
Saarland University

Faculty for Mathematics and Computer Science

Department of Computer Science

Privacy Enhancing Technologies:
Protocol verification, implementation and

specification

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von
Fabian Aaron Bendun

Saarbrücken,
September 2020

ii

Tag des Kolloquiums: 07. September 2020

Dekan: Prof. Dr. Thomas Schuster

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Bernd Finkbeiner
Berichterstattende: Prof. Dr. Dr. h.c. Michael Backes

Prof. Dr. Cas Cremers
Akademischer Mitarbeiter: Dr. Zhikun Zhang

Zusammenfassung

In dieser Arbeit werden neue Methoden zur Verifikation, Implementierung und Spezifikation
im von Protokollen vorgestellt. Ein besonderer Fokus liegt dabei auf Datenschutz-Eigenschaften
und dem Schutz der Privatsphäre. Im ersten Teil dieser Arbeit geht der Author auf die Protokoll-
Verifikation ein und stellt ein Modell zur Verifikation vor, dass sogenannte Zero-Knowledge
(ZK) Beweise enthält. Diese ZK Beweise sind ein kryptographisches primitiv, dass insbeson-
dere zum Verstecken von Informationen geeignet ist und somit zum Schutz der Privatsphäre
dient. Das hier vorgestellte Modell gibt eine Liste von Kriterien, welche eine Implementierung
der genutzten kryptographischen Primitive erfüllen muss, damit die verifikationen im Modell
sich auf Implementierungen übertragen lassen. In Bezug auf ZK Beweise sind diese Kriterien
schächer als die vorangegangener Arbeiten. Der zweite Teil der Arbeit wendet sich der Im-
plementierung von Protokollen zu. Hierbei werden dann ZK Beweise verwendet um sichere
Mehrparteienberechnungen zu verbessern. Im dritten und letzten Teil der Arbeit wird eine
neuartige Art der Spezifikation von Datenschutz-Richtlinien erläutert. Diese geht nicht von
Richtlinien aus, sondern von der Rechtsprechung. Der Vorteil ist, dass in der Rechtsprechung
konkrete Abwägungen getroffen werden, die Gesetze und Richtlinien nicht enthalten.

iii

iv

Abstract

In this thesis, we present novel methods for verifying, implementing and specifying protocols.
In particular, we focus properties modeling data protection and the protection of privacy. In
the first part of the thesis, the author introduces protocol verification and presents a model for
verification that encompasses so-called Zero-Knowledge (ZK) proofs. These ZK proofs are
a cryptographic primitive that is particularly suited for hiding information and hence serves
the protection of privacy. The here presented model gives a list of criteria which allows the
transfer of verification results from the model to the implementation if the criteria are met by
the implementation. In particular, the criteria are less demanding than the ones of previous
work regarding ZK proofs. The second part of the thesis contributes to the area of protocol
implementations. Hereby, ZK proofs are used in order to improve multi-party computations. The
third and last part of the thesis explains a novel approach for specifying data protection policies.
Instead of relying on policies, this approach relies on actual legislation. The advantage of relying
on legislation is that often a fair balancing is introduced which is typically not contained in
regulations or policies.

v

vi

Background of this Dissertation

This dissertation is based on three peer-reviewed papers that have been accepted at influential
ans well-ranked conferences in the field of computer security, in each of which the author
contributed as one of the main authors. In addition, the author was the co-author of other peer-
reviewed papers in the field of cryptography and information security [SiBeAsBaMaDr:15,
BaBeMaMoPe:15]. This dissertation focuses on the following three papers:

• In the paper “Computational Soundness of Symbolic Zero-Knowledge Proofs: Weaker
Assumptions and Mechanized Verification” [BaBeUn:13] (published at POST’13), as
well as in the extended technical report, the author contributed significantly to the design
of the model, the proof of its soundness and its application on proof of concept protocols
in order to show the symbolic model’s amenability for automated verification. The sym-
bolic model and used proof technique was influenced by “CoSP: a general framework for
computational soundness proofs” [BaHoUn:09:cosp] of Backes, Hofheinz and Unruh,
and the argumentation regarding zero-knowledge followed “Computational soundness
of symbolic zero-knowledge proofs” [BaUn:10:cs:zk] of Backes and Unruh. However,
the assumptions used in Y have weakened, leading to a smaller gap regarding practically
deployed implementations of zero-knowledge protocols. This gap has been closed by fol-
low up work [BaBeMaMoPe:15] together with Michael Backes, Esfandiar Mohammadi,
Kim Pecina and Matteo Maffei and is not in this work.

• In the paper “Asynchronous MPC with a strict honest majority using non-
equivocation” [BaBeChKa:14] (published at PODC’14), the author contributed in the
exploration of the recently discovered principle of non-equivocation regarding the class
of asynchronous multi-party computations (MPC). The principle is based on non-standard
assumptions and achieves that every party in a multi-party setting has to stick to her
send messages. Using this principle, it has been possible to circumvent impossibility
results for asynchronous MPC that required a strict honest two-third majority. The author
contributed as on of the main author in the design of the protocols and their security
proofs. A first idea sketch of this work has also been published as brief announcement at
PODC’12 [BaBeKa:12].

• In “PriCL: Creating a Precedent, a Framework for Reasoning about Privacy Case
Law” [BaBeHoMa:15] (published at POST’15), the author worked on a new speci-
fication approach for privacy requirements. As one of the main authors, he formalized
legal requirements in a framework for automated reasoning. In contrast to related work,
the framework bases on dynamic legal precedents instead of static regulation texts. In
addition to the specification, the author analyzed the logical properties as well as the
complexity of common reasoning tasks. In this work, the requirement analysis with
respect to the legal requirements was done by the co-author Ninja Marnau. Finally, the
author supervised a Master’s thesis that evaluated techniques in order to create a database
for developed framework. The Master’s thesis was written by Vikash Patel.

vii

viii

Contents

1 Introduction 1

2 Privacy Protocol Verification: Zero-Knowledge Proofs in CoSP 3
2.1 CoSP framework for computational soundness proofs 5

2.1.1 Symbolic Model . 5
2.1.2 Computational Model . 8
2.1.3 Computational soundness. 10

2.2 Zero Knowledge Proofs . 12
2.3 The Symbolic Model . 18
2.4 Computational Soundness . 22

2.4.1 Theorem conditions . 22
2.4.2 Proof of the Computational Soundess 29

2.5 Protocol Verification using the applied π-calculus 40
2.6 Example relations . 42
2.7 An Impossibility Result for Computational Soundness of Symbolic ZK Proofs . 44
2.8 Conclusions . 46

3 Privacy Protocol Implementation: Designing Protocols for Multi-Party Computa-
tions (MPC) 47
3.1 Multi-Party Computations & Related Work 48

3.1.1 Contribution and Comparison . 49
3.1.2 Preliminaries . 50
3.1.3 Employed Primitives . 53
3.1.4 Secret Sharing Notations . 56

3.2 Overview of Our NeqAMPC Protocol . 56
3.2.1 Pre-processing Phase . 57
3.2.2 Important Sub-protocols for the Preprocessing Phase 58

3.3 Employed AVSS Protocol . 60
3.4 Supervised Sharing Protocols . 61

3.4.1 Protocol Sup-Sh: Supervised [·]-sharing 62
3.4.2 Supervised Pre-multiplication Protocol 66

3.5 Supervised Triple Generation . 68

ix

x CONTENTS

3.5.1 Generating the Second Component of the Triple 69
3.5.2 Generating First and Third Components of the Triple 72
3.5.3 Sup-Second+Sup-FirAndThd=⇒SupTripGen 74

3.6 The NeqAMPC Protocol . 75
3.7 Non-equivocation Implementations . 76

3.7.1 Realizing the Neq mechanism using TrInc 77
3.8 Instantiation of Various Primitives . 79

3.8.1 Encryption scheme Enc . 79
3.8.2 Zero-knowledge Proof Schemes . 80
3.8.3 Asynchronous Reliable Broadcast (r-broadcast) Using Transferable

Non-equivocation . 82
3.9 Analysis of the AMPC Protocol of [32] . 83

4 Privacy Specification: Precedent-based Reasoning 87
4.1 Ingredients . 89
4.2 Defining The PriCL Framework . 92

4.2.1 Introducing Cases . 92
4.2.2 Combining Cases to Case Law Databases 95
4.2.3 Deriving Legal Consequences: Deducibility and Permissibility 99
4.2.4 General Properties of Case Law Databases 104
4.2.5 Privacy Cases and Norms . 105

4.3 Reasoning Tasks . 107
4.4 Logic Selection . 114
4.5 Concluding PriCL . 116

A Appendix 127
A.1 Postponed Soundness Proof Details . 127

A.1.1 Proof of Claim 1 . 150
A.1.2 Proof of Claim 4 . 153

Chapter 1

Introduction

Privacy is a particularly delicate topic with a tremendous socio-economic role nowadays.
Frequent data breaches or data misuses created a social awareness and demand for more privacy
online. However, the current state of cybersecurity also requires a mind-shift towards a more
accountable Internet. These seemingly contrasting requirements create a huge demand for
privacy enhancing technologies that allow certain guarantees to hold even though the user’s
privacy is protected.

Privacy enhancing technologies could ensure that a user can only access certain systems if
he is authorized but without revealing her identity. Such technologies could also enable users
to share their genomic data for scientific purposes without fully leaking it. And last but not
least, privacy enhancing technologies can be used to ensure compliance with regulations. The
number of applications is enormous and continuously growing. The reason for the growth
of applications is the growth of cyberphysical systems through trends such as the Internet of
Things, smart homes or autonomous driving. All these trends introduce further sensors into our
lives which are supposed to bring more comfort. However, these sensoric solutions also threaten
the individual privacy. For example, in a case of speeding, car manufacturers could provide
governmental authorities with data of speed and GPS on a fine granular interval.

In this work, we identified three key areas for the future development and improved of
privacy enhancing technologies. Within each key area, we improve the state of the art towards a
more privacy friendly use. These areas are protocol verification, protocol implementations as
well as the specification of privacy.

Protocol verification The abstraction of cryptographic operations by term algebras, called
symbolic models, is essential in almost all tool-supported methods for analyzing security
protocols. Significant progress was made in proving that symbolic models offering basic
cryptographic operations such as encryption and digital signatures can be sound with respect to
actual cryptographic realizations and security definitions. Even abstractions of sophisticated
modern cryptographic primitives such as zero-knowledge (ZK) proofs were shown to have a
computationally sound cryptographic realization, but only in ad-hoc formalism and at the cost of
placing strong assumptions on the underlying cryptography, which leaves only highly inefficient

1

2 CHAPTER 1. INTRODUCTION

realizations.
In this work, we make two contributions to this problem space. First, we identify weaker

cryptographic assumptions that we show to be sufficient for computational soundness of sym-
bolic ZK proofs. These weaker assumptions are fulfilled by existing efficient ZK schemes as
well as generic ZK constructions. Second, we conduct all computational soundness proofs in
CoSP, a recent framework that allows for casting computational soundness proofs in a modular
manner, independent of the underlying symbolic calculi. Moreover, all computational soundness
proofs conducted in CoSP automatically come with mechanized proof support through an
embedding of the applied π-calculus. This result is presented in chapter 2.

Protocol implementation Verifiable secret sharing (VSS) and secure multiparty computation
(MPC) are the fundamental problems in secure distributed computing. It is well known that
in the computational setting, asynchronous VSS (AVSS) and asynchronous MPC (AMPC)
among n parties can tolerate up to t < n/3 active faults. Recently, assuming a synchronous
broadcast round, Beerliová-Trubı́niová, Hirt and Nielsen (PODC’10) improved the resiliency
bound for AMPC by presenting a protocol with t < n/2. Nevertheless, their requirement of
one synchronous broadcast round is non-trivial and possibly not realizable in some application
scenarios.

In this work, we observe that it is possible to improve the resiliency bound for both AVSS
and AMPC to handle t < n/2 active faults, without making any synchrony assumption, using
non-equivocation. Non-equivocation is a mechanism to restrict a corrupted party from making
conflicting statements to different (honest) parties, and it can be implemented using a trusted
counter, realizable with trusted hardware modules readily available in commodity computers
and smartphone devices. In particular, we present an AVSS protocol and an AMPC protocol
in a (completely) asynchronous setting, tolerating t < n/2 faults, using non-equivocation.
Apart from providing better resilience, our protocols are also efficient: specifically, our AMPC
protocol provides a gain of Θ(n) in the communication complexity (per multiplication gate)
over the AMPC protocol by Beerliová-Trubı́niová et al. This result is presented in chapter 3.

Protocol specification We introduce PriCL: the first framework for expressing and automat-
ically reasoning about privacy case law by means of precedent. PriCL is parametric in an
underlying logic for expressing world properties, and provides support for court decisions, their
justification, the circumstances in which the justification applies as well as court hierarchies.
Moreover, the framework offers a tight connection between privacy case law and the notion of
norms that underlies existing rule-based privacy research. In terms of automation, we identify
the major reasoning tasks for privacy cases such as deducing legal permissions or extracting
norms. For solving these tasks, we provide generic algorithms that have particularly efficient
realizations within an expressive underlying logic. Finally, we derive a definition of deducibility
based on legal concepts and subsequently propose an equivalent characterization in terms of
logic satisfiability. This result is presented in chapter 4.

Chapter 2

Privacy Protocol Verification:
Zero-Knowledge Proofs in CoSP

Proofs of security protocols are known to be error-prone and, owing to the distributed-system
aspects of multiple interleaved protocol runs, awkward for humans to make. Hence work towards
the automation of such proofs started soon after the first protocols were developed. From the
start, the actual cryptographic operations in such proofs were idealized into so-called symbolic
models, following [64, 67, 99], e.g., see [87, 111, 2, 94, 26]. This idealization simplifies proof
construction by freeing proofs from cryptographic details such as computational restrictions,
probabilistic behavior, and error probabilities. It was not at all clear whether symbolic models
are a sound abstraction from real cryptography with its computational security definitions.
Existing work has largely bridged this gap for symbolic models offering the core cryptographic
operations such as encryption and digital signatures, e.g., see [3, 20, 91, 100, 57, 47].

While symbolic models traditionally comprised only basic cryptographic operations, recent
work has started to extend them to more sophisticated primitives with unique security features
that go far beyond the traditional goal of cryptography to solely offer secrecy and authenticity
of communication. Zero-knowledge (ZK) proofs1 constitute arguably the most prominent
such primitive.2 This primitive’s unique security features, combined with the recent advent
of efficient cryptographic implementations of this primitive for special classes of problems,
have paved the way for its deployment in modern applications. For instance, ZK proofs can
guarantee authentication yet preserve the anonymity of protocol participants, as in the Civitas
electronic voting protocol [53] or the Pseudo Trust protocol [95], or they can prove the reception
of a certificate from a trusted server without revealing the actual content, as in the Direct

1A zero-knowledge proof [73] consists of a message or a sequence of messages that combines two seemingly
contradictory properties: First, it constitutes a proof of a statement x (e.g, x = ”the message within this ciphertext
begins with 0”) that cannot be forged, i.e., it is impossible, or at least computationally infeasible, to produce a
zero-knowledge proof of a wrong statement. Second, a zero-knowledge proof does not reveal any information
besides the bare fact that x constitutes a valid statement.

2Examples of other primitives studied in the symbolic setting are blind-signatures (e.g., in [88]), Diffie-Hellman-
style exponentiation (e.g., in [1]), or private contract signatures (e.g., in [83]).

3

4 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

Anonymous Attestation (DAA) protocol [41]. More recently, ZK proofs have been used to
develop novel schemes for anonymous webs of trust [17] as well as privacy-aware proof-carrying
authorization [96].

A symbolic abstraction of (non-interactive) ZK proofs has been put forward in [19]. The
proposed abstraction is suitable for mechanized proofs [19, 15] and was already successfully
used to produce the first fully mechanized proof of central properties of the DAA protocol. A
computational soundness result for such symbolic ZK proofs has recently been achieved as
well [21]. However, this work imposes strong assumptions on the underlying cryptographic
implementation of zero-knowledge proofs: Among other properties, the zero-knowledge proof is
required to satisfy the notion of extraction zero-knowledge; so far, only one (inefficient) scheme
is known that fulfills this notion [76]. Thus the vast number of recently proposed, far more
efficient zero-knowledge schemes, and particularly those schemes that stem from generic ZK
constructions, are not comprised by this result. Hence they do not serve as sound instantiations
of symbolic zero-knowledge proofs, leaving all actually deployed ZK protocols without any
computational soundness guarantee. In addition, the result in [21] casts symbolic ZK proofs
within an ad-hoc formalism that is not accessible to existing formal proof tools.

The contribution of this thesis to the verification problem space is the following:

• First, we identify weaker cryptographic assumptions that we show to be sufficient for
obtaining a computational soundness result for symbolic ZK proofs. Essentially, we
show that the strong notion of extraction zero-knowledge required in [21] can be replaced
by the weaker notion of simulation-sound extractability. In contrast to extraction zero-
knowledge, simulation-sound extractability constitutes an established property that many
existing cryptographic constructions satisfy. In particular, there exist generic constructions
for transforming any non-interactive ZK proof into a ZK proof that satisfies simulation-
sound extractability (and the remaining properties that we impose for computational
soundness) [107], as well as several efficient schemes that are known to satisfy simulation-
sound extractability (and the remaining properties), e.g., [93, 75, 108]. Thus requiring
simulation-sound extractability instead of extraction zero-knowledge greatly extends the
pool of cryptographic constructions for ZK proofs that constitute sound implementations,
and it for the first time enables the computationally sound deployment of efficient ZK
realizations.

• Second, we conduct all computational soundness proofs in CoSP [14], a recent framework
that allows for casting computational soundness proofs in a conceptually modular and
generic way: proving x cryptographic primitives sound for y calculi only requires x+ y

proofs (instead of x · y proofs without this framework), and the process of embedding
calculi is conceptually decoupled from computational soundness proofs of cryptographic
primitives. In particular, computational soundness proofs conducted in CoSP are auto-
matically valid for the applied π-calculus, and hence accessible to existing mechanized
verification techniques.

The conduction in CoSP has the drawback that the computational soundness is shown

2.1. COSP FRAMEWORK FOR COMPUTATIONAL SOUNDNESS PROOFS 5

for trace properties. However, trace properties are sufficient to verify weak anonymity.
Consequently, we can show central properties of the DAA protocol.

Outline. In this chapter, we prove computational soundness for a symbolic model containing
modern cryptographic building blocks, specifically zero-knowledge proofs. We first introduce
the symbolic and computational models that we relate with the soundness proof. Thereafter,
we introduce the notion of zero-knowledge that we require for the proof. Since computational
soundness proofs are lengthy in nature, we first give insights in the proof strategy before
detailing the proof. Repetitive parts of the proof are postponed to the appendix for the sake
of readability. We also give some application for soundness result as well as insights in the
necessity of requirements for the ZK proofs.

2.1 CoSP framework for computational soundness proofs

Computational soundness needs to link three components mathematically. First, we need a
symbolic model to specify the protocols. Second, we need a symbolic protocol execution as well
as computational execution. The third necessary component is the specification of properties
that executions can have. The soundness result then states that any property holds for a symbolic
execution if and only if it holds for the computational one.

CoSP gives an answer for these basic needs in a general way. The advantage of such a
generic framework is that the symbolic models can be embedded in the actual representation of
verification tools, i.e., any proof for a specific model can then be leveraged by the verification
results of all tools for which an embedding exists. As a consequence, the number of required
proofs is reduced to x+ y for x symbolic models and y verification languages instead of x · y
proofs following the naive approach to the problem. This has been done for several verification
languages such as the applied π calculus [14] or type-systems verification via F# [15].

2.1.1 Symbolic Model

We start with the symbolic model. The purpose of the symbolic model is to have an abstract
representation of the protocol that is easy to design for the human user and in addition amenable
for automated verification tools.

The symbolic model describes four things. First, describes how abstract terms can be
constructed, e.g., enc(ek(N),m,N2) for the encryption of message m using encryption key
ek(N) and randomness N2. This is modeled by a set of constructors C that can be applied to
other terms creating new terms. In the example, ek and enc are such constructors.

Second, the symbolic model describes which terms consisting of constructors applied to
each other are valid. Following the example, the first argument of enc needs to be an encryption
key, to lead to a valid ciphertext. This set of valid objects is called terms T.

Third, it describes how these terms can be transformed into other terms, in particular remov-
ing constructors to extract a subterm is such an operation. In the example above, decryption can

6 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

be modeled like this, e.g., dec is a function that takes a decryption key dk(N) and a ciphertext
enc(ek(N),m,N2) and returns m. Note that the N for dk(N) and ek(N) need to match for
the operation. Summarized, a destructor is a function that transforms a set terms to a new term.

Finally, the symbolic model describes what an attacker can derive from terms. This derivation
allows to model attacker capabilities that go beyond the constructors and destructors that
the honest protocol user can use. For example, we could allow an attacker to derive the
randomness of a decryption key dk(N) symbolically although there is not necessarily a real-
world implementation for this functionality. Consequently, in order to get good verification
results, the derivation of the attacker should be as limited as the computational soundness proof
allows.

These aspects lead to the following definition of a symbolic model, consisting of constructors,
destructors, and deduction relations.

Definition 2.1.1 (Symbolic model). A symbolic model is a 5-tuple M = (C,N,T,D,`) that
consists of a set of constructors C, a set of nonces N, a message type T over C and N with
N ⊆ T, a set of destructors D over T, and a deduction relation ` over T where constructor,
nonce, message type, destructor and deduction relation are defined as follows:

• A constructor C is a symbol with an arity. We write C/n ∈ C to say that the set C
contains a constructor C with arity n.

• A nonce N is a symbol with zero arity.

• A message type T over C and N is a set of terms over constructors C and nonces N.

• A destructor D of arity n over a message type T is a partial map Tn → T. If D is
undefined on t := (t1, . . . , tn), we write D(t) = ⊥.

• A deduction relation ` over a message type T is a relation between 2T and T.

For the sake of simpler, unified notation, we define a function evalF forF being a constructor,
nonce or destructor. If F is a constructor or nonce, we write evalF (t1, . . . , tn) := F (t) if
F (t) ∈ T and evalF (t) := ⊥ otherwise. If F is a destructor, we write evalF (t) := F (t) if
F (t) 6= ⊥ and evalF (t) := ⊥ otherwise.

The previous definition specified how the symbolic world looks like and how to move within
it. In the next step, we need to define the actual object of interest: the protocol. In addition to
transforming terms, the protocol has to take branches which might depend on specific input and
the protocol has to specify what is communicated at which point in time.

The start of every protocol is a unique point and the progressing protocol might branch into
different states. Thus, the protocol is modelled as an annotated tree. In details, the following
definition specifies CoSP protocols:

Definition 2.1.2 (CoSP protocol). A CoSP protocol Πs is a tree with a distinguished root and
labels on edges and nodes. Each node has a unique identifier N and one of the following types:

2.1. COSP FRAMEWORK FOR COMPUTATIONAL SOUNDNESS PROOFS 7

• Computation nodes are annotated with a constructor, nonce, or destructor F/n together
with the identifiers of n (not necessarily distinct) nodes. Computation nodes have exactly
two successors; the corresponding edges are labeled with yes and no, respectively.

• Output nodes are annotated with the identifier of one node. An output node has exactly
one successor.

• Input nodes have no further annotation.An input node has exactly one successor.

• Control nodes are annotated with a bitstring l. A control node has at least one and up to
countably many successors annotated with distinct bitstrings l′ ∈ {0, 1}∗. (We call l the
out-metadata and l′ the in-metadata.)

• Nondeterministic nodes have no further annotation. Nondeterministic nodes have at
least one and at most finitely many successors; the corresponding edges are labeled with
distinct bitstrings.

The computation node models the usage of the symbolic model, the output and input
nodes model communication and the control nodes model decisions. The nondeterministic
nodes can be used to model probabilistic decisions in protocol executions. Thus, assigning
each nondeterministic node a probability distribution over its successors yields the notion of a
probabilistic CoSP protocol. As the notion of efficiency is crucial for cryptographic building
blocks and in particular usually the limitation of the attacker, we define efficient protocol
executions for probabilistic CoSP protocols. In particular, this ensures that a common attacker
can execute the protocol.

Definition 2.1.3 (Efficient protocol). We call a probabilistic CoSP protocol efficient if:

• There is a polynomial p such that for any node N , the length of the identifier of N is
bounded by p(m) where m is the length (including the total length of the edge-labels) of
the path from the root to N .

• There is a deterministic polynomial-time algorithm that, given the identifiers of all nodes
and the edge labels on the path to a node N , computes the label of N .

The last piece missing on the symbolic side with respect to computational soundness are the
properties that we want to verify. These are trace properties, i.e., possible execution traces that
occur in one model can also occur in the other. Consequently, traces are part of executions and
we need to define what it means to symbolically execute a protocol.

The definition of symbolic execution is a natural consequence of a CoSP protocol and
symbolic model definitions. It resembles the path taken in the protocol tree Πs. In the definition,
we specify every position in the path by the attacker’s current knowledge S, the identifier of the
current node ν, as well as the history of received and computed messages via a partial function
f . Formally, this leads to the following definition:

8 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

Definition 2.1.4 (Symbolic execution). Let a symbolic model (C,N,T,D,`) and a CoSP
protocol Πs be given. A full trace is a (finite) list of tuples (Si, νi, fi) such that the following
conditions hold:

• Correct start: S1 = ∅, ν1 is the root of Πs, f1 is a totally undefined partial function
mapping node identifiers to terms.

• Valid transition: For every two consecutive tuples (S, ν, f) and (S′, ν ′, f ′) in the list, let
ν̃ be the node identifiers in the annotation of ν and define t̃ through t̃j := f(ν̃j). We have:

– If ν is a computation node with constructor, destructor or nonce F , then S′ = S.
If m := evalF (t̃) 6= ⊥, ν ′ is the yes-successor of ν in Πs, and f ′ = f(ν := m). If
m = ⊥, then ν ′ is the no-successor of ν and f ′ = f .

– If ν is an input node, then S′ = S and ν ′ is the successor of ν in Πs and there exists
an m with S ` m and f ′ = f(m := m).

– If ν is an output node, then S′ = S ∪ {t̃1}, ν is the successor of ν in Πs and f ′ = f .

– If ν is a control node or a nondeterministic node, then ν ′ is a successor of ν and
f ′ = f and S′ = S.

A list of node identifiers (νi) is a node trace if there is a full node trace with these node identifiers.

2.1.2 Computational Model

In this subsection, we define the counterpart of the symbolic execution, the computational
implementation. In the overall picture, this is the execution that we want to analyse and secure
by leveraging analysis results from the symbolic model we defined.

The computational execution for a protocol needs to shift the symbolic parts to the computa-
tional world, i.e., from applying constructors to nonces to bitstrings. In order to do so, we define
the computational counterpart of the symbolic model and apply the definition afterwards to the
definition of the symbolic execution, leading to a computational execution.

Definition 2.1.5 (Computational implementation). Let a symbolic model M = (C,N,T,D,`)

be given. A computational implementation A is a family of functions A = (Ax)x∈C∪D∪N
such that AF for F/n ∈ C ∪D is a partial deterministic function N× ({0, 1}∗)n → {0, 1}∗,
and AN for N ∈ N is a total probabilistic function with domain N and range {0, 1}∗ (i.e.
it specifies a probability distribution on bitstrings that depends on its argument). The first
argument of AF and AN represents the security parameter. All functions AF have to be
computable in deterministic polynomial-time, and all AN have to be computable in probabilistic
polynomial-time.

Note that the definition only allows AN to be probabilistic for a nonce N . The consequence
is that randomness has to be modelled explicitly. The advantage is that, for example, two
ciphertext of the same string can be compared symbolically in a meaningful way,i.e., they are
equal if also the same randomness is used and unequal otherwise.

2.1. COSP FRAMEWORK FOR COMPUTATIONAL SOUNDNESS PROOFS 9

The computational execution essentially follows the same rules as the symbolic one, except
that the function f stores bitstrings corresponding to nodes in the computational case, and that
the implementations of symbolic constructors and destructors are used.

Definition 2.1.6 (Computational execution). Let a symbolic model M = (C,N,T,D,`), a
computational implementation A of M, and a probabilistic CoSP protocol Πp be given. Let a
probabilistic polynomial-time interactive machine E (the adversary) be given, and let p be a
polynomial. We define a probability distribution NodespM,A,Πp,E

(k), the computational node
trace, on (finite) lists of node identifiers (νi) according to the following probabilistic algorithm
(both the algorithm and the adversary run on input k):

• Initial state: ν1 := ν is the root of Πp. Let f be the empty partial function from node
identifiers to bitstrings, and let n be an initially empty partial function from N to bitstrings.

• For i = 2, 3, . . . do:

– Let ν̃ be the node identifiers in the annotation of ν. m̃j := f(ν̃j).

– Proceed according to the type of node ν:

∗ If ν is a computation node with nonce N ∈ N: Let m′ := n(N) if n(N) 6= ⊥
and sample m′ according to AN (k) otherwise. Let ν ′ be the yes-successor of ν,
f ′ := f(ν := m′) and n′ := n(N := m′).

∗ If ν is a computation node with constructor or destructor F , then m′ :=

AF (k, m̃). If m′ 6= ⊥ then let ν ′ be the yes-successor of ν, otherwise ν ′ is the
no-successor of ν. Let f ′ := f(ν := m′) and n′ = n.

∗ If ν is an input node, ask for a bitstring m from E. Abort the loop if E halts. Let
ν ′ be the successor of ν, n′ := n , f ′ := f(ν := m).

∗ If ν is an output node, send m̃1 to E. Abort if E halts. Let ν ′ be the successor of
ν, f ′ = f and n′ = n.

∗ If ν is a control node, labelled with out-metadata l, send l to E. Abort if E halts.
Upon receiving answer l′, let ν ′ be the successor of ν along the edge labelled
with l′ (or the lexicographic smallest edge if there is no edge labelled with l′).
Let n′ := n and f ′ = f .

∗ If ν is a nondeterministic node, letD be the probability distribution on the label
of ν. Pick ν ′ according to D and let n′ := n, f ′ := f .

– Let ν = ν ′, f = f ′ and n = n′.

– Let νi := ν.

– Let len be the number of nodes from the root to ν plus the total length of all bitstrings
in the range of f . If len > p(k), stop.

The definition closely follows the symbolic execution. All differences come from computa-
tional artifacts such as efficiency and probabilistic sampling.

10 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

2.1.3 Computational soundness.

In this subsection, we formally define what computational soundness with respect to trace
properties is. Afterwards, we present a general result about the CoSP framework that already
lines out the proof strategy for the computational soundness result. We start by defining trace
properties.

Definition 2.1.7 (Trace property). A trace property P is an efficiently decidable and prefix-
closed set of (finite) lists of node identifiers.

Let M = (C,N,T,D,`) be a symbolic model and Πs a CoSP protocol. Then Πs sym-
bolically satisfies a trace property P in M iff every node trace of Πs is contained in P . Let A
be a computational implementation of M and let Πp be a probabilistic CoSP protocol. Then
(Πp, A) computationally satisfies a trace property P in M iff for all probabilistic polynomial-
time interactive machines E and all polynomials p, the probability is overwhelming that
NodespM,A,Πp,E

(k) ∈ P .

The requirement of being efficiently decidable has a rather practical purpose. If the property
is not decidable, it does not make any sense trying to verify the property using a verification
tool. If the property is not efficiently decidable, the attacker might not be able to decide whether
he succeeded.

Definition 2.1.8 (Computational soundness). A computational implementation A of a symbolic
model M = (C,N,T,D,`) is computationally sound for a class P of CoSP protocols iff
for every trace property P and for every efficient probabilistic CoSP protocol Πp, we have
that (Πp, A) computationally satisfies P whenever the corresponding CoSP protocol Πs of Πp

symbolically satisfies P and Πs ∈ P .

In the remainder of this section, we outline the common proof strategy that we will also
use: a simulation based proof. The high-level idea is to assume we do not have soundness.
Then there is a trace in the computational world that cannot be run symbolically. However, the
constructed simulator can translate between the symbolic and computational world such that
trace properties are preserved. This contradiction proves that the assumption was wrong, and
hence we get computational soundness. We start by defining the simulator.

Definition 2.1.9 (Simulator). A simulator is an interactive machine Sim that satisfies the
following syntactic requirements:

• When activated without input, it replies with a term m ∈ T.

• When activated with some t ∈ T, it replies with an empty output.

• When activated with a bitstring label l it answers with some bitstring.

• When activated with (info, ν, t) where ν is a node identifier and t ∈ T, it replies with
(proceed).

2.1. COSP FRAMEWORK FOR COMPUTATIONAL SOUNDNESS PROOFS 11

• At any point (especially instead of replying), it may terminate.

The simulator combines aspects from the computational executions adversial environment
E with the symbolic executions by using terms from the symbolic model. However, neither
the symbolic execution nor the computational execution can be used in combination with the
simulator. Hence, we need to define a hybrid combination to execute the simulator.

Definition 2.1.10 (Hybrid execution). Let Πp be a probabilistic CoSP protocol, and let Sim be
a simulator. We define a probability distribution H-TraceM,Πp,Sim(k) on (finite) lists of tuples
(Si, νi, fi) called the full hybrid trace according to the following probabilistic algorithm ΠC ,
run on input k, that interacts with Sim. (ΠC is called t he hybrid protocol machine associated
with Πp and internally runs a symbolic simulation of Πp as follows:)

• Start: S1 := S := ∅, ν1 := ν is the root of Πp, and f1 := f is a totally undefined partial
function mapping node identifiers to T. Run Πp on ν.

• Transition: For i = 2, 3, . . . do the following:

– Let ν̃ be the node identifiers in the label of ν. Define t̃ through t̃j := f(ν̃j).

– Proceed depending on the type of ν.

∗ If ν is a computation node with constructor destructor or nonce F , then let
m := F (t̃). If m 6= ⊥, let ν ′ be the yes-successor and f ′ := (ν := m),
otherwise let ν ′ be the no-successor and f ′ := f . Let ν := ν ′ and let f := f ′.

∗ If ν is an output node, send t̃1 to Sim, without handing over the control to Sim.
Let ν ′ be the unique successor of ν and set ν := ν ′.

∗ If ν is an input node, hand control to Sim and wait to receive m ∈ T from it.
Let f ′ := f(ν := m) and let ν ′ be the unique successor of ν. Set ν := ν ′ and
f := f ′.

∗ If ν is a control node labelled with out-metadata l, send l to Sim. Hand control
to Sim and wait to receive a bitstring l′ from Sim. Let ν; be the successor of ν
along the edge labeled l′, or the lexicographically smallest if there is no edge
with label l′. Let ν := ν ′.

∗ If ν is a nondeterministic node, sample ν ′ according to the probability distribu-
tion specified in ν. Let ν := ν ′.

– Send (info, ν, t) to Sim. When receiving an answer (proceed) from Sim, continue.

– If Sim has terminated, stop. Otherwise let (Si, νi, fi) := (S, ν, f).

The probability distribution of the (finite) list ν1, . . . produced by this algorithm we denote by
H-NodesM,Πp,Sim(k). We call this distribution the hybrid node trace.

Analysing the differences between this hybrid execution and the other two definitions leads
to sufficient criteria for computational soundness. Comparing the hybrid execution definition
with the symbolic execution definition, the key difference is that there is no validity check for the

12 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

terms, i.e., the condition S ` m is missing. If every message m from the simulator satisfies that
criteria, it is called Dolev-Yao style (DY-style). In comparison to the computational execution,
the Sim does not need to behave as the attacker at all. Thus, in addition to Dolev-Yao style,
the simulator execution needs to be indistinguishable from the computational execution. In
particular, indistinguishability is very common in cryptographic definitions as well.

The existence of a simulator that fulfills the two distinguished properties, DY-style and indis-
tinguishability, has actually been shown sufficient for needs to fulfill to establish computational
soundness. We formally define the two properties in the following definition and speak of a
good simulator if both properties are fulfilled.

Definition 2.1.11 (Good simulator). A simulator Sim is Dolev-Yao style (short: DY) for M
and Πp, if with overwhelming probability the following holds: In an execution of Sim +ΠC , for
each l, let ml ∈ T be the l-th term sent (during processing of one of ΠC’s input nodes) from
Sim to ΠC in that execution. Let Tl ⊂ T be the set of all terms that Sim has received from ΠC

(during processing of output nodes) prior to sending ml. Then we have Tl ` ml.
A simulator Sim is indistinguishable for M, Πp, an implementation A, an adversary E, and

a polynomial p, if NodespM,A,Πp,E
(k)

C
≈ H-NodesM,Πp,Sim(k), i.e., if the computational node

trace and the hybrid node trace are computational indistinguishable.
A simulator is good if it is Dolev-Yao style and indistinguishable.

Since the computational soundness result in this chapter makes use of this proof technique,
we also quote the theorem that we leverage.

Theorem 2.1.1 (Good simulator implies soundness [14]). Let M = (C,N,T,D,`) be a
symbolic model, let P be a class of CoSP protocols, and letA be a computational implementation
of M. Assume that for every efficient probabilistic CoSP protocol Πp (whose corresponding
CoSP protocol is in P), every probabilistic polynomial-time adversary E, and every polynomial
p, there exists a good simulator for M,Πp, A,E, and p. Then A is computationally sound for
protocols in P .

2.2 Zero Knowledge Proofs

Zero-Knowledge (ZK) proofs are a cryptographic tool to mathematically prove a statement
without revealing more information, for example a website might require an age verification.
The zero-knowledge proof can be used to prove that the age is above 18 without revealing the
birth date. This kind of mechanism is used in privacy protocols hiding the identity but proving
eligibility, e.g., for e-voting protocols [53] or in cryptocurrencies such as ZCash in order to
preserve anonymity.

These properties sound contradicting at first but let us clarify it with an example from the
area of graph theory. Given two graphs G1 and G2 computing the isomorphism between them
has quasipolynomial time and most practical algorithms have an exponential worst case. So
assume Alice knows a graph isomorphism and wants to prove to Bob that the graphs G1 and G2

2.2. ZERO KNOWLEDGE PROOFS 13

are isomorphic without giving him the isomorphism. In order to do so, they run a three round
protocol:

1. Alice samples a random isomorph graph G′ for G1 and sends G′ to Bob.

2. Bob flips a coin and sends 1 for head and 2 for tails to Alice.

3. When receiving 1 Alice sends the isomorphism betweenG′ andG1 to Bob, when receiving
2 she sends the isomorphism between G′ and G2 to Bob (that one she can compute since
she has the isomorphism between G1 and G2).

Running this protocol Alice can always succeed if she has an isomorphism between G1 and G2.
If she has not such an isomorphism Bob catches her with probability 1

2 since she cannot send
both isomorphisms in step three. However, Bob does not learn the isomorphism between G1

and G2. Note that the probability of 1
2 can be amplified by repeating the experiment.

The given example is an interactive zero-knowledge proof, i.e., Bob needs to interact with
Alice in order to make the proof work. If Alice knew upfront which coin-flip Bob does she
could easily cheat by computing G′ as a random isomorphism that she needs to reveal in step
three.

In contrast to these interactive zero-knowledge proofs, there are also non-interactive zero-
knowledge proofs which we consider in this work. The advantage of the non-interactive proofs
is that they are transferable, i.e., if Alice creates a non-interactive ZK proof and sends it to Bob,
he can also forward it to Charlie who can verify the truth of the statement in the proof.

There also is a transformation for interactive ZK proofs to non-interactive ones in the random
oracle model, i.e., instead of using randomness given by Bob, Alice uses a random oracle that
given k graphs (where k is the number of repetitions Bob would have done) outputs a random
bitstring of length k that Alice uses as coin-flips. Then she can send Bob the k graphs, and the
corresponding isomorphisms of round three, he can then use the random oracle to verify the
isomorphisms.

Non-interactive ZK proofs can further be distinguished by the property of malleability, i.e.,
by the question Given a proof, can it be transformed into another proof?. For example, having a
proof for the statementA and a proof forB, can it be combined leading to a proof forA∧B. The
proof technique shown in here has also been used in the scenario of controlled malleability[13],
however, verification algorithms struggle with the logical connection of statements which makes
the search space grow exponentially.

In [21], it was shown that for getting computational soundness of (non-interactive) zero-
knowledge proofs, we need at least the following properties:3 Completeness (if prover and
verifier are honest, the proof is accepted), extractability (given a suitable trapdoor, one can
get a witness out of a valid proof – this models the fact that the prover knows the witness),
zero-knowledge (given a suitable trapdoor and a true statement x, a ZK-simulator can produce
proofs without knowing a witness that are indistinguishable from normally generated proofs for

3It was not shown that these are the minimal properties, but it was shown that none of these properties can be
dropped without suitable substitute.

14 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

x), unpredictability (two proofs are equal only with negligible probability), length-regularity
(the length of a proof only depends on the length of statement and witness), and some variant
of non-malleability. Furthermore, they required for convenience that the verification and the
extraction algorithm are deterministic.

The variant of non-malleability chosen in [21] was the notion of extraction zero-knowledge
which is a strong variant of extractability (we are aware of only one scheme in the literature that
has this property [76]). They left it as an open problem whether weaker variants also lead to
computational soundness. We answer this question positively. We use the weaker and more
popular notion of simulation-sound extractability. In a nutshell, this notion guarantees that the
adversary cannot produce proofs from which no witness can be extracted, even when given
access to a ZK-simulator.

We actually need an even weaker property: honest simulation-sound extractability. Here the
adversary may ask the ZK-simulator to produce a simulated proof for x if he knows a witness w
for x.

Before we come to our definition, we need to specify one more detail about the ZK proofs:
the statements to be proven. The statement we have seen in the example was for graph
isomorphism and is very specific. In order to have a widely applicable result, this part needs to
be generic. A property that the statements all have in common is that they have a secret part and
a public part. Since the secret is used to prove a statement about the public part x, it is often
called witness w. For a statement we use a relation R and the statement is true if and only if
(w, x) ∈ R.

Proving computational soundness requires at this point to allow the attacker potentially
more than the honest parties, thus we have distinguished two relations Rsym

adv and Rsym
honest, the

first modeling what the adversary is able to do, the second modeling what honest participants
are allowed to do. Similarly, our definition of weakly symbolically-sound zero-knowledge
proof distinguishes two relations Rcomp

adv ⊇ Rcomp
honest. (“Weakly” distinguishes our notion from

that in [21] which requires extraction ZK.) All conditions assume that honest participants use
(x,w) ∈ Rcomp

honest. Hence, we call Rsym
honest the usage restriction. Note that in the simplest case,

we would have Rsym
honest := Rsym

adv .
In some cases, however, it may be advantageous to let Rsym

honest be strictly smaller than Rsym
adv .

This permits us to model a certain asymmetry in guarantees given by a zero-knowledge proof
system: To honestly generate a valid proof, we need a witness with (x,w) ∈ Rsym

honest, but
given a malicious prover, we only have the guarantee that the prover knows a witness with
(x,w) ∈ Rsym

adv .

Definition 2.2.1 (Weakly symbolically-sound ZK proofs). A weakly symbolically-sound zero-
knowledge proof system for relations Rcomp

honest, R
comp
adv is a tuple of polynomial-time algorithms

(K,P,V) such that there exist polynomial-time algorithms (E,S) and the following properties
hold:

• Completeness: Let a polynomial-time adversary A be given. Let (crs, simtd, extd) ←
K(1η). Let (x,w) ← A(1η, crs). Let proof ← P(x,w, crs). Then with overwhelming
probability in η, it holds (x,w) 6∈ Rcomp

adv or V(x,proof, crs) = 1.

2.2. ZERO KNOWLEDGE PROOFS 15

• Zero-Knowledge: Fix a polynomial-time oracle adversary A. For given crs, simtd, let
OP(x,w) := P(x,w, crs) if (x,w) ∈ Rcomp

honest and OP(x,w) := ⊥ otherwise, and let
OS(x,w) := S(x, crs, simtd) if (x,w) ∈ Rcomp

honest and OS(x,w) := ⊥ otherwise. Then

|Pr[AOP(1η, crs) = 1 : (crs, . . .)← K(1η)]−
Pr[AOS(1η, crs) = 1 : (crs, . . .)← K(1η)]|

is negligible in η.

• Honest simulation-sound extractability: Let a polynomial-time oracle adversary A be
given. Let (crs, simtd, extd) ← K(1η). Let O(x,w) := S(x, crs, simtd) if (x,w) ∈
Rcomp

honest and ⊥ otherwise. Let (x, proof) ← AO(1η, crs). Let w ← E(x, proof, extd).
Then with overwhelming probability, if V(x,proof, crs) = 1 and proof was not output
by O then (x,w) ∈ Rcomp

adv .

• Unpredictability: Let a polynomial-time adversary A be given. Let (crs, simtd, extd)←
K(1η). Let (x,w,proof ′) ← A(1η, crs, simtd, extd). Then with overwhelming proba-
bility, it holds proof ′ 6= P(x,w, crs) or (x,w) 6∈ Rcomp

honest.

• Length-regularity: Let two witnesses w and w′, and statements x and x′ be given
such that |x| = |x′|, and |w| = |w′|. Let (crs, simtd, extd) ← K(1η). Then let
proof ← P(x,w, crs) and proof ′ ← P(x′, w′, crs). Then we get |proof| = |proof ′|
with probability 1.

• Deterministic verification and extraction: The algorithms V and E are deterministic.

(We do not explicitly list soundness because it is implied by honest simulation-sound extractabil-
ity.) �

We stress that using the the construction in [107] on a length-regular and extractable NIZK
leads to weakly symbolically-sound ZK proof system.

Constructions of weakly symbolically-sound zero-knowledge proof schemes

In this section we give a construction of zero-knowledge schemes satisfying the definition that
we require for the soundness result. The given construction is generic in the sense that it takes a
zero-knowledge scheme with weaker properties and transforms it. In order to do so, we use a
known transformation [107] and show that if we add properties to the base scheme, then the
out-coming scheme satisfies our definition. The construction is done by repeating the proof,
which makes the out-coming proof scheme less efficient.

Construction [107]. The construction yields weakly symbolically-sound zero-knowledge
proofs given any non-interactive zero-knowledge proof which is length-regular and extractable.

This is summarized in the following theorem:

16 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

Theorem 2.2.1. Let π be a length regular, extractable non-interactive zero-knowledge proof
system and assume that one way functions exist. Then the construction in [107] leads to a
weakly symbolically-sound zero-knowledge proof system Π.

In paper [107], they proved that the construction satisfies all properties listed in definition
2.2.1 except honest simulation-extractability and length-regularity. However, we show that it
also satisfies these properties.

The construction basically uses polynomially many zero-knowledge proofs to construct
a single one, but the number of proofs used in the combined proof is always the same. So
length-regular follows immediately. They show unpredictability and simulation-soundness.
Simulation-soundness is shown by a reduction to the soundness property of the underlying
zero-knowledge proof system. The same way one can reduce the simulation-extractability
property to extractability.

The construction in [107] uses a strong one-time signature scheme (K, sig, verifysig) which
is strong existential unforgeable when it is used only once and length regular. Denote q(k) the
length of the verification key.

In addition there is assumed to be an efficiently computable function g : {0, 1}q(k) → 2q
′(k)

that maps verification keys to subsets of {1, . . . , q′(k)}. Let t(k) be a polynomial upper bound
of the proof occurring in a protocol execution, l(k) = q(k) · t(k), and q′(k) = l(k)2. Then

holds for any set m1, . . . ,mt(k) different from m that |g(m)\
t(k)⋃
i=1

g(mi| ≥
l(k)

2
. Details on the

construction of such functions can be found in [107].
We show that the construction given in [107] satisfies the properties. The construction is the

following:

Reference String Let σ be a reference string of the proof system π. Then the reference string of
Π is Σ = σ0◦σ1◦. . .◦σq′(k). The same way is the simulation trapdoor the concatenation of
the simulation trapdoors of π, and the extraction trapdoor the concatenation of extraction
trapdoors of π.

Prover PΠ(x,wΣ):

(1) Run K(1ν) to obtain a key pair (vk, sk) for the one-time signature scheme.

(2) For each i in the set g(vk) prove pi = Pπ(x,w, σi). For i 6∈ g(vk), define pi := ε,
i.e. the empty string.

(3) Let P := p1 ◦ . . . ◦ pq′(k).

(4) Output (vk, x, P, sigsk(x, P)).

Verifier VΠ(x, p = (vk, x′, P, z),Σ):

(1) Check x = x′, and verifysig((x, P), z) = 1.

(2) Decompose P into the pi for i ∈ g(vk).

(3) Return 1 if Vπ(x, pi, σi) = 1 for all i ∈ g(vk), and 0 otherwise.

2.2. ZERO KNOWLEDGE PROOFS 17

Simulator SΠ(x,Σ, simtd):

(1) Generate vk, sk as the prover does.

(2) For i ∈ g(vk) construct pi = Sπ(x, σi, simtdi) and otherwise pi = ε.

(3) Let P := p1 ◦ . . . ◦ pg′(k).

(4) Output (vk, x, P, sigsk(x, P)).

Extractor E(p = (vk, x′, P, z),Σ, extd):

(1) Check VΠ(x′, p,Σ). If the outcome is 0 return ⊥.

(2) For each i ∈ g(vk) run E(pi, σi, extdi) = wi. Ifwi is a witness weakly symbolically-
sound zero-knowledge proof system for x′ then return wi, otherwise go on.

(3) If no witness was found return ⊥.

Proof. 1. Completeness, Zero-knowledge, Unpredictability: These properties were already
shown in [107].

2. Simulation-Extractability:

Let S1, . . . , Sn be the simulated proofs that the adversary has queried and p = (vk, x, P, z)

the outputted proof. If the adversaries output has not this form, the verification would
not succeed and there is nothing to show. In addition we may assume that p 6= Si for all
1 ≤ i ≤ n, because otherwise there is again nothing to show. The case that vki = vkj
for two different simulated proofs Si 6= Sj occurs with negligible probability, so we can
exclude this case. Consider the following two cases:

Case (i): vk = vki for some 1 ≤ i ≤ n. Then one of x, P, z is different from the
corresponding one in Si = (vki, xi, Pi, zi). If x 6= xi or P 6= Pi then
z 6= zi or the verification fails. Thus w.l.o.g. z 6= zi. But this means that the
adversary was able to forge a signature for the one-time signature scheme
which can only happen with negligible probability.

Case (ii): vk 6= vki for all i. In this case holds that g(vk)\
⋃

1≤i≤n
g(vki) 6= ∅. This

means there is some j ∈ {1, . . . , q′(k)} such that j ∈ g(vk) but j 6∈⋃
1≤i≤n

g(vki). If the extraction fails, then the extraction for pj fails, too,

by construction. But then, this is a successful adversary for the extractability
of π. Thus this case can only occur with negligible probability, too.

Together this means that an adversary for the simulation-extractability property of Π can
only succeed with negligible probability, what we wanted to show.

3. Length-regularity:

The function g always selects the same number of i from vk. So the number of proofs
which are done is always the same, independent of vk. Since the proof system π is length

18 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

regular, each proof has the same length. For a security parameter ν the verification keys
vk have the same length Because x and P have are length-regular we can conclude that
sigsk(x, P) has the same length for all x, too. Thus the overall proof is length-regular.

Taking a closer look at the proof one can see that almost all properties P of the form ”P has
to holds even when the adversary gets access to a simulation oracle” can be derived this way
when the origin proof system has the property P .

2.3 The Symbolic Model

In this section, we introduce the symbolic abstraction for zero-knowledge proofs. The model
also contains standard cryptographic building blocks such as asymmetric encryptions and digital
signatures. We define the constructors and destructors for every cryptographic building block
separately and later on give a summary containing all terms and the adversarial capabilities
(the relation `). We finish this section with an example protocol that we also verify using the
computational soundness result.

Destructors are partial functions from Tn to T where n depends on the specific destructor.
We define these destructors by syntactic patterns, e.g., given constructors C1, C2, a destructor D
could be described as D(C1(t1), t2) = t1 where t1, t2 are arbitrary terms. If no rule applies the
destructor outputs ⊥. In the example that would be the case for D(C2(t1), t2).

General constructors and destructors. Nonces, denoted by N , ranges over NP ∪NE , two
disjoint infinite sets of nonces, the protocol nonces and adversary nonces, respectively.

Strings, denoted by S, can be constructed using an empty string empty and applying zeros
and ones to it by the constructors string0(S) and string1(S). While these constructors can
be used to construct strings there are also their counterparts on the destructor side to compute
substrings, these destructors are defined by

unstring0(string0(s)) = s and unstring1(string1(s)) = s

Pairings of terms are modeled by the constructor pair/2 that takes arbitrary terms. The
extraction counterparts are also part of the symbolic model and defined by

fst(pair(t1, t2))) = t1 and snd(pair(t1, t2)) = t2

The strings and pairs can be used in order to model computations that are irrelevant for the
cryptographic properties of the protocol.

In addition, there is a destructor to check equality which is defined by equals(x, x) = x.
Note that this is a fully syntactic equality on the symbolic side as well as on the computational
side (bitstrings) and does not have any semantic properties.

2.3. THE SYMBOLIC MODEL 19

Encryptions. In order to model encryptions, we need the keys ek/1 and dk/1 which take
nonces as arguments. ek models the public encryption key and dk the private decryption key.
The ciphertext itself is modeled by enc(ek(N), t, N ′) and represents a ciphertext for message t
encrypted using the encryption key ek(N) and algorithmic randomness N ′. Symbolically, the
algorithmic randomness just allows to distinguish different encryptions of the same plaintext;
computationally, it will actually be the randomness used by the encryption algorithm.

The decryption of a ciphertext is done using the destructor dec(dk(N), enc(ek(N), t, N ′)) =

t. Note that the N in the decryption key has to match the encryption key. We also model a de-
structor that can extract the encryption key from a ciphertext ekof(enc(ek(N), t, N ′)) = ek(N).

Signatures. Digital signatures use two keys, similar to asymmetric encryptions, a verification
key vk/1 and a signing key sk/1. The signature itself is then modeled by a constructor
sig(sk(N), t, N ′) and the verification of the signature by a destructor

verifysig(vk(N), sig(sk(N), t, N ′)) = t

Symbolically, the main difference to an encryption is that the private part is contained in
the signature and the public part is used to verify whereas the ciphertext can be constructed
with the public part but the decryption requires the private one. Similar to the destructor
ekof we require a destructor vkof extracting the verification key from a signature, formally
vkof(sig(sk(N), t, N ′)) = vk(N).

Zero-Knowledge proofs. The zero-knowledge proofs use a common reference string (CRS)
modeled by crs(N) corresponding to the vk of signatures. The proof itself has the form
ZK(crs(N), x, w,N ′). The N ′ is the randomness used to create the proof, x is the proven
statement and w the witness. Similar to vkof and ekof we use a destructor crsof the extract the
CRS from a proof. The statement x also needs to be extractable from the proof getPub. This
method is required for the protocol to verify that the statement proven actually is the statement
the recipient expects. However, the verification destructor is more complicated than in the cases
before. The reason for the complication is that we now need to involve the relation between
statements and witnesses.

We denote the statement-witness relation by Rsym
adv . The relation is part of the symbolic

model, however, the computational soundness result is parametric in the relation. An exam-
ple for such a relation would be Rsym

adv := {(x,w) : ∃N,M, t.x = enc(ek(N), t,M), w =

dk(N)}.The relation specifies what a valid witness is and what semantic meaning the statement
has. In the given example, the meaning could be that a party that has access to dk(N) received
the ciphertext x. A valid proof satisfies (x,w) ∈ Rsym

adv . Note that our symbolic model does
not ensure that any term ZK(crs(N), x, w,M) is a valid proof. This validity check is done by
destructor verifyZK defined by

verifyZK(crs(t1),ZK(crs(t1), t2, t3, t4)) = ZK(crs(t1), t2, t3, t4) if (t2, t3) ∈ Rsym
adv

20 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

Garbage terms. The gap between the symbolic world and the computational world also
includes that an adversary can send bitstrings that seem like valid terms, but only at the first
glance. To close that gap, we also need to model those garbage terms. However, they will not
be used by the protocol.

The constructor garbage /1 represents an unspecific invalid term, garbageEnc(t,N) and
garbageSig(t,N) represent invalid encryptions and signatures, respectively. Here, t represents
the encryptions/signatures with public key t. For ZK proofs, we add garbageZK(t1, t2, N)

where t1 represents the CRS and t2 the statement of the proof.

Terms and constructors. We summarize the definitions of the constructors and T by the
following grammar:

T ::=enc(ek(N), t, N) | ek(N) | dk(N) | sig(sk(N), t, N) | vk(N) | sk(N) |
crs(N) | ZK(crs(N), t, t, N) | pair(t, t) | S | N |
garbage(N) | garbageEnc(t,N) | garbageSig(t,N) | garbageZK(t, t,N)

S ::= empty | string0(S) | string1(S)

Note that the grammar also defines the constructors and their arity:

C ::={enc/3, ek/1, dk/1, sig/3, sk/1, vk/1, crs/1,ZK/4, pair/2, string0 /1, string1 /1,

garbage /1, garbageEnc /2, garbageSig /2, garbageZK /3}

Destructors. All destructors are specified in Figure 2.1. Note that there are a number of
destructors that do not modify their input (isek, iszk, . . .). These are useful for testing properties
of terms: The protocol can, e.g., compute isek(t) and then branch depending on whether the
destructor succeeds.

The adversary. The capabilities of the adversary are described by the deduction relation `.
S ` t means that from the terms S, the adversary can deduce t. ` is defined by the following
rules:

m ∈ S
S ` m

N ∈ NE

S ` N

S ` t1, . . . , tn t1, . . . , tn ∈ T

F constructor or destructor F (t1, . . . , tn) ∈ T

S ` F (t1, . . . , tn)

Note that the adversary cannot deduce protocol nonces. These are secret until explicitly revealed.
The capabilities of the adversaries with respect to the network (intercept/modify messages)
are modeled explicitly by the protocol: if the adversary is allowed to intercept a message, the
protocol explicitly communicates it through the adversary. Furthermore, the definition of `
is very generic and in particular independent from the actual constructors, destructors or the
specific definition of T.

2.3. THE SYMBOLIC MODEL 21

dec(dk(t1), enc(ek(t1),m, t2)) = m

verifysig(vk(t1), sig(sk(t1),t2, t3)) = t2

isek(ek(t)) = ek(t)

isvk(vk(t)) = vk(t)

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageEnc(t1, t2)) = garbageEnc(t1, t2)

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2)) = garbageSig(t1, t2)

iscrs(crs(t1)) = crs(t1)

iszk(ZK(t1, t2, t3, t4)) = ZK(t1, t2, t3, t4)

iszk(garbageZK(t1, t2, t3))

= garbageZK(t1, t2, t3)

ekof(enc(ek(t1), t2, t3)) = ek(t1)

ekof(garbageEnc(t1, t2)) = t1

crsof(ZK(crs(t1), t2, t3, t4)) = crs(t1)

crsof(garbageZK(t1, t2, t3)) = t1

vkof(sig(sk(t1), t2, t3)) = vk(t1)

vkof(garbageSig(t1, t2)) = t1

fst(pair(t1, t2))) = t1

snd(pair(t1, t2)) = t2

unstring0(string0(s)) = s

unstring1(string1(s)) = s

getPub(ZK(t1, t2, t3, t4)) = t2

getPub(garbageZK(t1, t2, t3)) = t2

equals(x, x) = x

verifyZK(crs(t1),ZK(crs(t1), t2, t3, t4)) = ZK(crs(t1), t2, t3, t4) if (t2, t3) ∈ Rsym
adv

Figure 2.1: Definition of all destructors. If no rule matches, a destructor returns ⊥.

Protocol example. To show the usability of our modeling, we give a small protocol example.
The protocol is a variant of the Needham-Schroeder-Protocol in which the recipient proves that
he knows a nonce instead of sending that nonce back.

22 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

A B
m1 := enc(ekB, N1, r1)

ZK(crs, (enc(ekA, N2, r2),m1),dkB, r3)

enc(ekB, N2, r4)

The relations used for the ZK-proofs are Rsym
honest = {((m′,m1), (dk)) : dec(dk,m1) 6= ⊥}

and Rsym
adv = Rsym

honest ∪ {((m
′,m1), (dk)) : m1 = garbageEnc(t,N), t ∈ T, N ∈ N}, i.e., B

proves that he can decrypt m1. The part m′ of the statement is not used in the relation, but the
non-malleability of our ZK proofs ensures that the adversary cannot change m′ in an existing
proof.

In the section Section 2.5, we show how to use the computational soundness result to analyse
the example given here in the applied π-calculus using the verification tool ProVerif [38].

2.4 Computational Soundness

In this section, we prove the computational soundness of the model. We start by stating the
main theorem. The rest of the section is used to prove the theorem. However, for the sake of
readability, some lengthy parts of the proof are postponed to the Appendix A.1. The key ideas of
those proofs are kept present in the section. Since the soundness result cannot hold for arbitrary
protocols and implementations, we define the criteria for soundness in the subsection after the
theorem.

Theorem 2.4.1 (Computational soundness of ZK proofs). Let Π be a protocol satisfying the
protocol conditions listed in figure 2.2. Let AF be a computational implementation satisfying
the implementation conditions listed in figure 2.3. Then for any node trace P , if Π symbolically
satisfies P , then Π computationally satisfies P .

2.4.1 Theorem conditions

We first give the protocol conditions and then continue with the implementation conditions
separately. This simplifies the future referencing for verifying or implementing protocols using
the soundness result.

Protocol conditions. Most of the conditions simply resemble common sense, however, it
is important to precisely state them for the proof. There are two conditions regarding the
randomness: one is that randomness of keys, encryptions and signatures is only used once; the
other is that no adversarial randomness NE is used.

There is an exception for the randomness in ciphertext and signatures when it comes to
the witness of zero-knowledge proofs. Here, the randomness might occur again in the witness
part. We need to allow this usage since real-world schemes require the knowledge of the used
algorithmic randomness.

2.4. COMPUTATIONAL SOUNDNESS 23

As stated when introduced, the garbage terms are to symbolically reflect computationally
malformed terms. We require the protocol to only produce well-formed terms. Furthermore, the
protocol has to use decryption, as well as the verification of signatures and zero-knowledge the
correct way, i.e., the first argument has to be the corresponding key.

The remaining conditions are regarding zero-knowledge. In the case of non-interactive ZK
proofs that use a CRS, this CRS has to be constructed in an honest way. Consequently, we
require that the used CRS makes use of a protocol nonce NP .

So far, all protocol conditions have been of a rather syntactic nature. The following, most
interesting, protocol condition is a semantic one. We call it the valid proofs condition and
it defines the usage of the relations we introduced for ZK proofs Rsym

honest and Rsym
adv in which

our symbolic model is parameterized. It requires that the protocol only generates proofs that
are actually true, i.e., whenever the protocol constructs a ZK proof ZK(c, x, w,N) we have
(x,w) ∈ Rsym

honest. Then the valid proofs condition simply requires that the protocol never tries
to construct a ZK-proof with an invalid witness. Note that, we only impose this condition on the
honest protocol, not on the adversary.

We summarized all conditions in Figure 2.2.

Implementation conditions. We now describe how to implement the constructors and destruc-
tors computationally. We do so by specifying a partial deterministic functionAF : ({0, 1}∗)n →
{0, 1}∗ (the computational implementation of F) for each constructor or destructor F : Tn → T.
Intuitively, AF should behave as F , only on bitstrings, e.g., Aenc(ek ,m, r) should encrypt m
using encryption key ek and algorithmic randomness r. The distribution AN specifies the
distribution according to which nonces are picked. We split the conditions in three parts, general
conditions, cryptographic conditions and more specifically zero-knowledge conditions. We list
all conditions in a formal specification in Figure 2.3.

General conditions. In the symbolic scenario there is implicitly a type given with every
constructor. This is particularly used in the destructor definitions. Consequently, we require the
output strings to be typed. This type has to be efficiently recognizable.

Similar to the protocol conditions, the protocol conditions are mostly simple syntactic
conditions such as Afst(Apair(x, y)) = x or that implementations fail on wrong types. For
example, the verification key extraction should only work on strings having the type signature.

Moreover, we require length regularity, i.e., if two different inputs to an implementation
have the same length then the two output have the same length, too.

Cryptographic conditions. The implementation of nonce has to be a uniformly random
distribution.

The encryption scheme has to be IND-CCA secure. In addition, we require that two
ciphertexts are equal with negligible probability, given different randomnesses and the same
plaintext. Note that this is not directly implied by the definition of IND-CCA security since the
definition only considers overwhelming probability. However, we require that this holds for

24 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

1. The annotation of each crs-node, each key-pair (ek,dk) and (vk, sk) is a fresh nonce
which does not occur anywhere else.

2. There is no node annotated with a garbage, garbageEnc, garbageSig, garbageZK,
or N ∈ NE constructor in the protocol.

3. The last argument of a enc, sig,ZK constructor are fresh nonces. These nonces are
not used anywhere else except in case of enc and sig as part of a subterm of the third
argument in a ZK-node.

4. A dk-node is only used as first argument for dec-node or as subterm of the third
argument in a ZK-node.

5. A sk-node is only used as first argument for sig-node or as subterm of the third
argument in a ZK-node.

6. The first argument of a dec-computation node is a dk-node.

7. The first argument of a sig-computation node is a sk-node.

8. The first argument of a ZK-computation is a crs-computation node which is annotated
by a nonce N ∈ NP . This nonce is only used as annotation of this crs node and
nowhere else.

9. The first argument of a verifyZK-computation is a crs-computation node which is
annotated by a nonce N ∈ NP . This nonce is only used as annotation of this crs

node and nowhere else.

10. The protocol respects the usage restriction Rsym
honest in the following sense: In the

symbolic execution of the protocol, whenever a ZK-computation-node ν is reached,
then (f(νx), f(νw)) ∈ Rsym

honest where f is the function mapping nodes to terms
(cf. the definition of the symbolic execution) and νx and νw are the second and third
argument of ν.

11. For the relation Rsym
adv it holds: There is an efficient algorithm SymbExtr, that given

a term M together with a set S of terms, outputs a term N , such that S ` N and
(N,M) ∈ Rsym

adv or outputs ⊥ if there is no such term N . We call a relation satisfying
this property symbolically extractable.

12. The relation Rsym
adv is efficiently decidable.

Figure 2.2: List of all protocol conditions for computational soundness

2.4. COMPUTATIONAL SOUNDNESS 25

1. The implementation is an implementation according to Definition 2.1.5 (see Sec-
tion 2.1).

2. There are disjoint and efficiently recognizable sets of bitstrings representing the node
types nonce, ciphertext, encryption key, decryption key, signature, verification key,
signing key, common reference string, zero-knowledge proof, pair and payload-string.

The images of AN have type nonce (for all N ∈ N), Aenc have type ciphertext, Aek

have type encryption key, Adk have type decryption key, Asig have type signature,
Avk have type verification key, Ask have type signing key, Acrs have type common
reference string, AZK have type zero-knowledge proof, Apair have type pair, and
Astring0 , Astring1 , Aempty have type payload string.

3. The implementation AN for nonces N ∈ NP compute uniform distributions on
{0, 1}η and output the sampled value tagged as nonce (here η is the security parame-
ter).

4. If Adec(dkN ,m) 6= ⊥ then Aekof(m) = ekN , i.e. the decryption only succeeds if
the corresponding encryption key can be extracted out of the ciphertext.

5. Avkof(Asig(Ask(x), y, z)) = Avk(x) for all y ∈ {0, 1}∗ and x, z nonces. If e is of
type signature then Avkof(e) 6= ⊥, otherwise Avkof(e) = ⊥.

6. For all m, k ∈ {0, 1}∗, k having type encryption key, and r 6= r′ ∈ {0, 1}∗ with
|r| = |r′| holds that Aenc(k,m, r) and Aenc(k,m, r

′) are equal with negligible
probability.

7. For all m, k ∈ {0, 1}∗, k having type signing key, and r 6= r′ ∈ {0, 1}∗ with |r| =
|r′| holds that Asig(k,m, r) and Asig(k,m, r′) are equal with negligible probability.

8. The implementations Aek, Adk, Aenc, and Adec belong to an encryption scheme
(KeyGenenc,ENC,DEC) which is IND-CCA secure.

9. The implementations Avk,Ask,Asig, and Averifysig
belong to a signature scheme

(KeyGensig,SIG,VERsig) which is strongly existential unforgeable.

10. All implementations are length regular, i.e. if the input has the same length the output
will have the same too.

11. For m1,m2 ∈ {0, 1}∗ holds Afst(Apair(m1,m2)) = m1 and
Asnd(Apair(m1,m2)) = m2

12. Adec(Adk(r), Aenc(Aek(r),m, r′)) = m for all r, r′ nonces.

13. Let k ∈ {0, 1}∗ be an encryption key and m,n ∈ {0, 1}∗ such that n is of type nonce.
Then holds Aekof(Aenc(k,m, n)) = k. If c ∈ {0, 1}∗ is not of type ciphertext then
Aekof(c) = ⊥.

Figure 2.3: List of all implementation conditions for computational soundness

26 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

14. Let vk, sk ∈ {0, 1}∗ be a keypair, i.e. (vk, sk) is in the image of KeyGensig, then
holds for all m,n ∈ {0, 1}∗: Avkof(Asig(sk,m, n)) = vk.

15. Averifysig
(Avk(r), Asig(Ask(r),m, r′)) = m for all r, r′ nonces.

16. For all p, s ∈ {0, 1}∗ we have that Averifysig
(p, s) 6= ⊥ implies Avkof(s) = p.

17. For m ∈ {0, 1}∗ holds Aunstringi(Astringi(m)) = m for i ∈ {0, 1} and
Astring0(m) 6= Astring1(m).

18. For all m ∈ {0, 1}∗ of type zero-knowledge proof holds that iszk(m) = m and if
m has not type zero-knowledge proof, then iszk(m) = ⊥. The same holds for issig

w.r.t. the type signature and isenc w.r.t. the type ciphertext.

19. If k ∈ {0, 1}∗ is not of the type encryption key then holds for all m,n ∈ {0, 1}∗

that Aenc(k,m, n) = ⊥. The same has to hold for the type signing key and the
implementation of signatures.

20. The implementation Acrs, AZK, AverifyZK
belongs to a zero-knowledge proof system

(K,P,V) which is a weak symbolically-sound zero-knowledge proof system.

21. For all z ∈ {0, 1}∗ holds AverifyZK
(crsof(z), z) ∈ {⊥, z}, where

AverifyZK
(crsof(z), z) = z if and only if z is correct w.r.t. to the verifier of the

proof system.

22. If z ∈ {0, 1}∗ is not of type zero-knowledge, then verifyZK(crsof(z), z) = ⊥.

23. For all p, q, r, s ∈ {0, 1}∗ we have that z = AZK(p, q, r, s) 6= ⊥ implies Acrsof(z) =

p.

24. For all z ∈ {0, 1}∗ holds: If z is not of type zero-knowledge proof then Acrsof(z) =

⊥.

25. If z := AZK(m̄) 6= ⊥ then AverifyZK
(Acrsof(z), z) = 1.

26. If (x,w) 6∈ Rcomp
honest then for all c, r ∈ {0, 1}∗, it holds AZK(c, x, w, r) = ⊥.

27. Let c, x, w, n ∈ {0, 1}∗ such that c is of type crs and let z = AZK(c, x, w, n). If
z 6= ⊥ then holds that x = AgetPub(z).

28. We require that the relations Rcomp
honest, R

comp
adv are an implementation of Rsym

adv with
usage restriction Rsym

honest in the sense of Definition 2.4.2.

29. For d ∈ {0, 1}∗ of type decryption key there is a efficiently computable function
p : {0, 1}∗ → {0, 1}∗ such that for all m,n ∈ {0, 1}∗, n of type nonce, it holds
Adec(d,Aenc(p(d),m, n)) = m, i.e. p computes the encryption key corresponding
to d. The analogous statement has to hold for signing keys and verification keys.

Figure 2.3: List of all implementation conditions for computational soundness (cont.)

2.4. COMPUTATIONAL SOUNDNESS 27

every randomness. The signature scheme is strongly existential unforgeable. Both properties
are very common cryptographic requirements for encryption schemes and signatures schemes,
respectively.

For a discussion of the properties, we refer to the related work section. Here, we will focus
on the cryptographic properties the implementation of ZK proofs should satisfy.

Zero-Knowledge. We then require that Acrs, AZK, AverifyZK
correspond to the key generation

K, prover P, and verifier V of a weakly symbolically-sound ZK proof system for some relations
Rcomp

honest, R
comp
adv .

Although this requirement is already sufficient from an implementation point of view,
we also need to link the computational relations Rcomp

honest, R
comp
adv and the symbolic relations

Rsym
honest, R

sym
adv . Obviously, we cannot expect computational soundness if we allow arbitrary

Rcomp
honest, R

comp
adv . Instead, we need to formulate the fact thatRcomp

honest, R
comp
adv somehow correspond

to the symbolic relations Rsym
honest, R

sym
adv . We thus give minimal requirements on the relationship

between those relations. Essentially, we want that whenever (x,w) ∈ Rsym
honest then for the

corresponding computational bitstrings mx,mw we have (mx,mw) ∈ Rcomp
honest; this guarantees

that if symbolically, we respect the usage restriction Rsym
honest, then computationally we only

use witnesses the honest protocol is allowed to use. And whenever (mx,mw) ∈ Rcomp
adv we

have (x,w) ∈ Rsym
adv ; this guarantees that a computational adversary will not be able to prove

statements mx that do not also correspond to statements x that can be proven symbolically.
Formally specifying these conditions has the difficulty that two relations are over bitstrings

and the others over terms. Thus, we need to translate between terms and bitstring without using
the simulator in the proof that essentially implements such a translation. Hence, we define
a function imgη that translates a term to a bitstring which is basically done by applying AF
for each constructor. Furthermore, the function imgη depends on an environment η, a partial
function T→ {0, 1}∗ that assigns bitstrings to nonces and adversary-generated terms.

Since, we cannot expect the result to work for an arbitrary function η, we list the properties
an environment has to satisfy and call such an environment consistent.

Definition 2.4.1. Let E be the set of all partial functions η : T→ {0, 1}∗. We will call such an
η an environment. Let an implementation A for the symbolic model by given. Define the partial
function imgη : T→ {0, 1}∗ for η ∈ E by taking the first matching rule:

• For a nonce N define imgη(N) := η(N)

• For a term t = crs(N) define imgη(crs(N)) := η(t)

• For a term t = ZK(crs(N), x, w,M) define imgη(t) := η(t)

• Let C be a constructor from {ek, dk, vk, sk, enc, sig, crs, garbageZK, garbageSig,

garbageEnc, garbage}. For t = C(t1, . . . , tn−1, N) with N ∈ NE define imgη(t) :=

η(t).

28 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

• For a term C(t1, . . . , tn) define imgη(C(t1, . . . , tn)) := AC(imgη(t1), . . . , imgη(tn)) ,
if for all i we have imgη(ti) 6= ⊥, and ⊥ otherwise.

An environment η is consistent if the following conditions are satisfied: 4

• η is injective.

• For each constructor C we require that the bitstring imgη(C(t1, . . . , tn)) has the type as
follows: The constructors enc, garbageEnc are mapped to type ciphertext, sig, garbageSig

to signatures, ZK, garbageZK to ZK proofs, ek, dk, vk, sk to encryption, decryption,
verification, signing key, respectively. crs to common reference string, pair to pair,
string0, string1, empty to payload-string, N to nonce, earlier version of imgη. garbage

has none of these types.

• Aekof(imgη(enc(ek(N), t,M))) = imgη(ek(N)) for all N,M ∈ NP , t ∈ T.

• For all t = sig(sk(N), u,M) withN,M ∈ N, u ∈ T it holds: verifysig(vkof(t), t) 6= ⊥
implies that Averifysig

(imgη(vkof(t)), imgη(t)) imgη(u).

• For t = ZK(crs(N), x, , w,M) with M ∈ N holds:

1. AverifyZK
(imgη(crs(N)), η(t)) = η(t)

2. AgetPub(η(t)) = imgη(x)

3. Acrsof(η(t)) = imgη(crs(N))

• For all t1, t2 ∈ T it holds that Averifysig
(imgη(garbageSig(t1, t2))) = ⊥

• For allN,M ∈ N, t ∈ T it holds thatAdec(imgη(dk(N)), imgη(enc(ek(N), t,M))) =

imgη(t) and imgη(t) 6= ⊥.

• For all enc(ek(N), t,M) ∈ T it holds: If imgη(enc(ek(N), t,M)) =: c 6= ⊥, then it
follows Aekof(c) = imgη(ek(N)).

• For all enc(ek(N), t,M) ∈ T it holds: If imgη(enc(ek(N), t,M)) 6= ⊥ and d ∈ {0, 1}∗

such that imgη(ek(N)) = p(d)5, then it follows thatAdec(d, imgη(enc(ek(N), t,M))) =

imgη(t).

Given these notions, we can formalize the conditions Rcomp
honest, R

comp
adv should satisfy in three

simple requirements that reflect the verbalization above:

Definition 2.4.2 (Implementation of relations). A pair of relations Rcomp
honest, R

comp
adv on {0, 1}∗

implement a relation Rsym
adv on T with usage restriction Rsym

honest if the following conditions hold
for any consistent environment η:

4We consider a condition in which a term t occurs such that imgη(t) = ⊥ as satisfied.
5Where p is the function defined in implementation condition 29.

2.4. COMPUTATIONAL SOUNDNESS 29

A Sim Π

τ

β

Figure 2.4: A typical CoSP simulator

(i) (x,w) ∈ Rsym
honest and imgη(x) 6= ⊥ 6= imgη(w) =⇒ (imgη(x), imgη(w)) ∈ Rcomp

honest

(ii) (imgη(x), imgη(w)) ∈ Rcomp
adv =⇒ (x,w) ∈ Rsym

adv

(iii) Rsym
honest ⊆ R

sym
adv and Rcomp

honest ⊆ R
comp
adv �

In the Section 2.5 we give some practical examples satisfying this definition and show how
to add more properties to the list of consistent environments in order to include more relations.
Note that the list of conditions is minimized to the ones used in the soundness proof. However,
we need to extend the list carefully in order to prove that the example relations satisfy the
definition 2.4.2.

2.4.2 Proof of the Computational Soundess

We now have all definitions and conditions to prove the stated main theorem 2.4.1 of this chapter.
Since the proof in total is lengthy, we structure the rest of the section as follows: we first explain
the general proof strategy, then we go into detail regarding the constructions and lemmata.
However, we also put some less insightful but necessary parts of the proof in the Appendix A.1.

Proof Strategy

In the CoSP section 2.1, we already stated that the proof will be simulator based. That means, we
define a simulator Sim that (i) produces execution traces which are indistinguishable from real-
world adversary executions and in addition, (ii) the simulator execution does only produce terms
can be derived from previous knowledge (i.e., the simulator is Dolev-Yao style). The existence
of such a simulator then guarantees computational soundness: Dolev-Yaoness guarantees that
only node traces occur in the hybrid execution that are possible in the symbolic execution, and
indistinguishability guarantees that only node traces occur in the computational execution that
can occur in the hybrid one.

The simulator is a machine that interacts with a symbolic execution of the protocol Π on
the one hand, and with the adversary A on the other hand; we call this a hybrid execution. As
depicted in Figure 2.4, we model the simulator by two stateful functions τ and β which translate
bitstrings to terms and terms to bitstrings, respectively.

The properties indistinguishability and Dolev-Yaoness can also be interpreted in the fol-
lowing way: indistinguishability ensures that the execution of the simulator is connected to
real-world adversarial execution and Dolev-Yaoness ensures that the execution of the simulator
is compliant with the symbolic execution. As both, the computational and the symbolic world,

30 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

need a different argumentation, we show the properties for different simulators and show that
the property of Dolev-Yaoness carries over from one to the other simulator. More precisely, we
use 7 different simulators.

Indistinguishability requires that the simulator behaves as applying the implementation,
consequently, we use a simulator that basically just applies the implementation to the terms for
that purpose. The difficulty here is to show that cases in which symbolic and computational
executions behave differently, e.g., if two terms get transformed to the same bitstring, occur
with negligible probability.

Dolev-Yaoness requires a faking simulator that does not use the terms that cannot be derived
by the adversary and thus are information-theoretically not contained in the adversaries input.
This is essentially achieved by replacing computations with oracles that handle the secrets
and thus enables us to use the simulator as an attacker in the cryptographic definition of the
corresponding building block, e.g., we can show that if the simulator is not DY then the used
encryption scheme does not have the security property that we required in section 2.4.1.

The other 5 intermediate simulators are used to encapsulate specific cryptographic arguments.
Here, the order is of particular importance. For example, the zero-knowledge simulation only
works for true statements. However, the security definition of encryptions replaces the content
and consequently makes statements computationally wrong that are still symbolically true. In
particular, the security definition 2.2.1 of weakly symbolically-sound ZK proofs can only be
applied before such a transformation.

The lengthiness of the proof comes from the number of constructors and destructors. For
several statements, it is necessary to do structural induction over the protocol tree. The used
case distinction might thus grow to 25 cases for destructors and 16 cases for constructors with a
factor 2 in the cases that adversarial terms need to be distinguished from protocol terms. Many
of these cases do not bring new insights and will be postponed to the appendix. But since the
order of arguments has a significant impact on the proof, it is hard to modularize computational
soundness proofs and reuse the arguments.

Proof Details

In this part of the section, we describe our proof of computational soundness (Theorem 2.4.1).
First, we describe how the computational soundness proof for encryptions and signatures is done
in the CoSP framework. To understand our proof it is essential to understand that proof first.
Then, we sketch how computational soundness of zero-knowledge proofs that have the extraction
zero-knowledge property was shown in [21] (section 2.4.2). It is instructive to compare their
approach to ours. In section 2.4.2, we describe the idea underlying our proof (using simulation-
sound extractability instead of extraction-zero knowledge). Finally, in section 2.4.2 we give an
overview of our proof. The full proof is given in appendix A.1. The lemmas in this overview are
simplified for readability and informal.

How to construct a simulator? In [14], the simulator Sim is constructed as follows: When-
ever it gets a term from the protocol, it constructs a corresponding bitstring and sends it to the

2.4. COMPUTATIONAL SOUNDNESS 31

adversary, and when receiving a bitstring from the adversary it parses it and sends the resulting
term to the protocol. Constructing bitstrings is done using a function β, parsing bitstrings to terms
using a function τ . (See Figure 2.4.) The simulator picks all random values and keys himself: For
each protocol nonce N , he initially picks a bitstring rN . He then translates, e.g., β(N) := rN
and β(ek(N)) := Aek(rN) and β(enc(ek(N), t,M)) := Aenc(Aek(rN), β(t), rM). Translat-
ing back also is natural: Given m = rN , we let τ(m) := N , and if c is a ciphertext that can
be decrypted as m using Adk(rN), we set τ(c) := enc(ek(N), τ(m),M). However, in the last
case, a subtlety occurs: what nonce M should we use as symbolic randomness in τ(c)? Here
we distinguish two cases:

If c was earlier produced by the simulator: Then c was the result of computing β(t) for some
t = enc(ek(N), t′,M) and some nonce M . We then simply set τ(c) := t and have consistently
mapped c back to the term it came from.

If c was not produced by the simulator: In this case it is an adversary generated encryption,
and M should be an adversary nonce to represent that fact. We could just use a fresh nonce
M ∈ NE , but that would introduce the need of additional bookkeeping: If we compute
t := τ(c), and later β(t) is invoked, we need to make sure that β(t) = c in order for the Sim to
work consistently (formally, this is needed in the proof of the indistinguishability of Sim). And
we need to make sure that when computing τ(c) again, we use the same M . This bookkeeping
can be avoided using the following trick: We identify the adversary nonces with symbols Nm

annotated with bitstrings m. Then τ(c) := enc(ek(N), τ(m), N c), i.e., we set M := N c. This
ensures that different c get different randomness nonces N c, the same c is always assigned
the same N c, and β(t) is easy to define: β(enc(ek(N),m,N c)) := c because we know that
enc(ek(N),m,N c) can only have been produced by τ(c). To illustrate, here are excerpts of the
definitions of β and τ (the first matching rule counts):

• τ(c) := enc(ek(M), t, N) if c has earlier been output by β(enc(ek(M), t, N)) for some
M ∈ N, N ∈ NP

• τ(c) := enc(ek(M), τ(m), N c) if c is of type ciphertext and τ(Aekof(c)) = ek(M) for
some M ∈ NP and m := Adec(Adk(rM), c) 6= ⊥

• β(enc(ek(N), t,M)) := Aenc(Aek(rN), β(t), rM) if M ∈ NP

• β(enc(ek(M), t, Nm)) := m if M ∈ NP

Bitstrings m that cannot be suitably parsed are mapped into terms garbage(Nm) and similar
that can then be mapped back by β using the annotation m.

Showing indistinguishability. Showing indistinguishability essentially boils down to show-
ing that the functions β and τ consistently translate terms back and forth. More precisely,
we show that β(τ(m)) = m and τ(β(t)) = t. Furthermore, we need to show that in any
protocol step where a constructor or destructor F is applied to terms t1, . . . , tn, we have that
β(F (t1, . . . , tn)) = AF (β(t1), . . . , β(tn)). This makes sure that the computational execution

32 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

(where AF is applied) stays in sync with the hybrid execution (where F is applied and the result
is translated using β). The proofs of these facts are lengthy (involving case distinctions over all
constructors and destructors) but do not provide much additional insight; they are very important
though because they are responsible for most of the implementation conditions that are needed
for the computational soundness result.

Showing Dolev-Yaoness. The proof of Dolev-Yaoness is where most of the actual crypto-
graphic assumptions come in. In this sketch, we will slightly deviate from the original proof in
[14] for easier comparison with the proof in the present paper. The differences are, however,
inessential. Starting from the simulator Sim, we introduce a sequence of simulators Sim4, Sim5,
Simf . (We start the numbering with 4 because we later introduce additional simulators.)

In Sim4, we change the function β as follows: When invoked as β(enc(ek(N), t,M)) with
M ∈ NP , instead of computing Aenc(Aek(rN), β(t), rM), β invokes an encryption oracleONenc

to produce the ciphertext c. Similarly, β(ek(N)) returns the public key provided by the oracle
ONenc. The hybrid executions of Sim and Sim4 are then indistinguishable. (Here we use that the
protocol conditions guarantee that no randomness is used in two places.) Also, the function τ is
changed to invoke ONenc whenever it needs to decrypt a ciphertext while parsing. Notice that if
c was returned by β(t) with t := enc(. . .), then τ(c) just recalls the term t without having to
decrypt. Hence ONenc is never asked to decrypt a ciphertext it produced.

In Sim5, we replace the encryption oracle ONenc by a fake encryption oracle ONfake that
encrypts zero-plaintexts instead of the true plaintexts. Since ONenc is never asked to decrypt a
ciphertext it produced, IND-CCA security guarantees that the hybrid executions of Sim4 and
Sim5 are indistinguishable. Since the plaintexts given to ONfake are never used, we can further
change β(enc(N, t,M)) to never even compute the plaintext β(t).

Finally, in Simf , we additionally change β to use a signing oracle in order to produce
signatures. As in the case of Sim4, the hybrid executions of Sim5 and Simf are indistinguishable.

Since the hybrid executions of Sim and Simf are indistinguishable, in order to show Dolev-
Yaoness of Sim, it is sufficient to show Dolev-Yaoness of Simf .

The first step to showing this is to show that whenever Simf invokes β(t), then S ` t holds
(where S are the terms received from the protocol). This follows from the fact that β is invoked
on terms t0 sent by the protocol (which are then by definition in S), and recursively descends
only into subterms that can be deduced from t0. In particular, in Sim5 we made sure that β(t) is
not invoked by β(enc(ek(N), t,M)); t would not be deducible from enc(ek(N), t,M).

Next we prove that whenever S 0 t, then t contains a visible subterm tbad with S 0 tbad
such that tbad is a protocol nonce, or a ciphertext enc(. . . , N) where N is a protocol nonces, or
a signature, or a few other similar cases. (Visibility is a purely syntactic condition and essentially
means that tbad is not protected by an honestly generated encryption.)

Now we can conclude Dolev-Yaoness of Simf : If it does not hold, Simf sends a term
t = τ(m) where m was sent by the adversary A. Then t has a visible subterm tbad . Visibility
implies that the recursive computation of τ(m) had a subinvocation τ(mbad) = tbad . For each
possible case of tbad we derive a contradiction. For example, if tbad is a protocol nonce, then

2.4. COMPUTATIONAL SOUNDNESS 33

β(tbad) was never invoked (since S 0 tbad) and thus mbad = rN was guessed by the simulator
without ever accessing rN which can happen only with negligible probability. Other cases are
excluded, e.g., by the unforgeability of the signature scheme and by the unpredictability of
encryptions.

Thus, Simf is Dolev-Yao, hence Sim is indistinguishable and Dolev-Yao. Computational
soundness follows.

Computational Soundness Based on Extraction ZK

We now describe how computational soundness for zero-knowledge proofs was shown in [21],
based on the strong assumption of extraction zero-knowledge. Our presentation strongly deviates
from the details of the proof in [21]; we explain what their proof would be like if recast in the
CoSP framework. This makes it easier to compare the proof to our proof and the proof described
in the preceding section.

Extraction zero-knowledge is a strong property that guarantees the following: It is not
possible to distinguish a prover-oracle from the a simulator-oracle, even when given access to
an extraction oracle that extracts the witnesses from arbitrary proofs except the ones produced
by the prover/simulator-oracle. Notice that there is a strong analogy to IND-CCA secure
encryption. The prover-oracle corresponds to an encryption-oracle, the witness to the plaintext,
the simulator-oracle to a fake encryption-oracle encrypting zero-plaintexts, and the extractor-
oracle to a decryption-oracle.

This analogy allows us to adapt the idea for proving computational soundness of encryptions
to the case of ZK proofs. As in the proof without ZK proofs, we construct a simulator Sim

with translation functions τ and β. We extend β and τ to deal with ZK proofs in the obvious
way: β(ZK(crs(N), t, t′, N)) := AZK(Acrs(rN), β(t), β(t′), rN)) and β(ZK(. . . , Nm)) :=

m. When parsing a ZK proof z, we set τ(z) := t if t was earlier output by β(z). Otherwise,
we obtain the statement x from z by applying AgetPub, we identify from which rN the CRS
used in z was computed, and we get the witness w by applying the extraction algorithm.
(If z was produced with respect to a CRS that was not produced by the simulator, we set
τ(z) := garbageZK(. . .).). Finally, τ(z) returns ZK(crs(N), τ(x), τ(w), N z).

The proof of indistinguishability is analogous to that without ZK proofs, except that we use
the extractability property of the proof system to make sure that the simulator does not abort
when invoking the extraction algorithm while trying to parse a ZK proof z in τ(z). Notice that
plain extractability (as opposed to simulation-sound extractability) can be used here since we do
not use a ZK-simulator in the construction of Sim.

To prove Dolev-Yaoness, we proceed as in the case without ZK proofs, except that we intro-
duce three more intermediate simulators Sim1, Sim2, and Sim3. (See Figure 2.5.) In Sim1, we
invoke a prover-oracle ONZK with statement β(t) and witness β(t′) in β(ZK(crs(N), t, t′,M))

instead of computing AZK(Acrs(rN), β(t), β(t′), rM). (This is analogous to Sim4 above.) ONZK

aborts if the witness is not valid.
In Sim2, we replace the prover-oracle ONZK by a ZK-simulator-oracle ONsim. That oracle

runs the ZK-simulator (after checking that the witness is valid). Extraction zero-knowledge

34 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

Sim Sim1 Sim2 Sim3 Sim4 Sim5 Simf

DY DY
DY,
ZK

DY,
ZK

DY,
ZK

DY,
ZK

original

simulator
use proof oracle

check witness
use simulation oracle

check witness
do not

check witness
use encryption

oracle
use fake

encryption oracle
use signing

oracle

Figure 2.5: Simulators used in the proof. An arrow marked DY means Dolev-Yaoness is propagated
from one simulator to the other. An arrow marked ZK means ZK-breaks are propagated (needed in
section 2.4.2).

guarantees that this replacement leads to an indistinguishable hybrid execution. (We need that
the witness is checked before running the simulator because extraction zero-knowledge gives
no guarantees in the case of invalid witnesses, even if the witness is not actually used by the
ZK-simulator.)

Finally, in Sim3 we modify the ZK-simulator-oracle ONsim such that it does not check the
witness any more. A protocol condition guarantees that this check would succeed anyway, so
this change leads to an indistinguishable hybrid execution. Furthermore, since witnesses given
to ONsim are never used, we can further change β(ZK(crs(N), t, t′,M)) to never even compute
the witness β(t′).

The rest of the proof is analogous to the case without ZK proofs. I.e., we continue with
the simulator Sim3,Sim4, Simf as described there and show that Simf is Dolev-Yao. When
showing that in Simf , β(t) is only invoked when S ` t, we also make use of the fact that
β(ZK(crs(N), t, t′,M)) does not descend into the witness β(t′) any more.

Note that this computational soundness proof crucially depends on the extraction ZK
property. We need to use the extractor in the construction of τ , and we need to replace the
prover-oracle by a ZK-simulator-oracle in order to make sure that β does not descend into
witnesses. And that replacement takes place in a setting where the parsing function τ and thus
the extractor is used.

Proof Idea

We now describe the idea of our approach that allows us to get rid of extraction ZK. As explained
in section 2.4.2, we cannot use the extractor as part of the parsing function τ if we do not have
extraction ZK. However, the following observation shows that we might not need to run the
extractor: Although in the computational setting, the only way to compute a witness is to
extract it (unless the relation is trivial), in the symbolic setting, given a symbolic statement x,
it is typically easy to compute a corresponding symbolic witness w. (E.g., when proving the
knowledge of a secret key that decrypts a term c = enc(ek(N), t,M), then the witness is dk(N)

which can just be read off c.) We stress that we do not claim that the witness can be deduced (in
the sense of `) from x, only that its symbolic representation can be efficiently computed from
the statement.

Thus, for an adversary-generated proof z with CRS Acrs(rN) and statement mx and that

2.4. COMPUTATIONAL SOUNDNESS 35

passes verification, we define τ(z) as follows: We run w := SymbExtr(S, x) and return
τ(z) := ZK(crs(N), x, w,N z). Here S is the list of terms send by the protocol so far,
SymbExtr(S, x) denotes an arbitrary witness w satisfying the following two conditions:
w is a valid witness for x (i.e., (x,w) ∈ Rsym

adv) and S ` w. (Our result assumes that
w = SymbExtr(S, x) is efficiently computable whenever w exists, this will be the case
for most natural relations.)

The condition S ` w is necessary since otherwise the simulator Sim would produce a proof
that the adversary could not have deduced (since he could not have deduced the witness), and
thus the simulator would not be Dolev-Yao.

Assume for the moment that SymbExtr(S, x) always succeeds (i.e., in the hybrid execu-
tion, there always is a w with (x,w) ∈ Rsym

adv and S ` w). In this case, we can finish the proof
analogously to that in section 2.4.2: Indistinguishability of Sim follows by carefully checking
all cases, and the Dolev-Yaoness by the same sequence of simulators as in section 2.4.2. We do
not need extraction zero-knowledge when going from Sim1 to Sim2, though, because in Sim1,
no extractor is used (we use symbolic extraction instead). Thus the zero-knowledge property is
sufficient instead of extraction zero-knowledge.

But how to show that SymbExtr(S, x) always succeeds? Two things might go wrong.
First, no valid witness w with (x,w) ∈ Rsym

adv might exist. Note that the extractability property
only guarantees that computationally, a valid witness for the computational statement mx exists.
This does not necessarily imply that translating that witness into a term (e.g., using τ) yields
a valid symbolic witness. Second, there might be a valid witness w, but that witness is not
deducable (S 0 w). Again, extractability only guarantees that the adversary “knows” a witness
in the computational setting, this does not imply deducability in the symbolic setting.

In essence, to show that SymbExtr(S, x) succeeds, we need a kind of computational
soundness result: Whenever computationally, the adversary knows a valid witness, then symbol-
ically, the adversary knows a valid witness. This seems problematic, because it seems that we
need to use a computational soundness result within our proof of computational soundness – a
seeming circularity. Fortunately, this circularity can be resolved: The fact that SymbExtr(S, x)

succeeds is used only when proving that Sim is indistinguishable (i.e., mimics the computational
execution well). But the fact that SymbExtr(S, x) succeeds does not relate to the computa-
tional execution at all. In fact, it turns out to be closely related to the Dolev-Yaoness and can
be handled in the same proof. And that proof does not use the fact that symbolic extraction
succeeds.

Proof Overview

We now give a more detailed walk-through through our proof. This exposition can also be seen
as a guide through the full proof in appendix A.1.

The simulator. The first step is to define the simulator Sim, i.e., the translation function β
and τ . Here, we only present the parts of the definition related to ZK proofs (the first matching
rule counts):

36 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

1. τ(z) := crs(N) if z = Acrs(rN) for some N that occurred in a subterm of the form
crs(N) before

2. τ(z) := crs(N z) if z is of type common reference string

3. τ(z) := ZK(crs(N1), t1, t2, N2) if z has earlier been output by β(ZK(crs(N1), t1, t2, N2))

for some N1, N2 ∈ NP

4. τ(z) := ZK(crs(N), x, w,N z) if z is of type zero-knowledge proof and τ(z) was com-
puted earlier and has output ZK(crs(N), x, w,N z)

5. τ(z) := ZK(crs(N), x, w,N z) if z is of type zero-knowledge proof, τ(Acrsof(z)) =

crs(N) for some N ∈ NP , AverifyZK
(Acrsof(z), z) = z, mx := AgetPub(z) 6= ⊥,

x := τ(mx) 6= ⊥ and w := SymbExtr(S, x) where S is the set of terms sent to the
adversary so far.

6. τ(z) := garbageZK(c, x,N z) if z is of type zero-knowledge proof, c := τ(Acrsof(z))

and x := τ(AgetPub(z)).

7. β(crs(N)) := Acrs(rN) if N ∈ NP

8. β(crs(N c)) := c

9. β(ZK(crs(N1), t1, t2, N2)) := AZK(Acrs(rN1), β(t1), β(t2), rN2) if N1, N2 ∈ NP

10. β(ZK(crs(t0), t1, t2, N
s)) := s

11. β(garbageZK(t1, t2, N
z)) := z

Here SymbExtr(S, x) returns a witness w with (x,w) ∈ Rsym
adv and S ` w if such w exists,

and ⊥ otherwise. A key point is what to do when SymbExtr(S, x) fails. We will later show
that this happens with negligible probability only, but for now we need to specify the behavior
in this case:

When SymbExtr(S, x) returns ⊥ in the rule 5), we say an extraction failure occurred.
In this case, the simulator runs the extractor (using the extraction trapdoor corresponding to
Acrs(rN)) to get a (computational) witness mw for mx. Then Sim computes w := τ∗(mw)

where τ∗ is defined like τ , except that the rule 5) is dropped (hence τ∗ will map an adversary-
generated ZK-proof always to a garbageZK-term). Then the simulator aborts. If (x,w) 6∈ Rsym

adv ,
we say a ZK-break occurred.

The reader may wonder why we let the simulator compute a symbolic witness w in case
of an extraction failure even though w is never used. The reason is that we later show that this
w always has (x,w) ∈ Rsym

adv and S ` w, which contradicts the fact that we get an extraction
failure in the first place. The reason for using τ∗ instead of τ is that we have to avoid getting
extraction failures within extraction failures.

2.4. COMPUTATIONAL SOUNDNESS 37

The sequence of simulators. As in section 2.4.2, we construct a sequence of simulators (see
Figure 2.5): Sim1 differs from Sim by using a prover-oracle for constructing ZK-proofs instead
of invoking AZK directly in β. We also use that oracle to obtain the CRS, and for extracting mw

after an extraction failure. In Sim2, we replace the prover-oracle by a ZK-simulator-oracle. If
the oracle is invoked with an invalid witness, it aborts instead of running the ZK-simulator. In
Sim3, we still use a ZK-simulator-oracle, but we do not check the witness first. Thus β(w) is not
invoked on witnesses any more in rule 9). Sim4 replacesAenc andAdec by calls to an encryption
oracle, Sim5 replaces that encryption oracle by a fake encryption oracle using zero-plaintexts,
and Simf finally uses a signing oracle instead of Asig.

We can now show that Simf is Dolev-Yao. The proof of this fact is analogous to the case
the proof sketched in section 2.4.2. We even show something slightly stronger, namely that
neither τ nor τ∗ outputs an undeducable term:

Lemma 2.4.2 (Simf is Dolev-Yao). For any invocation t := τ(m) or t := τ∗(m), we have
S ` t where S are the terms sent to the simulator so far. In particular, Simf is Dolev-Yao.

As in section 2.4.2, we show Sim is Dolev-Yao iff Simf is Dolev-Yao. We will also need
preservation of the property that ZK-breaks occur with negligible probability.

Lemma 2.4.3 (Preservation of simulator-properties). The properties of the simulators are
preserved, more precisely the following statements hold:

• Sim is Dolev-Yao iff Simf is.

• In the hybrid execution of Sim extraction failures occur with negligible probability iff the
same holds for Simf .

• In the hybrid execution of Sim2 (not Sim!) ZK-breaks occur with negligible probability
iff the same holds for Simf .

Dolev-Yaoness, extraction failures, and ZK-breaks carry over from Sim3 to Sim4 and from
Sim5 to Simf because the randomness used in encrypting and signing is not re-used by protocol
condition 3. (Notice that randomness might have occurred within a witness, but due to the
change in Sim3, we do not invoke β(w) on witnesses any more.) Dolev-Yaoness, extraction
failures, and ZK-breaks carry over from Sim4 to Sim5 due to the IND-CCA property. Dolev-
Yaoness and extraction failures carry over from Sim to Sim1 because the randomness used for
constructing ZK-proofs is not reused by protocol condition 3.

Furthermore, Dolev-Yaoness and extraction failures carry over from Sim1 to Sim2 because
of the zero-knowledge property of the proof system. There is a subtlety here: Sim1 does use the
extractor (namely after an extraction failure). So usually, we would not be allowed to apply the
zero-knowledge property (we would need extraction ZK). But fortunately, after an extraction
failure, no terms are sent by the simulator. Thus, anything that happens after an extraction
failure has no impact on whether the simulator is Dolev-Yao or not. Thus, for analyzing whether
Dolev-Yaoness carries over from Sim1 to Sim2, we can assume that those simulators abort

38 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

directly after incurring an extraction failure (without invoking the extractor afterwards). Then
no extractions occur in the simulator, and we can use the zero-knowledge property. Analogously,
extraction failures carry over from Sim1 to Sim2.

Notice that we cannot use the same trick to show that ZK-breaks carry over from Sim1

to Sim2: Whether ZK-breaks occur is determined only after the invocation of the extractor.
Fortunately, we only need that ZK-breaks carry over from Sim2 to Simf .

To show Theorem 2.4.3, it remains to show that Dolev-Yaoness, extraction failures, and
ZK-breaks carry over from Sim2 to Sim3. The only difference between these simulators is that
Sim3 does not check whether the witness mw given to the ZK-simulation-oracle is valid (i.e.,
(β(t1), β(t2)) ∈ Rcomp

honest in rule 9). Thus, to conclude the proof of Theorem 2.4.3, we need
to show that the probability that the ZK-simulation-oracle is called with an invalid witness is
negligible.

No invalid witnesses. To show that the ZK-simulation-oracle is only called by Sim2 with
valid computational witnesses β(t1), we need to show two things:

Lemma 2.4.4 (No invalid symbolic witnesses). If Sim3 is Dolev-Yao, then in rule 9), we have
(t1, t2) ∈ Rsym

honest with overwhelming probability. The same holds for Sim.

Lemma 2.4.5 (Relating the relations, part 1). In an execution of Sim3 the following holds with
overwhelming probability: if (x,w) ∈ Rsym

honest then (β(x), β(w)) ∈ Rcomp
honest. The same holds

for Sim.

Once we have these lemmas, Theorem 2.4.3 follows: We know from Theorem 2.4.2 that
Simf is Dolev-Yao. We have already shown that this property carries over to Sim3. Thus by
Lemmas 2.4.4 and 2.4.5, (β(t1), β(t2)) ∈ Rcomp

honest in rule 9).
To show Theorem 2.4.4, we observe the following: If the simulator sends only terms that are

deducible (i.e., that a symbolic adversary could also have sent), then in the hybrid execution, no
execution trace occurs that could not have occurred in the symbolic execution either. By protocol
condition 10, in a symbolic execution, (t1, t2) ∈ Rsym

honest whenever the protocol constructs an
ZK(crs(N), t1, t2,M)-term. Since rule 9) only applies to such protocol-generated terms (ZK-
terms from τ have M ∈ NE), it follows that (t1, t2) ∈ Rsym

honest in rule 9). Theorem 2.4.4
follows. Theorem 2.4.5 follows because we required that Rcomp

honest, R
comp
adv implement Rsym

adv with
usage restriction Rsym

honest; 2.4.2 was designed to make Theorem 2.4.5 true.
Thus, Lemmas 2.4.4 and 2.4.5 hold, thus Theorem 2.4.3 follows. Since Simf is Dolev-Yao

by Theorem 2.4.2, it follows with Theorem 2.4.3 that Sim is Dolev-Yao. It remains to show that
Sim is indistinguishable.

Indistinguishability of Sim. As described stated above, to show indistinguishability of Sim,
the main subproof is to show (a) that β(F (t1, . . . , tn)) = AF (β(t1), . . . , β(tn)) when the
protocol computes F (t1, . . . , tn). And, of course, we need (b) that the simulator does not
abort. The proof of (a) is, as before, done by careful checking of all cases. The only interesting

2.4. COMPUTATIONAL SOUNDNESS 39

case is F = verifyZK. Here we need that an honestly-generated ZK proof with statement
x and witness w passes verification symbolically (x,w ∈ Rsym

honest) iff it passes verification
computationally ((β(x), β(w) ∈ Rcomp

honest). Fortunately, we have already derived all needed
facts: By Lemmas 2.4.2 and 2.4.4, (x,w) ∈ Rsym

honest with overwhelming probability. And then
by Theorem 2.4.5, (β(x), β(w)) ∈ Rsym

honest.
To show (b), we need to show that extraction failures occur with negligible probability. The

approach for this is a bit roundabout, we first analyze Sim2:

Lemma 2.4.6 (No ZK-breaks). In the hybrid execution of Sim2, ZK-breaks occur with negligible
probability.

To show this, we use the simulation-sound extractability property of the proof system
to show that the values mx,mw extracted by the extractor after an extraction failure satisfy
(mx,mw) ∈ Rcomp

adv . And then it follows that (x,w) ∈ Rsym
adv with x := τ(mx), w := τ∗(mw)

by the converse of Theorem 2.4.5:

Lemma 2.4.7 (Relating the relations, part 2). In an execution of Sim2 the following holds with
overwhelming probability: if (mx,mw) ∈ Rcomp

adv then (τ(mx), τ∗(mw)) ∈ Rsym
adv .

Thus Theorem 2.4.6 is shown. From this, with Theorem 2.4.3 we get that ZK-breaks occur
with negligible probability also for Simf . Based on this fact, we can show the following lemma:

Lemma 2.4.8 (No extraction failures). In the hybrid execution of Simf , extraction failures
occur with negligible probability.

To see this, we use that ZK-breaks only occur with negligible probability in the execution
of Simf . Thus, by definition of ZK-breaks, this means that (x,w) ∈ Rsym

adv for the terms x :=

τ(mx) and w := τ(mw) computed after the extraction failure. Furthermore, by Theorem 2.4.2,
it follows that S ` w. But then, by definition, SymbExtr(x, S) would have output a w or
another witness, but not ⊥. Thus the extraction failure would not have occurred. This shows
Theorem 2.4.8.

Finally, from Lemmas 2.4.6 and 2.4.3 we get that extraction failures occur with negligible
probability in the execution of Sim, too. Thus property (b) also holds, thus we have shown Sim

to be indistinguishable.
Notice that the roundabout way through Sim2 and Simf to show that extraction failures

occur with negligible probability in the execution of Sim is necessary: We cannot directly show
Theorem 2.4.6 for Simf because Simf uses the simulator to prove untrue statements (e.g., it
may prove that a ciphertext contains a certain value, but since we use a fake encryption oracle,
that ciphertext actually contains a zero-plaintext), so simulation-sound extractability cannot be
applied. Also, we cannot use the fact S ` τ∗(x) directly on Sim because this fact cannot be
propagated from Simf to Sim (since τ∗ is executed after the extractor is used, we would need
extraction ZK to bridge from Sim2 to Sim1).

Concluding the proof. We have shown that Sim is Dolev-Yao and indistinguishable. From
[14] we then immediately get Theorem 2.4.1.

40 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

2.5 Protocol Verification using the applied π-calculus

In [14] it was shown how to use computational soundness results in the CoSP framework
(such as our result) and derive computational soundness results for a dialect of the applied
π-calculus (see [14] for a description of the calculus together with semantics for symbolic and
computational execution). Basically, they present a generic transformation that translates a
process in the applied π-calculus into a CoSP process (generic means that the transformation
works for any symbolic model, including the one presented here). Thus, all that needs to be done
to get a computational soundness result for zero-knowledge proofs in the applied π-calculus is
to write down what conditions a process needs to satisfy such that the translated process satisfies
the protocol conditions (listed in the appendix):

Definition 2.5.1 (Valid processes). A process P̃ in the applied π-calculus is valid if it satisfies
the following two properties:

(i) The process P̃ matches the following grammar: Let x, xd, xs, xc stand for different sets of
variables (general purpose, decryption key, signing key, and CRS variables). Let a, r, rz
stand for three sets of names (general purpose, randomness, and ZK randomness names).
M̃, Ñ ::= x | xc | a | pair(M̃, Ñ) | S̃ and S̃ ::= string0 (S̃) | string1 (S̃) | empty ,
and let D̂ be an arbitrary term consisting of constructors, destructors, variables, and
names except rz and D̃ ::= M̃ | isek(D̃) | isenc(D̃) | dec(xd, D̃) | fst(D̃) | snd(D̃) |
ekof(D̃) | equals(D̃, D̃) | isvk(D̃) | issig(D̃) | verifysig(D̃, D̃) | vkof(D̃) | iscrs(D̃) |
crsof(D̃) | verifyZK(xc, D̃) | iszk(D̃) | getPub(D̃) | unstring0 (D̃) | unstring1 (D̃)

and

P̃ ,Q̃ ::= M̃〈Ñ〉.P̃ | M̃(x).P̃ | 0 | (P̃ | Q̃) | !P̃ | νa.P̃ | let x = D̃ in P̃ else Q̃ |
event(e).P̃ | νr.let x = ek(r) in let xd = dk(r) in P̃ |
νr.let x = enc(isek(D̃1), D̃2, r) in P̃ else Q̃ |
νr.let x = vk(r) in let xs = sk(r) in P̃ |
νr.let x = sig(xs, D̃1, r) in P̃ else Q̃ |
νr.let xc = crs(rz) in P̃ | νr.event zk .let x = ZK(xc, D̃1, D̂, rz) in P̃ else Q̃

(Note that in each of the last six production rules, several occurrences of r or rz denote
the same name.)

(ii) For any process Q that does not contain events, if P̃ |Q →∗ E[event zk .let x =

ZK(t1, t2, t3, t4) in P1 else P2] with an evaluation context E, then (t2η, t3η) ∈ Rsym
honest

for any bijective mapping η from names to nonces.

�

Analogous to [14, Thm. 4], we obtain:

2.5. PROTOCOL VERIFICATION USING THE APPLIED π-CALCULUS 41

Theorem 2.5.1 (Computational soundness of ZK proofs). Let P̃ be a closed valid process and
AF a computational implementation satisfying the implementation conditions from subsec-
tion 2.4.1. Then for any π-trace property6 ℘, if P symbolically satisfies ℘, then P computation-
ally satisfies ℘.

In the Appendix 2.6, we prove that this relation satisfies definition 2.4.2, thus the abstraction
is sound. We express this protocol in the applied π-calculus:

P := νrA.let ekA = ek(rA) in let dkA = dk(rA) in νrB.let ekB = ek(rB) in

let dkB = dk(rB) inνrC .let crs = crs(rC) inch〈(ekA, ekB, crs)〉.(!A|!B)

A := νN1.event beginA(N1).νr1.let m1 = enc(ekB, N1, r1) in ch〈m1〉.ch(m2).

let stmt = getPub(verifyZK(crs,m2)) in if snd(stmt) = m1 then

let N2 = dec(dkA, fst(stmt)) in νr4.let m3 = enc(ekB, N2, r4) in

ch〈m3〉.event endA(N1, N2)

B := ch(m1).let N1 = dec(dkB,m1) in νN2.event beginB(N2). νr2.

let c = enc(ekA, N2, r2) in νr3.event zk .let m2 = ZK(crs, (c,m1), dkB, r3) in

ch〈m2〉.ch(m3).if N2 = dec(dkB,m3) then event endB(N1, N2)

This protocol can be directly encoded in ProVerif. The definition of the destructor verifyZK

depends on the relation Rsym
adv , we can encode it in ProVerif as

reduc verifyZK(crs(t1), zk(crs(t1),(c,enc(ek(r1),x,r2)),dk(r1),t4))
= zk(crs(t1),(c,enc(ek(r1),x,r2)),dk(r1),t4);

verifyZK(crs(t1), zk(crs(t1),(ciph,garbageEnc(t2,t3)),t4,t5))
= zk(crs(t1),(ciph,garbageEnc(t2,t3)),t4,t5).

ProVerif can automatically show that P symbolically satisfies the trace properties
endA(x, y) ⇒ beginB(y) and endB(x, y) ⇒ beginA(x). These trace properties state that
each party can not end its protocol execution without communicating with the other one (the
other party has to begin before the end). Hence the parties authenticate to each other. To
show that P also computationally satisfies that trace property, we need to show that P is
valid. P satisfies the syntactic condition (2.5.1(i)). To check that a process P satisfies the
dynamic condition (ii), we use ProVerif again: We replace every occurrence of P ′ = let x =

ZK(t1, t2, t3, t4) in P1 else P2 by let x′ = checkzk(t2, t3) in P ′ else event badzk where
checkzk is a destructor that checks if its arguments are in Rsym

honest:

reduc checkzk((c,enc(ek(r1),x,r2)),dk(r1)) = empty

ProVerif automatically shows that the event badzk does not occur. It follows that P is valid.

6A π-trace property is essentially a prefix-closed set of sequences of events that are allowed to occur. See [14]
for a precise definition and for the definition of “symbolically/computationally satisfying” a π-trace property.

42 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

2.6 Example relations

In this section briefly give some examples for symbolic relations and their implementation.
Then we prove that these relations satisfy definition 2.4.2, i.e. that the computational relations
actually implement the symbolic ones. In both examples, we make use of the fact that the all
symbolic relations are implicitly restricted to T, and all computational ones to non-⊥.

Valid ciphertexts First, we consider the example of proving that a ciphertext is valid using
the randomness as witness. The relations are defined as follows:

Rsym
honest := {((enc(k,m, r), k,m), r) : k,m ∈ T, r ∈ NP }
Rsym

adv := {((enc(k,m, r), k,m), r∗) : k,m, r∗ ∈ T, r ∈ N}
Rcomp

honest := {((Aenc(k,m, r), k,m), r) : k,m, r ∈ {0, 1}∗}
Rcomp

adv := {((Aenc(k,m, r), k,m), r∗) : k,m, r, r∗ ∈ {0, 1}∗}

For the proof, we need two additional requirements on the implementation. First, we need
that Aenc in injective in the first two arguments. For the first argument, the encryption key, this
can be achieved by concatenating it to the encryption. The second one is only implied by the
IND-CCA property if the first argument is indeed of type encryption key, but we need it for
all bitstrings. Finally, we require that the encoding of encryption keys is dense, i.e. that for
every bitstring of type encryption key, there is a corresponding decryption key. Summarized,
this leads to the following lemma.

Lemma 2.6.1. If, in addition to the implementation conditions, it holds:

1. For all k, k′,m,m′, r ∈ {0, 1}∗ Aenc(k,m, r) = Aenc(k,m
′, r) implies m = m′ and

Aenc(k,m, r) = Aenc(k
′,m, r) implies k = k′

2. For all k ∈ {0, 1}∗ of type encryption key, there is a d ∈ {0, 1}∗ such that p(d) = k

according to implementation condition 29.

Then follows that Rcomp
honest, R

comp
adv implement Rsym

adv with usage restriction Rsym
honest.

Proof. Fix a consistent environment η and terms x,w ∈ T.
We first show that if (x,w) ∈ Rsym

honest and imgη(x) 6= ⊥ 6= imgη(w), then (imgη(x),

imgη(w)) ∈ Rcomp
honest. Thus, fix x = (enc(k,m, r), k,m) and w = r ∈ NP . Then

imgη(enc(k,m, r)) = Aenc(imgη(k), imgη(m), imgη(r)) =: Aenc(k
′,m′, r′)

Here it is crucial that imgη(x) 6= ⊥ and hence Aenc(imgη(k), imgη(m), imgη(r)) 6= ⊥. So, it
follows (imgη(x), imgη(w)) = ((Aenc(k

′,m′, r′),m′, r′), r′) ∈ Rsym
honest.

2.6. EXAMPLE RELATIONS 43

Now we show that if (imgη(x), imgη(w)) ∈ Rcomp
adv , then (x,w) ∈ Rsym

adv . Fix some
x,w ∈ T with (imgη(x), imgη(w)) ∈ Rcomp

adv . Then

imgη(x) = (c′, k′,m′) := (imgη(c), imgη(k), imgη(m))

with c′ = Aenc(k
′,m′, r′) for some c, k,m ∈ T, r′ ∈ {0, 1}∗. Since imgη(x) = (c′, k′,m′),

we have x = (c, k,m) by definition of imgη and injectivity of Apair. By implementation
condition 2, c′ = imgη(c) has type ciphertext. Thus, by definition of consistent environments,
c = enc(k1,m1, r1) for some k1,m1, r1 ∈ T. Since c ∈ T, r1 ∈ N.

First, consider the case r1 ∈ NP . Then

c′ = imgη(c) = Aenc(imgη(k1), imgη(m1), img(r1))

Since Aenc is injective in its first two arguments (follows by the assumption (1) of the lemma),
we have that imgη(k1) = imgη(k), imgη(m1) = imgη(m). Thus

(x,w) = ((enc(k,m, r1), k,m), w) ∈ Rsym
adv

Now consider the case r1 ∈ NE . Since Aekof(imgη(c)) = imgη(k1) by consistency
of η, it follows that imgη(k1) = imgη(k). Additionally, imgη(k1) is of type encryption
key. By assumption (2) there is a corresponding decryption key d ∈ {0, 1}∗. By consis-
tency it follows that imgη(m1) = Adec(d, imgη(enc(k1,m1, r1))) = m′ = imgη(m). Thus
(enc(k,m, r1), k,m), w) ∈ Rsym

adv .

Ability of decryption. In the remaining section we consider the relation used in the pi-calculus
example. Basically, we use the system to prove that a party is able to decrypt a given message.
The additional m′ is only used for freshness.

Rsym
honest := {((m′,m1), d) : m′,m1, d ∈ T

such that dec(d,m1) 6= ⊥}
Rsym

adv := Rsym
honest ∪ {((m

′,m1), d) :

m1 = garbageEnc(t,M), t ∈ T,M ∈ N}
Rcomp

adv := Rcomp
honest := {((m′,m1), d) : m′,m1, d ∈ {0, 1}∗

such that Adec(d,m1) 6= ⊥}

Additional to the implementation conditions, we require that for each encryption key, there
is exactly one decryption key accepted by the decryption algorithm.

Lemma 2.6.2. If, in addition to the implementation conditions, it holds: For all d, d′, c ∈ {0, 1}∗

it holds: If Adec(d, c) 6= ⊥ 6= Adec(d
′, c) then d′ = d. Then follows that Rcomp

honest, R
comp
adv

implement Rsym
adv with usage restriction Rsym

honest.

44 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

Proof. First, we observe that by implementation conditions 4 and 13, it follows that if c ∈
{0, 1}∗ is not of type ciphertext, then for all d ∈ {0, 1}∗ it holds Adec(d,m) = ⊥.

Fix a consistent environment η and terms x,w ∈ T. We start showing that if (x,w) ∈
Rsym

honest and imgη(x) 6= ⊥ 6= imgη(w), then (imgη(x), imgη(w)) ∈ Rcomp
honest. By defini-

tion it follows that x = (m′,m1) and w = d. Since dec(d,m1) 6= ⊥ it follows that
d = dk(N) and m1 = enc(ek(N), t,M) for some N,M ∈ N. By consistency of η it follows
Adec(imgη(dk(N)), imgη(m1)) = imgη(t) 6= ⊥. Thus (imgη(x), imgη(w))) ∈ Rcomp

honest.

Now we show that if (imgη(x), imgη(w)) ∈ Rcomp
adv , then (x,w) ∈ Rsym

adv . By definition
imgη(x) = (m′,m′1) and imgη(w) = d′ such that Adec(d

′,m′1) 6= ⊥. Thus x is of the form
(m,m1) and w some d. As mentioned above, it follows that m′1 is of type ciphertext, since
Adec(d

′,m′1) 6= ⊥. Hence, by consistency of η it follows thatm1 has the form enc(ek(N), t,M)

for some NNP ,M ∈ N, t ∈ T or it has the form garbageEnc(t,N) for t ∈ T, N ∈
N. In the latter case, (x,w) ∈ Rsym

adv . In the first case, by consistency of η follows that
Adec(imgη(dk(N)), imgη(enc(ek(N), t,M))) = imgη(t) 6= ⊥. Thus imgη(w) = d′ =

imgη(dk(N)) and hence w = dk(N) by assumption. So (x,w) ∈ Rsym
adv .

2.7 An Impossibility Result for Computational Soundness of Sym-
bolic ZK Proofs

In this section, we prove an inherent limitation of computational soundness results for ZK: If
one permits ZK proofs over statements that themselves involve ZK proofs, then computational
soundness cannot be shown to hold in general based on existing cryptographic definitions.
Consequently, ZK proofs over statements involving ZK proofs need to be excluded in all
computational soundness proofs for symbolic ZK. This is the case in the present paper (formally,
Condition 28 ensures this), and it was the case already in [22] for technical reasons. The
following theorem shows that this restriction is inevitable.

Theorem 2.7.1. There is no computational sound symbolic model that has no restrictions on the
symbolic relations, even if the underlying zero-knowledge proof system is simulation-extractable

Proof. If such a model would exist, then it is sound with respect to the computational relation
Rcomp

honest := {(Aempty, w) | ∃x : V(x,w) = 1}. Call the proof system (P,V).
We can assume w.l.o.g. that the extraction-trapdoor contains the simulation-trapdoor, and the

simulation-trapdoor contains the crs. We may also assume w.l.o.g. that V(x,S(x)) = 1 holds
always (even for false x). Considering the definition of weakly symbolically-sound ZK-proofs,
it is easy to see that, whenever the adversary gets the simulation-trapdoor, it also gets the crs.
Analogue, if it gets the extraction-trapdoor, it also gets the crs and the simulation-trapdoor.
So we can assume the containment as describe above without changing the properties of our
ZK-proof system.

We can achieve the property that V(x,S(x)) = 1 for all x as follows: Let simtdvk, simtdsk

be a key-pair for a unforgeable signature scheme. The new crs is defined by (crs, simtdvk) and

2.7. IMPOSSIBILITY RESULT 45

the new simulation-trapdoor by (simtd, simtdsk). Then we define S′(x, (simtd, simtdsk)) as
follows:

• Compute p← S(x, simtd).

• If V(x, p, crs) = 1 then output p.

• Else output sig(simtdsk, p).

Define the verification V′(x, p, (crs, simtdvk)) by:

• If V(x, p, crs) = 1 then output 1.

• Else if verifysig(simtdvk, p) 6= ⊥ output 1.

• Else output 0.

The proof system is still zero-knowledge, because if x is a true statement, then the verification
of the original simulated proof succeeds (by the zero-knowledge property). The other properties
carry over, as well, and it holds V′(x,S′(x)) = 1.

We construct a proof system (P′,V′) as follows.

• The generation of the CRS and the trapdoors is performed as in (P,V).

• The prover is the same, too, i.e. P′ := P.

• Define the verifier V′(crs, x, z) as follows: It accepts all proofs that V accepts, but
additionally accepts if z = (”special”, x′) and x =”There is a w = pi such that
V′(x′, pi) = 1”.

• The simulator is the same as for (P,V).

• The extractor E′ is defined as follows: it does the same as for (P,V), except that in the
special case E(z, x) with z = (”special”, x′). In this case, it simply outputs S(x′).

This proof system is still zero-knowledge, since we did not change P and S (and only those
occur in the definition of ZK). Also, the proof system does not lose simulation-extractability
(SE): Assume P′,V′ is not SE. Then there exists an adversary that, given access to a simulation
oracle S′, produces a proof x, pi (that was never output by S′) such that V′(x, pi) = 1 and such
that E′(pi) does not output a valid witness for x.

Case 1: The proof pi is not of the form (”special”, x′). Then V′ and E′ behave as V and
E, and S = S′ anyway. So we have an attack against SE of P,V.

Case 2: The proof pi is of the form (”special”, x′). Then E′ outputs a valid witness for x
by construction (since V(x′, S(x′)) = 1).

Given this proof system P′,V′, we can now show its own unsoundness. Namely, let
x :=”There is a w = pi such that V′(false, pi) = 1” where false is an arbitrary wrong
statement. Then z := (”special”, false) is a valid proof for that statement (i.e.,V′(x, z) = 1).

46 CHAPTER 2. PRIVACY PROTOCOL VERIFICATION: ZK PROOFS IN COSP

But the statement false is unsatisfiable, so since z is efficiently computable from false this
implies that the NIZK is not sound. We have shown that if there is a proof system satisfying the
stated properties, then there is an simulation-extractable NIZK which is unsound. But this is a
contradiction because simulation-extractability implies soundness. Thus the initial proof system
can not exist. And therefore the symbolic model could not be computationally sound.

2.8 Conclusions

In this work, we have shown that computational soundness of symbolic ZK proofs can be
achieved under realistic cryptographic assumptions for which efficient realizations and generic
constructions are known. The computational soundness proof has been conducted in CoSP, and
hence it holds independent of the underlying symbolic calculi and comes with mechanized proof
support.
We conclude by highlighting two open questions that we consider as future work. First, current
abstractions model non-interactive ZK proofs, i.e., a ZK proof constitutes a message that
can forwarded, put into other terms, etc. Developing a symbolic abstraction to reflect (the
more common) interactive ZK proofs thus requires a conceptually different approach, as such
proofs cannot be replayed, put into other terms, etc. We plan to draw ideas from a recently
proposed symbolic abstraction for (interactive) secure multi-party computation [18] to reflect
this behavior. Second, soundness proofs of individual primitives have typically been proved in
isolation, without a guarantee that the soundness result prevails when composed. We plan to
build on recent work on composable soundness notions [56] to establish a composable soundness
result for ZK proofs.

Chapter 3

Privacy Protocol Implementation:
Designing Protocols for Multi-Party
Computations (MPC)

Multiparty computation (MPC) among n parties can tolerate up to t < n/2 active corruptions
in a synchronous communication setting; however, in an asynchronous communication setting,
the resiliency bound decreases to only t < n/3 active corruptions. We improve the resiliency
bound for asynchronous MPC (AMPC) to match synchronous MPC using non-equivocation.

Non-equivocation is a message authentication mechanism to restrict a corrupted sender
from making conflicting statements to different (honest) parties. It can be implemented using
an increment-only counter and a digital signature oracle, realizable with trusted hardware
modules readily available in commodity computers and smartphone devices. A non-equivocation
mechanism can also be transferable and allow a receiver to verifiably transfer the authenticated
statement to other parties. In this work, using transferable non-equivocation, we present an
AMPC protocol tolerating t < n/2 faults. From a practical point of view, our AMPC protocol
requires fewer setup assumptions than the previous AMPC protocol with t < n/2 by Beerliová-
Trubı́niová, Hirt and Nielsen [PODC 2010]: unlike their AMPC protocol, it does not require
any synchronous broadcast round at the beginning of the protocol and avoids the threshold
homomorphic encryption setup assumption. Moreover, our AMPC protocol is also efficient
and provides a gain of Θ(n) in the communication complexity per multiplication gate, over the
AMPC protocol of Beerliová-Trubı́niová et al. In the process, using non-equivocation, we also
define the first asynchronous verifiable secret sharing (AVSS) scheme with t < n/2, which is of
independent interest to threshold cryptography. The results described in this chapter have been
published in [BaBeChKa:14].

47

48 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

3.1 Multi-Party Computations & Related Work

Multi-party computation (MPC) is an important primitives in distributed systems. Informally,
in a system of n mutually distrusting parties, an MPC protocol allows the parties to “securely”
evaluate any agreed-on function f of their private inputs, in the presence of a centralized active
adversary A, controlling at most any t out of the n parties. In the synchronous communication
model, where the message transfer delays are bounded by a known constant, the MPC problem
has been studied extensively (e.g.,[120, 72, 35, 49, 106, 58, 29, 30, 37]). In practice, there
is growing interest in generalizing MPC to an asynchronous communication model [34, 46,
42] that does not place any bound on the communication delays. The weaker restrictions on
the adversary in the asynchronous model not only worsen the required resiliency conditions
and communication complexities, but also make designing protocols a more challenging task;
intuitively this is because in a completely asynchronous setting, it is not possible to distinguish
between a slow (but honest) sender and a crashed sender. Due to this, at any “stage” of an
asynchronous protocol, no party can afford to wait to hear from all the parties and so the
communication from t (potentially honest) parties may be ignored [46]. Due to their complexity,
only a few asynchronous MPC (AMPC) protocols are available [34, 36, 114, 81, 80, 31, 104,
51].

In this work, we focus on an asynchronous model with a computationally bounded adversary
A, where the parties are connected by pairwise authenticated links. In this setting, AMPC
protocols are possible if and only if t < n/3 [81, 80]. This is in contrast to the synchronous
world, where we can tolerate up to t < n/2 corruptions [79]. Interested in bridging this gap
between the resilience of synchronous and asynchronous MPC protocols, Beerliová-Trubı́niová,
Hirt and Nielsen [32] observed that it is possible to design an AMPC protocol tolerating t < n/2

corruptions in a “partial” synchronous network. More specifically, assuming one synchronous
broadcast round at the beginning of the protocol, where each party can synchronously broadcast
to every other party, they designed an AMPC protocol tolerating t < n/2 corruptions. Due
to the availability of the synchronous broadcast round, their protocol could also ensure “input
provision”, i.e., the inputs of all the (honest) parties are considered for the computation, which
otherwise is impossible to achieve in an asynchronous protocol [46]. Nevertheless, their
requirement of one synchronous broadcast round per MPC instance may not always be realizable:
deterministic broadcast protocols [63] require Θ(t) rounds of communication over the pairwise
channels or randomized broadcast protocols [116, 68] require O(1) (with a large constant)
expected rounds of communication. It was left as an open problem in [32] to see whether one
can design an AMPC protocol with t < n/2 under other simplified assumptions.

In distributed computing research, a similar problem with asynchronous protocols has
recently been addressed by introducing a small trusted hardware assumption [52, 92, 55, 54, 82,
84]. In particular, it was shown that, the resilience of asynchronous distributed computing tasks
such as reliable broadcast, Byzantine agreement, and state machine replication (SMR) can be
improved using a small trusted hardware module at each party. The hardware module utilized
is just a trusted, increment-only local counter and a signature oracle, which can be realized

3.1. MULTI-PARTY COMPUTATIONS & RELATED WORK 49

with pervasively available trusted hardware-enabled devices. Using such trusted hardware
with each party, one can design asynchronous reliable broadcast tolerating up to t < n active
faults [54, 55], and asynchronous Byzantine agreement (ABA) and SMR protocols tolerating up
to t < n/2 [52, 92, 84] active faults, all of which otherwise require t < n/3 [116].

At a conceptual level, such a trusted module makes it impossible for a corrupted party to per-
form equivocation, which essentially means making conflicting statements to different (honest)
parties. The use of signatures (or transferable authentication) complements non-equivocation
(i.e., making equivocation impossible) by making it transferable as required in the asynchronous
environment with unknown delays. Clement et al. [54] generalized the results [52, 92, 55] and
proved that non-equivocation with signatures (i.e., transferable non-equivocation) allows treat-
ing active (or Byzantine) faults as crash failure for many distributed computing primitives. In
particular, they present a generic transformation that enables any crash-fault tolerant distributed
protocol to tolerate the same number of Byzantine faults using transferable non-equivocation.
Nevertheless, their generic transformation considers only the basic distributed computing re-
quirements of safety and liveness. It does not apply to cryptographic tasks such as AMPC where
confidentiality (or privacy) of inputs is also required. This presents an interesting challenge to
assess the utility of transferable non-equivocation for the secure distributed computing task of
AMPC.

3.1.1 Contribution and Comparison

We study the power of transferable non-equivocation in the context of AMPC and demonstrate
how to improve the resilience of AMPC from t < n/3 to t < n/2, without any synchrony
assumption. In particular, we present a general MPC protocol in a completely asynchronous
communication model with n ≥ 2t+ 1. Our protocol, called NeqAMPC , improves upon the
previous AMPC protocol [32] with n ≥ 2t+ 1 in the following ways:

(a) Simplified assumptions. The NeqAMPC protocol needs a transferable non-equivocation
mechanism, but unlike [32] neither makes a synchronous broadcast round assumption nor re-
quires a threshold homomorphic encryption setup. Given the feasibility of realizing transferable
non-equivocation over prevalent computing devices, we argue that transferable non-equivocation
is a more practical assumption than the synchronous broadcast round assumption.

(b) Efficiency. For a security parameter κ, our AMPC protocol requires an amortized commu-
nication complexity of O(n3κ) bits per multiplication gate, which improves upon the AMPC
protocol of [32] by a factor of Θ(n).

To reduce the setup assumptions for the NeqAMPC protocol, we avoid the traditional
threshold additive homomorphic encryption based circuit evaluation approach as used in [81,
80, 32]. Instead, we employ a secret-sharing based circuit evaluation approach [35, 49, 106],
where privacy of the computation is maintained via secret sharing. Nevertheless, as detailed in
our protocol overview (Section 3.2), secret-sharing based AMPC with n = 2t+ 1 and O(n3κ)

communication complexity (per multiplication) presents several interesting challenges. As a

50 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

result the NeqAMPC protocol is significantly different than those in the literature [81, 80, 31,
32].

In the process, we also present the first computationally secure asynchronous verifiable
secret sharing (AVSS) [46, 42, 12, 11] scheme for n ≥ 2t + 1 with O(n2κ) communication
complexity (using transferable non-equivocation), which otherwise requires t < n/3 [46]. Our
AVSS scheme has an additional useful feature—it is the first publicly verifiable [115] AVSS
scheme, as it allows any third party to publicly verify the “consistency” of the shares. With its
efficiency and public verifiability, our AVSS scheme may be of independent interest to other
cryptographic protocols.

Comparison with Existing Work. The best known computationally secure AMPC protocols
are reported in [80, 32]. The protocol in [80] considers a fully asynchronous setting with
t < n/3, whereas [32] assumes one synchronous broadcast round and can tolerate up to
t < n/2 corruptions. Both the protocols require a threshold additive homomorphic encryption
instantiation, and incur an (amortized) communication complexity of O(n2κ) and O(n4κ) bits
per multiplication gate respectively.1

We do not employ a threshold encryption setup, but rather prefer a more standard public key
encryption setup with the addition of transferable non-equivocation. Our NeqAMPC protocol
with t < n/2 performs circuit evaluation by secret-sharing the inputs and incurs a communica-
tion complexity ofO(n3κ) bits per multiplication gate. Nevertheless, by modifying our protocol
and employing a threshold encryption setup (coupled with transferable non-equivocation), we
can tolerate t < n/2 faults with communication complexityO(n2κ) bits per multiplication gate.
However, we prefer the secret-sharing based AMPC, as we aim to reduce the assumptions relied
upon.

We note that unlike [32], our AMPC protocol could not enforce input provision: the
input from t potentially honest parties may be ignored for computation. As discussed earlier,
this is inherent to asynchronous systems and presents a trade-off between our protocol and
that of [32] based on what is more important: input provision or avoiding the synchrony
assumption. Finally, we note that using a transferable non-equivocation mechanism, one can
realize asynchronous reliable broadcast (see Section 3.1.3) with t < n and consequently get
rid of the synchronous broadcast round required in [32]. Nevertheless, the resultant protocol
will still require the threshold homomorphic encryption setup and O(n4κ) communication
complexity per multiplication, and it will no longer support input provision.

3.1.2 Preliminaries

In this subsection, we discuss our adversary and communication model, define the AMPC
protocol and the non-equivocation mechanism, and describe the required primitives.

1Beerliová-Trubı́niová et al. [32] focused on designing a protocol with t < n/2, and the communication
complexity of O(n4κ) of their protocol (measured by us in section 3.9) can possibly be improved.

3.1. MULTI-PARTY COMPUTATIONS & RELATED WORK 51

Model

We consider a set P = {P1, . . . , Pn} of n parties connected by pairwise authenticated channels,
where n = 2t+ 1. These communication channels are asynchronous with arbitrary but finite
delay (i.e. the messages reach their destinations eventually). A centralized static adversary
A can actively corrupt any t out of the n parties and force them to deviate in any arbitrary
manner. A party not under the control of A is called honest. The adversary A is modeled as a
probabilistic polynomial time (PPT) algorithm, with respect to a security parameter κ. During
a protocol execution, the message delivery order is decided by a scheduler controlled by A.
Nevertheless, the scheduler cannot modify the messages exchanged between honest parties. A
protocol execution is considered as a sequence of atomic steps, where a single party is active in
each such step. A party is activated upon receiving a message, after which it performs some
computation and possibly outputs messages on its outgoing links. The scheduler controls the
order of these atomic steps. At the beginning of the execution, each party will be in a special
start state. A party is said to terminate/complete the execution if it reaches a halt state. A
protocol execution is said to be complete when all honest parties complete it. We assume that
every message sent by a party during an execution has a publicly known unique identifier (key)
associated with it. By [y, z] we denote the set {y, y + 1, . . . , z} ⊂ N.

Definitions

Computationally Secure AVSS. Informally an AVSS scheme consists of two phases, a sharing
phase, where a special party called dealer shares a secret and a reconstruction phase, where the
parties reveal their shares to reconstruct the secret.

More formally, let (Sh,Rec) be a pair of protocols for parties in P , where a dealer D ∈ P
has a private input s ∈ Zp for Sh. Then (Sh,Rec) is an computationally secure AVSS scheme,
if the following requirements hold for every possible adversary A, except with a negligible
probability in κ:

- TERMINATION:

(a) If D is honest and all the honest parties participate in the protocol Sh, then each honest party
eventually terminates the protocol Sh;

(b) If some honest party terminates Sh, then every honest party eventually terminates Sh;

(c) If all the honest parties invoked Rec, then each honest party eventually terminates Rec.

- CORRECTNESS: If some honest party terminates Sh, then there exists a fixed value s ∈ Zp
such that the following requirements hold except with a negligible probability in κ:

(a) If D is honest, then s = s, and all the honest parties output s upon terminating Rec;

(b) Even if D is corrupted, all the honest parties output s upon terminating Rec.

- PRIVACY: If D is honest during the protocol Sh and no honest party has started to execute
the protocol Rec, then the adversary A has no information about the secret s.

52 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

Computationally Secure AMPC. We briefly review computationally secure AMPC here, and
refer the readers to [81, 80] for a formal definition. Informally, in an AMPC protocol ΠMPC,
every party first provides its input in Zp to the computation (in a secure fashion). Due to the
asynchronous nature of communication, the parties cannot wait to consider the inputs of all n
parties, and instead they agree on inputs from a set CORE of n − t parties. The parties then
compute an “approximation” of f on the inputs from the CORE set and assuming a default
value (say 0) as the remaining t inputs. For every possible A and for all possible inputs and
random coins of the (honest) parties, we expect the following properties for a ΠMPC instance,
except with a negligible probability (in κ):

• Termination: all the honest parties eventually terminate ΠMPC;

• Correctness: the honest parties obtain the correct output of the function f ;

• Privacy: the adversary A obtains no additional information about the inputs of the honest
parties other than what may be inferred from the inputs and outputs of the corrupted
parties.

The above properties are formalized to the standard simulation-based definition following the
real-world/ideal-world paradigm [46, 34, 81, 80].

(Transferable) Non-equivocation. Non-equivocation restricts a corrupted party from making
conflicting statements to different parties, and it has been used in several asynchronous dis-
tributed systems [52, 92, 55, 54, 84] to improve their resiliency. In particular, these systems
employ transferable non-equivocation, which (similar to digital signatures) allows a party to
verifiably transfer a non-equivocation tag (or signature) provided by a sender to other parties.
Clement et al. [54] justify the necessity of transferability of non-equivocation by proving that
non-equivocation or signature alone are powerless in asynchronous distributed systems. Nev-
ertheless, (transferable) non-equivocation has not been formalized so far, and we present a
simplified, idealized definition for transferable non-equivocation.

In Figure 3.1, we define a simplified mechanism (Neq) which is intended to model the event
for a transferable non-equivocation instantiation:

(1) during the setup phase, every party Pi gets associated with a unique non-equivocation list
Li characterized by its index i, and all parties are informed about this association.

(1) The list owner party can create a non-equivocation signature for any key-message pair
except that she cannot equivocate and obtain a signature for the same key twice.

(1) Given a key-message-signature triplet associated with a sender, any party successfully
verifies only correctly generated signatures except with a negligible probability.

3.1. MULTI-PARTY COMPUTATIONS & RELATED WORK 53

The Neq mechanism
Neq is parameterized by a polynomial p(·), and an implicit security parameter κ.

SETUP: Upon receiving a (Setup) message from party Pi ∈ P , do:
1. If a list Li exists, return ⊥.
2. Otherwise, create an empty list Li of key-message-signature triplets of type {0, 1}∗ × {0, 1}∗ ×
{0, 1}p(κ).
Send a message (Registered, Pi) to all parties in P .

SIGNING: Upon receiving an (Neq-Sign, Pi, `,m) message from party Pi, do:
1. If the list Li does not exist or 〈`, , 〉 ∈ Li, return ⊥.
2. Otherwise, choose an arbitrary (signature) tag σ`,mi ∈ {0, 1}p(κ), update Li ← Li∪〈`,m, σ`,mi 〉

and return σ`,mi .
VERIFICATION: Upon receiving an (Neq-Verify, Pi, `,m, σ) message from party Pj ∈ P , do:

1. If the list Li does not exist or 〈`,m, σ〉 /∈ Li, then return 0, else return 1.

Figure 3.1: A simplified transferable non-equivocation mechanism Neq

We survey existing transferable non-equivocation instantiations and analyze their relations
to Neq in section 3.7. In most instantiations, the transferable non-equivocation is implemented
using an increment-only counter for keys and signatures with public key infrastructure (PKI) [52,
92, 55, 54] or message authentication codes (MACs) generated with a replicated secret key [84].
In Neq, we generalize these using the list Li of key-message-signature triplets associated
with party Pi indexed by party-defined ordered keys `. Similar to signatures, only Pi can use
Neq-Sign to add triplets (one per each key) to Li. Similar to PKI, anybody can Neq-Verify if a
triplet 〈`,m, σ〉 belongs to Li of Pi, and verifiably transfer authentication to others. Note that
the increment-only counter provides a space-efficient way to implement a list Li as only the
counter value has to be maintained and not the whole list.

For ease of exposition, we use a phrase Pi sends mσi to Pj and Pj receives mσi from Pi to
suggest that Pi sends a triplet 〈`,m, σ`,mi 〉 for a key ` to Pj and Pj delivers it only after applying
Neq-Verify to check if σ`,mi is obtained by Pi using Neq-Sign on ` and m. Similarly, we use
a phrase Pj forwards mσi to Pk to suggest that Pj received (in the above sense) message mσi

(of Pi) from some party, and then forwards it to Pk who should also (non-equivocally) receive
it. Note that we avoid the keys ` in the above phrases as they can be pre-assigned to protocol
instance-step combinations in an unambiguous manner.

3.1.3 Employed Primitives

We now discuss the existing primitives used in our protocols.

Homomorphic Encryptions and Commitments. We assume an IND-CPA secure linear
homomorphic encryption scheme (Enc,Dec). Every party Pi has its own key-pair (pki, ski), for
which the public key pki is known to all parties. Given two ciphertexts cm1 = Encpki(m1, ·)
and cm2 = Encpki(m2, ·), we require that there exist operations � and � on ciphertexts such
that cm1 � cm2 = Encpki(m1 +m2, ·) and a� cmi = Encpki(a ·mi, ·) holds. We also assume
an unconditional hiding and computational binding linear homomorphic commitment scheme

54 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

(Commit,Open) with the analogous homomorphic operations; these are denoted by ⊕ and �.
For the sake of readability, we sometimes leave the randomness of encryptions and commitments
implicit.

For instantiating encryptions and commitments over messages in Zp, we use the encoding-
free additive El-Gamal encryption scheme [50] and Pedersen commitment scheme [105] respec-
tively. In particular, we only require that the scheme is CPA secure (Theorem 3 in [50]) and
it is not necessary that applying homomorphism twice to the same encrypted values leads to
different ciphertexts.

Zero-knowledge (ZK) Proofs. We assume the presence of the following two-party ZK proto-
cols.

1) Zero knowledge proof of equality of encrypted and committed values (PoE). There
exists a prover P ∈ P who computes and publishes a commitment Comm = Commit(m, r),
and ciphertexts cm = Encpki(m, ·) and cr = Encpki(r, ·). Then using PoE, the prover P can
prove to any verifier V ∈ P (knowing Comm, cm, cr and pki) that the message encrypted in cm
is also committed in Comm, under the randomness encrypted in cr; i.e.,

∃m, r, r1, r2 : Comm = Commit(m, r) ∧ cm = Encpki(m, r1) ∧ cr = Encpki(r, r2).

2) Zero knowledge proof of correct pre-multiplication (PoCM). Given publicly known com-
mitments Comvj = Commit(vj , rj) and corresponding ciphertexts cvj = Encpkj (vj , ·), crj =

Encpkj (rj , ·) for j ∈ [1, n], there exists a prover P ∈ P who selects a random u ∈ Zp
and t-degree random polynomials m(·) and m̂(·) in Zp[x] with m(0) = m̂(0) = 0. Let
mj = m(j) and m̂j = m̂(j) for j ∈ [0, n]. In addition, P publishes Comu = Commit(u, ·) and
Commj = Commit(mj , m̂j). Using the homomorphic property of commitments and encryp-
tions, P computes and publishes the commitment Comu·vj+mj = Commit(u·vj+mj , u·rj+m̂j)

and encryptions cu·vj+mj and cu·rj+m̂j of u · vj +mj and u · rj + m̂j respectively. Then using
PoCM, P can prove to any verifier V ∈ P that all values Comu·vj+mj were generated by
multiplying Comvj with the same u followed by re-randomization using the same m(·) and
m̂(·) polynomials, and that all cu·vj+mj and cu·rj+m̂j values were generated by multiplying cvj
and crj respectively with the same u, followed by re-randomization using the same m(·) and
m̂(·) respectively. i.e.,

∃u,ρ,m(·), m̂(·), {kj , k̂j}j∈[1,n] : Comu = Commit(u, ρ) ∧ deg(m(·)) ≤ t ∧ deg(m̂(·)) ≤ t ∧
m(0) = 0 = m̂(0) ∧ Comu·vj+mj = u� Comvj ⊕ Commit(mj , m̂j) ∧

cu·vj+mj = u� cvj � Encpkj (mj , kj) ∧ cu·rj+m̂j = u� crj � Encpkj (m̂j , k̂j).

Both the ZK protocols are based on standard Σ-protocols [33] and have communication com-
plexity O(κ) bits and O(nκ) bits respectively. See Appendix 3.8 for their instantiations based
on the ZK protocols in [45].

Certificates of Claims. Hirt, Nielsen, and Przydatek [80] introduced this concept to allow a
prover P ∈ P to publicly prove correctness of a certain claim (like real-life certificates), without

3.1. MULTI-PARTY COMPUTATIONS & RELATED WORK 55

revealing any additional information. Here, to certify validity of a statement m, the prover
P proves m to every verifier Pi ∈ P using an appropriate zero-knowledge (ZK) protocol. A
verifier Pi, upon successful verification, sends a signature to P on an “appropriate” message
(known publicly), corresponding to m. P cannot wait for all n signatures in the asynchronous
environment; thus, upon receiving (n− t) = t+ 1 signatures, the prover P concatenates them to
construct a certificate α for the claim m. These t+ 1 signatures ensure that at least one honest
party has verified the claim, and that m is true with an overwhelming probability. Assuming
each signature to be of size O(κ) bits, the size of α will be O(nκ) bits; this can be reduced to
O(κ) bits using a threshold signature scheme with threshold t [32]. Here, the verifiers send
signature shares and the prover P, instead of concatenating, combines (n− t) shares to a single
signature.2

Let zkp be the ZK protocol corresponding to the claimm. We denote the task of constructing
a certificate α for m as α = certifyzkp(m). Similarly we say that “Pi verifies the certificate
α for the claim m” to mean that that Pi verifies that α is a valid (threshold) signature on the
appropriate message corresponding to m. The communication cost of constructing α is the
same as that of executing n instances of the corresponding ZK protocol zkp.

Reliable Broadcast (r-broadcast). This asynchronous primitive [39, 116, 78] allows a sender
S to send a messagem identically to all the parties: For a given instance τb of r-broadcast, when
S is honest, all honest parties eventually terminate with output (τb,m); if S is corrupted and
some honest party terminates with (τb,m

′), then every honest party also eventually terminates
with (τb,m

′); for any instance, at most one message can be delivered by an honest party.
The resiliency bound for r-broadcast is n ≥ 3t + 1 [39, 116, 78]; however, assuming

transferable non-equivocation, an r-broadcast protocol with n ≥ t+ 1 and O(n2(`+ κ)) bits
of communication for broadcasting an `-bit message is available [54, 55]. The high-level idea of
the protocol is as follows: S first (non-equivocally) sends mσS to all the parties; this prevents a
corrupted S from sending different messages to different honest parties. However, a corrupted
S can avoid sending mσS to some honest parties. Thus, to ensure that all the honest parties
eventually receive mσS , whenever an honest party (non-equivocally) receives some message
mσS , before delivering the message, it non-equivocally forwards it to every other party. This
ensures that whenever an honest party receives mσS then it will be eventually received by every
other honest party.

In the rest of the paper, the term “Pi broadcasts m” means that Pi as a sender invokes an
r-broadcast instance for m. Similarly, “Pj receives m from the broadcast of Pi” means that Pj
terminates the r-broadcast instance τb invoked by Pi with the output (τb,m).

Agreement on a Common Subset (ACS). This primitive allows the parties to agree on a
common subset of (n− t) parties, who correctly invoked some protocol, say Π, satisfying the
following requirements: (a) If an honest party invokes an instance of Π then all the (honest)
parties eventually terminate the instance; (b) If some honest party terminates an instance of Π

2Note that the AMPC protocols of [80, 32] also assume a threshold signature setup.

56 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

invoked by a corrupted party, then every honest party eventually does the same. ACS can be
realized by executing n instances (one for each party) of an asynchronous Byzantine agreement
(ABA) protocol to decide if it should be included in the common subset. Assuming transferable
non-equivocation, ABA, and hence ACS, can be implemented with n ≥ 2t + 1 [54, 55, 84].
An efficient ACS protocol with expected communication complexity of O(n3κ) bits can be
obtained by using the Neq mechanism in the multi-valued ABA of [43].

3.1.4 Secret Sharing Notations

Given a secret s ∈ Zp, let φ(·), ψ(·) ∈ Zp[x] be, respectively, a degree t sharing polynomial
with φ(0) = s and a t-degree randomness polynomial required for commitments; here, p
is a κ-bit prime. For party Pj , sj = φ(j) and rj = ψ(j) are respectively her shares of s
and the randomness polynomial. Let csj = Encpkj (sj , ·), crj = Encpkj (rj , ·) and Comsj =

Commit(sj , rj) and let Coms = Commit(s, ψ(0)). We call {csj , crj}j∈[1,n] the encrypted
shares and {Comsj}j∈[1,n] the committed shares of s.
[·]-sharing: A secret s is said to be [·]-shared, if every (honest) party Pi ∈ P holds si, ri,
{Comsj}j∈[1,n] and Coms. The information held by the (honest) parties corresponding to
[·]-sharing of s is denoted as [s].

Privileged party: Pi is called a privileged party of [·]-sharing of s if it holds the encrypted
shares {csj , crj}j∈[1,n].

Due to linearity of sharing and commitments, [·]-sharing is also linear: given [a], [b] and a public
constant c, every party can locally compute its information corresponding to [a+ b] and [c · a],
as [a+ b] = [a] + [b] and [c · a] = c · [a] respectively.

3.2 Overview of Our NeqAMPC Protocol

Without loss of generality, we assume n = 2t+ 1; thus, t = Θ(n). We assume that the function
f to be computed is expressed as an arithmetic circuit over the field Zp, where p > n is a κ bit
prime and κ is the security parameter. The circuit consists of two-input addition (linear) and
multiplication (non-linear) gates, apart from random gates. The AMPC protocol consists of two
phases: an input phase and a computation phase. During the input phase, the parties share their
inputs, while during the computation phase, the parties jointly evaluate f on the shared inputs
and publicly reconstruct the output. Linear gates can be evaluated locally if the underlying
secret-sharing scheme is linear; thus, we use the polynomial-based (Shamir) secret-sharing
scheme with threshold t [113]. We denote a sharing of a value s by [s]. It follows that locally
adding the shares of [x] and [y] provides the shares for [x+ y].

Multiplication gates cannot be evaluated locally since multiplying the individual shares
results in the underlying sharing polynomial having degree 2t instead of t. Therefore we evaluate
multiplication gates using the standard Beaver’s circuit-randomization technique [28]. This
technique requires three “pre-processed” secret-shared values, say ([u], [v], [w]), unknown to
the adversary A, such that w = u · v. Given such a shared multiplication triple, and shared

3.2. OVERVIEW OF OUR NEQAMPC PROTOCOL 57

inputs of a multiplication gate, say [x] and [y], the multiplication gate is securely evaluated using
the equation [x · y] = (x− u) · (y− v) + [v] · (x− u) + [u] · (y− v) + [u · v]. In particular, the
parties compute the sharings of (x− u) and (y − v), and publicly reconstruct the same. Once
(x− u) and (y − v) are public, the parties can compute their shares of x · y, using the above
equation and employing linearity of the secret sharing. As u and v are random and unknown to
A, the public knowledge of (x− u) and (y − v) does not violate the privacy of x and y.

3.2.1 Pre-processing Phase

Although our above AMPC protocol idea is the same as the existing information-theoretically
secure MPC and AMPC protocols [60, 31, 30, 51], our major challenge lies in generating the
required shared multiplication triples with n = 2t+ 1 parties; the existing protocols [60, 31, 30,
51] employ at least n > 3t parties for this purpose3. These triplets are independent of the circuit
and the inputs of the parties, and generated in an additional pre-processing phase. Generating
these triplets efficiently is the important problem we solve in our protocol. In the rest of the
section, we give an overview of how (cM + cR) shared random triples are generated, where cM
and cR are the number of multiplication gates and random gates in the circuit. As a first step,
we describe how a single triple is generated (see Figure 3.2 for a pictorial representation of the
protocols involved) and then extend this to cM + cR triples.

SupTripGen
[u],[v],[uv]

Sup-FirAndThd
[u],[uv]

Sup-Second
[v]

Sup-PreMul-Sh

Sup-Sh

1 instance 1 instance

n instances

1 instance

n instances

Figure 3.2: Multiplication Triple Generation under Supervision of a Pking

Supervised Triple Generation (Section 3.5). The idea for generating a random shared mul-
tiplication triple [u], [v], [w] is to compute a random sharing [v] and then combining “several”
[u(i)]s and [u(i) · v]s to get [u] and [w]. The triple generation protocol uses two sub-protocols:
Sup-Sh and Sup-PreMul-Sh. Protocol Sup-Sh allows a dealer D to “verifiably” generate the
sharing [u] of his value u, while Sup-PreMul-Sh allows a dealer D to “verifiably” generate
a sharing [u] and [u · v], given u and [v]. To generate ([u], [v], [w]), we use Sup-Sh and

3Shared multiplication triples with n = 2t+ 1 have been generated in the synchronous setting [29, 37]; however,
their adaptability to the asynchronous setting is unclear.

58 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

Sup-PreMul-Sh in the following way: first, we ask each party Pi to act as a dealer D and invoke
an instance of Sup-Sh to share a uniformly random value, say v(i). The parties then agree on a
common subset (say Tv) of t+ 1 dealers whose Sup-Sh instances will be eventually terminated
by all the parties. We set v =

∑
Pi∈Tv v

(i). The shared value v will be random and unknown to
A, as Tv has at least one honest party. Next, each party Pi is asked to act as a D and invoke a
Sup-PreMul-Sh instance to share a uniformly random value u(i) as well as u(i) · v. The parties
then agree on a common subset of t+ 1 dealers, say Tu, whose Sup-PreMul-Sh instances will
be eventually terminated by all the parties. For u =

∑
Pi∈Tu u

(i) and w =
∑

Pi∈Tu u
(i) · v, the

triple (u, v, w) is a random multiplication triple.
There is, however, an important subtlety: As a precondition, the Sup-PreMul-Sh protocol

expects its dealer D to also have encryptions of all n shares of [v], encrypted under the individual
keys of the respective share-holders; here, the encryption scheme is additively homomorphic
(and not threshold additively homomorphic). For any sharing, we call a party having such n
encrypted shares to be privileged. Due to asynchronicity, the Sup-Sh protocol cannot guarantee
that all the n − t honest parties are privileged with respect to every [v(i)] sharing of Pi ∈ Tv.
We solve the problem by ensuring in Sup-Sh that there exists a designated (possibly corrupted)
supervisor Pking (called king), who is a privileged party with respect to each [v(i)]. An honest
Pking then computes all the n encrypted shares of [v] using the homomorphic properties of
encryption, and reliably broadcasts those encrypted shares. Using non-equivocation, the required
asynchronous reliable broadcast is possible for n > t (Section 3.1.3). Once Pking (correctly)
broadcasts the n encrypted shares of v, then each Pi can invoke its Sup-PreMul-Sh instance.

The resultant wrapper protocols are called Sup-Second and Sup-FirAndThd, where
Sup-Second generates [v] under the supervision of Pking and Sup-FirAndThd generates [u] and
[w = u · v] under the supervision of Pking. A combination of Sup-Second and Sup-FirAndThd
leads to the protocol SupTripGen under the supervision of a designated Pking, which outputs a
uniformly random and private multiplication triple ([u], [v], [w]).

Preprocessing Phase Protocol. Protocol SupTripGen may not terminate for a corrupted Pking.
Therefore, we ask each party Pi to act as a king and generate shared random multiplication
triples under its supervision by invoking an instance of SupTripGen. As the instances of honest
kings will eventually terminate, we distribute the load of generating cM + cR shared random
multiplication triples among n parties. Each party Pi is asked to act as a king and generate
cM+cR
t+1 shared multiplication triples in its SupTripGen instance. The parties then agree on a

common subset Tking of t+ 1 kings whose SupTripGen instances will be eventually completed
by everyone and the |Tking| · cM+cR

t+1 = cM + cR shared triples obtained in these instances are
considered as the final output.

3.2.2 Important Sub-protocols for the Preprocessing Phase

We now discuss the realization of the main sub-protocols Sup-Sh and Sup-PreMul-Sh for the
preprocessing phase.

3.2. OVERVIEW OF OUR NEQAMPC PROTOCOL 59

Protocol Sup-Sh (Section 3.4.1). Our Sup-Sh protocol is almost equivalent to the AVSS
primitive[42, 46, 12]: it allows a dealer D to “verifiably” share a secret s, thus generating [s],
and ensures that at least one honest party is privileged to obtain all the n shares encrypted for
the respective share holders. The existing computational AVSS protocols (e.g., [42, 12]) are
designed with n = 3t + 1 and are based on sharing a secret using a bivariate polynomial of
degree t in each variable and (homomorphic) commitments. In this paradigm, it is ensured that
D has distributed “consistent” shares to n− t = 2t+ 1 parties such that (at least) t+ 1 honest
parties among them can “enable” the remaining parties to get their shares. Unfortunately, this
approach cannot be used with n = 2t + 1, as here we can only ensure that D has distributed
consistent shares to n− t = t+ 1 parties. In the worst case, there will be only one honest party
in this set, who does not have sufficient information to help the other honest parties to complete
a sharing.

We solve this problem by introducing encryptions of the shares4, and by employing uni-
variate polynomials instead of bivariate polynomials. Here, D provides a vector of n encrypted
shares as well as homomorphic commitments of those shares to each party. The non-equivocation
mechanism is used to ensure that a corrupted D does not distribute different sets of encrypted
and committed shares to the different parties. Once n− t = t+ 1 parties confirm that they have
received “consistent” n encrypted and committed shares, there must exist at least one honest
privileged party with all n encrypted shares, who can transfer the individual encrypted shares
to the individual parties. Transferability of non-equivocation ensures that corrupted privileged
parties do not transfer incorrect encryptions.

Protocol Sup-PreMul-Sh (Section 3.4.2). The protocol takes as input an existing sharing [v]

of a value v unknown to everybody including A, such that all the parties are privileged, i.e., all
the parties hold encryptions of all shares. The protocol then allows a dealer D to verifiably share
its value u as well as u · v (i.e. [u] and [u · v]). The protocol ensures that u · v remains secure
in general and u is secure for an honest D. The idea behind the protocol is that knowing the
encrypted and committed shares of v and employing the homomorphic properties of encryptions
and commitments, D can compute the encrypted and committed shares corresponding to u · v
for his choice of u, even without knowing v. The dealer can then (non-equivocally) distribute
the encrypted and committed shares to the parties. Once it is confirmed that t+ 1 parties have
received all the n encrypted and committed shares of u · v, it is ensured that there exists a honest
privileged party, who can relay the individual encrypted shares of u · v to the respective parties.

We take a more bottom-up approach in the rest of the paper. We describe our model, and
define non-equivocation and other primitives in Section 3.1.2. We present our AVSS protocol in
Section 3.3. We start our AMPC construction with subprotocols Sup-Sh and Sup-PreMul-Sh in
Section 3.4. We then present our supervised multiplication triple generation in Section 3.5 and
finally describe the complete AMPC protocol in Section 3.6.

4We argue that the problem is inherently not solvable for n = 2t+ 1 with only commitments usually employed
in computationally secure VSS protocols [42, 12], and that we have to employ encryptions which allow a single
honest party to procure encrypted shares of all the parties. Interestingly, the problem persists even when we assume
the adversary A is only passive (but crashable), not Byzantine.

60 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

3.3 Employed AVSS Protocol

Protocols Sh and Rec presented in Figure 3.3 constitutes an AVSS scheme with n = 2t + 1.
Protocol Sh allows a dealer D to “verifiably” generate [s] for a secret s ∈ Zp. It ensures that
if the protocol terminates then there exists a value (say s) which will be [·]-shared among the
parties; if D is honest then s = s, and A learns no new information on s. The protocol always
terminates for an honest D and has communication complexity O(n2κ). Protocol Rec allows
the parties to reconstruct s, given that s is [·]-shared.

In the Sh protocol, D polynomial-shares the secret s with threshold t to generate shares
{sj}j∈[1,n] and computes the commitments Comsj = Commit(sj , rj), where rj is a share
of a random t-degree randomness polynomial ψ(·). It also computes the encryptions csj =

Encpkj (sj) and crj = Encpkj (rj) of each share-pair sj , rj , and the commitment Coms =

Commit(s, ψ(0)). D then (non-equivocally) sends {csj}σD , {crj}σD and {Comsj}σD for all
j ∈ [1, n], and {Coms}σD to every party and claims that it has correctly [·]-shared a secret: the
claim involves proving that the plaintexts in csj and crj are committed in Comsj and that the
values committed in {Comsj}j∈[1,n] constitute shares of the secret committed in Coms with
threshold t. Note that although sending the full vector {csj}σD , {crj}σD and {Comsj}σD to
each party looks a bit non-intuitive, it is the crux of our Sh protocol to ensure that every party
eventually receives its shares for [s].

To verify D’s claim, upon (non-equivocally) receiving information from D, every Pi verifies
if the committed shares {Comsj}j∈[1,n] constitute Shamir sharing of the secret committed in
Coms with threshold t. For this, the parties use the fact that given the commitments to at least
t+ 1 distinct points on a t degree polynomial, it is possible to (homomorphically) compute the
commitments of the coefficients of the polynomial [71, 42]. In particular, party Pi takes Coms

along with {Comsj}j∈[1,t] and homomorphically computes the commitments of the sharing and
randomness polynomial. Using these commitments, party Pi then computes the commitments of
the remaining n− t points and matches them with {Comsj}j∈[t+1,n]. Additionally Pi engages
in n instances of PoE (one per triplet {csj , crj ,Comsj}) with D. By non-equivocally sending
messages to the parties, it is ensured that the parties who receive the messages from D, receive
the same messages. D then constructs a certificate αD,τ (for session id τ) to support its claim of
correct sharing and broadcasts it. A party proceeds further only upon receiving a valid certificate.
A valid αD,τ ensures that at least one honest party, say Ph, has verified D’s claim; Ph will be an
honest privileged party.

A valid certificate from D does not ensure that every (honest) Pi will eventually hold its
information corresponding to [s]: due to asynchrony or possible corrupted behavior of D, t
honest parties may not receive their shares corresponding to [s]. We solve this problem by
using two additional “rounds” of communication, which we call the D-independent phase. Each
privileged party non-equivocally forwards only {csj}σD , {crj}σD , and {Comsj}σD to every party
Pj , who can decrypt csj and crj to obtain sj , rj . Existence of at least one honest privileged
party ensures that every Pj eventually receives sj , rj and Comsj . Next, every Pi forwards
{Comsi}σD to all parties. As all t+ 1 honest parties would eventually receive their respective

3.4. SUPERVISED SHARING PROTOCOLS 61

{csi}σD , {cri}σD , and {Comsi}σD messages at the end of first “round” of the D-independent
phase, eventually every honest party will receive t+ 1 forwarded committed shares. Now using
the homomorphic property of commitments every party can compute the remaining committed
shares and Coms, thus possessing all the necessary information of [s].

Given [s] generated using Sh, protocol Rec is based on the standard reconstruction protocol
used in the existing computationally secure AVSS [12, 42], which allows the parties to robustly
reconstruct s. In the protocol, each party sends its share-pair to all the parties, which are
verified with the corresponding commitment, available with the parties (as part of [s]). Once
t+ 1 “correct” share pairs are received, the sharing polynomial, and hence s, is reconstructed.
As there exist at least t + 1 honest parties whose shares will eventually be communicated
among themselves, the Rec protocol eventually terminates. As stated in Lemma 3.3.1. the
pair of protocols (Sh,Rec) constitutes an AVSS scheme with n = 2t+ 1 and communication
complexity O(n2κ) bits.

Lemma 3.3.1. Protocols (Sh,Rec) constitute a computational secure AVSS scheme tolerating
t < n/2 corruptions, where both Sh and Rec incur communication cost of O(n2κ) bits.

This lemma follows immediately from lemma 3.4.1 comparing the protocols Sup-Sh and
Sh. Notice that the above AVSS scheme is also publicly verifiable [115] as any third party can
verify the consistency of the shares using the valid certificate broadcasted by D.

Commitment to Shares instead of Polynomial Coefficients during Sh: In most existing
computational secure VSS schemes [105, 12], D commits to the polynomial coefficients of
sharing and randomness polynomials during the sharing phase, and the parties homomorphically
generates the committed shares from those. This approach makes VSS simpler as the parties are
not required to verify whether the committed shares lie on degree t polynomial.

If we follow this approach in our Sh protocol, then D has to non-equivocally distribute the
commitment to polynomial coefficients of the sharing and randomness polynomials. In that case,
however, the homomorphically generated committed shares will not have the necessary non-
equivocation tag as the non-equivocation mechanism is not required to be homomorphic in nature.
As a result, a corrupted privileged party can forward some incorrect committed shares to the
respective parties during the D-independent phase, and the correctness of the protocol. Although
the privileged parties can be asked to non-equivocally forward the polynomial coefficients during
the D-independent phase, and it will result in an additional Θ(n) communication overhead.

3.4 Supervised Sharing Protocols

In this section, we present two protocols for generating [·]-sharings with different properties
under the supervision of a king Pking. Here, if the protocols terminate, then an honest Pking will
be a privileged party with respect to the generated sharings.

62 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

3.4.1 Protocol Sup-Sh: Supervised [·]-sharing

In our first supervised sharing protocol Sup-Sh, a dealer D verifiably generates [s] for a secret
s under the supervision of Pking ∈ P . If the protocol terminates then there exists a value
(say s) which will be [·]-shared among the parties; if D is honest then s = s, and A learns
no new information on s from the protocol execution. Moreover, if Pking is honest then it
will be a privileged party. The protocol always terminates for an honest D and Pking and has
communication complexity O(n2κ).

We obtain protocol Sup-Sh by adding two small verification steps during the D-dependent
phase in the protocol Sh in Figure 3.3. Specifically, in the term of properties Sup-Sh is the same
as Sh, with the additional requirement that Pking is a privileged party. To ensure the same, in
protocol Sh, during the D-dependent phase, we ask Pking to broadcast an “acknowledgement”
(a special message) after verifying the claim of D during the D-dependent phase. Additionally,
we enforce that every party should this receive acknowledgement from Pking, before proceeding
further. As an honest Pking will broadcast the acknowledgement only after verifying the claim
of D, these additional steps ensure that indeed Pking will be a privileged party. We summarize
the key properties of Sup-Sh in the following lemma and conclude the subsection with its proof.

Lemma 3.4.1. Let s be the D’s secret. Then for every possible A and scheduler, protocol
Sup-Sh achieves the following properties up to a negligible probability in κ:

(1) TERMINATION: if D and Pking are honest then all the honest parties eventually terminate
the protocol. Moreover, if some honest party terminates the protocol, then every other
honest party eventually does the same.

(1) CORRECTNESS: if some honest party terminates the protocol, then there exists a value s
which will eventually be [·]-shared among the parties. Moreover, if D is honest then s = s.
Furthermore if Pking is honest then Pking will be a privileged party.

(1) PRIVACY: if D is honest then s remains private.

(1) COMMUNICATION COMPLEXITY: the protocol has communication complexity of O(n2κ)

bits.

Proof. For TERMINATION, we first consider an honest D and Pking. In this case, D will (non-
equivocally) send {csj}σD , {crj}σD , {Comsj}σD , {Coms}σD to all parties. In particular all
honest parties will eventually receive them and start participating in the instances of PoE, where
all the verifications will pass. So Pking will eventually broadcast the (OK,D) message, which
from the properties of r-broadcast will eventually reach every honest party with high probability.
Moreover, since there exist at least n − t = t + 1 honest parties, D will be able to construct
the certificate αD,τ and eventually broadcast the same. Therefore every honest party eventually
receives αD,τ as well as the (OK,D) message. Moreover, Pking will be a privileged party and
forwards {csj}σD , {crj}σD and {Comsj}σD to every Pj . It now follows easily that every honest
Pj will eventually receive {csj}σD , {crj}σD and {Comsj}σD from Pking and obtain its share

3.4. SUPERVISED SHARING PROTOCOLS 63

pair sj , rj by decrypting csj and crj . Moreover, since every such Pj forwards its {Comsj}σD
to every other party and there are at least t + 1 such Pjs, it follows that every honest party
will eventually have at least t+ 1 committed shares with high probability, using which it will
homomorphically obtain the remaining committed shares and terminate.

Now consider a corrupted D (and possibly a corrupted Pking) and let Pi be an honest party
that terminates the protocol. We show that all other honest parties will eventually do the same.
Since Pi terminated the protocol, it implies that Pi received αD,τ from the broadcast of D as
well as (OK,D) from Pking’s broadcast. From the properties of broadcast, it follows that with
high probability, every other honest party will eventually receive them. In addition, since αD

was constructed, at least t+ 1 and hence at least one honest party, say Ph, must have received
{csj}σD , {crj}σD , {Comsj}σD , {Coms}σD from D and successfully performed all the verifica-
tions. Since Ph is a privileged party, the rest of the proof follows using the same arguments as
above, except that Ph plays the role of Pking.

CORRECTNESS: If some honest party, say Pi, has terminated the protocol, then it follows
that it has received a valid certificate αD,τ from the broadcast of D, which implies that with
overwhelming probability, there exists at least one honest party, say Ph, who would have
participated in the construction of αD. This further implies that Ph must have received
{csj}σD , {crj}σD , {{Comsj}σD}j∈[1,n] and {Coms}σD from D and successfully performed
the required verifications. Particularly, Ph would have verified that there exist polynomi-
als of degree at most t, say φ(·) and ψ(·), such that Coms = Commit(φ(0), ψ(0)) and
Comsj = Commit(φ(j), ψ(j)). We define s to be φ(0) and show that eventually s will be
[·]-shared. Since Pi has terminated the protocol, from the termination property of the protocol,
it follows that each honest party will eventually terminate with its shares sj and rj and a vector
of committed shares, so what remains is to show that they correspond to [φ(0)]. However, this
follows from the properties of non-equivocation. Specifically, neither a corrupted D nor any
corrupted party can send or forward any other encrypted and committed shares, different from
{csj}σD , {crj}σD and {Comsj}σD respectively, to any honest Pj . Similarly, no corrupted party
Pk can forward its committed share, different from {Comsk}σD , to any honest party. Thus with
high probability, s will be [·]-shared.

It follows easily that if D is honest then s = s, as in this case the polynomials φ(·) and ψ(·)
are the same as φ(·) and ψ(·), as selected by D. Moreover it follows easily that if Pking is honest
then it will be a privileged party, since an honest Pking will broadcast the (OK,D) message only
after receiving {csj}σD , {crj}σD , {Comsj}σD , {Coms}σD from D and successfully verifying it.

PRIVACY: We show that for an honest dealer D, and any s, s the adversary can not distin-
guish whether D shared s or s. Since the non-equivocation signature {x}σD does not provide
any information additional to the signed value x, we drop the tag for this part of the proof for the
sake of readability. So let Tcor be the set of corrupted parties. Hence defineKcorr := {si, ri, ki |
Pi ∈ Tcorr, where si, ri are the shares of party Pi and ki its encryption and decryption keys}
∪{ski | ski is the signing key of Pi}. Note that we only assumed authentic channels; there-

64 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

fore, it is easy to see that the view of the adversary viewA(x) during the execution of the
protocol with secret x consists of Comx, {Comxj = Commit(xj , rx,j), cxj = Encpkj (xj , ·),
crx,j = Encpkj (rx,j , ·)}j∈[1,n] as well as αD,τ , (OK,D) and the messages during the protocol
executions of PoE.

Assume there is an adversary A that can distinguish whether x = s or x = s is shared with
non-negligible probability. We then show that there is an adversary that can distinguish Coms

from Coms with non-negligible probability. We do this in several steps; in particular, we define
the following views and show that these are indistinguishable for s and s.

• view1
A(x) := viewA(x) ∪ Kcorr

• view2
A(x) := Comx, {Comxj , cxj , crx,j}j∈[1,n] and Kcorr

• view3
A(x) := Comx, {Comxj}j∈[1,n] and Kcorr

• view4
A(x) := Comx and Kcorr

• view5
A(x) := Kcorr

Next, we show for i ∈ [1, 4] that viewi
A(x) ∼ viewi+1

A (x). For each step we need to show
that if for each adversary Ai having input viewi

A(x), there is an adversary Ai+1 which has an
indistinguishable output on input viewi+1

A (x).5

1. view1
A(x) ∼ view2

A(x)

Let A1 be given, A2 internally uses A1 by computing (OK,D), computing αD,τ and
simulating the zero-knowledge proofs PoE. The first part is trivial, the second part can be
done since the message signed in α can be deduced from view2

A(x) and A2 has access
to all signing key shares. In order to prove the last part we need to distinguish two
cases: PoE executions with honest parties and PoE executions with corrupted parties.
The executions with honest parties can be computed by A2 using the simulator of the
honest-verifier zero-knowledge property, since the honest parties choose their challenge
randomly. For the corrupted parties, the adversary A2 knows their si. Consequently, he
can act as the dealer in PoE and use the adversary of the protocol execution in order to
generate these proofs.

Finally, we need to show that the output of A1 is indistinguishable from the output of
A2. By construction of A2 it is sufficient to show that the input given to A1 inside A2 is
indistinguishable from the input that A1 gets. For (OK,D) and αD,τ this is obvious. For
the ZK proofs of honest parties, this is implied by the honest-verifier zero-knowledge.
The zero-knowledge proofs of the corrupted parties consist of messages (a, c, e). Here
a has the same distribution as in view1

A(x), i.e., uniformly at random. The part c has
the same distribution since A2 internally invokes the adversary of the protocol execution.
Finally, e is completely determined by a and c. Therefore e has the same distribution as
well.

5Note that the adversary even knows the signing keys of the parties.

3.4. SUPERVISED SHARING PROTOCOLS 65

2. view2
A(x) ∼ view3

A(x)

In this step we basically remove the ciphertexts from the input of A2. We construct A3

by internally running A2 on view3(x) and the ciphertexts computed by A3. In order to
compute the ciphertexts A3 needs to distinguish two cases, ciphertexts of corrupted and
ciphertexts of honest parties. For corrupted parties, A3 can simply access the plaintexts
usingKcorr and encrypt them as D does, hence having indistinguishability. The ciphertexts
of honest parties are replaced by encryptions of 0s. By the IND-CPA property, it follows
that this ciphertext is indistinguishable from the original message’s ciphertext. Therefore
the input to A2 is indistinguishable to view2(x) and consequently its output as well.

3. view3
A(x) ∼ view4

A(x)

In this step we remove all commitments except the commitment to x. The adversary
A4(x) can compute the set {Comxj} for the corrupted parties Pj by recomputing them.
For the other commitments, the adversary A4 can interpolate the polynomial inside the
commitments; since he has t values Comxj and the value Comx this leads to a unique
polynomial inside the commitments, i.e., {Comxj}j∈[1,n]. Then A4 invokes A3 on the
computed input.

4. view4
A(x) ∼ view5

A(x)

Finally we want to remove the commitment Comx. Since there are exactly t shares si in
the adversaries’ knowledge, any x can be used in order to determine a unique polynomial.
By the computational hiding property, committing to any random value using uniform
randomness cannot be distinguished from Comx. Therefore A5(x) computes such a
commitment and runs A4 on this input.

We can conclude that viewA(s) ∼ view5
A(s) and viewA(s) ∼ view5

A(s). Since we assume
that viewA(s) is distinguishable from viewA(s), we can conclude that Kcorr(s) = view4

A(s) is
distinguishable from Kcorr(t) = view4

A(t). However, both Kcorr(s) and Kcorr(s) consists of
the adversaries keys and — since D is honest — t values which are uniformly random. Therefore
they cannot be distinguished (a contradiction). Hence the assumption has to be wrong and
privacy follows by the contraposition.

COMMUNICATION COMPLEXITY: During the D-DEPENDENT PHASE, D has to non-equivocally
distribute O(n) encrypted shares and committed shares to every party, which costs O(n2κ)

bits. Construction of the certificate αD requires O(n2κ) bits of communication, as there are
n encrypted and committed shares and so D needs to execute in total n2 instances of PoE.
Broadcasting αD costs O(n2κ) bits of communication, as the certificate is of size O(κ) bits.
During the D-INDEPENDENT PHASE, each party just needs to send one encrypted share and one
committed share to every other party, incurring a communication of O(n2κ) bits.

66 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

3.4.2 Supervised Pre-multiplication Protocol

The Sup-PreMul-Sh protocol (Figure 3.4) takes input a [·]-shared uniformally random and
private value v and allows a dealer D ∈ P to verifiably generate [u] as well as [u · v] for a
value u of his choice, under the supervision of a designated Pking ∈ P . As a pre-condition, the
protocol assumes that every (honest) party is a privileged party with respect to the input [v]. The
protocol ensures that v and u · v remains private, and when D is honest then A learns no new
information on u. Finally if Pking is honest then it will be a privileged party with respect to [u] as
well as [u · v]. The protocol always terminates for an honest D and Pking and has communication
complexity O(n2κ) bits.

Let {cvj , crj ,Comvj}j∈[1,n] and Comv be the encrypted shares and the committed shares
corresponding to [v] that is available to all the parties. Let φ(·) and ψ(·) be the sharing and
randomness polynomial corresponding to [v]. Thus vi = φ(i), ri = ψ(i) is the share-pair
available with Pi and cvj = Encpkj (vj), crj = Encpkj (rj),Comvj = Commit(vj , rj) and
Comv = Commit(φ(0), ψ(0)). To generate [u], D first invokes an instance of Sup-Sh. The next
task for D would be to generate [u · v] and that too without knowing v. To do this, we observe
that u · φ(·) +m(·) and u · ψ(·) + m̂(·) constitute correct sharing and randomness polynomial
respectively for [u · v], where m(·) and m̂(·) are random masking polynomials of degree at most
t selected by D with the constraint m(0) = m̂(0) = 0. This is because u · φ(·) + m(·) and
u · ψ(·) + m̂(·) will have degree at most t, with the constant term of u · φ(·) +m(·) being u · v.
Thus wj = u · vj +m(j) and r̂j = u · rj + m̂(j) constitute valid share-pair for [u · v] and so by
using the homomorphic property of encryption and commitment, D can compute the encrypted
shares and committed shares of [u · v] and distribute the same to the parties; the presence of
masking polynomials preserves the privacy of u and u · v.

The rest of the protocol is now similar to Sup-Sh, except that PoCM is used instead of
PoE by D to construct the certificate that it has done “correct pre-multiplication”. As nothing
about the masking polynomials is revealed, u remains private. The properties of the protocol are
stated in Lemma 3.4.2 followed by its proof.

Lemma 3.4.2. Let v be a completely random and unknown value which is [·]-shared among
P and let u be a value selected by D. Then for every possible A and scheduler, protocol
Sup-PreMul-Sh achieves the following properties up to a negligible probability in κ:

(1) TERMINATION: if D and Pking are honest then all the honest parties eventually terminate
the protocol. Moreover, if some honest party terminates the protocol, then every other
honest party eventually does the same.

(1) CORRECTNESS: if some honest party terminates the protocol, then there exists a value u,
such that u and u · v will eventually be [·]-shared among the parties. If D is honest then
u = u. Moreover if Pking is honest then Pking will be a privileged party with respect to [u]

as well as [u · v].

(1) PRIVACY: v and u · v remains private at the end of the protocol. Additionally, if D is honest
then u also remains private.

3.4. SUPERVISED SHARING PROTOCOLS 67

(1) COMMUNICATION COMPLEXITY: the protocol has communication complexity of O(n2κ)

bits.

Proof. 1. COMMUNICATION COMPLEXITY: The generating phase of the protocol consists
of one instance of the Sup-Sh protocol which has communication complexity O(n2κ).
The D independent phase of the protocol is similar as in the Sup-Sh protocol and hence
has communication complexity O(n2κ). The same holds for the share verification and
certification part of the protocol, a broadcast from the king with complexity O(n2κ)

complexity and n2 instances of PoCM (n parties running n instances each). Hence this
part has communication complexity O(n2κ) as well. Finally, in the share communication
and certificate generation part, the certificate β is broadcasted by the dealer and the dealer
takes part in all executions of PoCM. In addition the dealer sends 3+2n commitments and
n ciphertexts non-equivocally to every party. The broadcast and PoCM executions have
communication complexity O(n2κ) and the same holds for sending O(n) values of size
O(κ) non-equivocally to every party. Consequently the overall protocol has complexity
O(n2κ).

2. TERMINATION: Termination of the generating 〈u〉 phase follows by the corresponding
properties of the Sup-Sh protocol. For the remaining phases of the protocol the termination
properties follow completely analogously to the corresponding properties of Sup-Sh since
the protocol structure is essentially the same.

3. CORRECTNESS: For correctness we have to show that in the end there is an t-sharing ū
and ūv. We have to show that for an honest D it holds that ū = u and that if the king is
honest, he is privileged with respect to [u] and [u · v].

The correctness of the protocol Sup-Sh already implies that there is a t-sharing of ū and
that an honest D will share u = ū. In addition, the correctness of Sup-Sh implies that
Pking is privileged with respect to [u].

Therefore we only need to show that upon termination, there is a t-sharing
of ū · v and that an honest Pking is privileged with respect to this shar-
ing. Since an honest Pking only broadcasts (approve,D) when he has
received {Comu}σD , {{cu·vj+mj}σD , {cu·rj+m̂j}σD}j∈[1,n], {{Comu·vj+mj}σD}j∈[1,n]

and {Comu·v}σD , as a subset of this message received all necessary information to
be privileged with respect to ū · v. Finally, upon termination, every party Pi received
{cū·vi+mi}σD and {cū·ri+m̂i}σD as well as the corresponding commitment. For the same
reason as in the proof of protocol Sup-Sh, these values correspond to the verified shares,
i.e., belong to a degree t polynomial, and by the non-equivocation property, ū = u is
ensured.

4. PRIVACY: The privacy proof is threefold. First, we have to show that v remains private,
i.e., communication during the protocol does not help in distinguishing the value of two
different v. Second, we have to show that u · v remains private in the same sense and third,

68 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

we have to show that u is private if the dealer D is honest. As in the proof for Sup-Sh we
drop the σD annotation here, since there is no additional information in the tag than the
tagged value already provides regarding the privacy.

(a) v remains private: Assume an adversary A can distinguish v from v′ after seeing
the additional information of the Sup-PreMul-Sh execution for some u. Since the
execution requires that [v] (or [v′]) is already shared, it follows that an adversary BA
can internally simulate an execution of Sup-PreMul-Sh using u and then invoke A
in order to distinguish v from v′. Hence v an adversary does not gain any additional
information about v by the execution of Sup-PreMul-Sh.

(b) u · v remains private: Assume an adversary A can distinguish w = u · v from
w′ = u′ · v′. Since D may be corrupted, D can choose u = u′ = 1. As a
consequence A can now distinguish the cases v = w from v′ = w′ contradicting the
privacy of v. Hence u · v remains private as well.

(c) u remains private if D is honest: This case is more difficult than the other two
cases since the protocol leaks more information about u than the protocol Sup-Sh
executed on u. However, we can follow the privacy proof of Sup-Sh.

Assume there is an adversary A that distinguishes the protocol execution
for some u and u′. In addition to the execution of Sup-Sh on u, A gets
{cu·vj+mj , cu·rj+m̂j ,Comu·vj+mj}j∈[1,n], Comu·v, the executions of PoCM and
(approve,D) as well as βD,τ . As in the proof of privacy with respect to the proto-
col Sup-Sh, the information (approve,D) and βD,τ does not help the adversary
in distinguishing u from u′.

Since Comu·v can be computed from Comu·vj+mj , we know there is an adver-
sary that distinguishes u from u′ without the input Comu·v. Using the zero-
knowledge property we can also simulate the proofs leading to an indistinguish-
able outcome of A (by definition of zero-knowledge). As a consequence there
is an adversary that distinguishes u from u′ by seeing the output of Sup-Sh,
cu·vj+mj , cu·rj+m̂j ,Comu·vj+mj . Since the dealer D is honest, we can use the
IND-CPA property to remove the ciphertexts cu·vj+mj , cu·rj+m̂j as we did in the
privacy proof for Sup-Sh. Also following the privacy proof for Sup-Sh, we can
reduce the input of the adversary to Comu·v, which finally contradicts the computa-
tional hiding property of our commitment scheme. Consequently, there is no such
adversary A.

3.5 Supervised Triple Generation

Protocol SupTripGen generates [u], [v], [w] for a uniformly random and private multiplication
triple (u, v, w) under the supervision of a king Pking with O(n3κ) communication complexity.

3.5. SUPERVISED TRIPLE GENERATION 69

It employs two sub-protocols, Sup-Second and Sup-FirAndThd.

3.5.1 Generating the Second Component of the Triple

Protocol Sup-Second generates [v] for a uniformly random value v, unknown to A, under the
supervision of Pking. For a requirement clarified in the sequel, Sup-Second also ensures that
each (honest) party becomes a privileged party with respect to [v]. In the protocol, each Pi
invokes an instance Sup-Shi of Sup-Sh (as a D) to generate [v(i)] for a uniformly random v(i).
Let Tking be the set of first t+ 1 parties whose instance of Sup-Sh is terminated by Pking, and let
v =

∑
Pk∈Tking v

(k). As at least one party in Tking is honest, v is uniformly random and private.
Next, Pking broadcasts Tking and every party waits until it terminates all Sup-Shk instances of
Pk ∈ Tking; this ensures that every party obtains its share-pair and all committed shares of v.

As Pking is a privileged party for every [v(k)], it computes all encrypted shares of [v], using
the homomorphic property of encryptions. However, unlike Pking, other honest parties may
be non-privileged for one or more [v(k)]s, and thus may not compute the encrypted shares of
[v]. The way out is that Pking “helps” other parties by broadcasting the encrypted shares of v,
which costs O(n3κ) bits. To confirm whether Pking indeed broadcasted the correct encrypted
shares of v, Pking is also asked to non-equivocally forward the encrypted shares corresponding
to each [v(k)] to every other party. We stress that this information is not broadcasted, and
rather communicated over the point-to-point channels, which costs O(n3κ) bits. Once this
information is non-equivocally received by a party, it re-computes the encrypted shares of v,
verifies them with the Pking’s broadcast, and broadcasts the verification result. If t+ 1 parties
broadcasts “positively” for Pking, then at least one honest party must have successfully verified
those encrypted shares; so every party terminates the protocol with [v] and the broadcasted
encrypted shares of [v].

The protocol Sup-Second is presented in Fig. 3.5.

70 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

Protocol Sup-Second(Pking, τ): τ is the session id

I. SHARING RANDOM VALUES—Every party Pi ∈ P including Pking executes the follow-
ing code:

1. Select a random value v(i) and invoke an instance Sup-Sh(Pi, τ, Pking, v
(i)) of Sup-Sh as a

D to generate [v(i)] under the supervision of Pking; let this instance of Sup-Sh be denoted as
Sup-Shi. Moreover, let φi(·), ψi(·), {cvi,j , cri,j}j∈[1,n], {Comvi,j}j∈[1,n] and Comv(i) denote
the sharing polynomial, randomness polynomial, encrypted share-pair, committed shares and
commitment, generated during Sup-Shi, where v(i) = φi(0), vi,j = φi(j), ri,j = ψi(j),
cvi,j = Encpkj (vi,j , ·), cri,j = Encpkj (ri,j , ·),Comvi,j = Commit(vi,j , ri,j) and Comv(i) =

Commit(φi(0), ψi(0)).

2. For j ∈ [1, n], participate in the instance Sup-Shj , invoked by Pj as a D.

II. COLLECTING AND DISTRIBUTING THE INFORMATION FOR THE FINAL OUTPUT—Only Pking

executes the following code:

1. Include party Pk in an accumulative set Tking, which is initially ∅, if the instance Sup-Shk is
(locally) terminated.

2. Wait till |Tking| = t + 1. Then using the linearity property of the encryption scheme,
compute cvj = �Pk∈Tkingcvk,j

and crj = �Pk∈Tkingcrk,j
for j ∈ [1, n] and broadcast

Tking, {cvj , crj}j∈[1,n].

3. For every Pk ∈ Tking, forward the encrypted share-pairs {cvk,j
}σk

, {crk,j
}σk

, for all j ∈ [1, n],
received as a privileged party from the dealer Pk during the instance Sup-Shk, to every party
in P .

III. RESPONDING TO Pking AND TERMINATION—Every party Pi ∈ P including Pking executes the
following code:

1. Include party Pk in an accumulative set Ti, which is initially ∅, if the instance Sup-Shk is
(locally) terminated.

2. Wait to receive Tking and {cvj , crj}j∈[1,n] from the broadcast of Pking.

3. Upon receiving {cvk,j
}σk

, {crk,j
}σk

for all j ∈ [1, n] from Pking corresponding to each
Pk ∈ Tking, wait till Tking ⊆ Ti. Once Tking ⊆ Ti, broadcast the message (OK, i) only if
cvj = �Pk∈Tkingcvk,j

and crj = �Pk∈Tkingcrk,j
holds for every j ∈ [1, n].

4. Wait to receive the (OK, ?) message from the broadcast of at least t + 1 parties. Upon
receiving, wait till Tking ⊆ Ti and then compute vi =

∑
Pk∈Tking

vk,i, ri =
∑

Pk∈Tking

vk,i, {Comvj =

⊕Pk∈TkingComvk,j
}j∈[1,n] and Comv = ⊕Pk∈TkingComv(k) , where vk,i, rk,i denotes the share-

pair obtained at the end of the instance Sup-Shk and {Comvk,j
}j∈[1,n] and Comv(k) denotes the

vector of committed shares and the commitment obtained at the end of the instance Sup-Shk.
Finally, output vi, ri, {cvj , crj}j∈[1,n], {Comvj}j∈[1,n] and Comv and terminate.

Figure 3.5: Supervised generation of [v] for a random v under the supervision of Pking; if the
protocol terminates then each party will be a privileged party and will have all n encrypted shares
of v.

3.5. SUPERVISED TRIPLE GENERATION 71

Lemma 3.5.1. For every possibleA and every possible scheduler, protocol Sup-Second achieves
the following properties up to a negligible probability in κ:

(1) TERMINATION: if Pking is honest, all honest parties eventually terminate the protocol.
Even if Pking is corrupted and some honest party terminates, then every other honest party
eventually does the same.

(1) CORRECTNESS: if the honest parties terminate the protocol, then the parties output [·]-
sharing [v] of a value v. Moreover, each party will be a privileged party having all the
encrypted share-pairs of v.

(1) PRIVACY: the output shared value will be random from the viewpoint of A.

(1) COMMUNICATION COMPLEXITY: the protocol has communication complexity of O(n3κ)

bits.

Proof. 1. TERMINATION: in order to show termination, we need to show two properties;
first, if Pking is honest, then every honest party eventually terminates and second, if any
honest party terminates, all other honest parties will do the same.

(a) Honest king leads to termination: if the king is honest, then the set Tking will
eventually reach the size t+ 1, because of Theorem 3.4.1 and since there are t+ 1

honest dealers in the executions of Sup-Sh. In particular, since the honest party Pking

terminates for all executions corresponding to Tking, all honest Pi will eventually
terminate for the same instances by the termination property of Sup-Sh. Since Pking

is honest, the checks done by the honest parties in the response and termination
phase will succeed and they will broadcast (OK, ?). Thus, eventually the number of
received (OK, ?) broadcasts will reach t+ 1 and the honest parties terminate.

(b) If an honest party terminates, then all honest parties do so: let Pi be the honest
party that terminates. We show that if a party Pj is honest, then Pj eventually
terminates. The set Ti contains all parties for which Pi terminated the corresponding
Sup-Sh when Pi terminated. By termination of the Sup-Sh protocol, it follows
that eventually Ti ⊆ Tj . Since Pking broadcasts Tking all parties will eventually
receive the same Tking and the condition Tking ⊆ Tj will eventually be satisfied.
In addition, since Pi terminated, it received at least t + 1 broadcasted messages
(OK, ?) which will — since these messages were broadcast — eventually arrive at
Pj . Consequently, this condition is satisfied as well. Thus Pj finally terminates.

2. CORRECTNESS: At the end of the protocol execution every party outputs
vi, ri, {cvj , crj ,Comvj}j∈[1,n] and Comv. There is an honest party that verifies that
this message is a linear combination of the sharings run before. Since these precomputed
sharings follow the correct protocol Sup-Sh and since sharings are linear, it follows that
the parties hold a sharing of some value v when terminating.

72 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

3. PRIVACY: For all honest parties it holds that their sharing is indistinguishable for any value
they shared, by the privacy of Sup-Sh. Since the overall output is a linear combination of
t+ 1 sharings, at least one honest sharing is contained in this combination. Assuming the
adversary A could distinguish this for any two different values v, v′, then the adversary
could use this to break the privacy of Sup-Sh, since he can control the t other parties from
the output sharing. Thus, the privacy of Sup-Sh implies the privacy of Sup-Second.

Moreover, the honest party of which a share is contained in the linear combination chooses
this share uniformly at random. Consequently, the linear combination contains a value
that is uniformly random as well.

4. COMMUNICATION COMPLEXITY: in the Sharing random values part of the protocol,
there are n instances of the Sup-Sh protocol, i.e., a communication complexity ofO(n3κ).

The collection and distribution of the information is done only by the party Pking. During
the execution of this part of the protocol, the king broadcasts Tking and {cvj , crj}j∈[1,n]

and forwards {{cvk,j}σk , {crk,j}σk}j∈[1,n] for all Pk ∈ Tking. The broadcast message has
size O(nκ) leading to a communication complexity of O(n3κ) and the non-equivocally
forwarded data has size O(n2κ) leading to communication complexity O(n3κ) as well.

The final response and termination part which is executed by all parties consists only
of broadcasting (OK, i). This message has size O(1) because the identity is encoded in
the broadcast protocol. However, there are n broadcasts in the worst case, leading to a
communication complexity of O(n3κ).

3.5.2 Generating First and Third Components of the Triple

Protocol Sup-FirAndThd takes as input a [·]-shared uniformly random, say v, unknown to A
such that every party is a privileged party for [v]. It then generates [u] for a uniformly random
u, unknown to A, along with the [·]-sharing [u · v], under the supervision of Pking. The protocol
follows the same principle as Sup-Second, except that each party Pi now invokes an instance
Sup-PreMul-Shi of Sup-PreMul-Sh with [v] and a uniformly random value u(i) to generate
[u(i)] and [u(i) · v]; this is possible as every Pi is a privileged party with respect to [v]. Now the
parties set u =

∑
Pk∈Tking u

(k) and w =
∑

Pk∈Tking u
(k) · v, where Tking is the set of t+ 1 parties

Pk such that the instance Sup-PreMul-Shk has been terminated by Pking.

Protocol Sup-FirAndThd is presented in Figure 3.6.

3.5. SUPERVISED TRIPLE GENERATION 73

Protocol Sup-FirAndThd(Pking, [v], τ): τ is the session id

i. SHARING RANDOM VALUES—Every party Pi ∈ P including Pking executes the follow-
ing code:

1. Select a random value u(i) and invoke an instance Sup-PreMul-Sh(Pi, τ, Pking,P, [v]) of
Sup-PreMul-Sh on [v] as a D to generate [u(i)] and [u(i) · v] = [w(i)] under the su-
pervision of Pking; let this instance of Sup-PreMul-Sh be denoted as Sup-PreMul-Shi.
Moreover, let {ui,j , ri,j}j∈[1,n], {cui,j

, cri,j}j∈[1,n], {Comui,j
}j∈[1,n] and Comu(i) denote

the vector of share-pairs, vector of encrypted share-pairs, vector of committed shares and
the commitment corresponding to [u(i)] generated during Sup-PreMul-Shi. Similarly, let
{wi,j , r̂i,j}j∈[1,n], {cwi,j , cr̂i,j}j∈[1,n], {Comwi,j}j∈[1,n] and Comw(i) denote the vector of
share-pairs, vector of encrypted share-pairs, vector of committed shares and the commitment
corresponding to [w(i)] generated during Sup-PreMul-Shi.

2. For j ∈ [1, n], participate in the instance Sup-PreMul-Shj , invoked by Pj as a D.

ii. COLLECTING AND DISTRIBUTING THE INFORMATION FOR THE FINAL OUTPUT—Only Pking

executes the following code:

1. Include party Pk in an accumulative set Tking, which is initially ∅, if the instance Sup-Shk is
(locally) terminated.

2. Wait till |Tking| = t+ 1. Then broadcast Tking.

iii. RESPONDING TO Pking AND TERMINATION—Every party Pi ∈ P including Pking executes the
following code:

1. Include party Pk in an accumulative set Ti, which is initially ∅, if the instance Sup-Shk is
(locally) terminated.

2. Wait to receive Tking from the broadcast of Pking.

3. On receiving Tking, check if it is of size t+ 1 and if so then wait till Tking ⊆ Ti.

4. Compute ui =
∑

Pk∈Tking

uk,i, ri =
∑

Pk∈Tking

rk,i, {Comuj
= ⊕Pk∈TkingComuk,j

}j∈[1,n],Comu =

⊕Pk∈TkingComu(k) , where uk,i, rk,i, {Comuk,j
}j∈[1,n] and Comu(k) is obtained at the end

of Sup-PreMul-Shk, corresponding to [u(k)]. Similarly compute wi =
∑

Pk∈Tking

wk,i, r̂i =∑
Pk∈Tking

r̂k,i, {Comwj = ⊕Pk∈TkingComwk,j
}j∈[1,n],Comw = ⊕Pk∈TkingComw(k) , where

wk,i, r̂k,i, {Comwk,j
}j∈[1,n] and Comw(k) is obtained at the end of Sup-PreMul-Shk,

corresponding to [w(k)]. Finally, output ui, ri, {Comuj
}j∈[1,n],Comu as well as

wi, r̂i, {Comwj}j∈[1,n],Comw and terminate.

Figure 3.6: Supervised generation of [u] and [w = u · v] for a random u under the supervision of
Pking, where v is an existing [·]-shared value, with every party being a privileged party with respect
to [v].

Lemma 3.5.2. For every possible A and every possible scheduler, the protocol Sup-FirAndThd

74 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

achieves the following properties up to a negligible probability in κ:

(1) TERMINATION: if Pking is honest, then all honest parties eventually terminate. Moreover, if
one honest party terminates, then all honest parties eventually terminate.

(1) CORRECTNESS: after termination, all parties hold a sharing [u], [w] such that [w] = [u · v].

(1) PRIVACY: the view of the adversary is indistinguishable for different values of u and v.

(1) COMMUNICATION COMPLEXITY: the protocol has communication complexity of O(n3κ)

bits.

Proof. The proof completely follows the proof of Sup-Second, except that properties are now
implied from Sup-Sh, instead of Sup-PreMul-Sh.

3.5.3 Sup-Second+Sup-FirAndThd=⇒SupTripGen

Finally SupTripGen consists of two steps: (1). The parties execute Sup-Second and output [v];
(2). On terminating Sup-Second, the parties execute Sup-FirAndThd, output [u] and [w] = [u·v]

and terminate (cf. Figure 3.7). Lemma 3.5.3 describes the SupTripGen properties, and follows
easily from lemmas 3.5.1 and 3.5.2, and the protocol steps:

Lemma 3.5.3. For every possibleA and every possible scheduler, the protocol SupTripGen achieves
the following properties up to a negligible probability in κ:

(1) TERMINATION: if Pking is honest then all honest parties eventually terminate the protocol.
Moreover, even if Pking is corrupted and some honest party terminates the protocol, then
every other honest party eventually does the same.

(1) CORRECTNESS: if the honest parties terminate the protocol, then the parties output [·]-
sharing ([u], [v], [w]) of a multiplication triple (u, v, w).

(1) PRIVACY: the shared multiplication triple (u, v, w) will be random from the viewpoint of A.

(1) COMMUNICATION COMPLEXITY: the protocol has communication complexity of O(n3κ)

bits.

Protocol SupTripGen(Pking, τ): τ is the session id

i. GENERATING THE SECOND COMPONENT OF THE TRIPLE—The parties in P execute an instance
of Sup-Second(Pking, τ) to generate a uniformly random [·]-shared value, say [v].

ii. GENERATING THE FIRST AND THIRD COMPONENT OF THE TRIPLE—On terminating the
instance of Sup-Second(Pking, τ), the parties execute Sup-FirAndThd(Pking, [v], τ) to obtain
[u] and [w = u · v], output ([u], [v], [w]) and terminate.

Figure 3.7: Supervised generation of a uniformally random [·]-shared multiplication triple, un-
known to A, under the supervision of Pking.

3.6. THE NEQAMPC PROTOCOL 75

3.6 The NeqAMPC Protocol

The key idea of the NeqAMPC protocol has already been discussed in Section 3.2. It is a
sequence of three phases, where a party proceeds to the next phase only after completing the
current phase:

Preprocessing Phase. To generate cM + cR [·]-shared random multiplication triples, the pre-
processing phase protocol PreProcess performs the following steps: each party Pi ∈ P is asked
to act as a king and invoke cM+cR

t+1 parallel instances of SupTripGen to generate cM+cR
t+1 random

[·]-shared multiplication triples under its supervision. The parties then execute an instance
of ACS and agree on a common subset Tking of (n − t) = t + 1 kings whose instances of
SupTripGen (as a king) will eventually be terminated by all the parties. The parties finally
output the shared multiplication triples, generated during the instances of SupTripGen, corre-
sponding to the kings in Tking and terminate; thus they will obtain |Tking| · cM+cR

t+1 = cM + cR
shared multiplication triples. As there exist at least t + 1 honest parties, whose instances of
SupTripGen as a king will be eventually terminated by all the (honest) parties (see Lemma
3.5.3), protocol PreProcess will eventually terminate. Similarly, as the shared triples generated
in the instances of SupTripGen corresponding to each king in Tking remain private, the output
shared triples remain private. It is easy to see that PreProcess has communication complex-
ity O(n · cM+cR

t+1 · n3κ) = O((cM + cR)n3κ) bits as t = Θ(n). As the protocol is quite
straightforward, we skip the formal details.

Input Phase. The goal of the input phase protocol Input is to allow each individual party
Pi ∈ P to generate [·]-sharing of its private input xi for the computation. For this each party
Pi ∈ P invokes an instance of the sharing protocol Sh (see Section 3.3) as D to generate [xi]. To
avoid indefinite waiting, the parties execute an instance of ACS and agree on a common subset
of (n− t) parties, say CORE , whose instances of Sh (as a dealer) will eventually be terminated
by all the parties. The parties finally output the sharings, generated during the instances of
Sh, corresponding to the parties in CORE ; on behalf of the remaining parties in P \ CORE , a
default [·]-sharing of 0 is considered. As there exist at least t+ 1 honest parties, whose instances
of Sh as a dealer will eventually be terminated by all the (honest) parties, protocol Input will
eventually terminate. The shared inputs generated in the instances of Sh corresponding to the
honest parties in CORE remain private due to the privacy property of Sh. The Input protocol
runs n instances of Sh, and has communication complexity ofO(n ·n2κ) = O(n3κ) bits. Again
as the protocol is quite straight-forward, we skip the formal details.

Computation Phase. The computation phase protocol Compute performs the shared circuit
evaluation on a gate-by-gate basis, by maintaining the following invariant for each gate of
the circuit: given the [·]-sharing of the input(s) of a gate, the protocol allows the parties to
securely compute the [·]-sharing of the output of the gate. The invariant is trivially maintained
for the addition (linear) gates in the circuit, thanks to the linearity property of [·]-sharings. For a
multiplication gate, the invariant is maintained by applying the Beaver’s circuit randomization

76 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

technique and using a [·]-shared multiplication triple from the pre-processing stage (recall from
Section 3.2). For a random gate, a [·]-shared multiplication triple from the pre-processing stage
is considered and the first component of the triple is associated with the random gate. Finally,
once the [·]-sharing [y] of the circuit output y is generated, the parties execute the reconstruction
protocol Rec, reconstruct y and terminate.

Again as the protocol is standard in the literature (see for example [51]), we omit the
complete details and state only the main theorem here.

Theorem 3.6.1 (The NeqAMPC Theorem). Let f : Znp → Zp be a function expressed as an
arithmetic circuit over Zp, consisting of cM multiplication gates and cR random gates. Assume
a non-equivocation oracle associated with every party. Then for every possible A and for every
possible scheduler, there exists a computationally secure AMPC protocol to securely compute f
with communication complexity O(((cM + cR) · n3 + n3)κ) bits.

3.7 Non-equivocation Implementations

Chun et al. [52] observed that the fundamental distributed computing problem of “Byzantine
generals” has been proved unsolvable for three parties when one of those is corrupted [90]
precisely because the corrupted party can spread contradictory messages to the remaining two
honest parties. They demonstrated that if we can stop the corrupted party from equivocating
(i.e., making conflicting statements to different honest parties) using a small trusted module on
every party, it is possible to improve the resilience of distributed computing tasks in the asyn-
chronous setting. They implemented non-equivocation using a (signed) trusted log abstraction
called Attested Append-Only Memory (A2M), and designed a Byzantine-tolerant state machine
replication (SMR) system for n ≥ 2t+ 1.

Levin et al. [92] further simplified the trust assumption from [52] and showed that a minimal
trusted module called TrInc consisting of only a non-decreasing counter c ∈ N and a signing
key-pair (pk, sk) is sufficient to generate A2M logs and to implement SMR with n ≥ 2t+ 1.
Conceptually, TrInc provides a unique, once-in-a-lifetime attestations, and implements non-
equivocation using the fact that the counter cannot be decreased, and consequently for every
counter value c there is at most one message signed by the module.

Levin et al. implemented TrInc on Gemalto .NET SmartCards. It is also possible to imple-
ment TrInc over the computers enabled with TPM chips, where its features of trusted identity,
sealed storage, and remote code attestation will be used. Although the TPM specification does
not readily implement a trusted counter, it can be achieved using a TPM-based hypervisor
framework such as TrustVisor [98]. Recently, Kapitza et al. [84] further simplified the TrInc

design by replacing individual singing key-pairs with a replicated message authentication code
(MAC) key.

Clement el al. [54] observed that the definitional non-equivocation itself actually does not
provide any improvement to the resiliency bound; however, appropriately combining it with
digital signature oracles (or MAC oracles with a key replicated across all oracles) provides the

3.7. NON-EQUIVOCATION IMPLEMENTATIONS 77

improvements observed in [52, 92, 55, 84], where the transferability of verifications provided by
signatures is a key along with non-equivocation.6 They further noted that this combination (i.e.,
transferable non-equivocation) also provides a generic transformation that allows a crash fault
tolerant protocol to tolerate the same number of Byzantine faults. Nevertheless, their generic
transformation does not consider privacy (or confidentiality), required in the AVSS and AMPC
tasks, and we observe in this paper that encryptions and zero-knowledge proofs are required
along with signatures when privacy is required.

3.7.1 Realizing the Neq mechanism using TrInc

As discussed earlier, the Neq mechanism as described in Figure 3.1 can easily be realized using
a TrInc implementation [92] (a simplified version of a TrInc device’s state and API can be found
in Figure 3.8). Here, we provide an informal proof for the realization.

Notation Meaning
Kpriv Unique private key
Kpub Public key corresponding to Kpriv

A Certificate of the device’s validity
id Identity of the current counter (Initially 0)
c Current value of the counter

(a) State of a device

Function Operation
CreateCounter() Increases id. Sets c to 0 and returns id.
Attest(id,c’,h) Verifies that id is a valid counter with some value c and key Kpub.

Verifies that c ≤ c′. If any verification fails, return ⊥, otherwise
create an attestation a =< COUNTER, id, c, c′, h >Kpriv . Set
c = c′. Return a.

getCertificate() Returns (Kpub, A)
(b) API for the device

Figure 3.8: The API and the state of a simplified TrInc device.

We will use the fixed counter identity 1 for our protocols as we need only one TrInc instance
for each party. In addition, we need to assume that the protocol steps are mapped to the natural
numbers such that the order of these steps is preserved.

1. Implementation of a (Setup) invocation by party Pi: Invoke CreateCounter() on TrInc.
Let i be the return value of the invocation. If i 6= 1 return ⊥. Store the value oldL = 0.
Invoke TrInc on GetCertificate() and let crt be the result. Send (Registered, Pi, crt) to
all parties. Upon receiving the registered message, every party checks the validity of the
crt certificate.

6They also prove that signatures standalone are not sufficient.

78 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

2. Implementation of a (Neq-Sign, Pi, l,m) invocation by party Pi: Invoke Attest on TrInc

with the arguments (1, l,m). Let a be the result. If a = ⊥ return ⊥, otherwise return
t = (a,oldL, l) and update oldL = l.

3. Implementation of a (Neq-Verify, Pi, l,m, σ) invocation by party Pj : If the message
(Registered, Pi, crt) was not received by Pj , return 0. Otherwise split crt into (K,A)

and σ into (s,oldL, l′). If l′ 6= l return 0, otherwise compute a signature verification on
message (COUNTER, 1,oldL, l,m) with signature s and verification key K and return
the outcome of the verification.

In the beginning every counter has internal value 0 stored. The method CreateCounter()
increases that value and returns it, as the counter for that identity is created now (with counter
value 0). Therefore, the method always returns a value greater than 1 after the first invocation
and consequently the setup returns ⊥ as done by the Neq mechanism. For the first invocation,
the setup sends the value (Registered, Pi, crt) where crt is necessary for the other methods
to work. In particular, the checking of crt ensures that the certificate belongs to a TrInc device
assuming that the manufacturer was honest and did not sign other devices or keys of this form
with the same key.

The signing request (Neq-Sign, Pi, l,m) from Pi is done by invoking her TrInc device on
Attest(1, l,m). The Attest method checks that 1 is a valid counter, i.e., if the setup was not
done before it outputs ⊥ which leads to the signing request returning ⊥. The same holds for the
Neq mechanism since ⊥ is returned in case that the internal list Li was not generated (by the
setup) before. The next step of the attestation process is that the key (or label) l – which we map
to an integer – is greater than the previous key value.7 This check corresponds to the check that
l is in the list Li done by the Neq mechanism. And in the mechanism as in the implementation,
a fail of the check leads to the outcome ⊥. If all checks so far succeeded, the mechanism returns
a random value and the TrInc implementation returns a triple t consisting of a signature a, the
previous key oldL and l.

Finally, consider the implementation of the verification query. The mechanism returns 0 if the
setup was not done before. The implementation does the same, however, since the Registered
message can be forged, there is a different reason here. Since the setup creates the counter,
there can only be a signature on any message (COUNTER, 1, , ,) if the counter was created.
This is implied by the unforgeability of the signature scheme. Combined with the requirement
that the Registered message has to arrive beforehand, this implies that the setup method was
executed (in particular the setup checks that the Registered message contains a valid TrInc

certificate, i.e., there was no other “virtual” counter implemented). In the mechanism’s case
that (l,m, σ) ∈ Li, i.e., the output 1 is done, the signing request was done before giving the
corresponding output since there is no other way to add elements to the list Li except the
signing queries. Consequently, in the TrInc implementation’s case, σ has the corresponding
form and the signature verification succeeds leading to an output of 1, as well. If the mechanism

7This is slightly more restrictive than the Neq mechanism since we require the signature requests to be done by a
certain order, but in order to use TrInc it seems to be necessary to require an order.

3.8. INSTANTIATION OF VARIOUS PRIMITIVES 79

outputs 0 because (l,m, σ) 6∈ Li that means that m was never signed with key l by TrInc in the
implementation. Thus the implementation outputs only 1 if the signature was forged, i.e., only
with negligible probability.

As we have seen, the TrInc usage as described above implements the Neq mechanism with
the restriction that the keys are ordered and the assumptions that the signature scheme require
and that the TrInc manufacturer can be trusted. Finally, we note that it is easy to realize our Neq
mechanism with the modified TrInc mechanism by Kapitza et al. [84] in the similar manner.

3.8 Instantiation of Various Primitives

In this section we instantiate the primitives we used in our protocol construction. These
are the following: commitment scheme, encryption scheme and zero-knowledge proofs. As
commitment scheme we simply use Pedersen commitments [105], i.e., we commit to m using
randomness r by computing gmhr for two generators g, h of a suitable group. In particular, this
commitment scheme has the properties we required in section 3.1.3.

3.8.1 Encryption scheme Enc

We use the encoding-free ElGamal encryption scheme proposed in [50]. Let p, q be primes such
that q | p− 1 and let g be an integer of order pq modulo p2 that generates a group G = 〈g〉. Let
〈x, y〉 be the unique integer in Zpq such that 〈x, y〉 = x mod p and 〈x, y〉 = y mod q. The
class of an element of w = g〈x,y〉 ∈ G is x. We denote the class of w as JwK. It is easy to see
that Jw · w′K = JwK+ Jw′K and that Gp := 〈g mod p〉 has order q.

Definition 3.8.1 (Encoding-Free ElGamal [50]).

1. Setup: Let p, q be primes such that q | p− 1 and let g be a generator of Gp of order q.

2. Key generation: The private key is a random x ∈ Zq; the public key is h = gx mod p.

3. Encryption: The encryption algorithm chooses randomly an r ∈ Zq and computes

Enc(m, r) = (gr mod p,m+ Jhr mod pK mod p)

4. Decryption: The decryption works as follows:

Dec(x, (R, c)) = c− JRx mod pK mod p

The scheme is CPA-secure under the Decisional Class Diffie-Hellman problem [50] which is
defined as the Diffie-Hellman problem under the class operation J·K. It has been shown that the
Computational Class Diffie-Hellman problem is equivalent to the Computational Diffie-Hellman
problem. However, the same result for the decisional case has not been shown.

We define two operations on ciphertexts in order to describe their homomorphic properties.

80 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

Definition 3.8.2 (Homomorphic operations). Let x1, y1, x2, y2, v ∈ Zp. Define the following
operations:
- (x1, y1) � (x2, y2) := (x1 · x2 mod p, y1 + y2 mod p)

- v � (x1, y1) := (xv1 mod p, v · y1 mod p)

Note that JwK+ Jw′K = Jw ·w′K and that the latter operation can also be done by iteratively
applying the first operation.

Lemma 3.8.1 (Homomorphic operations). The operations defined in Definition 3.8.2 implement
the following operations on the plaintexts: Let a, b, c, d, v ∈ Zq.
- Enc(a, b) � Enc(c, d) = (gb+d mod p, (a+ c) + Jhb+d mod pK mod p)

- v � Enc(a, b) = (gvb mod p, va+ Jhvb mod pK mod p)

Proof. The proof is straight-forward considering definition 3.8.1.

The encryption scheme has the properties required in section 3.1.3. For more details, we
refer to [50].

3.8.2 Zero-knowledge Proof Schemes

In this subsection we will present a proof scheme using the primitives instantiated previously.
The structure of the both ZK protocols is based on Σ-protocols [33]. These protocols have
been well-studied and are usually easy to understand. Intuitively, a Σ-protocol is a proof that a
party knows a witness w for a statement x such that (x,w) ∈ R. The relationR, which can be
proven, is specific for the Σ protocol.

Definition 3.8.3 (Σ-Protocol [33]). Let R be a relation. A Sigma Protocol for a relation R
is a 3-round protocol, i.e., it consists of four algorithms (P1, P2, V1, V2) where P1, P2 is for
the prover and V1, V2 is for the verifier such that the following holds. Let x,w be bitstrings
and (a, sP) := P1(x,w), (c, sV) := V1(x, a), p := P2(c, sP) and d := V2(sV , p). Then the
following holds:

1. Completeness: If (x,w) ∈ R then a protocol run using P1, P2, V1, V2 leads to d = 1.

2. Special soundness: There is an extraction algorithm E such that for any fixed statement x
and for any two transcripts (a, c, p) and (a, c′, p′) such that the V2 outputs 1 for both and
where c 6= c′ holds, it follows that (x,E(a, c, c′, p, p′)) ∈ R.

3. Special honest verifier zero-knowledge: There is a simulator S such that for any x for
which there is a w such that (x,w) ∈ R holds, the simulator produces on input x and
random input c a transcript (a, c, p) which is computationally indistinguishable from a
protocol transcript generated during the execution of the protocol using P1, P2, V1, V2.

ZK Proofs technique: hiding the representation with respect to a fixed set of generators.
We briefly recall this technique which was described in [45]. For a set of generators {gi}

3.8. INSTANTIATION OF VARIOUS PRIMITIVES 81

we prove that we know a set {xi} such that y =
∏
i g
xi
i by randomly choosing ri values and

sending t =
∏
i g
ri
i to the verifier. The verifier then sends a challenge c and the prover computes

si := ri − cxi and sends the si to the verifier. The verifier accepts iff t = yc
∏
i g
si
i .

ZK-Proof Scheme PoE

The relation for PoE we need to prove is the following:

∃m, r, r1, r2 : Comm = Commit(m, r) ∧ cm = Enc(m, r1) ∧ cr = Enc(r, r2)

Using the instantiations we get the statement:

∃m, r, r1, r2 : Comm = gmhr∧(cm,1, cm,2) = (gr1 ,m+Jhr1K)∧(cr,1, cr,2) = (gr2 , r+Jhr2K)

In order to prove the equations for Comm and cm,1, cr,1, we use the technique mentioned
above. For the remaining part, i.e., cm,2 = m + JhreK (cr,2 works analogously), we give a
Σ-protocol following the idea of the one above. This is done by computing ri and si as in [45],
however, the t is computed and verified differently; this is done by computing t as rm + JhreK
and verifying it to be c · cm,2 + sm + JhseK. Given this construction it is straightforward to
prove that the corresponding protocol is indeed a Σ-protocol.

Combining these two Σ-protocols we get a Σ-protocol for PoE.

Zero-knowledge Proof Scheme PoCM

As for the previous proof scheme, we will use a Σ-protocol in order to construct an interactive
ZK proof scheme. The overall statement that we show is the following.

∃u,ρ,m(·), m̂(·), {kj , k̂j}j∈[1,n] : Comu = Commit(u, ρ) ∧ deg(m(·)) ≤ t ∧
deg(m̂(·)) ≤ t ∧ m(0) = 0 = m̂(0) ∧ Comu·vj+mj = u� Comvj ⊕ Commj ∧

cu·vj+mj = u� cvj � Encpkj (mj , kj) ∧ cu·rj+m̂j = u� crj � Encpkj (m̂j , k̂j)

We need to mention here that it is unintuitive that crj is multiplied by u instead of r.
However, this is correct since we need to maintain the property that every party knows how to
open their share, i.e., Comu·vj+mj which is derived from Comvj by exponentiating by u. Hence
not only the value of vj is multiplied by u but also the value of the corresponding randomness.
This is also the reason why we need to rerandomize by adding Commj ; if we would not a party
could try out whether u has some particular value u′ by exponentiating the value Comvj by u′

and equality-checking with the new value. Now, we show how to achieve a zero-knowledge
construction for the overall statement.

The check for the polynomial degree can be done using the representation problem, e.g., in
order to check that variables x and y satisfy the equation 2x + 5y = 1 we can check that we
know the representation of g1 with respect to the base {g2, g5}. Consequently, we can check the
degree by evaluating the (inverse) Vandermonde matrix on the quantified values and comparing
the result with constants.

82 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

However, in order to give an instantiation with respect to the previously defined instantiations
of Com and Enc we need to existentially quantify over the corresponding randomnesses as well.
In addition, we split the proof into two statements which can be combined into a proof for the
conjunction using standard techniques, i.e., using the same rx, sx for shared variables x.

The first relation can be proven using results described in [45]. We want to prove the
knowledge of a representation of the commitments — with respect to the base of the Pedersen
commitments — Comu and Commj together with an additional verification step to verify the
property we require for Comu·vj+mj . This additional check can be rephrased as follows:

X := Comu·vj+mj 	 Commj = (gvjhrvj)u

where rvj is the randomness used to construct Comvj which is unknown to the prover.

Hence, we need to verify that we know the representation of X with respect to the base
Comvj (and that this is the same as for the representation of Comu). Therefore we can simply
use the proof scheme [45], as for PoE, for the first part of the scheme.

However, it is not obvious that we can use this technique in order to verify cu·vj+mj =

u � cvj � Encpki(mj , kj). Looking at the first component of our instantiation of Enc leads
to an equation of the form X = Y u · gkj which corresponds to the representation knowledge
problem, since the X is represented via the base {Y, g} using u and kj . Hence we can use the
same technique. We need to show the correspondence for the second part as well. This part
looks like

X = uY +mj + kj · Z

here Y is second part of cvj and Z is JhK. This is a linear version of the base representation
problem and the technique can be applied here as well. The corresponding t constructed using
randomness r1, r2, r3 of this equation is r1 � cvj � Encpki(r2, r3).

3.8.3 Asynchronous Reliable Broadcast (r-broadcast) Using Transferable Non-
equivocation

The r-broadcast primitive allows a S ∈ P to reliably send a message m to all the parties. Using
transferable non-equivocation, it can achieved for t < n [55, 54]. The high-level idea of this
r-broadcast protocol is simple, and it follows from the crash-fault tolerant r-broadcast [74]: S
first (non-equivocally) sends mσS to all the parties; this prevents a corrupted S from sending
different messages to different honest parties. However, a corrupted S can avoid sending mσS to
some honest parties. Thus, to ensure that all the honest parties eventually receive mσS , whenever
an honest party (non-equivocally) receives some message mσS , before delivering the message, it
once non-equivocally forwards it to every other party. This ensures that whenever an honest
party receives mσS then it will be eventually received by every other honest party. We present
the pseudocode for the protocol r-broadcast in Figure 3.9.

3.9. ANALYSIS OF THE AMPC PROTOCOL OF [32] 83

Protocol r-broadcast(τb,m)

SENDER S (WITH INPUT m) —S executes the following code:

1. Send (τb,mσS) to every party in P .

PARTY Pi — Every party in P , including S, executes this code:

1. If (τb,mσS) is received from S or forwarded by some party Pj ∈ P (for the first
time), then forward (τb,mσS) to every party in P , output (τb,m) and terminate.

Figure 3.9: Asynchronous r-broadcast protocol using transferable non-equivocation for t < n [55, 54]

The properties of the protocol are summarized in Theorem 3.8.2, which follows immediately
from the protocol description and the properties of transferable non-equivocation.

Theorem 3.8.2. Protocol r-broadcast achieves the following properties for every instance τb,
and every possible A and scheduler:

(1) TERMINATION: If S is honest, then all the honest parties eventually terminate the protocol.
Moreover, even if S is corrupted and some honest party terminates the protocol, then except
with negligible probability, every other honest party eventually terminates the protocol.

(2) CORRECTNESS:

(A) If S is honest then except with negligible probability, all honest parties output (τb,m).

(B) If S is corrupted and some honest party outputs (τb,m
′), then except with negligible

probability, all the honest parties output (τb,m
′).

(3) COMMUNICATION COMPLEXITY: The protocol incurs communication of O(n2(`+ κ))

bits, where the message m is of size ` bits.

3.9 Analysis of the AMPC Protocol of [32]

The AMPC protocol of [32] operates over ZN . The input stage consists of a synchronous
broadcast round, where every party encrypts its input and broadcasts it, along with a non-
interactive zero-knowledge (NIZK) proof that it knows the underlying plaintext, corresponding
to the ciphertext. Thus the input stage consists of a broadcast of O(nκ) bits. The secure
evaluation of the circuit is then done using the king-slave paradigm, where every party in P acts
as a king and all the n parties (including the king) act as slaves and perform the computation on
behalf of the king, so as to enable the king to obtain the output of the function (to be computed).
So in principle, the actual circuit is evaluated n times, once on behalf of each party. We focus
on the actual communication done among the slaves to evaluate the circuit on the behalf of a
single king.

84 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

Due to the homomorphic property of the encryption scheme, evaluating the addition gates
required no interaction among the slaves. For a multiplication gate, a random encrypted
multiplication triple unknown to A is generated for the slaves, under the supervision of the king.
For this, the parties begin with a publicly known default encrypted multiplication triple, which
is then randomized to new encrypted triples, for t+ 1 iterations, by different slaves; the triple
obtained after t + 1th iteration is taken as the final triple. In every iteration, to perform the
randomization of an encrypted triple, the king sends a randomization request to all the n slaves.
A slave, on receiving a randomization request, performs the randomization, and to prove to the
king that he has the performed the randomization correctly, the slave provides a NIZK proof of
O(κ) bits to every other slave, so as to obtain a threshold signature. In short, in every iteration,
each slave performs a randomization and communicates O(nκ) bits to the other slaves to prove
that he has the performed the randomization correctly.

Each iteration involves a communication of O(n2κ) bits in total, and so t + 1 iterations
require a total communication of O(n3κ) bits. Thus evaluating a single multiplication gate
under the king requires a communication of O(n3κ) bits and so for cM multiplication gates, it
will incur a total communication of O(cMn

3κ) bits for a single king. Therefore, for n kings,
the protocol will require an overall communication of O(cMn

4κ) bits.

3.9. ANALYSIS OF THE AMPC PROTOCOL OF [32] 85

Protocol Sh(D, τ, s): τ is the session id

I. D-Dependent Phase:
Share Computation and Certificate Generation—Given the secret s ∈ Zp, D executes

the following code:
1. Select t-degree polynomials φ(·), ψ(·) with φ(0) = s. For j ∈ [1, n], compute share-

pairs sj = φ(j), rj = ψ(j), ciphertexts csj = Encpkj (sj), crj = Encpkj (rj) and
committed share Comsj = Commit(sj , rj). Compute Coms = Commit(s, ψ(0)).

2. Send messages {csj}σD , {crj}σD and {Comsj}σD for all j ∈ [1, n], and {Coms}σD to
each Pi. Start constructing a certificate αD,τ = certifyPoE(claimD,τ) claiming that
“D has correctly shared a secret in session τ”: This indirectly requires a proof that
“∃φ(·), ψ(·) : deg(φ(·)) ≤ t ∧ deg(ψ(·)) ≤ t ∧ csj = Encpkj (φ(j), ·) ∧ crj =

Encpkj (ψ(j), ·) ∧ Comsj = Commit(φ(j), ψ(j)) ∧ Coms = Commit(φ(0), ψ(0))”.
For this, run an instance of PoE for each (csj , crj ,Comsj) triplet with every party Pi.
Broadcast αD,τ once it is constructed.

Share Verification and Certification—Every party Pi ∈ P including D executes the fol-
lowing code:

1. On receiving {csj}σD , {crj}σD and {Comsj}σD for all j ∈ [1, n], and {Coms}σD from
D, perform the following verifications:
(a) Verify if {Comsj}j∈[1,n] and Coms define unique t-degree polynomials.
(b) If the above verification is successful, then participate in the PoE instances of D to

verify claimD,τ and enable D to construct a certificate αD,τ for claimD,τ .

II. D-Independent Phase and Termination—Every party Pi ∈ P including D executes the
following code:

1. Upon receiving the broadcasted certificate αD,τ from D, verify αD,τ for claimD,τ . Upon
successful verification, if {csj}σD , {crj}σD and {Comsj}σD for all j ∈ [1, n] have been
received from D,

(a) then compute si = Decski(csi), ri = Decski(cri), and ∀j ∈ [1, n] forward only
{csj}σD , {crj}σD , {Comsj}σD to Pj ,

(b) else wait for {csi}σD , {cri}σD , and {Comsi}σD to be forwarded by some party.
Once received, compute the share-pair si = Decski(csi) and ri = Decski(cri).

2. Forward {Comsi}σD to each Pj . On receiving t + 1 {Comsj}σD , homomorphically
compute {Comsj}j∈[1,n],Coms and terminate.

Protocol Rec(D, τ, [s]): τ is the session id
Every party Pi ∈ P executes the following code:

1. Send the share-pair (si, ri) to every party Pj ∈ P .

2. On receiving the share-pair (sj , rj) from party Pj , verify whether Comsj
?
=

Commit(sj , rj). If the verification is successful, then include sj in a set Tj , initialized
to ∅.

3. Once |Tj | = t + 1, construct a t-degree polynomial φ(·) by interpolating the points
{(j, sj)}sj∈Tj . Output s = φ(0) and terminate.

Figure 3.3: AVSS with n = 2t+ 1 using Transferable Non-equivocation

86 CHAPTER 3. DESIGNING PROTOCOLS FOR MULTI-PARTY COMPUTATIONS

Protocol Sup-PreMul-Sh(D, τ, Pking,P, [v]): τ is the session id
Let {cvj , crj ,Comvj = Commit(vj , rj)}j∈[1,n] and Comv = Commit(v, ·) be information corre-
sponding to [v] available to all parties;

I. Generating [u]: On having a value u, D invokes an instance Sup-Sh(D, τ, Pking, u) of Sup-Sh to
generate [u] under the supervision of Pking and every party in P participates in this instance and
wait for its termination. Let Comu = Commit(u, ·) be the commitment of u which is computed and
communicated during this instance of Sup-Sh (along with the other information corresponding to [u]).

II. Generating [u · v]—The following code is executed by the respective parties only upon terminating
the Sup-Sh instance of D:

a. D-Dependent Phase
1. Share Computation and Certificate Generation—The following code is executed only by D:

(a) Select random masking polynomials m(·) and m̂(·) of degree at most t with m(0) =

m̂(0) = 0. For j ∈ [1, n], compute mj = m(j), m̂j = m̂(j),Commj = Commit(mj , m̂j)

and Comm = Commit(m(0), m̂(0)).
(b) For j ∈ [1, n], using the homomorphic property of the encryption and commitment scheme,

compute the new encrypted share pair cu·vj+mj
= u� cvj � Encpkj (mj , ·), cu·rj+m̂j

=

u�crj �Encpkj (m̂j , ·) and the new committed share Comu·vj+mj = u�Comvj⊕Commj .
In addition, compute the new commitment Comu·v = u� Comv ⊕ Comm.

(c) Send messages {cu·vj+mj
}σD

, {cu·rj+m̂j
}σD

, {Comu·vj+mj
}σD

and {Commj
}σD

for all
j ∈ [1, n] and {Comu}σD

, {Comu·v}σD
and {Comm}σD

to each Pi. Start constructing a
certificate βD,τ = certifyPoCM(claimD,τ) claiming that “D has correctly done the pre-
multiplication in session τ .” This claim indirectly requires the following proof:

∃u, ρ,m(·), m̂(·),{kj , k̂j}j∈[1,n] : Comu = Commit(u, ρ) ∧ deg(m(·)) ≤ t ∧ deg(m̂(·)) ≤ t
∧ m(0) = 0 = m̂(0) ∧ Comu·vj+mj

= u� Comvj ⊕ Commj

∧ cu·vj+mj
= u� cvj � Encpkj (mj , kj) ∧ cu·rj+m̂j

= u� crj � Encpkj (m̂j , k̂j)

For this, run an instance of PoCM for

({cvj , crj ,Comvj , cu·vj+mj
, cu·rj+m̂j

,Comu·vj+mj
,Commj

}j∈[1,n],Comu,Comm)

with every party Pi. Broadcast the certificate βD,τ once it is constructed.
2. Share Verification and Certification—Every Pi ∈ P upon receiving
{cu·vj+mj}σD

, {cu·rj+m̂j}σD
, {Comu·vj+mj}σD

and {Commj}σD
for all j ∈ [1, n] and

{Comu}σD
, {Comu·v}σD

and {Comm}σD
from D, participate (as a V) in the instance of

PoCM with D to verify the claim claimD,τ and enable D to construct the certificate βD,τ for
claimD,τ . Upon successful verification, broadcast the message (approve,D) if Pi = Pking.

b. D-Independent Phase and Termination—Every party Pi ∈ P executes the following code:
1. Upon receiving the broadcasted certificate βD,τ from D and the broadcasted message

(approve,D) from Pking, verify βD,τ for claimD,τ . Upon successful verification:
(a) If ∀j ∈ [1, n], {cu·vj+mj

}σD
, {cu·rj+m̂j

}σD
, {Comu·vj+mj

}σD
have been received from

D, then compute wi = Decski(cu·vi+mi), r̂i = Decski(cu·ri+m̂i), and forward only
{cu·vj+mj}σD

, {cu·rj+m̂j}σD
, {Comu·vj+mj}σD

to each Pj ,
(b) else wait for {cu·vi+mi

}σD
, {cu·ri+m̂i

}σD
, and {Comu·vi+mi

}σD
to be forwarded by

some party. Once received, compute the share-pair wi = Decski(cu·vi+mi
) and r̂i =

Decski(cu·ri+m̂i).
2. Forward {Comu·vi+mi}σD

to every Pj . On receiving t+ 1 {Comu·vi+mi}σD
messages, homo-

morphically compute {Comu·vj+mj
}j∈[1,n],Comu·v and terminate.

Figure 3.4: Supervised Pre-multiplication Protocol for generating [u] and [u · v] under Pking

Chapter 4

Privacy Specification:
Precedent-based Reasoning

In this chapter, we introduce PriCL: the first framework for expressing and automatically
reasoning about privacy case law by means of precedent. PriCL is parametric in an underlying
logic for expressing world properties, and provides support for court decisions, their justification,
the circumstances in which the justification applies as well as court hierarchies. Moreover, the
framework offers a tight connection between privacy case law and the notion of norms that
underlies existing rule-based privacy research. In terms of automation, we identify the major
reasoning tasks for privacy cases such as deducing legal permissions or extracting norms. For
solving these tasks, we provide generic algorithms that have particularly efficient realizations
within an expressive underlying logic. Finally, we derive a definition of deducibility based
on legal concepts and subsequently propose an equivalent characterization in terms of logic
satisfiability.

Precedent-based Reasoning. Privacy regulations such as HIPAA, COPPA, or GLBA in the
United States impose legal grounds for privacy [102, 118, 119]. In order to effectively reason
about such regulations, e.g., for checking compliance, it is instrumental to come up with suitable
formalizations of such frameworks along with the corresponding automated reasoning tasks.

There are currently two orthogonal approaches to how regulations are expressed and inter-
preted in real life that both call for such a formalization and corresponding reasoning support.
One approach is based on providing an explicit set of rules that define what is allowed and
what is forbidden. The alternative is to consider precedents and case law, which is the approach
predominantly followed in many countries such as the US. Precedents are cases that decide a
specific legal context for the first time and thus serve as a point of reference whenever a future
similar case needs to be decided. Moreover, even judges in countries that do not base their legal
system on precedents often use this mechanism to validate their decision or shorten the process
of argumentation.

Case law is particularly suitable for resolving vague formulations that naturally occur in
privacy regulations like the definition of ‘disclosure’ in COPPA: “The term ‘disclosure’ means

87

88 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

[...] the release of personal information collected from a child in identifiable form”. Here, case
law could reference decisions that define what circumstances are qualified as a non-identifiable
form of personal data, thereby aiding the user by providing judicially accurate interpretation of
such terms.

While rule-based frameworks have received tremendous attention in previous research (see
the section on related work below) there is currently no formalization for case law that is
amenable to automated reasoning.

Our contribution. Our contribution to this problem space is threefold:

• We derive important legal concepts from actual judicial processes and relevant require-
ments from related work. The resulting framework PriCL, can be applied to the judicature
of many different countries as it does not assume any specific argumentation.

• We tailor the framework for privacy regulations. In particular, our privacy specific case
law framework is compatible with former policy languages since it has only minimal
requirements regarding the logic. Therefore, it is possible to embed other formalizations
into our framework.

• We define the major reasoning tasks that are needed to apply the framework to privacy
cases. In particular, these tasks allow us to derive requirements for the underlying logic
which we analyze. Several logics allow an embedding of the reasoning tasks by giving an
equivalent characterization of the tasks. Consequently, we are able to select a well suited
logic.

In total, the case law framework that we introduce gives a new approach for compliance
with privacy regulations. In particular, it makes it possible to implicitly use any regulation if it
was previously referenced by a judge. Moreover, it also provides for reasoning tasks in cases
where no regulation is applicable but judicial precedents exist.

Related work. There are plenty of privacy regulations that companies are required to comply
with. In the US there are regulations for specific sectors, e.g., HIPAA for health data, COPPA
for children’s data, or GLBA and RFPA for financial data. In the EU, the member states have
general data protection codes. The legislative efforts to harmonize these national codes via
the EU Data Protection Regulation [66] are proceeding and already provide for identifying
legislative trends. The importance and impact of these privacy regulations has brought the
interpretation thereof to the attention of more technically focused privacy research [89, 23, 5,
65, 40, 103].

Policy languages were mainly developed in order to model these regulations and to reflect
companies’ policies. Many of the modern logics modeling regulations are based on temporal
logic [70, 25, 61, 117, 24] and were successfully used to model HIPAA and GLBA [62] and
should be applicable to other regulations as well. While these logics focus on expressiveness
in order to reflect the regulations, the logics for company policies focus on enforcement [16,
8] and thus also on authorization [4, 8]. Consequently, company policies are mostly based on
access control policies [101, 85].

4.1. INGREDIENTS 89

Bridging the gap between the regulation policies and the company’s policies leads to
automating compliance checks [112]. For many deployed policies, i.e., the ones that are
efficiently enforceable, this is currently not possible due to the lack of decidability regarding the
logics used to formalize regulations. However, for these cases there exist run-time monitoring
tools that allow compliance auditing on log files [23, 70, 27, 25]. In particular, such auditing
was invented for HIPAA [70].

A different approach for achieving compliance is guaranteeing privacy-by-design [97, 48,
77]. However, the policy of these systems still needs to be checked for compliance with the
relevant privacy regulations.

There is also an orthogonal approach when designing privacy policies that focus on the end
user, i.e., designing a policy that is formal and can be formulated in an user-understandable
way [6]. First attempts using P3P [59, 109, 7] were unsuccessful. However, it is important to
incorporate the user in the process of policy design in order to gain her trust [86, 69].

4.1 Ingredients

In the first step we illustrate which components are essential for a case law framework. To that
end, we analyze actual judicial processes and derive ingredients for the framework from the
relevant legal principles. In particular, the court decision and its justification give insights into
how the decision is made and which judicial concepts have to be reflected by our framework.
Hence, in the following, we analyze a representative court decision1 and discuss the implications
for our framework.

The conflict. “This matter involves three certified questions from the Circuit Court of Harrison
County regarding whether applicable state and federal privacy laws allow dissemination of
confidential customer information by an insurance company to an unaffiliated third party during
the adjustment or litigation of an insurance claim.”

Every case reaching a court is based on a conflict, i.e., there is some question, as the one
above, for which different parties have different opinions on its truth value. In the example case,
the parties are a plaintiff, who was injured in a car accident, and an insurance company, which
refused to disclose the home address of the other person involved in the accident. The insurance
company claimed that to do so would violate the privacy provisions of the Gramm-Leach-Bliley-
Act (GLBA) and the West Virginia Insurance Commission’s Privacy Rule. As a requirement for
the framework, we can conclude that there has to be a conflict that needs to be resolved by a
decision. This decision can be an arbitrary statement; hence, we call it a decision formula.

Sub-cases. A decision’s justification usually involves decisions of several sub-cases in order
to arrive at the final decision formula, e.g. the court needs to decide whether a specific law
is applicable before examining what follows from its application. Each of these individual
sub-case decisions may become a precedent for decisions which deal with a similar sub-case.

1The quotes are taken from MARTINO v. BARNETT, Supreme Court of Appeals of West Virginia,
No. 31270, Decided: March 15, 2004. The decision text is public at http://caselaw.findlaw.com/
wv-supreme-court-of-appeals/1016919.html.

http://caselaw.findlaw.com/wv-supreme-court-of-appeals/1016919.html
http://caselaw.findlaw.com/wv-supreme-court-of-appeals/1016919.html

90 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

The circumstances. “[The plaintiff] concedes that under the definitions of the GLBA [...]
information he requests is technically nonpublic personal information of a customer which the
Act generally protects from disclosure to nonaffiliated third parties.”

Every case contains some factual background. These facts constitute some statements
which are not under discussion but measurably true, e.g., that an address is nonpublic personal
information. We summarize these facts in a case description.

Referencing related court decisions. “[T]he United States District Court for the Southern
District of West Virginia handed down an opinion in Marks v. Global Mortgage Group, Inc.,
218 F.R.D. 492 (S.D.W.Va.2003), providing us with timely and pertinent considerations.”

The key of case law is referencing other cases in order to derive statements. In the example
case, this capability is used to introduce an argumentation from a different court. This mechanism
is also used when statements are derived from regulations as in the following example:

“[T]he GLBA sets forth a procedure whereby financial institutions falling within the purview
of the Act may not disclose nonpublic personal information without first notifying its clients
of the financial institution’s disclosure policies and affording them the opportunity to bar any
disclosure of such information by ’opting out.’ See 15 U.S.C. 6802(a) and (b).”

Consequently, the framework has to be capable of introducing statements during the case
justification by references to their origin.

Argumentation structure of the justification. “[The] GLBA provides exceptions to its notifi-
cation and opt-out procedures, including [...]”

The argumentation structure of the justification is not linear, i.e., of the form A ⇒ B ⇒
. . .⇒. But the arguments can be ordered in a tree form. The exceptions stipulated by the GLBA
are enumerated and then discussed in the case justification. If more than one is applicable, these
may serve as independent decision grounds, each being a potential precedent in its own right.2

As a consequence, we believe that a proof tree fits the overall structure best.

World knowledge. “[We] conclude that nonpublic personal information may be subject to
release pursuant to judicial process.”

In the argumentation, the court leaves to the reader’s knowledge that the plaintiff’s litigation
actually is a “judicial process”. These open ends in the argumentation are neither explicitly
covered by a decision nor by a case reference. Therefore, we need some world knowledge KBW
that will cover these axiomatic parts of the argumentation.

Precedents and stare decisis. The doctrine of stare decisis (to stand by things decided) or
binding precedents is unique to common law systems. The decisions of superior courts are
binding for later decisions of inferior courts (vertical stare decisis). These binding precedents
are applied to similar cases by analogy.

A special case is the binding nature of previous decisions on the same hierarchical level or
by the deciding court itself (horizontal stare decisis). While the details of binding precedents of
different courts on the same level is subject to an ongoing scholarly debate, a court reversing
itself is a more infrequent occurrence but usually has high impact (for example, in the years

2O’Gilvie v. United States, 519 U.S. 79, 84 (1996).

4.1. INGREDIENTS 91

1946-1992, the U.S. Supreme Court reversed itself in 130 cases3) and needs to be reflected in
our framework.4

In addition to the binding precedent, there also exists the persuasive precedent: “While we
recognize that the decision of the Marks court does not bind us, we find the reasoning in Marks
regarding a judicial process exception to the GLBA very persuasive and compelling”.

Here, a court is not bound by an earlier decision, in our example because the earlier decision
was made by an inferior court, but finds the argumentation so persuasive that it is voluntarily
used as a precedent.

Stare decisis does not apply in civil law systems, like those of Germany or France. How-
ever, these systems have a jurisprudence constante, facilitating predictable and cohesive court
decisions. Though civil law judges are not obliged to follow precedents, they may use prior
decisions as persuasive precedents and oftentimes do so.

Material difference. Stare decisis only applies if the subsequent court has to decide on a case
or sub-case that is similar to the precedent. Therefore, if the court finds material difference
between the cases, it is not bound by stare decisis. In practice, judges may claim material
difference on unwarranted grounds, which may lead to conflicting decisions of analogous cases
within our framework. Thus, we need to be able to account for false material difference.

Involving court hierarchies. “[W]e look initially to federal decisions interpreting the relevant
provisions of the GLBA for guidance with regard to the reformulated question. However, the
issue proves to be a novel one in the country since few courts, federal or state, have addressed
the exceptions to the GLBA.”

For our framework we need to take into account court hierarchies to identify binding
precedents. In common law jurisdictions, inferior courts are bound by the decisions of superior
courts; in civil law jurisdictions superior courts usually have higher authority without being
strictly binding. In federal states like the USA or Germany we need to account for parallel
hierarchies on state and on federal levels. This complex hierarchy has significant implications on
stare decisis. For example, state courts in the United States are not considered inferior to federal
courts but rather constitute a parallel court system. While state courts must follow decisions
of the United States Supreme Court on questions of federal law, federal courts must follow
decisions of the courts of each state on questions of that state’s law. If there is no decision on
point from the highest court of a state, the federal courts must either attempt to predict how the
state courts would resolve the issue, by looking at decisions from state appellate courts at all
levels, or, if allowed by the constitutions of the relevant states, consult the statesupreme courts.

Hence, in our framework every case needs to be annotated by a court which is part of a court
hierarchy, to identify the character of precedents, binding or potentially persuasive.

3Congressional Research Service — Supreme Court Decisions Overruled by Subsequent Decision (1992).
http://www.gpo.gov/fdsys/pkg/GPO-CONAN-1992/html/GPO-CONAN-1992-13.htm The U.S.
Supreme Court has explained its practice as follows: “[W]hen convinced of former error, this Court has never felt
constrained to follow precedent.” — Smith v. Allwright, 321 U.S. 649, 665 (1944)

4Federal and state supreme courts are allowed to overrule their own precedents. State Oil Co. v. Khan, 522 U.S.
3, 20 (1997); Freeman & Mills, Inc. v. Belcher Oil Co., 11 Cal. 4th 85, 93 (1995).

http://www.gpo.gov/fdsys/pkg/GPO-CONAN-1992/html/GPO-CONAN-1992-13.htm

92 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

Ratio decidendi and obiter dicta. Regarding the court’s decision text, we need to differentiate
between two types of statements. The actual binding property of a precedent has only those
statements and legal reasoning that are necessary for the rationale of the decision. These
necessary statements as called ratio decidendi and constitute the binding precedent. Further
statements and reasoning that are not essentially necessary for the decision are called obiter
dicta. These are not binding but can be referenced as persuasive precedents.

For our reasoning framework we need to differentiate and annotate statements into these
two different categories to correctly identify binding precedents.

4.2 Defining The PriCL Framework

Reflecting the observations just made, we define cases (Section 4.2.1) and case law databases
(Section 4.2.2). Thereby we also explain how to model the legal principles described in
Section 4.1. Then, we define how the database can be used in order to deduce facts outside the
framework (Section 4.2.3). We analyze our framework, validating a number of basic desirable
properties of case law databases (Section 4.2.4). We finally show, for privacy regulations
specifically, that our framework matches the requirements identified by previous work [23]
(Section 4.2.5).

Throughout this section, we assume an underlying logic in which world properties are
expressed and reasoned about. Our framework is parametric with respect to the precise form of
that logic. The requirements the logic has to fulfill are interpreting predicates as relations over
objects, supporting universal truth/falseness (denoted respectively as > and ⊥), conjunction
(denoted ∧), entailment (denoted A |= B if formula A entails formula B), and monotonicity
regarding entailment, i.e., if A |= B then A ∧ C |= B for any formula C. As an intuition when
reading the following, the reader may assume we are using a first-order predicate logic.

4.2.1 Introducing Cases

As we have seen, a case consists of a decision formula, a case description, a court, and a proof
tree. The first three components are straightforward to capture formally as formulas and a set
element (courts are represented by a finite set Courts of court identifiers). Designing the proof
tree is more involved since it needs to capture the judge’s justification. We distinguish between
different kinds of nodes in the tree depending on the role the respective statements play in the
justification: Does a sentence make an axiomatic statement, or form part of the case description?
Does it refer to a previous case, adopting a decision under particular prerequisites? Does it make
an assessment on the truth of a particular statement (e.g., that a particular piece of information
is or is not to be considered private) under particular prerequisites? All such statements are
“standalone” in the sense that they are not implications of previous arguments in the justification
at hand. We therefore reflect these “standalone” statements in the leaf nodes of the proof tree,
categorized by the three different types of statements mentioned.

The inner nodes of the tree perform logical deductions from their children nodes, represent-

4.2. DEFINING THE PRICL FRAMEWORK 93

ing the reasoning inherent in the justification, i.e., the conclusions that are made until finally,
in the tree root, the decision formula is reached. Thereby, every inner node is annotated by
an arbitrary formula. We differentiate between two kinds of reasoning steps, AND-steps and
OR-steps.The OR-steps reflect the principle of independent decision grounds, i.e., the cases
that a judge increases legal certainty by listing arguments that all for themselves are sufficient
for the conclusion. The AND-step is the natural conclusion steps that is used to ensure that the
decision made is reached through the argumentation.

In order to avoid a recursive definition, we need a (possibly infinite) set of case identifiers
CI . Throughout the paper we assume a fixed given set CI . This leads to the following definition:

Definition 4.2.1 (Case). A case C is a tuple (df,CaseDesc,ProofTree, crt) such that
• df is a formula that we call the decision formula of the case C.

• CaseDesc is a formula describing the case’s circumstances.

• ProofTree is a (finite) tree consisting of formulas f where the formula of the root node
is df. Inner nodes are annotated with AND or OR and leaves are annotated with
l ∈ {Axiom,Assess} ∪ {Ref(i) | i ∈ CI}. Leaf formulas l are additionally associated
with a prerequisite formula pre. For leaves annotated with Axiom, we require that
pre = l.

• crt ∈ Courts.
For leaf formulas l, we refer to l as the node’s fact, and we will often write these nodes as
pre→ fact where fact = l.

By the prerequisites of an inner node n with children nodes n1, . . . , nk, denoted as pres(n),
we refer to

∨
1≤i≤k pres(ni) if n is annotated by OR and

∧
1≤i≤k pres(ni) if n is annotated

by AND. The prerequisites of a case C are the prerequisites of the root node and denoted by
presC . We define analogously the facts of a node and a case. We will often identify formulas
with proof tree nodes. Given a case C, by dfC we denote the decision formula of C.

Let C be a set of cases and µ : C→ CI a function. If for every reference Ref(i) in C, there
is an D ∈ C with µ(D) = i, we call the set C closed under µ.

We assume world knowledge common to all cases. In the example of argumentation ends in
Section 4.1, it is assumed that the reader knows that the predicate is judical process holds for
any case. Formally, the world knowledge is a formula KBW (naturally, a conjunction of world
properties) in the underlying logic.

Definition 4.2.1 is purely syntactic, imposing no restrictions on how the different elements
are intended to behave. We will fill in these restrictions one by one as part of spelling out the
details of our framework, forcing cases to actually decide a conflict and behave according to the
legal principles. One thing the reader should keep in mind is that pre→ fact is not intended
as a logical implication. Rather, pre are the prerequisites that a judge took into account when
making the assessment that fact (e.g., the privacy status of a piece of information) is considered
to be true under the circumstances CaseDesc |= pre. The pre → fact dependencies thus

94 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

model the human element in case law, which we consider to be outside of what we can capture
with formal logic. This solely captures human decisions such as trade-off decisions. However,
the frameworks allows reasoning about consequence of such decisions. The formulas presC ,
and respectively factsC , collect all prerequisites needed to apply the proof tree, and respectively
all facts needed to execute the proof tree; axiom leaves act in both roles.

In principle, a case has the purpose to decide a formula df. However, while justifying that
a formula holds, e.g., that a telecommunication company has to delete connection data after
a certain amount of time, the court might decide other essential subquestions. In the given
example, this could be that connection data is personal data. This concept is conveniently
captured through the notion of subcases.

Definition 4.2.2 (Subcase). Let C = (df,CaseDesc,ProofTree, crt) be a case and n ∈
ProofTree a node. Let sub(n) be the subtree of ProofTree with root node n. The case
sub(C, n) := (n,CaseDesc, sub(n), crt) is a subcase of C.

Another aspect that is of interest when referencing cases is the degree of abstraction. For
example, one case could decide that a specific telecommunication company C has to delete
connection information D of some user U after a specific time period t. The question of how
this decision can be used in order to decide the question for different companies C ′ or different
information D′ is covered by the legal concept of material difference. For this work, we assume
that a judge specifies the allowed difference in the prerequisites of a decision. However, it could
also be modeled by introducing metrics and thresholds when referencing (sub-)cases.

Tailoring cases for privacy.. Our definition of cases, so far, is generic in the sense that it
may be applied to any domain of law. To configure our framework to privacy regulations
more specifically, a natural approach is to simply restrict the permissible forms of decision
formulas. We explicitly leave out legal domains such as individualized sentencing or measuring
of damages. Decisions in the privacy context are about whether or not a particular action is
legal when executed on particular data. We capture this by assuming a dedicated predicate
is legal action, and restricting the decision formula to be an atomic predicate of the form
is legal action(a), where a is an action from an underlying set Actions of possible actions
treated as objects (constants) in the underlying logic. This can also be used in other legal
domains, but it turns out to be sufficient to connect our formalization of privacy cases with
other policy based approaches. Note that, in contrast to other policy frameworks, we do not
need to add the context to the predicate, as the context is contained in the case, via nodes of
the form “if the transfer-action a has purpose marketing and the receiver is a third party, then
¬is legal action(a)”. As decisions about the legality of actions are not naturally part of the
common world knowledge KBW , nor of the case description CaseDesc itself, our modeling
decision is to disallow the use of is legal action predicates in these formulas. In other words,
the world and case context describe the circumstances which are relevant to determining action
legality, but they do not themselves define whether or not an action is legal. This yields the
following definition:

Definition 4.2.3 (Privacy Case). Given world knowledge KBW and action set

4.2. DEFINING THE PRICL FRAMEWORK 95

Actions, a case C = (df,CaseDesc,ProofTree, crt) is a privacy case if df ∈
{¬is legal action(a), is legal action(a)} for some action a ∈ Actions, where the
is legal action predicate is not used in either of KBW or CaseDesc.

Starting to fill in the intended semantics of cases, i.e., of the structures allowed as per
Definition 4.2.1, we first capture the essential properties which a case needs to have to “make
sense” as a stand-alone structure. Additional properties regarding cross-case structures will be
considered in the next subsection. We will use the word “consistency” to denote this kind of
property. The following definition captures the intentions behind cases:

Definition 4.2.4 (Case Consistency). Let C = (df, CaseDesc, ProofTree, crt) be a case. C
is consistent if the following holds (for all nodes n where n1, . . . , nk are its child nodes)

(i) KBW ∧ CaseDesc 6|= ⊥

(ii) KBW ∧ CaseDesc |= presC

(iii) KBW ∧ CaseDesc ∧ factsC 6|= ⊥

(iv)
∧

1≤i≤k
ni |= n if n is an AND step

and
∨

1≤i≤k ni |= n if n is an OR step

Regarding (i), if the world knowledge contradicts the case description, i.e., KBW ∧
CaseDesc |= ⊥, then the case could not have happened in reality. Similarly, (iii) the case
context must not contradict the facts that the proof tree makes use of (this subsumes (i), which
we kept as it makes the definition more readable). As for (ii), the case context must imply
the axioms as well as the prerequisites which the present judge (assessments) or other judges
(references to other cases; see also Definition 4.2.7) assumed to conclude these facts. (iv) says
that inner nodes must represent conclusions drawn from their children (remember here that ni,
for leaf nodes pre→ fact, refers to fact).

The OR nodes of the proof tree reflect the legal argumentation structure of independent
decision grounds, the judge gives several arguments, each of which is sufficient. If the judge
of a later case decides that one of these arguments is invalid for the conclusion, he needs to be
able to falsify only one of the branches and not the whole tree. In other words, the tree structure
gives “syntactic sugar” that makes it possible to reflect the justification more closely and thereby
marks which subsets of leaf nodes are sufficient in order to reach decision df.

4.2.2 Combining Cases to Case Law Databases

The quintessential property of case law is that cases make references to other cases. These
references are necessary to formulate several legal principles of Section 4.1.

The legal principles false material difference and reversing decisions define requirements
for when not to reference a case, either because it contains a mistake or because the opinion has
changed over time. Therefore, we consider the design cleaner if both principles are covered by

96 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

the same mechanism of the framework. There are several options to model the principles: first,
the reversed decision could be covered by time, i.e., by a requirement to refer to the newest case
that is applicable regarding the circumstances. However, the false material difference cannot
be covered by that. Another approach is to denote single Assess nodes as unwarranted, i.e.,
to forbid the reference to be used thereafter. This solution can model both principles false
material difference and reversing decisions. We explicitly decided to model the mechanism of
unwarranted nodes outside of the cases. Assume a case would decide that another decision was
unwarranted. This leads to another decision that could potentially be marked as unwarranted
later on implying that it is again correct to cite the case. Consequently, this would lead to a set of
time intervals during which the citation of nodes is warranted. However, after legal consultation
we figure out that this complication does not meet practice, i.e., once a decision is unwarranted
it will not become warranted again; hence we simplified the mechanism.

We require a different mechanism to differentiate cases we must agree with and cases
which we may use as reference. Unwarranting rather defines which decisions must not be
referenced. In particular, we need to differentiate between assessments coming from the legal
principles ratio decidendi and obiter dicta. While the part of the decision following ratio
decidendi leads to a binding precedent, the obiter dicta part is not binding. Thus, we introduce
predicates may-ref and must-agree. It also provides a mechanisms to respect the court
hierarchy. Intuitively, may-ref(C1, C2) denotes the circumstances that case C1 may reference
case C2; must-agree(C1, C2) analogously denotes that C1 must agree with C2.

In addition, we need to introduce the concept of time by a total order ≤t over cases. This
concept allows us to formulate the requirement that references can only point to the past. Using
all these constructs, we can define a case law database.

Definition 4.2.5 (Case Law Database (CLD)). A case law database is a tuple DB = (C,≤t
,must-agree,may-ref, µ, U) such that:
• C is a finite set of cases. We will also write C ∈ DB for C ∈ C.

• µ : C→ CI is an injective function such that C is closed under µ. In the following we
will also write Ref(D) for Ref(i) if µ(D) = i.

• Let <ref := {(C,D) | D contains a Ref(C) node} and ≤t is an order that we call time
order of the cases. It has to hold:

must-agree ⊆
may-ref ⊆≤t⊆ C×C

<ref⊆

• U specifies the unwarranted nodes, i.e., U : C→ N is function such that

– N is a subset of the nodes labelled with Assess or Ref in the cases C.

– The set increases monotonic, i.e., C ≤t D =⇒ U(C) ⊆ U(D).

We denote the unwarranted nodes of DB by U(DB) :=
⋃
C∈C U(C).

4.2. DEFINING THE PRICL FRAMEWORK 97

The function µ is used to remove the recursive definition of a case and enables us to connect
cases via their individual semantics. The property of closedness of µ can be formally considered
as

µ(
⋃
C∈C
{D | D ∈ C ∧D <ref C}) ⊆ µ(C)

or in other words: every case identifier of a referenced case is also contained in the database.
Regarding the relations must-agree and the may-ref we made two design decisions. First,

we require to not link must-agree and the actual references <ref. On the one hand, there
might be precedents which are not applicable, but on the other hand, we want the freedom
to define must-agree and may-ref only depending on the court hierarchy, i.e., independent
of the satisfaction of some precedent’s preconditions. The second design decision is to base
these relations on cases instead of decision nodes. As for the first decision, the purpose is to
make an instantiation of the definition only depending on the court, but we need to be careful
regarding the principles ratio decidendi and obiter dicta. Since one of them is not binding, i.e.,
a must-agree and the other is. This differentiation can be achieved by replacing every case
with a set of cases. We require this to be part of the modeling process. However, it is possible to
automatically identify parts of the proof that are optional to reach the final decision in the root
node.

We did not add further restrictions since they may depend on local law. For example, there
is a vertical stare decisis in US law, implying that higher court decisions have to be considered.
There is also the term of horizontal stare decisis that requires respecting siblings in the hierarchy.
This principle does not necessarily hold, but is under discussion. However, the definition of
must- and may-references allows modeling both.

Example 4.2.1 (Must-agree and may-references for a court hierarchy). Assume the set of courts
Courts is partially ordered by ≤§, i.e., there is a court hierarchy. In this case, we could model
must-agree by

must-agree = {(C1, C2) | Ci = (dfi, di, pi, crti), i ∈ {1, 2}, C1 ≤t C2, and crt1 ≤§ crt2}

It is easy to see that the must-agree predicate actually only depends on the crt and not on
the other parameters of the proof. We call this property court-dependency.

The key property of unwarranted decisions is that they are time dependent. In order to only
use warranted decisions when referencing, we define warranted subcases as follows:

Definition 4.2.6 (Warranted Subcase). A subcase (df,CaseDesc,ProofTree, crt) is warranted
with respect to a set N of nodes if the case (df,CaseDesc,ProofTree′, crt) is consistent where
ProofTree′ is derived from ProofTree by replacing every precondition of a node n ∈ N by ⊥.
If a case is not warranted, we call it unwarranted.

It remains to define when a case law database can be considered to be consistent. To that
end, we consider case references and conflicts between cases. Starting with the former, we
obtain:

98 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

Definition 4.2.7 (Correct Case Reference). Let DB be a case law database and C =

(df,CaseDesc,ProofTree, crt) a case in DB. A leaf node pre→ fact in ProofTree annotated
with Ref(D) references correctly if Du = (fact, CaseDescD, ProofTreeD, crtD) is a war-
ranted subcase of a case D ∈ DB w.r.t. U(C), may-ref(C,D) holds and KBW ∧pre |= presD.
A case C references correctly if all its leaves annotate with Ref(D) reference correctly.

Consider that, when referencing a (sub)case D as pre→ fact from our case C at hand, we
are essentially saying that the same argumentation applied in D can be applied in our case, to
prove fact under circumstances pre. So we need to show that this applicability of arguments is
actually given. This is ensured by KBW ∧pre |= presD because presD collects all prerequisites,
axioms and otherwise, needed to apply D. Note that, if C is consistent, by Definition 4.2.4 (ii)
it holds that KBW ∧ CaseDesc |= pre and thus KBW ∧ CaseDesc |= presD. Note further
that KBW ∧ pre |= presD defines the role of pre as providing a condition sufficient to entail
“the other judge’s prerequisites”. As the same applies recursively to the case references made in
D, we know that pre (given KBW and CaseDesc) entails all judge decisions underlying the
assessment fact. We will formalize this in Theorem 4.2.3.

We are now almost in the position to define consistency at the global level of the entire
case law database. The last missing piece in the puzzle is to identify when cases should be
considered to be in conflict — which naturally occurs in case law databases where different
judges may make different decisions. We capture this through pairs of cases whose prerequisites
are compatible, while their facts are contradictory:

Definition 4.2.8 (Case Conflict). Let C1 be a case in DB and C2 be a warranted case w.r.t.
U(C1). We say that C1 is in conflict with C2 if and only if

(i) KBW ∧ presC1
∧ presC2

6|= ⊥

(ii) KBW ∧ factsC1 ∧ factsC2 |= ⊥

(iii) must-agree(C1, C2)

A case C is in conflict with DB if there is a D ∈ DB s.t. C is in conflict with D.

We ignore the case descriptions here, other than what is explicitly employed as axioms
in the proof trees: we consider cases to be in conflict if one could construct a case (e.g.,
presC1

∧ presC2
) which would make it possible to come to a contradictory decision.

Given these definitions, we achieve an implementation of the conflict decision respecting
the circumstances and the argumentation by case consistency. We respect the principles of
independent decision grounds, false material difference, and reversing decisions by referential
consistency. Avoiding conflicts leads to the implementation of the concepts of binding and
persuasive precedents and vertical stare decisis. Finally, by requiring reduced cases, we respect
decisions regarding obiter dicta and ratio decidendi. We define case law database consistency as
follows:

4.2. DEFINING THE PRICL FRAMEWORK 99

Definition 4.2.9 (Case law database consistency). A case law database DB = (C,≤t
,must-agree,may-ref, µ, U) is

(i) case-wise consistent if every C ∈ DB is consistent,

(ii) referentially consistent if every C ∈ DB references correctly, and

(iii) hierarchically consistent if every C ∈ DB is not in conflict with DB.

(iv) warrants consistently if for every C holds: U(C) contains all Ref(D) nodes where D is
an unwarranted subcase w.r.t. U(C).

We call DB consistent if it warrants consistently and is hierarchically, referentially and case-wise
consistent.

Items (i) and (ii) are simple element-wise extensions. Item (iii) captures the nature of
conflicts given the time line and court hierarchy. A case can only respect earlier decisions, so
if there is a conflict then we can only expect the newer case to respect the older one. Since
the order <§ is only a partial order, both courts could be incomparable (neither crtC1 <§ crtC2

nor crtC2 <§ crtC2). Allowing such cases to be in conflict reflects the intuition that local
court instances of independent states may have different opinions. Hence the requirement
crtC2 ≥§ crtC1 for the newer case C2 to not be decided at a court below C1 (as opposed to
requiring for the newer case C2 to be decided at a court strictly above C1).

4.2.3 Deriving Legal Consequences: Deducibility and Permissibility

In the following we assume that the predicates may-ref and must-agree of the DB do not
depend on the case description, the decision formula or the proof tree, but are only court
dependent, cf. Example 4.2.1. As a consequence, we know the value of these predicates for
formula values and case descriptions which are not contained as a case in the database given
only the court level of the case. In other words, we require an operation DB ∪ {C} that puts
C at the end of the timeline regarding ≤t, assigns a fresh identifier i ∈ CI to C with µ, uses
as U(C) := U(DB), and adopts must-agree,may-ref appropriately and is independent of
the decision formula and the proof tree. This operation is needed to apply the framework to
situations not contained in the database.

Obvious applications of our framework are advanced support for case search (based on logic
operations over the case descriptions, decision formulas, etc.), and consistency checking (given
a case C, is C consistent and does it reference correctly?). A more advanced task is to evaluate
the legality of actions given the cases reflected in the database. For example, when designing
a course administration system, one may ask “Am I allowed to store students’ grades in the
system?” Our formalism supports this kind of question at different levels of strength, namely:

Definition 4.2.10 (Deducibility and Permissibility). Let DB = (C,≤t
,must-agree,may-ref, µ, U) be a consistent CLD, and f a formula. We say that f is
permitted in DB under circumstances CaseDesc and court crt if there exists a case

100 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

C = (f,CaseDesc,ProofTree, crt) such that ProofTree does not contain nodes labeled with
Assess, and DB ∪ {C} is consistent (where C is inserted at the end of the timeline ≤t). We
say that f is uncontradicted in DB under CaseDesc and crt if ¬f is not permitted under
CaseDesc and crt. We say that f is deducible if it is permitted and uncontradicted.

For sets F of formulas, we say that F is permitted in DB under CaseDesc and crt if
there exists a set of cases {Cf = (f,CaseDesc,ProofTreef , crt) | f ∈ F} such that every
ProofTreef does not contain nodes labeled with Assess, and DB∪{Cf | f ∈ F} is consistent
(where the Cf are inserted in any order at the end of the timeline ≤t).

It might be confusing at first why we attach to f the weak attribute of being “permitted” if
we can construct a case supporting it. The issue is, both f and ¬f may have such support in the
same database. This follows directly from the freedom of different courts to contradict each
other. If two courts at the same level decide differently on the same issue, then that is fine by
our assumptions (the database is hierarchically consistent unless a lower court contradicts an
earlier decision by a higher court), but it allows to come to contradictory conclusions. Hence,
to qualify a formula f for the strong attribute of being “deducible”, we require the database to
permit f and to not permit its contradiction.

Note that permissibility and deducibility are not only dependent on the database, but also
dependent on the circumstances CaseDesc and the court crt. For example, when we answer
“was it legal to send data D to party P ?”, it matters for which purpose the data was sent. That
information is contained in the CaseDesc. The court level has several interpretations here: the
court might be chosen to match the local court of the party asking the question. But the court
level can also be viewed as a level of confidence. Permissibility is a “stronger” guarantee for
lower court instances, because we can then deduce without incurring conflicts to instances higher
up. Hence lower court instances can be used to obtain permissibility “with high confidence”, and
contradictions “with low confidence”. Vice versa, higher court instances can be used to obtain
permissibility “with low confidence” and contradictions “with high confidence”. Combinations
of different court levels for testing the two sides of deducibility – being permitted and being
uncontradicted – can be used for fine-grained trade-offs.

The concept of deducibility of a set F of formulas is interesting because, in general, this is
not the same as deducing each formula in separation. In particular, while each of f and ¬f may
be permitted in the same database, {f,¬f} is never permitted because adding the hypothetical
supporting cases necessarily incurs a hierarchical conflict. Permissibility of F is also not the
same as permissibility of

∧
f∈F f because the latter makes a stronger assumption: all cases

referred to in order to conclude
∧
f∈F f must have compatible prerequisites. So deducibility

of formula sets forms a middle ground between individual and conjunctive deducibility. We
formalize and prove this observation in the following theorem.

Theorem 4.2.2. There is a consistent case law database DB, case description CaseDesc and
court crt, such that there is a set F of formulas for each of the following properties (in DB
under circumstances CaseDesc and court crt):

(i) For every f ∈ F , f is permissible and F is not permissible.

4.2. DEFINING THE PRICL FRAMEWORK 101

(ii) F is permissible, but
∧
f∈F f is not permissible.

Proof. We define CaseDesc := A for a predicate A and consider the court set Courts =

{H1
1 , H

1
2 , H

2} such that H i <§ H
j iff i < j implies must-agree and may-ref as in exam-

ple 4.2.1.
Let Assess(f) be a proof tree consisting of a single assessment node as root node that

contains > → f and, for a case C and a formula f , let Ref(C, f) be the proof tree consisting of
a single case reference node that refers to C and contains the formula > → f . Let B 6= A be
some predicate. The database DB consists of the following cases:

• C1 = (p,>,Assess(p), H1
1)

• C2 = (¬p,>,Assess(¬p), H1
2)

• C3 = (A⇒ B,>,Assess(A⇒ B), H1
1)

• C4 = (B ⇒ ¬A,>,Assess(B ⇒ ¬A), H1
2)

The time order ≤t is given by < on the indices. The database is obviously consistent. Let
crt = H2. In the following, we construct the sets F for the respective statement of the theorem.

(i) Define the set F := {p,¬p}. The formula p is permitted by DB for case description
CaseDesc and court crt, since (p,CaseDesc,Ref(C1, p), crt) is a case as required by
Definition 4.2.10. The same holds for ¬p.

Assume that F is permitted. Then there are cases Cp, C¬p such that DB ∪ {Cp, C¬p} is
consistent. However, Cp and C¬p are in conflict and are at the same court level, i.e., either
must-agree(Cp, C¬p) holds or must-agree(C¬p, Cp) depending on the order in which
the cases are inserted in DB. As a consequence, DB ∪ {Cp, C¬p} cannot be hierarchically
consistent. Thus, that database cannot be consistent either. Therefore, F cannot be
permitted.

(ii) Let f1 = A ⇒ B, f2 = B ⇒ ¬A, and F = {f1, f2}. It is easy to see that for a case
Cf1∧f2 it holds that KBW ∧ CaseDesc ∧ factsC |= ⊥ if C3 and C4 are referenced. That
means the case is not consistent. However, without referencing these cases it is impossible
to prove f1 ∧ f2 as a decision formula within DB.

The set F is permitted. Since Cf1 , Cf2 as constructed in the proof of i are consistent.
These cases are also not in conflict. In order to prove the absence of a conflict, we have to
check that KBW ∧ presC1

∧ presC2
6|= ⊥ and KBW ∧ factsC1 ∧ factsC2 |= ⊥. While the

first condition is met, the second does not hold, since we need CaseDesc = A to entail
⊥.

102 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

Characterizing Deducibility. Deducibility is the central concept for answering questions
that are not explicitly answered by the database. However, Definition 4.2.10 does not give
an algorithmic description of how to decide whether some formula is deducible. It is also
inconvenient for proving properties about permissibility and deducibility. Thus, we give an
equivalent characterization in the following.

Intuitively, a formula should be permissible if there is a set of warranted decisions which
allow us to conclude the predicate and a formula f should be deducible if in addition no set of
decisions contradicts f . We call the set that lets us conclude f supporting sets which we define
in the following. Thereafter, we prove that the intuition matches the definitions of permissibility
and deducibility.

Definition 4.2.11 (Supporting set). Let DB = (C,≤t,must-agree,may-ref, µ, U) be a con-
sistent case law database, f a formula, CaseDesc a case description and crt a court. A set
A of leaf nodes in DB that are labeled with Assess is a supporting set for formula f if the
following holds:

(1) KBW ∧ CaseDesc |=
∧

(pre→fact)∈A pre

(2) KBW ∧ CaseDesc ∧
∧

(pre→fact)∈A fact |= f

(3) KBW ∧ CaseDesc ∧
∧

(pre→fact)∈A fact 6|= ⊥

A supporting set is unwarranted if it contains an unwarranted node w.r.t. any C ∈ C.
If it is not unwarranted it is warranted. A supporting set is consistent with DB if DB ∪
{(>,CaseDesc,ProofTree, crt)} is consistent, where ProofTree consists of a root node with
annotation > and leaf nodes with annotation Ref(Cn) for n ∈ A, where Cn is the case that
contains node n.

Note that a supporting set that is consistent with the DB leads to consistency, and correct
referencing, and does not create any conflicts. The properties required in the definition are a
consequence of the definition of database consistency. A case constructed from a supporting set
would simply refer to all decisions and place the formula at the root. Case consistency requires
the properties (1)-(3) to hold; referential consistency requires that the referenced leaf nodes are
warranted and hierarchical consistency requires that the supporting set is not in conflict with
DB.

The following theorem characterizes permissibility and deducibility using supporting sets.
This characterization suggests an algorithmic way of deciding the properties and gives a tool for
proving properties about case law databases.

Theorem 4.2.3. Let DB be a consistent case law database, f a formula, CaseDesc a case
description and crt a court. The following holds:

1. For every C ∈ DB with warranted node f there is a supporting set A that supports f .

2. f is permitted (under circumstance CaseDesc and court crt) if and only if there is a
supporting set A that supports f , is warranted, and is consistent with DB.

4.2. DEFINING THE PRICL FRAMEWORK 103

3. f is deducible if and only if there is a supporting set A that supports f , is consistent with
DB, and for every supporting set B it holds that B does not support ¬f , is unwarranted,
or is not consistent with DB.

Proof. We prove the theorem step by step in the same order the claims are defined.

1. We show a stronger statement for CaseDesc = presC (since C is consistent it has to
hold that KBW ∧ CaseDesc |= presC).

We start with AC as the set of all leaf nodes of C that are annotated by Assess and
Ref(D) for some D. For this set all properties (1)–(3) of Definition 4.2.11 clearly hold
by consistency of C. However, the set might contain nodes labeled with Ref(D) which
we need to replace in order to fulfill this criterion of the Theorem, as well.

For a fixed leaf formula (pre → fact) ∈ AC corresponding to a Ref(D) leaf node,
take the set AD for D defined as AC for C. By consistency of D, we get (a) and
(b) for CaseDescD = presD and f = fact. By referential consistency it holds that
KBW ∧ pre |= presD. Therefore, if we replace AC by AC\{(pre → fact)} ∪ AD,
property (a) holds for C and the new AC since KBW ∧ pre |= presD. Property (b) also
transfers to the new set, since (b) holds for the old set and (b) holds for D and AD with
respect to CaseDescD = presD and f = fact.

The process of successively replacing Ref(D) nodes in AC terminates since AD only
contains Ref(E) leaf nodes for E <ref D and DB is finite.

Our proof above actually shows that KBW ∧presC ∧
∧

(pre→fact)∈A fact |= factsC , hence
(c) follows from consistency of C.

2. The implication⇒ follows from the first part of the proof since permissibility implies
that we can add a case as specified. So consider⇐, i.e., let A be a set supporting for f in
circumstances CaseDesc for a court crt.

We can construct a case C by referencing all these decisions and putting f in a root node
that has all these references as child nodes. The properties (1)–(3) ofA (Definition 4.2.11)
imply consistency of C. The requirement that the nodes are warranted and that C is at the
end of the timeline implies that we reference correctly.

The DB ∪ {C} is also hierarchically consistent since C does not introduce new conflicts.
Otherwise A would already be in conflict with DB.

3. The implication⇒ follows immediately from the previous part of the proof since f is
deducible if f is permitted and ¬f is not permitted. The other implication also follows
from the previous part since the existence of A implies that f is permitted and the
non-existence of support for ¬f is implied by the requirement of B.

104 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

4.2.4 General Properties of Case Law Databases

Introducing a new framework always comes with the risk of modeling errors. A method for
alleviating that risk is to prove properties that the framework is expected to have. In order to
validate the framework introduced here, we have proven that (i) case references do not influence
decisions (Theorem 4.2.3); in this subsection we additionally prove that (ii) consistency is
necessary for property (i) (Theorem 4.2.4), and that (iii) neither⊥ nor {f,¬f} are ever permitted
(Theorem 4.2.5).

Regarding (i), we have shown that every formula f in the database can be derived from
a supporting set of previous decisions (Theorem 4.2.3) with the case description and world
knowledge. Hence there is no possible interplay between case references that would make it
possible to prove something not ultimately backed up by judges’ decisions.

Regarding (ii), Theorem 4.2.3 implies immediately that, whenever a formula f is deducible,
then it follows (under the circumstances provided with CaseDesc and crt) from decisions
made by judges in previous cases. It is easy to verify that our restrictions are necessary to ensure
this, i.e., that this property gets lost if we forsake either case-wise or referential consistency:

Theorem 4.2.4. Let DB be a case law database, and let f be any formula that does not entail
⊥. Then there exist cases C1 and C2, each with root node f and the empty case desc >, such
that (inserting Ci at the end of the timeline ≤t):

• If DB is case-wise consistent, then so is DB ∪ {C1}.

• If DB is referentially consistent, then so is DB ∪ {C2}.

• If there is a crt such that must-agree(crt) = ∅, then in addition this holds: for each of
i = 1, 2, if DB is hierarchically consistent, then so is DB ∪ {Ci}.

Proof. Let crt be a court with must-agree(crt) = ∅. For C1, select an arbitrary D ∈ DB,
and construct ProofTree containing root node f and a single leaf node (> → f) labeled
with Ref(D). Define C1 := (f,>,ProofTree, crt). Then DB ∪ {C1} is case-wise consistent
since DB is case-wise consistent (note that we do not enforce referential consistency, so ignore
whether or not f is actually decided by D). Hierarchical consistency holds simply because C1

does not need to reference other cases.
For C2,construct ProofTree containing the single node f labeled with Axiom. Define

C2 := (f,>,ProofTree, crt). This case is not consistent; however, DB ∪ {C2} is referentially
consistent simply because C2 does not make any references. Hierarchical consistency holds for
the same reason as before.

We remark that, by restricting the formula f only slightly, the proof of Theorem 4.2.4 can be
strengthened so as not to have to rely on a maximal court for ensuring hierarchical consistency.
In particular, if f is made of predicates that do not occur anywhere in the case law database, then
the cases C1 and C2 as constructed cannot be in conflict with any other cases, thus preserving
hierarchical consistency for arbitrary courts crt. We finally prove (iii), non-permissibility of
either ⊥ or {f,¬f}:

4.2. DEFINING THE PRICL FRAMEWORK 105

Theorem 4.2.5. The formula ⊥ is not permitted in any case law database DB, under any
circumstances CaseDesc and court crt. The same holds for {f,¬f} if crt ∈ must-agree(crt).

Proof. For ⊥, this holds simply because deducibility requires us to construct a consistent case
with root node ⊥, and any case C one of whose nodes is ⊥ is not consistent. To see the latter,
just note that, if C was consistent, then by Definition 4.2.4 (v) it follows that factsC |= ⊥,
which by Definition 4.2.4 (iii) means that C is not consistent.

For {f,¬f}, assume to the contrary that there exist cases Cf = (f,CaseDesc,
ProofTreef , crt) and C¬f = (¬f,CaseDesc,ProofTree¬f , crt) such that ProofTreef and
ProofTree¬f do not contain nodes labeled with Assess, and DB ∪ {Cf , C¬f} is consistent
(where the new cases are inserted in any order at the end of the timeline ≤t). But since
crt ∈ must-agree(crt), the latter one has to respect the first one. We show that Cf and C¬f
are in conflict, thus contradicting the hierarchical consistency of DB ∪ {Cf , C¬f}. Obviously,
KBW ∧factsCf ∧factsC¬f |= f∧¬f |= ⊥. It remains to show that KBW ∧presCf ∧presC¬f 6|=
⊥. By consistency of each of Cf and C¬f , we get (a) KBW ∧ CaseDesc 6|= ⊥, (b)
KBW ∧ CaseDesc |= presCf and (c) KBW ∧ CaseDesc |= presC¬f . Putting (b)
and (c) together5 gives KBW ∧ CaseDesc |= presCf ∧ presC¬f , which with (a) shows
KBW ∧CaseDesc∧ presCf ∧ presC¬f 6|= ⊥, which is stronger than what we needed to prove.
Therefore, {f,¬f} is not permitted in DB.

Note here that the claim for ⊥ already holds if we require case-wise consistency. The claim
for {f,¬f} requires hierarchical consistency as well.

4.2.5 Privacy Cases and Norms

We now point out an interesting property of privacy cases, and of databases consisting only of
privacy cases. We call such databases privacy case law databases.

Rule based privacy policies are a well established and widely used concept. The rules that
are used are usually reflected by norms defining privacy regulations. However, neither rules nor
norms are reflected in the case law framework. In this subsection, we show that we can use a
natural definition of norms that can be extracted from privacy cases. In addition, it is possible to
transform a privacy case to a normal form such that a norm that decides the case is represented.
Consequently, we also consider norm extraction as a reasoning task in Section 4.3.

At the core of privacy regulations are positive and negative norms, as introduced by [23].
Positive norms are permissive in the sense that they describe conditions that allow transactions
with personal data (φ ⇒ is legal action(a)). Negative norms, in contrast, define necessary
conditions for such transactions, i.e., they forbid transactions with personal data unless certain
conditions are met (φ⇒ ¬is legal action(a)). We formulate negative norms as conditions that
lead to the denial of transactions.

5At this point we require the monotonicity of the underlying logic.

106 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

Definition 4.2.12 (Norms). Let a ∈ Actions. A norm is a formula that has the form φ ⇒ p

where is legal action(a) does not occur in φ. The norm is a positive norm, denoted φ+, if
p = is legal action(a) and a negative norm, denoted φ−, if p = ¬is legal action(a). A norm
φ decides p given f if KBW ∧ f |= φ.

In the case law framework, norms are hidden by judges’ assessments. However, in the
spirit of Theorem 4.2.3, norms are reflected by sets of cases that could be referenced in order
to support either the legality of an action (positive norm) or its illegality (negative norm). In
the following theorem, we show that we can extract a norm for every privacy case avoiding the
recursion of Theorem 4.2.3.

Theorem 4.2.6. Let DB be a consistent privacy case law database and C =

(df,CaseDesc,ProofTree, crt) ∈ DB. Then there is a norm φ that decides df given
CaseDesc. In particular, there are formulas φW , φS such that is legal action(a) does not
occur in these formulas and

(1) factsC ⇒ φW ∧ (φS ⇒ df)

(2) φW ∧ (φS ⇒ df)⇒ df

Proof. We show the statement for df = is legal action(a) for some a. The proof for
¬is legal action(a) is analogous. Given consistency of C, we get that factsC |= df. Trans-
forming factsC to a CNF formula, we can write factsC as φW ∧ φL where is legal action(a)

only occurs in φL. Since φW ∧ φL |= is legal action(a) we can assume that φL does not
contain ¬is legal action(a). Otherwise we could remove the ¬is legal action(a) maintaining
the properties of φW ∧ φL |= is legal action(a) as well as .

Every literal lj of the formula φL has the form is legal action(a) ∨
∨

1≤i≤k xi, which is
equivalent to

(
∧

1≤i≤k
¬xi)︸ ︷︷ ︸

=:rj

⇒ is legal action(a)

Hence, we can write φL as

(
∨

1≤j≤m
rj)⇒ is legal action(a)

We define φS :=
∨

1≤j≤m rj and get

φW ∧ (φS ⇒ is legal action(a)) |= is legal action(a)

where neither φW nor φS contain is legal action(a). Therefore, it must hold that φW |= φS .
However, this argumentation was only applicable in the case C since KBW ∧ CaseDesc |=
presC . Hence we can derive the norm φ+ := presC ∧ φS as positive norm.

The formulas φW and φS can be used to construct a normal form of privacy cases. In
particular, this normal form is consistent and allows reading off norms.

4.3. REASONING TASKS 107

Corollary 4.2.7 (Normal forms). Let DB = (C,≤t,must-agree,may-ref, µ, U) be a privacy
case law database, C = (df,CaseDesc,ProofTree, crt) ∈ DB be a case, and D be the set
of C’s leaf nodes. N(C) is the case that consists of a root node df, two inner nodes φw and
φS ⇒ df and the leaf nodes D as children of both inner nodes. We call N(C) the normal
form of C. If DB is consistent, then (C\{C} ∪ {N(C)},≤t) is also consistent (where N(C) is
placed at the position of C w.r.t. ≤t).

Proof. The consistency of N(C) follows from the previous theorem. The leaves of N(C) are
the same as the leaves of C, and thus referentially consistency follows from C’s referential
consistency. In addition, df of N(C), as well as presC of N(C), are the same as of C, and
thus N(C) is in conflict with a case iff C is. Therefore, hierarchical consistency is also
maintained.

In order to define N(C), we need to duplicate the leaf nodes since the transformations to get
φW and φS ignore which fact is needed to get the corresponding formula. Thus, a leaf node’s
fact could end up in both formulas φW and φS .

In conformance with [23], we can conclude from deducibility of an action that there is a
positive norm supporting it and show that no negative norm can be applied, i.e., all negative
norms are respected (Theorem 4.2.5).

4.3 Reasoning Tasks

We now discuss the reasoning tasks associated with our framework — how to answer questions
such as “are we allowed to send data D to some party P ?” — in more detail, giving an algo-
rithmic sketch and a brief complexity analysis (in terms of the number of reasoning operations
required) for each.

Consistency. Analyzing and keeping the state of the case law database consistent is of vital
importance for its usefulness; cf. Theorem 4.2.5. As in the definition of consistency, we split
the task of checking consistency into case-wise, referential, and hierarchical consistency. The
algorithms are straightforward and can be found in Algorithm 1, Algorithm 2 and Algorithm 3
for case consistency, referential consistency, and case-wise hierarchical consistency, respectively.

All of these properties are defined per case, i.e., the case wise check of the corresponding
property has to be repeated |DB| times. Following the respective definition, checking case
consistency costs |ProofTree + 1| entailment operations and checking correct referencing for C
costs references(C) where references(C) is the number of nodes in C annotated by Ref(D).
Hierarchical consistency can be checked along the time line ≤t only testing for conflicts with
earlier cases. So for the i-th case, we need at most (i − 1) · 2 entailment checks, since every
conflict check requires 2 operations. Consequently, we require |DB| · (|DB| + 1) entailment
checks.

The property whether the case law database warrants consistently can be checked using one
entailment test per reference to a subcase containing an unwarranted decisions node.

108 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

Algorithm 1: Case consistency
Input :A case C = (df,CaseDesc,ProofTree, crt)
Output :> if C is consistent and ⊥ otherwise

1 Check that KBW ∧ CaseDesc |= presC .
2 Check that KBW ∧ CaseDesc ∧ factsC 6|= ⊥.
3 For every leaf node n in ProofTree labeled with Axiom, check that

KBW ∧ CaseDesc |= n.
4 For every inner node n in ProofTree annotated by AND with child nodes n1, . . . , nk,

check that
∧

1≤i≤k ni |= n.
5 For every inner node n in ProofTree annotated by OR with child nodes n1, . . . , nk,

check that
∨

1≤i≤k ni |= n.
6 If all checks succeed output >; otherwise output ⊥.

Algorithm 2: Referential consistency
Input :A case C = (df,CaseDesc,ProofTree, crt) and a case law database DB
Output :> if C is referentially consistent w.r.t. DB and ⊥ otherwise

1 for every subcase D referenced by leaf node pre→ fact do
2 check that KBW ∧ CaseDesc ∧ pre |= presD
3 end
4 If all checks succeed output >; otherwise output ⊥.

Deducibility and Permissibility. As deducibility amounts to two consecutive permissibility
checks, we consider the latter exclusively. We are given a database DB, a formula whose
permissibility should be checked, as well as a case description CaseDesc and a court crt
forming the circumstances.By Theorem 4.2.3, permissibility is equivalent to the existence of a
supporting set A for f that is consistent with the database. Thus the task of permissibility, i.e.,

Algorithm 3: Case-wise hierarchical consistency
Input :A case C = (df,CaseDesc,ProofTree, crt) and a hierarchically consistent

CLD DB
Output :> if DB ∪ {C} is hierarchically consistent (where C is set to be the maximum

w.r.t. ≤t)
1 for every D ∈ DB for which crt <§ crtD do
2 check that KBW ∧ presC ∧ presD 6|= ⊥
3 check that KBW ∧ df ∧ dfD |= ⊥.
4 If both checks succeed output ⊥.
5 end
6 Output >.

4.3. REASONING TASKS 109

giving a “yes” vs. “no” answer, can be reduced to checking the existence of a suitable setA. If the
answer is “yes”, we can also output a witness, i.e., a hypothetical case C showing permissibility.
A straightforward means for doing this is to set C := (f,CaseDesc,ProofTree, crt) where
ProofTree consists of root node f , one leaf node l labeled with Ref(D) for every D ∈ A, as
well as one leaf node KBW ∧CaseDesc labeled with Axiom. For convenience, we will denote
this construction by C(A). See Algorithm 4.

Algorithm 4: Permissibility
Input :A formula f , case description CaseDesc, court crt, and a consistent CLD DB
Output :A case C = (f,CaseDesc,ProofTree, crt) such that DB ∪ {C} is consistent

(where C is set to be the maximum w.r.t. ≤t), or ⊥ if no such C exists
1 Test whether KBW ∧ CaseDesc |= ⊥. If so, output ⊥.
2 Test whether KBW ∧ CaseDesc |= f . If so, output (f,CaseDesc,ProofTree, crt)

where ProofTree is the proof tree consisting of a leaf node labeled by Axiom
containing f .

3 Set N := ∅.
4 for every D ∈ DB and every (pre→ fact) ∈ D labeled Assess do
5 Check if KBW ∧ CaseDesc |= pre
6 Check if KBW ∧ CaseDesc ∧ fact 6|= ⊥
7 If both checks succeed, set N := N ∪ {(pre→ fact)}.
8 end
9 for A ∈ 2N do

10 Check that KBW ∧ CaseDesc |=
∧

(pre→fact)∈A pre
11 Check that KBW ∧ CaseDesc ∧

∧
(pre→fact)∈A fact |= f

12 Check that KBW ∧ CaseDesc ∧
∧

(pre→fact)∈A fact 6|= ⊥
13 for every E ∈ DB with crt <§ crtE do
14 Check that E and C(A) are not in conflict (cf. Algorithm 3).
15 end
16 If all three tests succeed, go on with step 18, otherwise continue with the next D.
17 end
18 If a set A succeeded, output C(A), otherwise output ⊥.

The correctness of the algorithm is shown by Theorem 4.2.3; lines 10-12 check that the set
supports f and lines 13-15 ensure that it is consistent with the database.

In contrast to our previous algorithms, deducibility checking as per Algorithm 4 requires an
exponential number of entailment checks in the worst case (a trivial bound is in the order of 2N

where N is the number of decision nodes in the database). This raises the questions (1) whether
or not this exponential overhead is inherent in the complexity of deciding permissibility, and (2)
whether it is possible to encode the permissibility test directly into the logic instead. In what
follows, we shed some light on (1) and (2).

The answer to (1) is a qualified “yes” in the sense that permissibility checking essentially

110 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

pre-fixes entailment checks with an existential quantifier. As entailment checks correspond to
universal quantification, this intuitively means that for permissibility we need to test the validity
of a ∃∀ formula, instead of a ∀ formula for entailment. So, we add a quantifier alternation
step, which typically does come at the price of increased complexity. This line of thought also
immediately provides an intuitive answer to question (2), namely “yes but only if the underlying
logic contains ∃∀ quantification”.

Of course, both these answers are only approximate and only speak in broad terms. Whether
each is to be answered with “yes” or “no” depends on the precise form of the logic, and on
what kind of blow-up we are willing to tolerate. To make matters concrete, we now consider
three particular logics, namely first-order predicate logic and propositional logic (i.e., first-order
predicate logic given a finite universe and without quantification). We start with the latter.

In what follows, say we need to check whether formula f is permitted in DB under circum-
stances CaseDesc. We abstract from the complications entailed by maintaining hierarchical
consistency, and assume that for crt, it holds that must-agree(crt) = ∅.

Theorem 4.3.1. For propositional logic, deciding permissibility is Σp
2-complete.

For an easier understanding, we first give a short sketch of the proof, before we go into
details.

Proof sketch. The set Σp
2 = NPNP, so containment is shown by guessing a supporting set

and verifying its properties using an NP oracle. For the hardness we encode an QBF formula
∃x∀y : φ(x, y) in permissibility request for case law database. We do this by encoding all
possible values for x in the database and asking for the permissibility of φ(x, y).

Proof. Recall that Σp
2 = NPNP. Membership follows because we can guess the set A and

check, using an NP oracle, the three entailment tests (1–3). The consistency of the set with DB
can also be answered by the NP oracle since verifying a conflict can be done in polynomial
time.

For hardness, consider a QBF formula of the form ∃X∀Y φ(X,Y) where each of X and
Y are variable sets and φ(X,Y) is an arbitrary propositional formula in the variables X ∪ Y .
Testing validity of ∃X∀Y φ(X,Y) is Σp

2-hard. To polynomially reduce this to permissibility
testing over a propositional logic, we construct a corresponding case law database DB as follows.
For each x ∈ X , DB includes a case (x,>,ProofTree, crt) where ProofTree consists of a
single Assess node of the form > → x, as well as a case (¬x,>,ProofTree, crt) where
ProofTree consists of a single Assess node of the form > → ¬x. In other words, for each
x we have both truth-value decisions available for A to choose from. We set f := φ(X,Y).
Obviously, this reduction is polynomial in the size of the formula ∃X∀Y φ(X,Y). To see that
the reduction is correct, observe that f is permitted in DB iff there exists a truth assignment
a to X which, viewed as a conjunction of literals, entails φ(X,Y), i.e., a |= φ(X,Y). The
latter is the case iff there exists a s.t., for all truth assignments to Y , φ(a(X), Y) is true (where
φ(a(X), Y) instantiates each x ∈ X with a(x)). This, finally, is the case iff ∃X∀Y φ(X,Y) is
valid, which is what we needed to show.

4.3. REASONING TASKS 111

As entailment testing in propositional logic is only coNP-complete, Theorem 4.3.1 answers
question (1) with “yes”, and answers question (2) with “no, unless we are willing to tolerate
worst-case exponentially large formulas”. Unsurprisingly, the answers for first-order logic are
different:

Theorem 4.3.2. Permissibility is equivalent to validity of a formula whose size is polynomial in
the size of DB, CaseDesc, and f for first-order logic.

We use existential quantification in order to choose a warranted supporting set and then
design the formula such that it is valid if and only if the consistency properties of the case holds
that can be constructed from that supporting set (i.e., the case potentially output by Algorithm 4).
All parts that are not chosen by the existential quantifier will be equivalent to >.

Proof. Let L = {n1 = (pre1 → fact1), . . . , nk = (prek → factk)} be the set of all warranted
leaf formulas of cases C ′ ∈ DB with label Assess. We need to construct a first-order formula
φ that is valid iff there exists A ⊆ L such that the three implications (1–3) of Definition 4.2.11
hold. Our idea is to encode the choice of that subset as an “on/off switch” associated with each
ni. The switch will be realized through an existential quantifier over x1, . . . , xk and a unary
predicate choseni for every i ∈ {1, . . . , k} which we add to the FOL signature (w.l.o.g. all
choseni do not occur in any prei or facti). The meaning of the predicate is that choseni(xi)
holds if and only if ni is chosen for the set A. In order to ensure that every decision node can
be selected using choseni we add φchosen

i := (∃x : choseni(x)) ∧ (∃x : ¬choseni(x)) and
define φchosen :=

∧
i φ

chosen
i .

We next define the formulas φpreSwitch
i := (¬choseni(xi) ∨ prei) and φfactSwitch

i :=

(¬choseni(xi)∨facti) to implement our switches. Note that, if for xi it holds that¬choseni(xi),
then both φpreSwitch

i and φfactSwitch
i simplify to >; if for xi it holds that choseni(xi), then

φpreSwitch
i simplifies to prei and φfactSwitch

i simplifies to facti. Using these building blocks, we
define our correspondences to the implications (1–3), as follows:

• φ(1) := KBW ∧ CaseDesc⇒
∧k
i=1 φ

preSwitch
i .

• φ(2) := KBW ∧ CaseDesc ∧
∧k
i=1 φ

factSwitch
i ⇒ f .

• φ(3) := ¬(KBW ∧ CaseDesc ∧
∧k
i=1 φ

factSwitch
i ⇒ ⊥).

Our formula φ then is defined simply as φ := φchosen ⇒ ∃~x.φ(1) ∧ φ(2) ∧ φ(3) where ~x =

x1, . . . , xk. We now prove that φ is valid iff there exists A ⊆ L such that the three implications
(1–3) hold.

“⇐”: Assume there is a set A such that the implications (1–3) hold. Let I be an arbitrary
interpretation. We define an assignment a for the xi as follows: if (prei → facti) ∈ A, then
choseni(xi) ≡ > and otherwise choseni(xi) ≡ ⊥. If we cannot choose xi that way, it holds
that I 6|= φchosen, i.e., I |= φ.

Using this choice of the xi, the formula
∧k
i=1 φ

preSwitch
i reduces to

∧
(pre→fact)∈A pre and∧k

i=1 φ
factSwitch
i reduces to

∧
(pre→fact)∈A fact. Thus, (1) implies I, a |= φ(1), (2) implies

112 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

I, a |= φ(2) and (3) implies I, a |= φ(3). Since I was an arbitrary interpretation, it follows that φ
is valid.

“⇒”: For this, we show the contraposition, i.e., assume there is no such set A, we show
the formula φ is not valid. The latter is equivalent to ¬φ is satisfiable where ¬φ = φchosen ∧
∀~x.¬φ(1) ∨ ¬φ(2) ∨ ¬φ(3). There is no A means for every A there is one of (1–3) not satisfied.
We construct a I such that I |= ¬φ. We can assume I |= φchosen (we can modify every
interpretation s.t. the value on formulas not containing choseni for some i does not change).

For every set A the corresponding choice ~x allows an interpretation that does not satisfy
φ(1), φ(2), or φ(3). Thus, there is an interpretation for ¬φ.

Theorem 4.3.3. Permissibility is equivalent to validity of a formula whose size is polynomial in
the size of DB, CaseDesc, and f for first-order logic.

Proof. Permissibility is equivalent to the existence of a supporting set (Theorem 4.2.3). So,
let L = {n1 = (pre1 → fact1), . . . , nk = (prek → factk)} be the set of all warranted leaf
formulas of cases C ′ ∈ DB with label Assess. We need to construct a first-order formula φ that
is valid iff there exists A ⊆ L such that the three implications (1–3) of Definition 4.2.11 hold:

(1) KBW ∧ CaseDesc |=
∧

(pre→fact)∈A pre

(2) KBW ∧ CaseDesc ∧
∧

(pre→fact)∈A fact |= f

(3) KBW ∧ CaseDesc ∧
∧

(pre→fact)∈A fact 6|= ⊥

There are two main problems to solve: first, the formula has to allow to select an arbitrary
subset of the nodes. The second problem is that the first two properties formulate the validity of

φval := KBW ∧ CaseDesc⇒

 ∧
(pre→fact)∈A

pre ∧

 ∧
(pre→fact)∈A

fact⇒ f


whereas the last requirement corresponds to the satisfiability of the corresponding φsat :=

KBW ∧CaseDesc ∧
∧

(pre→fact)∈A fact. The formula f is permitted if φval is valid and φsat is
satisfiable.

In the following we first show how to (i) decide permissibility given a formula φ(3) that is
valid iff φsat is satisfiable and then we show that (ii) there is formula φ(3) that is valid iff φsat is
satisfiable.

(i) Decision node set selection.

We solve the first problem by encoding the choice of that subset as an “on/off switch”
associated with each ni. The switch will be realized through an existential quantifier
over x1, . . . , xk and a unary predicate choseni for every i ∈ {1, . . . , k} which we add
to the FOL signature (w.l.o.g. all choseni do not occur in any prei or facti). The

4.3. REASONING TASKS 113

meaning of the predicate is that choseni(xi) holds if and only if ni is chosen for the set
A. In order to ensure that every decision node can be selected using choseni we add
φchosen
i := (∃x : choseni(x)) ∧ (∃x : ¬choseni(x)) and define φchosen :=

∧
i φ

chosen
i .

We next define the formulas φpreSwitch
i := (¬choseni(xi) ∨ prei) and φfactSwitch

i :=

(¬choseni(xi) ∨ facti) to implement our switches. Note that, if for xi it holds that
¬choseni(xi), then both φpreSwitch

i and φfactSwitch
i simplify to >; if for xi it holds that

choseni(xi), then φpreSwitch
i simplifies to prei and φfactSwitch

i simplifies to facti. Using
these building blocks, we define our correspondences to the implications (1–3), as follows:

– φ(1) := KBW ∧ CaseDesc⇒
∧k
i=1 φ

preSwitch
i .

– φ(2) := KBW ∧ CaseDesc ∧
∧k
i=1 φ

factSwitch
i ⇒ f .

The formula φ then is defined simply as φ := φchosen ⇒ ∃~x.φ(1) ∧ φ(2) ∧ φ(3) where
~x = x1, . . . , xk. We now prove that φ is valid iff there exists A ⊆ L such that the three
implications (1–3) hold.

(ii) Satisfiability to validity for φsat

While it is easy to formulate the satisfiability of φsat as second order validity by exis-
tentially quantifying the predicates, it is also possible to a construction similar to the
choseni in order to find a formula φ(3) that is valid if and only if φsat is satisfiable.

We introduce one predicate chosenP which has the arity equal to the maximal arity
occurring in φsat plus 1. We want to model every predicate p(~x) in φsat by chosenP (p, ~x).
Now, we need to ensure that every possible predicate can be chosen, which is more difficult
than simply selecting one point. In particular, we cannot ensure that every possible subset
of the domain variables can be selected by p, however, we can ensure that every subset
that is specified by a first-order formula can be selected which is sufficient for going to a
first-order formula for φsat that is valid iff φsat is satisfiable.

φp := (∀~x.∃p.chosenP (p, ~x)) ∧ (∀p.∃q.∀x.chosenp(p, ~x)⇔ ¬chosenP (q, ~x))

∧ (∀p, q.∃r.∀~x.chosenP (r, ~x)⇔ (chosenP (p, ~x) ∧ chosenP (q, ~x)))

∧
∧

1≤i≤n
(∀p.∃q.∀~x = (x1, . . . , xn).chosenp(q, ~x)

⇔ (∀x′ichosenP (p, (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn))

Combining negation, conjunction and for all quantification we can represent every formula.
Using this requirement formulation, we get that φsat is satisfiable if and only if φp ⇒
∃~p.φsat[chosenP (p, ~x)/p(~x)] is valid. We denote φsat[chosenP (p, ~x)/p(~x)] as φ(3).

In total this leads to the formula

φ := (φchosen ∧ φp)⇒ (φ(1) ∧ φ(2) ∧ φ(3))

114 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

which is valid if and only if f is permitted.

Norm extraction. As seen in Section 4.2.5, privacy cases induce normative rules. The format
of rules gives the advantage that these are easy to enforce and bridge the gap towards privacy
policies. As shown by Theorem 4.2.6 we extract a norm for every case in the database. The
assumption is that the case is consistent with respect to an underlying consistent privacy case
law database DB. The algorithm (Algorithm 5) basically turns the proof of Theorem 4.2.6 into
an algorithm transforming the logical formula of the case’s facts.

Algorithm 5: Norm extraction
Input :A case C = (df,CaseDesc,ProofTree, crt)
Output :A norm φ that decides df

1 phi := >
2 for leaf node n in C do
3 φ := φ∧CNF(n)

4 end
5 Remove ¬df from φ

6 Remove all clauses not containing df
7 Remove df from φ

8 φ := preC ∧ ¬φ
9 Output φ

Let f be the size of the biggest formula in the leaves of C and n the number of nodes in C.
Then the size of the norm can become O(2f · n+ |preC |). The computation needs operations
linear in that size. However, there is no need for any operations to decide |= in order to solve
this reasoning task.

4.4 Logic Selection

For modeling purposes — naturally modeling the background knowledge base, the detailed
aspects characterizing a case description, and the reasoning applied in arguments — as well as
for computational purposes — effectively realizing the desired reasoning tasks — the choice of
logic is, of course, of paramount importance. The only hard requirement (“must have”) that the
logic, L, must meet is:

(i) Sufficient expressivity to tackle our framework and reasoning tasks. Precisely, the
minimal requirement is for L to provide a language LF for formulas, with reasoning
support for tests of the form (a)

∧
φ∈Φ |= ⊥ and (b)

∧
φ∈Φ |= ψ: These are the only tests

our reasoning tasks demand from the underlying logic. If LF is closed under conjunction
and contains ⊥ (as will be the case in our logic of choice), the requirement simply
becomes to be able to test whether φ |= ψ.

The soft requirements (“nice to have”) on the logic are:

4.4. LOGIC SELECTION 115

(ii) Suitable for modeling real-world phenomena and knowledge, ideally an established
paradigm for such modeling tasks.

(iii) Decidability, and as low complexity as possible, of the relevant reasoning (e.g., satisfi-
ability checks; cf. (i)).

(iv) Effective tool support established and available.
What we have just outlined is essentially a “wanted poster” for description logic (DL) [9]. This
is a very well investigated family of fragments of first-order logic (several decades of research in
AI and related areas), whose mission statement is to provide a language for modeling real-world
phenomena and knowledge (ii), while retaining decidability and exploring the trade-off of
expressivity vs. complexity (iii). Effective tool support (iv) has been an active area for two
decades. Every DL provides a language to describe “axioms”, and even the most restricted
DLs (in particular, the DL-Lite family [44] which constitutes the “lower extreme” of the DL
complexity scale) make it possible to answer queries about the truth of an axiom relative to a
conjunction of axioms, which is exactly the test we require.

To make things concrete, we briefly consider the description logic attributive concept
language with complements, for shortALC, which was introduced in 1991 [110],6 and is widely
regarded as the canonical “basic” description logic variant (most other DLs extend ALC, in a
variety of directions). Description logic is a form of predicate logic that considers only 1-ary and
2-ary predicates, referred to as concepts and roles, respectively. Assuming a set NC of concept
names and a set NR of role names, DL makes it possible to construct complex concepts, which
correspond to a particular subset of predicate-logic formulas with exactly one free variable. For
ALC, the set of complex concepts is the smallest set such that

1. >,⊥ and every concept name A ∈ NC are complex concepts, and

2. if C and D are complex concepts and r ∈ NR, then C uD, C tD, ¬C, ∀r.C, and ∃r.C
are complex concepts.

Here, u denotes concept intersection (logical conjunction), t denotes concept union (logical
disjunction), and ¬C denotes concept complement (logical negation). ∀r.C collects the set of
all objects x such that, whenever x stands in relation r to y, y ∈ C. Similarly, ∃r.C collects the
set of all objects x such that there exists y where x stands in relation r to y and y ∈ C.
ALC allows concept inclusion axioms, of the form C v D, where C,D are complex

concepts, meaning that C is a subset of D (universally quantified logical implication). ALC
furthermore allows assertional axioms, of the form x : C or (x, y) : r, where C is a complex
concept, r is a role, and x and y are individual names (i.e., constants). An ALC knowledge
base consists of finite sets of concept inclusion axioms and assertional axioms (called the TBox
and ABox respectively), interpreted as conjunctions. The basic reasoning services provided
by ALC (and most other DLs) are testing whether a knowledge base KB is satisfiable, and
testing whether KB |= φ where φ is an axiom. These decision problems are decidable, and more

6For a comprehensive overview of current techniques and results regarding ALC, see [10].

116 CHAPTER 4. PRIVACY SPECIFICATION: PRECEDENT-BASED REASONING

precisely, ExpTime-complete for ALC. (In some DL-Lite variants, the decision problems are in
NP, or even polynomial-time solvable.)

For our purposes, we can assume as our formulas LF conjunctions of axioms, i.e., the
smallest set that contains ⊥, all axioms of the underlying DL (e.g., ALC), as well as φ ∧ ψ
if φ and ψ are members of LF . In order to test whether φ |= ψ, we then simply call the DL
reasoning service “φ |= ψi?” for every conjunct ψi of ψ and return “yes” iff all these calls did.
In other words, we may use conjunctions of DL axioms in the knowledge base, case descriptions,
and proof tree nodes.

4.5 Concluding PriCL

In this paper, we introduced PriCL, the first framework for automated reasoning about case law.
We showed that it complies with natural requirements of consistency and tailored the framework
for privacy case law. Moreover, we showed a tight connection between privacy case law and
the notion of norms that underlies existing rule-based privacy research. We identified the major
reasoning tasks such as checking the case law database for consistency, extracting norms and
deducing whether an action is legal or not. For all these tasks, we gave algorithms deciding
them and we did an analysis that leads to ALC as a suitable instantiation for the logic. In
particular, ALC provides efficient realizations while being sufficiently expressive and suitable
for modeling real-world phenomena and knowledge.

For future research, we need to construct a significantly large data base consisting of real
world cases. Here, the challenge is to differentiate between statements made as world knowledge
statement, those made because of the case descriptions and those referenced. The reason for this
is that there is no clean language-wise separation in the argumentation.

Bibliography

[1] M. Abadi and C. Fournet. “Mobile values, new names, and secure communication”. In:
POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages. London, United Kingdom: ACM Press, 2001, pp. 104–
115. ISBN: 1-58113-336-7. DOI: http://doi.acm.org/10.1145/360204.
360213.

[2] M. Abadi and A. D. Gordon. “A Calculus for Cryptographic Protocols: The Spi Calcu-
lus”. In: Proc. 4th ACM Conference on Computer and Communications Security. 1997,
pp. 36–47.

[3] M. Abadi and P. Rogaway. “Reconciling two views of cryptography (The computational
soundness of formal encryption)”. In: Journal of Cryptology 15.2 (2002), pp. 103–127.

[4] A. Anderson. “A comparison of two privacy policy languages: EPAL and XACML”. In:
(2005).

[5] G. J. Annas. “HIPAA regulations-a new era of medical-record privacy?” In: New England
Journal of Medicine 348.15 (2003), pp. 1486–1490.

[6] A. I. Antón, E. Bertino, N. Li, and T. Yu. “A roadmap for comprehensive online privacy
policy management”. In: Communications of the ACM 50.7 (2007), pp. 109–116.

[7] P. Ashley. “Enforcement of a P3P Privacy Policy.” In: AISM. Citeseer. 2004, pp. 11–26.

[8] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. “Enterprise privacy
authorization language (EPAL 1.2)”. In: Submission to W3C (2003).

[9] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, eds. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[10] F. Baader, I. Horrocks, and U. Sattler. “Description Logics”. In: Handbook of Knowledge
Representation. Elsevier, 2008. Chap. 3, pp. 135–180.

[11] M. Backes, A. Datta, and A. Kate. “Asynchronous Computational VSS with Reduced
Communication Complexity”. In: Proc. of CT-RSA’13. 2013, pp. 259–276.

[12] M. Backes, A. Kate, and A. Patra. “Computational Verifiable Secret Sharing Revisited”.
In: Proc. of ASIACRYPT’11. 2011, pp. 590–609.

117

https://doi.org/http://doi.acm.org/10.1145/360204.360213
https://doi.org/http://doi.acm.org/10.1145/360204.360213

118 BIBLIOGRAPHY

[13] M. Backes, F. Bendun, M. Maffei, E. Mohammadi, and K. Pecina. “Symbolic Malleable
Zero-Knowledge Proofs”. In: IEEE 28th Computer Security Foundations Symposium,
CSF 2015, Verona, Italy, 13-17 July, 2015. 2015, pp. 412–426. DOI: 10.1109/CSF.
2015.35. URL: https://doi.org/10.1109/CSF.2015.35.

[14] M. Backes, D. Hofheinz, and D. Unruh. “CoSP: A general framework for computational
soundness proofs”. In: ACM CCS 2009. 2009, pp. 66–78.

[15] M. Backes, C. Hriţcu, and M. Maffei. “Type-checking Zero-knowledge”. In: 15th ACM
Conference on Computer and Communications Security (CCS 2008). ACM Press, 2008,
pp. 357–370.

[16] M. Backes, G. Karjoth, W. Bagga, and M. Schunter. “Efficient comparison of enterprise
privacy policies”. In: Proc. of Symposium on Applied Computing. ACM. 2004, pp. 375–
382.

[17] M. Backes, S. Lorenz, M. Maffei, and K. Pecina. “Anonymous webs of trust”. In:
Proceedings of the 10th international conference on Privacy enhancing technologies.
PETS’10. Berlin, Germany: Springer-Verlag, 2010, pp. 130–148. ISBN: 3-642-14526-
4, 978-3-642-14526-1. URL: http://dl.acm.org/citation.cfm?id=
1881151.1881159.

[18] M. Backes, M. Maffei, and E. Mohammadi. “Computationally Sound Abstraction and
Verification of Secure Multi-Party Computations”. In: FSTTCS. Ed. by K. Lodaya and
M. Mahajan. Vol. 8. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010,
pp. 352–363. ISBN: 978-3-939897-23-1.

[19] M. Backes, M. Maffei, and D. Unruh. “Zero-Knowledge in the Applied Pi-calculus
and Automated Verification of the Direct Anonymous Attestation Protocol”. In: IEEE
Symposium on Security and Privacy 2008. May 2008, pp. 158–169.

[20] M. Backes and B. Pfitzmann. “Symmetric Encryption in a Simulatable Dolev-Yao Style
Cryptographic Library”. In: Proc. 17th IEEE Computer Security Foundations Workshop
(CSFW). 2004, pp. 204–218.

[21] M. Backes and D. Unruh. “Computational Soundness of Symbolic Zero-Knowledge
Proofs”. In: Journal of Computer Security 18.6 (2010). Preprint on IACR ePrint
2008/152, pp. 1077–1155.

[22] M. Backes and D. Unruh. “Computational Soundness of Symbolic Zero-Knowledge
Proofs Against Active Attackers”. In: 21st IEEE Computer Security Foundations Sym-
posium, CSF 2008. 2008.

[23] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. “Privacy and contextual integrity:
Framework and applications”. In: Proc. of S&P. IEEE. 2006, 15–pp.

[24] A. Barth, J. C. Mitchell, A. Datta, and S. Sundaram. “Privacy and Utility in Business
Processes.” In: CSF 7 (2007), pp. 279–294.

https://doi.org/10.1109/CSF.2015.35
https://doi.org/10.1109/CSF.2015.35
https://doi.org/10.1109/CSF.2015.35
http://dl.acm.org/citation.cfm?id=1881151.1881159
http://dl.acm.org/citation.cfm?id=1881151.1881159

BIBLIOGRAPHY 119

[25] D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. “Monitoring compliance policies
over incomplete and disagreeing logs”. In: Proc. of Runtime Verification. Springer. 2013,
pp. 151–167.

[26] D. Basin, S. Mödersheim, and L. Viganò. “OFMC: A symbolic model checker for
security protocols”. In: International Journal of Information Security (2004).

[27] D. A. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. “Runtime Monitoring of Metric
First-order Temporal Properties”. In: Proc. of FSTTCS. 2008, pp. 49–60.

[28] D. Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In: Proc. of
CRYPTO’91. 1991, pp. 420–432.

[29] Z. Beerliová-Trubı́niová and M. Hirt. “Efficient Multi-party Computation with Dispute
Control”. In: Proc. of TCC’06. 2006, pp. 305–328.

[30] Z. Beerliová-Trubı́niová and M. Hirt. “Perfectly-Secure MPC with Linear Communica-
tion Complexity”. In: Proc. of TCC’08. 2008, pp. 213–230.

[31] Z. Beerliová-Trubı́niová and M. Hirt. “Simple and Efficient Perfectly-Secure Asyn-
chronous MPC”. In: Proc. of ASIACRYPT’07. 2007, pp. 376–392.

[32] Z. Beerliová-Trubı́niová, M. Hirt, and J. B. Nielsen. “On the Theoretical Gap between
Synchronous and Asynchronous MPC Protocols”. In: Proc. of PODC’10. 2010, pp. 211–
218.

[33] M. Bellare and O. Goldreich. “On Defining Proofs of Knowledge”. In: CRYPTO. 1992,
pp. 390–420.

[34] M. Ben-Or, R. Canetti, and O. Goldreich. “Asynchronous Secure Computation”. In:
Proc. of STOC’93. 1993, pp. 52–61.

[35] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation”. In: Proc. of STOC’88. 1988,
pp. 1–10.

[36] M. Ben-Or, B. Kelmer, and T. Rabin. “Asynchronous Secure Computations with Optimal
Resilience (Extended Abstract)”. In: Proc. of PODC’94. 1994, pp. 183–192.

[37] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. “Near-Linear Unconditionally-Secure Multi-
party Computation with a Dishonest Minority”. In: Proc. of CRYPTO’12. 2012, pp. 663–
680.

[38] B. Blanchet. “An Efficient Cryptographic Protocol Verifier Based on Prolog Rules”. In:
14th IEEE Computer Security Foundations Workshop (CSFW-14). Cape Breton, Nova
Scotia, Canada: IEEE Computer Society, June 2001, pp. 82–96.

[39] G. Bracha. “An Asynchronous [(n-1)/3]-Resilient Consensus Protocol”. In: Proc. of
PODC’84. 1984, pp. 154–162.

[40] T. D. Breaux and A. I. Antón. “Analyzing regulatory rules for privacy and security
requirements”. In: IEEE Trans. on Software Engineering 34.1 (2008), pp. 5–20.

120 BIBLIOGRAPHY

[41] E. F. Brickell, J. Camenisch, and L. Chen. “Direct anonymous attestation”. In: Proc.
11th ACM Conference on Computer and Communications Security. ACM Press, 2004,
pp. 132–145.

[42] C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl. “Asynchronous Verifiable Secret
Sharing and Proactive Cryptosystems”. In: Proc. of CCS’02. 2002, pp. 88–97.

[43] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. “Secure and Efficient Asynchronous
Broadcast Protocols”. In: CRYPTO. 2001, pp. 524–541.

[44] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. “Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family”.
In: Journal of Automed Reasoning 39.3 (2007), pp. 385–429.

[45] J. Camenisch and M. Stadler. Proof Systems for General Statements about Discrete
Logarithms. Tech. rep. 260, Dept. of Computer Science, ETH Zurich. 1997.

[46] R. Canetti. “Studies in Secure Multiparty Computation and Applications”. PhD thesis.
The Weizmann Institute of Science, 1996.

[47] R. Canetti and J. Herzog. “Universally composable symbolic analysis of mutual authen-
tication and key exchange protocols”. In: Proc. 3rd Theory of Cryptography Conference
(TCC). Vol. 3876. LNCS. Springer, 2006, pp. 380–403.

[48] A. Cavoukian. “Privacy by design”. In: Report of the Information & Privacy Commis-
sioner Ontario, Canada (2012).

[49] D. Chaum, C. Crépeau, and I. Damgård. “Multiparty Unconditionally Secure Protocols”.
In: Proc. of STOC’88. 1988, pp. 11–19.

[50] B. Chevallier-Mames, P. Paillier, and D. Pointcheval. “Encoding-Free Elgamal Encryp-
tion Without Random Oracles”. In: Proc. of PKC’06. 2006, pp. 91–104.

[51] A. Choudhury, M. Hirt, and A. Patra. “Asynchronous Multiparty Computation with
Linear Communication Complexity”. In: Proc. of DISC’13. 2013, pp. 388–402.

[52] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. “Attested Append-only Mem-
ory: Making Adversaries Stick to their Word”. In: Proc. of SOSP’07. 2007, pp. 189–
204.

[53] M. R. Clarkson, S. Chong, and A. C. Myers. “Civitas: Toward a Secure Voting System”.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 354–368. ISBN: 978-0-7695-3168-7. URL:
http://portal.acm.org/citation.cfm?id=1398035.

[54] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues. “On the (limited) Power of
Non-Equivocation”. In: Proc. of PODC’12. 2012, pp. 301–308.

[55] M. Correia, G. S. Veronese, and L. C. Lung. “Asynchronous Byzantine Consensus with
2f+1 Processes”. In: Proc. of SAC’10. 2010, pp. 475–480.

http://portal.acm.org/citation.cfm?id=1398035

BIBLIOGRAPHY 121

[56] V. Cortier and B. Warinschi. “A Composable Computational Soundness Notion. Chicago,
USA, October 2011. ACM Press.” In: Proc. 18th ACM Conference on Computer and
Communications Security. ACM Press, 2011.

[57] V. Cortier and B. Warinschi. “Computationally Sound, Automated Proofs for Secu-
rity Protocols”. In: Proc. 14th European Symposium on Programming (ESOP). 2005,
pp. 157–171.

[58] R. Cramer, I. Damgård, and J. B. Nielsen. “Multiparty Computation from Threshold
Homomorphic Encryption”. In: Proc. of EUROCRYPT’01. 2001, pp. 280–299.

[59] L. F. Cranor. “P3P”. In: Making Privacy Policies More Useful, IEEE Security &Privacy.
New York (2003), pp. 50–55.

[60] I. Damgård and J. B. Nielsen. “Scalable and Unconditionally Secure Multiparty Compu-
tation”. In: Advances in Cryptology—CRYPT0. 2007, pp. 572–590.

[61] A. Datta, J. Blocki, N. Christin, H. DeYoung, D. Garg, L. Jia, D. Kaynar, and A.
Sinha. “Understanding and protecting privacy: formal semantics and principled audit
mechanisms”. In: Information Systems Security. Springer, 2011, pp. 1–27.

[62] H. DeYoung, D. Garg, D. Kaynar, and A. Datta. “Logical specification of the GLBA
and HIPAA privacy laws”. In: CyLab (2010), p. 72.

[63] D. Dolev and H. R. Strong. “Authenticated Algorithms for Byzantine Agreement”. In:
SIAM J. Comput. 12.4 (1983), pp. 656–666.

[64] D. Dolev and A. C. Yao. “On the Security of Public Key Protocols”. In: IEEE Transac-
tions on Information Theory 29.2 (1983), pp. 198–208.

[65] C. Duma, A. Herzog, and N. Shahmehri. “Privacy in the semantic web: What policy
languages have to offer”. In: Proc. of POLICY. IEEE. 2007, pp. 109–118.

[66] European Commission. General Data Protection Regulation. http://ec.europa.
eu/justice/data-protection/document/review2012/com_2012_

11_en.pdf.

[67] S. Even and O. Goldreich. “On the Security of Multi-Party Ping-Pong Protocols”. In:
Proc. 24th IEEE Symposium on Foundations of Computer Science (FOCS). 1983, pp. 34–
39.

[68] P. Feldman and S. Micali. “Byzantine Agreement in Constant Expected Time (and
Trusting No One)”. In: FOCS. 1985, pp. 267–276.

[69] C. Flavián and M. Guinalı́u. “Consumer trust, perceived security and privacy policy:
three basic elements of loyalty to a web site”. In: Industrial Management & Data
Systems 106.5 (2006), pp. 601–620.

[70] D. Garg, L. Jia, and A. Datta. “Policy auditing over incomplete logs: theory, implemen-
tation and applications”. In: Proc. of CCS. ACM. 2011, pp. 151–162.

http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf

122 BIBLIOGRAPHY

[71] R. Gennaro, M. Rabin, and T. Rabin. “Simplified VSS and Fast-Track Multiparty
Computations with Applications to Threshold Cryptography”. In: Proc. of PODC’98.
1998, pp. 101–111.

[72] O. Goldreich, S. Micali, and A. Wigderson. “How to play ANY mental game”. In: Proc.
of STOC ’87. 1987, pp. 218–229. ISBN: 0-89791-221-7.

[73] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of Interactive
Proof Systems”. In: SIAM Journal on Computing 18.1 (1989), pp. 186–207.

[74] A. S. Gopal and S. Toueg. “Reliable Broadcast in Synchronous and Asynchronous
Environments (Preliminary Version)”. In: WDAG. 1989, pp. 110–123.

[75] J. Groth. “Simulation-sound nizk proofs for a practical language and constant size group
signatures”. In: In proceedings of ASIACRYPT ’06, LNCS series. Springer-Verlag, 2006,
pp. 444–459.

[76] J. Groth and R. Ostrovsky. “Cryptography in the Multi-string Model”. In: CRYPTO. Ed.
by A. Menezes. Vol. 4622. Lecture Notes in Computer Science. Full version available
at http://www.cs.ucla.edu/˜rafail/PUBLIC/85.pdf. The definition
of extraction zero-knowledge is only contained in the full version. Springer, 2007,
pp. 323–341. ISBN: 978-3-540-74142-8.

[77] S. Gürses, C. Gonzalez Troncoso, and C. Diaz. “Engineering privacy by design”. In:
Computers, Privacy & Data Protection (2011).

[78] V. Hadzilacos and S. Toueg. A Modular Approach to Fault-Tolerant Broadcasts and
Related Problems. Tech. rep. Ithaca, NY, USA, 1994.

[79] M. Hirt and J. B. Nielsen. “Robust Multiparty Computation with Linear Communication
Complexity”. In: Proc. of CRYPTO’06. 2006, pp. 463–482.

[80] M. Hirt, J. B. Nielsen, and B. Przydatek. “Asynchronous Multi-Party Computation with
Quadratic Communication”. In: Proc. of ICALP’08. 2008, pp. 473–485.

[81] M. Hirt, J. B. Nielsen, and B. Przydatek. “Cryptographic Asynchronous Multi-party
Computation with Optimal Resilience (Extended Abstract)”. In: Proc. of EUROCRYPT’05.
2005, pp. 322–340.

[82] A. Jaffe, T. Moscibroda, and S. Sen. “On the Price of Equivocation in Byzantine
Agreement”. In: Proc. of PODC’12. 2012, pp. 309–318.

[83] D. Kähler, R. Küsters, and T. Wilke. Deciding Properties of Contract-Signing Protocols.
Tech. rep. IFI 0409. CAU Kiel, 2004.

[84] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi, W. Schröder-
Preikschat, and K. Stengel. “CheapBFT: Resource-efficient Byzantine Fault Tolerance”.
In: Proc. of EuroSys’12. 2012, pp. 295–308.

[85] J. Karat, C.-M. Karat, E. Bertino, N. Li, Q. Ni, C. Brodie, J. Lobo, S. Calo, L. Cranor, P.
Kumaraguru, and R. Reeder. “Policy framework for security and privacy management.”
In: IBM Journal of Research and Development 53.2 (2009), p. 4.

http://www.cs.ucla.edu/~rafail/PUBLIC/85.pdf

BIBLIOGRAPHY 123

[86] P. G. Kelley, J. Bresee, L. F. Cranor, and R. W. Reeder. “A nutrition label for privacy”.
In: Proceedings of the 5th Symposium on Usable Privacy and Security. ACM. 2009,
p. 4.

[87] R. Kemmerer, C. Meadows, and J. Millen. “Three Systems for Cryptographic Protocol
Analysis”. In: Journal of Cryptology 7.2 (1994), pp. 79–130.

[88] S. Kremer and M. Ryan. “Analysis of an Electronic Voting Protocol in the Applied
Pi-Calculus.” In: Proc. 14th European Symposium on Programming (ESOP). LNCS.
Springer-Verlag, 2005, pp. 186–200.

[89] R. Lämmel and E. Pek. “Understanding privacy policies”. In: Empirical Software
Engineering 18.2 (2013), pp. 310–374.

[90] L. Lamport, R. E. Shostak, and M. C. Pease. “The Byzantine Generals Problem”. In:
ACM Trans. Program. Lang. Syst. 4.3 (1982), pp. 382–401.

[91] P. Laud. “Symmetric Encryption in Automatic Analyses for Confidentiality against
Active Adversaries”. In: Proc. 25th IEEE Symposium on Security & Privacy. 2004,
pp. 71–85.

[92] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. “TrInc: Small Trusted Hardware
for Large Distributed Systems”. In: Proc. of NSDI’09. 2009, pp. 1–14.

[93] H. Li and B. Li. “An Unbounded Simulation-Sound Non-interactive Zero-Knowledge
Proof System for NP”. In: CISC. 2005, pp. 210–220.

[94] G. Lowe. “Breaking and fixing the Needham-Schroeder public-key protocol using FDR”.
In: Proc. 2nd International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Vol. 1055. LNCS. Springer, 1996, pp. 147–166.

[95] L. Lu, J. Han, Y. Liu, L. Hu, J.-P. Huai, L. Ni, and J. Ma. “Pseudo Trust: Zero-Knowledge
Authentication in Anonymous P2Ps”. In: IEEE Trans. Parallel Distrib. Syst. 19 (10
2008), pp. 1325–1337. ISSN: 1045-9219. DOI: 10.1109/TPDS.2008.15. URL:
http://dl.acm.org/citation.cfm?id=1449379.1449451.

[96] M. Maffei and K. Pecina. “Position Paper: Privacy-aware Proof-Carrying Authorization”.
In: PLAS 2011. To appear. 2011.

[97] M. Maffei, K. Pecina, and M. Reinert. “Security and privacy by declarative design”. In:
Proc. of CSF. IEEE. 2013, pp. 81–96.

[98] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. “TrustVisor:
Efficient TCB Reduction and Attestation”. In: Proc. of the 2010 IEEE Symposium on
Security and Privacy. 2010, pp. 143–158.

[99] M. Merritt. “Cryptographic Protocols”. PhD thesis. Georgia Institute of Technology,
1983.

[100] D. Micciancio and B. Warinschi. “Soundness of Formal Encryption in the Presence of
Active Adversaries”. In: Proc. 1st Theory of Cryptography Conference (TCC). Vol. 2951.
LNCS. Springer, 2004, pp. 133–151.

https://doi.org/10.1109/TPDS.2008.15
http://dl.acm.org/citation.cfm?id=1449379.1449451

124 BIBLIOGRAPHY

[101] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J. Karat, and A. Trombeta. “Privacy-
aware role-based access control”. In: Proc. of TISSEC 13.3 (2010), p. 24.

[102] Office for Civil Rights, U.S. Department of Health and Human Services. Summary of
the HIPAA privacy rule. 2003.

[103] S. E. Oh, J. Y. Chun, L. Jia, D. Garg, C. A. Gunter, and A. Datta. “Privacy-preserving
audit for broker-based health information exchange”. In: Proc. of Data and application
security and privacy. ACM. 2014, pp. 313–320.

[104] A. Patra, A. Choudhary, and C. P. Rangan. “Efficient Asynchronous Byzantine Agree-
ment with Optimal Resilience”. In: Proc. of PODC’09. 2009, pp. 92–101.

[105] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing”. In: Proc. of CRYPTO’91. 1991, pp. 129–140.

[106] T. Rabin and M. Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority (Extended Abstract)”. In: Proc. of STOC’89. 1989, pp. 73–85.

[107] A. Sahai. “Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security”. In: Proceedings of the 40th Annual Symposium on Foundations of
Computer Science. FOCS ’99. Washington, DC, USA: IEEE Computer Society, 1999,
pp. 543–. ISBN: 0-7695-0409-4. URL: http://dl.acm.org/citation.cfm?
id=795665.796535.

[108] A. Sahai. Simulation-Sound Non-Interactive Zero Knowledge. Tech. rep. IBM RE-
SEARCH REPORT RZ 3076, 2001.

[109] F. Salim, N. P. Sheppard, and R. Safavi-Naini. “Enforcing P3P policies using a digital
rights management system”. In: Privacy Enhancing Technologies. Springer. 2007,
pp. 200–217.

[110] M. Schmidt-Schauß and G. Smolka. “Attributive Concept Descriptions with Comple-
ments”. In: Artificial Intelligence 48.1 (1991), pp. 1–26.

[111] S. Schneider. “Security Properties and CSP”. In: Proc. 17th IEEE Symposium on Security
& Privacy. 1996, pp. 174–187.

[112] S. Sen, S. Guha, A. Datta, S. K. Rajamani, J. Tsai, and J. M. Wing. “Bootstrapping
Privacy Compliance in Big Data Systems”. In: Proc. of S& P.

[113] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–613.

[114] K. Srinathan and C. P. Rangan. “Efficient Asynchronous Secure Multiparty Distributed
Computation”. In: Proc. of INDOCRYPT’00. 2000, pp. 117–129.

[115] M. Stadler. “Publicly Verifiable Secret Sharing”. In: Proc. of EUROCRYPT’96. 1996,
pp. 190–199.

[116] S. Toueg. “Randomized Byzantine Agreements”. In: Proc. of PODC’84. 1984, pp. 163–
178.

http://dl.acm.org/citation.cfm?id=795665.796535
http://dl.acm.org/citation.cfm?id=795665.796535

BIBLIOGRAPHY 125

[117] M. C. Tschantz, A. Datta, and J. M. Wing. “Formalizing and enforcing purpose restric-
tions in privacy policies”. In: Proc. of S& P. IEEE. 2012, pp. 176–190.

[118] United States Congress. Financial services modernization act of 1999. 2010.

[119] United States federal law. Children’s Online Privacy Protection Act. 1998.

[120] A. Yao. “Protocols for secure computations”. In: Proc. of FOCS’82. IEEE, 1982,
pp. 160–164.

126 BIBLIOGRAPHY

Appendix A

Appendix

A.1 Postponed Soundness Proof Details

In this section, we give the complete soundness proof. We enumerated the lemmas as in
chapter 2.

To prove the Theorem, we will use Theorem 2.1.1. Thus it is a simulator based proof. We
first define the simulator in a generic way, such that it is easier to prove that the simulator is
indistinguishable from a computational execution. Then we change this simulator leading to
other simulators which are all indistinguishable. The last simulator in the chain of modified
ones can then easily shown to be DY-style. Finally, combining these properties, we can apply
Theorem 2.1.1 which then proves the Theorem.

Definition of the Simulator.. Given an adversaryE and a polynomial pwe construct a simulator
Sim with respect to E and p. We assume that for each m ∈ {0, 1}∗ there is an Nm ∈ NE .
For a fixed execution, we may assume without loss of generality that the set NP is split into
two disjoint sets N andR. Our protocol conditions enforce that nonces used for algorithmic
randomness are not used somewhere else in the protocol. These will be considered to be in the
setR.

If the simulator receives a label L from a control node it forwards it to the adversary, waits
for an answer, and forwards the answer to the protocol. For the other queries we will use three
functions ` : T → N, β : T → {0, 1}∗ and τ : {0, 1}∗ → T which are defined below. The
simulator chooses for each N ∈ NP an rN ∈ {0, 1}∗ (Sim samples according to AN on the
fly and caches the result). Upon receiving a t ∈ T from the protocol, the simulator computes
β(t) and forwards it to the adversary E. When it receives a m ∈ {0, 1}∗ from the adversary it
computes τ(m) and forwards the result to the protocol. Finally, when it receives (info, ν, t)

from the protocol it adds `(t) to len and if len > p(k) the simulator terminates, otherwise it
answers (proceed). Initially len is set to 0.

Remember, for a constructor ZK, we denote its computational implementation by AZK.

127

128 APPENDIX A. APPENDIX

The partial functions β : T→ {0, 1}∗ and `

• β(N) := rN if N ∈ NP

• β(Nm) := m

• β(Enc(ek(N), t,M)) := AEnc(Aek(rN), β(t), rM) if M ∈ NP

• β(Enc(ek(M), t, Nm)) := m if M ∈ NP

• β(ek(N)) := Aek(rN) if N ∈ NP

• β(ek(Nm)) := m

• β(dk(N)) := Adk(rN) if N ∈ NP

• β(dk(Nm)) := d such that τ(d) = dk(Nm) was computed earlier
• β(sig(sk(N), t,M)) := Asig(Ask(rN), β(t), rM) if N,M ∈ NP

• β(sig(sk(M), t, N s)) := s

• β(vk(N)) := Avk(rN) if N ∈ NP

• β(vk(Nm)) := m

• β(sk(N)) := Ask(rN) if N ∈ NP

• β(sk(Nm)) := s such that τ(s) = sk(Nm) was computed earlier
• β(crs(N)) := Acrs(rN) if N ∈ NP

• β(crs(N c)) := c

• β(ZK(crs(N1), t1, t2, N2)) := AZK(Acrs(rN1), β(t1), β(t2), rN2) if N1, N2 ∈ NP

• β(ZK(crs(t0), t1, t2, N
s)) := s

• β(pair(t1, t2)) := Apair(β(t1), β(t2))

• β(string0(t)) := Astring0(β(t))

• β(string1(t)) := Astring1(β(t))

• β(empty) := Aempty()

• β(garbage(N c)) := c

• β(garbageEnc(t,N c)) := c

• β(garbageSig(t,N s)) := s

• β(garbageZK(t1, t2, N
z)) := z

• β(t) := ⊥ if no case matches
The function ` is defined by `(t) := |β(t)|.

The function τ : {0, 1}∗ → T

(by taking the first matching rule)
• τ(r) := N if r = rN for some N ∈ N and N occurred in a term sent from ΠC

• τ(r) := N r if r is of type nonce
• τ(c) := Enc(ek(M), t, N) if c has earlier been output by β(Enc(ek(M), t, N)) for some
M ∈ N, N ∈ NP

• τ(c) := Enc(ek(M), τ(m), N c) if c is of type ciphertext and τ(Aekof(c)) = ek(M) for
some M ∈ NP and m := ADec(Adk(rN), c) 6= ⊥
• τ(c) := garbageEnc(τ(Aekof(c)), N

c) if c is of type ciphertext
• τ(c) := ek(N) if c = Aek(rN) for some N that occurred in a subterm of the form ek(N)

A.1. POSTPONED SOUNDNESS PROOF DETAILS 129

or dk(N) before
• τ(c) := ek(N c) if c is of type encryption key
• τ(c) := dk(N) if c = Adk(rN) for some N that occurred in a subterm of the form ek(N)

or dk(N) before
• τ(c) := dk(N e) if c is of type decryption key and e is the encryption key corresponding

to c
• τ(s) := sig(sk(M), t, N) if s has earlier been output by β(sig(sk(M), t, N)) for some
M,N ∈ NP

• τ(s) := sig(sk(M), τ(m), N s) if s is of type signature and τ(Avkof(s)) = vk(M) for
some M ∈ N and m := Averify(Avkof(s), s) 6= ⊥
• τ(s) := garbageSig(τ(Avkof(s)), N

s) if s is of type signature
• τ(s) := vk(N) if s = Avk(rN) for some N that occurred in a subterm of the form vk(N)

or sk(N) before
• τ(s) := vk(N s) if s is of type verification key
• τ(s) := sk(N) if s = Ask(rN) for some N that occurred in a subterm of the form vk(N)

or sk(N) before
• τ(s) := sk(N c) if s is of type signing key and c is the signing key corresponding to s
• τ(z) := crs(N) if z = Acrs(rN) for some N that occurred in a subterm of the form

crs(N) before
• τ(z) := crs(N z) if z is of type common reference string
• τ(z) := ZK(crs(N1), t1, t2, N2) if z has earlier been output by β(ZK(crs(N1), t1, t2, N2))

for some N1, N2 ∈ NP

• τ(z) := ZK(crs(N), x, w,N z) if z is of type zero-knowledge proof and τ(z) was com-
puted earlier and has output ZK(crs(N), x, w,N z)

• τ(z) := ZK(crs(N), x, w,N z) if z is of type zero-knowledge proof, τ(Acrsof(z)) =

crs(N) for some N ∈ NP , AverifyZK
(Acrsof(z), z) = z, mx := AgetPub(z) 6= ⊥,

x := τ(mx) 6= ⊥ and w := SymbExtr(S, x) where S is the set of terms sent to the
adversary so far.
If w = ⊥, we say an extraction-failure on (N, z,mx) occurred, see below for the behavior
of Sim in this case.
• τ(z) := garbageZK(c, x,N z) if z is of type zero-knowledge proof, c := τ(Acrsof(z))

and x := τ(AgetPub(z)).
• τ(m) := pair(τ(Afst(m)), τ(Asnd(m))) if m is of type pair
• τ(m) := string0(τ(m′)) if m is of type payload-string and m′ := Aunstring0(m) 6= ⊥
• τ(m) := string1(τ(m′)) if m is of type payload-string and m′ := Aunstring1(m) 6= ⊥
• τ(m) := empty if m is of type payload-string and m = Aempty()

• τ(m) := garbage(Nm) otherwise

When an extraction-failure on (N, z,mx) occurs (i.e., when in the computation of τ ,
SymbExtr(S, x) returns w = ⊥), the simulator computes (crs, simtd, extd)← K(1η; rN) to
get the extraction trapdoor extd corresponding to crs = Acrs(rN). Then the simulator invokes
mw := E(mx, z, extd) and computes x := τ(mx) as well as w := τ∗(mw). If (x,w) 6∈ Rsym

adv ,

130 APPENDIX A. APPENDIX

we say a ZK-break occurred. Then (no matter whether a ZK-break occurred or not), the simulator
aborts.

We define τ∗ by the same case distinction as τ but remove the case in which an extraction
failure may occur (i.e., the case where we invoke SymbExtr(S, x)). Consequently, every
adversary generated ZK-proof is parsed as garbageZK by τ∗. Thus, by definition, there is no
extraction failure during a computation of τ∗.

Soundness Proof.. The previously defined simulator is indistinguishable from a computational
execution and DY. To prove this we start by constructing a faking simulator in several steps. The
construction is split in steps because it is easier to prove some properties for the intermediate
simulators and show that they carry over to the final one than showing them for the final
simulator directly. Thus, in the following subsection, we define the faking simulator in detail.

The faking simulator.

• We define Sim1 like Sim but we change β to use zero-knowledge oracles instead of
computing Acrs and AZK. More precisely, assume an oracle OZK that internally picks
(crs, simtd, extd)← K(1η) and that responds to three kinds of queries: Upon a (crs)-
query, it returns crs, and upon a (prove, x, w)-query, it returns P(x,w, crs) if (x,w) ∈
Rcomp

honest and ⊥ otherwise. Upon a (extd)-query, it returns extd. For each N ∈ NP ,
Sim1 maintains an instance ONZK of OZK. Then Sim1 computes β(crs(N)) with N ∈
NP as β(crs(N)) := ONZK(crs), and Sim1 computes β(ZK(crs(N1), t1, t2, N2)) with
N1, N2 ∈ NP as β(ZK(crs(N1), t1, t2, N2)) := ONZK(prove, β(t1), β(t2)). In case
of an extraction-failure, Sim1 performs a (extd)-query to get extd. (Here and in the
descriptions of Sim2, . . . ,Sim5,Simf , we implicitly require that β(t) caches the results
of the oracle queries and does not repeat the oracle query when β is applied to the same
term t again.)
In the definition of τ(z) = crs(N) forN ∈ NP , instead of checking z = Acrs(rN), Sim1

checks whether z is equal to the (crs)-query outcomes for all oracles ONZK which have
been used so far.
• We define Sim2 like Sim1, except that we replace the oracleOZK by an oracleOsim. That

oracle behaves likeOZK, except that upon a (prove, x, w)-query, it returns S(x, crs, simtd)

if (x,w) ∈ Rcomp
honest and ⊥ otherwise.

• We define Sim3 like Sim2, except that we replace the oracleOsim by an oracleO′sim. That
oracle behaves likeOsim, except that upon a (prove, x, w)-query, it returns S(x, crs, simtd)

(even if (x,w) /∈ Rcomp
honest). Therefore the simulator only queries (prove, x) and does not

compute w any more.
• We define Sim4 like Sim3, but we change β and τ to use encryption oracles instead of

computing AEnc, ADec, Aek, Adk. More precisely, assume an oracle OEnc that internally
picks (ek, dk) ← KeyGenEnc(1

η) and that responds to three kinds of queries: Upon
an (ek)-query, it returns ek. Upon a (enc,m)-query, it returns ENC(ek,m). Upon
a (dec, c)-query, it returns DEC(dk, c). Sim4 maintains an instance ONenc for each

A.1. POSTPONED SOUNDNESS PROOF DETAILS 131

N ∈ NP . Then Sim4 computes β(ek(N)) with N ∈ NP as β(ek(N)) := ONenc(ek).
And it computes β(Enc(ek(N), t,M)) with N,M ∈ NP as β(Enc(ek(N), t,M)) :=

ONenc(enc, β(t)). And it computes β(dk(N)) := ⊥. And in the computation of τ(c) for
c of type ciphertext, the computation of ADec(Adk(rN), c) is replaced by ONenc(dec, c).
In the definition of τ(c) = ek(N) and τ(c) = dk(N) for N ∈ NP , instead of checking
c = Aek(rN) and c = Adk(rN), Sim4 checks whether c is equal to the corresponding
query outcomes for all oracles ONEnc which have been used so far.
• We define Sim5 like Sim4, except that we replace the oracleOEnc by an oracleOfake. That

oracle behaves like OEnc, except that upon an (enc, x)-query, it returns ENC(ek, 0|x|).
• We define Simf like Sim5, but we change β to use signing oracles instead of computing
Avk, Ask, Asig. More precisely, we assume an oracle Osig that internally picks (vk, sk)←
KeyGensig(1η) and that responds to two kinds of queries: Upon a (vk)-request, it
returns vk, and upon a (sig,m)-request, it returns SIG(sk,m). Simf maintains an
instance ONsig for each N ∈ NP . Then Simf computes β(vk(N)) with N ∈ NP

as β(vk(N)) := ONsig(vk). And β(sk(N)) with N ∈ NP as β(sk(N)) := ⊥. And
β(sig(sk(N), t,M)) with N,M ∈ NP as β(sig(sk(N), t,M)) := ONsig(sig, β(t)).
In the definition of τ(c) = vk(N) and τ(c) = sk(N) for N ∈ NP , instead of checking
c = Avk(rN) and c = Ask(rN), Simf checks whether c is equal to the corresponding
query outcomes for all oracles ONsig which have been used so far.

Dolev-Yaoness

The next steps towards the soundness proof are the following. First, we analyze the underivable
terms structure. Doing so, we exclude cases in the proof of DY-ness using structural arguments.
Thus, when showing DY-style, we only need to consider the cases involving cryptographic
arguments.

Lemma A.1.1. For any invocation of τ or τ∗ in the hybrid execution of Simf , let m denote the
input to τ or τ∗, let u′ denote the output of τ or τ∗, and let S be the set of all messages sent
from ΠC to Simf up to that invocation of τ or τ∗.

Let C be a context and u ∈ T such that u′ = C[u] and S 6` u.
Then there is a term tbad and a context D such that D can be obtained by the following

grammar:

D ::= � | pair(t,D) | pair(D, t) | Enc(ek(N), D,M)

| Enc(D, t,M) | sig(sk(M), D,M ′)

| ZK(t,D, t′,M) | ZK(D, t, t′,M)

| garbageEnc(D,M) | garbageSig(D,M)

| garbageZK(D, t,M) | garbageZK(t,D,M)

with M,M ′ ∈ NE , t, t
′ ∈ T

with u = D[tbad] such that S 6` tbad and such that one of the following holds:

132 APPENDIX A. APPENDIX

1. tbad ∈ N
2. tbad = Enc(p,m,N) with N ∈ NP

3. tbad = sig(k,m,N) with N ∈ NP

4. tbad = ZK(crs(M), x, w,N) with M,N ∈ NP

5. tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE

6. tbad = crs(N) with N ∈ NP

7. tbad = ek(N) with N ∈ NP

8. tbad = vk(N) with N ∈ NP

9. tbad = sk(N) with N ∈ NP

10. tbad = dk(N) with N ∈ NP

Proof. We prove the lemma by structural induction on u. We formulate the proof for an
invocation of τ , for an invocation of τ∗ the proof is identical. There are the following cases:

Case 1: ” u ∈ {ek(N), vk(N), crs(N),dk(N), sk(N)} with N 6∈ NP ”

Let u = C(N) for C ∈ {ek, vk, crs,dk, sk}. By protocol conditions 1 and 8 each
C-node has as annotation a nonce from NP . Therefore u cannot be honestly generated,
that means there is some e ∈ {0, 1}∗ such that τ(e) = u and u has the form C(N e).
But then S ` u contradicting the premise of the lemma.

Case 2: ” u ∈ {ek(N), vk(N), crs(N),dk(N), sk(N)} with N ∈ NP ”

Then the claim is fulfilled with D := � and tbad = u.

Case 3: ”u = garbage(u1)”

By protocol condition 2 no garbage term is generated by the protocol. Therefore there
is a c ∈ {0, 1}∗ such that τ(c) = garbage(N c) = u. But this means that S ` u,
contradicting the premise of the lemma.

Case 4: ”u = garbageEnc(u1, u2) or u = garbageSig(u1, u2)”

By protocol condition 2 no garbage term is generated by the protocol. So there exists a
c ∈ {0, 1}∗ with τ(c) = garbageEnc(u1, N

c) or τ(c) = garbageSig(u1, N
c). Since

S ` N c it follows that S 6` u1, because S 6` u. Applying the induction hypothesis
on u1 leads to a context D′ and a term tbad. Using this term tbad and the context
garbageEnc(D′, N c), respectively garbageSig(D′, N c), shows the claim.

Case 5: ”u = garbageZK(u1, u2, u3)”

As in the previous case follows u3 = N c with c ∈ {0, 1}∗, so S 6` u1 or S 6` u2. For
the first case we can apply the induction hypothesis to u1 leading to tbad and contextD′.
Then we use context garbageZK(D′, u2, u3) to satisfy the lemma. In the other case
we apply the induction hypothesis to u2 leading to context garbageZK(u1, D

′, u3)

and tbad.

A.1. POSTPONED SOUNDNESS PROOF DETAILS 133

Case 6: ”u = pair(u1, u2)”

Since S 6` u there is an i ∈ {1, 2} such that S 6` ui. Let D be the context and tbad
the term given by applying the induction hypothesis to ui. Then D1 := pair(D,M)

or D2 := pair(M,D) is the context for the term u depending on i with the same term
tbad.

Case 7: ”u = empty”

This case cannot happen because S ` empty, so the premise of the lemma is not
fulfilled.

Case 8: ”u = string0(u1) or u = string1(u1)”

Again the premise is not fulfilled since inductively S ` u1 with base case u1 = empty

and therefore S ` stringi(u1) for i ∈ {0, 1}.

Case 9: ”u = N with N ∈ NP \N ”

This case is impossible since u is not in the range of τ .

Case 10: ”u = N with N ∈ N ”

The context D := � and term tbad := u satisfy the lemma in this case.

Case 11: ”u = N with N ∈ NE”

In this case S ` u by definition and therefore the lemma’s premise does not hold.

Case 12: ”u = Enc(u1, u2, N) with N ∈ NP ”

The lemma is satisfied by tbad = u and D = �.

Case 13: ”u = Enc(u1, u2, u3) with u3 6∈ NP and S 6` u1”

Since u3 6∈ NP it follows that u cannot be honestly generated because of protocol
condition 3. Therefore there is a c ∈ {0, 1}∗ with τ(c) = Enc(ek(M), u2, N

c) = u

for some M ∈ NP . Apply the induction hypothesis to u1 getting tbad and context D
we can define D′ := Enc(D,u2, N

c) fulfilling the claim of the lemma with tbad.

Case 14: ”u = Enc(u1, u2, u3) with u3 6∈ NP and S ` u1”

Since u3 6∈ NP it follows that u cannot be honestly generated because of protocol
condition 3. Therefore there is an c ∈ {0, 1}∗ with τ(c) = Enc(ek(M), u2, N

c) = u

for some M ∈ NP . Since S ` u1, S ` N c, and S 6` u, it follows that S 6` u2. Let D
be the context and tbad be the term resulting by the induction hypothesis applied to u2.
Then D′ := Enc(ek(M), D,N c) together with tbad satisfies the lemma.

Case 15: ”u = sig(u1, u2, N) with N ∈ NP ”

Use context D := � and tbad = u.

134 APPENDIX A. APPENDIX

Case 16: ”u = sig(sk(N), u1, u3) with u3 6∈ NP and N ∈ NP ”

Since u ∈ T and u3 6∈ NP follows that u3 ∈ NE . Therefore the context D := � and
tbad = u proves the claim.

Case 17: ”u = sig(u1, u2, u3) and u3 6∈ NP and u1 is not of the form sk(N) with N ∈ NP ”

Since u3 6∈ NP we get by protocol condition 3 that u is not honestly generated, i.e.,
there is an s ∈ {0, 1}∗ such that τ(s) = sig(sk(M), u2, N

s) = u with M ∈ N.
Because u1 has not the form sk(N) for any N ∈ NP follows that M ∈ NE , so
S `M and therefore S ` sk(M). In total we have S ` u1, S ` u3 but S 6` u which
implies that S 6` u2. Applying the induction hypothesis to u2 leads to a context D and
a term tbad. Defining D′ := sig(sk(M), D,N s) completes the claim.

Case 18: ”u = ZK(crs(M), u1, u2, N) with N,M ∈ NP ”

Defining tbad = u and D := � suffices.

Case 19: ”u = ZK(crs(M), u1, u2, N) with N 6∈ NP , M ∈ NP ”

Consider the following cases:

• S 6` crs(M)

Define tbad = crs(M) and D := ZK(�, u1, u2, N) to satisfy the lemma.

• S 6` u2

Since N 6∈ NP the term u was not honestly generated. That means that u2 was
constructed using the SymbExtr and therefore S ` u2. So this case cannot
happen.

• S 6` u1

In this case we use the induction hypothesis on u1 to get the term tbad and
a context D. Then using tbad and D′ := ZK(crs(M), D, u2, N) satisfies the
lemma.

Case 20: ”u = ZK(crs(M), u1, u2, N) with M 6∈ NP ”

This case cannot occur because u is not in the range of τ .

In any hybrid execution, terms are generated via the functions τ and τ∗. In their definition,
the case distinction whether β outputted the input bitstring or not is done very often. Thus, in
the following lemma, we show that β is only called on derivable terms in the execution of Simf .

Lemma A.1.2. For any (direct or recursive) call of the function β(t) performed by Simf , it
holds that S ` t where S is the set of all terms sent by ΠC to Simf up to that point.

A.1. POSTPONED SOUNDNESS PROOF DETAILS 135

Proof. Prove it by induction on the recursion depth of the β-function. The base case is that
β(t) is directly invoked. But then t itself was received by the protocol, i.e., t ∈ S and therefore
S ` t.

So let β(t) be called as subroutine of some t′. By induction hypothesis we have S ` t′. We
need to show that S ` t. According to the definition of β there are the following possibilities
for t′:

1. t′ = sig(sk(N), t,M) with N,M ∈ NP

2. t′ = pair(t1, t2) with t ∈ {t1, t2}

3. t′ = string0(t) or t′ = string1(t)

4. t′ = Enc(ek(N e), t,M) with M ∈ NP

5. t′ = ZK(crs(M), t, t2, N) with N,M ∈ NP

Note that the case t′ = Enc(ek(N), t,M) with N,M ∈ NP does not occur because – in
contrast to Sim – the simulator Simf does not recursively invoke β on t but uses an oracle and
produces ENC(ekN , 0

`(t)). The case t′ = ZK(crs(M), t1, t, N) is not possible, either, because
the simulator Simf calls the simulation oracle to construct the proof and therefore β(·) is not
called on the witness t.

Case 1: S ` sig(sk(N), t,M) = t′. Using verify(vkof(t′), t′) = t we get S ` t.

Case 2: S ` pair(t1, t2) = t′. With fst(t′) = t1, snd(t′) = t2, and t ∈ {t1, t2} we get S ` t.

Case 3: The cases t′ = string0(t) and t′ = string1(t) work as the two preceding using
unstring0 and unstring1.

Case 4: S ` Enc(ek(N e), t,M). Because S ` N e it follows that S ` dk(N e), so decryption
can be applied resulting in t.

Case 5: S ` ZK(crs(M), t, t2, N) = t′. The lemma follows by applying the destructor getPub.

We combine the preceding lemmas to achieve DY-style of Simf . The lemma is generalized
to not only show DY-style of Simf , but also that each output of τ and τ∗ in an execution is
derivable. Doing so, we are able to reuse the lemma when proving the absence of extraction
failures.

Lemma A.1.3 (Simf is Dolev-Yao). For any invocation τ(m) of τ or τ∗(m) of τ∗ in the hybrid
execution of Simf , the following holds with overwhelming probability: Let S be the set of terms
t that the protocol sent to the adversary up to the invocation τ(m) or τ∗(m). Then S ` τ(m)

or S ` τ∗(m), respectively.
In particular, Simf is DY for M and Π.

136 APPENDIX A. APPENDIX

Proof. Assume there occurs an m as input of τ or τ∗ such that S 6` τ(m) or S 6` τ∗(m),
respectively. Consider the first such input m.

Now we can use lemma A.1.1 with context C = � and u′ = u = t leading to a term
tbad and a context D such that tbad is of the form 1-10 given by the lemma. Let mbad be the
corresponding bitstring, i.e. τ(mbad) = tbad. For each of these cases we will derive that it can
only happen with negligible probability. Note that τ∗ only differs from τ in the case a ZK-proof
ZK(crs(N), x, w,M) is output with M ∈ NE . We formulate the proof for an invocation of τ ;
the case of τ∗ is identical.

Case 1: ”tbad = N ∈ N ”.
By construction of β and Simf follows that Simf has only access to rN if β(N) is
computed directly or in τ . Because S 6` N we get by Lemma A.1.2 that β was never
invoked on N , i.e. Simf has only access to rN via τ . Considering the definition of τ ,
we see that rN is used for comparisons. In particular, if τ(r) is called for an r having
type nonce then the simulator checks for all N ∈ NP that occurred in a term sent by
the protocol, whether r = rN . This check does not help guessing rN because it only
succeeds if rN was guessed correctly and therefore the probability that mbad = rN as
input of τ is negligible.

Case 2: ”tbad = Enc(p,m,N) with N ∈ NP ”.
By definition τ only returns tbad if β(tbad) was called earlier. But since S 6` tbad and
Lemma A.1.2 this case cannot occur.

Case 3: ”tbad = sig(k,m,N) with N ∈ NP ”.
This case is completely analogue to the case that tbad = Enc(p,m,N) with N ∈ NP .

Case 4: ”tbad = ZK(crs(M), x, w,N) with N,M ∈ NP ”.
By definition of τ , tbad is only returned if it was a result of β(tbad) earlier. But because
S 6` tbad and Lemma A.1.2 this can not be the case.

Case 5: ”tbad = crs(N) with N ∈ NP ”.
By definition of τ , the oracle ONZK constructed the bitstring mbad. Thus β was either
called on crs(N) or on some ZK-proof of the form ZK(crs(N), ·, ·, ·). In the first case,
by Lemma A.1.2, it follows S ` tbad. In the latter case, by the same lemma, it follows
S ` ZK(crs(N), ·, ·, ·) and thus S ` crs(N) using destructor getPub.

Case 6: ”tbad = sig(sk(N),m′,M) with N ∈ NP , M ∈ NE”.
Because S 6` tbad follows that β was not invoked on tbad. Thereforembad is a signature
that was not produced by the signing oracle, but it is valid with respect to verification
key vkN . Because of the strong existential unforgeability this can only be the case with
negligible probability.1

1Note that an adversary against this property is allowed to use the extraction trapdoor. The same holds the
property of CCA.

A.1. POSTPONED SOUNDNESS PROOF DETAILS 137

Case 7: ”tbad = ek(N) with N ∈ NP ”.

By definition of τ and since τ(mbad) = ek(N), it follows that the oracleONEnc produced
this key in an earlier call of β. Thus one of the following terms have been called by
β earlier: ek(N), dk(N), or Enc(ek(N), ·, ·). The case dk(N) is impossible because
dk is only allowed to be part of the witness in ZK proofs and in decryptions (protocol
conditions 4). Since the witnesses are not computed using β in Simf , it follows that
dk(N) can not be input to β at all.

Considering the remaining cases, it follows by Lemma A.1.2 that either S ` ek(N) or
S ` Enc(ek(N), ·, ·). In the latter case S ` ek(N) using destructor ekof . So S 6` tbad
is impossible.

Case 8: ”tbad = vk(N) with N ∈ NP ”.

This case is analogue to the case tbad = ek(N) with the possible oracle queries in
while computing β on vk(N), sk(N), or sig(sk(N), ·, ·). The case sk(N) corresponds
to dk(N) and thus it is impossible. In the remaining cases, it follows that S ` vk(N)

(using vkof constructor on the signature). So S 6` tbad is impossible.

Case 9: ”tbad = sk(N) with N ∈ NP ”.

If tbad = sk(N) thenmbad is the bitstring skN . Thus the simulator was able to compute
skN with access only to signatures. By the strong existential unforgeability of the
signature scheme, this can only happen with negligible probability.

Case 10: ”tbad = dk(N) with N ∈ NP ”.
If tbad = dk(N) then mbad is dkN . So the simulator was able to compute dkN with
only access to an decryption oracle and the public key. By the CCA property, this can
only occur with negligible probability.

In total, we get that S 6` tbad can only be the case with negligible probability.
Hence, S 0 τ(m) happens only with negligible probability.

Indistinguishability

The next goal is to exclude extraction failures. First, we take a closer look at the relations and
connect them to the functions β and τ . We defined the cryptographic conditions using imgη. In
the following lemma we will see how this definition allies to the simulators’ executions.

Lemma A.1.4 (Relating the relations). Let Rcomp
honest, R

comp
adv be relations implementing Rsym

adv

with usage restriction Rsym
honest.

138 APPENDIX A. APPENDIX

1. In the hybrid execution of Sim and Sim3 it holds with overwhelming probability: If
(x,w) ∈ Rsym

honest and x,w occur as node annotation of a ZK node in the execution, then
it holds (β(x), β(w)) ∈ Rcomp

honest.

2. In the hybrid execution of Sim2 it holds with overwhelming probability: If (mx,mw) ∈
Rcomp

adv for some bitstrings mx,mw, then it holds (τ(mx), τ∗(mw)) ∈ Rsym
adv .

Proof. We first define an environment η mapping terms to bitstrings. η depends on the current
state of the execution. We will use η in both parts of the lemma. So let t1, . . . , tn be the terms
sent by the protocol to the simulator so far.

For any term or subterm t that occurs as argument to β or output of τ , we define η as follows:

For t = Nm define η(t) := m.

For t = C(t1, . . . , tn, N
m) define η(t) := m for all C as stated in definition 2.4.1.2

For t = crs(N) with N ∈ NP define η(t) to be the crs produced by the oracle ONZK.

For t = ZK(crs(N), x, w,M) with N,M ∈ NP define η(t) to be proof produced by ONZK in
the computation of β(t).

For t = N with N ∈ NP we distinguish 2 cases. If t does neither occur in a term of the form
crs(t) nor in ZK(c, x, w, t) for some c, x, w then define η(t) := rN . Otherwise let η(t) be
undefined, i.e. η(t) := ⊥.

Note that η is a consistent environment with overwhelming probability.
Most properties of consistency are satisfied by construction. The ZK case holds because of

the indistinguishability of true proofs and their simulations. The only property that needs to be
proven is the injectivity of η. We distinguish by the type of η’s output.

• Type nonce. For N,M ∈ NP , a collision occurs with negligible probability, because
rN = rM occurs with negligible probability. The case η(Na) = η(N b) for a 6= b is even
impossible. So consider the case η(N) = η(M) for N ∈ NP ,M ∈ NE .

By protocol condition 2, it follows that M was output of τ , i.e. M = Nn for some
n ∈ {0, 1}∗. First, let N be a nonce occurred inside crs(N). Then it holds η(N) = ⊥ 6=
n = η(Nn).

Otherwise, if N was used before n was received by the simulator, then n would have
been parsed to N by construction of τ . So the first occurrence of N has to be after n was
received. But then the adversary guessed a nonce. This can only happen with negligible
probability.

• Type decryption key. For the same reasons as in the case of type nonce we only consider
the case η(dk(N)) = η(dk(M)) for N ∈ NP ,M ∈ NE . By protocol condition 2, it
follows that dk(M) = dk(Nd) for some d ∈ {0, 1}∗, dk(Nd) was subterm of an output

2They are {ek, dk, vk, sk, Enc, sig, crs, garbageZK, garbageSig, garbageEnc, garbage}

A.1. POSTPONED SOUNDNESS PROOF DETAILS 139

of τ , and d was not output of β earlier (otherwise d would have been parsed to dk(N)). So
the adversary used either no input or only encryptions plus the encryption key to compute
dk(N). By the CCA property, this can only be the case with negligible probability.

• Type signing key. This case is completely analogue to the decryption key type using the
strongly existentially unforgeability instead of the CCA property.

• Type encryption key. As in the previous cases we can only need to consider η(ek(N)) =

η(ek(M)) for N ∈ NP ,M ∈ NE . By protocol condition 2, it follows that ek(M) =

ek(N e) for some e ∈ {0, 1}∗. But then τ parsed e to ek(N e), so neither ek(N) nor
dk(N) was used. This means the adversary guessed an encryption key without having
any information about it. This can only happen with negligible probability.

• Type verification key and common reference string. Analogue to the case of encryption
key.

• Type zero-knowledge proof. Because τ is deterministic, the adversary can not generate
two different zero-knowledge proofs which are mapped to the same bitstring. So if there
is a collision, then between a protocol generated proof and a adversary generated one.

• Type ciphertext and signature. Analogue to the case of zero-knowledge proofs.

• Type pair. If there is a collision of two pairs, then there is a collision in the first argument
and in the second. So by induction hypothesis this case occurs with negligible probability.

• Type payload-string. This type does not contain any nonces. So applying η to a term of
this type leads to a unique bitstring which cannot be hit by any other term of this type (by
implementation condition 17).

• No type. The only term which has no type is garbage(t) for t ∈ T. By protocol
condition 2 and construction of τ , it has to hold that t = Nm for some m ∈ {0, 1}∗.

Proof of part 1 of the lemma.
By Definition 2.4.23, it suffices to show that if (x,w) ∈ Rsym

honest then there is a consistent η ∈ E
such that (imgη(x), imgη(w)) = (β(x), β(w)) since β(x) 6= ⊥ 6= β(w). We show that the η
defined above satisfies this criterium. Here, we prove the case for Sim3. The proof for Sim is
analogous with the only difference in the cases of ZK and crs. Here, the definition of η is done
as for Enc and ek and the proof, as well.

For any term t that can occur in the execution of Sim3 as annotation of a ZK node’s statement
or witness, we show that imgη(t) = β(t). This will be done by structural induction on the term
t:

3The part we will use here says (x,w) ∈ Rsym
honest and imgη(x) 6= ⊥ 6= imgη(w) implies

(imgη(x), imgη(w)) ∈ Rcomp
honest.

140 APPENDIX A. APPENDIX

• ”t = N with N ∈ NP ”.In this case β(N) = rN . The nonce N may not occur as last
argument of ZK or crs and inside x orw (protocol conditions 3 and 8). SoN did not occur
as last argument of ZK nor as argument of crs. Thus, it holds imgη(N) = η(N) = rN
by definition of η.

• ”t = N with N ∈ NE”.In this case N = Nn for some n ∈ {0, 1}∗. Thus η(Nn) = n =

β(Nn).

• ”t ∈ {ek(u),dk(u), vk(u), sk(u)} with u ∈ T”.In this case, it holds that u ∈ N. If
u ∈ NE , i.e. u = N c for some c ∈ {0, 1}∗, then β(t) = c = η(t) = imgη(t) by
construction. So, consider u ∈ NP . Let C ∈ {ek, dk, vk, sk} be the constructor such
that t = C(u). Then imgη(t) = AC(imgη(u))

(∗)
= AC(β(u)) = β(t). Since u ∈ NP and

occurs in C(u), it follows that u does neither occur in crs(u) nor in ZK(c, x, w, u) for
c, x, w ∈ T (protocol conditions forbid that these nonces are used more than once). Thus
imgη(u) = ru = β(u). Hence equality (∗) holds.

• ”t = crs(N) with N ∈ NP ”.By definition β(t) produces the crs using ONZK and
imgη(crs(N)) = η(crs(N)) which was defined as β(t). Thus, it holds imgη(t) = β(t).

• ”t = crs(N) with N ∈ NE”.This case is analogue to the case ek(N) with N ∈ NE .

• ”t = Enc(u1, u2, u3)”.If u3 ∈ NE , then this case is analogue to the case t = ek(u). So
let N := u3 ∈ NP . Then

β(t) = AEnc(β(u1), β(u2), rN) = AEnc(imgη(u1), imgη(u2), rN)

by induction hypothesis. The nonce N may only occur inside this encryption and as
witness of the ZK-proof (protocol condition 3). Thus, by rN = η(N) = imgη(N), it
follows β(t) = AEnc(imgη(u1), imgη(u2), imgη(N)) = imgη(t).

• ”t = sig(u1, u2, u3)”.If u3 ∈ NE , then this case is analogue to the case t = ek(u).
So let N := u3 ∈ NP . By definition of τ , it follows that t was honestly generated.
This means there was a sig-computation node that produced t. By protocol condition 7
this node is annotated by an sk-node. Since the protocol only uses its randomness
(protocol condition 1), it follows that u1 = sk(M) for some M ∈ NP . Then, it holds
β(t) = Asig(Ask(rM), β(u2), rN). Again, rN = imgη(N); the same holds for M . Since
β(sk(M)) = Ask(M), it follows by induction hypothesis that Ask(rM) = imgη(sk(M)).
In total, it holds β(t) = Asig(imgη(sk(M)), imgη(u2), imgη(N)) = imgη(t).

• ”t = pair(u1, u2) where u1, u2 ∈ T”. By induction hypothesis, it follows β(ui) =

imgη(ui). Thus, it holds

β(pair(u1, u2)) = Apair(β(u1), β(u2))

= Apair(imgη(u1), imgη(u2)) = imgη(pair(u1, u2))

A.1. POSTPONED SOUNDNESS PROOF DETAILS 141

• ”t ∈ {string0(u), string1(u), empty} with u ∈ T”.These cases are analogue to the case
t = pair(u1, u2).

• ”t ∈ {garbage(u1), garbageSig(u1, u2, u3), garbageEnc(u1, u2),

garbageZK(u1, u2, u3, u4)} where ui ∈ T”.By protocol condition 2 follows that t was
generated by τ , i.e. the last argument of t has the form Nm for some m ∈ {0, 1}∗. By
definition of β, it holds that β(t) = m. On the other hand, by definition of imgη, it holds
imgη(t) = η(t) = m, as well.

Proof of part 2 of the lemma.
It suffices to show that for each m ∈ {0, 1}∗, that occurs with non-negligible probability in a
hybrid execution of Sim2, there is some η such that m = imgη(τ(m)) holds. Then it follows
by definition 2.4.24 (mx,mw) ∈ Rcomp

adv =⇒ (imgη(τ(mx)), imgη(τ(mw))) ∈ Rcomp
adv =⇒

(τ(mx), τ∗(mw)) ∈ Rsym
adv .

Take the same definition of η as in the case before. Note that this definition is canonical for
an execution and does not depend on the term τ(m).

We will prove m = imgη(τ(m)) by structural induction. Note that this suffices for τ∗, as
well, since all cases for τ∗ occur in τ .

• τ(m) = N for some N ∈ NP

By construction of τ , it follows that N ∈ N . ThusN was not argument of a crs or the last
argument of a ZK node, by protocol conditions 1 and 3. Then imgη(τ(m)) = rN = m

where the last equality holds because of the definition of τ .

• τ(m) = Nm

Then by construction of η holds that imgη(τ(m)) = imgη(N
m) = η(Nm) = m.

• τ(m) = Enc(ek(M), t, N) for some M ∈ N, N ∈ NP

By definition of η holds that

imgη(τ(m)) = imgη(Enc(ek(M), t, N)) = AEnc(Aek(η(M)), imgη(t), η(N))

By definition of τ follows that m was earlier output by β and thus evaluating t again
using imgη gives the same bitstring mt, rN is the same argument as in the earlier call
and ek(M) is the same, too. By determinism of the implementations (implementation
condition 1) follows that the output is m.

• τ(s) = sig(sk(M), t, N) for some M,N ∈ NP

This case is analogue to the one of Enc(ek(M), t, N) for some M ∈ N, N ∈ NP .

• τ(m) = ek(N) for some N ∈ NP

By definition of τ , it followsm = Aek(rN). On the other hand, it holds that imgη(ek(N)) =

Aek(η(N)) = Aek(rN) = m by construction.
4At this point we use (imgη(x), imgη(w)) ∈ Rcomp

adv implies (x,w) ∈ Rsym
adv .

142 APPENDIX A. APPENDIX

• τ(m) ∈ { vk(N), sk(N),dk(N)} for some N ∈ NP

The same as the case of ek(N).

• τ(m) = crs(N) for some N ∈ NP

By definition of τ follows that m was output after a call of β on crs(N). Thus m was
output by the oracle and η(N) is by definition the randomness used by the oracle to
construct m. Thus imgη(crs(N)) = Acrs(η(N)) = m where the last equality holds
because of the definition of η(N).

• τ(m) = ZK(crs(N1), t1, t2, N2) for some N1, N2 ∈ NP

By definition of η follows that

imgη(ZK(crs(N1), t1, t2, N2)) = η(ZK(crs(N1), t1, t2, N2)) = m

• τ(m) = pair(t1, t2)

This case follows by the induction hypothesis and the determinism of the implementations.

• τ(m) ∈ {string0(t1), string1(t1), empty}

The case of empty is trivial, since the implementation is deterministic. For the other
cases holds that - by definition of τ - t1 = τ(m′) having m′ = Aunstringi(m) where
i ∈ {0, 1} and τ(m) = stringi(t1). Applying the induction hypothesis to t1 leads
to imgη(t1) = m′ and thus imgη(τ(m)) = Astringi(imgη(τ(m′))) = Astringi(m

′) =

Astringi(Aunstringi(m)) = m. Here the last equality holds by implementation condi-
tion 17.

• τ(m) ∈

{Enc(ek(M), t, Nm), ek(Nm), dk(Nm), garbageEnc(t,Nm),

sig(sk(M), t, Nm), garbageSig(t,Nm), vk(Nm), sk(Nm),

crs(Nm), ZK(crs(M), x, w,Nm), garbageZK(c, x,Nm), garbage(Nm)}

for some M ∈ NP

All of these cases follow immediately by definition of η and definition 2.4.1.

The proof for Sim2 is the same. Remind, the only difference between Sim3 and Sim2 is that
Sim3 does not check if (x,w) ∈ Rcomp

honest any more.

In the next step, we will show that ZK-breaks almost never occur in the execution of the
simulator Sim2. It is more convenient to show this for Sim and transfer it to Sim instead of
showing it for Sim directly.

Lemma 2.4.6 (No ZK-breaks): In the hybrid execution of the simulator Sim2, ZK-breaks
occur only with negligible probability. �

A.1. POSTPONED SOUNDNESS PROOF DETAILS 143

Proof. We have to show that the case (x,w) 6∈ Rsym
adv occurs with negligible probability. We do

this by a case distinction on (mx,mw) 6∈ Rcomp
adv .

First, consider that it holds (mx,mw) 6∈ Rcomp
adv . The hybrid execution of Sim2 is a valid

adversary for the honest simulation-sound extractability game, because Sim2 only sends a
(prove, x, w) query to Osim if (x,w) ∈ Rcomp

honest. In this case, the protocol sends a proof z such
that an extraction-failure happens and the extraction extracts amw such that (mx,mw) 6∈ Rcomp

adv

(where mx = AgetPub(z)). Thus the adversary wins the honest simulation-sound extractability
game which can only happen with negligible probability. Thus the case (mx,mw) 6∈ Rcomp

adv

occurs with negligible probability. Therefore, in this case, it does not matter if (x,w) ∈ Rsym
adv

or not.
Now, consider the case that (mx,mw) ∈ Rcomp

adv holds. By Theorem A.1.4, it follows that
(τ(mx), τ∗(mw)) ∈ Rsym

adv with overwhelming probability. Since x = τ(mx) and w = τ∗(mw),
it follows that (x,w) 6∈ Rsym

adv can only occur with negligible probability.
Therefore a ZK-break in the execution of Sim2 can only occur with negligible probability.

Before we transfer the results to Sim, we prove a technical lemma that helps connecting Sim2

and Sim3. Especially, this lemma shows how it is possible to prove that protocol conditions,
which are formulated for the symbolic execution, hold for the hybrid execution of some simulator,
as well.

Lemma 2.4.4 (No invalid symbolic witnesses): Assume that Sim3 is DY. Then, in the hybrid
execution of Sim3, for each ZK node with arguments t1, t2, t3, t4, it holds that (t2, t3) ∈ Rsym

honest

with overwhelming probability.
The same holds for Sim if Sim is DY. �

Proof. If Sim3 is DY, then the hybrid execution of Sim3 corresponds to a symbolic execution
with overwhelming probability.

By definition of the hybrid execution, any hybrid execution is a valid symbolic execution, as
long as the simulator does not send a term in the adversary’s knowledge. Since Sim3 is DY, this
occurs only with negligible probability.

In the symbolic execution, the property (t2, t3) ∈ Rsym
honest holds by protocol condition 10.

Thus in the case that the hybrid execution corresponds to a symbolic one, it follows that
(t2, t3) ∈ Rsym

honest with overwhelming probability.
The same proof shows the statement for Sim.

Now, we will formalize the connection of the simulators and transfer the results we have
proven before. Thus, we achieve the following results: First, we show that ZK-breaks transfer
to Simf . Second, we show that all simulators are DY-style. Thus, we may use all protocol
conditions in all simulators, as we have shown in Lemma 2.4.4. Finally, we show that the node
traces of all simulators are indistinguishable.

Lemma 2.4.3 (Preservation of simulator-properties):

144 APPENDIX A. APPENDIX

(i) Let P2 and Pf denote the probability of a ZK-break in the hybrid execution of the simulator
Sim2 and Simf , respectively. Then |P2 − Pf | is negligible.

(ii) Let P and Pf denote the probability of extraction failures in the hybrid execution of the
simulator Sim and Simf , respectively. Then |P − Pf | is negligible.

(iii) The simulator Sim is Dolev-Yao style if and only if the simulator Simf is.

�

Proof. For x ∈ {1, . . . , 5, f} or x being the empty word, let ZKBreakx denote the event
that in the hybrid execution of the simulator Simx, a ZK-break occurs. The same way, we
denote the event that a simulator Simx is DY in that execution by DYx. We abbreviate
H-NodesM,Πp,Simx(k) as H-Nodesx.

To show the lemma, we will show that

(DY,H-Nodes)
C
≈ (DY1,H-Nodes1) (A.1)

(DY1,H-Nodes1)
C
≈ (DY2,H-Nodes2) (A.2)

(ZKBreak2,DY2,H-Nodes2)
C
≈ (ZKBreak3,DY3,H-Nodes3) (A.3)

(ZKBreak3,DY3,H-Nodes3)
C
≈ (ZKBreak4,DY4,H-Nodes4) (A.4)

(ZKBreak4,DY4,H-Nodes4)
C
≈ (ZKBreak5,DY5,H-Nodes5) (A.5)

(ZKBreak5,DY5,H-Nodes5)
C
≈ (ZKBreakf ,DYf ,H-Nodesf) (A.6)

This will then imply statements (i)-(iii) from the lemma. It is obvious that Dolev-Yao-ness and
ZK-breaks transfer as stated in the lemma by transitivity. But the extraction failures transfer
because the in the presence of an extraction failure each simulator immediately stops. Thus if
the extraction failures would not transfer as stated above, it would be possible to differentiate
the node traces by their length.

We will show (ZKBreak2,DY2,H-Nodes2)
C
≈ (ZKBreak3,DY3,H-Nodes3)

at the end, because we need the intermediate result to prove it.

• (DY,H-Nodes)
C
≈ (DY1,H-Nodes1)

Transforming Sim to Sim1 is done by replacing invocations of the ZK algorithms by oracle-
queries. We can replace Acrs(rN) by a (crs)-query to ONZK because N is only used inside
this crs (protocol condition 8) and the distributions of the implementation and the oracle are
the same. Since τ(c) in Sim1 not checks whether c = Acrs(rN) but whether c is the result of
some (crs)-query, the node traces have the same distribution.

The same holds for the replacement of AZK by the (prove, x, w) oracle query to ONZK. The
randomness – the fourth argument of the ZK proof – only occurs inside this proof and nowhere
else (protocol condition 3), so we can replace it by the oracle’s randomness as in the crs case.

A.1. POSTPONED SOUNDNESS PROOF DETAILS 145

By implementation condition 26, it holds that if (x,w) 6∈ Rcomp
honest the implementation, as well

as the oracle, output ⊥. So AZK and the (prove, x, w)-query return ⊥ in the same cases. In
the case that (x,w) ∈ Rcomp

honest both compute a proof of x using witness w. Thus, it holds

(DY,H-Nodes)
C
≈ (DY1,H-Nodes1).

• (DY1,H-Nodes1)
C
≈ (DY2,H-Nodes2)

In this step we replace OZK by OSim which returns a simulated proof for x if for the input
(x,w) it holds that (x,w) ∈ Rcomp

honest.

If we change both simulators to not extract the proof in case of an extraction failure, then the
H-Nodes does not change. The simulator stops after handling extraction failures in any case.
By definition of zero-knowledge these two modified cases are indistinguishable (using the fact
that the simulator and prover are only invoked if (x,w) ∈ Rcomp

honest). Thus (DY1,H-Nodes1)

and (DY2,H-Nodes2) are indistinguishable, too.

• (ZKBreak3,DY3,H-Nodes3)
C
≈ (ZKBreak4,DY4,H-Nodes4)

In this step we replace encryptions, decryptions and key-generation by an encryption-oracle
as we did for the zero-knowledge proofs in the step from Sim to Sim1. Because Sim3 does
not compute witnesses of zero-knowledge proofs anymore, nonces of encryptions are only
used once (by protocol condition 3). Nonces of keys were already only used once (by protocol
condition 1). So replacing the implementation of encryptions, decryptions and the public
key does not change the distribution of the node trace or ZK-Breaks (since we adapted τ
accordingly, cf. the replacement of Acrs in Sim1). In addition we can define β(dk(N)) := ⊥
because decryption keys are not used as input to β (by protocol condition 4 and the use of an
oracle for decrypting).

We did neither change the bitstrings that are sent to the adversary nor the way they are parsed.
So the property of DY did not change, either.

• (ZKBreak4,DY4,H-Nodes4)
C
≈ (ZKBreak5,DY5,H-Nodes5)

In the step from Sim4 to Sim5, the only change that is done is the replacement of the
encryption oracle by a fake oracle that always encrypts 0|m| instead of m. By construction of
τ the protocol execution asks only for decryptions of ciphertexts which were not generated by
the encryption oracle (since only β invokes the encryption oracle). So a run of the protocol is
a valid adversary for the CCA property where the challenger is the encryption oracle. To get
indistinguishability the adversary has to be able to use ZK-breaks, DYness and node traces to
distinguish both executions. Obviously, it is possible to use DYness and the node traces. For
the case of ZK-breaks, we have to require that Rsym

adv is efficiently decidable.

Thus replacing ENC by Ofake leads to an indistinguishable execution and hence
(ZKBreak4,DY4,H-Nodes4) and (ZKBreak5,DY5,H-Nodes5) are computationally indis-
tinguishable.

146 APPENDIX A. APPENDIX

• (ZKBreak5,DY5,H-Nodes5)
C
≈ (ZKBreakf ,DYf ,H-Nodesf)

As in the case for Sim3 and Sim4, we have the case that after removing the witnesses in Sim3

the nonces, used as randomness for signatures, are only used (by protocol condition 3) once
for signing a message.

The same holds for verification and signing keys (by protocol condition 1). Thus we can
replace signing and computation of verification/signing keys by invocations of Osig without
changing the distribution of (ZKBreak,DY,H-Nodes) (since we adopted τ accordingly, cf.
the replacement of Acrs in Sim1). In a run of the protocol β is never applied to sk(N) (by
protocol condition 5 and the use of an oracle for signing), so we can define β(sk(N)) := ⊥
without changing the distribution of (ZKBreak,DY,H-Nodes).

• (ZKBreak2,DY2,H-Nodes2)
C
≈ (ZKBreak3,DY3,H-Nodes3)

We have already proven that (DYf)
C
≈ (DY3). Together with the fact that Simf is DY

(Lemma A.1.3), it follows that Sim3 is DY. By Lemma 2.4.4, it follows that (t2, t3) ∈ Rsym
honest

for all ZK-nodes with arguments t1, . . . , t4 in a hybrid execution of Sim3 (with overwhelming
probability). Applying Lemma A.1.4 leads to (β(t2), β(t3)) ∈ Rcomp

honest for a hybrid execution
of Sim3 with overwhelming probability. The only difference between Sim2 and Sim3 is
that Sim2 checks whether (β(t2), β(t3)) ∈ Rcomp

honest. Because this check would succeed with
overwhelming probability in Sim3, it actually succeeds in Sim2.

Thus the distribution of (ZKBreak,DY,H-Nodes) is the same in Sim2 as in Sim3.

Using the preceding lemma together with the generalized DY lemma, it is easy to prove
that extraction failures during Simf ’s execution occur with negligible probability. Thus by the
preceding lemma, it follows that the same holds for Sim.

Lemma 2.4.8 (No extraction failures): In a hybrid execution of the simulator Simf holds:
An extraction failure can only occur with negligible probability. �

Proof. Assume an extraction-failure occurs with non-negligible probability. Then τ(z) is called
for a bitstring z of type zero-knowledge proof such that the symbolic extraction fails.

So z was not generated by the protocol, i.e. it was not output of the simulation oracle,
and the corresponding crs was generated by the protocol (otherwise τ would not invoke the
symbolic extraction). LetN ∈ NP be defined by crs(N) = τ(Acrs(z)). Letmx := AgetPub(z),
x := τ(mx), mw := E(mx, z, extdN)),5 w := τ(mw). Let S denote the set of T that the
protocol already sent to the simulator in this execution.

We have SymbExtr(S, x) = ⊥ by definition of extraction failures. Thus one of the
following cases occurs with non-negligible probability.

1. (x,w) 6∈ Rsym
adv

5Here, extdN is the extraction trapdoor that the simulator receives from the oracle ON
ZK by querying (extd).

A.1. POSTPONED SOUNDNESS PROOF DETAILS 147

2. S 6` w

3. (x,w) ∈ Rsym
adv and S ` w and SymbExtr(S, x) = ⊥

We prove for each case that it occurs with negligible probability leading to a contradiction
to the assumption that an extraction-failure occurs with non-negligible probability.

Case 1: ”(x,w) 6∈ Rsym
adv ”

This would be a ZK-break. Thus, this case only occurs with negligible probability
because of Theorem 2.4.6 and Theorem 2.4.3 (i).

Case 2: ”S 6` w”

By Lemma A.1.3 and since w = τ∗(mw), this case can only occur with negligible
probability.

Case 3: ”(x,w) ∈ Rsym
adv and S ` w and SymbExtr(S, x) = ⊥”

By definition, SymbExtr returns only ⊥ if there is no w such that (x,w) ∈ Rcomp
adv

and S ` w. So this case cannot occur.

The only thing, that is missing to apply Theorem 2.1.1 is to show that Sim is indistinguish-
able from an computational execution.

Lemma A.1.5. Sim is indistinguishable for M,Π, A,E and for every polynomial p.

Proof. We will first show that when fixing the randomness of the adversary and the protocol, the
node trace NodespM,A,Πp,E

in the computational execution and the node trace H-TraceM,Πp,Sim

in the hybrid execution are equal. Hence, fix the variables rN for all N ∈ NP , fix a random tape
for the adversary, and for each non-deterministic node ν fix a choice eν of an outgoing edge.

We assume that the randomness is chosen such that all bitstrings rN , Aek(rN), Adk(rN),
Avk(rN), Ask(rN), AEnc(e,m, rN), Asig(s,m, rN) , Acrs(rN), and AZK(c, x, w, rN) are all
pairwise distinct for all N ∈ R if they are well-formed.6

Note that this is the case with overwhelming probability: For terms of different types this
follows from implementation condition 2. For keys, this follows from the fact that if two
randomly chosen keys would be equal with non-negligible probability, the adversary could
guess secret keys and thus break the IND-CCA property or the strong existential unforgeability
(implementation conditions 8 and 9). For nonces, if two random nonces rN , rM would be
equal with non-negligible probability, so would encryption keys Aek(rN) and Aek(rM). For
encryptions, by implementation condition 6, the probability that AEnc(e,m, rN) for random rN
of type nonce matches any given string is negligible. Let e, e′,m,m′, r, r′ be bitstrings. For

6That means that e is of type encryption key, s of type signing key, c of type common reference string and
x,w,m ∈ {0, 1}∗ result from some evaluation of β in the execution.

148 APPENDIX A. APPENDIX

e 6= e′, it holds that AEnc(e,m, rN) 6= AEnc(e
′,m′, r′N), because Aekof returns in one case e

and in the other e′. So if AEnc(e,m, rN) = AEnc(e
′,m′, r′N), it holds e = e′. Additionally,

m = m′ because decryption, using e as argument, deterministically computes m. So the
only case that can occur is AEnc(e,m, rN) = AEnc(e,m, rN ′ . Since by protocol condition 3,
each AEnc(e,m, rN) computed by β uses a fresh nonce rN , this case occurs with negligible
probability. Analogously for signatures (implementation condition 7, protocol conditions 3
and 5) and for zero-knowledge proofs (implementation condition 20, protocol conditions 3
and 8).

Additionally, we assume that there is no extraction failure in the hybrid execution of Sim.
By Lemma 2.4.8 extraction failures do not occur in the hybrid execution of Simf . Since the
probability of an extraction failure in the hybrid execution of Sim and Simf differ only by a
negligible function (Lemma 2.4.3 (ii)), extraction failures only occur with negligible probability
in Sim. This is the only case in which the simulator aborts early.

In the following, we designate the values fi and νi in the computational execution by f ′i and
ν ′i, and in the hybrid execution by fCi and νCi . Let s′i denote the state of the adversary E in the
computational model, and sCi the state of the simulated adversary in the hybrid model.

Claim 1: In the hybrid execution, for any ∀m ∈ {0, 1}∗ : β(τ(m)) = m.

This claim follows by induction over the length of m and by distinguishing the cases
in the definition of τ . A detailed proof is in the section A.1.1.

Claim 2: In the hybrid execution, for any term t stored at a node ν, β(t) 6= ⊥.

By Definition of β, any term t with β(t) = ⊥ has a subterm of the form
ZK(t1, t2, t3, t4) with t4 6∈ N, t1 not of the form crs(N) with N ∈ N, or
(β(t2), β(t3)) 6∈ Rcomp

adv or a subterm with a similar form of encryption-, signature-
or garbage-terms. These are never generated by τ nor by the protocol.

Claim 3: For all terms t 6∈ R that occur in the hybrid execution, τ(β(t)) = t.

By induction on the structure of t and using the assumption that rN , Aek(rN),
Adk(rN), Avk(rN), Ask(rN), as well as all occurring encryptions and signatures are
pairwise distinct for all N ∈ R.

Claim 4: In the hybrid execution, at any computation node ν = νi with constructor or destruc-
tor F and arguments ν̄1, . . . , ν̄n the following holds: Let tj be the term stored at node
ν̄j (i.e., tj = f ′i(ν̄j)). Then β(evalF (t)) = AF (β(t1), . . . , β(tn)). Here the left hand
side is defined iff the right hand side is.

The proof for this claim is lengthy and thus postponed to the section A.1.2.

For given fixed randomness (see above), let ν ′i, f
′
i be the nodes and functions as in the

computational trace and νCi , f
C
i be the ones in the hybrid trace. Let s′i be the state of the

adversary before execution of the i-th node and sCi the corresponding state of the adversary in
the hybrid execution.

A.1. POSTPONED SOUNDNESS PROOF DETAILS 149

We will now show that NodespM,A,Πp,E
= H-NodesM,Πp,Sim(k).

To prove this, we show the following invariant: f ′i = β ◦ fCi and ν ′i = νCi and s′i = sCi for
all i ≥ 0 by induction on i

Base case i = 0. The adversary E is in its starting configuration,i.e. s′0 = sC0 , the node
mapping function f is totally undefined, f ′0 = fC0 = and the current node is the root of the
protocol, ν ′0 = νC0 , so the invariant is satisfied for i = 0.

Induction hypothesis: For all j ≤ i holds νj = νCj , fj = β ◦ fCj and sj = sCj .
Induction step: i→ i+ 1:
We make a case distinction by the type of the nodes:

1. If ν ′i = νCi is a computation node annotated with constructor or destructor F , we have that
f ′i+1(ν ′i) = AF (f ′i(ν̄1), . . . , f ′i(ν̄n)) = AF (β(fCi (ν̄1)), . . . , β(fCi (ν̄n))) for some nodes
ν̄s. And fCi+1(ν ′i) = fCi+1(νCi) = evalF (fCi (ν̄1), . . . , fCi (ν̄n)). From Claim 4 it follows
that β(fCi+1(ν ′i)) = f ′i+1(ν ′i) where the lhs is defined iff the rhs is. Hence β ◦ fCi+1 = f ′i+1.

By Claim 2, β(fCi+1(νCi)) is defined if fCi+1(νCi) is. Hence fCi+1(νCi) is defined iff
f ′i+1(ν ′i) = f ′i+1(β(fCi+1(νCi))) is. If fCi+1(νCi) is defined, then νCi+1 is the yes-successor
of νCi and the no-successor otherwise. If f ′i+1(ν ′i) is defined, then ν ′i+1 is the yes-successor
of ν ′i = νCi and the no-successor otherwise. Thus νCi+1 = ν ′i+1.

The adversary E is not invoked, hence s′i+1 = sCi+1. So the invariant holds for i+ 1 if ν ′i
is a computation node with a constructor or destructor.

2. If ν ′i = νCi is a computation node annotated with nonceN ∈ NP , we have that f ′i+1(ν ′i) =

rN = β(N) = β(fCi+1(ν ′i)). Hence β ◦ fCi+1 = f ′i+1. By Definition 2.1.6, ν ′i+1 is the yes-
successor of ν ′i. Since N ∈ T, νCi+1 is the yes-successor of νCi = ν ′i. Thus ν ′i+1 = νCi+1.
The adversary E is not invoked, hence s′i+1 = sCi+1. So the invariant holds for i+ 1 if ν ′i
is a computation node with a nonce.

3. If ν ′i = νCi is an input node, the adversary E in the computational execution and the
simulator in the hybrid execution is asked for a bitstring m′ or bitstring tC , respectively.
The simulator produces this string by asking the simulated adversary E for a bitstring
mC and setting tC := τ(mC). Since s′i = sCi , we have m′ = mC . Then by definition
of the computational and hybrid executions, f ′i+1(ν ′i) = m′ and fCi+1(ν ′i) = tC = τ(m′).

Thus f ′i+1(ν ′i) = m′
(∗)
= β(τ(m′)) = β(fCi+1(ν ′i)) where (∗) follows from Claim 1. Since

f ′i+1 = f ′i and fCi+1 = fC everywhere else, we have f ′i+1 = β ◦ fCi+1. Furthermore, since
input nodes have only one successor, ν ′i+1 = νCi+1. Since we fixed the random choices
of the execution, the adversaries state is s′i = sCi , and since m′ = mC , it follows that
s′i+1 = sCi+1. Thus the invariant holds for i+ 1 in the case of an input node.

4. If ν ′i = νCi is an output node, the adversary E in the computational execution gets
m′ := f ′i(ν̄1) where the node ν̄1 depends on the label of ν ′i. In the hybrid execution, the
simulator gets tC := fCi (ν̄1) and sends mC := β(tC) to the simulated adversary E. By
induction hypothesis we then have m′ = mC , so the adversary gets the same input in both

150 APPENDIX A. APPENDIX

executions. Thus s′i+1 = sCi+1. Furthermore, since output nodes have only one successor,
we have ν ′i+1 = νCi+1. And f ′i+1 = f ′i and fCi+1 = fCi , so f ′i+1 = β ◦ fCi+1. Thus the
invariant holds for i+ 1 in the case of an output node.

5. If ν ′i = νCi is a control node, the adversary E in the computational execution and the
simulator in the hybrid execution get the out-metadata l of the node ν ′i or νCi , respectively.
The simulator passes l on to the simulated adversary. Thus, since s′i = sCi , we have that
s′i+1 = sCi+1, and in the computational and the hybrid execution, E answers with the
same in-metadata l′. Thus ν ′i+1 = νCi+1. Since a control node does not modify f we have
f ′i+1 = f ′i = β ◦ fCi = β ◦ fCi+1. Hence the invariant holds for i + 1 if ν ′i is a control
node.

6. If ν ′i = νCi is a nondeterministic node, ν ′i+1 = νCi+1 is determined by eν′i = eνCi
.

Since a nondeterministic node does not modify f and the adversary is not activated,
f ′i+1 = f ′i = β ◦ fCi = β ◦ fCi+1 and si+1 = s′i+1. Hence the invariant holds for i+ 1 if
ν ′i is a nondeterministic node.

From the invariant it follows that the node trace is the same in both executions.
Since random choices with all nonces, keys, encryptions, and signatures being pairwise

distinct occur with overwhelming probability (as discussed above), the node traces of the real
and the hybrid execution are indistinguishable.

Final Soundness Proof.. Having the preceding lemmas, we prove the computational soundness
(Theorem 2.4.1).

Proof of Theorem 2.4.1. By lemma A.1.5 we get that Sim is indistinguishable for M,Π, A,E

and for every polynomial p. By Lemma A.1.3, Simf is DY which transfers to Sim by
lemma 2.4.3 (iii). So Sim is a good simulator. By Theorem 2.1.1 we finally conclude that the
implementation A is sound for every protocol as specified in the Theorem.

A.1.1 Proof of Claim 1

In this section we present a proof of claim 1 of the claims used in the indistinguishability proof.
The proofs of all other claims are similar done by structural induction.

We want to show that - in the hybrid execution of Sim - holds ∀m ∈ {0, 1}∗ : β(τ(m)) = m.

Proof. By structural induction on τ(c).

• τ(m) = N for some N ∈ NP

Then m = rN and β(τ(m)) = β(N) = rN = m.

• τ(m) = Nm

Then β(τ(m)) = β(Nm) = m

A.1. POSTPONED SOUNDNESS PROOF DETAILS 151

• τ(c) = Enc(ek(M), t, N) and c was output by β(Enc(M), t, N))

Then β(τ(c)) = β(Enc(ek(M), t, N)) = AEnc(β(ek(M)), β(t), rM). This is equal
to c since the arguments are equal (randomness of Enc is the third argument) and by
implementation condition 1 we know that AEnc is deterministic.

• τ(c) = Enc(ek(M), t, N c)

Then β(τ(c)) = β(Enc(ek(M), t, N c) = c.

• τ(c) = garbageEnc(t,N c)

Then β(τ(c)) = β(garbageEnc(t,N c) = c.

• τ(c) = ek(N) for some N ∈ NP .

Then by definition of τ , it holds c = Aek(rN) = β(ek(N)) = β(τ(c)).

• τ(c) = ek(N c).

Then β(τ(c)) = β(ek(N c)) = c.

• τ(c) = dk(N) for some N ∈ NP .

Then by definition of τ , it holds c = Adk(rN) = β(dk(N)) = β(τ(c)).

• τ(c) = dk(N c).

Then β(τ(c)) = β(dk(N c)) = c.

• τ(c) = sig(sk(M), t, N) with N,M ∈ NP , earlier output by β(sig(sk(M), t, N)).

Then holds β(τ(c)) = β(sig(sk(M), t, N)) = c As in the case of encryption we have the
same arguments and the a deterministic function, so the result has to be c again.

• τ(c) = sig(sk(M), t, N c)

Then holds β(τ(c)) = β(sig(sk(M), t, N c)) = c.

• τ(c) = garbageSig(sk(M), N c)

Then holds β(τ(c)) = β(garbageSig(sk(M), N c)) = c.

• τ(c) = vk(N)

Then by definition of τ , it holds c = Avk(rN) = β(vk(N)) = β(τ(c)).

• τ(c) = vk(N c)

Then holds β(τ(c)) = β(vk(N c)) = c.

• τ(c) = sk(N)

Then by definition of τ , it holds c = Ask(rN) = β(sk(N)) = β(τ(c)).

152 APPENDIX A. APPENDIX

• τ(c) = sk(N c)

Then holds β(τ(c)) = β(sk(N c)) = c.

• τ(c) = ZK(crs(t1), t2, t3, N) with N ∈ NP , earlier output by β(ZK(crs(t1), t2, t3, N)).

This case holds because of the determinism of the implementation AZK.

• τ(c) = ZK(crs(t1), t2, t3, N
c)

Then holds β(τ(c)) = β(ZK(crs(t1), t2, t3, N
c)) = c by definition of β.

• τ(c) = crs(N) for N ∈ NP , earlier been output by β(crs(N))

Then holds by determinism of Acrs that β(τ(c)) = β(crs(N)) = Acrs(rN) = c.

• τ(c) = crs(N c)

Then holds β(τ(c)) = β(crs(N c)) = c.

• τ(c) = garbageZK(t1, t2, N
c)

Then holds β(τ(c)) = β(garbageZK(t1, t2, N
c)) = c

• τ(c) = pair(t1, t2)

By construction of τ follows that t1 = τ(Afst(c)) and t2 = τ(Asnd(c)). By induction
hypothesis follows for c1 := Afst(c) that β(τ(c1)) = c1. The same holds for c2 :=

Asnd(c). Therefore we get

β(pair(t1, t2)) = Apair(β(t1), β(t2)) = Apair(β(τ(Afst(c))), β(τ(Asnd(c))))

= Apair(Afst(c), Asnd(c)) = c

where the last equality holds because of implementation conditions 11 and 1.

• τ(c) = string0(t)

By definition of τ follows that t = τ(c′) with c′ = Aunstring0(c) and c′ 6= ⊥. The
induction hypothesis implies that β(τ(c′)) = c′. So τ(string0(t)) = Astring0(β(t)) =

Astring0(c′) = Astring0(Aunstring0(c)) = c The last equality holds because of implemen-
tation conditions 17 and 1.

• τ(c) = string1(t)

Analogue to the case of τ(c) = string0(t).

• τ(c) = empty

Then c = Aempty() = β(empty) = β(τ(c)).

• τ(c) = garbage(N c)

Then β(garbage(N c)) = c.

A.1. POSTPONED SOUNDNESS PROOF DETAILS 153

A.1.2 Proof of Claim 4

Proof. The proof is done by induction on the trace length with a case distinction on all construc-
tors and destructors F .

1. ”F = crs”

By protocol condition 1 the first argument of this node is a nonce computation node, i.e.
t1 = N for some N ∈ NP . Therefore holds β(evalcrs(t1)) = β(crs(t1)) = Acrs(rN) =

Acrs(β(N)).

2. ”F ∈ {ek, dk, vk, sk}”
Analogous to the case F = crs.

3. ”F = ZK”

A node annotated with ZK has as t1 = crs(N1) for some N1 ∈ NP and t4 = N2 for
N2 ∈ NP (protocol conditions 8 and 3). Thus, we have:

AZK(β(t1), β(t2), β(t3), β(t4)) = AZK(Acrs(rN1), β(t2), β(t3), rN2)

= β(evalZK(t1, t2, t3, t4))

4. ”F = getPub”

If the argument t is neither of the form ZK(t1, t2, t3, t4) nor garbageZK(t1, t2, t3) then
β(getPub(t)) = ⊥ and AgetPub(β(t)) = ⊥, too. So first consider t = ZK(t1, t2, t3, t4).
Then, by protocol conditions 3 and 8 and by definition of τ , it follows that t1 has the form
crs(u1) with u1 ∈ N and t4 ∈ N.

Thus we have β(evalgetPub(ZK(crs(u1), t2, t3, t4))) = β(t2).

Case 1: t4 = N ∈ NP

Then it holds that AgetPub(β(ZK(crs(u1), t2, t3, N))) =

AgetPub(AZK(Acrs(rt1), β(t2), β(t3), rN)) = β(t2) where the last equal-
ity holds because of implementation condition 27.

Case 2: t4 = Nm ∈ NE

Then we have AgetPub(β(ZK(crs(t1), t2, t3, N
m))) = AgetPub(m) where

τ(m) = ZK(crs(t1), t2, t3, N
m) and τ(AgetPub(m)) = t2 by definition of

τ . By applying β on both sides, it follows that β(t2) = β(τ(AgetPub(m))) =

AgetPub(m) where the last equality holds because of Claim 1.

Now, consider the case that t = garbageZK(t1, t2, t3). By protocol condition 2, it
follows that t was generated via τ . Thus, there is a z ∈ {0, 1}∗ such that t3 = N z

and t2 = τ(AgetPub(z)). Therefore, it holds that AgetPub(β(garbageZK(t1, t2, t3))) =

AgetPub(z)
(∗)
= β(τ(AgetPub(z))) = β(t2). Here, the equality (∗) holds because of

Claim 1.

154 APPENDIX A. APPENDIX

5. ”F = verifyZK”

If β(t2) has not the type zero-knowledge proof, then the left hand side is ⊥ by definition
of β, and the right hand side is ⊥ by implementation condition 22.

Therefore consider t2 to be of the form ZK(u1, u2, u3, u4) or garbageZK(u1, u2, u3).
Additionally has to hold that t1 = u1 and that by protocol condition 9 t1 is of the form
crs(N1) for some N1 ∈ NP . Consider the following subcases:

(a) t2 = ZK(crs(N1), u2, u3, u4) with u4 ∈ NP .

Then u4 has the form N2 for N2 ∈ NP by protocol conditions 8 and 3. By
Theorem 2.4.4 and the fact that Sim is DY (Lemma A.1.3 and 2.4.3 (i)), it holds
that the proof is, valid, more precisely (u2, u3) ∈ Rsym

honest. Therefore, it follows
evalverifyZK

(t1, t2) = t2. Thus, it holds β(t2) = AZK(Acrs(rN1), β(u2), β(u3), rN2).

By Theorem A.1.4 follows (β(u2), β(u3)) ∈ Rcomp
honest, therefore – by completeness

of the zero-knowledge proof system – this gives a correct proof. Thus verification
succeeds, and therefore by implementation condition 21 AverifyZK

(β(t1), β(t2)) =

β(t2).

(b) t2 = ZK(crs(N1), u2, u3, u4) with u4 ∈ NE .

Then u4 = N z with τ(z) = t2 and by definition of τ holds
z = AverifyZK

(Acrsof(z), z)
∗
= AverifyZK

(β(τ(Acrsof(z))), β(τ(z))) =

AverifyZK
(β(crs(N1)), β(t2)) = AverifyZK

(β(t1)), β(t2)), on the other hand
β(evalverifyZK

(t1, t2))
∗∗
= β(t2)

∗
= β(τ(z)) = z, where in both cases (∗) hold

because of claim 1. The equality (∗∗) requires that (u2, u3) ∈ Rsym
adv . This holds

because t2 was constructed by τ and therefore u2 was constructed by symbolic
extraction (if an extraction failure has occurred, we would already have stopped
earlier) s.t. (u2, u3) ∈ Rsym

adv .

(c) t2 = garbageZK(crs(N1), u2, u3).

By protocol condition 2 holds that t2 was produced by τ . Thus u3 = N z with
τ(z) = t2. Because u1 = t1 = crs(N1) for N1 ∈ NP follows by definition of
τ that ⊥ = AverifyZK

(Acrsof(z), z) = AverifyZK
(β(t1), β(t2)) (by implementation

condition 21). By definition of verifyZK follows that evalverifyZK
(t1, t2) = ⊥ and

therefore β(evalverifyZK
(t1, t2)) = ⊥, too.

6. ”F = iszk”

If t1 is not of the form ZK(crs(N1), u1, u2, N2) or garbageZK(u1, u2, N1) withN1, N2 ∈
N then β(t1) is not of type zero-knowledge proof. Therefore Aiszk(β(t1)) = ⊥ by imple-
mentation condition 18. On the other hand holds β(evaliszk(t1)) = β(⊥) = ⊥.

So let t1 be of the form ZK(crs(N1), u1, u2, N2) or garbageZK(u1, u2, N1) withN1, N2 ∈
N. Then β(eval(iszk(t1))) = β(t1) and Aiszk(β(t1)) = β(t1) by implementation condi-
tion 18 because β(t1) has type zero-knowledge proof.

A.1. POSTPONED SOUNDNESS PROOF DETAILS 155

7. ”F ∈ {isenc, issig, isek, isvk, iscrs}”
Analogue to the case F = iszk.

8. ”F = crsof”

If t1 is not of the form ZK(u1, u2, u3, N) or garbageZK(u1, u2, N) with N ∈ N. Then
evalcrsof(t1) = ⊥ and β(t1) is not of type zero-knowledge proof, therefore by implemen-
tation condition 24 holds Acrsof(β(t1)) = ⊥.

In the other both cases holds β(evalcrsof(t1)) = β(u1). Consider the following subcases:

(a) t1 = ZK(u1, u2, u3, N) with N ∈ NP .
So the term was generated by the protocol, therefore - by protocol con-
dition 8 - holds that u1 = crs(M) for some M ∈ NP . Thus holds
Acrsof(β(t1)) = Acrsof(AZK(Acrs(rM), β(u2), β(u3), rN))

∗
= Acrs(rM) =

β(crs(M)) = β(evalcrsof(t1)) where (*) holds by implementation condition 23.

(b) t1 = garbageZK(u1, u2, N).
By protocol condition 2 follows that t1 was constructed by τ , i.e. t1 =

garbageZK(u1, u2, N
z) for some z ∈ {0, 1}∗ of type zero-knowledge and

u1 = τ(Acrsof(z)). Thus we have: β(u1) = β(τ(Acrsof(z)))
∗
= Acrsof(z) =

Acrsof(β(t1)) where the last equality holds by definition of β and (*) holds by claim
1.

(c) t1 = ZK(u1, u2, u3, N
z) with N z ∈ NE .

This case is analogue to the case t1 = garbageZK.

9. ”F ∈ {ekof, vkof}”
Analogue to the case F = crsof .

10. ”F = Enc”

By protocol condition 3 holds that t3 = N for N ∈ NP . If t1 is of the form ek(u),
then β(Enc(t1, t2, t3)) = AEnc(β(t1), β(t2), rN) = AEnc(β(t1), β(t2), β(t3)), because
β(N) = rN .

So let t1 be not of the form ek(u). Thus β(Enc(t1, t2, t3)) = ⊥ and
AEnc(β(t1), β(t2), β(t3)) = ⊥, because β(t1) is not of type encryption key and im-
plementation condition 19.

11. ”F = Dec”

By protocol condition 6, t1 = dk(N) with N ∈ NP . We distinguish the following cases
for t2:

(a) t2 = Enc(ek(N), u2,M) with M ∈ NP

Then ADec(β(t1), β(t2)) = ADec(Adk(rN), AEnc(Aek(N), β(u2), rM)) = β(u2)

by implementation condition 12. Furthermore β(Dec(t1, t2)) = β(u2) by definition
of Dec.

156 APPENDIX A. APPENDIX

(b) t2 = Enc(ek(N), u2, N
c)

Then t2 was produced by τ and hence c is of type ciphertext and
τ(ADec(Adk(rN), c)) = u2. Then by Claim 1, ADec(Adk(rN), c) = β(u2) and
hence ADec(β(t1), β(t2)) = ADec(Adk(rN), c) = β(u2) = β(Dec(t1, t2)).

(c) t2 = Enc(u1, u2, u3) with u1 6= ek(N)

As shown above (case F = ekof), Aekof(β(Enc(u1, u2, u3)) =

β(ekof(Enc(u1, u2, u3)) = β(u1). Moreover, from Claim 3,
Aekof(β(Enc(u1, u2, u3)) = β(u1) 6= β(ek(N)) = Aek(rN). Thus by implementa-
tion condition 4, ADec(β(t1), β(t2)) = ADec(Adk(rN), β(Enc(u1, u2, u3))) = ⊥.
Furthermore, Dec(t1, t2) = ⊥ and thus β(Dec(t1, t2)) = ⊥.

(d) t2 = garbageEnc(u1, N
c)

Assume that m := ADec(β(t1), β(t2)) = ADec(Adk(rN), c) 6= ⊥. By imple-
mentation condition 13 this implies Aekof(c) = Aek(rN) and thus τ(Aekof(c)) =

τ(Aek(rN)) = ek(N). By protocol condition 2, t2 has been produced by τ ,
i.e., t2 = τ(c). Hence c is of type ciphertext. Then, however, we would have
τ(c) = Enc(ek(N), τ(m), N c) 6= t2. This is a contradiction to t2 = τ(c), so the
assumption that ADec(β(t1), β(t2)) 6= ⊥ was false. So ADec(β(t1), β(t2)) = ⊥ =

β(⊥) = β(Dec(t1, garbageEnc(u1, N
c))).

(e) All other cases

Then β(t2) is not of type ciphertext. By implementation condition 13,
Aekof(β(t2)) = ⊥. Hence Aekof(β(t2)) 6= Aek(rN) and by implementation condi-
tion 4, ADec(β(t1), β(t2)) = ADec(Adk(rN), β(t2)) = ⊥ = β(Dec(t1, t2)).

12. ”F = sig”

By protocol conditions 3 and 7 we have that t1 = sk(N) and t3 = M for N,M ∈ NP .
Then β(sig(t1, t2, t3)) = Asig(Ask(rN), β(t2), rM) = Asig(β(sk(N)), β(t2), β(M)) =

Asig(β(t1), β(t2), β(t3)).

13. ”F = verifysig”

We distinguish the following subcases:

(a) ”t1 = vk(N) and t2 = sig(sk(N), u2,M) with N,M ∈ NP ”

Then Averifysig
(β(t1), β(t2)) = Averifysig

(Avk(rN), Asig(Ask(rN), β(u2), rM))
∗
=

β(u2) = β(verifysig(t)) where (∗) uses implementation condition 15.

(b) ”t2 = sig(sk(N), u2,M) and t1 6= vk(N) with N,M ∈ NP ”

By Claim 3, β(t1) 6= β(vk(N)) Furthermore Averifysig
(β(vk(N)), β(t2)) =

Averifysig
(β(t1), Asig(Ask(rN), β(u2), rM))

∗
= β(u2) 6= ⊥. Hence with imple-

mentation condition 16, Averifysig
(β(t1), β(t2)) = ⊥ = β(⊥) = verifysig(t1, t2).

(c) ”t1 = vk(N) and t2 = sig(sk(N), u2,M
s)”

A.1. POSTPONED SOUNDNESS PROOF DETAILS 157

Then t2 was produced by τ and hence s is of type signature with τ(Avkof(s)) =

vk(N) and m := Averifysig
(Avkof(s), s) 6= ⊥ and u2 = τ(m). Hence with Claim

1 we have m = β(τ(m)) = β(u2) and β(t1) = β(vk(N)) = β(τ(Avkof(s))) =

Avkof(s). Thus Averifysig
(β(t1), β(t2)) = Averifysig

(Avkof(s), s) = m = β(u2).
And β(verifysig(t1, t2)) = β(verifysig(vk(N), sig(sk(N), u2,M

s))) = β(u2).

(d) ”t2 = sig(sk(N), u2,M
s) and t1 6= vk(N)”

As in the previous case, Averifysig
(Avkof(s), s) 6= ⊥ and β(vk(N)) = Avkof(s).

Since t1 6= vk(N), by Claim 3, β(t1) 6= β(vk(N)) = Avkof(s). From implementa-
tion condition 16 andAverifysig

(Avkof(s), s) 6= ⊥, we haveAverifysig
(β(t1), β(t2)) =

Averifysig
(β(t1), s) = ⊥ = β(⊥) = β(verifysig(t1, t2)).

(e) ”t2 = garbageSig(u1, N
s)”

Then t2 was produced by τ and hence s is of type signature and either
Averifysig

(Avkof(s), s) = ⊥ or τ(Avkof(s)) is not of the form vk(. . .). The latter
case only occurs if Avkof(s) = ⊥ as otherwise Avkof(s) is of type verification key
and hence τ(Avkof(s)) = vk(. . .). Hence in both cases Averifysig

(Avkof(s), s) = ⊥.
If β(t1) = Avkof(s) then Averifysig

(β(t1), β(t2)) = Averifysig
(Avkof(s), s) = ⊥ =

β(verifysig(t1, t2)). If β(t1) 6= Avkof(s) then by implementation condition 16,
Averifysig

(β(t1), β(t2)) = Averifysig
(β(t1), s) = ⊥. Thus in both cases, with

verifysig(t1, t2) = ⊥ we have Averifysig
(β(t1), β(t2)) = ⊥ = β(verifysig(t1, t2)).

(f) All other cases

Then β(t2) is not of type signature, hence by implementation condition 5,
Avkof(β(t2)) = ⊥, hence β(t1) 6= Avkof(β(t2)), and by implementation condi-
tion 16 we have Averifysig

(β(t1), β(t2)) = ⊥ = β(verifysig(t1, t2)).

14. ”F ∈ {pair, fst, snd, string0, unstring0, string1, unstring1, empty}” The claim fol-
lows directly from the definition of β.

15. ”F = equals”

If t1 = t2 then holds β(equals(t1, t2)) = β(t1) = Aequals(β(t1), β(t1)) =

Aequals(β(t1), β(t2)). So let t1 6= t2. By Claim 3 holds ti = τ(β(ti)), so β(t1) 6= β(t2),
because otherwise t1 = t2. But then holds Aequals(t1, t2) = ⊥ = β(equals(t1, t2))

16. ”F ∈ {garbage, garbageEnc, garbageSig, garbageZK} ∪NE”

By protocol condition 2, the constructor F does not occur in the protocol.

