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Abstract: Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells
and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and
is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two
peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin
synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been
studied intensively. However, little attention has been paid to the regulatory mechanisms that control
its expression. This review provides an up-to-date overview of these mechanisms. In particular,
it focuses on the role of enhancers and silencers within the promoter region as well as on the binding
of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors,
which trigger key signaling pathways, leading to an enhanced somatostatin expression in health
and disease.

Keywords: somatostatin; pre-prosomatostatin; δ-cells; central nervous system (CNS); gut; hypothalamus;
cAMP resonse element (CRE); pancreas/duodenum homeobox protein (PDX)1; paired box protein (PAX)6;
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1. Introduction

Somatostatin, also known as growth hormone-inhibiting hormone or somatotropin
release-inhibiting factor, is a major product of the somatostatin gene [1]. The pre-mRNA contains an
intron flanked by two exons [2]. After processing in the nucleus to produce mature mRNA, it is ordinarily
degraded in the cytoplasm after several rounds of translation [3]. The biosynthesis of somatostatin
is carried out via a 116-amino acid precursor protein, i.e., pre-prosomatostatin [4]. After removal
of the 24-amino acid signal sequence, prosomatostatin, consisting of 92 amino acids, is formed.
Prosomatostatin, in turn, is C-terminally processed to generate the cyclic peptides somatostatin-14
(SS-14) and somatostatin-28 (SS-28) [4]. Of interest, the two proteins were not identified in the same
study. The isolation of SS-14 from bovine hypothalamic extracts was firstly reported in 1973 [1],
while the N-terminally extended version SS-28 was described in 1980 [5]. To date, it is known that
SS-14 is not only expressed in the hypothalamus but also in other parts of the central nervous system
(CNS), in peripheral nerves and in pancreatic δ-cells [6]. In contrast, SS-28 is the major final product
in gastrointestinal D-cells [6]. In 2008, Samson et al. [7] identified a 13-amino acid peptide, which is
also encoded by the somatostatin gene. This peptide, named neuronostatin, regulates neuronal
function, blood pressure, and food intake [7]. Neuronostatin is highly expressed in the spleen, pancreas,
cerebrum, and hypothalamus [8].

Both SS-14 and SS-28 are stored in secretory granules and their secretion is regulated by dietary
components, such as amino acids, glucose, and fat [9–11], as well as by the adrenergic and muscarinic
systems [12,13]. Both peptides exhibit a very short half-life (~1 min) in the circulation [14]. It is
estimated that ~65% of the circulating somatostatin is secreted by gastrointestinal D-cells, ~30% by
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the CNS and ~5% by pancreatic δ-cells [15–17]. The endocrine and paracrine signaling activity of
somatostatin is mediated by its binding to specific somatostatin receptors (SSTRs), which belong to the
class of G-protein-coupled receptors. Six different receptors (SSTR1, 2A and B, 3, 4, and 5) have been
identified [18], which are widely expressed on various tissues, including retina and brain [19,20]. SS-14
binds with higher affinity to SSTRs 1-4, whereas SS-28 mainly interacts with SSTR5 [18]. After binding,
SSTRs are phosphorylated, internalized into clathrin-coated vesicles, and addressed to endosomes.
The receptors can then be either directly recycled to the plasma membrane or targeted by the proteasome
pathway [21].

Under physiological conditions, somatostatin has a broad activity spectrum by regulating the
complex balance of hormone release. For instance, it suppresses the release of growth hormone (GH),
thyroid-stimulating hormone (TSH), and gastrointestinal hormones [16]. Moreover, somatostatin
inhibits the secretion of insulin, glucagon, and pancreatic polypeptide from endocrine pancreatic
cells [22,23] as well as the cytokine release from immune cells [24]. It also reduces the exocrine secretion
of amylase of salivary glands as well as hydrochloric acid, pepsinogen, and intrinsic factor of the
gastrointestinal mucosa [25,26]. Furthermore, somatostatin decreases portal pressure and retinal
arteriolar and venular dilation [27,28].

SSTRs are also expressed on pathological tissues, such as neuroendocrine tumors and solid organ
tumors, including melanoma, prostate, and gastrointestinal cancers [29]. The binding of somatostatin
to SSTR-expressing tumor cells leads to tumor regression by reducing cell proliferation and inducing
apoptosis [30]. Moreover, somatostatin is capable of indirectly suppressing tumor growth by the
inhibition of angiogenesis and modulation of the immune system [31]. However, the use of native
somatostatin for therapeutic approaches is limited due to its short half-life [14]. To overcome this
drawback, synthetic somatostatin analogs with a longer half-life have been developed [32]. Two of
them, octreotide and lanreotide, are available for the treatment of neuroendocrine tumors that secrete
excessive amounts of GH [33,34].

Both the secretory mechanism and the function of somatostatin are well described [15–17].
However, the mechanisms regulating somatostatin expression are less well known, although the
peptide hormone was discovered almost 50 years ago. Pioneering work was done by the group
of Goodman [35] and Dixon [36] during the 1980s. They characterized the somatostatin promoter
region and regulatory elements. In the middle of the 1990s, Montminy et al. [37] summarized the
known results about the regulation of somatostatin expression. Since then, many studies have
reported novel mechanisms regulating the expression of the peptide hormone, and a review about the
somatostatin expression is therefore timely. In this review, we provide an up-to-date overview of these
mechanisms, taking into account the gene, promoter, and transcription factors, as well as important
exogenous factors.

2. The Somatostatin Gene

In 1982, the group of Rutter was the first to describe the sequence of the human somatostatin
cDNA out of the preprosomatostatin full-length mRNA [38]. Two years later, they published the
sequence of the human somatostatin gene, which is localized on chromosome 3 [2]. The ortholog gene
in rats is assigned to chromosome 11 and in mice to chromosome 16. The genomic landscapes of the
three orthologues are partially similar and span a region of ~1.6 kilobases (Figure 1). In the following
years, it has been shown that somatostatins are a structurally diverse family of peptide hormones in
vertebrates [39]. Six somatostatin genes have been identified so far [39,40]. Somatostatin 1 is expressed
in all vertebrates from agnathans to mammals and represents the ancestral gene of the family [39].
Somatostatin 2, also known as cortistatin, is specifically expressed in the brain but not in the pancreas
or gut [41]. Somatostatin 1, somatostatin 2, and somatostatin 5 are thought to have been produced
through the 1R/2R whole-genome duplications early in vertebrate evolution [42]. Somatostatin 3 and
somatostatin 6 would have been subsequently generated by tandem duplications of the somatostatin 1 as
well as somatostatin 2 genes, respectively, at the base of the actinopterygian lineage [42]. In contrast, it is
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assumed that somatostatin 4 is derived from somatostatin 1, in teleost-specific 3R [42]. The physiological
significance of somatostatin 1 is well established, whereas the different expression patterns of the
other somatostatin genes might indicate that the genes have individually differing roles in various
species [43]. For instance, sharks and other vertebrates show differential expression of somatostatin
genes in different sets of brain neurons [44]. Gene duplication is thought to be a primary source for the
evolution of novel functions [45]. In fact, it has been reported that cortistatin exerts different effects by
partially antagonizing somatostatin 1 [41]. However, further studies are required to analyze whether
genomic arrangements have any impact on somatostatin gene expression.
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Figure 1. Genomic regions for the human somatostatin gene and the orthologue genes in rats and
mice. Human somatostatin is located on chromosome 3, whereas mouse somatostatin is located on
chromosome 11 and rat somatostatin on chromosome 16. Genomic contexts are conserved in the three
species regarding the receptor transporter protein (RTP)2.

3. The Somatostatin Promoter

Promoters are ignition systems of genes and harbor various elements, such as enhancers and
silencers, which regulate the transcriptional activation [46]. The promoter regions of the most common
secretory proteins, such as insulin [47], glucagon [48], or leptin [49], are well characterized. Although
somatostatin was discovered a long time ago and the mode of action of the peptide hormone is well
understood, relatively little is known about the promoter region of the gene. Montminy et al. [35]
were the first to identify a regulatory element in the promoter region of the rat somatostatin gene.
They transfected PC12 cells with deletion mutants of a 750-bp region in 5’ to the somatostatin
transcriptional start and identified a cAMP response element (CRE) with the consensus sequence
‘TGACGTCA’ [35]. This sequence resides between the nucleotides −58 and −35 upstream of the
transcriptional initiation site and is crucially involved in tissue-specific somatostatin gene expression,
because its mutation results in a significant loss of transcriptional activity (Figure 2) [36,50]. This is
also the reason why the CRE of the somatostatin promoter is still used as a prototype to study
cAMP-dependent mechanisms.
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Figure 2. Regulatory elements of the rat somatostatin promoter. The somatostatin promoter harbors a
complex arrangement of multiple regulatory elements, such as cAMP response element (CRE), specific
upstream-enhancer elements (SMS-UE, SMS-TAAT1, and SMS-TAAT2) interspersed with the proximal
silencer elements (SMS-PS1 and SMS-PS2) upstream of the TATA box. Moreover, additional methylation
sites, i.e., GpC islets and poly-T repeats, are found in the somatostatin promoter region.

A specific upstream-enhancer element (SMS-UE), adjacent to the CRE, was first in detected in
δ-cells [51]. The SMS-UE is located between the nucleotides −120 and −65 and positively regulates
somatostatin gene expression synergistically with the CRE under both basal and cAMP-induced
conditions [51]. Further detailed analyses revealed that SMS-UE is a tripartite element, which includes
the domains A, B, and C (Figure 2) [52]. Domain A binds a ubiquitous protein with characteristics
similar to the CCAAT box-binding protein CBF. Domain B harbors an insulin gene enhancer protein
(Isl)-1-like binding site. Domain C contains a pancreatic islet cell enhancer sequence (PISCES) motif [52],
which is found in the promoter element of the glucagon and insulin gene [53,54]. The two additional
activator regions SMS-TAAT1 (−462 to −438) and SMS-TAAT2 (−303 to −280) were detected upstream
of SMS-UE, which seem to be required for pancreatic somatostatin expression [55]. In contrast,
Valleja et al. [56] detected the two silencer elements SMS-PS1 and SMS-PS2 resided between −250 and
−120 upstream of the gene (Figure 2). These elements are not cell specific, because they are capable
of reducing somatostatin gene transcription in somatostatin-producing as well as non-producing
cells [56].

Beside silencer elements, the methylation of CG dinucleotides, also known as CpG islands, within
promoter regions represents a common mechanism for gene inactivation [57–59]. In this context,
it has been reported that somatostatin mRNA levels were significantly lower in the tissue of gastric
cancer when compared to non-tumor tissue [60,61]. Additional analyses revealed that this is due to a
somatostatin promoter hypermethylation, indicating that epigenetic modification of the promoter may
be a crucial factor for gastrointestinal tract carcinogenesis [60,61]. In fact, the reduced somatostatin
production due to epigenetically regulated promoter hypermethylation contributes to the uncontrolled
cell proliferation in colon cancer cells, because octreotide treatment significantly attenuates cell death
and cell proliferation [62]. However, whether promoter methylation also regulates physiological
somatostatin expression in gastrointestinal D-cells, the CNS, or pancreatic δ-cells has still to be clarified.

Polymorphisms within promoter regions may also affect the expression of various genes and,
thus, constitute common sources of phenotypic variation and susceptibility to common diseases [63].
Tremblay et al. [64] identified a poly-T repeat sequence in the somatostatin promoter ranging from
12 to 17 T. Of interest, the length of this poly-T repeat affects arterial blood pressure levels and is
associated with the risk of hypertension, especially among obese individuals [64]. In a follow-up
study, the authors found that the poly-T repeat polymorphism is also associated with the expression
of metabolic syndrome components, indicating that this genetic alteration may induce somatostatin
gene expression [65]. In fact, Li et al. [66] reported that elevated levels of somatostatin are involved in
the progression of high-fat diet-induced metabolic syndrome. However, further detailed promoter
analyses are required to assess the effect of polymorphisms on somatostatin gene expression.
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4. Transcription Factors Regulating Somatostatin Expression

The expression of somatostatin is restricted to distinct tissues, indicating that cell-specific
determinants control the transcription of this peptide hormone. Montminy and Bilezikjian [67]
demonstrated that the transcription factor cAMP response element-binding protein (CREB) induced by
the cAMP-dependent pathway binds to a promoter sequence that includes the CRE. In the following
years, the binding of CREB to the consensus site TGACGTCA was verified [68,69]. Under physiological
conditions, CREB is expressed in all nucleated cells and the loss of this transcription factor leads to
embryonal and neuronal deficits associated with a reduced lifespan [70,71]. This clearly indicates
that CREB is essential for major cellular functions. The paradigm that CREB is a crucial activator of
somatostatin expression was supported by the work of Walton et al. [72]. They generated a CREB
mutant (KCREB), which forms inactive heterodimers with CREB, resulting in repressed somatostatin
transcription [72]. However, CREB binding does not appear to be solely responsible for the expression
of somatostatin. CREB is phosphorylated by protein kinase A (PKA) on serine 133 after stimulation
of the cAMP pathway [73]. This, in turn, induces the binding of the CREB-binding protein (CBP)
to the transactivation domain of CREB, which further enhances somatostatin transcription [37,74].
Accordingly, the inhibition of PKA represses CREB-mediated somatostatin gene expression [75].
Beside these findings, Gachon et al. [76] detected a complex consisting of transcription activator Tax and
CREB-2, also known as activating transcription factor (ATF)-4, on CRE of the somatostatin promoter.
Of note, bound CREB-2 was not phosphorylated within this complex [76]. Thus, the recruitment of Tax
to non-phosphorylated CREB-2 may allow the stimulation of somatostatin transcription independent
of the phospho-regulated pathways.

The transcription factor pancreas/duodenum homeobox protein (PDX)1, formerly known as
islet/duodenum homeobox (IDX)-1 or somatostatin transactivating factor (STF)-1, is another regulator
of somatostatin gene expression. PDX1 triggers insulin gene expression in β-cells [77] and is essential
for pancreas development, most probably by determining the maturation and differentiation of
common pancreatic precursor cells in the developing gut [78]. In δ-cells, PDX1 is expressed at a
low level [79] and activates somatostatin transcription by binding to regulatory elements in the 5′

flanking region of the rat somatostatin gene [55,80]. Further analyses revealed that PDX1 stimulates
somatostatin transcription via binding to SMS-TAAT2, because mutations in this element attenuate its
transactivation [55,81]. Somatostatin expression is also induced by Pbx, a transcription factor belonging
to the TALE class homeobox family. Pbx is capable of forming a heterodimer with PDX1, which
induces somatostatin transcription by binding to SMS-TAAT1 and SMS-UE [82]. In addition, Pbx can
form heterodimers with Prep1, an additional TALE class homeobox member. However, this complex
triggers somatostatin gene expression solely by binding to SMS-UE [83].

The transcription factor paired box protein (PAX) 6 is expressed in several different embryonic
tissues as well as in distinct adult tissues, such as pancreatic islet cells. The complex tissue-specific
PAX6-induced gene expression is made possible by several functional domains that facilitate DNA
binding and protein–protein interactions [84]. It has been reported that the binding of PAX6 to
the PISCES motif within endocrine gene promoters crucially regulates their gene expression [53].
For instance, Pax6 prevents the activation of insulin gene expression by occupying the PDX1 binding
site in β-cells [85]. In contrast, PAX6-induced glucagon gene expression is diminished by exogenous
PDX1 in α-cells [86]. The PISCES motif within the somatostatin promoter is localized in the domain
C of SMS-UE [52]. Of note, PAX6 as well as PDX1 bind to completely overlapping sequences
within this domain [87]. Moreover, the phosphorylation of PAX6 on serine 313 and serine 398 by
extracellular signal-related kinase (ERK) is required for PAX6-mediated somatostatin transcription [74].
This indicates that beside the PKA–CREB axis, the ERK–PAX6 axis also contributes to the cell specificity
of somatostatin expression.

Activin, a member of the transforming growth factorβ (TGFβ) superfamily, is capable of decreasing
cell proliferation in a variety of cell types [88]. The functions of activin are mediated by activin-like
kinase (ALK) receptor, of which ALK4 is the main receptor mediating activin signaling in human
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cells [88]. Mice lacking the ALK4 receptor in GABAergic interneurons exhibit substantial deficits in
medial ganglionic eminence (MGE)-derived somatostatin-expressing interneurons, which represent
~30% of all cortical GABAergic interneurons [89,90]. The development of these cells is controlled by
various transcription factors, including SATB1 [91]. Recently, Göngrich et al. [89] demonstrated that
SATB1 binds to different regions of the PISCES motif within the somatostatin promoter and that the
activin signal alters this interaction from decreased binding to the distal region to increased binding to
the more proximal region. Of note, activin does not increase somatostatin transcription, indicating
that activin signaling is insufficient to regulate the expression of the peptide hormone. However,
activin signaling may trigger somatostatin gene expression by reorganization of its gene locus.

5. Exogenous Factors Regulating Somatostatin Expression

The regulation of transcription factor activity is quite a complex process and involves
post-translational modification, protein–protein interactions, as well as regulation through specific
molecules, also known as ligands. These processes are mainly triggered by extracellular factors,
leading to multiple intracellular signaling transductions [92]. Rage et al. [93] reported an increased
somatostatin gene expression in primary hypothalamic neurons that were exposed to glutamate.
In contrast, gamma-aminobutyric acid (GABA) reduces somatostatin gene expression via binding
to GABAA receptors [94,95]. The regulation of somatostatin expression by the GABAergic and
glutamatergic system has important physiological functions, because this peptide impedes principal
neurons from over-reacting by reducing their excitability and, thus, damping the rate of fire [96].

Somatostatin expression is further mediated by membrane depolarization [97,98]. It has been
shown that cerebrocortical cells exposed to high K+ concentrations not only induce somatostatin release
but also trigger its gene expression [99,100]. Of interest, this process requires the activation of Ca2+

channels, whereas Na+ channel blockade has no effect on K+-induced somatostatin expression [99,101].
Additional gene regulatory analyses revealed that K+ exposition stimulates the calmodulin/cAMP/PKA
pathway, resulting in CREB-dependent somatostatin gene expression [102].

Ehrman et al. [103] detected increased somatostatin mRNA levels in islets of rainbow trout, which
were cultivated under high-glucose conditions. This indicates for the first time that glucose not only
regulates somatostatin release but also somatostatin biosynthesis [103,104]. In a follow up study,
the authors could show that somatostatin expression is dependent on glucose-mediated hormone
secretion [105]. They detected insulin-stimulated somatostatin expression only in the presence of
low glucose, whereas glucagon-stimulated somatostatin expression occurred under high glucose
concentrations [105]. It should be noted that the authors analyzed somatostatin 3′ and 3′’ in their
study, which are not the fish counterparts of somatostatin in mammals. However, there are several
indications that the expression of somatostatin seems to also be regulated by glucose in mammals. In fact,
somatostatin mRNA levels were significantly increased in diabetic rats [106,107], with a return to control
levels during insulin treatment [106,108]. Therefore, it is tempting to speculate that signal elements of
the glucose/insulin cascades may influence CREB- or PDX1-dependent somatostatin expression.

The secretion of GH is modulated by two hypothalamic hormones, GHRH and somatostatin.
Interestingly, hypoglycemia inhibits the release of GH in male rats, which is caused by a secretion of
hypothalamic somatostatin [109]. Further detailed analyses revealed that insulin-induced hypoglycemia
not only increased hypothalamic somatostatin release but also its gene expression in rats [110]. However,
this is in contrast to the situation in humans, where hypoglycemia stimulates GH release, and the
administration of glucose suppresses GH secretion [111,112]. Further studies are therefore needed to
analyze whether glucose regulates hypothalamic somatostatin secretion or gene expression in humans.

Brain-derived neurotrophic factor (BDNF) belongs to the class of neurotrophins and is highly
expressed in the hypothalamus of rats [113]. BDNF signaling is primarily mediated by its affinity to the
tropomyosin receptor kinase B (TrkB) [114]. TrkB activation, in turn, induces three major intracellular
signaling pathways, including mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase
(PI3K), and phospholipase C (PLC)γ [115]. Rage et al. [116] found that BNDF activates somatostatin
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gene expression in hypothalamic neurons, which was mediated by rapid activation of ERK1/2 and
Akt kinases, resulting in the phosphorylation of CREB [117]. BDNF also enhances the activation of
calcium-calmodulin-dependent kinases (CAMKs) [118]. Of interest, activated CAMK IV phosphorylates
CBP at serine 301, which enhances CBP-dependent CREB transcription [119]. Hence, the suppression
of CAMK activity reduces the somatostatin mRNA level [117]. Furthermore, BNDF upregulates the
level of the vasoactive intestinal polypeptide (VIP), which has been shown to trigger somatostatin
gene expression [120]. These findings clearly indicate that BNDF is a crucial regulator of somatostatin
expression. Indeed, this factor significantly controls neuronal survival at the early stages of brain
development by inducing somatostatin gene expression via different signaling pathways.

6. Putative Autocrine Feedback

Autocrine feedback loops are mechanisms that allow cytokines or hormones to modulate the
mode of action of their own cell. Although these mechanisms are not widespread, some have already
been identified in detail [121–123]. For instance, autocrine GH increases cell survival, proliferation,
and motility, as well as decreases cell apoptosis in GH-secreting breast adenocarcinoma cells [124].
Glucagon, secreted by pancreatic α-cells, even upregulates its own gene expression by binding to the
glucagon receptor, which leads to activated PKA-dependent signaling pathways [125]. It is not known
whether somatostatin is also able to regulate its own expression, but there are some indications that
this might be possible. The binding of somatostatin to SSTR5 mediates an inhibitory effect on islet
cell survival and insulin expression [126,127]. Zhou et al. [128] reported that SSTR5-induced signaling
is linked to PDX1. They found, that treatment of insulinoma cells with a SSTR5 agonist reduces
glucose-stimulated insulin secretion due to diminished PDX1 expression. Of interest, PDX1 has been
shown to increase somatostatin expression [55,81]. This is in line with recent findings demonstrating
that antagonizing SSTR5 increases glucagon like peptide-1 as well as somatostatin secretion from the
perfused proximal small intestine in mice [129]. Therefore, it is tempting to speculate that somatostatin
is capable of regulating its expression by a negative feedback loop via SSTR5.

Adenylyl cyclase (AC) catalyzes the conversion of ATP to cAMP, which, in turn, activates
PKA [130]. It has been reported that SSTR signaling pathways efficiently inhibit AC via coupling to Gi

proteins [131]. This leads to a decreased cellular cAMP level, which reduces pituitary hormone secretion
and may also contribute to the antiproliferative effects of somatostatin [132–134]. The expression of
somatostatin itself is, as already stated, induced by cAMP via the PKA–CREB-axis, hence reduced AC
activity after SSTR activation may repress somatostatin expression. However, detailed studies are now
required to determine whether somatostatin affects its own expression.

7. Conclusions

The understanding of the regulatory mechanisms of somatostatin expression has markedly
increased over the past decades. In addition to the known post-translational mechanisms,
i.e., proteolytic cleavage of pre-prosomatostatin and somatostatin secretion, it has been shown
that different pretranslational mechanisms, such as modifications of the promoter by methylations and
polymorphisms as well as the regulation of transcription factor activity, are required for regulation of
the cellular somatostatin content (Figure 3). Future studies now have to clarify whether additional
factors and mechanisms are involved in the regulation of somatostatin expression. These may include
miRNAs, which play an important role in the fine-tuning of protein expression [135], the process of
alternative splicing [136] as well as post-translational protein modifications, such as phosphorylation
and sumoylation [137] (Figure 3).
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