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Abstract: This work introduces the potential synergistic toxicity of binary mixtures of pesticides
and pharmaceuticals, which have been detected in substantial amounts in major river basins in
South Korea. Different dose-response curve functions were employed in each experimental toxicity
dataset for AliiVibrio fischeri. We tested the toxicity of 30 binary mixtures at two effect concentrations:
high effect concentration [EC50] and low effect concentration (EC10) ranges. Thus, the toxicological
interactions were evaluated at 60 effected concentration data points in total and based on model
deviation ratios (MDRs) between predicted and observed toxicity values (e.g., three types of combined
effects: synergistic (MDR > 2), additive (0.5 ≤ MDR ≤ 2), and antagonistic (MDR < 0.5)). From the 60
data points, MDRs could not be applied to 17 points, since their toxicities could not be measured.
The result showed 48%-additive (n = 20), 40%-antagonistic (n = 17), and 12%-synergistic (n = 6)
toxicity effects from 43 binaries (excluding the 17 combinations without MDRs). In this study,
EC10 ratio mixtures at a low overall effect range showed a general tendency to have more synergistic
effects than the EC50 ratio mixtures at a high effect range. We also found an inversion phenomenon,
which detected three binaries of the combination of synergism at low concentrations and additive
antagonism at high concentrations.

Keywords: mixture toxicity; concentration addition; pesticide; pharmaceuticals; AliiVibrio fischeri

1. Introduction

Conventional chemical risk assessments frequently focus on individual substances rather than
mixtures even though previous studies have shown that different mixture toxicities can results
from combined effects among chemicals, even at no observed effect concentrations [1,2]. The types
of the mixture toxicity are generally explained as additivity, synergism (greater than additivity),
and antagonism (less than additivity) [3,4]. Among these combined effects, additive and synergistic
toxicity effects can be regarded as more significant than the antagonistic effect (from the aspect of
the regulatory chemical risk assessment, which assumes the worst-case scenario as the default) [5].
In this context, the conventional regulatory risk assessment of chemical mixtures is mostly based on
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the concentration addition (CA) model as a default for estimating the mixture toxicity [6–9]. Although
the worst-case scenario can be substantial synergistic toxicity, the CA model, which ignores the
synergistic interaction, has been mainly employed since available predictive models for estimating the
synergistic effect have been very limited for the purpose of regulatory risk assessment [5]. In addition,
some studies have shown that the synergistic interaction could be a relatively rare occurrence, at least
within pesticide mixtures and realistic mixtures having low concentrations in mammals (which are
comprised of approximately 5% of the tested mixtures) [10–13]. In contrast, a recently published
review showed that less than 25% of research and experiments on the toxicity of chemical mixtures
investigated seven or more compounds [14,15]. Some clinical researchers in human toxicology also
showed that the probability of synergistic toxicity could be increased in proportion to the number
of components, e.g., an 8% toxicity effect was caused by pharmaceutical products with five to ten
mixed components, and a 38% toxicity effect was provoked by pharmaceuticals with fourteen or more
mixture components [5,16,17]. This issue related to synergism is still controversial and difficult to
conclude since most of the studies concerning mixture toxicity have been conducted with a specific
binary mixture or simple mixtures having less than ten components [5]. Many studies have found that
pesticides and pharmaceuticals were detected in the aquatic environment and thus they might lead to
mixture toxicity for aquatic nontarget organisms [14,18–21]. Thus, when considering environmental
mixtures with complex matrices and different chemicals, any potential risk posed might have been
underestimated by the CA model if the synergistic interaction occurred in such mixtures [14].

The objective of this study was to preliminarily investigate the potential synergistic interactions of
pharmaceutical and pesticide residues that can be found in the aquatic environment. For this purpose,
we tested and evaluated the toxicity of different binary mixtures of pesticides and pharmaceuticals,
which had been substantially identified in major river basins in South Korea. To evaluate the toxicity
of single and mixed chemicals, a bioassay with a luminescent bacterium, AliiVibrio fischeri, which
is widely used in standard toxicity methods, was conducted [22,23]. Based on the original best-fit
approach [24], different dose-response curve (DRC) functions were employed to test data sets, and
best-fit functions of single and mixed chemicals were used in the mixture toxicity modeling.

2. Materials and Methods

2.1. Selection of Target Pesticides and Pharmaceuticals

Through previously published studies [25–31] that investigated the environmental concentration
level of 47 pharmaceuticals in four major river basins (Han River, Geum River, Bukhan River,
and Yeongsan River) in South Korea, 29 pharmaceuticals could be identified [32]. In addition, based on
a study by Lee et al. [33] monitoring 140 pesticide residues in six Korean river basins (Han River,
Geum River, Bukhan River, Yeongsan River, Mankyeong River, and Seomjin River), eight pesticides
(isoprothiolane > butachlor > prothiofos > chlorpyrifos > hexaconazole molinate > diazinon and
alachlor) could be found. From those 29 pharmaceuticals and eight pesticides, six chemicals, including
four pharmaceuticals (tetracycline, trimethoprim, sulfamethoxazole, and chlortetracycline) and two
pesticides (hexaconazole, and isoprothionlane), were finally selected as target mixutre components in
this study (Table S1). The selction was made by considering their toxicities to A. fischeri, solubilities in
water and carrier solvents, and detection frequencies in the aquatic environment. To our knowledge,
this is the first study to investigate the toxicity of hexaconazole, isoprothiolane, and chlortetracycline
and their binary mixtures to A. fischeri.

2.2. Test Reagents, Chemicals and Sample Preparation

Six target compounds were purchased from Sigma-Aldrich (Seelze, Germany). According to
the physico-chemical properties of these compounds, stock solutions were prepared in either 99.9%
dimethyl sulfoxide (DMSO, Sigma-Aldrich, Seelze, Germany) for trimethoprim and chlortetracycline
or 99.8% ethanol (EtOH, Carl Roth GmbH, Karlsruhe, Germany) for tetracycline, hexaconazole,
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isoprothiolane and sulfamethoxazole. All of the stock solutions were kept at −20 ◦C under dark
conditions until the working solutions were prepared. For quality control and quality assurance,
the concentrations of the stock solutions were quantified with an HPLC system (Agilent 1290, Agilent
Technologies, Santa Clara, CA, USA) connected to an Agilent triple quadrupole mass spectrometry
(MS/MS) model 6460. Before the experiments, working solutions (1:25) were prepared by diluting the
stock solutions in 2% sodium chloride for a marine bacterium, A. vibrio, according to ISO 11348-3 [22].
The pH values of the working solutions were checked and adjusted to between 6.0 and 8.0 with 1 N
NaOH and 1 N HCl.

2.3. Testing Organism and Culture

The bioluminescent bacteria A. fischeri (strain NRRL-B-11177 and formerly called Vibrio fischeri)
were purchased from MicroTox® (Lot number 15C4025A, Modern Water, New Castle, UK).
The freeze-dried bacteria were activated with the reconstitution solution provided by the MicroTox® for
30 mins at 15 ◦C. The activated bacteria were transferred to a photobacteria medium (Sigma-Aldrich)
for preculture at 20 ◦C. For stock culturing, activated A. fischeri were estimated in a 250 ml main culture
medium at an initial turbidity of a 1:10 dilution by UV-vis photometric (Ultraspec 3300, Amersham,
Buckinghamshire, UK) at OD578 was 0.02 (10 formazine turbidity units, FNU). A. fischeri were cultured
at 20 ◦C with shaking at 180 rpm/min until the turbidity of the OD578 was 1.74 (700 FNU to 1800 FNU).
The amplified A. fischeri were purified twice with a 2% sodium chloride solution at 4 ◦C and 20 min at
7000 × g. The bacteria were slowly suspended in protective medium (66 g D-(+)-glucose monohydrate,
4 g sodium chloride, 2 g L-histidine and 0.5 g BSA in 100 mL) at an ice cooled condition until the
turbidity of the OD578 was 2.58 (2000 FNU to 3000 FNU). The suspended stock bacteria were stored at
−80 ◦C.

2.4. Single Chemical Toxicity Test

Determination of an effective concentration of samples was performed [34] using the standardized
methods of ISO 11348-3, 1998 by luminescent bacteria (A. fischeri) [22]. To activate, the frozen bacteria
were suspended using a reconstituted solution (20 g sodium chloride, 0.3 g potassium chloride, HEPES
50 mM and glucose 50 mM for 1 liter) for 30 minutes at 15 ◦C. The activated luminescence bacteria
were mixed with 2% sodium chloride at a 1:25 dilution. Six single compounds were serially diluted
at a ratio of 1:1 (100 µL) on a flat-bottomed black 96-well plate (Greiner Bio-one, Kremsmünster,
Germany). The bacterial suspensions were exposed to the serially diluted sample at a ratio of 100 µL
by 100 µL. Then, reactive samples were measured after 15 min of exposure at 15 ◦C by a luminescent
reader (Tristar2, Berthold technologies, Bad Wildbad, Germany). To assure the quality of the bacteria,
a 100 ppm zinc sulfate solution (Sigma-Aldrich) was measured every time.

2.5. Mixture toxicity test

An investigation of the synergistic toxicity of all binary mixtures that could be prepared from the
six target compounds in Table S1 was conducted in a fixed ratio design based on the equitoxic mixture
and the generation of dose-response curves from the mixtures employed in previous studies [35–39].
The advantages of the fixed ratio design are not only the ability to maximize the distribution of
the effective dose range but also to minimize the number of experiments [37,40–42]. With the same
compounds in Table S1, two different equitoxic mixtures were prepared at a 50% effective concentration
for each compound as a high effective concentration ratio mixture (EC50 ratio mixture) to A. fischeri
and at a 10% effective concentration ratio mixture (EC10 ratio mixture) as a low effective concentration
ratio mixture. As shown in Table 1, a total of 30 equitoxic binary mixtures of each combination were
tested at high and low effective concentration levels. However, the total doses of the mixtures were
systematically different.
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Table 1. Binary mixture designs for target pesticides and pharmaceuticals.

Mixture No. Substance A Substance B Mixture Design

1 Tetracycline Sulfamethoxazole EC50 + EC50
2 Tetracycline Sulfamethoxazole EC10 + EC10
3 Tetracycline Hexaconazole EC50 + EC50
4 Tetracycline Hexaconazole EC10 + EC10
5 Tetracycline Chlortetracycline EC50 + EC50
6 Tetracycline Chlortetracycline EC10 + EC10
7 Tetracycline Isoprothiolane EC50 + EC50
8 Tetracycline Isoprothiolane EC10 + EC10
9 Tetracycline Trimethoprim EC50 + EC50

10 Tetracycline Trimethoprim EC10 + EC10
11 Trimethoprim Sulfamethoxazole EC50 + EC50
12 Trimethoprim Sulfamethoxazole EC10 + EC10
13 Trimethoprim Hexaconazole EC50 + EC50
14 Trimethoprim Hexaconazole EC10 + EC10
15 Trimethoprim Chlortetracycline EC50 + EC50
16 Trimethoprim Chlortetracycline EC10 + EC10
17 Trimethoprim Isoprothiolane EC50 + EC50
18 Trimethoprim Isoprothiolane EC10 + EC10
19 Sulfamethoxazole Hexaconazole EC50 + EC50
20 Sulfamethoxazole Hexaconazole EC10 + EC10
21 Sulfamethoxazole Chlortetracycline EC50 + EC50
22 Sulfamethoxazole Chlortetracycline EC10 + EC10
23 Sulfamethoxazole Isoprothiolane EC50 + EC50
24 Sulfamethoxazole Isoprothiolane EC10 + EC10
25 Hexaconazole Chlortetracycline EC50 + EC50
26 Hexaconazole Chlortetracycline EC10 + EC10
27 Hexaconazole Isoprothiolane EC50 + EC50
28 Hexaconazole Isoprothiolane EC10 + EC10
29 Chlortetracycline Isoprothiolane EC50 + EC50
30 Chlortetracycline Isoprothiolane EC10 + EC10

2.6. Statistical Analysis of the Mixture Toxicity

A “best-fit” approach [24,39] was used to select the best model with the smallest sum of absolute
residuals among the different sigmoidal functions because no single function could statistically
describe all of the DRCs. Best-fit models with three-parameter sigmoidal equations were finally
determined and applied to describe the experimental data of the mixture components tested in this
study. The parameters in the sigmoidal regression equations and 95% confidence intervals were
estimated using SigmaPlot® (Ver. 12.5, Systat Software, Chicago, IL, USA). The ECx (e.g., EC10 and
EC50) of the test chemicals was derived from the regression models shown in Table 2 and Table S2.
It was assumed that all of the models were confined to the effects range from 0 to 100%. In order
to compare between the highest and lowest toxicity without, we expressed the orders of magnitude
which were determined as follows:

Orders of magnitude = log(
ECx−highest toxicity

ECx−lowest toxicity
) (1)

However, in case a test chemical showed low solubility in water, the model for that chemical
was assumed to have a range between >0% and <the maximum effect (%), where the chemicals were
present at a maximum solubility in water under the test conditions in this study. The ECx for mixtures
was calculated by the CA model according to the Loewe equation [11,43]:

ECxmix =

∑
n

i=1

pi
ECxi

−1

(2)
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where ECxmix is the predicted effective concentration of a mixture; Pi and ECxi are the fraction and the
individual effective concentration of the component with in the mixture, respectively.

MDR values (Belden et al., 2007 [11]) were used to quantify the interaction between the mixture
components. The MDR values were frequently applied to determine the type of interactions of the
mixture toxicity [11,13,44]. MDR is defined as:

MDR =
Predicted ECx o f mixture
Observed ECx o f mixture

(3)

where the predicted ECx indicates the effective concentration of a mixture based on the predictive
model, and the observed ECx is the effective concentration of the mixture obtained from experimental
toxicity testing. In this study, the CA model, which is recommended as a default approximation for
mixtures, was used to predict mixture toxicity [5,10,11,45,46]. Based on the MDR value, the types of
combined effects are divided into three groups: synergistic (MDR > 2), additive (0.5 ≤ MDR ≤ 2) and
antagonistic (MDR < 0.5) [11,13].

Table 2. Parameters of the regression models for dose-response curves of A. fischeri for pesticide
and pharmaceutical single compounds in Table S1 (the 95% confidence intervals are provided in the
brackets).

Substance EC50 (µM) EC10 (µM) RM 1 r2
Model Parameter

A 2 B 3 Γ 4

Hexaconazole 51.65 (50.97–52.33) 3.06 (2.38–3.74) C 0.995 1.4335 0.0035 0.5869
Isoprothiolane 137.07 (136.14–138.0) 1.05 (0.12–1.85) H 0.971 97.3866 0.3312 1.10 × 109

Tetracycline 150.08 (148.85–151.30) 10.60 (9.38–11.83) L 0.981 1.4806 –0.7364 374.5933
Trimethoprim 338.81 (338.05–339.56) 26.20 (25.45–26.95) L 0.990 1.2286 –0.7997 542.4834

Sulfamethoxazole 254.20 (253.25–255.15) 47.79 (46.83–48.74) C 0.994 0.9561 0.0034 1.1932
Chlortetracycline 91.32 (90.52–92.12) 12.32 (11.52–13.12) G 0.993 0.9902 65.2541 66.4673

Notes. 1 Regression models (C: Chapman, G: Gompertz, H: Hill, L: Logistic); 2 Height; 3 Slope; and 4 Center point.

3. Results and Discussion

3.1. DRCs for Single Compounds

DRCs of all six compounds in Table S1 were empirically determined for A. fischeri, as illustrated
in Figure 1.

Table 2 summarizes the parameter values of all the best-fitting regression models for the DRCs
of single compounds. Table S2 explains the regression models described in Table 2. The best-fitting
curves for all of the compounds showed high regression coefficients (r2) ranging from 0.969 to 0.995
and their ANOVA p-values were less than 0.0001. As presented in Table 2, the deviation between
the steeper function of the highest slope values (65.25 for chlortetracycline) and the more gradual
slope of the lowest (0.0034 for sulfamethoxazole) slope values was approximately 4.28 orders of
magnitude. These considerable differences among the slopes of the DRCs of the compounds suggest
that the compounds had highly different curve shapes for estimating the toxicity of each compound.
The best-fitted DRCs for each compound had high regression coefficients (r2) ranging from 0.971 to
0.995. The EC50 values of A. fischeri were up to 0.82 orders of magnitude and ranged from 51.65 µM for
hexaconazole to 338.81 µM for trimethoprim. However, the EC10 values of A. fischeri were up to 1.66
orders of magnitude and ranged from 1.05 µM for isoprothiolane to 47.79 µM for sulfamethoxazole.
That is, hexaconazole and isoprothiolane presented the lowest effective concentrations (or the highest
toxicity) at the respective EC50 and EC10 values, whereas isoprothiolane and sulfamethoxazole showed
the highest effective concentrations (or the lowest toxicity) at the corresponding EC50 and EC10 values.
These results also show that the toxicological profiles of compounds can be varied according to a given
effective concentration level. In the cases of isoprothione, tetracycline, haxaconazole and trimethoprim,
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more than 80%-effect concentrations couldn’t be obtained under the testing conditions because of their
water solubility limits.
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Figure 1. DRCs for the bioluminescent inhibition of A. fischeri for single compounds in Table 1 (the data
points are geometric means ± standard deviation [SD] of the experimentally observed data and
statistical best-fits (solid lines)).

3.2. DRCs of Binary Mixtures

The DRCs of binary mixtures in Table 1 were experimentally evaluated with high (EC50 + EC50)
and low (EC10 + EC10) exposure levels (Figure 2; Figure 3). As shown in Table 3, best-fitting curves for
all mixture combinations had high regression coefficients (r2) ranging from 0.817 to 0.997 except for four
mixture combinations. The four exceptions are Mixture 14 (trimethoprim with hexaconazole; Mixture
14, r2 = 0.455), 18 (trimethoprim with isoprothiolane; Mixture 18, r2 = 0.429) 24 (sulfa-methoxazole
with isoprothiolane; Mixture 24, r2 = 0.698) and 28 (hexaconazole with isoprothiolane; Mixture 28,
r2 = 0.257).

The probable reason for the high deviation of those two mixtures is that they were the EC10 ratio
mixture, i.e., an equitoxic mixture based on ratios at 10% effective concentrations for each component
but significantly less toxic than the others so that the ECx values could not be appropriately determined.
As tested binary mixtures, the effective concentration data ranged from a low of 2.17 µmol/L (EC10

+ EC10, tetracycline and hexaconazole) to a high of 779.94 µmol/L (EC50 + EC50, trimethoprim and
sulfamethoxazole).
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(SD)of experimentally observed data, and statistical best-fits for regression models are summarized
in Table 3). The dose-response curves of 30 binary mixtures of pesticides and pharmaceuticals in
Table 1, respectively.



Int. J. Environ. Res. Public Health 2019, 16, 208 9 of 16

Table 3. Parameters of regression models for dose-response curves of 30 binary mixtures of pesticides
and pharmaceuticals in Table 1 (the 95% confidence intervals are provided in the brackets).

Mixture
No.

EC50 (µM) EC10 (µM) RM 1 r2
Model Parameter

A 2 B 3 Γ 4

1 313.95 (313.07–314.82) 16.62 (15.74–17.50) C 0.987 2528.4458 2.47 × 10−6 0.5477
2 n.a.5 7.43 (6.99–7.88) G 0.968 19.5735 6.4890 4.8497
3 133.58 (132.69–134.46) 2.89 (2.01–3.78) C 0.989 915.2173 7.38 × 10−6 0.4200
4 n.a. 2.17 (1.75–2.59) G 0.983 23.9224 2.0367 1.8951
5 129.70 (128.75–130.66) 5.98 (5.02–6.93) C 0.989 102.0025 0.0025 0.5494
6 n.a. 9.54 (8.83–10.25) L 0.954 30.2768 −0.8861 21.1859
7 203.46 (202.88–204.04) 36.83 (36.25–37.41) G 0.996 84.6072 118.9205 127.0557
8 n.a. 11.66 (11.25–12.06) G 0.874 10.4177 3.3048 1.0944
9 265.16 (264.62–265.69) 15.55 (15.01–16.09) C 0.996 99.5885 0.0015 0.6049
10 n.a. 8.64 (8.18–9.10) L 0.970 22.0641 −1.4308 9.8530
11 779.94 (779.31–780.56) 62.99 (62.36–63.61) C 0.989 83.7765 0.0009 0.7231
12 n.a. 50.31 (49.80–50.81) G 0.914 19.2041 49.3054 29.2598
13 488.97 (488.44–489.49) 59.282 (58.76–59.81) H 0.991 131.1544 0.9527 812.9558
14 n.a. n.a. G 0.455 4.5523 0.5916 17.0836
15 222.30 (220.95–223.65) 4.56 (3.22–5.91) H 0.964 63.8649 0.7633 41.4132
16 n.a. 3.91 (3.38–4.44) C 0.988 33.8541 0.1489 1.4924
17 637.32 (637.01–637.64) 154.31 (153.99–154.63) G 0.997 60.7316 216.8352 282.2291
18 n.a. n.a. G 0.429 8.9924 25.6941 25.7707
19 209.14 (208.45–209.83) 34.75 (34.06–35.44) G 0.992 78.4915 114.7884 117.7289
20 n.a. 26.94 (26.43–27.44) G 0.817 17.7472 30.9625 9.7285
21 206.10 (205.57–206.64) 37.41 (36.87–37.95) G 0.997 96.2390 135.9703 148.5324
22 n.a. 15.85 (15.31–16.38) G 0.9331 27.4285 34.3506 16.1526
23 339.80 (339.23–340.37) 106.78 (106.22–107.36) G 0.9951 83.3055 163.6608 229.7587
24 n.a. 45.77 (45.31–46.24) S 0.6981 1804.3798 51.2073 311.5280
25 119.13 (118.31–119.96) 8.40 (7.57–9.23) H 0.9884 1.37 × 105 0.6069 5.52 × 107

26 n.a. 13.89 (13.46–14.33) C 0.9560 158.6840 9.12 × 10-6 0.3080
27 204.18 (203.53–204.83) 45.75 (45.10–46.40) G 0.9901 107.4683 139.9025 166.7380
28 n.a. 5.82 (4.61–7.04) G 0.2571 12.1655 3.7398 –0.2706
29 247.79 (246.98–248.59) 28.44 (27.64–29.24) H 0.9870 4.73 × 105 0.7435 5.52 × 107

30 n.a. 4.38 (3.84–4.91) C 0.9435 18.6241 0.1128 0.6594

Notes. 1 Regression models (C: Chapman, G: Gompertz, H: Hill, L: Logistic); 2 Height; 3 Slope; and 4 Center point,
5 Not available.

3.3. Statistical Analysis of Mixture Toxicity to Investigate Synergism

Figures 2 and 3 illustrate DRCs for the observed bioluminescent inhibitions and the predicted
inhibition of A. fischeri by the CA model for the binary equitoxic mixtures based on ratios at 50% and
10% effective concentrations and following the combinations in Table 1, respectively.

To quantify the toxicity interactions between mixture components, we calculated MDR values as
shown in Table 4. Based on the MDR value, we strictly divided the three types of combined effects
into synergistic (MDR > 2), additive (0.5 ≤ MDR ≤ 2) and antagonistic (MDR < 0.5) [13]. As shown in
Figure 2 and Table 4, ten binaries of the EC50 ratio mixtures (i.e., EC50mix) showed the same interactions
at two effective concentration values of EC10 and EC50. That is, four binaries of the EC50mix (Mixture 1,
5, 9, and 25) showed the additive effects at the EC50 and EC10 ranges. The antagonistic interaction of six
binaries of EC50mix (Mixture 13, 17, 19, 23, 27, and 29) was then detected at the EC50 and EC10 ranges.
Interestingly, five binaries of the mixture combination detected different interactions from the EC50 and
EC10 ranges. Two binaries of the EC50mix (Mixture 3 and 15) found an additive interaction at the EC50

ranges and it resulted in a synergistic interaction at the EC10 ranges. At similar trend in one binary
combination (Mixture 11) was observed for the antagonistic interaction at the EC50 ranges and an
additive interaction at the EC10 ranges. In contrast, the two binaries of the EC50mix (Mixture 7, and 21)
resulted in opposite trends in additive interaction at the EC50 ranges and antagonistic interaction
at the EC10 ranges. These observed inversion phenomena of interaction between synergism at low
concentrations and additive or antagonism at high concentrations are difficult to explain. As shown in
Table 4, similar phenomena have been reported in previous studies [47–50]. Wang et al. [47] tested the
spiramycin and ampicillin antibiotics on Microcystis aeruginosa at different equitoxic ratios. The study
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found the equivalent ratio (1:1) of the binary mixture of spiramycin and ampicillin showed a synergistic
interaction at low concentrations and an antagonistic interaction at high concentrations.

Table 4. Observed and predicted ECxmix values of tested mixtures of pharmaceuticals and pesticides
in binary combinations, and MDR values to address the interactions between components (the 95%
confidence intervals are provided in the brackets).

Mixture
No.

EC50mix
1 EC10mix

Observed
(EC50, µM) Predicted 2 MDR 3 Type 4 Observed

(EC10, µM) Predicted MDR Type

EC50 ratio mixtures 5

1 313.95 (313.07–314.82) 169.63 0.54 Add.6 16.62 (15.74–17.50) 13.55 0.82 Add.
3 133.58 (132.69–134.46) 128.47 0.96 Add. 2.89 (2.01–3.78) 8.71 3.01 Syn.
5 129.70 (128.75–130.66) 132.37 1.02 Add. 5.98 (5.02–6.93) 10.92 1.83 Add.
7 203.46 (202.88–204.04) 147.27 0.72 Add. 36.83 (36.25–37.41) 3.84 0.10 Anta. 7

9 265.16 (264.62–265.69) 189.17 0.71 Add. 15.55 (15.01–16.09) 13.61 0.88 Add.
11 779.94 (779.31–780.56) 281.92 0.36 Anta. 62.99 (62.36–63.61) 36.51 0.58 Add.
13 488.97 (488.44–489.49) 129.65 0.27 Anta. 59.282 (58.76–59.81) 8.20 0.14 Anta.
15 222.30 (220.95–223.65) 139.68 0.63 Add. 4.56 (3.22–5.91) 16.45 3.61 Syn. 8

17 637.32 (637.01–637.64) 194.16 0.30 Anta. 154.31 (153.99–154.63) 2.00 0.01 Anta.
19 209.14 (208.45–209.83) 101.47 0.49 Anta. 34.75 (34.06–35.44) 7.21 0.21 Anta.
21 206.10 (205.57–206.64) 119.87 0.58 Add. 37.41 (36.87–37.95) 17.01 0.45 Anta.
23 339.80 (339.23–340.37) 167.07 0.49 Anta. 106.78 (106.22–107.36) 1.70 0.02 Anta.
25 119.13 (118.31–119.96) 66.93 0.56 Add. 8.40 (7.57–9.23) 5.04 0.60 Add.
27 204.18 (203.53–204.83) 74.93 0.37 Anta. 45.75 (45.10–46.40) 1.57 0.03 Anta.
29 247.79 (246.98–248.59) 100.21 0.40 Anta. 28.44 (27.64–29.24) 3.18 0.11 Anta.

EC10 ratio mixtures

2 n.a. 9 n.a. - - 7.43 (6.99–7.88) 17.53 2.36 Syn
4 n.a. n.a. - - 2.17 (1.75–2.59) 8.96 4.13 Syn.
6 n.a. n.a. - - 9.54 (8.83–10.25) 12.03 1.26 Add.
8 n.a. n.a. - - 11.66 (11.25–12.06) 8.57 0.73 Add.
10 n.a. n.a. - - 8.64 (8.18–9.10) 13.84 1.60 Add.
12 n.a. n.a. - - 50.31 (49.80–50.81) 41.16 0.82 Add.
14 n.a. n.a. - - n.a. n.a. - -
16 n.a. n.a. - - 3.91 (3.38–4.44) 15.03 3.84 Syn.
18 n.a. n.a. - - n.a. n.a. - -
20 n.a. n.a. - - 26.94 (26.43–27.44) 14.00 0.52 Add.
22 n.a. n.a. - - 15.85 (15.31–16.38) 18.52 1.17 Add.
24 n.a. n.a. - - 45.77 (45.31–46.24) 12.98 0.28 Anta.
26 n.a. n.a. - - 13.89 (13.46–14.33) 11.18 0.80 Add.
28 n.a. n.a. - - 5.82 (4.61–7.04) 2.52 0.43 Anta.
30 n.a. n.a. - - 4.38 (3.84–4.91) 10.07 2.30 Syn.

Note. 1 ECxmix: effective concentrations of a mixture causing x% toxicity effect; 2 Values predicted by the
concentration addition model; 3 Model deviation ratio; 4 Type of combined toxic effects; 5 ECx ratio mixture:
an equitoxic mixture based on ratios at x% effective concentrations for each component; 6 Additivity; 7 Antagonism;
8 Synergism; and 9 Not available.

In a study Nica et al. [48], they tested five veterinary pharmaceuticals for the interaction of
synergistic, additive and antagonistic effects on A. fischeri by the combination index of the CA and IA
models. They found inversion phenomena of antagonism at high concentrations and synergism at low
concentrations from six binary combinations and one pentanary mixture with individual predicted
no-effect concentrations. The authors assumed that these phenomena seemed to be independent of
the mode of action, which are likely complex and mostly unknown in nature. Rodea-Palomares et
al. [49] also found interesting results, i.e., opposite interactions between different aquatic organisms of
cyanobacteria (Anabaena CPB 4337) and A. fischeri for three pharmaceuticals. The authors reported a
tandemly changing interaction from antagonistic and additive effects at low effective concentration
levels to synergistic effects at high effective concentration levels in an A. fischeri test for binary and
tertiary mixtures.

As shown in Table 5, Anabaena tests showed a converse pattern against A. fischeri toxicity results.
Ismael et al. carefully assumed that pharmaceuticals were shared by a common binding motif
such as the same target and receptor sites. Because of the structural similarity, these unexpected
interactions were shown between different aquatic organisms. Gonzalez-Pleiter et al. [50] also tested
cyanobacteria (Anabaena CPB 4337) for levofloxacin and tetracycline. They found synergism at
low effective concentration levels and antagonism at high effective concentration levels. Based on
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these results, we assume that the unexpected interaction was caused by tetracycline. In some cases,
the interactions of experimental toxicity screening were different from predictive toxicity results with
inversion phenomena of the interaction [47–50]. This observation suggests that the binary components
could make the synergistic effects at low concentrations. Wang et al. [51] reported that the reaction
mechanism differs between short-term (acute) and long-term (chronic) exposures because of quorum
sensing molecules which known as ain and lux in A. fischeri [51]. So that better understanding the
accurate synergistic interaction, chronic toxicity tests are required. In this study, the exposure levels of
the tested chemicals were less than their environmentally relevant concentrations. Thus, further studies
are needed to determine how substances as synergists interact with biomolecules at low concentrations
from different model organisms including A. fischeri.

As shown in Figure 3 and Table 4, the reason for not available (i.e., n.a.) data indicates that they
did not reach the EC50 and EC10 ranges. Thus, all binaries of the EC10 ratio mixtures (i.e., EC10mix)
were not calculated for interactions from the binary mixture at EC50 ranges. Two binaries of EC10mix
(Mixture 14 and 18) did not reach the experimental data at the EC10 ranges. Four binaries of the EC10mix
(Mixture 2, 4, 16, and 30) showed synergistic interactions at the EC10 ranges, whereas seven additive
interactions of EC10mix (Mixture 6, 8, 10, 12, 20, 22, and 26) and two antagonistic interactions of EC10mix
(Mixture 24, and 28) occurred at EC10 ranges.

Figure 4 illustrates the cumulative distribution of MDRs. In total, the binary combinations of
pharmaceuticals and pesticides detected in major river basins in Korea showed 48%-additive (n = 20
from Table 4 excluding combinations without MDR), 40%-antagonistic (n = 17), and 12%-synergistic
(n = 6) toxicity effects from 43 binaries on the basis of the MDR values at high (EC50) and low effect
(EC10) ranges. In this study, the EC10 ratio mixtures were at a low overall effect range and showed a
general tendency to have more synergistic effects than EC50 ratio mixtures at the high effect range.
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Figure 4. The cumulative distribution of model deviation ratios (MDRs) for quantifying the toxicity
interactions of the binary mixtures of pharmaceuticals and pesticides (n = 43 from Table 4, excluding
combinations without MDR) for A. fischeri (synergism: MDR > 2; additivity: 0.5 ≤ MDR ≤ 2;
and antagonism: MDR < 0.5).
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Table 5. A summary of the studies related to the interaction of inversion phenomena.

Mixture
Experimental

Design
Species Endpoint Convind Effect

Quantification Methods Ref.
High Level Low Level

Two antibiotics
Binary equitoxic

mixture ratio (5:1,
1:1, 1:5)

Bacteria
Microcystis aeruginosa (MA)

EC50 and EC5 for MA cell from equitoxic
ratio SP/Amp (5:1, 1:5, 1:1)

Antagonism
1:1 ratio

>0.7 ug/L

Synergism
1:1 ratio

<0.5 ug/L

Departure from additivity
model (CA, IA) [47]

Five veterinary
pharmaceuticals

Binary and
multicomponent

mixture

Bacteria
A. fischeri

Applying the combination index method
from active pharmaceutical compound

interactions for bacteria
Antagonism Synergism

Departure from combination
index (CA, IA) [48]

Diclofenac : Sulfamethizole EC50 1.13 EC10 0.61

Acetylsalycilic acid : Sulfamethizole EC50 2.58 EC10 0.85

Chlortetracycline : Amoxicillin EC50 2.16 EC10 0.08

Acetylsalycilic acid : Diclofenac EC50 1.13 EC10 0.73

Sulfamethizole : Amoxicillin EC50 1.57 EC10 0.41

Acetylsalycilic acid : Amoxicillin EC50 2.17 EC10 0.72

Predicted no-effect concentration
(five pharmaceutical compound mixture) EC50 1.36 EC10 0.61

Three
pharmaceuticals

Binary and ternary
combinations

Bacteria
A. fischeriCyanobacteria

Anabaena CPB4337

Applying the combination index with
isobologram equation methods from

pharmaceutical compounds for in vitro
and in vivo bioassay

Antagonism Synergism

Departure from combination
index (CA and IA) with
isobologram equation

[49]Fenofibrate : Bezafibrate EC90 2.59
EC50 1.19 EC10 0.55

Fenofibrate : Gemfibrozil EC90 12.9
EC50 1.29 EC10 0.13

Fenofibrate : Gemfibrozil : Bezafibrate EC90 3.92 EC50 0.57
EC10 0.09

Five antibiotics
Binary and

multicomponent
mixture

Cyanobacteria
Anabaena CPB4337

Microalgae
Raphidocelis subcapitata

Applying combination index with
isobologram equation methods from

pharmaceutical compound for in vitro
and in vivo bioassay

Antagonism Synergism Departure from combination
index (CA and IA) with
isobologram equation

[50]

Levofloxacin : Tetracycline EC50 1.6 EC10 0.37
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4. Conclusions

In this study, the toxicity of the six target compounds (e.g., four pharmaceuticals and two
pesticides) detected in major river basins in South Korea and their binary mixtures (30 samples) were
tested at high and low effect concentrations (e.g., EC50 and EC10 ratio mixtures) with luminescent
bacterium A. fischeri. Thus, their toxicological interactions were evaluated at 60 effect concentration
data points in total and based on model deviation ratios (MDRs) between predicted and observed
toxicity values. The mixture toxicities of these mixtures were also predicted by the CA model to
evaluate their toxicological interactions (e.g., additive, synergistic, and antagonistic effects) based
on the MDR value. From the 60 data points, MDRs were not possible for 17 points since their
toxicities could not be measured. The result showed 48%-additive (n = 20), 40%-antagonistic (n = 17),
and 12%-synergistic (n = 6) toxicity effects from 43 binaries (excluding 17 combinations without
MDRs). That is, from the mixture toxicity evaluation and modeling, we found twenty combinations of
additive effects, seventeen combinations of antagonistic effects and six combinations of synergistic
effects. In addition, we found inversion phenomena such as synergism at low concentrations
and additive antagonism at high concentrations. The exposure levels of the tested chemicals
were less than their environmentally relevant concentrations. Since the environmentally relevant
concentrations of pesticides and pharmaceuticals detected in the aquatic environment can be present
at low concentrations, further studies with different species need to be conducted to clarify the
mechanisms, which can address what creates these inversion phenomena.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/2/208/s1,
Table S1: Selected pesticides and pharmaceuticals, which were identified in major river basins in South Korea,
Table S2: The regression models employed in describing the dose-response curves in this study.
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