
Modeling and Formal Verification of Probabilistic

Reconfigurable Systems

Dissertation

zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen

Fakultät der Universität des Saarlandes

&

Tunisia Polytechnic School

University of Carthage

von

Oussama KHLIFI

Saarbrücken

2020

Tag des Kolloquiums: 10. Juli 2020

Dekan: Prof. Dr. rer. nat. Guido Kickelbick

Berichterstatter: Prof. Dr.-Ing. Georg Frey

 Prof. Dr.-Ing. Stefan Seelecke

 Prof. Mohamed Abid

Akad. Mitglied: Dr.-Ing. Emanuele Grasso

Weitere Mitglieder: Prof. Dr. Mohamed Khalgui

 Dr. Olfa Mosbahi

Vorsitz: Prof. Dr.-Ing. Matthias Nienhaus

1

Abstract

In this thesis, we propose a new approach for formal modeling and verification of

adaptive probabilistic systems. Dynamic reconfigurable systems are the trend of all future

technological systems, such as flight control systems, vehicle electronic systems, and

manufacturing systems. In order to meet user and environmental requirements, such a

dynamic reconfigurable system has to actively adjust its configuration at run-time by

modifying its components and connections, while changes are detected in the

internal/external execution environment. On the other hand, these changes may violate the

memory usage, the required energy and the concerned real-time constraints since the

behavior of the system is unpredictable. It might also make the system's functions

unavailable for some time and make potential harm to human life or large financial

investments. Thus, updating a system with any new configuration requires that the post

reconfigurable system fully satisfies the related constraints. We introduce GR-TNCES

formalism for the optimal functional and temporal specification of probabilistic

reconfigurable systems under resources constraints. It enables the optimal specification of a

probabilistic, energetic and memory constraints of such a system. To formally verify the

correctness and the safety of such a probabilistic system specification, and the non-violation

of its properties, an automatic transformation from GR-TNCES models into PRISM models

is introduced. Moreover, a new approach XCTL is also proposed to formally verify

reconfigurable systems. It enables the formal certification of uncompleted and

reconfigurable systems. A new version of the software ZIZO is also proposed to model,

simulate and verify such GR-TNCES model. To prove its relevance, the latter was applied to

case studies; it was used to model and simulate the behavior of an IPV4 protocol to prevent

the energy and memory resources violation. It was also used to optimize energy

consumption of an automotive skid conveyor.

Keywords: Reconfiguration, GR-TNCES, Petri net, Modeling, Simulation, Model

checking.

2

Abstrakt

In dieser Arbeit wird ein neuer Ansatz zur formalen Modellierung und

Verifikation dynamisch rekonfigurierbarer Systeme vorgestellt. Dynamische

rekonfigurierbare Systeme sind in vielen aktuellen und zukünftigen Anwendungen,

wie beispielsweise Flugsteuerungssystemen, Fahrzeugelektronik und

Fertigungssysteme zu finden. Diese Systeme weisen ein probabilistisches,

adaptives Verhalten auf. Um die Benutzer- und Umgebungsbedingungen

kontinuierlich zu erfüllen, muss ein solches System seine Konfiguration zur

Laufzeit aktiv anpassen, indem es seine Komponenten, Verbindungen zwischen

Komponenten und seine Daten modifiziert (adaptiv), sobald Änderungen in der

internen oder externen Ausführungsumgebung erkannt werden (probabilistisch).

Diese Anpassungen dürfen Beschränkungen bei der Speichernutzung, der

erforderlichen Energie und bestehende Echtzeitbedingungen nicht verletzen. Eine

nicht geprüfte Rekonfiguration könnte dazu führen, dass die Funktionen des

Systems für einige Zeit nicht verfügbar wären und potenziell menschliches Leben

gefährdet würde oder großer finanzieller Schaden entstünde. Somit erfordert das

Aktualisieren eines Systems mit einer neuen Konfiguration, dass das

rekonfigurierte System die zugehörigen Beschränkungen vollständig einhält. Um

dies zu überprüfen, wird in dieser Arbeit der GR-TNCES-Formalismus, eine

Erweiterung von Petrinetzen, für die optimale funktionale und zeitliche

Spezifikation probabilistischer rekonfigurierbarer Systeme unter

Ressourcenbeschränkungen vorgeschlagen. Die entstehenden Modelle sollen über

probabilistische model checking verifiziert werden. Dazu eignet sich die etablierte

Software PRISM. Um die Verifikation zu ermöglichen wird in dieser Arbeit ein

Verfahren zur Transformation von GR-TNCES-Modellen in PRISM-Modelle

beschrieben. Eine neu eingeführte Logik (XCTL) erlaubt zudem die einfache

Beschreibung der zu prüfenden Eigenschaften. Die genannten Schritte wurden in

einer Softwareumgebung für den automatisierten Entwurf, die Simulation und die

formale Verifikation (durch eine automatische Transformation nach PRISM)

umgesetzt. Eine Fallstudie zeigt die Anwendung des Verfahren.

3

4

5

LIST OF FIGURES

Figure 1 Statechart example 13

Figure 2 Timed Automaton Example 14

Figure 3 A composite module of an NCES 15

Figure 4 Schematic view of the model-checking approach, [Baier 2008] 21

Figure 5 Characteristics of Model Checking, adapted from [Baier 2008] 22

Figure 6 Example of a program in PRISM 23

Figure 7 Sustainable energy hierarchy, [Sustainable 2014] 24

Figure 8 CAD model of the skid conveyor 25

Figure 9 Example of Public Network 26

Figure 10 Macro-step, micro-step 31

Figure 11 Example of a GR-TNCES architecture 32

Figure 12 Skid conveyor system at ZeMA. 36

Figure 13 GR-TNCES System model 37

Figure 14 Simulation step 44

Figure 15 High Probabilistic Simulation 45

Figure 16 Low Probability Simulation 46

Figure 17 Algorithm of Average Probability Simulation 47

Figure 18 Energy and Memory simulation. 48

Figure 19 Example of a System Model. 50

Figure 20 Component of a Module. 50

Figure 21 Example of ZIZO-PRISM Transformation 52

Figure 22 ZIZO-PRISM Transformation Algorithm 52

Figure 23 Reconfigurable railway network structure 55

Figure 24 New Verification Approach 56

Figure 25 ILTS of the railway model 57

6

Figure 26 Degradation approach 61

Figure 27 Main window of ZIZO1.0. 64

Figure 28 Packages of ZIZO1.1. 65

Figure 29 Package Components 67

Figure 30 Module Example. 69

Figure 31 Control system of the skid conveyor. 70

Figure 32 Proposed Transport Model. 71

Figure 33 Model on motors. 72

Figure 34 Model of the PLC. 72

Figure 35 Standard system’s model. 73

Figure 36 Optimization of energy consumption. 74

Figure 37 Devices network 75

Figure 38 Memory warning message 77

Figure 39 Curves for memory and energy consumption 77

Figure 40 PRISM code of ZeroConf protocol mode. 78

Figure 41 Probabilistic Property. 79

Figure 42 Simulation at step 334. 80

7

LIST OF TABLES

Table 1 Comparison Table 40

Table 2 Syntax of PRISM symbols 51

Table 3 ZIZO-PRISM Correspondence 51

Table 4 Links Description 66

8

9

LIST OF SYMBOLS AND ABBREVIATIONS

RDECS: Reconfigurable Discrete Event Control System

PRDECS: Probabilistic Reconfigurable DECS

NCES: Net Condition/Event System

TNCES: Timed Net Condition/Event System

R-TNCES: Reconfigurable Timed Net Condition/Event System

GR-TNCES: Generalized Reconfigurable Timed Net Condition/Event System

IPV4: Internet Protocol Version 4

RMS: Reconfigurable Manufacturing System

CTL: Computation Tree Logic

ECTL: Extended Computation Tree Logic

TCTL: Timed Computation Tree Logic

PCTL: Probabilistic Computation Tree Logic

XCTL: X Computation Tree Logic

CPN: Coloured Petri Nets

ZeMA: Zentrum für Mechatronik und Automatisierungstechnik

WSN: Wireless Sensor Network

OS: Operating System

RSML: Requirements State Machine Language

ViVe: Visual Verification

MDP: Markov Decision Processes

PTA: Probabilistic Timed Automata

LTL: Linear Time Logic

PCTL*: which uses both PCTL and LTL

CSL: Continuous Stochastic Logic

10

DTMC: Discrete-Time Markov Chains

CTMC: Continuous Time Markov Chains

MTBDD: Multi-Terminal Binary Decision Diagram

trig: a trigger event

cond: an optional guarding condition

acts: a possibly empty list of action events

x: a clock

y: a clock

P: non-empty finite set of places

T: non-empty finite set of transitions

F: a set of flow arcs

CN: a set of conditions

EN: a set of events

Cin : a set of condition inputs

Ein : a set of event inputs

Cout : a set of condition outputs

Eout: a set of event outputs

Bc : is a set of condition input arcs in a NCES module

Be : is a set of event input arcs in a NCES module

Cs : is a set of condition output arcs,

Ds: is a set of event output arcs,

m0 : is the initial marking

w, eft , lft : are a given integer

Ψ : is input/output structure of TNCES module

DR: represents the minimum time interval to fire a token

DL: represents the maximum time interval to fire a token

11

D0 : is the initial set of the clocks

R: The control module consisting of a set of reconfiguration functions R={r1,...,rn}

B: is the behavior module

DC: is a superset of time constraints on output arcs

V: a function which maps an event-processing mode for every transition

W: a function which maps a weight to a flow arc

Z: is a finite set of states

E: is a finite set of transitions between states

ϕ: a CTL formula.

M: a Kripke structure

f: a formula of temporal logic

s: a states s of M

ARP: Address Resolution Protocol

GARP: Gratuitous ARP

QW: is the probability on the arcs

TN: the set of all system net structures

r: a reconfiguration function

•r: original RTNCES before applying the reconfiguration function r

r•: source RTNCES after applying the reconfiguration function r

Cond: The precondition of r

Q: represents the probability to reach each TNCES branch.

E0’: The energy requirements of the chosen probabilistic RTNCES scenario,

M0’: The memory requirements of the chosen probabilistic RTNCES scenario,

S: the structure modification instruction of the reconfiguration scenario.

X: the state processing function before and after r

ß: a TNCES

12

Cost TNCES: the needed resources by this TNCES.

RMax : the most probabilistic reconfiguration scenario

Cost TNCESMax : the resources required by the most probabilistic reconfigurable scenarios.

C: is a set of macro-steps

In: the initial standard configuration

Rec: a reconfiguration function

I: set of initial states

var, var': a variable

src(t) : the source local state

dst(t) : destination local state

evt(t) : trigger event

cond(t) : guarding condition,

time(t) : the firing time interval

mode(t) : the firing mode{AND, OR}

prob(t) : the firing probability

curr(t): the current local state of the system

m: micro state of the system

microm : the progress of the system at run-time process

Macro: represents the macro-step

RTNski: skid conveyor system

Bskid: Behavioral module of the skid

Rskid: Control module of the skid

Eskid: energy reserve of the skid

Mskid: Memory reserve of the skid

EN1: external event to activate Rec1

EN2: external event to activate Rec2

13

14

Inhalt

Introduction 2

1.1 Context 2

1.2 Problems 4

1.3 Contribution 4

1.4 Outline 6

1.5 Publications 6

1.6 Collaboration 7

State of the art 9

2.1 Probabilistic Reconfigurable Systems under Resources Constraints 9

2.1.1 Probabilistic Reconfigurable Systems 9

2.1.2 Energy and Memory Resources 10

2.2 Modeling of Discrete Event Systems 12

2.2.1 Net Condition/Event Systems 14

2.2.2 Timed Net Condition/Event Systems 15

2.2.3 Reconfigurable Timed Net Condition/Event System 16

2.2.4 Statecharts 12

2.2.5 Timed Autamata 13

2.2.6 Tools Modeling Petri Nets 17

2.3 Temporal Logic 17

2.3.1 Computation Tree Logic 18

2.3.2 Extended Computation Tree Logic 18

2.3.3 Timed Computation Tree Logic 19

2.3.4 Probabilistic Computation Tree Logic 19

2.4 Formal Verification 20

2.4.1 Model Checking 20

2.4.2 PRISM Model Checker 22

2.5 Case Studies 23

2.5.1 Automotive Transport System 23

2.5.2 IPV4 ZeroConf 25

2.6 Summary 27

Modeling and Specification 29

3.1 Introduction 29

3.2 GR-TNCES 29

3.2.1 Motivation 29

3.2.2 Formalization 29

3.2.3 Dynamics of GR-TNCES 31

3.3 Specification Approach 33

3.3.1 Motivation 33

3.3.2 System Specification 33

15

3.4 Case Study: Skid Conveyor 35

3.4.1 Description 35

3.4.2 Specification 36

3.5 Discussion 40

3.6 Summary 41

Simulation and Formal Verification 44

4.1 Introduction 44

4.2 Simulation 44

4.2.1 Probabilistic Simulation 45

4.2.2 Energy Simulation 46

4.2.3 Memory Simulation 47

4.3 Formal Verification 48

4.3.1 Formal verification: Export to PRISM 49

4.3.2 New Verification Approach 53

4.3.3 Incomplete Labeled Transition System 56

4.3.4 XCTL Model Checker 58

4.3.5 Marking Algorithms 59

4.3.6 Degraded Verification Mode 60

4.3.7 Discussion 61

4.4 Summary 62

ZIZO1.1: New Environment for Modeling, Simulation and Verification of

APDECS 64

5.1 Introduction 64

5.2 New Environment ZIZO1.1 64

5.2.1 ZIZO1.0 64

5.2.2 New Version of ZIZO: Architecture 65

5.2.3 Implementation 67

5.2.4 System Modeling and Simulation 68

5.3 Case Study 1: Skid Conveyor System 69

5.3.1 Structure 69

5.3.2 System Modeling 70

5.3.3 Simulation and Optimization 73

5.3.4 Discussion 74

5.4 Case Study 2: IPV4 ZeroConf 74

5.4.1 Principles and Challegnes 74

5.4.2 IPV4 ZeroConf: Modeling 75

5.4.3 IPV4 ZeroConf: Simulation 76

5.4.4 IPV4 ZeroConf: Formal Verification 77

5.5 Summary 80

Conclusion and Perspectives 82

6.1 Context 82

16

6.2 Problems 82

6.3 Output and Originalities 83

6.4 Tool 83

6.5 Perspectives 84

ACKNOWLEDGEMENTS 85

REFERENCES 86

1

Chapter 1
Introduction

Contents
1.1 Context……………………………………………………………………………........ 2

1.2 Problems………………………………………………………………………............. 4

1.3 Contribution………………………………………………………………………….. 4

1.4 Outline……………………………………………………………………………….... 6

1.5 Publications…………………………………………………………………………... 6

1.6 Collaboration…………………………………………………………………………. 7

2

INTRODUCTION

Reconfigurability is an expected feature of all future technological systems since it can

increase system flexibility and reliability and decrease time cost in developing new

products. These systems are man-made and rely on complex automatic control technologies

and they are always considered as reconfigurable discrete event control systems (RDECS).

This thesis reports the modeling, simulation and formal verification [Tong 2017] [Preuße

2012] of probabilistic reconfigurable DECS (PRDECS) based on the formalism Net

Condition/Event System (NCES) [Hanisch 1999] which is a modular extension of Petri nets

[Genter 2007], [Zhang 2017], [Cong 2017] and [Ma 2008]. As the beginning of a dissertation,

this chapter introduces the study object, state of the art on the topic, and the organization of

this dissertation.

1.1 Context

Recently, the need for reconfigurable manufacturing systems comes from unpredictable

market changes that are occurring increasingly. These changes are driven by aggressive

economic competition on a global scale. It includes: increasing frequency introduction of

new products, changing the existing products, instable demand and government regulations

(safety and environment), and changes in process technology [Koren 1999]. To stay

competitive in this environment; industrials should be able to react to changes rapidly and

cost-effectively. Moreover, the manufacturing lead-time can be also reduced through the

rapid design of systems that are created from modular components, or by the

reconfiguration [Wang 2015], [Wang 2016] and [Salem 2014] of an existing system to

produce new products. Thus, the challenge of coping with large fluctuations in product

demand cannot be solved with dedicated lines that are not scalable. Moreover, the available

production capacity is not fully used, e.g., a research study carried out on a manufacturer of

components for the car industry has shown that the average utilization of the transport lines

available was only 53% [Koren 1999]. The reason for this low utilization is that some

products being used at the early stages or at the end of their life cycle are needed in low

quantities. Even products in the maturity phase do not always reach the production

volumes predicted at the design time of the dedicated manufacturing line [Koren 1999].

Reconfigurability is defined as the ability to repeatedly change and rearrange the

components of a system in a cost-effective way. This concept is presented through its

application in computing, automated assembly and robotics [Zhang 2015]. More recently,

with the development of information technologies, dynamic reconfigurability has begun to

draw more and more attention in industrial and academic communities, due to increased

safety and reliability demands beyond what a conventional control system can offer.

Dynamic reconfigurable systems are no longer limited to high-end systems such as

aerospace and nuclear power systems. Common products, such as automobiles, are

3

increasingly dependent on microelectronic/mechatronic systems, onboard communication

networks, and software, requiring new techniques for achieving dynamic reconfigurability.

The objectives of dynamic reconfigurations [Hamid 2010] are not limited to fault tolerance

but also to actively adjust system configurations to adapt to frequently changed user

requirements or environment [Zhang 2015], [Schlegel 2004].

A Reconfigurable Manufacturing System (RMS) [Koren 1999] is designed to deal with

various changes in the structure [Chen 2014], as well as in the hardware and software

components, in order to quickly adjust the production capacity and functionality [Ben Salem

2016]. A reconfiguration scenario is any automatic run-time operation that adds/removes

hardware/software components in the system [Salem 2014]. It can also modify the

connections between them and change the states in response to errors or satisfying

unpredictable user requirements. It is also the qualitative changes in the structure,

functionality, and algorithms of the control systems [Dumitrache 2000]. It is due to changes

of user requirements, the controlled system or of the environment the system behaves

within [Ben Salem 2016]. Adaptive systems have been deeply studied over the last decade as

a means for developing dependable applications, always more flexible and dynamic.

Adaptive probabilistic systems are able to modify their behaviors to cope with unpredictable

significant changes at runtime such as component failures. A probabilistic system [Forejt

2011] is one in which the occurrence of events/conditions signals cannot be predicted in

advance. A reconfiguration scenario in a Petri net model [Tong 2016] [Wu 2012a] could be

introduced as: (i) any addition/removal of places, (ii) any addition/removal of transitions,

and (iii) any update of marking. The system can be specified by different sub-TNCESs

defining different possible behaviors/scenarios to be followed under well-defined

events/conditions signals [Khalgui 2011].

Computing and control systems have to adapt to systems’ changing conditions in order to

fulfill new demanding requirements. Reconfiguration is often a major issue for some critical

systems and other intelligent systems since it can make the system unstable or violate its

requirements [Khlifi 2018a]. Thus, the new configuration should fully satisfy the expected

requirements such as the energy, memory resources, real-time constraints [Gherbi 2006],

[Kopetz 2003] and functional safety i.e., a part of our work try to focus on: (i) how can we

check if the system specification satisfies the available energy and memory constraints after

any unpredictable reconfiguration? (ii) How can we guarantee the non-violation of the

resources after applying the most probabilistic scenario or the lowest probabilistic scenario?

(iii) How can we formally prove the correctness of a reconfigurable or an incomplete system

specification? In general, all the system requirements can be reduced to two general

properties: functional and temporal correctness [Khlifi, 2015]. These can be further split up

into two corresponding questions: Will the system respond to any input change with the

correct output change (value correctness)? And will it do so within the correct time bounds

(temporal correctness)? [Khlifi, 2015].

4

1.2 Problems

The development of safe distributed reconfigurable control systems is not a trivial activity

because a failure can be critical for the safety of human beings, e.g., air and railway traffic

control [Hanisch 1997]. These systems also should be easily modified and extended after any

evolution of the environment within the system behaves. Moreover, each reconfiguration

scenario should meet energy, memory and real time constraints since the system could

violate its resources during run-time process which lead to a blocking situation and

dangerous effects.

 The first problem of this thesis is to extend the formalism R-TNCES, which is not able

to specify probabilistic systems and express energy and memory constraints, i.e., we

extend it with new solutions for optimal specification and control of predictable as

well as unpredictable behaviors and try to cover the problem of memory and energy

specification. More precisely how to enable the modeling of probabilistic behavior,

energy and memory resources using R-TNCES formalism.

 The second reveals the problem of formal verification of reconfigurable properties;

i.e., how can we formally certify such a system with the functional properties that

change during run-time operation because the current verification approach cannot

deal with reconfigurable properties.

 The third focuses on the technical part of the previous theoretical issues; i.e., we want

to present a complete environment to model and verify probabilistic reconfigurable

systems running under limited energy and memory resources.

1.3 Contribution

This thesis focuses on modeling, simulation and formal verification of probabilistic adaptive

systems running under resources and real-time constraints. The contributions consist on

presenting a complete approach running from system specification, simulation to formal

verification. The following organizational chart illustrates the link between the different

contribution parts: (i) we started by presenting a new extension of the formalism R-TNCES

and a new based specification approach. It enables the specification and supervision of

probabilistic systems under resources constraints. This contribution is applied later to an

automotive transport system. (ii) The next focus is the verification part: a new algorithm for

probabilistic simulation of system behavior and the energy and memory resources

supervision is implemented to guarantee its non-violation. A new model checking approach

dealing with uncompleted and adaptive systems is also presented. A mapping algorithm

connecting GR-TNCES models to PRISM model checker is implemented here. (iii), all these

previous contributions were integrated in a new software tool, baptized ZIZO1.1, which

permits modeling, simulating and verifying reconfigurable real-time control tasks. Finally,

the relevance of the methodology is proved by applying it to case studies to prove its

effectiveness.

5

 1. Introduction

6. Conclusion

2. State of the Art

 Probabilistic Reconfigurable Systems

 Modeling of DES

 Temporal Logic

 Formal Verification

3. Modeling & Specification

 GR-TNCES

 Specification Approach

 Case Study: Skid Conveyor

4. Formal Verification

 Simulation

 Formal Verification

5. New Environment for

Modeling, Simulation and

Formal Verification

 New Environment ZIZO1.1

 Case Study 1: Skid Conveyor

System

 Case Study 2: IPV4 ZeroConf

6

1.4 Outline

In Chapter 2, we present the state of the art in several areas on which we work throughout

this thesis. We recall basic definition and properties of probabilistic reconfigurable systems

and modeling formalisms. We explore as well as computation tree logic and its extensions

and introduce the subject of model checking. We also introduce case studies to apply our

contributions.

Chapter 3 defines a new Petri nets-based formalism to model probabilistic reconfigurable

systems running under resources constraints. In addition, a new specification approach is

proposed here and applied to a skid conveyor system.

Chapter 4 proposes a new CTL profile, baptized XCTL (Reconfigurable CTL), to formally

verify flexible control systems. The profile is presented through a marking algorithm and a

verification mode. The chapter also presents an automatic transformation of R-TNCES to

PRISM to support model checking.

Chapter 5 discusses the implementation steps of ZIZO which is a new Petri nets-based

editor and probabilistic-simulator. It exposes the models of various systems and evaluates

the results of the simulated models.

In Chapter 6, the results are discussed before we conclude. Future improvements that could

enrich our work during this dissertation are proposed.

1.5 Publications

The outcomes of this thesis are published in the hereafter list of publications:

Journal papers and book chapters:

 Khlifi, Oussama; Mosbahi, Olfa; Khalgui, Mohamed; Frey, Georg; Li, Zhiwu: Modeling,

Simulation and Verification of Probaliistic Reconfigurable Discrete-Event Systems under

Energy and Memory Constraints, Iranian Journal of Science and Technology,

Transactions of Electrical Engineering, 2018, IF= 0.51.

 Khlifi, Oussama; Siegwart, Christian; Mosbahi, Olfa; Khalgui, Mohamed; Frey,

Georg: From Specification to Implementation of An Automotive Transport System,

submitted in “Communications in Computer and Information Science (CCIS)” published

by Springer, 2018, https://doi.org/10.1007/978-3-319-93641-3_3,

https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2018/iste-2018/ok-om-mk-gf-zl-iste-2018.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2018/iste-2018/ok-om-mk-gf-zl-iste-2018.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2018/iste-2018/ok-om-mk-gf-zl-iste-2018.html
https://doi.org/10.1007/978-3-319-93641-3_3

7

Conference Papers:

 Khlifi, Oussama; Mosbahi, Olfa; Khalgui, Mohamed; Frey, Georg: New Verification

Approach for Reconfigurable Distributed Systems, The 12th International Conference on

Software Engineering and Applications (ICSOFT 2017), Madrid, Spain, 2017, Class B

core ranking system.

 Khlifi, Oussama; Siegwart, Christian; Mosbahi, Olfa; Khalgui, Mohamed; Frey,

Georg: Specification Approach Using GR-TNCES -Application to an Automotive

Transport System-, The 12th International Conference on Software Engineering and

Applications (ICSOFT 2017), Madrid, Spain, 2017, Class B core ranking system.

 Khlifi, Oussama; Siegwart, Christian; Mosbahi, Olfa; Khalgui, Mohamed; Frey,

Georg: Modeling and Simulation of an Energy Efficient Skid Conveyor using ZIZO,

13th International Conference on Informatics in Control, Automation and Robotics

(ICINCO 2016), Lisbon, Portugal, 2016.

 Khlifi, Oussama; Mosbahi, Olfa; Khalgui, Mohamed; Frey, Georg: GR-TNCES: New

Extensions of R-TNCES for Modelling and Verification of Flexible Systems under

Energy and Memory Constraints, 10th International Conference on Software Engineering

and Applications (ICSOFT-EA 2015), pp. 373-380, Colmar/Alsace, France, 2015, Class B

core ranking system.

1.6 Collaboration

This research work is carried out within Tunisia Polytechnic School and Saarland

University. A part of the research is supported by the “Zentrum für Mechatronik und

Automatisierungstechnik” (ZeMA) in Saarbrücken, Germany.

https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2017/icsoft-2017/ok-om-mk-gf-icsoft-2017.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2017/icsoft-2017/ok-om-mk-gf-icsoft-2017.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2017/icsoft-2017/ok-cs-om-mk-gf-icsoft-2017.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2017/icsoft-2017/ok-cs-om-mk-gf-icsoft-2017.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2016/icinco-2016/ok-cs-gf-icinco-2016.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2015/icsoft-ea/ok-gf-icsoft-ea-jul-2015.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2015/icsoft-ea/ok-gf-icsoft-ea-jul-2015.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2015/icsoft-ea/ok-gf-icsoft-ea-jul-2015.html

8

Chapter 2

State of the art

Contents

2.1 Probabilistic Reconfigurable Systems under Resources Constraints…………..9

2.1.1 Probabilistic Reconfigurable Systems…………………………...………………9

2.1.2 Energy and Memory Resources……………………………………………......10

2.2 Modeling of Discrete Event Systems………………………………………………12

2.2.1 Statecharts …………………………………………….………………………….12

2.2.2 Timed Autamata ………………..…...13

2.2.3 Net Condition/Event Systems ………………………..14

2.2.4 Timed Net Condition/Event Systems ………………………………………....15

2.2.5 Reconfigurable Timed Net Condition/Event System …..…………………....16

2.2.6 Tools Modeling Petri Nets……………………………………………………...17

2.3 Temporal Logic……………………………………………………………………….18

2.3.1 Computation Tree Logic………………………………………………………...18

2.3.2 Extended Computation Tree Logic………………………………………….....18

2.3.3 Timed Computation Tree Logic………………………………………………..19

2.3.4 Probabilistic Computation Tree Logic………………………………………....19

2.4 Formal Verification……………………………………………………………..........20

2.4.1 Model Checking……………………………………………………………….....20

2.4.2 PRISM Model Checker………………………………………………………......22

2.5 Case Studies……………………………………………………………………….......23

2.5.1 Automotive Transport System..23

2.5.2 IPV4 ZeroConf……………………………………………………………….…..26

2.6 Summary…………………………………………………………………………........27

9

STATE OF THE ART

 This dissertation deals with formal modeling and verification of probabilistic

adaptive discrete event control systems. All independent innovations related to modeling

are based on the formalism Reconfigurable Timed Net Condition/Event System (R-TNCES)

[Zhang 2013] and they are applied to different case studies. For a better understanding of

this dissertation, relevant elemental knowledge on modeling formalisms, temporal logic and

model checking technologies [Norman 2013] are recalled in this chapter. The case studies are

also introduced at the end.

2.1 Probabilistic Reconfigurable Systems under Resources Constraints

We present in this section the characteristics of probabilistic adaptive discrete event systems

running under energy and memory constraints.

2.1.1 Probabilistic Reconfigurable Systems

Reconfigurable systems topic is an earlier issue, historically; various researches were

initiated by aircraft flight control systems for the purpose of fault-tolerance [Steinberg 2005].

The aim was to provide “self-repairing” capability to build a safe landing in the event of

severe faults in the aircraft. Such efforts have been launched mainly after two aircraft

accidents in the late 1970s [Zhang 2008]. A recent study provides other reasons for the need

of reconfigurable control systems. It shows that the fatal crash of EL AL Flight 1862 of a

Boeing 747-200F freighter could have been avoided if reconfigurable technologies could be

applied [Zhang 2015]. Therefore, such a system is highly desirable for various aircrafts. Since

the Three Mile Island incident and the accident at the Chornobyl nuclear power plant on

April 26 1986, interests in diagnosis and fault tolerant control have been intensified [Zhang

2015]. Similar research works had appeared with the initial research on reconfigurable

control and self-repairing flight control systems [Chandler 1984], [John 1985]. More recently,

with the development of communication technologies and computer science, dynamic and

static reconfiguration got more and more attention in industrial and academic communities,

due to increased safety and reliability demands beyond what a conventional control system

can offer. Dynamic reconfigurable systems are no longer limited to high-end systems such as

aerospace and nuclear power systems [Zhang 2015]. Various products are increasingly

dependent on microelectronic/mechatronic systems, onboard communication networks, and

software that require new algorithms for achieving dynamic reconfigurability. The task of

installing a new configuration is defined as reconfiguration of an adaptive system [Kumar

2015], [Murata 2002]. In general, reconfiguration methods can be divided into two groups:

predictable and unpredictable configurations. In the predictable reconfiguration, only one

new post-configuration is selected and is used in a specific algorithm to reach further states

10

up to an improvement point considering the constraints of the problem. In the unpredictable

method, an algorithm is used for solving the problem and a large number of probabilistic

possibilities are obtained, among which the most appropriate is selected as the final

configuration [Khlifi 2015].

2.1.2 Energy and Memory Resources

In many-core systems, memory and energy resources must be even more abundant than

processing elements [El-kustaban 2012]. Memory and energy control strategies [El-kustaban

2012] are essential for the resource-constrained systems such as wireless sensor network

nodes (WSN) [Gustavo 2017], [Shareef 2010] and [Gasmi 2016]. The resources control and

optimization strategies affect the life-time of WSN nodes and make the multithreaded OS

feasible to run on memory-constrained WSN nodes. For the goal of improving the overall

performance and energy savings, researchers introduced various approaches for resources

management. e.g., memory clustering approach that acts on the addressed space of all

running applications. Moreover, its running application has different processing needs and

then different priorities for resources consumption [Gustavo 2017]. Thus, the resources

availability is of great interest and any resources violation could stop the whole or partial

system. For these critical systems, an adaptation/reconfiguration process should be done

only after checking the resources’ availability. As presented in [Daniel 2016], the memory

system of a modern embedded processor consumes a large fraction of total system energy.

Different configuration options are explored showing that a reconfigurable design can make

better use of the available resources than any fixed implementation and provide a large

improvement in both performance and energy consumption. Reconfigurability [Salem 2014]

becomes increasingly useful in constrained resources, so it is particularly relevant in the

embedded space. For an optimized architectural configuration, it has been showing that a

reconfigurable cache system performs an average of 20% (maximum 70%) better than the

best static implementation when two programs are competing for the same resources, and

reduces cache miss rate by an average of 70% (maximum 90%) [Daniel 2016]. A case study of

the Advanced Encryption Standard is presented and found that a custom memory

configuration can almost double performance, with further benefits being achieved by

specializing the task of each core when parallelizing the program [Daniel 2016]. Moreover,

the performance of the memory system correlates with the performance of running

applications and with their energy efficiency (a higher hit rate means less data movement

and fewer off-chip memory accesses) [Daniel 2016].

Equipment in the manufacturing industry often display modes of operation in which less

energy is used. The simplest way is On/Off equipment. Other equipments can deal with

more possibility and flexibility such as pause/idle modes where it is possible to switch the

equipment without turning it Off completely [Boussahel 2016]. High availability

requirements are crucial in industry where some strict deadlines have to be respected in

11

order to achieve the demands; if an equipment is switched to an energy-efficient mode, then

it is expected to be switched back On mode correctly on time when the production is

restarted. An interesting application based on PROFIbus has been presented [PROFIBUS

2011] which enables switching operations on a technological level and facilitates the

integration of the operations in an environment where all equipments could be turned to the

target mode over the network without adding external hardware or doing it manually

[Boussahel 2016]. However, this makes only a possible technological solution for the

problem; PROFIenergy only addresses the issue on a software-based level but it does not

offer any framework for the modeling concepts related to the optimization [PROFIBUS

2011].

Related to the formalization step, the specification has to be clarified by introducing the

necessary assumptions to meet all requirements of the practical problem. Given a certain idle

time of a single entity between two operational shifts in a fixed manufacturing scenario, let

us present the following problem. An idle time is a time interval where the entity is, not

needed to be in the run mode for any given reason. Under the first assumption that the

instant power consumption of the energy consuming unit according to this manufacturing

scenario is well identified and representative of the real power consumption of the studied

entity, and under the further assumption that the time intervals needed for the entire

necessary switching are well identified. The question is whether it is possible to regroup

some information to know if it is needed to switch this entity into a power saving mode and

switch it back to its operational mode whenever needed. A model is considered a

mathematical abstraction of the real system needed for an evaluation and optimization

purposes. If this is theoretically possible to achieve and if it is reasonable to do that on a

practical level (the technological aspect is crucial when it comes to short timing constraints:

for instance too many switching operations or more generally said when some safety-related

issues have to be considered), then reducing the energy consumption during idle times to

improve the energy efficiency of the single entity according to the proposed manufacturing

scenario.

The improvement is to put into perspective the parallel scenario where the entity is left on

its operational mode (i.e., not doing anything besides waiting for the start of the next shift)

and the scenario where some switching operations are performed [Boussahel 2016]. The

second question clarifies the possibility of enabling the model of a single entity to meet the

required entities in a manufacturing system. Under some assumption that the process-

related dependencies between all entities are well identified, the models are enhanced with

additional information that are required to express all of these relations in order to form a

global descriptive model. This model encloses all of the parametric information (related to

time, energy consumption and inter-dependability) despite the high complexity inherent to

such systems. At the end, this model should be used for the evaluation and optimization to

improve the energy efficiency of the whole system [Boussahel 2016].

12

2.2 Modeling of Discrete Event Systems

Modeling real-time systems is a widely discussed topic in the literature. Various important

formalisms were proposed around this subject. The most significant ones are cited in the

following: timed process algebras [Davies 1992], [Nicollin 1990], [Pedro 1996], [Hansson

1994], timed Petri net models [Sifakis 1980], [Berthomieu 1991], real-time logics [Alur 1991]

duration calculus [Chaochen 1991], timed automata [Alur 1990], state-based approaches

[Alur 1993]. Concerning timed automata, scheduling was explored in [Abdeddaim 2006] and

the extensions proposed for optimal scheduling including an additional cost function were

investigated in [Alur 2001], [Behrmann 2001] and [Bai 2016]. We try in this section to present

some of them.

2.2.1 Statecharts

The statecharts language [Klotzbücher 2012] is defined for the specification complex reactive

systems [Zhang 2018], [Chan 2001]. It is a graphical representations of discrete-state

transition systems [Wasserman 1985], [Harel 1987] based on hierarchical state machines. The

state of a statechart structure is commonly referred to a configuration and the state transition

[Wasserman 1985] is referred to a step. Steps occur in response to input events [Qianchuan

2006]. There are various semantic interpretations for statecharts thanks to the possibility of

having multiple states enabled at one time. Moreover, the changes in variables and

configurations can introduce a new enabled transition. Various step-semantics have been

introduced to define the steps for a given statechart structure. RSML (Requirements State

Machine Language) is another language based on statecharts with slightly different syntax

and semantics [Leveson 1994]. They both extend state-machine diagrams with parallelism,

super-states, and broadcast communications. The STATEMATE toolset implements a

particular semantics of statecharts [Chan 2001], [Harel 1990]. It offers a system model based

on a finite number of parallel local state machines with a finite set of events and inputs

interacting with a nondeterministic environment.

Figure 1 [Chan 2001] presents a simple example with two parallel state machines A and B

which are synchronized using events. The initial local states are represented by arrows

without sources. Other arrows indicate local transitions which are identified with the form

trig [cond]/acts, where trig is a trigger event, cond is an optional guarding condition, and acts

is a (possibly empty) list of action events. The guarding condition is a predicate on local

states of other state machines and/or inputs to the system. If the trigger event occurs and the

guarding condition either is absent or is evaluated to true, then the transition is enabled.

Initially, some external events, along with some inputs from the environment, arrive,

marking the beginning of a step. The system leaves the source local states, enters the

destination local states, and generates the action events (if any). These events are used to

enable some transitions as described above. A statechart responds to a set of input events by

firing a sequence of chart-transitions, and then the system configuration and variables

13

change accordingly. A complete transition in a statechart state in response to an input event

is called a step. Configurations are defined as maximally consistent sets of chart-states,

which are sets of chart-states satisfying the following conditions: the root state is included;

each AND-state in the configuration includes all of its children, and each OR-state included

in the configuration also includes exactly one of its children.

Figure 1 Statechart example

2.2.2 Timed Autamata

Here, we try to understand the extent of what could be done with timed automata where

only time is considered as a constraint above the basic reachability aspect [Ma 2017a]. Time

is a variable that increases according to a fixed positive rate. It could be considered as an

additional constraint when strengthening the automaton model. Reachability of such a state

consists on finding a path in a transition system between an initial and the target state. The

reachability problem can be then enhanced with further constraints considering that the

automaton exhibits more variables in its definition. Timed automata are an appropriate

approach for scheduling problems [Wu 2016]. A scheduling problem is the general problem

of a set of tasks to be performed using different resources. The main task is their duration,

the resources they need and the precedence relationships they have with other tasks. A

schedule is a solution to a task execution; different schedules lead to different solutions and

optimal scheduling is the problem of finding the best schedule according to a given criteria.

The scheduling problem [Wu 2012b] is oriented towards alternative strategies in

manufacturing systems for the purpose of improving their energy-efficiency. The important

aspects to highlight are considering temporal operations with time-dependability and

process-related dependencies. The discrete-event systems theory allows dealing with this

problem in the sense that temporal switching behaviors can be represented by automata.

States of the automata allow to model operation modes while transitions permit modeling

all the additional constraints. Figure 2 shows an example of timed automaton, i.e., the timing

behavior of the automaton is controlled by two clocks x and y. The clock x is used to control

the self-loop in the location loop. The single transition of the loop may occur if x=1. The clock

y controls the execution of the entire automaton. The automaton may leave start at any time

point when y is in the interval between 10 and 20; it can transit from loop to end when y is

between 40 and 50, etc.

14

Figure 2 Timed Automaton Example

2.2.3 Net Condition/Event Systems

The formalism of Net Condition/Event Systems (NCES) is an extension of the well-known

Petri net formalism [Ye 2015], [Wu 2015]. It was introduced by Rausch and Hanisch in

[Rausch 1995] and further developed through the last years, in particular in [Hanisch 1999],

A basic module of an NCES is a typical Petri net, i.e., it is composed of places, transitions,

flow arcs, and tokens. Each basic module of an NCES interconnects with other modules via

special condition/event signals, which make an NCES different from a Petri net, see Figure 1.

An NCES is a place-transition net formally represented by a tuple:

NCES = (P, T, F, CN, EN, Cin, Ein, Cout, Eout, Bc, Be, Cs, Dt, m0) where :

 P (resp. T) is a non-empty finite set of places (resp. transitions),

 F is a set of flow arcs, F : (P × T) ∪ (T × P),

 CN (resp. EN) is a set of condition (resp. event) arcs, CN ⊆ (P × T) (resp. EN ⊆ (T ×

T)),

 Cin (resp. Ein) is a set of condition (resp. event) inputs,

 Cout (resp. Eout) is a set of condition (resp. event) outputs,

 Bc (resp. Be) is a set of condition (resp. event) input arcs in a NCES module,

 Bc ⊆ (Cin × T) (resp. Be ⊆ (Ein × T)),

 Cs (resp. Dt) is a set of condition (resp. event) output arcs,

 Cs ⊆ (P × Eout) (resp. Dt ⊆ (T × Eout)),

 m0 : P → {0, 1} is the initial marking.

15

Figure 3 A composite module of an NCES

2.2.4 Timed Net Condition/Event Systems

This formalism was introduced by [Hanisch 1997] and it was extended to consider time

constraints that are applied to input arcs of transitions: to every pre-arc of a transition, an

interval [eft, lft] of natural numbers is attached with 0 ≤ eft < lft ≤ w (w is a given integer). The

interpretation is as follows: Every place p bears a clock that is running (resp, switched) if the

place is marked (resp, unmarked). All running clocks run at the same speed measuring the

time of the token states. If a firing transition t removes a token from a place p or adds a token

to p, the clock of p is initialized back to 0. In addition, a transition t is able to remove tokens

from its pre-places (i.e., to fire) only if ∀ p ∈ •t, the clock at the place p shows a time D(p)

such that eft(p, t) ≤ D(p) ≤ lft(p, t). A TNCES is a tuple :

TNCES = (P, T, F, m0,Ψ, CN, EN, DC)

where:

 P = {p1, p2, ..., pn} is a finite set of places;

 T = {t1, t2, ..., tm} is a finite set of transitions;

 F ⊆ (P × T) ∪ (T × P) is a finite set of flow arcs between places and transitions;

 m0 is initial marking;

 CN ⊆ (P × T) is a finite set of condition arcs;

 EN ⊆ (T × T) is a finite set of event arcs.

Ψ is input/output structure of TNCES module which is represented by the following tuple:

Ψ = (Cin, Ein, Cout, Eout, Bc, Be, Cs, Dt)

where:

 Cin defines a finite set of TNCES module condition input signals;

 Ein defines a finite set of TCNES module event input signals;

 Cout defines a finite set of TNCES module condition output signals;

 Eout defines a finite set of TCNES module event output signals;

16

 Bc ⊆ Cin × T is a set of TNCES module input condition arcs;

 Be ⊆ Ein × T is a set of TNCES module input event arcs;

 Cs ⊆ P × Cout is TNCES module output condition arcs;

 Dt ⊆ T × Eout is a set of TNCES module output event arcs. Time intervals are assigned

to the pre-transition flow arcs F ⊆ P × T, which impose time constrains to the firing of

the transition:

DC = (DR, DL, D0)

where:

 DR represents the set of minimum times that the token should spend at particular

place before the transition can fire;

 DL is the final set of limitation time that defines maximum time that the place may

hold a token (if all the other conditions for transition firing are met);

 D0 is the initial set of the clocks associated with the places.

2.2.5 Reconfigurable Timed Net Condition/Event System

Reconfigurable control systems are characterized by clear modular structure. Reconfigurable

timed net condition/event system (R-TNCES) [Zhang 2013] is such a modular formalism that

was developed for modeling and analyzing adaptive distributed control systems [Bastide

1998], [Kumar 2015]. Assuming that an industrial control system is expected to be

reconfigurable; it means that the controllers of its distributed physical components should

be able to change themselves actively. According to the changed execution environment or

the user requirements, these controllers should be able to be standby, activated, or even be

removed from the system. In addition, they should also be able to change their connection

relation with other controllers, or be able to modify their own behavior modes, or just

update some shared data. If TNCES are applied to model such reconfigurable systems,

components of TNCES such as places, transitions, flow arcs, and markings within particular

basic modules or condition/event signals among these modules should be modified at run-

time. This formalism focuses on dynamic reconfigurations and control of TNCES. An R-

TNCES is an extension of the formalism TNCES with a specific function of self-

reconfiguration [Zhang 2013, Zhang 2015]. It is defined as a structure R-TNCES = (B, R),

where R is the control module consisting of a set of reconfiguration functions R = r1,...,rn and

B is the behavior module that is a union of multi TNCES, represented as:

B = (P, T, F, W, CN, EN, DC, V, Z)

where:

 P (respectively, T) is a superset of places (respectively, transitions),

 F ⊆ (P × T) ∪ (T × P) is a superset of flow arcs,

17

 W : (P × T) ∪ (T × P) → {0, 1} maps a weight to a flow arc, W(x, y) > 0, if (x, y) ∈ F, and

W(x, y)=0 otherwise, where x, y ∈ P ∪ T,

 CN ⊆ (P × T) (respectively, EN ⊆ (T × T)) is a superset of condition signals

(respectively, event signals),

 DC : F ∩ (P × T) → { [l1, h1], ..., [l |F ∩ (P × T)|, h |F ∩ (P × T)|] } is a superset of time

constraints on output arcs, where i ∈ [1, |F ∩(P × T)|], li, hi ∈ N, and li < hi,

 V : T → {∨, ∧} maps an event-processing mode (AND or OR) for every transition,

 Z = (M0, D0), where M0 : P → {0, 1} is the initial marking and D0 : P → {0} is the initial

clock position.

2.2.6 Tools Modeling Petri Nets

Several tools already exist to model and/or simulate Petri nets [Chen 2015] and their

extensions. For example, CPN tools is a software for editing, simulating and analysing

Coloured Petri Nets [Ratzer 2003]. It features a fast simulator that efficiently handles both

untimed and timed nets. Full and partial state spaces can be generated and analysed, and a

standard state space report contains information such as boundedness properties and

liveness properties [Ratzer 2003] [Koh 1991]. Petri.NET is another tool which allows

modeling, simulation and real-time implementation of static and dynamic Petri nets [Genter

2007]. The results of a Petri net model simulation are presented to the user in the form of a

token game and in the graphical form showing diagrams of a state vector. Nevertheless,

neither CPN tools nor Petri.NET can support R-TNCES with their condition and event

signals. The Visual Verification (ViVe) toolset is a tool chain for automatic verification of

distributed control systems. It allows creation and modification of model components in

modelling language of Net Condition/Event Systems (NCES) [Suender 2011]. Nevertheless,

it does not deal with the time constraints in NCES and the reconfiguration features they may

have. The TNCES-Editor, developed at the Martin Luther University Halle-Wittenberg,

allows the graphical modeling of all NCES based subtypes, including R-TNCES [Dubinin

2006]. To support interpretation and reachable state analysis, the TNCES-Editor offers an

optional labeling of transitions. The whole net structure including the labels will be stored in

a special file format (*.pnt) which can be used as an import file for the model-checker SESA

[Starke 2002] for the formal verification. However, TNCES-Editor doesn't feature the

simulation of a built R-TNCES, nor highlights the reconfiguration aspect.

2.3 Temporal Logic

Computation Tree Logic (CTL) offers facilities for the specification of properties to fulfill the

system behavior [roch 2000a, roch 2000b]. We present here this logic and three of its

extensions: Extended Computation Tree Logic (ECTL) [Axelsson 2010], the Timed

Computation Tree Logic (TCTL) [Bouyer 2007] and Probabilistic Computation Tree Logic

(PCTL) [Brázdil 2008]. This logic is used to formally prove that the specification satisfies the

desired properties of the product.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tom.AND..HSH.x0E1;.AND..HSH.154;%20Br.AND..HSH.x0E1;zdil.QT.&newsearch=true

18

2.3.1 Computation Tree Logic

In CTL, all formulae specify behaviors of the system starting from an assigned state in which

the formula is evaluated by taking paths (e.g. sequence of states) into account. The semantics

of formulae is defined with respect to a reachability graph where states and paths are used

for the evaluation. A reachability graph M consists of all global states that the system can

reach from a given initial state. It is formally presented as a tuple M = [Z; E] where:

 Z is a finite set of states,

 E is a finite set of transitions between states, e.g. a set of edges (z; z0), such that z, z0 ∈

Z and z0 is reachable from z.

In CTL, paths play a key role in the definition and evaluation of formulae. A path denoted

by (zi) starting from the state z0 is a sequence of states, (zi) = z0, z1... such that ∀ j ∈ ℕ, there is

an edge (zj; zj+1) ∈ E. The truth value of a CTL formula is evaluated with respect to a certain

state of the reachability graph. Let z0 ∈ Z be a state of the reachability graph and ϕ be a CTL

formula. The relation z0 |= ϕ means that the CTL formula ϕ is satisfied in the state z0. Then

the relation |= for a CTL formula is defined as follows:

 z0 |= EFϕ, if there is a path (zi) and j > 0 such that zj |= ϕ,

 z0 |= AFϕ, if for all paths (zi), there exists j > 0 such that zj |= ϕ,

 z0 |= AGϕ, if for all paths (zi) and for all j > 0, it holds zj |= ϕ.

2.3.2 Extended Computation Tree Logic

In CTL, it is rather complicated to refer to information contained in certain transitions

between states of a reachability graph. A solution is given in [Roch 2000a, Roch 2000b] for

this problem by proposing an extension of CTL called Extended Computation Tree Logic

ECTL. A transition formula is introduced in ECTL to refer to the transition information

contained in the edges of the reachability graph. Since it is wanted to refer not only to the

state information but also to the steps between states, the structure of the reachability graph

M = [Z, E] is changed as follows:

 Z is a finite set of states,

 E is a finite set of transitions between states, e.g. a set of labeled edges (z, s, z0), such

that z, z0 ∈ Z and z0 is reachable from z by executing the step s.

Let z0 ∈ Z be a state of the reachability graph, τ a transition formula and ϕ an ECTL formula.

The relation for ECTL formulae is defined inductively:

 z0 EτXϕ: if there exists a successor state z1 such that there is an edge (z0, s, z1) ∈ E

where (z0, s, z1) τ and z1 ϕ holds,

19

 z0 AτXϕ: if z1 ϕ holds for all successors states z1 with an edge (z0, s, z1) ∈ E such that

(z0, s, z1) τ holds.

2.3.3 Timed Computation Tree Logic

TCTL is an extension of CTL to model qualitative temporal assertions together with time

constraints. The extension focuses on attaching a time bound to the modalities and we note

that a good survey can be found in [Alur 1991]. For a reachability graph M = [Z, E], the state

delay D is defined as a mapping D: Z → N0 and for any state z = [m, u] the number D(z) is the

number of time units which have to elapse at z before firing any transition from this state.

For any path (zi) and any state z ∈ Z, we put:

 D [(zi, z)] = 0, if z0 = z,

 D [(zi, z)] = D(z0) + D(z1) +...+ D(zk−1), if zk = z and z0, ..., zk−1 ≠ z.

In other words, D [(zi, z)] is the number of time units after which the state z on the path (zi) is

reached the first time, e.g. the minimal time distance from z0. Let z0 ∈ Z be a state of the

reachability graph and ϕ a TCTL formula. The relation for TCTL is presented as follows:

 z0 EF [l, h] ϕ, if there is a path (zi) and a j > 0 such that zj ϕ and l ≤ D((zi), zj) ≤ h,

 z0 AF [l, h] ϕ, if for all paths (zi) there is a j > 0 such that zj ϕ and l ≤ D((zi), zj) ≤ h.

2.3.4 Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic (PCTL) is the established temporal logic for

probabilistic verification of discrete-time Markov chains [Brázdil 2008]. The probabilistic

branching-time logic PCTL was introduced by Hans Hansson and Bengt Jonsson in 1994

[Hansson 1994]. It was subsequently used for probabilistic model checking [Bianco 1995],

[Christel 2008] and is now widely used in probabilistic model-checking tools, for example in

PRISM [PRISM 2015] and Verus [Christel 1997], [Sérgio 1995]. Hansson and Jonsson define

PCTL without the Next modality “X”. Leslie Lamport even argues in [Leslie 1983] that the

Next modality should be excluded from any temporal modal logic. Let M = (S, P, L) be a

Markov chain. The semantics of PCTL is defined inductively as:

〚q〛 = {s ∈ S | L(s, q) = tt}

〚φ ∧ ψ〛=〚φ〛∩〚ψ〛

〚¬φ〛= S \〚φ〛

〚[α] ∞p〛 = {s ∈ S | ProbM(s, α) ∞p}

where ProbM (s, α) is the probability of the measurable set Path (s, α) of paths in M that begin

in s and satisfy the path formula α where the semantics for path formulae is as follows:

• π |= X φ if π[1] ∈〚φ〛M;

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tom.AND..HSH.x0E1;.AND..HSH.154;%20Br.AND..HSH.x0E1;zdil.QT.&newsearch=true

20

• π |= φU≤k ψ if there is a l ∈ ℕ such that 0 ≤ l ≤ k, π[l] ∈〚ψ〛M and for all 0 ≤ j < l, we

have π[j] ∈〚φ〛M;

• π |= φ W≤k ψ if for all l ∈ ℕ such that 0 ≤ l ≤ k, we have either π[l] ∈〚φ〛M, or there

is 0 ≤ j ≤ l, with π[j] ∈〚ψ〛M.

Occasionally, we need to assert that a PCTL (sub-) formula φ holds at a state s of a Markov

chain M. We denote this s|= φ, and we write s|= M φ to clarify which Markov chain M the

state s belongs to.

2.4 Formal Verification

We presented specification facilities to specify and verify such a probabilistic, functional or

temporal property. The mathematical basis of formal method provides a way to deal with

abstraction, modularity and hierarchy with typical engineering problems such as quality

goals, optimization and maintainability. Manufacturing systems are man-made systems that

exhibit complex structures in order to deal with problems related to modeling and

evaluation. The theory of discrete-event systems is recommended to tackle such systems; a

discrete-event system is understood to be a system in which states evolve according to the

occurrence of asynchronous events [Wang 2016]. Formal methods [Zedan 1999] often

supported by tools, allows for a deep understanding of manufacturing systems in order to

improve their reliability with the help of verification and validation of properties.

2.4.1 Model Checking

Model checking was introduced by Clarke and Emerson [Clarke 2008]. The Model checking

problem can be stated according to these authors, which are one of the pioneers in this field,

as:

“Let M be a Kripke structure (i.e., state-transition graph). Let f be a formula of temporal logic (i.e., the

specification). Find all states s of M such that M, s |= f.” [Clarke 2008].

The expression “s |= f” represents that the state s satisfies the property f. The term Model

was used in the sense of whether the structure M was a model for a formula f. Model

Checking is a verification technique in which all possible system states are explored. It is a

technique to automatically verifying the correctness of properties of finite-state systems

[Rouff 2012] [Clarke 1986]. A general verification approach that is applicable to a wide range

of applications such as embedded systems, software engineering, and hardware design. It

also supports partial verification, i.e., properties can be checked individually, thus allowing

focus on the essential properties first. Model-checking is a potential “push-button”

technology; the use of model checking requires neither a high degree of user interaction nor

a high degree of expertise. It can be also easily integrated in existing development cycles

since its learning curve is not very steep, and empirical studies indicate that it may lead to

shorter development times [Baier 2008].

21

Figure 4 Schematic view of the model-checking approach, [Baier 2008]

The goal is to prove, formally, that all possible executions of the system are conform to the

requirements. The generation of the system model comes from a model description which

translates how the system behaves while the property specification prescribes all the

properties of the system, namely what it should or not do, see Figure 4 for the general

approach schematic view. Different phases appeared when applying model checking:

Modeling, running and analysis phase [Ross 1997]. The system is modeled using the model

description language of the model checker [Model 2007] and properties are formalized to be

checked using the property specification language. The model checker is running in order to

check the validity of the properties. The analysis presents different possibilities: the property

can be satisfied, violated or the model is too big to analyze; see the schematization in Figure

5 adapted from the aforementioned phases [Baier 2008]. The advantages of Model Checking

are many and can be summarized in the following: no proofs are needed and the checking

process is automatic. Counter-examples are given if the property is not satisfied. Moreover,

partial specifications are allowed and temporal logics are of an advantage when reasoning

about concurrent systems [Clarke 2008]. In addition, it is a general verification approach,

applicable to diverse applications and it has a strong mathematical foundation (it is based on

the theory of graph algorithms, logic and data structures) [Baier 2008]. The disadvantages

are not to be underestimated: there is no guarantee of completeness provided that only the

stated requirements are checked, and the obtained results are also as good as the model itself

(the actual system is not verified but only its model is verified) [Baier 2008].

22

Figure 5 Characteristics of Model Checking, adapted from [Baier 2008]

Finally, the state explosion problem is a major problem, i.e., the total number of concurrent

system states with complicated data structures can be enormous. Various researches have

been dedicated to tackle this particular problem since the beginning of model checking.

2.4.2 PRISM Model Checker

PRISM is a probabilistic model checker [PRISM 2015] which offers a formal verification

method for the analysis of quantitative properties of stochastic systems [PRISM 2015]. The

official website offers a user’s manual and some basic use case examples. Two user interface

types are offered: command line and GUI (Graphical User Interface). A text editor, property

editor and plot capability are offered by the GUI which is user-friendlier interface. It is an

open source tool, developed using Java/C++. The user interface and parsers are written in

Java whereas the core algorithms are implemented for the most part in C++. The PRISM

programming language is a high-level state-based description language based on the

reactive modules formalism. Each module is determined by a set of finite-range variables

and a guarded-command based notation describes its behaviour. Each system is presented

as a parallel composition of a set of modules. Global variables or synchronization over

common action labels are added for the communication between modules. Several types of

probabilistic models are supported: Discrete-Time Markov Chains (DTMCs), Continuous-

Time Markov Chains (CTMC), Markov Decision Processes (MDP), Probabilistic Timed

Automata (PTA) [PRISM 2015]. See Figure 6 for an example of a PRISM program where the

23

Figure 6 Example of a program in PRISM

properties of the models are written in the PRISM language: PCTL (probabilistic

computation tree logic), CSL (Continuous Stochastic Logic), LTL (Linear Time Logic), PCTL*

(which uses both PCTL and LTL) [PRISM 2015]. A choice is offered between the following

data structures for model checking: MTBDD (Multi-Terminal Binary Decision

Diagram)/BDD, Sparse Matrix, Hybrid (a combination of MTBDD and Sparse Matrix).

The analysis of probabilistic models is based on some mathematical logics in order to

evaluate its properties. The so-called property specification language uses the temporal

logics: CTL, PCTL, probabilistic LTL and PCTL*: PCTL is used for DTMCs, MDPs and PTAs,

and CSL (an extension of PCTL) is used for CTMCs. For more information on the syntaxes

and semantics related of these logics, some key works are a good introduction to this topic

such as: [Clarke 2008] for CTL, [Baier 1998] for LTL and PCTL*, [Aziz 1996] for CSL and

[Hansson 1994], [Bianco 1995] for PCTL. A property is used for different features such as

identifying a particular set of states, probabilities and rewards. The question is to get an

answer about whether for a certain model a property is true or false, or to get an evaluation

consisting of a numerical value.

2.5 Case Studies

We present in this section two case studies where our contributions will be applied. An

automotive transport system [Khlifi 2016] will be introduced for the aim to save energy of

the current system model, i.e., we would like to optimize its energy consumption. An IPV4

protocol [Bohnenkamp 2003] is presented to show how GR-TNCES and ZIZO1.1 could

present an optimal model while guaranteeing the non-violation of energy and memory

resources.

2.5.1 Automotive Transport System

In PROFIenergy, the term ‘Energy Consuming Unit’ is used to denote any independent

equipment where energy is consumed. An energy consuming unit could represent a simple

energy saving modes (such as standby, off) or various measurements of savings modes in

complex machines [PROFIBUS, 2010]. An energy consuming unit is a candidate for energy

24

saving whenever such a mode dealing with ‘pause’ or ‘idle time’ occurs. Let us consider that

‘standby’ is a time period when an energy consuming unit is not operating for any given

reason. These time intervals can be classified related to their duration, i.e., if it is known in

advance, two scenarios can be derived: brief pauses last typically up to one hour and longer

pause if it lasts longer than one hour [PROFIBUS, 2010]. PROFIenergy identifies short

pauses with a maximum period of 5 minutes. Moreover, pauses that last enough time are

candidates for energy saving goal and should be considered carefully. As mentioned before,

the role of idle times is important for energy savings because the equipment is not used.

Thus, manufacturers need to give attention to these intervals of times where there is a

neglected potential because the plant has not been enough investigated. As the demand for

energy increases, it causes more pollution and conducts to climate change. That’s why

energy efficiency come into the issue and it is defined in various ways. According to ISO

50001, energy efficiency is a “ratio or a qualitative relationship between an output of

performance, service, goods or energy, and an input of energy” [International 2015]. A more

intuitive operational definition of energy efficiency can be directly stated for “using less

energy to provide the same level of service”. It is important to identify the difference

between energy efficiency and energy conservation which is reducing or going without a

service to save energy. For example, turning Off a motor and avoiding the service is energy

conservation. However, changing an old motor by a new high-efficient one is energy

efficiency. The same services are met while consuming less energy. The common

denominator in both cases is then saving energy. Energy efficiency is ranked high in the

hierarchy of sustainable energy, see Figure 7. Moreover, reducing energy demand is hugely

important: when the demand for energy on different levels is reduced, less energy can be

generated in order to meet the demands.

Figure 7 Sustainable energy hierarchy, [Sustainable 2014]

25

Figure 8 CAD model of the skid conveyor

Skid conveyors are widely used to move materials over a fixed path in the automotive

industry. Transporting a body in the paint shop or a chassis from one workstation to another

in the final assemblies are typical examples. For this purpose, we define an extended skid

conveyor system showed in Figure 8, which will be one part of the automated

commissioning line in the “Zentrum für Mechatronik und Automatisierungstechnik”

(ZeMA) in Saarbrücken, Germany. The transport system should consist of three conveyor

parts. Currently, there is an old system where all the motors are switched together and

manually from one mode to another. Each one is equipped with one motor, the overall

length is 18.14m and each part has a length of 5.45m. Each motor drives five rollers

transporting a skid of 3.90m with a chassis on it. We aim to introduce new functional modes

which offer the user to localize the chassis on every part. Moreover, in each conveyor part,

the chassis should wait for a predefined time to establish other tasks by various robots.

Realising these tasks should be done with the aim to minimize the consumed energy of the

system during the movement of the chassis; each unused actor should be switched off or to a

standby mode [Khlifi 2016].

2.5.2 IPV4 ZeroConf

Communication networks need to be error-free and efficient. In addition, they often operate

under real-time constraints implying that they must meet certain deadlines in order to

satisfy the quality of service. Let us assume an IPV4 ZeroConf network [Bohnenkamp 2003]

of different devices such as iPhones, tablets, DVD players etc. In fact, if a new device

connects to the network, it has to randomly choose an IP address from a pool of 65024

available addresses. The Internet assigned number authority has allocated the addresses

from 169.254.1.0 to 169.254.254.255 for the purpose of such link-local networks. Following

the standard, we suppose that it takes zero to one second to send a message between the

hosts. The device has to guarantee the uniqueness of its chosen address. Thus, it sends

messages to the rest of devices in the network asking whether any of them is currently using

the chosen IP address. If no reply is received before two seconds, the device starts using the

IP address. Otherwise, a reconfiguration scenario takes place or in certain circumstances, it

26

Figure 9 Example of Public Network [Gustavo 2017]

can defend its ownership of the address. The successive reconfiguration features established

by the devices can bring the latter to a blocking situation that does not respect real-time

properties. We note that IPV4 ZeroConf protocol is a fully connected network which is

known as mesh network topologies see Figure 9. It is a topology with a point-to-point link,

i.e., with N nodes, there are N*(N-1)/2 direct branches. For example, for N=500, we have

124750 connection links. This is possible for the data to be simultaneously transmitted from

any node to all of the other nodes. The memory resources are essential for maintaining the

network traffic since thousands of messages are transferred continuously. The energy

resources are mandatory to run the protocol. In particularly, we suppose that one token of

memory and energy resources are consumed to transfer each message between the devices.

The connection process is described as follows: (i) A new device chooses a random IP

address from a pool of 65024 addresses; (ii) It sends four ARP packets called probes. These

probes contain the chosen IP address; (iii) If another device is using the chosen address, it

must send ARP reply before two seconds and the new device restarts the protocol. Once

sending four ARP probes and the new device does not receive an ARP reply, it starts to use

the address. The new device must send a using confirmation for all the rest of devices

through a gratuitous ARP (two gratuitous ARP are sent in two-second interval). (v) The new

device must now respond to received ARP packets: If it receives a probe that has the same IP

address, then it must send an ARP-Reply containing its address before 10 seconds. (vi) If it

receives a gratuitous ARP (GARP) containing the same address, then, two scenarios could

take place: once it receives the GARP in the first 10 seconds of the use of the chosen address,

it must defer by restarting the protocol. Otherwise, it will defend its ownership of the

address by resending GARPs.

27

2.6 Summary

We introduced relevant elemental knowledge on modeling-based formalisms which are not

able to deal with reconfigurable probabilistic systems under memory and energy

constraints, i.e., the current modelling formalisms extending Petri nets are not able to

sufficiently describe all the properties of adaptive probabilistic systems. We presented also

the current model checking technologies and temporal logics, nevertheless they does not

cover the formal verification of reconfigurable systems and uncompleted specification.

28

Chapter 3

Modeling and Specification

Contents
3.1 Introduction …………………………….………………………………………….…29

3.2 GR-TNCES ……………………………………………………………………………29

3.2.1 Motivation …………………………………………………………………….....29

3.2.2 Formalization………………………………………………………………….....29

3.2.3 Dynamics of GR-TNCES……………………………………………………………31

3.3 Specification Approach ……………………………………………………………..33

3.3.1 Motivation …………………………………………………………….................33

3.3.2 System Specification ………………………………………………………….....33

3.4 Case Study: Skid Conveyor………………………………………………………....35

3.4.1 Description……………………………………………………………………….35

3.4.2 Specification ……………………………………………………………………..36

3.5 Discussion ….………………………………………………………………………....40

3.6 Summary .……………………………………………………………………………..41

29

MODELING AND SPECIFICATION

3.1 Introduction

In this chapter, we propose to enrich the formalism Reconfigurable Timed Net

Condition/Event Systems (R-TNCES) with the possibilities of modeling energy, memory and

probabilistic behavior in order to model and verify the safety of unpredictable

reconfiguration scenarios running under resources constraints [Khlifi 2015]. A specification

approach based on this formalism is also presented and applied to a case study illustrating

our contribution [Khlifi 2017a]. This chapter is detailed in the recently cited papers.

3.2 GR-TNCES

Since R-TNCES is a useful formalism to model reconfigurable systems, we aim in this

section to enlarge its usability for other complex systems knowing as probabilistic

distributed discrete event systems running under energy and memory constraints.

3.2.1 Motivation

Probabilistic systems have an unpredictable behavior, i.e., the whole sequence of tasks is not

predefined, and it is not possible to fix the required resources in advance. Memory and

Energy resources are mandatory to run such a system. Thus, before applying any

reconfiguration scenario, the resources’ availability should be checked. The proposed

formalism tries to deal with these research problems: How can we extend Petri nets

formalisms to model various features of APDECS systems? How can we specify

probabilistic reconfigurations as well as memory and energy resources? How can we check

if a system satisfies the available energy and memory constraints after any unpredictable

reconfiguration?

3.2.2 Formalization

The formalism GR-TNCES is a network of R-TNCES introduced to model and control

APDECS running under memory and energy constraints. It is a structure G = ∑ R-TNCES

where R-TNCES = (B, R), such that R is the control module consisting of a set of

reconfiguration functions {r1,..,rn} managed under a memory and energy controllers, and B

is the behavior module which is a union of multi TNCES, represented as follows:

B = (P, T, F, QW, CN, EN, DC, V, Z0)

where:

 P (respectively, T) is a non-empty finite set of places (respectively, transitions),

30

 F is a set of flow arcs with F ⊆ (P × T) ∪ (T × P),

 QW= (Q, W) where Q: F→ [0, 1] is the probability on the arcs and W: (P × T) ∪ (T × P)

→ {0, 1} maps a weight to a flow arc. Specifically, W(x, y) > 0 if (x, y) ∈ F, and W(x,

y)=0 otherwise, where x, y ∈ P ∪ T,

 CN (respectively, EN) is a set of condition (respectively, event) signals with CN ⊆ (P ×

T) (respectively, EN ⊆ (T × T)),

 DC: F → [l, h] is a superset of time constraints on output arcs. F is a flow arcs with F

⊆ (P × T),

 V: T →{∨, ∧} maps an event-processing mode (AND or OR) to each transition,

 Z0 = (T0, D0), where T0: P → {0, 1} is the initial marking and D0: P → {0} is the initial

clock position.

Let TN = P × T × F × QW × CN × EN × DC × V be the set of all feasible net structures that can

be performed by a system. Let •r (respectively, r•) denote the original (respectively, target) R-

TNCES before (respectively, after) the reconfiguration function r is applied, where TN(•r),

TN(r•) ∈ TN. Each reconfiguration is controlled by the controller module R. It is a set of

structure R = {Condition Cond, Probability Q, Energy E’, Memory M’, Structure S, State X}. A

reconfiguration function r is a structure r = (Cond, Q, E0’, M0’, S, X), where:

(i). Cond: CN → {true, false}: The precondition Cond of r can be evaluated to either true or

false and it can be modeled by external condition signals,

(ii). Q: F→ [0..1]: Represents the probability to reach each TNCES branch. It could be a

functional (internal to the TNCES) or a reconfiguration probability. It enables to

describe the nondeterministic behavior of the system,

(iii). E0’: P→ [0..max]: The energy requirements of the chosen probabilistic scenario,

(iv). M0’: P→ [0..max]: The memory requirements of the chosen probabilistic scenario,

(v). S: TN(•r)→ TN(r•): Is the structure modification instruction of the reconfiguration

scenario. It contains the reconfiguration structure process, i.e., the information about

the current state and the destination.

(vi). X: •r→ r•: Is the state processing function, where the last state (•r), (respectively, the

initial state (r•)) denotes the last (respectively, initial) state of (•r), (respectively, r•) before

(respectively, after) the application of r.

The reconfiguration is performed according to the desired probability and the system’s

resources at the desired instant, i.e., if the user aims to run the most probabilistic

reconfiguration while there are no sufficient resources in its reserves, then it has to degrade

the mode to the next probabilistic scenario. A state machine specified by an R-TNCES, which

is called Structure_changer, is introduced to guide the control module following the

reconfiguration process. In this state machine, each place corresponds to a specific TNCES of

the GR-TNCES model. This place can be introduced as a macro-step which is composed of a

set of micro-steps as shown in Figure 10.

31

Figure 10 Macro-step, micro-step

Thus, each transition corresponds to a reconfiguration function. A place sp gets a token,

implying that the TNCES (reconfiguration) to which sp corresponds is selected. If a

transition st (∀ st ∈ sp•) is fired, then it removes the token from sp to a place sp’ with sp’ ∈ st•

and the TNCES to which sp’ corresponds is selected. The Structure_changer is formalized as

follows:

Structure_changer = (P, T, F, Q, E’, M’)

where ∀ t ∈ T, |•t| = |t•| =1, and only one TNCES is performed at any time. Each place of

this structure contains all information about the corresponding TNCES e.g., its energy and

memory requirements (number of states in this TNCES). Each state consumes one token

from the energy and memory reserve. Thus, before enabling the probabilistic

reconfiguration, the availability of energy and memory reserves has to be checked. Only the

memory tokens are added back to the model’s memory reserve at the end of the adaptation

process. The energy reserve will be removed from the battery. Then, the battery will be

recharged periodically.

3.2.3 Dynamics of GR-TNCES

The dynamic of a GR-TNCES describes the control operation. To move a token from one

state to a next one, the structure modification instruction S guides the GR-TNCES from

TN(•r) to TN(r•), including the condition/event signals among them. The state processing

function X maps the last state of •r before the application of r to a feasible initial state of r•.

The dynamics of a GR-TNCES is represented by referring to self-modification nets and net

rewriting systems. Figure 11 shows an example of a GR-TNCES model of four R-TNCES.

Mem and Eng are the memory and the energy reserve of the controller and the parameter Q

∈ [0, 1] is the corresponding probability for each R-TNCES branch that represents the chance

to run such a scenario. Let ß be a TNCES and Cost TNCES be the needed resources by this

TNCES. The states of a GR-TNCES are defined as follows; A state of G is a pair (TN (ß), State

(ß)), where TN (ß) denotes the net structure of G and State (ß) denotes a state of G. The

evolution of a GR-TNCES depends on what events, energy and memory constraints take

place. A reconfiguration function r = (Cond, Q, E0’, M0’, S, X) is enabled at state (TN (ß), State

(ß)) only if:

32

Figure 11 Example of a GR-TNCES architecture

(i). TN (ß) = TN (•r), i.e., TN (ß) is equal to the net structure of •r and the firing time

constraints are valid,

(ii). Cond = true: The precondition is fulfilled,

(iii). The energy reserves E’ are enough: i.e., E’ > Cost TNCES (E0’).

(iv). The memory reserves M’ are enough: i.e., M’ > Cost TNCES (M0’).

The reconfiguration function is a tuple composed of the required energy and memory

resources compared with the current resources storage as well as the events and conditions

signals. For example, to select the most probabilistic reconfiguration scenario RMax, the

controller chooses the maximal probabilistic transition to be fired in the next step. Let (i)

‘∩e∈EN e’ and ‘∩c∈CN c’ be respectively the set of all possible Event-In and Condition-In of the

desired transition, (ii) E’ and M’ are respectively the energy and memory reserves, (iii) ‘Cost

TNCESMax (E0’)’ and ‘Cost TNCESMax (M0’)’ are respectively the energy and memory required

by the most probabilistic reconfigurable scenarios. The reconfiguration is applied by

respecting this formula:

RMax ≡ (E’ > Cost TNCESMax (E0’)) ˄ (M’ > Cost TNCESMax (M0’)) ˄ ∩e∈EN e ˄ ∩c∈CN c

Indeed, the highest probabilistic scenario has to guarantee that: (i) the needed resource

related to the energy and memory resources are available, and (ii) the events and conditions

should also occur at the firing time.

33

3.3 Specification Approach

The languages in which adaptive probabilistic systems are specified should be clear and

intuitive, and thus accessible to generation, inspection and modification by humans. We

introduce a new specification approach for adaptive probabilistic discrete event systems

running under resources constraints.

3.3.1 Motivation

Reconfiguration is often a major undertaking for systems because the post-reconfigurable

mode can violate memory usage, the required energy and the concerned real-time

constraints. The languages in which probabilistic reconfigurable systems are specified

should be clear and intuitive, and thus accessible to generation, inspection and modification,

as well as precise and conscientious to ensure the maintenance, analysis and simulation by

computers. We introduce a new specification approach for adaptive probabilistic discrete

event systems running under resources constraints. The semantics of the formalism GR-

TNCES are presented to optimize the specification approach and applied to specify the

requirements of an automotive transport system to prove its relevance.

3.3.2 System Specification

To analyse GR-TNCES using state-exploration techniques, we focus separately on the

behavior and the control module. We consider the control module as a transition system (C,

Rec, In) where C is a set of macro-steps, Rec ⊆ C×C a transition relation or reconfiguration

function. It maps the reconfiguration scenario to the respected constrains (energy, memory,

probability). In represents the initial standard configuration, i.e., the start point is a static

state. The reconfiguration function is a tuple of the current configuration (macro-step), the

corresponding events and conditions, the desired probability, and the needed energy and

memory resources compared to the current storage. To execute the highest probabilistic

reconfiguration scenario, the controller has to choose the maximum probabilistic transition

for the next step respecting this formula:

RecMax ≡ (E’ > Cost TNCESMax (E0)) ˄ (M’ > Cost TNCESMax (M0)) ˄ ∩e∈EN e ˄ ∩c∈CN c (1)

which describes how the macro-steps are selected [Khlifi 2018b], i.e., the highest

probabilistic scenario has to guarantee the resource constraints [Andrade 2009] related to

energy and memory reserves. Moreover, the events and conditions should also occur,

otherwise they are considered to be true. For the low probabilistic reconfiguration, the

transition relation will be introduced as follows:

RecMin ≡ (E’ > Cost TNCESMin (E0)) ˄ (M’ > Cost TNCESMin (M0)) ˄ ∩e∈EN e ˄ ∩c∈CN c (2)

34

which describes how the macro-steps are selected, i.e., the lowest probabilistic scenario has

also to satisfy the resource constraints related to the energy and memory reserves. The

events and conditions should also occur, i.e., if there is no event, then the input is considered

to be true. Once the macro-step is selected, the system executes the micro-steps of the

selected configuration. The behavior module is considered as a transition system (P, R, I)

where P is a set of global states, R ⊆ P × P a transition relation. It is a labeling function that

maps each transition to the holding properties in the corresponding transition, and I ⊆ P a

set of initial states. A transition in R is a tuple of the current local state (system source state),

the events and conditions occurring, the probabilistic value of the environment inputs and

the time period in which the transition could be fired. A path is a sequence of states that

belongs to P, i.e., a state is reachable only if it appears on such trace path execution. We

symbolically encode the global state space P of a GR-TNCES system using a set of variables

Y as follows: For each system state m, we consider a state variable from the local states of m.

The set of initial states I is represented as:

I≡ ∩ m∈P m≡ m0 ˄ ∩e∈Ei ¬e ˄ ∩c∈CNi ¬c ˄ (T0={1}) ˄ (D0={0}) (3)

where m0 is the initial local state, Ei and CNi are respectively the set of internal events and

guarding condition. Initially, the system is in its initial local state, all internal events and

guarding conditions do not occur, the state is marked and the clock position is null. The

most important thing is the encoding of the nondeterministic transition relation R. We focus

on the encoding of the micro-step transition, i.e., for each state variable var ∈ Y, we present a

variable var' that has the same range as var and intuitively represents its next-state value. Let

Y0 be the set of all these primed variables. We define an expression over Y ∪Y0 to specify R,

then for each local transition t, let src(t), dst(t), evt(t), cond(t), time(t), mode(t), and prob(t), be

respectively the source local state, destination local state, trigger event, guarding condition,

and the firing time interval, the firing mode{AND, OR}, and the firing probability. The

expression evt(t) and cond(t) could be true if the transition t does not have a guarding

condition and event inputs. Let curr(t) be the current local state of the system and enbprob(t) to

be represented as:

enbprob(t) ≡ curr(t) ˄ evt(t) ˄ cond(t) ˄ time(t) (5)

It is enabled once the trigger events and guarding conditions occurs simultaneously at the

desired running time if the firing mode is ‘AND’. We could deal with other firing mode as

described here:

enbprob(t) ≡ curr(t) ˄ time(t) ˄ (evt(t) ˅ cond(t)) (6)

It presents how the transition could be enabled if the firing mode is ‘OR’, i.e., it is considered

to be true if one trigger event or guarding condition occurs at the required running time

period of the selected transition [Khlifi 2018b]. Once the system executes a configuration

35

scenario, we aim to describe how the system deals with the micro-steps. For each state m of

the system, microm describes the progress of the system at run-time process:

microm ≡ (∩t/curr(t)=m (enbprob(t)→curr'(t)=dst(t))) ˅ (∩t/curr(t)=m

(¬enb(t)→curr'(t)=curr(t))) (7)

Indeed, the first conjunct guides the system states from the enabled transition to the

destination state, while the second conjunct blocks the system on the same position if none

of the transitions are enabled [Khlifi 2017a]. The fired transition can generate various events.

Moreover, the generation of events evt(t) and conditions cond(t) are introduced respectively

as follows:

microe ≡ (∪t/e∈Evt(t) enbprob(t)) ↔ e' (8)

The event is delivered by the union of the enabled transition that can send events to activate

different states of the system. Similarly, the micro-step generates guarding condition and it

is represented as:

microc ≡ (∪m/c∈Cnd(t) microm(t)) ↔ c' (9)

It is generated by a union of states to control the execution of various tasks of the system.

Then, we introduce Macro to encode the macro-step which is a conjunction of micro states,

micro events and micro conditions as follows:

Macro ≡ ∩ e∈CN microc ˄ ∩ c∈EN microc ˄ ∩ m∈P microm (10)

The presented specification approach makes possible to deal simultaneously with

unpredictable reconfiguration scenario, time constraints, and limited energy and memory

resources. It is useful to specify the system requirements in an optimized way.

3.4 Case Study: Skid Conveyor

We describe in this part the case study of our thesis with the aim to save its energy

consumption. The specification of the functionalities and the different operations mode is

presented and discussed.

3.4.1 Description

The transport system should consist of three conveyor parts [Khlifi 2016]. Currently, there is

an old system where all the motors are switched together and manually from one mode to

another. We aim to introduce new functional modes which offer the user to localize the

chassis on every part, i.e., in each conveyor part, the chassis should wait for 7 seconds to

establish some other tasks by various robots.

36

Figure 12 Skid conveyor system at ZeMA.

To minimize the consumed energy of the system during the movement of the chassis, each

unused actor should be switched off or to a standby mode. For example, once the chassis is

in the third conveyor part, the motor of the first one should be switched off. The

activation/deactivation of the motors is controlled based on the car position. Moreover, the

worker should control all the possible positions showed in Figure 12 with a control panel.

Using this approach, it is possible to choose one operation mode for the system. The

requirements for these operation modes are explained in the following part. The system is

reconfigurable and we consider three possible reconfigurations:

 Automatic mode: The worker activates and stops this mode using the panel. The

speed of the skid should be as well controlled. Then, all other sensors and actors

operate automatically, i.e., (i) the chassis position has to be clear, (ii) then, the chassis

moves from one workstation to another without user interaction. Since the position

of the chassis is logged, all unused actors can be switched Off. As soon as the chassis

is at the third position it should move backwards to the start position and start again.

 Manual mode: In this mode, the worker should manually control the system’s

functionalities, i.e., to start and stop all the conveyor parts individually and together

and controls the speed of the chassis.

 Pause mode: In order to save energy, the worker can activate and deactivate this

mode with the panel. If the mode is activated, then all sensors and actors are

switched Off or changed to a standby mode according to the duration of the Pause

mode.

If the worker uses this option, then he can visualize all the relevant sensor and actor data.

For example, whether the motor is ON or Off and its speed.

3.4.2 Specification

The skid conveyor is supervised by a centralized controller, i.e., it enables to control and

switch the system from one configuration to a second one. To simplify the use case

specification, we consider that the system is not probabilistic and that the switching mode is

chosen by the user to be denoted by RTNskid= {Bskid, Rskid}. Let Eskid and Mskid be respectively the

energy and memory reserves of the skid system. We use the proposed specification

37

approach to specify the system, i.e., each mode is represented by a macro-step. We identify

three macro-steps for the different modes:

Rec1= Macro1: Automatic mode, Rec2= Macro2: Manual mode, Rec3= Macro3: Pause mode.

This is a reconfigurable system, i.e., it can switch the behavior from one mode to another

mode. Rskid represents the control module of the system as:

Rskid = Rec1 ∪ Rec2 ∪ Rec3

= {rRec1, Rec2, rRec1, Rec3, rRec2, Rec1, rRec2, Rec3, rRec3, Rec1, rRec3, Rec2}

The reconfiguration: “rRec1, Rec3” implies that “•r”= “Rec1” and “r•”= “Rec3”. It enables to

switch mode from the current “Rec1” to the next configuration“Rec3”. Figure 13 helps to

explain the structure of the system and the possible reconfiguration processes, i.e., it shows

the possible switching mode between all the macro-steps. The Idle position refers to initial

state where the system clock is null and the initial marking is true. It could be specified as

follow:

I ≡∩m∈P m

≡Idle ˄ ∩e∈Ei ¬e ˄ ∩c∈CNi ¬c ˄ (T0={1}) ˄ (D0={0})

The initial states are the set of states that does not have any input events and conditions

signals, i.e., it does not need any stimulator to be activated. Then, according to the choice of

the user, the system reacts to the received command. Let EN1, EN2, EN3 be respectively the

external events to activate Rec1, Rec2, and Rec3. Marco1 is introduced as the conjunction of

the energy constraint presented as “(Eskid > Cost ‘Macro1’ (E0))”, the memory constraint and

the trigger event that will initiate the desired configuration:

Macro1≡ (Eskid > Cost ‘Macro1’ (E0)) ˄ (Mskid > Cost ‘Macro1’ (M0)) ˄ EN1.

Figure 13 GR-TNCES System model

38

The system keeps the same running mode “Rec1” till it receives a trigger event from the user

to change the operational mode. The second reconfiguration “Rec2” is also introduced as

follow:

Macro2≡ (Eskid > Cost ‘Macro2’ (E0)) ˄ (Mskid > Cost ‘Macro2’ (M0)) ˄ EN2.

This macro is executed once the energy and memory resources are available, i.e., the

constraints are respected and the corresponding event EN2 is received. The system could

move for the third configuration once its conjunctions are validated. This configuration is

introduced as followed:

Macro3≡ (Eskid > Cost ‘Macro3’ (E0)) ˄ (Mskid > Cost ‘Macro2’ (M0)) ˄ EN3.

Once the configuration is selected, the system executes the different internal tasks of the

concerned macro-step. The behavior module of RTNskid is formally presented as follows:

Bskid = (P, T, F, QW, CN, EN, DC, V, Z0) where the network structure of the system is listed as:

TNMaco1, TNMaco2, TNMaco3 ∈ TNskid. We have:

 P = P1 ∪ P2 ∪ P3, where P1, P2 and P3 are respectively the set of states of Rec1, Rec2,

and Rec3.

 T = T1 ∪ T2 ∪ T3, where T1, T2 and T3 are respectively the set of transitions of Rec1,

Rec2, and Rec3.

 F = F1 ∪ F2 ∪ F3, where F1, F2 and F3 are respectively the set of flow arcs of Rec1,

Rec2, and Rec3.

 W = W1 ∪ W2 ∪ W3, where W1, W2 and W3 maps a weight to the flow arcs

respectively in Rec1, Rec2, and Rec3.

 CN = CN1 ∪ CN2 ∪ CN3, where CN1, CN2 and CN3 are respectively the set of

guarding conditions to initiate Rec1, Rec2, and Rec3.

 EN = EN1 ∪ EN2 ∪ EN3, where EN1, EN2 and EN3 are respectively the set of events to

initiate Rec1, Rec2, and Rec3

 DC = DC1 ∪ DC2 ∪ DC3, where DC1, DC2 and DC3 are respectively subset of

time constraints on output arcs of Rec1, Rec2, and Rec3

 V(t) = V1(t) ∪ V2(t) ∪ V3(t) where V1(t), V2(t), V3(t) maps respectively an event-

processing mode (AND or OR) for every transition, on Rec1, Rec2, and Rec3,

 ∀ p ∈ P1 ∩ P2 ∩ P3, Z0(p) is the initial clock position for the system.

We focus on the behavioral module for the specification of the system requirements, and

then we introduce the micro-steps of the first macro-step. The authors try to identify some

properties of the system, e.g., ‘it should be possible to localize the chassis on every part of

the conveyor’. Let curr(t) be the system state that describes the position of chassis and Pos1enb

be the micro-step that represents the car position in the first part of the skid. In case that the

chassis should be in the first position at a prefixed time period [a1,b1], the trigger events E1.1

39

and E1.2 should be detected at the same period. We can formally introduce this micro-state

as:

Pos1enb ≡ curr(t) ˄ E1.1 ˄ E1.2 ˄ time[a1,b1]

which evaluates the transition, i.e., it could be enabled only if all the listed conjunctions are

simultaneously true. For the second position of the skid, it is formalized based on the same

rules as follow:

Pos2enb ≡ curr(t) ˄ E2.1 ˄ E2.2 ˄ time[a2,b2]

Where (i) E2.1 and E2.2 are the corresponding events to detect the considered position, and (ii)

[a2,b2] is the time period for this scenario. The proposed system aims to save the energy

consumption of the transport system, i.e., the corresponding motor for each conveyor part

should be Off if there is no car at that position. Let m1act(t) be the active state of the first

motor and m2act(t) the active state of the second motor. Here we define the rules for the

activation of motor 2 m2act(t) as:

m2act(t) ≡ m1act(t) ˄ curr(t) ˄ E2.1 ˄ E1.2

which define the active state of the second motor as a conjunction of the active state of the

first motor, the presence of the chassis in the conveyor, the occurrence of the E1.2: (chassis at

the end of conveyor 1) and E2.1: (chassis at the beginning of conveyor 2). To optimize the

energy consumption, the system has to switch ON/Off the motors according to the position

of the chassis. Once the second motor is turned ON, the first should be Off. We formalize the

deactivation of the first motor as:

¬m1act(t) ≡ m2act(t) ˄ ¬curr(t) ˄ E2.1 ˄ ¬E1.2

which represents that stopping the first motor is initiated by the activation of the second

motor. The absence of the chassis in that position is confirmed by the non-occurrence of the

event E1.2 and the occurrence of the event E2.1. The enabled transitions can generate many

events for the synchronization of the system parts. Then, the micro event E2.1 is delivered

after the movement of the chassis from the first skid to second one (curr(t) → curr’enb(t)). The

formalization is as follow:

microe ≡ (∪t/e∈ EN1(t) curr’enb(t)) ↔ E2.1

The authors present the specification of the proposed case study requirements using the

presented approach. We move to the next step which is the modeling, simulation and the

implementation of the system.

40

3.5 Discussion

We proposed a new expressive and optimized modelling approach compared to UML

[Bondavalli 1999], [Shousha 2012] and [Bernardi 2007] Petri net formalisms, and statecharts

used in symbolic model checking. The proposed approach has ability to cope with

reconfigurable systems and timed constraints which was not possible in statecharts and

other approaches. It can also express various constraints related to timed systems and real

time process and enables to describe systems that could change their behavior. It is also

possible to select different firing modes for the transition states: i.e., we can opt for AND/OR

mode according to the system requirements. (“AND” if all the input transition are required

and “OR” is used if one of them could activate the transition). In addition, it is possible to

check the availability of resources before starting such a reconfiguration process, i.e., to

guarantee the non-resources violation once the system executes its tasks. Unpredictable

behaviors are also considered here since the specification approach is able to describe the

probabilistic behaviour. Tab.1 represents a detailed comparison between different modelling

formalisms.

Table 1 Comparison Table

Formalisms Advantages Drawbacks

UML-RT [Selic 1998] Complete modeling

language allowing to

model complex and event-

driven RT systems

- No support for time

constraints

- Limited modeling

capabilities for performance

and architecture.

Embedded UML [Gogolla

2001]

 Specification, design and

verification of embedded

RT systems

- Concurrency,

communication and

implementation issues.

Petri Nets [Genter 2007] Graphical notation for

choice, iteration

and concurrent execution.

 Well-developed

mathematical theory for

process analysis.

- Shortcoming when

handling time and

reconfiguration.

41

NCES [Rausch 1995] Condition/event signals

and the possibility of firing

several transitions

simultaneously.

- No time intervals for

output flow arcs.

TNCES [Hanisch 1997] Possibility to assign time

intervals to each output

flow arcs.

- Only relevant for

static systems.

R-TNCES [Zhang 2013] Introduces reconfiguration

in TNCES.

- Lack of a tool for

modeling and verification.

GR-TNCES [Khlifi 2015] Model probabilistic,

energy and memory

features.

 ZIZO tool enables the

modeling and simulation

using this formalism.

- Cannot deal with

complex probabilistic

theories.

Statecharts [Chan 2001] Model hierarchical reactive

timed systems.

- Difficult to provide

formal semantics and

probabilistic behaviors.

- Cannot model

energy and memory

resources.

3.6 Summary

We introduced GR-TNCES which is a new extended formalism for the modeling of adaptive

probabilistic systems. It enables the specification of probabilistic reconfigurations, energy

and memory resources, real-time constraints and distributed architectures of such a system.

A new specification approach dealing with unpredictable flexible control systems running

under memory and energy resources constraints is also presented; It is an expressive

method that could specify limited memory and energy reserves, probabilistic behaviors, and

reconfigurable processes which was not discussed in the previous work. The proposed

approach is based on GR-TNCES formalism which enables us to express the probabilistic

reconfiguration scenario of such a system. An automotive transport system is the considered

case study to concretize the contribution.

42

43

Chapter 4

Simulation and Formal Verification

Contents
4.1 Introduction……………………………………………………………….…………...43

4.2 Simulation……………………………………………………………………………..43

4.2.1 Probabilistic Simulation…………………………………………………………44

4.2.2 Energy Simulation………………………………………………………….........45

4.2.3 Memory Simulation…………………………………………………….….........47

4.3 Formal Verification…………,,,……………………………………………………...48

4.3.1 Formal verification: Export to PRISM…………………………………………48

4.3.2 New Verification Approach………………………………………………….....53

4.3.3 Incomplete Labeled Transition System……………………………………......56

4.3.4 XCTL Model Checker……………………………………………………….......57

4.3.5 Marking Algorithms………………………………………………………….....59

4.3.6 Degraded Verification Mode…………………………………………………...59

4.3.7 Discussion………………………………………………………………………...61

4.4 Summary………………………………………………………………………..............61

44

SIMULATION AND FORMAL VERIFICATION

4.1 Introduction

Simulation is the creation of a model that can be manipulated logically to decide how the

physical model works. Simulation and formal verification are complementary techniques;

both are required for the development of complex and safety-critical systems. We present

here our contributions related to simulation of probabilistic processes running under

resources constraints and formal verification of reconfigurable systems. The simulation

algorithm is implemented and published in [Khlifi 2018a] and the verification approach is

published in [Khlifi 2017]. This chapter is detailed in the recently cited papers for more

details.

4.2 Simulation

Simulation is a primary certification step realized for the Petri net models. We simulate the

model through the selection of a token game animation. Once the simulation is finished, the

token reaches the final state of the model. Petri nets simulators offer features of standard

simulation functionality; it can also generate a report showing a textual description of the

simulated process. If a deadlock is detected [Li 2012], then the token cannot reach the end

state and it is stuck at this deadlock state, i.e., it cannot progress to the next states. Thus, it is

helpful to detect the failure at an earlier stage and revise the specified model at this state. We

refer to the specification to change the model again as shown in Figure 14 and reiterate the

certification process. Simulation is applied prior to model checking to get a first functional

model of the system´s behavior and to find out the eventual design errors early. If the latter

exists, formal verification techniques may be time-consuming once it is performed on a very

large state-space model.

Figure 14 Simulation step

45

In this chapter we present a new simulation algorithm dealing with simple Petri net models

and with more complex systems [Bruyninckx 2013] such as probabilistic reconfigurable

systems running under limited memory and energy resources. The presented simulation

algorithm depends on various inputs, not just on the presence of the token at the precedent

places. Here we deal with condition input, event input, a valid time interval and a firing

mode. In addition to the pre-mentioned artifacts, the approach distinguishes between three

probabilistic simulation scenarios.

4.2.1 Probabilistic Simulation

Simulation-based approaches ensure if a finite number of user-defined system trajectories

meet the desired project goal. Probabilistic systems have various sequences of tasks that

could be executed at each state. Thus, we assigned the probabilities to the branches to

indicate the chance of choosing such a path. We are interested in three simulation strategies

according to the probability level: (i) High: Visiting successively just the branches with the

highest probability level, see Figure 15. The model shows that only branches with highest

probabilities are executed, i.e., the token will visit just these branches with the highest

chance of execution. (ii) Average: Visiting the branches with the average probability level

and (iii) Low: Visiting the paths with the lowest probability level, see Figure 16 which

presents an example of the visited model branches. The simulation process consumes

memory and energy resources depending on the chosen simulation. The aim is to control the

resources’ availability before starting and even at run-time process to guarantee the non-

violation, i.e., make sure that the system will not face any situation where there is no energy

and memory resources.

Figure 15 High Probabilistic Simulation

The simulation algorithm is based on these rules:

(i). The simulation cannot start if the memory reserve is lower than the chosen path’s

consumption and a deny message is displayed.

46

(ii). If the energy reserve reaches the minimal capacity (chosen to be three tokens in the

proposed case study), then the tool displays a warning message at run-time asking the

designer to recharge the battery.

(iii). The designer must set a recharge period: periodically, the energy reserve will be

recharged to the full value; the memory resources will be free at the end of each

reconfiguration scenario since we cannot charge the memory.

Figure 16 Low Probability Simulation

4.2.2 Energy Simulation

Many systems and protocols run using components with limited energy resources, e.g.,

limited battery in wireless sensor network nodes [Shareef 2010]. Thus, the system could

violate its resources at run-time or an adaptation process. In our thesis, the energy unit is not

the Watt, but it is an abstract unit. We suppose that each fired transition corresponds to the

execution of such a task and consumes one unit or one token. The presented simulation

process consumes an amount of energy resources that is estimated depending on the chosen

simulation type and the size of the played process. The aim of our work is to develop a

control strategy to supervise the resources consumption. This supervision and simulation

process could detect and predict if there is a scenario in which the system crashes due to the

lack of energy. Moreover, the designer could manage the battery’s capacity of each system.

Then, the resources will be supervised during the chosen simulation scenario. Figure 17

presents the implemented algorithm to choose the average probability branches. Once the

branch is chosen, the proposed energy simulator has to prove various rules to ensure the

energy control.

47

 Rule-1: the simulation cannot start if the current energy capacity is lower than the

number of places in the chosen path. In fact, once the simulation is chosen, the

controller compares the current capacity to the size of the selected path. More

precisely, if the designer chooses the high probabilistic simulation, then only the size

of this branch will be evaluated and compared to the available resources at that

moment. If the energy capacity does not fulfil the required resources, the simulation

will not be started and an error message is displayed.

 Rule-2: if the energy reserve reaches three units (rest of energy=3), a warning

message will be sent at runtime asking the designer to recharge the battery. Then, the

simulation will be continued again just once the battery is recharged, otherwise, it is

stopped, and the Endpoint could not be reached.

 Rule-3: The designer must set a recharge period measured in seconds. Then,

periodically, the energy reserves will be initialized to this initial value.

Figure 17 Algorithm of Average Probability Simulation

4.2.3 Memory Simulation

Similar to the energy control strategy, we developed a memory control approach to

guarantee and supervise the availability of the memory resources during simulation time.

48

Figure 18 Energy and Memory simulation.

These memory reserves are also represented by an abstract unit or a token to be consumed

at each firing transition. The precondition of starting such a simulation ensures that the

initial memory reserves are the double of the size of the selected model. In addition, each

fired transition consumes a single token of the memory resources. There will be no recharge

period similar to the energy reserves because the memory of the system is a predefined

limited capacity that is used by its resources and it’s free only once the running processes are

finished. Figure 18 shows how we can initialise the memory and energy resources and the

recharge period of such a system. The bottom of the screenshot presents the available and

consumed resources during the chosen simulation process. We implemented also the

possibility to extract the curves of the resource’s consumption during the simulation period,

i.e., it is a curve that presents the total consumed number of tokens during the simulation

time.

4.3 Formal Verification

Formal verification enables developers to deal with complexity using well-proven tools of

logic and mathematics, providing strong assurance on compliance with requirements. We

provide here two main contributions: the first is a mapping algorithm that enables to

transform a GR-TNCES model to a PRISM code for the formal verification. The second is a

new formal verification approach dealing with incomplete and reconfigurable systems.

49

4.3.1 Formal verification: Export to PRISM

Once the model is simulated using the environment ZIZO, we need to go further in the

certification process described in Figure 14. The goal is to formally prove that the proposed

model is safe, correct, and does not present any time or resources violation. We developed

the possibility to export the created model to PRISM model checker for the formal

verification. It is an automatic generation of the PRISM code from the graphical model. We

do not need to re-describe the system model in PRISM especially for complex system which

saves us an important time. This operation is guaranteed through the generation of a “.pm”

file. The export operation is done using a transformation protocol that matches each element

of the GR-TNCES model with a corresponding element from the PRISM Language. To

understand this mapping protocol, we need to present the GR-TNCES formalism

components and the PRISM language basics. Then, we can describe the mapping protocol.

4.3.1.1 ZIZO Components

ZIZO enables us to model adaptive probabilistic distributed discrete event condition

systems. These systems are represented by various distributed modules connected using

condition/event signals see Figure 19. Orange link are condition links and red links are event

links that connect the modules. This model defines the dependence between modules, i.e.,

“module_b” needs an input event and an input condition from “module_a” to execute some

tasks. It is similar to “module_c” that has a dependency to “module_b”. Each module has its

own structure/architecture that describes its corresponding behavior. Figure 20 describes the

content of such module and the various components presented by ZIZO. More precisely, it

connects a set of identified components:

 Places: Which are the basic elements of our Petri net model and it could be marked

by a token to represent the current state of the system.

 Transitions: Enable moving the system from one state to second one if it is fired. It

has two firing modes and a predefined firing time period.

 Condition_Out: Enables to check the existence of a token in the current place, it has a

Boolean value.

 Condition_In: Connects the condition_out of the previous module and contains its

value. It is an input for the corresponding module.

 Event_Out: It is an output event that transfers an event signal to the next module.

 Event_In: It is an input event that receives an event from the previous module.

 Normal_Link: used to connect places to transitions, it could transfer a token and

contains the probability on the arc.

 Condition_Link: used to evaluate the presence of a token in the source place.

 Event_Link: used to stimulate a transition once the parent transition is fired.

50

 Inhibitir_Link: it is the opposite link of Condition_Link. The link selection offered by

ZIZO is shown in Figure 20.

Figure 19 Example of a System Model.

Figure 20 Component of a Module.

4.3.1.2 Program in PRISM

Table 2 presents the main symbols used for the PRISM syntax and semantics. For defining a

path, the usual operators known in computational tree logics can be used such as: X (next),

U (until), F (eventually), G (always), W (weak until), R (release). Probabilistic Timed

Automata "PTA" is on the first hand an extension of Markov Decision Processes "MDP" with

clocks and constraints on clocks. On the other hand, it is an extension of timed automata

with discrete probabilistic choice [Jeremy 2008]. GR-TNCES is based on a probability on arcs

and timed Petri net. It can offer the characteristics of PTA and then, of "MDP" since it is one

of its extensions. Thus, to export ZIZO model to PRISM, we can translate the GR-TNCES

model into an MDP model (because PTA is modeled by MDP). The first line of the generated

file is based on MDP model indicates the model type and the remaining lines describe the

PRISM modules that represent the behavior of the system. In each module, there are

variables used to specify the state of the system. Each line starts with a state number and

indicates the probability to reach other states.

51

Table 2 Syntax of PRISM symbols.

− unary minus

∗, / multiplication, division

+, − addition, subtraction

<, <=, >=, > relational operators (less than, less or equal than...)

=, ! = equality operators

! Negation

& Conjunction

| Disjunction

<=> if-and-only-if

=> Implication

−> actualization operator (placed after guard expression)

[] transition label (label can be written between the

brackets)

? condition evaluation: condition? x : y translates to “if

condition is true then x else y”

 P probabilistic operator

S steady-state operator

R reward operator

A for-all operator

E there-exists operator

Table 3 ZIZO-PRISM Correspondence

ZIZO Model PRISM Model

Place System State

Transition Arrow (→)

Condition_Out System State

Condition_In System State

Event_Out System State

Event_In System State

Prob. Normal Link State Probability

Event link &: Conjunction

Condition link &: Conjunction

Inhibitor link

None

52

Figure 21 Example of ZIZO-PRISM Transformation

The transformation protocol is described in Table 3, i.e., it presents the correspondence

between the components of each model. We use a simple example to clarify the related

protocol, i.e., the model’s diagram is shown in the lift part of Figure 21. The considered

simple example is composed of five places, three transitions, an Event_Out and a

Condition_Out. The right part of the same screenshot represents its corresponding PRISM

code. The code starts with the declaration of the memory and energy resources (Eng and

Mem). Here, we present the generated Prism code using our contribution. The module name

and its state’s number are transferred to the PRISM file.

Figure 22 ZIZO-PRISM Transformation Algorithm

53

The transformation code shows that P1 reaches P2 with the probability 0.2 and P3 with the

probability 0.8. P4 and P5 are end nodes: thus, they remain at the same state. The

management of the memory and energy resources is described during the progress of the

simulation. “Eng>3” and “Mem>3” are the conditions to control the resources before firing

each transition. It is possible to simulate the model only if there are more than three token

units. “Eng’=Eng-1” and “Mem’=Mem-1” describe the variation of the resources at each firing

transition. The transformation algorithm is presented in Figure 22. It presents the export process of

each GR-TNCES component to PRISM model.

4.3.2 New Verification Approach

Formal verification has been widely used to guarantee that a system specification satisfies a

set of properties [Kalita 2002]. We present in this part the current verification methods and

our proposed approach dealing with incomplete and reconfigurable systems.

4.3.2.1 Overview

The existing methods to certify reconfigurable systems mainly focus on the specification and

verification of adaptation process: These approaches are based on a complete knowledge of

the system and the environment behavior at design time, so they are able to reason about the

properties of the whole interaction model [Bortolussi 2015]. However, this is not the case in

many realistic examples in which the information about the behaviour of some components

and the environment are obtained only at runtime. Therefore, run-time verification

techniques come into play to monitor and check that the running system does not violate the

specification and the properties [Bortolussi 2015]. Although it is less expensive than model

checking but it still not complete, and do not guarantee the satisfaction of the properties.

Nevertheless, we find some limits in the temporal logic CTL for the optimal verification of

adaptive properties.

To avoid any requirement violation, we must guarantee that all the properties will be

satisfied in case of applying any reconfiguration scenario [Sharifloo 2013]. This could be

guaranteed by formally verifying the new system specification, which is obtained by

integrating the specification of the new configuration, against the properties. Intuitively, it is

an extra work and overhead because the major part of the specification does not change.

Moreover, model checking a large specification at run-time at each reconfiguration is

difficult because of the time and resource limitations [Sharifloo 2013]. Thus, once it is

possible to refer to the verification results of the invariant part for the future verification, this

would significantly save the time and resource usage. This is why verification techniques to

be proposed here should verify all behaviors of the reconfigurable systems. We address run-

time model checking of reconfigurable systems which are seen as systems with changing or

unstable specifications. We focus on components based reconfigurable systems represented

by an extension of Labelled Transition System and a model checking approach based on

54

reconfigurable Computation Tree Logic [Khlifi 2017]. More specifically, this approach allows

the designer to verify the system at design time, even if some components are not fixed

(unstable, can be replaced). The proposed model checking approach verifies if the

requirements hold and produce a set of constraints for the unspecified components.

4.3.2.2 Motivation and Example

Rail transport is a means of conveyance of passengers and goods on wheeled vehicles

running on rails. It is referred to a train transport system which is a complex and critical

system because it deals with millions of human every day. In addition, it is faced to different

challenges: safety from collisions and derailments and providing the maximum line capacity

to support trains on the same line within the safety constraints [The Metro 2017]. These

systems are considered to be reconfigurable distributed systems since the railway structure

is not static: it is usually the subject of various extensions on different lines. It is also faced to

numerous accident, structures breaking and natural disasters. Moreover, the number of

trains is always changeable; it is possible to add extra trains to cover the increased need and

to maintain the quality of service. Similarly, rapidly increasing the capacity is the biggest

challenge facing all mass transit operators today. As major cities expand, so this leads to a

demand for high capacity and efficient railway network. In addition, the speed of trains is

not constant for almost of the lines. Each change can be considered as an adaptation process

that affects the characteristics of the system. As a real case study, the Paris Metro is a safety

critical reconfigurable system [The Metro 2017]. It is a large railway network with 14 main

lines that cover 303 stations in the Paris area. It is mostly underground and it has 205 km of

tracks. This system carried 1.5 billion passengers in 2014 [The Metro 2017].

The Metro system is an example of component-based systems that their safety properties

depend on the dynamic components which are variable and change at run-time. Such

systems require a continuous verification process to certify the safety of the system at any

new adaptation process. This verification step should be as light as possible to avoid

intolerable overheads. The system is highly critical, and its safety has an incredible value.

Moreover, the formal verification of the whole system at each adaptation process is

considered to be unfeasible because of the resources and time limitation at run-time. We

present the system as a modular connected structure. It is a reconfigurable distributed

system that can change its characteristics at run-time operations. Figure 23 presents an

abstract model of the system which is a 14 module system that represents the different lines

of the railway network. Each module represents one metro line with its trains and

characteristics. It describes its capacity, structure and its connection to other lines. We

assume that modules links represent the connections points between different lines of the

railway network. The white rectangles are the stable parts of the system and the red

rectangles represent the unstable parts/lines: their behaviour is not fixe at run-time. They are

the object of new configurations to cope with the environment requirements.

55

Figure 23 Reconfigurable railway network structure

These reconfigurations are due to an increased demand to enlarge the line capacity, the

quality of service or to extend the line to new parts of the urban area of the city.

4.3.2.3 Contribution

The proposed model checking approach deals with distributed reconfigurable models,

where a set of components or modules are considered to be unstable (change their behavior

at run-time process) and could be also unspecified at design time and are known only at

run-time. Moreover, the classical techniques enable to check the system every time the

unspecified components are resolved or modified at design time. Indeed, the time and space

required for the verification could be considerable and since many configurations are

resolved only while the system is operating, the total overhead in resolving them has to be

as small as possible. To get over this problem, we propose a two-phase verification approach

that enables the designer to:

(i) Deal with reconfigurable scenarios and incomplete specification at design time and,

(ii) Generate a set of constraints to be checked for the unstable or unspecified parts of

the system. Those constraints are verified at run-time against the new configuration

of the component once it is available.

A complete over view is given in Figure 24. It presents two verification levels: at design

time, the incomplete specification system is represented by a particular labelled transition

system.

56

Figure 24 New Verification Approach

It is an Incomplete Labelled Transition System dealing with specified and unspecified states.

It contains two different states categories: the first are known as stable states which describe

a predefined fixed part or task of the system. Here we mean that all the state properties are

known at the specification step. The second are defined as unstable states to describe the

reconfigurable scenarios of the system which are unknown at design time or could change at

run-time. The inputs of the system are the ILTS model and the property to be checked. It will

be checked against the desired Reconfigurable CTL properties “XCTL”. The proposed model

checker approach has three possible results: “False”, “true” and “Conditionally True”. The

results of the proposed verification process differ from the traditional model checker by an

extra output namely “Conditionally True”. This option generates a set of constraints that

will be checked against the reconfigurable module later. During any reconfiguration process,

we reduce the verification process from chickening the whole system specification to the

check of the generated constrains lists, i.e., only these constraints are checked against the

new configuration and not the complete system specification as used before in the standard

model checking. Here is the importance of our contribution of the presented approach, i.e.,

we reduce the verification of the whole process to the verification of the new adaptation

scenario.

4.3.3 Incomplete Labeled Transition System

An incompletely labelled transition system (ILTS) is a labelled transition system in which

there are two sets of states: stable and unstable states. It can describe the unknown

characteristics of the reconfigurable system at the specification step. Formally, it is a tuple (S,

s0, R, L) where:

 S is the set of stable states Ts and unstable states Is, i.e., S = Ts ∪ Is and Ts ∩ Is = ∅;

57

 s0 is the initial state, the unique entering state, and it is a stable state,

 R ⊆ S × S represents the transitions between states,

 L is a labelling function that associates a subset of propositions to each stable state.

ILTS is used to specify any incomplete system later. The proposed verification approach

is based on this formalism. Here, we present the ILTS of the motivating example showed

in Figure 25. It is derived from the abstract net structure model presented in Figure 23. It

is an LTS with some special unknown states. The white places represent the predefined

(stable) states/structure of the system. The red states represent the reconfigurable states

of the system: its characteristics change at run-time. They are the object of new

configurations to cope with the environment requirements at the current state of the

system. These reconfigurations are due to an increased demand to enlarge the line

capacity, the quality of service or extending the line to new parts of the area. (R2, R7, R11

and R14) are respectively new simple structures of the reconfigurable modules (2, 7, 11

and 14) at the adaptation phase. Then, once the structure is known or could be defined,

the generated constraints are applied to be checked against these new specifications. R2

is checked against the matrix generated to satisfy the desired XCTL formula in the

second module.

Figure 25 ILTS of the railway model

58

4.3.4 XCTL Model Checker

Reconfigurable CTL (XCTL) model checking is an extended version of CTL applied to

adaptive systems. It has the same semantics as the standard CTL model checking for the

“True” and “False” outputs with an extra definition related to the third possible output

namely “Conditionally True”. We will not recall the standard definition of CTL semantics

here; we will just add the new semantics related to unstable states and undefined paths. CTL

is basically defined on a state of LTS. XCTL should be defined on states of ILTS, M=(S, s0, R,

L). M, s |= φ means that φ could hold in a state s of the ILTS M. The formula φ is checked

against the whole system with its stable and unstable states. For the stable states, we will get

a standard verification process, whereas, in the unstable cases, it will be different. There will

be a generation of sub-constraints to be fulfilled by the incomplete sub-system for the aim of

satisfying the formula φ after the definition of the reconfiguration scenario. The set of

constraints that are needed to satisfy the formula φ in an unstable state s are saved in a

matrix constr. Each element constr(φ, s) is a set of constraints in the form [(φ1, state1), . . . , (φn,

staten)], meaning that the formula φ holds in s if the path XCTL formula φ1 holds in state1, . . .,

staten-1 and the path XCTL formula φn holds in staten. We present here the semantics of XCTL

and we recall the definition of the ILTS system (S, s0, R, L) to clarify the proposed semantics:

 S is the set of stable states Ts and unstable states Is, i.e., S = Ts ∪ Is and Ts ∩ Is = ∅;

 s0 is the initial state, the unique entering state, and it is a stable state,

 R ⊆ S × S represents the transitions between states,

 L is a labelling function that associates a subset of propositions to each stable state

The semantics should be defined as follows for the stable states Ts and unstable states Is:

 M, s |= φ ⇔ φ ∈ L(s) if s ∈ Ts and s |= constr(φ, s) if s ∈ Is ;

 M, s |= ¬φ ⇔ M, s ⊭ φ if s ∈ Ts and s ⊭ constr(φ, s) if s ∈ Is ;

 M, s |= φ1 ∧ φ2 ⇔ M, s |= φ1 and M, s |= φ2 if s ∈ Ts; and s |= constr(φ1, s) and s |=

constr(φ2, s) if s ∈ Is;

 M, s |= φ1 ∨ φ2 ⇔ M, s |= φ1 or s |= φ2 if s ∈ Ts; and s |= constr(φ1, s) or s |= constr(φ2,

s) if s ∈ Is;

 M, s |= AXφ ⇔ (∀ π such that π0 = s, M, π1 |= φ) for all paths starting at s, next time φ

if s ∈ Ts or next time constr(φ, s) if s ∈ Is;

 M, s |= AFφ) ⇔ (∀ π such that π0 = s, ∃ i such that M, πi |= φ) for all paths starting at

s, eventually φ if s ∈ Ts or eventually constr(φ, s) if s ∈ Is;

 M, s|= AGφ ⇔ (∀π such that π0 = s, ∀ i M, πi |= φ) for all paths starting at s, always φ

or always constr(φ, s) if s ∈ Is;

 M, s |= φ1AUφ2 ⇔ (∀π such that π0 = s, ∃ i such that (∀ j < i (M, πj |= φ1)) ∧ (M, πi |=

φ2)), for all paths starting at s, φ1 until φ2 if s ∈ Ts or constr(φ1, s) until constr(φ2, s) if s

∈ Is;

 M, s |= EXφ ⇔ (∃ π such that π0 = s, M, π1 |= φ) there exists a path such that next time

φ if s ∈ Ts or next time constr(φ, s) if s ∈ Is;

 M, s |= EFφ ⇔ (∃ π such that π0 = s, ∃ i such that M, πi |= φ) there exists a path such

that eventually φ if s ∈ Ts or eventually constr(φ, s) if s ∈ Is;

 M, s |= E φ1 ∪ φ2 ⇔ if there exists a path π starting from s such that ∃sk ∈ π | M, sk |=

φ2 if s ∈ Ts or s |= constr(φ2, s) if s ∈ Is and ∀ si ∈ π with i < k, M, si |= φ1 if s ∈ Ts or s

|= constr(φ1, s) if s ∈ Is;

59

 M, s |= EGφ ⇔ if there exists an infinite path π starting from s such that ∀ si ∈ π, M, si

|= φ if s ∈ Ts and s |= constr(φ, s) if s ∈ Is.

The core of the presented approach is an XCTL model checking algorithm for incomplete

models, described using the ILTS formalism. It is based on the CTL model checking [Clarke

1986] and manipulated in order to deal with unstable and incomplete states. The inputs of

the algorithm are an XCTL property and an ILTS model. If the ILTS is a stable LTS, i.e., the

system specification is already predefined, it behaves as the traditional CTL model checker

approach on predefined LTS. On the other hand, if the ILTS contains unknown states or as

mentioned before that they are not specified at the specification time, it computes the

presented XCTL formulae that shall be guaranteed by the unspecified components later at

run-time. More precisely, the presented approach follows these algorithm steps. First, the

XCTL formula is parsed and its parsing tree is derived. Usually, the leaves are propositions

and the inner nodes are boolean and temporal operators. As CTL model checking, a bottom-

up approach is applied to the tree to check if each sub-formula holds. For each node of the

tree, the set of the states in which the sub-formula holds is evaluated by parsing the tree,

starting from the leaves. The algorithm takes as inputs a subtree ST of the parsing tree, the

formula φ, and the ILTS M on which the original formula is evaluated. The tree ST is a binary

tree, where a node representing a unary operator has a single son, while a node representing

a binary operator has two sons. We use ST.S to refer to the set of states in M that satisfy the

formula represented by the current subtree, ST.left and ST.right to refer to the left and the

right subtrees of the current tree (when the root is a binary operator), and ST.son to refer to

the subtree of the current tree (when the root is a unary operator). The algorithm can store

the elements that satisfy φ in a local set X.φ. Moreover, the set of constraints that are needed

to satisfy the formula φ in an unstable state s are saved in the matrix constr.

4.3.5 Marking Algorithms

We present here the marking algorithm [Ma 2017b] of the proposed XCTL temporal logic.

The inputs are: A model structure M, an XCTL formula φ and a subtree t. The constraint

matrix is initiated (line 3). Mark (ϕ, s) is a standard CTL marking function dependent on the

formula ϕ. This function is applied once the visited state is a stable one (line 4). Let’s assume

that Mark (ϕ, s) ∈ { Mark(φ, s), Mark(¬φ, s),Mark(φ1∧φ2, s), Mark(φ1∨φ2, s), Mark(AXφ, s),

Mark(AFφ, s), Mark(AGφ, s), Mark(φ1AUφ2, s), Mark(EXφ,s), Mark(EFφ,s), Mark(E φ1Uφ2, s),

Mark(EGφ,s)}. It the same logic used in the standard model checking, i.e., checks if a formula

is satisfied by the model. On the other case (line 5), a constraint is generated to be

investigated at the adaptation phases. The constraint is a sub-formula that should be verified

by this instable state. This constraint is added to the list of the existent constraints (line 6).

60

4.3.6 Degraded Verification Mode

Reconfiguration enables a system to operate in different modes, thus, to be flexible as

possible and adapted according the characteristics and requirements of the environment.

Openness is also an inherent property, as agents may join or leave the system throughout its

lifetime. The proposed verification approach is based on the generation of the constraints to

be checked at each reconfiguration scenario.

 In case, we opt to check the AGφ formula (line 3), i.e., this property has to be satisfied

by the whole system model. We generate the corresponding constraints to be

respected during any reconfiguration scenario. Before applying the new adaptation,

the proposed algorithm checks that the new configuration satisfies the requirements

of the generated constraints (line 7).

 If it is true (line 8), the system will operate safely and complete its running task. In

various cases, the properties are not respected and the system has to go forward with

respect to its safety.

 In this case, the algorithm chooses to degrade the running mode to the second level,

i.e., instead of verifying the satisfaction of the property in all the paths, we try to find

a possible combination of paths that could be executed by the system (line 9). Then,

we move to check the validity of following formula: EGφ (line 10) that presents the

existence of a possible solution for the occurred deadlock state.

1: Marking (ϕ, t, M) {

2: for all (s ∈ M.S) {

3: constr (ϕ, s) = ϕ ;

4: if (s ∈ M.Ts) {mark (ϕ, s) }

5: elseif (s ∈ M.Is) {

6: constr(ϕ, s) = constr(ϕ, s) ∪ {s};}}}

1: Verif_output R;

2: While (R ≠ false) do

3: if (φ= AGp)

4: { R=“Conditionally True”;

5: constr(φ, s);

6: Execute_Reconfiguration();

7: Verif_constr();

8: if (R= True) then end;

9: else {φ:= EGp ;

10: Verif_constr();} }

11: if (φ= AXp) OR (φ= AFp) OR (φ=pAUq) {

12: if (R= “True”) then end;

13: if (R= “Conditionally True”)

14: { constr(φ, s);

15: Execute_Reconfiguration();

16: Verif_constr();

17: if (R= True) then end;

18: else φ:= SUBSTITUE (φ; “A”; “E”); }

19: Verif_constr();}

20: end while

61

 For the following three formulas: “AXφ, AFφ, pAUq” (line 11), it is possible that the

properties are satisfied at the stable part of the system (line 12), i.e., the

reconfiguration scenario will not affect the requirement of the system. Then, the

verification results should be “True”.

 Otherwise the corresponding constraints are generated and should be checked

against the updated parts of the system (line 14).

 In case of the non-satisfaction of the desired constraints, we can opt to the

degradation (line 18). Then, we check respectively the following constraints formulas

“EXφ, EFφ, pEUq” (line 19).

The degradation strategy is presented in a summarized view in Figure 26. Safety is a crucial

element in critical systems. Here, the railway network is always the subject of different

addition/removing of trains to various lines. As a solution for the increased demand to

enlarge the system structure and the quality of service respecting its safety, we can think

about the existence of a possibility to apply the desired property in the possible lines instead

of the entire network. We opt to check the validity and existence of paths that satisfy to

desired target. For example, if we aim to double the speed of some trains: then, it will affect

the safety distance between the components of the network. Let’s consider the property

p=“double the speed”, then we check: EFp instead of AFp. Similarly, if we hope to add two

extra trains in the network from certain stations to cover the large demand: φ= “add two

extra trains”, then we check EXφ instead of AXφ. We look for proving the existence of safe

options to improve the quality of service of the system. Thus, we can guarantee the service

continuously with its safety to satisfy the user requirements.

Figure 26 Degradation approach

4.3.7 Discussion

This chapter highlights a double-phase approach to efficiently verify reconfigurable

distributed systems, in which some components may dynamically change at run time. The

idea aims to introduce an optimized formal certification approach for reconfigurable

systems: much more useful to save time and memory resources. The purpose is to:

 Optimize the verification process, i.e., the needed time and space resources after any

modification of the system behavior.

62

 Based on the use of a separated modular verification approach and the results of the

previous verification, we avoid the repetition of many extra unnecessary tasks

during the certification of a reconfigurable scenario.

 To support the methodology, a new semantics of the temporal logic CTL is proposed

to deal with the incomplete labelled transition systems of an adaptive system.

 A new marking algorithm to concretize the approach is presented. A new degraded

verification algorithm is proposed as a solution for the deadlock states after applying

any adaptation process.

 To support this built framework, correctness tests will be evaluated, we will check

the validity of the results of the proposed XCTL model checking compared to the

standard model checking. Scalability of the approach will be considered in our future

work.

4.4 Summary

We highlight in this chapter two contributions: the first is a simulation method of

probabilistic reconfigurable system with energy and memory control. We presented a

probabilistic simulation algorithm that can supervise the energy and memory consumption

of such a reconfigurable system. This algorithm offers the possibility to detect resources

violation before applying any adaptation scenario, i.e. save the system specification from

running without resources. It can also simulate the proposed model using different

probabilistic strategies. The second is related to formal verification, i.e., we presented an

export method of GR-TNCES model to PRISM model and a new online formal verification

approach of reconfigurable systems. It can avoid repetitive useless tasks that slow down the

formal certification at any adaptation scenario. It reduces the formal verification of the

whole system specification to a certain number of constraints that could be verified later at

the reconfiguration time, i.e. reducing the verification time and the varication resources.

This approach is proposed to cover the limits of traditional model checking method coping

with large reconfigurable systems. This work could be extended in many directions. At the

moment, we are working on the implementation of the algorithm and to explore a new

symbolic approach.

63

Chapter 5

ZIZO1.1: New Environment for

Modeling, Simulation and Verification

of APDECS

Contents
5.1 Introduction……………………………………………………………..………….....64

5.2 New Environment ZIZO1.1 …………………………………………………….......64

5.2.1 ZIZO1.0 …………………………………………………………………………..64

5.2.2 New Version of ZIZO: Architecture………………………………………..….65

5.2.3 Implementation…….……………………………………………………….…....67

5.2.4 System Modeling and Simulation…………….……………………………......68

5.3 Case Study 1: Skid Conveyor System………….…………………………………..69

5.3.1 Structure……….……………………………………………………………….....69

5.3.2 System Modeling….……………………………………………………….…….70

5.3.3 Simulation and Optimization…….………………………………….…………73

5.3.4 Discussion………………………….………………………………….………….73

5.4 Case Study 2: IPV4 ZeroConf……….……………………………………................74

5.4.1 Principles and Challegnes…………………………………..……………..........74

5.4.2 IPV4 ZeroConf: Modeling…………………………………..……………….….74

5.4.3 IPV4 ZeroConf: Simulation……………………………….…………………….76

5.4.4 IPV4 ZeroConf: Formal Verification…………………………………….……..77

5.5 Discussion……………………………………………………………..…………........80

5.6 Summary……………………………………………………………….………...........81

64

ZIZO1.1: NEW ENVIRONMENT FOR MODELING, SIMULATION

AND VERIFICATION OF APDECS

5.1 Introduction

We present here the new version ZIZO1.1* [Khlifi 2018a] and its usefulness in modeling,

simulation and certifying adaptive probabilistic discreet event control systems [Kouskoulas

2013]. The tool is used to model and simulate two case studies: the IPV4 ZeroConf protocol

and an automotive transport system. This chapter is published in [Khlifi 2018a].

5.2 New Environment ZIZO1.1

5.2.1 ZIZO1.0

ZIZO1.0 is an R-TNCES modeling and random simulating tool written in C# programming

language for the Windows platform and developed in LISI laboratory of INSAT (Tunisia)

presented in [Salem 2015]. It is the first version of ZIZO: Its originality consists in featuring

the simulation of a built R-TNCES and highlighting the reconfiguration aspect of a DRCS,

which are not offered in any other Petri nets editor. The main window of ZiZo GUI shown in

Figure 27 comprises five dockable frames: Menu Bar, Model Arborescence, Place Properties,

the Document Explorer and the Debug Window.

Figure 27 Main window of ZIZO1.0.

65

ZIZO1.0 is capable of:

 creating several modules within the same model;

 interconnecting modules by input/output condition and event signals;

 randomly simulating the created model to detect any eventual deadlock;

 storing the created model in a special file format (*.pnt);

 loading a created model to edit it and/or simulate it;

 exporting the model to the model-checker SESA.

5.2.2 New Version of ZIZO: Architecture

In the conception part of the new version of the tool ZIZO1.1 [Khlifi 2018a], we used

StarUML [StarUML, 2018] which offers the world application structure, behavior, and

architecture, business process and data structure. It unifies every step of development and

integration from business modeling, through architectural and application modeling, to

development, deployment, maintenance, and evolution. It helps to specify, visualize, and

document models of software systems, including their structure and design, in a way that

meets all of these requirements. It defines thirteen types of diagrams, divided into three

categories: structure diagrams, behavior diagrams, and interaction diagrams. We present

here the architecture of ZIZO1.1. In the following picture Figure 28, we present the global

class diagram of the tool which contains four packages: Components, Link Edition, Project

Handler and Simulation.

Figure 28 Packages of ZIZO1.1.

66

Table 4 Links Description

Source Destination Role

Normal Link

Place

Transition

Transition

Place

Enable token crossing.

Condition Link

Place

Place

Condition_In

Transition

Condition_out

Transition

Transfer the state of the parent

place (If it is marked or not).

Event Link

Transition

Transition

Event_In

Transition

Event_out

Transition

Stimulate a transition when the

previous is fired.

Inhibitor Link

Place

Transition Enable firing a transition only

if parent place is not marked.

These packages are connected and interact using three more classes which are: module

viewer, project viewer, and project loader.

 Package Link Edition: It presents various types of arcs used to connect the project

elements. Each arc is used to link specific element. The following table Tab. 4

presents how the links are affected (source, destination) and why they are used.

 Package Simulation: This package contains three simulation classes according to the

probability strategies: High, average or low. If the designer chooses the high

probabilistic simulation strategy, then only the highest probabilistic paths will be

executed, i.e., the token will visit only the branches with high probability. The same

rules are applied for average and low simulation strategies. A warning message is

displayed once the energy reserves reach the minimal allowed capacity. It is a

parameter chosen by the designer.

 Package Project Handler: It enables to perform certain operations on the project: (i)

Saving the project, (ii) Loading the created project for editing and simulation, (iii)

Exporting a project to PRISM model checker.

 Package Components: This package showed in Figure 29 describes all different

elements of ZIZO1.1 and its relation to each other. They can be places, transitions,

modules, Condition_In, Condition_Out, Event_In, Event_Out and labels.

67

Figure 29 Package Components

5.2.3 Implementation

ZIZO1.1 is developed for the modeling and simulation of APDECS. It helps to deal with

distributed architectures using condition/event signals. We present briefly the utilities which

we have used to develop our project. For the Hardware, we disposed a computer which has

these technical specifications:

 Processor: Intel (R) Core (TM) i5-3230M CPU @2.60GHz

 RAM: 4,00Go

 System type: OS 64 bit

 Operating System: Windows 8.1 Professional 2013 Microsoft Corporation.

For the software part, we used Visual Studio Ultimate 2012 [Visual Studio Ultimate 2012]

which offers the possibility to use flexible agile planning tools to enable incremental

development techniques and agile methodologies. It offers also advances modeling,

discovery, and architecture tools to describe your system and helps to ensure that your

architecture vision is preserved in the implementation. We used the development Platform:

Microsoft.Net Framework 4.5 that provides a comprehensive and consistent programming

model for building applications that have visually stunning user experiences and seamless

and secure communication. As a programming language, Microsoft C# is an object-oriented

programming language designed for building a wide range of enterprise applications that

run on the .NET Framework. C# code is compiled as managed code, which means it benefits

68

from the services of the common language run-time. These services include language

interoperability, garbage collection, enhanced security, and improved versioning support.

Finally, using this work environment, we come out to build ZIZO1.1 which enables the

following features:

 Modeling of probabilistic distributed system based on the GR-TNCES formalism, i.e.

extending the tool from R-TNCES (ZIZO1.0) to GR-TNCES.

 Editing and connecting modules to each other through condition and event signals.

 Simulation of the global model with a token game animation, the control of the

simulation depending on the memory and energy reserves and showing the

evolution of the reserve at run-time: the consumed as well as the memory and energy

reserves, i.e. adding the various probabilistic features to the simulation algorithm

compared to the last version of the tool.

 Choice of the simulation type according to the probability level: (High, Average,

Low). It was not offered by ZIZO1.0, i.e. dealing with probabilistic functionality.

 Extraction of curves for the memory and energy consumption during the simulation

time, this is also a new functionality of the presented ZIZO version.

 Export of the model to the PRISM model checker by the generation of the model’s

PRISM code, it is also a new feature to enable the formal verification of the

probabilistic model and save time for writing the complete system specification job.

 Loading and saving a model.

5.2.4 System Modeling and Simulation

ZIZO1.1 enables the modeling of distributed probabilistic systems using GR-TNCES

formalism. The content of each module can be designed using different components. Figure

30 represents an example of a GR-TNCES module. It contains places, transitions, condition

output, condition input, event input, event output, normal link, condition link, event link,

probabilistic parameter on the links, memory and energy reserves and the recharge period

for the energy resources. We develop the simulation algorithm of the built model; it is

shown through a token game animation. The color of each fired transition changes to red

and one token from the memory and energy resources is consumed. There are three

simulation strategies according to the probability level: High, Average and Low. The

simulation process consumes memory and energy resources depending on the chosen

simulation. We have to control resources availability before the starting and even at run-

time process. The idea is to check the resources’ availability before starting the system

simulation to make sure that no energy violation will be faced during the running process.

69

Figure 30 Module Example.

5.3 Case Study 1: Skid Conveyor System

In this Section, we present the automotive transport system model based on GR-TNCES

formalism using the environment ZIZO1.1. For the purpose of optimizing the energy

consumption of the old system, we present the requirements of the proposed transport

system model.

5.3.1 Structure

The existent automotive transport system at ZeMA is based on three conveyor parts, each

one equipped with one motor to move the chassis on it from one position to the next one.

The user could only activate/deactivate the three motors simultaneously. Even if there is just

one car in the transport system, all the motors are active continuously. Our contribution in

this point aims to save the energy consumed by the motors if there is no car at such a

position of the skid. In order to realize energy-efficient operations, the system is extended by

a control unit and six inductive sensors. The first sensor is placed 2.62m and the second one

4.69m from the start point of each conveyor part. Using these sensors, it is possible to detect

the skid position on the conveyor. Inactive components are switched into an energy efficient

state. For this purpose, the system is extended by a control unit and six inductive sensors.

For example, once the chassis is in the third conveyor part, the motor of the second and first

one should be switched to Standby mode. The activation/deactivation of the motors is

controlled based on the car position. Since we have a fixed chassis position on the skid, the

inductive sensors enable us to determine the chassis position. This information can be used

in the assembly task for example and then, we differentiate three different cases:

(i). If a rising edge is detected by the first sensor, then the skid reaches the conveyor and the

associated motor must be turned ON,

(ii). If there is a rising edge at the second sensor, then the skid is in the middle of the

conveyor. The motor is switched to Standby mode for an exemplary cycle time of 10 seconds,

70

(iii). If a falling edge is detected by the second sensor, then the skid leaves the conveyor part

and the first motor must be switched Off. Monitoring the skid position has a further

advantage.

In order to provide any energy efficient operation of the system, we have to install a control

system that allows switching ON and Off all components at the right time. The central unit

of the system forms a programmable logic controller (PLC) which connects all the sensors,

the motors and the conveyor part of the system. The PLC communicates via PROFINET with

the drives and a mobile panel. The Siemens PROFIenergy [PROFIBUS 2010] profile is based

on PROFINET and allows Active and Standby modes for the non-used loads during non-

productive periods. The drive system is a modular component that ranges from the control

unit and the power modules to the motors. The user-handling and control were realized

with a mobile panel. It is easy to command the system via touchscreen and buttons. Figure

31 shows the layout within the control components. It represents the control system and the

connection among its modules.

Figure 31 Control system of the skid conveyor.

5.3.2 System Modeling

We model the proposed system model and also the model of the existent system (without

control and inductive sensors) using the environment ZIZO1.1. To evaluate the energy

optimization of the proposed plant model, it should be compared with the energy consumed

by the old production line model. Figure 32 describes the proposed model which is a

distributed discrete event system composed of four modules: The car in the conveyor, the

71

Figure 32 Proposed Transport Model.

sensors, PLC and the three motors. If the sensitive sensor detects the existence of a car in the

conveyor, then it sends an event signal to the PLC. It activates and deactivates the

corresponding motors according to the car position in the conveyors. The first module

contains six events which correspond to the six sensors installed in the skid conveyor (two

sensors at each conveyor part). For the sensors module, it receives the events sent by the

conveyor and transfers them to the PLC module. It has three extra-events denoted by “No-

Car2”, “No-Car4”, and “No-Car6” which correspond respectively to the events received from

sensors number two, four and six to notify the PLC that the car has left the conveyor part.

The third module corresponds to the PLC module which controls the whole system.

The PLC receives signals from the sensors to control the state of the motors (Active, Standby,

Off). The Event_In “M1.ON”, “M1.SB”, “M1.Act”, and “M1.Off” see Figure 33, correspond

respectively to control the states of the motors “Idle, Standby, Active and Off”. Figure 33

introduces the model of the first and second motors, i.e., it describes the transition between

the different states of the motors. The pink rectangles correspond to input events received

from the PLC to stimulate the firing of the corresponding transitions. The motor keeps the

running mode till it receives another PLC signal. The event-in “M1.SB” pushes the first

motor to switch from Active to Standby mode; “M1.Act” is used to reactivate the motor after

the energy efficient mode. Figure 34 shows the PLC model that corresponds to the transition

between different states of the system. The pink rectangles correspond to Event-In signals

received from the inductive sensors. The red rectangles correspond to Event-Out signals that

control the motors’ states. The PLC model represents the logical and the temporal control

unit to manage the entire system.

72

Figure 33 Model on motors.

Figure 34 Model of the PLC.

Basically, it has to ensure the following states: “Start”, “Activate Motor 1”, “Car in conveyor

1”, “Wait 10 seconds”, “Activate Motor 1”, “Car in conveyor 2”, “Wait 10 seconds”,

“Activate Motor 2”, “Car in conveyor 3”, “Wait 10 seconds”, “Activate Motor 3”, “End”.

During the waiting time, the motor is in the Standby mode while there is another robot

working on the car’s chassis. Then, the motors move the car to the next part of the skid

73

conveyor. There are additional sensors to detect the workpiece’s position on the conveyor.

The control strategy is based on the sensors’ optimal position to reduce the period in which

it is essential to activate two motors for the task of moving the car. We detect exactly the

suitable time for deactivating the current motor and activating the next one.

5.3.3 Simulation and Optimization

There are two system/model variants: An old one where all the motors could be switched

only simultaneously and manually between Active/Stop modes, and another system model

where each motor could be monitored and switched independently. The new model also

features additional sensors to detect the position of the workpiece on the conveyor.

Accordingly, the motors need to be into operation mode, are automatized by means of the

PLC. To evaluate the energy optimization of the proposed model, we refer to the

consumption of the old system. The standard plant model contains only touch screen for the

control of the three motors. It is used to activate and deactivate all the motors which are

continuously in a running mode except the delay to work on the chassis by another robot.

As shown in Figure 35, the basic model presents only two modules: “Control Panel” and

“Motors”. The red signals between these modules correspond to the activation and

deactivation control events of the motors. For the simulation of the systems’ resources, we

suppose that each motor consumes four energy units (tokens) per second in the running

mode, one token in the Standby mode and zero unit if it is Off. We execute the simulation

using the environment ZIZO to evaluate its consumption. The energy consumption curves

are shown in Figure 36 during the simulation time (40 seconds). This figure illustrates the

evolution of the token number needed by the system in that period. The curves present three

horizontal parts. It corresponds to the period in which the motors are deactivated in the old

model and the Standby mode in the proposed model. The other portions correspond to the

motors’ activation period and the energy consumed by the three motors to move the car

from one position to the next one.

Figure 35 Standard system’s model.

74

5.3.4 Discussion

Figure 36 shows the consumption curves of the proposed energy efficient mode in the right

graph and the curves of the energy consumption of the old model in the left one. In the

energy efficient mode, usually there is only one motor which is active. This idea is based on

the detection of the car position to activate and deactivate the corresponding motors. We

aim to reduce the period in which we need two motors to move the car from one skid to the

next one through the optimal position of the sensors. The curves describe the energy needed

by each system during the simulation time. We notice that there is an important reduction of

the energy consumed in the proposed model. For the first part (2-5 seconds), the

consumption is highly reduced (from 22 to 9 tokens) since only one motor is activated

instead of three motors compared to the old model. To move the car to the second position

(13-16seconds), the proposed system model consumed 22 tokens. On the other hand, the

basic model needs 44 energy units for the same task which is a valuable optimization. In

fact, the sensors detect the car position and the PLC controls the activation and deactivation

of the motors: It deactivates the first motor and turns on the second one. For the third skid

part of the system, this strategy enables us to save 24 energy units compared to the basic

plant model presented in the left part of Figure 36.

Figure 36 Optimization of energy consumption.

5.4 Case Study 2: IPV4 ZeroConf

5.4.1 Principles and Challegnes

IPV4 ZeroConf is a probabilistic protocol executing many devices with limited memory and

energy resources. In large scale of wireless networks, significant packets loss is inevitable

which could consume the memory and energy of the devices. The communication and the

storage of the messages need memory and energy reserves: it needs one unit of memory and

75

energy resources to transfer a message from one device to another. The selection of a valid

address is not guaranteed because it is an uncertain process. Reconfiguration processes are

probabilistic, i.e., they are necessary in case of an address conflict. In some cases, the

protocol has to change its address as a solution for the address conflict. In this work, the

authors try to deal with these questions: (i) How can we model the unpredictable behaviors?

(ii) How can we simulate and check probabilistic adaptive discrete event systems? (iii) How

can we certify the system’s correctness and safety? i.e., to verify the violation of memory,

energy and probabilistic real-time constraints, (iv) and how to prove that there are no

deadlock states due to the resources violation or real-time constraints?

5.4.2 IPV4 ZeroConf: Modeling

The model of the network is shown in Figure 37: each module corresponds to a device

model. The whole model connects the devices using condition/event signals and the tokens

represent the memory and energy resources to be consumed by the system. The battery is

recharged after a desired time period chosen by the user. The probabilities on the arcs are

used to describe the nondeterministic behaviors of the protocol. Realtime constraints are

assigned on the transition parameter (“start_at”: the desired time to fire the transition and

“end_at”: the last possible instant to fire the transition, i.e., out of this period, the transition

is not fired even if there is a token in the predecessor state).

Figure 37 Devices network

76

The description of the GR-TNCES model of one device using ZIZO1.1 is presented in Figure

30. The devices have the same model description while they have the same behavior. Each

device starts at the idle state (“P1: idle”), then chooses an IP address (“P2”), and sends four

probes to the rest of the network. It is a repetitive task modeled with a condition to evaluate

the probe’s emission (“P3: send four probes”): T2 will be fired only if P3 is marked. An

Event_Out is created to send the ARP probes. Once the four ARP probes are sent (“P4: Send

ARP probes”) and the device receives an ARP reply (ei1 in T3), the protocol is restarted (“P2:

choose IP address”). If the device does not receive any message, it fires T4 to reach “P5: Use

IP”. Then, the device confirms its ownership of the address to the rest of the network by

sending two gratuitous ARP. The place (P6) models the condition of sending two GARP

packets, i.e., it is modelled by two events eo2 and eo3. If it receives a GARP packet during the

first second of the use of the address, it must defer the address (“P8: Defer”) and restart the

protocol through “P2: Choose IP”. Then, it can continue to use the chosen address (“P10: use

IP”) and consequently, the device becomes a network member.

5.4.3 IPV4 ZeroConf: Simulation

Once the network model is built using ZIZO1.1, we have to certify the marking properties

and the time constraints: the messages synchronization and the respect of the response delay

(2 and 10 seconds). In addition, we have to check that the memory and energy resources will

not be violated at runtime operation or during a reconfiguration process. To run the system,

(i) all initial states (“P1: idle”) should be marked with a token, and (ii) a transition could be

fired only if all its inputs are valid: the time constraints, Event_In and Condition_In. We

simulate two scenarios: a seven-device model and a 14-device model, i.e., we have realized

many experiments to optimize and supervise the needed resources for the probabilistic

protocol. For the 14 devices, we obtain a GR-TNCES model with 154 places, 213 transitions

and 1484 Event_In/Out to exchange the messages. Upon the definition of the model, the

simulation can be tracked by selecting a token game animation. Once the simulation is

finished, a trace file is displayed in the debug window. We simulate the protocol through

the high probability strategy and the average strategy. During the simulation, the color of

each fired transition is changed to red and the simulator shows the variation of the

consumed and the available memory and energy resources. For the 14 devices network, if

we simulate the system with only 100 units of memory and only 20 units of energy, we

obtain a warning message because the resources are insufficient see Figure 38. Thus, using

only these resources, the system will violate its reserves and will reach a deadlock state.

According to the simulation scenarios, we conclude that the minimal resources for this

system are 250 units of energy, 186 units of memory tokens and the recharge period for the

battery is eight seconds. We simulate the system model without any violation problem or

any blocking states. The debug window shows the evolution of the simulation through a

trace file description.

77

Figure 38 Memory warning message

Different simulation scenarios are established to obtain the optimal model with the minimal

memory and energy resources. Figure 39 shows the evolution of the consumed energy and

memory resources during the simulation time (94 seconds). The resources consumption

increases during the time due to the increase in the probabilistic network traffic. The system

consumes 250 of energy tokens and 186 of memory tokens that is the optimal consumption

of the simulated model.

Figure 39 Curves for memory and energy consumption

5.4.4 IPV4 ZeroConf: Formal Verification

The authors aim to formally certify the safety of the IPV4 ZeroConf model, i.e., verifying if

the model respects the required resources and if any reconfiguration scenario dealing with

adding/removing devices lead to a blocking situation. PRISM is a probabilistic model

checker, a tool for formal modeling and analysis of the systems that exhibit random or

probabilistic behavior. It is based on the model’s reachability graph to analyze different

systems and answer many typical questions, e.g., what is the probability of a failure? Typical

properties which can be verified are boundedness of places, liveness of transitions [Uzam

2016], and reachability of states. The tool’s input is a description of a probabilistic system

written in the PRISM language. Using PRISM, we can check the correctness of a model, i.e.,

the existence of a deadlock state in which the system could not progress or violate the

memory and energy resources or real-time constraints. PRISM introduces the model type as

a discrete time Markov chains, continuous time Markov chains, Markov decision processes,

78

probabilistic automata and probabilistic timed automata [PRISM 2015]. Then, the names of

the modules and their variables are declared. Finally, the model states and their probabilities

to reach the successor states are described. We aim to check the probability that the system

violates its resources during a reconfiguration process. For that purpose, the GR-TNCES

model is exported to the PRISM model using ZIZO1.1. Figure 40 describes a part of the

ZeroConf protocol’s PRISM model. The temporal/functional properties specified by the

users based on CTL could be checked manually.

Figure 40 PRISM code of ZeroConf protocol mode.

E[F " deadlock "]

We aim to check the resources control strategy: the optimal control of the memory and

energy resources during run-time processes. We have to prove that there is no resource

violation during a probabilistic reconfiguration process. The following CTL formula is

applied to check if the system is deadlock free. This formula is proven to be false, i.e., we do

not have any blocking situation during this running process with the activation of the

memory and energy controllers. The energy resources are guaranteed by the optimal

recharge period, i.e., the model established by ZIZO1.1 and exported to PRISM is well-

controlled and does not lead to a blocking situation at a run-time process. We use the

probabilistic temporal logic PCTL which is an extension of computation tree logic for the

probabilistic verification of the described properties. We formally certify that the memory

resources are sufficient at any reconfiguration process. The memory is needed for data

storing, the synchronization and transfer of the messages in the network. For each new

79

device connection, the network has to exchange a number of messages request and

confirmation for the validity and availability of such an IP address. One has to prove that

the system’s memory is continuously available to exchange messages in the network. The

idea is to instantaneously check if there are the needed resources for all the system scenarios.

We have proven that it is not possible to reach the end states without memory resources.

PRISM certifies that the probability to reach a state with a problem of memory resources is

null. The following PCTL formula is an example of the checked properties.

Pmin=? [p=11& Mem=0]

This formula is evaluated and proven by PRISM, i.e., the probability that the system reaches

the last state of the device module with no memory resources is null as shown in Figure 41.

Thus, GR-TNCES can specify and supervise the model’s resources at run-time operation.

Similarly, the network devices need energy resources to keep their running mode. It is a

critical resource for the connectivity of the devices to the network. We certify that there is no

lack of energy resources during a reconfiguration scenario.

Figure 41 Probabilistic Property.

 According to PRISM, the probability to reach an end state without energy reserve is null.

The following PCTL formula is an example of the checked formulas and it is proven to be

null.

Pmin=? [p=11 & Eng=0]

We verify that the model meets users’ requirements, i.e., any adaptation process do not lead

to a deadlock state as proven by the Red Cross in PRISM in Figure 42.

Even after 334 steps, there is no blocking situation faced by the protocol. Each step refers to

an operation done by the protocol: Sending a message, adding a device, and removing a

device. Thanks to GR-TNCES, ZIZO1.1 and PRISM, we have modelled, simulated and

80

certified the safety of the proposed case study. We evaluated the resources consumption and

supervised their availability before any adaptation process.

Figure 42 Simulation at step 334.

5.5 Summary

This chapter presents a new original visual environment for the modeling, simulation and

verification of APDECS using the formalism GR-TNCES. The new version of ZIZO is used to

model probabilistic distributed reconfigurable architectures and connect modules using

event and condition links. It enables the monitoring and supervision of the consumed

resources to avoid their violation. A mapping algorithm used to export any ZIZO model for

a formal verification using PRISM is also presented. Compared with the previous studies on

formal methods, we are able to model unpredictable reconfigurable discrete event system

running under limited resources. A new model of the automotive transport system is

developed and simulated using ZIZO to evaluate its energy consumption compared to old

system model. The presented model offers a significant energy optimization compared to

the standard model. The reported results of the improved system show an important

reduction of the consumed energy, i.e., more than 60% in the first part of the conveyor and

more than 40% in the second part. Moreover, IPV4 ZeroConf protocol is also a considered

case study to concretize these contributions. This protocol is modeled and simulated using

ZIZO1.1. The resources consumption is analysed and we guarantee their availability. The

IPV4 PRISM model is also generated and checked to certify the correctness and the safety of

the GR-TNCES models.

81

Chapter 6

Conclusion and Perspectives

Contents
6.1 Context…………...………………………………………………………………… 82

6.2 Problems.......………………………………………………………………………. 82

6.1 Output and Contributions.……………………………………………………… 83

6.2 Tool ………………………………….….…………………………………………. 83

6.1 Perspectives ...…..………………………………………………………………… 84

82

CONCLUSION AND PERSPECTIVES

6.1 Context

The development of probabilistic critical distributed reconfigurable control systems is an

open issue due to the complex dependencies, the artifacts, the real-time constraints, the

limited energy and memory resources and the reconfigurable behavior of these systems.

Such a system could violate its real-time constraints, it could also violate its battery or its

memory. Therefore, an expressive and optimal specification could improve and help to

identify and describe all the features and the behavior of the system. In our thesis, we focus

on the modeling, simulation and formal verification part since the current based Petri nets

formalisms are not able to specify all the aforementioned features and characteristics.

Moreover, these systems should be easily modified and reconfigured after any evolution of

the environment within the system behaves. Therefore, each reconfiguration scenario should

meet energy, memory and real time constraints since the system could violate its resources

during run-time process which leads to a deadlock state and dangerous effects. This thesis

tries to extend the formalism R-TNCES with new solutions for the optimal specification and

control of predictable as well as unpredictable behaviors and tries to cover the problem of

time, memory and energy violation. The second problem deals with the formal verification

of reconfigurable properties i.e., how can we formally verify such a reconfigurable property

or an uncompleted specification. On the other hand, a complete visual environment named

ZIZO was developed for the modeling, simulation and formal verification of adaptive

probabilistic systems. This environment was applied to an IPV4 ZeroConf network protocol

and an automotive transport system. We presented in this work a complete approach

ranging from specification, modeling, and simulation to the real implementation of the

proposed automotive transport system.

6.2 Problems

This research work focusses on three problems related to specification, modeling, simulation

and formal verification of APDECS:

 The first theoretical modeling problem is to extend the formalism R-TNCES since it is

not able to specify probabilistic systems running under memory and energy

resources constraints. More precisely, how to enable the modeling and simulation of

probabilistic reconfigurable behavior, energy and memory resources using R-TNCES

formalism.

 The second theoretical problem reveals the formal verification of reconfigurable

properties; i.e., how can we formally certify such a system with the properties that

83

could change during run-time operation since the current verification approach

cannot deal with reconfigurable properties. How to optimize the verification time?

How to reduce the certification process from verifying the whole system to just

checking the affected states by the reconfiguration scenario.

 The third focuses on the technical part of the previous theoretical issues; i.e., we need

a complete environment to model, simulate and formally verify probabilistic

reconfigurable systems running under limited energy and memory resources.

6.3 Output and Originalities

This thesis focuses on the modeling, simulation and formal verification of probabilistic

adaptive systems running under resources and real-time constraints. The contributions

consist on presenting a complete approach running from system specification, simulation to

formal verification. The following points were introduced in this research work:

(i) For the modeling part, a new extension of the formalism R-TNCES and a new

based specification approach are proposed, it enables the specification and

supervision of probabilistic systems under resources constraints. This

contribution is applied later to an automotive transport system.

(ii) For the verification part: a new algorithm for the probabilistic simulation of

system behavior and the energy and memory resources is implemented to

guarantee its availability. Moreover, a new model checking approach dealing

with uncompleted and adaptive systems is also presented. It enable to reduce

verification time and optimize the verification process from verifying the

complete specification at each adaptation process to just checking and

investigating the affected part. Moreover, an export module connecting GR-

TNCES models to PRISM model checker is implemented here.

(iii) Here, these previous theoretical contributions were integrated to a new software

version ZIZO1.1 that offers all the cited features to make the modeling and

verification tasks more simple.

6.4 Tool

In this thesis, a new version ZIZO1.1 is introduced: it is a new visual environment for the

modeling, simulation and formal verification of APDECS using the new formalism GR-

TNCES. The new version of ZIZO presents three new features related to modeling,

simulation and formal verification.

(i) For the modeling, it implements GR-TNCES and it is used to model probabilistic

distributed reconfigurable architectures and connect modules using event and

condition links. It enables also to model the memory and energy resources.

84

(ii) For the simulation, it offers a probabilistic simulation according to the selected

probability level, monitoring and supervision of the consumed energy and

memory resources to avoid such a resources violation which is an undesirable

blocking state.

(iii) For the formal verification, the tool offers also an automatic transformation from

GR-TNCES model to PRISM model used to formally certify the system model. It

generates the Prism model to make the verification easy and save time.

6.5 Perspectives

This thesis focuses on the modeling, simulation and formal verification of probabilistic

adaptive systems running under resources and real-time constraints. The contributions

consist on presenting a complete approach running from system specification, simulation to

formal verification. As a future work, we suggest:

 The validation of the proposed skid conveyor model through a real energy data

measurement of the transport system will be done in a next project.

 Regarding the formal verification part, our contribution states the preliminary steps

to address the runtime model checking of adaptive distributed systems. This work

could be extended in many directions. The implementation of the algorithm and

exploring new symbolic approach should be done.

 We presented only XCTL logic, thus, in the future work the full CTL logics

extensions should be supported to deal with security issues in intelligent systems.

85

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisors Prof.

Mohamed Khalgui, Prof. Georg Frey and Dr. Olfa Mosbahi. I thank Prof. Khalgui for his

thoughtful guidance, instructive advice and constant encouragement. He patiently taught

me to pay attention to details in doing research and writing papers. I could not have

imagined having a better adviser and mentor for my Ph.D study. Prof. Georg Frey is my

supervisor in Saarland University. I was lucky to have him as one of my supervisors. His

speeches are always succinct and explicitly, which never hidden his enthusiasm. I appreciate

him for his professional guidance on my research work and warm help. I would like to

specially express my gratitude to Dr. Olfa Mosbahi, who has done a great contribution to

various pieces of my research work during the past 3 years. She is always ready to revise

and comment my research work. I can hardly make progress in doing research without her

guidance, criticism, and help. Besides my supervisors, I would like to express my gratitude

to Prof. Zhiwu Li, who has done a great contribution to my research work. His criticism was

really constructive and improved the quality of our research work. My sincere thanks also

to all my colleagues and friends at University of Carthage and Saarland University. Finally, I

would like to thank the members of jury for accepted to review my thesis.

86

REFERENCES

[Koren 1999] Koren Y., et al.: “Reconfigurable Manufacturing Systems”, CIRP Annals,

Volume 48, Issue 2, Pages 527-540, ISSN 0007-8506, 1999.

[Ben Salem 2016] Ben Salem M. O, Mosbahi O, Khalgui M, Jlalia Z, Frey G, Smida M:

“BROMETH: Methodology to design safe reconfigurable medical robotic systems”,

International Journal of Medical Robotics and Computer Assisted Surgery, DOI:

10.1002/rcs.1786, 2016

[Khlifi 2017] Khlifi O, Mosbahi O, Khalgui M, Frey G: “New Verification Approach for

Reconfigurable Distributed Systems”, The 12th International Conference on Software

Engineering and Applications (ICSOFT), Madrid, Spain, 2017.

[Genter 2007] Genter G, Bogdan S, Kovacic Z and Grubisic I: “Software tool for modeling,

simulation and real-time implementation of Petri net-based supervisors”, In 2007

IEEE International Conference on Control Applications, pages 664–669, 2007.

[Kopetz 2003] Kopetz H: “Time-triggered real-time computing”, Annual Reviews in Control,

vol. 27, no. 1, pp. 3–13, 2003

[Gherbi 2006] Gherbi A. and Khendek F: “UML Profiles for Real-Time Systems and their

Applications”, Journal of Object Technology, vol. 5, no. 4, pages 149–169, 2006. (Cited

on page 23)

[Hamid 2010] Hamid B. and Krichen F: “Model-based engineering for dynamic

reconfiguration in DRTES”, In Proceedings of the Fourth European Conference on

Software Architecture: Companion Volume, pages 269–276. ACM, (Cited on page 23)

(2010)

[Starke 2002] Starke Peter H, and Roch S: “Analysing signal-net systems”, Professoren des

Inst. für Informatik, 2002.

[Baier 1998] Baier Christel: “On algorithmic verification methods for probabilistic systems”,

Universität Mannheim, 1998.

[Clarke 2008] Edmund M. Clarke and Allen E. Emerson: “Design and synthesis of

synchronization skeletons using branching time temporal logic”, In 25 Years of

Model Checking, pages 196–215. Springer, 2008.

 [Baier 2008] Baier Christel, Joost-Pieter Katoen et al: “Principles of model checking”, volume

26202649. MIT Press Cambridge, 2008. (Cited on page 19)

https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2017/icsoft-2017/ok-om-mk-gf-icsoft-2017.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2017/icsoft-2017/ok-om-mk-gf-icsoft-2017.html

87

[Koh 1991] Koh I. and DiCesare F.: “Checking liveness in Petri nets using synchronic

concepts”. [Online] Available:

http://www.koreascience.or.kr/article/CFKO199111919674120.page

[Khlifi 2018a], Khlifi Oussama, Mosbahi Olfa, Khalgui Mohamed, Frey Georg, Li

Zhiwu: “Modeling, Simulation and Verification of Probabilistic Reconfigurable

Discrete-Event Systems under Energy and Memory Constraints”, Iranian Journal of

Science and Technology, Transactions of Electrical Engineering. 2018

[Kouskoulas 2013] Yanni Kouskoulas, David Renshaw, Andre Platzer and Peter Kazanzides:

“Certifying the safe design of a virtual fixture control algorithm for a surgical robot”,

In Proceedings of the 16th international conference on Hybrid systems: computation

and control, pages 263–272. ACM, 2013.

[Klotzbücher 2012] M Klotzbücher and H Bruyninckx: “Coordinating robotic tasks and

systems with rFSM statecharts”, JOSER: Journal of Software Engineering for

Robotics, vol. 3, no. 1, pages 28–56, 2012.

[Ye 2015] J Ye, Z Li and A Giua: “Decentralized supervision of Petri nets with a

coordinator”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45,

no. 6, pp. 955-966, (2015)

[Ma 2017b] Ma Z, Li Z. W, Giua A: “Characterization of admissible marking sets in Petri nets

with conflicts and synchronizations,” IEEE Transactions on Automatic Control, vol.

62, no. 3, pp. 1329-1341, (2017).

[Salem 2014] Salem M. O. B, Mosbahi O, and Khalgui M: “PCP-based solution for resource

sharing in reconfigurable timed net condition/event systems”, in Proc. of Adaptive

Discrete Event Control Systems, ADECS, Tunisia, pp. 52-67. (2014)

[Wu 2012a] Wu N. Q and Zhou M. C: “Modeling, analysis and control of dual-arm cluster

tools with residency time constraint and activity time variation based on Petri

nets”, IEEE Transactions on Automation Science and Engineering, vol. 9, no. 2, pp.

446-454, (2012)

[Wu 2015] Wu N.Q, Zhou M.C. and Li Z.W “Short-term scheduling of crude-oil operations:

Petri net-based control-theoretic approach”, IEEE Robotics and Automation

Magazine, vol. 22, no. 2, pp. 64-76. (2015)

[Kumar 2015] Pranav Srinivas Kumar, et al, ROSMOD: “A toolsuite for modeling,

generating, deploying, and managing distributed real-time component-based

software using ROS”, In 2015 International Symposium on Rapid System

Prototyping (RSP), pages 39–45, 2015.

http://www.koreascience.or.kr/article/CFKO199111919674120.page
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2018/iste-2018/ok-om-mk-gf-zl-iste-2018.html
https://www.uni-saarland.de/lehrstuhl/frey/publication-abstracts/2018/iste-2018/ok-om-mk-gf-zl-iste-2018.html

88

[Murata 2002] Satoshi Murata, Eiichi Yoshida, Akiya Kamimura, Haruhisa Kurokawa, Kohji

Tomita and Shigeru Kokaji: “M-TRAN: Self-reconfigurable modular robotic system”,

IEEE/ASME transactions on mechatronics, vol. 7, no. 4, pages 431–441, 2002.

[Roch 2000a] Stephan Roch: “Extended computation tree logic”, In Workshop Concurrency,

Speci & Programming, number 140 in Informatik-Bericht. Citeseer, 2000.

[Roch 2000b] Stephan Roch: Extended computation tree logic: Implementation and

application, 2000. (Cited on pages 20 and 21)

[Rouff 2012] Christopher Rouff, Richard Buskens, Laura Pullum, Xiaohui Cui and Mike

Hinchey: “The AdaptiV approach to verification of adaptive systems”, In

Proceedings of the Fifth International C* Conference on Computer Science and

Software Engineering, pages 118–122. ACM, 2012. (Cited on page 19)

[Schlegel 2004] Christian Schlegel: “Navigation and execution for mobile robots in dynamic

environments: an integrated approach”, PhD thesis, University of Ulm, 2004. (Cited

on page 74)

[Li 2012] Li Z. W, Liu G. Y, Hanisch M-H, and Zhou M. C: “Deadlock prevention based on

structure reuse of Petri net supervisors for flexible manufacturing systems”, IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol.

42, no.1, pp.178-191. (2012)

[Shousha 2012] Marwa Shousha, Lionel Briand and Yvan Labiche: “A uml/marte model

analysis method for uncovering scenarios leading to starvation and deadlocks in

concurrent systems”, Software Engineering, IEEE Transactions on, vol. 38, no. 2,

pages 354–374, 2012. (Cited on page 23)

[Khlifi 2015] Khlifi O, Mosbahi O, Khalgui M, and Frey G: “GR-TNCES: New extensions of

R-TNCES for modelling and verification of flexible systems under energy and

memory constraints,” in Proc. of Int. Conf. on Soft. Eng. and App, ICSOFT-EA,

Colmar, France, pp. 373-380. (2015)

[PRISM 2015] PRISM model checker, [Online]. Available:

http://www.prismmodelchecker.org/. (2015).

[Bohnenkamp 2003] Bohnenkamp H, Van der Stok P, Hermanns H, and Vaandrager F:

“Cost-optimization of the IPV4 zeroconf protocol”, in Proc. of the Int. Conf. on

Dependable Systems and Networks, pp. 531-540. (2003)

http://www.prismmodelchecker.org/

89

[Clarke 1986] Clarke E. M, Emerson E. A, and Sistla A. P: “Automatic verification of finite-

state concurrent systems using temporal logic specifications”, ACM Trans. Program.

Lang. Syst., vol. 8, no. 2, pp. 244-263. (1986)

[Axelsson 2010] Axelsson R, Hague M, Kreutzer S, Lange M, and Latte M: “Extended

computation tree logic”, in Logic for Programming, Artificial Intelligence, and

Reasoning, Berlin Heidelberg: Springer, pp. 67-81. (2010)

[Christel 1997] Christel Baier, Edmund M. Clarke, Vassili Hartonas-Garmhausen, Marta Z.

Kwiatkowska, and Mark Ryan: “Symbolic model checking for probabilistic

processes”, In ICALP 1997, 24th International Colloquium on Automata, Languages

and Programming, volume 1256 of Lecture Notes in Computer Science, pages 430–

440. Springer-Verlag, 1997.

[Brázdil 2008] Brázdil T, Forejt V, Kretínský J, and Kucera A. “The satisfiability problem for

probabilistic CTL,” in Proc. of the 23rd Annual IEEE Symp. on Logic in Computer

Science, LICS, Pittsburgh, PA, pp. 391-402, (2008)

[Bouyer 2007] Bouyer P.: “Model-checking timed temporal logics”, in Proc. of the 5th

Workshop on Methods for Modalities, France, pp. 323-341. (2007)

[Sérgio 1995] Sérgio Vale Aguiar Campos, Edmund M. Clarke, Wilfredo R. Marrero, and

Marius Minea. Verus: “A tool for quantitative analysis of finite-state real-time

systems”, In Workshop on Languages, Compilers, & Tools for Real-Time Systems,

pages 70–78. ACM, 1995

[Preuße 2012] Preuße S, Lapp H. C, and Hanisch H. M.: “Closed-loop system modeling,

validation, and verification”, in Proc. of Emerging Technologies & Factory

Automation, ETFA, Poland, pp.1-8. (2012)

[Sharifloo 2013] Shrifloo A.M, and Spoletini P: “LOVER: Light-weight fOrmal Verification of

adaptivE systems at Run time,” Formal Aspects of Component Software, Berlin

Heidelberg: Springer, pp. 170-177. (2013)

[Sustainable 2014] Sustainable Glasgow: “Energy and carbon masterplan”, Technical report,

Glasgow City Council, 2014, [Online]. Available:

https://www.glasgow.gov.uk/CHttpHandler.ashx?id=32441&p=0

[Forejt 2011] Forejt V, Kwiatkowska M, Norman G, and Parker D: “Automated verification

techniques for probabilistic system”, in Formal Methods for Eternal Networked Software

Systems, Berlin Heidelberg: Springer, pp. 53-113. (2011)

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tom.AND..HSH.x0E1;.AND..HSH.154;%20Br.AND..HSH.x0E1;zdil.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tom.AND..HSH.x0E1;.AND..HSH.154;%20Br.AND..HSH.x0E1;zdil.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Vojtech%20Forejt.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jan%20Kret.AND..HSH.x0ED;nsk.AND..HSH.x0FD;.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Anton.AND..HSH.x0ED;n%20Kucera.QT.&newsearch=true
https://www.glasgow.gov.uk/CHttpHandler.ashx?id=32441&p=0

90

[Chen 2015] Chen Y. F., Li, Z. W., Barkaoui, K, Giua, A.: “On the enforcement of a class of

nonlinear constraints on Petri nets”, Automatica, vol. 55, pp. 116-124. (2015)

[Andrade 2009] Andrade E, Maciel P, Callou G, and Nogueira B.: “A methodology for

mapping SysML activity diagram to time Petri net for requirement validation of

embedded real-time systems with energy constraints,” in Proc. of the 3rd Int. Conf. on

Digital Society, Cancun, Mexico, pp. 266-271. (2009)

[Bai 2016] Bai L. P, Wu N. Q, Li Z. W, and Zhou M.C: “Optimal one-wafer cyclic scheduling

and buffer space configuration for single-arm multicluster tools with linear

topology”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46,

no. 10, pp. 1456-1467. (2016)

[Shareef 2010] Shareef A, and Zhu Y: “Energy modeling of wireless sensor nodes based on

Petri nets”, in Proc. of the 39th Int. Conf. on Parallel Processing, ICPP, San Diego, CA,

pp. 101-110. (2010)

[Khlifi 2018b] Khlifi O, Siegwart C, Mosbahi O, Khalgui M, Frey G: “From Specification to

Implementation of An Automotive Transport System”, submitted in

“Communications in Computer and Information Science (CCIS)” published by

Springer, 2018

[Ma 2008] Ma F, and Wang J: “Modeling and simulation method of enterprise energy

consumption process based on fuzzy timed Petri nets”, in Proc. of the 7th world

congress on intelligent control and automation Chongqing, China, pp. 4148-4153.

(2008)

[Dumitrache 2000] Dumitrache I, Caramihai S. I, and Stanescu A. M: “Intelligent agent based

control systems in manufacturing”, in Proc. of IEEE Int. Symp. Intell. Control, Rio

Patras, pp. 369-374. (2000)

[Wu 2016] Wu N.Q, Zhou M.C, Bai L.P, and Li Z.W: “Short-term scheduling of crude oil

operations in refinery with high-fusion-point oil and two transportation pipelines”,

Enterprise Information Systems, vol. 10, no. 6, pp. 581-610. (2016)

[Kalita 2002] Kalita D. and Khargonekar P. P: “Formal verification for analysis and design of

logic controllers for reconfigurable machining systems”, IEEE Trans. Robot. Autom,

vol. 18, no. 4, pp. 463-474. (2002)

[Gasmi 2016] Gasmi M, Mosbahi O, Khalgui M, Gomes L, and Li Z. W: “R-Node: New

pipelined approach for an effective reconfigurable wireless sensor node”, IEEE

Trans. Systems, Man, and Cybernetics: Systems, no. 99, pp. 1-14. (2016)

91

[Ratzer 2003] Ratzer A. V, et al,: “CPN tools for editing, simulating, and analyzing coloured

Petri nets,” in Applications and Theory of Petri Nets, Berlin Heidelberg: Springer, pp.

450-462. (2003)

 [Model 2007] Model - Checkers for Net Condition/Event Systems, Available:

http://www.vyatkin.org/tools/modelchekers.html. (2007)

[Wu 2012b] Wu N. Q and Zhou M. C: “Schedulability analysis and optimal scheduling of

dual-arm cluster tools with residency time constraint and activity time

variation”, IEEE Transactions on Automation Science and Engineering, vol. 9, no. 1,

pp. 203-209. (2012)

[Salem 2015] Salem M. O. B, et al, “ZiZo: Modeling, simulation and verification of

reconfigurable real-time control tasks sharing adaptive resources- application to the

medical project BROS”, in Proc. of 8th Int. Conf. on Health Informatics, Portugal, pp.

20-31. (2015)

[Leslie 1983] Leslie Lamport: “What good is temporal logic?” In IFIP Congress, pages 657–

668, 1983.

[Wang 2015] Wang X, Khemaissia, I, Khalgui, M, Li, ZW, Mosbahi, O, and Zhou, MC:

“Dynamic low-power reconfiguration of real-time systems with periodic and

probabilistic tasks”, IEEE Transactions on Automation Science and Engineering, vol.

12, no. 1, pp. 258-271. (2015)

[Norman 2013] Norman G, Parker D, and Sproston J: “Model checking for probabilistic

timed automata,” Formal Methods in System Design, vol. 43, no.2, pp. 164-190.

(2013)

[Suender 2011] Suender C, Vyatkin V, and Zoitl A: “Formal validation of downtime less

system evolution in embedded automation controllers”, ACM Transactions on

Embedded Control Systems, (2011)

[Tong 2016] Tong Y, Li Z, and Giua A: “On the equivalence of observation structures for

Petri net generators”, IEEE Trans. on Automatic Control, vol. 61, no. 9, pp. 2448-2462.

(2016)

[Tong 2017] Tong Y, Li Z.W., Seatzu C, and Giua A: “Verification of state-based opacity

using Petri nets”, IEEE Trans. on Automatic Control, vol. 62, no. 6, pp. 2823-2837.

(2017)

http://www.vyatkin.org/tools/modelchekers.html
http://link.springer.com/journal/10703

92

[Wang 2016] Wang X., Li Z. W, and Wonham W.M: “Dynamic multiple-period

reconfiguration of real-time scheduling based on timed DES supervisory control,”

IEEE Trans. on Industrial Informatics, vol. 12, no. 1, pp. 101-111. (2016).

[Uzam 2016] Uzam M., Li Z. W., Gelen G, and Zakariyya R. S: “A divideand-conquer-

method for the synthesis of liveness enforcing supervisors for flexible manufacturing

systems,” Journal of Intelligent Manufacturing, vol. 27, no. 5, pp. 1111-1129. (2016)

[Cong 2017] Cong X., Fanti M. P, Mangini A. M, and Li Z. W: “Decentralized diagnosis by

Petri nets and integer linear programming,” IEEE Trans. on Systems, Man, and

Cybernetics: Systems, DOI: 10.1109/TSMC.2017.2726108. (2017)

[Ma 2017a] Ma Z., Tong Y, Li L, Giua A: “Basis marking representation of Petri net

reachability spaces and its application to the reachability problem,” IEEE

Transactions on Automatic Control 62 (3), 1078-1093. (2017)

[Zhang 2017] Zhang S, Wu N, Li Z, Qu T, and Li C: “Petri net-based approach to short-term

scheduling of crude oil operations with less tank requirement,” Information Sciences,

vol. 417, pp. 247-261. (2017)

[Zhang 2018] Zhang H., Feng L, Wu N, and Li Z: “Integration of learning-based testing and

supervisory control for requirements conformance of black-box reactive systems,”

IEEE Transactions on Automation Science and Engineering, vol. 15, no. 1, pp. 2-15.

(2018)

[Bortolussi 2015] Bortolussi L, et al.: “Verification of Complex Adaptive Systems”, [Online]:

http://homepage.lnu.se/staff/daweaa/papers/2015CASVerification.pdf. (2015)

[Harel 1990] Harel D, et al.: “STATEMATE: A Working Environment for the Development of

Complex Reactive Systems”, IEEE Trans. on Software Engineering, vol. 16, no. 4, pp.

403-414, (1990).

[Leveson 1994] Leveson, N.G, Heimdahl, M.P.E, Hildreth, H, and Reese, J.D: Requirements

Specification for Process-Control Systems, IEEE Trans. Software Eng., vol. 20, no. 9,

pp. 684-707, (1994).

[Ross 1997] Ross D., Structured Analysis (SA): “A language for communicating ideas”, IEEE

Trans. Software Engineering, pp.16-34, (1997).

[Zedan 1999] Zedan H, Cau, A, Chen, Z, and Yang. H.: “ATOM: An object-based formal

method for real-time systems”, Annals of Software Engineering 7, pp. 235-256,

(1999).

http://homepage.lnu.se/staff/daweaa/papers/2015CASVerification.pdf

93

[El-kustaban 2012] El-kustaban A, Moszkowski, B, and Cau. A: “Specification Analysis of

Transactional Memory using ITL and Ana Tempura”, Lecture Notes in Engineering

and Computer Science, pp. 176-181, (2012).

[Khlifi 2016] Khlifi O, Siegwart C, Mosbahi O, Khalgui M, Frey G.: “Modeling and

Simulation of an Energy Efficient Skid Conveyor using ZIZO”, 13th International

Conference on Informatics in Control, Automation and Robotics (ICINCO),

ISBN: 978-989-758-198-4, pp. 551-558, Lisbon, Portugal, (2016).

[PROFIBUS 2011] PROFIBUS Nutzerorganisation e.V., “Pi White Paper: The PROFIenergy

Profile,” Karlsruhe, Germany, pp. 10-11, (2010)

[International 2015] “International Organization for Standardization”, Energy efficiency and

renewable energy sources - Common international terminology - Part 1: Energy

efficiency (ISO/IEC 13273-1:2015). (2015)

[Rausch 1995] Rausch M, and Hanisch H.M: “Net condition/event systems with multiple

condition outputs”, In Emerging Technologies and Factory Automation, ETFA’95,

Proceedings., INRIA/IEEE Symposium on, volume 1, pages 592–600. IEEE, (1995)

[Hanisch 1999] Hanisch HM and Lüder A., Modular modelling of closed-loop systems. In

Colloquium on Petri Net Technologies for Modelling Communication Based

Systems, Berlin, Germany, pages 103–126, (1999)

[Aziz 1996] Adnan A, Kumud S, Vigyan S, and Robert B: “Verifying continuous time

markov chains”. In International Conference on Computer Aided Verification, pages

269–276. Springer, (1996)

[Bastide 1998] Bastide R., and Buchs, D: Models, “Formalisms and Methods for Object-

Oriented Distributed Computing”, In: Proceedings of Object-Oriented

Technologys, vol. 1357, pp 221-255, Springer, Heidelberg (1998).

[Chan 2001] Chan W., et al: “Optimizing Symbolic Model Checking for Statecharts”, IEEE

Trans. on Software Engineering, vol. 27, no. 2, pp. 170-190, (2001).

[Khlifi 2017a], Khlifi O, Siegwart C, Mosbahi O, Khalgui, M., Frey, G: “Specification

Approach Using GR-TNCES -Application to an Automotive Transport System-“, In:

12th Int. Conf. on Soft. Tech, Madrid, Spain, (2017).

[Chen 2014] Chen Y. F., Li, Z. W., and Zhou, M. C: “Optimal supervisory control of flexible

manufacturing systems by Petri nets: A set classification approach”, IEEE Trans.

Autom. Sci. Eng., vol. 11, no. 2, pp. 549-563, (2014).

94

[Harel 1987] Harel D: “Statecharts: a visual formalism for complex systems”, Science of

Computer Programming, vol. 8, no. 3, pp. 231-274, (1987).

[Wasserman 1985] Wasserman A: “Extending state transition diagrams for the specification

of human-computer interaction”, IEEE Trans. Soft. Engineering, vol. 11, no. 8, pp.

699-713, (1985).

[Bernardi 2007] Bernardi S. and Merseguer J: “Performance evaluation of UML design with

Stochastic Well-formed Nets”, Journal of Systems and Software, vol. 80, no. 11, pages

1843–1865, (2007)

[Nicollin 1990] Nicollin X., et al., “ATP: an algebra for timed processes”. In Proceedings of

the IFIP TC, vol. 2, 1990.

[Bondavalli 1999] Bondavalli A., Majzik I, and Mura I: “Automated dependability analysis of

UML designs”. In Object-Oriented Real-Time Distributed Computing, 1999,

Proceedings. 2nd IEEE International Symposium on, pages 139–144. (1999)

[Bruyninckx 2001] Bruyninckx H: “Open robot control software: the OROCOS project”. In

Robotics and Automation, 2001. Proceedings ICRA. IEEE International Conference

on, volume 3, pages 2523–2528. (2001)

[Bruyninckx 2013] Bruyninckx H, et al., “The BRICS component model: a model-based

development paradigm for complex robotics software systems”, In Proceedings of

the 28th Annual ACM Symposium on Applied Computing, pages 1758–1764. ACM,

(2013).

[Zhang 2013] Zhang J, Khalgui M, Li Z, Mosbahi O, and Al-Ahmari M: “R-TNCES: A novel

formalism for reconfigurable discrete event control systems”. In Systems, Man, and

Cybernetics: Systems, IEEE Transactions on, vol. 43, no. 4, pages 757–772, (2013)

[Khalgui 2011] Khalgui M, Mosbahi O, Li Z. and Hanisch H. M: “Reconfiguration of

distributed embedded-control systems”, IEEE/ASME Transactions on Mechatronics,

vol. 16, no. 4, pages 684–694, (2011)

[Hanisch 1997] Hanisch H. M, Thieme J, Luder A, and Wienhold O: “Modeling of plc

behavior by means of timed net condition/event systems”, In Emerging Technologies

and Factory Automation Proceedings, ETFA, (1997)

[Steinberg 2005] Steinberg M: “Historical overview of research in reconfigurable flight

control”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of

Aerospace Engineering, 219(4): 263-275, (2005)

95

[Zhang 2008] Zhang Y, Jiang J. “Bibliographical review on reconfigurable fault-tolerant

control systems”, Annual reviews in control, 32(2): 229–252, (2008)

[Chandler 1984] Chandler P. R: “Self-repairing flight control system reliability and

maintainability program executive overview” in Proc. Nat. Aero. & Electr. Conf. 1984

pp: 586–590, (1984)

[John 1985] John S. E. et al.: “Design issues for fault tolerant-restructurable aircraft control”

in 24th IEEE Conference on Decision and Control, DOI: 10.1109/CDC.1985.268630,

(1985)

[Gustavo 2017] Gustavo G, Flávio R. W: “Managing Cache Memory Resources in Adaptive

Many-Core Systems”, in System Level Design from HW/SW to Memory for

Embedded Systems, 172–182, DOI: 10.1007/978-3-319-90023-0_14, (2017)

[Daniel 2016] Daniel B. et al., “Configurable memory systems for embedded many-core

processors”, Available from: http://arxiv.org/abs/1601.00894, (2016)

[Davies 1992] Davies J. and Schneider S: “A brief history of Timed CSP”, Oxford University.

Computing Laboratory. Programming Research Group, (1992)

 [Bianco 1995] Bianco A. and De Alfaro L: “Model checking of probabilistic and

nondeterministic systems”, In International Conference on Foundations of Software

Technology and Theoretical Computer Science, pages 499–513. Springer, (1995)

[Qianchuan 2006] Qianchuan Z., Bruce H. K.; “Formal verification of statecharts using finite-

state model checkers”, IEEE Transactions on Control Systems Technology,

DOI:10.1109/TCST.2006.876921, (2006)

 [Boussahel 2016] Boussahel W., “Improving energy efficiency of manufacturing systems

through formal analysis of alternative strategies”,

https://www.shaker.de/de/content/catalogue/index.asp?lang=&ID=8&ISBN=978-3-

8440-5154-4, (2016)

[Zhang 2015] Zhang J: “Modeling and Verification of Reconfigurable Discrete Event Control

Systems”, https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/23165,

(2015)

 [Pedro 1996] Pedro R. D and Brinksma E: “A calculus for timed automata”. In International

Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems pages

110–129. Springer, (1996)

[StarUML, 2018] [online]. [Accessed 05 Mars 2018]. Available from: http://staruml.io/

http://arxiv.org/abs/1601.00894
https://www.shaker.de/de/content/catalogue/index.asp?lang=&ID=8&ISBN=978-3-8440-5154-4
https://www.shaker.de/de/content/catalogue/index.asp?lang=&ID=8&ISBN=978-3-8440-5154-4
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/23165
http://staruml.io/

96

[Visual Studio Ultimate 2012] [online]. [Accessed 05 Mars 2015]. Available from:

https://www.microsoft.com/en-us/download/details.aspx?id=30678

[The Metro 2017] the metro: a Parisian institution [online]. [Accessed 20 February 2017].

Available from: http://www.ratp.fr/en/ratp/r_108503/the-metro-a-parisian-institution

[Dubinin 2006] Building of reachability graph extractions using a graph rewriting system,

[online]. [Accessed 15 February 2019]. Available from:

https://www.researchgate.net/publication/235763013_Building_of_Reachability_Grap

h_Extractions_using_a_Graph_Rewriting_System.

[Sifakis 1980] Sifakis J., “Use of Petri nets for performance evaluation”. Acta Cybernetica, 4

(1978):185–202, (1980)

[Hansson 1994] Hansson Hans A. and Bengt J: “A logic for reasoning about time and

reliability”. Formal aspects of computing, 6(5) pp:512-535, (1994).

[Berthomieu 1991] Berthomieu B. and Diaz M: “Modeling and verification of time-

dependent systems using time Petri nets”, IEEE transactions on software

engineering, 17(3), (1991)

[Alur 1991] Alur R. and Thomas A. Henzinger. “Logics and models of real-time: A survey”,

In Workshop/School/Symposium of the REX Project (Research and Education in

Concurrent Systems), pages 74-106. Springer, (1991).

[Chaochen 1991] Chaochen Z. et al: “A calculus of durations”. Information processing

letters, 40(5), pp:269-276, 1991.

[Alur 1990] Alur R. and Dill D: “Automata for modeling real-time systems”. In International

Colloquium on Automata, Languages, and Programming, pages 322-335. Springer,

(1990)

[Alur 1993] Alur R., et al., “Hybrid automata: An algorithmic approach to the specification

and verification of hybrid systems”. In Hybrid systems, pages 209-229. Springer,

(1993)

[Abdeddaim 2006] Abdeddaim Y., Asarin E., and Maler O: “Scheduling with timed

automata”. Theoretical Computer Science, 354(2), pp:272-300, (2006)

[Alur 2001] Alur R., et al: “Optimal paths in weighted timed automata”. In International

Workshop on Hybrid Systems: Computation and Control, pages 49–62. Springer,

(2001)

https://www.microsoft.com/en-us/download/details.aspx?id=30678
http://www.ratp.fr/en/ratp/r_108503/the-metro-a-parisian-institution
https://www.researchgate.net/publication/235763013_Building_of_Reachability_Graph_Extractions_using_a_Graph_Rewriting_System
https://www.researchgate.net/publication/235763013_Building_of_Reachability_Graph_Extractions_using_a_Graph_Rewriting_System

97

[Behrmann 2001] Behrmann G., et al: “Minimum-cost reachability for priced timed

automata”, In International Workshop on Hybrid Systems: Computation and

Control, pages 147–161. Springer, (2001)

[Christel 2008] Christel B, Joost-Pieter K, and K G. Larsen, “Principles of model checking”

MIT press, (2008)

[Selic 1998] Selic B : “Using UML for Modeling Complex Real-Time Systems”, in Proceeding

LCTES '98 Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers,

and Tools for Embedded Systems, ISBN:3-540-65075-X (1998)

[Gogolla 2001] Gogolla M, Kobryn C: “UML 2001: the unified modeling language: modeling

languages, concepts, and tools”, in Lecture Notes in Computer Science,

DOI:10.1007/3-540-45441-1s, (2001)

