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Abstract: The Prandtl model is certainly the simplest and most generic microscopic model describing
solid friction. It consists of a single, thermalized atom attached to a spring, which is dragged past
a sinusoidal potential representing the surface energy corrugation of a counterface. While it was
primarily introduced to rationalize how Coulomb’s friction law can arise from small-scale instabilities,
Prandtl argued that his model also describes the shear thinning of liquids. Given its success regarding
the interpretation of atomic-force-microscopy experiments, surprisingly little attention has been
paid to the question how the Prandtl model relates to fluid rheology. Analyzing its Langevin and
Brownian dynamics, we show that the Prandtl model produces friction–velocity relationships, which,
converted to a dependence of effective (excess) viscosity on shear rate η(γ̇), is strikingly similar
to the Carreau–Yasuda (CY) relation, which is obeyed by many non-Newtonian liquids. The two
dimensionless parameters in the CY relation are found to span a broad range of values. When
thermal energy is small compared to the corrugation of the sinusoidal potential, the leading-order γ̇2

corrections to the equilibrium viscosity only matter in the initial part of the cross-over from Stokes
friction to the regime, where η obeys approximately a sublinear power law of 1/γ̇.

Keywords: friction; viscosity; shear thinning; theory; molecular dynamics; Fokker Planck equation;
blood flow

1. Introduction

Understanding frictional forces and thus energy dissipation between two sliding bodies is a
central task of tribology. The Prandtl model is arguably the simplest and most generic non-linear
model explaining why and how energy dissipates microscopically [1–3]. It consists of a mass point,
which is dragged by a spring of stiffness k past a corrugated potential and subjected to a Stokesian drag
force as well as to thermal fluctuations. When k is less than the maximum curvature of the potential
V′′max, instabilities occur and friction has a finite zero-velocity limit in the absence of thermal noise,
consistent with Coulomb’s law of friction. When thermal fluctuations are minor and velocities are
intermediate, the dependence of friction on velocity can be rather weak, again consistent with the
observations going back to Coulomb [4], who never claimed solid friction to be completely independent
of velocity. However, if the reduced spring stiffness k̃ ≡ k/V′′max > 1 and/or when the thermal energy
kBT is finite, the dependence of the friction force F on velocity v is Stokesian at small v but usually
much enhanced compared to that caused by the artificially added damping term.

The Prandtl model—while having been mistakenly attributed to Tomlinson, see the interesting
summary by Popov and Gehrt [3] preceding their translation of Prandtl’s original work—received a
revival when it was realized that the model (sometimes with minor modifications) can quantitatively
describe friction and stick–slip dynamics as measured in atomic-force-microscope experiments [5–10].
This includes the transition between stick–slip motion [11] and structural lubricity [12] upon a decrease
of load, i.e., the regime where solid friction turns into viscous friction. The relevance of the Prandtl
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model to fluid rheology remained nevertheless relatively unexplored, despite few exceptions [13,14].
This is surprising in light of Prandtl’s comment that we obtain the complete transition from solid bodies to
liquids of low viscosity including all states of softening in between. (Here, and in the following, quotations
set in italic refer to the excellent English translation by Popov and Gray [3] rather than to the original
German.) Moreover, Prandtl expected viscosity η to increase (only approximately) exponentially with
pressure p, in agreement with the so-called Barus equation, its generalizations, and more recent
experiments [14–16] as well as molecular simulations [17].

Simple microscopic models describing shear-thinning in non-Newtonian liquids properly are
scarce if existent at all. The most standard model, which could be called semi-phenomenological, is the
Eyring model [14,16,18,19], which assumes the existence of a single energy barrier opposing (lateral)
motion of an atom when a fluid is sheared. The Eyring model arises as the limiting k̃→ 0 case of the
Prandtl model. The dependence of (excess) viscosity η on shear rate γ̇ in the Eyring model is given by

η(γ̇) = ηN
γ̇0

γ̇
arsinh

(
γ̇

γ̇0

)
, (1)

where ηN is the equilibrium (excess) viscosity and γ̇0 a characteristic shear rate near which friction
crosses over from a linear, fluid-like to a quasi-logarithmic, solid-like dependence on velocity. The
term “excess” is meant to indicate that experimental results on “full” viscosities, i.e., ratios of shear
stresses and shear rates, are often fit to equations of the form ηfull(γ̇) = η∞ + η(γ̇). In the following,
the contribution η∞ is ignored and we content ourselves with the comment that a related term arises in
the Prandtl model when an explicit Stokesian damping acts between the mass point and the substrate.

While many liquids follow Eyring’s model at small temperatures or high pressure, a variety
of phenomenological models are used in practice that assume a different functional dependence of
viscosity on shear rate from Eyring. One such equation, which contains many other models as limiting
cases, is the Carreau–Yasuda (CY) equation [20–22]

η(γ̇) =
ηN

{1 + (γ̇/γ̇0)a}(1−n)/a
(2)

where n and a are dimensionless parameters. For example, the CY model reduces to the Carreau model
for a = 2, whereas the friction–shear rate dependence becomes logarithmic-like at large shear rates,
as in the Eyring model, when n approaches zero from above. For γ̇0 → 0, viscosity is an algebraic
function of shear rate, η(γ̇) ∝ γ̇n−1, so that shear stress increases sub-linearly with γ̇n with an exponent
0 < n < 1.

One drawback of the CY equation is that it cannot be asymptotically correct for very small
velocities, except in the a = 2 limit of the Carreau equation. The reason is that any rigorous,
perturbation-theory approach to the finite-temperature statistical mechanics of sheared, originally
isotropic liquids, in which the sliding velocity or shear rate is taken as small parameter, can only lead
to a shear stress that can be expanded as odd powers of the shear rate. Such an expansion would hold
up to the point at which the sheared liquid undergoes a (macroscopic) discontinuous change, whereby
analyticity is destroyed. Consequently, it should be generally possible to express the effective viscosity
as a Taylor series expansion in even powers of γ̇, at least until a shear-driven thermodynamic phase
transformation or another collective, symmetry-breaking phenomena occurs. The Eyring model obeys
this principle, since the r.h.s. of Equation (1) can be expanded into even powers of γ̇. The predicted
friction–velocity relations can be systematically improved by adding further odd-power arsinh(γ̇/γ̇0)

terms, as shown in the context of the Prandtl model [13]. However, in preparing this work it was
found that convergence tends to be slow in such an arsinh(γ̇/γ̇0) expansion.

Although the CY equation violates elementary symmetry considerations, it certainly provides a
quite reasonable description of many experiments, most notably those on polystyrene by Yasuda [21],
which prompted Yasuda to generalize the Carreau equation; the data are reprinted (Figure 4.1-3) in
the classical book by Bird, Armstrong, and Hassager on the dynamics of polymeric liquids [22]. An



Lubricants 2020, 8, 38 3 of 18

interesting aspects of the original results is that they are best described with the exponents n = 0.2 and
a = 1.25. It means that, on the one hand, the experimental data show an almost Eyring/logarithmic-like
dependence of shear stress at intermediate sliding velocities since n = 0.2 is much closer to zero than
to unity. On the other hand, the parameter a clearly differs from the value of two in violation of a
leading-order η(γ̇) = η(0) + η′′(0)γ̇2/2 dependence. which would be consistent with perturbation
theory or Eyring.

The initial motivation for the current study was to address the question of whether simulations
can reproduce experimental results that appear to violate elementary symmetry considerations and to
analyze the system with high precision at exceedingly small shear rates within the linear-response
regime. Such a study will also implicitly address the question of how a shear-stress dependent effective
(free) energy barrier F(τ), which is defined through the equation

γ̇(τ) =
τ

ηN
e−β{F(τ)−F(0)}, (3)

depends on shear stress τ. Generally speaking, the leading-order correction to any finite-temperature
free-energy barrier ∆F(τ) = F(τ)− F(0), including those opposing a chemical reaction, to an external
stress can only be an analytical function in the stress tensor invariants, e.g., the hydrostatic pressure p
and the deviatoric stress tensor invariant, which can be associated with the square of the shear stress.
Thus, tensile stress σ can change ∆F in leading linear order, since it couples linearly to the hydrostatic
pressure, but the leading-order correction to ∆F(τ) can only be quadratic in shear stress except at
zero temperature, where analyticity does not necessarily hold. In addition, the notion of an activation
volume when expressing the seemingly linear reduction of a finite-temperature free-energy barrier
with respect to shear stress appears particularly troublesome as a (Lagrangian) shear strain leaves the
volume unchanged.

The symmetry arguments on free-energy barriers appear to be in conflict with the assumption of
an athermal energy barrier ∆E that decreases linearly rather than quadratically with shear stress and
which is used in transition-state theory [14]. A similar comment applies to other energy barriers that
can be reduced by shear stress, such as those opposing chemical reactions. Strong support for a linear
reduction of activation energies comes from the shear-stress assisted decomposition of zinc-phosphate
based anti-wear additives immersed in sheared, highly viscous lubricants [23].

To study the conditions if/when free-energy barriers depend linearly or quadratically on shear
stress, very high-precision, effective viscosities are required at small shear rates. Computing them
in explicit many-atom simulations with sufficient precision might require unfeasible computing
times even for model substances as simple as liquid Lennard–Jonesium. It was therefore decided to
investigate the Prandtl model. Discovering that and rationalizing why it mimics the shear thinning of
real liquids—which we now consider the main message of this paper—was a coincidental byproduct
of the attempt to reconcile symmetry arguments with empirical evidence.

A frequent advantage of studying simple systems is that some of the gained insights apply to a
broader context than simulations of just one specific substance. This happens when the description
of complex, seemingly unrelated systems simplifies to the same unifying model after abstracting the
effects of irrelevant degrees of freedom into a thermostat. Thus, liquids with rheological responses as
distinct as those of polystyrene and camel’s blood may be describable by the same, simple model. This
simplification is particularly/only useful, if it allows questions such as why increasing the pressure of
an ordinary liquid or decreasing the stiffness of red blood cells leads to a decrease of the exponent n in
the CY model to be answered.

The remainder of this article is organized as follows: Section 2 presents the investigated model,
some theory as well as a brief discussion of the numerical methods used. Section 3 contains the results.
Conclusions are drawn in Section 4.
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2. Model, Theory, and Methods

In this section, we first describe the Prandtl model in a slightly modified form, that is, the explicitly
introduced damping of the mass point does not occur relative to the substrate but within the spring. The
three different methods pursued to study the dynamics of the system are also described in this section.
The numerical methods include: molecular dynamics using a Langevin thermostat for the study of
underdamped dynamics as well as Brownian dynamics and a Fokker–Planck-equation based approach
for the simulation of overdamped dynamics. Since the Brownian dynamics and the Fokker–Planck
equation are not commonly used in the field of tribology, despite notable exceptions [24,25], some
technical details on these methods are reported in the following.

2.1. The Prandtl Model

A variant of the Prandtl model is chosen in which the mass point’s velocity is damped with
respect to the driving spring, i.e., the equation of motion in the frame of reference of the moving
spring reads

mẍ + m γ ẋ + kx = qV0 sin(qx + v0t) + Γ(t), (4)

where m is the mass, γ is a damping coefficient, k the stiffness of the driving spring, V0 the amplitude
of the substrate potential, and 2π/q is the spatial period. Γ(t) is a random force mimicking thermal
fluctuations and thus satisfying the fluctuation–dissipation theorem.

Damping was chosen to act relative to the driving spring for mainly two reasons. First, it
automatically turns the measured friction force into an excess friction compared to that at infinitely
large velocities, whereby postanalysis is facilitated. The reason that F(v→ ∞) tends to zero is that the
mass point is too inert, or in the overdamped limit too sluggish, to respond to the rapidly changing
deterministic forces imposed by the substrate. Second, dissipation occurs within a linearly elastic
system through the coupling of a single, atomistic degree of freedom to a quasi-continuous set of
collective harmonic modes. For ideally elastic solids, the damping coefficient of a surface atom—as
obtained within the Debye approximation to harmonic solids—is roughly half the eigenfrequency
(see Equation (5.7) in [26]), which causes the motion of an individual surface atom to be slightly
underdamped when described in terms of a harmonic coupling to its lattice site.

Results are sometimes expressed in a reduced system in which mγ, q, and V0 as well as kB are
all equal to unity. The remaining parameters of the Prandtl model are reduced velocity ṽ = vq/γ,
reduced mass m̃ = m/

√
q2V0/γ2, reduced thermal energy kBT̃ = kBT/V0, and most importantly

reduced spring stiffness k̃ = k/(q2V0). In this unit system, the maximum, athermal static friction force
is F̃s,max = 1 in the limit of k̃→ 0, which would also be the maximum, athermal, zero-velocity kinetic
friction force.

It may be helpful to note that the letter T can indicate both temperature and period T = 2π/(qv0)

for the lack of alternatives. To discriminate between the two, the letter kB precedes T or T̃, whenever
the latter (letter) is meant to represent temperature but is omitted otherwise.

2.1.1. Relating the Prandtl Model to Rheology

To relate the Prandtl model to rheology, we consider laminar flow. Each Prandtl layer (in fact,
Prandtl assumed many springs at irregular spacing so as to avoid artifacts due to commensurability)
is assigned a width that is similar to the period of the substrate potential. Each layer also provides a
corrugation potential to the next layer above it. Of course, the corrugation potential cannot be spatially
periodic. However, as long as instabilities occur locally, only local potential-energy landscapes matter
and these may be assumed to be similar to the used periodic function. Thus, if the center of mass of
one layer slides at a velocity of v0 with respect to its neighbor, the shear rate would be γ̇ = v0/(2π/q).

Following the picture described in the previous paragraph, a shear force in the Prandtl model can
be associated with in a shear stress σ after dividing the shear force by (2π/q)2. Thus, a “real viscosity”



Lubricants 2020, 8, 38 5 of 18

of a liquid ηliq = σ/γ̇ and the velocity-dependent damping in the Prandtl model, ηP = Fk/v0, are
connected through the equation

ηliq =
q ηP

2π
. (5)

In the following, the symbol η will refer exclusively to the damping in the Prandtl model, but we
hope to have made clear its connection to viscosity.

2.1.2. Temperature Dependence of the Equilibrium Damping

As mentioned above, the Prandtl model reduces to the Eyring model for k̃→ 0, in which case a
free, single particle moves through a sinusoidal potential under the influence of thermal noise and a
constant drag force. This limit is well understood (see, for example, Risken’s excellent text book on the
Fokker–Planck equation [27]). The small-velocity limit of the damping, which is also called Newtonian
damping by analogy to Newtonian viscosity, can be deduced from the thermal diffusion constant D of
the free particle through the Einstein–Smoluchowski relation D = kBT/(mγ). Since the diffusion in a
corrugated potential is predominantly impeded by the energy barrier 2V0, diffusion of the free-particle
is counteracted by an (inverse) Arrhenius factor of exp{2V0/(kBT)}. The missing prefactor can be
estimated from the mobility of the free atom; the details and all complications arise from the fact that
not only the energy barrier but also the entire energy landscape affect the atom’s final mobility and
thus its damping constant.

We now discuss the evolution of the probability distribution W(x, t) in the Prandtl model where
k̃ is less than unity but still large enough for at most two minima in the total potential to occur at
any given relative substrate position. (Allowing for more potential energy minima does not change
final results in a significant fashion but requires a much longer discussion.) Moreover, assume that
kBT̃ � ∆F(xs = 0), where xs = 0 indicates that the maximum of the substrate potential coincides with
the spring’s equilibrium position, as depicted in Figure 1. When the substrate has not yet reached the
situation shown in Figure 1 such that the left minimum is lower than the right by a few kBT, essentially
all the probability of W(x, t) resides near the left minimum, i.e., near the one in which the dark blue
atom is indicated. To what extent W(x, t) has shifted to the right minimum when left and right minima
are close to each other, say within less than 4kBT, depends crucially on the driving velocity v0. In
the limit v0 → 0, the system is within the linear-response (Newtonian) regime and W(x, t) is very
close to the equilibrium distribution for a given substrate position, i.e., W(x, t) ∝ exp[−βV{x, xs(t)}].
However, for this to occur, the mass point needs to equilibrate, i.e., it must overcome the barrier ∆F
several times while the energy of the left minimum has been raised by a few kBT compared to the right.
The corresponding time to do so increases with the Arrhenius factor exp{∆F/(kBT)}, where ∆F is the
energy barrier that has been renormalized from 2V0 due to the coupling of the (coarse-grained) atom to
the spring, see again Figure 1. Assuming the prefactor of the equilibrium damping to be proportional
to an inverse power of kBT, we obtain

η̃ =

(
kBT̃η

kBT̃

)αη

e∆F/(kB T̃), (6)

kBT̃η and αη being dimensionless parameters. The prefactor was added as a general power law of
thermal energy, as to properly reflect, for example, under- and overdamped dynamics in the k̃ → 0
and k̃→ ∞ limits.
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Figure 1. Energy landscape of the Prandtl model for k̃ = 0.25 at a point of time, when both energy
minima are equivalent. ∆E indicates the energy barrier separating the motion of the atom from one
minimum to the next.

Another parameter affecting the linear damping coefficient is related to a characteristic distance
that the spring can move relative to the substrate without significantly changing the energy landscape.
It could be defined as the distance ∆Xs from the symmetry point Xs = 0 that needs to be overcome to
lift the degeneracy of the two minima by more than, say, kBT. Alternatively, it might also be defined
by the distance that needs to be slid until one of the two initially degenerate minima becomes unstable.
Since the latter is independent of kBT, we explore this distance graphically in Figure 2.
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Figure 2. Full potential energy landscape of the Prandtl model for (left) k̃ = 0.25 and (right ) k̃ = 0.85
at different relative displacements between substrate and spring.

From Figure 2, it becomes obvious that the energy landscape for the larger k̃ value changes much
more quickly than the smaller one. Specifically, at a slid distance Xs = 0.01/q, the energy landscape
of the k̃ = 0.85 system has moved from being degenerate to the point where even an athermal mass
point would move to the new absolute energy minimum. In contrast, the energy landscape of the
k̃ = 0.25 system has barely changed when being slid by the same distance. To reach the point at
which an athermal mass point would becomes unstable a distance roughly 80 times larger is needed
for the softer spring. Thus, at fixed values of ∆E/kBT and qv0, the softer springs has more time to
transit the barrier through thermal activation than the stiffer spring. Consequently, the equilibrium
damping of the softer spring will be lower under these circumstances and its crossover velocity be
greater than for the stiffer spring. This might be counterintuitive, since the athermal kinetic friction
force in the ṽ → 0 limit is greater for the softer spring. The crude guesses from this section would
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be that the dimensionless equilibrium-damping term η̃ should be of order exp(β∆F) (at least for the
overdamped case, for the underdamped case a different unit system might be needed) and that the
cross-over velocity for k̃ = 0.25 should exceed the crossover velocity for k̃ = 0.85 model by a factor
whose order of magnitude is 80. Quantifying these numbers more accurately in terms of a closed-form
analytical expression is beyond the scope of this work.

2.1.3. Shear-Stress Dependence of the Free-Energy Barrier

In the Eyring model, Equations (1) and (3) and the definition of the effective damping η ≡ τ/γ̇

can be combined to yield the following shear-stress dependence of the free-energy barrier

∆F(τ) = ∆F(0)− kBT log
(

τ0

τ
sinh

τ

τ0

)
, (7)

where τ0 = ηNγ̇0. This equation contains the two asymptotic limits

∆F(τ) ≈ ∆F(0)− kBT ×
{

τ2/(6τ2
0 ) for τ � τ0

τ/τ0 for τ � τ0,
(8)

where τ0 is a characteristic shear stress, separating the low-stress regime, where ∆2F(τ) ≡ ∆F(τ)−
∆F(0) is approximately quadratic in τ, from the linear, high-stress regime. This relation is now
evaluated for the Prandtl model after replacing the shear stresses τ and τ0 with the shear forces f
and f0.

For small k, specifically in the limit k → 0, ∆2F(τ) can be easily estimated in the athermal or
low-temperature limit of the Prandtl model. ∆2F(τ) corresponds to the work done by the external
force, while thermal fluctuations move the atom from the original basin (A basin summarizes all
points in phase space that relax to the same minimum upon a steepest-descent relaxation. In a
one-dimensional model, a basin summarizes all points between two maxima.) sinusoidal potential
V(x) = V0 cos(qx)− f x, whose minimum is located at xmin, to the top of the barrier at xmax, i.e.,

∆2F = − f · (xmax − xmin) (9)

and
q · (xmax − xmin) = π − 2 asin{ f /(qV0)}. (10)

While the original Eyring model assumes τ0 or f0 to be constant, we find that the work done to
move the atom from the minimum to the barrier decreases with increasing shear forces. Thus, rather
than keep τ0 or its replacement f0 constant, it is more accurate to use

f0 =
qkBT

π − 2 · asin{ f /(qV0)}
(11)

instead, as is demonstrated in the Results Section.
The two following equations summarize the way a shear force is expected to reduce the effective

viscosity in the Prandtl model in the limit k̃→ 0:

η( f ) = ηN · eβ∆2F( f ) (12)

with

∆2F( f ) ≈ −kBT log
(

f0

f
sinh

f
f0

)
, (13)

where f0 is not a constant but given in Equation (11).
It finally must be said that the current only applies to situations, where the mass points move in

an activated fashion. At very large sliding velocities, the mass point no longer manages to dissipate the
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kinetic energy obtained in the last instability before the new minimum becomes unstable. Consequently,
crossing barriers no longer requires thermal activation. This leads to the situation where a Prandtl
layer (many atoms coupled to a rigid plate) can have two different stable velocities at a given shear
force. In other words, the shear force is not necessarily an increasing function of the velocity, which
conversely means that the inverse function v(F) is not unique.

2.2. Simulation Methods

2.2.1. Langevin Dynamics

For the molecular dynamics simulation presented below, the velocity Verlet algorithm is used
and coupled to a thermostat reflecting the equation of motion in Equation (4). Random forces on the
discrete time are chosen according

Γτ =

√
6mγkBT

∆t
(2 uτ − 1), (14)

where ∆t is the time step, τ is an integer that counts the time steps, and uτ is an independent
(pseudo) random number distributed linearly on (0, 1). To keep errors due to the the random forces
small, the mass was chosen such that the isolated oscillator was slightly underdamped, specifically,
m = V0q2/(4γ). The default time step is chosen as ∆t = T/40, where T is a measure for the smallest
possible period in the system ,i.e.,

T = 2π min
(√

m
k + q2V0

,
1

qv0

)
. (15)

The value of ∆t is readjusted at each velocity such that the the spring is moved by a lattice constant
at an integer number of time steps.

At large sliding velocities, simulations were repeated at a quarter of the default time step to
ensure that systematic errors in the computed forces were always less than 1%. The system was always
equilibrated over a sliding distance of at least two lattice constants. Simulations were run so that
the moved distance covered at least 100 lattice constants during the observation. The friction force
averaged over a sliding distance of one lattice constant was considered to be an independent random
number so that the stochastic error of its mean could be estimated on the fly. Each velocity was run
until a target accuracy was reached, typically .1% relative error of the mean friction force.

2.2.2. Brownian Dynamics

Langevin dynamics become inefficient in the limit of overdamped dynamics, as the time step
has to be made small compared to the damping time 1/γ. Consequently, Brownian dynamics were
performed in addition to Langevin dynamics. Time stepping was done using the following scheme

xτ+1 = xτ +
∆t
mγ

{
−k xτ + qV0 sin(qxτ + τ ∆t v0) +

√
6mγkBT

∆t
(2uτ − 1)

}
, (16)

where τ enumerates the time steps again. This time, ∆t was chosen as ∆t = 1/(40 γ) as default value.
Simulations were run in a similar spirit as the Langevin dynamics simulations and included the

above-mentioned checks on the systematic discretization errors due to non-zero time-steps as well as
the stochastic errors caused by finite sampling.

2.2.3. Fokker–Planck Equation

Both Brownian and Langevin dynamics suffer from a large computational cost at small velocities,
because at a fixed relative stochastic error, the number of required MD time steps increases by a factor
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of eight when the velocity is halved in the Stokesian regime. For the study of the asymptotic behavior
at very small velocities, a Fokker–Planck equation (FPE) based approach was therefore used even if
it might be somewhat less effective than Brownian dynamics at large v0. Results deduced from the
numerical solution of the FPE do not suffer from stochastic errors, which is why the computational
effort increases only by a factor of two when the velocity is halved in the Stokesian regime at a fixed
relative stochastic error.

The Fokker–Planck equation is a partial second-order differential equation (PDE) in which the
probability distribution function W(x, t) is propagated in time. As presented very clearly in the book
by Risken [27], it reads

mγ∂tW(x, t) = −∂x {F(x, t)W(x, t)}+ kBT∂2
xW(x, t) (17)

in the case of Brownian dynamics, where F(x, t) summarizes the deterministic forces acting on the
mγẋ term. Once steady state is reached, the friction force can be computed as a spatial and temporal
integral according to

Fk =
1
T

∫ Teq+T

Teq
dt
∫ a

0
dx kx W(x, t). (18)

where Teq is sufficiently large for steady-state sliding to occur and a = 2π/q is the lattice constant of
the substrate. The FPE can also be formulated for underdamped dynamics, but the speed-up compared
to explicit simulations is much reduced.

A relatively simple method was implemented to obtain a direct solution of the FPE. First, space
was discretized into elements of size ∆x =

√
kBT/(k + q2V0)/8 on −xmax ≤ x ≤ xmax, where xmax

was chosen to be so large that the ratio of the most likely equilibrium probability of any Weq(x) was at
least 1010 larger than that of Weq(±xmax), irrespective of the displacement of the substrate relative to
the spring. Second, time was discretized into ∆t = 0.002/(mγ). The differential operators were then
realized using second-order Euler schemes, i.e., ∂2

xW(xn, t) ≈ {W(xn+1) + W(xn−1)− 2W(xn)} /∆x2

with xn = n∆x, and ∂x{F(x, t)W(x, t)} ≈ {F(xn+1, t)W(xn+1, t)− F(xn−1, t)W(xn−1, t)} /(2∆x).
Third, W(x, t) was propagated in time by adding to it the finite-difference approximation of ∂tW(xn, t)
times ∆t/(mγ) to it. The values for W(±xmax, t) were constrained to zero. To compensate for round-off
errors and for any probability density that effectively left the considered domain (via the above
mentioned constraints), W(x, t) was multiplied by a constant after each time step so that the spatial
integral was normalized to unity.

The just-described scheme is not sufficiently accurate to provide a meaningful solution for an
initial condition given by a (discretized) δ function. However, it turned out to be well suited when
W(x, t = 0) was initialized with the appropriate, thermal equilibrium distribution for a non-moving
substrate. For k̃ = 0.25, it was found that Teq = 5a/2 was sufficiently large to approach the steady-state
solution reasonably well for ṽ < 0.1. A longer “running-in” sliding distance is only required at
large velocities.

Discretization effects in space and time were tested to be negligibly small, i.e., to result in relative
changes of the measured friction of less than 0.5%, when ∆t and ∆x were decreased by a factor of two.

3. Results

The overdamped Prandtl model is characterized by three dimensionless parameters, namely k̃, ṽ0,
and kBT̃, when mγ, V0 and q are chosen to define units. This is why it is not possible to graphically
represent all possible dependencies of the kinetic friction force or of the effective damping constant,
defined (η̃ = F̃k/ṽ) in a single figure. Therefore, we focus on Fk(v) (or rather η(v) ≡ Fk(v)/v) relation
for mainly two reduced spring stiffnesses, one being significantly less than unity, the other being close
to it and vary driving velocity as well as temperature.

For the reduced mass, two options are considered. In one case, it is formally set to infinity,
while keeping mγ fixed, which leads to overdamped or Brownian dynamics. It is more easily solved
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than Langevin dynamics. In the other case, the mass is set such that the dynamics are slightly
underdamped. This appears to be the most reasonable approximation for an atomistic interpretation
of the Prandtl model. However, other choices may be meaningful, for example, when the mass point
represents a coarse-grained degree of freedom, in which case its motion can be anything from strongly
underdamped to strongly overdamped.

Figure 3 compares over- and underdamped dynamics for k̃ = 0.25 at a thermal energy of kBT̃ = 0.2.
Both curves show similar trends since they can both be fit very well over an extended velocity range
with the CY equation. However, overdamped and underdamped η̃(ṽ) relations differ noticeably, in
particular at very large and very small sliding velocities. Most importantly, the friction in the (slightly)
underdamped case is reduced by a factor of approximately two in the ṽ→ 0 limit.
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Figure 3. Effective damping η̃ as a function of velocity ṽ for k̃ = 0.25 and kBT̃ = 0.2. (Left) Comparison
of overdamped (red circles) and underdamped (blue diamonds) dynamics, the latter being based on
a reduced mass of m̃ = 1/4. The black lines are fits to the CY equation. Both fits were done in the
interval 3× 10−4 ≤ ṽ ≤ 0.1 but plotted over a larger velocity range. Values for the Carreau–Yasuda
fits are: γ̃ = 115, ṽ0 = 1.63 × 10−3, n = 0.196, and a = 0.812 for the overdamped system and
γ̃ = 56.7, ṽ0 = 2.41× 10−3, n = 0.268, and a = 1.05 in the underdamped case. The Carreau equation
is parameterized as CY, however, with a = 2. (Right) Analysis of the small-velocity damping. The
Carreau and CY models were left unchanged with respect to the left figure. Additional models include
the Eyring model η̃ = η̃0ṽ0arsinh(ṽ/ṽ0) and a quadratic approximation, η̃ = η̃0 + η̃′′0 ṽ2/2, for which
the parameters (η̃0, ṽ0 and η̃′′) were adjusted to the asymptotic ṽ→ 0 dependence of η̃.

The adjustable parameters of the CY equation were fit to the data presented in Figure 3 within
the range 10−3 ≤ ṽ ≤ 0.1. Results for the fits are stated in the figure caption. The two dimensionless
exponents n and a happen to be reasonably close to those reported by Yasuda for polystyrene [21,22].
Significant similarity between our results and Yasuda’s data on polystyrene is certainly also revealed
by eye when comparing our Figure 3 to Figure 4.1-3 in Ref. [22]. We are certain that the agreement
can be further significantly improved by slightly increasing k̃ and reducing m̃, and, most importantly,
by introducing a Stokesian damping between the mass point and the moving external potential. The
last modification of our model would make the damping/viscosity level off at a finite value for large
shear rates.

A large-velocity regime can be identified, in which the CY equation reflects the data extremely
well when plotted in double logarithmic fashion. However, it does not accurately describe the changes
of the effective damping at very small sliding velocities, as can be seen from the right graph in
Figure 3. For ṽ . ṽ0/3, the effective damping obeys a quadratic ṽ dependence, as expected from
perturbation theory. Both the Eyring model and an even-power, second-order Taylor series expansion
of the effective damping into η̃ ≈ η̃0 + η̃′′(0)γ̇2/2 accurately reflect the low-velocity regime. The
range in which Eyring is a reasonable approximation to the true data is certainly much larger than
for a second-order Taylor series expansion. However, corrections to Eyring remain necessary to reach
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satisfactory agreement to values of ṽ beyond ṽ0, e.g., in terms of a shear-rate or shear-stress dependent
activation barrier.

Despite the close agreement between the simulation data and the CY equation at intermediate
velocities, it must be noted that the agreement is not perfect. Systematic and non-monotonic deviations
of order 5% occur, i.e., a quasi-exact proportionality between damping and velocity (F̃ ∝ ṽn) at
intermediate velocities, is not produced by the Prandtl model. We expect the same to hold for real,
high-precision viscosity measurements as well.

When k̃ is increased, the friction–velocity relation continues to be described quite well by the CY
relation, as can be seen in Figure 4 for k̃ = 0.85. The exponent n is noticeably reduced compared to that
obtained for the more compliant k̃ = 0.25 spring, specifically it acquires a value close to 0.5, which
is representative of human blood [28]. To what extent this agreement is coincidental is discussed in
Section 4.
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Figure 4. Similar to Figure 3, but for k̃ = 0.85 and kBT̃ = 0.02. Parameters used in the Carreau–Yasuda
equation are this time γ̃ = 18.4, ṽ0 = 0.522× 10−3, n = 0.503, and a = 1.28 for the overdamped system
and γ̃ = 5.73, ṽ0 = 1.30× 10−3, n = 0.521, and a = 2 in the underdamped case.

While the rheological responses shown in Figures 3 and 4 are quite similar, some differences
appear to be worth noting. First, the discrepancy between over- and underdamped friction has become
more significant at the larger value of k̃: it grew from a factor of two to a factor of three. Second, at the
smaller reduced spring stiffness, both rheological response functions clearly required the exponent
a to be less than 2. For the larger reduced spring stiffness, the rheological response function of the
underdamped system could be very well described with a = 2, i.e., the value that a takes in the Carreau
model, while an accurate description of the overdamped system necessitated a value close to unity.
Third, the low-ṽ expansions (Taylor or Eyring) of the effective damping always remained smaller than
the fit to the CY equation in case of the small value of k̃, but not for the larger value.

We next investigate how the η̃(ṽ) relation depends on temperature for the two reduced spring
stiffnesses investigated so far. The left graph in Figure 5 shows data for k̃ = 0.25 and reveals
the following, frequently observed behavior: The temperature dependence of damping is less
pronounced at high than at low shear rates and the transition between non-Newtonian and Newtonian
behavior moves to smaller velocities at decreasing temperature. Coefficients deduced from fits to the
Carreau–Yasuda equation read for the two most extreme investigated temperatures are: η̃ = 25,200,
ṽ = 4.20× 10−6, a = 0.685, and n = 0.156 for kBT̃ = 0.1 and η̃ = 4.38, ṽ = 4.13× 10−2, a = 1.51, and
n = 0.436 for kBT̃ = 0.5. Thus, damping increases by roughly four orders of magnitude upon cooling
as the thermal energy is decreased from kBT̃ = 0.5 to kBT̃ = 0.1, while the cross-over velocity decreases
by a similar factor. In addition, the exponent n decreases upon cooling, while a increases. In fact,
n(kBT̃ = 0.1) is so close to zero that the resulting power law F ∝ vn is difficult to distinguish from a
logarithmic dependence in a double logarithmic representation unless v spans more than two decades.



Lubricants 2020, 8, 38 12 of 18

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

v       

10
0

10
1

10
2

10
3

10
4

η

underdamped dynamics

Carreau Yasuda equation

~

~

k
B
T = 0.1

0.15

0.2

0.3

0.4

0.5

~

1 2 3 4 5 6 7 8 9 10

( k
B
T )-1

10
1

10
2

10
3

10
4

η

~

~

Figure 5. (Left) η̃(ṽ) dependence in the underdamped Prandtl model for k̃ = 0.25 at various
temperatures. Symbols show data from MD simulations, while lines are fits to the Carreau–Yasuda
equation. The most extreme values for n and a turned out to be n = 0.156, a = 0.685 at kBT̃ = 0.1
and n = 0.371, a = 1.33 at kBT̃ = 0.5. (Right) Reduced Newtonian damping η̃ as a function
of inverse reduced temperature (kBT̃)−1. Circles show results from fits of the MD data to the
Carreau–Yasuda equation. The solid line is a low-temperature fit of the data to Equation (6), where
∆Ẽ(k̃ = 0.25) = 1.02023 is determined as described in Figure 1 with an exponent αη = 1/2.

Similar to the exponent n, the exponent a decreases systematically with decreasing temperature,
When the thermal energy is no longer very small compared to ∆E ≈ 0.0348, it appears that data can be
described by assuming a = 2, as revealed for kBT̃ = 0.02. However, while data appear to be perfectly
consistent with the Carreau equation, as can be seen in Figure 5, the fit further improves by setting a to
a = 1.57.

The temperature dependence of the effective damping is analyzed in the right graph of Figure 5.
At low temperatures, it satisfies Equation (6), where ∆Ẽ = 1.02023 was determined, as indicated in
Figure 1. Thus, only kBT̃η = 10.9 and αη = 0.5, were adjusted for Equation (6) to fit the simulated data.

The just reported analysis was repeated for k̃ = 0.85 and the pertinent results presented in
Figure 6. For the softer springs, ∆Ẽ is reduced to approximately 0.035, which in turn is consistent
with a reduction of the exponent n. The exponential increase of damping at small thermal energies
with inverse temperature can again be described assuming the barrier depicted in Figure 1 to be the
relevant one. However, the prefactor to η̃ at small kBT̃ is now consistent with an essentially constant
value near unity. To ascertain if the indicated low-temperature behavior is truly asymptotic for either
k̃ = 0.25 or k̃ = 0.85, a lower temperature would have to be reached. We plan on addressing this in the
future either using improved integration schemes for the FPE or a pertubative treatment.

The next simulation data presented explicitly is meant to test the order-of-magnitude estimates
of the equilibrium damping made in Section 2.1.2. Towards this end, the velocity dependence of the
damping term is computed for the two spring stiffnesses k̃ = 0.25 and k̃ = 0.85 at a fixed value of
kBT/∆E = 0.2. Results are presented in Figure 7. The dominant factor exp(∆E/kBT) in Equation (6)
yields ≈ 150, which is 1.5 larger than the value for k̃ = 0.25 reported in the caption of Figure 7 and a
little less than a third predicted for k̃ = 0.85. The cross-over velocities were crudely estimated to differ
by a factor of 80 in the discussion of Figure 2. This is to be compared to a ratio of 190 found in the full
simulations. Thus, additional work is required to develop better estimates.
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Figure 6. Same as Figure 5, but this time for k̃ = 0.85, for which ∆E(k̃ = 0.85) = 0.0348182. The solid
line obeys Equation (6), however, the temperature-dependent prefactor is replaced with the constant
1.13. The most extreme values for n and a in the left graph were n = 0.403, a = 1.34 at kBT̃ = 0.01 and
n = 0.668, a = 1.66 at kBT̃ = 0.1.

An interesting trend revealed in Figure 7 relates to the breakdown of the Carreau–Yasuda equation
at large velocities. It can either overestimate or underestimate the true damping when parameters
were fitted to the cross-over region and predictions then made for large shear rates. Since the
high-temperature viscosity η∞ is usually a fit parameter (while it was set and thus known to disappear
in the current study), the regime for which CY is believed to be valid for given experimental data can
be easily overestimated. In any event, the appearance of a shoulder at large velocities and values of k̃
approaching unity from below is observed for both underdamped as well as overdamped dynamics.
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Figure 7. Effective damping η̃ for overdamped dynamics as a function of sliding velocity ṽ for two
different stiffnesses at a constant ratio of kBT/∆E = 0.2. The low-velocity η̃(ṽ) dependence is consistent
with the CY parameters ηN = 97.8, v0 = 1.62× 10−3, n = 0.769, and a = 0.97 for k̃ = 0.25 and ηN = 498,
v0 = 8.52× 10−6, n = 0.680, and a = 1.16 for k̃ = 0.85.

In the data shown explicitly in this work thus far, the values for the two dimensionless exponents
in the CY equation range from 0.156 to 0.769 for n and from 0.685 to 1.66 for a. Many additional
simulations were run outside this range, which corroborated the expectation that n can take any value
in between zero (for k̃→ 0) and unity (for k̃→ 1). This expectation arises from the observation that
the Prandtl model reduces to Eyring in the k̃ → 0 limit so that n → 0 follows automatically, while,
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for k̃ > 1, the friction for the Prandtl model is Stokesian at small velocities, even without thermal
fluctuations.

The final systematic analysis is concerned with the analysis of how the effective free-energy barrier,
defined in Equation (3), depends on the shear stress. Results for k̃ = 0.02 (overdamped dynamics) and
k̃ = 0.25 (underdamped dynamics) are shown in Figure 8.
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Figure 8. Shear-thinning expressed via ln(ηN/η) as a function of f̃ /(kBT̃). The term ln(ηN/η)

corresponds to the shear-force induced reduction of the free-energy barrier in units of kBT or
−∆2F/(kBT). Full symbols show data on the branch for which the friction force increases with
sliding velocity, while open symbols relate to the remaining data. (Left) k̃ = 0.02 and Brownian
dynamics. Full lines show the theory as summarized in Equations (11) through (13). The dashed line
shows an unmodified Eyring theory, which assumes f0 to be constant, i.e., to be f0 = qkBT/π. (Right)
k̃ = 0.25 and Langevin dynamics. The thin line is drawn to guide the eye.

The data for k̃ = 0.02 reveals an astonishingly good agreement between simulation and the
theory developed in Section 2.1.3 for the force-induced reduction of the effective free-energy barrier.
These corrections are a function of the shape of the corrugation potential. They would therefore be
different if the corrugation potential had a different functional dependence by including higher-order
harmonics. The original Eyring theory, which does not include shear-force induced corrections to the
free-energy barrier, provides an upper bound for the reduction ∆F, which is approached from below
as T is decreased. The data for k̃ = 0.02 consolidates the claim that the Eyring model is obtained as a
limiting case of the Prandtl model, even if k̃ = 0.02 is still not fully k̃ = 0+.

The effect of shear stress on the reduction of the effective energy-barrier is qualitatively similar
for k̃ = 0.25 as for the just-discussed k̃ = 0.02. The reduction is again roughly linear in the (shear)
force and only crosses over to a parabolic-like dependence at very small values of ṽ. The change of the
energy-barrier reduction (as measured in units of kBT) with f̃ /(kBT̃) is similar in magnitude for both k̃;
however, it is slightly reduced for the larger k̃. The reduction of this slope is much more significant for
k̃ = 0.85, which is not shown explicitly. In all cases, the slope in the linear regime can be very roughly
approximated to be q∆xB/π, where ∆xB is the distance between the location of the minimum and that
of the barrier in the force-free case.

Outside the range of instabilities (k̃ > 1), the Prandtl model predicts shear thickening at small ṽ.
The corresponding data, which is not shown explicitly, is again consistent with the CY equation over
two or three decades in shear rate. In the Prandtl model, this shear thickening could be the consequence
of resonance effects that arise because the substrate potential reaches the spring’s eigenfrequency, or,
in the case of overdamping, the inverse relaxation time. Thus, in an atomistic interpretation of the
Prandtl model, velocities near the speed of sound would be required to approach those frequencies.
Consequently, strong non-linearities, such as heating, cavitation, chemical break-down of the lubricant,
etc. would arise, which are all not captured by the model. This is why it would be meaningless to study
resonance in this case. However, if the mass point of the Prandtl model represented a coarse-grained
degree of freedom, resonance effects are possible at velocities much below the speed of sound.
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4. Discussion and Conclusions

In this work, the rheology associated with the Prandtl model was studied and found to be very
similar to the rheology of real liquids. In particular, by converting the velocity dependence of damping
to a shear-rate dependence of the effective viscosity, the rheological response of the Prandtl model
reproduced the Carreau–Yasuda equation over a large range. A similarly satisfactory description
could not be achieved with other phenomenological descriptions over the same range using only the
same number of adjustable parameters. The crude interpretation of shear thinning in the Prandtl
model is similar to the one described by Lacks [29] for a more realistic, all-atom model, consisting of
binary, glass-forming Lennard–Jonesium: The viscosity can be [is] separated into a “structural” contribution
associated with the energy minima that the system visits, and a “vibrational” contribution associated with
displacements within the energy minima. The structural contribution is shear thinning due to strain-activated
relaxations caused by the disappearance of high-stress energy minima, while the vibrational contribution is
Newtonian. This sudden disappearance of high-stress energy minima does not occur in the Eyring
(k̃ → 0) limit of the Prandtl model, but only for finite values below the critical stiffness, i.e., it
necessitates the elastic component of a fluid’s viscoelastic properties.

Due to its simplicity, the Prandtl model allows some fundamental questions to be investigated
with a high (numerical) precision, which might not be achievable experimentally, or when conducting
simulations of more explicit and realistic models, although such simulations have now reached an
impressive accuracy [17,19,30]. This concerns in particular the analysis of the initial stages of shear
thinning at extremely small shear rates. We found that leading-order corrections to the effective
Newtonian viscosity are quadratic in velocity (and thus quadratic in friction or shear stress), but that
this initial regime can be extremely narrow. At the same time, the effect of this initial transition to the
cross-over regime (i.e., when sliding velocities are of a similar order of magnitude as the parameter v0

in the CY equation) can still be significant, even if the CY equation appears to be a perfect fit. In the
Prandtl model, equilibrium damping can be easily overestimated by as much as 20%, by extrapolating
the damping from v = v0 to v = 0 using the CY equation. As such, we suggest that Newtonian
viscosities should generally lie between the apparent viscosity measured at the smallest shear rate and
the value obtained from fits to phenomenological equations such as Carreau–Yasuda, at least as long
as the experimental data extend only to the cross-over shear rate.

Interestingly, the Prandtl model yields a broad range of values of the exponent n in the CY
equation, depending on the temperature and velocity; any value 0 < n < 1 appears to be possible.
Lowering the reduced temperature and/or decreasing the dimensionless spring constant lowers n. For
k̃ > 1, shear thickening can be obtained. A single dissipative spring suffices to accomplish this, even
if the model can be readily generalized to yield more complex rheology by augmenting or replacing
the spring with other rheological elements composed of springs and dashpots, such as those defining
Maxwell and Kelvin–Voigt materials. Particularly meaningful would be to introduce an additional
damping element in series with the current dissipative spring, in which the time constant of the
new damping element reflects the life time of the local topology or “cage” into which an individual
atom is embedded. The topology can be defined by quenching a fluid via a steepest descent to the
nearest minimum [31]. Once properly parameterized, such (thermostatted) Prandtl models show
great potential for modeling complex rheological responses of liquids for which the use of many
conventional rheological elements is currently needed when their relaxation functions cover several
decades in time.

The numerical studies presented in this work were focused on two particular values of k̃. For
k̃ = 0.25 and intermediate values of T̃, the exponent n took values in the vicinity of 0.2, which is
characteristic for many polymers under ambient conditions. For k̃ = 0.85, values near n = 1/2 were
obtained, which is close to that observed for human blood [28]. This in itself is not yet necessarily
meaningful, but an interesting question is if the model allows the way in which the exponent n changes
for different system to be rationalized.
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For example, let us assume the Prandtl model is parameterized to reproduce the rheological
response of a polymer under ambient conditions. As the temperature is lowered, the effective damping
will increase at a given velocity, while the crossover velocity decreases substantially. This happens
in such a way that the exponent n decreases in the Prandtl model upon cooling, as in a real liquid.
When keeping the parameters in the Prandtl model fixed, this decrease is approximately exponential
in inverse temperature, which would reflect the behavior of many liquids including glass-forming
liquids cooled below their fragile-to-strong-transition temperature [32]. If the pressure were increased,
the steric repulsion between non-bonded monomers would be enhanced so that an increased value
of V0 would have to be used in the Prandtl model to account for that increase. At the same time, the
elasticity of individual polymers would scarcely change. Consequently, the dimensionless parameter n
would be reduced along with k̃. This argument agrees with the known phenomenology of polymers.

Assume next that the Prandtl model is parameterized to reproduce the rheological response of
human blood cells, for which n = 0.5 appears to describe the shear thinning reasonably well [28].
Now, a camel comes along, which happens to belong to a species with extraordinarily stiff red blood
cells [33]. It appears obvious that stiff springs have to be used in the Prandtl model to account for the
stiff red blood cells of camels. Increasing the (dimensionless) stiffness in the Prandtl model significantly
reduces shear thinning, in agreement with the rheology of camel blood [33]. There might be even more
details of the rheological response of blood that the Prandtl model is able to reproduce. For example, at
large velocities, the effective damping for k̃ = 0.85 does not quickly converge to the high-velocity limit,
but shows an indication of a shoulder. A similar shoulder is also observed in detailed simulations of
human blood cells as can be seen in Figure 1 of Ref. [34]. It is not clear at this point to what extent this
similarity can be further increased with minor adjustments to the model or to what extent the shoulder
in our simulations simply indicates a resonance of the spring at a given beat frequency. However, it is
possible that the qualitative resemblance is not entirely coincidental. To demonstrate that this is indeed
the case, a true bottom-up parameterization would be required, which is certainly beyond the scope of
this work.

We conclude by quoting again Prandtl: “we obtain the complete transition from solid bodies to liquids
of low viscosity including all states of softening in between”. While in today’s jargon one might talk about
shear thinning rather than softening, our work reveals that Prandtl’s expectations were not too high. To
reproduce the frequently observed characteristic power-law dependence of shear stress or effective
viscosity on load, there is no need to postulate a (broad) distribution of energy barriers as done by
Ree and Eyring [35]. Prandtl’s model can be parameterized to represent not only the temperature and
velocity dependence measured in atomic-force microscopy experiments but also the shear thinning of
fluids as diverse and complex as polystyrene and blood.
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