
Synthesizing Stream Control

A dissertation submitted towards the degree
Doctor of Natural Sciences (Dr. rer. nat.)

of the Faculty of Mathematics and Computer Science
of Saarland University

by
Felix Klein

Saarbrücken, 2020

Tag des Kolloquiums: 8. September 2020

Dekan: Prof. Dr. Thomas Schuster

Vorsitzender des Prüfungsausschuss: Prof. Dr. Sebastian Hack

Gutachter: Prof. Bernd Finkbeiner, Ph.D.
Prof. Orna Kupferman, Ph.D.
Prof. Ruzica Piskac, Ph.D.
Barbara Jobstmann, Ph.D.

akademischer Mitarbeiter: Dr. Rahul Gopinath

Abstract iii

Abstract
For the management of reactive systems, controllers must coordinate time,
data streams, and data transformations, all joint by the high level perspective
of their control flow. This control flow is required to drive the system correctly
and continuously, which turns the development into a challenge. The process
is error-prone, time consuming, unintuitive, and costly. An attractive alter-
native is to synthesize the system instead, where the developer only needs to
specify the desired behavior. The synthesis engine then automatically takes
care of all the technical details. However, while current algorithms for the
synthesis of reactive systems are well-suited to handle control, they fail on
complex data transformations due to the complexity of the comparably large
data space. Thus, to overcome the challenge of explicitly handling the data
we must separate data and control.

We introduce Temporal Stream Logic (TSL), a logic which exclusively ar-
gues about the control of the controller, while treating data and functional
transformations as interchangeable black-boxes. In TSL it is possible to spec-
ify control flow properties independently of the complexity of the handled
data. Furthermore, with TSL at hand a synthesis engine can check for realiz-
ability, even without a concrete implementation of the data transformations.
We present a modular development framework that first uses synthesis to
identify the high level control flow of a program. If successful, the created
control flow then is extended with concrete data transformations in order to
be compiled into a final executable.

Our results also show that the current synthesis approaches cannot re-
place existing manual development work flows immediately. During the de-
velopment of a reactive system, the developer still may use incomplete or
faulty specifications at first, that need the be refined after a subsequent in-
spection. In the worst case, constraints are contradictory or miss important
assumptions, which leads to unrealizable specifications. In both scenarios, the
developer needs additional feedback from the synthesis engine to debug errors
for finally improving the system specification. To this end, we explore two
further possible improvements. On the one hand, we consider output sensi-
tive synthesis metrics, which allow to synthesize simple and well structured
solutions that help the developer to understand and verify the underlying be-
havior quickly. On the other hand, we consider the extension of delay, whose
requirement is a frequent reason for unrealizability. With both methods at
hand, we resolve the aforementioned problems and therefore help the devel-
oper in the development phase with the effective creation of a safe and correct
reactive system.

iv Abstract

Zusammenfassung v

Zusammenfassung

Um reaktive Systeme zu regeln müssen Steuergeräte Zeit, Datenströme und
Datentransformationen koordinieren, die durch den übergeordneten Kontroll-
fluss zusammengefasst werden. Die Aufgabe des Kontrollflusses ist es das
System korrekt und dauerhaft zu betreiben. Die Entwicklung solcher Sys-
teme wird dadurch zu einer Herausforderung, denn der Prozess ist fehleran-
fällig, zeitraubend, unintuitiv und kostspielig. Eine attraktive Alternative ist
es stattdessen das System zu synthetisieren, wobei der Entwickler nur das
gewünschte Verhalten des Systems festlegt. Der Syntheseapparat kümmert
sich dann automatisch um alle technischen Details. Während aktuelle Algo-
rithmen für die Synthese von reaktiven Systemen erfolgreich mit dem Kontrol-
lanteil umgehen können, versagen sie jedoch, sobald komplexe Datentransfor-
mationen hinzukommen, aufgrund der Komplexität des vergleichsweise großen
Datenraums. Daten und Kontrolle müssen demnach getrennt behandelt wer-
den, um auch große Datenräumen effizient handhaben zu können.

Wir präsentieren Temporal Stream Logic (TSL), eine Logik die ausschließ-
lich die Kontrolle einer Steuerung betrachtet, wohingegen Daten und funk-
tionale Datentransformationen als austauschbare Blackboxen gehandhabt wer-
den. In TSL ist es möglich Kontrollflusseigenschaften unabhängig von der
Komplexität der zugrunde liegenden Daten zu beschreiben. Des Weiteren
kann ein auf TSL beruhender Syntheseapparat die Realisierbarkeit einer Spez-
ifikation prüfen, selbst ohne die konkreten Implementierungen der Datentrans-
formationen zu kennen. Wir präsentieren ein modulares Grundgerüst für die
Entwicklung. Es verwendet zunächst den Syntheseapparat um den übergeord-
neten Kontrollfluss zu erzeugen. Ist dies erfolgreich, so wird der resultierende
Kontrollfluss um die konkreten Implementierungen der Datentransformatio-
nen erweitert und anschließend zu einer ausführbare Anwendung kompiliert.

Wir zeigen auch auf, dass bisherige Syntheseverfahren bereits existierende
manuelle Entwicklungsprozesse noch nicht instantan ersetzen können. Im
Verlauf der Entwicklung ist es auch weiterhin möglich, dass der Entwick-
ler zunächst unvollständige oder fehlerhafte Spezifikationen erstellt, welche
dann erst nach genauerer Betrachtung des synthetisierten Systems weiter
verbessert werden können. Im schlimmsten Fall sind Anforderungen inkon-
sistent oder wichtige Annahmen über das Verhalten fehlen, was zu unreal-
isierbaren Spezifikationen führt. In beiden Fällen benötigt der Entwickler
zusätzliche Rückmeldungen vom Syntheseapparat, um Fehler zu identifizieren
und die Spezifikation schlussendlich zu verbessern. In diesem Zusammen-
hang untersuchen wir zwei mögliche Erweiterungen. Zum einen betrachten
wir ausgabeabhängige Metriken, die es dem Entwickler erlauben einfache

vi Zusammenfassung

und wohlstrukturierte Lösungen zu synthetisieren die verständlich sind und
deren Verhalten einfach zu verifizieren ist. Zum anderen betrachten wir die
Erweiterung um Verzögerungen, welche eine der Hauptursachen für Unreal-
isierbarkeit darstellen. Mit beiden Methoden beheben wir die jeweils zuvor
genannten Probleme und helfen damit dem Entwickler während der Entwick-
lungsphase auch wirklich das reaktive System zu kreieren, dass er sich auch
tatsächlich vorstellt.

Acknowledgements vii

Acknowledgements
Over the past six years I met many people who shared their time working with
me and supported me in writing this thesis in some or another way. Even if
not especially listed here, I want to thank all of them.

Special thanks go to my supervisor Bernd Finkbeiner, who motivated me
to work on all the fascinating topics, offered me great teaching experiences,
always helped me with his outstanding expertise, and offered me a lot of
different opportunities to broaden my perspectives.

Many thanks also go to Martin Zimmermann and Swen Jacobs who sup-
ported me during my first years with their expertise and gave me a great start
for diving into many important topics.

I thank Mark Santolucito who always supported me during the lean times
of our work, gave me a great experience with FRP, and tought me all the
details about the American culture.

I thank Ruzica Piskac for introducing me to mark Mark and for teaching
me all the social skills that are needed to survive in computer science.

I thank all members of the Reactive Systems Group for our joint talks,
cakes, and sharing experiences. Especially, I thank Leander Tentrup, Michael
Gerke, and Norine Coenen for tolerating me as their office mate. I thank
Christa Schäfer for always helping me with all the administrative problems,
I encountered regularly.

Finally, I thank my family for supporting me during all the time of my
studies. However, the most thanks go to my significant other: Melanie, who
supported me with all the non-scientific problems, helped me with managing
my live and always motivated me to continue this work until the end.

viii Contents

Contents

I Introduction 1
1 Temporal Stream Logic . 10
2 Output Sensitive Synthesis . 15
3 Delay Games . 19
4 The Reader’s Guide to the Thesis 23

II Preliminaries 29
1 Reactive Systems . 30
2 Infinite Words . 31
3 Infinite Trees . 31
4 Infinite Games . 32
5 Implementations . 37
6 Linear Temporal Logic . 38
7 Universal co-Büchi Automata 42

III Temporal Stream Logic 47
1 The Logic . 47

1.1 Architecture . 48
1.2 Updates, Function, and Predicate Terms 48
1.3 Inputs, Outputs, and Computations 49
1.4 Syntax . 50
1.5 Semantics . 51
1.6 Realizability . 52

2 Specification Examples . 52
2.1 Specifying a Kitchen Timer 53
2.2 Specifying a Music Player 55

3 Decidability . 57
4 Fragments . 60
5 Temporal Stream Games . 67

5.1 Determinacy . 68
5.2 Branching Restrictions 70
5.3 Purity . 72
5.4 Memory Requirements 75

6 Synthesis . 84
6.1 Initial Purity Approximation 85

6.2 Refining the Approximation 88
6.3 Synthesizing Control Flow 91

7 Functional Reactive Programming 96
7.1 Paradigm . 96
7.2 Time as a Type . 98
7.3 Design Patterns . 99
7.4 Code Generation . 106

8 Experimental Results . 109
9 Discussion . 112

IV Output Sensitive Synthesis 115
1 Bounded Synthesis . 116

1.1 Constraint based Synthesis 116
1.2 SAT Encoding . 118

2 Bounded Cycle Synthesis . 120
2.1 Cycle Bounds . 122
2.2 Counting Cycles . 128
2.3 SAT Encoding . 129

3 Compact Implementation Models 139
3.1 Bounded Circuits . 139
3.2 Bounded Register Machines 148
3.3 Bounded Programs . 154

4 Experimental Results . 164
5 Discussion . 184

V Delay Games 185
5 Games with Delay . 188
6 Computational Complexity . 191

6.1 Parity Games . 191
6.2 Safety Games . 200
6.3 Reachability Games . 203

7 Lower Bounds on the Delay . 206
8 LTL Synthesis with Delay . 210
9 Discussion . 218

VI Conclusions 221

ix

x Contents

Chapter I

Introduction

The number of computational devices surrounding us today is exploding and
has revolutionized the regular interaction with our everyday environment.
While these devices allow us to precisely manage different tasks, most of them
are already out of scope to any human assistant. Their importance covers a
wide range of applications, such as mobile apps [133], embedded devices [61],
robots [75], hardware circuits [15], GUIs [33], and interactive multimedia [126].
Especially safety critical systems, such as vehicles, aircrafts or large industrial
plants heavily rely on a safe and secure control [125, 82], but also common
devices, like mobile phones, are required to work reliable and continuously
over long term periods [133]. As a consequence, the correct and secure design
of these systems has turned into one of the major challenges for humanity in
the 21th century.

Regarding the current development, more and more of these devices are
of a reactive nature. For their permanent operation, it does not suffice any
longer, if they only take a single input, which then is turned into a single
output. Instead, they need to continuously interact with their environment
to serve users at any time and under all possible circumstances, yielding an
infinitely ongoing input-to-output behavior. Unfortunately, especially the de-
velopment of these so called reactive systems turns out to be much harder
than creating their classical terminating counterparts [58]. The combination
of repetitive tasks, irregular user request, and different “modus operandi”
induces a vast rise in complexity, which cannot be handled by traditional
algorithms and approaches.

While research on classical algorithmic transformations has revealed many
strong insights leading to a fundamental understanding of the underlying
problems, the design of reactive systems still challenges people and companies
all around the world [58, 87, 125]. For mastering these challenges, we need bet-
ter fundamental insights that enable the prevention the deceitful traps along
the development process, while at the same time being expressive enough to
cover all of the users’ requirements. To this end, developers need new tools
that utilize these models effectively and provide insights up to any required
amount of precision.

2 Chapter I. Introduction

One of the first major advances towards this desire, is the principle of
verification. Already the roman politician and lawyer Cicero stated:

“Cuiusvis hominis est errare, nullius nisi insipientis in errore perseverare.”

Anyone can err, but only the fool persists in his fault.

Cicero teaches us that as long as a human developer is involved we always have
to expect that there will be errors that are made. Verification is a mechanism
to countervail this behavior by providing methods and tools to identify and
understand these errors by revealing them to the user.

Under the scope of reactive systems, the general methodology behind ver-
ification can be summarized as follows: Given an existing implementation of
a reactive system, we first extract a simplified model that (ideally) behaves
exactly the same as the original, but abstracts from unnecessary technical
details that do not influence the generated behavior. At the same time, all
desired properties of the input/output behavior are formalized using a suitable
specification formalism, such as a temporal logic. Applying the established
theoretical machinery, we then verify that every possible execution following
an arbitrary sequence of uncontrollable inputs from the environment satisfies
the behavioral specification.

A rough overview over the verification process is depicted in Figure 1.
First, a simplified model is abstracted from the manually created system im-
plementation, which then is transformed into an automaton. On the other
hand, the specification is translated to an automaton as well, which then is
complemented to cover all violating behavior. Both steps may involve inter-
mediate translations via other automata models or specification logics, de-
pending on the exact specification formalism used. Finally, the intersection
between both automata is built. If the language of the resulting cross-product
automaton is empty, then there is no path violating the property and, thus,
the property is satisfied. If the language is non-empty, the existing member
provides a counter-example for the violation of the property. A slight modi-
fication of the verification process is also known as model checking, where we
elide the task of first creating a system abstraction and instead directly start
from the abstracted system model.

If verification succeeds, then it is formally proven that the implementa-
tion satisfies the formalized requirement and, thus, is error free. Otherwise,
an input sequence is revealed that violates one or multiple of the given re-
quirements, which is assumed to be violated as well, when executed on the
original implementation. If this is case, then the verification tool has found
a bug and the developers need to revise the created implementation. If the
bug cannot occur in reality, then their is a mismatch with the formalized

3

Specification System
Implementation

Abstract
System ModelAutomaton

AutomatonComplement:
Automaton

Intersection:
Automaton

3
verified

7
counter-example

empty non-empty

Figure 1: The verification process.

requirements and the underlying system model demanding a refinement of
the system abstraction. Verification already has proven it’s success in in-
dustry [18, 24, 54, 60] and has been explored extensively, both in terms of
theory [8, 29, 37, 38, 86, 116, 119] and practice with respect to scientific
tools [10, 55, 59, 63].

Verification gives us a mighty tool to encounter development failures. How-
ever, despite its obvious advantages, it also introduces an additional burden.
Instead of only manually creating the requested system by hand, developers
now also are required to create a specification, using a suitable formalism to be
understood by a machine and a matching system abstraction. Both steps con-
sume additional time and produce additional costs, which may not countervail
simpler methods, such as testing or manual inspection. Likewise, verification
does not free us from the task of creating the system under consideration in
the first place. We still need programmers and engineers for creating it. Cor-
respondingly, technical issues and other cumbersome considerations remain
to be resolved through manual interaction in the end.

Motivated by these drawbacks, there are some more extensive thoughts:
May it be possible to automatically create the system under consideration?
Just from the given specification?

4 Chapter I. Introduction

Specification

Automaton

Infinite Game

Implementation

realizable 3
system-strategy

unrealizable 7
counter-strategy

System Player wins Environment Player wins

Figure 2: Overview over the synthesis process.

The question is known as the synthesis problem and was first formulated for
reactive systems by Alonzo Church [48] in 1963. Synthesis elides the tedious
task of manually creating a system by hand and instead asks for automatically
creating it from a behavioral specification. Similar to the process of verifica-
tion, as depicted in Figure 1, synthesis first translates the specification into
an automaton. However, for synthesis, the inputs from the environment are
not determined by a single property that needs to be violated. Instead, the
synthesized system must satisfy the specification against every possible input
behavior. Correspondingly, the problem does not reduce to an emptyness-
check of an automaton, but leads to an infinite game, played between the
system and its environment. With respect to this game, the specification
then is realizable if and only if the system player wins against every possible
behavior of the environment. The final system implementation is then given
by the winning strategy of the system player in this game. An overview of
the synthesis process is illustrated in Figure 2.

While the synthesis approach itself sounds promising, unsurprisingly, it
also comes at a price: in general, the synthesis of reactive systems is compu-
tationally much harder than their verification. In a nutshell, it is required to

5

SECMIN
STOP
START

RESET

SECMIN

display

seconds

minutes

start/stop
timer

increase
seconds

increase minutes

Figure 3: A kitchen timer, whose real implementation is depicted on the left,
while it’s main interfaces are explained on the right.

unfold the strategy tree along every possible sequence of inputs, resulting in a
much higher complexity of the synthesis algorithm. Synthesis mostly received
attention from the theoretical perspective for a long time. However, recent
improvements of computational devices and new algorithmic solutions have
revived the practical relevance of synthesis again.

Many achievements in the area of verification can be re-utilized for synthe-
sis, like for example the extensive automata theoretical backend. Therefore, it
is not very astonishing that recent advances on the underlying automata the-
ory, originally developed for the purpose of verification, also can be leveraged
for synthesis. What comes at a surprise, however, is that there still are no
big success stories, which show that synthesis approaches are ready for real-
world development as well. While there are some success stories, such as the
synthesis of the AMBA AHB bus arbiter, an open industrial standard for the
on-chip communication and management of functional blocks in system-on-a-
chip (SoC) designs or the IBM generalized buffer [14], they still are limited to
small hardware examples that cannot compete with complex system designs,
as given by most the applications considered in practice today.

This is especially surprising, since for verification such success stories do
exist [18, 30, 115, 135, 78], raising the question: Why is this the case? Es-
pecially, as both techniques utilize the same automata theoretic backends. In
order to find an answer to this question consider the following experiment,
which reveals an important, but missing principle for the practical applica-
tion of synthesis. We consider a compact reactive application that everybody
already has been used before. It is a simple kitchen timer device, which allows

6 Chapter I. Introduction

to set up a timer that keeps track of time-dependent processes in the kitchen.
It consists of three buttons for setting a time and starting or stopping a timer,
a screen to display the remaining time, and a buzzer to notify the user if the
time is over. Figure 3 shows a real-world implementation of such a device and
it’s components, together with a short overview of its functionality.

Our goal will be to synthesize an implementation for the device from a
behavior specification only, instead of creating it manually by hand. If it is
indeed legal to assume that current synthesis frameworks can handle such an
application, then the corresponding design and synthesis process should be
easy. Therefore, the behavior of the timer is fixed according to the following
list of requirements, where we used the real-world application of Figure 3
for obtaining a reference behavior. We do not go into detail for all of the
expressed properties. Nevertheless, we still provide the complete list to give
an intuition of to process of creating reactive system specifications.

1. Whenever the MIN and SEC buttons are pressed simultaneously, the timer
is reset, meaning the time is set to zero and the system stays idle until
the next button gets pressed.

2. If only the SEC button is pressed and the timer is not currently counting
up or down, then the currently set time is increased by one second.

3. If only the MIN button is pressed and the timer is not currently counting
up or down, then the currently set time is increased by one minute.

4. As long as no time greater than zero has been set and the system is idle:
if START/STOP gets pressed and the timer is not already counting up or
down, then it starts counting up until it is stopped by any button pressed.

5. If a time has been set and the START/STOP button is pressed while the
timer is not currently counting up or down, then the timer starts count-
ing down until it is stopped by any button pressed.

6. The timer can only be started by pressing start.

7. The timer can always be stopped by pressing any button while counting
up or down.

8. It is possible to start the timer and to set some time simultaneously.

9. The buzzer beeps on any button press and after the counter reaches zero
while counting down.

10. The display always shows the time currently set.

7

First, we collect the inputs and outputs of the system, as given by its phys-
ical interface. The application consists of three binary inputs, one for each
button, and 29 binary outputs, one for the buzzer, controlled via a square
wave of varying frequency, and 28 to display the four digits, each consisting
of a seven-segment display. In order to bring the aforementioned informal
requirements into a machine readable format, we also need a formalism for
specifying the input/output behavior. The most popular formalism for such
tasks is Linear-time Temporal Logic (LTL) [116]. The logic combines Boolean
and temporal reasoning, which is everything that we need for specifying the
aforementioned properties. In LTL, inputs and output of the system are han-
dled as atomic proposition, i.e., as named literals that evaluate at each point
in time either to true or false. LTL is also used in the annual synthesis com-
petition syntcomp [70, 68, 71]. Hence, it not only is supported by many
existing and efficient synthesis tools [105, 41], but also represents an accepted
standard for the evaluation of our considerations, as selected by the research
community. With LTL at hand, we are ready to specify the first property:

Whenever the MIN and SEC buttons are pressed simultaneously the timer
is reset, meaning the time is set to zero and the system stays idle until

the next button gets pressed.

In LTL the property of Min and SEC being pressed simultaneously is expressed
by imin ∧ isec, which states that the input atomic propositions imin and isec
must both evaluate to true at the current point in time. The reset to zero is
observed at the output by every digit displaying a zero. Let osd be the output
atomic propositions for each digit 0 ≤ d < 4 and segment element 0 ≤ s < 7.
Then the property of all digits displaying zero is specified by:

ϕzero :=
∧

0≤d<4

(
¬o3

d ∧
∧

0≤s<7
s6=3

osd

)

Furthermore, the system being idle is specified by stating that the output
does not change from the current to the next execution in time:

ϕidle :=
∧

0≤d<4
0≤s<7

(
osd ↔ osd

)

The temporal -operator allows us to move one time step into the future.
The final specification of the first property then is given by:

8 Chapter I. Introduction

(
imin ∧ isec → ϕzero ∧

(∨
b∈{min, sec, stasto}

(¬ib ∧ ib)
)
Rϕidle

)
The temporal operator denotes that the respective sub-property must be
satisfied in every time step, while the temporal operator R states that the
sub-property ϕidle must be satisfied as long as it is not released by a button
being pressed, which might potentially never be the case. Note that the
“gets pressed ” property is formalized by a button input changing from the not
being pressed state to being pressed. This completes the specification of the
first property. We conclude that it is indeed possible to specify the stated
behavior with LTL and are motivated to continue with the second property:

If only the SEC button is pressed and the timer is not currently counting
up or down, then the currently set time is increased by one second.

We immediately recognize that the expressed behavior covers multiple situ-
ations to be reflected within the specification. First, consider that the one
second increase produces many different displayed values depending on the
currently displayed time. In particular, it implies that we need to consider
every possible of these situations using a big case distinction, since LTL can
only relate Boolean inputs with Boolean outputs. At this point, we leave it
to the reader to calculate the exact number of these cases and to write them
all down. We only note to take care that also all cases are covered, for which
the minutes need to be increased as well due to an overflow.

The mindful reader, however, already has recognized that this turns out
to be tedious task, which does not even countervail the work to be spent
into a manual implementation. However, even worse, even if we are patient
and manage to finish the task eventually, then we probably still will not get
a solution, since the utilized synthesis tool most likely cannot handle the
Boolean complexity that we have introduced with the encoding.

Exactly this restriction will face us regularly, introducing a fundamental
challenge for current synthesis approaches. Being restricted to the Boolean
data domain, we always need to break down complex data to this level at
first. The result is an additional overhead for both: the developer, required
to break down complex data to the Boolean level, and the synthesis tool,
required to capture the Boolean representation to bring it back into context
of the overall behavior. This clearly introduces unnecessary overhead, which
we should try to avoid instead.

But how to circumvent the problem? We previously stated that verifica-
tion is successfully used in practice. Hence, isn’t there any existing method

9

already used in verification that is able to help us with synthesis as well? If we
only need to verify the second property against an existing implementation,
then we probably would formalize it differently:

¬isec ∧ isec ∧ ¬
(
¬imin ∧ imin ∨ ¬istasto ∧ istartstop

)
∧ ¬ocountupdown

→
(
time t+1 ≡ time t + 1

)
This formalization first checks that only the SEC button is pressed, using a
simple Boolean combination over the input buttons. Then, it checks whether
the counter is currently counting up or down. To this end, we assume that all
regions of the verified code are labeled through an additional output, high-
lighting whether the counter is currently counting up/down or not. Adding
such an additional output is easy for the programmer or, depending on the
programming framework, can even be done automatically. Furthermore, we
need to verify whether the time was increased by a second, where we use the
same trick: we label all regions of the code, where time gets increased by a
second, and then provide this labeling as an additional output. Thereafter, we
reduced the verification of a huge number of possible combinations to checking
only a few additionally produced outputs, and, thus, avoid the corresponding
state space explosion problem. We already illustrated this process in Figure 1
through the initial reduction from the actual system implementation to an
abstract model that only covers the relevant information.

Hence, why do we not apply the same idea for synthesis too? The reason
is simple. We do not have an existing implementation for marking the re-
gions, since creating this implementation is the synthesis task to be executed
in the first place. Can this circumstance be resolved in order to synthesize
our kitchen timer? Or does synthesis indeed force us to encode all possible
combinations of increasing time by a second in the Boolean data domain? Is
this Boolean overhead an unavoidable burden, which synthesis must handle
in order to automatically create an implementation from a specification? Or
does there exist a better solution?

In this thesis, we show that there indeed is a counterpart to the intermediate
abstraction step, as leveraged for verification, that can be utilized for syn-
thesis as well. Remember that for verification we rely on the circumstance
that there exists an additional abstraction that hides unnecessary details from
the specification, while for synthesis, such an abstraction does not exist. For
resolving this mismatch, our solution is to use a universally quantified ab-
straction. Hence, instead of relying on a specific abstraction that is provided
by the user, we utilize a symbolic representation such that the synthesized
implementation must be correct for any possible matching instantiation.

10 Chapter I. Introduction

1 Temporal Stream Logic

Our solution is Temporal Stream Logic (TSL), a specification language that
leverages a clean separation of the implementation’s search space into data
and control. This provides many advantages. It allows developers to focus on
the reactive control, while complex data and their transformations are hidden
behind the universal abstraction. A similar concept is also used in program-
ming languages, where programmers hide the details of a complex routine
behind a procedure or a function call. Therefore, it is not necessary to con-
sider all of the inner workings of every written procedure in order to assemble
the final program, but only to have an understanding of every procedure’s
effect or their behavior. The same principle is utilized for synthesis with TSL.

The immediate advantage of a universal abstraction is that developers do
not need to have a real implementation of the data entities and their transfor-
mations at hand, since TSL synthesis guarantees a correct behavior, indepen-
dently of the finally used implementations. This is especially important for
initial design phases, where developers need to evaluate different concepts and
interaction possibilities, even before they want to consider every detail of how
data structures and the conversations between them need to be represented.

TSL uses the same temporal and Boolean operators as LTL, but atomic
propositions are exchanged with a more expressive formalism. In TSL, inputs
and outputs are data streams of arbitrary type. To argue about values of
input streams, universally quantified pure predicates are used. For example,
the predicate p i checks for the property p on the input stream i. The
predicates reduce properties of the data to Boolean decisions, used to guide
the control flow of the reactive application. However, for the production of
outputs TSL relies on a different approach. The logic not immediately argues
about values or their properties, as they are produced by the system, but
instead about how and from which sources they are produced. This is in
contrast to LTL, where the output values themselves (and, thus, also their
properties) are related to the inputs. TSL instead uses the notion of updates,
like [o� f i], expressing that a pure function f is applied to an input i
and the result is piped to the output o. In combination with temporal and
Boolean operators TSL therefore is expressive enough to specify the control
behavior of reactive systems.

Another feature of TSL is that it leverages the principle of purity. Purity
ensures that values, as returned by functions and predicates, only depend
on the corresponding argument inputs, e.g., if a function f is applied to the
input i and the result is once passed to o1 ([o1 � f i]) and once to o2

([o2 � f i]), then both resulting values, that are passed to o1 and o2, are

1. Temporal Stream Logic 11

the same. In other words, a function f is not allowed to maintain internal state
and must be side effect free. Purity is a powerful principle, with its origins
in functional programming languages, which allows to consider function and
predicate implementations by their equivalent mathematical counterparts. We
use purity in TSL to tame the expressive power of the universal abstraction.
If a function or predicate would not be required to be pure, then it could
produce different values with every possible application, even if the inputs
stay the same, eliminating the idea of using different symbolic representations
for different functions and predicates at all. Instead, any application could
produce any result at every possible point in time.

Utilizing purity, however, comes at a price: the implicitly induced repeata-
bility of application results makes the synthesis problem undecidable. This is
in contrast to LTL, where the synthesis problem is 2ExpTime-complete [117].
Hence, we trade theoretical decidability against practical scalability, which is
an acceptable trade-off with respect to the advantage of being able to synthe-
size realistic systems that finally can be instantiated to practical applications.

To deal with the undecidability result, we present a method for synthesiz-
ing TSL that combines Bounded Synthesis [45] with counterexample-guided
abstraction refinement (CEGAR) [31]. The method approximates the TSL
synthesis problem via LTL queries that allow the environment player to relax
the general purity assumption. Our approximation is sound, in the sense that
if the weaker LTL specification is realizable, then the encoded TSL specifica-
tion is realizable as well. However, the reduction is not complete. Thus, it
may be that LTL synthesis returns an unrealizability result, even if the spec-
ification is realizable. An overview of the respective design process is given
in Figure 4. The approximation allows for inconsistencies, since loosing the
semantic meaning of predicates and functions in TSL enables the environ-
ment player to evaluate the same predicate differently on the same system
input when evaluated at different points in time. To fix this, we first analyze
the returned counter-strategy in case of unrealizability, for whether it violates
purity in order to win in the created LTL approximation. In this case, we
call the counter strategy spurious. The respective analysis requires an up-
per bound n on the size of the counter strategy, which is provided using the
bounded synthesis approach. Finally, to countervail the spurious behavior, we
refine the approximated LTL specification by adding additional assumptions
that forbid the spurious behavior and re-execute the LTL synthesis tool af-
terwards. The CEGAR loop is continued until either a non-spurious counter
strategy is found or the specification gets realizable.

If TSL synthesis is successful, then a control flow model (CFM) is returned
that implements the control of the specified reactive system. By utilizing LTL

12 Chapter I. Introduction

x

TSL

CFM

Synthesis

LTL Circuit

n

FRP Translator

Project Context

Compiler

LTL
Synthesis Tool

Counter
StrategyRefinement unrealizable

Design Pattern:
Arrow | Applicative

FRP

EXE
Function & Predicate

Implementations

FRP Library

3

non-spuriousspurious

7

Figure 4: TSL synthesis uses a modular design. Each step takes input from
the previous step as well as interchangeable modules (dashed boxes).

synthesis as a backend, the control part of the program is still returned as a
Boolean structure, such as a circuit or Mealy machine. This Boolean structure
then selects the correct function transformations at the right points in time
according to the specification. The CFM, however, does not instantiate the
symbolic representation of functions and predicates with concrete implemen-
tations yet. Instead, they are provided by the developer afterwards, using
implementations that are coded in their preferred functional programming
languages or using external libraries and API calls. In order to implement
a CFM as part of a larger functional programming context we utilize Func-
tional Reactive Programming (FRP). FRP is a programming paradigm that
uses stream processing components, which are connected as part of a con-
trol flow network. FRP provides the ideal framework for describing programs
that handle infinite data streams of arbitrary and polymorphic type. There
are different design patterns used to realize FRP, such as Applicative FRP,
Monadic FRP, and Arrowized FRP. Our synthesis engine is compatible with
all of them, but depending on the concrete design pattern used, different code
needs to be generated from the CFM. Hence, after synthesis, the designer
selects his or her favorite FRP library, the corresponding design pattern and
implementations for all function and predicate terms. Our framework then
puts everything together and produces code that can be compiled to an exe-
cutable with the corresponding FRP compiler.

1. Temporal Stream Logic 13

1 COUNTUP = [time <- countup time dt];
2 COUNTDOWN = [time <- countdown time dt];
3 INCMIN = [time <- incMinutes time];
4 INCSEC = [time <- incSeconds time];
5 IDLE = [time <- time];
6
7 ZERO npxs= eq time zero();
8 RESET = Min && Sec ;
9 COUNTING = COUNTUP || COUNTDOWN ;

10 ANYKEY = press Min || press Sec || press StartStop ;
11 START = press StartStop && ! press Min
12 && ! press Sec ;
13 STARTANDMIN = press StartStop && press Min
14 && X !Sec && X X !Sec ;
15 STARTANDSEC = press StartStop && press Sec
16 && X !Min && X X !Min ;
17
18 xor x y = ! (x <-> y) ;
19 press x = !x && X x ;
20 tillAnyInput x = (x && ! ANYKEY) W (RESET || x && ANYKEY) ;
21
22 initially guarantee {
23 ! COUNTING && (X COUNTING -> START) ;
24 ! INCSEC && ! INCMIN ;
25 [beep <- false];
26 }
27
28 always guarantee {
29 RESET <-> [time <- zero()];
30
31 ! COUNTING && press Sec && X !Min <-> X INCSEC ;
32
33 ! COUNTING && press Min && X !Sec <-> X INCMIN ;
34
35 ZERO -> ((IDLE && START -> X tillAnyInput COUNTUP)
36 W (INCMIN || INCSEC)) ;
37
38 INCMIN || INCSEC
39 -> ((! COUNTING && START -> X tillAnyInput COUNTDOWN) W X ZERO) ;
40
41 X ! COUNTING && X X COUNTING
42 -> X START || STARTANDMIN || STARTANDSEC ;
43
44 COUNTING && ANYKEY && X ! RESET -> X tillAnyInput IDLE ;
45
46 ! COUNTING && (STARTANDMIN || STARTANDSEC)
47 -> X X tillAnyInput COUNTDOWN ;
48
49 X (COUNTDOWN && ZERO) || ANYKEY <-> X [beep <- true];
50 xor [beep <- true] [beep <- false];
51
52 [dsp <- display time];
53 }

! (¬) negation && (∧) conjunction || (∨) disjunction X () next
-> (→) implication <-> (↔) equivalence W (W) weak until

Figure 5: The full kitchen timer specification.

14 Chapter I. Introduction

Figure 6: Timer applications: the left picture shows the desktop application
built with the Yampa FRP library, the center picture shows a web version built
with the Threepenny-GUI library, and the right picture shows the hardware
version built with the functional hardware description language ClaSH. All
applications have been synthesized from the same specification of Figure 5.

Our experiments on the design and synthesis of reactive systems from
TSL specifications reveal extremely positive results. We successfully synthe-
sized systems like the kitchen timer, a music player app and a controller for
autonomous vehicles in the Open Race Car Simulator (TORCS) [44]. In gen-
eral, the systems we designed with TSL range from classic reactive synthesis
problems, like escalator control, through programming exercises from func-
tional reactive programming, to novel case studies like an interactive arcade
space shooter implemented on an FPGA [50]. In contrast to manually writ-
ten programs, our specifications only cover the control flow behavior, which is
easy to read and easy to extend. In contrast to classical specification logics,
the specifications are close to the natural language descriptions, easy to un-
derstand, and do not need to encode complex data transformations by using
unreadable Boolean encodings.

These propositions are underlined by the full specification of the kitchen
timer, given in our textual TSL specification format, in Figure 5. The kitchen
timer’s control is directly synthesized from this textual representation, result-
ing in a satisfying CFM. By utilizing FRP, we can instantiate the created
CFM using different FRP libraries that embed the application in different
environments. For example, we created a desktop application, using the Ar-
rowized FRP library Yampa, a web application, using the Monadic FRP library
Threepenny-GUI, and a hardware version, using the Applicative hardware de-
scription language ClaSH. The desktop version is a standalone application to
be run on your personal computer, while the web version can be accessed over
the network using a browser. The hardware version, on the other hand, is im-
plemented on an FPGA that is connected to a physical display, real hardware
buttons and a buzzer. The resulting applications are depicted in Figure 6.

2. Output Sensitive Synthesis 15

TSL synthesis enables the successful creation of reactive applications from
temporal logic specifications. The logic leverages a clean separation between
data and control such that the synthesis engine can focus on the control, while
data instances and their transformations are postponed to be concertized
afterwards. A full discussion of the semantics of TSL, the CEGAR based
synthesis procedure, and the connection to FRP and real world applications
are presented in Chapter III.

2 Output Sensitive Synthesis

With the ability to separate the representation of data from the actual control,
we made a big step forward towards enabling synthesis as a design method
for the creation of reactive systems. Towards our goal of reaching a fully
synthesis enabled work flow there are, however, still some more obstacles
to overcome. Instead of programming a system by hand, developers now
have to create specifications. Although they offer obvious advantages against
manually created programs, they also introduce some new challenges. One
major challenge is the transition from a deterministic controller description,
as implicitly induced by a program, to a broader solution space, of which all
instances satisfy the specification. While in theory, the synthesizer can freely
choose of any of theses solutions, in practice system designers still may want
the possibility to choose the solution that best fits their needs. To this end, we
need more than just a single push button technology. Instead we need output
sensitive methods that allow to impose additional quality requirements on the
result, thus, enabling developers to choose among all of the possible satisfying
solutions.

One of the most well known output sensitive methods is Bounded Syn-
thesis [45], where the solution - usually represented as a Mealy machine - is
bounded in the number of Mealy states. Hence, beside the specification itself,
the developer additionally provides a positive integer bound that limits the
overall search space. Therefore, the developer now has an additional metric
that for example allows to favor smaller solutions against larger ones. Nev-
ertheless, just restricting the size of the final solution may not be enough. A
Mealy machine - from a simple perspective being nothing else than an edge
labeled, directed graph - still allows for more degrees of freedom. For exam-
ple, in the way of how the edges are connected to vertices. Even with the
number of states of the solution being fixed, the synthesized result still may
be unnecessary complex, and, thus, should be avoided to be chosen by the
developer.

16 Chapter I. Introduction

1

3

2

5

4

7

6

1

3

2

5

4

7

6

24 2526

20

21

2223

1

3

2

5

4

7

6

9

8

11

10

13

12

1514

17

16

19

18

Figure 7: Three implementations of the TBURST4 component of the AMBA
bus controller. Standard synthesis with Acacia+ produces the state graph on
the left with 14 states and 61 cycles. Bounded synthesis produces the graph
in the middle with 7 states and 19 cycles. The graph on the right, produced
by bounded cycle synthesis, has 7 states and 7 cycles, which is the minimum.

For an example consider the three Mealy machines depicted in Figure 7.
All of them have been synthesized from the same specification, describing the
tburst4 component of the AMBA AHB bus arbiter [14]. The first solution
on the left results from a standard game based synthesis approach, as im-
plemented by the Acacia+ tool [17]. The second solution in the middle uses
Bounded Synthesis, where the bound has been chosen such that it matches
the minimal number of required states of any realizable solution. Finally, the
solution on the right also matches a bound on the number of simple cycles
that are part of the solution graph. A simple cycle is a path through the graph
that starts and ends in the same vertex and visits every vertex in between at
most once. Such a cycle can be seen as a single instance of the observable
infinite behavior, where in general, the overall behavior is composed of switch-
ing between multiple such instances. Our intuition tells us, that if a solution
contains less simple cycles, then it also has a simpler structure with respect
to the solution graph. It turns out that this intuition is indeed confirmed by
the theory. Our analysis shows that the number of simple cycles of a solution
can be a highly explosive factor. Hence, bounding it to a minimum leads to
much simpler solutions. Regarding the example of Figure 7 this simplicity is
clearly visible. In most cases, a designer would prefer choosing the leftmost
solution in favor of the two other ones.

Our algorithm for bounding the number of cycles is based on Tiernan’s
cycle counting algorithm for directed graphs [138]. The algorithm executes
an exhaustive search, while keeping track of the vertices that already have

2. Output Sensitive Synthesis 17

1 2 3

1

2

3

2

3

3

Figure 8: The witness trees for an example state graph with three simple
cycles. The state graph is shown on the left. The first graph on the right
proves that vertex 1 appears on two cycles (via vertex 2 and vertices 2 and 3).
The second graph proves that vertex 2 is on a cycle not containing vertex 1
(via vertex 3) and that there are no more cycles through vertex 3.

been visited. To this end, the graph is unfolded to a tree from some arbitrary
root vertex v such that no vertices repeat on every branch. The number of
vertices in the tree, leading back to v, then is equal to the number of simple
cycles containing v. Next, the vertex v gets removed from the graph and the
algorithm recursively determines the number of cycles that do not contain v
on the remaining sub-graph. The overall number of cycles is equal to the sum
of both results. The algorithm is linear in the number of cycles of the graph.

Our synthesis procedure combines this algorithm with Bounded Synthesis
by using a SAT-solver to simultaneously constrain the number of vertices
of the encoded Mealy machine, as well as the number of simple cycles. To
this end, we first guess three witnesses: the realizing Mealy machine, their
cross-product with the specification automaton, and a ranking function that
bounds the number of rejecting states visited by the cross-product. These
witnesses and their encoding are taken according to the standard bounded
synthesis [45] approach. On the other hand, we guess a forest of trees that
covers the execution of Tiernan’s algorithm and link it to the graph shape
that is implied by the Mealy machine. Putting a bound on the number of
edges in the witness trees that lead back to the corresponding roots finally
completes our encoding.

An example for the guessed witnesses of the bounded cycle encoding is
depicted in Figure 8. The left graph depicts the shape of the state graph of a
given Mealy machine, while the right graphs represent the resulting witness
trees. The first graph witnesses that vertex 1 appears on two cycles (via vertex
2 and vertices 2 and 3). Similarly, the second graph witnesses that vertex 2
is on one more cycle (via vertex 3). Overall, there are no more than three
simple cycles in the graph, as witnessed by the last cycle-free witness tree.

18 Chapter I. Introduction

Our experiments reveal that Bounded Cycle Synthesis performs similar
in terms of computational overhead as the standard Bounded Synthesis ap-
proach. The overhead of imposing an additional bound on the number of cy-
cles is measured to increase just linear with the given bound. While Bounded
Cycle Synthesis clearly cannot handle as many specifications as game based
synthesis techniques, our results still show that the structural quality of our
solutions is much better. In that sense, our approach is of interest for the syn-
thesis based development of reactive systems, because it enables the synthesis
of optimized solutions for decomposed or partial specifications that can be
joint to an overall satisfying implementation after they have been synthesized.

Output sensitive synthesis methods extensively explore the solution space of
correct solutions, while at the same time introducing selectable quality met-
rics to the process. Such flexibility is especially desired for the development
of reactive applications, since developers acquire the possibility to pick those
solutions that best fit their needs [87]. To this end, different strategy rep-
resentation models have been considered [19]. Indeed, there is no limitation
towards rudimentary models, like Mealy machines or basic graphs. More
compact representations can be utilized as well. In practice, developers prefer
models that can be executed efficiently on the target execution platforms and
fit the underlying programming contexts.

Motivated by these observations, we also explore synthesis methods for
some of these more compact models in their function as potential targets for
output sensitive synthesis. Beside bounding the number of simple cycles and
the states of the underlying Mealy machine, we consider Boolean circuits,
where explicit bounds on the number of latches and gates are provided by the
user. Furthermore, we explore the efficiency of synthesizing Boolean programs,
which use standard programming language elements like while loops and con-
ditionals. Our model is inspired by Madhusudan, who used an automata
theoretic approach extending standard unbounded synthesis towards synthe-
sizing reactive programs [100]. Finally, we also consider a model for register
programs, which instead build on more assembler like instructions language
that works on registers and with jump instructions. Our results show, that
Boolean circuits are best suited for most of today’s application cases. Espe-
cially, since they provide very natural metrics by the amount of latches and
gates that are used. Furthermore, due to their easily parallelizable execution
semantics, they best fit with current FRP approaches, since they allow to
consider the circuit structure as part of a stream processing network. More
details on the encodings that are used for these output sensitive synthesis
approaches and their experimental evaluation are presented in Chapter IV.

3. Delay Games 19

3 Delay Games

If synthesis is successful, then the synthesizer returns a solution that satisfies
the specification and can be further processed towards an executable applica-
tion. However, if synthesis is not successful, then there must be a mismatch
among the provided requirements that cannot be resolved by the synthesizer
in order to create a satisfying reactive system. In such a case, it is of highly
importance that developers are able to identify the problem for refining the
specification and taking care of the initial misunderstanding. More concrete,
developers need feedback for debugging unrealizability results.

Helping developers in resolving potential issues requires the identification
of the error’s cause within the specification at first. For reactive system spec-
ifications this cause can be analyzed in two stages. Unrealizability either is
caused by an inconsistency among the system requirements or by the envi-
ronment producing a sequence of inputs that results in invalid behavior, no
matter how the system responds. In the first case, the specification is un-
satisfiable, since the inconsistency remains present independently of how the
environment behaves. In the second case, however, the specification is as-
sumed to be satisfiable, i.e., there is at least one input sequence for which
a satisfying output assignment exists, but it is still rendered unrealizable by
the environment, i.e., there exits a counter-strategy that beats every possible
system implementation.

A first notion for explanations of unrealizability has been considered by
Cimatti, Roveri, Schuppan, and Tchaltsev [28], where they identified min-
imal unsatisfiable cores for the Generalized Reactivity(1) fragment of LTL
(GR(1)) [16] based on activation variables. The work was later extended
towards full LTL by Schuppan, discussing challenges of suitable notions for
unsatisfiable and unrealizable cores [129]. Regarding unsatisfiability on its
own, Schuppan further analyzed the possibility of extending the unrealizable
core with temporal information about the cause of the problem using in-
formation on temporal relevance [130] and temporal resolution graphs [131].
Nevertheless, while formal notions of unsatisfiable and unrealizable cores pro-
vide locatable targets for corresponding algorithms, the resulting cores still
may be hard to understand for developers. The corresponding problem was
studied explicitly in the area of autonomous robots [94, 121, 122].

Eliding the task of explaining the issue to the user can be achieved by
automatically repairing the specification instead. Therefore, existing ap-
proaches usually assume that the problem is caused by the environment, i.e.,
the specification is satisfiable, but not realizable. In this case, the general
idea is to weaken the environment through the extension of the specifica-

20 Chapter I. Introduction

tion by environment assumptions, which forbid problematic inputs. To this
end, corresponding assumptions should be extracted automatically from the
counter-strategy for the environment witnessing the unrealizability result.

A first realization of specification repair was presented by Chatterjee et al.,
who extracted minimal assumptions from the underlying game graph [25]. It
is, however, not guaranteed that especially those assumptions are selected
that are best suited for achieving realizability and can be expressed by simple
LTL formulas. Improvements towards these requirements have been provided
by template-based classifications, which guide the selection of the assump-
tions [92]. Furthermore, output sensitive metrics, like the length of the longest
path leading to an unsafe state, have been considered [27]. Another consider-
ation for the identification of problem causes, used to guide the specification
repair, leverages the notion of strong satisfiabiliy [49], which requires that the
specification is satisfiable and that there exists at least one satisfiable output
sequence for every possible input. Note that is in contrast to a realization
via a uniform system strategy [107]. Thus, strong satisfiability can be seen as
an intermediate notion placed between satisfiability and realizability. Finally,
the application of a CEGAR-based approach for a multi-stage refinement of
environment assumption has been considered for GR(1) [2].

Due to the infeasible scalability of the resulting algorithms and high com-
plexity classes, incomplete and approximating methods have been studied as
well. For the GR(1) fragment, approximations of possible winning regions in
the underlying game graph [83] and countertrace-based heuristics [84] have
been used. For full LTL, the problem also has been studied under the assump-
tion of bounded environments [34, 88]. Finally, for cyber-physical systems,
like robots acting in a physical environment, online approaches have been
applied. For example, run-time monitoring of environment assumptions has
been considered for the detection of assumption violations of the environment
to trigger recovery transitions that reestablish the correct behavior [149].

Lifting reactive synthesis towards distributed architectures makes the prob-
lem undecidable in general. Hence, similar results are implied in the unreal-
izability case. Nevertheless, for simple architectures, consisting only of two
processes, pattern-based refinement techniques generating assume-guarantee
specifications from the respective counter-strategies still can be considered [3].
Furthermore, for general architectures, unrealizability can be witnessed via
sets of traces, whose elements are utilized for disproving every possible imple-
mentation strategy [46].

In summary, the identification of issues in faulty specifications for reactive
systems has been experienced to be a challenging task (cf. [85]). The key
challenges are the identification of core properties that produce unrealizabil-

3. Delay Games 21

ity and the identification of the mismatch between a specified property and
the designer’s intend. If both of these indicators are revealed, then they can
be leveraged together to provide feedback for the user, or even to automati-
cally repair the specification. Automatically deriving the designer’s intend is,
however, a highly problem specific task and, thus, very hard, if considered to
be resolved automatically. Especially, as the resolution of an error according
to the designer’s intend may cause the requirement of other changes in the
specification, which then need to be resolved as well. Handling such chains
of required changes thus usually behaves too diverge to be managed by a
completely automated process.

A more reasonable approach is to identify classes of problem types for
unrealizability instead, which regularly appear during the design of temporal
specifications. Therefore, if errors are detected according to multiple such
classes, then class-specific explanations of the errors’ sources can be provided.
Designers then can choose among the presented options to select the one
that best fits their needs. Moreover, they get a much better overview of the
required tweaks that are necessary in order to archive realizability.

In this sense, we present a method for targeting a specific type of errors leading
to unrealizability. We consider problems that are introduced by temporal
dependencies between the actions of the system and the environment players.
To this end, consider an example where a data value, arriving via an input
stream, must be saved whenever a specific property p of that value changes.
On a first instance a developer could formalize this requirement ϕ as follows:

ϕ :=
(
¬(p i↔ p i)↔ [s� i]

)
As it turns out, the formula ϕ is unrealizable. Regarding the aforementioned
approaches, ϕ is satisfiable, as for example witnessed by the case where the
input never changes, and even strong satisfiable, since knowing the whole fu-
ture sequence of inputs in advance allows to schedule the updates at the right
positions in time. Furthermore, the whole sub-formula below the -operator
already provides a minimal unrealizable core, since every element of this sub-
formula is relevant for the unrealizability result. Finally, note that ϕ could be
fixed by adding environment assumptions, like for example “the input never
changes”, but regarding the property’s intend this is of little help. The prob-
lem that the developer introduced here, is that a change of the property p i
requires to compare p i at the time of the update with the previous evaluation,
which is at the second evaluation of p i. In the specification ϕ, however, the
update is required too early. Hence, the developer missed putting a -operator
before the update term [s� i].

22 Chapter I. Introduction

For such types of unrealizable specifications developers instead need the
right explanation of the cause for unrealizability describing the temporal con-
flict between the players. Such a kind of mismatch in the temporal dependen-
cies can be identified by using delay games as already considered by Hosch
and Landweber in 1972 [64]. In a delay game, the requirement of a strict
alternation between the system and environment is relaxed. As a result, one
of the players can postpone her moves to obtain a lookahead on the oppo-
nent’s moves. With lookahead at hand, the specification ϕ is realizable, since
the system can delay the output by a single time step to match the tempo-
ral dependencies. Thus, with the introduction of delay, the developer gets
immediate feedback of the error’s nature and even a resolution strategy, as
delivered by the winning strategy of the delay game.

The exact complexity of solving delay games and the bounds on the re-
quired lookahead to be utilized by the system player previously had been
unknown. The result of Hosch and Landweber shows that it is decidable
whether a delay game with ω-regular winning condition is won with bounded
lookahead, but an upper bound on the required lookahead could not be es-
tablished. The result was improved by Holtmann, Kaiser, and Thomas, who
proved a first doubly-exponential upper bound on the lookahead for delay
games with parity winning conditions and showed that those games can be
solved in doubly-exponential time [62]. We improve on these results by low-
ering the required lookahead and the complexity to a single exponent and
show that both bounds are tight. Furthermore, we also lift the problem to
full LTL, i.e., while solving realizability for LTL is doubly-exponential in the
size of the formula it rises to triply-exponential with the introduction of de-
lay. Furthermore, triply-exponential lookahead is sufficient, but at the same
time may be necessary for the system in order to win. More details about
delay games and the corresponding proofs of the aforementioned results are
presented in Chapter V.

4. The Reader’s Guide to the Thesis 23

4 The Reader’s Guide to the Thesis

We start slowly, with preliminaries in Chapter II, building a common ground
for the later considerations. As a warm-up, we introduce the reactive sys-
tem model, as well as notions for infinite words and trees. Then, we expand
our thinking to infinite games together with the notions of the correspond-
ing system and environment strategies. We continue by introducing Mealy
machines and conclude with Linear Temporal Logic (LTL), considered to be
the traditional specification logic for reactive systems. We fade out with a
system example to put ourselves again into the read-to-start positions for the
upcoming discussions.

Arriving at Chapter III, we then immediately head over to TSL. We consider
the necessary changes to the underlying reactive system models, along which
we explore the definition of the logic itself, as well as its realizability and
synthesis problems. Then, we revisit the kitchen timer specification from the
introduction and formulate it, this time precisely, by using TSL. Beside that,
we also consider the specification of a music player app to further advance
our experience with the art of TSL system design.

Afterwards, we enter the adventure zone of our trip, which is introduced
by the undecidability proof of TSL. We explore different resolution strategies,
where we first analyze, whether a reduction to fragments of TSL can help in
making the problem decidable. Unfortunately, this excursion does not yield to
a satisfactory result. Hence, we try to rescue the situation, by switching to the
world of infinite games instead. There, we explore step by step which changes
to the standard game semantics are necessary as soon as predicate and update
terms are added to the setting. We especially dive into the determinacy
question of these games, as well as into the restrictions that are needed to
secure ourselves against the rising potential of dangerous infinite branching.
Along the way, we further discover the answer to the question of how much
memory the players need in order to win a TSL based game. It turns out that
both players may need infinite memory in order to win.

Armed with these new insights, we then leave the game world behind, and
again tackle the undecidability problem from the logic’s side. We introduce
our final solution using an approximate reduction of TSL to LTL that is inter-
actively refined in a CEGAR like fashion. We show that the approximation is
sound, but incomplete. Therefore, we are able to effectively synthesize reac-
tive control behavior that is guaranteed to satisfy the given TSL specifications
by construction. In this context, we then have a closer look into the synthe-
sized results yielding towards our idea of a Control Flow Model (CFM) that

24 Chapter I. Introduction

provides an intermediate abstraction for different implementation frameworks.
Next, we connect the abstract CFM implementation model to Functional

Reactive Programming (FRP). To this end, we introduce the concept of FRP
in general and give an overview of the leveraged programming concepts. We
consider the time model of FRP and how it connects to the classical reactive
system models and temporal logics. Furthermore, we learn about different
FRP instantiations in terms of programming patterns. Therefore, our discus-
sion covers Arrowized, Applicative, and Monadic FRP.

We finish with a selection of the different application domains that can
be targeted with TSL synthesis. To this end, we present domain specific
examples that demonstrate the flexibility of TSL. At the same time, a de-
tailed analysis of the application specifics and their influence on the synthesis
performance has been prepared. The discussion is complemented by an ex-
perimental evaluation, where the TSL approximation has been analyzed in
combination with different state of the art LTL synthesis tools. The chapter
is closed with a short summary of the successfully targeted challenges, as well
as the remaining open questions.

Some parts of Chapter III already have been published in previous re-
search papers. The logic TSL originally was introduced by the paper Tem-
poral Stream Logic - Synthesis beyond the Bools, which was published at the
31th International Conference on Computer Aided Verification (CAV 2019).
The connection to FRP was first explored by the paper Synthesizing Func-
tional Reactive Programs, published at the Haskell Symposium 2019. Both
papers have been created by the thesis author together with Mark Santolucito,
Ruzica Piskac, and Bernd Finkbeiner. They also cover all of the experimental
evaluations that are presented in the chapter. All game related considerations,
however, and the excursion with respect to fragments of TSL are extending
this research and have not been published so far.

Even with the separation of data and control through TSL at hand, there
still are other problems that limit synthesis in terms of practical applications.
These problems already can be considered at the level of LTL. One of these
problems is the inspectability on the synthesized results, which is especially
of interest for specification designers in order to verify their design intents.
While the synthesis result is ensured to be functionally correct according
to the correct-by-construction paradigm, there is still no guarantee that the
returned solutions not unnecessarily exhibit a complex representation.

These problems can be targeted with output sensitive synthesis methods,
which measure the algorithmic complexity of the problem in terms of output
metrics, instead of the input with respect to the specification size. For an

4. The Reader’s Guide to the Thesis 25

overview, we first revisit the idea of bounded synthesis [45], which actively
bounds the solution size with the bound being considered as an additional
input to the synthesis problem. The approach sets the basis for our later
considered extensions that are based on other metrics than the solution size.

One of these metrics is the number of simple cycles in the solution graph.
We pursue the intuition that a large number of simple cycles also increases the
amount of potentially varying behavior. Thus, keeping the number of simple
cycles at a minimum reduces potential behavior changes, finally leading to
simpler solutions in general. We underline this intuition with theory and
some experiments. To this end, we prove that the number of simple cycles
indeed is an explosive metric. We show that it can explode triply-exponential
in the formula size, which is even worse than the maximal explosion in the
size of the solution graph that only grows at most doubly-exponentially in the
formula size. Thus, keeping the number of simple cycles small is indeed helpful
in order to avoid such kind of an explosion. Our experimental evaluation
also reveals that the synthesized solutions, for which the number of simple
cycles is bounded in addition to the solution size, indeed are better to inspect.
Furthermore, according to our evaluation bounding the number of simple
cycles introduces no additional overhead in terms of synthesis times.

We further consider output sensitive methods that depend on the repre-
sentation of the synthesized result. The most simple output model is a Mealy
machine, which reflects the configuration graph of a solution only in terms
of a flat graph representation. Other models, however, deliver more compact
representations as well, like Boolean circuits or programs. Therefore, we also
consider output sensitive solutions that target metrics, which are specific to
these compact models. We consider the number of gates and latches as part
of the circuit representation, the size of the intermediate run graphs, and the
number of Boolean variables of assembler like or nested loop-based programs.
We provide SAT based encodings for all of these approaches and compare
them according to the observable tradeoffs with an experimental evaluation.

Chapter IV covers research that already has been published as part of
previous publications. Bounded Synthesis originally was introduced by Sven
Schewe and Bernd Finkbeiner and is only revisited for the sake of completion.
Bounding the number of simple cycles first was explored in the paper Bounded
Cycle Synthesis published at the 28th International Conference on Computer
Aided Verification (CAV 2016). The paper was written by the thesis au-
thor together with Bernd Finkbeiner. A first exploration of output sensitive
synthesis methods for reactive programs was given by the paper Bounded
Synthesis of Reactive Programs published at the International Symposium on
Automated Technology for Verification and Analysis (ATVA 2018). The pa-

26 Chapter I. Introduction

per was written by the thesis author together with Carsten Gerstacker and
Bernd Finkbeiner. However, the paper primarily focuses on the comparison
of the output sensitive approach with an automata based equivalent, as intro-
duced by Madhusudan. This thesis, instead, focuses on the underlying SAT
encoding and the comparison with other output sensitive methods that are
based on different representation models.

Verification is used to identify whether a manually created implementation
satisfies the specification, while synthesis only creates specifications that are
correct by design. However, this does not imply that there always are systems
that satisfy the specification. While engineers cannot introduce errors any
more, since they have been removed from the equation, the designers still
can, because they now are in charge of creating a specification that covers all
of their design intents. Nevertheless, there is no guarantee that designers only
come with intends that always are conflict free. Consequently, specification
developers must be able to fix and debug specifications that are unrealizable
as well.

There are already many approaches that deliver feedback for an unreal-
izable specification, but some specific types of errors still are hard to detect.
To this end, we consider the introduction of delay to the underlying infinite
game in Chapter V. In a delay game, one player obtains a lookahead on her
opponent’s moves, which may allow her to win games with lookahead that she
would loose otherwise. The introduction of delay, thus, offers new debugging
possibilities for errors that are caused by access to inputs that are assumed
to arrive too early in time.

Delay games with parity winning conditions already have been consid-
ered in the past, but previous results only established a doubly-exponential
upper bound on their algorithmic complexity. We improve these bounds to
a single exponent and at the same time complement them with matching
lower bounds. To this end, we also consider the special cases of reachability
and safety winning conditions in more detail. Our final results show that an
additional exponential blowup always arises when introducing lookahead to
games with ω-regular winning conditions. Thus, using delay as a debugging
method for specifications that are only realizable with lookahead comes at an
additional cost. The chapter formally introduces the delay game setting and
provides proofs for all of the aforementioned results.

Some results of Chapter V already have been published as part of previous
publications. The upper and lower bounds for delay games with reachabil-
ity, safety, and parity conditions first have been introduced by the paper
How much Lookahead is needed to win Infinite Games? published at the

4. The Reader’s Guide to the Thesis 27

42nd International Colloquium on Automata, Languages, and Programming
(ICALP 2015). In the original paper, two proofs are given for the upper
bounds. The first one additionally provides a method for solving delay games
with parity winning conditions, while the second one proves a slightly bet-
ter bound, but does not yield a constructive algorithm. In this work, an
adapted version of the first proof is given that matches the better bounds
of the aforementioned second proof. Thus, only a single proof is needed.
Another difference is that the games of the original work are played implic-
itly on the languages of ω-automata, while in this work we target a concrete
graph based game definition instead, where the edges are labeled by atomic
proposition, thus, inducing an ω-regular language instead. The lower bounds
for delay games with LTL winning conditions originally are from the paper
Prompt Delay published at the 36th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS
2016). Both papers have been created by the thesis author together with
Martin Zimmermann.

The thesis closes with a final discussion in Chapter VI.

28 Chapter I. Introduction

Chapter II

Preliminaries

We use the symbol N to denote the set of non-negative integers and N+ to
denote the set of positive integers. Elements of N are abbreviated by small
roman letters, preferably n,m, j and k. For all n,m ∈ N with n ≤ m we
use [n,m] to denote the set {n, n + 1, ...,m} and shorten the special case of
[0, n− 1] by [n], where [0] = ∅ and [∞] = N. To denote sets, we prefer using
big roman letters like S, P and Q. The cardinality of a set S is denoted by |S|,
where for infinite sets S we fix |S| =∞. The power set of S is denoted by 2S .

A value is an arbitrary object of arbitrary type. We use V to denote
the set of all values. A special subset is given by the set of Boolean values
B ⊆ V, which are either true ∈ B or false ∈ B. An n-ary function f : Vn → V
determines a new value from n given values. We denote the set of all functions
(of arbitrary arity) by F . The arity of an n-ary function f is accessed by
](f) = n. Constants c are functions of zero arity and at the same time values,
i.e., c ∈ F ∩ V. An n-ary predicate p : Vn → B checks a truth statement
on n given values. The set of all predicates (of arbitrary arity) is denoted
by P ⊆ F . For a function f : A→ B, mapping elements from a domain A ⊆
V to a co-domain B ⊆ V, and some set C ⊆ A we use f(C) for the set
{b ∈ B | c ∈ C ∧ f(c) = b}. For the sake of readability, we also use B[A] to
denote the set of all total functions with domain A and image B.

If X is a set and n ∈ N we use Xn to denote the set of n-ary tuples
over X and number its components from 0 to n− 1. The length of an n-ary
tuple t is given by](t) = n. We use] for the arity of functions, as well as for
tuples lengths’, since the interpretation is always clear from the context. The
projection prj projects to the j-th component of a tuple of arbitrary length
for any j ∈ N. If the tuple has no such component, then prj is undefined. To
denote concrete tuple instances, we use round brackets, e.g. (1, 2, 3) ∈ N3.

Let X be some set of variables. A Boolean formula ϕ over X is a formula
constructed according to the grammar ϕ := true | x ∈ X | ¬ϕ | ϕ ∧ ϕ. The
semantics of Boolean formulas are defined with respect to truth assignments
to the variables of X. Truth assignments are given by subsets Y ⊆ X, where
all variables in Y are assigned true and all variables not in Y are assigned
false. Semantics then are defined via a satisfaction relation �, where Y � x
iff x ∈ Y , Y � ¬ϕ iff X \ Y � ϕ, and Y � ϕ ∧ ϑ iff Y � ϕ and Y � ϑ.

30 Chapter II. Preliminaries

Additional derived Boolean operations are defined as usual: false := ¬true,
disjunction ϕ ∨ ϑ := ¬(¬ϕ ∧ ¬ϑ), and implication ϕ→ ϑ := ¬ϕ ∨ ϑ. We use
B∗(X) to denote the set of all Boolean formulas over a set of variables X.
Furthermore, B+(X) denotes the set of all positive Boolean formulas, i.e.,
formulas build by only using the primitives true, false, variables x ∈ X, con-
junction ∧, and disjunction ∨. For a set of variables X, we use the con-
straint exactlyn(X) to denote: exactly n ∈ N variables of X must be satisfied.

1 Reactive Systems
Reactive systems are systems that receive input from the environment, man-
age internal state, and produce output to the environment.

Reactive
SystemInput Output

As the systems are reactive, these actions happen repeatedly over the infi-
nite amount of time. In general, this definition matches almost any system
in our environment, from biological systems over ecological ones up to the
entire universe. However, in the scope of this theses, we only use it to cap-
ture physical computation devices, possible equipped with physical sensors
and actors, and their respective models used for the formal description and
analysis in computer science. In this scope, we consider a simplified model of
time, where we assume that time is represented as a countably totally ordered
sequence of points in time, as mathematically reflected by N. In computer
science, such a time model is usually sufficient, since the physical principles
today’s computers use to execute calculations depend on discrete state and,
thus, need discrete updates as part of their execution semantics.

We further restrict ourselves to the synchronous model of time, where time
is discrete and the process of reading input and producing output strictly
alternates. In this model, the internal state then either is updated between
reading inputs and producing outputs or together with the production of the
output. All other models, that do not fit the aforementioned characteristics,
are usually considered to be asynchronous.

For the synchronous model, two major mathematical frameworks have
been proven useful to express the behavior of reactive systems over time:
infinite words and infinite trees, where the latter is an extension of the former.
While strongly simplifying the capabilities of real world models, infinite words
and trees still allow to analyze important properties of reactive systems and
provide fundamental building blocks to express their temporal behavior.

2. Infinite Words 31

2 Infinite Words
An alphabet is a non-empty, finite set of symbols, usually denoted by Σ or Υ.
Elements of an alphabet are called letters. Let an alphabet Σ be given, then
the concatenation w = w0w1 . . . wn−1 of finitely many letters of Σ is called a
finite word over Σ, where n defines the length of w also denoted by |w|. The
only word of length 0 is the empty word denoted by ε.

The concatenation of infinitely many letters defines an infinite word which
has infinite length. We usually use small roman letters w and v to denote finite
words and small greek letters α, β, and ν to denote infinite words. For words
that are either finite or infinite we default to denote them by small roman
letters w and v. The set of all finite words over Σ is denoted by Σ∗ and the
set of all infinite words by Σω. Their union is denoted by Σ∗/ω = Σ∗ ∪ Σω.
For Σ∗ \ {ε} we also use the shorter notation Σ+. Given some word w ∈ Σ∗/ω

we have that for all n ∈ [|w|] the n-th letter of w is denoted by wn and the
first letter is at w0. Every function f : Σ→ Σ′ is lifted to words w ∈ Σ∗/ω by
point-wise application, i.e., f(w) = f(w0)f(w1) . . . ∈ (Σ′)∗/ω.

Like letters, we can concatenate any finite word v ∈ Σ∗ with words
w ∈ Σ∗/ω to new words vw. For a word w = v0v1 we call v0 the prefix of w
and v1 it’s suffix. If Σ is an alphabet then each subset of Σ∗ is a language
over finite words and each subset of Σω is a language over infinite words.
Respectively, each subset of Σ∗/ω is a language over finite and infinite words.

For infinite words α ∈ Σω we are also interested in letters of α that appear
infinitely often. To this end, we utilize the notion of the infinity set Inf(α),
defined as Inf(α) = {σ ∈ Σ | ∀n ∈ N. ∃m > n. αm = σ}.

3 Infinite Trees
A Σ-labeled Υ-tree t : Υ∗ ⇀ Σ is a partial function, defined over a domain
Dt ⊆ Υ∗, that maps positions in the tree to labels of Σ. The domain Dt
needs to be prefixed closed, i.e., for any vw ∈ Dt with v, w ∈ Υ∗ it must
be that v ∈ Dt. If Dt = Υ∗, then we say that t is input-complete. The
empty word ε denotes the root of a tree, from which the tree branches ac-
cording to it’s directions Υ. A branch ν ⊆ Υ∗/ω is a finite or infinite se-
quence of directions such that every prefix w of ν is in the domain of t, i.e.,
w ∈ Dt. Finite branches w ∈ Υ∗ are not allowed to have further children
after the last position of the branch, i.e., ∀υ ∈ Υ. νυ /∈ Dt. The out-
come of a branch ν ∈ Υ∗/ω of a tree t : Υ∗ ⇀ Σ is the sequence of labels
appearing along the branch, denoted by t o ν. It is defined via the unique

32 Chapter II. Preliminaries

a

a

a

false

b

true

false

b

a

false

b

true

true

...
...

...
...

Figure 9: An example for the graphical representation of a tree. The depicted
tree branches according to B and is labeled by letters from {a, b}.

sequence t o ν = α such that |α| = |ν| and ∀n ∈ [|ν|]. αn = t(ν0ν1 . . . νn).
Every tree t induces a word language L(t) = { t o ν | ν ∈ Dt }. If the tree t
is input-complete, then it’s induced language L(t) is input complete as well.
If Υ = B, then we call t a binary tree. We depict trees the classical way,
where the structure of the tree is given as a graph, positions are identified
by the corresponding labels and branches are labeled with the corresponding
directions. An example of a tree illustration is given in Figure 9. The tree is an
input-complete binary tree that branches according to the Boolean values true
and false and is labeled by the letters a and b. In general, we depict trees
such that they grow from the top to the bottom.

4 Infinite Games

The interaction between the environment and the system can be considered as
an infinite, two player game between the input player “Player I”, representing
the environment, and the output player “Player O”, representing the system.
The rules of the game are given in form of a game arena, which consists of
vertices, either owned by Player I or Player O, and an edge relation labeled
by possible moves. The players play in the arena by moving a single token
along the edges, which has been placed on some designated vertex initially.
The player that owns the vertex currently holding the token is in charge of
moving it to a successor. Therefore, a player can choose among any successor
that is allowed by its transition relation. By choosing a successor, the player
produces a symbol, as given by the transition relation.

4. Infinite Games 33

v4

v1

v3 v5

v7

v0 v2

v6 v8

i0

i1

o0

o1

i0

i1

o0

o1 i0

i1

o1

o0

i0, i1

o1

o0

i0, i1

Figure 10: Graphical example of an arena. The round vertices describe
the vertices owned by Player O and the angled ones the vertices owned by
Player I. The edges in between denote the possible moves of the players. The
initial vertex is marked by an incoming arrow without a source.

Definition 1. An arena A = (ΣI ,ΣO, VI , VO, vI , δI , δO) is a tuple where

• ΣI is a non-empty, finite set of inputs,

• ΣO is a non-empty, finite set of outputs,

• VI is the set of vertices owned by Player I,

• VO is the set of vertices owned by Player O,

• vI ∈ VI is the initial vertex,

• δI : VI × ΣI → VO is the transition relation of Player I, and

• δO : VO × ΣO → VI is the transition relation of Player O.

The size of A, denoted by |A|, is defined to be |VI |+ |VO|. If VI and VO
are clear from the context, then we also use V = VI ∪ VO to denote the
set of all vertices of an arena.

An example arena Ae = (ΣI ,ΣO, VI , VO, v0, δI , δO) is depicted in Figure 10. It
consists of five vertices owned by Player I (VI = {v0, v2, v4, v6, v8}) and four

34 Chapter II. Preliminaries

vertices owned by Player O (VO = {v1, v3, v5, v7}). The players play in the
arena by moving a single token along the edges, which has been placed on v0

initially. The player that owns the vertex currently holding the token is in
charge of moving it to a successor. Therefore, a player can choose among any
successor that is allowed by its transition relation. By choosing a successor,
the player produces a symbol, as given by the transition relation. In the
example, Player I produces either the input i0 or the input i1 and Player O
produces either the output o0 or the output o1. Moving the token ad infinitum
through the arena produces an infinite play.

Definition 2. A play ρ in an arena A = (ΣI ,ΣO, VI , VO, vI , δI , δO) is an
infinite sequence

ρ = (vI0 , i0, v
O
0 , o0)(vI1 , i1, v

O
1 , o1) . . . ∈ (VI × ΣI × VO × ΣO)ω

such that vI0 = vI and for all n ∈ N we have that δI(vIn, in) = vOn and
δO(vOn , on) = vIn+1. The set of all possible plays on A is denoted by
Plays(A).

Some plays in the arena Ae of Figure 10 would be for example:

1. ρ1
e = (v0, i0, v1, o1)(v0, i1, v3, o0)

(
(v4, i1, v1, o0)(v2, i0, v5, o1)

)ω
2. ρ2

e = (v0, i1, v3, o0)
(
(v4, i0, v7, o1)(v6, i1, v7, o0)(v8, i0, v5, o1)

)ω
Each players’ decisions of which successors to choose are determined by the
player’s strategy. A strategy has access to the whole history of a play, i.e.,
Player P for P ∈ {I,O} places it’s decisions as responses to all previous
decisions of the opponent Player P (where I = O and O = I).

Definition 3. A strategy for Player P ∈ {I,O} in a given arena
A = (ΣI ,ΣO, VI , VO, vI , δI , δO) is an input-complete ΣP -labeled ΣP -tree
σP : (ΣP)∗ → ΣP .

A strategy σeO for Player O on the arena Ae of Figure 10 would be for example:

σeO(wv) =

{
o0 if v ≡ i1

o1 if v ≡ i0

Note that our strategy definition only takes into account the input/out-
put symbols that have been chosen by the opponent player, but not the

4. Infinite Games 35

vertex on which the token is currently placed on. This is sufficient, since
the vertex holding the token can always be reconstructed from the previous
choices of the opponent and the player’s strategy when starting from the ini-
tial vertex.

Definition 4. A play ρ = ρ0ρ1 . . . on an arena A is consistent with a
strategy σO of Player O iff for every n ∈ N with ρn = (vIn, in, v

O
n , on)

we have that σO(i0i1 . . . in) = on. A strategy σI of Player I is consis-
tent with ρ iff σI(o0o1 . . . on−1) = in for all n ∈ N. The set of all plays
consistent with a strategy σP is denoted by Plays(A, σP).

Regarding our example, both of the aforementioned plays ρ1
e and ρ2

e are con-
sistent with the strategy σeO.

To play a game in an arena, it remains to determine which of the players
has won after the players played ad infinitum. To this end, we equip the arena
with an additional winning condition, which fixes the set of infinite plays that
are winning for Player O and loosing for Player I. At the same time, the
complement set fixes the plays that are winning for Player I and loosing for
Player O.

Definition 5. A game G = (A,Win) is a tuple consisting of an arena A
and a set of infinite winning plays Win ⊆ Plays(A) through the arena.
We call a play ρ winning for Player O iff ρ ∈ Win and winning for
Player I otherwise.

We consider the following standard winning conditions Win over infinite se-
quences of elements from Ξ = VI × ΣI × VO × ΣO, i.e., with Win ⊆ Ξω:

• The safety winning condition fixes a special subset S ⊆ VI ∪ VO of safe
vertices. A play is winning iff all vertices visited are elements of S.

Safety(S) = {α ∈ Ξω | ∀n ∈ N. pr0(αn) ∈ S ∧ pr2(αn) ∈ S }

• The reachability winning condition fixes a special subset R ⊆ VI ∪ VO
of goal vertices. A play is winning iff it visits at least one goal vertex
of R.

Reach(R) = {α ∈ Ξω | ∃n ∈ N. pr0(αn) ∈ R ∨ pr2(αn) ∈ R }

36 Chapter II. Preliminaries

• The parity winning condition is defined with respect to a coloring func-
tion Ω: VI ∪ VO → N that assigns each vertex a natural number, the so
called color of the vertex. A play is winning iff the maximal color seen
infinitely often is even.

Parity(Ω) = {α ∈ Ξω | max(Inf(Ω(pr0(α)))∪Inf(Ω(pr2(α)))) is even }

Let A = (ΣI ,ΣO, VI , VO, vI , δI , δO), then G∀ = (A,Safety(S)) with S ⊆ V
is a safety game, G∃ = (A,Reach(R)) with R ⊆ V is a reachability game,
and GΩ = (A,Parity(Ω)) with Ω: V → N is a parity game.

For example, Ge∃ = (Ae,Reach({v5})) is a reachability game that is
played in the arena of Figure 10 with the goal of Player O to reach ver-
tex v5.

Definition 6. Let G = (A,Win) be a game and σP be a strategy for
Player P on A. The strategy σP is a winning strategy iff every play
ρ ∈ Plays(A, σP) is winning for Player P .

Both of the aforementioned plays ρ0
e and ρ1

e are winning for Player O, but
the strategy σeO is not, since Player I can trap it’s opponent to the set of
vertices v0, v1, and v2 by always moving back to v1. Correspondingly, Player I
has a winning strategy in the game Ge∃ instead. We call games where always
one of the players has a winning strategy determined.

Definition 7. A game G = (A,Win) is determined iff there is either a
winning strategy σO for Player O or a winning strategy σI for Player I.

Note that by the definition of a winning condition it is impossible that both
players win a game. However, it may be possible that none of the players
has a winning strategy, in which case the game is not determined. For all
winning conditions considered so far (safety, reachability and parity), the
corresponding games are all determined (cf. for example [56]).

Also note that safety, reachability and parity winning conditions only take
the vertices into account, that have been visited during a play, but completely
ignore the edge labeling. This is also the reason why games in the literature are
often defined without an additional edge labeling. However, we will consider
more advanced winning conditions later in this thesis that require to take the
edge labeling into account.

5. Implementations 37

5 Implementations
While infinite trees provide a sound and complete model to express the behav-
ior of a reactive system, they are not amenable to be used in practice, since
their representation is infinite by definition. Thus, we only use them as part
of our mathematical toolbox. For practical considerations, we also require
compact models that are designed to provide finite model representations.

One of the oldest and most popular models is given by Mealy machines,
which are named after their inventor: George H. Mealy [104]. Intuitively,
the model compresses a tree into a finite transition graph, where the states
of the graph identify the repetitive behavior of the tree. Similarly, a Mealy
machine can be considered as a complete infinite tree, whose labeling is ex-
tended with collections of labels indicating the states and where all sub-trees
starting in a position labeled with the same state are consistent among the
whole tree.

Definition 8. Mealy machines M = (ΣI ,ΣO,M,mI , δM, `) consist of

• a set of inputs ΣI ,

• a set of outputs ΣO,

• a set of states M ,

• an initial state mI ∈M

• a transition function δM : M × ΣI →M , and

• an output function ` : M × ΣI → ΣO.

The outputs produced by a Mealy machine only depend on the current state
and the last inputs. The size of M, denoted by |M|, is defined to be |M |.
The transition function δM can be lifted to words over ΣI using the func-
tion δ∗M : (ΣI)

∗ → M , recursively defined via δ∗M(ε) = mI at first and
δ∗M(wv) = δM(δ∗M(w), v) for the remaining steps.

Construction 1. Every Mealy machine M induces an input-complete
infinite tree tM : (ΣI)

∗ → ΣO via the infinite application of δM and `, i.e.,

38 Chapter II. Preliminaries

m0 m1

{r2}, {r1, r2} → {g1}

∅, {r1} → {g1}

∗ → {g2}

Figure 11: Graphical representation of the Mealy machine Me.

for all n ∈ N it holds that

tM(υ0υ1 . . . υn) = `(δ∗M(υ0υ1 . . . υn−1), υn).

We define the semantics of M by the induced tree tM, leading to the word
language L(M) of M to be defined as L(tM). Mealy machines are depicted as
directed graphs, where vertices represent the states of the machine and edges
the transitions. Furthermore, each transition is labeled by the input triggering
the transition and the corresponding output produced by `. If multiple inputs
produce the same output, we correspondingly group them together, where we
use ∗ to denote arbitrary possible inputs. The initial state is marked by an
incoming edge without a source.

Figure 11 depicts a Mealy machineMe = (2{r1,r2}, 2{g1,g2}, {m0,m1},m0, δM, `)
with

δM(m,υ) :=

{
m1 if m = m0 ∧ r2 ∈ υ
m0 otherwise

and

`(m,υ) :=

{
{g1} if m = m0

{g2} otherwise

6 Linear Temporal Logic
So far, we only considered definitions of reactive system implementations.
They are, however, not expressive enough to capture temporal behavior prop-
erties in general. Reactive system implementations are infinite trees that
branch according to the inputs from the environment and are labeled with
outputs that are produced by the system. Reactive system properties, on the

6. Linear Temporal Logic 39

other hand, are sets of infinite trees covering all implementations that satisfy
the property to be described. For practical applications, however, describing
such sets explicitly is infeasible due to the infinity of time. Therefore, a more
compact description is required. Natural ones are given by temporal logics,
which bundle the infinite behavior of time into temporal operators, similar to
the behavior, as it would be described using natural human language.

The most popular temporal logic is given by Linear-time Temporal Logic
(LTL), as introduced by Pnueli in 1977 [116]. In general, LTL describes the
temporal behavior of infinite words over sets of atomic propositions Σ. Nev-
ertheless, LTL can also be used to describe properties over infinite trees. To
this end, the alphabet is divided into input propositions I and output propo-
sitions O. The properties then describe sets of infinite words over Σ = 2I∪O,
which are lifted to infinite trees via branching among the input propositions I.
Remember that the input propositions are under the control of the environ-
ment. Therefore, the word languages induced by LTL only cover infinite trees
that branch according to all inputs, as provided by the environment.

Syntactically, every LTL specification ϕ adheres to the following grammar:

ϕ := true | a ∈ I ∪ O | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕU ϕ

The size of a specification ϕ is denoted by |ϕ| and defines the number of sub-
formulas of ϕ. The semantics of LTL are defined over infinite words α ∈ Σω.
We define the satisfaction of a word α at a position n ∈ N and a specification ϕ,
denoted by α, n � ϕ, for the different choices of ϕ as follows:

• α, n � true

• α, n � a iff a ∈ αn

• α, n � ¬ϕ iff α, n 2 ϕ

• α, n � ϕ ∨ ϑ iff α, n � ϕ or α, i � ϑ

• α, n � ϕ iff α, n+ 1 � ϕ

• α, n � ϕU ϑ iff ∃m ≥ n. α,m � ϑ and ∀n ≤ i < m. α, i � ϕ

An infinite word α satisfies ϕ, denoted by α � ϕ, iff α, 0 � ϕ. The word
language L(ϕ) is the set of all words that satisfy ϕ, i.e.,

L(ϕ) = {α ∈ Σω | α � ϕ}.

The tree language of ϕ is the set of all trees t such that L(t) ⊆ L(ϕ). The
operator is called “next” and the U operator is called “until”. Beside the defined

40 Chapter II. Preliminaries

operators, we have the standard derivatives of the Boolean connectives, as
well as eventually: ϕ := true U ϕ, globally: ϕ := ¬ ¬ϕ, and the weak
version of until: ϕW ϑ := ϕU ϑ ∨ ϕ.
The following are some example temporal properties that can be defined using
LTL:

1. Order of Change. The output o ∈ O is not enabled before output o′ ∈ O,
which again is not enabled before another output o′′ ∈ O.

ϕe0 := ¬oW o′ ∧ ¬o′W o′′

2. Reactivity. If at least one of the inputs i ∈ I changes infinitely often,
then also at least one of the outputs o ∈ O must change infinitely often.

ϕe1 :=
∨
i∈I

(
i ∧ ¬i

)
→
∨
o∈O

(
o ∧ ¬o

)
3. Simple Arbiter. An arbiter manages the access to a shared resource

among n clients. Clients place requests ri ∈ I, which must be granted
eventually via grants gi ∈ O. Furthermore, only a single grant can be
given at every point in time, i.e., grants are mutually exclusive.

ϕe2 :=

n−1∧
j=0

(
(rj → gj)

)
∧

n−1∨
j=0

(gj →
n−1∧
k=0
k 6=j

¬gk)

The verification problem asks for a given implementation X, which induces
a language L(X), and a given specification ϕ, both defined over the same
sets of inputs I and outputs O, whether the implementation satisfies the
specification X � ϕ, or stated in terms of the languages, whether L(X) ⊆ L(ϕ).
If only the specification ϕ is given, then the realizability problem asks for the
existence of an implementation that satisfies ϕ. If, however, the specification ϕ
is given and an implementation model is fixed, then the synthesis problem asks
for a concrete implementation X that adheres to the model and satisfies ϕ. If
the specification is unrealizable, then the synthesis problem is only required
to return the unrealizability result, e.g., “the specification is unrealizable.”.

To demonstrate the differences and major advantages of synthesis against
manual programming, we consider the design process of an escalator con-
trol specification, which is responsible for the reliable transport of passengers
between two floors.

6. Linear Temporal Logic 41

top

bottom

The escalator consists of a single transport belt, which can either move up
or down. To observe the behavior of the passengers and to deduce their in-
tentions, there are two sensors, at the top and at the bottom, that reliably
detect whenever a passenger enters or exists the escalator. The escalator is
always moving in one direction only. Hence, passengers can only use it when
it is moving towards their target floor. This is why there are two additional
waiting platforms behind the sensors for the passengers to wait, in case the
escalator currently is moving into the wrong direction. Our goal is to cre-
ate a controller that reliably delivers every passenger to his or her desired
target floor. To describe the behavior of the controller in LTL, we use the
Boolean input signals I = {enter〈top〉, enter〈bottom〉, exit〈top〉, exit〈bottom〉}
to denote the feedback of the sensors at the bottom and top floors and the
single Boolean output signal O = {move〈up〉} to denote that the escalator is
moving upwards, if set, and moving downwards otherwise. The property of
delivering every passenger then can be formalized for both directions with the
following guarantees:(

enter〈bottom〉 → (move〈up〉 U exit〈top〉
)

(G1)(
enter〈top〉 → (¬ move〈up〉 U exit〈bottom〉

)
(G2)

Unfortunately, these two guarantees are not sufficient yet, because the spec-
ification that results from the conjunction of the guarantees is unrealizable.
The reason is that there is no way to ensure that the top sensor will produce
an exit signal after the bottom sensor recognized a passenger entering.

Indeed, in theory it is possible that a passenger enters at the bottom and
waits in the waiting area forever. In this case, the given setup of the two
sensors is too limited to detect the behavior of the passengers. The controller
just cannot determine the exact position of every passenger in the system.
However, in practice we can assume that such a behavior will not occur (no
passenger has the patience to wait forever, only to break the system).

42 Chapter II. Preliminaries

In order to fix the specification, we need to add this additional assumption.
The question that still remains open is: how long does it take until a passenger
leaves at the top after entering at the bottom? Note that a passenger only
can reach the top floor, if the escalator moves up for long enough such that
it is ensured the passenger had a successful trip that covered the distance.
However, the behavior of the escalator has not been determined yet, since we
still have not fixed the behavior of the system. Hence, there is no guaranteed
upper bound on the time of travel that we can use.

However, thinking about the problem for another moment reveals that we
also do not need to. The solution is that we have the guarantee that, if we
move up the escalator for some sufficiently large amount of time continuously,
than each passenger will be delivered at the top eventually, independently of
the length and speed the escalator is moving with, and no matter of when the
passenger decides to start the trip. Eventually, the passenger will be delivered
to the top. This assumption is sufficient enough to make the specification re-
alizable. Formally, we add the following two assumptions to the specification,
one for each direction:(

enter〈bottom〉 ∧ (move〈up〉W exit〈top〉)→ exit〈top〉
)

(A1)(
enter〈top〉 ∧ (¬ move〈up〉W exit〈bottom〉)→ exit〈bottom〉

)
(A2)

Finished! The resulting specification is realizable and the synthesis produces
a controller that works correctly. Just ask yourself: how much time would you
have spend with constructing the respective controller by hand and completely
on your own? Another exercise: What do you think is the minimal number
of states required by a Mealy machine implementing this controller? Finally:
What is easier? Creating the specification or the manual implementation?

As you see, synthesis offers some strong advantages against the manual
creation of solutions, but it also comes with some new problems and chal-
lenges. For example, how does the synthesized controller work? How exactly
does it archive the goal of delivering ever passenger. The answer may be
given after inspection of the synthesized system. However, is there again the
guarantee that this will always be an easy task?

7 Universal co-Büchi Automata

We conclude our preliminary definitions with one further specification model
for infinite languages L ⊆ Σω with Σ = 2I∪O: the model of universal co-Büchi
word/tree automata. In general, there are various automata models that are

7. Universal co-Büchi Automata 43

q0q7

q1

q2

q3

true

g1 ∧ g2

r1 ∧ ¬g1

r2 ∧ ¬g2

true
¬g1

g1

¬g2

g2

true

Figure 12: The universal co-Büchi automaton Ae, which expresses the lan-
guage L(ϕe2) = L((r1 → g1) ∧ (r2 → g2) ∧ ¬(g1 ∧ g2)) for n = 2.

capable of expressing languages over infinite words or trees. Universal co-
Büchi automata, however, enjoy the special property that their word and tree
models are so close to each other that it is just a matter of the formal definition
to distinguish them. The reasons are twofold. On the one hand, universal co-
Büchi automata are free of nondeterministic choices. Thus, the acceptance
of infinite trees only depends on the infinite behavior of all branches and
not on how these branches have been chosen nondeterministically during the
execution of time. On the other hand, the environment induces a universal
branching over input propositions I, similar to the interpretation of LTL
properties over trees. Therefore, we only consider the word model of universal
co-Büchi automata, since they already cover all relevant tree properties.

Definition 9. A universal co-Büchi word automaton A is a tuple
A = (Σ, Q, qI ,∆A,coBüchi(R)), where

• Σ is a finite alphabet,

• Q is a finite set of states,

• qI ∈ Q is the initial state,

• ∆A ⊆ Q× Σ×Q is the transition relation,

• R ⊆ Q is the set of rejecting states,

where the set coBüchi(X) ⊆ (Q× Σ)ω fixes the accepting sequences.

coBüchi(X) = {(q0, σ0)(q1, σ1) . . . ∈ (Q×Σ)ω | ∃n ∈ N. ∀j > n. qj /∈ X}

An example for a universal co-Büchi word automaton is depicted in Figure 12.

44 Chapter II. Preliminaries

Its language is equivalent to L(ϕe2) expressing a simple arbiter with two clients
(n = 2). The automaton is illustrated as a labeled directed graph, where
states are nodes and the transitions are edges. The initial state is marked
by an arrow without a source. Rejecting states are marked through doubly
framed nodes. For the representation of the transition relation, we utilize an
alternative representation of ∆A as a function ∆A : Q2 → B∗(I ∪ O), which
is only applicable if Σ = 2I∪O. The representation assigns each pair of states
a Boolean formula over the input and output propositions such that for all
q, q′ ∈ Q and σ ∈ 2I∪O we have that σ � ∆A(q, q′) if and only if (q, σ, q′) ∈ ∆.
For the illustration of universal co-Büchi word automata, we label the edges
with ∆A(q, q′), as long as the formula is satisfiable. Otherwise, there is not
edge depicted between two states. For the sake of readability, we use ∆A

for both: the function and relational representation, since both notions can
always be clearly distinguished with respect to their application context.

The size of universal co-Büchi automaton A is denoted by |A| and defined
to be |Q|. A run r = (q0, σ0)(q1, σ1) . . . ∈ (Q×Σ)ω of A is an infinite sequence
with q0 = qI and (qn, σn, qn+1) ∈ ∆A for all n ∈ N. The word language L(A)
contains all σ0σ1 . . . ∈ Σω, for which all runs r = (q0, σ0)(q1, σ1) . . . ∈ (Q×Σ)ω

with q0q1 . . . ∈ Qω are accepting, i.e., for which r ∈ coBüchi(R).
Every LTL formula ϕ can be converted into an equivalent universal co-

Büchi automaton expressing the same language as ϕ.

Theorem 1 ([90]). For every LTL formula ϕ there is a universal co-
Büchi word automaton Aϕ with L(ϕ) = L(Aϕ) and |Aϕ| ∈O(2|ϕ|).

Given a machine M, it is easy to check whether M satisfies an infinite behavior
property given as universal co-Büchi automaton A. To this end, we have to
create the run graph consisting of the cross-product of M and A to check that
no execution of M visits infinitely many rejecting states of A.

Definition 10. The run graph GA,M = (M × Q,E) of a universal co-
Büchi automaton A = (2I∪O, Q, qI ,∆A,coBüchi(R)) and a Mealy ma-
chine M = (2I , 2O,M,mI , δM, `) is a directed graph, where

E = {((m, q), (m′, q′)) | ∃σ ∈ 2I∪O. δM(m, I ∩ σ) = m′ ∧
`(m, I ∩ σ) = O ∩ σ ∧
(q, σ, q′) ∈ ∆A}.

7. Universal co-Büchi Automata 45

m0, q0 m1, q2 m0, q3

m1, q0 m0, q1 m1, q3

Figure 13: Run graph of the Mealy machine Me of Figure 11 and the universal
co-Büchi automaton Ae of Figure 12.

A vertex (m, q) of GA,M is rejecting iff q ∈ R. A run graph is considered to
be accepting iff there is no cycle of GA,M, which contains a rejecting vertex.

An example for a run graph for the Mealy machine Me of Figure 11 and
the universal co-Büchi automaton Ae of Figure 12 is depicted in Figure 13.
The rejecting vertices are marked by doubly framed nodes. Only the fraction
of the run graph that is reachable from the initial vertex (m0, q0) is illustrated.

In general, the non-existence of a rejecting vertex is witnessed by a ranking
function λ : M×Q→ N∪{ } with /∈ N. If the run graph contains no rejecting
vertex, then there is a ranking that labels all vertices that are reachable from
(mI , qI) with a natural number, which never increases among the transition
relation and strictly decreases after each rejecting vertex.

Definition 11. A ranking λ :M×Q→N∪{ } validates a run graphGA,M
with A = (2I∪O, Q, qI ,∆A,coBüchi(R)) and M = (2I , 2O,M,mI , δM, `)
if and only if:

• λ(mI , qI) ∈ N

• ∀v, v′ ∈M ×Q. λ(v) ∈ N ∧ (v, v′) ∈ E → λ(v′) ∈ N ∧ λ(v′) ≤ λ(v)

• ∀v, v′ ∈M ×R. λ(v) ∈ N ∧ (v, v′) ∈ E → λ(v′) ∈ N ∧ λ(v′) < λ(v)

The existence of a valid ranking proves that the run graph is accepting. If the
run graph is accepting, we also say that M is accepted by A.

Theorem 2 ([45]). Let A and M be a universal co-Büchi automaton and
a Mealy machine, respectively, with compatible inputs and outputs. Then
L(M) ⊆ L(A) if and only if there is a ranking λ that validates GA,M.

46 Chapter II. Preliminaries

A ranking that validates the run graph of Figure 13 is for example λe with:

λe(m, q) =

1 if q ∈ {q0, q1}
0 if q ∈ {q3}

otherwise

Thus, the ranking λe proves that Me satisfies ϕe2 for n = 2 clients.

Chapter III

Temporal Stream Logic

Analyzing the design requirements of reactive applications in the real world
reveals that Boolean and temporal reasoning alone is not enough to construct
scalable reactive systems. Instead, it turns out that real-world applications
not only need to coordinate the transformation of a few data bits, but require
complex data structures that must be scalable according to the users’ desires.
The problem that we encounter with classical specification logics like LTL
is that they are limited to data instances that only can be expressed by the
composition of a few explicit data bits. Thus, they miss required abstractions
for keeping data entities scalable.

Our solution to the problem is the clean separation between the reac-
tive program’s control, affecting its execution behavior, and the data that
is processed continuously. To this end, we abstract from the actual data
representation and instead focus on the behavior description of the system’s
high-level control. Immediate advantages are scalability, because data rep-
resentations no longer need to be concretized, and modularization, since the
data can be instantiated independently of the control. Furthermore, a strict
separation improves the quality of the systems under design, since developers
are forced to keep a clean separation between the behavior description and
data properties, instead of mixing them in the design specification implicitly.

1 The Logic

In this chapter, we lay the foundations for describing reactive system be-
havior with a specification logic that explicitly separates data from control.
We present: Temporal Stream Logic (TSL), a specification language that is
especially designed for reactive system synthesis. TSL is the first temporal
logic that formalizes reactive behavior over infinite data streams of arbitrary,
non-enumerative, and higher order type. To this end, the logic utilizes a
straightforward notation for specifying how outputs are computed from in-
puts and uses Boolean and temporal connectives for an intuitive interface to
standard logical reasoning and for accessing time. Therefore, TSL focuses on
describing temporal control flow, while universally abstracting from possible

48 Chapter III. Temporal Stream Logic

inputs:
I

cells: C

outputs:
O

reactive system

implementing a

TSL specification ϕ...
...

...
...

Figure 14: The reactive system architecture that is implicitly utilized by TSL.

data representations. As a consequence, the logic is not only intuitive and
simple, but also allows developers to identify issues with the control flow,
even without a concrete implementation of data instances and their possible
transformations at hand. Accordingly, TSL scales up to any required data
abstraction, as well as to complex functional transformations or API calls.

1.1 Architecture
Every TSL formula ϕ describes a reactive system component processing a
finite set of input streams I and producing a finite set of output streams O.
Additionally, cells C can be used to store values computed at time t for reusing
them at the next time step t + 1. An overview of the resulting architecture
model is presented in Figure 14. According to this model, the environment
produces infinite streams of unconstrainted input data, while the system uses
pure and side-effect free functional transformations to manipulate the values
of the input streams at every point in time. After traversing a sequence
of function transformations, data values are either output or stored in cells,
where cells are used to provide the stored values again as inputs at the next
moment in time. The final component’s behaviour then results from its infinite
execution over time.

1.2 Updates, Function, and Predicate Terms
In order to process infinite data streams of arbitrary type, the logic differenti-
ates between two basic building blocks: purely functional transformations, re-
flected by functions f ∈ F and their compositions, as well as predicates p ∈ P,
used to access data properties of the inputs and cells, which then are projected
to Boolean decisions that control the temporally evolving data flow inside the

1. The Logic 49

system. Furthermore, functions and predicates are composable to new joint
transformations. To this end, we leverage a term based notion that separates
between function terms τF and predicate terms τP , respectively. Function
terms

τF := si | f τF τF · · · τF

either utilize inputs or cells si ∈ I ∪ C, without any prior conversion, or first
apply pure function transformations f in composition with other function
terms, i.e., pre-process input streams before they are passed as arguments
to the joining function. Function terms are of an arbitrary type. Predicate
terms

τP := si | p τF τF · · · τF

are constructed similarly, but instead are of Boolean type. Note that the term
syntax uses curried argument notation similar to functional programming lan-
guages. Finally, an update [so� τF] takes the result of a composed function
transformation τF and passes it either to an output or a cell so ∈ O ∪ C.

We denote sets of function terms, predicate terms, or updates by TF , TP
and T/, respectively, where TP ⊆ TF . Furthermore, we use F to denote the
set of function literals and P ⊆ F to denote the set of predicate literals, where
the literals si, so, f and p are symbolic representations of inputs and cells,
outputs and cells, functions, or predicates, respectively. The arity of function
and predicate literals f is accessed by](f), similar to the functions themselves.
Note that, as a consequence of the utilized symbolic representation, functions
and predicates are not tied to a specific implementation. However, we still
classify them according to their arity, i.e., the number of function terms they
are applied to, as well as by their type: input, output, cell, function, or
predicate. To give functions and predicates some semantics, an assignment
function 〈·〉 : F→ F is used that preserves the arity, i.e., ∀f ∈ F.](f) =](〈f〉).
For comparing two function or predicate terms syntactically, i.e., according
to the abstract syntax tree that is induced through the used function and
predicate literals, we use the syntactic equivalence relation ≡.

1.3 Inputs, Outputs, and Computations

We consider momentary inputs of the environment as assignments i ∈ V [I]

that map inputs i ∈ I to values v ∈ V. For the sake of readability, we
use I =̂ V [I]. Input streams then are infinite sequences ι ∈ Iω consisting
of infinitely many momentary inputs. Similarly, momentary outputs of the
system are assignments o ∈ V [O] of outputs o ∈ O to values v ∈ V, where we
also use O =̂ V [O]. Output streams are infinite sequences % ∈ Oω.

50 Chapter III. Temporal Stream Logic

To capture the behavior of cells, we introduce the notion of computa-
tions ς. Computations fix the function terms used to compute outputs and
cell updates, without fixing semantics of function literals. In other words,
computations determine the function terms that are executed at a time in-
stance to compute output values and the values that are stored in cells. The
momentary element of a computation is a computation step c ∈ T [O∪C]

F as-
signing outputs and cells so ∈ O ∪ C to function terms τF ∈ TF . For the sake
of readability let C =̂ T [O∪C]

F . A computation step fixes the control flow be-
haviour at a time instance, while a computation ς ∈ Cω is an infinite sequence
of computation steps. As soon as input streams, and function and predicate
implementations are known, computations can be turned into concrete output
streams. To this end, let 〈·〉 : F→ F be some function assignment, where we
assume that there are constant literals initc ∈ F for every cell c ∈ C that
provide initial values at the start of time and do not appear in any formula ϕ.
To evaluate the values of output streams from computations ς ∈ Cω under the
input ι and implementations 〈·〉, we use the evaluation function η〈·〉.

Definition 12. The evaluation function η〈·〉: Cω × Iω × N × TF → V
determines the value of a function term under a computation ς and input ι
at time t ∈ N:

η〈·〉(ς, ι, t, si) :=

ι(t)(si) if si ∈ I
〈initsi〉 if si ∈ C ∧ t = 0

η〈·〉(ς, ι, t− 1, ς(t− 1)(si)) if si ∈ C ∧ t > 0

η〈·〉(ς, ι, t, f τ0 · · · τm−1) := 〈f〉 η〈·〉(ς, ι, t, τ0) · · · η〈·〉(ς, ι, t, τm−1)

Consequently, output streams then result from evaluating η〈·〉on inputs and the
accumulated cell contents at every point in time, i.e., %〈·〉,ς,ι ∈ Oω is defined
via %〈·〉,ς,ι(t)(o) = η〈·〉(ς, ι, t, ς(t)(o)) for all t ∈ N and o ∈ O.

1.4 Syntax

Definition 13. Every TSL formula ϕ is build according to the grammar:

ϕ := true | τP | [so� τF] | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

1. The Logic 51

The basic propositions are either predicate terms τP , serving as the Boolean
interface to the inputs, or updates [so� τF], enforcing the expressed flow at
the current point in time. The remaining operators are standard for a tem-
poral logic. We have the Boolean operations via negation and conjunction,
which allow to express arbitrary Boolean combinations of predicate evalua-
tions and updates. Furthermore, we have the temporal operator ψ (next)
stating that the behavior expressed by the sub-formula ψ must be realized at
the next point in time and the temporal operator ϑU ψ (until), which enforces
a property ϑ to hold until the property ψ holds, where ψ must hold at some
future point in time eventually.

1.5 Semantics
TSL formulas are semantically evaluated under the scope of a given function
implementation 〈·〉 : F → F , an input stream ι ∈ Iω, and a computation
ς ∈ Cω that has been selected by the system.

Definition 14. Let 〈·〉 : F → F , ι ∈ Iω, and ς ∈ Cω be given, then the
validity of a TSL formula ϕ with respect to ς and ι is defined inductively
over t ∈ N via:

ς, ι, t �〈·〉 true :⇔ true
ς, ι, t �〈·〉 p τ0 . . . τm−1 :⇔ η〈·〉(ς, ι, t, p τ0 . . . τm−1)

ς, ι, t �〈·〉 [s� τ] :⇔ ς(t)(s) ≡ τ
ς, ι, t �〈·〉 ¬ψ :⇔ ς, ι, t 2〈·〉 ψ
ς, ι, t �〈·〉 ϑ ∧ ψ :⇔ ς, ι, t �〈·〉 ϑ ∧ ς, ι, t �〈·〉 ψ

ς, ι, t �〈·〉 ψ :⇔ ς, ι, t+ 1 �〈·〉 ψ

ς, ι, t �〈·〉 ϑU ψ :⇔ ∃t′′ ≥ t. ∀t ≤ t′ < t′′.
ς, ι, t′ �〈·〉 ϑ ∧ ς, ι, t′′ �〈·〉 ψ

Consider that the satisfaction of predicates depends on the current compu-
tation step and the steps of the past, while the satisfaction of updates only
depends on the current computation step. Furthermore, updates are only
checked syntactically, while the satisfaction of predicates depends on the given
assignment 〈·〉 and the input stream ι. We say that ς and ι satisfy ϕ, denoted
by ς, ι �〈·〉 ϕ, if and only if ς, ι, 0 �〈·〉 ϕ.

Beside the aforementioned default operators we have the standard derived
Boolean operators, such as false, disjunction ∨, implication →, and equiva-
lence↔, and the derived temporal operators release ϕRψ =̂ ¬((¬ψ)U(¬ϕ)),

52 Chapter III. Temporal Stream Logic

finally ϕ =̂ true U ϕ, always ϕ =̂ false Rϕ, the weak version of until
ϕW ψ =̂ (ϕU ψ) ∨ (ϕ), and as soon as ϕA ψ =̂ ¬ψW(ψ ∧ ϕ).

1.6 Realizability

With syntax and semantics of TSL at hand, we are ready to precisely formalize
the realizability problem of the logic.

Problem 1. Given a TSL formula ϕ, is there a strategy σ : (2TP)+ → C
such that for every input ι ∈ Iω and function implementation 〈·〉 : F→ F ,
the output that results according to σ satisfies ϕ? Or formally:

∃σ : (2TP)+ → C. ∀ι ∈ Iω. ∀〈·〉 : F→ F . σ oo〈·〉ι, ι �〈·〉 ϕ

where σ oo〈·〉ι = ς is the unique computation ς ∈ Cω such that:

∀t ∈ N. ςt = σ({τ ∈ TP | η〈·〉(ς, ι, 0, τ)} . . . {τ ∈ TP | η〈·〉(ς, ι, t, τ)})

If a strategy σ exists, we say that σ realizes ϕ. If we additionally ask for
a concrete finitely representable instantiation of σ, we consider the synthesis
problem of TSL.

2 Specification Examples

Before we continue, we demonstrate the advantages of TSL as a specification
language for the development of reactive systems on two real-world example
applications. Our first example reconsiders the kitchen timer application of
the introduction, for which specifying the reactive behavior revealed to be a
tedious task, if tried to be done with LTL. Moreover, we had identified that
such an LTL specification would be out of scope for every currently available
synthesis tool. We show that TSL easily outperforms LTL in such a case, by
utilizing the now available abstractions that we identified as missing for LTL.

Our second application targets a music player app that needs to be imple-
mented in the environment of the Android operating system, a system that
is deployed worldwide on a large scale of different mobile phones. Regarding
the requirements of the app, we compare the design challenge of creating a
TSL specification and using synthesis with the task of manually creating the
application using classical iterative development techniques instead.

2. Specification Examples 53

2.1 Specifying a Kitchen Timer
With the formal semantics of TSL at hand, we reconsider the kitchen timer
application of Chapter I. Remember: the timer utilizes three buttons, a screen
for displaying the currently set time, and a buzzer for producing an alarm.
For the sake of simplicity, we consider the button values to be provided as
Boolean input streams, which deliver true, as long as a button is pressed, and
false otherwise. Furthermore, we assume that there is another input stream
providing the time since the last evaluated moment, used to synchronize the
displayed time with the underlying clock of the application framework.

Similar to the button inputs, the system outputs a Boolean data stream for
controlling the buzzer, which emits an alarm whenever the output is true and
keeps silent otherwise. At the same time, the system outputs a time value in
a format that is suitable to be displayed on the screen. Note that the concrete
representation of this time value depends on the application framework, and,
thus, is not concretized as part of the TSL specification.

The required properties of the specification can be easily formalized using
TSL. To this end, we start by fixing possible operations on time – a cell that
holds the time that has been configured by the user.

countup := [time� countup time dt]

countdown := [time� countdown time dt]

incmin := [time� incMinutes time]

incsec := [time� incSeconds time]

idle := [time� time]

The updates on time use the literals countup, countdown, incMinutes, and
incSeconds, which represent pure functions for updating the value of the cell
with the correspondingly transformed input. For counting up or down, the
input signal dt delivers the time difference since the last execution of the
network. Note that the semantics of TSL ensure that these assignments to
the same cell are mutually exclusive, i.e., it can never be the case that two of
these operations are executed simultaneously at the same point time.

Next, we need to control the flow of the updates of time. To this end, we
utilize a predicate that checks whether the time is currently set to zero or not

zero := eq time zero∇

where zero∇ is a constant of the same type as time1. Finally, we define some
sub-properties, which are useful for expressing conditions that regularly used
later. In our case these are

1We tag constant literals with ∇ to make it easier to distinguish them from input literals.

54 Chapter III. Temporal Stream Logic

reset := Min ∧ Sec

counting := countup ∨ countdown

anykey := press Min ∨ press Sec ∨ press StartStop
start := press StartStop ∧ ¬press Min ∧ ¬press Sec

start&min := press StartStop ∧ press Min ∧ ¬Sec ∧ ¬Sec
start&sec := press StartStop ∧ press Sec ∧ ¬Min ∧ ¬Min

where the literals Min, Sec, and StartStop represent the input signals for the
three buttons, respectively. The function press is used for providing a more
compact notion and for improved readability. It is defined as:

press x := ¬x ∧ x

The last two conditions start&min and start&sec are required for realizing
requirement 8.

Now we are ready to reformulate all properties of the kitchen timer, that
we informally introduced during the introduction, but this time with TSL:

ψ1 := reset ↔ [time� zero∇]

ψ2 := ¬counting ∧ press Min ∧ ¬Sec ↔ incmin

ψ3 := ¬counting ∧ press Sec ∧ ¬Min ↔ incsec

ψ4 := zero→(
(idle ∧ start
→ tillAnyInput countup)W (incmin ∨ incsec)

)
ψ5 := incmin ∨ incsec→(

(¬counting ∧ start
→ tillAnyInput countdown)W zero

)
ψ6 := ¬counting ∧ counting

→ start ∨ start&min ∨ start&sec

ψ7 := counting ∧ anykey ∧ ¬reset
→ tillAnyInput idle

ψ8 := ¬counting ∧ (start&min ∨ start&sec)
→ tillAnyInput countdown

ψ9 := ([beep� true∇] ∨ [beep� false∇]) ∧(
(countdown ∧ zero) ∨ anykey↔ [beep� true∇]

)
ψ10 := [screen� display time]

2. Specification Examples 55

We again use a helping function tillAnyInput for improved readability, which
denotes that a condition is satisfied until either the system is reset or any
button gets pressed. The property can be expressed in TSL as follows:

tillAnyInput x := (x ∧ ¬anykey) W (reset ∨ x ∧ anykey)

The final specification is then composed as ϕ = ψinit ∧
∧10
i=1 ψi, where ψinit

adds some remaining startup conditions, which ensure that the system is
initialized correctly according to the corresponding temporal context.

ψinit := ¬counting ∧ (counting→ start) ∧
¬incsec ∧ ¬incmin ∧ [beep� false∇]

Also note that the -operations that have been used in the ψi formulas are
necessary, since “being pressed” requires a change of the Boolean input and
this change is only observable by comparing the currently provided value with
the previous one.

The definition of ϕ provides the behavioral specification of the kitchen
timer, where the compactness of ϕ indeed proves that TSL overcomes the
Boolean limitations of LTL that we observed in the introduction. Moreover,
TSL features to argue about arbitrary data streams by utilizing the separation
of data and control. This separation is required, because any representation
of the time value, that needs to be displayed on the screen, is too complex to
be encoded efficiently by a Boolean combination of binary values.

2.2 Specifying a Music Player
While the previous example demonstrates the advantages of TSL against clas-
sical logics, which are based on atomic propositions, it still might not be ob-
vious which advantages synthesis provides against manual code creation. To
this end, we also demonstrate the advantage of having the separation of dif-
ferent behavioral properties into a logical conjunction against iterative code
development in the sense of feature extensions. We illustrate this difference on
the development task of a simple Android music player app. The most time
consuming and error-prone considerations during the development of Android
apps are caused by the temporal behavior of the app through the Android life-
cycle [133]. This lifecycle specifies how apps are paused, when moved to the
background, come back into focus, or are terminated. Specifically, resume
and restart errors are commonplace and hard to debug and correct.

Our music player example highlights a development situation, in which a
resume and restart error could be introduced unintentionally when program-
ming by hand, but is avoided when using a TSL specification. The app utilizes

56 Chapter III. Temporal Stream Logic

Sys.leaveApp () {
if (MP.musicPlaying ()) {

Ctrl.pause();
}

}
Sys.resumeApp () {

pos = MP.trackPos ();
Ctrl.play(Tr,pos);

}

(
leaveApp Sys ∧ musicPlaying MP
→ [Ctrl� pause∇]

)
(
resumeApp Sys
→ [Ctrl� play Tr (trackPos MP)]

)
Figure 15: On the left, the code that is used to interact with the system for
leaving and resuming the app. On the right, the equivalent formulation in
TSL.

the Android music player library (MP) in combination with its control inter-
face (Ctrl). It pauses music, if playing and being moved to the background
(for example if a call is received), and continues playing the currently selected
track (Tr) at the stopped position, if the app is resumed. In the Android oper-
ating system (Sys), the leaveApp method is called whenever an app moves to
the background, while the resumeApp method is called to resume. When the
user leaves the app and the music is currently playing, then the music must
be paused. Similarly, when the user resumes the player, then the music must
be started again at the position it has been stopped before. Some code that
implements this behavior can be found on the left of Figure 15. An equivalent
TSL specification is placed on the right.

Now consider an extension of the app’s functionality, which requires that
it only starts playing after being resumed, if music was playing on the previ-
ous leave of the app before. For the manually developed code, such a change
requires a new shared program variable wasPlaying keeping track of the con-
dition under which the app has been left in the past. Therefore, this new
variable must be correctly initialized, read and updated at the right places
in the code, as illustrated on the right of Figure 16. The respective changes
include an additional conditional in the resumeApp method that branches into
two different update conditions for wasPlaying, respectively.

The example highlights how a small update of a minor requirement may
lead to some wide-ranging code changes. Furthermore, for the application of
these changes a developer with decent knowledge of the code base is necessary,
who knows all the places that must be updated. Moreover, the introduced
change requires a new globally scoped variable, which then might be changed
unwittingly elsewhere.

On the other hand, changing the TSL specification is straightforward.
Here, only updating a single sub-formula is required: if the app is left while

3. Decidability 57

bool wasPlaying = false;

Sys.leaveApp () {
if (MP.musicPlaying ()) {

wasPlaying = true;
Ctrl.pause();

}
else {

wasPlaying = false;
}

}

Sys.resumeApp () {
if (wasPlaying) {

pos = MP.trackPos ();
Ctrl.play(Tr,pos);

}
}

(
leaveApp Sys ∧ musicPlaying MP
→ [Ctrl� pause∇]

)
(
leaveApp Sys ∧ musicPlaying MP
→ [Ctrl� play Tr (trackPos MP)]

A resumeApp Sys
)

Figure 16: A minor change in functionality may require multiple code changes,
but can be reflected by a small change in the TSL specification.

music was playing, then music must play again as soon as the app resumes.
In general, the development of formal specifications brings many advan-

tages against manually created code. On the one hand, one obtains a pre-
cise description of the required system features, which are logically organized
through Boolean and temporal connectives. On the other hand, implementa-
tion details can be postponed to the synthesis engine and later function and
predicate implementations. Finally, through synthesis the created systems are
correct by construction. Hence, potential errors are already discovered during
development and can be fixed at an early design stage.

3 Decidability
Before we consider the details of our solution to the TSL synthesis problem,
we examine some properties of the logic that arise as a consequence of the
utilized universal quantification over function and predicate terms. The most
constrictive implication of this quantification is that it renders the synthesis
problem undecidable, since, in a nutshell, universally quantified predicates can
be used to construct a path with two equal, but differently constructed cell el-
ements using a diagonalization argument. In combination with the temporally
proceeding evaluation over time, such two equal elements can be utilized to
encode undecidable problems, as for example the Post correspondence prob-
lem (PCB) [118].

58 Chapter III. Temporal Stream Logic

Theorem 3. The realizability problem of TSL is undecidable.

Proof. We reduce an instance of the Post Correspondence Problem (PCP) [118],
consisting of an alphabet Σ and sequences w0, w1, . . . , wn, v0, v1, . . . , vn ∈ Σ+,
to the realizability of a TSL formula ϕ. The PCP asks, whether there is some
finite sequence i0i1 . . . ik ∈ N+ such that wi0wi1 . . . wik = vi0vi1 . . . vik . The
problem is well known to be undecidable.

To this end, we translate an arbitrary instance of PCP to a TSL formula ϕ,
which is realizable if and only if there is a solution to the PCP instance.
Let n ∈ N, w0, w1, . . . , wn ∈ Σ∗ and v0, v1, . . . , vn ∈ Σ∗ be given. We fix
predicate literals P = {p}, utilizing some unary predicate literal p, function
literals F = Σ∪{X∇}, with every f ∈ Σ corresponding to some unary function,
and X∇, denoting some constant literal, I = ∅, O = ∅, and C = {A, B}. Let
µ(x0x1 . . . xm, s) = x0(x1(. . . xm(s) . . .)), then we define ϕ via:

ϕ :=
(

[A� X∇] ∧ [B� X∇]
)

∧
(∨n

j=0

(
[A� µ(wj , A)] ∧ [B� µ(vj , B)]

))
∧

(
p(A) ↔ p(B)

)
Intuitively, we first assign the cells A and B a constant base value. Then,
from the next time step on, we have to pick pairs (wj , vj) in every time step.
Our choice is stored in the cells A and B, respectively. Finally, we check the
constructed sequences of function applications to be equal at some future time,
where we use the universally quantified predicate p to check for equality. The
TSL formula ϕ is realizable if and only if there is an index sequence i0i1 . . . ik
such that wi0wi1 . . . wik = vi0vi1 . . . vik :

“⇒”: Assume ϕ is realizable, i.e., there is some strategy σ : (2TP)+ → C that
satisfies ϕ for ι = ∅ω and all possible choices of 〈·〉 : F→ F . We claim that:

∃α ∈ (2TP)ω. ∃t > 1. η〈·〉(σ oα, ι, t, A) = η〈·〉(σ oα, ι, t, B) (1)

For the sake of contradiction assume the contrary, i.e., that A and B are always
different on every branch after two steps. We fix 〈X∇〉 = ε to be the empty
word and 〈f〉(w) = w · f to be functions for all f ∈ Σ that concatenate the
letters f ∈ Σ to words w ∈ Σ∗. Correspondingly, the strategy σ operates on
sequences, which are stored in A and B and get enlarged over time. Moreover,
the content of A and B is strictly increasing with every update, since |wk| > 0

3. Decidability 59

and |vk| > 0 for all k ∈ [n]. Therefore, a simple induction shows that at every
time step t > 1 either A or B contains a value w ∈ Σ+ which never has been
stored in A or B at some earlier time step t′ < t. Let wA

2, w
A
3, . . . ∈ Σ∗ be the

sequences stored in A and wB
2, w

B
3, . . . ∈ Σ∗ be the sequences stored in B for all

t > 1. We choose 〈p〉 such that it satisfies

〈p〉(wX
j) =

{
¬〈p〉(wA

j) if X = B and |wA
j | ≤ |wB

j | and wA
j 6= wB

j

¬〈p〉(wB
j) if X = A and |wA

j | > |wB
j |

A corresponding choice is always possible due to the first time appearance of
one of the elements of A or B as mentioned before. Using the corresponding
semantics 〈·〉, it is easy to observe that on the branch σ oo〈·〉ι there is no time
t > 2, where p(A) ↔ p(B) as long as the content of A and B differs at every
t > 2. However, this contradicts that σ oo〈·〉ι, ι �〈·〉 ϕ and therefore proves the
claim of Equation (1). Hence, if there is some time t > 2, at which wA

t = wB
t ,

then the updates of A and B on the branch σ oo〈·〉ι chosen at times 0 < t′ ≤ t
determine the indices i0i1 . . . it−1 such that wi0wi1 . . . wit−1

= vi0vi1 . . . vit−1
.

“⇐”: Now, assume that there is a solution i0i1 . . . ik to the PCP instance.
As I = ∅, it suffices to construct the computation ς = c0c1 . . . played on all
branches independently of the evaluations of p with c0(A) = c0(B) = X∇ and
for all t > 0: ct(A) = µ(w(t−1) mod (k+1), A) and ct(B) = µ(w(t−1) mod (k+1), B).
It is straightforward to see that ς satisfies [A� X∇], [B� X∇] and(n∨

j=0

(
[A� µ(wj , A)] ∧ [B� µ(vj , B)]

))
.

Thus, it only remains to argue that ς satisfies (p A ↔ p B). To this
end, let j0j1 . . . = (i0i1 . . . ik)ω. Then a simple induction shows that

%〈·〉,ς,ι(t)(A) = η〈·〉(ς, ι, t, µ(wj0wj1 . . . wjt−2
, X∇))

and %〈·〉,ς,ι(t)(B) = η〈·〉(ς, ι, t, µ(vj0vj1 . . . vjt−2
, X∇)) for all t > 1, ι = ∅ω, and all

choices of 〈·〉. Now, consider that especially for t = k + 2 we have that

wj0wj1 . . . wjt−2
= wi0wi1 . . . wik = vi0vi1 . . . vik = vj0vj1 . . . vjt−2

and, thus, %〈·〉,ς,ι(k + 2)(A) = %〈·〉,ς,ι(k + 2)(B), independent of the choice of 〈·〉.
As this implies that p(%〈·〉,ς,ι(k + 2)(A)) = p(%〈·〉,ς,ι(k + 2)(B)) for any unary
predicate p ∈ P, it proves that ς satisfies p A ↔ p B at position k+ 2. Hence,
the computation ς also satisfies (p A ↔ p B), which finally concludes
the proof.

60 Chapter III. Temporal Stream Logic

Undecidability, thus, results from the combination of multiple features of TSL:
the ability to store and reuse values through cells, the possibility to construct
two equal values through universally quantified predicates, and the features of
temporal behavior allowing for the manipulation of data streams over time.

4 Fragments
The realizability problem of TSL being undecidable is an unpleasant result and
leads to the natural desire of being avoided in the first place. A common tech-
nique for recovering decidability is the restriction of the logic to a decidable
fragment, which is still expressive enough to cover all of the required consider-
ations. Classically, such limitations are introduced on the winning conditions
of the underlying synthesis games, but in case of TSL, it is also possible to
limit the term expressions that are used as building blocks for constructing
the specification. We consider both variants. However, for simplifications of
the winning conditions, we do not instantiate them as term simplifications on
the logic level, but instead consider restrictions of the winning conditions for
the underlying games directly. The results reveal that restrictions of the term
syntax are of little help, but restrictions on the winning conditions are a step
forward towards solving the undecidability problem.

We start with restrictions on the term expressions, where we show that
most of the natural limitations do not affect expressivity, and, thus, keep the
undecidability result. Hence, while being of little help for improving the situ-
ation in terms of practical considerations, the results still help us to achieve a
better understanding of the core capabilities of TSL. We consider a chain of
realizability preserving transformations that convert a given TSL formula to
a simplified fragment of the logic. This fragment, however, still is expressive
enough to cover all of the original specification’s intentions. The simplifi-
cations that we consider are (1) the restriction to a single unary predicate
literal p, and (2) the restriction to a single binary function literal f. We call
the resulting fragment TSLp

f (pronounced TSL-f-p) and show that it is equally
expressive to full TSL in terms of realizability.

Definition 15. The syntax of TSLp
f is formally defined as follows:

ϕ := true | p τ̂F | [so� τ̂F] | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

where τ̂F := si | f τ̂F τ̂F .

Semantically, TSLp
f formulas are evaluated the same as full TSL.

4. Fragments 61

We show that both logics are equally expressive through a step-wise re-
duction from TSL to TSLp

f (the other direction is trivial). To this end, we first
restrict different predicate literals, appearing in the formula, to a single pred-
icate literal p. Afterwards, we eliminate function literals with strictly more or
less than two arguments (except constant literals). Then, we eliminate differ-
ent function literals and reduce them to the single literal f. Finally, we elimi-
nate constant literals. For every step, realizability is preserved. Nevertheless,
the underlying system architecture may change according to the number of
used cells, as well as the utilized function and predicate literals.

Theorem 4. For every TSL formula ϕ there exists an equi-realizable
TSLp

f formula ϕ′ that can be constructed from ϕ in linear time in |ϕ|.

Proof. For the proof, we use Pϕ, Fϕ, and Cϕ to denote the sets of predicates,
functions, and cells that are used in a formula ϕ, respectively.

We convert ϕ to ϕ′ via a five-step transformation. In the first step, we
reduce different predicate literals to a single predicate literal p. The resulting
fragment is denoted by TSLp.

TSL → TSLp: We apply the transformation κp to a TSL formula ϕ, where

κp(ϕ) :=

p si if ϕ ≡ si ∈ I ∪ C
p (pϕ τF · · · τF) if ϕ ≡ pϕ τF · · · τF with pϕ∈ Pϕ
� κp(ϑ) if ϕ ≡ � ϑ with � ∈ {¬, }
κp(ϑ)� κp(ψ) if ϕ ≡ ϑ� ψ with � ∈ {∧,U}
ϕ otherwise

turning every predicate literal pϕ∈ Pϕ, which appears in the formula ϕ, into a
function literal pϕ∈ Fκp(ϕ) of the same arity. Thus, with Pκp(ϕ) = {p} the only
predicate literal that is left is p, which is freshly introduced to the formula.
Then, every TSL formula ϕ is realizable if and only if κp(ϕ) is realizable.

“⇒”: Assume ϕ is realizable, then there exists a strategy σ : (2TP)+ → C
that satisfies ϕ for all ι ∈ Iω and all possible choices of 〈·〉 : Fϕ → F . We claim
that σ also is a winning strategy with respect to κp(ϕ). Hence, for the sake
of contradiction assume the claim does not hold, i.e., there exists an input
ι′ ∈ Iω and some assignment 〈·〉′ : Fκp(ϕ) → F such that σ oo〈·〉′ ι′, ι′ 2〈·〉′ κp(ϕ).
According to 〈·〉′, we then can choose a modified assignment 〈·〉, which assigns
every predicate literal pϕ, that has been reinterpreted as a function literal af-
ter the transformation κp, the composition of p and pϕ according to 〈·〉′, i.e.,
〈pϕ〉 := 〈p〉′ ◦ 〈pϕ〉′ for all pϕ ∈ Pϕ. Next, let I′ ⊆ I and C′ ⊆ C be the sets

62 Chapter III. Temporal Stream Logic

of input literals and cells, respectively, for which every si ∈ I′ ∪ C′ has been
replaced by p si through the transformation κp. Furthermore, let I′ ⊆ I′′ ⊆ I
and C′ ⊆ C′′ ⊆ C be the sets of input literals and cells, respectively, that are
covered through the transitive closure of direct updates of the form [si� s′i]
appearing in ϕ and starting from the initial sets I′ and C′. Finally, let F′ ⊆ Fϕ
be the set of function literals that appear as the last transformation in up-
dates to cells of C′′, i.e., those f ∈ Fϕ that are used in updates of the form
[c� f τF · · · τF] appearing in ϕ with c ∈ C′′. Then, we fix 〈f〉 := 〈p〉′ ◦ 〈f〉′
for all f ∈ F′ and 〈f〉 := 〈f〉′ for all remaining function literals f. More-
over, we change the input ι′ to ι with ι(i) := 〈p〉′ ◦ ι′(i) for all i ∈ I ′′ and
ι(i) := ι′(i) otherwise. A simple induction shows, that the computation σ oo〈·〉ι
evaluates exactly the same under the assignment 〈·〉 as σ oo〈·〉′ ι′ under the as-
signment 〈·〉′. As a consequence, it follows that σ oo〈·〉ι, ι 2〈·〉 ϕ, which proves
that ϕ is unrealizable as well. This is, however, a contradiction against our
initial assumption, concluding the proof of this direction.

“⇐”: Now assume that κp(ϕ) is realizable and let σ : (2TP)+ → C be the
corresponding realizing strategy. We again claim that σ also realizes ϕ, which
we, nevertheless, endeavor to contradict with the existence of some input ι
and some assignment 〈·〉 such that σ oo〈·〉ι, ι 2〈·〉 ϕ. To this end, we simply
choose the extended assignment 〈·〉′, which assigns the fresh literal p ∈ Pκp(ϕ),
only appearing in κp(ϕ), to the identity function id, i.e., 〈p〉′ := id, and
keeps all remaining literals unchanged according to 〈·〉, i.e., 〈f〉′ := 〈f〉 for
all f ∈ Fϕ. Again, a simple induction shows that σ oo〈·〉ι, ι �〈·〉 ϕ if and only
if σ oo〈·〉′ ι, ι �〈·〉′ κp(ϕ), finally leading to the desired contradiction, since then
also σ oo〈·〉′ ι, ι 2〈·〉′ κp(ϕ).

TSLp → TSLp
¬1: Next, we eliminate unary function literals by replacing

them with binary ones. The resulting fragment of the logic is denoted by
TSLp

¬1. To this end, the applied transformation κ¬1 recursively traverses over
the formula structure via

κ¬1(ϕ) :=

true if ϕ ≡ true
p κ′¬1(τF) if ϕ ≡ p τF
[si� κ′¬1(τF)] if ϕ ≡ [si� τF]
� κ¬1(ϑ) if ϕ ≡ � ϑ with � ∈ {¬, }
κ¬1(ϑ)� κ¬1(ψ) if ϕ ≡ ϑ� ψ with � ∈ {∧,U}

and function terms via

κ′¬1(τF) :=

 f1 κ
′
¬1(τ ′F) κ′¬1(τ ′F) if τF ≡ f1 τ

′
F

f κ′¬1(τ1
F) · · · κ′¬1(τmF) if τF ≡ f τ1

F · · · τmF and m > 1
τF otherwise

4. Fragments 63

Let F1
ϕ be the set of all unary function literals appearing in ϕ. Intuitively, all

elements of F1
ϕ are eliminated by the transformation κ¬1 via replacing them

by equally named binary literals that are applied twice to the same argument.
We prove that every TSLp formula ϕ is equi-realizable to κ¬1(ϕ).

“⇒”: Assume that ϕ is realizable. Hence, there exists a realizing strat-
egy σ : (2TP)+ → C. Consider the strategy σ′ with σ′(w)(si) := κ′¬1(σ(w)(si))
for all w ∈ (2TP)+ and si ∈ O ∪ C. We claim that σ′ is a realizing strat-
egy for κ¬1(ϕ). However, for the sake of contradiction, assume the oppo-
site, i.e., that there exists an input ι′ and an assignment 〈·〉, for which
σ′ oo〈·〉′ ι′, ι′ 2〈·〉′ κ¬1(ϕ). To this end, we choose 〈·〉 : Fϕ → F to map every
unary function literal f1 ∈ F1

ϕ to a function 〈f1〉 such that 〈f1〉 v := 〈f1〉′ v v
for all v ∈ V, while for every other function literal, the assignment 〈·〉 re-
turns the same as 〈·〉′. Then a simple induction over the structure of TSLp

>0

formulas ψ proves that σ oo〈·〉ι′, ι′ �〈·〉 ψ if and only if σ′ oo〈·〉′ ι′, ι′ �〈·〉′ κ¬1(ψ).
Therefore, σ oo〈·〉′ ι′, ι′ 2〈·〉′ κ¬1(ϕ) also implies that σ oo〈·〉ι′, ι′ 2〈·〉 ϕ leading to
the desired contradiction.

“⇐”: Assume that κ¬1(ϕ) is realizable and let σ′ be the realizing strategy.
W.l.o.g. we can assume that σ′ only maps to function terms that appear in
κ¬1(ϕ). We construct a strategy σ from σ′ such that for all w ∈ (2TP)+ and
si ∈ O∪C we have that σ(w)(si) := (κ′¬1)−1(σ′(w)(si)), where (κ′¬1)−1 is the
inverse transformation of κ′¬1. This inverse is well-defined due to restriction
to function terms appearing in κ¬1(ϕ), for which the set F1

ϕ is known. We
claim that σ realizes ϕ, where for the sake of contradiction we assume the
opposite. Then there is an input ι and an assignment 〈·〉, under which σ does
not satisfy ϕ. We fix some assignment 〈·〉′ as follows: for every f1 ∈ F1

ϕ and
v, v′ ∈ V let 〈f1〉′ v v′ := 〈f1〉 v and for all remaining function literals f let
〈f〉′ := 〈f〉. A simple induction over the structure of ϕ shows that σ oo〈·〉ι, ι �〈·〉
ϕ if and only if σ′ oo〈·〉′ ι, ι �〈·〉′ κ¬1(ϕ). Hence, according to the contraposition,
we derive that σ′ oo〈·〉′ ι, ι 2〈·〉′ κ¬1(ϕ), which leads to the desired contradiction.

TSLp
¬1 → TSLp

0,2: Next, we eliminate function literals that are applied to
more than two arguments and replace them by chains of binary function
applications. The resulting TSL fragment is denoted by TSLp

0,2. The utilized
transformation κ2 recursively traverses over the structure of a given formula ϕ:

κ2(ϕ) :=

true if ϕ ≡ true
p κ′2(τF) if ϕ ≡ p τF
[si� κ′2(τF)] if ϕ ≡ [si� τF]
� κ2(ϑ) if ϕ ≡ � ϑ with � ∈ {¬, }
κ2(ϑ)� κ2(ψ) if ϕ ≡ ϑ� ψ with � ∈ {∧,U}

64 Chapter III. Temporal Stream Logic

and contained function terms with κ′2, where κ′2(si) := si for all si ∈ I∪C and

κ′2(f τ1
F · · · τmF) := f κ′2(τ1

F) (t κ′2(τ2
F) · · · (t κ′2(τm−1

F) κ′2(τmF)) · · ·)

The literal t is a fresh binary function literal that does not appear in the
initial formula ϕ. Note that binary function literals keep unchanged by κ′2.
We proof that ϕ and κ2(ϕ) are equi-realizable.

“⇒”: Assume ϕ is realizable, i.e., there exists some realizing strategy σ.
We construct the strategy σ′ via σ′(w)(si) := κ′2(σ(w)(si)) for all w ∈ (2TP)+

and si ∈ O∪ C and claim that σ′ realizes κ2(ϕ). For the sake of contradiction
assume the opposite, i.e., that there exists some input ι′ and assignment 〈·〉′
such that σ′ oo〈·〉′ ι′, ι′ 2〈·〉′ κ2(ϕ). Then we choose the assignment 〈·〉 such that
for all f ∈ Fϕ and arguments v1

f , v
2
f , . . . , v

m
f ∈ V we have that

〈f〉 v1
f v

2
f · · · vmf := 〈f〉′ v1

f (〈t〉′ v2
f · · · (〈t〉′ vm−1

f vmf) · · ·)

An induction over ϕ shows that σ oo〈·〉ι′, ι′ �〈·〉 ϕ iff σ′ oo〈·〉′ ι′, ι′ �〈·〉′ κ2(ϕ). Hence,
also σ oo〈·〉ι′, ι′ 2〈·〉 ϕ leading to the desired contradiction.

“⇐”: Now assume that κ2(ϕ) is realizable and let σ′ be the realizing strat-
egy. W.l.o.g. we can assume that σ′ only maps to function terms that appear
in κ2(ϕ). We construct the strategy σ via σ(w)(si) := (κ′2)−1(σ′(w)(si)) for
all w ∈ (2TP)+ and si ∈ O∪C, where (κ′2)−1 is the inverse transformation of κ′2,
which is well defined on all function terms appearing in κ2(ϕ). We claim that
σ is a realizing strategy for ϕ, but assume the opposite for the sake of contra-
diction. Hence, let ι be an input and 〈·〉 be some assignment, which witness the
non-satisfaction. We select the assignment 〈·〉′ such that 〈t〉′ v v′ := (v,v′)
implements the tuple constructor for all possible values v, v′ ∈ V and 〈f〉′
implements the m-times nested un-curried version of 〈f〉. A simple induc-
tion over the formula structure of ϕ shows that σ oo〈·〉ι, ι �〈·〉 ϕ if and only
if σ′ oo〈·〉′ ι, ι �〈·〉′ κ2(ϕ) such that it immediately follows that σ′ oo〈·〉′ ι, ι 2〈·〉′ ϕ.
This leads to the desired contradiction proving that ϕ is indeed realizable as
well.

TSLp
0,2 → TSLp

c,f: In the next step, we eliminate binary function applica-
tions of different function literals and unify them according to a single func-
tion literal f. The resulting fragment is denoted by TSLp

c,f and the utilized
transformation by κf. It is defined via

κf(ϕ) :=

true if ϕ ≡ true
p κ′f(τF) if ϕ ≡ p τF
[si� κ′f(τF)] if ϕ ≡ [si� τF]
� κf(ϑ) if ϕ ≡ � ϑ with � ∈ {¬, }
κf(ϑ)� κf(ψ) if ϕ ≡ ϑ� ψ with � ∈ {∧,U}

4. Fragments 65

and the utilized term transformation κ′f is defined via κ′f(si) := si for all
si ∈ I ∪ C and

κ′f(g τF τ ′F) := f c∇g
(
f
(
f c∇0 κ

′
f(τF)

) (
f c∇0 κ

′
f(τ
′
F)
))

where f is a fresh binary function literal that does not appear in ϕ and c∇g
and c∇0 are fresh constant literals for all g ∈ Fϕ that do not appear in ϕ. We
prove that ϕ and κf(ϕ) are equi-realizable.

“⇒”: Assume that ϕ is realizable and let σ be the strategy realizing ϕ.
We construct the strategy σ′ via σ′(w)(si) := κ′f(σ(w)(si)) for all w ∈ (2TP)+

and si ∈ O ∪ C and claim that σ′ realizes κf(ϕ). For the sake of contra-
diction assume the opposite, i.e., that there exists an input ι′ and an assign-
ment 〈·〉′ : {f, p} → F such that σ′ oo〈·〉′ ι′, ι 2〈·〉′ κf(ϕ). We select the assignment
〈·〉 : Fϕ → F such that

〈g〉 v v′ = 〈f〉′ 〈c∇g〉′
(
〈f〉′

(
〈f〉′ 〈c∇0〉′ v

) (
〈f〉′ 〈c∇0〉′ v′

))
for all v, v′ ∈ V and all binary function literals g. For all remaining function
literals g we fix 〈g〉 := 〈g〉′. A simple induction over the structure of the
formula ϕ reveals that σ oo〈·〉ι′, ι′ �〈·〉 ϕ if and only if σ′ oo〈·〉′ ι′, ι′ �〈·〉′ κf(ϕ).
Thus, by the contraposition it follows that σ oo〈·〉ι′, ι′ 2〈·〉 ϕ leading to the
desired contradiction.

“⇐”: Now assume that κf(ϕ) is realizable and let σ′ be the corresponding
realizing strategy. W.l.o.g. we can assume that σ′ only maps to function
terms that appear in κf(ϕ). We construct a strategy σ from σ′ such that for
all w ∈ (2TP)+ and si ∈ O ∪ C we have that σ(w)(si) := (κ′f)

−1(σ′(w)(si)),
where (κ′f)

−1 is the inverse transformation of κ′f. Note that this inverse is
well-defined for the fixed formula κf(ϕ). We claim that σ realizes ϕ, but
assume the opposite for the sake of contradiction. Hence, let ι and 〈·〉 be some
input stream and literal assignment, respectively, which together witness the
non-satisfaction of ϕ. We choose the assignment 〈·〉′ such that 〈c∇0〉′ := 0,
〈c∇g〉′ := 〈g〉 for all g ∈ Fϕ, 〈initc〉′ := 〈initc〉 for all cells c ∈ C, and

〈f〉′ v v′ :=

 (0, v′) if v ≡ 0
(v, v′) if v ≡ (x, y)
v (pr1(pr0(v′))) (pr1(pr1(v′))) otherwise

for all v, v′ ∈ V. For the evaluation of 〈f〉′ consider that the value 0, tuples
(x, y), and functions g are always pairwise unequal. Furthermore, note that
the application of 〈f〉′ is always well-defined for the evaluation of function
terms that appear in a formula κf(ϕ). Then an induction over the formula

66 Chapter III. Temporal Stream Logic

structure of ϕ shows that σ oo〈·〉ι, ι �〈·〉 ϕ if and only if σ′ oo〈·〉′ ι, ι �〈·〉′ κf(ϕ).
Hence, according to the contraposition it follows that σ′ oo〈·〉′ ι, ι 2〈·〉′ κf(ϕ).
This finally leads to the desired contradiction.

TSLp
c,f → TSLp

f: With the final step, we remove constant literals from
TSLp

c,f formulas ϕ eventually leading to the fragment TSLp
f. Therefore, let

F0
ϕ := Fϕ \ {p, f} be the set of all remaining constant function literals appear-
ing in ϕ. We define the transformation κ¬0 via

κ¬0(ϕ) :=
(∧

c∈F0
ϕ

[c� c]
)
∧ ϕ

where constant function literals c ∈ F0
ϕ are reinterpreted as cells c ∈ Cκ¬0(ϕ).

We prove that for every TSLp
c,f formula ϕ: ϕ is equi-realizable to κ¬0(ϕ).

“⇒”: To this end, we first assume that ϕ is realizable, i.e., there exists
a realizing strategy σ : (2TP)+ → C. Now, consider the modified strategy σ′,
which returns the same computations as σ, but is extended with identity
updates for all cells f0 ∈ F 0

ϕ ⊆ Cκ¬0(ϕ), i.e., for every input prefix w ∈ (2TP)+

we have that σ′(w) = σ(w) ∪
⋃

f0∈Fϕ{f0 7→ f0}. We claim that σ′ satisfies
κ¬0(ϕ) for every chosen input ι′ and assignment 〈·〉′, but for the sake of
contradiction assume there would be ι′ ∈ Iω and 〈·〉′ : Fκ¬0

→ F such that
σ′ oo〈·〉′ ι′, ι′ 2〈·〉′ κ¬0(ϕ). Therefore, according to the aforementioned choice
of σ′ it immediately follows that σ′ oo〈·〉′ ι′, ι′ 2〈·〉′ ϕ. With this at hand, we
choose the assignment 〈·〉 : Fϕ → F with 〈f0〉 := 〈initf0〉′ for all f0 ∈ F0

ϕ

and 〈f〉 := 〈f〉′ otherwise. With respect to Definition 12 of the evaluation
function η〈·〉, it is straightforward to see that σ oo〈·〉ι′ and σ′ oo〈·〉′ ι′ evaluate the
same. As a consequence, σ′ oo〈·〉′ ι′, ι′ 2〈·〉′ ϕ immediately implies that also
σ oo〈·〉ι′, ι′ 2〈·〉 ϕ, which finally leads to the targeted contradiction.

“⇐”: Next, we assume that κ¬0(ϕ) is realizable, as witnessed by some
realizing strategy σ′. This time, let σ be the strategy derived from σ′, where
the domain of every returned computation step has been reduced to O ∪ Cϕ.
We claim that σ realizes ϕ, against which we strike for the sake of con-
tradiction with the hypothesis of an existing input ι ∈ Iω and an assign-
ment 〈·〉 : Fϕ → F proving that σ oo〈·〉ι, ι 2〈·〉 ϕ. We choose 〈·〉′ : Fκ¬0(ϕ) → F
such that 〈initf0

〉′ := 〈f0〉 for all f0 ∈ F0
ϕ and 〈f〉′ = 〈f〉 otherwise. Again,

it is straightforward to see that σ oo〈·〉ι and σ′ oo〈·〉′ ι evaluate the same. Since
σ oo〈·〉ι, ι 2〈·〉 ϕ clearly implies that σ′ oo〈·〉ι, ι 2〈·〉 ϕ, also σ′ oo〈·〉ι, ι 2〈·〉 κ¬0(ϕ).
This contracts the initial assumption and, concludes this part of the proof.

Finally, with all five transformations at hand, the claimed formula ϕ′ can be
constructed via ϕ′ := κ¬0(κf(κ2(κ¬1(κp(ϕ))))). Furthermore note, that every
transformations is linear in the size of it’s corresponding input formula, and,
thus, ϕ′ can be constructed in linear time in |ϕ|.

5. Temporal Stream Games 67

The results of Theorem 4 show that only a single unary predicate p and a
single binary function literal f are needed to achieve the full expressiveness
of TSL. More reductions of the term syntax, however, come with semantic
restrictions that imply strong practical limitations on the application side.
Nevertheless, the transformations that we utilized for the proof of Theorem 4
show that there is a linear increase in the number of cells required to express
the replaced function and predicate literals. Hence, with respect to Theorem 3
and TSLp

f, we observe that the number of required cells indeed depends on
the number of sequences w0w1 . . . wn, v0v1 . . . vn that are specific to the PCP
instance. Thus, whether an equivalent proof of Theorem 3 on the basis of
TSLp

f is possible, which only requires a constant number of cells, is an open
question.

5 Temporal Stream Games

Our previous considerations show that the realizability problem being unde-
cidable cannot be avoided with term restrictions in general, even when limit-
ing ourselves to only a single unary predicate p and a single binary function
term f. As a consequence, we also must consider other possible directions in
order to tackle the undecidability property of the realizability problem.

One particular of these directions is the conversion of formulas to infinite
two-player games, which switches the perspective from the logic world to the
equivalent game world alternative. The translation to infinite games comes
at the advantage that Boolean connectives have been resolved and that the
temporal operators are unfolded, such that their semantics can be reflected
by the winning condition of the two-player games. To this end, at least the
parity winning condition is required to cover all the behavior of the temporal
operators that are utilized by TSL. Hence, in order to identify the cause for
the undecidability of TSL, the reduction to weaker winning conditions, such
as Safety, Reachability, or Büchi, may bring us forward in terms of avoiding
the repelling ingredients of the realizability problem.

Unfortunately, it turns out that translating TSL to infinite two-player
games, which provision exactly the same semantics as Problem 1, is not as
gentle as their equivalent counterparts for standard temporal logics like LTL.
To this end, we discuss the corresponding peculiarities at first. Nevertheless,
in order to get around these, we will impose some restrictions and assumptions
that may be avoided at the price of further investigations. These are, however,
out of scope of this thesis, since they require a much more involved analysis
in general. As a consequence, we will leave some open questions behind.

68 Chapter III. Temporal Stream Logic

5.1 Determinacy
The first difference, we need to consider, relates to the determinacy property
of infinite two-player games. An infinite two-player game is said to be de-
termined, if either always the system player or the environment player has
a winning strategy. Or in other words: it cannot be the case that none of
the players is able to win the game. Almost every class of infinite two-player
games that are considered in practice is known to be determined, like for ex-
ample the class of games with ω-regular winning conditions. Determinacy is
a desirable property, since it allows to prove the non-existence of a winning
strategy for one player through the existence of a winning strategy for the
other player, and, thus, gives a constructive argument for both: realizable
and unrealizable specifications.

On the logic level, both players are represented by the quantifies ∃ and ∀
such that according to this representation, the determinacy property allows
us to swap their order without affecting the validity of the corresponding
realizability query. For example, the realizability problem of LTL relies on an
∃-∀-quantifier alternation

∃σ. ∀π. ρσ,π � ϕ
that queries the existence of a winning strategy σ for the system player sat-
isfying the specification against all possible input player strategies π. The
realizability problem of LTL can be reduced to infinite two-player games with
parity winning condition, since LTL is an ω-regular language. Thus, we can
apply a quantifier swap in order to prove LTL unrealizability, because infinite
two-player games with parity winning conditions are determined [152]. More
concrete, if an LTL formula ϕ is unrealizable, i.e.,

∀σ. ∃π. ρσ,π � ¬ϕ

then due to the determinacy of games resulting from ϕ, the statement is
equivalent to

∃π. ∀σ. ρσ,π 2 ϕ
In this sense, determinacy allows us to move the universal quantifier before the
existential one. Note that the other direction is always possible, independently
of the game being determined or not.

Our goal is to translate TSL formulas to infinite two-player games such
that solving the infinite game at the same time solves the realizability prob-
lem. However, this immediately raises the question: Are the resulting games
even determined? To this end, reconsider the quantifier alternation of the
realizability query of Problem 1:

∃σ. ∀ι. ∀〈·〉. σ oo〈·〉ι, ι �〈·〉 ϕ

5. Temporal Stream Games 69

The query asks for a system player strategy σ that satisfies the formula against
any input choice ι and any assignment 〈·〉. Hence, according to the conceptual
view of the quantifier alternation being a two-player game, the system player
is in charge of choosing the updates, while the environment player selects the
input data and the function implementations. However, formally, this idea is
not immediately reflected by the above formulation, since the choices of the
environment are not determined according to a strategy responding to the
system, but instead are expanded into the ∀-quantifiers over all inputs and
assignments. Thus, is a similar consideration even applicable to TSL?

We can answer with “yes”, since conceptually both views are equivalent.
The reason is that every decision, which is made along the different branches
of the corresponding strategy tree, only depends on the past, but not on the
decisions made on other branches of the tree. As a consequence, every choice
that is covered by the “∀ι. ∀〈·〉.” prefix can be compressed into a strategy

π : Cω → I ∪ {〈·〉 : F⇀ F}

that selects input values and assignments according to a step-wise semantics.
Therefore, even the assignment 〈·〉 can be determined in an iterative fashion
through a refinement of partial functions 〈·〉 : F⇀ F , which the environment
player only must fix, whenever they are needed for the evaluation of a pred-
icate at the current point in time. We only have to take care, that once an
implementation of a function literal has been fixed, it also must stay at this
implementation for the remaining duration of the game in order to ensure pu-
rity of the function implementations. Furthermore, note that the on-demand
refinement does not weaken the system player at this point, since the system
must provide a strategy that wins independently of the environment anyway.

According to these considerations, the game based formulation of TSL
realizability again reduces to the familiar query of the form of ∃σ. ∀π. ρσ,π �
ϕ. Likewise, determinacy of TSL reduces to proving that ∃π. ∀σ. ρσ,π 2
ϕ implies that the formula ϕ is unrealizable. Consider, however, that the
statement is not equivalent to ∃ι. ∃〈·〉. ∀σ. σ oo〈·〉ι, ι 2〈·〉 ϕ, which again is
too strong on the other hand, since a reaction of the environment against
all potential system choices is not possible. The determinacy definition of
TSL, thus, differs against the equivalent definition of LTL, because the TSL
realizability property additionally includes the universal quantification over
function and predicate implementations. This in contrast to the function
implementations conceptually being implemented after synthesis and, thus,
not being resolved according to a step-wise semantics. Nevertheless, with
the aim of having a well-defined quantifier swap along with a corresponding
determinacy definition, we give the control over the implementations to the

70 Chapter III. Temporal Stream Logic

environment, which fixes them with every of his moves accordingly. We leave
it up to the reader, whether our considerations indeed are valid in the sense
of the original semantics of TSL.

The other question, which we leave open as well, is whether the result-
ing games indeed are determined according to our previous considerations.
An answer would require a more involved analysis of the underlying game
semantics, which, however, is out of scope of this thesis. Thus, for the sake
of simplicity, we just consider ∃π. ∀σ. ρσ,π 2 ϕ to be the required condition
for proving unrealizability, even if we cannot guarantee that such a strategy π
always exists. It is still open, whether we can always find a winning strategy
for both players in general.

5.2 Branching Restrictions

Another peculiarity, that we need to discuss, is the freedom of the synthesizer
in choosing update terms according to the formulation of the realizability
problem and the semantics of TSL. A small example that demonstrates the
corresponding problem is given by the formula ¬[x � x]. The formula
basically states that any satisfying solution never does nothing on the output
stream x at any point in time. Is ¬[x � x] realizable? According to our
formulation of Problem 1, the answer depends. Remember that the realizabil-
ity query universally quantifies over all possible implementations of function
literals F. Hence, if there is no function literal, nor another cell or input, i.e.,
if F = C = I = ∅, then the formula indeed is not realizable, because the only
possible function term that remains for the update is x. Otherwise, if there is
at least one function f ∈ F or some si ∈ I ∪ C, then the formula is realizable.
For example, a possible solution would be to always update x with f x · · · x,
such that the number of arguments of f match, or we could use the existing
cell or input.

Just for clarification: one could argue at this point that this is not correct
in general, since the universal quantification also covers the implementation of
a unary function literal f with the identity function. This implementation then
leads to a solution that is semantically equivalent to the one always updating x
with x. This argument, however, is refuted by the fact that the semantics of
TSL build on the syntactic equivalence of updates instead of considering their
semantic evaluation. Such a design is desirable for practical reasons, since
there are updates that usually correspond to some code snippets, which need
to be selected at the right points in time by the synthesizer, accordingly, to
be composed to a final program in the end. Therefore, the synthesis engine
does not know how the execution of the snippet behaves, but only takes care

5. Temporal Stream Games 71

that they are executed at the right points in time. Accordingly, the program
that always updates x with x and the program that always updates x with
f x are different programs, even if f is the identity function.

That being clarified, let us assume that there is some unary function f ∈ F
such that the formula ¬[x � x] is realizable, e.g., if we always update x
with f x. However, then it is also realizable, if we update x with f (f x),
or f (f (f x)), or basically any chain of function applications of f. Thus,
even if the specification only considers a finite number of update choices, the
synthesizer can choose from an infinite number of possible alternatives leading
to infinite branching of corresponding strategy trees.

This is a displeasing observation with respect to our targeted translation
to infinite games, since in the game arena resulting from the TSL formula, ev-
ery outgoing edge of the system player must correspond to a possible update.
Similarly, every possible predicate term leads to an outgoing edge for the en-
vironment player, even if not used by the original specification. Hence, we
potentially would need an arena with an edge relation of infinite size, which
we, however, like to avoid for practical reasons. To this end, we separate
the synthesis question into two variants, which we call creational TSL and
non-creational TSL. The first variant allows the synthesizer to be creative,
i.e., to introduce new updates and to check new predicates, even if they do
not appear in the specification. The variant, thus, covers the full semantics
of the realizability problem, as stated in Problem 1. Non-creational TSL, on
the other hand, restricts the usage of updates and predicates to those that
indeed appear in the formula, with one exception: for cells c ∈ C, the self-
update [c� c] can still be chosen, even if it does not appear in the formula.
This exception is added for practical reasons, since a cell being unchanged by
default is a well-agreed assumption also used in sequential programming lan-
guages, where, according to the semantics of standard sequential programs,
variables do not change if they are not assigned a new value explicitly.

Clearly, non-creational TSL considers an easier realizability question than
it’s creational counterpart and, thus, should be the preferred choice in prac-
tice. There are even more advantages to prefer non-creational TSL. One is
that non-creational TSL requires the designer to explicitly state the set of
allowed updates and predicate checks as part of the specification. Therefore,
the choice of updates, from which the synthesis engine chooses, is under the
designers control. Furthermore, non-creational TSL limits the number of up-
dates to a finite set of elements, and thus solves the aforementioned problem
of infinite sized arenas. Hence, for the construction of games from TSL for-
mulas, we only consider non-creational TSL. Nevertheless, all lower bounds,
we derive for non-creational TSL in a sequel, lift to creational TSL as well.

72 Chapter III. Temporal Stream Logic

5.3 Purity

We finally are ready to convert TSL formulas ϕ into two player games, which
we also denote as Temporal Stream Games in the sequel. To this end, we
utilize the same ω-automata over infinite words and their corresponding lan-
guage preserving transformations, as used for classical temporal logics that
are based on atomic propositions. The only difference is that we need to take
care of the utilized terms, which appear as part of the updates and predicates.
To this end, we restrict ourselves to non-creational TSL such that the set of
possible updates and predicates is limited to be finite. Therefore, it suffices
to limit the set of predicate terms to those that appear in ϕ, as they are the
only ones whose control behavior has an influence on the satisfaction of ϕ.
Note that for the resolution of temporal and Boolean operators, we do not
have to introduce new predicate checks or updates that are not present in the
original formula in general, even in the case of creational TSL. Everything
that can be derived from the formula ϕ, still can be derived from the later
game structure as well. Nevertheless, the limitation to non-creational TSL is
of importance for a clean game semantics, because even though we still can de-
rive non-explicit updates from the game structure, the corresponding implicit
updates must be reflected by the game semantics. With the restriction to
non-creational TSL, every appearing predicate literal can be considered as an
input proposition and every appearing update as output proposition instead,
which is what we require for the intermediate ω-automata translations.

In this way, every TSL formula ϕ can be translated into a correspond-
ing parity game. In the automata world, there are multiple possibilities for
this purpose. A classical path is to first translate the formula ϕ into a very
weak alternating Büchi word automaton [123] and then to remove conjunc-
tive transitions according to Miyano&Hayashi [106]. Afterwards, the resulting
non-deterministic Büchi word automaton is turned into a deterministic parity
word automaton with Safra’s construction [124], which then is expanded to a
deterministic parity tree automaton along the input propositions. Finally, the
automaton is turned into an infinite game according to Rabin’s theorem [120].

In the resulting two-player game, the system player determines the up-
dates, while the environment player is in charge of providing inputs and fix-
ing function and predicate evaluations. Therefore, he must respect their pure
evaluation semantics, i.e., he cannot choose predicates to evaluate arbitrarily
at every point in time, which is in contrast to predicates terms being just
re-interpreted as input propositions. However, in order to stay as close as
possible to the standard setting, we express purity as an extension to the
classical winning conditions, which lets the input player loose as soon as it is

5. Temporal Stream Games 73

violated. Note that the system player never can violate purity, since she only
determines the control flow of the system. This is why our extension only
affects the environment player. He determines the evaluation of predicates,
which depends on true environmental inputs, passed either directly or via ar-
guments, that are not known till the final execution of the system, but also on
the selected function and predicate implementations. These implementations,
however, are only fixed once after the synthesis, since they are required for
the creation of the final program in the end.

We model this concept through a winning condition that enforces the en-
vironment to select predicate evaluation results, such that they can always
be witnessed with corresponding function and predicate evaluations. In other
words, the environment cannot evaluate a predicate differently at two different
points in time, if the passed arguments are provably the same independently
of the chosen function and predicate evaluations. Formally, it thus remains to
choose the input alphabet ΣI = 2TP such that it consists of all combinations of
evaluations of predicates τP ∈ TP that appear in the original formula ϕ. Simi-
larly, the output alphabet ΣO = C consists of all assignments of function terms
to outputs and cells, as determined by the updates of the original formula ϕ.
Temporal stream games then are played in arenas over ΣI and ΣO, extended
by a set of impure plays to be avoided by the environment.

Definition 16. Let Ξ = VI×ΣI×VO×ΣO. The set of plays that violate
purity is formally defined as:

Impure := { ρ ∈ Ξω | ∀ι ∈ Iω. ∀〈·〉 : F→ F . ∃t, t′ ∈ N. ∃τP , τ ′P ∈ TP .
τP ∈ pr1(ρt) ∧ τ ′P /∈ pr1(ρt′) ∧
η〈·〉(pr3(ρ), ι, t, τP) ↔ η〈·〉(pr3(ρ), ι, t′, τ ′P) }

The set contains every play, for which, independently of the input ι and the
function assignment 〈·〉, there are two points in time t and t′ such that there
are predicates τP and τ ′P that are evaluated differently at t and t′, according
to the input player, but evaluate the same according to the semantic evalua-
tion η〈·〉. Thus, the different evaluation of the predicate cannot be witnessed
through a corresponding input and a respective assignment of literals to func-
tion and predicate implementations.

In temporal stream games, the system player then either wins, if she sat-
isfies the original winning condition, or if the environment player violates
the purity condition. As result, we obtain the following extended classes of
winning conditions for temporal stream games:

74 Chapter III. Temporal Stream Logic

v1v0 v2

∗

¬p c∇ p c∇

y� f x

Figure 17: The safety stream game for the TSL formula (p c∇ → [y� f x]).
Plays of this game only leave the safe region, if Player O assigns something
different to y than f x. For the sake of readability all edges that lead to an
unsafe vertex, as well as the unsafe vertices themselves, are never depicted.

• StreamSafety(S) := Safety(S) ∪ Impure

• StreamReach(R) := Reach(R) ∪ Impure

• StreamParity(Ω) := Parity(Ω) ∪ Impure

An example is given by the safety stream game that results from the TSL
formula (p c∇ → [y � f x]), which is depicted in Figure 17. It is easy to
observe that the system player controls the updates, while the environment
player controls the predicate evaluations. Furthermore, both players strictly
alternate between their positions and pick updates and predicates according
to the outgoing edges. However, not all of these choices appear on the edge
labels of the outgoing edges due to our representation. As we consider safety
games, we utilize a compact representation, where we assume that every vertex
that is part of the arena is safe. Hence, every move of a player, that does
not appear as an outgoing edge of a vertex automatically leads to an unsafe
vertex, because if such a move is taken, then Player I automatically wins the
game. Hence, in the arena of Figure 17 an unsafe is reached, if Player O plays
something different than [y� f x] at vertex v2.

For a compact representation of edges that leave the vertices owned by
Player I, we use Boolean formulas over the respective predicate terms to de-
scribe corresponding subsets of ΣI . Similarly, if Player O can play arbitrary
updates form a position, then we consolidate the corresponding outgoing edges
with a ∗-symbol. Otherwise, the edges are labeled with a table representing
the corresponding assignment function of ΣO. We only consider games where
either ΣI and ΣO are clear from the context or are given explicitly otherwise.

The game of Figure 17 is safety stream game. Thus, Player I not only
must reach an unsafe vertex in order to win, but also always must satisfy
the purity condition. Accordingly, since p is evaluated on a constant c∇ the
corresponding Boolean result cannot change over time. Thus, if Player I

5. Temporal Stream Games 75

chooses for example to move from v1 to v2 in his first move, then he must
also move to v2 in every later move. Otherwise, purity is violated and he
immediately looses. Consequently, the environment player also must take the
semantic evaluation of the edge labels into account in order to avoid a possible
purity violation.

5.4 Memory Requirements

The example of Figure 17 indicates that the additional purity condition po-
tentially requires that winning strategies for temporal stream games need to
access the past. Up to the parity winning condition, this is in contrast to clas-
sical infinite games, which only need positional strategies, i.e., both players
can always determine their next move only from the vertex the game token
is currently placed at. For temporal stream games, however, the players may
need to choose different successors depending on the past of the play, which
is why they need memory to satisfying the classical winning conditions, while
preserving purity at the same time. In this section, we have a closer look on
the corresponding implications. Accordingly, we show that indeed, already
for reachability and safety games, both player need memoryful stratgies in
order to win. With respect to these observations, we then establish lower and
upper bounds on the memory requirements for both players.

We start with reachability stream games, where we first consider the mem-
ory requirements of the environment player.

Theorem 5. There exists a reachability stream game that is won by the
environment player, but every winning strategy requires infinite memory.

Proof. Consider the reachability game depicted in Figure 18. In this game,
the goal of Player O is to reach the vertex v7, which, thus, must be avoided by
Player I in contrary. To this end, Player O must manipulate the cells {x, y, z},
which can be set to the constant c∇ or be transformed via the unary function f.

First, the system player initializes the cell x to c∇ at vertex v′I . Afterwards,
at vertex vc, she can update x with f x over an open number of rounds, pro-
ducing an unbounded chain of values that are stored in x. At the same time,
she either copies the content of x to y or to z, such that according to these
choices, Player I must either claim that the predicate p evaluates to true or
to false, since he would loose the game immediately otherwise. Note that
Player I always can choose a predicate p that satisfies the requirements im-
posed by Player O. Furthermore, it also is under control of Player O, whether

76 Chapter III. Temporal Stream Logic

vI

v′I v′′I

vc

v1

v0

v7 v′7

v3v′3

true

x� c∇
y� y
z� z

true

x� f x
y� x
z� z

x� f x
y� y
z� x

x� c∇
y� y
z� z

p y
¬p y

¬p z

p z

∗

true

true

x� f x
y� x
z� x

Figure 18: A reachability stream game that is won by Player I, where every
winning strategy requires at least infinite memory.

she wants to repeat this cycle forever, since she can always stop it by moving
to v3 instead. In this case, the value of x is reset to c∇ and the production
of the chain of values stored in x is restarted from scratch. Once this second
cycle is reached, the game continues there forever. Nevertheless, the environ-
ment still must choose predicate evaluations at v3 such that they are in line
with respect to purity.

The environment player has a winning strategy in this game, which avoids
v7 and satisfies purity. The strategy only needs to remember the choices of
the system at vc as long as Player O decides to cycle through vc, v0 and v1,
where Player I can always move back to vc without violating purity, because
there always are implementations for c∇, f, p that are in line with these
choices. A possible implementation could for example implement 〈c∇〉 := 0,
〈f〉 x := x+1, and choose 〈p〉 : N→ B such that it repeats the choices at vc. If
the system then decides to move to v3, eventually, Player I only must repeat
these choices by the respective evaluations of p at v3. This is always possible,
since all required information can be accessed via the history of the play.

At the same time, Player I only can win if he is able to remember an
unbounded number of choices. Due to the system player being able to decide
on the number of cycles through vc, she can easily exceed any memory limi-
tations of Player I by cycling more often than any given bound. However, if
not remembered correctly, the environment cannot repeat all the choices at
v3 and, thus, has no guaranteed winning strategy.

5. Temporal Stream Games 77

vI v′I v0

v′0v1v′1· · ·vnvr

vd

ṽ0

ṽ1
0

ṽ0
0

v7
0ṽ7

0 ṽ1

ṽ1
1

ṽ0
1

v7
1ṽ7

1 ṽn v3

true

x� c∇
y� y
z� z

true

x� f x
y� x
z� xtrue

x� f x
y� x
z� x

x� f x
y� x
z� xtrue

x� c∇
y� y
z� z

true

x� f x
y� x
z� z

x� f x
y� y
z� x

¬p zp z

p y¬p y

∗

true

∗

true

x� f x
y� x
z� z

x� f x
y� y
z� x

p z

· · ·¬p z

¬p y
· · ·p y

∗

true

Figure 19: A reachability stream game that is won by Player O, where all
winning strategies require at least exponential memory in the size of the arena.

Note that even if Player I is limited to finite memory, the system still does not
have a winning strategy. Although, Player I cannot access the whole history
of a play for choosing correct evaluations of p at v3 for sure, accordingly, she
still can correctly guess them instead. Thus, the environment can win with
finite memory. Player I just does not have a winning strategy.

Next, we consider the memory requirements of the system player.

Theorem 6. There exists a family of reachability stream games that are
won by the system player, but every winning strategy requires memory
that grows at least exponentially with the size of the game arena.

78 Chapter III. Temporal Stream Logic

Proof. Consider the family of temporal reachability games of Figure 19, which
are parameterized in n ∈ N. There, the system player must reach v3, for which
she must correctly update x, y, and z using c∇ and the unary function f.

At the beginning of every play, the cell x is first initialized to c∇ while y
and z stay unchanged. Afterwards, x is updated with f x for n iterations. Fur-
thermore, at every iteration the cells y and z receive a copy of x. Meanwhile,
the environment leaks information about the predicate p, since it determines
the truth values of the evaluations of p y and p z, which covers the repeated
applications of f. Eventually, the vertex vn is reached, where x again is re-
set to c∇. Afterwards, the construction of the chain of f-applications on x is
repeated, only that now the system player can choose between moving the
content of x either to y or to z. If the goal is to reach v3, then the correct
choices depend on the evaluation of p. If p evaluates positively, then the con-
tent of x should be copied to y. Otherwise, the content of x should be copied
to z. If done correctly, eventually v3 is reached. Otherwise, the play gets
stuck in on of the intermediate non-accepting sinks v7

i and ṽ7
i .

We show that Player O indeed has winning strategies σn in these games
for every n ∈ N. The strategies first play the fix sequence of updates that
are required for reaching ṽ0. Then they either copy x to y or to z for the
next n iterations, where in every vertex ṽi, they choose successors such that
the resulting play stays in line with ṽ0ṽ1 . . . ṽn according to the evaluation of p.
To this end, Player O can assume that the environment evaluates p the same
way, as earlier in the game at v0v1 . . . vn, which Player O can observe through
the play’s history. Under this assumption, every play that is consistent with
these strategies eventually reaches v3. Otherwise, if the assumption is not
satisfied by Player I, then purity is violated and the system wins as well.

It remains to prove that every winning strategy for Player O requires some
memory, which grows at least exponential with the size of the arena. To this
end, we claim that every winning strategy needs to distinguish between at
least 2n many histories, while telling apart 2n histories is also sufficient. The
latter is already witnessed by the winning strategies σm, where the system
only must tell apart two choices at every position v0, v1, . . . vn−1: whether
the environment chooses 〈p y〉 =̂ true or 〈p y〉 =̂ false. Note that according to
purity p x and p y must always evaluate the same at every v0, v1, . . . vn−1.
For proving the former, assume that there is a strategy σ that wins by dis-
tinguishing less than 2n many histories. Then there is an 0 ≤ i < n such that
σ behaves the same, no matter of whether Player I chooses 〈p y〉 =̂ true or
〈p y〉 =̂ false at vi. Then, let Player I choose 〈p y〉 =̂ false, if the strategy moves
to ṽ1

i at ṽi, and 〈p y〉 =̂ true otherwise. The resulting play ρ always ends up
in v7

i and ṽ7
i . Furthermore, Player I never violates purity. Thus, ρ is not

5. Temporal Stream Games 79

winning, which disproves our assumption of σ being a winning strategy.

The proof of Theorem 5 shows that the environment player may need infi-
nite memory in order to win a reachability stream game, while Theorem 6 only
establishes a lower bound on the memory requirements of winning strategies
for Player O depending on the size of the arena. Our next result broadens
these observations even further by proving that the memory requirements for
both players indeed are not symmetric. It turns out that winning strategies
for Player O never need infinite memory in order to win.

Theorem 7. For every reachability stream game that is won by the sys-
tem player, there exits a winning strategy of finite size for Player O.

Proof. Let G = (A,StreamReach(R)) be a reachability stream game that is
won by Player O, i.e., there exists a winning strategy σ. Then according to the
winning condition StreamReach(R) =̂ Reach(R)∪ Impure every branch ν
of the strategy tree of σ eventually reaches a position vν such that either
vν ∈ R or the environment player violates purity at vν . Now, let σ′ be the
strategy tree that is cut after vν at every branch ν. We claim σ′ to be finite.
However, for the sake of contradiction we assume the opposite. Then, as σ is
finitely branching, due to our previous restriction to non-creational TSL, we
can apply König’s Lemma, which proves the existence of a branch ν7 of σ′
of infinite length. However, ν7 then also must be a branch of σ and cannot
contain a position v with either v ∈ R or the environment player violating
purity at v. Hence, the branch ν7 instead indicates a winning outcome for
Player I, which contradicts that σ is a winning strategy in the first place.
This leads to the desired contradiction proving that σ′ indeed must be finite.
However, note that σ′ also is a winning strategy, because every branch either
reaches R or leads the environment to violate purity, after which the system
immediately has won. Thus, the existence of the strategy σ′ finally concludes
the proof.

While Theorem 6 establishes lower bounds on the memory requirements for
strategies of Player O and Theorem 7 establishes the corresponding upper
bounds, there still remains a gap for the exact memory requirement for
Player O. Unfortunately, we leave this gap open for the future at this point,
since closing it turned out to be out of scope of this thesis.

Instead, we move on to safety stream games for fixing more lower bounds.

80 Chapter III. Temporal Stream Logic

v2v1v0 v3 v4

v5v6v7v8v10

v9

true true

x� f x
y� g x
z� h x

p y ⊕ p z

p z ↔ p y

x� c∇
y� y
z� ztrue

x� f x
y� h x
z� g x

x� f x
y� g x
z� h x

p y ∧ ¬ p z

p y ↔ p z

x� c∇
y� y
z� z

∗ true

Figure 20: A safety stream game that is won by Player O, where every win-
ning strategy requires at least infinite memory. The ⊕-operator denotes the
Boolean operator for exclusive or.

Theorem 8. There exists a safety stream game that is won by the system
player, but every winning strategy requires infinite memory.

Proof. Consider the safety stream game depicted in Figure 20, the goal of
the system player is to never leave the vertices v0, v1, . . . , v10. To his end,
she must manipulate the cells x, y, and z with the correct application of the
constant c∇ and the unary functions f, g, and h.

Initially, the cell x is reset to c∇ and then updated by f x at v3 as long as
the environment decides to evaluate p differently on y and z at v4, where the
values stored in y and z are obtained through an additional application of g
and h to x, respectively. Once the environment player decides to evaluate p
equivalently on both cells, x is reset to c and the chain of applications of f to x
is repeated at v7. Nevertheless, this time the system player can choose between
moving g x to y and f x to z or vice versa. The choice must be taken, however,
in such a way such that as long as p y and p z are not equivalent 〈p y〉 =̂ true
and 〈p y〉 =̂ false afterwards. Otherwise an unsafe vertex is reached. If p y
and p z are equivalent eventually, then the game idles at v9 and v10 forever.

5. Temporal Stream Games 81

v0

v1

v2

v3 v4 v5

v6

v3

ṽ3 An v7

true

x0 � c∇

¬p x0

p x0

x0 � f x0 ¬p x0

p x0

x0 � f x0

p x0

¬p x0

∗true

ṽj ṽ′j

ṽ′′jAj−1

sub-arena Aj for 0 < j < n

∀i 6= j.
xi � xi
xj � c∇

¬p xj

p xj

∀i 6= j.
xi � xi
xj � f xj

A0

Figure 21: A safety stream game that is won by Player I, where all winning
strategies require at least exponential memory in the size of the arena.

The system player wins this game. She only must choose the correct
successor at v7 such that never p z ∧ ¬p y at v8. This choice can always
be correctly determined according to the previous choices of Player I at v4,
which are accessible via the play’s history.

At the same time, however, every winning strategy of the system player
needs infinite memory in order to win. Any possible finite memory limitations
can be exceeded by the environment, just by heading back to v3 from v4 for
long enough until any given limit is exceeded. In this case, the system cannot
have enough knowledge of the past to reconstruct the correct choices at v7.
Thus, even if the environment satisfies purity, always reaching a safe successor
from v8, not always can be guaranteed. Note that v8 reaches an unsafe vertex
if ¬p z and p y, even if the environment satisfies purity.

Next, we switch players for showing that Player I may need strategies that
require memory that is at least exponential in the size of the arena.

Theorem 9. There exists a family of safety stream games that are won
by the environment player, but every winning strategy requires memory
that grows at least exponentially with the size of the game arena.

82 Chapter III. Temporal Stream Logic

Proof. Consider the family of recursively constructed games that is depicted
in Figure 21. The boxed sub-arenas describe widgets that are used for the
recursive construction of the full game. They are organized according to levels
0 < j ≤ n with respect to some parameter n ∈ N+. On every level j, the
system player only manipulates the cells xj by using the unary function f and
the constant c∇, while all other cells always remain unchanged. The goal of the
environment player is to traverse the whole recursive structure to eventually
reach vertex v7. The size of the overall game arena is linear in n.

Before entering the recursively defined structure of An, the system initial-
izes x0 with c∇, which forces the environment to select p, f, and c∇ such that
it satisfies ¬p c∇, ¬p (f c∇), and p (f (f c∇)). If Player I does not select p
accordingly, then he looses the game immediately by getting trapped at v3

and ṽ3. Afterwards, the recursively defined structure of the arena is entered,
where for every instance j the cell xj is first reset to c∇j . Then, every play
must continue in the smaller sub-arena Aj−1 as long as p xj is not satisfied. If
the sub-arena Aj−1 has been passed successfully, then the cell xj is updated
to f xj and the procedure is repeated until p xj is satisfied.

We show that the environment player has winning strategies πn in the
game of Figure 21 for every n ∈ N+, which are for example witnessed by the
implementations: 〈c∇〉 := 0, 〈f〉 x := x + 1, and 〈p〉 x := x > 1. It is easy
to see that every strategy, that evaluates predicates according these imple-
mentations and updates according to the choices of the system, (1) always
avoids v3, (2) enters every sub-arena Aj for 0 ≤ j < n at most twice, and,
thus, (3) finally reaches v7, whose successor is unsafe.

On the other hand, every winning strategy for Player I requires memory
that is at least exponential in n. For the sake of contradiction assume that
there is a winning strategy π that only requires to distinguish m < 2n many
histories. First note that for π being a winning strategy every outcome ρ of π
must satisfy purity at every time, which also implies that Player I must satisfy
¬p c∇, ¬p (f c∇), and p (f (f c∇)). A simple induction on n ∈ N+ shows that
every vertex ṽ′j is visited exactly 2n−j-times for every 0 ≤ j ≤ n by ρ, due to
every traversal of sub-arenas Aj always entering the next smaller sub-arena
Aj−1 twice before leaving Aj . It especially follows that ṽ′0 is visited exactly
2n times during the whole traversal. Then by the pidgin hole principle, there
must be at least two visits to ṽ′0, where π cannot distinguish the histories of
ρ and, thus, proceeds to play equivalently from both positions onwards. Now
let t ∈ N be the first corresponding visit to ṽ′0 and t′ > t be the second one.
Then ρ must be of the form ρ0ρ1 . . . (ρtρt+1 . . . ρt′−1)ω due to the equivalent
observations of the history at ρt and ρt′ . Accordingly, ρ never can reach v7

leading to the desired contradiction, since π cannot be a winning strategy.

5. Temporal Stream Games 83

Theorem 10. For every safety stream game that is won by the environ-
ment player, there exits a winning strategy of finite size for Player I.

Proof. Let G = (A,StreamSafety(S)) be a safety stream game that is won
by the environment player, i.e., there exists a winning strategy π for Player I.
Then according to the winning condition

StreamSafety(S) =̂ Safety(S) ∪ Impure

every outcome of the strategy π must satisfy purity and violate safety, i.e.,
every branch of the strategy tree eventually reaches an unsafe vertex v7. Let π′
be the strategy that results from π by cutting every branch after it reaches v7.
Due to König’s Lemma π′ must be finite. Furthermore, it still is a winning
strategy. Thus, π′ is a witness for a finite winning strategy for Player I.

Our results show that the memory requirements of safety stream games are
exactly dual to the ones of reachability stream games with respect to the
two players. We again summarize the resulting upper and lower bounds on
memory requirements for safety and reachability stream games in the following
table, where n ∈O(|A|) depends on the size of the underlying game arena A.

Reachability Stream Games Safety Stream Games

Player I |π| ≤ ∞ 2n ≤ |π| <∞

Player O 2n ≤ |σ| <∞ |σ| ≤ ∞

Beside reachability and safety, these bounds also impose immediate conse-
quences for the memory requirements of games with more expressive winning
conditions, like Büchi, co-Büchi, or parity. Every reachability and safety
stream game can be transformed into an equivalent Büchi, co-Büchi, or par-
ity game by adding sink vertices and choosing the acceptance sets and coloring
functions accordingly. The conversions work in the same fashion as for regu-
lar infinite (non-stream) games. Therefore, it immediately follows that both
players may require infinite memory in order to win these games.

Corollary 1. Player I and Player O may need infinite memory in order
to win Büchi, co-Büchi and parity stream games.

84 Chapter III. Temporal Stream Logic

6 Synthesis

Our previous analysis of TSL game representations reveals that even simple
game classes may require infinite memory and that it can be a requirement
for both: the winning strategies of environment and the system player. Thus,
temporal stream games do not offer an immediate advantage in terms of solv-
ing the realizability problem in contrast to the original logic representation of
TSL. Consequently, we need other approaches for tackling the problem effi-
ciently. The new challenge that TSL imposes is the added purity requirement
of Definition 16, whose full satisfaction leads to undecidability in general,
because the pure evaluation of functions and predicates allows the encoding
of undecidable problems like Post’s correspondence problem (PCP). Thus, in
order of being able to handle purity in a satisfactory manner, we need to relax
the purity requirements at least to some extend.

Our consideration towards such a relaxation is an approximation of TSL
specifications in terms of LTL. This solution has the charm that it works
exclusively on the logic level and, thus, completely avoids all of the problems
that we encountered with the representation of temporal stream games in
Section 5. Another advantage is that, we immediately can hark back on
the advanced tools that already have been developed for synthesizing LTL.
Nevertheless, we have to consider that such a reduction can never reflect all
of the purity properties of TSL. However, as long as we choose the respective
encoding carefully enough, it is possible to create a reduction to LTL that is
at least sound with respect to a successful synthesis result. In other words, we
choose the reduction in such a way, that if the approximate LTL specification is
realizable, then the realizing strategy also represents a valid realization of the
original TSL specification. On the other hand, if the weaker LTL specification
is not realizable, then it can be an artifact of the approximation. In this
situation, we need to investigate further to distinguish whether the original
specification is indeed unrealizable, or whether the result is a consequence
of the approximation. In the latter case, we call the unrealizability result of
the approximated LTL specification spurious. Unfortunately, determination
of the result being spurious inherits the same undecidability properties as
realizing TSL, which is why we need another relaxation here as well.

Our solution is a bounded strategy search that limits synthesis to strate-
gies, which additionally satisfy some size restrictions. Checking spuriousness
only against strategies up to the imposed bound then becomes realizable. The
procedure already has been summarized in Figure 4 of Chapter I, where the
inputs to the presented synthesis approach are a TSL specification ϕTSL and
an upper bound on the strategy size n ∈ N. The TSL specification ϕTSL

6. Synthesis 85

then is approximated to a weaker LTL specification ϕLTL, which is passed
to a bounded synthesis solver together with the bound n. We show that if
the LTL solver returns a realizing strategy, then this strategy also realizes the
original TSL formula ϕTSL. Otherwise, the counter strategy witnessing unre-
alizability of the formula ϕLTL is checked to be spurious. If it is not spurious,
the original TSL formula is indeed unrealizable. Otherwise, we obtain another
witness for the counter-strategy being spurious, which then is utilized to refine
the LTL approximation such that the procedure can be restarted in a CEGAR
like fashion. The procedure runs until either a realizing strategy is found or
the strategy is proven to be unrealizable. Termination, however, cannot not
guaranteed, as the system may win only with an infinite sized strategy, that
is never discovered by the bounded synthesis approach. It remains however
an open question, whether infinite strategies are indeed necessary in practice
and thus would limit our approach.

6.1 Initial Purity Approximation

For the initial approximation we turn the syntactic elements TP and T/ into
atomic propositions in LTL, which removes the semantic meaning of function
applications and assignments according to TSL. Afterwards, we reconstruct
this meaning lazily by adding assumptions during the refinement.

Construction 2 (Initial Approximation). Let TP and T/ be the finite
sets of predicate terms and updates that appear in ϕTSL, respectively.
For every assigned output or cell so, we partition T/ into

⊎
so∈O∪C T

so
/ . For

every c ∈ C let T c
//id = T c

/ ∪ {[c� c]} and for every o ∈ O let T o
//id =

T o
/ . We introduce atomic output propositions T AP

//id for every update of
T so
//id with so ∈ O ∪ C, i.e., T AP

//id :=
⋃

so∈O∪C
⋃
τ∈T so

//id
aτ . Similarly, we

create atomic input propositions T AP
P for every predicate term of TP , i.e.,

T AP
P :=

⋃
τP∈TP aτP . The LTL formula ϕLTL then is constructed over the

input propositions T AP
P and output propositions T AP

//id, where we utilize
a rewrite function rw that replaces every predicate term τ ∈ TP and
update term τ ∈ T/ of the TSL formula ϕTSL with an atomic proposition
aτ ∈ T AP

P ∪ T AP
//id, respectively. Formally:

ϕLTL =
(∧

so∈O∪C

∨
τ∈T so

//id

(
aτ ∧

∧
τ ′∈T so

//id\{τ}

¬ aτ ′
))
∧ rw (ϕTSL)

86 Chapter III. Temporal Stream Logic

The first part of the construction of ϕLTL partially reconstructs the semantic
meaning of updates by ensuring that a signal is not updated with multiple
values at a time. The second part extracts the reactive constraints of the TSL
formula without the semantic meaning of functions and updates.

Theorem 11. If ϕLTL is realizable, then ϕTSL is realizable.

Proof. Assume ϕLTL is realizable. Then there exists a winning strategy
σ : (2T

AP
P)+ → 2T

AP
//id for the system player in the underlying LTL realizability

game. Furthermore, for the sake of contradiction assume that ϕTSL is not
realizable. Then for all κ : (2TP)+ → C there exists in input ι ∈ Iω and a
function assignment 〈·〉 : TF → F such that κ oo〈·〉ι, ι 2〈·〉 ϕTSL. We inductively
construct the input sequence ν ∈ (2T

AP
P)ω and the computation ς ∈ Cω over

t ∈ N as follows:

ν(t) = {aτP ∈ T AP
P | η〈·〉(ς, ι, t, τP)}

ς(t)(s) = τF , where τF is the unique element
such that a[s�τF] ∈ σ(ν(0)ν(1) . . . ν(t))

Note that τF must be unique, due to the additional constraint:(∧
s∈O

∨
τ∈T s

//id

(
aτ ∧

∧
τ ′∈T s

//id\{τ}

¬ aτ ′
))

Furthermore, note that ν and ς are well-defined, since η〈·〉(ς, ι, t, τP) only con-
siders values of ς at previous times t′ < t. Since ϕLTL is realizable, we have
that σ oν, ν � ϕLTL, but at the same time ς, ι 2〈·〉 ϕTSL due to unrealizability
of ϕTSL. We show that this is contradictory via a structural induction over
the structure of ϕTSL for all t ∈ N:

Case: ϕTSL = τP

ς, ι, t �〈·〉 τP
⇔ η〈·〉(ς, ι, t, τP)
⇔ aτP ∈ ν(t)
⇔ σ o ν, ν, t � aτP
⇔ σ o ν, ν, t � rw (τP)

6. Synthesis 87

Case: ϕTSL = [s� τF]

ς, ι, t �〈·〉 [s� τF]
⇔ ς(t)(s) ≡ τF
⇔ a[s�τF] ∈ σ(ν(0)ν(1) . . . ν(t))
⇔ σ o ν, ν, t � a[s�τF]

⇔ σ o ν, ν, t � rw ([s� τF])

Case: ϕTSL = ¬ψ

ς, ι, t �〈·〉 ¬ψ
⇔ ς, ι, t 2〈·〉 ψ
IH⇔ σ o ν, ν, t 2 rw (ψ)
⇔ σ o ν, ν, t � ¬ rw (ψ)
⇔ σ o ν, ν, t � rw (¬ψ)

Case: ϕTSL = ϑ ∧ ψ

ς, ι, t �〈·〉 ϑ ∧ ψ
⇔ ς, ι, t �〈·〉 ϑ ∧ ς, ι, t � ψ
IH⇔ σ o ν, ν, t � rw (ϑ) ∧ σ o ν, ν, t � rw (ψ)
⇔ σ o ν, ν, t � rw (ϑ) ∧ rw (ψ)
⇔ σ o ν, ν, t � rw (ϑ ∧ ψ)

Case: ϕTSL = ψ

ς, ι, t �〈·〉 ψ
⇔ ς, ι, t+ 1 �〈·〉 ψ
IH⇔ σ o ν, ν, t+ 1 � rw (ψ)
⇔ σ o ν, ν, t � rw (ψ)
⇔ σ o ν, ν, t � rw (ψ)

Case: ϕTSL = ϑU ψ

ς, ι, t �〈·〉 ϑU ψ
⇔ ∃t′′ ≥ t. ∀t ≤ t′ < t′′. ς, ι, t′ �〈·〉 ϑ ∧ ς, ι, t′′ �〈·〉 ψ
IH⇔ ∃t′′ ≥ t. ∀t ≤ t′ < t′′. σ o ν, ν, t′ � rw (ϑ) ∧ σ o ν, ν, t′′ � rw (ψ)
⇔ σ o ν, ν, t � rw (ϑ)U rw (ψ)
⇔ σ o ν, ν, t � rw (ϑU ψ)

88 Chapter III. Temporal Stream Logic

([y� y] ∨ [y� x])

∧ p x → p y

(a) TSL specification

¬(a[y�y] ∧ a[y�x])

∧ (a[y�y] ∨ a[y�x])

∧ ap x → ap y

(b) initial approximation

ap x ∧ ¬ ap y

(c) spurious counter-strategy

Figure 22: A realizable TSL specification (a) with input x and cell y. A win-
ning strategy is given by saving x to y as soon as p x is satisfied. However, the
initial approximation (b) is unrealizable, as proven by the counter-strategy (c).

Note that unrealizability of ϕLTL does not imply that ϕTSL is unrealizable.
It may be that we have not added sufficiently many environment assumptions
to the approximation in order for the system to produce a realizing strategy.

Some more concrete insights into the implications of the approximation are
given through the example of Figure 22. The specification (a) asserts that the
environment provides an input x for which the predicate p x will be satisfied
eventually. At the same time, the system must guarantee that p y holds
eventually too. The specification of (a) is realizable. The system can take
the value of x as soon as p x is satisfied and then stores it in y. This way it
guarantees that p y is satisfied eventually. However, the situation changes as
soon as we consider the approximated LTL specification (b) that results from
Construction 2. There, the semantics of the pure function p is lost. Instead,
the evaluation of p y is reduced to an environmentally controlled value ap y
that does not need to obey the consistency of the pure function p. As a
consequence, the approximation becomes unrealizable, as witnessed by the
spurious counter-strategy (c).

6.2 Refining the Approximation

As highlighted in the example above, it is possible that LTL synthesis returns a
counter-strategy for the environment although the original TSL specification is
realizable. We call such a counter-strategy spurious as it exploits the missing
semantic restrictions that have been relaxed through the approximation. The
result is a violation of the purity of functions and predicates.

From a more formal point of view, the LTL synthesizer returns a counter-
strategy π : (2T

AP
//id)∗ → 2T

AP
P . This strategy can also be formulated as a strat-

egy π : C∗ → 2TP with respect to the additional properties that have been
introduced in Construction 2. The strategy π determines the predicate eval-
uations in response to possible update assignments of function terms τF ∈ TF

6. Synthesis 89

to outputs o ∈ O, where w.l.o.g. we can assume that O, TF and TP are finite,
as they always can be restricted to the outputs and terms that appear in the
formula. A counter-strategy then is spurious, if there is a branch π o ς for
some ς ∈ Cω, for which the strategy chooses an inconsistent evaluation of two
equal predicate terms at different points in time.

Definition 17. A counter-strategy π : C∗ → 2TP is spurious, iff

∃ς ∈ Cω. ∃t, t′ ∈ N. ∃τP , τ ′P ∈ TP .
τP ∈ π(ς(0)ς(1) . . . ς(t− 1)) ∧ τ ′P /∈ π(ς(0)ς(1) . . . ς(t′ − 1)) ∧
∀〈·〉 : F→ F . η〈·〉(ς, π o ς, t, τP) = η〈·〉(ς, π o ς, t′, τ ′P).

Note that a non-spurious strategy can be inconsistent along multiple branches,
since according to the definition of realizability the environment can choose
function and predicate assignments differently against every system strategy.

Due to the purity of predicates in TSL the environment is forced to always
return the same value for predicate evaluations on equal inputs. However,
this semantic property cannot be enforced implicitly in LTL. To resolve this
issue we use the returned counter-strategy to identify spurious behavior in
order to strengthen the LTL underapproximation with additional environment
assumptions. After adding the derived assumptions, we re-execute the LTL
synthesis in order to check whether the added assumptions are sufficient for
obtaining a winning strategy for the system. If the solver still returns a
spurious strategy, we continue the loop in a CEGAR like fashion until the
set of added assumptions is sufficiently complete. However, if a non-spurious
strategy is returned, we have a proof that the given TSL specification is indeed
unrealizable and terminate.

We use Algorithm 1 to determine, whether a returned counter-strategy π
is spurious or not. The algorithm relies on π being checked against system
strategies that are bounded by the given bound b. However, this dependency
is negligible, as long as we use bounded synthesis [45] as the underlying LTL
synthesis approach. We also can assume that π is always given as a finite
state representation due to the finite model guarantee of LTL.

The algorithm iterates over all possible responses v ∈ Cm·b of the system
up to depth m · b. This is sufficient, since every deeper exploration would re-
sult in a state repetition of the cross-product of the finite state representation
of π and any system strategy bounded by b. Hence, the same behaviour could
also be generated by a sequence smaller than m · b. At the same time, the
algorithm iterates over predicates τP , τ ′P ∈ TP appearing in ϕTSL and times t

90 Chapter III. Temporal Stream Logic

Algorithm 1 Check-Spuriousness

Input: bound b, counter-strategy π : C∗→2TP (finitely represented using m states)
1: for all v ∈ Cm·b, τP ∈ TP , t, t′ ∈ {0, 1, . . . ,m · b− 1} do
2: if η〈·〉id(v, ιid, t, τP) ≡ η〈·〉id(v, ιid, t

′, τP)∧
τP ∈ π(v0 . . . vt−1) ∧ τP /∈ π(v0 . . . vt′−1) then

3: w ← reduce (v, τP , t, t′)
4: return

(∧t−1
i=0

iwi ∧
∧t′−1

i=0
iwi → (tτP ↔ t′τP)

)
5: return “non-spurious”

and t′ smaller than m · b. For each of these elements, spuriousness is checked
by comparing the output of π for the evaluation of τP and τ ′P at times t
and t′, which only differs, if the inputs to the predicates are different as well.
This only happens, if the passed input terms have been constructed differ-
ently over the past. We check it by using the evaluation function η equipped
with the identity assignment 〈·〉id : F → F, with 〈f〉id = f for all f ∈ F,
and the input sequence ιid, with ιid(t)(i) = (t, i) for all t ∈ N and i ∈ I,
that always generates a fresh input. Syntactic inequality of η〈·〉id(v, ιid, t, τP)
and η〈·〉id(v, ιid, t

′, τ ′P) then is a sufficient condition for the existence of an as-
signment 〈·〉 : F → F , for which τP and τ ′P evaluate differently at times t
and t′.

If spurious behaviour of π is found, then the revealing response v ∈ C∗
is first simplified using reduce, a function that reduces v again to a sequence
of sets of updates w ∈ (2T//id)∗ and removes updates that do not affect the
behavior of τP at times t and t′ to accelerate the termination of the CEGAR
loop. Afterwards, the sequence w is turned into a new assumption prohibiting
the spurious behavior, generalized even for arbitrary points in time. This
assumption then is added to the previously approximated LTL formula and
the synthesis process is started once again. The whole CEGAR loop continues
until either a realizing strategy or a non-spurious counter-strategy is found.

For an example of the process, reconsider the spurious counter-strategy of
Figure 22c. Already after the first system response a[y�x], the environment
produces a purity violation by evaluating ap x and ap y differently. Purity is
violated, since the cell y holds the same value at time t = 1 as the input x
at time t = 0. After processing the strategy with Algorithm 1, a new as-
sumption ([y � x] → (p x ↔ p y)) is generated that can be used to
strengthen the LTL approximation. The generated assumption then is added
to the initial approximation and synthesis is re-executed. Indeed, the updated
LTL formula now turns out to be realizable yielding the aforementioned TSL
winning strategy.

6. Synthesis 91

6.3 Synthesizing Control Flow

With the CEGAR based TSL synthesis method at hand, we finally have a
reliable approach for synthesizing TSL specifications. However, in order to
produce real-world applications, like the kitchen timer or the music player,
it still remains to turn the synthesized strategy into executable code. To
this end, we provide a modular approach, where we leverage an intermediate
control flow model. This model not only covers all control flow decisions of
the returned strategy, as well as the utilized functions and predicates, but
also introduces an intermediate level of abstraction that is compatible with
different real-world execution engines. In this way, we accomplish a more
flexible environment for the system designer. On the one hand, the TSL
system design gets efficiently decoupled from control flow independent read-
world system specifics on the specification level. On the other hand, the
synthesized control flow is applicable to multiple application frameworks and,
thus, also allows to postpone the determination of the finally used application
context, even after the control flow has been specified and synthesized. To
this end, it then is also possible to use the same synthesized control flow for
different application domains.

Remember that concrete function and predicate implementations are also
not fixed yet. Instead, they are considered as literals only, without any par-
ticular pre-assigned semantics. This exactly comes along with our initial con-
sideration of separating data and control. According to this separation, the
purpose of the synthesized control flow is purely to determine the respective
control, but abstracts from the actual data. The conrectization of the data
and their transformations thus must come afterwards. Furthermore, the ap-
proach also accompanies with the idea of a modular refinement according to
the system design, where we start with the control flow as the high level entry
point and then concretize the design towards the system specifics.

If synthesis is successful, it produces a Control Flow Model (CFM)M that
satisfies the given TSL specification ϕ. It represents the control flow structure
of the final program. Intuitively, the model can be considered as flow chart or
network, that passes input data to cells or outputs over temporally different
enabled connections. Along these connections the stream data is manipulated
by pure data transforming functions and checked by pure predicates. The
overall flow of the data through the network thus is not static over time.
Instead, it depends on the evaluation of predicates guiding the data through
corresponding transformations on its way to outputs or cells. Formally, this
leads to the following definition.

92 Chapter III. Temporal Stream Logic

Definition 18. A CFM M is a tupleM = (I, O, C, F, V, `M, δM) where

• I is a finite set of input literals,

• O is a finite set of output literals,

• C is a finite set of cells,

• F is a finite set of function literals,

• V is a finite set of vertices,

• `M : V → F ∪ F is labeling function assigning each vertex either a
function literal or a function, and

• δM :
(
O∪ C→ V ∪ I∪ C

)
∪
(
V →

⋃
n∈N

(V ∪ I∪ C)n
)
is a dependency

relation that relates outputs, cells, and vertices to inputs, cells, and
vertices, where the vertex relation must match with the arity of the
vertex label, i.e., ∀v ∈ V.](`M(v)) =](δM(v)).

We assume w.l.o.g. that the sets I, O, C, F, and V are pairwise disjoint.
Furthermore, we require that the dependency relation δM does not induce
circular dependencies on V , i.e., for every CFM there must be a ranking
r : V → N such that for all v ∈ V and j ∈ [](`M(v))], i.e., if prj(δM(v)) ∈
V , then also r(v) > r(prj(δM(v))).

Note that the above definition allows to mix uninterpreted function literals F
with already determined functions f ∈ F as part of the vertex labeling of
V . The functions f are used to implement the data independent control flow,
while keeping the data dependent transformations F abstract.

Regarding the underlying concept, we implicitly require that functions
f ∈ F only impose structural changes to the data and do not depend on spe-
cific data types, such as numbers or strings, in the first place. In functional
programming languages, these transformations are well known as polymorphic
transformations, because they are applicable to any possible data kind. Clas-
sical examples are functions that restructure data within containers, such as
tuples, lists or sets. In this sense, functional programming languages use a
similar concept of separating data and control as leveraged for TSL. Hence,
if we would consider extending the definition of a CFM with a type system,
which equips the input, output and function literals, as well as the cells with
types, then every CFM should be purely composed out of functions using

6. Synthesis 93

only Boolean and polymorphic types. However, since a formal introduction
of such a type system and the corresponding backgrounds on the underlying
type theory would go beyond the scope of this thesis and, moreover, would
not add any value to the remaining considerations, we postpone a detailed
analysis of such an extension to future work at this point.

Nevertheless, regarding the uninterpreted function literals F, the CFM
provides an implementation model for the program control that satisfies the
given TSL specification independently of their concrete implementations. In
other words, the CFM serves as a finite model for implementing the targeted
TSL strategies σ : (2TP)+ → C. This correspondence is formalized using the
following transformation.

Construction 3. Every CFM M = (I, O, C, F, V, `M, δM) induces a
strategy σM with σM(wν)(x) = ηM(ν, δM(x)) using the utility function
ηM : 2TP × (V ∪ I ∪ C)→ TF , which is defined as:

ηM(ν, x) =

x if x ∈ I ∪ C

f ηM(v0) · · · ηM(vk−1)
if x ∈ V and `M(x) = f
with f ∈ F \ P and
δM(x) = (v0, . . . , vk−1)

(p ηM(v0) · · · ηM(vk−1)) ∈ ν
if x ∈ V and `M(x) = p
with p ∈ P and
δM(x) = (v0, . . . , vk−1)

f ηM(v0) · · · ηM(vk−1)
if x ∈ V and `M(x) = f
with f ∈ F and
δM(x) = (v0, . . . , vk−1)

The construction shows that the model of a CFM indeed provides a suitable
representation for winning strategies with respect to TSL. Thus, it only re-
mains to bridge the connection of how to get a CFM in the context of our
approximation approach. Therefore, reconsider the LTL formula ϕLTL con-
structed from a TSL specification ϕTSL according to Construction 2.

Theorem 12. If ϕLTL is realizable, then there exists a CFM M that
implements ϕTSL, i.e., σM satisfies ϕTSL.

94 Chapter III. Temporal Stream Logic

Proof. Let σ : (2T
AP

P)+ → 2T
AP
//id be a realizing strategy for ϕLTL. W.l.o.g.

we can assume that the strategy is given as a circuit, consisting of a finite
number of latches, AND, OR, and NOT gates, since the specified system of
every realizable LTL formula can be implemented by a finite Mealy machine.
Furthermore, circuits and Mealy machines are equally expressive.

Next consider: it is straightforward to integrate circuits as part of the
CFM. Latches can be implemented with cells. The different gate types can
be expressed using pure functions f∧, f∨, and f¬. Hence, we only need to
copy the circuit graph to be part of the dependency relation, such that the
CFM vertices are labeled with the matching gate functions like they appear
in the original circuit. After then having the circuit as part of the CFM, we
add the function transformations, as they appear in the terms of T AP

P and
T AP
//id. Note that every corresponding term induces a finite DAG that links

every function literal to the arguments it is applied to. Therefore, using the
dependency relation δM and the labeling `M, this DAG thus can be easily
expressed using the graph structure of the CFM.

Finally, the puzzle gets completed by correctly connecting functions and
predicates with the circuit structure. Therefore, the inputs of the circuit
structure are linked to the vertices labeled with the corresponding predicate
terms. Intuitively, the connection expresses that the results of the predicate
evaluations are passed to the circuit inputs. At the other end, the outputs
of the circuits are connected to vertices labeled with functions that select the
computed function transformations, as enabled at the current point in time
according to the circuit evaluation. Formally, the corresponding function
labels can be defined for all n ∈ N by

selectn b0 x0 b1 x1 · · · bn−1 xn−1 =

x0 if b0
x1 if b1
...

...
xn−1 if bn−1

and are chosen such that they match the corresponding number of output
choices as given by T AP

//id. Note that the mutual exclusion property, as intro-
duced in Construction 2, ensures that the selected updates are always unique.

It is easy to observe that the created structure indeed witnesses the exis-
tence of a realizing strategy for ϕTSL as stated in Theorem 11. On the one
hand, the direct embedding of the realizing circuit of ϕLTL clearly induces a
similar temporal behavior. On the other hand, the matching embedding of
the term structure in combination with the selectn components clearly fits the
semantic selection, as induced by the corresponding update terms.

6. Synthesis 95

playButtonplayButton

resumeAppresumeApp

pauseButtonpauseButton

leaveAppleaveApp

musicPlayingmusicPlaying

pausepause

trackPostrackPos
playplay

1 2 3

1

3

2

Cell

Ctrl

MP

Cell

Tr

Sys and

or

not

select

Figure 23: CFM that implements the music player specification.

An example for a CFM, which results from synthesizing the music player
specification of Section 2.2, is depicted in Figure 23. The inputs enter the
system from the left and the produced outputs leave it on the right. The
example only requires a single cell, which originates from the circuit structure
and therefore has been introduced during synthesis. The green, arrow shaped
boxes denote vertices being labeled with function and predicate literals. The
Boolean operations f∧, f∨, and f¬ are depicted with the corresponding circuit
symbols for conjunction, disjunction, and negation. The Boolean outputs of
the circuit are piped to the selectors, which forward the corresponding value
streams according to the chosen update behavior, i.e., each update stream
is passed to an output stream if and only if the respective Boolean trigger
evaluates correspondingly.

The CFM instantiates the control behavior of the system, while still ab-
stracting form concrete data transformations. These data transformations are
only indicated using the corresponding function and predicate literals instead,
where the synthesis guarantees that the desired control behavior is always ex-
ecuted correctly, independently of how the functions are implemented in the
end. Hence, regarding the overall system design process, the developer solely
has to provide the remaining function implementations. Furthermore, an ex-
ecution engine must be chosen to executes the CFM in combination with
the selected function implementations. Corresponding frameworks for such
engines that satisfy the respective purity and temporal requirements can be
found in the research field of Functional Reactive Programming.

96 Chapter III. Temporal Stream Logic

7 Functional Reactive Programming

The classical models for reactive systems, as presented in Section 1, feature a
rich number of capabilities for expressing temporal behavior in combination
with functional processing requirements. Nevertheless, they still miss some
important features, when it comes to the practical application of synthesis in
real world development scenarios.

To understand these missing features at first, reconsider the capabilities of
classical implementation models, such as Mealy machines or circuits. There,
it is easy to observe that all of these models only deliver a quite rudimentary
model for the representation and transformation of internal state. State is
either represented explicitly, as a unique configuration of the system, which
is inspected through a global view, or given as a set of variables or latches
holding purely Boolean values. Similarly, state is transformed using a global
transition function or using simple local Boolean transformations. Therefore,
the view discards any insights into the internal structure of the system through
reducing the structure to a monolithic model of uniform transformations.
Latches and variables, on the other hand, support to give structure to the
state and the corresponding transformations. However, therefore they are
limited to the Boolean data level of operation only.

We can conclude that these classical models clearly miss some advanced
abstraction techniques, as they are already used in programming languages
today. Hence, we need to ask ourselves: why exactly are we not using such
modern programming languages to implement reactive systems already? The
answer is that traditional programming languages usually are not designed to
be executed in a reactive environment. They instead rely on the assumption of
sequential execution, as well as on a step by step transformation for transfering
only single inputs to an output at a time. Reactivity then usually is just added
on top of this assumption, resulting in thread models, event handlers, or other
instances of such kind, which however often only offer poor guarantees with
respect to a robust temporal behavior.

What we have learned, however, from these models is that the infinite
interaction and the correct handling of time are the key challenges for creating
correct and robust reactive systems in the end. Hence, they should be included
as part of the core models of reactive programming languages as well.

7.1 Paradigm

A first advance into this direction has been introduced using so called reactive
programming languages. Their core idea is that a program does not represent

7. Functional Reactive Programming 97

a sequence of instructions, executed one after another, but instead represents
a network of dependencies that describe how output is computed depending
on the given input. Therefore, the model describes a network of data flows,
piping input values through different transducers, which finally produces data
at be output at the end. Correspondingly, the model is natively suited for the
description of reactive systems, where the network transforms infinite streams
of inputs into infinite output streams. Thus, by using the reactive program-
ming paradigm, the classical model of reactive systems can be natively lifted
from the Boolean data level to arbitrary data streams.

There exist many models for reactive programs, but the mathematically
most appealing ones are suited under the category of functional reactive pro-
grams (FRP) [36, 32]. As the name adumbrates, functional reactive program-
ming also encourages to leverage a clean separation between data transforma-
tion, as denoted by pure mathematical function applications, and the tempo-
ral evolution of state within the transducer network. Furthermore, functional
reactive programming also features a fully flexible model of time, which even
covers the spectrum of continuous time in some of the frameworks. Unfor-
tunately, there is no canonical model of FRP. Instead, practice has driven
some diverge development resulting in different incarnations of FRP imple-
mentations that often are part of application specific libraries [142, 5, 141,
32, 147, 7, 4]. None of these libraries is based on a uniform reactive system
model. Instead, they utilize denotative semantics and design patterns from
existing host languages, like the programming language Haskell [66]. While
using denotative semantics feature the direct expression of the natural intu-
ition behind the individual design primitives, it at the same time blurs the
language’s scope with respect to expressivity.

Initially, FRP development was driven by the idea to utilize time as an
adaptable parameter for the creation of reactive animations [36]. The under-
lying goal was to be indefinitely scalable, similar to space being used as an
adaptable parameter in scalable vector graphics. Later on, the goals of FRP
have been extended to replacing complex event based systems with a more
modular design [13]. The necessity for such systems especially rose for graphi-
cal user interfaces [33], as well as for more advanced computation management
related back-ends [32].

Today, FRP is used in many application areas such as embedded de-
vices [61], interactive games [111], robotics [75], GUIs [33], hardware cir-
cuits [15], and interactive multimedia [126]. In comparison to classical pro-
grams, FRP programs can be exceptionally more efficient. For example, an
FRP implementation that has been created to run on a network controller was
able to outperformed all its contemporary competing implementations [144].

98 Chapter III. Temporal Stream Logic

7.2 Time as a Type

The most fundamental concept of FRP is the idea of encapsulating time into
a type. The core abstraction of FRP is that of a signal

Signal α :: Time → α

which determines the value of some arbitrary (polymorph) type α at any point
in time. In general, the concept of a signal in FRP is more powerful than the
concept of infinite words and, therefore, generalizes the notions for classical
reactive systems. On the one hand, signals cover arbitrary (possibly infinite)
data domains. On the other hand, the time domain is well defined, even in
the case of continuous time. However, in order to rely on clean alignment with
TSL, we restrict ourselves to Time =̂ N at this point. Similar to the classical
setting, values of type α can be arbitrary inputs from the world, such as the
current position of a mouse, as well as arbitrary outputs to the world, such
as text that is rendered to the screen.

The transformation of signals is expressed through signal functions. For
example for rendering the position of the mouse on a screen. There are two
different variants of how of a signal function can be typed:

1. Signal α → Signal β

2. Signal (α → β)

The first variant conceptually receives all inputs at every point in time before
it determines the corresponding outputs. The second variant, on the other
hand, provides a potentially different transformation at any point in time.
Mathematically, both variants are equivalent, but depending on the FRP
instantiation they are not both supported natively or only one of the variants
supports specific operations with respect to the internal realization.

A standard approach for representing signals as part of a programming
language is using infinite lists. Therefore, the approach requires a lazy eval-
uation environment, which is not supported by all functional programming
languages. This is the reason, why most FRP libraries have their origin in the
functional programming language Haskell, which is built on the concept of
laziness from ground up [66]. Signal functions then are implemented through
the step by step processing of the infinite lists. This way, a conceptual view of
working with infinite data streams is provided from the programmers perspec-
tive, which still can be executed in reactive environments due to the implicit
time model being built-in.

7. Functional Reactive Programming 99

7.3 Design Patterns
Even with a fixed programming language environment, like Haskell, at hand
the FRP paradigm still can be realized in many different ways, each with
well-defined levels of expressive power. In the functional programming world,
these levels usually are realized through so called design patterns, like Applica-
tive [103], Monads [145], or Arrows [67], that support standardized ways of
how data and control flow is structured and executed within the programming
language. Depending of which design pattern is used, there are different ad-
vantages, but also restrictions of how the stream processing network is built
and executed eventually. We shortly introduce the most common patterns
that are used by Applicative, Monadic, and Arrowized FRP.

7.3.1 Applicative FRP

In Haskell, the Applicative class is defined as follows:

class Applicative f where
pure :: α → f α
(~) :: f (α → β) → f α → f β

The class characterizes type instances that are build on top of two basic op-
erations. On the one hand, the pure operation takes an arbitrary value and
puts it into the context of the Applicative type. On the other hand, the com-
pose operation ~ supports the application of a function being encapsulated
within the Applicative type to a value within the same context. Therefore,
every Applicative instance must satisfy the following laws:

identity: pure id ~ v ≡ v
composition: pure (◦) ~ u ~ v ~ w ≡ u ~ (v ~ w)

homomorphism: pure f ~ pure x ≡ pure (f x)

interchange: u ~ pure y ≡ pure (λf → f y) ~ u

where id denotes the identity function and ◦ denotes the function concatena-
tion operation. In the context of FRP, the signal type can be considered to
be an instance of the applicative class:

instance Applicative Signal where
pure :: α → Signal α
(~) :: Signal (α → β) → Signal α → Signal β

With respect to the concept of time, the pure operation then allows to lift
a value of type α to the temporal domain leading to a constant stream of

100 Chapter III. Temporal Stream Logic

that value for all points in time. The compose operation ~ allows to convert
a stream of point-wise potentially different function transformations into a
uniform stream transformer turning an input stream into a corresponding
output stream.

The Applicative instance provides the closest incarnation of FRP with re-
spect to the underlying concept of time. However, it is only rarely used in
practice. The reason is that there is no straightforward way to directly embed
the time concept into a host language like Haskell. Note that just because
we consider infinite lists to represent data streams of temporally changing
values, there is still no information available for the compiler of how to trans-
late this concept into a corresponding executable in the end. Therefore, this
information must be embedded into the corresponding language compiler as
well, which is non-trivial regarding the history of the Haskell compiler devel-
opment. Furthermore, the time model may also be application specific, which
is why a new compiler must be generated for each application domain.

Nevertheless, the challenge has been accepted with the functional hard-
ware description language ClaSH [7]. The language allows to use a purely
Applicative FRP instance to describe synchronous hardware circuits. Due to
the circuits being synchronous, there is a well-defined source of time given by
the hardware clock. As it turns out, ClaSH indeed comes with a dedicated
language compiler that builds on the syntactic front-end of Haskell, but trans-
lates to low level hardware descriptions in the core. Therefore, to the best of
our knowledge, ClaSH is the only instance of FRP today that solely builds on
a purely Applicative framework yet.

7.3.2 Monadic FRP

Just because the Applicative framework on its own is to weak for integrating
FRP into Haskell, it does not mean that there is no solution. Remember that
the primary problem with purely Applicative FRP is that there is a missing
link of how the temporal behavior is executed as part of an application specific
executable in the end. This problem can be solved by using a Monad [145],
which introduces the missing evaluation context. In Haskell, the Monad class
is defined as follows:

class Monad m where
return :: α → m α
(>>=) :: m α → (α → m β) → m β

The class provides an operation return that puts an object into the monadic
context, similar to the pure method for Applicative. Furthermore, it also
supports a sequential composition operator >>= that allows to take a value

7. Functional Reactive Programming 101

out of the context in order to apply a monadic transformation putting the
value again back into the context. Every Monad instance must satisfy the
following laws:

left identity: return a >>= f ≡ f a
right identity: m >>= return ≡ m
associativity: (m >>= f) >>= g ≡ m >>= (λx → f x >>= g)

While the Monad class can be seen as an extension to the Applicative class,
in particular every Monad instance is also an Applicative, it is not used for
adding more functionality to the signal type in the context of FRP, but instead
to provide a separate evaluation context. Hence, with respect to Monadic FRP
the signal type still is an Applicative, exactly as introduced in the previous
section, but every signal function is executed in a monadic context m:

SF α β :: Signal α → m (Signal β)

Thus the Monad is used to provide the evaluation context that was missing
for purely Applicative FRP. Monadic FRP is one of the most popular imple-
mentation frameworks and used by many FRP libraries, such as FRPNow [142],
Elerea [109], Reactive-Banana [4], Threepenny-GUI [5], or Reflex [141].

Conceptually, FRP allows to introduce circular dependencies, as long as
every circular path of the network is intercepted by at least one delaying
component, similar to the usage of a cell in TSL. To this end, in Monadic
FRP such circular dependencies also require the monadic context to be an
instance of the MonadFix [39] type class:

class MonadFix m where
mfix :: (α → m α) → m α

The class comes in combination with the following additional laws:

purity: mfix (return ◦ h) ≡ return (fix h)

left shrinking: mfix (λx → a >>= λy → f x y) ≡
a >>= λy → mfix (λx → f x y)

sliding: mfix (liftM h ◦ f) ≡ liftM h (mfix (f ◦ h))

nesting: mfix (λx → mfix (λy → f x y)) ≡
mfix (λx → f x x)

where fix f = let x = f x in x denotes the least fixpoint of f and liftM f x = x >>= (return ◦ f)
is a utility function that promotes a function to the Monad.

102 Chapter III. Temporal Stream Logic

arr f first a second a

a1 >>> a2 a1 ??? a2

f
a

a

a1 a2

a1

a2

Figure 24: Graphical representation of the core Arrow operations.

7.3.3 Arrowized FRP

Although Monadic FRP is expressive enough to embed FRP frameworks as
part of the Haskell language it still comes with the disadvantage of enforcing a
strict sequential evaluation through the composition operator >>=. Regarding
the conceptual idea of FRP to create a stream processing network, this is a
strong limitation. Therefore, another approach has established building on
the Arrow class [67], which offers a builtin evaluation model for the parallel
execution of the components. In Haskell, the Arrow class is defined as follows:

class Arrow a where
arr :: (α → β) → a α β
(>>>) :: a α β → a β γ → a α γ
first :: a α β → a (α , γ) (β , γ)

The class offers three core operations. The arr operation puts pure functions
into the arrow context. Therefore, the operation supports a similar concept
as the pure and return operations in Applicative and Monadic FRP, respec-
tively. Nevertheless, arr is more expressible in general, since the direction
of the computation from α to β is maintained as well. Similarly, arrows can
be composed sequentially using the composition operator >>>. However, they
can also be put into a parallel execution context using first. Therefore, note
that the operation does not add any concrete parallel execution yet, but only
adds the corresponding context. Using the core operations above, they usu-
ally are extended by second, the dual operation of first, as well as by the
parallel composition operator ???:

second :: a α β → a (γ , α) (γ , β)
second f = arr swap >>> first f >>> arr swap

where swap (a , b) = (b , a)

7. Functional Reactive Programming 103

(???) :: a α β → a α ′ β ′ → a (α , α ′) (β , β ′)
f ??? g = first f >>> second g

A graphical representation of the corresponding operations is given in Fig-
ure 24. Additionally, every Arrow instance must satisfy the following laws:

left identity: arr id >>> f ≡ f
right identity: f >>> arr id ≡ f
associativity: (f >>> g) >>> h ≡ f >>> (g >>> h)

composition: arr (g ◦ f) ≡ arr f >>> arr g
extension: first (arr f) ≡ arr (f × id)

functor: first (f >>> g) ≡ first f >>> first g
exchange: first f >>> arr (id × g) ≡

arr (id × g) >>> first f
unit: first f >>> arr fst ≡ arr fst >>> f

association: first (first f) >>> arr assoc ≡
arr assoc >>> first f

where × denotes the binary tuple constructor, fst the projection to the first
tuple component, and assoc is defined as assoc ((a,b) ,c) = (a,(b,c)).

In arrowized FRP, a signal is processed as part of a signal function SF α β,
which represents the corresponding instance of the Arrow. Arrowized FRP
was initially introduced to plug a space leak in the original work of FRP [36,
97]. Also consider that the abstractions used by the different implementations
of FRP vary in their expressive power. Therefore, as it turns out, arrowized
FRP has a smaller interface than a monadic FRP [95], which however restricts
the particular constructs that caused the aforementioned space leak.

Arrowized FRP is for example used by the libraries Yampa [65], UISF [147],
Rhine [9], Dunai [112], or Midair [108]. Moreover, the libraries Dunai and
Rhine use even a further extension of arrowized FRP incorporating monadic
properties into the framework as well. The extension is a called monadic
stream functions (MSF) and originally was introduced in [112].

Similar to the MonadFix class for monadic FRP, arrowized FRP also re-
quires an additional class in order to express circular dependencies within the
network. In arrowized FRP this extension is given by ArrowLoop [110]:

class ArrowLoop a where
loop :: a (α , γ) (β , γ) → a α β

104 Chapter III. Temporal Stream Logic

loop a

a

Figure 25: Graphical representation of the Arrow loop operation.

The loop operation allows to loop an output of type γ back to the compo-
nent. A graphical representation of the operation is given in Figure 25. The
ArrowLoop class requires the following additional laws to be satisfied:

left tightening: loop (first h >>> f) ≡ h >>> loop f
right tightening: loop (f >>> first h) ≡ loop f >>> h

sliding: loop (f >>> arr (id × k)) ≡
loop (arr (id × x) >>> f)

vanishing: loop (loop f) ≡
loop (arr assoc−1 >>> f >>> arr assoc)

superposing: second (loop f) ≡
loop (arr assoc >>> second f >>> arr assoc−1)

extension: loop (arr f) ≡ arr (trace f)

where trace f b = let (c, d) = f (b, d) in c.

7.3.4 Causal Commutative Arrows

Arrowized FRP explicitly supports parallel composition and therefore allows
for a more efficient evaluation of stream processing networks than Applica-
tive or Monadic FRP. On the contrary, arrowized FRP is less expressive than
monadic FRP due to the strong coupling of inputs with outputs as part of the
signal function type. Moreover, it turns out that even the original introduction
of the Arrow type class still misses some important properties, when it comes
to the schedulebility of the individual components’ execution. An important
property that has not been targeted so far considers the commutativity of
executing components that are composed using the parallel composition op-
erator ???.

The corresponding nuisance is introduced by the ability of Arrow instances
to be defined such that they are able to internally carry state, which then is
updated differently depending on how the corresponding network components
are scheduled. Note that the usage of internal state in general does not have

7. Functional Reactive Programming 105

f

loopD i f

init i

Figure 26: The special loopD operation of CCA that is initialized with the
user provided value i.

to be malicious at first. Consider for example an arrow equipped with a global
counter that keeps track of the amount of processed data at run time. Due
to addition being a commutative operation as well, this arrow respects the
commutativity law. However, non-commutative state is also possible. For
example, in the arrowized FPR library UISF [147] arrows are used to position
graphical user interface elements. According to the library design, the order
of new elements strictly depends on the previously laid out ones, as given by
the underlying arrow structure.

The problem can be avoided through an extension of the arrow class called
Causal Commutative Arrows (CCA) [151, 96]. CCA introduces additional
laws, which explicitly enforce the parallel operation to be commutative, as
well as the well-defined initialization of state as part of looping components.
Therefore, CCA also comes with a special initialization operator init, which
is introduced as part of a new ArrowInit class.

class ArrowInit a where
init :: α → a α α

In addition to implementing the init operator, every CCA instance then
must satisfy the corresponding commutativity and initialization laws:

commutativity: first f >>> second g ≡ second g >>> first f
product: init i ??? init j ≡ init (i, j)

Another advantage of the init operator is that is allows the introduction of
loopD, which is a loop that includes initialization as shown in Figure 26.

loopD :: γ → ((α , γ) → (β , γ)) → a b c
loopD i f = loop (f >>> second (init i))

Due to CCA again being restricted in its interface, there are more libraries
that can simulate CCA than Arrowized FRP. Furthermore, CCA also supports
a normalization procedure with respect to the network structure, which offers
more optimization opportunities than Arrowized FRP in general.

106 Chapter III. Temporal Stream Logic

7.4 Code Generation

Based on the aforementioned insights, we created a framework for FRP pro-
gram generation from synthesized CFMs. It starts from the CFM, as it is
synthesized from the orginal TSL specification utilizing a finite set of predi-
cate and function literals. The user then selects the target FRP abstraction
(Applicative, Monads, or Arrows) and receives an executable FRP program
in the end. Therefore, the process is clearly separated from the design of the
initial CFM due to the postponed selection of the application specific FRP
framework and the corresponding function and predicate implementations.

With a CFM that satisfies the original TSL specification at hand, we first
compile it into a universal template for the later FRP program. The generated
code is organized as follows:

control
:: _ signal -- FRP abstraction
⇒ _ -- cell implementation
→ (_ → _) -- functions and predicates
→ _ -- initial values
→ signal _ -- input signals
→ signal _ -- output signals

control _ · · · _ =
rec
∀c ∈ C. c ← δM(c)
∀v ∈ V. v ← `M(v) δM(v)
∀o ∈ O. o ← δM(o)

return
∀o ∈ O. o

First, the stream processor is specialized towards the desired FRP frame-
work using the required class constraints of the corresponding design pattern
and the cell implementation of the targeted FRP library. Next, the function
and predicate implementations are provided, as well as the initial values of
all utilized cells. The result is a concrete stream processor implementation
that receives input streams and produces the corresponding output streams
over time. Examples of the concertized interfaces for the Applicative FRP
framework ClaSH, Monadic and Arrowized FRP are given in Figure 27.

Reconsider that the model of a CFM only requires the expressivity of CCA
to be integrated within FRP. Correspondingly, we are able to generate code for
any FRP library that is at least as powerful as CCA [142, 112, 108, 109, 51].

7. Functional Reactive Programming 107

control
:: (HiddenClockReset d g s)

...

→ Signal d βi0
→ · · · → Signal d βin−1

→ (Signal d γo0
, . . ., Signal d γom−1

)

(a) The Applicative FRP control interface (specialized for ClaSH).

control
:: (Monad m, MonadFix m, Applicative s)
⇒ (forall α. α → s α → m (s α))

...

→ s βi0 → · · · → s βin−1

→ m (s γo0
, . . ., s γom−1

)

(b) The Monadic FRP control interface.

control
:: (Arrow sf, ArrowLoop sf , ArrowInit sf)
⇒ (forall α. α → sf α α))

...

→ sf (βi0
, . . ., βin−1

) (γo0
, . . ., γom−1

)

(c) The Arrowized FRP control interface utilizing CCA.

Figure 27: The type signatures of the created control interfaces for each of
the aforementioned design pattern: Applicative, Monads, and CCA.

108 Chapter III. Temporal Stream Logic

-- Yampa
iPre :: SF α α

-- ClaSH
register

:: HiddenClockReset d g s
⇒ α → Signal d α → Signal d α

-- Threepenny -GUI
cell

:: MonadIO m
⇒ α → Behavior α → m (Behavior α)

cell v x = stepper v (x <@ allEvents)

Figure 28: Cell implementations of the utilized FRP libraries.

In other words, first-order control and the ability to express circular dependen-
cies already are sufficient to capture the expressive power of both: the CFM
and CCA. Although many FRP libraries support more powerful operations
than CCA, e.g., switch, which is used for the dynamic reconfiguration of the
stream processing network at run time, we do not particularly rely on them
for synthesis. This is especially of interest, since the unpredictable behavior
of dynamically evolving networks naturally limits the availability of statically
computable run-time and memory consumption guarantees. Moreover, the
use of dynamically calculated networks often is largely impractical for many
FRP applications due to their additional resource overhead. Such overhead
must be for example avoided on embedded devices [127] or in applications
that are implemented in hardware [7]. Prior work on CCA also showed that
the expressive power of higher-order arrows makes the support for automatic
optimization more difficult. Furthermore, for most FRP programs a static
networks structure is more than enough [148].

We close the section with a review of the Kitchen Timer application from the
introduction to give a feeling of the concrete code that is generated by our
approach. We first generate a CFM utilizing six additionally synthesized cells
and 1188 vertices from the presented TSL specification using our framework
and the synthesis tool strix [105]. This CFM then is translated into the cor-
responding control structures for three tested application domains. We create

8. Experimental Results 109

Table 1: Synthesis and compilation times for creating the timer applications.

Executed Tool Time (sec)
Synthesis → strix 4.965
Compilation
Desktop → Yampa 19.403
Web → Threepenny-GUI 18.344
Hardware
→ ClaSH 11.218
→ yosys 6.405
→ nextpnr 7.276

a desktop program that is built on top of the FRP library Yampa and a web
application using Threepenny-GUI. Furthermore, we also implement the timer
in hardware using the functional hardware description language ClaSH. There-
fore, the dedicated ClaSH compiler generates verilog code, which then is trans-
lated into the blif format using the open synthesis suite yosys [132]. Next,
the generated blif-file is placed using the place-and-route tool nextpnr [132].
Afterwards, the resulting package is uploaded to an iCEblink40HX1K Evalua-
tion Kit Board from Lattice Semiconductor, featuring an ICE40HX1K FPGA
with 100 IO-pins and 1280 logic cells, which additionally is equipped with all
the required hardware components. The interfaces of the corresponding timer
applications are depicted in Figure 6 from Chapter I. The respective synthesis
and compilation times of the different tools are depicted in Table 1.

Finally remember that each FRP instantiation requires a library spe-
cific cell implementation to be passed to the generated control. The FRP
libraries Yampa and ClaSH provide these natively, as shown in Figure 28.
Threepenny-GUI, on the other hand, does not provide a native implemen-
tation on its own. However, the missing piece can be easily implemented with
the primitives stepper and (<@), which are provided by the library instead.

8 Experimental Results
We evaluate the synthesis approach using a created tool set, called tsltools.
Using this framework, given TSL specifications are first approximated to LTL
and then refined until the utilized LTL solver either produces a realizability
result or returns a non-spurious counter-strategy. Therefore, we utilize the
bounded synthesis tool BoSy [41] for LTL synthesis. As soon as the refinement
terminates with a realizing strategy it is translated to a CFM, which then is

110 Chapter III. Temporal Stream Logic

used to generate the corresponding FRP program.
Our benchmark set comprises of various application domains, where every

benchmark class focuses on a different feature of TSL. To this end, all of the
listed specifications have been created from scratch with the goal of either
targeting existing textual specifications or other real world scenarios. For
every benchmark, we consider its size |ϕ|, the number of input literals |I|,
the number of output literals |O|, the number of predicate literals |P|, and
the number of function literals |F| (including the literals of P). Regarding
the synthesis process, we then measure the synthesis times in seconds, the
number of cells |CM| utilized by the generated CFMM, as well as the number
of vertices |VM|. The corresponding results are listed in Tables 2 and 3. All
results of Table 2 did not require any refinement, i.e., the initial approximation
already was sufficient, whereas the benchmarks of Table 3 required the listed
number of refinements n. The synthesis was executed on a quad-core Intel
Xeon processor (E3-1271 v3, 3.6GHz, 32 GB RAM, PC1600, ECC), running
Ubuntu 64bit LTS 16.04.

The button benchmark represents a simple GUI application that requires
a button to be pressed in order to increase a counter. The music player
benchmarks cover the specification of Section 2.2, as well as some prelimi-
nary variants of reduced complexity. The FRPZoo benchmark set refers to a
standard online benchmark suite, designed to compare FRP library language
designs [51]. Therefore, the online available textual specification separates
between three different behaviors, given as scenarios 0, 5, and 10. In every
scenario, two buttons can be clicked: a clickCount button, which counts the
number of clicks, and a toggle button, which toggles the enable/disable state
of the clickCount button. The value of the counter is displayed via an output
interface. The three scenarios differ with respect to the exact conditions of
when the counter is updated, reset or displayed. The escalator benchmarks
cover different TSL translations of the LTL escalator example from the prelim-
inaries. The slider benchmarks specify different variants of a small graphical
game, where a slider moves back and forth and a player has to push a button
whenever the slider is at the center to score points.

The TORCS specifications build upon examples of the Haskell-TORCS
bindings for building FRP controllers [44] in The Open Race Car Simula-
tor (TORCS) [150]. The benchmarks describe controllers for autonomous
vehicles, which in TORCS have access to limited sensor data about the en-
vironment (e.g. the distance to the nearest obstacles) and to actuators in
the car (e.g. the steering wheel). The TSL specifications describe differ-
ent controllers, for which the sensors and actuators act as input and output
signals, respectively. Utilized function literals are for example slowDown or

8. Experimental Results 111

Table 2: Number of cells |CM| and vertices |VM| of the resulting CFMM and
synthesis times for a collection of TSL specifications ϕ. A * indicates that the
benchmark additionally has an initial condition as part of the specification.

Benchmark (ϕ) |ϕ| |I| |O| |P| |F| |CM| |VM| Time (s)

Button
default 7 1 2 1 3 3 8 0.364

Music App
simple 91 3 1 4 7 2 25 0.77
system feedback 103 3 1 5 8 2 31 0.572
motivating example 87 3 1 5 8 2 70 1.783

FRPZoo
scenario0 54 1 3 2 8 4 36 1.876
scenario5 50 1 3 2 7 4 32 1.196
scenario10 48 1 3 2 7 4 32 1.161

Escalator
non-reactive 8 0 1 0 1 2 4 0.370
non-counting 15 2 1 2 4 2 19 0.304
counting 34 2 2 3 7 3 23 0.527
counting* 43 2 2 3 8 4 43 0.621
bidirectional 111 2 2 5 10 3 214 4.555
bidirectional* 124 2 2 5 11 4 287 16.213
smart 45 2 1 2 4 4 159 24.016

Slider
default 50 1 1 2 4 2 15 0.664
scored 67 1 3 4 8 4 62 3.965
delayed 71 1 3 4 8 5 159 7.194

Haskell-TORCS
simple 40 5 3 2 16 4 37 0.680
advanced
gearing 23 4 1 1 3 2 7 0.403
accelerating 15 2 2 2 6 3 11 0.391
steering
simple 45 2 1 4 6 2 31 0.459
improved 100 2 2 4 10 3 26 1.347
smart 76 3 2 4 8 5 227 3.375

112 Chapter III. Temporal Stream Logic

Table 3: Set of programs that use purity to keep one or two counters in range.

SynthesisBenchmark (ϕ) |ϕ| |I| |O| |P| |F| |CM| |VM| n Time (s)
inrange-single 23 2 1 2 4 2 21 3 0.690
inrange-two 51 3 3 4 7 4 440 6 173.132
graphical-single 55 2 3 2 6 4 343 9 1767.948
graphical-two 113 3 5 4 9 - - - > 10000

turnLeft providing an intuitive interface for describing high level control. In
this way, guarantees of the overall system behavior can be specified, while at
the same time numerically sensitive, data specific manipulations are still al-
lowed. The first simple controller combines behavior, which does not require
state, whereas the advanced controllers include a more detailed planning pro-
cedure for approaching a turn. The advanced versions are also kept modular,
in the sense that the control of the steering wheel and the control of the gears
are given by separate specifications, which then are combined to a single FRP
program after synthesis again.

The benchmarks of Table 3 are inspired by examples of the Reactive Ba-
nana FRP library [4]. For the realizability of these benchmarks purity of
function and predicate applications must be utilized to ensure that the value
of one or two counters never goes out of range. In this context, the system
not only needs purity to be able to verify the condition, but also to take the
correct decisions in the resulting implementation to be synthesized.

In summary, our results show that TSL indeed successfully lifts the ap-
plicability of synthesis from the Boolean domain to arbitrary data domains,
allowing for new applications that can utilize all of the required levels of ab-
straction. For all of the benchmarks, we could find a realizable system within
a reasonable amount of time. The results often required synthesized cells to
realize the resulting control flow behavior.

9 Discussion
We introduced Temporal Stream Logic, a logic that leverages a clean separa-
tion between data and control. To this end, the logic focuses on describing the
control behavior of reactive systems, while keeping the data specific consid-
erations abstract. More precisely, the concrete data representations and the
implementation of respective data transformations is hidden from the system
designer using a universal abstraction over the space of possible data instan-

9. Discussion 113

tiations. The logic has been especially designed for the synthesis of reactive
systems with the focus on creating a correct behavior design at first, since we
assume that this design step precedes all other development steps in general.
Accordingly, in an initial development stage, the major challenge lies in find-
ing a suitable behavior of the control, while technical details of how data is
transformed can be postponed to later stage instead.

TSL clearly is more expressive than classical temporal logics, like LTL, due
to the universal abstraction of the data and the corresponding data transfor-
mations. However, as a trade-off, this abstraction also renders the logic to be
undecidable in general. Therefore, we showed that undecidability even stays
alive, if being restricted to a singe binary function transformation and a single
unary predicate that can be checked.

In another direction, we analyzed the game models that underlie TSL.
We found that the standard notion of determinacy differs from the classical
game settings, but could not answer the question, whether TSL games are
determined or not. Furthermore, we discovered that TSL games do not always
obey a finite game arena such that we introduced the distinction between
creational and non-creational TSL. Finally, we revealed that even for finite
arenas, the players may need infinite memory in order to win, whereas these
results already hold for games with reachability or safety winning conditions.
Another open question that we could not answer asks, whether TSL games
with weaker winning conditions are decidable or not.

As a consequence, we went back to the logic itself and instead introduced
an approximate reduction to classical LTL in combination with a CEGAR
based refinement approach that iteratively improves the approximation until
a solution is found. Therefore, the approximation is sound but not complete.
However, our experimental results show that it is indeed sufficient for success-
fully synthesizing TSL specifications of real world systems in practice.

Finally, we considered the connection between synthesized CFMs and
FRP. Although there are many incarnations of FRP, build on top of different
design patterns, we showed the CFM model to be fundamental enough, to
support translations to all of them.

In conclusion, we observe that TSL offers a different perspective compared to
other temporal logics, when it comes to the exploration of control behavior of
reactive systems design. However, at the same time it also comes with new
and open challenges, whose solution will help us to better understand the
peculiarities of reactive system design, even under the scope of keeping the
processed data abstract.

114 Chapter III. Temporal Stream Logic

Chapter IV

Output Sensitive Synthesis

Reactive synthesis from TSL specifications leverages a clean separation of data
and control. It enables the specification of even complex real-world applica-
tions and opens new design methodologies for system developers. Neverthe-
less, the resulting development process also introduces some new challenges.
A system designer now has to create specifications instead of implementations,
where specifications describe solution spaces in contrast to deterministic im-
plementations. Accordingly, there may be many implementations that satisfy
the designer’s intends. Hence, choosing the solution space correctly becomes
of critical importance for the system design. As a consequence, system de-
velopers also need tools and methods, which verify the created specifications
against the original design indents.

A first method for supporting developers with intention validations, in
case of realizable specifications, is given by the inspection of the created im-
plementations. System designers not being satisfied with the synthesis results
immediately indicate missing behavior properties or erroneous formulations
within the specification. An inspection, however, assumes that the designers
always are able to sufficiently understand the synthesized implementations.
Or in other words, it is assumed that synthesis results always are easily human
readable. Unfortunately, with respect to most of the currently available syn-
thesis tools, this assumption gets hard to defend. The problem is that classical
synthesis approaches only require solutions that satisfy the specification, i.e.,
are functionally correct, but ignore additional quality metrics. The automata
transformations and infinite games that are utilized by these approaches never
have been designed to maintain any notion of quality. These traditional solu-
tions are designed to run in optimal time, with respect to the corresponding
complexity classes, but ignore the complexity of the synthesized results.

Nevertheless, synthesis approaches that produce comprehensible imple-
mentations are unavoidable for a synthesis based development. Especially,
since missing behavior properties cannot be verified. Note that without an
additional inspection, developers are not even aware of their existence. Oth-
erwise, they would have added them to the system specification in the first
place.

116 Chapter IV. Output Sensitive Synthesis

In this chapter we consider synthesis approaches producing implementa-
tions that are not only correct with respect to the specification, but also
must be human comprehensible. To this end, we analyze output sensitive
synthesis approaches that introduce additional quality metrics to the cre-
ated implementations. Through the control of these metrics, developers then
can impose additional non-functional requirements on the synthesized results.
These additional constraints not only help with improving the readability, but
also are able to ensure additional system requirements that may be impor-
tant for subsequent system integration as well. In this sense, the kind of
applicable quality metric also depends on the representation of the system
to be synthesized. Therefore, we also consider the impact of choosing differ-
ent implementation models together with matching quality metrics, which we
evaluate with respect to the effect on the overall synthesis complexity. We
explicitly only consider synthesis approaches for LTL, since all results always
also are applicable to TSL, due to the soundness of the approximation in case
of realizable specifications, as discussed in Chapter III.

1 Bounded Synthesis

Output sensitive synthesis adds quality parameters to the synthesis process
that are provided as inputs by the developers in addition to the behavior
specification. The first output sensitive synthesis method was introduced by
bounded synthesis [45], which imposes an additional bound n ∈ N on the state
size of the created Mealy machines. Bounded synthesis searches only for Mealy
machines that satisfy the specification and are no larger than the given bound.
The approach not only reduces the size of the produced implementations, but
also the synthesis times in case of practical applications [42, 43, 69].

1.1 Constraint based Synthesis

In order to introduce a bound n into the synthesis process, the search for a
satisfying solution is reduced to constraint system such that the synthesis pro-
cess naturally splits into two phases. In the first phase, all non-deterministic
choices are removed from the specification, which especially resolves decisions
that have been introduced locally, under the scope of a specified property, but
require to be postponed into to the future with respect to a system imple-
mentation. Regarding the standard transformations for automata on infinite
words, the classic approach that implements such a reduction first translates
the negated LTL property into an alternating Büchi word automaton, which
then is reduced to a language-equivalent non-deterministic Büchi word au-

1. Bounded Synthesis 117

tomaton afterwards. With respect to the negation, as introduced initially,
this automaton then is equivalent to a universal co-Büchi automaton that
represents the same language as the initial LTL property. Note that the uni-
versal co-Büchi automaton is free of any non-deterministic choices.

The first phase, thus, reduces the specification to a set of local require-
ments that are still distributed over time, but are independent from each
other according to this global distribution. Accordingly, it only remains to
resolve these constraints with respect to a uniform system implementation.
Therefore, the elimination of non-determinism in the first phase guarantees
that all remaining constrains can be verified locally. Thus, the only remain-
ing challenge is to combine them within a single system implementation. On
the one hand, the problem, thus, is reducible to a much simpler constraint
system that not especially requires to be aware of the notion of time. On
the other hand, the encoded constraints can be easily extended with further
requirements, like a bound on solution size as utilized by bounded synthesis.
The most classical example for a constraint system is Boolean Satisfiability
(SAT), where the constraints are encoded as part of a Boolean formula. Be-
side Boolean Satisfiability, there are, however, also more advanced solutions,
such as Quantified Boolean Formulas (QBF), Dependency Quantified Boolean
Formulas (DQBF), or Boolean Satisfiability Modulo Theories (SMT).

Formally, the bounded synthesis approach first translates a given LTL
specification ϕ to an equivalent universal co-Büchi automaton A, such that
L(Aϕ) = L(ϕ). The problem, thus, reduces to finding implementations M
that are accepted by Aϕ. More precisely, we search for an implementation M,
for which the run graph GAϕ,M of M and Aϕ contains no cycle with a rejecting
vertex. This property can be witnessed by a ranking λ, which annotates each
vertex of GAϕ,M with a natural number that bounds the number of possible
visits to rejecting states. The ranking itself is bounded by n · k, where n is
the provided bound restricting the size of M and k is the number or rejecting
states of Aϕ. The search for M then is reduced to constraint system that
guesses the Mealy machine M itself, the corresponding run graph GAϕ,M as
a cross-product of M and the universal co-Büchi specification automaton Aϕ,
and a validating ranking λ that proves the correctness of M with respect to
Aϕ. Thus, if all constraints are satisfiable, then it is proven that the encoded
Mealy machine M indeed satisfies the specification ϕ.

In the scope of this thesis we use SAT as our primary constraint system of
choice, since we consider it as a basis of the available constraint systems. There
are, however, also other lines of work that especially focus on the implications
of choosing more advanced systems for the bounded synthesis encodings, such
as QBF, DQBF, or SMT [40, 41].

118 Chapter IV. Output Sensitive Synthesis

1.2 SAT Encoding

Let a universal co-Büchi automaton Aϕ = (2I∪O, Q, qI ,∆A,coBüchi(R))
with k = |R| and a bound n ∈ N+ be given. We introduce Boolean variables
to guess a satisfying Mealy machine M = (2I , 2O,M,mI , δM, `) and a valid
ranking λ : M ×Q→ [n · k] ∪ { }.

• trans(m, ν, j) for all m ∈ M , ν ∈ 2I , and 0 ≤ j ≤ log n describing
the transitions of the Mealy machine M. We only require a logarithmic
number of bits to encode the target of a transition in binary, where we
use trans(m, ν) ◦ j for ◦ ∈ {<,≤,=,≥, >} to denote an appropriate
encoding of the relation of the ranking to some value j ∈ [n] or other
rankings j = trans(m′, ν′).

• label(m, ν, o) for all m ∈M , ν ∈ 2I and o ∈ O describing the labels of
each transition.

• rgstate(m, q) for all m ∈M and q ∈ Q, to denote the reachable states
of the run graph GAϕ,M of M and Aϕ. Reachable vertices (m, q) denote
that their ranking λ(m, q) is a natural number, i.e., that λ(m, q) ∈ N.

• ranking(m, q, i) for all m ∈ M , q ∈ Q and 0 ≤ i ≤ log(n · k) denoting
the ranking of a vertex (m, q) of GAϕ,M. Similar to the variables that
encode the transition relation, we only require a logarithmic number of
bits to encode the ranking in binary. In the same fashion, these encoded
values can be compared using operations ◦ ∈ {<,≤,=,≥, >}.

The Bounded Synthesis problem then is encoded through the SAT formula
ΨBS(A, n) consisting of the following constraints:

1. The rankings are bounded by n · k and the transitions are bounded by n
(the conditions are necessary due to the logarithmic encodings):∧

m∈M, ν∈2I

trans(m, ν) < n ∧
∧

m∈M, q∈Q
ranking(m, q) < n · k

2. The initial state (mI , qI) of the run graph is reachable:

rgstate(mI , qI)

1. Bounded Synthesis 119

3. Each ranking of a vertex of the run graph bounds the number of visited
accepting vertices, not counting the current vertex itself:∧
m∈M, q∈Q

rgstate(m, q) →∧
ν∈2I ,q′∈Q

∆A(q, q′)[ν 7→ true, (I \ ν) 7→ false][o 7→ label(m, ν, o)] →∧
m′∈M

trans(m, ν) = m′ →

rgstate(m′, q′) ∧ ranking(m, q) ≺q ranking(m′, q′)

where ≺q equals <, if q ∈ R, and ≺q equals ≤, otherwise. The assign-
ment ∆A(q, q′)[ν 7→ true, (I \ ν) 7→ false][x 7→ label(m, ν, x)] denotes
that we replace every variable y of the formula ∆A(q, q′) with true,
if y ∈ ν, and with false, otherwise. Afterwards, all remaining vari-
ables o ∈ O are replaced with label(m, ν, o).

Theorem 13. The SAT formula ΨBS(A, n) is satisfiable if and only if
there exists a Mealy machine M with |M| = n such that L(M) ⊆ L(A).

Proof. Let M = [n]. The satisfaction of the first constraint limits the tar-
gets trans(m, ν) by n and the rankings ranking(m, q) by n ·k for all m ∈M
and ν ∈ 2I such that they induce a valid Mealy machine M. The second con-
straint then initiates the run graph construction through marking the initial
vertex. Finally, it is executed by the third constraint through fixing the
variables rgstate(m, q) and ranking(m, q, j) for all m ∈ M , q ∈ Q and
0 ≤ j ≤ log(n · k) such that they yield a ranking λ : M×Q→ [n ·k]∪{ } with
λ(m0, q0) ∈ N. To this end, the value encoded by ranking(m, q, j) for λ(m, q)
is chosen if and only if rgstate(m, q) equals true. Theorem 2 states that a
proof that λ indeed validates GA,M is sufficient, which is given by construction,
due to the last constraint matching the requirements of Definition 11.

With the result for Theorem 13 at hand, we obtain a synthesis procedure that
implements the bounded synthesis approach. In terms of complexity, we first
need to convert the LTL specification into an equivalent universal co-Büchi
word automaton, which imposes an exponential blow up in the size of the
specification in the worst case. Correspondingly, the created SAT encoding
is bounded by m with m ∈ O(2|ϕ| × n) and the problem can be solved in
non-deterministic polynomial time in m.

120 Chapter IV. Output Sensitive Synthesis

2 Bounded Cycle Synthesis

The advantage of Bounded Synthesis against game based synthesis approaches
is the availability of the bound as additional input parameter constrainting the
search space. Imposing a bound on the solution size comes with the intention
that small solutions are preferable in contrast to larger ones. From the system
creator’s perspective, there are, however, more output requirements than just
the solution size in general. Reconsidering our previous discussions, solutions
that are easy to inspect and easy to understand usually are preferred, since
inspectability and understandability are fundamental requirements in order to
verify that the created solutions indeed realize the system designer’s indents.
While small solutions clearly improve the situation, they still cannot guarantee
that there is no unnecessary complexity in the solution that is not strongly
required as part of the specification. Towards this end, we, thus, need better
output sensitive metrics that target the structural quality of the generated
solutions directly.

Regarding the definition of a Mealy machine M, one major structural
metric, which is not already considered with bounded synthesis, is the tran-
sition relation δM of M. Correspondingly, unnecessary complexity may be
introduced by the synthesizer using additional system transitions that are
avoidable in general.

We are interested in a quality metric that forbids these unnecessary tran-
sitions through the adjustment of additional parameters, which precisely cap-
ture the underling complexity. A simple adjustment is given by a bound on
the number of edges of δM. However, similar to a bound on the number of
states, such a bound still is completely disconnected from the actual execution
behavior. Hence, while the bound can lead to solutions that are structurally
more simple, it is still completely at random, whether the solution finally is
easier to understand. Therefore, we want a metric that is affected by the
complexity of the execution behavior as well.

Regarding this behavior, we are confronted with an infinite set of infinite
traces that result form unrolling the finite system model of a Mealy machine
into the infinite tree of possible system executions. Infinite models, however,
are not suitable to be handled by finite sets of system constraints. Instead,
we need an intermediate finite representation that still sufficiently coves the
infinite execution behavior. Our basic idea is to cut the infinite system execu-
tions to into finitely many pieces, each of finite length, such that they can be
considered individually, but still are connected sufficiently enough to cover all
important aspects of the system behavior. To this end, we choose the simple
cycles, as induced by the graph structure of the realizing Mealy machine.

2. Bounded Cycle Synthesis 121

A simple cycle c is defined as a sequence of states of the Mealy machine M
that contains no state more than once and every pair of subsequent states, as
well as the last and first states, are connected by at least one transition.

Definition 19. Let G = (V,E) be a directed graph. A simple cycle c of
G is a a tuple (C, η), consisting of a non-empty set C ⊆ V and a bijection
η : C 7→ C such that

• ∀v ∈ C. (v, η(v)) ∈ E and

• ∀v ∈ C. k ∈ N. ηk(v) = v ⇔ k mod |C| = 0,

where ηk denotes k times the application of η.

In other words, a simple cycle of G is a path through G that starts and ends
at the same vertex and visits every vertex of V at most once. We say that a
simple cycle c = (C, η) has length k iff |C| = k. We extend the definition of
a simple cycle of a graph G to a Mealy machine M = (2I , 2O,M,mI , δM, `)
such that c is a simple cycle of M if and only if c is a simple cycle of the graph
(M,E) for E = {(m,m′) | ∃ν ∈ 2I . δ(m, ν) = m′}. Thus, we ignore the input
labels of the edges of M. The set of all simple cycles of a Mealy machine M
is denoted by {(M).

Every simple cycle covers a specific part of an execution trace that can-
not only be repeated, but also immediately induces some infinite execution
behavior. Therefore, we are not interested in properties of the behaviors that
are induced by these cycles in particular, but already consider their existence
as an interesting system metric in general. Our intuition is that a system with
many of these simple cycles must be much more complex than one with less
cycles, since there are more “behavior pieces” that can be used to be assembled
up to infinity. Conversely, if we introduce a bound on the number of simple
cycles of the resulting Mealy machine, then synthesis should produce systems
that are much easier to understand.

Another interesting aspect of the number of cycles as a quality metric
is that the amount of cycles, which may be required in order to satisfy an
LTL specification, can explode in the size of the specification such that the
corresponding increase is even worse than for the number of states. While the
maximal number of states of a realizing Mealy machine is bounded doubly
exponential the size of the formula, the maximal number of simple cycles can
even rise up to triply exponential. Thus, the impact of the specification size
on the number of cycles is even more dramatic than on the number of states.

122 Chapter IV. Output Sensitive Synthesis

We present a new synthesis algorithm that imposes two bounds on the
solution space: the standard state bound n, bounding the number of states,
and an additional bound z, which bounds the number of simple cycles. The
algorithm is inspired by Tiernan’s cycle counting algorithm for directed graphs
from 1970 [138] and leverages an exhaustive search. To this end, the graph is
unfolded into a tree from some arbitrary, but fix vertex v, such that no vertex
repeats on any branch. The vertices in this tree with an outgoing edge that
leads back to v cover all simple cycles in the graph through v. The overall
number of cycles, thus, can be counted by first unfolding the graph from v,
counting the cycles through v, removing v from the graph, and repeating the
same procedure on the remaining sub-graph, until finally the graph is empty.
The overall number of cycles results from the sum of the individual counts.

We integrate Tiernan’s algorithm with the bounded synthesis constraint
system. Therefore, the bounded synthesis constraints still witness the real-
izing Mealy machine M and the ranking λ, but we also add some additional
bounded cycle synthesis constraints that, on the one hand, witness the corre-
sponding forest of unfoldings, and, correspondingly, some rankings that bound
the number of cycles.

2.1 Cycle Bounds

Our goal is a synthesis approach for producing systems that not only satisfy
the specification, but at the same time are easy to understand. Therefore, we
first give some theoretical arguments that underline the choice of the number
of cycles as a system metric. We show that it is possible that the number of
simple cycles explodes, even if the number of states stays small, and even if
the specification enforces a large implementation. Our results indicate that
a bound on the number of cycles is necessary in order to avoid these cases
systematically. Moreover, our results show that bounding the number of states
alone is not sufficient in order to obtain a simple and understandable solution.

2.1.1 Upper bounds

We prove that the number of cycles of a Mealy machine M, implementing an
LTL specification ϕ, indeed is bounded triply exponential in the size of ϕ.
Towards this result, we first establish an upper bound the number of cycles
of an arbitrary graph G with a bounded out-degree d.

If there is no bound on the out-degree of the edge relation, then the max-
imal number of cycles is covered by a fully connected graph. In this case,
each simple cycle is equivalent to a permutation of states. Correspondingly,

2. Bounded Cycle Synthesis 123

we derive an upper bound of 2n logn cycles for a graph with n states. For our
proof, however, we require a more involved argument based on an improved
bound of 2n log(d+1) for graphs with bounded out-degree d. Consider that for
LTL, the size of the implementing Mealy machine explodes in the number
of states, while the out-degree remains constant in the number of input and
output propositions.

Lemma 1. Let G = (V,E) be a directed graph with |V | = n and with
maximal out-degree d. Then G has at most 2n log(d+1) simple cycles.

Proof. We prove the result by induction over n ∈ N. The base case is trivial,
so let n > 1 and let v ∈ V be some arbitrary vertex of G. By induction
hypothesis, the subgraph G′, obtained from G by removing v, has at most
2(n−1) log(d+1) simple cycles. Each of these simple cycles is also a simple
cycle in G leaving only the simple cycles of G containing v. In each of these
remaining simple cycles, v has one of d possible successors in G′ and from
each such successor v′ we have again 2(n−1) log(d+1) possible simple cycles in
G′ returning to v′. Hence, if we redirect these simple cycles to v instead of v′,
i.e., we insert v before v′ in the simple cycle, then we cover all possible simple
cycles of G containing v. Note that not every such edge needs to exist for
a concrete given graph. However, in our worst-case analysis, every possible
cycle is accounted for. All together, we obtain an upper bound of

2(n−1) log(d+1) + d · 2(n−1) log(d+1) = 2n log(d+1)

cycles in G.

The result can be leveraged towards an upper bound on the number of simple
cycles of a Mealy machine M.

Lemma 2. Let M be a Mealy machine. Then |{(M)| ∈O(2|M|·|I|).

Proof. The Mealy machine M has an out-degree of 2|I|. Thus, by Lemma 1,
the number of simple cycles is bounded by 2|M| log(2|I|+1) ∈O(2|M|·|I|).

We obtain an upper bound on the number of simple cycles for every Mealy
machine that realizes an LTL specification ϕ.

124 Chapter IV. Output Sensitive Synthesis

Theorem 14. For every realizable LTL specification ϕ there is a Mealy
machine M with L(M) ⊆ L(ϕ), which has at most triply exponential
many cycles in |ϕ|.

Proof. According to [90], [114], and [45] there exists a Mealy machine M
with L(M) ⊆ L(ϕ), whose size is bounded doubly exponential in |ϕ|. In
combination with the result of Lemma 2 we obtain the desired result.

2.1.2 Lower bounds

Next, we prove that the bound of Theorem 14 is tight. We prove that for all
n ∈ N there exists a realizable LTL specification ϕ with |ϕ| ∈ Θ(n), for which
every implementation of ϕ has at least triply exponential many cycles in n.
The structure of the presented proof is inspired by Alur [1], who uses a similar
argument to prove lower bounds on the distance of the longest paths through
synthesized Mealy machines M. We utilize a lemma showing that the overall
number of cycles can be exponential in the length of the longest cycle of M.

Lemma 3. Let ϕ be a realizable LTL specification, for which every real-
izing Mealy machine M contains a simple cycle of length n. Then there
is a realizable LTL specification ψ, such that every Mealy machine M′
implementing ψ contains at least 2n many simple cycles.

Proof. Let a and b ∈ be a fresh input and output atomic propositions, respec-
tively, which do not appear in ϕ, and let M = (2I , 2O,M,mI , δM, `) be some
implementation that realizes ϕ. We define ψ := ϕ ∧ (a ↔ b) and choose
the implementation M′ such that

M′ = (2I∪{a}, 2O∪{b},M × 2{b}, (mI , ∅), δ′M, `′),

with `′((m, s), ν) = `(m, I ∩ ν)∪ s for all m ∈M, s ∈ 2{b} and ν ∈ 2I∪{a} and

δ′((m, s), ν) =

{
(δ(m, I ∩ ν), ∅) if a ∈ ν
(δ(m, I ∩ ν), {b}) otherwise

We clearly have that M′ is an implementation of ψ. The Mealy machine
remembers each input a for one time step and then outputs the stored value.
Thus, it satisfies (a ↔ b). At the same time, M′ still satisfies ϕ. Hence,
ψ must be realizable as well.

2. Bounded Cycle Synthesis 125

We continue by picking an arbitrary implementation M′′ of ψ that must
exist according correspondingly. After projecting away the fresh signals a and
b from M′′, we again obtain an implementation for ϕ that contains a cycle
(C, η) of length n. Let C = {m0,m1, . . . ,mn−1}. We obtain that M′′ contains
at least the cycles

X = {({(mi, f(mi)) | i ∈ [n]}, (m, s) 7→ (η(m), f(η(m)))) | f : C → 2{b}},

which concludes the proof, since |X| = 2n.

With Lemma 3 at hand, we have everything together for proving that the
aforementioned lower bounds indeed are tight. Note that in the following
proof all LTL specifications only require the temporal operators , and .
Thus, the proven bounds even hold for a restricted fragment of LTL.

Theorem 15. For every n > 1, there is a realizable specification ϕn with
|ϕn| ∈ Θ(n), for which every realizing Mealy machine Mn has at least
triply exponential many cycles in n.

Proof. According to Lemma 3, it suffices to provide a realizable LTL specifi-
cation ϕn that contains at least one cycle of doubly exponential length in n.
We choose

ϕprem
n ϕcon

n

ϕn := (
n∧
i=1

(ai → bi)→
n∧
i=1

(ci → di)) ↔ s

where I = Ia ∪ Ib ∪ Ic ∪ Id with Ix = {x1, x2, . . . , xn} for all x ∈ {a, b, c, d}
and O = {s}. The specification describes a monitor, which checks whether
the invariant ϕprem

n → ϕcon
n over the input signals I is satisfied. The

satisfaction is signaled through the output s, which needs to be triggered
infinitely often, as long as the invariant stays satisfied.

In the sequel, we denote a subset x ⊆ Ix with the n-ary vector ~x over {0, 1},
where the i-th entry of ~x is set to 1 if and only if xi ∈ x. The specification ϕn
is realizable. First, consider that for the fulfillment of ϕprem

n (ϕcon
n), an im-

plementation M needs to store the set of all requests ~a (~c), whose 1-positions
have not yet been released by a corresponding response ~b (~d). Furthermore,
for monitoring the complete invariant ϕprem

n → ϕcon
n , M has to guess

at each point in time, whether ϕprem
n will be satisfied in the future (under

126 Chapter IV. Output Sensitive Synthesis

the current request ~a). For the realization of this guess, M needs to store
a mapping f , which maps each open request ~a to the corresponding set of
requests ~c 1. This way, M can look up the set of requests ~c, tracked since the
last occurrence of ~a, whenever ~a gets released by a corresponding vector ~b. If
this is the case, it continues to monitor the satisfaction of ϕcon

n (if not already
satisfied) and finally adjusts the output signal s, correspondingly. Note that
M still has to continuously update and store the mapping f , since the next
satisfaction of ϕprem

n may already start while the satisfaction of the current
ϕcon
n is still checked. There are double exponentially many such mappings f ,

hence, M needs to be at least doubly exponential in n.
It remains to show that every such implementationM contains a cycle of at

least doubly exponential length. By the aforementioned observations, we can
assign each state of M a mapping f , that maps vectors ~a to sets of vectors ~c.
By interpreting the vectors as numbers, encoded in binary, we obtain that f
is a function f : {1, 2, . . . , 2n} 7→ 2{1,2,...,2

n}. We map each such mapping f to
a binary sequence bf = b0b1 . . . bm ∈ {0, 1}t with t = 2n, where each bit bi of
bf is set to 1 if and only if i ∈ f(i). It is easy to observe, that if two binary
sequences are different, then their related states have to be different as well.

To conclude the proof, we show that the environment has a strategy to
manipulate the bits of the associated sequences bf via the inputs I. To set
bit bi, the environment chooses the requests ~a and ~c such that they represent
i in binary. The remaining inputs are fixed to ~b = ~d = ~0. Hence, all other bits
are not affected, as possible requests of previous ~a and ~c remain open. To reset
bit bi, the environment requires multiple steps. First, it picks ~a = ~c = ~d = ~0
and ~b = ~1. This does not affect any bit of the sequence bf , since all requests
introduced through vectors ~c are still open. Next, the environment executes
the aforementioned procedure to set bit bj for every bit currently set to 1,
except for the bit bi, it wants to reset. This refreshes the requests introduced
by previous vectors ~a for every bit, except for bi. Furthermore, it does not
affect the sequence bf . Finally, the environment picks ~a = ~b = ~c = ~0 and
picks ~d such that it represents i in binary. This removes i from every entry
in f , but only resets bi, since all other bits are still open due to the previous
updates.

With these two operations, the environment can enforce any sequences
of sequences bf , including a binary counter counting up to 22n

. As different
states are induced by the different sequences, we obtain a cycle of doubly
exponential length in n by resetting the counter at every overflow.

1Note that this representation is open for many optimizations. However, they will not
affect the overall complexity result. Thus, we ignore them for the sake of readability here.

2. Bounded Cycle Synthesis 127

m0 m1

m2

m′2

· · ·

· · ·

mk

m′k

m∗
∗/{c}

∅/∅

{a}/∅

∅/∅

{a}/∅

∅/{b}

{a}/{b}

∅/∅

{a}/∅

∅/{b}

{a}/{b}

∗/{b}

∗/∅

∗/{b}

∗/∅

∗/{c}

Figure 29: The Mealy machines Mn (red/dotted) and M′n (blue/dashed),
which share all solid black edges of the illustration.

2.1.3 Trade-offs between states and cycles

We close this section with some observations that consider the trade-offs be-
tween synthesizing implementations that are minimal in the number of states
and implementations that are minimal in the number of cycles. Unfortunately,
it turns out that we cannot archive both optima simultaneously.

Theorem 16. For every n > 1, there is a realizable LTL specification ϕn
with |ϕ| ∈ Θ(n), for which

• there is an implementation of ϕ consisting of n states and

• there is an implementation of ϕ containing m simple cycles,

• but there is no realization of ϕ with n states and m simple cycles.

Proof. Consider the specification

ϕn :=
(
¬b ∧ c

)
∧ k+2

(
¬b ∧ c

)
∧

k∧
i=1

i
(
¬c ∧ ¬c ∧ (a↔ b)

)
over I = {a} and O = {b, c}, where i denotes i times the application of .
The specification ϕn is realizable with at least n = 2k + 1, as witnessed by

128 Chapter IV. Output Sensitive Synthesis

the Mealy machine Mn depicted in Figure 29. In particular, Mn has z = 2k

many cycles. The blowup can be avoided by spending the implementation
at least one more state, which reduces the number of cycles to z = 1. The
corresponding implementation M′n is also depicted in Figure 29.

The result underlines the possibility of an explosion in the number of simple
cycles and illustrates that this explosion cannot be avoided in general. How-
ever, at the same time it demonstrates that there are cases, where the amount
of simple cycles can only be improved by choosing a larger solution.

2.2 Counting Cycles

Our goal is extending the bounded synthesis constraint system such that it
supports an additional bound on the number of simple cycles of the synthe-
sized Mealy machines. Unfortunately, the pure introduction of a bound still
does not solve our problem. We also must be able to verify it against the
concrete number of simple cycles of the solution graph, which, on the other
hand, requires that we have knowledge of this number in the first place. But
how to obtain the number of simple cycles of a Mealy machine? To answer
this question, we first review a classical algorithm from Tiernan [138] that was
invented in 1970 to count the number of simple cycles of a directed graph G.
On the one hand, Tiernan’s algorithm highlights important insights on the
complexity of the problem. On the other hand, it serves as an inspiration for
the construction of our bounded cycle synthesis constraint system.

Algorithm 2 Tiernan’s Cycle Counting Algorithm
Input: directed graph G = (V,E)
1: c := 0

2: procedure Count(Ṽ , Ẽ, vr, v)
3: if (v, vr) ∈ Ẽ then
4: c := c+ 1

5: for all v′ ∈ Ṽ with (v, v′) ∈ Ẽ do
6: Count(Ṽ \ {v}, Ẽ, vr, v′)
7: while V 6= ∅ do
8: pick some arbitrary vr ∈ V
9: V := V \ {vr}

10: Count(V,E, vr, vr)
11: E := E ∩ (V × V)

12: return c

2. Bounded Cycle Synthesis 129

The algorithm starts with an iteration over all cycles that contain the first
picked vertex vr (Line 10). This iteration is realized through an unfolding
of the graph into a tree, as implemented by Count (Line 2), rooted in vr,
such that there is no repetition of vertices on any path from the root to a
leaf, as guaranteed via the restriction to Ṽ . The number of edges of E that
lead back to vr represents the corresponding number of cycles through vr,
which is counted in Line 4. All remaining cycles of G, not counted during
this instantiation of Count, do not contain vr and, thus, are cycles of the
sub-graph G′, from which vr has been removed (Lines 9 and 11). Therefore,
the remaining cycles are counted by recursively counting the cycles of G′.
The algorithm terminates as soon as G′ gets empty and returns the sum of
all individual countings Count.

The algorithm is correct [138]. However, the unfolded trees can be expo-
nential in the size of the graph, even if none of their vertices are connected
to the root, because there is no cycle to be counted. An example of this
weakness of Tiernan’s algorithm is illustrated by the graph M′n, as depicted
in Figure 29. Fortunately, the problem can be solved by first reducing the
graph to its strongly connected components (SCCs) such that the cycles of
each SCC can be counted individually [146, 77]. Therefore, note that a simple
cycle never leaves an SCC of the graph.

The result is an efficient counting algorithm that is exponential in the size
of the graph, but linear in the number of cycles. Furthermore, the algorithm
stays within a limit on the execution time between two cycles detections,
which is bounded linear in the size of the graph.

2.3 SAT Encoding

We leverage the insights from Tiernan’s algorithm to create an extended con-
straint system, which not only bounds the number of states of the resulting
Mealy machine M, but also the number of simple cycles of M. Our targeted
constraint system is SAT. Thus, our encoding requires a witness structure for
imposing a bound on the number of cycles that can be verified in polynomial
time in the size of the encoding. For this purpose, we use the unfolded trees,
as they are induced recursively by the calls of Tiernan’s algorithm to Count,
in combination with a ranking function that labels those trees. The combi-
nation imposes a limit on the number of cycles, as they are induced by the
witnessed trees individually. We call a tree that witnesses z cycles in G, all
containing the root r of the tree, a witness-tree tr,z of G.

130 Chapter IV. Output Sensitive Synthesis

Definition 20. A witness-tree tr,z of G = (V,E) is a labeled graph
tr,z = ((W,B ∪R, η), consisting of a graph (W,B ∪R) with z = |R| and
a labeling function η : W → V , such that:

1. The edges are partitioned into blue edges B and red edges R.

2. All red edges lead back to the root: R ⊆W × {r}

3. No blue edges lead back to the root: B ∩W × {r} = ∅

4. Each non-root has at least one blue incoming edge:

∀w′ ∈W \ {r}. ∃w ∈W. (w,w′) ∈ B

5. Each vertex has at most one blue incoming edge:

∀w1, w2, w ∈W. (w1, w) ∈ B ∧ (w2, w) ∈ B ⇒ w1 = w2

6. The graph is labeled by an unfolding of G:

∀(w,w′) ∈ B ∪R. (τ(w), τ(w′)) ∈ E

7. The unfolding is complete:

∀w ∈W. ∀v′ ∈ V. (τ(w), v′) ∈ E
→ ∃w′ ∈W. (w,w′) ∈ B ∪R ∧ τ(w′) = v′

8. Let wi, wj ∈W be two different vertices that appear on a path from
the root to a leaf in the r-rooted tree (W,B)a. Then the labeling
of wi and wj differs, i.e., τ(vi) 6= τ(vj).

9. The root identifies the corresponding vertex of G, i.e., τ(r) = r.
aThe tree property is enforced by Conditions 3 to 5

This definition covers all properties that are required for bounding the number
of simple cycles of a Mealy machine. For proving the statement, we first con-
sider the simplified situation of a graph consisting only of a single SCC.

Lemma 4. Let G = (V,E) be a graph consisting of a single SCC, r ∈ V
be a vertex of G and m be the number of cycles of G containing r. Then
there is a witness-tree tr,z = ((W,B ∪R), τ) of G with |W | ≤ m · |V |.

2. Bounded Cycle Synthesis 131

Proof. We construct the tree tr,z according to the strategy of Algorithm 2.
Hence, an edge is colored red if and only if it leads back to the root. The
constructed tree satisfies all Conditions 1 to 9. By correctness of Algorithm 2,
we have that |R| = z.

Now, for the sake of contradiciton, assume |W | > z · |V |. First we ob-
serve, that the depth of the tree (W,B) must be bounded by |V | to satisfy
Condition 8. Hence, as there are at most z red edges in tr,z, there must be a
vertex w ∈W without any outgoing edges. However, since G is a single SCC,
this contradicts the completeness of tr,z (Condition 7).

Lemma 5. Let G = (V,E) be a graph consisting of a single SCC and
let tr,z be a witness-tree of G. Then there are at most z cycles in G that
contain r.

Proof. Let tr,z = ((W,R∪B), τ). Assume for the sake of contradiction that G
has more than z cycles and let c = (C, η) be one of these cycles. By the com-
pleteness of tr,z, there is path w0w1 . . . w|C|−1 with w0 = r and τ(wi) = ηi(r)
for all 0 ≤ i < |C|. From wi 6= r and Condition 2, it follows (wi−1, wi) ∈ B
for all 0 < i < |C|, η|C|(r) = r, and (w|C|−1, w0) ∈ R. By the tree shape of
(W,B), we get |R| > z, yielding the desired contradiction.

From Lemmas 4 and 5 we derive that tr,z is a suitable witness for bounding
the number of simple cycles of an implementation M. Furthermore, from
Lemma 4 we also obtain an upper bound on the size of tr,z.

Note that the results of Lemmas 4 and 5 are only valid for a graphs that
consist of a single SCC. In general, this is no restriction, since for counting
and bounding the simple cycles of a graph, the graph can always be split into
its individual SCCs at first. Remember that no cycle can be part of multiple
SCCs. Such a split, however, also must be realized as part of our encoding.

In the following, we describe an encoding that guesses SCC annotations
ΨSCC(n, k) for each sub-graph Gk of a given graph G bounded by n ∈ N.
Concretely, we fix some vertex v in each SCC, for which we guess two spanning
trees that are rooted in v, where the edge relation of the second tree is inverted
with respect to Gk, i.e., the edges lead back to the root. This way, we ensure
that, starting at vertex v, each vertex is reachable and from each other, as
required for a sub-graph being an SCC. Correspondingly, the spanning trees
witness the guessed SCCs. In order to ensure that the SSCs are maximal, we
enforce that the DAG of all SCCs is totally ordered.

132 Chapter IV. Output Sensitive Synthesis

Let Wk = [k, n−1] be some ordered set. We introduce the following variables
that witness the SCCs of the sub-graph Gk:

• edge(w,w′) for all w,w′ ∈Wk representing the edges of the abstraction
of the Mealy machine M to Gk.

• scck(w, i) for all w ∈ Wk, and 0 ≤ i ≤ log n denoting one SCC of w in
the k-th sub-graph Gk of G.

• forwardk(w,w′) for all w,w′ ∈ Wk representing the edges of the first
spanning tree.

• backwardk(w,w′) for all w,w′ ∈ Wk representing the edges of the
second spanning tree.

• frankk(w, i) for all w ∈Wk and 0 ≤ i ≤ log n denoting a ranking that
measures the distance from the root of the first spanning tree.

• brankk(w, i) for all w ∈Wk and 0 ≤ i ≤ log n denoting a ranking that
measures the distance to the root of the second spanning tree.

The split of Gk into the individual SCCs then is realized through the SAT
formula ΨSCC(n, k) consisting of the following constraints:

1. The SCCs are totally ordered:∧
w,w′∈Wk

edge(w,w′)→ scck(w) ≤ scck(w′)

2. Only edges of the same SCC are connected through a forward edge:∧
w,w′∈Wk

forwardk(w,w′) → edge(w,w′) ∧ scck(w) = scck(w′)

3. Only edges of the same SCC are connected through a backward edge:∧
w,w′∈Wk

backwardk(w,w′) → edge(w,w′) ∧ scck(w) = scck(w′)

4. The roots of both rankings are equivalent:∧
w∈Wk

frankk(w) = 0↔ brankk(w) = 0

2. Bounded Cycle Synthesis 133

5. Each SCC has a root that is annotated with the smallest ranking:∧
0<i≤n

((∨
w∈Wk

scck(w) = i
)
→
(∨
w∈Wk

(scck(w) = i ∧ frankk(w) = 0)
))

6. Every SCC root is unique:∧
w,w′∈Wk

w 6=w′

¬
(
scck(w) = scck(w′) ∧ frankk(w) = 0 ∧ frankk(w′) = 0

)

7. Roots neither have incoming forward edges nor outgoing backward edges:∧
w′∈Wk

frankk(w′) = 0→
∧

w∈Wk

¬forwardk(w,w′)∧¬backwardk(w,w′)

8. All non-roots have exactely one incoming forward edge:∧
w′∈Wk

frankk(w′) 6= 0→ exactly1({forwardk(w,w′) | w ∈Wk})

9. All non-roots have exactely one outgoing backward edge:∧
w′∈Wk

brankk(w′) 6= 0→ exactly1({backwardk(w′, w) | w ∈Wk})

10. Forward edges preserve the ranking:∧
w,w′∈Wk

forwardk(w,w′)→ frankk(w) < frankk(w′)

11. Backward edges preserve the ranking:∧
w,w′∈Wk

backwardk(w,w′)→ brankk(w) > brankk(w′)

Lemma 6. Let Gk = (Wk, E) be a graph with |W | = [k, n− 1], encoded
through variables edge(w,w′) with (w,w′) ∈ E ↔ edge(w,w′). Then
the SAT formula ΨSCC(n, k) is satisfiable and for all w,w′ ∈Wk we have
that scck(w) = scck(w′) iff w and w′are part of the same maximal SCC.

134 Chapter IV. Output Sensitive Synthesis

Proof. The variables scck(w) assign every vertex a unique SCC and rank
them, correspondingly. Therefore, Constraint 1 ensures that the edge relation
ofGk preserves the ranking, which guarantees that the selected SCC partition-
ing must be maximal with respect toGk. It remains to proof that each selected
partition indeed is an SCC. To this end, the forward edges forwardk(w,w′)
and backward edges backwardk(w,w′) witness two spanning trees for each
SCC with opposite edge directions, respectively, i.e., in one of the trees the
edges always point downwards from the root to the leaves and in the other
one, the edges always point up from the leaves to the root. At the same time,
the edges still follow the edge relation edge(w,w) of G and never leave an
SCC (Constraints 2 and 3).

The rankings frankk(w) and brankk(w) ensure that the selected trees
indeed are spanning trees. Each spanning tree has a unique root with a
minimal rank. Moreover, we require that the two spanning trees of the same
SCC have the identical root (Constraint 4). The existence of these roots is
guaranteed through Constraint 5. That the roots are unique is guaranteed
through Constraint 6. Finally, roots must have no incoming edges in case of
the forward directed tree and no leaving edges in case of a backward direct
tree, as provided through Constraint 7. With the roots being identified, the
spanning trees unfold according to the respective edge relations. Therefore,
inner nodes and leafs must have a unique parent (Constraints 8 and 9), while
their ranks increase according to the depth of the tree (Constraints 10 and 11).
The combination of all the requirements ensures that forwardk(w,w′) and
backwardk(w,w′) indeed induce two spanning trees for each SCC with an
equivalent root and the aforementioned properties.

We claim that the existence of two such spanning trees witnesses that each
set of vertices w, with equal identifier scck(w), indeed is an SCC of Gk. To
this end, there must be a path from each vertex w to every other vertex w′.
Due to both trees being spanning tress, we always can construct this path as
follows: starting in w, first follow the backward edges to the common root,
from there use the forward edges to select a path to w′. Correspondingly, the
annotation scck(w) indeed partitions Gk into its maximal SCCs.

For fixed 0 ≤ k < n, each formula ΨSCC(n, k) is of quadratic size in n and
consists of n2 many variables.

Now, we have everything at hand for the construction of our final encoding.
At first, we derive a directed graph G from the guessed implementation M.
Then, we guess the corresponding sub-graphs of G via iteratively removing
vertices and splitting them into their corresponding SCCs. Finally, we guess
the witness-trees for each such SCC.

2. Bounded Cycle Synthesis 135

We further introduce some optimizations that are required for receiving a
compact encoding. First, consider that there is no reason for the introduction
of a fresh copy of each SCC, because the SCC of each vertex is always unique.
Hence, it suffices to guess a ranking for each vertex separately. Next, the
constraint system guesses n trees ti,ri consisting of at most i ·n vertices each,
such that the sum of all i equals the overall number of simple cycles z. We
could overestimate each i with z or guess the exact distribution of cycles over
the different witness-trees ti,ri . However, there is a better solution. We guess
all trees together in a single graph bounded by z · n instead. Furthermore, in
order to avoid possible interleavings, we add an annotation of each vertex by
its corresponding witness-tree ti,ri . Hence, instead of bounding the number
of each ti,ri separately through i, we bound the number of all red edges in
the whole forest by z. Therefore, we not only reduce the size of the encoding,
but also save the additional constrains, which otherwise would be necessary
to sum the different witness-tree bounds i to z.

Let W = [n] and S = W × [z], where W denotes the vertices of G and S the
vertices of the forests ti,ri . Furthermore, let T = W × {0} be the roots and
N = S \ T be the non-roots of the corresponding trees. We introduce the
following variables:

• bedge(s, s′) for all s ∈ S and s′ ∈ N representing the blue edges.

• redge(s, s′) for all s ∈ S and s′ ∈ T representing the red edges.

• wtree(s, i) for all s ∈ S, 0 ≤ i ≤ log n denoting the witness-tree of each
s ∈ S. As for the bounded synthesis encoding, we use wtree(s) ◦ x to
relate values with the underlying encoding.

• visited(s, w) for all s ∈ S and w ∈W denoting the set of vertices t that
already have been visited at s since leaving the root of the witness-tree.

• rbound(c, i) for all c ∈ [z], 0 ≤ i ≤ log(n · z) representing ordered lists
of edges that bound the number of red edges of the forest.

Note that we introduce m explicit copies for each vertex of G, which is suffi-
cient, due to each simple cycle containing each vertex at most once. Therefore,
the labeling η of vertices s is derivable from the first component of s.

The selection of the corresponding witness trees then is realized through
the formula ΨCS(A, n, z) consisting of the following constraints:

1. The graph G matches M:∧
w,w′∈W

(
edge(w,w′) ↔

∨
ν∈2I

trans(w, ν) = w′
)

136 Chapter IV. Output Sensitive Synthesis

2. Roots identify the witness-tree:∧
r∈W

wtree((r, 0)) = r

3. Every available blue edge must be taken.∧
(w,c)∈S, r,w′∈W

w 6=w′,w 6=r

edge(w,w′) ∧ sccr(w) = sccr(w′)

∧ wtree((w, c)) = r ∧ ¬visited((w, c), w′)

→
∨

0<c′≤w

bedge((w, c), (w′, c′))

4. Every available red edge must be taken:∧
(w,c)∈S, r∈W

w≥r

edge(w, r) ∧ sccr(w) = sccr(r) ∧ wtree((w, c)) = r

→ redge((w, c), (r, 0))

5. The red edges match to the edges of the graph G:∧
(w,c)∈S, r∈W,

redge((w, c), (r, 0))→ edge(w, r)

6. The blue edges match to the edges of the graph G:∧
(w,c)∈S, (w′,c′)∈N

bedge((w, c), (w′, c′))→ edge(w,w′)

7. Red edges only connect vertices of the current ti,ri :∧
s∈S, (r,0)∈T

redge(s, (r, 0))→ wtree(s) = r

8. Blue edges only connect vertices of the current ti,ri :∧
s∈S, s′∈N

bedge(s, s′)→ wtree(s) = wtree(s′)

9. Every non-root has exactly one blue incoming edge:∧
s′∈N

exactly1({bedge(s, s′) | s ∈ S})

2. Bounded Cycle Synthesis 137

10. Every vertex appears at most once on a path from the root to a leaf:∧
(w,c)∈S,
s∈N

bedge((w, c), s)

→ ¬visited(s, w) ∧ (visited(s, w′)↔ visited((w, c), w′))

11. Only non-roots can be successors of a root:∧
r∈W

(∧
w∈W
w≤r

¬visited((r, 0), w) ∧
∧
w∈W
w>r

visited((r, 0), w)
)

12. The red edges are strictly ordered:∧
0<c≤m

rbound(c) < rbound(c+ 1)

13. The list of red edges is complete. We use f(s) to map each state of S
to a unique number in {1, . . . , n · z}:∧

s∈S, s′∈W
redge(s, s′) →

∨
0<c≤z

rbound(c) = f(s)

Given a universal co-Büchi automaton A, a bound n on the number of states of
M, and a bound z on the number of cycles of M, the Bounded Cycle Synthesis
problem is encoded via the following SAT formula:

ΨCS(A, n, z) := ΨBS(A, n) ∧
∧

0<k≤n

ΨSCC(n, k) ∧ ΨWT(A, n, z)

Theorem 17. For bounds n, z ∈ N and a universal co-Büchi automa-
ton A, the formula ΨCS(A, n, z) is satisfiable if and only if there is a
Mealy machine M with |M| = n and {(M) = z, that is accepted by A.

Proof. “⇒”: Assume that ΨCS(A, n, z) is satisfiable. Thus, ΨBS(A, n) is satisfi-
able as well. Hence, according to Theorem 13, every correspondingly encoded
Mealy machine M must be accepted by A and satisfies |M| = n. It only
remains to prove that M contains exactly z simple cycles.

The number of simple cycles is not influenced by the transition labels
of M. Thus, it suffices to consider the underlying graph, as reflected through
the variables edge(w,w′) for all w,w′ ∈W (Constraint 1). We use the order

138 Chapter IV. Output Sensitive Synthesis

that is induced byW for the iterative selection of roots of the witness trees ti,ri
such that the roots uniquely identify the tree (Constraint 2). Starting at some
root r, every witness tree then expands along vertices that are larger than r
according to the edge relation of G. Therefore, every edge that does not lead
back to r and does not visit a vertex that already has been visited above
in the tree must be colored blue (Constraint 3). On the other hand, if the
edge leads back to the root it must be colored red (Constraint 4). Moreover,
Constraints 5 and 6 assure that blue and red edges indeed match with the
edge relation of G. Note that we only consider edges that are part of an SCC
of the corresponding sub-graph Gr, which are restricted to vertices larger
than r. According to Lemma 6, it is guaranteed that the variables sccr(w)
correctly identify the SCCs of the sub-grap Gr.

Even a single SCC can contain multiple witness-trees. Therefore, they are
distinguished through the identifier wtree(s) for every s ∈ S. This identifier
validates the selection of blue and red edges, because it stays consistent along
every witness-tree ti,ri (Constraints 7 and 8).

It still needs to be guaranteed that we indeed guess trees having the re-
quired shape of a witness-tree. To this end, Constraint 9 guarantees that
every inner node and leaf of the tree has a unique parent. Constraint 10 guar-
antees that no vertex appears more than once on every path from a root to a
leaf. It does so by tagging every vertex on the path with all vertices above in
the tree that already have been visited. The tagging is initialized at the root
of the tree (Constraint 11), through stating that no vertex is visited initially.

Together, all aforementioned constraints guarantee the correct identifica-
tion of the witness-trees of G, where every red edge of a tree identifies a simple
cycle of G. Thus, it only remains to limit the number of red edges by the
given bound z. To this end, we utilize a list of length z containing unique
identifiers for each red edge, as part of the witness-trees. The list must be
strictly ordered such that no entry appears more than once (Constraint 12).
Furthermore, Constraint 13 guarantees that each red edge is validated through
a corresponding entry in the list. Thus, {(M) indeed is bounded by z.

“⇐”: Assume that there is a Mealy machine M with |M| = n and {(M) = z
that is accepted by A. We construct the corresponding graph G, the SCCs
of G, and the witness-trees ti,ri according to Algorithm 2. It is easy to verify
that the results are witnesses for all constraints of ΨCS(A, n, z).

Let A = (2I∪O, Q, qI ,∆A,coBüchi(R)) be a universal co-Büchi automaton
with |Q| = m and max{|∆A(q, q′)| | q, q′ ∈ Q} = d. The formula ΨCS(A, n, z)
consists of j ∈O(n3+ n2(z2+ 2|I|) + n|O|+ nm log(nm)) many variables and
|ΨCS(A, n, z)| ∈O(n3+n2(z2+ dm2|I|)).

3. Compact Implementation Models 139

3 Compact Implementation Models

As we have seen, the reduction of the synthesis problem to a constraint system
provides many advantages. The constraint system cannot only be utilized for
finding some implementation that is accepted by the universal co-Büchi au-
tomaton, but also allows for imposing additional constraints that guarantee
output sensitive properties. The constraints, we considered so far, bound the
size of the Mealy machine implementing the specification or the number of
simple cycles of the graph structure, as induced by the Mealy machine. In
general, however, the model of Mealy machines is not the first choice that
comes along, if it comes to an implementation model that is required in prac-
tice. The model more serves as a theoretical baseline in terms of semantics
defining the system behavior. For practical applications, on the other hand,
representation models such as circuits, tree-shaped programs, or register ma-
chines are preferred. However, with respect to the synthesis output, these
models introduce different representation characteristics than their underly-
ing flat counterpart of a Mealy machine.

3.1 Bounded Circuits

Circuits, for example, focus on a distributed evaluation model that matches
the physical realization of most computation hardware today. In a circuit,
computations are broken apart into parallel evaluations of AND gates and
negations. State is realized through a set of latches, each one holding exactly
one bit. The overall implementation is composed out of these components
reading from Boolean input streams and producing Boolean output streams.
Semantically, circuits are equivalent to Mealy machines in the sense that the
cross-product of all latches defines the Mealy state. However, in terms of
representation, they can be exponentially more succinct.

Rembember that in a Mealy machine internal state is given explicitly, since
every possible configuration of the system results in distinguishable state.
Similarly, every possible state update and production of output is bundled
into single transitions and only fanned out according to the possible inputs.
Thus, while giving us a simple, but expressive, mathematical model, Mealy
machines are still limited when it comes to applications that need to handle
a huge amount of internal state. Circuits provide a more succinct model that
distributes state to latches, which are manipulate via Boolean operations.
The latches hold state, as they delay Boolean inputs for a moment and, thus,
allow to pass information over time.

140 Chapter IV. Output Sensitive Synthesis

Definition 21. A circuit C = (I,O, L, γ) is a tuple, where

• I is the set of Boolean input streams,

• O is the set of Boolean outputs streams,

• L is the set of latches, and

• γ : (O ∪ L) → B∗(I ∪ L) is the gate function that connects each
circuit output and latch input to a Boolean combination of circuit
inputs and latch outputs.

The size of a circuit is defined to be |γ|. The latches of the circuit serve as
inputs and outputs at the same time. Every value that is written to a latch
is delayed till the next time step. At the initial point of time, every latch
outputs false. Since every latch holds only a single Boolean value at every
point in time, the overall amount of different configurations is exponential in
the number of latches.

Every circuit C can be transformed into an equivalent Mealy machine MC.
We identify the input alphabet ΣI of the Mealy machine with 2I and ΣO with
2O, since multiple inputs are served at the same time and similarly multiple
outputs are produced,

Construction 4. Every circuit C = (I,O, L, γ) corresponds to an equiv-
alent Mealy machine MC = (2I , 2O,M,mI , δM, `), where

• M = B[L] is the set of functions assigning latches to Boolean values,

• mI ∈ M is the function that initiates each latch with false, i.e.,
∀x ∈ L. mI(x) = false,

• δM is the transition function that updates each latch according to
the gate function, i.e., ∀m ∈ M. ∀υ ∈ 2I . δ(m,υ) = m′ such that
m′(x) = (υ ∪ {y ∈ L | m(y)} � γ(x)),

• ` is the output function that updates each output according to the
gate function of the circuit, i.e.,

∀m ∈M. ∀υ ∈ 2I . `(m,υ) = {o ∈ O | υ ∪ {y ∈ L | m(y)} � γ(o)}

3. Compact Implementation Models 141

· · ·

conjunction

· · ·

disjunction

latchnegation

(a) Graphical representation of latches,
conjunction, disjunction and negation.

x

i0

i1

o1

o2

(b) illustration of a two-bit integrator
summing two-bit inputs over time

Figure 30: The individual components of a circuit and a circuit example.

Construction 4 defines the semantics of a circuit C and determines it’s word
language L(C) to be L(MC). Circuits are illustrated using a graphical repre-
sentation. The individual components are depicted in Figure 30a. A complete
circuit consists of a connected set of such components, connecting inputs to
outputs. If a global input or a component output is shared among multiple
inputs, then the connection point is marked using a black dot. Figure 30b
presents an example circuit of a two bit integrator, that sums up two-bit in-
put values over time. Note that conjunction and disjunction are allowed to
have multiple inputs. This is a valid simplification, since both operations are
associative and commutative according to their semantics.

Circuits consider an implementation model that can be exponentially more
succinct than Mealy machines. Therefore, they distribute the Mealy state
over the cross-product of multiple latches, each one holding only a single bit.
Hence, with respect to bounded synthesis, the state bound is turned into a
latch bound, which grows only logarithmically as fast as the bound on the
number of Mealy states.

However, as part of their distributed architecture, circuits also introduce
another natural bound: the number of gates that are used as part of the
circuit representation. The corresponding bound measures the complexity of
computing the output valuations from the given input and latch valuations in
terms of the number of Boolean operations. We only consider conjunctions
and disjunctions to be captured as part of this bound, since the number of
negations always can be kept linear in this number. Finally, note that com-
pared to Mealy machines, the complexity of computing outputs from inputs
at a time is completely hidden as part of the transition relation.

As a consequence, if circuits are targeted as the underlying implementation
model, output sensitive synthesis approaches must consider two bounds in

142 Chapter IV. Output Sensitive Synthesis

g2g1g0

r0

r1

r2

g2g0 g1

r0

r1

r2

Figure 31: The tradeoff between minimizing latches and gates. Both circuits
implement a simple arbiter for three clients. The left one is minimal in the
number latches, while the right one is minimal in the number of gates.

terms of the possible search space metrics. However, two bounds always raise
an immediate question: which of them should have higher importance with
respect to a minimal solution. As we have seen already for the Bounded Cycle
Synthesis approach, it is not always possible to minimize multiple bounds
simultaneously. A similar result arises for bounding the number of latches
and gates. To this end, consider the circuits of Figure 31, which implement
the specification of a simple arbiter with three clients. The circuit on the
left is minimal in the number of latches, but requires a single conjunction in
order to archive the required behavior. On the other hand, the circuit on
the right needs no conjunction at all, but at the cost of an additional latch.
The comparison shows that the preference of minimality with respect to the
number of gates and latches must be resolved by the user, since there is no
natural precedence in general.

We continue with the encoding of circuits into SAT, where we leverage
some simplifications of the representation of the gate function γ. In general,
the gate structure that is used to calculate outputs and latch inputs utilizes
all kinds of Boolean operations, i.e., conjunction, disjunction, and negation.
In terms of simplification, however, we can assume that disjunctions are re-
placed through a combination of conjunctions and negations according to the
equivalence, as given with De-Morgan’s law. Furthermore, we can assume
that conjunctive gates are always restricted to a binary set of inputs, since
conjunctions with more inputs always can be transferred into a chain of bi-
nary gates, accordingly. Moreover, similar to our graphical representation,
gates can be shared among multiple evaluations if they correspond to the
same Boolean structure. Finally, negations are coupled with the latch and
conjunctive gate representations such that multiple variants of conjunctions

3. Compact Implementation Models 143

and latches are introduced, according to the possible combinations of placing
a single negation afterwards or not. In both cases, we receive two possible
variants: the standard latch or conjunction representation, without any nega-
tions, and a complemented variant, where the output is negated after being
read from the component.

All of these simplifications are standard, as they are already used by
AIGER format [12]. The format is standardized and currently used for ex-
ample by the hardware model checking competition HWMCC [20] and the
synthesis competition SYNTCOMP [70] for the representations of circuits.
Many choices of our encoding have been inspired by the AIGER format de-
sign intentions, correspondingly.

According to the aforementioned simplifications, we consider the gate func-
tion γ to be represented as a graph, where vertices indicate binary conjunc-
tions or latches and edges connect them according to their evaluation in γ.
Note that every cycle of the graph structure must contain at least one latch
according to the definition of γ. Inputs and outputs serve as sources and
sinks for the connections, where true is a special source that always provides
the corresponding constant. Similar to vertices, sources can appear in two
variants: equipped with or without a negation afterwards. Moreover, with
respect to the aforementioned variants, negations are part of the conjunction
and latch vertices.

Formally, we partition vertices into latches L and gates G. For the connec-
tion of vertices with inputs and outputs we utilize the concept of endpoints.
Endpoints describe the possible connection capabilities of inputs, outputs,
and vertices according to the represented elements. We denote the set of all
endpoints by EP = EIP] EOP , which is partitioned into input endpoints EIP
and output endpoints EOP . To this end, every input and vertex of the struc-
ture offers two output endpoints. One for the positive provided value and
one for the complementary result. Similarly, every output and latch provides
one input endpoint for passing a value to the component. Correspondingly,
conjunctions have two input endpoints: one for each input. Given the number
of inputs, outputs, latches, and gates, the overall number of endpoints |EP |,
thus, is determined by

|EP | = |EIP |+ |EOP | = 2 + 2|I|+ 3|L|+ 4|G|+ |O|,

where the special source for the constant true is also included. For the sake of
readability, we use EIP = O]L] (G×{1, 2}) and EOP = B] ((I]L]G)×B),
which not only matches the above calculation, but also supports an intuitive
reasoning of the different endpoints. Note that we use B to distinguish the
complementary endpoints from the positive ones.

144 Chapter IV. Output Sensitive Synthesis

For our encoding of the circuit as part of a bounded approach, we introduce
the bounds n ∈ N and z ∈ N for the number of latches L and gates G,
respectively. To this end, we assume that L = [n] and G = [z], such that the
circuit itself is representable by a mapping c : EIP → EOP . Note that under
the knowledge of I, O, n and z, a mapping from EIP to EOP indeed uniquely
determines the structure of a circuit C, as long as there is latch free cycle
induced by c.

Construction 5. For given inputs I, outputs O, and n, z ∈ N, every
mapping c : EIP → EOP induces a circuit C = (I,O, [n], c∗) with:

c∗(x) =

i↔ b if c(x) ∈ (I × B) with c(x) = (i, b)
l↔ b if c(x) ∈ ([n]× B) with c(x) = (l, b)
(c∗(g, 1) ∧ c∗(g, 2))↔ b if c(x) ∈ ([z]× B) with c(x) = (g, b)
c(x) otherwise

Note that c∗ is only well-defined if every cycle induced by c contains at least
one latch. Let L = [n] and G = [z] with z, n ∈ N and a universal co-Büchi
automaton Aϕ = (2I∪O, Q, qI ,∆A,coBüchi(R)) with k = |R| be given. We
introduce the following variables to be used in our encoding:

• connect(eI , k) for all eI ∈ EIP , and 0 ≤ k ≤ log |EOP | denoting the
mapping c : EIP → EOP . To this end, we identify every output endpoint
with a unique number to be encoded with logarithmically many bits.

• eprank(eI , j) for all eI ∈ EIP , 0 ≤ j ≤ log |EP | used for a ranking of the
endpoints to ensure that there is no latch-free cycle.

• valθ(eI) for all θ ∈ 2L∪I and eI ∈ EIP representing the Boolean valuation
of every endpoint with respect to a given input evaluation and the bits
stored by the latches.

• rgstate(m, q) for all m ∈ 2L and q ∈ Q denoting the reachable vertices
of the run graph under the reachable latch evaluations.

• ranking(m, q, i) for all m ∈ 2L, q ∈ Q and 0 ≤ i ≤ log(k · 2n) denoting
the ranking of the run graph.

We use the variables connect(eI , k) to guess a mapping c that represents a
circuit C according to Construction 5, as long as c does not contain latch-free
cycles. The latter is guaranteed through the ranking induced by the variables

3. Compact Implementation Models 145

eprank(eI , j). The circuit must be evaluated under every possible input
and latch configuration for the construction of a run graph that witnesses
the acceptance of Aϕ, similar to the standard bounded synthesis encoding.
The corresponding evaluation is propagated along the endpoints through the
variables valθ(eI). The remaining variables are used to construct the corre-
sponding run-graph. The only difference to the standard bounded synthesis
encoding is that instead of using the states of the Mealy machine directly, they
are induced through the cross-product of the individual bits of the latches.

Our encoding is split into two sub-formulas. The first part ΨVAL(n, z, θ, eI)
encodes the deterministic evaluation of the mapping c according to its seman-
tics c∗ as presented in Construction 5. The respective formulas consist of
the following constraints for given θ ∈ 2L∪I and eI ∈ EIP . We use the map-
ping fEO

P
: EOP → [|EOP |] to denote the aforementioned index mapping for input

endpoints EOP :

1. Evaluation of input endpoints of constants:∧
b∈B

connect(eI) = fEO
P

(b) →
(
b ↔ valθ(eI)

)

2. Evaluation of input endpoints of latches and inputs:∧
X∈{L,I}
b∈B,x⊆X

connect(eI) = fEO
P

((x, b))→
(
(x ∈ θ ∩X ↔ b) ↔ valθ(eI)

)

3. Evaluation of input endpoints of gates:∧
b∈B,g∈G

connect(eI) = fEO
P

((g, b)) →(
((valθ((g, 1)) ∧ valθ((g, 2)))↔ b) ↔ valθ(eI)

)
The second part ΨMC(A, n, z) guesses the mapping c, the corresponding end-
point ranking, and the run graph ranking including the reachability tags, as
already familiar from the standard bounded synthesis encoding.

4. Connection mappings and endpoint rankings are bounded:∧
eI∈EI

P

connect(eI) < |EOP | ∧ eprank(eI) < |EP |

146 Chapter IV. Output Sensitive Synthesis

5. The endpoint annotation strictly increases over conjunctions:∧
eI∈(G×{1,2})
(g,b)∈(G×B)

connect(eI) = fEO
P

((g, b)) →∧
x∈{1,2}

eprank((g, x)) < eprank(eI)

6. The initial state (∅, qI) is reachable and the run graph ranking is bounded:

rgstate(∅, qI) ∧
∧

m∈2L, q∈Q

ranking(m, q) < k · 2n

7. Each ranking of a vertex of the run graph bounds the number of visited
accepting vertices, not counting the current vertex itself:∧
m∈2L, q∈Q

rgstate(m, q) →∧
ν∈2I ,q′∈Q

∆A(q, q′)[ν 7→ true, (I \ ν) 7→ false][o 7→ val(m∪ν)(o)] →∧
m′∈2L

(∧
l∈m′

val(m∪ν)(l) ∧
∧

l∈Lrm′
¬val(m∪ν)(l)

)
rgstate(m′, q′) ∧ ranking(m, q) ≺q ranking(m′, q′)

Through the composition of both pieces, we finally receive the bounded circuit
encoding ΨCIR(A, n, z):

ΨCIR(A, n, z) := ΨMC(A, n, z) ∧
∧

θ∈2L∪I, eI∈EI
P

ΨVAL(n, z, θ, eI)

Theorem 18. For bounds n, z ∈ N and a universal co-Büchi automa-
ton A, the formula ΨCIR(A, n, z) is satisfiable if and only if there is a
circuit C consisting of n latches and z gates such that L(C) ⊆ L(A).

Proof. “⇒”: Assume that ΨCIR(A, n, z) is satisfiable, then the set of variables
connect(eI , j) induce a mapping from EIP to [|EOP |] due to Constraint 4,
which, given some chosen bijection fEO

P
: EOP → [|EOP |], is equivalent to a map-

ping c : EIP → EOP . The existence of an endpoint eprank(eI), which strictly

3. Compact Implementation Models 147

increases along conjunctions (Constraint 5), witnesses that every cycle induced
by c must contain at least one latch. Hence, according to Construction 5 the
mapping induces a circuit C with n latches and z gates.

It remains to proof that C indeed is accepted by A. To this end, the
variables valθ(eI) assign every input endpoint eI a Boolean value under the
scope of some latch assignment θ ∩ L and some inputs θ ∩ I. If the input
endpoint connects to the constant source true, then it is true, if selecting
the positive port, and false, otherwise (Constraint 1). If the input endpoint
connects to a latch output or a circuit input, then it reflects the value of the
latch or the input according to θ, while it is negated, if connecting to the
complementary port (Constraint 2). Finally, if the input endpoint connects
to the output of a conjunction, then it holds the same value as the evaluation
of the conjunction on the respective input endpoints taking the also selected
port into account (Constraint 3). A simple induction along the gate elements
of the structure of C shows that the input endpoints of latches and the circuit
outputs correctly reflect the evaluation of C according to the induced gate
function c∗.

The remaining Constraints 6 and 7 ensure that C indeed is accepted by A
using the same arguments as for proof of Theorem 13. Note that instead of
the variables trans(m, ν) and label(m, ν, o) the cross-product of the latch
bits valw∪ν(l) and the circuit outputs valm∪ν(o) under the current inputs
and latch evaluation θ are used.

“⇐”: Assume that there is a circuit C with n latches and z gates that is
accepted by A. Then by starting with zero and increasing the annotation by
one, whenever passing a gate, it is easy to construct a ranking that satisfies
Constraints 4 and 5. Furthermore, the valuation valθ(eI) can be selected
according to the matching semantics of latches and conjunctions such that
it is straightforward to satisfy ΨVAL(n, z, θ, eI) for every possible θ. Finally,
since C is accepted by A the run graph of A and the corresponding latch
evaluations must have only finitely many visits to rejecting states. Therefore,
it must be possible to select a corresponding ranking ranking(m, q), which
satisfies the given constraints.

Let A = (2I∪O, Q, qI ,∆A,coBüchi(R)) be a universal co-Büchi automaton
with |Q| = m and max{|∆A(q, q′)| | q, q′ ∈ Q} = d. The formula ΨCIR(A, n, z)
consists of

j ∈O
(
|O| · 2|I| + z · 2|I| + n · 2n ·m logm

)
many variables and for t = |O|+ |I|+ n+ z has size:

|ΨCS(A, n, z)| ∈O
(
n ·m2 · 22n+|I| + t2 log t · 2n+|I|).

148 Chapter IV. Output Sensitive Synthesis

3.2 Bounded Register Machines
Circuits are a canonical choice for an exponentially more succinct representa-
tion of Mealy machines. However, in practice multi-purpose devices need to
be re-configurable even after production, which is hard and costly to archive
using a circuit. Instead, embedded devices with a central processing unit are
used, which manipulates the internal state using configurable sequences of
instructions. The most basic such model is reflected by the model of register
machines, which operate on a set of Boolean registers while reading Boolean
inputs from the environment and producing Boolean outputs.

Register machines utilize finite sets of instructions I and work registers rw
for holding intermediate results of a computation. In practice, the exact
set of instructions often widely varies and depends on the final application.
Therefore, we restrict ourselves to a minimal set of instruction here, which still
suffices to model any other instruction set in terms of expressivity.

Definition 22. Let inputs I, outputs O, and a finite set of registers R be
given. The set of instructions II,O,R consists of the following elements:

CONST b for b ∈ B, setting rw to b
NOT negating rw
AND x for x ∈ R ∪ I, storing the conjunction of rw and x to rw
READ x for x ∈ R ∪ I, storing x to rw
WRITE x for x ∈ R ∪ O, storing rw to x
JMP j for j ∈ N, jumping to the instruction at position j
CJMP j for j ∈ N, jumping to position j, if and only if rw = true
NEXT proceeding to the next step in time

The model of a register machine uses finite sets of inputs, outputs, and regis-
ters and executes an instruction sequence of finite length, not including jump
instructions that point to positions outside this sequence.

Definition 23. A register machine R = (I,O, R, %) is a tuple, where

• I is the set of inputs,

• O is the set of outputs,

• R is a set of registers, and

• % ∈ I+I,O,R is a finite sequence of instructions.

3. Compact Implementation Models 149

To obtain the semantics of a register machine R, we cover all it’s possible
executions by a corresponding Mealy machine MR, where we assume that R
is reactive, i.e., all possible infinite executions infinitely often execute some
instruction NEXT. Registers are set to false initially.

Construction 6. Every register machine R = (I,O, R, %) corresponds
to an equivalent Mealy machine MR = (2I , 2O,M,mI , δM, `), where

• M = B × 2R∪O × [|%|],

• mI = (false, ∅, 0),

• δM((rw, X, i), ν) =

{
(rw, X, i++) if %i ≡ NEXT
δM(ξ((rw, X, i), ν, %i), ν) otherwise, and

• `((m, ν) = pr1(δM(m, ν)) ∩ O,

using ξ : M × 2I × II,O,R →M with

ξ((rw, X, i), ν, t) =

(b,X, i++) if t ≡ CONST b
(¬rw, X, i++) if t ≡ NOT
(rw ∧ x,X, i++) if t ≡ AND x
(x ∈ X ∪ ν,X, i++) if t ≡ READ x
(rw, X ∪ {x}, i++) if t ≡ WRITE x
(rw, X, j) if t ≡ JMP j
(rw, X, j) if t ≡ CJMP j ∧ rw
(rw, X, i++) if t ≡ CJMP j ∧ ¬rw
(rw, X, i) if t ≡ NEXT

where i++ ≡ (i+ 1) mod |%|. Note that we require that R is reactive.

The semantics of a register machine R are induced by the semantics of MR.
Similarly, the language L(R) of a register machine is defined to be L(MR).

An example of a register machine, which delays some input I = {i} two
time steps until it is output via O = {o} using registers R = {r0, r1}, is given
by Re = (I,O, R, %), with % consisting of

%0 ≡ READ i %4 ≡ WRITE o %8 ≡ READ r0

%1 ≡ WRITE r0 %5 ≡ READ i %9 ≡ WRITE o
%2 ≡ NEXT %6 ≡ WRITE r1

%3 ≡ READ r1 %7 ≡ NEXT

Note that the program restarts at %0 after the execution of the last instruction.

150 Chapter IV. Output Sensitive Synthesis

Every output sensitive synthesis approach that targets register machines
as the underlying implementation representation must at least impose a bound
on the number of registers R and on the length of the instruction sequence %
in order to restrict the corresponding search space to a finite range. We obtain
two bounds n ∈ N and z ∈ N+, bounding the number of registers and the
number of instructions, respectively. Furthermore, the sets of inputs I and
outputs O are known, as they are fixed by the specification. Thus, the number
of possible instructions is bounded by |II,O,R| = 3n+ 2z + 2|I|+ |O|+ 4.

Nevertheless, having well-defined ranges of the underlying search space
provides only half of the requirements for our encoding. The witnessed reg-
ister machine also must be accepted by the specification automation. There-
fore, we evaluate the guessed instruction sequence under all possible inputs of
the environment explicitly inducing the Mealy machine, as derived by Con-
struction 6. This underlying Mealy machine then can be verified against the
specification automaton using the standard bounded synthesis encoding.

We fix the set of registers to be R = [n] and fix I = [z] representing the
ordered list of instructions. Moreover, let M = B × 2R∪O × I be the set of
induced Mealy states, as introduced by Construction 6. The specification is
given by a universal co-Büchi automaton A = (2I∪O, Q, qI ,∆A,coBüchi(R))
with k = |R| rejecting states. We introduce the following variables to be used
by our encoding:

• instr(i, j) for all i ∈ I and 0 ≤ j ≤ log |II,O,R| denoting the selected
instructions at positions i of %. We assume the existence of some given
bijection fI : II,O,R 7→ [|I|I,O,R] that uniquely indexes every instruction.

• target(m, ν, j) for all m ∈ M , ν ∈ 2I , and 0 ≤ j ≤ log |M | map-
ping each configuration to the next interaction with the environment,
as indicated through a NEXT instruction. We use some given bijec-
tion fM : M → [|M |] to index the states of M .

• evalo(m, ν, o) for all m ∈M , ν ∈ 2I , and o ∈ O reflecting the selected
outputs at every environment interaction.

• evalrank(m, ν, j) for allm ∈M , ν ∈ 2I , and 0 ≤ j ≤ log |M | bounding
the lengths of the evaluated instruction sequences to ensure reactivity.

Additionally, the encoding inherits the rgstate(m, q) and ranking(m, q, j)
variables, as they are used by the standard bounded synthesis encoding.

The register machine is witnessed through the variables instr(i, j) fix-
ing the instruction sequence %. Semantics then induce a Mealy machine MR
through the step-by-step evaluation of the instructions. However, not all of

3. Compact Implementation Models 151

these individual steps are relevant in terms of MR, since MR only captures
the state between environment interactions, as it is indicated through NEXT
instructions. Therefore, the variables target(m, ν, j) provide a shortcut to
the next such interaction. The variables evalo(m, ν, o) are used to indicate
the selected outputs at every state m ∈ M . Finally the evalrank(m, ν, j)
variables introduce a ranking on the instruction evaluations between two in-
teractions, which ensures that the program is reactive, since every evaluation
must reach a NEXT-instruction eventually.

Given a universal co-Büchi automaton A with k rejecting states, a bound n
on the number of registers, and a bound z on the number of instructions, then
the Bounded Register Machine Synthesis problem is encoded via the SAT
formula ΨRM(A, n, z) consisting of the following constraints

1. The initial state is reachable and all rankings are bounded:

rgstate((false, ∅, z − 1), qI) ∧
∧

m∈M, ν∈2I

evalrank(m, ν) < |M |

∧
∧

m∈M, q∈Q
ranking(m, q) < |M | · k

2. Instruction types and evaluation variables are bounded:∧
i∈I

instr(i) < |II,O,R| ∧
∧

m∈M,ν∈2I

target(m, ν) < |M |

3. NEXT instructions are sinks and determine the output of the evaluation:∧
m∈M, ν∈2I

(
instr(pr2(m)) = fI(NEXT) → target(m, ν) = fM(m)

∧
∧

o∈pr1(m)∩O

evalo(m, ν, o) ∧
∧

o∈Orpr1(m)

¬evalo(m, ν, o)

)
4. All other instructions are evaluated according to their semantics:∧

t∈II,O,R,m∈M, ν∈2I

t6=NEXT

(
instr(pr2(m)) = fI(t) →

evalrank(m, ν) < evalrank(ξ(m, ν, t), ν))

∧ target(ξ(m, ν, t), ν) = target(w, ν)

∧
∧
o∈O

evalo(ξ(m, ν, t), ν, o)↔ evalo(m, ν, o)

)

152 Chapter IV. Output Sensitive Synthesis

5. Each ranking of a vertex of the run graph bounds the number of visited
accepting vertices, not counting the current vertex itself:∧

(rw,X,i)∈M, q∈Q

rgstate((rw, X, i), q) →

∧
ν∈2I ,q′∈Q

∆A(q, q′)[ν 7→ true, (I \ ν) 7→ false]
[o 7→ evalo((rw, X, i++), ν, o)] →∧

m′∈M
target((rw, X, i++), ν) = m′ →

rgstate(m′, q′) ∧ ranking((rw, X, i), q) ≺q ranking(m′, q′)

Theorem 19. For bounds n, z ∈ N and a universal co-Büchi automa-
ton A, the formula ΨRM(A, n, z) is satisfiable iff there is a register ma-
chine R = (I,O, R, %) with |R| = n and |%| = z such that L(R) ⊆ L(A).

Proof. “⇒”: Assume that ΨRM(A, n, z) is satisfiable. Hence, the instr(i, j)
variables witness a mapping from I to II,O,R inducing a sequence % with
|%| = z and %i = t if an only if instr(i) = t for all 0 ≤ i < z. Accordingly, if
we choose R = [n], then we obtain a register machine R = (I,O, R, %), where
I and O are taken from A. It remains to proof that L(R) ⊆ L(A).

The register machine R induces a Mealy machine MR with initial state
(false, ∅, 0). However, the evaluation is started at the last instruction of %
due to the shift introduced by Constraint 5 (i++). The shift is necessary,
since the evaluation would be trapped at NEXT instructions otherwise. Note
that the initial state is the only one that does not have to reside on a NEXT
instructions according to our construction. Constraint 1 ensures that the
initial state is reachable, from which the register machine then is evaluated
according the semantics of the witnessed instruction sequence. Furthermore,
together with Constraint 2, it ensures that all binary encoded variables are
correctly bounded. For the evaluation of the machine, we distinguish two
general cases:

If the current instruction is a NEXT, then MR takes a transition, for which
the outputs are selected according to ν ∈ 2I and the instructions that have
been evaluated since the previous NEXT or the initial state. The corresponding
behavior is realized through Constraint 3, which enforces all evalo(m, ν, o)
to reflect the selected outputs of w ∈M , and that the target(m, ν) variables
point at the current configuration.

3. Compact Implementation Models 153

If the current instruction is no NEXT, then % is evaluated until a NEXT in-
struction is hit. The evaluation is realized through Constraint 4, which selects
the successor according to the evaluation function ξ from Construction 6. The
evaluation cannot proceed indefinitely, since the ranking of the successor al-
ways must be strictly greater than the current one. Thus, there is maximum
on the number of evaluated instruction that are no NEXT. During the evalu-
ation, the pointer to the target configuration target(m, ν) and the selected
outputs are always copied from the successor configuration.

Together, Constraint 3 and Constraint 4 ensure that the target(m, ν) and
evalo(m, ν, o) variables always point to the NEXT instruction that results from
evaluating % from the current position. The property is proven by a simple
induction running backwards from the targeted NEXT instruction. Termination
of this backward induction is guaranteed by the evalrank(m, ν) ranking.

Constraint 5 finally induces the run graph construction, similar to the stan-
dard bounded synthesis approach. The run graph is iteratively constructed
from the initial vertex such that every edge corresponds to a transition of R
and a transition of A. The label(m, ν, o) and trans(m, ν) variables, as used
by the standard bounded synthesis encoding, are replaced by evalo(m, ν, o)
and target(m, ν), respectively, with the only difference that the instruction
pointer needs to be increased in order to obtain the result of the evaluation
starting at the position after the current NEXT instruction. Remember that ev-
ery Mealy state target(m, ν) points at the reached NEXT instruction. Hence,
the instruction afterwards (i++) must be selected.

Thus, the induced Mealy machine MR indeed is correctly reflected by the
variables evalo(m, ν, o) and target(m, ν). As a consequence, MR must be
accepted by A using the same arguments as used for proving Theorem 13.

“⇐”: Now, assume there is some R using n registers and z instructions that
implements the specification given by A. We choose the variables instr(i)
for all 0 ≤ i < z such that they reflect %. Almost all remaining variables
then are determined deterministically according to the semantics of the in-
structions. The only non-deterministic choice that remains, is the evaluation
ranking, which can be chosen step-wise decreasing computed backwards from
the reachable NEXT instructions. The upper bound of |M | therefore always
is sufficient according to Constraint 2. It is easy to verify that by using the
resulting variable assignments, indeed all of the given constraints are satis-
fied.

Let A = (2I∪O, Q, qI ,∆A,coBüchi(R)) be a universal co-Büchi automaton
with |Q| = m. Let t = n+ |I|+ |O|. Then |ΨRM(A, n, z)| ∈O(z2m2 · t2t) and
ΨRM(A, n, z) consists of j ∈O(zm log(zm) · t2t) many variables.

154 Chapter IV. Output Sensitive Synthesis

3.3 Bounded Programs

While the model of register machines is quite close to the actual execution
model of existing hardware architectures, it is only rarely used by program-
mers in practice directly. Instead, tree based programming languages are used
for most applications, that then are translated to register machines. Due to
their tree based shape, such programming language are less error prone and,
thus, offer more comfort to be used by a human programmer.

We consider programs that work on Boolean variables VB, read Boolean
inputs I, and write Boolean outputs O. Our representation is by inspired
Madhusudan [100], who uses a similar model to describe tree shaped pro-
grams. From this model, we also inherit our syntax and semantics. We
represent programs as finite binary trees, labeled with command labels L
that allow to traverse the program tree for reading inputs and producing
outputs.

Definition 24. Let finite sets VB, I, andO be given. The set of command
labels LI,O,VB consists of the following elements, which can be assigned
to inner positions of the tree or leaf positions, respectively.

; sequential execution (inner, left + right child)
if premise (inner, left + right child)
then consequence (inner, left + right child
while conditional loop (inner, left + right child)
and conjunction (inner, left + right child)
or disjunction (inner, left + right child)
not negation (inner, single left child)
x :� assignment to x ∈ VB ∪ O (inner, single left child)
x variable value x ∈ VB ∪ I (leaf)
b constant b ∈ B (leaf)
skip effect-less command (leaf)
inout input/output interaction (leaf)

Reactive Programs are represented as binary trees. However, for the sake of
readability, we represent them over directions ∆ = {↙,↘}, moving either to
the left sub-tree via ↙ or the right one via ↘.

3. Compact Implementation Models 155

Definition 25. Reactive programs are LI,O,VB-labeled ∆-directed trees

P : ∆∗ ⇀ LI,O,VB

with finite domain D∆ ⊆ ∆∗, which respect the labeling constraints of
Definition 24. The root is never labeled with a value, a constant or a skip
command. Furthermore, every Boolean expression, as given by sub-trees
only labeled with v, and, or, or not, appears as the left child of positions
labeled as assignments, premises, or conditionals. The root of the right
sub-tree of every if -labeled position is always labeled by then.

Similar to register machines, we say that a program is reactive, if every ex-
ecution infinitely often visits a position labeled with inout. Similar to the
behavior of NEXT for register machines, inout is used to output the current
values O, proceeds to the next point in time, and then reads the next choices
from the environment to I. In Madhusudan’s work, this operator is split into
two separate operations input and output, which allows to execute both op-
erations separately. However, for our considerations we merged them into a
single operation not affecting the expressivity of the model in the first place.

The semantics of reactive programs are covered via Mealy machines MP
that reflect all executions with respect to the choices of the environment.

Construction 7. Every program P : ∆∗ ⇀ LI,O,VB with domain D∆

corresponds to a Mealy machine MP = (2I , 2O,M,mI , δM, `), where

• M = B × {↓,↗,↖}× 2VB∪O ×D∆,

• mI = (false, ↓, ∅, ε),

• δM((b, d,X,w), ν)

=
{

(false,↖, X,w) if P(w) = inout and d= ↓
δM(θ((b, d,X,w), ν,P(w)), ν) otherwise, and

• `(m, ν) = pr2(δM(m, ν)) ∩ O,

with θ : M×2I×LI,O,VB →M being defined according to Table 4. We use
the function 	 to turn the direction, i.e., 	(↙) :=↗ and 	(↘) :=↖.

An example program Pe that delays an input I = {i} for two steps until it is
output via O = {o} using VB = {x, y, z} is depicted in Figure 32.

156 Chapter IV. Output Sensitive Synthesis

while

true ;

if

z then

;

x :�
i

o :�
y

;

y :�
i

o :�
x

;

z :�
not

z

inout

1. while (true)
2. if (z)
3. then
4. x :� i;
5. o :� y;
6. else
7. y :� i;
8. o :� x;
9. z :� not z;
10. inout

Figure 32: Example of the reactive program Pe on the left and it’s corre-
sponding tree representation on the right.

l = P(w) d w b θ((b, d,X,w), ν, l)

;, if ,and,or,not, v :� ↓ (false, ↓, X,w↙)

;, if ↗ (b, ↓, X,w↘)

;, if , then,and,or ↖ w′u (b,	(u), X,w′)

then ↓ true (false, ↓, X,w↙)

then ↓ false (false, ↓, X,w↘)

while ↓,↖ (false, ↓, X,w↙)

while ↗ true (false, ↓, X,w↘)

while ↗ w′u false (false,	(u), X,w′)

and ↗ true (false, ↓, X,w↘)

and ↗ w′u false (false,	(u), X,w′)

or ↗ false (false, ↓, X,w↘)

or ↗ w′u true (true,	(u), X,w′)

not ↗ w′u (¬b,	(u), X,w′)

x :� ↗ w′u (false,	(u), X ∪ {x}, w′)
x ↓ w′u (x ∈ X ∪ ν,	(u), X,w′)

false ↓ w′u (false,	(u), X,w′)

true ↓ w′u (true,	(u), X,w′)

skip, inout ↓ w′u (false,	(u), X,w′)

inout ↖ w′u (false,	(u), X,w′)

inout ε (false, ↓, X, ε)

Table 4: Semantics of the operator θ as used in Construction 7.

3. Compact Implementation Models 157

Every reactive program introduces two natural bounds: a bound z ∈ N+

on the number of nodes D∆ of the program tree and a bound n ∈ N on the
number of additionally utilized variables VB. Given those bounds, the number
of command labels is bounded by |LI,O,VB | = 12+2n+ |O|+ |I|. Accordingly,
let N = [z] represent the set of program nodes and VB = [n] the set of
variables. Furthermore, let M = B × {↓,↗,↖} × 2VB×O × N be the set of
states of the corresponding Mealy machine, as introduces in Construction 7.
We introduce the following variables:

• cmd(p, j) for all p ∈ N and 0 ≤ j ≤ log |LI,O,VB | denoting the command
of the node p. We use some given bijection fL : LI,O,VB → [|LI,O,VB |] to
uniquely index the corresponding set of commands.

• hasleft(p) for all p ∈ N indicating for every node, whether it has a
left child in the program tree or not.

• hasright(p) for all p ∈ N indicating for every node, whether it has a
right child in the program tree or not.

• left(p, j) for all p ∈ N and 0 ≤ j ≤ log |N | pointing to the left child of
a node, if the node has a left child.

• parent(p, j) for all p ∈ N and 0 ≤ j ≤ log |N | pointing to the parent of
a node. As the root is the only node with no parent, it points to itself.

• dest(m, ν, j) for all m ∈M , ν ∈ 2I , and 0 ≤ j ≤ log |M | mapping each
configuration to the next inout interaction. For indexing the states of
M , we use some given bijection fM : M → [|M |]

• out(m, ν, o) for all m ∈ M , ν ∈ 2I , and o ∈ O reflecting the selected
output at every environment interaction.

• rk(m, ν, j) for all m ∈ M , ν ∈ 2I , and 0 ≤ j ≤ log |M | bounding the
duration of a program evaluation until the next environment interaction.

Furthermore, the encoding again inherits the variables rgstate(m, q) and
ranking(m, q, j) from the standard bounded synthesis encoding. The pro-
gram is witnessed through the variables cmd(p, j), hasleft(p), hasright(p),
left(p, j), parent(p, j). On the one hand, the cmd(p, j) variables assign ev-
ery node a label of LI,O,VB , reflecting the program tree P of Construction 7. On
the other hand, the tree structure, as induced by D∆, is determined through
the variables hasleft(p), hasright(p), left(p, j), and parent(p, j). To
this end, the hasleft(p) and hasright(p) variables indicate for every node,

158 Chapter IV. Output Sensitive Synthesis

whether it has a left or right child, respectively. If a left child exists, then the
left(p) pointer identifies it. Similarly, the parent pointer parent(p) iden-
tifies the parent. The only node without a parent is the root, which instead
points to itself. Note that we avoid the additional introduction of a right
child pointer and instead utilize the natural order of N , which allows for a
linearization of the program tree such that the right child of a node p ∈ N
is determined to be p + 1, if it exists. According to this order, the root is
indicated by 0 and the last entry indicates a leaf of the tree.

The variables dest(m, ν, j), out(m, ν, o), and rk(m, ν, j) are used to sim-
ulate the evaluation of the program in the same fashion as the variables
target(m, ν, j), evalo(m, ν, o), and evalrank(m, ν, j) are utilized in the
bounded register encoding, respectively.

Thus, the new challenge introduced by the bounded program encoding,
in comparison to the previous ones, is obtaining a valid program tree struc-
ture. We collect the corresponding requirements in the context of the for-
mula ΨVC(n, z). Note that in the previous work of Madhusudan [100], this
validity check has been implemented by a non-deterministic tree automa-
ton that guesses possible syntax violations. The automaton is joined to the
complement of the specification, constructed as a two-way alternating tree
automaton in a later step of the construction, which finally reduces the prob-
lem for checking the complement language to be empty. In later work [52, 53]
it has been shown that the automata construction can be adapted to yield
a universal co-Büchi automaton instead, such that it is bounded synthesis
compliant. However, there the verification of the program structure still is
bundled into the automaton construction, while our encoding only requires
the original specification as a universal co-Büchi automaton. All additional
requirements are solely introduced as part of the encoding.

Hence, let bounds z on the program size and n on the number of vari-
ables VB be given. The formula ΨVC(n, z) consists of the following constraints:

1. The root points to itself and the last entry must be a leaf:

parent(0) = 0 ∧
∧
p∈N

parent(p) 6= z − 1

∧ ¬hasleft(z − 1) ∧ ¬hasright(z − 1)

2. If there is a right child (given by the next node index), then the parent
pointer points back to the current node:∧

p∈N
p<z−1

hasright(p) ↔ parent(p+ 1) = p

3. Compact Implementation Models 159

3. Childs are required to have a smaller index, in order to avoid the creation
of loops. The constraint is only necessary if z > 1:∧
p∈N

p<z−2

hasleft(p)→(
left(p) > p+ 1 ∧

∧
p′∈N
p<p′

(
left(p) = p′ ↔ parent(p′) = p

))

4. The node labeling, the parent and left child pointers are bounded:∧
p∈N

cmd(p) < |LI,O,VB | ∧ left(p) < |N | ∧ parent(p) < |N | ∧

5. The root can only be labeled with a restricted set of labels:∨
l∈{;,while,if ,inout}

cmd(0) = fL(l)

6. The last entry is a leaf and can only be labeled with leaf labels:∨
l∈VB∪I∪B∪{skip,inout}

cmd(z − 1) = fL(l)

7. The second to last entry cannot have a left child and can only be labeled
with a restricted set of labels. The constraint is only well-defined and
necessary if z > 1:

¬hasleft(z − 2) ∧
∨

l∈{;,while,if ,then,and,or}

cmd(z − 2) 6= fL(l)

8. Nodes labeled with 0-nary operations have no childs:∧
p∈N

p<z−1

(∨
l∈B∪VB∪I∪{inout,skip}

cmd(p) = fL(l)

)

↔
(
¬hasleft(p) ∧ ¬hasright(p)

)
9. Nodes labeled with unary operations have only a right child:∧

p∈N
p<z−1

(
cmd(p) = fL(not) ∨

∨
x∈VB∪O

cmd(p) = fL(x :�)

)

↔
(
¬hasleft(p) ∧ hasright(p) ∧ ΨB(p+ 1)

)

160 Chapter IV. Output Sensitive Synthesis

10. Nodes labeled with binary operations have two childs:∧
p∈N

p<z−1

(∧
l∈{;,and,or,if ,then,while}

(
cmd(p) = fL(l)

→
(
hasleft(p) ∧ hasright(p) ∧ ΨC(p, l)

)))

∧
((

hasleft(p) ∧ hasright(p)
)

→
∨

l∈{;,or,and,if ,then,while}

cmd(p) = fL(l)

)

where the formulas ΨB(p), ΨB↙(p, b), and ΨC(p, l) check

• that the given node p is labeled with a Boolean operation,

• that the left child of p is labeled with a Boolean operation (if and only
if b), and

• that both childs are labeled with Boolean operations or non-Boolean
operations depending on the given label l, respectively.

Formally, ΨB(p), ΨB↙(p, b), and ΨC(p, l) are defined as follows:

ΨB(p) :=
∨

l∈B∪VB∪I∪{not,and,or}

cmd(p) = fL(l)

ΨB↙(p, b) :=
∧
p′∈N
p′>p+1

(
left(p) = p′ →

(
b ↔ ΨB(p)

))

ΨC(p, l) :=

ΨB↙(p, false) ∧ ¬ΨB(p+ 1) if l ∈ {;}
ΨB↙(p, true) ∧ ΨB(p+ 1) if l ∈ {and,or}
ΨB↙(p, true) ∧ ¬ΨB(p+ 1) if l ∈ {while}
ΨB↙(p, true)
∧ cmd(p+ 1) = fL(then)

if l ∈ {if}

ΨB↙(p, false) ∧ ¬ΨB(p+ 1)

∧cmd(p− 1) = fL(if)
if l ∈ {then} and p > 0

3. Compact Implementation Models 161

Lemma 7. The formula ΨV C(n, z) is satisfiable if and only if the vari-
ables cmd(p, j), hasleft(p), hasright(p), left(p, j), and parent(p, j)
witness a valid program P : ∆∗ ⇀ LI,O,VB with |D∆| = z and |VB| = n.

Proof. “⇒”: Assume that ΨV C(n, z) is satisfiable. Then Constraints 1 to 3
enforce the correct linearization of the node pointers according the natural
order of the elements of N. The root is the first entry and the last one must
be a leaf. If there is a right child, then it always must be the next entry,
as ensured by keeping the corresponding parent pointers of these right childs
consistent. If there is a left child, then it must appear as a later entry behind
the right child and the parent pointer is consistent as well. Note that there
are no programs with only a left child, as guaranteed by the latter constraints.
Hence, the constraints ensure that all branches only moving to the right are
grouped together according to the indices of N and nodes of the left branches
all appear afterwards. Therefore, the induced shape must be a tree, since the
parent pointers always point to smaller entries except for the root.

Constraint 4 ensures the correct ranges of the labels, child and parent
pointers. The correct root labeling according to Definition 25 is guaranteed
by Constraint 5. The last entry always being a leaf and the second to last
entry at most having a right child imposes some restrictions on the possible
node labels. They are captured by Constraints 6 and 7.

Finally, there are restrictions according to the number of childs with re-
spect to the corresponding labeling. Furthermore, Definition 25 imposes some
structural limitations regarding the correct usage of Boolean operations, con-
ditionals and loops as well. Constraint 8 ensures that all 0-nary operations
have no child and therefore represent leaves in the tree. All unary operations
only have a right child and the corresponding child must be part of a Boolean
expression. The requirement is guaranteed through Constraint 9. All remain-
ing operations are binary and have two childs being either part of a Boolean
expression or some other structure according to the corresponding operation.
The correct usage is verified through Constraint 10 in combination with the
usage of the formula ΨC(p, l). The correct correspondence of if and then
nodes is also ensured through ΨC(p, l).

Note that the constraints do not ensure reactivity of the program, i.e.,
that all possible executions infinitely often hit an inout labeled program node.
While this requirement is necessary for the correct semantic evaluation of a
program, in order to induce a well-defined Mealy machine, it is not part of
our program definition. Reactivity will be ensured as part of the simulation
ranking being part of later constraints.

162 Chapter IV. Output Sensitive Synthesis

“⇐”. Assume there is a program P with P : ∆∗ ⇀ LI,O,VB , |D∆| = z
and |VB| = n that satisfies all requirements of Definition 25. We choose
cmd(p, j), hasleft(p), hasright(p), left(p, j), and parent(p, j) such that
they reflect P. The corresponding index of each node p ∈ D∆ is chosen by
always starting with the rightmost branch, choosing some non-yet-indexed
left child of already indexed branches and applying the procedure recursively
until all nodes got an index assigned. All remaining variable instantiations
follow deterministically from the definition of P. It is an easy exercise to
verify, that the corresponding result indeed satisfies all of the constraints of
ΨVC(n, z).

We now are ready to complete the encoding by adding the remaining con-
straints. To this end, let a universal co-Büchi automaton with k rejecting
states, as well as z ∈ N+ and n ∈ N be given. Then the Bounded Program
Encoding is given by the formula ΨBP(n, z,A) := ΨVC(n, z) ∧ ΨR(n, z,A),
where ΨR(n, z,A) consists of the following constraints:

1. The initial state is reachable and all rankings and evaluation variables
are bounded:

rgstate((false, ↓, ∅, ε), qI) ∧
∧

m∈M, ν∈2I

rk(m, ν) < |M | ∧

∧
m∈M, q∈Q

ranking(m, q) < |M | · k ∧
∧

m∈M,ν∈2I

dest(m, ν) < |M |

2. Nodes that are labeled with inout and are entered from top are sinks
and determine the result of the program evaluation:∧
m∈M, ν∈2I

pr2(m) = ↓

(
cmd(pr3(m)) = fL(inout) → dest(m, ν) = fM(m)

∧
∧

o∈pr2(m)∩O

out(m, ν, o) ∧
∧

o∈Orpr2(m)

¬out(m, ν, o)

)

3. All other operations are evaluated according to their semantics:∧
l∈LI,O,VB ,m∈M, ν∈2I

l 6= inout∨ pr2(m) 6= ↓

(
cmd(pr3(m)) = fL(l) →

rk(m, ν) < rk(θ(m, ν, l), ν))

∧ dest(θ(m, ν, l), ν) = dest(w, ν)

∧
∧
o∈O

out(θ(m, ν, l), ν, o)↔ out(m, ν, o)

)

3. Compact Implementation Models 163

4. Each ranking of a vertex of the run graph bounds the number of visited
accepting vertices, not counting the current vertex itself:∧

(b,d,X,p)∈M, q∈Q

rgstate((b, d,X, p), q) →

∧
ν∈2I ,q′∈Q

∆A(q, q′)[ν 7→ true, (I \ ν) 7→ false]
[o 7→ out((false,↖, X, p), ν, o)] →∧

m′∈M
dest((false,↖, X, p), ν) = m′ →

rgstate(m′, q′) ∧ ranking((b, d,X, p), q) ≺q ranking(m′, q′)

Theorem 20. For bounds n, z ∈ N and a universal co-Büchi automa-
ton A, the formula ΨBP(A, n, z) is satisfiable if and only if there is a pro-
gram P : ∆∗ ⇀ LI,O,VB with |D∆| = z and |VB| = n such that L(P) ⊆ L(A).

Proof. “⇒”: Assume ΨBP(A, n, z) is satisfiable. Then, according to Lemma 7
the cmd(p, j), hasleft(p), hasright(p), left(p, j), and parent(p, j) vari-
ables witness a valid program P : ∆∗ ⇀ LI,O,VB with |D∆| = z and |VB| = n.

The evaluation of the program starts at the root, with the direction com-
ing from the top. Therefore, Constraint 1 guarantees that the corresponding
initial state is reachable and that all binary encoded variables respect the in-
duced bounds. Similar to the bounded register encoding, the simulation then
distinguishes two cases. If an inout-command is evaluated and the evaluation
comes from the parent node, i.e., the direction is set to ↓, then the destina-
tion pointer dest(m, ν) gets locked and the out(m, ν, o) variables reflect the
values of the output variables captured by the state m (Constraint 2). Oth-
erwise, the program is evaluated according to θ from (Construction 7). At
the same time, the destination pointer and the output references are copied
backward from the final target while the simulation ranking rk(m, ν) ensures
that such a target indeed must exist (Constraint 3).

Finally, the last Constraint 4 ensures the correct construction of the run
graph, in a similar fashion as used in the standard bounded synthesis encoding.
In this context, however, the out(m, ν, o) variables indicate the evaluated
output and the destination pointers dest(m, ν) the corresponding successor
state. Note that for both variables the direction is updated to ↖ and the
evaluation variable b is reset to false before the evaluation “gets started”.
These updates ensure that the evaluation is not immediately trapped at the

164 Chapter IV. Output Sensitive Synthesis

current inout-command, but continues by moving to the parent first. The
only exception is the root, which however does not cause any harm, since
moving to the parent from the root immediately brings us back to the root.
According to the properties of the run graph it, thus, immediately follows
that L(P) ⊆ L(A).

“⇐”: Now assume that there is a program P of size z utilizing only n addi-
tional variables. Then, according to Lemma 7 we can encode the program us-
ing the corresponding variables. The selection of the remaining variables is de-
termined deterministically according to the Constraints 1 to 4, except for the
simulation ranking, which, however, can be chosen strictly decreasing accord-
ing to a backward evaluation of every simulation step. It is straightforward to
see that the chosen variables then indeed satisfy the formula ΨBP(A, n, z).

Let A = (2I∪O, Q, qI ,∆A,coBüchi(R)) be a universal co-Büchi automaton
with |Q| = m. Let t = n+ |I|+ |O|. Then |ΨRM(A, n, z)| ∈O(z2m2 · t2t) and
ΨRM(A, n, z) consists of j ∈O(zm log(zm) · t2t) many variables.

4 Experimental Results

To understand how the aforementioned approaches evaluate in terms of their
practical performance, we apply them to a set of LTL benchmarks. On the one
hand, we consider the synthesis times of the different approaches, including
the creation of the SAT instances from a given specification and solving these
instances afterwards. On the other hand, we look at the synthesized outputs
and how they correlate with the corresponding output parameters. For this
purpose, we consider subsets of the following benchmarks, where the atomic
propositions i, u, and rj for j ∈ N describe inputs to the system. The atomic
propositions o and gj for j ∈ N describe outputs instead.

Identity: (i↔ o)

The benchmark serves as a ground reference for the most simple type
of a reactive system that just always passes all content received at the
input i to the output o.

Delay: (i↔ o)

The specified system must pass input data to the output as well, but
with a delay of one time step. The value that is output initially can be
chosen freely by the synthesizer.

4. Experimental Results 165

Initial Test: (o)↔ i

The system either sets the output o always high or always low, where
the chosen value dependents on the first input value, as it is provided
by the environment.

Mode Select: (i→ o) ∧ (¬i→ (i↔ o))

The system either sets the output o always high or always passes the
provided input, where the chosen mode depends on the input value that
is provided at the initial time step.

Latch: (u→ ((i↔ o) ∧ (i→ (oW u)) ∧ ((¬i)→ ((¬o)W u))))

The specification describes a latched input i, which is only updated, if
a signal at the input u is given. Hence, as long as there is no update
signal via u, the system must keep providing the last value of i since the
previous update.

Detector:
∧n
i=0 (ri)↔ (o)

The specification describes a monitor, checking whether n clients reg-
ularly send requests rj . Therefore, the output o is enabled regularly if
and only if all requests are provided regularly as well. The specification
is parameterized in n ∈ N.

Simple Arbiter:
∧n−1
j=0

(
(rj → gj)

)
∧
∨n−1
j=0 (gj →

∧n−1
k=0
k 6=j
¬gk)

The simple arbiter specification as introduced in Section 6 of Chapter II,
which is also parameterized in n ∈ N.

Beside these smaller system examples we also consider the decomposed ver-
sion of Arm’s Advanced Microcontroller Bus Architecture (AMBA) [6], which
is well known as one of the first industrial examples that has been fully
specified using LTL. However, due to the huge complexity of the mono-
lithic specification, as introduced in [76], we instead focused on a decom-
posed variant that has been introduced in [73]. In this decomposed version,
the architecture is split into eight individual components lock, arbiter, en-
code, decode, shift, tincr, tburst4, and tsingle, where the components
lock, arbiter, and encode are parameterized according to the number of
clients n ∈ N. All components are connected according to the architecture
of Figure 33. For their concrete LTL specifications, as well as the way they
work together with respect to the original specification, we refer the interested
reader to [73].

166 Chapter IV. Output Sensitive Synthesis

ARBITER

decide

busreq allready

hbusreq0

hbusreq1

...
hbusreqn−1

hgrant0

hgrant1

...
hgrantn−1

LOCK

locked

decide

hlock0

hlock1

...
hlockn−1

hgrant0

hgrant1

...
hgrantn−1

DECODE incr

burst4

single
hburst

ENCODE

hmasterhready

h
g
r
a
n
t
0

h
g
r
a
n
t
1

. . . h
g
r
a
n
t
n
−
1

SHIFT

hmastlock
hready

locked

TINCR

ready1

h
r
ea

d
y

lo
c
k
ed

d
ec

id
e

in
c
r

busreq

TBURST4

ready2

h
r
ea

d
y

lo
c
k
ed

d
ec

id
e

bu
r
st

4

TSINGLE

ready3

h
r
ea

d
y

lo
c
k
ed

d
ec

id
e

si
n
g
le

AND

HGRANT

HLOCK

HBUSREQ

HMASTLOCK

HMASTER

HBURST

HREADY

Figure 33: Decomposition of the AMBA AHB arbiter.

All of the aforementioned approaches have been implemented as part of our
tool BoWSer, the Bounded Witness Synthesizer, which allows to create SAT
encodings from LTL specifications and the corresponding approach specific
parameters. The tool not only creates the encodings, but also automatically

4. Experimental Results 167

solves the created SAT queries using the SAT solver maplesat [93], based on
minisat (v2.2.0), and allows to extract the witnesses from the corresponding
Boolean variable assignments. Due to all encodings relying on the preceding
creation of a universal co-Büchi automaton from the given LTL specification,
BoWSer also utilizes the automaton transformation tool spot (v2.5.3) [35] for
that purpose.

Furthermore, for the sake of comparison, we also consider the following
other synthesis tools:

Strix [105]: The tool utilizes a conversion of the specification into a parity
game. Therefore, the specification first is pre-processed to syntactically
detect LTL fragments that can be turned into deterministic automata
with simple winning conditions. From these automata, the solver then
creates a parity game that is explored using a forward search. The
arena, however, is not constructed completely at first, but generated on
the fly out of the cross-product of the specification automata and is only
expanded, if necessary [99].

Ltlsynt [71]: The tool has been integrated as part of the spot library [35].
It first converts an LTL specification to a generalized Büchi automaton
with a transition based acceptance condition, which then is turned into
a parity game afterwards. The translation utilizes heuristics to obtain
efficient intermediate translations. The parity game is solved using an
adapted version of Zielonka’s algorithm [152], modified to work on games
with transition-based winning conditions.

BoSy [41]: The tool also builds on the bounded synthesis approach, but fo-
cuses more on other constraint systems than SAT, such as QBF, DQBF
or SMT. The tool can be parameterized according to different constraint
solvers and automata transformation tools, as well as in selecting a linear
or exponential search strategy. We use the tool in the default configura-
tion, as provided for the synthesis competition SYNTCOMP 2019 [72].

As all of the aforementioned tools do not create a Mealy machine directly, but
instead output AIGER circuits according to the SYNTCOMP LTL synthe-
sis rules [70]. Therefore, we convert the created circuits to Mealy machines
first, according to Construction 4, in order to acquire the data for our later
comparison.

All experiments have been executed on a quad-core Intel Xeon processor
(E3-1271 v3, 3.6GHz, 32 GB RAM, PC1600, ECC), running Ubuntu 64bit
LTS 16.04.

168 Chapter IV. Output Sensitive Synthesis

We first consider the evaluation of the bounded cycle synthesis approach in
comparison to the standard bounded synthesis approach, Strix, Ltlsynt, and
BoSy. The corresponding results are listed in Table 5. For Strix, Ltlsynt,
and BoSy, we measured the synthesis time in seconds, the size of the Mealy
machine |M|, as induced by the created circuit, the number of cycles of the
machine {(M), and the number of latches l as well as the number of gates g.
For BoWSer we directly synthesized the corresponding Mealy machine and
thus have no measures for latches or gates.

BoWSer uses the following search strategy for finding a minimal solution
in both parameters: |M| and {(M). The tool first linearly increases the state
bound using the standard bounded synthesis encoding until some minimal
Mealy machine has been found. Then, the found state bound gets fixed and
the cycle bound gets increased in the same linear fashion, but this time using
the bounded cycle synthesis encoding. We terminate as soon as the first
realizable result is found. The result therefore is minimal in the number
of cycles under the previously determined bound. Note that the individual
solving times of each of the corresponding SAT queries of BoWSer is presented
in the table as well. The best result for each instance is highlighted in green
according to each measured category.

The results show that BoWSer always finds an optimal solution with respect
to the number of cycles and Mealy states. The fastest tool on all benchmarks is
Ltlsynt, but with respect to the size and the number of cycles of the created
solutions it is also the worst. In contrast, the tools Strix and BoSy seem
to provide good intermediate tradeoffs between the synthesis times and the
solution quality for most of the benchmarks. However, they also fail in some
cases. For example, consider the results for the AMBA arbiter specification
with four clients, where Strix produces a comparably large solution, which
is hard to inspect by a human developer, and BoSy takes even longer than
BoWSer, while still finding an non-optimal solution in the end.

The experiments also indicate that finding an optimal solution with respect
to the number states and cycles of the underlying Mealy machine is a feasible
task in general. As expected, synthesis may take a little bit longer, but it
is not that asking for the minimal number of cycles turns the problem to be
completely out of scope. Also note that using a non-linear search strategy
for the instantiation of solving multiple SAT queries in parallel can speed
up synthesis even more, as it would be for example the case for the AMBA
TBurst4 specification.

With the first results for Strix, Ltlsynt, BoSy, and the bounded cycle tech-
nique at hand, we are ready to proceed to the evaluation of the output sensitive
synthesis of circuits, reactive programs and register machines.

4. Experimental Results 169

Strix Ltlsynt BoSy BoWSer
Benchmark

Time (s) |M| {(M) l g Time (s) |M| {(M) l g Time (s) |M| {(M) l g Time (s) |M| {(M)

ModeSelect 0.724 3 2 2 6 0.004 3 2 2 12 0.296 3 2 2 4 0.100 3 2

Standard (n : 1 7 0.004) (n : 2 7 0.008) (n : 3 3 0.016) [Σ = 0.028]

Cycle (n : 3) (c : 1 7 0.028) (c : 2 3 0.044)

Detector1 0.428 1 1 0 0 0.004 4 4 2 20 0.276 1 1 1 1 0.024 1 1

Standard (n : 1 3 0.012) [Σ = 0.012]

Cycle (n : 1) (c : 1 3 0.012)

Detector2 0.500 2 3 1 3 0.008 12 27 4 160 0.348 2 3 1 4 0.220 2 3

Standard (n : 1 7 0.016) (n : 2 3 0.036) [Σ = 0.052]

Cycle (n : 2) (c : 1 7 0.072) (c : 2 7 0.044) (c : 3 3 0.052)

Detector3 0.936 3 6 2 8 0.012 39 210 6 1063 0.640 3 6 2 15 1.552 3 4

Standard (n : 1 7 0.024) (n : 2 7 0.072) (n : 3 3 0.184) [Σ = 0.280]

Cycle (n : 3) (c : 1 7 0.232) (c : 2 7 0.268) (c : 3 7 0.496) (c : 4 3 0.276)

Detector4 1.248 4 10 2 16 0.052 174 2043 8 11620 1.024 4 13 2 18 54.904 4 5

Standard (n : 1 7 0.040) (n : 2 7 0.144) (n : 3 7 1.144) (n : 4 3 1.404) [Σ = 2.732]

Cycle (n : 4) (c : 1 7 8.832) (c : 2 7 6.004) (c : 3 7 13.384) (c : 4 7 21.128) (c : 5 3 2.824)

SimpleArbiter2 1.324 3 1 2 3 0.012 8 18 3 117 0.392 3 1 2 3 0.276 3 1

Standard (n : 1 7 0.020) (n : 2 7 0.040) (n : 3 3 0.092) [Σ = 0.152]

Cycle (n : 3) (c : 1 3 0.124)

SimpleArbiter3 1.264 3 1 2 3 0.016 8 18 3 117 0.332 3 1 2 4 0.276 3 1

Standard (n : 1 7 0.020) (n : 2 7 0.040) (n : 3 3 0.092) [Σ = 0.152]

Cycle (n : 3) (c : 1 3 0.124)

SimpleArbiter4 1.380 4 1 2 5 0.024 20 69 5 522 0.640 4 1 2 4 1.260 4 1

Standard (n : 1 7 0.040) (n : 2 7 0.088) (n : 3 7 0.176) (n : 4 3 0.416) [Σ = 0.720]

Cycle (n : 4) (c : 1 3 0.540)

AmbaShift2 1.008 5 8 3 12 0.004 3 3 2 24 0.276 2 3 1 3 0.108 2 3

Standard (n : 1 7 0.012) (n : 2 3 0.020) [Σ = 0.032]

Cycle (n : 2) (c : 1 7 0.020) (c : 2 7 0.024) (c : 3 3 0.032)

AmbaTSingle 1.652 6 11 3 21 0.012 14 18 4 271 0.888 4 5 2 17 6.032 4 4

Standard (n : 1 7 0.040) (n : 2 7 0.124) (n : 3 7 0.276) (n : 4 3 0.864) [Σ = 1.304]

Cycle (n : 4) (c : 1 7 1.216) (c : 2 7 1.168) (c : 3 7 1.216) (c : 4 3 1.128)

AmbaTIncr 1.240 5 8 3 19 0.020 41 123 6 1619 1.104 4 6 2 21 7.748 4 3

Standard (n : 1 7 0.052) (n : 2 7 0.200) (n : 3 7 0.600) (n : 4 3 1.344) [Σ = 2.196]

Cycle (n : 4) (c : 1 7 1.800) (c : 2 7 1.776) (c : 3 3 1.976)

AmbaTBurst4 2.020 9 16 4 36 0.048 16 16 4 205 3.216 7 14 3 51 7699.876 7 7

Standard (n : 1 7 0.060) (n : 2 7 0.172) (n : 3 7 0.368) (n : 4 7 1.224) (n : 5 7 7.344) (n : 6 7 49.400) (n : 7 3 4.400) [Σ = 62.968]

Cycle (n : 7) (c : 1 7 144.936) (c : 2 7 199.720) (c : 3 7 380.508) (c : 4 7 249.988) (c : 5 7 2265.350) (c : 6 7 3969.690) (c : 7 3 426.716)

AmbaEncode2 1.384 3 7 2 14 0.020 4 4 2 53 0.332 2 3 1 8 0.144 2 3

Standard (n : 1 7 0.020) (n : 2 3 0.028) [Σ = 0.048]

Cycle (n : 2) (c : 1 7 0.028) (c : 2 7 0.028) (c : 3 3 0.040)

AmbaLock2 1.396 4 10 2 13 0.020 5 6 3 93 0.524 3 5 2 13 0.976 3 5

Standard (n : 1 7 0.020) (n : 2 7 0.044) (n : 3 3 0.116) [Σ = 0.180]

Cycle (n : 3) (c : 1 7 0.128) (c : 2 7 0.144) (c : 3 7 0.144) (c : 4 7 0.160) (c : 5 3 0.220)

AmbaArbiter2 1.652 8 21 3 27 0.032 7 12 3 196 0.692 2 3 1 9 0.508 2 3

Standard (n : 1 7 0.052) (n : 2 3 0.104) [Σ = 0.156]

Cycle (n : 2) (c : 1 7 0.108) (c : 2 7 0.112) (c : 3 3 0.132)

AmbaArbiter3 2.120 22 173 5 315 0.148 27 264 5 1890 27.988 4 9 2 32 8.796 3 4

Standard (n : 1 7 0.480) (n : 2 7 0.680) (n : 3 3 1.248) [Σ = 2.408]

Cycle (n : 3) (c : 1 7 1.500) (c : 2 7 1.540) (c : 3 7 1.644) (c : 4 3 1.704)

AmbaArbiter4 4.880 45 877 6 996 1.716 106 2553 7 15224 228.964 4 10 2 41 104.956 4 5

Standard (n : 1 7 4.316) (n : 2 7 5.192) (n : 3 7 6.604) (n : 4 3 12.752) [Σ = 28.864]

Cycle (n : 4) (c : 1 7 13.640) (c : 2 7 14.460) (c : 3 7 15.420) (c : 4 7 16.168) (c : 5 3 16.404)

Table 5: Experimental evaluation of the bounded cycle synthesis approach.

170 Chapter IV. Output Sensitive Synthesis

Note that all of the aforementioned approaches require multiple parameters to
be set correspondingly. Therefore, we use a full spectrum analysis including
the search for all possible circuits that range from l = 0 to l = 3 latches and
g = 0 to g = 9 gates, all possible register machines that range from r = 0
to r = 2 registers and i = 1 to i = 9 instructions, and all possible reactive
programs that range from v = 0 to v = 1 variables and s = 1 to s = 14
program nodes. The corresponding results of all of the analyzed specifications
are provided in Figures 34 to 46.

Satisfiable instances witnessing a realizing solution for the corresponding
synthesis problems are marked with a 3 and are highlighted in green. Unsat-
isfiable instances on the other hand are marked with a 7 and are highlighted
in orange. The corresponding encoding creation plus solving times are given
next to these symbols in seconds. For most benchmarks, we used a timeout of
an hour (3600 seconds), which however, was increased up to two days for some
benchmarks out of curiosity. It only helped in a single case for synthesizing
some reactive program for the delay specification. Timeouts are highlighted
in red and indicate the reached limit. If multiple solutions could be found,
the smallest result is highlighted in the table and the corresponding imple-
mentation is depicted next to it. If the minimal solution is not unique, both
of the corresponding solutions are selected and depicted, correspondingly.

The results indicate that circuits are the easiest to synthesize, followed by
register machines and reactive programs. Except for the TBurst4 component
of the AMBA arbiter we found realizing circuits for all of the given specifica-
tions. In general, the AMBA components seem to be much harder than the
other examples, where we only could find a register machine for the Shift
component, but no register machines for all other components and no reactive
programs at all.

Also note that the complexity of each benchmark depends on the partic-
ular implementation type and the selected parameters. Consider for example
the results of the simple arbiter specification, where it is hard to find a register
machine that realizes the specification, but a circuit and a reactive program
still are manageable. Another example is given by the ModeSelect specifica-
tion, which is straightforward to be synthesized as a circuit, but requires a
complex register machine and where a reactive program could not be found.

Finally reconsider that a multidimensional search space also implies trade-
offs, as for example indicated by the delay specification. Overall, the specifi-
cation can be implemented very compactly for all of the presented implemen-
tation models. However, in the case of reactive programs this requires the
introduction of an extra program variable, which is only dispensable at the
price of a much more complex program flow.

4. Experimental Results 171

(i↔ o)

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 3 0.004 3 0.008 3 0.024 3 0.104

g : 1 3 0.008 3 0.012 3 0.032 3 0.124

g : 2 3 0.012 3 0.020 3 0.048 3 0.160

g : 3 3 0.020 3 0.036 3 0.072 3 0.204

g : 4 3 0.032 3 0.052 3 0.096 3 0.280

g : 5 3 0.056 3 0.076 3 0.152 3 0.368

g : 6 3 0.072 3 0.112 3 0.212 3 0.480

g : 7 3 0.120 3 0.160 3 0.276 3 0.592

g : 8 3 0.152 3 0.204 3 0.328 3 0.704

g : 9 3 0.208 3 0.264 3 0.412 3 0.868

Program v : 0 v : 1

s : 1 7 0.028 7 0.192

s : 2 7 0.264 7 1.940

s : 3 7 0.980 7 7.892

s : 4 3 3.340 3 22.388

s : 5 3 5.828 3 39.888

s : 6 3 10.572 3 78.212

s : 7 3 15.004 3 124.872

s : 8 3 25.172 3 189.852

s : 9 3 41.364 3 248.796

s : 10 3 55.008 3 393.140

s : 11 3 84.288 3 593.852

s : 12 3 92.796 3 861.732

s : 13 3 135.336 3 1237.460

s : 14 3 187.488 3 1943.030

Register r : 0 r : 1 r : 2

i : 1 7 0.020 7 0.084 7 0.432

i : 2 7 0.096 7 0.500 7 2.692

i : 3 3 0.304 3 1.480 3 8.536

i : 4 3 0.656 3 3.488 3 25.600

i : 5 3 1.120 3 5.872 3 100.720

i : 6 3 1.644 3 13.064 3 105.048

i : 7 3 2.728 3 22.836 3 163.816

i : 8 3 6.544 3 28.312 3 229.116

i : 9 3 7.892 3 60.616 3 2101.320

i o

0. READ i
1. WRITE o
2. NEXT

o :� i;
inout

Figure 34: Experimental results: identity.tlsf

172 Chapter IV. Output Sensitive Synthesis

(i↔ o)

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.004 3 0.012 3 0.048 3 0.244

g : 1 7 0.008 3 0.016 3 0.064 3 0.264

g : 2 7 0.008 3 0.024 3 0.076 3 0.300

g : 3 7 0.016 3 0.040 3 0.096 3 0.356

g : 4 7 0.024 3 0.056 3 0.124 3 0.444

g : 5 7 0.032 3 0.084 3 0.172 3 0.540

g : 6 7 0.044 3 0.116 3 0.252 3 0.740

g : 7 7 0.072 3 0.172 3 0.308 3 0.792

g : 8 7 0.092 3 0.216 3 0.376 3 0.864

g : 9 7 0.112 3 0.272 3 0.456 3 1.016

Program v : 0 v : 1

s : 1 7 0.064 7 0.472

s : 2 7 0.792 7 5.676

s : 3 7 3.044 7 25.076

s : 4 7 8.776 7 64.488

s : 5 7 14.772 7 110.048

s : 6 7 27.592 7 218.260

s : 7 7 51.976 3 357.244

s : 8 7 169.832 3 664.464

s : 9 7 1029.580 3 869.296

s : 10 7 11092.500 3 1198.980

s : 11 3 2556.690 3 1684.700

s : 12 (3 7167.890) 3 2943.270

s : 13 3 2091.470 > 3600.00

s : 14 3 2742.980 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.040 7 0.196 7 1.052

i : 2 7 0.220 7 1.296 7 7.604

i : 3 3 0.768 3 4.208 3 26.088

i : 4 3 1.720 3 10.276 3 57.732

i : 5 3 3.152 3 20.932 3 373.852

i : 6 3 5.276 3 39.596 > 3600.00

i : 7 3 10.024 3 56.520 3 275.632

i : 8 3 15.420 3 124.916 3 613.656

i : 9 3 14.708 3 370.336 > 3600.00

i o

0. WRITE o
1. READ i
2. NEXT

v0 :� i;
inout;
o :� v0

if (i) then {
inout;
o :� true
} else {
inout;
o :� false
}

Figure 35: Experimental results: delay.tlsf

4. Experimental Results 173

(o)↔ i

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.008 7 0.012 7 0.040 7 0.272

g : 1 7 0.008 3 0.016 3 0.056 3 0.328

g : 2 7 0.012 3 0.024 3 0.080 3 0.340

g : 3 7 0.016 3 0.044 3 0.100 3 0.336

g : 4 7 0.024 3 0.056 3 0.128 3 0.436

g : 5 7 0.032 3 0.084 3 0.180 3 0.600

g : 6 7 0.044 3 0.116 3 0.240 3 0.708

g : 7 7 0.068 3 0.176 3 0.320 3 0.776

g : 8 7 0.092 3 0.216 3 0.364 3 0.912

g : 9 7 0.116 3 0.272 3 0.448 3 1.100

Program v : 0 v : 1

s : 1 7 0.084 7 0.564

s : 2 7 0.820 7 5.664

s : 3 7 3.212 7 22.620

s : 4 7 8.392 7 58.728

s : 5 7 13.968 7 98.596

s : 6 3 26.704 3 185.588

s : 7 3 38.924 3 289.440

s : 8 3 66.972 3 464.196

s : 9 3 90.952 3 676.900

s : 10 3 123.536 3 816.852

s : 11 3 169.440 3 1306.580

s : 12 3 232.112 3 1746.150

s : 13 3 337.512 3 3243.710

s : 14 3 402.968 3 2280.110

Register r : 0 r : 1 r : 2

i : 1 7 0.036 7 0.192 7 1.036

i : 2 7 0.268 7 1.172 7 6.796

i : 3 7 0.576 7 3.372 7 19.660

i : 4 3 1.752 3 9.776 3 48.568

i : 5 3 2.804 3 17.504 3 361.704

i : 6 3 6.292 3 25.836 > 3600.00

i : 7 3 10.400 3 44.680 > 3600.00

i : 8 3 17.176 3 68.532 > 3600.00

i : 9 3 17.472 3 256.060 > 3600.00

i o

0. READ i
1. WRITE o
2. NEXT
3. JMP 2

o :� o or i;
inout

Figure 36: Experimental results: initial-test.tlsf

174 Chapter IV. Output Sensitive Synthesis

¬(g0 ∧ g1) ∧ (r0 → g0) ∧ (r1 → g1)

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.012 3 0.028 3 0.092 3 0.408

g : 1 7 0.016 3 0.036 3 0.112 3 0.536

g : 2 7 0.020 3 0.052 3 0.148 3 0.568

g : 3 7 0.028 3 0.072 3 0.192 3 0.780

g : 4 7 0.040 3 0.100 3 0.272 3 1.108

g : 5 7 0.056 3 0.152 3 0.364 3 1.044

g : 6 7 0.072 3 0.216 3 0.468 3 1.268

g : 7 7 0.108 3 0.276 3 0.556 3 1.496

g : 8 7 0.140 3 0.336 3 0.696 3 1.884

g : 9 7 0.172 3 0.424 3 0.852 3 2.324

Program v : 0 v : 1

s : 1 7 1.144 7 7.672

s : 2 7 9.784 7 66.100

s : 3 7 42.376 7 278.096

s : 4 7 85.752 7 619.724

s : 5 7 154.004 7 1030.220

s : 6 7 348.228 7 2514.150

s : 7 7 756.956 > 3600.00

s : 8 3 790.016 > 3600.00

s : 9 3 1178.710 > 3600.00

s : 10 3 1889.660 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.336 7 1.792 7 9.508

i : 2 7 12.048 > 3600.00 > 3600.00

i : 3 7 61.136 > 3600.00 > 3600.00

i : 4 > 3600.00 > 3600.00 > 3600.00

i : 5 > 3600.00 > 3600.00 > 3600.00

i : 6 > 3600.00 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

g0

g1
r0

r1

7
inout
g1 :� g0;
g0 :� not g1

Figure 37: Experimental results: simple-arbiter-2.tlsf

4. Experimental Results 175

(i→ o) ∧ (¬i→ (i↔ o))

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.008 7 0.012 7 0.036 7 0.224

g : 1 7 0.008 7 0.016 7 0.048 7 1.032

g : 2 7 0.008 7 0.020 3 0.080 3 0.388

g : 3 7 0.016 7 0.032 3 0.100 3 0.368

g : 4 7 0.024 7 0.044 3 0.132 3 0.544

g : 5 7 0.032 7 0.064 3 0.184 3 0.596

g : 6 7 0.044 7 0.092 3 0.256 3 0.912

g : 7 7 0.072 7 0.140 3 0.332 3 1.264

g : 8 7 0.092 7 0.164 3 0.376 3 1.424

g : 9 7 0.116 7 0.208 3 0.496 3 1.304

Program v : 0 v : 1

s : 1 7 0.068 7 0.524

s : 2 7 0.712 7 6.096

s : 3 7 2.632 7 22.348

s : 4 7 7.924 7 60.196

s : 5 7 13.764 7 103.964

s : 6 7 24.944 7 192.348

s : 7 7 54.096 7 369.104

s : 8 7 215.900 7 1779.830

s : 9 7 1584.330 > 3600.00

s : 10 > 3600.00 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.040 7 0.192 7 1.064

i : 2 7 0.220 7 1.288 7 7.364

i : 3 7 0.648 7 3.448 7 30.400

i : 4 7 2.180 7 12.200 7 88.452

i : 5 7 20.660 7 308.880 7 1404.490

i : 6 7 770.836 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 3 1497.680 > 3600.00

i o

0. CJMP 6
1. READ i
2. CJMP 4
3. READ r0

4. CJMP 5
5. WRITE r0

6. WRITE o
7. NEXT
8. READ i 7

Figure 38: Experimental results: mode-select.tlsf

176 Chapter IV. Output Sensitive Synthesis(
u→ ((i↔ o) ∧ (i→ (oW u)) ∧ ((¬i)→ ((¬o)W u)))

)
Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.008 7 0.020 7 0.072 7 0.420

g : 1 7 0.012 7 0.028 7 0.092 7 1.796

g : 2 7 0.016 7 0.040 7 0.120 7 1.664

g : 3 7 0.024 3 0.072 3 0.180 3 1.156

g : 4 7 0.032 3 0.092 3 0.272 3 0.996

g : 5 7 0.048 3 0.144 3 0.380 3 1.524

g : 6 7 0.068 3 0.212 3 0.548 3 1.564

g : 7 7 0.096 3 0.280 3 0.584 3 2.424

g : 8 7 0.128 3 0.324 3 0.696 3 2.024

g : 9 7 0.160 3 0.420 3 0.852 3 2.724

Program v : 0 v : 1

s : 1 7 0.128 7 1.004

s : 2 7 1.372 7 10.768

s : 3 7 5.656 7 44.164

s : 4 7 14.972 7 109.240

s : 5 7 26.020 7 191.928

s : 6 7 51.704 7 363.316

s : 7 7 156.724 7 913.732

s : 8 3 373.256 3 1892.680

s : 9 3 316.508 > 3600.00

s : 10 3 322.672 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.072 7 0.356 7 1.952

i : 2 7 0.396 7 2.204 7 12.596

i : 3 7 2.148 7 43.844 > 3600.00

i : 4 7 13.424 7 85.236 > 3600.00

i : 5 7 43.264 > 3600.00 > 3600.00

i : 6 3 98.164 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

i

u

o

0. READ u
1. NOT
2. CJMP 5
3. READ i
4. WRITE o
5. NEXT

while (u) {
o :� i;
inout
};
inout

Figure 39: Experimental results: latch.tlsf

4. Experimental Results 177

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.012 7 0.020 7 0.072 7 0.388

g : 1 7 0.012 7 0.024 7 0.088 7 1.468

g : 2 7 0.016 7 0.040 7 0.204 7 4.164

g : 3 7 0.024 3 0.072 3 0.220 3 0.972

g : 4 7 0.036 3 0.092 3 0.260 3 1.192

g : 5 7 0.044 3 0.144 3 0.348 3 1.252

g : 6 7 0.068 3 0.204 3 0.508 3 1.200

g : 7 7 0.096 3 0.272 3 0.604 3 1.964

g : 8 7 0.124 3 0.316 3 0.668 3 2.444

g : 9 7 0.152 3 0.412 3 0.816 3 4.608

Program v : 0 v : 1

s : 1 7 0.124 7 1.000

s : 2 7 1.300 7 10.188

s : 3 7 4.932 7 34.384

s : 4 7 13.548 7 100.020

s : 5 7 22.940 7 163.292

s : 6 7 41.216 7 282.980

s : 7 7 123.576 7 817.008

s : 8 > 3600.00 > 3600.00

s : 9 > 3600.00 > 3600.00

s : 10 > 3600.00 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.068 7 0.340 7 1.804

i : 2 7 0.388 7 6.588 7 469.296

i : 3 7 1.128 7 28.072 > 3600.00

i : 4 7 5.920 7 128.112 > 3600.00

i : 5 7 72.108 7 818.700 > 3600.00

i : 6 7 510.632 > 3600.00 > 3600.00

i : 7 3 3522.250 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

hmastlockhready

locked

0. JMP 4
1. AND locked
2. NEXT
3. WRITE hmastlock
4. READ hready
5. CJMP 1
6. NEXT 7

Figure 40: Experimental results: amba-decomposed-shift.tlsf

178 Chapter IV. Output Sensitive Synthesis

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.032 7 0.028 7 0.100 7 0.484

g : 1 7 0.020 7 0.048 7 0.136 7 2.156

g : 2 7 0.032 7 0.068 7 0.280 7 5.464

g : 3 7 0.040 3 0.116 3 0.356 3 1.484

g : 4 7 0.100 3 0.208 3 0.536 3 1.648

g : 5 7 0.112 3 0.260 3 0.792 3 4.640

g : 6 7 0.120 3 0.400 3 1.008 3 2.672

g : 7 7 0.156 3 0.472 3 1.128 3 3.868

g : 8 7 0.200 3 0.592 3 1.352 3 4.076

g : 9 7 0.248 3 0.724 3 1.656 3 5.492

Program v : 0 v : 1

s : 1 7 0.140 7 1.096

s : 2 7 1.376 7 10.484

s : 3 7 5.256 7 35.688

s : 4 7 13.920 7 98.784

s : 5 7 24.656 7 177.564

s : 6 7 104.340 7 322.668

s : 7 7 117.836 7 819.648

s : 8 7 820.184 > 3600.00

s : 9 > 3600.00 > 3600.00

s : 10 > 3600.00 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.088 7 0.400 7 2.044

i : 2 7 0.492 7 2.368 7 12.936

i : 3 7 1.284 7 25.700 > 3600.00

i : 4 7 12.712 7 76.216 > 3600.00

i : 5 7 54.464 > 3600.00 > 3600.00

i : 6 7 1530.820 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

hready

hgrant1

hmaster0

Figure 41: Experimental results: amba-decomposed-encode-2.tlsf

4. Experimental Results 179

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.028 7 0.100 7 0.444 7 2.584

g : 1 7 0.068 7 0.176 7 0.796 7 5.296

g : 2 7 0.084 7 0.348 7 1.364 7 9.744

g : 3 7 0.156 7 0.544 7 14.140 7 62.916

g : 4 7 0.228 7 0.824 7 736.000 7 529.624

g : 5 7 0.324 7 1.136 > 3600.00 > 3600.00

g : 6 7 0.484 7 1.568 3 3326.420 > 3600.00

g : 7 7 0.564 7 2.080 3 2913.820 > 3600.00

g : 8 7 0.692 7 2.628 3 13.940 3 72.376

g : 9 7 0.900 7 3.404 3 631.904 3 89.176

Program v : 0 v : 1

s : 1 7 0.704 7 5.520

s : 2 7 6.936 7 49.812

s : 3 7 22.876 7 170.192

s : 4 7 65.268 7 450.872

s : 5 7 117.288 7 875.352

s : 6 7 224.064 7 1842.850

s : 7 7 401.484 7 3469.140

s : 8 > 3600.00 > 3600.00

s : 9 > 3600.00 > 3600.00

s : 10 > 3600.00 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.408 7 1.968 7 9.920

i : 2 7 2.100 7 14.560 7 165.052

i : 3 7 8.368 7 193.892 > 3600.00

i : 4 7 26.724 > 3600.00 > 3600.00

i : 5 7 542.252 > 3600.00 > 3600.00

i : 6 > 3600.00 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

locked

decide

hgrant1

hgrant0

hlock0

hlock1

Figure 42: Experimental results: amba-decomposed-lock-2.tlsf

180 Chapter IV. Output Sensitive Synthesis

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.064 7 0.128 7 0.404 7 4.632

g : 1 7 0.072 7 0.144 7 0.472 7 10.880

g : 2 7 0.084 7 0.176 7 0.568 7 28.088

g : 3 7 0.096 7 0.212 7 0.896 7 667.596

g : 4 7 0.116 7 0.288 7 6.168 > 3600.00

g : 5 7 0.152 7 0.372 7 84.656 > 3600.00

g : 6 7 0.192 7 0.468 > 3600.00 > 3600.00

g : 7 7 0.232 7 0.548 > 3600.00 > 3600.00

g : 8 7 0.280 7 0.640 > 3600.00 > 3600.00

g : 9 7 0.328 7 0.800 3 208.080 3 2568.810

Program v : 0 v : 1

s : 1 7 324.860 7 2470.350

s : 2 7 2739.730 > 3600.00

s : 3 > 3600.00 > 3600.00

s : 4 > 3600.00 > 3600.00

s : 5 > 3600.00 > 3600.00

s : 6 > 3600.00 > 3600.00

s : 7 > 3600.00 > 3600.00

s : 8 > 3600.00 > 3600.00

s : 9 > 3600.00 > 3600.00

s : 10 > 3600.00 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 45.924 7 284.016 7 1772.960

i : 2 > 3600.00 > 3600.00 > 3600.00

i : 3 > 3600.00 > 3600.00 > 3600.00

i : 4 > 3600.00 > 3600.00 > 3600.00

i : 5 > 3600.00 > 3600.00 > 3600.00

i : 6 > 3600.00 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

hgrant1

busreq

hgrant0

decide

hbusreq0

allready

hbusreq1

Figure 43: Experimental results: amba-decomposed-arbiter-2.tlsf

4. Experimental Results 181

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.040 7 0.144 7 0.768 7 6.908

g : 1 7 0.056 7 0.176 7 1.400 7 200.972

g : 2 7 0.076 7 0.232 7 1.584 7 3312.120

g : 3 7 0.108 7 0.332 7 2.144 7 2687.370

g : 4 7 0.192 7 0.444 7 6.792 > 3600.00

g : 5 7 0.228 7 0.600 7 273.868 > 3600.00

g : 6 7 0.312 7 0.748 > 3600.00 > 3600.00

g : 7 7 0.392 7 0.968 > 3600.00 > 3600.00

g : 8 7 0.488 7 1.176 3 298.532 3 3134.000

g : 9 7 0.624 7 1.452 3 658.608 > 3600.00

Program v : 0 v : 1

s : 1 7 1.948 7 14.364

s : 2 7 17.652 7 131.992

s : 3 7 72.656 7 545.160

s : 4 7 162.400 7 1282.370

s : 5 7 275.156 7 2320.480

s : 6 7 645.356 > 3600.00

s : 7 7 965.856 > 3600.00

s : 8 > 3600.00 > 3600.00

s : 9 > 3600.00 > 3600.00

s : 10 > 3600.00 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.604 7 3.384 7 17.548

i : 2 7 3.912 7 19.912 7 118.316

i : 3 7 14.544 7 269.344 > 3600.00

i : 4 > 3600.00 7 508.012 7 1135.320

i : 5 > 3600.00 > 3600.00 > 3600.00

i : 6 > 3600.00 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

ready3
decide

single

locked

hready

Figure 44: Experimental results: amba-decomposed-tsingle.tlsf

182 Chapter IV. Output Sensitive Synthesis

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.076 7 0.312 7 1.944 7 63.300

g : 1 7 0.104 7 0.396 7 2.656 7 78.748

g : 2 7 0.148 7 0.584 7 3.324 7 1563.120

g : 3 7 0.244 7 0.812 7 4.032 7 1803.360

g : 4 7 0.344 7 1.068 7 20.596 3 1485.750

g : 5 7 0.488 7 1.384 7 3321.820 3 251.960

g : 6 7 0.632 7 1.836 3 68.796 3 1025.180

g : 7 7 0.812 7 2.340 3 13.944 3 165.168

g : 8 7 1.048 7 2.908 3 23.984 3 440.676

g : 9 7 1.328 7 3.744 3 28.540 3 1036.250

Program v : 0 v : 1

s : 1 7 4.572 7 32.312

s : 2 7 38.500 7 297.596

s : 3 7 121.776 7 1052.820

s : 4 7 346.228 7 2775.920

s : 5 7 684.756 > 3600.00

s : 6 7 1193.500 > 3600.00

s : 7 7 2630.240 > 3600.00

s : 8 > 3600.00 > 3600.00

s : 9 > 3600.00 > 3600.00

s : 10 > 3600.00 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 1.384 7 7.448 7 39.852

i : 2 7 9.080 7 47.636 7 253.580

i : 3 > 3600.00 > 3600.00 > 3600.00

i : 4 7 589.084 > 3600.00 > 3600.00

i : 5 > 3600.00 > 3600.00 > 3600.00

i : 6 > 3600.00 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

ready1decide

locked

incr

hready

busreq

ready1

decide

incr

locked

hready

busreq

Figure 45: Experimental results: amba-decomposed-tincr.tlsf

4. Experimental Results 183

Circuit l : 0 l : 1 l : 2 l : 3

g : 0 7 0.060 7 0.192 7 1.204 7 21.220

g : 1 7 0.076 7 0.224 7 1.708 7 68.492

g : 2 7 0.092 7 0.280 7 2.228 7 3460.200

g : 3 7 0.128 7 0.384 7 1.956 7 3134.680

g : 4 7 0.184 7 0.520 7 2.748 7 7983.400

g : 5 7 0.244 7 0.676 7 3.028 > 172800.000

g : 6 7 0.380 7 0.820 7 3.344 > 172800.000

g : 7 7 0.472 7 1.076 7 3.464 > 172800.000

g : 8 7 0.508 7 1.224 7 4.908 > 172800.000

g : 9 7 0.636 7 1.552 7 5.080 > 172800.000

Program v : 0 v : 1

s : 1 7 2.492 7 19.324

s : 2 7 23.164 7 184.428

s : 3 7 99.180 7 779.950

s : 4 7 218.288 7 1869.600

s : 5 7 373.068 7 2842.880

s : 6 7 787.368 > 3600.00

s : 7 7 1475.710 > 3600.00

s : 8 > 3600.00 > 3600.00

s : 9 > 3600.00 > 3600.00

s : 10 > 3600.00 > 3600.00

s : 11 > 3600.00 > 3600.00

s : 12 > 3600.00 > 3600.00

s : 13 > 3600.00 > 3600.00

s : 14 > 3600.00 > 3600.00

Register r : 0 r : 1 r : 2

i : 1 7 0.752 7 4.088 7 22.536

i : 2 7 27.048 7 2575.550 > 3600.00

i : 3 7 748.368 > 3600.00 > 3600.00

i : 4 > 3600.00 > 3600.00 > 3600.00

i : 5 > 3600.00 > 3600.00 > 3600.00

i : 6 > 3600.00 > 3600.00 > 3600.00

i : 7 > 3600.00 > 3600.00 > 3600.00

i : 8 > 3600.00 > 3600.00 > 3600.00

i : 9 > 3600.00 > 3600.00 > 3600.00

7

Figure 46: Experimental results: amba-decomposed-tburst4.tlsf

184 Chapter IV. Output Sensitive Synthesis

5 Discussion
As our analysis reveals, the presented output sensitive synthesis methods in-
deed enable the creation of better quality solutions from a logic specification
with respect to the given quality metrics. The produced solutions are well
structured and easy to inspect by a human being. Accordingly, they also
help developers in order to verify, whether the created solutions indeed meet
their design intents or, whether the specification still misses some important
functional quality constraints. On the contrary, the results also reveal that
producing high quality solutions comes at the price of higher synthesis times,
which, however, is not that much of a big surprise.

The more intriguing question is: What kind of quality metrics are prefer-
able to be useful and adequate for the system design? Clearly, the question
cannot be answered in general, since the corresponding answer always depends
on the respective development environment and the final application require-
ments. Hence, whether a circuit, a register program or a reactive program is
the preferred model of choice always depends on the developers expertise and
how easy these models can be translated into the final application context.

To this end, we also introduced a more general structural measure that
works independently of the final evaluation model, as given by the number
of simple cycles of the underlying Mealy machine. This metric is not biased
towards a specific implementation type, but directly targets the structural
complexity of the solution instead. That the number of simple cycles is linked
with the structural complexity is underlined by the explosive nature of the
metric, as proven theoretically, as well as through our practical analyses,
which shows that a bound on the number of cycles does neither introduce
much overhead with respect to the synthesis times, nor is a large number of
cycles required for most systems in general.

How relevant the collected insights for practical aplications are in the end still
needs to be determined through further experiments. This however requires
more systems that are designed based on a logic description in the first place,
which only happens if the corresponding development tools get strong enough
to provide all of the required insights fast and in a straightforward fashion.
We hope that with the previously presented quality enforcing synthesis tools
we are able to get a step closer towards this goal.

Chapter V

Delay Games

So far, we only considered techniques that turn realizable specifications into
system implementations. Therefore, we learned that synthesis concerns the
control, while the way data is represented must be kept abstract, and that
output sensitive methods provide advantages against game based synthesis,
since they allow to choose from multiple realizations according to the preferred
output requirements. However, during the development of such specifications
it also happens that designers introduce inconsistencies causing an unrealiz-
ability result. The developers then first need to refine the specification by
correcting the introduced inconsistency. Beforehand, however, the acciden-
tally introduced inconsistency must be found and understood by it’s creator.
According to these concerns, our introduced synthesis engine is not sufficient
yet to provide the developer with the required feedback for such situations.

First insights into the cause of unrealizability may be revealed by the
counter-strategy of the environment, which takes advantage of the devel-
oper’s fault in order to win against every possible system implementation.
By determinacy of the underlying game such a counter-strategy always must
exist [102]. Nevertheless, especially for simple inconsistencies, the counter-
strategy often just guides the system to the point in time, where the fault of
the developer takes place and then behaves arbitrarily. Hence, for getting a
better understanding of the introduced fault, the strategy is only of a little
help at this point. In order to identify such inconsistencies directly, we instead
need a better understanding of how it could even happen that the developer
has introduced the error in the first place.

It turns out, that most of the overseen causes for unrealizability are in-
troduced by miss-understandings of temporal dependencies between different
specified tasks, which cannot be realized simultaneously. As an example, con-
sider an update that needs to be executed whenever a button gets pressed,
which is indicated by a Boolean input signal switching from low (false) to
high (true). A first specification attempt of the designer may look as follows:(

¬button ∧ button ↔ [o� f o]
)

The specification is unrealizable. The problem is that checking the button for

186 Chapter V. Delay Games

being pressed requires the system to compare the current input value with the
previous one. The update then must be triggered after this comparison has
taken place. Thus, the fault in the specification is that the update is required
too early. The system has yet not observed whether the input has changed at
this point in time. The solution is to delay the update by a single time step.
Then the system is able to gather all the required information in time:(

¬button ∧ button ↔ [o� f o]
)

The requirement for such simple delay operations is a regular cause of un-
realizability. However, with the techniques presented so far they can only
be detected from a faulty specification after an exhausting in depth inspec-
tion through the developer. Instead, souldn’t it be much more convenient, if
we could check a faulty specification against this type of erroneous behavior
automatically?

In this last chapter of the thesis we considers a solution to this problem using
delay games, which offer an extension to the classical synthesis framework
for reactive systems. In delay games, the requirement of a strict alterna-
tion between both players is relaxed, implying that one of the players can
postpone her moves to obtain a lookahead on her opponent’s moves. With
lookahead at hand, the system player is able to win games that she would
loose otherwise. Delay games provide a perfect solution for finding causes of
unrealizability in faulty specifications that are introduced through too strict
timing requirements imposed by the developer. Delay games automatically
relax such requirements leading to realizability under the assumption of de-
lay. Therefore, developers not only get insights into the cause of the initial
error, but with a realizing system strategy at hand, which wins under the
assumption of delay, they also get feedback for the required adaptions needed
to resolve the issue in the original specification.

Considering the problem from a more theoretical position, delay games also
can be expressed as uniformization of relations by continuous functions [137,
140, 62, 136]. The games are played between the system and the environment,
each picking letters from alphabets ΣI and ΣO, respectively. As a result,
they produce two infinite sequences α and β, leading to a strategy for the
system player realized as a mapping τ : ΣωI → ΣωO. The strategy is winning
for the system if α and τ(α) are related by the winning condition Win ⊆
ΣωI × ΣωO for every α ∈ ΣωI . In this case we say that τ uniformizes L. In
the classical setting, where the system and the environment pick letters in
alternation, the n-th letter of τ(α) depends only on the first n letters of α.
Therefore, strategies with bounded lookahead, i.e., only finitely many moves

187

are postponed, induce Lipschitz-continuous functions τ in the Cantor topology
on Σω. In contrast, strategies with unbounded lookahead induce continuous
functions, or uniformly continuous functions, due to Σω being compact [62].

Related Work. In 1972, Hosch and Landweber first proved decidability
of winning delay games with ω-regular winning conditions, where one of the
players is able to utilize the lookahead [64]. Much later, in 2012 the problem
then was revisited again by Holtmann, Kaiser, and Thomas, which showed
that there is also a doubly-exponential upper bound on the lookahead, i.e.,
if the system player wins with bounded lookahead, then double-exponential
lookahead is already sufficient [62]. Furthermore, their decidability proof pro-
vided the first algorithm for delay games of doubly-exponential running time.
Their results show that the delaying player does not take any advantages from
having unbounded lookahead, bounded lookahead is always sufficient.

Considering winning conditions beyond ω-regularity, as in delay games
with context-free winning conditions, leads to undecidability in general and
non-elementary lower bounds on the required lookahead, even if only very
weak fragments are considered [47]. The analogue of the Hosch-Landweber
theorem can be proven, however, for another class of winning conditions be-
yond ω-regularity: if the winning condition is definable in weak monadic
second order logic with the unbounding quantifier (WMSO+U), then deter-
mining whether a player wins a delay game with bounded lookahead is de-
cidable [155]. Doubly-exponential lookahead is also sufficient for WMSO+U
conditions, under the assumption that the delaying player wins with bounded
lookahead in the first place. In general, however, bounded lookahead does
not suffice, i.e., the analogue of the Holtmann-Kaiser-Thomas theorem does
not hold for delay games with WMSO+U conditions. There exists a corre-
sponding game that the system player only wins with unbounded lookahead,
no matter how slowly the lookahead grows [154].

Another variant are delay games with winning conditions in Prompt-
LTL [89]: a logic that extends LTL [116] with temporal operators whose scope
is bounded in time. Solving delay games that use Prompt-LTL winning con-
ditions is 3ExpTime-complete. Furthermore, triply-exponentially bounded
lookahead is necessary and always sufficient [81]. Moreover, all lower bounds
already hold for the special case of LTL.

Furthermore, it has been shown that every delay game with Borel winning
condition is determined. Delay games with Borel winning conditions can be
reduced to delay-free games with Borel winning conditions, while preserving
the winning strategies of the players [79].

In terms of uniformization, decidability of the uniformization problem

188 Chapter V. Delay Games

for ω-regular relations by Lipschitz-continuous functions has been proven by
Hosch and Landweber. On the other hand, the equivalence of the existence of
continuous uniformization functions and the existence of Lipschitz-continuous
uniformization functions for ω-regular relations has been proven by Holtmann
et al., hence, the uniformization of context-free relations has been proven to be
undecidable, even in the context of Lipschitz-continuous functions. However,
the uniformization of WMSO+U relations by Lipschitz-continuous functions
is decidable.

In another line of work, the case of finite words has been considered by
Carayol and Löding [22], while Löding and Winter considered the case of finite
trees [98]. Moreover, the uniformization on infinite binary trees [21, 57] fails
due to the non-existence of MSO-definable choice functions.

Considering the representation of strategies in delay games, they are also
more involved than in the classical setting, since strategies need to take the
utilized delay into account. As it turns out, finding a suitable and compact
model for such strategies is a non-trivial task. Accordingly, different notions
for encoding delay as part of the strategy and the resulting differences in their
expressivity have been analyzed [79]. Furthermore, by setting the focus on a
general representation of finite-strategies for delay games, some of the known
solving techniques for delay games have been revisited [156].

Finally, first experimental evaluations of an on-the-fly algorithm for the
construction of strategies in delay games with safety objectives has been pre-
sented in [26].

5 Games with Delay
Delay games are two-player games of infinite duration in which the system
player may delay her moves to obtain a lookahead on the environment players’
moves. The amount of delay that is introduced into the system is given by
a delay function f determining at each point in time the lookahead of the
system player on the environment players’ moves.

Definition 26. A delay function is a mapping f : N → N+, which is
said to be constant, if f(i) = 1 for every i > 0. The delay that is
accumulated over time is captured by the accumulating delay function
with fΣ(n) =

∑n
i=0 f(i) for all n ∈ N.

Note that constant delay functions only introduce some initial delay once.
However, by the again strict alternation of the players after this initial delay,

5. Games with Delay 189

the system player always has a constant lookahead on her opponent’s moves.
Furthermore, consider that by the introduced delay, the resulting strategies
for the players are assymmetric according to their moves. The environment
player now needs to pick words of the length of the assigned delay.

Definition 27. In a delay game, a strategy for Player O is a function
σO : (ΣI)

∗ → Σo.

In contrast, the system still responses with single letters. The input and
output history, thus, does not grow simultaneously. However, in the infinite
both still produce infinite words.

Definition 28. In a delay game, a strategy for Player I is a function
σI : (ΣO)∗ → (ΣI)

∗.

The standard notions of plays and consistency then are lifted to the adapted
strategy definitions in a natural way.

Definition 29. Let ρ be a play in an arena A with ρm = (vIm, im, v
O
m, om)

for all m ∈ N, then ρ is consistent with a strategy σO of Player O and a
delay function f iff for all n ∈ N

σO(i0i1 . . . ifΣ(n)−1) = on

A play ρ is consistent with a strategy σI of Player I and a delay function f
iff for all n ∈ N+

• σI(ε) = i0i1 . . . if(0)−1, and

• σI(o0o1 . . . on−1) = ifΣ(n−1)ifΣ(n−1)+1 . . . ifΣ(n)−1.

The set of all plays that are consistent with a strategy σP and a delay
function f is denoted by Plays(A, f, σP).

Delay games extend standard games with the delay function f , which deter-
mines the lookahead of the system in every step.

190 Chapter V. Delay Games

Definition 30. A delay game Γf (G) is a game G = (A,Win) that is
additionally equipped with a delay function f . A strategy σO is win-
ning for Player O iff all plays consistent with σO and f are winning,
i.e., iff Plays(A, f, σO) ⊆ Win. A strategy σI is winning for Player I iff
Plays(A, f, σO) ∩Win = ∅. A delay game is won by Player P if there is
a winning strategy σP for Player P .

Examples.

1.

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

∗

↑

↓

�
↑

↓

�

↑

↓

∗

∗

∗

∗

∗

∗ ∗

Consider the safety game G1 depicted above over ΣI = {�, ↓, ↑} and
ΣO = {↓, ↑} with the only unsafe vertex v7 marked by double borders.
Intuitively, Player O wins, if the letter she picks in the first round is
equal to the first letter other than � that Player I picks. Also, Player O
wins, if there is no such letter.

We claim that Player I wins Γf (G1) for every delay function f : Player I
picks �f(0) in the first round and assume Player O picks ↓ afterwards
(the case where she picks ↑ is dual). Then, Player I picks a word starting
with ↑ in the second round. The resulting play is winning for Player I
no matter how it is continued. Thus, Player I has a winning strategy
in Γf (G1).

6. Computational Complexity 191

2.

v0 v1

v2

v3

v4

v5 v6
∗

a

b

c

a
b, c

b

a, c

c
a, b

∗
∗

Next, consider the safety G2 depicted on top of this page with ΣI =
{a, b, c} and ΣO = {a, b, c}, where Player O wins if the input is shifted
two positions to the left on the corresponding outcome of G2.

Player O has a winning strategy for Γf (G2) for every f with f(0) ≥ 3.
In this case, Player O has at least three letters lookahead in each round,
which suffices to shift the input of Player I two positions to the left. On
the other hand, if f(0) < 3, then Player I has a winning strategy, since
Player O has to pick the first response before the first three letters have
been picked by Player I.

6 Computational Complexity

6.1 Parity Games

We start by presenting a method for solving delay games with parity winning
conditions, which runs in exponential time in the size of the game arena.
Our results also imply upper bounds on the solving time for delay games with
safety or reachability conditions. A similar result already has been established
by [62], however their upper bounds on the necessary lookahead are double-
exponential, while our construction yields a single exponential upper bound.

Theorem 21. The following problem is in ExpTime: Given a parity
game GΩ = (A,Parity(Ω)), does Player O win Γf (GΩ) for some delay
function f?

192 Chapter V. Delay Games

We proceed by constructing an exponentially-sized, delay-free parity game
with the same number of colors as GΩ, which is won by Player O if and only
if she wins Γf (GΩ) for some delay function f . Intuitively, we assign to each
potential lookahead w ∈ Σ∗I the behavior it induces on GΩ, which is given by
a function:

r : VI → 2VI×Ω(VI∪VO)

If (v′, c) ∈ r(v), then there is a path from v to v′ with maximal color c on a
word over ΣI × ΣO whose projection to ΣI is w. Having the same behavior
gives rise to an equivalence relation over Σ∗I of exponential index. In the parity
game that we construct, Player I picks equivalence classes of this relation and
Player O constructs a play on representatives. As a consequence, Player O
wins the game, if the constructed play is accepting. To account for the delay
in the original game, Player I is always one move ahead. This gives Player O
a lookahead of one equivalence class, which can be stored in the state space
of the parity game. First, we adapt GΩ to keep track of the maximal color
visited during a play.

Construction 8. Let GΩ = (A,Parity(Ω)) be a parity game with
arena A = (ΣI ,ΣO, VI , VO, vI , δI , δO), and coloring Ω: VI ∪ VO → [k].
We construct the color-tracking game GΩ,v = (Av,Parity(Ω·)) that is pa-
rameterized in v ∈ VI using the arena Av = (ΣI ,ΣO, VI , VO, vI , δI , δP),
where

• VI = VI × [k],

• VO = VO × [k],

• vI = (v,Ω(v)),

• δI ((v′, c), σ) = (δI(v
′, σ),max{c,Ω(v′)}),

• δO((v′, c), σ) = (δO(v′, σ),max{c,Ω(v′)}), and

• Ω· (v′, c) = Ω(v).

Note that GΩ,v only differs against GΩ by saving the maximal color visited in
the state space. Although, this saved maximal color finally is ignored by the
winning condition.

6. Computational Complexity 193

Remark 1. Let GΩ,vI
= (AvI ,Parity(Ω·)) be the color-tracking game

for some parity game GΩ = (A,Parity(Ω)) with initial vertex vI and

ρ = ((vI0 , c
I
0), i0, (v

O
0 , c

O
0), o0) ((vI1 , c

I
1), i1, (v

O
1 , c

O
1), o1) . . .

be a play in Plays(AvI). Then

ρ = (vI0 , i0, v
O
0 , o0)(vI1 , i1, v

O
1 , o1) . . . ∈ Plays(A)

and ∀m ∈ N. cIm = max{Ω(vPj) | 0 ≤ j < m,P ∈ {I,O}}.

In the following, we work with partial functions r : VI ⇀ 2VI , where we denote
the domain of each such function r by Dr. Intuitively, we use r to capture
the information encoded in the lookahead provided by Player I. Hence, the
function r determines the remaining combinations of vertices of the game that
still can be chosen by Player O through picking a corresponding completion,
after Player I has provided his lookahead in the preceding turn. Assume
Player I has picked α0 . . . αj and Player O has picked β0 . . . βi for i < j such
that the lookahead is w = αi+1 . . . αj . Then, we can determine the vertex v
that GΩ reaches after processing

(
α0

β0

)
. . .
(
αi

βi

)
, but we cannot process w, since

Player O has not picked βi+1 . . . βj yet. However, we can determine the ver-
tices Player O can enforce by picking an appropriate completion, which will
be the ones contained in r(v).

To formalize the functions r, capturing the lookahead picked by Player I,
we define the transition function δ : 2VI × ΣI → 2VI via

δ (S, a) =
⋃
v∈S

⋃
b∈ΣO

δO(δI (v, a), b),

i.e., δ is a transition function over powersets of vertices of GΩ,v, projected
to ΣI . As usual, we extend δ to δ∗ : 2VI × Σ∗I → 2VI by δ∗(S, ε) = S and
δ∗(S,wa) = δ (δ∗(S,w), a).

Let D ⊆ VI be non-empty and let w ∈ Σ∗I . We define the function rDw with
domain D as follows: for every v ∈ D, we have

rDw (v) = δ∗({(v,Ω(v))}, w).

If (v′, c) ∈ rDw (v), then there is a word w′ ∈ (ΣI × ΣO)∗ whose projection to
the input is w ∈ Σ∗I and every play infix of GΩ following w′ leads from v to v′
and has maximal color c. Thus, if Player I has picked the lookahead w, then

194 Chapter V. Delay Games

Player O could pick an answer such that the combined word leads from v to
v′ with the maximal color visited on this path being c. We call w a witness
for a partial function

r : VI ⇀ 2VI×[k]

if and only if r = rDr
w . We obtain a language Wr ⊆ Σ∗I of witnesses for each

such function r. We define

R = {r : VI ⇀ 2VI | Dr 6= ∅ and Wr is infinite}.

Lemma 8. Let GΩ = (A,Parity(Ω)) be a parity game with arena
A = (ΣI ,ΣO, VI , VO, vI , δI , δO), and coloring Ω: VI ∪VO → [k] and let R
be defined as above.

1. Let r ∈ R. Then, r(v) 6= ∅ for every v ∈ Dr.

2. Let r 6= r′ ∈ R such that Dr = Dr′ . Then, Wr ∩Wr′ = ∅.

3. Let r : VI ⇀ 2VI×[k] be a partial function with non-empty domain.
Then, Wr is recognized by a deterministic finite automaton with at
most 2|A|

2k states.

4. Let D ⊆ VI be non-empty and let w ∈ Σ∗I be such that |w| ≥ 2|A|
2k.

Then, there exists some r ∈ R with Dr = D and w ∈Wr.

Proof. The first statement directly follows from the totality of δI and δO, while
the second one follows from the definition of rDw , which is uniquely determined
by w and D. Hence, a fixed w cannot witness two different functions r and
r′ with the same domain.

To prove the third statement, fix some partial function r from VI to 2VI

with domain D = {v1, . . . , v|D|}. The product of |D| copies of the finite
automaton induced by δ with initial state

({(v1,Ω(v1))}, . . . , {(v|D|,Ω(v|D|))})

and the unique accepting state (r(v1), . . . , r(v|D|)) recognizes the witness lan-
guage Wr. As |D| ≤ |A|, the automaton has at most 2|A|

2k states.
For proving the last statement, fix some non-empty D and w of length

at least 2|A|
2k. Define r = rDw , which implies w ∈ Wr by definition. As

just shown, there exists a finite automaton recognizing Wr with at most

6. Computational Complexity 195

2|A|
2k ≤ |w| many states. Hence, by the pidgin whole principle, the accepting

run of the automaton on w must contain a state-repetition, which is why Wr

must be infinite and r ∈ R.

Now, we are able to define the equivalent delay-free parity game. In this
game, Player I picks elements from R while Player O produces a run on wit-
nesses, which corresponds to picking suitable completions to witnesses of the
functions picked by Player I. She wins, if the constructed run is accepting.
Furthermore, to account for the lookahead, as introduced by the delay func-
tion f , Player I is always one move ahead.

Construction 9. Let GΩ = (A,Parity(Ω)) be a parity game with
Ω: VI ∪ VO → [k] that is played in A = (ΣI ,ΣO, VI , VO, vI , δI , δO). To
check whether there is some delay function f such that Player O wins
Γf (GΩ) we construct the delay-free parity game G◦Ω = (A◦,Parity(Ω◦))
with A◦ = (Σ◦I ,Σ

◦
O, V

◦
I , V

◦
O, v

◦
I , δ
◦
I , δ
◦
O) and fresh vertices ι,3I ,3O,7I ,7O,

where:

• Σ◦I = R

• Σ◦O = VI × [k]

• V ◦I = {ι,3I ,7I} ∪ (R× VI × [k]),

• V ◦O = {3O,7O} ∪ ((2VI×[k] ∪ {ι})×R),

• v◦I = ι

• δ◦I (x, r) =

(ι, r) if x = ι ∧ Dr = {vI}
(r′(v), r) if x = (r′, v, c) ∧ Dr = pr0(r′(v))

7O if x = 7I
3O otherwise

• δ◦O(x, (v, c)) =

(r, v, c) if x = (ι, r) ∧ v = vI ∧ c = Ω(vI)

(r, v, c) if x = (X, r) ∧ (v, c) ∈ X
3I if x = 3O
7I otherwise

• Ω◦(x) =

c if x = (r, v, c) ∈ R× VI × [k]

1 if x = 7I
0 otherwise

196 Chapter V. Delay Games

The correctness proof of Construction 9 is split according to the two players
of the game.

Lemma 9. If Player I wins G◦Ω, then Player I wins Γf (GΩ) for all delay
functions f .

Proof. Let σ◦I be a winning strategy for Player I in Γf (G◦Ω). We construct a
winning strategy σI for Player I in Γf (GΩ) for some arbitrary delay function f
by simulating a play of Γf (GΩ) with a play of G◦Ω. Let r0 = σ◦I (ε) ∈ R be
the first move of Player I in G◦Ω, where Player I picks a valid r0 ∈ R, as
otherwise he has lost immediately. Also note that due to Lemma 8 (Items 1
and 2) picking an element of R is always possible for Player I. Player O then
answers by picking vI , which is the only reasonable choice, as otherwise she
looses G◦Ω immediately. Let (v0, c0) = (vI ,Ω(vI)) and let r1 = σ◦I ((v0, v1)) be
Player I’s next response. Due to Wr0 and Wr1 being infinite, according to
the membership in R, we can choose witnesses w0 ∈Wr0 and w1 ∈Wr1 such
that f(0) ≤ |w0| and fΣ(|w0|) ≤ |w1|.

GΩ

G◦Ω

I:

V :

O:

I:

V :

O:

ι

r0

(ι, r0)

(vI ,Ω(vI)) (v1, c1)

(r0, vI ,Ω(vI))

r1

(r0(vI), r1)

(vI ,Ω(vI))

w0 ∈Wr0

β0β1 . . . β|w0|−1

w1 ∈Wr1

(v1, c1)

We are ready to simulate a play prefix in Γf (GΩ): Player I picks the prefix
α0α1 . . . αfΣ(|w0|)−1 of w0w1 of length fΣ(|w0|) in his first moves, which is
long enough to play |w0| many rounds: w0 is long enough for the first round
and w1 is long enough for the next |w0| rounds. Formally, we fix σI for
the first fΣ(|w0|) responses, independently of the responses β0 . . . β|w0|−1 of
Player O, i.e., we define σI(ε) = α0 . . . αf(0)−1 and for every 0 ≤ j < |w0| let
σI(β0 . . . βj−1) = αfΣ(j) . . . αfΣ(j+1)−1. As we have played |w0| many rounds,
the response of Player O is long enough to determine the vertex (v1, c1) that

6. Computational Complexity 197

is reached by the play ρ ∈ Plays(AvI) after playing
(
α0

β0

)(
α1

β1

)
. . .
(α|w0|−1

β|w0|−1

)
and

used as Player O’s response in G◦Ω. We are in the following situation for i = 1:

• In G◦Ω, we have constructed a play prefix:

(ι, r0, (ι, r0), (v0, c0)) . . . ((ri−1, (vi−1, ci−1)), ri, (Xi, ri), (vi, ci))

• In Γf (GΩ), Player I has committed to the input

w0 . . . wi = α0α1 . . . α|w0...wi|−1

from which we have fixed the first fΣ(|w0 . . . wi−1|) letters to be picked
by σI and Player O has picked β0 . . . β|w0...wi−1|−1.

• The word wj is a witness for rj for every j ≤ i.

Now, let i > 0 be arbitrary and let ri+1 = σ◦I ((v0, v1) . . . (vi, ci)) ∈ R be the
next move of Player I in G◦Ω and let wi+1 ∈Wri+1

be a witness, large enough
such that |wi+1| ≥ fΣ(|w0 . . . wi|). Then, in Γf (GΩ) Player I commits to
wi+1 as his next moves and picks σI(β0 . . . βj−1) = αfΣ(j) . . . αfΣ(j+1)−1 for all
|w0 . . . wi−1| ≤ j < |w0 . . . wi|. Player O responds by β|w0...wi−1| . . . β|w0...wi|−1,
which is again long enough to determine the vertex (vi+1, ci+1) that is reached
by the play ρ ∈ Plays(Avi) after playing(

α|w0...wi−1|
β|w0...wi−1|

)(
α|w0...wi−1|+1

β|w0...wi−1|+1

)
. . .

(
α|w0...wi|−1

β|w0...wi|−1

)
.

As a result, we are again in the aforementioned situation for i + 1. Thus,
repeating the simulation ad infinitum concludes the definition of σI .

It remains to show that σI is winning for Player I. Consider a play
ρ ∈ Plays(A, f, σI) that is consistent with σI and let γ =

(
α0

β0

)(
α1

β1

)(
α2

β2

)
. . .

be the outcome of ρ. Note that α0α1α2 . . . is equal to w0w1w2 . . ., where each
wi is a witness of ri. A straightforward inductive application of Remark 1
shows that vi+1 is the vertex that ρ reaches after processing wi and the cor-
responding moves of Player O starting in vi and that ci+1 is the maximal
color seen in the play. Thus, the maximal color visited infinitely often by ρ
after processing w is the same as the maximal color of the sequence c0c1c2 . . .
of the play ρ◦ ∈ Plays(A◦, σ◦I) constructed by our simulation and consistent
with the winning strategy σ◦I of Player I in G◦Ω. Hence, the play ρ is winning
for Player I, since it shares the same maximal color seen infinitely often as ρ◦.
Thus, σI is a winning strategy for Player I in Γf (GΩ).

198 Chapter V. Delay Games

Lemma 10. If Player O wins the parity game G◦Ω = (A,Parity(Ω))
with maximal color k, then Player O wins Γf (GΩ) for some constant delay
function f with f(0) ≤ 2|A|

2k+1.

Proof. Let σ◦O be a wining strategy for Player O in G◦Ω. We construct a winning
strategy σO for Player O in Γf (GΩ) for the constant delay function f with
f(0) = 2d, where d = 2|A|

2k. The strategy σO is constructed by simulating a
play of Γf (GΩ) by a play of G◦Ω.

In the following, both players pick their moves in Γf (GΩ) in blocks of
length d. We denote Player I’s blocks by ai and Player O’s blocks by bi, i.e.,
every ai is in ΣdI and every bi is in ΣdO.

Let a0a1 be the first move of Player I in Γf (GΩ), fix (v0, c0) = (vI ,Ω(vI)),
and let r0 = r

{v0}
a0

and r1 = r
r0(v0)
a1

be the first two functions Player I picks in
G◦Ω, which are well-defined according to Lemma 8 (Item 4). Then,

(ι, r0, (ι, r0), (v0, c0)) ((r0, v0, c0), r1, (X1, r1), (v1, c1))

is a play prefix in G◦Ω for σ◦O(r0r1) = (v1, c1) that is consistent with σ◦O.
Thus, we are in the following situation for i = 1:

• in Γf (GΩ), Player I has picked blocks a0 . . . ai and Player O has picked
b0 . . . bi−2,

• in G◦Ω we have constructed a play prefix

(ι, r0, (ι, r0), (v0, c0)) . . . ((ri−1, vi−1, ci−1), ri, (Xi, ri), (vi, ci))

that is consistent with σ◦O, and

• aj is a witness for rj for every j ≤ i.

Let i > 0 be arbitrary. The rules of G◦Ω imply that (vi, ci) = ri−1(vi−1, ci−1)
and vi ∈ Dri . Furthermore, as ai−1 is a witness for ri−1, there is some bi−1

such that a play ρ ∈ Plays(Avi−1
) reaches vi after processing

(ai−1

bi−1

)
from

(vi−1,Ω(vi−1)). Player O’s strategy for Γf (GΩ) is to pick the letters of bi−1 in
the next d rounds. These are answered by Player I by d letters forming ai+1.
This way, we obtain ri+1 = r

ri(vi)
ai+1

from Lemma 8 (Item 4) bringing us back
to the aforementioned situation for i+ 1, concluding the definition of σO.

It remains to show that σO is a winning strategy for Player O. Let
w =

(a0

b0

)(a1

b1

)(a2

b2

)
· · · be the outcome of a play ρ ∈ Plays(A, f, σO) of Γf (GΩ)

that is consistent with σO. Also, let ρ◦ ∈ Plays(A, σ◦O) be the corresponding

6. Computational Complexity 199

play of GΩ constructed as described in the simulation above, where each ai is
a witness for ri. A straightforward inductive application of Remark 1 resolves
that (vi+1, ci+1) is the vertex reached in GΩ,vI

after processing
(ai
bi

)
starting

in (vi,Ω(vi)) and that ci+1 is the largest color seen on this prefix. As ρ◦ is
consistent with σ◦O, the sequence c0c1c2 · · · satisfies the parity condition, i.e.,
the maximal color occurring infinitely often is even. Thus, the maximal color
occurring infinitely often in ρ is even as well, i.e., ρ is winning for Player O.
Hence, σO is a winning strategy for Player O and she wins Γf (GΩ).

Corollary 2. Delay games with parity conditions are determined.

Note that the results of Corollary 2 had been previously known [62], but inde-
pendently they also follow from the correctness of Construction 9.

Theorem 22. Let GΩ = (A,Parity(Ω)) be a parity game with k colors.
Then the following are equivalent:

1. Player O wins Γf (GΩ) for some delay function f .

2. Player O wins Γf (GΩ) for some constant delay function f with
f(0) ≤ 2|A|

2k+1.

With Lemma 9 and Lemma 10 at hand, we can finally prove the main theorem
of this section: determining whether Player O wins a delay game Γf (GΩ) for
some delay function f is in ExpTime. To this end, it suffices to construct G◦Ω
as a classical parity game and to show that it can be constructed and solved
in exponential time.

Proof of Theorem 21. First, we argue that R can be constructed in exponen-
tial time: to this end, one constructs for every partial function r : VI ⇀ 2VI×[k]

the automaton of Lemma 8 (Item 3) recognizing Wr and tests it for recog-
nizing an infinite language. There are exponentially many functions and each
automaton is of exponential size, which yields the desired result.

Having constructed R in exponential time also allows us to construct G◦Ω
in exponential time, which is won by Player O if and only if she wins Γf (GΩ)
for some delay function f . A parity game with n vertices, m edges, and k
colors can be solved in time O(mn

k
3) [128]. The parity game G◦Ω has at most

O(2|GΩ|2k) many vertices and at most |GΩ| many colors. Hence, it can be
solved in exponential time in the size of GΩ.

200 Chapter V. Delay Games

6.2 Safety Games
We complement the already proven upper bounds on the complexity of solving
delay games with parity winning conditions by matching lower bounds for
safety games. Consequently, as safety games can be easily encoded with the
parity winning condition, they also imply matching lower bounds for delay
games with parity winning conditions. Delay games with reachability winning
conditions are considered in the later Section 6.3, as it turns out that they
are easier to solve than delay games with safety winning conditions in terms
of complexity.

Theorem 23. The following problem is ExpTime-hard: Given a safety
game G∀ = (A,Safety(S)), does Player O win Γf (G∀) for some delay
function f?

Proof. Let TM = (Σ, Q,Q∃, Q∀, qI ,∆, qA, qR) be an alternating polynomial
space Turing machine, where ∆ ⊆ Q×Σ×Q×Σ×{−1, 0, 1} is the transition
relation, and let x ∈ Σ∗ be an input. For technical reasons, we assume the
accepting state qA and the rejecting state qR to be equipped with a self-loop.
Furthermore, let p be a polynomial that bounds TM’s space consumption.
We construct a safety game G∀ = (A,Safety(S)) of polynomial size in |∆|
and p(|x|) such that TM accepts x if and only if Player I wins Γf (G∀) for all
delay functions f . This is sufficient, since APSpace = ExpTime [23] is closed
under complement. Thus, we give Player I control over the existential states
while Player O controls the universal ones. Additionally, Player I is in charge
of producing all configurations with his moves. He can copy configurations in
order to wait for Player O’s choices for the universal transitions, which are
delayed due to the lookahead.

Formally, the input alphabet ΣI = Σ∪Q∪{N,C} contains Σ∪Q and two
separators N and C, while the output alphabet ΣO = ∆∪{7,3} contains ∆,
and two signals 7 and 3. Intuitively, Player I produces configurations of TM
of length p(|x|) preceded by either C or N to denote whether the configura-
tion is a copy of the previous one or a new one. Copying configurations is
necessary to bridge the lookahead while waiting for Player O to determine the
transition that is applied to a universal configuration. Player I could copy
a configuration ad infinitum, but this will be losing for him, unless it is an
accepting one. Player O chooses universal transitions at every separator (if
the successor configuration is existential or the separator is a C, then her
choice is ignored) by picking a letter from ∆. At every other position, she has
to pick a signal: 7 allows her to claim an error in the configurations picked

6. Computational Complexity 201

by Player I while 3 means that she does not claim an error at the current
position.

The arena of the game G∀ challenges Player I to satisfy the following
properties of the outcome

(
α0

β0

)(
α1

β1

)(
α2

β2

)
. . . ∈ (ΣI × ΣO)ω in order to win:

1. α ∈ ({N,C}·Conf)ω, where Conf is the set of encodings of configurations
of length p(|x|), i.e., words of length p(|x|) + 1 over Σ ∪Q that contain
exactly one letter from Q. If this is not the case, then the corresponding
play is lead to an accepting sink, i.e., in order to win, Player I has to
produce some input α that satisfies the requirement.

2. β ∈ (∆ · {3,7}p(|x|)+1)ω. If this is not the case, then the play is lead
to a rejecting sink, i.e., in order to win, Player O has to produce some
output β that satisfies the requirement.

3. The first configuration picked by Player I is the initial one of TM on x.
If this is not the case, the play is lead to an accepting sink.

4. If β contains a 7, then we check, whether there is indeed an error by
doing the following at the first occurrence of 7: we store the previous,
the current, and the next input letter, the transition picked by Player O
at the last separator N , and whether the current configuration is ex-
istential or universal as part of the state space of the arena. Some of
this information has to be stored continuously, since these letters appear
before the first 7. This is possible with a set of vertices, whose size is
polynomial in |Σ|+ |Q|+ |∆|.
Then, we processes p(|x|) + 1 letters (and remember whether we tra-
versed the separator N or C), and then check whether the letter just
reached is updated correctly or not:

• If the separator is C, then the current letter is updated correctly,
if it is equal to the marked one.

• If the separator is N and the configuration in which the error was
marked is existential, then the letter is updated correctly, if there
is a transition of TM that is compatible with the current letter and
the marked one.

• If the separator is N and the configuration in which the error was
marked is universal, then the letter is updated correctly, if it is
compatible with the transition picked by Player O at the last sep-
arator N before the 7, which is stored by the automaton. If she
has picked a transition that is not applicable to the current config-
uration, the play is lead to a rejecting sink.

202 Chapter V. Delay Games

If the update is not correct, i.e., Player O has correctly claimed an
error, then the play is lead to an accepting sink. Otherwise, it is lead to
a rejecting sink, i.e., in order to win, Player O can only claim an error
at an incorrect update of a configuration, but she wins if she correctly
claims the error. All subsequent claims by Player O are ignored, i.e.,
after the first claim is evaluated, the play is either accepted or rejected,
no matter how it is continued.

5. Finally, if α contains the accepting state of TM, then the play is lead to a
rejecting sink, unless Player O correctly claimed an error in a preceding
configuration.

All of the aforementioned properties can be checked using safety games whose
sizes are polynomial in the size of TM and p(|x|). Thus, they also can be
checked using a single arena A, build using a cross-product construction for
example. All non-sink vertices of the arena A are accepting, i.e., as long as
both players stick to their requirements on the format: Player I starts with
the initial configuration, Player O does not incorrectly claim an error, and
the accepting state of TM is not reached, the resulting play will satisfy the
safety condition.

It remains to prove that TM accepts x if and only if Player I wins Γf (G∀)
all delay functions f .

“⇒”: Assume that TM accepts x and let f be an arbitrary delay function.
We show that Player I wins Γf (G∀). Player I starts with the initial configu-
ration and picks the successor configuration of an existential one according to
the accepting run, and copies universal configurations as often as necessary
to obtain a play prefix in which Player O has to determine the transition she
wants to apply in this configuration. Thus, he will eventually produce an ac-
cepting configuration of TM without ever introducing an error. Hence, either
Player O incorrectly claims an error or the play reaches an accepting sink. In
either case, Player I wins the resulting play, i.e., he has a winning strategy
for Γf (G∀).

“⇐”: We show the contrapositive, i.e., assume that TM rejects x and
let f be the constant delay function with f(0) = p(|x|) + 3. We show that
Player O wins Γf (G∀), which is sufficient due to safety games with delay being
determined (Corollary 2). At every time, Player O has enough lookahead to
correctly claim the first error introduced by Player I, if he introduces one.
Furthermore, she has access to the whole encoding of each universal configu-
ration whose successor she has to determine. This allows her to simulate the
rejecting run of TM on x, which does not reach the accepting state qA, no
matter which transitions Player I picks. Thus, he has to introduce an error

6. Computational Complexity 203

in order to win, which Player O can detect using the lookahead. If Player I
does not introduce an error, the play proceeds ad infinitum by repeating a
rejecting configuration forever. In every case, the resulting play is winning for
Player O. Thus, Player O has a winning strategy to win Γf (G∀).

It is noteworthy that the lower bound just proven does not require the full
exponential lookahead that is necessary in general to win delay games with
safety conditions: Player O wins the game constructed above with sublinear
lookahead, as p(|x|) + 3 is smaller than the size of A. Thus, determining
the winner of a delay game with a safety condition with respect to linearly
bounded delay is already ExpTime-hard.

6.3 Reachability Games

Recall that universality of the projection to the first component of the winning
condition is a necessary condition of Player O for having a winning strategy
in a delay game. Our first result states that universality is also sufficient in
the case of reachability winning conditions. Thus, solving delay games with
reachability conditions is equivalent, via linear time reductions, to the univer-
sality problem for non-deterministic reachability automata, which is PSpace-
complete [80]. Therefore, solving delay games with reachability conditions is
PSpace-complete as well. Moreover, our proof yields an exponential upper
bound on the necessary lookahead.

Theorem 24. The following problem is in PSpace: Given a reachability
game G∃ = (A,Reach(R)), does Player O win Γf (G∃) for some delay
function f?

Proof. We show membership by a reduction to the LTL satisfiability problem,
which is PSpace-complete [134]. Let A = (ΣI ,ΣO, VI , VO, vI , δI , δO) and
O = ΣI ∪ VI ∪ VO ∪ ΣI . We construct the LTL formula ϕ over the alphabet
Σ = 2O as follows:

ϕ = vI ∧
(∧
v∈VI

∧
i∈ΣI

(v ∧ i→ δI(v, i))∧
∧
v∈VO

∧
o∈ΣO

(v → δO(v, o))∧
∧
v∈R
¬v
)

We claim that ϕ is satisfiable if and only if Player I wins Γf (G∃) for all de-
lay functions f . A proof of this claim suffices, since PSpace is closed under
complement and delay games with ω-regular winning conditions are deter-
mined (Corollary 2).

204 Chapter V. Delay Games

“⇒”: Assume ϕ is satisfiable and let α ∈ Σω be the infinite word such that
α � ϕ. Furthermore, let β = α ∩ ΣI be the projection of α to ΣI . Then β
defines a winning strategy σI for Player I in Γf (G∃) via σ(ε) = β0β1 . . . βf(0)−1

and σ(w) = βfΣ(|w|−1)βfΣ(|w|−1)+1 . . . βfΣ(|w|) for all w ∈ (ΣI)
+ and any delay

function f . A simple induction shows that for all n ∈ N and every play
ρ ∈ Plays(A, f, σI) we have that ρn = (vIn, in, v

O
n , on) implies that vIn ∈ αi and

vOn ∈ αi. Thus, the strategy σI is winning, because by the satisfaction of ϕ
we have that α ∩R = ∅ω. Hence, Player I wins Γf (G∃).

“⇐”: Assume that Player I wins the game Γf (G∃) for the constant delay
function f with f(0) = 2|A| using some winning strategy σI . We define the
infinite sequence α ∈ Σω for all n ∈ N using

αn =
⋃
{{vIn, vOn , in} | ∃ρ ∈ Plays(A, f, σI). ρn = (vIn, in, v

O
n , on)}.

A simple induction shows that α � ϕ.

Theorem 25. The following problem is PSpace-hard: Given a reach-
ability game G∃ = (A,Reach(R)), does Player O win Γf (G∃) for some
delay function f?

Proof. We show hardness by a direct reduction from the acceptance problem
of polynomial space Turing machines. Let TM = (Σ, Q, qI , δ, qA, qR) be such
a machine, where δ : Q × Σ → Q × Σ × {−1, 0, 1} is the transition function.
We assume w.l.o.g. that the accepting state qA and the rejecting state qR are
sink states. Furthermore, let x ∈ Σ∗ be an input for TM.

Let p be a polynomial that bounds the space-consumption of TM. From p
we can compute a polynomial p′ such that 2p

′
bounds the time-consumption

of TM. Thus, s = p(|x|) and t = 2p
′(|x|) are upper bounds on the space-

and time-consumption of TM on x, respectively. We construct a reachability
game G∃ = (A,Reach(R)) such that x is accepted by TM if and only if
Player I wins G∃. This suffices to prove our claim, since PSpace is closed
under complement and reachability games with delay are determined.

A configuration of TM’s run on x is encoded by a word c ∈ (Q ∪ Σ)s+1

as usual. In the following, we do not distinguish between a configuration and
its encoding. In the construction, we need to count the configurations of the
run. To this end, let 〈n〉2 ∈ {0, 1}∗ denote the binary encoding of n in the
range 0 ≤ n ≤ t − 1 using log2(t) many bits. Let ΣI = Q ∪ Σ ∪ {0, 1, $,#},
where we assume (Q ∪ Σ) ∩ {0, 1, $,#} = ∅, and ΣO = {0, 1, 2}. Consider
the following three reachability games Gi∃ = (An,Reach(Ri)) with arenas
Ai = (ΣI ,ΣO, V

i
I , V

i
O, v

i
I , δ

i
I , δ

i
O) for i ∈ ΣO.

6. Computational Complexity 205

1. G0
∃ is a reachability game, where Player O wins iff Player I produces

an input sequence α not starting with 〈0〉
2
$ c0 #, where c0 is the initial

configuration of TM on x.

2. G1
∃ is a reachability game, where Player O wins iff Player I produces an

input sequence α that contains the infix 〈t−1〉2 , but the first occurrence
of 〈t−1〉2 is not followed by $ c#, where c is some accepting configuration.

3. G2
∃ is a reachability game, where Player O wins iff Player I produces an

input sequence α that contains an infix 〈n〉2 $ c# with n < t − 1, not
followed by 〈n+ 1〉2 $ c′ #, where c′ is the successor configuration of c.

We claim that all three games can be constructed in size polynomial in
|TM|+ |x|. This is straightforward for G0

∃ and G1
∃. For G2

∃ we need to use
the fact that it suffices to find a single bit or tape-cell that is not updated
correctly by Player I. This cell can be identified by Player O using lookahead
and then be marked by using one of the markers 1 or 2, where we assume that
0 is played by Player O as the default.

We build the reachability game G∃ = (A,Reach(R0 ∪R1 ∪R2)) from the
arenas A0, A1, and A2 by adding a fresh initial vertex for Player I leading to
a fresh vertex for Player O for any possible input. In this second fresh vertex,
Player O then can choose between moving to one of the arenas Ai by playing
a letter i ∈ [3], respectively.

“⇒”: Assume TM accepts x and let c0, c1, . . . , ck for k ≤ t − 1 be the
accepting run. Then, Player I wins Γf (G∃) for any delay function f by playing
the word

αacc = 〈0〉
2

$ c0 # 〈1〉2 $ c1 # . . . 〈k〉2 $ ck # 〈k + 1〉
2

$ ck # . . . (〈t− 1〉
2

$ ck #)ω

in subsequent pieces as given by f , while ignoring the responses of Player O.
“⇐”: Next, assume Player I has a winning strategy σI to win Γf (G∃) for

the constant delay function f with f(0) = t(log2(t) + s + 3). Let w = σI(ε),
then w starts with 〈0〉

2
$ c0 # , where c0 is the initial configuration of TM

on x, since otherwise Player O would have a winning strategy by choosing A0

initially. This is followed by 〈1〉
2
$ c1 # , where c1 is the successor configuration

of c0. Otherwise, Player O could choose A2. We can continue this argument
until we reach an infix 〈t − 1〉2$ ct−1 # , which is the first occurrence of the
infix 〈t − 1〉2 . Due to Player O not having a winning strategy by choosing
A2 initially, it follows that ct−1 is an accepting configuration. Therefore, TM
accepts x, because we have constructed an accepting run.

Another consequence of the proof of Theorem 22 concerns the strategy com-
plexity of delay games with reachability conditions: if Player O wins for some

206 Chapter V. Delay Games

delay function, then she has a winning strategy that receives exponentially
many input letters and answers by also giving exponentially many output let-
ters and thereby already guarantees a winning play, i.e., all later moves are
irrelevant. Thus, the situation is similar to classical reachability games, in
which positional attractor strategies allow a player to guarantee a win after a
bounded number of moves. The strategy described above can be implemented
by a lookup table mapping all minimal plays of G∃ projected to ΣI to a word
in Σ∗O of the same length such that the combination results in a winning play.

7 Lower Bounds on the Delay
In this section, we prove lower bounds on the necessary lookahead for Player O
to win delay games. We first give an exponential lower bound for reachability
conditions, then we extend this idea to provide an exponential lower bound for
safety conditions. Consequently, the same bounds hold for more expressive ac-
ceptance conditions like Büchi, co-Büchi, and parity. They are complemented
by an exponential upper bound for parity conditions in the next section. Note
that both lower bounds already hold for deterministic automata.

Definition 31. Let Σ = {1, . . . , n}. We say that w in Σ∗ contains a bad
j-pair, for j ∈ Σ, if there are two occurrences of j in w such that no j′ > j
occurs in between, i.e., ∃n,m ∈ [|w|]. wn = wm = j∧∀n < i < m. wi ≤ j.

Consider the language Lj-pair over ΣI defined by

Lbad =
⋂

1≤j≤n

{w ∈ Σ∗I | w contains no bad j-pair}.

Lemma 11. Every w ∈ Lbad satisfies |w| < 2n.

Proof. We prove the stronger statement |w| < 2m, where m is the maximal
letter occurring in w, by induction over m. The induction base m = 1 is
trivial, so let m > 1. There cannot be two occurrences of m in w, as they
would constitute a bad m-pair. Accordingly, there is exactly one m in w,
i.e., we can decompose w into w = w/mw. such that w/ and w. contain
no occurrence of m. Thus, the induction hypothesis is applicable and shows
|w/|, |w.| < 2m−1, which implies |w| < 2m.

7. Lower Bounds on the Delay 207

Lemma 12. There is a word wn ∈ Lbad with |wn| = 2n − 1.

Proof. The word wn is defined inductively via w1 = 1 and wm = wm−1m wm−1

for m > 1. A simple induction shows wn ∈ Lbad and |wn| = 2n − 1.

Theorem 26. For all n > 1 there is a reachability game Gn∃ such that

• |Gn∃ | ∈O(n),

• Player O wins Γf (Gn∃) for some constant delay function f , but

• Player I wins Γf (Gn∃) for every delay function f with f(0) ≤ 2n.

Proof. We fix input and output alphabets with ΣI = ΣO = {1, 2, . . . n},
respectively. Then, the reachability game Gn∃ = (An∃ ,Reach(R)) is played in
the arena An∃ , as depicted in Figure 47, with the goal of Player O to reach a
vertex in R =

⋃n
j=1{v6

j , v
7
j }. The characteristics of the game work as follows:(

α0

β0

)(
α1

β1

)(
α2

β2

)
. . . ∈ Plays(An∃) if α1α2α3 . . . contains a bad β0-pair, i.e., with

the first move, Player O must pick a j ∈ [n] such that Player I has produced
a bad j-pair. Clearly, we have An ∈O(n).

Player O wins Γf (Gn∃) for every delay function f with f(0) > 2n. In the
first round, Player I picks a word u0 such that u0 without its first letter is
not in Lbad, as it is too long according to Lemma 11. This allows Player O to
pick a bad j-pair for some j, i.e., Player O wins the play no matter how it is
continued.

However, for f with f(0) ≤ 2n, Player I has a winning strategy by picking
the prefix of the word 1wn from Lemma 12 of length f(0) in the first round.
Player O has to answer with some j ∈ ΣO such that Player I continues by
playing some j′ 6= j ad infinitum, which ensures that the resulting sequence
does not contain a bad j-pair. Thus, the play is winning for Player I.

For safety games, we use the same idea as in the reachability case. However,
we additionally need to introduce a new letter #. The letter is used to give
Player I the possibility to reach a non-accepting vertex. Without the letter,
Player O could always stay in the safe region using the same strategy as for
reachability games.

208 Chapter V. Delay Games

v0
j

v1
j

v2
j v4

j

v3
j

v5
j

v6
j

v7
j

Aj
6= j

j

∗

∗

> j

< j

j

∗

∗ ∗ ∗

vI vO ...

A1

An

∗
1

n

Figure 47: The arena An∃ of the game Gn∃ using the sub-arenas Aj for j ∈ [n].

Theorem 27. For all n > 1 there is a safety game Gn∀ such that

• |Gn∀ | ∈O(n),

• Player O wins Γf (Gn∀) for some constant delay function f , but

• Player I wins Γf (Gn∀) for every delay function f with f(0) ≤ 2n.

Proof. Let ΣI = ΣO = {1, 2, . . . , n,#} and let wn ∈ Lbad be defined as
given by Lemma 12. Now, consider the extended arena An∀ using extended
sub-arenas Aj , as depicted in Figure 48. The game Gn∀ then is defined by
(An∀ ,Safety(S)) with S = {vI , vO}∪{vmx | x ∈ ΣI ,m ∈ [10], (x,m) 6= (#, 3)}.

For f(0) > 2n, Player O wins the game: assume Player I picks u0 in the
first round and let u′0 be u0 without the first letter. If u′0 contains a # preceded
by at most one n, then Player O answers with # in the first round. If there
is more than one n before the first # in u′0, then Player O answers with n.
Finally, if there is no # in u′0, then by Lemma 11 Player O can pick a j such
that u′0 contains a bad j-pair. All outcomes are winning for Player O.

7. Lower Bounds on the Delay 209

v0
j

v1
j

v2
j v4

j

v3
j

v5
j

v6
j

v7
j

Aj

v8
j v9

j

6= j,
6= #

j

#

∗

∗

> j

< j

j

#

∗

∗ ∗ ∗

∗

∗

vI vO

v0
#

v1
#

v2
v4

#

v5
#

v6
#

v7
#

v8
#

v9
#

...

A1

An

∗
1

#
n

6= n,
6= #

n

#∗

∗

6= n

n

∗ ∗∗

∗∗

Figure 48: The arena An∀ of the game Gn∃ using the sub-arenas Aj for j ∈ [n].

210 Chapter V. Delay Games

Player I still wins the game for a constant delay function f with f(0) ≤ 2n

by picking the prefix of 1wn of length f(0) in the first round: if Player O picks
some j ∈ ΣO \{#} in the first round, then Player I just has to answer with #.
Otherwise, if Player O picks # in the first round, then Player I continues
with nω. Player I wins in both situations.

The aforementioned constructions also work for constant-size alphabets, if
we encode every j ∈ {1, . . . , n} in binary with the most significant bit in
the first position. Then, the natural ordering on {1, . . . , n} is exactly the
lexicographical ordering on the corresponding bit-string representation. Ac-
cordingly, we can encode both arenas An∀ and An∃ in logarithmic size in n,
as deciding whether the input represents j, is larger than j, or smaller than
j can be checked bit-wise. Together with a binary decision tree of size O(n)
for the initial choice of Player O we obtain games Gn∃ and Gn∀ whose sizes
are in O(n log n). It is open whether linear-sized games and a constant-sized
alphabet can be achieved simultaneously.

8 LTL Synthesis with Delay

We showed in the previous sections that parity games with delay can be
solved by reducing them to delay free games, as provided by Construction 9.
Unfortunately, this reduction comes at the price of an exponential blowup in
the size of the game arena, which we showed to be unavoidable in general, even
for simpler winning conditions such as reachability or safety. Nevertheless,
with the reduction of Construction 9 at hand, we are able to solve delay
games in the first place.

As a consequence of our findings, we also obtain immediate upper bounds
on the complexity of solving the LTL synthesis problem with delay. Moreover,
we obtain an upper bound on the lookahead that may be required by Player O.
Using the known transformations via automata over infinite words, we first
translate the given LTL formula into a parity game, which causes a doubly-
exponential blowup in the size of the formula in the worst case [124, 143].
Afterwards, the resulting parity game is considered as a delay game, which
then can be solved via the aforementioned reduction. Overall, the complete
procedure leads to a triply-exponential upper bound in the worst case. Both,
in terms of the complexity of the realizability question and in terms of the
required lookahead.

The question that remains is: Is this solution indeed optimal? Or is there
a better method that provides improved upper bounds on the complexity and
lookahead by utilizing a smarter construction? Unfortunately, we show that

8. LTL Synthesis with Delay 211

this is not the case, i.e., the corresponding triply-exponential upper bounds
are tight.

To this end, we first establish a triply-exponential lower bound on the
necessary lookahead in LTL delay games, which matches the aforementioned
upper bound. Our proof shares some similarities with the previous proofs
of the lower bounds for safety, reachability, and parity games. However, in
order to reach a triply-exponential complexity class, it also relies on standard
encodings of doubly-exponentially large numbers using small LTL formulas
and the interaction between the players.

Consider an alphabet Σ that contains the propositions b0, . . . , bn−1, bI , bO
and let w ∈ (2Σ)ω and i ∈ N. We interpret w(i) ∩ {b0, . . . , bn−1} as the
binary encoding of a number in [0, 2n − 1], which we refer to as the address
of position i. Then there is a formula ψinc of quadratic size in n such that
(w, i) � ψinc if and only if m + 1 mod 2n = m′, where m is the address of
position i and m′ is the address of position i + 1. A respective counter that
increases with every time step then is specified by the following LTL formula:

ψ0 =

n−1∧
j=0

¬bj ∧ ψinc

If we have that w � ψ0, then the bj form a cyclic addressing of the positions
starting at zero, i.e., the address of position i is i mod 2n. In this case, we
define a block of w as an infix that starts at a position with address zero and
ends at the next position with address 2n − 1. We interpret the 2n bits bI
of a block as a number x in R = [0, 2n − 1] and the 2n bits bO of a block as
a number y from the same range R. Furthermore, there are small formulas
that are satisfied at the start of the i-th block if and only if xi = yi (xi < yi,
respectively). However, we cannot compare numbers from different blocks for
equality with small formulas. Nevertheless, if xi is unequal to xi′ , then there
is a single bit that witnesses this, i.e., the bit is one in xi if and only if it is
zero in xi′ . We check this by letting one of the players specify the address of
such a witness (but not the witness itself). The correctness of this claim is
then verifiable by a small LTL formula.

Also remember that the exponential lower bound on the necessary looka-
head for ω-regular delay games is witnessed by avoiding bad j-pairs over the
the alphabet 1, . . . , n (cf. Definition 31). We adapt this winning condition to
the alphabet R, which yields a triply-exponential lower bound 2|R|. The main
difficulty of the proof then is the inability of small LTL formulas to compare
letters from R. We overcome this by exploiting the interaction between the
players of the game.

212 Chapter V. Delay Games

Theorem 28. For every n > 0, there is an LTL formula φn of sizeO(n2)
such that

• Player O wins Γf (φn) for some delay function f , but

• Player I wins Γf (φn) for every delay function f with f(0) ≤ 222n

.

Proof. We fix some n > 0, where in the following we measure all formula
sizes in n. Furthermore, let I = {b0, . . . , bn−1, bI ,#} and O = {bO,Ü, Ü}. We
assume that

(
α
β

)
∈ (ΣI × ΣO)ω satisfies ψ0 from above. Then, α induces a

sequence x0x1x2 · · · ∈ Rω of numbers encoded by the bits bI in each block.
Similarly, β induces a sequence y0y1y2 · · · ∈ Rω.

The winning condition is intuitively described as follows: xi and xi′ with
i < i′ constitute a bad j-pair, if xi = xi′ = j and xi′′ < j for all i < i′′ < i′.
Every sequence x0x1x2 · · · contains a bad j-pair, e.g., pick j to be the maximal
number occurring infinitely often. In order to win, Player O has to pick y0

such that x0x1x2 · · · contains a bad y0-pair. It is known that this winning
condition requires lookahead of length 2m for Player O to win, where m is the
largest number.

To be able to specify this condition with a small LTL formula, we have
to require Player O to copy y0 ad infinitum, i.e., to pick yi = y0 for all i,
and to mark the two positions constituting the bad y0-pair. Furthermore,
the winning condition allows Player I to mark one copy error introduced by
Player O through specifying its address by a # (which may appear anywhere
in α). This forces Player O to implement the copying correctly and thus allows
a small formula to check that she indeed marks a bad y0-pair. Consider the
following properties:

1. # holds at most once. Player I uses # to specify the address where he
claims an error.

2. Ü holds exactly at one position, which has to be the start of a block.
Furthermore, we require the two numbers encoded by the propositions bI
and bO within this block to be equal. Player O uses Ü to denote the
first component of a claimed bad j-pair.

3. Üholds exactly at one position, which has to be the start of a block
and has to appear at a later position than Ü. Again, we require the two
numbers encoded by this block to be equal. Player O uses Üto denote
the second component of the claimed bad j-pair.

8. LTL Synthesis with Delay 213

4. For every block between the two marked blocks, we require the number
encoded by the bI to be strictly smaller than the number encoded by
the bO.

5. If there is a position i# marked by #, then there are no two different
positions i 6= i′ such that the following two conditions are satisfied: the
addresses of i, i′, and i# are equal and bO holds at i iff bO does not
hold at i′. Such positions witness an error in the copying process by
Player O, which manifests itself in a single bit, whose address is marked
by Player I at any time in the future.

Each of these properties i ∈ {1, 2, 3, 4, 5} can be specified by an LTL for-
mula ψi of at most quadratic size. Let φn = ψ0 ∧ψ1 → ψ2 ∧ψ3 ∧ψ4 ∧ψ5 and
fix n′ = 22n

to simplify the notation. We show that Player O wins Γf (φn) for
some triply-exponential constant delay function, but not for any smaller one.

We first show that Player O wins Γf (φn) for the constant delay function
with f(0) = 2n · 2n′ . A simple induction shows that every word w ∈ R∗

of length 2n
′
contains a bad j-pair for some j ∈ R. Thus, a move Σ

f(0)
I

made by Player I in round 0 interpreted as sequence x0x1 · · ·x2n′−1 ∈ R∗

contains a bad j-pair for some fixed j. Hence, Player O’s strategy σO produces
the sequence jω and additionally marks the corresponding bad j-pair with
Ü and Ü. Every outcome of a play that is consistent with σO and satisfies ψ0

also satisfies ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ5, as Player O correctly marks a bad j-pair and
never introduces a copy-error. Hence, σO is a winning strategy for Player O.

It remains to show that Player I wins Γf (φn), if

f(0) ≤ 2n · (2n
′
− 2) ≥ 2n

′
= 222n

.

Let wn′ ∈ R∗ be recursively defined via w0 = 0 and wj = wj−1 j wj−1. A
simple induction shows that wn′ does not contain a bad j-pair, for every
j ∈ R, and that |wn′ | = 2n

′ − 1.
Consider the following strategy σI for Player I in Γf (φn): σI ensures that

ψ0 is satisfied by the bj , which fixes them uniquely to implement a cyclic
addressing starting at zero. Furthermore, he picks the bI ’s so that the sequence
of numbers x0x1 · · ·x` he generates during the first 2n rounds is a prefix of
wn′ . This is possible, as each xi is encoded by 2n bits and by the choice of
f(0). As a response during the first 2n rounds, Player O determines some
number y ∈ R. During the next rounds, Player I finishes wn′ and then picks
some fixed x 6= y ad infinitum (while still implementing the cyclic addressing).
In case Player O picks both markings Ü and Üin way that is consistent with
properties 2, 3, and 4 as above, let y0, y1 · · · , yi be the sequence of numbers

214 Chapter V. Delay Games

picked by her up to and including the number marked by Ü. If they are not
all equal, then there is an address that witnesses the difference between two
of these numbers. Player I then marks exactly one position with the same
address using #. If this is not the case, he never marks a position with #.

Now, consider an outcome of a play that is consistent with σI and let
x0x1x2 · · · ∈ Rω and y0y1y2 · · · ∈ Rω be the sequences of numbers induced by
the outcome. By definition of σI , the premise ψ0 ∧ ψ1 of φn is satisfied and
x0x1x2 · · · = wn′ · xω for some x 6= y0.

If Player O never uses her markers Ü and Üin a way that satisfies ψ2∧ψ3∧
ψ4, then Player I wins the play, as it satisfies the premise of φn, but not the
consequence. Thus, it remains to consider the case where the outcome satisfies
ψ2 ∧ ψ3 ∧ ψ4. Let y0y1 · · · yi be the sequence of numbers picked by her up to
and including the number marked by Ü. Assume we have y0 = y1 = · · · = yi.
Then, Ü and Üspecify a bad y0-pair, as implied by ψ2 ∧ ψ3 ∧ ψ4 and the
equality of the yj . As wn′ does not contain a bad y0-pair, we conclude y0 = x.
However, σI ensures y0 6= x. Hence, our assumption is false, i.e., the yj are
not all equal. In this situation, σI marks a position whose address witnesses
this difference. This implies that ψ5 is not satisfied, i.e., the play is winning
for Player I. Hence, σI is winning for him.

We conclude with the proof of 3ExpTime-completeness of solving the LTL
realizability problem under the assumption of delay. The proof consists of a
combination of techniques developed for the lower bound on the lookahead,
as presented above, and of the techniques from the proof of Theorem 23.

Theorem 29. The following problem is 3ExpTime-complete: given an
LTL formula ϕ, does Player O win Γf (ϕ) for some delay function f?

Proof. Membership directly follows from the aforementioned reduction of a
given LTL formula to a parity game combined with Construction 9. Hence,
it only remains to prove hardness. To this end, let

TM = (Q,Q∃, Q∀,Σ, qI ,∆, qA, qR)

be an alternating doubly-exponential space Turning machine with transition
relation ∆ ⊆ Q×Σ×Q×Σ×{−1,+1} and accepting and rejecting states qA
and qR, which we assume w.l.o.g. to have self-loops. Furthermore, let p be
a polynomial such that 22p

bounds the space-consumption of TM and let
x ∈ Σ∗ be an input. Fix n = p(|x|). We construct an LTL formula ϕ (of

8. LTL Synthesis with Delay 215

polynomial size in n + |∆|) such that Player O wins Γf (ϕ) for some f if and
only if TM rejects x. This suffices, as A2ExpSpace = 3ExpTime is closed
under complement.

We pick I = {b0, . . . , bn−1, bI ,#, C,N}∪Σ∪Q∪∆ and O = {7,Ü, Ü} ∪∆.
Let ψ0 be the formula that requires Player I to implement the cyclic address-
ing of length 2n starting at zero using the bits bj , as defined above. In the
following, we only consider outcomes that satisfy ψ0. Also, blocks are de-
fined as before and we again interpret the bits bI of a block as a number in
R = [0, 22n − 1]. Then, there is an LTL formula θ0 of polynomial size that al-
lows Player O to use the error mark 7 to force Player I to implement a cyclic
addressing of the blocks of length 22n

starting at zero [153]. In particular, the
formula θ0 holds if and only if the first occurrence of 7 marks a position wit-
nessing that the addressing is not implemented correctly. Hence, Player O can
satisfy θ0 if and only if Player I incorrectly implements the cyclic addressing
of the blocks of length 22n

.
Assume Player I implements both addressings correctly: then, a superblock

is an infix starting with a block encoding 0 ∈ R and that ends one position
before the next block that encodes 0 ∈ R, i.e., each superblock consists of
22n

blocks. We use such superblocks to encode configurations of TM on x by
placing the cell contents at the starts of the blocks.

Intuitively, Player I produces configurations of TM and is in charge of ex-
istential states, while Player O controls the universal ones and checks the
configurations for correctness using the marks Ü and Üto indicate cells,
where the configurations are not updated correctly. To account for the looka-
head in the game, which means that Player O picks her transitions to apply
asynchronously, Player I is able to copy configurations in order to wait for
Player O’s choice. Player O checks this copying process for correctness.

To this end, we use the two propositions C and N to denote whether a
copy or a successor configuration follows. If Player I produces a new universal
configuration, then Player O has to pick some transition from ∆ ⊆ O, which
should be applied to this configuration, possibly after some copies. If Player I
copies a configuration ad infinitum, then he loses.

Consider the following assumptions on Player I’s behavior beside ψ0:

1. At every start of a block, exactly one proposition from Σ holds and at
most one from Q. Also, in each superblock, there is exactly one start
of a block where a proposition from Q holds. If this holds, then each
superblock encodes a configuration of TM of length 22p(|x|)

.

2. The configuration encoded by the first superblock is the initial one of
TM on x.

216 Chapter V. Delay Games

3. At each start of a superblock, either C or N holds, starting with N at
the first superblock. Furthermore, we require N to hold infinitely often
at such positions.

4. At each start of a superblock that encodes an existential configuration,
exactly one proposition from ∆ holds, which has to be applicable to the
configuration.

5. There is at most one position where # holds. This is used by Player I
to check Player O’s error claim and is implemented as in the proof of
Theorem 28.

Each of these properties 1 ≤ i ≤ 5 can be captured by an LTL formula ψi
of polynomial size. Furthermore, let θ1 be an LTL formula that expresses
the following, which has to be guaranteed by Player O: at each start of a
superblock that encodes a universal configuration, exactly one proposition
from ∆ holds, which has to be applicable to the configuration.

Now, we define what it means for Player O to mark an incorrectly updated
configuration: the conjunction of the following properties has to be satisfied,
where we assume that

∧5
i=0 ψi ∧¬θ0 ∧ θ1 holds, as this is the only case where

the formula to be defined is relevant.

1. Ü and Ühold both exactly once, each at the start of a block. Fur-
thermore, Üappears one superblock after the superblock in which Ü

appears.

2. If there is a position i# marked by #, then there are no two different
positions i being in the superblock of Ü and i′ being in the superblock
of Üsuch that the following two conditions are satisfied: the addresses
of i, i′, and i# are equal and bI holds at i if and only if bI does not hold
at i′. Such positions witness that Player O has not marked the same cell
of the two subsequent configurations. This manifests itself in a single
bit bI , whose address is marked by Player I.

3. If C holds at the start of Ü’s superblock, then there has to be a propo-
sition from Σ ∪Q that holds at the position marked by Ü if and only if
it does not hold at the position marked by Ü.

4. If N holds at the start of Ü’s superblock, then let δ ∈ ∆ be the unique
transition holding at the last occurrence of N before the start of this
superblock. Furthermore, let cm be the tape content (a letter from Σ
and possibly a state from Q) encoded at the position marked with Ü

and let c` (cr) be the cell content encoded in the start of the previous

8. LTL Synthesis with Delay 217

(next) block. Then, c = (c`, cm, cr) uniquely determines the cell content
of the middle cell after applying the transition function δ. We require
that the cell content encoded at the position marked by Üis different
from c.

Let θ2 be an LTL formula capturing the conjunction of these properties, which
can be constructed such that it has polynomial size.

Now, consider the LTL delay game Γf (ϕ) with:

ϕ :=

5∧
i=0

ψi → θ1 ∧
(
θ0 ∨ θ2 ∨ qR

)
We show that TM rejects x if and only if Player O wins Γf (ϕ) for some f .

First, assume that TM rejects x and let f be the constant delay function
with f(0) = 2 · 22n

. We show that Player O wins Γf (ϕ). As long as Player I
implements both addressings correctly and produces legal configurations as
required by the premise of ϕ, Player O has enough lookahead to correctly
claim the first error introduced by Player I, no matter whether he increments
the superblock addressing incorrectly or updates a configuration incorrectly.
Her strategy is to place the markers 7,Ü, Üat appropriate positions. Further-
more, she has access to the whole encoding of each universal configuration
whose successor she has to determine. This allows her to simulate the reject-
ing run of TM on x, which reaches the rejecting state qR, no matter which
existential transitions Player I picks. Thus, he has to introduce an error in
order to win, which Player O can detect using the lookahead. If Player I does
not introduce an error, the play reaches a rejecting configuration. In every
case Player O wins.

For the converse direction, we show the contrapositive. Assume that TM
accepts x and let f be an arbitrary delay function. We show that Player I
wins Γf (ϕ). Player I implements both addressings correctly, starts with the
initial configuration, and picks the successor configuration of an existential
one according to the accepting run. Also, he copies universal configurations
to obtain a play prefix in which Player O has to determine the transition
she wants to apply in this configuration. Thus, he will eventually produce
an accepting configuration without ever introducing an error. In particular,
a rejecting state is never reached and Player O cannot successfully claim an
error: the superblock addressing is correctly implemented and if she claims
an erroneous update of the configurations, she has to mark different cells,
as there are no such incorrect updates. This can be detected by Player I
by placing the # at a witnessing address. In either case, Player I wins the
resulting play.

218 Chapter V. Delay Games

9 Discussion

Our results show that it is possible to identify delay requirements that cause
faulty temporal logic specification to be unrealizable. This identification
comes, however, at the cost of an exponential blowup being unavoidable in
general. According to the utilization of synthesis for the development of re-
active systems, delay games, thus, provide an effective support in helping the
developers. In case of an unrealizable specification, the delay-free game that
is won by the environment player can be automatically upgraded to a delay
game, which instead may return a realizability result. In this case, the devel-
oper gets immediate feedback towards the cause for unrealizability. Moreover,
the winning strategy of the delay game can be utilized to present the developer
with a first resolution strategy. However, if the specification still remains un-
realizable the developer still gets the feedback that the problem is not caused
due to delay. In any case, delay games provide us with an effective tool for
debugging faulty specifications.

With our last result of this chapter, we settled the complexity of solving
delay games with LTL winning conditions. These results also can directly be
leveraged towards TSL. Reconsidering the CEGAR refinement loop for TSL,
it turns out that the utilized approximation is easy to lift towards delay, while
still preserving the soundness of the overall approach. If the approximated
LTL specification turns out to be unrealizable in the delay free case, but
is realizable under the assumption of delay, then the corresponding winning
strategy still lifts towards TSL. The argument is the same as for the proof
of Theorem 11, since TSL only weakens the abilities of the environment in
contrast to LTL. Hence, if a winning strategy is found for the stronger LTL
environment, it also wins in the weaker TSL case. Note that delay games also
weaken the environment, which is why both approaches counteract against
each other at this point. However, if the approximated specification is un-
realizable, we only swap to delay games for testing realizability under the
assumption of delay once. If this fails, we again enter the refinement as be-
fore. Remember that solving delay games is a decidable problem and, thus,
can be easily integrated with our CEGAR approach.

While the complexity classes of solving games with delay have been set-
tled by our results, open questions still rise regarding the representation of
winning strategies for games with delay. While different possibilities already
have been explored [156], and most of the theoretical problems have been
identified [79], there still is no decent solution. The consequences also af-
fect respective debugging techniques for TSL, since the resulting strategy still
must be translated to an FRP framework. FRP, also utilizing delay as part

9. Discussion 219

of cells or more advanced hold operations, thus, may give a good indication
for the requirements of the strategy representation. These considerations are,
however, out of scope of this thesis and are considered as future work.

220 Chapter V. Delay Games

Chapter VI

Conclusions

In this thesis, we considered the automatic creation of reactive systems from
temporal logic specifications solely describing the behavior of the system to
be satisfied by any possible infinite system execution. This process is known
as reactive synthesis and introduces new development concepts, but also new
challenges in comparison to manual system development. We considered three
major challenges: data abstraction during specification creation, intend ver-
ification of realizable specifications and the debugging of unrealizable speci-
fications. We showed how exactly these challenges are connected with each
other and presented new approaches for tackling each of them.

Regarding the required abstraction techniques, we introduced Temporal
Stream Logic, a logic that leverages a clean separation between the description
of control and data manipulations. Therefore, the logic focuses on the reactive
control, while keeping data descriptions and transformations abstract. For the
verification of the designer’s intend, in case of a realizability result, we consid-
ered output sensitive synthesis approaches. The presented methods support
the introduction of additional output related quality metrics, which allow to
specifically target the synthesizer towards certainly selecting the considerated
solution in the end. Finally, in the case of an unrealizable specification, we
considered the introduction of lookahead, which weakens the strict alterna-
tion between the system and environment players in the underlying infinite
two-player game. With lookahead being utilized, specifications that are un-
realizable at first can become realizable at a second glance. Therefore, the
introduced extension not only offers an automatic process for resolving the
unrealiziablity result, but also provides direct insights for the developer in
order to identify the original cause of unrealizability.

Our results not only strictly improve on the currently available state-of-
the-art approaches, but also highlight the variety of challenges that need to
be overcome for making synthesis based reactive system development a stan-
dardized method, which can be efficiently applied in practice in the end.

222 Chapter VI. Conclusions

Bibliography

[1] R. Alur and S. La Torre. Deterministic generators and games for ltl
fragments. ACM Trans. Comput. Log., 5(1):1–25, 2004.

[2] R. Alur, S. Moarref, and U. Topcu. Counter-strategy guided refine-
ment of GR(1) temporal logic specifications. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October
20-23, 2013, pages 26–33. IEEE, 2013.

[3] R. Alur, S. Moarref, and U. Topcu. Pattern-based refinement of assume-
guarantee specifications in reactive synthesis. In C. Baier and C. Tinelli,
editors, Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9035
of Lecture Notes in Computer Science, pages 501–516. Springer, 2015.

[4] H. Apfelmus. Reactive-banana. Haskell library available at http://
www.haskell.org/haskellwiki/Reactive-banana, 2012.

[5] H. Apfelmus. Threepenny-gui. https://wiki.haskell.org/
Threepenny-gui, 2013.

[6] ARM Ltd. AMBA Specification (rev. 2). available at www.arm.com,
1999.

[7] C. Baaij. Digital circuit in CλaSH: functional specifications and
type-directed synthesis. PhD thesis, University of Twente, 1 2015.
eemcs-eprint-23939.

[8] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[9] M. Bärenz and I. Perez. Rhine: FRP with type-level clocks. In
N. Wu, editor, Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA,
September 27-17, 2018, pages 145–157. ACM, 2018.

[10] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UP-
PAAL - a tool suite for automatic verification of real-time systems. In
R. Alur, T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems

http://www.haskell.org/haskellwiki/Reactive-banana
http://www.haskell.org/haskellwiki/Reactive-banana
https://wiki.haskell.org/Threepenny-gui
https://wiki.haskell.org/Threepenny-gui
www.arm.com

224 Bibliography

III: Verification and Control, Proceedings of the DIMACS/SYCON
Workshop on Verification and Control of Hybrid Systems, October
22-25, 1995, Ruttgers University, New Brunswick, NJ, USA, volume
1066 of Lecture Notes in Computer Science, pages 232–243. Springer,
1995.

[11] M. Bezem, editor. Computer Science Logic, 25th International
Workshop / 20th Annual Conference of the EACSL, CSL 2011,
September 12-15, 2011, Bergen, Norway, Proceedings, volume 12 of
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[12] A. Biere. The AIGER And-Inverter Graph (AIG) format version
20071012. Technical Report Report 07/1, Institute for Formal Models
and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040
Linz, Austria, 2007.

[13] S. Blackheath and A. Jones. Functional reactive programming. Manning
Publications, 2016.

[14] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Automatic hardware synthesis from specifications: a
case study. In R. Lauwereins and J. Madsen, editors, 2007 Design,
Automation and Test in Europe Conference and Exposition, DATE
2007, Nice, France, April 16-20, 2007, pages 1188–1193. EDA Consor-
tium, San Jose, CA, USA, 2007.

[15] R. Bloem, S. Jacobs, and A. Khalimov. Parameterized synthesis case
study: AMBA AHB. In K. Chatterjee, R. Ehlers, and S. Jha, editors,
Proceedings 3rd Workshop on Synthesis, SYNT 2014, Vienna, Austria,
July 23-24, 2014., volume 157 of EPTCS, pages 68–83, 2014.

[16] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Syn-
thesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

[17] A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J. Raskin. Acacia+, a tool for
LTL synthesis. In P. Madhusudan and S. A. Seshia, editors, Computer
Aided Verification - 24th International Conference, CAV 2012, Berkeley,
CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes
in Computer Science, pages 652–657. Springer, 2012.

[18] G. P. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg,
K. Havelund, M. R. Lowry, C. S. Pasareanu, A. Venet, W. Visser, and
R. Washington. Experimental evaluation of verification and validation

Bibliography 225

tools on martian rover software. Formal Methods in System Design,
25(2-3):167–198, 2004.

[19] T. Brázdil, K. Chatterjee, J. Kretínský, and V. Toman. Strategy rep-
resentation by decision trees in reactive synthesis. In D. Beyer and
M. Huisman, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 24th International Conference, TACAS 2018, Held
as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, Part I, volume 10805 of Lecture Notes in Computer
Science, pages 385–407. Springer, 2018.

[20] G. Cabodi, C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer, D. Ven-
draminetto, A. Biere, and K. Heljanko. Hardware Model Checking Com-
petition 2014: An Analysis and Comparison of Solvers and Benchmarks.
volume 9, pages 135–172, 2016.

[21] A. Carayol and C. Löding. MSO on the infinite binary tree: Choice
and order. In J. Duparc and T. A. Henzinger, editors, Computer
Science Logic, 21st International Workshop, CSL 2007, 16th Annual
Conference of the EACSL, Lausanne, Switzerland, September 11-15,
2007, Proceedings, volume 4646 of Lecture Notes in Computer Science,
pages 161–176. Springer, 2007.

[22] A. Carayol and C. Löding. Uniformization in automata theory. In
P. Schroeder-Heister, G. Heinzmann, W. Hodges, and P. E. Bour, edi-
tors, CLMPS 2012, pages 153–178. College Publications, London, 2015.

[23] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

[24] S. Chandra, P. Godefroid, and C. Palm. Software model checking in
practice: an industrial case study. In Tracz et al. [139], pages 431–441.

[25] K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Environment as-
sumptions for synthesis. In F. van Breugel and M. Chechik, editors,
CONCUR 2008 - Concurrency Theory, 19th International Conference,
CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings,
volume 5201 of Lecture Notes in Computer Science, pages 147–161.
Springer, 2008.

[26] M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, and N. Zhan. What’s to come
is still unsure - synthesizing controllers resilient to delayed interaction.
In Lahiri and Wang [91], pages 56–74.

226 Bibliography

[27] C. Cheng, C. Huang, H. Ruess, and S. Stattelmann. G4LTL-ST: au-
tomatic generation of PLC programs. In A. Biere and R. Bloem, edi-
tors, Computer Aided Verification - 26th International Conference, CAV
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes
in Computer Science, pages 541–549. Springer, 2014.

[28] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic in-
formation for realizability. In F. Logozzo, D. A. Peled, and L. D. Zuck,
editors, Verification, Model Checking, and Abstract Interpretation, 9th
International Conference, VMCAI 2008, San Francisco, USA, January
7-9, 2008, Proceedings, volume 4905 of Lecture Notes in Computer
Science, pages 52–67. Springer, 2008.

[29] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model checking: algorith-
mic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

[30] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L.
McMillan, and L. A. Ness. Verification of the futurebus+ cache co-
herence protocol. In D. Agnew, L. J. M. Claesen, and R. Cam-
posano, editors, Computer Hardware Description Languages and their
Applications, Proceedings of the 11th IFIP WG10.2 International
Conference on Computer Hardware Description Languages and their
Applications - CHDL ’93, sponsored by IFIPWG10.2 and in cooperation
with IEEE COMPSOC, Ottawa, Ontario, Canada, 26-28 April, 1993,
volume A-32 of IFIP Transactions, pages 15–30. North-Holland, 1993.

[31] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

[32] A. Courtney, H. Nilsson, and J. Peterson. The yampa arcade. In
Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2003,
Uppsala, Sweden, August 28, 2003, pages 7–18. ACM, 2003.

[33] E. Czaplicki and S. Chong. Asynchronous functional reactive program-
ming for guis. In H. Boehm and C. Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 411–422. ACM,
2013.

[34] R. Dimitrova, B. Finkbeiner, and H. Torfah. Synthesizing approxi-
mate implementations for unrealizable specifications. In I. Dillig and

Bibliography 227

S. Tasiran, editors, Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I, volume 11561 of Lecture Notes in Computer
Science, pages 241–258. Springer, 2019.

[35] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Re-
nault, and L. Xu. Spot 2.0 - A framework for LTL and \omega -
automata manipulation. In C. Artho, A. Legay, and D. Peled, ed-
itors, Automated Technology for Verification and Analysis - 14th
International Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings, volume 9938 of Lecture Notes in Computer Science,
pages 122–129, 2016.

[36] C. Elliott and P. Hudak. Functional reactive animation. In S. L. P.
Jones, M. Tofte, and A. M. Berman, editors, Proceedings of the 1997
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’97), Amsterdam, The Netherlands, June 9-11, 1997., pages 263–
273. ACM, 1997.

[37] E. A. Emerson and J. Y. Halpern. "sometimes" and "not never" revis-
ited: on branching versus linear time temporal logic. J. ACM, 33(1):151–
178, 1986.

[38] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and
determinacy (extended abstract). In 32nd Annual Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October
1991, pages 368–377. IEEE Computer Society, 1991.

[39] L. Erkök. Value recursion in monadic computations. PhD thesis, OGI
School of Science & Engineering at OHSU, 2002.

[40] P. Faymonville, B. Finkbeiner, M. N. Rabe, and L. Tentrup. Encodings
of bounded synthesis. In A. Legay and T. Margaria, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, volume 10205
of Lecture Notes in Computer Science, pages 354–370, 2017.

[41] P. Faymonville, B. Finkbeiner, and L. Tentrup. Bosy: An experimenta-
tion framework for bounded synthesis. In R. Majumdar and V. Kuncak,
editors, Computer Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part

228 Bibliography

II, volume 10427 of Lecture Notes in Computer Science, pages 325–332.
Springer, 2017.

[42] E. Filiot, N. Jin, and J. Raskin. Antichains and compositional algo-
rithms for LTL synthesis. Formal Methods in System Design, 39(3):261–
296, 2011.

[43] B. Finkbeiner and S. Jacobs. Lazy synthesis. In V. Kuncak
and A. Rybalchenko, editors, Verification, Model Checking, and
Abstract Interpretation - 13th International Conference, VMCAI 2012,
Philadelphia, PA, USA, January 22-24, 2012. Proceedings, volume 7148
of Lecture Notes in Computer Science, pages 219–234. Springer, 2012.

[44] B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito. Vehicle platoon-
ing simulations with functional reactive programming. In Proceedings
of the 1st International Workshop on Safe Control of Connected and
Autonomous Vehicles, SCAV@CPSWeek 2017, Pittsburgh, PA, USA,
April 21, 2017, pages 43–47. ACM, 2017.

[45] B. Finkbeiner and S. Schewe. Bounded synthesis. STTT, 15(5-6):519–
539, 2013.

[46] B. Finkbeiner and L. Tentrup. Detecting unrealizability of distributed
fault-tolerant systems. Logical Methods in Computer Science, 11(3),
2015.

[47] W. Fridman, C. Löding, and M. Zimmermann. Degrees of lookahead in
context-free infinite games. In Bezem [11], pages 264–276.

[48] J. Friedman. Alonzo church. application of recursive arithmetic to the
problem of circuit synthesissummaries of talks presented at the summer
institute for symbolic logic cornell university, 1957, 2nd edn., commu-
nications research division, institute for defense analyses, princeton, nj,
1960, pp. 3–50. 3a-45a. The Journal of Symbolic Logic, 28(4):289–290,
1963.

[49] Y. Fukaya and N. Yoshiura. Extracting environmental constraints in
reactive system specifications. In O. Gervasi, B. Murgante, S. Misra,
M. L. Gavrilova, A. M. A. C. Rocha, C. M. Torre, D. Taniar, and B. O.
Apduhan, editors, Computational Science and Its Applications - ICCSA
2015 - 15th International Conference, Banff, AB, Canada, June 22-25,
2015, Proceedings, Part IV, volume 9158 of Lecture Notes in Computer
Science, pages 671–685. Springer, 2015.

Bibliography 229

[50] G. Geier, P. Heim, F. Klein, and B. Finkbeiner. Syntroids: Synthesizing
a game for fpgas using temporal logic specifications. In C. W. Barrett
and J. Yang, editors, 2019 Formal Methods in Computer Aided Design,
FMCAD 2019, San Jose, CA, USA, October 22-25, 2019, pages 138–146.
IEEE, 2019.

[51] S. Gélineau. FRPzoo - comparing many FRP implementations by reim-
plementing the same toy app in each. https://github.com/gelisam/
frp-zoo, 2016.

[52] C. Gerstacker. Bounded Synthesis of Reactive Programs, 2017. Bache-
lor’s Thesis.

[53] C. Gerstacker, F. Klein, and B. Finkbeiner. Bounded synthesis of reac-
tive programs. In Lahiri and Wang [91], pages 441–457.

[54] P. Godefroid. Model checking for programming languages using
verisoft. In P. Lee, F. Henglein, and N. D. Jones, editors, Conference
Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Papers Presented at the
Symposium, Paris, France, 15-17 January 1997, pages 174–186. ACM
Press, 1997.

[55] P. Godefroid. Verisoft: A tool for the automatic analysis of concurrent
reactive software. In O. Grumberg, editor, Computer Aided Verification,
9th International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997,
Proceedings, volume 1254 of Lecture Notes in Computer Science, pages
476–479. Springer, 1997.

[56] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl
seminar, February 2001], volume 2500 of Lecture Notes in Computer
Science. Springer, 2002.

[57] Y. Gurevich and S. Shelah. Rabin’s uniformization problem. J. Symb.
Log., 48(4):1105–1119, 1983.

[58] D. Harel and A. Pnueli. On the Development of Reactive Systems. In
K. R. Apt, editor, Logics and Models of Concurrent Systems, pages
477–498. Springer Berlin Heidelberg, 1985.

[59] K. Havelund and T. Pressburger. Model checking JAVA programs using
JAVA pathfinder. STTT, 2(4):366–381, 2000.

https://github.com/gelisam/frp-zoo
https://github.com/gelisam/frp-zoo

230 Bibliography

[60] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modeling
and analysis of an audio/video protocol: an industrial case study us-
ing UPPAAL. In Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS ’97), December 3-5, 1997, San Francisco, CA, USA,
pages 2–13. IEEE Computer Society, 1997.

[61] C. Helbling and S. Z. Guyer. Juniper: a functional reactive program-
ming language for the arduino. In Janin and Sperber [74], pages 8–16.

[62] M. Holtmann, L. Kaiser, and W. Thomas. Degrees of lookahead in
regular infinite games. Logical Methods in Computer Science, 8(3),
2012.

[63] G. J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng.,
23(5):279–295, 1997.

[64] F. A. Hosch and L. H. Landweber. Finite delay solutions for sequential
conditions. In ICALP, pages 45–60, 1972.

[65] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and
functional reactive programming. In J. Jeuring and S. L. Peyton Jones,
editors, Advanced Functional Programming, 4th International School,
AFP 2002, Oxford, UK, August 19-24, 2002, Revised Lectures, volume
2638 of Lecture Notes in Computer Science, pages 159–187. Springer,
2002.

[66] P. Hudak, S. L. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. H.
Fasel, M. M. Guzmán, K. Hammond, J. Hughes, T. Johnsson, R. B.
Kieburtz, R. S. Nikhil, W. Partain, and J. Peterson. Report on the
programming language haskell, A non-strict, purely functional language.
SIGPLAN Notices, 27(5):1, 1992.

[67] J. Hughes. Generalising monads to arrows. Sci. Comput. Program.,
37(1-3):67–111, 2000.

[68] S. Jacobs, N. Basset, R. Bloem, R. Brenguier, M. Colange, P. Fay-
monville, B. Finkbeiner, A. Khalimov, F. Klein, T. Michaud, G. A.
Pérez, J. Raskin, O. Sankur, and L. Tentrup. The 4th reactive synthesis
competition (SYNTCOMP 2017): Benchmarks, participants & results.
In D. Fisman and S. Jacobs, editors, Proceedings Sixth Workshop on
Synthesis, SYNT@CAV 2017, Heidelberg, Germany, 22nd July 2017.,
volume 260 of EPTCS, pages 116–143, 2017.

Bibliography 231

[69] S. Jacobs and R. Bloem. Parameterized synthesis. Logical Methods in
Computer Science, 10(1), 2014.

[70] S. Jacobs, R. Bloem, R. Brenguier, A. Khalimov, F. Klein,
R. Könighofer, J. Kreber, A. Legg, N. Narodytska, G. A. Pérez,
J. Raskin, L. Ryzhyk, O. Sankur, M. Seidl, L. Tentrup, and A. Walker.
The 3rd reactive synthesis competition (SYNTCOMP 2016): Bench-
marks, participants & results. In Piskac and Dimitrova [113], pages
149–177.

[71] S. Jacobs, R. Bloem, M. Colange, P. Faymonville, B. Finkbeiner,
A. Khalimov, F. Klein, M. Luttenberger, P. J. Meyer, T. Michaud,
M. Sakr, S. Sickert, L. Tentrup, and A. Walker. The 5th reactive syn-
thesis competition (SYNTCOMP 2018): Benchmarks, participants &
results. CoRR, abs/1904.07736, 2019.

[72] S. Jacobs, R. Bloem, M. Colange, P. Faymonville, B. Finkbeiner,
A. Khalimov, F. Klein, M. Luttenberger, P. J. Meyer, T. Michaud,
M. Sakr, S. Sickert, L. Tentrup, and A. Walker. The 5th reactive syn-
thesis competition (SYNTCOMP 2018): Benchmarks, participants &
results. CoRR, abs/1904.07736, 2019.

[73] S. Jacobs, F. Klein, and S. Schirmer. A high-level LTL synthesis format:
TLSF v1.1. In Piskac and Dimitrova [113], pages 112–132.

[74] D. Janin and M. Sperber, editors. Proceedings of the 4th
International Workshop on Functional Art, Music, Modelling, and
Design, FARM@ICFP 2016, Nara, Japan, September 24, 2016. ACM,
2016.

[75] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit. An end-to-end system
for accomplishing tasks with modular robots. In D. Hsu, N. M. Amato,
S. Berman, and S. A. Jacobs, editors, Robotics: Science and Systems
XII, University of Michigan, Ann Arbor, Michigan, USA, June 18 - June
22, 2016, 2016.

[76] B. Jobstmann. Applications and Optimizations for LTL Synthesis. PhD
thesis, Graz University of Technology, 03 2007.

[77] D. B. Johnson. Finding all the elementary circuits of a directed graph.
SIAM J. Comput., 4(1):77–84, 1975.

232 Bibliography

[78] R. Kazhamiakin, M. Pistore, and M. Roveri. Formal verification of
requirements using SPIN: A case study on web services. In 2nd
International Conference on Software Engineering and Formal Methods
(SEFM 2004), 28-30 September 2004, Beijing, China, pages 406–415.
IEEE Computer Society, 2004.

[79] F. Klein and M. Zimmermann. What are strategies in delay games?
borel determinacy for games with lookahead. In S. Kreutzer, editor,
24th EACSL Annual Conference on Computer Science Logic, CSL 2015,
September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages
519–533. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[80] F. Klein and M. Zimmermann. How much lookahead is needed to win
infinite games? Logical Methods in Computer Science, 12(3), 2016.

[81] F. Klein and M. Zimmermann. Prompt delay. In A. Lal, S. Akshay,
S. Saurabh, and S. Sen, editors, 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2016, December 13-15, 2016, Chennai, India, volume 65 of
LIPIcs, pages 43:1–43:14. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2016.

[82] J. C. Knight. Safety critical systems: challenges and directions. In Tracz
et al. [139], pages 547–550.

[83] R. Könighofer, G. Hofferek, and R. Bloem. Debugging unrealizable
specifications with model-based diagnosis. In S. Barner, I. G. Harris,
D. Kroening, and O. Raz, editors, Hardware and Software: Verification
and Testing - 6th International Haifa Verification Conference, HVC
2010, Haifa, Israel, October 4-7, 2010. Revised Selected Papers, vol-
ume 6504 of Lecture Notes in Computer Science, pages 29–45. Springer,
2010.

[84] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifi-
cations: a practical approach using model-based diagnosis and counter-
strategies. STTT, 15(5-6):563–583, 2013.

[85] H. Kress-Gazit and H. Torfah. The challenges in specifying and explain-
ing synthesized implementations of reactive systems. In B. Finkbeiner
and S. Kleinberg, editors, Proceedings 3rd Workshop on formal
reasoning about Causation, Responsibility, and Explanations in Science
and Technology, CREST@ETAPS 2018, Thessaloniki, Greece, 21st
April 2018., volume 286 of EPTCS, pages 50–64, 2018.

Bibliography 233

[86] S. Kripke. A completeness theorem in modal logic. J. Symb. Log.,
24(1):1–14, 1959.

[87] O. Kupferman. Recent challenges and ideas in temporal synthe-
sis. In M. Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser, and
G. Turán, editors, SOFSEM 2012: Theory and Practice of Computer
Science - 38th Conference on Current Trends in Theory and Practice
of Computer Science, Špindlerův Mlýn, Czech Republic, January 21-27,
2012. Proceedings, volume 7147 of Lecture Notes in Computer Science,
pages 88–98. Springer, 2012.

[88] O. Kupferman, Y. Lustig, M. Y. Vardi, and M. Yannakakis. Temporal
synthesis for bounded systems and environments. In T. Schwentick and
C. Dürr, editors, 28th International Symposium on Theoretical Aspects
of Computer Science, STACS 2011, March 10-12, 2011, Dortmund,
Germany, volume 9 of LIPIcs, pages 615–626. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011.

[89] O. Kupferman, N. Piterman, and M. Y. Vardi. From liveness to prompt-
ness. Formal Methods in System Design, 34(2):83–103, 2009.

[90] O. Kupferman and M. Y. Vardi. Safraless decision procedures. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages
531–542. IEEE Computer Society, 2005.

[91] S. K. Lahiri and C. Wang, editors. Automated Technology for
Verification and Analysis - 16th International Symposium, ATVA 2018,
Los Angeles, CA, USA, October 7-10, 2018, Proceedings, volume 11138
of Lecture Notes in Computer Science. Springer, 2018.

[92] W. Li, L. Dworkin, and S. A. Seshia. Mining assumptions for synthesis.
In S. Singh, B. Jobstmann, M. Kishinevsky, and J. Brandt, editors, 9th
IEEE/ACM International Conference on Formal Methods and Models
for Codesign, MEMOCODE 2011, Cambridge, UK, 11-13 July, 2011,
pages 43–50. IEEE, 2011.

[93] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Learning rate
based branching heuristic for SAT solvers. In N. Creignou and D. L.
Berre, editors, Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, volume 9710 of Lecture Notes in Computer Science, pages
123–140. Springer, 2016.

234 Bibliography

[94] C. Lignos, V. Raman, C. Finucane, M. P. Marcus, and H. Kress-Gazit.
Provably correct reactive control from natural language. Auton. Robots,
38(1):89–105, 2015.

[95] S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Electr. Notes Theor. Comput.
Sci., 229(5):97–117, 2011.

[96] H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows. J. Funct.
Program., 21(4-5):467–496, 2011.

[97] H. Liu and P. Hudak. Plugging a space leak with an arrow. Electr.
Notes Theor. Comput. Sci., 193:29–45, 2007.

[98] C. Löding and S. Winter. Synthesis of deterministic top-down tree
transducers from automatic tree relations. In A. Peron and C. Piazza,
editors, GandALF 2014, volume 161 of EPTCS, pages 88–101, 2014.

[99] M. Luttenberger, P. J. Meyer, and S. Sickert. Practical synthesis of
reactive systems from LTL specifications via parity games. Acta Inf.,
57(1):3–36, 2020.

[100] P. Madhusudan. Synthesizing reactive programs. In Bezem [11], pages
428–442.

[101] G. Mainland, editor. Proceedings of the 9th International Symposium
on Haskell, Haskell 2016, Nara, Japan, September 22-23, 2016. ACM,
2016.

[102] D. A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371,
1975.

[103] C. McBride and R. Paterson. Applicative programming with effects. J.
Funct. Program., 18(1):1–13, 2008.

[104] G. H. Mealy. A method for synthesizing sequential circuits. The Bell
System Technical Journal, 34(5):1045–1079, Sept 1955.

[105] P. J. Meyer, S. Sickert, and M. Luttenberger. Strix: Explicit reac-
tive synthesis strikes back! In H. Chockler and G. Weissenbacher,
editors, Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of
Lecture Notes in Computer Science, pages 578–586. Springer, 2018.

Bibliography 235

[106] S. Miyano and T. Hayashi. Alternating finite automata on omega-words.
Theor. Comput. Sci., 32:321–330, 1984.

[107] R. Mori and N. Yonezaki. Several realizability concepts in reactive
objects. Proceedings of Information Modeling and Knowledge Bases
IV: Concepts, Methods and Systems, 1993.

[108] T. E. Murphy. A livecoding semantics for functional reactive program-
ming. In Janin and Sperber [74], pages 48–53.

[109] G. Patai. Efficient and compositional higher-order streams. In J. Mar-
iño, editor, Functional and Constraint Logic Programming - 19th
International Workshop, WFLP 2010, Madrid, Spain, January 17, 2010.
Revised Selected Papers, volume 6559 of Lecture Notes in Computer
Science, pages 137–154. Springer, 2010.

[110] R. Paterson. A new notation for arrows. In B. C. Pierce, editor,
Proceedings of the Sixth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’01), Firenze (Florence), Italy,
September 3-5, 2001, pages 229–240. ACM, 2001.

[111] I. Perez. GALE: a functional graphic adventure library and engine.
In Proceedings of the 5th ACM SIGPLAN International Workshop
on Functional Art, Music, Modeling, and Design, FARM@ICFP 2018,
Oxford, UK, September 9, 2017, pages 28–35, 2017.

[112] I. Perez, M. Bärenz, and H. Nilsson. Functional reactive programming,
refactored. In Mainland [101], pages 33–44.

[113] R. Piskac and R. Dimitrova, editors. Proceedings Fifth Workshop on
Synthesis, SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016, vol-
ume 229 of EPTCS, 2016.

[114] N. Piterman. From nondeterministic büchi and streett automata to
deterministic parity automata. Logical Methods in Computer Science,
3(3), 2007.

[115] A. Platzer and J. Quesel. European train control system: A case
study in formal verification. In K. K. Breitman and A. Cavalcanti,
editors, Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de
Janeiro, Brazil, December 9-12, 2009. Proceedings, volume 5885 of
Lecture Notes in Computer Science, pages 246–265. Springer, 2009.

236 Bibliography

[116] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977, pages 46–57. IEEE, IEEE Computer
Society, 1977.

[117] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive
module. In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca,
editors, Automata, Languages and Programming, 16th International
Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings, vol-
ume 372 of Lecture Notes in Computer Science, pages 652–671. Springer,
1989.

[118] E. L. Post. A variant of a recursively unsolvable problem. Bulletin of
the American Mathematical Society, 52(4):264–268, 04 1946.

[119] J. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors,
International Symposium on Programming, 5th Colloquium, Torino,
Italy, April 6-8, 1982, Proceedings, volume 137 of Lecture Notes in
Computer Science, pages 337–351. Springer, 1982.

[120] M. O. Rabin. Decidability of second-order theories and automata on in-
finite trees. Transactions of the american Mathematical Society, 141:1–
35, 1969.

[121] V. Raman and H. Kress-Gazit. Explaining impossible high-level robot
behaviors. IEEE Trans. Robotics, 29(1):94–104, 2013.

[122] V. Raman, C. Lignos, C. Finucane, K. C. T. Lee, M. P. Marcus, and
H. Kress-Gazit. Sorry dave, i’m afraid I can’t do that: Explaining
unachievable robot tasks using natural language. In P. Newman, D. Fox,
and D. Hsu, editors, Robotics: Science and Systems IX, Technische
Universität Berlin, Berlin, Germany, June 24 - June 28, 2013, 2013.

[123] G. S. Rohde. Alternating Automata and the Temporal Logic of Ordinals.
PhD thesis, University of Illinois at Urbana-Champaign, Champaign,
IL, USA, 1997.

[124] S. Safra. On the complexity of omega-automata. In 29th Annual
Symposium on Foundations of Computer Science, White Plains, New
York, USA, 24-26 October 1988, pages 319–327. IEEE Computer Soci-
ety, 1988.

Bibliography 237

[125] A. Sangiovanni-Vincentelli and M. D. Natale. Embedded system design
for automotive applications. Computer, 40(10):42–51, 2007.

[126] M. Santolucito, D. Quick, and P. Hudak. Media modules: Inter-
media systems in a pure functional paradigm. In Looking Back,
Looking Forward: Proceedings of the 41st International Computer
Music Conference, ICMC 2015, Denton, TX, USA, September 25 -
October 1, 2015. Michigan Publishing, 2015.

[127] K. Sawada and T. Watanabe. Emfrp: a functional reactive program-
ming language for small-scale embedded systems. In L. Fuentes, D. S.
Batory, and K. Czarnecki, editors, Companion Proceedings of the 15th
International Conference on Modularity, Málaga, Spain, March 14 - 18,
2016, pages 36–44. ACM, 2016.

[128] S. Schewe. Solving parity games in big steps. J. Comput. Syst. Sci.,
84:243–262, 2017.

[129] V. Schuppan. Towards a notion of unsatisfiable and unrealizable cores
for LTL. Sci. Comput. Program., 77(7-8):908–939, 2012.

[130] V. Schuppan. Enhancing unsatisfiable cores for LTL with information
on temporal relevance. Theor. Comput. Sci., 655:155–192, 2016.

[131] V. Schuppan. Extracting unsatisfiable cores for LTL via temporal res-
olution. Acta Inf., 53(3):247–299, 2016.

[132] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and M. Mi-
lanovic. Yosys+nextpnr: An open source framework from verilog to
bitstream for commercial fpgas. In 27th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines,
FCCM 2019, San Diego, CA, USA, April 28 - May 1, 2019, pages 1–4.
IEEE, 2019.

[133] Z. Shan, T. Azim, and I. Neamtiu. Finding resume and restart er-
rors in android applications. In E. Visser and Y. Smaragdakis, editors,
Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016, pages 864–880. ACM, 2016.

[134] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. J. ACM, 32(3):733–749, 1985.

238 Bibliography

[135] M. K. Srivas and S. P. Miller. Applying formal verification to the
AAMP5 microprocessor: A case study in the industrial use of formal
methods. Formal Methods in System Design, 8(2):153–188, 1996.

[136] W. Thomas. Facets of synthesis: Revisiting church’s problem.
In L. de Alfaro, editor, Foundations of Software Science and
Computational Structures, 12th International Conference, FOSSACS
2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings, volume 5504 of Lecture Notes in Computer Science, pages
1–14. Springer, 2009.

[137] W. Thomas and H. Lescow. Logical specifications of infinite compu-
tations. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, A Decade of Concurrency, Reflections and Perspectives, REX
School/Symposium, Noordwijkerhout, The Netherlands, June 1-4, 1993,
Proceedings, volume 803 of Lecture Notes in Computer Science, pages
583–621. Springer, 1993.

[138] J. C. Tiernan. An efficient search algorithm to find the elementary
circuits of a graph. Commun. ACM, 13(12):722–726, 1970.

[139] W. Tracz, M. Young, and J. Magee, editors. Proceedings of the 24th
International Conference on Software Engineering, ICSE 2002, 19-25
May 2002, Orlando, Florida, USA. ACM, 2002.

[140] B. Trakhtenbrot and I. Barzdin. Finite Automata; Behavior and
Synthesis. Fundamental Studies in Computer Science, V. 1. North-
Holland Publishing Company; New York: American Elsevier, 1973.

[141] R. Trinkle. Reflex-frp. https://github.com/reflex-frp/reflex,
2017.

[142] A. van der Ploeg and K. Claessen. Practical principled FRP: for-
get the past, change the future, frpnow! In K. Fisher and J. H.
Reppy, editors, Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015, pages 302–314. ACM, 2015.

[143] M. Y. Vardi and P. Wolper. Automata theoretic techniques for
modal logics of programs (extended abstract). In R. A. DeMillo, ed-
itor, Proceedings of the 16th Annual ACM Symposium on Theory of
Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 446–
456. ACM, 1984.

https://github.com/reflex-frp/reflex

Bibliography 239

[144] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple:
simplifying SDN programming using algorithmic policies. In D. M. Chiu,
J. Wang, P. Barford, and S. Seshan, editors, ACM SIGCOMM 2013
Conference, SIGCOMM’13, Hong Kong, China, August 12-16, 2013,
pages 87–98. ACM, 2013.

[145] P. Wadler. Monads for functional programming. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming, First
International Spring School on Advanced Functional Programming
Techniques, Båstad, Sweden, May 24-30, 1995, Tutorial Text, volume
925 of Lecture Notes in Computer Science, pages 24–52. Springer, 1995.

[146] H. Weinblatt. A new search algorithm for finding the simple cycles of a
finite directed graph. J. ACM, 19(1):43–56, 1972.

[147] D. Winograd-Cort. Effects, Asynchrony, and Choice in Arrowized
Functional Reactive Programming. PhD thesis, Yale University, De-
cember 2015.

[148] D. Winograd-Cort and P. Hudak. Settable and non-interfering signal
functions for FRP: how a first-order switch is more than enough. In
J. Jeuring and M. M. T. Chakravarty, editors, Proceedings of the 19th
ACM SIGPLAN international conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, pages 213–225. ACM, 2014.

[149] K. W. Wong, R. Ehlers, and H. Kress-Gazit. Correct high-level robot
behavior in environments with unexpected events. In D. Fox, L. E.
Kavraki, and H. Kurniawati, editors, Robotics: Science and Systems X,
University of California, Berkeley, USA, July 12-16, 2014, 2014.

[150] B. Wymann, E. Espie, and C. Guionneau. Torcs: The open racing car
simulator, v1.3.4. http://torcs.sourceforge.net/index.php, 2017.

[151] J. Yallop and H. Liu. Causal commutative arrows revisited. In Mainland
[101], pages 21–32.

[152] W. Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183,
1998.

[153] M. Zimmermann. Optimal bounds in parametric LTL games. Theor.
Comput. Sci., 493:30–45, 2013.

http://torcs.sourceforge.net/index.php

240 Bibliography

[154] M. Zimmermann. Unbounded lookahead in WMSO+U games. CoRR,
abs/1509.07495, 2015.

[155] M. Zimmermann. Delay games with WMSO+U winning conditions.
RAIRO - Theor. Inf. and Applic., 50(2):145–165, 2016.

[156] M. Zimmermann. Finite-state strategies in delay games. In P. Bouyer,
A. Orlandini, and P. S. Pietro, editors, Proceedings Eighth International
Symposium on Games, Automata, Logics and Formal Verification,
GandALF 2017, Roma, Italy, 20-22 September 2017., volume 256 of
EPTCS, pages 151–165, 2017.

	Introduction
	Temporal Stream Logic
	Output Sensitive Synthesis
	Delay Games
	The Reader's Guide to the Thesis

	Preliminaries
	Reactive Systems
	Infinite Words
	Infinite Trees
	Infinite Games
	Implementations
	Linear Temporal Logic
	Universal co-Büchi Automata

	Temporal Stream Logic
	The Logic
	Architecture
	Updates, Function, and Predicate Terms
	Inputs, Outputs, and Computations
	Syntax
	Semantics
	Realizability

	Specification Examples
	Specifying a Kitchen Timer
	Specifying a Music Player

	Decidability
	Fragments
	Temporal Stream Games
	Determinacy
	Branching Restrictions
	Purity
	Memory Requirements

	Synthesis
	Initial Purity Approximation
	Refining the Approximation
	Synthesizing Control Flow

	Functional Reactive Programming
	Paradigm
	Time as a Type
	Design Patterns
	Code Generation

	Experimental Results
	Discussion

	Output Sensitive Synthesis
	Bounded Synthesis
	Constraint based Synthesis
	SAT Encoding

	Bounded Cycle Synthesis
	Cycle Bounds
	Counting Cycles
	SAT Encoding

	Compact Implementation Models
	Bounded Circuits
	Bounded Register Machines
	Bounded Programs

	Experimental Results
	Discussion

	Delay Games
	Games with Delay
	Computational Complexity
	Parity Games
	Safety Games
	Reachability Games

	Lower Bounds on the Delay
	LTL Synthesis with Delay
	Discussion

	Conclusions

