro-
gen-vacancy center in diamond.” In: Physical Review A 94 (2016),
p- 053835.

[2] L. Giannelli, T. Schmit, T. Calarco, C. P. Koch, S. Ritter, and G.
Morigi. “Optimal storage of a single photon by a single intra-
cavity atom.” In: New Journal of Physics 20 (2018), p. 1050009.

[3] L.Giannelli, T. Schmit, and G. Morigi. “Weak coherent pulses for
single-photon quantum memories.” In: Physica Scripta 94 (2019),
p.014012.

[4] F. Petiziol, E. Arimondo, L. Giannelli, F. Mintert, and S. Wim-
berger. “Optimized three-level quantum transfers based on fre-
quency-modulated optical excitations.” Forthcoming in Scientific
Reports.

Publication [4]is not discussed in this thesis.






ACKNOWLEDGMENTS

The PhD’s years have been difficult and fun, and I would like to thank all
the people who influenced me and this work.

First of all, Iwould like to thank my supervisor Prof. Giovanna Morigi.
Giovanna has been essential for all the projects I worked in, for her new
fascinating ideas and for the guidance she gave me. I am deeply grateful
for everything Giovanna taught me. I want also to thank Marc Bienert
for having supervised me for the first year of this PhD and for having
introduced me to the beauty of master equations and opto-mechanics.
Then I want to thank my other collaborators who published an article
with me: Ralf Betzholz, Laura Kreiner, Tom Schmit, Tommaso Calarco,
Christiane P. Koch and Stephan Ritter. A special thank goes to Stephan
for his continuous support and for his inspiring passion.

During these years I had the opportunity to meet many wonderful
people in the group of Giovanna, so I thank my colleagues/friends: Ralf,
Tom, Tristan Tentrup, Stefan Schiitz, Katharina Rojan, Mossy (Thomas
Fogarty), Susanne Blum, Timo Holz, Oxana Mishina, Florian Cartarius,
Andreas Buchheit, Sascha Wald, Rebecca Kraus, Lukas Himbert, Tim
Keller, Simon Jdger, Francesco Rosati, Frederic Folz, Aleksei Konovalov,
Peter-Maximilian Ney, Nahuel Freitas and Shraddha Sharma.

I also thank Prof. Jiirgen Eschner, Prof. Ennio Arimondo, Prof. Anders
S. Segrensen, Prof. Malte Henkel, Prof. Christoph Becher and Mathias
Korber for the nice discussions about various physics topics. I also thank
the secretaries who performed much of the bureaucratic work: Monika
Francois, Ingeborg Michel and Susanna Trampert.

I thank Prof. Gerhard Rempe for the kind hospitality at the MPI for
Quantum Optics in Garching.

Averyimportant part of my life in Saarbriicken are my friends outside
the university: Marie-Christin Lindecke, Kapil Faliya, Ettore Bernardi,
Masha Pavlovic, Anika Bratzel, Alessandra Griffo and Fabio Lolicato.

Now it’s the turn of my family: grazie mamma e papa! Thanks France-
sca Pascale and Gennaro Giannelli, you are my strong roots that make the
tree (myself) safe. Thanks Michele Giannelli for your physical (I mean
gym-physical) support.

Among all my sud-Italian friends, which I cannot name all, I specially
thank Emanuele Cutrone e Raffaele Letizia.

Finally I thank my girlfriend Eugenia Loiudice for supporting me in
any imaginable way.

vii






CONTENTS

INTRODUCTION 1
I PRELIMINARIES 5
1 LIGHT-MATTERINTERACTIONS 7
1.1 The interactions between light and atoms 7
1.1.1 Atom-laser interaction 9

II

1.2 Optical cavity 10
1.2.1 Atom-cavity coupling 11
1.2.2 Cavity losses 11
1.3 Cavity opto-mechanics 11
1.3.1 Opto-mechanical Hamiltonian 13

BORN-MARKOV MASTER EQUATIONS 15

2.1 Derivation of the Born-Markov master equation 16
2.2 Quantum regression theorem 19
2.3 Spectral decomposition of the Liouvillian 21

2.3.1 Some properties of the damping basis 22
2.4 The Wigner function 23
2.4.1 Some properties of the Wigner function 24
2.4.2 Master equation in phase-space 24
APPENDICES
2.A Wigner function for a harmonic oscillator 25
2.A.1 Some properties of the Wigner function 26
2.A.2 Master equation in phase-space 26

STORAGE OF A SINGLE PHOTON 29

OPTIMAL STORAGE OF A SINGLE PHOTON BY A SIN-
GLE INTRA-CAVITY ATOM 31
3.1 Introduction 31
3.2 Basic model 33
3.2.1 Master equation 33
3.2.2 Initial state and target state 35
3.2.3 Relevant quantities 36
3.3 Storage in the adiabatic regime 38
3.3.1 Ideal resonator 38
3.3.2 Parasitic losses 42
3.3.3 Maximal efficiencyin presence of parasitic losses
3.3.4 Photon Retrieval 47
3.4 Beyond adiabaticity 47

3.5 Conclusions 51
APPENDICES
3.A Input-output formalism 53

3.B Effect of photon detuning on storage 53

45

ix



CONTENTS

3.c Optimal control with incoherent dynamics 55

4 WEAKCOHERENTPULSESFORSINGLE-PHOTON QUAN-
TUM MEMORIES 57
4.1 Introduction 57
4.2 Basic model 58
4.2.1 Master equation 58
4.2.2 Initial state 59
4.2.3 Target dynamics 60
4.3 Storage 61
4.3.1 Numerical results 62
4.3.2 Extracting the single-photon storage fidelity from
arbitrary incident pulses 64
4.4 Conclusions 67
APPENDICES
4.A Storage Efficiency forn < 1 67
4.A.1 Decomposition of a coherent state 67
4.A.2 Equations of motion 68

IIl HYBRID QUANTUM SYSTEMS 73

5 LASERANDCAVITYCOOLINGOFAMECHANICALRES-
ONATOR WITH A NITROGEN-VACANCY CENTER IN
DIAMOND 75
5.1 Introduction 75
5.2 General considerations 77
5.3 The system 79

5.3.1 Basic equations 79

5.3.2 Spectrum of resonance fluorescence 81

5.4 Parameter regime 82

5.5 Effective dynamics of the mechanical resonator 84
5.5.1 Perturbative expansion 85

5.6 Results 86
5.6.1 Cavity-assisted cooling 86
5.6.2 Dephasing-assisted cooling 92

5.7 Conclusions 95

APPENDICES

5.o Elimination of the internal degrees of freedom 95
5.A.1 Perturbation theory 95

IV SPINOR SELF-ORDERING 109

6 SPINOR SELF-ORDERING OF MAGNETIC ATOMS IN
AN OPTICAL CAVITY 111
6.1 Introduction 111
6.2 System and Model 112
6.2.1 Hamiltonian for N four-level atoms 113
6.2.2 Adiabatic elimination of the excited states 114
6.2.3 Heisenberg-Langevin equations 115



CONTENTS

6.3 Preliminar discussion 117
6.3.1 Relevant quantities 117
6.3.2 Spinorself-ordered state and brokensymmetry 119
6.4 Numerical results 121
6.4.1 Threshold 121
6.4.2 Dynamics 123
6.4.3 Cooling 124
6.4.4 Spin-position correlations 125
6.4.5 Control of the spin phase 126
6.5 Conclusions 127
APPENDICES
6.A Hamiltonian in the rotating frame 127
6.B Adiabatic elimination of the excited states 128
6.B.1 Projectors on the slow and fast subspace 129
6.8.2 Effective master equation fortheslowsubspace 129
6.c Details of the numerical computations 133
6.c.1 Units 133
6.c.2 Initialstate 133
6.0 Semi-classical treatment 134
6.D.1 Semiclassical approximation for the atomic mo-
tion 136
6.D.2 Semiclassical approximation forthe cavityfield 138
6.0.3 Simulated Focker-Planck equation 141
6.0.4 Discussion 142

V SUMMARY AND CONCLUSIONS 1453

SUMMARY AND CONCLUSIONS 145

BIBLIOGRAPHY 149

Xi



ACRONYMS

AMO atomic, molecular, and optical
NV nitrogen-vacancy

OCT optimal control theory

QKD quantum key distribution

RWA rotating wave approximation

Xii



INTRODUCTION

Quantum mechanics is the theory that describes in the most effective and
precise way the physical processes at the elementary particle level [1].
Experiments in different physical setups have confirmed the predictions
of quantum mechanics, and its validity is in general not questioned.
Currently, intensive effort is made to control the quantum dynamics of
the interaction between light and matter for practical applications, for
instance to develop quantum based technologies 2, 3].

A primary goal of quantum based technologies is the realization of
quantum networks [4]. A quantum network exploits the superposition
principle and entanglement in order to enable secure communications
between distant nodes in space [2] and in principle warrants secure com-
munications [2] (for instance via quantum key distribution (QKD) [5, 6]),
allows clock synchronization [7] and could improve astronomical obser-
vations by combining light from different telescopes[8]. The simplest
idealization of a quantum network consists of quantum nodes connected
via quantum channels: quantum nodes generate, store and process infor-
mation via quantum mechanical dynamics, while quantum channels
transmit the quantum information between the nodes.

Another primary goal is the realization of a quantum computer 9, 10].
A quantum computer is a device that, by means of quantum effects such
as superposition and entanglement, can perform certain computational
tasks that a classical computer practically cannot. A prominent example
is integer factorization: the Shor’s algorithm [11] (if run on a quantum
computer) can factorize an integer in a time which grows polynomially
with the input size, differing from classical algorithms known so far. In
fact the best known classical algorithm, the general number field sieve [12],
is sub-exponential in time, i. e. its running time grows with the input size
faster than any polynomial. The concept of quantum computers being
able to perform tasks which are impossible for classical computers is
referred to as quantum supremacy [13]. Recently Google published a paper
claiming to have experimentally proven quantum supremacy [14, 15] by
sampling the output of a random quantum circuit [16]. Furthermore, a
quantum computer can be embedded in a quantum node of a quantum
network in order to process information.

Developments in applied quantum physics can also lead to the realiza-
tion of a quantum simulator 17, 18], i. e. a device that tailors the quantum
dynamics of a system in order to simulate another, less experimentally
controllable, quantum system. A quantum simulator could address the
solution of outstanding problems in physics such as high-temperature
(high-T,) superconductors [19-21] and the dynamics of spin glasses [22,
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23], and improve understanding of quantum processes with applications
in fields such as chemistry [24] and biology [25, 26].

Another promising goal is the development of tools for quantum metrol-
ogy and sensing [27-29]. Research in this area aims to develop approaches
and devices that allow measurements with a precision beyond what is
possible with classical physics [29]. This has implications ranging from
measurement of physics’ fundamental constants [30] to imaging in bio-
logical systems [31].

The progress in each of these research areas draws from the control of
the quantum dynamics of many different physical systems, such as for
instance single photons[32], trapped ions[33], quantum gases[34], single
atoms [35], impurities in solids [36] and superconducting circuits [37].
According to the present knowledge each physical system, having its
own advantages and drawbacks, is best suited for a particular task. For
instance, single photons seem best suited to transmit information and to
distribute entanglement between distant nodes, while atoms and atomic
ensembles seem best suited to store and process information [4].

In this thesis we theoretically explore the perspectives of control of the
quantum dynamics of physical systems relevant for quantum technolog-
ical applications. These are (i) a single atom trapped in an optical cavity
for the purpose of realizing a quantum memory, (ii) a solid-state system
consisting of a nitrogen-vacancy (NV) center embedded in a diamond
structure with the aim of identifying promising features it may offer for
quantum communications and quantum sensing, and (iii) an ensemble
of spins confined in an optical cavity with the goal of assessing its poten-
tial as quantum simulator of quantum magnetism and opto-magnonic
systems.

The common theoretical grounds for the description of these systems
are quantum optics, cavity quantum electrodynamics and the theory of
open quantum systems. We use the methods developed in these fields in
order to analyze and identify the control tools of light-matter interac-
tions in these setups.

This thesis is divided in four parts. In Part I we introduce the basic
theoretical tools: Chapter 1 reviews the basic concepts of light-matter
interactions in the quantum regime, and in Chapter 2 we review the Born-
Markov master equation formalism and two methods that can be used to
solve it, namely, the spectral decomposition of the Liouville operator and the
Wigner transformation.

In Part Il we present the analysis of a quantum memory composed by a
single atom trapped inside an optical cavity. In Chapter 3 we consider
a single photon impinging on one mirror of the cavity. The photonic
excitation is stored in an atomic excitation by means of an external driv-
ing laser. We derive the optimal shape of the laser field in order to store
the single photon with highest efficiency in presence of cavity losses.
We analyze both the adiabatic regime in which analytical results are
derived, and the non-adiabatic regime where we use optimal control
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theory (OCT) to explore the storage of photons which are short in time
with respect to the time scale of the atom-cavity system. In Chapter 4 we
investigate theoretically how weak coherent pulses can be used to probe
the efficiency of single-photon quantum memories.

In Part III, we present the characterization a hybrid quantum system com-
posed of a NV-center in a monolithic diamond structure which is both an
optical and a mechanical resonator. We analyze the cooling dynamics of
the mechanical resonator harnessing an optical pump of the NV-center.
We show that the optical resonator has little impact on the cooling rate
and final temperature of the mechanical oscillator, while pure dephasing
of the electronic energetic levels of the NV-center leads to a more robust
cooling. We also examine the spectrum of resonance fluorescence in
order to identify the cooling processes. Cooling mechanical degrees of
freedom of hybrid devices is important for quantum information pro-
cessing [38-41], and for ultrasensitive detection applications [42-46]
because of the reduced effect of thermal fluctuation.

Part IV is composed of the single Chapter 6. Here we investigate a
system composed by an ensemble of atoms confined in an optical cavity.
The atoms are driven by two external lasers and scatter light into the
cavity mode, which, in turn, dissipate lights. The parameters can be
tailored such that the system reaches an out-of-equilibrium steady state.
The atoms in this steady state exhibit a controllable antiferromagnetic
ordering. This setup can be used to simulate quantum magnetism [47]
and opto-magnonic systems [48, 49].






PartlI

PRELIMINARIES

We review some of the basic concepts on which the rest of the
thesis draws. In the first chapter we summarize some impor-
tant models of atom-photon interactions in quantum optics.
We introduce the Hamiltonian of a two-level atom interact-
ing with an electromagnetic field, both in free space and in an
optical cavity. We also shortly discuss cavity opto-mechanics.
In the second chapter we review the Born-Markov master
equation and sketch its derivation. We discuss the general
solution of the master equation by means of the damping
basis. We finally introduce the Wigner function and describe
its application within the master equation formalism.






LIGHT-MATTER INTERACTIONS

Electromagnetic interactions govern the dynamics of charged particles,
such as electrons, protons and ions. The understanding of the interac-
tions between matter and light played and plays a central role in modern
and contemporary physics. The characterization of black-body radia-
tion[50] and of the photoelectric effect[51], for instance, were fundamen-
tal steps in the development of our current understanding of quantum
mechanics. The properties of light emitted and absorbed by atoms and
molecules allows us to gain information about their structure and their
dynamics. In atomic, molecular, and optical (AMO) physics, light-matter
interactions are nowadays well understood and used for applications
such as high-precision spectroscopy, optical trapping, cooling, manipu-
lation of atomic internal states, and quantum based technologies.

In this chapter we provide some basic concepts of light-matter inter-
actions. In Sec. 1.1 we summarize the formalism used to describe the
interactions of an elecromagnetic field with an atom. In Sec. 1.2 we fo-
cus on the description of an optical cavity and its interactions with an
atom. Finally, in Sec. 1.3 we briefly sketch the concepts at the basis of
cavity-optomechanics.

The presentation in this chapter follows broadly Refs. [52-56].

1.1 THEINTERACTIONS BETWEEN LIGHT AND ATOMS

Consider an atom of mass m which moves freely in space. The system
energy is the sum of the atom kinetic and internal energies, the electro-
magnetic field energy and the atom-field interaction. The corresponding
Hamiltonian is conveniently cast into the sum of three terms

I:I = I:Iat + I:Iem + I:Iint’ (11)

where H,, is the Hamiltonian of the free atom, H,,, is the Hamiltonian
of the electromagnetic field, and Hj,, describes their interaction.

In quantum optics one typically assumes non-relativistic particles.
The fields are assumed to be monochromatic and sufficiently weak such
that the electronic levels can be reduced to the ones which resonantly
couple to the external driving field. In the following we assume a two-
level transition at frequency w,.

The Hamiltonian H,, of the internal and external degrees of freedom
of the atom in free space is

A2
A p
H, = > + fhw, leXel, (1.2)
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where p is the momentum operator of the atom center of mass and #w,
is the energy splitting between the ground state |g) and the excited state
le) of the two level transition.

The Hamiltonian H,,, of the electromagnetic field in second quantiza-
tion reads

Z hao, (aTal ) (1.3)

where g; and diT annihilate and create, respectively, a photon in the i-th
mode of the electromagnetic field. They fulfill the commutation relation
[a;, dJT] = §;j. We assume that the field is quantized over the volume V'
with periodic boundary conditions. Each mode is indexed by i = (k;, €;)
that consists of the wavevector k; and the polarization ¢;, which satis-
fiese; L k;. The frequency of the i-th mode is w; = |k;|c where c is
the speed of light in vacuum. The Hamiltonian (1.3) has eigenvalues

Zi hw;(n; + 1/2). The integers n; = 0,1, 2,... represent the number of

photons in the mode i and are the eigenvalues of the operator djdi. The
corresponding eigenstates are denoted |n;). The ground state |vac) fulfills
the relation

a;lvac) =0, Vi, (1.4)

and is called vacuum state.
The interaction Hamiltonian in electric dipole approximation! is

A, =-d-E®), (1.5)

whered = d.gleXg| + dg.|gXe| is the dipole operator and d., = d, are
the transition matrix elements between the two states. The electric field
operator E(#) is quantized and taken at the center of mass position 7 of
the atom

E®) =Z,/ el (#a; + H.c. (1.6)

The sum in Eq. (1.6) runs over the modes of the electromagnetic field, €,
is the electric permittivity and u;(r) is the mode function of the mode i.
The mode functions {u;(r)} satisfy the orthogonal condition

fd3r u;(Nu(r) = V§;;. (1.7)
v

The electric dipole approximation is valid if the electromagnetic field does not change
considerably over the size of the electronic wavepacket. It assumes that the field is
constant over the electronic wavepacket. This is a good approximation if the size of the
bound state of the electron is small compared to the wavelength of the electromagnetic
field. For an atom the typical size of a bound state is | ~ 1071° m. For optical transitions,
where the wavelength is A ~# 1077 m, this approximation is valid.



1.1 THEINTERACTIONS BETWEEN LIGHT AND ATOMS

Using Eq. (1.6), the interaction Hamiltonian Eq. (1.5) takes the form?
Hipe = ) A(lgXel + leXgl)(gi(Pa; + gi(P)a), (1.8)
i

where we have introduced the coupling strength

8i(F) = | | oy P)(deg - 1) (L9)

We now perform the rotating wave approximation® (RWA) and obtain

Hine = D h(gi()leXgla; + gi()* i 1Xel ). (1.10)

Hamiltonian (1.10) describe processes in which a photon of the i-th mode
of the electromagnetic field is absorbed by the atom which undergoes a
transition from the ground |g) to the excited state |e), as well as processes
where the atom undergoes a transition from the excited |e) to the ground
state |g) emitting a photon in the mode i. The strength of the process is
position dependent, therefore H,,, does not commute with the atom’s
kinetic energy and thus photon absorption or emission affects the atomic
center-of-mass dynamics.

1.1.1 Atom-laser interaction

In this thesis we will discuss the dynamics of systems driven by lasers.

The interaction of an atom with a laser can be described by assuming
that the light emitted by a continuous-wave laser corresponds to the
state of the electromagnetic field in which each mode is in a coherent
state [57] of a harmonic oscillator. More precisely, each mode of the
electromagnetic field, labeled by the subscript i, is in the coherent state
|a;), with @;|o;) = a|a;). The coherent state |;) can be, in particular, the
vacuum state |0;) with d;|0;) = 0. The total state of the electromagnetic
field is then

[em) = ) lo) = | s i1, 0ty A, -, (L11)
i

where the tensor product runs over the modes of the electromagnetic
field.

By applying a unitary transformation [52] to Hamiltonian H, Eq. (1.1),
in dipole and rotating wave approximation (i. e. with the interaction

We have considered the dipole moment to be real. This is possible by adding a phase to
the definition of the states |g) and |e) [53].

In order to understand the rotating wave approximation (RWA), one can see in interaction
picture with respect to H, = H,, + H.,, that the terms d;|g)e| and 4] |eXg| in Eq. (1.8)
rotate at a frequency |w, + w;|, while the terms @;|eXg| and d“g)(el rotate at |w, — w;|. If
w, and w; are optical frequencies, then* |w, + w;| > |w, — w;|. At the time scales we are
interested in, if the coupling strengths g; < |w, + w;|, the fast rotating terms average
out and the dominating contribution comes from the slowly varying part which rotates
at |w, — w;|[53]. The RWA consists in neglecting the fast rotating terms.

rotating wave
approximation
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Hamiltonian H;,, given by Eq. (1.10)), in the new representation the atom
is coupled to a classical external field and the modes of the electromag-
netic field are in the vacuum state |¢);,,) = |vac), see Eq. (1.4). The cou-
pling of the atom with the laser is then described by the Hamiltonian

H; = hQ(#,t)|eXg| + H.c., (1.12)
where
QF, 1) = ), gi(P)aze™ it (1.13)
i

is the time-dependent coupling strength.

For the case of a monochromatic laser with wavevector k; and polar-
ization ; only one mode of the electromagnetic field (which we denote
by the label L) is occupied, and all the other modes are in the vacuum
state. The coherent state is given by Eq. (1.11) with o; = §; p o, i. e.

|lpem> = | ""OL—17aL70L+1"">‘ (1.14)

In this case Q(7, ) is given by Q(#,t) = g (#)aze ! [52], where w| =
|k |cis the laser frequency. For a standing wave laser field it takes the
form Q(#,t) = Qcos(ky, - #)e”“1! while for a running-wave laser field
Q(#,t) = Qe kufe~i?Ll In this representation, the complex number Q
is the so-called Rabi frequency®.

1.2 OPTICAL CAVITY

The setups discussed in this thesis also include optical cavities. Optical
cavities (or resonators) can be realized experimentally in a multitude of
forms [56]. A Fabry-Pérot cavity consists of two highly reflective mir-
rors facing each other and allows the electromagnetic field to populate
quantized modes® [58]. If the mirrors are separated by a distance L, the
i-th quantized mode has frequency w,; = i- (¢/2L). The separation in fre-
quency between two adjacent resonances is denoted free spectral range and
is Awpgg = ¢/2L. If the cavity length L is sufficiently small’, one cavity
mode can be tuned quasi-resonantly to an atomic dipole transition while
all other modes are off-resonant: In this case only the quasi-resonant
mode with frequency w, can be kept in the description of the cavity. The
Hamiltonian of the cavity then reads

A, = hoda+ %) (1.15)

In order to avoid carrying extra factors of 2 around, Q is defined as half of the traditional
definition of the Rabi frequency [52], so that a 77-pulse takes time 77/2Q.

The electromagnetic field inside optical cavities is quantized using fixed boundary con-
ditions [53].

For a cavity length L ~ 500 um [59] the free spectral range is Acwgsg ~ 300 GHZ, for a
cavity length L ~ 1¢m [60, 61]it is Awgsg ~ 15GHz.
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where the operators 4' and d create and annihilate, respectively, a cavity
photon of the resonant mode at frequency w,, and fulfill the commuta-
tion relation [d, 4] = 1.

1.2.1 Atom-cavity coupling

The Hamiltonian describing the interaction of a two-level atom with
a cavity mode, in electric dipole and rotating wave approximations,

reads [53, 55]

Hic = h(g(P)leXgla + g(P)*a’|gXel). (1.16)

Here g(#) is the coupling strength between cavity mode and the atomic
transition. For a standing wave mode along the x-axis it takes the form
g(#) = gcos(k. %), where k. is the wavevector of the mode and g is the
vacuum Rabi frequency [53]. If the atom position is fixed, i. e. if g(F) = g’
is constant, Eq. (1.16) becomes the celebrated Jaynes-Cummings model [62],
whose dynamics can be solved exactly.

In Parts III and II we will consider the atom tightly confined inside a
cavity, such that it is localized at a cavity field intensity maximum. In this
limit the coupling g(#) can be treated as a constant, i. e. the fluctuations
in the coupling strength due to the motion can be neglected. In Part IV
instead we will consider that the atoms can move along the cavity axis
and thus the coupling g(#) varies with time.

1.2.2  Cavity losses

The finite transmittivity of the cavity mirrors can be described in terms
of a coupling between the cavity mode and the external electromagnetic
field. For optical cavities this interaction is typically described by the
Hamiltonian [55]

Ao =h Yy (a'a; + Xa]a), (1.17)
i

which is here given in the rotating wave approximation. Here 4; are
the coupling strengths between the cavity mode and the i-th mode of
the free field and depend on the characteristics of the mirrors. This
interaction gives rise to cavity losses, i. e. to photons escaping the cavity
via the mirror finite transmittivity. A description of the losses by means
of a Born-Markov master equation is given in Sec. 2.1.

1.3 CAVITY OPTO-MECHANICS

Light exchanges linear momentum with matter giving rise to mechani-
cal forces. In this section we briefly mention some effects of mechanical
forces of light, namely Doppler cooling of atoms and some sub-Doppler

11
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cooling mechanisms, and then we review some theoretical concepts nec-
essary to describe the system of Chapter 5, thus focusing on the radiation
pressure force.

Several methods have been developed to cool particles’ motion [63] by
means of mechanical effects of light. Doppler cooling, which was first
discussed in Refs.[64, 65] and experimentally realized for the first time
in Ref.[66], is the first proposed method for cooling atoms with light and
is nowadays commonly realized in laboratories. In Doppler cooling the
atoms are cooled with counter-propagating lasers whose frequency is
tuned below (red detuned) the frequency of an atomic transition. If this
transition is closed?, i. e. if the excited state of the transition decays to the
lower state of the transition with rate y, then, with an appropriate choice
of the laser frequency, the atoms are cooled down to temperature of the
order of hy/kg, where kg is the Boltzmann constant. This temperature
is referenced to as Doppler limit [63]. Laser cooling mechanisms that can
reach temperatures below the Doppler limit are denoted by sub-Doppler
cooling [69-71]. One of the most prominent approaches for sub-Doppler
cooling is polarization gradient cooling [72] which realizes temperatures
close to the recoil limit® [73]. In an optical cavity, the particles can be
cooled with a mechanism called cavity cooling [74]. This method relies
on coherent scattering of photons by the particles and has been pro-
posed for cooling particles which do not have a closed transition such as
molecules [75, 76]. The steady state temperature of the cooled particles
is limited by the cavity loss rate [63]. Cavity cooling has been realized
for a single atom [77], for a cloud of atoms [78] and for nanoparticles [79,
80].

In Chapter 5 we analyze the dynamics of a NV-center embedded in
a diamond structure. The latter can vibrate and confine light, thus be-
having as resonator for both photons and phonons. This can be modeled
by an optical cavity with a movable mirror. The interaction between
phonons and photons, in this case, is due to the radiation pressure force'°
that light exerts on the surface of the movable mirror.

The radiation pressure force exerted by a single photon is exceedingly
small. As an example consider a single photon with wavenumber k im-
pinging on a mirror. The photon transfer to the mirror the momentum
Ap = 2hk. For a continuous light beam of power P, the photon rate
is P/hkc, leading to a force F = 2P/c, where c is the speed of light. A
kilowatt light beam thus exerts on the mirror a force of about 107> N. A

If the transition is not closed, Doppler cooling can still be effective with the use of a
repumping laser [67, 68] which re-excite the population back into a state of the transition
used for cooling.

The recoil limit corresponds to kinetic energy of the particle of the order of the recoil
energy hw, = h?k?/2m, where k is the wavenumber of the laser field and m the mass of
the particle.

Radiation pressure force, the force that light exerts on a surface, was already speculated
in the 17th century by Kepler [81], described theoretically by Maxwell [82]in 1873, and
was experimentally observed [83, 84] at the beginning of the 20th century.
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possible way to increase the force a single photon exerts on the mirror is
to confine the light into a resonator. In a simplified picture the photon
will bounce many times off the mirror instead of only once as in free
space, increasing thus the momentum transferred. Inside a cavity the
radiation-pressure force is

N 2hkn  howd
() = . L~

(1.18)

where 7. = 2L/cis the cavity round-trip time, L is the length of the cavity,
7 is the mean photon number of the cavity and w, is the cavity resonance
frequency.

In the following we introduce a Hamiltonian description of the inter-
action between a cavity light field and a movable cavity mirror.

1.3.1 Opto-mechanical Hamiltonian

We consider the simplest model in cavity opto-mechanics, which has
been useful to describe most of the experiments up to date [56]. It con-
sists in a Fabry-Pérot cavity setup with one fixed mirror and one movable
mirror of mass M. For small displacements x < L respect to the length
L of the cavity, the motion of the movable mirror can be considered
harmonic with frequency!! w,,... The model thus consists of two har-
monic oscillators: One describing the cavity mode with frequency w, and
annihilation and creation operators d and @', with 4, a"| = 1; and the
other describing the motion of one mirror of the cavity with frequency
@pmec and annihilation and creation operators b and bf, with [5, B*] =1
and [a,b] = [4,b] = 0.

The coupling between the optical and the mechanical mode is paramet-
ric, i. e. the optical resonance frequency w.(x) depends parametrically
on the mirror displacement X. The motion of the movable mirror, in
fact, changes the cavity length, thus changing the cavity resonance fre-
quency. If the mirror displacement is small compared to the average
cavity length L, then the Hamiltonian to leading order in x/L reads

A= hcuc(fc)(de + 1) + hcumec<13*5 + l) ~

2 2

) ) (1.19)
~ (e, — ch)(a*a + 5) + hwmec<bTb + 5),

where X = 4/ h/ZMwmec(B + B"') is the mirror position operator and
G = —0w.(x)/0x|y—¢. Substituting in Eq. (1.19) we arrive at the stan-
dard optomechanical Hamiltonian [56]

Hyp = hawd'@ + hog b'b — nyata(b + bY), (1.20)

In actual experimental systems the mechanical oscillator has many vibrational
modes [85]. However, for the purpose of our work, we focus on a single mode of vi-
bration with frequency w,,.., assuming that the mode spectrum is sufficiently sparse
such that there is no spetral overlap with other mechanical modes [56].

13
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where we neglect the terms due to the vacuum energies 86, 87] of both
harmonic oscillators'?. Here we have defined the vacuum optomechan-
ical coupling strength y = G\/#/2Mw,,., it quantifies the interaction
between a single phonon and a single photon. The last term in Eq. (1.20)
captures the basic features of the optomechanical interaction: The ra-
diation pressure of the cavity light results in an intensity-dependent
displacement of the cavity mirror, while the displacement of the cavity
mirror results in a change of the cavity resonance frequency.

A detailed derivation of Hamiltonian (1.20) can be found in Ref. [88].

12 Notice that the vacuum energy of the cavity field also gives rise to the additional
term —#x(b + b7)/2 in Hamiltonian (1.19). This term is a constant force on the cav-
ity mirror and leads to a change of the mirror rest position but does not alter its
dynamics. By moving in the reference frame defined by the displacement operator
D'(B) = exp(—;@laT + ,8*5), with 8 = /2w, and by neglecting a constant energy
offset, one recovers Eq. (1.19).
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The quantum dynamics of a non-relativistic quantum system is deter-
mined by the Schrddinger equation. The Schrédinger equation generates
a unitary transformation of the Hilbert space’s vector describing the
system state. In quantum optics the quantum system of interest con-
sists only of few degrees of freedom, such as for instance a harmonic
oscillator or a single electron in a potential. However no system is iso-
lated from the rest of the universe and thus every system interacts with
its surroundings, its environment. Although the Schrédinger equation
formalism can be applied to systems of any size and thus could include
the environment as part of the system itself, its usage becomes more
and more challenging with increasing system size. To overcome this
problem an effective description of the environment with use of only
few parameters has been developed. This is called system plus reservoir ap-
proach [89]: the few degrees of freedom of the system of interest are fully
considered, while the environment is treated as a reservoir characterized
only by a few number of parameters such as its temperature. The system
interacts with the reservoir by exchanging energy and/or particles. For
this reason the expression open quantum system is used. Starting from
the dynamics of the full (system and reservoir) density operator, this
formalism leads to an equation for the reduced density operator of the
system, which is called master equation. Such equation does not generate a
unitary evolution, but generally introduces damping of energy and loss
of quantum-mechanical coherence into the quantum system dynamics.

For certain systems some simplifying assumptions on the interaction
with its environment and on the timescales of their evolution can be
made. More specifically, if the interaction between the system and the
reservoir is weak and the time scale of the reservoir dynamics is order
of magnitudes shorter than the one of the system, then the so called
Born-Markov master equation holds. A peculiar property of this master
equation is that the reservoir has no memory of the system at an earlier
time. Born-Markov master equations are quite common in quantum
optics problems.

In Section 2.1 we present a brief derivation of the Born-Markov master
equation mostly following [52], and in Sec. 2.2 of the quantum regression
theorem. We then introduce in Sec. 2.3 a method for solving the master
equation denoted by damping basis [90-94]. In Section 2.4 we present
another method for solving the master equation based on the Wigner
function, which is a phase-space representation of a quantum state.

15
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2.1 DERIVATIONOFTHEBORN-MARKOVMASTEREQUATION

Consider a system S coupled to a reservoir R and denote by H'g and Hy
their respective Hilbert space. Be Hg and Hy the Hamiltonians of the
system and reservoir, respectively, and be Vthe operator describing their
mutual interaction. The Hamiltonian H of the full system, which consists
of system S and reservoir R, acts on the Hilbert space 7 = 3 ® Hy and
reads

PI=H5®HR+]]5®.[:IR+V (2.1)

Let #(t) be the density operator of the full system. The dynamics of
system and reservoir is governed by the von Neumann equation for the
density operator ¥(t)

J . 1rn .
540 = Z[H, 2(0)], (2:2)

with A given in Eq. (2.1).

We are interested in the evolution of the system S, that is, we are
looking for an equation of motion for the reduced density operator 5(t)
of the system S defined over g by

A1) = T £(0)], (23)

where Try denotes the partial trace! over the reservoir degrees of free-
dom.

In order to determine the equation of motion of 4(t) from Eq. (2.2),
we use perturbation theory in V. We first transform Eq. (2.2) into the
interaction picture with respect to H, = Hg + Hy and obtain

I I
340 = Z[V(©), 7], (2.4)
where
O(t) = elfot/O(r)e~1Hot/h O = 3, V. (2.5)

A formal integration of Eq. (2.4) in the interval [, t + At] yields

t+At
geran =@+ g [ an[e. iz} (26)

Iterating Eq. (2.6) we obtain

t+At
2a0 =g [ an[vee. o] +
! (2.7)

1 t+At 51
_ﬁf dtlf deo[V(t), [V, 7(®)]],

The partial trace of an operator O over the reservoir degrees of freedom is defined as
Trg[O] = X (r|O|r), where {|r)}, is a basis of J(y.
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where we have set Ay(t) = y(t + At) — jy(t).

Since we are interested in the evolution of the system S, described in
interaction picture by the density operator? §(t), we trace Eq. (2.7) over
the reservoir degrees of freedom and obtain

1 t+At
2oy =g; [ an |V a0])+
t

(2.8)
1 t+At

- dtlf dt, 'll;r{[V(tl), [V(tz), )Z(tz)]]}’
t t

where Ag(t) = p(t + At) — p(t). Notice that Eq. (2.8) is still exact.

Now we assume the existence of two very different time scales: the
typical time 75 in which the system S changes appreciably is larger than
the time 7R in which reservoir correlations disappear, and we choose At
such that

TR KAt K Ts. (2.9)

We also assume that the reservoir R is large compared to the system S,
and that the interaction V'is small compared to the Hamiltonians Hg and
Hg. The reduced density matrix of the reservoir R(t) = Trg{#(t)} may
thus be considered constant R(¢) = R(0) = R,. Moreover we assume that
the reservoir is in a stationary state, that is [Ry, Hg | = 0. We also assume
that Trg{VR,} = 0, if that is not the case, it is sufficient to include an
additional term in the system Hamiltonian Hg — Hg + TrR{VRO} and in
the interaction Hamiltonian V — V — Trg{VR,}.

Based on these assumptions we can now perform several approxima-
tions. Using the assumptions that Vis small compared to Hg and Hg, and
that At < 75, we neglect the evolution of § between t and ¢, in the last
term of Eq. (2.8) and replace® #(t,) by #(¢). After such approximation
the right and side of Eq. (2.8) contains only %(t) which can be written as

7)) = () ® R(t) + Ax(1). (2.10)

Based on the assumption that 7y << At and that we keep only terms up to
second order in V, we neglect the contribution Ay. Such approximation
is equivalent towrite ¥(t) = 4(t) ® R, where we have also used R(t) = R,

Now we divide Eq. (2.8) by At and, using the approximations above,
we obtain*

5 t+At t
a‘;—(tt) S S /t dt, ft dtz'Il;r{[V(tl), [V(tz),ﬁ(t)®Ro]]}, (2.11)

where, since At < 1g, we approximated the derivative d5(t)/dt with
the rate of variation Ag(t)/At. This approximation means that we look

Trg[ ()] = elHst/hp(t)e 1Hst/n = 5(t), where B(t) is defined in Eq. (2.3).

Such approximation is equivalent to an iteration of Eq. (2.6) in which only terms up to
second order in V are retained.

4 The first term of Eq. (2.8) is zero in fact: Trg{[V(t,), ¥(t)]} = Tre{[V (t1), 6(t) ® Ro]} =
[Tre{V (t1)Ro}, ()] = 0 because we assumed that Trg{V' Ry} = 0.
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at the evolution of () with a time resolution which is of the order of
At. Effects which happen on a shorter time scale are averaged out. By
changing variables of integration in Eq. (2.11)tot; = t;and 7 =t; — t,
we obtain

%(t)—_iiftwdt ftl_tdrTr{[V(t) [V = 9,600 @ Ro] |
aW="mae) ) IOV -DA0S R
(2.12)

If the interaction Hamiltonian Vis a sum of products of operators $; on
the system S and # on the reservoir, V = 2.; Sifi, then the integrand of
Eq. (2.12) scales with e"*"%, Using the assumption on the time scales
TR <K At < 73, we can approximate the upper limit of the integral
in 7 with +o00, and then take the limit for At — 0. Going back to the
Schrodinger picture we then have

P(t) = [Hs,p(t)] f % ’I};r {[V, e—iHor/h[V’ OX:) Ro]eif{or/h]}.
0
(2.13)

Equation (2.13) is called Born-Markov master equation or master equation
in Born-Markov approximation. At this point, knowing the explicit form
of Vand H,, it is possible to carry out the r-integration in Eq. (2.13) and
arrive at the differential equation

2 p6) = £p(0). (2.14)

Here £ is a superoperator which is time independent and acts on the
space of the system operators, and it is often referred to as Liouville opera-
tor or Liouvillian. Equation (2.14) is the type of master equation we will
use through the rest of the thesis.

The master equation (2.14) is still physically admissible if it preserves
the properties of density operators®. It can be shown that a sufficient
condition is that it can be written in the Lindblad form [95, 96]

£6(0) = = [A, A(0) + L D060 (2.15)

Here 0; are bounded system operators®, 3, > 0 are real positive scalars
and

A

D[6]p = 200067 — 670p — po'6. (2.16)
The formal solution of Eq. (2.14)is

A(6) = e“14(0), (2.17)

5 The properties of any density operator 6(t) are that Tr[ ()] = 1, that it is Hermitian
B7(t) = A(t) and positive semi-definite.
6 They are commonly called jump or Lindblad operators.
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where 4(0) is the initial state of the system.

In this thesis we will use the Born-Markov master equation to describe
the decay of the cavity field due to the finite transmittivity of the mirrors
(see Sec. 1.2.2) and the spontaneous decay of an atomic excitation.

The dynamics of the cavity field due to the finite mirror transmittivity
can be cast in terms of the master equation for a damped harmonic
oscillator, where S is the cavity mode and R is the electromagnetic field
outside the cavity. In this case the Hamiltonian Hy is given by Eq. (1.15),
Hg by Eq. (1.3) and V by Eq. (1.17). The master equation in Born-Markov
approximation is then’

%ﬁ(t) = —iw [a"a, p(0)]+ (g, + 1)xD[a]p(t) + Ay, xD[AT1A(E), (2.18)

where [d,a"| = 1, 2« is the damping rate, and

e—haw/kgT
(2.19)

is the mean occupation number for an oscillator with frequency w in
thermal equilibrium at temperature T.

In a similar way, spontaneous emission is described in terms of a mas-
ter equation where S is a two-level system and R is the electromagnetic
field in space. The Hamiltonian Hy is given by Eq. (1.2), Hg by Eq. (1.3)
and the interaction V by Eq. (1.10). The resulting master equation reads®

%ﬁ(t) = —iw,[leXel, ()] +(7iey, + 1)y DllgXel16(t) + iy, y DI leXgl16(8),
(2.20)

where |g) and |e) are the ground and excited states with energy splitting’
hew,, 2y is the damping rate!® and 7, is defined in Eq. (2.19). The last
terms in Egs. (2.18) and (2.20) describe the process of absorption of a
thermal photon. For optical frequencies @ ~ 10> Hz and room tem-
peratures T = 300K one has #iw ~ 25k T and 7i,, ~ 10~!1; in this case
the contributions proportional to 71, in (2.18) and (2.20) can be safely
neglected.

2.2 QUANTUM REGRESSION THEOREM

The formalism of Sec. 2.1 allows us, at least in principle, to calculate the
time evolution of the reduced density operator §(t) of the system S in

Here we neglected the frequency shift due to the interaction with the bath. In the case of
the two-level atom this is the Lamb shift.

Here we consider an atom fixed at the position r. This can be achieved for example with
an optical trap.

See note 7.

It is the Einstein A coefficient and can be calculated from the Wigner-Weisskopf theory of
natural linewidth [97].
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Born-Markov approximation. From this density operator one can obtain
time-dependent expectation values for any operator 6 acting on H with
the formula (6(¢)) = Tr[4(t)0]. However, it does not directly provide a
recipe to calculate the expectation values of products of system operators
evaluated at two different times, that is, two-time correlation functions

(61(£)05(t + 7)), T>0, 0,0,0peratorson J(;. (2.21)

The result of such expectation value was derived in Refs.[98,99] and it
is called quantum regression theorem or quantum regression formula [89]. Here
we present a short derivation.

In order to evaluate the correlation function given in Eq. (2.21) we need
to go back to the idea of system plus reservoir. In that case the two-time
correlation function is straightforwardly defined in Heisenberg picture

(01(0)0,(t + 7)) = Tr [¥(0)6:(1)0(t + D], (2.22)
®R

where #(0) is the density operator of system and reservoir at the initial
time t = 0, and the system operators 6;(t) in Heisenberg picture satisfy
the Heisenberg equations of motion

d, . 1., .

300 = %[Oi(f),H], (2.23)
whose formal solution is

0,(t) = eiflt/ng (0)e—iHI/A, (2.24)

Here H is the total Hamiltonian given in Eq. (2.1). Furthermore, the
formal solution of the von Neumann equation (2.2) is

7(0) = eiﬂt/h)f(t)e_th/h. (2_25)

Substituting Egs. (2.24) and (2.25) in Eq. (2.22) and using the cyclic prop-
erty of the trace one obtains
(01(00(t + 7)) = Tr [0,(0)e ™ H™/" 3(1)6,(0)e "] =
SeKR (2.26)
— 'I;r{éz(o) ’II;I‘[e_iHT/h)e(t)él(O)GiHT/h]},

where in the last step we have used that the operator 6,(0) acts on H.
We now define the operator

X(7) = e"iHTh 3(£)6,(0)elH T/ (2.27)

which acts on the system plus reservoir Hilbert space #g ® H(y. It clearly
satisfies the differential equation in the time-variable 7

2 %@ = LA.20) (2.28)

with initial condition X(0) = #(¢)6,(0). Equation (2.28) is the von Neu-
mann equation for the operator X(7). In order to remove the reference
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to the reservoir in Eq. (2.26) we need to calculate the trace over R of X(7),
Eq.(2.27),1i.e. we need

(1) = TRr[X(r)]. (2.29)

We are nowin the same situation as in Sec. 2.1: we have the von Neumann
equation for an operator acting on Hs ® Hy and we want to calculate an
equation for the reduced operator acting only on Jg by taking the trace
over the reservoir degrees of freedom. We can then use the same argu-
ments used in Sec. 2.1 to derive the Born-Markov master equation (2.14),
and write

%x(f) = L%(7) (2.30)

with the formal solution
£(7) = e57%(0) = e Tr[£(16,(0)] = e~ [5(1)6, (0)], (2.31)

where 6(t) = Trg[f(t)] is the reduced density operator of the system S.
Substituting Eq. (2.31) in Eq. (2.26) one obtains

(61()6:(¢ + 7)) = Tr{6,(0)e 66, O]} (2.32a)
and analogously
(01t + D00 = Tr{6, 07 16,0P (D]} (2.32b)

Equations (2.32) constitute the result of the quantum regression theorem.

2.3 SPECTRAL DECOMPOSITION OF THE LIOUVILLIAN

Consider the space L(H) of the linear operators acting on the Hilbert
space ;. The density operators form a convex subset of L(#(g). We can
define an inner product in L(¥g) as

(A,B) = Tr(A'B), (2.33a)
and an outer product as

[A® B]C =A(B,C) =Tr(B'C)A, (2.33b)
C'[A®B] =(C,A)B" = Tr(C'A)B". (2.33c)

Definitions (2.33) are problematic since (4, B) < o is not guaranteed for
arbitrary operators A, B € L(# ). We ignore this problem and assume
that (A, B) < oo holds for all operators A and Bwe use, for a discussion
see[92].

Master equation (2.14) is a linear differential equation for the density
operator §(t). The Liouvillian £ is a linear operator that acts on the space
L(J(s), for this reason it is often referred to as superoperator. It is in general
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not Hermitian and its Hermitian conjugate is defined by means of the
scalar product introduced in Eq. (2.33a)

(6, L0) = (L7p,0'), Vp,p density operators, (2.34)
as well as its action to the left
(b, L0") =(6L,0"), VP, density operators. (2.35)

Sometimes it is useful to work in the set where the Liouvillian operator
is diagonal, if it exists. This set is called the damping basis in [91].
The eigenvalues equations for £ are

Lor=2p1 FL =48, (2.36)

where 4 are the eigenvalues, g, the relative right eigenvectors and g, the
relative left eigenvectors. If the eigenvalues are not degenerate then we
can normalize the right and left eigenvectors such that the orthogonality
relation holds

(B 2) = Tr (B}61) = Szr- (2.37)

For a non-Hermitian operator it is in general not a priori clear if the sets
{62} and {6, } form complete bases, for this reason the completeness relation

D ha®p=).B=1 (2.38)
7 7

has to be checked case by case. It has been proved that the damping basis
of a damped harmonic oscillator [92, 93] and of a driven and dumped
two-level system [94] are complete.

Assuming that the completeness relation (2.38) holds, the damping
basis can be used to expand the formal solution Eq. (2.17) of master
equation (2.14). If the Liouvillian £ is time-independent and the com-
pleteness relation Eq. (2.38) holds, then

A1) = e 36, ® $116(0) = D caetpy, (2.39)
A A
with the coefficients ¢; = (83, 6(0)) = Tr[5}4(0)]-

2.3.1 Some properties of the damping basis

Any physical density operator ¢ has the properties that Tr[§] = 1, that
is Hermitian ¢ = ¢" and that all its eigenvalues are non-negative. The
Liouvillian £ generates the time evolution of the density operator which
must conserve these properties at all times. This consideration puts some
constraints on £. Liouville operators which fulfill these constraints are
said to be of Lindblad form [95], Egs. (2.15) and (2.16). In the following
we summarize some properties of the damping basis arising from those
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constraints. For simplicity we assume a non-degenerate Liouvillian and
the existence of a unique steady state.

First, the condition Tr[§] = 1 implies that the identity operator Tis a
left eigenvector with eigenvalue zero, 1£ = 0. In fact:

0= 5 100) = To( £,6) = Te(£) = Te(14) = (2.40)

this implies that 1£ = 0, i.e., 3, = 1. Furthermore, the right eigenvector
Powith respect to the eigenvalue 4 = 0 is the steady state. In fact, by
definition

d . A
0= apo == Lpo. (2.41)
The steady state g is the only right eigenvector which is a density opera-
tor. In fact, since Tr(£4) = 0, then

Tr(£6;) = A Tr(6;) = 0, (2.42)

hence Tr(6;) = 0,VA # 0, i.e., all the right eigenvectors ¢, except the
steady state g, are traceless. Finally, from the Lindblad theorem intro-
duced in Sec. 2.1 follows that R(4) < 0.

24 THE WIGNER FUNCTION

In the preceding sections we have described the quantum state of a sys-
tem by means of its density operator 5. However there are equivalent
representations which live in phase space and that allows us to express
the state in terms of a c-number function, often called quasi-probability
distribution. The reason for the name is that the quasi-probability dis-
tributions allow for the calculation of expectation values of quantum
operators using the methods of classical statistical physics. Nonetheless,
they are not actual probability functions, since, for example, some of
them could assume negative values. In the years 1969-1970 Refs. [100-
103]introduced a formalism in which an infinite amount of different
representations are defined. Here however, we focus on one special case,
which is the first quasi-probability distribution introduced as long ago
as 1932, that is the Wigner function [104].

In the following we review the Wigner function and some of its prop-
erties in order to illustrate its application for the solution of the master
equation. Further details can be seen for example in Refs.[53, 89, 105].

Consider a particle in one dimension with mass m, position % and
momentum p, with [%, p] = iA. We define the Wigner transformation of
an operator {1 as

[}

1 A _2i
Wikip) = o [ G ylal = e iay, (2.43)

where |x + y) are eigenstates of the position operator X with eigenvalues
x +y,and x,y, p € R. The Wigner function is the Wigner transform of
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the density operator g of the system

1 [ . i
WD) = Wxp) = o [ (bl =y Pidy (244

For a harmonic oscillator it is possible to define the Wigner function
W(a,a*), where a and o* are complex variables that are related to the
amplitude of a coherent state |@). In Appendix 2.A we give the Wigner
function W(a, a*) for a harmonic oscillator by means of an equivalent,
but easier to generalize, definition.

2.4.1 Some properties of the Wigner function
The moments of the Wigner function are equal to the expectation values

of symmetrically ordered products of position and momentum opera-
tors

Tr[p {fc"pm}sym] = / f W(x, p)x"p™dxdp, (2.45)
where {-}sym is the average of all possible ways of ordering the opera-

tors inside the brackets. In particular the marginals of W(x, p) are the
probability distribution of position and momentum

Tr[px] = f (x|f|x)xdx = f / W(x, p)xdxdp = f W(x)xdx,
(2.46)
where W(x) is the probability distribution of the position

W) = (el = [ W), (2.47)

and analogously the probability distribution of the momentum is

W(p):f W(x, p)dx. (2.48)

Equation (2.45) also implies the normalization of the Wigner function

/00 foo W(x, p)dxdp = Tr[g] = 1. (2.49)

2.4.2  Master equation in phase-space

In Sec. 2.1 we showed that the time evolution of an open quantum system
described by the density operator g is, in the Born-Markov approxima-
tion, given by an equation of the form (2.14). We now want to derive an
equivalent formalism for the Wigner function, i. e. we want to find the
equation of motion for W(x, p).
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In order to do so, we apply the Wigner transformation, Eq. (2.43), to
the master equation (2.14) obtaining

SWep0 = [ (x4 s1LpOl - ey (2.50)

where the Wigner function W(x, p, t) depends parametrically on the time
t via the time dependence of the density operator 4(t), see Eq. (2.44). Now
one needs to calculate the right hand side of Eq. (2.50), i. e. the Wigner
transform of the operator £4. This depends on the system under study,
however the operator £ is a linear combination of system operators
acting on g, both from right and left. The action of an operator on a
density operator is mirrored by the action of a corresponding differential
operator on the Wigner function [105]. It is possible to calculate this
correspondence by using the definition of Wigner transformation and
Wigner function, Egs. (2.43) and (2.44). The results are summarized in
Tab. 2.1.

DENSITY OPERATOR WIGNER FUNCTION

on in 8

xp — <x+ E@—p)W(x, p)
Ao in 8

Jops — <x— ;a—p>W(x, p)
A s in 8

bp —  (x- %?W(x, p)

A A 1

6p —  (x+ I )W)

Table 2.1: Correspondence between the action of an operator on the density
operator ¢ and the action of a differential operator on the Wigner
function W(x, p).

Finally, having calculated the Wigner transform of the operator £,
one can explicitly write Eq. (2.50): It is a partial differential equation for
the Wigner function W(x, p). This is the equation of motion that we were
looking for.

In Appendix 2.A we present the correspondence as the one in Tab. 2.1
for a harmonic oscillator Wigner function W(a, a*).

APPENDICES
2A WIGNER FUNCTION FOR A HARMONIC OSCILLATOR
Consider a harmonic oscillator of frequency w with annihilation and

creation operators d and ', with [@, @"] = 1. We define the characteristic
function of a system operator [ by

XA, %) = Tr| (-4}, (2.51)
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where 11is a complex variable A = 4, + i4;, with 1., 4; € R. The Wigner
transformation of the operator 1 is the Fourier transform of its charac-
teristic function

%(a,a*)=% f / Xu(2, A)e®H =% A2, (2.52)

where d?1 = d1,d4;. Equation (2.52) is related to Eq. (2.43) by [105]

%%(cx, o) = Wy(x, p), (2.53)
with
X = \/I(oc + a¥), (2.54a)
2mw
p=-i mTwh(oc —a’). (2.54b)

The Wigner function is the Wigner transform of the density operator ¢
% ]. « « ~ At _ %4 * __
W(a,a%) = / / Tr[p(etd'~4'd)|ext ~a"Ag2), (2.55)
In the following re report the properties of the Wigner function Eq. (2.55).

2.A.1 Some properties of the Wigner function

The moments of the Wigner function W(a, a*) are equal to the expecta-
tion values of symmetrically ordered products of creation and annihila-
tion operators

Tr[p{a"(af)’”}sym] _ f ) f " W oY e, (2.56)

where {-}Sym is the average of all possible ways of ordering the operators
and d?a = da,da;, with a = a, + ia; and a,, o; € R.
Equation (2.56) implies the normalization of the Wigner function

/‘°° f°° W(a, a*)d?a = Tr[p] = 1. (2.57)

2.A.2  Master equation in phase-space

The equation of motion for the Wigner function W(«, a*) can be found
following the same steps performed in Sec. 2.4.2: Itis derived by applying
the Wigner transformation, Eq. (2.52), to the master equation describing
the system dynamics.

As for W(x, p) in Sec. 2.4.2, it is possible to find the correspondence
between the action of an operator on the density operator ¢ and the
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DENSITY OPERATOR WIGNER FUNCTION
A a 1
ap — (oc+5 )W(oc, a*)
A 1
fa — (O{—E )W(O( a)
A 1
a'p — (oc*—; )W(oc,oc*)
o4
. 10
oa’ — (oc* 5—)W(oc o*)

Table 2.2: Correspondence between the action of an operator on the den-
sity operator ¢ and the action of a differential operator on the
Wigner function W(a, a*). Notice that if « = a, + ia; then d/0a =
(8/0a, — i0/0a;)/2 and 9/0a* = (8/da, + i0/0a;)/2.

action of a differential operator on the Wigner function W(«a, a*). This is
summarized in Tab. 2.2.

Finally, after calculating the Wigner transform of the operator £, for
example by means of Tab. 2.2, one derives a partial differential equation
which is the equation of motion for the Wigner function W(a, a*).
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Part II

STORAGE OF ASINGLE PHOTON

We theoretically analyze the dynamics of storage of a single
photon in a quantum memory composed of a single atom
trapped into a high-finesse optical cavity. In Chapter 3 we
optimize the storage efficiency by suitably tailoring a laser
pulse driving the atom. In the adiabatic regime we derive
an analytical expression for the optimal laser pulse shape
that leads to storage with maximal efficiency. In the non-
adiabatic regime we employ optimal control theory to derive
the optimal pulse shape, the maximal efficiency, and the
shortest photon that can be stored with a given efficiency. In
Chapter 4 we investigate the storage process when the single
photon is replaced by an attenuated laser pulse.






OPTIMAL STORAGE OF ASINGLE PHOTON BY A
SINGLE INTRA-CAVITY ATOM

The content of this chapter contains results, text and figures from:

« L. Giannelli, T. Schmit, T. Calarco, C. P. Koch, S. Ritter, and G. Mo-
rigi,
“Optimal storage of a single photon by a single intra-cavity atom,
In: "New Journal of Physics 20 (2018), p. 105009,
DOI: 10.1088/1367-2630/aae725.

3.1 INTRODUCTION

Quantum control of atom-photon interactions is a prerequisite for the re-
alization of quantum networks based on single photons as flying qubits
[4, 106]. In these architectures, the quantum information carried by the
photons is stored in a controlled way in a stable quantum mechanical
excitation of a system, the quantum memory [107-111]. In several ex-
perimental realizations the quantum memory is an ensemble of spins
and the photon is stored in a spin wave excitation [107]. Alternative
approaches employ individually addressable particles, such as single
trapped atoms or ions [35, 112]: here, high-aperture lenses [113] or op-
tical resonators [114] increase the probability that the photon qubit is
coherently transferred into an electronic excitation. In addition, schemes
based on heralded state transfer have been realized [113,115-117], and
fibre-coupled resonators coupled to single atoms have been used to per-
form SWAP gates[118, 119]. Most recently, storage efficiencies of the
order of 22% have been reported for a quantum memory composed by a
single atom in an optical cavity [120]. This value lies well below the value
one can extract from theoretical works on spin ensembles for photon
storage [121]. This calls for a detailed understanding of these dynamics
and for elaborating strategies to achieve full control of the atom-photon
interface at the single atom level.

The purpose of this work is to provide a systematic theoretical analysis
of the efficiency of protocols for a quantum memory for single photons,
where information is stored in the electronic excitation of a single atom
inside a high-finesse resonator. The qubit can be the photon polariza-
tion [35, 122], or a time-bin superposition of photonic states [123], and
shall then be transferred into a superposition of atomic spin states.

The scheme is illustrated in Fig. 3.1: a photon propagating along a
transmission line impinges on the cavity mirror, the storage protocol
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Q(t)

Kloss

g)

Figure 3.1: Storage of a single photon in the electronic state of a single atom
confined inside an optical resonator. (a) The photon wave packet
propagates along a transmission line and impinges onto a cavity
mirror. (b) The single photon is absorbed by the cavity, which drives
the atomic transition |g) — |e). An additional laser couples to the
atomic transition |[r) — |e). The dynamics of storage is tailored
by optimizing the functional dependence of the laser amplitude
on time, Q(¢): Ideally, the atom undergoes a Raman transition to
the final state |r) and the photon is stored. We analyse the storage
efficiency including the spontaneous decay with rate y of the excited
state and photon absorption or scattering at the cavity mirrors via
an incoherent process at rate k.. Further parameters are defined
in the text.

coherently transfers the photon into a metastable atomic state, here de-
noted by |r), with the help of an external laser. The protocols we analyse
are based on the seminal proposal by Cirac et al. [106]. Here, we first
compare adiabatic protocols, originally developed for atomic ensembles
in bad cavities [122, 124] as well as a protocol developed for any coupling
regime for a single atom [123]. We then extend the protocol of Ref.[124]
to quantum memories composed of single atoms confined inside a high-
finesse resonator. We investigate how the storage efficiency is affected
by parasitic losses at the cavity mirrors and whether these effects can
be compensated by the dynamics induced by the laser pulse driving the
atom. We finally extend our study to the non-adiabatic regime, and anal-
yse the efficiency of storage of broadband photon pulses using optimal
control.



3.2 BASIC MODEL

This Chapter is organized as follows. In Sec. 3.2 we introduce the
basic model, which we use in order to determine the efficiency of the
storage process. In Sec. 3.3 we analyse the efficiency of protocols based
on adiabatic dynamics in presence of irreversible cavity losses. In Sec.
3.4 we investigate the storage efficiency when the photon coherence time
does not fulfil the condition for adiabatic quantum dynamics. Here, we
use optimal control theory to determine the shortest photon pulse that
can be stored. The conclusions are drawn in Sec. 3.5. The appendices
provide further details of the analyses presented in Sec. 3.3.

3.2 BASIC MODEL

The basic elements of the dynamics are illustrated in Fig. 3.1. A photon
propagates along the transmission line and impinges on the mirror of a
high-finesse cavity. Here, it interacts with a cavity mode at frequency
w.. The cavity mode, in turn, couples to a dipolar transition of a single
atom, which is confined within the resonator. We denote by |g) the initial
electronic state in which the atom is prepared, it is a metastable state
and it performs a transition to the excited state |e) by absorbing a cavity
photon. The relevant atomic levels are shown in subplot (b): they are two
meta-stable states, |g) and |r), which are coupled by electric dipole transi-
tions to a common excited state |e) forming a A level scheme. Transition
|r) = |e) is driven by a laser, which we model by a classical field.

In order to describe the dynamics of the photon impinging onto the
cavity mirror we resort to a coherent description of the modes of the
electromagnetic field outside the resonator. The incident photon is an
excitation of the external modes, and it couples with the single mode of
a high-finesse resonator via the finite transmittivity of the mirror on
which the photon is incident.

In this section we provide the details of our theoretical model and
introduce the physical quantities which are relevant to the discussions
in the rest of this paper.

3.2.1 Master equation

The state of the system, composed of the cavity mode, the atom, and the
modes of the transmission line, is described by the density operator g.
Its dynamics is governed by the master equation (% = 1)

6,6 = —i[H(t), 6] + Laish » (3.1)

where Hamiltonian H(t) describes the coherent dynamics of the modes
of the electromagnetic field outside the resonator, of the single-mode
cavity, of the atom’s internal degrees of freedom, and of their mutual
coupling. The incoherent dynamics, in turn, is given by superoperator
L 4is, and includes spontaneous decay of the atomic excited state, at rate
y, and cavity losses due to the finite transmittivity of the second cavity
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mirror as well as due to scattering and/or finite absorption of radiation
at the mirror surfaces, at rate x;.

We first provide the details of the Hamiltonian. This is composed of
two terms, H(t) = Hgogs + Hi(t). The first term, Hg, 4, describes the
coherent dynamics of the fields in absence of the atom. It reads

Hpaigs = Y (@ — w)bibi + ) A(a by + bja), (3.2)
k k

and is reported in the reference frame of the cavity mode frequency w,.
Here, operators b, and 5; annihilate and create, respectively, a photon at
frequency wy in the transmission line, with [Bk, B,T{,] = Oy k- The modes
by are formally obtained by quantizing the electromagnetic field in the
transmission line and have the same polarization as the cavity mode.
They couple with strength 4, to the cavity mode, which is described by
a harmonic oscillator with annihilation and creation operators a and
a’, where [4,4"] = 1and [4,b;] = [a,b]] = 0. In the rotating-wave
approximation the interaction is of beam-splitter type and conserves
the total number of excitations. The coupling A, is related to the radiative
damping rate of the cavity mode by the rate x = L|A(w,)|*/c, with 4; =
A(w,) the coupling strength at the cavity-mode resonance frequency[125]
and L the length of the transmission line. Note that « is the cavity decay
rate because of transmission into the transmission line and is necessary
for the storage, while x, is the decay rate into other modes and is only
detrimental.

The atom-photon interactionis treated in the dipole and rotating-wave
approximation. The transition |g) — |e) couples with the cavity mode
with strength (vacuum Rabi frequency) g. Transition |r) — |e) is driven
by a classical laser with time-dependent Rabi frequency Q(t), which is
the function to be optimized in order to maximize the probability of
transferring the excitation into state |r). The corresponding Hamiltonian
reads

H; = 8|rXr| — AleXe| + [gleXg|a + Q(t)|eXr| + H.c.], (3.3)

where A = w, — w, is the detuning between the cavity frequency w, and
the frequency w, of the |g) — |e) transition, while § = @, + w; — w, is
the two-photon detuning which is evaluated using the central frequency
wy, of the driving field Q(¢). Here, we denote by w, = (E, — Eg)/h the
frequency difference (Bohr frequency) between the state |r) (of energy E,)
and the state |g) (of energy E,). Unless otherwise stated, in the following
we assume that the condition of two-photon resonance § = 0 is fulfilled.

The irreversible processes that we consider in our theoretical descrip-
tion are (i) the radiative decay at rate y from the excited state |e), where
photons are emitted into free field modes other than the modes by intro-
duced in Eq. (3.2), and (ii) the cavity losses at rate ., due to absorption
and scattering at the cavity mirrors and to the finite transmittivity of
the second mirror. We model each of these phenomena by Born-Markov
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processes described by the superoperators £, and £,,_, respectively,
such that L4, = £, + £, and

Lyp = y(2lEXelbleXE,| — leXelp — pleXel) , (3.4a)
Lo = T10ss(20007 — a'ap — pa’a). (3.4b)

Here, |&,) is an auxiliary atomic state where the losses of atomic popula-
tion from the excited state |e) are collected.

3.2.2 Initial state and target state

The model is one dimensional, the transmission line is at x < 0, and the
cavity mirror is at position x = 0. The single incident photon is described
by a superposition of single excitations of the modes of the external
field [126]

[$sp) = D, EbiIvac), (3.5)
k

where |vac) is the vacuum state and the amplitudes & fulfil the normal-
ization condition Zk|€k|2 = 1. For the studies performed in this work,
we will consider the amplitudes

Ek = 1 /i f deitke—wdte, (1) (3.6)

with c the speed of light, L the length of the transmission line, and

1 2t
En() = ﬁ" sech (T) (3.7

the input amplitude at the position x = 0, with T the characteristic time
determining the coherence time T, of the photon, T, = nT/43 (see def-
inition in Eq. (3.10)). Our formalism applies to a generic input envelope,
nevertheless the specific choice of Eq. (3.7) allows us to compare our
results with previous studies, see Refs.[122-124]. The total state of the
system at the initial time ¢ = ¢; is given by the input photon in the trans-
mission line, the empty resonator, and the atom in state |g). In particular,
the dynamics is analysed in the interval t € [t,t,], witht; < 0,¢, > 0
and |t;], t, > T, such that (i) at the initial time there is no spatial overlap
between the single photon and the cavity mirror and (ii) assuming that
the cavity mirror is perfectly reflecting, at ¢t = ¢, the photon has been
reflected away from the mirror.

The initial state is described by the density operator p(ty) = | ){¥ol,
where

|lp0> = |g> ® |0>c ® |lpsp> ’ (38)

and |0),. is the Fock state of the resonator with zero photons.
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Our target is to store the single photon into the atomic state |r) by shap-
ing the laser field Q(¢t). When comparing different storage approaches,
it is essential to have a figure of merit characterizing the performance of
the process. In accordance with Ref.[124] we define the efficiency 7 of
the process as the ratio between the probability to find the excitation in
the state |7) = |r) ® |0). ® |vac) at time ¢ and the number of impinging
photons between t; and ¢, namely

_ (Wrle@®)lPpr) (3.9)
NG '

where t > t; and the denominator is unity for t — t,. We note that states
|) and |¢p7) are connected by the coherent dynamics via the intermedi-
ate states |e) ® |0). ® |vac) and |2) ® |1). ® [vac). These states are unstable,
since they can decay via spontaneous emission or via the parasitic cavity
losses. Moreover, the incident photon can be reflected off the cavity. The
latter is a unitary process, which results in a finite probability of finding
a photon excitation in the transmission line after the photon has reached
the mirror. The choice of Q(t) shall maximize the transfer |[¢,) — |¢1)
by minimizing the losses as well as reflection at the cavity mirror.

n(t)

3.2.3 Relevant quantities

The transmission line is here modelled by a cavity of length L, with a
perfect mirror at x = —L. The second mirror at x = 0 coincides with the
mirror of finite transmittivity, separating the transmission line from the
optical cavity. The length L is chosen to be sufficiently large to simulate
a continuum of modes for all practical purposes. This requires that the
distance between neighbouring frequencies is smaller than all character-
istic frequencies of the problem. The smallest characteristic frequency is
the bandwidth of the incident photon, which is the inverse of the photon
duration in time. Since the initial state is assumed to be a single pho-
ton in a pure state, the latter coincides with the photon coherence time
T, [127] which is defined as

T, = V(?) — (t)? (3.10)

with (%) = /2 t*|&;.(1)|dt, and

tz
f En()’dt =1 —¢, (3.11)

t

where ¢ < 107 for the choice |t;| = ¢, = 6T, and L = 12¢T,. The modes
of the transmission line are standing waves with wave vector along the x
axis. For numerical purposes we take a finite number N of modes around
the cavity wave number k. = % Their wave numbers are

bon = ke + (3.12)
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whilen = —(N—1)/2,...,(N—1)/2,and the corresponding frequencies are
w,, = ck,. We choose N and L so that our simulations are not significantly
affected by the finite size of the transmission line and by the cutoff in the
mode number N. We further choose N in order to appropriately describe
spontaneous decay by the cavity mode. This is tested by initialising the
system with no atom and one cavity photon and choosing the parameters
so to reproduce the exponential damping of the cavity field.

Note that a single mode of the cavity is sufficient to describe the in-
teraction with a single photon if the photon frequencies lie in a range
which is smaller than the free spectral range of the cavity and is centered
around the frequency of the cavity mode. In this work we choose the
central frequency of the photon to coincide with the cavity mode fre-
quency w, = w. and the spectrally broadest photon we consider (Figs. 3.5
and 3.6) spans about 16 X 27 MHz around the cavity frequency w.. A
cavity of 1 cm has a free spectral range of about 15 X 27 GHz which is
three orders of magnitudes larger than the bandwidth of the photon.
This justifies the approximation to a single mode cavity. The employed
formalism can be applied to photons with other center frequencies as
well, if the number of modes N is chosen sufficiently large and their
center is appropriately shifted (c.f. eq. (3.12)).

Since the free field modes are included in the unitary evolution, it is
possible to constantly monitor their state. The photon distribution in
space at time ¢ is given by

N
P(x,t) = % Z Prm(t) sin(n%x) sin(m%x), (3.13)
n,m=1

where pyn() = Tr{E(0)| 1 X14]} and [1,) = by, [vac).
A further important quantity characterizing the coupling between
cavity mode and atom is the cooperativity C, which reads [124]

g2

=5 (3.14)

The cooperativity sets the maximum storage efficiency in the limit in
which the cavity can be adiabatically eliminated from the dynamics of
the system [124], which corresponds to assuming the condition

yCT. > 1. (3.15)

In this limit, in fact, the state |g) ® |1). ® |vac) can be eliminated from the
dynamics. Then, the efficiency satisfies 7(t) < 7,.x where the maximal
efficiency 7),,,, reads [124]

C

Dmax = 1+C (3.16)

The maximal efficiency 7,,,, is reached for any input photon envelope
Ein(t) and detuning A, provided the adiabatic condition (3.15) is fulfilled.
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In our study we also determine the probability that the photon is in
the transmission line,

B(t) = 3, Te{p(®)| L)Lk}, (3.17)
k

the probability that spontaneous emission occurs,

R(t) = Tr{p(0)|§e)Eel}s (3.18)
and finally, the probability that cavity parasitic losses take place,

Pioss(£) = Tr{p(0)|g, Oc, vac)g, O, vac|}. (3.19)

By means of these quantities we gain insight into the processes leading
to optimal storage.

3.3 STORAGE IN THE ADIABATIC REGIME

In this section we determine the efficiency of storage protocols derived
in Refs. [122-124] for the setup of Ref. [120] in the adiabatic regime.
We then analyse how the efficiency of these protocols is modified by
the presence of parasitic losses at rate x,. In this case, we find also an
analytic result which corrects the maximal value of Eq. (3.16).

We remark that in Refs.[122-124]the optimal pulses Q(t) were analyt-
ically determined using input-output theory [55]. In Refs.[122, 124] the
authors consider an atomic ensemble inside the resonator in the adia-
batic regime. This regime consists in assuming the bad cavity limitx > g
and the limit yT.C > 1. The first assumption allows one to adiabatically
eliminate the cavity field variables from the equations of motion, the
second assumption permits one to eliminate also the excited state |e).
In Ref.[123] a single atom is considered and there is no such adiabatic
approximation, but the coupling with the external field is treated using
a phenomenological model.

Here we simulate the full Hamiltonian dynamics of the external field
in the transmission line and consider a quantum memory composed of
a single atom inside a reasonably good cavity. The parameters we refer
to in our study are the ones of the setup of Ref.[120]:

(g,%,7) = (4.9,2.42,3.03) X 27 MHz, (3.20)

corresponding to the cooperativity C = 3.27 and to the maximal storage
efficiency 7., = 0.77. When we analyse the dependence of the efficiency
on y or k, we vary the parameters around the values given in Eq. (3.20).

3.3.1 Ideal resonator

We first review the requirements and results of the individual protocols
of Refs.[122-124]and investigate their efficiency for a single-atom quan-
tum memory. The works of Refs.[122-124]determine the form of the
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optimal pulse Q(¢) for cavities with cooperativities C > 1. The optimal
pulse is found by imposing similar, but not equivalent requirements.
In Refs.[122, 123] the authors determine Q(¢) by imposing impedance
matching, namely, that there is no photon reflected back by the cavity
mirror. In Ref. [124] the pulse Q(t) warrants maximal storage, namely,
maximal probability of transferring the photon into the atomic excita-
tion |r). The latter requirement corresponds to maximizing the storage
efficiency 7 defined in Eq. (3.9).

In detail, in Ref.[122] the authors determine the optimal pulse Q(t)
that suppresses back-reflection from the cavity and warrants that the
dynamics follows adiabatically the dark state of the system composed by
cavity and atom. For this purpose the authors impose that the cavity field
is resonant with the transition |g) — |e), namely A = 0. They further
require that the coherence time T, is larger than the cavity decay time,
kT, 2 1. Under these conditions the optimal pulse Q(t) = QF(t) reads

ggin(t)

OF (1) = ,
Vo + 2 L€)AL — |En(DP

(3.21)

where ¢, regularize QF(¢) for t — t,. The work in Ref.[123] imposes the
suppression of the back-reflected photon without any adiabatic approxi-
mation and finds the optimal pulse Q(t) = QP(t), which takes the form

g€ () + (F ) +yF(1))/g

QP(t) = t , (3.22)
J 200 + 2 [1€m () = |Em(®I* = D(8)
with
D(t) =2y / |F@HPde + |F (). (3.23)

and F(t) = &,(t) — k&, (t). Coefficient p, accounts for a small initial
population in the target state |r) and it is relevant in order to avoid diver-
gences in Eq. (3.22) for t — t;, see Ref.[123] for an extensive discussion.
The pulse QF(¢) of Eq.(3.21) can be recovered from Eq. (3.22) by imposing
the conditions

F(&) +yF(t) =0, (3.24a)
—|F () + 2xp00 = c;. (3.24b)

The control pulse QP(¢) can be considered as a generalization of QF(¢)
since it is determined by solely imposing quantum impedance matching.

In Ref.[124] the authors determine the amplitude Q(f) that maximizes
the efficiency 7. This condition is not equivalent to imposing impedance
matching. In fact, while in the case of impedance matching major losses
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through the excited state |e) are acceptable in order to minimize the prob-
ability of photon reflection, in the case of maximum transfer efficiency 7
those losses are detrimental and thus have to be minimized. The optimal
pulse Q(f) = QS(¢) is determined for a generic detuning A by using an
analytical model based on the adiabatic elimination of the excited state
le) of the atom and of the cavity field in the bad cavity limit x > g. It
reads

y(1+ C)+iA Ein(t)
V2A+0) [ g, () dr

A ‘ )
_'—1 . ! i .
xexp( 12y(1+C) n/tl |Ein ()] dt)

In the limit in which the adiabatic conditions are fulfilled, this control
pulse allows for storage with efficiency 7),,.,, Eq. (3.16). This efficiency
approaches unity for cooperativities C > 1.

We start by integrating numerically the master equation for a single
atom (3.1) after setting x),s; = 0, namely, by neglecting parasitic losses.
We determine the storage efficiency at the time ¢,, which we identify by
taking t, > T, for different choices of the control field Q = QF, QF, QP
in Hamiltonian (3.3). Numerically, ¢, corresponds to the time the photon
would need to be reflected back into the initial position, assuming that the
partially reflecting mirror is replaced by a perfect mirror. Our numerical
simulations are performed for a single atom in a resonator in the good
cavity limit.

Figures 3.2 display the efficiency and the losses as a function of «, y,
and of the coherence time T, of the photon (and thus of the adiabatic
parameter yT,.C). Each curve corresponds to the different control pulses
in the Hamiltonian (3.3) according to the three protocols. In subplot (a)
we observe that the efficiency reached with the pulse Q(t) corresponds
to the maximum theoretical efficiency 7,,,4, while the efficiency with QP
is the smallest. In subplot (b) it is visible that the control pulse Q¢(t) war-
rants the maximum efficiency even down to values of x of the order of
x ~ g/5. Subplot (c) displays the efficiency as a function of the adiabatic
parameter yT.C: the protocol Q¢(t) reaches the maximum theoretical
efficiency 7., for yT.C 2 20, while the other protocols have smaller
efficiency for all values of T,. Figures 3.2(d)(e)(f) report the probability
that the photon is reflected back into the transmission line, eq. (3.17). It
is evident that protocol QP perfectly suppresses the back reflection prob-
ability in every regime here considered. However in the non-adiabatic
regime (subplots (c)(f)(i), yT.C < 20)the protocol QP, as well as the proto-
col QF requires an increasing maximum Rabi frequency for decreasing
T.. At the value of about yT.C = 3.74 the Rabi frequency is so high that
it is not anymore manageable by our numerical solver, for this reason
the plots for the protocols QP and QF are reported for yT,C > 3.74. The
same happens for small values of «, subplots (b)(e)(h): in this case the

QS(t) =

(3.25)
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Figure 3.2: Comparison between the protocols of Refs.[122-124]. (Upper row)
Storage efficiency 7, Eq. (3.9), (central row) probability that the
photon is reflected B, Eq. (3.17), and (bottom row) probability of
spontaneous emission, Eq. (3.18), evaluated at time ¢, = 6T, by
integrating numerically Eq. (3.1) for k)i, = 0. The quantities are
reported as a function of (left column) the decay rate y from the
excited state (for x = %y and T, = T?), (central column) the de-
cay rate x of the cavity field (for y = y, and T, = T?) and (right
column) the coherence time of the photon T, (in units of 1/(yC)
and for x = x, and y = y). The three different lines QF, QP,
and QO refer to the evolution with the respective control pulse (see
Egs. (3.21), (3.22), (3.25), respectively). The dotted lines in panels
(a)(b)(c) correspond to the maximum efficiencyn = C/(1 + C), Eq.
(3.16). Here, (g, g, %) = (4.9,2.42,3.03) X 2r MHz and T2 = 0.5 us.
The input pulse &;,,(¢) is givenin Eq.(3.7), at the initial time t; = —6T,
the pulse has negligible overlap with the cavity mode. The trans-
mission line has length L = max(12¢cT,, 15¢/x) and 211 equispaced
modes. With this choice the frequency range of the modes included
in the simulation is about 40x around the cavity frequency w..

plots for the protocols QP and QF are reported for ¥ > 0.3 X 27 MHz.
The diverging Rabi frequency can be avoided by an appropriate choice
of the parameters ¢; and p, in Egs. (3.21) and (3.22), respectively. Fig-
ures 3.2(g)(h)(i) report the losses via spontaneous emission of the atom,
Eq. (3.18): while these losses are acceptable in order to minimize the
back-reflected photon, they are detrimental for the intent of populating
the target state |r). Protocol QP, which perfectly suppresses the back
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reflected photon, has the highest losses via spontaneous emission, which
in the end leads to a lower efficiency 7. Protocol Q€ in turn, has the lowest
radiative losses and it allows for the transfer with the maximal efficiency
Nmax- Protocol QF tries to minimize reflection of the photon at the cavity
mirror. However, since QF is derived with some approximations, it does
not suppress completely the reflection and its final efficiency is between
the ones of the other two protocols.

An important general result of this study is that the bad cavity limit is
not essential for reaching the maximal efficiency as long as the dynamics
is adiabatic: the relevant parameter is in fact the cooperativity.

3.3.2 Parasitic losses

The protocols so far discussed assume an ideal optical resonator. In this
section we analyse how their efficiency is modified by the presence of
parasitic losses, here described by the superoperator £, _in Eq. (3.4b).
In particular, we derive the maximal efficiency the protocols can reach
as a function of ;s > 0.

We first numerically determine the efficiency of the individual pro-
tocols as a function of . for T, = 0.5 us. Figure 3.3(a) displays 7 for
Q = Q° QP QOF. Itis evident that the effect of losses is detrimental, for
instance it leads to a definite reduction of the maximal efficiency from
1 = 0.77 down to 7 = 0.68 for ks, ~ 0.1x. This result can be improved by
identifying a control field Q = QX which compensates, at least partially,
the effects of these parasitic losses. The control field QX(¢) is derived
in Sec. 3.3.3 using the input-output formalism: it corresponds to per-
forming the substitution x — x + % in the functional form Q¢(t) of Eq.
(3.25). Specifically, it reads

y(1+C")+iA Ein(0)

QX)) = (3.26)
V21 +c) \/ S En(@)Pde
Xexp( i (1+C’ lnf |Emn ()] dt)
with the modified cooperativity

2
, 8

C'=——"=>""-. 3.27

}/(K + Kloss) ( )

When the control pulse QX(¢) is used, the efficiency of the process corre-
sponds to the maximal efficiency 7);,,,, which is now given by

x c’

Nmax = K+ Ko L+ C' . (3.28)

Clearly, Nmax < Nmax, While the equality holds for ;. = 0.

By inspecting the numerical results, we note that the efficiency ob-
tained using QX is always higher than the one reached by the other proto-
cols. Even though for some values of 1,4 the efficiencies using different
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Figure 3.3: Efficiency of storage protocols in the adiabatic regime as a func-

tion of the rate of parasitic losses x4 (in units of x). (a) Storage
efficiency, Eq. (3.9), (b) the probability that the photon is reflected,
Eq. (3.17), (c) the probability of spontaneous decay, Eq. (3.18), and
(d) the probability of parasitic losses, Eq. (3.19), evaluated at time
t, = 6T, and for (g, x,y) = (4.9,2.42,3.03)X2r MHz, T, = 0.5 us. The
other parameters are the same as in Fig. 3.2. The lines Q¥, QF QP,
and Q€ refer to the evolution with the respective control pulse (resp.
Egs. (3.26),(3.21), (3.22), (3.25)). The dotted line in (a) corresponds
to the value of 7;,,,, Eq. (3.28).

control fields may approach the one found with QX yet the dynamics are
substantially different. This is visible by inspecting the probability that
the photon is reflected, the radiative losses, and the parasitic losses, as a
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function of x5 as shown in Figs. 3.3(b)(c)(d), respectively: Each pulse
distributes the losses in a different way, with Q¥(¢) interpolating among
the different strategies in order to maximize the efficiency.
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Figure 3.4: Dynamics of storage. (a) Photon envelope |€m(D)I?, Eq. (3.7),as afunc-
tion of time. (b) Time dependence of the control pulses QF(¢), QS(¢),
QP(t), and QX(¢) (resp. Egs. (3.21),(3.25),(3.22), (3.26)). (c) Time evo-
lution of the diagonal elements of the density matrix when the atom
is driven by QX. The curves are the population p,, of state |r), the
population p,, of state |e), the probability that there is one photon in
the cavity p,q, the probability that the photon is in the transmission
line B, Eq. (3.17), the probability of spontaneous decay, Eq. (3.18)
E, and the probability of cavity parasitic losses P}, Eq. (3.19). The
parameters are (g, K, ¥, Kjoss) = (4.9,2.42,3.03,0.33) X 2r MHz,A = 0
and T, = 0.5 us.
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Figure 3.4 shows the evolution of the system for T, = 0.5 us. Fig. 3.4(a)
displays the envelope in time |&;,(¢)|* for the photon given in eq. (3.7),
which is the one used also in this simulation. Fig. 3.4(b) displays the
control pulse shapes of the protocols QF, Q¢, QP, of Refs. [122-124]
and QX derived in this work (the pulse shapes are given analytically
in Egs. (3.21), (3.25), (3.22), (3.26)). Fig. 3.4(c) shows the population of
the states and the losses during the evolution when the atom is driven
by QX(t). The efficiency of the transfer, Eq. (3.9), corresponds to the
population of the state |r), p,,. For the parameters of Ref.[120] the final
efficiency is (t;) ~ Nmax ~ 0.653.

In the next subsection we report the derivation of QX and 7},,, by
means of the input-output formalism.

3.3.3 Maximal efficiency in presence of parasitic losses

In this section we generalize the adiabatic protocol of Ref.[124]in order
to identify the control field that maximizes the storage efficiency and to
determine the maximum storage efficiency one can reach. The derivation
presented in this section is based on the input-output formalism and it
delivers Eq. (3.26) and Eq. (3.28).

We first justify the result for Eq. (3.28) using a time reversal argument
applied in Refs. [124, 128]. Let us consider retrieval of the photon, as-
suming the atom is initially in state |[r) and there is neither external nor
cavity field. Then, in order to retrieve the photon, the control pulse Q(t)
shall drive the transition |[r) — |e) such that at the end of the process the
state |r)is completely empty. The excited state |e) dissipates the excitation
with probability 1/(1 + C’), while it can emit into the cavity mode with
probability C'/(1 + C’). When the cavity mode is populated, a fraction
Kioss/ (K + Kioss) 18 lost, while the fraction x/(x + xj.4) is emitted via the
coupling mirror into the transmission line. From this argument one
finds that the probability of retrieval is given by Eq. (3.28). Using the
time reversal argument, this is also the efficiency of storage.

We now derive this result as well as Q¥(¢) starting from the retrieval
process and then applying the time reversal argument. For this purpose,
we restrict the dynamics to the Hilbert space H composed by the states
{lg, 1., vac), e, O, vac), |r, O, vac), |g,0., 1x) : 1 < k < N}. In K the prob-
ability is not conserved due to leakage via spontaneous decay and via
parasitic cavity losses. Therefore, a generic state in 7 takes the form
|6(0)) = c(1)]g. 1., vac)+e(b)|e, Oc, vac)+r(D)|r, 0c, vac)+ 3, Ex()I8, Oc i),
it evolves according to a non-Hermitian Hamiltonian and its norm de-
cays exponentially with time [129]. We assume that at the initial time
t = t, the probability amplitude r(t;) equals 1, while all other proba-
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bility amplitudes vanish. The equations of motion for the probability
amplitudes read

é(t) = —ige(t) — iV 2xE;, (1) — (1 + K105 )0(0), (3.29a)
é(t) = (1A — p)e(t) — ige(t) — QL) (3.29b)
) = —iQ*(0e(?), (3.29¢)

where we used the Markov approximation and the input-output formal-

ism [55]. We now assume the bad-cavity limit x > g and adiabatically

eliminate the cavity field from the equations of motion (which corre-

sponds to assuming ¢(t) &~ 0 over the typical time scales of the other

variables). In this limit the input-output operator relation, &y, (t) =
2xa(t) — &;,(t), takes the form

Eout(t) = G2y Ce(t) + s K“’“ En(0), (3.30)

loss

where
G= K/(K + Kloss)

and Cis given in Eq. (3.14). This equation has to be integrated together
with the equations

é(t) = [iA — y(1 + GO)]e(t) — iQ(E)r(t) — G\ 2yCE (1), (3.31)
() = —iQ*(0e(t) - (3.32)

Our goal is to determine the retrieval efficiency assuming that at time
t = 0 there is no input photonic excitation, thus &;,(t) = 0 at all times.
Using these assumptions, the above equations can be cast into the form

L(1eOF + IHOP) = =271 + CleF. (333)

The probability that no excitations are left in the atom at time ¢, > 0
(t, > T.)is the retrieval efficiency

ty t2
Mnas = f Eo(DdE = 26%C f ()t =
b (3.34)
GC’
1+C°

= C, [|e<t)| + |r(t)] ] .=
By means of the time reversal argument, this is also the storage efficiency.

The output field can be analytically determined by adiabatically elim-
inating the excited state from Egs. (3.30). This leads to the expression

e, (1) = W2y Go — 20

iA—y1+C)

: 2 (3.35)
1)) :
X eXp(/tl Byaront ) '
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Integrating the norm squared of Eq. (3.35) one obtains

I

—1
oo f EalPal =

—2)/(1 +C") 2
=1- Q tH"de’|.

(3.36)

We solve Eq. (3.36) to find |Q(t)|, while the phase of Q(t) can be deter-
mined from Eq. (3.35). Finally, we obtain the control pulse QX ;.(¢) which
retrieves the photon with efficiency 7;,,,. It reads

7/(1 + C/) —iA gout(t)
V+C) [ roie, P

xexp(i oy ey f (o1 ).

Using the time reversal argument, the control pulse Q¥(t) = QX [, (T — 1)
stores the time reversed input photon with &;,(t) = E5,(T — t)/\/ Nmax
and T = t, — t;, and it takes the form given in Eq. (3.26). This pulse has
the same form as the pulse of Eq. (3.25), where now C has been replaced
by C’ (or equivalently x — % + Kjo).

QXretr(t) =
(3.37)

3.3.4 Photon Retrieval

The generation of single photons with arbitrary shape of the wavepacket
envelope in atom-cavity systems has been discussed theoreticallyin[124,
130] and demonstrated experimentally in [131, 132].

In Ref. [106, 128] it has been pointed out that photon storage and
retrieval are connected by a time reversal transformation. This argument
has profound implications. Consider for instance the pulse shape Q(t)
which optimally stores an input photon with envelope &;,,(¢). This pulse
shape is the time reversal of the pulse shape Q ., (t) = Q*(T — t) which
retrieves a photon with envelope &, (t) = & (T —t) (here T = t, — t;).
In this case, the storage efficiency is equal to the efficiency of retrieval
and is limited by the cooperativity through the relation in Eq. (3.28). We
have numerically checked that this is fulfilled by considering adiabatic
retrieval and storage of a single photon through 5 nodes, consisting of
5 identical cavity-atom systems. We applied Q.. (¢) for the retrieval
and the corresponding Q(t) for the storage. Within the numerical error,
we verified that the storage efficiency of each retrieved photon remains
constant and equal to the one of the first retrieved photon.

34 BEYOND ADIABATICITY

In this section we analyse the efficiency of storage of single photon pulses
in the regime in which the adiabaticity condition Eq. (3.15) does not hold.
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Our treatment extends to single-atom quantum memories the approach
that was applied to atomic ensemble in Refs. [133, 134] and allows us
to identify the minimum coherence time scale of the photon pulse for
which a given target efficiency can be reached.

Our procedure is developed as follows. We use the von-Neumann equa-
tion, obtained from Eq. (3.1) after setting y = xj,,c = 0, and resort to
optimal control theory for identifying the control pulse Q(t) = Q°P'(¢)
that maximizes the storage efficiency for y = x,,¢c = 0. Specifically,
we make use of the GRAPE algorithm [135] implemented in the library
QuTiP [136, 137]. We then determine the storage efficiency of the full
dynamics, including spontaneous decay and cavity parasitic losses, by
numerically integrating the master equation (3.1) using the pulse Q°P(¢).
We show that the dynamics due to Q°P(t) significantly differs from the
adiabatic dynamics, and thereby improve the efficiency for short coher-
ence times.

efficiency

— QX
Qopt
— = X with losses

------- Qort with losses

0 2 4 6 8 10 12 14
T, (units of (yC)™1)

Figure 3.5: Storage efficiency n at t = t, as a function of the coherence time
of the single-photon pulse T, (in units of (yC)™!). The legenda in-
dicates the pulses used in the numerical integration of Eq. (3.1).
The parameters are (g, x) = (4.9,2.42) X 2mr MHz, the lines labeled
“with losses” refer to the efficiency of the process when (¥, kjoss) =
(3.03,0.33) X 2r MHz, otherwise y = ks = 0;t, = —t; = 6T.. The
other parameters are given in Fig. 3.2.

Figure 3.5 displays the storage efficiency 7 as a function of the photon
coherence time T, when the control pulse is Q*(t), Eq. (3.26), and when
instead the control pulse is found by means of the numerical procedure
specified above, which we denote by Q°P'(¢). The storage efficiency is
reported for y = ks, = 0 and for (¥, xjss) = (3.03,0.33) X 2r MHz. The
results show that optimal control, in the way we implement it, does not
improve the maximal value of the storage efficiency, which seems to be
limited by the value of 7;,,,, Eq. (3.28). We remark that this behaviour is
generally encountered when applying optimal-control-based protocols
to Markovian dynamics [138]. Nevertheless, the protocols identified us-
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Figure 3.6: (a) Photon envelope €D, Eq. (3.7), and optimized pulse Q°P'(¢) as
afunction of time (the initial guess pulse Q*(¢) is shown for compari-
son). Subplot (b) and (c) display the time evolution of the diagonal el-
ements of the density matrix when the atom is driven by QX and Q°P,
respectively. The curves are the population p,, of state |r), the popu-
lation p,, of state |e), the probability that there is one photon in the
cavity puq, and the probability that the photon is in the transmission
line B, Eq. (3.17). The parameters are (g,x) = (4.9,2.42) X 2r MHz,
Y = Koss = A = 0and T, = 0.009 us, thus the regime is non adia-
baticas T, ~ 0.57/(yC). Att = t, the population p,, gives 7(t,). In
this case the system has been simulated for a longer time interval:
ty = —t; = 15T,.

ing optimal control extend the range of values of T, where the maximal
efficiency is reached, down to values where the adiabatic condition is not
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fulfilled. We further find that the optimized pulse we numerically iden-
tified in absence of losses provides an excellent guideline for optimizing
the storage also in presence of losses.

In orderto getinsight into the optimized dynamics we analyse the time
dependence of the control pulse as well as the dynamics of cavity and
atomic state populations for T, = 0.009 us, namely, when the dynamics is
non-adiabatic. Figure 3.6(a) shows the time evolution of the pulse Q°P(t)
resulting from the optimization procedure in the non-adiabatic regime;
the pulse QX(¢) is shown for comparison. The efficiency of the transfer
(when the losses are neglected) with the control pulse Q¥ is n¥ ~ 0.07 <
Nmax D€Cause the process is non adiabatic, while the efficiency reached
with the optimized pulse Q°P(t) is 7°P* =~ 0.63. The value of the solid
green line at t = t, in Fig. 3.6(b) and 3.6(c) corresponds to the leftmost
point in Fig. 3.5 for the case without losses. A double bump in the cavity
population is visible in Fig. 3.6(b): this is due to the Jaynes-Cummings
dynamics, and is thus the periodic exchange of population between the
atomic excited state |e) and the cavity field. In Fig. 3.6(a) it is noticeable
that the intensity of the optimized pulse exhibits a relatively high peak
when the photon is impinging on the cavity. It corresponds to a way to
perform impedance matching in order to maximize the transmission at
the mirror, and it is related to the same dynamics which gives rise to the
divergence of QF(¢) and QP(t) which is found when they are applied in
the non-adiabatic regime. After this the intensity of the control pulse
vanishes and then exhibits a second maximum when the population of
the excited state reaches the maximum: we verified that the area about
this second “pulse” corresponds to the one of a 77 pulse, thus transferring
the population into state |r).

We now investigate the limit of optimal storage. For this purpose we
determine the lower bound T™" to the coherence time T, of the photon,
forwhich a given efficiency» = 7, can be reached. For each value of gand
T. we optimize the control pulse using GRAPE. For each g we determine
7 as a function of T, and then extract T™" = ming {T, : 9(T.) = Ny, }. We
then analyse how the minimum coherence time T™" scales with the
vacuum Rabi frequency g.

Figure 3.7 displays the minimum photon coherence time T™" required
for reaching the storage efficiency (a) n,, = 0.99 and (b) n,, = 2/3asa
function of the coupling constant g. We observe two behaviours, sepa-
rated by the value g = x: For g < x, in the bad cavity limit, we extract the
functional behaviour T™"  1/yC = x/g*. On the contrary, in the good
cavity limit, g > x, we find that T™" « 1/x: The limit to photon storage
is here determined by the cavity linewidth. The general behaviour as a
function of g interpolates between these two limits. This result shows
that the photon can be stored as long as its spectral width is of the order
of the linewidth of the dressed atomic state. Fig. 3.7(a) also displays the
minimum photon coherence times TX and T? that allows for a transfer
with efficiency 7 = 7,, = 0.99 for the protocols QX and QP, respectively.
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Figure 3.7: Minimum photon coherence time as a function of g (in units of ).
The coherence time T™ is the lower bound to the coherence time
of photons which can be stored with efficiency (a) 7, = 0.99 and
(b) ne = 2/3 fory = x1ss = A = 0. The vertical dotted line shows
the value g = x¥ = 2.42 X 2r MHz. The data in the region g <« x
and g > x have been fitted with the functions f;(g) = ax/g? and
f2(g) = a'/x, respectively. Plot (a) also shows the minimum photon
coherence times TX and TP that allows for a storage with 7 = 0.99
for the protocols QX and QP, respectively.

The time TP is difficult to evaluate numerically because, for each g, there
is a T? such that for each photon coherence time T, > T? the efficiency is
one within the numerical error, and for each T, < T? the Rabi frequency
QP is numerically intractable (QP, given in Eq. (3.22), becomes so high
that it is not anymore manageable by our numerical solver). We then
take TP = T,

3.5 CONCLUSIONS

We have analysed the storage efficiency of a single photon by a single
atom inside a resonator. We have focused on the good cavity limit and
shown that, as in the bad cavity limit, the storage efficiency is bound by
the cooperativity and the maximal value it can reach is given by Eq. (3.16).
We have extended these predictions to the case in which the resonator
undergoes parasitic losses. For this case we determined the maximal
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storage efficiency for an adiabatic protocol as well as the corresponding
control field respectively given in Eq. (3.28) and Eq. (3.26). Numerical
simulations show that protocols based on optimal control theory do
not achieve higher storage efficiencies than ,,,,. Nevertheless they can
reach this upper bound even for spectrally-broad photon wave packets
where the dynamics is non-adiabatic, as long as the spectral width is of
the order of the linewidth of the dressed atomic state.

Our analysis shows that the storage efficiency is limited by parasitic
losses. Nevertheless, we have demonstrated that these can be partially
compensated by the choice of an appropriate control field. This result
has been analytically derived for adiabatic protocols, yet it shows that
extending optimal control theory to incoherent dynamics could provide
new tools for efficient quantum memories.

Experimental realizations of this process have been attempted in the
adiabatic regime [120, 139] as well as in the non-adiabatic regime [140].
While the theoretical predictions for single photon production are ex-
perimentally confirmed, the storage efficiency reached in experiments is
about 50% lower than the theoretically predicted one [139]. One possible
explanation for this discrepancy is the fact that attenuated laser pulses
have been employed in place of single photons. Attenuated laser pulses,
which are well described theoretically by weak coherent pulses, are in fact
easier to produce in a lab respect to single photons [139]. In Chapter 4 we
address this question by theoretically analyzing the dynamics of storage
of an attenuated laser pulse, where the pulse intensity is at the single
photon level.

The storage dynamics in the non-adiabatic regime presents various
opportunities for improving the storage efficiency. For instance optimal
control algorithms different from the one we used can be employed,
as for example in Appendix 3.C. Furthermore, storage protocols based
on super-adiabatic quantum dynamics [141, 142] may be investigated.
Here an additional Hamiltonian is used in order to completely suppress
non-adiabatic processes in the unitary evolution.



3.5 APPENDICES

APPENDICES
3. A INPUT-OUTPUT FORMALISM

In input-output formalism [55] the equation of motion are

& = —igbge — IV 2kE€in(t) — (k + Kpag)A(t) + By,
Ggg = 180,50 — 18a" G,
oA'rr = 1Q(t)6,r — 1Q* (1)

Gee = — 180,50 + 180764 — iQU()6,, +
+ iQ*(t)ére - Va'ee + Fée’
6o = 1A, +18(6pe — )l — IQ(D)6,, + (3.38)
ge ge ee 88 8r
Y. A
- Eo-ge + Ege’
Gor = — 1AG,, +18a7 6, +1Q* (1) (6 — G2e) +
Y . N
- Eo-er + Fer,

bgr = 186r@ — IQ* ()6 e,

where &j, = | jXk|are atomic operators andE,, E,,, Fge and F,, are Langevin
noise operators[52]. The input operator for the quantum electromagnetic
field is

& (D) = 4 / %f e~iket=tDp(k + k., t = t;)dk, (3.39)

here b(k,t = t,) is the annihilation operator of the mode k at the initial
time t = t,. The input output relation is given by

Eou(t) = iV 2xa(t) — &in(0). (3.40)

The equations of motion for M > 1 atoms in the cavity take the
same form as Egs. (3.38) when one performs the replacement &, —

Zi\il O}lk [124]. In this case, one can make the approximations (G,,(1)) ~
M, (G (1)) ~ (Gee(t)) & (Ger(1)) = 0, where (-) = Tr(py-) and py is the
initial state. Then, the set of equations (3.38) reduces to the equations of
motion of a single photon given in Egs. (3.29).

We note that the quantum impedance matching condition imposed
by the authors of Refs. [122] consists in taking E,,(t) = Egu(t) = 0,
according to which the form of the control pulse QF, Eq. (3.21), is found.

3B EFFECT OF PHOTON DETUNING ON STORAGE

The protocol Q6(¢) does not have any restriction on A: for every A there is
a pulse Q€(t) that allows for storage with efficiency 7,,,, (within the adia-
batic regime), see Eq. (3.25). Figure 3.8 displays the storage efficiency and
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Figure 3.8: (a) Storage efficiency, (b) probability of photon reflection, Eq. (3.17),
and (c) probability of spontaneous decay, Eq. (3.18), as a function
of the single photon detuning A and at time ¢,. The parameters are
(g, x,7) = (4.9,2.42,3.03) X 2t MHz, T, = 0.5 us. The input photon
Ein(t)is defined as in Eq. (3.7). See Fig. 3.2 for further details.

the losses for each protocol as a function of A, as expected the protocol
QC(t) performs in the same way for any values of A.

A time-dependent phase x(t) of the control pulse Q(t) = |Q(t)|e*(®)
can be implemented as a two-photon detuning

5= (1) (3.41)

In fact, by applying the unitary transformation U(t) = exp(—i|rXr|x(t)),
the transformed Hamiltonian is H’ = H{ + Hge 45, where

Ay = y(O)lrr| — AleXe| +

) (3.42)
+ (gleXgla + |Q(t)||eXr| + H.c.).



3.C OPTIMAL CONTROL WITH INCOHERENT DYNAMICS

For Q¢(t) we have
. —A [Ein(I*
G(f) = . n = 3.43a
a2 2y(1+C) fjl EXGIR: ( )
—AlQS)|
220 (3.43b)

T A +20+CR°

Recall that also [Q¢(t)| depends on A. This can be understood in terms of
AC Stark shift: one-photon detuning A # 0 is a shift of the control laser
out of resonance for the transition |r) — |e) and thereby induces an AC
Stark shift on the levels |e) and |r) of the atom; thus the condition of two-
photon resonance does not hold anymore. In order to restore the latter,
changes in frequency of the carrier and/or of the cavity and/or of the
atomic levels are needed and they appear as a two-photon detuning in
the Hamiltonian. This also explains why the reflected photon probability
for the protocols QF(t) and QP(¢) (see Fig. 3.8), which do not take into
account the one-photon detuning, increases with increasing A: the input
photon sees the system out of resonance and hence it is mostly reflected.

Eq. (3.43D) gives the energy shift as a function of the Rabi frequency
of the control pulse.

3.C OPTIMAL CONTROL WITH INCOHERENT DYNAMICS

We extend the analysis performed in Sec. 3.4 and implement the GRAPE
optimal control algorithm for the full dynamics of the systems, i. e. we
include the irreversible processes in the optimization procedure. The
evolution of the system in this case is obtained by numerically solving
Egs.(3.29)withy = 3.03X27wr MHz and ks = 0.33X271 MHz. We identify
the control pulse Q(t) = Q°PY(¢) that maximizes the storage efficiency
7 for several values of the single-photon coherence time T.. Figure 3.9
displays the efficiency of single-photon storage with the pulse Q°PY(¢)
in dependence of T.. For comparison, we also report the efficiencies
obtained with the pulses QX(¢) and Q°P(t) already reported in Fig. 3.5,
where they were labeled “QX with losses” and “Q°P! with losses”, respec-
tively. Comparing the efficiency for Q°P" with the one for Q°P! it is visible
that the inclusion of the irreversible losses during the optimization of
the control pulse leads to higher efficiencies.

This result can be understood by comparing the optimized pulse Q°PY
with the pulse Q°P* obtained in Sec. 3.4, which are shown in Fig. 3.10. We
emphasize two main differences: (i) the initial high peak in the Rabi fre-
quency Q°P! appearing around the instant in which the photon impinges
on the cavity (see Sec. 3.4 for a discussion) almost disappears in Q°PY,
and (ii) the second pulse in Q°P*, which is a 7-pulse and at the instant in
time when the population of the excited state |e) is maximal switches
the populations between |e) and the target state |r), has been moved at
an earlier time and has an area larger than 7. We interpret the better
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“QX with losses” and “Q°P' with losses”, respectively. QP refers to
the efficiency reached with the control pulse obtained in Sec. 3.C. The
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Figure 3.10: Optimized pulse Q°PY(¢) as a function of time. The control pulse
QCPY(t) obtained in Sec. 3.4 and reported in Fig. 3.6(a) is shown for
comparison.

performance of Q°P" mainly due to point (ii): while in the case of Q°P*
the excited state does not decay and thus waiting until it is maximally
populated and then moving the excitation to the target state is a good
strategy, in the case of Q°P" the excited state |e) loses population with
rate 2y and thus an earlier pulse, which transfer the excitation to the
target state |r) sooner, minimizes the losses due to decay of |e) and is a
better strategy.

This analysis can be extended by employing different optimization
strategies such as the Krotov[143] and the CRAB [144] algorithms.



WEAK COHERENT PULSES FOR SINGLE-PHOTON
QUANTUM MEMORIES

The content of this chapter contains results, text and figures from:

+ L. Giannelli, T. Schmit, and G. Morigi,
“Weak coherent pulses for single-photon quantum memories,
In: "Physica Scripta 94 (2019), p. 014012,
DOI: 10.1088/1402-4896/aaee36.

4.1 INTRODUCTION

Attenuated laser pulses are often employed in place for single photons
in order to test the efficiency of the elements of a quantum network. The
laser pulses are typically attenuated to the regime where the probability
that they contain a single photon is very small, while the probability that
two or more photons are detected is practically negligible. Even though
photo-detection after a beam splitter shows the granular properties of
the light, yet the coherence properties of weak laser pulses are quite
different from the ones of a single photon [145]. In particular, they are
well described by coherent states of the electromagnetic field, whose
correlation functions can be reproduced by a classical coherent field [53,
57,146]. In this perspective it is therefore legitimate to ask which specific
information about the efficiency of a single-photon quantum network
can one possibly extract by means of weak laser pulses.

Theoretically, similar questions have been analysed in Ref.[109-111,
121-124,128]. In[121-124, 128], in particular, the authors consider a
quantum memory composed by an atomic ensemble, where the number
of atoms is much larger than the mean number of photons of the incident
pulse. In this limit the equations describing the dynamics can be brought
to the form of the equations describing the interaction of a single photon
with the medium, and one can simply extract from the study of one case
the efficiency of the other. This scenario changes dramatically if the
memory is composed by a single atom [35, 106, 112, 113]. In this case
the dynamics is quite different depending on whether the atom interacts
with a single photon or with (the superposition of) several photonic
excitations.

In this work we theoretically analyse the dynamics of the storage of a
weak coherent pulse into the excitation of a single-atom confined within
an optical resonator like in the setups of [131, 147-149]. The laser pulse
propagates along a transmission line and impinges on the mirror of the
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resonator, as illustrated in Fig. 3.1(a). A control laser drives the atom in
order to optimize the transfer of the propagating pulse into the atomic
excitation |r), as shown in Fig. 3.1(b). We determine the efficiency of
storage under the assumption that the control laser optimizes the storage
of a single photon, which possesses the same time dependent amplitude
as the weak coherent pulse. Our goal is to identify the regime and the
conditions for which the dynamics of storage of the weak coherent pulse
reproduces the one of a single photon. This study draws on the protocols
based on adiabatic transfer identified in Refs. [122-124, 150] and in
Chapter 3. The theoretical formalism for the interface between the weak
coherent pulse propagating along the transmission line and the single
atom inside the resonator is quite general and can be extended to describe
the storage fidelity of an arbitrary quantum state of light into excitations
of the memory.

This Chapter is organized as follows. In Sec. 4.2 we introduce the the-
oretical model. In Sec. 4.3 we report our results: in Sec 4.3.1 we analyse
the storage fidelity of a weak coherent pulse. In Sec. 4.3.2 we analyze the
storage fidelity of an arbitrary incident pulse at the single photon level.
We then compare them with the storage fidelity of a single photon. The
conclusions are drawn in Sec. 4.4. The appendices provide details to the
calculations in Secs. 4.2 and 4.3.

4.2 BASIC MODEL

Figure 3.1 reports the basic elements of the dynamics. A weak coherent
pulse propagates along the transmission line and impinges on the mirror
of a optical high-finesse cavity. Here it is transmitted into a cavity mode
at frequency w., which, in turn, interacts with a single atom confined
within the resonator. The atom is driven by a laser, whose temporal
shape is tailored in order to maximize the transfer of a single photonic
excitation, with the same amplitude as the weak coherent pulse, into an
atomic excitation |r).

In the following we provide the details of the theoretical model and we
introduce the physical quantities which are important for the discussion
of the rest of this paper.

4.2.1 Master equation

The starting point of our analysis is master equation (3.1) which describes
the evolution of the density operator ¢ for the cavity mode, the atom, and
the modes of the transmission line. Here we report the master equation
again in order to facilitate the reading of this chapter, for details see
Sec. 3.2.1. The evolution of the density operator g is governed by the
master equation (7 = 1)

0if = _i[H(t)’ PA] + Laish > (4'1)
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where Hamiltonian H(t) determines the coherent evolution and superop-
erator Lg;, the incoherent dynamics. Hamiltonian H(t) = Hgepgs + H;(£)
is the sum of the term

Hpeigs = Y (wx — 0)biby + D A(@'by + bja), (4.2)
k k

which describes the coherent dynamics of the electromagnetic field in
absence of the atom, and the term

H; = 8|rXr| — AleXe| + [gleXg|a + Q(t)|eXr| + H.c.], (4.3)

which describes the dynamics of the atom coupled to the cavity mode
with coupling constant g and driven by the laser with Rabi frequency
Q(t).

4.2.2 Initial state

The total state of the system |¢;) at the initial time ¢t = t; is given by a
weak coherent pulse in the transmission line, the empty optical cavity,
and the atom in state |g):

[$r,) = 18) ® 0)e ® [$°7), (4-4)

where |0), is the Fock state of the resonator with zero photons.

Belowwe specifyin detail the state of the field. The incident light pulse
is characterized by the time-dependent operator D, such that its state at
the interface with the optical resonator reads

k) = D({egDlvac) (4.5)

and |vac) is the vacuum state of the external electromagnetic field. Op-
erator D({a; }) takes the form

D)) = @y exp(ay by, — aitby), (4.6)

where oy is a complex scalar and the index k runs over all modes of the
electromagnetic field with the same polarization. It thus generates a
multi-mode coherent state, whose mean photon number n is

S 66, ¢C°h> = Sl (1)
k

k
In the following we assume that n < 1, which is fulfilled when |a; > < 1
for all k. We will denote this a weak coherent pulse. This state approximates
a single-photon state since at first order in n it can be approximated by
the expression

n= <¢coh

[he°hy ~ (1 — n/2)|vac) + Z ock511|vac>. (4.8)
k
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Coefficients a; are related to the pulse envelope &;,(t) at position x =
0 (which is the position of the mirror interfacing the cavity with the
transmission line) via the relation

ock—w/ f dteitke=wdte, (1) (4.9)

with c the speed of light and L the length of the transmission line. The
squared norm of &;,(t) equals the number of impinging photons in
Eq. (4.7):

fwlgin(t)lzdt =n. (4.10)

In this work we are interested in determining the storage efficiency of a
weak coherent pulse by the atom. We compare in particular the storage
efficiency with the one of a single photon, whose amplitude is given by
the same amplitude &;,(¢), apart for a normalization factor giving that
the integral in Eq. (4.10) is unity. For this specific study we choose

En() = ﬂ sech <§> , (4.11)
Vi T
where T'is the characteristic time determining the coherence time T, =
7T/4\/3 of the light pulse, defined as

T, = V() — (12 (4.12)

with (t¥) = fttlz tx|8in(t)|2dt. The dynamics is analysed in the interval
t € [t1, 5], witht; < 0 < t, and |t;],t, > T, such that (i) at the initial
time there is no spatial overlap between the input light pulse and the
cavity mirror and (ii) at t = t, the reflected component of the light pulse
is sufficiently far away from the mirror so that it has no spatial overlap
with the cavity mode. The choice of these parameters has been discussed
in detail in Sec. 3.2.3.

4.2.3 Target dynamics

The target of the dynamics is to absorb a single photon excitation and
populate the atomic state |r). This dynamics is achieved by suitably tailor-
ing the control field Q(t). We will consider protocols using control fields
Q(t) that have been developed for a single-photon wave packet [122-124,
150], see Chapter 3. The figures of merit we take are (i) the probability 7
to find the excitation in the state |r) of the atom after a fixed interaction
time and (ii) the fidelity of the transfer v, which we define as the ratio
between the probability 7 and the number of impinging photons. This
ratio, as we show in the next section, approaches the fidelity of storage
of a single photon 7Y whenn — 0.
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We give the formal definition of these two quantities. The probability
n reads [124]

= Tr{AE)IrXr] @ Tew} = (1] Trlo (e} r) (4.13)

where 1., and Tr,,,, denote respectively the identity and the trace over
the electromagnetic fields (both the fields in the transmission line and
in the optical cavity), and 4(¢) is the density operator of the system.

The fidelity of the transfer is defined as the ratio between 7 and the
number of impinging photons, namely

o1
S €I dt

which is strictly valid for a coherent pulse. This definition of the fidelity
quantitatively describes the probability that the incident pulse is stored
by the atom. It agrees with the definition of Ref.[124], where the authors
denote this quantity by “efficiency”. Indeed, if the initial state is a single
photon, the fidelity v and the efficiency 7 coincide.

Before we conclude, we remind the reader of the cooperativity C, which
determines the maximum fidelity of single-photon storage [124, 150].
The cooperativity C characterizes the strength of the coupling between
the cavity mode and the atomic transition, it reads [124]

(4.14)

g2

B Ktoty,
where x,,; = x + K¢ 1S the total cavity decay rate. For protocols based
on adiabatic transfer of the single photon into the atomic excitation,

the maximum fidelity of single-photon storage reads [124, 150] (see
Chapter 3)

(4.15)

sp _ kx C
nmax - KtOt 1 + C’

(4.16)

and itapproaches x/x;,, for C — oo. Equation (4.16)is also the probability
for emission of a photon into the transmission line when the atom is
initially prepared in the excited state |e) and no control pulse is applied.

The parameters we use in our study are the ones of the setup of Ref-
erence [120], (g, %, ¥, Kjoss) = (4.9,2.42,3.03,0.33) X 2r MHz, correspond-
ing to the cooperativity C ~ 2.88 and to the maximal storage fidelity
Nmax ~ 0.65. Furthermore we choose T, = 0.5 us such that the adiabatic
condition is fulfilled: yT,.C & 27 > 1 (see Chapter 3).

4.3 STORAGE

In this section we report the results of the storage of weak coherent
pulses into a single atom excitation. We first determine efficiency and
fidelity by numerically solving the master equation of Eq. (4.1). We com-
pare the results with the corresponding storage fidelity of a single photon
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with temporal envelope &;,(t), Eq. (4.11). We then determine analyti-
cally the efficiency 7 and the fidelity v for weak coherent pulses with
mean photon number n < 1 and quantify the discrepancy between these
quantities and the single-photon storage fidelity as a function of n. We
further discuss how this method can be extended in order to determine
the efficiency of storage of an arbitrary incident pulse.

4.3.1 Numerical results

We determine the dynamics of storage by numerically integrating a mas-
ter equation in the reduced Hilbert space of cavity mode and atomic
degrees of freedom, which we obtain from the master equation (4.1)
after moving to the reference frame which displaces the multimode co-
herent state to the vacuum. The procedure extends to an input multi-
mode coherent state an established procedure for describing the in-
teraction of a quantum system with an oscillator in a coherent state,
see for instance [52]. We apply the unitary transformation D'(t) =
D({ay(1)}), where operator D is given in Eq.(4.6) and the arguments are
ar — a(t) = age i(@=@)t In this reference frame the initial state
of the electromagnetic field is the vacuum, the full density matrix is
given by ¢'(t) = D'(t)"p(t)D'(¢) and its coherent dynamics is governed
by Hamiltonian

H'(t) = H(t) + V2r(Ea(DaT + E4,(D)Q). (4.17)

Here &;, () carries the information about the initial state of the electro-
magnetic field and it is related to the amplitudes o by the following
equation (consistently with Eq. (4.9))

En(t) =1/ % f a(k + k,)e—iketdk. (4.18)

By using the Born-Markov approximation one can now trace out the
degrees of freedom of the electromagnetic field outside the resonator.
The Hilbert space is then reduced to the cavity mode and atom’s degrees
of freedom, the density matrix which describes the state of this system
is

©0) =Trp'(0), (4.19)

where Trgdenotes the partial trace with respect to the degrees of freedom
of the external electromagnetic field. Its dynamics is governed by the
master equation

3,F = —i[H"(t), 2] + £yt + Ly 2. (4.20)
where

H"(t) = Hy(t) + V2r(En(D)a" + (D), (4.21)
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Hi(t) is given in Eq. (3.3) and superoperators £, and £, are defined in
Egs. (3.4), where now the cavity field is damped at rate x;,; = x + ¥, and
x is the linewidth due to radiative decay of the cavity mode by the finite
transmittivity of the mirror at x = 0. The initial state is here described
by the density operator (t;) = |g, 0.Xg, O.|, and the storage efficiency is

n = Tr{t(t;)|rXr[}.

0.8
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fidelity and efficiency
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) IS
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Figure 4.1: Storage efficiency 7, Eq. (4.13), and fidelity v, Eq. (4.14), at time
t = t, as a function of the mean photon number n of the incident

weak coherent pulse with shape of Eq. (4.11) (solid and dashed).

The figures of merit 7 and v have been evaluated by determining
numerically the density matrix of the system 7(¢,) from the initial
state 7(t;) = |g,0.Xg, 0.| by integrating the master equation (4.20)
in the truncated Hilbert space of the cavity field with a maximum
of 14 excitations. For comparison we also report the fidelity and
efficiency of storage of a weak coherent pulse with Gaussian shape
(labels “Gauss”); In this case the control pulse is optimized for the
storage of a single photon with Gaussian shape. The dashed line
indicates the maximal fidelity of storage of a single photon. The
other parameters are given in Sec. 4.2.3.

We integrate numerically the optical Bloch Equation for the matrix
elements of Eq. (4.20) taking a truncated Hilbert space for the cavity
field, with number states ranging from m = 0to m = m,,,. For the
parameters we use in our simulation we find that the mean average
number of intracavity photons is below 2. We check the convergence

of our simulation for different values of m = m,,,, and fix m,,,, = 14.

Figure 4.1 displays the storage efficiency 7 and fidelity v at time ¢t = ¢,
for different mean number of photons 7 of the incident weak coherent
pulse. When evaluating the dynamics we employed the control laser
pulse Q(t) which optimizes the storage of the incident pulse when this
is a single photon with temporal envelope &;,(t), Eq. (4.11). In detail, the
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amplitude of the laser pulse has been determined in Chapter 3 and reads
(ford =A=0)

_ [ 2y(1+C)

We observe that the storage efficiency 7 rapidly increases with n and
saturates to the asymptotic value 7, ~ 0.79 for n > 10. This asymptotic
value indicates that the field in the cavity is essentially classical, the
dynamics is the one of STIRAP [151], and its efficiency does not reach
unity being the control pulse optimal for single-photon storage but not
for STIRAP. The fidelity v decreases with n, while in the limit n — 0 it
approaches the single-photon storage fidelity. We note that the behavior
for n > 1 depends on the pulse shape (see Fig. 4.1).

In Ref. [120] the authors report the experimental results of measuring
the fidelity v as a function of n. In particular they report the ratio between
the fidelity of storing a weak coherent pulse with n ~ 0.02 and the fidelity
forn ~ 1tobe vep(n = 0.02)/ve,(n = 1) ~ 1.27. We compare these
results with our predictions for n <« 1 where the fidelity is independent
of the photon shape. Then, we extract the same ratio from Fig. 4.1 and
obtain v(n = 0.02)/v(n = 1) ~ 1.5. Even if for n = 1 the fidelity depends
on the pulse shape, we have verified by comparing with different pulse
shapes that the discrepancy is typically small.

4.3.2  Extracting the single-photon storage fidelity from arbitrary incident pulses

The method we applied in Sec. 4.3.1 is convenient but valid solely when
the input pulse is a coherent state. We nowshow a more general approach
for describing storage of a generic input pulse by an atomic medium
(which can also be composed by a single atom) and which allows to obtain
a useful description of the dynamics. This approach does not make
use of approximations such as treating the atomic polarization as an
oscillator [124] and allows one to determine the storage fidelity.

For this purpose we consider master equation (4.1), and recast it in the
form [129, 152]

3p = —i(Ha(t)p — PH(D)) + Jp, (4.23)
where H,g(t) is a non-Hermitian operator, which reads
Heff(t) = H(t) - 17/|e><e| - iKlosséﬁc,i ’ (424)

and is denoted in the literature as effective Hamiltonian. The last term
on the right-hand side of Eq. (4.23) is denoted by jump term and is here
given by

36 = 2(71EXelleXE| + xiossaPa"). (4.25)
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This decomposition allows one to visualize the dynamics in terms of
an ensemble of trajectories contributing to the dynamics, where each
trajectory is characterized by a number of jumps at given instant of time
within the interval where the evolution occurs [125, 152]. Of all trajecto-
ries, we restrict to the one where no jump occurs since this is the only
trajectory which contributes to the target dynamics. In fact, even though
trajectories with spontaneous emission events may lead to dynamics
where the atom is finally in state |r), yet such trajectories are incoher-
ent and thus irreversible. We therefore discard them since they do not
contribute to the fidelity of the process. The corresponding density ma-
trix is po(t) = S(t)p(t;)S(t) /By, where S(t) = T : exp(—i fjl dtHq()/h)
and T is the time ordering operator, while B, = Tr{S(t)p(t;)S(¢)'} is the
probability that the trajectory occurs. Since the initial state is a pure
state, 5(t;) = ¢, Xy, |, then Bo(6) = [thXth| with |3h;) = S(O)|¢y,)/\/ R

The efficiency of storage 7, in particular, can be written as

1 =R Tr{lr){rleo(t2)} . (4.26)

We note that this definition can be extended also to input pulses which
are described by mixed states. In fact, consider the density matrix u of
the incident pulse: u = 3 pa[$p*X9®|, with 3 p, = 1 and each [p%) a
quantum state of the electromagnetic field. The efficiency of storage of
the mixed state y is then

7oX = pan®. (4.27)
[«4

Here, n“ is the efficiency of storage of the pure state [)¥) which can be
computed using Eq. (4.26).

In order to determine 7, we first decompose the incident pulse at t = £;
into photonic excitations, namely:

Yoty = 3 Clpt™), (4.28)
m=0

where Y |C,,|> = 1, and the state [)("™)) contains exactly m photons,
m

(DM = 5, The dynamics transfers the excitations but preserves
their total number, since H s commutes with 2 b,ibk +a’a+|eXe|+|rXr|.
Therefore it does not couple states |1)™) with different number of pho-
tons. By this decomposition we can numerically determine the fidelity
7 for a finite number of initial excitations, as we show in Appendix 4.A.
The efficiency 7, in particular, can be cast in the form

e8]

n= > [CulPn™, (4.29)

m=0

where (™ = @™|S(t)|r)(r|S(t)|p"™) is the efficiency that one photon
from a m-photon state is transferred into the atomic excitation |r). Here,
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nV is the storage fidelity of a single photon 7°P. For a weak coherent
pulse C,,, = Y e~"n™/m!, and for n < 1 we obtain the expression

n =W + n2(n@/2 — nW) + 0(n3). (4.30)
such that the fidelity takes the form

= % = 7D 4+ n(5@/2 = y®) + O(n?). (4.31)
If the control pulse Q(t) is chosen to be the one which maximize the
storage fidelity of a single photon, then V) = 7shax, Eq. (4.16). This can
be clearly seen in Fig. 4.1.

We now discuss this dynamics if, instead of a single atom, the quantum
memory is composed by M atoms within the resonator. In the follow-
ing we assume that the atoms are identical and that the vacuum Rabi
coupling and the control laser pulse intensity and phase do not depend
on the atomic positions within the cavity. Let us first consider that the
input pulse is a single photon. In this case the dynamics can be mapped
to the one described by Eq. (4.1), where in the Hamiltonian (3.3) the
states of the A transition are replaced by the collective atomic states
&) = 1g) = g8 l&) > le) = TZ 181, e 830)/VM, and
|ry = |r') = Zi\il €15 s 1y e , 8v)/\/M, where the latter is the target state.
For a single incident photon, in fact, these are the only internal states
involved in the dynamics. The coupling between the cavity mode and
the |g’') — |e’) transition is now gV M, leading to a higher cooperativity C
and thus to a larger value of 7max. In this case the control pulse leading
to optimal storage is the same as for a single atom, which couples to the
cavity with vacuum Rabi frequency g = /M (see for example Eq. (4.22)
and Chapter 3).

If the incident pulse is not a single photon, further collective excita-
tions of the atoms have to be accounted for and the dynamics cannot
be reduced to the coupling of a A structure with the cavity field, as is
detailed in Appendix 4.A for the case of a weak coherent pulse. Never-
theless, if the number of atoms is much larger than the mean number of
excitations in the incident pulse M > n, the dynamical equations can be
reduced to the ones describing storage of the single photon [122-124].
In this limiting case, the optimal control pulses for storage of a single
photon can also be applied to storage of the input pulse by the atomic
ensemble, as long as the input pulse has the same envelope as the single
photon. We refer the interested reader to Ref. [124] for details.

In general, the formalism of the effective Hamiltonian can be applied
to determine the control field for storage of an arbitrary input pulse by
an atomic ensemble, without having to impose the condition M > n. For
an arbitrary input pulse, [¢) = >}>_ Cyra| ™) with 2 |Cml* =1, the
target state is Z:ZO Cpu|hn), where |1,,) is the Dicke state of the atomic
ensemble where m atoms are in |[r) and which is coherently coupled to
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the Dicke state |g’) by the dynamics. The control pulse Q(¢) shall then
optimize the dynamics by maximizing the fidelity

7 = 1Cul 1" (4.32)
m

where U;T) = @M|S() |5, )1 S)]™) and S(¢) is calculated for the
effective Hamiltonian of the atomic ensemble. The control field Q(t) can
be found by means of an analogous strategy as for ensemble optimal con-
trol theory (OCT), finding the control pulse that optimizes the dynamics
in each subspace of m excitations so to maximize 7' [138, 153-156].

4.4 CONCLUSIONS

We have analysed the storage of a weak coherent pulse into the excitation
of a single atom inside a resonator, which acts as a quantum memory.
Our specific objective was to characterize the process in order to show
under which conditions an attenuated incident pulse can be considered
as a single photon for storage purposes. Thus we have identified the
conditions and the figures of merit which allow one to extract the single-
photon storage fidelity by measuring the probability that the atom has
been excited at the end of the process.

We remark that the retrieved information by a single atom will always
be a single photon [157]. Nevertheless, the formalism we developed in
this work permits one to extend this dynamics to other kind of incident
pulses and to quantum memories composed by spin ensembles. For this
general case it sets the basis for identifying the optimal control pulses
for storage and retrieval of an arbitrary quantum light pulse.

APPENDICES
4.A STORAGE EFFICIENCY FORN<k1

In this appendix we provide the details for calculating the dynamics and
the fidelity for an incident pulse which is a superposition of different
photon number states. We apply the procedure to multimode coherent
states, nevertheless it can be generalised in a straighforward manner to
a generic initial input pulse.

4.A.1 Decomposition of a coherent state

The coherent state in Eq. (4.5) can be decomposed in a linear combination
of states each with a fixed number of excitations (see Eq. (4.28) with
_ . . 2
Cy, = Ve "n™/m!): The mean number of photons in the mode k is |ay|
and the mean photon number in the coherent stateisn = lejzllocklz,
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see Eq. (4.7). State [)"™)) contains exactly m excitations of the quantum
electromagnetic field and reads

@) = |vac), (4.33a)
N

[pW) = 7 Exbylvac), (4.33b)
k=1
N N

p@) = Z Z Sk,k/b£b£,|vac>, (4.33¢)
k=1k'=1

m
|¢(m)> == {kz}: (c:{k}m bkbk/ .o bk”‘“” |VaC>. (4.33d)

Coefficients &y, read

& = 2k, (4.34a)
N
Erher =k = il (4.34b)
V2
(4.34c)
Moy &
g{k}m =& ietldm 1 (434d)

1 e = ’
KKk Vil
m

and it is easy to check that the states [)(™)) are orthonormal ()™ [p(")) =
Smn and complete.

The storage fidelity when the initial state is the coherent state intro-
duced in Eq. (4.28) is given by (see Eq. (4.29))

_ o 3 ) 435
n=e" y —nim. (4.35)
mzlm.

4.A.2  Equations of motion

We here explicitly derive the equations of motion in the subspaces with
m < 2 excitations.

Zero excitations - Vacuum: The subspace of zero excitations m = 0 con-
tains only the state |g, 0, vac), meaning that the atom is in the ground
state |g), the cavity is empty and the electromagnetic field is in the vac-
uum state. Thus the time evolution in this subspace is |¢§0)> = |¢§?)>.

One excitation - Single photon: A basis for the subspace with one excitation
m=1is

B, ={|g, 1, vac), |e, 0, vac), |r, 0, vac),
lg,0,1;) : k€ {1,..,N}}
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and a general state can be written as

#") = ci(0lg, 1, vac) + ey(0)le, 0, vac) +

+ r(t)|r,0,vac) + Z Ex(1)|g,0,1k). (4.36)
k

The equations of motion in this subspace are (1 = 1)
C.1(t) = _igel(t) - 1/12 gk(t) - Klosscl(t)’
k

é1(t) = (1A — y)ey (1) — igey () — QDR (2), (4.37)
;i (1) = —iQ*(H)e, (1),
Ex(t) = —iAkEL(t) — idey (1),

and they constitute a system of (N + 3) coupled differential equations
with time dependent coefficients. Using the input-output formalism [55]
one obtains

¢1(8) = —igey (t) — iV 2KkE (1) — (k + Kyose)cr (£),
é1(t) = (1A — p)ey (1) —igey () — Q)R (1), (4.38)
A(t) = —iQ* (e (t),

where x = L1?/c is the decay rate of the cavity field and &;,(t) is defined
in Eq. (4.18). Equations (4.37) or Egs. (4.38) can be easily solved numeri-
cally. These equations correspond to the storage of a single photon into a
single atom [150] (see Eqs (3.29)) and are equivalent to the approximated
equations obtained in Ref. [124] describing the storage of a light pulse in
an atomic ensemble composed by a large number N > 1 of atoms.

Two excitations - Two-photons states: A basis for the subspace with two
excitations m = 2 is

B, ={|g,2,vac),|g,1,1x),|8,0, 1 11s), e, 1, vac),
le,0, 1), |r, 1,vac),|r,0,1y) : k. k' € {1,...,N}}

thus a general state in this subspace can be written as
917 = ex(0lg. 2,vac) + 3 E(D]g, 1, 1) +
k

+ Z Z gk,k’(t)lg’ 0,1;1,) +
ke kizk (4.39)
+ey(D)le, 1, vac) + ), E5(D)]e, 0, 1) +
k

+ K(|r, 1, vac) + " ELD|r, 0, 1).
k

The state in Eq. (4.39) can be used to describe the interaction of the atom-
cavity system with a two-photon state; in fact the term

D Epger (D)8, 0, 1)
k!
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describes a two-photon state of the electromagnetic field. Notice that we
use the definition |-, -, 1;1/) = b,tb,i,|-, -,vac) which implies |-, -, 1; 1) =
\/§| -, , 2i). The equations of motion in this subspace are

&) = — iV 2ger(t) — V21 ) €5(0) +
k

- 2'Klossc2(t)
&) = (1A — ¥ = Kigss)ea(t) — iV 2g,(1) +
—iQ(On(t) —id Y] EL(1)
K
B(t) = —1Q*(ey(t) — il Y ER(E) — Kiossh (1)
k
5 (1) = — (1Ax + Ki0ss)ER(E) — 1gER() + (4.40)
— 1Y Apg(8) — iV22e,(1)
k!
E(D) = i(A — AR)EL(D) — igEs(r) +
—iQ(t)EL(L) — ey ()
EL() = —1A EL(D) — IQ*(DEL() — iAny (1)
Ak,k’(t) = — I(Ak + Ak’)Ak,k’ +
—1A(EL) + ER (D)),
where we have defined A j/(t) = &y o/ (t) + Epr (). Egs. (4.40) are a sys-

tem of (N2 + 3N + 3) coupled differential equations with time dependent
coefficients; this system can be solved numerically.

0.6 1

= master equation
m<2

© @
N [
1 1

efficiency 7
=
w
1

/

T T T T T T T T T
0.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00

mean photon number n

Figure 4.2: Efficiency 7 of the storage process of a weak coherent pulse. Solution
with the master equation formalism of Sec. 4.3.1 (solid line) and
approximated solution with truncation to two excitations m < 2 as
described in the current section (dashed).

Calculation of the efficiency: The efficiency 7 can be calculated with the
formalism introduced in this section in two ways: (i) solve Egs. (4.37)
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and Egs. (4.40) with initial conditions given by the expansion (4.28) and
the coefficients given by Egs. (4.34a) and (4.34b), then the efficiency is

=) + ) + Y |EpE))s (4.41)
k

or (ii) solve Egs. (4.37) and Egs. (4.40) with initial conditions (4.34a)
and (4.34b) separately to obtain the efficiencies ") and 7® of single
and double photon storage; then the efficiency as function of n is given
by Eq. (4.30).

Fig. 4.2 reports the efficiency 7 as a function of n, the solid line rep-
resent the result of the numerical integration of the master equation
described in Sec. 4.3.1. The dashed line is the solution with the decom-
position until m = 2 described in this section. It is evident that forn < 1
the two results coincide.
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Part III

HYBRID QUANTUM SYSTEMS

We analyze the dynamics of a hybrid quantum system com-
posed of an NV-center in a diamond crystal which is an op-
tical and a mechanical resonator. By means of the master
equation formalism, we investigate the dynamics of a me-
chanical mode of the diamond structure and identify the
regime in which it is radiatively cooled. We determine the
steady state temperature and the cooling rate as a function of
the system parameters. We further determine the spectrum
of resonance fluorescence to identify the scattering processes
that lead to cooling.






LASER AND CAVITY COOLING OF AMECHANICAL
RESONATOR WITH ANITROGEN-VACANCY CENTER IN
DIAMOND

The content of this chapter contains results, text and figures from:

+ L. Giannelli, R. Betzholz, L. Kreiner, M. Bienert, and G. Morigi,
“Laser and cavity cooling of a mechanical resonator with a nitro-
gen-vacancy center in diamond,

In: "Physical Review A 94 (2016), p. 053835,
DOI: 10.1103/PhysRevA.94.053835.

51 INTRODUCTION

A nitrogen-vacancy (NV) center is formed by replacing two adjacent car-
bon atoms by a nitrogen atom and a vacancy in a diamond crystal. This
atomic defect exhibit atom-like properties such as well-defined optical
transitions and long lived spin quantum states [158]. Colour centers
in diamond, such as NV-centers, are widely studied because of their
exceptional properties as bright solid-state quantum emitters at room
temperature [158, 159]. Their dynamics is being analysed in a wide
variety of setups, which for instance can achieve the strong coupling
with high-finesse optical resonators [160-162] and/or the strain cou-
pling with high-Q vibrating structures [161-167] or standing mechan-
ical waves [168, 169]. This experimental progress makes NV centers
promising candidates for realizing quantum hybrid devices, namely, de-
vices capable of interfacing photons, phonons, and spin excitations in a
controlled way, and can offer a wide range of applications for quantum
information processing [56, 170-172] and quantum sensing [56, 173 -
176]. It thus calls for identifying the perspectives for control of these
hybrid devices, which requires a systematic characterization of their
dynamics.

In this work, we theoretically analyse laser cooling of a high-Q vi-
brating mode, which is strain coupled to the electronic transitions of an
NV-center in diamond and optomechanically coupled to an optical cav-
ity. This situation can be realised, for instance, when NV center, high-Q
mechanical mode, and optical resonators are assembled in a monolithic
diamond structure, as illustrated in Fig. 5.1 and recently discussed in
Refs.[165, 166]. In this setup the high-Q vibrating mode can be optome-
chanically cooled by the coupling with the cavity and/or laser-cooled by
the strain-coupling with the NV-center transitions between the state
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|g) = |*A;0) and the levels |E,) = |x) and |E,) = |y), sketched in Fig. 5.1(b).
The starting point of our study is the theoretical model of Ref. [177],
where the authors investigated the effect of the NV multilevel structure
on the dynamics of a high-Q vibrational mode. We extend this model
by including the high-finesse mode of an optical cavity, which couples
to the electronic transitions of the NV center and to the mechanical res-
onator by means of radiation pressure, and determine the laser cooling
dynamics. We focus in particular on the regime where the linewidth of
the resonances induced by the coupling with the cavity is of the same
order as the one of the electronic transitions of the NV center. We further
determine the effect of pure dephasing, which tends to destroy the coher-
ence of the NV-center excitations, on the cooling dynamics. Surprisingly,
we identify regimes where pure dephasing can improve the cooling rate.

(a)

(b) (c)

|x, n)

A .
ly, n)

g, n) g, n)

Figure 5.1: (a) A mechanical resonator, which is also a photonic crystal, interacts
with a NV center in a diamond bulk via strain coupling. (b) The NV-
center internal level structure, including the photonic excitations:
the ground state |g) = |>A,,) couples to the excited states |x) = |E,)
and |y) = |Ey), which radiatively decay at rate I. A mode of the high-
finesse optical cavity decays at rate x and drives quasi-resonantly
the transitions |g,n + 1) — |x, 1), |y, n) with n the intracavity photon
number. Coefficients g, and g, denote the corresponding vacuum
Rabi frequencies. (c) Sketch of the relevant frequencies 81, A, A, as a
function of which the cooling efficiency is characterised, in presence
of alaser driving the transition |g) — |y) with Rabi frequency Q.



5.2 GENERAL CONSIDERATIONS

This Chapter is organised as follows. In Sec. 5.2 we review some gen-
eral concepts ruling the cooling dynamics in presence of the strong cou-
pling with a resonator. In Sec. 5.3 the theoretical model is introduced and
in Sec. 5.4 the parameter regime is discussed with reference to existing
experimental realisation. In Sec. 5.5 the rate equations for the phonon
dynamics are derived and in Sec. 5.6 the cooling rate, the asymptotic tem-
perature, and the spectrum of resonance fluorescence are determined
and discussed in the presence and in the absence of the coupling with
the optical cavity mode. Moreover, the cooling efficiency as a function of
the dephasing rate is analysed. The conclusions are drawn in Sec. 5.7.

5.2 GENERAL CONSIDERATIONS

Our study is motivated by an experimentally existing platform, like the
one sketched in Fig. 5.1. Our purpose is to investigate whether the op-
tomechanical coupling can help in achieving lower temperatures than
the ones that have been predicted by sideband cooling using the strain-
coupling with the NV center, see Ref.[177]. In fact, there can be an ad-
vantage by resorting to the optical cavity if the final occupation of the
mechanical oscillator is lower than by just performing sideband cooling
with the NV center, and thus if (i) the cavity-assisted cooling processes
are sufficiently faster than the thermalization with the external environ-
ment and yet (ii) the final occupation of the oscillator is smaller than
the one obtained by solely employing sideband cooling, according to a
protocol like the one described in Ref. [177]. This analysis draws from
several works where it was studied how the interplay between the me-
chanical effects due to the coupling of an electronic transition with a
laser and with a cavity can increase the cooling efficiency of a mechanical
oscillator [178-182]. There it was found that ground state cooling can be
achieved as long as the mechanical oscillator frequency, here denoted by
v, is larger than either the linewidth of the electronic transition, I', or of
the optical resonator, x. The minimal final mechanical oscillator occupa-
tion one can achieve is then controlled by the ratio between the linewidth
of the narrower resonance, which we denote here by I';;, = min (x,I),
and v. Accordingly, the cooling rate I" is slower and scales with ', ;..

These dynamics can be often illustrated by means of a set of rate equa-
tions for the occupations p,, of the oscillator’s state with n excitations
(n=0,1,2,..)[183]:

Pn=-nAL+A_)p,+(n+1)A_ppy1 +nALpp1s (5.1)

with >} p, = 1(see Sec. 5.5 for details how this equation is derived).
Here, nA, and nA_ are the rates with which the oscillator in state |n) is
heated and cooled, respectively, by one phonon, and can have the form
of lorentz functions, whose linewidth is determined by the linewidth
scattering resonance.
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Specific predictions for the relevant quantities, whose dynamics Equa-
tion (5.1) describes, can be directly extracted from the equation for the
mean phonon occupation number (n) = (a’a) = Zn np,[183]:

(n) = =(F +y)((n) = ny). (5:2)

Here y is the thermalization rate and n; the final phonon occupation of
the mechanical mode. Finally

F=A_-4A, (5.3)

is the cooling rate when A_ > A, , whose maximum amplitude scales as
[' ~ (0,/¥)Tmin with w, the frequency scaling the mechanical effects due
to the coupling with light (when these are due to the phase or intensity
gradient of the light wave, w, is the recoil frequency; Here, w, ~ (A/h)?/v,
with A the strength of the strain coupling). In this regime and fory = 0
radiation cools the vibrations to the asymptotic occupation Ny, which is
given by

A, A,

N=——T,
T A_-A, T

(5.4)
and whose minimum scales with Ny ~ (T',;,/7)>.

In a solid-state environment, where the heating rate due to the cou-
pling with the external reservoir is not negligible, slowing down the
cooling dynamics can be detrimental. This is visible when considering
the final occupation:

T
F+y

No+ = Y N, (5.5)

l’lf +y

where Ny, is the mean phonon occupation at the temperature of the
external reservoir. Thus, maximizing the ratio I',;,/y and minimizing
the ratio I';, /v is crucial and limits the parameter interval where cavity-
assisted cooling can improve the efficiency.

From these considerations one can generallyidentify the regime where
the coupling with a resonator can increase the sideband cooling efficiency.
In fact, a large cavity decay rate such that ¥ > v > I’ would increase the
cooling rate I". Yet it can also increase the asymptotic occupation number
of the mechanical mode N,. On the other hand, a very good cavity with
x < T' < v can allow one to achieve smaller values of N, but at the price
of decreasing I, so that the final occupation number of the mechanical
mode n s becomes effectively larger.

The parameter regime to explore is quite large. However in general
we expect that, in the regime where laser sideband cooling is efficient,
the coupling to a resonator at linewidth x > I' can be of help only if it
substantially increases the cooling rate keeping N; < 1. The coupling to
aresonator with ¥ < I' < v can help in reaching ultralow temperatures,
provided thermalization can be neglected. In this Chapter we limit our
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analysis by taking the optimal parameters for sideband cooling of an NV
center and adding the coupling with a cavity with linewidth ¥ ~ T, in or-
der to search for possible effects which cannot be foreseen drawing from
these simple considerations. We refer the reader to Sec. 5.4 where the
choice of the parameter regime is discussed in relation to existing exper-
imental implementations. The cooling rate, the asymptotic temperature,
and the spectrum of resonance fluorescence are then determined and
discussed in Sec. 5.6 in the presence and in the absence of the coupling
with the optical cavity mode. The reader who is solely interested in the
resulting cooling efficiency can skip Sec. 5.5 and jump directly to Sec. 5.6.

5.3 THE SYSTEM

In this Section we introduce the theoretical model which is at the ba-
sis of our study. We describe the interaction of a high-Q mechanical
resonator mode of a phononic crystal cavity, with a quantum emitter,
specifically, a NV center in diamond, and a high-finesse optical resonator
mode of a photonic crystal cavity. The NV center is strain-coupled with
the mechanical resonator and the electronic dipole transitions strongly
couple with the photonic mode. The mechanical resonator, in turn, is
optomechanically coupled to the photonic cavity. The interactions in this
system are expected to be strongly enhanced by the co-localization in a
single structure ensuring a perfect spatial overlap between the different
degrees of freedom, which is achieved by assemblance in a monolithic
diamond structure sketched in Fig. 5.1(a). The system is intrinsically
dissipative due to radiative decay of the electronic excitations and opti-
cal cavity losses. Additionally, the mechanical resonator couples to an
external thermal reservoir. We assume that it is continuously driven
by a laser field, which directly couples to an electric dipole transition
of the defect. In what follows we define the master equation governing
the dynamics of the density matrix p, which describes the state of the
composite system composed by the NV center, and the photonic and
phononic resonators.

5.3.1 Basic equations

The dynamics of the hybrid system’s density operator p, describing the
state of the system composed by the internal degrees of freedom of the
NV-center, of the optical cavity mode and of the mechanical oscillator,
is governed by the master equation d;,0 = £Lp, where superoperator £ is
defined as (7 = 1):

Lp =—i[H,p] + Lgisp (5.6)

and which will be conveniently reported in the reference frame rotat-
ing with the laser frequency w;. Below we provide the detailed form of
Hamiltonian H and superoperator £ ;.
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5.3.1.1 Unitary dynamics

We first give the detailed form of the Hamiltonian H, which generates
the unitary part of the time evolution. For convenience, we decompose
it into the sum of Hermitian operators:

H=Hg.+H +(a+a)V, (5.7)

where a and a” annihilate and create, respectively, a mechanical vibra-
tion at frequency v, while V acts on the cavity and NV-center degrees of
freedom and is specified later on. Operator

Hpe. =va'a (5.8)

is the internal energy of the mechanical resonator, while Hamiltonian H;
describes the coupled dynamics of the NV center and the optical cavity:

H = (wy - wL)IyXyI + (wy — wp)|xXx| + (w. — wp)c’c
+| Slyxel + (gdxkel + g kel + He. (5.9)

Here, w, (wy) is the frequency splitting in the laboratory frame between
the excited state |x) (|y)) and the ground state |g); operators c and ¢’ an-
nihilate and create, respectively, a cavity photon at frequency w, (in the
laboratory frame). The splitting between the |x) and |y) states is, for in-
stance, due to a non-zero strain coupling, which is not related to the
mechanical mode we consider. The frequencies appear shifted by w;
since Hamiltonian Hj is reported in the reference frame rotating at the
laser frequency. The second line of Eq. (5.9) describes, from left to right,
the external laser driving the transition |g) — |y) with Rabi frequency Q,
while the optical mode drives the transitions |g) — |x)and |g) — |y) with
vacuum Rabi frequency g, and gy, respectively. We note that the laser
polarization can be chosen to selectively drive one electronic transition,
as we do in our model, while in general the cavity mode’s polarization
has a finite projection to the dipole moment of both transitions, since
this depends on the preparation of the sample. Therefore, we generally
assume gy, g, # 0 unless otherwise stated. The relevant NV center and
cavity states are reported in Fig. 5.1(b)-(c) with the relative detunings
with respect to the laser frequencies. These are defined as:

(5.10)

Finally, operator V'is the sum of the strain and of the optomechanical
coupling of the mechanical resonator with NV center and optical cavity,
respectively. We decompose it hence into the sum V' = Vi, + Vo,
where V..i, acts on the NV degrees of freedom and reads [184]

Vistrain = Z AjAj , (51 1)
j=I.X,Z
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where A; are the strain coupling constants and the operators A; are de-
fined as:

Ap = xXx| + [yXyl,
Ax = [x)yl + |yXxl, (5.12)
Az = [xXx| = |yXyl.

The optomechanical coupling reads V,,, = —yc'c with y the optome-
chanical coupling constant [88, 185].

5.3.1.2 Dissipation

The irreversible processes we consider in our theoretical description
are: (i) the radiative decay of the NV excitations and pure dephasing
of the electronic coherences, (ii) cavity losses, and (iv) the mechanical
damping rate due to the coupling of the mechanical resonator with an
external thermal reservoir. We model each of these phenomena by a
Born-Markov process described by the corresponding superoperator,
such that superoperator £ in Eq. (5.6) can be cast in the form

'Cdis = ’C’F + ’C’K + ’C’V . (5.13)

The individual terms read

I
tr=3 3 Dligkell+ 2 Y, Dliexel. (5.14)
§=xy §=xy
L= 5Dlel, (5.15)
£y = Z(Ny, + DDlal + INyDla'l, (5.16)

where we used the definition
Dlo]e = 20po" —o0fop — po'o, (5.17)

with o = |gX£|, |EXE], ¢, a, a'. The coefficients are the radiative decay rate
I of the NV-center excited states, the dephasing rate of the electronic
coherences [y, cavity losses at rate x, and the damping rate of the me-
chanical oscillator y. Finally, Ny, = (exp(v/kgT) — 1) listhe equilibrium
phonon occupation number of the bath to which the oscillator couples,
with T the bath’s temperature.

5.3.2  Spectrum of resonance fluorescence

In what follows we will use the master equation, Eq. (5.6), in order to ana-
lyze the cooling efficiency of the mechanical resonator and the spectrum
of the light emitted by the NV center at the steady state of the cooling
dynamics. In order to better characterize the parameter regime where
cooling is efficient we choose an analytical approach, which is based on
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a perturbative expansion of the Lioville operator and allows us to de-
termine the cooling regime, the corresponding rate and the asymptotic
temperature. This approach is reported in the following Section.

Moreover, in the regimes of interest we determine the spectrum of the
scattered light, for the purpose of identifying the relevant features in the
photons which are emitted by the NV center outside of the resonator. The
spectrum of resonance fluorescence is, apart from a constant propor-
tionality factor, the Fourier transform of the auto-correlation function
of the electric field [186]:

S(w) x Re /-00 dr e T (EC)(T)EM)(0)),, (5.18)
0

where E()(t) and E(H(t) are the negative and positive frequency com-
ponent of the electric field at time ¢ and (-); = Tr{-p,;} denotes the trace
taken over the steady state density matrix pg which solves Loy = 0.
The intensity of the scattered field (away from the forward direction) is
proportional to the source field, hence in the far-field the electric field
is proportional to the sum of the operators &;lg)(jl + H.c,, for j = x,y
where c_ix and Jy are the dipole moments of the transitions |g) — |x) and

|g) — |y), respectively (notice that .3x| = |67y|) Since the dipole moments
are mutually orthogonal, the spectrum integrated over the full solid an-
gle 47 is the incoherent sum of the two components coming from the
|gXx| and |gXy| operators, i. e. the interference term integrates to zero.
With the help of the quantum regression theorem [89] one can cast the
spectrum into the form

S(w) < Y RTr{|jXelliw — wp) — £17 gXilox - (5.19)
j=xy
In this work we numerically determine the spectrum for the parameter
regimes of interest.

54 PARAMETER REGIME

In order to justify the experimental relevance of the cooling dynamics
we discuss in the rest of this Chapter, we now relate the theoretical model
to existing experimental realisations and identify the parameter regime
which we will consider in our analysis.

Optical resonator. A structure like the one discussed here can be found
for instance in a so-called phoxonic crystal (PxC), which co-localizes con-
fined optical and mechanical resonator modes [165]. Photonic crystals
are formed by a periodic modulation of the refractive index (in this case
air holes in diamond), resulting in the formation of optical bands similar
to electronic band structures in solids. A local defect like e. g. a variation
of the hole diameters along the PxC structure perturbs the perfect peri-
odicity and gives rise to an optical cavity mode. So far, fabrication imper-
fections limit experimental quality factors to 10* at visible wavelengths
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suitable for the interaction with colour centers in diamond and up to 10°
in the telecom band around 1550 nm [166, 187-189]. Nevertheless, simu-
lations of one-dimensional photonic crystal cavities designed for visible
light predict quality factors up to 10’ and mode volumes around 1 cubic
wavelength with cavity loss rate in the range x ~10 MHz — 1 GHz[165].

Mechanical resonator: In a PxC a periodic variation of the elastic mod-
ulus creates a mechanical band structure and a suitable variation of
the regular pattern allows for a localized mode of the mechanical res-
onator. Recent experiments with structures at mechanical frequencies
of 6 GHz with optical properties suitable for telecom wavelengths show
mechanical quality factors of 103 [189]. Numerical modeling shows that
modes with frequencies in the range 10 — 20 GHz with quality factors
reaching 107 can be achieved with an effective mass of 10716 kg for struc-
ture dimensions matching visible wavelengths with the confined optical
mode [165]. The parameters we choose are consistent with assuming
mechanical frequencies of the order of 1 — 10 GHz and a quality factor
of the order of 10° — 107, giving a damping rate y of few kHz. The strain
coupling constants are taken to be of the order of 1 — 10 MHz[177, 190,
191]. The optomechanical coupling constant y is taken to be of the order
of few MHZz[165].

NV center. Figure 5.1(b)-(c) reports the relevant level structure of the
NV center in diamond. In absence of strain coupling, the m; = 0 ground
state |3A,,) can be selectively coupled to the excited states |Ex,y), which
have zero spin angular momentum. While the ground state is much less
sensitive to lattice distortion, these excited states are highly susceptible
to external perturbations [158, 191, 192]. Axial strain (parallel to the
NV center axis, equivalent (111) crystal direction) leads to an additional
splitting between ground and excited states as well as between the m; = 0
and m; = *1 levels in the ground state. Radial strain (perpendicular
to NV axis) mixes the excited state levels E, and E), and leads to a split-
ting of the new states EY and Ej, (m, = +1* and m; = —1%). The effect
of strain coupling on the excited states is several orders of magnitude
larger than on the ground state and hence dominates the strain-induced
modification of the NV’s optical properties. Therefore, we restrict our
model to the interaction between the mechanical resonator mode and
the transition coupling the ground state |g) = |3A,,) to the excited states
|x) = |Ex) and |y) = |Ey). For the excited states we take the radiative decay
rate '~100 MHz[193, 194]. The interaction between the NV transitions
and the 71 meV lattice phonon modes [195] changes the energy of the
|x) and |y) states and can thus give rise to a dephasing mechanism of
the electronic coherence [160, 196]. In our model we neglect the mix-
ing between the states and consider only pure dephasing with rates of
the order of [, ~ 100 MHz, which can be achieved in bulk diamond at
temperatures lower than 10 K [184, 197]. We restrict the frequency of
the mechanical resonator mode to v = 277 X 1 GHz in order to avoid cou-
pling to NV excited states other that E, and E,.. As the optical cavity mode
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should still be near resonant on the optical transition of the NV at 637 nm
this doesn’t correspond to a real structure design for the full threefold
hybrid-system. However, we still model this artificial parameter set in
order to obtain qualitative results on the nature of the interaction.

Cooling regime: The analysis of the cooling efficiency is performed by
determining the cooling rate I' and the ideal asymptotic occupation num-
ber of the mechanical mode N, as a function of the tunable parameters,
which we take here to be the frequency splitting of the electronic excited
states and the laser frequency, corresponding to changing ;, A, and
A. The analysis is performed by searching for the parameter regime
where the asymptotic occupation number N, < 1 and the cooling rate I
is maximized, in order to realise regimes where the radiative cooling can
overcome thermalization by the external reservoir. This constrains the
range of parameters. A necessary condition for performing ground state
cooling is the presence of a resonance whose linewidth L is smaller than
the trap frequency[198], which poses an upper bound to L. Moreover,
the cooling rate shall exceed the thermalization rate. Since the cooling
rate is proportional to the effective linewidth of the cooling transition,
this condition sets a lower bound to L. If one performs optomechanical
cooling by driving the optical resonator, then L = x. In absence of the
resonator, the mechanical oscillator can be cooled by driving the NV cen-
ter transitions with a laser and L = I'. When the NV center transitions
also couple with the optical cavity, then L is a linear interpolation of
the cavity linewidth x and of the NV transition linewidth I, and varies
between I' and x[180, 181] (smaller linewidths could be achieved by cou-
pling to other stable electronic transitions, which in our system are not
considered [199, 200]).

In order to get a relatively small phonon occupation of the bath N,
we take a large mechanical frequency, v ~ 27 X 1 GHz, and thus for our
parameter choice I' < v. We then fix the cavity linewidth x ~ I

5.5 EFFECTIVEDYNAMICSOFTHEMECHANICALRESONATOR

For the parameter regime we consider all characteristic frequencies char-
acterizing the coupling of the mechanical resonator with NV center and
optical cavity are much smaller than the mechanical resonator eigen-
frequency Ap, Ax, Az, xAi,. < Vv (7, being the mean intracavity photon
occupation number). This justifies a perturbative treatment, which al-
lows us to eliminate the degrees of freedom of NV and optical cavity from
the dynamics of the mechanical oscillator in second-order perturbation
theory. By means of this procedure we derive an effective master equa-
tion for the mechanical resonator only, which allows us to determine
the parameter regime where the vibrations are cooled, the correspond-
ing cooling rate and the asymptotic vibrational state. The details of the
derivation are reported in Appendix 5.A.



5.5 EFFECTIVE DYNAMICS OF THE MECHANICAL RESONATOR

5.5.1 Perturbative expansion

We derive a closed master equation for the mechanical oscillator starting
from Eq. (5.6) and assuming that the coupling frequencies, which scale
the operator a + a', are much smaller than v. This can be summarized
by the inequality o« < v, with a = A, Ax, Az, x7i. and 71, the mean in-
tracavity photon occupation number. We then perform perturbation
theory in second order in the small parameter a/v. We further assume
that the incoherent dynamics of the oscillator due to the coupling with
the environment is sufficiently slow that the occurrence of these pro-
cesses during a scattering process can be discarded. This requires that
YNy, < a, which for the parameters considered in this work is valid also
at room temperature, so that we treat it in first order.
According to these considerations we split the Liouville operator as

L=Lo+V+L,,

with £, = Lg + £, where £ and £; are the Liouville operators that
generate the uncoupled mechanical oscillator and internal (NV center
+ optical cavity) dynamics, respectively, while V describes the coupling
between mechanical and internal degrees of freedom. In detail,

Lgp = —i[Hpees p), (5203)
Lo = —i[Hy, p]l + Lrp + Lyps (5.20Db)
Vo = —i[V(a+a'),p]. (5.20c)

We formally eliminate the coupling between mechanical resonator and
internal degrees of freedom as done for instance in Refs.[90, 180, 181,
201, 202]. We first introduce the superoperators 7 such that

Rp = oy O InXn + Kl(nluln + k), (5.21)
n=0

with 4 = Tri{p(¢)} the reduced density matrix, Tr;{-} being the trace over
the internal degrees of freedom, |n) the eigenstates of the mechanical os-
cillator, k = 0, £1, 2, ... (k > —n)and o the steady state for the internal
degrees of freedom: L0 = 0. Applying %, to the master equation (5.6),
with the definitions of the superoperators (5.20), in a second-order per-
turbative expansion in parameter a/v and first order in y(Ny, + 1), leads
to the equation

%%o = {ikv + R V(ikv — LO)_IQkV.’H(}J?{p + Ly Rep, (5.22)

with Qp = 1 — 7 and 1is here the superoperator whose action is the
identity on both sides of the density matrix. The master equation for
the reduced density matrix u is obtained after tracing out the internal
degrees of freedom in Eq. (5.22) and reads

. A A
fo=—iv[a’a,u] + == Dlalu + S-Dla’lu + Lyu. (5.23)
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The rates A, are defined as

As =2Rs(Fv), (5.24)
7 =v+ 3s(v) + Is(—v), (5.25)
with
s(v) = '/‘00 dt e’ (Vexp (L16)V)g (5.26)
0

which is the Fourier component at frequency v of the autocorrelation
function of operator V, where the average (-); is taken in the steady state
Ot

The diagonal elements of Eq. (5.23) give a set of rate equations for the
occupation p,, = (n|u|n) of the phonon state |n), which are reported in
Eq. (5.1).

5.6 RESULTS

In this section we characterize the parameter regimes in which the me-
chanical resonator is cooled by photon scattering process in the setup of
Fig. 5.1(a). We focus on the range of parameters discussed in Sec. 5.4. We
consider laser cooling of the mechanical resonator by strain coupling
with the NV center and analyse how the cooling dynamics is affected by
the presence of the optical resonator and of dephasing. The results we re-
port are compared to the predictions in absence of the optical resonator
and for vanishing dephasing. This latter case has been extensively dis-
cussed in Ref. [177] and we refer the interested reader to it for a detailed
discussion of the predicted dynamics in that specific limit.

5.6.1 Cavity-assisted cooling

We now analyse how laser cooling dynamics of the mechanical resonator
by strain coupling with the NV center is affected by the presence of the
optical resonator. In order to better understand the role of the resonator,
we first discard thermal effects and dephasing (setting y = Ty = 0).
Figure 5.2 displays the cooling rate ' and the mean vibrational number
at the asymptotics N, as a function of §; and A in absence (left panels)
and in presence of the optical cavity (right panel). Both plots show that
the cooling rate is maximum, and the final occupation minimum, along
the lines ; = —v and §; = A — v. In the first case cooling is achieved by
setting the laser frequency to the value w; = w,, — v, hence resonantly
driving the transition |g,n) — |y, n—1) (red sideband). In the second case
the laser frequency is w; = w, —v, so that the transition |g,n) — |x,n—1)
is resonantly driven by an effective process, which combines the laser
and the strain coupling. For most values of the detuning A the excitation
of the intermediate state |y) is virtual, except for A = w, — w,, = v. This
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Figure 5.2: Predictions on the cooling efficiency extracted from the rate equa-
tion, Eq. (5.1), for laser cooling of the mechanical resonator by driv-
ing the NV center with a laser (left panel) and by additionally cou-
pling the dipole transitions to an optical cavity (right panel). (a)
and (b) show the cooling rate I, Eq. (5.3) in units of A%/v, (c) and (d)
the asymptotic occupation N of the vibrational mode, according to
Eq.(5.4), as a function of the excited level splitting A and the laser de-
tuning &; (in units of v). The white region are heating regions (I < 0)
or where N, > 1. The parameters for the left panel are Q = 0.1v,
I'=16x10"2y,I; = 0,A; =0, Ax = Az = y = A = 01T and
8x = gy = 0. In the right panel we take the same parameters except
for g, = g, = x = I. The cavity frequency is fixed to the value
A, = 8.5 x 1072y (see text).

latter case corresponds to the vertical line visible in both figures, where
cooling results to be efficient. These properties have been identified
and discussed in Ref.[177] and do not depend on the coupling with the
resonator. The curves in Fig. 5.3 show the cooling rate and the minimum
phonon occupation as a function of §; after fixing the detuning A = .
Some (relatively small) differences are visible close to the values §; =0
and 8, = —v, which are due to the level splitting induced by the strong
coupling with the resonator: for this choice of A, in fact, the cavity drives
almost resonantly the transition |g) — |y).

We have tested that the value of the detuning A, and thus of the cavity
frequency, in Figs. 5.2 and 5.3, leads to the best results by comparing
cooling rate and final temperature for different values of A.. The results
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Figure 5.3: (a) Cooling rate I" and (b) asymptotic occupation N, of the vibrational
mode as a function of §; for the same parameters as in Fig. 5.2 and
A = v. The dashed (solid) line corresponds to the predictions in
absence (presence) of the coupling to the cavity. The shaded region
indicates the regime where the resonator is heated by the radiative
processes (I' < 0) or where N, > 1.

of this analysis are summarized in Fig. 5.4, which displays (a) the maxi-
mum cooling rate (maximized by varying A and §; by keeping A, fixed).
The mean phonon occupation in (b) and the mean intracavity photon
number in (c) are reported for the corresponding values of A and &}, at
which I is maximum. These plots show that maximal cooling rates are
found for A, ~ 0. We verified that the curves do not differ substantially if
instead we search for A, by minimizing the mean phonon number. There-
fore, the contour plots in Fig. 5.2(b) and (d) show the optimal cooling
rate and temperature in presence of the resonator. On the basis of the
comparison with the plots on the left panels, we can thus conclude that
the coupling with the cavity does not substantially improve the cooling
efficiency for the chosen parameter regime.

We now analyse how the spectrum of resonance fluorescence is modi-
fied by the coupling with the resonator. We focus on the light emitted
once the system has reached the stationary state. Figure 5.5 displays the
resonance fluorescence spectrum in absence and in presence of the opti-
cal cavity for the parameters of Fig. 5.3 with §; = 0. To better understand
how the cavity modifies the dynamics, we first discuss the spectrum in



5.6 RESULTS

N
\S)

without
cavity

[ (units of A?/v)
[V, Y, Y, BT, BN, BN e )
S 8 X 3& =3
1 1 1 1 1 1

x10~4

221 (b) without
2.1 cavity

0.12
0104 (©
0.08 -

;: 0.06 -
0.04 -

0.02 J &

0.00 -

T T T T
-0.3 -0.2 —0.1 0.0 0.1 0.2 0.3
A (units of v)

(c

Figure 5.4: (a) Maximum cooling rate [',,,,, in presence of the resonator as a
function of A.. The value [, ,, has been calculated by varying &, and
A and keeping A, fixed. Subplot (b) displays the corresponding value
of Ny and (c) the mean intracavity photon number. The parameters
are: Q =01y, [y =0, T =x =g, =g, = 1.6 X107*»,A; =0, Ay =
Az = y = A = 0.1I". The dashed lines in (a) and (b) indicate the
maximum cooling rate and corresponding value of N, in absence
of the optical resonator. In the latter case [',,,, is maximum for
A = 0.93vand §; &~ —3.5 X 10 2».

absence of the cavity. In this case we observe the three broad resonances
around w = wy. These are due to inelastic processes in which the motion
is not involved and can be interpreted as a Mollow-type triplet [203].
We further observe the narrow resonances at w = w; ¥ v, which are the
red and the blue motional sidebands of the elastic peak. Subplots 5.5(b)
and 5.5(c) report the details of the sidebands of the elastic peak. These
spectral components correspond to the photons emitted in the processes
where a phonon is created (w; — v) or destroyed (e + v) in the mechani-
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Figure 5.5: Spectrum of light emitted by the NV center at the asymptotics of the
laser cooling dynamics. The left panels correspond to the parameter
regime of Fig. 5.2(a)(c) (no cavity), the right panels to the param-
eter regime of Fig. 5.2(b)(d) (cavity assisted cooling). The dashed
(dashed-dotted) line correspond to the emission from the transition
g < x(g < ), the solid line correspond to the sum of these two
contributions. Here, we took A = vand §; = 0. Panels(c), (d), (e) and
(f) show the details of the sidebands.

cal resonator. The motional sideband has a width of the order of « A%,
and appears on a broader background with linewidth ~ I'. Our analy-
sis shows that this structure is due to the fact that mechanical effects
are dominated by the strain coupling Ay, which mixes the two excited
states. For our parameter choice, where A = v, this coupling is weak
but resonant so that the effect of the strain coupling is particularly en-
hanced. Figure 5.5(d)-(f) displays corresponding spectra of resonance
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Figure 5.6: Predictions on the cooling efficiency extracted from the rate equa-
tion, Eq. (5.1), for laser cooling of the mechanical resonator by driv-
ing the NV center with a laser in absence (left panel) and in presence
of pure dephasing (right panel). (a) and (b) show the cooling rate I,
Eq. (5.3) in units of A?/v, (c) and (d) the asymptotic occupation N
of the vibrational mode, according to Eq. (5.4), as a function of the
excited level splitting A and the laser detuning §; (in units of v). The
white area are heating regions (I' < 0) or where N, > 1. The parame-
tersare Q = 0.1y, = 1.6 X1072v,A; =0, Ax = Ay = y = A = 0.1T,
and (left panel) [, = 0, (right panel) [y = T.

fluorescence in presence of the cavity. The significantly different fea-
tures are due to the modified dressed state structure because of the strong
coupling between cavity and NV center, while for both cases the cool-
ing (heating) processes are dominated by emission along the transition
1x) = 1g) (1v) — 18))-

The summary of this analysis is that the effect of the optical resonator
on the cooling dynamics can consist in a very small improvement of the
cooling efficiency. This result, which seems to contrast with previous
investigations where the effect of the cavity on the cooling efficiency was
relevant [180, 181, 200], can be understood when considering that (i) the
loss rate of the resonator and the radiative decay rate of the electronic
excitations have been chosen to be of the same order of magnitude, and
(ii) the cooperativity C = g?/x[" ~ 1, so that the level splitting induced
by the coupling with the resonator is of the order of the loss rate x. Be-
cause of (i) the coupling with the resonator gives rise to an effective level
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structure where the linewidths of all excited levels is of the same order
of magnitude. Since for sideband cooling the linewidth determines both
the cooling rate as well as the final temperature, the improvement of
the cooling efficiency by coupling this level structure to a resonator is
incremental. Because of (ii), the level splitting induced by the coupling
with the cavity does not exceed the linewidth of the resonances, so that
the regime of optimal detunings is essentially the same as without the
cavity.

5.6.2 Dephasing-assisted cooling

We now analyse the effect of other noise sources on the cooling efficiency,
and consider in particular dephasing, which is an important source of
loss of coherence in solid-state systems. We here discard the coupling
with the optical resonator and calculate the cooling efficiency when I, #
0.
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Figure 5.7: (a) Cooling rate I and (b) asymptotic occupation N, of the vibrational
mode as a function of §; for the same parameters as in Fig. 5.6 and
A = v. The solid line corresponds to the predictions in absence
of dephasing. The dashed (dashed-dotted) line corresponds to the
predictions when the dephasing rate is [, = T' ([, = 10T). The
shaded region indicates the regime where the resonator is heated by
the radiative processes (I' < 0) or where N, > 1.
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Figure 5.8: Spectrum of light emitted by the NV center at the asymptotics of
the laser cooling dynamics. The parameters are the same as in
Fig. 5.6(b)(d) (dephasing assisted cooling with [}, = T'). The dashed
(dashed-dotted) line correspond to the emission from the transition
g © x(g < ), the solid line correspond to the sum of these two
contributions. Here, we took A = v and §; = 0. Panels (b) and (c)
show the details of the sidebands.

Figure 5.6 compares the cooling rate and final occupation for [y = 0
(left panel) and Ty = T (right panel). We observe that pure dephasing
decreases the cooling efficiency when cooling is achieved by tuning the
laser to the red sideband of the dressed states. Nevertheless, the cooling
region islarger and the dependence on the exact values of the experimen-
tal parameters is less pronounced. Moreover, the cooling performance
is enhanced in most parts of parameter landscape. Figures 5.7(a) and
(b) compare the cuts along the line A = v: one clearly sees that the case
of Iy = I' outperforms the case when I, = 0. This occurs over almost
the full range of §; in terms of both cooling rate and minimal phonon
number. We have checked that the value [, = T'is close to the optimal
dephasing rate. We also found the range of values in which the dephas-
ing has a beneficial effect on the cooling spans till several I' (see dotted
line, which shows the predictions for Iy = 10T)).

The effect of dephasing is also visible in the spectrum of resonance
fluorescence. We observe in Fig. 5.8 for §; = 0 a broadening of the
background at the motional sidebands, which now scale with ~ T' + [.
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This linewidth is indeed the cooling rate, which results to be enhanced
by the presence of pure dephasing.

We understand this behaviour since pure dephasing increases the
width of the excited states |x) and |y) without increasing their decay rate.
Thus it increases the excitation probability. Since this cooling scheme is
optimal when population is transferred to the excited state, then pure
dephasing leads to larger transition rates, and thus larger cooling rate.
This reasoning works within a certain parameter interval: dephasing
rates exceeding the Rabi frequency, in fact, tend to suppress population
transfer and thus are detrimental.

The beneficial role of pure dephasing on the cooling efficiency can be
best illustrated by analysing the final mean occupation for different tem-
peratures of the bath. Figure 5.9 illustrates how dephasing can improve
the cooling efficiency over a large parameter regime, flattening out the
minimum of ny (Eq. (5.5)) as a function of the frequency of the driving
laser.
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Figure 5.9: Final phonon number of the mechanical resonator with v = 27 X
1 GHz and a quality factor Q = v/y = 107, Eq.(5.5), for (a) T = 0.1K
(N, = 1.6)and (b) T = 4 K(Ny, = 83), for the same parameter regime
of Fig. 5.7(b). The solid (dashed) line corresponds to the predictions
in absence (presence) of pure dephasing. The black dotted lines
correspond to ny = Ny,. The shaded region indicates the regime
where the resonator is heated by the radiative processes.
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5.7 CONCLUSIONS

We have analysed the cooling efficiency of a mechanical resonator which
is laser cooled by the strain coupling with a NV center. The cooling dy-
namics is essentially due to the strain coupling with the NV center and
the parameter regime is such that the resolved-sideband cooling can be
performed by driving the NV center electronic resonances. In this regime
we have analysed the effect of the coupling to an optical resonator, and
found that it does only incrementally improve the cooling efficiency. We
have further shown that pure dephasing can make the cooling dynamics
more robust against parameter fluctuations, without affecting the over-
all efficiency, as long as the dephasing rate does not exceed the driving
strength of the laser.

In our analysis the optomechanical coupling was a small effect. It
can be increased in configurations where the cavity is driven: in this
case the optomechanical coupling would cool the resonator according
to the dynamics explored in Refs.[204, 205]. Another possibility is to
drive both optical cavity and NV center for large cooperativity: In this
situation phonon excitation or absorption can be realised by means of
two excitation paths, that can interfere. This interference depends on
the relative phase between the lasers and could be a control parameter
for realising multi-wave mixing.

A further interesting possibility is the analysis of entanglement and
coherent quantum information transfer between the different compo-
nents of this hybrid quantum system.

This setup could also be investigated to develop a quantum memory:
by using the system analyzed here, a photonic excitation traveling in
space or in an optical fiber can be transferred and stored into the nuclear
spin of the nitrogen atom [206] intrinsic to the NV-center or into the
nuclear spin of an adjacent carbon atom [207].

Recentlyasimilarsetup has been analyzed experimentallyin Ref.[208]
in which the authors manipulate the NvV-center electronic states by driv-
ing the mechanical resonator.

APPENDICES
5.,A ELIMINATIONOFTHEINTERNALDEGREESOF FREEDOM

In this section we report the details of the calculation covered in Sec. 5.5.

5.A.1 Perturbation theory

We consider the parameter regime

YNy < a <, (5.27)
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with a = Ap, Ax, Az, xAi. (7. being the mean cavity photon occupation
number) and perform perturbation theory in second order in the small
parameter a/v.
We solve the right and left eigenvalues equations for the Liouvillian

operator Eq. (5.6)

,C‘OAA = /115/1 (5283)

grL = 28] (5.28b)
perturbatively with the expansion

L=L04+04 @4

A=20 + 70 4@ 4

5.29
b1 = b +/5§1)+ﬁ(2)+ >:29)
=80+ 8+

Sobstituting Egs. (5.29) in Egs. (5.28) we obtain the following equations
for the order a

Z L®FEP) Z AB)p*F) (5.30a)
p=0
Z( ‘5/(15)) @) _ 2 A(oc—ﬁ)(pvgm)*, (5.30b)
B=0 B=0

In the spirit of Eq. (5.27) and Egs. (5.29) and (5.30) we decompose the
master equation as

Lo=LOp 4+ £Dp (5.31)
where (see Eq. (5.20) of the main text)

L£O) =Ly + L, (5.32a)
Lgp = —i[Hpec: p1, (5.32b)
Lip = —i[Hy, p] + Lrp + Lyp, (5.32¢)
LDp = Vp =—i[V(a+ah),p] = —i[Vx,p], (5.32d)
£O =0 Vi>1, (5.32e)

here we have defined for simplicity x = a + a'. The superoperator £y
describes the dynamics of the external degrees of freedom, i.e., the
mechanical oscillator. The superoperator £; describes the dynamics of
the internal degrees of freedom, i. e., the NV-center, the optical cavity
and their coupling. The superoperator V describes the coupling between
the internal and external degrees of freedom.

5.A.1.1 Zeroth order

At zeroth order Egs. (5.30) (with o = 0) become
£©050) = (050 (5.33a)
CRREY OIS (5.33b)
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According to Eq. (5.32) the internal and external degree of freedom are
decoupled in zeroth order and the eigenvalue A°) will then be the sum
A® = A; + Ag of the eigenvalues of £; and Ly, respectively. Corre-
spondingly, the zeroth order eigenelements are product states of inter-

nal eigenelements g%, 3% and external eigenelements 21, 11 fulfilling
the equations

ot = 2, (B) £y = () (5:34a)
Lpls = app’e, (%) Lg = Ap(ir) (5:34b)

The right and the left eigenelements of the external degree of freedom
can be written in the form [91-93, 209]

pk(n) = |n+ |k|2_k><n+ |k|2+k‘
5.35
K T k| + k k| — k (5-35)
(k) = |n+ 5 n+ —

with external eigenvalue A = ikvand k = 0,%1, £2,.... [t is important
to notice that each external eigenelement is infinite degenerate and the
elements are spanned by the quantum numbern =0, 1,2, .... Neverthe-
less the external eigenelements are orthogonal and complete [91-93,
209]. Due to this degeneracy the eigenelements of £(®) are not uniquely
determined. In fact, they can be written as

,6/(10) = phigiE (5.36a)
Pvflo) = FgiE (5.36Db)
with
e = Z c,if(n) and prE = Z d, itk (n), (5.37)
n=0 n=0

and any superposition with coefficients c¢,, and d,, of the external eigenele-
ments can be used to satisfy Eq. (5.33). The only restriction on the coeffi-
cients ¢, and d,, comes by the orthogonality condition

Tr(" (B3)) = 610 (538)
and the completeness relation

Y@ =1 (5.39)

Ao

which requires ), ¢,d;, = 1.
. n .
We now introduce the zeroth order projectors

R =60 @ = RIRT (5.40)

which can be decomposed in the internal and external part due to the
uncoupled dinamics. The internal projectors are

P = gl @ (5.41)
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the general procedure
is: (i) use egs. (5.30) to
derive equations for
order a. (ii) project the
equation for the right
eigenvectors with B}
on the left to obtain the
eigenvalue correction
of order c. (iii) project
the equation for the
right eigenvectors with
Ot on the left to obtain
the right eigenvectors
correction of order c.
(iv) project the
equation obtained
from (i) for the left
eigenvectors with O}
on the right to obtain
the left eigenvector
correction of order o.
(v) the corrections of
order & calculated here
will be used in the
calculation for the
order & + 1 following
the same steps.

LASER AND CAVITY COOLING OF AMECHANICAL RESONATOR...

The external projector must take account for the degeneracy of exter-
nal eigenelements, thus the projector which project onto the subspace
relative to the eigenvalue Ay is

R=HE = ) @ fHE(n), Ag = ikv. (5.42)
n=0
It can be shown that the completeness relation
SR =1 (5.43)
AE

holds. We further assume that the completeness relation for the internal
projectors ), 4 5}/11 = 1; holds, such that the zeroth orders projectors
fulfill

S =1

Ao

(5.44)

that is, they are complete in the composite system of internal and exter-
nal degrees of freedom.

5.A.1.2 First order

Equations (5.30) for a = 1lead to

£Op0 4 W0 = 305N 4 3150 (5.45a)
EDYLO + (@) W = A0+ ADEP). (5.45b)

Let’s consider the projector #* introduced in Eq. (5.40) and the orthog-
onal projector 9} = 1 — 2. Since the subspaces on which they project
are orthogonal we have

ot =0tpt=0 (5.46)
and since {,6510), ﬁflo)} are eigenstates of £

[%,£9)] = [24, £©] =0 (5.47)
and consequently

RLOQL = olc@pt = . (5.48)

Notice also that LOB = 21O = 2O Bt Now we project Eq. (5.45a)
with £* and Q¢. Using the properties just given we have

LD = AR (5.49)
£@0ksWM 4 02 rMp® = 10250, (5.49b)
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From Eq. (5.49a) we obtain
A(O) ® ‘5(0)5(1) 5(0) =1Wp A(O) ®p v(0) (0)

=

1
“(O)Tr{(ﬁ(o))m(l) A(O)} /1(1)‘0(0)Tr «(0) )

and we obtain for the first order correction to the eigenvalue A(®)
A = <t { )| vx, 60|} (5.50)
Eq. (5.50) is identically zero in fact
AD = _jiTr {(,o(o)) [Vx A(O)]}
= =i Te{(B) V%, 60|} - i T { ) [V 0 [} =
— ST | ) V], e +
—iTe {(s") (%) [V, e ]x} =
0
= —iTr{( AN () V(4 [ x, | +W‘E)} +
{
{

—iTr (vAI)T(Ia/IE)T( IW_E[V’ ,o”ll],a’lE)x} — (5.51)
= —iTr{(3 /11)1 (Iu/lg)i Vp’ll[x #AE]}

— i Tr{(s*)T(*e)'| v, oM |atex} =
0
= =i Te{(p*) VAT {(AE) e B |} +

—iTr (v, ﬁm]}W

=0.

|l ©

To perform this calculation we have used egs. (5.36) and that the commu-
tators [x ,o’ll] and [V ;2’115] are identically zero because x = a + a' acts
only on the external subspace, while V acts only on the internal subspace.
For the last line we used that either x{1*Z or ¢*Ex are out of the subspace
corresponding to A = ikv but rather in the subspace with Ay = i(k £ 1)v
and so the trace with (#*€)" vanishes due to orthogonality.

Plugging the solution AV = 0 in Eq. (5.49a) we get

RLDO = (5.52a)
and multiplying on the right by ,0(0)
LRt = 0, (5.52b)

Equations (5.52) express the fact that the action of £() leads out of the
subspace selected by B+ (£M only couples subspaces relative to different
eigenvalues).
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From Eq. (5.49b) we obtain
(2@ — L(O))Qéﬁg) = 9615(1)[5(0) (5.53)

Since Qf projects out all contribution which potentially could lead to
(A© — £©) = 0, we can safely form the inverse of it and find

A1) _ A1 1 A(0
0063 = 83 = =7 2L =
A0) — £(0)
il (5.54)
— 11— % L(l)ﬁ(o) — 1 '5(1)[5(0)
A0 — £ AT A0 — £(0) 4
where we have assumed that the first order contribution ,551 ) is orthog-

onal to the zeroth order part, that is .’P’l,éfll) = 0. Analogously we can

derive the first order correction to the left eigenvector

(Dt oA — ¢ x(DNi <(0)\+ (1) <(0)\+ (1)
()79 = (5; )" = (5 )L =5 )'L /1—(0) IO

(5.55)

,1(0) L(O)

by multiplying Eq. (5.45b) on the right with O} and using A1)’ = 0. Results
Eq. (5.54) and Eq. (5.55) can be used to write the first order correction to
the projector

B =0 @81+ 4 ® 65
Lk =% wpa
20 — £(0) + 20 _L(O)L B (5.56)
1 + 1
A0) — £©0) 20 — £(0)

— 130/15(1)

— 130’111(1) 5(1)}%{1.

5.A.1.3 Second Order

From Eq. (5.30) with & = 2 we obtain

£OpP + LWV = 103 + 2260 (5.57a)
BP) £O 4 (3L = 10ED) 1 1DED), (5.57b)

We project Eq. (5.57a) with % obtaining

%AL(O)pA(Z) + %AL(I)‘OA(D /‘1(0):;())/1‘5512) + A(Z)g)/lp(o)

1ORET + BLOpP = 2ORET + 20510 = (5.58)

PLLD ‘5511) = 1D pA pAEO) e ‘5/(10)
Now we apply the scalar product with 39 from left and obtain
12 = Te (863 ® L} =

=Tr {Mﬁo)m“) A(”} Tr{(5) £},

(5.59)
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Projecting Eq. (5.57a) with Q¢ we obtain

04 £©p@ 4 02 rMWM = @02 1 1@k, (5.60)
Notice that

QéL(O)‘a(Z) (1 j)/l)L(O) A(2) L(O)ﬁ(z) /1(0):%/1;3512) (5.613)
and

00263 = 07 — PP = 10 _ 1O p1s@) (5.61b)
Inserting Eq. (5.61a) and Eq. (5.61b) into Eq. (5.60) we obtain

7o) ﬁ(l) y©fery A(O) = (A© — £ ‘5512)_ (5.62)

Then the second order correction to the right eigenvector is then

0
o _ 1-% mpM _ 1@ -3 5O
PA= 20 = L(o)L -4 OL:

_ph _

-% o 1-% 5(1)p(0) (5.63)

T A0 2@ 0 — £©

A

L et S C R B PO
A0) — £ 20 — £0) A

The second order correction to the left eigenvector can be derived analo-

gously by multiplying Eq. (5.57b) on the right by O and reads

A
! w_ 15

<2\t _ x(0\t (1)
@) =@@;)L /1(0)_5(0)’C 0 — £

(5.64)

Notice that we have used the fact (1 — ?’1) 5 — 0. The second order
correction to the projector is

=%®%+M®M+%®%
A

y_ 1 m_1-%

20 — £© ,1<o>_£,<0)

1
_ U mppm_
o Y T zot

A
OO RO IO)

:f%’lf,l

(5.65)

LOpA

5.A.1.4 Lifting the degeneracy

We showed in Secs. 5.A.1.2 and 5.A.1.3 that the first correction to the
eigenvalue A©) appears in second order perturbation theory. We now
calculate this correction and see that the degeneracy that occurs in zeroth
order is lifted.

Consider an effective eigenvalue equation in the subspace fixed by
A© = A; + A5. We look for the basis elements which span the degener-
ated subspace and fulfill simultaneously the second order eigenvalue
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equations (5.57). In order to do this we plug Eq. (5.54) into Eq. (5.58) to
obtain

/1(2)‘5(0) ?Az(l)ﬁ(l) ?(1)5(1) L(l)ﬁﬁo)z
/1(0)_5(0)
; © © (5.66)
—plr)___ ' ,@)pAsl0) _ (0)y 40
RL A(O)—L(0)£ R 6; =LA )6,
with
- 1
Oy_pirM___° ,Opl
LAD)=R"L /1(0)_13(0)5 R (5.67)

Eq. (5.66) lives in the subspace selected by " and depends parametri-
cally on the eigenvalue () and its relative subspace. It is the eigenvalue
equation in the degenerated subspace belonging to A©) that determines
the second order correction A2 to the chosen A?) and fixes the correct
choice of eigenelements p*% = phareA2 which diagonalize £(A).
Now we take the scalar product of Eq. (5.66) with 3 on the left, i. e. we
multiply on the left with (5*)" and take the trace over the internal de-
gree of freedom. We obtain then an eigenvalue equation for the external
degrees of freedom

22 Tr () e = Tr [(pval)fyiryﬂELu)mLu)ﬁM#AE /12]
(5.68)
We define
£p(A9) = Tr [(ﬁh)wﬂf?’l%(l)l(o) —5L® W] (5.69)
such that we can write
ADprets = £ (A0)prelz, (5.70)

Thus the states @£ are eigenstates of £ 5(A(?)) with respect to the eigen-
value 1), and eigenstates of £ with respect to the eigenvalue A5. Now
we calculate explicitly the action of the superoperator £z(A?) on the
operator g*E. Using Eq. (5.32d), the equivalence

1 ORI
I — (£ ANt
20 -/0‘ e dt (5.71)

and noting that
(FIHY = (ph)ph @ gt = Te[(pM) pM(pM) = () (5.72)

we have

Lr(AO)ple = —f dt e~ Tr {(ﬁll)T%/lE[Vx, elite [V x, ﬁ’hﬁ’lE]]}.
0
(5.73)
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The calculation is performed in Sec. 5.A.1.6. The result is (Eq. (5.95) and
Eq. (5.96))
Lp(0Ope = sti(v)(aptEa’ — a’ap®) +
+ st(—v)(a'@*Ea — aa’pE) +
+sM(v)(a'p*Ea — prEaa’) +

, 5.74
+ s"M(—v)(ap’ea’ — p*Ea’a) + (5.74)
— tM(aptEa’ + a'prEa) +
+t'M(p*ea’a + p*Eaa’)
with
st(v) = f dt eliv—Ant 'l}r [(F*D)TVvetitvph], (5.75a)
0
s1(v) = f dt elv=2nt 'I}r [(s* ) Verrshiv], (5.75b)
0
A = f dt e~ Tr [(*D)T[V, e“rtvpt]], (5.75¢)
0
1A = f dte=Art Tr [(* [V, elttptiv]]. (5.75d)
0

5.A.1.5 Effective dynamics of the mechanical oscillator

We now consider the internal part of the system to be always in the
steady state and always decoupled from the external part,i.e., i; = 0
and

p(t) = pH1=0 @ e (r) = H=0 ® Y ¢; aArAeeRe A (5.76)
Az

where =0 = 3% is the steady state of the internal degree of freedom
solution of £;6% = 0and A*E(t) = Tr; [.’]fh:op(t)] is the reduced density
matrix of the mechanical oscillator. In the last step of Eq. (5.76) we
have expanded the state g*£(t) as a superposition of %242 eigenstates of
£ p(Ag) with eigenvalue A?) (see Eq. (5.70)).

The effective dynamics is then given by

2 e = [ £5 + L) |t=() (5.77)

where £ (1) (t) is given by Eq. (5.74) and Eq. (5.75) with A; = 0. Equa-
tion (5.77) (apart from a trace and the term £, which will be considered
later) is Eq. (5.22) reported in the main text. Notice that the left eigen-
vector relative to the eigenvalue A; = 0is (3%=°)" = 1. Using this fact
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with egs. (5.75¢) and (5.75d) it is clear that t%=0 = {41=0 = 0 because the
trace of a commutator is zero. We define

s(v) = sM1=0(v) = % f ) dt e}V (H)V(0))ss, (5.78a)
0
S*(U) = SIAI:O(_U) _ % /°° dt e_ivt<V(O)V(t)>ss’ (5.78b)
0

where we used the quantum regression theorem to write the coefficient s(v)
in the form of steady state expectation value. We define also
A
Ti = Rs(Fv) (5.79a)
7 = 3s(v) + Is(—v) (5.79b)

and Eq. (5.77) is explicitly given by

9 e = —i(v + P)[a’a, p*E] + &(2a,a’1Ea* —{a’a, p*e}) +
ot 2 (5.80)

A
+ 7+(2aT,a’1Ea —{aa’, pt=}).

Eq. (5.80)is a generalized master equation of a damped harmonic oscil-
lator with renormalized frequency (v + 7) and generalized feeding rates
A,. Apart from the term ,Cy,a’lE which will be added later, it is Eq. (5.23)
reported in the main text. Notice that each subspace relative to Ay is
effectively damped. We define the cooling rate

F=A_-A,, (5.81)

and the minimal phonon number

A, A,

NO:A—_—A_'__?'

(5.82)

The equation describing the effective dynamics can then be written as

2= i+ 9)[a"a,u] + SN+ DDlalu+ SN Dlalu+-Lyp, (5.83)

where D[o]p = 20po’ —{o'0, p} and we added the mechanical dissipation

due to the coupling with the thermal bath of phonons described by £,,.

5.A.1.6 Calculation of the action of the operator £ g(A*)) on &

Here we perform the calculations used in Sec. 5.A.1.4. We want to calcu-
late Eq. (5.73) which we report here

LpAO)ple = —f dt e~ Tr {(ﬁlI)T%AE[Vx, elite [ Vx, PA’hﬂ’lE]]}.
0
(5.84)
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We first evaluate

[Vx, plaate] = Vix, phpte] + [V, o114t ]x =
0

= v(pﬂz[x,,w] + MA) +

+ (ﬁifpéﬁalf]"f [V, plf]pﬂE)x

= ‘5/11[35, Ia/lE] + [V, pA/II]Ia/lEx’

(5.85)

where some commutators vanish because they are commutators between
operators that act on different degrees of freedom (internal and external).
Now we calculate

[V, e[V, pripie] | =
= [Vx, eﬁ(o)tV,oA’lf[x, prE] + eL(O)t[V, p”ll],a/lEx] =
= V[x, e‘(o)tVﬁ’ll[x,/i’lE]] + [V, e‘(o)‘VﬁlI[x,/i’lE]]x+
+ V[x, e‘“’)t[v, ‘OAAI]’QAEX] + [V, eﬁ(")f[v, pAI]IaAEx]x -
= Ve tVph|x, e“stx, p2E || + [V, e“1tVptt |e Bt [ x, pAE |x +

+ Vettt|v, pt|[x, efElptEx ]| + [V, eC1t|V, ph] e B! phE x>
(5.86)

where in the last step we sorted internal and external quantities. Then
1}, {(ﬁAI)T%AE[Vx, elitetst [V, ﬁAIﬂAE”} -
= Te [ Ve rtvph |2 " x, e x, @] +
+ T [ [V, eVl Fetst [ 5]+ (5.87)
+ T [ verr [V, M| B x, e et phex] +
+ T [ [V, et [V, S]] | Pet et e,

We want to calculate each external expression in Eq. (5.87). In order to

do so, it is useful to express the action of ?EAE on a general operator X.
With the use of Eq. (5.35) and Eq. (5.42) we have

REX = Y fA5(n) @ [E(m)X =

n=0

I
Ms

P25 (n) e [ (n)]X] =

n+ |k|—k><n+ |k|+k‘<n+ |k|—k‘X‘n+ |k|+k>_
2 2 2 2 -

0

S
I

I
Ms

0
s

> InXn + kl(n|X|n + k).

|k|—k
n="-—
2

S
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(5.88)
We will also use Eq. (5.37) which can be rewritten as
prE=iky — Z cufif(n) = D) cplnXn+Kk| (5.89)
n=ki=k
2

and the completeness relation Eq. (5.43). Now we calculate each external
expression of Eq. (5.87). We first evaluate

. A N 't AT A
eLEt,u/lExz — Z%EeﬂEt’u/IEXZ — ZeﬂEtj)E Elu/lExz —

A A
= > ’1Et2|m)(m + k' [(m|a Ex?m + k') =
Ap=ik'v m
, Smn
= > el ) imXm+ k’|Wn<n +k|x*m+ k') =
Ap=ik'v m,n
= > et D cmlm¥m + K [(m + k|x*|m + k'),
Ap=ik'v m
(5.90)
and? BelElgAEX? =
= piE > ! D emlm¥m + K [(m + k|x?|m + k') =
Ap=ik'v m
o Snm
= >, Ve, ln)n+ k|Wm +K'|n+ ky(m + k|x*m + k') =
n,k',m
_ 6kk/
= > ke, nXn + kl(n + K4 F k)(n + k|x2n + k') =
n,k’
0 0
= eF " cylnXn + k|<n + klaa" + a’a +a{+§aﬁ¥Tn + k> =
n

= 6 S Ik + Kl e (VK1) + (VoK) ) =

= e ¢ lnXn + kl(aa” + a'a) =
n

= e’ 0 e (aa’ + a'a).
(5.91)
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LEt

Now we evaluate e x,a’lEx =

_ Z?E/lEeLEtxla/lEx — Z eagt%flgxﬂ@x —
A A
= > et D im¥m + k' [(m|xp Ex|m + k') =
Ag=ik'v m
= Z B! Z culm¥Xm + K'|{m|x|n)n + k|x|m + k') =
Ag=ik'v m,n
— ALt ’ / (5.92)
- Z e"E Z cn|m><m + k |(\/Z5m,n—l +Vn+ 15m,n+l)’
Ap=ik'y m,n
-(n+klxim+k'y=
= Z elEthn[\/ﬁln—1Xn—1+k'|(n+k|x|n—1+k’>+
Ag=ik'v n

+Vn+1n+1Xn+1+k'|(n+k|xjn+1 +k’>],

A R
and B e ElxglEx =

?EAE Z et Z cn[ﬁln —1Xn—1+k'|(n+k|xln—1+k") +
n

Ap=ik'y
+\/n+1|n+1)(n+1+k’|<n+k|x|n+1+k’>] =
= > ek e, Im¥m + k|-

k',n,m

5m,n—1
. [\/ﬁjMn —1+k'lm+k)Xn+kjxln—1+k") +

5m,n+1
+\/n+1Mn+1+k’|m+k><n+k|x|n+1+k’>] =
=> eik””cn[\/an —1Xn—1+k|-
k',n
ak,k’
—14+k}n+klxln—1+k")+

+Vn+1n+1Xn+1+k|-
Sk.k!
(n+1+K +1+k)(n+k|x|n+1+k’)]=

= eikWch[\/an —1Xn—1+k|(n+k|xln—1+k) +
n
+\/n+1|n+1Xn+1+k|<n+k|x|n+1+k>] =

=e’1EIZCn[\/Z|n—1)(n+k—1| n+k+
n

+\/n+l|n+1Xn+k+1|\/n+k+1] =

= e > c,[alnXn + kla’ + a’|nXn + kla] =

n

= Bl (aptEa’ + a'tEq)
(5.93)
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The other terms are calculated in a similar way, the results are

%AE[_X.’ eﬁEt[x’ﬁ/lE]] — elEt[e—i‘I)t(aaTlaﬂE +Iaﬂ.Eai‘a) +
+ e (a"apE + prEaa’) + (5.94a)
_ (e—i‘l/t + eivt)(alaﬂEaT + a?ﬂ/lEa)]’

%AEe'CEt[x, prE]x = e*El(aptEa’ + a'ptEa — prEaa’ — pEata),

(5.94b)
B[ x, 55 e x| = Mt (qptra’ — pPEaTa)+ (5.94)
+ e (a'p*a — p*Eaa’)],

PrELE X2 = BB (aq” + afa). (5.94d)

Inserting Egs. (5.94) in Eq. (5.87) and then in Eq. (5.84), recasting the
terms we finally obtain

Lp(Ope = shi(v)(aptEa’ — aap®) + st(—v)(afp*Ea — aa’ ptE) +
+ s ()(a'p*Ea — p*Eaa’) + sM(—v)(aptEat — prEata) +
— th(aptEa’ + a'prEa) + 1M (p Ea a + p*Eaal)

(5.95)
where

st(v) = /000 dt eliv=4nt '[;r [(* ) verrtvph], (5.96a)
s1(v) = .i ) dt ev—2nt Tr [(*)TVertiphiv], (5.96b)
th = /00 dt et Tr [(*)[V, efrtvpt]], (5.96¢)

0
1A = f " e Tr [(*)[V, efrtphiv]], (5.96d)

0

which is the solution reported in Egs. (5.74) and (5.75).
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SPINOR SELF-ORDERING

We theoretically analyze the dynamics of cold atomic spins
in a single-mode standing-wave cavity as a function of the in-
tensity and phase of two transverse lasers, driving the atoms.
We identify and discuss the conditions under which stable
spatial patterns form, where atomic position and magneti-
zation are correlated. We discuss the properties of the light
emitted by the cavity as a method to reveal the state of the
atomic vapor.






SPINOR SELF-ORDERING OF MAGNETIC ATOMS IN
AN OPTICAL CAVITY

6.1 INTRODUCTION

A remarkable aspect of light-matter interactions inside optical cavities
is the appearance of collective phenomena induced by multiple scatter-
ing of photons. Cavity photons exchange information between atoms
across the cavity volume and mediate effective long-range interactions
between them [210]. This leads to prominent collective effects such as
synchronization [211-213] and spontaneous spatial ordering [214-216].

Among several setups, spontaneous pattern formation (self-organiza-
tion) in cavities has been the object of several theoretical and experimen-
tal studies [214-222]. Self-organization occurs when an ensemble of
polarizable particles is confined in an optical resonator and is driven
by an external laser. If the laser intensity exceed a threshold value, the
particles spontaneously order in space in a periodic structure (Bragg
grating) with period 4., where A, is the cavity-mode wavelength. In this
configuration the laser light that is scattered by the atoms into the cav-
ity mode constructively interferes and leads to the build up of cavity
field. In turn, the cavity field stabilizes the Bragg grating by means of
the mechanical effects of light. In this process the atomic internal state
remains in good approximation unchanged and can be eliminated from
the dynamics.

Recent studies investigated setups where spatial self-organization
is accompanied by correlations with internal degrees of freedom [47,
223-229]. One example are setups where different electronic ground
states of the atoms are coupled via a Raman transition with cavity and
laser photons, as for instance in Ref.[226]. Here the authors considered
a Bose Einstein condensate with two effective internal states (spin states)
confined in a optical cavity. Transitions between the spin states are
induced via Raman scattering of two external pumping lasers into the
cavity mode (see Fig. 6.1). For sufficiently high laser intensities, the
system reaches an ordered state. This state involves a periodic spatial
density with period 4./2 and a periodic spin structure with period 4.
Experimental evidence of this phenomenon, called spinor self-ordering,
has been discussed in Ref. [227]. Spatial-spin textures in ultra-cold gases
have also been observed in Ref. [225].

In this Chapter we address the question whether spatial-spin struc-
tures can also arise in the dynamics of a thermal cloud of atoms confined
in an optical cavity. Our analysis shows that the cloud can be cooled
into spinor self-ordered structures. Furthermore we show how some
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properties of the self-ordered state can be controlled by means of the
external lasers. These properties can be measured at the cavity output.

In Section 6.2 we introduce the system and the basic equations de-
scribing its dynamics. In Section 6.3 we discuss the quantities that are
relevant to characterize the state of the system. In Section 6.4 we an-
alyze numerically the dynamics of the system, the properties of the
self-ordered state and show how some properties can be externally con-
trolled and measured. Finally in Section 6.5 we summarize the results
and draw the conclusions.

6.2

SYSTEM AND MODEL

In this section we provide the details of our theoretical model and intro-
duce the physical quantities which are relevant to the discussions in the
rest of this chapter.

(a)
Q, IQ2

00 -0/0 00 0 0 0 0/ 0 0 @

0) —

Figure 6.1: Sketch of the system. (a) N atoms tightly trapped in a lossy cavity and

driven by 2 lasers with Rabi frequency Q,; and Q,; x is the linewidth
of the cavity. (b) Level scheme of the atoms. The relevant levels are
the ground states |0) and |1) and the excited states |2) and |3). The
external lasers drive the transitions 1 < 2 and 0 < 3 with Rabi
frequency Q; and Q,, respectively; while the transitions 0 & 2 and
1 < 3 are coupled to the cavity mode with strength g; cos(k.%;) and
g cos(kcfcj), respectively; here %; is the position of the atom and k.
is the wave vector of the cavity mode. The pump frequencies w;; and
wy, and the cavity frequency w, are assumed to be far detuned from
of the frequencies of the atomic transitions 0 < 2,0 < 3,1 < 2 and
1 « 3. The detunings 6, §,, 65 and A, are defined in Appendix 6.A.

The physical system is illustrated in Figure 6.1: N atoms are confined
inside a lossy cavity and are illuminated by two external pumping lasers.
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We assume a tight trap along the transverse directions so that the atomic
motion is confined along the cavity axis. The relevant states of the atoms
are the ground states |0) and |1), and the excited states |2) and |3). The
coupling of the atoms with the external lasers and the cavity mode form
a double A configuration scheme. The first A scheme is formed by the
transitions 0 < 2 < 1: the 2 « 1 transition is driven by the first laser,
while the transition 0 < 2 couples to the cavity mode. Similarly, the
second A scheme is formed by the transitions 0 < 3 < 1: transition
0 < 3isdriven by the second laser, while transition 3 < 1is coupled to
the same cavity mode. We assume the laser frequencies and the cavity
frequency to be far detuned from the frequencies of the atomic transi-
tions0 < 2,0 < 3,1 & 2and 1 < 3. This setting induces two-photon
Raman transitions between the states |0) and |1), which form spin states.
This setting has been considered in several other works, as for example
Refs. [47,226-229].

6.2.1 Hamiltonian for N four-level atoms

The Hamiltonian of the system composed by N transversally driven
atoms and the cavity includes the kinetic and internal energies of the
atoms, the interaction between the atoms and the lasers, the cavity en-
ergy and the interaction between the cavity and the atoms. The Hamilto-
nian can be cast into the sum of three terms

HSYS = Hat + HCHV + Hil’lt‘ (6.1)
The first term, H,;, describes the dynamics of N four-level atoms driven

by two lasers. In a convenient rotating frame (see Appendix 6.A) it reads
(h=1)

N N
Hy = Z( > &), <r|) +2 (Qu112,(1] + Q,13) 0] + h.c.).

7=1,2,3 j=1
(6.2)

Here p; is the momentum operator of the atom j, m is the mass of the
atoms and J; are atomic detunings (see Appendix 6.A). The lasers drive
the transitions 1 <> 2 and 0 < 3 with Rabi frequencies Q; and Q,, re-
spectively.

The term H,, describes the dynamics of the cavity mode and reads

A, =—-Aata (6.3)

where A, is the cavity detuning (see Appendix 6.A), and the operators d
and @' annihilate and create, respectively, a cavity photon at frequency
w., with [@,a7] = 1.

The atom-photon interaction is treated in dipole and rotating-wave
approximation. The transitions 0 < 2 and 1 < 3 are coupled to a cavity
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mode with space-dependent strength g; cos(k ;) and g, cos(k.%;), re-
spectively. Here g; are the vacuum Rabi frequencies, %; is the position
operator of the j-th atom and is the canonical conjugate operator of
the momentum p; with [%;, p;] = i), k. = 27/A. is the wave vector of
the cavity mode and 4, its wavelength. The corresponding Hamiltonian
reads

N
Hy= ), cos(kcﬁj)(gldTlo)le + gszll)j<3| +h.c.). (6.4)
=

We consider a cavity with losses at rate x. In the following of this chap-
ter we will use both the master equation and the Heisenberg-Langevin
equation formalism. When using the master equation formalism we
model the cavity losses with the superoperator

L.p = x(2apa" — aTap — pa’a), (6.5)

where ¢ is the density matrix of the system. When using the Heisenberg-
Langevin equation formalism the cavity losses will be taken into account
with a damping term —xd and the corresponding Gaussian noise \/ﬂdi“.
The details will be clear when we introduce the two formalism.

6.2.2 Adiabatic elimination of the excited states

When the laser frequencies w;; and wy, and the cavity frequency w, are
far detuned from atomic transition frequencies, i. e., §,, 53 > &1, A, the
excited states |2) and |3) of the atoms can be adiabaticaly eliminated from
the dynamics. We now follow the derivation given in [218]. Let us first
assume that the particles do not move so that the couplings g, , cos(k.X;)
with the cavity field are fixed. In this case the states |2) and |3) of the
atoms can be eliminated in second order in an expansion in the param-
eter 1/6, 8 = min (|6,|, |5;]), assuming that[230] 5 > |5,], |A |, %, \Nag,,
\/ﬁgz, \/NQI, \/NQz, with 71 the mean photon number in the cavity. If
the center-of-mass motions is considered, then the coupling strengths
81,2 cos(k X;) vary with time. Furthermore atoms with different veloc-
ities experience different Doppler shifts, which modify the resonance
condition. These effects can be neglected when the corresponding time
scales are longer than the typical time scale in which the excited states

are occupied, i.e., when w,, k. pj/m < & (with p; = 4 /([5]-2>) [183, 231].
Here we have used the recoil frequency

k2
T om’

(6.6)

r

which scales the exchange of mechanical energy between photons and
atoms.

We adiabatically eliminate the excited states |2) and |3) by means of a
projection method [201] (the calculations are shown in Appendix 6.B)
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and obtain the effective Hamiltonian of the system composed by the two
ground states |0) and |1), which are the spin states, and the cavity mode.
This Hamiltonian is the sum of the kinetic and internal energies of the
spins, the cavity energy and the interaction of the spins with the cavity
mode and can be cast as a sum of three terms

H = HS + I:IC + I:II. (6.7)

The first term describes the dynamics of free spins and reads

N pZ
A J At A
Hg = Z:l(% +A ofaj) (6.8)
J:
where 6 |O> (1] is the lowering operator for the j-th spin. The Stark-

shifted energy splitting between the states |0) and |1)is A, = |Q,]*/5, —
|Qz|2/ 03 — ;. The second term describes the cavity energy and reads

N

Ac = D (U6 + 156/ 6) cos?(k %)) |a (6.9)

He = - ) j
j=1

It contains the shift of the cavity frequency due to the interaction with the
atoms, which scales with the frequencies U; = |g;|*/8, and U, = |g,|*/6;.
The last term describes the interaction of the spins with the cavity and
reads

N
Ay = ) (81476 + S767a + S,a6" + S3ag;) cos(k %)), (6.10)

where the coupling strength are S; = Q,g,/5, and S, = Q,g,/65.

6.2.3  Heisenberg-Langevin equations

Using Hamiltonian (6.7) we now write the Heisenberg-Langevin equa-
tions for the position and momentum operators £; and p; and for the
Hermitian operators

g =g+6, & =i(g-¢"), & =Il-l0)0  (6.11a)
. a+a" ., .a'-a
a=—— &=i— (6.11b)

The operators (6.11a) are Pauli operators and fulfill the commutation
and anti-commutation relations

Z Ziéqunmqé}la (6.123.)
q=x,y,Z
{67, 6/"} = 2[ 81 + 6"6"(1 — 8- (6.12b)

Here ¢,,,, is the Levi-Civita symbol and n,m,q € {x, y, z}. The opera-
tors (6.11b) fulfill the commutation relation [d,, 4;] = i/2.
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The Heisenberg-Langevin equations read (7 = 1)

d,. b
AT (6.13a)
d ) . e o - L
0= ke s1n(kcxj){(R*'aj"ar —R G4+ 1764 +1 ajyar> +
o A A A N 1
cos(ket)[ui(1 - ) + 1+ )]+ a2 - ).
(6.13b)
Qe _ [A — (U — Uy) cos?(k fc-)(dz +42 — l)]a.y +
de” ’ PR (6.130)
+ 2 cos(kc%))S7[1-a, — R™4),
d .y [ 1
—& =|A, — (U, — Uy) cos?(k.%; <d2+d2—_)]5x+
dt J e ( 1 2) ( C j) i 5 j (6,13(1)
— 2cos(ke%;)67[R* a, + I* &,
5 = —2cosb)[ 170, - 1'% - K- gf - R° 7]
(6.13€)
N AZ ~AZ
d 1-¢; 146 NN
s =~ AC_Z([]l 2 + U, > cos?(k.%;) |&; +
j=1
N .
cos(k X .
+) —(ZC ) &I+ — 6'R™| — xa, +V2xal",
j=1
(6.13f)
N AZ ~AZ
d 1-¢6; 1+ &
4= A Z(Ul > L+ 0, 5 8 )cosz(kcfcj) a, +
= (6.13g)
N cos(kcfcj) Xt AV R o
—ZT[UJ-R +6'1 ]—Kai+ 2Kd.
Jj=1

where R* = R(S;) + R(S,) and I* = 3(S;) + I(S,). The noise terms are

A = %ﬂl ar = 1% (6.14)
and have the correlations

@nwanay = @roape) = 0,

@nmap(e) =20, (6.15)

@nmap(y = 220,

The noise operators d;, and 4; in Eq. (6.14) are Gaussian noises with
(@a(0)) = (aj,(0) = (@ (DaL)) = 0and (@, (Daj()) = 8t — 1)
The expectation values (-) are taken over the tensor product between
the initial density matrix of the system and the external Markovian
environment with vanishing mean number of photons[232].
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We perform our study by replacing the operators in Egs. (6.13) with
scalar functions, i. e. (6(t)) = o(t) for any symmetrically ordered oper-
ator 0, and the average is taken over the initial state of the system (see
Appendix 6.C.2 for a description of the initial state). We include cavity
shot-noise as diagonal stochastic terms in the equations for the cavity
field [233, 234]. With these approximation Egs. (6.13) become a system
of stochastic differential equations. A comparison of these stochastic
differential equations with the equations obtained by a semiclassical
approximation is attempted in Section 6.D.

6.3 PRELIMINAR DISCUSSION
6.3.1 Relevant quantities

We consider the case |S;| = |S,| = S and without loss of generality we
choose S; = S € Rand S, = Se™?#. Here 2¢ € [—m, ) is the relative
phase between the Rabi frequencies Q; and Q, of the external lasers,
and S is the Raman coupling strength. In this case the interaction term,
Eq. (6.10), can be written as

H; = NSe™¢da’ + NSel?da = NSO (e?d + e7i94"), (6.16)

where the operator @ is defined as

& = cos(¢)X +sin(¢)Y, ¢ € [—%, %). (6.17)
We call X and Y'the generalized collective spin operators [213, 235] de-
fined by

N
o_ 1354 .
X= N]Z:l 7 cos(k %)), (6.18a)
1 N
V=5 Z & cos(kX;). (6.18b)

(-
1l
—

If the motion of the atoms is neglected and the atomic positions are
fixed at the cavity field maxima, i.e. cos(k.%)) = 1,Vj = 1,...,N, then
the generalized collective spin operators X and Y reduce to the x and y
components of the collective spin' J = (Jy, Jj,, J;) where

>

1o
=N Z &, i=xyz (6.19)
j=1

In this case the system is equivalent to the Dicke model [237-239] and
the average values (J,) and <fy) being different from zero indicates the
build-up of macroscopic coherence in the spins of different atoms [240].

Typically the spins §; = NJ;, with i = X, y, z are called collective spin operators because
they fulfill the well-known commutation relations [S;, S;] = lex iz 2€;;15[236].
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This phenomenon is called superradiance. For this particular case, i. e.
when the atoms are fixed at the cavity field maxima, the average values
of (J,) = (X)and (fy) = (Y) can be different from zero if the spins, on
average, are partially aligned along the x or the y direction, respectively.

However, other spatial spin structures can give rise to a non-vanishing
value of (X) and (Y). For instance, if the atoms are localized at the anti-
nodes of the cavity field mode, we can observe a non-vanishing value of
(X) or (Y) if the spins organize in a ferromagnetic pattern. This spatial-
spin pattern is an example of correlations between internal and external
degrees of freedom since

N 1 &
X) = < (6" cos(keky)) # < (6 Ncos(k.))), (6.20)

or similarly for (Y). The correlations between the positions of the atoms
and their spin can be measured by the generalized collective spin op-
erators X and Y, Eq. (6.18). In these operators, in fact, the spins 6ji are
weighted with the amplitude of the cavity field at the position of the
atom j itself.

We interpret the expectation values
X =(X), (6.21a)
Y =(Y) (6.21b)

as the components of a two dimensional vector (X, Y) that in the special
case cos(kcfcj) =1,Vj = 1,..., Nis the projection of the Bloch vector (J),
Eq.(6.19), in the x — y plane. We then define the collective spin phase as

¢ = arg(X +1Y), (6.22)

which is the angle between the generalized collective spin vector (X, Y)
and the x-axis in the x — y plane, see Fig. 6.2.

Figure 6.2: Representation of the collective spin phase ¢, eq. (6.22), on the
Bloch sphere.

So far we only discussed a static picture of the atoms. In general the
atoms are moving, thus the position of the atoms, and their coupling
with the cavity field mode, will vary with time. One important question
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that we address in our work is weather correlations (X), (Y) # 0 can arise
in presence of motion. To quantify the motion of the atoms we introduce
the average kinetic energy per particle

N (52
1 « (B
Eyin = Nj=1 - (6.23)

Moreover, to analyze the atomic spatial pattern in the cavity field mode
we introduce the bunching parameter

L X
— 2
B = N<j=21COS(kch) ) (6.24)

which characterizes the spatial distribution of the atoms: If the atoms
are uniformly distributed then B ~ 0.5, if the atoms are localized at the
cavity intensity maxima (minima) then B ~ 1 (3B = 0).

6.3.2  Spinor self-ordered state and broken symmetry

We show numerically in Sec. 6.4.1 the existence of a pumping threshold
S.: If the system is driven below threshold S < S, then the cavity mode
is empty and there is no correlations between the position and the phase
of the spins of the atoms. If the system is driven above threshold S > S,
then the cavity mode is populated and there is a build-up of correlations
between atomic positions and spins phase. The latter is called the spinor
self-ordered state. Here we discuss qualitatively some properties of the
spinor self-ordered state in order to make the rest of the discussion
clearer.

The spinor self-ordered state involves spatial density ordering with
periodicity A./2 with the atoms localized at the cavity intensity maxima,
and spatial spin ordering with periodicity 4.: all atoms localized at odd
anti-nodes of the cavity field have their spin aligned along the direction 6
(on the equator of the Bloch sphere), and all atoms localized at even anti-
nodes have their spin aligned along 6 + 7, see Fig. 6.3. The angle 6, in this
idealized picture, is one of ¢, or ¢ + 7, Eq. (6.22). In this configuration
the atoms scatter light in phase into the cavity mode. The discrete Z,
symmetry associated with the transformation (4, 6j,) — (-4, ), i.e.
with the sign change of the cavity field and with the flip of all the spins,
is broken by the transition into the self-ordered state. The breaking of
the Z, symmetry corresponds to the expectation value of the operator ®

® = (®) = cos(¢)X + sin(p)Y (6.25)

being positive or negative, while ® = 0 below threshold S < S.. The
quantity @ being different from zero indicates the build-up of correla-
tions between the atomic positions and their spin phase. We identify ®
as an order parameter.
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QIIQZ

q}/‘f /‘,f,/‘,f x

Figure 6.3: Sketch of the spinor self-ordered state: The spin of the atoms local-
ized at the maxima of the cavity field assume the opposite direction
respect to the spin of the atoms which localize at the cavity-field
minima. In this configuration the atoms scatter light in phase into
the cavity mode. The state represented in this sketch is only one of
the two possible (for a fixed ¢), the other being the one with all the
spins pointing in the opposite direction.

Some properties of the self-ordered state can be qualitatively under-
stood by looking for the states which minimize the energy. Neglecting
Ui, U, and the noise terms due to cavity losses, the steady state of the
cavity field is

oo NP0 (6.26)

A, +ix

i. e. the cavity field amplitude (a) is proportional to the order parameter
®. The interaction energy, Eq. (6.16), scales then as H; « A 2. Since we
choose A, < 0, the energy is minimal if |®| is maximal. Notice that the
energy remains constant upon a sign change of the order parameter ®.
The fact that the system, in order to minimize the energy, can randomly
choose the sign of @ is associated with the breaking of the Z, symmetry
discussed earlier.

The maximization of |®| has several implications on the properties
of the self-ordered state. First, according to Eq. (6.26), maximizing ||
corresponds to maximizing the scattering of light into the cavity mode
and having non-zero population into the cavity mode. Furthermore,
since @ is the scalar product between the vector (X, Y) and the vector
(cos ¢, sin ¢), maximizing |®| means having the vector (X, Y) co-linear
with (cos ¢, sin ¢), i. e.

¢ if @ > 0,
¢s =

= 6.27
p+7m if®<O0, (6.27)

the definition of ¢, is given in Eq. (6.22). Table 6.1 reports the sign of
the order parameter ® and of the expectation values X and Y for the
two states which break the Z, symmetry, in dependence of the sign of
the phase ¢. The condition given in Eq. (6.27) allows us to control the
spin phase ¢, by controlling ¢. This is shown numerically in Sec. 6.4.5.
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PHASE ¢ XANDY ORDER PARAMETER @

X>0,Y>0 ®>0
¢$>0

X<0,Y<0 P<0

X>0,Y<0 ®>0
p<0

X<0,Y>0 d<0

Table 6.1: Sign of the expectation values X and Y and of the order parameter ®
calculated in the states which break the Z, symmetry, in dependence
of the sign of the phase ¢ € [—7/2, 7/2).

Furthermore Eq. (6.26) allows us also to calculate the phase ¢ of the
cavity field as a function of ¢, which in the case A, < O reads

-x
Ac
arctan(L—K) —-¢ if ® <0.

arctan( )—¢—n if ® > 0,

b = (6.28)

In the following we will investigate numerically the time evolution of
the system and its ordering properties in dependence of the pumping
strength S and of the phase ¢.

6.4 NUMERICAL RESULTS

We numerically integrate the stochastic differential equations obtained
in Sec. 6.2.3 with the Monte-Carlo based method of Ref.[241]. The ini-
tial state that we use is unordered. It consists of the atoms uniformly
distributed in space and in a thermal state. The initial internal atomic
state is randomly chosen such that it is close to the ground state |0) with
high probability. For more details see Sec. 6.C.2. All the simulations are
performed with N = 100 particles. The other parameters are reported
case by case.

6.4.1 Threshold

We calculate the steady state of the system for several values of the pump-
ing strength S and report in Figs. 6.4 the cavity population (a'a), the
absolute value of the order parameter |®| and the bunching parameter
B, for different values of the energy spitting A, between the spins states,
Eq.(6.8). We observe the existence of a A.-dependent pumping threshold
S.(A.). When the system is driven below threshold S < S.(A,), the cavity
mode is empty (see Fig. 6.4(a)), there is no correlations between spins
and position (see Fig. 6.4(b)) and the atoms are uniformly distributed
in space (see Fig. 6.4(c)). In this state, the laser light scattered by the
atoms inside the cavity has a random phase and destructively interfere.
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Figure 6.4: Spinor self-ordering as a function of the pumping strength S. (a)
Cavity population (47a), (b) order parameter |®|, Eq. (6.17), and (c)
bunching parameter B, Eq. (6.24); for A, = x/10 (dashed green) over
183 trajectories, A, = x/5 (dotted red) over 102 trajectories and A, =
x/2 (dashed dotted purple) over 102 trajectories. The shaded regions
contain 90% of the trajectories. All the quantities are calculated at
time t = 800w, !. The parameters used are x = 100w,, A, = —x,
U, = U, = 0and N = 100.

If the pumping strength is larger than the threshold S > S (A.), then
the atoms self-organize and scatter the laser light constructively into
the cavity: the cavity field builds up (see Fig. 6.4(a)), the atomic positions
and spins phase are correlated (see Fig. 6.4(b)) and the atoms localize
(see Fig. 6.4(c)). In the following we first show the dynamics that, above
threshold S > S, leads to the ordered state and then characterize some
of its properties.



6.4 NUMERICAL RESULTS 123

6.4.2 Dynamics

We show in Fig. 6.5 the typical time evolution of some observables of
the system when driven above threshold S > S,. The state which breaks

(@) 0.5 (b) 0.5 -

< 0.0 > 0.0
0.5 g_ —0.5

(;\E 0.0 - s mtmanmn [ 75 0 2 WA AR A

—0.1+ —0.1+

(®) 0.0 P | (1) 081

T —0.51

—1.0 4

O - m—————
- —

T T T T T T
250 500 750 0 250 500 750

time (units of w;!) time (units of w;!)

Figure 6.5: Dynamics of the system calculated with 192 trajectories for N =
100 particles. (a) Order parameter X, (b) order parameter Y, (c) real
and (d) imaginary part of the cavity field, (e) collective spin (J,), (f)
collective spin (J;), (g) collective spin (J;) and (h) bunching parameter
(B). The shaded region contains 90% of the trajectories. The solid
blue line corresponds to the state with & < 0, the dotted orange
line corresponds to @ > 0. The parameters used are Ey;,(0) = #ix,
x = 100w, A, = —x, A, = x/10,U; = U, =0, = —m/6and S = 0.5x.

the Z, symmetry with ® < 0 corresponds to the solid blue line, while
the state with @ > 0 corresponds to the dotted orange line. In this plot
¢ = —m/6 and the generalized collective spins X and Y, shown in panels
(a) and (b), fulfill the conditions given in Tab. 6.1, as expected. Panels (c)
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and (d) show the real and imaginary part of the cavity field, respectively.
The phase of the cavity field is ¢.* ~ —77/12 for ® > 0,and ¢~ ~
57/12 for ® < 0, in agreement with Eq. (6.28). The collective spins (J;),
Eq. (6.19), have zero expectation values both in the initial state, which
is unordered, and in the ordered state (see panels (e-g)). Figure 6.5(h)
displays the bunching parameter B: In the initial state it has the value
B(t = 0) ~ 0.5 as expected for an uniform spatial density, while in the
final state B(t = 800w; ') ~ 0.8 indicating that the atoms have localized
at the cavity intensity maxima.

6.4.3 Cooling

Figure 6.6(a) shows the mean kinetic energy per atom, Eq. (6.23), as a
function of time: The initial momentum distribution of the atoms is
Gaussian with mean kinetic energy Ey;,(0) = 10Ax. The atomic motion
is cooled and the atoms reach the mean kinetic energy of Ey;, (400w, 1) ~
hx. This coincides with the temperature limit of cavity cooling [74, 75].
Figure 6.6(b) shows the Gaussian momentum distribution of the initial
state and the momentum distribution of the final state. It is evident
that the momentum distribution in the final state has a smaller width
indicating that the atoms are colder. We observe that the atoms are cooled
when the system is driven with a pumping strength S that can be both
below and above the threshold S..

1250 1 0.04 1 1

3 (a) mean kinetic g (b) initial

G | energy =

8 1000 50.03- final

o= ~

g k7]

= - o

£ 750 $0.02 1

) g

g 500 2

o £0.01

'*é 250 + g

E T T T 0'00_ : T T T —
0 200 400 —100 0 100

time (units of w;!) atom momentum p (units of 7k,)

Figure 6.6: (a) Mean kinetic energy Ey;, (solid red line) of N = 100 atoms as a
function of time, calculated over 399 trajectories. The shaded region
contains 90% of the trajectories. The dotted blue line corresponds to
Eyin = hix. (b) Momentum distribution of the atoms in the initial (t =
0) state (solid blue) and in the final (f = 400w; !) state (dashed orange).
The initial distribution of momenta is a Gaussian distribution with
kinetic energy Ey;,(0) = 107x. The parameters used are x = 100w,,
A, = —x, A, = x/100,U; = U, = 0,S = 0.2kand ¢ = 0. In this
parameters range the system is unordered.



6.4 NUMERICAL RESULTS

6.4.4 Spin-position correlations

The correlations between the position of the atoms and their spin phase
in either of the broken symmetry states are reported in Fig. 6.7. The
data correspond to Fig. 6.5 at the final time ¢t = 800w !. The two states
are connected by the transformation that flips the spins and change the
phase of the cavity field by a factor 7, as discussed in Sec. 6.3.2. The spin
flip is evident in Fig. 6.7 when comparing the top panels (which report
the correlations for the state with ® < 0) with the lower panels (which
report the correlations for the state with & > 0). The phase of the cavity
field also changes by a factor 7, in fact itis ¢, ~ 57/12 for ® < 0 and
¢." ~ —7r/12 for ® > 0, as discussed in Sec. 6.4.2. Figure 6.7 also shows
that, in both states with ® 2 0, the spatial density has periodicity 4./2
and that the phase of the spins has periodicity A..

density (a.u.)

spin (0y)
spin(gy)

spin (oy)
spin (gy)

0 0.5 1 0 0.5 1
atom position mod A, (units of A.)

Figure 6.7: Atomic spin-position correlations of the final state for the data used
in Figure 6.5. The top (lower) panels show the correlations of the
final state with @ < 0 (® > 0). (a) and (c) display the correlations
between (6*) and the position modulus 4., (b) and (d) display the
correlations between (6”) and the position modulus 4.
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6.4.5 Control of the spin phase

Equation (6.27) shows that the collective spin phase ¢, equation (6.22),
can be controlled via the relative phase 2¢ of the two pumping lasers.
Furthermore the phase ¢ also determines the phase ¢, of the cavity field,
see Egs. (6.26) and (6.28). We report in Figs. 6.8 the collective spin phase
¢, and the cavity field phase ¢, obtained from our numerical simulations,
for various values of the phase ¢. The numerical results coincide with
our analytical predictions.
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Figure 6.8: (a) Collective spin phase ¢, Eq. (6.22), and (b) cavity field phase ¢,
Eqg. (6.28), as functions of the phase ¢, calculated over 183 trajec-
tories. The solid blue line corresponds to the state with ® < 0, the
dotted orange line corresponds to @ > 0. The shaded regions cor-
respond to the standard deviation calculated over the trajectories.
All the quantities are calculated at time ¢ = 800w !. The parameters
used are S = 0.5x, A, = /10, x = 100w,, A, = —x, U; = U, = 0 and
N =100.

The interaction Hamiltonian (6.16) (and thus the total Hamiltoni-
an (6.7) of the system), considered as a function of ¢, is periodic with
period 7. However, Fig. 6.8 shows that the steady states in the ordered
phase are periodic with period 27.
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6.5 CONCLUSIONS

In this chapter we studied the dynamics of a cloud of thermal atoms
with two internal states in a lossy cavity. Raman transition between the
two energy levels of each atom are induced by two transversal pumping
lasers and a mode of the cavity. We observed the existence of an ordered
phase above a certain pumping threshold. In this ordered phase the
atomic density exhibits modulation with half cavity wavelength 4./2
and the spins assume opposite phase when they localize in the cavity
field minima or maxima. The transition into the ordered state breaks
the Z, symmetry associated with the change of the sign of the cavity
field and with the spin flip of all the atoms. We showed that cooling to
kinetic energy of the order of #x happens in both the organized and
the non-organized state. Furthermore the spin orientation inside the
cavity can be controlled by the relative phase of the pumping lasers. The
latter also fixes the cavity field phase which can be measured at the cavity
output. The organized structure emerges from the interplay between
the coherent drive of the atoms and the noisy environment of the cavity,
and from the interplay between the motion and the internal states of the
atoms.

This system can be used to explore the dynamics of strong long range
interacting spins. Envisaged applications also include sensors [242],
quantum-enhanced metrology [243] and quantum simulation [244, 245]
of quantum magnetism [47, 246] and opto-magnonic systems [48, 49].
Further developments may include the coupling of the atoms to several
cavity modes and may be used to engineer quantum spin glasses [223,
224].

APPENDICES
6.A HAMILTONIAN IN THE ROTATING FRAME

The single-particle Hamiltonian in the dipole and rotating wave approx-
imation reads (7 = 1)

~ A2 . .
AD = 2p—m + 3 wplee] + (Qe @t 2%1] + Qpei@i2t|3%0] + huc.) +
7=1,2,3
+ w.a'd + cos(k.x)(g1a7|0X2| + g,a"1X3| + h.c.);
(6.29)

here, {0, iw;, hw,, hw;} are the energies of the atomic electronic states,
wr; and wy, are the frequencies of the pumping lasers, X and p are the
position and momentum operator of the atom along the cavity axis such
that [x, p] = i, m is the mass of the atom, and 4 is the annihilation
operator of a cavity mode with frequency w, which fulfills [a,a’] = 1.
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We can express the single-particle Hamiltonian (6.29) in the rotating
frame defined by the unitary operator

0(t) = exP{i[(W)(aTa +[2x2) + (221 )iy + wL2|3X3|]t}
(6.30)
by means of HD = UAM U +i(3,0)0:

A

AW = 2= — 6,[1X1] - 6,]2)2] - 85[33] + (@1[21| + ©,[3X0] + h.c) +
— A47a + cos(k X)(g,a"10X2] + g,a"|1X3| + h.c.),

(6.31)
where the detunings are defined as
5 = (COLZ ; CUL]) Cw, &= (cuu ‘;CULZ) —w,,
W1 + @ (6.32)
53 = wLZ - CU3, AC = (T) - COC.

6.B ADIABATIC ELIMINATION OF THE EXCITED STATES

The single-particle Hamiltonian (6.31) can be written as H) = Hg+ Hy +

A

H;,,,where
A A2 T
Hg = m S111X1| —A.d'a (6.33a)
Hy = —65,|2X2| — 853)3| (6.33b)

it = (Q1]2X1] + Q,]3X0] + h.c.) +

. (6.33c¢)
+ cos(k.%)(g,a"|0X2| + g,47[1X3| + h.c.)
and we consider the master equation
op . A
3 =P = (Ls+ Lp+ Lin)p (6.34)
with
Lsp = —il[Hs, ] + L1, (6.35a)
L0 =n(2ap4" — a'ap — pa‘a) (6.35b)
Lpp = —i[Hg, p], (6.35c¢)
Lintﬁ = _i[Hint’ pA]’ (635d)

where g is the density matrix of the system. We neglect the radiative
decay of the excited states |2) and |3), this is a good approximation if &,
and J; are the largest frequencies in the system. Let £, = £g + £p and
L, = Ly, we now perform an expansion in £;.
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6.B.1  Projectors on the slow and fast subspace

We introduce the projector P = |[0X0| + |1X1| on the slow subspace where
Lg acts, and the superoperators ? and Q defined as P6 = POP and Q =
1 — P, where 6 is an operator. They have the following properties:

1. ? = Pand Q% = 9, i.e. they are projectors:
P2p = PPPPP = PpP = Pp,
Qp=0-PPp=p+Pp-2Pp=p—Pp=0p;
2. PQ=9P =0:
PO =PA-P)=(P-P)P=0,
QPp=1-P)Po=(P—-P)p=0;
3. [?, Lo] = [,Q, Lo] =0:
LoPp = —i[Hs + Hg, POP] + £, PP =
= —i[P(Hs + Hy)PP — PA(Hs + Hg)P] + PL, AP =
= —iP[Hg + Hy, p]P + PL, P = PLp,
[Q, Lol =[1—-2P, L] =0;
5. QLF = LFQ = LF!
6. [587y] = 0;
7. PLP =0:
PLyPp = —iP|Hipy, POPIP = —iP(HipyPOP — POPH;p)P =
= —i[PH, P, PpP] = —i[0, PAP] = 0;
8. QLl? = Llj’)l

Q£1?=(ﬂ—?)Llj):Ll?—?Ll.']):Ll?.

6.B.2  Effective master equation for the slow subspace

The density matrix ¢ can be splitin ¢ = (P + Q)6 = v + w, where
v=2P6=P6Pand w = 9Qp.

We now consider the interaction picture defined by the transformation
p = e *o!$ and project master equation (6.34) with ? and Q obtaining
(notice that P = e~“o!Pefo! = Pand O = Q)

6= T£15+.'Pﬁlu~), (6.363)
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where § = P = Pe%0lp = e %olpp = e %olp v = e %otw, £, =

e “0f £ eol. Note that the first term on the right side of equation (6.36a)
vanishes P£,P = 0. We formally solve equation (6.36b) and obtain

t t
w(t) = w(0) + f QL,(t)o(t)dt' + / QL (tHw(tHdr'. (6.37)
0 0

Assuming (0) = 0, namely, the state of the atom att = Oisinthe{|0), |1)}
subspace, by iteration we obtain

t t t'
w(t) = f QL,(t)o(tdt' + f QL (t) f QL,(t"yo(t")dt"dt’ + O(£3),
0 0 0

(6.38)
and substituting in equation (6.36a)
t
0(t) = PLy(1) / QL,(tHo(tHdt' + O(L3). (6.39)
0
Moving back to the Schrddinger picture the equation for v is
t
0(t) = Lov(t) + PL, / e2%t=g £ v(t)dt' =
0 (6.40)

t
= Lgu(t) + PLin / e2%0T9 L, u(t — 7)dr.
0

Nowwe perform some approximations using the fact that the parameters
in L are smaller then the parameters in £y. Since [£g, L] = 0, we have

e%oT = e(EsTLRT = LFT[1 + LT + O(L372)], (6.41)
and we expand v(t — 7) around 7 = 0
v(t—1)=v(t) —0()T + ... (6.42)
The last term in equation (6.40) becomes
t
PLin f e (1 4+ QLT + ..)Q L [v(t) — V()T + ...]dT =
0
t
= ?Lint/ e“SFTQ Ly u(t)dT +
0 (6.43)

t
+ ?Lintf eQLFTT[QLSQLimU(t) - QLlntU(t)]dT +
0

t
— PLint f e24r 120 L,0L,  O(H)AT + ...
0
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The first term in the right side of equation (6.43) is of the order %2, the

. 2A . . 22
second term is of the order g5_2’ and the third term is of the order g—a,

where g = max(gy, g, 21, Q5), A = max(d;, A, x) and § = min(J,, 53).

Keeping only the first order we obtain

t
o(t) = Lgu(t) + ?Lintf e2“r7 9 L, u(t)dr. (6.44)
0
Note that
eLFT[fintv(t) = —ieLFT[Hinta v(t)] = _ie_iHFT[Hint, U(t)]eiHFT - (6 45)
= —i[e 7 Hpe T, ()], '
thus
t t
f e“r L. u(t)dr = —if [e~HrTH, T u(t)]dr =
0 0 (6.46)

t
= —i[/ e iHrTH, eHFTdr v(1)],
0

and

e T eHFT = (Q,e1%27|2)1] + Q,e1%7(3X0| + h.c.) +
+ cos(kcx)(gre%2%a’|0X2| + g,e71%%af|1X3| + h.c.),
(6.47)

thus
t
f e_lHFTHlntelHFTdT —
0
Q. Q,, .
= [.—1(e152f — 1)[2X1] + =2(ei%! —1)[3X0| + h.c.| +
i6, 65

+ cos(kcx)[%z(l —e~%0)af|0)2| + 1%723(1 —e71%0)qa’|1X3| + h.c.|.
(6.48)

Now we use coarse graining in order to eliminate fast rotating terms in
equation (6.44): we choose a time scale At such that 651,651 < Ar <
671, A7t k7! and we apply to equation (6.44) the operator (Af) ™! /;Hm dt’
on the left. In this way the fast oscillating terms average out on the
timescale At and one obtains

0(t) = Lgu(t) + PLi (—i[H', v(1))]), (6.49)
where
=[5 5011+ 22 350) + he | +
5, J;

¥ - (6.50)
+ cos(kcx)[a—‘glaT|0X2| + 284ye] 4 he |
2 3
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Now
?Lint(_i[H/’ U]) = ?{_i[Hint’ [ ]]} = :P{ [ int> [Hl’ U]]} =
= —PH,,H'PvP + PHinthH’P + (651)
+ PH'VPH, P — PUPH'H;,P = '
= —PH,,,H'Pv — vPH'H,,,P,
and

Q Q
PH,H'P = {' oI |o)(0|+| 1' 11X1]| +

+aTacosz(kcx)[|g1| |0X0| + |g2|

+ cos(k, x)[ 181 a’|ox1| + ;gzaTll)(Ol +h.c. ”
5,

= iHeﬂ",
(6.52)

with H.g = Hfo- Now notice that (HintH’)T H'H;,, because H,,; and H’
are hermitian. Thus

PH'H, P = (PH,,,H'P)" = —iH.g,
?Lint(_i[H/’ U]) = _i[Heff: U].

Equation (6.49) becomes
0(t) = —i[Hg + Heg, 0(1)] + L, 0(F). (6.53)

Shifting the energy by means of the unitary operator

_ 1Q,/°
Ui)=1 exp( 3, —t),
finally one gets the master equation for the density matrix v(t)
O(t) = —i[Hy), v()] + L,0(), (6.54)

where

2
Hay =2 + AJ1X1] = [A = cos*(kex)(Th|0X0] + L[1X1])]aa +

(6.55)
+ cos(k.x)[S1a’|0X1| + S,a’|1X0| + h. c.]
and
_ el 1o
R S (6.56a)
2
u =&l (6.56b)

5,
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U= —l%l ; (6.56¢)
3

5 =28, (6.56d)
2

s, = 82 (6.56¢)
83

The master equation for N atoms is derived in the same way [230] and it
reads

A1) = —i[H, p(0)] + £,p(0), (6.57)
where the Hamiltonian H is
N

A, — Z(Ulﬁj A; + Uﬁ;éj) cos?(k.x;j) [aa +
=1

N
+ Z(SlaT@- + Sfﬁfa + SzaTﬁjT + S;‘aéj) cos(k.x;).
j=1
(6.58)

Here §; = |0)j<1| is the lowering operator for the j-th atom, x; and p; are
the position and momentum of the atom j, respectively. The conditions

of validity are § > ||, |A.|, x, \/Nﬁgl,\/Nﬁgz,\/NQI,\/NQZ.
6.C DETAILS OF THE NUMERICAL COMPUTATIONS
6.C.1 Units

The recoil frequency is defined as

k2
T 2m

Wy

(6.59)

where k_ is the wavenumber of the cavity mode and m is the mass of an
atom. We use the recoil frequency w, as unit of frequency. Its inverse
w; !
unit of position. With this choice we have that

is used as unit of time. We use 7k, as unit of momentum and k_ ! as

dx

— =2p 6.60

ar ~ P (6.60)
where the position %, the time t and the momentum p are expressed in

this unit system.

6.C.2 Initial state

The initial state of each atom in each trajectory are chosen randomly.
The initial position x;(0) of each atom is uniformly distributed in the
interval [0, 277). Notice that this is not a restriction since we use the unit
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system described in Sec. 6.C.1. During the evolution the positions are not
bounded. The initial momentum p;(0) of each atom follows a Gaussian
distribution with zero mean and variance Ey;,(0), where Ey;,(0) is the
mean initial kinetic energy. The initial spin state is

[1hs(0)) = sin(y/2)e'f|0) + cos(y/2)|1), (6.61)

where y is a random variable uniformly distributed in [7, 1.17), and S is
a random variable uniformly distributed in [0, 277). The initial values of
the spin variables are thus

g (0) = (,(0)|6*[25(0)),
5(0) = (4(0)[&"|5(0)), (6.62)
57(0) = (5(0)|67|5(0))-

The cavity is initially empty (47(0)@(0)) = 0. Figure 6.9 shows a sample
of initial conditions for 19200 atoms.
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Figure 6.9: Sample of initial conditions for 19200 atoms. The distribution are

normalized such that the area behind each curve is 1. The kinetic
energy is Ey;,(0) = Aix, with ¥ = 100w,

6.D SEMI-CLASSICAL TREATMENT

In this section we report the main steps of a calculation based on the
Wigner representation [105] in order to derive semi-classical equations
of motion for the system[218, 233]. The details are given in the following
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subsections. We use the tools introduced in Sec. 2.4 and 2.A. Let 6(¢t) be
the density matrix describing the cavity field degree of freedom together
with the internal (spin states |0) and |1)) and external (motional) degrees
of freedom of the atoms. Consider the operator W,(x, p, «,, ;) defined

by

N 1 * *
Wi(x, p,ay, o) = Wfdzn {en aTne X
(6.63)

cav

[ ® —2iyp
X Tr[e”a - af dVy (x + ylv(®)|x — y)e n ”
—0o0

where e = (¢p,...,ex)withe = x, p, y,nis acomplex variable, & = a, +iq;,
and Tr.,,{-} denotes the trace over the cavity field degree of freedom.
Wi(x, p, a,, a;) is an operator for the atomic spins, and a function of the
atoms’ positions x, canonically conjugated momenta p and cavity field
amplitudes a, and «;. The Wigner transformation, corresponding to
Eq. (6.63), of the master equation (6.57) leads to a partial differential
equation for the operator W. We want to treat the atomic motion and
the cavity field semi-classically. Let us now discuss the conditions under
which this is valid.

The atomic motion can be treated semi-classically when the width of
the momentum distribution Ap; of a single atom is much larger than the
photon momentum #k_, where k. is the wavenumber of the cavity mode

hk, < Ap;. (6.64)

In this limit, single photon emission or absorption does not change the
momentum distribution considerably. Accordingly, the small parameter
hk./Ap; < 1introduces a hierarchy of approximations which we trun-
cate at second order. Furthermore we require that the atomic position
uncertainty Ax; is larger than the value set by the Heisenberg uncer-
tainty principle, Ax; > 71/Ap;. Details of this calculation are reported in
Sec. 6.D.1.

A sufficient condition in order to treat the cavity field semi-classically
is to assume that the field is in a coherent state |a) with mean number of
photon |«|* > 1. This allows us to neglect third-order derivatives [233].
Details of this calculation are reported in Sec. 6.D.2.

At this point we have a partial differential equation for the operator
Wi(x, p, o, @), given in Eq. (6.74), with up to second-order derivatives
in position, momentum and cavity field variables.

In the next step we trace out the spins degrees of freedom: we consider
the equations of motion for the expectation values of the products of
spin operators (¢" ... 6/") = Tr{c?j” ~6"W },wherej #land j,l €{1,..,N}
indexes the atom and n, m = x, y, z indexes the spin component.

Our assumption is that a probability density f;(x, p, s, a,, a;) exists,
where

8= (STy e SX1s ST s ere s Shps 5Z5 0005 SZ)s (6.65)
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and that the function f; has the following properties:

1. itis solution of a Fokker-Plank equation which is equivalent to the
stochastic differential equations obtained in Sec. 6.2.3,

2. the difference between expectation values of the products of vari-
ables s}“ and the expectation values of the corresponding product

of spin operators c}j” is of the order O(N71), i.e.

Y. )
HJ 2 has—mdgt g gl 2w = oV, (6.66)

withn, € {x,y,z}, j, € {1,..N}, j, # jqif r # qand w < N.
We report in the following sections the calculation only up to the product

of one spin operator, i. e. for Tr{W} and Tr{6/"W}.

6.D.1 Semiclassical approximation for the atomic motion

Let 4(t) be the density matrix describing the cavity field degrees of free-
dom and the internal (spin states |0) and |1)) and external (motional)
degrees of freedom of the atoms. In order to treat the atomic motion
semiclassically we consider the operator

W p) = s f f (x4 YOl — yye i dNy, (6.67)

where € = (¢}, ..., €y) is a N-dimensional vector with € = x, p, y, N is the
number of particles. W;(x, p) is an operator for the cavity field degrees
of freedom and the spin states of the atoms. The Wigner transforma-
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tion, corresponding to Eq. (6.67), of master equation (6.57) leads to the
equation

3, pj it
5 Wix.p) = —Zj: ni W(x p) - ZJ:[UJ g, Wi(x, p)] +
+iA[a'a, W/t(x’ p)l+

i o R N
“32 {(Ul%* + U g)a'a 2Wi(x, p) +
7
+ BRI, p — Kg) + e T Cr, p + )| +
~ [2Wx, ) + W x4 ) +
e p- (e + U a)te]
- = Z {(Slcﬂ + Slo a+5,a’s T+ Szaa)
x | e (x, p - ky/2) + e KSW(x, p + K/2)| +
- [eikcxfﬁft(x, P+ kj/2) + e 7KW (x, p - kj/z)] X
(SlaT -+ S} o a+S,a’s; T+ Szao)} +

+ K(zaﬁft(x’ p)a7L - afaﬁ/t(xa P) - ﬁ/t(xs P)aTa),
(6.68)

where kj = (0,..., kj = k,..,0). Now, in order to perform the semi-

classical approximation, we expand the Wigner operator W(x, p + hk;/2)
in power series about p

Wi, p + hky/2) = W

apj t

(hk.)? 82 nk,\? (6.69)
+— 6p2W( )+O((Ap)).

We assume that the typical width of the momentum distribution is much
larger than the photon momentum Ap > #k., and truncate expan-
sion (6.69) at second order. Substituting in Eq. (6.68) we obtain

0 .+ .
5% p) = [£Lo + £y + LW (x, p), (6.70)

where
LoWi(x,p) = —iA Z 6] G, Wi(x, p)] +iA [a’a, W(x, p)] +
+ iZ[ﬁj, W(x, p)| +
J

+ x(2aW(x, p)a’ - a'aWj(x, p) — Wi(x, p)a'a),
(6.71a)
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£, p) = =T 1L ) - 2{61 i)
J

7 op;
(6.71Db)
LoW(x, p) = Z W(x p)l (6.71c)
J
Here we used the work operator
A 1
Dy = — =(1 + cos(2k.x an + U6 6)ata +
J 2( ( ))( 1 2%j J) (6.72)

- cos(kcxj)(Sla i+ 516 a+ Sza & + Szaa)

such thatl*}"- = %DJ is the force operator on the j-th atom. Equation (6.70)
J

is a partial differential equation with up to second order derivatives in
the variables ¢, x; and p; of the operator W(x, p).

6.D.2  Semiclassical approximation for the cavity field

Consider now the operator
I 1 * s N T *
Wx, p,a, o) = — f d?n e anx Tr{Wt(x, p)e’d “}, (6.73)
T cav

where 7 is a complex variable, a = «, + ia; with a,, a; € R, and Tr,,{-}
is the trace over the cavity field degrees of freedom. W(x, p, a,, @;) is an
operator for the spins degrees of freedom. Now we perform the Wigner
transformation, corresponding to Eq. (6.73), of equation (6.70). In order
to simplify the calculation we consider the case U; = U, = 0. We assume
that the cavity field is in the coherent state |&t) with |a|> > 1 so that
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we can neglect third order derivatives. The equation for the operator
Wi(x, p,a,, ;) = Wthen reads

ffA 2 3% \.
Sw= Z W AZ[ ] ] (aa+@)w+

134 cos(koxi)r 0T e
>3 {Kocr+Acoci—ZTCJ[I+c§x—R Gjy],W +
r J

+

14 cos(kxj tax s V]
+§£{ — A, +Z [R*6* +1-6"], Wi +

k? 2

—i cos(kx)(1+ )6[ocR++ocI+ LW|+

Z J 8apJ [J ]
k2 92

—1Zcos(k ( S 557 )[aj [ ]™ — osR™], W] +

J

Z sin(k X; i) {{6]"[0( RY + oI, W} +
J

A - -1 10 i + 45X -2y 9 ¢
+{OJ' [OCrI —CCiR ],W}—Z[I q] —R J,aT“rW]-l'

(6.74)

where R* = R(S;) + R(S,), R~ = R(S;) — R(S,), [+ = (S,) + S(S,) and
I~ = 3(S1) — S(S,). Equation (6.74) is a partial differential equation with
up to second order derivatives in the variables ¢, x;, pj, a, and q; of the
operator W = W,(x, p, a,, ;).

We now calculate the time evolution of the functions Tr{ﬁ/t(x, | Mo oci)}
and Tr{éjth(x, Dy, oci)}, where Tr{-} denotes the trace over the spins de-
grees of freedom. Tracing equation (6.74) we obtain

0 S pjd xf d? 92
ETI‘(W)— —ijmaxj -i-Z<aT.£12“|'aT.[12 +
0 .
6 r(Koc + A.y) + aocl( xo; — Acay) | Te(W) +
[k sin(k, xJ (oc R* + oc1+)
(6.75)

costko)( . 8, 3 \|o s
+—— (I . —R 3 )Tr(a W) +

— Z [kc sin(kcxj)i(arl‘ —oR7) +
j op;

cos(kexj) (3 _d e
- 2 2 i
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Using equation (6.74) we calculate Tr(6;*W):

a s b o
T 5FW) = + 7+

0 0 et
+ 3 a_oci(mx‘ - Acar)] Tr(6FW) +
— A Tr(6] W) +
_ M[i[+ _ %R+ n

— k. sin(kcxl)ai(och+ + ociI+)] Tr(W)

kZ 92
+|2cos(kex)(1+ — = J(a ]~ —oR™) +
8 6p

k, . d( _a8 3 -
+ Z Sln(kcxl)a—<R aﬁxr +1 a—al>:| Tr(O'l W) +

cos(kcxj) , 0
( aoc -R aoc>+

-2

J#l

+ k. sin(kcxj)%(och‘* + oci1+)] Tr(6{°6* W) +
J

+2,

e
Al 2

cos(tkexj) (3 3
(R 3, a_oci>+

— k. sin(kcxj)aipj(arr - ociR‘)] Tr (66 W).
(6.76)

Equations (6.75) and (6.76) are partial differential equations with up to
second order derivatives in the variables ¢, x;, pj, @, and ¢; of the scalar
functions Tr(W) and Tr(6* W), respectively.
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6.D.3  Simulated Focker-Planck equation

The system of stochastic differential equation introduced in Sec. 6.2.3 is
equivalent to the following Focker-Planck equation

aft ~ 2 3 3
—Jt _Z{maxj (aT“%-'_aO[ +‘Kaara +Ka_0£iai+

+ k. sin(k.x )( o, — R‘sjycxi +I*sFa; + I‘sjyar)i +
+ [ Acsj + 2 cos(kex;)s?(I"a, — R™ oc)]i +
+ [Aesj‘ — 2 cos(kex;)sf (R a, + I+oci)]

— 2 cos(k.x;)(I"s'at, —I+s —R7s{y —R+sjyocr)—}ft +

5i
—A.q; +Z

N . Z cos(kcxj)
j=1

cos(k xj) (1% — $R) |
J Jda,

(SRT +5T7) l — f;-

(6.77)

for the probability density f; = fi(x, p, s, a,, @;), where x and p are N-

dimensional vectors and s = (57, .., 5, 51, ... Sas 575 s ).

We define the functions
w(t,x,p,a, ;) = fﬁd3Ns, (6.78a)
W™(t,x, p, oy, o) = fs?“ﬁd3Ns, (6.78b)

MRt X, P, Ay, Q) = /s{”s}‘ftdms, (6.78c)
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wherel,j = 1,..,Nand m,n = x,y,z. Using Eq. (6.77) we now calcu-
late the equations for the functions Wand W}, Egs. (6.78a) and (6.78b).
Integrating equation (6.77) in d*Vs one obtains

LR AN
jmaxj 4\ gaz  Ot;2
0
da,

-2

J

oW _
ot

0
(ko + Acoty) + =—(xa; — A.ay)

+
aai

W+

ke sin(kex)(R¥a, + mo% +

J
cos(k.x;) L0 L0
B Ur il

(6.79)
W+

-2

J

ke sin(kcxj)aip_(I_ar “Ra)+
J

cos(kexj))( 9 3 y
- <R aOCr+I a—al)uf

Integrating equation (6.77) in s7d*Ns one obtains
LRI AR
= m ox;  4\oaz Ja;?
0 0
aO(r (KCCr + Ac“i) + a—ai(KOCi - Acar)

— AW + 2 cos(kox;)(I"a, — R o) W% +

oW
at

+

W*+

d

. . + to.)—
ke sin(kex;)(R* e, + 1 a‘)apj + (6.80)
led)(n 2 el

— Rt —
2 da, R da;

XX
+ o+

-2

J

xy
W,

ke sin(kcxj)%(l‘ar “Ra)+
J

cos(kexj)/ 9 _d
T2 (R 5o, 1 a_oci)

6.D.4 Discussion

We now identify the function Wwith Tr(W), and the function W* with
Tr(6;*W), and compare Eq (6.75) with Eq. (6.79) and Eq. (6.76) with Equa-
tion (6.80). They differ of terms of the order of O(N~!). Further analysis
is required in order to complete this treatment and verify our assump-
tions.
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SUMMARY AND CONCLUSIONS

In this thesis we have investigated the dynamics of several quantum
systems with potential applications in quantum technologies [2, 3].

In Part II we have analyzed the system composed of a single atom
trapped in an high-finesse optical cavity for the purpose of realizing a
quantum memory for single photons. The atom couples to the cavity pho-
ton field and is driven by a laser. The input photon, propagating in the
transmission line, impinges on one of the mirrors of the cavity. Photon
storage is realized by the controlled transfer of the photonic excitation
into a metastable state of the atom and occurs via a Raman transition
by suitably tailoring the laser pulse. We take into account irreversible
losses due to the finite lifetime of the excited state of the atom, due to
absorption and reflection at the cavity mirrors and due to the finite trans-
mittivity of the second mirror. We first analyze the adiabatic regime
where we compare three different protocols [122-124] and derive a new
protocol which takes into account all the irreversible losses. We also gen-
eralize a result of [124] showing that, in the adiabatic regime, there is an
upper bound to the storage efficiency which is mainly determined by the
cooperativity and the parasitic cavity losses. Furthermore we derive the
shape of the laser pulse that leads to storage of the single photon with
the maximal efficiency. We then explore the non-adiabatic regime by
means of optimal control theory (OCT): the optimized control pulse does
not lead to efficiencies higher then the one in the adiabatic limit, how-
ever the maximal efficiency can also be reached in a parameter regime
where the dynamics is not adiabatic. We also numerically determine
the lower bound to the coherence time of the photon for which a given
efficiency can be reached, and show that this is limited by the linewidth
of the cavity. Finally we analyze how such a quantum memory for single
photons can be tested with other types of light pulses. In particular,
we analyze the storage of attenuated laser pulses because, due to the
simplicity of their production, they are often employed in experimental
setups [120, 139]. We determine how the storage efficiency of a single
photon is related to the storage efficiency of a weak coherent pulse. The
method we develop can be easily extended to other type of light pulses.

In Part IIT we have analyzed a solid-state system consisting of a nitro-
gen-vacancy (NV) center embedded in a monolithic diamond structure
which is both an optical and a mechanical resonator (also called phox-
onic crystal cavity [165]). The NV-center is driven by an external laser
and interacts with the optical cavity photon field and with the strain
field of the mechanical oscillator. The optical cavity and the mechanical
oscillator are coupled by radiation pressure. Furthermore, the NV-center
excited states exhibit pure dephasing due to the phononic environment
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of the diamond crystal [160, 195]. We have characterized the dynam-
ics of cooling of the mechanical resonator with respect to controllable
external parameters, such as the laser detunings. We have determined
the cooling regime, the cooling rate, the asymptotic temperatures, and
the spectrum of resonance fluorescence for experimentally relevant pa-
rameter regimes. For these parameters we show that the addition of an
optical cavity in general does not improve the cooling efficiency, while
pure dephasing of the NV-center’s electronic transitions makes the cool-
ing more robust respect to change of external parameters. Cooling of
mechanical degrees of freedom is relevant for quantum information
processing [38-40], and for ultrasensitive detection applications [42-
46].

In Part IV we investigate the system composed of a thermal ensemble
of atoms confined in an optical cavity. The atoms are driven by two
external lasers and coherently scatter light into the cavity mode, which,
in turn, dissipate lights. Transitions between two internal states of the
atoms are induced by Raman scattering of cavity and laser photons. We
numerically predict the existence of a spinor self-ordered state which
involves a periodic spatial density with period 1./2, where 4. is the cavity
wavelength, and an anti-ferromagnetic ordering of the atomic spins
with period A.. The transition into the self-ordered state occurs with the
breaking of the discrete Z, symmetry associated with the sign change of
the cavity field and with the flip of all the spins. This phenomenon occurs
above a threshold value of the pumping lasers strength. Furthermore
we show how some properties of the spinor self-ordered state can be
manipulated by means of the external lasers, and how the light emitted
by the cavity can be used to reveal the state of the system. Envisaged
applications of this system include sensors [242], quantum-enhanced
metrology [243] and quantum simulators [244, 245].

All the systems we analyze in this thesis are presently intensively
investigated in experimental setups [120, 165, 225, 227, 247].

All the analysis presented in this thesis can be extended in various
directions, which are already discussed in each Chapter. However here
we point out some possible common paths. The methods developed
in Parts III and II, for example, can be used to investigate the develop-
ment of a quantum memory in the solid state system composed of a
NV-center in a phoxonic crystal cavity, where the nuclear spin of the
nitrogen atom [206] intrinsic to the NV-center or the nuclear spin of an
adjacent carbon atom [207]is used to store the photonic excitation. Here,
the mechanical resonator could also be driven [208] in order to improve
the storage efficiency. Another possibility, is to analyze spin synchro-
nization of an ensemble of NV-centers embedded in a phoxonic crystal.
Also, synchronization of different mechanical modes of the diamond
structure can be explored. The setup of Part IV can be investigated to
build a robust quantum memory since the symmetry broken states are
robust against fluctuations of external parameters.
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Within the last two decades, many advances have been made in the
development of quantum technologies. It is, however, still difficult to
predict what the exact physical components of future quantum technolo-
gies will be. Also for this reason, research in several different fields and
platforms is very important. This thesis is a contribution towards the
control of quantum systems for the development quantum technologies.
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