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Zusammenfassung

Naturstoffe aus Aktinobakterien sind eine wichtige Quelle fiir die Entwicklung neuer
Medikamente. Der Fokus dieser Arbeit lag daher einerseits auf der Entdeckung neuer
Naturstoffe und andererseits auf der Weiterentwicklung bereits bekannter, aber noch

ungenutzter Naturstoffe.

Durch die Auswahl und Expression biosynthetischer Genclustern aus dem Stamm
Saccharothrix espanaensis im optimierten Wirt Streptomyces lividans wurden zwei neue
Polyketid-Naturstoffe, pentangumycin und SEK90, entdeckt. Beide Stoffe wurden erfolgreich
isoliert, deren Strukturen und Biosynthesewege wurden aufgeklart und deren biologische
Aktivitat bestimmt. Ein groRer Mehrwert der heterologen Expression als universellen Ansatz
fur die Entdeckung neuer Naturstoffe auch aus nicht-Streptomyces Aktinobacterien konnte

hiermit aufgezeigt werden.

Die Polyketid Naturstoffgruppe der Pamamycine zeigt eine Vielfalt an unterschiedlichen
biologischen Aktivitdten, was sie zu einem interessanten Forschungsgebiet macht. Ein
Hauptaspekt, der die Weiterentwicklung dieser Stoffe zu industriell genutzten Stoffen
verhindert, ist die Komplexitdt deren lIsolierung, da durch den Einbau verschiedener
Primdrmetaboliten mindestens 18 verschiedene Derivate produziert werden. Durch gezielte
genetische Modifikation der primaren Stoffwechselwege in Streptomyces albus 11074 konnte
die Versorgung dieser Metaboliten modifiziert und die Produktion der Pamamycin Derivate

erfolgreich gesteuert werden.



Abstract

Natural products from Actinobacteria are an important source for the development of new
medicines. The focus of the presented work was therefore, on the discovery of new natural
substances and on the further development of already known, but unexploited natural

products.

By selecting and expressing biosynthetic gene clusters from the strain
Saccharothrix espanaensis in the optimized host Streptomyces lividans, two new polyketides,
pentangumycin and SEK90, were discovered. After their successful isolation, their structures
and biosynthetic pathways were elucidated, and their biological activity was determined.
With this application of the heterologous expression, we could demonstrate its great utility
as universal approach for new natural products discovery also from non-Streptomyces

Actinobacteria.

The group of polyketide natural products pamamycins possesses a variety of biological
activities and is therefore, a very interesting research topic. A main aspect that prevents
their further development to industrially used substances is the complexity of their isolation,
since at least 18 different derivatives are produced by the incorporation of different
precursors. Through genetic manipulations of primary metabolic pathways in
Streptomyces albus 11074, the supply of precursors into the heterologously expressed
pamamycin biosynthetic pathway was changed leading to a modified spectrum of

accumulated pamamycins.
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1. Introduction

1.1. Natural Products are a main source of pharmacological lead
compounds.

Natural products provide lead structures for novel active pharmaceutical ingredients and are
therefore, one of the key sources for future drugs.! The classic Waksman approach based on
activity guided screening used since 1940 resulted in the discovery of numerous clinically
relevant compounds. Its success kick-started the golden era of antibiotics that lasted until
the 1980s.23 Apart from the treatment of bacterial infections, natural products are used for
a wide variety of applications, amongst others for the treatment of cancer, diabetes and as
lipid-lowering agents.* In general, natural products are isolated from many different sources.
Most identified natural products (~350.000) are derived from the Plant Kingdom. Research
of the Animal Kingdom, especially the marine invertebrates, resulted in the discovery of
100.000 compounds up to now. Considering natural products of microorganisms origin
(~70.000), the highest rate of bioactivity was observed for compounds derived from
Actinobacteria.> Streptomyces, the largest genus of Actinobacteria, are well-known for their
capacity to produce structurally-diverse secondary metabolites® as illustrated with an
excerpt of compounds shown in Figure 1. Since their biosynthesis relies only on primary
metabolites derived from catabolic pathways, two main factors contribute to the structural
diversity of these secondary metabolites. Firstly, the enzymes that synthesize natural
products assemble the utilized building blocks into a variety of core structures. For example,
polyketides are derived from acyl-CoA-esters such as acetyl-CoA, propionyl-CoA, malonyl-
CoA or methylmalonyl-CoA and many others, while Ribosmally-synthesized and post-
translationally modified peptides (RiPPs) and Non-ribosomal Peptides (NRPs) are assembled
from proteinogenic and non-proteinogenic amino acids that are specially synthesized for
their assembly line.” Secondly, post-translational enzymatic modifications result in drastic
alterations of the produced core structure. These modifications can include reduction and
oxidation of carbon-carbon bonds, glycosylation, hydroxylation, methylation, amination,
carboxylation and more.2 While the classic Waksman approach of activity guided screening
in Actinobacteria led to the discovery of a large number of bioactive natural products shortly
after its implementation, its significant limitation became evident in recent years: already

known natural products are constantly rediscovered resulting in an overall
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deceleration of the discovery process.>® To overcome these challenges, scientists
constructed databases of identified natural products describing their chemical and physical
properties. These databases lead to the development of the procedure called dereplication.
This procedure includes the analysis of extracted metabolites using high performance liquid
chromatography coupled with high resolution mass spectrometry (LC-HRMS), followed by
the systematic comparison of the respective chromatograms with natural product

databases.

While the dereplication reduced the rediscovery rate of natural products, it presented its
own limitations including a high expenditure of time due to lack of automation and error-
proneness. For example, detected mass-to-charge ratios belonging to formed adduct ions or
fragments of previously discovered natural products can mistakenly be considered as novel
compounds. Additionally, mass-to-charge ratios of novel and previously discovered
compounds can be identical, presenting the risk for novel compounds being overlooked,

which is especially the case for smaller molecules.!?

Several methods have been developed in order to increase the general efficiency of the
discovery of novel natural products. The “one strain many compounds” (OSMAC) approach,
one of the earliest methods, included the modification of cultivation conditions (media
composition, aeration, culture vessel, addition of enzyme inhibitors) and its first application
resulted in the identification of 20 novel metabolites from different microorganisms.'?
Another approach is the targeted interaction screening, which includes the co-cultivation of
two different microbial strains. A successful application of this approach included the co-
cultivation of Streptomyces coelicolor M145 with Amycolatoposis sp. AA4, which resulted in
the production of amycomicin, a potent antibiotic against Staphylococcus aureus.’® Recent
publications of Seyedsayamdost et al. showed another powerful tool for the identification of
natural products. They constructed a chemical library including 640 compounds and
supplemented the media of the growing bacteria (Burkholderia thailandensis) with
compounds from the chemical library. To screen the 640 differently grown colonies, they
used high-throughput elicitor screening (HiTES) and observed activated natural product

production in several cases. Interestingly, the media supplementation with sub-toxic
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concentration of known antibiotics (cefotaxime, ceftazidime, trimetoprim, and piperacillin)

showed the best results in terms of the activation of secondary metabolism.41>

1.2. Groups of Natural Products

Natural products are generally classified according to their biosynthetic origin. Terpenes and
terpenoids are the largest class of small molecule natural products.'® They derive from the Cs
substrates dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP). One
molecule of DMAPP and one or more molecules of IPP are condensed in a “head-to-tail”
fashion to form geranyl-diphosphate (Cio), farnesyl diphosphate (Cis) or geranylgeranyl
diphosphate (Cy0). Farnesyl- and geranylgeranyl diphosphate can then condense to the
squalene, which is a precursor for a variety of important natural products including
cholesterol and B-carotenoids. The different C10-Cao precursors are processed by terpene

synthases to form the finalized terpenes and terpenoids.

Amino acid derived natural products can either be assembled by specialized assembly lines
or via the translational apparatus of the ribosome. The large biosynthetic gene clusters
(BGC) responsible for the non-ribosomal peptide (NRP) production encode a modular
assembly line. Each module is responsible for the incorporation of a single amino acid.
According to this rule of collinearity, for example a pentapeptide requires five modules to be
built (Figure 2).17 The typical NRP-synthase (NRPS) carries at least 3 domains in each module.
1 — The adenylation domain (A) is responsible for the selection, activation and loading of the
amino acid onto the thiolation domain. 2 — The thiolation domain (T) or peptidyl-carrier
protein (PCP) carries a 4’-phosphopantetheine moiety and is responsible for the transfer of
the growing amino acid chain between the domains and modules. 3 — The condensation
domain (C) catalyzes the amide bond formation between the selected extender amino acid
and the growing peptide chain. The incorporation of reductive (Re), oxidative (Ox),
methylation (M) and other domains into the assembly line can drastically modify the peptide
chain. The final domain usually carries a thioesterase (Te) activity that disconnects the
oligopeptide from the enzyme.*® In contrast to the translational apparatus of the ribosome,
non-ribosomal peptide synthetases can utilize non-proteinogenic amino acids that most

often are specially synthesized by enzymes encoded in the NRPS BGC.1°
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Figure 2: Schematic representation of the modular NRPS biosynthesis of viomycin.

The biosynthetic gene clusters for Ribosomally-synthesized and post translationally modified
peptides (RiPPs) are considerably smaller than NRPS (15 kbp or less).?° Even though there
are more than 20 sub classes, their BGCs usually contain the genes encoding the precursor
peptide, a regulatory element, a transporter protein and to some extent tailoring enzymes.
Although the design of the precursor peptides varies in the different subclasses, they usually
have a core peptide- and a leader peptide region. After the production of the precursor
peptide by the ribosome, the leader peptide is recognized by tailoring enzymes, which
subsequently modify the core peptide. A following proteolysis and export out of the cell will

deliver the mature RiPP.2!

1.2.1. Polyketides

Polyketides are a large group of natural products that, based on their structural properties,
are divided into sub-group of polyphenols (or aromatic polyketides), macrolides, polyenes
and polyethers.?? Similar to NRPs, their biosynthetic gene machinery works in an assembly

line fashion. Polyketide synthases (PKS) are a family of multi-domain enzymes or large
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enzymatic complexes that can be divided in three main groups depending on their
organization and functional peculiarities. 1 — Type | PKS are large modular enzymes, which
can work either in conveyor or iterative fashion. Similar to NRPS, the size of the produced
polyketide is defined by the number of modules available (with some exceptions for the
iterative Type | PKS). 2 — Type Il PKS are aggregates of mono-functional enzymes (acyl-carrier
protein, ketosynthase-a, ketosynthase-B). The size of the polyketide is defined by a channel
formed between the a-unit and the B-unit of the complex.?? 3 — Type Il polyketide synthases
form a homodimer and act directly on acyl-CoA ester, and thus, the group is defined by the

absence of an acyl-carrier protein.?*

1.2.2. Type | Polyketides

Type | PKS can be divided by its mode of action into modular and iterative enzymes.?>2¢ The
highly used antibiotic erythromycin is a modular-assembled polyketide and the synthesis of
its core unit 6-desoxyerythronolide B is one of the best studied biosynthetic routes (Figure
3).2” The 6-deoxyerythronolide B synthase (DEBS) is the prototype of non-iterative type |
PKS. It consists of three distinct proteins DEBS 1, 2 and 3, each carrying two biosynthetic
modules (DEBS 1 has an additional loading module). Each module contains a set of domains
including an acyl-carrier protein (ACP), an acyltransferase (AT) and a ketosynthase (KS),
combined with a different set of ketoreduction domains.?® The first and last modules of type
| PKS are an exception. The loading module usually contains only an AT and an ACP and
starts the biosynthesis with the selection of the starter unit and its transfer to the following
module. The last module contains additionally a thioesterase (TE) domain and terminates
the reaction. Modules can contain a varying set of ketoreduction domains that are
responsible for different reduction degrees of the keto-groups, which are formed during the
condensation of the acyl units. These domains can include a ketoreductase (KR), an enoyl-
reductase (ER) and a dehydratase (DH).2>3° Among all domains, the ACP holds a special
function. Through a sulfur-carbon bond between its 4’-phosphopantetheine moiety and the
growing polyketide chain it can transport the covalently bound chain between the single
domains of the polyketide synthase. With a specialized active site, the AT chooses the

extender unit (e.g., malonyl-CoA and methylmalonyl-CoA) and transfers it to the 4’-
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phosphopantetheine moiety of the ACP.3! The ketosynthase carries the growing polyketide
and catalyzes a decarboxylative Claisen condensation between the extender units delivered
by the ACP and the polyketide chain. Subsequently, the chain is carried over to the KS of the
next module by the ACP. Every additional module in the domain can further modify the
growing chain. The KR reduces the ketone to a hydroxy group, the DH removes the hydroxy
group and creates an alkene and the ER reduces the alkene to an alkane. The C-terminally
located TE domain usually catalyzes the cleavage from the PKS, cyclizes the growing
polyketide chain and subsequently forms a macrolactone.3? Structures generated by type |
PKS can, to a certain degree, be predicted using bioinformatics tools, while the possibility of
domain repetition and domain skipping renders absolute predictions of the chemical

structure impossible.

Compared to modular type | PKS, the iterative type | PKS highly resembles the type | fatty
acid synthases (FAS).?> The fatty acid synthases utilizes acetyl-CoA and malonyl-CoA as
building blocks and connects them via Claisen condensation. The products are generally fully
reduced saturated fatty acids. In contrast to the FAS, type | PKS can produce fully reduced,?3
partially reduced®* or non-reduced compounds.® Opposed to modular type | PKS, iterative
type | PKS are composed of a single large enzyme, which is used in an iterative fashion. The
encoded domains and the mode of assembly are identical to modular type | PKS. The
different degrees of reduction by the iterative type | PKS are achieved through the absence

of specific domains, inactive domains or domain skipping.?% 3¢

1.2.3. Type Il Polyketides

Similar to the iterative type | PKS, genes encoding the biosynthesis of type Il polyketides
resemble highly the type Il FAS and work iteratively. However, structural differences
between the derived products from type | and type Il PKS are considerable.?” The mono-
enzymatic sub-unit KS a, the chain length determinant sub-unit KS B (also referred as chain
length factor, CLF) and the ACP work iteratively in a three-step cycle (Figure 4).38 First, the
growing polyketide chain is loaded to the KS a. Second, a new building block is transferred to
the 4’-phosphopantetheine of ACP. Third, the chain elongation is performed with a
decarboxylative Claisen condensation by the KS a accompanied with the transfer of the
growing chain on the ACP. At last, the elongated polyketide chain is moved back to the
20



catalytic cystein of the KS a. The number of iterations is determined by the length of a
channel formed by the CLF subunit. After the described elongation cycle, tailoring steps are
performed.3>4! Usually, the nascent polyketide chain undergoes single reduction by a
ketoreductase and a cyclization and aromatization by a series of cyclases and bifunctional
cyclases/aromatases, resulting in the formation of polyphenolic compounds.*? Further
modifications take also often place and include i.a. aromatization, oxygenation, oxidation,

additional reductions, glycosylation, acylation, leading to the diversity of polyketides

produced by type Il system.
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Figure 4: Schematic representation of the biosynthesis of e-rhodomycinon.
1.2.3.1. Angucyclines

Angucyclines are the largest group of polycyclic aromatic type polyketides assembled by type
Il PKS. Since the discovery of tetrangomycin®® in 1965, extensive natural product research
resulted in the discovery of more than one hundred, mostly antibiotic and cytotoxic active,
angucyclinones exclusively derived from Actinobacteria (Figure 5). Characteristically,
members of this group contain a benz[alanthracene moiety, which in some cases is
drastically rearranged through extensive oxidative reactions and tailoring steps.'> 44 The
biosynthesis is usually initiated with an acetyl-CoA starter unit and elongated with 9
malonyl-CoA units, resulting in the decaketide intermediate. Typically, a direct cyclization of
the decaketide towards the benz[a]anthracene moiety is dictated by dedicated cyclases

enzymes.® > Nevertheless, in two cases an initial cyclization towards an anthracycline type
21



backbone with a subsequent rearrangement of ring A to the benz[a]anthracene moiety was
reported for the biosynthesis of PD116198 and BE-7585A.46*” A well-studied example of an
angucycline biosynthesis is the jadomycin case. The ketoacyl-synthase JadA, the chain length
factor JadB and the acyl carrier protein JadC form the initial decaketide, which is reduced by
the ketoreductase JadE and cyclized by the cyclases JadD and Jadl to the first known
angucyclinone intermediate UWM®6.%4° The previously described steps are highly similar in

the biosynthesis of the majority of angucyclinones. In the case of jadomycin, the formation
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Figure 5 Examples of angucyclines and angucyclinones, important steps in their biosynthesis and commonly observed shunt
products.

of UWMSG is then followed by a sequence of reductive and oxidative steps, resulting in the
formation of dehydrorabelomycin and the oxidation and very rare cleavage of ring B.
Thereafter, different amino acids can be incorporated in the B-ring, which to the best of our
knowledge is unique for jadomycin.*® >05% The last step of jadomycin’s biosynthesis is the
glycosylation at the hydroxy group of ring D.>> Considering the regulation of jadomycin’s

biosynthesis, five genes, known as jadWi.z and jadRi-;, are responsible for its putative
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control. While the jadW genes resemble gamma-butyrolactone autoregulators, a class of
regulators known to be involved in the production of secondary metabolites and
morphological differentiation, the genes jadR; and jadR> were identified as “atypical”
response regulator (jadR:) and “pseudo” GBL receptor (jadR;). The influence of these genes
on jadomycin’s production was investigated with mutational studies. The deletion of jadW:
had a negative impact on the growth and sporulation rate of S. venezuelae ISP5230 and on
jadomycin’s production. Furthermore, a detailed study of jadR: and jadR: revealed them to
be an interacting regulatory system, where JadR; is controlling the expression of jadR; and
therefore, the expression of jadomycin’s biosynthetic genes.>®® Additionally, the

biosynthesis of Jadomycin B in Streptomyces venezuelae ISP5230 is controlled by an atypical

mechanism and activated by environmental stress such as ethanol toxicity or heat shock.®!

During the biosynthesis of jadomycin and other angucyclines and angucyclinones, errors in
the cyclization of the nascent polyketide chain and processing of UWM®G6 can occur, resulting
in the accumulation of different shunt products. Commonly observed shunt products are
SEK43 and rabelomycin. The former was identified through the expression of
tetracenomycins minimal PKS genes, actinorhodin’s ketoreductase and griseusin’s
aromatase without a corresponding cyclase. It has been shown that the formed decaketide
can spontaneously cyclize to SEK43.%% The latter was initially thought to be the main product
of an angucyclinone BGC of S. olivaceus ATCC 21, but this is contradicted by the rabelomycin
identification together with the native products in numerous heterologous expression
experiments with for example gilvocarcins BGC.®® Therefore, rabelomycin has been
recognized as shunt product that occurs through the oxidation of the intermediate UWMG6

followed by a spontaneous reduction.%

1.2.3.2. Macro-poly-olide antibiotics

Macro-poly-olide antibiotics, a unique group of polyketides, can be divided in two sub-
groups based on their structural features, macrotetrolide (nonactins) and the macrodiolides
(pamamycins).®>% Compounds of both classes possess an enormous variety of biological
activity, including antifungal, antibacterial and anticancer activity, and contain a similar
structural backbone that includes tetrahydrofuran moieties as well as four or two
70-72

macrolactone forming ester bonds.

23



1.2.3.2.1. Macrotetrolides

Macrotetrolides include nonactin and its derivatives monactin, dinactin, trinactin and
tetranactin. Nonactin was the first macrotetrolide that has been identified.”? It is composed
of four enantiomeric units of nonactic acid. Its biosynthetic gene cluster has been identified
by cloning 55 kbp region using the nonR resistance gene as probe. An analysis of the BGC
revealed the presence of five genes encoding ketosynthases (nonJ, K, P, Q, U) and four genes
encoding ketoreductases (nonE, M, N, O), while no gene encoding an ACP has been found.”®
7375 All ketosynthases of nonactin’s BGC highly resemble ketosynthases involved in the
biosynthesis of type Il polyketides and fatty acids, which usually require an ACP to mediate
the growing carbon backbone between the involved proteins. To exclude the involvement of
a trans-ACP located in the genome of S. griseus, nonactin’s BGC was successfully cloned and
expressed in Streptomyces lividans. Extensive 2H, 3C and 80 labelled precursor feeding
studies have been carried out in order to elucidate the biosynthesis of nonactin (Figure 6). It
has been shown that the initial step for the formation of nonactic acid is the assembly of
succinate and malonate (N1). Subsequently, the growing polyketide chain is elongated with
malonate and methylmalonate (N2, N3 & N4). The ketoreductases (NonE, M, N, O) reduce
the ketogroups to two hydroxy groups and one alkene. The CoA-ligase NonL and the
hydratase NonS form the tetrahydrofuran moiety out of one hydroxy group and the alkene,
resulting in nonactic acid. As a next step, the ketosynthases NonJ (N5) and NonK assemble
four nonactic acid units to form nonactin and its derivatives. The derivatives of nonactin are
formed by the incorporation of ethylmalonate instead of methylmalonate into the positions

R1-Ra.

1.2.3.2.2. Macrodiolides

The macrodiolides pamamycins are a group of natural products that contains more than 18
derivatives.?>%® The BGC of pamamycins was first identified by Rebets et al. through
alignment of antiSMASH predicted BGCs in the genome of the two pamamycin producing
strains S. alboniger DSMZ40043 and Streptomyces sp. HKI1 118. The 23 kbp large BGC is
highly similar to nonactin’s BGC with only a few differences: Pamamycin’s BGC consists of
two core regions left and right and contains two additional KS, an aminotransferase (pamX),

a methyltransferase (pamY) and two regulatory elements (pamR; and pamR2).”®
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Furthermore, an ACP has been identified in the left core of the cluster, indicating the

necessity of an ACP as opposed to the biosynthesis of nonactin. An in vitro analysis of PamA

Biosynthesis of nonactin
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Figure 6 Structures of the macro-poly-olide antibiotics, Nonactin and Pamamycin, and their biosynthetic pathway.

confirmed its function as ketosynthase in the formation of the initial intermediate 3-

oxyadipyl-CoA or 2-methyl-3-oxoadipyl-CoA (P1) through condensation of malonyl-CoA or
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methylmalonyl-CoA and succinyl-CoA (Figure 6).”® The product is rotated on the molecule of
Co-enzyme A by the acyltransferase PamB. The resulting compound (P2) is elongated
through a condensation with an acyl-CoA derivative (acetyl-CoA, propionyl-CoA or butyryl-
CoA) followed by an elongation with methylmalonyl-CoA or ethylmalonyl-CoA by the KS
PamD and PamE (P3). The resulting product is further modified in two different ways by
pamamycin’s biosynthetic enzymes. In the first branch, the ketosynthases PamF and PamG
elongate P3 to P4 by adding one more molecule of P2 and one molecule of methyl- or ethyl-
malonate, correspondingly. P4 is subsequently modified towards the intermediate named
hydroxy acid L (large). In the second branch, P3 is used by pamamycin’s biosynthetic
enzymes (PamO, M, N, S) to form hydroxy acid S (small). The resulting intermediates,
hydroxy acids S and L, are activated by the acyl-CoA ligase PamL and assembled by the
ketosynthases, PamJ and PamK. With the elucidation of pamamycin’s biosynthesis, the
reason for the high derivative count has been identified: The involved ketosynthases utilize
different malonyl-CoA derivatives, which results in sidechains of different lengths (R').
Furthermore, non-methylated and partially-methylated amine derivatives were identified
and through incorporation of different acyl-CoA units the peripheral side chains (R) can vary
as well.”® This variation in incorporation and the resulting high derivative count is one of the

major obstacles for the development of downstream applications of pamamycins.

1.3. Polyketides biosynthesis precursors supply pathways

Despite the enormous variety of the chemical structures of natural products, their
biosynthesis pathways are utilizing only a limited number of precursors that with some
exceptions originate from the primary metabolism of the producing organism. In the case of
polyketides only several common acyl-CoA derivatives are used. Mostly, these acyl-CoA
esters are intermediates or products in the common metabolic pathways. Only some special
elongation and starter units for the biosynthesis of polyketides are synthesized by dedicated
enzymes encoded by genes within particular BGCs. Others, e.g., acetyl-CoA, malonyl-CoA,
methylmalonyl-CoA, butyryl-CoA are accumulated within the network of anabolic and
catabolic reactions (Figure 7). In order to understand the supply of precursors into the
biosynthesis of secondary metabolites, the entire network of metabolic pathways within the

producing organism should ideally be considered.
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1.3.1. Acetyl-CoA and Malonyl-CoA

Due to the high similarity of PKS to FAS, it is not surprising that malonyl-CoA is one of the
most commonly used precursors for the biosynthesis of polyketides. For the formation of
malonyl-CoA, two possible routes are generally accepted. In the first pathway, acetyl-CoA is
carboxylated by the acetyl-CoA carboxylase (ACC). ACC is an essential enzyme and crucial for
the survival of the cell and usually multiple copies of its gene can be found in genomes.”’-’8
The second pathway includes the direct conversion from malonate to malonyl-CoA by the
malonyl-CoA synthase (MatB).” Malonate as a precursor is supplied by the degradation of
pyrimidines.8%8! Considering the malonyl-CoA concentration, the overall influence of the
second pathway is unknown and expected to be minimal.” Usually, the gene encoding the
malonyl-CoA decarboxylase can be found in proximity to the gene encoding the malonyl-CoA
synthase. While the malonyl-CoA synthase activates malonate to malonyl-CoA, the malonyl-
CoA decarboxylase transforms malonyl-CoA to acetyl-CoA. The proximity of the genes

encoding both enzymes indicates the direct conversion of malonyl-CoA, derived from the

pyrimidine pathway, to acetyl-CoA.%°

Acetyl-CoA is one of the most important primary metabolites and its supply is very complex.
One of its main sources is the glycolysis. As a final step of the glycolysis, pyruvate is
decarboxylated to acetate and activated to a CoA-ester by the pyruvate dehydrogenase
complex.828 An additional supply of acetyl-CoA is through the B-oxidation of fatty acids.?
During this process, the acyl-CoA dehydrogenase reduces the fatty acid between position 2
and 3 to an alkene. Subsequently, the enzymes enoyl-CoA hydratase and hydroxyacetyl-CoA
dehydrogenase oxidize the fatty acid to a 3-keto-fatty acid. At last, the thiolase reaction
results in the formation of acetyl-CoA and a shortened acyl-CoA derivative.®> At low glucose
levels acetyl-CoA can be supplied by various other pathways. First, acetate, if available, can
be activated with a CoA-ester by the acetyl-CoA synthetase.®® Second, ethanol can be a
putative source through repetitive oxidation catalyzed by an alcohol dehydrogenase and an
aldehyde dehydrogenase.?’” Third, branched chain amino acids, such as valine, leucine and

isoleucine can be reduced to isobutyryl-CoA and mutated by the isobutyryl-CoA mutase to

butyryl-CoA. Butyryl-CoA can further be degraded to acetyl-CoA through B-oxidation.®
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1.3.2. Methylmalonyl-CoA, Propionyl-CoA and Succinyl-CoA

Methylmalonyl-CoA is commonly incorporated by type | PKS and is one of the main building
blocks used in the biosynthesis of erythromycin.?® Additionally, it has been reported to be

used in the formation of specialized fatty acids within Mycobacterium tuberculosis.®

In terms of the supply of methylmalonyl-CoA, three biosynthetic pathways have mainly been
reported. The most influential source for the intracellular concentration of methylmalonyl-
CoA is the carboxylation of propionyl-CoA by the propionyl-CoA carboxylase (PCC).*°
Propionyl-CoA can be derived from a variety of sources, including the degradation of odd-
numbered and branched chain fatty acids, methionine, valine and isoleucine and the
catabolism of cholesterol.’’®> Additionally, propionyl-CoA can be formed by the direct
activation of propionate through an acyl-CoA ligase.®®* Once formed, propionyl-CoA can be
carboxylated by the biotin dependent propionyl-CoA carboxylase.’® Furthermore, loose
substrate specificity of ACCs and butyryl-CoA carboxylases (BCC) have been reported and can

therefore, also accept propionyl-CoA as substrate for carboxylation.®*

Succinyl-CoA is another putative predecessor of methylmalonyl-CoA. It is a key intermediate
in the tricarboxylic acid cycle (TCA) and formed by the decarboxylation of a-ketoglutarate,
catalyzed by the a-ketoglutarate dehydrogenase. The conversion of succinyl-CoA to (2S)-
methylmalonyl-CoA occurs in two steps. First, the Methylmalonyl-CoA Mutase (Mcm)
catalyzes a complex radical mutation from succinyl-CoA to (2R)-methylmalonyl-CoA.
Thereafter, the methylmalonyl-CoA racemase converts the stereochemistry of the methyl-
group to (2S)-methylmalonyl-CoA.?>%” The chemical balance of this two-step reaction is
highly dependent on the growth state of the bacteria and the carbon source available in the

medium.%8

Studies in Streptomyces species using labelled valine revealed a second pathway for the
degradation of valine to methylmalonyl-CoA. The newly proposed pathway, like the original
one, is initiated with the deamination of valine to 3-methyl-2-oxobutanoate by the valine
dehydrogenase.?®1% The subsequent steps in the pathways ultimately lead to B-hydroxy-
isobutyryl-CoA. After the formation of this intermediate, the newly proposed pathway is

branching from the classical pathway for valine degradation. In the original pathway, the
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CoA-ester is firstly cleaved and secondly the hydroxy group is oxidized to an aldehyde. The
pathway is finalized by the decarboxylation and the activation of the aldehyde group with a
CoA-ester to propionyl-CoA. Considering the newly proposed pathway, the hydroxy group is
immediately oxidized to an aldehyde, while the initial CoA-ester of hydroxy-isobutyryl-CoA is
not cleft. The aldehyde is subsequently oxidized to a carboxyl group. Hence, the formation of
propionyl-CoA is omitted and the pathway results in the direct formation of methylmalonyl-

CoA.100

1.3.3. Ethylmalonyl-CoA

Compared to its derivatives malonyl-CoA and methylmalonyl-CoA, ethylmalonyl-CoA is rarely
incorporated into polyketides. Its biosynthetic roots can be reduced to two possible
pathways. In the first pathway, a condensation of two acetyl-CoA units by the B-ketothiolase
to acetoacetyl-CoA is followed by a reduction to hydroxy-butyryl-CoA by the acetoacyl-CoA
reductase. The subsequent dehydration results in crotonyl-CoA, which is reduced and
carboxylated by the crotonyl-CoA-reductase/carboxylase to ethylmalonyl-CoA. This
ethylmalonyl-CoA pathway assimilates acetate and supplies the tricarboxylic acid cycle (TCA)
with succinyl-CoA. The pathway is an alternative to the glyoxylate- and methylaspartate

cycle. 101

Another putative source for ethylmalonyl-CoA is the carboxylation of butyryl-CoA. Butyryl-
CoA can derive from a variety of pathways, including the degradation of fatty acids and
several amino acids.’®? Specialized butyryl-CoA carboxylases have been reported.’
Nevertheless, the relaxed substrate specificity of ACCs, discussed previously in Section 1.3.2,
opens the possibility of the butyryl-CoA carboxylation by an ACC, which could additionally

result in the formation of ethylmalonyl-CoA.%*

1.4. Genome mining for new Natural Products

In the early 2000s, the genomes of Streptomyces coelicolor and Streptomyces avermitilis
were sequenced.1%3-19 Since the number of BGCs in both strains outpaces the number of the
corresponding produced natural products, the idea of genome mining was initiated: This
included the use of available genomic information for the prediction of BGCs; the activation

of their expression and thus, the production, isolation and biological activity testing of the
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corresponding natural product.1% Later on, the identification of biosynthetic gene clusters of
known natural products became another core interest of the genome mining approach.®
Before genomic data became widely available, researchers had to take conserved regions of
identified BGCs and use them as probes in southern blot.1% With the emergence of next
generation sequencing and expanding accessibility of genomic information, this tedious
laboratory work was mostly replaced by in silico predictions of BGCs. The deepening of the
understanding of biochemical mechanisms in the biosynthesis of particular groups of natural
products led to the emergence of several bioinformatics tools dedicated to the identification
of corresponding BGCs. The logical development of these tools led to their combination
resulting in powerful and versatile softwares like antiSMASH and PRISM, which allows the
prediction of many different types of BGCs within sequenced genomes.1%7-19° Additionally,
the construction of arranged genomic libraries became more reasonable due to the
significant progress in sequencing technology, generally leading to a decrease in the cost of

the procedure.?’

Both aforementioned factors enabled the cluster-first approach: the screening of promising
genomes for unique BGCs, the construction of genomic libraries and the heterologous
expression of the identified BGCs. The cluster first approach includes the selection of
promising candidate genomes. Doroghazi et al. showed that Pseudonocardia possess a
similar number of BGCs per genome compared to Streptomyces and therefore,

Pseudonocarida are an underutilized source for the discovery of new natural products.1°

The strain Saccharothrix espanaensis, a member of the Pseudonocardia, was discovered by
Labeda and Lechevalier in Spain in 198911, It forms yellow-brown mycelium and does not
produce spores during his growth cycle. Saccharothrix espanaensis is known as producer of
saccharomicins A & B, two derivatives with antibiotic activity!*2. Their unique structure
contains a small aglycon with 17 sugar moieties attached.''>*'3 The corresponding BGC was
cloned and the biosynthesis of its aglycon has previously been elucidated!!4. Furthermore,
the efficient glycosylation of polyphenolic compounds by this strain has been reported!®.
The genome of Saccharothrix espanaensis is 9.3 Mbp in size and codes for 8501 CDCs with an

antiSMASH analysis predicting 31 putative biosynthetic gene clusters.!3
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1.5. Heterologous Hosts

Microbial heterologous hosts are usually unicellular organisms with advantageous
characteristics, such as short multiplication time, genetic amenability and simple cultivation
conditions. Initially developed heterologous hosts were mostly derivatives of Escherichia coli
and used for the expression of proteins.’® Nowadays, heterologous hosts are used for a
variety of purposes such as the expression and isolation of proteins for industrial and
research purposes, the activation of silent BGCs and the generation of new natural product
derivatives or increased production titers. Furthermore, with genome mining approaches
they can be used for natural products discovery.''”120 |n contrast to native strains,
heterologous hosts offer several advantages including rapid cell multiplication, well-analyzed
metabolic networks and production conditions, implemented standard genetic manipulation
protocols and cluster-free strains with a clean metabolic background that facilitates the
downstream processing and increases the production titers.!*® 12! The genome S. coelicolor
A3(2), a commonly used host, was sequenced for the first time in 2002 and covers 8.6 Mbp
including 7825 genes and 20 predicted BGCs.1% Its plasmid free derivative S. coelicolor M145
was found to be unable to produce methylenomycin.’?2 M145 was used to develop the
improved hosts M512, M1152 and M1154. The metabolic background of M512 was further
reduced by deletion of pathway-specific activator genes (act/l-orf4 and redD). Therefore, the
constructed derivative was unable to produce actinorhodin and prodiginine. M1152 and
M1154 were specifically developed for the heterologous expression of BGCs and the
subsequent screening for antibiotic activity.'?2 Hence, most BGCs responsible for the
production of active natural products were deleted from the genome (actinorhodin,
prodiginine, calcium-dependent antibiotic and a type | PKS cluster). Furthermore, M1152
and M1154 contain a mutation in the B-polymerase encoding gene rpoB [C1298T, S443L],
while M1154 additionally contains a mutation in the ribosomal protein S12 encoding gene
rpsL [A262G, K88E]. Both mutations in the aforementioned genes have been reported to
increase the level of the secondary metabolite production. All modifications in the described
strains lead to a decreased metabolic background and increased secondary metabolite

production.'??
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1.5.1.S. albus 11074

S. albus J1074 is a Sall deficient derivative of S. albus G. It was described by Chater and Wilde
in 1976.1%3 Its short multiplication time, good genetic amenability and production capabilities
spurred the interest in S. albus 11074 as a heterologous host.}?! At the same time, the
development of efficient genetic modification tools, simple conjugation protocols and the
development of a promotor library lead to its status as one of the most important
Streptomyces hosts. Its 6.8 MPb linear genome covers 25 BGCs and is one of the shortest of
the commonly used Streptomyces strains.'?Y 124 |n 1981, S. albus 11074 was first used as
cloning host and later as host for heterologous expression of steffimycin’s BGC.1%>1?7 Since
then, its suitability as heterologous host has been proven by the expression of multiple
BGCs, including fredericamycin, isomigrastatin, napyradiomycin, cyclooctatin, thiocoraline
and moenomycin.??8131 Recently, further attempts of host improvement were carried out by
Myronovskyi et al. which resulted in the deletion of 15 native BGCs.'3? In this study, 7.3 %
(~*500.000 bp) of the overall genome were deleted and additional plasmid/cosmid
integration sites were added. These implemented changes led to a drastic simplification of
the overall metabolic background, which resulted in an optimized availability of precursors,
increased BGC copy numbers and thus, an improved production titer of numerous natural
products (Tunicamycin B2, Didesmethylmensacarcin, Griseorhodin A, Aloesaponarin I,

Pyridinopyrona A).13?

1.5.2. S. lividans TK24

Streptomyces lividans is phylogenetically closely related to S. coelicolor with a drastically
altered metabolic profile. The genome of S. lividans contains the silent BGCs for
actinorhodin, undecyleprodigiosin and calcium-dependent antibiotics, which are all
produced by the S. coelicolor.'3? It has been shown that the mutation of rpsL and rsmG
strongly activates the expression of actinorhodin’s gene cluster. Furthermore, certain
mutations of rpoB led to the activation of actinorhodin, undecylprodigiosin and calcium-
dependent antibiotic.'3413> Even though S. lividans has been used as host for the expression
of isomigrastatin, novobiocin, 6-desoxyerythronolide, puromycin, oxytetracycline,
staurosporine, macrotetrolide, daptomycin, capreomycin and nikkomycin, only few host

improvements were carried out until recently.”* 136-141 Baj et al. constructed S. lividans SBT5
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out of S.lividans TK24 through the deletion of actinorhodin’s, undecylprodigiosin and
calcium-dependent antibiotic (CDA) BGCs.'*? Furthermore, S. lividans was optimized for the
production of mithramycin A through the deletion of up to 4 different BGCs.**3 An improved
S. lividans TK24 host system was developed by Luzhetskyy et al. through the deletion of
twelve native BGCs and the addition of two attB-sites into the genome. The suitability of the
developed strain was proven by the expression of a variety of clusters and the comparison of

production levels of the corresponding natural products (unpublished data).
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1.6. Outline

The aim of the PhD project was to utilize heterologous hosts and BGC expression in order to
address two problems: 1 — To access the chemical potential of the rare Actinobacteria
Saccharothrix espanaensis for natural product discovery; 2 — To control the derivatization of
pamamycins through engineering of the heterologous hosts precursor supply in order to

facilitate the downstream processing, namely the isolation of pamamycins.

The work described in Section 2 approaches the common rediscovery issue of Actinobacteria
derived natural products by the systematic expression of BGCs in heterologous strains and
the identification of the two polyketides pentangumycin and SEK90. The genome of
Saccharothrix espanaensis was analyzed with antiSMASH and the predicted BGC's were
aligned with its sequenced genomic library. The genomic fragments encoded in the library
were selected for heterologous expression based on the BGCs they encode. The utilization of
improved heterologous hosts facilitated the natural product isolation and enabled the

analysis of the biosynthetic pathways of both compounds.

Section 3 is focused on the promising group of polyketides pamamycins. After the
identification of the corresponding BGC and its successful heterologous expression in
S. albus 11074, the tuning of its produced derivatives was targeted. This should facilitate the
isolation process and therefore, the development of pamamycins as putative drug
candidate. Enzymes involved in pamamycins biosynthesis incorporate malonyl-CoA,
methylmalonyl-CoA and ethylmalonyl-CoA according to their intracellular availability. We
successfully showed that targeted knockouts of genes involved in the precursor supply in
S. albus 11074 results in drastic changes of the intracellular CoA-ester concentrations and a

modified spectrum of produced pamamycin derivatives.
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2. Discovery of polyketides through genome mining of
Saccharothrix espanaensis

2.1. Abstract

Natural products are an important source of novel investigational drugs in drug discovery.
Especially in the field of antibiotics, Actinobacteria have proven to be a reliable source for
lead structures. The discovery of these natural products with activity- and structure-guided
screenings has been impeded by the constant rediscovery of previously identified
compounds. Additionally, a large discrepancy between produced natural products and
biosynthetic potential in Actinobacteria, including representatives of the order
Pseudonocardiales, has been revealed using genome sequencing. To turn this genomic
potential into novel natural products, we used an approach including the in-silico pre-
selection of unique biosynthetic gene clusters followed by their systematic heterologous
expression. As a proof of concept, fifteen Saccharothrix espanaensis genomic library clones
covering predicted biosynthetic gene clusters were chosen for expression in two
heterologous hosts, Streptomyces lividans and Streptomyces albus. As a result, two novel
natural products, an unusual angucyclinone pentangumycin and a new type Il polyketide
synthase shunt product SEK90, were identified. After purification and structure elucidation,
the biosynthetic pathways leading to the formation of pentangumycin and SEK90 were
deduced using mutational analysis of the respective gene cluster and 3C-labelled precursor

feeding experiments.
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2.2. Introduction

The high importance of natural products in drug discovery is reflected in the fact that a high
proportion of drugs that gained a marketing authorization between 1981 and 2010
originated from natural products.}*14> Amongst all natural products, microbial compounds
present a large fraction (~70,000) with an impressive variety of chemical structures and
biological activities.> Actinobacteria, especially Streptomyces, represent one of the most
important sources of natural products.’*® Nevertheless, during the last decades the
discovery process in Actinobacteria was significantly slowed down through the re-isolation of
known compounds in activity- and structure-guided screenings.>° As an early solution for
the rediscovery issue, natural product databases have been created. Metabolic profiles
recorded with high performance liquid chromatography coupled with high resolution mass
spectrometry (LC-HRMS) can be compared with these databases. This process, known as
dereplication, is problematic due to it being time consuming and error prone. First, the
formation of adduct ions, the loss of hydroxyl groups and the occurrence of other
fragmentations are commonly observed in mass spectrometry and can lead to false
positives. Second, molecular masses, especially those of small molecules, can be identical
and therefore lead to false negatives.!* An additional problem of the described “compound
first” approach is the need for laborious studies in order to identify the biosynthetic gene
clusters (BGCs) that are responsible for the production of the isolated compounds. In
contrast, the “cluster to compound” approach aims to obtain new natural products after
cloning and expression of a particular BGC of interest in heterologous hosts. This approach
became increasingly reasonable due to the low cost of next generation sequencing®®” which
has resulted in a flood of genomic information.'*” The obtained information revealed a
discrepancy in Actinobacteria between the genome encoded BGCs and produced
compounds.t0 It has been shown that Streptomyces contain an average of 21.9 BGCs per
genome, with 40-48% of these BGCs being unique.'*® The “cluster to compound” approach
aims to tap this genomic potential and offers decisive advantages over the “compound first”
approach. First, genome analysis and BGCs prediction tools such as antiSMASH*® offer
automated cluster homology comparisons within hours. In turn, this allows cataloguing and
prioritization of BGCs with the unique features. Second, the utilization of optimized

heterologous hosts and the expression of BGCs from genomic libraries offer advantages over
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Figure 8: Workflow for the identification of novel natural The aim of the current study was to
products using genome mining.

assess the untapped potential for the
production of secondary metabolites hidden in the genomes of Actinobacteria. To achieve
this goal, a widely applicable workflow was developed (Figure 8). This workflow includes the
analysis of genome sequences utilizing algorithms such as antiSMASH%or PRISM,!% the
construction of a sequenced genomic library, in silico pre-selection and expression of the
selected BGCs in heterologous hosts followed by the identification, isolation and
characterization of natural products. To challenge the applicability of the designed approach,
we aimed to express BGCs from a strain of Actinobacteria that is more distantly related to
commonly used heterologous Streptomyces hosts. The large-scale analysis by Doroghazi and
co-authors revealed that the order of Pseudonocardiales has an average of 19.8 BGCs per
genome.'® The strain Saccharothrix espanaensis, discovered by Labeda and Lechevalier in
19891 and belonging to the order of Pseudonocardiales, harbored all of the desired

elements to prove the potential of our approach. This strain has a 9.3 Mbp genome
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containing at least 31 antiSMASH-predicted BGCs.''®> Due to the strain being poorly
genetically tractable, any genetic manipulations are almost impossible. Furthermore, only a
single group of polysaccharide natural products, the saccharomicins!!?, is known to be
produced by S. espanaensis.

As proof of concept, we report the discovery of two novel natural products, which were
obtained by applying the proposed genome mining approach. Neither of the isolated
compounds was detectable in the metabolic profile of S. espanaensis. Additionally, we were
able to elucidate the biosynthesis of both compounds using the available information about
the respective BGC architecture, mutational analysis and feeding experiments with labelled

precursors.
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2.3. Results and Discussion

2.3.1. Selection of putative biosynthetic gene clusters

Initially, the biosynthetic potential of S. espanaensis was assessed. An antiSMASH analysis of
its genome predicted the presence of 31 BGCs, while the only known products are
saccharomicins (Table 1).1*> The BGC of saccharomicins was identified as cluster number
28.113 |t was originally cloned as cosmid clone by Berner et al., while attempts of its complete
expression in heterologous hosts had failed. Nevertheless, its aglycon was successfully
expressed and its biosynthesis was elucidated.'#* 52 A bacterial artificial chromosome (BAC)
library of S. espanaensis was constructed using the pSMART-BAC-S vector as backbone with
an average inserted fragments size of 100 kbp. The library was end-sequenced and the
sequences were mapped to the genome of S. espanaensis. This allowed the alignment of
predicted BGCs to the clones of the genomic library. To minimize the laboratory effort and
reduce the putative rediscovery rate of the described approach, BGCs were prioritized by
their class and predicted products. First of all, eight BGCs were not covered by the genomic
library and therefore, could not be included into further work. Of the remaining 23 BGCs
present as whole in the BAC library, three were predicted to be responsible for the
production of geosmin, melanin and bacteriocin, and thus were excluded. Three BGCs
shared more than 75% similarity to clusters of assigned products and were therefore not
used for heterologous expression. Finally, a predicted terpene cluster lacking its synthase
and a lantipeptide BGC were excluded as well. Thereafter, 15 remaining BACs covering 17
BGCs were selected for heterologous expression in S. lividans AYA6 and S. albus 11074 (Table
1). Among those were two terpene clusters, five type | and type Il polyketide synthase (PKS)
clusters, five nonribosomal peptide synthetase (NRPS) clusters, two type | PKS/NRPS hybrid
clusters, one lantipeptide cluster, one aminoglycoside cluster and one polysaccharide cluster

encoding saccharomicins BGC.
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Table 1: Biosynthetic gene clusters identified in S. espanaensis.

# Prediction:?® Predicted Cluster:® Homology:® BAC:* Expressed:®
1 Terpene Geosmin 100% known No
2 Lanthipeptide Erythreapeptin 75% homology No
3 Terpene Isorenieratene 42% ex: 1C15 No
4 Bacteriocine known No
5 Furan Asukamycin 30% ex: 3A24 No
6 NRPS ex: 3E7 No
7 Other A54145 3% not covered No
8 NRPS Myxochelin 50% ex: 1G5 No
9 Indole Frankiamicin 14% ex: 1F6 No
10 Ladderane, NRPS Skyllamycin 22% ex: 1F6 No
11 Linear azole containing Peptides A201A 6% ex: 1120 No
12 Type | PKS Tylactone 6% ex: 3E19 No
13 NRPS Tyrobetaine 53% ex: 3K5 No
14 NRPS not covered No
15 NRPS, Type | PKS Kedarcidin 18% not covered No
16 Lanthipeptide Kinamycin 5% ex: 1G11 No
17 Oligosaccharide Teicoplanin 4% not covered No
18 Melanin known No
19 NRPS, Type | PKS Leinamycin 15% not covered No
20 NRPS, Type | PKS Lavendiol 35% ex: 3C18 Yes
21 Terpene Isorenieratene 85% homology No
22 NRPS Cyclomarin 13% ex: 1L8 No
23 Aminoglycoside ex: 3M21 No
24 NRPS Ficellomycin 3% ex: 3M21 No
25 RIPP Anantin C 75% homology No
Yes
26 Terpene, Type Il PKS, Type | PKS, NRPS Fluostatin 23% ex: 1E5
27 terpene,NRPS, T1PKS Ficellomycin 27% ex: 1C7 No
28 Oligosaccharide Desosamine 22% ex: 3K17 No
29 Terpene excluded No
30 Terpene SF2575 6% excluded No
31 Lanthipeptide Olimycin A 8% excluded No

a: Prediction: Predicted class of BGC;

b: Predicted cluster: Cluster with the highest homology;

c: Homology: Homology between the predicted cluster and the BGC identified in the genome of
S. espanaensis;

d: Work: known: Cluster was known and excluded; homology: due to high homology of the
whole cluster, the cluster was excluded; not covered: Cluster was not covered by our library;
ex: “XXX” Cluster was covered by the BAC “XXX” and chosen for expression in our host;

e: Expressed: Indication of successful expression in our heterologous hosts
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2.3.2. Success rate of the expression system

The chosen BACs were conjugated in S. lividans AYA6 and S. albus J1074. A colony PCR
(Polymerase chain reaction) verified exconjugant was cultivated in different production
media and metabolites were extracted using different solvents. Their metabolic profiles
were analyzed with LC-MS and compared to the metabolic profiles of the empty
heterologous hosts. Singular peaks were identified and assumed to be the products, shunt-
products or intermediates of the expressed BGC. Extracts containing singular peaks were
further analyzed by LC-HRMS, and the obtained exact masses were compared to masses in
common natural product databases (DNP [http://dnp.chemnetbase.com], Supernatural,

StreptDB).1>3-154

The recombinant strain S. lividans AYA6_3C18, containing a 115 kbp insert of the
S. espanaensis genome, revealed a singular peak (Figure S 1) with a mass of 308.1987 Da
(m/z 309.2060 [M+H]*, Rt=11.5 min). BAC clone 3C18 carries a type | PKS cluster similar to
lavendiols BGC>> and an unknown NRPS BGC. Further work with the expressed compound
was neglected due to its low production rate. The expression of 3C18 was unsuccessful in

S. albus J1074.

- pentangumyecin (1) SEK90 (2)

O

Figure 9: Structural formulas of pentangumycin and SEK90.

The recombinant strain S. lividans AYA6_1E5, containing a 116 kbp insert from the genome
of S. espanaensis, produced two singular peaks with masses of 467.1368 Da (m/z 468.1438
[M+H]*, R=9.1 min, further designated as pentangumycin (1)) and 790.2261 Da (m/z
791.2339 [M+H]*, R=10.6 min; further designated as SEK90 (2)) as shown in Figure 9.

S. albus J1074_1E5 produced compound 1 (Figure S 2), but its low production titer rendered
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further work infeasible. Both compounds 1 and 2 have not been observed in extracts

obtained from S. espanaensis (Figure S 3).

In the case of the remaining 13 BAC clones, no production was observed under the tested
conditions. An overall success rate of 11% (corresponding to 2 out of 17 BGCs, BAC_3C18
and BAC_1E5) was observed when expressing BGCs from Pseudonocardiales in Streptomyces
hosts. In similar experiments with BGCs from a Streptomyces strain, a success rate of 35% (6
out of 17 BGCs) has been observed (unpublished data). The generally low expression rate
can be explained by a variety of factors: 1 —Differences in the regulatory network of strains
can cause major shifts of natural product production. Prominent examples include the
mutations in the genes [C1298T, S443L] and rpsL [A262G, K88E] in the strains S. coelicolor
and S. lividans, which activated and increased the production of natural products in both
strains.?2 2 — Codon bias of different strains can be restrictive for the expression of BGCs in
heterologous hosts. In fact, it has been shown to be one of the most important factors for
the expression of prokaryotic genes.'®®%7 In E. coli the heterologous expression of genes
was increased by expanding the intracellular concentration of rare tRNA.**2 In S. lividans, the
expression of a transglutaminase was increased by 73.6%, when using a codon optimized
gene for expression.> 3 — Promotors and ribosomal binding sites not derived from the
native strain can be unfitting for the polymerase of the host strain and therefore, disrupt the
expression of BGCs. The utilization of synthetic and known strong promotors can activate
the expression of native and heterologously expressed BGCs. Salas et al. successfully
activated the expression of an NRPS and PKS-NRPS hybrid BGC by introducing the strong and
constitutive ermE*p promotor in front of the NRPS (sshg 00313) and PKS-NRPS
(sshg _05713) genes. The activation of the NRPS BGC was confirmed by the production of a
blue pigment. Furthermore, they identified the natural products 6-epi-alteramid A and B,
which were produced by the PKS-NRPS BGC.1%° 4 — The toxicity of either expressed proteins
or produced natural products is an additional issues to keep in mind when expressing BGCs
in heterologous hosts. For example, a mutated version of an outer membrane protein
(OmpA) of E. coli K12 caused a toxic lysis of the cell when expressed.®! Furthermore, the
toxicity of avermectin was shown to be a restrictive factor in its own production in
S. avermitilis. After the introduction of multiple copies of the ABC transporter AvtAB, the

avermectin production increased from 3.3 g/l to 4.8 g/I.1%2 5 — Environmental factors can
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drastically influence the production of natural products. A well-studied example thereof is
the production of jadomycin, since it was only produced after the strain was either treated
with a heat shock or the production media was supplemented with ethanol.®! Furthermore,
it has been proven that the addition of sugars'® and sub-toxic concentrations of antibiotics

can activate and strongly alter the expression of BGCs in bacteria.'**°

2.3.3. Isolation of pentangumycin and SEK90

Ultimately, 3.5 mg of pentangumycin 1 and 14 mg of SEK90 2 were isolated from 15 L of a
S. lividans AYA6_1E5 production culture. Both compounds were purified using size exclusion
chromatography and preparative HPLC. Through analysis of LC-HRMS data and NMR data
(*H-NMR, HSQC, HMBC, H-'H-COSY, 3C-NMR), the structures of both compounds were
elucidated (Figure 9). NMR data and the detailed data analysis are presented in Table 2 and
Figure S 4 - Figure S 50. All chemical shifts observed for 1 were within expected ranges as
calculated for its structure. The connection between ring E and B was observed through
HMBC correlations between H-5 and C-13 and between H-14/H-18 and C-6 (Figure 9, Figure
S 4). 1 is a member of the angucyclinone group containing a unique fifth phenol ring
attached through a direct carbon-carbon bond at position C-6. Additional ring systems,
typically derived from amino acids, have previously been observed for the angucycline family
of aromatic polyketides. While such structures have been found in several jadomycins and
urdamycins, their position and type of connection are different.163-16> Additionally,
formicamycins and fasamycins, both anthracycline antibiotics, carry a similar structural motif
with the fifth aromatic ring at position C-7 of ring B.1%® Furthermore, 1 has a methylated
hydroxy group at position C-1 in ring A, a modification that can be found only in a few

167 |n addition, the drastic structural feature of 1 is

angucyclines, like the chlorocyclinones.
the presence of an aminated and subsequently, acetylated methyl group at position C-19,

that has not been previously reported.
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Table 2: NMR spectroscopoic data for petangumycin (1) (DMSO-ds) and SEK90 (2) (DMSO-dg).

pentangumycin (1) SEK90 (2)

Pos. 8¢ 6y (Jin Hz) HMBC Pos. &c 6u(/in Hz) HMBC

1 156.72,C - - 1 166,5C - -

2 108.73,CH  7.10,s 1,4,12b,19 2 102,7C - -

3 143.23,C - - 3 1655C - -

4 117.52,CH 7.44,s 19 2, 43,5, 12b, 101,9CH 5,68 (s br) 2,5,6

4a 136.62,C - - 5 160,6C - -

5 13512, CH  7.88,s 1, 4, 43, 6a, 7, 36,1CH, 3,55 (s br) 4,5,7,8,12
12a, 12b, 13

6 139.11,C - - 7 1325C - -

6a 131.27,C - - 8 120,1CH 6,74 dd 9,10,11,12,13

7 188.02,C - - 9 130,9CH 7,2dd 7,8,10,11, 12

7a 115.80,C - - 10  114,4CH 6,77dd 8,9,11,12,13

8 160.52,C - - 11 153,3C - -

9 122.98,CH  7.26,d 7a, 11 12 130,6C - -

10 136.66,CH  7.73,t(7.5) 8,11a 13 1999C - -

11 117.20,CH  7.50,dd (7.5,0.93)  7a,9,10,8,12 14  1153C - -

11a  13551,C - - 15 1649C - -

12 185.53,C - - 16  100,5CH 6,11d(2,4) 14, 15,17

12a  139.97,C - - 17 1663C - -

12b  119.48,C - - 18  111,4CH 6,04dd (0,64 Hz&2,4)  13,14,15,16,20

13 132.18,C - - 19 142,7C - -

14/18 129.94,CH  7.26,d 6, 14/18, 16 20 21,2CHs 1,8s 14,18, 19

15/17 114.77,CH  6.78,dt (8.5, 2) 13,15/17, 16 21 295CH  4,361(8,2) 1,2,3,22,23

16 156.58,C - - 22 315CH, 1,75dt(7,3Hz&38,2) 2,21,23,24

19 4237,CH,  4.43,d(6) 2,3,4,20 23 20,6CH, 1,05dq(7,3) 21,22,24

20 169.55,C - - 24 13,8CHs; 0,891(7,3) 22,23

21 22.75,CHs  1.93,s 20 - - - -

22 56.12,CH;  3.88,s 1 - - - -

NH - 8.53, t (br) 19, 20 - - - -

OH; - - - - - 12,67 s 14,15, 16

OH, - - - - - 11,49 s (br) -

OHs - - - - - 10,38s 16, 18

OH, - - - - - 9,78 s 9,10, 11, 12
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The NMR spectra of 2 contained less carbon and proton signals than anticipated regarding its
observed exact mass. The 'H-NMR signal of H-21 (CH) indicated the presence of a mirror
plane, since all other integrated proton signals were a multiple of 1 (2-6). Another strong
indicator was the low number of carbon peaks observed in the 3C-NMR (24 peaks in 3C-
NMR), which only sums up to the corresponding exact mass of 2 with an unreasonable
number of incorporated heteroatoms. After the identification of the mirror plane, the
monomer SEK43 (Figure S 51) could easily be elucidated.®? The protons H-16, H-18 and H-20
as well as H-6, H-8, H-9 and H-10 showed all necessary HMBC and 'H-'H-cosy correlations for
the elucidation of their corresponding aromatic system. The connecting ketone moiety was
elucidated through the correlations of H-18 and H-10 to C-13 and the carbon shift of C-13
(199.9 ppm). The pyrone moiety of SEK43 was elucidated through correlations between H-6
to C-5 and C-4, H-4 to C-1, C-2, C-4 and C-6, H-21 to C-1 and C-3 and H-22 to C-2. The
connecting butyl group showed all expected *H-'H-cosy and HMBC correlations (Figure S 28).
The putative axial stereochemistry of 2 can be assumed to be a racemic mixture due to its

spontaneous formation as described below.

The biological activity of 1 and 2 was tested. Both compounds showed no antimicrobial
activity over a range of tested concentration (0.2 pg/ml — 100 pg/ml; data not shown). In a
cytotoxicity test, 1 showed an ICsp of 18.77 uM against HuH7.5 cells and an ICso of 24.89 uM
against HCT116 cells, whereas 2 was not active (Figure S 52 & Figure S 53). In a CAS assay, 2

showed a low iron-binding siderophore activity (Figure S 54).168

2.3.4.Both (1) and (2) are the result of type Il PKS gene cluster
expression

The antiSMASH analysis of the sequence of BAC 1E5 revealed the presence of three putative
BGCs: a terpene cluster, a type-ll PKS and a PKS—NRPS hybrid. From a structural perspective,
it is obvious that neither 1 nor 2 are products of the terpene BGC, and that 1 is a product of
the type Il polyketide synthase. However, 2 cannot easily be associated with the type Il PKS
or the PKS-NRPS hybrid. Even though the SEK43 moiety of 2 is a known shunt product of type
Il polyketide synthases, the connection through a butyl-group has never been reported. In
order to verify the biosynthetic origin of 1 and 2, we aimed to identify the core genes of the

corresponding BGCs and deleted them from BAC 1E5. A BLAST analysis of the type Il PKS BGC
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showed that gene BN6_54860 is coding for a B-ketoacyl-synthase (Figure 10) and gene
BN6_55110 is encoding a type | polyketide synthase in the PKS-NRPS BGC. Both genes were
deleted separately in frame from BAC 1E5. The resulting BACs, 1E5A54860 and 1E5A55110,
were conjugated into S. lividans AYA6, and the metabolic profiles of both recombinant
strains were analyzed. The production in the strain carrying mutant BAC 1E5A55110
remained unchanged, whereas the deletion of gene BN6_54860 resulted in the loss of
production of 1 and 2 (Figure S 55). This clearly proves the origin of both compounds to be

the type Il PKS gene cluster.

2.3.5. Detailed analysis and border prediction of the biosynthetic gene
cluster of pentangumycin

The putative borders of pentangumycins BGC are defined by the genes BN6_54730 (further

a)
DD DD« IIODOIDD DI O

D Reductase / Oxygenase D Methyltransferase r Cyclase

. Cytochrome P450 Monooxygenase r PKS Core

P Aminotransferase [ Transcriptional Regulators | > Unknown [ MFS Transporter .Carboxylase 2 kb >

b)

Gene# Name Homology to: Annotation Ident. [%] Cover. [%]
BN6_54730 penA  WP_124773694 cytochrome P450 711 99
BN6_54740 penB  WP_124773693 ferredoxin 64.6 98
BN6_54750 penC WP_124773692 aminotransferase class lll-fold, pyridoxal phosphate-dependent 59.5 99

BN6_54760 penD WP_124773691 methyltransferase 68.8 99
BN6_54770 penE  WP_015037167(jadG)* antibiotic biosynthesis monooxygenase 58.8 90
BN6_54780 penfF  WP_007904366 ester cyclase 46.3 96
BN6_54790 penG  WP_005164912 FAD-dependent oxidoreductase 41.7 90
BN6_54800 penR1 WP_034626020 XRE family transcriptional regulator 57.4 95
BN6_54810 penH WP_124773686 MFS transporter 49.2 89
BN6_54820  peni WP_124776097 aldo/keto reductase 61.1 76
BN6_54830 pen)  WP_124776095 nuclear transport factor 2 family protein 75.5 77
BN6_54840 penk  WP_015035778 acetyl-/propionyl-CoA carboxylase subunit alpha 69.8 99
BN6_54850 penL  AAD13535.1 (lanF) Polyketide cyclase 74.1 98
BN6_54860 penM AAD13536.1(/anA) Beta-ketoacyl-ACP synthase homolog 73.3 99
BN6_54870 penN  AAD13537.1(lanB) Polyketide chain length factor 68.2 99
BN6_54880 penO AAD13538.1 (lanC) acyl carrier protein 69.4 97
BN6_54890 penP  AAD13539.1(lanD) ketoreductase 77.0 99
BN6_54900 penQ AAD13540.1 (lanlL) aromatase/cyclase 65.6 96
BN6_54910 penS  WP_015037166(jadF)* oxidoreductase 69.7 72
BN6_54920 penT  AAV52248(jadH)* oxidoreductase 66.8 99
BN6_54930 penU  WP_046087459 acyl-CoA carboxylase subunit beta 81.8 99
BN6_54940 penV  WP_062205789 acyl-CoA carboxylase subunit epsilon 38.3 73
BN6_54950 penR2 AAB36584(jadR1) Phosphate regulon transcriptional regulatory protein PhoB 57.9 95

Genes bold: Part of Micromonospora LB.39

* putativley involved in ring opening of Ring B

Figure 10: Schematic representation of the biosynthetic gene cluster of pentangumycins (a) and) BLAST analysis of the pen
genes (b).
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as penA) on a left edge and BN6_54950 (further as penR2) on a right (Figure 10a). In order to
predict their functions, individual pen genes were analyzed using BLASTx. Detailed results
are illustrated in Figure 10b. The core of the pen-cluster is formed by genes penM, penN and
penO, coding for the minimal polyketide synthase. Together with two cyclase genes, penL
and penF, the cyclase/aromatase penQ and the ketoreductase penP are forming a minimal
set of genes required for the biosynthesis of the angucyclinone core structure. The
polyketide core region is surrounded by seven genes putatively involved in oxidative or
reductive reactions. The gene penA encodes a cytochrome P450 enzyme and is adjacent to
penB, which encodes a ferredoxin protein. Both genes have previously been described as
functional unit.'%°¥’ The genes penE, penG, penl, penS and penT encode a monooxygenase,
three oxidoreductases and an aldo-/ketoreductase, respectively. Except for PenE, PenS and
PenT, the function of these enzymes cannot be predicted from the BLAST analysis. penE,
penS and penT encode orthologues of JadG, JadF and JanH, respectively, which are three
enzymes putatively involved in the oxidative opening of ring B of jadomycin.*® Other genes
such as penC (encoding putative aminotransferase) and penD (encoding putative
methyltransferase) are also supposed to be involved in post-PKS modifications of 1. penk,
penU and penV encode a-, B- and e-subunits of a carboxyltransferase, respectively. The
function of these enzymes in the biosynthesis of 1 is unclear. Two regulatory genes, penR1
encoding putative transcriptional regulator with the predicted helix-turn-helix motif at N-
terminus and penR2 coding for a SARP protein, are present in the cluster.?® PenR1 controls
most probably the transcription of the outward oriented penH (Figure 10) similar to
landomycins lanK, lanJ regulatory system.'’?174 The gene penH is encoding a putative major
facilitator superfamily transporter.!’> In turn, PenR2 shows a high degree of similarity
compared to many well-studied SARP proteins from angucycline biosynthetic gene clusters,
including JadR1 from S. venezuelae.®’ Due to the similar structure of 1 and landomycin and
jadomycin,®* 176 we aimed to identify homologues to genes involved in the biosynthetic
pathways of both aforementioned compounds within the pen-gene cluster. The PKS core
genes penl, penN, penO, penP and penQ showed a significant similarity towards landomycin
biosynthetic genes lanL, lanA, lanB, lanC and lanD, respectivley. As mentioned previously,
the oxygenase penE and both oxidoreductases penS and penT showed a remarkable

homology to jadG, jadF and jadH, respectively.>* Additionally, a striking similarity between
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individual genes including penA, penB, penC, penD and penH and overall organization of the
entire pen-gene cluster and the putative biosynthetic gene cluster with unknown product

from Micromonospora sp. LB39 was observed (Figure S 56).

We aimed to confirm the predicted borders (penA and penR2) of pentangumycins
biosynthetic gene cluster. Therefore, two BACs (1E5_DEL LEFT and 1E5_DEL RIGHT) were
designed. BAC 1E5_DEL_LEFT was constructed through deletion of 44.1 kbp covering the left
flanking region of the pen-cluster upstream from the gene penA (Figure 10a), including the
entire terpene cluster. The construction of 1E5_DEL_RIGHT was carried out in a similar way
by deleting a 36.3 kbp large region downstream to the penR2 gene, including the entire
predicted PKS-NRPS gene cluster. The constructed BACs were conjugated into S. lividans
AYA6, and the production of 1 was analyzed. The recombinant strains carrying the mutated
BACs still produced 1. On the other hand, deletions of the terminal genes penA and penR2
caused complete cessation of pentangumycins biosynthesis in the recombinant strains
carrying corresponding BAC clones 1E5ApenA and 1E5ApenR2. The metabolic profiles of
S. lividans trans-conjugants showed that both genes are required for production of 1. These
findings confirm that all genes necessary for production of 1 are within the predicted

borders of pen-gene cluster.

2.3.6. Origin of SEK90

From the structural perspective 2 is a dimer of SEK43 linked by a butyl group. It was shown
by McDaniel that SEK43 is formed by spontaneous cyclisation of the polyketide chain in
mutants lacking the cyclase.®? Since then, SEK43 has been reported as a shunt product in
several studies of aromatic polyketide cyclases/aromatases.””"17° At the same time SEK43
was found in the extract of natural strains only in the case of aranciamycin producing
Streptomyces sp. Ti6384.1%9 On the other hand, its derivative named SEK43F, resulting from
fusion of SEK43 with the pyrole-like moiety, was isolated from the recombinant S. albus
expressing fluostatins biosynthetic gene cluster.’®! Nevertheless, a dimerization of this
compound has not been described thus far. SEK43 has the 4-hydroxypyrone structural motif.
The reactivity of 4-hydroxypyrones towards saturated aldehydes was reported previously.*®2
It can be hypothesized that the dimerization towards SEK90 can occur spontaneously inside

the cell after the biosynthetic formation of SEK43 (Figure 11). To verify this theory, an
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experimental setup was designed. 6-Benzyl-4-hydroxy-2-pyrone that possesses the same
structural motif as SEK43 was incubated with butanal or formaldehyde in distilled water,
production medium inoculated with S. lividans AYA6 and production medium inoculated
with S. lividans AYA6_1ES. If the dimerization of the pyrone with the corresponding aldehyde
is performed by an enzymatic reaction, the expected dimers (1E5_CMP1 — 1E5_CMP2, see
Figure S 51) should only be present in the extracts of S. lividans AYA6 or S. lividans
AYAG6_1ES5, depending on the presence of the necessary enzymes in the heterologous host or
the introduced BAC. If the reaction towards 2 is spontaneous, the dimerization of pyrone
and aldehydes should occur in the distilled water mixture. After incubation, all reactions
were extracted and analyzed with LC-HRMS. Peaks that correspond to dimerized pyrones
were present in all mixtures including the distilled water based one, confirming our
hypothesis about spontaneous nature of the 4-hydroxy-pyrone dimerization. Furthermore,
we have synthesized 1E5_CMP1 and 1E5_CMP?2 to verified their structure by NMR (Table S 1

and Table S 2; Figure S 57 - Figure S 70).1®2 Peaks observed in distilled water mixtures had

1 Acetyl-CoA
9 Malonyl-CoA

PenN, M, O
-3H,0

Figure 11: Origin of SEK90.

identical exact masses and HPLC retention times with the synthesized standards (Figures S71
and S72). The detailed analysis of the S. lividans AYA6 1E5 extract has revealed the presence
of SEK43 (detected m/z 396.09679 [M+H]*, A0.242 ppm to SEK43 with the calculated exact
mass of 368.0860 Da) (Figure S 51 and Figure S 73) and a derivative of SEK90 connected by a
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methyl- instead of a butyl-group named as SEK87 (detected m/z 749.1859 [M+H]*, A0.777
ppm to SEK87 with the calculated exact mass of 748.1792 Da) (Figure S 51 and Figure S 74).
None of the three compounds can be found in the extract of S. espanaensis (data not
shown). Thus, it is obvious, that SEK90 as well as SEK87 derive from the combination of an
unbalanced performance of pentangumycins minimal PKS, which seems to be miss-
coordinated with the activity of the Pen cyclases, leading to accumulation of SEK43, and the
primary metabolism of S. lividans. A similar situation was proposed for the assembly of
SEK43F, which resulted from interplay between the primary metabolism of the host strain

S. albus and the heterologously expressed fluostatins type Il PKS gene cluster.®!

2.3.7. \Biosynthesis of pentangumycin’s core structure

Based on the similarity of the pen genes to the genes involved in jadomycins and
landomycins biosynthesis, a biosynthetic route towards 1 was proposed (Figure 12).183-184
The minimal PKS PenM, PenN and PenO utilize acetyl-CoA and malonyl-CoA to form the
initial 20 carbon polyketide chain, which is reduced at position C-9 by the ketoreductase
PenP and cyclized by the cyclases PenlL and PenQ. Like in the case of all other angucycline
type aromatic polyketides, the biosynthesis of 1 seems to proceed though the common
known intermediate UWMG6.Y776 UWMG6 is oxidized by the oxidoreductases PenE, PenS
(analog of LanE)*®* and PenT, which leads to the formation of I. It is hypothesized that the
oxidation of ring B is catalyzed by enzymes PenS, PenT and PenE, which are highly similar to
JadG, JadF and JanH respectively, from the jadomycins biosynthesis.>* The cleavage of ring B
undergoes a Baeyer-Villiger-oxidation through the putative intermediates Il and Ill. The
latter one is proposed to have an aldehyde functional group at position C-5 and a carboxyl
group at position C-6. Similar to dauD in daunomycins biosynthesis, the ester cyclase PenF
could perform a Knoevenagel condensation, which results in the formation of the C-C bond
between the B-position of 4-hydroxyl-phenylpyruvic acid, an intermediate of the tyrosine
degradation catalyzed by an aromatic amino acid transaminase,'®> and the aldehyde of 1ll,
resulting in intermediate IV. An intramolecular nucleophilic reaction between the y-hydroxyl
and the a-keto group cleaves oxalic acid and thus creates a double bond between the former
B and y positions and a conjugated system. The subsequent reformation of ring B is

catalyzed by the decarboxylation at position C-5 and directed through the six-membered
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transition-state towards the former B-position of the 4-hydroxyl-phenylpyruvic acid, leading
to intermediate V. The aromatase/cyclase PenQ is proposed to be responsible for the
aromatization of ring B, resulting in intermediate VI. In order to prove that the fifth ring of 1
derives from the incorporation of 4-hydroxyl-phenylpyruvic acid, a culture of S. lividans
AYAG6_1E5 was supplemented with fully labeled *3C-9-°N L-tyrosine. As result the mass shift
from m/z 468 [M+H]* to m/z 475 [M+H]* was observed for the peak that corresponds to 1

(Figure S 75 - Figure S 80). The +7 mass shift clearly shows that the fifth ring of 1 derives

1 Acetyl-CoA COOH COOH
9 Malonyl-CoA
Y NH5 @)
PenN, M i AT 4-Hydroxy-
Penp. &L Tyrosine Phenylpyruvic Acid
PenE, S, T
OH OH

g

oH

Figure 12: Biosynthetic pathway of pentangumycin; Roman numerals: proposed intermediates; Arabic numerals:
intermediates with identified fitting masses after knockout; Black pathway: methylation as first biosynthetic step after
aromatization; Grey pathway: methylation as last biosynthetic step to complete the formation of pentangumycin (1).

(3)

from incorporation of L-tyrosine as it is in the case of jadomycin and not from acetate as it
was shown for formicamycin.'®® Furthermore, the lack of two tyrosine derived carbons in the

final structure shows that the insertion of the fifth ring most probably occurs by the
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proposed mechanism with the loss of a- and B- carbons of tyrosine and the exchange of

carbon 6 of IV with one of L-tyrosine’s in the re-cyclization process (Figure 12).

2.3.8. Tailoring steps of pentangumycin’s biosynthesis

To elucidate the role of remaining genes encoding the putative tailoring enzymes involved in
post PKS modifications of 1, a set of single knockout mutant BACs (1E5ApenA; 1E5ApenC;
1E5ApenD; 1E5ApenE, 1E5ApenG; 1E5Apenl, 1E5Apent, 1E5ApenU, 1E5ApenV) was created
and expressed in S. lividans AYA6. The production of 1 was not affected by deletions of
penG, penl, penJ, penU and penV genes from BAC 1E5. At the same time, recombinant
strains carrying 1E5 with deleted penA, penC, penD and penE genes lack the production of 1,
but were found (except penE mutant) to accumulate related angucyclinone compounds
based on optical absorption and mass-spectrometry data (Figure 13). The inactivation of
penA, coding for a cytochrome P450, resulted in the production of a new compound with
m/z 411.1218 [M+H]* that is very close to the calculated exact mass of 410.1154 Da of
proposed intermediate 3 (A2.190 ppm) (Figure S 81). The deletion of penC, coding for an
aminotransferase, led to accumulation of the proposed intermediate 4 (detected m/z
427.1174 [M+H]*, calculated mass of 426.1103, A0.409 ppm) (Figure S 82). The BAC lacking
penD gene, coding for a methyltransferase, facilitated the production of another compound
with m/z 454.1278 [M+H]* that corresponds to the mass of the proposed intermediate 5
(calculated exact mass of 453.1212, A1.506 ppm) (Figure S 83). With the information gained
by the analysis of metabolic profiles of recombinant strains carrying 1E5 containing deletion
of aforementioned genes, it can be hypothesized that the cytochrome P450 (PenA) catalyzes
a hydroxylation of the methyl group at position C-19 to form a primary alcohol 4 which is
subsequently oxidized by one of the oxidoreductases to an aldehyde giving predicted
intermediate VII, similar how it is proposed for borrelidin biosynthetic pathway.®® The
aminotransferase (PenC) performs an amination of the aldehyde at this position, resulting in
structure VIII. However, in the extract of S. lividans AYA6 _1E5ApenC only proposed
intermediate 4 can be found, most probably due to the fact that the aldehyde of VIl is not
stable and is spontaneously reduced to an alcohol. Lastly, the deletion of the
methyltransferase gene penD leads to accumulation of 5, the last intermediate before

formation of 1 lacking methylation of the hydroxyl group at position C-1 (Figure 12 and
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Figure 13). The presence of this intermediate, as well as methylated 3 and 4, makes us
believe that PenD can act on both substrates 5 and VI as well as that the presence of a

methyl group at this position is not crucial for amination and acylation events.

The deletion of penE leads to a complete loss of production of 1. Interestingly, the shunt
product rabelomycin® can be identified in all our extracts obtained from knockout mutants
(identified with an external standard), but its production is drastically reduced in the extracts
of S. lividans AYA6 1E5ApenE (Figure S 84). This result indicates an involvement of penE in

the early steps of the biosynthesis of 1.

2.3.9. Analysis of regulatory gene functions

To elucidate the functions of the identified regulatory genes on the biosynthesis of 1, we
constructed recombinant BACs with deletions of penR1l and penR2. Both BACs were
conjugated into S. lividans AYAG6. The constructed recombinant strains S. lividans AYA6
1E5_ApenR1 and S. lividans AYA6 1E5_ApenR2 were analyzed for production of 1 (Figure S
85). While 1 was still detectable in the ApenR1 mutant with a 50-fold decrease in yield, it
was no longer present in the S. lividans AYA6 1E5_ApenR2 extracts. From this observation
and high similarity of penR2 to other SARP encoding genes it becomes obvious that this gene
is encoding a pathway specific regulator controlling the expression of structural pen-genes.
Furthermore, the overexpression of either penR1 or penR2 might lead to the increase in the
production of 1. To test this idea both genes were cloned under the control of the
moderately strong A3 promoter'®” and introduced into S. lividans AYA6 using a markerless
vector system.®® The resulting strains S. lividans AYA6_A3 penR1 and S. lividans
AYA6_A3 penR2 were tested for the production of 1 and 2. Surprisingly, the production level
of 1 remained unchanged in both strains (Figure S 86). S. lividans AYA6_A3 penR1 1E5 still
produced 2, but 2 was absent in extracts of S. lividans AYA6_A3 penR2 1E5 (Figure S 87).
This leads to the conclusion that the unbalanced expression of pentangumycins BGC is
indeed the reason for accumulation of SEK90 and its derivatives by the heterologous strain
carrying BAC 1E5. Furthermore, two novel peaks 6 and 7 were detected in the extract of
S. lividans AYA6_A3 penR1 1E5 (Figure S 88). Based on LC-HRMS data 6 could be proposed
to be an analogue of 1 with tryptophan incorporated into ring B instead of tyrosine
(detected m/z 491.15934 [M+H]*, calculated exact mass of 490.1529, A1.646), while 7 seems
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to carry phenylalanine derived moiety at the same position (detected m/z 452.14903
[M+H]*, calculated exact mass 451.1419, A0.485 ppm) (Figure S 88). To prove the possible
nature of the identified derivatives 6 and 7 the culture of S. lividans AYA6_A3_penR1 1E5
was supplemented with either L-tryptophan 3C11%°N2 or L-phenylalanine (ring-Ds). As result,
in the correspondingly fed cultures the mass of 6 shifted from m/z 491.16 [M+H]* to m/z
500.19 [M+H]* (m/z +9) (Figure S 89), and the mass of 7 shifted from m/z 452.16 [M+H]" to
m/z 457.20 [M+H]* (m/z +5) (Figure S 90), that corresponds to incorporation of labelled L-
tryptophan and L-phenylalanine.
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Figure 13: Produced derivatives through knockouts and overexpression of pentangumycin; a) S. lividans YAA6_1ES5
(Extracted mass: 468); b) S. lividans YAA6_1E5ApenA (Extracted mass: 411); c) S. lividans YAA6_1E5ApenC (Extracted mass:
427); d) S. lividans YAA6_1E5ApenD (Extracted mass: 411); S. lividans YAA6_1E5ApenA (Extracted mass: 454); d) S. lividans
YAA6_A3_R1_1E5 (Extracted masses: 452 & 491).
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2.4. Conclusion

In conclusion, we have shown that our approach based on systematic analysis of genome of
an Actinobacteria strain for unique BGCs combined with heterologous expression is a
promising source of new natural products with unusual structures. As result, two novel
compounds were isolated in sufficient amounts for structure elucidation and testing of their
biological activity. Through genetic manipulation and feeding experiments the biosynthesis
of 1 was elucidated. SEK90 represents a new shunt product in biosynthesis of aromatic
polyketides that arises from interplay between expressed BGC and primary metabolism of
the host strain. 2 cannot be found in S. albus J1074. At the same time, pentangumycin, the
actual final product of the pen-gene cluster is a new member of the angucyclinone family
with a heavily modified ring system and a new unusual tailoring modification, which was not

observed in other members of this group of natural products before.

Importantly, we have demonstrated that Streptomyces species can be used as hosts for
heterologous expression of biosynthetic gene clusters derived from distantly related
Actinobacteria species, even if their expression is silent in the wild-type strain. However, still
relatively low success rate should trigger the development of other then Streptomyces host

strains for actinobacterial secondary metabolism gene cluster expression.
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2.5. Material and Methods

2.5.1. General Biological procedures

All oligonucleotides, plasmids and strains used in this work can be found in Table S 3 and
Table S 4. Standard procedures for Escherichia coli (transformation, plasmid preparations
and BAC isolations) were performed as described by Sambrook.® Intergeneric conjugation
between Streptomyces and E. coli was performed as described by Kieser'®® on MS-Agar
plates using E.coli PUB307 as donor strain. Standard DNA manipulations (ligation,
polymerase chain reactions and endonuclease digestion) were performed according to the
corresponding manufacturer’s protocol. All Streptomyces were cultivated in 15 mL TSB (17 g
Tryptone, 3 g Peptone, 5 g NaCl, 2.5 g K;HOg4, 2.5 g glucose ad 1000ml H2Ogest; pH=7.2) in a
100 mL flask (4 baffles; 5 g glass beads), inoculated from spores of an MS-Plate, until a dense
culture was obtained. 50 mL of the corresponding production medium was inoculated with 1
mL of the seed culture in a 500 mL flask (3 baffles, 10 g glass beads) and incubated for 72-
164h at 180 RPM and 29 °C. Production optimization steps were carried out by adjustment
of different parameters (Growth time, pH, Medium, Extracting solvent, addition of XAD

polymers)
2.5.2. General analytical procedures

All HPLC-MS spectra were recorded on a Dionex Ultimate 3000 (Thermo Fisher Scientific
Waltham, Massachusetts, USA) coupled with an AmaZon ETD SL speed, Apollo Il ESI (Bruker,
Billerica, Massachusetts, USA) on a Waters BEH C18 column (100 mm x 2.1 mm, 1.7 um) with
a 18 minute linear gradient from 5% acetonitrile (0.1 % formic acid) to 95% acetonitrile (0.1
% formic acid). The mass spectra were recorded in centroid mode (200 to 2000 m/z) at a
scan rate of 2 Hz. Prior to analysis, all samples were dissolved in Methanol and centrifuged
for 10 minutes at 4 °C and 15.000 rpm. The data was analysed using Bruker Compass Data
Analysis 4.2. High resolution masses were recorded on a Dionex Ultimate 3000 RSLC HPLC
(Thermo Fisher Scientific) coupled with an LTQ Orbitrap (Thermo Fisher Scientific) on a BEH
C18 100 x 2.1 mm, 1.7 um column (Waters) with a 18 minute linear gradient from 5%
acetonitrile (0.1 % formic acid) to 95% acetonitrile (0.1 % formic acid). Data analysis was

carried out using Xcalibur 3.0. Preparative HPLC was carried out using a Waters

58



AutopurificationSystem equipped with a Waters 2545 Binary Gradient module, Waters SFO
(System Fluidics organizer), Waters 2998 PAD (Photodiode array Detector) Waters 2767
Sample Manager and Waters SQ-Detector-2 on Nucleodur C18 Htec 250/21-C18-5 um
column (Macherey-Nagel Diiren, Germany). Data analysis was carried out using MassLynx.
Structural elucidation was carried out using the Nuclear Magnetic Resonance (NMR)
technology. The purified compounds were solved in 300 uL deuterated solvent (DMSO-de,
MEOD-d4, CDCL3) and measured in a corresponding 5 mm Shigemi-tube (DEUTERO GMBH;
Kastellaun, Germany). NMR data (*H, HH-COSY; TOCSY; HMBC, HSQC, *3C) were acquired
either on a Bruker Ascend 700 spectrometer equipped with a 5 mm TXA Cryoprobe or a
Bruker Avance 500 spectrometer equipped with a 5mm BBO Probe at 300K (Bruker, BioSpin,

GmbH, Rheinstetten, Germany). The data was analyzed using Brukers TopSpin 3.5a software

2.5.3. In-silico analysis of gene clusters

The genome of Saccharothrix espanaensis was analyzed with antiSMASH!% and the
Geneious software. Identified BGCs were mapped to the BAC library. A detailed analysis of

1E5’s BGC was performed with BLAST.%?

2.5.4. Extraction, Dereplication and Isolation

The biomass was separated from the production medium (SG-Medium [20g glucose, 5g
yeast extract, 10g bactosoytone, 2g CaCOs; ad 1000ml H;Ogest; pH=7.2], 172 h, 29 °C,
180 rpm, pH=7.2, 1 % XAD-16 after 24h) by centrifugation. 20 mL of the supernatant was
extracted with 20 mL ethyl acetate followed by 20 mL butanol for 20 minutes using a
Laboshake LS500 (C. Gerhardt GmbH, Kénigswinter, Germany) at 160 rpm. The biomass was
extracted with a 1:1 mixture of acetone and methanol for 60 minutes. The solvents were
evaporated to dryness with a rotary evaporator (150 rpm, 60 °C, 240 mBar for ethylacetate
or 25 mBar for butanol) or under a nitrogen stream at 40 °C. The extracts were analyzed
using LC-MS and LC-HRMS. Singular peaks were compared to the databases Dictionary of
Natural Products, version 27.1 (CRC Press, Boca Raton, FL, United States), Sci-Finder (CAS,
Columbus, USA) and Chemspider (Royal Society of Chemistry, Raleigh, USA). For production,
15 Liter of SG-medium inoculated with the corresponding recombinant strain was cultivated.

The extracts were evaporated to dryness and dissolved in 10 mL methanol. To purify single
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compounds, a size exclusion chromatography (SEC) was performed. The column was packed
with 600 mL Sephadex LH-20 resin (GE Healthcare Europe GmbH, 79111 Freiburg, Germany)
solved in Methanol. At a flow rate of 10 mL per 15 min. a fraction collector was used to
separate the extract within 24 hours. To identify fractions containing the novel substances
every 4™ fraction was analyzed by HPLC-MS. Fractions with the corresponding mass were
combined and evaporated. Prior to NMR analysis a preparative HPLC was performed.

Preparative HPLC information can be found in Table S5 and Table S 6.

pentangumycin (1): *H-NMR (DMSO-ds 700 MHz) 84 7.10 (1H, s, H-2), 7.44 (1H, s, H-4), 7.88
(1H, s, H-5), 7.26% (1H, d, H-9), 7.73 (1H, t, J=7.5 Hz, H-10), 7.50 (1H, dd, J=7.5, 0.93 Hz, H-11),
7.26% (1H, d, H14/18), 6.78 (1H, dt, J=8.5, 2 Hz, H-15/17), 4.43 (2H, d, J=6 Hz, H-19), 1.93 (3H,
s, H-21), 3.88 (3H, s, H-22), 8.53 (1H, t br, NH); 33C-NMR (DMSO-ds 175MHz) 8¢ 156.72 (C, C-
1), 108.73 (CH, C-2), 143.23 (C, C-3), 117.52 (CH, C-4), 136.62 (C, C-4a), 135.12 (CH, C-5),
139.11 (C, C-6), 131.27 (C, C-6a), 188.02 (C, C-7), 115.80 (C, C-7a), 160.52 (C, C-8), 122.98
(CH, C-9), 136.66 (CH, C-10), 117.20 (CH, C-11), 135.51 (C, C-11a), 185.53 (C, C-12), 139.97 (C,
C-12a), 119.48 (C, C12b), 132.18 (C, C-13), 129.94 (CH, C-14/18), 114.77 (CH, C-15/17),
156.58 (C, C-16), 42.37 (CH2, C-19), 169.55 (C, C-20), 22.75 (CH3, C-21), 56.12 (OCH3, C22);
HRESMS: m/z 468.1438 [M+H]* (calcd for CasH22NOg* 468.1442)

SEK90 (2): 'H-NMR (DMSO-de 500 MHz) 64 5.68 (1H, s br, H-4, H-4'), 3.55 (1H, s br, H-6, H-6'),
6.74 (1H, dd, J=7.2, 0.8 Hz H-8, H-8"), 7.2 (1H, dd, J=7.9 Hz, H-9, H-9'), 6.77 (1H, dd, 7.5 Hz, H-
10, H-10'), 6.11 (1H, d, J=2.4 Hz, H-16, H-16'), 6.04 (1H, dd, J=2.4 Hz, 0.6Hz, H-18, H-18'), 1.8
(3H, S, H-20; H-20'), 4.36 (1H, t, J=8.2Hz, H-21), 1.75 (2H, dt, J=7.3, 8.2, H-22), 1.05 (2H, dgq,
J=7.3Hz, H-23), 0.79 (3H, t, J=7.3, H-24),12.67 (1H, s, OH-1, OH-1'), 11.49 (1H, s br, OH-2, OH-
2'), 10.38 (1H, s, OH-3, OH-3"), 9.78 (1H, s, OH-4, OH-4'). 13C-NMR (DMSO-ds 175MHz) &c
166.5 (C, C-1; C-1'), 102.7 (C, C-2; C-2"), 165.5 (C, C-3; C-3'), 101.9 (CH, C-4; C-4'), 160.6 (C, C-
5; C-5'), 36.1 (CH2, C-6; C-6'), 132.5 (C, C-7; C-7'), 120.1 (CH, C-8; C-8'), 130.9 (CH, C-9; C-9'),
114.4 (CH, C-10; C-10") 153.3 (C, C-11; C-11"), 130.6 (C, C-12; C-12'), 199.9 (C, C-13; C-13),
115.3 (C, C-14; C-14'), 164.9 (C, C-15; C-15'), 100.5 (CH, C-16; C-16'), 166.3 (C, C-17; C-17'),
111.4 (CH, C-18; C-18'), 142.7 (C, C-19; C-19'), 21.2 (CH3, C-20; C-20'), 29.5 (CH, C-21; C-21'),
31.5 (CH2, C-22; C-22') 20.6 (CH2, C-23; C-23'), 13.8 (CH3, C-24; C-24'); HRESMS: m/z
791.2339 [M+H]* (calcd for CasH39014*, 791.2334)
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2.5.5. Modification of BACs

All constructed single knockout BACs were obtained by homologous recombination as
previously described by Gust®>! and Myronovskyi®? and confirmed by PCR. The recombinant
BACs were transformed in E.coli PUB307 and conjugated into S.lividans AYA6. All
recombinant strains were cultivated, and their metabolome was analyzed as described

above.

2.5.6. Construction of Plasmids

For the construction of the plasmids pTOS_A3_R1 and pTOS_A3_R2 we amplified the genes
using PCR, while introducing the sequence of the A3-Promotor'®” and a KPNI restriction site
in the 3’ oligonucleotide and a Hindlll restriction site in the 5’ oligonucleotide. The amplified
PCR product and the integrative pTOS plasmid were cut using Hindlll and KPNI and ligated by
the T4 ligase. The obtained DNA fragment was transformed into E. coli PUB307 and
conjugated in S. lividans AYA6. The backbone of pTOS was removed from the genome by

expression of pUWL_DRE containing the DRE recombinase.

2.5.7. Synthesis of 1E5_CMP1-2

6-benzyl-4-Hydroxy-2-pyrone (Wuxi AppTec, Saint Paul, USA) was used for the synthesis of
1E5CMP1- 2 using the conditions described by de March.*®? The pyrone was mixed (2:1) with
either butyraldehyde or formaldehyde in 3 mL Ethanol containing 10uL Piperidine and 10uL
glacial acetic acid. The reaction was performed at room temperature for 24 h. All

compounds were purified using Waters Autopurification System and confirmed by NMR.

2.5.8. Feeding experiments

To prove the incorporation from L-Phenylalanine, L-Tyrosine and L-Tryptophan, a culture of
either S. lividans AYA6_1E5 or S. lividans AYA6_1E5 A3 R1 was prepared as described in
2.5.1. Thereafter, 10 mg of the corresponding labelled amino acid were supplemented in 5
steps, 2 mg after 24 h, 48 h, 72 h, 96 h and 120 h. After 164 h of incubation, the supernatant

of the production cultures was extracted, and the incorporation was quantified with LC-MS.
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3. Tuning the production of pamamycins through engineering of the
precursors pool in the heterologous host S. albus 11074

3.1. Abstract

Pamamycins, a group of polyketides originally discovered in Streptomyces alboniger, can
induce sporulation in Streptomyces and inhibit the growth of Gram-positive bacteria,
Mycobacterium tuberculosis and fungi. Pamamycins biosynthetic gene cluster encodes for 6
ketosynthases. Three of them (PamA, PamE and PamG) can utilize a variety of extender units
such as malonyl-CoA, 2-S-methylmalonyl-CoA and 2-S-ethylmalnoyl-CoA. PamA utilizes
succinyl-CoA as starter unit and either malonyl-CoA or 2-S-methylmalonyl-CoA as extender
units. PamE and PamG incorporate malonyl-CoA, 2-S-methylmalonyl-CoA or 2-S-
ethylmalonyl-CoA as building blocks in the growing polyketide chain of pamamycin and thus,
further increase the chemical variety. The utilization of different extender units results in a
diversity of produced pamamycins, covering at least 18 different derivatives with molecular
weights ranging from 579 g/mol up to at least 649 g/mol. For the isolation of pamamycins,
we aimed to simplify the downstream processing of pamamycins through modification of
the precursor supply, which results in an altered spectrum of produced derivatives. Eight
core genes responsible for the supply of 2-S-methylmalonyl-CoA and 2-S-ethylmalonyl-CoA
were identified using NCBIs Basic Local Alignment Search Tool (BLAST) in the heterologous
host S. albus J1074. By applying the recombineering technology, we were able to construct
knockout mutants of the described genes, to measure their corresponding CoA-ester

concentration and to analyze the influence on the production of pamamycins.
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3.2. Introduction

Polyketides form one of the most important groups of natural products known to mankind.
They are produced by bacteria, fungi and plants and their chemical diversity is reflected in

various  clinical  applications, including antibiotics,’®®>  antihelmintic  drugs,®*

195 196 197

immunosuppressants,’®> antifungals,’*® cholesterol-lowering drugs'®’ and cytotoxic agents.
198 polyketides are assembled by simple Claisen condensations of malonate-derived building
blocks.?® The formation of primary poly-B-ketide chain is performed by an enzyme complex
called polyketide synthase (PKS) in a process similar to the biosynthesis of fatty acids.?® In a
view of such simplicity of basic assembly principles, the enormous variety of polyketides is
achieved in two steps. Firstly, the use of various acyl precursors as starter (acetyl-CoA,
propionyl-CoA, isovaleryl-CoA, benzoyl-CoA, etc) and extender building blocks
(methylmalonyl-CoA, ethylmalonyl-CoA, chloroethylmalonyl-CoA, methoxylmalonyl-CoA,
etc)’, together with a changing degree of ketoreduction leads to differences in the nascent
scaffold. 192 Secondly, intensive post-PKS modifications such as glycosylation, amination and

methylation strongly alter the basic polyketide structure.?®

The majority of polyketides’ precursors originates from the primary metabolism.” The most
commonly utilized extender unit, malonyl-CoA, is produced via two different pathways. The
predominant way used by bacteria is the direct carboxylation of acetyl-CoA by the acetyl-
CoA carboxylase.”” Acetyl-CoA in turn is supplied from multiple catabolic pathways, including
the B-oxidation of fatty acids. Additionally, malonyl-CoA can also be formed by an activation
of malonate with CoA by the malonyl-CoA synthetase MatB.2°? Methylmalonyl-CoA in
bacteria was shown to originate mainly from two reactions: carboxylation of propionyl-CoA
by the propionyl-CoA carboxylase (PCC) and the reversible isomerization of succinyl-CoA by
methylmalonyl-CoA mutase (Mcm).%® Lastly, ethylmalonyl-CoA is generated by carboxylation
of crotonyl-CoA by the crotonyl-CoA carboxylase/reductase (Ccr). The deep understanding of
central metabolism routes, supplying these biosynthetic precursors, allows to manipulate
the biosynthesis of polyketide antibiotics not only in terms of production yield but also to
selectively modulate the particular derivatives accumulation. The prominent example of the
latter case is the changing of the monensins spectra by affecting ethylmalonyl-CoA supply.2%?

However, such examples are rather rare most probably due to the lack of a clear
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understanding of interplays between primary and secondary metabolism. First of all, this is
caused by the great redundancy and strong interdependence of the aforementioned central
metabolism pathways that complicate the analysis and render the understanding of
interactions between primary and secondary metabolism extremely difficult. The deep
investigation of metabolic pathways for main polyketide precursors in commonly used
heterologous stain will broaden the possibilities of metabolic engineering of these secondary

metabolites production in Actinobacteria.

Pamamycins are a group of macrodiolide polyketides originally found in the extract of
Streptomyces alboniger.” They were shown to have an activity against Gram-positive
bacteria, including Mycobacterium tuberculosis and fungi.”* Pamamycins are produced as a

mixture of closely related derivatives with molecular weight ranging from 579 to 649 Da,

Pamamycin R' R? R® R* R> R®

Me H Me Me H Me
593 Me Me Me Me H H
H
H

Et H Me Me
607 Me Me Me Me Me
Me Me Me Me Me Me
Et H Me Me Me Me
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Me Me Me Et Me Me
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63> Et Me Me Et H Me
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649 Et Me Et Et H Me

Et Me Et Me Me Me

Figure 14 The core structure of Pamamyicns, it’s derivatives and their corresponding molecular masses

which differ by the side chain substituents in six different positions (Figure 14).5> Such

structural diversity is introduced during the primary polyketide chain assembly by unusual
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PKS enzymes that equally accept malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA as
extender units.’® This makes the biosynthesis of pamamycins a great model to study the
interactions between different polyketides precursor supply pathways. On the other hand, it
was noted that low molecular weight pamamycins have a stronger antimycobacterial
activity.®® However, due to the high complexity of the produced mixture the isolation of a
sufficient quantity of any specific derivative for further structure-activity studies is virtually
impossible. To overcome this problem and to pursue the development of these highly
promising compounds, we aimed to modify the produced spectrum of pamamycins by
controlling the flux of precursors into their biosynthesis in the heterologous strain S. albus
J1074. Herein we report the elucidation of biosynthetic routs for methylmalonyl-CoA and
ethylmalonyl-CoA in S. albus J1074 and the use of this knowledge to modulate the

production of pamamycins.
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3.3. Materials and Methods

3.3.1. Bacterial strains and culture

Strains and vectors used in this study are presented in Table S 7. All E. coli cultures were
grown at 37 °C with 180 RPM in LB medium. For general procedures, Streptomyces cultures
were grown on MS agar medium.'®® For DNA isolation and pre-cultures, Streptomyces strains
were cultivated in liquid TSB medium for 24-48 h at 29 °C and 230 rpm. SGG (10 g/L starch,
10 g/L glycerol, 2.5 g/L corn steep solids, 5 g/L Peptone, 2 g/L yeast extract, 1 g/L NaCl, 3 g/L
CaC03, dH,0, pH=7.2) was used as main pamamycins production medium and strains were
incubated for 72 h at 29°C and 230 rpm. Feeding experiments were carried out in SGG and
liquid Hopwood’s'®® minimal medium under conditions described above. When needed,
media were supplemented with the following antibiotics: apramycin 50 pg/mL, hygromycin

50 pg/mL, chloramphenicol 30 pg/mL, kanamycin 100 pg/mL, nalidixic acid 30 pg/mL.

3.3.2. General procedures

E. coli transformation and plasmid DNA isolation were performed according to standard
protocols.’® Total DNA isolation and other procedures with Streptomyces strains were
performed as previously described.’®® Intergeneric conjugation between Streptomyces and
E. coli was done according to a modified protocol of Flett et al.?°3 using MS agar medium and
E. coli WM6026 as donor strain.?’* DNA manipulations such as endonuclease restriction,
ligation and polymerase chain reaction (PCR) were performed according to manufacturers’
protocols (Thermo Fischer Scientific, USA; NEB, USA). The oligonucleotides used in this work
are listed in Table S 7 (Eurofins, Germany). DNA sequencing was performed at Eurofins GATC

Biotech (Eurofins, Germany).

3.3.3. Construction of recombinant cosmid clones and gene deletions in

S. albus
S. albus cosmid library clones pSMARTgus 3D17, pSMARTgus_2J19, pSMARTgus_1M11,
pSMARTgus_3H24, pSMARTgus_2E5, pPSMARTgus_3J4 were modified by deleting the genes
of interest using Red/ET recombineering as described earlier.>® To facilitate markerless
deletions the iterative marker excision system was used.'®® The resulting cosmids 3D17

Accr2AmeaA, 3D17AmeaA, 3D17Accr2, 2)19Avdh, 3H24Apcc3, 1M11Apcc2, 2E5Apccl and
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3J4Amcm were verified by PCR and the sequencing of the deletion site. The obtained
recombinant cosmids were introduced into S.albus by intergeneric conjugation. The
screening for double crossover event was carried out by blue-white selection as described.?%
The IMES resistance cassette was removed after each individual deletion by expressing
phiC31 int gene.'®® All mutant strains were verified by PCR to carry the correct deletion.

Strains and their genotypes are listed in Table S 8.

3.3.4. Pamamycin production and analysis

The R2 cosmid, containing pamamycins biosynthetic gene cluster, was introduced into
S. albus strains by intergeneric conjugation. For the pamamycin production, a pre-culture
was inoculated from spores into 15 mL of TSB in 100 mL flasks and incubated as described
above. 1 mL of each pre-culture was inoculated into 50 mL of SGG medium in 500 mL flasks
with 1 baffle containing 30 g of glass beads and incubated as described in 3.3.1. In all cases

at least three independent cultures of the same strain were examined.

The biomass was harvested by centrifugation (10 min, 4500 rpm, 4°C) and extracted with
7.5 mL of a 1:1 mixture of methanol and acetone for 60 min with shaking at 160 rpm. The
biomass was subsequently separated by centrifugation (10 min, 4500 rpm, 4°C) and dried
under a nitrogen stream. 20 mL of supernatant were extracted with equal volume of ethyl
acetate for 30 min with shaking at 160 rom. The extracts were evaporated using a rotary
evaporator (240 mbar, 60°C, 160rpm). Subsequently, the extract of biomass and
supernatant were dissolved in 150 pL of a 1:1 mixture of methanol and DMSO and

combined.

The extracts were analysed by HPLC-MS (Dionex Ultimate 3000, Thermo Fisher Scientific
USA, AmaZon ETD SL speed with Apollo Il ESI source, Bruker, USA) using a Waters BEH C18
column (100 mm x 2.1 mm, 1.7 um, Waters Corporation, USA). The volume of injection was
1 pL. Details of solvents and the gradients used are shown in Table S 9. The mass spectra
were recorded in centroid mode (200 to 2000 m/z) at a scan rate of 2 Hz. The data was
collected and analysed using Bruker Compass Data Analysis software version 4.2 (Bruker,

USA). The area under curve (AUC) of a smoothened BPC chromatogram was used as a
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measure to compare the amount of pamamycins produced. A standard curve was obtained

with the pure sample of pamamycin 607.

3.3.5. Measurement of the CoA-Esters

The CoA-ester measurement was carried out by Wittmann et al. with a modified protocol

described by Peyraud et al.?%

3.3.6. Incorporation of labelled amino acids

To analyse the incorporation of labelled amino acids into pamamycins, the corresponding
S. albus culture was prepared as described in Section 3.3.1. 1 mg of single amino acids (L-
Valine-2-13C; Sigma Aldrich, USA) and 2 mg of an amino acid mixture (Sigma Aldrich, St.
Louis, Missouri, USA) were supplemented to the production medium, incubated with S. albus
A5 R2 and S. albus A7 R2, respectively, after 12, 24, 36, 48 and 60 h after the incubation.
Pamamycins and the corresponding incorporation were monitored by HPLC-MS as described

in Section 3.3.4.
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3.4. Results

3.4.1. Bioinformatics identification of pamamycin precursors supply
pathways and corresponding genes in the genome of S. albus

The pamamycins assembly line utilizes malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-

CoA as extension units. Since S. alboniger is poorly genetically tractable, the heterologous

system based on S. albus J1074 and the R2 cosmid carrying the entire pam gene cluster is

the preferred production model. In order to identify the metabolic pathways that are
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Figure 15 Biosynthetic origin of the precursors, which are invovled in pamamyicns biosynthesis.

invovlved in the supply of methylmalonyl-CoA and ethylmalonyl-CoA and genes encoding

corresponding enzymes directly involved in conversion of these CoA-esters, we performed a

KEGG Pathway database and KEGG Orthology analysis of the genome of S albus.?®” Indeed,

the genome of S. albus is predicted to code for all three metabolic pathways known to

employ methylmalonyl-CoA: 1 — Valine, leucine and isoleucine degradation (KEGG Pathway
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ID salb00280); 2 — Glyoxylate and dicarboxylate metabolism (salb00630); and 3 — propanoate
metabolism (salb00640) (Figure 15). Thus, methylmalonyl-CoA is proposed to be an
intermediate in three central metabolism reactions in S.albus: 1 — The reversible
interconversion from (R)-methylmalonyl-CoA to succinyl-CoA catalysed by methylmalonyl-
CoA mutase (Mcm) and the (S)-(R) epimerization by methylmalonyl-CoA epimerase; 2 — The
carboxylation of propionyl-CoA performed by propionyl-CoA carboxylase (PCC) and 3 — The
oxidation by the aldehyde dehydrogenase (XNR_4007 or XNR_3418) of (S)-methylmalonate
semialdehyde. Ethylmalonyl-CoA is predicted to participate in two major reactions: 1 — The
reductive carboxylation of crotonyl-CoA that is catalysed by the crotonyl-CoA
reductase/carboxylase (Ccr) and 2 — The conversion to (2S)-methylsuccinyl-CoA catalysed by

the (2R)-ethylmalonyl-CoA mutase (MeaA).

Table 3: Identified genes involved in the biosynthesis of 2S-methylmalonyl-CoA and 2S-ethylmalonyl-CoA.

XNR Gene Abbr. SCO % of homology
XNR_5889 Crotonyl-CoA reductase cerl sco6473 35%
XNR_0456 Crotonyl-CoA carboxylase/ reductase ccr2 sco6473 93%

Ethylmalonyl-CoA mutase,

0,

XNR_0457 methylsuccinyl-CoA forming meaA sc06472 86%
XNR_2273 Propionyl-CoA carboxylase, alpha subunit

pccl sco02776 86%
XNR_2274 Propionyl-CoA carboxylase beta subunit
XNR_4211 Propionyl-CoA carboxylase alpha subunit

pcc2 sco4380 89%
XNR_4212 Propionyl-CoA carboxylase
XNR_4024 Propionyl-CoA carboxylase beta subunit pcc3 sco4926 89%
XNR_4665 Methylmalonyl-CoA mutase large subunit

mcm sco4869 50%
XNR_4666  Methylmalonyl-CoA small subunit
XNR_2839  Valine dehydrogenase vdh sco4089 85%

In order to identify genes encoding corresponding enzymes, we performed a S. albus
genome BLAST search for the orthologues from corresponding enzymes from S. coelicolor.'%*
In S. coelicolor, PCC is composed of two subunits: the a-subunit (AccA2, SCO6271), which
carries the biotin carboxylase (BC) and biotin carboxyl carrier functions. This protein is also a
part of the acetyl-CoA carboxylase complex. The B-subunit is performing the carboxylation

reaction of specific substrate (PccB, SCO4926).°° In the genome of S. albus 11074 genes
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encoding three putative PCC complexes were identified: PCC1 (XNR_2273 and XNR_2274)
that corresponds to PccA and PccB of S. coelicolor (SCO4381 and SCO4380); PCC2 (XNR_4211
and XNR_4212), orthologues of AccC and AccD1 (SCO2777 and SC0O2776); PCC3 formed by
XNR_4019 and XNR_4024, orthologues of AccA2 and PccB, respectively (Table 3). At the
same time, we were not able to find any putative candidate genes to encode the propionyl-
CoA transcarboxylase homologue of Propionibacterium, which is an alternative to the typical
PCCs, utilizing oxaloacetate as a donor of the carboxylic group.2°® Additionally, we were able
to identify several genes putatively encoding acyl-CoA-carboxylases without defined
substrate specificity, which were excluded from further work. The genome of S. albus is
coding for three orthologues of S. coelicolor methylamalonyl-CoA mutase: XNR_4665 and
XNR_4666 have a high degree of similarity to MutA (SCO6832) and MutA2 (SCO4869) and
XNR_1417, which is annotated as Mcm and shows a 50% amino acid similarity to MutA from
S. coelicolor (Table 3). However XNR_1417, most probably acts as isobutyryl-CoA mutase
(89% aa identity to lcmA SCO5415). Interestingly, in S. coelicolor both genes encoding
paralogues of mcm mutAl and mutA2 are located distantly from each other. At the same
time, in the genome of S. albus they are forming one operon with the gene encoding the
methylmalonyl-CoA mutase-associated GTPase MeaB (SCO5400 orthologue). Furthermore,
they are clustered together with genes that encode cobalamin’s biosynthesis, the co-factor,
necessary of the methylamalonyl-CoA mutase. The key enzyme in the ethylmalonyl-CoA
pathway is the crotonyl-CoA reductase/carboxylase. The genome of S. albus is coding for two
orthologous of S. coelicolor Ccr (SCO6473): XNR_0456 and XNR_5889 (Table 3). The latter
one is located within the type | PKS-NRPS gene cluster and is most probably involved in the
supply of precursors into respective biosynthesis pathway. We also were able to identify the
ethylmalonyl-CoA mutase MeaA (SCO6472) orthologue encoded by the gene XNR_0457 in
S. albus. As in S. coelicolor, XNR_0457 is forming one operon with ccr2 (XNR_0456) and
several other genes putatively involved in the ethylmalonyl-CoA pathway. Lastly, the
genome of S. albus is coding for a valine dehydrogenase Vdh (SCO4089) orthologue
(XNR_2839), putatively involved in initial step of branched chain amino acids degradation

pathway that utilizes methylmalonyl-CoA as one of intermediates (Table 3).
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3.4.2. Metabolic pathways involving ethylmalonyl-CoA in S. albus

3.4.2.1. Ethylmalonyl-CoA is supplied by Crotonyl-CoA
Carboxylase/Reductase encoded by XNR_0456

A large part of pamamycins diversity is due to the incorporation of ethylmalonyl-CoA in

certain derivates.”® As such, Pam635 and Pam649 variants as well as some Pam621

derivatives carry ethyl side chains. We reasoned that by influencing the supply of
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Figure 16: CoA-Ester levels in the constructed consecutive S. albus knockout strains compared to S. albus J1074.

ethylmalonyl-CoA the spectra of accumulated pamamycins can be simplified significantly. As
described above, the genome of S. albus 11074 is coding for two paralogues of Ccr. Firstly,
we analyzed the strain S. albus Dell. This strain has a deletion of two gene clusters
responsible for the production of candicidin and frontalamides. The NRPS/Type 1 PKS Cluster
includes the putative ccrl gene XNR_5889. After the introduction of the R2 Cosmid, which
carries pamamycins entire biosynthetic gene cluster, no difference in either level or the
produced spectrum of pamamycins was observed. As a next step, the gene XNR_0456 was

markerless and in frame deleted from the chromosome of S. albus Dell. The CoA-Ester pool
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as well as the spectrum of produced pamamycins from the resulting strain S. albus A2 was
measured. As a result, the complete absence of ethylmalonyl-CoA and its subsequent
product methylsuccinyl-CoA and a 1.9-fold increase of ethylmalonyl-CoA’s predecessor
crotonyl-CoA were observed, when compared to the wild type strain S. albus 11074.
Additionally, a 2.3-fold increase of methylmalonyl-CoA was detected in S. albus A2 (Figure
16). After the introduction of the R2 cosmid into S. albus A2, the production level of
pamamycins was compared to the wild type strain. The overall production of all pamamycins
was reduced by 20% in the measured triplicate. The strain demonstrated a 92.5% decrease
in the production of pam649 as well as a decrease of the smaller pamamycins that seem to
incorporate ethylmalonyl-CoA. The accumulation of pam635 dropped by 80% when
compared to the original production level, while the accumulation of Pam621 dropped by
5%. Meanwhile, the production of pam565, pam579, pam593 and pam607 increased from
0.16% to 0.62%, from 3.1% to 5.3%, from 11.4% to 16.26% and from 39.1% to 46.2% (Figure
17).

3.4.2.2. Ethylmalonyl-CoA mutase (MeaA)

The ethylmalonyl-CoA pathway is proposed to be involved in the assimilation of acetate in
order to substitute the glyoxylate cycle for replenishing the tricarboxylic acid cycle during
growth on this carbon source. This pathway is widely spread among Streptomyces and
S. albus’s genome is predicted to code for almost all enzymes involved in the conversion of
acetate to succinyl-CoA, including genes for a putative methylmalonyl-CoA/ethylmalonyl-
CoA epimerase (XNR_1439) and a (2R)-ethylmalonyl-CoA carbonylmutase (XNR_0457). We
assumed that blocking the conversion of ethylmalonyl-CoA to methylsuccinyl-CoA will
increase the intracellular ethylmalonyl-CoA pool. However, the deletion of methylmalonyl-
CoA/ethylmalonyl-CoA epimerase was predicted to also affect the methylmalonyl-CoA
metabolism. To avoid this, we have blocked the next step in the ethylmalonyl-CoA
consumption by deleting the gene XNR_0457 (MeaA) within the chromosome of S. albus
Dell and A2. The CoA-Ester pool of S. albus Dell AmeaA as well as the produced spectrum of
pamamycins was measured. As a result, the product methylsuccinyl-CoA was no longer
detectable, the ethylmalonyl-CoA pool increased 1.6-fold and the propionyl-CoA pool

increased 1.3-fold (Figure 16). After introducing the R2 cosmid into S. albus Dell AmeaA and
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S. albus A2, the produced spectrum of pamamycins was analyzed. While in S. albus Dell the
overall production of pamamycins was decreased by 30%, the knockout of medA resulted in
the accumulation of high molecular weight pamamycins. Pam621 was increased from 33.9%
to 38.6%, Pam635 from 11.5% to 14.79%, and Pam649 from 0.6% to 0.9% (Figure 17). At the
same time, a decreased production of low molecular weight pamamycins was observed. The

knockout of meagA in A2 resulted in a reversed effect of the ccr2 knockout. (Data not shown)
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Figure 17: The production of pamamycins in the constructed S. albus strains.

3.4.3. Metabolic pathways involving methylmalonyl-CoA

3.4.3.1. Methylmalonyl-CoA mutase (Mcm)

The methylmalonyl-CoA mutase XNR_4665 (Mcm) is of special interest in the regulation of
methylmalonyl-CoA within Streptomyces. The performed radical isomerization, which is

dependent on the media conditions, can be performed in both directions. To elucidate its
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potential role in the supply of methylmalonyl-CoA within S. albus, we deleted the coding
gene in the constructed strain S. albus A2 resulting in the mutant S. albus A3. The CoA-ester
pool of A3 was measured. When compared to S. albus A2, most esters remained unchanged
in the newly obtained mutant strain. Nevertheless, we observed a 5.6-fold increase of
methylmalonyl-CoA and a 1.7-fold increase of propionyl-CoA (Figure 16). After the
introduction of the R2 cosmid, the production of pamamycins were measured and compared
to its predecessor strain A2. Surprisingly, the production of pamamycins in the constructed

mutant remained unchanged (Figure 17).

3.4.3.2. Propionyl-CoA carboxylase (PCC1-2)

It was originally reported that in S. coelicolor, PCC3 is responsible for the carboxylation of
propionyl-CoA to methylmalonyl-CoA; orthologous of XNR_4024 (PCC3) can be found in the
genome of S. albus. The genome of S. albus possesses two additional putative acyl-CoA
carboxylase complexes with unknown functions similar to S. coelicolors PCC3 (Table 3). In
order to elucidate their potential role in the production of methylmalonyl-CoA and
ethylmalonyl-CoA we deleted the corresponding genes XNR_2273 (PCC1) and XNR 4211
(PCC2) within the chromosome of S. albus Dell and S. albus A3 and, which lacks both ccr
genes and the mcm gene. The mutant strains generated by the deletion of XNR_2273 (PCC1),
in S. albus A3 resulted in the strain S. albus A4 and the subsequent inactivation of XNR_4211
(PCC3) in S. albus A5. The mutant strains generated by the deletion of either XNR_2273
(PCC1) or XNR_4211 (PCC2) in S. albus A2 resulted in the strains S. albus A2 Apccl and
S. albus A2 Apcc2. The CoA-ester pools of all generated strains were compared to their
corresponding predecessor. The single knockouts of either pccl or pcc2 in S. albus A2 had no
major impact for precursors involved in pamamycins biosynthesis. Nevertheless, we
observed a 1.8-fold increase of acetyl-CoA after the knockout of pcc1, as well as a 1.85-fold
increase of succinyl-CoA after the knockout of pcc2 (Figure 18). The analysis of the CoA-Ester
pool of S. albus A4 and A5 revealed a 1.35-fold increase of methylmalonyl-CoA compared to
mutant A3. Furthermore, A5 revealed a 2.17-fold increase of butyryl-CoA compared to A4
(Figure 16). After the introduction of the R2 cosmid into the mutant’s A4 and A5, we
compared the produced spectra of pamamycins. The overall production of pamamycins in

A4 was decreased, when compared to A3, by 35%. However, the mutant A5, when compared
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to A4, showed an increased overall production of 26%. Furthermore, it was observed that
mutant A4 showed an increased production of high molecular weight pamamycins, while
producing a decreased amount of low molecular weight pamamycins, when compared to its
predecessor A3. While Pam649 remained unchanged, the production of Pam635 and
Pam621 increased from 2.5% to 3.7% and from 31.8% to 39.8%, respectively. The
constructed mutant A5 showed no difference in the production of pamamycins when
compared to A3 and therefore, showed the reversed effects when compared to A4 (Figure

17).

3.4.3.3. Valine dehydrogenase (Vdh)

It has been hypothesized that the valine dehydrogenase pathway provides substantial
amounts of methylmalonyl-CoA within S. albus 11074. To evaluate its influence, the gene

XNR_2839 was deleted markerless and in frame from the chromosome of S. albus J1074 and
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Figure 18: CoA-Ester levels in the constructed single gene knockout S. albus strains compared to S. albus J1074.

S. albus A5, resulting in the strains S. albus Avdh and S. albus A6. The CoA-ester pools of both
constructed mutants were analyzed and compared to their corresponding predecessors.
Surprisingly, a decrease of a multitude of CoA esters in S. albus Avdh was observed (Figure
18). While acetoacetyl-CoA, acetyl-CoA and autyryl-CoA remained unchanged in the
constructed mutant, crotonyl-CoA was reduced by 76%, ethylmalonyl-CoA by 75%,
methylsuccinyl-CoA by 82% and methylmalonyl-CoA by 58%. After introduction of the R2

cosmid, the produced spectrum of pamamycins was analyzed. Contrary to what the CoA-
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ester analysis indicates, the amount and the composition of the produced pamamycins is
identical when compared to the wild type strain. The CoA-ester analysis of the mutant
S. albus A6 revealed a 1.37-fold increase of methylmalonyl-CoA, while all other measured
CoA-esters remained unchanged (Figure 16). After the introduction of the R2 cosmid and the
analysis of the production of pamamycins, no major changes were observed (Figure 17). To
further evaluate the influence of Vdh on the supply of methylmalonyl-CoA in the
heterologous host, we grew S. albus 11074 and S. albus A5 in the presence of '3C-2-L-valine
and monitored the incorporation of 13C into pamamycins. As result, the derivatives Pam607,
Pam621 and Pam635 showed an increase of the +1 13C isotope peak from 36-40% to 46-57%
indicating the incorporation of methylmalonyl-CoA derived from the L-Valine degradation

pathway.

3.4.3.4. Propionyl-CoA carboxylase (PCC3)

After the attempt to elucidate the function of PCC1 and PCC2 as described in 3.4.3.2, the
function of PCC3 was analyzed. Therefore, XNR_4024 (PCC3) was deleted in frame and
markerless from the chromosome of S. albus A6, resulting in the mutant S. albus A7. The
CoA-ester pool of the constructed mutant was analyzed and revealed a 4.0-fold decrease of
methylmalonyl-CoA as well as a 1.5-fold increase of propionyl-CoA (Figure 16). After the
introduction of the R2-Cosmid into S. albus A7, the production of pamamycins was analyzed.
The production of Pam621, containing only methylmalonyl-CoA units, was decreased from

36.9% to 25.0%, while the production of Pam593 increased from 11.2% to 17.4% (Figure 17).

3.4.3.5. Remaining methylmalonyl-CoA supply pathways

The previously described deletion experiments indicate that the supply of methylmalonyl-
CoA in S. albus relies on more pathways than we were able to identify. To elucidate the
possibility whether the remaining amount of methylmalonyl-CoA derives from amino acids,
we grew S. albus J1074 R2, S. albus A6 R2 and S. albus A7 R2 in the presence of a 13C labelled
amino acid mixture and monitored the incorporation of 13C into pamamycins. While only a
moderate incorporation in pamamycins Pam607, Pam621 and Pam635 was observed in
S. albus A6 R2 and S. albus A7 R2, resulting in 13C isotope shifts from 39-43% to 44-47%, a
huge incorporation into the same Pamamycins was observed in the wild type strain S. albus

J1074 R2, where the 13C isotope peak shifted from 41-42% to 53-56%.
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3.5. Discussion

Our investigations of the precursor supply metabolism in the heterologous host S. albus
revealed the impact of enzymes on the intracellular CoA-ester concentration as well as their
subsequent influence on the production of pamamycins. The deletion of the Crotonyl-CoA
carboxylase/reductase 1 (CCR1; XNR_5889) showed no significant impact on the intracellular
concentration of ethylmalonyl-CoA. Its location within the NRPS/Type-I-PKS cluster as well as
its lack of influence indicates a putative inactivity or a direct involvement in the biosynthesis
of the frontalamides. In contrast, the deletion of Ccr2 resulted in the discontinuation of the
ethylmalonyl-CoA production in S. albus A2. Therefore, it can be hypothesized that Ccr2 is
the only source of ethylmalonyl-CoA in S. albus. Nevertheless, the strains lacking Ccr2 still
produce minimal amounts of the putatively ethylmalonyl-CoA containing Pamamycins
Pam635 and Pam649. Therefore, a secondary source of ethylmalonyl-CoA, producing small
amounts, which are not detectable with our methods, seems plausible. It has been reported
that S. coelicolors acetyl-CoA carboxylase can utilize acetyl-, propionyl- and butyryl-CoA with
approximately the same specificity.?%%-210 The carboxylation of butyryl-CoA results in the
formation of ethylmalonyl-CoA and could provide the building block for the high molecular
weight pamamycins. Another explanation for the presence of traces of Pam635 and Pam649
in the obtained extracts is the formation of derivatives with prolonged incorporated alkene

side chains as described by Hartl et al..®’

The deletion of meaA (XNR_4665) resulted in the accumulation of ethylmalonyl-CoA as well
as the deficit of methylsuccinyl-CoA. These findings confirm the postulated function as part
of the degradation of ethylmalonyl-CoA. Our investigations revealed a direct correlation
between the intracellular concentration of ethylmalonyl-CoA and the production level of the
pamamycins Pam635 and Pam649. Consequently, it can be concluded that enzymes involved
in the biosynthesis of pamamycins incorporate derivatives of malonyl-CoA solely because of
their intracellular availability. Furthermore, the obtained results of the ethylmalonyl-CoA

pathway indicate a logical and non-redundant function of the involved enzymes.

The methylmalonyl-CoA pathways show a greater complexity and redundancy. The functions
of two enzymes with obvious impact on the intracellular concentration of methylmalonyl-

CoA were identified. Since the deletion of Mcm resulted in a 5.62-fold increase of
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methylmalonyl-CoA, the putatively bidirectional enzyme can be assumed to mutate
methylmalonyl-CoA to succinyl-CoA under the chosen growth conditions. Since all CoA-
measurements were carried out in the stationary bacterial growth phase, it can be
hypothesized that Mcm is the main enzyme utilizing methylmalonyl-CoA and its deletion
leads to the accumulation of the primary metabolite. The 4-fold reduction of the intracellular
methylmalonyl-CoA concentration caused by the deletion of PCC3, clarified its function as
the main supply for methylmalonyl-CoA within S. albus. Since the deletion of PCC1 and PCC2
from the genome of S. albus resulted in increased methylmalonyl-CoA titers, we can exclude
the carboxylation of propionyl-CoA as their function. Nevertheless, their specific functions in
the primary metabolism remain unclear. The single gene knockout of Vdh caused different
effects, whether the gene was deleted from the chromosome of S. albus 11074 or S. albus
A5. In S. albus 11074, an overall decrease of most measured CoA-esters was observed, while
the knockout S. albus A5 resulted in an increased methylmalonyl-CoA pool. All obtained
results highlight the complexity of the regulatory mechanism of the primary metabolism in
Streptomyces. Since the increased as well as the decreased methylmalonyl-CoA titers did not
affect the production of pamamycins as expected, it can be hypothesized, that the
accumulation of methylmalonyl-CoA through the deletion of Mcm occurs during the late
stage growth period, while pamamycins production starts after 12 h and reaches its
maximum after 36 h. The observed negative effect on the overall production could be
explained by additional stress exerted by the deletions. The remaining quantities of
methylmalonyl-CoA in our final strain S. albus A7 indicate additional metabolic pathways
leading to the formation of this primary metabolite. Feeding of a mixture of labelled amino
acids resulted in their strongly decreased incorporation rates into pamamycins in S. albus A6
and S.albus A7, when compared to the wild type S.albus 11074. Therefore, the
incorporation of amino acids degradation products other than those of L-Valine can be
excluded as main route towards methylmalonyl-CoA. The remaining incorporation from 39-
43% to 44-47% could be a result of pamamycins nitrogen methylation utilizing labelled
methionine as a source. Another putative pathway is the unspecific carboxylation of
propionyl-CoA through S. albus’ Acetyl-CoA Carboxylase. The investigation of this possibility

is rendered difficult by the essential nature of the mentioned enzyme.
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3.6. Conclusion

Our investigations revealed the complexity of the primary metabolism in Streptomyces.
Nevertheless, we were able to conclusively prove the influence of four enzymes in the
pathways leading to either ethylmalonyl-CoA or methylmalonyl-CoA. The knockouts of the
genes involved in the ethylmalonyl-CoA pathway resulted in obvious results regarding the
production of the CoA esters and it was clearly possible to manipulate the spectrum of
produced pamamycins through modification of the intracellular CoA-ester concentration.
Such a simplified metabolic profile of the pamamycin producer S. albus enables further
purification and activity/toxicity testing of single molecules. An analysis of the effects caused
by the deletions of genes involved in the methylmalonyl-CoA pathway was more complex.
The functions of two genes (Mcm and PCC3) resulted in comprehensible effects on the
intracellular CoA ester concentration. However, these results were not reflected in the

produced derivatives of pamamycins.
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4. Discussion

4.1. General scope of the presented work

The presented work addressed two common problems in natural products research: 1. The
constant supply of natural products with new chemical scaffolds and derivatives is one of the
most important, if not the most important mission of natural products research. In order to
avoid the rediscovery of known natural products, a widely applicable targeted genome
mining approach was developed. Through its application, new polyketides with unique
structural features were identified and their biosynthesis was elucidated. 2. Pamamycins
biosynthesis was used as a model to explore the possibility of precursor supply modification
mediated control of natural product’s derivatives production. It was successfully shown that
the targeted inactivation of genes encoding enzymes from primary metabolism responsible
for the supply of different acyl-CoA has a strong influence on the production quantity of a
particular natural product and the number of derivatives produced by a strain. Such
manipulations can facilitate the downstream processing of natural products and enable the

future development towards new active pharmaceutical ingredients.

4.2. Discovery of Natural Products from rare Actinobacteria

After decades of research on the genus Streptomyces, countless natural products have been
identified. A statistical analysis of the Antibiotic Literature Database (ABL) showed that out
of around twenty-three thousand microbial compounds approximately 32.1% (~7360) are
derived from Stretpomyces species.?!! The number of discovered natural products from
these bacteria raises the problem of re-discovery of the same natural products from
different isolates. Strains sampled from different environments and at different distant
locations can still produce the same compounds. One such example is the
tetrahydroisoquinoline natural product perquinoline. Despite of its unique structure and
biosynthesis, this compound is produced by Streptomyces sp. IB2014/016-6 isolated from
samples collected at Lake Baikal and S. odonnellii NRRL B24891 found from soil sampled in
Brazil.?> Nevertheless, the phylum of Actinobacteria contains numerous genera
(Micromonospora, Actinoplanes, Actinomonodura, Pseudonocardia)''® 2! that are rarely
isolated from typical sources. Such underexplored species possess a great potential for the

discovery of new chemical entities and thus are attracting more and more attention. At the
83



moment, there are around 2400 compounds in the ABL isolated from non-Streptomyces

Actinobacteria?!!

and among those some are in clinical use such as rifamycin from
Amycolatopsis mediteranei,?*? erythromycin from Saccharopolyspora erythrea,’®? teicoplanin
from Actinoplanes teichomyceticus?** and vancomycin from Amycolatopsis orientalis.?*% 213
Despite of their obvious chemical potential, these strains are rather rare and working with
them presents multiple challenges. While techniques for cultivating and genetic engineering
are well developed for Streptomyces, many of the non-Streptomyces Actinobacteria species
are difficult to manipulate.?> 216218 To bypass potential cultivation issues with rare
Actinobacteria, the heterologous expression of BGCs in Streptomyces hosts is an attractive
alternative. Nevertheless, only few examples of successful rare Actinobacteria cluster
expression in Streptomyces hosts have been described. In a targeted genome mining
approach, 86 different Salinispora genomes were analyzed. This work resulted in the
discovery of thiolactomycin’s biosynthetic gene clusters. The BGC was found in four different
Salinispora strains and its 26 kbp genomic region was cloned using a synthetic double-
stranded DNA-mediated cloning strategy based on the transformation associated
recombination (TAR) in Saccharomyces cerevisiae. After cloning, the BGC was conjugated
and successfully expressed in S. coelicolor M1152.2%° In a similar attempt, the antibiotic
taromycin A and its biosynthetic gene cluster were identified in Saccharomonospora sp.
CNQ490. The similarity of taromycin’s towards daptomycin’s BGC spurred the authors’
interest. After the successful cloning of the BGC, modifications in the regulatory elements of
the cluster were carried out. 1 — A putative transcriptional repressor of the LuxR-regulator
type (tar20) was deleted from the BGC due to its possible negative effects. 2 — A SARP
regulator (tar19) was deleted in an identical fashion. While the expression of the unmodified
cluster in S. coelicolor M1146 was unsuccessful, both constructed knockout mutants
produced a series of unique chlorinated lipopetides that are structurally highly similar to
datpomycin.??® Another example of a successfully expressed BGC from rare Actinobacteria is
enterocin. After the identification of enterocins BGC in Salinispora pacifica CNT-150 the
cluster was cloned using TAR cloning and expressed in S. lividans and S. coelicolor M1146.
Both Streptomyces strains showed production of enterocin at the level similar to the native

producing strain.??! Despite some obvious success in this direction, there is no systemic
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approach described that exploits in full the genetic potential of these strains. Only selected

clusters were targeted abandoning other BGCs.

4.2.1. Heterologous expression of BGCs from the rare Actinobacteria
Saccharothrix espanaensis DSM44229

For the described targeted genome mining approach, the strain S. espanaensis was chosen
as BGCs source. Even though this strain has a 9.3 Mbp large genome and 31 putative
antiSMASH predicted BGCs, only the saccharomicins were isolated from its extracts.
Furthermore, the laboratory work with S. espanaensis is highly challenging, as it does not
form spores under laboratory conditions and it is not genetically amenable. To access the
chemical potential encrypted in the genome of S. espanaensis, a genomic library was
constructed with the pSMART-BAC-S vector as a backbone and end sequenced. To minimize
the laboratory effort, BGCs were prioritized by type and degree of their homology to known
clusters using antiSMASH. Altogether 17 unique BGCs on 15 BAC clones were conjugated
into S. albus 11074 and S. lividans AYA6. Ultimately, two BACs (1E5 and 3C18) were
successfully expressed in S. lividans and one construct (1E5) was active in S. albus. The
described approach offers five major advantages, when compared to the screening of native
strains. 1 — Novel compounds can easily be identified by comparison of the metabolic
profiles of the native and recombinant host. 2 — The process of dereplication is minimized,
since only the newly produced compounds need to be compared to the natural product
databases and this can potentially be automatized. 3 — The chance of rediscovery is
minimized since the exact mass for dereplication and the putative biosynthetic origin are
known. 4 — Production and growth conditions for the heterologous hosts are standardized.
Furthermore, the use of improved Streptomyces hosts can result in higher yields of natural
products. They also have a minimized metabolic background, facilitating the compound
isolation procedure. 5 — Genomic modification protocols of the BAC and the heterologous
hosts are well-established and drastically simplify yield improvement and the elucidation of
the biosynthetic pathway of the new natural product. Despite all mentioned advantages of
the heterologous expression approach, several problems need to be mentioned. A major
concern is the low expression rate of clusters. Only 11% (2 out of 17) of the chosen clusters
were expressed in the heterologous hosts. Reasons for this can be manifold and include

differences in the regulatory network of host and native strain, host resistance problems
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towards proteins or the natural products, differences in promoter- and ribosomal binding
regions and environmental factors, such as media and growth conditions, that could
influence both, host and native strain differently. Yamanaka et al. activated the production
of taromycin A in their heterologous hosts by influencing the regulatory elements of the
expressed cluster. Even though this solution is applicable for single clusters, the laborious
effort denies its application in a high throughput manner. A high throughput approach for
natural product discovery was described by Seyedsayamdost.'* It was shown that the
addition of sub-toxic concentration of antibiotics to the production medium strongly
activated the secondary metabolism. In theory, this approach of supplementing sub toxic
concentration of antibiotics could be combined with the expression of BGCs in heterologous
hosts. The increased screening efforts can be carried out in a high throughput manner as
described by Seyeedsayamdost.'* Even though this though experiment could increase the
expression rate, it only focuses on environmental factors and the global regulatory
mechanism of the strains, leaving codon bias as well as resistance problems an remaining
issue. The identification of a multidrug resistance protein such as the MdfA protein in E. coli
222 for Streptomyces and its expression in the host could increase host resistance and
therefore, enable the expression of toxic compounds. Nevertheless, the expression of a
multi-drug resistance protein will complicate the cloning process. Furthermore,
modifications of the recognition of promoter- and ribosomal binding sites cannot be carried
out easily in a high throughput scenario. Therefore, the identification and development of
different host strains from a range of rare Actinobacteria would be ideal to express a variety
of clusters from different sources. The host could then be chosen according to the
phylogenetic relationship to the “cluster donor” strain, this should solve potential codon
usage and promoter recognition issues and increase the expression rate drastically.
Unpublished data from our laboratory showed that clusters derived from Streptomyces that
are expressed in Streptomyces hosts have a much higher success rate of 35% (6 out of 17
BGCs). To achieve an optimal level of BGC expression a final theoretical experimental setup
would be plausible. 1 — Isolation and development of different Actinobacteria hosts, ideally
deriving from different species, including Micromonospora, Actinoplanes, Actinomonodura
and Pseudonocardia. 2 — ldentification of Actinobacteria strains with promising chemical

potential through high cluster count and construction of sequenced genomic libraries from
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the corresponding strains. 3 — Identification for the ideal host and “cluster donor”
combination. 4 — Construction of the recombinant strains through intergeneric conjugation
with chosen BGCs that were identified using antiSMASH. 5 — High throughput screening of
the constructed recombinant strains, cultivated with the addition of sub-toxic levels of
different antibiotics. 6 — Identification, dereplication, isolation and structural elucidation of
unique peaks. This setup would circumvent codon biased and promoter issues through
utilization of phylogenetically closely related host species, it would activate the global
regulatory mechanism through addition of different chemicals and minimize the rediscovery

chance, due to the known biosynthetic origin of the expressed compound.

Another concern of the described work in Section 2 was the constant decrease of the
production rate of pentangumycin and SEK90. While the recombinant host S. lividans
AYAG6_1E5 initially produced approximately 0.35 mg*L! of pentangumycin, the production
dropped to 0.14 mg*L?! after several passages. This trend progressed even further with
growing generation numbers to a point where pentangumycin was hardly detectable in
extracts measured with LC-MS. In order to stabilize the production of the expressed
compounds, the regulatory elements penR1 and penR2 were deleted from the
pentangumycin BGC and, alternatively, over-expressed under the influence of the medium-
strength A3 promotor.®” Both changes of the regulatory elements did not stabilize the
production. The deletion of penR2 resulted in the cessation of pentangumycins and SEK90
biosynthesis. Due to these results, a clear conclusion of the role of each transcriptional
regulator is hard to draw. Nevertheless, the cessation of the production of pentangumycin
and SEK90 after knockout of penR2 indicates its role as positive regulatory element. Since its
expression under the constitutive A3 promoter did not affect the production of these natural
products, a cross regulation between the two regulatory elements penR1 and penR2, similar

to jadomycins jadR1 and jadR2 seems plausible.>®

4.2.2. The angucyclinone pentangumycin

Pentangumycin is a member of the angucyclinone family with several unique features; one
of the most drastic is the presence of the additional phenol unit at position C-6 of ring B. The
modifications of ring B are quite rare and can only be found in few angucyclines, including

jadomycins. Furthermore, the amination of position C-19 and its subsequent acetylation has
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never been reported in angucyclinones and angucyclines before. The amination is
hypothesized to be identical to the one reported in borrelidins biosynthesis.??? Initially, the
methyl-group at position C-19 is oxidized by the cytochrome P450 enzyme PenA and the
ferredoxin reductase PenB to a hydroxy group. The hydroxy group is subsequently oxidized
to an aldehyde by one of the oxygenases encoded in pentangumycins BGC. The
aminotransferase and carboxyltransferase PenC and PenK could finalize the formation of
amide moiety of pentangumycins. The methylation of the hydroxy group at position C-1 was
only reported in the chlorocyclinones and is putatively performed by the methyltransferase
PenD.'®” From the biosynthetic perspective, the incorporation of ring E is the most
interesting feature of pentangumycin. Due to the homology between enzymes, JadG, JadF
and JadH that are supposedly involved in the Baeyer-Villiger oxidation and cleavage of
jadomycin’s ring B and the genes PenS, PenT and PenE an identical opening of
pentangumycin’s ring B can be hypothesized.*® In contrast to jadomycin’s biosynthesis no
amino acid is incorporated, but the a-keto-4-hydroxy-phenylpyruvic acid, the first product in
tyrosin degradation. This modification results, in contrast to jadomycins tertiary amine, in
the unique C-C bond formation between ring B and ring E, which is described for the first

time in the case of pentangumycin biosynthesis.

4.2.3. The shunt product SEK90

Another compound identified in the extract of S. lividans carrying pentangumycin BGC is
multicyclic metabolite named SEK90. It was proposed to be a shunt product similar to SEK43.
Indeed, SEK90 is a dimer of SEK43 connected through a butyryl-group. SEK43 was discovered
through the expression of tetracenomycins minimal PKS genes, actinorhodin’s ketoreductase
and griseusin’s aromatase without a corresponding cyclase in S. coelicolor A3(2).%%* It is
therefore, a product of the spontaneous cyclization of the minimal PKS derived decaketide.
SEK90’s production in S. lividans AYAG6 after the introduction of the pen BGC indicates an
aberrant functioning of Pen cyclases. Furthermore, the amount of SEK90 isolated from the
production broth was almost four times higher when compared to pentangumycin (13 mg
and 3.5 mg from SEK90 and pentangumycin, respectively). The large quantity of the shunt
product could be related to an unbalance transcription of the cyclases and the minimal PKS

genes or a malfunction of the cyclases due to misfolding of the enzymes.
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4.3. Precursor flux modification

The complexity of the primary metabolism and the interdependence of metabolic pathways
is a well-established fact.??> In order to summarize and classify the growing information
about biosynthetic routs and pathways the Kyoto Encyclopedia of Genes and Genomes
(KEGG) was developed. It provides information about identified pathways, including the
genes that encode the respective enzymes as well as metabolic products of the
corresponding reactions.??’” At the same time, the reactions of the secondary metabolism,
despite being very diverse and unique, use only a limited number of initial substrates. These
essential building blocks originate from the primary metabolism. While polyketides are
assembled from carboxylic acids (acetyl-CoA, propionyl-CoA, malonyl-CoA, methylmalonyl-
CoA, ethylmalonyl-CoA), NRPs and RIPPs usually derive from proteinogenic and non-
proteinogenic amino acids. As described in Section 1.3, these precursors come from a variety
of sources and their supply is crucial for natural product yield, especially the supply of

malonyl-CoA can be a restrictive factor for the assembly of polyketides.??®

It was shown, that the expression of Corynebacterium glutamicum genes in E. coli, encoding
an acetyl-CoA carboxylase and its partner biotin carboxylase, which provides the necessary
cofactor, increased the (2s)-flavone production rate four-fold. Interestingly, the
overexpression of E. coli’s native ACC had no influence on the production of flavones and
even showed a negative effect on the vitality of the recombinant strains. Koffas et al. tested
the influence of Gram-negative derived ACCs in a similar manner. The expression of the ACC
from Photorhabdus luminescens in E. coli under the control of the T7 promoter increased the
pinocembrin production up to 5.5-fold. In order to provide sufficient amounts of the
necessary cofactor, they co-expressed the P.luminescens biotin carboxylase. The co-

expression resulted in an up to 13-fold increase in the flavonoid production.

The limiting factor in the production of erythromycin in E. coli was found to be the supply of
methylmalonyl-CoA. As described in Section 1.3.2, methylmalonyl-CoA is mainly provided by
the carboxylation of propionyl-CoA through the propionyl-CoA carboxylase (PCC). The
expression of 13 different PCC homologues from different species in E. coli, resulted in a 6-
desoxyerythronolide production ranging from 0.2 mg*L'1l with the expression of

Chloroflexus aurantiacus PCC and up to 6 mg*L! with the expression of PCC from
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Myxococcus fulvus.??” A comparative study between the influence of the methylmalonyl-CoA
mutase pathway and the propionyl-CoA carboxylase pathway was carried out by Kealey et
al.. In order to analyze the impact of each pathway they expressed PCC and Mcm derived
from S. coelicolor in E. coli under control of the T7 promoter. While the recombinant strain
with PCC produced 6.5 mg*L™* 6-desoxyerythronolide, the expression of Mcm resulted in a

production titer of 0.85 mg*L 1,228

4.3.1. Monensin and Salinomycin

Monensin is a polyether ionophoric polyketide antibiotic that was isolated from
S. cinnamonensis.??*-?3° The derivatives monensin A and monensin B differ in a methyl-group
due the incorporation of either methylmalonyl-CoA or ethylmalonyl-CoA in the polyketide
backbone.?°? The native producer accumulates both derivatives equally and was therefore, a
good target for the analysis of the precursor supply of ethylmalonyl-CoA. Reynolds et al.
constructed strains with modified ethylmalonyl-CoA pathways and analyzed the influence on
the distribution between monensin A and B. The recombinant strain S. cinnamonensis
containing the ccr gene under control of ermE promoter showed no significant changes in
the distribution of both derivatives. The mutant strain lacking the native ccr gene drastically
shifted the production towards the methylmalonyl-CoA containing derivative monensin B.
This shift was reversed through reintroduction of the ermE promoter controlled ccr gene.
Furthermore, the authors were able to show a significant influence of the supplementation
of different amino acids to the production medium on the distribution of monensins A and B
in the ccr mutant. When valine was added as major component to a chemically defined
medium, a 3:1 ratio of monensins A to B was observed. If either leucine or isoleucine was
supplemented, the mutant strain mainly produced monensin B (>90 %). These results
indicate a secondary pathway leading to ethylmalonyl-CoA, which is activated by valine.
Unfortunately, the scientific paper only provided information about the distribution

between the monensin derivatives and not the overall production levels.

Another example for the importance of precursor supply and its modification was shown
with the polyether polyketide salinomycin, produced by S. albus DSM41398.231-232 The
analysis of its BGC and the corresponding biosynthesis showed the utilization of one acetyl-

CoA, five malonyl-CoA, six methylmalonyl-CoA and three ethylmalonyl-CoA during
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salinomycin assembly.?33> Among other genetic modifications, Bai et al. successfully improved
salinomycin’s production through the expression of ccr under control of the ermE
promoter.?>* This modification increased the intracellular ethylmalonyl-CoA concentration
from 99.4 nmol*gDCW (Dry cell weight) to 121.3 nmol*g?* DCW and thus, the salinomycin
production from 6 g*L? to 8 g*LL. In another example, the precursor supply of the high-yield
salinomycin producer S. albus BK3-25 (18 g*L!) was analyzed.?®> The concentrations of
malonyl-CoA (130 nmol*g! DCW), methylmalonyl-CoA (326 nmol*g! DCW) and
ethylmalonyl-CoA (59 nmol*g! DCW) were measured. Due to these results, the authors
hypothesized that increasing the ethylmalonyl-CoA pool would lead to improved salinomycin
production levels. In contrast to the previously described approaches, every gene involved in
the ethylmalonyl-CoA pathway was expressed under control of the ermE promoter. The
overexpression of gene implicated in initial step of ethylmalonyl-CoA pathway, the formation
of acetoacetyl-CoA from two acetyl-CoA units catalyzed by acetoacetyl-CoA synthetase, had
no effect on salinomycins production. Nevertheless, the overexpression of either 3-oxoacyl-
synthase Ill and 3-hydroxyacyl-CoA dehydratase or the crotonyl-CoA reductase increased the
salinomycin production up to 22.4 g*L'! and 21.3 g*L?, respectively. Furthermore, authors
constructed a strain that overexpressed all of three mentioned genes, which increased the
production further up to 25.1 g*L*. The final strain had a higher intracellular ethylmalonyl-
CoA concentration reaching 101.2 nmol*g™ DCW and a decreased concentration of malonyl-

CoA and methylmalonyl-CoA, 110.5 nmol*g DCW and 223.4 nmol*g! DCW, respectively.

4.3.2. Pamamyecins

The biosynthesis pathway for macrodiolide polyketides pamamycins utilizes succinyl-CoA,
acetyl-CoA, malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA as precursors. The
apparently random incorporation of malonyl-CoA and its derivatives through the
ketosynthases is responsible for the formation of more than 18 known pamamycin
derivatives. Pamamycin’s incredible bioactivity and the incorporation of different malonyl-
CoA derivatives turn this natural product into an excellent object of study for two reasons.
First, since the distribution of pamamycins derivatives is only controlled by the bioavailability
of the corresponding precursors, it can indirectly be used to evaluate the intracellular level

of methylmalonyl-CoA and ethylmalonyl-CoA through the production rate of different
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pamamycin derivatives. Second, pamamycins’ strong bioactivity against
Mycobacterium tuberculosis and other microorganisms turn these natural products into a
promising drug candidate, which due to its high derivative count and problematic chemical
synthesis could not be further developed. In the presented work, we have shown that the
production of different derivatives of pamamycins can be changed significantly through
modifications of the precursors flux and therefore, this can simplify the purification of

particular pamamycins without drastically reducing the overall yield.

The discussed modifications of the precursor supply in different Streptomyces species and
E. coli mainly focused on a single precursor or a single pathway. The work described in
Section 3 aimed to obtain a more global picture of the precursor supply of polyketides in the
model actinobacteria strain S. albus J1074. Due to their part in the fatty acid synthesis, fatty
acid degradation, glycolysis and involvement in the tricarboxylic acid cycle, malonyl-CoA,
succinyl-CoA and acetyl-CoA cannot be freely modified without impairing the strains fitness

and were, therefore, excluded.

An analysis of the genome of S. albus revealed two genes putatively encoding crotonyl-CoA
carboxylase/reductase involved in the transformation of crotonyl-CoA to ethylmalonyl-CoA
(ccrl and ccr2). In order to evaluate their influence on the intracellular concentration of
ethylmalonyl-CoA, the corresponding genes were deleted from the chromosome of S. albus.
The deletion of ccrl neither had an impact on the availability of ethylmalonyl-CoA nor the
production of pamamycins. After the deletion of crotonyl-CoA carboxylase/reductase (ccr2)
from the genome of S. albus, ethylmalonyl-CoA was no longer detectable. In contrast to this,
the production of high molecular weight pamamycins Pam635 and Pam649, which usually
contain at least one ethylmalonyl-CoA unit, was drastically reduced but did not completely
cease. There are two possible ways to explain this contradiction. 1 — In Section 1.2.3.2.2 we
described that the biosynthesis of pamamycins can utilize elongated acyl-CoA derivatives as
elongation units and form thus far unknown pamamycin derivatives with modified side
chains in position R or 2 — the remaining small amount of ethylmalonyl-CoA, which is left in
the cell, is directly incorporated in pamamycins and the intracellular concentration of

ethylmalonyl-CoA is too low to be detected with the used HPLC-MS based method.
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The function of the putative ethylmalonyl-CoA mutase (MeaA) was analyzed through the
knockout of the corresponding gene meaA. Its involvement in the degradation of
ethylmalonyl-CoA to methylsuccinyl-CoA was verified, as the concentration of ethylmalonyl-
CoA increased up to 200%. Furthermore, methylsuccinyl-CoA, the degradation production of
ethylmalonyl-CoA, was no longer detectable in the constructed mutant strains and the high

molecular weight pamamycins Pam635 and Pam649 showed increased production titers.

As described in Section 1.3.2, the supply of methylmalonyl-CoA is manifold and can occur
through numerous pathways. The analysis of S. albus genome revealed three putative PCC
complexes, the Mcm pathway and the valine degradation pathway. To analyze their
influence on the production of pamamycins and the CoA-ester levels, consecutive deletions
of all genes were carried out in the ccrl and ccr2 deficient S. albus mutant. Interestingly, the
modifications of all aforementioned methylmalonyl-CoA pathways showed no major
influence on the production of pamamycins. Nevertheless, drastic shifts in the availability of
methylmalonyl-CoA were observed. 1 — The mcm mutant S. albus A3 showed a 10-fold
increased methylmalonyl-CoA pool when compared to S. albus J1074. This result indicates a
conversion of methylmalonyl-CoA to succinyl-CoA under the chosen growth conditions
through the Mcm and not as initially hypothesized a conversion of succinyl-CoA to
methylmalonyl-CoA. Furthermore, the drastic increase indicates that S. albus does not
possess another methylmalonyl-CoA degradation route and therefore, this precursor
accumulates during the late stage of growth. 2 — The knockout of pcc3 in S. albus A7 resulted
in a 4-fold decreased methylmalonyl-CoA pool when compared to its predecessor S. albus
A6, indicating that pcc3 is the main route responsible for the formation of methylmalonyl-
CoA in S. albus. Furthermore, it can be concluded that around 25% of the available
methylmalonyl-CoA derives from a PCC independent pathway. Since vdh, pccl and pcc2 are
deleted in S. albus A7, this pathway remains unknown. As the degradation pathway of
leucine and isoleucine also results in the intermediate isobutyryl-CoA, it could replace the
valine degradation pathway and reinstate the formation of methylmalonyl-CoA through the
branched chain amino acid degradation described in Section 1.3.2 (Figure 7). In order to shut
down the supply of methylmalonyl-CoA through the degradation of branched-chain amino
acids, the deletion of the isobutyryl-CoA dehydrogenase appears reasonable, since multiple

copies of the branched-chain amino acid dehydrogenase gene were found in the genome of
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S. albus. Nevertheless, the deletion of this major pathway could interfere with the vitality of
the corresponding strain. Another putative pathway for the formation of methylmalonyl-CoA
lies in the increased propionyl-CoA concentration in S. albus A7, which is a result of the
deletion of pcc3. As a result of the substrate specificity of the acetyl-CoA carboxylase,
described in Section 1.3.2, ACC can synthesize methylmalonyl-CoA by carboxylation of
propionyl-CoA. The high concentration of propionyl-CoA in S. albus A7 further increases the
probability of this carboxylation. 3 — The deletions of pccl, pcc2 and vdh showed no major
impacts on the CoA ester level in the consecutive knockout strains S. albus A4-A6.
Interestingly, the single deletion of vdh gene in S. albus J1074 had a different impact on the
CoA ester levels. S. albus Avdh shows a drastically reduced ethylmalonyl-CoA, malonyl-CoA,
crotonyl-CoA and methylmalonyl-CoA pool, indicating a globally impaired fitness of this

strain. Nevertheless, pamamycins production remained unchanged in this mutant.

94



4.4, Conclusion

In order to introduce new medicines to the market, a constant supply of the development
pipeline with new lead structures is necessary. Since natural products have proven to be a
great source of compounds with interesting pharmaceutical features, their continuous
discovery is a necessity. The presented work provides a new way for the discovery of natural
products derived from rare Actinobacteria using a systemic heterologous expression
approach, which resulted in the identification of two novel polyketides. This universal
approach can access the genome encoded chemical potential of diverse Actinobacteria. On
the other hand, the heterologous expression in well-esteblished hosts provides the
possibilities for tuning the production of a desired compound using metabolic engineering.
By affecting the acyl-CoA precursors’ supply in S. albus, we achieved a modification of the
spectra of accumulated pamamycins. Futhermore, we gained insights into the origin of
different acyl-CoA esters in the strain and factors influencing their concentrations. This
knowledge can be applied in order to tune the production of other polyketide antibiotics in

this commonly used actinobacterial host strain.

Both projects underline the importance and versatility of Actinobacteria in the discovery of
natural products and their putative development towards active pharmaceutical ingredients
as well as emphasize the significance of the design of new approaches and techniques in

order to access these biologically active compounds.
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6. Appendix

6.1. Section 2

Table S 1: NMR Data 1E5_CMP1:

Pos. 6¢ 6u,m({JinHz) HMBC
1&1' 129,6 7,22 m -
2&2' 128,8 7,33 m -
3&3' 127,6 7,28 m -

4 &4' 120,8 5,90 s -
5&5' 39,7 3,71s -

6 18,75 3,48 s -

OH; & OH1' - 10,69 s -

Table S 2: NMR Data 1E5_CMP2.

Pos. 6¢ 6u, m(Jin Hz) HMBC

1&1" 170,29 - -

2&2' 168,58 - -

3&3' 163,33 - -

4 & 4' 134,5 - -

5&5' 129,23 7,22 m C-10

6 &6 128,86 7,33 m C-4

7&7' 127,44 7,28 m C-5

8&38' 104,95 - -

9&9' 102,83 5,86 m C-10, C-8, C-3,C-2

10 & 10' 39,8 3,76 d (7,1 Hz) C9, C5,C4,C3

11 31,42 4,13t (7,6 Hz)  C-13,C-12,C-8, C2, C-1
12 30,13 2,16 m C-14, C-13,C-11,C-8
13 21,83 1,25 m C-14, C-12,C-11
14 13,74 0,90t (7,4 Hz) C-13,C-12

OH1 - 11,37 s -

OH4¢' - 10,55 s (br) -
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Table S 3: Oligonucleotides used in Section 2; all Oligonucleotides were produced by Eurofins (Eurofins Genomics Germany
GmbH, Ebersberg, Germany).

Name Sequence of the Oligonucleotide

f3E7test GTCGTTGACCCTCAGCAAGT

r3E7test GCCTACCACTTCTACGCGTT

f1G5test GTAGGCGAACAACTGCAACG

r1G5test CTTCATGCGCAAGGAGATGC

f1C15test ACCCGATCGGCCTCAAGATC

r1C15test AGATCACGATCATCGCGGTC

f3K5test GCGAAGTACGACACGACGTA

r3K5test GGGGTGTCCGGTTCTACAAG

f1F6tes ATGCTCAGGATCGAATCGCC

rlF6test ACAGCTACGCCTTCGACTTC

f1C7test GAATCATCGCCGACAGCAAC

r1C7test GTTCTCGTCGATCTTGCCGA

f3E19test AGCCTGGTCAACCACTGTTC

r3E19test AGCCCAACAGTTGATAGCCC

f1G11test CCTTCGAGATCTCCGGGTTG

riGlltest GACTCGGGAACTCCTTACGC

f3C18test GAGTACCACATCGCCACCAA

r3C18test AGAGGATCTCCAGGTCGTCG

f1L8test CCACTGACGTGACGCATACT

r1lL8test GTGAGCAGTGAGGTGTGGTT

f3M21test AGACCGTCGAGCTGAACAAG

r3M21test CACACCGTCTGGAGGATCTG

f1ES5test AAGCTGTGGTTGTACTCCGG

rlEStest GCTTTCGGGGTCAATTGTCG

f3A24test AGTTCGTGGAAGCGCTGGAC

r3A24test AAGTCCTCCAGGACCTTCACC

f3K17test GAAGACGTCGATGCTCCACA

r3K17test ATCTTCGCCGGCTACAACAT

f-del-54860 CACCACGCCCCGGCACGACGACCCGGCCACCGCGTCACGGC TTCCGGGGATCCGTCGACCC
r-del-54860 GGGCCGCGCCAGCACCATGGCGCTCTGGAAGCCGCCGAAAC TGTAGGCTGGAGCTGCTTCG
f-del-55110 ATGGAGCCCATCGCGATCATCGGTGTGGGGTGCCGGTTCCC TTCCGGGGATCCGTCGACCC
r-del-55110 CGCGACCTCGCGCGGTGGTTCGTCACGACGCAGCGACGGCA TGTAGGCTGGAGCTGCTTCG
f-chk-54860 GCCTGCTTCGACGCGATCAA

r-chk-54860 GATCACGCCCATGTCGAACG

f-chk-55110 GATCACGCTCTCCCAGACG

r-chk-55110 GACGAGTCCTTCATCGCCAA

f-del-54730 GTGACCACCACAAGCCCCGCCTCCACGATCGACCTCTATTCCGACGAATTTCCGGGGATCCGTCGACCC
r-del-54730 TCAGCGGTGCAGGGTGGTCGGGAGCGCGGCGATGCCGCGGATGGTGTTGTGTAGGCTGGAGCTGCTTCG
f-del-54740 ATGAGGCTGATCGTCGATCGCGACCGCTGCGAAGGGCACGGCGTGTGCGTTCCGGGGATCCGTCGACCC
r-del-54740 TCAGCCTTCCAGCTTGAGGGCGGCGACCGGGCAGATGAGCACCGAGTCGTGTAGGCTGGAGCTGCTTCG
f-del-54750 ATGGAGAGCACGGCGCGAACGGTGTTCCGCCCGGCCTCGGCCCGCACCATTCCGGGGATCCGTCGACCC
r-del-54750 CTAGGACACCCTGGTCCGGGCCGCCCGGCCCTTGAGCAGCCGGCCCAGCTGTAGGCTGGAGCTGCTTCG
f-del-54760 ATGTCAGAGGAGAGCACCGAGAACACGACCGCCATGCGGTTGCTGCGGCTTCCGGGGATCCGTCGACCC
r-del-54760 CTAGGCGCGCACTGCTTCTACGACGCTGCACAGCCCGGCGGGGACGATCTGTAGGCTGGAGCTGCTTCG
f-del-54770+80 ATGCCGGTAATCGCGGCGAACGACGGTTGTCTGACCGTCTTCAACATGTTTCCGGGGATCCGTCGACCC
r-del-54770+80 TCAGTGCGGCGGGTCGACCAGCCCCAGTTGGACGAGGATGCCCATGTCGTGTAGGCTGGAGCTGCTTCG
f-del-54790 ATGAGCACACCCCCGTCACTGGTCGTCGTCGGCGCGTCCTTGGCCGGTCTTCCGGGGATCCGTCGACCC
r-del-54790 TCAGTCGCGGTGCACCGACGTGACCGCGTCGGACCAGGTCACGCCCCGGTGTAGGCTGGAGCTGCTTCG
f-del-54800 ATGATGGAAGGCGAACTGGGGGCCTTCCTGCGCAGTCGCCGTGAAGCCGTTCCGGGGATCCGTCGACCC
r-del-54800 TCAGCCGGAGCCGACCGCGCGCAACCCCACCTGGTTCACGTTCAGCCGGTGTAGGCTGGAGCTGCTTCG
f-del-54820 TCAGGCCGAGGCGCTGTCCAATCGGGACAGTTCCGCCGCAGTCAGCTCGTTCCGGGGATCCGTCGACCC
r-del-54820 ATGCGTCCGACTCCGCTGGGCACCGCCGCGCTGGGCACCACCGGGTTGATGTAGGCTGGAGCTGCTTCG
f-del-54830 TCAGGCGGGGTGCGGCGACCCGGTCGACCAGATCAGGTGGAACGACAGCTTCCGGGGATCCGTCGACCC
r-del-54830 ATGACAGCCGAGTCCGACCTGCCGTCCCGTGCCGACGTGGGCGCGCTGCTGTAGGCTGGAGCTGCTTCG
f-del-54930 ATCGAGGACGGCCCCGACCCGCAGGCCACCGAGCGCCAGCACGCCAAGGTTCCGGGGATCCGTCGACCC
r-del-54930 TCATTGCGGCGGGTTGCCGTGCTTGCGGCTGGGCAGGTCGGCGTGCTTGTGTAGGCTGGAGCTGCTTCG
f-del-54940 GTGCAAGGTGCATTCGTGGAGTTGCGATGCGTTGCCGACCGAATACCGGTTCCGGGGATCCGTCGACCC
r-del-54940 CTATTGCCAACTCGACGGGCTGCGGTAGGCCGTAACGCGTTCCGCGCGGTGTAGGCTGGAGCTGCTTCG
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f-del-54950
f-del-54950
f-del-1E5-left
r-del-1E5-left
f-del-1E5-right
r-del-1E5-right
f-del-54730-chk
r-del-54730-chk
f-del-54740-chk
r-del-54740-chk
f-del-54750-chk
r-del-54750-chk
f-del-54760-chk
r-del-54760-chk

f-del-54770+80-chk
r-del-54770+80-chk

f-del-54790-chk
r-del-54790-chk
f-del-54800-chk
r-del-54800-chk
f-del-54820-chk
r-del-54820-chk
f-del-54830-chk
r-del-54830-chk
f-del-54930-chk
r-del-54930-chk
f-del-54940-chk
r-del-54940-chk
f-del-54950-chk
r-del-54950-chk
f-chk-1E5-le-int
r-chk-1E5-le-int
f-chk-1E5-ri-int
r-chk-1E5-ri-int
f-chk-1E5_ri
r-chk-1E5_ri
f-chk-1E5_le
r-chk-1E5_le
F-54800A30E

R-54800A30E
F-54950A30E

R-54950A30E

GTGGTAGGGCAACAAGCCGGTGAGTTAGTCAGCACATGGGAGCCCGCGCTTCCGGGGATCCGTCGACCC
TCAGCCCTCGCCGAGGCGGAAACCGACACCGCGAACGGTGACGATCCACTGTAGGCTGGAGCTGCTTCG
GTGGTGCCGCTCTCCCTCATAGGTTTGCCAACGACGGCGTCAGTGCGTCTTCCGGGGATCCGTCGACCC
CTGGCAGTGCCGGTCTCAGCTCGGCCTCCCTCACCGGCGACGGCTGCCATGTAGGCTGGAGCTGCTTCG
TCACCACGCTCCAAGGCGGAGCCGGGACGTGCCCGCCGCCCACGGCCGCTTCCGGGGATCCGTCGACCC
TCACGTCACGGTGAGGCGGATGGGTATGCCGAGGCTGGGGTTGCCCGGATGTAGGCTGGAGCTGCTTCG
TGAACTTCGGGACCTTGACG

CGATCGACGATCAGCCTCAT

GGTACAGCCGACCGACAC

ATCAGCTCGATGGTGCGG

ATGAGGCTGATCGTCGATCG

GTTCTCGGTGCTCTCCTCTG

CGCTGACGGTGTACAAGCA

TCCCGCATCTCTTTGAGCAG

TGGACCTCGACATGTTGGTC

TCCTCTCCTGGGTCCTGTTC

GAACAGGACCCAGGAGAGGA

GTTCGAGACGATGCAACTGG

TCCCCTACTTCTGGTCGGAC

GTGCTCGGTCATGTCTTCCC

CATCGGCGTTGTCGGAAAC

GTCGTTCCACCTGATCTGGT

GGTCGTGCAGGTAGTACAGG

GAGTGGGAGTTCTGCGACAA

GAAGGGAGCAGTGCGTGAA

CTTCTCCACCAGAACCTCCG

TGGTCCGGCAGTACAAAGAC

TTTTCCGGTGTCATGACGGT

TGCGGTTCACACTCTTGAGC

ATGTGGATGACTGCCCGTG

GATCGCCATTGTGTCCGTTG

CATCTCGATCACTCCCACGG

TCACAAGGCACCTTACGGAC

CATCAGCGAAATCACTGCCG

CTCCGGGAAGTGATACTCGC

GACGTTCTCCTCAGGTGACG

CACTCGACGTCCAACTGTCA

GAGTGCCGCGGATATCTGAA
AAAAAAAGGTACCTAGCAGGGCTCCAAAACTAACGCCTGATGTAGGATCAGATGAAAAAAAAAAAGGAGGA
AAATACATATGATGGAAGGCGAACTGGG
AAAAAAAAAGCTTTCAGCCGGAGCCGACCGCGCGCAACCCCACCTGGTTCACGTT
AAAAAAAGGTACCTAGCAGGGCTCCAAAACTAACGCCTGATGTAGGATCAGATGAAAAAAAAAAAGGAGGA
AAATACATGTGGTAGGGCAACAAGCC

AAAAAAAAAGCTTTGTGGGTGTTCCACTCCGGA
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Table S 4: Strains, Plasmids and BACs used in Section 2.

Streptomyces

Characteristics

Reference

S. albus J1074

Streptomyces lividans A6

Saccharothrix espanaensis
DSM 44229 (T)

S. albus G1 (DSM 41398) derivative with the defective SalG |
restriction modification system heterologous host

S. lividans TK24 derivative, deletion of 6 BGCs

Producer of Saccharomicins

(Chater and Wilde,
1980 123)

(Paper in Revision)

Labeda et al.111

E. coli

Characteristics

Reference

GB2005
ET12567 pUZ8002

GB2005-red-rham

General cloning host
Strain used for intergeneric conjugation,

GB2005, RhamC-BAD-ybaA used for Red/ET

Maresca et al., 2010236
Kieser 2000190

Strochlic et al., 2010237

Plasmids Characteristics Reference
psmart-BAC-S AprR; BAC Vector Lucigen
Herrmann et al.
R. . . .
pTOS AprR; VWB-based Streptomyces integrative vector (2012)158
pTOS derivative; Integrated Gene 54800, influenced by A3 promotor .

PTOS_A3_R1 cloned into the Kpn | and Hind Ill site This work

T0S A3 R2 pTOS derivative; Integrated Gene 54950, influenced by A3 promotor This work
PIES_AS_ cloned into the Kpn | and Hind IlI site
patt-shyg ZS;GRICE;Z: ;/ff;zftment of phyg-OK containing hyg cloned into the Myronovskyi et al, 192
BACs Characteristics Reference

pSMART-BAC-S-1C15

pSMART-BAC-S-3A24

pSMART-BAC-S-3E7

pSMART-BAC-S-1G5

pSMART-BAC-S-1F6

pSMART-BAC-S-1120

pSMART-BAC-S-3E19

pSMART-BAC-S-3K5

pSMART-BAC-S-1G11

pSMART-BAC-5-3C18

pSMART-BAC-S-118

pSMART-BAC-S-3M21

pSMART-BAC-S-1E5

pSMART-BAC-S-1C7

pSMART-BAC-S-3K17

PSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 1,670,099-1,769,322)
PSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 2,190,390-2,280,022)
PSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 2,332,949-2,404,154)
PSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 2,825,657-2,924,398)
pSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 3,429,623-3,516,631)
pSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 3,577,211-3,660,078)
PSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 3,526,632-3,686,841)
pSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 3,786,071-3,893,910)
pPSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 4,412,386-4,533,983)
PSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 4,412,386-4,533,983)
pPSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 5,681,922-5,790,602)
pPSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 5,865,637-5,963,104)
PSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 6,074,530-6,190,776)
pSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 6,252,700-6,375,967)
pPSMART-BAC-S derivative containing a fragment of the S. espanaensis
chromosome (Locus in bp: 6,511,399-6,617,883)
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1E5A55110
1E5A54860
1E5ApenA
1E5ApenC
1E5ApenD
1E5ApenE/F
1E5ApenG
1E5ApenR1
1E5Apen
1E5Apen)
1E5ApenV

1E5ApenR2

1E5Aleft

1E5Aright

PSMART-BAC-S-1ES derivative; Knockout of gene BN6_55110
PSMART-BAC-S-1ES derivative; Knockout of gene BN6_54860
PSMART-BAC-S-1ES derivative; Knockout of gene BN6_54730
PSMART-BAC-S-1ES derivative; Knockout of gene BN6_54750

PSMART-BAC-S-1ES derivative; Knockout of gene BN6_54760

PSMART-BAC-S-1E5 derivative; Knockout of gene BN6_54770 &
BN6_54780

PSMART-BAC-S-1E5 derivative; Knockout of gene BN6_54790
pPSMART-BAC-S-1E5 derivative; Knockout of gene BN6_54800
PSMART-BAC-S-1E5 derivative; Knockout of gene BN6_54820
pPSMART-BAC-S-1E5 derivative; Knockout of gene BN6_54830
PSMART-BAC-S-1ES derivative; Knockout of gene BN6_54940

PSMART-BAC-S-1ES derivative; Knockout of gene BN6_54950

PSMART-BAC-S-1ES derivative; Deletion of left flanking region
(Deletion locus in bp: 6,079,768 - 6,123,914; Deletion of 44,147 bp)
pSMART-BAC-S-1ES5 derivative; Deletion of right flanking region
(Deletion locus in bp: 6,148,356 6,184,748; Deletion of 36,393 bp)

This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work

This work

This work

This work
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Table S 5: Preparative HPLC method for pentangumycin (CMP468) & SEK90 (CMP791); 20 mL/min flow rate.

Method pentangumycin Method SEK90 Waters AutoPurification System

Min. %A %B Min. %A %B Waters 2545 Binary Gradient module

0 95 5 0 95 5 Waters SFO (System Fluidics organizer)

2 95 5 2 95 5 Waters 2998 PAD (Photodiode array Detector)

16 3 97 16 3 97 Waters SQ-Detector-2

17 3 97 20 3 97 Waters 2767 Sample Manager

18 95 5 21 95 5 Nucleodur C18 Htec 250/4,6 C18 5 uM (analytical)
19 95 5 22 95 5 Nucleodur C18 Htec 250/21 C18 5 uM (preparative)

Table S 6: Preparative HPLC method and yield for 1IE5CMP1 - 1E5CMP2; Flow Rate: 20mL/min.

Method 1E5_CMP1-2

Waters AutoPurification System

Purified compounds

Min. %A %B Waters 2545 Binary Gradient module 1E5CMP1: 6 mg
0 95 5 Waters SFO (System Fluidics organizer) 1E5CMP1: 7 mg
1 95 5 Waters 2998 PAD (Photodiode array Detector)

5 50 50 Waters 2767 Sample Manager

15 5 95 Nucleodur C18 Htec 250/4,6 C18 5 uM (analytical)

19 5 95 Nucleodur C18 Htec 250/21 C18 5 uM (preparative)

20 95 5

21 95 5
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Figure S 1: HPLC-MS Extracted ion chromatogram (Extracted mass 309+0.5) of S. lividans AYA6_3C18 and its ESI full ms

chromatogram.
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Figure S 2: HPLC-MS Extracted ion chromatogram (Extracted mass 468+0.5) of a) S. albus J1074_1E5 and b) S. lividans
A6 _1E5.
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Figure S 3: HPLC-MS Extracted ion chromatogram; a) Extracted mass (468.00 — 468.20) BPC of an ethyl acetate extract of S. espanaensis grown in SG
Medium; b) Extracted mass (791.10 — 791.30) BPC of a butanol extract of S. espanaensis grown in SG Medium.
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Figure S 6: TH-NMR spectrum (500 MHz, DMSO-dg) of pentangumycin; complete Spectrum and zoom from 2.7 to 1.7 ppm.
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Figure S 7: TH-NMR spectrum (500 MHz, DMSO-dg) of pentangumycin; complete Spectrum and zoom from 3.65 to 2.65 ppm.
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Figure S 8: TH-NMR spectrum (500 MHz, DMSO-ds) of pentangumycin; complete Spectrum and zoom from 4.6 to 3.6 ppm.
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Figure S 9: TH-NMR spectrum (500 MHz, DMSO-ds) of pentangumycin; complete Spectrum and zoom from 5.6 to 4.6 ppm.
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Figure S 10: 'H-NMR spectrum (500 MHz, DMSO-dg) of pentangumycin; complete Spectrum and zoom from 6.7 to 5.7 ppm.
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Figure S 11: IH-NMR spectrum (500 MHz, DMSO-ds) of pentangumycin; complete Spectrum and zoom from 7.6 to 6.7 ppm.
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Figure S 12:
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IH-NMR spectrum (500 MHz, DMSO-ds) of pentangumycin; complete Spectrum and zoom from 7.6 to 6.7 ppm.
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Figure S 13: 13C-NMR (125 MHz, DMSO- d¢) of pentangumycin; complete spectrum and zoom from 60 to 0 ppm.
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Figure S 14: 13C-NMR (125 MHz, DMSO- d¢) of pentangumycin; complete spectrum and zoom from 130 to 70 ppm.
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Figure S 15: 13C-NMR (125 MHz, DMSO- d¢) of pentangumycin; complete spectrum and zoom from 190 to 130 ppm.
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Figure S 16: H-1H- COSY spectrum (500 MHz, DMSO-ds) of pentangumycin.
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Figure S 17: 1H-1H- COSY spectrum (500 MHz, DMSO-de) of pentangumycin; Zoom to aromatic region.
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Figure S 28: Structure of SEK90 with all observed correlations (green: HMBC correlations H = C; blue: *H-'H-Cosy
correlation H 2 H).
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Figure S 29: TH-NMR spectrum (500 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 1.8 to 0.7 ppm.
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Figure S 30: TH-NMR spectrum (500 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 4.4 to 3.4 ppm.
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Figure S 31: TH-NMR spectrum (500 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 7.2 to 5.7 ppm.
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Figure S 32: IH-NMR spectrum (500 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 13 to 9.5 ppm.
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Figure S 33: 13C-NMR spectrum (125 MHz, DMSO-ds) of SEK90; complete Spectrum and zoom from 202 to 196 ppm.
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Figure S 34: 13C-NMR spectrum (125 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 168 to 60 ppm.
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Figure S 35: 13C-NMR spectrum (125 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 155 to 113 ppm.
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Figure S 36: 13C-NMR spectrum (125 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 105 to 92 ppm.
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Figure S 37: 3C-NMR spectrum (125 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 37 to 20 ppm.
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Figure S 38: 3C-NMR spectrum (125 MHz, DMSO-dg) of SEK90; complete Spectrum and zoom from 26 to 6 ppm.
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Figure S 43: HSQC-spectrum (500 MHz; 125 MHz, DMSO-ds) of SEK90; zoom from 7.5 to 5.5 ppm and 135 to 99 ppm.
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Figure S 44: HSQC-spectrum (500 MHz; 125 MHz, DMSO-ds) of SEK90; zoom from 4 to 0,5 ppm and 53 to 16 ppm.
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Figure S 45: HSQC-spectrum (500 MHz; 125 MHz, DMSO-ds) of SEK90; zoom from 4 to 0.5 ppm and 53 to 16 ppm.
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Figure S 46: HMBC - HSQC-Overlay spectrum (500 MHz; 125 MHz, DMSO-ds) of SEK90 (red: HMBC; black/green: HSQC).
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Figure S 47: HMBC - HSQC-Overlay spectrum (500 MHz; 125 MHz, DMSO-ds) of SEK90 (black: HMBC; red/blue: HSQC);
zoom from 13 to 10 ppm and 170 to 105 ppm.
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Figure S 48: HMBC - HSQC-Overlay spectrum (500 MHz; 125 MHz, DMSO-ds) of SEK90 (black: HMBC; red/blue: HSQC);

zoom from 13 to 10 ppm and 170 to 105 ppm.
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Figure S 49: HMBC - HSQC-Overlay spectrum (500 MHz; 125 MHz, DMSO-ds) of SEK90 (black: HMBC; red/blue: HSQC);

zoom from 6.5 to 0.5 ppm and 51 to 10 ppm.
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Figure S 50: HMBC - HSQC-Overlay spectrum (500 MHz; 125 MHz, DMSO-dg) of SEK90 (black: HMBC; red/blue: HSQC);
zoom from 4.5 to 0.5 ppm and 185 to 100 ppm.
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Figure S 51: Structures of SEK87, SEK43 and 1E5_CMP1 - 1E5_CMP2.
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Figure S 52: Viability assay of (1) (CMP468/pentangumycin) and (2) (CMP791/SEK90) for HCT116 cells.
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Figure S 53: Viability assay of (1) (CMP468/pentangumycin) and (2) (CMP791/SEK90) for HuH7.5 cells.

167



Figure S 54: CAS-Assay for SEK90 (CMP791) on agar diffusion discs compared to desferoxamine; from left to right: 1ug,
5ug, 10ug, 20ug a): Original picture; b) Enhanced colors for better visibility.
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Figure S 55: HPLC-MS Extracted ion chromatogram (Extracted mass 468+0.5) of a) S. lividans AYA6_1E5A54860 and b)
S. lividans AYA6_1E5A55110; The production is unchanged in the deletion of the NRPS/PKSI hybrid core gene, while the
production is abolished in the created mutant lacking the type Il PKS gene.
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Figure S 56: Genes (WP_124773686 & WP_124773691-WP124773694) of Micromonospora sp. LB39 mapped to
pentangumycins biosynthetic gene cluster.
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Figure S 57: 'H-NMR spectrum (500 MHz, CDCL3) of 1E5_CMP1; zoom from 10.8 ppm to 10.5 ppm.
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Figure S 58: IH-NMR spectrum (500 MHz, CDCL3) of 1E5_CMP1; zoom from 7.4 ppm to 7.2 ppm.
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Figure S 63: IH-NMR spectrum (500 MHz, CDCL3) of 1E5_CMP2; zoom from 11.6 to 9.5 ppm.
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Figure S 64: IH-NMR spectrum (500 MHz, CDCL3) of 1E5_CMP2; zoom from 7.4 to 7.2 ppm.
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Figure S 65: 'H-NMR spectrum (500 MHz, CDCL3) of 1E5_CMP2; zoom from 5.96 to 5.8 ppm.
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Figure S 66: 'H-NMR spectrum (500 MHz, CDCL3) of 1E5_CMP2; zoom from 4.25 to 3.75 ppm.
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Figure S 67: 'H-NMR spectrum (500 MHz, CDCL3) of 1E5_CMP2; zoom from 2.5 to 0.5 ppm.
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Figure S 72: HPLC-MS Extracted ion chromatogram (Extracted mass 459.1+0.1) of a) Spontaneously formed 1E5_CMP2; b)
synthesized 1E5_CMP2; c) Esi full ms chromatogram of a).

186



Xorbifrap\Nils\2019-02-12v190212003

02ZM2ZM8 161726

RT: 872-11.00

=1
=]

2

a)

& 8 8 4 8
Lo T T T §

Relatve Abundance

S ]

10,00 10.05 1002 1012 1018

10.31

100 101

190212003 #792-800 RT: 10.24-10.26 AV 9 NL 1.18E5
T: FTMS + cESI Full ms [200.00-2000.00]
26 0825

1005~ b)

a8

Relative Abundance
&

B7.0929

g HoW

0362 403.181

=]

04,2081
1

405 2028
.

4021818

410.1849

4070548 408.1248

4120844 413
:

2658

4141808

4151220 4163004
Il

#B07T18 L1001

a3

404

208

205

T T s
408
mz

407 411

412 4132

L i o
418 417 418 413

414 415

Figure S 73: HPLC Extracted ion chromatogram (Extracted mass 396.05-696.20) of S. lividans AYA6 1E5 b) Esi full ms

chromatogram with the exact mass of SEK43.

187

420



Xorbifrap\Nils\2018-07-05\1807050006 07/0THE 00:28:17

RT: 0.00 - 2258

10.29 N
1004 1858
b= Base Feak
20 mz=
E 748,15
80 7492 MS
E 180705000
703 <]
o |
2 E
£ 80
5 7
3 =03
£ 7
5 0]
3 ]
o 3
0
E 10.48
20
103 407 872 - =z
3 140 822 1288 15,41
o] 1 Il l L
LI L L e s L L L L e LI S L L L L L
0 2 4 5 6 1 2 5 8 1 2 2 2
Time (min)
1807050006 4904-918 RT: 10.20-1027 AV: 16 NL: 6.15E4
T: FTMS + cES| Full ms [200.00-2000.00]
12
1
749.1865
10
5 ®
_&E 0.
é T
0
é
z 0 750.1804
40
2
20
751.1228
10
N 749.4565 7508418 751.8500 762.1945 54,4732 755.4808
e e o o e e e = L L e e A A TS LI
7480 7485 7490 7495 500 TEO5 7510 TE15 7520 TE2.5 7530 54,0 7545 TEE0 TE5.5
mz

Figure S 74: HPLC Extracted ion chromatogram (Extracted mass 749.15-749.22) of S. lividans AYA6 1ES5 b) Esi full ms
chromatogram with the exact mass of SEK87.

188



X:\orbitrap\Nils\2019-05-31\1 N5/31/19 11:32:16

RT: 0.00 - 23.00
9.67 NL:
1004 251E7
90: m/iz=
E 458.79-
] a) 47416 MS
807 1
704
607
50
407
303
207
104
B 11.7! 17.60
3063 1.04 1,56 300 322 380431 546 600 688 750 857 9.38) 11021 1041 7% 1219 1393 1451 1544 1655 A0 1805 19.80 2083 2142  22.90
L L R e o L e e e S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Time (min)
1#797-824 RT: 9.54-0.86 AV: 28 NL: 4.91E6
T: FTMS + ¢ ESI Full ms [200.00-2000.00]
468.1436
555 b) 470,1499
490.1255
453.1439
4711527
4671361 - 475.1671 483.3524 491.1290
4541474 482.1230 489.1422
447.2007 451.0051 [ 450.0029 4590079 465 103 466. 1280‘ ‘ ‘ 474, 1033‘ 4771742 479 1801 ‘ ‘485_/1696 PO 1921320
. \\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘ “‘\“\\\‘\\\‘\\\‘\\\“\\\‘\\\‘\\\“\\“\‘\\\‘\\\‘\\\‘\\
446 448 450 452 454 456 458 460 462 464 466 468 470 472 474 476 478 480 482 484 486 488 490 492
miz

Figure S 75: HPLC-MS Extracted ion chromatogram (Extracted mass 468+0.5) of a) S. lividans AYA6_1E5 with 13C-9-15N-1-labelled L-tyrosine
added to the medium b) MS-Chromatogram of a), incorporation of 13C-9-15N-1-labelled L-tyrosine visible; First repeat of a triplicate.
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Figure S 76: HPLC-MS Extracted ion chromatogram (Extracted mass 468+0.5) of a) S. lividans AYA6_1E5 with 13C-9-15N-1-labelled L-tyrosine
added to the medium b) MS-Chromatogram of a), incorporation of 13C-9-15N-1-labelled L-tyrosine visible; second repeat of a triplicate.
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Figure S 77: HPLC-MS Extracted ion chromatogram (Extracted mass 468+0.5) of a) S. lividans AYA6_1ES with 13C-9-15N-1-labelled L-tyrosine
added to the medium b) MS-Chromatogram of a), incorporation of 13C-9-15N-1-labelled L-tyrosine visible; Third repeat of a triplicate.
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Figure S 78: HPLC-MS Extracted ion chromatogram (Extracted mass 4680.5) of a) S. lividans AYA6_1E5 without 13C-9-15N-1-labelled L-tyrosine
added to the medium b) MS-Chromatogram of a) no incorporation of 13C-9-15N-1-labelled L-tyrosine visible; first repeat of a triplicate.
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Figure S 79: HPLC-MS Extracted ion chromatogram (Extracted mass 468+0.5) of a) S. lividans AYA6_1E5 without 13C-9-15N-1-labelled L-tyrosine
added to the medium b) MS-Chromatogram of a) no incorporation of 13C-9-15N-1-labelled L-tyrosine visible; second repeat of a triplicate.
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Figure S 80: HPLC-MS Extracted ion chromatogram (Extracted mass 4680.5) of a) S. lividans AYA6_1E5 without 13C-9-15N-1-labelled L-tyrosine
added to the medium b) MS-Chromatogram of a) no incorporation of 13C-9-15N-1-labelled L-tyrosine visible; third repeat of a triplicate.
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Figure S 81: HPLC-MS Extracted ion chromatogram (Extracted mass 411+0.5; corresponding mass to (3)) of a) S. lividans AYA6; b) S. lividans AYA6_1E5; c) S. lividans AYA6ApenA; d) S. lividans AYA6ApenC; e) S. lividans
AYA6ApenD; peak visible in c); f) ESI Full MS chromatogram of the peak visible in c) R=13.47.
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Figure S 82: HPLC-MS Extracted ion chromatogram (Extracted mass 427.09-427.18; corresponding mass to (4)) of a) S. lividans AYAG6; b) S. lividans AYA6_1ES5; c) S. lividans AYA6ApenA; d) S. lividans AYA6ApenC; e)
S. lividans AYA6ApenD; peak visible in d); f) ESI full MS of the peak visible in d) (R=10.22).
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Figure S 83: HPLC-MS Extracted ion chromatogram (Extracted mass 454.10-454.17; corresponding mass to (5)) of a) S. lividans AYA6; b) S. lividans AYA6_1E5; c) S. lividans AYA6ApenA; d) S. lividans AYA6ApenC; e)
S. lividans AYA6ApenD; peak visible in e); f) f) ESI full MS of the peak visible in e) (R=12.02).
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Figure S 84: HPLC-MS Extracted ion chromatogram (Extracted mass 339+0.5, Rabelomycin) of a) S. lividans AYA6 1E5, b)
S. lividans AYA6 1E5ApenE c) pure rabelomycin as external standard.
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Figure S 85: HPLC-MS Extracted ion chromatogram (Extracted mass 46810.5, (1)) of a) S. lividans AYA6 1E5, b) S. lividans
AYAG6 1E5ApenR1 and c) S. lividans AYA6 1E5ApenR2.
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Figure S 86: HPLC-MS Extracted ion chromatogram (Extracted mass 468+0.5 (1)) of a) S. lividans AYA6 1E5, b) S. lividans
AYAG6 A3_penR1 1E5 and c) S. lividans AYA6 A3_penR2 1E5.
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Figure S 87: HPLC-MS Extracted ion chromatogram (Extracted mass 791.10-791.25 (2)) of a) S. lividans AYA6 1E5, b)
S. lividans AYA6 A3_penR1 1E5 and c) S. lividans AYA6 A3_penR2 1E5.
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Figure S 88: HPLC-MS Extracted ion chromatogram a) S. lividans AYA6 A3_penR1 (Extracted mass 491+0.5 (6) and 452+0.5

(7)), b) S. lividans AYA6 A3_penR1 1E5 (Extracted mass 45210.5 (7)) c) S. lividans AYA6 A3_penR1 1E5 (Extracted mass
491+0.5 (6)).
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Figure S 89: HPLC-MS Extracted ion chromatogram (Extracted mass 491+0.5) of a) S. lividans AYA6_A3_penR1 1E5 with L-
tryptophan 13C-11 added to the medium b) MS-Chromatogram of a), incorporation of L-tryptophan 13C-11 visible.
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Figure S 90: HPLC-MS Extracted ion chromatogram (Extracted mass 452+0.5) of a) S. lividans AYA6_A3_penR1 1E5 with
2D-5-labelled L-Phenylalanine added to the medium b) MS-Chromatogram of a), incorporation of 2D-5-labelled L-
Phenylalanine visible.
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6.2. Section 3

Table S 7: Oligonucleotides used in Section 3, supplied by Eurofins GENOMICS, Ebersberg, Germany.

Name

Sequence of Oligonucleotides

f-vdhhindERME
r-vdhbamERME
f-ccr2hindERME
r-ccr2bamERME
f-meaahindERME
r-meaabamERME
f-ccr2Del

r-ccr2Del

f-mcmDel

r-mcmDel

f-pcciDel

r-pcclDel

f-pcc2Del

r-pcc2Del

f-pcc3Del

r-pcc3Del

f-vdhDel

r-vdhDel

f-meaaDel

r-meaaDel

f-chk-ccr2
r-chk-ccr2
f-chk-mcm
r-chk-mcm
f-chk-pccl
r-chk-pccl

ATAAGCTTATCTCACCGGGAGTCACCAC

ATGGATCCATTGGCCGGAAATGATCCTCC

ATAAGCTTTCAGCCCTCACTACGCCCTT

ATGGATCCCTTCTGGCGCTCTGTCATGG
AAAAAAAAAGCTTCATCAACCGCTTCCGGAACATCTG
AAAAAAAAAGGATCCTTCTCCAGGAAGCGCGGGTTG
CACTACGCCCTTCGCCGGAGGCACCACCGTGAAGGAAATATTCCGGGGATCCGTCGACC
TGGCGCTCTGTCATGGAGGGAACCTCAGATGTTCCGGAATGTGTAGGCTGGAGCTGCTT
C
CCGTCAGCGGCTCACAGCTCGTGGCCGAGCGACGCGGCAAGCCGCTCGACTTCCGGGG
ATCCGTCGACCC

GGGCAAGGTCACAGGCGCGGGTACTGCTGCACGCCTGCCGCGCTGTCCTATGTAGGCTG
GAGCTGCTTCG

TCATGCCTGGGCCTCCTCGGCGGGGGTGGCGGGAGCCTGCCGTACGACGGTTCCGGGG
ATCCGTCGACCC
TCATTAACGCCGGAGCGGTCGCCCCACCGGAGGCCGCGCCGGTCACGGCATGTAGGCT
GGAGCTGCTTCG
GGCTGCGCGCCCGCCACCTCGACATCCCCGAAGCCGTCCTCAGCCAGGAGTTCCGGGGA
TCCGTCGACCC
TCACGCGGTTTCCTCCTGGACGACGGCGAGCAGGGCACCGACCTCGACCTTGTAGGCTG
GAGCTGCTTCG
TCAGAGCGGGATGTTGCCGTGCTTCTTCGGCGGCAGGCTCTCCCGCTTGTTCCGGGGAT
CCGTCGACCC
ATGTCCGCGCCGGAAAACGCCACCACACCGCCCAACCCCGAGCTGCACATGTAGGCTGG
AGCTGCTTCG
CACCTTTACGGACTCCGCCCATCCGCCGCATCTCACCGGGAGTCACCACCTTCCGGGGAT
CCGTCGACCC
CGGCGACGGGGGAAAATTGGCCGGAAATGATCCTCCGTCCGGGGTGCGGGTGTAGGCT
GGAGCTGCTTCG
ATGACAGAGCGCCAGAAGGACCGGCCGTGGCTCATGCGGACGTACTTCCGGGGATCCG
TCGACCC
TCATGCGGGGACCTCCAGAGGGTCGAGCTTGTTCACGAGGCGGATTGTAGGCTGGAGC
TGCTTCG

TCAGCCCTCACTACGCCCTT

TTCTGGCGCTCTGTCATGGA

GATCGATCGTCGCCGCCAT

ATCAGCAGCGTTGCGGAGA

GTGGCGGGGGTGGGTGATT

GGTCGTTAGCGGTCGTTAA
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f-chk-pcc2
r-chk-pcc2
f-chk-pcc3
r-chk-pcc3
f-chk-vdh
r-chk-vdh
f-chk-meaa
r-chk-meaa

ATCAGGGTGGTGGCGGTGG
CTGCTCGGTGACGGTGTCG
GTACGGATACTCAAGCGCCT
CAAACACCGCACTGACGAAG
CTCATGCCACGGCGTCCGC
AATCCCCCGCCGCACACCT
AACCACGAGATGCGTGCCCA
TCCTCCAGGTCGAGGAACAC
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Table S 8: Bacterial strains and vectors used and developed in Section 3.

Streptomyces

Characterisitics

Reference

S. albus J1074

S. albus G1 (DSM 41398) derivative with the defective SalGl
restriction modification system heterologous host

(Chater and Wilde, 1980)123

S. albus Dell S. albus 11074 with the deletion of 204 kB including ccrl (Myronovskyi et al., 2014b)?38
S. albus A2 S. albus Dell with the deletion of ccr2 This work
S. albus A3 S. albus Dell with the deletion of ccr2 and mem This work
S. albus A S. albus Dell with the deletion of ccr2, mem and pccl This work
S. albus A5 S. albus Dell with the deletion of ccr2, mem, pccl and pecc2 This work
S. albus A6 S. albus Dell with the deletion of ccr2, mem, pccl, pcc2 and This work
vdh
S. albus A7 S. albus Dell with the deletion of ccr2, mcm, pccl, pcc2, This work
mcm, vdh and pcc3
S. albus Dell - Apcc2 S. albus Dell with the deletion of ccr2 and pcc2 This work
S. albus Dell — Apccl S. albus Dell with the deletion of ccr2 and pccl This work
S. albus Dell - AmeaA S. albus Dell with the deletion of meaA This work
S. albus Dell - Accr2 ¢ ¢ Dell with the deletion of meaA and ccr2 This work
AmeaA
S. albus Avdh S. albus J1074 with the deletion of vdh This work
E. coli Characterisitics Reference
GB2005 General cloning host (Maresca et al., 2010)23¢
WM6026 Strain used for intergeneric conjugation, 2,6 Diaminopimelic (Blodgett et al., 2007)2%°

GB2005-red-rham

acid auxotroph

GB2005, RhamC-BAD-ybaA used for Red/ET

(Strochlic et al., 2010)237

Plasmids

Characteristics

Reference

patt-saac-OriT

pUWL_oriT

pUWL-H

Swal fragment of paac-OK containing aac(3)IV and oriT
cloned into the EcoRV site of patt

Replicative vector for actinomycetes; plJ101 replicon, oriT,
tsr, bla, ermE

pUWLoriT with Hygr (hph) instead of Tsrr(tsr); Vector used to
express genes under the influence of the ermE Promotor
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(Myronovskyi et al., 2014a)1°2

(Bierman et al., 1992)240

(Petzke et al., 2010)241



pUWL-H_CCR2

pUWL-H_VDH

pUWL-oriT_meaA

patts-HYG-OriT

pUWL-H containing the gene ccr2 under the influence of the
ermE Promotor

pUWL-H containing the gene vdh under the influence of the
ermE Promotor

pUWL-H containing the gene meaA under the influence of
the ermE Promotor

Swal/Smal fragment of phyg-OK containing hyg and oriT
cloned into the EcoRV site of patt

This work

This work

This work

(Myronovskyi et al., 2014a)192

pJET1.2 Cloning Vector; AmpR Thermo Fisher Scientific
Cosmids Characteristics Reference
Apr Cosmid containing the biosynthetic gene cluster of
R2 pamamycin based on the poj463 plasmid, int(vwb) and (Rebets et al., 2015)76
aac(3)Iv
pSMARTgus Derivative of pPSMART containing the gusA gene (Myronovskyi et al., 2014b)238

pPSMARTgus_3D17

3D17 Accr2 AmeaA

3D17 AmeaA

3D17 Accr2

pSMARTgus_2J19

2J19Avdh

pSMARTgus_3H24

3H24Apcc3

pSMARTgus_1M11

1M11Apcc2

pSMARTgus based cosmid containing a part of the
chromosomal DNA from S. albus J1074, including the genes
meaA and ccr2. Size: 84kB

Derivative of pSMARTgus_3D17 with the deletion of meaA
and ccr2

Derivative of pSMARTgus_3D17 with the deletion of meaA

Derivative of pSMARTgus_3D17 with the deletion of ccr2

pSMARTgus based cosmid containing a part of the
chromosomal DNA from S. albus J1074, including the gene
vdh. Size: 54kB

Derivative of pSMARTgus_2J19 with the deletion of vdh

pSMARTgus based cosmid containing a part of the
chromosomal DNA from S. albus J1074, including the gene
pcc3. Size: 72kB

Derivative of pSMARTgus_2H24 with the deletion of pcc3

pSMARTgus based cosmid containing a part of the
chromosomal DNA from S. albus J1074, including the gene
pcc2. Size: 66kB

Derivative of pSMARTgus_1M11 with the deletion of pcc2
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Personal communication with Prof. Dr.
A. Luzhetskyy

This work

This work

This work

Personal communication with Prof. Dr.
A. Luzhetskyy

This work

Personal communication with Prof. Dr.
A. Luzhetskyy

This work

Personal communication with Prof. Dr.
A. Luzhetskyy

This work



pSMARTgus based cosmid containing a part of the
pSMARTgus_2E5 chromosomal DNA from S. albus J1074, including the gene
pcc3. Size: 75kB

Personal communication with Prof. Dr.
A. Luzhetskyy

2E5Apccl Derivative of pPSMARTgus_2E5 with the deletion of pccl This work

pSMARTgus based cosmid containing a part of the
pSMARTgus_3J4 chromosomal DNA from S. albus J1074, including the gene
mcm. Size: 87kB

Personal communication with Prof. Dr.
A. Luzhetskyy

3J4Amcm Derivative of pSMARTgus_3J4 with the deletion of mcm. This work

Table S 9: HPLC-MS method to analyze pamamycins.

Time % Buffer % Buffer B Composition Buffer Composition Buffer
A B
0 min 80% 20%
0.2 min 80% 20% R QOmMoI R 200 ml 10;)mM t
. mmonioum mmonium formate
3 m|.n 3% 97% formate in in H20MiliQ 800 ml
10 min 0% 100% H20MiliQ Acetonitrile
11 min 0% 100%
12 min 80% 20% Additional Information
15 min 80% 20% Column: 45 °C; Flow:0.55 ml/min,
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