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Abstract: Nickel (Ni) and carbon nanotube (CNT)-reinforced Ni-matrix composites were manufactured
by solid state processing and severely deformed by high-pressure torsion (HPT). Micro-tribological
testing was performed by reciprocating sliding and the frictional behavior was investigated.
Tribo-chemical and microstructural changes were investigated using energy dispersive X-ray
spectroscopy (EDS), scanning electron microscopy (SEM) and focused ion beam (FIB). The CNT
lubricity was hindered due to the continuous formation of a stable oxide layer promoted by a
large grain boundary area and by irreversible damage introduced to the reinforcement during HPT,
which controlled the frictional behavior of the studied samples. The presence of CNT reduced,
to some extent, the tribo-oxidation activity on the contact zone and reduced the wear by significant
hardening and stabilization of the microstructure.

Keywords: carbon nanotubes; metal matrix composites; severe plastic deformation; reciprocating sliding

1. Introduction

In a tribological system, where two bodies are moving relative to each other with a certain speed
under the application of a normal force (FN) and along a certain distance with certain environmental
conditions (e.g., temperature and humidity), there are other aspects, such as the surface finish [1–4]
and the microstructure [5–7], that affect the wear, the friction and even the tribo-oxidation on the
contact zone. Furthermore, it has been shown that intermittent tribological loading induces plastic
deformation in a layer beneath the wear track in the tribologically transformed zone (TTZ) [8],
which could result in grain refinement (in initially coarse-grained materials) [4,9] or grain coarsening
(in initially nanocrystalline materials) [4,6,7,10,11].

Tribological testing on ultrafine-grained (UFG) and nanocrystalline (NC) materials obtained by
severe plastic deformation (SPD) can lead to interesting results, due to the different phenomena that
can occur. For instance, despite the increase in hardness due to a finer microstructure that can lead
to a decrease in the coefficient of friction (COF) and a decrease in the wear rate, corrosion and oxide
formation can be promoted by the high amount of grain boundaries affecting both friction and wear.
Accordingly, even though there are studies showing improved wear resistance in materials processed
by equal-channel angular pressing (ECAP), high pressure torsion (HPT) and accumulative roll-bonding
(ARB), there are studies showing reduced wear resistance and others showing that the processing
routes had little influence on the wear behavior [12]. On the one hand, the factors improving the wear
resistance in SPD-processed materials are the smaller grain sizes and the higher hardness and strength.
On the other hand, factors such as the decreased ductility, the low strain hardening capability, the higher
oxidation rate, the non-equilibrium and unstable grain boundaries, the strain-induced grain coalescence
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and the strain incompatibility between surface and bulk materials are responsible for the reduction in
wear resistance. For further information refer to [12] and the references therein.

Strategies have been proposed to improve the wear resistance in SPD-processed materials,
such as heat treatments after processing, the use of hard coatings such as TiO2, TiN and diamond-like
carbon, and the introduction of ceramic reinforcements such as SiC [13] and Al2O3 [14]. Furthermore,
carbon nanotubes (CNT) have proved to be suitable for their use as solid lubricants and have been used
in metal matrix composites (MMC) [15–17]. Providing there is a weak bond between the CNT and the
metal and the CNT are uniformly distributed, CNT will continuously move to the tribological contact
to roll and slide and even form a lubricating carbon film by degrading the CNT, thus improving both
the wear and the COF (see [18] and the references therein). Furthermore, CNT have also been used for
the production of lubricating coatings. Reinert et al. [19] studied and compared the tribo-mechanisms
of CNT in CNT/Ni matrix composites and CNT-coated bulk Ni; they found that the reduction in COF
in the coating lasts as long as there are CNT at the contact zone. After removal, the COF increased,
whereas in the composite the COF reduction is pronounced up to 20,000 cycles due to a continuous
supply of CNT to the contact zone. Nevertheless, CNT coatings produced on laser-patterned surfaces
showed a long-lasting solid lubrication, due to CNT entrapping inside the laser textures serving as
lubricant reservoirs [20].

Several studies have been performed regarding the microstructural changes during HPT of
CNT/Ni [21–25]. In this work, micro-tribological testing was performed on CNT/Ni matrix composites
processed by SPD by means of HPT, a technique in which a cylindrical sample is pressed under high
hydrostatic pressure (in this case 4 GPa) while the upper anvil is kept static and the lower anvil is
rotated to obtain the desired equivalent strain. The equivalent strain (εvM) increases with the radius
according to: εvM = 2π·T· r/(t·

√
3), where T is the number of turns, t is the sample thickness and r is

the distance from the center of the sample [26]. Furthermore, the wear tracks were analyzed by means
of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) in order to
study the tribo-chemistry. Finally, the subsurface was studied by means of focused ion beam (FIB) in
order to assess possible microstructural changes under the wear scar.

2. Materials and Methods

For the fabrication of the samples, multi-walled CNT (chemical vapor deposition –CVD-
grown, Graphene Supermarket, Ronkonkoma, NY, USA, density 1.84 g/cm3) were mixed in different
concentrations (0.5, 1 and 2 wt.%) with dendritic Ni powder (Alfa Aesar, Kandel, Germany, mesh −325)
via colloidal mixing [27]. The powder mixtures were then cold pressed (990 MPa) in cylindrical pellets
and sintered under vacuum (2 × 10−6 mbar, 900 ◦C for 3 h). The cold pressed sintered (CPS) composites
and Ni samples of 8 mm diameter and 1 mm thickness were plastically deformed by HPT at room
temperature using 1, 10 and 20 T.

The samples were then polished until mirror finish, Rq = (3.9 ± 0.9) µm (with OP-S colloidal silica,
Struers, Willich, Germany), and tested using a ball-on-disk tribometer under a linear reciprocating
motion using an Al2O3 ball (3 mm diameter) as a counter body. Table 1 shows the parameters used for
the tribological tests.

Table 1. Parameters of the tribological experiments.

Parameter Unit Value

Temperature ◦C 25
Relative

humidity % 3.8

Load FN N 0.1
Sliding velocity

v mm/s 1

Stroke length Mm 0.6
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The samples were tested three times at 3 mm from the center (see Figure 1) and the results
were averaged. Vickers micro hardness (HV0.3) measurements were performed at 3 mm from the
samples’ centers using an indenter Struers DuraScan 50/70/80 and 15 s of dwell time. Table 2 shows
the corresponding average hardness results for the studied samples. Moreover, electron micrographs,
FIB cross-sections and EDS analyses were performed on a Helios NanoLab™ 600 dual beam field
emission microscope (FEI Company).
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Figure 1. Schematic showing test positions. T indicates the direction of torsional rotation and t is the
sample thickness.

Table 2. Hardness measured at 3 mm from the samples’ centers with increasing equivalent strains.

Sample Tested Equivalent Strain Hardness/GPa

Ni_1T 14.51 ± 0.75 4.56 ± 0.09
Ni_10T 146.47 ± 4.54 4.78 ± 0.04
Ni_20T 310.67 ± 8.68 4.85 ± 0.10
0.5_1T 15.1 ± 0.65 3.92 ± 0.02

0.5_10T 134.94 ± 8.18 5.56 ± 0.05
0.5_20T 282.44 ± 25.89 6.44 ± 0.14

1_1T 15.76 ± 0.73 3.63 ± 0.02
1_10T 135.71 ± 3.48 6.33 ± 0.03
1_20T 281.86 ± 0 7.58 ± 0.41
2_1T 14.73 ± 1.09 3.58 ± 0.08

2_10T 149.57 ± 2.59 7.62 ± 0.03
2_20T 298.74 ± 14.23 8.01 ± 0.06

3. Results and Discussion

3.1. Friction Analysis

Figure 2 shows the evolution of the COF for the tested samples and the corresponding run-in
behavior. Considering the dispersion of results, no significant differences in COF for different
concentrations of CNT and deformation states are noticeable (Figure 2a–c). In all cases, the steady
state COF value oscillates around 0.3. The same effect has already been reported for SPD-processed
Ti [28] where, despite testing two different initial microstructures (ultrafine and coarse-grained),
the steady state COF was the same for a wide range of experimental loads.

The main differences are observed during the run-in stage (Figure 2d–f). In all cases, the pure
Ni samples show a high initial COF value (between 0.55 and 0.6) that stabilizes after 20–30 cycles.
The development of the COF curves for these samples indicates a significant plastic deformation at
the beginning, subsequently achieving the steady state after reaching conformality. The CNT-containing
sample shows a delayed stabilization, with indications of lower plastic deformation showing a steady
state behavior first after 30–40 sliding cycles. The shape of these run-in curves is common in
non-lubricated metals, where the COF increases temporarily due to the initial surface roughness and
decreases after achieving surface conformality and smoothing [29].
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Figure 2. Evolution of the coefficient of friction (COF) versus the sliding cycles for: (a) 1 turn;
(b) 10 turns; (c) 20 turns. Run-in behavior of the COF versus the sliding cycles for: (d) 1 turn;
(e) 10 turns; (f) 20 turns.

The drop-in COF also takes place due to hardening of the near-surface regions due to shear
stresses [29,30]. Furthermore, this slight increase in the COF and subsequent reduction can be
attributed to the formation and release of debris (third body particles) into the contact, resulting from
the continuous formation and breaking of a thin oxide layer reaching a dynamic balance in the
steady state.

3.2. Wear Track Morphology and Tribo-Chemical Mechanisms

Further analysis of the results focuses on the samples subjected to the highest deformation (20 T).
Figure 3 displays electron micrographs of the wear tracks. A first qualitative assessment suggests that
the scar width is smaller in the composites. This can be attributed to a significantly harder surface in
the composites, resulting in a smaller penetration depth of the counter body, which can be confirmed
from the wear track profiles shown in Figure 4. Additionally, the characterization of the contact surface
of the balls, shown in Figure 5, confirms that the wear activity of the counterpart was mild.

The pure metal sample shows regions of severe wear, indicated by the presence of laminated
debris with partial detachment from the surface. This is extensively found within the affected
zone and might be related to local thermal effects [31]. Furthermore, the tribologically affected
surface shows significant continuity throughout the wear scar. The composite reinforced with 2 wt.%
CNT presents evidence of mild wear associated with the development of a discontinuous tribolayer
with almost no spallation and some scratch marks, which is typical of an abrasive mechanism [32].
The remaining sample (0.5 wt.% CNT) presents mild wear as well, but with evidence of both previously
described cases. Certain regions show signs of galling, typical of a mild adhesive wear mechanism [32],
whereas spallation and delamination of the tribolayer is noticed as well.
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Figure 5. Topographical profile and 3D map of the worn surface of the test counterparts acquired by
white light interferometry.

Further morphological characteristics can be observed in detail in Figure 6, obtained with higher
magnification from the edge of the central region of the tracks (in the sliding direction, where the
maximum sliding velocity is obtained). These regions present indications of ploughing (for the pure
metal and the 0.5 wt.% sample) and some wedge formation, which are characteristic of abrasive wear.
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Figure 6. Detailed view of the wear scar edges at the center of the sliding track.

Nevertheless, adhesion and delamination of the oxide layer formed during sliding also occurred
along with some intermixing with the metallic matrix. Such intermixing is less pronounced in the
harder sample, which has grooves in the sliding direction, likely as a consequence of a reduced
ductility [25] complicating the mechanical mixing process.
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These observations were further expanded by performing a chemical analysis of the tribolayer to
acquire oxygen distribution maps of the wear scar (Figure 7). In all cases, wear debris ejected from the
tribological contact is observed (seen as small oxide particles outside the wear scar). The oxide layer
appeared to be more pronounced in the case of pure Ni, which suggests that oxidation is reduced in
the CNT-containing samples, at least from the observation of the total affected area. This observation is
in agreement with the previously identified wear mechanisms [33]. The CNT brought into contact act
as oxygen diffusion barriers, slowing the oxidation of the substrate. This is related to carbon being
more prone to reactions with oxygen and its oxide being more stable than that of Ni.
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Figure 7. Oxygen distribution maps obtained by energy dispersive X-ray spectroscopy (EDS) from the
wear tracks.

The lubrication mechanism of CNT in coarse-grained CNT/Ni matrix composites consists of the
CNT being continuously provided to the contact zone, where a mixture between a rolling motion
of the multiwall CNT on the surface and particle degradation occurs, including the formation
of nanocrystalline graphitic layers [4]. For systems tested under the same experimental conditions,
the lubricity of CNT is evidenced by a steady state COF of approximately 0.1, which is considerably below
the COF obtained for the HPT-deformed systems. From the discussed results, the ultrafine-grained
microstructures increase the oxidation activity of the surface due to a large grain boundary area.
Moreover, even though the CNT distribution is significantly improved and the size of the agglomerates
is significantly smaller in the deformed samples in comparison to the non-deformed samples [22],
irreversible damage to the CNT is introduced by HPT [34] which renders them more susceptible to
complete degradation and/or oxygen bonding. According to this, the CNT’s ability to act as solid
lubricants in the studied composites is strongly hindered. From these results, it can be concluded
that in CNT/Ni matrix composites processed by HPT, the microstructure characteristics have a more
significant effect on the steady state COF during sliding contact than the presence of CNT, which only
slightly decrease the oxidation of the contact zone.

3.3. Microstructure under the Wear Scar

The analysis of the sub-superficial microstructural state was carried out on the same sample set
by performing cross-sections in the middle of the wear scar (Figure 8). No significant microstructural
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gradients beneath the surface are observed in any case, as opposed to what is expected when analyzing
initially coarse-grained metals under dry sliding. This can be traced back to the fact that, for the TTZ to
be developed, plastic deformation must occur beneath the worn surface due to the application of cyclic
shear stresses. In the case of Ni (Figure 8a,b), the deformed sample (20 T of HPT) already achieved
the microstructural steady state, as previously discussed [34]. Therefore, it is expected that no further
microstructural changes or strain hardening would take place during strain accumulation.
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(CNT); (e,f) 2 wt.% CNT processed by high-pressure torsion (HPT) with 20 T.

In the case of the composites, even though the composites do not resemble the steady state
hardness (as revealed in Table 2 by the continuously increasing hardness with higher accumulated
equivalent strains), a significant reduction in grain size and a high density of defects [24] might
be the defining factors. The maximum CNT distribution homogeneity was indeed achieved [22],
which vouches for the proper microstructural stabilization, rendering the composites significantly
harder and stable against possible microstructural changes induced during the tribological experiment.

To summarize, friction behavior is dominated by the quick formation of a tribologically induced
oxide layer, which hinders the lubricity of the CNT. Wear, on the other hand, is reduced in the composites
(when compared to the pure metal), resulting from a harder surface. Additionally, the presence of CNT
aids in the stabilization of the microstructure during sliding, hence limiting the metal–oxide intermixing.
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4. Conclusions

In this paper, Ni and CNT/Ni composites with different CNT contents were processed by
HPT with increasing equivalent strains. The resulting ultrafine-grained materials were tested by
reciprocating sliding. The frictional, tribo-chemical and microstructural changes were investigated after
2000 sliding cycles. CNT structural defects, stemming from HPT processing and tribological contact,
deterred their lubricity. The formation of a stable oxide layer also took place. As a result, the steady
state COF stabilized around the same value (µsteady ≈ 0.3) for all the tested samples. No significant
microstructural changes beneath the wear track were observed as a result of very hard surfaces,
especially in the composites in which wear was reduced in comparison to Ni.
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