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dort beschriebenen Weise unentgeltlich geholfen.

Weitere Personen waren an der inhaltlichen und materiellen Erstellung der vorliegenden Arbeit nicht

beteiligt. Insbesondere habe ich nicht die entgeltliche Hilfe von Vermittlungs– bzw. Beratungs-

diensten (Promotionsberater/innen oder anderer Personen) in Anspruch genommen. Außer den

Angegebenen hat niemand von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Die Arbeit

wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form in einem anderen

Verfahren zur Erlangung eines Doktorgrades einer anderen Prüfungsbehörde vorgelegt.

In versichere an Eides statt, dass ich nach nach bestem Wissen die Wahrheit gesagt und nichts

verschwiegen habe. Vor Aufnahme der vorstehenden Versicherung an Eides statt wurde ich über

die Bedeutung einer eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unrichtigen
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Abstract

Sustaining our attention to a relevant sensory input in a complex listening environment, is of great

importance for a successful auditory communication. To avoid the overload of the auditory system,

the importance of the stimuli is estimated in the higher levels of the auditory system. Based on these

information, the attention is drifted away from the irrelevant and unimportant stimuli. Long-term

habituation, a gradual process independent from sensory adaptation, plays a major role in drifting

away our attention from irrelevant stimuli.

A better understanding of attention-modulated neural activity is important for shedding light on the

encoding process of auditory streams. For instance, these information can have a direct impact on

developing smarter hearing aid devices in which more accurate objective measures can be used to

reflect the hearing capabilities of patients with hearing pathologies. As an example, an objective

measures of long-term habituation with respect to different level of sound stimuli can be used more

accurately for adjustment of hearing aid devices in comparison to verbal reports.

The main goal of this thesis is to analyze the neural decoding signatures of long-term habituation and

neural modulations of selective attention by exploiting circular regularities in electrophysiological

(EEG) data, in which we can objectively measure the level of attentional-binding to different stimuli.

We study, in particular, the modulations of the instantaneous phase (IP) in event related potentials

(ERPs) over trials for different experimental settings. This is in contrast to the common approach

where the ERP component of interest is computed through averaging a sufficiently large number of

ERP trials. It is hypothesized that a high attentional binding to a stimulus is related to a high level

of IP cluster. As the attention binding reduces, IP is spread more uniformly on a unit circle. This

work is divided into three main parts.

In the initial part, we investigate the dynamics of long-term habituation with different acoustical

stimuli (soft vs. loud) over ERP trials. The underlying temporal dynamics in IP and the level

of phase cluster of the ERPs are assessed by fitting circular probability functions (pdf) over data

segments. To increase the temporal resolution of detecting times at which a significant change in

IP occurs, an abrupt change point model at different pure-tone stimulations is used. In a second

study, we improve upon the results and methodology by relaxing some of the constrains in order to

integrate the gradual process of long-term habituation into the model. For this means, a Bayesian

state-space model is proposed. In all of the aforementioned studies, we successfully classified between

different stimulation levels, using solely the IP of ERPs over trials.

In the second part of the thesis, the experimental setting is expanded to contain longer and more

complex auditory stimuli as in real-world scenarios. Thereby, we study the neural-correlates of

attention in spontaneous modulations of EEG (ongoing activity) which uses the complete temporal

resolution of the signal. We show a mapping between the ERP results and the ongoing EEG

activity based on IP. A Markov-based model is developed for removing spurious variations that can



occur in ongoing signals. We believe the proposed method can be incorporated as an important pre-

processing step for a more reliable estimation of objective measures of the level of selective attention.

The proposed model is used to pre-process and classify between attending and un-attending states

in a seminal dichotic tone detection experiment.

In the last part of this thesis, we investigate the possibility of measuring a mapping between the

neural activities of the cortical laminae with the auditory evoked potentials (AEP) in vitro. We

show a strong correlation between the IP of AEPs and the neural activities at the granular layer,

using mutual information.



Zusammenfassung

Die Aufmerksamkeit auf ein relevantes auditorisches Signal in einer komplexen Hörumgebung

zu lenken ist von großer Bedeutung für eine erfolgreiche akustische Kommunikation. Um eine

Überlastung des Hörsystems zu vermeiden, wird die Bedeutung der Reize in den höheren Ebenen

des auditorischen Systems bewertet. Basierend auf diesen Informationen wird die Aufmerksamkeit

von den irrelevanten und unwichtigen Reizen abgelenkt. Dabei spielt die sog. Langzeit- Habituation,

die einen graduellen Prozess darstellt der unabhängig von der sensorischen Adaptierung ist, eine

wichtige Rolle.

Ein besseres Verständnis der aufmerksamkeits-modulierten neuronalen Aktivität ist wichtig, um den

Kodierungsprozess von sog. auditory streams zu beleuchten. Zum Beispiel können diese Infor-

mationen einen direkten Einfluss auf die Entwicklung intelligenter Hörsysteme haben bei denen

genauere, objektive Messungen verwendet werden können, um die Hörfähigkeiten von Patienten

mit Hörpathologien widerzuspiegeln. So kann beispielsweise ein objektives Maß für die Langzeit-

Habituation an unterschiedliche Schallreize genutzt werden um - im Vergleich zu subjektiven Selb-

steinschätzungen - eine genauere Anpassung der Hörsysteme zu erreichen.

Das Hauptziel dieser Dissertation ist die Analyse neuronaler Dekodierungssignaturen der Langzeit-

Habituation und neuronaler Modulationen der selektiver Aufmerksamkeit durch Nutzung zirkulärer

Regularitäten in elektroenzephalografischen Daten, in denen wir objektiv den Grad der Aufmerk-

samkeitsbindung an verschiedene Reize messen können.

Wir untersuchen insbesondere die Modulation der Momentanphase (engl. Instantaneous phase, IP)

in ereigniskorrelierten Potenzialen (EKPs) in verschiedenen experimentellen Settings. Dies steht

im Gegensatz zu dem traditionellen Ansatz, bei dem die interessierenden EKP-Komponenten durch

Mittelung einer ausreichend großen Anzahl von Einzelantworten im Zeitbereich ermittelt werden. Es

wird vermutet, dass eine hohe Aufmerksamkeitsbindung an einen Stimulus mit einem hohen Grad

an IP-Clustern verbunden ist. Nimmt die Aufmerksamkeitsbindung hingegen ab, so ist die Momen-

tanphase uniform auf dem Einheitskreis verteilt. Diese Arbeit gliedert sich in drei Teile. Im ersten

Teil untersuchen wir die Dynamik der Langzeit-Habituation mit verschiedenen akustischen Reizen

(leise vs. laut) in EKP-Studien. Die zugrundeliegende zeitliche Dynamik der Momentanphase und

die Ebene des Phasenclusters der EKPs werden durch die Anpassung von zirkulären Wahrschein-

lichkeitsfunktionen (engl. probability density function, pdf) über Datensegmente bewertet. Mithilfe

eines sog. abrupt change-point Modells wurde die zeitliche Auflösung der Daten erhöht, sodass sig-

nifikante Änderungen in der Momentanphase bei verschiedenen Reintonstimulationen detektierbar

sind.

In einer zweiten Studie verbessern wir die Ergebnisse und die Methodik, indem wir einige der Ein-

schränkungen lockern, um den gradualen Prozess der Langzeit-Habituation in das abrupt change-

point Modell zu integrieren. Dazu wird ein bayes‘sches Zustands-Raum-Modell vorgeschlagen. In



den zuvor genannten Studien konnte erfolgreich mithilfe der Momentanphase zwischen verschiede-

nen Stimulationspegeln unterschieden werden. Im zweiten Teil der Arbeit wird der experimentelle

Rahmen erweitert, um komplexere auditorische Reize wie in realen Hörsituationen untersuchen zu

können. Dabei analysieren wir die neuronalen Korrelate der Aufmerksamkeit anhand spontaner

Modulationen der kontinuierlichen EEG-Aktivität, die eine zeitliche Auflösung ermöglicht. Wir

zeigen eine Abbildung zwischen den EKP-Ergebnissen und der kontinuierlichen EEG-Aktivität auf

Basis der Momentanphase. Ein Markov-basiertes Modell wird entwickelt, um störende Variatio-

nen zu entfernen, die in kontinuierlichen EEG-Signalen auftreten können. Wir glauben, dass die

vorgeschlagene Methode als wichtiger Vorverarbeitungsschritt zur soliden objektiven Abschätzung

des Aufmerksamkeitsgrades mithilfe von EEG-Daten verwendet werden kann. In einem dichotischen

Tonerkennungsexperiment wird das vorgeschlagene Modell zur Vorverarbeitung der EEG-Daten und

zur Klassifizierung zwischen gerichteten und ungerichteten Aufmerksamkeitszuständen erfolgreich

verwendet.

Im letzten Teil dieser Arbeit untersuchen wir den Zusammenhang zwischen den neuronalen Ak-

tivitäten der kortikalen Laminae und auditorisch evozierten Potentialen (AEP) in vitro im Tiermod-

ell. Wir zeigen eine starke Korrelation zwischen der Momentanphase der AEPs und den neuronalen

Aktivitäten in der Granularschicht unter Verwendung der Transinformation.
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Chapter 1

Introduction

1.1 Motivation

Hearing is one of our major senses used for communication and perceptual processing. We can

experience fear, alertness and pleasure through sounds which are generated by the changes in the

air pressure via vibrations of objects1. However, the only role of the auditory system is not to detect

such external changes, but rather to construct an internal model that helps us to have an experience

of what we are able to hear. Our perception and experience of sound depends on processing and

interpreting an internal model. For example, at every point in time, many different sound signals

arrive simultaneously to the auditory system. The sound signals are broken down into a different

set of features and passed to the higher cortical levels for further processing. The features are then

combined and processed to achieve a perceptual understanding of the reconstructed sounds. Detec-

tion and localization of sound sources, identification of familiar sounds between different stimuli and

noises, filling out the missing gaps in familiar songs or an auditory text (see Kraemer et al. (2005))

are all a small part of the examples of the higher level processing of sounds and the experiences we

accomplish through listening.

Therefore, hearing is not merely a passive physiological process (bottom-up process) to perceive

loudnesses and pitches, but a series of high-level cognitive processes (top-down process) that require

cognitive resources and allocation of mental effort (Goldstein and Brockmole, 2016). One of the

crucial aspects of auditory processing is dealing with an overwhelming presence of auditory stimuli

1The human auditory system is capable of detecting a broad range of air pressure changes, ranging from 0.00002 to
over 100 Pascals. To understand this scale, we define atmospheric pressure which is defined as the environmental
pressure in the absence of any sound. According to the SI (Système International) unit, it is called Pascal. one pascal (1
Pa) is equivalent to a force of one Newton acting on a surface of one square meter. The standard atmosphere (standard
reference) is defined as 101325Pa. The sound pressure is defined as the difference between the instantaneous sound
pressure due to sound and the standard atmosphere. The difference is measured in Pascal as well.
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at every second, generated from a multitude of sources, different delay and spatio-temporal charac-

teristics. To obtain a meaningful experience of all these sounds at different circumstances and avoid

overloading of the system – a phenomenon known as the cocktail party problem (Bregman, 1994,

Chapter 6), an efficient filtering process is required. The cocktail party problem was first reported

by Colin Cherry in 1953 in a series of experiments for understanding how can we select the voice

of a particular person in presence of many other voices (Cherry, 1953, 1954; Bregman, 1994). This

is necessary as our processing capacity is limited. One of the key methods through which auditory

scenes are parsed is attention, by which irrelevant stimuli are muted out and only salient stimuli

are considered for further allocation of cognitive and sensory resources (Bregman, 1994; Eysenck

and Keane, 2000; James, 1890). The saliency of a stimulus may depend on different factors such

as its loudness, its behavioral relevance (e.g., one’s own name) as well as a particular associative

experience (Conway et al., 2001; Wood and Cowan, 1995).

In the same context of attention, another way of filtering out irrelevant information is through long-

term habituation, a simple learning mechanisms by which the attention is shifted away from the

irrelevant stimuli and allocated to the relevant or salient stimulus (Rankin et al., 2009; Domjan,

2014; Thompson, 2009). Dysfunctions in the filtering mechanisms can have significant implications.

The effect of long-term habituation has been investigated in patients with auditory pathologies such

as tinnitus. One of the main treatment methodologies for tinnitus patients is to train them to

habituate to the phantom noise (loosely speaking, to ignore the stimulus). Decompensated patients

who are not able to habituate to the phantom noise could suffer severely from the sounds caused by

the interferences in the brain’s hearing system. In some previous studies, the level of habituation in

different groups of patients has been analyzed by studying the level of habituation in the auditory

event related potentials (ERPs) (Walpurger et al., 2003; Carlsson and Erlandsson, 1991).

One of the domains in which the effect of long-term habituation is important, is the adjustment of

most comfortable loudness level (MCL) in hearing aid devices and cochlear implantation, particu-

larly in uncooperative patients such as infants. The setting of the loudness levels should illustrate

the patient’s comfort in hearing sounds for a long-term in such a way that the filtering process of the

irrelevant stimuli are maximized and attention is properly amplified towards the desired target stim-

ulus. We use cerebral recordings, in particular auditory evoked potentials, an established diagnostic

tool in audiology for the study of selective attention and the habituation process in the long-term.

The selective attention effect has been observed as an endogenous modulation of the N1 compo-

nent. In Rao et al. (2010); Hillyard et al. (1998, 1973) the amplitude of N1/P2 components were

enhanced in the case of attended in comparison to unattended stimuli. In many studies the effect

of neural-correlates of attention is studied as an average of amplitudes of sufficiently large numbers

of ERPs. However, in the studies conducted in Strauss et al. (2008b); Trenado et al. (2009); Low

and Strauss (2011), it has been shown that the correlate of attention states in the averaged ERP

originates partly from a jitter in the IP (also known as phase-resets) of subsequent single-trial ERPs
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in auditory paradigms. In section 1.4.1, we describe in more details about the genesis of ERPs and

its relation to the amplitude and IP of single trial ERPs.

Much less examined in literature, is the dynamics of attentional binding and long-term habituation,

e.g., the time course of exogenous and endogenous selective attention during ERP paradigms, even

though these dynamics are of major importance in clinical neurodiagnostic procedures as well as in

experimental research (Walpurger et al., 2003; Strauss et al., 2008b; Haab et al., 2011; Mariam et al.,

2009; Rauschecker et al., 2010). In Walpurger et al. (2003), the long-term habituation is studied in

the time domain, by which large-scale partial averages of trials are used. In Strauss et al. (2013) a

2-D denoising scheme to extract habituation correlates in individual ERP trials is used. Time-scale

coherence measures which evaluate segmented ERP sequences were used in Mariam et al. (2009) as

well as hybrid time-scale machine learning methods as in Mariam et al. (2012). Fuentemilla et al.

(2006) discuss the influence of phase-reset and the increase of spectral power on the generation

of ERP from ongoing scalp EEG activity. They could already report changes of phase coherence

over trials when monitoring the N1 component of consecutive ERPs. All the cited methods use the

amplitude information exclusively or combined amplitude-phase measures and thus do not allow for

an isolated analysis of the aforementioned IP related to selective attention. In addition, the temporal

modulations of IP over trials has not been fully investigated.

Given the current state of the art, the major incentive of this thesis is to address the neural-correlates

of long-term habituation and attentional-binding using the circular regularities in IP over single-

trial ERPs as well ongoing EEG activities. It is important to highlight the difference between the

subsequent-single trials of ERPs and the averaging over ERP trials for studying the relevant signal

components. In the averaging process, despite increasing the signal-to-noise ration, details regarding

the dynamic changes in the N1-P2 component as well temporal precision are lost. By modeling the

dynamics of the isolated IP over single trials in different experimental settings, we aim to understand

the temporal characteristics of the long-term habituation and the corresponding level of attentional

binding to different stimulation. The challenge requires a comprehensive understanding of neural

coding and decoding of sensory information, as well as appropriate computational merit for the

study of single-trial responses.

The contributions of this thesis can be divided as follows:

1. Analyzing the effect of long-term habituation in measured ERPs over single trials in an invasive

and non-invasive experimental setting. The phase modulations of N1 component of ERPs are

assessed initially at two distinct stimulation levels of 50dB SPL (soft) and 100dB SPL (aversive,

loud). We assess the neural correlates of attention-binding by fitting a circular distribution over

different data windows and analyze the changes in the cluster level of the data distributions

(Mortezapouraghdam et al., 2015a). The results in Mortezapouraghdam et al. (2015a) are cross

examined with the simulations obtained from a well founded quantitative neurofuctional model

that covers several spatio-temporal scales of neural processing to generate ERP sequences.
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2. To obtain a better resolution in detecting the changes in the habituation process than the

method proposed in (1), a change point model is used to detect the underlying significant

changes in the neural-correlates of attention. The method compensates for some of the short-

comings in (1), however does not uniquely integrate the gradual process of habituation in the

model. We therefore develop for the first time, a Bayesian state-space model, that is able to

incorporate the gradual changes of the habituation process in the model. The ability of the

model to reflect the continuous changes in the long-term habituation is evaluated on a series

of pure tone stimuli, ranging from 60dB SPL to 90dB SPL (Mortezapouraghdam et al., 2014,

2016).

3. We analyze the effect of selective attention in a more complex experimental setting than

proposed in (1) and (2). The measurements of this study are based on a repetition of a

seminal dichotic tone detection presented by Hillyard et al. (1973). Due to the longer stimuli,

we are required to analyze the ongoing EEG signals. This makes the study more challenging

as noise factors can distort the data, and as no averaging is done, the results are more prone

to noise than the other methods. Therefore, we developed a variant of a Kalman smoother

for removing spurious phase variations which are not binded to any neurophysiological effect

(Mortezapouraghdam and Strauss, 2017). Using the proposed method, we show a mapping

between the segmented ERPs and ongoing EEG data suggesting a unified framework to analyze

neural correlates of selective attention in ERPs and their ongoing EEG activity.

4. In addition to the studies in (1-3), we investigate the interaction of thalamo-cortical activities

and its relations to auditory late responses (ALRs) in-vitro. As invasive experiments are costly

and more hazardous in humans, we examine the projection of cortical activities of the auditory

cortex onto auditory late response (ALR) measurements (Mortezapouraghdam et al., 2015b)

in rats at different frequencies. Of interest is how the in-depth information are correlated to

the ALRs and how effectively they can be measured. We employ only the phase information

of the measured neural activities.

1.2 Preliminary: The Hearing Brain

In this section we will describe some of the main properties of the auditory system and the translation

procedure of sounds to neural-activities in the auditory cortex.

1.2.1 The Physical Properties of Sound

To understand the psychoacoustics of normal hearing, we briefly explain the main attributes of

the sounds and its relation to hearing. Sounds are described as the displacement of air (or other

medium) molecules which are known as condensation (an increase in the density of air molecules)
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and rarefaction (a decrease in the density of air molecules). The resulting oscillations are propagated

away from the sound source much like water ripples (with the difference that sound waves have a

longitudinal propagation than transversal propagation) (Gelfand, 2001). By repeating this process,

a sinusoidal pattern of air molecules is formed, also referred to as pure tone.

Loudness is defined as the perceived intensity of a sound and it depends both on the amplitude2

and the frequency. The amplitude of the sound is closely related to the level or the loudness of a

sound and the the frequency of a pure tone is closely related to what is perceived as the pitch of the

sound. The frequency range that the human auditory system can respond to is extended from 20Hz

to as high as 20kHz, however the range diminishes to 15-17 kHz for matured adults, as they slightly

lose sensitivity to some frequencies. The relation between the frequency and the perceived loudness

is not linearly correlated. The sounds of different SPL can be perceived to have the same loudness

at different frequencies. The minimum level of sound (dB SPL) at the particular frequencies that

make the sounds audible (the most quietest sound that a normal hearing subject could detect) are

referred to as threshold values (known as audibility curve or the threshold of hearing). Each of

these thresholds (dB SPL) at the particular frequency refer to a 0 dB hearing level (0 dB HL). The

HL scale is used commonly by clinicians to measure the level of hearing loss. For more details see

Gelfand 2001, Chapter 4; Goldstein and Brockmole, 2016, Chapter 11.

In perception, it is important to make a distinction between the subjective loudness of a sound and

its physical properties. Loudness and pitch correspond to how we perceive the physical properties,

namely the intensity and frequency of a sound (Gelfand, 2001). The relationship between the

physical (i.e., intensity and frequency) and psychological (i.e., loudness and pitch) features of sound

in perception are not always directly balanced. For example, a low intensity sound can be perceived

loud in the case of patients with hyperacusis (more details and explanations are given in section

1.3). In all our experimental settings, we use subjects with a normal hearing so that they have a

comparable HL.

Pitch is also a psychological property of sound and though it physically cannot be measured, it is

very closely related to the fundamental frequency of a sound3. We describe the pitch as low (in case

of low frequencies) or high (for high frequencies) based on the perception of sound. According to

Bendor and Wang (2005) and Goldstein and Brockmole (2016), it is best described as a sensation

that enables us to order the sound from low to high. The psychological property of pitch is shown

by Stevens (1935) where it has been shown that the pitch of a low frequency tone is perceived to

get lower when it is made louder, and the pitch of a high frequency tone is perceived to get higher

when it is made louder.

2To handle the vast set of sound levels which we are able to hear, the unit sound pressure level (SPL) is used. SPL
is a logarithmic measure of the effective pressure of a sound stimulus relative to a reference pressure and is described
in decibels (dB). The dB is computed as Lp = 20 log10 (p/p0), where p is the pressure of sound and p0 is the reference
pressure level, commonly set as 20 micropascals (which is near the sound pressure of the hearing threshold at 1kHz).
The amplitude is therefore expressed as dB SPL.

3The tone’s pitch remains the same if the fundamental frequency or the higher harmonics of a tone are removed.
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1.2.2 From Ear to The Auditory Cortex

Most sounds around us are transmitted through airborne vibrations. The transmission of sound

through two different mediums, particularly with a different impedance4 is rather poor (Alberti,

2001). In case of humans, the airborne vibrations should be transmitted to the brain which is

surrounded by fluids with different properties. Therefore, the ear has evolved a set of mechanisms

to deal with the problem of impedance mis-match, which is the transfer of sound energy from

the outer ear to the inner ear with a minimum amount of energy loss. This process is called the

sound-conduction mechanism (Alberti, 2001). In the following we briefly describe the transformation

process of sounds to nerve impulses and up to the auditory cortex for processing sounds.

The transformation journey of sounds into nerve impulses begin from the outer ear. The outer ear

contains the pinna (or earlobes), the auditory canal (external auditory meatus) for transmitting

sound to the tympanic membrane. The shape of the pinna and structure of the auditory meatus

are such that the sounds around 3kHz are more amplified, which explains the reason that humans

are sensitive to a frequency range of 2-5 kHz, encompassing the energy range required to distinguish

different phonemes in speech (Purves et al., 2015). The unique shape of pinnae have been shown to

play an important role in sound localization as well (Batteau, 1967). In Wenzel et al. (1993), it has

been shown how the shape of one’s ears relative to his own head can be used to infer the location of

sounds 5.

In the second step, the low impedance airborne vibrations are converted into liquid-borne (higher

impedance) vibrations. The conversion process is done through the middle ear and minimizing the

amount of energy loss. This is achieved primarily by mechanically boosting the airborne pressure

(nearly by 200 fold). The three bone ossicles (i.e., malleus, incus, and stapes) transfer the mechan-

ical pressure on the eardrum to smaller diameter bone window (oval window) whose membrane is

part of the fluid filled cochlea. The oval window, is the site at which the ossicles contact the inner

ear.

In the third step, the liquid-borne vibrations are converted into neural impulse responses through

the cochlea, a coiled structure of length of approximately 35mm in its uncoiled form (Purves et al.,

2015). The cochlea not only amplifies the sound waves and translates the sensory input into electrical

signals, but it also acts as a frequency analyzer, in which the complex sensory input is decomposed

and represented in terms of simpler elements. It contains three fluid filled chambers divided by two

thin membranes (the basilar membrane and the tectorial membrane, see Purves et al. (2015) for

more details). The chambers are the Scala vestibuli, Scala media, and Scala tympani. The middle

tube which is the scala media contains the organ of Corti, which sits on the basilar membrane.

4Impedance is defined as the product of medium density and the speed of sound through it.
5This is called the head-related transfer function (HRTF). Other factors such as the angle of the head in relation to

the sound source is important for sound localization. In Griffiths and Warren (2002) it has been shown that planum
temporale area located in the posterior site of the primary auditory cortex is responsible for gathering the information
from the ears (where the acoustic stimuli are broken into different spectrotemporal pieces and sound patterns distorted
by the shape of ears) and the input with respect to the HRTF, for integrating and processing the spatial properties
of the sound.
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The functionality of the basilar membrane was revealed in 1960 by a series of studies conducted

by Georg von Bekesy, who won the Noble Prize in medicine and physiology in 1961. He measured

the strength of the neural responses at different positions of the basiliar membrane that has been

stimulated by a sound source. The observations indicated strongly that the basilar membrane

doesn’t respond uniformly, and despite an overall vibration of the membrane, different positions of

the membrane respond more strongly to a given frequency. He stated that the motion of a basilar

membrane becomes similar to a traveling wave along the path given the tuning of different positions

of the membrane. The high frequency components stimulate the base of the cochlear more whereas

the lower frequencies stimulate the apex more (Békésy, 1961; Purves et al., 2015). This is also

attributed to the structure of the basilar membrane, which is narrower and stiffer at the basal end

and gets more flexible and wider at the apical end. The tonotopic structure of the cochlear has been

extensively used in applications such as cochlear implants6 (see Chapter 12 - (Purves et al., 2015)).

On top of the basilar membrane sits the auditory hair cells. There are two types of hair cells, the

inner and the outer hair cells, for which most of the afferent dendrites are on the inner hair cells

and most efferent on the outer cells. The afferent pathways will lead the neural impulses from the

cochlea to the brain, and the efferent pathways bring the impulses from the brain to the cochlea.

The hair cells respond to atomic movements with a temporal precision of microseconds. The motion

generated from the traveling wave in the basilar membrane will stimulate the hair cells accordingly

and ultimately lead to the generation of electrical signals that will be transmitted to the cochlear

nuclei in the brainstem via the auditory nerve fibers. The projections of the signals will extend up to

the primary auditory cortex through several hierarchical levels including the medial geniculate

nucleus (describing the networks and layers which take part in the transmission of neural impulses

are beyond the scope of this research. Comprehensive details can be found in Purves et al. (2015)).

The primary auditory cortex (referred as the A1 region) is the main cortical area that receives the

auditory-based thalamic input. It is located in Heschl’s gyrus in the temporal lobe and is surrounded

by the secondary auditory cortical areas (belt and parabelt regions (Purves et al., 2015)). These

peripheral regions also receive input from the medial geniculate nucleus. The auditory nerve fibers

carrying the signal are extended up to different parts of the auditory cortex. Therefore, a lesion to

the core region will not lead to absolute deafness (Musiek et al., 2007). Similar to the tonotopic

organization of the basilar membrane, different neurons within the auditory nerve respond more

strongly to certain sound frequencies than others. The same structure has also been observed up to

the primary auditory cortex, where the central region responds more strongly to the lower frequencies

and the outer regions to the higher frequencies (Kiang, 1965; Ward, 2015).

6With the expansion of new technologies, researchers were able to measure the neural responses on an alive cochlea
which lead to a better understanding of the basilar membrane mechanism (Goldstein and Brockmole, 2016; Narayan
et al., 1998; Khanna and Leonard, 1982). The new measurements suggested that the vibrations at different positions
of the membrane occur sharper and more localized in comparison to the tonotopic model of the von Beseksy (Purves
et al., 2015; Goldstein and Brockmole, 2016). The sharper responses of the new observations were explained by the
role of outer hair cells. The expansion and contraction of outer hair cells results in amplifying and sharpening the
vibrations on the basilar membrane.
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We can measure the neural activities within the auditory system (auditory regions of the brain)

by amplifying the changes in the voltage measurements of the electrode located in proximity of

the auditory cortex. As EEG recordings represent a mixture of vast number of different neural

activities from different regions of the brain, it is difficult to have an accurate spatial resolution of

the actual neuro-cognitive processes (Berger, 1929). However, we can measure the neural responses

in regard to a specific event or stimuli which is embedded in the recorded EEG activities (Luck,

2014). The measured neural activity within the auditory system (auditory regions of the brain) in

relation to a specific auditory stimulus is referred to as late-auditory-event-related potential (ERP)

(also known as late-auditory evoked response (AER))7. They are known to reflect the summation

of postsynaptic potentials which is generated when a large number of similarly cortical pyramidal

neurons fire in synchrony while processing information (Sur and Sinha, 2009). Despite some of the

main drawbacks of ERPs such as lack of spatial resolution, they are shown to strongly correlate

with interpreting different cognitive process (Hall, 1992; Woodman, 2010). The peaks and troughs

of stimulus-locked ERPs are shown to be useful in understanding different cognitive processes as

they develop (Woodman, 2010; Hall, 1992; Luck, 2014). The peaks and troughs, known commonly

as the ERP-components are defined in terms of their voltage polarity of their responses (positive

or negative), latency, order of occurrence, and sensitivity to task manipulations (Sur and Sinha,

2009). In Luck (2014); Hall (1992) the list of different ERP components for visual and auditory

sensory stimulation have been fully described. The P1(P100, positive voltage, 50-80ms after stimulus

onset), the N1 (N100, negative voltage, 100-150ms after stimulus onset) and the P2 (P200, positive

voltage, 150-200ms after stimulus onset) components of an ERP have been shown in Fig. 1.1. For

more information regarding the polarity and latency as well as later components, see Hall (1992).

In section 1.4 we will explain the importance of N1-P2 complex in regard to study of long-term

habituation.

1.3 Auditory Scene Analysis

In the previous section we explained the most important stages of sound translation to neural

impulses in the case of a pure tone. In reality, we usually do not encounter pure tones in our

environments, but numerous complex sound stimuli which arrive simultaneously or with different

delay times to the ears. Despite the large number of auditory stimuli that we may obtain at every

point of time, we are able to filter and process them appropriately. For example, the sounds that

enter the cortex have different acoustical characteristics such as frequency, amplitude and phase and

they may be generated from different sound sources. Despite all the complexities of the environment,

we are able to hear the auditory inputs as separate entities. The sound of a fan, typing on a keyboard

and a colleague speaking on the phone may all be heard at the same time, but we are still able to

7In general, ERPs are the measured voltages (measured in microvolts) generated in different brain structures in
regard to a specific event or stimuli.
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Figure 1.1: An illustration of an averaged auditory late response. The wave components are named
after their order of appearance and polarity. The P1 component is expected 50-80ms
post-stimulus and has a positive polarity. The N1 component is expected to appear
80-120 ms after the stimulus onset (and a negative (N) polarity) followed by the P2
component (positive polarity and expected ∼200ms post-stimulus) (Hall, 1992).

distinguish and localize them. The process of making sense of the superposition of sound sources

arriving to the ears and to separate them into individual sources is known as auditory scene analysis

(Bregman, 1994). To correctly group the features and bits of sound elements that belong to a source

and segregate the different sources from one another, are important and challenging tasks for having

the right perception of sound.

A series of Gestalt principles which are extensively used in the area of vision apply also in the area

of hearing. If distinct and perceptible elements in an environment satisfy a set of conditions, they

are grouped together in order to build a coherent perceptual organization (Bregman, 1994). The

Gestalt principles consist of a set of rules mainly based on the concepts of proximity, similarity,

continuity, and closure of features and elements for the means of grouping (Bregman, 1994). As an

example, if several frequencies of a sound source start and possibly end at the same time, they are

expected to belong to the same auditory source. They can possibly grow and decline together and

hence those bits of information and elements of the input stimuli are grouped together to represent

one specific source. Two sounds which arrive at two different times are possibly from two different

sources and based on localization mechanisms, they can be separated from each other and grouped

into two different sources. Sounds which remain constant or change smoothly over time resemble

the principle of continuation of the Gestalt psychology and hence are considered most probable to

arise from the same source (Bregman, 1994). The gestalt principles can be considered as a heuristic

approach which can reasonably well describe the framework for grouping elements for perception.

A list of known techniques that the hearing system employs for separation of sources are based on

onset time, pitch, auditory continuity and experience8(Bregman, 1994).

8Auditory localization is one of the main aspects that helps the hearing system for source recognition. Given
two sounds with the same frequency and loudness but generated at different locations, we can easily distinguish



1. Introduction 10

1.3.1 Auditory Attention

In section 1.3 it was discussed that sounds may arrive as a mixture of numerous auditory sources

to the ears. The auditory system has the task of separating different sources from each other based

on grouping the elements and features that belong together. This is followed by the perceptual

interpretations of different streams. In the same context, it is evident that when numerous sensory

inputs (in the case of the auditory system, we refer to inputs as auditory streams) enter the auditory

system, it will be inefficient to select all the sensory inputs for higher levels of processing. Many of the

auditory streams may not contain relevant information at a time, others may contain more crucial

information and hence a better mechanism is required to avoid the overload of the perceptual system

given the limited capacity (Kahneman, 1973). The mechanism through which irrelevant sensory

streams are filtered and more relevant sensory inputs are selected for higher levels of processing is

referred to as selective attention. Attention was described by the personal experiences of William

James, a professor of psychology at Harvard (James, 1890) as follows:

“Millions of items . . . are present to my senses which never properly enter my experience.

Why? Because they have no interest for me. My experience is what I agree to attend

to. . . . Everyone knows what attention is. It is the taking possession by the mind,

in clear and vivid form, of one out of what seem several simultaneously possible objects

or trains of thought. Focalization, concentration, of consciousness are of its essence. It

implies withdrawal from some things in order to deal effectively with others.”

William James, 1890, The Principles of Psychology

Despite a significant amount of research focused on the role of selective attention for vision, it is now

believed that the same set of principals can be applied for auditory modality as well (Mayer et al.,

2006; Shinn-Cunningham, 2008). Attention can be stimulus oriented (i.e., the physical properties of

the stimulus is considered a major drive for attention) which is referred to as exogenous attention

or more voluntarily by the goal or intention of the person to allocate attention to a specific target

stimuli, which is referred to as endogenous attention. The passage of an ambulance with a loud siren

in the vicinity of a person will capture his/her attention swiftly. The allocation of his/her attention

towards the siren is a direct result of the stimulus’s unique loudness and salient properties. The

person had no voluntary act in selection of the siren sound input for higher cognitive processing. The

endogenous attention however can be attained by a volunteer attempt/effort to a specific source.

This volunteer act regularly happens as we decide to attend to one person speaking to us in a

crowded environment. As a consequence of attending to one stimulus, the background noises are

the difference between their positions in the space and hence consider them as two separate entities. The similar
sounds indicate that they will trigger the same auditory nerve fibers and the same hair cells in the cochlea and hence
the generated patterns are the same. The auditory system should therefore should use other mechanisms for sound
localization. The information used from both ears for sound localization are referred to as binaural cues and the
information used from one single ear are named as monaural cues. Using multitude number of cues, the auditory
system is able to locate the sounds in space and thereby distinguish them despite their similar tones. For more
information see Goldstein and Brockmole (2016)
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greatly filtered and the processing of the target stimulus is enhanced. Unlike exogenous effect of

attention, the maintenance of the endogenous processes require effort, attention, and are limited

in capacity (Kahneman, 1973; Strauss and Francis, 2017). There are a different set of assumptions

about the extend to which unattended and filtered messages/stimuli are processed. In the following

sections we will highlight some of the main models presented for describing the process of selective

attention along with their limitations.

1.3.2 Theories of Selective Attention

In a study conducted by Simons and Chabris (1999), participants had to focus on a specific aspect

of a game run by several players (i.e., counting the number of times a ball would pass between the

players) which resulted in surprising findings: many subjects with a high probability (50%) would

miss to observe the presence of a Gorilla costumed person crossing the playing field. Such an effect is

referred to as inattentional blindness defined as the failure to observe a visual stimulus because of the

diversion of attention to another high demanding task (Rensink, 2009). The experiment was similar

to the earlier dichotic9 listening task in which people fail to recall the contents presented to one ear

while actively focusing their attention to a target stimuli presented to the other ear (Moray, 1959).

The basic principles of such filter mechanisms for the auditory system have first been suggested

by Broadbent (Broadbent, 1958) as he tried to explain the switch of attention between different

messages that would constantly arrive to both ears at an air traffic control station.

The first dichotic listening experiment was designed by Colin Cherry (Cherry, 1953, 1954). In his ex-

periment, he presented auditory words to both ears simultaneously via headphones and participants

were instructed to repeat messages presented to one of the channels. The subjects were successful in

reporting the shadowed messages specifically if they had to shadow specific physical features such as

voice (i.e., shadowing a female instead of a man’s voice) or a specific sensory channel (i.e., shadow-

ing messages coming to the right ear). However, the participants had a little amount of knowledge

regarding the contents or semantic changes in the unattended messages (See Spence and Santangelo

(2010) and references therein). These observations lead to the theory of early selective attention

described by Broadbent. He stated that selective attention operates merely as a filter. According

to this model, the sensory information that arrives simultaneously to both channels is registered

in a sensory buffer. The filter that selects one channel for further processing will pick one of the

channels based on its physical properties such as to what ear the information was coming first, the

intensity of incoming streams, time of arrival, etc. The filter will select one of the channels based on

its priority or relevance and pass the message to the higher levels for semantic processing. According

to this model, none of the other messages are semantically processed. The remaining information

and messages which are unattended, will be shortly kept in the buffer and rapidly decay. Broadbent

9In a dichotic experimental paradigm the subjects are presented with separate messages to both ears simultaneously.
They are instructed to repeat one of the messages as soon as possible and ignore the other. Therefore, the messages
reported to from one ear is namely the shadowed ear and the other side is unattended ear. This form of the experiment
is also called shadowing.
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Figure 1.2: (A) Schematic representation of Broadbent’s filter model. (B) Treisman’s attenuation
model of selective attention. (C) Deutsch and Deutsch’s theory model. The plot is

adapted from Eysenck, M. W., & Keane, M. T. (2000). Cognitive psychology: A student’s handbook.

Taylor & Francis. Pp. 155.

believed that the following scheme explains the mechanism that avoids the overload of the process-

ing units due to the high amount of incoming sensory streams (stimulations). This was one of the

earliest models on the theory of selective attention. Fig. 1.2 (A) shows a schematic presentation of

the model.

The model of Brodbent was later criticized for its lack of flexibility in explaining the variability

in the selection of unattended messages which was later observed. Some critics (Moray, 1959;

Underwood, 1974) of the Broadbent’s model correctly argued that one of the factors, that the

participants performed poorly on, in the shadowing experiment was due to their lack of experience.

Moray (1959) showed that by using experienced participants in the shadowing experiment, the

detection of messages is significantly increased. In addition he reports that about one-third of the

participants were able to report the presence of their own name in the unattended messages. In more

developments, in an experiment conducted by von Wright et al. (1973), the appearance of a word

previously associated with an electric shock to the unattended ear showed an increase in the galvanic

skin response (GSR) for some participants. The latter findings are in contrast with the explanation

of Broadbent’s filter model. Based on Broadbent’s model, the messages of the unattended channel

should be blocked at early stages from any further processing after the filtering stage. The increase

in GSR suggests that the processing could occur at lower levels, however is not blocked entirely.

In a modification to Broadbent’s selective attention model, Moray discerned that selective attention

filters most of the irrelevant information, however messages with important or powerful content can

break through the filter and be passed for higher level processing.
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We briefly outline some of the developments in describing the selective attention which were later

presented.

� In another model presented by Anne Treisman, the sensory information with less relevance also

enters the perceptual processing, however, the extend, to which semantic processing takes place

on different sensory inputs varies (see Fig. 1.2). This is in contrast to the early selection model

of Broadbent where unattended sensory information is entirely blocked from transition to the

higher levels at the early stages. Her model is based on her observations in Treisman (1960).

The Treisman model will attenuate the unattended sensory inputs instead of eliminate them.

The unattended inputs can be selected based on transition probability, given their relevance.

For example, if one of the unattended channels include a familiar name (i.e., the person’s

name), then it is likely that the input will be picked up from the sensory buffer and passed to

the higher levels of conscious processing. The model, therefore gives a better account of the

’Cocktail Party Syndrome’. The difference between the Treisman’s model and Broadbent’s

model is the location of the bottleneck, that is to what extend the unattended messages are

processed (See Fig. 1.2 (B)).

� Diana and J. Anthony Deutsch put forward a different interpretation of the selective model

of attention. They argue that the selection of sensory items takes place after some perceptual

and semantic processing in the model. Based on this view, all the sensory inputs are processed

up to a semantic level and based on the weighting of the content, which is an indicator for

its desirability and importance, they will be selected for the higher levels. Otherwise, the

sensory inputs are thrown out of the mechanism. The difference between the Deutsch &

Deutsch interpretation and the Treisman model is in the position of the filtering that is located

much closer to the response end of the processing sytstem. See Fig. 1.2 (C) for a schematic

representation of the model. The critics of the model refer to the processing of all sensory

items before filtering as redundant. Other neurophysiological evidences based on the study of

ERP strength in the case of the presence of a target to the attended and unattended channels,

were shown not to be consistent with Deutsch and Deutsch’s theory (Coch et al., 2005; Eysenck

and Keane, 2000).

There have been other theories proposed to determine if selective attention is a late or early stage

process. Lavie and Tsal (1994) argue that the work load of the primary task has an important

role on how participants’ attention drifts to the unattended messages. If factors such as repetition

or speed of messages in the shadowing ear increases, then all attentional resources are allocated to

one specific channel. If load of messages or primary task is low, then some of the resources will be

allocated to the unattended channel. Therefore, she argues under high-load condition, the filtering

process should occur rather at the early stages.

The proposed models of selective attention have their own limitations and supports, mainly due to

the fact that the researchers have used different measures for a participant’s awareness of unattended
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messages (i.e., from self report to physiological data such as galvanic skin response). It has to be

noted that in Broadbent’s model of selective attention, he argues that there are sensory buffers by

which sensory information are stored temporarily. Attention can be shifted occasionally to the stored

unattended information. It has been found that there is indeed sensory memory, composed of namely

the iconic (visual modality) and echoic (auditory modality) memory. However, the timing shift of

the attention has not been specified adequately in Broadbent’s model. Therefore, the difference

between an endogenous driven shift of attention and an exogenous effect (i.e., a salient stimulus) is

not well defined. In Lachter et al. (2004), with a series of experiments applied to study selective

attention, a modern variation of Broadbent’s model is endorsed, by which the set of experimental

results support the concept of slippage of Broadbent’s model (allocation of attention to irrelevant

items) against the leakage-based models (semantic processing of irrelevant items while attention is

allocated somewhere else).

In the studies presented by Strauss et al. (2008a, 2010) and Corona-Strauss et al. (2011), a prob-

abilistic model of the selective attention has been used. The model takes into account the exoge-

nous (i.e., the physical characteristics of the input such as intensity, pitch) and endogenous factors

(i.e., template driven) that influence the attention selection mechanism. The endogenous factors

correspond to feedback that is received from the top-down processing and exogenous factors that

correspond to the bottom-up processing. Fig. 1.3 shows a schematic illustration of this conceptual

model of selective attention. The superposition of the endogenous and exogenous effects, defined

as a d-dimensional weight vector ω = (ω1, ω2, . . . , ωd) is assigned to the input sensory streams

s(i) = (s1, s2, . . . , sd) where i is the step number and d is the total number of streams. The assigned

weights have to be translated for the decision making circuitry for further analysis. The decision

making circuitry for picking the relevant stream maps the input weights to a probability distribu-

tion, where it presents the likelihood of every stream selection based on its assigned weight value.

Here, we assume the weights are sorted according to their selection probability, from highest to

lowest probability that can be seen on the right side of the figure (the streams with a higher weight

have a higher probability for selection). This step is comparable to the late/early filtering stage

of the selective attention model described by Treisman and Deutsch. We denote the probabilities

for every stream P = (p1, p2, . . . , pd). By assigning a threshold pth, the sensory streams with a

higher threshold than pth will be selected for further analysis. The higher level (top-down) process

that corresponds to the endogenous effect incorporates more details. More details regarding the

neurophysical mapping of the model has been described in Strauss et al. (2008a, 2010).

1.3.3 Habituation

Habituation is known as a gradual reduction and filtering of irrelevant sensory inputs, and is probably

the simplest form of leaning in the animal kingdom (Harris, 1943; Rankin et al., 2009). Through

habituation, the animal learns to tune out the repetitive stimuli that have no significance, and
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Figure 1.3: A probabilistic model of auditory stream selection. The weights wi represent the
superposition of exogenous and endogenous effects of the segregated sensory streams.
The streams are stored based on their selective probability, a mapping from the weights
to probability values. Image has been adapted from (Strauss et al., 2010).

instead to react to the novel stimuli (Rosen, 1992; Chandrasekaran et al., 2010).

Habituation has been observed in Aplysia where the siphon-elicited gill and siphon withdrawal reflex

can undergo habituation that lasts for several weeks. This effect has been described in terms of long-

term synaptic depression of the sensorimotor pathway that mediates the withdrawal reflex (Carew

and Kandel, 1973). On the other hand, synaptic studies in short-term habituation experiments

suggest a reduction in neurotransmitter release in presynaptic terminals (Hawkins et al., 1993;

Thompson, 1986).

However, the effect of habituation can also occur without the Pavlovian reinforcement learning.

It has to be also differentiated from sensory adaptation (receptor adaptation) or fatigue (effector

fatigue) (Harris, 1943; Rankin et al., 2009; Domjan, 2014; Thompson, 2009). Habituation can occur

in short-term and long-term forms. In the short-term habituation, the response strength decreases

quickly and the spontaneous recovery is rather fast. The drift of attention in long-term habituation

from irrelevant stimulus occurs over a longer time period with a longer lasting effect and has a slower

spontaneous recovery.

In Thompson and Spencer (1966), a series of criteria are defined for distinguishing between habit-

uation and other forms of learning. We briefly outline some of the most important criteria that

have to be met for habituation process (for more details see Thompson and Spencer (1966) and the

references therein).

� If a novel stimulus elicits a response, repetition of the stimulus will lead to decrement in the

response.

� If the stimulus is withheld or presence of another novel stimulus, the response tends to recover.

� Rapid stimulations with shorter time intervals lead to more pronounced habituation.

� The weaker the intensity of the stimulus, the more habituation occurs.



1. Introduction 16

� Habituation is a reversible process such that presentation of a novel stimulus will lead to dis-

habituation (Harris, 1943). It has to be noted that repetition of the dishabituatory stimulation

can lead to habituation (Crampton and Schwam, 1961).

The effect of long-term habituation influences a wide range of attention-oriented research, either due

to its implication for data acquisition in enduring attention paradigms or due to its ability to shed

more light on pathological attentional binding in a number of related dysfunctions (Rauschecker

(2005); Walpurger et al. (2003); Williams et al. (2013)). The difference between sensory adaption

and habituation is subtle, however an important one. Sensory adaption is the process of lessening

the attention to a stimulus that is not exerted consciously (for example, we cannot control how

quickly we can adapt to a particular stimulus such as light). Habituation on the other hand can be

to some extend consciously controlled (Sternberg and Sternberg, 2016). Once habituated, we can

consciously divert or shift our attention to the stimulus in which we have habituated, once asked

to or decide. As another difference between habituation and sensory adaptation, we can refer to

the role of the intensity level. In habituation, the duration of prior exposure to a stimulus is more

important than its intensity, whereas sensory adaptation is more tied to intensity level than to prior

exposure. We habituate much easier to a sound if we are exposed to it continuously over a period

of time, whereas the skin sense receptors will respond the same to a temperature, no matter how

long or often has it been exposed to that temperature before. Therefore, it is important to highlight

that sensory adaptation is a process that occurs mostly in our sense organs, orienting a

bottom-up process whereas habituation is a cognitive adaptation governed mostly by

top-down processes(Sternberg and Sternberg, 2016).

It is important to point out that in the context of this thesis, long-term habituation is considered as

the drift of attention away from an irrelevant stimulus, when the stimulus is frequently presented in a

long-term. The physical properties of the stimuli can be salient, however, the endogenous top-down

processes will lead to the drift of attention away from the repeated stimulus as no novel information

is presented. Such mechanism helps us to allocate our attention on relevant stimuli and prevent

cognitive overload.

Based on the probabilistic model of Strauss et al. (2008a, 2010) which was briefly described in the

previous section, we can describe the effect of habituation as follow: a target stimulus s has been

repeatedly presented to the subject over a long duration of time. The function f maps the stimulus

to a probability value based on its corresponding weight, expressing the likelihood of selecting

the stimulus for higher levels of cognitive processing. As the repetition of the stimulus increases,

the corresponding novelty of the stimulus decreases and hence modifies the weight assigned to the

stimulus. As the probability density of selection becomes less, the likelihood of selecting the stimulus

decreases and hence the corresponding binding of the attention to the stimulus is reduced.

The two main factors that influence the degree of habituation are the internal variation within a

stimulus and the subjective arousal level (Sternberg and Sternberg, 2016). As an example for the
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first factor, we can compare the degree of habituation of the drone of an air conditioner to music

presented continuously. As the latter one is subject to more variations and changes in time, it is

comparably more difficult to remain habituated for a longer period of time in comparison to the

constant noise of an air-conditioner. The subjective arousal level is an indicator for the degree of

physiological excitation and readiness for action in comparison to the baseline. It can be measured

using autonomic responses such as heart rate or central nervous system correlates in the EEG.

1.4 Decoding of Neural Signatures of The Long-term

Habituation Process

The endogenous effect of selective attention has been firmly established as the modulation (enlarge-

ment) of the N1-P2 component of ERPs (see Hillyard et al. (1973); Hansen and Hillyard (1980);

Hillyard et al. (1973, 1978) and references therein). The N1-P2 component is elicited as a result of

the attended stimulus (see Fig. 1.1 as an illustration of the N1-P2 component). The main compo-

nents of the interest are obtained by averaging through a sufficient number of single trials of ERPs,

obtained from repetitive stimulation.

However, we are interested in the dynamics of ERP waveforms over time. The effect of N1-P2 has

been investigated through the amplitude and phase characterization of ERP waveforms followed by

different transformation techniques, such as the Wavelet and Hilbert transformation (Handy, 2005).

The behavior of the IP has been particularly used in many studies as a feature for decoding the

cognitive processes and biological signals in relation to different types of stimuli (Yeung et al., 2007;

Busch et al., 2009; Makeig et al., 2002). Thereby, to assess to what degree the voltage changes

of measured neural activities are time-locked to the target-stimulus of interest is one of the main

evaluation methods for understanding the level of attention drift.

One neural signature of long-term habituation can be found in the changes of the N1-P2 component

of auditory ERPs. Therefore, long-term habituation can be decoded as the gradual reduction in the

N1-P2 component of measured ERPs (Thompson, 2009). The reduction of the N1-P2 wave has been

studied both in the amplitude and IP of neural activities (Hillyard et al., 1973; Butler et al., 1969;

Öhman and Lader, 1972; Rosburg et al., 2006; Babiloni et al., 2002; Busch et al., 2009; Low and

Strauss, 2011; Mortezapouraghdam et al., 2015a). However, in the case of long-term habituation,

there are not a lot of studies to assess the changes over single trials based solely on IP. Most of the

studies mentioned earlier depend on the amplitude or measures based on amplitude-phase (Strauss

et al., 2013; Mariam et al., 2012; Fuentemilla et al., 2006; Low and Strauss, 2011). In Strauss

et al. (2008b) the IP was used exclusively but only on a trial-to-trial basis, i.e., for fixed points in

time the phase of a trial is compared only to its direct neighbors, neglecting long-term changes in

the phase dynamics. Consequently there is a pressing need for the development of methods which

allow the long-term habituation assessment of the dynamics captured in the instantaneous phase



1. Introduction 18

of ERP single-trial sequences. Moreover phase information are considered to contain less noise

in comparison to the amplitude which is very susceptible to various artifacts such as eye/muscle

movements or impedance of thell skull (Andreas, 2000; Seraj, 2016).

Therefore, the first part of the work deals with applying/developing methods to understand the

dynamic of IP of the N1-P2 component of measured ERPs. The experiments are designed such

that they reflect the effect of long-term habituation for different sets of stimuli. The objective is to

identify whether habituation occurs during the course of time, solely based on the IP of single-trial

ERPs. A broad spectrum of stimuli from comfortable (of low-loudness or easy to habituate) to

aversive (of high-loudness or difficult to habituate) are used to objectively determine the occurrence

of habituation. The proposed methods objectively assess the underlying statistical properties of data

and identify the regimes by which a significant change occurs. Using such methods, the incentive is

to reveal a mechanism for revealing the changes in the N1 component of IP of ERPs and test for

the presence of habituation.

1.4.1 Mapping Between Ongoing EEG and ERPs

One of the main limitations of studying ERPs is the short durations of stimuli, which are usually

tone bursts, short sets of words or syllables (Hall, 1992). Therefore, the measured neural responses

cannot be studied for longer intervals. Moreover, we are commonly exposed to complex stimuli

rather than pure tone bursts. The sounds we encounter on a daily basis are longer in duration and

also more complex. Therefore, to understand the decoding mechanism of selective attention for a

longer duration of time and a continuous stimulus such as speech, we require a longer time interval.

This requires the analysis of long rhythmic activities of ongoing EEG activities.

The relation between ERP and ongoing EEG activities is a debatable issue (Sauseng et al., 2007;

Yeung et al., 2007, 2004; Klimesch et al., 2007). By averaging over sufficiently large number of

ERP waveforms, the main components N1-P2 are seen as large peaks, reflecting the endogenous

effect of attention in neural activities. However, it is assumed that the peaks in the ERP waves are

uncorrelated to the background or ongoing EEG activities(Pfurtscheller and Da Silva, 1999; Yeung

et al., 2004). This assumption has been challenged in the last three decades as extensive research has

shown that the ERP components may as well be formed from synchronized EEG activities. In other

word, the phase re-organization of ongoing EEG signals lead to generation of ERP peaks (Klimesch

et al., 2007; Sauseng et al., 2007; Sayers et al., 1974; Penny et al., 2002).

In this part of the work, we assess the phase-reorganization of ongoing EEG activities for understand-

ing selective attention for longer time intervals. The neural activities of attended versus unattended

channels are analyzed and compared against the results obtained from studying ERPs. We thereby

try to assess methodologies to map the phase modulations of ongoing EEG activities to results from

the ERP studies.

In the following sections, we briefly examine some of the main theories for explaining the ERP
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generation and its relation to ongoing EEG activities. Some of the main references that we resort to

are Sauseng et al. (2007); Yeung et al. (2007); Klimesch et al. (2007, 2004b,a); Penny et al. (2002).

1.4.2 The classical view

In the classical view, the ERP is obtained by averaging over a sufficiently large number of single

trials of recorded EEG which are produced with respect to an event. Based on this view, the EEG

oscillations (often referred to as background EEG) are considered as noise, whose effect vanishes

(i.e., tends to zero) after averaging (Pfurtscheller and Da Silva, 1999). The term noise merely

implies that the background oscillatory activity is not correlated or time-locked with the event. It

is hence believed that the ERP-waves are evoked and embedded in the background EEG, which

obscures the informative ERP-wave components (Pfurtscheller and Da Silva, 1999). However, the

informative part or the embedded ERP signal is present at every trial or sweep, and the effect

becomes pronounced by averaging over sufficiently large number of trials. It is then concluded that

the evoked activities are consistent across trials, which are described by activity bursts that are time-

locked or time-coordinated with respect to the onset of a stimulus10. The mathematical formulation

of the classical view can be seen as the linear superposition of the EEG response over a number of

single trials (k):

ERPevoked =
1

k

[
k∑
i=1

s(t, i) +W (t, i)

]

at every time t. The averaged evoked activity is the superposition of all evoked responses s (k trials)

at every time t. The ERP is superimposed and has no interaction with the background activities,

which is considered as noise W (t, i) for every time t and trial i. The classical view has been the base

of the study of ERP analysis for the last decades, covering a broad range of studies in the field of

cognitive processing and information processing.

1.4.3 Pure Phase-resetting

The proposed hypothesis against the classical view states that the ERP generation is not independent

from the background EEG oscillations (Pfurtscheller and Da Silva, 1999; Sayers et al., 1974). It

is assumed that ERPs are generated by the re-organization of stimulus induced phase-resets of

ongoing EEG rhythms (Penny et al., 2002; Makeig et al., 2002; Sayers et al., 1974). Thereby, the

ERP generation is not solely based on the superposition of evoked, fixed-latency, and fixed-polarity

responses that are independent from the ongoing EEG activity (Sauseng et al., 2007). Based on

this definition, the background EEG activity comprises an important part of the ERP generation

10If the recorded oscillation after the onset of a stimulus occurs with varying time-shifts and variations across
different sweeps, the oscillations are considered induced by the stimulus rather than evoked (see Busch et al. (2009)).
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process. This view is also referred to as phase modulation (PM), in contrast to the classical view,

namely the amplitude modulation(AM). In Fig. 1.4, an illustration of the classical view of ERP

generation versus the phase-resetting model has been illustrated.

To detect if the evoked responses over the trials have an AM behavior or PM dynamics, it is required

to look at the spectral changes over single-trials. If there are no significant stimulus-induced power

changes or increases over the single-trials, then it is highly likely that it is a PM process (Yeung

et al., 2004). In this condition, the peaks and troughs over trials for a period of time are aligned

and consistent, demonstrated as phasic bursts around the period related to the stimulus/event.

Averaging over the trials will lead to the main peaks and troughs of the main ERP components.

For any time outside this region, no consistency or phase alignment exists. If we consider the

distribution of phase in the pre-stimulus region, the phase distribution is uniformly distributed,

whereas post-stimulus will peak and center around a dominant value (Penny et al., 2002).

1.4.4 Pure-phase Resetting and Amplitude Enhancement

The pure-phase resetting, as was described in section 1.4.3, has been demonstrated to hold true for

early auditory and visual EPs, as demonstrated by Jansen et al. (2003); Luo and Poeppel (2007);

Makeig et al. (2002). However, some studies have shown that there exists a spectral power increase

at specific frequencies as well as phase resetting that lead to the ERP generation (Brandt, 1997;

Shah et al., 2004). This view is known as the phase-reset with enhancement and it is difficult to

distinguish it from the classical view as both contain an increase in the power spectral of some

frequencies. Additional analyses are required to assert if the generated ERP is obtained from the

classical view or the phase resetting with enhancement as explained in Makeig et al. (2002) (for

more details see Yeung et al. (2004) and references therein). In Yeung et al. (2004), it has been

further investigated that the proposed analyses methods still contain ambiguities to clearly dissociate

between the ERPs generated by the classical view and the phase-reset with enhancement approach.

1.4.5 Organization of the Thesis

This thesis is organized as follows: In Chapter 2, we describe the methodologies that have been used

for individual studies. A brief introduction to the problem is provided at the beginning of every

section which determines the study case. The methodology is then fully described and at the end,

the experimental setting and data acquisition methods are explained. In Chapter 3, only the results

are reported, in the same study order as in Chapter 2. In Chapter 4 we discuss results in Chapter

3 and state the limitations and shortcomings of every method. At the end, we present conclusions

and future work.
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Averaged Trials Averaged Trials

(A) (B)

Figure 1.4: (A) The evoked classical model assumes that the evoked components of averaged ERP
are generated by a constant evoked response that is added onto EEG activity. The
evoked responses have the same latency and polarity for all trials. The average of
all reponses over all trials will yield the averaged ERP. (B) In other explanations of
the ERP genesis model, the average evoked response is based on a phase-resetting
of background EEG activity. By averaging over all trials in which phase reset has
occurred, the same results as in (A) are produced. A better representation of the
concept can also be found in Sauseng et al. (2007).



Chapter 2

Materials & Methods

2.1 Synchronized Neural Activity and Attention

Essential for sensory processing is the orchestration of brain regions responsible for stimulus appraisal

(e.g., aversiveness by structures of the limbic system) and the thalamocortical feedback system. The

nuclei of the thalamus act as a regulatory circuit for connecting the sensor to the neocortical areas of

stimulus processing. As the projections from the thalamus to the cortex are sparse (approximately 15

%, see Benshalom and White (1986); Lübke et al. (2000)) the driving mechanism must be based on

the temporal orchestration. Studies in Bruno and Sakmann (2006) demonstrated near-synchronous

patterns of action potentials among converging thalamic inputs for strong sensory stimulation. Thus

coherent neural activity, locked to the stimulus, may be a key concept for stimulus intensity appraisal

(Fries, 2005; Börgers and Kopell, 2008).

The changes in the coherent neural activity in the thalamocortical circuitry should be reflected in

non-invasive measurable EEG activities. The coherent activity in neural population can be observed

in terms of phase synchrony among different neural assemblies. The study of phase synchronization

has received a great deal of attention for decoding neural propagation for different mental/cognitive

tasks between different regions (Schnitzler and Gross, 2005; Lachaux et al., 1999). Throughout

various phase-related studies, the IP is studied using the analytic form of signals. Examples include

the application of different BCI systems using the phase synchrony concept. Phase re-organization

(phase resetting) and its relation to EEG has been investigated in many studies (see Penny et al.

(2002); Makeig et al. (2002); Sauseng et al. (2007)). In Forte et al. (2017), the empirical mode

decomposition technique is used to measure brainstem response to running speech. In addition,

measures such as PLV (phase locking value) are numerously used to measure the level of phase
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locking between different experimental trials or electrodes(See Lachaux et al. (1999) and references

therein) and thereby decoding different cognitive tasks.

In all aforementioned studies, to analyze the dynamic of EEG oscillations and synchronization with

regard to different stimulations and experimental paradigms, we need appropriate tools to study

neural activities. This covers a broad spectrum of analysis tools from appropriate pre-processing

approaches to characterizing signals in terms of phase and amplitude and statistical modeling of

data. In the following sections, we explain some of the main pre-processing steps such as filtering

and IP extraction to obtain meaningful pre-processed data. We then describe the related methods

(applied/developed) for the study of our experimental data in relation to decoding auditory attention

signatures and the long-term habituation. The utilized methods for every experimental setting

as well as the data acquisition procedures are demonstrated. We refer to Chapter 3 for further

discussions and analysis.

2.2 Extraction of Instantaneous Phase (IP)

2.2.1 Filtering procedure

Before the extraction of the IP, EEG data is usually narrow-bandpassed around a center frequency fc,

ω = 2πfc/fs, with a sampling frequency of fs. To have a narrow-bandpass filter, a small bandwidth

is used around the frequency of interest. The main reason for applying a narrow-bandpass filter is

to have a meaningful interpretation of the IP, as the IP in a broad frequency spectrum is not easy

to interpret (Chavez et al., 2006).

Given the signal x ∈ Rn, the bandpass filtering can be described as the convolution of the signal

x(t) with the filter’s impulse response function h defined as follows

y[·] = (x ∗ h)[·] =

M∑
k=0

h[k]x[· − k]. (2.1)

The bandpass filter is in the class of linear time-invariant (LTI) systems. The specific design of the

filter properties and its parameters (i.e, the bandwidth, center frequency, stop-band attenuation,

etc.) depends on the data and the application of interest. However, as we are interested in the

analysis of IP, it is important that the filtering process preserves the original phase of the input

signal.

A common approach for filtering and presenting the original phase is applying linear-phase finite

impulse response (FIR) filters, in which the phase of the filter’s impulse response is summed with

the phase of the input signal. To narrow-bandpass a signal, the order of the FIR can substantially

increase, in result increasing the length of the transient response. As these samples have to be

dismissed, a long width of the signal is cut, thereby reducing the temporal resolution. To avoid a

high order FIR, we can employ an infinite impulse response (IIR) filter, in which lower orders are
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shown to narrow-bandpass the signal (Seraj and Sameni, 2017). However, the phase of IIR filters

is often nonlinear and hence distorts the resulting input’s signal phase. Distortion in case of using

FIR can also occur due to phase wrapping of the filter’s phase.

To avoid the problem of phase distortion, zero phase forward-backward filtering (FIR/IIR) is used.

This standard method ensures a zero phase difference between the input and output’s phase, re-

gardless of the linearity or nonlinearity of the filter’s phase response. Given an input signal f(t)

and a filter response k, the method applies the filtering as reverse(k ∗ reverse(k ∗ f)) such that re-

verse operator yields the temporal reverse of data. By setting x = reverse(k ∗ reverse(k ∗ f)) the

output of the latter expression in Fourier domain can be described as (Fx) (ω) = ‖K(ω)‖2 F(ω) for

ω ∈ R, where F(ω) and K(ω) correspond to the Fourier transform of the signal f(t) and the filter

response k(t) respectively. The phase of the forward and the phase of the backward pass cancel out

and therefore the resulting response in the frequency domain is the multiplication of the positive

coefficients ‖K(ω)‖2 (zero phase) with the Fourier transform of the signal1. For more details on

filters see Oppenheim et al. (1989).

2.2.2 Hilbert Transformation

After narrow-bandpassing the signal, the IP of the analytic signal can be obtained through different

transformation techniques. One of the common methods for extraction of IP is using the analytic

form of the signal using Hilbert transformation (HT). The analytic form of a narrow-bandpassed

signal x ∈ Rn using the Hilbert transform filter is computed as:

X(t) = x(t) + iH(x(t)), (2.2)

where the complex valued coefficients are the filtered signal in the real part and the Hilbert transform

in the imaginary part. The HT of x(t) is defined as

H (x(t)) =
1

π
PV

∫ ∞
−∞

x(t′)

t− t′
dt′, (2.3)

where PV is the Cauchy Principal Value. The definition of PV has been included in Appendix. A. The

resulting output coefficients at every time step is a complex number, such that analytic amplitude

and phase can be obtained as

A(t) =
√
x2(t) +H(x(t)) (2.4)

θ(t) = atan2

(
H(x(t))

x(t)

)
(2.5)

respectively. Here atan2 denotes the ”quadrant–specific” inverse of the tangent function. The

definition enforces the 2π-periodic angles θ(t) to be in ∈ [−π, π).

1In matlab the function filtfilt applies the zero-phase forward backward method
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Using Euler’s formula, the complex coefficients can be represented as points on a circle. Assume

the given complex coefficients as x(t) + iy(t) the polar representation of the data sample is A(t)eiθ

where A(t) is the analytic amplitude and the θ is the analytic phase angle.

2.2.3 Wavelet Transformation

One of the other techniques used to compute the IP of the analytic signal with a high time-frequency

localization is wavelet transformation (WT). The transformation is the convolution operation of the

signal x(t) ∈ R with a function ψ ∈ L2(R) known as the mother wavelet2. A one dimensional signal

is described in terms of time and frequency into a two dimensional space by expressing the signal in

terms of a series of orthonormal basis functions (in this case the wavelet functions). The minimum

requirement imposed on the mother wavelet function ψ(t) ∈ L2(R) is the admissibility condition,

that is:

0 < Cψ :=

∫ ∞
−∞

|Ψ(ω)|
|ω|

dω <∞ (2.6)

where Ψ(ω) is the Fourier transform of the function ψ(t), with ω being the frequency. The ad-

missibility constant factor is shown as Cψ. This condition imposes a mild decaying criteria for the

function. From Eq.2.6 it follows that

∫ ∞
−∞

ψ(t)dt = 0. (2.7)

The latter criteria can be interpreted as the mother-wavelet behaving similar to a wave with ups

and downs in the time domain together with the decaying property. This assumption leads to a

better localization and tracing of the changes across the time and frequency. See Strang and Nguyen

(1996) for more details on wavelets and explanations.

A family of wavelet functions from the function ψ is formed by scaling (with the dilation parameter

s ∈ R, s 6= 0) and shifting (with the translation parameter τ ∈ R) its center in time. The translated

and dilated function ψs,τ is equivalent to

ψs,τ (·) :=
1√
|s|
ψ

(
· − τ
s

)
, s, τ ∈ R, s 6= 0. (2.8)

Given the form of the wavelet function, the CWT of a signal x ∈ L2(R), with respect to a wavelet

function ψs,τ is defined as:

(Wψx) (s, τ) = 〈x, ψs,τ 〉L2 =
1√
|s|

∫ ∞
−∞

x(t)ψ∗
(
t− τ
s

)
dt. (2.9)

In Eq. 2.9, the function x(t) is mapped into a new space by a family of basis functions ψ and ψ∗

2L2(R) is the set of square integrable functions
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is the conjugate operation. The new space is described in terms of the parameters s and τ , which

gives us the localized information of x(t) in time and frequency domain3. For more details on CWT

and inverse CWT see Oppenheim et al. (1989).

Complex Continuous Wavelet Transform One of the methods for extracting IP is to utilize

complex wavelet functions. Given a complex wavelet function ψs,τ and a real-valued signal x ∈ RM ,

the resultant CWT will be complex valued (vs,τ := 〈x, ψs,τ 〉, τ = 1, · · ·M). The complex valued

coefficients are expressed as:

vs,τ = < (vs,τ ) + i= (vs,τ ) = |vs,τ | expiθs,τ . (2.10)

The <(vs,τ ) is the real and =(vs,τ ) is the imaginary parts of the complex coefficient vs,τ . The terms

|vs,τ | is the amplitude and θs,τ is the instantaneous phase, IP. The instantaneous amplitude and IP

using the complex coefficients vs,τ are computed according to Eq. 2.5. We denote the IP as θs,τ (or

θ).

In order to separate the amplitude and phase information we are required to use complex wavelet

functions with a positive frequency response in the Fourier domain, that is F (ψ)(ω) = 0 for ω < 0.

A wavelet with such property is referred to as an analytic wavelet and is defined in the Hardy space.

One of the informative wavelet functions that have been studied thoroughly in the former studies

(Strauss et al., 2005, 2008b; Low and Strauss, 2011) is the sixth derivative of a complex Gaussian

function. Strauss et al. (2008b) demonstrates that for the chosen wavelet scale s = 40 (upper theta

band (Matsuoka, 1990)) a significant (p¡0.05) correlate of fluctuations in the N1/P2 component

of auditory ERPs exists and thus a correlate for attention, with satisfactory temporal resolution.

For a relation between the analytical signal of a bandpass–filtered signal and the complex wavelet

transform we refer to Stéphane (1999); Bruns (2004).

The information associated with the selected wavelet function are as follows: Fig. 2.1 illustrates the

selected wavelet function ψs,τ , the sixth derivative of a complex Gaussian function defined as follows

in Matlab

ψ(t) := c
(
eite−t

2
)(6)

where c is chosen such that ‖ψ‖2 =
√∫∞
−∞ |ψ(t)2|dt = 1. The selected scale s = 40 corresponds

to a center frequency of 7.6Hz. We investigated the frequency domain of the wavelet function. In

Fig. 2.2, we have plotted the absolute value of the Fourier transform of the wavelet function. The

fourier transform of the sixth derivative of a complex Gaussian function is given by (For details

regarding the derivation see Appendix. B):

3This is similar to Fourier transform, in which we map the signal into a new space by a set of orthonormal basis
functions. The differences are in the selection of basis functions (a series of sines and cosines for Fourier transform
and a series of wavelets for WT) and that in the Fourier transform we do not obtain information in the time domain.
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Figure 2.1: (A): The absolute value of the fourier transform of the truncated 6th-derivative of
a complex gaussian function F (ψ). (B): The corresponding function ψ in the time
domain.
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Figure 2.2: The absolute value of the fourier transform of the 6th-derivative of a complex gaussian
function F (ψ).

(Fψ) (ω) ∝ −ω6e−(πω−
1
2 )

2

(2.11)

where ω is the frequency.

As shown, the information in the negative frequency is significantly diminished (as the order of the

complex Gaussian increases, the Fourier transform acts as a filter in the positive frequency and

removes the negative frequencies). Although the effect of the negative frequencies is significantly

small, to maintain a Hardy space and avoid distortions in the distribution of the extracted phase

information, the negative frequencies are set to zero. Hence, we define the truncated sixth-derivative
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of a Gaussian wavelet ψ by its Fourier transform as follows:

(Fψ)(ω) =

−c ω
6e−(πω−

1
2 )

2

if ω ≥ 0

0 otherwise

where c is chosen such that ‖Fψ‖ = ‖ψ‖2 = 1 (See Fig. 2.1 for the Fourier transform of the truncated

version).

The complex wavelet transform of a signal f(t) for a fixed scale s is a function f̂(τ) of the translation

parameter τ :

f̂(τ) :=
1

|s|1/2

∫ ∞
−∞

f(t)ψ∗
(
t− τ
s

)
dt.

We can express f̂ as the convolution of f with the function g(t) := 1
|s|1/2ψ

∗(t/s). To extract the

analytic signal of our data in the theta band, we use the scale s = 40. This transformation is

especially simple to implement, since it corresponds exactly to a Hilbert transform followed by a

wavelet transform with the ordinary sixth derivative of Gaussian wavelet. We obtain the phase of a

signal f as the phase of its complex analytic signal.

2.3 Statistical Analysis and Decoding of Neural Responses

of Attention-Binding

2.3.1 Descriptive Circular Statistics

Circular data has two main properties in which arithmetic means and variances cannot be used

for describing the circular statistical properties (Fisher, 1995; Mardia, 1975). For example, the

arithmetic mean of two angles 1◦ and 359◦ will be 180◦ whereas intuitively the mean angle should

be around 0◦. The different algebraic structure of the circle in comparison to the line, that is

on a circle only one operation (addition modulo 2π) and on a line two operations (addition and

multiplication) are defined, leads to different forms of central theorem and stability conditions (see

(Mardia and Jupp, 2009)). On a circle, the samples depend on two properties, namely, the zero

direction which is the starting point and the direction of rotation, i.e., whether clockwise or anti-

clockwise. A definition of the circular mean and variance should be independent of the particular

choice of these two quantities.

Mean Direction Assume x = {x1, x2, · · · , xn} is a series of data points on a unit circle, measured

in the direction of anti-clockwise. Every point xi can be represented by an angle θ which is

measured from the positive x-axis to the line connecting the origin to the point. We denote

the set of angles as Θ = {θ1, θ2, · · · , θn} , θi ∈ [−π, π) and the direction vector for every point

as vi = (cos θi, sin θi)
T
, i = 1, · · · , n. The resultant vector R of the corresponding directions
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vi is defined by

R :=

(
n∑
i=1

cos θi,

n∑
i=1

sin θi

)T

= (C, S)
T

where

C :=

n∑
i=1

cos θi and S :=

n∑
i=1

sin θi. (2.12)

The circular mean θ is the angle in [−π, π) of the direction of R, i.e.,

θ := atan2(S,C), (2.13)

where atan2 is the inverse of the tangent function and its output is confined to the interval

(−π, π].

Similarly as the usual mean x̄ of real values {xi : i = 1, . . . , n} fulfills

x̄ = argmin
x∈R

n∑
k=1

|x− xi|2 =
1

n

n∑
i=1

xi,

the circular mean satisfies

θ̄ = argmin
θ∈[−π,π)

n∑
i=1

d(θ, θi)

with the circular distance d(θ, η) := 1 − cos(θ, η). Note that d does not coincide with the

geodesic distance min(|θ − η|, 2π − |θ − η|) on the unit circle.

Mean Resultant Length The length of the resultant mean is defined by R′ = n|R|. We define

S = 1−R′/n, which is between (0, 1). If the directions are highly clustered around the mean

direction (or in the extreme case of coincidence), then the length R′ will be almost as large

as n and S will be nearly zero, indicating a high clustering of data. In contrast, as R′ gets

lower, S will be closer to 1 implying a more uniform distribution of data directions around

the circle. However, R′ = 0 does not necessarily imply that the data points are uniformly

spread on the unit circle. In Fig. 2.3 we show an example of data points, which despite a high

orientation of data samples in two different directions, the resultant mean length is very small

(∼ 0.024). Visualization of data is necessary in order to obtain a better understanding of data

distribution.

Circular Variance The quantity V = 1− R′ is known as sample circular variance for 0 ≤ V ≤ 1

(Mardia, 1975; Fisher, 1995). A variance of zero and a resultant length of one means a low

variability between the data points (i.e., all directing to the same direction), and a high variance

of one (with a small resultant length) refers to a uniform distribution of data. Similar to R′,

V = 1 does not necessarily imply that data is uniformly distributed around the circle. As was

described for the mean resultant length(Fig. 2.3), a bimodal distribution of data, pointing to

the opposite sides will have a small resultant mean length and low variance, not capable of
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Figure 2.3: An example of a bimodal data distribution, spread at two opposite sides of a circle.
The mean resultant length R′ is ∼ 0.024. Despite the low value of R′, the measure
doesn’t reflect the actual data concentration around the circle.

capturing the underlying two modes. For more information see Mardia (1975); Fisher (1995).

2.3.2 Probabilistic Modeling of Instantaneous Phase

Probabilistic modeling of data is considered as an important feature that allows a better under-

standing of data structures and the underlying generative models. Fitting a model to data (either

parametric or non-parametric modeling) enables us to describe the data efficiently by a set of param-

eters. Using more complex modeling frameworks such as Bayesian approaches, we are able to obtain

detailed information from the data structure and corresponding underlying model. As the statistics

for circular and spherical data are particularly different than linear data (as explained in section

2.3), modeling data requires appropriate tools that take into account the circularity characteristics

of data structures. We are particularly interested in studying of behavior of IP in order to decode

neural activity with regard to auditory selective attention. Therefore, we employ and develop new

approaches for understanding IP of auditory selective attention for different experiments so as to

give us a deeper insight into data. In each of the following sections, we will describe the experimental

settings and the methods that have been used for data analysis. Results and discussions are fully

elaborated on in chapters 3 and 4 respectively.

Von-Mises Modeling of Windowed Instantaneous Phase

The objective of this study is to assess statistically the dynamic behavior and characteristics of

long–term habituation as reflected in the IP of auditory ERP sequences. To accomplish this, we

use a theoretically well founded quantitative multiscale modeling and experimental framework for

human ERP single–trial data. We apply a quantitative neurofunctional model that covers several

spatiotemporal scales of neural processing to simulate human macroscopic ERP sequences. This

macroscopic simulation output depends on an oscillatory microscopic model of the cortico–limbo–
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thalamocortical circuitry in which dynamics were fitted to invasive electrophysiological data. Thus

the model allows us to simulate the macroscopic ERP correlates of long–term habituation as defined

by the microscopic dynamics. For reasonable parameters of the time–frequency transform, we assess

the IP of the simulated ERP sequences with a von Mises model, providing us with predictions about

the circular organization of the phase during attentional binding. Measured habituation data is used

to cross–validate the model’s prediction by a circular statistics approach that has not considered for

the assessment of long–term habituation thus far.

This method can be used in the experimental/clinical neurodiagnostic assessment of attentional

binding and also provides data for fitting time–dependent and phase-related parameters in quanti-

tative models of long–term habitation to different species, exogeneous conditions, and modalities.

The model also links the macroscopic dynamics of the IP to a microscopic oscillatory model, at least

in our multiscale framework.

We first describe the neurofunctional model of attention and the simulation of the ERP responses.

Next, we explain about the data measurements, and at the end, the proposed probabilistic model

for studying the circular regularities over the measured ERP-trials is described.

Neurofunctional Model of Attentional Regulation

The quantitative framework of the model that has been used in this study is a continuum model of

thalamocortical interaction introduced in a series of papers by Robinson et al. (2005) (see also the

references therein). The model simulates ERPs based on a set of reasonable physiological parameters.

In a study conducted by Trenado et al. (2009), the model was further expanded to simulate deviant

levels of attentional binding towards a given auditory stimulus by modulating the internal gains.

Furthermore, extrasensory neurofunctional structures were integrated to add behavioral dynamics

in a simulation of the effects of habituation onto ERP morphology. A comparator structure based

on physiological and anatomical hippocampus data (see Vinogradova (2001)) was added to simulate

the response effect of novelty and fading attentional binding during recollection and habituation

(Haab et al., 2011).

In particular, we used the theta–regulated attention hypothesis (Vinogradova, 2001) to compare

between feature-reduced novel sensory data and preprocessed data in memory. This preprocessed

input in memory might contain a prediction of sensory environmental dynamics, but considering

a static surround for the sake of convenience, we can use memory synonymously. In accordance

with Sato and Yamaguchi (2007); Yamaguchi et al. (2007), we can hypothesize a feature reduction

of sensory data to a level of directionality and exogenous weighting in an egocentric environmental

mapping.

Fig. 2.4 illustrates the functional interconnections of the model with all interacting neural elements.

For a detailed analysis of the importance of all involved neural structures see Vinogradova (2001).

The projection to the thalamus might influence attentional gating Crick (1984); McAlonan et al.
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Figure 2.4: Descriptive model of hippocampal functional elements and interconnections used for
the the numerical implementation of the comparator model; FD (fascia dentata),
CA1&CA3 (cornu ammonis 1 & 3), MSDB (medial septum, diagonal band of broca,
RN (raphe nuclei), MFB (medial forebrain bundle), SC (Schaffer’s collaterals), PP
(perforant pathway), MF (mossy fibres), A (amygdala). The thalamocortical feedback
system consists of the TRN (thalamic reticular nucleus), MGB (medial geniculate
body) using the cochlear input (CI).

(2000); Zikopoulos and Barbas (2006); Kimura et al. (2012) and recently the convergence of limbic

and attentional pathways in the thalamic reticular nucleus (TRN) has been highlighted in Zikopoulos

and Barbas (2012). The model outlined above is integrated into the thalamocortical attention

model by Trenado et al. (2009) to achieve comparability to recorded ERP data. Simulation data

on habituation effects show similar trend over the number of subsequent stimulus presentations as

compared to recorded data. The modeling parameters used to perform this study were taken from

the same set of physiological neuron properties as described in Strauss et al. (2008b); Haab et al.

(2011, 2009).

Data Generation using the Neurofunctional Model

We used the aversive binding model in Mariam et al. (2009) for habituation and non–habituation.

In this model, a repetitive, monotonic, and periodic soft/comfortable loud auditory pure tone stim-

ulation of 50dB(SPL) results in habituation due to a lack of novelty and limbic significance. A

loud stimulation of 100dB(SPL) of the same type serves as aversive sound that leads to limbically–

triggered attentional binding, resulting in non–habituation ERP correlates (see section 2.3.2 for

more details and the corresponding experimental setting). The habituation time–course, namely the

reduction of the CA1 integration time window, was based on the physiological data of Vinogradova

(2001) and follows a sigmoidal function (Haab et al., 2011). We used this sigmoidal function as a

limbic input into the model of thalamocortical interaction to simulate decreasing excitatory effects to

the thalamocortical (G1) gain (Haab et al., 2011). Note that the model is not fitted to macroscopic
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Figure 2.5: Top: Results for simulated habituation and non–habituation data are illustrated for
800 trials. For the simulated habituation data, the N100 wave and P200 wave (between
80ms and 220ms) is highly reproducible for the first 300 trials and then its strength
tends to diffuse over subsequent trials. This is in contrast to the simulated non–
habituation data that shows a strong N100/P200 reproducibility throughout all the
trials. Bottom: the corresponding (scale specific) IP of the matrices in the top row.

ERP data. Only the microscopic oscillatory model is fitted to invasive electrophysiological data,

being on a much smaller spatio-temporal scale of neural processing than our macroscopic simulation

ERP output.

Fig. 2.5 shows an example of the simulated data for a topographic ERP image (see (Strauss et al.,

2013)), i.e., individual sweeps form the rows of a matrix, in which the amplitude is color–coded. It is

noticeable that the absolute value of the N100 wave is decreasing (top). Note that this effect results

purely from the model used for generating the data. Such a clear trend is not noticeable in measured

ERP single–trials due to noise and the superposition effect of other on–going neural processes.

Fig. 2.5 (bottom) shows the IP of the trials. The model predicts that the IP is less coherent at the

end of the experiment in the N100/P200 time frame for the habituation setting (left) but coherent

for the non–habituation case (right). In other words, the simulated drift of selective attention results

in an unstable phase in the long–term habituation setting. The ’phase effect’ was never analyzed

independently of the amplitude for habituation analysis up to now.

In order to investigate the effect of long-term habituation in IP, we suggested the use of a von Mises

modeling over time. The statistical analysis of phase data using a von-Mises model approach has
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been applied on synthetic as well as measured ERPs.

Experimental Setting: Data Acquisition and Segmentation

Data from the long–term habituation study was acquired from 10 subjects with no hearing deficit

history at the Saarland University. The mean age of the participants was 30 years and 11 months

± (3 years and 9 months). Each subject received an audiogram test before the experiment and an

audiogram check up after the experiment. Subjects were asked to lie on a bed in a sound–proof

room with eyes closed and avoid any motion during the experiment. The evoked potential responses

to the individual tones were recorded using surface electrodes (Ag/AgCI) which were placed at the

right and left mastoid (active), the vertex (reference) and the upper forehead (ground). The signal

acquired from each mastoid was referred to vertex (Cz) and processed separately. In this work we

analyze the signals that are referred to the ipsilateral side, which is defined as the signal and electrode

placement on the same side of the head, thus changing with stimulus direction. The sound stimuli

were presented only to the right ear via a headphone (HDA 200, Sehnheiser) at two different sound

levels of 50dB(SPL) and 100dB(SPL). A stimulation to the right ear would require the analysis

of the right–side mastoid electrode versus the reference. As 50dB(SPL) is a low sound intensity

and the subject can easily habituate to the sound, contrary to 100dB(SPL) which is a loud and

aversive stimulus and hence habituation would be diminished. A break of 3min was given between

the 50dB(SPL) and 100dB(SPL) sound exposures. The auditory stimuli consisted of pure tones

of 1 kHz with a duration of 40ms, and a constant inter–stimulus interval (ISI) of 0.75s. Stimulus

presentation lasted for 8min each with a 3min break in between. High– and low–intensity sessions

were presented in a random order to individual subjects to exclude sensory adaptation. During

the experiment, subjects were consistently observed to make sure that they were conscious and

motionless. The recorded EEG data was sampled at 512Hz.

Data Pre-processing A bandpass FIR filter of order 1000 and cut–off frequencies of 1Hz and

30Hz was applied to the raw EEG signal in order to remove unwanted frequencies. The high filter

order leads to having a sharper stop-band. Afterwards, the acquired data from each experiment was

divided into segments of 800ms according to a stimulus triggered signal with the sampling rate of

512Hz we obtain T = 410 values per segment/trial.

Trials containing artifacts and amplitudes larger than 50µV were removed. In order to have the

same number of trials for each subject, a total of N = 800 artifact–free trials sT

k ∈ RT , k = 1, . . . , N

were used in the analysis for each subject. The data is represented as an N × T ERP image

S := (s1, . . . , sN )T,

where the trials sT

k ∈ RT appear as rows. An example of the acquired data for one subject and

50dB(SPL) responses is shown in Fig. 2.6. The 800× 410 matrix S can be seen on the right hand
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Figure 2.6: Example of ERP image S of 50dB(SPL) responses is shown on the right side where
each row represents a single trial of 800ms. On the left side two different trials are
selected. The effect of habituation can be observed as a reduction of the N100 wave
amplitude that appears approximately 100ms after the onset of the stimuli.

side. Two different single trials sT
25 and sT

650 are depicted in the left image. The effect of habituation

can be observed in terms of a reduction of the N100 wave that appears approximately 100ms after

the onset of stimulus.

Finally, we applied a two–dimensional non–local means (NLM) filter to the images S for denoising

(see Appendix.C for details regarding the method). This scheme exploits the self–similarity in

the event–related activities S. The NLM filter was applied as described in (Strauss et al., 2013)

with the same parameters (We used a fixed 1 × 11 similarity patch, an asymmetric Gaussian with

σ = (1.0, 5.0)T and λ = 1000 being the denoising parameter). In Chapter 3, we will deal both with

original and the NLM filtered images as to make sure that the filtering process has not invalidated

the long-term habituation effect.

IP Extraction We compute the IP of the band–filtered analytical signals of sk, k = 1, . . . , N

according to section 2.2.3 for a fixed a > 0 ( as described in section 2.2.3, the section on the

complex continuous wavelet transform, a = 40 has been shown to present physiologically meaningful

correlates of neural data). The resultant complex wavelet coefficients are computed as

wk,b := 〈sk,ψab 〉, b = 1, . . . ,M.

Here ψ was chosen as the sixth derivative of the complex Gaussian, and ψab is the sampled vector

of ψab (·) := |a|−1/2ψ((· − b)/a)). From the complex coefficients

wk,b = Re(wk,b) + iIm(wk,b) = |wk,b| exp(ipk,b)

we obtain the phase θk,b for every trial. The phase matrix is denoted as P to the corresponding

matrix S

P = (Θ1,Θ2, . . . ,ΘN )T.
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(See section 2.2.3 for more details). We model the changes in the clustering level of phase data at a

specific time over all trials. See Fig. 2.7 an an example.

Parametric Modeling using a Von Mises Distribution One of the most popular parametric

models for the analysis of circular data is the von Mises distribution that resembles the normal

distribution of real-valued data. It was introduced by (von Mises, 1918) and discussed earlier

in a physical context in (Langevin, 1994). The probability density function (pdf) of a von Mises

distributed random variable is given for −π ≤ θ < π by

f(θ;µ, κ) = (2πI0(κ))
−1

exp (κ cos(θ − µ)) (2.14)

where µ ∈ [−π, π] is the mean and κ ≥ 0 the concentration. Further Ir(κ) denotes the modified

Bessel function of the first kind and order r. More details on Bessel functions are given e.g. in

(Kent, 1978). As κ → ∞ the data becomes more clustered towards the mean, the probability

distribution has a high kurtosis. As κ → 0, the data becomes more spread out around the mean,

approaching a uniform distribution. Next we deal with parameter estimations of von Mises pdfs

using a maximum likelihood approach. Assume that the data in the set Θ = {θ1, θ2, · · · , θn} is

identically and independently distributed and drawn from a von Mises distribution with unknown

mean µ and concentration κ. We want to estimate these parameters as maximizers of the likelihood

L (µ, κ|Θ) :=

n∏
i=1

1

2πI0(κ)
exp (κ cos(θi − µ)) .

The log–likelihood l = logL which has the same maximizer is

`(µ, κ) = −n log (2πI0(κ)) + κ

n∑
i=1

cos (θi − µ) . (2.15)

Then the parameters can be found by setting the first derivatives of ` with respect to µ and κ to

zero, respectively. For the derivative with respect to µ we obtain

∂`

∂µ
(µ, κ) =

n∑
i=1

sin (θi − µ) = 0

Using sin (x− y) = sinx cos y − cosx sin y and setting C and S as in (2.12) this can be rewritten

as

n∑
i=1

(sin θi cosµ− cos θi sinµ) = 0,

S cosµ− C sinµ = 0.
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Hence the estimated mean is

µ̂ = atan2(S,C) = θ̄, (2.16)

and coincides with the circular mean θ̄ of the samples from Θ in (2.13). The differentiation of the

log–likelihood with respect to κ gives

∂`

∂κ
(µ, κ) = −nI

′
0(κ)

I0(κ)
+

n∑
i=1

cos(θi − µ) = 0

and since I ′0(κ) = I1(κ) further

−nI1(κ)

I0(κ)
+

n∑
i=1

cos(θi − µ) = 0.

Substituting the estimated mean (2.16) into this equation and using

n∑
i=1

cos(θi − θ̄) =

n∑
i=1

cos θi cos θ̄ + sin θi sin θ̄

= C cos θ̄ + S sin θ̄ = |R|,

where the last equation follows from Eq. 2.13 and we obtain

I1(κ)

I0(κ)
=
|R|
n
. (2.17)

Unfortunately Eq. 2.17 does not provide a closed form solution for κ. Instead we use the following

common approximation based on a series expansion method of Fisher, see (Fisher, 1995, p. 51):

κ̂ =


2r + r3 + 5

6r
5 if r < 0.53,

−0.4+1.39r + 0.43(1− r) if r ∈ [0.53, 0.85),

(r3 − 4r2 + 3r)−1 if r ≥ 0.85,

where r := |R|
n .

In Chapter 3, section 3.1, the concentration parameters of phase data P corresponding to two

different sound stimuli (soft vs. aversive) are investigated. The variations of the concentration

parameter of a von Mises distribution over different trials at different times are shown to be an

indicator for the state of the habituation process in the subject.
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Figure 2.7: An example of phase matrix P in (B) and the variations of phase samples over all
trials (denoted as θ) at a specific time t that has been shown in (A).

2.3.3 Hidden Markov Models & Change Detectors During the Course

of Long-term Habituation

The von Mises modeling of IP for tracking the changes of long term habituation in section 2.3.2

(Parametric Modeling using a von Mises distribution) is improved by employing a Bayesian Hidden

Markov model (HMM). In chapter 3, section 3.2 the limitations and drawbacks of using a windowed

estimation of IP in EEG have been fully described. In short, the lack of ability to track the gradual

changes in the habituation process with a higher temporal resolution can be considered one of the

main disadvantages of the model. A model that reflects instant changes in the long-term habituation

can be used in real-world applications to detect the level of habituation online and the state of the

loudness comfort level over a long period of time.

To improve upon the previous approach in section 2.3.2, we employed a HMM model for modeling

the circular data. To the best of our knowledge, no studies had considered the effectiveness of

modeling the phase information in the context of long-term habituation using a HMM approach. A

HMM is a sequence model that assigns a label or class to every unit in a sequence of observations.

More generally, a HMM maps the sequence of observations to a sequence of labels or classes and

have been extensively used for modeling time series throughout different domains. Examples include

natural language processing, data compression, computational molecular biology and neuroscience

for decoding neural processes at different scales . The main objective using a HMM is to represent

a probability distribution over sequences of observations.

A HMM is specified by a set of states S = {s1, s2, · · · sT } and observations X = {x1, x2, · · ·xT }. To

illustrate the dependency between the states and observations, a graphical representation is used in

which the observation and states are considered as random variables. These are known as graphical

models, in which based on a priori information of the problem, the conditional dependencies between

random variables can be simplified and defined. In Fig. 2.8 we show an example of a first order

HMM, a specific form of a Bayesian network.

The main assumptions in a HMM are as follows:
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s1 s2
P (s2|s1)

s3 · · · sn

x1 x2 x3 xn

Figure 2.8: Illustration of a HMM with states s and the observations x. The transition between the
states are shown as edges between the states P (sk+1|sk) and the observation likelihood
given the state is illustrated as the dotted edges. This is expressed as P (xi|si) (i.e.,
the likelihood of observing xi given the state si.)

1. The observation at time t was generated by some process whose state st is hidden from the

observer.

2. The states satisfy the first-order Markov property. That is given the value at st−1, the current

state st is independent of all states prior to t− 1, that is P (st|s1, · · · , st−1) = P (st|st−1).4

3. The observations are also conditionally independent given the current state st. That is

P (xt|x1:t−1, st) = P (xt|st) (the Markov property of data with respect to the states).

Given the set of Markov properties the joint distribution between the states and observations is

factorized as

P (S1:T , X1:T ) = P (s1)P (x1|s1)

T∏
t=2

P (st|st−1)P (xt|st) (2.18)

From the decomposition, to define a probability distribution over the observations, the following set

of parameters have to be defined:

� The prior probabilities π: πi = P (si), i ∈ {1, · · · , T} is the probability of state si being the

first state in the state sequences. In many cases, the prior probability over states are defined

uniformly, that is P (si) = 1/T . The vector π = {P (s1), P (s2), · · · , P (sT )} corresponds to the

prior information over states si.

� The transition probabilities: The probability of transiting to state st+1 from the current state

st. This is expressed in the decomposition formula as P (st|st−1).

� The emission probabilities: define the likelihood of observing the observation xt at time t,

given the current state st. This is characterized as P (xt|st).

In the case of continuous observation, a common feature in many applications, P (xt|st) is usually

modeled by a set of probability density functions that are defined over the continuous observations

4Similarly, the nth order property means that the current state is independent from all other states prior to t− n.
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given the state at time t to be si (Ghahramani, 2001). One of the most common forms for modeling

the emission probability is by parameterizing in the form of a Gaussian or a Mixture of Gaussians.

Using the three main parameters, we are able to learn a probability distribution over the states

and observations. In (Rabiner and Juang, 1986) the three main problems of the HMM are fully

described. A comprehensive review of HMM and Bayesian network is presented by Ghahramani

(2001). The models presented in the following sections are variants of Bayesian graphical models,

equivalent to a HMM. The models are used for learning the underlying model or hidden states that

generated the data as well as detecting the changes in the data regimes.

2.3.3.1 Tracking changes in the IP of long-term habituation processes

Using the terminologies in section 2.3.3, we model abrupt changes in the long-term habituation

paradigm. The objective is to estimate the time range in which the habituation process occurs. Fig.

2.9 is an illustration of a time-series with abrupt changes in the mean. The data consists of three

different data regimes or partitions, namely g1, g2, g3 with equal number of samples in each regime.

A change point algorithm identifies times of abrupt variations in the parameters of the underlying

generative model.

One of the characteristics of long-term habituation signals as described in Chapter 2, Section 2.2

is that the N1-P2 component of the IP of auditory ERPs enters a precise phase locking mode. As

in Fig. 2.7, the phase information enter a phase-locked mode with respect to the repetition of a

stimulus in the state of focused attention. With adaptation to the stimulus, attention tends to trail

away (long-term habituation), characterized by changes in the phase signature, and become more

diffuse across trials. We therefore propose a Bayesian change point algorithm based on the model

presented by Paquet (2007) and Adams and MacKay (2007) to be able to detect such transitions in

the signal and label the signal as either a habituation or non-habituation signal.

In the next section, we describe the main terminologies of the change point model and data acqui-

sition experiment for testing the algorithm.

2.3.3.2 Discrete Forward-Backward Bayesian Change Point Model

We first describe the main terminologies of the forward-backward Bayesian change point algo-

rithm from Adams and MacKay (2007) for detecting regime changes in the generative process

underlying the given directional time series data. A change point divides the set of data points

Θ := {θ1, . . . , θN}, θi ∈ [−π, π) into non-overlapping partitions g. This is also known as the product

partitions (Barry and Hartigan, 1992). The data points in each partition are assumed to be inde-

pendently and identically distributed (i.i.d) from a corresponding probability distribution p(θt|λg)

with parameters λg. Every partition is also called a segment. Fig. 2.9 is an example of a time series

with abrupt changes.
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Figure 2.9: An illustration of a time-series with abrupt change points. The data points are sep-
arated into three partitions (specified by g representing the gap size between each
section). The change points are defined as abrupt changes in the mean of the data. In
real data measurements, the change points may not be as simply visible due to noise
factors.

s1 s2 s3 s4 · · · st

s1,1 s2,2
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Figure 2.10: The trellis structure of run-states over time. Every run-state is denoted by st,i or
st = i,∀i ∈ {1 · · · t}. Each state takes values of st ∈ {1, · · · t}. Given a state st,i,
we could either increase by one time step, indicating no change point or transfer to
a change point state. Given the state s3,2, we can either transit to s4,2 or a change
point state s4,4.
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Run state The states of the model are described by the latent variables, called the run state in

Paquet (2007). We denote the run state at time t as st, which is either increasing by one time

step at every time t, or resets to zero, in which a change point at time t has occurred. The

run state at a specific time and number is denoted as st,i for i = 1, · · · t. The case stt is the

change state and other states st,i , for i = 1, · · · t− 1 correspond to the non-change states. See

Fig. 2.10 for more clarification on the structure of a change point.

Run length For simplicity we denote the length of the current run state at time t as st = i, for

i ∈ {1, · · · , t}. That is, at time t, the state st can take on any values between one and t. If it

is at state t, then a change has occurred; otherwise, it is not a change point. The number of

time steps since the last change point is called the run-length. The run-length will specify if

the current data point θi has been generated by the model parameters of the previous regime,

or a new change point has happened. The term θ
(st=i)
t = θi:t indicates the set of observations

associated with the run-length t− i+ 1.

At every time step t, only one change point can occur (i.e., only one of the following states st,i is

on or equal to one, if i = t). Given only st,t = 1 for representing a change point at time t, we have∑t
i=1 sti = 1. Figure 2.10 is an illustration of the run length network over time. At time t, the

probability of being at any of the run-state is specified by st.

We assume a priori distribution over the interval length between change points known as the hazard

rate (See (Adams and MacKay, 2007; Wilson et al., 2010)). In other words, the hazard rate indicates

the rate of changes in a time series. The choice of prior is important for the detection of change

points and can be defined as a function of the run-length. We will describe in Chapter 3, Section

3.2, the choice of the hazard rate given the specific problem statement.

Given the model terminologies above, our aim is to estimate the posterior distribution over the states

at each time t. See Fig. 2.10 for a clearer description of the notations. The marginal density over

the run-length or the posterior probability using the Bayes’s equation is

P (st = i|Θ) =
P (Θ|st = i)P (st = i)

P (Θ)

=
P (Θt+1:T |Θ1:t, st = i)P (Θ1:t|st = i)P (st = i)

P (Θ)

=
P (Θt+1:T |Θ1:t, st = i)P (st = i,Θ1:t)

P (Θ)
(2.19)

for i between 1 and t.

According to (Paquet, 2007), Eq. 2.19 can be written in terms of the forward-pass and backward-pass

and be solved using a recursive back-propagation technique ((Paquet, 2007)). The reformulation is

p (st = i|Θ) =
αtiβ

t
i

p (Θ)
(2.20)
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with the forward pass (α-pass) defined as αti := p (st = i,Θ1:t) and the backward pass (β-pass)

as βti := p (Θt+1:T |st = i,Θ1:t). In the following, we explain the forward and backward passes as

proposed in Adams and MacKay (2007), and the choice for the prior distribution. For more details

see also Paquet (2007).

The Forward Pass The α-pass is based on the forward model presented by Adams and MacKay

(2007) and is solved recursively using a message passing approach. By factorization and marginal-

ization over st−1, the joint probability density between the states and observations is

P (Θ1:t, st = i) = P (θt|Θ1:t−1, st = i)

t−1∑
i=1

P (st = i|st−1 = j)P (st−1 = j,Θ1:t−1) . (2.21)

The details of the factorization and simplifications are given in Appendix. D. The term

P (θt|Θ1:t−1, st = i) is a prediction of the current data point θt using the data samples corresponding

to the state st = i. To solve Eq. 2.21, there are two different transitions from the previous time

step to the current one. If the current state at time t is not a change point, that is, st = i for

i = {1, · · · , t − 1}, then only one transition with a probability of (1 − H) from state st−1 = i to

st = i is possible. In this case Eq.2.21 can be simplified as

α
(t)
i = P (st = i,Θ1:t) = P (θt|st = i,Θ1:t−1)

t−1∑
j=1

P (st = i|st−1 = j)P (st−1 = j,Θ1:t−1)

= P (θt|Θ1:t−1, st = i) (1−H)α
(t−1)
i

The second state corresponds to st,i = st,t, that is, the case of a change point at time t. As in Fig.

2.11 , from any of the states at the previous time t− 1, we can have a transition to the new state of

a change point at time t. Therefore we can simplify Eq. 2.21 as the sum of all the transitions from

the previous state to the current state:

α
(t)
t = P (θt|Θ1:t−1, st = i)

t−1∑
j=1

Hα
(t−1)
j . (2.22)

The Backward Pass Similar to the forward pass, the β-pass (backward-pass βtst) is solved using

the same method. Given the state at time t + 1, there are two transitions that can occur from the

previous state st = i. We could either have a change point from the state i to the next state, or

increase by one time step to state j at time t+ 1. The other transitions that have not been defined

are equal to zero. Therefore,we can write β
(t)
i in the following form:
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Figure 2.11: From any of the previous states at time t− 1, we can transit to a new change point
state at time t. This has been shown as the blue arrows at time t = 3 from different
states to a change point state at time t = 4.

β
(t)
i =

t+1∑
j=1

P (Θt+2:T |Θ1:t+1, st+1 = j)P (θt+1|Θ1:t, st+1 = j)P (st+1 = j|st = i)

= β
(t+1)
i P (θt+1|Θ1:t, st+1 = j)(1−H) + β

(t+1)
t+1 P (θt+1|Θ1:t, st+1 = j)H

The Choice of Parameters We have chosen a von Mises(µ, κ) probability density function (pdf)

for the predictive distribution p (θt|st = i,Θ1:t−1), where µ ∈ [−π, π) and κ > 0 are respectively the

mean and concentration parameters for the relevant data θ
(st=i)
t = (θi:t) . As described in the first

study, the von Mises distribution is one of the most popular parametric models for the analysis of

circular data that resembles a normal distribution of real-valued data.

The second most important parameter is the choice of the hazard rate, or prior information on the

expected number of change points. A conditional prior on the change points, the hazard rate H(x),

is incorporated as

p (st|st−1) =


H(st−1 + 1) if st = t

1−H(st−1 + 1) if st = st−1

0 otherwise,

with H(x) formulated according to (Adams and MacKay, 2007) as

H(x) =
Pgap(g = x)∑∞
t=x Pgap(g = t)

. (2.23)
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where g represents the data partitions. We use a geometric distribution with a probability P (g =

x) = (1 − p)x−1p where the probability of having a change point at x is p. Hence, the hazard rate

according to Eq.2.23 is H(x) = p. The expected value of a geometrically distributed r.v. g is given

by E[g] = 1
p . Therefore, the hazard rate is defined by a constant that represents the average number

of samples before we observe a change point.

Finding the Maximum Sequence of States We have used the forward-backward method to

estimate the posterior distribution over states p (st = i|Θ)∀i ∈ {1, . . . , t} at different times t. In

this section, we derive a method to determine the single most likely and consistent sequence of run-

lengths over the whole time span t = 1, . . . , N of the observation sequence. To extract the sequence

of states, we apply the Viterbi algorithm analogously applying the forward-pass α. We define Vt,k

to be the maximum probability of being in state k at time t given the observation sequence Θ1:t.

We initialize the states for the first data observation as V1,1 = 1 and V1,k = 0, (∀k, k 6= 1). The

transition probability from the current time t and state k to the next state can be written as


Vt+1,k = (1−H)Vt,kP (θt+1|Θk:t+1) for transition into non-change state

Vt+1,t+1 = H(max
k≤t

(Vt,k))P (θt+1|Θk:t+1) for transition into change state
(2.24)

By applying the procedure for time T , we can recursively extract the most likely state sequence

transitions. This is done by taking the maximum state for time VT,k,∀k and tracing back the state

with the highest probability at the previous time.

2.3.3.3 Experimental Setting: Data Acquisition

The proposed discrete change point detection method is then used for identifying the changes in the

long-term habituation process. The same data as in the previous study has been used. For more

details see 2.3.2. Results and discussions on applying the method on data are explained in chapter

3, section 3.2.

2.3.4 Continuous Forward-Backward Change Point Model

The abrupt change point detection method presented in section 2.3.3 is not capable of giving a good

estimate of temporal changes in the long-term habituation process. Despite observing a significant

difference between the run-length of a lower sound stimulus (soft stimulus) in comparison to a louder

stimulus (an aversive sound stimulus), the temporal subtle changes in the habituation process are

not identified. It is more difficult to apply this method to mid-range loudness intensities, where

changing to a habituation state may not be an abrupt transition. See the results and discussions of

the previous approach in chapter 3 (Section 3.2) and chapter 4 (section 4.2) respectively.
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S3 · · · Sn
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Figure 2.12: Illustration of a HMM with states illustrated as S and the observations as x. The
transitions between the states are shown as edges between the states P (Sk+1|Sk)
and the observation likelihood given the state, expressed as P (xi|Si), is illustrated
as dotted black lines. In our model the observation sequence is the phase angles
{θ1, θ2, . . . , θT } and every state St is a discretion state space of the parameters µ and
κ.

In order to overcome the limitations of the discrete change point detection method in section 2.3.3.2,

we use a different approach to detect habituation process. In the new method we first rely on the

general definition of long-term habituation process as a gradual process. This implies the transition

into a habituation state can be subtle, and hence requires more appropriate tools than an abrupt

change point detector. As we are interested in detecting the temporal gradual changes over time,

we use a discretized state space model in which the likelihood of all possible values of the random

variables at every state is computed. This allows the system to integrate information efficiently over

time and space and to propagate information from one stage to another without having to draw

concrete conclusions at early stages (Knill and Pouget, 2004).

In our Bayesian model, the sequence of phase observations is defined over phase trials at a specific

time t, more precisely Θ = {θ1, θ2, . . . , θN} , θi ∈ [−π, π). The data is modeled by assuming that

at each time step, θi was generated from a certain but unknown state variable St. Note that the

observation sequence corresponds to the phase modulations over trials at a specific time as illustrated

in Fig. 2.7. Here we define St = (µt, κt) by the parameters of a von Mises distribution, where µt and

κt are the mean and concentration parameter respectively. For simplicity, we represent this state on

an equidistant grid of discrete values Rµ = {u1, · · · , um}, ui ∈ [−π, π) and Rκ = {k0, · · · , km}, ki ∈

[0, `] where ` is the upper-bound of the concentration discretization. We have a HMM with a

structure as presented in Fig. 2.12.

We assume that we have prior information on how the states should evolve given the past states

p(St+1|S1, · · · ,St), but cannot observe them directly. The available information is the measurements

that are dependent on the state with noise: p(θt|St).

Our goal is to infer the distribution over hidden states (µt, κt) based on the phase data from all N

trials, θ1:N . Given the conditional independence in our model, this can be represented as:

p(µt, κt|θ1:N ) ∝ p(θt+1:N |µt, κt)p(µt, κt|θ1:t), (2.25)
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Figure 2.13: The graphical representation of the forward Bayesian model. The state space like-
lihood in our study are the mean µ and concentration κ parameters of a von Mises
distribution. More precisely Si = (µi, κi).

where p(µt, κt|θ1:t) denotes the distribution over states at time t given information in the past and

p(µt, κt|θt+1:N ) is the distribution over the states given information in the future. The details of

the derivation is included in Appendix. E. These distributions can be computed using recursive

algorithms that sweep forwards (for p(µt, κt|θ1:t)) and backwards (for p(µt, κt|θt+1:N )) through the

data. We describe these sweeps in the following sections.

The forward sweep computes p(µt, κt|θ1:t), the distribution over the state at time t, given data in

the past. Based on the dependencies outlined in Fig. 2.13, this can be computed recursively using

Bayes rule as

p (µt, κt|θ1:t) ∝ p (θt|µt, κt) p (µt, κt|θ1:t−1)

= p (θt|µt, κt)
∑

µt−1,κt−1

p (µt, κt|µt−1, κt−1) p (µt−1, κt−1|θ1:t−1) (2.26)

where p (θt|µt, κt) is the likelihood of the data given the parameters and p (µt, κt|µt−1, κt−1) defines

our prior on the dynamics of µt and κt.

The backward pass computes the probability of the future data given the state at time t,

p(θt+1:N |µt, κt). As for the forward pass, this can be computed recursively using Bayes rule

p(θt+1:N |µt, κt) =
∑

µt+1,κt+1

p(µt+1, κt+1|µt, κt)p(θt+1:N |µt+1, κt+1)

=
∑

µt+1,κt+1

p(µt+1, κt+1|µt, κt)p(θt+1|µt+1, κt+1)p(θt+2:N |µt+1, κt+1) (2.27)

where p(θt+1|µt+1, κt+1) is the same likelihood and p(µt+1, κt+1|µt, κt) the same prior as used in the

forwards pass.

The benefit of using a backward pass and its effect on removing initialization problem has been

described in the result’s section of chapter 3, section 3.3.1.
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2.3.4.1 State Transition Model, p (µt, κt|µt−1, κt−1)

For the prior distribution over the state transitions p (µt, κt|µt−1, κt−1), we first assume that the

transition distributions for the mean, µ, and concentration, κ, are independent; i.e.,

p (µt, κt|µt−1, κt−1) ∝ p (µt|µt−1) p (κt|κt−1) .

For transition distributions of µ and κ we choose von Mises and Gaussian distributions, respectively.

More specifically, for the circular parameter, µt ∈ [−π, π) we assume a von Mises distribution with

the mean of µt−1 and the concentration of K ∈ R+; i.e.,

p (µk|µk−1,K) =
exp (K cos (µt − µt−1))

2πI0 (K)
.

For the real valued concentration random variable, we assume a Gaussian transition distribution,

p (κt|κt−1) =
1√
2πσ

exp

(
− (κt − κt−1)

2

2σ2

)

with variance σ2.

As the states are discretized for computing p(µt|µt−1) and p(κt|κt−1), we evaluate the von Mises

distribution and Gaussian distribution for all discrete values of µt and κt and then re-normalize the

values. The selection criteria for the prior parameters K and σ2 and optimization are all described

in Chapter 3, Section 3.3.2).

2.3.4.2 Experimental Setting

To have a better understanding of the temporal changes in the long-term habituation process, we

use a different range of sound stimuli to test the model. That is, instead of using a soft and aversive

stimuli, we employed a range of different stimuli in between in order to track the differences between

state transitions as the intensity of the sounds became higher. Twenty participants (16 female and

4 male; mean age: 23 years and 3 months with a standard deviation of 4 years and 1 month)

attended the experiment. One measurement (female) was discarded due to data corruption. We

use the remaining 19 subjects for our study. All participants had normal hearing as assessed by an

audiogram test before and after the experiment. All subjects provided informed consent and the

study was conducted in accordance with the declaration of Helsinki.

For the electrophysiological experiment, subjects lay on an examination bed and were instructed

to relax with closed eyes. The EEG signals were recorded using surface electrodes (Ag/AgCl)

which were placed at the right and left mastoid (active), the vertex (reference) and the upper

forehead (ground). The signal acquired from each mastoid was referred to vertex (Cz) and processed

separately. The electrode impedance was kept below 5kΩ and the recording EEG was sampled at
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512Hz.

The experiment consisted of listening to a series of puretone beeps presented in the subjects’ right

ear via headphones (Sennheiser HDA 200) at four different volumes of 60, 70, 80 and 90dB SPL.

Each beep was at a frequency of 1kHz and lasted 40ms. There was a 1s ISI between stimuli and

at least 500 tones were presented per stimulation level. Participants were instructed not to pay

attention to the stimulus and attempt to ignore the sound during the experiment. To be sure they

did not fall asleep, they were constantly monitored.

We analyzed the recorded ERPs over different times for the effect of long-term habituation and

distinguishing between different stimuli in terms of the underlying generative process.

2.4 Oscillatory EEG Signals and IP Extraction

Up until this point, we introduced different methods to measure the level of long-term habituation

and non-habituation for auditory ERPs. We were able to objectively classify between the attended

state and the drift to the non-attended (habituation) state using the neural correlates ((Morteza-

pouraghdam et al., 2016, 2015a, 2014)). More successfully, we were able to distinguish between the

two different states of habituated and non-habituated states with different types of stimuli ((Morteza-

pouraghdam et al., 2016)). Although the study of ERPs using pure tone stimuli is important in

obtaining useful information to decode the behavior of the underlying population of neurons, in

nature and daily environments, we rarely encounter pure tone stimuli. Most of the sounds around

us are complex and composed of many different components (i.e., superposition of many sine waves

with different frequencies and various delays). Additionally, we are exposed to much longer and

continuous auditory stimuli. Hence, the detection of attention and its drift to a habituation state

using the neural correlates will be more complicated in such examples as a more complex and rich

stimuli content is being used.

To measure the level of attention over a long duration of time, a continuous EEG signal is essential.

One of the goals in analyzing the ongoing EEG and objectively determining the level of attention is

improving the performance of hearing aid devices. Different approaches and experiments are applied

to adjust the hearing aid settings, however not much scrutiny is given to improvement of hearing aid

devices using the endogenous effects of listening with respect to different stimuli. In some previous

studies (See (Bernarding et al., 2013a, 2016) and the references therein), extensive research has been

conducted to measure the level of listening effort and objective hearing aid fitting procedures with

regard to different stimuli by decoding the endogenous signatures of EEG signals. These endogenous

parameters are then compared against the performance of participants to understand any existing

correlations between the measures and the performance and listening effort of the subject. The

improvements in this area can lead to better development of hearing aid devices, in which the

adjustments of the device can be made based on an individuals’ neural responses.
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In some of the previous studies, the phase reorganization of signals is used as the main feature

to objectively measure the level of attentional effort in patients ((Bernarding et al., 2013a, 2016;

Mortezapouraghdam et al., 2017)). Phase synchronization techniques are among the main analysis

tools that measure the degree of phase reorganization in signals. The phase reorganization approach,

the phase alignment in stimulus-induced potentials aids decoding cognitive processes. Despite the

developments in this area, the precision of the measures may vary based on the level of noise.

Phase distortion, due to artefacts and pre-processing steps can introduce artificial phase resets or

alignment. These artificial phase resets that is referred to as spurious phase resets, are not correlated

to any stimulus or event.

In many studies, the effect of phase synchronization is analyzed without considering the variations

in the amplitude of the signal. However, in a recent study presented by Sameni and Seraj (2017), it

has been shown that a low instantaneous envelope lead to abrupt changes in IP and could distort

the results of phase synchronization. Therefore, the distortions that appear as abrupt jumps in IP

are not related to any underlying physiological effects, but instead are noisy variations due to low

envelope of the signal. They present a more reliable method of computing IP using the Monte-Carlo

simulation technique. As a continuation to the proposed approach, we present a model that is able

to remove the spurious phase variation from the phase information of signals as well as determine

a standard deviation for the estimated phase. The following de-noising technique aims to provide a

better estimate of the level of phase-synchronization with regard to different stimuli.

In the following sections, we describe the problem of spurious phase variation, removal the spurious

variations and application on synthetic and ongoing EEG measurements. The level of the attention

is computed by assessing the phase reorganization of signals.

2.4.1 Phase Singularities: Definition of Spurious Phase Slips and Types

Before the extraction of IP, EEG data is usually pre-processed. To observe the oscillations at a

specific frequency, a narrow bandpass filter is applied. A FIR (finite impulse response) filter is

usually applied to avoid distortion of phase information (see chapter 5 of (Handy, 2005) for more

references). The IP is obtained by computing the analytic signal, commonly by either applying a

wavelet transformation (WT) or Hilbert transformation (HT). The HT of a signal f(t) is represented

as

f̂(t) = f(t) + iH(f(t)) = f(t) + iu(t).

Measures such as the IE and IP are obtained from At =
√
f(t)2 + u(t)2 and θ(t) = tan−1

(
u(t)
f(t)

)
respectively, where θ ∈ [−π, π), t ∈ R. The IP resets and drops to −π when it reaches π. One of the

techniques for tracking the modulations of IP in long durations of time is analyzing the unwrapped

version of the IP. The unwrapped IP is obtained by adding 2π every time a reset occurs. We use

p : R→ R+ for unwrapped phase.
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The slope of p(t) is related to the mean frequency. The slope of a signal with center frequency fc

which best determines the activities at that particular frequency is given by ω0 = 2πfc. If the IP

contains no additional resets, it is uniformly distributed. This can be easily illustrated by a sine wave

with complete cycle, at which the IP is uniformly distributed. Hence the change to the uniformity

can be represented by the difference between p(t) and the line ω0t, i.e., r(t) = p(t) − ω0t. See Fig.

2.14 which is an example of two sine waves with high and low number of resets along with r(t).
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Figure 2.14: Col A - [top]: An example of a sine wave X = sin (ω0t+ θ) with fc = 7. We
introduced one artificial shift in the signal. [Middle]: The unwrapped IP of X (denoted
as (p(t)) and the wrapped version θ(t). [Bottom]: The residual r(t) is computed as
r(t) = p(t) − ω0t. The shift in the signal has been shown as an abrupt jump in the
residual. Col B -[top]: An example of a sine wave with more random shifts in the
signal. Corresponding phase and residual plots have been generated.

After applying a narrow band-pass filter to the measured EEG oscillations, the resulting xt, θt can

be described by

xt = Xt cos (ω0t+ θt) +Wt = st +Wt

such that θt is same as r(t) and ω0 = 2πfc
fs

. The noise or the background EEG is modeled by Wt. It

is assumed that the noise is a Gaussian random process Wt ∼ N(0, σ2). The IP θt (θt ∈ [−π, π)) and

the envelope Xt are slowly varying functions of t. Hence, it is expected that the changes between θt

and θt+1 to be small. In Sameni and Seraj (2017), it has been shown as the IE becomes small (near

zero), the IP will contain sudden changes or jitters (see Fig. 2.15) that can be falsely correlated to

phase-resets induced from an event.

We can describe the effect of spurious phase variation as shown in Fig. 2.16. Here are four samples

of an analytic form of a signal. The distance between the first two samples |a1 − a2| and the second
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Figure 2.15: Col A, first plot : An example of an amplitude modulated signal with a mean frequency

fc = 50Hz. Red line shows the IE. The second plot shows r(t). As the IE of the signal
approaches to zero, the phase variations increase, best seen as an abrupt change. This
is clearly evident in comparison to the other envelope values throughout the signal
at other time samples. Col B, first plot : The same explanation as in Col A, however
with a lower mean frequency signal fc = 15Hz.

two samples |b1 − b2| are the same. However, the envelope, which is the distance of the individual

samples to the origin is different. Considering the pair a1, a2, such that the estimated phase is

a2 = xt and the true value of phase is a1 = xt+1, the angle between these two, given the magnitude

of the envelope, is about 13°. However, if the same samples with the same distance are spotted with

low envelopes as in (b1, b2), then the phase difference is approximately 116°. Another interpretation

is that a1 corresponds to the sample without any noise, and a2 is the location of the sample after

getting perturbed with noise. In this case, the difference in phase is not large if they have larger

envelopes.

This effect has been studied in Sameni and Seraj (2017); Chavez et al. (2006); Rudrauf et al.

(2006) where the effect of spurious phase jumps have been described in terms of calculation of the

phase. The IP is computed using the arctan operator (tan−1
(
u(t)
x(t)

)
). Minor changes due to noise

or background EEG variations to the real and imaginary parts of the analytic signal (which are

narrow-bandpassed) can lead to significant changes to the computation of phase as the numerator

and denominator values are small (see Rudrauf et al. (2006) and the references therein). Hence, the

aim of this study is to estimate the true phase using the IE and IP and have a more reliable measure

of the IP such that the spurious phase variations due to a low envelope will be removed.
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Figure 2.16: An example of a sudden phase change between b1 and b2 due to the low envelope in
comparison to a1 and a2. The distance of (a1, a2) and (b1, b2) are approximately the
same, however their envelopes are different.

2.4.2 Modeling the Variations Between Instantaneous Phase and

Amplitude

The analytic form of the signal st ∈ R is denoted as ŝt = st + iH(st), ŝt ∈ C. We assume that

the measurements are corrupted by Gaussian noise with mean 0 and variance α. The noise of the

measurements is denoted by Wt. It’s analytical form Ŵt is modeled using a symmetric complex

Gaussian distribution Ŵt ∼ CN (0, αI). This can be shown as follows: as stated, the bandpassed

signal is modeled as

xt = Xt cos (ω0t+ θt) +Wt = st +Wt.

It’s HT is denoted by

H (xt) = H (Xt cos (ω0t+ θt) +Wt)

= Xt sin (ω0t+ θt) +H (Wt)

using the linearity of the HT. Here H(Wt) is also a Gaussian distributed random variable (see

Chapter 8 of Davenport et al. (1958) and Sameni and Seraj (2017)) with mean 0 and variance α.

The analytic form of the signal xt using the HT is then

x̂t = xt + iH (xt)

= Xt cos (ω0t+ θt) +Wt + i [Xt sin (ω0t+ θt) +H (Wt)]

= Xt [cos (ω0t+ θt) + i sin (ω0t+ θt)] + [Wt + iH (Wt)]

= Xte
i(ω0t+θt) + [Wt + iH (Wt)] (2.28)

where the analytic form of Wt is modeled by a complex Gaussian distribution Wt + iH (Wt) ∼
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CN (0, Iα) with a zero mean and independent real and imaginary part with σ2 as the variance5.

The resulting complex Gaussian distribution is a symmetric distribution with non-diagonal elements

set to zero.

The analytic form of the measurements are hence modeled as x̂t = ŝt + Ŵt, where ŝt ∈ C is the

analytic form of the signal without noise. We work directly with the complex analytic signals, as

we can later obtain the denoised version of the IP to simplify our model. With our assumption

of st, the observations can be modeled using a complex Gaussian distribution x̂t ∼ CN (ŝt, α),

where ŝt is the mean and α is the variance. The signal st is filtered with a narrow bandpass filter

centered around fc prior to computing the analytic signal x̂t (see Eq.2.28). Thus we can assume that

x̂t = Ate
i(ω0t+θt) + Ŵt, using the linearity of HT. Here, ŝt = Ate

i(ω0t+θt) is the denoised analytical

signal that we want to recover. The ratio of successive values of ŝt is

ŝt+1/ŝt = (At+1/At)e
i(ω0(t+1)+θt+1−ω0t−θt)

= (At+1/At)e
i(ω0+(θt+1−θt)) (2.29)

≈ eiω0 (2.30)

The results are obtained based on the assumption that at a narrow frequency, At and θt are vary-

ing slowly compared to ω0. We can therefore express the phase modulations over time using our

assumptions as ŝt+1 ≈ eiω0 ŝt, and model ŝt+1 = eiω0 ŝt + η̂t, where η̂t ∼ CN(0, σ). This means that

the analytic signal at time t+ 1 is obtained using the phase at time t multiplied by a small factor of

eiω0 with some additive noise. The additive noise η correspond to the simplifications that have been

applied for obtaining Eq.(2.30). We assume that the additive noise follows a Gaussian distribution.

The proposed model for the phase guarantees that the changes in phase of a narrow-bandpassed

signal are rather slow and gradual over time. The model has a structure similar to a HMM, as

in Fig. 2.12, in which the states st and ultimately phase values that we want to estimate are the

analytic form of the signal.

2.4.2.1 Model Derivation

We describe the model derivation in two parts of forward and backward pass. As described previously,

the model assumes the following:

ŝt+1 = eiω0 ŝt + η̂t with η̂t ∼ CN (0, σ)

x̂t = ŝt + Ŵt with Ŵt ∼ CN (0, α) (2.31)

5For simplicity of notation, we write CN (a, b) instead of CN (a, Ib) in the rest of the paper.
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Figure 2.17: An illustration of part of a Bayesian Network corresponding to forward-passing of
information.

with the following assumptions about the distributions of states and the data observations:

P (ŝ1) ∼ CN (µ1, p1)

P (ŝt+1|ŝt) ∼ CN (eiω0st, σ)

P (x̂t|ŝt) ∼ N (ŝt, α) (2.32)

We can write the above expressions as a two dimensional real linear Gaussian state-space model by

separating the real and imaginary parts. In the following we take ŝt, x̂t to be two dimensional vectors

of real numbers consisting of the real and imaginary parts of the underlying complex number. With

this convention we have:

P (ŝ1) ∼ N

<(µ1)

=(µ1)

 ,
p1 0

0 p1


P (ŝt+1|ŝt) ∼ N

cos(ω0) − sin(ω0)

sin(ω0) cos(ω0)

 ŝt,
σ 0

0 σ


P (x̂t|ŝt) ∼ N

ŝt,
α 0

0 α

 (2.33)

In this form we can directly apply the Kalman smoother that has been described in Briers et al.

(2010). This consists of a forward and backward pass that we explain in the following two sections.

The Forward Pass To estimate the state (an estimation of the analytic form of the signal), we

have to derive the following posterior distribution:
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P (ŝt|x̂1:t) =
P (x̂t|ŝt, x̂1:t−1)P (ŝt, x̂1:t−1)

P (x̂1:t)

=P (x̂t|ŝt)
P (ŝt|x̂1:t−1)

P (x̂t|x̂1:t−1)

by using the first order Markov property that the current data at time t is independent from the

past given the state at time ŝt. Simplifying the normalization factor we can write:

P (ŝt|x̂1:t) ∝ P (x̂t|ŝt)P (ŝt|x̂1:t−1)

∝ P (x̂t|ŝt)
∫
P (ŝt, ŝt−1|x̂1:t−1) dŝt−1︸ ︷︷ ︸
Marginalizing over ŝt−1

after expanding the inner bracket, we obtain:

P (ŝt|x̂1:t) ∝ P (x̂t|ŝt)
∫
P (ŝt|ŝt−1)P (ŝt−1|x̂1:t−1)dŝt−1 (2.34)

Eq.2.34 can be realized as in Fig. 2.17. Fig. 2.17 shows a part of the first order Markov model. We

can compute the distribution of P (ŝt | x̂1:t) recursively starting from P (ŝ0). It turns out that in

our model the distribution of P (ŝt | x̂1:t) is always Gaussian so it suffices to compute its mean and

covariance matrix. Writing µt, Pt for the mean and covariance matrix of P (ŝt | x̂1:t) we have the

following equations from Briers et al. (2010).

P
′

t = BPtB
T +Q

Kt = P
′

t (P
′

t +R)−1

µt+1 = Bµt +Kt(x̂t −Bµt)

Pt+1 = P
′

t −KtP
′T
t

Furthermore, it turns out that Pt is always diagonal of the form ptI. This allows us to simplify

the equations above. To see this, assume that Pt = ptI and plug this expression into the equations
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above.

P
′

t = B (ptI)BT +Q

= ptBB
T + σI = (pt + σ)I

Kt = (pt + σ) I ((pt + σ) I + αI)
−1

=
pt + σ

pt + σ + α
I

µt = Bµt +
pt + σ

pt + σ + α

(
X̂t −Bµt

)
Pt+1 =

(
pt + σ − (pt + σ)

2

pt + σ + α

)
I

The kalman gain factor
(
Kt = pt+σ

pt+σ+α
I
)

is an expression for determining how reliable the mea-

surement at time t+ 1 is compared to the estimated state (signal) based on the level of noise in the

data. If data has a small level of SNR (high noise), the algorithm will rely more on the estimated

value than the measurement. Therefore, a realistic and good estimate of SNR can improve the

performance of the KS.

The Backward Pass Given P (ŝt | x̂1:t) we compute P (ŝt | x̂1:T ) recursively starting from P (ŝT |

x̂1:T ) and moving backwards. In general we have

P (ŝt|x̂1:T ) = P (ŝt|x̂1:t)
∫
P (ŝt+1|x̂1:T )P (ŝt+1|ŝt)

P (ŝt+1|x̂1:t)
dŝt+1 (2.35)

and hence we can compute P (ŝt | x̂1:T ) given P (ŝt+1 | x̂1:T ). Again, we find that P (ŝt | x̂1:T ) is

always a Gaussian distributed random variable. Writing µt, P t for the mean and covariance matrix

of P (ŝt | x̂1:T ) we have the following equations from (Briers et al., 2010).

Γt = PtB
T
(
P
′

t

)−1
µ̄t = µt + Γt (µ̄t+1 −Bµt)

P̄t = Pt + Γt

(
P̄t+1 − P

′

t

)
ΓT
t

As in the forward pass this simplifies in our model, since we only deal with symmetric covariance

matrices of the form ptI and since BT = B−1. In the following we assume that P t+1 = pt+1I. We
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have

Γt = ptIB
T ((pt + σ)I)

−1
=

pt
pt + σ

BT

µ̄t = µt +
pt

pt + σ
BT (µ̄t+1 −Bµt)

= µt +
pt

pt + σ

(
BT µ̄t+1 − µt

)
P̄t = ptI + Γt (p̄t+1 − pt − σ) ΓT

t

=

(
pt +

p2t (p̄t+1 − pt − σ)

(pt + σ)2

)
I

The steps for applying a KS are shown in the algorithm below:

Input:

α : Variance of measurement noise

σ : Variance of signal <
(
fc
fs

)2
Output:

µ1:T : Estimated signal

V1:T : Estimated variance

Forward Pass

p1:T = 0 Initial variance estimate

µ1 = x̂1

p1 = α

for t = 2 to T do

µt = eiω0µt−1 + pt−1+σ
pt−1+α+σ

(
x̂n − eiω0µt−1

)
pt = α(pt−1+σ)

pt−1+σ+α

end for

Backward Pass

VT = pT

for t = T − 1 to 1 do

µt =
(

1− pt
pt+σ

)
µt + pt

pt+σ

(
e−iω0µt+1

)
Vt = pt +

(
pt

pt+σ

)2
(Vt+1 − pt − σ)

end for
Algorithm 1: Algorithmic representation of a Kalman smoother (The forward and backward

pass)

2.4.3 Neural correlates of Selective Attention & Ongoing EEG

The mapping between the segmented ERP and ongoing EEG measurement is a debatable topic that

we extensively discussed in the first chapter. Regarding the generation of ERP and spontaneous

EEG activities, we considered exclusively the role of the phase-reorganization to explore the neural
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signature of selective attention in different experimental paradigms. We are interested in exploring

the possibility of mapping the features obtained from the N1-P2 neural correlate of averaged ERPs

with ongoing EEG measurements. However, this requires sophisticated methods to understand the

activity of the ongoing EEG signals and validation of results with averaged ERP results. In various

studies, the IP was used to assess the attentional effort related to the listening tasks (Strauss et al.,

2008a, 2010; Bernarding et al., 2013b; Mortezapouraghdam et al., 2017). In particular it was shown

that listening effort induced by task difficulty could be quantified using the IP of ongoing EEG

measurements in various subject groups and listening tasks.

In this study, we analyze the effect of selective attention using ongoing EEG signals and compare

the objective measures with the results obtained from the segmented and averaged ERPs. By doing

so, we explore the possibility of translating and mapping the N1-P2 effect in ongoing oscillations

and validate the results with ERP analysis. The details regarding the data is explained in the next

section.

2.4.4 Experimental Setting

The experimental setting in this study is based on a former experimental paradigm of (Hillyard et al.,

1973), in which two auditory tone burst sequences with different frequency contents are presented

dichotically. Each sequence has standard tone bursts and deviant bursts that has a slightly different

frequency and an appearance probability of 10%. The bursts have a duration of 50 ms and an

amplitude window with a linear rise and fall time of 10 ms and plateau of 30 ms. The sequence

presented to the right ear consisted of tone bursts of 1500 Hz and deviants of 1560 Hz, whereas those

to the left ear have tone bursts of 800 Hz and deviants of 840 Hz. The ISIs between bursts have

a randomized duration oscillating between 250-1250 ms. The order between standard and deviants

was also randomized. The resultant auditory stimulation signals have a total of 560 bursts each.

Ten normal-hearing subjects (mean age: 26.6±6.24 years, 6m/4f, right–handed) participated in the

study. Normal-hearing thresholds are controlled by pure tone audiogram signals preceding the mea-

surements. After a detailed explanation of the procedure, the subjects signed an information consent

form. Next, Ag/AgCl electrodes (Schwarzer GmbH, Germany) were attached at the right(M2) and

left (M1) mastoids, at the vertex (Cz) and upper forehead (Fpz) for the common reference and

ground, respectively. Electrode impedances are below 5 kΩ throughout the experiment. Subse-

quently, the subjects were instructed to sit on a chair and avoid moving as much as possible. Next,

headphones were placed on the subjects and the auditory thresholds (0 dB SL) of the 4 different

tone bursts were collected.

Each subject was instructed to follow one out of the three following conditions: attend to the

stimulation on the left ear and count the deviants (A-attL), ignore any stimulation and instead read

a magazine (B-unatt R/L), and attend to the stimulation on the right ear and count the deviants

(C-attR). Auditory stimulation was presented at the 50 dB sensation level (SL) and calibrated using
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peak equivalent measures (pe SPL), see (Corona-Strauss and Strauss, 2016; European Committe

for Standardization, 2007; Richter and Fedtke, 2005). Two presentation orders as in Hillyard et al.

(1973) were used (ABCCBA or CBAABC). The latest resulted in a total of six conditions, meaning

a total experiment duration of around 90 min, including electrode placement. The experiment

length varied depending on the duration of the breaks between conditions needed for each individual

subject.

Measurement Setup All stimulation and corresponding trigger files were created with a sci-

entific computing software (Mathworks Inc., USA) using a sampling frequency of 44.1 kHz. Via

a programmable attenuator headphone buffer (gPAH, gTec, Austria) that also controlled the in-

tensity level, the stimulation files were delivered to the subjects through circumaural headphones

(HDA–200, Sennheiser, Germany). The trigger channels were connected to a trigger conditioner

box (g.Trigbox, gTec, Austria) that adjusted the signals for further acquisition using a biosignal

amplifier. The biosignal amplifier (gUSBamp, gTec, Austria), controlled by computer, recorded the

EEG activity (sampling frequency 512 Hz) and the trigger signals. The computer controlled also

the presentation of the auditory stimulation by means of a sound card (Scarlett 2i4, Focusrite).

All dataset were filtered (bandpass filter 1-70 Hz) and segmented accordingly after artifact removal

using an amplitude threshold of (50 mV).

2.5 Laminar Auditory Activities and its Relation to

Auditory Evoked Responses

Up until this point, we have analyzed the neural correlates of auditory selective attention using EEG

at different auditory stimulation and experimental paradigms. We investigated different decoding

techniques for analyzing the effect of the N1-P2 component of late AERs. The AER measurements

are obtained from repetition of pure-tone stimulation (for studying the effect of long-term habitua-

tion) to the study of ongoing EEG measurements in presence of more complicated combination of

auditory stimuli and longer duration.

All the previous studies in this work are based on neural activities on the surface of the scalp.

However, the EEG signals are produced as a result of different neural processing from different

sources projected through various spatial depths in the cortex. In Khodai (2014), it is reported

that a deeper study of the neural activities of individual layer specific provide a better and more

accurate perspective on the problem as there are alteration of neural activities in different layers

of the cortical structure of auditory cortex. Therefore, it is important to understand how phase

regularities translate across spatio-temporal scales of neural processing. In addition, not all hearing

pathologies can be necessarily explained in terms of disorders in the peripheral system. In cases

where peripheral regions are not the cause of hearing pathology, a deeper view on the auditory
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pathway (i.e, examples include hearing hallucinations and tinnitus) is required, as damage to any

of the components can lead to disorders in higher level processing in auditory cortex (Butler and

Lomber, 2013; Khodai, 2014). In Butler and Lomber (2013), the functional connectivity between

different cortical layers in congenitally deaf animals and hearing animals have been shown, in which

the differences can be observed in the neural activity and connectivity at different layers.

Invasive electrophysiological measurements in many experimental settings are costly and hazardous.

In the case of humans, there are many methodological limitations that constrain the level of the

experimental procedures, however, generalizations from animal auditory system models to the human

auditory system can be applied as the subcortical auditory system between mammalian animals has

been highly conserved (Butler and Lomber, 2013; Glendenning and Masterton, 1998). Therefore, in

this study, we aim to understand the activity of the N1-P2 component of auditory ERP with relation

to the cortical neural activities of auditory cortex in rats. The ERP components equivalent to human

N1 and P2 components have been studied previously in different species and has been shown that

it has a shorter latency than of humans (Knight et al., 1985; Iwanami et al., 1994). It has been

illustrated that the equivalent N1 component in humans occur approximately 50ms post-stimulus

in rats (Knight et al., 1985) with the first early positive component appearing approximately at

30ms (P30)(Iwanami et al., 1994). This is followed by a second positive peak at about 80ms (P80)

(Iwanami et al., 1994; Knight et al., 1985), similar to the P2 component in humans. In Iwanami et al.

(1994), ERPs very similar to the human has been obtained in a two-tone discrimination oddball task

in two conditions of resting and performing, at the surface and depth of the rat auditory cortex.

In Szymanski et al. (2011), the phase locking effects of local field potentials (LFP), measured at

different cortical layers in rats with varying sensory stimulation have been fully analyzed. It has

been shown that the phase of low frequency LFP follows a naturalistic stimuli, representing the

fluctuating excitability of the particular neural population (Szymanski et al., 2011).

There has been studies showing a relation between the non-invasive AERs and invasive measurements

at deeper layers of the cortex for different experimental paradigms (Celesia, 1976; Iwanami et al.,

1994; Knight et al., 1985). The neural phase information of sensory cortical LFPs and EEGs resets in

response to the stimuli onset at particular times (Kayser et al., 2009; Szymanski et al., 2011; Schyns

et al., 2011). However the relation of AERs to the functionality of laminar circuit mechanisms in

presence of a salient stimulus is not fully understood. In previous studies of (Kayser et al., 2009),

it was shown that the phase information of laminar LFPs are aligned with respect to complex,

naturalistic sensory stimuli at low frequency domains. Similar studies have been carried out by

Szymanski et al. (2011).

In this study, we aim to understand the mapping of the thalamo-cortical activities onto AERs,

as it will facilitate the measuring procedures and its application on human subjects. We employ

information theoretic approaches to understand the relation between AERs and LFPs of cortical

layers, using the phase information of neural responses at different spatio-temporal domains. We
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attempt to describe the findings with of the laminar cortical processing and its relation to the evoked

responses.

We use the LFPs of a penetrated multi-electrode array at ten different depths in the primary auditory

cortex of rats. The experimental setup aims to reproduce the effect of sensory auditory adaptation,

in which a tone burst is repeatedly applied to the hearing system. A broad-band transient acoustic

stimulation during the experiment is used as our experimental paradigm. The penetrating electrodes

are in columnar alignment with respect to the potential changes in the non-invasive measurable

ERPs. The main incentive of the study is to understand the laminar projections onto the measured

AERs using the IP of measured neural responses.

In the following sections, we describe the anatomy of thalamo-cortical interactions and main char-

acteristics of the cytoarchitecture layers of A1 of a rat. We then describe the experimental setting

and methodology.

2.5.1 The Cortical Laminar Organization in A1

The laminar cytoarchitecture of the auditory cortex, similar to other sensory cortices, consists of

six layers (with the exception of the archicortex and paleocortex) that are commonly denoted by

Roman letters. Every layer consists of different neuronal types responsible for a specific functional

connectivity and task (Winer, 2011; Khodai, 2014). The layers are divided into three groups: the

supra-granular (layers I and II), granular-layer (III and IV) and infra-granular layer (V and VI) (see

(Winer, 2011)).

Layer IV, also known as the internal granular layer, consists of smooth stellate (star-like) and spiny

stellate neurons, which are categorized as granule cells. The neurons in layer IV receive a high a

number of afferents through the white matter6 and other cortical and subcortical regions (Linden and

Schreiner, 2003). Layer IV is usually known as the main thalamorecipient7 layer (in case of primary

auditory cortex, layer III is also involved as a receiver) as it receives projections from auditory

pathway (i.e., specific thalamic nuclei). Layer III is dense in cell density and consists mostly of

medium to large pyramidal cells, some of which that have apical dendrites extending up to layer I,

and others, extending into deeper layers of the cortex.

The information that have been projected to layers III and IV run to the supragranular layers

(II/III) (Winer, 2011). The supragranular layers project to other cortical layers by lateral spread

of axons, which creates a patch processing patterns, as well to infragranular layers (V/VI) (Linden

and Schreiner, 2003).

Layer V, also referred to as the internal pyramidal layer, is known for having medium to large

pyramidal cells. Dendrites of large pyramidal cells in this layer can extend up to layer I, whereas

6white matter is primarily known as the main pathway between different cortical regions, remote cortical areas, as
well as interaction between cortical and subcortical areas.

7The receiving afferents to the cortical layers are from different thalamus divisions. For more information in this
regard see (Lee and Imaizumi, 2013; Khodai, 2014).
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axons extend to white matter and are a major source of efferent fibers. Layer V and VI are considered

to be the main contributors for sending the feedback information to other cortical and subcortical

areas via white matter (Linden and Schreiner, 2003).

2.5.2 Experimental Setting

We examine the laminar activity of the auditory cortex in adult Sprague-Dawley rats of both sexes.

The animals’ body weight range from 450g to 850g. All experiments are conducted in accordance

with the German animal protection act (5/2006) and were approved by an ethics committee.

The rats were anesthetized by the administration of isoflurane (3 vol.%) and oxygen (2l per min).

Once the animal was non–sentient, the anaesthesia was replaces with Ketamine (Ketavet, 100mg/ml,

1-1.2 ml per 100g bodyweight and Xylazine (Rompun 2%, 4.5µl per 100g bodyweight) in a physiologic

saline solution and administrated via intraperitoneal injection.

The animals were placed in a fixed position in a tailor-made stereotactic frame for acoustic stim-

ulation. After removal of scalp an muscular tissue, two micro screws (Mondeal, LOCK-DRIVE,

titanium, 1.5x4mm), rostral to Bregma and caudal to Lambda are inserted for the epidural acquisi-

tion of auditory evoked responses. A trepanation, 1.4mm in diameter, was made 5.25mm posterior to

Bregma and 5.25mm lateral to the midline for the insertion of the penetrating multitrode (Thomas

Recording Multitrode Type I). An electrode 3.5mm posterior to Bregma and 3.2mm lateral to mid-

line was inserted into the Thalamic Nuclei (TN) (Swanson, 1992). See Fig. 2.18 for an illustration

of electrode positioning and surgical preparation.

We recorded extracellular potentials at 8 different depths, spaced at intervals of 125µm for the

electrodes 1–7 and 650–700µm to the electrode top. The AERs were generated by a click–tone

of 100µs duration and ISI of 1.5s (E.A.R.Tone 3A). Each recording session lasted 90s. Data was

collected using a g.Tec USBamp amplifier; sampling frequency was set to 4.8 kHz. For the processing

of single–trial responses we additionally acquired a stimulus locked trigger signal using the g.Tec

TRIGbox. In this study we focus on AER-related electrode and laminar cortical processing.

2.5.3 Mutual Information of IP between Laminar Cortex

The main goals of this study are obtaining meaningful information regarding projections of cortical

layers’ activities onto the measured AERs using the phase information of signals; decoding the delay

process of information transfer between different layers as well as AERs using phase information. We

consider studying the level of information shared between neural activities of different cortical layers

with AERs. For this means, we use the concept of mutual information. The mutual information

(MI) between two random variables X and Y denoted as I(X,Y ) quantifies the degree of dependence

between X and Y . The mutual information between X and Y is defined in terms of marginal

entropies and the joint entropy H(X,Y )
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Figure 2.18: Two micro screws were inserted rostral to bregma and caudal to lambda for epidural
AER recording (Blue outlines). A stereotactic burr hole was made 5.25mm poste-
rior to Bregma and 5.25mm lateral to mid-line for the insertion of the penetrating
multitrode (red outlines). Background illustration from George and Charles (2007).

I (X,Y ) = H (X) +H (Y )−H (X,Y ) . (2.36)

In our case, we want to compute the MI of the phase of segmented data between different electrodes

at different frequencies. To compute the degree of MI (I(P, P ′)) between two given phase matrices

P , P ′, we first approximate the underlying probability density functions with normalized histograms

hist(P ) =
(
m1

n ,
m2

n , ...,
mk
n

)
and hist(P ′) =

(
m′1
n ,

m′2
n , ...,

m′k
n

)
. Here, n is the number of data points

in P and P ′ (we assume they have the same size), and mi, m
′
i is the number of data points from P

and P ′ respectively that fall in the i-th bin of the histogram. We use k = 5 bins to evenly divide

the range [−π, π) (the method is similar to Russakoff et al. (2004)). Similarly, we compute a joint

histogram

hist(P ,P ′) =
(m1,1

n
, ...,

mk,1

n
,
m1,2

n
, ...,

mk,2

n
,
m1,k

n
, ...,

mk,k

n

)
(2.37)

to approximate the joint probability density function of X,Y . Here mi,j counts how often we have

a measurement from P fall into bin i with the corresponding measurement from P ′ simultaneously

falling into bin j.
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Hence, the MI between P and P ′ is approximated by

I(P ,P ′) ≈ H(hist(P )) +H(hist(P ′))−H(hist(P ,P ′))

= −
k∑
i=1

mi

n
log
(mi

n

)
−

k∑
j=1

m′i
n
log

(
m′i
n

)

+

k∑
i=1

k∑
j=1

mi,j

n
log
(mi,j

n

)
. (2.38)

Image Registration We use a registration technique based on MI to detect time delays between

different channels and/or frequencies. Given two phase matrices P , P ′, we determine the time delay

d between the matrices that maximizes their mutual information. The delay d can be either positive

or negative, depending on whether P is ahead of P ′ or vice versa. We distinguish between two

cases:

1. d ≥ 0, that is the signal in P ′ is delayed (or in sync) compared to P . In this case, we use

the phase data corresponding to the first 500 ms of each trial from P , and then determine

d ≥ 0 such that the mutual information between this section of P and the data from P ′ that

corresponds to the time window [d, d + 500ms] in P ′ is maximized. We choose a window of

500 ms in order to narrow the time interval to that contains the most relevant phase response.

2. d < 0, that is the signal in P ′ is ahead of P . We handle this case in the same way as case 1,

with the roles of P and P ′ reversed. The delay d′ of P compared to P ′ determined in this way

is then simply negated: d = −d′.

Since we do not know ahead of time whether case 1 or 2 applies to a given pair of phase matrices,

we always compute both and pick the one with the larger maximized mutual information. The

maximum MI between different cortical layers and AERs for different frequencies is in Chapter 3,

Section 3.6.2.



Chapter 3

Results

In this section, the results regarding the studies in chapter 2 are fully described. For each section, we

will cite the corresponding study regarding the methodology and the measured data from chapter 2.

Further discussions about the results are followed in chapter 4. The following section corresponds to

the study described in section 2.3.2. Results of this study has been published in Mortezapouraghdam

et al. (2015a).

3.1 Long-term Habituation Decoding Using Von-Mises

Model

As described previously in section 2.3.2-data processing part, the phase information of all individual

ERPs is extracted and visualized in a matrix P (see section 2.3.1). To observe the effect of habitu-

ation, we analyze the data in a cross–sectional (column–wise) manner, that is the phase variations

over different trials at a specific time instance (See Fig. 2.7 as an example). For a fixed time of

interest, we segment the data into groups of Q samples with a mutual overlap of q samples between

the groups. The benefit of using an overlap lies in obtaining smoother and more detailed results,

similar to a moving average.

Fig. 3.1 shows the distribution of the phase data {θk,50}k at 97 ms (sample 50) for four segments.

The phase data are plotted as points on the unit circle for habituation process data in the top row

(A) and for the non–habituation data in the bottom row (B). The resultant vector R divided by

the number n = 200 of samples for each group is the red vector. As described in section 2.3.1 the

direction of the red vector is the circular mean of the data. The length of R corresponds to the

concentration of the data around the mean; the concentration is higher if the red vector is larger.
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(a) Beginning
(50dB SPL)

(b) Middle (c) Middle (d) Ending part

(e) Beginning
(100 dB SPL)

(f) Middle (g) Middle (h) Ending part

Figure 3.1: We show the dynamic of phase data over trials at a specific time of t = 97ms for one
human subject. The segment sizes are Q = 200, q = 0. Plots (1 to 4) in row A and row
B correspond to 50dB SPL and 100dB SPL data respectively. The resultant vector R
divided by the number of segment samples is shown in red.

In the case of non–habituation data (B), the phase information is densely clustered around the

mean and remains constant throughout consecutive segments. In the habituation process (A) the

mean direction varies between the segments and the degree of phase cluster is low at the end of the

experiment.

To model the variations of IP, we initially use simulated data of the neurofunctional model as de-

scribed in section 2.3.2. We generate this data based on a normal distribution of physiological

parameters. The applied inter–individual variance ensures a general validity of the simulation and

subsequent data processing. The parameter range describes inter–individual variability in the sen-

sory pathway and is based on physiological limits taken from Robinson et al. (204). Ten different

data sets is generated. For each data set we consider the time between 97ms and 127ms, i.e., an

interval which approximately covers the N1 wave. More precisely we use the corresponding samples

{θk,bj}k at six different time samples bj := 50 + 3j, j = 0, . . . , 5. The segments have a chosen length

of Q = 200 and an overlap of q = 195 so that there are 120 segments at a fixed time bj . The choice

of a high overlap is to show a smoother and more detailed results of phase-cluster modulations.

For each segment we fit a von Mises model. Fig. 3.2 shows the estimated concentrations κ of the

von Mises model averaged over the six points of time bj , j = 0, . . . , 5 and the 10 data sets. The

decreasing effect of the concentration for the habituation process and a stable and high phase–lock

for non–habituation is clearly evident.

Next we analyze the phase of measured ERPs in 10 subjects for the same time course from 97ms to

127ms. We segment the trials in the same manner as for the simulated data (Q = 200, q = 195).

Fig. 3.3 gives the averaged estimated concentrations κ for 120 segments averaged over the six points

of time bj and the 10 subjects.

The behavior of the estimated concentration parameter can be also illustrated in the Shannon entropy
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Figure 3.2: Average of the estimated von Mises concentration κ in the course of habituation and
non-habituation for simulated data by the neurofunctional model. The concentra-
tion for the habituation data decreases drastically between the segments 40 to 70 but
remains on the same level for non-habituation data.
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Figure 3.3: Averages of the estimated von Mises concentration κ in the course of habituation
and non-habituation for measured human data. The shaded area shows the standard
deviation. The decreasing effect of the concentration for the habituation process in
contrast to the non-habituation process is clearly visible.
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CUE

Figure 3.4: The plot shows the averages entropy of phase samples in consecutive segments
(Q = 200, q = 195) for all measured data subjects. The CUE corresponds to the maxi-
mum entropy of continuous uniformly distributed data

(
− log2

(
1
2π

))
and is shown for

comparison. The entropy of the habituation data increases to the entropy of uniformly
distributed data, something that is not the case for non-habituation data. The shaded
area shows the standard deviation.

of the segmented samples. Fig. 3.4 shows the entropy of the samples in the consecutive segments

(averaged again over the six values for bj and the 10 subjects). As the concentration decreases, the

amount of entropy increases, approaching a level of entropy corresponding to a uniform distribution.

This is consistent with the fact that the phase of the data becomes more uniformly distributed. On

the other hand, an increase in the concentration parameter is reflected in a decrease of the entropy

value, indicating a high density of neuronal synchronization in non–habituation responses.

So far we have dealt with the IP for the NLM filtered data. In Table 3.1 we show the average of the

estimated concentrations κs,bj per segment and time

κ̄ :=

120∑
s=1

5∑
j=0

κs,bj

for NLM and non–NLM filtered habituation data and non–habituation data for each of the 10 sub-

jects together with their variances. In agreement with our previous findings, we have again the effect

that the concentration is in general higher for non–habituation data. We see further that the results

obtained from the NLM filtered data reflect a higher degree of phase cluster in comparison to the

non–NLM filtered data. To measure the reliability of using a von Mises model in our computations,

we evaluate the confidence interval for the estimated concentration parameters. Let [δLs,bj , δ
U
s,bj ],

s = 1, . . . , 120, j = 0, . . . , 5 denote the calculated confidence interval of concentration κ. Super-

scripts U and L stand for the upper and lower bound of the confidence interval. We average the size

of the confidence interval for all segments at each time by computing Iκbj = 1
120

∑120
s=1 |δUs,bj − δ

L
s,bj
|.

In Fig. 3.5 we show the Iκbj , j = 0, . . . , 5 for the 10 subjects. The confidence interval was computed
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S κ̄H κ̄NH κ̄NLMH κ̄NLMNH

1 0.47±0.12 0.68±0.09 2.09±0.88 4.14±0.73
2 0.96±0.15 1.76±0.13 5.98± 2.52 13.5±2.04
3 0.56±0.13 0.66±0.05 2.81±1.24 3.06±0.54
4 0.39±0.12 1.41±0.30 1.23±0.42 7.62±4.69
5 0.76±0.17 2.37±0.23 4.49±2.16 59.9±26.2
6 0.83± 0.12 0.50±0.15 3.36±0.56 1.67±0.43
7 0.78±0.19 0.88±0.11 2.90±0.76 3.43±0.96
8 0.29±0.13 0.55±0.10 1.04±0.38 1.93±0.32
9 0.70±0.05 0.74±0.21 3.56±0.48 6.40±3.96
10 0.51±0.09 1.13±0.10 2.61±0.92 9.11±1.84

Table 3.1: Average concentration of the 6 time intervals for each of the 10 subjects for NLM fil-
tered habituation data κ̄NLMH , NLM filtered non–habituation data κ̄NLMNH , non–filtered
habituation data κ̄H , and non–filtered non–habituation data κ̄NH is shown. The con-
centration for NLM filtered data is higher than that of the non–NLM filtered data,
reflecting a better phase clustering.

according to Fisher (1995). The findings regarding this study are discussed in chapter 4.
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Figure 3.5: The average confidence interval size of the estimated concentrations over different
times bj , j = 1, . . . , 6 is presented for all subjects.

3.2 Abrupt and Continuous Detection of Temporal

Changes in ERPs in Long-term Habituation Process

Results regarding this study have been published in Mortezapouraghdam et al. (2014).

In section 3.1, we tried to discriminate between the two processes of habituation and non-habituation

by fitting a von-Mises model over different segment sizes. However, one of the drawbacks of the

previous approach is selecting an appropriate length of Q and overlap samples q, as different values

can yield different results in regard to capturing the long-term habituation dynamics. If the window
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sizes Q are very large and coarse, the dynamic of habituation may not be captured. If they are very

fine, the data can be over-fit. The same window size Q may also not be optimal for all subjects.

The effects of selecting a coarse and fine window size are further discussed in chapter 4.

As a continuation to the previous study, we aim to investigate the possibility of detecting a more

precise range at which habituation takes place. We expect the non-habituation state data to stay

similar over time. As described in section 3.1 and the studies conducted in Mortezapouraghdam

et al. (2015a), the diffusion of data samples at the N1 component of ERs over trials can be used as a

signature for detecting the habituation state. In this study, we aim to use a change point approach

to detect the sample point at which a significant diffusion in data concentration occurs. The method

is an abrupt change point model combined with a Viterbi algorithm to examine the time range at

which a habituation process occurs (see chapter 2, section 2.3.3 for more details about the method).

3.2.1 Synthetic Data Evaluation

We first evaluated the model on synthetic data with varying abrupt change points and on synthetic

data with a distribution similar to the habituation. Fig. 3.6 shows two examples of different synthetic

time series with abrupt changes in terms of the mean/concentration of a von-Mises distribution. The

domain of data is in [−π, π) and is generated using a rejection sampling approach, after selecting the

number of change points. In Fig. 3.6-(A) which consists of three change points, the mean of the data

after every change point randomly varies, but the concentration of data remains constant. In another

illustration of a time-series with abrupt changes, when a change point occurs, the corresponding

concentration parameter of data changes. This example can be compared to the real ERs over trials

in case of habituation.

We generated synthetic data with different number of change points from cp = 1, · · · , 5. For every

change point amount, 100 batches of data sets were generated randomly. The hazard rate selected for

detecting change points is based on a geometric probability distribution. Let p be the probability

of a change point, then the probability of having change points at different lengths is given by

P (g = x) = (1− p)x−1p. The hazard rate function is computed as follows:

H(x) =
P (g = x)∑∞
t=x P (g = t)

=
(1− p)x−1p∑∞
t=x(1− p)t−1p

=
1∑∞

t=0(1− p)t

= p. (3.1)

We use the hazard rate as H = m
T where m is the number of change points and T is the length of the

synthetic data. The length of the synthetic time series is T = 1000 samples. To obtain a measure of
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Figure 3.6: Detection of change points for simulated circular data. (A) The randomly generated
data is illustrted as black circles for a better illustration of the abrupt change points.
The changes are defined in terms of abrupt changes in the mean. The red line shows
the variations of the run-state (or state transitions) over time. The green line is the
predicted mean value. (B) Same explanation as for (A), however the abrupt change is
defined in terms of the variation of concentration parameter.

how well the change points are estimated, the average difference between the estimated run-length

and the actual state transitions based on the actual change points is computed. Fig. 3.7 shows one

such example.

The same procedure as in Fig. 3.7 is repeated for different numbers of change points up to m = 5.

The average results for 100 different sets of data have been shown in Fig. 3.8. As the length of the

signals is T = 1000 samples, in worst case scenario where none of the detected change points are

valid, the average difference between two run-lengths will be 500. The results in Fig. 3.8 suggest

that the average difference is relatively small.

3.2.2 Evaluation of CPs on the Measurements

The method was applied on measured N1 of ERs (θk,bj ) at two different auditory stimulations of

50dB SPL and 100dB SPL (See experimental-settings part of section 2.3.2 and section 2.3.3.3 for

details of the experiment). It is assumed that the habituation for a soft and comfortable stimulus

will occur faster in comparison to an aversive stimulus. Hence, a change point for a soft stimulus

will be detected earlier time comparison to the aversive stimulus. Therefore, run-lengths obtained

from an aversive stimulus will be larger than for a soft stimulus. The changes in the run-length

that would occur at the end of aversive stimuli have been discarded as it is difficult to assert if they

are due to habituation or noise. As we are interested predominantly in change points detected due
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Figure 3.7: (A): An example of a time series with four abrupt changes. (B): The overlap of the
estimated run-length and the actual run-length. The average of the difference between
the two run-lengths is used as a measure to determine how well the run-length has
been estimated. (C) This shows a small zoumed-in section of the plot in (B). The
small delays in detecting the change points have been marked.

to changes in the von Mises concentration parameter rather than the mean, we center the data to

have a mean of zero. The run-length variation for few subjects over trials at a particular time has

been plotted in Fig. 3.9. For an aversive 100dB SPL stimulus, hardly any changes due to the high

synchronization of phase information can be detected. However in 50dB stimulus, the changes in

diffusion of phase modulations are more tractable and occur at earlier trials in comparison to the

100dB stimulus. There may remain fluctuations at later times due to the sensitization effect.

The subjects presented in Fig. 3.9 are among subjects with a best fit of run-length in terms of

distinguishing between habituation and non-habituation stimuli.

In Fig. 3.10 we summarize some of the statistical properties of the estimated run-lengths variation

for each subjects at different times. Fig. 3.10(A) shows the average maximum value of the run-length

for each specific time for all of the subjects. The index values ti correspond to data over trials at

times t1 = 97ms, t2 = 107ms, t3 = 117ms and t4 = 123ms. The average maximum run-length is

consistently larger for 100dB SPL than for the 50dB SPL, indicating a lower variation in run-length

transition. The average maximum run-length value over all times for specific subjects has bee shown

in plot B. There were statistically significant differences of maximum run-length values between soft

and aversive stimulations as determined by a one-way ANOVA test (F (1, 12.23), p = 0.0026) using

a 5% significance test. In Fig. 3.10-(C) the average run-length for individual subjects has been
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Figure 3.8: The average distance between the actual change points and the optimal run-length
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Figure 3.9: The top row shows the results of the change point algorithm for 50dB SPL data for
three subjects. The corresponding 100dB SPL for individual subject is plotted on the
second row.

plotted. The mean difference between the two stimulations is significant as F (1, 13.36), p = 0.0018

in an ANOVA analysis test.

Setting of Hazard Rate For Measured Data As we were interested in detecting change points

in terms of concentration corresponding either to the occurrence or absence of habituation process,

the hazard rate had to be adjust accordingly. We therefore empirically enforced a hazard rate of

H = 9.8e − 12 for our study. As in the case of measured signals, noise artifacts are present and

the hazard rate has to be set to a small value to avoid noise-induced fluctuations in the run-length

behavior. The small choice of the hazard rate indicates that the detected change point has been

significant in terms of underlying generative model such that it could not be ignored by the model.

In addition, one of the reasons for enforcing a small hazard rate is that we are interested to detected

one change point at most such that it can be related to the occurrence of long-term habituation.
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Figure 3.10: (A): The average maximum run-length value over all subjcets at different times for
two different stimulations. (B): Average maximum run-length for different times for
individual subjects. (C): The average run-length at different times for individual
subjects.

3.3 Detecting the Gradual changes of long-term

habituation using a State-Space Model

Results regarding this study have been published in Mortezapouraghdam et al. (2016).

One of the limitations of studying abrupt change points is that it will be difficult to determine

the status of habituation for a range of auditory stimulations that may not differ significantly with

regards to loudness perception and comfort level. A single transition in run-length may not be

accurate in understanding the occurrence of habituation in the temporal domain. Multiple rapid

transitions make it difficult to draw concrete conclusions or differentiate the habituation state from

the noisy epochs. In addition, the choice of an optimal hazard rate to describe meaningful changes in

the signal can be a challenging task, as controlling the number of change points and avoiding noisy

detections can lead to small hazard rate values. An off-line evaluation of run-length for classifications

of more complicated stimuli can be also challenging.

To overcome some of these limitations, we considered a gradual change point detection method

instead of an abrupt change point proposal. This is also more consistent with the definition of long-

term habituation, by which changes in the level of attention-binding are defined as a gradual process

(See section 1.3.3). Therefore, instead of considering a binary change point paradigm at every time

instance (i.e., st = 0 or st = st−1 + 1), we considered a state-space model such that gradual changes

can be captured. The model description is described in section 2.3.4.

The state-space model designed in section 2.3.4 is applied on four different auditory stimulation.

The auditory stimuli are 60dB SPL, 70dB SPL, 80dB SPL and 90dB SPL. As the difference between

stimuli are not as large as the difference between 50dB SPL and 100dB SPL, detecting the long-term

habituation is also more difficult. In Fig. 3.11, the phase distribution of data Θ at different parts

of the experiment for all stimuli is illustrated. Our goal is to detect the long-term habituation by

tracking the gradual changes occurring in the phase data Θt.
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(a) 60 dB SPL Data (b) 70 dB SPL Data (c) 80 dB SPL Data (d) 90 dB SPL Data

Figure 3.11: An example of phase distribution over trials at a specific time Θt, t = 97ms for
a subject at four different stimuli levels of 60 dB SPL, 70 dB SPL, 80 dB SPL
and 90dB SPL has been shown. The phase data Θt has been divided into three
different segments corresponding to the beginning (B), middle (M) and end (E) of
the experiment. Segment size is G = 150. Blue, gray and red data circles correspond
to the B, M and E of the experiment respectively. The lines are the resultant mean
vector divided by the number of segment samples. As phase data spread more around
the circle, the length of the vector mean decreases.

3.3.1 Initial Conditions

One problem of the forward method as described in Chapter 2, section 2.3.3.2 is that the results

can be heavily influenced by the initialization at t = 1. Depending on how the state likelihoods for

the first observation are initialized, state likelihoods at subsequent times can be far from the ideal

(see Fig. 3.12 for the effect of non-adequate initialization in data). A similar effect is observed if

there is a sudden change in the underlying states at a later time in the data or if the initial data

points are outliers (noise). Because the forward method does not look ahead of the current time, it

adapts to changes in the data only with a delay. We add a backward pass to compensate for these

effects, and to remove any influence of the direction of time on the results.

We also mitigate the initialization problem by using the result of the forward pass at tN to initialize

the backward pass, and vice-verse. Unless the data distribution drastically changes close to the end

of the data tN , the forward method usually converges sufficiently at that point, thus providing a very

stable initialization for the backward pass. After the backward pass is done, we run the forward pass

for a second time, using the result at t1 from the backward pass for its initialization. The results

of the second forward pass together with the results of the backward pass are used in analysis. The

results of the first, randomly initialized forward pass are discarded in the final result to remove the

influence of the original random initialization.

3.3.2 Optimization of Prior Parameters

In this section we report on the setting of the models’ prior parameters K and σ2 and other settings

that were used for analyzing IP of ERPs. The ERPs correspond to nineteen subjects at different

auditory stimulations of 60dB SPL, 70dB SPL, 80dB SPL and 90dB SPL. The phase information

over trials is analyzed at seven distinct times of Θt (t = 97ms to t = 197ms with step sizes of three,
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Figure 3.12: We show the effect of the forward and forward-backward approach for two different
data examples. Column A: shows an artificial data set generated using a rejection
sampling approach with an exact time change at sample 1000. The estimated concen-
tration for the forward and forward-backward approach has been shown respectively.
Column B: shows the estimated concentration for the forward method (1-B) and (2-
B) the phase information of habituation data. The effect of the initialization on the
results of the forward method is clearly visible. With regards to detecting change in
phase modulations, the forward-backward approach provides more accurate timing
information than the forward approach. The change occurs at sample 400.
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or more specifically for all trials at samples of M = 44 to M = 62) for the phase matrix P ∈ RN×M .

The number of discrete states for Rµ and Rκ is m = 20 with an upper bound of ` = 63 for the

concentration parameter. We discretize the concentration parameter κ using a logarithmic scale.

The state transition model described in section 2.3.4.1 has two free parameters, K and σ2 that

determine the speed with which µ and κ change over time respectively. If we fit the parameters

such that the likelihood of the observations p(Θ1:T ) is maximized, we overfit the model to a specific

dataset. The main problem with this approach is that it does not help us discriminate between

different groups of stimuli reliably as possible. In addition, no prior information regarding the

decaying behavior of the habituation process is used. We propose to set the free parameters K and

σ2 such that the resulting fits are robust under noise, allowing to reliably predict the stimulus level

that the subject has been exposed to. The optimization criteria for the prior parameters is defined

such that the ratio of the variance between different groups of stimulus levels to the variance of

within groups of our novelty measure is maximized as defined in Eq.3.2. Here the novelty measure

is defined as the ‘normalized” expectation value E′ (κt) and reflects the level of change in the κ

parameter rather than its absolute value.

arg max
K,σ2

(
ρ =

between group variance of E′ (κt)

average within group variance of E′ (κt)

)
(3.2)

The procedure for computing the normalized expected value E′ (κt) of concentration κ is as follows:

For a given observation Θ, we first obtain E (κt) =
∑
κj∈κ

{
κjp

(
κt = κj |Θ, σ2,K

)}
∀t = 1 · · ·N

by performing the forward-backward passes. Since our primary interest lies in the change of κ over

trials and not in its absolute value, we apply a normalization as such: Given a sequence of E (κt)

over time t for a given subject and stimulus, we compute the average of the last 50 samples. We

then divide all values E (κt) by the computed average: E′ (κt) = E(κt)∑N
i=N−50 E(κj)

. Our choice in using

the last 50 samples for the normalization is based on the assumption that any habituation-related

change in the values of κt will have happened before that point.

For the optimization itself, we consider a finite set of possible parameters K ∈ RKprior for RKprior =

{K1,K2, ...,Kr} and σ2 =∈ Rσ2 =
{
σ2
1 , σ

2
2 , . . . , σ

2
r

}
. This is based on prior information about the

habituation process in which the changes are defined to occur steadily in time. Thereby they are set

such that the corresponding probability distributions for the mean and concentration parameters

are peaky (small width), indicating the transition in mean and concentration states cannot happen

abruptly. Given the range of possible values for K and σ2 as RKprior = {K1,K2, ...,Kr} and

Rσ2 =
{
σ2
1 , σ

2
2 , . . . , σ

2
r

}
respectively, we obtain r2 different configuration prior pairs

(
Ki, σ

2
j

)
, i, j ∈

1, 2, ..., r. For each of these configurations, we first perform the forward-backward procedure and

then compute the ρ criteria. Finally we select the parameters that lead to the highest ρ value.

Before describing the results of the ERP measurements, we explain the results of the following steps:

1- Validating the model on artificial circular data. 2- Reporting on the results of model transition

parameters K and σ2 for experimental data. 3- Tracking data distribution over trials. 4- Reporting
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Figure 3.13: The plots show the probability distribution for the mean and concentration states with
chosen prior parameters K and σ2. The plot (A) corresponds to the pdf (von Mises
distribution) of the mean state transition model with the estimated concentration
of K = 0.6071. The plot (B) corresponds to the pdf (Gaussian distribution) of the
concentration state transition model with the estimated variance of σ2 = 320.

average concentration for different auditory stimuli.

3.3.3 Model Validation on Artificial Circular Data

We first validate the forward-backward method on artificial data generated from a von Mises distri-

bution with different concentration parameters κ. The artificial data is generated using a rejection

sampling method Θ = [Θ(1),Θ(2), . . . ,Θ(J)], such that Θ(i) ∼ vonMises(µi, κi)∀i = 1, . . . , J and

with Θ of length L. As we are not interested in the mean changes of data, we keep the mean

parameters constant for all data segments Θ(i).

In Fig. 3.14 we show two artificial data series that are composed of segments sampled from von

Mises distributions with different κ parameters. The transition times between the distributions are

at t1 = 1000 and t2 = 2000 for plot (a) and (b) and t1 = 1000, t2 = 1500 and t3 = 2500 for plot

(c). After applying our Bayesian model, we compute the mean square error (MSE) between the

estimated concentration and the actual concentration used for generating the data. We also apply

a maximum-likelihood approach to estimate the Von-Mises parameters using a moving window of

different lengths (the ML estimation is described in section 2.3.2). The MSE of our method for the

data presented in Fig. 3.14-(a,b,c) are 0.0033, 0.014 and 0.033 respectively. We generated 50 artificial

circular data sets with the same concentration and transition points for each of the examples (a,b,c)

in Fig. 3.14 and evaluated the average of MSE for the estimated concentration parameters. The

MSE are 0.041± 0.04, 0.085± 0.064 and 0.010± 0.020 respectively.

In addition, we tested the accuracy of our model and the ML approach in Fig. 3.14-(c) under

additive noise, to assess the robustness of the methods. The noise was generated from a normal

distribution with different variances Θ̃ = Θ +N(0, σ2) for σ2 ∈ {0.01, 0.02, . . . , 0.05}. The resulting

signal was wrapped to the range [0, 2π). For the windowing approach, we use 4 different sizes

G = 50, 100, 200, 400 with 98% overlap. The corresponding MSE results are shown in Fig. 3.15-(a).
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Figure 3.14: Results of applying the forward-backward Bayesian model on three different data sets. (a):
Artificial circular data that is generated from 3 different Von-mises distributions with con-
centration parameters of κ1 = 8, κ2 = 2 and κ3 = 1. The transitions are at samples
t1 = 1000 and t2 = 2000. (b): Circular data generated with dispersion values of κ1 = 1,
κ2 = 5, κ3 = 1, κ4 = 8 with changes at samples t1 = 1000, t2 = 1500 and t3 = 2500. (c):
Artificial data that is generated from κ1 = 3, κ2 = 2 and κ3 = 1. The transitions are at
samples t1 = 1000 and t2 = 2000.

We used a prior of σ2 = 0.08 for Fig. 3.14-(a). The small value of σ is due to the small range

of concentration values in this example. Note that the transition is from κ → κ + 1 in a single

time-step. The transition probability of this event with the given σ is fairly low (about 0.0002),

avoiding overfitting.

Furthermore, we tested the model on data with random change points and random concentration

parameters. We generated 50 data-sets Θ, each with two random change points at different con-

centrations κ1 ∈ [6, 10], κ2 ∈ [3, 5] and κ3 ∈ [1, 2]. In each case we generated a series of L = 3000

sample points. We then computed the average MSE for both the windowing / ML approach and

for our forward-backward approach. See Fig. 3.15-(b). The same prior parameter as in part (a) was

used for this part.

Note that for the windowing approach with window size w, an input of L samples only results in

L − w parameter estimations. In order to make the MSE values comparable, we extend the input

signal on both ends with w
2 additional samples from the first distribution, and the same number of

additional samples from the final distribution.

In a third example in Fig. 3.15-(c) we generated data sets with a higher concentrations, i.e., κ1 = 9,

κ2 = 1 and κ3 = 9 at transition times t1 = 1000 and t2 = 2000. We used the same prior parameter

σ2 = 0.6071 for artificial data as was obtained with experimental data (In section 3.3.4 we report on

the results of the prior parameters for the experimental data). The model is able to track the data

distribution at different noise levels. This example was used to show that given a similar range of

concentration values of the data samples, the prior parameters from the experimental data can be

used to track the distribution of artificial data-sets.
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Figure 3.15: (a): The average mean square error (MSE) of estimated concentration for 50 artificial
data-sets. The generated data consists of concentration parameters of κ1 = 3, κ2 = 2
and κ3 = 1 with change points at times t = 1000 and t = 2000. The label M refers to
the results obtained from our Bayesian forward-backward model. The labels w1 to
w4 refer to different window sizes of 50, 100, 200 and 400 samples. (b): The MSE of
50 artificially generated data-sets with random transition times in concentration, and
random κ values. (c): The MSE for 50 artificially generated data-sets with transition
times at t = 1000 and t = 2000 with the concentrations of κ1 = 9, κ2 = 1 and κ3 = 9.
We used the prior parameter σ2 = 0.6071 for p(κt|κt−1) ∼ N(µ, σ2) for our model.
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3.3.4 Determining the Model Parameters for Experimental Data

The prior parameters obtained for the transition models are set to K = 0.6071 and σ2 = 320. The

criteria for optimizing σ2 and K is described in section 3.3 and is based on Eq. 3.2. In Fig. 3.13 we

show the state transition probability distribution for the selected mean and concentration parameters

K and σ2 respectively. These parameters affect the speed of changes in the transition models and

consequently, how abruptly the changes are determined. As an example, as the variance parameter

σ2 in Nµ,σ2 (x) increases and the concentration parameter K in VMµ,K (x) decreases, the state

transitions can occur more abruptly. This leads to a more abrupt and sudden detection of changes

in the signal’s phase distribution. In the extreme case of a uniform state transition probability at any

time, all subsequent states would have the same likelihood, independently of the current state. As

a consequence, the µt state would simply track the signal itself, while leaving κt at a constant high

level. In our case, the chosen parameters K and σ2 consider the prior information of habituationon

into the model.

3.3.5 Tracking Data Distribution over Trials

In Fig. 3.16 we show the analysis of the Bayesian change point algorithm on a data set in which

habituation occurs. The data corresponds to 60dB SPL which has in general a comfortable loudness

perception. The likelihoods of the set of states in time (sample times) allow us to track the temporal

changes in the mean and concentration of the phase data. In this study we are particularly interested

in the changes in concentration over trials as an indicator of the degree of attention allocated to

the sensory stimulus. The correspnding marginal distrbution of concentration parameter over the

samples is shown in part B. Every state number (here it is between 1 and 20) corresponds to a

different concentration values distributed logarithmically between [0,63]. In C the likelihood of the

discrete state space at four sample times corresponds to samples from the beginning, middle and

end of the experiment. The concentration intensity drops significantly at the end of the experiment

in relation to its initial value at the beginning of the experiment.

The effect of habituation between different subjects is variable. For additional clarity, in Fig. 3.17, we

illustrate the expected value of concentration at different stimuli intensities along with the individual

temporal changes in concentration for three different subjects. The results of three different subjects

in Fig. 3.17 show the change process in the concentration states of phase data over all trials at a

specific time t = 97ms at different stimulus levels. The marginal likelihoods of the concentration

parameter illustrate the detected changes in the phase synchronization. The results of 60 dB SPL in

subject 1-(A,B) present a gradual diffusion in phase synchronization, whereas in 70dB SPL (C,D),

the degree of phase cluster on average is low and contains many cyclic changes. For 80dB SPL and

90dB SPL (E-F) and (G-H) respectively, the phase clustering remains relatively high throughout the

experiment before undergoing significant state transitions. This is particularly evident in the case
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Figure 3.16: (A): The data corresponds to the phase information of auditory ERPs over trials for
a long term habituation. (B) The marginal likelihood of the concentration parameter
over trials has been shown. (C) The individual likelihood values of the discrete
state space at four different samples has been shown. The first state-space likelihood
corresponds to the fifth sample (beginning of the experiment) up to the sample 480
at the end of the experiment. The estimated concentration at the begnning of the
experiment is high (reflecting a high binding of attention) and decreases significantly
towards the end of the experiment (lower binding of attention).

of 90dB SPL in which a significant change occurs around the sample 510. The averaged results of

the concentration at different times suggest that the level of phase diffusion for higher stimuli levels

such as 80dB SPL and 90dB SPL is relatively lower. This indicates a stronger attention-binding to

the stimulus because of the subjective unpleasant perception of the stimulus.

The same explanation applies to the other two subjects in Fig. 3.17. We explain the findings as fol-

lows: The detected change in the concentration states of 60dB SPL and 70dB SPL in subject 2-(A,B)

and (C,D) tends to fluctuate rapidly between lower-concentration states. The average expected value

of the concentration at these two stimuli are very low and contain little structural synchronization.

The diffused phase information throughout the experiment indicates a low attention-binding to the

stimulus. In the case of 80dB SPL phase samples are uniformly distributed for the first 410ms and

then followed by a higher degree synchronization, that is closely reflected in the fitted concentration

states. In the last subject in Fig. 3.17, a same type of explanation regarding phase modulations can

be applied.
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Figure 3.17: The plots in box [1] and [2] and [3] correspond to the results of three different subjects.
Plots (A) to (H) for every box correspond to the forward-backward results of the
concentration likelihood over trials at different stimuli. Part I is the expected value
of concentration for data at different times t. Based on the magnitude of the expected
value of the concentration parameter at different times as shown in part I for every
subject, we are able to distinguish between different stimuli.
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3.3.6 Average Concentration For Different Auditory Stimulations

The objective of this study is to evaluate the degree of habituation using the IP of ERPs induced

at the different stimuli of 60dB SPL, 70dB SPL, 80dB SPL and 90dB SPL. To do this, we use a

Bayesian model to track the changes in the underlying concentration in the instantaneous phase

information of ERPs. In addition we use verbal responses from participants about the loudness of

different stimuli. This knowledge was used to validate the conclusion that the relation between the

objective measure and the loudness scale at different stimuli.

Despite the high variability among subjects with regard to changes in the concentration states

(see Fig. 3.17), the average concentration results in Fig. 3.18 suggests that as the loudness level

increases, it is highly probable that the degree of phase synchronization increases as well. To validate

the obtained results, we compare the averaged concentration against the average verbal responses

of the participants regarding their perception of the sounds. As shown in Fig. 3.18 (b), as stimuli

level increases, the intensity of the loudness perception increases as well. This is consistent with the

studies conducted by Hood and Poole (1966) and Stephens and Anderson (1971) , that the stimuli

between 90dB SPL to 100dB SPL is considered uncomfortably loud in normal hearing subjects.

Furthermore we applied a one way ANOVA test over different stimulus levels across all subjects and

found out that we can reliably distinguish between the 60dB SPL and 90dB SPL using the average

of the expected concentration at a significance level of 5% with p = 0.0101(F = 7.37).
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Figure 3.18: (a): The average expected concentration over all subjects at different stimuli levels.
(b) The average loudness perception for all subjects at different stimuli. The loudness
perception y-axis is defined as NH: Not heard, THR: Threshold, VS: very soft, S: Soft,
CBS: comfortable but soft, CL: comfortable loud, L: loud, UL: upper level, TL: too
loud.

In Chapter 4, we further discuss the effectiveness of the algorithm by applying it on different data.

Other statistical tests are conducted to better understand classification between different stimulation

groups. Major limitations in this study are also discussed fully in Chapter 4.
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3.4 Removal of Spurious Phase Variations in Ongoing EEG

Signals

The initial results of this section has been published in Mortezapouraghdam et al.

(2018); Mortezapouraghdam and Strauss (2017). The application part of the study (Mapping

the Effect of Selective Attention between Ongoing EEG Activities and Averaged ERPs by means of

Instantaneous Phase Information, 2019) is in preparation for submission to the journal of IEEE

transactions on Neural Systems and Rehabilitation Engineering. The study corresponds to the study

in section 2.4.

3.4.1 Validation of Model on Synthetic Data

In Fig. 3.19, we show an example of an amplitude modulated signal with a phase reset at the time

step t = 2.18s. The signal has been generated according to

X(t) =


[
cos(ω0t)

2 + ε
]

cos(ω1t) if t < u[
cos(ω0t)

2 + ε
]

cos(ω1t+ π) otherwise

. (3.3)

The signal generated after the time step u is shifted for π, hence the time step u is the actual change

point. The parameters ω0 and ω1 have different frequencies, such that one of them corresponds

to the generation of a lower amplitude signal. The shift after the time step u will lead to a phase

reset that is related to the signal and we are interested to track this change over time. The other

phase jitters which we aim to remove correspond to the the low envelope of the signal. Fig. 3.19(b)

shows the estimated phase before and after applying the KS. Before applying KS, there are two

phase jitters due to the low envelope and the actual shift in the signal. After applying the KS, the

jitter corresponding to the low envelope has been diminished. In addition, the standard deviation of

the estimated phase is an indicator for the degree of reliability of the phase jitter. A low standard

deviation in the estimated signal phase indicates that it is less likely that the phase variation is due

to the low envelope, whereas a high standard deviation indicates a higher likelihood that the phase

variation has been generated due to noise. The details of the standard deviation estimation has been

given in Appendix.G. In this example, the standard deviation from the sample t = 300 increases,

indicating a high uncertainty due to the artificial phase reset.

To assess the accuracy of the model, we generated 500 synthetic data-series with different levels of

added noise and random shifts in the signal. For every number of change points n, we randomly

shift the signal at n random time steps u between π
8 and 7π

8 . This generates n instances at which

the signal has been shifted, and the other phase variations correspond to either the noise or low

envelope of the signal (see Fig. 3.19).

We apply a KS to remove the noisy variations in the signal. To get an estimate of how reliably
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Figure 3.19: (A): An example of an oscillatory signal which contains a low envelope. The signal
length is about 2s. The vertical lines show the actual shifts in the signal which are
random. (B): The phase after removing the line corresponding to the center frequency
before and after applying a Kalman smoother (KS). (C) The detected changes in r(t)
without any smoothing have been plotted. (D) The detected changes in r(t) after
applying KS.

the change points have been removed, we apply a change point algorithm to detect the time steps

at which the mean of the signal has been significantly altered 1. The detected time instances are

recorded as the estimated significant change points before and after applying KS (See Fig. 3.19). If

the difference of the estimated change points and the actual random change points are less than 10

samples, the estimated change point is assumed to be correct (true positive, TP). However, if the

difference is larger than the determined threshold, the data point has been falsely recognized as a

change point (and is referred to false positive, FP). If the change point algorithm fails to detect the

actual change point, then the point is referred to as false negative, FN.

In Fig. 3.20, the average number of false positives (fp) and false negatives (fn) for different number

of change points have been plotted. For every number of change points n, we generated 2000 batches

of data with different levels of noise and reported the average number of FN and FP. After applying

KS, the average number of FPs is significantly reduced. However, the case with no filtering yields

very unstable results as the noise level increases. The average false negatives is however lower for

the case that we apply no smoothing compared to results after KS. This is mainly due to the fact

that more random changes are detected in the pre-smoothing condition. Therefore, as many indices

will be assigned correctly as change points, satisfying the minimum distance criteria. In the case of

smoothing, the overlap of a change point and low envelope can cause an increase in the number of

1The function findchangepts in MATLAB using the mean returns the time instances at which the mean of the
data changes abruptly.
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Figure 3.20: Average number of false positives and false negatives for 2000 batch of synthetic
time-series signals with length of 1500 samples. The number of actual changes in the
signal are indicated as n and results are shown for an increasing SNR.
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Figure 3.21: The average Matthews correlation coefficient for different number of SNRs and dif-
ferent number of change points.

detected false negatives.

Using the measured rates of false negatives and positives, we computed the Matthews correlation

coefficient, MCC. MCC takes the number of false/true positive/negatives and returns a correlation

coefficient between the observed and predicted binary classifier. It is computed as

MCC =
TP.TN − FP.FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (3.4)

A coefficient of +1 indicates a perfect prediction (i.e., in our case a perfect detection of change

points at the correct indices), zero indicates no better than random assignment of change points

and a coefficient of -1 means a complete disagreement between the predicted change points and the

actual ones. Fig. 3.21 shows the average MCC for different SNRs for varying change points n. The

MCC significantly decreases as the SNR increases (and noise level decreases), indicating a random

assignment of change points. This is also consistent with the average results of falsely detected

change points. As the number of falsely detected change points increases, we have a more random

assignment of change points. This is however not the case for the post-KS condition. The higher

average of MCC indicates a significant improvement in the accuracy of detected change points.
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Figure 3.22: (A): Synthetic EEG signal generated at a fs=250Hz with a SNR of 0.11 (high noise
variance) bandpassed at fc=7.6Hz. Different noise amplitudes have been used for
the two examples. The instantaneous envelope (IE) has been plotted with red boxes
showing the regions with a low envelope below 0.2. In the last plot the resulting r(t)
has been plotted for the smoothed (red) and non-smoothed (green) signal. The red
regions show the effect of the smoothing on the regions with a low IE. (B): Same
description as in (A) applies to (B) with a SNR of 0.13.

Applying KS on Additional Synthetic Data

In this section we generate additional synthetic signals for testing the effect of spurious phase vari-

ations. The synthetic signals are generated as a superposition of sinusoidal signals and noise with

different amplitudes 2. The signals has been narrow-bandpassed using a FIR filter to a center fre-

quency of 7.6Hz. The goal is to analyze the effect of the KS on removing the spurious phase variation

for regions where the envelope is low. In this case, we considered the IP of signal corresponding to

envelopes below 0.2 to be noise, and therefore need to be removed.

In Fig. 3.22 and Fig. 3.23 we show different examples of synthetic EEG signals where at some

instances the corresponding envelope of the band-passed signal approaches zero. The regions corre-

sponding to the low envelope has been illustrated in a red box. We show how applying the method

with proper set of parameters can remove the spurious changes in the IP of the signal. The main

incentive is to remove the spurious variations in r(t). As we are considering the phase information

2The code for generating the signals has been mainly used from https://github.com/pchrapka/phasereset with
slight variation
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Figure 3.23: (A): Synthetic EEG signal generated at a fs=250Hz with a SNR of 0.43 bandpassed at
fc=7.6Hz. The instantaneous envelope (IE) has been plotted with red boxes showing
the regions with a low envelope below 0.2. In the last plot the resulting r(t) has been
plotted for the smoothed (red) and non-smoothed (green) signal. The red regions
show the effect of the smoothing on the regions with a low IE. (B): Same description
as in (A) applies to (B) with a SNR of 0.047.

in a narrow-bandpass, we are required to filter the data accordingly. In chapter 4, section 4.4.1 we

describe in more detail on the choices of parameter setting.

3.5 Analysis of IP of Ongoing EEG Measurements

In section 3.4.1, we describe the validation of the proposed model on synthetic data. In the following

sections, we study the effect of selective attention on ongoing EEG oscillations as well as how the

proposed approach can be incorporated for a more reliable study of measured data.

3.5.1 Filtering procedure & IP Extraction

The measured electrical activities from the right and left mastoids are bandpass-filtered between

1-70Hz. As described in section 2.2.1, to obtain the IP, there are two main steps. First, the signal is
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narrow-bandpassed and secondly, the IP of the narrow-bandpassed signal is estimated. We compute

the IP using the analytic form of the signal with the Hilbert transformation. To have a meaningful

interpretation of the IP, the signal is narrow-bandpassed around a certain center frequency of interest.

A zero-phase forward backward IIR elliptic filter is used to narrow-bandpass the signal. As noted in

Seraj and Sameni (2017), an IIR filter requires a much lower order than a FIR filter and a zero-phase

forward backward ensures a zero-phase distortion.

In Sameni and Seraj (2017); Seraj and Sameni (2017), it is shown that slight variations to the filter

parameters in filtering process can lead to variations in IP and IF response. The reasons for phase

slipping effect has been thoroughly discussed in section 2.4.1 and Seraj and Sameni (2017); Sameni

and Seraj (2017). Therefore, a robust estimation method that estimates the IP from the average

ensemble of infinitesimal perturbations to the filter parameters is presented by Seraj and Sameni

(2017).

To estimate the IP, we apply a narrow-bandpass filter with slight variations in the frequency range

for M = 100 iterations. At every iteration, filter parameters are as follows: the filter order is 6, the

reduction in the stop-band is 50dB and the ripple-passband is 0.01 (the changes are very small that

the effect is irrelevant for study of most physiological effects). The other set of parameters is selected

based on quantifying the level of selective attention in attended and non-attended cases which is

described in section 3.5.3. These parameters are the frequency and filter’s bandwidth. The set of

center-frequencies that have been tested are fc = (6.8, 7, 7.4, 7.6)Hz and the set of bandwidths are

bw = (0.1, 0.25, 0.4, 0.5). At every iteration i, the IP is computed for different parameter settings

fc, bw and KS factors. The KS factor is explained in the next section.

3.5.2 Setting of KS factors

The main parameters in KS are σ and α and determine the degree to which we can rely on the

measurements. The lower the factor, the lesser the trust we put on the measurements; therefore the

effect of the model prediction in computing the phase is higher. In other words, the factor is an

indicator of the noise level in the data (SNR).

The effect of various KS factors is shown in Fig. 3.24 in a segment of EEG data. The signal is first

band-passed at a center frequency of 7Hz and plotted in Fig. 3.24(b) along with the envelope of the

signal. The envelope approaches near zero at some time samples, resulting in abrupt change points

in the residual that are plotted in (c). The gray lines are the residuals corresponding to filters with

different parameters that are slightly perturbed. In most cases, the residuals contain many abrupt

jumps due to low envelope values. The black line in Fig. 3.24 (c) is the residual after applying KS.

To have a better view of how KS removes the spurious phase variations, the IF is plotted in (d,e,f).

In (e) the IF of one of filters has been plotted. The comparison between the IF after applying KS

and before KS has been shown in (f).

The way we assign the parameters α and σ for measurements is as follows: We set X̂t to be the
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average over all M filters as described in section 3.5.1. We estimate α using the variance of X̂t over

different filter parameters. The parameter σ is estimated as β times the variance of X̂t − eiω0X̂t−1

where β is a free parameter that controls the degree we rely on the measurements over the predictions.

Similar to section 3.5.1, we search for a range of β values that would maximize the difference between

the attended and non-attended channels in our study. The β parameter range that we choose is

between 1e−4 and 100 and equally spaced into 150 values.

3.5.3 Quantification of Attentional Effort In Experimental Setting

After applying KS, we quantify the degree of attentional effort using a measure obtained

from Corona-Strauss and Strauss (2017). The measure is

Λ ∝ 1− e−TR
2

(3.5)

where R is the resultant mean vector length of IP samples and T is the total number of samples

in the signal. The measure maps the resultant vector length R to an exponential function that is

bounded between 0 and 1. A high value of Λ indicates a higher attentional effort. The objective

is to determine the level of attentional effort between the attending and non-attending conditions

using the ongoing EEG.

3.5.4 Optimization of Filter and KS Parameters

We therefore apply the measure in Eq.3.5 for the extracted IP information of ongoing EEG signals

with different parameter settings of bw, fc and β. We select the settings that maximally distinguish

between the attending and non-attending ongoing EEG signals for the cases of (attLipsi vs. IgnLipsi)

and (attRipsi vs. IgnRipsi). The setting attLipsi corresponds to the electrode located on the same

side as the stimulus arrival. This is compared against IgnLipsi, the case of non-attendance. For

consistency, we measure ongoing activities from the same side as in attLipsi. Similar explanation is

given for comparing attRipsi versus IgnRipsi, measures taken from the right side. In the following

algorithm (algorithm 2), the main steps of optimization process are written. The set of parame-

ters that maximized the difference between the attending and non-attending cases are included in

Table.3.2.

In Fig. 3.25, the averaged Λ for different signal lengths is shown. The results show a higher Λ in the

case of attending condition compared to the non-attending case. More explanations regarding the

effect of selective attention and the mapping of segmented ERP onto ongoing EEG is described in

chapter 4.
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Figure 3.24: (a): A 60 seconds segment of measured EEG data. (b): Data has been narrow band-
passed with a center frequency of 7Hz. The envelope of the analytic band-passed
signal has been plotted in red. (c): The residual of IP before and after applying KS
has been shown. The term conventional corresponds to the filtered signals without
any KS processing. As described previously, for every filter, a slight perturbation has
been applied to the data. (d): The IF of the smoothed data. (e,f): Comparing the
IF after and before applying KS. The changes in regard to low envelopes in (b) can
be observed as fewer abrupt changes after applying KS.
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Figure 3.25: Average value of Λ over all subjects for different lengths. The terms attL/attRipsi
correspond to the same side as the stimulus. The conditions IgnR/IgnLipsi corre-
spond to non-attending case.

Input:
X ∈ R1×T : Time series to be analyzed
M : Total number of filters
{filterorder, rp, sb} : Filter parameters such as filter order, ripple passband and stop-band.
bw : Filter bandwidth
fc : center frequency
β : Kalman smoother factor
Output:
µ1:T : Estimated signal
V1:T : Estimated variance
for j = 1 to M do
xj = filter(X, filterorder, rp, sb, bw, fc, β)
yj = HT (xj), Apply Hilbert Transform

end for
Y = [y1,y2, · · · ,yM ],Y ∈ RM×T
ŷ = mean((Y )), ŷ ∈ R1×T

µ = Kalman− Smoother(ŷ)
Λ(µ), Compute the Selective Attention Measure

Algorithm 2: The main procedures for applying the Kalman smoother algorithm. The Kalman-
Smoother corresponds to the function defined in Alg.1, filter corresponds to any suitable filtering
procedure given the filter parameters.

fc(Hz) bw β

attLipsi,IgnLipsi 7 0.4 69.28

attRipsi,IgnRipsi 7 0.4 67.07

Table 3.2: The set of parameter values that maximize the differences between the attending and
non-attending cases.
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3.6 Relating AER to Laminar Phase Dynamics

As described in Chapter 2, section 2.5, we are interested in understanding the mapping between

thalamo-cortical layers with the measured AERs. A better understanding of the projections of

the cortical neural activities onto the late auditory ERPs can enhance our understanding of the

underlying neural circuitries responsible for the generation of AERs, as well as experimental utility.

The results of this study have been published in Mortezapouraghdam et al. (2015b).

3.6.1 Data Processing

To remove unwanted frequencies, we apply a bandpass FIR filter with 500 taps to the recorded raw

LFP data for all electrode measurements ei, i = 1, . . . , 10. We apply a bandpass filter of 2 Hz -

100 Hz for our further analysis. In our case, we applied additional filtering to remove frequencies of

50 Hz and its harmonics using a notch filter. This was necessary because our measurement setup

introduced high noise levels at this specific frequency.

For more efficient processing, we subsequently down-sampled the data to two times the high cut-off

frequency of the bandpass filter (200 Hz). Note that no information is lost in this step, according

to the Nyquist-Shannon sampling theorem. We then segment the signal into trials of 1.5 seconds

post-stimulus with respect to the trigger signal. Given the new sampling frequency of 200Hz, we

obtain T = 300 samples per trial. For a given subject, we denote the trials as qTk ∈ RT for every

trial k = 1, . . .N. We represent the N × T ERP image as Q = (q1, . . . , qN )
T

where qk ∈ RT is the

band-passed filtered post-stimulus trial k that appear as a row in the matrix.

In Fig. 3.26 we show the average over all trials at every electrode for different cortical layers as

well as the averaged auditory ERPs. We show the activities for the first 300ms. The blue region

correspond to the regions where the peak latency occurs about 35ms ∼ 40ms post-stimulus for

the measurements at the TN up to ALR. The first two post-stimulus peaks for averaged ALRs are

observed at 20ms (positive voltage) and 45ms (negative voltage) post-stimulus.

To compute the IP of the band-filtered trials qk ∈ RT , k = 1, . . . , N we employ a continuous

wavelet transform. The wavelet coefficients are computed as ωk,b := 〈qk, ψab 〉L2 , b = 1, . . . , T , where

ψ ∈ L2(R) is the wavelet function with a ∈ R, a 6= 0 being the scale parameter. The wavelet scales

are selected such that we adequately sample from the full signal frequency band. Specifically, we

selected 40 scales such that the corresponding wavelet pseudo-frequencies lie in the boundaries of

[f1, f2], where f1 and f2 are slightly below and above the bandpass filter cut-offs of 2Hz and 100Hz

respectively. The 40 scales are spaced logarithmically within these bounds.

By applying the wavelet transformation (see chapter 2, section 2.2.3) over the range of different

scales and discretized translations bm(m = 1, 2, . . . , T ), we obtain the complex entries of ωk,b =

Re(ωk,b) + iIm(ωk,b) = |ωk,b| exp(ipk,b) for every scale a. The phase information for every electrode

ei at different scales (corresponding to frequencies between f1 and f2) is denoted as a N ×T matrix
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Figure 3.26: The average results over all post-stimulus recordings for electrodes from the thalamic
nuclei (TN) to the averaged ALR. The electrodes e1 to e8 correspond to the electrodes
inserted from the infra-granular layer up to the supra-granular layer. The first peak
latency for recordings TN to e8 are at 35ms ∼ 40ms post-stimulus. The first two
peaks of ALR occur at 20ms and 45ms post-stimulus. The results are smoothed with
a Gaussian filter of size 5.

P = (p1,p2, · · · ,pN )
T

, where pk is a row vector corresponding to trial k. Furthermore, we applied

a variational denoising phase algorithm for every two dimensional phase matrix (Bergmann et al.,

2014). For more information see (Bergmann et al., 2014).

3.6.2 Interaction Between Cortical Layers and AERs Using MI

In Fig. 3.27 we show the MI between cortical layers (excluding e0 and e9) at different frequency

domains for one of the measurements. The frequency ranges are divided as follow: the delta band

corresponds to the range of frequencies below 4 Hz. The theta band correspond to the range of

frequencies between 4 and 7 Hz. The alpha frequency is between 7.5 and 12Hz. The beta band is

divided into the lower, middle and higher rhythms, corresponding to 12.5 - 16, 16.5 - 20 and 16.5 to

20 Hz respectively. Frequencies above 30Hz are considered in the gamma band. The averaged results

in Fig. 3.28 over all measurements at seven distinct frequency domains are also shown. The average

results over the nine subjects indicate the existence of a high level information sharing at lower

frequency domains (i.e., ¡7.5 Hz). Results are consistent with previously reported studies of Kayser

et al. (2009) at lower frequency domains. We also examined the MI between electrode pairs that are

located next to each other I
(
P ei ,P ei+1

)
. Fig. 3.30 shows the maximum MI between electrode pairs

at every frequency domain. The MI was computed at different delays between pairs of electrodes

and the maximum existent MI has been used for illustration. As the location of electrodes are not

specifically determined, we refer to the results with respect to likely infra/supra-granular regions.

We speculate on the results as follows: The pair of electrodes at the supragranular layer are expected

to show a high level of MI when computed to one another due to the flow of information from the

granular layer and thalamic input. This is mainly the case for layer II and III. The thalamic input

to layer VI and projection from supragranular layer to infragranular layers V and VI leads to a high

information sharing at this region.
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infragranular layers (i.e., e1) at different frequency domains. The frequencies are
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Figure 3.28: The average MI between electrode pairs at different frequency domains. Same
exaplaination applies as in Fig.3.27.

To investigate the relation between the AERs and other cortical layers, we computed the average

mutual information values over nine subjects at different frequency bands. Fig. 3.29 shows the MI

among different electrodes. The pattern clearly suggests a significant level of dependency between

the granular layer, supragranular layer with the measured AERs at different frequency domains.

The distribution of MI between AERs and the granular layer appears to be highly correlated and

repeated across different frequency domains (Delta, Theta rhythms).
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Chapter 4

Discussions & Limitations

In this section, we discuss the results, limitations and future works regarding the studies presented

in chapter 3, section 3.1.

4.1 Tracking Changes in Long-term Habituation Over Trials

In the study presented in section 3.1, the time–course behavior in the concentration of simulated

data (see Fig. 3.2) is related to the reduction of the CA1 integration time window (as in the phys-

iological data of (Vinogradova, 2001)) and is a function of the number of subsequent stimuli. It

is simulated using weakly coupled oscillators; see (Haab et al., 2011) for details. Thereafter, the

temporal reduction of the integration time window, and thus the reduction of excitatory influence to

the thalamus, is fitted with a sigmoidal function. We use this sigmoidal function in thalamocortical

interaction model to simulate decreasing excitatory effects to the thalamocortical (G1) gain ((Haab

et al., 2011)). No actual ERP data is used for fitting the limbic influence onto the thalamocortical

circuitry. As Vinogradova (2001) invasively measured the spiking activity in the hippocampus of the

cat, we observe a different slope behavior in the non–invasively recorded human habituation data,

with the consequence of different time scales for small– and large–scale habituation. This result of

two coexisting habituation timescales is consistent with Mutschler et al. (2010), hinting towards a

hierarchical organized network of stimulus processing. The simulated habituation time–course bears

a greater similarity to the reduction of the CA1 integration time window, as we largely neglect

individual noise effects, such as, e.g., the voluntary shift of attention away from the target stimulus.

The effect that we observe for habituation and non–habituation is consistent with the attention–

load hypothesis by Lavie (1995, 2000). Our model is able to predict experimental trends in ERPs

of saliently aversive and neutral stimuli. Furthermore, a parallel study examines the applicability
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of the models predictions on medical conditions involving pathologic attentional binding, such as

tinnitus.

The averaged estimated concentration results for the experimental data in Fig. 3.3 resulting from

a 50dB(SPL) stimuli tend to be low and have a decreasing trend. The same effect is observed for

the simulated data in Fig. 3.2. This is in contrast to 100dB(SPL) responses where the estimated

concentration remains at a high level. To test the relation between changes in the estimated concen-

tration value over trials for measured habituation and non-habituation data, we conduct a two-way

ANOVA test. The chosen factors in our ANOVA study are the segments and conditions of the

experiment (habituation and non-habituation). We want to understand the following cases: (a)-

Does the distinction between habituation (50dB SPL) and non-habituation (100dB SPL) influence

how the concentration between data segments changes? (b)- Do different segments have significantly

different concentration values?

We compute the concentration values for each segment by fitting a von Mises model to both the

50dB and the 100dB case of all 10 subjects. We use a segment size of Q = 200 trials with q = 0 giving

four segments. Since we are interested in how the concentration changes over trials rather than in its

absolute value, we normalize each segment’s concentration by dividing it by the concentration of the

last segment for each given subject and habituation/non-habituation case independently. Since the

last segment now always has a relative concentration of 1, we discard it for the ANOVA test, leaving

three segments to consider. The two-way ANOVA test yields the following results: The first null

hypothesis that the mean relative concentrations are equal for 50 dB and 100 dB is highly unlikely

to explain the observed data at p = 1.9× 10−5 (F = 21.98). The second null hypothesis that mean

relative concentrations are equal across the first three segments has a very low likelihood as well

with p = 0.027 (F = 3.83). At a significance level of 5%, we can confidently reject both of these

hypotheses. Finally, the null hypothesis that there is no interaction between the two factors is also

unlikely to explain the data, though at a weaker p = 0.051(F = 3.14). The results of the two-way

ANOVA support the findings in Fig. 3.3.

The confidence interval of the estimated parameters contains information about the precision of the

fitted parameters. It could be related to how accurate the data variations are fitted to the model.

The large CI in the case of habituation can be explained in terms of changes in the data modality

over the trials. The phase information at the early segments is highly dense around the mean, having

a pdf of Gaussian shape. A von Mises model can model such data accurately as it is similar to a

Gaussian pdf and shares its unimodality property, whereas in the consequent segments, as phase

diffuses, the von Mises model is no longer able to fit the data accurately.

The higher variations in CI of the non-habituation data can be interpreted in Fig. 3.3. Although

the estimated concentration is significantly higher and its trend can be clearly distinguished from

the habituation process, it does not follow a constant trend. From segments 60 to 80, the average

concentration and the standard deviation of the estimated parameters slightly increase. There can
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be numerous reasons that lead to such variations in the concentration parameter. One of them is

the individual’s variable response to an aversive stimulus. In the case of bimodal data, one single

model may not completely explain the dynamics of the data .

4.1.1 Limitations:

As discussed previously, in the case of habituation, as the phase begins to diffuse in later segments,

the data becomes more spread out on a unit circle. The distribution of the data has more heavy–

tails. It has been previously reported that in cases of heavy–tailed or peaky pdfs, a wrapped Cauchy

model can often fit data more accurately than a von Mises model(Vo and Oraintara, 2010). The

improvement of results using a wrapped Cauchy model was not investigated in this study.

We investigate the multi-modality of the data by fitting a mixture of two von-Mises models. Under

the assumption that the data Θ = {θ1, θ2, · · · , θT } is i.i.d, we assume that the data comes from a

mixture of two von-Mises distributions, each given by

f (θ, µ, κ) =
1

2πI0 (κ)
exp{κ cos(θ − µ)}, (4.1)

with 0 ≤ θ ≤ 2π, 0 ≤ κ, 0 ≤ µ ≤ 2π. We assume that with a probability of p1, a data point was

drawn from the distribution f1, and with a probability of p2 from f2. The likelihood of data samples

is hence given by L =
∏T
i=1 p1f1(θi) + p2f2(θi), where 0 ≤ pj ≤ 1 and p1 + p2 = 1.

The mixture of two von-Mises distributions can be extended up to any arbitrary number of underlying

von-Mises distributions. Given the mixture of two von-Mises distributions, we want to maximize the

log of the likelihood function with respect to the parameters µ and κ. The log-likelihood function is

given by:

l =

T∑
i=1

log[p1f1(θi) + p2f2(θi)] (4.2)

The optimized parameters are taken form the study in Banerjee et al. (2005), where the Expectation

Maximization approach is used to estimate the parameters µ and κ. We therefore use the optimized

µ and κ from (Banerjee et al., 2005) to study the fit of two von-Mises distributions to the data. In

Fig. 4.1 we plot the resulting fitted model for all subjects.

The results obtained in Fig. 4.1 suggest that the changes in modalities between the soft and aversive

stimuli are different. This can better be shown in the case of a soft stimulus of 50dB SPL, where

data distribution undergoes more changes. In Fig. 4.2 we plot the changes in the IP information

over different segments. Different colors correspond to the samples assigned to either f1 or f2.

The observations regarding the model fittings in Fig. 4.1 and Fig. 4.2 illustrate that the changes

in the aversive stimulus are more or less unimodal. However, there can be changes over the trials

during the stimulus exposure. The changes are however more relevant and observable in the case of
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Figure 4.1: In (a) and (b) we show the fitted mixture of two von-Mises distributions for all subjects.

a soft stimulus. A better fit of a better fitting model to the data should be further investigated in

related future studies.

Moreover, it must be noted that the neurofunctional model used for data–generation is a simplified

model for describing attention–regulation. The physiological parameters used for the simulations

are randomly taken from a set of physiological variables, such as, e.g., axon length and axonal

velocity. The modeling results thus match the experimental group behavior but can hardly match

single ERP dynamics, as those parameters are unidentifiable in the individual patient. In addition,

due to unspecified background activities in the data, the outcomes in Fig. 3.3 are subject to more

noise than the simulated data as in Fig. 3.2.

Another limitation of the current approach is determining the optimal window size for observing

meaningful changes in the long-term habituation process. More precisely, the choice of the window

size can be important in understanding the behavior of data in long-term. When the window

size is too small, we end up over-fitting the data leading to high fluctuations in the concentration

parameter in the time-course of data. A coarse window-size leads to a loss of time precision, makes

it impossible to detect the exact time at which a change in the underlying data distribution occurs.

This has been demonstrated in Fig. 4.3. It shows an example of habituation data and how incorrect

windowing choice can misrepresent data behavior. In general, the method lacks the ability to detect

gradual changes in the habituation process with a high temporal precision. In addition, it does not
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Figure 4.2: In (a) and (b) we show the changes in the IP of assigned data samples for one subject
fitted with a mixture of two von-Mises distributions. The two different colors, black
and red, correspond to data samples assigned to models f1 or f2.

incorporate our prior knowledge of long-habituation process in attentional circuits into the model

that makes the results more robust against noise. This is the main motivation for applying different

approaches which takes into account our prior knowledge of habituation and make the model more

robust and precise in terms of detecting significant phase changes.

Furthermore, one of the main areas that is considered for future studies is the enhancement of

results by studying the distortion effects of 2D filtering to the phase information. More specifically,

the analysis of how noise–models translate from time–domain to phase can help us in developing

sophisticated denoising procedures to reveal the systematic effect of habituation and non–habituation

more reliably.

4.2 From the Abrupt CPM to Continuous Detection of

Changes

Because of the limitations in our primary study, we applied a different method with higher temporal

precision for detecting the changes in the signal. We aim to learn about measures that rely on

the neural correlates of selective-attention and distinguish between the two states of long-term

habituation and its absence with a high temporal-resolution. Therefore, the problem was modeled
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Figure 4.3: The subplots (A), (B), (C), (D) present the maximum likelihood estimate of the con-
centration over different window sizes. As illustrated, large window sizes provide stable
results, but exact temporal information is lost and changes are difficult to detect pre-
cisely.On the other hans, a small window size tends to over-fit the data, and is sensitive
to noise. In (F) we show the results of our forward-backward Bayesian model for data
(E). The plot shows the likelihood of different concentration parameters in an under-
lying von Mises model at each sample. Note that at the later samples the likelihood
of low phase concentration increases.

as a binary setting and the two main states are the presence and absence of a habituation over the

experimental trials.

The abrupt change point models that were presented in Adams and MacKay (2007); Paquet (2007)

were adapted for the detection of habituation in the data. The results of an abrupt change point

model in section 2.3.3.2 fitted to the measurements corresponding to neural correlates of 50dB SPL

and 100dB SPL stimulations were presented in Fig. 3.2.2. The main motive is to create a model

that is able to detect one significant change point (i.e., a point) such that the data’s statistics after

this point significantly change. There are, however, complications in training a universal model for

detecting such abrupt changes. One of the problems is determining the expected time at which

habituation occurs. As the stimuli differences between 50dB SPL and 100dB SPL in terms of the

level of hearing-comfort are large, we can expect an earlier habituation occurrence in 50dB SPL than

in 100dB SPL. In 100dB SPL, the aversive intensity prohibits an early habituation whereas in 50dB

SPL, we expect to observe habituation after the first few hundred trials, hence, for a 50 dB SPL a

significant change is expected in the IP distribution (see Fig. 4.4).
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Figure 4.4: In the ACP approach, we search for a sample time that the underlying generative model
is significantly changed. In this example (A) at about sample 400, data illustrates the
effect of habituation. In the second data example (B), there is no significant change
point.

The measurements suggest that the timing of long-term habituation is a highly variable factor,

particularly in the 50dB SPL neural activities. We could obtain several change points in the run-

length, and as they might not be near each other, it is difficult to determine an actual valid trial

number that represents the presence of habituation. Therefore, we enforced the model to contain

only one significant change point to increase the distinction between the two different stimuli in

term of extracted features by applying a small hazard rate. The hazard rate of H = 9.8e−12 is

chosen empirically and the maximum and averaged run-lengths are selected to analyze the results

(See Fig. 3.10 and the corresponding ANOVA test results).

The changes in the run-length are extracted using a Viterbi algorithm that computes the most

likely state sequence of run-lengths. The details on the algorithm has been explained in section

2.3.3. Considering the most likely state sequences in the aversive stimulus, the run-length is on

average higher for aversive stimulus (100dB SPL) than the soft stimulus (50dB SPL). This indicates

the presence of a change point at earlier trials in the case of 50dB SPL than in 100dB SPL. The

run-length changes more rapidly if a small hazard rate is applied.

4.2.1 Limitation With Abrupt Definition of Changes

One of the main difficulties with the ACP model is determining a meaningful time range in which

habituation occurs. Although the model detects time at which concentration of data significantly

changes, this partially depends on the enforcement of a small hazard rate. In addition, the dis-

crimination between the 50dB SPL and 100dB SPL tones based on the run-length feature is not

difficult. With a 100dB SPL stimulus, we expect to have an increasing run-length over the samples

as the level of attentional binding stays the same throughout the experiment. With 50dB SPL, it is

expected to have more variations in the run-length parameter. Exploring the run-length differences

between stimulations that are not significantly distinguishable in terms of loudness (as an example

50dB SPL vs. 60dB SPL) is a more challenging task. This was detected for the two cases of 60 and

70dB SPL. It becomes difficult to interpret the changes in the run-length sequence based on different

choices of the hazard rate. As more stimuli are added, setting the model parameters become more
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difficult. In addition, when the expected number of changes is unknown, it is difficult to optimally

detect all meaningful change points as the success of model heavily depends on a proper choice of

prior change point (Adams and MacKay, 2007).

4.3 Continuous Definition of Long-term Habituation and

Tracking The Changes

Due to some of the limitations discussed in section 4.2.1, we adopted a different approach to detect

the changes in neural correlates of selective attention at different stimuli. As described in section

1.3.3, the drift in attention in long-term habituation is a gradual process. Therefore, instead of

using an abrupt change point model, we use a gradual change point model that is able to capture

the slow changes in long-term habituation. This way, we aim to classify between different stimuli

that are not significantly distinguishable in terms of loudness. We propose a Bayesian change point

model as described in section 2.3.4 for tracking the overall gradual changes in the neural correlates

of selective attention. The objective of this study is to evaluate the degree of habituation effect

using the IP of ERPs induced at different stimuli: of 60dB SPL, 70dB SPL, 80dB SPL and 90dB

SPL. We use a Bayesian model to track the changes in the underlying concentration parameter of IP.

In addition, we use the verbal responses of the participants about the loudness of different stimuli.

This knowledge is used to validate the conclusion about the relation between the objective measure

and the loudness scale at different stimuli (results are included in section 3.3.5).

Despite the high variability among subjects with regard to changes in the concentration states (see

Fig. 3.17), the average concentration results in Fig. 3.18 suggest that as the loudness level increases,

it is highly probable that the degree of phase synchronization increases as well. To validate the

obtained results, we compare the averaged concentration level against the average of the verbal

responses from the participants. As shown in Fig. 3.18 (b), as the stimuli level increases, the

intensity of the loudness perception increases as well. This is consistent with the studies conducted

by Hood and Poole (1966) and Stephens and Anderson (1971), that stimuli between 90dB SPL to

100dB SPL is considered uncomfortably loud in normal hearing subjects. Furthermore we applied a

one way ANOVA test over different stimulus levels across all subjects to reliably distinguish between

the 60dB SPL and 90dB SPL using the average of the expected concentration at a significance level

of 5% with p = 0.0101(F = 7.37).

To test the effectiveness of the algorithm on experimental data and the significance of the results

between 60dB SPL and 90dB SPL, we applied an additional test as follows: we generated a signal

that consists of two parts, the first part corresponds to the data samples from the first half of the

60dB SPL and the second part of the signal contains samples from the second half of the 90dB

SPL data. We applied the proposed forward-backward Bayesian model with the same empirical

prior parameters as in 3.3.4 to check if we are able to detect the artificial change point between two
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stimuli. In Fig. 4.5, we show a few examples of our observations. Throughout all observations, the

model is able to track the distribution of concentration changes.
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Figure 4.5: To show the effectiveness of the algorithm in significantly differentiating between 60dB
SPL and 90dB SPL, we constructed a signal that is composed of two parts. The first
half of the signal (in red) corresponds to the first half of a signal at 60dB SPL, and the
other half (in black) corresponds to the second half of a signal at 90dB SPL. We run
the proposed algorithm with the empirical prior parameters and check if the model is
able to track the distribution of data in terms of the concentration.

In some of the tests it is more difficult to detect the artificial transition. This is mainly because the

data in 60dB SPL and 90dB SPL can behave the same at different time intervals. If the samples

in the first half of the 60dB SPL have lower concentration and the second half in 90dB SPL is in

a similar state, then the transition may not be evident. The same argument holds when different

halves of the signals have high concentration values. However, given the results and the additional

test, we can confidently report on the significant difference between 60dB SPL and 90dB SPL.

4.3.1 The Rate of Change of the concentration Parameter

To test whether the stimulus level has an impact on the degree of change in the concentration over

trials, we conducted a second ANOVA test as follows: We adjusted the subject specific factor in

the concentration values by dividing the expected values of the concentration by the average of the

expected value of the concentration of the last 50 samples (the resulting values are denoted as W

and see the corresponding algorithm in Appendix. F). The meaning of the resulting values can

be understood as follows: In case of no change at all, all values in W will be exactly 1. If the

concentration increases for a subject at a given stimulus level throughout the experiment, values at

the beginning of the experiment will be less than 1. A decreasing level of concentration corresponds

to values greater than 1. We next compute the average of the expected concentration for every

subject at different stimulus levels. This shows the relative changes in the phase concentration over

trials with respect to the last 50 samples. A one-way ANOVA test yields the following results: The

null hypothesis that the relative changes of the expected concentration is independent of the stimulus
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level can be rejected at a significance level of 5% with p = 0.0178(F = 3.58).

4.3.2 Limitations

Despite the success in objectively differentiating between different stimuli by using the IP of the

ERPs, and determine a significant difference between the rate of change in the concentration pa-

rameter among different groups, the variability in the dynamics of the IP among subjects is very

large. Therefore, it is difficult to draw additional general conclusions, such as determining a general

time at which habituation may occur for different subjects, or to conclude a unique uncomfortable

sound level threshold among all subjects. Our results are also constrained by amount of data.

To demonstrate habituation variability, we describe the habituation effect for the 60dB SPL and 70dB

SPL for subjects 1 and 2 in Fig. 3.17. The corresponding results for subject 2 show that the phase

information is uniformly distributed throughout the experiment. As a result, the estimated concen-

tration fluctuates rapidly between lower concentration states. However the habituation process in

subject 1 is visible as a continuous decay in the phase concentration. The change in concentration

is more significant in the first subject than the second one. However, based on the average expected

concentration, we can conclude that in both cases, a weak level of attention has been allocated to

the stimulus due to a low concentration value. This effect is mainly due to the variances of neural

responses over the number of stimulus presentations. The same acoustic stimulus presented to a

subject never elicits identical neural responses across a series of presentation. While this effect holds

for a single subject (intra-individual variability), the effect is even more pronounced across a group

of subjects (inter-individual variability) due to physiological variations in the neural architecture.

Moreover our experimental paradigm cannot force the participants to ignore a presented stimulus.

The information carried by the stimulus is not limited to its intensity. Associative processes in the

individual subject can alter the subjective impact of a stimulus (see Busse et al. (2009)) and lead to

a variation of time periods in which the subjects voluntarily pay attention to the presented stimulus.

At this stage, with the current data and analysis tools, we believe it is not possible to describe a

definite habituation onset in time which is solely determined by stimulus intensity.

Future Work There are several promising directions for future work:

� We can try to join similar repetitive state transitions into a single state and show only the state

transitions with significant differences. This could be achieved by applying a discrete two state

Hidden Markov Model on the results of the marginal value of the concentration parameter.

� To adapt the scale of the states with respect to the overall average of the expected concentration

value (i.e., different resolutions). Applying such a mechanism will help us to track the behavior

of a habituation in cases that a weak attention level has been allocated to the stimulus.

Additionally, one other area that can improve our results is denoising the phase information more
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effectively as a pre-processing step. In this study the phase information was extracted after denoising

the ERPs using a NLM algorithm. We suggest utilizing denoising methods directly on the phase

data to reduce the noise level in the phase information.

4.4 Tracking the level of selective attention in ongoing EEG

In previous studies, we developed/employed methods for analyzing the ERs induced from repetitions

of sound stimuli (pure tone beeps). Despite limitations in some methods or lack of data, we were

able to mainly distinguish between the absence or presence of long-term habituation and explore

different methodologies possible for analyzing IP. The signals that were processed are all segmented

and the IP over trials at different times are considered for further study. However, in many studies,

the stimulus is continuous or of duration and hence, it is required to analyze the ongoing activity of

EEG signals without segmentation.

One of the advantages of studying the ongoing EEG signals as opposed to segmentation is avoiding

spurious phases jumps or phase-slipping. It has been shown in Freeman et al. (2003); Sameni and

Seraj (2017) that segmentation may introduce additional spurious variations due to the discontinuity

that is introduced in the signal. In addition, the study of the phase is not reliable in phase-slipping

epochs and there is no best way of segmenting the data. Therefore, to quantify the level of selective

attention in ongoing EEG signals in this study, we consider one of the effects of spurious phase

variation in signals as described thoroughly in section 2.4.1. We first describe some of the general

strategies for setting the parameters α and σ.

4.4.1 Setting of the α & σ Parameters

As described previously in chapter 2, section 2.4.2, setting of α and σ are important since they are

used for computing the Kalman gain factor. The factor determines how much do we rely on the

measurements than the model. In Fig. 4.6, we show an example of the model dynamics with low

noise in comparison to the measurements that have been produced based on Eq. 2.31 with constant

noise over time. The model is having a more smooth path and avoids crossing the zero, whereas in

the measurements, due to the noise and small envelope (approaching to zero), we can have jitters

or abrupt variations in the IP or IF.

In the examples provided in Fig. 3.23, Fig. 3.23 and the ones corresponding to the synthetic sine

waves, we have access to the original signal without noise. This is equivalent to having prior knowl-

edge of the distribution or shape of the signal for real scenarios. However, in most cases, we don’t

have access to the actual distribution of the signal and hence a proper estimation of the parameters

is required. In this section we give suggestions for setting the parameters of the KS.

As described in Eq. 2.31, the additive noise of the signal and measurement are defined as η̂t ∼ N (0, σ)

and Ŵt ∼ N (0, α). By reordering ŝt+1 + eiω0 ŝt + η̂t, we have η̂t = ŝt+1 − eiω0 ŝt. Therefore the
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Figure 4.6: The corresponding phase of a series of data examples under the proposed model ŝt+1 =
ŝte

iω0 + η̂t has been shown in blue. The distance of the samples to the center is the
envelope. The red dots show the resulting measurement (x̂t = ŝt + Ŵt). Depending
on the degree of smoothing, we can remove the areas at which the envelope of the
measurements approach zero.

variance of noise of the signal σ can be estimated as the variance of the difference equation of the

analytic signal. In case of real measurements, as we don’t have access to the actual signal, we can

estimate the variance of the noise as follows:

x̂t+1 − eiω0 x̂t = ŝt+1 +Wt+1 − eiω0 (ŝt +Wt)

= ŝt+1 +Wt+1 − eiω0 ŝt − eiω0Wt

= ŝt+1 − eiω0 ŝt︸ ︷︷ ︸
ηt

+
(
Wt+1 − eiω0Wt

)
(4.3)

As stated earlier Wt+1 and Wt are samples from a Gaussian distribution with a variance of

α,N (0, αI). Due to symmetry of the Gaussian distributions, the sum of two normal distribution is a

Gaussian with the summation of the means and the variances. Therefore, in our case, the resulting

distribution will be N (0, 2αI). By taking the variance of both sides in Eq. 4.3, we have

var
(
x̂t+1 − eiω0 x̂t

)
= var(ηt) + var

(
Wt+1 − eiω0Wt

)
= var(η) + 2α

Hence the variance of noise of the signal can be estimated as var(ηt) = var(x̂t+1 − eiω0 x̂t) − 2α.

Setting ε = var
(
x̂t+1 − eiω0 x̂t

)
, the optimal σ is in the range σ ∈ [max(ε− 2α, 0), ε] where ε is the
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upper-bound of our estimation. The input for EEG measurements is X̂t that is the average over all M

filters. Another possibility for controlling the level of smoothing is to optimize over βvar(ηt) where

β is a free parameter that controls the degree we rely on the measurements over the predictions. In

the next section we emphasize more on the role of the β.

4.4.2 Setting of the β Parameter

One of the main parameters for modeling the phase as described in section 2.4 is the factor β which

determines to what extent the estimated phase is reliable. This effect has been shown in Fig. 4.7 in

terms of changes in IF. Different instances of IF have been illustrated in plots (c,d,e) for different

choices of the predictability factor β. A low β indicates a small SNR ratio and therefore the predicted

phase is more reliable than the measurement. In the extreme case of a zero factor as in plot (c), the

IF will be a straight line. In the case where we rely more on measurements than predicted data,

the estimated IF will contain more changes in IF, including those regarding the low envelope (as in

(e)). A proper choice can smooth the unwanted changes in IP and preserve the relevant changes.

In our study, we set the factor value and the filter parameters based on the discrimination ability

between the attending and non-attending conditions using Λ. Despite the possibility of other meth-

ods for setting β such as applying an expectation maximization approach, they are not always the

ideal approaches. In most applications we are not searching for a perfect model of the data as it can

lead to over-fitting. Instead, we search for measures that are able to differentiate between different

classes of cognitive activities.

Results corresponding to seminal dichotic tone detection as described in section 2.4.4 are shown

in Fig. 3.25. A high average Λ in the attending case indicates a higher effort compared to the

non-attending case. This effect has been shown in many fromer studies before (Corona-Strauss and

Strauss, 2017; Bernarding et al., 2013b; Mortezapouraghdam et al., 2017).

4.4.3 Different Choices of β and Λ

To further explore the effect of changing β, we run a 7 minutes of the recorded ongoing EEG with

different choices of β. We keep the parameters such as the filter’s bandwidth (bw = 0.4), frequency

(fc = 7) and δ = 0.1 fixed (they are set to values that were found to be relevant to distinguish

between the attending and non-attending cases). The β parameter used for estimating IP has been

linearly spaced between 1.0e−4 and 100. In Fig. 4.7, we plot the corresponding extracted IF for

different β values in increasing order where the spikes are related to variations in the IP. The small

values of β rely heavily on the model’s prediction whereas the higher β values correspond to a

stronger contribution of data measurements, as well as the model’s prediction for estimating IP. In

the case where β = 0, the resulting IF is zero since the estimated phase will be a sine wave and

its unwrapped phase is a straight line. However as β increases, there will be more jitters in the

computed IF as the model relies less on its own predictions for estimating the phase information.
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Figure 4.7: Different choices of β. (a) A 60-second segment of EEG measurements. (b) The narrow
band-passed signal along with its envelope. (c) The extreme case of zero factor yields
no changes in the IF. The gray lines correspond to IF without any KS preprocessing.
(d) IF for β = 0.005. (e) IF resulting from a higher β factor ¿100.

We compute Λ for different choices of β as shown in Fig. 4.8(b). However, in this case, we use a

simpler version of the Λ measure, where we don’t divide the resultant mean length by the length of

the signal T . This is mainly for numerical reasons and consistency.

Different choices of β can lead to different Λ values due to different variations and localizations of

the phase samples. However, there is no linear relationship between β and Λ. One of the reasons for

a low Λ when β gets higher, can be explained by the addition of different noise factors that can lead

to random resets in different parts of the signal. As phase jitters become more spread out, detecting

directed concentration using Λ vanishes. However, a low Λ for small choices of β is more certain as

predictions are heavily based on the model.

To show a broader view, we compute Λ for different choices of β parameters in Fig. 4.9 (using the
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Figure 4.8: (a) Different estimations of IF for β values. (b) The corresponding Λ for different β
values.

same set of parameters as before). We show the variations in attended and un-attended cases for

two subjects. As β increases, the measure Λ converges to the Λ value corresponding to data with no

smoothing effect, as the influence of the model in estimating the phase decreases. Therefore, after

a certain threshold, it is expected that Λ converges and shows no changes to further variations in

the β parameter. As stated previously, in the beginning the model is more susceptible to changes,

as we rely more on the model estimates. Based on where the phase resets are located in the signal,

the Λ measure can vary for different β values. We expect that other changes in the Λ measure are

due to numerical inaccuracies.

The results of the current study are consistent with the conclusions presented in Corona-Strauss

and Strauss (2017). However, one of the main focuses in this study, after removing spurious phase

variations using KS is to measure the effect of selective attention using all temporal resolution of the
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Figure 4.9: An example of changes to Λ for different choices of β factor in applying the KS model.
The red and black lines correspond to the attending and non-attending conditions
respectively.

ongoing ALR activity. The study in Corona-Strauss and Strauss (2017) uses only the first 60 seconds

of the experiment for a meaningful contrast between the attending and non-attending conditions.

Although using the complete ongoing EEG, the statistics between attending and non-attending are

not significant, the average of Λ over all subjects between the two different groups are shown to

differ.

To compare the results with Corona-Strauss and Strauss (2017), we also computed Λ for the first 60

seconds using the proposed method. A one-way ANOVA test between attending (attLipsi) and non-

attending (ignoring) conditions (IgnLipsi) is applied to distinguish the effect of selective attention

in the two processes. We used the computed Λ values of all subjects for the ignoring and attending

conditions. The test statistics results yield a p-value of p = 0.0465, F (4.57, 1). The average Λ results

for different lengths of the first 60 and 30 seconds have been also included in Fig. 3.25.

4.4.4 Limitations

One of the major achievements in this study is distinguishing between the two processes of attending

and non-attending using neural correlates of selective attention with ongoing EEG activities. We

mapped the results of the study of segmented ERs with the study of ongoing EEG signals. In the

averaging procedure of ERPs (segmentation of ALR activity), the noisy trials can be removed to

improve the SNR and study the coherence between different trials. However, when using the complete

ongoing EEG, removing noise is more difficult as none of the latter techniques are easily applicable.

We therefore require methods that enable us to de-noise the ongoing signal while preserving the

continuity of the signal, as segmentations can introduce artificial phase jumps.

In this study, we removed only one of the abrupt jumps in IP that is not dependent on physiological

effects. This was achieved by analyzing the signal in a narrow frequency range, in order to obtain
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meaningful phase oscillations. However, the overlap possibility of abrupt variations in IP due to a

low envelope and physiologically induced changes has to be carefully investigated.

In future studies, the measures/techniques that are a better indicator of selective attention in terms

of the level of phase clustering should be investigated. The current common measures for measuring

phase clustering are biased and depend on the number of samples. Examples include the inter-

trial-coherence (ITC) measure that suffers from sample size bias as well as number of trials in the

experiment. The measure’s output is between zero (random phase alignment) and one (perfect

phase alignment). A modified version of the ITC, namely the Rayleigh Z-measure has been shown

to slightly enhance the results as the sample size increases in artificially generate data ((Chou and

Hsu, 2018)). The level of synchronization1 is given by PS = 2
n(n−1)

∑n−1
i=1

∑n
j=i+1 cos(θi− θj). One

of the disadvantages of the measure Λ used in this study, is that as the number of samples increases,

Λ becomes very small such that for a long temporal recording, the significance between two different

processes is no longer reflected in the measure. In addition, it can suffer from numerical inaccuracies

as the length of the samples increases. In the future, we will try additional approaches to measure

either, continually or discretely, how the clustering of phase samples around the circle varies.

Optimization of Model Parameters Using Expectation Maximization The other main

improvement is to find a better strategy to optimize the current parameters in our model. We

require function to optimize the parameters such that the selected parameters are a good fit for the

data and enable us to discriminate between the two processes. We consider optimizing the model

parameters σ and α using expectation maximization (EM), where the log of the data likelihood

under α and σ parameters is maximized. To avoid blind over-fitting of data with no regard to the

classification aspect of the problem, we additionally introduce a cost function that measures the

ratio of the variance between the two groups divided by the variations within groups. We believe

that by finding a measure that is more numerically consistent, we are able to find a better set of

parameters for a reliable study of the ongoing EEG activities.

4.5 The Mappings Between Laminae Activities and AERs

The average MI between the AER activities with different cortical layers as in Fig. 3.29, is a high MI

across different frequencies for the mid allocated electrodes. Although, we cannot say with certainty

at what layer the electrodes are allocated, a consistent high MI across the middle ranged electrodes

that is related approximately to the granular layer is observed. This pattern is also observable for

layer I. The redundancy of information across the granular layer and layer I can be explained due to

cortical laminar processing. The main flow of information initiated from the TN is to the granular

and layer III of the cortex. The thalamic input information targeted as these layers enter the lower

1The phase angles can be expressed in terms of unit vectors on a complex unit-length circle (i.e., zi = eiθi =
cos θi + i sin θi). The measure computes the level of phase alignment in terms of average of distances between any
pair of samples. The term 2

n(n−1)
is the number of sample pairs that are evaluated.
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supragranular layers which in turn project back to the infragranular layers. Thereby the results

across these layers appear to be redundant as a result of the information flow of laminar cortical

processing.

The individual result as illustrated in Fig. 3.27 suggest that there is a higher amount of information

sharing between the mid-range electrodes, as it is the main receiver of thalamic input. We regard the

lack of information in the deeper layers to be related to distortion of data and noisy measurements,

specifically the electrode located at the TN. As it showed no significant amount of information with

the other layers, it was excluded from the analysis. To more accurately observe the interaction

between the cortical laminae with AER, we require more information on the specific allocation of

the electrodes. In the current study, there are eight contacts in the laminar cortex, which can lead

to the positioning of more than one electrode in a single layer. Therefore, the redundant information

and the mixture of the recordings make it difficult to draw any concrete conclusions regarding the

measured activities.

In the future studies, our goal is to employ measures that would be a better indicator of the infor-

mation transfer within different layers and to the corresponding AER electrode. MI is a symmetric

measure that is not able to determine the direction of interactions between cortical contacts and

their relationship with the AER. In the current study, we investigated the MI between different lay-

ers with different delays d. However, no significant results explaining a meaningful or interpretable

interaction was found. Measures such as transfer entropy and granger causality (GC) may help

in obtaining additional information. In one of the studies in progress, we are using GC to model

the activities between different electrodes before and after onset of stimulation. Using the fitted

auto-regressive model characteristics such as the model order and delay, over different sequences of

pre/post stimulation patterns, we are looking for information regarding the changes between differ-

ent cortical layers. In addition the quality of the data measurements as well as the exact positioning

of the electrodes in the laminae must be improved.



Chapter 5

Conclusions

5.1 Conclusion

We presented new approaches for measuring and tracking the changes in the dynamics of attentional

binding and long-term habituation process. The EEG recordings are analyzed using different ob-

jective measures for decoding the underlying neural signature of attention over different trials. We

particularly use the instantaneous phase information of the N1-P2 component of the the ERPs as it

has been shown to be a reliable indicator of the endogenous effect of attentional binding. The phase

information is highly clustered around a unit circle when there is a high level of attentional binding

to the stimulus. On the contrary, as the attentional binding reduces, the phase information is more

uniformly spread.

In the first set of studies, we model the distribution of IP information using von-Mises probability

density functions. We apply this method on two distinct auditory stimulations (soft vs. aversive)

to determine their likelihood to habituate. The 50dB SPL is a soft stimulus and has a comfortable

loudness level, whereas 100dB SPL is considered aversive (uncomfortably loud) by the participants.

We analyze the N1-P2 complex in the corresponding measured ERs by fitting a von-Mises model.

The ERs over the trials are segmented with overlap and a von-Mises pdf is fitted for each segment.

The estimated concentration parameters are then used to decode the level of attentional binding over

time. Using a proper overlap window, we can clearly distinguish between the changes in a habituation

and non-habituation process. In the case of soft stimulation, the concentration parameter at the

beginning of the segments is high and gradually decreases. The same pattern in observed in other

measures such as the changes in the entropy values. However, the changes in the concentration

parameter of an aversive stimulus remain high with less variations throughout the experiment. The



5. Conclusions 118

rate of changes in the estimated concentration parameter between the soft and aversive stimulus has

been shown to significantly differ (p< 0.05). The results are corss-validated with a neurofunctional

model that simulates ERPs and the results are consistent.

The proposed method, however, relies heavily on a proper window size and the number of overlapping

samples to obtain the meaningful variations in the phase information. In addition, we are required

to fit a model to many data segments. We therefore improved the temporal resolution of detecting

changes in concentration by applying a Bayesian change point model. The model is used for detecting

the time instances at which a significant change in the underlying parameters of the generative model

occurs. Run-length, a feature indicating the presence of change points is used for discriminating

between the habituation and non-habituation process. As no change point is expected in case of

non-habituation, the average run-length is higher than the habituation process as no resetting in

the run-length parameter would be detected. In the case of a soft stimulus, there are more resets in

the run-length parameter. The computed average run-length over all subjects as well as individual

subjects is higher for an aversive stimulus in comparison to a soft stimulus.

Despite detecting the change points with high temporal resolution, the abrupt change point detection

algorithm however has drawbacks in terms of tracking the variations in long-term habituation.

Because the long-term habituation is defined as a gradual process, an abrupt change point model

may not reflect the gradual changes clearly in the signal. In addition, a more accurate estimate of the

timing of habituation may be difficult to obtain. We therefore applied a Bayesian change point model

that is able to capture the gradual changes in the concentration parameter. The method is able to

track the gradual changes in the IP information at different sound stimulation levels. However, no

unique timing was obtained to indicate the occurrence of habituation for different stimulation levels

as the variability between subjects is high. We computed the average of the expected value of the

concentration parameter over different sample points. The results indicate as the sound intensity

level increases, the average of the concentration parameter over all samples is more likely to increase

as well.

We extended our studies on the neural modulations of the selective attention by employing a longer

time-interval stimulation. For this aim, we used the measured neural activity of a dichotic listening

experiment. No segmentation is applied on the recorded EEG activities. We investigated the effect

of spurious phase variation in ongoing signal by applying a variant of a Kalman smoother model to

remove the unwanted phase jitters. The proposed approach is first tested on synthetic generated data

with spurious phase jumps due to a low envelope. In addition, random phase shifts were assigned in

the signal as the main change points. The proposed model is able to significantly reduce the number

of false positives in detecting the change points. After validating the model with synthetic data,

we applied the model on measured ongoing EEG signals for removing spurious phase variations and

objectively computed the level of selective attention for the two conditions of attending and ignoring

a stimulus. The average objective measure for the case of attending is higher than the ignoring
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condition, reflecting a higher attentional binding to the stimulus than ignoring case. In the future

studies, we aim to improve significantly the optimization of model parameters.

Despite the success in developing and applying different methods in decoding the underlying neural

signature of selective attention and long-term habituation, we can investigate the effects deeper in

terms of the projection of AERs to the laminar phase dynamics in-vitro. For this aim, we assess

the mutual information between the AERs with the individual cortical layers at different frequencies

in rats. It is shown that the highest information sharing is between the AER and the granular

layers as they are considered to be the main thalamo-recipients. Redundant information sharing

occurs between layer I and AERs and is explained by cortical laminar processing. No further results

regarding the delay process between different cortical layers and its relation to AER could be obtained

at this stage. In future studies, we will investigate asymmetric measures such as transfer entropy

and granger causality to obtain a more detailed information on the direction of information flow

between different layers and the projection of cortical neural activities onto the AERs. We aim to

use the pre-stimulus data to understand the possible delay, model order using the granger causality,

and compare the results with the post-stimulus estimated parameters. We believe that over a long

period of stimulation, we are able to have a better understanding of the changes and possible delays

between recorded AERs and cortical layers.
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Appendices

A Cauchy Principal value

Definition A.1. Let f be a real-valued function that is defined on [a, b]\ {ξ}. If f is not defined

near a point ξ in the interval [a, b], the integral of f over [a, b] does not always exist. The improper

integral of f can be defined by summing the two integrals

lim
ε→0+

∫ ξ−ε

a

f(x)dx

lim
ε→0+

∫ b

ξ+ε

f(x)dx

If the two integrals don’t exist, we can use the symmetric limit, known as the Cauchy Principal

Value (PV) as follows:

lim
ε→0+

(∫ ξ−ε

a

f(x)dx+

∫ b

ξ+ε

f(x)dx

)
. (1)

We write PV
∫ b
a
f(x)dx for the integral of f between a and b.

B Fourier Transform of Complex Wavelet Function

The fourier transform of ψ, the sixth derivative of a complex Gaussian function, is
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F(ψ) = F
(
c
(
eite−t

2
)(6))

= cF
(
c
(
eite−t

2
)(6))

= c (2πiω)
6 F

(
eite−t

2
)

(2)

This is based on the differentiation property of the fourier transform which states that if a function

f is a differentiable with f and f
′

is integrable, its Fourier transform is given by Ff(ω) = 2πiωF(f).

More generally, the Fourier transform of n-th derivative f (n) is given by

Ff (n)(ω) = (2πiω)nF(f).

The Fourier transform of a function of the form f(t)eiat is Ff
(
ω − a

2π

)
, that is, the Fourier transform

of f , which is shifted in the frequency domain. In Eq. 2 we have f(t) = e−t
2

and eiax = eit with

a=1. Therefore, substituting its Fourier transform in the Eq. 2 we obtain

F(ψ) = c(2πiω)6F
(
e−t

2
)(

ω − 1

2π

)

where the Fourier transform of F(e−t
2

) is
√
πe−(πω)

2

. In general, the Fourier transform of a function

f = e−αt
2

is F(f) =
√

π
αe
− (πω)2

α . However, because of the shift in the frequency, ω is replaced by

ω − 1
2π . Therefore we have :

F(ψ) = c(2πiω)6
√
πe−(π(ω−

1
2π ))

2

= −c64π6ω6
√
πe−(πω−

1
2 )

2

(3)

The factor c is chosen such that ‖Fψ‖2 = ‖ψ‖2 = 1. Summarizing we have:

F(ψ) ∝ −ω6e−(πω−
1
2 )

2

.

C Non–local Means Method

The details of the NLM method have been explained in Strauss et al. (2013). Here we briefly report

on the parameters and the main idea behind the technique. ERP images contain a high degree of

self-similarity over individual trials. This is mainly because of the N1-P2 components of ERPs that

are evoked after the onset of stimulus. We exploit the characteristic correlations of ERP features

across the rows in ERP images. Let S ∈ RN×M represent the matrix of ERP trials. There are N
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trials, each with a length of M samples. We want to replace every sample si, i = 1, ..., J (J = NM)

in the matrix with a denoised version based on the structural similarities in the signals. Every pixel

si and its neighborhood is compared to the other ERP patches. For every comparison, a weight

coefficient ηi,j is assigned to the center sample si based on the degree of the similarity of the patches.

The sample si is replaced with the denoised sample qi, which is computed as:

qi =
1

γ

J∑
j=1

ηi,jsj (4)

where γi =
∑J
j=1 ηi,j . We denote the image patches with center samples si and sj as si+I and sj+I

respectively. The weights ηi,j are computed based on the similarity between the patches:

ηi,j = exp

(
− 1

λ

∑
k∈I

ϕσ,k|si+I − sj+I |2
)

(5)

where ϕσ,k denotes a sampled version of a 2-D Gaussian kernel with standard deviation of σ.

The parameter σ determines the degree of influence of neighboring patches on the weight and the

parameter λ > 0 controls the amount of denoising. For more details see Strauss et al. (2013). The

parameters that are used for this study are a fixed 1× 11 similarity patch, an asymmetric Gaussian

with σ = (1.0, 5.0)T and λ = 1000 being the denoising parameter.

D Derivation of Forward Pass of Abrupt CPM

Defining αti = P (Θ1:t, st = i), we have:

αti = P (Θ1:t, st = i) = P (θ1, · · · , θt−1, θt, st = i)

= P (θt|Θ1:t−1, st = i)P (Θ1:t−1, st = i)

= P (θt|Θ1:t−1, st = i)

t−1∑
j=1

P (Θ1:t−1, st = i, st−1 = j)

= P (θt|Θ1:t−1, st = i)

t−1∑
j=1

P (st = i|st−1 = j)P (st−1 = j,Θ1:t−1)

= P (θt|θ1:t−1, st = i)

t−1∑
j=1

P (st = i|st−1 = j)αt−1j

where P (θt|θ1:t−1, st) is the emission distribution, P (st = i|st−1 = j) is the transition distribution

and αt−1j is the recursive part.
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E Derivation of the Posterior Distribution Over the States

in CPM

P (µt, κt|θ1:N ) =
P (µt, κt, θ1:N )

P (θ1:N )

∝ P (µt, κt, θ1:t, θt+1, θt+2:N )

∝ P (θt+1|θ1:t, θt+2:N , µt, κt)P (θ1:t, θt+2:N , µt, κt)

∝ P (θt+1|µt, κt)P (µt, κt|θ1:t, θt+2:N )

∝ P (θt+1|µt, κt)P (µt, κt|θ1:t)

F Derivation of Weights

The procedure for ρ optimization:
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* The parameters of the algorithm are set as follows: *
* numStimuli = 4, refering to the different stimuli levels. *
* numSub = 20, refering to the subjects used in this study. *
* N, the number of trials per subject/stimulus level. *
* Matrix Initializations: W ∈ RnumSub×N, A ∈ RnumStimuli×N , V ∈ RnumStimuli×N.
* Vector Initializations: v′ ∈ RnumStimuli×1,ṽ ∈ RN×1.
for each candidate configuration (σ2,K) do

for g=1:numStimuli do
for i=1:numSubjects with data set Θi,g do

for t=1:N do
Compute p(κt, µt|Θi,g, σ

2,K) using the forward-backward algorithm.
Marginalize over µt: p(κt|Θi,g, σ

2,K);
Compute the expected value E[κt] =

∑
κj∈κ κjp(κt = κj |Θi,g, σ

2,K);

*Store the result in the matrix Wg.*
Wg(i, t) = E[κt];

end

*Adjust for subject-specific factor in concentration values:*
* divide κ by mean κ of the last 50 data points*
Wg(i, :) = Wg(i, :)/ avg(Wg(i, (N − 50) : N));

end

*Compute the group mean and in-group variance at each time t*
for t=1:N do

*Store the group mean at time t, averaging over all subjects.*
A(g, t) = avg(Wg(:, t));
*Store the in-group variance at time t.*
V(g, t) = variance(Wg(:, t));

end
Average over in-group variances at different t: v′(g) = avg (V(g, :)) .

end

*Compute between-groups variance, at each time t*
for t=1:N do

ṽ(t) = varianceg(A(:, t)
end
Average over between-group variances at different t: ṽ′ = avg(ṽ)

*Compute the optimization criteria*
ρ(σ2,K) = ṽ′

avgg(v
′(g)) ;

end
Algorithm 3: The algorithm used for computing the optimization criteria ρ for each set of prior
parameter candidates (Ki, σ

2
j ).

G Derivation of Probability Density Functions

We assume that λ has a complex gaussian distribution with mean µ and standard deviation σ. The

probability density function of λ is

P (λ) =
1

2πσ2
e−
|λ−µ|2

2σ2
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In cartesian coordinates, for λ = x+ iy we have

P (x, y) =
1

2πσ2
e−

(x−<{µ})2+(y−={µ})2

2σ2

From this we obtain the probability density function for λ in polar coordinates, where λ = Aeiθ. It

is convenient to express µ in polar coordinates as well. In the remainder, let µ = Beiφ.

P (A, θ) = AP
(
<
{
Aeiθ

}
,=
{
Aeiθ

})
=

A

2πσ2
e−
|Aeiθ−Beiφ|2

2σ2

=
A

2πσ2
e−

A2−2<{AeiθBe−iφ}+B2

2σ²

=
A

2πσ2
e−

A2−2AB cos(θ−φ)+B2

2σ2

By Bayes’s rule we have P (θ | A) = p(A,θ)
P (A) . To derive P (A), we marginalize over θ, that is

P (A) =

∫ 2π

0

p(A, θ)dθ

=

∫ 2π

0

A

2πσ2
e−

A2+B2

2σ2 e
AB
σ2

cos(θ−φ)dθ

=
A

2πσ2
e−

A2+B2

2σ2

∫
e
AB
σ2

cos(θ−φ)dθ

=
A

2πσ2
e−

A2+B2

2σ2

∫
e
AB
σ2

cos(θ)dθ

=
A

2πσ2
e−

A2+B2

2σ2 2πI0

(
AB

σ2

)
=

A

σ2
e−

A2+B2

2σ2 I0

(
AB

σ2

)

The derived pdf is also known as the Rice distribution and I0 is the modified Bessel function of order

zero. Using Bayes rule we obtain

P (θ | A) =
1

2π
e
AB
σ2

cos(θ−φ)/I0(
AB

σ2
)
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In particular, P (θ | A) is a von-Mises distribution with concentration κ = AB
σ2 . The mean resultant

vector is

E[eiθ | A] =

∫
2π

0

eiθ
1

2πI0(κ)
eκ cos(θ−φ)dθ

=
1

2πI0(κ)

∫
2π

0

eκ cos(θ−φ)+iθdθ

=
1

2πI0(κ)
eiφ

∫
2π

0

eκ cos(θ)+iθdθ

=
1

2πI0(κ)
eiφ2πI1(κ)

=
I1(κ)

I0(κ)
eiφ

Using the law of total expectation this allows us to determine the mean resultant vector of θ.

E[eiθ] = E[E[eiθ | A]]

= E


∫

P
(
eiθ|A

)
eiθdA


= eiθEA

[
I1

(
AB

σ2

)
/I0

(
AB

σ2

)]

=

∫ ∞

0

A

σ2
e−

A2+B2

2σ2 I0

(
AB

σ2

)
I1

(
AB

σ2

)
/I0

(
AB

σ2

)
dA

 eiθ

=


∫ ∞

0

A

σ
e−

1
2 (Aσ )

2

e−
B2

2σ2 I1

(
A

σ

B

σ

)
dA

 eiθ

=

∫ ∞

0

Ae−
A2

2 I1

(
A
B

σ

)
dA

(eiθ) (−e− B2

2σ2

)

=

[
ge−g

2

√
π

2

(
I0(g2) + I1(g2)

)]
eiφ (6)

With g = B
2σ .

Thus we obtain a closed form for the circular standard deviation S of θ.
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S =
√
−2 ln(|E[eiθ]|)

=
√

2g2 − 2 ln(g)− ln(π/2)− 2 ln(I0(g2) + I1(g2))

which has values between 0 and infinity.



List of Publications

Journal Publications

Z. Mortezapouraghdam, F. I. Corona-Strauss, K. Takahashi, D. J. Strauss.

Reducing the Effect of Spurious Phase Variations in Neural Oscillatory Signals,

Frontiers in Computational Neuroscience, Vol. 12, 2018.

Z. Mortezapouraghdam, R. C. Wilson, L. Schwabe, D.J. Strauss.

Bayesian Modeling of the Dynamics of Phase Modulations and their Application

to Auditory Event Related Potentials at Different Loudness Scales, Frontiers in

computational neuroscience, Vol. 10, 2016.

Z. Mortezapouraghdam, L. Haab, F. I. Corona-Strauss, G. Steidl, D. J. Strauss.

Assessment of Long-Term Habituation Correlates in Event-Related Potentials Using

a von Mises Model, IEEE Trans Neural Syst Rehabil Eng, pp. 363-373, Vol. 23, 2015.

Z. Mortezapouraghdam, F. I. Corona-Strauss, D. J. Strauss.

* Mapping the Effect of Selective Attention between Ongoing EEG Activities and

Averaged ERPs by means of Instantaneous Phase Information, In preparation for

submission to IEEE Transactions on Neural Systems and Rehabilitation Engineer-

ing, 2019.



Conference Publications

Z. Mortezapouraghdam, D. J. Strauss, C. Bernarding.

Objective Assessment of Perceived Effort in Listening by Employing EEG Features,

In 39th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, pp. 2908-2911, 2017.

Z. Mortezapouraghdam, D. J. Strauss.

Removal of Spurious Phase Resets in Oscillatory Signals, In 39th Annual Interna-

tional Conference of the IEEE Engineering in Medicine and Biology Society, pp.

2209-2212, 2017.

Z. Mortezapouraghdam,L. Haab, K. Schwerdtfeger, and D. J. Strauss.

Relating Auditory Evoked Responses to the Laminar Phase Dynamics in Rats Using

Mutual Information, In 7th Annual International Conference of the IEEE Neural

Engineering, pp. 952-955, 2015.

Z. Mortezapouraghdam, L. Haab, G. Steidl, D. J. Strauss.

Detection of Change Points in Phase Data: A Bayesian Analysis of Habituation

Processes, Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, pp. 1014-1017, 2014.

L. Haab, Z. Mortezapouraghdam, D. J. Strauss.

Modeling prediction of a generalized habituation deficit in decompensated tinnitus

sufferers, Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, pp. 5691-5694, 2014.



Danksagung

I would like to extend my sincere gratitude to my advisor Prof. Daniel Strauss for guiding and

mentoring me over the years. Because of him, I was able to work in the exciting interdisciplinary

area of computational neuroscience and achieve invaluable experiences at different topics in the field.

I also thank him for providing me with the opportunities to interact with many different researchers.

Throughout my collaboration with Princeton University, I learned a lot from Dr. Robert Wilson,

especially in the area of change point modeling using Bayesian models. Under his skilled supervision,

I was able to publish my second paper on the Bayesian modeling of instantaneous phase data. I

thank him wholeheartedly for providing me with a robust learning experience during my short visit.

Special thanks to Prof. Steidl for all of her support and patience during my time at Kaiseslautern

University. Because of her guidance, I was able to improve my writing style and publish my first

paper.

For their help during my graduate school years and beyond, I thank Prof. Klakow, Dr. Rahil

Mahdian Toroghi and Dr. Friedlich Faubel. I particularly would like to thank Dr. Rahil Mahdian

for his time and patience in addressing my questions and problems. I am truly grateful for the

generous amount of time he spent helping mold me into a better researcher.

I would like to extend my sincere thanks to Prof. Lars Schwabe. I am thankful for all the time

he has dedicated to my scholarship during and after graduate school. I am also grateful that I was

able to collaborate with him on my second paper; working with him is always an invaluable learning

experience.

Thank you to Dr. Farah Corona-Strauss, Dr. Lars Haab, Dr. Corinna Bernarding and Dr. Takahashi

for all of their feedback on my thesis and the different projects I participated in; I learned a lot from

their expertise.

I also appreciate the time that I spent at the graduate school and systems neuroscience & neu-

rotechnology unit (SNNU), in which I got to know some of my best friends, Narsis Salafzoon and



Daniel Mewes. Last but not least, I thank my family for their unconditional support and constant

encouragement throughout the years. In particular, I would like to thank my husband, Steven, for

everything.

145


	Introduction
	Motivation
	Preliminary: The Hearing Brain
	The Physical Properties of Sound
	From Ear to The Auditory Cortex

	Auditory Scene Analysis
	Auditory Attention
	Theories of Selective Attention
	Habituation

	Decoding of Neural Signatures of The Long-term Habituation Process
	Mapping Between Ongoing EEG and ERPs
	The classical view
	Pure Phase-resetting
	Pure-phase Resetting and Amplitude Enhancement
	Organization of the Thesis


	Materials & Methods
	Synchronized Neural Activity and Attention
	Extraction of Instantaneous Phase (IP)
	Filtering procedure
	Hilbert Transformation
	Wavelet Transformation

	Statistical Analysis and Decoding of Neural Responses of Attention-Binding
	Descriptive Circular Statistics
	Probabilistic Modeling of Instantaneous Phase
	Hidden Markov Models & Change Detectors During the Course of Long-term Habituation
	Tracking changes in the IP of long-term habituation processes
	Discrete Forward-Backward Bayesian Change Point Model
	Experimental Setting: Data Acquisition

	Continuous Forward-Backward Change Point Model
	State Transition Model, p( t,t| t-1,t-1 )
	Experimental Setting


	Oscillatory EEG Signals and IP Extraction
	Phase Singularities: Definition of Spurious Phase Slips and Types
	Modeling the Variations Between Instantaneous Phase and Amplitude
	Model Derivation

	Neural correlates of Selective Attention & Ongoing EEG
	Experimental Setting

	Laminar Auditory Activities and its Relation to Auditory Evoked Responses
	The Cortical Laminar Organization in A1
	Experimental Setting
	Mutual Information of IP between Laminar Cortex


	Results
	Long-term Habituation Decoding Using Von-Mises Model
	Abrupt and Continuous Detection of Temporal Changes in ERPs in Long-term Habituation Process
	Synthetic Data Evaluation
	Evaluation of CPs on the Measurements

	Detecting the Gradual changes of long-term habituation using a State-Space Model 
	Initial Conditions
	Optimization of Prior Parameters
	Model Validation on Artificial Circular Data
	Determining the Model Parameters for Experimental Data
	Tracking Data Distribution over Trials
	Average Concentration For Different Auditory Stimulations

	Removal of Spurious Phase Variations in Ongoing EEG Signals
	Validation of Model on Synthetic Data

	Analysis of IP of Ongoing EEG Measurements
	Filtering procedure & IP Extraction
	Setting of KS factors
	Quantification of Attentional Effort In Experimental Setting
	Optimization of Filter and KS Parameters

	Relating AER to Laminar Phase Dynamics
	Data Processing
	Interaction Between Cortical Layers and AERs Using MI


	Discussions & Limitations
	Tracking Changes in Long-term Habituation Over Trials
	Limitations:

	From the Abrupt CPM to Continuous Detection of Changes
	Limitation With Abrupt Definition of Changes

	Continuous Definition of Long-term Habituation and Tracking The Changes
	The Rate of Change of the concentration Parameter
	Limitations

	Tracking the level of selective attention in ongoing EEG
	Setting of the  &  Parameters
	Setting of the  Parameter
	Different Choices of  and 
	Limitations

	The Mappings Between Laminae Activities and AERs

	Conclusions
	Conclusion

	Bibliography
	Appendices
	Cauchy Principal value
	Fourier Transform of Complex Wavelet Function
	Non–local Means Method
	Derivation of Forward Pass of Abrupt CPM
	Derivation of the Posterior Distribution Over the States in CPM
	Derivation of Weights
	Derivation of Probability Density Functions

	List of Publications
	Danksagung


