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Zusammenfassung

Markov-Automaten bilden einen der ausdrucksstärksten Formalismen um
Nebenläufige Systeme zu modellieren. Sie werden benutzt um die Semantik
vieler höherer Formalismen wie stochastischer Petri-Netze [Mar95, EHZ10] und
Dynamic Fault Trees [DBB90] zu beschreiben.

Die zwei herausfordernder Probleme im Bereich der Analyse großer Markov-
Automaten sind (i) die zeitbeschränkten Erreichbarkeitwahrscheinlichkeit und
(ii) optimale langfristige durchschnittliche Rewards. Diese Arbeit zielt auf das
Design effizienter und korrekter Techniken um sie zu untersuchen.

Das Problem der zeitbeschränkten Erreichbarkeitswahrscheinlichkeit gehen
wir aus zwei verschiedenen Richtungen an: Zum einen studieren wir die Eigen-
schaften optimaler Lösungen und nutzen dieses Wissen um einen effizienten
Approximationsalgorithmus zu bilden, der optimale Werte bis auf eine garan-
tierte Fehlertoleranz berechnet. Dieser Algorithmus basiert darauf, Werte für
jeden Zustand des Markov-Automaten zu berechnen. Dies kann die Anwendbar-
keit für große oder gar unendliche Automaten einschränken. Um diese Problem
zu lösen präsentieren wir einen zweiten Algorithmus, der die optimale Lösung
approximiert, und dabei ausschließlich einen Teil des Zustandsraumes betrach-
tet.

Für das Problem der optimalen langfristigen durchschnittlichen Rewards
gibt es einen polynomiellen Algorithmus auf Basis linearer Programmierung.
Anstelle eine bessere theoretische Komplexität anzustreben, konzentrieren wir
uns darauf, eine praktische Lösung auf Basis eines iterativen Ansatzes zu fin-
den. Wie entwickeln einen Werte-iterierenden Algorithmus der in unserer em-
pirischen Evaluation um mehrere Größenordnungen besser als der auf linearer
Programmierung basierende Ansatz skaliert.
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Abstract

One of the most expressive formalisms to model concurrent systems is
Markov automata. They serve as a semantics for many higher-level formalisms,
such as generalised stochastic Petri nets [Mar95, EHZ10] and dynamic fault
trees [DBB90].

Two of the most challenging problems for Markov automata to date are (i)
the optimal time-bounded reachability probability and (ii) the optimal long-run
average rewards. In this thesis, we aim at designing efficient sound techniques
to analyse them.

We approach the problem of time-bounded reachability from two different
angles. First, we study the properties of the optimal solution and exploit this
knowledge to construct an efficient algorithm that approximates the optimal
values up to a guaranteed error bound. This algorithm is exhaustive, i. e. it
computes values for each state of the Markov automaton. This may be a
limitation for very large or even infinite Markov automata. To address this
issue we design a second algorithm that approximates the optimal solution by
only working with part of the total state-space.

For the problem of long-run average rewards there exists a polynomial al-
gorithm based on linear programming. Instead of chasing a better theoretical
complexity bound we search for a practical solution based on an iterative ap-
proach. We design a value iteration algorithm that in our empirical evaluation
turns out to scale several orders of magnitude better than the linear program-
ming based approach.
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Introduction 1

In our every day lives we often interact with highly complex systems: electricity is
generated in nuclear power plants, trains and planes are nowadays the usual means
of transportation, many cities are being equipped with a self-driving subway, and
in a few areas one is already allowed to use the autopilot of self-driving cars.

The convenience of modern life comes at a price though. Malfunctioning of one
of those systems has the potential to endanger the lives of hundreds of people at
once. When we trust our lives to a complicated piece of hardware controlled by
an even more complex piece of software we need to understand how these systems
work. One of the ways to achieve this is by answering basic queries about the system
functionality: Does the temperature of a nuclear reactor ever reach dangerous levels?
Is it possible that two trains moving towards each other will occupy the same rail
track? Would a self-driving car take better decisions faster than the person in that
car? And so on.

Problems of this kind are studied in the scientific area of formal methods. In this
thesis, our interest lies in a specific sub-field of formal methods. Namely, we will
consider the formal analysis of scenarios in which multiple parties act concurrently
and interact with each other. The behaviour of the parties may be to a certain
degree unknown. For example, we may not know exactly what a participant will do
next, except for the set of possible next steps, or we may have access to a probability
distribution over all possible next steps. Our goal is to establish whether certain
properties of the system as a whole hold. As an example, consider the following:

Example 1. Consider the situation in which multiple self-driving cars are present
on the roads. The cars behave mostly independently, however from time to time they
need to exchange information, such as notifying neighbouring cars when a change of
lane is needed, when the speed is increased or decreased, when a car has to exit the
highway, and so on. From the receiving car’s perspective, messages from another
car can arrive at random at any point in time. The probability of message arrival
may be estimated based on, for example, the location of the car (e. g. more messages
close to highway exits). Car hardware is subject to failures, which means that cars
may behave differently from what they are supposed to do or from what the car
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1. Introduction

announced it will do. If the probability of some hardware component to malfunction
is available from statistical data, then the behaviour of a car may be considered
probabilistic. We want to make sure that the software controlling the cars is safe
under normal circumstances and responds properly to abnormal situations on the
road. This requires estimating the worst-case probability of an undesirable situation
to occur under any possible conditions, i. e. for any number of cars on the road, state
of the car hardware, any sequence of exchanged messages, and so on.

Formally speaking, we will consider probabilistic systems running in continuous
time, in parallel to other systems that they can interact with. In the following, we
will refer to such systems as concurrent systems. We are interested in estimating
dependability and performance metrics of concurrent systems, such as the probability
of catastrophic consequences to occur, reliable performance within a time period,
the average energy consumption, etc. Large concurrent systems may contain so
many interacting sub-components, that no human can possibly predict and evaluate
all the consequences of this interaction. We, therefore, need ways to (i) formally
describe these systems as well as (ii) the requirements we want them to fulfil and
develop computer-assisted techniques to (iii) check whether the systems satisfy these
requirements.

1.1 Modelling Concurrent Systems
In order to formally analyse systems with respect to a dependability or a perfor-
mance query, one needs a formal model that represents those aspects of system
behaviour that are relevant for these questions. Throughout the years, concurrent
systems have been studied from various angles:

Interaction of independent agents is the topic of research of process algebras, such
as communicating sequential processes (CSP) [Hoa78] or calculus of communi-
cating systems (CCS) [Mil80]. They provide means to describe how multiple
independent concurrent processes evolve and communicate with each other in
discrete time, i. e. abstracting away from the actual timing of events. The
underlying mathematical model of such process algebras is often a labelled
transition system (LTS). An LTS is a pair, consisting of a finite set of states
and a finite set of labelled transitions. The latter model possible evolution of
the system from one state to another. We will refer to labels of transitions
as actions. A situation when multiple outgoing transitions are available for
a state is commonly referred to as non-determinism. Process algebras model
with an LTS each of the interacting agents, as well as the concurrent system
as a whole, comprising of multiple interacting processes. The latter is enabled
by compositionality of LTS, i. e. the possibility to obtain one LTS model, en-
compassing the behaviour of multiple other LTS models.

Probabilistic uncertainty. If transitioning from one state to another in a process
can only be ensured with a certain probability, then such a process can be
modelled as a probabilistic automaton (PA) [SL94]. Probabilistic automata
generalise labelled transition systems by assigning a probability distribution

2



1.1. Modelling Concurrent Systems

to state-action pairs. Just like LTS, probabilistic automata are compositional.
A similar formalism is that of discrete time Markov decision process (MDP)
[Put94]. As opposed to PAs, MDPs are not compositional and thus cannot
be used to model concurrent systems.

Timed behaviour. For many dependability properties, the actual timing of transi-
tions is important. One of the most widely used models that incorporates this
information is the continuous-time Markov chain (CTMC) [Ros06]. Similarly
to LTS, CTMCs can be described by a pair of a finite set of states and a finite
set of labelled transitions. In CTMCs, however, transitioning from state to
state occurs with a timed delay. The value of the delay depends on labels of
the transitions, which can only be strictly positive real numbers and are called
rates. The meaning of these labels is the following: An expected timed delay
when taking a transition labelled with λ is 1/λ time units. Formally speak-
ing, the value of the delay is a random variable distributed exponentially, i. e.
the probability that the transition will happen within t time units is 1− e−λ·t,
where e is Euler’s number and λ is the average transition rate. If multiple out-
going transitions are available in a state, then the CTMC chooses a transition
that selected the smallest delay value. Thus CTMCs model time somewhat
imprecisely. We will refer to this timing model as stochastic timing.

Markov Automata (MA) [EHZ10] can model all aspects of concurrent systems
listed above and is one of the most general formalisms to model concurrent systems.
Notable sub-classes of Markov automata are LTS, PAs, MDPs, CTMCs and inter-
active Markov chains [Her02]. Many higher level formalisms, such as generalised
stochastic Petri nets [Mar95, EHZ10] and dynamic fault trees [DBB90], have Markov
automata as their underlying semantics. We will informally introduce the modelling
power of Markov automata with the help of a few examples, shown in Figure 1.1.
Consider the Markov automaton M2. Different colours of states refer to the type
of outgoing transitions available in a state. States in white colour have only LTS
or PA style transitions (dashed). For example, state (0) has only one transition,
labelled with action δ, that leads with probability 1 to state (1). State (3) has a
PA style transition labelled with ω. After making this transition the next state will
be either (⊥) with probability 0.2, or (4) with probability 0.8. Grey coloured states
have CTMC-style transitions with timed delays, which are denoted by solid edges.
Finally, states in dark grey colour have no outgoing transitions at all. The Markov
automaton shown in Figure (1.1c) represents the behaviour ofM1 andM2 running
concurrently. A state of this MA is a pair, composed of a state ofM1 and a state of
M2. These two MA can perform transitions either independently (interleaving), or
simultaneously (synchronously). The latter serve as a basic communication mech-
anism for Markov automata. For example, the γ-labelled transition in M1 and
the δ-labelled transition in M2 are performed independently. Therefore in state
(0, 0) of M there are two transitions labelled γ and δ leading to (1, 0) and (0, 1)
respectively, depending on which MA performs the transition. Transitions α and
β are performed synchronously. Whenever M1 is in state (1) and M2 is in state
(1), actions α and β are available for both of them. If, for example, α is selected,
then M1 transitions to state (2) and M2 transitions to (⊥) simultaneously. This
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is reflected in M with the α-labelled transition leading from state (1, 1) to state
(2,⊥).

Describing large Markov automata by writing down all state-transition pairs,
just like in Figure 1.1, would be space-consuming and error-prone. An additional
advantage of Markov automata is the availability of a high-level modelling language
Modest [HHHK13] that provides a convenient way to describe MA models. The
Modest language provides process algebraic operators, such as parallel composition
and sequential composition, it supports typed variables including bool, int, real,
arrays, and others, and its syntax for expressions is similar to those of C program-
ming languages. All in all, Modest is more verbose than classic process algebras,
but also more readable and beginner-friendly. The Modest language is a supported
input language of the Modest Toolset [HH14] and Storm [DJKV17] (via transla-
tion to Jani input language), which makes it easy to debug and analyse Markov
automata.

There is another model that is very similar to Markov automata, called a
continuous-time Markov decision process (CTMDP) [Put94]. In CTMDPs, timed
transitions (CTMC-style) and non-deterministic transitions (PA-style) are merged
together, forming only one type of transitions. One of the differences between CT-
MDPs and Markov automata is that CTMDPs are not compositional. This means
that CTMDPs cannot be used to model a concurrent system by creating a CTMDP
model of each of its sub-components.

In this thesis, we will be using Markov automata to model concurrent systems,
as it is one of the most general and expressive formalisms that achieves this goal.

1.2 System Properties
Having a complex model at hand, the first task that model designers usually face is
how to make sure that the model is bug-free, i. e. reflects correctly the system that
one has attempted to model. And when this question is solved, how can we use the
model to prove that the system behaviour is all as intended?

4



1.2. System Properties

Both problems can be addressed by introducing a formal language to specify
various properties of the system. Going back to our self-driving cars scenario, we
can consider the protocol controlling cars safe, if, for example, no two cars are ever
located dangerously close to each other at a high speed, or under any circumstances all
the cars will reach a safe stable state within a reasonable time with high probability. In
the context of concurrent systems Continuous Stochastic Logic (CSL) is expressive
enough to describe basic dependability properties like the ones mentioned above.
Its building blocks are the following properties:

− Unbounded reachability, that takes the value of the probability to eventually
reach a certain subset of states in an MA.

− Time-bounded reachability describes the probability to reach a certain subset
of states in an MA within a given interval of time.

Yet, CSL alone does not provide sufficient means to reason about the perfor-
mance of the system, such as the costs of running the system, its energy consump-
tion or the revenue generated by it. In the scenario with self-driving cars, one could
be interested in, for example, how much time on average a car spends in a safe state,
or what is the expected total fuel consumption, etc. To be able to model such proper-
ties formally, states and transitions of Markov automata are enriched with rewards
or costs. A run of the MA, consisting of visited states and transitions, accumulates
their rewards in such a way, that state rewards are collected proportional to the
residence time in that state and transition rewards are accumulated once the tran-
sition is taken. A lot of effort has been invested [GHH+14, GTH+14, BWH18] into
analysing this kind of properties for Markov automata. Below are some examples
of the properties that have been considered:

− Cumulative time-bounded reward, that describes the total worst- or best-case
reward expected to be accumulated over the runs of MA, until the running
time reaches a certain time bound.

− Cumulative unbounded reward is very similar to the time-bounded reward,
however, the rewards over paths are being accumulated forever. Usually, this
value is only considered in models in which all paths reach with probability 1
a state that has no reward assigned to it, to avoid this value to be infinity.

− Long-run average reward denotes the reward that is accumulated on average
at every time unit in the worst- or best-case.

− Discounted reward is the worst- or best-case total reward accumulated in such
a way that future rewards contribute less to the total value, i. e. are discounted.

In this thesis, we will be looking into CSL properties as well as rewards properties
for Markov automata.

5



1. Introduction

1.3 Analysis

Now that we have a basic understanding of how to (i) model concurrent systems
and (ii) describe their desired properties, our attention moves to ways to evaluate
these properties.

The viewpoint that we take in this work is that the analysis of Markov automata
should be practical, i. e. it needs to be efficient and lightweight in terms of memory on
typical applications. We value this more than theoretical worst-case complexity, that
forces the algorithms to be optimal also for those scenarios that are highly unlikely
to appear in real life. This is the viewpoint that guides the research presented in
this thesis.

As we have discussed before, Markov automata can describe each component
of a concurrent system and their interaction separately. Thus the syntactic size of
a concurrent system can be thought of as the sum of the description sizes of each
component. We, therefore, consider the analysis to be efficient and lightweight if
its runtime and memory consumption are polynomial in this number.

A candidate solution is compositional analysis [Pnu85] that evaluates each of the
components of the system separately and combines the results to obtain the solution
for the whole system. In probability theory, such techniques are usually referred to
as the product-form solution. For the MA shown in Figure 1.1, this translates to
analysing separatelyM1 andM2 and combining the results to obtain the solution
forM. This approach has polynomial complexity if each of the steps is polynomial.
So far, however, such techniques were only developed for very restricted sub-classes
of Markov automata and properties, see for example [BH99, HMN13].

When it is not possible to analyse a model compositionally with respect to a
certain property, then the analysis is performed on the Markov automaton model
of the whole system (MAM in Figure 1.1c). The size of this Markov automaton is
in the worst case exponential in the size of the model description that we defined
above. Thus, before an algorithm even starts, it gets an exponential disadvantage.
Namely, if it is exhaustive and computes values for all states, then even if it runs
computations in constant time on each of the states, it has to at least visit each
state, which takes an exponential amount of time.

Our main motivation for this work is to advance the analysis techniques for
Markov automata. Many MA properties can be analysed by solving similar prob-
lems on MDPs. Such properties, therefore, do not require dedicated MA algo-
rithms. Model-checking MDPs has been extensively studied for many years (see,
e. g. [Put94]) and constitutes a separate field of research. In this work, we will not
concentrate on these problems, but rather consider only those that are specific to
Markov automata.

The following is the list of MA properties that require dedicated solution tech-
niques: Time-bounded reachability, cumulative time-bounded reward, long-run av-
erage reward, and discounted reward. While there are a few algorithms to analyse
each of these properties, we believe that they are not efficient enough to be con-
sidered practical (with the exception of the discounted reward property). In the
following, we discuss in detail time-bounded and long-run properties and the algo-
rithms available for their analysis.
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1.3. Analysis

Time-Bounded Reachability and Reward are by far the most challenging prob-
lems in terms of Markov automata analysis. Formally, time-bounded reachability
is the optimal (worst- or best-case) probability of the given MA to reach a subset
of states, within a given time interval. The time-bounded reward is the optimal
expected reward that can be collected in the given MA within a given time bound.
The problem of time-bounded reward is closely related to time-bounded reachabil-
ity, however, has not received as much attention so far. Most of the discussion
below can be applied to both, although we will, for simplicity, concentrate only on
the time-bounded reachability.

The time-bounded reachability problem can be subdivided into two sub-problems:
(i) the optimisation problem that computes optimal choices (strategy) for the non-
deterministic transitions, and (ii) the analysis of the stochastic process induced on
the MA by the selected strategy. Each of these problems in isolation admits efficient
solutions, it is the combination that makes the problem hard.

Problem (i) is the unbounded reachability that needs to be solved on a sub-
class of Markov automata with only instantaneous transitions (MDPs, or PAs).
The value can be computed exactly (linear programming, policy iteration [Put94])
or approximated via value iteration [HM14, QK18, BKL+17]. Problem (ii) is the
computation of the transient distribution in Markov automata that have no non-
determinism (CTMCs), and can be solved via, e. g. uniformisation [Jen53].

When both non-determinism and stochastic delays are present, the optimal non-
deterministic option can vary depending on time. Thus, an optimal decision has
to be computed for every time point, which belongs to the continuous domain.

0 1 2

0

0.5

1

Time bound

Pr
ob

ab
ili

ty

option β
option α

Figure 1.2: Reachability
probability for different deci-
sions.

As an example, consider Figure 1.2: The plot shows
two functions, one for each of the non-deterministic
options available in state (1, 1) of the MA in Fig-
ure (1.1c). Each of the functions takes the value
of the probability to reach one of the states in
{(g1,⊥), (⊥, g2)} starting from state (1, 1) within t
time units, where t is the value of the x-axis. If
more than roughly 1.16 seconds remain, option α has
a higher probability of reaching some goal state, while
option β is preferable as long as less than 1.16 seconds
are left.

Existing solutions. Classically, one deals with con-
tinuity by discretising the time horizon, as it is the
case for most algorithms for CTMDPs and MA ([GHH+14, FRSZ11, HH13, BS11,
Neu10]): The time horizon is partitioned into finitely many intervals, and the value
within each interval is approximated by e. g. polynomial or exponential functions.
There are however also techniques that are not based on discretisation, such as the
ones presented in [BHHK15, Gro18].

The Markov automaton shown in Figure 1.1c is an example of the following
scenario: Optimal strategy changes based on how much time is available for the
system. We conjecture that this scenario is very common and, as such, similar
situations should appear often in real-life case studies. As we can see from Figure
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1. Introduction

1.2, it is enough to discretise the time horizon with roughly 2 intervals: [0, 1.16] and
(1.16, 2]. The discretisation-based algorithms for CTMDPs and MA that are known
to date use from 85 to 2 · 107 intervals to analyse this model1 with precision 10−6.
This number is important because it reflects the amount of work that the algorithm
performs for a certain problem. While it may not be the only indicator of how
efficient an algorithm is, it certainly affects its running time. Usually the number of
intervals that an algorithm uses to discretise the time horizon depends on various
parameters of the problem and one of the major contributors is the approximation
error bound. Notice, however, that the number of intervals that is actually needed
for our example is two, irrespectively of the given error bound.

Another technique [BHHK15, Gro18] that is not based on discretisation, may
take from a few seconds up to half an hour to compute the reachability probability
for various time bounds within interval [0, 2] for this Markov automaton2. Notice
thatM has only 14 states and is nowhere close to the sizes of models that one would
encounter in real life. The Quantitative Verification Benchmark Set [HKP+19]
collects all the published Markov automata models and we use it as a reference for
realistic case studies. One can see that the state-space of many models in this set
goes up to millions. We conjecture that an algorithm that takes half an hour to
model-check a system of 14 states is likely to take a lot of time to model-check a
system six orders of magnitude larger than that.

Switching points. The reason why the discussed algorithms perform so many
iterations/take so much time for this example, is that it is not known to date how
to compute efficiently the time point (located somewhere close to 1.16) at which
one decision becomes better than another. We will call such time points switching
points. In order to provide formal guarantees on the computed value, the algorithms
usually over-approximate the amount of switching points by considering the worst-
case scenario.

The interest in switching points is both practical and theoretical. On the one
hand, if we can efficiently compute this point somewhere close to 1.16, then we will
know that, for the MA in Figure 1.1c, roughly two discretisation intervals will suffice
to approximate the solution. This way, instead of solving the worst-case problem
(which is usually the hardest), the algorithms will adapt to a given problem and
may become more efficient. On the other hand, the notion of switching points has
been in the air since at least the work of Miller on CTMDPs from 1968 [Mil68].
So far, however, there has been no adequate characterisation of switching points
for CTMDPs or Markov automata that would enable one to somehow “see” them.
Available characterisations mostly state: If there are switching points on this time
interval, then there are at least N of them, where N is usually a very coarse over-
approximation. Other characterisations require one to check whether a certain
condition holds for each time point of a time interval ([Mil68, BS11]), which does
not seem to be implementable.

1Here we used the CTMDP that has the same non-deterministic choices, exit rates and proba-
bility distribution over successor states as the MA M.

2For example, the running time for time bound 2 is 0.1 second, while for time bound 1.16 it is
more than half an hour.

8



1.3. Analysis

In this thesis, we improve time-bounded reachability analysis by studying the
switching points of optimal schedulers and developing an adaptive algorithm that
would use the switching points of a given problem, rather than the ones of a worst-
case scenario.

Huge Markov automata. So far we have been considering exhaustive algorithms
for time-bounded reachability, i. e. the algorithms that perform computations on
the whole state-space of a given Markov automaton. No matter how efficient an
exhaustive algorithm is, there is a lower bound on its running time, which is the
amount of time it takes to visit each state at least once. What if our models are
so large, that they cannot even fit into memory? What if the models are infinite?
Visiting each state, not to mention performing non-trivial computations for each
of those states, may be extremely difficult, if possible at all. For MDPs even in
these cases there are techniques to obtain approximations of various properties with
guarantees on the introduced error bounds [BCC+14, ACD+17]. These techniques
are based on ideas originally proposed in the field of probabilistic planning, such
as bounded real-time dynamic programming (BRTDP) [MLG05]. The main idea is
to estimate which states are actually relevant for the property under consideration,
and which can be discarded so that the introduced error is not very large. These
techniques proved to be efficient for many practical case studies, however, none is
available so far for Markov automata.

Apart from exploring the limits of exhaustive approaches for time-bounded
reachability in Markov automata, in this thesis we also consider BRTDP-style solu-
tions. The BRTDP algorithm first samples a path in the model and then updates
the values for only those states that are visited along the path. When repeating this
multiple times, the algorithm discovers which states are relevant to the considered
property (which may be a small subset of the total state-space) and the values that
it computes eventually converge to the actual ones. This works well for discrete-
time unbounded reachability, where each time a state is visited, its value is updated,
or for step-bounded reachability in discrete time, when the step bound is not very
large. In this case, reachability values are updated for pairs of a state and a time
step. A naïve approach to develop BRTDP for time-bounded reachability is the
following: Use one of the discretisation algorithms discussed above to reduce the
problem from continuous to discrete time, then apply off-the-shelf BRTDP solvers
for the obtained discrete-time problem. However, this approach is not practical. In
order to provide bounds on the error, discretisation-based algorithms usually parti-
tion the time interval very finely. This means that the step-bound in the obtained
discrete-time problem will be very large. After sampling a path, the values along the
path are updated for state-time pairs. Since the discretisation is very fine, relevant
state-time pairs are not visited often and therefore this naïve approach converges
very slowly. In addition, this approach requires a lot of memory, since the values
of many state-time pairs have to be stored.

Long-Run Average Reward takes the value of the worst- or best-case reward that
can be collected on average every time unit, considering that the system will keep
running forever. In Markov automata, this problem can thus far only be solved via a
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reduction to a linear program (LP) [GTH+14]. Linear programming has polynomial
worst-case complexity and there exist a lot of techniques improving the efficiency of
LP solvers. Despite this fact, however, it has been observed that the running time
of LP-based solutions on other Markovian models tends to be worse than that of
iterative approaches, such as value iteration [Put94]. Our target for this thesis is to
develop iterative techniques for analysing long-run properties for Markov automata
and evaluate their performance relative to LP-based approaches.

For many continuous-time Markovian models, infinite horizon properties, i. e.
properties that do not depend on any time bound, can be solved by a simple reduc-
tion to an instance of the same problem in discrete time. Since the actual timing
of transitions does not matter for a property, then there is no need to have timed
transitions. And indeed the same applies to many properties for Markov automata,
for example, unbounded reachability or cumulative unbounded reward, and others.
For long-run average rewards in Markov automata, however, it is not straightfor-
ward how to make this approach work. The long-run average reward problem in
continuous time averages total accumulated reward with total time passed from the
beginning. Long-run average reward in discrete time averages the total accumulated
reward with the number of transitions performed from the beginning. Since Markov
automata have two types of transitions, timed and untimed, then when averaging
the total accumulated reward in the discrete case, one needs to filter out somehow
untimed transitions that have no effect in the continuous case. This is the main
challenge to design iterative algorithms for long-run average reward property.

1.4 Contribution
The contribution of this thesis are three novel efficient algorithms that address
challenging problems for Markov automata:

− Time-bounded reachability on full state-space. We develop a characterisation
of switching points in terms of the intersection of finitely many functions.
These functions are represented by a system of differential equations. Each
of these functions corresponds to a specific state s and a decision in that
state α and we will denote it with fs,α. If for the current time point the
best decision for a state s is action α, then the next switching point is the
closest point in time when the function fs,α intersects some other function
fs,β. This characterisation allows us to design an algorithm for quantifying the
time-bounded reachability, which is based on approximating these intersection
points.

− Time-bounded reachability on partial state-space. We lift the BRTDP tech-
nique from reachability in discrete-time MDPs to time-bounded reachability
in continuous-time Markov automata. Recall that the classical BRTDP ap-
proach only updates values for state and time pairs that were visited along
the last sampled path. Above we argued that the naïve approach to do this in
continuous time is impractical due to a large number of state-time pairs that
have to be stored. Instead of storing these values, our solution is to compute
them from scratch at each iteration. The update step computes values for all
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states visited at some point from the beginning and for all the time points in
the interval from 0 to the time bound. Essentially, at each iteration our algo-
rithm solves a time-bounded reachability sub-problem for a smaller Markov
automaton. Thus in our algorithm the iterations are more expensive than the
iterations for the discrete-time case. However, we compensate by performing
only a few of them.

− Long-run average reward. We develop a new iterative algorithm for approx-
imating long-run average rewards. Recall that the main issue when solving
long-run average rewards for Markov automata is that the reduction to a
discrete-time problem needs to somehow ignore the untimed transitions when
averaging total accumulated reward. The main idea of our approach is to avoid
counting untimed transitions by essentially considering them to be a part of
the preceding timed transitions. This way a Markov automaton can be seen as
a CTMDP. Long-run average rewards for CTMDPs can be solved efficiently
via a reduction to a discrete-time long-run average reward problem [Put94].
However, simply applying the CTMDP algorithms to the transformed MA
does not work right away, since this transformed model can be exponentially
larger than the original Markov automaton. We manage to avoid this issue
by a dedicated treatment of exponentiality via dynamic programming.

1.5 Chapter Origins
The results of this thesis are partially based on the following published results:

− Yuliya Butkova and Gereon Fox. Optimal time-bounded reachability analysis
for concurrent systems. In TACAS (2), volume 11428 of Lecture Notes in
Computer Science, pages 191–208. Springer, 2019.

− Pranav Ashok, Yuliya Butkova, Holger Hermanns, and Jan Kretínský. Con-
tinuous time Markov decisions based on partial exploration. In ATVA, volume
11138 of Lecture Notes in Computer Science, pages 317–334. Springer, 2018.

− Yuliya Butkova, Ralf Wimmer, and Holger Hermanns. Long-run rewards for
Markov automata. In TACAS (2), volume 10206 of Lecture Notes in Computer
Science, pages 188–203, 2017.

− Yuliya Butkova, Holger Hermanns, and Arnd Hartmanns. A Modest approach
to modelling and checking Markov automata. In QEST, volume 11785 of
Lecture Notes in Computer Science, pages 52-69. Springer, 2019.

1.6 Overview
In Chapter 2 we settle the mathematical notation used throughout the thesis,

introduce Markov automata and discuss how to use them to model concurrent
systems. We formally define the probability measure for Markov automata,
required to analyse various properties. The chapter is concluded with the
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discussion of the Zeno behaviour and a brief overview of notable sub-classes
of MA as well as other relevant models.

In Chapter 3 we formally introduce various dependability and performance prop-
erties for Markov automata. We reiterate over the CSL logic, that defines
important probabilistic properties and later consider properties involving re-
wards. In this chapter, we also give an overview of various algorithms available
for the analysis of these properties.

In Chapter 4 we study the problem of analysing the time-bounded reachability
property. The chapter gives an overview of existing solutions and introduces
two new approximation algorithms, both provide bounds on the error induced
by the approximations. The first algorithm is based on exhaustive state-space
exploration and exploits the results we have obtained on the analysis of switch-
ing points. The second algorithm performs computations only on a part of
the total state-space and uses simulations together with heuristics to identify
the relevant part of the state-space.

In Chapter 5 we consider the problem of computing long-run average reward values.
We reiterate over a reduction of the solution for an arbitrary MA to a solution
for a subclass of MA. We develop an iterative approach to approximate long-
run average reward values for this subclass of MA, up to an arbitrary given
error bound.

In Chapter 6 we conclude with an overview of the achieved results.

12



Foundations 2

In this chapter, we will lay the foundations for the results of this thesis. We start
in Section 2.1 with a brief recap of standard mathematical concepts. The nota-
tion used throughout this work is established here. In Section 2.2 we introduce
the Markov automaton model [EHZ10, DH11] that we study in this thesis. With
Markov automata, one can model systems running concurrently in continuous time
and that exhibit such characteristics as non-deterministic uncertainty, probabilistic
uncertainty and stochastic timing. We will discuss how Markov automata can be
used to model such systems (Sections 2.2.1 and 2.2.2), the semantics of Markov
automata in terms of the probability measure (Section 2.2.3), rule out a subclass of
models that describe unrealistic behaviour (Section 2.2.4) and conclude with a brief
discussion of a few more standard models that are closely related to the analysis of
Markov automata (Section 2.2.5).

2.1 Mathematical Notation and Definitions
Before diving into the interesting part of this thesis we first need to agree on the
notation. For most of the mathematical concepts, we use the standard notation.
Below we explicitly define those terms that are often represented in various ways or
those that have multiple definitions.

Numbers and Sets. In this thesis we use the classical notation for the sets of natu-
ral numbers N, integers Z, rational numbers Q and reals R. For X ∈ {Q,R,Z},D ∈
{>,>} we defineXD0 := {x ∈ X | xD0}. For a set A we define A∞ := A∪{∞}. The
disjoint union of two sets A and B is denoted with A⊎B and the power set of A is de-
noted with 2A. Let I ⊆ R>0 and z ∈ R>0. We define I⊖z := {w−z | w ∈ I ∧ w > z}.

For a, b ∈ Z we denote with a..b the set of all integers i, such that i > a and
i 6 b, if a 6 b, and an empty set otherwise. We will write x = a..b to denote
x ∈ a..b.

For a non-empty set A and n ∈ Z>0 we define An := {a1a2 · · · an | ∀i = 1..n :
ai ∈ A}, A+ := ∪n∈Z>0A

n, A∗ := {θ}∪A+, where θ is a designated value represent-
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ing an empty sequence, and Aω := {θ} ∪ {a1a2 · · · an · · · | ∀i ∈ Z>0 : ai ∈ A}.
We denote with e the Euler’s number.

Functions. Let f be a possibly partial function defined on a set X that maps
values from X to values from Y . We will denote this with f : X ⇀ Y . Let X ′ ⊆ X
be the set of all elements in X for which f is defined. We call X ′ to be the domain
of f and denote it with dom(f). For a set A ⊆ X we define f |A = u, where
u : X ⇀ [0, 1] is a possibly partial function, such that for all x ∈ A, where x is in
the domain of f , u(x) = f(x) and otherwise u(x) is undefined.

Let A be a set. We denote with 1A(x) the indicator function, such that 1A(x) = 1
iff x ∈ A and 0 otherwise.

Measures and Probabilities. We assume that the reader is familiar with the
basic notions of probability theory. In this section, we briefly introduce some of
those concepts, for a rigorous mathematical overview we refer the reader to any
textbook on probability theory, e. g. [Ros06].

Given a finite or countable set S, a probability distribution µ over S is a function
µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. We denote the set of all probability

distributions over S by Dist(S). We set µ(S′) :=
∑

s∈S′ µ(s) for S′ ⊆ S. We define
a Dirac distribution ∆S(s) to be a distribution over set S that assigns probability 1
to element s ∈ S and probability 0 to other elements.

Let µ be a distribution over S = {s0, · · · , sn}, such that µ(si) = pi, for i = 0..n.
For convenience we often denote distribution µ with [s0 → p0, . . . , sn → pn], or with
[si → pi | si ∈ S].

We will denote a probability space (or probability triple) as a tuple (Ω,F ,Pr),
where Ω is a sample space, F ⊆ 2Ω is a sigma-algebra over Ω, its elements are often
referred to as events, and Pr : F → [0, 1] is a probability measure over the events of
F .

A random variable X is a function defined over a probability space (Ω,F ,Pr),
such that X : Ω → R. For E ∈ F value Pr[E] is the probability that X takes one
of the values from event E. Given a random variable X we denote with E [X] its
expected value (or expectation).

For a probability space (Ω,F ,Pr), E ∈ F and a function f : Ω → R∞ we will
denote with

∫
E f(x) · Pr[dx] its Lebesgue integral, if it exists.

2.2 Markov Automata

In this section we will discuss the Markov automaton model, that was first described
in [EHZ10]. We start by introducing the formal definition of the model as well as
some related concepts.
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Figure 2.1: Example of a Markov automaton (2.1a), closed MA obtained from
2.1a (2.1b) and MA restricted to having no hybrid states (2.1c).

Definition 2.2.1. A Markov automaton (MA) M is a tuple M =
(S,Act, 99K,R) such that

− S is a finite non-empty set of states;

− Act = Act\{τ} ⊎{τ} is a finite set of actions;

− 99K ⊆ S ×Act×Dist(S) is a finite probabilistic transition relation;

− R : S × S → R>0 is Markovian transition matrix;

Example 2.2.1. Figure (2.1a) shows an example MA. Here ⊥, G and s0, . . . , s4
are states. Different styles used to depict states refer to edges emanating the states.
This will be discussed in detail later in this section. Labels τ and comm are actions.

We call elements of the set 99K probabilistic transitions or hops. They are shown
as dashed edges marked with an action. The distribution emanating the edge is
the distribution assigned to this transition. For example, transition (s0, comm, µ)
for state s0, action comm and µ = [s0 → 0.01, s1 → 0.99] is in the probabilistic
transition relation 99K, or (s0, comm, µ) ∈ 99K. In the following we often denote
(s, α, µ) by s α99Kµ. The set Act(s) := {α ∈ Act | ∃µ ∈ Dist(S) : (s, α, µ) ∈ 99K} is
the set of enabled actions in state s. If for each state s and for each enabled action
α ∈ Act(s) there exists at most one probabilistic transition s

α99Kµ, then every
probabilistic transition can be uniquely identified by a pair (s, α). In this case we
can define a matrix P[s, α, ·] ∈ Dist(S) as follows: ∀s′ ∈ S : P[s, α, s′] := µ(s′).

Strictly positive entries in matrix R are called Markovian transitions. They
are depicted with solid edges. For example, for state s4 records R[s4,⊥] = 1.5
and R[s4, G] = 0.5 are Markovian transitions. The value R[s, s′] is called the
(transition) rate from s to s′. The exit rate of a state s is E(s) :=

∑
s′∈S R[s, s′]

and Emax := maxs∈S E(s). For states that satisfy E(s) > 0, we define the discrete
branching probability distribution P[s, ·] ∈ Dist(S) by P[s, s′] := R[s, s′]/E(s). The
value P[s, ·] is undefined in case E(s) = 0.

For symmetry, we define a Markovian transition relation −→ ⊆ S×R>0×Dist(S)
such that (s,E(s), µ) ∈ −→ iff E(s) > 0 and µ(s′) = R[s, s′]/E(s). Notice that
relation −→ is just a different way to represent matrix R. We therefore call elements
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(s, λ, µ) ∈ −→ also Markovian transitions and often denote them as s λ−→µ. Notice
that each state s has at most one Markovian transition s λ−→µ.

We will use the word transition to refer to either a Markovian or a probabilistic
transition of a Markov automaton. The set of all transitions is defined as  :=
99K⊎−→. Similarly s ν µ is simply a more convenient way of representing (s, ν, µ).

We say that a transition s
ν µ, where µ = [s0 → p0, . . . , sn → pn], is an out-

going transition of s, and an incoming transition of si, for each i = 0..n. We will
call states si the successors of s via transition (s, ν, µ) and denote this set with
post(s, (s, ν, µ)) = {s0, . . . , sn}. The set of all successors of s via all of its outgoing
transitions is denoted with post(s) := ∪(s,ν,µ)∈ post(s, (s, ν, µ)). For a subset of
states S′ ⊆ S : post(S′) = ∪s∈S′post(s).

Classification of States. A state s is called probabilistic, if it has at least one
outgoing transition and all its outgoing transitions are probabilistic, or formally
Act(s) ̸= ∅ and E(s) = 0. We denote the set of all probabilistic states with PS.

Similarly, a state s is called Markovian, if E(s) > 0 and Act(s) = ∅. The set of
all Markovian states is denoted with MS.

A state s that has both probabilistic and Markovian outgoing transitions is
called hybrid: E(s) > 0 and Act(s) ̸= ∅. We refer to the set of all hybrid states
with HS.

A state s that has no outgoing transitions is called a deadlock state: E(s) = 0
and Act(s) = ∅.

Finally, a Markovian state that has only self-loop transitions is called absorbing.
In this work, probabilistic states will always be depicted with white, Markovian

with grey and deadlock states with dark grey colours. We depict hybrid states with
cross-hatching. For example, in Figures (2.1a) and (2.1b) states s2, s3, s4 and G are
Markovian. State s1 is probabilistic, s0 is hybrid and state ⊥ is a deadlock.

Remark 2.2.1. All the notions defined above usually have a specific Markov au-
tomaton in mind, for example, the set PS is the set of probabilistic states of a given
Markov automaton. Sometimes we will use sub-/superscripts to clarify which ex-
actly Markov automaton is meant. For the set of probabilistic states, for example,
we will write PSM to denote that this is the set of probabilistic states of a Markov
automatonM. If no sub-/superscript is indicated, this usually means that the model
under consideration is clear from the context. This is applied to all the definitions
of this thesis, including those that have not been introduced yet.

2.2.1 Modelling with Markov Automata
Markov automata can be cast into a compositional formalism that is expressive
enough to describe in a modular way systems evolving in continuous time. This
means that the model of a large system can be obtained by considering this sys-
tem to be a collection of interacting sub-components. Each sub-system can be
modelled as a separate Markov automaton, evolving in time independently of other
sub-components. Interaction between different sub-systems is arranged by means
of synchronisation with the help of probabilistic transitions.
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In order to formally define the composition of Markov automata, we will work
with a more convenient alternative definition of MA. When it comes to the analysis
of various properties the two definitions are equivalent.

Definition 2.2.2. A Markov automaton (MA) M is a tuple M =
(S,Act, 99K,−→) such that

− S is a finite non-empty set of states;

− Act = Act\{τ} ⊎{τ} is a finite set of actions;

− 99K ⊆ S ×Act×Dist(S) is a finite probabilistic transition relation;

− −→ ⊆ S × R>0 × S is a finite Markovian transition relation;

This definition differs from Definition 2.2.1 only in the way Markovian transitions
are defined. Markovian transitions now form a relation, rather than a matrix, which
means that between two states s and s′ there may be multiple transitions (s, λ, s′)
and (s, ν, s′), where λ ̸= ν. We can now define R[s, s′] =

∑
(s,λ,s′)∈−→ λ. This way

we can obtain a Markov automaton according to Definition 2.2.1, given a Markov
automaton in this new form.

For µ1 ∈ Dist(S1) and µ2 ∈ Dist(S2) we define a distribution µ1 ◦µ2 as the joint
distribution of µ1 and µ2, i. e. for s1 ∈ S1, s2 ∈ S2 : µ1 ◦ µ2(s1, s2) = µ1(s1) · µ2(s2).

We are now in a position to define the composition of two Markov automata:

Definition 2.2.3 ([EHZ10]). For MA M1 = (S1,Act1, 99K1,−→1) and
M2 = (S2,Act2, 99K2,−→2) and a synchronisation alphabet A ⊆ (Act1 ∩
Act2) \ {τ}, the parallel composition M1∥AM2 is the MA M =
(S,Act, 99K,−→) where S = S1 × S2, Act = Act1 ∪Act2 and −→, 99K satisfy
the following conditions:

− ((s1, s2), λ, (s
′
1, s

′
2)) ∈ −→ iff either

– for i ∈ {1, 2} : si = s′i,R[si, s
′
i] > 0 and λ = R[s1, s

′
1] + R[s2, s

′
2],

otherwise
– λ = R[s1, s

′
1] and s2 = s′2 or λ = R[s2, s

′
2] and s1 = s′1;

− ((s1, s2), α, µ1 ◦ µ2) ∈ 99K iff either:

– α ∈ A and for each i ∈ {1, 2} : (si, α, µi) ∈ 99Ki, or
– α ∈ Act \ A and (s1, α, µ1) ∈ 99K1, µ2 = ∆S2(s2) or (s2, α, µ2) ∈
99K2, µ1 = ∆S1(s1)

As an example, consider Markov automata M1 and M2 depicted in Figures (1.1a)
and (1.1b). Their parallel composition M1∥{α,β}M2 is depicted in Figure (1.1c).

The parallel composition of M1 and M2 is a Markov automaton that encom-
passes the behaviour of both M1 and M2. They can either perform a step syn-
chronously or one after another. Probabilistic transitions labelled with actions from
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the synchronization alphabet are taken synchronously, while all the other transitions
interleave.

Notice that the synchronisation alphabet cannot include action τ . Transitions
labelled with action τ have special meaning. They are considered to be only visible
to the MA itself, cannot be synchronised with and can be executed without any
constraints. We will refer to action τ and transitions labelled with τ as internal
and to actions from the set Act\{τ} and transitions labelled with these actions as
external. Since a Markov automaton does not interact with other models through
its internal probabilistic transitions, they are assumed to be taken instantaneously,
i.e. with no time delay. This assumption arises from the process algebraic notion of
maximal progress, a useful concept for modelling concurrent systems [NS91, Yi91].

In order to prohibit further interaction of an MA with other MA, one can hide
its external actions thus making them internal. This is achieved via the hiding
operator:

Definition 2.2.4. For an MAM = (S,Act, 99K,−→) and a set A ⊆ Act\{τ}
the Markov automatonM\A is defined as followsM\A = (S,Act′, 99K′,−→)
where Act′ = (Act \A) ∪ {τ}, and 99K′ is the smallest relation satisfying the
following: If (s, α, µ) ∈ 99K and α ∈ A, then (s, τ, µ) ∈ 99K′, if (s, α, µ) ∈ 99K
and α ̸∈ A, then (s, α, µ) ∈ 99K′.

As an example, consider the MA depicted in Figure (2.1a). Hiding the only external
transition of this Markov automaton (labelled with action comm) results in the
Markov automaton depicted in Figure (2.1b).

We will call Markov automata that have no external actions closed. We will only
perform a formal analysis of systems on their complete Markov automata models.
Therefore from now on we will consider only closed Markov automata. This means
that no external communication is possible and therefore all the transitions in the
MA are either Markovian or internal.

2.2.2 Operational Behaviour of Closed Markov Automata
Markov automata are operating in continuous time. The process starts in an initial
state s0, sampled from some initial distribution that is defined by the modeller.
Upon entering a state s ∈ S the behaviour of the MA depends on which transitions
are available in this state if any. Each of the outgoing transitions γ ∈  of s is
associated with a variable Xγ ∈ R>0. The value of this variable is the time delay
incurred by taking transition γ. It is defined based on the type of transition:

− If γ is an internal probabilistic transition, then Xγ is a constant 0. This is
due to the maximal progress assumption implying that internal probabilistic
transitions happen instantaneously.

− For a Markovian transition γ = s
λ−→µ, Xγ is a continuous random variable.

This random variable has an exponential distribution with parameter λ, i. e.
its probability density function is f(t) = λ · e−λ·t for t > 0 and f(t) = 0 for
t < 0. This means that the variable takes values in the domain R and for
a, b ∈ R>0 the value of Xγ lies within [a, b] with probability e−λa − e−λb.

18
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Each time a Markov automaton enters a state that has an outgoing Markovian
transition γ, the random variable Xγ samples a new value.

Recall that states of a closed Markov automaton can have at most one outgo-
ing Markovian transition and any finite amount of internal probabilistic transitions.
When entering a state that has multiple transitions γ1, . . . , γn ∈  , Markov au-
tomaton resides in s as long as the residence time t in s reaches one of the values
Xγi , i = 1..n, or t = Xmin, where Xmin = min{Xγ1 , . . . , Xγn}. There are several
cases to consider:

Singleton transition. If there is only one transition γi = s
νi µi, such that Xγi =

Xmin, then the system resides in s for Xγi time units and then proceeds to a
successor state s′ selected at random with probability µi(s′).

Multiple probabilistic transitions. If there are multiple transitions γ, such that Xγ =
Xmin and they all are probabilistic, then the decision has to be taken as to
which of the transitions to choose. Usually, tie-breaking is performed by a
scheduler, a function that observes the history of the system evolution from
the beginning and chooses a single probabilistic transition out of all available.
We describe schedulers formally later in this chapter. For now we assume that
only one probabilistic transition γi = s

νi µi is selected out of multiple and
similarly to the previous case the system proceeds to a successor state s′ with
probability µi(s′).

Multiple probabilistic and Markovian transitions. Next we consider the case when
there exists at least one probabilistic transition γp and at least one Markovian
transition γm, such thatXγp = Xγm = Xmin. SinceXγp is always 0, this means
that Xγm = 0. For the general analysis of Markov automata, it is important
to define precisely how the system behaves in such a situation. In this work,
however, we are only interested in probabilistic properties. The probability
that random variable Xγm takes value 0 is e−E(s)·0 − e−E(s)·0 = 0. Therefore
for this work, it does not matter what exactly the Markov automaton does if
there is a tie between a Markovian and a probabilistic transition. The precise
semantics will not have any impact on the properties under consideration. We
deliberately leave this case undefined.

No outgoing transitions. So far we have defined residence time in a state depending
on the outgoing transitions available in this state. Deadlock states, however,
have no outgoing transitions and therefore it is unclear how to define residence
time in them. Moreover, deadlock states prevent Markov automata from
performing infinitely many transitions, making it possible for different runs
of an MA to result in either finitely many transitions that end in a deadlock
state or infinitely many transitions. This makes it unnecessarily tedious and
cumbersome to define a probability measure for Markov automata. Therefore
in this work, we only consider Markov automata that have no deadlock states.

We have thus defined the behaviour of Markov automaton upon entering a state s.
When the system has resided in s for some time and has selected a successor (as
described above), it enters the successor state and the whole process proceeds in
the same way ad infinitum.
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2.2.3 Probability Measure
In this section, we introduce a probability space for closed Markov automata without
deadlock states. All the notions and results presented here originate from [Hat17].

Notice that in closed Markov automata all the probabilistic transitions are la-
belled with the same action τ . This means that one cannot uniquely identify prob-
abilistic transitions emanating the same state s by using only actions of the tran-
sitions. In order to resolve this issue one can use in place of actions pairs (τ, µ),
where µ ∈ Dist(S). Namely, instead of the original set of actions Act = {τ} one
can use set Act′ = {τ} ×Dist(S). An action α = (τ, µ) ∈ Act′ is enabled in a state
s if transition s τ99Kµ was present in the original Markov automaton. This is only a
syntactic change, the semantics of the transitions and their actions remains intact
in a sense that the transitions and the actions remain internal. We will denote this
newly obtained set of actions as before with Act.

The probability space for Markov automata will be constructed iteratively by
first defining the probability space over single transitions, then extending it to the
probability space over finitely many transitions and finally obtaining the space for
infinite runs.

Steps, Paths and Fragments

We start with defining the sample spaces of the probability triples.
A step σ is a pair σ = (τ, t) ∈ (99K× {0})⊎ (−→× R>0), where τ is a proba-

bilistic or Markovian transition, and t is a non-negative real number representing
the delay required to execute the transition. The set of all steps in an MA M is
denoted with Steps(M) := (99K× {0})⊎ (−→× R>0).

An infinite path ρ = σ0 · · ·σn · · · is an infinite sequence of steps σi ∈ Steps(M)
for i ∈ Z>0. The set of all infinite paths is denoted with Pathsω(M).

A (path) fragment ϕ = σ0 · · ·σn−1 is finite sequence of steps σi ∈ Steps(M) for
i = 0..n − 1. Here |ϕ| := n is the length of the path fragment. We define a special
empty fragment θ to be the path fragment of length 0. The set of all fragments of
length n > 0 is denoted with Fragsn(M). The set of all fragments is defined as
Frags∗(M) := ∪n∈Z>0

Fragsn(M).
A finite path ρ = ϕ · s, where ϕ ∈ Frags∗(M) and s ∈ S is a finite sequence

of steps with a selected final state. Here the length |ρ| of a path ρ = ϕ · s is
defined as the length of the respective path fragment, i. e. |ρ| := |ϕ|. We will denote
paths of the form θ · s simply with s, i. e. we omit θ. The set of all finite paths of
length n > 0 is denoted with Pathsn(M) and the set of all finite paths is defined as
Paths∗(M) := ∪n∈Z>0

Pathsn(M). For a finite path ρ = σ0σ1 · · ·σn−1 · s we define
ρ↓ := s to be the last state on the path.

Whenever the MA under consideration is clear from the context we will denote
the sets Steps(M),Pathsω(M),Fragsn(M),Frags∗(M),Pathsn(M) and Paths∗(M)
with Steps,Pathsω,Fragsn,Frags∗,Pathsn and Paths∗ respectively.

Let ρ = (s0
ν0 µ0, t0) · · · (sk

νk µk, tk) · · · be an infinite path or a path fragment.
For convenience we will represent ρ as

ρ = s0
ν0,t0−−−→ s1

ν1,t1−−−→ · · · νk−1,tk−1−−−−−−→ sk
νk,tk−−−→ · · ·
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And, analogously, a finite path ρ = (s0
ν0 µ0, t0) · · · (sk

νk µk, tk) · sk+1 · · · can be
represented as

ρ = s0
ν0,t0−−−→ s1

ν1,t1−−−→ · · · νk−1,tk−1−−−−−−→ sk
νk,tk−−−→ sk+1

We define the concatenation operation ◦ for paths and fragments in an obvious
way. If a path fragment ϕ = σ0 · · ·σn is concatenated with another path frag-
ment ϕ′ = σ′0 · · ·σ′k, finite path ρ = σ′0 · · ·σ′k · s or infinite path ρ∞ = σ′0 · · ·σ′k · · · ,
the result is another path fragment ϕ ◦ ϕ′ = σ0 · · ·σnσ′0 · · ·σ′k, finite path ϕ ◦ ρ =
σ0 · · ·σnσ′0 · · ·σ′k ·s or infinite path ϕ◦ρ∞ = σ0 · · ·σnσ′0 · · ·σ′k · · · . The result of θ◦f
will be simply denoted with f , for f ∈ Frags∗ ∪ Paths∗ ∪ Pathsω.

Next, we define total time over a path. For an infinite path ρ = s0
ν0,t0−−−→

· · ·
νk−1,tk−1−−−−−−→ sk

νk,tk−−−→ · · · we define total time spent after performing n transitions
as follows: τtotal(ρ, 0) := 0 and for n ∈ Z>0 : τtotal(ρ, n) :=

∑n−1
i=0 ti.

For a finite path ρ = s0
ν0,t0−−−→ · · · νk−1,tk−1−−−−−−→ sk, and n 6 k, τtotal(ρ, n) is defined

analogously. In addition we define τtotal(ρ) :=
∑k−1

i=0 ti.
Let ρ = (s0

ν0 µ0, t0) · · · (sk
νk µk, tk) · · · be a finite or infinite path. For a quick

access to states visited over a path we define ρ[i] := si if ρ is infinite and i ∈ Z>0,
or if ρ is finite, then we require that i 6 |ρ|. Similarly the action taken at i-th
transition will be denoted with ρAct[i] := νi and time with t[ρ, i] := ti, with the
same restrictions on the value of i as before.

The set of states that a finite or infinite path ρ visits at time t is denoted with
ρ@t and defined as follows:

ρ@t :=
⋃

i∈Z>0

(
S=t(i) ∪ SMS(i, t)

)
,

where

S=t(i) =

{
{ρ[i]} if τtotal(ρ, i) = t

∅ otherwise

SMS(i, t) =

{
{ρ[i]} if ρ[i] ∈ MS and τtotal(ρ, i) < t, τtotal(ρ, i+ 1) > t

∅ otherwise

Example 2.2.2. Consider the following infinite path of the MA depicted in Figure
2.1c:

ρ = s0
τ,0−−→ s1

τ,0−−→ s4
⊥,1.1−−−→ G ⊥,0.7−−−→ G ⊥,1.3−−−→ · · ·

At time 0 the Markov automaton passes through states s0, s1 and enters state s4,
therefore τtotal(ρ, 0) = τtotal(ρ, 1) = τtotal(ρ, 2) = 0 and S=0(0) = {s0}, S=0(1) =
{s1}, S=0(2) = {s4} and from now on ∀i ∈ Z>0, i > 2 : S=0(i) = ∅. Since no
Markovian state satisfies the conditions of SMS(i, 0), then ∀i ∈ Z>0 : SMS(i, 0) = ∅.
Thus ρ@0 = {s0, s1, s4}.

At time point t = 1.1 the system enters state G and therefore ρ@1.1 = {G}, which
is reflected in only the set S=1.1(3) = {G} being non-empty. When t = 1.2, the MA
is residing in state G and only set SMS(3, 1.2) = {G} is non-empty. Therefore
ρ@1.2 = {G}.
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Measurable Spaces

We can now proceed to define measurable spaces over the set of steps Steps, the set
Fragsn of fragments of length n, the set Pathsn of paths of length n and the set of
infinite paths Pathsω.

Steps. Recall that the set of steps is a disjoint union of sets −→×R>0 and 99K×{0}.
Since 99K is finite, the σ-algebra over 99K×{0} is defined as 299K×{0}. Similarly,
for Markovian transition relation the σ-algebra is 2−→. For the set R>0 the
Borel σ-algebra is used, the smallest σ-algebra generated by open intervals over
non-negative reals, that is denoted with B(R>0). Given two measurable spaces
(−→, 2−→) and (R>0,B(R>0)), the σ-algebra for the set −→× R>0 is defined
as the product σ-algebra of (−→, 2−→) and (R>0,B(R>0)), i. e. the smallest σ-
algebra that contains all sets A×B, where A ∈ 2−→, B ∈ B(R>0). We denote
this σ-algebra with 2−→ ⊗ B(R>0). We are now in position to define the σ-
algebra over the set of steps as S = {A∪B | A ∈ 2−→⊗B(R>0), B ∈ 299K×{0}}.

Fragments. The σ-algebra over the set of fragments and finite paths of length n
is defined once again via the product σ-algebra. First, for n = 0 we define
F0 := {{θ}, ∅}, and for n > 1 : Fn := ⊗ni=1S.

Finite paths. The σ-algebra over the set of paths of length n, for n > 1 is defined
as Pn := Fn ⊗ 2S .

Infinite paths. The σ-algebra over the set of infinite paths is constructed over the
set of cylinders. Let Pn be a set of finite paths of length n. For n > 0 the
cylinder with base Pn is defined as

CylM(Pn) := {σ0 · · ·σn−1 · · · ∈ Pathsω(M) |∀i ∈ Z>0 : σi ∈ Steps and
∃ρ ∈ Pn : ρ = σ0 · · ·σn−1sn}

WheneverM is clear from the context, we will just write Cyl(Pn). A cylinder
Cyl(Pn) is called measurable if its base is measurable, i. e. Pn ∈ Pn. The σ-
algebra Pω over the set of infinite paths is defined as the smallest σ-algebra
generated by the set of measurable cylinders

⋃
i∈Z>0

{Cyl(Pi) | Pi ∈ P i}.

We have thus constructed measurable spaces over the set of steps (Steps,S), frag-
ments of length n (Fragsn,Fn), finite paths of length n (Pathsn,Pn) and infinite
paths (Pathsω,Pω).

Measurable Schedulers

In the presence of multiple probabilistic transitions emanating the same state, the
behaviour of a Markov automaton is not a stochastic process and therefore no
probability measure can be defined. In order to resolve this issue, we need to be
able to choose only one probabilistic transition out of all those that are available in
the same state. This can be achieved with a concept of a scheduler.
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Definition 2.2.5. A scheduler (or strategy, policy) is a function π :
Paths∗ → Dist(Act), where for ρ ∈ Paths∗ if π(ρ)(α) > 0 then α ∈ Act(ρ↓).

Schedulers observe the history of the system evolution from the beginning in a form
of a finite path and provide a distribution over actions enabled in the final state of
the path. In order to be able to define the probability measure we need to restrict
ourselves to a subset of schedulers that are measurable:

Definition 2.2.6. A scheduler π : Paths∗ → Dist(Act) is called generic mea-
surable iff for every α ∈ Act,B ∈ B([0, 1]), n ∈ Z>0 : {ρ ∈ Pathsn|π(ρ)(α) ∈
B} ∈ Pn. The set of all generic measurable schedulers for an MA M is
denoted with ΠM

µ .

We will distinguish a certain subclass of generic measurable schedulers, called
stationary schedulers:

Definition 2.2.7. A scheduler π is called stationary, if ∀ρ1, ρ2 ∈ Paths∗, s. t.
ρ1↓ = ρ2↓ it holds that π(ρ1) = π(ρ2) = ∆Act(α), for some α ∈ Act(ρ1↓).
The set of all stationary schedulers is denoted by ΠM

stat.

Since stationary schedulers can be equivalently defined as π : PS → Act, we will
often use this simplified definition.

Probability Measure

We will define a probability measure on the measurable space (Pathsω,Pω) itera-
tively. We start with probability measure over steps and then extend it to proba-
bility measure over fragments, finite paths and infinite paths.

Steps. Let π ∈ Πµ be a generic measurable scheduler and ϕ = (τ0, t0) · · · (τn, tn) is
a path fragment, such that τn = sn

νn µn. We define the probability measure
on measurable space (Steps,S) denoted with µπ,ϕ : S → [0, 1], as follows:
µπ,ϕ (∅) := 0,µπ,ϕ (Steps) := 1 and otherwise:

µπ,ϕ (A) :=
∑

{τ=s ν s′|(τ,t)∈A}

{
fπ(θ, τ, A) if ϕ = θ

µn(s) · fπ(ϕ, τ,A) otherwise

fπ(ϕ, τ,A) :=


π(ϕ ◦ s)(α) if τ = s

α99Kµ

∫
R>0

1A((τ, x)) · ν · e−ν·x dx if τ = s
ν−→µ,

Here for a probabilistic transition τ = s
ν99Kµ function fπ(ϕ, τ,A) evaluates

to the probability that scheduler π selects transition τ when it observes finite
path ϕ ◦ s. Let T = {x | 1A((τ, x)) = 1}. Then for a Markovian transition
τ = s

ν−→µ the value of fπ(ϕ, τ,A) is the probability that Markov automaton
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leaves state s within time x ∈ T . Or in other words, fπ(ϕ, τ,A) equals the
probability that exponentially distributed random variable with parameter ν
takes one of the values from set T .
Function µπ,ϕ (A) computes the probability that steps in A are taken after
path fragment ϕ has been observed. Positive probability is only assigned to
those combinations of ϕ and σ ∈ A that are in fact possible in the Markov
automaton under consideration. This is taken care of by the multiplication of
µn(s) with fπ(ϕ, τ,A).

Fragments. Let π ∈ Πµ, s ∈ S and n > 0. The probability measure µFn
π,s (·) :

Fn → [0, 1] over the measurable space (Fragsn,Fn) is defined as µFn
π,s (∅) :=

0,µFn
π,s (Fragsn) := 1 and otherwise for n > 1:

µFn
π,s (A) :=


µπ,θ

(
{(τ, t) ∈ A | τ = s

ν µ, for some ν, µ}
)

if n = 1

∫
ϕ∈Fragsn−1

µFn−1

π,s (dϕ)
∫

σ∈Steps

1A(ϕ ◦ σ) · µπ,ϕ (dσ) if n > 1

For n > 1 the measure µFn
π,s (A) assigns non-zero values only to those sets A

that contain fragments originating from state s. For n > 1 the measure is
defined as multiplication of two measures: µFn−1

π,s (·) for fragments of length
n− 1 and µπ,ϕ (·) for steps that originate in a fragment of length n− 1. Once
again the probability is computed via integration over all fragments of length
n that are in A.

Finite paths. Similarly, the probability measure for paths of length n originating
in some state s is defined via the probability measure for fragments of length
n. Let π ∈ Πµ, s ∈ S and n > 0, then µPn

π,s (∅) := 0, µPn
π,s (Pathsn) := 1,

for n = 0 : µPn
π,s (A) := 1 if s ∈ A and 0 otherwise. In all other cases, i. e.

n > 1, A ̸= ∅, A ̸= Pathsn :

µPn
π,s (A) :=

∫
ϕ∈Fragsn,and

ϕ=(τ0,t0)···(τn−1,tn−1),

τn−1=sn−1

νn−1 µn−1

µnπ,s (dϕ)
∑

{s′|ϕ◦s′∈A}

µn−1(s
′)

Infinite paths. The following lemma shows that the measures defined above lead to
a unique probability measure over the set of infinite paths:

Lemma 2.2.1 ([Hat17]). Let π ∈ Πµ be a generic measurable strategy,
s ∈ S. There exists a unique probability measure µPω

π,s (·) : Pω → [0, 1]

(also denoted with PrMπ,s [·]), such that for every n ∈ Z>0, Bn ∈ Pn :

µPω
π,s (Cyl(Bn)) = µPn

π,s (Bn).
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Remark 2.2.2. Consider Markov automataM1,M2 depicted in Figures (2.1b) and
(2.1c) respectively. Notice that the measure µPω

π,s (·) assigns value 0 to those events
in which Markovian transitions occur at a specific moment of time, or in other
words within a time interval of length 0. This implies that the set of measurable
events in M1 and M2 that have non-zero probability value are equal. When dealing
with probabilistic properties, we can, therefore, assume that all states in Markov
automata have either only probabilistic outgoing transitions or only Markovian ones.
In case a closed Markov automaton has hybrid states, Markovian transitions of such
states can be safely discarded thus transforming the hybrid state into probabilistic.
Markov automaton depicted in Figure (2.1c) is the result of such transformation
applied to state s0 of the Markov automaton shown in Figure (2.1b).

2.2.4 Zeno Behaviour
In general, Markov automata may act in such a way that infinitely many transitions
are performed within a finite amount of time, a behaviour commonly referred to as
Zeno.

We will call an infinite path ρ a Zeno-path if ∃t ∈ R>0 : ∀i ∈ Z>0 : τtotal(ρ, i) 6 t.
For a Zeno path the limit limi→∞ τtotal(ρ, i) exists and we can therefore define
τtotal(ρ) = limi→∞ τtotal(ρ, i).

Zeno-paths can be of two kinds: those induced by Markovian transitions and
those induced by probabilistic ones. As an example, consider the following infinite
path of a Markov automaton depicted in Figure (2.1c):

ρMS = s0
τ,0−−→ s1

τ,0−−→ s4
⊥,1−−→ G ⊥,1/2−−−→ G ⊥,1/4−−−→ · · ·G ⊥,1/2n−−−−→ · · ·

The total time over this path converges to 2 and therefore infinitely many Markovian
transitions occur within a finite amount of time. Consider the same MA in which
state G is probabilistic with a self-loop transition (G, τ,∆S(G)). The following path
is an example of a Zeno path in this MA induced by probabilistic transitions:

ρPS = s0
τ,0−−→ s1

τ,0−−→ s4
⊥,1−−→ G τ,0−−→ G τ,0−−→ · · ·G τ,0−−→ · · ·

Paths like ρMS, induced by Markovian transitions, are possible, however “unreal-
istic”, since it can be shown, analogously to the same results for continuous-time
Markov chains [BHHK03], that the measure of the set of such paths is 0. Zeno paths
induced by probabilistic transitions are different. For example, the probability of
the set of paths

{s0
τ,0−−→ s1

τ,0−−→ s4
⊥,t−−→ G τ,0−−→ G τ,0−−→ · · ·G τ,0−−→ · · · | t ∈ [0, 1]}

is p = 0.99·1/8·(1−e−2), which is non-zero and therefore with probability p the MA
can perform infinitely many transitions within a finite amount of time. Since MA
are used to model real-life systems, it is widely accepted [HH12, GHH+14, GTH+14,
QJK17] that such behaviour should not be permitted and Markov automata that
enable such paths are considered to have a modelling error.

We say that a Markov automatonM is Zeno if:

∃π ∈ ΠM
µ , s ∈ S :
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PrMπ,s [{ρ ∈ Pathsω(M) | ∃t ∈ R>0 : ∀i ∈ Z>0 : τtotal(ρ, i) 6 t}] > 0

Informally,M is Zeno if there exists a scheduler, such that the probability of the set
of all Zeno paths under this scheduler is non-zero. A Markov automaton is called
non-Zeno if it is not Zeno.

Remark 2.2.3. In the following chapters, we will often work with absorbing states
of a non-Zeno Markov automaton. Recall that absorbing states are those states that
only have self-loop transitions. It follows from the definition of non-Zeno Markov
automata that their absorbing states can only be Markovian.

2.2.5 Important Subclasses and Related Models

We conclude this chapter with a brief overview of notable subclasses of Markov au-
tomata as well as related models. The models considered here are often encountered
in the process of analysing Markov automata.

A (homogeneous) continuous-time Markov chain (CTMC) [Ros06] is a Markov
automaton C = (S, ∅, ∅,R) without probabilistic transitions, and can be equivalently
represented as a pair (S,R). A non-homogeneous CTMC is a pair (S,R(t)) in which
the Markovian transition matrix R(t) is dependent on time t at which the system
arrives in a state. Formally R : R>0 × S × S → R>0. For s, s′ ∈ S and τ ∈ R>0 we
will denote values of matrix R(t) with R(τ)[s, s′].

(Discrete-time) Markov decision processes (MDP) [Put94] is a Markov automaton
without Markovian transitions, i. e. ∀s ∈ S : E(s) = 0. In this work we will mostly
use a more traditional way of representing an MDP as a tuple D = (S,Act,P), where
S is a finite set of states, Act is a finite set of actions and P : S × Act× S → [0, 1]
is a probabilistic transition matrix, s. t. ∀α ∈ Act :

∑
s′∈S P[s, α, s′] ∈ {0, 1}.

We apply to MDPs the same no-deadlock assumption as to Markov automata in
general. For the definition of MDPs that we use here this assumption is translated
into the following. Let D = (S,Act,P) be an MDP, then

∀s ∈ S : ∃α ∈ Act, s′ ∈ S, such that P[s, α, s′] > 0

Notice that since MDPs do not have any Markovian transitions, they could be
regarded as Zeno Markov automata, in light of the discussion in the previous section.
This, however, should not be the case, since the semantics of MDP transitions is
different from semantics attached to probabilistic transitions of Markov automata.
Namely, MDP transitions are not considered to be executed instantly, but rather
their execution shows that some unspecified amount of time has passed. Thus the
notion of Zeno behaviour should not be applied to MDPs.

The probability measure for MDPs, stated in, for example, [Put94], coincides
with the one presented in the previous section, and it is the latter one that we will
refer to when working with MDPs.
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2.2. Markov Automata

PS-acyclic Markov automata. Most of the published Markov automata bench-
marks (see e. g. [HKP+19]) satisfy certain restrictions on the shape of probabilistic
transition relation. Namely, the relation is often acyclic, i. e. there exists no path

ps0
α0,099K ps1

α1,099K · · ·
αn−1,099K psn

αn,099K psn+1,

such that psn+1 = ps0,∀i = 0..n : psi ∈ PS, αi ∈ Act(psi),P[psi, αi, psi+1] > 0. We
will call such Markov automata PS-acyclic. Acyclic probabilistic transition relation
enables particularly efficient analysis of Markov automata.

For a PS-acyclic Markov automaton the depth d(s) of a state s is the length
of the longest path from this state to a Markovian state (including s itself). Or
formally, let

A(s) =
{
ρ = s0

α0,099K s1
α1,099K · · ·

αn−1,099K sn
αn,099K sn+1

| s0 = s, sn+1 ∈ MS,∀i = 0..n : αi ∈ Act(si),P[si, αi, si+1] > 0
} (2.1)

Then d(s) := maxρ∈A(s) |ρ|. We define dmax := maxs∈S d(s).

Continuous-time Markov decision process (CTMDP) [Put94] is another well known
probabilistic model closely related to Markov automata. CTMDPs, just like MA,
can model non-determinism and exponential delays. However, in contrast to Markov
automata, both of these features in CTMDPs are merged into one state and not
split into probabilistic and Markovian states. Markov automata can be seen as a
compositional extension of CTMDPs, because, as opposed to MA, CTMDPs cannot
be used to model a system as a collection of concurrently running and interacting
components.

Definition 2.2.8. A continuous-time Markov decision process (CTMDP) is
a tuple C = (SC ,ActC ,RC), where SC is a finite set of states, ActC is a finite
set of actions and RC : SC ×ActC × SC → R>0 is a rate matrix.

We will call the set ActC(s) = {α ∈ ActC | ∃s′ ∈ S : RC [s, α, s
′] > 0} enabled

actions in state s. A path in a CTMDP is a finite or infinite sequence ρ = s0
α0,t0−−−→

s1
α1,t1−−−→ s2 · · · , where si ∈ SC , αi ∈ Act(si) and ti ∈ R>0 denote the residence

time of the system in state si. Analogously, a path fragment is defined as follows
ϕ = s0

α0,t0−−−→ s1
α1,t1−−−→ · · · sn

αn,tn−−−→. E(s, α) :=
∑

s′∈S RC [s, α, s
′] and PC [s, α, s

′] :=
RC [s, α, s

′]/E(s, α).
Most of the notions that we will need for CTMDPs are defined analogously to

respective notions for Markov automata. Those include: The set of finite paths
Paths∗(C), infinite paths Pathsω(C), path fragments Frags∗(C), path or fragment
length |ρ| and last element of a finite path ρ↓. Residence time in a state of a
CTMDP is governed by an exponential distribution, just like in Markovian states
of Markov automata. The rate of this distribution depends on the selected action,
e. g. for action α ∈ Act(s) it equals E(s, α).

A (late) scheduler in a CTMDP is a measurable function π : Paths∗(C)×R>0 →
Dist(Act), where for ρ ∈ Paths∗(C), t ∈ R>0 if π(ρ, t)(α) > 0 then α ∈ Act(ρ↓).
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2. Foundations

Notice that in contrast to Markov automata, schedulers in CTMDPs depend not
only on the finite path leading to the current state but also on the parameter
t ∈ R>0, which is the amount of time that the system has spent in the current state.
In Markov automata, this parameter is redundant since probabilistic states are left
instantaneously.

A scheduler π is called early if ∀ρ ∈ Paths∗(C),∀t, t′ ∈ R>0 : π(ρ, t) = π(ρ, t′),
i. e. the scheduler does not depend on the amount of time that has passed in the
current state.
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Analysis of Markov Automata 3

The goal of this thesis is to advance analysis techniques for systems modelled as
Markov automata. One could be interested in, for example, qualitative properties
of the system, that have a simple boolean yes or no answer, e. g.: Can the system
reach a certain state starting from a given one? Sometimes the answer to such
a question is maybe, for example, when half of the times the system reaches the
target state, while another half it does not. We call properties that capture such
behaviour quantitative since they describe various aspects of system performance as
a real number, rather than a boolean value. This number can represent probabilities,
for example, the probability to reach certain states, alternatively, it can represent
costs or revenue, in which case it is a positive or a negative real value. We will
address the former as probabilistic properties and the latter as reward properties. In
this chapter, we introduce such properties formally and touch upon techniques used
for their analysis.

Many interesting probabilistic properties are described by Continuous Stochastic
Logic (or CSL). CSL is one of the most popular temporal logics for many continuous-
time Markovian models, including CTMCs [BHHK03] and CTMDPs [BHHZ11]. An
example of a property that can be described by CSL is: The probability to reach
a subset of states within a certain time bound is above a certain threshold. CSL
was introduced for Markov automata in [HH12] and we reiterate over its syntax
and semantics in Section 3.1, followed by a brief overview of algorithms designed to
analyse CSL properties in Section 3.2.

When it comes to reward properties there is no reward-based logic for Markov
automata that would unify their syntax and semantics. Instead, reward properties
are usually introduced as stand-alone problems [GHH+14, GTH+14, BWH18]. We
introduce them formally in Section 3.3 and describe existing analysis methods in
Section 3.4.

We conclude this chapter with Section 3.5 that gives a brief overview of those
properties for which no satisfactory analysis techniques are available to date.
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3. Analysis of Markov Automata

Preliminaries. In this and the following chapters, we only consider Markov au-
tomata that satisfy the assumptions listed below.

− MA are closed (see Chapter 2.2.1).

− For each probabilistic state s and any two of its outgoing transitions γ1 =

s
α199Kµ1, γ2 = s

α299Kµ2, γ1 ̸= γ2 : α1 ̸= α2. Due to this assumption we can
define matrix P[·, ·, ·] (see Chapter 2 Section 2.2).

− MA have no deadlock states (see discussion in Chapter 2 Section 2.2.2)

− MA are non-Zeno (see discussion in Chapter 2 Section 2.2.4)

− MA have no hybrid states (see Remark 2.2.2)

Throughout the chapter we will work with a Markov automatonM = (S,Act, 99K,R).

3.1 Continuous Stochastic Logic for Markov Automata

In this section we discuss Continuous Stochastic Logic (CSL) for Markov automata,
that was originally presented in [HH12].

First of all, to define the semantics of CSL formulas we need to extend the
definition of Markov automata to include a non-empty set of atomic propositions
and a (state) labelling function. Atomic propositions are basic truths about the
states. The labelling function assigns to each state of the Markov automaton a
subset of atomic propositions, those that hold in that state.

Definition 3.1.1. A labelled Markov automaton Mℓ is a tuple Mℓ =
(M, AP , lab), where M is a Markov automaton, AP is a non-empty set
of atomic propositions and lab : S → 2AP is a total labelling function.

We assume, w. l. o. g. that for each state s there always exists an atomic proposition
aps ∈ AP that uniquely identifies s, i. e. ∀s′ ̸= s : aps ̸∈ lab(s′).

Let I(R>0) be the set of all non-empty intervals of positive real numbers, i. e.
intervals with open, closed or mixed bounds. For convenience we will denote an
interval I ∈ I(R>0) with I = [[a, b]], where [[∈ {[, (}, ]] ∈ {], )}, a = inf I and
b = sup I.
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3.1. Continuous Stochastic Logic for Markov Automata

Definition 3.1.2 (CSL syntax).

The following are valid CSL state formulas:
a if a ∈ AP
¬Φ if Φ is a state formula

Φ1 ∧ Φ2 if Φ1 and Φ2 are state formulas
Popt
Ep (ψ) if p ∈ [0, 1], opt ∈ {sup, inf}, ψ is a path formula and

E ∈ {<,6, >,>}
and path formulas:

X[[a,b]]Φ if [[a, b]] ∈ I(R>0), a, b ∈ Q>0 is an interval and
Φ is a state formula

Φ1 UΦ2 if Φ1,Φ2 are state formulas
Φ1 U[[a,b]]Φ2 if [[a, b]] ∈ I(R>0) is an interval, a, b ∈ Q>0 and

Φ1,Φ2 are state formulas

Using this basic set of formulas we can express Φ1 ∨ Φ2 = ¬ (¬Φ1 ∧ ¬Φ2) and
tt = a ∨ ¬a, where a ∈ AP .

Definition 3.1.3 (CSL Semantics). Let Mℓ = (M, AP , lab) be a labelled
Markov automaton and s ∈ S. Below we define conditions under which state
s satisfies a CSL state formula Φ, written as s |=Mℓ

Φ:

s |=Mℓ
a iff a ∈ lab(s)

s |=Mℓ
¬Φ iff s ̸|=Mℓ

Φ

s |=Mℓ
Φ1 ∧ Φ2 iff s |=Mℓ

Φ1 and s |=Mℓ
Φ2

s |=Mℓ
Popt
Ep (ψ) iff opt

π∈Πµ
Prπ,s [{ρ ∈ Pathsω | ρ |=Mℓ

ψ}]E p

Let ρ = s0
ν0,t0−−−→ s1

ν1,t1−−−→ · · · sn
νn,tn−−−→ · · · ∈ Pathsω be an infinite path in Mℓ.

In the following we define conditions under which path ρ satisfies a CSL path
formula ψ, written as ρ |=Mℓ

ψ:

ρ |=Mℓ
X[[a,b]]Φ iff s1 |=Mℓ

Φ ∧ t0 ∈ [[a, b]]

ρ |=Mℓ
Φ1 UΦ2 iff ∃n ∈ Z>0 : sn |=Mℓ

Φ2,∀k = 0..n− 1 : sk |=Mℓ
Φ1

ρ |=Mℓ
Φ1 U[[a,b]]Φ2 iff ∃t ∈ [[a, b]], n ∈ Z>0 : s = ρ[n], s ∈ ρ@t, s |=Mℓ

Φ2,

∀τ ∈ [0, t), s′ ∈ ρ@τ : s′ |=Mℓ
Φ1 and

∀k = 0..n− 1 : ρ[k] |= Φ1

The semantics of most operators is straightforward. We will just clarify that a path
satisfies formula X[[a,b]]Φ if the second state visited on the path satisfies formula
Φ and transition from the initial state of the path to the next state happened
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3. Analysis of Markov Automata

within [[a, b]] time interval. A path satisfies formula Φ1 UΦ2 if the path eventually
reaches a state that satisfies Φ2 and all the states visited along the path before this
moment satisfy Φ1. Formula Φ1 U[[a,b]]Φ2 adds another limitation that all this must
happen within time interval [[a, b]]. We will call property Popt

Ep (Φ1 UΦ2) (optimal)
unbounded reachability (probability) and property Popt

Ep (Φ1 U[[a,b]]Φ2) will be referred
to as (optimal) time-bounded reachability (probability)

Example properties that can be specified with this set of formulas include: The
probability that the system eventually reaches a bad state is at most 0.999, The
probability that the system recovers from a critical situation within 24 hours is at
least 0.999, etc.

Whenever the labelled MA under consideration is clear from the context, we
omit the subscript and simply write |= instead of |=Mℓ

. For a set of infinite paths
A and a path formula ψ we will write A |= ψ iff ∀ρ ∈ A : ρ |= ψ. And similarly, for
a subset of states S′ and a state formula Φ we write S′ |= Φ iff ∀s ∈ S′ : s |= Φ.
Additionally, for convenience, we will abuse the notation and write Prπ,s [ψ] instead
of Prπ,s [{ρ ∈ Pathsω | ρ |= ψ}].

3.2 Analysis of CSL Properties

The process of exhaustive automated checking whether a given Markov automa-
ton Mℓ satisfies a given CSL state formula Φ is called model-checking. Formally
this means finding the set of states SatMℓ

(Φ), such that ∀s ∈ SatMℓ
(Φ) : s |= Φ.

This can be performed recursively over the structure of the formula in a bottom-up
manner. Model-checking of state formulas, except for operator Popt

Ep (ψ), is straight-
forward:

− Φ = a : Sat(Φ) = {s ∈ S | a ∈ lab(s)}

− Φ = ¬Φ′ : Sat(Φ) = S \ Sat(Φ′)

− Φ = Φ1 ∧ Φ2 : Sat(Φ) = Sat(Φ1) ∩ Sat(Φ2)

Model-checking operator Popt
Ep (ψ) is more involved and the algorithms depend on

the path formula ψ. All the algorithms essentially perform the following two steps:
(i) for each state s ∈ S compute the values ps = optπ∈Πµ Prπ,s [ψ]; (ii) find the set
of states S′, such that ∀s ∈ S′ : ps E p. Thus the main challenge of model-checking
CSL formulas is to compute the values ps. When we say analysis of a labelled MA
against formula Popt

Ep (ψ) we mean computation of these values. In the following, we
will consider the analysis of formula Popt

Ep (ψ) separately for each possible ψ.

Formula Popt
Ep (X[[a,b]]Φ). Operator X[[a,b]]Φ imposes restrictions on the second state

appearing over a path and time that it takes to reach that state. Depending on the
type of state, different procedures are used to determine whether it satisfies formula
Popt
Ep (X[[a,b]]Φ):
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3.2. Analysis of CSL Properties

Lemma 3.2.1.
If s ∈ PS, then

opt
π∈Πµ

Prπ,s
[
X[[a,b]]Φ

]
=

0 if 0 ̸∈ [[a, b]]

opt
α∈Act(s)

∑
s′∈Sat(Φ)

P[s, α, s′] if 0 ∈ [[a, b]]

If s ∈ MS, then

opt
π∈Πµ

Prπ,s
[
X[[a,b]]Φ

]
=
(
e−E(s)·a − e−E(s)·b

) ∑
s′∈Sat(Φ)

P[s, s′]

Proof. Consider A = {ρ ∈ Pathsω | ρ starts from s and ρ |= X[[a,b]]Φ}. With this
operator only the very first transition affects the probability of event A, and what
happens afterwards does not matter. We differentiate between the type of state:

− s ∈ PS. Residence time in s for the very first transition over any path can
only be 0. If 0 ̸∈ [[a, b]] then A = ∅ and ∀π ∈ Πµ : Prπ,s [A] = 0. Consider the
case 0 ∈ [[a, b]]. Let µπ(α) be the probability with which scheduler π chooses
action α for path ρ = s, then

∀π ∈ Πµ : Prπ,s [A] =
∑

s′∈Sat(Φ)

∑
α∈Act(s)

µπ(α) · P[s, α, s′]

6opt opt
α∈Act(s)

∑
s′∈Sat(Φ)

P[s, α, s′]

= opt
π∈Πµ

Prπ,s [A] ,

where 6opt=6 if opt = sup and 6opt=> if opt = inf. Thus the statement of
the Lemma follows.

− Consider s ∈ MS. Event A can be split into two independent events A1 and
A2. Event A1 is the event of a Markovian transition originating from s to
occur within time interval [[a, b]]. A2 describes discrete probability of a state
satisfying Φ to be the selected successor of s. Then Prπ,s [A] = Pr [A1] ·
Pr [A2] =

(
e−E(s)·a − e−E(s)·b) · ∑

s′∈Sat(Φ)

P[s, s′]. The statement of the lemma

follows.

Formula Popt
Ep (Φ1 UΦ2). Operator Φ1 UΦ2 does not impose any restrictions on the

time that it takes to reach a state satisfying Φ2. Therefore the analysis of for-
mula Popt

Ep (Φ1 UΦ2) can be reduced to the analysis of the same formula over MDPs
[QJK17]. This problem has been extensively studied and a multitude of algorithms
has been developed to address it, including policy iteration [Put94], linear program-
ming [Put94] and interval value iteration [HM14, QK18, BKL+17].
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3. Analysis of Markov Automata

Formula Popt
Ep (Φ1 U[[a,b]]Φ2) is the most challenging formula among the ones defined

above. Decidability of model-checking formula Popt
Ep (Φ1 U[[a,b]]Φ2) is still an open

problem and existing algorithms that approximate the probability values do not
scale well enough. Analysis of this formula is a vast topic that we will discuss in
greater detail in Chapter 4.

3.3 Reward Properties
When designing a system, costs associated with its maintenance, repairs as well as
the generated revenue are of great importance. Example quantities of interest are
the following: The expected average maintenance and repair costs, the expected
total revenue, the expected system uptime, and so on. We will call quantities of
this kind reward properties. The CSL logic for Markov automata described in the
previous sections does not provide any means to express properties over quantities
other than probabilities. In fact, to date there is no logic that can describe reward
properties for Markov automata, as opposed to CTMCs [BHHK00] and CTMDPs
[BHHZ11]. Nevertheless, over the years many reward properties have been intro-
duced for Markov automata and in this section we will formally define them.

We start by extending the definition of Markov automata to include rewards for
residing in a state or of taking a transition:

Definition 3.3.1. A reward structure for an MAM is a tuple ϱ := (ϱst, ϱtrn),
where ϱst : S → R>0 is a state reward function and ϱtrn :  → R>0 is a
transition reward function.

Definition 3.3.2. Given a Markov automaton M and a reward structure ϱ
over M we define a Markov reward automaton (MRA) to be a tuple Mϱ :=
(M, ϱ).

Example 3.3.1. Figure 3.1 shows an example of an MRA. Here rewards assigned
to states and transitions are shown next to the respective state or transition in a
green frame. For example, state high is assigned state reward 0.4, state low has
state reward 0.1 and transition (has a task)

high99Kµ for µ = [high→ 0.99, lost→ 0.01],
has transition reward 10.

no tasks

okh

okl

has a task

high 0.4

low
0.1

lost11
high

10

low
2

0.9
9

0.01

0.9

0.1

0.03

2.97

1

9

20 α
,1

4

α
,1

α, 1

Figure 3.1: An example of an MRA

The MRA models a task processing sys-
tem. Tasks arrive at rate 11; this is mod-
elled by a Markovian transition with rate
11 emanating state no tasks. Whenever
there is a task to process, the system de-
cides whether to handle it with high or low
reliability. In the former case, the system
receives an immediate reward of 10. A low-
reliability task produces a reward of 2 only.
The tasks are sent for processing to a remote server over lossy channels. The high-
reliability channel loses tasks with probability 0.01, while low-reliability tasks are
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3.3. Reward Properties

lost ten times more often. Whenever a task is lost, no further reward for it is paid.
Processing high-reliability tasks takes more time, which is modelled with exit rate 3
of state high, however, it generates high reward. Low-reliability processing is fast
(exit rate 10 of state low), however, produces lower reward 0.1. Upon successful
completion of the processing, the system is awarded a reward of 20 or 4 for high-
and low-reliability modes respectively.

We will now define how the rewards are accumulated in an MRA. First of all,
for an infinite path ρ = s0

ν0,t0−−−→ · · · sk
νk,tk−−−→ · · · and n ∈ Z>0 we define the prefix

of ρ of length n to be the following path fragment

prefixϕn(ρ) := s0
ν0,t0−−−→ · · · sn−1

νn−1,tn−1−−−−−−→∈ Fragsn

For t ∈ R>0 the prefix of ρ until time t is defined as

prefixϕt (ρ) :=


θ if t0 > t

prefixϕn(t)(ρ) if n(t) ∈ Z>0, τtotal(ρ, n(t)) 6 t, τtotal(ρ, n(t) + 1) > t

ρ otherwise

Here n(t) is such an integer value, that total time taken by n(t) transitions is not
greater than t, while within n(t) + 1 transitions the total time exceeds t. For non-
Zeno paths it is always possible to find such a value. However, for Zeno paths this
is not always the case. Let ρ be a Zeno path. Recall that by definition total time
τtotal(ρ, k) for any number of transitions k ∈ Z>0 is bounded: ∃T : ∀k : τtotal(ρ, k) <
T . If one wants to compute prefix until time t > T , then there are infinitely many
transitions that happen until time t, namely, all the transitions of ρ. For such cases
we define the prefix until time t to be the path itself.

We are now in a position to define total reward accumulated over an infinite
path or a path fragment:

Definition 3.3.3. The total reward over an infinite path (or a path fragment)
of an MRAMϱ is a function rewMϱ(·) : Fragsn+1 ⊎Pathsω → R∞

>0, such that

rewMϱ
(υ) :=


0 if υ = θ
n∑

i=0

(
ϱst (si) · ti + ϱtrn

(
si

νi µi

))
if υ = s0

ν0,t0−−−→ · · · sn
νn,tn−−−→∈ Fragsn+1

lim
k→∞

rewMϱ
(prefixϕ

k(ρ)) if υ = s0
ν0,t0−−−→ · · · sn

νn,tn−−−→ · · · ∈ Pathsω

Two sources contribute to the total reward over a path, or a fragment: states and
transitions. Each visited state contributes the reward that is proportional to the
amount of time that the system resides in the state. Given that the system resided
for t time units in a state s, the reward accumulated in that state equals ϱst (s) · t.
When leaving state s via transition s

ν µ the system collects a one-shot reward
ϱtrn

(
s
ν µ
)
. The total reward over a path fragment (infinite path) is the sum of

all the rewards from states and transitions along the path fragment (infinite path).
Naturally, it is possible that in an infinite path there exist infinitely many states or
transitions with non-zero reward. In this case the limit lim

k→∞
rewMϱ(prefixϕk(ρ)) =∞,

which is the reason the value ∞ is in the domain of function rewMϱ .
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Example 3.3.2. Consider the MRA from Fig. 3.1. In the following we will denote
state no tasks with nt and has a task with ht. Consider path fragment

ϕ = nt ⊥,t0−−→ ht high,0−−−→ high ⊥,t1−−→ okh
α,0−−→

Then total reward accumulated over this fragment is rewMϱ(ϕ) = 10 + 0.4 · t1 + 20.

We proceed to define various reward-based measures over infinite paths. For the
following we fix an MRAMϱ, one of its states s and a scheduler π ∈ Πµ. Formally
we will define random variables on the probability space (Pathsω,Pω,Prπ,s [·]) and
use their expected values to reason over all possible paths of an MRA.

Cumulative Time-Bounded Reward was introduced in [GTH+14]. It takes the
value of the total reward accumulated over a given infinite path until time bound b.

Definition 3.3.4. Let b ∈ R>0 be a time-bound. The cumulative time-
bounded reward is a random variable CbMϱ,s,π

: Pathsω → R∞
>0 defined as

follows:
CbMϱ,s,π(ρ) := rewMϱ(prefixϕb (ρ)),

Example 3.3.3. Consider the MRA from Fig. 3.1 and infinite path

ρ = nt ⊥,1.1−−−→ ht high,0−−−→ high ⊥,2.2−−−→ okh
α,0−−→ nt ⊥,3.3−−−→ · · ·

For the time bound b = 3.4 the prefix prefixϕb (ρ) = nt ⊥,1.1−−−→ ht high,0−−−→ high ⊥,2.2−−−→
okh

α,0−−→ and CbMϱ,s,π
= rewMϱ(prefixϕb (ρ)) = 10 + 0.4 · 2.2 + 20.

The random variable takes the value infinity on, for example, a Zeno path ρ, such
that total time over the path τtotal(ρ) < b and the path takes infinitely often a
probabilistic transition with non-zero transition reward.

Cumulative Goal-Bounded Reward was defined for Markov automata in
[GTH+14].

Definition 3.3.5. Let G ⊆ S be a subset of states and ρ = s0
ν0,t0−−−→

s1 · · · sk
νk,tk−−−→ sk+1 · · · is an infinite path. Cumulative goal-bounded reward

is a random variable CGMϱ,s,π
: Pathsω → R∞

>0 defined as follows:

CGMϱ,s,π(ρ) :=


0 if s0 ∈ G
rewMϱ(prefixϕn−1(ρ)) else if sn ∈ G and ∀i = 0..n− 1 : si ̸∈ G
rewMϱ(ρ) if ∀i ∈ Z>0 : si ̸∈ G

This random variable takes the value of the total reward accumulated until the
system visits some state sg ∈ G for the first time, or total reward over the whole
path in case this never happens. If such a state sg is encountered for the first time at
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position n ∈ Z>0 (i. e. n = 0, ρ[0] = sg or n > 0, ρ[n] = sg,∀i = 0..n− 1 : ρ[i] ̸∈ G),
then the rewards of states and transitions at indices 0 to n − 1 are accumulated
and the rewards of all the states and transitions starting from and including index
n (i. e. starting from and including state sg) are ignored.

Example 3.3.4. Consider the MRA from Fig. 3.1 and infinite path

ρ = nt ⊥,1.1−−−→ ht high,0−−−→ high ⊥,2.2−−−→ okh
α,0−−→ nt ⊥,3.3−−−→ ht low,0−−−→ low ⊥,0.05−−−−→ lost α,0−−→ · · ·

For the set G = {lost} the prefix of the path until reaching G is

ϕ = nt ⊥,1.1−−−→ ht high,0−−−→ high ⊥,2.2−−−→ okh
α,0−−→ nt ⊥,3.3−−−→ ht low,0−−−→ low ⊥,0.05−−−−→

and CGMϱ,s,π
(ρ) = 10 + 0.4 · 2.2 + 20 + 2 + 0.1 · 0.05.

Cumulative Unbounded Reward is a special case of cumulative goal-bounded
reward for G = ∅ and is widely used in various Markovian models, e. g. Markov deci-
sion processes. The value of such a random variable is the total reward accumulated
over the infinite path.

Definition 3.3.6. Cumulative unbounded reward is a random variable
Cunb
Mϱ,s,π

: Pathsω → R∞
>0 defined as:

Cunb
Mϱ,s,π(ρ) := CGMϱ,s,π(ρ), where G = ∅

Time Until Reaching the Goal is also a special case of CGMϱ,s,π
and has been

introduced in [GHH+14]. Let ϱ(τ) be a reward structure, such that all the transition
rewards are set to 0 and all the state rewards equal 1. Consider the random variable
CGMϱ,s,π

for an MRA with reward structure ϱ(τ). The value of this random variable
over a path ρ equals the time it takes to reach some state in the set G, or ∞ if no
such state appears in ρ.

Definition 3.3.7. Let G ⊆ S be a subset of states. For a Markov automaton
M a random variable rTGM,s,π : Pathsω → R∞

>0 is defined as

rTGM,s,π(ρ) := CGMϱ(τ),s,π
(ρ)

Notice that the meaning of rTGM,s,π(ρ) as the time to reach the goal set is not
very intuitive in presence of Zeno paths. It is then possible that there exists an
infinite path that never reaches any state from G and the value rTGMϱ,s,π

over this
path is finite. An example of such a path is a path ρ that never reaches G and
from some point on only cycles within probabilistic states. The total time spent
on such a path - limn→∞ τtotal(ρ, n) - is finite, which means that the value of the
variable rTGM,s,π is also finite. In such cases the value of the variable rTGM,s,π does
not represent the intuitive notion of time to reach G, since intuitively in this case
it should be ∞.
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Long-Run Average Reward takes the value of the average reward accumulated
in path ρ per time unit. It was first defined for MRA in [GTH+14].

Definition 3.3.8. The long-run average reward is a random variable
LMϱ,s,π : Pathsω → R∞

>0 defined as follows:

LMϱ,s,π(ρ) := lim
t→∞

1

t
rewMϱ(prefixϕt (ρ))

Here long-run refers to the fact that the value of LMϱ,s,π(ρ) depends on the whole
path, not only on its finite prefix, what is the case for CbMϱ,s,π

(ρ), unless the total
time over the path does not exceed bound b, and for CGMϱ,s,π

(ρ), unless no state in
the set G is visited over the path.

Example 3.3.5. Consider the MRA from Fig. 3.1 and infinite path

ρ = nt ⊥,τ−−→ ht high,0−−−→ high ⊥,τ−−→ okh
α,0−−→ nt ⊥,τ−−→ · · ·

that always selects action high in state ht, never reaches state lost and stays in all
Markovian states for exactly τ time units. Then for k ∈ Z>0 the total reward within
2 · k · τ time units is (10 + 0.4 · τ + 20) · k and the average reward after 2 · k · τ time
units is (10 + 0.4 · τ +20) · k/(2 · k · τ) = 15/τ +0.2. Thus LMϱ,s,π(ρ) = 15/τ +0.2.

Long-Run Average Time is a special case of long-run average reward defined for
a subset of states G ⊆ S and a reward structure ϱ(τ), such that all the transition
rewards are set to 0 and state rewards equal 1 only for states from G, otherwise
they are set to 0. The value was introduced in [GHH+14].

Definition 3.3.9. Let G ⊆ S. The long-run average time is the random
variable aTGM,s,π : Pathsω → R∞

>0 defined as follows:

aTGM,s,π(ρ) := LMϱ(τ),s,π(ρ)

This random variable takes as a value the average amount of time that the system
spends in states from G.

Discounted Reward considers rewards that are decreasing over time and was first
introduced for Markov automata in [BWH18].

All the random variables defined above are based on the total reward rewMϱ(·)
over a path or fragment. Here irrespectively of the time point at which a state s is
entered or a transition s ν µ is taken, this state or transition contributes the same
reward to the total reward value, namely ϱst (s) or ϱtrn

(
s
ν µ
)
. In many cases

however it does make a difference when the reward is accumulated. For example, if
the rewards are of monetary value, then they are subject to inflation. The more time
passes by the less the same amount of money is worth. In the following we define
the discounted total reward that takes into account time passage when rewards are
accumulated.
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Definition 3.3.10. Let ϕ = (s0
ν0 µ0, t0) · · · (sn

νn µn, tn) ∈ Fragsn+1 be a
path fragment in Mϱ. For β ∈ (0, 1] we define discounted reward with rate
β over ϕ, denoted as drewβ

Mϱ
(ϕ), as follows:

drewβ
Mϱ

(θ) := 0 and for ϕ ̸= θ

drewβ
Mϱ

(ϕ) :=

n+1∑
i=1

 ∆(i−1)+ti−1∫
∆(i−1)

e−β·t · ϱst (si−1) dt+ e−β·∆(i) · ϱtrn

(
si−1

νi−1 µi−1

)
where ∆(i) := τtotal(ρ, i).

The rewards that are to be collected at time point t are multiplied with value
e−β·t. The higher the value t is the smaller is e−β·t and therefore for two time points
t1 and t2, such that t2 > t1 the reward that is being contributed at time t2 is smaller
than that of t1. The rate with which the rewards are discounted is controlled via
parameter β. The closer this value is to 0, the slower is the discounting. The value
β = 0 is excluded due to the fact that drew0

Mϱ
(ϕ) = rewMϱ(ϕ).

Example 3.3.6. Consider the MRA from Fig. 3.1 and its path fragment

ϕ = nt ⊥,t0−−→ ht high,0−−−→ high ⊥,t1−−→ okh
α,0−−→

Then the discounted reward collected over this path fragment is:

drewβ
Mϱ

(ϕ) =

= e−β·t0 · ϱtrn

(
ht

high99Kµ
)
+

t0+t1∫
t0

ϱst (high) · e−β·τ dτ + e−β·(t0+t1) · ϱtrn
(

okh
α99Kµ′

)

= e−β·t0 · 10 +
t0+t1∫
t0

0.4 · e−β·τ dτ + e−β·(t0+t1) · 20

Definition 3.3.11. We define random variable Dβ
Mϱ,s,π

: Pathsω → R∞
>0 as

follows:
Dβ

Mϱ,s,π
(ρ) := lim

n→∞
drewβ

Mϱ
(prefixϕn(ρ))

Remark 3.3.1. Notice that the value of reward functions rewMϱ and drewβ
Mϱ

does
not depend on state rewards of probabilistic states. This is due to the fact that
residence time in probabilistic states is always 0. One can therefore assume w. l. o. g.
that those values are always 0, i. e. ∀ps ∈ PS : ϱst (ps) = 0.

Optimal Expected Reward and Reward Properties. What we are interested
in is the expected value of the above defined random variables for an optimal sched-
uler. Recall that the expected value of a random variable Xπ,s on the probability
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space (Pathsω,Pω,Prπ,s [·]) is defined as follows:

E [Xπ,s] =

∫
Pathsω

Xπ,s(ρ) · Prπ,s [dρ]

For Xu
My ,s,π

∈ {CGMϱ,s,π
, CbMϱ,s,π

, Cunb
Mϱ,s,π

, rTGM,s,π, LMϱ,s,π, aT
G
M,s,π, D

β
Mϱ,s,π

} we
will use the following notation for the optimal expected reward:

Eopt[Xu
My ,s] := opt

π∈Πµ
E
[
Xu

My ,s,π

]
We will refer to values Eopt[Xu

My ,s
] as reward properties. For example, the value

Eopt[CGMϱ,s
] is cumulative goal-bounded reward property.

3.4 Analysis of Reward Properties
In this section, we will give a brief overview of algorithms for the analysis of re-
ward properties. By analysis here we mean computation of the respective optimal
expected values.

Computation of the cumulative goal-bounded reward property Eopt[CGMϱ,s
] can

be reduced to the same problem on MDPs, as it has been shown in [GTH+14]. One
can therefore use standard algorithms such as linear programming, policy iteration
[Put94] and interval value iteration [BKL+17, QK18]. Computation of Eopt[rTGMϱ,s

]

can be reduced to the computation of Eopt[CGM′
ϱ,s

] on an adapted MRAM′
ϱ (differ-

ent reward structure). Computation of Eopt[Cunb
Mϱ,s

] can be reduced to computing
Eopt[CGMϱ,s

] for G = ∅ and can therefore be solved with the same techniques.
Analysis of properties Eopt[LMϱ,s], Eopt[aTGMϱ,s

] and Eopt[Dβ
Mϱ,s

] requires spe-
cialised algorithms. Value Eopt[LMϱ,s] can be computed with a reduction to a
linear programming problem, as shown in [GTH+14]. Analysis of this property
will be discussed in detail in Chapter 5. Value Eopt[aTGMϱ,s

] is a special instance
of Eopt[LMϱ,s] and can thus be solved with the same techniques. Computation of
value Eopt[Dβ

Mϱ,s
] can be performed via policy- and value-iteration algorithms that

have been presented in [BWH18].
The only algorithm for analysing property Eopt[CbMϱ,s

] is presented in [GTH+14]
and is based on discretisation. It is a natural extension of the algorithm for analysing
formula Popt

Ep (Φ1 U[[a,b]]Φ2) from Markov automata to Markov reward automata.

3.5 Discussion
In this chapter, we looked at various probabilistic and reward properties of Markov
automata and briefly discussed techniques used for their analysis. Many of the
considered properties can be analysed efficiently. Those include unbounded reacha-
bility probability, cumulative goal-bounded reward, expected time until reaching a
goal, unbounded and discounted rewards. Some of the properties, however, remain
challenging to date, and those are:
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3.5. Discussion

1. Time-bounded reachability probability property Popt
Ep (Φ1 U[[a,b]]Φ2). This prop-

erty is a challenge not only for Markov automata, but also for CTMDPs. It
involves solving an optimisation problem over the system dynamics governed
by linear differential equations. Existing algorithms scale poorly either with
the size of the model or with parameters of the problem, such as the time
bound or approximation error. We discuss this problem in Chapter 4.

2. Cumulative time-bounded reward property Eopt[CbMϱ,s
] is an extension of time-

bounded reachability property with rewards. Everything discussed above ap-
plies here as well.

3. Long-run average reward property Eopt[LMϱ,s]. To date there is no iterative
solution, such as value- or policy-iteration, to approximate this property. The
only available solution is based on a reduction to linear programming. Despite
the fact that linear programming has polynomial time complexity, for other
Markovian models, such as MDPs and CTMDPs, iterative approaches tend to
scale better on many practical applications. We will discuss in detail analysis
of this property in Chapter 5.

4. Long-run average time property Eopt[aTGMϱ,s
] is a special case of long-run av-

erage reward property and it suffers from the same issues.
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Time-Bounded Reachability 4

Analysis of time-bounded properties, such as time-bounded reachability and cumu-
lative time-bounded reward, is by far the most challenging problem for Markov au-
tomata. The time-bounded reachability Popt

Ep (Φ1 U[[a,b]]Φ2) is the simpler among the
two and answers the question of whether the optimal probability to reach a certain
subset of states within a given time interval while avoiding undesirable states satis-
fies Ep. In this chapter, we explore how to analyse this property. The main results
of this chapter are two new algorithms for approximating optimal time-bounded
reachability probabilities up to a given approximation error.

In Section 4.1 we set the basis. First in Section 4.1.1 we discuss existing algo-
rithms that address the problem, their limitations and justify the need for a better
solution. In Section 4.1.2 we show that by modifying the Markov automaton the
problem can be reduced to solving at most two instances of a simpler one. Namely,
computation of the optimal probabilities w. r. t. a path formula Φ1 U[[a,b]]Φ2 can be
performed by computing optimal probabilities for at most two path formulas of the
form ttU=cΦ2 and combining the results. Thus in order to obtain an algorithm
for analysing formula Popt

Ep (Φ1 U[[a,b]]Φ2) one only needs an algorithm for analysing
a slight generalisation of formula Popt

Ep (ttU=cΦ2).
In Section 4.2 we formalise the problem of quantifying Popt

Ep (ttU=cΦ2) and dis-
cuss the structure of optimal schedulers. In Section 4.2.2 we introduce a sub-problem
that is often encountered in the context of Markov automata analysis: computation
of unbounded reachability probabilities over probabilistic states and we discuss ex-
isting algorithms to compute these values.

We present two new algorithms for approximating optimal time-bounded reach-
ability probabilities up to a given error bound in Sections 4.3 and 4.4. The first one
performs exhaustive state-space exploration. The main idea behind the algorithm
is to exploit the structure of optimal schedulers, which is made possible through
new insights on the switching points, developed in Section 4.3.3. The second algo-
rithm performs computations on part of the total state-space. It can be thought of
as a wrapper for any exhaustive solver, to speed up its computations. It uses the
property and the structure of the Markov automaton to discard states that are not
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relevant for the problem and runs the exhaustive solver only on the remaining part
of the total state-space. An extensive evaluation of both algorithm and comparison
with existing approaches follows in Section 4.5.

4.1 Preliminaries
Throughout the chapter we work with a labelled Markov automatonMℓ = (M, AP ,
lab), where M = (S,Act, 99K,R). First of all, in order to present the results for
both cases opt = sup and opt = inf, we define the following relation operators:

4opt :=

{
6 if opt = sup
> if opt = inf

<opt :=

{
> if opt = sup
6 if opt = inf

(4.1)

≺opt :=

{
< if opt = sup
> if opt = inf

≻opt :=

{
> if opt = sup
< if opt = inf

(4.2)

For the case of supremum, the semantics of these operators coincides with the
intuitive meaning (4opt is less-or-equal operator, <opt is greater-or-equal, etc.), and
is the opposite for infimum.

First, we spell out the problem of interest:

Problem 1. Let Mℓ be a labelled Markov automaton and ψ = Φ1 U[a,b]Φ2 is
a CSL path formula. Compute the values

∀s ∈ S : valMℓ
opt (s, ψ) := opt

π∈Πµ
PrMπ,s [{ρ ∈ Pathsω | ρ |= ψ}]

as well as scheduler π for which optimum is achieved in the equation above
(optimal scheduler).

For a scheduler π we define valMℓ
π (s, ψ) := PrMπ,s [{ρ ∈ Pathsω | ρ |= ψ}]. We will call

a scheduler π ϵ-optimal if ∀s ∈ S : valMℓ
opt (s, ψ)− valMℓ

π (s, ψ) 4opt (−1)1{inf}(opt)ϵ.

4.1.1 Known Solutions and Related Work
In this section, we will discuss various algorithms solving Problem 1. We start
by looking at dedicated MA algorithms, then move to techniques that address the
analogous problem on CTMDPs and conclude with a discussion of the relationship
between methods designed for MA and those for CTMDPs. All the algorithms
that are known to date use approximations to quantify the optimal reachability
value. We will only consider those algorithms, that provide formal guarantees on
the obtained results, i. e. an upper bound on the error between the value that they
compute and the actual value. We will denote with ϵ the precision guaranteed by
an approximation algorithm.

Dedicated MA Algorithms for Problem 1. Let |S| = n be the amount of
states, a = |Act| and m the amount of edges inM. A transition s ν µ produces as
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many edges as there are elements in the support of µ. We will denote with Ci,j,a the
worst-case complexity of computing value optπ∈Πµ PrDπ [ttUΦ2] in an MDP D with
i states, j edges and a actions. If the problem is formulated as a linear program,
then the linear program has i variables and i · a constraints. The following is the
list of algorithms that approximate optimal reachability probabilities in Markov
automata:

− The first algorithm to solve Problem 1 was presented in [GHH+14] and is
based on a transformation to a discrete time model. The transformation is
obtained by discretising the time horizon into intervals of equal length and
approximating the value on each interval with exponential functions. The
length of the interval is selected in such a way, that with high probability at
most one Markovian transition will be performed within this interval. The
complexity of the algorithm is O((Cm,n,a+m+n)·(Emax ·b)2/(2·ϵ)). Through-
out the thesis we will refer to this algorithm as FixStep. In order to obtain
guarantees on the error induced by the approximations FixStep essentially
assumes that the optimal action for at least one state may change after each
Markovian transition, and therefore computes optimal actions for all intervals
and all states. In most case studies however optimal actions remain optimal
over longer intervals than those used by FixStep. This means that for many
practical applications FixStep performs too many unnecessary computations.
This is the same problem as a similar algorithm for CTMDPs has, something
that has been shown in [BHHK15].

− Another approach to solve Problem 1 is via a combination of uniformisation
and time-abstract schedulers [Gro18], which is a Markov automata extension
of the same technique designed for CTMDPs [BHHK15]. The approach is
only shown for ψ = ttU[0,b]Φ2. The algorithm performs k iterations, each
of complexity O((Emax · 2k−1 · b · e2 − ln(ϵ)) · (Cm,n,a + m)). There is no
known upper bound on k. In this work, we will denote this algorithm with
Unif+. The exponential dependency on the number of iterations k means
that the algorithm performs well whenever only a few iterations are needed
to achieve the desired accuracy. This is however not always the case and it
has been observed that in the CTMDP case there are examples on which the
algorithm has to perform many iterations to achieve the required accuracy
and its running time falls below the running time of other algorithms.

Related CTMDP Algorithms. Many algorithms addressing Problem 1 for
Markov automata are extensions of the respective algorithms for CTMDPs. The
problem of optimal time-bounded reachability is defined for CTMDPs analogously
to the way it is defined for MA and can be found in e. g. [RS11]. For CTMDPs
it has been studied separately for early and late scheduler classes (see Chapter 2,
Section 2.2.5) and in the following we will briefly visit all the algorithms:

− The discretisation-based algorithm presented in [NZ10, Neu10] is the CTMDP -
predecessor of the FixStep algorithm discussed above. It is available for the
early and late scheduler classes. The latter, however, is supported only if
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the CTMDP is locally uniform. Informally, it means that the exit rates are
state-wise constant, or formally: ∀s ∈ S, ∀α, β ∈ ActC(s) : E(s, α) = E(s, β).

− Another discretisation-based algorithm that approximates the value for late
schedulers has been presented in [FRSZ11]. It is capable of discretising the
time horizon with a coarser grid than the one of [Neu10] and within each
interval approximates the value by polynomial functions.

− In most cases, the two algorithms mentioned above use a very fine discreti-
sation grid, where each interval has the same length. It is assumed that the
optimal behaviour within each of those intervals may be different from that
in the neighbouring intervals. While this may happen in the worst-case sce-
nario, in many cases the optimal behaviour is less regular and does not change
that often. The discretisation-based approach presented in [BS11, BHHZ11]
addresses this issue by splitting the time-horizon into intervals of variable
length. The main idea is the following: If for a given problem the optimal
behaviour does not change over an interval [a, b], then this interval should not
be discretised into finer ones. Thus the algorithm can adapt to each given
problem instance by using a possibly different discretisation grid.
The new algorithm that we will present later in Section 4.3 follows the same
ideas. A more detailed discussion of the relationship between the two can be
found in Section 4.3.

− Lastly, the Unif+ approach for CTMDPs has been introduced in [BHHK15]
for both early and late scheduler classes. It served as a prototype for the
respective MA algorithm discussed above.

Scheduler Classes in MA and CTMDPs. We conclude this section with a
discussion on whether CTMDP algorithms can be harvested for computing the
optimal time-bounded reachability for MA and vice versa.

For simplicity, we will only consider the most classical formulation of the problem.
Let ♦6tG be a set of paths that reach a state from set G within time interval [0, t].

Case 1. Given a CTMDP C, one of its states sC, a class of schedulers ΠC (early
or late) and a subset of states GC is there a Markov automaton M, one of its states
sM and a subset of states GM, such that the following equation holds?

opt
π∈ΠC

PrCπ,sC
[
♦6tGC

]
= opt

π∈ΠM
µ

PrMπ,sM
[
♦6tGM

]
(4.3)

The answers to this question have been described in [RS11, RS10] for continuous
time Markov games, which are more general than closed Markov automata and than
CTMDPs. We will revisit these results below.

If ΠC is the class of early schedulers, then the required MA has been described
in [RS11], Section 5.1. The main idea is to decouple every CTMDP state into one
probabilistic state and several Markovian states, one per each enabled action in the
CTMDP. The Markovian states have the same outgoing transitions as the CTMDP
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state via the respective action. The probabilistic state has as many outgoing prob-
abilistic transitions as there are enabled actions in the CTMDP state. All of these
transitions lead with probability 1 to the respective Markovian state.

A similar procedure can be applied when ΠC is the class of late schedulers. The
main ideas have been described in Appendix D of [RS10]. First of all the CTMDP
is uniformised, which does not affect the optimal reachability probability value. In
the resulting uniform CTMDP, in contrast to the previous case, the probabilistic
state is placed after the Markovian state.

In both of the cases described above the size of the Markov automaton that
preserves the optimal reachability probabilities is linear in the size of the given
CTMDP.

Case 2. Given an MA M, one of its states sM and a subset of states GM is
there a CTMDP C, one of its states sC, a class of schedulers ΠC (early or late) and
a subset of states GC, such that equation (4.3) holds?

For the class of late schedulers, the required CTMDP has been described in
[RS11], Section 5. The main idea is the following. For Markovian states ms1, ms2
and an untimed path ms1

ν0−→ ps1
ν1−→ · · · psk

νk−→ ms2, where states psi are all prob-
abilistic, the CTMDP has a transition s1

ν−→ S2, where S2 = ps1
ν1−→ · · · psk

νk−→ ms2
and ν = ν1 → · · · → νk. All states of the CTMDP that end in state ms1, e. g.
ps1

ν1−→ · · · psk
νk−→ ms1, get the same outgoing actions as s1. The rate matrix is

selected accordingly. If there are probabilistic states that have no incoming Marko-
vian transitions, then such probabilistic states have not been added to the CTMDP
by the transformation described above. However, they can only serve as initial
states and therefore can be processed separately when computing the value.

For the class of early schedulers, a similar transformation can probably be used,
however, we are not aware of any published results. We conjecture that the transfor-
mation described in [BWH18] may be applicable in this case. The main idea follows
the same lines as the one described above. First, a subset of the state-space of the
Markov automaton is selected as the basis for the state-space of the CTMDP. In
contrast to the transformation described above, in this case, such states are selected
among probabilistic ones. Next, the outgoing transitions for each of those states are
selected in such a way, that the probabilistic and non-deterministic behaviour of
the MA is preserved by the CTMDP. To this end, actions and transitions of states
that are not part of the selected subspace are encoded into actions and transitions
of states that are in it.

Notice that for both early and late scheduling problems the resulting CTMDP
is in the worst case exponential in the size of the MA. This is due to the fact
that all possible scheduler decisions over several probabilistic states of the MA have
to be encoded into enabled actions of one state in the CTMDP. If there are n
probabilistic states that have at least two enabled actions, then this can result in
2n enabled actions in the CTMDP.

Conclusions. According to [RS11, RS10], in order to compute the optimal reach-
ability probability for a CTMDP under late or early schedulers one can construct
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a Markov automaton (linear in the size of the CTMDP) that preserves the value
and apply dedicated Markov automata algorithms to it. However, to compute the
optimal reachability probability for an MA via CTMDP algorithms, one needs to
construct a CTMDP that may in the worst case be exponentially larger than the
given MA. We conjecture that it may be possible to avoid the expensive transforma-
tion by adapting the CTMDP algorithms to Markov automata, similarly to the way
it is done for long-run average- and discounted rewards (Chapter 5 and [BWH18]).

4.1.2 Reduction to Two-Step Solution
In this section we will show that the solution of Problem 1 for an arbitrary path
formula Φ1 U[[a,b]]Φ2 can be reduced to solving at most two instances of a simpler
problem, in which the path formula is of the following shape: ttU=cΦ2. This result
and parts of its proof echo a result first established for CTMCs [BHHK03].

As the first step, we will show that analysing formula Φ1 U[[a,b]]Φ2 can be reduced
to analysing formula ttU[[a,b]]Φ2 on a slightly modified Markov automaton.

We will start with defining an operation of transforming states of a Markov
automaton into absorbing states. A state s ∈ S can be made absorbing by removing
all of its outgoing transitions, if any, and substituting them with only one self-loop
Markovian transition with the rate Emax. Notice that if this transformation is
applied to a probabilistic state, then it will become Markovian.

We define M[Φ]
ℓ := (M[Φ], AP , lab), where M[Φ] := (S[Φ],Act, 99K[Φ],R[Φ]), to

be a labelled Markov automaton obtained from Mℓ by making all the states in
Sat(Φ) absorbing.

Notice that any generic measurable scheduler π in M is a generic measurable
scheduler inM[Φ]. This is due to the fact that absorbing states are Markovian and
thus PSM[Φ] ⊆ PSM. If no state satisfying Φ appears on a finite path ρ in M[Φ],
then the same path is possible in M and the scheduler takes the same decisions
in both models. Otherwise, after encountering a state satisfying Φ, the path never
leaves this state, since it is absorbing, and there is no decision to make for the
scheduler since the state is Markovian.

Lemma 4.1.1. Let Φ1 U[[a,b]]Φ2 be a path formula and Φ2 ⇒ Φ1, then

∀s ∈ S, π ∈ Πµ : valMℓ
π (s,Φ1 U[[a,b]]Φ2) = valM

[¬Φ1∧¬Φ2]
ℓ

π (s, ttU[[a,b]]Φ2)

Proof. Consider a labelled MA M′
ℓ, a finite path ρ in M′

ℓ and the following condi-
tion:

∃t ∈ [[a, b]], 0 6 n 6 |ρ| , s = ρ[n], s ∈ ρ@t, s |=M′
ℓ
Φ2,

∀τ ∈ [0, t), s′ ∈ ρ@τ : s′ |=M′
ℓ
Φ1 and

∀k = 0..n− 1 : ρ[k] |=M′
ℓ
Φ1

(4.4)

If ρ satisfies (4.4), we will say that ρ |=M′
ℓ
Φ1 U[[a,b]]Φ2.
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Condition (4.4) is analogous to the semantics of formula Φ1 U[[a,b]]Φ2 with the
only difference that in the latter one the value of n is restricted from above by the
length of ρ.

Consider a finite path ρ, such that ρ |=Mℓ
Φ1 U[[a,b]]Φ2 in the above defined

sense. Then for all i = 0..n : ρ[i] |=Mℓ
Φ1 ∨ Φ2 and CylMℓ

(ρ) |=Mℓ
Φ1 U[[a,b]]Φ2.

Equivalently ∀i = 0..n : ρ[i] ̸|=Mℓ
¬Φ1 ∧ ¬Φ2. This implies that ρ is also a finite

path in M[¬Φ1∧¬Φ2]
ℓ and ρ |=M[¬Φ1∧¬Φ2]

ℓ

ttU[[a,b]]Φ2.

Similarly in the other direction. If ρ |=M[¬Φ1∧¬Φ2]
ℓ

ttU[[a,b]]Φ2, then there exists
n 6 |ρ|, such that ρ[n] |=M[¬Φ1∧¬Φ2]

ℓ

Φ2. Since all states that satisfy ¬Φ1 ∧ ¬Φ2 are

absorbing in M[¬Φ1∧¬Φ2]
ℓ , then ∀i = 0..n : ρ[i] ̸|=M[¬Φ1∧¬Φ2]

ℓ

¬Φ1 ∧ ¬Φ2 (otherwise
ρ[n] ̸|=M[¬Φ1∧¬Φ2]

ℓ

Φ2, what contradicts our first assumption). Equivalently, ∀i =
0..n : ρ[i] |=M[¬Φ1∧¬Φ2]

ℓ

Φ1 ∨Φ2 and ρ[n] |=M[¬Φ1∧¬Φ2]
ℓ

Φ2. This implies that ρ is also
a finite path inMℓ and due to assumption Φ2 ⇒ Φ1: ∀i = 0..n : ρ[i] |=Mℓ

Φ1, what
leads to ρ |=Mℓ

Φ1 U[[a,b]]Φ2.
The probabilities of the events we are interested in do generally not depend on

what happens after the formula is satisfied, but only on what happens before. The
latter coincides within both models and we conclude that valMℓ

π (s,Φ1 U[[a,b]]Φ2) =

valM
[¬Φ1∧¬Φ2]
ℓ

π (s, ttU[[a,b]]Φ2).

Fixpoint characterisation and optimal schedulers. Due to Lemma 4.1.1 we
can restrict ourselves to formulas ψ = ttU[[a,b]]Φ2. Next we will show the fixpoint
characterisation of value valMℓ

opt (ttU[[a,b]]Φ2).

Lemma 4.1.2 ([GHH+14]). The value valMℓ
opt (s, ttU[[a,b]]Φ2) is the least fix-

point of the higher-order operator Ω : (S×I(R>0)→ [0, 1])→ (S×I(R>0)→
[0, 1]), such that

Ω(F )(s, I) =


f(s, I, b) if s ∈ MS ∩ Sat(¬Φ2)

e−E(s)·a + f(s, I, a) if s ∈ MS ∩ Sat(Φ2)

1 if s ∈ PS ∩ Sat(Φ2) ∧ 0 ∈ I
opt

α∈Act(s)

∑
s′∈S

P[s, α, s′] · F (s′, I) otherwise,

(4.5)

where for s ∈ S, z ∈ R>0, I ∈ I(R>0):

f(s, I, z) =

z∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · F (s′, I ⊖ τ)dτ

It turns out that there exists an optimal scheduler for Problem 1 that has a very
simple structure. Namely, it only needs to know the current state and the amount
of time passed from the beginning. We start with a definition.
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Definition 4.1.1. We say that a generic measurable scheduler π ∈ Πµ is
timed-memoryless if

− π is not randomized, i. e. ∀ρ ∈ Paths∗, such that ρ↓ ∈ PS, π(ρ) =
∆Act(α), for some α ∈ Act(ρ↓).

− if ρ1, ρ2 ∈ Paths∗, such that ρ1↓ ∈ PS, ρ1↓ = ρ2↓ and τtotal(ρ1) =
τtotal(ρ2), then π(ρ1) = π(ρ2).

The set of all timed-memoryless schedulers is denoted with ΠTM.

Notice that a timed-memoryless scheduler π can be equivalently defined as π :
PS×R>0 → Act. Here the first component refers to the current state and the second
one to the total amount of time passed from the beginning.

Lemma 4.1.3. Given that Φ2 ⇒ Φ1:

− there exists a timed-memoryless scheduler that is optimal for
valMℓ

opt (ψ), ψ = Φ1 U[[a,b]]Φ2,

− the function valMℓ
opt (s, ψ ⊖ t) is a continuous function of t on intervals

[0, a]]]a, [[a, b]], [[[bb,∞), where ψ⊖t := Φ1 U[[a,b]]⊖tΦ2, [[[z is an open bound
if z ∈ [[a, b]] and is a closed bound otherwise, and analogously for ]]]z.

Proof. The proof of this lemma resembles proofs of similar results for CTMDPs (see
[Neu10], Lemma 5.2 and Theorem 5.2 and [Fu14] Theorem 5).

Due to Lemma 4.1.1 for any scheduler π ∈ Πµ and state s ∈ S:

valMℓ
π (s,Φ1 U[[a,b]]Φ2) = valM

[¬Φ1∧¬Φ2]
ℓ

π (s, ttU[[a,b]]Φ2)

Therefore w. l. o. g. we assume that Φ1 = tt. Let E(t, n) = {ρ ∈ Pathsω | prefixϕn(ρ)·
ρ[n] |= ψ ⊖ t}, (see the satisfaction relation defined for finite paths in Lemma 4.1.1,
(4.4)). We define pnopt(s, t) = optπ∈Πµ PrMπ,s [E(t, n)]. Notice that

lim
n→∞

E(t, n) = lim
n→∞

{ρ ∈ Pathsω | prefixϕn(ρ) · ρ[n] |= ψ ⊖ t}

= {ρ ∈ Pathsω | ρ |= ψ ⊖ t}

Due to [ADD00], Theorem 1.2.7(a), for all π ∈ Πµ, s ∈ S:

lim
n→∞

PrMπ,s [E(t, n)] = PrMπ,s [{ρ ∈ Pathsω | ρ |= ψ ⊖ t}] = valMℓ
π (s, ψ ⊖ t)

Let πopt be a scheduler that achieves optimum for valMℓ
opt (ψ ⊖ t). Since the latter

equality holds for all schedulers, then the same holds for scheduler πopt. Consider the
sequence of values {pnopt(s, t)}n∈Z>0

. For each n ∈ Z>0 the value pnopt(s, t) is bounded
by valMℓ

opt (s, ψ ⊖ t) from above if opt = sup, and from below for opt = inf. On the
other hand, since the value pnopt(s, t) is optimal, then pnopt(s, t) <opt PrMπopt,s [E(t, n)].
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Since the sequence {PrMπopt,s [E(t, n)]} converges to valMℓ
opt (s, ψ⊖t), then the sequence

{pnopt(s, t)}n∈Z>0
converges to valMℓ

opt (s, ψ ⊖ t):

lim
n→∞

pnopt(s, t) = valMℓ
opt (s, ψ ⊖ t) (4.6)

Since the set of actions in a Markov automaton is finite, we can define a total
order over the actions. Let ≺ be any such order. For t ∈ R>0, n,m ∈ Z>0 we define
a scheduler πt,mn : PS× R>0 × Z>0 → Act, such that ∀ps ∈ PS, x ∈ R>0, k ∈ Z>0:

πt,mn (ps, x, k)

=


min
≺
{α ∈ Act(ps)} if t+ x > b or

m+ k + 1 > n

min
≺

{
α ∈ arg opt

α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · pn−m−k−1
opt (s′, t+ x)

}
otherwise

Here parameter n refers to the maximal amount of transitions that can be performed.
Parameters t and m denote the amount of time passed and the number of transitions
performed from the beginning of the system run.

We also define a value qn(s, t) = PrM
πt,0n ,s

[E(t, n)]. As the next step we will show
that

lim
n→∞

qn(s, t) = lim
n→∞

pnopt(s, t) (4.7)

The proof proceeds by induction over n. Let n = 0. If s ∈ MS ∩ Sat(Φ2),
then p0opt(s, t) = e−E(s)·(a−t) if t 6 a, p0opt(s, t) = 1 if t > a ∧ [[a, b]] ⊖ t ̸= ∅ and
p0opt(s, t) = 0 otherwise. If s ∈ PS ∩ Sat(Φ2) then p0opt(s, t) = 1 if 0 ∈ [[a, b]] ⊖ t
and p0opt(s, t) = 0 otherwise. If s ∈ Sat(¬Φ2) then ∀t ∈ R>0 : p0opt(s, t) = 0. In all
these cases the value of p0opt(s, t) does not depend on any scheduler and therefore
∀s ∈ S, t ∈ R>0 : p0opt(s, t) = q0(s, t).

Consider n > 0, s ∈ MS ∩ Sat(¬Φ2). Then

pnopt(s, t) = Ω(pn−1
opt (s, t))

=

b−t∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · pn−1
opt (s′, t+ τ)dτ

=

b−t∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · qn−1(s′, t+ τ)dτ

=

b−t∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · PrM
πt+τ,0n−1 ,s′

[E(t+ τ, n− 1)] dτ

=

b−t∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · PrM
πt+τ,1n ,s′

[E(t+ τ, n− 1)] dτ

= PrM
πt,0n ,s

[E(t, n)] dτ = qn(s, t)
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And analogously for s ∈ MS ∩ Sat(Φ2). Consider s ∈ PS ∩ Sat(Φ2). If 0 ∈ [[a, b]]⊖t,
then pnopt(s, t) = 1 = qn(s, t). Otherwise:

pnopt(s, t) = Ω(pn−1
opt (s, t)) = opt

α∈Act(s)

∑
s′∈S

P[s, α, s′] · pn−1
opt (s′, t)

=
∑
s′∈S

P[s, πt,0n (s, 0, 0), s′] · pn−1
opt (s′, t) =

∑
s′∈S

P[s, πt,0n (s, 0, 0), s′] · qn−1(s′, t)

=
∑
s′∈S

P[s, πt,0n (s, 0, 0), s′] · PrM
πt,0n−1,s

′ [E(t, n− 1)]

=
∑
s′∈S

P[s, πt,0n (s, 0, 0), s′] · PrM
πt,1n ,s′

[E(t, n− 1)]

= PrM
πt,0n ,s

[E(t, n)] = qn(s, t)

The induction above shows that ∀n ∈ Z>0 : pnopt(s, t) = qn(s, t) and therefore

lim
n→∞

qn(s, t) = lim
n→∞

pnopt(s, t) = valMℓ
opt (s, ψ ⊖ t)

Next we will show that lim
n→∞

qn(s, t) = valMℓ

πt∗
(s, ψ ⊖ t), where

πt∗(ps, x)

=


min
≺
{α ∈ Act(ps)} if t+ x > b

min
≺

{
α ∈ arg opt

α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · valMℓ
opt (s

′, ψ ⊖ (t+ x))

}
otherwise

We have mentioned before that limn→∞E(t, n) = {ρ ∈ Pathsω | ρ |= ψ ⊖ t}. It
is left to prove that limn→∞ πt,0n = πt∗. For t, x ∈ R>0, s. t. t + x > b schedulers
πt,0n and πt∗ choose the minimal action (w. r. t. ≺) from the set Act(ps) and thus
the selected actions are the same. Consider such values of t and x, that t + x 6 b,
ps ∈ PS, k ∈ Z>0, k + 1 6 n. Then

lim
n→∞

opt
α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · pn−k−1
opt (s′, t+ x)

= opt
α∈Act(ps)

lim
n→∞

∑
s′∈S

P[ps, α, s′] · pn−k−1
opt (s′, t+ x)

= opt
α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · lim
n→∞

pn−k−1
opt (s′, t+ x)

= opt
α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · valMℓ
opt (s

′, ψ ⊖ (t+ x))

Therefore the following sets are equal:

arg opt
α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · pn−k−1
opt (s′, t+ x)

=
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arg opt
α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · valMℓ
opt (s

′, ψ ⊖ (t+ x))

Since the sets of actions coincide, so do their minimums w. r. t. order ≺ and therefore
in this case the actions selected by the two schedulers coincide. In the limit when
n → ∞ condition k + 1 > n never happens and therefore limn→∞ πt,0n (ps, x, k) =
πt∗(ps, x).

We have thus shown that ∀t ∈ R>0 :

valMℓ
opt (s, ψ ⊖ t) = lim

n→∞
pnopt(s, t) = lim

n→∞
qn(s, t) = valMℓ

πt∗
(s, ψ ⊖ t)

Therefore the scheduler π0∗ is optimal for valMℓ
opt (ψ). Next we will show that function

valMℓ
opt (ψ) is piecewise-continuous within intervals I0 = [0, a]]]a, I1 = [[a, b]], I2 =

[[[bb,∞). Lemma A.2 shows that ∀n ∈ Z>0, s ∈ S functions pnopt(s, t) are piecewise-
continuous in t, and more specifically, that:

∀s ∈ S, δ > 0, t, t′ ∈ Im,m ∈ {0, 1, 2}, |t− t′| < δ,

∃C ∈ R>0 :
∣∣pnopt(s, t)− pnopt(s, t

′)
∣∣ 6 C · δ

Taking the limit from both sides of the latter equation and taking into account
(4.6) we conclude that the same holds for valMℓ

opt (s, ψ ⊖ t), what proves the second
statement of the lemma.

It is left to show that the scheduler is measurable. As we have just shown,
function valMℓ

opt (s, ψ ⊖ t) is piecewise-continuous as a function of t, which implies
that the function is measurable w. r. t. the Lebesgue measure on the Borel sigma-
algebra B(R>0). Therefore for any s ∈ PS, α ∈ Act(s) the function f(s, t, α) =∑

s′∈S P[s, α, s′] · valMℓ
opt (s

′, ψ ⊖ t) is a continuous function of t and thus measurable.
Scheduler π0∗ selects such an action, that achieves an optimum over α ∈ Act(s) of
values f(s, t, α). Since the number of enabled actions is finite and maximum/mini-
mum of a measurable function is measurable, then the function optα∈Act(s) f(s, t, α)
is measurable. The order ≺ ensures that a unique action is selected and therefore
scheduler π0∗ is measurable and timed-memoryless.

In the next step we will show that one can reduce the solution of Problem 1
for formula ttU[[a,b]]Φ2 to solving at most two instances of Problem 1 for a formula
ttU=cΦ2. We start with defining the latter as a separate value.

Time-bounded Reachability for a Goal Function. First of all, we introduce
the notion of a goal function. Reachability properties of CSL denote the probability
to reach (under certain restrictions) any state from a given subset of the total state-
space. The latter is usually called the goal set and states from this set are called
goal states. For the problems that we consider in this chapter we need a possibility
to assign to goal states arbitrary weights within [0, 1] range. To achieve this we
introduce the notion of a goal function:

Definition 4.1.2. We say that function g is a goal function if it is a possibly
partial function with a non empty domain and such that g(s) ∈ [0, 1] for each
state s in the domain of g.
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Goal functions generalise the notion of goal states in the following way. If g is
defined for a state s, then s is a goal state, even if g(s) = 0. If g is undefined for a
state s, then s is not a goal state.

Definition 4.1.3. Let M be a Markov automaton, s ∈ S, π ∈ Πµ, b ∈ R>0
and g be a goal function, such that s ∈ dom(g) ⇒ s is Markovian. The
(time-bounded) reachability probability (of state s for the goal function g) is
defined as follows:

valMπ (s, b, g) :=
∑

s′∈dom(g)

PrMπ,s
[
ttU=baps′

]
· g(s′)

The optimal (time-bounded) reachability probability is defined as:

valMopt(s, b, g) := optπ∈ΠµvalMπ (s, b, g) (4.8)

We denote by valMπ (b, g) the vector of values valMπ (s, b, g) for all states s ∈ S and
analogously the vector of optimal values is denoted as valMopt(b, g). For the above
definitions we will omit the superscriptM whenever the Markov automaton under
consideration is clear from the context. The definition of (ϵ-)optimal scheduler for
valMopt(b, g) is analogous to that of valMℓ

opt (s, ψ).
The fixpoint characterisation of value valMopt(b, g) is obtained from the fixpoint

characterisation of value valMℓ
opt (ttU=bΦ2) (Lemma 4.1.2) by substituting the value

1, assigned to each goal state s whenever the formula is satisfied, to value g(s).
Below we write it down explicitly:

Lemma 4.1.4 (Fixpoint Characterisation). Let M be an MA, g be a goal
function, then valMopt(s, b, g) is a function of b ∈ R>0, which is the least fixpoint
of the higher-order operator Ω : (S×R>0 → [0, 1])→ (S×R>0 → [0, 1]), where

Ω(F )(s, t) =



g(s) if t = 0 ∧ s ∈ dom(g)

e−E(s)·t · g(s) · 1dom(g)(s)+ if t > 0 ∧ s ∈ MS
t∫
0

E(s) · e−E(s)·τ ∑
s′∈S

P[s, s′] · F (s′, t− τ)dτ

opt
α∈Act(s)

∑
s′∈S

P[s, α, s′] · F (s′, t) if s ∈ PS ∧

(t > 0 ∨ s ̸∈ dom(g))

0 in all other cases,
(4.9)

Analogously to Lemma 4.1.3 it can be shown that there exist an optimal timed-
memoryless scheduler that attains values valMopt(b, g):

Lemma 4.1.5. There exists a timed-memoryless scheduler that is optimal
for valopt(b, g).
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In the following we will show that computing valMℓ
opt (ttU[[a,b]]Φ2) can be reduced

to computing at most two instances of valMopt(s, c, g). The solution will depend on
the exact values of a, b and the bounds of the interval. We will consider separately
various combinations of these values.

We will often use the goal function that assigns value 1 to all the states that
satisfy Φ2 and is undefined otherwise. Formally gΦ2 is a goal function, such that

gΦ2(s) :=

{
1 if s ∈ Sat(Φ2)

undefined otherwise

Case ψ = ttU[0,b]]Φ2, b > 0

Lemma 4.1.6. For any π ∈ Πµ, s ∈ S, b ∈ R>0:

valMℓ
π (s, ttU[0,b]]Φ2) = valM[Φ2]

π (s, b, gΦ2)

Proof. First of all, notice that since all states in Sat(Φ2) are Markovian in M[Φ2],
then PrM[Φ2]

π,s

[
ttU=bΦ2

]
is the transient probability of being in one of the states

that satisfy Φ2 at time b and therefore:

valM
[Φ2]
ℓ

π (s, ttU=bΦ2) = PrM[Φ2]

π,s

[
ttU=bΦ2

]
=

∑
s∈Sat(Φ2)

PrM[Φ2]

π,s

[
ttU=baps

]
= valM[Φ2]

π (s, b, gΦ2)

It therefore suffices to show that valMℓ
π (s, ttU[0,b]]Φ2) = valM

[Φ2]
ℓ

π (s, ttU=bΦ2).
First consider the case of [0, b]] = [0, b]. In this case the proof is analogous

to respective results for similar models, e. g. CTMC [BHHK03]. If a finite path
reaches a state satisfying Φ2 inMℓ within time [0, b], then the same path is possible
inM[Φ2]

ℓ . Since states in Sat(Φ2) are absorbing inM[Φ2]
ℓ , then they are Markovian.

Thus upon entering such a state ms at time point t 6 b the path never leaves ms
and with probability 1 the total time will reach b. Similarly in the other direction.
If a finite path ρ in M[Φ2]

ℓ passes through a state s ∈ Sat(Φ2) at time b, then
there exists a time point t 6 b at which this state has been entered for the first
time. Then a finite path ρ′ = prefixϕt (ρ) · s is also a finite path in Mℓ and any of
its infinite extensions from Cyl(ρ′) satisfy ttU[0,b]Φ2. The probabilities of the two
events depend only on what happened before a state in Φ2 is encountered for the
first time, and those prefixes coincide for the two considered events.

The case of [0, b) is reduced to [0, b] due to the fact that the probability of
performing a Markovian transition within a non-empty interval [[c, d]] is the same
as the probability to perform it within interval [c, d], for any c, d ∈ R>0.
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Case ψ = ttU(0,b]]Φ2, b > 0

The main idea to solve this case is to reduce the problem to the previous one,
i. e. to solving the problem for interval [0, b]]. However just changing the interval
from (0, b]] to [0, b]] is not correct in general. For example, if there exist probabilistic
states that satisfy Φ2, then paths that reach such states at time point 0 satisfy
ttU[0,b]]Φ2, however they do not necessarily satisfy ttU(0,b]]Φ2. Markovian states
do not pose the same problem because the probability to leave a Markovian state
immediately, i. e. after residing 0 time units, is 0. Thus paths that reach at time
point 0 a Markovian state that satisfy Φ2 will satisfy ttU[0,b]]Φ2 with probability 1.

We solve the issue posed by probabilistic states that satisfy Φ2 by creating
new probabilistic states that are exact copies of the original ones - i. e. have the
same outgoing transitions - however do not have any of their labels. This way if a
probabilistic state ps satisfies formula Φ2, then its copy, denoted with cp(ps), does
not satisfy Φ2. If a path from cp(ps) satisfies ttU[0,b]]Φ2, then the respective path
from ps satisfies ttU(0,b]]Φ2 and vice versa.

Formally, the state-space with new copy states is defined as S ⊎Scp, where
Scp = {pscp | ps ∈ PSM}. If s ∈ PSM we will denote with cp(s) its copy
state scp , and if s ∈ MSM, then cp(s) = s. The Markov automaton with
new copy states is defined as follows: cp(Mℓ) := (cp(M), cp(AP ), cp(lab)). Here
cp(M) = (S ⊎Scp,Act, 99Kcp,R), 99Kcp = 99K⊎{(pscp, α, µcp) | (ps, α, µ) ∈ 99K},
µcp = [cp(s) → µ(s) | s ∈ S], cp(AP ) = AP ⊎{appscp | pscp ∈ Scp}, ∀s ∈ S :
cp(lab)(s) = lab(s) and ∀pscp ∈ Scp : cp(lab)(pscp) = {appscp}.

For a scheduler π ∈ ΠM
TM we define a scheduler cp(π) ∈ Π

cp(M)
TM as follows: ∀ps ∈

PSM, t ∈ R>0 : cp(π)(ps, t) = π(ps, t) and ∀pscp ∈ Scp, t ∈ R>0 : cp(π)(pscp, t) =
π(ps, t).

Lemma 4.1.7. For any timed-memoryless π, s ∈ S and b ∈ R>0:

valMℓ
π (s, ttU(0,b]]Φ2) = valMcp,[Φ2]

cp(π) (cp(s), b, gΦ2),

where Mcp,[Φ2] = (cp(M))[Φ2].

Proof. It suffices to prove that valMℓ
π (s, ttU(0,b]]Φ2) = valcp(Mℓ)

cp(π) (cp(s), ttU[0,b]]Φ2).
Given this we can apply Lemma 4.1.6 to the latter and obtain

valcp(Mℓ)
cp(π) (cp(s), ttU[0,b]]Φ2) = valMcp,[Φ2]

cp(π) (cp(s), b, gΦ2)

This proves the statement of the lemma.
Consider a set of paths {ρ | ρ |= ttU=0Φ2}. We can use the following represen-

tation:

{ρ | ρ |= ttU[0,b]]Φ2} = {ρ | ρ |= ttU(0,b]]Φ2} ∪ {ρ | ρ |= ttU=0Φ2} (4.10)

For Markovian states the probability of leaving the state immediately upon en-
try, i. e. after residence time 0, is 0. Therefore for a state ms ∈ MS the measure
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PrMπ,ms
[
{ρ | ρ |= ttU=0Φ2}

]
= 0 = Prcp(M)

cp(π),ms
[
{ρ | ρ |= ttU=0Φ2}

]
. Due to (4.10)

this implies that

PrMπ,ms
[
{ρ | ρ |= ttU(0,b]]Φ2}

]
= PrMπ,ms

[
{ρ | ρ |= ttU[0,b]]Φ2}

]
= Prcp(M)

cp(π),ms

[
{ρ | ρ |= ttU[0,b]]Φ2}

]
Consider a probabilistic state ps ∈ PS and formula

ΦMS
2 = ∨

s∈MS∩ Sat(Φ2)
aps

Due to the discussion above the following holds:

PrMπ,ps
[
{ρ | ρ |= ttU(0,b]]ΦMS

2 }
]
= PrMπ,ps

[
{ρ | ρ |= ttU[0,b]]ΦMS

2 }
]

However if there exists a probabilistic state s ∈ Sat(Φ2) reachable from ps in time
0 with non-zero probability, then it does not necessarily hold that

PrMπ,ps
[
{ρ | ρ |= ttU(0,b]]Φ2}

]
= PrMπ,ps

[
{ρ | ρ |= ttU[0,b]]Φ2}

]
We will show that

PrMπ,ps
[
{ρ | ρ |= ttU(0,b]]Φ2}

]
= Prcp(M)

cp(π),cp(ps)

[
{ρ | ρ |= ttU(0,b]]Φ2}

]
= Prcp(M)

cp(π),cp(ps)

[
{ρ | ρ |= ttU[0,b]]Φ2}

] (4.11)

Let ρ = s0
ν0,t0−−−→ s1

ν1,t1−−−→ · · · be an infinite path inM and i ∈ Z>0 ⊎{∞} is the index
of the first Markovian state appearing on the path, or∞ if no such state exists. We
define a one-to-one mapping from paths in M to those paths in cp(M), that origi-
nate from a copy state as follows: cp(ρ) = cp(s0)

ν0,t0−−−→ cp(s1) · · · cp(si−1)
νi−1,ti−1−−−−−−→

si · · · , i. e. all the probabilistic states appearing on the path before index i are sub-
stituted with their copies, while all the other states are preserved, as well as all the
transitions selected along the path and time delays.

We start with proving the first equality of (4.11). If ρ |=M ttU(0,b]]Φ2, then there
exists a state s ∈ S and t ∈ (0, b]], such that s |=M Φ2 and s ∈ ρ@t. Since t > 0,
then at least one Markovian state appears on the path before time t and therefore
s ∈ cp(ρ)@t and consequently cp(ρ) |=cp(M) ttU(0,b]]Φ2. And analogously in the
other direction. Notice, that the probability measure Prcp(M)

cp(π),cp(ps) [·] assigns non-
zero probability only to those sets of paths that start from the copy state cp(ps).
Thus paths starting from a non-copy state ps in cp(M) may satisfy ttU[0,b]]Φ2,
however have no effect on the probability value. This proves the statement.

Next we prove the second equality of (4.11). The set {ρ ∈ Pathsω(cp(M)) | ρ |=
ttU[0,b]]Φ2, ρ[0] ∈ Scp} may contain more paths than set {ρ ∈ Pathsω(cp(M)) | ρ |=
ttU(0,b]]Φ2, ρ[0] ∈ Scp}. Namely, there may be paths that start from a copy state
and satisfy ttU=0Φ2, however they do not satisfy ttU(0,b]]Φ2. In cp(M) copy states
do not satisfy Φ2 and therefore a path that starts from a copy state can only satisfy
formula ttU=0Φ2 after it has visited at least one Markovian state. Since residence
times in Markovian states can take value 0 only with probability 0, then the measure
of this set of paths is 0. This proves the second equality.

57



4. Time-Bounded Reachability

Case ψ = ttU[[a,b]]Φ2, b > a > 0

For this case we will first show that analysing interval [[a, b]] and its closure [a, b]
produce the same results.

Lemma 4.1.8. Let Mℓ be a labelled Markov automaton. For any timed-
memoryless scheduler π, state s ∈ S:

valMℓ
π (s, ttU[[a,b]]Φ2) = valMℓ

π (s, ttU[a,b]Φ2) (4.12)

Proof. At first we separate the Markovian part of Φ2:

ΦMS
2 = ∨

s∈MS∩ Sat(Φ2)
aps

Let n ∈ Z>0 and ∀i = 0..n : Ii ∈ I(R>0), Si ⊆ S. We define

S0
I0−→ S1

I1−→ · · · In−1−−−→ Sn

= {ρ = s0
α0,t0−−−→ s1

α1,t1−−−→ · · · αn−1,tn−1−−−−−−→ sn | ∀i = 0..n : si ∈ Si, ti ∈ Ii,
αi = π(si, τtotal(ρ, i) if si ∈ PS, αi = E(si) if si ∈ MS}

Let ψ = ttU[[a,b]]Φ2, ψ′ = ttU[a,b]Φ2. Consider the set of paths {ρ ∈ Pathsω | ρ |=
ψ′′}, ψ′′ ∈ {ψ,ψ′}. This set can be represented as a countable union of sets
Cyl(S0

I0−→ S1
I1−→ · · · In−1−−−→ Sn). To achieve this, first we need to split all the

paths satisfying ψ′′ according to the number of transitions performed until ψ′′ is
satisfied. Each of the latter sets can in turn be represented as a union over all
possible intervals with rational bounds, at which transitions occur. Each possible
transition time will be included in at least one of such intervals. All the paths that
satisfy ψ′′ within 0 transitions are: E0 = Cyl(Sat(ΦMS

2 )
(a,∞)−−−→ S). There are no

paths starting from probabilistic states because 0 ̸∈ [a, b], and therefore 0 ̸∈ [[a, b]].
All the paths that satisfy ψ′′ within 1 transition are:

E1 = Cyl(MS
Iψ′′
−−→ Sat(Φ2)) ∪ Cyl(PS [0,0]−−→ Sat(ΦMS

2 )
(a,∞)−−−→ S)

∪

 ∪
r1<r2Ea
r1,r2∈Q>0

Cyl(MS [r1,r2]−−−−→ Sat(ΦMS
2 )

(a−r1,∞)−−−−−−→ S)

 ,

where for ψ′′ = ttU[[a,b]]Φ2 : Iψ′′ = [[a, b]], for ψ′′ = ttU[a,b]Φ2 : Iψ′′ = [a, b], and
E =< if a ∈ Iψ′′ , E =6 otherwise.

And similarly we can define the sets of paths En that satisfy ψ′′ within n tran-
sitions, n ∈ Z>0, n > 2. Notice that these sets are not necessarily disjoint. This
representation is analogous to the similar result for CTMCs [Pan09].

Next we will consider the difference between such a representation for formula
ψ and the one for ψ′ on the example of the sets of paths in E1. The same argument
extends to En. Notice that the difference between the two representations, one
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for formula ψ and the one for ψ′, is in the transition intervals. More specifically,
only in intervals of transition times for Markovian states. Namely, some of those
intervals have closed bounds for ψ′ and may have open bounds for ψ. Additionally,
the intervals [r1, r2] do not include point a if a ∈ Iψ′′ and do include this point
otherwise. We will first show that whether a is included in intervals [r1, r2] or not
does not affect the probability measure. If a ̸∈ Iψ, then:

∪
r1<r26a
r1,r2∈Q>0

Cyl(MS [r1,r2]−−−−→ Sat(ΦMS
2 )

(a−r1,∞)−−−−−−→ S)

= ∪
r1<r2<a
r1,r2∈Q>0

Cyl(MS [r1,r2]−−−−→ Sat(ΦMS
2 )

(a−r1,∞)−−−−−−→ S)

∪ Cyl(MS [a,a]−−→ Sat(ΦMS
2 )

(a−r1,∞)−−−−−−→ S)

The same sets for ψ′ do not include Cyl(MS [a,a]−−→ Sat(ΦMS
2 )

(a−r1,∞)−−−−−−→ S). Since the
probability to perform a Markovian transition at exactly time point a is 0, then the
set Cyl(MS [a,a]−−→ Sat(ΦMS

2 )
(a−r1,∞)−−−−−−→ S) has measure 0.

It is left to prove that the probability measure does not depend on whether
the bounds of transition intervals are closed or open. First, notice that the prob-
ability measure of the union of two events A and B has the following property:
PrMπ,s [A ∪B] = PrMπ,s [A] + PrMπ,s [B] − PrMπ,s [A ∩B], and analogously for unions of

more than two sets. Intersection of multiple sets Ei = Cyl(Si0
Ii0−→ Si1

Ii1−→ · · ·
Iin−1−−−→

Sin) is either empty, or is once again the set that can be represented as a union
of sets Cyl(S0

I0−→ S1
I1−→ · · · In−1−−−→ Sn). Therefore we only need to show that the

probability measure of the set Cyl(S0
I0−→ S1

I1−→ · · · In−1−−−→ Sn) does not depend on
the type of bounds of intervals Ik for Markovian states. This, however, follows from
the definition of the probability measure and properties of integrals. This proves
the statement of the lemma.

Let π be a timed-memoryless scheduler and a ∈ R>0. We define a scheduler π+a
as follows: ∀s ∈ S, t ∈ R>0 : π+a(s, t) := π(s, t+ a).

Lemma 4.1.9. For any timed-memoryless scheduler π, state s ∈ S:

valMℓ
π (s, ttU[a,b]Φ2) =

∑
ms∈MS

valMℓ
π (s, ttU=aapms) · valM

[Φ2]

ℓ

π+a (ms, ttU=b−aΦ2)

(4.13)

Proof. If a path ρ satisfies formula ttU[a,b]Φ2, then τtotal(ρ) > a and therefore all
such paths visit some states at time point a. We will split all these paths into several
sets, according to states that they pass through at time point a. For a state s ∈ S
we define the following event:

E=a(s) := {ρ ∈ Pathsω | ρ |= ttU=aaps}
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Let ps ∈ PS and ρ ∈ E=a(ps). It is possible that a path that satisfies ttU=aapps
does not visit any Markovian state starting from time point a. Since we only consider
non-Zeno Markov automata, the measure of the event consisting of all such paths
is 0. Consider ρ ∈ E=a(ps), such that there exists a Markovian state visited along
ρ after time point a. The first Markovian state entered after leaving ps will be
entered at the same time as ps, since residence times in probabilistic states are 0.
Thus ∃ms ∈ MS : ρ ∈ E=a(ms). Therefore for every probabilistic state ps each
path ρ ∈ E=a(ps) either belongs to some E=a(ms),ms ∈ MS, or belongs to a set of
measure 0.

Taking this into account we can represent the set of paths satisfying ttU[a,b]Φ2

as follows:

{ρ ∈ Pathsω | ρ |= ttU[a,b]Φ2}

= ∪
ms∈MS

(
{ρ ∈ Pathsω | ρ |= ttU[a,b]Φ2} ∩ E=a(ms)

)
∪ (all the rest of measure 0)

Next we consider the probability of this event:

PrMℓ
π,s

[
ttU[a,b]Φ2

]
= PrMℓ

π,s

[
∪

ms∈MS

(
{ρ ∈ Pathsω | ρ |= ttU[a,b]Φ2} ∩ E=a(ms)

)]
+ 0

=
∑

ms∈MS
PrMℓ

π,s

[
{ρ ∈ Pathsω | ρ |= ttU[a,b]Φ2} ∩ E=a(ms)

]
−

∑
ms1,ms2∈MS
ms1 ̸=ms2

PrMℓ
π,s

[
{ρ ∈ Pathsω | ρ |= ttU[a,b]Φ2} ∩ E=a(ms1) ∩ E=a(ms2)

]

+
∑

ms1,ms2,ms3∈MS
ms1 ̸=ms2 ̸=ms3

· · ·

Notice that for ms1 ̸= ms2 ̸= · · · ≠ msn:

PrMℓ
π,s [E=a(ms1) ∩ · · · ∩ E=a(msn)] = 0

Therefore

PrMℓ
π,s

[
ttU[a,b]Φ2

]
=

∑
ms∈MS

PrMℓ
π,s

[
ttU[a,b]Φ2 ∩ E=a(ms)

]
=

∑
ms∈MS

PrMℓ
π,s [E=a(ms)] · PrMℓ

π,s

[
ttU[a,b]Φ2 | E=a(ms)

]
=

∑
ms∈MS

PrMℓ
π,s [ttU=aapms] · PrMℓ

π,s

[
ttU[a,b]Φ2 | ttU=aapms

]
=

∑
ms∈MS

PrMℓ
π,s [ttU=aapms] · PrMℓ

π+a,ms

[
ttU[0,b−a]Φ2

]
(Lemma 4.1.6)

=
∑

ms∈MS
PrMℓ

π,s [ttU=aapms] · PrM
[Φ2]
ℓ

π+a,ms

[
ttU=b−aΦ2

]
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All the results shown above lead to the following conclusion:

Lemma 4.1.10. Let ψ = Φ1 U[[a,b]]Φ2. If Φ2 ⇒ Φ1, then

valMℓ
opt (s,Φ1 U[[a,b]]Φ2) =


valM[¬Φ1∨Φ2]

opt (s, b, gΦ2) if [[a, b]] = [0, b]]

valMcp

opt (cp(s), b, gΦ2) if [[a, b]] = (0, b]]

valM[¬Φ1∧¬Φ2]

opt (s, a, g) if b > a > 0

where

Mcp =
(

cp(M[¬Φ1∧¬Φ2])
)[Φ2]

g(s) =

{
valM[¬Φ1∨Φ2]

opt (s, b− a, gΦ2) if s ∈ MSM or s |= ¬Φ1 ∧ ¬Φ2

undefined otherwise

Proof. Let Ψ be a state formula. Consider MA M and M[Ψ]. Notice that every
timed-memoryless scheduler π of M is also a valid timed-memoryless scheduler in
M[Ψ], since by definition, the MA M[Ψ] has only a subset of probabilistic states
present in M. On the other hand a timed-memoryless scheduler π[ψ] in M[Ψ] does
not define a scheduler inM. Namely, if there exists a state s inM, such that s ∈ PS
and s ∈ Sat(Ψ), then this state becomes Markovian in M[Ψ]. Thus scheduler π[ψ]
is not defined for s and cannot be applied to M. We will extend scheduler π[ψ] so
that it becomes a valid scheduler inM as follows. Let ≺ be some total order on the
set Act. We define a new scheduler π[ψ]ext in M, such that ∀ps ̸∈ Sat(Ψ), t ∈ R>0 :

π
[ψ]
ext(ps, t) = π[ψ](ps, t) and ∀ps ∈ Sat(Ψ), t ∈ R>0 : π

[ψ]
ext(ps, t) = min≺ Act(ps).

Thus, on all the state-time pairs on which scheduler π[ψ] is defined, scheduler π[ψ]ext

takes the same action. And in all other cases it takes the minimal enabled action
according to order ≺.

Let M′
ℓ =M

[¬Φ1∧¬Φ2]
ℓ and M′ =M[¬Φ1∧¬Φ2]. Due to Lemma 4.1.1 the follow-

ing holds:

∀π ∈ ΠMℓ
TM : valMℓ

π (s,Φ1 U[[a,b]]Φ2) = valM
′
ℓ

π (s, ttU[[a,b]]Φ2) (4.14)

Consider the case of [[a, b]] = [0, b]]:

∀π ∈ ΠM
TM :

valMℓ
π (s,Φ1 U[0,b]]Φ2)

(4.14)
= valM

′
ℓ

π (s, ttU[0,b]]Φ2)

Lemma 4.1.6
= valM′[Φ2]

π (s, b, gΦ2) = valM[¬Φ1∨Φ2]

π (s, b, gΦ2)

(4.15)

Let π∗ be a scheduler in M, that is optimal for valMℓ
opt (Φ1 U[0,b]]Φ2). Then

valMℓ
opt (s,Φ1 U[0,b]]Φ2) = valMℓ

π∗ (s,Φ1 U[0,b]]Φ2)
(4.15)
= valM[¬Φ1∨Φ2]

π∗ (s, b, gΦ2)

6 valM[¬Φ1∨Φ2]

opt (s, b, gΦ2)
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Let π∗∗ be a scheduler inM[¬Φ1∨Φ2] that is optimal for valM[¬Φ1∨Φ2]

opt (b, gΦ2) and π∗∗ext
is its extension onM, obtained as described above. Then:

valM[¬Φ1∨Φ2]

opt (s, b, gΦ2) = valM[¬Φ1∨Φ2]

π∗∗ (s, b, gΦ2) = valM[¬Φ1∨Φ2]

π∗∗
ext

(s, b, gΦ2)

(4.15)
= valMℓ

π∗∗
ext

(s,Φ1 U[0,b]]Φ2) 6 valMℓ
opt (s,Φ1 U[0,b]]Φ2)

Thus
valMℓ

opt (s,Φ1 U[[a,b]]Φ2) = valM[¬Φ1∨Φ2]

opt (s, b, gΦ2)

Consider the case of [[a, b]] = (0, b]]. Due to Lemma 4.1.7:

∀π ∈ ΠMℓ
TM : valM

′
ℓ

π (s, ttU(0,b]]Φ2) = valMcp
cp(π)(cp(s), b, gΦ2),

Analogously to the previous case we can show that:

valMℓ
opt (s,Φ1 U(0,b]]Φ2) = valMℓ

π∗ (s,Φ1 U(0,b]]Φ2) = valMcp
cp(π∗)(cp(s), b, gΦ2)

6 valMcp
opt (cp(s), b, gΦ2)

Next we will prove the other direction: valMℓ
opt (s,Φ1 U(0,b]]Φ2) > valMcp

opt (cp(s), b, gΦ2).
Notice, that according to the fixpoint characterisation (4.9), the equations for the
probabilistic states and their copy-states are the same, and therefore their optimal
values and optimal actions that attain these values coincide. Thus, there exists
an optimal timed-memoryless scheduler π∗∗cp for valMcp

opt (b, gΦ2), such that ∀ps ∈
PSMcp , t ∈ R>0 : π∗∗cp(ps, t) = π∗∗cp(cp(ps), t). Notice that π∗∗cp is a valid scheduler in
M′, since PSM′ ⊆ PSMcp , and also π∗∗cp = cp(π∗∗cp). Let π∗∗ be an extension of π∗∗cp
fromM′ toM. Then:

valMcp
opt (cp(s), b, gΦ2) = valMcp

π∗∗
cp

(cp(s), b, gΦ2) = valMcp
cp(π∗∗

cp )
(cp(s), b, gΦ2)

Lemma 4.1.7
= valM

′
ℓ

π∗∗
cp
(s, ttU(0,b]]Φ2) = valM

′
ℓ

π∗∗ (s, ttU(0,b]]Φ2)

(4.14)
= valMℓ

π∗∗ (s,Φ1 U(0,b]]Φ2) 6 valMℓ
opt (s,Φ1 U(0,b]]Φ2)

We have thus shown that

valMℓ
opt (s,Φ1 U(0,b]]Φ2) = valMcp

opt (cp(s), b, gΦ2)

Consider the case of a > 0. Due to (4.14) and Lemmas 4.1.8 and 4.1.9:

∀π ∈ Π
M′

ℓ
TM :

valM
′
ℓ

π (s, ttU[[a,b]]Φ2) = valM
′
ℓ

π (s, ttU[a,b]Φ2)

=
∑

ms∈MSM′
ℓ

valM
′
ℓ

π (s, ttU=aapms) · valM
′[Φ2]
ℓ

π+a (ms, ttU=b−aΦ2)

=
∑

ms∈MSM′
ℓ

valM
[¬Φ1∧¬Φ2]
ℓ

π (s, ttU=aapms) · valM
[¬Φ1∨Φ2]
ℓ

π+a (ms, b− a, gΦ2)

= valM
[¬Φ1∧¬Φ2]
ℓ

π (s, a, gπ),
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where

gπ(s) =

valM
[¬Φ1∨Φ2]
ℓ

π+a (ms, b− a, gΦ2) if ms ∈ MSM[¬Φ1∧¬Φ2]
ℓ

undefined otherwise

Thus for a > 0:

∀π ∈ ΠMℓ
TM : valMℓ

π (s,Φ1 U[[a,b]]Φ2) = valM
[¬Φ1∧¬Φ2]
ℓ

π (s, a, gπ),

Since this holds for all schedulers, it also holds for a scheduler π∗ that is optimal
for valMℓ

opt (Φ1 U[[a,b]]Φ2), and therefore:

valMℓ
opt (s,Φ1 U[[a,b]]Φ2) = valMℓ

π∗ (s,Φ1 U[[a,b]]Φ2) = valM
[¬Φ1∧¬Φ2]
ℓ

π∗ (s, a, gπ∗)

6 valM
[¬Φ1∧¬Φ2]
ℓ

π∗ (s, a, g) 6 valM
[¬Φ1∧¬Φ2]
ℓ

opt (s, a, g)

Let πin be an optimal timed-memoryless scheduler for valM[¬Φ1∨Φ2]

opt (b−a, gΦ2). Since
valM[¬Φ1∨Φ2]

opt (b− a, gΦ2) = valM[¬Φ1∨Φ2]

opt (ttU=b−aΦ2), then it is also optimal for the
latter. Let πin,ext be an extension of πin from M[¬Φ1∨Φ2] to M[¬Φ1∧¬Φ2] as de-
scribed in the beginning of this proof. Consider a timed-memoryless scheduler
πout that is optimal for valM[¬Φ1∧¬Φ2]

opt (a, g). We will build a new scheduler for
M[¬Φ1∧¬Φ2] by composing the scheduler for the inner problem with the one for
the outer problem. Consider a timed-memoryless scheduler π in M[¬Φ1∧¬Φ2], such
that ∀ps ∈ PSM[¬Φ1∧¬Φ2] , t ∈ [a, b] : π(ps, t) = πin,ext(ps, t − a), ∀t ∈ [0, b − a) :
π(ps, t) = πout(ps, t). Then:

valM
[¬Φ1∧¬Φ2]
ℓ

opt (s, a, g) = valM
′
ℓ

opt (s, a, g)

=
∑

ms∈MSM′
ℓ

valM
′
ℓ

πout(s, ttU=aapms) · valM
′[Φ2]
ℓ

πin,ext (ms, ttU=b−aΦ2)

=
∑

ms∈MSM′
ℓ

valM
′
ℓ

π (s, ttU=aapms) · valM
′[Φ2]
ℓ

π+a (ms, ttU=b−aΦ2)

= valM
′
ℓ

π (s, ttU[[a,b]]Φ2) = valM
′
ℓ

πext(s, ttU[[a,b]]Φ2)

(4.14)
= valMℓ

πext(s,Φ1 U[[a,b]]Φ2) 6 valMℓ
opt (s,Φ1 U[[a,b]]Φ2)

This concludes the proof.

The Lemma above shows that solution to Problem 1 can be obtained if given a way
to compute the values valMopt(s, b, g). This is going to be the topic of the following
sections.

4.2 Optimal Time-Bounded Reachability Problem
We have discussed above that the problem of model-checking a time-bounded reach-
ability formula can be reduced to computing a few instances of value valMopt(b, g). In
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this section we study the computation of valMopt(b, g) as a separate problem, reiter-
ate over known facts related to valMopt(b, g) and introduce new concepts that will be
useful in the next section, where we present a novel solution for the computation of
valMopt(b, g).

Problem 2 (Time-Bounded Reachability Problem). Let M be a Markov
automaton, g be a goal function and b ∈ R>0. Compute the values valMopt(b, g)

as well as an optimal scheduler for valMopt(b, g).

4.2.1 Optimal Schedulers
Notice that in terms of reusability, it is more convenient to work with a scheduler
that depends on time left until the time bound, rather than the time passed from
the beginning. This way given a scheduler that is optimal for time bound a we can
reuse this scheduler and its reachability values when facing the problem for time
bound b > a. Consider a scheduler π : PS × R>0 → Act that treats the second
component as the time left until the time bound, not as the time passed from the
beginning. There is a simple transformation from π to a scheduler π′ that satisfies
Definition 4.1.1: ∀s ∈ PS, t ∈ [0, b] : π(s, t) = π′(s, b − t). For time points outside
of interval [0, b] scheduler π′ can be defined arbitrarily. Since we will only be using
these schedulers to solve Problem 2, the values taken outside of interval [0, b] do
not affect the reachability probabilities. Using this transformation we can define
the probability measure for π as the probability measure of π′, and analogously for
other notions. In the following when working with Problem 2 we will be using this
new type of timed-memoryless schedulers.

For some instances of Problem 2 the structure of optimal schedulers turns out
to be quite simple. Namely, those schedulers are piecewise-constant:

Definition 4.2.1. A timed-memoryless scheduler π is called piecewise-
constant if there exists a finite partition I(π) of the time interval R>0 into
intervals I0 = [0, 0], I1 = (0, t1], · · · , Ik−1 = (tk−2, tk−1], . . ., such that the
value of the scheduler remains constant throughout each interval of the parti-
tion, i. e. ∀I ∈ I(π),∀t1, t2 ∈ I, ∀s ∈ PS : π(s, t1) = π(s, t2).
The set of all piecewise-constant schedulers is denoted by ΠPC.

We will denote the value of π on an interval I ∈ I(π) for s ∈ PS by π(s, I), i. e.
π(s, I) = π(s, t) for any t ∈ I.

Example 4.2.1. Let s be the only probabilistic state of a Markov automaton, and
α1, . . . , αn ∈ Act(s). The following is an example of a piecewise-constant scheduler:

π(s, t) =



α0 if t ∈ [0, 0]

α1 if t ∈ (0, 1]

· · ·
αn if t ∈ (n− 1, n]

αn+1 if t > n
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It has been shown in [RS11] that an optimal piecewise-constant scheduler for
Problem 2 exists if Markov automata are PS-acyclic and the goal function assigns
value 1 to all the goal states. The result is shown for Markov games, a formalism
that is more general than closed Markov automata. We conjecture that taking into
account Lemma 4.1.5 these results can likely be extended to the general case of
Problem 2. In the following, we will define a few key notions related to piecewise-
constant schedulers.

Let π be a piecewise constant scheduler and I ∈ I(π). For convenience we will
define a stationary scheduler π|I as follows: ∀ps ∈ PS : π|I(ps) := π(ps, I). We
also define a concatenation operation that combines stationary schedulers into a
piecewise-constant scheduler. Let I0, . . . , In be a partition of [0,∞) and π0, . . . , πn ∈
Πstat. We define

π0|I0 · π1|I1 · · ·πn|In = π ∈ ΠPC, s. t. ∀k = 0..n : π|Ik = πk

And analogously for a piecewise-constant scheduler π′ defined on [0, a] and a station-
ary scheduler π′′ we define the concatenation as follows: π′|[0,a] · π′′|(a,b]] = π ∈ ΠPC,
such that π|[0,a] = π′ and π|(a,b]] = π′′.

An important notion of piecewise-constant schedulers is a switching point, the
point of time separating two intervals of constant decisions:

Definition 4.2.2. For a piecewise-constant scheduler π and s ∈ PS we call
τ ∈ R>0 a switching point, iff ∃I1, I2 ∈ I(π), s. t. τ = sup I1 and τ = inf I2
and ∃s ∈ PS : π(s, I1) ̸= π(s, I2).

4.2.2 Hop-Unbounded Reachability Sub-problem
Very often the computation of the value valMopt(b, h) will stumble upon the sub-
problem of computing the following values for s ∈ S, π ∈ Πµ and a goal function
g:

reaπ(s, g) :=
∑

s′∈dom(g)

PrMπ,s [ΦU aps′ ] · g(s′), where Φ = ∨
s∈PS \ dom(g)

aps

reaopt(s, g) := opt
π∈Πµ

reaπ(s, g)
(4.16)

Here formula ΦU aps′ is satisfied by those infinite paths, that reach state s′ via only
probabilistic transitions and so that no other state s′′ ∈ dom(g) is visited before
entering s′. The value reaπ(s, g) is the weighted sum of g(s′) and the probabil-
ity to satisfy ΦU aps′ under scheduler π and when starting from state s. Value
reaopt(s, g) is the optimal value reaπ(s, g) over all schedulers. We will denote an
ε-close under-approximation of values reaopt(s, g) or reaπ(s, g) with reaopt

ε (s, g) and
reaπε (s, g) respectively.

The computation of values reaπ(s, g) and reaopt(s, g) can be reduced to solving
two well-known problems on MDPs. First, we introduce an MDP for a Markov
automaton that preserves these two values:
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Figure 4.1: Fig. (4.1a) show an example of a Markov automaton and MDP
iD(M, A) for A = ∅ is shown in Figure (4.1b).

Definition 4.2.3. Let M = (S,Act, 99K,R) be a Markov automaton and
A ⊆ S. An island MDP iD(M, A) is defined as follows iD(M, A) :=
(S,Act⊎{⊥},P), where

P[s, α, s′] =


P[s, α, s′] if s ∈ PSM \A,α ∈ Act(s)
1 if s ∈ MSM ∪A, s′ = s, α = ⊥
0 otherwise

(4.17)

In the special case of A = ∅ we will simply write iD(M) instead of iD(M, ∅).

The MDP iD(M, A) characterises the behaviour of islands of probabilistic states in
isolation from Markovian states, hence the name. An example of MDP iD(M, A)
for the MA shown in Figure (4.1a) and set A = ∅ is depicted in Figure (4.1b). The
differences between the MA and the MDP are highlighted in green. Probabilistic
states of the MA that are not in A are states of iD(M, A) and their outgoing tran-
sitions in M and iD(M, A) are the same. Markovian states of the MA and states
in A are also states in the MDP however their outgoing transitions are different.
Namely, they have only one self-loop transition with probability 1 via action ⊥.

Consider formula Φ defined in (4.16). This formula ranges over only probabilistic
states and additionally restricts to those that are not in the domain of g. The island
MDP iD(M, dom(g)) mimics these restrictions. Here all the Markovian states as
well as states in the domain of g are absorbing. We can therefore rewrite the value
reaπ(s, g) in terms of the unbounded reachability probability in MDP iD(M, A).
Let G = dom(g), then:

reaπ(s, g) =
∑

s′∈dom(g)

PrMπ,s [ΦU aps′ ] · g(s′) =
∑

s′∈dom(g)

PriD(M,G)
π,s [ttU aps′ ]︸ ︷︷ ︸

reaπ,G(s,s′)

·g(s′)

=
∑

s′∈dom(g)

reaπ,G(s, s′) · g(s′)

If the value of G is clear from the context, we will omit the superscript G in
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reaπ,G(s, s′) and simply write:

reaπ(s, g) =
∑

s′∈dom(g)

reaπ(s, s′) · g(s′) (4.18)

Notice, that the term unbounded reachability is ambiguous when applied to
Markov automata, since the word “unbounded” here may be applied to the progress
of time or to the number of transitions performed. To avoid this issue, we will refer
to values reaπ(g) and reaopt(g) as the hop-unbounded reachability probability and
respectively optimal hop-unbounded reachability probability. Recall that “hop” is
another way to address a probabilistic transition, that was introduced in Chapter 2
Section 2.2.

It has been shown in [Put94] that values reaπ(s, g) and reaopt(s, g) are the min-
imal solutions to the following systems of equations respectively:

∀s ∈ S : f(s, π, g) =


g(s) if s ∈ dom(g)

0 else if s ∈ MS∑
s′∈S

P[s, π(s), s′] · f(s′, π, g) otherwise
(4.19)

∀s ∈ S : f(s, g) =


g(s) if s ∈ dom(g)

0 else if s ∈ MS
optα∈Act(s)

∑
s′∈S

P[s, α, s′] · f(s′, g) otherwise
(4.20)

Values reaπ(s, g) and reaopt(s, g) can be computed exactly by such techniques as
policy iteration and linear programming [Put94], or approximated via interval value
iteration [HM14] (with minor adaptations to generalise to arbitrary goal functions),
[QK18, BKL+17].

We will denote with Copt
rea (n,m, a) the worst-case complexity of computing values

reaopt(g) in a Markov automaton with n states, m edges (edges were defined in
Section 4.1.1) and a = |Act| actions. And similarly, Crea(n,m, a) will denote the
complexity of computing values reaπ(g). If the problem is formulated as a linear
program, then the linear program has n variables and n · a constraints. Solving
the system of equations (4.19) via Gaussian elimination is in the worst case in
Crea(n,m, a) = O(n3). If the MA is PS-acyclic, then the systems of equations (4.19-
4.20) have triangular form and therefore Copt

rea (n,m, a) = Crea(n,m, a) = O(m).

4.3 A New Solution for Time-Bounded Reachability
In this section, we will develop a new approach for solving Problem 1. Due to
Lemma 4.1.10 the problem can be reduced to solving two instances of Problem 2.
In this section we will describe a new approach for approximating a solution for
Problem 2 (approximation of valopt(b, g) and construction of the respective optimal
scheduler).

Our approach is based on approximating an optimal scheduler by an ϵ-optimal
piecewise-constant scheduler. We will first observe in Section 4.3.1 that if given a
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piecewise-constant scheduler, then the computation of the time-bounded reachabil-
ity value induced by it is relatively straightforward. It can be reduced to a transient
analysis on a time non-homogeneous CTMC and an unbounded reachability anal-
ysis on an MDP. The latter problem has been discussed in Section 4.2.2, together
with efficient algorithms available for solving it. The former can be efficiently ap-
proximated by, for example, a technique called uniformisation [Jen53], extended to
non-homogeneous CTMCs in [vMW98].

This shows that the main challenge of our approach to optimal time-bounded
reachability analysis for MA is the computation of an ϵ-optimal piecewise-constant
scheduler. As discussed, a piecewise-constant scheduler is characterised by its
switching points and the actions that it takes in between the switching points.
Computing either of the two is challenging. Results of Section 4.3.2 will provide an
efficient solution to the latter, however, we still need to know the locations of the
switching points on the timeline. This is taken care of in Section 4.3.3. There we
will present a new characterisation of switching points in terms of function intersec-
tion. Since the switching points are not necessarily rational numbers, we need an
efficient way to approximate them. This is going to be the topic of Section 4.3.4.

Finally, in Section 4.3.5 we present the resulting algorithm that computes an
approximation of the solution of Problem 2. Under certain conditions it is guaran-
teed to provide an ϵ-close approximation for a given ϵ. And otherwise, it provides
an a posteriori estimation of the approximation error.

Our approach is similar to the algorithm for CTMDPs presented in [BS11] and
harvests several ideas developed there. On a high level, both algorithms follow the
general outline of a theoretical (not-implementable) method presented in [Mil68]. To
make it practical one needs an efficient method for (i) locating the switching points
and (ii) approximating the value of the reachability probability for a piecewise-
constant scheduler. The latter is solved with the help of uniformisation in case of
[BS11], and a combination of uniformisation and hop-unbounded reachability analy-
sis in case of our approach. To detect the location of switching points, the algorithm
of [BS11] develops an upper- and a lower-bound on the reachability probability value
and analyses the gap between the two. Our approach utilises two techniques to lo-
cate the switching points. First, we make use of the characterisation of the switching
points developed in this section, based on function intersection. And second, we lift
to the Markov automata setting the technique developed in [BS11] that monitors
the gap between the upper- and the lower-bounds.

On a high level our solution works as follows. The computations proceed back-
wards in time, i. e. we first approximate the optimal reachability value given that
ti time units are left until the time bound (starting with t0 = 0). When this
value is computed we use it to approximate the optimal reachability value for
ti+1 > ti, and so on until the time bound b is met. Our goal is to have the intervals
[0, t1], (t1, t2], · · · , (tn−1, b], computed by the algorithm, to resemble as closely as
possible the partition I(πopt) of an ϵ-optimal strategy πopt. The following are the
high level steps of the algorithm:

0. a. t = 0

b. Find a stationary strategy π that is optimal for valopt(0, g) (Section 4.3.2)
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c. Set πopt = π|[0,0]

1. Find a stationary strategy π that is optimal on interval (t, t + δ], for some
unknown δ (Section 4.3.2)

2. Approximate this δ (Sections 4.3.3 and 4.3.4) and set δ = min{δ, b− t}

3. Set πopt = πopt|[0,t] · π|(t,t+δ], t = t+ δ

4. Approximate valπopt(t + δ, g) given an approximation of valπopt(t, g) (Section
4.3.1)

5. If t = b return valπopt(t, g) and πopt, else go to step 1.

In the following we will go into the details of each step starting with step 4.

4.3.1 Time-Bounded Reachability for a Scheduler
In this section we will show that approximating the time-bounded reachability prob-
ability for a given piecewise-constant scheduler can be done efficiently via a combi-
nation of two known techniques: Uniformisation and hop-unbounded reachability
analysis. The following lemma shows that the reachability value can be charac-
terised by a system of differential and linear equations:

Lemma 4.3.1. Let g be a goal function, π is a piecewise-constant scheduler
and b ∈ R>0. Then ∀s ∈ S : valπ(s, b, g) = fs(b), where fs(t) is the solution
to the following system of differential and linear equations:

d(fs(t))
dt =

∑
s′∈S

R[s, s′] · fs′(t)− E(s) · fs(t) if s ∈ MS

fs(t) =
∑
s′∈S

P[s, π(s, t), s′] · fs′(t) if s ∈ PS
(4.21)

fs(0) =

{
g(s) if s ∈ MS, s ∈ dom(g)

0 if s ∈ MS, s ̸∈ dom(g)
(4.22)

Proof. By definition:

valπ(s, t, g) =
∑

s′∈dom(g)

PrMπ,s
[
ttU=taps′

]
· g(s′)

Let E(b, t, s) = {ρ ∈ Pathsω | ρ |= ttU=b−taps}. We define

hs,s′(t) = PrMπ,s
[
ttU=baps′ | E(b, t, s)

]
For a probabilistic state ps:

hps,s′(t) = PrMπ,ps
[
ttU=taps′ | E(b, t, ps)

]
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=
∑
s′′∈S

P[ps, π(ps, t), s′′] · PrMπ,s′′
[
ttU=taps′ | E(b, t, ps)

]
=
∑
s′′∈S

P[ps, π(ps, t), s′′] · hs′′,s′(t)

On the other hand:

hps,s′(t) =
∑

ms∈MS
reaπ|[t,t](ps,ms) · hms,s′(t)

Consider a Markovian state ms and t > 0. Given a timed-memoryless scheduler
the Markov automaton becomes deterministic, i. e. it has no non-determinism any
more and its behaviour can be described by a stochastic process which is a non-
homogeneous Markov chain. Or formally, forms,ms′ ∈ MS the transient probability
hms,ms′(t) = PrMπ,ms

[
ttU=tapms′ | E(b, t,ms)

]
of being in state ms′ at time point

b starting from ms at time b− t is the same as PrCπ,ms
[
ttU=bapms′ | E(b, t,ms)

]1,
where C = (S′,R′(τ)) is a non-homogeneous CTMC, such that S′ = MS,R′(τ) is a
time dependent rate matrix and ∀ms,ms′ ∈ S′, τ ∈ [0, b]:

R′(τ)[ms,ms′] = E(ms) ·
∑
s′′∈S

R[ms, s′′]

E(ms)
· reaπ|[b−τ,b−τ ](s′′,ms′)

=
∑
s′′∈S

R[ms, s′′] · reaπ|[b−τ,b−τ ](s′′,ms′)

The transient probability in C is characterised by Kolmogorov’s Backward Equa-
tions:

∀ms,ms′ ∈ S′ :

d(hms,ms′(t))
dt =

∑
ms′′∈S′

R′(b− t)[ms,ms′′] · hms′′,ms′(t)− E(ms) · hms,ms′(t)

=
∑

ms′′∈S′

∑
s′′∈S

R[ms, s′′] · reaπ|[t,t](s′′,ms′′) · hms′′,ms′(t)

=
∑
s′′∈S

R[ms, s′′]
∑

ms′′∈S′

reaπ|[t,t](s′′,ms′′) · hms′′,ms′(t)

− E(ms) · hms,ms′(t)

=
∑
s′′∈PS

R[ms, s′′]
∑

ms′′∈S′

reaπ|[t,t](s′′,ms′′) · hms′′,ms′(t)

+
∑

s′′∈MS
R[ms, s′′] · hs′′,ms′(t)− E(ms) · hms,ms′(t)

=
∑
s′′∈S

R[ms, s′′] · hs′′,ms′(t)− E(ms) · hms,ms′(t)

1Notice the scheduler π as a subscript of PrCπ,ms
[
tt U=tapms′ | E(b, t,ms)

]
. Here it does not

play any role for the probability measure, because CTMCs contain no probabilistic states. Any
scheduler indicated here induces the same probability measure. However the definition of the
probability measure given in Lemma 2.2.1 requires a scheduler to be indicated, which is the reason
why we cannot leave this parameter empty.
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Consider a variable

∀s ∈ S : qs(t) =
∑

s′∈dom(g)

hs,s′(t) · g(s′) (4.23)

If s ∈ MS, t = 0, then ∀s′ ̸= s : hs,s′(0) = 0. Thus if s ∈ dom(g) then qs(0) = g(s),
and otherwise qs(0) = 0. Therefore for t = 0 : qs(0) satisfies (4.22).

Consider ps ∈ PS, t > 0:

qs(t) =
∑

s′∈dom(g)

hs,s′(t) · g(s′)

=
∑

s′∈dom(g)

∑
s′′∈S

P[ps, π(ps, t), s′′] · hs′′,s′(t) · g(s′)

=
∑
s′′∈S

P[ps, π(ps, t), s′′]
∑

s′∈dom(g)

hs′′,s′(t) · g(s′)

=
∑
s′′∈S

P[ps, π(ps, t), s′′] · qs′′(t)

Consider t > 0 and ms ∈ MS:

d(qms(t))
dt =

d(
∑

s′∈dom(g)

hms,s′(t) · g(s′))

dt =
∑

s′∈dom(g)

d(hms,s′(t))
dt · g(s′)

=
∑

s′∈dom(g)

(∑
s′′∈S

R[ms, s′′] · hs′′,s′(t)− E(ms) · hms,s′(t)

)
· g(s′)

=
∑
s′′∈S

R[ms, s′′]
∑

s′∈dom(g)

hs′′,s′(t) · g(s′)− E(ms)
∑

s′∈dom(g)

hms,s′(t) · g(s′)

=
∑
s′′∈S

R[ms, s′′] · qs′′(t)− E(ms) · qms(t)

Thus qs(t) satisfies system (4.21-4.22) and for t = b it satisfies the definition of
valπ(s, b, g).

Next we will show that the system (4.21-4.22) has a unique solution. Since
we only consider non-Zeno MA, then the following condition is satisfied: ∃m ∈
Z>0, such that ∀π ∈ Πstat, ps ∈ PS : Prπ,ps [{ρ ∈ Pathsω | ∀i ∈ 0..m : ρ[i] ̸∈ MS}] <
1. To see this, choose m to be the length of the longest loop-free path from a
probabilistic state to any Markovian state via only probabilistic states. Since the
MA is non-Zeno, such paths exist for each probabilistic state. Under this condition
the system of linear equations from (4.21-4.22) has a unique solution for a goal
function v, such that ∀ms ∈ MS : v(ms) = fms(t) and ∀ps ∈ PS : v(ps) is undefined
([Ber05], Proposition 7.2.1).

On each interval I ∈ I(π) the scheduler is fixed and therefore the function
R′(b − t) is constant in t for t ∈ I. Let I(π) = {I0 = [0], I1 = (0, τ1], · · · , In =
(τn−1, τn], (τn,∞)}. For each interval I, starting from I1, the system of differential
equations from (4.21-4.22) has constant coefficients and initial conditions ∀s ∈ S :
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fs(inf I) formed by the solution from the previous interval, or values fs(0) when
I = I1. Under this conditions the system has a unique solution. This concludes the
proof.

Remark 4.3.1. Notice that due to (4.18) and (4.19) we can equivalently rewrite
the equation for a probabilistic state ps as follows:

fps(t) =
∑

ms∈MS
reaπ|[t,t](ps,ms) · fms(t) (4.24)

The system (4.21-4.22) can be solved iteratively over the intervals in I(π).
Within each such interval I ∈ I(π) the scheduler is stationary, i. e. ∀s ∈ S, t1, t2 ∈
I : π(s, t1) = π(s, t2). Given the solution fs(t) on an interval I, i. e. for all states
s ∈ S and t ∈ I, the solution on the neighbouring interval can be found by using
fs(sup I) as boundary conditions for the system (4.21). In the following we will
show a way to approximate fs(t).

Numerical Solution. Our approximation scheme is essentially an extension of
the uniformisation technique [Jen53] originally designed for CTMCs to Markov au-
tomata. It is carried over to probabilistic states via unbounded reachability analysis
for MDPs. In the following, we will compute an approximation of the solution on an
interval from I(π) given an approximation of the solution on the previous interval.

Just like uniformisation for CTMCs, uniformisation for Markov automata re-
quires discrete transition probabilities within k Markovian transitions. Let h be a
total goal function. For k ∈ Z>0, π′ ∈ ΠM

stat we define Dk(s, π′, h) as follows:

Dk(s, π′, h) =


h(s) if s ∈ MS, k = 0∑
s′∈S

R[s,s′]
Emax

·Dk−1(s′, π′, h) + (1− E(s)
Emax

) ·Dk−1(s, π′, h) if s ∈ MS, k > 0∑
s′∈MS

reaπ′
(s, s′) ·Dk(s′, π′, h) if s ∈ PS

(4.25)

The value Dk(s, π′, h) is essentially the value
∑

s′∈S p
k(s′) ·h(s′), where pk(s′) is

the discrete probability to reach a state s′ starting from s by following a stationary
strategy π′ and performing exactly k Markovian transitions. This is the reason for
the counter k to decrease only when a Markovian state performs a transition and
not to be affected by probabilistic transitions. If for a probabilistic state ps the
value Dk(ps, π′, h) is under-approximated up to ε, then we will denote this with
Dk
ε(s, π

′, h). We denote with Dk(π′, h) the function over states that takes value
Dk(s, π′, h) for state s.

We denote with Ψλ the probability mass function of the Poisson distribution with
parameter λ. For a τ ∈ R>0 and ε ∈ (0, 1), we define N(τ, ε) to be some natural
number satisfying

∑N(τ,ε)
i=0 ΨEmax·τ (i) > 1− ε, e. g. N(τ, ε) = ⌈Emax · τ · e2 − ln(ε)⌉

[BHHK15].
The approximation error comes from various sources, that we will combine in a

tuple:
ξ = (εΨ, εrea, εn),where εΨ ∈ (0, 1), εrea ∈ [0, 1), εn ∈ (0, 1) (4.26)
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Here values εΨ and εrea refer to the total error accumulated over an interval I in
which a piecewise constant scheduler remains constant. Component εΨ ∈ (0, 1) de-
notes the total error allowed for the approximation over Markovian states, i. e. for
uniformisation. Value εrea ∈ [0, 1) will denote the total error accumulated from the
approximation of values of probabilistic states (hop-unbounded reachability prob-
ability). Value εn ∈ (0, 1) is the bound on the error that can be accumulated
over probabilistic transitions between two Markovian transitions performed within
interval I.

Let I ∈ I(π), ε ∈ (0, 1) and v : S → [0, 1] is such that ∀s ∈ S : v(s) 6
valπ(inf I, g) 6 v(s) + ε. The approximation of functions fs(t) for a piecewise-
constant scheduler π at time t ∈ I will be denoted with ut,vπ,ξ(s), where ξ =
(εΨ, εrea, εn) satisfies (4.26), and can be obtained as follows:

∀t ∈ I :

ut,vπ,ξ(s) =


v(s) if t = inf I
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(s, π|I , v) else if s ∈ MS, δ = t− inf I

reaπ|Iεn (s, ut,vπ,ξ|MS) else if s ∈ PS
(4.27)

Thus one can approximate the values fs(t) by iterating over intervals in I(π). If
I and I ′ are two neighbouring intervals, then given u(s) = ut,vπ,ξ(s) for t = sup I,
one can approximate values fs(t′), for t′ ∈ I ′ by computing ut

′,u
π,ξ (s). The following

lemma proves that the values obtained in this way indeed form an approximation
to the solution of the system (4.21-4.22):

Lemma 4.3.2. Let π be a piecewise-constant scheduler, I ∈ I(π), ε ∈
(0, 1), opt ∈ {sup, inf}. Let v : S → [0, 1] be such that ∀s ∈ S:

v(s) 4opt valπ(s, inf I, g) 4opt v(s) + (−1)1{inf}(opt) · ε

Then ∀x ∈ I, s ∈ S, ξ that satisfies (4.26), such that εn 6
εrea/ (N(x− inf I, εΨ) + 1), the following holds:

opt = sup : ux,vπ,ξ(s) 6 valπ(s, x, g) 6 ux,vπ,ξ(s) + ε+ εΨ + εrea

opt = inf : ux,vπ,ξ(s) + εΨ + εrea > valπ(s, x, g) > ux,vπ,ξ(s)− ε
(4.28)

Proof. Consider x = inf I. Then by definition ∀s ∈ S : ux,vπ,ξ(s) = v(s) and therefore
(4.28) holds.

Consider x > inf I (this implies that x > 0) and ms ∈ MS. Since within interval
I scheduler π is stationary, the stochastic process induced by π at time points
within I is a CTMC. Or formally, for ms,ms′ ∈ MS the transient distribution
PrMπ,ms [ttU=xapms′ ] of being in state ms′ at time point x starting from ms in M
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is the same as PrCπ,ms [ttU=xapms′ ]2, where C = (S′,R′) is a CTMC, such that
S′ = MS and ∀ms,ms′ ∈ S′:

R′[ms,ms′] = E(ms)·
∑
s′′∈S

R[ms, s′′]

E(ms)
·reaπ|I (s′′,ms′) =

∑
s′′∈S

R[ms, s′′]·reaπ|I (s′′,ms′)

This implies that the transient distribution satisfies the Chapman-Kolmogorov equa-
tions ∀s, s′ ∈ S′, x ∈ I:

PrCπ,s [ttU=xaps′ ] =
∑
s′′∈S′

PrCπ,s
[
ttU=x−inf Iaps′′

]
· PrCπ,s′′

[
ttU=inf Iaps′

]
(4.29)

And that the transient distribution between two states s, s′ ∈ S′ can be computed
via uniformisation [Jen53]:

PrCπ,s [ttU=xaps′ ] =
∞∑
i=0

ΨEmax·x(i) · P′
i[s, s

′] (4.30)

where for i ∈ Z>0, s, s′′ ∈ S′ :

P′
i[s, s

′′] =


1 if i = 0, s = s′′∑
s′∈S′

R′[s,s′]
Emax

· P′
i−1[s

′, s′′] + (1− E(s)
Emax

) · P′
i−1[s, s

′′] if i > 0

0 otherwise

By definition of valπ(ms, x, g) we can obtain the following:

valπ(ms, x, g)

=
∑

s′∈dom(g)

PrMπ,ms [ttU=xaps′ ] · g(s′)

(4.29)
=

∑
s′∈g

∑
s′′∈MS

PrMπ,ms
[
ttU=x−inf Iaps′′

]
· PrMπ,s′′

[
ttU=inf Iaps′

]
· g(s′)

=
∑

s′′∈MS
PrMπ,ms

[
ttU=x−inf Iaps′′

]
· valπ(s′′, inf I, g)

(4.30)
=

∞∑
i=0

ΨEmax·(x−inf I)(i)
∑

s′′∈MS
P′
i[ms, s

′′] · valπ(s′′, inf I, g)︸ ︷︷ ︸
D̂i(ms,π|I ,valπ(inf I,g))

(4.31)

2Notice the scheduler π as a subscript of PrCπ,ms [tt U=xapms′ ]. Here it does not play any
role for the probability measure, because CTMCs contain no probabilistic states. Any scheduler
indicated here induces the same probability measure. However the definition of the probability
measure given in Lemma 2.2.1 requires a scheduler to be indicated, which is the reason why we
cannot leave out this parameter.
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Consider ps ∈ PS. Since x > inf I, then x > 0 and therefore:

valπ(ps, x, g)
Rem. 4.3.1

=
∑

ms∈MS
reaπ|I (ps,ms) · valπ(ms, x, g)

=
∑

ms∈MS
reaπ|I (ps,ms)

∞∑
i=0

ΨEmax·(x−inf I)(i) · D̂i(ms, π|I , valπ(inf I, g))

=

∞∑
i=0

ΨEmax·(x−inf I)(i)
∑

ms∈MS
reaπ|I (ps,ms) · D̂i(ms, π|I , valπ(inf I, g))︸ ︷︷ ︸

D̂i(ps,π|I ,valπ(inf I,g))
(4.32)

Lemma A.3 proves that for π′ ∈ Πstat, h : S → [0, 1] the following holds:

∀s ∈ S, i ∈ Z>0 : D̂i(s, π′, h) = Di(s, π′, h) (4.33)

Applying these results to a function h, such that ∀s ∈ S : h(s) = valπ(s, inf I, g)
and to scheduler π|I , by using (4.31) we can rewrite the reachability value function
for a Markovian state ms ∈ MS as follows:

valπ(ms, x, g) =
∞∑
i=0

ΨEmax·(x−inf I)(i) ·Di(ms, π|I , valπ(inf I, g)) (4.34)

Next we show that if wj : S → [0, 1], j ∈ {1, 2}, such that ∀s ∈ S : w1(s) 4opt
w2(s) 4opt w1(s) + (−1)1{inf}(opt) · ε′, for some ε′ ∈ [0, 1), then ∀s ∈ S, i ∈ Z>0, π′ ∈
Πstat:

Di(s, π′, w1) 4opt Di(s, π′, w2) 4opt Di(s, π′, w1) + (−1)1{inf}(opt) · ε′ (4.35)

The statement holds for i = 0, s ∈ MS by definition of wj . For i ∈ Z>0, s ∈ S
the value Di(s, π′, wj) is a convex combination of either values Di(·, π′, wj) over
Markovian states (if s ∈ PS), or values Di−1(·, π′, wj) (if s ∈ MS). Thus the
statement holds for all states s and indices i by induction.

Let w(s) = valπ(s, inf I, g) and x− inf I = δ. The results obtained above lead to
the following. For a Markovian state ms and opt = sup:

ux,vπ,ξ(ms) =

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(ms, π|I , v)

Lemma A.4
6

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , v)

(4.35)

6
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , w)

6
∞∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , w)
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(4.34)
= valπ(ms, x, g)

6
∞∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , v) + ε

6
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , v) + εΨ + ε

Lemma A.4
6

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(ms, π|I , v) + εΨ + εn ·N(δ, εΨ) + ε

= ux,vπ,ξ(ms) + εΨ + εn ·N(δ, εΨ) + ε

Analogously for opt = inf:

ux,vπ,ξ(ms) + εΨ + εrea

> ux,vπ,ξ(ms) + εΨ + εn · (N(δ, εΨ) + 1)

> ux,vπ,ξ(ms) + εΨ + εn ·N(δ, εΨ)

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(ms, π|I , v) + εΨ + εn ·N(δ, εΨ)

Lemma A.4
>

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , v) + εΨ

(4.35)

>
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , w) + εΨ

>
∞∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , w)

(4.34)
= valπ(ms, x, g)

(4.35)

>
∞∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , v)− ε

>
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di(ms, π|I , v)− ε

Lemma A.4
>

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(ms, π|I , v)− ε

= ux,vπ,ξ(ms)− ε

For a probabilistic state ps ∈ PS, opt = sup:

ux,vπ,ξ(ps) = reaπ|Iεn (ps, ux,vπ,ξ|MS)

6 reaπ|I (ps, ux,vπ,ξ|MS)

6 reaπ|I (ps, valπ(x, g)|MS)
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6 reaπ|I (ps, ux,vπ,ξ|MS) + εΨ + εn ·N(δ, εΨ) + ε

6 reaπ|Iεn (ps, ux,vπ,ξ|MS) + εΨ + εn · (N(δ, εΨ) + 1) + ε

6 ux,vπ,ξ(ps) + εΨ + εrea + ε

And for opt = inf:

ux,vπ,ξ(ps) + εΨ + εrea > ux,vπ,ξ(ps) + εΨ + εn · (N(δ, εΨ) + 1)

= reaπ|Iεn (ps, ux,vπ,ξ|MS) + εΨ + εn · (N(δ, εΨ) + 1)

> reaπ|I (ps, ux,vπ,ξ|MS) + εΨ + εn ·N(δ, εΨ)

> reaπ|I (ps, valπ(x, g)|MS)

> reaπ|I (ps, ux,vπ,ξ|MS)− ε

> reaπ|Iεn (ps, ux,vπ,ξ|MS)− ε
> ux,vπ,ξ(ps)− ε

4.3.2 Optimal Strategy
In this section, we will show how to compute an optimal piecewise-constant strategy,
if it exists. Assume that for time point t < b an optimal piecewise-constant scheduler
πopt is computed. We will show that there exists a stationary strategy π and δ > 0,
such that following π on time points (t, t+ δ] is the optimal behaviour. Or formally,
strategy π′opt = πopt|[0,t] · π|(t,t+δ] is optimal for valopt(x, g), for all x ∈ [0, t+ δ].

First of all, due to Lemma 4.3.1 and Remark 4.3.1 for t = 0 the problem is
reduced to the computation of reaopt(s, g).

Consider t > 0 and let πopt be an optimal piecewise-constant strategy on interval
[0, t]. Analogously to results for CTMDPs [Mil68], we will prove that derivatives
of function valπopt(τ, g) at time τ = t help finding the stationary strategy π that
remains optimal for interval (t, t+ δ], for some δ > 0. This is rooted in the Taylor
expansion of function valπ′

opt
(t + δ, g) via the values of valπopt(t, g), where π′opt =

πopt|[0,t] · π|(t,t+δ].
Let v be a goal function. We define sets

F0(v) = {π ∈ Πstat | ∀s ∈ PS : π = arg opt π′∈Πstat d⃗
(0)
π′ (s, v)}

F i(v) = {π ∈ F i−1(v) | ∀s ∈ PS : π = arg opt π′∈Fi−1(v)d⃗
(i)
π′ (s, v)}, i ∈ Z>0,

where for π ∈ Πstat : d⃗
(0)
π (s, v) = valπ(s, 0, v). For i > 1:

d⃗(i)π (s, v) =


∑
s′∈S

R[s, s′] · d⃗(i−1)(s′, v)− E(s) · d⃗(i−1)(s, v) if s ∈ MS∑
s′∈MS

reaπ(s, s′) · d⃗(i)(s′, v) if s ∈ PS, t > 0

d⃗(i) = d⃗(i)π for any π ∈ F i(v),

(4.36)
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Informally, the value d⃗(i)π (s, v) is the ith derivative of function valπ(s, τ, v) at time
τ = 0.

Lemma 4.3.3. Let π be an optimal piecewise-constant scheduler, t > 0
and v(s) be a goal function, such that v(s) = valπ(s, t, g) if s ∈ MS and is
undefined otherwise. If π′ ∈ F |S|(v) then ∃δ > 0 such that π′ is optimal for
valopt(t+ x, v) on all x ∈ (0, δ].

Proof. Let πst ∈ Πstat. We will first define a strategy πext that behaves as π at
time points within [0, t] and as πst afterwards. Formally πext = πst if t = 0. If
t > 0 and ρ ∈ Paths∗, s. t. τtotal(ρ) 6 t then πext(ρ) = π(ρ) and if τtotal(ρ) > t

then πext(ρ) = πst(ρ↓). We first show that d⃗(i)πst(s, v) is the ith derivative of function
valπext(s, τ, g) at time τ = t.

For i = 0 : d⃗
(0)
πst(s, v) = valπst(s, 0, v). If t = 0, then valπst(s, 0, v) = valπext(s, 0, g).

If t > 0,ms ∈ MS, then valπst(ms, 0, v) = valπ(ms, t, g) = valπext(ms, t, g). For
ps ∈ PS : valπst(ps, 0, v) =

∑
ms∈MS reaπst(ps,ms)·v(ms) =

∑
ms∈MS reaπst(ps,ms)·

valπ(ms, t, g) = valπext(ps, t, g).
Consider i = 1,ms ∈ MS, t > 0. Due to (4.21):

d1(valπext
(ms, t, g))

dt =
∑
s∈S

R[ms, s] · valπext(s, t, g)− E(s) · valπext(ms, t, g) = d⃗(1)πst
(ms, v)

Taking derivative from both sides, we obtain the result for any i > 0:
di(valπext

(ms, t, g))

dt =
∑
s∈S

R[ms, s] · d
i−1(valπext

(ms, t, g))

dt − E(s) · d
i−1(valπext

(ms, t, g))

dt

= d⃗(i)πst
(ms, v)

Consider i = 1, ps ∈ PS, t > 0. Due to (4.18) and the fact that s ∈ dom(g) ⇒
s ∈ MS:

d1(valπext(ps, t, g))
dt

= lim
τ→0

valπext(ps, t+ τ, g)− valπext(ps, t, g)
τ

=
∑

ms∈MS
reaπst(ps,ms) lim

τ→0

(
valπext(ms, t+ τ, g)− valπext(ms, t, g)

τ

)
=

∑
ms∈MS

reaπst(ps,ms) · d
1(valπext(ms, t, g))

dt = d⃗(1)πst(ps, v)

Taking derivatives from both sides we obtain the required equation for i > 1, ps ∈
PS, t > 0.

Using Taylor’s theorem we can represent the value of function valπext(s, τ, g) at
time point τ = t+ δ > t for k ∈ Z>0 as follows:

valπext(s, t+ δ, g) =

k∑
i=0

d⃗(i)πst(s, v) · δ
i + hk(t+ δ) · δk,
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where limδ→0 hk(t+ δ) = 0. Consider i ∈ Z>0, a strategy π′ ∈ F i(v) and a strategy
π′′ ∈ Πstat, such that π′′ ̸∈ F i(v) and either π′′ ̸∈ F0(v), or i0 is the maximal
index, such that π′′ ∈ F i0(v). We will denote the former case with i0 = −1.
Then ∀j = 0..i0, s ∈ S : d⃗

(j)
π′ (s, v) = d⃗

(j)
π′′ (s, v), d⃗

(i0+1)
π′ (s, v) <opt d⃗

(i0+1)
π′′ (s, v) and

∃s0 ∈ S : d⃗
(i0+1)
π′ (s0, v) − d⃗(i0+1)

π′′ (s0, v) ≻opt 0. If π′′ ̸∈ F0(v), then there exists a
state s0, such that valπ′′(s0, 0, v) < valπ′(s, 0, v), which implies that strategy π′′ is
strictly suboptimal for time point t, and therefore there exists δ > 0, such that
π′′ remains to be strictly suboptimal within (t, t + δ). Consider the case i0 > 0.
Applying the Taylor expansion for k = i0 + 1 we obtain the following:

valπ′(s, t+δ, g)−valπ′′(s, t+δ, g) = δk·
(
d⃗
(k)
π′ (s, v)− d⃗(k)π′′ (s, v) + h′k(t+ δ)− h′′k(t+ δ)

)
,

where h′k(x) and h′′k(x) are respective remainders. Since h′k(x) ∈ o(1) and h′′k(x) ∈
o(1), then there exists δ > t, such that ∀x ∈ (0, δ] : h′k(t + x) − h′′k(t + x) 6
d⃗
(k)
π′ (s, v) − d⃗(k)π′′ (s, v). Since ∃s0 ∈ S, such that d⃗(k)π′ (s0, v) − d⃗(k)π′′ (s0, v) ≻opt 0, then
π′′ is not an optimal strategy on (t, t+ δ).

Therefore one could compute sets F i(v) as long they have more than one strategy
and stop whenever a singleton set is found. However, it is possible that there exist
multiple optimal strategies and a singleton set will never be reached. In the following
we will show that computing |S| many derivatives suffices.

Let π′, π′′ ∈ ΠPC. Analogously to the original proof of Lemma 3 in [Mil68] it can
be shown that if ∀i = 0..|S|, s ∈ S :

di(valπ′ (s,t,g))
dt =

di(valπ′′ (s,t,g))
dt , then ∀i ∈ Z>0, s ∈

S :
di(valπ′ (s,t,g))

dt =
di(valπ′′ (s,t,g))

dt and ∀τ > t, s ∈ S : valπ′(s, τ, g) = valπ′′(s, τ, g).
Thus if for i = 0..|S| values d⃗(i)πst(s, v) coincide for any two stationary strategies

π1st and π2st, then valπ1
ext

(s, τ, g) = valπ2
ext

(s, τ, g) for τ > t, where for j ∈ {1, 2} :

πjext = πjst if t = 0, πjext = π|[0,t) · π
j
st|[t,b] if t > 0. Therefore computing the first

|S|+1 coefficients of the Taylor’s expansion suffices and any strategy that optimises
those values is optimal around point t.

Thus in order to compute a stationary strategy that is optimal starting from
time t, one needs to compute for each state s at most |S|+1 values d⃗(i)π (s, v), where
v is defined in the lemma above. In the following we will refer to a procedure that
performs this computation for a goal function v with FindStratopt(v). It computes
sets F i(v) until for some j ∈ 0..|S| there is only 1 strategy left, i. e. |F j(v)| = 1. If
this does not happen, it outputs any strategy in F |S|(v).

In some cases computation of an optimal strategy with procedure FindStratopt

may become expensive, or not possible at all. In the following we will discuss
possible reasons for this to happen and how to deal with it.

Optimisations. While from the theoretical perspective procedure FindStratopt is
reasonably efficient, in practice it has a few issues. Below we will list the challenges
that we have encountered when implementing FindStratopt and ways in which we
have addressed them. We will refer to the modified procedure with FindStrat.

− It may happen that values |d⃗(i)π (s)| cannot be represented by floating point
numbers of the underlying computer because they are too small or too large.
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To counteract this FindStrat defines bounds Dprm and Dprm on the abso-
lute value of the derivatives. Values outside of the interval [Dprm

, Dprm] are
truncated.

− For large state-spaces computation of |S| derivatives may be too prohibitive.
Procedure FindStrat defines an upper bound Kprm 6 |S| on the number of
derivatives to compute and chooses any strategy from FKprm .

− Computation of sets F i(v) requires computing optimal expected cumulative
unbounded reward. Exact computations may be too expensive and therefore
approximations of the strategies may be preferable. Procedure FindStrat
defines εprm to be the approximation error bound. We will refer to the sets
F i(v) obtained in this way with F iεprm(v).

− It may happen that all optimal strategies switch very often, in which case the
algorithm has to make many calls to procedure FindStratopt. On the other
hand, there may exist a piecewise-constant strategy that switches rarely, how-
ever, induces acceptable error. Computing the latter strategy instead of an
optimal one will save the runtime otherwise spent on unnecessary computa-
tions. To counteract this issue procedure FindStrat(v) will compute a second
strategy π̃(v), that is ε-optimal on a short time interval (under certain assump-
tions), where the value of ε is known. Thus the output of FindStrat(v) is a
pair (π, π̃(v)). Details of the computation of π̃(v) are described below.

Due to the changes discussed above the strategy computed by FindStrat via
sets F i(v) (i. e. the first element of the output pair) is not guaranteed to be an
optimal strategy, which makes FindStrat more of a heuristic. In our experience,
however, there is a definite benefit in terms of the runtime when using FindStrat
instead of FindStratopt. Our solution is not bound to FindStrat and can, in fact,
use any heuristic. It will produce under certain assumptions guaranteed a priori
specified error bounds, and otherwise an a posteriori estimate of the error. Needless
to say, the heuristic used to choose a strategy affects its quality. A poorly selected
strategy will slow down the running time of the overall algorithm.

Sound One-Step Approximation. In order to preserve correctness in presence of
a heuristic that is not necessarily good, and in order to combat the last issue in the
list above, we will define a value v′ and a scheduler π′ that are ε-close under certain
assumptions to the optimal values, with an explicit expression for ε. The techniques
that we use to achieve this are a simple adaptation of the discretisation approach
[GHH+14] to our setting. We will define procedure FindStrat(v) to output a
tuple (π, π′), where π is the strategy that the procedure selects as described above
using sets F i(v), or via any other heuristic. We start by introducing the required
assumption and afterwards define formally π′ and v′.

Assumption 4.3.1. If s ∈ dom(g), then s is absorbing.

Under Assumption 4.3.1 one can derive convenient-to-use approximations of the
probability values after one Markovian transition, as we will show below.
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Let π be a piecewise-constant scheduler, t, t′ ∈ R>0, t < t′,ms ∈ MS. We define

X(ms, π, t, t′) := (1− e−E(ms)·(t′−t))
∑
s′∈S

R[ms, s′]

E(ms)
· valπ(s′, t, g)

A(ms, π, t, t′) :=

t′−t∫
0

E(ms) · e−E(ms)·x
∑
s′∈S

R[ms, s′]

E(ms)
· valπ(s′, t′ − x, g)dx

Lemma 4.3.4. If Assumption 4.3.1 is satisfied, then for all ms ∈ MS, π ∈
ΠPC, t, t

′ ∈ R>0, t < t′:

X(ms, π, t, t′) 6 A(ms, π, t, t′) 6 X(ms, π, t, t′) +
(Emax · (t′ − t))2

2
(4.37)

Proof. The proof is a straightforward adaptation of Lemma 6.2 [Neu10]. We only
need to show that function valπ(t, g) is monotone increasing in t for any π ∈ ΠPC.

Let π ∈ ΠPC,ms ∈ MS, t, t′ ∈ R>0, t < t′. Then the stochastic process {Yτ}
induced by π is a non-homogeneous CTMC over Markovian states and Chapman-
Kolmogorov equations can be applied to it:

fms,ms′(t, t
′) =

∑
ms′′∈MS

fms,ms′′(t, t
′′) · fms′′,ms′(t′′, t′), (4.38)

where fms,ms′(t, t′) is the transient probability in stochastic process {Yτ} of being
in state ms′ at time t′ when starting from state ms at time point t, and t 6 t′′ 6 t′.

Since Assumption 4.3.1 is satisfied, then for any goal state msg, any Markovian
state ms′ and x 6 x′ ∈ R>0: fmsg ,ms′(x, x′) = 1 iff ms′ = msg and is 0 otherwise.
Additionally, valπ(ms, t, g) =

∑
msg∈dom(g) fms,msg(0, t). Taking this into account

we can rewrite the value valπ(ms, t′, g) as follows:

valπ(ms, t′, g)

=
∑

msg∈dom(g)

fms,msg(0, t
′)

(4.38)
=

∑
msg∈dom(g)

∑
ms′′∈MS

fms,ms′′(0, t) · fms′′,msg(t, t′)

=
∑

msg∈dom(g)

( ∑
ms′g∈dom(g)

fms,ms′g(0, t) · fms′g ,msg(0, t)

+
∑

ms′′ ̸∈dom(g)

fms,ms′′(0, t) · fms′′,msg(t, t′)
)

=
∑

ms′g∈dom(g)

fms,ms′g(0, t)
∑

msg∈dom(g)

fms′g ,msg(t, t
′)

+
∑

msg∈dom(g)

∑
ms′′ ̸∈dom(g)

fms,ms′′(0, t) · fms′′,msg(t, t′)
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=
∑

ms′g∈dom(g)

fms,ms′g(0, t) +
∑

msg∈dom(g)

∑
ms′′ ̸∈dom(g)

fms,ms′′(0, t) · fms′′,msg(t, t′)

= valπ(ms, t, g) +
∑

msg∈dom(g)

∑
ms′′ ̸∈dom(g)

fms,ms′′(0, t) · fms′′,ms′(t, t′)︸ ︷︷ ︸
>0

Thus valπ(ms, t′, g) > valπ(ms, t, g).

We are now ready to define the second scheduler π′ computed by FindStrat(v)
and value v′. If Assumption 4.3.1 holds, we will provide bounds on the error between
v′ and the optimal value, as well as on the error introduced by following π′ on an
interval of length δ. Whenever the first scheduler π selected by FindStrat(v) is
not very good and induces large error our algorithm is forced to decrease the step
size more and more. In this case we will be decreasing the step size until it reaches
certain minimal value. On this interval of minimal length we will use values v′ as
an approximation of the optimal values and scheduler π′ as an approximation of
the optimal scheduler.

Let u : S → [0, 1], δ ∈ R>0, ε ∈ [0, 1). For x ∈ [0, δ] we define

ṽalεopt(s, x, u) :=



u(s) if x = 0

e−E(s)·δ · u(s)+ if x = δ, s ∈ MS
(1− e−E(s)·δ)

∑
s′∈S

R[s,s′]
E(s) · u(s

′)

reaopt
ε (s, ṽalεopt(δ, u)|MS) if x = δ, s ∈ PS

ṽalεopt(s, δ, u) if x ∈ (0, δ)

(4.39)

In the following we will denote with ṽalεopt(δ, u) the function over states ṽalεopt(·, δ, u).
We will denote with π̃ε(u) a stationary strategy that satisfies the following:

For opt = sup : reaopt
ε (s, ṽalεopt(δ, u)|MS) 6 reaπ̃ε(u)(s, ṽalεopt(δ, u)|MS)

For opt = inf : reaopt
ε (s, ṽalεopt(δ, u)|MS) + ε > reaπ̃ε(u)(s, ṽalεopt(δ, u)|MS)

Finally, we define the output of procedure FindStrat(v) as follows: For v = u|MS :

FindStrat(v) = (π, π̃ε(u)). Below we will show error bounds on value ṽalεopt(s, x, u)
and scheduler π̃ε(u).
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Lemma 4.3.5. Let t ∈ R>0, δ ∈ R>0, ε ∈ (0, 1), ε′ ∈ [0, 1). Let π be a
piecewise-constant strategy and v : S → [0, 1], such that ∀s ∈ S : v(s) 4opt
valπ(s, t, g) and

v(s) 4opt valopt(s, t, g) 4opt v(s) + (−1)1{inf}(opt) · ε (4.40)

If Assumption 4.3.1 is satisfied, then ∀s ∈ S:

ṽalε′sup(s, δ, v) 6 valsup(s, t+ δ, g) 6 ṽalε′sup(s, δ, v) + ε+ ε′ +
(Emax · δ)2

2

ṽalε′inf(s, δ, v) + ε′ +
(Emax · δ)2

2
> valinf(s, t+ δ, g) > ṽalε′inf(s, δ, v)− ε

(4.41)

Proof. Let w(s) = ṽalopt(s, δ, valopt(t, g)). Then

valopt(s, t+ δ, g)− ṽalε′opt(s, δ, v) = valopt(s, t+ δ, g)− w(s) + w(s)− ṽalε′opt(s, δ, v)

According to Lemma A.6, ∀s ∈ S:

0 6 valopt(s, t+ δ, g)− w(s) 6 (Emax · δ)2

2

Consider the difference w(s)− ṽalε′opt(s, δ, v). For ms ∈ MS:

w(ms) = e−E(ms)·δ · valopt(ms, t, g) + (1− e−E(ms)·δ)
∑
s′∈S

R[ms, s′]

E(ms)
· valopt(s

′, t, g)

ṽalε′opt(ms, δ, v) = e−E(ms)·δ · v(ms) + (1− e−E(ms)·δ)
∑
s′∈S

R[ms, s′]

E(ms)
· v(s′)

And therefore:

w(ms)− ṽalε′opt(ms, δ, v) = e−E(ms)·δ · (valopt(ms, t, g)− v(ms))

+ (1− e−E(ms)·δ)
∑
s′∈S

R[ms, s′]

E(ms)
·
(
valopt(s

′, t, g)− v(s′)
)

From (4.40) it follows that:

0 4opt w(ms)− ṽalε′opt(ms, δ, v) 4opt (−1)1{inf}(opt) · ε (4.42)

Consider ps ∈ PS. In this case w(ps) = reaopt(ps, w|MS). On the other hand
ṽalε′opt(ps, δ, v) = reaopt

ε′ (ps, ṽalε′opt(δ, v)|MS). Therefore

w(ps)− ṽalε′opt(ps, δ, v) = reaopt(ps, w|MS)− reaopt
ε′ (ps, ṽalε′opt(δ, v)|MS)

= reaopt(ps, w|MS)− reaopt(ps, ṽalε′opt(δ, v)|MS)

+ reaopt(ps, ṽalε′opt(δ, v)|MS)− reaopt
ε′ (ps, ṽalε′opt(δ, v)|MS)
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By definition:

0 6 reaopt(ps, ṽalε′opt(δ, v)|MS)− reaopt
ε′ (ps, ṽalε′opt(δ, v)|MS) 6 ε′

According to Lemma A.5 applied to S′ = MS, w1 = w|MS and w2 = ṽalε′opt(δ, v)|MS:

0 4opt reaopt(ps, w|MS)− reaopt(ps, ṽalε′opt(δ, v)|MS) 4opt (−1)1{inf}(opt) · ε

Therefore we have shown that:

0 6 w(ps)− ṽalε′sup(ps, δ, v) 6 ε+ ε′

ε′ > w(ps)− ṽalε′inf(ps, δ, v) > −ε

This concludes the proof of (4.41).

Lemma 4.3.6. Let t ∈ R>0, δ ∈ R>0, ε ∈ (0, 1), ε′ ∈ [0, 1). Let π be a
piecewise-constant strategy and v : S → [0, 1], such that ∀s ∈ S : v(s) 4opt
valπ(s, t, g) and

v(s) 4opt valopt(s, t, g) 4opt v(s) + (−1)1{inf}(opt) · ε (4.43)

If Assumption 4.3.1 is satisfied, then π′ = π|[0,t] · π̃ε′(v)|(t,t+δ] is(
ε+ ε′ + (Emax·δ)2

2

)
-optimal for valopt(s, t+ δ, g).

Proof. We will show that

if opt = sup : ṽalε′sup(s, δ, v) 6 valπ′(s, t+ δ, g)

if opt = inf : ṽalε′inf(s, δ, v) + ε′ +
(Emax · δ)2

2
> valπ′(s, t+ δ, g)

Due to Lemma 4.3.5 this implies the statement of the lemma. Consider time point
t, s ∈ S. Then

ṽalε′opt(s, 0, v) = v(s) 4opt valπ(s, t, g) = valπ′(s, t, g) (4.44)

Consider time point t+ δ and ms ∈ MS. Then

ṽalε′opt(ms, δ, v)

= e−E(ms)·δ · v(ms) + (1− e−E(ms)·δ)
∑
s′∈S

R[ms, s′]

E(ms)
· v(s′)

(4.44)

4opt e
−E(ms)·δ · valπ′(ms, t, g) + (1− e−E(ms)·δ)

∑
s′∈S

R[ms, s′]

E(ms)
· valπ′(s′, t, g)︸ ︷︷ ︸

X(ms,π′,t,t+δ)

(4.45)
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Due to Lemma 4.3.4:

X(ms, π′, t, t+ δ) 6
δ∫

0

E(ms) · e−E(ms)·x
∑
s′∈S

R[ms, s′]

E(ms)
· valπ′(s′, t+ δ − x, g)dx

︸ ︷︷ ︸
A(ms,π′,t,t+δ)

6 X(ms, π′, t, t+ δ) +
(Emax · δ)2

2
(4.46)

And therefore

ṽalε′sup(ms, δ, v)
(4.45)

6 e−E(ms)·δ · valπ′(ms, t, g) +X(ms, δ)

(4.46)

6 e−E(ms)·δ · valπ′(ms, t, g) +A(ms, δ)

= valπ′(ms, t+ δ, g)

ṽalε′inf(ms, δ, v) +
(Emax · δ)2

2

(4.45)

> e−E(ms)·δ · valπ′(ms, t, g) +X(ms, δ) +
(Emax · δ)2

2
(4.46)

> e−E(ms)·δ · valπ′(ms, t, g) +A(ms, δ)

= valπ′(ms, t+ δ, g)

(4.47)

Consider now a probabilistic state ps:

valπ′(ps, t+ δ, g) = reaπ′
(ps, valπ′(t+ δ, g)|MS)

ṽalε′opt(ps, δ, v) = reaopt
ε′ (ps, ṽalε′opt(δ, v)|MS)

Therefore

valπ′(ps, t+ δ, g)− ṽalε′opt(ps, δ, v)

= reaπ′
(ps, valπ′(t+ δ, g)|MS)− reaπ′

(ps, ṽalε′opt(δ, v)|MS)

+ reaπ′
(ps, ṽalε′opt(δ, v)|MS)− reaopt

ε′ (ps, ṽalε′opt(δ, v)|MS)

If opt = inf, then:

reaπ′
(ps, valπ′(t+ δ, g)|MS)− reaπ′

(ps, ṽalε′opt(δ, v)|MS)
(4.47)

6 (Emax · δ)2

2

reaπ′
(ps, ṽalε′opt(δ, v)|MS)− reaopt

ε′ (ps, ṽalε′opt(δ, v)|MS) 6 ε′

If opt = sup, then:

reaπ′
(ps, valπ′(t+ δ, g)|MS)− reaπ′

(ps, ṽalε′opt(δ, v)|MS)
(4.47)

> 0

reaπ′
(ps, ṽalε′opt(δ, v)|MS)− reaopt

ε′ (ps, ṽalε′opt(δ, v)|MS) > 0

This concludes the proof.
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4.3.3 Switching Points

In the previous section we have shown that given a piecewise-constant strategy πopt
that is optimal for valopt(t, g) we can extend it with a stationary strategy π, such
that it becomes optimal for valopt(t + x, g), ∀x ∈ (0, δ]. However, we do not know
the value of this δ and this is the question that we investigate in this section. The
main result of the section is a sufficient condition for the nearest switching point of
an optimal strategy.

Our goal is to find δ such that for all x ∈ (t, t + δ] scheduler π′opt = πopt|[0,t] ·
π|(t,t+δ] is optimal for valopt(x, g), i. e.:

∀s ∈ S, x ∈ (t,t+ δ], π ∈ ΠPC : valπ′
opt
(s, x, g) <opt valπ(s, x, g)

Naturally, it is unrealistic to check the inequality above. It turns out, however,
that given a strategy that is optimal on an interval [0, x) it is cheap to make sure
that the strategy remains optimal for x as well. Under this condition the value
valπ′

opt
(ms, x, g) for a Markovian state ms is optimal, because it only depends on

reachability values valπ′
opt
(s, x′, g) for time points x′ < x. We, therefore, need only

to look at probabilistic states. Here we want to make sure that

∀ps ∈ PS, π′ ∈ Πstat, π = π′opt|[0,x) · π′|[x,x] :
valπ′

opt
(ps, x, g) <opt valπ(ps, x, g)

(4.48)

Still checking this inequality for all stationary strategies means performing in the
worst case exponentially many operations in the size of the Markov automaton3.
This is not practical and in the following we discuss how this can be improved.
According to Lemma 4.3.1, Remark 4.3.1 and (4.18):

valπ′
opt
(ps, x, g) =

∑
s′∈S

P[ps, π′opt(ps, x), s
′] · valπ′

opt
(s′, x, g)

= reaπ′
opt|[x,x](ps, valπ′

opt
(x, g)|MS)

The following lemma describes one important property of optimal stationary
strategy for reaopt(h), where h is some goal function. The result is originally
presented in [Put94] (Theorem 7.2.5) and is adapted here to the special case of
reaopt(ps, h):

Lemma 4.3.7 ([Put94]). Let h be a goal function. A stationary strategy π
is optimal for reaopt(h) iff

∀ps ∈ PS : reaπ(ps, h) = opt
α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · reaπ(s′, h) (4.49)

3If each probabilistic state has at least 2 enabled actions, then there are at least 2|PS| different
stationary strategies.

86



4.3. A New Solution for Time-Bounded Reachability

Taking into account Lemma 4.3.7 and the fact that π′opt|[x,x] = π we can rewrite
(4.48) as follows:

∀ps ∈ PS :

reaπ(ps, valπ′
opt
(x, g)|MS) = opt

α∈Act(ps)

∑
s′∈S

P[ps, α, s′] · reaπ(s′, valπ′
opt
(x, g)|MS)

(4.50)
⇐⇒
∀ps ∈ PS, α ∈ Act(ps) :

reaπ(ps, valπ′
opt
(x, g)|MS) <opt

∑
s′∈S

P[ps, α, s′] · reaπ(s′, valπ′
opt
(x, g)|MS)

(4.51)

The latter inequality needs to be checked linearly many times, once for each
probabilistic state and each enabled action of this state, as opposed to (4.48) that
required exponentially many checks.

However we still need to address another problem: It is not possible to check
(4.51) for all points x within interval (t, t + δ], since there are continuously many
of those. We can circumvent this issue by thinking of the right- and the left-hand
sides of the inequality as functions of x. Lets denote them with r(ps, α, x) and
l(ps, x) respectively. This way δ is simply the largest value of variable x, for which
l(ps, x) − r(ps, α, x) <opt 0 for all ps and α. Functions l(ps, x) and r(ps, α, x) are
implicitly given by systems of differential equations (4.21-4.22) and one can use
standard function analysis to find zeros of l(ps, x)− r(ps, α, x). In fact, in the next
section we will apply derivative analysis to approximations of these functions to find
the maximum of the difference and compare it to zero.

There is another way of interpreting (4.51). If (4.51) holds on an interval, then
there exists an optimal strategy that has no switching points on this interval. And
when the condition is violated, there may exist one. The lemma below summarises
the discussion above and is essentially a sufficient condition on the absence of switch-
ing points on an interval. But first, we will introduce a more concise representation
of the right-hand side of (4.51):

valπ,ps→α(ps, x, g)

:=
∑
s′′∈S

P[ps, α, s′′] · reaπ|[x,x](s′′, valπ(x, g)|MS)

=
∑
s′′∈S

P[ps, α, s′′] · reaπ(s′′, valπ(x, g)|MS)

(4.18)
=

∑
s′′∈S

P[ps, α, s′′]
∑
s′∈MS

reaπ(s′′, s′) · valπ(s′, x, g)

=
∑
s′∈MS

∑
s′′∈S

P[ps, α, s′′] · reaπ(s′′, s′)︸ ︷︷ ︸
reaπ,ps→α(ps,s′)

·valπ(s′, x, g)

(4.52)

We will denote with reaπ,ps→α
ε (ps, s′) an ε-close under-approximation of value

reaπ,ps→α(ps, s′).
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Lemma 4.3.8 (Sufficient Condition). Let t ∈ R>0, δ ∈ R>0, πopt ∈ ΠPC
is optimal for valopt(x, g), x ∈ [0, t], π is a stationary strategy and π′opt =
πopt|[0,t] · π|(t,t+δ]. If

∀ps ∈ PS, x ∈ (t, t+ δ], α ∈ Act(ps) : valπ′
opt
(ps, x, g) <opt valπ′

opt,ps→α(ps, x, g)

(4.53)

then π′opt is optimal for valopt(x, g), for all x ∈ (t, t+ δ].

Proof. Assume this is not the case, i. e. there exist x ∈ (t, t + δ], s ∈ S, such that
π′opt is not optimal for valopt(s, x, g). Let x0 be the smallest of all such values x
and s0 be the respective state. Then π′opt is optimal for all x′ ∈ (t, x0). This
implies that s is not Markovian, since value valπ′

opt
(s, x′, g) for a Markovian state s

depends only on values valπ′
opt
(x′′, g) for x′′ < x′, and according to our assumption

valπ′
opt
(x′′, g) = valopt(x′′, g).

Consider s to be probabilistic. Condition (4.53) implies that Lemma 4.3.7 holds
for the stationary scheduler π′opt|[x0,x0] = π and goal function h = valopt(x0, g)|MS.
Therefore π′opt|[x0,x0] is optimal for reaopt(valopt(x0, g)|MS).

Thus we have shown that for a Markovian state ms value valmsπ′
opt
(x0, g) satis-

fies the fixpoint characterisation 4.1.4 for x0. For a probabilistic state ps value
valps

π′
opt
(x0, g) = reaπ′

opt|[x0,x0](ps, valopt(x0, g)|MS) satisfies the fixpoint characterisa-
tion 4.1.4 for x0 due to (4.20). This implies that π′opt is optimal for x0. We arrived
at a contradiction that proves the claim of the lemma.

4.3.4 Approximation of Switching Points
In the previous section we have shown that one can compute the switching points
of an optimal piecewise-constant scheduler by finding intersections of several func-
tions, given implicitly as systems of differential equations. Notice, however, that
these numbers are not necessarily rational. We, therefore, start this section by
showing how to approximate the switching points, rather than compute them ex-
actly. The end of the section is devoted to bounding the error introduced by the
approximations.

We will approximate switching points iteratively. In order to find the nearest
switching point on the interval (t, b] we define a sequence t = t0, t1, . . . , tn = b, and
at each iteration k = 0..n− 1 we check whether (4.53) holds for (tk, tk+1]. If yes, we
increase k and repeat. Otherwise, we output the largest δ ∈ (tk − t, tk+1 − t] such
that (4.53) holds for (t, t+ δ].

Selecting tk. This step is essentially a heuristic. The correctness of our approach,
in general, does not depend on the choices of tk and essentially any other heuristic
can as well be used. However all the results presented below, as well as all the
algorithms presented in Section 4.3.5 are targeted towards the specific heuristic
that we define below.
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We only consider the case of t < b. The heuristic has two parameters εh ∈ (0, 1)
and δh > 0. At every iteration k = 0..n−1 we choose a value tk+1, such that the MA
is very likely to perform at most k + 1 Markovian transitions within tk+1 − t time
units. “Very likely” here means with probability 1− εh. Parameter δh is introduced
for scenarios when the difference tk+1 − t is unacceptably small, for example, when
it is lower than the smallest floating point number that a computer can store. We
will bound the values tk+1 − t from below with δh, unless n = 1 (which is the case
if b− t < δh). For k = 1..n we first define TΨ(k, εh) as follows:

TΨ(k, εh), is the largest value that satisfies
k∑
i=0

ΨEmax·TΨ(k,εh)(i) > 1− εh

It may not be possible to compute the exact value of TΨ(k, εh). In this case an
under-approximation thereof up to a certain tolerance value suffices.

Procedure ComputeIntervals shown in Algorithm 1 produces a partition of
interval (t, b] for given t and b. Informally, the procedure considers a sequence
of values τj = TΨ(j, εh) that generates a sequence of intervals {(τj , τj+1]}. This
sequence is further refined in such a way that each of the intervals is a subset of
(i/Emax, (i+ 1)/Emax], for some i (step 4). This is performed for efficiency reasons.
Finally, the distance between each value δk and the given t cannot be smaller than
parameter δh. For this reason smaller values are increased to be at least as large
(step 7).

Algorithm 1 ComputeIntervals
Input: b ∈ R>0, t ∈ [0, b)
Output: partition of interval (t, b]
Parameters: δh > 0, εh ∈ (0, 1)

1: t0 = t, δ0 = 0
2: k = 1, j = 1
3: do
4: ck = min{TΨ(j, εh), (⌊δk−1 ·Emax⌋+ 1)/Emax}
5: if (ck == δk−1) then ck = TΨ(j, εh)

6: if (ck == TΨ(j, εh)) then j = j + 1

7: ∆k = max{δh, ck}
8: if (t+∆k 6 b) then
9: δk = ∆k

10: else
11: δk = b− t
12: k = k + 1
13: while (t+ δk−1 < b)
14: return all the non-empty intervals from the set {(t+ δi, t+ δi+1] | i = 0..k− 2}

Below we prove a few properties of this heuristic that will be needed later in this
Section.
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Lemma 4.3.9. Let δh 6 1/Emax. Consider δ0, . . . , δn computed in
ComputeIntervals (lines 9-11). Then ∀k = 0..n − 1 : ∃j 6 k : (δk, δk+1] ⊆
(j/Emax, (j + 1)/Emax]

Proof. We prove the statement by induction over k. Consider k = 0. Then δ0 = 0
and if n > 1, then δ1 6 1/Emax. If n = 1, then δ1 = b − t < δh 6 1/Emax,
and thus the statement holds for j = 0. Let k > 0. By induction hypothesis
∃j that satisfies 0 6 j − 1 6 k − 1 : (δk−1, δk] ⊆ ((j − 1)/Emax, j/Emax]. Thus
(j − 1)/Emax 6 δk 6 j/Emax.

If δk < j/Emax, then ⌊δk ·Emax⌋ < j and therefore ⌊δk ·Emax⌋ 6 j − 1. This
implies that ck+1 6 j/Emax and δk+1 6 max{1/Emax, j/Emax} 6 j/Emax, since
j > 1. Therefore (δk, δk+1] ⊆ ((j − 1)/Emax, j/Emax].

If δk = j/Emax, then ⌊δk ·Emax⌋ = j and therefore ck+1 6 (j + 1)/Emax. This
implies that δk+1 6 max{1/Emax, (j + 1)/Emax} 6 (j + 1)/Emax, since j > 1.
Therefore (δk, δk+1] ⊆ (j/Emax, (j + 1)/Emax].

Lemma 4.3.10. Let (t0, t1], . . . , (tn−1, tn] be the partition of (t, b] computed
by procedure ComputeIntervals for εh ∈ (0, 1) and δh 6 1/Emax. Then for
δ ∈ (t0 − t, t1 − t] : 0 6 N(δ, εh) 6 N(t1 − t, εh) and ∀k = 1..n − 1, δ ∈
(tk − t, tk+1 − t] : N(tk − t, εh) 6 N(δ, εh) 6 N(tk − t, εh) + 1.

Proof. First of all, ∀k = 0..n − 1, δ ∈ (tk − t, tk+1 − t] : N(tk − t, εh) 6 N(δ, εh) 6
N(tk+1 − t, εh). This proves the first claim and the first inequality of the second
claim. Consider k > 1. For tk − t there exists j ∈ Z>0, such that tk − t lies
within [TΨ(j, εh), TΨ(j + 1, εh)). The value of tk+1 − t belongs either to the same
interval [TΨ(j, εh), TΨ(j+1, εh)), or it equals TΨ(j+1, εh). By definition of TΨ(j, εh):∑j

i=0ΨEmax·TΨ(j,εh)(i) > 1 − εh and therefore we can set N(tj − t, εh) to j. Thus
the difference between N(tk − t, εh) and N(tk+1 − t, εh) is at most 1.

Lemma 4.3.11. Let εh ∈ (0, 1) and δh 6 1/Emax, then the number of
intervals in the partition returned by ComputeIntervals(b, t) is in

O((Emax · b · e2 − ln(εh)) · (b− t)/Emax)

Proof. Assume that variable j reaches the value N = N(b, εh). Then TΨ(N, εh) >
b. If min{TΨ(N, εh), (⌊δk−1 ·Emax⌋ + 1)/Emax} is reached at TΨ(N, εh), then the
algorithm exists the while-loop. In the worst case all points TΨ(i, εh), i = 1..N
are part of the partition. Each interval (TΨ(i− 1, εh), TΨ(i, εh)] can be partitioned
with steps of length at least 1/Emax, except possibly the very first and the very
last intervals. Therefore each interval (TΨ(i − 1, εh), TΨ(i, εh)] is partitioned in
O(⌈(b− t)/Emax⌉) of smaller intervals. Thus overall the amount of intervals in the
partition produced by ComputeIntervals does not exceed

O(N(b, εh) · (b− t)/Emax) = O((Emax · b · e2 − ln(εh)) · (b− t)/Emax)
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Searching for switching points within (tk, tk+1]. In the following we will
develop efficiently checkable sufficient conditions for testing an interval (tk, tk+1]
against the existence of switching points. We do this with the help of (4.53). In or-
der to check whether valπ(ps, t+δ, g) <opt valπ,ps→α(ps, t+δ, g) for all δ ∈ (δk, δk+1],
δi = ti − t, we only have to check whether the maximum of function

diffopt
π (ps, α, (t, t+ δ]) :=

{
valπ,ps→α(ps, t+ δ, g)− valπ(ps, t+ δ, g) if opt = sup
(−1) · diffsup

π (ps, α, (t, t+ δ]) if opt = inf

(as a function of δ) is at most 0 on this interval for all ps ∈ PS, α ∈ Act(ps). We
will first build an over-approximation of diffopt

π (ps, α, (t, t + δ]) that is a function
of exponentials and polynomials. Having this representation, we apply derivative
analysis to it to compute its maximum over the interval (tk− t, tk+1− t]. In order to
find an over-approximation of diffopt

π (ps, α, (t, t+ δ]) we work on the approximation
of valπ,ps→α(ps, t+ δ, g) and valπ(ps, t+ δ, g) derived from Lemma 4.3.2.

Lemma 4.3.12. Let t ∈ R>0, ξ = (εΨ, εrea, εn) satisfy conditions of Lemma
4.3.2, (tk, tk+1] ∈ ComputeIntervals(b, t, εh = εΨ, δh ∈ (0, 1/Emax]), δ ∈
(tk − t, tk+1 − t], ε ∈ (0, 1), and v : S → [0, 1] is such that ∀s ∈ S : v(s) 4opt
valπ(s, t, g) 4opt v(s) + (−1)1{inf}(opt) · ε. Then

diffopt
π (ps, α, (t, t+ δ]) 6 max

Nk6j6Nk+1

j∑
i=0

e−Emax·δ (Emax · δ)i

i!
·Bopt,i

π,ξ (ps, α) +C,

(4.54)
where Nj = N(tj − t, εΨ), j ∈ {k, k + 1}, C := 2 · εn + εrea + εΨ,

Bopt,i
π,ξ (ps, α)

:= (−1)1{inf}(opt) ·
(
reaπ|I ,ps→α

εn (ps,Di
εn(π|I , v)|MS)− reaπ|Iεn (ps,Di

εn(π|I , v)|MS)
)

Proof. Let ut,vπ,ps→α,ξ(ps) =
∑
s′∈S

P[ps, α, s′] · ut,vπ,ξ(s
′). We will first show that

diffopt
π (ps, α, (t, t+δ]) 6 (−1)1{inf}(opt)

(
ut,vπ,ps→α,ξ(ps)− u

t,v
π,ξ(ps)

)
+εrea+εΨ (4.55)

By definition

diffopt
π (ps, α, (t, t+ δ]) = (−1)1{inf}(opt) (valπ,ps→α(ps, t+ δ, g)− valπ(ps, t+ δ, g))

Consider valπ(ps, t+ δ, g):

valπ(ps, t+ δ, g) =
∑

s′∈dom(g)

PrMπ,ps
[
ttU=t+δaps′

]
· g(s′)

=
∑

s′′∈MS
PrMπ,ps

[
ttU=δaps′′

] ∑
s′∈dom(g)

PrMπ−δ,s′′

[
ttU=taps′

]
· g(s′)
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=
∑

s′′∈MS
PrMπ,ps

[
ttU=δaps′′

]
︸ ︷︷ ︸

p(ps,s′′)

·valπ−δ(s′′, t, g)

Notice that scheduler π is shifted with −δ since starting from Section 4.2.1 the
schedulers depend on time left until the time bound, rather time passed from the
beginning. Analogously derivations can be performed for valπ,ps→α(ps, t+ δ, g):

valπ(ps, t+ δ, g) =
∑

s′′∈MS

∑
s′∈S

P[ps, α, s′] · p(s′, s′′) · valπ−δ(s′′, t, g)

For opt = sup:

− diffopt
π (ps, α, (t, t+ δ])

= valπ(ps, t+ δ, g′)− valπ,ps→α(ps, t+ δ, g′)

=
∑

s′′∈MS

(
p(ps, s′′)−

∑
s′∈S

P[ps, α, s′] · p(s′, s′′)

)
· valπ−δ(s′′, t, g)

>
∑

s′′∈MS

(
p(ps, s′′)−

∑
s′∈S

P[ps, α, s′] · p(s′, s′′)

)
· v(s′′)

Lemma 4.3.2
> uδ,vπ,ξ(ps)−

∑
s′∈S

P[ps, α, s′] · uδ,vπ,ξ(s
′)− εrea − εΨ

= uδ,vπ,ξ(ps)− u
t,v
π,ps→α,ξ(ps)− εrea − εΨ

And analogously for opt = inf. We have thus proven (4.55).
Next we will obtain a bound on value ut,vπ,ps→α,ξ(ps)− u

t,v
π,ξ(ps):

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) · reaπ|Iεn (ps,Di
εn(π|I , v)|MS)

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·

reaπ|I (ps,Di
εn(π|I , v)|MS)− ε′︸︷︷︸

6εn


>

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·
(
reaπ|I (ps,Di

εn(π|I , v)|MS)
)
− εn

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i)
∑

ms∈MS
reaπ|I (ps,ms) ·Di

εn(ms, π|I , v)− εn

=
∑

ms∈MS
reaπ|I (ps,ms) ·

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(ms, π|I , v)− εn

=
∑

ms∈MS
reaπ|I (ps,ms) · ut+δ,vπ,ξ (ms)− εn = reaπ|I (ps, ut+δ,vπ,ξ |MS)− εn

> ut+δ,vπ,ξ (ps)− εn
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And therefore

ut+δ,vπ,ξ (ps) 6
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) · reaπ|Iεn (ps,Di
εn(π|I , v)|MS) + εn (4.56)

Next we obtain a lower bound:
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) · reaπ|Iεn (ps,Di
εn(π|I , v)|MS)

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·

reaπ|I (ps,Di
εn(π|I , v)|MS)− ε′︸︷︷︸

6εn


6

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·
(
reaπ|I (ps,Di

εn(π|I , v)|MS)
)

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·

( ∑
ms∈MS

reaπ|I (ps,ms) ·Di
εn(ms, π|I , v)

)

=
∑

ms∈MS
reaπ|I (ps,ms)

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(ms, π|I , v)

=
∑

ms∈MS
reaπ|I (ps,ms) · ut+δ,vπ,ξ (ms) = reaπ|I (ps, ut+δ,vπ,ξ |MS)

6 reaπ|Iεn (ps, ut+δ,vπ,ξ |MS) + εn

= ut+δ,vπ,ξ (ps) + εn

And therefore:

ut+δ,vπ,ξ (ps) >
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) · reaπ|Iεn (ps,Di
εn(π|I , v)|MS)− εn (4.57)

Analogous results hold for ut+δ,vπ,ps→α,ξ(ps). Therefore

ut+δ,vπ,ps→α,ξ(ps)− u
t+δ,v
π,ξ (ps) 6

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·B
sup,i
π,ξ (ps, α) + 2 · εn

We can now rewrite the bound on value diffopt
π (ps, α, (t, t+ δ]) as follows:

diffopt
π (ps, α, (t, t+ δ]) 6

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·B
opt,i
π,ξ (ps, α) + C

Notice that for δ ∈ (tk − t, tk+1 − t] : Nk 6 N(δ, εΨ) 6 Nk+1. Therefore

diffopt
π (ps, α, (t, t+ δ]) 6 max

Nk6j6Nk+1

j∑
i=0

e−Emax·δ (Emax · δ)i

i!
·Bopt,i

π,ξ (ps, α) + C

(4.58)
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Notice that both Bopt,i
π,ξ (ps, α) and C are constants in terms of δ. However, the

right-hand side of the bound obtained above still depends on specific δ, which means
it is not possible to compute it efficiently for all δ ∈ (tk − t, tk+1 − t].

In order to solve this problem we search for supremum of the right-hand side
over all δ ∈ (tk − t, tk+1 − t]. To achieve this we find extremum of each yi(δ) :=
Bopt,i
π,ξ (ps, α) ·e−Emax·δ(Emax ·δ)i/i!, i = 0..Nk+1, separately as functions of δ. Simple

derivative analysis shows that extremum of these functions is achieved at δ = i/Emax.
If Algorithm 1 is used to obtain intervals (tk, tk+1], then due to Lemma 4.3.10 for
k > 1 : Nk+1 − Nk 6 1. Additionally, truncation with (⌊δk−1 ·Emax⌋ + 1)/Emax
(step 4) ensures that for all i = 0..Nk+1 extremum of yi(δ) on (tk − t, tk+1 − t] is
attained at either δ1 = tk − t or δ2 = tk+1 − t. This allows us to use only δ1 and
δ2 to over-approximate value diffopt

π (ps, α, (t, t+ δ]) for all δ ∈ (tk − t, tk+1 − t]. We
thus obtain the following over-approximation:

d̃iff
opt
π,ξ (ps, α, (t, t+ δ]) :=

 max
06j6N1

d̃iff
opt
π,ξ (ps, α, (t, t+ δ], j) if k = 0

d̃iff
opt
π,ξ (ps, α, (t, t+ δ], Nk) + u(Nk + 1) if k > 0

where Nm = N(tm, εΨ),

d̃iff
opt
π,ξ (ps, α, (t, t+ δ],m) =

m∑
i=0

e−Emax·δ(ps,α,i) (Emax · δ(ps, α, i))i

i!
·Bopt,i

π,ξ (ps, α) + C,

u(m) = ΨEmax·δ(ps,α,m)(m) · Bopt,m
π,ξ (ps, α) iff Bopt,m

π,ξ (ps, α) > 0 and is 0 otherwise,
and

δ(ps, α, i) =


tk − t if Bopt,i

π,ξ (ps, α) > 0 and i/Emax 6 tk − t
or Bopt,i

π,ξ (ps, α) 6 0 and i/Emax > tk − t
tk+1 − t otherwise

Lemma 4.3.13. Let (tk, tk+1] is an interval obtained by Algorithm 1 for
εh = εΨ, δh ∈ (0, 1/Emax]. Then ∀δ ∈ (tk − t, tk+1 − t], ps ∈ PS, α ∈ Act(ps):

diffopt
π (ps, α, (t, t+ δ]) 6 d̃iff

opt
π,ξ (ps, α, (t, t+ δ]) (4.59)

Proof. Let δ ∈ (tk − t, tk+1 − t]. Consider
j∑
i=0

e−Emax·δ (Emax · δ)i

i!
·Bopt,i

π,ξ (ps, α) + C (4.60)

and function w(τ, i) = (Emax·τ)i
eEmax·τ for τ ∈ [0,∞). Its derivative

dw(τ, i)
dτ =

{
−Emax
eEmax·τ if i = 0
Emaxi·iτ i−1

eEmax·τ − Emaxi+1τ i

eEmax·τ = Emaxiτ i−1

eEmax·τ (i−Emax · τ) if i > 1

Therefore
dw(τ, i)

dτ = 0 iff (τ = 0 and i > 2) or (τ = i/Emax and i > 1)
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Consider i > 1:

dw(τ, i)
dt =

Emax
iτ i−1

eEmax·τ (i−Emax · τ) < 0 iff (i−Emax · τ) < 0 iff τ > i/Emax

And analogously dw(τ,i)
dt > 0 iff τ < i/Emax. Therefore the point τ = i/Emax is the

point of maximum of w(τ, i).
For τ = 0, i > 2 : w(0, i) = 0, and ∀x > 0 : w(x, i) > 0. Thus τ = 0 is not a

point of maximum of w(τ, i) on [0,∞).
And lastly for i = 0 the function dw(τ,0)

dt is negative and therefore w(τ, 0) is
decreasing. Hence its maximum is achieved at τ = 0 = 0/Emax.

We can therefore conclude that ∀i ∈ Z>0 : i/Emax is the only maximum of w(τ, i)
on [0,∞). Consider the ith summand of (4.60):

− If Bopt,i
π,ξ (ps, α) > 0 and i/Emax 6 tk− t, then the function (Emax·τ)i

eEmax·τ ·
Bopt,i
π,ξ (ps,α)

i!
is decreasing on (tk − t, tk+1 − t] and therefore achieves its maximum at
δ(ps, α, i) = tk − t.

− If Bopt,i
π,ξ (ps, α) > 0 and i/Emax > tk − t then function (Emax·τ)i

eEmax·τ ·
Bopt,i
π,ξ (ps,α)

i!
is increasing in (tk − t, i/Emax]. According to Lemma 4.3.9, ∃j 6 k : (tk −
t, tk+1 − t] ⊆ (j/Emax, (j + 1)/Emax]. Therefore i/Emax > tk+1 − t and the
function Bopt,i

π,ξ (ps, α) > 0 and i/Emax > tk − t then the function the function
(Emax·τ)i
eEmax·τ ·

Bopt,i
π,ξ (ps,α)

i! is increasing on (tk − t, tk+1 − t]. Thus its maximum is
attained at δ(ps, α, i) = tk+1 − t.

− If Bopt,i
π,ξ (ps, α) 6 0 and i/Emax 6 tk− t, then the function (Emax·τ)i

eEmax·τ ·
Bopt,i
π,ξ (ps,α)

i!
is increasing on (tk − t, tk+1 − t] and therefore achieves its maximum at
δ(ps, α, i) = tk+1 − t.

− If Bopt,i
π,ξ (ps, α) 6 0 and i/Emax > tk − t then, analogously to the second case,

the function (Emax·τ)i
eEmax·τ ·

Bopt,i
π,ξ (ps,α)

i! is decreasing on (tk − t, i/Emax], i/Emax >
tk+1 − t and therefore the maximum is attained at δ(ps, α, i) = tk − t.

We have thus shown that for 0 6 i 6 j, δ ∈ (tk − t, tk+1 − t] : ΨEmax·δ(i) ·
Bopt,i
π,ξ (ps, α) 6 ΨEmax·δ(ps,α,i)(i) ·B

opt,i
π,ξ (ps, α).

If k = 0, then N0 = 0 and the proof follows from (4.58). Let k > 0. Then
according to Lemma 4.3.10: Nk 6 N(δ, εΨ) 6 Nk + 1. Therefore the maximum
in (4.58) ranges over {Nk, Nk + 1}. If Bopt,Nk+1

π,ξ (ps, α) > 0 then the maximum is
achieved at Nk + 1 (u(Nk + 1) > 0) and otherwise at Nk (u(Nk + 1) = 0). This
finishes the proof.

The lemma above shows that in order to check whether there may exist a switch-
ing point within (tk, tk+1], one can compute the value d̃iff

opt
π,ξ (ps, α, (t, t+ δ]) for all

probabilistic states and all actions, which only depend on the boundary values tk
and tk+1, and not on the δ itself. If this value is below 0, then there is no switching
point, otherwise there may exist one.
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Lemma 4.3.13 brings another interesting observation: for each interval (tk, tk+1]
there exists a subset of states, such that if the optimal strategy remains stationary
for all of these states within (tk, tk+1], then it remains stationary for all states within
(tk, tk+1]. Thus reasoning on a subset of states provides sufficient information for
all the states of the Markov automaton. This is the topic of the discussion in the
following section.

Finding Maximal Transitions. In the following we call a pair (s, α) ∈ PS×Act
a transition. For transitions (s, α), (s′, α′) ∈ PS× Act we write (s, α) ≼k (s′, α′) iff
∀i = 0..k : Bopt,i

π,ξ (s, α) 6 Bopt,i
π,ξ (s′, α′). We say that a transition (s, α) is maximal if

there exists no other transition (s′, α′) that satisfies the following: (s, α) ≼k (s′, α′)
and ∃i = 0..k : Bopt,i

π,ξ (s, α) < Bopt,i
π,ξ (s′, α′). The set of all maximal transitions w. r. t.

≼k is denoted with Tmax(k).
We prove that if inequality (4.59) holds for all transitions from Tmax(N(tk+1 −

t, εΨ)), then it holds for all transitions of the Markov automaton:

Lemma 4.3.14. ∀δ ∈ (tk − t, tk+1 − t], ps ∈ PS, α ∈ Act(ps) : ∃(ps′, α′) ∈
Tmax(N(tk+1 − t, εΨ)):

diffopt
π (ps, α, (t, t+ δ]) 6 d̃iff

opt
π,ξ (ps

′, α′, (t, t+ δ]) (4.61)

Proof. We prove that for each ps ∈ PS, α ∈ Act(ps) there exists a maximal transi-
tion (ps′, α′), such that ∀i = 0..N(tk+1 − t, εΨ):

ΨEmax·δ(ps′,α′,i)(i) ·B
opt,i
π,ξ (ps′, α′) > ΨEmax·δ(ps,α,i)(i) ·B

opt,i
π,ξ (ps, α)

This implies the statement of the lemma.
If (ps, α) is maximal, then the statement holds for (ps′, α′) = (ps, α). Con-

sider (ps, α) ̸∈ Tmax(N(tk+1 − t, εΨ)). Then there exists a transition (ps′, α′) ∈
Tmax(N(tk+1 − t, εΨ)) such that (ps, α) ≼N(tk+1−t,εΨ) (ps

′, α′) and by definition of
≼N(tk+1−t,εΨ): ∀i = 0..N(tk+1 − t, εΨ) : Bopt,i

π,ξ (ps, α) 6 Bopt,i
π,ξ (ps′, α′). If for all

i ∈ 0..N(tk+1 − t, εΨ) : Bopt,i
π,ξ (ps, α) and Bopt,i

π,ξ (ps′, α′) are either both > 0 or 6 0,
then δ(ps, α, i) = δ(ps′, α′, i) and therefore

ΨEmax·δ(ps,α,i)(i) ·B
opt,i
π,ξ (ps, α) 6 ΨEmax·δ(ps,α,i)(i) ·B

opt,i
π,ξ (ps′, α′)

= ΨEmax·δ(ps′,α′,i)(i) ·B
opt,i
π,ξ (ps′, α′)

If for some i ∈ 0..N(tk+1− t, εΨ) the signs of Bopt,i
π,ξ (ps, α) and Bopt,i

π,ξ (ps′, α′) are
different, the only possibility is that Bopt,i

π,ξ (ps, α) < 0 and Bopt,i
π,ξ (ps′, α′) > 0. Then

ΨEmax·δ(ps,α,i)(i) ·B
opt,i
π,ξ (ps, α) = −ΨEmax·δ(ps,α,i)(i) ·

∣∣∣Bopt,i
π,ξ (ps, α)

∣∣∣
6 0 6 ΨEmax·δ(ps′,α′,i)(i) ·B

opt,i
π,ξ (ps′, α′)
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Thus only transitions from Tmax(N(tk+1 − t, εΨ)) have to be checked in order
to establish existence of switching points. In the worst case the set Tmax(N(tk+1 −
t, εΨ)) can be almost as large as PS × Act. The complexity of the computation of
Tmax(N(tk+1 − t, εΨ)) is in O(|PS×Act|2 ·N(tk+1 − t, εΨ)).

Switching Points of ϵ-optimal Strategy. So far our approach to detect switch-
ing points was based on testing d̃iff

opt
π,ξ (ps, α, (t, t + δ]) against 0. There are a few

issues related to this. First of all, when performing computations with floating
points, the results may be imprecise: Values that are 0 in theory might be rep-
resented by non-zero float-point numbers. Thus it may look like the value of
d̃iff

opt
π,ξ (ps, α, (t, t+ δ]) is above 0, while in reality it is below 0 but the final result is

affected by floating point errors.

Secondly, it may happen that the optimal strategy switches very often on a time
interval, while the effect of these frequent switches is negligible. The difference may
be so small that an ϵ-optimal strategy actually stays stationary on this interval.
Testing d̃iff

opt
π,ξ (ps, α, (t, t+ δ]) against 0 does not take this into account.

And lastly, we have not discuss yet what to do in case our sufficient conditions
fail already for intervals of length smaller than δh. Our approach so far forbids to
perform steps smaller then δh, however there may exist switching points within such
intervals.

To counteract these issues we introduce two methods to estimate error intro-
duced by a potentially sub-optimal policy, i. e. policy for which d̃iff

opt
π,ξ (ps, α, (t, t+δ])

is above 0.

Let M be PS-acyclic, ξ = (εΨ, εrea, εn) satisfies (4.26), t ∈ [0, b), (tk, tk+1] is an
interval outputted by ComputeIntervals for b, t, εh = εΨ, δh ∈ (0, 1/Emax]. Let
δ ∈ (tk − t, tk+1 − t], A ⊆ PS × Act, c2 = (Emax · δ)2/2. If A ̸= ∅ we define
εmax = maxτ=(ps,α)∈A{0, d̃iff

opt
π,ξ (ps, α, (t, t + δ])}, c1 = dmax · εmax, and if c1 > 0,

then n =
⌈√

c2
c1

⌉
. We define

err1π,ξ((t, t+ δ], A) :=

{
0 if c1 = 0

c1 · n+ c2/n otherwise
(4.62)
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Lemma 4.3.15. Let M be a PS-acyclic MA, A = PS × Act or
A = Tmax(N(tk+1 − t, εΨ)), ξ = (εΨ, εrea, εn) satisfies (4.26), εn 6
εrea/ (N(δ, εΨ) + 1), and Assumption 4.3.1 is satisfied.
Let π ∈ ΠPC, such that π is stationary on (t, t+ δ]. Let v : S → [0, 1] be such
that ∀s ∈ S : v(s) 4opt valπ(s, t, g) and

v(s) 4opt valopt(s, t, g) 4opt v(s) + (−1)1{inf}(opt) · ε (4.63)

Then π is at least (ε + err1π,ξ((t, t + δ], A))-optimal for valopt(s, t + δ, g) and
∀s ∈ S:

ut+δ,vπ,ξ (s) 6 valsup(s, t+ δ, g) 6 ut+δ,vπ,ξ (s) + ε+ err1π,ξ((t, t+ δ], A) + εΨ + εrea

ut+δ,vπ,ξ (s) + εΨ + εrea > valinf(s, t+ δ, g) > ut+δ,vπ,ξ (s)− ε− err1π,ξ((t, t+ δ], A)

(4.64)

Proof. First of all, it holds that

v(s) 4opt valπ(s, t, g) 4opt valopt(s, t, g) 4opt v(s) + (−1)1{inf}(opt) · ε

Let ε = ε1 + ε2, where ε1, ε2 ∈ [0, 1] and

valπ(s, t, g)− v(s) 4opt (−1)1{inf}(opt) · ε1 (4.65)
valopt(s, t, g)− valπ(s, t, g) 4opt (−1)1{inf}(opt) · ε2 (4.66)

Due to Lemma 4.3.2, ∀t′ ∈ (t, t+ δ], s ∈ S:

opt = sup : ut
′,v
π,ξ (s) 6 valπ(s, t′, g) 6 ut

′,v
π,ξ (s) + ε1 + εrea + εΨ

opt = inf : ut
′,v
π,ξ (s) + εrea + εΨ > valπ(s, t′, g) > ut

′,v
π,ξ (s)− ε1

Consider the case of c1 = 0. This is possible if dmax = 0 or εmax = 0. The
former can only happen if PS = ∅. In this case any strategy is optimal, i. e.:

∀π′ ∈ ΠPC, t
′ ∈ (t, t+ δ], s ∈ S : valπ′(s, t′, g) = valopt(s, t

′, g)

Thus (4.64) follows from Lemma 4.3.2.
If εmax = 0, then

∀ps ∈ PS, α ∈ Act(ps) : d̃iff
opt
π,ξ (ps, α, (t, t+ δ]) 6 0

Due to Lemma 4.3.13 this implies that ∀ps ∈ PS, α ∈ Act:

diffopt
π (ps, α, (t, t+ δ]) 6 d̃iff

opt
π,ξ (ps, α, (t, t+ δ]) 6 0

Thus the sufficient condition 4.3.8 holds and therefore π is optimal on (t, t+ δ], i. e.:

∀t′ ∈ (t, t+ δ], s ∈ S : valπ(s, t′, g) = valopt(s, t
′, g)
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We conclude that in this case (4.64) holds due to 4.3.2.
Consider now the case c1 > 0. At first we will show that π is (ε2 + err1π,ξ((t, t+

δ], A))-optimal on (t, t+ δ], i. e. that ∀s ∈ S, t′ ∈ (t, t+ δ]:

0 4opt valopt(s, t
′, g)− valπ(s, t′, g) 4opt (−1)1{inf}(opt) ·

(
ε2 + err1π,ξ((t, t+ δ], A)

)
(4.67)

The leftmost inequality follows directly from the optimality of valopt(s, t′, g). In
order to prove the rightmost inequality, we will first introduce a new variable. Let
n ∈ Z>0, δst = (t′ − t)/n. Let τi = t + i · δst for i = 0..n. Consider ṽalopt(s, x, g)
defined as follows:

ṽalopt(s, x, g) =



valopt(s, t, g) if x = τ0

e−E(s)·δst · ṽalopt(s, τi−1, g)+ if x = τi, i > 0, s ∈ MS
(1− e−E(s)·δst)

∑
s′∈S

R[s,s′]
E(s) · ṽalopt(s

′, τi−1, g)

reaopt(s, ṽalopt(τi, g)|MS) if x = τi, i > 0, s ∈ PS
ṽalopt(s, τi, g) if x ∈ (τi−1, τi), n > i > 0

We will prove the rightmost inequality of (4.67) by splitting the value into two:

valopt(s, t
′, g)− valπ(s, t′, g)

= valopt(s, t
′, g)− ṽalopt(s, t

′, g) + ṽalopt(s, t
′, g)− valπ(s, t′, g)

Lemma A.6 proves that ∀s ∈ S, i = 0..n:

0 6 valopt(s, τi, g)− ṽalopt(s, τi, g) 6 i ·
(Emax · δst)2

2
(4.68)

We will show by induction that ∀s ∈ S, i = 0..n:

ṽalsup(s, τi, g)− valπ(s, τi, g) 6 ε2 + i · dmax · εmax (4.69)

ṽalinf(s, τi, g)− valπ(s, τi, g) > −
(
ε2 + i ·

(
dmax · εmax +

(Emax · δst)2

2

))
(4.70)

For i = 0, s ∈ S:

ṽalopt(s, τ0, g)− valπ(s, τ0, g) = valopt(s, τ0, g)− valπ(s, τ0, g)
(4.66)

4opt (−1)1{inf}(opt) · ε2

Consider 0 < i 6 n andms ∈ MS. According to Lemma 4.3.4, the value valπ(ms, τi, g)
can be bounded as follows:

Y (ms, δst) 6 valπ(ms, τi, g) 6 Y (ms, δst) +
(Emax · δst)2

2
,

where

Y (ms, δst) := e−E(ms)·δst · valπ(ms, τi−1, g)

+ (1− e−E(ms)·δst)
∑
s′∈S

R[ms, s′]

E(ms)
· valπ(s′, τi−1, g)
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Thus

ṽalsup(ms, τi, g)− valπ(ms, τi, g) 6 ε2 + (i− 1) · dmax · εmax (4.71)

ṽalinf(ms, τi, g)− valπ(ms, τi, g) > −
(
ε2 + (i− 1) · dmax · εmax + i · (Emax · δst)2

2

)
(4.72)

Consider a probabilistic state ps ∈ PS. Let

πi = arg opt
π′∈Πstat

reaπ′
(ps, ṽalopt(τi, g)|MS)

Then

ṽalopt(ps, τi, g)− valπ(ps, τi, g)

=
∑

ms∈MS

(
reaπi(ps,ms) · ṽalopt(ms, τi, g)− reaπ(ps,ms) · valπ(ms, τi, g)

)
=

∑
ms∈MS

valπ(ms, τi, g) · (reaπi(ps,ms)− reaπ(ps,ms))︸ ︷︷ ︸
4opt(−1)

1{inf}(opt)
dmax·εmax( Lemma A.7)

+
∑

ms∈MS
reaπi(ps,ms) ·

(
ṽalopt(ms, τi, g)− valπ(ms, τi, g)

)
︸ ︷︷ ︸

bounded by (4.71-4.72)

For opt = sup:

ṽalsup(ps, τi, g)− valπ(ps, τi, g) 6 dmax · εmax + ε2 + (i− 1) · dmax · εmax

= ε2 + i · dmax · εmax

For opt = inf:

ṽalinf(ps, τi, g)− valπ(ps, τi, g)

> −
(
ε2 + dmax · εmax + (i− 1) · dmax · εmax + i · (Emax · δst)2

2

)
= −

(
ε2 + i ·

(
dmax · εmax +

(Emax · δst)2

2

))
This concludes the proof of (4.69-4.70). Consider τn = t′, s ∈ S:

valsup(s, t
′, g)− ṽalsup(s, t

′, g)
(4.68)

6 (Emax · (t′ − t))2

2 · n
6 (Emax · δ)2

2 · n

ṽalsup(s, t
′, g)− valπ(s, t′, g)

(4.69)

6 ε2 + n · dmax · εmax

valinf(s, t
′, g)− ṽalinf(s, t

′, g)
(4.68)

> 0

ṽalinf(s, t
′, g)− valπ(s, t′, g)

(4.70)

> −
(
ε2 + n ·

(
dmax · εmax +

(Emax · δst)2

2

))
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By summing up the inequalities above we can prove (4.67) for an arbitrary n. In
order to obtain the best error bound it is better to choose such n that minimises
the expression. Derivative analysis w. r. t. n shows that the minimum is attained
at n =

√
c2
c1

. For this reason we choose n =
⌈√

c2
c1

⌉
.

We have just shown that π is (ε2+err1π,ξ((t, t+δ], A))-optimal on (t, t+δ]. Thus
for all t′ ∈ (t, t+ δ], s ∈ S:

ut
′,v
π,ξ (s)

Lem. 4.3.2
6 valπ(s, t′, g)

(4.67)

6 valsup(s, t
′, g)

(4.67)

6 valπ(s, t′, g) + ε2 + err1π,ξ((t, t+ δ], A)

Lem. 4.3.2
6 ut

′,v
π,ξ (s) + ε2 + err1π,ξ((t, t+ δ], A) + ε1 + εΨ + εrea

= ut
′,v
π,ξ (s) + ε+ err1π,ξ((t, t+ δ], A) + εΨ + εrea

And analogously for infinum:

ut
′,v
π,ξ (s) + εΨ + εrea

Lem. 4.3.2
> valπ(s, t′, g)

(4.67)

> valinf(s, t
′, g)

(4.67)

> valπ(s, t′, g)− ε2 − err1π,ξ((t, t+ δ], A)

Lem. 4.3.2
> ut

′,v
π,ξ (s)− ε1 − ε2 − err1π,ξ((t, t+ δ], A)

= ut
′,v
π,ξ (s)− ε− err1π,ξ((t, t+ δ], A)

This concludes the proof.

The error bound obtained above is likely over-pessimistic. As long as switches
of an ϵ-optimal strategy bring significant improvement for the reachability value
even a rough estimate like this suffices. However if switching from one station-
ary strategy to another changes slightly the reachability probability, Lemma 4.3.15
may fail to detect that ϵ-optimal strategy may remain stationary over an interval.
Our experimental evaluation shows that among the published case studies there are
many models and properties that have this feature. In the following we will present
another test on the presence of switching points of an ϵ-optimal strategy that per-
forms well in this case. It is originally developed in [BS11] for late CTMDPs and
implemented in IMCA toolset [GHKN12]. It was later partially extended to Markov
automata in [Gro18].

Let h be a total goal function, k ∈ Z>0, s ∈ S. We define

Dk
(s, h) :=


h(s) if s ∈ MS, k = 0∑
s′∈S

R[s,s′]
Emax

·Dk−1
(s′, h) + (1− E(s)

Emax
) ·Dk−1

(s, h) if s ∈ MS, k > 0

reaopt(s,Dk
(h)|MS) if s ∈ PS
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If the equations above use an approximation reaopt
ε (·, ·) instead of reaopt(·, ·), for

some ε ∈ [0, 1), then we denote thus obtained values with Dk
ε(s, h).

Let ε ∈ (0, 1), π ∈ ΠPC, I ∈ I(π), t ∈ I, δ = t − inf I, s ∈ S, ξ = (εΨ, εrea, εn)
satisfies (4.26) and v : S → [0, 1]. We define

ut,vopt,ξ(s) :=


v if t = inf I
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·D
i
εn(s, v) else if s ∈ MS

reaopt
εn (s, ut,vopt,ξ|MS) else if s ∈ PS

And

err2π,ξ(I, δ) :=
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
opt,ξ + (−1)1{inf}(opt) · 2 · εn

Di
opt,ξ := opt

s∈S

(
Di
εn(s, v)−Di

εn(s, π|I , v)
)

Lemma 4.3.16. Let M be an MA, π ∈ ΠPC, such that π is stationary on
I ∈ I(π) and (t, t + δ] ⊆ I, δ > 0, ξ = (εΨ, εrea, εn) satisfies (4.26) and
εn 6 εrea/ (N(δ, εΨ) + 1).
Let v : S → [0, 1] be such that ∀s ∈ S : v(s) 4opt valπ(s, t, g) and

v(s) 4opt valopt(s, t, g) 4opt v(s) + (−1)1{inf}(opt) · ε

Then π is at least (ε+ |err2π,ξ(I, δ)|+ εΨ + εrea)-optimal for valopt(s, t+ δ, g)
and ∀s ∈ S:

ut+δ,vπ,ξ (s) 6 valsup(s, t+ δ, g) 6 ut+δ,vπ,ξ (s) + ε+ err2π,ξ(I, δ) + εΨ + εrea

ut+δ,vπ,ξ (s) + εΨ + εrea > valinf(s, t+ δ, g) > ut+δ,vπ,ξ (s)− ε+ err2π,ξ(I, δ)
(4.73)

Proof. First of all, it holds that

v(s) 4opt valπ(s, t, g) 4opt valopt(s, t, g) 4opt v(s) + (−1)1{inf}(opt) · ε

Due to Lemma 4.3.2, ∀t′ ∈ (t, t+ δ], s ∈ S:

opt = sup : ut
′,v
π,ξ (s) 6 valπ(s, t′, g) 6 ut

′,v
π,ξ (s) + ε+ εrea + εΨ

opt = inf : ut
′,v
π,ξ (s) + εrea + εΨ > valπ(s, t′, g) > ut

′,v
π,ξ (s)− ε

Uniformisation of a Markov automaton is the same as uniformisation of CTMCs
[Jen53]: for each Markovian state ms with exit rate strictly below Emax a new self-
loop transition is added with rate Emax − E(ms). We will denote the uniformised
version of M with Mu. Notice that uniformising a Markov automaton does not
affect the value valopt(x, g), i. e. valMopt(x, g) = valMu

opt (x, g). Therefore for s ∈ S the
following holds:

valMopt(s, t+ δ, g)
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= valMu
opt (s, t+ δ, g)

Lemma 4.1.5
= opt

π′∈ΠTM

∑
s′∈dom(g)

PrMu
π′,s

[
ttU=t+δaps′

]
· g(s′)

= opt
π′∈ΠTM

∑
s′′∈MS

PrMu
π′,s

[
ttU=δaps′′

] ∑
s′∈dom(g)

PrMu

π′−δ,s′′

[
ttU=taps′

]
· g(s′)

= opt
π′∈ΠTM

∑
s′′∈MS

PrMu
π′,s

[
ttU=δaps′′

]
· valMu

π′−δ(s
′′, t, g)

The event {ρ ∈ Pathsω | ρ |= ttU=δaps′′} can be partitioned according to the
number of Markovian transitions performed before ttU=δaps′′ is satisfied. Let #δ,i

be the set of infinite paths that perform i Markovian transitions until time δ. Then

{ρ ∈ Pathsω | ρ |= ttU=δaps′′} =
∞⊎
i=0

{ρ ∈ Pathsω | ρ |= ttU=δaps′′} ∩#δ,i

=

∞⊎
i=0

{ρ ∈ Pathsω | ρ |= ttU=iaps′′} ∩#δ,i,

where {ρ ∈ Pathsω | ρ |= ttU=iaps′′} is the event of reaching s′′ by performing i
Markovian transitions. Thus

valMopt(s, x, g) = opt
π′∈ΠTM

∑
s′′∈MS

∞∑
i=0

ΨEmax·δ(i) · PrMu
π′,s

[
ttU=iaps′′

]
· valMu

π′−δ(s
′′, t, g)

4opt

∞∑
i=0

ΨEmax·δ(i) opt
π′∈Πµ

∑
s′′∈MS

PrMu
π′,s

[
ttU=iaps′′

]
· valMu

π′−δ(s
′′, t, g)

(4.74)

Next we will show by induction that for h : MS→ [0, 1], ∀s ∈ S, i ∈ Z>0:

Di
(s, h) = opt

π′∈Πµ

∑
s′′∈MS

PrMu
π′,s

[
ttU=iaps′′

]
· h(s′′)

For i = 0,ms ∈ MS:

D0
(ms, h) = h(ms) = opt

π′∈Πµ
h(ms) = opt

π′∈ΠPC

∑
s′′∈MS

PrMu
π′,ms

[
ttU=0aps′′

]
· h(s′′)

For ps ∈ PS, i = 0:

Di
(ps, h) = reaopt(ps,Di

(h)|MS)

= opt
π′∈Πµ

∑
ms∈MS

reaπ′
(ps,ms) ·Di

(ms, h)

= opt
π′∈Πµ

∑
ms∈MS

reaπ′
(ps,ms) · opt

π′′∈Πµ

∑
s′′∈MS

PrMu
π′′,ms

[
ttU=iaps′′

]
· h(s′′)

= opt
π′∈Πµ

∑
s′′∈MS

PrMu
π′,ps

[
ttU=iaps′′

]
· h(s′′)
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For ps ∈ PS, i > 0 the proof is identical. Consider ms ∈ MS, i > 0:

Di
(ms, h) =

∑
s′∈S

R[ms, s′]

Emax
·Di−1

(s′, h) + (1− E(ms)

Emax
) ·Di−1

(ms, h)

IH
= opt

π′∈Πµ

∑
s′∈S

PrMu
π′,ms

[
ttU=iaps′

]
· h(s′)

Therefore we can rewrite (4.74) as follows:

valMopt(s, t+ δ, g) 4opt


∞∑
i=0

ΨEmax·δ(i) ·D
i
(s, valMu

opt (t, g)) if s ∈ MS

reaopt(valMu
opt (t+ δ, g)|MS) if s ∈ PS

We will denote the right-hand side of the inequality above with valopt(s, t+δ, g). The
value ut+δ,vopt,ξ (s) approximates valopt(s, t+ δ, g) on interval (t, t+ δ] just like ut+δ,vπ,ξ (s)
approximates valπ(t+ δ, g). Therefore the following holds:

valsup(s, t+ δ, g) 6 valsup(s, t+ δ, g) 6 ut+δ,vsup,ξ (s) + ε+ εΨ + εrea

valinf(s, t+ δ, g) > valinf(s, t+ δ, g) > ut+δ,vinf,ξ (s)− ε

And

ut+δ,vπ,ξ (s) 6 valπ(s, t+ δ, g) 6 valsup(s, t+ δ, g)

6 valsup(s, t+ δ, g) 6 ut+δ,vsup,ξ (s) + ε+ εΨ + εrea

ut+δ,vπ,ξ (s) + εΨ + εrea > valπ(s, t+ δ, g) > valinf(s, t+ δ, g)

> valinf(s, t+ δ, g) > ut+δ,vinf,ξ (s)− ε

Next we will bound the difference ut+δ,vopt,ξ (ms)−u
t+δ,v
π,ξ (ms) from above for opt = sup

and from below for opt = inf. We will show that

∀s ∈ S : ut+δ,vopt,ξ (s)− u
t+δ,v
π,ξ (s) 4opt err2π,ξ(I, δ) (4.75)

Consider ms ∈ MS:

ut+δ,vopt,ξ (ms)− u
t+δ,v
π,ξ (ms)

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·
(

Di
εn(ms, v)−Di

εn(ms, π|I , v)
)

4opt

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
opt,ξ 4opt err2π,ξ(I, δ)

Consider ps ∈ PS. From the proof of Lemma 4.3.12 (see (4.56, 4.57)) we obtain
the following:

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(ps, π|I , v)− εn 6 ut+δ,vπ,ξ (ps)
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6
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
εn(ps, π|I , v) + εn

For ut+δ,vopt,ξ (ps):

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·D
i

εn(ps, v)

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) · reaopt
εn (ps,Di

εn(v)|MS)

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·

reaopt(ps,Di

εn(v)|MS)− ε′︸︷︷︸
6εn


<opt

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·
(
reaopt(ps,Di

εn(v)|MS)
)
− 1{sup}(opt) · εn

=

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) opt
π′∈Πstat

∑
ms∈MS

reaπ
′
(ps,ms) ·Di

εn(ms, v)− 1{sup}(opt) · εn

<opt opt
π′∈Πstat

∑
ms∈MS

reaπ
′
(ps,ms) ·

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·D
i

εn(ms, v)− 1{sup}(opt) · εn

= opt
π′∈Πstat

∑
ms∈MS

reaπ
′
(ps,ms) · ut+δ,v

opt,ξ (ms)− 1{sup}(opt) · εn

= reaopt(ps, ut+δ,v
opt,ξ |MS)− 1{sup}(opt) · εn

<opt u
t+δ,v
opt,ξ (ps)− 1{sup}(opt) · εn + 1{inf}(opt) · εn

And therefore

ut+δ,vsup,ξ (ps) 6
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·D
i
εn(ps, v) + εn

ut+δ,vinf,ξ (ps) >
N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·D
i
εn(ps, v)− εn

We can now bound the difference as follows:

ut+δ,vopt,ξ (ps)− u
t+δ,v
π,ξ (ps)

4opt

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·
(

Di
εn(ps, v|MS)−Di

εn(ps, π|I , v)
)
+ (−1)1{inf}(opt) · 2 · εn

4opt

N(δ,εΨ)∑
i=0

ΨEmax·δ(i) ·Di
opt,ξ + (−1)1{inf}(opt) · 2 · εn

= err2π,ξ(I, δ)

This concludes the proof.
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Algorithm 2 SwitchStep
Input: MA M = (S,Act, 99K,R), goal function g, time-bound b ∈ R>0, precision
ϵ > 0

Output: error estimate ϵ′ ∈ (0, 1], v⃗ ∈ [0, 1]|S|, s. t. ||v⃗ − valopt(b, g)||∞ < ϵ′, and
an ϵ′-optimal scheduler πopt

Parameters: δprm ∈ (0, 1/Emax], D
prm

, Dprm ∈ Q>0,Kprm = 0..|S|, εprm ∈ [0, 1),
if b = 0 : εprm

i ∈ [0, ϵ], else εprm
i ∈ [0, ϵ)

Default Values: εprm
i = 0, δprm = min{10−12, 1/Emax}, D

prm
= 1012, Dprm =

10−20,Kprm = 10, εprm = 0

1: Initialise δ, εrea, εΨ as described in Section 4.3.5, Variable Initialisation.
2: εn = εrea/ (N(b, εΨ) + 1)
3: if (Assumption 4.3.1 is satisfied) then δmin = max{δprm, δ} else δmin = δprm

4: t = 0, εtacc = εprm
i , ξ = (εΨ, εrea, εn)

5: v0, π ← εprm
i -approximation of reaopt(g) and respective εprm

i -optimal scheduler
6: πopt = π|[0,0]
7: while t < b do
8: π, π̃εrea(v

t) = FindStrat(vt|MS) ◃ see Section 4.3.2
9: t+ δ, εt+δacc = FindStep((t, b], πopt|[0,t] · π|(t,b]) ◃ Algorithm 3

10: if (Assumption 4.3.1 is satisfied and δprm 6 δ and δ 6 δmin) then
11: vt+δ = ṽalεrea

opt (δ, v
t) ◃ see (4.39)

12: if (opt = inf) then vt+δ = vt+δ + εrea +
(Emax·δ)2

2

13: πopt = πopt|[0,t] · π̃εrea(v
t)|(t,t+δ]

14: else
15: vt+δ = ut+δ,v

t

π,ξ ◃ see (4.27)
16: if (opt = inf) then vt+δ = vt+δ + εrea + εΨ

17: πopt = πopt|[0,t] · π|(t,t+δ]
18: t = t+ δ

19: return εbacc, v
b, πopt

4.3.5 Algorithm

Based on all the results presented in the previous sections we developed Algorithm 2
that approximates solution to Problem 2 for a Markov automatonM, goal function
g, time-bound b ∈ R>0. In the following we will also refer to this algorithm with
SwitchStep. The algorithm has the following parameters: εprm

i denotes the upper
bound on the error introduced by approximation of the reachability value for time
point 0, δprm is the lower bound on the length of time step that can be performed at
each iteration, parameters Dprm

, Dprm,Kprm, εprm were discussed in Section 4.3.2,
they affect the quality of the stationary strategy selected at the current iteration.

Notice that not all combinations of ϵ and δprm are possible. For example, param-
eter δprm may be set so high, that there exists no ϵ-optimal scheduler for valopt(b, g).
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Algorithm 3 FindStep
Input: interval I = (a1, a2], π ∈ ΠPC,
Output: time point a ∈ (a1, a2] and upper bound on accumulated error ε > 0

1: {(ti, ti+1] | i = 0..n− 1} = ComputeIntervals(a1, a2, εh = εΨ, δh = δmin)
2: k = 0

set boolean function f : R>0 → {0, 1} as follows:
3: if (Assumption 4.3.1 is satisfied and δprm 6 δ) then
4: f(t) = ((t− a1 > δmin) and ((t− a1) mod δmin = 0))
5: else
6: f(t) = (t− a1 > δmin)

7: do
8: set Tmax(N(tk+1 − t, εΨ)) or A = PS×Act
9: errtk+1

= εprm
i + (ϵ− εprm

i ) · tk+1/b
10: toswitch, ε = CheckInterval((a1, tk+1], errtk+1

, π, A)
11: k = k + 1
12: while ((not toswitch) and k < n)

13: if (toswitch = true and a2 − a1 > δmin) then
14: compute the largest t′ ∈ (tk−1, tk], s. t. f(t′) = true and for errt′ = εprm

i +
(ϵ− εprm

i ) · t′/b the following holds:
CheckInterval((a1, t′], errt′ , π, A) =false, ε′

15: if (such a value t′ exists) then
16: return t′, ε′

17: else
18: t′ = a1 + δmin
19: b, ε′ = CheckInterval((a1, t′], errt′ , π, A)
20: return t′, ε′

21: else
22: return a2, ε

SwitchStep treats parameter δprm as a hard constraint and input value ϵ as a soft
constraint. Namely, the algorithm only performs time steps of length at least δprm,
even if this means that the total error accumulated throughout computations ex-
ceeds ϵ. An estimate of the accumulated error is one of the output values of the
algorithm.

SwitchStep returns values ϵ′, v⃗ ∈ [0, 1]|S| and π ∈ ΠPC, such that v⃗ is an ϵ′-
close approximation of valopt(b, g) and π is an ϵ′-optimal scheduler. Given that
Assumption 4.3.1 is satisfied and δprm 6 δ, SwitchStep is guaranteed to output
ϵ′ 6 ϵ.

We assume that all the procedures called from Algorithm 2 have access to the
input valuesM, b, g and ϵ, parameters as well as variables defined within Algorithm
2, even if they are not listed explicitly as input values.

The algorithm iterates over intervals I(πopt) of an ϵ-optimal strategy πopt. At
each iteration it computes: (i) a scheduler π that is believed to be close to optimal on
the current interval (line 8) (via procedure FindStrat), (ii) length δ of the interval,
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on which π introduces acceptable error, together with the estimate of this error (line
9) (procedure FindStep) and (iii) the reachability values for time t + δ (lines 11,
15).

Procedure FindStep is presented in Algorithm 3. It takes as input an interval
(a1, a2] and a piecewise-constant strategy, that is stationary on interval (a1, a2],
and outputs t ∈ (a1, a2], such that either the error introduced by π for time t is
within acceptable range, or the smallest allowed t, which is a1 + δmin. The pro-
cedure approximates switching points iteratively. It uses partition of (a1, a2] =
(t0, t1], . . . , (tn−1, tn] computed by procedure ComputeIntervals and at each itera-
tion k checks whether the error accumulated over interval [0, tk+1] is small enough.
The latter is performed by procedure CheckInterval. When FindStep finds the
value tk+1 that induces larger than acceptable error, it refines (tk, tk+1] until it finds
the largest still acceptable subinterval (tk, t′] ⊂ (tk, tk+1], or it becomes clear that
all such intervals are shorter than the lower bound on the interval length, speci-
fied by δmin. Procedure FindStep also computes the set of transitions that will be
used by CheckInterval in line 8. The algorithm is correct irrespective of whether
Tmax(N(tk+1 − t, εΨ)) or PS× Act is used. For efficiency reasons in our implemen-
tation we only compute Tmax(N(tk+1 − t, εΨ)) before the call to CheckInterval at
line 14, and use the set A = PS×Act within the while-loop.

Procedure CheckInterval((a1, a2], err, π, A) tests whether the error accumulated
within interval [0, a2] is below the allowed threshold err. It achieves this by first
computing

e1 =

{
err1π,ξ(A, (a1, a2]) if Assumption 4.3.1 is satisfied andM is PS− acyclic
1 otherwise

e2 = |err2π,ξ((a1, a2], a2 − a1)|

em =


(Emax · (a2 − a1))2/2− εΨ if Assumption 4.3.1 is satisfied,

δprm 6 δ and a2 − a1 6 δ
min{e1, e2} otherwise

And then checking whether εa1+δacc = εa1acc + εrea + εΨ + em 6 err. If yes, it outputs
false (no switching point) and εa1+δacc , otherwise it outputs true (there may be a
switching point) and εa1+δacc . Here values err1π,ξ(A, (a1, a2]) and err2π,ξ((a1, a2], a2−a1)
are computed based on va1(s).

Variable Initialisation. Here we will discuss how to initialise variables εrea, εΨ
and δ depending on the values of parameters and inputs of SwitchStep.

If b = 0 then variables εrea, εΨ and δ have no effect on the output of SwitchStep
and can therefore be initialised to any value.
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If b > 0 then choose the values that satisfy the following requirements:{
ε′ = 0 or
0 < ε′ 6 (ϵ−εprm

i )2

2·(Emax·b)2 ·
(
1− (ϵ−εprm

i )2

4·(Emax·b)4

)
if εprm

i ∈ [ϵ− 2 · (Emax · b)2, ϵ) ∩ [0, 1]

D = (ϵ− εprm
i )2 − 2 · ε′ · (Emax · b)2

N =


⌈
max{ (Emax·b)2

2·(ϵ−εprm
i )

, b ·Emax}
⌉

if ε′ = 0

N ′, s. t. N ′ ∈
[⌈

ϵ−εprm
i −

√
D

2·ε′
⌉
,
⌊
ϵ−εprm

i +
√
D

2·ε′
⌋]

and b/N ′ 6 1/Emax otherwise

δ′ = b/N

ε′′ satisfies: 0 < ε′′ 6 ϵ− εprm
i

N
− ε′

(4.76)

If Assumption 4.3.1 is satisfied and δprm 6 δ′, set εrea = ε′, εΨ = ε′′, δ = δ′. Other-
wise set εrea ∈ [0, 1), εΨ ∈ (0, 1) to such values that:

εrea + εΨ 6 (ϵ− εprm
i ) ·min{δprm, b}/b (4.77)

In our experimental results we observed that better results were achieved when
εrea = 0. This is likely due to the case that all known published case studies are
PS-acyclic and thus exact computation of hop-unbounded reachability probability
is quite efficient - linear in the size of the Markov automaton. And regarding
the value of εΨ, we used εΨ = min{10−20, (ϵ − εprm

i )/N − εrea} for the case when
Assumption 4.3.1 is satisfied and δprm 6 δ′, otherwise we set εΨ = min{10−20, (ϵ−
εprm

i ) · min{δprm, b}/b}. This is explained by the fact that N(τ, εΨ) grows slow
with decrease of εΨ, on the other hand smaller values of εΨ leave more room for
error induced by following sub-optimal strategy as opposed to the optimal one (em),
which tends to be the major source of error.

Complexity. Let |S| = n be the amount of states, a = |Act| and m is the amount of
edges inM (see Section 4.1.1). Recall that Copt

rea (n,m, a) and Crea(n,m, a), defined in
Section 4.2.2, denote the complexity of computing reaopt(g) and reaπ(g) respectively.

Performance of SwitchStep depends strongly on the number of iterations it
performs. The algorithm adapts the number of iterations to a specific instance of
the problem and its runtime benefits from this. The worst-case should not happen
on real-life case studies unless the strategy selected by FindStrat is far from being
optimal (for example if the parameters used for FindStrat are not good enough,
or if a different heuristic is used instead of FindStrat to guess a strategy). In the
worst case k = b/δmin. If Assumption 4.3.1 is satisfied, then k 6 N (defined above
in Section Variable Initialisation.) Otherwise δmin equals the value of user-specified
parameter δprm and therefore k = b/δprm.

At each iteration the algorithm calls procedures FindStrat, FindStep and ap-
proximates the reachability values according to (4.27). The complexity of the latter
operation is in the worst case O(N(b, εΨ) · (Crea(n,m, a) +m))
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Procedure FindStrat performs at most n + 1 iterations. At each iteration, it
solves the hop-unbounded reachability problem on probabilistic states of the MA
(Copt

rea (n,m, a)) and computes derivatives, which takes O(m + n) time for Marko-
vian states and Crea(n,m, a) time for probabilistic states. Thus the complexity of
FindStrat is in O((n+ 1) · (Copt

rea (n,m, a) +m+ n)).
The complexity of procedure FindStep is determined by complexities of proce-

dures CheckInterval and ComputeIntervals. Due to Lemma 4.3.11 the complex-
ity of the latter is in the worst case in O(N(b, εΨ) · b · log(b)/Emax).

Complexity of procedure CheckInterval comes from the computation of values
err1π,ξ(A, (a1, a2]) and |err2π,ξ((a1, a2], a2−a1)|. Computing err1π,ξ(A, (a1, a2]) requires
in the worst case O(|A| · N(b, εΨ) · (Crea(n,m, a) +m)), where A = PS × Act, or
is the set of maximal transitions. Computation of |err2π,ξ((a1, a2], a2 − a1)| is in
O(N(b, εΨ) ·n · (Copt

rea (n,m, a)+m)). Thus the complexity of CheckInterval in the
worst case is in O(|A| ·N(b, εΨ) · n · (Copt

rea (n,m, a) +m)).
Due to Lemma 4.3.11, procedure FindStep checks in the worst case O(N(b, εΨ) ·

b/Emax) intervals computed by procedure ComputeIntervals. At each iteration it
calls procedure CheckInterval and possibly computes maximal transitions (O(m2 ·
N(b, εΨ)). Afterwards it performs at most log(min{1/Emax, b}) (due to Lemma
4.3.9) iterations and calls CheckInterval at each of them. Thus overall the com-
plexity of FindStep is determined by worst-case O(N(b, εΨ) · b/Emax) iterations
each of complexity of CheckInterval and one call to ComputeIntervals.

The general worst-case complexity of Algorithm 2 depends on many parameters
and we will instead discuss the most common scenario. If Assumption 4.3.1 is
satisfied, the MA is PS-acyclic, εrea = 0, εprm

i = 0, b > Emax, then the overall worst-
case complexity is O(k · (b ·Emax + | log(εΨ)|)2 · (n2 · a ·m+ b·log(b)

Emax
) · b/Emax), where

k is the number of iterations of the main loop.

Lemma 4.3.17. Let a1, a2 ∈ R>0, a1 < a2, δmin, ξ, vx are the variables com-
puted by Algorithm 2, εa1acc is the respective variable that Algorithm 2 takes
when t = a1 and π, π̃εrea(v

a1) = FindStrat(va1 |MS).
Let πopt ∈ ΠPC be such a scheduler that ∀s ∈ S : va1(s) 4opt valπopt(s, a1, g)
and

va1(s) 4opt valopt(s, a1, g) 4opt v
a1(s) + (−1)1{inf}(opt) · εa1acc

Let π ∈ {π, π̃εrea(v
a1)} be the stationary scheduler selected by Algorithm 2 at

the current iteration and π′opt = πopt|[0,a1] · π|(a1,a2].
If FindStep((a1, a2], π′opt) = δ, εa1+δacc , then π′opt is εa1+δacc -optimal for valopt(a1+
δ, g) and

va1+δ 4opt valopt(s, a1 + δ, g) 4opt v
a1+δ(s) + (−1)1{inf}(opt) · εa1+δacc

Proof. Procedure FindStep outputs as error εa1+δacc the value computed by procedure
CheckInterval. By construction, the latter computes it as follows εa1+δacc = εa1acc +
εrea + εΨ + em.

Consider the case when Assumption 4.3.1 is satisfied, δprm 6 δ. In this case
δmin = δ and the step size does not go below δmin, unless a2−a1 < δmin. We at first
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consider the case when δ 6 δmin. Here CheckInterval sets em = (Emax · δ)2/2− εΨ.
If opt = sup:

va1+δ = ṽalεrea
sup (δ, v

a1)

Lemma 4.3.5
6 valsup(s, a1 + δ, g)

Lemma 4.3.5
6 ṽalεrea

sup (δ, v
a1) + εa1acc + εrea + (Emax · δ)2/2

= ṽalεrea
sup (δ, v

a1) + εa1+δacc

= va1+δ + εa1+δacc

And for opt = inf:

va1+δ = ṽalεrea
inf (δ, va1) + εrea + (Emax · δ)2/2

Lemma 4.3.5
> valinf(s, a1 + δ, g)

Lemma 4.3.5
> ṽalεrea

inf (δ, va1)− εa1acc

= va1+δ − εa1+δacc

The scheduler in this case is defined as π′opt = πopt|[0,a1] · π̃εrea(v
a1)|(a1,a1+δ]. Due

to Lemma 4.3.6, π′opt is εa1+δacc -optimal for valopt(a1 + δ, g).
In all other cases the procedure is the same. Therefore

va1+δ = ua1+δ,v
a1

πopt,ξ

Lemmas 4.3.15, 4.3.16
6 valsup(s, a1 + δ, g)

Lemmas 4.3.15, 4.3.16
6 ua1+δ,v

a1

πopt,ξ
+ εa1acc + εrea + εΨ + em

= va1+δ + εa1+δacc

And for opt = inf:

va1+δ = ua1+δ,v
a1

πopt,ξ
+ εrea + εΨ

Lemmas 4.3.15, 4.3.16
> valinf(s, a1 + δ, g)

Lemmas 4.3.15, 4.3.16
> ua1+δ,v

a1

πopt,ξ
− εa1acc − em

= va1+δ − εa1acc − εrea − εΨ − em
= va1+δ − εa1+δacc

The scheduler in this case is defined as π′opt = πopt|[0,a1] · π|(a1,a1+δ]. Due to
Lemmas 4.3.15, 4.3.16, π′opt is εa1+δacc -optimal for valopt(a1 + δ, g).
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Theorem 4.3.18. Let M be a Markov automaton, g is a goal function,
b ∈ R>0 and ϵ ∈ (0, 1). Let ϵ′, v⃗ ∈ [0, 1]|S|, πopt be the output of Algorithm 2
for M, g, b, ϵ. Then ∀s ∈ S:

v⃗(s) 4opt valMopt(s, b, g) 4opt v⃗(s) + (−1)1{inf}(opt) · ϵ′ (4.78)

and πopt is ϵ′-optimal for valMopt(b, g). If Assumption 4.3.1 is satisfied and
δprm 6 δ, then ϵ′ 6 ϵ, otherwise ϵ′ may be larger than ϵ.

Proof. Consider the values ti, i ∈ Z>0, that variable t takes in Algorithm 2 at
iteration i. Here t0 = 0 and for i > 1 the value ti is computed by procedure
FindStep based on ti−1. Procedure FindStep iterates over intervals computed by
ComputeIntervals and outputs a value ti, such that either ti − ti−1 > δmin > 0
(procedure FindStep, lines 18 - 20), or 0 < ti−ti−1 < δmin and ti = b. Thus variable
t in Algorithm 2 takes finitely many values 0 = t0, . . . , tn = b.

Let ε0 = εprm
i and ∀i = 1..n : εi is the error returned by FindStep at iteration i.

The output value v⃗ of Algorithm 2 equals the value that variable vx takes for x = b.
We will first prove that (4.78) holds and that πopt is ϵ′-optimal for valMopt(b, g). We
achieve this by showing by induction that

∀k = 0..n, s ∈ S : vtk(s) 4opt valopt(s, tk, g) 4opt v
tk(s) + (−1)1{inf}(opt)εk (4.79)

and πopt|[0,tk] is εk-optimal for valopt(tk, g). Notice that ϵ′ = εn.
We start with t0 = 0. Here the strategy πopt|[0,0] is computed in step 6 of

Algorithm 2 as an εprm
i -optimal strategy for reaopt(g) and thus

v0(s) 4opt reaopt(g) 4opt v
0(s) + (−1)1{inf}(opt)εprm

i = v0(s) + (−1)1{inf}(opt)ε0
(4.80)

Thus the claim follows due to Lemma 4.1.4, (4.20).
For tk, k = 1..n, (4.79) follows from Lemma 4.3.17 and the induction hypothesis.

This concludes the proof of the first part. Condition (4.77) ensures that:

εk = εk−1 + εrea + εΨ + em

6 εprm
i + (ϵ− εprm

i ) · tk−1/b+ (ϵ− εprm
i ) ·min{δprm, b}/b+ em

6 εprm
i + (ϵ− εprm

i ) · tk/b+ em

If em 6 (ϵ− εprm
i ) · (tk − tk−1 −min{δprm, b})/b, then ϵ′ 6 ϵ. This however cannot

be fulfilled for arbitrary values of δprm.
Next, we show that if Assumption 4.3.1 is satisfied and δprm 6 δ, then ϵ′ 6 ϵ.

Since δprm 6 δ, then δmin = δ. Notice that in this case ∀i = 1..n : (ti − ti−1)
mod δmin = 0 and b = δmin ·N . We prove the statement by showing the following:

∀k = 0..n : εk 6 εprm
i + (ϵ− εprm

i ) · tk/b (4.81)

Given this, it follows that ϵ′ = εn 6 εprm
i + (ϵ− εprm

i ) · tn/b = ϵ.
For k = 0 (4.81) holds by definition of ε0. Consider interval (tk−1, tk], k = 1..n.

The value of εk is an output of one of the calls to CheckInterval in FindStep.
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If CheckInterval returns false for interval (tk−1, tk], then, by construction εk =
εk−1 + εrea + εΨ + em 6 εprm

i + (ϵ − εprm
i ) · tk/b. Conditions imposed by (4.76) on

εΨ ensure that: εrea + εΨ 6 (ϵ− εprm
i ) · δmin/b. This way there is some room left for

em, to make sure that tk − tk−1 > δmin can actually happen.
Procedure CheckInterval can only return true for interval (tk−1, tk] if tk −

tk−1 = δmin. Then CheckInterval outputs εk = εk−1 + εrea + (Emax · δmin)2/2. We
will show that

εrea + (Emax · δmin)
2/2 6 (ϵ− εprm

i )/N (4.82)

Taking into account the induction hypothesis, the definition of δ given in (4.76) and
that δmin = δ this suffices, since

εk 6 εprm
i + (ϵ− εprm

i ) · tk−1/b+ (ϵ− εprm
i ) · δmin/b = εprm

i + (ϵ− εprm
i ) · tk/b

We will first rewrite the inequality as follows:

εrea +
(Emax · δmin)2

2
−
ϵ− εprm

i
N

= εrea +
(Emax · b)2

2 ·N2
−
ϵ− εprm

i
N

6 0⇔ (4.83)

εrea ·N2 − (ϵ− εprm
i ) ·N +

(Emax · b)2

2
6 0 (4.84)

If εrea = 0, then N must satisfy N > (Emax · b)2/2/(ϵ − εprm
i ) and b/N 6 1/Emax.

The value assigned to N by (4.76) satisfies this requirement.
If εrea > 0 then the value D defined in (4.76) is exactly the discriminant of

inequality (4.84). Requirements imposed by (4.76) on εrea ensure that D > 0 and
thus the inequality has two real zeros:

N1 =
ϵ− εprm

i −
√
D

2 · εrea
> 0, N2 =

ϵ− εprm
i +

√
D

2 · εrea
> 0

It can be rewritten as follows:

εrea · (N −N1) · (N −N2) 6 0

The values that satisfy the inequality are those within [N1, N2]. In the following we
will show that there exist at least one integer value within interval [N1, N2].

N2 −N1 =

√
D

εrea
> 1⇔

√
D − εrea > 0

Therefore it is enough to prove the latter.

√
D − εrea

(4.76)

>
√
D −

(ϵ− εprm
i )2

2 · (Emax · b)2

Let a = (ϵ− εprm
i )2 and c = 2 · (Emax · b)2. Then

εrea 6
a

c
·
(
1− a

c2

)
⇒

√
D − εrea >

√
a− c · εrea −

a

c
> 0
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Inequality εrea 6 a
c ·
(
1− a

c2

)
is exactly what (4.76) restricts for the value of εrea. In

the following we will establish under which conditions 1− a
c2
> 0:

1− a

c2
= (1−

√
a

c
) · (1 +

√
a

c
) = (1−

ϵ− εprm
i

2 · (Emax · b)2
) · (1 +

ϵ− εprm
i

2 · (Emax · b)2
)

Therefore

1− a

c2
> 0⇔ (εprm

i − (ϵ− 2 · (Emax · b)2)) · (εprm
i − (ϵ+ 2 · (Emax · b)2)) < 0

⇔ εprm
i ∈ (ϵ− 2 · (Emax · b)2, ϵ+ 2 · (Emax · b)2)

Taking into account that εprm
i cannot exceed ϵ, we obtain condition (4.76) on the

values of εrea and εprm
i . When εrea → 0, N2 → ∞ and therefore by lowering the

value of εrea it is possible to ensure that such a value N , that b/N 6 1/Emax will
be found. We have thus proven (4.82).

4.4 Time-Bounded Reachability on Partial State-Space
So far we have discussed an approach to compute valMℓ

opt (Φ1 U[[a,b]]Φ2) in an MAMℓ

by performing computations on the whole state-space ofMℓ. This requires the full
state-space to be loaded into memory at some point during the computations. The
state-space of MA models however usually grows very large very quickly making
this exhaustive approach to model-checking very time- and memory consuming.
Consider the system C that comprises of n separate sub-components C1, . . . , Cn.
To build the MA model MC of such a system each of the sub-components Ci
needs to be modelled as a Markov automaton MCi . The MA model of the whole
systemMC is obtained by composingMC1 , . . . ,MCn (more detailed discussion on
modelling with MA can be found in Chapter 2 Section 2.2). The state-space ofMC

is the reachable fragment of the Cartesian product of state-spaces ofMCi and thus
is in the worst case exponential in the number of sub-components.

In the worst case, there is likely not much we can do and in fact, all the states
of the state-space have to be loaded into the memory at some point in time and
processed. However, we may not always face the worst-case scenario. Consider, for
example, the queuing system shown in Figure 4.2. Here two queues of finite size K
store requests arriving with an exponentially distributed delay. Requests are pro-
cessed by corresponding servers, one per queue. Server 1 may non-deterministically
insert a request that it has already processed into the queue of server 2. The state-
space of the MAM modelling this queueing system is a tuple (q1, q2, s1, s2), where
qi, i ∈ {1, 2} is the amount of requests in queue i and si, i ∈ {1, 2} is a state of
server i (e. g. processing a request, awaiting a request, etc.).

An example of a property that one could be interested in is: What is the maxi-
mum probability of both queues becoming full within some time bound, starting from
both queues being empty? This corresponds to target states of the form (K,K, s1, s2),
where s1, s2 are any states of servers 1 and 2. All the paths reaching states (K,K, ·, ·)
from states (k1, k2, ·, ·) have to go through all the intermediate states (j1, j2, ·, ·),
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Server 1

Server 2

requests

requests

K

Queue 1

Queue 2

Figure 4.2: Queuing system.

where ji ∈ {ki, . . . ,K} for i ∈ {1, 2}. Thus in order to compute the required proba-
bility most of the states of the model have to be processed.

Consider another property: What is the maximum probability of the second queue
becoming full within some time bound, starting from both queues being empty? Here
target states are of the form (·,K, ·, ·). The most effective strategy to reach a goal
state is for the first server to always insert tasks it has taken from its queue into
the second queue upon service termination. If the first server follows this strategy,
then the second queue will fill up faster, compared to a strategy when the first
server does not insert the tasks it has processed into the second queue. Consider
the situation in which the rate with which requests arrive into the first queue is
lower than the rate with which the first server processes these requests. And on
the other hand the rate with which requests arrive into the second queue is higher
than the processing rate of the second server. In this scenario the states that are
most likely to be visited on the way to a goal state are those with a small number
of requests in the first queue. Assuming that the amount of requests in the first
queue rarely exceeds 2, all the states (k1, ·, ·, ·), where k1 = 3..K may not affect the
reachability probability too much.

This example shows that the property under consideration affects the part of
state-space that is relevant for the reachability probability. Classical model-checking
algorithms, as well as the one discussed in the previous section, do not utilise any
information about the property when performing model-checking and perform the
computations on the full state-space. In such examples like the one discussed above,
when only a subset of states is actually contributing to the reachability probability
value, these algorithms may perform many unnecessary computations.

In this section, we target the problem of model-checking Markov automata with
large state-spaces against such properties, in which only a small part of the state-
space is actually relevant. More precisely, we want to approximate up to an arbitrary
value ϵ ∈ (0, 1) the solution to Problem 1 of computing the value valMℓ

opt (s0, ψ) for
a Markov automaton Mℓ = (S,Act, 99K,R, AP , lab), a selected state s0 ∈ S and
formula ψ = Φ1 U[[a,b]]Φ2. In this section we will refer to states in Sat(Φ2) as goal or
target states. The main idea of our approach is quite simple and is outlined below:

0. Srel = {s0} // Initial approximation of the relevant subset

1. Heuristically add states to the relevant subset Srel.

2. Compute partial MAMsub
ℓ (Srel) based on state-space Srel.
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3. Approximate valMℓ
opt (s0, ψ) by calculating v and v, such that v 6 valMℓ

opt (s0, ψ) 6
v usingMsub

ℓ (Srel).

4. If the two approximations are sufficiently close, i. e. v − v 6 ϵ, return [v, v].
Otherwise, repeat from step 1.

We iteratively refine the subset of relevant states Srel using a heuristic. At each
iteration, we construct a Markov automatonMsub

ℓ (Srel) which has mainly only these
states as a state-space. From this smaller Markov automaton we derive an under-
and an over-approximation of value valMℓ

opt (s0, ψ) of the given Markov automaton
Mℓ. If the approximations are good enough, the computations stop and otherwise
the relevant subset is refined and the process repeats. If it is possible for a given
Markov automaton and property to discard significant parts of the full state-space
without contributing a large error, then using this approach can save both memory
and time of the computations. In the subsequent sections, we discuss in detail each
step of the algorithm.

4.4.1 Relevant Subset
Extracting the subset of states that carries the most of the probability mass (up to
ϵ) is the main challenge of this approach. For this, we use a heuristic. Naturally,
the set of relevant states depends on the model and the property under consider-
ation. A heuristic that provides the relevant subset should take into account all
the information available to it regarding how the specific property can be satisfied
in a specific Markov automaton. If, for example, it is known that transitions with
higher rates/probabilities are more likely to lead to satisfying the property, then
an example of a good heuristic is the one that chooses states that are reachable
from the initial state via such transitions. Of course, the same heuristic will per-
form poorly given a Markov automaton with the opposite property: transitions
with higher rates/probabilities lead to states that are less likely to satisfy the prop-
erty (rare-event case). Thus, information about the model and the property is very
important when choosing the relevant subset of states.

Here we propose a heuristic that is well suited for such Markov automata and
properties for which transitions with high rates/probabilities are good indicators
that the property will be satisfied. Our algorithm is not restricted to this specific
heuristic. The correctness of our approach does not depend on the heuristic used,
however, its termination requires the heuristic to satisfy certain requirements (see
Remark 4.4.2).

At the core of our heuristic is a sampling of random paths of the model based on
probabilities of its transitions, similar to what various simulation approaches do. A
path with higher transition rates/probabilities is more likely to be sampled. Every
simulation usually requires very little memory, only what is needed to store the
currently simulated path, making it a good candidate to guess the relevant subset
of states.

A path is sampled in the following way. Upon entering a Markovian state ms
the residence time in this state is sampled from the exponential distribution with
parameter E(ms) and then a successor state is sampled randomly from the distri-
bution [s′ → R[ms, s′]/E(ms) | s′ ∈ S]. For probabilistic states, however, we need
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(a) (b)

(c) (d)

Figure 4.3: An example MA is presented in Fig. (4.3a), Fig. (4.3c) and (4.3d)
show two sampled paths and Fig. (4.3b) highlights the subset of states constituting
the relevant subset.

a scheduler due to the presence of non-determinism. We discuss the choice of the
scheduler to be used for simulations later in Section 4.4.4. Given this scheduler
π, when entering a probabilistic state ps we sample the action to be taken from
the distribution π(ρ), where ρ is the path that has been observed so far. Next, a
successor state is sampled from the distribution P[ps, α, ·], where α is the action
picked by the scheduler. The simulation proceeds to the sampled successor state,
setting the residence time in ps to 0. The process is repeated from the successor
until the property is satisfied or it becomes clear that the path will not be able to
satisfy it (for example if the overall time over the path exceeds the largest of the
time-bounds b and the property is not satisfied).

Our approach uses a parameter nsim ∈ N which defines the number of paths
that is to be sampled. As a relevant subset, we choose those states that appear on
at least one of these paths.

Example 4.4.1. Consider the MA shown in Fig. (4.3a). We omitted rates, proba-
bilities and action labels. Goal states are denoted with double circles. Figures (4.3c)
and (4.3d) show two possible sampled paths: The path in Fig. (4.3d) satisfies the
property while the path in Fig. (4.3c) is assumed to have timed out before it reaches
the target state. The relevant subset of states includes all the states visited during
the two simulations. States selected for the relevant subset are highlighted in Fig.
(4.3b).

4.4.2 Partial Markov Automaton
We will now discuss a way to construct a Markov automaton with partial state-space
based on the relevant subset Srel computed at step 1. We do this by transforming
all the states outside the relevant subset into absorbing. We demonstrate the trans-
formation first on an example.
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(a) (b)

Figure 4.4: Fig. (4.4a) shows the relevant subset Srel. Fig. (4.4b) shows the
partial MA Msub

ℓ (Srel). Greyed out states are not part of the state-space.

Example 4.4.2. Consider Figure 4.4. Here the states of Srel are highlighted in
Fig. (4.4a) (this figure is a copy of (4.3b), we repeat it here for convenience).
Once again we depict the goal states with double circle. States that are reachable
from Srel in one transition, however are not part of Srel, are shown in blue in Fig.
(4.4b). These states are made absorbing. The transformation makes some states
unreachable, those are the states that are greyed out. Those states do not affect
the reachability probability and can therefore be removed from the state-space of the
partial MA.

Formally, for Srel ⊆ S we construct an MA Msub
ℓ (Srel) := (M′, AP , lab), where

M′ = (S′,Act, 99K′,R′), S′ := Srel ∪ post(Srel), Sfr := S′ \ Srel and ∀s′, s′′ ∈ S′:

R′[s′, s′′] :=


R[s′, s′′] if s′ ∈ Srel ∩MS
Emax if s′ ∈ Sfr, s

′′ = s′

0 otherwise
(s′, α, µ) ∈ 99K′ iff s′ ∈ Srel and (s′, α, µ) ∈ 99K

(4.85)

The state-space of this MA consists of states that belong to the set Srel and succes-
sors of those states. Transitions of states from Srel are preserved. Set Sfr contains
successors of states from Srel, which are not in Srel themselves (fringe states). These
states are made absorbing and thus are Markovian. Notice that some of those states
may have been probabilistic before. Since many states became absorbing, some
states of the original state-space may have become unreachable and they therefore
do not affect the reachability probability value.

4.4.3 Under- and Over-Approximations
We proceed to discussing a way to obtain safe under- and over-approximations of
the reachability probability of the original Markov automatonMℓ from the partial
Markov automaton Msub

ℓ (Srel).
Consider the reachability probability inMsub

ℓ (Srel) with respect to formula ψ =
Φ1 U[[a,b]]Φ2. Let s ∈ Sfr. If s ̸|= Φ2, then there are no paths starting from s
that satisfy ψ in Msub

ℓ (Srel), while in Mℓ such paths may exist. This makes value
valM

sub
ℓ (Srel)

opt (s, ψ) an under-approximation of valMℓ
opt (s, ψ). However if s |= Φ2 the

situation is different. In this case s is made absorbing and therefore all the paths
starting from it will satisfy ψ. To combat this issue, instead of the original formula
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(a) (b) (c)

Figure 4.5: Updated target states for ψ and ψ (Fig. (4.5b) and (4.5c) resp.).

ψ we will consider
ψ = Φ1 U[[a,b]] (Φ2 ∧s∈Sfr ¬aps)

Value valM
sub
ℓ (Srel)

opt (s, ψ) does not suffer from the issue mentioned above and can
therefore be used as an under-approximation of valMℓ

opt (s, ψ). We will show below
that this value serves as an under-approximation not only for states in Sfr, but also
for all other states in the state-space ofMsub

ℓ (Srel).
We will perform similar alteration of the formula to obtain an over-approximation

of valMℓ
opt (ψ). Consider a state s ∈ Sfr, such that s |= Φ2. In Msub

ℓ (Srel) this state
is absorbing and therefore satisfies ψ. However problems arise with s ∈ Sfr in case
s ̸|= Φ2. While in the original modelM there may exist paths starting from s that
satisfy ψ, in Msub

ℓ (Srel) no such paths exist. This means that we cannot use value
valM

sub
ℓ (Srel)

opt (s, ψ) as an over-approximation of value valMℓ
opt (s, ψ). However if instead

of ψ we consider formula

ψ = Φ1 U[[a,b]](Φ2 ∨s∈Sfr aps)

then all paths starting from s would satisfy ψ. In the lemma below we will show
that the same holds not only for states in Sfr, but also for all other states of the
state-space of Msub

ℓ (Srel).

Example 4.4.3. As an example consider Fig. 4.5. Here Fig. (4.5a) is the copy
of Fig. (4.4b) repeated here for convenience. Fig. (4.5b) shows target states of the
partial MA Msub

ℓ (Srel) w. r. t. ψ and Fig. (4.5c) shows target states of Msub
ℓ (Srel)

against ψ.

Remark 4.4.1. Notice that one could further reduce the state-space Msub
ℓ (Srel)

without altering values valM
sub
ℓ (Srel)

opt (s, ψ) and valM
sub
ℓ (Srel)

opt (s, ψ). Since all states in
Sfr are essentially sink state w. r. t. ψ, i. e. there are no paths starting from those
states that satisfy ψ, one could keep only one of those states and discard the rest.
Transitions to discarded states need to be redirected to this one sink state. In the
same way one can reduce the number of states in Sfr w. r. t. ψ by keeping only one
of them.
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Lemma 4.4.1. Let M be a Markov automaton, s0 ∈ S, ψ = Φ1 U[[a,b]]Φ2,
Φ2 ⇒ Φ1. If s0 ∈ Srel ∪ Sfr, then

valM
sub
ℓ (Srel)

opt (s0, ψ) 6 valMℓ
opt (s0, ψ) 6 valM

sub
ℓ (Srel)

opt (s0, ψ)

Proof. Due to Lemma 4.1.1: valMℓ
opt (s,Φ1 U[[a,b]]Φ2) = valM

′
ℓ

opt (s, ttU[[a,b]]Φ2), where
M′

ℓ =M
[¬Φ1∧¬Φ2]
ℓ . Therefore w. l. o. g. we assume that Φ1 = tt.

Let I = [[a, b]] and ψ ⊖ x = ttUI⊖xΦ2. We refine the fixpoint characterisation
of value valMℓ

opt (s, ψ) given in Lemma 4.1.4 to account for the number of Markovian
transitions. We define value valMℓ

opt (s, ψ, n) for n ∈ Z>0 as follows:

For s ∈ PS :

valMℓ
opt (s, ψ, n) =

1 if s |= Φ2, 0 ∈ I
opt

α∈Act(s)

∑
s′∈S

P[s, α, s′] · valMℓ
opt (s, ψ, n) otherwise

For s ∈ MS :

valMℓ
opt (s, ψ, n) =

b∫
0

E(s) · e−E(s)·τ ∑
s′∈S

P[s, s′] · valMℓ
opt (s, ψ ⊖ τ, n− 1)dτ if s ̸|= Φ2, n > 0

e−E(s)·a+ if s |= Φ2, n > 0

1Z>0(n) ·
a∫
0

E(s) · e−E(s)·τ ∑
s′∈S

P[s, s′] · valMℓ
opt (s, ψ ⊖ τ, n− 1)dτ

0 if s ̸|= Φ2, n = 0

It holds that valMℓ
opt (s, ψ) = limn→∞ valMℓ

opt (s, ψ, n). And analogously for values
valM

sub
ℓ (Srel)

opt (s, ψ, n) and valM
sub
ℓ (Srel)

opt (s, ψ, n). We will prove the following by induc-
tion over n:

∀s ∈ Srel ∪ Sfr,∀n ∈ Z>0, t ∈ R>0 :

valM
sub
ℓ (Srel)

opt (s0, ψ ⊖ t, n) 6 valMℓ
opt (s0, ψ ⊖ t, n) 6 valM

sub
ℓ (Srel)

opt (s0, ψ ⊖ t, n)

First of all, if I ⊖ t = ∅, then ∀s ∈ Srel ∪ Sfr, n ∈ Z>0 : valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) =

valMℓ
opt (s, ψ ⊖ t, n) = valM

sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) = 0.
Consider such values t, that I ⊖ t ̸= ∅. Consider s ∈ Sfr. This state is

absorbing and non-target in Msub
ℓ (Srel) for ψ. Therefore ∀n ∈ Z>0, t ∈ R>0 :

valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) = 0 6 valMℓ
opt (s, ψ ⊖ t, n). When analysed against ψ, state s

is absorbing and a target state. Therefore ∀n ∈ Z>0, t ∈ R>0 : valM
sub
ℓ (Srel)

opt (s, ψ ⊖
t, n) = 1 > valMℓ

opt (s, ψ ⊖ t, n)
Consider s ∈ Srel. Notice that for such states s |= Φ2 ⇔ s |= Φ2 ⇔ s |= Φ2,

where Φ2 = (Φ2 ∧s∈Sfr ¬aps) and Φ2 = (Φ2 ∨s∈Sfr aps).
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Let s ∈ Srel ∩MS. If s ̸|= Φ2, n = 0, then ∀t ∈ R>0 : valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) =

valMℓ
opt (s, ψ ⊖ t, n) = valM

sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) = 0. If s |= Φ2, n = 0, then ∀t ∈ R>0 :

valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) = valMℓ
opt (s, ψ ⊖ t, n) = valM

sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) = e−E(s)·c,
where c is the lower bound of the interval in formula ψ ⊖ t.

Consider s ∈ PS∩Srel, n = 0. If s |= Φ2, 0 ∈ I⊖t, then valM
sub
ℓ (Srel)

opt (s, ψ⊖t, n) =

valMℓ
opt (s, ψ ⊖ t, n) = valM

sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) = 1.
Otherwise the value valMℓ

opt (s, ψ ⊖ t, n) is the hop-unbounded reachability prob-
ability reaopt(s, h) where the goal function h is defined over states that satisfy Φ2

or s ∈ MS and the value that function h takes for state s′ is valMℓ
opt (s

′, ψ ⊖ t, n). If
s ̸|= Φ2 and 0 ∈ I ⊖ t then h is defined over all Markovian states and those that
satisfy Φ2. If s ̸|= Φ2 and 0 ̸∈ I ⊖ t then h is defined only over Markovian states.
If s |= Φ2 and 0 ̸∈ I ⊖ t then h is defined only over Markovian states. And analo-
gously for valM

sub
ℓ (Srel)

opt (s, ψ ⊖ t, n), valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) with the respective goal
functions h and h. Let s′ be a state in the domain of h. Then we have shown above
that

h(s′) = valM
sub
ℓ (Srel)

opt (s′, ψ ⊖ t, n) 6 valMℓ
opt (s

′, ψ ⊖ t, n) 6 valM
sub
ℓ (Srel)

opt (s′, ψ ⊖ t, n) = h

Let πopt be a stationary scheduler that achieves optimum for valM
sub
ℓ (Srel)

opt (s, ψ⊖t, n),
πopt and πopt are the same for valM

sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) and valMℓ
opt (s, ψ ⊖ t, n) resp.

Then for opt = sup:

valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) = reaπopt(s, h)
(4.18)
=

∑
s′∈h

reaπopt(s, s′) · h(s′)

=
∑

s′∈h,s′∈h
reaπopt(s, s′) · h(s′) +

∑
s′∈h,s′ ̸∈h

reaπopt(s, s′) · h(s′)︸ ︷︷ ︸
=0

6
∑

s′∈h,s′∈h
reaπopt(s, s′) · h(s′) +

∑
s′∈h,s′ ̸∈h

reaπopt(s, s′) · valMℓ
πopt

(s′, ψ ⊖ t, n)

= reaπopt(s, h) 6 reaopt(s, h) = valMℓ
opt (s, ψ ⊖ t, n)

Similarly for h and h:

valMℓ
opt (s, ψ ⊖ t, n) = reaπopt(s, h)

(4.18)
=

∑
s′∈h

reaπopt(s, s′) · h(s′)

=
∑

s′∈h,s′∈h

reaπopt(s, s′) · h(s′) +
∑

s′ ̸∈h,s′∈h

reaπopt(s, s′) · valMℓ
πopt(s

′, ψ ⊖ t, n)

6
∑

s′∈h,s′∈h

reaπopt(s, s′) · h(s′) +
∑

s′ ̸∈h,s′∈h

reaπopt(s, s′) · h(s′)︸ ︷︷ ︸
=1

= reaπopt(s, h) 6 reaopt(s, h) = valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n)

Next we prove the same for opt = inf:

valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n) = reaπopt(s, h)
(4.18)
=

∑
s′∈h

reaπopt(s, s′) · h(s′)
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=
∑

s′∈h,s′∈h

reaπopt(s, s′) · h(s′) +
∑

s′ ̸∈h,s′∈h

reaπopt(s, s′) · h(s′)︸ ︷︷ ︸
=1

>
∑

s′∈h,s′∈h

reaπopt(s, s′) · h(s′) +
∑

s′ ̸∈h,s′∈h

reaπopt(s, s′) · valMℓ
πopt(s

′, ψ ⊖ t, n)

= reaπopt(s, h) > reaopt(s, h) = valMℓ
opt (s, ψ ⊖ t, n)

And similarly in the other direction:

valMℓ
opt (s, ψ ⊖ t, n) = reaπopt(s, h)

(4.18)
=

∑
s′∈h

reaπopt(s, s′) · h(s′)

=
∑

s′∈h,s′∈h
reaπopt(s, s′) · h(s′) +

∑
s′ ̸∈h,s′∈h

reaπopt(s, s′) · valMℓ
πopt(s

′, ψ ⊖ t, n)

>
∑

s′∈h,s′∈h
reaπopt(s, s′) · h(s′) +

∑
s′ ̸∈h,s′∈h

reaπopt(s, s′) · h(s′)︸ ︷︷ ︸
=0

= reaπopt(s, h) > reaopt(s, h) = valM
sub
ℓ (Srel)

opt (s, ψ ⊖ t, n)

For n > 0 and s ∈ PS ∩ Srel derivations above still apply, taking into account
the induction hypothesis. It is left to prove the claim for n > 0, s ∈ MS, that in
turn follows from the induction hypothesis and monotonicity of the integral.

In order to compute, or approximate, the values valM
sub
ℓ (Srel)

opt (s0, ψ) and
valM

sub
ℓ (Srel)

opt (s0, ψ) any algorithm for reachability analysis on Markov automata can
be used. For example, the one that has been presented in Section 4.3 of this chapter,
or those discussed in Chapter 4, at the end of Section 4.2.

4.4.4 The Choice of Simulating Scheduler
Here we discuss how to chose a scheduler to perform sampling of paths in an MA.
For a measurable scheduler π on Msub

ℓ (Srel) we define its extension πx on Mℓ as
follows:

πx(ρ) :=

{
π(ρ) if ρ ∈ Paths∗(Msub

ℓ (Srel)) and ρ↓ ∈ Srel

any distribution over Act(ρ↓) otherwise
(4.86)

We additionally require that this extension is also measurable. This scheduler takes
the same decisions as π on paths ofMℓ that are possible inMsub

ℓ (Srel), and other-
wise samples an action from some distribution.

We propose two options for the simulating scheduler: (i) the uniform scheduler
πuni, which picks one of the enabled actions uniformly at random, and (ii) scheduler
πopt that optimises valM

sub
ℓ (Srel)

opt (ψ) for opt = sup or, conversely, scheduler πopt that
optimises valM

sub
ℓ (Srel)

opt (ψ) for opt = inf. For the latter option we use the respective
extensions of πopt and πopt toMℓ, i. e. πxopt and πxopt.
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Figure 4.6

The uniform scheduler has the advantage of being simple to implement and
lightweight in terms of memory requirements. Moreover, in some cases this may
be the only option, if, for example, the underlying algorithm for time-bounded
reachability analysis does not output an optimal scheduler. There are situations
in which the uniform scheduler is a good choice. For example, if different actions
lead to Markovian states with exit rates that differ significantly, e. g. by orders of
magnitude. In this case, whenever the simulation reaches a state with low exit rate,
the residence time in such a state will likely be high. As a result, fewer states will be
sampled within the same amount of time, compared to a path that visits Markovian
states with high exit rates. If the formula is likely to be satisfied over paths with
higher exit rates of Markovian states, then the price for choosing a wrong action
(in terms of excess state-space) will not be high.

On the other hand, the uniform scheduler defines a positive probability of choos-
ing each action, even the one that is clearly suboptimal. Given enough time, the
algorithm that uses this scheduler for obtaining the relevant subset will eventually
explore the entire MA. This is not the case for πxopt and πxopt. These schedulers are
optimal on the partial model in a best-case scenario arising when all states outside
of Srel are absorbing target or sink states. This means that the schedulers will most
likely navigate towards the borders of the partial model as long as states at the
border look promising. If it becomes clear that some of those states, say reachable
via action α of a probabilistic state ps, have a worse probability of satisfying the
property than states reachable via action β of ps, than action α will not be chosen
by πxopt/π

x
opt. Thus states that are only reachable via suboptimal actions will not

be part of the relevant subset under these schedulers.
The following example illustrates that neither (i) nor (ii) is a strictly better

option for simulations.

Example 4.4.4. Consider the MA on the left of Figure 4.6 and the time interval
[0, 1]. We will show that there may be scenarios when sampling with the uniform
scheduler produces a set Srel of a smaller size than that induced by scheduler πxopt.

If Srel = {s0, a0, c0}, then action α delivers higher values valM
sub
ℓ (Srel)

opt (ψ) than
action β and therefore πxopt(s0, 0) = α. If at the next iteration during one of the
simulations the system leaves state a1, then all the states b0 − b9 will be visited at
that same time and added to Srel. At this moment action β becomes optimal. The
algorithm converges when at least one of the simulations reaches the goal state via
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4. Time-Bounded Reachability

action β, at which moment Srel = {s0, a0, a1, b0, . . . , b9, c0, c1, g}.
If the uniform scheduler is used instead of πxopt, then with probability 0.5 it will

select action β and with probability 0.5 it selects action α in state s0. If simulations
never leave state a1, however do leave state c1, then Srel = {s0, a0, a1, c0, c1, g} and
action β becomes optimal for both lower- and upper-bound formulas. At this moment
the algorithm has converged.

The MA on the right of Figure 4.6 illustrates that there are scenarios where
scheduler πxopt performs better than the uniform scheduler. Here when {s0, d0, f0} ⊆
Srel it becomes clear that action α is sub-optimal. From this moment on only action
β is chosen for simulations, which means that states of the left chain that have not
been visited yet, will never be visited. However, the uniform scheduler may keep
choosing action α and adding unnecessary states from the left chain to Srel. At the
moment when {s0, d0, f0, f1, g} ⊆ Srel: valM

sub
ℓ (Srel)

opt (ψ) = valM
sub
ℓ (Srel)

opt (ψ) and the
algorithm converges.

4.4.5 The Algorithm

An algorithm that approximates value valMℓ
opt (s0, ψ) for an arbitrary MA Mℓ, s0 ∈

S, ψ = Φ1 U[[a,b]]Φ2 up to ϵ ∈ (0, 1) is shown in Algorithm 4. It follows closely the
steps outlined in Section 4.4. Parameter w affects precision used for the reacha-
bility analysis on the partial MA and parameter sch defines the scheduler used for
obtaining the relevant subset. Notice that even if sch = opt, no optimal scheduler
is available for the very first iteration and therefore only the uniform scheduler can
be used in this case.

Here ComputeReachability(M′
ℓ, s

′
0, ψ

′, opt′, ϵ′) denotes a procedure that for
opt′ = sup under-approximates and for opt′ = inf over-approximates the value
valM

′
ℓ

opt′(ψ
′) up to ϵ′. Its output is an ϵ′-close approximation of value valM

′
ℓ

opt′(s
′
0, ψ

′)

and an ϵ′-optimal scheduler π for valM
′
ℓ

opt′(ψ
′).

Procedure GetRelevantSubset(M, s0, ψ, πsim) shown in Algorithm 5 samples
nsim random paths of M starting from s0 using scheduler πsim. Simulation of a
path stops at the moment when the time runs out (t > b) or it becomes clear that
any infinite extension of the currently simulated path ρ will satisfy formula ψ. Below
we show the conditions under which the latter is fulfilled:

∃t ∈ [[a, b]], n 6 |ρ| , s = ρ[n], s ∈ ρ@t, s |=Mℓ
Φ2,

∀τ ∈ [0, t), s′ ∈ ρ@τ : s′ |=Mℓ
Φ1 and

∀k = 0..n− 1 : ρ[k] |= Φ1

(4.87)

Condition (4.87) is essentially the semantics of the until formula presented in Chap-
ter 3, Section 3.1, tuned for finite paths. The only difference with respect to infinite
paths is that we require that n 6 |ρ|. If (4.87) is satisfied, then any infinite extension
of ρ satisfies ψ, or formally: Cyl(ρ) |= ψ.
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4.4. Time-Bounded Reachability on Partial State-Space

Algorithm 4 PartialTBR
Input: MA Mℓ = (M, AP , lab), where M = (S,Act, 99K,R), initial state s0 ∈ S,
path formula ψ = Φ1 U[[a,b]]Φ2, opt ∈ {sup, inf}, precision ϵ ∈ (0, 1)
Output: v, v ∈ [0, 1], such that v 6 valMℓ

opt (s0, ψ) 6 v and v − v 6 ϵ and
a scheduler πopt onMℓ such that v 6 valMℓ

πopt(s0, ψ) 6 v
Parameters: w ∈ (0, 1/3), sch ∈ {uni, opt}, by default w = 0.1, sch = opt

1: v = 0, v = 1
2: πsim = πuni
3: Srel = {s0}
4: while v − v > ϵ do
5: Srel = Srel ∪ GetRelevantSubset(Mℓ, s0, ψ, πsim) ◃ see Algorithm 5
6: Sfr = (Srel ∪ post(Srel)) \ Srel
7: BuildMsub

ℓ (Srel) as discussed in Section 4.4.2
8: Set ψ = Φ1 U[[a,b]](Φ2 ∨s∈Sfr aps)

Set ψ = Φ1 U[[a,b]] (Φ2 ∧s∈Sfr ¬aps)
9: v, πopt = ComputeReachability(Msub

ℓ (Srel), s0, ψ, opt, w · ϵ),
v, πopt = ComputeReachability(Msub

ℓ (Srel), s0, ψ, opt, w · ϵ)
10: if (opt = sup) then v = v + w · ϵ else v = v − w · ϵ
11: if (sch == uni) then
12: πsim = πuni
13: else
14: if (opt = sup) then πsim = πxopt else πsim = πxopt

15: if (opt = sup) then πopt = πxopt else πopt = πxopt
16: return v, v, πopt

Lemma 4.4.2. Let Mℓ = (M, AP , lab), s0 ∈ S, M = (S,Act, 99K,R), ψ =
Φ1 U[[a,b]]Φ2, Φ2 ⇒ Φ1 and ϵ ∈ (0, 1). If procedure PartialTBR (Mℓ, s0, psi, ϵ)
terminates and returns values v, v, πopt, then they satisfy the following:

v − v 6 ϵ (4.88)
v 6 valMopt(s0, ψ) 6 v (4.89)
v 6 valMℓ

πopt(s0, ψ) 6 v (4.90)

Proof. The procedure returns a value only at line 16, which is reachable only if v−
v 6 ϵ, what proves (4.88). Let u = ComputeReachability(Msub

ℓ (Srel), s0, ψ, opt,
w · ϵ) and u = ComputeReachability(Msub

ℓ (Srel), s0, ψ, opt, w · ϵ), where Srel, ψ and
ψ are values of the respective variables of the algorithm computed at the very last
iteration of the while-loop. By definition values v and v satisfy the following:

If opt = sup :v = u+ w · ϵ > valM
sub
ℓ (Srel)

opt (s0, ψ) > u

v = u 6 valM
sub
ℓ (Srel)

opt (s0, ψ) 6 u+ w · ϵ
(4.91)
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Algorithm 5 GetRelevantSubset
Input: MA Mℓ = (M, AP , lab), where M = (S,Act, 99K,R), initial state s0 ∈ S,
path formula ψ = Φ1 U[[a,b]]Φ2, a scheduler πsim
Output: S′ ⊆ S
Parameters: nsim ∈ N

1: S′ = ∅
2: for (i = 0; i < nsim; i = i+ 1) do
3: ρ = s0, t = 0
4: while (t 6 b and (4.87) is not satisfied) do
5: s = ρ↓
6: if s ∈ MSMℓ

then
7: Sample t′ from exponential distribution with parameter E(s)
8: Set ν = E(s), µ = [s′ → R[s, s′]/E(s) | s′ ∈ S]
9: else

10: Set t′ = 0
11: Sample action α from distribution πsim(ρ)
12: Set ν = α, µ = P[s, α, ·]
13: Sample a successor s′ of s from distribution µ
14: ρ = ρ

ν,t′−−→ s′

15: t = t+ t′

16: add all states of ρ to S′

If opt = inf :u− w · ϵ 6 valM
sub
ℓ (Srel)

opt (s0, ψ) 6 u = v

u > valM
sub
ℓ (Srel)

opt (s0, ψ) > u− w · ϵ = v
(4.92)

The proof of (4.89) follows from Lemma 4.4.1 and (4.91-4.92):

v 6 valM
sub
ℓ (Srel)

opt (s0, ψ) 6 valMℓ
opt (s0, ψ) 6 valM

sub
ℓ (Srel)

opt (s0, ψ) 6 v (4.93)

Next we prove (4.90). We achieve this by showing that

valM
sub
ℓ (Srel)

opt (s0, ψ) 6 valMℓ
πopt(s0, ψ) 6 valM

sub
ℓ (Srel)

opt (s0, ψ)

One of the inequalities follows from Lemma 4.4.1:

If opt = sup : valMℓ
πopt(s0, ψ) 6 valMℓ

opt (s0, ψ)
Lemma 4.4.1
6 valM

sub
ℓ (Srel)

opt (s0, ψ)

If opt = inf : valMℓ
πopt(s0, ψ) > valMℓ

opt (s0, ψ)
Lemma 4.4.1
> valM

sub
ℓ (Srel)

opt (s0, ψ)

We will now prove the other inequality:

∀s ∈ S : valM
sub
ℓ (Srel)

opt (s, ψ) 6 valMℓ
πopt(s, ψ) if opt = sup

valM
sub
ℓ (Srel)

opt (s, ψ) > valMℓ
πopt(s, ψ) if opt = inf
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We consider the case of opt = sup. The case opt = inf is analogous. For opt =
sup scheduler πopt is an extension of πopt to Mℓ. Consider a finite path ρ ∈
Paths∗(Msub

ℓ (Srel)), such that it satisfies (4.87) for ψ and ρ↓ |= (Φ2 ∧s∈Sfr ¬aps).
Let A∗ be the set of all such paths. Since states from the set Sfr are not target
states w. r. t. ψ, then {ρ ∈ Pathsω(Msub

ℓ (Srel) | ρ |= ψ)} = CylMsub
ℓ (Srel)

(A∗)

Notice that every path ρ ∈ A∗ is also a finite path in Mℓ, because finite paths
that are not shared betweenMsub

ℓ (Srel) andMℓ are only those that end in a fringe
state Sfr. Moreover CylMℓ

(A∗) |= ψ. However there may exist paths in Mℓ that
satisfy ψ, but do not satisfy ψ inMsub

ℓ (Srel), or are not valid paths inMsub
ℓ (Srel) at

all. Let B∗ be the set of finite paths ρ, such that any of its infinite extensions inMℓ

satisfies formula ψ : CylMℓ
(ρ) |= ψ and ρ↓ |= Φ2. Then A∗ ⊆ B∗, or B∗ = A∗ ⊎C,

where C is possibly empty. By definition scheduler πopt takes the same decisions
along paths in set A∗ as πopt. Therefore

valMℓ
πopt(s0, ψ) = PrMℓ

πopt,s0

[
CylMℓ

(A∗)
]
+ PrMℓ

πopt,s0 [C]

> PrMℓ
πopt,s0

[
CylMℓ

(A∗)
]
= PrM

sub
ℓ (Srel)

πopt,s0

[
CylMsub

ℓ (Srel)
(A∗)

]
= valM

sub
ℓ (Srel)

opt (s0, ψ)

Theorem 4.4.3. If Φ2 ⇒ Φ1, then Algorithm 4 terminates almost surely.

Proof. First we will show that procedure GetRelevantSubset terminates almost
surely. For this we only need to prove that its while-loop terminates almost surely.
Consider infinite paths produced by this while-loop that never satisfy its exit con-
dition, i. e.

A = {ρ ∈ Pathsω | ρ is generated within lines 3-15 of Algorithm 5,
τtotal(ρ) 6 b and (4.87) is not satisfied}

Notice that path sampling in Algorithm 5 follows the probability measure for MA.
Or formally, let X be a random variable that takes as value the infinite path pro-
duced by Algorithm 5, when its while-loop is set to run to infinity (i. e. its exit
condition is ignored). Then

Pr[X ∈ A] = PrMπsim,s0 [A]

Due to assumptions introduced in the very beginning of this chapter,M is non-Zeno
and therefore

∀π ∈ ΠM
µ , s ∈ S :

PrMπ,s [{ρ ∈ Pathsω(M) | ∃t ∈ R>0 : ∀i ∈ Z>0 : τtotal(ρ, i) 6 t}] = 0

Since A ⊆ {ρ ∈ Pathsω(M) | ∃t ∈ R>0 : ∀i ∈ Z>0 : τtotal(ρ, i) 6 t} it follows that
Pr[X ∈ A] = 0. Thus with probability 1 the while-loop of Algorithm 5 samples a
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4. Time-Bounded Reachability

path that satisfies the exit condition of the while loop, what proves that Algorithm
5 terminates almost surely.

Consider the sequence w = {Sn}n∈Z>0
of sets, such that Si is the value that

variable Srel of Algorithm 4 takes at the end of iteration n ∈ Z>0. For n = 0 : S0 =
{s0}. We ignore for the moment the termination condition of the while-loop thus
letting it run to infinity. This way sequence {Sn}n∈Z>0

is infinite. It holds that
∀n ∈ Z>0 : Sn ⊆ S and the sequence is non-decreasing, i. e. ∀n1 < n2 : Sn1 ⊆ Sn2 .
Since the state-space is finite, this implies that every run of the algorithm generates
a sequence {Sn}n∈Z>0

that is converging to some set S∞ and ∃k ∈ Z>0, s. t. ∀n >
k : Sn = S∞. Let W be the set of sequences w = {Sn}n∈Z>0

We define w↓ = S∞ to
be the limit of sequence w ∈W .

We will first prove that

opt = sup :

Pr
[
w ∈W | valM

sub
ℓ (w↓)

opt (ψ) 6 valM
sub
ℓ (w↓)

opt (ψ) 6 valM
sub
ℓ (w↓)

opt (ψ) + w · ϵ
]
= 1

opt = inf :

Pr
[
w ∈W | valM

sub
ℓ (w↓)

opt (ψ) > valM
sub
ℓ (w↓)

opt (ψ) > valM
sub
ℓ (w↓)

opt (ψ)− w · ϵ
]
= 1

(4.94)

Let S′ be the set of states reachable from s0. If for w ∈ W : w↓ = S′, then
Sfr = ∅ and therefore ψ = ψ = ψ, Markovian and probabilistic transitions over S′

inM andMsub
ℓ (w↓) coincide and therefore valM

sub
ℓ (w↓)

opt (s0, ψ) = valM
sub
ℓ (w↓)

opt (s0, ψ).
If there are no probabilistic states, then the probability that the Algorithm

generates an w, such that w↓ ̸= S′ is 0. This is due to the fact that the probability
of never sampling a state that is reachable with non-zero probability is 0. The same
holds if scheduler πsim selects each action of every probabilistic state with non-zero
probability (for example πsim = πuni).

Due to the discussion in the previous paragraph it is left to prove that (4.94)
holds for sch = opt. A run of Algorithm 4 for sch = opt produces a sequence of
schedulers πnsim and state-spaces w = {Sn}n∈Z>0

. Here π0sim = πuni and ∀n > 0 : πnsim
is an extension in the sense of (4.86) to Mℓ of an (w · ϵ)-optimal scheduler for
valM

sub
ℓ (Sn)

opt (ψ′), where ψ′ ∈ {ψ,ψ}. State-space Sn is obtained by using πn−1
sim for

simulations. As discussed before, the sequence of Sn is converging to some w↓ = S∞.
Therefore the sequence of schedulers πnsim is also converging to a scheduler π∞sim,
such that it is (w · ϵ)-optimal scheduler for valM

sub
ℓ (w↓)

opt (ψ′)4. It also follows that
with probability 1 the set w↓ comprises of all the states that are reachable by
π∞sim with non-zero probability. Let Swfr be fringe states relative to w↓, i. e. Swfr =

(w↓∪ post(w↓)) \w↓. For any scheduler π value valM
sub
ℓ (w↓)

π (ψ) can only differ from
valM

sub
ℓ (w↓)

π (ψ) if a state in Swfr is reachable with non-zero probability by π. For π∞sim
states in Swfr are only reachable with probability 0. Therefore the reachability values

4There may be multiple (w · ϵ)-optimal schedulers for valM
sub
ℓ (w↓)

opt (ψ′) and choosing a different
one at each iteration may lead to the sequence πnsim being non-converging. We however assume
w. l. o. g. that only one of those schedulers is always selected by procedure ComputeReachability.
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of states in Swfr do not affect values valM
sub
ℓ (w↓)

π∞
sim

(ψ) and valM
sub
ℓ (w↓)

π∞
sim

(ψ). Therefore

valM
sub
ℓ (w↓)

πopt (ψ) = valM
sub
ℓ (w↓)

πopt (ψ) (4.95)

Since πopt is (w · ϵ)-optimal, for opt = sup:

valM
sub
ℓ (w↓)

πopt (ψ) 6 valM
sub
ℓ (w↓)

opt (ψ) 6 valM
sub
ℓ (w↓)

πopt (ψ) + w · ϵ

Since valM
sub
ℓ (w↓)

πopt (ψ) 6 valM
sub
ℓ (w↓)

opt (ψ) and due to Lemma 4.4.1 valM
sub
ℓ (w↓)

opt (ψ) 6
valM

sub
ℓ (w↓)

opt (ψ), then

valM
sub
ℓ (w↓)

opt (ψ) 6 valM
sub
ℓ (w↓)

opt (ψ) 6 valM
sub
ℓ (w↓)

opt (ψ) + w · ϵ (4.96)

And analogously for opt = inf:

valM
sub
ℓ (w↓)

opt (ψ) > valM
sub
ℓ (w↓)

opt (ψ) > valM
sub
ℓ (w↓)

opt (ψ)− w · ϵ (4.97)

Next we will show that given (4.94) the claim of the theorem follows. Let w be
a sequence generated by the algorithm, such that for opt = sup (4.96) holds and
for opt = inf (4.97) holds. Let vn, vn be the values that variables v, v of Algorithm
4 take at the end of iteration n respectively. We can therefore use the following
representation valM

sub
ℓ (Sn)

opt (s0, ψ) = vn − ϵ′n, valM
sub
ℓ (Sn)

opt (s0, ψ) = vn + ϵ′′n, where
0 6 ε′n, ε′′n 6 w · ϵ. Then:

lim
n→∞

(vn − vn) = lim
n→∞

(valM
sub
ℓ (Sn)

opt (s0, ψ) + ε′n − valM
sub
ℓ (Sn)

opt (s0, ψ) + ε′′n)

6 lim
n→∞

(valM
sub
ℓ (Sn)

opt (s0, ψ)− valM
sub
ℓ (Sn)

opt (s0, ψ)) + 2 · w · ϵ

(4.94)

6 3 · w · ϵ (with probability 1)

Let limn→∞(vn − vn) = a. Then ∀δ > 0 there exists k(δ), such that ∀n > k(δ) :
vn − vn − a < δ, or equivalently vn − vn < a + δ 6 3 · w · ϵ + δ. Since it holds
for all values of δ > 0, it also holds for 0 < δ0 6 ϵ · (1 − 3 · w) and we obtain that
there exists an iteration k(δ0) at which vk(δ0) − vk(δ0) < 3 ·w · ϵ+ ϵ · (1− 3 ·w) = ϵ,
which means that the exit condition of the while-loop of Algorithm 4 is fulfilled and
therefore the algorithm terminates.

Remark 4.4.2. As follows from the proof of the theorem above, if a scheduler
satisfies (4.94), then Algorithm 4 is guaranteed to terminate with probability 1.
Since correctness of the algorithm does not depend on the choice of πsim, this means
that Algorithm 4 is not restricted to only two options (πuni or πxopt/π

x
opt) when it

comes to choosing scheduler πsim. One trivial way to satisfy (4.94) is to ensure that
eventually the whole state-space is sampled under scheduler πsim with probability 1.
This is exactly the reason why scheduler πuni can be used.
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4.5 Experimental Evaluation
In this section we will present an empirical comparison of (i) various exhaustive
approaches to quantify the time-bounded reachability probability (Section 4.5.1)
and (ii) instantiations of PartialTBR with their exhaustive counterparts (Section
4.5.2). The experiments were conducted on Intel Core i7-4790 with 16 GB of RAM
running 64-bit Ubuntu Linux 18.04. Details on how to obtain all the data points
used in the plots of this section can be found in Appendix B.1.1.

All the scatter plots shown below have log-log axes. A point ⟨x, y⟩ states that
the runtime of the algorithm noted on the x-axis on one instance was x seconds
while the runtime of the algorithm noted on the y-axis was y seconds. Thus points
above the diagonal indicate instances where the x-tool was the fastest. We set the
timeout to 20 minutes; a timeout is denoted in plots by an “x”.

4.5.1 Comparison of Exhaustive Approaches
In this section, we will compare SwitchStep (implemented in the Modest Toolset
[HH14]), Unif+ (available in the Modest Toolset) and FixStep (available in Storm
[DJKV17]). In plots and tables we will refer to SwitchStep with Sw, Unif+ with
U+ and FixStep with Fx. We keep the default parameters for all the algorithms.
When we request a certain precision for results, we request absolute, not relative,
precision. Notice that by default Unif+ guarantees the requested precision only for
the selected initial states of the model, rather than for the whole state-space. In
contrast, SwitchStep provides guarantees for values of all the states.

In this section, the runtime of an algorithm on a certain problem includes only
the time it takes to approximate the time-bounded reachability values and does not
include the time that it takes to load the respective model into memory. The experi-
ments are performed on benchmarks from the Quantitative Verification Benchmark
Set (QVBS [HKP+19]). Some of the models that we used are different from those
in the QVBS because we use the same models for experimental evaluation of this
chapter and the following one. The latter required us to enrich the models with
rewards and add new properties. The modified models can be found in Appendix
B.2.1.

Figure 4.7 shows the results of the experiments on a combined set of benchmarks
containing one or two instances of almost all the benchmarks from the Quantitative
Verification Benchmark Set (QVBS [HKP+19]). Excluded are those benchmarks
that have spurious non-determinism, those that are way too large for being loaded
into memory, or are analysed very quickly by most of the algorithms. The state-
space of benchmarks in this set ranges from 102 to 107. We run experiments for
precision 10−3 and 10−6.

SwitchStep vs FixStep. The left plot in Figure 4.7 represents the general trend
observed in many experiments: The algorithm FixStep does not scale well with the
size of the problem (model parameters, precision, time bound). For larger bench-
marks, it usually requires more than 20 minutes. This is likely due to the fact
that the discretisation step used by FixStep is very small, which means that the
algorithm performs many iterations. Table 4.1 reports on the size of the discreti-
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Figure 4.7: Runtime of SwitchStep, Unif+ and FixStep on a combined set of
benchmarks.

sation step for FixStep and the steps made by SwitchStep on a few benchmarks.
Here column δ(Fx) shows the length of the discretisation step of FixStep. Columns
min δ(Sw), avg δ(Sw) and max δ(Sw) show minimal, average and maximal steps com-
puted by SwitchStep respectively. The average step used by SwitchStep is several
orders of magnitude larger than that of FixStep. Therefore SwitchStep performs
much fewer iterations. Even though each iteration takes longer, the overall signifi-
cant decrease in the number of iterations leads to much smaller total runtime.

SwitchStep vs Unif+. Situation between SwitchStep and Unif+ is not so clear.
In general, the plot on the right in Figure 4.7 suggests that Unif+ performs better
than SwitchStep when precision set for the experiments is relatively small. To in-
vestigate this further we conduct a series of experiments in which we vary one of the
parameters of the problem (model parameters, time bound, precision) and keep the
other parameters fixed. We perform this evaluation on four of the benchmarks from
the Quantitative Verification Benchmark Set (QVBS, [HKP+19]): Dynamic Power
Management (dpm, version 2), Fault Tolerant Workstation Cluster (ftwc, version 3),
Polling System (ps, version 3) and Reentrant Queuing System (qs, version 3). All
models have open parameters, such as buffer capacity (that affects state-space size),
the number of various request types (that related to the maximum number of en-
abled actions), etc. Varying these parameters allows us to scale the models up from
small to large state-spaces. Table 4.2 reports on minimum and maximum values of

Table 4.1: The discretisation step used in some of the experiments from Fig. 4.7
for precision 0.001.

Model δ(Fx) min δ(Sw) avg δ(Sw) max δ(Sw)
dpm 1.6 · 10−6 1.6 · 10−6 0.013 1.212
qs 1.075 · 10−5 1.075 · 10−5 0.007 3.252
ps 5.16 · 10−6 5 5 5

ftwc 7.86 · 10−5 0.757 2.5 4.242
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4. Time-Bounded Reachability

Table 4.2: Parameters of models used for the experiments.

Model |S| Emax maxs∈S |Act(s)|
dpm 225-111,329 2.60-5.00 4-7
ftwc 35,995-8,008,795 2.06-3.02 4-4
ps 70-6,545,410 2.80-128.80 2-7
qs 204-332,107 4.50-8.50 2-12

the state-space sizes, Emax and highest number of enabled actions maxs∈S |Act(s)|
across the four models used for the evaluation presented in this section.

Figure 4.8 summarises the results of the experiments. Here we fix the precision
to be 10−6 for all the experiments except the ones in the plot on the bottom right.

Model size. For the top left plot we vary only those parameters of models that affect
the state-space size and for the top right plot we vary parameters that affect
the number of enabled actions. For the latter plot we do not compare the
algorithms on ftwc model because the model does not provide any interface
to vary the number of enabled actions. In general, as expected, the running
time of both algorithms grows with the growth of the model size. On two
models, ftwc and ps, Unif+ and SwitchStep perform similarly. There are
case studies on which SwitchStep performs better than Unif+, those are dpm
and qs. However, the data for model dpm from the top right plot suggests
that Unif+ scales better than SwitchStep with the increase of the number of
enabled actions, which is an interesting question to investigate as future work.

Precision and time bounds. Bottom plots show the results of the evaluation when
changing the time bounds (left) and precision (right). When it comes to
varying the time bounds, SwitchStep seems to be more robust than Unif+ on
most of the considered benchmarks. When varying precision, there are cases
when SwitchStep scales better than Unif+ (dpm and qs), and there are cases
of the contrary (ps, ftwc).

4.5.2 Comparison of Partial Approaches
In this section, we will present the experimental evaluation of various instantiations
of PartialTBR (Algorithm 4), implemented in the Modest Toolset, and their com-
parison to exhaustive approaches. The evaluation will be performed on the following
benchmarks: ftwc, qs, dpm considered in the previous section, a variation of the
ps benchmark with five queues instead of two and only one task type, and three
more benchmarks from QVBS: Vehicle Guidance System (vgs, version 1), Video
Streaming Client (stream, version 1) and Hypothetical Example Computer System
(hecs, version 1). The models and properties used for the experiments can be found
in Appendix B.2.2. Their parameters are reported in Table 4.3. In this section, the
runtime of an algorithm on a certain problem includes the time it takes to load the
respective model into memory. We set the limit to the amount of RAM available to
processes to 10Gb. A timeout is denoted in tables by “TO” and a memout by “MO”.
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Figure 4.8: Runtime comparison of SwitchStep and Unif+ varying those problem
parameters that affect state-space size (4.8a), max number of actions (4.8b), time
(4.8c) and precision (4.8d)

Recall that PartialTBR has parameter sch ∈ {uni, opt}. We will use sch as a
subscript to specify which exactly parameter is used. As an underlying solver for
time-bounded reachability, we will use Unif+ or SwitchStep. Thus Unif+uni will
refer to an instantiation of PartialTBR with sch = uni and where Unif+ is used
for time-bounded reachability. Here we do not consider the combination of Unif+
and sch = opt because Unif+ does not output a scheduler in a classical way, as it is
defined in Definition 2.2.5.

We compare the performance of the instantiated algorithms with their originals.
The precision for all the experiments is set to 0.01. The average runtime after 3
runs is presented in Table 4.4 and the average size of the explored state-space after
3 runs is reported in Table 4.5. Here the values for the column labelled with “uni”
are the best values among the results of Unif+uni and SwitchStepuni.

Uniform simulating scheduler performs well on many instances: vgs, stream,
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4. Time-Bounded Reachability

Table 4.3: Parameters of models used for the experiments on PartialTBR.

Model |S|
vgs > 1, 640, 000

stream 200,070,001
hecs > 33, 500, 000
ftwc 31,877,211
ps > 60, 000, 000
dpm > 100, 000, 000
qs 332,107

hecs and ftwc. On all these models the runtime of algorithms Unif+uni and
SwitchStepuni is a few seconds (except for SwitchStepuni on ftwc) and the
explored state-space constitutes less than 1% of the total state-space. The
size of the explored state-space in these experiments is the reason for the in-
stantiations of PartialTBR to outperform the original algorithms Unif+ and
SwitchStep.

Optimal Simulating Scheduler. There are cases in which the uniform scheduler
performs poorly, those are the experiments on ps and dpm models. The ps
model, for example, has five queues that store tasks. The tasks are to be
processed by a server. The system starts when all the queues are full and the
considered property requires one of the queues to be empty. Schedulers in
this model need to decide from which queue to take the task for processing.
Naturally, when a task is selected uniformly at random from different queues,
then more states are explored and the overall runtime is higher. However
due to setting sch = opt the most promising scheduler is the one that selects
tasks from the correct queue, which leads to more targeted exploration. Here
SwitchStepopt performs even better than the original algorithm SwitchStep,
finishing within less than 4 minutes (compared to more than 20 minutes for
the original) and exploring less than 1% of the total state-space.

Hard instances. There are cases in which there is no small sub-MA that preserves
the properties of interest with the required precision. Consider the experiment
on the qs model. The model has two queues storing tasks and the initial state
is when all the queues are empty. The property under consideration is the

Model U+ U+uni Sw Swuni Swopt
vgs TO 4.4 TO 4.4 4.4

stream MO 1.01 MO 1.01 1.11
hecs TO 2.93 TO 2.92 2.95
ftwc MO 2.16 MO 550.2 261.1
ps MO TO MO TO 216.3
dpm MO 870.3 MO TO 276.2
qs 12.6 330.9 34.5 TO TO

Table 4.4: Runtime in seconds for various instantiations of PartialTBR.
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Table 4.5: Explored state-space size for sch = uni and sch = opt. Here “-” is used
whenever the respective value is not available due to a timeout or a memout.

Model Explored states % of the total state space
uni opt uni opt

vgs 1552 1568 < 0.09 < 0.09
stream 269 270 1.4 · 10−4 1.4 · 10−4

hecs 392 392 < 0.0012 < 0.0012
ftwc 7981 48,447 0.026 0.152
ps - 43,976 - < 0.074
dpm 738,029 439,769 < 0.73 < 0.44
qs 332,085 - 99.9 -

probability of all the queues to be full within a given time bound. Naturally, a
queue cannot be full without going through states when the queue has n tasks,
for n ranging from 1 to the maximal queue capacity. This means that most of
the states of the model have to be explored in order to reach a goal state. As
expected, on this problem the instantiations of PartialTBR run significantly
longer than the exhaustive algorithms and almost all the states are explored.

Unif+ vs SwitchStep. We observe that Unif+ tends to perform better on those
instances of the problem in which the probabilities are close to 0 or close to
1. It, therefore, seems to be a better choice for instances with rare events,
such as those coming from the fault tree domain. However, at the moment
Unif+ cannot be used with sch = opt, in which case SwitchStep should be
used. The optimal scheduler obtained from running SwitchStep on the upper
bound model seems to have many more switching points compared to that
of the lower bound model. As a future work one could consider optimising
SwitchStep for these special cases.

Parameter nsim. Performance of PartialTBR depends significantly on the value of
parameter nsim. Solving the underlying time-bounded reachability problem is
expensive and therefore should be performed only a few times. This means
that it is better to set nsim to larger values so that more states are added to
the model each time the sub-problem is solved. In our experiments, we choose
the value of nsim so that at each iteration the state-space is at least 1.5 times
larger than the state-space at the previous iteration.

4.5.3 Conclusions
Exhaustive Approaches. We conclude that SwitchStep does not replace all ex-
isting algorithms for time-bounded reachability, however it does improve the state
of the art in many cases and thus occupies its own niche among available solutions.
We conjecture from the experimental data that the running time of SwitchStep
tends to be better in those cases when switching points of the optimal strategy
have to be computed accurately. Such problems are harder for Unif+, since the
algorithm can only approximate time. When the error introduced by not switching
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4. Time-Bounded Reachability

the policy at the right moment is low, then Unif+ runs quite fast, often performing
only a few iterations. However slightly changing the time bound for the problem
may lead to Unif+ taking at least 20 minutes to compute the values.

Partial Approaches. In general, partial approaches are a good pick whenever huge
models have a small sub-MA that preserves the value with adequate error, or when
one needs to know a rough approximation of the time-bounded reachability. On such
instances PartialTBR successfully finds a small subset of states and significantly
reduces either the running time or the memory consumption required to solve the
problem (as demonstrated in our experimental evaluation). Simply loading a large
model into memory takes a lot of time and resources, which is exactly what the
partial approaches avoid. As expected, the performance of PartialTBR heavily
depends on the structure of the model and the property under consideration. For
example, the same problems but with larger time bounds may not have a small sub-
MA preserving the value because the optimal scheduler on these new time points
has to visit the states that could be otherwise discarded.

4.6 Conclusions and Discussion
In this chapter we looked closely at the problem of computing optimal reachability
probabilities valMℓ

opt (ψ) for an arbitrary formula ψ = Φ1 U[[a,b]]Φ2 and labelled MA
Mℓ = (M, AP , lab). We reiterate over major steps below and highlight the main
contributions with ∗:

− We have identified that computing valMℓ
opt (ψ) can be reduced to computing at

most two values valM′
opt(s, b− a, g′) and valM′′

opt (s, a, g
′′), whereM′ andM′′ are

slightly modified versions of M and g′, g′′ are goal functions that depend on
ψ (Section 4.1.2).

∗ We have presented a convenient characterisation of the next switching point of
an optimal piecewise-constant scheduler for valMopt(s, c, g) as the earliest inter-
section of finitely many functions (linear in the number of state-action pairs
of M), given implicitly by a system of linear differential equations (Section
4.3.3).

− Using this characterisation we have developed a scheme to approximate the
switching points (Section 4.3.4). We achieve this by approximating the solu-
tion to the system of differential equations via uniformisation.

∗ All the results discussed above enabled us to design a novel algorithm for
approximating values valMopt(s, c, g) (SwitchStep, Algorithm 2). Under the
assumption that all the goal states are absorbing (Assumption 4.3.1) the error
induced by the approximations is guaranteed to be below a given threshold ϵ.

∗ We explore an alternative way to optimise the analysis of valMℓ
opt (ψ) on large

Markov automata by performing computations on partial state-spaces, what
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resulted in algorithm PartialTBR (Algorithm 4). We use simulations to iden-
tify the subset of states that are most relevant to values valMℓ

opt (ψ), i. e. remov-
ing one of those states may induce an error that is larger than the requested
error bound. Instead of solving valMℓ

opt (ψ) on Mℓ we solve two simpler prob-
lems valM

′
ℓ

opt (ψ
′) and valM

′
ℓ

opt (ψ
′′), where the state-space of M′

ℓ is previously
identified subset of relevant states. The algorithm terminates almost surely
and the error induced by the approximations is guaranteed to be below a given
error bound ϵ.

− We conclude the chapter with the empirical evaluation of both the algorithms.
It shows that algorithm SwitchStep outperforms FixStep on most of the
benchmarks, with the exception of some small models. The algorithm is com-
petitive with Unif+, however, does not strictly outperform it. There are many
MA models that are extremely large and cannot be analysed by exhaustive
algorithms, such as SwitchStep or Unif+, within 20 minutes, but can be
analysed by PartialTBR within a few seconds.

Discussion.

− The study of switching points of optimal piecewise constant schedulers for
valMopt(c, g). If an optimal piecewise constant scheduler exists and its switch-
ing points are known, then computation of valMopt(s, c, g) can be performed
efficiently, for example as shown in Section 4.3.1. And the same holds for
CTMDPs, see [Mil68] (or the same in [BS11]). For Markov automata efficient
computation of switching points is made possible due to the decoupling of
timed delays from non-deterministic actions. We conjecture that this may be
the key in developing a good characterisation of switching points. It is not
straightforward whether the theory that we developed for switching points
in this chapter can be transferred to CTMDPs, where this decoupling is not
present. As mentioned before, one advantage of Markov automata over CT-
MDPs is their compositionality. For us, another significant advantage is the
possibility to efficiently compute switching points of an optimal strategy.

− Decidability of CSL model-checking. As observed by Daniel Stan, our charac-
terisation of switching points suggests that the switching points are not alge-
braic numbers due to the Lindemann-Weierstrass theorem. This could lead to
a negative result on decidability of model-checking formula Popt

Ep (Φ1 U[[a,b]]Φ2).

Future Directions.

− Generalisations. Formula Popt
Ep (Φ1 U[[a,b]]Φ2) is the simplest time-bounded prop-

erty among those presented in Chapter 3 Section 3.3. An obvious question is
whether it is possible to generalise our results to other problems, such as: (i)
the cumulative time-bounded reward property (see Chapter 3 Section 3.3); (ii)
an even more general problem of cost-bounded rewards considered in [Hat17];
(iii) all these properties over hybrid systems with non-determinism; (iv) inte-
grate our solution into multi-objective model-checking [QJK17].
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− Optimise Algorithm 2. Efficiency of this algorithm depends on Lemmas 4.3.15
and 4.3.16 that give a bound on the error introduced by following a possibly
sub-optimal strategy. If these bounds are too pessimistic, the scheduler ap-
proximated by the algorithm switches more often then is needed, what leads
to higher running time. The algorithm would definitely benefit from better
bounds that are easier to compute.

− Optimise Algorithm 4. The main weakness of this algorithm is the fact that the
relevant state-space can only grow from one iteration to another. This means
that at each iteration the underlying exhaustive analysis on the partial state-
space becomes harder and harder. The algorithm would definitely benefit
from a more lightweight version of this step that only works on a subset of
states of the relevant set and only for some of the time points, just like the
classical BRTDP.

− Patterns in optimal schedulers. Most of the known MA case studies consist
of parametrised sub-components running in parallel. New models can be ob-
tained by changing the number of these components or their parameters. As
an example, many case studies use a buffer of finite length K. Large buffer size
leads to a larger state-space. It is interesting from a theoretical and a practical
perspective to see whether an optimal scheduler for a problem with K = k1
and an optimal scheduler for a problem with K = k2 > k1 have anything in
common. It could be possible that there is a pattern in the decisions of the
optimal scheduler. If this is the case, one could compute optimal schedulers
on models with small values of K and from there obtain a guess of an optimal
scheduler for models with larger K. The guessed scheduler will most likely not
be optimal, but it may not be too far from an optimal one. Notice that similar
approaches that guess optimal schedulers for other models, such as CTMDPs,
usually do not provide any guarantees on how far the guessed scheduler is
from an optimal one. In order to establish this one needs to compute the
value induced by the scheduler, the optimal value and compare the two. The
results of this chapter, in particular, Lemmas 4.3.15 and 4.3.16, allow us to
obtain the bound on the error without computing the optimal value. This can
be achieved by first setting scheduler π to the respective stationary part of the
guessed scheduler in step 8. Second, one needs to skip the computation of the
step size δ and instead set it to the step size of the guessed scheduler. This
can be achieved by substituting the call to FindStep at line 9 with the call
to CheckInterval with respective arguments. No modifications of Lemmas
4.3.15 and 4.3.16 are needed. The error bound returned by the algorithm is
the error induced by the scheduler.
Assuming that the guessed scheduler is not far from the optimal one, one could
also use the guessed scheduler as a basis to speed up the computation of the
optimal scheduler. This could be achieved by optimising procedure FindStep
to check for minor derivations of the step size.
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In this chapter, we move our attention to the problem of computing optimal long-
run average rewards for Markov automata. Recall that this property describes the
average reward that is expected to be accumulated per time unit in the best or worst
case. The main result of this chapter is an iterative algorithm for approximating
optimal long-run average rewards for Markov automata.

We start in Section 5.1 with laying the foundations for introducing the algorithm
and describing a sub-problem of optimal cumulative unbounded reward for MDPs.
In Section 5.2 we describe an algorithm developed in [GHH+14, GTH+14] to solve
the problem for the general case. The algorithm reduces the problem to computing
optimal long-run average rewards for a subclass of unichain Markov automata. In-
formally, this subclass consists of Markov automata that have a strongly connected
underlying graph. The authors of [GHH+14, GTH+14] solve this latter problem via
a reduction to linear programming.

In Section 5.3 we present a value iteration algorithm for approximating long-run
average rewards in a unichain Markov automaton. To arrive there, we show that
a Markov automaton can be considered as a compact representation of a CTMDP
with – in the worst case – exponentially more transitions. From this new perspective,
the analysis of Markov automata does not require designing new techniques but
lets us adopt those used for CTMDPs. However, a trivial adaptation of CTMDP
algorithms to an exponentially larger model obtained from a Markov automaton
would obviously induce exponential runtime. We deal with exponentiality with the
help of dynamic programming. We isolate a part of the CTMDP algorithm that
runs in exponential time and show that by exploiting the structure of the original
Markov automaton we can solve this sub-problem efficiently. Next, we show how
to integrate the approximate solution for a unichain Markov automaton into the
general case solution with guaranteed error bounds. We conclude the section with
an empirical comparison of the linear-programming based approach and this new
iterative algorithm.
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5.1 Preliminaries and Problem Statement
Throughout the chapter we work with a Markov reward automaton Mϱ = (M, ϱ),
where ϱ is a reward structure over the MAM = (S,Act, 99K,R).

In this chapter we will use the same relation operators as in the previous one
(see Chapter 4, Section 4.1), in order to present the results for both cases opt = sup
and opt = inf. Below we reiterate over the definitions for convenience:

4opt =

{
6 if opt = sup
> if opt = inf

<opt =

{
> if opt = sup
6 if opt = inf

(5.1)

≺opt =

{
< if opt = sup
> if opt = inf

≻opt =

{
> if opt = sup
< if opt = inf

(5.2)

Definition 5.1.1. Let π ∈ Πµ and s ∈ S. The (expected) long-run aver-
age reward value and optimal (expected) long-run average reward value are
defined as follows:

lvalMϱ
π (s) := E

[
LMϱ,s,π

]
=

∫
Pathsω

LMϱ,s,π(ρ) · Prπ,s [dρ]

lvalMϱ

opt (s) := opt
π∈Πµ

lvalMϱ
π (s)

(5.3)

We denote by lvalMϱ

π the vector of values lvalMϱ
π (s) for all states s ∈ S and analo-

gously the vector of optimal values is denoted as lvalMϱ

opt . For the above definitions
we will omit the superscript Mϱ whenever the Markov reward automaton under
consideration is clear from the context.

We will call a scheduler π optimal, if lvalMϱ

opt (s) = lvalMϱ
π (s). A scheduler π is

called ϵ-optimal if ∀s ∈ S : lvalMϱ

opt (s)− lvalMϱ
π (s) 4opt (−1)1{inf}(opt)ϵ.

We are now ready to define the problem that is going to be the topic of this
chapter:

Problem 3. Compute the values lvalMϱ

opt (s) for all s ∈ S, as well as an
optimal scheduler π.

In order to solve this problem one needs to be able to solve a sub-problem of
computing optimal expected cumulative unbounded reward in special instances of
Markov automata - MDPs. This sub-problem plays an important role in the solution
to Problem 3 and is going to be the topic of the following section.

5.1.1 Cumulative Unbounded Reward for MDPs
In this section we will work on the definition of MDPs presented in Chapter 2, Sec-
tion 2.2.5. We will tailor to this definition the notion of optimal expected cumulative
unbounded reward, that has been already defined for Markov reward automata in
Chapter 3, Section 3.3.
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First, we need to define reward structures for MDPs. Recall that when thinking
of an MDP as of a special instance of Markov automata, states of the MDP are
probabilistic states. Due to Remark 3.3.1, only transition rewards of probabilistic
states affect various reward functions for Markov automata. In order to obtain a
reward structure for an MDP we can, therefore, simplify the definition of the reward
structure for Markov automata by omitting state rewards:

Definition 5.1.2. A reward structure for an MDP D = (S,Act,P) is a
function ϱtrn : S ×Act→ R.

Given an MDP D = (S,Act,P) with a reward structure ϱDtrn we can obtain a
Markov reward automaton representation of this MDP as follows: Mϱ = (M, ϱ),
where M = (S,Act, 99K,R), such that ∀s, s′ ∈ S : R[s, s′] = 0, ϱ = (ϱst, ϱtrn),∀s ∈
S : ϱst (s) = 0,∀τ = (s, ν, µ) ∈ : ϱtrn (τ) = ϱDtrn(s, ν).

Now we can define the (optimal) expected cumulative unbounded reward for
MDPs as the (optimal) expected cumulative unbounded reward of its MRA repre-
sentation (Chapter 3, Section 3.3). In the following we will write it down explicitly.

Let D = (S,Act,P) be an MDP and ϱtrn is its reward structure, s ∈ S, π ∈
Πµ. We will denote with Dϱ a pair Dϱ = (D, ϱtrn). The cumulative unbounded
reward is the random variable Cunb

Dϱ,s,π : Pathsω → R∞
>0 on the probability space

(Pathsω,Pω,Prπ,s [·]), such that for a path ρ = s0
ν0,t0−−−→ · · · sn

νn,tn−−−→ · · · ∈ Pathsω:

Cunb
Dϱ,s,π(ρ) := lim

k→∞

k∑
i=0

ϱtrn (si, νi)

Definition 5.1.3. The optimal expected unbounded reward for an MDP
Dϱ, s ∈ S is defined as:

urewDϱ
opt(s) := opt

π∈Πµ
E
[
Cunb
Dϱ,s,π

]
= opt

π∈Πµ

∫
Pathsω

Cunb
Dϱ,s,π(ρ) · PrDϱπ,s [dρ] , (5.4)

and for a given stationary scheduler π:

urewDϱ
π (s) := E

[
Cunb
Dϱ,s,π

]
,

if the set of paths for which Cunb
Dϱ,s,π(ρ) is undefined has measure 0.

We will denote with urewDϱ
opt and urewDϱ

π vectors of values urewDϱ
opt(s) and urewDϱ

π (s)
for each s ∈ S respectively.

The problem of computing value urewDϱ
opt(s) for MDPs is well studied in, e. g.

[Put94]. Values urewDϱ
opt(s) can be computed exactly by such techniques as policy

iteration and linear programming [Put94], or approximated via interval value iter-
ation [QK18, BKL+17]. Below we will discuss an important special case of MDPs
that will appear often in the context of Markov automata and for which there exists
an efficient iterative solution for computing values urewDϱ

opt(s) exactly.
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A state of an MDP is called a terminal state if it has only one outgoing transition,
which is a self-loop with probability 1 and the reward assigned to this transition is
0. We call an MDP acyclic if from each state of the MDP the probability to reach
at least one terminal state equals 1 and there are no cycles in the MDP except for
the self-loops of terminal states. We can assume w. l. o. g. that an acyclic MDP has
only one terminal state, that we will denote with t.

We say that a non-terminal state s has maximal depth i, or d(s) = i, if the
longest finite path ρ from s until a terminal state via non-terminal states has length
|ρ| = i. We define d(t) = 0. Since value urewDϱ

opt(s) for each state s of an acyclic
MDP depends only on values urewDϱ

opt(s
′), where d(s′) < d(s), one can compute the

values urewDϱ
opt backwards starting from states with lowest value d(s) and proceeding

as follows:

urewDϱ
opt(s) =

0 d(s) = 0

opt
α∈Act(s)

{
ϱtrn (s, α) +

∑
s′∈S

P[s, α, s′] · urewDϱ
opt(s

′)
}

d(s) > 0

Having computed values urewDϱ
opt(s) for all states with the same d(s) = d we can

proceed to computing urewDϱ
opt(s) for states with d(s) = d+ 1.

5.2 General Case Solution
To date, there exists only one solution for Problem 3 presented in [GTH+14], which
is going to be the topic of this section. All the definitions, examples, figures and
results presented in this section originate either from [GTH+14] or from [GHH+14].

The approach is based on splitting the problem into three larger steps:

1. Find all maximal end components ofMϱ.

2. Compute lvalM
′
ϱ

opt for each maximal end componentM′
ϱ.

3. Compute urewD
opt(ϱtrn) for the collapsed MDP D.

In the following, we will go into detail of each of these steps.

Step 1. Maximal End Components. A maximal end component of an MRA
can be seen as a maximal sub-MRA whose underlying graph is strongly connected:

Definition 5.2.1. A sub-MRAM′
ϱ ofMϱ is an MRAM′

ϱ = (M′, ϱ), where
M′ = (S′,Act, 99K′,R′), S′ ⊆ S and transition relation  ′ induced by 99K′
and R′ satisfies the following :

−  ′ ⊆ ;

− each state s ∈ S′ has at least one outgoing transition τ = (s, ν, µ) ∈ ′;

− all successors of a state in S′ via transitions in  ′ are in S′ as well: if
s ∈ S and τ = (s, ν, µ) ∈ ′, then post(s, τ) ⊆ S′.
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5.2. General Case Solution

Since state-space and transition relations are the only things that differ between an
MRA and its sub-MRA, in the following for simplicity we will denote a sub-MRA
as a tuple M′

ϱ = (S′, ′).

Definition 5.2.2. An end component M′
ϱ = (S′, ′) is a sub-MRA with a

strongly connected underlying graph. An end component is called maximal
(MEC) if there exists no other end component M′′

ϱ = (S′′, ′′), such that
S′ ⊆ S′′ and  ′ ⊆ ′′.

The problem of finding all MECs of an MRA is equivalent to decomposing a graph
into strongly connected components. This problem can be solved efficiently via
graph-based algorithms, e. g. by the solution proposed in [CH11] in time O(m ·
min{

√
m,n2/3}), where n = |S| and m is the number of edges of the induced graph

(see Chapter 4, Section 4.1.1).

Step 2. Computation of lvalM
′
ϱ

opt for each MEC M′
ϱ is possible due to the

specific structure of MECs. It has been shown in [GHH+14, GTH+14] that for each
MEC M′

ϱ there exists an optimal stationary scheduler for lvalM
′
ϱ

opt that induces a
unichain stochastic process:

Definition 5.2.3. A continuous-time stochastic process is a unichain if there
exists a single recurrent subset of states of the process and possibly some
transient states. A subset of states S′ is called recurrent if for each two states
s, s′ ∈ S′ the probability of the set of paths starting from s and visiting s′ is
non-zero, and the probability of the set of paths starting from s and revisiting
s after leaving it is 1. If the latter condition does not hold for a state s, then
it is called transient.

Therefore in order to compute the value lvalM
′
ϱ

opt it suffices to consider only those
stationary schedulers for MEC M′

ϱ that induce a unichain stochastic process.

Definition 5.2.4. An MRA M′
ϱ is called unichain if every stationary sched-

uler on M′
ϱ induces a unichain stochastic process.

In a MEC or a unichain MRA M′
ϱ = (S′, ′) the long-run average reward value is

the same for all states, i. e. ∀s′, s′′ ∈ S′ : lvalM
′
ϱ

opt (s
′) = lvalM

′
ϱ

opt (s
′′). In this case, we

will denote the value simply with lvalM
′
ϱ

opt .
To conclude, the computation of lvalopt for MECs is strongly related to the

computation of lvalopt for unichain MRA. The solution provided in [GTH+14] is
based on a reduction to a linear program with |S| variables.

Step 3. Optimal Expected Cumulative Reward for a Collapsed MDP. Let
Mj

ϱ = (Sj , j), j = 1..k be all the MECs of Mϱ. Given the optimal values lvalM
j
ϱ

opt
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Figure 5.1: Fig. (5.1a) shows an example of a Markov reward automaton and Fig.
(5.1b) depicts its collapsed MDP.

for eachMj
ϱ one can derive the value of lvalMϱ

opt as follows:

∀s ∈ S : lvalMϱ

opt (s) = opt
π∈Πµ

k∑
j=1

PrMπ,s [♦�Sj ] · lvalM
j
ϱ

opt , (5.5)

where
♦�Sj = {ρ ∈ Pathsω(M) | ∃n ∈ Z>0 : ∀k > n : ρ[k] ∈ Sj}

is the set of paths that starting from state s eventually reach and then forever stay
in the MEC Mj

ϱ.
Computation of the right-hand side of (5.5) can be reduced to the computation

of urewDϱ
opt for the collapsed MDP Dϱ. We first explain how to obtain this MDP on

an example.

Example 5.2.1. Consider the MRA depicted in Fig. 5.1. Red and blue colours
denote states and transitions that belong to a certain MEC. For the collapsed MDP
Dϱ each MEC Mj

ϱ = (Sj , j) is substituted with two states qj and uj. State qj
denotes the MEC itself while uj represents a possibility to decide whether to stay
forever in Mj

ϱ (by transitioning to qj) or to go to some other MEC. It, therefore,
has a transition leading to qj with probability 1 and all the transitions of states from
Sj, that are not part of Mj

ϱ. In case of the MRA from Fig. (5.1a) it is only one
transition from state s3 via action α. Markovian states that are not part of any
MEC become regular MDP states with only one enabled action ⊥ and probability
distribution P[s, ·] over successor states. Probabilistic states that are not part of any
MEC are moved to Dϱ without any changes. The reward of each state qj is set to
be equal to lvalM

j
ϱ

opt . Since reward from a MEC needs to be collected only once, each
state qj has a transition leading to a new state t with probability 1. The latter has
reward 0, what ensures that an infinite path entering this state at some point will
have a finite reward. All other states of the MDP also have reward 0.

Formally, the collapsed MDP Dϱ = (D, ϱD), where D = (SD,ActD,P) and
the reward structure ϱD are defined as follows. Let Mj

ϱ = (Sj , j), j = 1..k

be the MECs of Mϱ. Then SD =
(
S \

(
∪kj=1S

j
))
⊎U ⊎Q⊎{t}, where U =

{u1, . . . , uk}, Q = {q1, . . . , qk}. One new action is added to the set of actions:
ActD = Act⊎{⊥}. All states from the set Q have only one transition leading
to state t: ∀q ∈ Q : P[q, α, q′] = 1 iff α = ⊥, q′ = t and is 0 otherwise. All states
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from set U have a transition leading to the respective q state and to other MECs:
∀uj ∈ U : P[uj ,⊥, qj ] = 1 and ∀τ = (s, ν, µ) ∈ \ j , s ∈ Sj : P[uj , ν, ui] = µ(s′),
where s′ ∈ Si. The reward structure assigns non-zero rewards only to states from
set Q: ∀q ∈ Q : ϱD(q,⊥) = lvalM

j
ϱ

opt and in all other cases ϱD(s, α) = 0.
The connection between the long-run average values in Mϱ and total reward

values in Dϱ is established as follows:

∀s ∈ S : lvalMϱ

opt (s) = urewDϱ
opt(f(s)), where f(s) =

{
uj if s ∈ Sj

s otherwise

One can see that steps 1 and 3 outlined above admit efficient solutions, while the
algorithm for step 2 is based on linear programming. In the context of Markov
decision processes algorithms for linear programming often do not scale well with
the size of the problem, compared to iterative algorithms, such as value or policy
iteration. So far, however, no iterative algorithm has been developed for long-run
average rewards for Markov reward automata. In the next section, we fill this gap by
presenting an iterative algorithm for the computation of long-run average rewards
for MRA.

5.3 Iterative Approach
In this section, we present a new approach for quantifying the optimal long-run
average reward for Markov reward automata. Recall that for steps 1 and 3 of the
general case solution, shown in the previous section, there exist efficient algorithms.
At step 2 one needs to compute the long-run average reward for each MEC of the
MRA. This problem can be reduced to the computation of optimal long-run average
reward for unichain MRA and so far only a solution based on linear programming
is known for this problem. In this section we present an iterative approach for
quantifying optimal long-run average rewards in unichain MRA and show how to
integrate it into the general case solution to obtain an iterative solution for the
general problem. When solving the former we will only consider those unichain
MRA that have strongly connected underlying graph, since we only need a solution
for MECs of a given MRA.

The core of our approach lies in the following observation: a Markov reward
automaton can be considered as a compact representation of a possibly exponentially
larger CTMDP. This observation enables us to use efficient algorithms available for
CTMDPs [Put94] to compute optimal long-run average rewards. But since that
CTMDP, in the worst case, has exponentially more transitions, this naïve approach
does not seem promising. We circumvent this problem by means of classical dynamic
programming and thereby arrive at an efficient solution that avoids the construction
of the large CTMDP.

We start by formally defining the long-run average rewards in CTMDPs in
Section 5.3.1. Next in Section 5.3.2 we show how to obtain a CTMDP that has the
same long-run average reward value as a given unichain MRA. We describe ways to
avoid construction of this potentially exponentially large CTMDP in Section 5.3.3.
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5. Optimal Long-Run Rewards

All these results allow us to obtain an iterative algorithm that approximates long-
run average rewards value, which we discuss in Section 5.3.4 and evaluate on a set
of benchmarks in Section 5.3.5.

5.3.1 Long-run Rewards for CTMDPs

In this section we formally define optimal expected long-run average reward for
CTMDPs.

Definition 5.3.1. A continuous-time Markov decision process (CTMDP)
with rewards is a tuple Cϱ = (SC ,ActC ,RC , ϱ

C
st, ϱ

C
trn), where (SC ,ActC ,RC) is

a CTMDP, ϱCst : SC → R is a state reward function and ϱCtrn : SC ×ActC → R
is a transition reward function.

Example 5.3.1. Figure 5.2 shows an

no tasks

high
0.4

low
0.1

lost

high

10

low
2

99

1

9

1

α

2.97

0.03

α9

9

α, 1 −1

Figure 5.2: An example of a CTMDP
with rewards.

example of a CTMDP with rewards. Re-
wards are denoted in the same way as for
MRA, i. e. next to the respective state or
transition in a green frame. Here state
(high) has a state reward 0.4 and state
(low) has reward 0.1. Transition labelled
with high has transition reward 10, the
one labelled with low has transition re-
ward 2, and transition α has reward −1.

For a path fragment ϕ = s0
α0,t0−−−→ s1

α1,t1−−−→ · · · sn
αn,tn−−−→ the total reward over ϕ

is defined as follows:

rewCϱ(ϕ) :=

n∑
i=0

ϱCst (si) · ti + ϱCtrn (si, αi)

For t ∈ R>0 the prefix of an infinite path ρ = s0
α0,t0−−−→ s1

α1,t1−−−→ s2 · · · until time t is
a path fragment or an infinite path, defined as follows:

prefixϕt (ρ) :=


θ if t0 > t

s0
α0,t0−−−→ · · · sn−1

αn−1,tn−1−−−−−−→ if
∑n−1

i=0 ti 6 t,
∑n

i=0 ti > t

ρ otherwise

Let s ∈ SC , π ∈ Πµ. The long-run average reward is the random variable LCϱ,s,π :

Pathsω → R∞
>0 on the probability space (Pathsω,Pω,PrCπ,s [·]) defined as follows:

LCϱ,s,π(ρ) := lim
t→∞

1

t
rewCϱ(prefixϕt (ρ))
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Definition 5.3.2. Let π ∈ Πµ and s ∈ SC. The (expected) long-run aver-
age reward and optimal (expected) long-run average reward are defined as
follows:

lvalCϱπ (s) := E
[
LCϱ,s,π

]
=

∫
Pathsω

LCϱ,s,π(ρ) · PrCπ,s [dρ]

lvalCϱopt(s) := opt
π∈Πµ

lvalCϱπ (s)
(5.6)

We denote with lvalCϱπ the vector of values lvalCϱπ (s) for all states s ∈ SC and analo-
gously the vector of optimal values is denoted as lvalCϱopt. As shown in [Put94], for a
unichain1 CTMDP C we have ∀s, s′ ∈ SC : lvalCϱopt(s) = lvalCϱopt(s

′). In the following
we will refer to this value as lvalCϱopt.

Computation of value lvalCϱopt(s) in unichain CTMDPs is a well-studied problem
that is solved via a reduction to optimal long-run average rewards in discrete-time
MDPs [Put94]. The latter can be solved exactly via linear programming or policy
iteration or approximated with value iteration.

5.3.2 Value Preserving CTMDP
Our first step towards the iterative solution is showing that for any unichain Markov
reward automaton there exists a unichain CTMDP with rewards that has the same
optimal long-run average reward value. We first demonstrate the transformation on
an example.

Example 5.3.2. Consider the MRA Mϱ depicted on the left of Fig. 5.3. The
state-space of the value preserving CTMDP Cϱ, shown on the right of Fig. 5.3, is
the set of Markovian states of Mϱ. If a Markovian state s of Mϱ has outgoing
transitions leading only to Markovian states, e. g. states s1 and s2, then Cϱ preserves
the transition rates, i. e. ∀s′ ∈ MS : RC [s,⊥, s′] = R[s, s′]. States that have an
outgoing transition leading to a probabilistic state are treated differently. Consider
state s0. Let PSs0 be all probabilistic states between s0 and some other Markovian
state. In our case PSs0 = {p0, p1, p2, p3}. In Cϱ state s0 has as many actions as
there are different mappings from state pi ∈ PSs0 to one of its enabled actions. In
other words, each enabled action of s0 in Cϱ corresponds to a stationary strategy
over states from PSs0. For example, A0 could be the following mapping: A0(p0) =
α0, A0(p1) = α1, A0(p2) = γ2, A0(p3) = γ3. In this example state s0 has 24 = 16
actions in Cϱ.

Next we discuss transition rates in Cϱ. The probability of moving from s to
s′ via action A in Cϱ is the same as probability to reach s′ when starting from s
and following strategy A in Mϱ. The rate of the respective transition is obtained by
multiplying this number with the exit rate of state s. Assume that all the distributions
of outgoing transitions of states pi are uniform. In this case RC [s0, A0, s1] = (λ1 +

λ2) ·
[

λ1
λ1+λ2

(0.5 · 1 + 0.5 · 0) + λ2
λ1+λ2

(1 · 1)
]
= 0.5 · λ1 + λ2.

1The definition of a unichain CTMDP is analogous to that of a unichain Markov automaton.
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Figure 5.3: An example of an MRA (left) and its value preserving CTMDP (right).
In this picture we omitted the probabilities of the probabilistic transitions of the
MRA and the rewards of the MRA and the CTMDP.

Finally, state rewards of Markovian states are the same in Mϱ and Cϱ. Since
probabilistic states are not present in Cϱ, we need to store rewards of those transitions
somewhere, and we will store them in Markovian states. Namely, transition reward
for a state s and an action A in Cϱ will be the expected transition reward gathered
when starting from s and until reaching any other Markovian state in Mϱ while
following strategy A. For example, if the only non-zero rewards are reward of
transition p0

α099Kµ, which is 2, reward of transition p3
γ399Kµ′, which is 3, and reward

of the Markovian transition s0
E(s)−→µ′′, which is 1, then reward of s0 via action A0

in Cϱ is λ1
λ1+λ2

· 12 · 1 · (1 + 2) + λ1
λ1+λ2

· 12 · 1 · (1 + 2 + 3) + λ2
λ1+λ2

· 1 · 1 · (1).

We will next describe this transformation formally. LetMϱ be a unichain MRA. The
value preserving CTMDP Cϱ(Mϱ) = (SC ,ActC ,RC , ϱ

C
st, ϱ

C
trn) is obtained as follows:

State-Space: SC := MSM.

Action Space: Informally, an action for a CTMDP state s ∈ SC will be a stationary
strategy back in the MRA, that defines an action for each of the probabilistic
states reachable from s and located between s and some other state from SC .
Formally, we denote with PSs the set of all probabilistic states s′ ∈ PSM that
are reachable from s via the transition relation 99K, i. e. ∃s′′ ∈ S : s′′ ∈ post(s)
and s′′99K∗ s′, where 99K∗ is the transitive closure of relation 99K. We create
functions As that will serve as an action for state s in the CTMDP C. The
function maps each state s′ reachable from s to one of its enabled actions,
i. e. if PSs ̸= ∅, then As : PSs → Act, s. t. ∀s′ ∈ PSs : As(s

′) ∈ Act(s′). If
PSs = ∅, then there are no probabilistic states reachable from s and we just
create a new action ⊥. Each function As can be thought of as a macro-action,
defining an action for each state in PSs. The set of all such functions for
state s denotes all possible mappings of probabilistic states reachable from s
to one of their enabled actions. Then the set of all enabled actions ActC(s)
for state s in C is the set of all possible functions As or action ⊥ if PSs = ∅,
and ActC =

⋃
s∈SC

ActC(s).
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Transition matrix RC. If state s has no probabilistic successors, then state s has only
one enabled action ⊥ and matrix RC just repeats matrix R: If ActC(s) = {⊥},
then RC [s,⊥, s′] = R[s, s′]. If ActC(s) ̸= {⊥}, then

∀As ∈ ActC(s), s′ ∈ SC : RC [s,As, s
′] := E(s) · PrMAs,s

[
CylM(E(s, s′))

]
,

where
E(s, s′) = {ρ ∈ Paths∗(M) | |ρ| > 1, ρ[0] = s, ρ↓ = s′ and

if |ρ| > 1 then ∀1 6 i 6 |ρ| − 1 : ρ[i] ∈ PSM}

The value PrMAs,s [E(s, s′)] denotes the probability when using scheduler As
to reach state s′ from state s via one Markovian transition from s and only
probabilistic transitions afterwards.

State Rewards remain unaffected ϱCst (s) := ϱst (s).

Transition Rewards are slightly more involved. Essentially, transition reward for ac-
tion A of state s in Cϱ(Mϱ) combines transition reward of the outgoing Marko-
vian transition of s and transition rewards of all the probabilistic states that
are in the MRA, but are not present in Cϱ(Mϱ). Formally, let EUT(s, s′) be
the set of untimed paths from E(s, s′), i. e. ρUT = s

⊥−→ s1
As(s1)−−−−→ · · · sn

As(sn)−−−−→
s′ ∈ EUT(s, s′) iff ρ = s

⊥,0−−→ s1
As(s1),t1−−−−−→ · · · sn

As(sn),tn−−−−−−→ s′ ∈ E(s, s′). Then
∀s ∈ SC , A ∈ ActC(s):

ϱCtrn (s,A) :=
∑
s′∈SC

∑
ρUT∈EUT(s,s′)

PA[ρUT ] · rA[ρUT ],

where for ρUT = s
⊥−→ s1

A(s1)−−−→ · · · sn
A(sn)−−−→ s′:

PA[ρ
UT ] = P[s, s1] · P[s1, A(s1), s2] · · ·P[sn, A(sn), s′]

rA[ρ
UT ] = ϱtrn ((s,E(s), µ0)) + ϱtrn ((s1, A(s1), µ1)) + · · ·+ ϱtrn ((sn, A(sn), µn))

The action reward for a state s and an action A in Cϱ(Mϱ) is therefore the
transition reward expected to be accumulated over all untimed paths from s
to some s′ ∈ SC .

Lemma 5.3.1. Let Mϱ be a Markov reward automaton and Cϱ(Mϱ) =
(SC ,ActC ,RC , ϱ

C
st, ϱ

C
trn) is the CTMDP obtained as described above. Then

lvalMϱ

opt = lvalCϱ(Mϱ)
opt

Proof. First of all we will define a mapping between schedulers inMϱ and Cϱ(Mϱ).
Let ΠMS be a set of schedulers inMϱ that depend only on the last state on the path
and on the last Markovian state on this path, if any. Such a scheduler π ∈ ΠMS

can be defined as π : MS⊎{⊥} × PS→ Act, where the first component equals ⊥ if
there is no Markovian state on the path.
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Let π ∈ ΠMS be a strategy inMϱ. We will denote with f [π] a stationary strategy
in Cϱ(Mϱ) obtained as follows:

∀s ∈ SC :

f [π](s) =

{
⊥ if PSs = ∅
A, s. t.∀ps ∈ PSs : A(ps) = π(s, ps) otherwise

The inverse of mapping f denotes a mapping from a stationary strategy in Cϱ(Mϱ)
to a set of strategies in Mϱ from the set ΠMS. Let πC be a stationary strategy in
Cϱ(Mϱ), then f−1[πC ] is a set of strategies π ∈ ΠMS inMϱ that satisfy the following:

∀ms ∈ MS, ps ∈ PSms, π ∈ f−1[πC ] : π(ms, ps) = A(ps), where A = πC(ms)

Mapping f−1[πC ] is a set because a stationary strategy of Cϱ(Mϱ) does not define
any behaviour on the paths of Mϱ that did not reach any Markovian state yet,
i. e. schedulers π ∈ f−1[πC ] may differ in decisions for the situations when the first
component is ⊥.

Notice that both mappings f [·] and f−1[·] are surjective, i, e. each scheduler
π ∈ ΠMS is mapped to at least one stationary scheduler πC ∈ Π

Cϱ(Mϱ)
stat and for each

stationary scheduler πC ∈ Π
Cϱ(Mϱ)
stat there exists a scheduler π ∈ ΠMS that is mapped

to it. Taking into account that optimal schedulers in both Mϱ and Cϱ(Mϱ) are
stationary and Π

Mϱ
stat ⊆ ΠMS, it suffices to prove either of the following statements:

∀π ∈ ΠMS, s ∈ MS : lvalMϱ
π (s) = lvalCϱ(Mϱ)

f [π] (s) (5.7)

Or in the other direction:

∀πC ∈ Π
Cϱ(Mϱ)
stat , π ∈ f−1[πC ], s ∈ SC : lvalCϱ(Mϱ)

πC (s) = lvalMϱ
π (s)

We will prove the former and start by showing that the stochastic process in-
duced by a scheduler π ∈ ΠMS on Markovian states of Mϱ coincides with the one
induced by f [π] on states SC of Cϱ(Mϱ).

First of all, the exit rate of state s ∈ MS coincides with the exit rate of s and
any other action A ∈ ActC(s) in Cϱ(Mϱ). Consider s ∈ MS. If A = ⊥, then s has
no probabilistic successors and by definition:

E(s,⊥) =
∑
s′∈SC

RC [s,⊥, s′] =
∑
s′∈SC

R[s, s′] =
∑
s′∈S

R[s, s′] = E(s)

If A ̸= ⊥, then:

E(s,A) =
∑
s′∈SC

RC [s,A, s
′] =

∑
s′∈SC

E(s) · PrMA,s
[
CylM(E(s, s′))

]
= E(s)

∑
s′∈SC

PrMA,s
[
CylM(E(s, s′))

]
SinceMϱ is non-Zeno, then all paths starting from a Markovian state reach another
Markovian state with probability 1, therefore

∑
s′∈SC

PrMA,s [CylM(E(s, s′))] = 1.
Thus also in this case E(s,A) = E(s).
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Next we show that the probability induced by π ∈ ΠMS in Mϱ to transition
from s to a Markovian state s′ is the same as the distribution P[s, f [π](s), s′] in
Cϱ(Mϱ). Let s ∈ MS. If s has no probabilistic successors then RC [s,⊥, s′] =
R[s, s′] and therefore the probability distribution over successor states (which are
only Markovian) is the same in Mϱ and Cϱ(Mϱ). If s has probabilistic successors,
then

PrMπ,s
[
CylM(E(s, s′))

]
=
E(s) · PrMπ,s [CylM(E(s, s′))]

E(s, f [π](s))

=
RC [s, f [π](s), s

′]

E(s, f [π](s))
= P[s, f [π](s), s′]

Thus the probability to move to state s′ ∈ MS starting from s via only probabilis-
tic intermediate states and when following strategy π in Mϱ is the same as the
probability to transition to s′ starting from s and following strategy f [π] in Cϱ(π).

We have thus shown that the stochastic process induced by π ∈ ΠMS over
Markovian states of Mϱ is the same as the stochastic process induced by f [π] on
states of Cϱ(Mϱ). Next we will show that the rewards accumulated in both processes
also coincide. We consider state rewards and transition rewards separately.

We start with expected state rewards. Expected state reward accumulated from
a Markovian state s inMϱ over all paths is ϱst (s) /E(s). Since exit rate of state s
in Cϱ(Mϱ) is the same for each action and equals E(s), then expected state reward
of state s in Cϱ(Mϱ) is ϱCst (s) /E(s) = ϱst (s) /E(s). Residence time in probabilistic
states is 0 and therefore expected state reward accumulated from a probabilistic
state s is ϱst (s) · 0 = 0. Thus expected state reward accumulated in both processes
coincide.

We move to expected transition rewards. In the following we denote a path
ρ ∈ E(s, s′) as follows ρ = ((s0, ν0, µ0), t0) · · · ((sn, νn, µn), tn) · sn+1, where s0 =
s, sn+1 = s′, n ∈ Z>0. Similarly, ρUT = ((s0, ν0, µ0)) · · · ((sn, νn, µn)) · sn+1, where
s0 = s, sn+1 = s′. Consider expected transition reward collected when following
strategy π ∈ ΠMS starting from a Markovian state s and until the first visit to some
other Markovian state (i. e. over finite paths in ∪s′∈MSE(s, s′)) inMϱ:

∑
s′∈MS

∫
ρ∈E(s,s′)

|ρ|−1∑
i=0

ϱtrn
(
si

νi µi

)
· PrMπ,s [dρ]

=
∑
s′∈MS

∑
ρUT∈EUT (s,s′)

|ρUT |−1∑
i=0

ϱtrn
(
si

νi µi

)
· P[s0, s1] ·

|ρUT |−1∏
j=1

P[sj , π(s, sj), sj+1]

=
∑
s′∈MS

∑
ρUT∈EUT (s,s′)

rf [π](s)(ρ
UT ) · Pf [π](s)[ρUT ]

= ϱCtrn (s, f [π](s))

Thus the expected reward accumulated over transitions inMϱ after leaving a Marko-
vian state s until encountering some Markovian state s′ while following strategy π
is the same as the expected transition reward accumulated in Cϱ(Mϱ) when leaving
state s via action dictated by f [π].
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This concludes the proof of (5.7).

Remark 5.3.1. Notice that a stationary scheduler that is optimal for lvalCϱ(Mϱ)
opt

may not be stationary w. r. t. Mϱ. For example, consider the situation in which
two Markovian states ms1 and ms2 can reach the same probabilistic state ps. Both
Markovian states become states of CTMDP Cϱ(Mϱ). If state ps has at least two
enabled actions in Mϱ, then there exists an enabled action A ∈ ActC(ms1) and
B ∈ ActC(ms2), such that A(ps) ̸= B(ps). If an optimal strategy πC for lvalCϱ(Mϱ)

opt
chooses action A for ms1 and action B for ms2, then there exists no stationary
strategy π inMϱ that takes the same decisions as πC. However [GTH+14] shows that
there exists an optimal strategy for lvalMϱ

opt that is stationary. Therefore there exists
an optimal strategy πC for lvalCϱ(Mϱ)

opt that is stationary and such that in situations
when the same probabilistic state ps is reachable by multiple Markovian states, this
strategy takes the same decision for ps, i. e. for the example above A(ps) = B(ps).

It is easy to see that even for toy models the number of transitions of the
CTMDP Cϱ(Mϱ) can grow extremely fast. If a Markovian state s in Mϱ can
reach n probabilistic states (i, e. |PSs| = n), and each of those states has at least
two enabled actions, then the set of enabled actions ActC(s) of s in Cϱ(Mϱ) is 2n.
This growth is therefore exponential in the worst case. This means that there may
exist such MRA, for which the value preserving CTMDP is sub-exponential (e. g.
polynomial) in the size of the MRA. And if this is the case, one can simply apply
existing CTMDP algorithms to compute value lvalMϱ

opt = lvalCϱ(Mϱ)
opt (see Section

5.3.1 of this chapter) and skip the rest of this chapter. For those cases when the
CTMDP model preserving the long-run average value of an MRA is indeed way
too large to be efficiently analysed, we designed efficient techniques that utilise the
structure of the MRA and dynamic programming. This will be described in the
next sections.

5.3.3 Dealing with Exponentiality

In this section, we will develop a simple yet efficient solution to cope with expo-
nentiality, harvesting the Bellman equation for CTMDPs [Put94] together with the
structure of Mϱ. The Bellman equation for CTMDPs looks as follows:
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Lemma 5.3.2 ([Put94]). Let C = (SC ,ActC ,RC , ϱ
C
st, ϱ

C
trn) be a unichain CT-

MDP with rewards. Let η > Emax, then there exists a function h : SC → R
and value a ∈ R>0 that are a solution to the Bellman equation:

∀s ∈ SC :

h(s) +
a

η
= opt

α∈ActC(s)

{
ϱCtrn (s, α) · E(s, α) + ϱCst (s)

η
+
∑
s′∈SC

PC [s, α, s
′] · h(s′)

}
(5.8)

where

PC [s, α, s
′] :=

{RC [s,α,s
′]

η if s′ ̸= s

1− (E(s,α)−RC [s,α,s])
η if s′ = s

(5.9)

Moreover a = lvalCϱopt.

A naïve direct application of this Bellman equation to CTMDP Cϱ(Mϱ) is prob-
lematic in the right-hand side of (5.8). As we established at the end of the previous
section, the optimisation step required for computing the right-hand side may have
to range over exponentially many actions. Left untreated, this operation, in essence,
is a brute force check of optimality of each stationary strategy inMϱ (each of those
strategies induces an action in the CTMDP). In the following, we will show how to
avoid this problem by working with Mϱ itself and not with Cϱ(Mϱ). Informally,
we will show that the value on the right-hand side of (5.8) is nothing more than
the optimal expected unbounded reward for a certain MDP. We start with defining
this MDP.

Terminal MDP and its Reward Structure. Let η > Emax. The two-step
procedure below constructs an MDP that will be used for an efficient solution of
the optimisation problem on the right-hand side of (5.8).

1. At first we obtain the MDP Dη = (S,Act⊎{⊥},Pη). This MDP keeps all
probabilistic states ofMϱ and their actions the way they are inMϱ. For each
Markovian state s ∈ MS the MDP contains state s that has only action ⊥
enabled. The probability distribution for s and ⊥ is the distribution over suc-
cessors of s after it has been uniformised with rate η (i. e. a self-loop transition
with rate η − E(s) is added to the Markovian transition relation):

Pη[s, α, s
′] :=


P[s, α, s′] if s ∈ PS, α ∈ Act(s)
R[s, s′]/η if s ∈ MS, α = ⊥, s′ ̸= s

1− E(s)−R[s,s]
η if s ∈ MS, α = ⊥, s′ = s

0 in all other cases

An example of the MDP Dη for the MRA depicted in Fig. (5.4a) is shown in
Fig. (5.4b).
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Figure 5.4: Construction of the terminal MDP with uniformisation rate η. Figure
(5.4a) depicts an example MRA. The result of the first step of the transformation
is shown in figure (5.4b), and the second step is depicted in (5.4c).

2. Next, for each Markovian state we introduce a copy state and redirect all
the transitions leading to Markovian states to the respective new copy states.
Additionally, we introduce a terminal state t, that has only one self-loop transi-
tion. Let Dλ = (S,Act⊎{⊥},Pη) be the MDP obtained in the previous step,
then tD(η) := (S′,Act⊎{⊥},P′), where S′ = S ⊎Scp ⊎{t}, Scp = {scp | s ∈
MS} and

P′[s, α, s′] =



Pη[s, α, p] if s′ = pcp ∈ Scp, α ∈ Act⊎{⊥}
Pη[s, α, s

′] if s′ ∈ PS, α ∈ Act⊎{⊥}
1 if s ∈ Scp, s′ = t, α = ⊥
1 if s, s′ = t, α = ⊥
0 in all other cases

We will call MDP tD(η) terminal, because all the paths of this MDP reach
the terminal state with probability 1. Fig. (5.4c) shows an example of MDP
tD(η) for the MDP Dη depicted in Fig. (5.4b).

Terminal MDP tD(η) = (S′,Act⊎{⊥},P′) will be used along with the reward struc-
ture ϱhtD(η) defined for h : MS→ R as follows:

ϱhtD(η)(s, α) :=


ϱtrn (τ) if s ∈ PS, α ∈ Act(s), τ = (s, α, µ) ∈ 99K
(ϱst (s) + E(s) · ϱtrn (τ)) /η if s ∈ MS, α = ⊥, τ = (s,E(s), µ) ∈ −→
h(ms) if s = mscp ∈ Scp, α = ⊥
0 in all other cases

A Better Bellman Equation. The following lemma shows that the right-hand
side of the Bellman equation in (5.8) is the optimal expected unbounded reward in
MDP tD(η) for reward structure ϱhtD(η):
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Lemma 5.3.3. Let Cϱ(Mϱ) = (SC ,ActC ,RC , ϱ
C
st, ϱ

C
trn), η > Emax, h : SC → R

and Dϱ = (tD(η), ϱhtD(η)), where tD(η) = (SD,ActD,PD). Then

∀s ∈ SC :

urewDϱ
opt(s) =

ϱCst (s)

η
+ opt
A∈ActC(s)

{
ϱCtrn (s,A) · E(s,A)

η
+
∑
s′∈SC

PC [s,A, s
′] · h(s′)

}
(5.10)

Proof. For a state s, s′ ∈ MS we denote with Pathsωs,s′(Dϱ) the set of infinite paths ρ
in Dϱ that start from state s and eventually reach state t by passing through state
s′, i. e. ρ[0] = s and ∃n ∈ Z>0 : ρ[n] = t, ρ[n− 1] = s′cp. SinceMϱ is non-Zeno, then
in Dϱ the measure of set ∪s′∈MSPathsωs,s′(Dϱ) is 1. Additionally, optimal schedulers
for urewDϱ

opt are stationary. Therefore for s ∈ MS we can rewrite value urewDϱ
opt(s) as

follows:

urewDϱ
opt(s)

= opt
π∈ΠDϱ

µ

∫
Pathsω(Dϱ)

Cunb
Dϱ,s,π(ρ) · PrDϱπ,s [dρ]

= opt
π∈ΠDϱ

stat

∑
s′∈MS

∑
ρ∈Pathsω

s,s′ (Dϱ)

k(ρ)−1∏
j=0

PD[sj , π(sj), sj+1]

k(ρ)−1∑
i=0

ϱhtD(η)(si, π(si))

= ϱhtD(η)(s,⊥)+

opt
π∈ΠDϱ

stat

∑
s′∈MS

∑
ρ∈Pathsω

s,s′ (Dϱ)

k(ρ)−1∏
j=0

PD[sj , π(sj), sj+1]︸ ︷︷ ︸
PD
π [ρ]

k(ρ)−1∑
i=1

ϱhtD(η)(si, π(si))︸ ︷︷ ︸
rDπ [ρ]

=
ϱCst (s) + E(s) · ϱtrn (τ)

η
+ opt
π∈ΠDϱ

stat

∑
s′∈MS

∑
ρ∈Pathsω

s,s′ (Dϱ)

PD
π [ρ] · rDπ [ρ]

where ∀j ∈ Z>0 : sj = ρ[j], k(ρ) > 2 is the minimal index i, such that ρ[i] = t, and
τ = s

E(s)−→µ.
Next we will rewrite the right-hand side of (5.10). By definition

ϱCtrn (s,A) :=
∑
s′∈MS

∑
ρUT∈EUT(s,s′)

PA[ρUT ] · rA[ρUT ]

If s ̸= s′:

PC [s,A, s
′] =

E(s)

η
· PrMA,s

[
CylM(E(s, s′))

]
=
E(s)

η

∑
ρUT∈EUT(s,s′)

PA[ρUT ]

155



5. Optimal Long-Run Rewards

If s = s′:

PC [s,A, s] = 1− (E(s)−RC [s,A, s])

η
= 1− E(s)

η
·
(
1− PrMA,s [CylM(E(s, s))]

)
= 1− E(s)

η
·

1−
∑

ρUT∈EUT(s,s)

PA[ρUT ]


As established in the proof of Lemma 5.3.1: ∀A ∈ ActC(s) : E(s,A) = E(s). There-
fore
ϱCtrn (s,A) · E(s,A)

η
+
∑
s′∈SC

PC [s,A, s
′] · h(s′)

=
∑
s′∈MS
s′ ̸=s

∑
ρUT∈EUT(s,s′)

PA[ρUT ] ·
E(s)

η
·
(
rA[ρ

UT ] + h(s′)
)

+
E(s)

η
·

∑
ρUT∈EUT(s,s)

PA[ρUT ] · rA[ρUT ] + PC [s,A, s] · h(s)

=
∑
s′∈MS
s′ ̸=s

∑
ρUT∈EUT(s,s′)

PA[ρUT ] ·
E(s)

η
·
(
rA[ρ

UT ] + h(s′)
)

+

(
1− E(s)

η

)
· h(s) + E(s)

η
·

∑
ρUT∈EUT(s,s)

PA[ρUT ] ·
(
rA[ρ

UT ] + h(s)
)

=
∑
s′∈MS

∑
ρUT∈EUT(s,s′)

PA[ρUT ] ·
E(s)

η
·
(
rA[ρ

UT ] + h(s′)
)
+

(
1− E(s)

η

)
· h(s)

=
∑
s′∈MS

∑
ρUT∈EUT(s,s′)

PA[ρUT ] ·
E(s)

η
·
(
r′A[ρ

UT ] + h(s′)
)
+

(
1− E(s)

η

)
· h(s)

+
E(s) · ϱtrn (τ)

η
,

where r′A[ρUT ] = rA[ρ
UT ]− ϱtrn (τ).

Taking into account that for each s ∈ MS a stationary scheduler in Π
Dϱ
stat can

be considered as an action from set ActC(s) and vice versa an action A ∈ ActC(s)
defines a stationary scheduler for paths from Pathsωs (Dϱ), it suffices to prove that
∀A ∈ ActC(s):∑
s′∈MS

∑
ρ∈Pathsω

s,s′ (Dϱ)

PD
A [ρ] · rDA [ρ] =

∑
s′∈MS

∑
ρUT∈EUT(s,s′)

PA[ρUT ] ·
E(s)

η
·
(
r′A[ρ

UT ] + h(s′)
)
+

(
1− E(s)

η

)
· h(s)

(5.11)

For ρ ∈ Pathsωs,s′(Dϱ), where s′ ̸= s:

PD
A [ρ] =

R[s, s1]

η
· P[s1, A(s1), s2] · · ·P[sn, A(sn), s′]
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=
E(s)

η
· R[s, s1]

E(s)
· P[s1, A(s1), s2] · · ·P[sn, A(sn), s′]

=
E(s)

η
· PA[ρUT ],

where ρUT is the respective path in EUT (s, s′). Notice that for s ̸= s′ each path
ρ ∈ Pathsωs,s′(Dϱ) corresponds to exactly one path ρUT ∈ EUT(s, s′) and vice versa.
If ρ = s

ν0−→ s1 · · · sn
νn−→ s′cp

⊥−→ t · · · ⊥−→ t · · · , then ρUT = s
ν0−→ s1 · · · sn

νn−→ s′ and
analogously in the other direction.

Next we consider transition rewards. For ρ ∈ Pathsωs,s′(Dϱ) and respective ρUT ∈
EUT(s, s′):

rDA [ρ] = h(s′) +

k(ρ)−2∑
i=1

ϱtrn ((si, A(si), µi))︸ ︷︷ ︸
=0 if k(ρ)=2

= h(s′) + r′A[ρ
UT ],

where µi is the distribution of the respective transition. Therefore∑
s∈MS
s ̸=s′

∑
ρ∈Pathsω

s,s′ (Dϱ)

PD
A [ρ] · rDA [ρ]

=
∑
s∈MS
s̸=s′

∑
ρUT∈EUT (s,s′)

E(s)

η
· PA[ρUT ] · (r′A[ρUT ] + h(s′))

Next we consider the case of s′ = s. For paths ρ ∈ Pathsωs,s(Dϱ) that pass through
at least one probabilistic state, everything above still applies:∑

ρ∈Pathsωs,s(Dϱ)
k(ρ)>2

PD
A [ρ] · rDA [ρ]

=
∑

ρUT∈EUT (s,s)
|ρUT |>1

E(s)

η
· PA[ρUT ] · (r′A[ρUT ] + h(s′))

What is left is the path ρ = s
⊥−→ scp

⊥−→ t
⊥−→ · · · ⊥−→ t ∈ Pathsωs,s(Dϱ):

PD
A [ρ] · rDA [ρ] = (1− E(s)−R[s, s]

η
) · h(s)

If R[s, s] = 0 then there is no respective path in EUT (s, s) and therefore:∑
ρ∈Pathsωs,s(Dϱ)

PD
A [ρ] · rDA [ρ]

=
∑

ρUT∈EUT (s,s)

E(s)

η
· PA[ρUT ] · (r′A[ρUT ] + h(s′)) + (1− E(s)

η
) · h(s)
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If R[s, s] > 0 then there exists a path ρUT = s
⊥−→ s ∈ EUT (s, s), and therefore:∑

ρ∈Pathsωs,s(Dϱ)
PD
A [ρ] · rDA [ρ]

=
∑

ρUT∈EUT (s,s)
|ρUT |>1

E(s)

η
· PA[ρUT ] · (r′A[ρUT ] + h(s′)) + (1− E(s)−R[s, s]

η
) · h(s)

=
∑

ρUT∈EUT (s,s)
|ρUT |>1

E(s)

η
· PA[ρUT ] · (r′A[ρUT ] + h(s′)) +

E(s)

η
· R[s, s]

E(s)
· h(s)

+ (1− E(s)

η
) · h(s)

=
∑

ρUT∈EUT (s,s)

E(s)

η
· PA[ρUT ] · (r′A[ρUT ] + h(s′)) + (1− E(s)

η
) · h(s)

This concludes the proof.

Due to Lemmas 5.3.2 and 5.3.3 we can obtain a better Bellman equation for an
MRA as follows:

Lemma 5.3.4. Let Mϱ be a unichain MRA and η > Emax then there exists
a function h : MS→ R and value a ∈ R>0 that are a solution to the Bellman
equation:

∀s ∈ MS : h(s) +
a

η
= urewDϱ

opt(s), (5.12)

where Dϱ = (tD(η), ϱhtD(η)). Moreover a = lvalMϱ

opt .

Equation (5.12) is better than (5.8) because it makes clear that the right-hand
side of (5.8) has some structure and therefore can be evaluated better than by
naively brute-forcing all the possibly exponentially many actions of the CTMDP
Cϱ(Mϱ). Instead one can compute the values urewDϱ

opt. Previously in Section 5.1.1
of this chapter we have established that computation of urewDϱ

opt is a well-studied
problem that admits efficient solutions. In the next section, we will make use of
those techniques to develop an algorithm for solving equation (5.12).

5.3.4 Algorithmic Solution
The goal of this section is to develop an iterative algorithm that computes value
lvalMϱ

opt . We will achieve this by solving iteratively the Bellman equation (5.12).
For the case of CTMDPs, solution of the Bellman equation (5.8) can be found

with value or policy iteration [Put94]. Since equation (5.12) is a different way
of writing (5.8), we can apply these algorithms to (5.12). The algorithms would
evaluate the right-hand side of (5.12) in a brute-force manner, i. e. the optimal
value urewDϱ

opt(s) would be computed by first computing values urewDϱ
π (s) for each

stationary scheduler π and then choosing the optimal one. Since the right-hand side
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Algorithm 6 RVI
Input: Unichain MRA Mϱ, opt ∈ {sup, inf}, approximation error ϵ > 0

Output: u such that |u− lvalMϱ

opt | < ϵ/2, and ϵ-optimal scheduler πopt

1: Choose η > Emax
2: tD(η)←− terminal MDP (see Section 5.3.3)
3: s∗ ←− any Markovian state ofM
4: ∀s ∈ MS : u0(s) = 0, u1(s) = 1
5: ∀s ∈ MS : w0(s) = 0
6: for (n = 0; sp(un+1 − un) < ϵ

η ; n++) do
7: ϱwntD(η) ←− rewards structure for the terminal MDP (see Section 5.3.3)
8: Dϱ = (tD(η), ϱwntD(η))

9: v, π = TotalExpectedReward(Dϱ, opt)
10: ∀s ∈ MS : un+1(s) = v(s)
11: ∀s ∈ PS : πopt(ps) = π(ps)
12: ∀s ∈ MS : wn+1(s) = un+1(s)− un+1(s

∗)

13: g′ = 1
2 · (maxs∈MS(un+1(s)− un(s)) + mins∈MS(un+1(s)− un(s))) + un(s

∗)
14: return g′ · η, πopt;

of the Bellman equation (5.12) is in fact a separate optimisation problem in itself,
as shown by Lemma 5.3.4, instead we will apply dedicated algorithms that optimise
values urewDϱ

opt(s).
Our solution, shown in Algorithm 6, is a relative value iteration algorithm2 for

approximating value lvalMϱ

opt . Here sp(v) :=
∣∣max
s∈MS

{v(s)} − min
s∈MS

{v(s)}
∣∣. We denote

with TotalExpectedReward(Dϱ, opt) a procedure that computes values urewDϱ
opt for

an MDP with rewards Dϱ = (D, ϱtrn). If D = (SD,ActD,PD), then its output is a
pair (v, π), where π ∈ ΠD

stat and v : SD → R, such that ∀s ∈ SD : v(s) = urewDϱ
opt(s).

Algorithm 6 has two levels of computations: the standard relative value iteration
for MDPs as an outer loop and during each of these iterations we make a call to
procedure TotalExpectedReward to compute values urewDϱ

opt(s).

Theorem 5.3.5. Let u, πopt be the output of Algorithm 6 for an MRA Mϱ,
ϵ ∈ (0, 1), opt ∈ {sup, inf}. Then πopt is ϵ-optimal for lvalMϱ

opt and |u −
lvalMϱ

opt | < ϵ/2.

Proof. Due to Lemmas 5.3.2 and 5.3.3 one can approximate the solution to (5.12)
with relative value iteration algorithm from [Put94]. Consider the case of ε = 0. In
this case Algorithm 6 is exactly the relative value iteration algorithm from [Put94]
applied to (5.8) for ϵ′ = ϵ/η.

Let vn be a sequence of values produced by the classical (i. e. non relative) value
iteration algorithm, applied to (5.8). It can be shown via simple induction, that

2Classical value iteration is also possible, but may be numerically unstable, just like in the
CTMDP case [Put94].
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if ∀s ∈ MS : v0(s) = u0(s), then ∀n ∈ Z>0, s ∈ S : un(s) = vn(s) −
∑n−1

i=0 ui(s
∗).

Consider value

g′ =
1

2
·
(

max
s∈MS

(vn+1(s)− vn(s)) + min
s∈MS

(vn+1(s)− vn(s))
)

=
1

2
·
(

max
s∈MS

(un+1(s)− un(s)) + min
s∈MS

(un+1(s)− un(s))
)
+ un(s

∗)

= u/λ

It has been shown in Theorem 8.5.6 of [Put94] that |g′ − lvalCϱ(Mϱ)
πopt /η| < ϵ′/2

and |g′ − lvalCϱ(Mϱ)
opt /η| < ϵ′/2. Or equivalently |g′ · η − lvalCϱ(Mϱ)

πopt | < ϵ/2 and
|g′ · η − lvalCϱ(Mϱ)

opt | < ϵ/2. Due to Lemma 5.3.1 this implies that 0 4opt lvalMϱ

opt −
lvalMϱ

πopt 4opt (−1)1{inf}(opt) ·ϵ and therefore πopt is ϵ-optimal for lvalMϱ

opt . Additionally,
|u− lvalMϱ

opt | < ϵ/2.

Remark 5.3.2. Notice that Algorithm 6 relies on values urewDϱ
opt to be computed ex-

actly by procedure TotalExpectedReward(Dϱ, opt). As mentioned in Section 5.1.1
possible candidates to solve the general case of this problem is an algorithm based
on a reduction to linear-programming and policy iteration. Value iteration based
approaches provide only an ε-approximation of values urewDϱ

opt and an ε-optimal
scheduler, for a given ε, and we cannot guarantee soundness of Algorithm 6 in this
case. This could seem as an obstacle towards a fully iterative solution for approx-
imating values lvalMϱ

opt , and in fact it is from the theoretical perspective. However
we argue that this is not a barrier in practice. The only Markov automata models
known to us to date (that can be found in, e. g. [HKP+19]) have a very specific
structure. Namely, their terminal MDP is acyclic. Acyclic MDPs admit a value
iteration based solution for computing values urewDϱ

opt exactly, as discussed in Section
5.1.1. We therefore argue that Algorithm 6 suffices as an iterative approximation
algorithm for lvalMϱ

opt for most practical needs.

Complexity. The algorithm iterates until convergence. The complexity of each iter-
ation is determined by the complexity of procedure TotalExpectedReward(Dϱ, opt).
Let |S| = n be the amount of states, a = |Act| and m is the amount of edges inM
(see Section 4.1.1). Let Copt

urew(n,m, a) denote the complexity of computing values
urewDϱ

opt. If these values are computed via a reduction to linear programming, then
the linear program has n variables and n · a constraints. If the MA is PS-acyclic,
then these values can be computed in time O(m).

Integration with the General Case Solution. In the following, we will (i)
discuss how Algorithm 6 can be used to approximate the optimal long-run average
reward value for a MEC, and (ii) discuss how to integrate thus obtained approximate
values into the general case solution presented in Section 5.2.

In order to apply to MECs the theory developed in this chapter for unichain
MRA, we need to ensure that Lemmas 5.3.1, 5.3.3 and Theorem 5.3.5 hold for MECs.
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5.3. Iterative Approach

This is enabled by two core observations, both established in [GTH+14]. First, there
exists an optimal strategy for MECs that is stationary. Second, the value of the op-
timal long-run average reward is constant for all states of a MEC. These properties
ensure that Lemma 5.3.1, and consequently Lemma 5.3.3, hold for MECs. Next, it
has been shown in Chapters 9.1.1 and 11.5.3 of [Put94] how the optimality equation
for MEC CTMDPs corresponds to that of unichain CTMDPs. Lastly, the correct-
ness of Theorem 5.3.5 for MECs follows from the correctness of the stopping criterion
sp(un+1−un) in the “for-loop” of Algorithm 6 for MECs. The latter has been shown
in Chapter 9.5.3 of [Put94]. Therefore, in order to approximate value lvalMϱ

opt for

a MEC Mϱ, one can follow the same pipeline “MRA→CTMDP [Put94]→ MDP” that
we have established for unichain MRA. This means that one simply needs to run
Algorithm 6 onMϱ.

Consider an arbitrary (not necessarily unichain) MRA Mϱ and let Mj
ϱ =

(Sj , j), j = 1..k be the MECs of Mϱ. General case solution presented in Sec-
tion 5.2 is only applicable if values lvalM

j
ϱ

opt are computed exactly. Since Algorithm
6 approximates these values, we cannot use the algorithm to solve the general prob-
lem yet. We will show that given an ε-approximation of values lvalM

j
ϱ

opt one can
construct a collapsed MDP Dϱ(ε) that uses these approximations instead of exact
values and compute an ε-approximation of value urewDϱ(ε)

opt . This way the total error
introduced by all the approximations does not exceed 2 · ε.

Let ε ∈ [0, 1) and Dϱ = (D, ϱD) be the collapsed MDP of Mϱ. We will denote
with lvalM

′
ϱ

opt,ε and urewD′
ϱ

opt,ε ε-approximations of lvalM
′
ϱ

opt and urewD′
ϱ

opt for an MRA
M′

ϱ and MDP D′
ϱ respectively. Let Dϱ(ε) be an MDP obtained in exactly the same

way as Dϱ with the only difference in the reward structure. Instead of assigning
reward lvalM

j
ϱ

opt to MEC Mj
ϱ it assigns reward lvalM

j
ϱ

opt,ε. Formally, Dϱ(ε) = (D, ϱD,ε),

where ∀qj ∈ Q : ϱD,ε(qj ,⊥) = lvalM
j
ϱ

opt,ε and in all other cases ϱD,ε(s, α) = ϱD(s, α).

Lemma 5.3.6. ∀s ∈ S :
∣∣∣lvalMϱ

opt (s)− urewDϱ(ε)
opt,ε (f(s))

∣∣∣ 6 2 · ε, where

f(s) =

{
uj if s ∈ Sj

s otherwise

Proof. For ε = 0 the statement follows from the general case solution described in
Section 5.2, since lvalMϱ

opt (s) = urewDϱ
opt(f(s)). Consider ε > 0. Then:∣∣∣lvalMϱ

opt (s)− urewDϱ(ε)
opt,ε (f(s))

∣∣∣
=
∣∣∣urewDϱ

opt(f(s))− urewDϱ(ε)
opt,ε (f(s))

∣∣∣
6
∣∣∣urewDϱ

opt(f(s))− urewDϱ(ε)
opt (f(s))

∣∣∣+ ∣∣∣urewDϱ(ε)
opt (f(s))− urewDϱ(ε)

opt,ε (f(s))
∣∣∣

6
∣∣∣urewDϱ

opt(f(s))− urewDϱ(ε)
opt (f(s))

∣∣∣+ ε
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Table 5.1: Parameters of models used for the experiments.

Model |S| MECs Emax maxs∈S |Act(s)|

dpm 112-5,666,749 1 2.00-6.00 3-8
ps 113-9,565,937 1 2.80-256.80 2-8
qs 577-7,065,927 1 4.50-8.50 2-12
ftwc 147,681-8,749,281 1 2.13-3.02 5-5

Analogously to Lemma A.5 we can show that
∣∣∣urewDϱ

opt(f(s))− urewDϱ(ε)
opt (f(s))

∣∣∣ 6 ε.
This concludes the proof.

5.3.5 Experimental Evaluation
In this section we present results of an empirical comparison of Algorithm 6 (de-
noted in the following with RVI) and the linear-programming based solution from
[GTH+14] (denoted in the following with LP), discussed in Section 5.2. Both al-
gorithms are implemented in the Modest Toolset [HH14]. All experiments were
conducted on Intel Core i7-4790 with 16 GB of RAM running 64-bit Ubuntu Linux
18.04. Details on how to obtain all the data points used in the plots of this section
can be found in Appendix B.1.2.

Whenever we request a certain accuracy for results, we request absolute, not
relative, accuracy. If algorithm RVI is used to approximate long-run rewards up
to error ϵ, then we will denote this with RVIϵ. The Modest Toolset uses Google
OR-tools [PF] as an underlying linear programming solver and does not provide
any means to adjust the parameters of the solver. We, therefore, use the default
ones for the LP. We set the timeout for experiments to 20 minutes; a timeout is
denoted in plots by an “x”. In this section, the runtime of an algorithm on a certain
problem includes only the time it takes to compute the long-run average values and
does not include the time that it takes to load the respective model into memory.

Models. We evaluate the algorithms on four MA benchmarks from the Quantita-
tive Verification Benchmark Set (QVBS, [HKP+19]): Dynamic Power Management
(dpm, version 2), Fault Tolerant Workstation Cluster (ftwc, version 3), Polling Sys-
tem (ps, version 3) and Reentrant Queuing System (qs, version 3). All models have
open parameters, such as buffer capacity (that affects state-space size), the num-
ber of various request types (that is related to the maximum number of enabled
actions), etc. Varying these parameters allows us to scale the models up from small
to large state-spaces to compare the performance and scalability of the algorithms.
Due to the absence of long-run average reward properties in most MRA models of
the benchmark set, we added sensible long-run average properties to most of the
Modest models in order to be able to do a performance comparison. Those are
mainly steady-state probabilities (i.e. the special case of a rate reward of 1 in some
states and of 0 in all others), or properties describing long-run average costs of
running the system. All the models and properties used for the experiments can
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Figure 5.5: Runtime comparison of RVI and LP varying those problem parameters
that affect state-space size (5.5a) and max number of actions (5.5b).

be found in Appendix B.2.1. Table 5.1 reports on minimum and maximum values
of the state-space sizes, Emax, highest number of enabled actions maxs∈S |Act(s)|
and number of MECs across all the models used for the evaluation presented in this
section. The number of maximal end components was at most 1 across all models.

Discussion. We evaluate the algorithms on three sets of experiments: (i) Vary-
ing those parameters of models that affect the state-space size, (ii) the number of
enabled actions and (iii) varying accuracy of the approximations.

Model Size. The results for experiments (i) and (ii) are presented in Figure
(5.5a) and Figure (5.5b). We show the results as scatter plots with log-log axes. A
point ⟨x, y⟩ states that the runtime of the algorithm noted on the x-axis on one
instance was x seconds while the runtime of the algorithm noted on the y-axis
was y seconds. Thus points above the diagonal indicate instances where the x-tool
was faster than the y-tool. For the plot in Figure (5.5b) we do not compare the
algorithms on ftwc model because the model does not provide any interface to vary
the number of available actions. The general observation from these experiments is
that RVI scales much better with the increase of model size than LP, often having
an advantage of several orders of magnitude. The LP algorithm can be comparable
on smaller models, but on larger ones RVI takes over.

Accuracy. The comparison with respect to changing the accuracy of the approx-
imations is shown in Figure 5.6. Here the plots have log-log axes and we reversed
the x-axis since approximation with higher accuracy (lower values of the x-axis) is
a harder problem than approximation with lower accuracy (higher values of the
x-axis). We evaluate both algorithms on four models and accuracy values ranging
from 10−3 to 10−10. The value of the y-axis is the running time of the algorithms in
seconds. Recall that we cannot vary the accuracy parameter for the LP algorithm.
Therefore for each experiment in this plot, the LP algorithm provides only one value.
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Figure 5.6: Runtime comparison of RVI and LP
when varying accuracy.

We depict this value with a
solid line parallel to the x-
axis. The symbol at the begin-
ning of the line together with
the colour of the line refers
to the specific model that was
evaluated. The RVI algorithm
provides approximations to the
true value up to the given accu-
racy and therefore for each of
the accuracy values we obtain
a different point on the plot.
These points are denoted with
respective symbols from the leg-
end of the plot. Once again we
observe that RVI significantly
outperforms LP even when the requested accuracy is very high.

5.4 Conclusions and Discussion
In this chapter, we revisited the analysis of long-run average reward value lvalMϱ

opt
for an arbitrary Markov reward automaton Mϱ. Below is a brief overview of the
chapter:

− We recalled that computation of lvalMϱ

opt for an arbitrary Markov reward au-
tomaton can be reduced to three separate problems. Only one of those prob-
lems appears to be challenging, which is the computation of optimal long-run
average rewards for a unichain Markov reward automaton.

− We show that in terms of long-run rewards Markov automata can be thought
of as an efficient encoding of an exponentially large CTMDP. Namely, for
every unichain Markov automaton Mϱ there exists a (possibly exponentially
larger) unichain CTMDP Cϱ(Mϱ) that has the same optimal long-run average
reward value.

− We derive a Bellman equation for value lvalMϱ

opt of a unichain Markov automa-
ton from the Bellman equation for value lvalCϱ(Mϱ)

opt (s) of its respective CT-
MDP. The right-hand side of the Bellman equation for lvalCϱ(Mϱ)

opt (s) requires
exponentially many computations. We bypass this problem by showing that
the right-hand side is a known problem of cumulative unbounded reward in
MDPs that can be solved efficiently.

− We obtain a sound iterative algorithm (Algorithm 6) for approximating lvalMϱ

opt
of a unichain MRAMϱ up to an arbitrary given error bound ϵ and show how
to integrate this approximate solution into the general case solution for an
arbitrary MRA.
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− An empirical evaluation of the iterative algorithm, that is presented in Section
5.3.5, shows that the iterative algorithm is better than the linear programming
based approach on many case studies. The running time of the iterative
algorithm often is several orders of magnitude better than that of the linear
programming based solution.

Future Directions.

− Approximate solution for the inner loop. We have shown correctness of Algo-
rithm 6 only under the assumption that the sub-problem of computing optimal
expected cumulative rewards in MDPs (step 9) is solved exactly. In general
case, this problem can be solved with the help of policy iteration or linear
programming. Both tend to scale worse than approximate algorithms, such
as value iteration. Value iteration, however, can provide an exact solution
only for a subclass of problems, e. g. PS-acyclic MA. An interesting problem
to investigate is whether correctness of Algorithm 6 can be ensured while us-
ing an approximation of the solution of the sub-problem at step 9. And if
yes, which error should be used for the approximations of this sub-problem,
to ensure that the overall error remains below a given threshold.

− Apply Bounded Real-Time Dynamic Programming (BRTDP) techniques to
further improve the running time of the analysis of long-run average objectives
for large Markov automata. This has been done for MDPs [BCC+14], however,
has not been considered yet for Markov automata.

− Multi-objective model checking. The only existing algorithm for model check-
ing multiple objective for Markov automata is presented in [QJK17] and so far
ignores long-run objectives. It is interesting to study whether it is possible to
integrate any of the algorithms for long-run rewards into the multi-objective
setting.
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Conclusions 6

In this thesis, we studied several analysis problems for Markov automata that re-
mained challenging to date. The main contribution of this work is in new algorithms
to solve these problems. We believe that all the results that we have shown here
do advance our understanding of the problems and make a step forward in terms of
their analysis. There are, however, ways to improve at least some of our algorithms.
Below we give a brief overview of the achieved results:

Analysis of Time-Bounded Reachability Based on Switching Points. We have studied
switching points of optimal piecewise-constant schedulers and discovered a
convenient way to characterise them. Due to these results, we were able to
develop a new algorithm that approximates the time-bounded reachability
probabilities up to a given error bound. An empirical comparison of this
algorithm with existing ones shows that the algorithm is competitive, however,
does not strictly outperform all existing approaches. A more detailed overview
of the results can be found in Chapter 4, Section 4.6.

Time-Bounded Reachability on Partial State-space. We have designed an algorithm
that approximates time-bounded reachability probabilities with guaranteed
error bounds by performing computations only on a part of the total state-
space. The algorithm is randomised and is guaranteed to converge almost
surely. The empirical evaluation shows that the algorithm can analyse very
large models within a few seconds, as opposed to classical approaches that
take more than 20 minutes. A more detailed discussion of this algorithm can
be found in Chapter 4, Section 4.6.

Analysis of Long-Run Average Rewards. We have designed a new algorithm based on
value iteration that approximates the value of long-run average rewards for a
unichain Markov automaton up to a given error bound. Empirical evaluation
of this algorithm shows that it outperforms the existing approach based on
linear programming. For a more technical overview of the results we refer the
reader to Chapter 5, Section 5.4.
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6. Conclusions

Overall, we consider the analysis of the long-run average rewards for Markov au-
tomata mostly a closed topic. The value iteration algorithm that we developed in
this work seems to be a natural Markov automata extension of the same algorithm
for CTMDPs, which is considered to be one of the most efficient algorithms for
practical cases. The situation is not the same with the time-bounded reachability
probability. The empirical evaluation shows that there are still many models on
which our algorithm could be improved. The main direction for improvement is
to lower the bound on the error introduced by following a possibly sub-optimal
strategy. A more technical discussion of these questions can be found in Chapter 4,
Section 4.6.
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Proofs A

A.1 Auxiliary Lemmas for Section 4.1.2

Lemma A.1. Let π be a generic measurable scheduler, ps ∈ PS, b ∈ R>0,
then

∀s ∈ S : PrMπ,s
[
ttU=bapps

]
= 0 (A.1)

Proof. For s ∈ S, k ∈ Z>0 we define E(s, k, b) ⊆ {ρ | ρ |= ttU=baps′} to be the set
of all infinite paths ρ, such that exactly k transitions happen on ρ before reaching
ps at time b. Then:

{ρ | ρ |= ttU=baps′} =
⊎

k∈Z>0

E(s, k, b)

We will show by induction that

∀s ∈ S, k ∈ Z>0, x ∈ R>0, π ∈ Πµ : PrMπ,s [E(s, k, x)] = 0

This implies the statement of the lemma.
Consider k = 0. In this case E(s, 0, x) = ∅ and therefore E(s, 0, x) = ∅ and

PrMπ′,s [E(s, 0, x)] = 0.
For a scheduler π′ ∈ Πµ and a path fragment ϕ in the following we will define a

scheduler π′+ϕ, such that ρ ∈ Paths∗ : π′+ϕ(ρ) = π′(ϕ ◦ ρ).
Assume the statement is proven for all i 6 k. Consider i = k + 1, s ∈ PS:

PrMπ,s [E(s, k + 1, x)] =
∑

α∈Act(s)
π(s)(α)

∑
s′∈S

P[s, α, s′] · PrMπ+ϕ(α),s′
[
E(s′, k, x)

]

where ϕ(α) = s
α,0−−→. By induction hypothesis ∀s′ ∈ S, π′ ∈ Πµ : PrMπ′,s′ [E(s′, k, x)] =

0 and therefore PrMπ,s [E(s, k + 1, x)] = 0.
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A. Proofs

Consider i = k + 1, s ∈ MS.

PrMπ,s [E(s, k + 1, x)] =

x∫
0

E(s) · e−E(s)·τ
∑
s′∈S

PrMπ+ϕ′ ,s′
[
E(s′, k, x− τ)

]
dτ

where ϕ′ = s
E(s),τ−−−−→. According to the induction hypothesis ∀s′ ∈ S, π′ ∈ Πµ :

PrMπ′,s′ [E(s′, k, x− τ)] is 0 for all τ < x, and may be non-zero for τ = x. How-
ever, due to properties of integrals, the value of the integral over interval [0, x)
is the same as over interval [0, x]. Therefore, due to the induction hypothesis
PrMπ,s [E(s, k + 1, x)] = 0. This concludes the proof.

Consider sets E(t, n) and functions pnopt(s, t) defined in the proof of Lemma 4.1.3.

Lemma A.2.

∀s ∈ S, 1 > δ > 0, t, t′ ∈ Im,m ∈ {0, 1, 2}, |t− t′| < δ,

∃C ∈ R>0 :
∣∣pnopt(s, t)− pnopt(s, t

′)
∣∣ 6 C · δ (A.2)

Proof. Let I0 = [0, a]]]a, I1 = [[a, b]], I2 = [[[bb,∞). The proof proceeds by induction
over n. Let n = 0. For s ∈ MS ∩ Sat(Φ2) and t ∈ I0 : p0opt(s, t) = e−E(s)·(a−t). For
t ∈ I1 : p0opt(s, t) = 1 and for t ∈ I2 : p0opt(s, t) = 0. Thus for s ∈ MS ∩ Sat(Φ2) (A.2)
holds. For s ∈ PS ∩ Sat(Φ2), t ∈ I0 ∪ I2 : p0opt(s, t) = 0. For t ∈ I1 : p0opt(s, t) = 1.
Thus for s ∈ PS ∩ Sat(Φ2) (A.2) holds. For s ∈ Sat(¬Φ2) function p0opt(s, t) is a
constant 0 and therefore (A.2) holds.

Consider n > 0, s ∈ MS ∩ Sat(¬Φ2).

pnopt(s, t) = Ω(pn−1
opt (s, t))

=

b−t∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · pn−1
opt (s′, t+ τ)dτ

=

b∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · 1[0,b−t](τ) · pn−1
opt (s′, t+ τ)dτ

For t, t′ ∈ I2 : pnopt(s, t
′) = pnopt(s, t) = 0. Consider s ∈ MS ∩ Sat(¬Φ2), t, t′ ∈ I0 or

t, t′ ∈ I1. w. l. o. g. we assume that t 6 t′. Then:∣∣pnopt(s, t
′)− pnopt(s, t)

∣∣
=

b∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] ·
(
1(b−t′,b−t](τ) · pn−1

opt (s′, t+ τ)

+ 1[0,b−t′](τ) ·
∣∣pn−1

opt (s′, t+ τ)− pn−1
opt (s′, t′ + τ)

∣∣ )dτ
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A.2. Auxiliary Lemmas For Lemma 4.3.2

Consider the first integral obtained by splitting the sum. It equals the following:
b−t∫

b−t′

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · pn−1
opt (s′, t+ τ)dτ 6 C ·

(
t′ − t

)
Consider the second sum. We will split the integral according to whether t+ τ and
t′ + τ are both in the same set Ij , or in different ones:

b∫
0

E(s) · e−E(s)·τ
∑
s′∈S

P[s, s′] · 1[0,b−t′](τ) ·
∣∣pn−1

opt (s′, t+ τ)− pn−1
opt (s′, t′ + τ)

∣∣ dτ

=

∫
(t+τ,t′+τ)∈I0×I0

· · · +

∫
(t+τ,t′+τ)∈I1×I1

· · · +

∫
(t+τ,t′+τ)∈I2×I2

· · · +

∫
all the rest

· · ·

If t+ τ and t′+ τ are in the same set Ij , then according to the induction hypothesis
the respective integral is bounded by C · (t′ − t). Otherwise, the length of the
integration interval is not greater than t′ − t and therefore the value of the integral
is bounded by C ′ · (t′ − t).

The case s ∈ MS ∩ Sat(Φ2) is treated analogously. Consider s ∈ PS. If
t, t′ ∈ I1 and s ∈ SatΦ2(), then pnopt(s, t) = pnopt(s, t

′) = 1. If t, t′ ∈ I2, then
pnopt(s, t) = pnopt(s, t

′) = 0. In all other cases for x ∈ {t, t′}:

pnopt(s, x) = Ω(pn−1
opt (s, x)) = opt

α∈Act(s)

∑
s′∈S

P[s, α, s′] · pn−1
opt (s′, x)

And therefore∣∣pnopt(s, t)− pnopt(s, t
′)
∣∣ = ∣∣∣∣∣∑

s′∈S
P[s, α, s′] · pn−1

opt (s′, t)− P[s, β, s′] · pn−1
opt (s′, t′)

∣∣∣∣∣
6
∑
s′∈S

∣∣P[s, α, s′] · pn−1
opt (s′, t)− P[s, β, s′] · pn−1

opt (s′, t′)
∣∣ ,

where α and β are respective optimal actions. For each of s′ we define γs′ =
argmax{P[s, α, s′],P[s, β, s′]}. Then∣∣pnopt(s, t)− pnopt(s, t

′)
∣∣ 6∑

s′∈S
P[s, γs′ , s′] ·

∣∣pn−1
opt (s′, t)− pn−1

opt (s′, t′)
∣∣ 6 C · (t′ − t)

This concludes the proof.

A.2 Auxiliary Lemmas For Lemma 4.3.2

Lemma A.3. Consider the values D̂i(s, π′, h), defined in the proof of Lemma
4.3.2 for π′ ∈ Πstat, h : S → [0, 1]. Then

∀s ∈ S, i ∈ Z>0 : D̂i(s, π′, h) = Di(s, π′, h) (A.3)
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Proof. We will prove the statement by induction. It is enough to prove it for s ∈ MS.
Given this, the case of ps ∈ PS follows from the definitions of D̂i(s, π′, h) and
Di(s, π′, h).

For i = 0,ms ∈ MS:

D̂0(ms, π′, h) =
∑

s′′∈MS
P′
0[ms, s

′′] · h(s′′) = h(ms) = D0(ms, π′, h)

Consider i > 0,ms ∈ MS:

D̂i(ms, π′, h)

=
∑

s′′∈MS
P′
i[ms, s

′′] · h(s′′)

=
∑

s′′∈MS

( ∑
s′∈MS

R′[ms, s′]

Emax
· P′

i−1[s
′, s′′] + (1− E(ms)

Emax
) · P′

i−1[ms, s
′′]

)
· h(s′′)

IH
=
∑
s′∈MS

R′[ms, s′]

Emax
· D̂i−1(s′, π′, h) + (1− E(ms)

Emax
) · D̂i−1(ms, π′, h)

We will now rewrite the first summand according to the definition of R′:∑
s′∈MS

R′[ms, s′]

Emax
· D̂i−1(s′, π′, h)

=
∑
s′∈MS

∑
s′′∈S

R[ms, s′′]

Emax
· reaπ(s′′, s′) · D̂i−1(s′, π′, h)

=
∑
s′′∈S

R[ms, s′′]

Emax

∑
s′∈MS

reaπ(s′′, s′) · D̂i−1(s′, π′, h)

=
∑
s′′∈PS

R[ms, s′′]

Emax
· D̂i−1(s′′, π′, h)

+
∑

s′′∈MS

R[ms, s′′]

Emax

∑
s′∈MS

reaπ(s′′, s′) · D̂i−1(s′, π′, h)

=
∑
s′′∈PS

R[ms, s′′]

Emax
· D̂i−1(s′′, π′, h)

+
∑

s′′∈MS

R[ms, s′′]

Emax
· D̂i−1(s′′, π′, h)

=
∑
s′′∈S

R[ms, s′′]

Emax
· D̂i−1(s′′, π′, h)

Lemma A.4. Let π ∈ Πstat, v : S → [0, 1], ε ∈ [0, 1). Then ∀i ∈ Z>0, ∀ms ∈
MS the following holds:

Di
ε(ms, π, v) 6 Di(ms, π, v) 6 Di

ε(ms, π, v) + i · ε (A.4)
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Proof. The leftmost part of inequality in (A.4) can be proven via a simple inductive
argument taking into account that value Di

ε(ps, π, v) for a probabilistic state ps is
an ε under-approximation of value Di(ps, π, v).

In the following we prove the rightmost inequality in (A.4). In order to prove
it we will additionally show that for a probabilistic state ps, i ∈ Z>0 the following
holds:

Di(ps, π, v) 6 Di
ε(ps, π, v) + (i+ 1) · ε

Consider i = 0,ms ∈ MS. Then by definition D0(ms, π, v) − D0
ε(ms, π, v) =

v(ms)− v(ms) = 0. For a probabilistic state ps ∈ PS the value D0
ε(ps, π, v) is an ε

under-approximation of D0(ps, π, v) and therefore D0(ps, π, v)−D0
ε(ps, π, v) 6 ε.

Let i > 0,ms ∈ MS.

Di(ms, π, v)−Di
ε(ms, π, v) =

∑
s′∈S

R[ms, s′]

Emax
·
(
Di−1(s′, π, v)−Di−1

ε (s′, π, v)
)

+ (1− E(ms)

Emax
) ·
(
Di−1(ms, π, v)−Di−1

ε (ms, π, v)
)

IH
6 i · ε

Consider ps ∈ PS:

Di(ps, π, v)−Di
ε(ps, π, v)

= reaπ(ps,Di(π, v)|MS)− reaπε (ps,Di
ε(π, v)|MS)

= reaπ(ps,Di(π, v)|MS)− reaπ(ps,Di
ε(π, v)|MS)︸ ︷︷ ︸

IH: 6i·ε

+ reaπ(ps,Di
ε(π, v)|MS)− reaπε (ps,Di

ε(π, v)|MS)︸ ︷︷ ︸
6ε

6 (i+ 1) · ε

This concludes the proof.

A.3 Auxiliary Lemmas for Lemma 4.3.6

Lemma A.5. Let M be an MA, ε ∈ [0, 1], opt ∈ {sup, inf}, S′ ⊆ S and
wi : S → [0, 1], i ∈ {1, 2} are goal functions defined only on S′ that satisfy:

∀s ∈ S′ : 0 4opt w1(s)− w2(s) 4opt (−1)1{inf}(opt) · ε

Then

∀ps ∈ PS : 0 4opt reaopt(ps, w1)− reaopt(ps, w2) 4opt (−1)1{inf}(opt) · ε (A.5)
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Proof. According to [Put94], for any goal function g, the optimal reachability value
for probabilistic states satisfies the following equation:

reaopt(ps, g) = lim
n→∞

reaopt(ps, n, g) (A.6)

reaopt(s, n, g) =


g(s) if s ∈ g

opt
α∈Act(s)

∑
s′∈S

P[s, α, s′] · reaopt(s′, n− 1, g) else if n > 0, s ∈ PS

0 otherwise
(A.7)

We will show by induction that ∀n ∈ Z>0, s ∈ S:

0 4opt reaopt(s, n, w1)− reaopt(s, n, w2) 4opt (−1)1{inf}(opt) · ε (A.8)

This implies that ∀s ∈ S:

0 4opt reaopt(ps, w1)− reaopt(ps, w2) 4opt (−1)1{inf}(opt) · ε (A.9)

First of all, for n = 0 or s ∈ MS (A.8) holds due to the restrictions on wi. Consider
n > 0, s ∈ PS. Let π1 be a strategy that achieves optimum in (A.7) for g = w1 and
π2 is the same for g = w2. Two cases are possible: π1(s) = π2(s) and π1(s) ̸= π2(s).
In case of the former:

reaopt(s, n, w1)− reaopt(s, n, w2)

=
∑
s′∈S

P[s, π1(s), s′] ·
(
reaopt(s′, n− 1, w1)− reaopt(s′, n− 1, w2)

)
The equation above is a convex combination and therefore (A.8) holds due to the
induction hypothesis. Consider the case of π1(s) ̸= π2(s). By definition of π1 and
π2 the following holds:

reaopt(s, n, w1) =
∑
s′∈S

P[s, π1(s), s′] · reaopt(s′, n− 1, w1)

<opt
∑
s′∈S

P[s, π2(s), s′] · reaopt(s′, n− 1, w1)

IH
<opt

∑
s′∈S

P[s, π2(s), s′] · reaopt(s′, n− 1, w2)

= reaopt(s, n, w2)

<opt
∑
s′∈S

P[s, π1(s), s′] · reaopt(s′, n− 1, w2)

On the other hand, the induction hypothesis also implies that

0 4opt
∑
s′∈S

P[s, π1(s), s′] · reaopt(s′, n− 1, w1)

−
∑
s′∈S

P[s, π1(s), s′] · reaopt(s′, n− 1, w2)

4opt (−1)1{inf}(opt) · ε

Thus (A.8) holds also in this case.
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Let b ∈ R>0, t
′, t ∈ [0, b), t′ > t, k ∈ Z>0, δ = (t′ − t)/(k + 1), π ∈ ΠPC. Let

τi = t+ i · δ for i = 0..k + 1. We define

ṽalπ(s, x, g) :=



valπ(s, t, g) if x = τ0

e−E(s)·δ · ṽalπ(s, τi−1, g)+ if x = τi, i > 0, s ∈ MS
(1− e−E(s)·δ)

∑
s′∈S

R[s,s′]
E(s) · ṽalπ(s′, τi−1, g)

opt
π′∈Πstat

∑
ms∈MS

reaπ′
(s,ms) · ṽalπ(ms, τi, g) if x = τi, i > 0, s ∈ PS

ṽalπ(s, τi, g) if x ∈ (τi−1, τi), i > 0

Lemma A.6. Let πopt be an optimal strategy for valopt(τi, g), i = 0..k + 1.
If Assumption 4.3.1 is satisfied, then ∀i = 0..k + 1:

ṽalπopt(s, τi, g) 6 valπopt(s, τi, g) 6 ṽalπopt(s, τi, g) + i · (Emax · δ)2

2
(A.10)

Proof. First of all, for τ0 the statement holds by definition of ṽalπopt(s, x, g). By
fixpoint characterisation, ∀i = 0..k, x ∈ (τi, τi+1],ms ∈ MS:

valπopt(ms, x, g) = e−E(ms)·(x−τi) · valπopt(ms, τi, g)

+

(x−τi)∫
0

E(ms) · e−E(ms)·τ
∑
s∈S

R[ms, s]

E(ms)
· valπopt(s, x− τ, g)dτ

Due to Lemma 4.3.4:

X(ms, πopt, x, τi) 6 A(ms, πopt, x, τi) 6 X(ms, πopt, x, τi) + (Emax · δ)2/2,

Thus for τi+1 :

valπopt(ms, τi+1, g) 6 e−E(ms)·δ · valπopt(ms, τi, g)

+ (1− e−E(ms)·δ)
∑
s∈S

R[ms, s]

E(ms)
· valπopt(s, τi, g) + (Emax · δ)2/2

(A.11)

And analogously for the lower bound:

valπopt(ms, τi+1, g) > e−E(ms)·δ · valπopt(ms, τi, g)

+ (1− e−E(ms)·δ)
∑
s∈S

R[ms, s]

E(ms)
· valπopt(s, τi, g)
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Therefore:

valπopt(ms, τi+1, g)− ṽalπopt(ms, τi+1, g)

6 e−E(ms)·δ ·
(
valπopt(ms, τi, g)− ṽalπopt(ms, τi, g)

)
+ (1− e−E(ms)·δ)

∑
s∈S

R[ms, s]

E(ms)
·
(
valπopt(s, τi, g)− ṽalπopt(s, τi, g)

)
+ (Emax · δ)2/2

6 (i+ 1) · (Emax · δ)2/2
(A.12)

And analogously in the other direction:

valπopt(ms, τi+1, g)− ṽalπopt(ms, τi+1, g)

> e−E(ms)·δ ·
(
valπopt(ms, τi, g)− ṽalπopt(ms, τi, g)

)
+ (1− e−E(ms)·δ)

∑
s∈S

R[ms, s]

E(ms)
·
(
valπopt(s, τi, g)− ṽalπopt(s, τi, g)

)
> 0

(A.13)

Consider now a probabilistic state ps ∈ PS. Here by definition:

ṽalπopt(ps, τi+1, g) = opt
π′∈Πstat

∑
ms∈MS

reaπ′
(ps,ms) · ṽalπopt(ms, τi+1, g)

valπopt(ps, τi+1, g) = opt
π′∈Πstat

∑
ms∈MS

reaπ′
(ps,ms) · valπopt(ms, τi+1, g)

(A.14)

Let πi+1 ∈ arg optπ′∈Πstat

∑
ms∈MS reaπ′

(ps,ms)·ṽalπopt(ms, τi+1, g). Then for opt =
sup:

valπsup(ps, τi+1, g)− ṽalπsup(ps, τi+1, g)

(A.14)
=

∑
ms∈MS

(
reaπsup(ps,ms) · valπsup(ms, τi+1, g)

− reaπi+1(ps,ms) · ṽalπsup(ms, τi+1, g)
)

(A.12)

6
∑

ms∈MS

(
reaπsup(ps,ms) · (ṽalπsup(ms, τi+1, g) + (i+ 1) · (Emax · δ)2/2))

− reaπi+1(ps,ms) · ṽalπsup(ms, τi+1, g)
)

6
∑

ms∈MS
ṽalπsup(ms, τi+1, g) · (reaπsup(ps,ms)− reaπi+1(ps,ms))︸ ︷︷ ︸

60

+ (i+ 1) · (Emax · δ)2/2))
6 (i+ 1) · (Emax · δ)2/2))

And similarly in the other direction:

valπsup(ps, τi+1, g)− ṽalπsup(ps, τi+1, g)
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=
∑

ms∈MS

(
reaπsup(ps,ms) · valπsup(ms, τi+1, g)

− reaπi+1(ps,ms) · ṽalπsup(ms, τi+1, g)
)

>
∑

ms∈MS

(
reaπi+1(ps,ms) · valπsup(ms, τi+1, g)

− reaπi+1(ps,ms) · ṽalπsup(ms, τi+1, g)
)

=
∑

ms∈MS
reaπi+1(ps,ms) ·

(
valπsup(ms, τi+1, g)− ṽalπsup(ms, τi+1, g)

)
(A.13)

> 0

For opt = inf :

valπinf(ps, τi+1, g)− ṽalπinf(ps, τi+1, g)

=
∑

ms∈MS

(
reaπinf(ps,ms) · valπinf(ms, τi+1, g)

− reaπi+1(ps,ms) · ṽalπinf(ms, τi+1, g)
)

6
∑

ms∈MS

(
reaπi+1(ps,ms) · valπinf(ms, τi+1, g)

− reaπi+1(ps,ms) · ṽalπinf(ms, τi+1, g)
)

=
∑

ms∈MS
reaπi+1(ps,ms) ·

(
valπinf(ms, τi+1, g)− ṽalπinf(ms, τi+1, g)

)
(A.12)

6 (i+ 1) · (Emax · δ)2/2))

And in the other direction:

valπinf(ps, τi+1, g)− ṽalπinf(ps, τi+1, g)

=
∑

ms∈MS

(
reaπinf(ps,ms) · valπinf(ms, τi+1, g)

− reaπi+1(ps,ms) · ṽalπinf(ms, τi+1, g)
)

>
∑

ms∈MS

(
reaπinf(ps,ms) · valπinf(ms, τi+1, g)

− reaπinf(ps,ms) · ṽalπinf(ms, τi+1, g)
)

=
∑

ms∈MS
reaπinf(ps,ms) ·

(
valπinf(ms, τi+1, g)− ṽalπinf(ms, τi+1, g)

)
(A.13)

> 0
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A.4 Auxiliary Lemma for Lemma 4.3.15

Lemma A.7. Let opt ∈ {sup, inf}, π ∈ Πstat, t ∈ [0, b), δ ∈ (0, b − t]. If M
is PS-acyclic and ∃εmax > 0, such that ∀ps ∈ PS, α ∈ Act(ps):

diffopt
π (ps, α, (t, t+ δ]) 6 εmax

then ∀ps ∈ PS, ∀π′ ∈ Πstat:

(−1)1{inf}(opt)
∑

ms∈MS
valπ(ms, t, g)·

(
reaπ′

(ps,ms)− reaπ(ps,ms)
)
6 d(ps)·εmax

(A.15)

Proof. By definition

diffopt
π (ps, α, (t, t+ δ])

= (−1)1{inf}(opt)
∑

ms∈MS
(reaπ,ps→α(ps,ms)− reaπ(ps,ms)) · valπ(ms, t+ δ, g)

We prove (A.15) by induction over depth of probabilistic states. Let π′ ∈ Πstat and
ps ∈ PS has depth 1. Then

(−1)1{inf}(opt)
∑

ms∈MS
valπ(ms, t, g) ·

(
reaπ′

(ps,ms)− reaπ(ps,ms)
)

= (−1)1{inf}(opt)
∑

ms∈MS
valπ(ms, t, g) ·

(
P[ps, π′(ps),ms]− P[ps, π(ps),ms]

)
= diffopt

π (ps, π′(ps), (t, t+ δ]) 6 εmax = d(ps) · εmax

Assume that the statement holds for all states with depth j > 1, we prove it for
a state ps of depth j + 1.∑

ms∈MS
valπ(ms, t, g) ·

(
reaπ′

(ps,ms)− reaπ(ps,ms)
)

=
∑
s∈S

(
P[ps, π′(ps), s]

∑
ms∈MS

reaπ′
(s,ms) · valπ(ms, t, g)

− P[ps, π(ps), s]
∑

ms∈MS
reaπ(s,ms) · valπ(ms, t, g)

)
=
∑
s∈S

P[ps, π′(ps), s]×∑
ms∈MS

(reaπ′
(s,ms)− reaπ(s,ms)) · valπ(ms, t, g)

+
∑
s∈S

(
P[ps, π′(ps), s]− P[ps, π(ps), s]

)
×∑

ms∈MS
reaπ(s,ms) · valπ(ms, t, g)
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Thus

(−1)1{inf}(opt)
∑

ms∈MS
valπ(ms, t, g) ·

(
reaπ′

(ps,ms)− reaπ(ps,ms)
)

6 (−1)1{inf}(opt)

(∑
s∈S

P[ps, π′(ps), s] · d(s) · εmax + diffsup
π (ps, π′(ps), (t, t+ δ])

)
= (j + 1) · εmax = d(ps) · εmax

A.5 Auxiliary Lemma for Lemma 4.3.16

Lemma A.8. Let π ∈ Πstat, v : S → [0, 1], ε ∈ [0, 1). Then ∀i ∈ Z>0,∀ms ∈
MS the following holds:

Di
ε(ms, v) 4opt Di

(ms, v) 4opt Di
ε(ps, v) + (−1)1{inf}(opt) · i · ε (A.16)

Proof. The leftmost part of inequality in (A.4) can be proven via a simple inductive
argument taking into account that value Di

ε(ps, v) for a probabilistic state ps is an
ε under-approximation of value Di

(ps, v) for opt = sup and over-approximation for
opt = inf.

In the following we prove the rightmost inequality in (A.16). In order to prove
it we will additionally show that for a probabilistic state ps, i ∈ Z>0 the following
holds:

Di
(ps, v) 4opt Di

ε(ps, v) + (−1)1{inf}(opt) · (i+ 1) · ε

Consider i = 0,ms ∈ MS. Then by definition D0
(ms, v) − D0

ε(ms, v) =

v(ms) − v(ms) = 0. For a probabilistic state ps ∈ PS the value D0
ε(ps, v) is an ε

under- or over-approximation of D0
(ps, v) and therefore D0

(ps, v)−D0
ε(ps, v) 4opt

(−1)1{inf}(opt) · ε.
Let i > 0,ms ∈ MS.

Di
(ms, v)−Di

ε(ms, v) =
∑
s′∈S

R[ms, s′]

Emax
·
(

Di−1
(s′, v)−Di−1

ε (s′, v)
)

+ (1− E(ms)

Emax
) ·
(

Di−1
(ms, v)−Di−1

ε (ms, v)
)

IH
4opt (−1)1{inf}(opt) · i · ε

Consider ps ∈ PS:

Di
(ps, v)−Di

ε(ps, v)

= reaopt(ps,Di
(v)|MS)− reaopt

ε (ps,Di
ε(v)|MS)
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= reaopt(ps,Di
(v)|MS)− reaopt(ps,Di

ε(v)|MS)︸ ︷︷ ︸
IH: 4opt(−1)

1{inf}(opt)·i·ε

+ reaopt(ps,Di
ε(v)|MS)− reaopt

ε (ps,Di
ε(v)|MS)︸ ︷︷ ︸

4opt(−1)
1{inf}(opt)·ε

4opt (−1)1{inf}(opt) · (i+ 1) · ε

This concludes the proof.
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Experiments B

Below we provide additional data for the experimental evaluation carried out in
Chapter 4, Section 4.5 and Chapter, 5 Section 5.3.5.

B.1 Command Line Arguments

B.1.1 Time-Bounded Reachability
Below we list the command line arguments used to obtain data points for all figures
and tables in Section 4.5:

Figure 4.7 left:

1. modest mcsta bitcoin-attack.v1.modest -E MALICIOUS=40,CD=50 --props
P_MWinMax --width 0.0005 --time-bounded-alg SwitchStep --store-mode M
emory --unsafe

2. modest mcsta bitcoin-attack.v1.modest -E MALICIOUS=40,CD=50 --props
P_MWinMax --width 5e-07 --time-bounded-alg SwitchStep --store-mode Me
mory --unsafe

3. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=30.0 --props
PmaxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

5. modest mcsta dpm.v2.modest -E N=2,C=2,TIME_BOUND=2.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-m
ode Memory --unsafe

189



B. Experiments

6. modest mcsta dpm.v2.modest -E N=2,C=2,TIME_BOUND=2.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

7. modest mcsta dpm.v2.modest -E N=3,C=3,TIME_BOUND=3.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-m
ode Memory --unsafe

8. modest mcsta dpm.v2.modest -E N=3,C=3,TIME_BOUND=3.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

9. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=4.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-m
ode Memory --unsafe

10. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=4.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

11. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=50.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

12. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=50.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

13. modest mcsta erlang.v2.modest -E K=10,R=1,TIME_BOUND=5 --props P
maxReachBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode
Memory --unsafe

14. modest mcsta erlang.v2.modest -E K=10,R=1,TIME_BOUND=5 --props P
maxReachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode
Memory --unsafe

15. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=5 --pr
ops PmaxReachBound --width 0.0005 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

16. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=5 --pr
ops PmaxReachBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

17. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=100 --
props PmaxReachBound --width 0.0005 --time-bounded-alg SwitchStep --sto
re-mode Memory --unsafe

18. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=100 --
props PmaxReachBound --width 5e-07 --time-bounded-alg SwitchStep --stor
e-mode Memory --unsafe
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19. modest mcsta flexible-manufacturing.21.v1.jani -E T=1.0 --props M3Fail_P
b --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsa
fe

20. modest mcsta flexible-manufacturing.21.v1.jani -E T=1.0 --props M3Fail_P
b --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsaf
e

21. modest mcsta flexible-manufacturing.21.v1.jani -E T=10.0 --props M3Fail_
Pb --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --un
safe

22. modest mcsta flexible-manufacturing.21.v1.jani -E T=10.0 --props M3Fail_
Pb --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --uns
afe

23. modest mcsta ftwc.v3.modest -E N=16,TIME_BOUND=5 --props PmaxRea
chBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memor
y --unsafe

24. modest mcsta ftwc.v3.modest -E N=16,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory
--unsafe

25. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memor
y --unsafe

26. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory
--unsafe

27. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=5 --props PmaxR
eachBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode Mem
ory --unsafe

28. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

29. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

30. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

31. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe
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32. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

33. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

34. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

35. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

36. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

37. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

38. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

39. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

40. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

41. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

42. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

43. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

44. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe
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45. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

46. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

47. modest mcsta readers-writers.20.v1.jani --props prtb_many_requests --widt
h 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

48. modest mcsta readers-writers.20.v1.jani --props prtb_many_requests --widt
h 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

49. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

50. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

51. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

52. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

53. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

54. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

55. modest mcsta stream.v1.jani -E N=1000 --props pr_underrun_tb --width 0.
0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

56. modest mcsta stream.v1.jani -E N=1000 --props pr_underrun_tb --width 5e-
07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

57. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M2Fail_Pb -
-width 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

58. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M2Fail_Pb -
-width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

59. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M3Fail_Pb -
-width 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe
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60. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M3Fail_Pb -
-width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

61. modest mcsta jobs.15-3.v1.jani --props prhalfdone --width 0.0005 --time-bou
nded-alg SwitchStep --store-mode Memory --unsafe

62. modest mcsta jobs.15-3.v1.jani --props prhalfdone --width 5e-07 --time-boun
ded-alg SwitchStep --store-mode Memory --unsafe

63. storm --jani bitcoin-attack.v1__MALICIOUS=40,CD=50.jani --janipropert
y P_MWinMax --absolute --precision 0.001 --general:sound --minmax:mame
thod imca

64. storm --jani bitcoin-attack.v1__MALICIOUS=40,CD=50.jani --janipropert
y P_MWinMax --absolute --precision 1e-06 --general:sound --minmax:mame
thod imca

65. storm --jani dpm.v2__N=3,C=10,TIME_BOUND=30.0.jani --janiproperty
PmaxQueuesFullBound --absolute --precision 0.001 --general:sound --minma
x:mamethod imca

66. storm --jani dpm.v2__N=3,C=10,TIME_BOUND=30.0.jani --janiproperty
PmaxQueuesFullBound --absolute --precision 1e-06 --general:sound --minma
x:mamethod imca

67. storm --jani dpm.v2__N=2,C=2,TIME_BOUND=2.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 0.001 --general:sound --minmax:
mamethod imca

68. storm --jani dpm.v2__N=2,C=2,TIME_BOUND=2.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 1e-06 --general:sound --minmax:
mamethod imca

69. storm --jani dpm.v2__N=3,C=3,TIME_BOUND=3.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 0.001 --general:sound --minmax:
mamethod imca

70. storm --jani dpm.v2__N=3,C=3,TIME_BOUND=3.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 1e-06 --general:sound --minmax:
mamethod imca

71. storm --jani dpm.v2__N=3,C=4,TIME_BOUND=4.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 0.001 --general:sound --minmax:
mamethod imca

72. storm --jani dpm.v2__N=3,C=4,TIME_BOUND=4.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 1e-06 --general:sound --minmax:
mamethod imca

73. storm --jani dpm.v2__N=5,C=3,TIME_BOUND=50.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 0.001 --general:sound --minmax:
mamethod imca
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74. storm --jani dpm.v2__N=5,C=3,TIME_BOUND=50.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 1e-06 --general:sound --minmax:
mamethod imca

75. storm --jani erlang.v2__K=10,R=1,TIME_BOUND=5.jani --janiproperty P
maxReachBound --absolute --precision 0.001 --general:sound --minmax:mam
ethod imca

76. storm --jani erlang.v2__K=10,R=1,TIME_BOUND=5.jani --janiproperty P
maxReachBound --absolute --precision 1e-06 --general:sound --minmax:mam
ethod imca

77. storm --jani erlang.v2__K=50000,R=100,TIME_BOUND=5.jani --janiprop
erty PmaxReachBound --absolute --precision 0.001 --general:sound --minmax
:mamethod imca

78. storm --jani erlang.v2__K=50000,R=100,TIME_BOUND=5.jani --janiprop
erty PmaxReachBound --absolute --precision 1e-06 --general:sound --minmax
:mamethod imca

79. storm --jani erlang.v2__K=50000,R=100,TIME_BOUND=100.jani --janipr
operty PmaxReachBound --absolute --precision 0.001 --general:sound --minm
ax:mamethod imca

80. storm --jani erlang.v2__K=50000,R=100,TIME_BOUND=100.jani --janipr
operty PmaxReachBound --absolute --precision 1e-06 --general:sound --minm
ax:mamethod imca

81. storm --jani flexible-manufacturing.21.v1.jani --constants T=1.0 --janiproper
ty M3Fail_Pb --absolute --precision 0.001 --general:sound --minmax:mameth
od imca

82. storm --jani flexible-manufacturing.21.v1.jani --constants T=1.0 --janiproper
ty M3Fail_Pb --absolute --precision 1e-06 --general:sound --minmax:mameth
od imca

83. storm --jani flexible-manufacturing.21.v1.jani --constants T=10.0 --janiprope
rty M3Fail_Pb --absolute --precision 0.001 --general:sound --minmax:mamet
hod imca

84. storm --jani flexible-manufacturing.21.v1.jani --constants T=10.0 --janiprope
rty M3Fail_Pb --absolute --precision 1e-06 --general:sound --minmax:mamet
hod imca

85. storm --jani ftwc.v3__N=16,TIME_BOUND=5.jani --janiproperty PmaxR
eachBound --absolute --precision 0.001 --general:sound --minmax:mamethod
imca

86. storm --jani ftwc.v3__N=16,TIME_BOUND=5.jani --janiproperty PmaxR
eachBound --absolute --precision 1e-06 --general:sound --minmax:mamethod
imca
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87. storm --jani ftwc.v3__N=64,TIME_BOUND=5.jani --janiproperty PmaxR
eachBound --absolute --precision 0.001 --general:sound --minmax:mamethod
imca

88. storm --jani ftwc.v3__N=64,TIME_BOUND=5.jani --janiproperty PmaxR
eachBound --absolute --precision 1e-06 --general:sound --minmax:mamethod
imca

89. storm --jani ftwc.v3__N=256,TIME_BOUND=5.jani --janiproperty Pmax
ReachBound --absolute --precision 0.001 --general:sound --minmax:mametho
d imca

90. storm --jani ftwc.v3__N=256,TIME_BOUND=5.jani --janiproperty Pmax
ReachBound --absolute --precision 1e-06 --general:sound --minmax:mametho
d imca

91. storm --jani polling-system.v3__JOB_TYPES=1,C=3,TIME_BOUND=3.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

92. storm --jani polling-system.v3__JOB_TYPES=1,C=3,TIME_BOUND=3.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

93. storm --jani polling-system.v3__JOB_TYPES=2,C=3,TIME_BOUND=3.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

94. storm --jani polling-system.v3__JOB_TYPES=2,C=3,TIME_BOUND=3.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

95. storm --jani polling-system.v3__JOB_TYPES=1,C=3,TIME_BOUND=4.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

96. storm --jani polling-system.v3__JOB_TYPES=1,C=3,TIME_BOUND=4.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

97. storm --jani polling-system.v3__JOB_TYPES=2,C=3,TIME_BOUND=4.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

98. storm --jani polling-system.v3__JOB_TYPES=2,C=3,TIME_BOUND=4.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

99. storm --jani polling-system.v3__JOB_TYPES=1,C=4,TIME_BOUND=3.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca
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100. storm --jani polling-system.v3__JOB_TYPES=1,C=4,TIME_BOUND=3.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

101. storm --jani polling-system.v3__JOB_TYPES=1,C=4,TIME_BOUND=4.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

102. storm --jani polling-system.v3__JOB_TYPES=1,C=4,TIME_BOUND=4.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

103. storm --jani polling-system.v3__JOB_TYPES=2,C=4,TIME_BOUND=4.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

104. storm --jani polling-system.v3__JOB_TYPES=2,C=4,TIME_BOUND=4.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

105. storm --jani polling-system.v3__JOB_TYPES=3,C=3,TIME_BOUND=5.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

106. storm --jani polling-system.v3__JOB_TYPES=3,C=3,TIME_BOUND=5.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

107. storm --jani polling-system.v3__JOB_TYPES=6,C=3,TIME_BOUND=5.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

108. storm --jani polling-system.v3__JOB_TYPES=6,C=3,TIME_BOUND=5.j
ani --janiproperty PmaxBothFullBound --absolute --precision 1e-06 --general:
sound --minmax:mamethod imca

109. storm --jani readers-writers.20.v1.jani --janiproperty prtb_many_requests --
absolute --precision 0.001 --general:sound --minmax:mamethod imca

110. storm --jani readers-writers.20.v1.jani --janiproperty prtb_many_requests --
absolute --precision 1e-06 --general:sound --minmax:mamethod imca

111. storm --jani reentrant-queues.v3__JOB_TYPES=1,C_LEFT=2,C_RIGH
T=2,TIME_BOUND=1.jani --janiproperty PmaxBothQueuesFullBound --a
bsolute --precision 0.001 --general:sound --minmax:mamethod imca

112. storm --jani reentrant-queues.v3__JOB_TYPES=1,C_LEFT=2,C_RIGH
T=2,TIME_BOUND=1.jani --janiproperty PmaxBothQueuesFullBound --a
bsolute --precision 1e-06 --general:sound --minmax:mamethod imca
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113. storm --jani reentrant-queues.v3__JOB_TYPES=3,C_LEFT=3,C_RIGH
T=3,TIME_BOUND=5.jani --janiproperty PmaxBothQueuesFullBound --a
bsolute --precision 0.001 --general:sound --minmax:mamethod imca

114. storm --jani reentrant-queues.v3__JOB_TYPES=3,C_LEFT=3,C_RIGH
T=3,TIME_BOUND=5.jani --janiproperty PmaxBothQueuesFullBound --a
bsolute --precision 1e-06 --general:sound --minmax:mamethod imca

115. storm --jani reentrant-queues.v3__JOB_TYPES=5,C_LEFT=2,C_RIGH
T=2,TIME_BOUND=5.jani --janiproperty PmaxBothQueuesFullBound --a
bsolute --precision 0.001 --general:sound --minmax:mamethod imca

116. storm --jani reentrant-queues.v3__JOB_TYPES=5,C_LEFT=2,C_RIGH
T=2,TIME_BOUND=5.jani --janiproperty PmaxBothQueuesFullBound --a
bsolute --precision 1e-06 --general:sound --minmax:mamethod imca

117. storm --jani stream.v1.jani --constants N=1000 --janiproperty pr_underrun_
tb --absolute --precision 0.001 --general:sound --minmax:mamethod imca

118. storm --jani stream.v1.jani --constants N=1000 --janiproperty pr_underrun_
tb --absolute --precision 1e-06 --general:sound --minmax:mamethod imca

119. storm --jani flexible-manufacturing.21.v1.jani --constants T=1 --janiproperty
M2Fail_Pb --absolute --precision 0.001 --general:sound --minmax:mamethod
imca

120. storm --jani flexible-manufacturing.21.v1.jani --constants T=1 --janiproperty
M2Fail_Pb --absolute --precision 1e-06 --general:sound --minmax:mamethod
imca

121. storm --jani flexible-manufacturing.21.v1.jani --constants T=1 --janiproperty
M3Fail_Pb --absolute --precision 0.001 --general:sound --minmax:mamethod
imca

122. storm --jani flexible-manufacturing.21.v1.jani --constants T=1 --janiproperty
M3Fail_Pb --absolute --precision 1e-06 --general:sound --minmax:mamethod
imca

123. storm --jani jobs.15-3.v1.jani --janiproperty prhalfdone --absolute --precision
0.001 --general:sound --minmax:mamethod imca

124. storm --jani jobs.15-3.v1.jani --janiproperty prhalfdone --absolute --precision
1e-06 --general:sound --minmax:mamethod imca

Figure 4.7 right:

1. modest mcsta bitcoin-attack.v1.modest -E MALICIOUS=40,CD=50 --props
P_MWinMax --width 0.0005 --time-bounded-alg SwitchStep --store-mode M
emory --unsafe
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2. modest mcsta bitcoin-attack.v1.modest -E MALICIOUS=40,CD=50 --props
P_MWinMax --width 5e-07 --time-bounded-alg SwitchStep --store-mode Me
mory --unsafe

3. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=30.0 --props
PmaxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

5. modest mcsta dpm.v2.modest -E N=2,C=2,TIME_BOUND=2.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-m
ode Memory --unsafe

6. modest mcsta dpm.v2.modest -E N=2,C=2,TIME_BOUND=2.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

7. modest mcsta dpm.v2.modest -E N=3,C=3,TIME_BOUND=3.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-m
ode Memory --unsafe

8. modest mcsta dpm.v2.modest -E N=3,C=3,TIME_BOUND=3.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

9. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=4.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-m
ode Memory --unsafe

10. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=4.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

11. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=50.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

12. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=50.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

13. modest mcsta erlang.v2.modest -E K=10,R=1,TIME_BOUND=5 --props P
maxReachBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode
Memory --unsafe

14. modest mcsta erlang.v2.modest -E K=10,R=1,TIME_BOUND=5 --props P
maxReachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode
Memory --unsafe
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15. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=5 --pr
ops PmaxReachBound --width 0.0005 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

16. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=5 --pr
ops PmaxReachBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

17. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=100 --
props PmaxReachBound --width 0.0005 --time-bounded-alg SwitchStep --sto
re-mode Memory --unsafe

18. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=100 --
props PmaxReachBound --width 5e-07 --time-bounded-alg SwitchStep --stor
e-mode Memory --unsafe

19. modest mcsta flexible-manufacturing.21.v1.jani -E T=1.0 --props M3Fail_P
b --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsa
fe

20. modest mcsta flexible-manufacturing.21.v1.jani -E T=1.0 --props M3Fail_P
b --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsaf
e

21. modest mcsta flexible-manufacturing.21.v1.jani -E T=10.0 --props M3Fail_
Pb --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --un
safe

22. modest mcsta flexible-manufacturing.21.v1.jani -E T=10.0 --props M3Fail_
Pb --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --uns
afe

23. modest mcsta ftwc.v3.modest -E N=16,TIME_BOUND=5 --props PmaxRea
chBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memor
y --unsafe

24. modest mcsta ftwc.v3.modest -E N=16,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory
--unsafe

25. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memor
y --unsafe

26. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory
--unsafe

27. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=5 --props PmaxR
eachBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode Mem
ory --unsafe

200



B.1. Command Line Arguments

28. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

29. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

30. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

31. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

32. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

33. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

34. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

35. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

36. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

37. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

38. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

39. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

40. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe
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41. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

42. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

43. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

44. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

45. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

46. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

47. modest mcsta readers-writers.20.v1.jani --props prtb_many_requests --widt
h 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

48. modest mcsta readers-writers.20.v1.jani --props prtb_many_requests --widt
h 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

49. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

50. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

51. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

52. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

53. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe
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54. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

55. modest mcsta stream.v1.jani -E N=1000 --props pr_underrun_tb --width 0.
0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

56. modest mcsta stream.v1.jani -E N=1000 --props pr_underrun_tb --width 5e-
07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

57. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M2Fail_Pb -
-width 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

58. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M2Fail_Pb -
-width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

59. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M3Fail_Pb -
-width 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

60. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M3Fail_Pb -
-width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

61. modest mcsta jobs.15-3.v1.jani --props prhalfdone --width 0.0005 --time-bou
nded-alg SwitchStep --store-mode Memory --unsafe

62. modest mcsta jobs.15-3.v1.jani --props prhalfdone --width 5e-07 --time-boun
ded-alg SwitchStep --store-mode Memory --unsafe

63. modest mcsta bitcoin-attack.v1.modest -E MALICIOUS=40,CD=50 --props
P_MWinMax --width 0.0005 --time-bounded-alg UnifPlus --store-mode Mem
ory --unsafe

64. modest mcsta bitcoin-attack.v1.modest -E MALICIOUS=40,CD=50 --props
P_MWinMax --width 5e-07 --time-bounded-alg UnifPlus --store-mode Mem
ory --unsafe

65. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg UnifPlus --store-m
ode Memory --unsafe

66. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

67. modest mcsta dpm.v2.modest -E N=2,C=2,TIME_BOUND=2.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg UnifPlus --store-mod
e Memory --unsafe

68. modest mcsta dpm.v2.modest -E N=2,C=2,TIME_BOUND=2.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode
Memory --unsafe
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69. modest mcsta dpm.v2.modest -E N=3,C=3,TIME_BOUND=3.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg UnifPlus --store-mod
e Memory --unsafe

70. modest mcsta dpm.v2.modest -E N=3,C=3,TIME_BOUND=3.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode
Memory --unsafe

71. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=4.0 --props Pm
axQueuesFullBound --width 0.0005 --time-bounded-alg UnifPlus --store-mod
e Memory --unsafe

72. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=4.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode
Memory --unsafe

73. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=50.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg UnifPlus --store-m
ode Memory --unsafe

74. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=50.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

75. modest mcsta erlang.v2.modest -E K=10,R=1,TIME_BOUND=5 --props P
maxReachBound --width 0.0005 --time-bounded-alg UnifPlus --store-mode M
emory --unsafe

76. modest mcsta erlang.v2.modest -E K=10,R=1,TIME_BOUND=5 --props P
maxReachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Me
mory --unsafe

77. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=5 --pr
ops PmaxReachBound --width 0.0005 --time-bounded-alg UnifPlus --store-m
ode Memory --unsafe

78. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=5 --pr
ops PmaxReachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

79. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=100 --
props PmaxReachBound --width 0.0005 --time-bounded-alg UnifPlus --store-
mode Memory --unsafe

80. modest mcsta erlang.v2.modest -E K=50000,R=100,TIME_BOUND=100 --
props PmaxReachBound --width 5e-07 --time-bounded-alg UnifPlus --store-
mode Memory --unsafe

81. modest mcsta flexible-manufacturing.21.v1.jani -E T=1.0 --props M3Fail_P
b --width 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe
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82. modest mcsta flexible-manufacturing.21.v1.jani -E T=1.0 --props M3Fail_P
b --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

83. modest mcsta flexible-manufacturing.21.v1.jani -E T=10.0 --props M3Fail_P
b --width 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

84. modest mcsta flexible-manufacturing.21.v1.jani -E T=10.0 --props M3Fail_
Pb --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

85. modest mcsta ftwc.v3.modest -E N=16,TIME_BOUND=5 --props PmaxRea
chBound --width 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --
unsafe

86. modest mcsta ftwc.v3.modest -E N=16,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --
unsafe

87. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --
unsafe

88. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --
unsafe

89. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=5 --props PmaxR
eachBound --width 0.0005 --time-bounded-alg UnifPlus --store-mode Memor
y --unsafe

90. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

91. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

92. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

93. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

94. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

95. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe
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96. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

97. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

98. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

99. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=3 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

100. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=3 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

101. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

102. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

103. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

104. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=4,TIME_B
OUND=4 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

105. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

106. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

107. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

108. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe
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109. modest mcsta readers-writers.20.v1.jani --props prtb_many_requests --widt
h 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

110. modest mcsta readers-writers.20.v1.jani --props prtb_many_requests --widt
h 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

111. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

112. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

113. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

114. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

115. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

116. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

117. modest mcsta stream.v1.jani -E N=1000 --props pr_underrun_tb --width 0.
0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

118. modest mcsta stream.v1.jani -E N=1000 --props pr_underrun_tb --width 5e-
07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

119. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M2Fail_Pb -
-width 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

120. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M2Fail_Pb -
-width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

121. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M3Fail_Pb -
-width 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

122. modest mcsta flexible-manufacturing.21.v1.jani -E T=1 --props M3Fail_Pb -
-width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

123. modest mcsta jobs.15-3.v1.jani --props prhalfdone --width 0.0005 --time-bou
nded-alg UnifPlus --store-mode Memory --unsafe

124. modest mcsta jobs.15-3.v1.jani --props prhalfdone --width 5e-07 --time-boun
ded-alg UnifPlus --store-mode Memory --unsafe
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Table 4.1:

1. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=50.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

2. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

3. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

4. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode Memor
y --unsafe

5. storm --jani dpm.v2__N=5,C=3,TIME_BOUND=50.0.jani --janiproperty P
maxQueuesFullBound --absolute --precision 0.001 --general:sound --minmax:
mamethod imca

6. storm --jani reentrant-queues.v3__JOB_TYPES=3,C_LEFT=3,C_RIGH
T=3,TIME_BOUND=5.jani --janiproperty PmaxBothQueuesFullBound --a
bsolute --precision 0.001 --general:sound --minmax:mamethod imca

7. storm --jani polling-system.v3__JOB_TYPES=3,C=3,TIME_BOUND=5.j
ani --janiproperty PmaxBothFullBound --absolute --precision 0.001 --general:
sound --minmax:mamethod imca

8. storm --jani ftwc.v3__N=64,TIME_BOUND=5.jani --janiproperty PmaxR
eachBound --absolute --precision 0.001 --general:sound --minmax:mamethod
imca

Figure (4.8a):

1. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

2. modest mcsta dpm.v2.modest -E N=3,C=6,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

3. modest mcsta dpm.v2.modest -E N=3,C=8,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=30.0 --props
PmaxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe
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5. modest mcsta dpm.v2.modest -E N=3,C=12,TIME_BOUND=30.0 --props
PmaxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

6. modest mcsta dpm.v2.modest -E N=3,C=14,TIME_BOUND=30.0 --props
PmaxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

7. modest mcsta ftwc.v3.modest -E N=32,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory
--unsafe

8. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memory
--unsafe

9. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

10. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

11. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=1,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

12. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

13. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=5,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

14. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=7,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

15. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=9,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

16. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=1,
C_RIGHT=1,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

17. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe
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18. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

19. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=4,
C_RIGHT=4,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

20. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

21. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

22. modest mcsta dpm.v2.modest -E N=3,C=6,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

23. modest mcsta dpm.v2.modest -E N=3,C=8,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

24. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

25. modest mcsta dpm.v2.modest -E N=3,C=12,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

26. modest mcsta dpm.v2.modest -E N=3,C=14,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

27. modest mcsta ftwc.v3.modest -E N=32,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --
unsafe

28. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=5 --props PmaxRea
chBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --
unsafe

29. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

30. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe
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31. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=1,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

32. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

33. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=5,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

34. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=7,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

35. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=9,TIME_B
OUND=8 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

36. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=1,
C_RIGHT=1,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

37. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

38. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

39. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=4,
C_RIGHT=4,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

40. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

Figure (4.8b): List of command line arguments to obtain data points for Fig.(4.8b):

1. modest mcsta dpm.v2.modest -E N=2,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

2. modest mcsta dpm.v2.modest -E N=3,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

211



B. Experiments

3. modest mcsta dpm.v2.modest -E N=4,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

5. modest mcsta dpm.v2.modest -E N=6,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-mo
de Memory --unsafe

6. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

7. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

8. modest mcsta polling-system.v3.modest -E JOB_TYPES=4,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

9. modest mcsta polling-system.v3.modest -E JOB_TYPES=5,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

10. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

11. modest mcsta polling-system.v3.modest -E JOB_TYPES=7,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

12. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

13. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

14. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=4,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

15. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe
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16. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=6,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

17. modest mcsta dpm.v2.modest -E N=2,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode
Memory --unsafe

18. modest mcsta dpm.v2.modest -E N=3,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode
Memory --unsafe

19. modest mcsta dpm.v2.modest -E N=4,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode
Memory --unsafe

20. modest mcsta dpm.v2.modest -E N=5,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode
Memory --unsafe

21. modest mcsta dpm.v2.modest -E N=6,C=3,TIME_BOUND=5.0 --props Pm
axQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode
Memory --unsafe

22. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

23. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

24. modest mcsta polling-system.v3.modest -E JOB_TYPES=4,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

25. modest mcsta polling-system.v3.modest -E JOB_TYPES=5,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

26. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

27. modest mcsta polling-system.v3.modest -E JOB_TYPES=7,C=3,TIME_B
OUND=5 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

28. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe
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29. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

30. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=4,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

31. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

32. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=6,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

Figure (4.8c):

1. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=18.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

2. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=20.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

3. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=22.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=24.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

5. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=26.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

6. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=28.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

7. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

8. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=32.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe
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9. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=34.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

10. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=10 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

11. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=13 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

12. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=16 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

13. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=19 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

14. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=22 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

15. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=25 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

16. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=28 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

17. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=31 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

18. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=34 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

19. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=37 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

20. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=40 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

21. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=10 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe
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22. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=14 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

23. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=18 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

24. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=22 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

25. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=26 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

26. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=30 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

27. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=34 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

28. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=38 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

29. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=44 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

30. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=48 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

31. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=52 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

32. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=56 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

33. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=60 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

34. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=64 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe
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35. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=68 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

36. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=72 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

37. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

38. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=2 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

39. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

40. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=4 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

41. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

42. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=6 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

43. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=7 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

44. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=8 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

45. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=9 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

46. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=18.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

47. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=20.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe
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48. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=22.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

49. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=24.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

50. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=26.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

51. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=28.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

52. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

53. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=32.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

54. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=34.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

55. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=10 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

56. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=13 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

57. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=16 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

58. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=19 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

59. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=22 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

60. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=25 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe
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61. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=28 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

62. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=31 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

63. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=34 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

64. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=37 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

65. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=40 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

66. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=10 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

67. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=14 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

68. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=18 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

69. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=22 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

70. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=26 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

71. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=30 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

72. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=34 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

73. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=38 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe
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74. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=44 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

75. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=48 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

76. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=52 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

77. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=56 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

78. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=60 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

79. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=64 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

80. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=68 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

81. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=72 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

82. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

83. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=2 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

84. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=3 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

85. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=4 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

86. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=5 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

220



B.1. Command Line Arguments

87. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=6 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

88. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=7 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

89. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=8 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

90. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=9 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

Figure (4.8d):

1. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

2. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-05 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

3. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-06 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

5. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-08 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

6. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-09 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

7. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-10 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe

8. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-11 --time-bounded-alg SwitchStep --store-
mode Memory --unsafe
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9. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 0.0005 --time-bounded-alg SwitchStep --store-mode Mem
ory --unsafe

10. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-05 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

11. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-06 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

12. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

13. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-08 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

14. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-09 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

15. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-10 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

16. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-11 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

17. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

18. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-05 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

19. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-06 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

20. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

21. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-08 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe
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22. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-09 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

23. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-10 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

24. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-11 --time-bounded-alg Sw
itchStep --store-mode Memory --unsafe

25. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

26. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-05 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

27. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-06 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

28. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

29. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-08 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

30. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-09 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

31. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-10 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

32. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-11 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

33. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 0.0005 --time-bounded-alg UnifPlus --store-m
ode Memory --unsafe

34. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-05 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

223



B. Experiments

35. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-06 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

36. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-07 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

37. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-08 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

38. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-09 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

39. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-10 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

40. modest mcsta dpm.v2.modest -E N=3,C=4,TIME_BOUND=30.0 --props P
maxQueuesFullBound --width 5e-11 --time-bounded-alg UnifPlus --store-mo
de Memory --unsafe

41. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 0.0005 --time-bounded-alg UnifPlus --store-mode Memor
y --unsafe

42. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-05 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

43. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-06 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

44. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-07 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

45. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-08 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

46. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-09 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

47. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-10 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe
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48. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=5 --props PmaxR
eachBound --width 5e-11 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

49. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 0.0005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe

50. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-05 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

51. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-06 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

52. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-07 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

53. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-08 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

54. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-09 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

55. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-10 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

56. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=7 --props PmaxBothFullBound --width 5e-11 --time-bounded-alg Un
ifPlus --store-mode Memory --unsafe

57. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 0.0005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

58. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-05 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

59. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-06 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

60. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-07 --time-bounded-alg UnifPlus --store-mode Memory --unsafe
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61. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-08 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

62. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-09 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

63. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-10 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

64. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=1 --props PmaxBothQueuesFullBound --wid
th 5e-11 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

Tables 4.4 and 4.5:

1. modest mcsta polling-system-k.v3.modest -E JOB_TYPES=1,C=20,TIME_
BOUND=4 --props PmaxOneFullBound --width 0.005 --partial Simulation --
partial-max-run-length 0 --partial-sim Simple --time-bounded-alg UnifPlus --
store-mode Memory --unsafe

2. modest mcsta dpm-full.v2.modest -E N=20,C=100,TIME_BOUND=6 --pro
ps PmaxOneQueueThreeBound --width 0.005 --partial Simulation --partial-
max-run-length 0 --partial-sim Simple --time-bounded-alg UnifPlus --store-m
ode Memory --unsafe

3. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=10 --props PmaxBothQueuesFullBound --wi
dth 0.005 --partial Simulation --partial-max-run-length 0 --partial-sim Simpl
e --time-bounded-alg UnifPlus --store-mode Memory --unsafe

4. modest mcsta vgs.5.v1.jani -E TIME_BOUND=10000.0 --props MaxPrReac
hFailedTB --width 0.005 --partial Simulation --partial-max-run-length 0 --pa
rtial-sim Simple --time-bounded-alg UnifPlus --store-mode Memory --unsafe

5. modest mcsta stream.v1.jani -E N=20000 --props pr_underrun_tb --width 0.
005 --partial Simulation --partial-max-run-length 0 --partial-sim Simple --tim
e-bounded-alg UnifPlus --store-mode Memory --unsafe

6. modest mcsta ftwc.v3.modest -E N=512,TIME_BOUND=10 --props PmaxR
eachBound --width 0.005 --partial Simulation --partial-max-run-length 0 --pa
rtial-sim Simple --time-bounded-alg UnifPlus --store-mode Memory --unsafe

7. modest mcsta hecs.false-4-3.v1.jani --props Unreliability --width 0.005 --parti
al Simulation --partial-max-run-length 0 --partial-sim Simple --time-bounded
-alg UnifPlus --store-mode Memory --unsafe
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8. modest mcsta polling-system-k.v3.modest -E JOB_TYPES=1,C=20,TIME_
BOUND=4 --props PmaxOneFullBound --width 0.005 --partial Simulation --
partial-max-run-length 0 --partial-sim Simple --time-bounded-alg SwitchStep
--partial-sim-scheduler Uniform --store-mode Memory --unsafe

9. modest mcsta dpm-full.v2.modest -E N=20,C=100,TIME_BOUND=6 --pro
ps PmaxOneQueueThreeBound --width 0.005 --partial Simulation --partial-
max-run-length 0 --partial-sim Simple --time-bounded-alg SwitchStep --parti
al-sim-scheduler Uniform --store-mode Memory --unsafe

10. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=10 --props PmaxBothQueuesFullBound --wi
dth 0.005 --partial Simulation --partial-max-run-length 0 --partial-sim Simpl
e --time-bounded-alg SwitchStep --partial-sim-scheduler Uniform --store-mod
e Memory --unsafe

11. modest mcsta vgs.5.v1.jani -E TIME_BOUND=10000.0 --props MaxPrReac
hFailedTB --width 0.005 --partial Simulation --partial-max-run-length 0 --pa
rtial-sim Simple --time-bounded-alg SwitchStep --partial-sim-scheduler Unifo
rm --store-mode Memory --unsafe

12. modest mcsta stream.v1.jani -E N=20000 --props pr_underrun_tb --width 0.
005 --partial Simulation --partial-max-run-length 0 --partial-sim Simple --tim
e-bounded-alg SwitchStep --partial-sim-scheduler Uniform --store-mode Mem
ory --unsafe

13. modest mcsta ftwc.v3.modest -E N=512,TIME_BOUND=10 --props PmaxR
eachBound --width 0.005 --partial Simulation --partial-max-run-length 0 --pa
rtial-sim Simple --time-bounded-alg SwitchStep --partial-sim-scheduler Unifo
rm --store-mode Memory --unsafe

14. modest mcsta hecs.false-4-3.v1.jani --props Unreliability --width 0.005 --parti
al Simulation --partial-max-run-length 0 --partial-sim Simple --time-bounded
-alg SwitchStep --partial-sim-scheduler Uniform --store-mode Memory --unsa
fe

15. modest mcsta polling-system-k.v3.modest -E JOB_TYPES=1,C=20,TIME_
BOUND=4 --props PmaxOneFullBound --width 0.005 --partial Simulation --
partial-max-run-length 0 --partial-sim Simple --time-bounded-alg SwitchStep
--partial-sim-scheduler Optimal --store-mode Memory --unsafe

16. modest mcsta dpm-full.v2.modest -E N=20,C=100,TIME_BOUND=6 --pro
ps PmaxOneQueueThreeBound --width 0.005 --partial Simulation --partial-
max-run-length 0 --partial-sim Simple --time-bounded-alg SwitchStep --parti
al-sim-scheduler Optimal --store-mode Memory --unsafe

17. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=10 --props PmaxBothQueuesFullBound --wi
dth 0.005 --partial Simulation --partial-max-run-length 0 --partial-sim Simpl
e --time-bounded-alg SwitchStep --partial-sim-scheduler Optimal --store-mod
e Memory --unsafe
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18. modest mcsta vgs.5.v1.jani -E TIME_BOUND=10000.0 --props MaxPrReac
hFailedTB --width 0.005 --partial Simulation --partial-max-run-length 0 --pa
rtial-sim Simple --time-bounded-alg SwitchStep --partial-sim-scheduler Opti
mal --store-mode Memory --unsafe

19. modest mcsta stream.v1.jani -E N=20000 --props pr_underrun_tb --width 0.
005 --partial Simulation --partial-max-run-length 0 --partial-sim Simple --tim
e-bounded-alg SwitchStep --partial-sim-scheduler Optimal --store-mode Mem
ory --unsafe

20. modest mcsta ftwc.v3.modest -E N=512,TIME_BOUND=10 --props Pmax
ReachBound --width 0.005 --partial Simulation --partial-max-run-length 0 --
partial-sim Simple --time-bounded-alg SwitchStep --partial-sim-scheduler Op
timal --store-mode Memory --unsafe

21. modest mcsta hecs.false-4-3.v1.jani --props Unreliability --width 0.005 --parti
al Simulation --partial-max-run-length 0 --partial-sim Simple --time-bounded
-alg SwitchStep --partial-sim-scheduler Optimal --store-mode Memory --unsa
fe

22. modest mcsta polling-system-k.v3.modest -E JOB_TYPES=1,C=20,TIME_
BOUND=4 --props PmaxOneFullBound --width 0.005 --time-bounded-alg S
witchStep --store-mode Memory --unsafe

23. modest mcsta dpm-full.v2.modest -E N=20,C=100,TIME_BOUND=6 --pro
ps PmaxOneQueueThreeBound --width 0.005 --time-bounded-alg SwitchStep
--store-mode Memory --unsafe

24. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=10 --props PmaxBothQueuesFullBound --wi
dth 0.005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

25. modest mcsta vgs.5.v1.jani -E TIME_BOUND=10000.0 --props MaxPrReac
hFailedTB --width 0.005 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

26. modest mcsta stream.v1.jani -E N=20000 --props pr_underrun_tb --width 0.
005 --time-bounded-alg SwitchStep --store-mode Memory --unsafe

27. modest mcsta ftwc.v3.modest -E N=512,TIME_BOUND=10 --props PmaxR
eachBound --width 0.005 --time-bounded-alg SwitchStep --store-mode Memo
ry --unsafe

28. modest mcsta hecs.false-4-3.v1.jani --props Unreliability --width 0.005 --time-
bounded-alg SwitchStep --store-mode Memory --unsafe

29. modest mcsta polling-system-k.v3.modest -E JOB_TYPES=1,C=20,TIME_
BOUND=4 --props PmaxOneFullBound --width 0.005 --time-bounded-alg U
nifPlus --store-mode Memory --unsafe
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30. modest mcsta dpm-full.v2.modest -E N=20,C=100,TIME_BOUND=6 --pro
ps PmaxOneQueueThreeBound --width 0.005 --time-bounded-alg UnifPlus --
store-mode Memory --unsafe

31. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=10 --props PmaxBothQueuesFullBound --wi
dth 0.005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

32. modest mcsta vgs.5.v1.jani -E TIME_BOUND=10000.0 --props MaxPrReac
hFailedTB --width 0.005 --time-bounded-alg UnifPlus --store-mode Memory -
-unsafe

33. modest mcsta stream.v1.jani -E N=20000 --props pr_underrun_tb --width 0.
005 --time-bounded-alg UnifPlus --store-mode Memory --unsafe

34. modest mcsta ftwc.v3.modest -E N=512,TIME_BOUND=10 --props PmaxR
eachBound --width 0.005 --time-bounded-alg UnifPlus --store-mode Memory
--unsafe

35. modest mcsta hecs.false-4-3.v1.jani --props Unreliability --width 0.005 --time-
bounded-alg UnifPlus --store-mode Memory --unsafe

B.1.2 Long-Run Average Rewards
Below we list the command line arguments used to obtain data points for all figures
and tables in Section 4.5:

Figure (5.5a):

1. modest mcsta dpm.v2.modest -E N=3,C=8,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

2. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

3. modest mcsta dpm.v2.modest -E N=3,C=12,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=3,C=14,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

5. modest mcsta dpm.v2.modest -E N=3,C=30,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe
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6. modest mcsta dpm.v2.modest -E N=3,C=35,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

7. modest mcsta dpm.v2.modest -E N=3,C=40,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

8. modest mcsta dpm.v2.modest -E N=3,C=45,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

9. modest mcsta dpm.v2.modest -E N=3,C=50,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

10. modest mcsta dpm.v2.modest -E N=3,C=55,TIME_BOUND=0.0 --props M
inAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

11. modest mcsta ftwc.v3.modest -E N=32,TIME_BOUND=0.0 --props SmaxR
each --width 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsa
fe

12. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props SmaxR
each --width 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsa
fe

13. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=0.0 --props Smax
Reach --width 5e-07 --long-run-alg ValueIteration --store-mode Memory --un
safe

14. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=0.0 --props Smax
Reach --width 5e-07 --long-run-alg ValueIteration --store-mode Memory --un
safe

15. modest mcsta ftwc.v3.modest -E N=32,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-07 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

16. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-07 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

17. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=0.0 --props MinA
vgRepairCost --width 5e-07 --long-run-alg ValueIteration --store-mode Memo
ry --unsafe

18. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=0.0 --props MinA
vgRepairCost --width 5e-07 --long-run-alg ValueIteration --store-mode Memo
ry --unsafe
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19. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=1,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

20. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=2,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

21. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

22. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

23. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

24. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=6,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

25. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=7,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

26. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=1,
C_RIGHT=1,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

27. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

28. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

29. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=4,
C_RIGHT=4,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

30. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

31. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=6,
C_RIGHT=6,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe
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32. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=1,
C_RIGHT=1,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

33. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

34. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

35. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=4,
C_RIGHT=4,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

36. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

37. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=6,
C_RIGHT=6,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

38. modest mcsta dpm.v2.modest -E N=3,C=8,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

39. modest mcsta dpm.v2.modest -E N=3,C=10,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

40. modest mcsta dpm.v2.modest -E N=3,C=12,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

41. modest mcsta dpm.v2.modest -E N=3,C=14,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

42. modest mcsta dpm.v2.modest -E N=3,C=30,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

43. modest mcsta dpm.v2.modest -E N=3,C=35,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

44. modest mcsta dpm.v2.modest -E N=3,C=40,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe
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45. modest mcsta dpm.v2.modest -E N=3,C=45,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

46. modest mcsta dpm.v2.modest -E N=3,C=50,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

47. modest mcsta dpm.v2.modest -E N=3,C=55,TIME_BOUND=0.0 --props M
inAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

48. modest mcsta ftwc.v3.modest -E N=32,TIME_BOUND=0.0 --props SmaxR
each --long-run-alg LinearProgramming --store-mode Memory --unsafe

49. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props SmaxR
each --long-run-alg LinearProgramming --store-mode Memory --unsafe

50. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=0.0 --props Smax
Reach --long-run-alg LinearProgramming --store-mode Memory --unsafe

51. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=0.0 --props Smax
Reach --long-run-alg LinearProgramming --store-mode Memory --unsafe

52. modest mcsta ftwc.v3.modest -E N=32,TIME_BOUND=0.0 --props MinAv
gRepairCost --long-run-alg LinearProgramming --store-mode Memory --unsa
fe

53. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --long-run-alg LinearProgramming --store-mode Memory --unsa
fe

54. modest mcsta ftwc.v3.modest -E N=128,TIME_BOUND=0.0 --props MinA
vgRepairCost --long-run-alg LinearProgramming --store-mode Memory --uns
afe

55. modest mcsta ftwc.v3.modest -E N=256,TIME_BOUND=0.0 --props MinA
vgRepairCost --long-run-alg LinearProgramming --store-mode Memory --uns
afe

56. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=1,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

57. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=2,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

58. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe
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59. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

60. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=5,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

61. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=6,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

62. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=7,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

63. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=1,
C_RIGHT=1,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

64. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

65. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

66. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=4,
C_RIGHT=4,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

67. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

68. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=6,
C_RIGHT=6,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

69. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=1,
C_RIGHT=1,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

70. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=2,
C_RIGHT=2,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

71. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe
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72. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=4,
C_RIGHT=4,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

73. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=5,
C_RIGHT=5,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

74. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=6,
C_RIGHT=6,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

Figure (5.5b):

1. modest mcsta dpm.v2.modest -E N=1,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

2. modest mcsta dpm.v2.modest -E N=2,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

3. modest mcsta dpm.v2.modest -E N=3,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=4,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

5. modest mcsta dpm.v2.modest -E N=5,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

6. modest mcsta dpm.v2.modest -E N=6,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

7. modest mcsta dpm.v2.modest -E N=7,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

8. modest mcsta dpm.v2.modest -E N=8,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

9. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe
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10. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

11. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

12. modest mcsta polling-system.v3.modest -E JOB_TYPES=4,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

13. modest mcsta polling-system.v3.modest -E JOB_TYPES=5,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

14. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

15. modest mcsta polling-system.v3.modest -E JOB_TYPES=7,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

16. modest mcsta polling-system.v3.modest -E JOB_TYPES=8,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

17. modest mcsta polling-system.v3.modest -E JOB_TYPES=9,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

18. modest mcsta polling-system.v3.modest -E JOB_TYPES=10,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

19. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

20. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

21. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

22. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=4,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe
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23. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

24. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=6,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

25. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=7,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --wi
dth 5e-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

26. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

27. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

28. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

29. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=4,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

30. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

31. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=6,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

32. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=7,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

33. modest mcsta dpm.v2.modest -E N=1,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

34. modest mcsta dpm.v2.modest -E N=2,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

35. modest mcsta dpm.v2.modest -E N=3,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

237



B. Experiments

36. modest mcsta dpm.v2.modest -E N=4,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

37. modest mcsta dpm.v2.modest -E N=5,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

38. modest mcsta dpm.v2.modest -E N=6,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

39. modest mcsta dpm.v2.modest -E N=7,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

40. modest mcsta dpm.v2.modest -E N=8,C=5,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

41. modest mcsta polling-system.v3.modest -E JOB_TYPES=1,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

42. modest mcsta polling-system.v3.modest -E JOB_TYPES=2,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

43. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

44. modest mcsta polling-system.v3.modest -E JOB_TYPES=4,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

45. modest mcsta polling-system.v3.modest -E JOB_TYPES=5,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

46. modest mcsta polling-system.v3.modest -E JOB_TYPES=6,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

47. modest mcsta polling-system.v3.modest -E JOB_TYPES=7,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

48. modest mcsta polling-system.v3.modest -E JOB_TYPES=8,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe
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49. modest mcsta polling-system.v3.modest -E JOB_TYPES=9,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

50. modest mcsta polling-system.v3.modest -E JOB_TYPES=10,C=3,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe

51. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

52. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

53. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

54. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=4,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

55. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

56. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=6,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

57. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=7,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props MinAverageOperationCosts --lo
ng-run-alg LinearProgramming --store-mode Memory --unsafe

58. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=1,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

59. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=2,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

60. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

61. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=4,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe
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62. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=5,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

63. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=6,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

64. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=7,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe

Figure (5.6):

1. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 0.0005 --long-run-alg ValueIteration --store-mod
e Memory --unsafe

2. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-05 --long-run-alg ValueIteration --store-mode
Memory --unsafe

3. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-06 --long-run-alg ValueIteration --store-mode
Memory --unsafe

4. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-07 --long-run-alg ValueIteration --store-mode
Memory --unsafe

5. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-08 --long-run-alg ValueIteration --store-mode
Memory --unsafe

6. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-09 --long-run-alg ValueIteration --store-mode
Memory --unsafe

7. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-10 --long-run-alg ValueIteration --store-mode
Memory --unsafe

8. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --width 5e-11 --long-run-alg ValueIteration --store-mode
Memory --unsafe

9. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 0.0005 --long-run-alg ValueIteration --store-mode Memo
ry --unsafe
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10. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-05 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

11. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-06 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

12. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-07 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

13. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-08 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

14. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-09 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

15. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-10 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

16. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --width 5e-11 --long-run-alg ValueIteration --store-mode Memor
y --unsafe

17. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 0.0005 --long-run-al
g ValueIteration --store-mode Memory --unsafe

18. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-05 --long-run-alg
ValueIteration --store-mode Memory --unsafe

19. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-06 --long-run-alg
ValueIteration --store-mode Memory --unsafe

20. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-07 --long-run-alg
ValueIteration --store-mode Memory --unsafe

21. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-08 --long-run-alg
ValueIteration --store-mode Memory --unsafe

22. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-09 --long-run-alg
ValueIteration --store-mode Memory --unsafe
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23. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-10 --long-run-alg
ValueIteration --store-mode Memory --unsafe

24. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --width 5e-11 --long-run-alg
ValueIteration --store-mode Memory --unsafe

25. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 0.
0005 --long-run-alg ValueIteration --store-mode Memory --unsafe

26. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-05 --long-run-alg ValueIteration --store-mode Memory --unsafe

27. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-06 --long-run-alg ValueIteration --store-mode Memory --unsafe

28. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-07 --long-run-alg ValueIteration --store-mode Memory --unsafe

29. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-08 --long-run-alg ValueIteration --store-mode Memory --unsafe

30. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-09 --long-run-alg ValueIteration --store-mode Memory --unsafe

31. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-10 --long-run-alg ValueIteration --store-mode Memory --unsafe

32. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --width 5e
-11 --long-run-alg ValueIteration --store-mode Memory --unsafe

33. modest mcsta dpm.v2.modest -E N=4,C=4,TIME_BOUND=0.0 --props Mi
nAvgOperationCost --long-run-alg LinearProgramming --store-mode Memor
y --unsafe

34. modest mcsta ftwc.v3.modest -E N=64,TIME_BOUND=0.0 --props MinAv
gRepairCost --long-run-alg LinearProgramming --store-mode Memory --unsa
fe

35. modest mcsta polling-system.v3.modest -E JOB_TYPES=3,C=4,TIME_B
OUND=0.0 --props MinAverageOperationCosts --long-run-alg LinearProgra
mming --store-mode Memory --unsafe
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36. modest mcsta reentrant-queues.v3.modest -E JOB_TYPES=3,C_LEFT=3,
C_RIGHT=3,TIME_BOUND=0.0 --props SmaxBothQueuesFull --long-run-
alg LinearProgramming --store-mode Memory --unsafe
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B.2 Case Studies

Below we provide the models used for the experimental evaluation. We only at-
tach here those models that differ from the respective model in the benchmark set
[HKP+19].

B.2.1 Time-Bounded Reachability (exhaustive) and Long-Run
Average Rewards

Figure B.1: dpm.v2.modest. Part 1.

1 const int N; // number of different types of tasks, maximum 10
2 const int C; // queue size
3 const real TIME_BOUND;
4
5 int(0..C) items1 = 0; int(0..C) items2 = 0; int(0..C) items3 = 0; int

(0..C) items4 = 0; int(0..C) items5 = 0; int(0..C) items6 = 0; int
(0..C) items7 = 0; int(0..C) items8 = 0; int(0..C) items9 = 0; int
(0..C) items10 = 0;

6
7 binary action sleep, standby, idle;
8
9 property PminQueuesFull = Pmin(<> ((N < 1 || items1 == C) && (N < 2 ||

items2 == C) && (N < 3 || items3 == C) && (N < 4 || items4 == C) &&
(N < 5 || items5 == C) && (N < 6 || items6 == C) && (N < 7 || items7
== C) && (N < 8 || items8 == C) && (N < 9 || items9 == C) && (N <

10 || items10 == C)));
10 property PmaxQueuesFull = Pmax(<> ((N < 1 || items1 == C) && (N < 2 ||

items2 == C) && (N < 3 || items3 == C) && (N < 4 || items4 == C) &&
(N < 5 || items5 == C) && (N < 6 || items6 == C) && (N < 7 || items7
== C) && (N < 8 || items8 == C) && (N < 9 || items9 == C) && (N <

10 || items10 == C)));
11
12 property PminQueue1Full = Pmin(<> (items1 == C));
13 property PmaxQueue1Full = Pmax(<> (items1 == C));
14
15 property TminQueuesFull = Xmin(T, (N < 1 || items1 == C) && (N < 2 ||

items2 == C) && (N < 3 || items3 == C) && (N < 4 || items4 == C) &&
(N < 5 || items5 == C) && (N < 6 || items6 == C) && (N < 7 || items7
== C) && (N < 8 || items8 == C) && (N < 9 || items9 == C) && (N <

10 || items10 == C));
16
17 property PmaxQueuesFullBound = Pmax(<>[T<=TIME_BOUND] ((N < 1 || items1

== C) && (N < 2 || items2 == C) && (N < 3 || items3 == C) && (N < 4
|| items4 == C) && (N < 5 || items5 == C) && (N < 6 || items6 == C)
&& (N < 7 || items7 == C) && (N < 8 || items8 == C) && (N < 9 ||

items9 == C) && (N < 10 || items10 == C)));
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Figure B.2: dpm.v2.modest. Part 2.

1 property SmaxQueuesFullT = Smax(T((N < 1 || items1 == C)?1:0));
2
3 property MinAvgOperationCost = Smin(T((pmode == SP_SLEEP)? 0.1 : ((

pmode == SP_STANDBY) ? 0.5 : ((pmode == SP_IDLE) ? 1.0 : 5))));
4
5 const int SP_IDLE = 1; const int SP_SLEEP = 2; const int SP_STANDBY =

3; const int SP_WORK = 4; int(1..4) pmode = SP_SLEEP;
6
7
8 process ServiceProvider()
9 {

10 int(1..N) t;
11 alt {
12 :: when(pmode == SP_IDLE)
13 alt {
14 :: sleep?; rate(0.5) tau {= pmode = SP_SLEEP =}; ServiceProvider

()
15 :: standby?; rate(1) tau {= pmode = SP_STANDBY =};

ServiceProvider()
16 :: alt {
17 :: when(N >= 1 && items1 > 0) tau {= t = 1, items1-- =}
18 :: when(N >= 2 && items2 > 0) tau {= t = 2, items2-- =}
19 :: when(N >= 3 && items3 > 0) tau {= t = 3, items3-- =}
20 :: when(N >= 4 && items4 > 0) tau {= t = 4, items4-- =}
21 :: when(N >= 5 && items5 > 0) tau {= t = 5, items5-- =}
22 :: when(N >= 6 && items6 > 0) tau {= t = 6, items6-- =}
23 :: when(N >= 7 && items7 > 0) tau {= t = 7, items7-- =}
24 :: when(N >= 8 && items8 > 0) tau {= t = 8, items8-- =}
25 :: when(N >= 9 && items9 > 0) tau {= t = 9, items9-- =}
26 :: when(N >= 10 && items10 > 0) tau {= t = 10, items10-- =}
27 }; tau{= pmode = SP_WORK =};
28 ServiceProvider()
29 }
30 :: when(pmode == SP_SLEEP) alt {
31 :: idle?; rate(0.166) tau {= pmode = SP_IDLE =}; ServiceProvider

()
32 :: standby?; rate(1.5) tau {= pmode = SP_STANDBY =};

ServiceProvider()
33 }
34 :: when(pmode == SP_STANDBY) alt {
35 :: idle?; rate(0.454) tau {= pmode = SP_IDLE =}; ServiceProvider

()
36 :: sleep?; rate(1.5) tau {= pmode = SP_SLEEP =}; ServiceProvider

()
37 }
38 :: when(pmode == SP_WORK) rate(0.2 * t) tau {= pmode = SP_IDLE =};

ServiceProvider()
39 }
40 }
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Figure B.3: dpm.v2.modest. Part 3.

1 process PowerManager()
2 {
3 alt {
4 :: standby!
5 :: sleep!
6 :: idle!
7 };
8 PowerManager()
9 }

10
11 process ServiceRequester()
12 {
13 alt {
14 :: when(N >= 1) rate(0.1 * 1 + 0.4) tau; when(items1 < C) {= items1

++ =}
15 :: when(N >= 2) rate(0.1 * 2 + 0.4) tau; when(items2 < C) {= items2

++ =}
16 :: when(N >= 3) rate(0.1 * 3 + 0.4) tau; when(items3 < C) {= items3

++ =}
17 :: when(N >= 4) rate(0.1 * 4 + 0.4) tau; when(items4 < C) {= items4

++ =}
18 :: when(N >= 5) rate(0.1 * 5 + 0.4) tau; when(items5 < C) {= items5

++ =}
19 :: when(N >= 6) rate(0.1 * 6 + 0.4) tau; when(items6 < C) {= items6

++ =}
20 :: when(N >= 7) rate(0.1 * 7 + 0.4) tau; when(items7 < C) {= items7

++ =}
21 :: when(N >= 8) rate(0.1 * 8 + 0.4) tau; when(items8 < C) {= items8

++ =}
22 :: when(N >= 9) rate(0.1 * 9 + 0.4) tau; when(items9 < C) {= items9

++ =}
23 :: when(N >= 10) rate(0.1 * 10 + 0.4) tau; when(items10 < C) {=

items10++ =}
24 };
25 ServiceRequester()
26 }
27
28 restrict { sleep!, sleep?, standby!, standby?, idle!, idle? }
29 {
30 par {
31 :: ServiceRequester()
32 :: ServiceProvider()
33 :: PowerManager()
34 }
35 }
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Figure B.4: polling-system.v3.modest.

1 const int JOB_TYPES;
2 const int C;
3 const real TIME_BOUND;
4 binary action deliver;
5 transient int(0..JOB_TYPES) item;
6 bool working;
7 int(0..C)[] size = [0, 0];
8
9 property PminBothFullIsOne = Pmin(<>(size[0]==C && size[1]==C))==1;

10 property TminBothFull = Xmin(T, size[0] == C && size[1] == C);
11 property TmaxBothFull = Xmax(T, size[0] == C && size[1] == C);
12 property PmaxBothFullBound = Pmax(<>[T<=TIME_BOUND] (size[0] == C &&

size[1] == C));
13 property SmaxBothFull = Smax(T((size[0]==C && size[1]==C) ? 1.0 : 0));
14 property MinAverageOperationCosts = Smin(T((working && size[0] < C &&

size[1] < C) ? 2.0 : ((working && (size[0] == C || size[1] == C)) ?
10.0 : 0)));

15
16 process Station(int id, int(0..JOB_TYPES)[] q) {
17 alt {
18 :: when(size[id - 1] < C) rate(0.2 * id + 0.1) tau;
19 {= q[size[id - 1]] = (int)any(i, 1 <= i && i <= JOB_TYPES), size[

id - 1]++ =}
20 :: when(size[id - 1] > 0) deliver! {= item = q[0] =};
21 alt {
22 :: {= q = array(i, C, i < size[id - 1] - 1 ? q[i + 1] : 0), size[

id - 1]-- =}
23 :: {==}
24 }
25 };
26 Station(id, q)
27 }
28
29 process Server() {
30 int(1..JOB_TYPES) j;
31
32 deliver? {= j = item, working = true =};
33 rate(pow(2, j)) tau {= working = false =};
34 Server()
35 }
36
37 restrict { deliver!, deliver? } {
38 par {
39 :: Station(1, array(i, C, 0))
40 :: Station(2, array(i, C, 0))
41 :: Server()
42 }
43 }
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Figure B.5: reentrant-queues.v3.modest. Part 1.

1 const int JOB_TYPES; // number of different job types
2 const int LAMBDA = 2; // job arrival rate
3 const real MU_LEFT = 1.5; // service rate of left desk
4 const int MU_RIGHT = 1; // service rate of right desk
5 const int C_LEFT; // capacity of left queue
6 const int C_RIGHT; // capacity of right queue
7 const real TIME_BOUND;
8
9 binary action service_left, service_right, reenter;

10
11 transient int(0..JOB_TYPES) j;
12
13 int sizeLeft = 0;
14 int sizeRight = 0;
15
16 bool processingLeft = false, processingRight = false;
17
18 property PminBothQueuesFullIsOne = Pmin(<> (sizeLeft == C_LEFT &&

sizeRight == C_RIGHT)) == 1;
19 property TminBothQueuesFull = Xmin(T, sizeLeft == C_LEFT && sizeRight

== C_RIGHT);
20 property TmaxBothQueuesFull = Xmax(T, sizeLeft == C_LEFT && sizeRight

== C_RIGHT);
21 property PmaxBothQueuesFullBound = Pmax(<>[T<=TIME_BOUND] (sizeLeft ==

C_LEFT && sizeRight == C_RIGHT));
22 property SmaxBothQueuesFull = Smax(T((sizeLeft == C_LEFT && sizeRight

== C_RIGHT) ? 1.0 : 0));
23 property MinAverageOperationCosts = Smin(T((processingLeft && sizeLeft

< C_LEFT && sizeRight < C_RIGHT) ? 0.5 * lj : ((processingRight &&
sizeLeft < C_LEFT && sizeRight < C_RIGHT) ? 0.8 * rj : (((
processingLeft || processingRight) && (sizeLeft == C_LEFT ||
sizeRight == C_RIGHT)) ? 10.0 * (lj + rj) : 0) )));

24 int(0..JOB_TYPES) lj = 0;
25
26 process LeftDesk()
27 {
28 service_left? {= lj = j, processingLeft = true =};
29 rate(MU_LEFT + 0.5 * (lj - 1)) tau {= processingLeft = false, lj = 0

=};
30 alt {
31 :: LeftDesk()
32 :: reenter! {= j = lj =}; LeftDesk()
33 }
34 }
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Figure B.6: reentrant-queues.v3.modest. Part 2.

1 int(0..JOB_TYPES) rj = 0;
2 process RightDesk()
3 {
4 service_right? {= rj = j, processingRight = true =};
5 rate(MU_RIGHT + 0.3 * (rj - 1)) tau {= processingRight = false, rj =

0 =};
6 RightDesk()
7 }
8
9 process Arrival()

10 {
11 int(0..JOB_TYPES)[] ql = array(i, C_LEFT, 0);
12 int(0..JOB_TYPES)[] qr = array(i, C_RIGHT, 0);
13
14 do {
15 :: when(sizeLeft < C_LEFT || sizeRight < C_RIGHT) rate(LAMBDA) tau;

alt {
16 :: when(sizeLeft < C_LEFT) {= ql[sizeLeft] = (int)any(i, 1 <= i

&& i <= JOB_TYPES), sizeLeft++ =}
17 :: when(sizeRight < C_RIGHT) {= qr[sizeRight] = (int)any(i, 1 <=

i && i <= JOB_TYPES), sizeRight++ =}
18 }
19 :: when(sizeRight < C_RIGHT) reenter? {= qr[sizeRight] = j,

sizeRight++ =}
20 :: when(sizeLeft > 0) service_left! {= j = ql[0], ql = array(i,

C_LEFT, i < sizeLeft - 1 ? ql[i + 1] : 0), sizeLeft-- =}
21 :: when(sizeRight > 0) service_right! {= j = qr[0], qr = array(i,

C_RIGHT, i < sizeRight - 1 ? qr[i + 1] : 0), sizeRight-- =}
22 }
23 }
24
25 restrict { service_left!, service_left?, service_right!, service_right

?, reenter!, reenter? }
26 {
27 par {
28 :: Arrival()
29 :: LeftDesk()
30 :: RightDesk()
31 }
32 }
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Figure B.7: ftwc.v3.modest. Part 1.

1 const int N; // number of workstations
2
3 const int LEFT = 0;
4 const int RIGHT = 1;
5 const real TIME_BOUND;
6
7 bool backboneDown = false;
8 int(0..N)[] workstations_up = [N,N]; // workstations_up[0] ~ left,

workstations_up[1] ~ right
9 bool[] switches_down = [false,false]; // switches_down[0] ~ left,

switches_down[1] ~ right
10
11 transient real repCost;
12
13 binary action startRepairBackbone, finishRepairBackbone;
14 binary action startRepairWorkstation, finishRepairWorkstation,

startRepairLeftWorkstation, finishRepairLeftWorkstation,
startRepairRightWorkstation, finishRepairRightWorkstation;

15 binary action startRepairSwitch, finishRepairSwitch,
startRepairLeftSwitch, finishRepairLeftSwitch,
startRepairRightSwitch, finishRepairRightSwitch;

16
17 property ReachMinIsOne = Pmin(<> ((workstations_up[LEFT] == 0 ||

switches_down[LEFT]) && (workstations_up[RIGHT] == 0 ||
switches_down[RIGHT]))) == 1;

18 property TimeMax = Xmax(T, (workstations_up[LEFT] == 0 || switches_down
[LEFT]) && (workstations_up[RIGHT] == 0 || switches_down[RIGHT]));

19 property TimeMin = Xmin(T, (workstations_up[LEFT] == 0 || switches_down
[LEFT]) && (workstations_up[RIGHT] == 0 || switches_down[RIGHT]));

20 property PmaxReachBound = Pmax(<>[T<=TIME_BOUND] ((workstations_up[LEFT
] == 0 || switches_down[LEFT]) && (workstations_up[RIGHT] == 0 ||
switches_down[RIGHT])));

21 property SmaxReach = Smax(T((workstations_up[LEFT] == 0 ||
switches_down[LEFT]) && (workstations_up[RIGHT] == 0 ||
switches_down[RIGHT]) ? 1.0 : 0));

22 property MinAvgRepairCost = Smin(S(repCost));
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Figure B.8: ftwc.v3.modest. Part 2.

1 process Backbone()
2 {
3 alt {
4 :: when(!backboneDown) rate(0.0002) {= backboneDown = true =}
5 :: when(backboneDown) startRepairBackbone?;
6 finishRepairBackbone? {= backboneDown = false =}
7 };
8 Backbone()
9 }

10
11 process Switch(int(0..1) id)
12 {
13 alt {
14 :: when(!switches_down[id]) rate(0.00025) tau {= switches_down[id] =

true =}
15 :: when(switches_down[id]) startRepairSwitch?;
16 finishRepairSwitch? {= switches_down[id] = false =}
17 };
18 Switch(id)
19 }
20
21 process Workstation(int(0..1) id)
22 {
23 alt {
24 :: when(workstations_up[id] > 0) rate(workstations_up[id] / 500.0)

tau {= workstations_up[id]-- =}; Workstation(id)
25 :: when(workstations_up[id] < N) startRepairWorkstation?;

Workstation(id)
26 :: when(workstations_up[id] < N) finishRepairWorkstation? {=

workstations_up[id]++ =}; Workstation(id)
27 }
28 }
29
30 process RepairUnit()
31 {
32 alt {
33 :: startRepairBackbone! {= repCost = 5.5 =}; rate(0.125) tau;

finishRepairBackbone!
34 :: startRepairLeftWorkstation! {= repCost = 0.5 =}; rate(2.0) tau;

finishRepairLeftWorkstation!
35 :: startRepairRightWorkstation! {= repCost = 0.5 =}; rate(2.0) tau;

finishRepairRightWorkstation!
36 :: startRepairRightSwitch! {= repCost = 1.1 =}; rate(0.25) tau;

finishRepairRightSwitch!
37 :: startRepairLeftSwitch! {= repCost = 1.1 =}; rate(0.25) tau;

finishRepairLeftSwitch!
38 };
39 RepairUnit()
40 }
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Figure B.9: ftwc.v3.modest. Part 3.

1 restrict {
2 startRepairLeftWorkstation?, startRepairLeftWorkstation!,
3 startRepairRightWorkstation?, startRepairRightWorkstation!,
4 finishRepairLeftWorkstation?, finishRepairLeftWorkstation!,
5 finishRepairRightWorkstation?, finishRepairRightWorkstation!,
6 startRepairLeftSwitch?, startRepairLeftSwitch!,
7 startRepairRightSwitch?, startRepairRightSwitch!,
8 finishRepairLeftSwitch?, finishRepairLeftSwitch!,
9 finishRepairRightSwitch?, finishRepairRightSwitch!,

10 startRepairBackbone?, startRepairBackbone!,
11 finishRepairBackbone?, finishRepairBackbone!
12 } {
13 par {
14 :: Backbone()
15 :: relabel { startRepairSwitch, finishRepairSwitch} by {

startRepairLeftSwitch, finishRepairLeftSwitch }
16 Switch(LEFT)
17 :: relabel { startRepairSwitch, finishRepairSwitch} by {

startRepairRightSwitch, finishRepairRightSwitch }
18 Switch(RIGHT)
19 :: relabel { startRepairWorkstation, finishRepairWorkstation} by {

startRepairLeftWorkstation, finishRepairLeftWorkstation }
20 Workstation(LEFT)
21 :: relabel { startRepairWorkstation, finishRepairWorkstation} by {

startRepairRightWorkstation, finishRepairRightWorkstation }
22 Workstation(RIGHT)
23 :: RepairUnit()
24 }
25 }
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B.2.2 Time-Bounded Reachability (partial)

Figure B.10: dpm-full.v2.modest. Part 1.

1 const int N; // number of different types of tasks, maximum 10
2 const int C; // queue size
3 const real TIME_BOUND;
4
5 int(0..C) items1 = C;
6 int(0..C) items2 = C;
7 int(0..C) items3 = C;
8 int(0..C) items4 = C;
9 int(0..C) items5 = C;

10 int(0..C) items6 = C;
11 int(0..C) items7 = C;
12 int(0..C) items8 = C;
13 int(0..C) items9 = C;
14 int(0..C) items10 = C;
15 int(0..C) items11 = C;
16 int(0..C) items12 = C;
17 int(0..C) items13 = C;
18 int(0..C) items14 = C;
19 int(0..C) items15 = C;
20 int(0..C) items16 = C;
21 int(0..C) items17 = C;
22 int(0..C) items18 = C;
23 int(0..C) items19 = C;
24 int(0..C) items20 = C;
25
26 binary action sleep, standby, idle;
27
28 property PmaxOneQueueThreeBound=Pmax(<>[T<=TIME_BOUND](ntasksh==3));
29
30 const int SP_IDLE = 1;
31 const int SP_SLEEP = 2;
32 const int SP_STANDBY = 3;
33 const int SP_WORK = 4;
34 int(1..4) pmode = SP_SLEEP;
35
36 int ntasksh = 0;
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Figure B.11: dpm-full.v2.modest. Part 2.

1 process ServiceProvider() {
2 int(1..N) t;
3 alt {
4 :: when(pmode == SP_IDLE)
5 alt {
6 :: sleep?; rate(0.5) tau {= pmode = SP_SLEEP =}; ServiceProvider()
7 :: standby?; rate(1) tau {= pmode = SP_STANDBY =}; ServiceProvider()
8 :: alt {
9 :: when(N >= 1 && items1 > 0) tau {= t = 1, items1-- =}

10 :: when(N >= 2 && items2 > 0) tau {= t = 2, items2-- =}
11 :: when(N >= 3 && items3 > 0) tau {= t = 3, items3-- =}
12 :: when(N >= 4 && items4 > 0) tau {= t = 4, items4-- =}
13 :: when(N >= 5 && items5 > 0) tau {= t = 5, items5-- =}
14 :: when(N >= 6 && items6 > 0) tau {= t = 6, items6-- =}
15 :: when(N >= 7 && items7 > 0) tau {= t = 7, items7-- =}
16 :: when(N >= 8 && items8 > 0) tau {= t = 8, items8-- =}
17 :: when(N >= 9 && items9 > 0) tau {= t = 9, items9-- =}
18 :: when(N >= 10 && items10 > 0) tau {= t = 10, items10-- =}
19 :: when(N >= 11 && items11 > 0) tau {= t = 11, items11-- =}
20 :: when(N >= 12 && items12 > 0) tau {= t = 12, items12-- =}
21 :: when(N >= 13 && items13 > 0) tau {= t = 13, items13-- =}
22 :: when(N >= 14 && items14 > 0) tau {= t = 14, items14-- =}
23 :: when(N >= 15 && items15 > 0) tau {= t = 15, items15-- =}
24 :: when(N >= 16 && items16 > 0) tau {= t = 16, items16-- =}
25 :: when(N >= 17 && items17 > 0) tau {= t = 17, items17-- =}
26 :: when(N >= 18 && items18 > 0) tau {= t = 18, items18-- =}
27 :: when(N >= 19 && items19 > 0) tau {= t = 19, items19-- =}
28 :: when(N >= 20 && items20 > 0) tau {= t = 20, items20--, ntasksh++

=}
29 }; tau{= pmode = SP_WORK =}; ServiceProvider()
30 }
31 :: when(pmode == SP_SLEEP) alt {
32 :: idle?; rate(0.166) tau {= pmode = SP_IDLE =}; ServiceProvider()
33 :: standby?; rate(1.5) tau {= pmode = SP_STANDBY =}; ServiceProvider

()
34 }
35 :: when(pmode == SP_STANDBY) alt {
36 :: idle?; rate(0.454) tau {= pmode = SP_IDLE =}; ServiceProvider()
37 :: sleep?; rate(1.5) tau {= pmode = SP_SLEEP =}; ServiceProvider()
38 }
39 :: when(pmode == SP_WORK) rate(0.2 * t) tau {= pmode = SP_IDLE =};

ServiceProvider()
40 }
41 }
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Figure B.12: dpm-full.v2.modest. Part 3.

1 process PowerManager()
2 {
3 alt {
4 :: standby!
5 :: sleep!
6 :: idle!
7 };
8 PowerManager()
9 }

10
11 process ServiceRequester()
12 {
13 alt {
14 ::when(N >= 1) rate(0.1*1+0.4) tau; when(items1 < C) {= items1++ =}
15 ::when(N >= 2) rate(0.1*2+0.4) tau; when(items2 < C) {= items2++ =}
16 ::when(N >= 3) rate(0.1*3+0.4) tau; when(items3 < C) {= items3++ =}
17 ::when(N >= 4) rate(0.1*4+0.4) tau; when(items4 < C) {= items4++ =}
18 ::when(N >= 5) rate(0.1*5+0.4) tau; when(items5 < C) {= items5++ =}
19 ::when(N >= 6) rate(0.1*6+0.4) tau; when(items6 < C) {= items6++ =}
20 ::when(N >= 7) rate(0.1*7+0.4) tau; when(items7 < C) {= items7++ =}
21 ::when(N >= 8) rate(0.1*8+0.4) tau; when(items8 < C) {= items8++ =}
22 ::when(N >= 9) rate(0.1*9+0.4) tau; when(items9 < C) {= items9++ =}
23 ::when(N >= 10) rate(0.1*10+0.4) tau; when(items10 < C) {= items10++ =}
24 ::when(N >= 11) rate(0.1*11+0.4) tau; when(items11 < C) {= items11++ =}
25 ::when(N >= 12) rate(0.1*12+0.4) tau; when(items12 < C) {= items12++ =}
26 ::when(N >= 13) rate(0.1*13+0.4) tau; when(items13 < C) {= items13++ =}
27 ::when(N >= 14) rate(0.1*14+0.4) tau; when(items14 < C) {= items14++ =}
28 ::when(N >= 15) rate(0.1*15+0.4) tau; when(items15 < C) {= items15++ =}
29 ::when(N >= 16) rate(0.1*16+0.4) tau; when(items16 < C) {= items16++ =}
30 ::when(N >= 17) rate(0.1*17+0.4) tau; when(items17 < C) {= items17++ =}
31 ::when(N >= 18) rate(0.1*18+0.4) tau; when(items18 < C) {= items18++ =}
32 ::when(N >= 19) rate(0.1*19+0.4) tau; when(items19 < C) {= items19++ =}
33 ::when(N >= 20) rate(0.1*20+0.4) tau; when(items20 < C) {= items20++ =}
34 }; ServiceRequester()
35 }
36
37 restrict { sleep!, sleep?, standby!, standby?, idle!, idle? }
38 {
39 par {
40 :: ServiceRequester()
41 :: ServiceProvider()
42 :: PowerManager()
43 }
44 }
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B. Experiments

Figure B.13: polling-system-k.v3.modest.

1 const int JOB_TYPES;
2 const int C;
3 const real TIME_BOUND;
4
5 binary action deliver;
6 bool working;
7 int(1..5) stationid;
8 int(0..C)[] size = [C, C, C, C, C];
9 real[] rates = [0.1, 0.1, 0.1, 0.1, 5];

10
11 property PmaxBothFullBound = Pmax(<>[T<=TIME_BOUND] (size[0] == C &&

size[1] == C));
12 property PmaxOneFullBound = Pmax(<>[T<=TIME_BOUND] (size[4] == 0));
13
14 process Station(int id)
15 {
16 alt {
17 :: when(size[id - 1] < C) rate(0.2 * id + 0.1) tau; {= size[id -

1]++ =}
18 :: when(size[id - 1] > 0) deliver! {= size[id - 1]--, stationid = id

=}
19 };
20 Station(id)
21 }
22
23 process Server()
24 {
25 deliver? {= working = true =};
26 rate(rates[stationid - 1]) tau {= working = false =};
27 Server()
28 }
29
30 restrict { deliver!, deliver? }
31 {
32 par {
33 :: Station(1)
34 :: Station(2)
35 :: Station(3)
36 :: Station(4)
37 :: Station(5)
38 :: Server()
39 }
40 }
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