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Statistical analysis of bacteria locomotion

by Oliver KÖHN

Many bacteria swim by employing their helical appendages, the flagella. We
studied the statistics of this locomotion. To obtain more natural and espe-
cially long trajectories compared to two-dimensional tracking strategies, we
developed a measurement-setup suitable to track bacteria in three-dimensions.
The main component of this setup is an electrically focus tunable lens (ETL),
able to adapt it’s shape via an applied electrical current, resulting in a change
of the current focal plane. This setup has no mechanical interaction with the
sample to avoid adulteration of the measured trajectories. We found that for
times smaller than the average running-time, the slope of the mean-squared
displacement MSD of the tracked bacteria obeys a ballistic behavior, whereas
for longer times we saw a clear diffusive behavior. To allow for a more
efficient evaluation of the measured trajectories we introduce the Kalman-
Filter. By using simulated trajectories we could show that the Kalman-Filter
allows a more accurate determination of the rotational-diffusion coefficient
than conventional methods. Furthermore we could show that evaluation of
three-dimensional trajectories obeys slightly different statistics than the eval-
uation of projected two-dimensional trajectories due to missing information.
Through the qualitative simulation of bacteria locomotion we could show
that the flagella-positioning has a crucial impact on the tumbling dynamics.
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Zusammenfassung
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Doktor der Naturwissenschaften

Statistische Auswertung der Bewegung von Bakterien

by Oliver KÖHN

Viele Bakterien schwimmen durch Nutzung ihrer spiralförmigen Anhänge,
den Flagellen. Wir untersuchten die Statistik dieser Bewegung. Um natür-
lichere und vor allem längere Trajektorien - verglichen mit konventionellen
zweidimensionalen Trackingmethoden - zu erhalten, haben wir einen Mes-
saufbau zum dreidimensionalen tracken von Bakterien entwickelt. Die Haup-
tkomponente dieses Setups ist eine elektrische, fokusanpassbare Linse (ETL),
welche ihre Form durch Anlegen eines elektrischen Stroms ändern kann,
was zu einer Änderung der Fokusebene führt. Dieser Messaufbau hat keine
mechanischen Wechselwirkungen mit der Probe, wodurch Verfälschungen
der gemessenen Trajektorien verhindert werden. Wir konnten zeigen dass
für Zeiten kleiner als die durchschnittliche running-Zeit (dt. Renn-Zeit), die
mittlere quadratische Verschiebung (MSD) der getrackten Bakterien ein bal-
listisches Verhalten zeigt, wohingegen für längere Zeiten ein diffusives Ver-
halten vorliegt. Um eine effizientere Auswertung der gemessenen Trajekto-
rien zu erlauben, führten wir den Kalman-Filter ein. Durch Nutzung simulierter
Trajektorien konnten wir zeigen dass der Kalman-Filter eine genauere Bes-
timmung des Rotations-
Diffusionskoeffizienten - verglichen mit konventionellen Methoden - erlaubt.
Weiterhin konnten wir zeigen, dass die Auswertung dreidimensionaler Tra-
jektorien leicht andere Statistiken als die Auswertung zweidimensionaler Tra-
jektorien liefert, was durch den Verlust an Information zu erklären ist. Durch
die qualitative Simulation der Bewegung von Bakterien konnten wir zeigen
dass die Position der Flagellen einen wesentlichen Einfluss auf die Tumbling-
Dynamik (dt. Taumel-Dynamik) hat.
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Chapter 1

Introduction

Despite bacteria have a size of only a few microns, their total biomass is larger
than the one of plants and animals [84, 177]. Even the biomass of the plank-
tonic microorganism Cyanobacteria exceeds the biomass of humans. Bacteria
are found almost everywhere, e.g. in the air, water, skin, hair and even in the
food we eat [125]. Many bacteria choose larger organisms as their habitat,
which can be beneficial for both sides. For example several bacteria live in the
gut functioning as a vital factor for digestion. Furthermore they help to pre-
vent the outbreak of diseases, which are caused by other bacteria [146]. And
there are many more bacterial cells in the human body. Their total amount is
approximately ten times larger than the amount of human cells. Bacteria are
also able to live in places where at a first glance no life was expected, e.g. at
hot springs or salt lakes [84]. The most observed bacterium is E. coli, which
acts as a standard model in bacteriology [94].
In general, bacteria are a type of biological cell. They are classified as prokary-
otic microorganisms. The term prokaryotic refers to unicellular microorgan-
isms without a membrane-bound nucleus or any other membrane-bound or-
ganelle [28]. The DNA and other genetic materials are contained as a single
strand in their cytoplasm. Bacteria usually grow to a certain size until they
reproduce through binary fission, a form of asexual reproduction [86, 176].
Many bacteria are able to maintain active swimming, with the two main goals
to increase the efficiency in nutrient acquisition and the avoidance of toxic
substances [12, 14]. The movement of bacteria is triggered by changes in the
environment, such as changes in the light-intensity, changes in the tempera-
ture or changes in the chemical gradient. The corresponding technical terms
are denoted as phototaxis, thermotaxis and chemotaxis [4, 12, 107, 141, 180].
To allow for active swimming, bacteria usually use their helical appendages,
the flagella. Real (schematic) images of the bacterium E. coli during active
swimming are represented in Fig. 1.1 (b) and (c) ((d) and (e)). Based on the
placement of the flagella, one differentiates between monotrichious bacteria
(only one flagellum), lophotrichous bacteria (multiple flagella attached to one
spot), amphitrichous bacteria (two flagella on opposide ends) and peritrichous
bacteria (multiple flagella at random locations). Peritrichous bacteria such as
E. coli swim by rotating their helical flagella [12, 108]. The flagellum consists
of three main parts, the helical filament, which is connected via the hook to a
rotary motor, which generates the torque for flagella-rotation [105, 109]. The
filament of the bacterium E. coli is only approximately 0.015 µm in diame-
ter and about 15 µm in length [2]. It is generally very stiff, but can change
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FIGURE 1.1: (a) Trajectory of the bacterium E. coli consisting of
two running-states (magenta) separated by a tumbling-event
(cyan). Real and schematic images of the bacterium during the
running (tumbling) process are represented in (b) and (d) ((c)

and (e)). (b) and (c) taken from [166].

between different helical shapes [43]. This behavior is denoted as polymor-
phism. The stiffness of the hook plays a key role to allow for bundling of the
different flagella. This bundle allows for a more efficient swimming. In con-
trast to prokaryotic cells, there exist eukaryotic cells with a nucleus. Despite this
basic difference, eukaryotic cells like Chlamydomonas reinhardtii or spermatozoa
also use a flagellum to swim [78, 124], but their structure and functionality
differs completely from the bacterial flagellum.
The swimming of bacteria consists of the running- (magenta) and tumbling-
state (cyan), which can be seen in Fig. 1.1 (a). During the running-state, all
flagella rotate counterclockwise (CCW, as seen from behind) in a bundle (Fig.
1.1 (b) and (d)). After several seconds in the running-state, one or more flag-
ella start rotating clockwise (CW, as seen from behind). This reversing of the
rotation-directory induces the tumbling-state, consisting of an unbundling
of the flagella-bundle (Fig. 1.1 (c) and (e)), several polymorphic transforma-
tions of the CW-rotating flagella and a random reorientation of swimming-
direction. This tumbling-state usually takes about 0.1 s and all flagella start
to rotate CCW again, building a new flagella bundle [43]. This behavior is
known as the run-and-tumble strategy, leading to a random walk for bac-
teria locomotion. Polymorphic transformations can also be induced by the
application of external forces or torques on the filament [43, 45, 66], changes
in pH-value, salinity or temperature of the surrounding solvent [60, 76, 77],
the addition of alcohol [67] or sugar [149]. It is interesting that bacteria that
do not show any polymorphic transformations during swimming undergo
polymorphic transformations by previous mentioned conditions [141]. It is
possible to derive 12 different polymorphic forms of the flagellum based on
the intrinsic structure, as first done by Asakura [5] and Calladine [31].
Due to their relatively small size, the swimming of bacteria occurs at the low
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Reynolds-regime. Swimming at this scale, the micro-scale, was initially stud-
ied by Lighthill [100, 101] and Purcell [128]. The understanding of the helical
filament [81, 172–174] is important to understand the bundling-process due
to hydrodynamic interactions [70, 79, 81, 82, 131, 133].
The understanding of bacteria-swimming has inspired many applications in
various disciplines, such as statistical physics [130], biology [169], robotics
[27], social transport [62], soft matter [113], biomedicine [63, 64], transporta-
tion of colloids [9] and the pumping of fluids [44, 80].
This thesis is separated in six chapters. In this first chapter we give an overview
about the research area of this thesis. In the second chapter we provide the
required background to follow this thesis, consisting of experimental and
mathematical facts about bacteria locomotion and the introduction of the
Kalman-Filter. In the third chapter we describe an experimental setup con-
sisting of an optical microscope extended with an electrically focus tunable
lens (ETL). With this setup we are able to track particles in three dimensions.
In chapter number four we apply the Kalman-Filter to extract trajectory-
characteristics. The fifth chapter describes a method suitable for qualitative
simulation of bacteria locomotion. The last chapter number six summarizes
the results from this thesis and gives an outlook on possible future work.
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Chapter 2

Background

2.1 Structure of the bacterium flagella

Several bacteria, such as E. coli or B. subtilis, are able to swim by using one or
multiple appendages on their cell body, the flagella. This flagellum acts as a
kind of propeller and generates thrust for the locomotion of the bacterium.
A schematic representation of this flagellum for E. coli can be found in Fig.
2.1 (a), along with a reconstruction of the motor-core obtained from electron
microscopy in Fig. 2.1 (b). The flagellum consists of several proteins, denoted
as Flg, Fil and Mot in Fig. 2.1 (a). A detailed description of these proteins can
be found in [17]. In this section we describe the three different parts of the
flagellum

1. Filament: The largest component is known as the filament, shaped as
a helix. The filament is a biopolymer constructed from a single protein
called flagellin. We will discuss the filament in section 2.1.1

2. Motor: The filament is driven by the motor. It will be discussed in
section 2.1.2

3. Hook: The hook connects the filament and the motor, transfering the
torque generated by the motor to the filament. We will discuss the hook
in section 2.1.3

2.1.1 The filament

Filaments can be distinguished in two main classes, based on their form: the
plain form and the complex form. The complex form is brittle and forms a
single, left-handed helix [141]. Compared to the plain filaments, their molec-
ular structure is more complicated [165]. As we work with the bacterium B.
subtilis in this thesis, we focus on the plain form, which arises in this kind of
bacterium. In relation to their length of several µm, the filament is extremely
thin with a diameter of only about 0.015 µm. Although the helical form of a
filament is very stiff, the bacterium is able to switch between several helical
forms, which is known as polymorphism. The change of a helical shape to
another can be triggered by changes in pH value, salinity or the temperature
of the surrounding fluid [60, 75, 76, 141, 150], or by the addition of alcohols
or sugars [67, 149]. It also can be triggered by the application of external
forces or torques to the filament [43, 45, 66, 108]. These different forms of the



6 Chapter 2. Background

m
ot

or

h
oo

k

fi
la

m
en

t

(a)

(b)

FIGURE 2.1: (a) Schematic representation of a bacterium-
flagellum consisting of the motor, hook and filament consist-
ing of different proteins Flg, Fli and Mot. (b) Image of the mo-
tor obtained by rotationally averaging images taken by electorn

microscopy. Image taken from [17].

filament have been explained by Calladine 1975 [31, 33], who continued the
work of Asakura [5]. The basic ideas of the work are summarized in Fig. 2.2
(a) and (b), resulting in 12 different helical forms first derivated by Calladine.
These 12 helical forms are represented in Fig. 2.2 (c). In Fig. 2.2 (a) we see a
schematic cross-section of a filament, consisting of 11 springs. These springs
correspond to protofilaments. A filament consists of 11 protofilaments, and
every protofilament consists of a stack of protein monomers, called flagellin
[181, 182]. There are two different states of these monomers, called L- and
R-state. Both states differ in length by approximately 0.8 Å [75, 138]. A sin-
gle protofilament can only consist of a single type of monomer, therefore
only two different types of protofilaments with two different lengths can be
found in a filament. This observation is known as Calladine’s rule [51]. Fur-
thermore it was observed that protofilaments are mixed randomly, but they
cluster to minimize elastic strain within the filament. Due to the different
lengths of the protofilament, the filament starts to bend, resulting in a certain
curvature as represented in Fig. 2.2 (a). In Fig. 2.2 (b) we see a rolled-up fila-
ment, which would result in the cylindric shape represented from fig. 2.2 (a)
if we connected the left and the right side. To allow the creation of a chemical
bond between the proteins, the protofilaments are slightly tilted against the
centerline of the filament, represented through the angle αt.
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FIGURE 2.2: (a) Representation of a flagella-segment consisting
of 11 protofilaments, where 9 are in the L- (cyan) and 2 are in the
R-state (magenta). The protofilaments cluster and due to their
different lengths the flagellum has a certain curvature. (b) To
allow the creation of chemical bonds between the proteins, the
protofilaments are slightly tilted against the centerline of the fil-
ament, represented through the angle αt, resulting in a twist of
the filament. (c) Based on curvature and twist, Calladine calcu-
lated 12 different shapes of the flagellum, where 4 (nR < 4) are

left handed, and 8 (nR ≥ 4) are right-handed.

This tilt results in a twist of the filament. A combination of the curvature
and the twist of the filament results in its typical helical shape. Calladine
derived all 12 possible shapes of the filament based on the properties of the
protopolymers [31, 44], which can be quantified by the curvature and the
twist

κn = κ0 sin
(πnR

11

)
, τn = τL +

(τR − τL) nR

11
, (2.1)

where nR is the number of protofilaments in the R-state. The parameters κ0,
τL and τR where experimentally determined [45] to

κ0 ≈ 2.4
1

µm
, τL ≈ −5.2

1
µm

, τR ≈ 11.8
1

µm
(2.2)

The obtained polymorphic forms are represented in Fig. 2.2 (c), where the
shapes for nR < 4 are left-handed, and the remaining shapes are right-handed.
Most of these polymorphic forms have been observed experimentally [61,
181]. Several extensions based on Calledine’s model have been developed
[51, 61, 156–158].
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2.1.2 The motor

The motor generates the torque to rotate the filament. For bacteria like E. coli
the motor works at constant torque but can switch the direction of rotation.
This change in the rotation from counterclockwise (CCW) to clockwise (CW)
induces tumbling-events [155]. The torque for E. Coli is typically in the range
from 1 pN µm up to 4.6 pn µm [17, 155]. There are other bacteria like Rhi-
zobium lupini or Rhodobacter sphaeroides [3] which rather than changing from
CCW to CW adapt the rotation velocity.
It is interesting to mention that the rotary motor of the bacterial flagellum
does not use directly ATP as energy-source [49], in contrast to several other
biological motors like myosine and kinesin. It rather uses protons [88, 112]
or other ions [155] moving down an electro chemical gradient across the cell
membrane. There exist several theoretical models suitable to describe these
motors [93, 168]. Especially for the qualitative simulation of bacteria loco-
motion it is an important observation that the motor runs at constant torque
over a broad range of angular velocities [17].

2.1.3 The hook

The hook is used to transfer the torque generated by the motor to the fila-
ment. The length of this hook is approximately 0.05 µm for E. coli or S. ty-
phimurium and up to approximately 0.1, µm for R. sphaeroides and therefore
much shorter than the filament [73, 85, 137, 151]. It has been shown that the
flexibility of the hook is important to allow for a stable running state. In case
of uni-flaggelated bacteria, a relatively stiff hook is required to avoid buck-
ling, whereas for multiple flagella the hook needs to be more flexible in order
to allow bundling of the flagella [119].

2.1.4 Swimming of bacteria

The first quantitative evaluation of E. coli locomotion was performed in 1972
by Howard C. Berg and Douglas A. Brown [19]. They used an optical mi-
croscope and followed the movement of single cells. One example of an
observed trajectory from the original publication [19] is represented in Fig.
2.3 (a). We can qualitatively see that the trajectory consists of several straight
paths, separated by a big change in the direction. The straight paths corre-
spond to the running-state of the bacterium, whereas the events inducing big
changes in the swimming direction are denoted as tumbling-events. In Fig.
2.3 (b) we see a quantitative evaluation of the swimming speed v for three
different trajectories from [19]. We can clearly see large drops in the speed
v, where tumbling-events are marked via black dots over the graphs. In this
first publication [19], for the first time the run- and tumbling motion of bac-
teria was observed. Until 1973, it was expected that bacteria swim by using
their flagella which perform helical waves [106]. In the year 1973, Howard
C. Berg and Robert A. Anderson investigated the propulsion mechanics of
bacteria and could demonstrate that rather than applying helical waves, that
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(a) (b)

FIGURE 2.3: Original results presented in [19] for the bacterium
E. coli: Measured trajectory (a) and speed v for three different

trajectories (b).

FIGURE 2.4: Images of the bacterium E. coli taken from [43]. The
wavecrest of the flagella-bundle marked in image 5 has moved
a whole wavelength in image 5, making it possible to denote

the bundle-frequency to ω ≈ 100 Hz.

a model where each filament rotates is favored [18]. This suggestion was ex-
perimentally proven by Silverman and Simon [154], who tethered bacteria to
microscope slides and observed rotation of the bacteria-bodies. In a next step,
Lahrsen et al. [89] used the same technique as Silverman and Simon [154] to
show that the rotation-direction of the flagella can be manipulated by the
environment. The addition of attractants causes counterclockwise-rotation
(CCW) - the running-state - whereas the addition of repellents causes clock-
wise (CW) - the tumbling-state - rotations. From this publication [89] in the
year 1974 it took approximately 30 years until Darnton et. al. were able to
use a microscope to observe flagella during the running- and tumbling state,
which allowed to observe the shape of the flagella as well as the angular
velocity ω [43]. An example from the publication [43] showing a full rota-
tion of a flagella-bundle is presented in Fig. 2.4. From these experiments,
the rotation rate of flagella-bundles could be determined to ω ≈ 100 Hz.
Furthermore they were able to give a more detailed description of tumbling-
events based on their measurements. The original image form the publica-
tion [43] summarizing the most frequent tumbling-process consisting of the
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Polymorphic form Pitch (P) Radius (R) Curvature (κ0) Twist (τo)
Normal (left-handed) 2.1611 µm 0.2161 µm κn

0 = 1.3097 τn
0 = −2.0845

Semicoiled (right-handed) 1.0766 µm 0.3810 µm κn
0 = 2.1831 τn

0 = 0.9818
Curly-I (right handed) 1.3199 µm 0.1975 µm κn

0 = 2.3757 τn
0 = 2.5268

TABLE 2.1: Experimentally values for the pitch P and radius R
of the flagellum and the corresponding curvature κ0 and twist

values τo from [95].

FIGURE 2.5: Schematically representation of the most common
tumbling process consisting of the normal-, semicoiled- and curly-

I-state of the flagella. Image taken from [43].

polymorphic-forms normal-, semicoiled- and curly-I- represented in Fig. 2.5.
The corresponding parameters for the normal-, semicoiled- and curly-I-state of
the flagella are summarized in table 2.1. Initially the bacterium is in the run-
ning state (1), where the bundle rotates CCW. At a certain time, one or more
flagella start to rotate CW (2), initializing the unbundling-process, followed
by a polymorphic-transformation of the unbundling flagellum to the semi-
coiled state (3). After a certain time, the polymorphic transformation is fin-
ished and the bacterium starts to reorientate (4). Now the bacterium moves
in a new direction, with a bundle rotating CCW and one or more flagella ro-
tating CW in the semicoiled state (5). After a certain time, the non-bundle
flagella have transformed form the semicoiled to the curly-I state, which is
loosely connected to the bundle. After a motor reversal from CW to CCW
(7), the curly-I form changes to the normal form again and all flagella suc-
cessfully bundle together again (8).
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2.2 Properties of microswimmers

2.2.1 Dynamics at low Reynolds numbers

The main equation to describe dynamics of an incompressible Newtonian
fluid is the Navier-Stokes equation:

∂u
∂t

+ (u∇) u = −1
ρ
∇p + ν∇2u + g. (2.3)

where ρ is the density, p is the pressure, ν is the kinematic viscosity, u is the
flow-velocity and g is the body acceleration field. The Navier-Stokes equa-
tion 2.3 can be understood as Newton’s second law for small fluid-elements.
Assuming mass conservation we obtain another equation

∇u = 0. (2.4)

Introducing a characteristic length-scale L, characteristic velocity-scale U,
characteristic time-scale T = L

U we can perform the following substitutions

r = r̃L, ∇ =
∇̃
L

, u = ũU and t = t̃T, (2.5)

transforming the Navier-Stokes equation to

Re
∂u
∂t

= −Reũ∇̃ũ− ∇̃ p̃ +∇2u +
Re
Fr2 f̃ . (2.6)

Here the quantity Fr is the Froude-number defined as

Fr ≡
√

inertial forces
gravitational forces

=

√
ρ U2

L
ρg

=
U√
gL

. (2.7)

The second quantity Re , known as the Reynolds number, defines the flow
regime [116]. In the absence of external forces f , the Reynolds-number Re
is the ratio of the inertial term on the left-hand side of the Navier-Stokes
equation 2.3 to the viscous force per unit volume on the right hand side of
the Navier-Stokes equation 2.3 [116]:

Re ≡ inertial force
viscous force

=
|ρu∇u| |
|ν∇2u| ∝

ρUL
ν

. (2.8)

The Reynolds-number of a typical bacterium such as E. coli with a body
length of approximately L ≈ 1 µm swimming with a velocity U ≈ 10 mum

s
in water (ρ ≈ 103 kg

m3 and ν ≈ 10−3 Pas) can be calculated to Re ≈ 10−5. In
this case we can expect Re� 1 and the left side of the Navier-Stokes equation
2.3 vanishes, simplifying the Navier-Stokes equation to

−∇p + ν∇2u = 0. (2.9)
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Above equation 2.9 is denoted as Stokes-equation. For bacteria we can always
expect to be in the regime Re� 1, enabling us to describe bacteria dynamics
with the Stokes-equation 2.9, which is easier to solve than the original Navier-
Stokes equation 2.3. It is important to mention that the Stokes-equation 2.9
is time-independent. The consequence is the fact that bacteria cannot use ap-
pendages moving with time reversal symmetry to generate thrust [128]. This
phenomenon is known as the scallop-theorem [128] and was first discussed by
Purcell. In the next section 2.2.2 we will describe how bacteria can generate
thrust in the low Reynolds-number regime Re� 1.

2.2.2 Flagella propulsion for low Reynolds-numbers

We have seen in above section 2.2.1, that in the low Reynolds-number regime
Re � 1 it is impossible to generate thrust for bacteria by using appendages
moving with time reversal symmetry. This effect occurs as a result of the
time-independence of the Stokes-equation 2.9. In general, it is impossible to
generate thrust applying deformations with only one degree of freedom, as
the net displacement will always sum up to zero. Therefore it is required
for bacteria to employ deformations with nB > 1 degrees of freedom. In a
first step we discuss Purcells general idea of bacteria swimming in the low
Reynolds-numbers regime [128]. Afterwards we will discuss the restrictive
force theory (RFT), describing the propulsion based on drag. Finally Slender
body Theory (SBT) will be discussed.

Propulsion of microswimmers

A bacterium swims by rotating one or more filaments, which are connected
to the cell-body. Following Purcell [128], a bundle of flagella in the running-
state can be approximated by a single flagellum. Due to the linearity of
Stokes-equation 2.9, the thrust force Ffl and torque Tfl can be written as

−Ffl = Av− Bω and (2.10)
Tfl = −Bv + Dω, (2.11)

where v is the translational and ω the angular velocity of the filament, as
represented in Fig. 2.6 (a). The constant A and D represents the translational
and rotational drag coefficient. To understand the meaning of constant B,
let us assume a rotating helix. This rotating helix would start a translational
motion, therefore a certain force is necessary to avoid this translational mo-
tion, quantified as −Bω in equation 2.10. On the other hand, a helix moving
through a fluid would start rotating, therefore a certain torque is necessary
to avoid a rotation, quantified as −Bv in equation 2.10 [91, 99]. Here the an-
gular velocity ω and the torque Tfl obey the right-hand rule for a left-handed
helix, and the handness of the helix defines the sign in front of the coupling
constant B [98, 128]. We can summarize both equations 2.10 and 2.11 into a
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(a)

(b)

+

-

FIGURE 2.6: (a) Schematically representation of a bacterium
consisting of the cell-body and the flagellum. Due to the rota-
tion of the flagellum with angular frequency ω, the bacterium
moves with a velocity v. The total force −Ffl (torque Tfl) on the
flagellum consists of the propulsion-force −Bω (torque −Bv)
and the drag-force Av (torque Dω). (b) Zoom into a segment
of the flagellum from (a). The drag-force f̃ can be splitted into
a component parallel f̃‖ and perpendicular f̃⊥ to the velocity ṽ

of the segment.

single matrix equation(
−Ffl
Tfl

)
= M

(
v
ω

)
, M =

(
A −A
−B D

)
, (2.12)

where the matrix M is known as propulsion or resistance matrix [128]. The
propulsion matrix M depends on the pitch λ, radius R and thickness a of
the helix. It can be determined by either using RFT or SLB, where the latter
included interactions between individual segments of the helix. As the cell-
body is approximated as an elongated ellipsoid, it cannot generate thrust due
to its symmetry. The drag force and torque experienced by the cell-body can
be described similar to the helical-case as

Fb = −Abv, (2.13)
Tb = −DbΩ, (2.14)

where A0 = 4πηb
ln( 2b

a )−0.5
and D0 = 16πa2b

3 are the translational and rotational

drag coefficients [16], a and b are the minor and major axis of the ellipsoid
and η represents the viscosity of the medium. We expect the ellipsoid to
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move along and rotate around the major axis. As the cell-body typically ex-
periences larger drag as the flagella-bundle, the flagella-bundle has to rotate
faster than the cell-body

ω > Ω, (2.15)

to satisfy the torque-free condition. Similar to equation 2.16, we can summa-
rize equations 2.13 and 2.14 into a single matrix equation(

Fb
Tb

)
= Mb

(
v
Ω

)
, Mb =

(
−Ab 0

0 −Db

)
. (2.16)

Due to the fact that the cell body is not self propelled, we see that Matrix
Mb, corresponding to the cell-body, has vanishing off diagonal elements, if
we compare both matrices M and Mb. If we neglect external forces, the cell-
body of a bacterium moving with constant velocity v experiences two forces
−Ffl and Fb. As the velocity v is assumed to be constant, these forces have to
be equal

− Ffl = Fb, (2.17)

resulting in
(A + Ab) v = Bω. (2.18)

Furthermore the torque must be balanced by the drag on the rotating cell-
body

Tb̊ = −Tfl, (2.19)

resulting in
− Bv + Dω = DbΩ. (2.20)

By fixing a bacterium in an optical trap and vary the flow conditions, it is
possible to extract the drag coefficients by applying equations 2.18 and 2.20
[35, 37, 43].

Resistive force theory

To understand how a rotating helix can generate thrust in the low Reynolds-
number regime Re � 1, we will follow the ideas from Gray and Hancock,
who modeled the swimming of spermatozoa via a wave traveling through
the viscous fluid [54, 55]. In the following we expect a left-handed, counter-
clockwise (CCW) rotating helix of frequency ω characterized by length L,
radius R and pitch λ. In Fig. 2.6 (b) we zoom into a segment of the helix
and introduce the pitch angle Φ = atan

(2πR
λ

)
. This segment can be ap-

proximated as a cylinder of length l and radius a. For a moving helix, each
segment moves with a certain velocity ṽ as illustrated in Fig. 2.6 (b). We can
split the velocity ṽ into a component ṽ‖ parallel and a component ṽ⊥ per-
pendicular to the cylindric element. As we are in the Stokes regime, these
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velocities ṽ‖ and ṽ⊥ result in proportional drag-forces

f̃‖ = −ζ‖ṽ‖ = −ζ‖ṽ cos (Φ) , (2.21)

f̃⊥ = −ζ⊥ṽ sin (Φ) , (2.22)

where ζ‖ and ζ⊥ represent the drag coefficients of a cylinder pulled parallel
or perpendicular to its main axis through the fluid. The component of the
drag force in the y-direction can be obtained via

fp =
(

ζ‖ − ζ⊥
)

ṽ sin (Φ) cos (Φ) ey. (2.23)

Here fp describes the forward thrust force generated by each cylindric ele-
ment of the helix in y-direction. The total propulsion force Fp can be obtained
via

Fp = ∑
c

fp, (2.24)

where c in equation 2.24 describes the summation over all propulsion forces
fp generated by the cylindric elements [36]. In general, there are two differ-
ent sets of parameters ζ‖ and ζ⊥ used in literature [134], where for both of
these sets its expected that the effect of small cylindric elements is just locally
important. The first set of parameters ζ‖ and ζ⊥ has been calculated by Gray
and Hancock in 1955 [54]

ζ‖ =
2πη

ln
(2D

r
)
− 0.5

, ζ⊥ =
4πη

ln
(2D

r
)
+ 0.5

. (2.25)

A second, more accurate set was calculated by Lighthill in 1975 [101]

ζ‖ =
2πη

ln
(

0.18D
r cos(Φ)

) , ζ⊥ =
2πη

ln
(

0.18D
r cos(Φ)

)
+ 0.5

. (2.26)

If we have a look at equation 2.23 it is important to realize that in case of an
isotropic element with ζ‖ = ζ⊥ it is impossible to generate thrust. However,
in several experiments it was discovered that typically ζ‖ < ζ⊥, Especially
for very thin cylinders where approximately ζ⊥

ζ‖
= 2 [55, 58]. Another impor-

tant role plays the velocity ṽ and the pitch angle Φ of the cylindric elements
from equation 2.23. If we assume the pitch angle Φ to be constant and the ori-
entation of the velocity ṽ to change periodically, also the thrust force would
change periodically. Therefore, for an effective propulsion, it is required that
both the velocity ṽ and the pitch angle Φ of the cylindric elements change
over time. In case of the helix, every change ṽ→ −ṽ is connected to a change
Φ→ −Φ, resulting in a constant direction of the propulsive force Fp.
Based on the local drag coefficients ζ‖ and ζ⊥ it is possible to calculate the ele-
ments of the propulsion matrix M by integrating the cylindric segments over
the whole helix. These calculations have been performed in [163], resulting
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in

A = ζ⊥L
(

1− β2
)(

1 + γ
β2

1− β2

)
, B = ζ⊥

(
λ

2π

)(
1− β2

)
(1− γ) ,

(2.27)

D = ζ⊥

(
λ

2π

)2

L
(

1− β2
)(

1 + γ
β2 − 1

β2

)
, β = cos (Φ)2 , γ =

ζ‖
ζ⊥

< 1.

(2.28)

From equation 2.27-2.28 we see that in case of γ = 1 we obtain B = 0, result-
ing in no swimming according to equation 2.18. Also in the case of a straight
helix (Φ = 0 or Φ = π

2 ) no swimming is possible.

Slender body theory

To reconcile the shortcomings of RFT, the omission of hydrodynamic forces
between different flagella segments and their cumulative effect on motion
[72], the Slender body theory (SBT) was introduced. Instead of approximat-
ing the flagella by a chain of cylindric segments, Lighthill simulated the flag-
ella as a distribution of point-forces, known as stokeslets, along the centerline
of the flagella [100]. The impact of these Stokeslets decays as 1

r and there-
fore induce long-range effects that must be considered. Numerically this can
lead to singularities, wherefore Cortez introduced a method of regularized
stokeslets on the outer flagella surface to approximate forces and avoid sin-
gularities [41]. A comparison of the calculated drag coefficients of Gray and
Hancock (RFT), Lighthill (RFT), Lighthill (SBT) and Cortez, concluding that
the SBT applied by Lighthill and the Cortez model are in general more accu-
rate than RFT [134].

2.2.3 Langevin equation

The motion of a small colloidal particle (Brownian-particle) in a bath of much
smaller fluid particles, is denoted as Brownian motion [48]. The size of the
colloidal particle can range from several nanometers up to micrometers. As
there are several collisions of the colloidal particle with the fluid particles,
this interaction can be modeled as a friction. When we denote the velocity
of the colloidal particle as v, the friction force is given as −λv, where λ > 0
is the friction coefficient. The friction −λv is known as Stokes friction. The
friction coefficient for a sphere of radius r can be calculated via λsphere =
6πηr. To deal with random collisions with the surrounding particles, one
can introduce a second, stochastic force

√
(2q)η(t). If we do not expect any

additional forces on the Brownian particle, we can write Newton’s equations
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of motion for the position r(t) of the Brownian particle as

d
dt

r(t) = v, (2.29)

m
d
dt

v(t) = −λv +
√
(2q)η(t). (2.30)

The first equation 2.29 simply defines the velocity v(t) of the Brownian parti-
cle. The second equation 2.30 is denoted as Langevin equation. The parame-
ter q defines the strength of the force, and the stochastic part η(t) is Gaussian
white noise satisfying

〈ηi(t)〉 = 0,
〈
ηi(t1)ηj(t2)

〉
δijδ (t1 − t2) . (2.31)

The brackets 〈...〉 denote an ensemble average over many realizations of the
stochastic process. The noise strength q can be determined by applying the
equipartition-theorem for systems in equilibrium at temperature T

m
2

〈
v2
〉
= d

kBT
2

. (2.32)

Here the parameter d refers to the number of spatial dimensions and kB is the
Boltzmann constant. Integrating the particle-velocity from equation 2.30, we
obtain

v(t) = exp
(
− t

τv

)(
v0 +

√
2q

m

∫ t

0
dt′η

(
t′
)

exp
(

t′

τv

))
, (2.33)

where τv = m
λ is an intrinsic time-constant. Taking the ensemble average

from equation 2.33, the average over η yields zero and we obtain

〈v(t)〉 = v0 exp
(
− t

τv

)
. (2.34)

This means that the mean velocity decays to zero on the time-scale τv. Ap-
plying both equations from 2.31, we can calculate the velocity correlation
function for the velocity v(t) to

〈v(t1)v(t2)〉 = v2
0 exp

(
− t1 + t2

τv

)
+

dq
λm

(
exp

(
−|t1 − t2|

τv

)
− exp

(
−|t1 + t2|

τv

))
.

(2.35)
In the limit of large times t� τv, above equation 2.35 simplifies to〈

v2
〉
=

dq
λm

. (2.36)

Combining the result in equation 2.36 with the equipartition-theorem from
equation 2.32, we can determine the strength q of the random force to

q = γkBT, (2.37)



18 Chapter 2. Background

connecting the microscopic noise-strength q to the macroscopic friction co-
efficient λ. The fact that both quantities q and λ are not independent of
each other is an example for the more general fluctuation-dissipation the-
orem [126]. After evaluating the velocity v of the Brownian particle, we will
now focus on the trajectory r of the Brownian particle. The position r(t) can
be obtained by integrating equation 2.29, yielding

r(t) = r(0) +
∫ t

0
dt′v

(
t′
)

. (2.38)

We can use equation 2.38 to calculate the mean displacement

〈r(t)− r(0)〉 = v0τv

(
1− exp

(
− t

τv

))
, (2.39)

which will saturate to a fixed position for large times t � τv. The random
walk is usually characterized by the mean-squared displacement (MSD) de-
fined as〈
[r(t)− r(0)]2

〉
=

〈[∫ t

0
dt′v

(
t′
)]
·
[∫ t

0
dt′′v

(
t′′
)]〉

=
∫ t

0
dt
∫ t

0
dt
〈
v
(
t′
)
· v
(
t′′
)〉

(2.40)

=
2dqτv

λ2

(
t

τv
− 1 + exp− t

τv

)
+

(
v2

0 −
dq
λm

)1− exp
(
− t

τv

)
τ−1

v

2

.

(2.41)

We are interested in the behavior of equation 2.41 in regimes for small and
large times t compared to τv:

1. t � τv: For small times t we can make a Taylor-expansion of the MSD,
which yields

〈
[r(t)− r(0)]2

〉
≈
(

ṽ2t2
)

, ṽ =

√
dkBt

m
. (2.42)

2. t� τv: For large times t, the second term of equation 2.41 vanishes due
to the relation given by equation 2.36, yielding〈

[r(t)− r(0)]2
〉
= lim

t→∞
D2dt, D =

q
λ2 =

kBT
λ

. (2.43)

The relation
D =

q
λ2 =

kBT
λ

(2.44)

is known as the Stokes-Einstein relation.
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FIGURE 2.7: (a) Trajectory for the microorganism Paramecium
measured by Przibram. Image taken from [127]. (b) Three dif-

ferent simulations of a Brownian particle.

Langevin equation and microswimmers

The Langevin-equation 2.30 was introduced in 1908. It was used to describe
the stochastic motion of a Brownian, colloidal particle in a bath of smaller
fluid particles at temperature T [96]. Nowadays, these Langevin-equations
are used in several fields, such as Physics, Biology, Engineering and Finance
[53, 83, 120]. The Langevin-equation can especially be used to describe the
stochastic motion of cells observed under a microscope [1, 147]. The similar-
ity between the observation of microorganism-trajectories and the trajecto-
ries of Brownian particles was first observed by Przibram in his article "Über
die ungeordnete Bewegung niederer Tiere" (engl. "About the disordered lo-
comotion of of low animals") from 1913 [127]. In Fig. 2.7 we compare original
data from the work of Przibram [127] for the microorganism Paramecium (a)
with three different trajectories of simulated Brownian particles (b). Qual-
itatively we see several similarities between both trajectories. Due to this
good agreement, it is a valid approach to describe microorganisms in terms
of stochastic differential equations. The noise terms - inducing random forces
and torques - mimic the collisions of the microorganism with particles in the
surrounding medium. On the other hand the noise terms can mimic internal
cell processes that have an effect on the locomotion of the microorganism.
We have seen in section 2.2.1, that the dynamics of microswimmers occur in
the Low-Reynolds regime, where

d
dt

v(t)� λv(t), (2.45)

meaning that inertial forces can be neglected. This simplifies equation 2.30 to
the overdamped Langevin-equation

d
dt

r(t) =
√

2Dη(t). (2.46)
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Applying equation 2.31 we obtain

〈v (t1) v (t2)〉 = 2dDδ (t1 − t2) , (2.47)

for the velocity-correlation function. By applying equation 2.40 we see that
the MSD for an overdamped particle can be calculated to〈

[r(t)− r(0)]2
〉
=
∫ t

0
dt
∫ t

0
dt
〈
v
(
t′
)
· v
(
t′′
)〉

= 2dDt. (2.48)

We see from equation 2.48 that the MSD obtained from the overdamped
Langevin-equation corresponds to the MSD obtained from the general Langevin-
equation in the limit t� τv represented in equation 2.43.

2.2.4 Active particles

We have seen in above section 2.2 that the trajectories of Brownian parti-
cles and microswimmers have several similarities. Despite these similarities,
there are huge physical differences. The Brownian particle is a passive col-
loid in the thermal equilibrium whose diffusion coefficient obeys the Stokes-
Einstein relation 2.44 and the mean velocity tends to vanish for long times.
This is a complete contradiction to the observation that active particles have
an own mechanism of propulsion to maintain a certain speed v > 0. There-
fore it will be necessary to make several adaptions to describe active particles
in a Langevin-like approach. In this section, we will follow the ideas of Tak-
tikos [160].
The reason why biological particles such as microswimmers can maintain a
speed v > 0 over long times is due to their ability to absorb energy from their
environment and store it in an internal depot. This internal stored energy can
be transformed into kinetic energy, resulting in the swimming of the microor-
ganism [145]. To model active swimming particles, one can introduce an ef-
ficient friction coefficient λ (r, v), depending on the current particle position
r and velocity v. The existence of energy (e.g. nutrition) can be modeled by
a potential U (r) that generates an attractive force −∇U (r). There exist sev-
eral approaches to model the friction coefficient λ based on the speed, such
as [135]

λ(v) = λ− A
B + Cv2 , Schweitzer-Ebeling-Tilch, (2.49)

λ(v) = λ

(
v2

v2
0
− 1

)
, Rayleigh, (2.50)

λ(v) = λ
(

1− v0

v

)
, Schienbein-Grule. (2.51)

(2.52)

Here we will apply a different approach, which is based on the observation
that for several microorganisms changes in orientation are independent of
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changes in speed [121, 142]. This allows us to split the time-dependent ve-
locity v(t) in two different parts to

v(t) = v(t)e(t), (2.53)

where v(t) > 0 is the speed. The vector e(t) consisting of d− 1 angles Ω(t)
represents the current direction of motion. After splitting speed v and orien-
tation e, the probability density p (v, Ω) and the joint distribution p (v, Ω, t; v′, Ω′, t′)
factorize to

p (v, Ω, t) = p (v, t) p (Ω, t) , (2.54)

p
(
v, Ω, t; v′, Ω′, t′

)
= p

(
v, t; v′, t′

)
p
(
Ω, t; Ω′, t′

)
. (2.55)

Due to the factorization of equation 2.55, we can calculate the correlation
function of the velocity to〈

v(t)v(t′)2
〉
=
∫ t

0
ddv

∫ t

0
ddv′p

(
v, Ω, t; v′, Ω′, t′

)
ve · v′e′

=
〈
v(t)v(t′)

〉 〈
e(t) · e

(
t′
)〉

. (2.56)

If we integrate the velocity v(t) to obtain the position r(t) via

r(t) = r(0) +
∫ t

0
dt′v

(
t′
)

e
(
t′
)

(2.57)

we can calculate the MSD to〈
[r(t)− r(0)]2

〉
=
∫ t

0
dt′
∫ t

0
dt′′

〈
v(t′)v(t′′)

〉 〈
e
(
t′
)
· e
(
t′′
)〉

. (2.58)

For simplification we will now assume a constant speed v(t) = v whose
direction of motion e(t) is driven by a Gaussian white noise. The strength
of the rotational diffusion is set by the rotational diffusion coefficient Dr. To
calculate the correlation function 〈e(t)e(t′)〉, let us assume

p (Ω, t) =
1

Ω0
(2.59)

with ω0 constant,representing stationary and uniform distribution. We can
express the joint distribution p (Ω, t; Ω′, t′) in terms of the conditional proba-
bility p (Ω, t|Ω′, t′) via

p
(
Ω, t; Ω′, t′

)
= p

(
Ω, t|Ω′, t′

)
p
(
Ω′, t′

)
. (2.60)

The conditional probability satisfies the rotational diffusion equation

∂t p
(
Ω, t; Ω′, t′

)
= Dr∇2

Ω p
(
Ω, t; Ω′, t′

)
, (2.61)
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where ∇2
Ω denotes the angular part of the d-dimensional Laplace operator.

Now we focus on calculating the correlation function〈
e(t)e(t′)

〉
=
∫

de
∫

de′ee′p
(
Ω, t; Ω′, t′

)
p
(
Ω′, t′

)
. (2.62)

Calculating the time derivative on both sides and applying equation 2.61
yields

∂t
〈
e(t)e(t′)

〉
= Dr

∫
de
∫

de′ee′∇2
Ω p
(
Ω, t; Ω′, t′

)
p
(
Ω′, t′

)
. (2.63)

Performing two partial integrations with respect to Ω yields

∂t
〈
e(t)e(t′)

〉
= Dr

∫
de
∫

de′∇2
Ωee′p

(
Ω, t; Ω′, t′

)
p
(
Ω′, t′

)
. (2.64)

Applying the relation
∇2

Ωe = −(d− 1)e (2.65)

from [143] simplifies equation 2.64 to

∂t
〈
e(t)e(t′)

〉
= −(d− 1)Dr

∫
de
∫

de′ee′p
(
Ω, t; Ω′, t′

)
p
(
Ω′, t′

)
= −(d− 1)Dr

〈
e(t) · e

(
t′
)〉

. (2.66)

The ordinary differential equation 2.66 can be solved by using the initial con-
dition 〈e(t′) · e (t′)〉 = 1 yielding〈

e(t) · e
(
t′
)〉

= exp
(
−(d− 1)Dr(t− t′)

)
. (2.67)

We see from the timescale τr for rotational diffusion that in case of larger
spatial dimensions, the timescale τr decreases, resulting in a faster decay of
correlations, due to a larger degree of freedom for directional reorientation.
Applying equation 2.67 we can calculate the MSD from equation 2.58 to〈

[r(t)− r(0)]2
〉
= 2v2τ2

r

(
t
τr
− 1 + exp

(
− t

τr

))
. (2.68)

It is interesting to realize that the MSD for an active particle from equation
2.68 equals the MSD of a classical Brownian particle from equation 2.48.
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2.3 Kalman-Filter

In this section we want to introduce the Kalman-Filter [74] as a simple but
efficient tool to extract bacteria-trajectory statistics. The Kalman filter was in-
troduced by engineers and has a physical approach, resulting in several ad-
vantages such as the intrinsic distinction between process-noise (e.g. Brow-
nian motion) and measurement noise (e.g. tracking errors), the possibility to
estimate parameters which have not been measured by taking advantage of
the specific underlying physical model, etc [56, 59]. The Kalman filter first
introduced by Rudolf E. Kalman is suitable for linear problems. To deal with
non-linear problems, there have been introduced several extensions such
as the Extended-Kalman-Filter (EKF) [7, 59] or the Unscented-Kalman-Filter
(UKF) [59]. To get an understanding what the Kalman-Filter can be used for,
we can have a look at Fig. 2.8. In Fig. 2.8 (a) we see the information about the
z-position of a particle in one dimension represented as a probability-density
function (PDF). As we are not completely sure about the initial position, the
PDF has a certain initial width wx,k. The information about the position of
the particle at time t = k is denoted as xk. Let us assume we have a cer-
tain knowledge about the velocity vk of the particle at time tk. Based on the
information about the particle xk and the velocity vk we make a prediction
x̃k+1 for the position of the particle at time t = k + 1, represented as the blue
distribution in Fig. 2.8 (b). The width of the predicted state x̃k+1 is denoted
as w̃x,k+1. Due to the width wv,k of the distribution for velocity vk, the rela-
tion between the width wx,k of the initial state xk and the width w̃x,k+1 of the
predicted state x̃k+1 is given as

w̃x,k+1 > wx,k. (2.69)

To summarize, the blue distribution in Fig. 2.8 (b) represents the PDF for the
position of the particle at time t = k + 1 obtained by making a prediction
based on a certain model and the applied on the state of the particle at time
t = k. Another possibility to obtain the state of the particle at time t = k+ 1 is
performing a measurement of the particle position. For a car this can e.g. be
a tracking via GPS, for smaller particles (e.g. bacteria) this can be a tracking
using a microscope. In both scenarios, the tracked position has an underly-
ing error due to the tracking process. Therefore the information about the
tracked position yk+1 of the particle at time t = k + 1 can be described via a
PDF with a certain width wy,k+1. This information is represented as the cyan
curve in Fig. 2.8 (c).
In total we have two possibilities to quantify the information about the posi-
tion of the particle at time t = k + 1:

1. Based on a prediction involving previous time-step t = k as represented
in Fig. 2.8 (b)

2. Based on a measurement of the particle-position at time t = k + 1 as
represented in Fig. 2.8 (c)

The task of the Kalman-Filter is the combination of both information x̃k+1
and yk+1 to a state xk+1, combining the predicted information x̃k+1 and the
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prediction based
on speed 

tracked position
including uncertainties

combination of predicted
and tracked position

(a)

(b)

(c)
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FIGURE 2.8: Schematic representation of the Kalman-Filter
based on a one dimensional tracking problem. (a) Probability
distribution xk (red curve) for the position of the particle at time
t = k. It moves with an uncertain velocity vk (blue curve). (b)
Based on the velocity vk we can make a prediction about the
position probability distribution x̃k+1 (blue curve). (c) Rather
than making a prediction, we can also perform an unprecise
position measurement, resulting in the distribution yk+1 (cyan
curve). (d) Combination of both position information x̃k+1 and
yk+1 about the particle position via the Kalman-Filter resulting

in the new distribution xk+1 (red curve).

measured information yk+1 to the most reasonable assumption xk+1 about
the particle position at time-step t = k + 1.
In the following section 2.3.1 we introduce the linear Kalman-Filter, suitable
for the filtering of linear-processes. Here, we present the basic features rele-
vant for the understanding of the Kalman-Filtering process. Subsequently in
section 2.3.2 we extend the general Kalman-Filter introduced in section 2.3.1
to deal with non-linear processes, the Extended-Kalman-Filter (EKF). Finally
in section 2.3.3 we extend the Kalman-Filter to deal with a system which can
be described with multiple models, e.g. one model for the running- and one
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model for the tumbling-state.

2.3.1 Linear Kalman-Filter

In this section we would like to introduce the mathematical framework of
the linear Kalman-Filter (KF), inspired by an introduction from Reid [132].
After introducing the framework we give an example for an application of
the KF. We want to use the KF to estimate the state x̂(t) of a system. In a
broader context, we seek to solve the problem of the continual estimation
of a set of parameters whose values change over time. The observed mea-
surements z(t) contain information about the signal of interest x(t). The KF
is an estimator to provide an estimate x̂(t) for the state of the system at time t.

Physical system

The KF can be applied to estimate the state xk ∈ Rdx of a system whose
evolution can be described by the equation

xk+1 = Fkxk + Gkuk + wk. (2.70)

Here, the matrix Fdx×dx
k is the state-transition matrix, quantifying the intrinsic

time-evolution of the system. The matrix Gdu×dx
k is the input-transition ma-

trix, mapping the external input signal uk ∈ Rdu in the state-space (x-space).
The vector wk ∈ Rdx describes intrinsic system noise.
For the KF it is important to realize that the state-space and the measurement-
space can differ, e.g. the measured quantities can be the position x and speed
v and the state is described via the acceleration a. To map between the state-
space and measurement-space we introduce a matrix Hdz×dz

k , transferring the
state variable xk in the measurement-space via equation

zk = Hkxk + vk. (2.71)

A schematic representation of a system whose state can be estimated is shown
in Fig. 2.9. The time-evolution of the state x is described in the upper part of
Fig. 2.9. It visualizes equation (2.70). The new state xk+1 is created at node (1),
whose input is the transferred input-signal u, the evolved old state xk and the
noise w. It is a recursive process where each time the state x is evolved via
matrix F. The lower part of Fig. 2.9 visualizes equation (2.71). Based on the
intrinsic system-state x, the observable measurement z is created via matrix
H and noise v.

Assumptions

For further calculations it is crucial to make some assumptions on the noise
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FIGURE 2.9: Schematic representation equations 2.70 and 2.71,
where the state x evolves intrinsically via matrix F, an external
input u transferred via matrix G and process-noise ω. The state
x is transformed into an experimentally observable quantity z

via the matrix H and the addition of measurement-noise v.

wk and vk from equations (2.70) and (2.71) respectively. These assumptions
are:

1. The process noise wk and the measurement noise wk are uncorrelated:

E [wk, vl] = 0 for all k, l (2.72)

2. The process-noise wk is a zero-mean white-noise process with known
covariance matrix:

E [wk, wl] =

{
Qk if k = l
0 otherwise

(2.73)

3. The measurement-noise vk is a zero-mean white-noise process with known
covariance matrix:

E [vk, vl] =

{
Rk if k = l
0 otherwise

(2.74)

4. The initial system state x0 is a vector which is chosen randomly and is
uncorrelated to the process-noise wk and measurement-noise vk.
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5. The mean
x̂0,0 = E [x0] (2.75)

of the initial state x0 is a known quantity.

6. The covariance-matrix

P0,0 = E
[
(x̂0,0 − x0) (x̂0,0 − x0)

T
]

(2.76)

of the initial state x0 is a known quantity.

Making the above assumptions, we can describe the task of the KF as fol-
lows: Assuming k > 0 measurements z1, ..., zk, the KF shall estimate the state
xk+1 of the system. This estimation is denoted as x̂k+1 and shall minimize the
expectation of the squared-error loss function

E
[
|xk+1 − x̂k+1|2

]
= E [(xk+1 − x̂k+1)]E

[
(xk+1 − x̂k+1)

T
]

. (2.77)

The minimization of above equation (2.77) is the definition of a minimum
variance unbiased estimator (MVUE). As the KF is per definition a MVUE, it
has to minimize above equation (2.77).

Prediction

We have already mentioned that the task of the KF is the estimation x̂k+1
of state xk+1 based on previous measurements zj for j ≤ k. As the estimation
x̂k+1 depends on previous measurements, we can also denote the estimation
as x̂k+1,Zk = x̂k+1,k. To minimize equation (2.77) we have to estimate the state
x̂k+1,k based on previous measurements up to time k:

x̂k+1,k = E [xk+1|z1, ..., zk] = E
[

xk+1|Zk
]

. (2.78)

Applying equation (2.70) for the time-evolution of the system we can rewrite
equation (2.78) to

x̂k+1,k = E
[

Fkxk + Gkuk + wk|Zk
]

= E [Fkxk] + E [Gkuk] + E
[
wk|Zk

]
= FkE [xk] + GkE [uk] + E

[
wk|Zk

]
(2.79)

As we know the external input uk precisely and we know from equation
(2.73) that the process-noise wk has zero mean, we can rewrite equation (2.79)
to

x̂k+1,k = Fkxk,k + Gkuk. (2.80)
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The variance Pk+1,k is calculated as the mean squared error in the estimate
x̂k+1:

Pk+1,k = E
[
(xk+1 − x̂k+1,k) (xk+1 − x̂k+1,k)

T
∣∣∣ Zk]. (2.81)

Applying again the time evolution for the state-vector x from equation (2.70),
we can rewrite equation (2.81) to

Pk+1,k = E
[
(Fkxk + Gkuk + wk − x̂k+1,k) (Fkxk + Gkuk + wk − x̂k+1,k)

T
∣∣∣ Zk].
(2.82)

We can simplify equation (2.82) by applying the fact that the noise wk and
the state xk are uncorrelated. Furthermore the external input uk is known
precisely. This simplifies equation (2.82) to

Pk+1,k = FkPk,kFT
k + Qk, (2.83)

where Qk is the process-noise matrix as introduced in equation (2.73).
Applying equations (2.80) and (2.83) we can estimate the new state x̂k+1,k and
the new variance P̂k+1,k using measurements zj for j ≤ k. In a next step we
have to add the information from measurement zk+1 to make a more accurate
assumption x̂k+1,k+1 for the state xk+1 at time k + 1. Therefore let us assume
we can calculate the estimate x̂k+1,k+1 as a weighted sum of both the estimate
x̂k+1,k and the current measurement zk+1 via

x̂k+1,k+1 = K̃k+1x̂k+1,k + Kk+1zk+1, (2.84)

where K̃k ∈ Rdx×dx and Kk ∈ Rdx×dz are so called gain-matrices. Via equa-
tion 2.84 we have reduced our initial problem in finding the state x̂k+1 =
x̂k+1,k+1 which minimizes equation (2.77) to finding the matrices K̃k and Kk.
The error in the estimation of the state xk+1 is given as

err (x̂k+1) = x̂k+1,k+1 − xk. (2.85)

The unbiased condition

As the KF aims on estimating the state xk+1, we have to require that

E [x̂k+1,k+1] = E [xk+1] , (2.86)

making the KF unbiased. Let us now in a first step combine equations 2.84
and (2.71), yielding the equation

E [x̂k+1,k+1] = E
[
K̃k+1x̂k+1,k + Kk+1zk+1

]
= E

[
K̃k+1x̂k+1,k + Kk+1Hk+1xk+1 + Kk+1vk+1

]
= K̃k+1E [x̂k+1,k] + Kk+1Hk+1E [xk+1] + Kk+1E [vk+1]

= K̃k+1E [x̂k+1,k] + Kk+1Hk+1E [xk+1] . (2.87)
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Furthermore, by applying the time-evolution introduced in equation (2.70),
we can calculate the expectation value E [x̂k+1,k] to

E [x̂k+1,k] = E [Fk x̂k,k + Gkuk]

= FkE [x̂k,k] + Gkuk

= E [xk+1] . (2.88)

Replacing E [x̂k+1,k] in equation (2.87) with the result from equation (2.88)
gives the expectation-value E [x̂k+1,k+1] of the state x̂k+1,k+1 in dependence of
the gain-matrices K̃k+1 and Kk+1 as

E [x̂k+1,k+1] =
(
x̂k+1,k+1 + K̃k+1Hk+1

)
E [xk+1] . (2.89)

If we now remember the unbiased-condition introduced in equation (2.86),
this yields the relation

x̂k+1,k+1 + K̃k+1Hk+1 = 1 (2.90)

or
x̂k+1,k+1 = 1− K̃k+1Hk+1. (2.91)

If we expect our estimator to be unbiased, the estimator has to satisfy equa-
tion (2.91). If we replace x̂k+1,k+1 from equation (2.91) in equation 2.84, the
resulting, unbiased equation reads

x̂k+1,k+1 =
(
1− K̃k+1Hk+1

)
x̂k+1,k + Kk+1zk+1

= x̂k+1,k + Kk+1 [zk+1 − Hk+1xk+1,k] . (2.92)

Here K is known as the Kalman-gain. If we have a look at equation (2.92),
we see that the new state-estimate x̂k+1,k+1 is a sum of a prediction x̂k+1,k+1
and a second term, which is the difference between the actual measurement
zk+1 and the predicted state xk+1,k transferred into the measurement space,
weighted with the Kalman-gain Kk+1.

Finding the error-covariance

After we estimated the state x̂k+1,k+1 via equation (2.92), we have to calcu-
late the corresponding variance-matrix Pk+1,k+1 via

Pk+1,k+1 = E
[
(x̂k+1,k+1 − xk) (x̂k+1,k+1 − xk)

T
]

= (1− Kk+1Hk+1)Pk+1,k (1− Kk+1Hk+1)
T + Kk+1Rk+1KT

k+1, (2.93)

where in the last step we used the definition of the measurement-noise matrix
R introduced in equation (2.74) and the fact that measurements and noise are
uncorrelated, quantified as

E
[
err (x̂k+1) err (x̂k+1)

T
]
= 0. (2.94)
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Choosing the Kalman-gain

We started with the initial problem to find a state xk+1 minimizing the expec-
tation of the squared-error loss function (SELF) defined in equation (2.77).
This problem is now reduced to finding the Kalman-gain K creating a state
xk+1,k+1 as described via equation (2.92). To summarize, we want to mini-
mize the quantity L with respect to the Kalman-gain K:

L = min
Kk+1

E
[
err (x̂k+1) err (x̂k+1)

T |Zk+1
]

= min
Kk+1

trace
(

E
[
err (x̂k+1) err (x̂k+1)

T |Zk+1
])

= min
Kk+1

trace (Pk+1,k+1) . (2.95)

To find the minimum of L defined in equation (2.95) we solve

∂L
∂Kk+1

=
∂
(
minKk+1 trace (Pk+1,k+1)

)
∂Kk+1

= 0 (2.96)

where we used the relation

∂

∂A

(
trace

(
ABAT

))
= 2AB (2.97)

for any matrix A and a symmetric matrix B. From equation (2.96) we obtain
the relation

Kk+1 = Pk+1,kHT
k+1

[
Hk+1Pk+1,kHT

k+1 + Rk+1

]−1
(2.98)

for the Kalman-gain K. Now with equation (2.98) we can calculate both quan-
tities x̂k+1,k+1 and Pk+1,k+1 from equation (2.92) and (2.93).

Summary Kalman-equations

To summarize, the Kalman-filtering process consists of two steps.

1. Prediction: In the prediction step, we calculate a prediction x̂k+1,k for
the state xk+1 at time k + 1 based on previous measurements via

x̂k+1,k = Fk x̂k,k + Gkuk (2.99)

Pk+1,k = FkPk,kFT
k + Qk. (2.100)

2. Update: In the update step, we adapt the predicted state x̂k+1,k for time
k + 1 based on the current measurement zk+1 at time k + 1 via

x̂k+1,k+1 = x̂k+1,k + Kk+1 [zk+1 − Hk+1xk+1,k] (2.101)

Pk+1,k+1 = (1− Kk+1Hk+1)Pk+1,k (1− Kk+1Hk+1)
T + Kk+1Rk+1KT

k+1
(2.102)
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A schematic representation of the Kalman-equations (2.99) - (2.101) for the es-
timation of the state x̂k+1,k+1 can be found in Fig. 2.10. The prediction process

~

~

~

~

FIGURE 2.10: Representation of the Kalman-equations (2.99)-
(2.102). Based on the old state x̃k,k and the external input uk
the predicted state x̃k+1,k is calculated. Based on the difference
between the predicted state x̃k+1,k and the measurement zk+1

the new estimate x̃k+1,k+1 is calculated.

is represented in the upper part of Fig. 2.10. Based on the old state-estimate
x̂k,k and the input-vector uk, the predicted state-estimate x̂k+1,k is calculated.
The bottom part of Fig. 2.10 represents the updating process, where the new
state-estimate x̂k+1,k+1 is calculated as a weighted sum of the predicted state-
estimate x̂k+1,k and the difference between the predicted state-estimate x̂k+1,k
and the current measurement zk+1.

Understanding the process- and measurement noise

If we have a look at the Kalman-equations (2.99) - (2.102) we see that we
have to choose both matrices Q and R, which define the process- and the
measurement noise. To get an understanding of the impact of both matrices
Q and R we present a simple application for the Kalman-filter. Let us assume
a particle in one dimension, whose state is described via its position x(t) and
speed v(t) = ẋ(t). We can only meassure the position x(t) of the particle.
Furthermore let us assume the particle undergoes random accelerations ar(t)
for each time t. The state of the system can be described via the vector

x(t) =
(

x(t)
v(t)

)
. (2.103)
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The time evolution of the state x(t) is given as

ẋ(t) = Ax(t) + w(t),
z(t) = Hx(t) + v(t), (2.104)

where

A =

(
0 1
0 0

)
, H =

(
1 0
0 0

)
, w(t) =

(
0
ar

)
, (2.105)

and v(t) is the measurement-noise.
The time-evolution analogue to equation (2.70) is given as

xk+1 = Fkxk + wk, (2.106)

with

Fk =

(
1dt
0 1

)
. (2.107)

The measurement-equation analog to equation (2.71) is given as

zk = Hxk + vk. (2.108)

To apply the Kalman-filter, we have to make assumptions for

1. x̂0,0: Initial assumption for the state of the system.

2. P0,0: Initial assumption for the covariance.

3. Q: Assumption for the process-noise matrix.

4. R: Assumption for the measurement-noise matrix.

Let us assume the following values and afterwards discuss their impact in-
dividually.

x̂0,0 =

(
0
0

)
, P0,0 =

(
1 0
0 1

)
, Q =

(
1 0
0 1

)
and R = 1. (2.109)

A realization of the particle-trajectory according to equation (2.104) is rep-
resented in Fig. 2.11 (a). The black dots represent the system-state x. The
blue dots are the measurements affected by the process-noise. We applied a
Kalman-Filter for the parameters defined in equation (2.109) to estimate the
state x of the system based on the noisy measurements zk. The corresponding
estimated positions x̂ are represented as the red dots in Fig. 2.11 (a). We see
qualitatively that the estimated position x̂ follows the evolution of the true
position x. To understand the impact of the initial guess x̂0,0 of the system-
state, required as an input-parameter for the Kalman-Filter, we applied a
Kalman-Filter for different initial guesses x̂0,0. The corresponding results are
represented as the red, blue, green and magenta curve in Fig. 2.11 (b). We
see that initially the estimated positions are different from each other, but
tend to move to the true system-state x. After approximately 50 time-steps,
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(a) (b)

FIGURE 2.11: (a) Plot of a simulated system state (black), sys-
tem state-including process-noise (cyan) and estimated posi-
tions (red). (b) Simulated system state (black) with included
process-noise (cyan). Estimated positions for different initial
positions x̂0,0 are represented in magenta, green, blue and red.

the impact of different initial guesses x̂0,0 has vanished and the estimated
positions are identical for all different initial guesses x̂0,0. This is a general
behavior of the Kalman-Filter. For long-times, the estimated solution does
not depend on initial guesses x̂0,0. In a next step, we investigated the impact
of the initial covariance matrix P0,0 on the estimated positions x̂. The results
are represented in 2.12 (a). Here the black dots represent the system state xk

(a) (b) (c)

FIGURE 2.12: (a) Simulated state (black) including process-
noise (cyan) and estimated state red, blue, green and magenta
for different initial values of P0,0. For i > 20 all estimated states
overlap and only the magenta dots are visible. (b),(c) Repre-
sentation of the components Pi (1, 1) and Pi (2, 2) for different
initial values as red, blue, green and magenta curve. For i > 20

all curves overlap.

and the cyan dots represent the measurements zk. The red, blue, green and
magenta dota correspond to the estimated positions using a Kalman-Filter
for different initial guesses P0,0 of the covariance matrix P. Similar to the im-
pact of the initial guess for the state x̂0,0, the impact of the initial guess for
the covariance-matrix P0,0 leads to a difference of the first few estimates x̂.
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But after approximately 30 measurement-steps, all the estimates are identi-
cal. This is a general feature of the Kalman-Filter, as the estimate after long
times shall not depend on initial guesses. The evolution of the diagonal-
elements Pk (1, 1) and Pk (2, 2) of the covariance-matrix Pk are represented in
2.12 (b) and (c). We see that after approximately 20 measurement-steps they
converged to the same value, leading to the same estimates for the position
x̂ as shown in Fig. 2.12 (a). To understand the impact of the process-noise
matrix Q we can have a look at Fig. 2.13 (a). Here we used the Kalman-Filter

(a) (b)

FIGURE 2.13: Representation of the state (black) including pro-
cess noise (cyan). (a) Estimation of the state with fixed matrix
Q and r = 1 (red), r = 10 (blue), r = 100 (green) and r = 1000
(magenta). (b) Estimation of the state with Q and R chosen
from equation (2.111) and r = 1 (red), r = 10 (blue), r = 100

(green) and r = 1000 (magenta).

with four different measurement-noise matrices

R = r (2.110)

for r = 1 (red), r = 10 (blue), r = 100 (green) and r = 1000 (magenta).
We see that for larger values of r, the curve of the estimated positions x̂ gets
smoother. This is due to the fact that a larger matrix for the measurement-
noise means a lower importance of the measured positions zk and a higher
importance of the state evolution described via equation (2.70). Therefore
before applying the Kalman-Filter it is crucial to quantify the measurement
errors and choose a measurement-noise matrix R in accordance to the model.
To understand the impact of the process noise matrix Q we choose four dif-
ferent combinations for the process-noise matrix and the measurement-noise
matrix

Q =

(
r 0
0 r

)
and R = r (2.111)
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with r = 1 (red), r = 10 (blue), r = 100 (green) and r = 1000 (magenta)
and show the results in Fig. 2.13 (b). We see that all the curves overlap if
the ratio between the diagonal-elements of the process-noise matrix Q and
the measurement-noise matrix R keeps the same. This is another important
feature of the Kalman-Filter. It can be interpreted in a way that the values
represent the amount of trust in the measured and predicted values. Their
absolute values do not matter, but their ratio indicated which values are more
trustworthy.
In this example we have seen how the Kalman-Filter can be applied to a
simple system. Furthermore we have seen that the initial guess for the state
of the system x̂0,0 as well as the initial guess for the covariance-matrix P0,0
only affect the first few measurement steps but do not affect the estimates for
large times. Another important fact of the Kalman-Filter is that the absolute
values of the diagonal elements of the measurement-noise matrix R and the
process-noise matrix Q do not matter. Only their ratio has an impact on
the performance of the Kalman-Filter. The Kalman-Filter in this section is
suitable to estimate the state of a linear system. To estimate the state of a
non-linear system the linear Kalman-Filter can be extended, as explained in
the following section 2.3.2.

2.3.2 Extended Kalman-Filter

In this thesis, we investigate systems whose development cannot be described
using a linear model. Therefore we cannot apply the normal linear Kalman-
Filter. To solve this problem, we want to extend the linear Kalman-Filter
(KF) from the previous section 2.3.1 to deal with nonlinear problems. This
Kalman-Filter will be called Extended Kalman-Filter (EKF). The EKF can be
used to estimate the state of a system whose time-evolution is given by the
equation

xk+1 = f (xk, uk, k) + uk, (2.112)

and the transformation from state-space to measurement-space is done via
equation

zk = h (xk, k) + vk. (2.113)

Here the function f is a function mapping from the state space to the state-
space

f : Rdx → Rdx (2.114)

and the function h maps from the state-space to the measurement-space

h : Rdx → Rdy . (2.115)

The expectations for the measurement-noise vk and process-noise wk are the
same as for the KF:

E [wk] = 0, E [vk] = 0, E
[
vkwT

j

]
= 0

E
[
wkwT

j

]
= δklQk and E

[
vkvT

j

]
= δklRk. (2.116)
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In the next section we derivate the prediction equations of the EKF.

Prediction

We denote estimation x̂k,k of the state xk at time k based on the measurements
Zk = {zi|i ≤ k} as

x̂k,k = E [xk|Zk] . (2.117)

The corresponding covariance matrix P is given as

Pk,k. (2.118)

For further calculations we can expand the function f from equation (2.112)
in a Taylor-Series around the point x̂k,k, leading to

xk+1 = f (x̂k,k, uk, k) + J (xk − x̂k,k) +O
[
(xk − x̂k,k)

2
]
+ wk, (2.119)

where the matrix

J =

[
∂ f
∂x

]
x=x̂k,k

(2.120)

is the Jacobian of the function f . Taking the expectation-value of equation
(2.119) by ignoring higher than first-order terms leads to

xk+1 = E [ f (x̂k,k, uk, k)] + E [J (xk − x̂k,k)] +O
[
(xk − x̂k,k)

2
]
+ E [wk]

= E [ f (x̂k,k, uk, k)] + 0 + 0
= J (x̂k,k, uk, k) . (2.121)

Therefore the predicted state x̂k+1,k is given as

x̂k+1,k = f (x̂k,k, uk, k) . (2.122)

To calculate the covariance-matrix P, we first have a look at the prediction
error err [xk+1] at time k + 1, which is given as

err [xk+1] = xk+1 − x̂k+1,k

= f (x̂k,k, uk, k) + J [xk − x̂k,k] +O
[
(xk − x̂k,k)

2
]
+ wk − f (x̂k,k, uk, k)

≈ J [xk − x̂k,k] + wk

= Jerr [xk] + wk. (2.123)
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The predicted covariance Pk+1,k is then given as

Pk+1,k = E
[
err [xk+1] err [xk+1]

T
]

≈ E
[
(Jerr [xk] + wk) (Jerr [xk] + wk)

T
]

= JE
[
err [xk] err [xk]

T
]

JT + E
[
wkwT

k

]
= JPk,k JT + Qk. (2.124)

If we compare equations (2.121) and (2.124) with equations (2.99) and (2.100),
we see that the Jacobian J in the nonlinear case corresponds to the transition
matrix Fk in the linear case.

Update

To update the predicted state-estimate xk+1 and covariance-matrix Pk+1,k, we
have to include the measurement zk+1. Expanding equation (2.113) around
the predicted state xk+1, the equation reads

zk+1 = h (x̂k+1,k) + Jh (x̂k+1,k − xk+1) +O
[
(x̂k+1,k − xk+1)

2
]
+ vk, (2.125)

where the matrix

Jh =

[
∂h
∂x

]
x=x̂k,k

(2.126)

is the Jacobian of the function h. Taking the expectation value of equation
(2.126) yields

ẑk+1,k ≈ h (x̂k+1,k) . (2.127)

The innovation - the difference between predicted-state x̂k+1,k and measured-
state - is given as

vk+1 = zk+1 − h (x̂k+1,k) . (2.128)

The covariance of the innovation vk+1 yields

Sk+1 = E
[
vk+1vT

k+1

]
= E

[
(zk+1 − h (x̂k+1,k)) (zk+1 − h (x̂k+1,k))

T
]

≈ E
[
(Jh (xk+1,k − xk) + vk+1)

(
(xk+1,k − xk)

T JT
h + vT

k+1

)]
= JhPk+1,k JT

h + Rk+1. (2.129)

If we again compare equation (2.129) with equation (2.98), we see that the
matrix Hk in the linear case corresponds to the Jacobian Jh in the nonlinear
case. If we use again the fact that the Kalman-Filter minimizes the quantity L
defined in equation (2.96), we find for the EKF that the Kalman-gain K equals
the Kalman-gain K from the linear Kalman-Filter, and therefore is given as

Kk+1 = Pk+1,k JT
h S−1

k+1. (2.130)
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The corresponding state- and covariance update equations are given as

xk+1,k+1 = xk+1,k + Kk+1 (zk+1 − h (x̂k+1,k))

Pk+1,k+1 = Pk+1,k − Kk+1Sk+1KT
k+1. (2.131)

Summary of the EKF-equations

To summarize, the equations for the EKF consist - as the equations for the
KF - of two steps:

1. Prediction: In the prediction step, the old estimate x̂k,k and old covari-
ance Pk,k are updated via the function f from equation (2.112), quanti-
fying the time-evolution of the system:

x̂k+1,k = f (x̂k,k, uk, k) (2.132)

Pk+1,k = J f Pk,k JT
f + Qk. (2.133)

2. Update: The predicted quantities x̂k+1,k and Pk+1,k are updated based
on the new measurement zk+1 via

x̂k+1,k+1 = x̂k+1,k + Kk+1 [zk+1 − h (x̂k+1,k)] (2.134)

Pk+1,k+1 = Pk+1,k − Kk+1Sk+1KT
k+1, (2.135)

where
Kk+1 = Pk+1,k JT

h S−1
k+1 (2.136)

and
Sk+1 = JhPk+1,k JT

j + Rk+1. (2.137)

In this section we introduced the Extended Kalman-Filter(EKF). The EKF is
an extension to the linear Kalman-Filter (KF), suitable to estimate the state
of a nonlinear system described via equations 2.112 and 2.113. In the next
section we present another extension of the KF/EKF, suitable to estimate a
state of a system whose evolution is based on multiple models.

2.3.3 Multiple-Model Kalman-Filter

In the previous sections 2.3.1 and 2.3.2 we introduced the KF and the EKF.
Both of these filters a suitable to estimate the state of a system whose time-
evolution is based on a single model. But in reality, the time-evolution of a
system can be based on multiple, interacting models. Therefore, in this sec-
tion we present an extension of the KF/EKF, the interacting multiple-model
Kalman-Filter (IMM) introduced in [7], suitable to estimate the state of a sys-
tem described via the equations

xk+1 = F j
k xk + Gj

kuk + wj
k, (2.138)

zk = H j
kxk + vj

k. (2.139)
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Here, the evolution of the system consists of N different models, indicated
via the superscript j. If we apply the total probability theorem,

p (A|C) = ∑
n

p (A|C, Bn) p (Bn|C) (2.140)

we can calculate the probability of state xk given the measurements Zk as

p (xk|Zk) =
N

∑
j=1

p
(

xk|M
j
k, Zk

)
p
(

M j
k|Zk

)
=

N

∑
j=1

p
(

xk|M
j
k, zk, Zk−1

)
µ

j
k, (2.141)

where the probability-density function (pdf) of the state x is given as

p
(

xk|M
j
k, zk, Zk−1

)
=

p
(

zk|M
j
k, xk

)
p
(

zk|M
j
k, Zk−1

) p
(

xk|M
j
k, Zk−1

)
, (2.142)

where p
(

xk|M
j
k, zk, Zk−1

)
is denoted as the posterior and p

(
xk|M

j
k, Zk−1

)
is

denoted as the prior. The term
p
(

zk|M
j
k,xk

)
p
(

zk|M
j
k,Zk−1

) is a measurable quantity, suit-

able to update the prior, resulting in the posterior. This is a basic feature also
known in Bayesian probability theory [20, 21, 23]. The total probability theo-
rem from equation 2.140 can also be applied on the prior from equation 2.142,
yielding

p
(

xk|M
j
k, Zk−1

)
=

N

∑
i=1

p
(

xk|M
j
k, M i

k−1, Zk−1

)
p
(

M i
k−1|M

j
k, Zk−1

)
≈

N

∑
i=1

p
(

xk|M
j
k, M i

k−1,
{

x̂l
k−1,k−1, Pl

k−1,k−1

}r

l=1

)
µ

i,j
k−1,k−1.

(2.143)

Here we used the fact that the past k− 1 measurements can be approximated
by the N model approximated-states x̂l

k−1,k−1 and covariances Pl
k−1,k−1. The

term µ
i,j
k−1,k−1 can be understood as a transition-probability from model M i

to model M j. As we are only interested in the transition from mode i to j, we
can simplify equation 2.143 to

p
(

xk|M
j
k, Zk−1

)
≈

N

∑
i=1

p
(

xk|M
j
k, M i

k−1, x̂i
k−1,k−1, Pi

k−1,k−1

)
µ

i,j
k−1,k−1. (2.144)

From equation 2.144 we see that the pdf of state xk is a weighted sum of
probabilities p

(
xk|M

j
k, M i

k−1, x̂i
k−1,k−1, Pi

k−1,k−1

)
, where the weight is given
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as µ
i,j
k−1,k−1. We assume that this mixture is a mixture of Gaussian sums,

meaning that the pdf for the state xk is given as a Gaussian sum. The Gaus-
sian sum from equation 2.144 can then be approximated ba a single Gaussian
via

p
(

xk|M
j
k, Zk−1

)
≈

N

∑
i=1
N
[

xk; E
[

xk|M
j
k, x̂i

k−1,k−1

]]
µ

i,j
k−1,k−1

≈ N
[

xk;
N

∑
i=1

E
[

xk|M
j
k, x̂i

k−1,k−1

]]
µ

i,j
k−1,k−1. (2.145)

If we now use the linearity of the Kalman-Filter, equation 2.145 simplifies to

p
(

xk|M
j
k, Zk−1

)
≈ N

[
xk; E

[
xk|M

j
k,

N

∑
i=1

x̂i
k−1,k−1

]]
µ

i,j
k−1,k−1. (2.146)

From equation 2.146 we see that the pdf for the state xk is calculated as a
mixing over all models M i, where the state x̂i

k−1,k−1 is weighted with a certain

factor µ
i,j
k−1,k−1, which are called mixing probabilities.

The IMM-algorithm

The IMM-filtering process consists of five different steps, which are explained
in the following

1. Mixing-probabilities: To calculate the mixing-probabilities µ
i,j
k−1,k−1 from

equation 2.146, we have to understand that the term µ
i,j
k−1,k−1 has the

meaning of being in mode M i at time k− 1 given that we know that we
are in state M j at time k. This can be quantified via

µ
i,j
k−1,k−1 = p

(
M i

k−1|M
j
k, Zk−1

)
=

1
c̄j

p
(

M j
k|M

i
k−1, Zk−1

)
p
(

M i
k−1|Zk−1

)
. (2.147)

Above equation 2.147 is usually rewritten as

µ
i,j
k−1,k−1 =

1
c̄j

pijµ
i
k−1 i, j ∈ [1, N] , (2.148)

where the normalization constants are given as

c̄j =
N

∑
i=1

pi,jµ
i
k−1 j ∈ [1, N] . (2.149)
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2. Mixing: We can apply equation 2.146 to calculate the mixed state x̂0,j
k−1

based on the single state x̂i
k−1 via

x̂0,j
k−1 = ∑

i
= 1N x̂i

k−1µ
i,j
k−1,k−1 j ∈ [1, N] . (2.150)

The corresponding covariance calculates to

P0,j
k−1,k−1 =

N

∑
i=1

µk−1,k−1·(
Pi

k−1,k−1 +
(

x̂i
k−1,k−1 − x̂0,j

k−1

) (
x̂i

k−1,k−1 − x̂0,j
k−1

)T
)

j ∈ [1, N] . (2.151)

3. Mode-matched-filtering: The likelihood Λj
k of the measurement zk for

a certain model M j is given as

Λj
k = p

(
zk|M

j
k, Zk−1

)
, (2.152)

and can be computed via the single state-estimate x̂0,j
k−1 and covariance

P0,j
k−1,k−1 from equation 2.150 and 2.151 as

Λj
k = p

(
zk|M

j
k, x̂0,j

k−1,k−1, x0,j
k−1,k−1

)
= N

[
err (x̂k) ; 0, Sj

k

]
. (2.153)

4. Mode probability update: The probability µ
j
k of being in mode M j at

time k is calculated as

µ
j
k = p

(
M j

k|Zk

)
=

1
c

p
(

zk|M
j
k, Zk−1

)
p
(

M j
k|Zk−1

)
=

1
c

Λj
k

N

∑
i=1

p
(

M j
k|M

i
k−1, Zk−1p

(
M i

k−1|Zk−1

))
=

1
c

Λj
k

N

∑
i=1

pi,jµi
k−1

=
1
c

Λj
k c̄j j ∈ [1, N] , (2.154)

where the normalization constant c is calculated as

c =
N

∑
j=1

Λj
k c̄j. (2.155)
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5. Estimate and covariance combination: Applying the probability µ
j
k de-

fined in equation 2.154 we can calculate the state-estimate x̂k,k and the
state covariance Pk,k at time k via

x̂k,k =
N

∑
j=1

x̂j
k,kµ

j
k,

Pk,k =
N

∑
j=1

µ
j
k

(
Pj

k,k +
(

x̂j
k,k − x̂k,k

) (
x̂j

k,k − x̂k,k

)T
)

. (2.156)

In this section we introduced the IMM, suitable to estimate the state x of
a system whose time-evolution can consist of N different models M i. Fur-
thermore, for each time-step k the IMM-filter yields the probability µi

k of the
system being in state M i.
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Chapter 3

3D Particle-Tracking

Understanding the underlying dynamics of bacteria locomotion is still a chal-
lenging task. It requires the acquisition of high frequency and high qual-
ity images of bacteria-locomotion over a long period of time. In the past 40
years there has been a huge improvement starting from the first 2D-images
acquired by Berg [19]. Through their - at this time - outstanding experimental
set-up [15] they observed the so called run- and tumbling dynamics of E. coli
bacteria. In the following years, 2D imaging and tracking of multiple differ-
ent bacteria was optimized [13, 39, 87, 92, 180]. However, these conventional
2D tracking techniques cannot hold up with the 3D movement of bacteria -
especially for free swimming bacteria. Bacteria tend to leave the focal plane
zf, resulting in short trajectories if the focal plane zf cannot be adapted. Fur-
thermore statistics might be biased if only the 2D projection is observed. To
deal with the 3D movement of bacteria, 3D imaging and tracking techniques
have been developed, such as a piezo-stage without feedback [40] or defo-
cussing rings [179]. However, these so called Eulerian-type methods [38, 115,
136, 162] struggle with the problem that the volume of observation is fixed in
the laboratory reference frame, allowing no feedback to the tracking process.
To deal with this problem, Lagrangian methods have been developed to al-
low 3D tracking with feedback control to the measurement-setup. These La-
grangian methods either mechanically move the sample in z-direction [42,
104] or use phase-contrast [167] to adapt the measurement-settings, provid-
ing the possibility to follow bacteria over larger distances compared to a fixed
setup. However, both of these methods have intrinsic problems. The me-
chanical interaction with the sample can lead to undesired effects, especially
in case of high frequency oscillations of the sample. Furthermore it is nearly
impossible following fast-moving bacteria due to mechanical limitations. Us-
ing phase-contrast for 3D tracking has a small z-width and struggles in case
of high particle densities.
In this chapter we present a method allowing us 3D tracking over several mm
in the xy and 1 mm in the z-range without any mechanical interaction with
the sample. In the next section we will describe the experimental setup. The
interesting new part in this bacterium is the electrically focus tunable lens
(ETL) mounted between camera and objective, allowing us to adjust the fo-
cal plane zf inside the sample without any mechanical interaction [26, 52, 68,
102, 122, 152]. The focal plane zf is changed by applying a current to the lens,
forcing it to change shape. Through this change in the focal-plane zf we are
able to track particles in three dimensions. We will compare three methods
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FIGURE 3.1: (a) Representation of the measurement setup with
1.) microscope, 2.) objective, 3.) modification for Darkfield-
microscopy, 4.) sample, 5.) xy-moving stage, 6.) driver for the
electrically focus tunable lens (ETL) and 11.) the light-source.
(b) Zoom for several components marked in (a) with 7.) camera,
8.) adapter, 9.) electrically focu stunable lens (ETL) and 10.)

mount.

in section 3.4 to determine the current height z of a particle. In section 3.5 we
will present our algorithm to track particles in three dimensions. We applied
this tracking algorithm on beads, which allows us to compare the calculated
MSD based on the three-dimensional tracked bead-trajectories with the the-
oretical value. Afterwards we apply the tracking algorithm on bacteria.

3.1 Experimental setup

The size of the particles observed in this thesis is in the range of several µm.
In this section we will describe the setup to image particles of this size. The
experimental setup we use is represented in Fig. 3.1. We first give a brief
overview about the different components, and will have a detailed discus-
sion about all the components used afterwards. The following components
are represented in Fig. 3.1:

1.) Optical Microscope: The optical microscope is a device to obtain a mag-
nified image of a specimen using visible light. The working principle
of an optical microscope is described in section 3.1.1.

2.) Objective: The objective belongs to the general setup of an optical mi-
croscope and is a crucial part to obtain a magnified image of the sample.
A discussion about objectives and its impact to image quality is given
in section 3.1.2.
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3.) Coin: We use a simple coin to perform darkfield-microscopy. This
kind of microscopy is used to increase the contrast. The principle of
darkfield-microscopy is explained in section 3.1.3.

4.) Specimen: The specimen we want to observe is placed at this position.

5.) xy-movable-stage: This stage can be used to move the specimen in the
x- and y-direction. We use a connection to the computer to control the
stage-position via the programming language Python. A discussion
about the stage is given in section 3.1.4.

6.) ETL-Driver: This driver is connected to the electrically-focus tunable
lens (ETL) and the computer. We control the ETL by sending signals
via our measurement-code in Python to the Driver, which transfers the
control to a certain current c applied to the ETL.

7.) Camera: We use a digital camera to transfer the image obtained via
microscope to the computer. This allows a quantitative evaluation of
the observed images.

8.) Adapter: We can use adapters of different length to tune the distance
between camera and ETL, which has a huge impact on the obtained
image. The relation between the obtained image via the microscope
and the length of the adapter is discussed in section 3.2.4.

9.) Electrically focus tunable lens (ETL): The ETL is a lens distributed by
optotune which changes its shape based on the applied current. The
impact of the ETL to the obtained image is discussed in section 3.2.

10.) Mount: Custom build mount to connect the ETL and/or the camera to
the microscope.

11.) Light-source: Provides light to the microscope to obtain an image of the
sample.

In the following sections we will discuss the several pieces of the mea-
surement setup. We will start with the main component, the microscope, in
the following chapter.

3.1.1 Optical microscope

In our experiments we use an optical microscope to obtain magnified images
of the specimen. The term optical refers to the fact that we work with optical
visible light. For our setup, the used light is provided as red light with a
wavelength of λ = 635 nm by the light-source denoted as 11 in Fig. 3.1. In
Fig. 3.2 we see the setup of a simple optical microscope (Fig. 3.2 (a)) and a
compound optical microscope (Fig. 3.2 (b)).

First we will have a brief discussion about the simple optical microscope.
A more detailed explanation of this microscope can be found in [46].
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FIGURE 3.2: (a) Schematic representation of a simple optical mi-
croscope. The light coming from an object passes the objective,
creating an intermediate image at a fixed distance LTube behind
the objective. After the light is passed through the eyepiece a
magnified image of the object can be observed. (b) Schematic
representation of the compound optical microscope. The main
difference to the simple optical microscope represented in (a)
is the tube-lense, creating parallel light-rays between the object
and the objective, the Infinity-Space. The tube lens creates an
intermediate image. After passing through the eyepiece, the

magnified image of the object can be observed.

Simple optical microscope

The first optical microscopes are denoted as simple optical microscopes.
Their working principle is schematically represented in Fig. 3.2 (a). Light
emerging from an object passes the objective, resulting in an intermediate,
magnified image. The intermediate image is further magnified by the eye-
piece and thereafter can be observed by the human eye. As the distance
LTube is fixed - typically as LTube = 160 mm, only a limited amount of ad-
ditional optical devices can be brought in the space between the objective
and the intermediate image. Furthermore, if these additional optical devices
change the effective length of the light path, even more additional optical de-
vices have to be brought into the light path to rearrange the effective length
of the light path to LTube. As the simple optical microscope introduces several
problems due to its fixed tube length LTube, a new kind of microscope, the
infinity-corrected (or compound-) optical microscope was invented.

Compound optical microscope

The setup of a compound optical microscope is represented in Fig. 3.2
(b). We see that compared to the simple optical microscope an additional lens
, the Tube Lens is brought in the light path between objective and eyepiece.
The distance between objective and specimen is arranged so that the light-
rays in the infinity-space , the space between the objective and the Tube Lens,
are parallel. The Tube Lens creates the intermediate image and the eyepiece
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FIGURE 3.3: (a) Image of two different objectives with magni-
fication m = 10 and numerical aperture NA = 0.3 (left) and
magnification m = 4 and numerical aperture NA = 0.1 (left).

magnifies the intermediate image and finally the image can be observed. The
advantage of this setup lies within the fact that the light-rays in the infinity-
space are parallel, meaning that this distance can be adapted to an arbitrary
value, as no intermediate image is created in this space. Therefore any ad-
ditional optical devices can be brought into the infinity-space as the effective
light-path is not relevant as in the setup of the simple optical microscope. Due
to the ability to include an arbitrary amount of additional optical devices in
the light-path, modern optical microscopes are usually compound optical mi-
croscopes. These microscopes are marked with a printed ∞-symbol.

3.1.2 The objective

The objective used in the microscopical-setup has a huge impact on image
quality and the magnification. An objective is mainly characterized by two
different quantities, the magnification m and the numerical aperture NA,
usually labeled as "m/NA" on the objective. E.g. the magnification m and
numerical aperture NA of the left objective represented in Fig. 3.3 are m = 10
and NA = 0.3, and m = 4 and NA = 0.1 for the right objective in Fig. 3.3.
Whereas the magnification m refers only to the magnification of the objec-
tive, the numerical aperture NA has an impact on several quantities, such as
image quality and depth of field. After introducing the numerical aperture
NA, we will discuss its impact on image quality and depth of field. The nu-
merical aperture NA characterizes the range of angles over which the system
can accept light. It is defined as [117]

NA = n sin (α) , (3.1)

where n describes the refraction index of the medium between specimen and
objective, and α is the maximal half-angle of the cone of light that can enter
or exit the lens. In Fig. 3.4 we visualized both the impacts of the angle α
(Fig. 3.4 (a)) and refraction index n (Fig. 3.4 (b)). It can be seen from Fig.
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(a) (b)

Sample
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FIGURE 3.4: (a) Impact of the angle α from equation 3.1. A
larger angle α enables the microscope to collect more light, re-
sulting in more information and therefore better image quality.
(b) Impact of the refraction-index n from equation 3.1 for two
materials with n1 > n2. Due to the higher refraction of the ma-
terial with n1, more light can be collected, resulting in a better

image quality.

3.4 (a) that in case of a larger angle α the objective is able to accept more
light from the specimen. The range of the light which can be accepted by the
objective is furthermore influenced by the refraction index n (Fig. 3.4 (b)), as
this index describes the refraction of the light leaving the specimen. A larger
refraction index n1 results in a smaller refraction and therefore more light can
be observed by the objective as in case of a lower refraction index n2.

Image quality

The quality of the obtained image is heavily influenced by the numerical
aperture NA of the objective. To understand the impact of the numerical
aperture NA on the image quality, it is crucial to understand the image ob-
tained for a point source [117]. In Fig. 3.5 (a) and (d), we see the light cap-
tured for an objective with a lower (a) and higher (d) numerical aperture NA.
We see that in case of a larger numerical aperture NA, the objective is able
to capture light for a broader angle α. The corresponding three dimensional
observed signal for a point source is represented in Fig. 3.5 (b) and (e). This
signal of a point-source can be described by an airy disk [103]. It is important
to realize that in case of a lower numerical aperture NA, the signal appears
broader, resulting in lower image quality. This broadening furthermore in-
fluences the minimal distance dmin between two point sources which can be
distinguished. Therefore we show the signal for two identical point-sources
having the same wavelength λ separated by a distance d obtained via an
objective with a low numerical aperture NA in Fig. 3.5 (c) and the corre-
sponding signal obtained via an objective with a larger numerical aperture
NA in Fig. 3.5 (f). We see from Fig. 3.5 (c) that the main maxima overlap
and it is hard to distinguish both point-sources. The minimal distance dmin
for which individual point-sources can be distinguished was calculated by
Abbe to [103]

dmin =
0.61λ

NA
, (3.2)
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(a) (b) (c)

(d) (f)(e)

FIGURE 3.5: Comparison between the detected signal of a two
point-sources with low ((a),(b),(c)) and high ((d),(e),(f)) NA. In
case of a low NA, the signal (b), an Airy-disk, appears broader
compared to a higher NA (e). The broadness of the signal in
case of low NA makes it impossible to distinguish the signal
of close points separated by a distance d (c), whereas in case
of high NA (f) it is possible to distinguish the center of both

signals.

where λ describes the wavelength of the illuminating light.

Depth of field

Besides the image quality, the numerical aperture NA also influences the
depth of field, usually denoted as DOF. To understand what depth of field
means, we can have a look at Fig. 3.6. In Fig. 3.6 (b) we can see the image of
a µm-scale rotated around the axis represented as the red solid line. We put
the part of the µm-scale corresponding to the red solid line in the focal plane
of the microscope. Due to the tilting it is impossible that the whole scale is in
the focal-plane of the microscope, hence we see the scale over the whole x-
range of the image. For positions (x, y) with increasing distances x to the red
solid line, the scale gets more and more blurred. The range ∆zDOF in which
we obtain sharp images of a specimen around the focal plane is denoted as
depth of field. The depth of field ∆zDOF is represented in Fig. 3.6 (a) and can
be calculated via

∆zDOF =
λ
√

n2 −NA2

NA2 , (3.3)

where n denotes the refractive index between sample and objective, λ the
wavelength of the illuminating light and NA the numerical aperture of the
objective.
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Objective

(a)

(b)

FIGURE 3.6: (a) Representation of the depth of field ∆zDOF, rep-
resenting the area around the focal plane where objects can be
detected. (b) Image of a scale out of the horizontal plane. The
distance ∆z of the scale to the focal plane increases to the right.
Due to the depth of field ∆zDOF, a certain range of the scale can

be observed as a sharp although it is not in the focal plane.

3.1.3 Brightfield- vs Darkfield-microscopy

The microscope-setup introduced in Fig. 3.2 (b) is suitable for bright-field
(BF) microscopy. The principle of this method is schematically represented
in Fig. 3.7 (a). The light provided by a light source is focused by a con-
denser and illuminates the transparent sample. The light passing through
the specimen is collected via the objective. As light cannot pass the struc-
tures in the specimen, the structure appears as black spots on white ground.
An example for an image obtained via brightfield-microscopy can be seen
in Fig. 3.7 (c). In contrast to brightfield-microscopy, we can block the light
passing through the sample and reaching the objective, as represented in Fig.
3.7 (b). Now light passing through the sample cannot be detected by the
objective anymore. The only light detected by the objective is light which
is scattered at a structure in the specimen. An example for an image ob-
tained via darkfield-microscopy is represented in Fig. 3.7 (d). We see a black
ground as non-scattered light is not entering the objective. The white struc-
ture is observed as the scattered light changes its direction and therefore can
enter the objective. The advantage in darkfield-microscopy is its higher con-
trast. Due to this higher contrast, smaller structures can be observed. In
Fig. 3.7 (c) and (d) we marked two positions with a red circle. Both images
have been obtained for the same sample. In case of darkfield-microscopy
we can observe small structures inside the red circles. For the image ob-
tained via brightfield-microscopy no structure can be observed. Furthermore
brightfield-microscopy is much more sensitive to dust in the optical setup.
The positions marked as blue dots in Fig. 3.7 (c) show a certain structure.
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FIGURE 3.7: Comparison between brightfield- (a) and
darkfield-microscopy (b). For brightfield microscopy, the light
emitted by a light-source passes the sample. This creates an im-
age as represented in (c), where the white background arises
from the passing light and the dark areas correspond to the ob-
served structure. In case of darkfield-microscopy, the directly
passing light is blocked and only scattered light inside the sam-
ple can be detected. This results in a dark background, whereas

the structure is visible as the white areas.

But this structure does not arise based on the sample but based on dust in
the optical path and dust-particles on the lenses. In Fig. 3.7 (d) we do not
observe this dust.

3.1.4 XY-Stage

Active particles move with velocities up to 40 µm
s , and therefore tend to leave

the focal plane zf as well as the region of interest (ROI) in the x- and y-
direction. To deal with the second problem, we mounted our sample on a
stage which can be moved in both the x- and the y-direction. The stage is
connected to the computer and can be controlled by a Communication port
(COM). We use the python-programming language to communicate with the
stage. While live tracking a particle, we only move the stage if a particle tend
to leave the focal plane.

3.2 Electrically-focus-tunable lens

In section 3.1.1 we described the setup of a standard optical microscope. This
optical microscope has a certain focal plane zf, in which we can observe sharp
particles. It is sharp when the light-rays from the specimen meet in the inter-
mediate image plane. This is schematically represented in Fig. 3.8 (a). We see
that the light-rays from the specimen pass the objective and Tube Lens, cross-
ing each other in the intermediate image plane at distance LTI from the Tube
Lens. As for the microscopic setup we have a fixed distance LTI, changing the
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FIGURE 3.8: (a) A specimen placed right at the focal plane of
the microscope will create an intermediate image at distance LTI
behind the Tube Lens. (b) Changing the height z of the speci-
men by a distance ∆z will shift the position of the intermediate
image by a distance ∆ f . (c) To compensate the shifting of the
specimen by a distance ∆z we can mount a new lens, ETL, be-
tween the Tube Lens and the intermediate image position. Due
to the additional refracting, the intermediate image is now lo-

cated again at a distance LTI behind the Tube Lens.

specimen height z will create the intermediate image at a different position.
In Fig. 3.8 (b) we simulated the impact of moving the height z of the particle
by a distance ∆z. We see that the intermediate image will shift by a distance
∆ f and therefore the obtained image will not be sharp anymore. There are
several tracking methods where the specimen is placed on a mountable stage
in z direction, and the height of the specimen will be adapted so that the par-
ticle always keeps in the focal plane. However this method has the intrinsic
disadvantage of interacting with the sample. Furthermore the speed by me-
chanically adapting the sample height has its limitations, especially in case
of fast moving particles. Another method to counter the effect of moving
the specimen out of focus by a distance ∆z is the mounting of an additional
lens between Tube Lens and image plane. The effect of this additional lens,
named as ETL, is represented in Fig. 3.8 (c). Due to the additional refraction
of the light, the intermediate image is shifted to the desired distance of LTI
behind the Tube Lens. In this example the ETL is able to correct the impact of
shifting the height of the specimen by ∆z. For changes of the specimen height
different than ∆z, the intermediate image will again be at a different position
than LTI behind the Tube Lens. For an arbitrary distance ∆z of changing the
height z of the specimen, we need a lens which can change its shape to map
the intermediate image to a distance LTI behind the Tube Lens. A lens which
is able to adapt is shape is the electrically focus tunable lens (ETL) provided
by the company optotune (Bernstrasse 388, 8953 Dietikon, Switzerland). The
change of the ETL-shape is controlled by a certain electrical current in the
range from I = 0 mA to I = 300 mA. The ETL has a broad range of ap-
plications, e.g. optical coherence tomography (OCT) [161], medicine [183],
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voice coil

Optical fluid Container

Membrane

FIGURE 3.9: (a) Working principle of the ETL: By applying a
current c on the ETL pressure is exerted on the membrane, forc-
ing it to change shape. (b) Imapct on different shapes of the ETL

on the intersection point of transmitting light-rays.

dielectric structures [6, 110, 152], neuronal cell populations [57], optics [26],
digital holographic microscopy [144] and confocal-microscopy [69].
In the following section 3.2.1 we describe the working principle of the ETL.
Afterwards in sections 3.2.2 and 3.2.3 we will discuss the impact of the ETL
to the observed images compared to the images obtained without an ETL.

3.2.1 Working principle

To understand the working principle, we can first have a look at Fig. 3.9 (a).
This image is taken from the datasheet provided by optotune to describe the
ETL. We see that the ETL consits of an optical fluid, which is confined by a
container to the bottom and by a membrane to the top. The upper deflection
of the lens is proportional to the pressure in the optical fluid. The ETL has
an electromagnetic actuator which exerts pressure when current is applied.
Hence, the shape of the ETL can be controlled by applying a current. The
current is typically chosen in the range from I = 0 mA to I = 300 mA. In
3.9 (a) we see the impact of the shape of the ETL on passing light. The more
current is applied to the ETL, the closer the focal point approaches the ETL.
The maximal change in the focal plane defined via the quantity ∆za can be
varied by changing the distance L between camera and ETL. A quantitative
discussion of this topic is done in section 3.2.4.

3.2.2 Influence of the ETL: Shifting

In this section we investigate the impact of the ETL to the obtained images.
We distinguish two cases. First we compare images imnE obtained without an
ETL and images im0 obtained with an ETL for no applied current (c = 0 mA).
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FIGURE 3.10: Comparison between images imnE (a) and im0
(b). A comparison between corresponding tracked positions
pnE = (xnE, ynE) (blue) and p0 = (x0, y0) (red) in (c) indicates
that the ETL shifts positions. (c) Linear relation between posi-

tions pnE = (xnE, ynE) and p0 = (x0, y0).

Afterwards we compare images im150 obtained with an ETL and an applied
current c = 150 µm and images imc obtained with an ETL for the applied
current c. Correspondingly we denote tracked positions observed without
an ETL as pnE = (xnE, ynE) and tracked positions obtained with an ETL as
pc = (xc, yc), where c denotes the applied current.

No applied current

In Fig. 3.10 a first comparison between images imnE (a) and im0 (b) can
be seen. We see that there is a shift between both images imnE and im0. To
quantify this observation we tracked corresponding parts of the images rep-
resented in Fig. 3.10 (a) and (b). In Fig. 3.10 (c) we show an image im0 with
tracked positions p0 represented as the red dots. The corresponding posi-
tions pnE are represented as the blue dots. To analyze the relation between
positions pnE and p0 we plotted the x- (magenta) and y (cyan) -component
of positions pnE vs the x- and y-components of positions pnE in Fig. 3.10 (d).
We observe a linear relation between xnE and x0, as well as between ynE and
y0. Fitting a second order polynomial yields

xnE = ax + bx x0 + cx · 10−7 x2
0 (3.4)

ynE = ay + by y0 + cy · 10−7 y2
0. (3.5)

where ax = 152.5, bx = 0.84, cx = 1.2, ay = 140.7, by = 0.84, cy = 2.1. We
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see from equations (3.4) and (3.5) that the ETL introduces a linear shift to the
image, as the nonlinear parameters can be neglected. As both coefficients bx
and by are smaller 0, the ETL shrinks the image.

Applied current

In this section we compare positions obtained from images imcre for an ap-
plied current c = cre with positions obtained from images imc for an applied
current c. The images imcre can be seen as a reference image. To quantify
position-shifts we tracked the positions pc of several beads attached to the
surface of a microscope-slide for different applied currents c. The tracked
positions are represented as red dots in Fig. 3.11 (a).
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FIGURE 3.11: (a) Positions pc tracked for multiple attached
beads to the surface of a microscope slide for different applied
currents c with linear fits through corresponding positions. (b)
Probability density function for the intersection of linear fits
from (a). The mean of the pdf defines the center of distortion
pce. (c) We set our reference-frame to cr = 150 mA. For currents
c < cr (green), positions move away from the center of distor-
tion pce (black). For currents c > cr (red), positions move closer
from the center of distortion pce (black). (d) Relation between

the shift D and the product r∆c.

We performed a linear fit for the tracked positions for each bead pc =
(xc, yc). All these linear fits meet in a small region, represented as a probability-
density function in Fig. 3.11 (b) for the marked region in Fig. 3.11 (a). (To
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be strict, this is only true in case of frequencies f < 50 Hz. The limitations
in using the ETL are discussed in section 3.2.5. But as we use frequencies
f ≤ 10 Hz we can assume that the linear fits in Fig. 3.11 (b) meet in a small
circle.) We denote the mean of the region represented in Fig. 3.11 (b) as the
center of distortion

pce = (xce, yce) . (3.6)

The black circle of radius rce = 5.4 µm in Fig. 3.11 (b) displays the area which
contains more than 98 % of the crossing-points of the linear fits. For each
tracked bead-position pc we calculate the distance r to the center via

r =
√
(xce − xc)

2 + (yce − yc)
2. (3.7)

Furthermore for each tracked position we calculate the difference in current
∆c between the applied current c and the reference-current cre = 150 mA

∆c = (cre − c) . (3.8)

For different currents c we track fixed particles at a different position pc. To
provide an example we can have a look at Fig. 3.11 (c). There we see the
tracked position pc of a bead for three different currents c = 130 mA (green
dot), c = 150 mA (blue dot) and c = 170 mA (red dot). The green and the red
arrows represent the shift which is required to map positions p130 and p170
to their reference-position pcre with cre = 150 mA. We see that both arrows
D1 and D2 point in different directions, which is due to the fact that ∆c from
equation (3.8) can either be positive or negative. It is important to mention
that the absolute value of the shift D1 obtained for ∆c = a > 0 and the shift
D2 obtained for ∆c = −a < 0 are not equal but rather D1 < D2. To shift the
position pc to its reference position pcre we make the following Ansatz:

D =
(

γ1r∆c + γ2 (r∆c)2
)

u. (3.9)

For above u acts as the unity vector between the tracked position pc and the
center of distortion pce

u =
1

|pc − pce|
pc − pce. (3.10)

The reference-position pcre can be obtained via

pcre = pc + D. (3.11)

To obtain the parameters γ1 and γ2 we applied a least-square-fit on equa-
tion (3.9). The parameters are determined to γ1 = 0.0013 (1) 1

mA and γ2 =

1.20 (3) 10−7 1
µm(mA)2 for the 10 x-magnification and γ1 = 0.0012 (1) 1

mA and

γ2 = 1.30 (4) 10−8 1
µm(mA)2 for the 4 x-magnification.

By applying equation (3.9) we are able to shift an arbitrary position pc with
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c ∈ [0 mA, 300 mA] to a position pcre corresponding to a certain reference-
current cre. This allows us to obtain trajectories for a single reference frame
determined by cre.
The accuracy for the recalculated particle-positions pcre is heavily influenced
by the obtained center of distortion pce as shown in Fig. 3.11 (b). This center
is obtained through the calculation of the mean of all intersection points for
all lines represented in Fig. 3.11 (a). The probability-density function (PDF)
of all these intersection-points is shown as a heat-map in Fig. 3.11 (b) for
the marked region in Fig. 3.11 (a). A circle of radius rce = 5.4 µm around
the center of distortion pce represents the area containing more than 98% of
all intersection points. To estimate the error introduced by the recalculation
process we can assume a particle tracked at position pd. The recalculation
process regarding the center of distortion pc shifts the point pd to the po-
sition pu,t. If we assume the center of distortion on the edge of the circle
represented in Fig. 3.11 (b), the point pd is shifted to the position pu,w. The
error E can be calculated through

E =

√
D2 + D2

2 − 2DD2
d (pd, pc,e)

rc
. (3.12)

The maximum for the error defined in equation (3.12) is observed for the
maximum current c = 300 mA. The corresponding error yields E = 2.8 µm.
As we always start our tracking process with a current of c = 150 mA, the
effective error due to the recalculation of the distortion is Eeff =

E
2 = 1, 4µm.

This is the maximal observed error due to the recalculation of the distortion
effects.

3.2.3 Influence of the ETL: Image quality

We have seen that the ETL introduces a shift to the image im0 compared to
the image imnE. In this section we are interested in the impact of the ETL to
the image quality of image im0. Therefore we compare the pixel-intensities
of the images imnE (a) and im0 (b) represented in Fig. 3.12 on the marked
horizontal and vertical lines.
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FIGURE 3.12: Comparison between the image quality with no
ETL (a) and with ETL (b). Plot of the intensity along the hori-

zontal (c) and vertical (d) lines marked in (a) and (b).

We see based on Fig. 3.12 (c) and (d) that the presence of the ETL changes
the absolute value of the observed pixel-intensities. However, we see that
the presence of the ETL does not broaden or shrink the observed patterns
represented in Fig. 3.12 (a) and (b) as the black stripes.

(a) (b)

(c) (d)
10µm 10µm

FIGURE 3.13: Comparison of the image quality for a struc-
ture obtained for: brightfield-no ETL (a), brightfield-ETL (b),

darkfield-no ETL (c), darkfield-ETL (d).

Furthermore we compare a smaller structure compared to Fig. 3.12 in
Fig. 3.13. Here the images in Fig. 3.13 (a) and (b) have been obtained for
brightfield-microscopy and the images in Fig. 3.13 (c) and (d) for darkfield-
microscopy. The images from Fig. 3.13 (a) and (c) are obtained without ETL
and the images from Fig. 3.13 (b) and (d) with ETL. We see that there is no
significant difference in the image quality due to the presence of the ETL.
We have seen that the ETL does not reduce the image quality of the image
im0. In the next section we investigate the impact of the distance L between
ETL and camera on the obtained images im0.
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FIGURE 3.14: Comparison between images im0 for distances
L = 5 mm (a) and L = 40 mm (c) and corresponding images
im300 for distances L = 5 mm (b) and L = 40 mm (d). (e)-(f) Plot
of the tunable range ∆z (red) and the ratio ra (blue) of pixels per
µm for the 4 x-magnification (e) and for the 10 x-magnification

(f).

3.2.4 Impact distance between camera and ETL

We have seen that the ETL introduces a shift to the image im0 compared to
image imnE, which can be recalculated using equations (3.4) and (3.5). In this
section we are interested in the impact of the distance L between ETL and
camera on the obtained images imc, where c denotes the applied current to
the ETL in mA resulting in image imc. In Fig. 3.14 (a) and (c) we show images
im0 for distances L = 5 mm (a) and L = 40 mm (c). The corresponding images
im300 are represented in Fig. 3.14 (b) and (d). For all images imc represented
in Fig. 3.14 (a) - (d) we manually matched the focal plane zf with the height
z of the observed structure. The distance ∆z between the focal planes zf used
to obtain the image in Fig. 3.14 (a) and Fig. 3.14 (b) is ∆z = 15 µm. The
distance ∆z between the focal planes zf used to obtain the image in Fig. 3.14
(c) and Fig. 3.14 (d) with a bigger distance L is ∆z = 210 µm. We see that
by increasing the distance L we can increase the width ∆z in which we can
observe particles.

To quantify this result we plotted the quantity ∆z for different lengths L
between camera and ETL. The results are shown as the red curve in Fig. 3.14
(e) for the 4 x-magnification and in Fig. 3.14 (f) for the 10 x-magnification.
We see that by adapting the length L between camera and ETL over sev-
eral millimeter, this changes the width ∆z over several orders of magnitude.
Therefore the ETL can be used to investigate a broad spectrum of phenom-
ena, arising at different length-scales. A smaller spacing in the width ∆z
allows a finer tuning in the focal plane zf, larger values of the width ∆z allow
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tracking particles over large distances.
Adapting the distance L between camera and lens L not only affects the width
∆z, but also the relation

ra =
pixels

µm
(3.13)

representing the number of pixels per µm is represented as the blue curve
in Fig. 3.14 (e) for the 4 x-magnification and in Fig. 3.14 (f) for the 10 x-
magnification. For an increasing distance L we obtain an increased ratio ra.
The impact of the distance L on the ratio ra is much smaller than the impact
on the distance ∆z.

3.2.5 Frequency limitations

It is possible to tune the ETL with frequencies fETL up to a maximal frequency
of fETL,max = 1000 Hz. As we have seen in section 3.2.2, applying different
currents c to the ETL results in a shift D (c, r), where c denotes the applied
current and r the distance of the tracked object to the center of distortion
pce. We mentioned in section 3.2.2 that the impact of this-position shift can
be recalculated and we can map positions pc to a reference position pcre cor-
responding to a reference current cre. But this recalculation process is only
possible if we have a fixed center of distortion pce. For fast changing currents c
we observe multiple centers of distortion. In this cases we did not find a way
to map positions pc to an arbitrary reference-position pcre . To quantify the
term fast changing currents let us assume a triangular current of amplitude Ac
and frequency fc. In Fig. 3.15 (a) we see the position of a fixed particle rep-
resented as the black dot. We tracked this particle for different combinations
of amplitudes Ac and frequencies fc.

We denote the corresponding tracked positions as pc,Ac, fc . In Fig. 3.15 (a)
we show the tracked positions for Ac = 10 mA and fc = 1 Hz (green dots),
Ac = 10 mA and fc = 20 Hz (blue dots) and Ac = 10 mA and fc = 60 Hz
(red dots). We qualitatively cannot observe a significant difference between
the positions pc,10,1 and pc,10,20. But for a high frequency fc = 60 Hz we see
that the corresponding points pc,10,60 do not shift according to a single center
of distortion pce anymore, resulting in a spreading of the points pc,10,60. To
quantify this spreading, for each combination of amplitudes Ac and frequen-
cies fc we calculated the mean of the difference between the true position
p150 and the recalculated positions pc,Ac, fc,cre based on equation (3.11)

EAc, fc = mean
(

p150 − pc,Ac, fc,cre

)
. (3.14)

From Fig. 3.15 (b) we see that the error EAc, fc increases for increasing am-
plitudes Ac as well as increasing frequencies fc. This is due to the fact that
the speed in changing the current c increases for larger products Ac fc. Espe-
cially at the turning points of the triangular system the speed in changing the
current c is very high. This leads to mechanical stresses on the ETL making
it unable to obtain a symmetric shape resulting in multiple centers of dis-
tortion. Due to these multiple centers of distortion, the true position p150 is
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(a) (b)

FIGURE 3.15: (a) Tracking of a fixed particle represented as the
black dot at position p150 for Ac = 10 mA and fc = 1 Hz (green
dots), Ac = 10 mA and fc = 20 Hz (blue dots) and Ac = 10 mA
and fc = 60 Hz (red dots). We see qualitatively that in case of
a high frequency the tracked particles pc,10,60 spread. This in-
creases the error in the recalculation process. (b) A quantitative
discussion on the impact of the quantities amplitude Ac and
frequency f = fc on the error EAc, fc as described in equation

(3.14).

shifted towards multiple centers of distortion pce,i, resulting in a spread of
positions pc,Ac, fc as can be seen from the red dots corresponding to pc,10,60 in
Fig. 3.15 (a). The quantity EAc, fc is therefore a crucial value to determine the
accuracy of the tracking process.

3.3 xy-Detection

We have discussed the experimental setup we are using to track particles in
section 3.1. Using this setup, we imaged certain bacteria (E. coli) in Fig. 3.16
(a). The pixel intensity of the obtained image are in the range from 0 (black)
to 255 (white) and therefore these images are denoted as gray-scale images.
In the following we denote these images as ˜im. By eye we can qualitatively
detect several bacteria in Fig. 3.16 (a). To perform a quantitative xy-detection
of particles - tracking - we can have a look at Fig. 3.16 (c), where we show
the intensity profiles along the red and blue solid lines added to Fig. 3.16 (a).
We see for both curves a huge rise according to the visible white spot, but
just the red intensity profile corresponds to a bacterium, whereas the blue
intensity profile corresponds to a dust particle. It is beneficial for the tracking
algorithm, to remove dust particles in a first step. To do so we make use of
the fact that typically dust particles have a much lower maximal intensity
than particles we want to track. Based on this assumption we binarize the
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FIGURE 3.16: (a) Image of multiple bacteria marked via a white
arrow. The remaining signals correspond to dust particles. (b)
Binariation of the image represented in (a). (c) Intensity profiles

along the red and blue line represented in (a).

images ˜im to a new image im via

im (i, j) =

{
255 im (i, j) ≥ tB

0 else.
(3.15)

The resulting image im is represented in Fig. 3.16 (b). We can see that the
bacterium marked via the red line in Fig. 3.16 (a) is still present in Fig. 3.16
(b), whereas the dust particle has vanished. Based on the image im we can
detect the positions pi = (xi, yi) of the different particles pi. To do so, we
apply an algorithm introduced in [159], based on topological structural anal-
ysis of binary images by border following. In Fig. 3.17 (a) and (b) we show
a zoom of the image represented in Fig. 3.16 (a) and (b), where we marked
the tracked contour (red) as well as the center of mass (blue). Here Fig. 3.17
(a) corresponds to the original image ˜im whereas Fig. 3.17 (b) corresponds to
the binarized image im.
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(a) (b)

FIGURE 3.17: (a) Image of a bacterium. The red line marks the
boundary of the bacterium, and the blue dot the center of mass.

(b) Binarization of the image presented in (a).

3.4 z-Detection

We have seen in section 3.2 that we can modify a standard optical microscope
with an ETL to adapt the focal plane zf of the microscope without any me-
chanical interaction on the sample. In this section we discuss the impact of
the quantity ∆z , the distance between the focal plane of the microscope zf
and the height z of a particle, on the obtained image. In Fig. 3.18 we show
an image of a particle for different values of ∆z, where we defined the po-
sition ∆z = 0 µm by manually adapting the height z of the particle until it
qualitatively appeared as the sharpest image.

(a) (b) (c)

FIGURE 3.18: Image of a particle for a distance ∆z = −4 µm
(a), ∆z = 0 µm (b) and ∆z = 4 µm (c) between the height of the

particle z and the focal plane of the microscope zf.

For the human eye it is an easy task to detect that the particle represented
in Fig. 3.18 (b) is the image where the particle is closest to the focal plane.
It turns out that a quantification of this process is very challenging. In the
following sections we will present several methods to

1. quantify which image was obtained for the smallest distance ∆z

2. quantify the distance ∆z based on the obtained image

for images of a particle obtained for several distance ∆z.
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3.4.1 Quantify with area

There are several approaches to track particles in three dimensions via adapt-
ing their height to keep them in focus, as done in [40, 42]. In these publica-
tions, the measurements had a feedback to the z-stage and the height zs of
the stage is adapted to keep the particle in focus. They used the diameter w
of the tracked particle - connected to the area via a = π

(w
2

)2 - to quantify the
defocussing of the tracked particle. The obtained relation between the half
diameter w

2 of the spherical particle and the distance ∆z is represented in Fig.
3.19 (a).

(a) (b)

FIGURE 3.19: (a) Relation between radius r of the tracked
spherical particle and the distance to true particle height ∆z
from [42]. (b) Relation between the area a of the tracked par-
ticle represented in Fig. 3.18 and the distance to true particle

height ∆z.

We see from Fig. 3.19 (a) that they are able to map the obtained half diam-
eter w

2 of the tracked particle to the distance ∆z to the true particle height zt.
As they are using brightfield-microscopy they furthermore can distinguish
based on diffraction rings whether the particle is below or above the applied
focal plane. As our particles have arbitrary shapes, we apply the area a of
the tracked particles rather than the diameter w. If we use the particle rep-
resented in Fig. 3.18 to plot the area a vs the distance ∆z, we obtain the data
represented in Fig. 3.19 (b). We can see that there is no mapping possible
between the observed area a and the distance ∆z. The main reason because
we cannot do a similar calibration as represented in Fig. 3.19 (a) is the huge
difference in the experimental setup. The curve in Fig. 3.19 (a) was obtained
for a 100 x-objective, resulting in images of 128 x 128 pixels of the tracked ob-
ject. We are using a 10 x-objective, resulting in a 20 x 20 image of the tracked
object, resulting in 40-times less pixels for an image of the same particle size.
Due to the ETL we are limited to 10 x-objectives, as otherwise the range in the
adaption of the z-width by the ETL would shrink under several µm. Having
only several pixels of the tracked particle to determine its area a, this method
is
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1. very sensitive to random pixel fluctuations, resulting in the big spread
of the obtained area for a fixed distance ∆z as represented in Fig. 3.19
(b)

2. not suitable to distinguish images obtained for close focal planes as rep-
resented in Fig. 3.19 (b).

To summarize, the area a of a particle is a suitable quantity for creating a
calibration curve to map between the area a and the distance to the distance
∆z to the true particle height zt. However, in case of low magnifications, the
area a cannot be used to recalculate the distance ∆z to the true particle height
zt. In addition we would like to remark that using the area a of a particle
only uses a very small amount of the image-information. The area just takes
into account a very small amount of pixels defining the border of the particle
and therefore is non-optimal as a lot of information is not used. We will see
that the methods presented in the next sections use more information of the
image and therefore result in a better quantity to obtain the distance ∆z.

3.4.2 Deconvolution

In this section we describe the deconvolution technique, which is based on
the assumption that the observation process of a true structure imtr is dis-
turbed by a disturbance hob resulting in the observation of the structure imob.
Deconvolution tries to recalculate the true structure imtr by estimating the
disturbance hob and inverting the disturbing-process. In the following we
start to explain how this disturbance hob is estimated. In a second step we
show how the disturbance hob can be used to quantify the distance ∆z of a
particle from the focal plane zf.

Estimation of the disturbance

In our work we are observing structures of the size of several µm. Let
us denote the signal of these structures as f . To get a magnified image of
these structures we use a combination of an optical microscope and a cam-
era. These additional devices have a certain impact g on the signal f we
would like to detect. To simulate this impact, one can make the approach
that the observed signal h is obtained via a convolution of the true signal
f and the measurement setup, quantified via the transfer function g. The
relation between f , g and h can be described via

f ∗ g = h. (3.16)

This problem can be generalized in a way that we are interested in a certain
signal f we are detecting with a device which introduces the transfer function
g. This is a well known, well investigated problem. In the following we
present the general idea to obtain the signal f based on the observed signal h.
We follow the ideas presented in [178]. The observed signal can be described
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via equation (3.16). The general approach to obtain the true signal f is the
transformation

F = F ( f ) (3.17)
G = F (g) (3.18)
H = F (h) (3.19)

(3.20)

of the problem in the Fourier-space and solve equation (3.16) for F:

F =
H
G

. (3.21)

The desired signal f can be obtained via a back-transformation of F. A first
application of this approach was done by astrophysicists to obtain the true
signal f of a galaxy obtained via the Hubble-Telescope. An example of the
observed signal h and the true signal f is represented in Fig. 3.20 [34]. We

(a) (b)

FIGURE 3.20: (a) Original obtained signal h recorded by the
Hubble telescope. (b) Recalculated signal f from (a) based on
the calculated transfer function g. Both images taken from [34].

see that the original image Fig. 3.20 (a) obtained via the Hubble-telescope
appears very blurry, which results from the impact of the Hubble-telescope
to the original signal f . In case of the Hubble-telescope it is possible to calcu-
late the impact g of the telescope on the original signal f . Based on equation
(3.21) it is possible to obtain the true signal f , represented in Fig. 3.20 (b).
The Hubble-telescope is an example for the recalculation of the true signal f
through the known transfer-function g.
In many scenarios the transfer-function g remains unknown. Hence there
exist iterative methods to approximate the transfer-function g so that the
original signal f can be recalculated. These methods are explained in [24,
65, 71, 97]. The general process of these iterative methods is represented in
Fig. 3.21. We would like to detect a certain signal f . The microscope trans-
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FIGURE 3.21: Observation of the original signal f via a mi-
croscope introduces the transfer-function g resulting in the ob-
served signal h1. Via an algorithm the transfer-function gi is
iteratively adapted until a certain threshold is reached and the
best estimation fn of the original observed state f is obtained.

forms the signal f through the transfer function g and we observe the signal
h. As we would like to obtain the signal f without specific knowledge of
the transfer-function g, the method to obtain f in such a case is called blind
deconvolution. In a first step we make an arbitrary assumption g1 about the
transfer-function g and perform the deconvolution step described in equa-
tion (3.21). Based on the obtained signal f1, the initially assumed transfer-
function g1 will be optimized to the function g2. This process continues until
a certain threshold in the optimization process is reached. We see from Fig.
3.21 that the obtained signal fn and the corresponding transfer-function gn
look very similar to the true signal f and transfer-function g.

Quantification of height z

We can use the obtained transfer-function g to quantify the distance ∆z
of the tracked particle to the current focal plane zf. To explain this process,
we can have a look at Fig. 3.22. In Fig. 3.22 (a) we see a visual represen-
tation of a transfer function g. Plotting the mean m(i) = mean (mi) of each
column-vector mi results in the curves shown in Fig. 3.22 (b), where each
color represents the vector m(i) for a certain distance ∆z. In a next step we
need to quantify the curves m(i) by a single value. It turned out that taking
the maximum of the vector m(i) gives a better quantification than the area
under the curve or the full-width,half-maximum value (FWHM). This can be
explained by the small dimension (in our case 10 x 10) of the transfer function
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(a) (b)

(c) (d)

FIGURE 3.22: (a) Quantification of the transfer-function g to a
vector m. (b) Representation of the vector m for tracked par-
ticles obtained for different distances ∆z. (c) Relation between
a single value quantification of the transfer-function g and the
distance ∆z to the true particle height zt. (d) Impact of different

light intensities on the vector m.

g. But as described in [97], transfer-functions always have a small dimension.
Therefore the area under the curve m(i) as well as the FWHM are no precise
quantities and we choose the maximum value of m(i) to quantify the distance
∆z. We see in Fig. 3.22 (c) the relation between the maximum of m(i) and
the distance ∆z for multiple measurements. We see that for a fixed distance
∆z there is a certain distribution, caused by the random pixel fluctuations
as described in 3.4.1. Despite these random fluctuations it is still possible
to map between M and ∆z. But it becomes problematic in case of different
light-intensities as observed in experiments. In Fig. 3.22 (c) we plot different
curves m(i) for the same distance ∆z but for different light-intensities. We
see that the curves m(i) as well as the value M are very sensitive to the light
intensity. As this intensity randomly changes in experiments for different
heights z as well as for different xy-positions in the sample, it is not possible
to obtain a calibration curve mapping a value M to a certain distance ∆z.

3.4.3 Quantification via sharpness

The focal plane zf of a microscope is the plane where the sharpest focus is
attained. Here in this section we make the assumption that the sharpness is a
monotonous decreasing function of the distance ∆z of the object to the focal
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plane zf. Therefore quantifying the sharpness s of an image can be mapped
to the distance ∆z. Although there exist multiple methods to quantify the
sharpness of images of size m x n for m, n > 400 pixels, we could not find a
suitable method to define the sharpness of tracked particles of size m, n < 20.
Therefore we developed our own method to quantify the sharpness s of a
tracked object. Let us have a view at the images represented in Fig. 3.23 (b)-
(d). It is easy to see for the human eye that image Fig. 3.23 (c) is the sharpest

(a) (b) (c) (d)

(e) (f) (g)
im(i−1,j )

im(i−1,j+1)

im(i−1,j−1) im(i,j−1)

im(i,j+1)

im(i,j ) im(i+1,j )

im(i+1,j−1)

im(i+1,j+1)

FIGURE 3.23: (a) Visualization of equation (3.22). (b)-(d) Images
im of a tracked particle for different heights ∆z = −5 µm (b),
∆z = 0 µm (c) and ∆z = −5 µm (d). (e)-(f) Images ˜im obtained
from the image im obtained via equation (3.22) of a tracked par-
ticle for different heights ∆z = −5 µm (b), ∆z = 0 µm (c) and

∆z = −5 µm (d).

image. We see that Fig. 3.23 (b) and (d) appear very blurry as neighboring
pixels tend to have similar intensities, whereas Fig. 3.23 (c) has a well located
(compared to the other images) bright spot in the middle, resulting in a larger
gap in neighboring pixel-intensities. This difference in neighboring pixel-
intensities is the origin of our sharpness quantification. As represented in
Fig. 3.23 (a) we check for a single pixel the differences to its neighboring
pixel-intensities. Summing up this value for all pixels results in a new image
˜im defined as

˜im (i, j) = ∑
(a,b)∈nh

abs
(

p(i,j) − p(a,b)

)
. (3.22)

These new images ˜im representing the difference in neighboring pixel-intensities
are represented in Fig. 3.23 (e)-(g). We see that the sharp image im repre-
sented in Fig. 3.23 (c) transfers to an image ˜im represented in 3.23 (f) with
a dark region in the center, as the intensities of the centered pixels in the
original image im appear very bright. This black center in the middle is sur-
rounded by brighter pixels. Altogether we see that if we compare the image
represented in 3.23 (f) with the images represented in 3.23 (e) and (g), there
is a broader range in the variation of pixel-intensities represented in 3.23 (f).
To quantify this observation we finally define the sharpness s as the standard
deviation of the pixel intensities of the image ˜im:

s = std
( ˜im

)
. (3.23)
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We applied our method in the quantification of the sharpness s on experi-
mental data as well as simulated data. In the case of simulated data we were
able to easily apply our method on different shapes and sizes of the tracked
object. This showed us that our method can be applied to quantify the sharp-
ness of a broad range of objects.

Application on experimental data

Here we show the performance of our method on experimental data ap-
plication. We tracked a fixed particle for different distances ∆z. In Fig. 3.24

FIGURE 3.24: Calculation of the sharpness s of an experimen-
tally observed particle for different distances ∆z and different

light-intensities.

(a) we see the obtained sharpness-value s for different distances ∆z in red.
Due to random pixel fluctuations, as explained in section 3.4.1, we observe
a certain distribution for the sharpness s at a certain position as represented
via the inset in Fig. 3.24 (a). The impact of a changing light intensity as ob-
served in experiments leads to different calculated sharpness values s (blue).
Also the shape of the tracked particle results in a change of the calculated
sharpness s, as can be seen from the green dots in Fig. 3.24 (a).

Application on simulated particles
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To test the performance of our method in estimating the sharpness s on a
large number of different shapes and objects, we created computer simulated
images. To simulate the impact of defocussing we used Gaussian blurring as
described in [47]. The steps in creating computer simulated images are the
following:

1. creating a white square/circle (intensity = 1) on dark ground (intensity =
0)

2. applying a Gaussian blur to the image for different standard deviations
σGaussian

3. adding noise to the image by summing a normal-distributed-value (σ =
0.025) to any pixel of the image. Intensity values larger than 1 will be
set to 1, values smaller than 0 will be set to 0.

We quantified squares and circles for images of size simage ∈ [20, 50, 75, 100],
length (diameter) of the squares (circles) corresponding to
fshape ∈ [0.30, 0.42, 0.56, 0.7] multiplied the image-size simage. To compare
the sharpness for images of different size simage we scale the standard devia-
tion σGaussian of the Gaussian-filter with the image size simage. The standard-
deviation σGaussian of the Gaussian-filter is obtained by multiplying a factor
σ̃Gaussian with the corresponding image-size s. For σ̃Gaussian we choose 25
equally spaced values in the interval [0.05, 0.3]. In Fig. 3.25 (b) we present
the calculates sharpness values s for squares as the red shaded area. Differ-
ent curves belong to different values of simage and fshape. The median is rep-
resented as the red solid line. We compared our method to a similar method
where we apply a Laplacian-of-Gaussian filter to the initial image im and
calculate the sharpness sLoG as the standard deviation of the filtered images
˜imLoG. We did the same for circles in Fig. 3.25 (d). We see that the calcu-

lated sharpness s decreases for increasing blurring of the images, in contrast
to the sharpness sLoG, which initially decreases, but starts to increase after a
certain blurring. This indicates that our method is suitable for quantifying
the sharpness of an image for different sizes of the tracked objects as well as
different sizes of the images.

3.5 Online single particle-3D-tracking

3.5.1 Method

We have seen that based on the experimental setup explained in section 3.1
we can obtain images im of several particles from which we can

1. extract the positions pi = (xi, yi) of the visible particles pi (section 3.3)
and

2. determine for a set of n images imi of a particle pi which image imj was
recorded for the smallest distance ∆z between particle and focal plane
zf of the microscope (section 3.4).
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FIGURE 3.25: Computer-generated images of a square (a) and
circle (c) with increasing blurring. The sharpness s (red shaded
area) as well as a sharpness obtained after applying the Log-
filter sLoG (blue shaded area) are calculated for the squares (b)
and circles (d). The median of the curves is given as the cor-
responding solid line. The sharpness-values s decrease with

increasing blurring.

By combining both points we can perform online (live) 3D-tracking of a sin-
gle particle. Online means that the we adapt the measurement settings dur-
ing the experiment and therefore perform live-tracking. The measurement
process is summarized in Fig. 3.26. We see in Fig. 3.26 (a) a certain region
of interest (ROI) of an image of bacteria. The current focal plane is set to a
certain value zf,1. Once we left-click at a certain position pclicked, the tracking
process is initiated. The particle pk closest to the clicked position pclicked will
be tracked, the corresponding position will be denoted as pk,1. We see in Fig.
3.26 (a) that based on the clicked position pclicked we will track the particle
p3. The ROI shrinks around the position p3,1. We denote the new ROI as
ROI1. The corresponding sharpness of the particle is denoted as s1. Once we
obtained the position p3,1 and sharpness s1 of particle p3 at time-step t1, we
increase the focal plane to zf,2. In the next measurement step we perform a
tracking of particles in the region ROI1 to minimize computational time. At
time-step t2 the particle p3 was tracked at position p3,2. We again adapt the
region around position pi,2 to ROI2 and calculate the corresponding sharp-
ness s2. The steps can be summarized as follows:

1. At time-step tk the tracked position of particle pi is denoted as pi,k for
focal-plane zf,k.

2. We change the region of interested to a square of width w centered
around position pi,k. The new ROI is denoted as ROIk

3. We calculate the sharpness sk of particle pi
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(a)

(b)

FIGURE 3.26: (a) After clicking at a certain position pclicked,
the tracking-algorithm starts with tracking the closest particle
p3. (b) Representation of the focal plane zf and sharpness s for
the tracked particles from (a). After session S1 ended, the focal
planes zf for session S2 are centered around the focal plane cor-
responding to the highest sharpness s from session S1 (see red

dotted line).

4. After obtaining the tracked position pi,k and sharpness sk, we adapt the
ROI to ROIk

5. At time-step tk+1 we track particles in the region ROIk. We denote the
tracked position closest to position pi,k as pi,k+1

The five points mentioned above are repeated n times. All these n mea-
surements belong to a session S1 as represented in Fig. 3.26 (b). In this session
we successively increased the focal plane. After performing these n measure-
ments we define the focal plane zf,k associated with the highest sharpness as
the height zm of particle pi at time-step tm. In the next session S2 we succes-
sively decrease the focal plane zf,k in a way that the focal plane in the middle
equals zf,m (b, horizontal dotted red line). This ensures that the focal-plane zf
is adapted in a way that the particle is kept approximately in the middle. To
summarize, the tracking process consists of sessions Sj, where we

1. subsequently increase the focal plane zf by a distance ∆zS if j is odd,

2. and subsequently decrease the focal plane zf by a distance ∆zS if j is
even.
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For each session Sj we assign the height zf,k corresponding to the highest
sharpness sk of session Sj to the height zk of particle pi at time-step tk.

3.5.2 Accuracy

As we have discussed in section 3.4.3, we did not find a method to map
between a certain sharpness s and the corresponding distance ∆z to the focal
plane zf. Therefore we only use a single value out of the n measurements
performed in session Si to define the particles height z. This reduces the
frequency fz for which we can obtain heights z of a tracked particle to

fz =
f
n

, (3.24)

where n denotes the number of measurements per session Si. The accuracy
in the detection of the height z is limited by

1. The ability to distinguish different focal planes zf and

2. by the choice of the parameter n determining the number of measure-
ments per session Si and the spacing ∆s between two successive focal
planes zf. The total spacing of a session Si.

We denote the whole spacing of a session Si as

∆w = n∆w. (3.25)

In Fig. 3.27 we represent the impact of both parameters n and ∆s.
In Fig. 3.27 (a) we show a particle trajectory as the blue dots. The mea-

surements have been performed at the focal planes represented via the black
dots with parameters n = 3 and ∆s = ∆s1 . For session S1 we marked the
focal plane which corresponds to the highest sharpness s as a red dot. As the
particle at time t = t2 was detected inside the red shaded region, the error E
is limited by

Emax =
∆s

2
. (3.26)

But this holds only true if the focal plane zf,1,2 is bounded by both focal planes
zf,1,1 and zf,1,3. If we have a look at Fig. 3.27 (c) we see that ∆w,2 = ∆w,1 but
n = 6. The sharpest particle was detected for t = t6. As t6 corresponds to a
focal plane zf,2,6 at the edge of session S6, we only can bound the error E2 to
the below focal plane zf,2,5 but not to the top. Therefore the error E2 remains
undefined. As we need to quantify the error of our measurements, we need
to choose the width ∆w so that the sharpest position gets not detected at the
edge of a session Si. Therefore in Fig. 3.27 (c) we kept the parameter n = 6
but increased ∆w. This increases the spacing ∆s and therefore the maximal
obtained error Emax regarding equation (3.26).
To summarize, choosing a small n increases the frequency fz of the z-detection,
but tends to detect the z-position of the tracked particle at the edge of session
Si, leaving the error of the height z undefined. To deal with this problem, one
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(a)

(b) (c)

FIGURE 3.27: (a) Representation of the current focal-plane zf
(black dots) and particle height z (blue dots). The error in the
detection of the height z is limited by

∆s1
2 . (b) and (c) Impact

of the spacing ∆s on the tracking performance. For the smaller
spacing ∆s2 (b) it is likely that the sharpest particle is tracked at
the edge of a session Sn, making it impossible to estimate the
error in the tracking process. A larger spacing ∆s3 (c) enables us

to estimate the error in the detected height z.

can increase the spacing ∆s resulting in a larger maximal error Emax regard-
ing equation (3.26). A second solution is to increase n, resulting in a decrease
of the frequency fz of the z-detection. Therefore the choice of parameters n
and ∆s depends on the experimental requirements and needs to be initially
discussed.

3.5.3 Application on beads

In this section we apply our three-dimensional tracking algorithm on beads.
By calculating the MSD from the measured bead-trajectories, we can com-
pare the measured diffusion coefficient Dm with the theoretical diffusion co-
efficient Dt. We track beads of radius r = 2.5 µm and density ρ = 1.05 g

cm3 .
We tracked n = 20 beads for t = 5 m. The tracked positions are shown in Fig.
3.28 (a). For each of the beads we calculated the mean-squared-displacement
(MSD). The mean of the MSD for all particles is shown in Fig. 3.28 (b) for the
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(a) (b)

FIGURE 3.28: (a) Trajectories of n = 20 beads. For better visibil-
ity we choose a different scale for the x- and y-axis than for the
z-axis. (b) Calculated MSDs for the tracked beads in (a) for the
x- (red), y- (blue) and z- (green) components. The theoretical

value is represented as the black solid line.

x (red), y (blue) and
z̃ = z− vstt (3.27)

(green) component. Here vst = 1.04 µm
s is the theoretical sink-speed for the

beads. The theoretical curve for the MSD is shown as the black solid line.
Due to the initial error of the MSD-curves we obtain the diffusion coefficient
for the x-, y, and z-component through a linear fit in the range t ∈ [1s, 20s].
The calculated diffusivity constants Dm based on the data represented in Fig.

3.28 (b) are Dm,x = 0.0896µm2

s , Dm,y = 0.0926µm2

s and Dm,z = 0.077 µm2

s . The

theoretical value is Dt = 0.0858 µm2

s . We see that the error for the diffusivity
constants Dm,x and Dm,y is far smaller than for the diffusivity constant Dm,z.
The reason is the difference in the methods for determining the position in
the plane. x and y, and the estimation of the height z. We discussed in section
3.3 that the maximal error in the estimation of x and y is limited by equation
3.12 to E = 0.81 µm. It is important to mention that this is the maximal error.
Typical errors are way smaller. Furthermore as we transform the distorted,
tracked position (x̃, ỹ) to the undistorted particle-position (x, y) via a linear
transformation, the role of error E is even more minimized. In total, the error
in the detection of the x and y position is mainly given by the used micro-
scope, which in our-case is in the sub-µm-region.
The error for the detection of the z-component, as discussed in section 3.4 is
larger than 1 µm. Therefore we see in 3.28 (b) a big disagreement between the
theoretical (black) and the calculated MSD (green) for the z-component. The
advantage in using the ETL is clearly visible when we see that we can track
the beads over several µm in height z. For long trajectories, the error in the
estimation of the z becomes less and less important, and the curve for the esti-
mated MSD for the z component gets closer to the theoretical curve. With this
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FIGURE 3.29: (a) Example for a trajectory of the bacterium B.
subtilis. (b) Comparison of the MSD for the bacterium B. sub-
tilis from [118] (blue), our three-dimensional tracking method
(red). Black dotted and dashed line represent the ballistic and

diffusive regime.

knowledge about the precision of our tracking-algorithm we tracked bacteria
B. subtilis in the next section.

3.5.4 Application on bacteria

We tracked several bacteria B. subtilis. An example for a bacteria-trajectory is
represented in Fig. 3.29 (a). The mean of the MSD obtained for 50 trajectories
of the bacterium B. subtilis is represented as the red line in Fig. 3.29 (b). The
MSD obtained for the same bacterium published in [118] is represented as
the blue line. The black dotted line represents the slope in the initial, ballistic
regime, the black solid line the slope in the second, diffusive regime. We see a
good agreement of the red and blue curve for times between approximately
t = 0.1 s and t = 10 s. The reason for the difference for smaller times is
due to the lower precision of our tracking algorithm, as already discussed in
previous section for the tracked beads. This inaccuracy only plays a minor
role for larger times, leading to a better agreement between the red and blue
curve for times t > 0.1 s. The difference for times t > 10 s is due to the
difference in data quality. The length of trajectories measured in [118] are
in the range of t = 10 s, the trajectories we measured are in the range of
several minutes. As the MSD is less and less trustworthy for times closer to
the maximal tracking time, there is a big uncertainty for the last part of the
blue trajectory. As with our new method, the trajectories are measured for
longer times, the MSD is precise for several minutes. Despite this inaccuracy,
one can already see a change from the initial ballistic regime to the diffusive
regime for the blue MSD. This switch is visible even more clear for the MSD
represented as the red curve. Therefore by applying the three-dimensional
tracking method, we can show a clear switch from the ballistic to the diffusive
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regime. In the next chapter we will present a technique for the evaluation
of bacteria-trajectories. We will show how we can apply this technique to
evaluate run- and tumble-dynamics of trajectories obtained with our three-
dimensional tracking method.

3.6 Discussion

In this chapter we showed how a general optical microscope can be adapted
via an ETL for being capable of three-dimensional particle tracking. By adapt-
ing the distance L between ETL and camera, we are able to tune the dis-
tance ∆z of possible focal plane zf adaption over certain orders of magnitude.
This feature makes our method applicable on phenomena arising on several
length-scales. The adaption of the focal plane zf occurs due to an the defor-
mation of the ETL in the presence of an electrical current c. As this electrical
current c not only has the desired effect of adapting the focal plane zf but
also introduces an undesired effect of shifting positions, we compensate this
undesired effect via a calibration curve as summarized in equation 3.11. To
demonstrate the effectiveness of this calibration-function, we tracked several
beads of known size and density, allowing us to compare the calculated diffu-
sion coefficient D with the theoretical obtained diffusion coefficient, leading
to a good agreement. To obtain the positions x, y and z of the tracked beads,
we applied separate methods to obtain the x-y-position in the plane and the
height z. For the height detection z we tested three different methods. A first
approach was a mapping between the area of the tracked particle and the
distance ∆z to the focal plane zf as already done in [42]. This method was
not suitable in our case, as we are restricted to a low magnification due to the
ETL. This low magnification makes it impossible to accurately map between
the area a of the observed particle and distance ∆z to the focal plane zf. In
a second approach we used a technique inspired by astrophysicists which is
e.g. applied to remove noise from images of the Hubble-telescope. Here we
also deal with the problem of low magnification, making this method un-
suitable for our purpose. In a final approach we apply the relation between
the sharpness s of a tracked particle and the distance ∆z to the focal plane
zf. This does not allow us to map between sharpness s and distance ∆z, but
enables us to choose the sharpest image of a particle of a set of several images
obtained for different focal planes zf. This sharpest image corresponds to the
image obtained for the smallest distance ∆z to the focal plane zf. Based on
this principle we build our tracking method, consisting of several sessions
Si with n tracked positions

(
xi,j, yi,j

)
each, where j ∈ [1, n]. For each ses-

sion Si we obtain n x-y-positions and 1 z-position of the observed particle.
During the tracking process we adaptively change the focal plane zf to keep
the particle in focus. As in the x-y-plane we apply a general tracking tech-
nique, the corresponding accuracy is in the sub-pixel regime of several nm.
The accuracy in the determination of the height z is given by the distance
∆s of subsequent focal planes zf. This spacing ∆s has to be chosen accord-
ing to the experimental conditions and the observed particles. The minimal
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spacing ∆s is set due to random pixel fluctuations. Large values of ∆s de-
crease the accuracy in the tracking of the z-position, as the maximal error
is given by 1

2 ∆s. In our experiments the accuracy in the determination of
the height z is approximately 1µm, and therefore about two orders of mag-
nitude worse than the accuracy in the z-detection. This is clearly visible in
Fig. 3.28 (b), where the measured MSD for the x- (y-) component of the beads
is represented in red (blue), and the measured MSD for the z-component is
represented in green. We see that there is a good agreement between the
red and blue curve and the theoretical MSD represented as the black solid
line. For times τ < 50s, there is a big disagreement between the green and
the black curve. This disagreement vanishes for greater times. It is impor-
tant to realize that the effectiveness of our tracking method depends on the
experimental situation, especially which kind of particles are tracked and
for which times. If particles only move in the sub-µm-regime, our method
is hardly applicable, but if we increase the timescale or the velocity of the
observed particles, and they move several microns, then the error of approx-
imately 1 µm has a relatively low weight and our method is an effective one
in tracking the particle position. A second observation from Fig. 3.28 (b) is
the mentioned fact that we have less tracked heights z than positions x and y,
as for each session Si we only use the particle with the highest sharpness for
height-determination z. If rather than tracking beads, moving at relatively
low speed v, we focus on tracking bacteria, the error in the tracking of the
z-position has a lower impact. As bacteria tend to move with velocities up
to 40 µm

s , the impact of a tracking error of 1 µm vanishes. With our tracking
method, we are able to observe particles over hundreds of µm, allowing us
to obtain trajectories of several minutes at times. We showed an example for
a trajectory of the bacterium B. subt. in Fig. 3.29 (a). We were able to compare
our results with results of [118], who tracked the same bacteria. Their result
for the MSD is represented as the blue curve in Fig. 3.29 (b). We see the ini-
tial ballistic regime which tends to change to the diffusive regime. As this is
a double logarithmic plot, it requires approximately 10 times longer trajecto-
ries in time to confirm the diffusive regime. Applying our three-dimensional
tracking method, we were able to obtain trajectories for times that long. Eval-
uating these trajectories, we see a clear transition to the diffusive regime. The
power of our method can be seen from Fig. 3.29. Although in the very begin-
ning, the red curve has larger errors compared to the blue curve, the impact
of these errors can be neglected for larger times. The possibility of observing
trajectories over several minutes weights more than small inaccuracies in the
beginning.
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Chapter 4

Trajectory-Evaluation

An efficient and accurate evaluation of trajectories is a crucial point for the
understanding of the underlying dynamics in bacteria locomotion. It is well
known that their motion can be separated in two different states, denoted
as running- and tumbling-state [19], where the state is determined by the
rotation directory of flagellum attached to the bacterium [12, 18, 91]. Evo-
lutionary advantages in the movement of these two different states are the
enhancement of search efficiency [8, 10, 11] as well as aiming to or avoiding
special regions [175]. Evaluating of bacteria-trajectories can mainly be sepa-
rated in two different parts: 1.) Distinguish between running- and tumbling-
states and 2.) in detail description of running-states. The running-state is
determined by a smooth forward-movement of the bacterium with approx-
imately a constant velocity whereas the tumbling-state is determined by a
quick change in the bacterium orientation and a drop in the bacterium ve-
locity [19]. A simulated, three-dimensional trajectory of a bacterium is repre-
sented as the black-solid line in Figure 4.1 (a), where the tumbling-events are
marked as dots. Unlike in the experiments done in [42, 129], many experimental-
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FIGURE 4.1: (a) Example for a three-dimensional simulated tra-
jectory (black-solid line) and the corresponding projection in
the x-y-plane (blue-dotted-line). Tumbling-events are marked
as dots. (b) Plot of measured trajectories for Bacillus subtilis
(solid lines) and a simulated trajectory (blue-dotted line) and

tumbling-events marked as dots.
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setups do not provide the possibility to detect the height (z-position) of the
bacterium [30, 111, 123, 139, 166, 180]. Therefore it is only possible to evalu-
ate the projection of the trajectory in the x-y-plane, represented as the blue-
dotted line in Figure 4.1 (a). To compare the simulated trajectory with real
trajectories, the projection of the simulated line is also plotted as the blue-
dotted line in Figure 4.1 (b), whereas the real trajectories are plotted as the
solid lines.
Although there exist many methods to evaluate bacteria-trajectories [114,
123, 164], they mainly follow the same principle: Extracting orientation- and
velocity information from the measured trajectories and afterwards apply-
ing an algorithm to distinguish between running- and tumbling-states. In
this chapter we introduce the Kalman-Filter [74] as a method suitable to par-
allelize the extraction- and distinction-process. The advantage of this filter
is 1.) an intrinsic distinction between measurement- and process-noise [56,
59] and 2.) the possibility of an intrinsic distinction between running- and
tumbling-states [59].

In section 4.1 we describe the simulation-process of the running-state, in
section 4.2 we include tumbling-events. In the next section 2.3 we introduce
the Kalman-Filter as a powerful tool to extract parameters of bacteria loco-
motion. Afterwards we extend the Kalman-Filter to include the possibility
to not only extract trajectory-parameters of the running-state but also distin-
guish between running- and tumbling-states. Finally in section 4.3 we use
the Kalman-filter to extract parameters of simulated trajectories and experi-
mental data.

4.1 Simulate trajectories - running state

In this section we will discuss how we can simulate the running state of bac-
teria. To simulate bacteria trajectories, there are two approaches:

1. qualitative simulation: In a qualitative-simulation, we simulate the cell
body as well as the flagella of the bacterium. A motor torque forces the
flagellum to rotate. The physical interactions of the flagellum with its
surroundings forces the simulated bacterium to move, creating a trajec-
tory. These kind of simulations are described in chapter 5.

2. quantitative simulation: The trajectory of a certain kind of bacterium is
defined via several parameters, such as diffusion coefficient D, tumbling-
times tt, tumbling angle θt. Based on these parameters D, tt, θt. We can
create random numbers rsimulation, simulating the quantitative behavior
of the trajectory. These random numbers rsimulation define a trajectory
with the same statistical properties as the trajectory of real bacteria.

We are interested in the extraction of statistical trajectory-properties, such as
the rotational diffusion coefficient Dr. Therefore, in this chapter, we will per-
form quantitative trajectory simulations using parameters psimulation and will
compare different methods in the efficiency of extracting these parameters
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psimulation from the simulated trajectories. Furthermore we split the simula-
tion process in two parts:

1. 2D: In section 4.1.1 we simulate two dimensional-trajectories as they
are observed using a conventional optical microscope.

2. 3D: In section 4.1.2 we expand the method defined in section 4.1.1 suit-
able to simulate 3D-trajectories, as free bacteria tend to swim in three
dimensions.

In the following section 4.1.1 we start with the simulation of 2D-trajectories:

4.1.1 Running state: 2D

To quantitatively simulate the running state in two dimensions, we can have
a look at Fig. 4.2 (a). The blue dots Pj mark the particle position at time-

FIGURE 4.2: Representation of the simulation-process for two-
dimensional trajectories. Based on the positions Pi−1 and Pi,
the change in direction ∆Θi and the speed v, the position Pi+1

is absolutely defined.

step tj. The vectors vj define the velocity between positions Pj−1 and Pj. The
angle ∆θj defines the difference in the orientation between successive vectors
vj−1 and vj. Rather than using the variable ∆Θi it is more intuitive to use the
variable

Θi =
i

∑
j=0

∆Θj, (4.1)

representing the absolute orientation of velocity vj with respect to the x-axis.
The quantity θj is also represented in Fig. 4.2. A bacterial trajectory in its
running-state can be defined via the distribution of angles ∆θj and speed
vj = abs

(
vj
)
. The orientations ∆θj are normal-distributed

∆Θ← N (N)
√

2Dr∆t, (4.2)

where N denotes a normal distributed random variable, N the number of
elements of the trajectory, Dr the rotational diffusion coefficient and ∆t the
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time-spacing. Calculating the cumulative sum θ of angles ∆Θ as defined via
equation (4.1) results in a random walk for the orientation θ. Several exam-
ples for realizations of orientation θ are represented in Fig. 4.3 (a). The black

(a) (b)

O(4,0.3,1)
O(4,0.3,0.1)
O(4,1,1)

FIGURE 4.3: (a) Dashed lines represent realizations of a Ran-
dom Walk. The black solid lines mark the standard-deviation.
(b) Realization of the Ornstein-Uhlenbeck-process as men-
tioned in equation (4.3) for µOU = 4, σOU = 0.3 and θOU = 1
(red), µOU = 4, σOU = 0.3 and θOU = 0.1 (blue) and µOU = 4,

σOU = 1 and θOU = 1 (cyan).

solid lines represent the interval of the standard deviation.
The distribution of bacteria speeds vj show different statistical properties
than the angle ∆θj. The bacteria speed vj in the running state oscillates ran-
domly around a certain value µ. To simulate this behavior, we simulate the
speed vj as an Ornstein-Uhlenbeck-process

dvj = θOU
(
µOU − vj

)
dt + σOU

√
dtN . (4.3)

The parameter θOU defines the strength with which the speed vj is dragged
back to its mean speed µOU. The parameter σOU defines the size of random
fluctuations to the process. The impact of both parameters θOU and σOU
can be seen in Fig. 4.3 (b), where we plotted three different realizations of
the Ornstein-Uhlenbeck-process as described in equation (4.3) for µOU = 4,
σOU = 0.3 and θOU = 1 (red), µOU = 4, σOU = 0.3 and θOU = 0.1 (blue) and
µOU = 4, σOU = 1 and θOU = 1 (cyan).
As an example for the simulation of a trajectory we show a simulation of a
RW for the orientation θj (red solid line) and a simulation of an Ornstein-
Uhlenbeck-process for the speed vj (blue solid line) in Fig. 4.4 (a). The corre-
sponding trajectory is shown in Fig. 4.4 (b). To check that this simulation
process produces trajectories resulting in the desired rotational-diffusion-
coefficient Dr, we simulated N = 1000 trajectories in two dimensions and
plotted the Mean-Square-Angular-Displacement (MSAD)

MSAD (τ) =
1
N

N

∑
n=1

(θn (τ)− θn (0))
2 . (4.4)
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FIGURE 4.4: (a) Simulation of the speed v(i) (red line) and the
orientation Θ(i) (blue line). (b) Obtained trajectory based on

both quantities represented in (a).

The rotational-diffusion-coefficient Dr is obtained via the relation

MSAD (τ) = 2Drt. (4.5)

In Fig. 4.5 (a) we see five simulated trajectories for a rotational-diffusion-
coefficient Dr = 0.003. The corresponding Dr-curves are represented in Fig.
4.5 (b). The calculated rotational diffusion-coefficient based on the MSAD-
curves is Dr,calculated = 0.0031, indicating our method for creating
two-dimensional trajectories covers the desired statistical properties. In Fig.
4.5 (c) and (e) we simulated the impact of measurement-noise via

x̃ = x +N ∗ σx, (4.6)
ỹ = y +N ∗ σy, (4.7)

for σx = σy = 0.1 (c) and σx = σy = 0.25 (e). Here x̃ (ỹ) represents a po-
sition with a normal distributed position error with standard-deviation σx
(σy). The corresponding MSAD-curves are represented in Fig. 4.5 (d) and (f).
For the error σx = σy = 0.1 we calculated a rotational-diffusion-coefficient
Dr,calculated = 0.27 and for the error σx = σy = 0.25 we calculated a rotational-
diffusion-coefficient Dr,calculated = 0.31.
If we have a look at the trajectories represented in Fig. 4.5 (a), (c) and (e)
it is impossible to observe qualitative differences. Nevertheless the corre-
sponding calculated rotational diffusion coefficients Dr differ by 2 orders of
magnitude. Therefore in real experiments it is crucial to estimate the tracking
error. If the tracking error is too large, this means larger than 10 % of the av-
erage distance the particle moves in one second, it is impossible to calculate
the rotational diffusion coefficient Dr with a reasonable accuracy.

After we have shown how to simulate the running-state of bacteria in
two-dimensions, we will extend this method to simulate bacteria-trajectories
in three dimensions in the next section 4.1.2.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.5: (a),(c),(e) Simulation of two dimensional trajecto-
ries for Dr = 0.003 for σ = 0 (a), σ = 0.1 (c), σ = 0.25 (e).
(b),(d),(f) Calculated MSAD for the corresponding trajectories
in (a), (c) and (e). The black solid line represents the theoretical

obtained MSAD.

4.1.2 Running state: 3D

Using the quantities speed vj and orientation θj, we are able to simulate
two-dimensional bacteria trajectories. To simulate three-dimensional trajec-
tories, we need to introduce a third quantity φj enabling us to leave the two-
dimensional plane. The impact of this third component is visualized in Fig.
4.6 (a). Rather than choosing the point Pi+1 as the unique position defined in
the paper plane via speed vi+1 and angle Θi as in Fig. 4.2, we now choose



4.1. Simulate trajectories - running state 87

(a) (b)

FIGURE 4.6: (a) To simulate three-dimensional trajectories we
introduce a new parameter Φ. In this method, the position Pi+1
is not absolutely defined based on the positions Pi−1 and Pi,
the change in direction ∆Θi and the speed v. These quantities
only define the edge of the cone. The quantity Φi defines the
position on the cone. The selection of the position on the edge

of the cone is represented in (b).

the position Pi+1 at the edge of a cone. Every point on the edge of the cone is
separated by a distance vi from point Pi and at an angle ∆θi. The position on
the cone is defined via the uniform distributed random variable

φ ∈ [0, 2π[. (4.8)

As in the previous section 4.1.2 we have to verify that this method in creat-
ing three-dimensional trajectories replicates the desired statistical properties.
Therefore we simulated several three-dimensional trajectories for a certain
rotational diffusion coefficient Dr. These trajectories can be seen in Fig. 4.5
(a), (c) and (e) for σx = σy = 0 (a), σx = σy = 0.1 (c) and σx = σy = 0.25
(e). The corresponding MSAD-curves are represented in Fig. 4.5 (b), (d) and
(f). As in this chapter we experimentally only observe bacteria-trajectories
in two-dimensions, we calculated the MSAD based on the projection of the
simulated three-dimensional trajectories on the x-y-plane. For the error σx =
σy = σz = 0.0 we calculated a rotational-diffusion-coefficient Dr,calculated =
0.0032, for the error σx = σy = σz = 0.1 we calculated a rotational-diffusion-
coefficient Dr,calculated = 0.05 and for the error σx = σy = σz = 0.25 we
calculated a rotational-diffusion-coefficient Dr,calculated = 0.089. We see that
our method for simulating three-dimensional trajectories imitates the desired
statistical properties.
As we have seen now how we can simulate the running state of bacteria
in two- as well as in three dimensions, we will focus on the simulation of
tumbling-events in the next section 4.2.
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(a)
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(c) (d)
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FIGURE 4.7: (a),(c),(e) Simulation of three dimensional trajec-
tories for Dr = 0.003 for σ = 0 (a), σ = 0.1 (c), σ = 0.25 (e).
(b),(d),(f) Calculated MSAD for the corresponding trajectories
in (a), (c) and (e). The black solid line represents the theoretical

obtained MSAD.

4.2 Simulate trajectories: tumbling state

In section 4.1.2 we have shown how to simulate the running state of bacte-
ria. In this section we aim on simulating the tumbling state. Therefore we
remember the two main facts about tumbling-events:

1. The speed vj of the bacterium shows a large drop.
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2. The distribution of tumbling angles θt defined via the change in orien-
tation before and after the tumbling-events obeys a certain distribution
D (θt).

To explain the process for simulating tumbling-events, let us assume a tra-
jectory consisting of four running states and three tumbling-events. Let us
define seven time-intervals tr,1, tr,2, tr,3, tr,4, tt,1, tt,2 and tt,3 of length Tr(t),i. An
example for a two-dimensional trajectory is represented in Fig. 4.8 (a). The

(a)

(b) (c)

FIGURE 4.8: (a) Simulation of a trajectory consisting of four
running states at time-intervals tr,1, tr,2, tr,3 and tr,4 and three
tumbling states at time-intervals tt,1, tt,2 and tt,3. (b) PDF for
the duration of tumbling-times Tt (blue) and running times Tr
(red). (c) Probability p (θt, Tt,i) for the tumbling angle θt based

on a certain tumbling-time Tt,i.

length Tr,i of a running state is chosen based on experimental data from [118].
The corresponding probability-density function (PDF) is represented as the
red curve in Fig. 4.8 (b). The corresponding PDF for the tumbling-times Tt,i
is represented as the blue curve in Fig. 4.8 (b). The tumbling-angle θt is sim-
ulated based on the experimental data from [118, 140] and depends on the
length of the tumbling-time Tt,i via

p (θt, Tt,i) =
∞

∑
l=0

2l + 1
2

exp (−Drl(l + 1)Tt,i)Pl (cos θt) sin θt, (4.9)

where Pl is the Legendre’s polynomial of order l (see corresponding pdf in
Fig. 4.8 (c)). In Fig. 4.9 (a) we see the simulation of orientations θj (blue),
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angle φj (red) and speed vj (green) to create a trajectory without tumbling-
events. The corresponding trajectory is represented as the magenta dashed
line in Fig. 4.9 (c). To understand the impact of the tumbling-events on

T_1 T_2

(a)

(c)

(b)
(d)

FIGURE 4.9: (a) (c) Simulation of the quantities Θ(i) (blue), Φ(i)
(red) and v(i) (green) without (a) and including (c) tumbling-
events. During the time-interval T1 = [150, 200] (T2 =
[750, 800]) a tumbling event with tumbling angle Θt,1 (Θt,2) oc-
curs. (b) Simulating of a three dimensional trajectory based
on the quantities Θ(i), Φ(i) and v(i) represented in (a) ((c)) as
the magenta dotted (black-solid) line. (d) Representation of the
MSAD (solid lines) and MSAD (dashed-lines) of the trajectories
represented in (b), where magenta corresponds to the trajectory
without tumbling-events and black to the trajectory including

tumbling-events.

trajectory-properties, the quantities orientations θj (blue), angle φj (red) and
speed vj (green) represented in Fig. 4.9 (c) are chosen as in Fig. 4.9 (a) and
only differentiate during the tumbling-processes highlighted in yellow. For
other times, the speed v and the angle φ are equal and the orientation θ
differs only in a constant factor Θt. The corresponding trajectory including
tumbling-events is represented as the black solid line in Fig. 4.9 (b). Initially,
both trajectories are equal. After the first tumbling event, both trajectories
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start to separate. We see from Fig. 4.9 (c) that in both tumbling-events T1
and T2, the speed vj drops to zero. The difference between the first orienta-
tion θ200 after tumbling event T1 and the last orientation θ150 before tumbling
event T1 defines the tumbling angle θt,1. The tumbling angle θt,2 is defined ac-
cordingly. In Fig. 4.9 (d) we compare the MSAD (dashed lines) and the MSD
(dashed lines) for both trajectories represented in Fig. 4.9 (b). The MSAD for
the trajectory including tumbling-events is larger, which can be explained
due to the fact that tumbling-events introduce a larger angle between the ori-
entation of different parts of the trajectory. In contrast, a trajectory without
tumbling-events appears very smooth, therefore the difference in orientation
between different parts of the trajectory is - compared to a trajectory includ-
ing tumbling-events - smaller. The opposite is observed for the MSD. Here,
tumbling-events lead to a slower separation from the origin of the trajectory,
resulting in a smaller MSD for trajectories including tumbling-events. This
effect can clearly be observed from the solid lines in Fig. 4.9 (d), where both
MSDs are very similar at the beginning, but after a certain time the impact
of tumbling-event occurs, resulting in a lower value of the black-solid curve,
corresponding to the trajectory with tumbling-events.
In this chapter we wanted to give an overview about the quantitative simu-
lation of bacteria trajectories. In the next section we present a powerful tool,
the Kalman-Filter, to extract statistics from particle-trajectories.

4.3 Extract 2D-trajectory characteristics

We have seen that the relevant quantities of a three dimensional trajectory
X to distinguish between the running- and the tumbling state are the speed
v and the orientation θ. The angle φ can be neglected, as it has no influ-
ence on run- and tumble dynamics. Therefore it is sufficient to evaluate two-
dimensional trajectories Xma mapped in the two dimensional plane based on
speed v and orientation θ. It is important to mention that a mapped trajectory
Xma is different to a projected trajectory Xpr which is typically observed via a
general optical microscope, where the height of the particle is projected in the
plane. A comparison between trajectories X (red), Xpr (blue) and Xma (cyan)
is shown in Fig. 4.10. We see from Fig. 4.10, that the projected trajectory Xpr
appears very smooth and loses several features of the original trajectory X.
These features are still visible in the mapped trajectory Xma. In this section
we investigate

1. how precise statistics can be extracted from projected trajectories Xpr
and

2. how precise statistics can be extracted from mapped trajectories Xma.

By evaluating measured projected trajectories TR we additionally have to
deal with measurement errors included in the measured trajectory TR. In
Fig. 4.11 (a) we show a true simulated trajectory TRtr as the red red curve. In
Fig. 4.11 (b) we see a zoom of the region marked in Fig. 4.11 (a). To simulate
a measurement error, we added a uniformly distributed error, resulting in
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FIGURE 4.10: Comparison between trajectories X (red), Xpr
(blue) and Xma (cyan)

(a) (b)

FIGURE 4.11: (a) Simulation of a trajectory (red) with added
noise (blue). We applied a median-filter (magenta) and a
Kalman-Filter (cyan). (b) Zoom into the region marked in (a).

the blue curve in Fig. 4.11 (a). We see a big difference between the red and
the blue curve, due to the measurement error. Therefore, instead of evalu-
ating the measured trajectory TR, it is better to first apply a filter F to the
measured trajectory TR resulting in the trajectory TRfilter. The filter F should
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reduce the influence of the measurement-errors. In Fig. 4.11 we show the im-
pact of two different filters F . As a first filter we use a standard median-filter
with filter-length f l = 40. The corresponding filtered trajectory TRm,40 is rep-
resented as the magenta curve in Fig. 4.11. The next filter we applied is the
Kalman-Filter introduced in section 2.3.2. The corresponding trajectory TRKF
is represented as the cyan curve in Fig. 4.11. We see qualitatively that both
curves TRm,40 and TRKF both reduce the impact of the measurement noise. In
section 4.3.1, we simulate trajectories TR and apply a filter F to extract statis-
tical quantities like the rotational diffusion coefficient Dr, tumbling-angle Θt
and tumbling-time tt of the trajectories TR. As we know the true quantities
Dr,true, tumbling-angle Θt,true and tumbling-time tt,true used for the creation
of a certain trajectory TR, we can quantify the performance of a certain filter
F . After we quantified the performance of the Kalman-Filter, we apply it
to estimate quantities of experimental measured trajectories TRexp in section
4.3.2. Furthermore we can compare our results of the evaluation of trajecto-
ries TRexp with another evaluation of the same trajectories done with another
method from [114, 118, 164]. Subsequently we evaluate three-dimensional
trajectories obtained with the measurement-setup described in chapter 3.

4.3.1 Simulated Trajectories

In this section we apply the Kalman-Filter to extract statistical quantities of
simulated trajectories TR. First we show how the Kalman-Filter can be ap-
plied on particle trajectories TR = (xi, yi). Afterwards we show the perfor-
mance of the Kalman-Filter in estimating the running-state as simulated in
section 4.1.2. In a last step we apply the Kalman-Filter to detect tumbling-
events as simulated in section 4.2.

Application of the Kalman-Filter

In 2D-tracking experiments, we measure the absolute positions TR = (xi, yi)
of particles. In this thesis, we are mainly interested in the rotational diffusion
coefficient Dr as well as tumbling-events of the underlying trajectory. There-
fore, rather than the absolute positions, it is more efficient to have a look
at the speed vi and orientation Θi of the particle for each time ti. The rela-
tion between absolute position (xi, yi) (blue) and speed/orientation (vi, Θi)
(red) is represented in Fig. 4.12 (a). To switch between positions (xi, yi) and
speed/orientation (vi, Θi) we can use the following equation

tan (θi) =
∆yi

∆xi
, (4.10)

vi =

√
∆x2

i + ∆y2
i

∆t
, (4.11)
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Initial guess
for

(a) (b)

FIGURE 4.12: (a) Representation of the experimentally mea-
sured quantities (xi, yi) and (xi+1, yi+1). Based on these quan-
tities we can calculate the displacements ∆xi and ∆yi, suitable
to obtain the quantities Θi and vi used in the EKF-process. (b)

Visualization of the EKF-process.

where

∆xi = xi − xi−1, (4.12)
∆yi = yi − yi−1. (4.13)

As we are especially interested in estimating the quantities speed vi and ori-
entation Θi of the particle, a first approach for the state-vector would be

x̂i =

(
vi
Θi

)
, (4.14)

where the orientation Θi and the speed vi are defined as represented in Fig.
4.12 (a) or in equations 4.10 and 4.11. We found that using the state-vector as
introduced in equation 4.14 introduces several problems. The main problem
is the fact that this state-vector is not unique. To understand this problem, let
us assume two states x̂1 and x̂2 defined via the state-vectors

x̂1 =

(
v1
Θ1

)
, x̂2 =

(
−v1

Θ1 + π

)
. (4.15)

Both states x̂1 and x̂2 are the same. This introduces several numerical prob-
lems and we need a possibility to make the estimated states x̂ unique. To do
so, rather than using the speed vi, we introduce a second variable ṽi, denoted
as effective speed. The connection between speed vi and effective speed ṽi is
given via equation

vi = exp ṽi. (4.16)

Defining the estimated state-vector of the system as

x̂i =

(
ṽi
Θi

)
(4.17)

makes the states unique, as now the speed v = exp ṽ is restricted to positive
values. As a last step before applying the Kalman-Filter, we have to define
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the measurement-noise matrix R and the process-noise matrix Q. As there
is no connection between the measurement-noise in x- and y-direction, and
the statistical properties for the errors in both directions are the same, we can
expect the measurement-noise matrix R as

R =

(
r 0
0 r

)
. (4.18)

Furthermore we assume that there is no connection between the process
noise of the v- and Θ-component, resulting in the process-noise matrix

Q =

(
q1 0
0 q2

)
. (4.19)

We have seen in section 2.3.1, that only the ration of measurement-noise ma-
trix and process-noise matrix is important. Therefore we set r = 1, setting
the measurement-noise matrix to

R =

(
1 0
0 1

)
. (4.20)

The Kalman-Filtering process is summarized in Fig. 4.12 (b). The remaining
quantities to run this process are the functions f and h. As we always assume
that the particle keeps its current speed vi and orientation θi, the function f
is set as

f (x̂) = x̂. (4.21)

The function h maps between measurement- and state-space. Therefore the
function h is given as

h (x̂) =
(

exp (x̂1) cos (x̂2)
exp (x̂1) sin (x̂2)

)
. (4.22)

All the relevant parameters for the Kalman-Filtering process are summarized
in table 4.1.
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Parameter Size Explanation

Qt =

(
q1 0
0 q2

)
dP × dP Process noise matrix.

Rt =

(
1 0
0 1

)
dM × dM Measurement noise ma-

trix.
n N Number of measurements.
dP = 2 N Parameter dimension.
dM = 2 N Measurement dimension.
Yt R(dM×n) Measurements at time t.
f RdP → RdP Function describing the

system-evolution for small
timesteps.

h RdP → RdM Function giving the link
between measurement-
space and parameter-
space.

Ft RdP×dM Jacobian of f at time t.
Ht RdP×dM Jacobian of h at time t.

TABLE 4.1: Relevant parameters for the Extended-Kalman-
Filter (EKF).

With the defined state-vector x̂ and the process- and measurement-noise
matrices Q and R we can run the Kalman-Filtering process, summarized in
Fig. 4.12 (b).

Calculation of the rotational diffusion coefficient

We have seen in section 2.2.4, that the rotational diffusion coefficient Dr can
be calculated based on the Mean Squared Displacement (MSD) applying
equation

MSD =
2v2

qφ

2 (
qφt− 1 + exp

(
−qφt

))
, τr =

1
qφ

, Dr =
1

(d− 1)τr
. (4.23)

Furthermore the rotational diffusion coefficient Dr can be calculated by cal-
culating the Mean Angular Squared Displacement (MSAD) and applying the
equation

MSAD = 2dDrt. (4.24)

Here d is the dimension of the system. In the following we apply four dif-
ferent methods for the calculation of the rotational diffusion coefficient Dr,
where two of them are based on the original measured data, and two of them
have an intermediate step of Kalman-Filtering.
We have summarized four methods for the calculation of the rotational dif-
fusion coefficient in Fig. 4.13. Based on the measured trajectories, the di-
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FIGURE 4.13: (a) Representation of certain trajectories. (b) Rep-
resentation of the for different methods Pd

M, Pd
MA, PK

M and PK
MA

to extract the rotational diffusion coefficient Dr.

rectly measured positions (xi,d, yi,d) for each trajectory are extracted. Based
on the positions

(
xd

i , yd
i
)
, the rotational diffusion-coefficient Dr can be cal-

culated by applying equation 4.23. This policy for the calculation of Dr is
denoted as Pd

M. Rather than directly calculating Dr from the measured posi-
tions

(
xd

i , yd
i
)
, we can add an intermediate step to calculate the orientations

Θd
i . Based on these orientations Θd

i , we can apply equation 4.24 to calculate
Dr. This policy will be determined as Pd

MA. Rather than evaluating the mea-
sured data (xi,d, yi,d), we can add an intermediate step, the Kalman-Filter.
After applying the Kalman-Filter on the measured data

(
xd

i , yid
)
, we obtain

the Kalman-Filtered positions
(
xK

i , yiK
)

as well as the orientation ΘK
i . Here
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we can rather apply equation 4.23 to calculate Dr, denoted as policy PK
M. Or

we can apply equation 4.23, denoted as policy PK
MA.

To quantify the efficiency in the calculation for the rotational diffusion coeffi-
cient Dr for each policy P , we create a certain number n = 1000 of simulated
trajectories Tr in the running state for a certain rotational diffusion-coefficient
Dr. For each trajectory Tr we estimate the rotational-diffusion coefficient Dr
applying a certain policy P . The efficiency Eff (P , Dr) of a certain policy P
in the estimation of the rotational diffusion coefficient Dr is given as median
of the normalized error:

Eff (P , Dr) = median
(

De − Dr

Dr

)
. (4.25)

The efficiencies Eff (P , Dr) for different values of the true rotational diffu-
sion coefficient Dr are represented in Fig. 4.14. We see that the performance

FIGURE 4.14: Comparison of the performance of policies Pd
M

(red), Pd
MA (blue), PK

M (cyan) and PK
MA (magenta).

of the policy Pd,MSAD is the worst of all policies. The reason is that if we
use the orientation Θ obtained via direct measurements, the error in these
orientations is very large due to noise in the position-measurements. Up
to a rotational-diffusion coefficient Dr of approximately Dr = 0.5 1

s2 , both
Kalman-methods PKalman, MSD and PKalman, MSAD have a better performance
than the policy PKalman, MSD. The policy PKalman, MSD has always a better per-
formance than the policies based on direct-measurements, but choosing the
best policy depends on the range of diffusion coefficients we want to es-
timate. As it is known that the rotational-diffusion coefficient of Bacillus
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Subtillis is approximately Dr = 0.2 1
s2 , the best policy to choose would be

PKalman, MSAD although it performs worse than the other policies for larger
rotational-diffusion coefficients Dr. It is important to realize that we sim-
ulated the trajectories in three dimensions, but evaluated only the projec-
tion of the trajectory in the two-dimensional plane. Nevertheless we are able
to determine the rotational-diffusion-coefficient Dr of the three-dimensional
trajectory.

Tumbling-events of projected trajectories

Now we are able to extract the rotational diffusion coefficient Dr from a sim-
ulated three-dimensional trajectory X = (xi, yi, zi) mapped in the two di-
mensional plane Xpr (xi, yi). In a next step we would like to use the EKF
introduced in section 2.3.2 to detect tumbling-events TE of simulated three-
dimensional trajectories X. As we would like to simulate the tracking of
bacteria with a conventional light-microscope, these three-dimensional tra-
jectories are also restricted in the two-dimensional plane, denoted as Xpr. An
example of a simulated three dimensional trajectory X can be seen as the red
curve in Fig. 4.15 (a). tumbling-events are represented as cyan dots. The
corresponding projection Xpr is represented as the blue curve in Fig. 4.15
(a), tumbling-events are marked as magenta dots. The corresponding speeds
vi and orientations Θi of the trajectory X are represented as the red lines in
Fig. 4.15 (b) and (c). Here, the beginning and the end of a tumbling-events
is marked via a black vertical line. If we have a look at Fig. 4.15 (b), we see
that tumbling-events occur when there is a drop in the speed v. But as we
are only able to detect the trajectory Xpr, the projection of the trajectory X in
the xy-plane, we can only observe the speed ṽi in this plane, represented as
the blue curve in Fig. 4.15 (b). We see that there are several events with a
large drop in speed ṽ, which do not belong to a tumbling event of the orig-
inal trajectory X. This is due to the fact that a movement of the particle in
the z detection cannot be observed in the xy-plane. Therefore a particle only
moving in the z-direction would result in a speed ṽ = 0 in the xy-plane. The
impact of the projection in the xy-plane is also visible through the projected
orientation Θ̃. In Fig. 4.15 (c) we see several jumps in the blue curve - rep-
resenting Θ̃ - which do not correspond to a tumbling event. Our main goal
in this section is to investigate how precise we are able to detect tumbling-
events despite the limitation of dealing with projections Xpr in the xy-plane.
A crucial experimental quantity which impacts the ability to observe a three-
dimensional trajectory is the depth of field. Only a particle in the depth of
field can be observed via the microscope. In the following, the notation Xpr,w
denotes a trajectory with

w = max (zi)−min (zi) . (4.26)
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(a) (b)

(c) (d)

FIGURE 4.15: (a) Simulation of a three dimensional trajec-
tory (red) and the corresponding projection in the xy-plane
(blue). Tumbling-events are marked as cyan and magenta dots.
(b),(c) Representation of the speed v(i) (orientation Θ(i)) for
the three dimensional (red) and projected (blue) trajectory. (d)
Representation of the height-profile of the trajectory from (a).
Longest possible tracked trajectory corresponding to depth of

field Xpr,160 (green) and Xpr,300 (cyan).

This allows us to quantify the performance in detecting tumbling-events TE
based on the width w. In Fig. 4.15 (d) we see the high-profile z of the tra-
jectory X represented in Fig. 4.15 (a). We included two trajectories Xpr,160
(green) and Xpr,300 (cyan). To detect tumbling-events, we apply the IMM-
filter introduced in section 2.3.3. The main-feature of the IMM-filter is the
possibility to distinguish between different models describing a process. If
we have a look at Fig. 4.15 (b) and (c), we see that the speed vi and orien-
tation Θi undergoes a relative smooth development in case of being in the
running state. We already applied the EKF to estimate the running state. The
main-input matrices are the process-noise matrix Qru and the measurement
noise-matrix Rru, where the subscript ru denotes that the matrices are used
to describe the running-state. In a tumbling-events, the measurement noise
remains the same, therefore the measurement-noise matrix Rtu during a tum-
bling state can be chosen as Rtu = Rru = R. But the beginning and the end
of a tumbling event show a large process-noise, visible as the big jumps in
Fig. 4.15 (b) and (c). Therefore we set the process noise-matrix Qtu during a
tumbling event to

Qtu =

(
f1 0
0 f2

)
Qru, (4.27)
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where f1, f2 > 1. Here the definition 4.27 reflects the fact that the process
noise during a tumbling event is larger than during a running event.
Let us now apply the IMM-filter on the trajectory represented in Fig. 4.15
(a). For each time-step i this yields the probability pr of the system being
in the running state and the probability pt = 1− pr of the system being in
the tumbling state. To be precise, the pr reflects the probability of the sys-
tem being in the running state. But for the tumbling-state we do not have
a clean model. We expect it to have a larger process noise, reflected by the
parameters f1 and f2 form equation 4.27. So the probability pt can be better
described as the probability not being in the running state. In Fig. 4.16 (a) we
plot the probability pr of the system being in the running-state for the trajec-
tory represented in Fig. 4.15 (a) as the red curve. The beginning and the end

(a) (b)

(c) (d)

FIGURE 4.16: Representation of the relation between the quan-
tity ∆pr (blue) and pr (red, (a)), Θ (red, (b)), v (red, (c)) and φ

(red, (d)). Black vertical lines represent tumbling intervals.

of tumbling-events are represented as black vertical lines. We see that in case
of tumbling-events, there is a clear dip in the probability pr, indicating that
at these times the probability of being in the running state is lower, indicat-
ing the system switched to the tumbling state. It turns out that rather than
evaluating the probability pr to detect tumbling-events, it is more efficient -
especially in the case of experimental data - to evaluate the quantity

∆pr(i) = pr(i)− pr(i− 1), (4.28)

representing the change of the probability pr(i). The quantity ∆pr is repre-
sented as the blue curve in Fig. 4.16 (a). We see that in case of tumbling-
events, there is a local peak in the quantity ∆pr, but there are also peaks
when no tumbling occurs. To understand this fact, we show the speed in
the xy-plane vk, the orientation Θk as well as the orientation φz between the
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position difference ∆X [(xi − xi−1) ; (xi − xi−1) ; (xi − xi−1)] and the xy-plane
as the red curve in Fig. 4.16 (b), (c) and (d). The blue curve represents the
quantity ∆pr. We see in Fig. 4.16 (b) and (c) that during a tumbling event,
the current speed vk obeys a minimum and/or there a jump in the orienta-
tion Θk. But there are also peaks in the quantity ∆pr if no tumbling-events
occur, especially the largest peak around the time-step 1700. The reason for
these spurious peaks is the fact that due to the projection of the original three-
dimensional trajectory in the two-dimensional plane we lose information. If
we have a look at Fig. 4.16 (d), we see that for time-steps a = 1700± 20 the
orientation φz is close to φz(a) ≈ pi

2 , meaning the vector ∆X(a) is perpen-
dicular to the xy-plane. Due to the projection in the xy-plane this movement
cannot be observed, resulting in a drop in the speed vk resulting in a peak of
the quantity ∆pr.
Until now we detected tumbling-events in a qualitative way, as a peak in the
quantity ∆pr. In a next step we define a quantitative method T to detect
tumbling-events. Afterwards we discuss the efficiency of the method T . To
understand how the policy T works in order to detect tumbling-events, we
can have a look at Fig. 4.17 (a). There we see three different trajectories X̃w

(a)

(c)

(b)

(d)

FIGURE 4.17: (a) Representation of three different trajectories
X̃40 (blue), X̃80 (green) and X̃500 (red). (b),(c),(d) Plot of the

quantity ∆pr for X̃40 (d), X̃80 (c) and X̃500 (b).

for w1 = 500 µm (red), w2 = 80 µm (green) and w3 = 40 µm (blue). In Fig.
4.17 (b) we see the probability ∆pr obtained via the IMM-filter for the trajec-
tory X̃w1 . We see two different thresholds, one represented as the horizontal
cyan line at the value btop = 0.05, and the other one represented as the ma-
genta one at the value bbottom = 0.025. To define a tumbling event, we use
the following steps:
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1. Find a time-step i satisfying

∆pr(j) ≥ btop. (4.29)

2. Find the greatest index l ≤ i satisfying

∆pr(l) ≥ bbottom. (4.30)

3. Find the smallest index r ≥ i satisfying

∆pr(r) ≥ bbottom. (4.31)

The tumbling event occurs during the time-steps j with j ∈ [l, r]. The ob-
tained tumbling-events are represented as the cyan line in Fig. 4.17 (b), (c)
and (d). We see from Fig. 4.17 (b) that five times a tumbling event is detected
although no tumbling occured. In Fig. 4.17 (c) we see that two tumbling-
events were falsely detected and in Fig. 4.17 (d) no false tumbling event was
detected. The observed performance in Fig. 4.17 (b) for the tumbling-events
of the trajectory X̃w1 is quite bad. But in real experiments we can not observe
trajectories in a z-range of w1 using a conventional optical microscope due to
the limitations in the depth of field. Realistic values for the depth of field are
in the range around 50 µm. In the following we investigate the performance
in detecting tumbling-events for different values w. We investigate the two
quantities

pmissed =
nmissed detected

ntumblings
(4.32)

quantifying the percentage of missed tumbling-events and

pfalse =
nfalse detected

ntumblings
(4.33)

quantifying the percentage of falsely detected tumbling-events. The results
are represented as histograms in Fig. 4.18, where we show the results for
w = 60 µm in (a), the results for w = 120 µm in (b), the results for w = 300 µm
in (c) and the results for w = 800 µm in (d). We see that under reason-
able experimental conditions with w ≤ 150µm nearly all tumbling-events
are detected. Also the number of falsely detected tumbling-events can be
neglected. In the experimentally unreasonable condition of w = 800 µm
also nearly all tumbling-events are detected, indicating that our method T
for detecting tumbling-events is unlikely to miss tumbling-events. But the
amount of falsely detected tumbling-events is quite high. This is due to the
fact that for w = 800 µm it happens quite often that the particle moves al-
most purely in the z-direction, resulting in a loss of information due to the
projection in the z-plane. The fact that under reasonable experimental con-
ditions it is impossible to track particles for large distances in the z-direction
is therefore beneficial to avoid falsely detected tumbling-events. In the next
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FIGURE 4.18: Histogram for the amount of missed (red) and
falsely detected (blue) tumbling-events for w = 60 µm (a), w =

120 µm (b), w = 300 µm (c) and w = 800 µm (d).

section we apply the Kalman-Filter on experimental data to obtain the ro-
tational diffusion-coefficient Dr as well as tumbling-events, tumbling-angles
Θt, tumbling-times tt and running-times tr.

4.3.2 Experimental data

Application on two-dimensional trajectories

In this section we apply the Kalman-Filter on experimental data. We eval-
uate the same dataset as in [118], so we can compare the performance of the
Kalman-Filter in detecting tumbling-events to a conventional method. To
understand the conventional method in detecting tumbling-events, we can
have a look at Fig. 4.19. We see a trajectory in Fig. 4.19 (a), where the current
speed is color-coded. In Fig. 4.19 (a) we see the corresponding speeds vi and
angular velocity ωi. Based on drops in the speed vi and peaks in the angu-
lar velocity ωi, tumbling-events are quantified. A more detailed description
of the method can be found in [114, 164]. The resulting tumbling-events are
represented as black bars in the bottom graph of Fig. 4.19 (b).
To compare the conventional method in detecting tumbling-events with our
method, we can have a look at Fig. 4.20. A trajectory of an experimentally
measured bacterium is shown as the red curve in Fig. 4.20 (a). tumbling-
events based on the conventional-method are represented in blue, tumbling-
events based on our new method in cyan. For the detected tumbling-events,
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(a) (b)

FIGURE 4.19: (a) Trajectory with color-coded speed v. (b) Speed
v, angular-velocity ω and time-intervals for tumbling-events

represented via black bars. Image taken from [118].

zoomed representations are shown as nine different, numbered curves. Here
the measured trajectory is represented as red dots, tumbling-events based on
the conventional method as blue dots and tumbling-events based on the new
method as cyan dots. The orientations Θi and speeds vi corresponding to
the trajectory represented in Fig. 4.20 (a) are represented in Fig. 4.20 (b) and
(c), where vertical lines mark tumbling-events. We see that the conventional
algorithm detects much more tumbling-events than the new method. This
can be explained by the different conditions for the speeds vi and angular
velocity ωi to detect a tumbling event for the conventional method. Nearly
each drop in the speed vi results in a tumbling event. In contrast, our policy
quantifies the probability for a tumbling event in a single quantity, avoiding
to detect a tumbling event in case of minor tracking-errors resulting a drop
in speed vi.
The obtained probability density function for the tumbling-angle Θt, tumbling-
time tt and running-time tr applying the policy from [114, 164] on n = 260
trajectories are represented as the red curves in Fig. 4.21. The corresponding
curves for our policy are represented as the blue curves in Fig. 4.21. The
main difference between the conventional method and our new method can
be seen in the distribution of the tumbling angle Θt. Where the tumbling-
distribution for the conventional policy obeys a double peak at angles Θt ≈
±30◦, the distribution based on the new method has a peak at orientations
Θ = 0◦. To understand why the conventional policy obeys this double
peak, we evaluated all trajectory manually and found that very often the
well known effect of wobbling [22] is detected as a tumbling event. One ex-
ample where the wobbling is falsely detected as a tumbling event applying
the conventional policy is represented in Fig. 4.21 (d), where the trajectory is
represented as the red dots and the tumbling state based on the conventional
policy is marked as blue dots. Here the tumbling angle is Θt = −28◦ corre-
sponding to the left peak of Fig. 4.21 (a). These wobbling events are not de-
tected as tumbling-events applying the new policy. Therefore the new policy
is peaked around Θt = 0. The difference in running times tr is represented in
Fig. 4.21 (b) and can be neglected, but tumbling-times tt are chosen slightly
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(a)

(b)

(c)

(d)

FIGURE 4.20: (a) Two dimensional projection of an experimen-
tally measured trajectory of the bacterium B. subtilis. tumbling-
events based on the conventional method are marked as blue
dots, tumbling-events based on the IMM-filter are marked as
cyan dots. The corresponding orientation Θ and speed v are
represented as the black curve in (b) and (c). The quantity ∆pr
is represented as the red line in (b) and (c). (d) Zoom of the

trajectory for the marked tumbling-events from (a).

greater in case of the new policy. This can also be explained with the wob-
bling events. These events are typically in the order of twobbling = 0.2 s, cor-
responding to the peak in Fig. 4.21 (c). As our new method does not classify
these wobbling events as tumbling-events, several short events - compared
to the conventional method - are not taken into account anymore, resulting
in a shift of tumbling-times tt to slightly greater values.



4.3. Extract 2D-trajectory characteristics 107

(d)

(a) (b)

(c)

FIGURE 4.21: (a),(b),(c) Probability density function (pdf)
for the tumbling-angle Θt (a), tumbling-time tt (c) and run-
ning time tr (b) for the conventional (blue) and Kalman-(red)
method. (d) Two dimensional projection of a trajectory (red),
where blue dots mark two short tumbling-events based on the

conventional technique separated by a small running-state.

Application on three-dimensional trajectories

In this section we apply the IMM-filter to evaluate tumbling-events for three-
dimensional trajectories measured as described in previous chapter 3. In
Fig. 4.22 we compare the probability-density function (pdf) for the tumbling-
angle Θt (a), tumbling-time tt (b) and running-time tr (c) for experimental
trajectories Xpr (red) and Xma (blue). The vertical lines represent the mean of
the corresponding distribution, with 〈tr〉

(
Xpr
)
= 0.31 s, 〈tt〉 (Xma) = 0.314 s,

〈tr〉
(
Xpr
)
= 3.07 s and 〈tr〉 (Xma) = 3.44 s. We see nearly no difference in

the pdf for tumbling-angles Θt and tumbling-times tt, but a difference in the
pdf for the running-times tr. The difference in the running-times tr is because
by evaluating projected trajectories Xpr, several wrong tumbling-events are
detected as a movement in the z-direction is classified as a tumbling-event
due to the drop in speed v. This problem is avoided when trajectories Xma
are evaluated, as for these trajectories the z-information is included, therefore
longer running-times are observed.
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FIGURE 4.22: Comparison of the probability-density function
(pdf) for the tumbling-angle Θt (a), tumbling-time tt (b) and
running-time tr (c) for experimental trajectories Xpr (red) and
Xma (blue). Vertical lines mark the mean of the corresponding

pdf.

4.4 Discussion

In this chapter we applied the Kalman-Filter to extract statistical properties
of bacteria-trajectories, especially the (rotational) diffusion coefficient D(r) as
well as run- and tumble characteristics such as running-time tr, tumbling-
time tt and tumbling-angle Θt. To quantify the accuracy of this extraction
process, in a first step we introduced a process for the quantitative simu-
lation of bacteria-trajectories. This process consisted of the simulation of
speeds v, orientations Θ and angles φ. Based on these quantities we were
able to create three-dimensional trajectories and extract statistical properties.
We have seen from Fig. 4.14 that for different regimes of the rotational diffu-
sion coefficient Dr, different methods are beneficial for the extraction of the
rotational diffusion coefficient Dr. But methods based on the Kalman-Filter
are always superior. Now as we were confident that the Kalman-Filter is a
suitable method for the evaluation of the running-state, we applied an ex-
tension of the Kalman-Filter, the IMM to distinguish between different states
of a trajectory, the running and the tumbling-state. In several experiments,
only the two-dimensional projected trajectory Xpr is observed. Therefore in
a first step, we investigated how the information-loss due to the projection
of a three-dimensional trajectory X in the two dimensional plane Xpr influ-
ences the obtained run- and tumbling dynamics. Therefore we simulated
three-dimensional trajectories and only evaluated the projection in the two-
dimensional plane Xpr. We have seen in Fig. 4.18 that the efficiency in the
evaluation of the run- and tumble-dynamics depends mainly on the depth
of field w we observe. For large depth of fields, several tumbling-events are
wrongly detected, as a pure movement in the z-direction appears as zero ve-
locity in the x-y-plane. For large depth of fields, these events occur relatively
often, leading to a bad efficiency in the evaluation of run- and tumbling dy-
namics. But in experiments, depth of fields are typically lower than approxi-
mately w ≈ 50µm. If we apply realistic depth of fields in our simulations, the
amount of movements purely in the z-direction vanishes, and the efficiency
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in the evaluation of run- and tumble-dynamics rises. Therefore, as in real ex-
periments we have relatively low depth of fields, events where wrongly de-
tected tumbling-events occur are relatively rare. In a next step, we evaluated
run- and tumble dynamics of experimental data. Therefore we evaluated the
same data-set as [118]. The comparison can be seen in Fig. 4.21, where the
results from [118] are represented in blue and our results are represented in
red. The main difference is the distribution in tumbling-angles Θt. To un-
derstand the difference, we manually evaluated the bacteria-trajectories and
found that the peaks of the blue curve from Fig. 4.21 correspond to two corre-
sponding close tumbling-events as represented in Fig. 4.21 (d). The trajectory
represented in Fig. 4.21 (d) most likely occurs due to wobbling and not tum-
bling. Our method T for detection of tumbling-events based on the Kalman-
Filter does not detect these special events as tumbling-events, hence we do
not observe a double peak in Fig. 4.21 (a). The main difference between
our policy T and the policy introduced in [118] is the fact that rather than
threatening speed v and orientation Θ as two different quantities for detect-
ing tumbling-events, the Kalman-Filter provides a single, intrinsic quantity
for the distinction of different models. This single quantity is less susceptible
for fluctuations than two separate quantities. In a last step, we compared the
evaluation of projected trajectories Xpr and mapped trajectories Xma. We see
from Fig. 4.22 only minor differences, proving the simulation results, that
in the case of low depth of fields, the run-and tumbling dynamics are very
accurate as wrong tumbling-events are very unlikely.
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Chapter 5

Qualitative Trajectory-Simulation

5.1 Bacterial swimmer model

In this section we describe the model we use for the simulation of bacteria
locomotion. It has been developed and used by Frank Nguyen [119] to in-
vestigate the running-state of bacteria. In the next section 5.1.1 we model
the relevant parts of the bacterium, namely the cell-body and the flagel-
lum. Afterwards in section 5.1.2 we define the equations of motion repre-
senting the interaction of the bacterium with the environment. After intro-
ducing the model and the relevant interactions with the environment, we
describe the time evolution in section 5.1.3. Before we show how we can in-
duce polymorphic-transformations of a certain flagellum in section 5.2.1, we
briefly review the main results of Frank Nguyen in section 5.1.4. Afterwards
in section 5.2.2 we simulate tumbling-events.

5.1.1 Discretization of the bacterium

The bacterium consists of a cell body and the flagellum, where the flagellum
consists of the filament, which is connected to the cell body via the hook. In
this section we develop a theoretical model of the bacterium which can be
used to simulate bacteria locomotion. The theoretical model of the bacterium
is represented in Fig. 5.1 (a). Here we see the cell-body modeled as a rigid
sphere of radius Rb. Its position is described via its center of mass and de-
noted as xb. The orientation is quantified via a union quaternion qb. The
flagellum is modeled as a helix of radius R, pitch λ, end-to-end length L and
filament radius a. A bacterium consists of N flagella, where the flagellum is
connected to the cell-body at an anchor-point. In Fig. 5.1 (b) we see a zoom
inside the flagellum. It consists of different nodes xi connected via edges ei.
The first edge e0 of length Lh connecting the anchor-point and the filament
is denoted as hook, and represented as the red line in Fig. 5.1 (a). The hook
is initialized perpendicular to the body surface. The remaining edges ei with
i > 0 are flagella segments of length l. The points xi connecting the edges ei
are denoted as nodes, the node e0 is the anchor-point. Each edge ei between
nodes xi−1 and xi defines a local orthonormal coordinate system

{
e1

i , e2
i , e3

i
}

,
where e3

i = ei is the edge defined by

e3
i =

xi − xi−1

|xi − xi−1|
, i ∈ [i, N − 1] . (5.1)
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(a)

(b)

FIGURE 5.1: (a) Schematic representation of the swimmer con-
sisting of the cell-body, a sphere with radius Rb, and the flagel-
lum, consisting of the hook of length Lh and the filament with
pitch λ, radius R and diameter a. (b) The flagellum is sim-
ulated via several nodes xi, where each node defines a local

coordinate-system with basis
{

e1
i , e2

i , e3
i

}
.

The initial edge x3
0 is defined via the anchor-point x0 and the cell-body posi-

tion xb via

ei =
x0 − xb

Rb
. (5.2)

The remaining components e1
i and e2

i of the orthonormal-coordinate system{
e1

i , e2
i , e3

i
}

are defined perpendicular to the plane created by e3
i−1 and e3

i via

e1
i =

e3
i−1 × e3

i∣∣e3
i−1 × e3

i

∣∣ , (5.3)

and perpendicular to components e1
i and e3

i via

e2
i = e1

i × e3
i . (5.4)

Based on the orthonormal coordinate system
{

e1
i , e2

i , e3
i
}

we subsequently can
define a bend-angle Θi and a twist angle φi. Based on the angles Θi and φi
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we can transform the system
{

e1
i , e2

i , e3
i
}

, to
{

e1
i+1, e2

i+1, e3
i+1

}
via

Θi = arccos
(

e3
i · e3

i+1

)
, (5.5)

φi = arctan

(
ẽ1

i · e2
i

e1
i ẽ1

i

)
, (5.6)

ẽ1
i = [nn + cos (Θi) (δ− nn)] · e1

i+1 − sin (Θi)
(

n× e1
i

)
, (5.7)

n =
e3

i × e3
i+1

sin (Θi)
= e1

i+1. (5.8)

Here δ is the identity tensor and ẽ1
i can be interpreted as an intermediate

twist-free rotation of e1
i . Based on the quantities defined via equations 5.5 -

5.8 we can define the generalized curvature Ωi for every node via

Ω1
i = − Θi

sin (Θi)
e2

i · e3
i+1, (5.9)

Ω2
i = +

Θi

sin (Θi)
e1

i · e3
i+1, (5.10)

Ω3
i = φi. (5.11)

The definition of the curvature in equations 5.9-5.11 is suitable to define the
shape of a helix and therefore suitable to define the shape of the flagella.

5.1.2 Equations of motion

Based on the definitions in the previous section we can now define the equa-
tions of motion describing the interaction of the bacterium with its environ-
ment. Based on these equation it will be possible to simulate bacteria locomo-
tion. We assume that the bacterium moves through an incompresible New-
tonian fluid at zero Reynolds number (see section 2.2.2). Furthermore we
assume that each component k of the swimmer (cell-body and flagellum), is
force and torque free. Therefore the whole bacterium is force and torque free.
All external dynamics like elasticity (el), steric interactions (ster), application
of motor torque (mot) and constraints (C) are balanced by the hydrodynamic
drag (D). This can be quantified via the equations

FD
k + Fel

k + Fster
k + Fmot

k + FC
k = 0 (5.12)

TD
k + Tel

k + Tster
k + Tmot

k + TC
k = 0 (5.13)

In the following we will discuss all quantities in equations 5.12 and 5.13.
Here a subscript k = b denotes cell body and k = i denotes the ith flagella-
segment. We scale torques with T, lengths with Rb, forces with T

Rb
, velocities

with T
Rbζb

and times with ζbR2
b

T . The standard-geometry of our swimmer is
defined by Lh = 0.28, R = 0.28, λ = 4, a = 0.028 and L = 9, reflecting a good
estimate for E. coli [119].
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Hydrodynamics

To treat the hydrodynamics of the flagella, we use a discretized slender body
theory. Due to the imposed torque on the flagellum we must additionally
track the rotational phase φi of the filament. We quantify the velocity of each
node xi as vi and the angular velocity of each edge ei as ωi = φ̇i. Due to the
moving nodes xi, the surrounding fluid exerts a Stokes law drag force on it,
denoted as FD

i . The force FD
i can be calculated as

FD
i = ηi

[(
vf

i,∞ + vb
i,∞ − vi

)]
. (5.14)

The tree contributions to equation 5.14 arise from

1. vi: A local contribution from the motion of node xi.

2. vf
i,∞: Far field contribution from all other nodes.

3. vb
i,∞: Far field contribution from the cell-body.

Rather than assuming spherical nodes, we threat the nodes as small rods,
resulting in the anisotropic friction coefficient

ηi = η⊥δ +
(

η‖ − η⊥
)

titi (5.15)

for a slender rigid rod of aspect ratio l
a . Here η‖ and η⊥ are the scalar tan-

gential and perpendicular friction coefficients. By neglecting rotlets the drag
from rotating edge i along its axis simplifies to

TD
i · e3

i = −ηr
i ωi, (5.16)

where the superscript r denotes rotlet and the corresponding parameter is
given as ηr

i = 4πνa2l.
To compute the field vf

i,∞ from equation 5.14 arising from hydrodynamic in-
teractions between the flagella, we treat each node as a regularized point
force acting on the fluid. This approach is summarized in Fig. 5.2. To obtain
the whole flow-field vf

i,∞, we have fo sum over each single contribution Fj as

vf
i,∞ = ∑

i 6=j
Mf
(
xi, xj

)
· Fj, (5.17)

where Fj = −FD
j is the force exerted on the fluid by node xj and M f is the

mobility tensor. The exact expression for the body induced flow vb
i,∞ from

equation 5.14 is usually a linear function of the force and torque exerted by
the sphere on the fluid:

vb
i,∞ = Mb (xi − xb) ·Mb + Mr

b (xi − xb) · Tb, (5.18)

The remaining drag contribution FD
b from the cell-body can be calculated

by applying Faxén’s law, yielding
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FIGURE 5.2: Representation of the flow-field (gray lines) cre-
ated by a regularized point-force.

FD
b = η

[
−vb +

(
1 +

R2
b

6
∇2

)
v∞

]
|xb , (5.19)

TD
b = ηr

b

[
−ωb +

1
2
(∇× v∞)

]
|xb , (5.20)

where η = 6πνRb and ηr
b = 8πνR3

b are the translational and rotational drag
coefficients for the sphere. Here each flagellum and any additional interac-
tion of the cell body with the flow domain has contributions to the flow v∞,
which can be quantified for any point x in the flow domain as

v∞ (x) = ∑
j

Mf
(
x, xj

)
· Fj + M∗b · Fb + Mr∗

b · Tb. (5.21)

To summarize, both contributions of the hydrodynamic interactions regard-
ing the flagellum (force: equation 5.14 and torque: equation 5.16) and cell-
body (force: equation 5.20 and torque: equation 5.20) have been introduced.

Elasticity

The elasticity describes forces and torques arising when the shape of the
flagellum differs from the equal-state, defined via Ωi,eq. The elasticity is espe-
cially important to perform polymorphic transformation, as will be discussed
later on in section 5.2.1. By applying a discrete version of Kirchhoff’s classical
theory to write the elastic energy Eel we obtain

Eel =
KBh

Lh

(
Θ0 −Θ0,eq

)2
+

KB

l

N−2

∑
i=1

[
2

∑
β=1

(
Ωβ

i −Ωβ
i,eq

)2
+ Γ

(
Ω3

i −Ω3
i,eq

)]
.

(5.22)
We se that the elastic energy increases in if the shape of the flagellum differs
from the shape defined via the equal-parameters Ωi,eq. Differences in shape
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are punished via the term
(

Ωj
i −Ωj

i,eq

)
in equation 5.22.

By derivating the energy Eel defined via equation 5.22 we obtain the corre-
sponding forces

Fel
i =

∂Eel

∂xi
(5.23)

and torques

Tel
i = −∂Eel

∂φi
e3

i . (5.24)

Forces and torques on the flagella anchors are transferred to the cell body via

Fel
b = ∑

flag.
Fel

0 , (5.25)

Tel
b = Rb ∑

flag.
e3

0 × Fel
0 , (5.26)

where we sum over all flagella.

Steric repulsion

To avoid that flagella-nodes xi approach other flagella-nodes xj or the cell-
body xb to closely, we introduce repulsive steric forces. These forces are in-
spired by the Lennard-Jones potential, which in general has a repulsive and
attractive part, as can be seen via the blue curve in Fig. 5.3. By applying

4 6 8 10
-0.5

0

0.5

1

1.5

FIGURE 5.3: Representation of the Lennard-Jones-Potential ULJ
(red) and the truncated Lennard-Jones-Potential ULJ,t (blue).

a Heaviside-function H, we truncate the general Lennard-Jones potential so
that only the repulsive part remains. The resulting potential ULJ,t reads

ULJ,t = ULJH
(

2
1/6
rs

)
=

Fsσ

6

[(
σ

rs

)12

−
(

σ

rs

)6
]

H
(

2
1/6
rs

)
, (5.27)
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where rs is the distance between components, σ the cut-off distance, and Fs
the repulsion strength. We denote with fp, q the force on component p due to
component q. The force on the cell-body can be written as

Fster
b = ∑

i
fb,i, (5.28)

the force on a certain flagella-node xi as

Fster
i = fi,b + ∑

j 6=i
fi,j. (5.29)

Let us denote the vector connecting closest points of contact as

rs = rsr̂s. (5.30)

Using this definition, we can calculate the force based on the potential energy
introduced in equation 5.27 to

f ∗p,q = −
dULJ,p (rs)

drs
. (5.31)

Based on equation 5.31 we are able to calculate the forces Fster
b and Fster

i from
equation 5.28 and 5.29.

Motor

The motor torque Tmot
1 is only applied on the first segment (hook) and can be

written as
Tmot

1 =
T
2

(
e3

0 + e3
1

)
. (5.32)

In case of no hook bending (Θ0 = 0), equation 5.32 simplifies to Tmot
1 = Te3

0.
The force Fmot

0,1 on adjacent nodes 0 and 1 is calculated to

Fmot
0,1 . (5.33)

If we take into account Newton’s third law, the torque Tmot
1 applied on the

flagellum is balanced by a torque−Tmot
1 on the body for each flagellum. This

leads to a counter-rotation of the body, what is generally denotes as wobbling.
The total torque Tmot

b and force Fmot
b on the cell-body can be calculated via

Tmot
b = ∑

flag.

[
−Tmot

1 + Rbe3
0 × Fmot

0

]
, (5.34)

Tmot
b = ∑

flag.
Fmot

0 . (5.35)

Constraints
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There are two different possibilities to keep the general setup of the mod-
eled bacterium:

1. Using stiff springs.

2. Using constraints.

In the code we use, constraints are applied to keep the general setup of the
swimmer. The advantage is a smaller calculation time. The three constraints
are visualized in Fig. 5.4. The first constraint from Fig. 5.4 (a) represents

(a)

(c)

(b)

FIGURE 5.4: Representation of the constraints quantified via
equation 5.36 (a), 5.37 (b) and 5.38 (c).

the fact that the cell-body represented via qb remains a unit quaternion. This
means the cell-body only undergoes rotations, but does not change it’s shape
(R1 = R2 = Rb). The second constraint visualized in Fig. 5.4 (b) means that
the flagella anchors undergo rigid body-motion. This means that the anchors
follow the body-surface. The third constraint is visualized in Fig. 5.4 (b).
This constraint represents the fact that the flagella segments are inextensible,
their length is fixed to l. These three constraints can be quantified via

qbqb − 1 = 0, (5.36)

qbx(b)0 q−1
b − (x0 − xb) = 0, (5.37)

(xi+1 − xi) · (xi+1 − xi)− l2 = 0. (5.38)

Here x(b)0 represents a constant vector denoting the anchor point in the body-

fixed frame of reference. The quaternion qb rotates the vector x(b)0 in the lab-
oratory frame.

5.1.3 Time evolution

After we have summarized the model and the relevant interactions with the
environment, we can focus now on the description of the time-evolution.
The state of the swimmer can be fully described by the orientation of the cell
body, represented as quaternion qb, the position of the cell-body xb and the
position of flagella nodes xf. We condense the swimmer’s position variables
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in a single vector

y =

qb
xb
xf

 . (5.39)

The dynamic variables are condensed in the vector

f =

tb
Fb
Ff

 . (5.40)

As there are M flagella with N nodes, we have xf, Ff ∈ R3NM, so that y ∈
R3NM+7. As we assume linear flow, we can write the relation between veloc-
ities ẏ and forces f via the mobility matrix M as

ẏ = M f . (5.41)

We split the time-evolution from equation 5.41 in two different steps, as sum-
marized in Fig. 5.5. In a first step, we neglect the constraints and make an

unconstraint constraint

FIGURE 5.5: Representation of the unconstraint timestep, and
the application of the constraints.

unconstraint-timestep, moving nodes xj
i to xj+1,†

i , where the superscript † de-
notes an unconstrained position. After all nodes have moved, the constraints
are taken into account, moving nodes xj+1,†

i to xj+1
i . To quantify this method,

we split equation 5.41 to

ẏ = M ·
[

f † −∇CT ·Λ
]
= ẏ† −M · ∇CT ·Λ. (5.42)

Here we can calculate f † from−TD
k and−FD

k introduced in the equations of
motion 5.12 and 5.13. The vector C ∈ RN

C contains the constraint-equations
introduced in equations 5.36-5.38. The Lagrange-multipliers Λ have to satisfy
the constraint

C = 0. (5.43)

To solve equation 5.42 with respect to the constraints, we perform the follow-
ing steps:

1. Calculate the unconstrained solution y∗ = y† (tn+1).
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2. Repeat steps (3)-(5) while |C (y∗)| > ε.

3. Solve ∆t
[
∇C ·M · ∇CT]Λ = C for∇.

4. Solve δy = −∆tM · CT ·∇ for δy

5. Update: y∗ + δy→ y∗.

6. Constrained solution: y (tn+1) = y∗

By applying above steps 1 to 5 we find the constrained solution to the initial
equation 5.41 describing the dynamics of the swimmer.

5.1.4 Simulate the running state

Based on the model defined in previous sections 5.1.1-5.1.3, we are able to
simulate the running state of a bacterium. In this section we briefly show the
main results of Frank’s work, before we go on to section 5.2 with simulating
the tumbling state. If we have a look at Fig. 5.6, we see the results for the
simulation of bacterium with one flagellum. To quantify the efficiency in
swimming, we can introduce the quantity

D2 = ∑
flag.

1
N ∑

nodes
|xi − xb|2 , (5.44)

where large values correspond to a stretched, well-defined helical shape of
the flagellum. The swimmer was simulated for various combinations of the
flexibility of the hook FLh and the flexibility of the flagellum FL. Combina-
tions resulting in straight swimming are represented as blue dots, combina-
tions for non-stable swimming as orange squares in Fig. 5.6 (a). The corre-
sponding evolution for the quantity D introduced in equation 5.44 is repre-
sented in Fig. 5.6 (b). The initial state and the state after t = 28 for certain
combinations of FLh and FL is represented in Fig. 5.6 (c)-(f). If we compare
the results obtained for the Uni-flagella case with the results for four flagella,
represented in Fig. 5.7, we see a flip in the stability regimes. In Fig. 5.7 (a),
parameter-regimes where a bundling of the four flagella occurs, resulting in
straight swimming, are marked as blue dots. Regimes with efficient swim-
ming, but no bundling, are marked as green triangles. And regimes with
no bundling and no swimming are marked as orange squares. The corre-
sponding evolution of the quantity D is represented in Fig. 5.7 (b), the initial
state and the state after t = 28 for four different combinations of FLh and FL
are represented in Fig. 5.7 (c)-(f). The reason for the flipping of the stability
regime represented in Fig. 5.6 (a) and Fig. 5.7 (a) can be explained via the
impact of the hook. In the Uni-flagella case, a stiff hook is required to avoid
buckling. In case of the Quad-flagella case, a stiff hook avoids building bun-
dles, resulting in a directed swimming, due to the stiffness. Bundling only
occurs in case of a flexible hook and relatively stiff flagella. In the following
section 5.2 we extend the model to introduce tumbling-events. We will see
that for tumbling-events, the flexibility of the flagellum plays a major role.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 5.6: (a) Visualization of the stability regime for a sim-
ulated bacterium with one flagellum, where blue dots corre-
spond to stable swimming, and orange squares correspond to
non-stable swimming. (b) Representation of the quantity D de-
fined in equation 5.44 to quantify the swim-efficiency. (c)-(f)
Initial state (gray) and state after t = 20 (colored) of the swim-
mer for the four parameter-settings represented in (a). Images

taken from [119].

5.2 Simulate tumbling-events

The trajectories of free swimming bacteria usually consist of running and
tumbling states. In the previous section 5.1 we introduced a model from
Frank Nguyen developed for the simulation of the running state. In this sec-
tion we extend this model to include tumbling-events. We know that in the
running state, all flagella rotate counterclockwise (CCW), resulting in a flag-
ella bundle. When some of the flagella motors start rotating clockwise (CW),
an undundling process starts, resulting in a change of the swimming course
[42, 90, 166]. The flagella rotating CW undergo polymorphic transformations
through several shapes, before the CCW rotation changes the shape back to
the normal running shape. The filament is connected to the cell-body via the
hook, which is typically 50− 80 nm in length [25, 50, 148]. The hook trans-
fers this torque to the filament, and can bend up to 90◦. The ability of the
hook beeing able to bend, is essential for flagella bundling [18, 29]. There
are several reasons for triggering the polymorphic transformations, such as
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(c) (d)

(e) (f)

(b)(a)

FIGURE 5.7: (a) Visualization of the stability regime for a simu-
lated bacterium with four flagella, where blue dots correspond
to bundling and stable swimming, orange squares correspond
to no swimming and green triangles correspond to swimming
without bundling. (b) Representation of the quantity D defined
in equation 5.44 to quantify the swim-efficiency. (c)-(f) Initial
state (gray) and state after t = 20 (colored) of the swimmer for
the four parameter-settings represented in (a). Images taken

from [119].

external forces and hydrodynamic torques [43, 66, 108]. Other reasons in-
clude changes in solvent conditions [60, 67, 77, 149, 153]. There are several
models for the simulation of these polymorphic transformations. Based on
the work from Asakura [5], Calladine [31–33] presented a geometric model
which is suitable to predict 12 different helical forms. Other models are based
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on Brownian dynamics [172] or use an elastic model for the flagellum based
on Kirchhoffs theory [170]. There is also a continuum model of a single flag-
ellum proposed by and Stark [171], to describe polymorphic transformations
in response to an applied motor torque. In our work, we tried two different
models to induce polymorphic transformations. The first model consists of
a double-well potential for the shape of the flagellum, similar to [157], the
second model has a state-dependent potential, based on the desired flagella-
shape, as described in [95]. In the following we consider three shapes for the
simulation, the normal shape (running state), semicoiled-state (beginning of
tumbling-state) and the curly-I-state (end of tumbling-state).

5.2.1 Manipulation of the polymorphic shape

In section 5.1.2 we defined five different forces (and torques) which deter-
mine the dynamics of the simulated swimmer. The only force arising due
to deformation of the flagellum is the elasticity force Fel based on the en-
ergy introduced in equation 5.22. In this section we manipulate this energy-
landscape to perform polymorphic transformations. We tried two different
approaches to manipulate this energy-landscape, which can be seen in Fig.
5.8. We try to change the initial normal form of the flagellum, represented as
the blue curve in Fig. 5.8 (a)-(c) to the semicoiled form, represented as the
cyan curve. Every node xi of the helix has assigned a certain curvature Ω1,2

i
and a twist Ω3

i . Initially we set all these values to Ω1,2
i = 1.3 and Ω3

i = −2.08,
corresponding to experimental values from table 2.1. These initial parame-
ters Ω1,2

i and Ω3
i for each node are visualized in Fig. 5.8 (d) and (e). After

initializing the flagellum in the running state, we keep it rotating with a neg-
ative torque T = −1, and after a certain time t = t1 we change the torque
to T = 1, which should trigger the polymorphic transformation (Fig. 5.8 (f)).
Therefore, in Fig. 5.8 (d) we show a potential with two different minima,
where the second minimum corresponds to the semicoiled shape of the flag-
ellum. In Fig. 5.8 (e) we show a time-dependent potential, where for times
t < t1 the potential is given as the blue lines, and for times t ≥ t1 the po-
tential corresponds to the cyan lines. In the following we will discuss both
approaches.

Multi-minima potential

First we discuss the potential introduced in Fig. 5.8 (d). This potential can be
quantified via

Eel,m = min
(

Eel (κn
0 , τn

0 ) + δ, Eel (κs
0, τs

0)
)

, (5.45)

where the superscript k in κk
0 and τk

0 refers to the normal- (n) and semicoiled-
state (s). The quantity δ is an artificial energy gap. The potential Eel (κn

0 , τn
0 )
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(a)
(b)

(c)

(d) (e)

(f) normal semicoiled

FIGURE 5.8: (a) Representation of a helix in the normal (blue)
and semicoiled (cyan)-state. (b),(c) Projection of the helix vi-
sualized in (a) in the xz- and xy-plane. (d) Time-independent
multi-minima potential, where the minima correspond to the
normal and the semicoiled state. (e) Time-dependent potential
corresponding to the blue lines for t ≤ t1 and the cyan lines for
t > t1. (f) Visualization of the process to induce polymorphic-
transformations with a negative torque T = −1 for t ≤ t1 and a

positive torque T = 1 for t > t1.

is defined as

Eel
(

κk
0, τk

0

)
=

KBh

Lh

(
Θ0 −Θ0,eq

)2
+

KB

l

N−2

∑
i=1

[
2

∑
β=1

(
Ωβ

i − κk
0

)2
+ Γ

(
Ω3

i − τk
0

)]
.

(5.46)
Let us set δ = 0. In Fig. 5.9 (a) we see the flagellum at t = 0 (red), t = t1 (blue)
and t � t1 (cyan). We see that there is nearly no change in flagellum shape.
Also by observing the corresponding curvature and twist values Ω1

i and Ω3
i

in Fig. 5.9 (b) obeys that nearly no change of flagellum-shape occured. This
can be explained due to the parameter settings with relatively high values for
the flexural rigidity KB and twist-to-bend ratio Γ. Therefore we tried to either
reduce the flexural rigidity KB (Fig. 5.9 (c)-(d)) or to reduce the twist-to-bend
ratio Γ (Fig. 5.9 (e)-(f)). We see that a reduction in the flexural rigidity KB
or the twist-to-bend ratio Γ increases the ability of the flagellum to change
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(a) (b)

(c) (d)

(e) (f)

FIGURE 5.9: Visualization of the flagellum and the correspond-
ing curvature and twist values Ω after t = 0 (red), t = t1
(blue) and t � t1 (cyan) for (KB, Γ) = (KB,0, Γ0) (a,b), (KB, Γ) =(

KB,0
4 , Γ0

)
(c,d) and (KB, Γ) =

(
KB,0, Γ0

4

)
(e,f).

their curvature- and twist-values Ωi, and even a certain amounts flips to the
desired negative part of twist-values Ω3

i , but none of them end up at the
desired position and even a certain amount of parameters Ωi does not change
their value at all. We could not find a parameter setting of flexural rigidity
KB and twist-to-bend ratio Γ where the parameters Ωi moved to the positions
corresponding to the semicoiled shape. Therefore in a next step we tried to
vary the parameter δ from equation 5.45. In Fig. 5.10 we show the energy-
difference

∆n,s = Eel (κn
0 , τn

0 ) + δ− Eel (κs
0, τs

0) (5.47)

for t = t0 (a), t = t1 (b) and t = t2 � t1 (c). The initial energy-difference is
given as ∆n,s(t = 0) = 3.15. The curves correspond to δ = 0 (red), δ = 3.1
(cyan) and δ = 3.2 (blue). We see that the only for δ > ∆n,s(t = 0) the
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(a)

normal semicoiled

(b) (c)

(d)

FIGURE 5.10: Plot of the elastic energy E(i) for node xi for t = 0
(red), t = t1 (blue) and t = t2 � t1 (cyan) corresponding to
δ = 0 (a), δ = 3.1 (b) and δ = 3.2 (c). (d) Visualization of the
process to induce polymorphic-transformations with a negative
torque T = −1 for t ≤ t1 and a positive torque T = 1 for t > t1.

energy-gap to move to the semicoiled state can be overcome, resulting in
purely positive value for ∆n,s(t2) in Fig. 5.10 (c). The corresponding flag-
ella and curvature and twist values Ω1

i and Ω3
i are represented in Fig. 5.11.

Here the parameters correspond to δ = 0 (a) and (b), δ = 3.1 (c) and (d) and
δ = 3.2 (e) and (f). We see in Fig. 5.11 (c) that a part of the flagellum (cyan)
has already changed its shape, whereas in Fig. 5.11 (e) the whole flagella
transforms into the semicoiled shape. Therefore by adapting the energy-gap
δ we are able to perform polymorphic changes. But the problem is that it is
now impossible to go back to the normal state, as the energy gap introduced
by δ = 3.2 is too high to overcome. Also the polymorphic transformation
from normal to semicoiled occurs now independently of whether we change
the torque from T = −1 to T = 1 or keep the torque at it’s negative value
T = −1.
To summarize, we could not find a combination of the flexural rigidity KB,
the twist-to-bend ratio Γ and the energy-gap δ to trigger polymorphic changes
from the normal shape to the semicoiled-state and back to normal by chang-
ing the torque from T = −1 to T = 1 and back to T = −1. Therefore we use
another approach to trigger polymorphic transformations.

Time-dependent potential

As we could not find a static potential allowing us to perform polymorphic
transformations, we introduce a time-dependent potential suitable to per-
form these transformations. The potential is represented in Fig. 5.8 (e) and
can be quantified via

Eel,t =

{
Eel (κn

0 , τn
0 ) t ≤ t1

Eel (κs
0, τs

0) t1 < t.
(5.48)
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(a) (b)

(d)(c)

(e) (f)

FIGURE 5.11: Visualization of the flagellum and the corre-
sponding curvature and twist values Ω after t = 0 (red), t = t1
(blue) and t� t1 (cyan) for δ = 0 (a,b), δ = 3.1 (c,d) and δ = 3.3

(e,f).

The results after applying above potential are visualized in Fig. 5.12. We see
in Fig. 5.12 (a) a polymorphic transformation from the initial (t = 0, red)
normal-state to the final (t � t1, cyan) semicoiled-state. The correspond-
ing curvature and twist values Ω1

i and Ω3
i in Fig. 5.12 (b). In the follow-

ing we use the potential introduced in equation 5.49 to trigger polymorphic-
transformations.

5.2.2 Simulate tumbling-events

In above section we investigated two different approaches to trigger poly-
morphic transformations. In this section we use the second approach, the
time-dependent potential, to trigger these polymorphic transformations and
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(a) (b)

FIGURE 5.12: Visualization of the flagellum (a) and the corre-
sponding curvature and twist values Ω (b) after t = 0 (red),
t = t1 (blue) and t � t1 (cyan) for the potential defined in

equation 5.49.

to simulate tumbling-events. The potential is given as

Eel,t =


Eel (κn

0 , τn
0 ) t ≤ t1

Eel (κs
0, τs

0) t1 < t ≤ t2

Eel (κc
0, τc

0) t2 < t ≤ t3

Eel (κn
0 , τn

0 ) t3 < t ≤ t.

(5.49)

The evolution of a tumbling event is summarized in Fig. 5.13. In the fol-

normal smicoiled curly-I normal

FIGURE 5.13: Schematic representation of a tumbling event
consisting of the flagellum being in the normal state. A switch
of the torque from T = −1 to T = 1 at t = t1 induces a polymor-
phic transformation from the normal to the semicoiled state.
After t = t2 the flagellum changes to the curly-I shape before
it switches back to the normal state at t = t3 when the torque

switches back from T = 1 to T = −1.

lowing we simulate tumbling-events for one, two, three and four different
flagella.

Uni-flagella

In a first step, we simulated a tumbling event for a bacterium with one sin-
gle flagellum. The obtained trajectory is represented as the black curve in
Fig. 5.14 (a). We marked the times t = t1 (red), t = t2 (blue), t = t3 (cyan)
and the last timepoint (magenta) as dots. We also fit a line through the initial
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(a) (b) (c)

(d) (e)

FIGURE 5.14: (a) Trajectory of a simulated bacterium with one
flagellum (black), where the times t = t1 (red), t = t2 (blue),
t = t3 (cyan) and the last timepoint (magenta) are marked as
dots. Gray lines represent a linear fit through the initial and
final part of the trajectory. (b)-(e) Visualization of the flagellum

at the positions marked with the colored dots in (a).

running-state and the last running-state to make the obtained tumbling-angle
Θt clearly visible. In Fig. 5.14 (b)-(e) we show the flagella shape for the times
marked in Fig. 5.14 (a). We see a clear transformation of the flagellum from
the initial normal state (Fig. 5.14 (b)) to the semicoiled state (Fig. 5.14 (c)), the
curly-I state (Fig. 5.14 (d)) and back to the final normal state (Fig. 5.14 (e)).
Furthermore we see a clear change in the direction of bacteria locomotion
when the tumbling event starts at t = t1.

Bi-flagella

We also simulated a bacterium with two different flagella. The trajectory
is represented in Fig. 5.15 (a). We marked the times t = t1 (red), t = t2
(blue), t = t3 (cyan) and the last timepoint (magenta) as dots. We also fit a
line through the initial running-state and the last running-state to make the
obtained tumbling-angle Θt clearly visible. In Fig. 5.15 (b)-(e) we represent
the tumbling flagella as dotted, the non-tumbling flagella as solid line. We
see a clear bundle of flagella in Fig. 5.15 (b) and Fig. 5.15 (e), whereas in Fig.
5.15 (c) and (d) the tumbling flagellum has changed it’s shape and unbun-
dled from the other flagellum. At the last timestep the calculation crashed.
The crash happened due to numerical problems as the flagella approached
too close. We found no parameter setting for the flagellum to maintain a long
running state after a tumbling event. It seems that due to the tumbling event
it is impossible for the bacterium to recreate a smooth bundle as has already
existed before the tumbling event. We will discuss this aspect later on.
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(a) (b) (c)

(d) (e)

FIGURE 5.15: (a) Trajectory of a simulated bacterium with two
flagella (black), where the times t = t1 (red), t = t2 (blue), t =
t3 (cyan) and the last timepoint (magenta) are marked as dots.
Gray lines represent a linear fit through the initial and final part
of the trajectory. (b)-(e) Visualization of the flagellum at the

positions marked with the colored dots in (a).

Tri-and Quad-flagella

The trajectory of a bacterium with three flagella is represented in Fig. 5.16 (a).
We marked the times t = t1 (red), t = t2 (blue), t = t3 (cyan) and the last time-

(a) (b) (c)

(d) (e)

FIGURE 5.16: (a) Trajectory of a simulated bacterium with three
flagella (black), where the times t = t1 (red), t = t2 (blue), t =
t3 (cyan) and the last timepoint (magenta) are marked as dots.
Gray lines represent a linear fit through the initial and final part
of the trajectory. (b)-(e) Visualization of the flagellum at the

positions marked with the colored dots in (a).

point (magenta) as dots. We also fit a line through the initial running-state
and the last running-state to make the obtained tumbling-angle Θt clearly
visible. In Fig. 5.15 (b)-(e) we represent the tumbling flagella as dotted, the
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non-tumbling flagella as solid line. We see a clear bundle in of flagella in Fig.
5.15 (b) and Fig. 5.15 (e), whereas in Fig. 5.15 (c) and (d) the flagella unbun-
dled, but we do not see a clear semicoiled- or curly-I-shape as in the uni- or
bi-flagella case. This can be explained through the impact of the other two
flagella, remaining in running state and keeping up the propulsion, which
has a direct impact on the tumbling flagellum-shape. We also see from Fig.
5.16 (a) that there is a smaller tumbling angle as in the uni- and bi-flagella-
case. The same observation can be made for the quad-flagella-case, repre-
sented in Fig. 5.17. We see an even smaller tumbling-angle in Fig. 5.17 (a)

(a) (b) (c)

(d) (e)

FIGURE 5.17: (a) Trajectory of a simulated bacterium with four
flagella (black), where the times t = t1 (red), t = t2 (blue), t =
t3 (cyan) and the last timepoint (magenta) are marked as dots.
Gray lines represent a linear fit through the initial and final part
of the trajectory. (b)-(e) Visualization of the flagellum at the

positions marked with the colored dots in (a).

due to the strong propulsion of the three flagella remaining in the running-
state. Similar to the three flagella-case we see a bundle in Fig. 5.17 (b) and
(e), whereas in Fig. 5.17 (c) and (d) no bundle is visible. Due to the presence
of three flagella in the running state, keeping up the propulsion of the bac-
terium, the tumbling event only leads to unbundling, but the shape of the
tumbling flagellum can barely be adapted.

Numerical stability

In the above cases of uni-, bi- tri and quad-flagella simulations, only the
uni-flagellum case could finish the simulation without numerical problems
resulting in the crash of the simulations. For all other cases the simulations
crashed due to a too close approach of flagella. In Fig. 5.18 we investigated
the stability of the simulation by varying times t1 and t2. If a simulation
crashed during the semicoiled-state, we represent this as a black dot, a crash
during the curly-I-state is represented as a red dot, a crash during the final
running-state as blue dot, and if the simulation finished, we represent it as
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(a) (b)

(c) (d)

FIGURE 5.18: Performance in the simulation of tumbling-
events for a bacterium with one (a), two (b), three (c) and four
(d) flagella. Green dots correspond to a completely successful
simulation, blue dots correspond to a crash of the simulation
during the last running-state, red dots correspond to a crash
of the simulation during the curly-I state and black dots corre-
spond to a crash of the simulation during the semicoiled-state.

a green dot. The results for the Uni-flagella case are represented in Fig. 5.18
(a), the Bi-flagella case in Fig. 5.18 (b), the Tri-flagella case in Fig. 5.18 (c) and
the Quad-flagella case in Fig. 5.18 (d). We see that only in the case of one sin-
gle flagellum all simulations finished. In case of two flagella all simulations
crashed during the last running state. This indicates that due to the tumbling
event the bacterium is not able to restore it’s initial, stable bundle. In case of
three flagella, some calculations even crash during the curly-I-state, and for
the four-flagella case even some simulations crashed during the semicoiled-
state. Due to these numerical problems we restrict our analysis to a bacterium
with two flagella.

Impact flagella-position

In this section we investigate the impact of the flagella positioning on the
bacteria locomotion. Therefore we simulated the tumbling event represented
in Fig. 5.13 for six different initial flagella positions represented in Fig. 5.19
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(a)-(e), corresponding to ΦInitial =
5π
5 (a), ΦInitial =

4π
5 (b), ΦInitial =

3π
5 (c),

ΦInitial =
2π
5 (d) and ΦInitial =

1π
5 (e). Here the initial position can be defined

via the angle ΦInitial between both flagella. The obtained trajectories are rep-

(a)

(b)

(c)

(f)

(g)(d)

(e)

FIGURE 5.19: Visualization of the impact of flagella positioning
for a bacterium with two flagella with initial conditions corre-
sponding to ΦInitial =

5π
5 (a), ΦInitial =

4π
5 (b), ΦInitial =

3π
5 (c),

ΦInitial = 2π
5 (d) and ΦInitial = 1π

5 (e). The corresponding tra-
jectories are represented in (f). A representation where the first
running-state of all simulations is aligned is represented in (g).

Black dots correspond to t1, t2 and t3.

resented in Fig. 5.19 (g), where we marked times t = t1, t = t2 and t = t3
as black dots. A clearer representation where we aligned the axis of the ini-
tial running-state is visualized in Fig. 5.19 (h). The first observation is the
helical shape of the initial running state, whose radius increases for smaller
angles ΦInitial. We qualitatively see that the tumbling angles Θt increases for
larger values of ΦInitial. This qualitative observation is quantified by Fig. 5.20,
where we show the tumbling angle Θt for different flagella-angles ΦInitial.
The general trend visualized in Fig. 5.20 was an expected result and can be
explained to the higher impact of the tumbling flagellum to the trajectory the
further its distance to the other flagellum. In case of ΦInitial = π, a tumbling-
events of one flagellum sets the bacterium in a state where on one side the
flagellum has full propulsion, whereas on the opposite side of the bacterium
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FIGURE 5.20: Simulated impact of initial flagella-positioning
ΦInitial on the tumbling-angle Θt.

the flagellum exerts a force on the other direction, resulting in a change of
orientation by about Θt = π. In case of ΦInitial ≈ 0, a tumbling event does
not change the direction as both flagella are close together. A tumbling only
leads to a drop in velocity with barely a change in orientation. We further an-
alyzed the speed v and the quantity D introduced in equation 5.44 to quantify
whether efficient swimming occurs. These quantities are represented in Fig.
5.21 (a) and (b). The times t = t1, t = t2 and t = t3 are visualized as black

(a) (b)

FIGURE 5.21: Representation of speed v(i) (a) and quantity
D(i) (b) defined in equation 5.44 for ΦInitial =

5π
5 (red), ΦInitial =

4π
5 (blue), ΦInitial = 3π

5 (green), ΦInitial = 2π
5 (yellow) and

ΦInitial =
1π
5 (cyan). Times t1, t2 and t3 are marked via black ver-

tical lines. Both quantities v and D show a drop at time t = t1
and jump back to approximately the initial stable value at t = t3

but are not able to maintain this state.

vertical lines. We see a clear drop in the speed v during the semicoiled- and
curly-I-state. During the final running-state the speed v initially increases,
but does not reach it’s value from the initial running state. This is a clear in-
dication that the swimming in the final running-state is not as efficient as in
the initial running-state. This observation is clearly supported by the quan-
tity D represented in Fig. 5.21 (b). In the first running-state D oscillates
around a relatively high value, whereas there is an - expected - drop during
the semicoiled- and curly-I-state. During the final running-state the value of
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D rises again to the same relatively high value as in the initial running-state,
but after a certain time the value drops, resulting in less efficient swimming.
The drop of D in the final running-state is a clear indication that the tumbling
event not only changes the swimming-properties during this event, but also
avoids the system to regain it’s initial efficient swimming state, resulting in
an unstable bundle of the two flagella, which after a certain time approach
too close, resulting in numerical problems crashing the calculation.

5.3 Discussion

In this section we presented a qualitative model for the simulation of bac-
teria locomotion. This model simulates the swimmer as a combination of a
spherical body and the flagellum. The flagellum consists of the hook, which
connects the helical filament to the cell-body. Each segment of the flagellum
has the fixed length l. The motor torque generated inside the cell-body is
transferred from one segment to the next segment, forcing the flagellum to
rotate. The helical shape of the flagellum is defined via the curvature and
the twist value, which remain equal in the running-state. We extended the
model of Frank Nguyen to simulate the tumbling-state, characterized via a
change in the flagellum rotation-direction and change in flagellum shape.
We were not able to simulate tumbling-events applying a time-independent
potential, consisting of several minima, where each minimum in the energy-
landscape corresponds to a certain flagellum-shape. We either had the prob-
lem that a relatively flat potential was not able to create a stable state, or a
too steep potential was not able to allow changes in flagellum-shape. There-
fore we introduced a time-dependent potential, where the current potential
is suitable to generate the desired flagellum-shape at the current time of the
tumbling-process. In the uni-flagellum case we were able to simulate tum-
bling processes, where the flagellum is initially in the normal state. During
the tumbling state, the flagellum changes it’s shape to the semicoiled-state,
followed by the curly-I state. After the tumbling process ends, the flagel-
lum changes it’s shape back to the normal state. In case of two flagella, the
tumbling process from normal- to semicoiled- to curly-I- and back to normal-
state can be simulated, but after a certain time in the second normal state, the
calculations crash due to numerical problems. In case of three or four flag-
ella, the calculations already crash during the semicoiled- or curly-I state, as
can be seen from Fig. 5.18. It is interesting to see that calculations for three
flagella can crash during the semicoiled-state, but remain in tact for longer
times in the four-flagella case and only crash in the subsequent curly-I state
for the same parameter setting. The reason for the crash of the simulations
is a too close approach of flagella, resulting in numerical problems. As it
is impossible to determine the crash-point of a simulation and simulations
for three or four flagella can take several weeks, we restricted our analy-
sis to swimmer with only two flagella. We were interested in the impact
on flagella-positioning on the tumbling-dynamics. Therefore we initialized
swimmer with different flagella-positions characterized via the angle ΦInitial,
as represented in Fig. 5.19. The relation between the tumbling-angle and
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the flagella-positioning can be seen in Fig. 5.20. The result proves our ex-
pectation, that a larger distance between anchor points of flagella-positions
lead to a larger tumbling-angle Θt. The largest tumbling-angle Θt was ob-
tained for a swimmer, where flagella were positioned at opposite sides of
the cell-body. During a tumbling-event, the propulsion in the direction of
movement for the non-tumbling-flagellum remains, whereas the tumbling-
flagellum rotates in the opposite direction, pulling in the opposite direction
relative to the current direction of motion. This effect of pulling is reduced
for smaller distances of the anchor points of the flagella, resulting in smaller
tumbling angles Θt for smaller angles ΦInitial. The speed v (a) as well as the
quantity D (b) representing the effectiveness in swimming are represented in
Fig. 5.21 (a) ((b)). We see a clear dip in v and D during the tumbling-state.
After a certain time in the second normal-state after the tumbling-event, the
calculations start to crash. If we have a look at the quantity D from Fig. 5.21
(b) we see that the value of D after the tumbling event increases, but cannot
maintain the level previous to the tumbling. This is a clear indication that
the tumbling-event introduces a certain distortion to the system. The initial
stable bundle in the initial running-state is irreversible destroyed through the
tumbling event. In the second running-state, this initial stable bundle of both
flagella cannot be recreated. Hence the second running-state is a meta-stable
running-state where after a certain time the flagella approach so close that
numerical problems crash the simulation. This can clearly be seen through
the decaying of the quantity D in the second running-state from Fig. 5.21
(b). To conclude, we have extended the model of Frank Nguyen for the sim-
ulation of the running state to also simulate the tumbling-state, where poly-
morphic transformations of the swimmer are induced via a time-dependent
potential.
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Chapter 6

Summary & Outlook

6.1 3D Particle-Tracking

In chapter 3 we extended an optical microscope via an electrically focus tun-
able lens (ETL), allowing us to track particles in three dimensions. The track-
ing algorithm consists of two different steps, where we initially track parti-
cles in the xy-plane. Subsequently we calculate the sharpness of the tracked
particle. Over a certain range of the past n tracked positions we assign the
particle height z to the focal plane zf for which we obtained the sharpest im-
age of the particle. This method allows us to track particles up to 1 mm in
the z-range and several mm in the x- and y-range. To quantify the tracking-
performance we tracked beads and could show a good agreement between
the theoretical and measured (rotational) diffusion coefficient D(r). Appli-
cation of the tracking algorithm on bacteria allowed us to obtain bacteria-
trajectories over several minutes, showing a clear transition from the initial
ballistic regime of the MSD to the diffusive regime. Furthermore we have
seen that the maximal adaptable width ∆za of the focal plane depends on
the distance L between camera and ETL. This possibility in the adaption
of ∆za extends the possible application of the ETL to several phenomena
arising at different scales. As a last advantage of the ETL we would like
to point out that with costs of only about 400e, the ETL is a very cost effi-
cient method in adapting the focal plane zf compared to e.g. xyz-mountable
stages in the range of several thousands of e. Currently we have to initialize
every tracking process manually although, once started, the tracking-process
is fully automated. In future work the tracking-process could be adapted
to be completely automatic. Therefore it would be necessary to automati-
cally distinguish between dust particles and the particles we are interested
to track. To solve this problems, neural networks have proven to be very ef-
ficient. Applying neural networks would allow for a completely automatic
tracking-process. Another improvement of our tracking algorithm could be
the determination of the height z. Currently we only can restrict the height z
of a particle between two different layers and have no method to efficiently
map a quantity to the distance ∆z between particle and foal plane zf. The
biggest problem is the restriction to relatively low magnifications due to the
ETL. It would be interesting to see if neural networks would be capable of
mapping an image of a bacterium to the distance ∆z. Furthermore it would
be interesting to compare the MS(A)D for several different bacteria. Also the
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difference in swimming-dynamics at different areas inside the sample would
be an interesting topic to investigate.

6.2 Trajectory-Evaluation

In chapter 4 we introduced the Kalman-Filter as an efficient tool to eval-
uate bacteria trajectories. Furthermore the KF has several extensions, e.g.
the IMM-filter, suitable to distinguish between different states of a system.
We showed that an initial application of the KF on trajectories allows for a
more efficient determination of the rotational diffusion coefficient Dr. The
IMM-filter allowed us to present a powerful method for the distinction of the
running- and tumbling-state. Rather than conventional methods, the appli-
cation of the IMM-filter allows an intrinsic distinction of these two states. We
have seen that by using the IMM-filter, wobbling-events will not be detected
as tumbling-events anymore, changing the double-peak distribution for the
tumbling-angle Θt obtained for conventional method to a single-peak dis-
tribution for the IMM-method. We furthermore use the IMM-filter to detect
tumbling-events of three-dimensional trajectories obtained with the track-
ing algorithm introduced in chapter 3. We could show that the evaluation
of three-dimensional trajectories leads to a higher mean in the distribution
of running-times tr compared to the evaluation of two-dimensional trajec-
tories obtained with a conventional microscope. This effect occurs due to
the missing z-information by only evaluating the two-dimensional projec-
tion of bacteria locomotion. In future work it would be interesting to re-
fine the model applied in the Kalman-Filter. Currently we distinguish be-
tween running- and tumbling-state. This model could be refined to a running
state, a running-tumbling-transition, the tumbling-state and the tumbling-
running-transition. This refining of the model would probably give a sim-
pler policy for the detection of tumbling-events. Furthermore it would be
interesting to compare the run- and tumbling-dynamics of multiple different
bacteria.

6.3 Qualitative Trajectory-Simulation

In chapter 5 we extended the method from Frank [119] developed for the
qualitative simulation of the running-state of bacteria locomotion to sim-
ulate tumbling-events. We could show a clear relation between flagella-
positioning on the cell-body and tumbling-dynamics. A larger distance be-
tween flagella has the effect of larger tumbling-angles Θt. In our analysis we
were restricted to the investigation of bi-flagellated bacteria. A larger number
of flagella leads to numerical problems, resulting in a crash of simulations.
These numerical problems arise from too-close approaches of flagella due
to the tumbling-event. To avoid these tumbling-events, the steric repulsion
between flagella-nodes has to be adapted. Furthermore we faced the prob-
lem that we were not able to induce polymorphic transformations of flagella
with a time-independent potential, as has been done in other publications as
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e.g. [171]. The main difference between our model and the model of [171] is
the simulation for the flagellum, which in our case consists of stiff segments,
whereas in case of [171] if consist of several springs, allowing the flagellum
to adapt its length. In future work, our model could be adapted similar to
[171], allowing to induce polymorphic-changes for a time-independent po-
tential, resulting in more realistic tumbling-events.
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