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Abstract 

Feedback-based learning relies on a procedural learning system mediated by dopaminergic 

reward prediction error (RPE) signals. Recent neuroimaging research indicates that the 

processing of temporally delayed feedback is supported by the hippocampus, a brain structure 

associated with declarative memory processes, but it is still unknown how delayed feedback 

processing and memory encoding interact. In this dissertation project, in a series of three 

experiments, a subsequent memory paradigm was employed to investigate how the incidental 

encoding of feedback pictures in a probabilistic learning task affects the event-related 

potential (ERP) correlate of RPEs in feedback processing, i.e., the feedback-related negativity 

(FRN), and how this interaction is modulated by feedback timing, valence, and explicit 

outcome expectations.  

In Experiment 1, task-unrelated scene pictures were presented together with 

performance feedback in the learning task. In an ensuing test phase, a surprise recognition 

memory test for the pictures was conducted. FRN amplitudes measured in the feedback-

locked ERPs recorded during the learning phase (FRNpeak) and in the negative minus positive 

feedback difference wave (FRNdiff) were compared for subsequently remembered and 

forgotten feedback pictures. Pictures were remembered better when presented together with 

positive than with negative feedback, and ERP amplitudes in the FRNdiff time window 

predicted subsequent memory only for positive feedback pictures. Consistent with previous 

studies, shortly delayed (SD, 500 ms) feedback elicited larger FRNdiff amplitudes than long 

delayed feedback (LD, 6500 ms), whereas the reverse pattern was found in FRNpeak 

amplitudes. As evidenced by behavioral estimates and ERP old/new effects, positive feedback 

enhanced memory by boosting familiarity-based recognition. However, feedback timing did 

not affect memory, presumably because participants did not need to process the scene pictures 

in order to learn from feedback.  



IV 

 

In Experiment 2, the picture category signaled the valence of the feedback. LD 

feedback pictures were associated with better memory and more recollective processing than 

shortly delayed ones. Feedback processing as reflected in the FRNpeak was attenuated for 

remembered as compared to forgotten LD feedback pictures. This suggests that when 

feedback was delayed, feedback processing and memory encoding competed for similar 

neural processing resources. As evidence by large FRNdiff amplitudes in the SD condition, the 

evaluation of shortly delayed feedback strongly relied on the procedural learning system. A 

complementary model-based single trial analysis was conducted to validate models of the 

functional significance of the FRN. Consistent with previous studies, feedback-locked N170 

and P300 amplitudes were sensitive to feedback delay. 

Experiment 3 tested the hypothesis that the putative involvement of declarative 

learning processes in delayed feedback processing is mediated by the spontaneous generation 

of explicit outcome expectations during the feedback delay. A delayed feedback condition 

was compared with a Prediction condition in which participants were asked on each trial to 

predict the category of the upcoming feedback picture. Memory for the feedback pictures did 

not differ between the Prediction and Delay conditions. The FRNpeak subsequent memory 

effect obtained in Experiment 2 was replicated in both conditions, but more pronounced in the 

Prediction condition. As evidenced by ERP old/new effects, negative feedback pictures that 

disconfirmed explicit outcome expectations were associated with stronger recollective 

processing than those presented in the Delay condition. Positive feedback pictures elicited a 

recognition bias and increased familiarity signals in the memory test, which could reflect a 

generalization of reward value to pictures of the same category (indoor or outdoor scene). 

 Taken together, the findings obtained in this dissertation show multiple ways by which 

feedback processing and memory encoding can interact, and how this interaction is shaped by 

feedback timing, valence, and explicit outcome expectations.  
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Zusammenfassung 

Feedbackbasiertes Lernen beruht auf einem prozeduralen Lernsystem, das auf der 

neurobiologischen Ebene durch dopaminerge Belohnungsvorhersagefehlersignale vermittelt 

wird. Studien mit bildgebenden Verfahren weisen darauf hin, dass die Verarbeitung von 

zeitlich verzögertem Feedback durch den Hippocampus unterstützt wird, eine Hirnstruktur, 

die mit deklarativen Gedächtnisprozessen assoziiert ist. Es ist jedoch noch nicht bekannt, wie 

die Verarbeitung von verzögertem Feedback mit der Gedächtnisenkodierung interagiert. In 

diesem Dissertationsprojekt wurde in einer Serie von drei Experimenten die Methode der 

nachfolgenden Erinnerung verwendet, um zu untersuchen, wie die inzidentelle Enkodierung 

von Feedbackbildern in einer probabilistischen Lernaufgabe sich auf das im 

ereigniskorrelierten Potenzial (EKP) messbare Korrelat von Belohnungsvorhersagefehlern in 

der Feedbackverarbeitung, die Feedback-Negativierung (FRN), auswirkt und wie diese 

Interaktion durch zeitliche Charakteristika und Valenz des Feedbacks sowie durch explizite 

Ergebniserwartungen moduliert wird. 

 Im ersten Experiment wurden Bilder von Innenräumen und Landschaften zusammen 

mit dem Feedback in der Lernaufgabe präsentiert, wobei die Bilder nicht relevant für die 

Aufgabe waren. In der darauf folgenden Testphase wurde ein unerwarteter Rekognitionstest 

für die Bilder durchgeführt. FRN-Amplituden wurden in den während der 

Feedbackpräsentation aufgezeichneten EKP gemessen (FRNpeak), sowie in der Differenzwelle, 

die durch die Subtraktion der durch positives Feedback erzeugten EKP von den durch 

negatives Feedback erzeugten EKP gebildet wurde (FRNdiff). Beide FRN-Maße wurden für 

später erinnerte und später vergessene Bilder verglichen. Bilder, die zusammen mit positivem 

Feedback gezeigt wurden, wurden besser erinnert als solche, die mit negativem Feedback 

gepaart wurden, und EKP-Amplituden im Zeitfenster der FRNdiff prädizierten spätere 

Erinnerung ausschließlich für Bilder, die zusammen mit positivem Feedback präsentiert 
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wurden. Übereinstimmend mit früheren Studien erzeugte kurz verzögertes Feedback (500 ms) 

größere FRNdiff-Amplituden als lang verzögertes Feedback (6500 ms), wohingegen das 

umgekehrte Muster für FRNpeak-Amplituden gefunden wurde. Wie durch behaviorale Maße 

und EKP-Alt/Neu-Effekte belegt, stärkte die Verarbeitung von positivem Feedback vor allem 

das vertrautheitsbasierte Erinnern der zeitgleich präsentierten Bilder, jedoch wirkten sich die 

zeitlichen Parameter der Feedbackpräsentation nicht auf das Gedächtnis aus, vermutlich weil 

eine Verarbeitung der Bilder nicht notwendig war, um das Feedback zum Lernen zu nutzen. 

 Im zweiten Experiment wurde daher die Bildkategorie (Innenraum oder Landschaft), 

mit der Valenz des Feedbacks verknüpft. Lang verzögerte Feedbackbilder waren mit besserer 

Erinnerung und stärkerer rekollektiver Verarbeitung assoziiert als solche, die mit kurzer 

Verzögerung präsentiert worden waren. Die Feedbackverarbeitung, gemessen als FRNpeak-

Amplitude, war geringer für lang verzögerte Feedbackbilder, die anschließend erinnert 

wurden als für solche, die nicht erinnert wurden. Dies legt nahe, dass die Verarbeitung von 

zeitlich verzögertem Feedback und die Gedächtnisenkodierung auf ähnliche neuronale 

Verarbeitungskapazitäten zugreifen. Wie anhand von FRNdiff-Amplituden ersichtlich, beruhte 

die Evaluation von zeitlich kurz verzögertem Feedback in starkem Ausmaß auf dem 

prozeduralen Lernsystem. Eine ergänzende, modellbasierte Analyse auf der Ebene einzelner 

Lerndurchgänge wurde durchgeführt, um Modelle der funktionalen Bedeutsamkeit der FRN 

zu validieren. Übereinstimmend mit vorherigen Studien wurden durch die 

Feedbackverarbeitung hervorgerufene N170- und P300-Amplituden durch die zeitliche 

Verzögerung des Feedbacks moduliert. 

 Das dritte Experiment überprüfte die Hypothese, dass die mutmaßliche Beteiligung 

von deklarativen Lernprozessen bei der Verarbeitung von verzögertem Feedback  durch die 

spontane Entwicklung expliziter Ergebniserwartungen während der Feedbackverzögerung 

vermittelt wird. Eine Bedingung mit verzögertem Feedback wurde mit einer Vorhersage-
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Bedingung kontrastiert, in der die Probanden in jedem Lerndurchgang die Kategorie des 

Feedbackbildes prädizierten. Die Erinnerung an die Feedbackbilder unterschied sich nicht 

zwischen den beiden Bedingungen. Der Effekt der nachfolgenden Erinnerung in den FRNpeak-

Amplituden, der in Experiment 2 gefunden wurde, wurde in beiden Bedingungen repliziert, 

war jedoch in der Vorhersage-Bedingung stärker ausgeprägt. Wie durch EKP-Alt/Neu-Effekte 

belegt, waren negative Feedbackbilder, die die explizite Erwartung eines positiven 

Ergebnisses verletzten, mit einer stärkeren rekollektiven Verarbeitung verknüpft. Positive 

Bilder waren im Gedächtnistest mit besonders vielen falsch positiven Gedächtnisurteilen 

assoziiert, was mit einer Generalisierung des Belohnungswertes zu Bildern der gleichen 

Kategorie zusammenhängen könnte. 

 Zusammengefasst zeigen die Ergebnisse dieser Dissertation, dass die 

Feedbackverarbeitung und die Gedächtnisenkodierung auf mehreren Wegen interagieren 

können. Die zeitlichen Charakteristika der Feedbackpräsentation, die Valenz des Feedbacks 

und explizite Ergebniserwartungen stellen wichtige Faktoren dar, die diese Interaktion 

beeinflussen. 
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1 Introduction 

External feedback is often essential for human learning and decision making. For instance, 

learning a motor skill, such as playing golf, strongly relies on the evaluation of outcomes 

associated with actions and is driven by reward prediction errors (RPEs) indicating the 

deviation between the expected and received outcome of an action. A novice golf player has 

no strong expectation about the outcome of his action; he does not know how to strike the ball 

in order to hit the hole. However, by evaluating the outcomes of his strikes, the golf player 

can adjust his behavior in order to maximize positive outcomes. This procedural or habitual 

type of learning is typically slow and hard to verbalize (non-declarative): A novice on the golf 

course has to strike many balls and evaluate the outcome until he knows how to strike the ball 

in order to hole it. The deviation between the expected and received outcome of an action 

(i.e., the RPE) gradually decreases over the course of this learning process.  

In contrast to the procedural learning system upon which feedback learning relies, 

episodic memory (i.e., memory for autobiographical episodes) is a declarative type of 

memory that is consciously accessible and can be verbalized  (Squire & Dede, 2015; Tulving, 

1972). The golf player mentioned earlier uses feedback to learn how to strike the ball, but he 

also forms an episodic memory trace of the moment when he holes the golf ball for the first 

time. The episodic memory trace contains the central objects of an episode (the golf ball or 

the flag that marks the hole), but also the context in which these objects occurred (the golf 

court), and associations between these elements (Eichenbaum, Yonelinas, & Ranganath, 

2007). Different from feedback learning, which is a slow, rigid, and non-declarative type of 

learning, episodic memory traces thus consist of flexible associations that are formed rapidly 

during a single encoding trial (Henke, 2010).  
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Feedback learning and episodic memory encoding engage distinct learning systems 

and brain structures: Feedback learning is guided by a procedural learning system governed 

by dopaminergic RPE signals (Daw & Tobler, 2014), whereas episodic memory encoding and 

retrieval rely on the declarative learning system and activity in the medial temporal lobes (i.e., 

the hippocampus and the surrounding cortical regions; Eichenbaum, 2004; Eichenbaum et al., 

2007). Only recently has neuroimaging research started to focus on conditions under which 

the brain systems underlying these two learning systems interact (Miendlarzewska, Bavelier, 

& Schwartz, 2016; Shohamy & Adcock, 2010; Shohamy & Daw, 2014). For instance, reward-

predicting pictures are associated with superior memory and brain activity in dopaminergic 

midbrain regions (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli, 2006; 

Wittmann et al., 2005). With recourse to our illustrative example of the golf player, a 

rewarding event, such as an unexpectedly successful strike under challenging conditions, 

should be remembered better due to the dopaminergic activity it elicits. In a study by Foerde 

and Shohamy (2011), feedback pictures presented with a delay of several seconds were 

associated with hippocampal activity and better memory than immediately presented feedback 

pictures. These results suggest that brain regions associated with declarative memory 

processes can support the processing of temporally delayed feedback.  

The present work aims at investigating interactions between feedback processing and 

episodic memory encoding, and how they are reflected in event-related potentials (ERPs). In 

the first section, we cover the principles of feedback-based learning and introduce the 

feedback-related negativity, the ERP correlate of dopaminergic RPE signals in feedback 

processing. The next section deals with episodic memory and ERP correlates of memory 

retrieval. We then review research pertaining to our central research question how feedback 

learning and declarative memory interact.  
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1.1 Feedback-Based Learning 

Feedback-based learning comprises the ability to learn associations between events or actions 

and their outcomes. Classical conditioning is one fundamental mechanism by which 

organisms can learn associations between stimuli through their repeated co-ocurrence 

(Pavlov, 2010). In his classic experiments, Ivan Pavlov discovered that dogs reacted with 

salivation (conditioned response, CR) to the ringing of a bell after this intrinsically neutral 

conditioned stimulus (CS) had been repeatedly paired with the deliverance of food 

(unconditioned stimulus, US). Furthermore, Pawlow found that a tone of a frequency similar 

to the ringing bell elicited the same conditioned response. Subsequent research revealed that 

conditioned responses can generalize to stimuli that resemble the CS along basic perceptual or 

more abstract categorical dimensions (Bhatt, Wasserman, Reynolds, & Knauss, 1988; Honig 

& Urcuioli, 1981). In a similar fashion, the learned motivational value of a stimulus can 

transfer to perceptually similar stimuli and bias perception and behavior (Miendlarzewska et 

al., 2016). 

Another important learning paradigm was pioneered by Edward Thorndike (1898; 

1911) who constructed a “puzzle box” that could be opened from the inside by a simple 

mechanism. Thorndike examined learning curves that depicted the time an animal needed to 

open the box as a function of learning trials. Initially, the experimental animals need a lot of 

time until they managed to open the box. In subsequent trials, their dwell time decreased 

gradually which indicates that the animals learned by trial and error and not by insight. This 

type of learning was labeled instrumental conditioning, because the animal’s action was 

instrumental in opening the puzzle box. In his learning theory, Thorndike (1898) formulated 

the law of effect which states that in a certain situation (in the presence of a discriminative 

stimulus), a reaction that leads to a reward will strengthen the association between the 

stimulus and the reaction and, as a consequence, the probability of showing the rewarded 
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reaction in the same situation will be increased. Thorndike’s method was later refined by B. F. 

Skinner who invented the operant conditioning chamber, also known as “Skinner box”, in 

which animals, usually rodents or pigeons, were rewarded with food for showing a response 

(e.g., pressing a lever). In contrast to Thorndike’s approach of measuring the time an animal 

needed to escape the puzzle box in discrete trials, Skinner measured the frequency of 

responses an animal showed as a function of a well-defined rule according to which reward 

was delivered (i.e., the reinforcement schedule). He found that the frequency of rewarded 

actions increased, whereas unrewarded actions were shown less frequently (e.g., Skinner, 

1938). 

The main difference between classical and instrumental conditioning is that the former 

is concerned with contingencies between stimuli and rewards, whereas the latter focuses on 

actions that are reinforced by rewards. Both types of learning enable organisms to show 

adaptive behavior in a relatively constant environment. Thus, even though Pavlov, Thorndike, 

and Skinner based their learning theories on animal research, they discovered fundamental 

principles of learning which are also applicable to learning in humans, upon which we will 

focus in the following. 

In a typical feedback learning task, participants are instructed to learn stimulus-

response (S-R) associations by trial and error. Performance feedback indicates the outcome of 

a response (positive or negative) and enables participants to learn the correct S-R association. 

Probabilistic feedback that is valid only in a proportion of trials (e.g., 70%) is used often 

because otherwise participants would be able to infer the correct S-R associations within a 

few trials. Across participants, learning curves (i.e., the proportion of correct responses over 

the course of the learning trials) can be used to characterize the learning process. Participants 

initially perform at chance level, but if they succeed in using the feedback for learning, the 

proportion of correct responses increases. 
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Reinforcement learning (RL) theory assumes that feedback learning is driven by 

reward prediction errors, i.e., the deviation between the expected and the received outcome 

(Rescorla & Wagner, 1972; Sutton & Barto, 2020). Computational reinforcement learning 

models can be used to estimate RPE estimates and parameters that provide additional 

information on the learning process in individual participants. On each trial t of a typical 

feedback learning task, participants respond to a stimulus by choosing either the left or the 

right response button (choice 𝑐𝑡 = L or R). According to a 𝑄-learning model (Watkins, 1989), 

subjects assign an expected value 𝑄 to each of the choice options. Initially, this expected 

value is at chance (e.g., 0.5) because participants have not developed an expectation at this 

point. The 𝑄-value is subsequently updated on each trial according to the formula 𝑄𝑡+1(𝑐𝑡) =

 𝑄𝑡(𝑐𝑡) + 𝛼 ∙ 𝛿𝑡, where 𝛼 is a free learning rate parameter that indicates how readily choice 

behavior is changed as a reaction to reinforcement, with higher values signifying faster 

updating, and the prediction error 𝛿𝑡 =  𝑟𝑡 − 𝑄𝑡(𝑐𝑡) is defined as the difference between the 

actually received (𝑟𝑡) and the expected value of the outcome. The observation model that links 

the theoretically expected choice values with the probabilities of the observed choices can be 

assumed to follow a softmax distribution: 

𝑝(𝑐𝑡 = 𝐿|𝑄𝑡(𝐿), 𝑄𝑡(𝑅)) =  
exp (𝛽 ∙ 𝑄𝑡(𝐿))

exp(𝛽 ∙ 𝑄𝑡(𝑅)) + exp (𝛽 ∙ 𝑄𝑡(𝐿))
 

The free inverse temperature parameter β indicates the extent to which the observed 

choices follow the learned values of the choice options. Once the parameters specified in the 

model are estimated, trial-by-trial RPE estimates can be derived for each participant. 

In functional neuroimaging studies, computational models are widely used to identify 

brain regions in which BOLD signals correlate with model-derived learning signals (for 

reviews, see Daw and Doya, 2006; O’Doherty et al., 2007). This line of research was 

inititated by the discovery that the firing pattern of dopamine neurons resembled the RPE in 
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reinforcement learning models (Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, & 

Montague, 1997). In the present work, similar to the aforementioned method used in 

neuroimaging studies, correlations between model-derived prediction errors and single trial 

EEG data were used to validate models of the functional significance of the feedback-related 

negativity, the putative ERP correlate of reward prediction error processing in feedback 

learning. 

1.1.1 Neurobiological Mechanisms Underlying Feedback-Based Learning 

The neurotransmitter dopamine (DA) has long since been associated with motivational and 

reward-related processes. In 1954, James Olds and Peter Milner discovered that electrical 

stimulation to particular brain regions had a rewarding quality for rats (Olds & Milner, 1954). 

Later studies could show that this effect was especially pronounced in the ventral tegmental 

area (VTA), a midbrain structure containing one of the largest assemblies of dopaminergic 

neurons in the brain of mammals, including humans (Björklund & Dunnett, 2007). In a study 

by Wise, Spindler, Dewit, and Gerber (1978), rats were conditioned to press a lever for food, 

whereupon one group of rats was given the DA receptor blocker pimozide. Subsequently, the 

pimozide group and one control group of rats were continuously rewarded for lever presses, 

whereas another control group did not receive reinforcement any longer. Strikingly, the 

frequency of lever presses remained on a high level in the control group with reinforcement, 

but significantly decreased in the pimozide group and in the control group without 

reinforcement. Wise and colleagues reasoned that the detracting effect of pimozide on the 

normal functioning of dopaminergic transmission diminished the rewarding quality of an 

otherwise potent reinforcer (i.e., the anhedonia hypothesis). However, Berridge and Robinson 

(1998) argued that even rats with pharmaceutically degraded DA neurons showed hedonic 

behavior and proposed that DA rather signals the motivation to obtain a reward (i.e., the 

incentive salience hypothesis). A third hypothesis regarding the function of DA derived from 
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a series of studies with monkeys in which it was found that the firing pattern of DA neurons 

located in the substantia nigra (SN) and in the VTA closely resembles reward prediction error 

signals (for a review see Schultz, 1998). The monkeys were trained to depress one out of two 

levers in order to obtain a drop of apple juice as a reward. On each trial, a light cue indicated 

which of the two levers would lead to a reward. Initially, an unexpected reward elicited a 

phasic increase in the firing rate of dopamine neurons. On later trials, the timing of the 

dopamine response shifted from responding to the reward to responding to the earlier reward-

predicting cue
1
. Furthermore, the omission of an expected reward was associated with a 

phasic decrease of the firing rate below the baseline. These findings are hard to reconcile with 

previous hypotheses relating DA to the hedonic value of a reward (Olds & Milner, 1954; 

Wise et al., 1978) and rather indicate that DA signals unexpected rewards, which has also 

been confirmed in humans by intracranial EEG recordings (Zaghloul et al., 2009). However, 

the role of dopamine in learning and motivation goes beyond signaling reward prediction 

errors. Recent evidence indicates that some types of DA neurons also respond to novel and 

surprising events (Bromberg-Martin, Matsumoto, & Hikosaka, 2010). It is conceivable that 

reward prediction errors and incentive salience are coded by distinct aspects of the DA 

response. For instance, it has been suggested that incentive salience could be related to 

sustained changes in the background firing rate of DA neurons (Niv, Daw, Joel, & Dayan, 

2007). 

Projections from the SN to the nucleus caudatus and the putamen in the dorsal striatum 

(i.e., the nigrostriatal DA pathway), where DA signals modulate action selection by 

facilitating or inhibiting actions associated with positive or negative outcomes, respectively, 

                                                 

1
 The shift of the dopamine response from unexpected rewards to reward-predicting cues indicates that dopamine 

signals code temporal difference RPEs, a special type of RPE that can be elicited by any event that changes the 

predicted reward of an action (Sutton & Barto, 2020). Please note that we will continue to use the simplified 

label RPE in the following.  



8 

 

play a crucial role in feedback learning. This is also evidenced by studies showing that 

Parkinson’s disease (PD) patients who suffer from a degeneration of DA neurons in the SN 

are significantly impaired in their ability to use feedback or reward for learning (Foerde & 

Shohamy, 2011; Frank, Seeberger, & O’Reilly, 2004; Knowlton, Mangels, & Squire, 1996). 

In contrast, projections from the VTA to the nucleus accumbens in the ventral striatum (i.e., 

the mesolimbic DA pathway) are primarily associated with the processing of reward. 

1.1.2 ERP Correlates of Feedback Processing 

1.1.2.1 Feedback-Related Negativity 

In studies examining ERPs, the commitment of errors in choice reaction tasks is associated 

with a negativity (error-related negativity, ERN) that peaks between 50 and 100 after an 

erroneous response at fronto-central electrodes (Falkenstein, Hohnsbein, Hoormann, & 

Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 1993). The processing of 

performance feedback indicating an incorrect response in a time-estimation task elicits a 

similar fronto-central negativity (feedback-related negativity, FRN) that is maximal between 

250 and 300 ms after feedback onset (Miltner, Braun, & Coles, 1997). The neural generators 

of these two ERP components were localized in the anterior cingulate cortex (Dehaene, 

Posner, & Tucker, 1994; Miltner et al., 1997). Holroyd and Coles (2002) proposed that the 

response-locked ERN and the feedback-locked FRN reflect the transmission of a 

dopaminergic RPE signal to the anterior cingulate cortex (ACC). According to their 

reinforcement learning theory, a dopamine signal indicating that the outcome of an action was 

worse than expected (i.e., a negative RPE) disinhibits ACC neurons and elicits an error signal 

that is used to optimize performance on the task at hand. In support of this view, it was found 

that early during learning, feedback stimuli elicit a large FRN, whereas erroneous responses 

are not associated with a significant ERN. In contrast, when learning is completed and stable 

S-R associations have been built up, erroneous responses elicit a strong ERN, but the 
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feedback-locked FRN is diminished (Eppinger, Kray, Mock, & Mecklinger, 2008; Holroyd & 

Coles, 2002; Nieuwenhuis et al., 2002). Thus, we can conceive of the FRN as an ERP 

correlate of dopaminergic RPEs elicited by performance feedback during learning (for review 

and meta-analysis see Walsh & Anderson, 2012; Sambrook & Goslin, 2015). 

A recent modification of the reinforcement learning theory emphasizes that the scalp-

recorded FRN signal results from an overlap between the N200 and a later positivity elicited 

by positive outcomes (feedback correct-related positivity, fCRP; Holroyd, 2004; Holroyd et 

al., 2008; reward positivity; see Proudfit, 2015, for a review). Whereas the N200 is generally 

elicited by unexpected, task-relevant events (including unexpected negative feedback; see 

Folstein & Van Petten, 2008, for a review), the fCRP/reward positivity is related to the 

processing of unexpected positive feedback or reward. In the following, we will continue 

using the term FRN as a description for an ERP correlate of feedback processing that reflects 

dopaminergic RPE signals, keeping in mind that probably more than one ERP component (a 

negativity followed by a positivity to positive feedback) contribute to the FRN. 

 An alternative account of ACC functioning that has recently received massive 

empirical support (Ferdinand, Mecklinger, Kray, & Gehring, 2012; Hauser et al., 2014; 

Oliveira, McDonald, & Goodman, 2007; Talmi, Atkinson, & El-Deredy, 2013; Wessel, 

Danielmeier, Bruce Morton, & Ullsperger, 2012) is provided by the prediction of response-

outcome (PRO) model which assumes that the ACC is rather sensitive to unexpected events 

regardless of their valence (Alexander & Brown, 2010, 2011). In the present work, we 

employed two FRN measures to examine distinct aspects of feedback processing: The 

FRNpeak, measured as the difference between the N200 and the preceding positive peak (i.e., 

the P200), reflects the salience (unexpectedness) of feedback, irrespective of valence 

(Ferdinand et al., 2012). In contrast, the FRNdiff is measured as the peak amplitude in the 

negative minus positive feedback difference wave (i.e., the amplitude at the time point of the 



10 

 

maximal difference between the waveforms elicited by positive and negative feedback) and 

primarily reflects variance related to the reward positivity. 

1.1.2.2 N170 

The N170 is a negative potential elicited by the processing of complex visual stimuli, 

especially faces, between 130 and 200 ms at occipito-temporal electrodes (Bentin, Allison, 

Puce, Perez, & McCarthy, 1996; Rossion, Joyce, Cottrell, & Tarr, 2003). In an ERP study 

investigating feedback-based learning in a virtual T-maze, Baker and Holroyd (2009) found a 

feedback-locked potential that closely resembled the N170 elicited by the processing of faces. 

In subsequent studies, the neural generator of this feedback N170 was localized in the right 

parahippocampal cortex (Baker & Holroyd, 2013; Baker, Umemoto, Krawitz, & Holroyd, 

2015), a brain region adjacent to the fusiform gyrus in which the face N170 is generated 

(Bötzel, Schulze, & Stodieck, 1995; Deffke et al., 2007). Arbel, Hong, Baker, & Holroyd 

(2017) found that delayed feedback elicited larger (more negative) N170 amplitudes than 

immediate feedback and proposed that the N170 constitutes a marker of the involvement of 

the MTL in delayed feedback processing. In the present work, we therefore examined 

feedback N170 amplitudes and also explored whether this component predicts subsequent 

memory for feedback pictures. 

1.1.2.3 P300 

The P300, a positive potential that is typically most pronounced over parietal electrode sites, 

is thought to reflect the updating of the stimulus context in memory (Donchin, 1981; Polich, 

2007). P300 amplitudes are modulated by the subjective probability, task relevance, and 

information value of a stimulus ( i.e., unexpected, relevant, and informative stimuli elicit 

larger P300 amplitudes than expected, irrelevant, and uninformative ones; Johnson, 1986; 

Nieuwenhuis, Aston-Jones, & Cohen, 2005). In feedback learning tasks, the P300 is 
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associated with higher order feedback evaluation processes such as the updating of the value 

associated with an action (Ullsperger, Fischer, Nigbur, & Endrass, 2014). In a study by Chase, 

Swainson, Durham, Benham, & Cools (2011), participants learned associations between 

abstract visual patterns and responses in a probabilistic reversal learning task. The correct S-R 

mapping was changed on a regular, but unpredictable basis. Chase and colleagues found that 

FRN amplitudes correlated with RPEs estimated from a reinforcement model, but only P300 

amplitudes predicted behavioral adaptations after rule reversals. These results suggest that the 

FRN is an expression of the striatum-based procedural learning system which enables the 

gradual learning of S-R contingencies on the basis of RPEs, whereas the P300 rather reflects a 

fast and rule-based learning mechanism. Furthermore, ERP studies investigating memory 

encoding found that P300 amplitudes are predictive of subsequent declarative memory 

(Fabiani, Karis, & Donchin, 1986, 1990). In our present work investigating interactions 

between feedback processing and memory encoding, we therefore also considered the role of 

feedback-locked P300 amplitudes. 

1.2 Declarative Memory 

Declarative memory is a dynamic process initiated by the encoding of an event (for a review, 

see Moscovitch, Cabeza, Winocur, & Nadel, 2016). At this stage, the memory trace comprises 

a multitude of episodic details whose retrieval relies on the hippocampus (Squire & Zola-

Morgan, 1991). In the subsequent phase of consolidation, neural replay transfers the memory 

trace into a more stable neocortical representation, whereby episodic details are discarded and 

the memory trace becomes semanticized (Winocur, Moscovitch, & Bontempi, 2010). The 

result of this long-term process is a semantic memory trace containing the gist of the initial 

learning episode. In the following, we describe how episodic memory can be measured and 

give special attention to the processes contributing to episodic memory retrieval and their 

ERP correlates. 
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1.2.1 Measuring Episodic Memory 

Episodic memory can be probed in a recognition memory test in which participants decide for 

single items whether they have seen these items in a previous study phase. The encoding 

situation in the study phase can be either incidental, if participants perform an unrelated task 

on the items without the intention to encode them, or intentional, if participants learn the 

items for a later memory test. In the recognition memory test, the “old” items from the study 

phase are presented together with a number of not previously seen “new” items. According to 

signal detection theory (Green & Swets, 1966), memory decisions made by the participants 

can be divided into four categories: Hits (“old” items judged as “old”), misses (“old” items 

judged as “new”), correct rejections (“new” items judged as “new”), and false alarms (“new” 

items judged as “old”). A measure of memory accuracy corrected for the tendency to judge an 

item as “old” can be obtained by calculating Pr scores (Snodgrass & Corwin, 1988) as the 

difference between hit rates (numbers of hits relative to the number of “old” items) and false 

alarm rates (number of false alarms relative to the number of “new” items). Furthermore, a 

measure indicating the response bias of a participant in favor of judging an item as “old” can 

be obtained by calculating a Br score as the false alarm rate relative to the inverse of the Pr 

score (Snodgrass & Corwin, 1988). 

1.2.2 Familiarity- and Recollection-Based Recognition Memory 

Dual process models of recognition memory assume that two distinct processes, familiarity 

and recollection, contribute to the retrieval of episodic memories in recognition memory tests 

(Yonelinas, 2002). Whereas familiarity refers to a fast and context-free memory strength 

signal, recollection is a slower threshold process that includes the retrieval of contextual 

details. In particular this latter type of effortful memory retrieval process is mediated by 

hippocampal activity, whereas familiarity-based recognition is supported by the perirhinal 

cortex (Eichenbaum et al., 2007; Ranganath, 2010).  
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The recognition of single items does not require the retrieval of associations or contextual 

information and thus can be supported both by familiarity and by recollection. However, there 

are several ways of estimating both retrieval sub-processes on the basis of behavioral 

measures. For instance, different levels of confidence in memory decisions as measured by a 

confidence scale in the recognition memory test can be used to model receiver operating 

characteristic (ROC) curves from which familiarity and recollection parameter estimates can 

be derived (see Yonelinas and Parks, 2007, for an overview). This procedure is based on the 

assumption that the retrieval of contextual details associated with recollection increases the 

subjective confidence in the memory decision. Thus, memory decisions supported by 

recollection should be associated with higher confidence than those based on familiarity. 

Based on a similar line of reasoning, hit rates that are calculated based on high-confidence 

memory decisions only are another possibility to obtain a measure that relies more strongly on 

recollection than hit rates including all levels of confidence. 

1.2.3 ERP Correlates of Memory Retrieval 

In ERP studies investigating recognition memory, hits typically elicit more positive 

amplitudes than correct rejections, an effect which is labeled the ERP old/new effect. 

Familiarity and recollection are associated with qualitatively different patterns of ERP 

old/new effects (for reviews, see Friedman & Johnson, 2000, and Rugg & Curran, 2007; see 

also Paller, Voss, & Boehm, 2007, for an alternative view). Familiarity elicits an early, mid-

frontal old/new effect between 300 and 500 ms after stimulus onset (also denoted as FN400), 

whereas recollection manifests in a late parietal old/new effect between 500 and 800 ms 

which often exhibits a left-lateralized topographical distribution. Consistent with what would 

be expected from an ERP correlate of recollection, the amplitude of the late parietal old/new 

effect increases with the amount of study details retrieved (Vilberg, Moosavi, & Rugg, 2006) 

and with confidence in recognizing studied items (Curran, 2004). In contrast, the amplitude of 
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the early mid-frontal old/new effect is rather insensitive to the retrieval of episodic details 

(Vilberg et al., 2006), but generally increases with familiarity strength (Woodruff, Hayama, & 

Rugg, 2006).  

1.3 Multiple Interacting Systems for Learning and Memory 

Recent neuroimaging research has shown that, depending on the learning situation, feedback-

based learning can be supported by medial temporal lobe (MTL) structures associated with 

declarative memory processes (Delgado & Dickerson, 2012; Shohamy & Daw, 2014). The 

results of some studies even suggest that feedback learning is generally accomplished by an 

interaction between the striatum and the hippocampus (Dickerson & Delgado, 2015; 

Dickerson, Li, & Delgado, 2011). Conversely, it is now known that activity in the 

dopaminergic midbrain and in the striatum supports declarative memory encoding (Sadeh, 

Shohamy, Levy, Reggev, & Maril, 2011; Schott et al., 2006) and retrieval (Scimeca & Badre, 

2012). Of note, there is some evidence suggesting that memory encoding and retrieval can 

interfere with feedback processing and reward learning due to a competition for similar neural 

processing resources (Dickerson & Delgado, 2015; Wimmer, Braun, Daw, & Shohamy, 

2014). In the study by Wimmer et al. (2014), participants engaged in a reward learning task in 

which they chose between two options that were each associated with a fluctuating reward 

probability. Task-unrelated pictures were presented together with the choice options. 

Successful memory encoding was associated with diminished reward learning, higher 

hippocampal-striatal connectivity, and decreased striatal RPE signals, suggesting that 

incidental memory encoding interfered with reward learning due to a competition for striatal 

processing resources. 

Two types of interactions between feedback learning and declarative memory are 

particularly relevant for the present work and therefore covered in further detail below. 

Firstly, we review studies investigating modulations of declarative memory by the 
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anticipation or reception of reward (for reviews, see Miendlarzewska et al., 2016; Shohamy & 

Adcock, 2010). Secondly, we focus on research showing that the processing of temporally 

delayed feedback engages the hippocampus and boosts memory for feedback events (Foerde 

& Shohamy, 2011). 

1.3.1 Adaptive Memory 

Apart from striatal regions, the main targets of dopaminergic projections, RPE signals are also 

conveyed to the hippocampus (Gasbarri, Sulli, & Packard, 1997), a brain structure crucial for 

declarative memory (Eichenbaum, 2004). Because dopamine signals motivationally important 

events and thereby promote adaptive behavior (Bromberg-Martin et al., 2010), Shohamy and 

Adcock (2010) coined the term adaptive memory to characterize dopaminergic modulations of 

declarative memory that have become a focus of research during the last two decades. A 

theoretical foundation for this line of research was laid out by Lisman and Grace (2005) who 

proposed that the hippocampus and the ventral tegmental area (VTA), a dopaminergic 

midbrain structure adjacent to the substantia nigra, form a functional loop. According to the 

Lisman and Grace (2005) framework, hippocampal activity associated with the processing of 

novel stimuli is projected to the VTA where it contributes to the novelty-dependent firing of 

dopaminergic cells. In the upward arm of the loop, dopamine signals are projected from the 

VTA to the hippocampus, where they promote long-term potentiation (LTP) and learning.  

In a similar vein, Wittmann et al. (2005) argued that activity in dopaminergic midbrain 

regions associated with reward anticipation should facilitate the late stage of LTP in the 

hippocampus and thereby enhance long-term learning outcomes. In the study by Wittmann et 

al. (2005), participants situated in an fMRI scanner performed a number categorization task in 

which they had to decide as fast as possible whether a number was larger or smaller than five. 

Each number was preceded by the picture of a living thing or a man-made object, and only 

pictures from one of these categories indicated that a fast and correct response in the number 
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categorization task would be rewarded with money.  Subsequently, participants were given a 

surprise memory test in which they had to discriminate the cue pictures presented during the 

learning phase from new pictures. Three weeks later, participants returned to the lab for a 

second memory test that also included “remember/know” and source memory questions. 

Old/new discrimination did not differ between rewarded and nonrewarded pictures, neither in 

the immediate nor in the delayed memory test. In the delayed memory test, however, 

recollection as measured by “remember” responses and source memory were better for 

rewarded pictures than for nonrewarded ones. A subsequent memory analysis revealed that 

hippocampal BOLD signals were larger for recognized than for forgotten pictures. 

Importantly, reward-related activity measured during the learning phase in the substantia 

nigra predicted subsequent memory only in the delayed memory test, and only for rewarded 

pictures, but not for nonrewarded ones. These results indicate that dopamine signals boost 

memory by supporting the consolidation of hippocampal memory traces.  

There is, however, evidence suggesting that reward learning can boost declarative 

memory well before memory consolidation takes place. In a study that explored recognition 

memory for objects that were associated with rewards or losses in younger and older adults, 

Eppinger, Herbert, and Kray (2010) found that superior memory for rewarded objects was 

associated with an early, mid-frontal old/new effect in both age groups. This effect was not 

obtained for objects learned with negative feedback. Younger adults also exhibited a late, left-

parietal old/new effect that did not differ as a function of feedback valence. This pattern of 

results suggests that positive outcomes can rapidly boost familiarity-based recognition 

without affecting recollection. 

The beneficial effects of dopamine signals for learning are not confined to those 

stimuli eliciting dopaminergic activity, but also include unrelated stimuli presented in 

temporal proximity (Lisman, Grace, & Düzel, 2011). Consistent with this “penumbra” 
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hypothesis, Murayama and Kitagami (2014) found that reward cues in a reaction time task 

enhanced long-term memory for task-irrelevant pictures of objects presented before the 

rewarded trials. In a study by Murty and Adcock (2014), participants performed a reaction 

time task while fMRI scans were taken. Each trial was preceded by a cue that signaled the 

chance to win a high or low reward on the upcoming trial. Participants were then repeatedly 

presented a color object that turned grayscale after 10 to 11 repetitions, whereupon 

participants were instructed to respond as fast as possible in order to win a reward. In half of 

the trials, the sequence of presentations of the color object was interrupted by a highly similar, 

but novel image (“expectancy violation”). Following the reaction time task, memory for the 

expectancy violations objects was probed in a recognition memory test that yielded higher hit 

rates for expectancy violations preceded by a high reward cue than for those preceded by a 

low reward cue. Murty and Adcock (2014) found that cues signaling a high reward were 

associated with activity in the VTA that predicted subsequent hippocampal activity during the 

processing of expectancy violations via a distributed network of brain regions including 

(medial and ventrolateral) prefrontal and visual cortices. These results could reflect a 

mechanism by which reward anticipation guides attentional and mnemonic processes towards 

encoding salient and potentially goal-relevant information.  

 To date, only few studies have adressed the question how the beneficial effect of 

dopamine signals on declarative memory encoding is reflected in ERPs elicited by rewards or 

performance feedback. In a study by Arbel, Goforth, & Donchin (2013), participants used 

feedback to learn arbitrary associations between novel objects and nonwords. On the next day, 

a memory test was conducted in which participants were given lists of the novel objects and 

nonwords presented in the learning phase and had to assign to each novel object the nonword 

with which it was associated in the learning phase. FRN amplitudes elicited by feedback in 

the learning phase were not related to subsequent declarative learning outcomes, however, a 
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later ERP component that resembled in its spatiotemporal characteristics the reward positivity 

differentiated between subsequently recognized and forgotten associations. These results 

dovetail with an fMRI study by Tricomi and Fiez (2012), who compared feedback processing 

in a declarative learning task while controlling for the information value of the feedback and 

found that activity in the caudate nucleus predicted higher confidence judgements on a test 

that assessed learning success, but only for word pairs that had been paired with positive 

feedback. Thus, successful declarative learning from positive feedback may be reflected in 

ERPs as well as in striatal BOLD signals elicited by the processing of positive feedback, 

which is in line with studies that have localized the neural generators of the reward positivity 

in the basal ganglia (Foti, Weinberg, Dien, & Hajcak, 2011). 

Of note, investigating the effects of dopaminergic RPE signals on declarative memory 

requires controlling for motivational and attentional confounds associated with intentional 

learning. To illustrate this, in the above-mentioned study by Arbel et al. (2013), participants 

were tasked to learn the associations that were subsequently probed in the memory test. 

Furthermore, since each novel object was repeated 20 times together with the same four 

nonwords, participants were reinforced several times for remembering the correct association 

between a novel object and a nonword. Such confounds associated with intentional learning 

can be avoided by the use of incidental learning paradigms (e.g. Murayama and Kitagami, 

2014; Wittmann et al., 2005). For instance, examining declarative memory not for the to-be-

learned stimuli but for the feedback offers the opportunity to explore the impact of 

dopaminergic RPE signals on declarative memory at the time point of their occurrence, 

without the confound of learning intention and the ensuing motivational states. This procedure 

was employed in the experiments described in the present work.  
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1.3.2 Delayed Feedback Processing 

Temporally delayed feedback processing is associated with a strong involvement of the 

hippocampus and a high proportion of correct high-confidence memory decisions for 

feedback pictures (Foerde & Shohamy, 2011; Lighthall, Pearson, Huettel, & Cabeza, 2018). 

In the study by Foerde and Shohamy, participants underwent fMRI scans while they learned 

associations between Asian characters and two responses by trial and error. Performance 

feedback was provided in the form of indoor and outdoor scene pictures and arrived either 

immediately after the response or with a temporal delay of three or six seconds. Shortly after 

completing the feedback learning task, participants were given a surprise memory test for the 

feedback pictures presented during the learning phase. Hippocampal and striatal BOLD 

signals recorded during the processing of immediate and delayed feedback correlated with 

RPEs derived from a computational reinforcement learning model. Activity in the striatum 

was sensitive to immediate and, to a lesser degree, delayed feedback. In contrast, the 

hippocampus was exclusively involved in the processing of delayed feedback. Foerde and 

Shohamy also predicted that declarative memory for delayed feedback events should benefit 

from the hippocampal involvement during the initial processing of these events and, 

consistent with their prediction, found that delayed feedback pictures were remembered better 

than immediate feedback pictures. These results suggest that in delayed feedback processing, 

the procedural and declarative learning systems interact cooperatively and without 

interference on either side. Rather, declarative memory for delayed feedback events benefits 

from the hippocampal involvement in delayed feedback processing. 

Consistent with the finding obtained in fMRI studies that delayed feedback processing 

is associated with a decreased involvement of the striatum-based procedural learning system 

(Foerde & Shohamy, 2011; Lighthall et al., 2018), ERP studies found that delayed feedback 

processing is associated with dimished amplitudes of the FRNdiff reflecting the processing of 
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unexpected positive outcomes (Peterburs, Kobza, & Bellebaum, 2016; Weismüller & 

Bellebaum, 2016). Furthermore, in the study by Peterburs et al. (2016), long delayed feedback 

elicited larger FRNpeak amplitudes than shortly delayed feedback. It is thus conceivable that 

the FRNpeak is more sensitive to the processing of expectancy violations in the declarative 

learning system and is less specific for the processing of positive or negative action outcomes.  

1.4 Research Questions 

Even though the brain systems associated with feedback-based learning and declarative 

memory have been disclosed (Eichenbaum & Cohen, 2001; Shohamy & Daw, 2014), it is less 

clear under which circumstances these learning systems interact, and how this is reflected in 

electrophysiological measures of feedback processing. This dissertation aims to shed further 

light on these questions by investigating how feedback processing as reflected in the FRN 

interacts with concurrent incidental memory encoding under two different conditions, namely 

when feedback processing strongly relies on the procedural learning system (shortly delayed 

feedback) or engages the declarative learning system (long delayed feedback). In addition, it 

has not been systematically explored how feedback delay affects recognition memory for 

feedback events and its subprocesses, familiarity and recollection. Therefore, the present work 

aimed at investigating how feedback timing affects the incidental encoding and subsequent 

retrieval of feedback events. 

To explore whether successful memory encoding modulates the FRN, a subsequent 

memory paradigm was used: EEG activity recorded during feedback picture presentation in 

the learning task was sorted according to whether a picture was subsequently remembered or 

forgotten (Sanquist, Rohrbaugh, Syndulko, & Lindsley, 1980; for reviews, see Cohen et al., 

2015, or Paller & Wagner, 2002). Finding that the amplitude of the FRNpeak or FRNdiff differs 

between subsequently remembered and forgotten pictures would suggest that feedback 

processing and memory encoding interact electrophysiologically.  
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2 Experiment 1: Electrophysiological Reward Signals Predict Episodic 

Memory for Immediate and Delayed Positive Feedback Events 

Experiment 1 investigated how the processing of shortly and long delayed feedback (500 ms 

vs. 6500 ms feedback delay) in a probabilistic feedback learning task interacts with the 

incidental encoding of task-irrelevant pictures presented together with the feedback, and how 

this interaction is reflected in the ERP correlate of dopaminergic reward prediction errors in 

feedback processing (i.e., the FRN). ERP old-new effects and behavioral estimates of 

familiarity and recollection were used to examine effects of feedback valence and feedback 

delay on recognition memory for the pictures. This study was published in Brain Research, 

1701, 64-74 (Höltje & Mecklinger, 2018). 

2.1 Introduction 

Participants performed a probabilistic feedback learning task in which they learned 

associations between Chinese characters and responses. Feedback arrived with a short or long 

temporal delay, and task-irrelevant pictures were presented together with the feedback. For 

half of the characters, feedback was presented randomly, so that participants equally often 

received positive and negative feedback (50% feedback validity). For the other characters, 

feedback was valid in 70% of all trials. Thus, learning the associations between characters and 

reactions was only possible in the 70% feedback validity condition. The 50% feedback 

validity condition served as a control condition, making sure that differences regarding 

feedback valence or delay were not affected by differences in the frequency of positive or 

negative feedback (see Eppinger, Kray, Mock, & Mecklinger, 2008; Peterburs, Kobza, & 

Bellebaum, 2016, for studies that used a similar approach). After the learning task, 

recognition memory for the pictures was tested in a surprise memory test. 
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 Behaviorally, we aimed to replicate the  results from previous studies showing that 

pictures presented together with positive feedback are remembered better than those presented 

together with negative feedback (Davidow, Foerde, Galván, & Shohamy, 2016), and long 

delayed feedback pictures better than shortly delayed ones (Foerde & Shohamy, 2011). We 

expected to find modulations of FRN amplitudes by feedback timing similar to those obtained 

in previous studies: Long delayed feedback should elicit larger FRNpeak and smaller FRNdiff 

amplitudes than shortly delayed feedback (Peterburs et al., 2016; Weismüller & Bellebaum, 

2016). Finding a subsequent memory effect (SME) that resembles in its spatiotemporal 

characteristics the FRN would indicate that feedback processing and incidental memory 

encoding interact electrophysiologically. Based on the results by Eppinger et al. (2010) we 

expected that a memory advantage for positive feedback events should be accompanied by 

enhanced familiarity and therefore be associated with larger behavioral and 

electrophysiological estimates of familiarity. 

2.2 Method 

2.2.1 Participants 

Twenty-nine healthy young adults (23 female, 27 right-handed) participated in the 

experiment. Their age ranged between 18 and 30 years, with a median age of 22 years. All 

participants were German native speakers, had normal or corrected-to-normal vision and no 

self-reported neurological or psychiatrical conditions. The experimental procedures were 

carried out in accordance with the Declaration of Helsinki. Participants gave their informed 

consent before the experiment and received money (8 € per hour) or course credit as a 

compensation for their participation. Due to the exclusion criteria for EEG data (see 4.4), six 

subjects were excluded. Thus, all analyses are based on N = 23 subjects. 
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2.2.2 Materials and Procedure 

The preparations for the EEG recording took about 45 minutes. Thereafter, participants were 

seated in front of a 19‘‘ computer screen with a resolution of 1280 x 1024 pixels in an 

electrically shielded and sound-attenuated booth. The experimental tasks were presented using 

E-Prime 2 software (Psychology Software Tools, Inc.) and participants used a keyboard for 

their responses.  

The experiment consisted of a learning phase, a distractor task, and a recognition 

memory test. In the learning phase, participants learned associations between four different 

Chinese characters and two response keys in an associative learning task with probabilistic 

feedback. Task-irrelevant scene pictures were presented together with the feedback. The 

learning phase took about 25 minutes and was followed by an unrelated distractor task (an 

oddball task which did not cause interference with the encoded pictures). Twenty minutes 

after the learning phase, recognition memory of the scene pictures was tested in a surprise 

recognition memory test. The recognition memory test took about 35 minutes. 

A total of 400 scene pictures, consisting of 200 indoor scenes and 200 outdoor scenes 

were used in this experiment. Some of the indoor scenes were taken from the Change 

Blindness Database (Sareen, Ehinger, & Wolfe, 2015), the other pictures were from various 

free internet sources. The size of the pictures was scaled to a width of maximal 600 pixels and 

a height of maximal 450 pixels. 

2.2.2.1 Learning Phase 

Four different Chinese characters (汉,礼,归,仗) were used in the associative learning task, 

with one character assigned to each combination of the factors feedback validity (50%, 70%) 

and feedback delay (short: 500 ms, long: 6500 ms). The assignment of characters and 

conditions was balanced across subjects. Every character was associated with one of two 
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responses (the „c“- and „n“-keys of the keyboard). Participants were instructed to learn the 

associations by trial and error and to use the feedback for this purpose. In the 50% validity 

condition, learning was not possible because feedback was equally often valid or invalid. 

Importantly, in this condition it can be ruled out that different frequencies for positive and 

negative feedback affect valence or delay effects because positive and negative feedback were 

presented equally often. Overall, there were 200 trials, which were divided into five blocks of 

40 trials each. Every character was presented 10 times per block, in random order. 

Participants were given 10 practice trials before they started working on the task. Half of the 

400 scene pictures (100 indoor and 100 outdoor scenes) were presented together with the 

feedback, but were not related to the task in any way. Picture type (indoor vs. outdoor) was 

randomly assigned to either the positive or the negative feedback condition. 

A schematic of the trial procedure is depicted in Figure 2.1A. Each trial of the 

associative learning task started with a central fixation cross presented with a duration jittered 

between 500 and 1000 ms. Then, a Chinese character was presented in the centre of the screen 

with a maximum duration of 1500 ms. In the bottom left and right corners of the screen, a 

blue and a yellow button were presented. The buttons represented the left and right response 

keys. As soon as the participant responded with one of the keys, the chosen button remained 

on the screen, and the other button disappeared. At the same time, the character was 

surrounded by a frame of the same color as the chosen button. This screen served to make the 

choice salient and was shown for 200 ms. If the participants did not respond within 1500 ms 

after onset of the Chinese character, they were informed that their response was too slow and 

the trial was repeated. Then, a blank screen was presented for 500 or 6500 ms, depending on 

the delay condition. After this delay period, a feedback screen was presented for 1500 ms. A 

colored rectangle measuring 600 x 450 pixels was presented in the center of the feedback 

screen. Directly above the colored rectangle, the word „Correct“ or „Incorrect“, presented in 
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the same color as the rectangle, signaled if the feedback was positive and negative. The color 

of the rectangle and word was green for positive and red for negative feedback. An unrelated 

scene picture was presented over the colored rectangle, so that it appeared as a picture with a 

thick green or red frame. After the feedback, a blank screen was presented for 1000 ms before 

the next trial started. 

 

Figure 2.1: The trial procedure (A). At the beginning of each trial, one of four Chinese 

characters was presented. As soon as the participant made a choice, it was displayed for a 

short time (200 ms). Feedback arrived with a short (500 ms) or long (6500 ms) delay. During 

the delay, a blank screen was presented. The feedback consisted of the word “correct” or 

“incorrect”, in green or red color for positive and negative feedback, respectively. Together 

with the feedback, a task-irrelevant picture was presented. Percentages of correct responses in 

the learning phase (B) and Pr scores in the test phase (C). Error bars indicate 95% confidence 

intervals according to Jarmasz and Hollands (2009). 

2.2.2.2 Recognition Memory Test 

The 200 scene pictures from the learning phase were presented together with 200 new scene 

pictures in random order. Participants were given a short break every 80 trials. In the 

beginning of each trial, a fixation cross was presented for 1000 ms, followed by a picture 

presented for 1500 ms. Participants were instructed to decide for every picture if it was old or 
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new using a six-step confidence scale („sure old“, „probably old“, „maybe old“, „maybe 

new“, „probably new“, „sure new“). This decision could be made as soon as the picture was 

presented. After the presentation of the picture, a blank screen appeared for 1000 ms. Then, 

the question „Old or New?“ appeared, together with a depiction of the rating scale. As soon as 

participants made a response, a blank screen was shown for 1000 ms before the next trial 

started.  

To assess memory performance, Pr scores (Snodgrass & Corwin, 1988) were 

calculated as the difference between the proportions of correct and incorrect „old“-decisions 

(hits and false alarms). For this purpose, the corresponding three steps of the confidence scale 

were collapsed into „old“- and „new“-decisions. In addition, high-confidence Pr scores were 

calculated based on „sure“- and „probably“-decisions only.  

The ROC toolbox (Koen, Barrett, Harlow, & Yonelinas, 2016) for MATLAB 

(MathWorks, Inc.) was used to estimate the recollection as old (Ro) and familiarity (d’F) 

parameters of the dual-process signal detection (DPSD) model of recognition memory. 

2.2.3 EEG Recording and Analysis 

The EEG was recorded during the learning phase and the recognition memory test from 28 

Ag/AgCl scalp electrodes embedded in an elastic cap with positions according to the 10-20 

electrode system (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC3, FCz, FC4, FC6, T7, C3, Cz, C4, 

T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, O1, O2, and A2). The vertical and horizontal EOG 

was recorded from four electrodes placed above and below the right eye and at the canthi of 

the left and right eyes. The electrodes were on-line referenced to a left mastoid electrode (A1), 

and AFz was used as a ground electrode. The EEG was amplified with a BrainAmp DC 

amplifier (Brain Products GmbH) from 0.016 to 250 Hz and digitized at 500 Hz. For off-line 

processing of the EEG data, Brain Vision Analyzer software (Brain Products GmbH) was 
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used. Electrodes were re-referenced to the average of the left and right mastoid electrodes. 

The data from the learning phase and from the recognition memory test were bandpass-

filtered at 0.1 – 40 Hz.  Independent component analysis (ICA) was applied to the continuous 

data to correct for ocular artefacts. ICs associated with blinks and eye movements were 

rejected using a semi-automatic algorithm implemented in BrainVision Analyzer 2 (Ocular 

Correction ICA). The algorithm identified components that showed high correlations with 

vertical and horizontal eye channels. In a second step, IC topographies were checked 

manually. ICs that exhibited a typical blink or eye movement topography were rejected. 

Segments were extracted from the learning phase data from 200 ms before feedback onset to 

800 ms thereafter, and segments of a similar duration were extracted from the test phase data 

relative to picture onset. The segments were baseline-corrected based on activity during the 

200 ms before feedback or picture onset. Segments containing artefacts were rejected using 

the following criteria: A maximal allowed voltage step of 50 µV/ms, a maximal difference of 

values of 200 µV during intervals of 200 ms, and minimal and maximal allowed total 

amplitudes of ± 100 µV. On average, 1.5 % and 7.9 % of segments were rejected for the 

learning phase and for the test phase, respectively. Six subjects were excluded from all 

analyses upon inspection of the subject averages. Grand average waveforms were low-pass 

filtered at 12 Hz for illustration purposes only. 

2.2.3.1 ERPs in the Learning Phase 

For the FRN analysis, averages were calculated for every combination of the factors Validity 

(50%, 70%), Delay (Short, long), and Valence (positive, negative).  We restricted the analysis 

to electrode FCz, because FRN effects are typically largest at this site (see Peterburs et al., 

2016, for a similar approach). The difference wave-based FRN (FRNdiff) was quantified in the 

negative minus positive feedback difference waves in two different ways: 1) As the peak 

amplitude of the maximal negative peak in a 250 – 400 ms time window after feedback onset 
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and 2) as the mean amplitude in the same time window. Furthermore, the peak-based FRN 

(FRNpeak) was quantified as the difference between the amplitudes of the maximum negative 

peak between 200 and 400 ms in the subject average waveforms, and the maximum positive 

peak in a 150 – 250 ms time window (i.e., the P200) at electrode FCz. For the purpose of peak 

detection, the subject average waveforms were low-pass filtered at 10 Hz. 

For the subsequent memory analysis, averages were calculated for combinations of the 

factors Valence (positive, negative) and Memory (hits, misses), collapsed across the Validity 

and Delay factors. Subsequent hits and misses were calculated by collapsing across the three 

„old“ and „new“ steps of the confidence scale, respectively. In order to examine how 

feedback processing modulates successful encoding of feedback events, we analysed mean 

amplitudes during the FRNdiff time window (250 – 400 ms) and FRNpeak amplitudes in the 

subsequent memory analysis. 

2.2.3.2 ERPs in the Test Phase 

To test for old/new effects, we calculated averages for positive and negative hits and correct 

rejections (new pictures correctly classified as „new“), by collapsing the three corresponding 

steps of the confidence scale into „old“- and „new“-decisions. Mean amplitudes during an 

early (300 – 500 ms) and a late (500 – 700 ms) time window were analysed at left, middle, 

and right frontal and parietal electrode sites, respectively. The time windows used for the 

analysis of early and late old/new effects are typical for ERP studies of recognition memory 

(see Rugg & Curran, 2007, for a review) and correspond to time windows that were 

previously used in a study examining old/new effects for scene pictures (Gutchess, Ieuji, & 

Federmeier, 2007). The electrode montage covered frontal and parietal electrode sites (left-

frontal: F3, F7, FC3, FC5; mid-frontal: Fz, FCz; right-frontal: F4, F8, FC4, FC6; left-parietal: 

CP3, P3, P7; mid-parietal: CPz, Pz; right-parietal: CP4, P4, P8), where old/new effects are 
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typically found in recognition memory tasks (for reviews, see Friedman & Johnson, 2000; 

Rugg & Curran, 2007). 

2.2.4 Statistical Analyses 

All statistical analyses were conducted using IBM SPSS software. Performance during the 

learning phase was assessed as the proportion of correct responses in the 70% validity 

condition (because only in this condition learning was possible) and analysed in a two (Delay: 

Short, long) by five (Block: One to five) repeated measurements ANOVA. Pr scores from the 

recognition memory test were analysed in a two (Validity: 50%, 70%) by two (Delay: Short, 

long) by two (Valence: Positive, negative) repeated-measure ANOVA. The estimated DPSD 

model parameters d’F (familiarity) and Ro (recollection as “old”) were compared for positive 

and negative pictures using dependent t-tests. 

Peak and mean amplitudes from encoding and recognition ERPs were analyzed using 

dependent t-tests and repeated-measure ANOVAs. Only main effects and interactions 

involving the experimental factors are reported. Greenhouse-Geisser corrected degrees of 

freedom and p-values are reported whenever the assumption of sphericity was violated. 

Significant effects were decomposed using lower level ANOVAs and dependent t-tests. As 

measures of effect sizes, partial eta squared (ηp
2
) are reported for ANOVA results. For 

independent t-tests, Cohen’s d was calculated and for dependent t-tests, the correlation 

between measurements was considered for calculations of d. 
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2.3 Results 

2.3.1 Behavioral Data 

2.3.1.1 Learning Phase 

Figure 2.1B shows the mean percentages of correct responses during the course of the 

learning phase separately for the immediate and delayed feedback conditions. The analysis of 

the correct responses yielded a significant main effect of Block, F(4,88) = 3.01, p < .05, ηp
2
 = 

.12, and a significant linear trend, F(1,22) = 11.81, p < .001, ηp
2
 = .35, indicating that there 

was a linear increase of correct responses across the five blocks of the learning phase. There 

was no main effect of Delay, F(1,22) = 2.74, p = .11, ηp
2
 = .11, suggesting that participants 

learned equally well from immediate and delayed feedback. 

2.3.1.2 Recognition Memory Test  

Mean percentages of Pr scores and high-confidence Pr scores are given in Table 2.1. The 

analysis of Pr scores yielded a significant main effect of Valence, F(1,22) = 8.92, p < .01, ηp
2
 

= .29, reflecting better recognition of positive than negative pictures. No other effect 

approached significance (all p-values > .22). Similarly, high-confidence Pr scores showed a 

significant main effect of Valence, F(1,22) = 4.89, p < .05, ηp
2
 = .18, driven by higher scores 

for positive  than for negative pictures.  

The analysis of the DPSD model parameters showed that positive pictures were 

associated with larger estimates of familiarity than negative pictures, t(22) = 2.10, p < .05, d = 

0.47, whereas  no difference between positive and negative pictures was found for 

recollection, t(22) = 0.80, p = .43, d = 0.10. 
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Table 2.1: Mean percentages (standard errors) of Pr and high-confidence Pr scores. 

 

50% FB Validity 

 

70% FB Validity 

Short FB Delay 

 

Long FB Delay Short FB Delay 

 

Long FB Delay 

Positive 

FB 

Negative 

FB 

Positive 

FB 

Negative 

FB 

Positive 

FB 

Negative 

FB 

Positive 

FB 

Negative 

FB 

Pr 

11.5 

(2.4) 

11.4 

(3.1) 

15.9 

(3.1) 

10.3 

(2.4) 

14.3 

(2.8) 

11.1 

(2.9) 

15.8 

(2.8) 

11.4 

(3.1) 

High-con.  

Pr 

14.1 

(2.3) 

12.5 

(2.8) 

14.2 

(2.5) 

11.7 

(1.8) 

15.0 

(2.7) 

10.6 

(2.6) 

15.1 

(2.9) 

11.5 

(2.9) 

 

2.3.2 Electrophysiological Data 

2.3.2.1 ERPs in the Learning Phase 

FRN analysis. Negative minus positive feedback difference waves are shown as a function of 

FB Validity and Delay in Figure 2.2B. The corresponding mean and peak amplitude measures 

are displayed in Table 2.2. FRNdiff peak amplitudes were submitted to a two (Validity: 50%, 

70%) by two (Delay: Short, long) ANOVA which yielded no significant main effects, but a 

significant Validity by Delay interaction, F(1,22) = 10.38, p < .01, ηp
2
 = .32. In the 70% 

validity condition, peak amplitudes were significantly more negative in the short delay than in 

the long delay condition, t(22) = -2.98, p < .01, d = -0.56. In the 50% validity condition, the 

short and long delay conditions were not different from each other, t(22) = 1.40, p = .18, d = 

0.42.  

Analogous to the peak amplitudes, an ANOVA for the FRNdiff mean amplitudes 

yielded no main effects, but a significant Validity by Delay interaction, F(1,22) = 11.91, p < 

.01, ηp
2
 = .35. For the 70% validity condition, mean amplitudes in the short delay condition 

were more negative than in the long delay condition, t(22) = -3.00, p < .01, d = -0.67, whereas 

for the 50% validity condition, there was no significant difference between the short and long 
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delay conditions, t(22) = 1.80, p = .09, d = 0.57. Taken together, the pattern of results was 

statistically the same for mean amplitude and peak amplitude measures. In the 70% validity 

condition, in which learning was possible, the FRNdiff was attenuated for long relative to 

shortly delayed feedback. In contrast, in the 50% validity condition, where learning was not 

possible, the FRNdiff did not differ significantly between long and relatively immediate 

feedback. 

Table 2.2: Means (standard errors) of FRNdiff and FRNpeak  peak and mean amplitudes. 

 

FRNdiff  FRNpeak 

50% FB Validity 

 

70% FB Validity 

 

50% FB Validity 

 

70% FB Validity 

Short FB 

Delay 

Long FB 

Delay 

Short FB 

Delay 

Long FB 

Delay 

Short FB 

Delay 

Long FB 

Delay 

Short FB 

Delay 

Long FB 

Delay 

Mean 

Amp. 

0.15 

(0.57) 

-1.31 

(0.49) 

-1.59 

(0.63) 

0.54 

(0.69) 

-5.26 

(0.62) 

-6.98 

(0.71) 

-4.55 

(0.47) 

-7.44 

(0.71) 

Peak 

Amp. 

-4.97 

(0.81) 

-6.49 

(0.69) 

-5.97 

(0.88) 

-3.71 

(0.8) 

-4.92 

(0.69) 

-6.72 

(1.04) 

-5.49 

(0.77) 

-7.15 

(0.95) 

 

The original grand average waveforms are shown as a function of FB Validity, Delay, 

and Valence in Figure 2.2A. The corresponding FRNpeak amplitudes are displayed in Table 

2.2. A two (Validity: 50%, 70%) by two (Delay: Short, long) by two (Valence: Positive, 

negative) ANOVA for the FRNpeak amplitudes yielded a significant main effect of Delay, 

F(1,22) = 15.08, p < .001, ηp
2
 = .41, driven by higher (more negative) amplitudes for long 

than for shortly delayed feedback. No further effects reached significance, all p-values > .28. 

As evident from Figure 2.2A, specifically in the 70% validity – long delay condition, 

negative feedback was associated with more positive amplitudes than positive feedback 

around 200 ms. To test the reliability of this observation, mean amplitudes between 200 – 250 

ms were analyzed in a two (Validity: 50%, 70%) by two (Delay: Short, long) by two 
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(Valence: Positive, negative) ANOVA. An interaction between all three factors was found, 

F(1,22) = 7.76, p < .05, ηp
2
 = .26. In order to disentangle this interaction, separate ANOVAs 

for the Validity conditions were conducted. In the 50% Validity condition, no significant 

effects were found, all p-values > .18. In the 70% Validity condition, a significant main effect 

of Delay, F(1,22) = 9.78, p < .01, ηp
2
 = .31, was qualified by a Delay × Valence interaction, 

F(1,22) = 14.02, p < .01, ηp
2
 = .39. Dependent t-tests revealed that negative feedback trials 

were associated with more positive mean amplitudes than positive feedback trials when 

feedback was delayed, t(22) = -2.95, p < .01, d = -0.32, but not when it was immediate, t(22) 

= 1.19, p = .25, d = 0.14.  

Subsequent memory analysis. The waveforms for positive and negative feedback 

pictures that were subsequently remembered or forgotten are depicted in Figure 2.2C. The 

analysis of the mean amplitudes in a 250 – 400 ms time window revealed no significant main 

effects of Valence or Memory, but a significant Valence by Memory interaction, F(1,22) = 

5.12, p < .05, ηp
2
 = .19. Mean amplitudes for positive FB hits were significantly more positive 

than for positive FB misses, t(22) = 2.25, p < .05, d = .19, whereas for negative FB hits and 

misses did not differ, t(22) = -1.46, p = .16, d = -.10. An analogous analysis of the FRNpeak 

amplitudes yielded no significant effects, all p-values > .12. 



34 

 

 



35 

 

Figure 2.2: Feedback-locked ERP waveforms recorded in the learning phase (A), negative 

minus positive feedback difference waves (B), and waveforms associated with subsequently 

remembered and forgotten feedback pictures (C) at electrode FCz. Shaded areas indicate the 

time windows used for the detection of P200/N200 peak amplitudes (150 – 400 ms) and 

FRNdiff peak and mean amplitudes (250 – 400 ms). Waveforms associated with correct 

memory decisions in the test phase are shown for two representative frontal and parietal 

electrodes (D). Shaded areas indicate the time windows in which early (300 – 500 ms) and 

late (500 – 700 ms) old/new effects were analyzed. 

2.3.2.2 ERPs in the Test Phase 

Waveforms for correct rejections, positive FB hits, and negative FB hits at a frontal and 

parietal recording site are shown in Figure 2.2D. Early and late old/new effects were analyzed 

in 300 – 500 or 500 – 700 ms time windows, respectively. Mean amplitudes from anterior and 

posterior electrodes were submitted to three (Side: Left, middle, right) by three (Item Status: 

Correct rejections, negative FB hits, positive FB hits) ANOVAs. In the early time window, 

mean amplitudes at anterior electrodes showed a marginally significant main effect of Item 

Status, F(2,44) = 3.19, p = .05, ηp
2
 = .13. Based on our initial hypothesis, we expected to find 

an early frontal old/new effect only for positive FB hits, therefore we conducted follow-up t-

tests that revealed more positive mean amplitudes for positive FB hits than for correct 

rejections, t(22) = 2.60, p < .05, d = 0.18. The difference between negative FB hits and correct 

rejections was not significant, t(22) = 1.30, p = .21, d = 0.11, just as the difference between 

positive FB hits and negative FB hits, t(22) = 1.18, p = .25, d = 0.08. There was no interaction 

between Item Status and Side, indicating that early old/new effects did not differ in 

amplitudes at left, middle, and right anterior electrodes. In the late time window, mean 

amplitudes at posterior electrodes did neither show a significant main effect of Item Status, 

F(2,44) = 0.80, p = .46, ηp
2
 = .04, nor a Side by Item Status interaction, F(4,88) = 1.94, p  = 

.11, ηp
2
 = .08. Taken together, consistent with our initial hypothesis, an early frontal old/new 

effect was found for positive FB hits, but not for negative FB hits. In contrast, conclusive 

evidence for a late parietal old/new effect was obtained in neither condition. 
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2.4 Discussion 

In Experiment 1, we used ERPs to examine the consequences of feedback timing for the 

incidental episodic encoding and subsequent retrieval of positive and negative feedback 

events employing a learning paradigm that allows for an effective control of intentional 

learning effects on feedback processing and memory encoding. In the probabilistic learning 

task, participants used feedback to learn associations between four Chinese characters and two 

responses. In a 70% feedback validity condition, feedback was more often valid than invalid 

and could be used for learning. A 50% feedback validity condition served as a control 

condition, wherein positive and negative feedback was presented equally often and learning 

was impossible. Feedback was provided with a short or long temporal delay, and task-

irrelevant pictures of indoor and outdoor scenes were randomly presented together with the 

feedback. After the learning task, recognition memory for the pictures was tested in a surprise 

memory test. As the pictures were presented together with the words denoting the feedback 

they did not convey any learning-related information to the participants. By this, our design 

allowed to explore the effects of feedback processing on memory encoding and to control for 

effects of learning intention that otherwise could have introduced motivational and attentional 

confounds (Murayama & Kitagami, 2014). Of course, attentional and motivational factors 

cannot be completely ruled out, but detaching the pictures from the feedback learning task is 

one important strategy to minimize their influence on memory encoding.  

As Foerde and Shohamy (2011) have demonstrated, learning from temporally delayed 

feedback relies both on striatal and hippocampal structures, which motivated us to 

hypothesize that pictures presented with long delayed feedback should be remembered better 

than those presented with shortly delayed feedback, whereas feedback learning should 

function equally well for shortly and long delayed feedback. The average performance in the 

70% feedback validity condition increased throughout the course of the learning phase and 



37 

 

did not differ between immediate and delayed feedback, suggesting that, when feedback 

learning was possible, participants were overall successful in learning the associations 

between the Chinese characters and the response buttons. To our surprise, however, we did 

not find better memory for pictures presented with long delayed feedback, as  reported by 

Foerde and Shohamy (2011). Two differences in the learning task between the present study 

and their study could account for the divergent results. Firstly, in the present study, pictures 

were irrelevant for the learning task and presented in addition to the words denoting feedback. 

In the study by Foerde and Shohamy (2011), the picture category signalised the valence of the 

feedback, i.e, outdoor scenes were presented as positive feedback, and indoor scenes as 

negative feedback. Thus, in order to use the feedback for learning, participants had to encode 

the picture category (outdoor or indoor scene), and this may have resulted  in stronger and/or 

more detailed memory traces than in the present study, in which  the mapping between picture 

category and feedback type was arbitrary. Secondly, in the Foerde and Shohamy (2011) study, 

on delayed feedback trials, the cue (a Chinese character) and the choice (a colored button) 

remained on the screen during the delay phase, whereas in the present study, cues and choices 

were not presented throughout the delay phase. This may have imposed higher working 

memory (WM) demands in the delayed feedback trials. As evident from studies that have 

shown detrimental effects on memory encoding under conditions of divided attention (e.g. 

Craik, Govoni, Naveh-Benjamin, & Anderson, 1996), memory encoding can be impaired by 

high WM load. Thus, higher WM demands for delayed feedback trials may have counteracted 

the encoding of the pictures, thereby eliminating the enhanced encoding of pictures presented 

with delayed feedback. 

Consistent with other ERP studies on feedback processing, we examined FRN 

amplitudes on the basis of negative minus positive feedback difference waves and on the basis 

of the original waveforms. Peak-to-peak measures of the FRN have been functionally related 
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to the violation of action-outcome expectations, irrespective of valence (Ferdinand et al., 

2012). In contrast, FRN measures based on negative minus positive feedback difference 

waves are by definition more closely related to differences in feedback valence and more 

strongly reflect variance related to the processing of positive feedback (Becker et al., 2014; 

Holroyd et al., 2008; see Proudfit, 2015, for a review).  

Several previous studies have reported a reduction of the FRN for temporally delayed 

feedback (Arbel et al., 2017; Peterburs et al., 2016; Weinberg, Luhmann, Bress, & Hajcak, 

2012; Weismüller & Bellebaum, 2016). As in the Peterburs et al. (2016) study, we found that 

feedback delay differentially affected difference wave-based and peak-to-peak measures of 

the FRN. While FRNpeak amplitudes were larger for long delayed than for shortly delayed 

feedback, we found a reduction of the FRNdiff for delayed feedback that was contingent on 

feedback utility. In other words, the FRNdiff was attenuated for delayed feedback in the 70% 

feedback validity condition, but not in the 50% validity condition. This contrasts with the 

results of Peterburs et al. (2016), who reported a gradual decrease of the FRNdiff with 

increasing feedback delay both in a 50% and a 75% feedback validity condition. However, 

Peterburs et al. (2016) used a more complex stimulus-response mapping in their associative 

learning task (six different characters were mapped on the two responses), which presumably 

made it more difficult for their participants to distinguish between the two validity conditions. 

Furthermore, while in their study correct responses were above chance level in the 75% 

feedback validity condition, this was already the case in the first block of their learning task, 

and correct responses did not increase over the course of the learning task. Therefore, 

participants may have ceased to use the feedback for learning after the first block. In contrast, 

in the present study, correct responses showed a linear increase across the blocks of the 

learning task (cf. Figure 2.1B), suggesting that participants continuously used the feedback for 
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learning. These two differences between the study by Peterburs et al. (2016) and the present 

study may account for the divergent results. 

Interestingly, specifically in the 70% validity – long delay condition, negative 

feedback was associated with more positive mean amplitudes than positive feedback between 

200 and 250 ms. Even though this is a post hoc finding that requires further investigation, it 

dovetails with the overall pattern of results. The timing of the effect suggests that it is 

functionally related to the FRNpeak and therefore reflects stronger expectancy violations for 

positive feedback trials in the 70% validity – long delay condition. In the present study, 

participants may have prioritized the processing of positive feedback, which is also in line 

with the finding that pictures presented with positive feedback were remembered better than 

those presented with negative feedback.  In further support of this interpretation, the effect 

occurred only in the 70% validity condition, where participants were able to form 

expectations about the outcomes. Taken together, besides replicating the finding that feedback 

delay differentially affects FRNdiff and FRNpeak amplitudes (Peterburs et al., 2016), the results 

of the present study show a temporal and functional dissociation of the two measures. 

Comparing feedback processing for subsequently remembered or forgotten pictures we 

found that successful encoding was associated with more positive going waveforms for 

positive, but not negative feedback pictures. Of note, this effect of successful memory 

encoding was revealed in the same time period between 250 and 400 ms in which the FRNdiff 

was most pronounced and was also largest at the FCz recording site at which largest FRN 

were obtained. In contrast, FRNpeak amplitudes did not differ as a function of subsequent 

remembering. This pattern of results is consistent with the view outlined above, that whereas 

the FRNpeak is related to the processing of expectancy violations (Ferdinand et al., 2012), the 

FRNdiff primarily reflects a reward positivity (Becker et al., 2014; Holroyd et al., 2008). As 

the observed subsequent memory effect resembles in its  spatiotemporal characteristics the 
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FRNdiff, we propose that it reflects positive reward prediction error signals that modulate 

memory encoding for events associated with positive feedback in this early time interval. 

Thus, positive feedback processing (as reflected in the FRNdiff) and successful memory 

encoding operate in parallel and covary systematically in this early time interval. Our data are 

not inconsistent with the view that feedback-related processing in the striatum and mnemonic 

processing in the hippocampus is initiated by the activity of dopaminergic midbrain structures 

(Foerde & Shohamy, 2011; Shohamy & Adcock, 2010). 

In the test phase, recognition memory was better for pictures presented with positive 

feedback and this was paralleled by higher behavioral estimates of familiarity for these 

pictures. No effect of feedback valence was found for recollection estimates. Based on the 

results by Eppinger et al. (2010), we hypothesized that the ERP correlate of familiarity (i.e., 

the early mid-frontal old/new effect) should be obtained for pictures associated with positive, 

but not negative feedback. Our results tentatively confirmed this prediction. However, the 

main effect of Item Status was only marginally significant and thus needs to be interpreted 

with caution. This finding lends further though tentative support to the view that familiarity 

plays a larger role for remembering pictures that were associated with positive feedback. To 

our knowledge, the present study for the first time reports converging evidence for familiarity 

on the basis of ROCs and ERP data in the same experimental study. Consistent with Eppinger 

et al. (2010), reward signals elicited during positive feedback processing increased memory 

strength for the pictures presented together with the feedback. It is conceivable that in the task 

used in the present study, young adults prioritized positive feedback processing. Previous 

studies have shown that dopamine levels affect reinforcement learning. For example, PD 

patients with depleted dopamine levels show a strong tendency to learn by avoiding negative 

outcomes (Frank et al., 2004). Similarly, older adults prioritize learning from negative 

feedback, which may be due to decreasing dopamine levels in old age (Frank & Kong, 2008). 
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Therefore, it is conceivable that participants in the present study prioritized learning from 

positive feedback due to high dopamine levels in young adulthood. Of course, since dopamine 

levels were not measured in the present study, this explanation has to be deemed speculative. 

A significant late left-parietal old/new effect was found for neither picture type, 

suggesting that in general, there were only low levels of recollection for the pictures. This 

finding contrasts with Eppinger et al. (2010), who reported a late left-parietal old/new effect 

that did not differ between pictures associated with rewards or losses. However, Eppinger et 

al. used an intentional learning paradigm in which objects were repeated serval times during 

learning. This led to high memory performance and presumably also to higher amounts of 

recollection as compared to the present study.  
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3 Experiment 2: Feedback Timing Modulates Interactions Between 

Feedback Processing and Memory Encoding 

In Experiment 2, a subsequent memory paradigm was employed to investigate how the 

incidental encoding of feedback pictures presented with a short or long temporal delay (500 

ms vs. 6500 ms) in a probabilistic learning task affects the ERP correlate of RPEs in feedback 

processing (i.e., the FRN). In an ensuing test phase, a surprise recognition memory test for the 

feedback pictures was conducted. FRN amplitudes measured in the feedback-locked ERPs 

recorded during the learning phase (FRNpeak) and in the negative minus positive feedback 

difference wave (FRNdiff) were compared for subsequently remembered and forgotten 

feedback pictures. A complementary model-based single trial analysis was conducted to 

validate models of the functional significance of the FRN. We also examined how interactions 

between shortly and long delayed feedback processing and incidental memory encoding affect 

feedback-locked N170 and P300 amplitudes in the learning phase. ERP old/new effects were 

used to examine effects of feedback delay on recognition memory for the feedback pictures. 

This study was published in Cognitive, Affective, & Behavioral Neuroscience, 20(2), 250-264 

(Höltje & Mecklinger, 2020). 

3.1 Introduction 

In Experiment 1, we did not find the expected effect of feedback delay on memory for the 

scene pictures presented together with the feedback (i.e., better memory for pictures presented 

with long delayed feedback than for those presented with shortly delayed feedback). Because 

the pictures were not relevant for the probabilistic feedback learning task, it is conceivable 

that the extent of processing allotted to the pictures was not sufficient to enable them to 

benefit from the hippocampal activity associated with delayed feedback processing. In 

Experiment 2, the picture category signalled the valence of the feedback (outdoor = positive, 
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indoor = negative) to ensure that participants needed to process the picture category in order 

to use the feedback for learning. 

The main goal of Experiment 2 was to investigate interactions between feedback-

based learning and memory encoding by focusing on the FRN as the electrophysiological 

correlate of reward prediction error signals in feedback processing. With regard to the FRN, 

we expected to replicate previous findings, namely that shortly delayed feedback is associated 

with larger FRNdiff amplitudes than long delayed feedback, and the reverse pattern (larger 

amplitudes for long delayed than short delayed feedback) applies to the FRNpeak.  

In recent years, there has been considerable debate about the question whether the 

FRN reflects the processing of reward prediction errors, a parameter that codes the reward 

value (positive or negative) and expectedness of an outcome. An alternative account states 

that the FRN is more sensitive to general expectancy violations irrespective of valence (e.g., 

Ferdinand et al., 2012; Oliveira, McDonald, & Goodman, 2007). Computational modeling is a 

promising method to decide between these accounts because it enables to compute trial-by-

trial estimates of prediction errors. In Experiment 2, a computational reinforcement learning 

model was used to estimate trial-by-trial reward prediction errors (RPEs). Best fits between 

RPEs and EEG activity in the time periods in which FRN effects are present would confirm 

that the FRN reflects the processing of RPEs. We also computed unsigned RPEs that code the 

expectedness of an outcome without taking into account its valence (better or worse than 

expected). These unsigned RPEs thereby constitute salience prediction errors (SPEs) that are 

largest when outcomes are highly unexpected irrespective of their valence. As we assumed 

that the FRNpeak is more sensitive to more general expectancy violations, we expected best fits 

between SPEs and EEG activity in the FRNpeak time interval. 

In addition, we also explored other ERP components elicited by feedback stimuli that 

have been shown to be sensitive to feedback delay manipulations, i.e., the N170 and the P300. 
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We expected long delayed feedback to elicit larger N170 amplitudes than shortly delayed 

feedback (Arbel et al., 2017). Furthermore, based on the results obtained in two recent studies 

(Wang, Chen, Lei, & Li, 2014; Weismüller & Bellebaum, 2016), we expected immediate 

feedback to elicit stronger P300 amplitudes than delayed feedback. 

Another aim of the present study was to explore the effects of feedback delay on the 

retrieval of feedback events. Even though previous studies have shown that reward or positive 

feedback selectively boosts fast and context-free familiarity-based remembering and 

selectively modulates the mid-frontal old/new effect (Eppinger et al., 2010; Höltje & 

Mecklinger, 2018), it is less clear how feedback timing affects memory retrieval. Previous 

studies have found that delayed feedback processing is associated with an involvement of the 

hippocampus (Foerde & Shohamy, 2011; Lighthall et al., 2018). Because recollection relies 

on the hippocampus (Eichenbaum et al., 2007) we expected long delayed feedback pictures to 

be associated with a stronger late parietal old/new effect than shortly delayed feedback 

pictures. 

3.2 Method 

3.2.1 Participants 

Fifty-eight healthy young adults participated in the experiment. All participants were German 

native speakers, had normal or corrected-to-normal vision and no self-reported neurological 

or psychiatrical conditions. The experimental procedures were carried out in accordance with 

the Declaration of Helsinki and approved by the ethics board of the Faculty of Human and 

Business Sciences at Saarland University. Participants gave their informed consent before the 

experiment and received money (8 € per hour) or course credit as a compensation for their 

participation. Fourteen participants had to be excluded from all analyses because they did not 

learn the associations in the learning phase (5), as determined by their performance in the 
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final block of the probabilistic learning task (see 2.3), or performed at chance level in the test 

phase (9). The incidental nature of memory encoding in the probabilistic learning task may 

have increased task difficulty and thereby contributed to the relatively high number of 

participants excluded due to poor recognition performance. One further participant had to be 

excluded because of a technical error. Thus, the behavioral analyses are based on data from 43 

participants (36 female, 36 right-handed). Their age ranged between 19 and 30 years, with a 

median age of 23 years. Due to the exclusion criteria for ERP data, these analyses are based 

on a lesser number of data sets (see 2.5). 

3.2.2 Stimuli 

A total of 560 scene pictures, consisting of 280 indoor and 280 outdoor scenes, were used in 

this experiment. Four-hundred of these pictures were the same as in the Höltje and 

Mecklinger (2018) study. One hundred and sixty additional scene pictures were collected 

from various free internet sources. The size of the pictures was scaled to a width of maximal 

600 pixels and a height of maximal 450 pixels. 

3.2.3 Procedure 

The preparations for the EEG recording took about 45 minutes. Thereafter, participants were 

seated in front of a 19‘‘ computer screen with a resolution of 1280 x 1024 pixels in an 

electrically shielded and sound-attenuated booth. The experimental tasks were presented using 

E-Prime 2 software (Psychology Software Tools, Inc.) and participants used a keyboard for 

their responses. 

The experiment consisted of a learning phase (25 min), a test phase (35 min), and two 

quiet rest phases of 15 minutes each that took place before and after the learning phase. In the 

learning phase, participants learned associations between four different Chinese characters 

and two response keys in a probabilistic learning task with probabilistic feedback. Scene 
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pictures were presented as feedback, and the picture category designated the valence of the 

feedback with a fixed mapping for all participants (outdoor = correct, indoor = incorrect; cf. 

Foerde & Shohamy, 2011). The learning phase was followed by one block in which 

participants continued performing the task without feedback. The performance in this block 

served as a criterion for learning success, and participants who performed at chance level in 

this block were excluded from all analyses (see 3.2.1). In the test phase that followed 

approximately twenty minutes after the learning phase, recognition memory for the scene 

pictures was tested in a surprise memory test. 

3.2.3.1 Learning Phase 

Four different Chinese characters (汉,礼,归,仗) were used in the probabilistic learning task, 

with two characters assigned to each of the two feedback delay conditions (short: 500 ms, 

long: 6500 ms). The assignment of characters and conditions was balanced across subjects. 

Every character was associated with one of two responses (the „c“- and „n“-keys of the 

keyboard). Participants were instructed to learn the associations by trial and error and to use 

the feedback for this purpose. Feedback was always presented with 70% validity, meaning 

that when participants responded with the correct (incorrect) button, they received positive 

(negative) feedback in seven out of ten times. Participants were informed that the feedback 

would not always be valid, but the instructions emphasized that the feedback would be valid 

most of the time, and that it was possible to use the feedback for learning. Overall, there were 

200 trials, which were divided into five blocks of 40 trials each. Each character was presented 

ten times per block, in pseudorandomized order, so that no character was repeated on the next 

trial, and not more than three characters from the same delay condition were presented in 

direct succession. Participants were given eight practice trials before they started working on 

the task. The scene pictures were divided into two lists of 280 pictures each (140 outdoor and 

140 indoor scenes). The pictures from one of these lists were used as feedback pictures in the 
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learning phase, and the pictures from the other list served as lures in the ensuing memory test. 

The assignment of the two lists to the feedback or lure function was balanced across subjects. 

Each picture was presented only once during learning, but not every picture from the list was 

necessarily used as a feedback picture. The reason for this is that the number of pictures 

presented from one category (indoor or outdoor scene) ultimately depended on the number of 

correct responses given by the participant. Importantly, even if a participant’s responses were 

100% correct (incorrect), no more than 140 outdoor (indoor) scene pictures were presented. 

The reason for this is that feedback was presented with 70% validity, as stated above. 

A schematic of the trial procedure is depicted in Figure 3.1A. Each trial of the 

probabilistic learning task started with a central fixation cross (500 ms), followed by a 

Chinese character that was presented in the centre of the screen. In the bottom left and right 

corners of the screen, a blue and a yellow button were presented. The buttons represented the 

left and right response keys. As soon as the participant responded with one of the keys, the 

chosen button remained on the screen, and the other button disappeared. At the same time, the 

character was surrounded by a frame of the same color as the chosen button. This screen 

served to make the choice salient and was shown for a duration defined by the delay condition 

(short: 500 ms, long: 6500 ms). If the participants did not respond within 1500 ms after onset 

of the Chinese character, they were informed that their response was too slow and the trial 

was repeated. The delay period was followed by a central fixation cross (500 ms) and a 

feedback picture (1500 ms). After the feedback, a blank screen was presented for 1000 ms 

before the next trial started. 

Performance in the learning phase was assessed as the proportion of correct responses 

in the probabilistic learning task and in the final block of the task without feedback. A 

variance-stabilizing transformation (arcsine transformation; Winer, Brown, & Michels, 1991) 
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was applied to the proportions of correct responses before submitting them to statistical 

analyses. 

3.2.3.2 Test Phase 

The 200 feedback pictures from the learning phase were presented together with 200 new 

scene pictures in pseudorandomized order, so that not more than three adjacent target or lure 

items were presented in direct succession. Moreover, the same number of target pictures from 

each category (outdoor and indoor) was presented as lure pictures. Participants were admitted 

a short break after every 80 trials. In the beginning of each trial, a fixation cross was presented 

with a duration jittered between 1000 and 1500 ms, followed by a picture presented for 1500 

ms. Participants were instructed to decide for every picture whether it was old or new using a 

six-step confidence scale („sure old“, „probably old“, „maybe old“, „maybe new“, „probably 

new“, „sure new“). After the presentation of the picture, a blank screen appeared for 1000 ms. 

Then, the question „Old or New?“ appeared, together with a depiction of the rating scale. The 

old/new decision could be given as soon as the picture was presented. As soon as participants 

made a response, a blank screen was shown for 1000 ms before the next trial started. 

To assess memory performance, Pr scores (Snodgrass & Corwin, 1988) were 

calculated as the difference between the proportions of correct and incorrect „old“-decisions 

(hits and false alarms). For this purpose, the corresponding three steps of the confidence scale 

were collapsed into „old“- and „new“-decisions. In addition, high-confidence Pr scores were 

calculated based on „sure“- and „probably“-decisions only. 

3.2.4 Computational Modeling 

A standard reinforcement learning model (𝑄-learning; Watkins, 1989) with two free 

parameters (learning rate 𝛼 and inverse temperature β) was fitted to each participant’s 

observed choices in the learning phase (Daw, 2011). The 𝑄-value was initialized at a value of 
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0.5 on the first trial.  The relationship between 𝑄-values and observed choices was assumed to 

follow a softmax distribution. The learning rate α and inverse temperature β were estimated 

using a maximum likelihood estimation procedure. The MATLAB function fmincon was used 

to identify parameter values that minimized the inverse data likelihood (which is equal to 

maximizing the data likelihood). The estimation of the free parameters was iterated twenty 

times with random starting points and, as recommended by Daw (2011), constrained by prior 

distributions that penalized the data likelihood for extreme parameter values. The prior 

distribution used for the learning rate α was a Beta distribution with the shape parameters α = 

1.1 and β = 1.1. This distribution puts a strong penalty on learning rate values smaller than 0 

and larger than 1. The inverse temperature β was constrained by a Gamma distribution with 

the shape parameter α = 1.2 and the scale parameter θ = 5. This distribution puts a strong 

penalty on temperature values that are either smaller than or much larger than zero. For every 

participant, the parameter pair that yielded the highest likelihood was selected. These optimal 

parameters were averaged across subjects and used as model parameters. Initially, two 

separate models were fit to the short and long delay conditions, the parameters of which are 

given in Table 3.1. Because the estimated parameters and likelihoods did not differ between 

the delay conditions (learning rate α: t(42) = 0.24, p = .81, d = 0.05; inverse temperature β: 

t(42) = 0.46, p = .65, d = 0.09; likelihood: t(42) = 0.26, p = .79, d = 0.04), a combined model, 

collapsed across delay conditions, was fit to the data (cf. Foerde and Shohamy, 2011). 

Likelihood ratio tests (Daw, 2011) showed that all models provided a better fit to the data than 

a chance model. Individual datapoints for estimated parameters and model fits are provided in 

the supplementary online material. The combined model parameters were then used to 

calculate trial-by-trial estimates of reward prediction errors (RPEs) for every subject. Salience 

prediction errors (SPEs) were computed by calculating the absolute values of each RPE 

estimate. 
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Table 3.1: Reinforcement learning model parameters. 

 

Short Delay  Long Delay  Combined 

Mean SEM  Mean SEM  Mean SEM 

Learning rate α 0.22 0.04  0.21 0.03  0.16 0.03 

Inverse temperature β 10.37 1.25  9.72 1.10  11.13 1.18 

Pseudo-R
2
 0.32 0.05  0.30 0.05  0.29 0.05 

Model fit  

(log likelihood) 

-47.30 3.75  -48.35 3.72  -98.79 7.58 

Chance model fit -69.31   -69.31   -138.63  

Likelihood ratio test p < .001  p < .001  p < .001 

 

3.2.5 EEG Recording and Processing 

The EEG was recorded during the learning phase and the recognition memory test from 28 

Ag/AgCl scalp electrodes embedded in an elastic cap with positions according to the 10-20 

electrode system (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC3, FCz, FC4, FC6, T7, C3, Cz, C4, 

T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, O1, O2, and A2). The vertical and horizontal EOG 

was recorded from four electrodes placed above and below the right eye and at the canthi of 

the left and right eyes. The electrodes were on-line referenced to a left mastoid electrode (A1), 

and AFz was used as a ground electrode. The EEG was amplified with a BrainAmp DC 

amplifier (Brain Products GmbH) from 0.016 to 250 Hz and digitized at 500 Hz. For off-line 

processing of the EEG data, the EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-

Calderon & Luck, 2014) toolboxes for Matlab (MathWorks, Inc.) were used. Electrodes were 

re-referenced to the average of the left and right mastoid electrodes. The data from the 

learning phase and from the recognition memory test were bandpass-filtered at 0.1 – 30 Hz 

using a second order Butterworth filter. Segments were extracted from the learning phase data 

from 200 ms before feedback onset to 800 ms thereafter, and segments from 200 ms before 

picture onset to 1500 ms thereafter were extracted from the test phase data. The segments 
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were baseline-corrected based on activity during the 200 ms before feedback or picture onset. 

Independent component analysis (ICA) was applied to the segmented data to correct for 

ocular artifacts. Components associated with ocular artifacts were identified and rejected 

manually based on their activations and topographies. Segments containing artifacts were 

rejected using the following criteria: A minimal and maximal allowed total amplitude of ± 

100 µV, a maximal difference of values of 150 µV during intervals of 200 ms (window steps 

of 100 ms), a maximal allowed voltage step of 30 µV/ms, and maximal 100 ms activity with a 

deviation of less than 0.4 µV from the maximum or minimum voltage in the segment. On 

average, 1.25 % and 1.6 % of all segments were rejected in the learning phase and the test 

phase, respectively. One data set was excluded from the learning phase ERP analysis because 

of more than 25 % rejected segments. For the same reason, two data sets were excluded from 

the test phase ERP analysis. Grand average waveforms were low-pass filtered at 10 Hz for 

illustration purposes. 

3.2.5.1 ERPs in the Learning Phase 

ERPs were averaged for every combination of the factors Delay (short, long), Valence 

(positive, negative), and Memory (hits, misses). Feedback pictures judged as being “old” or 

“new” in the test phase were counted as hits and misses, respectively. For this purpose, the 

three corresponding steps of the confidence scale were collapsed into “old”- and “new”-

decisions. Six data sets had to be excluded from this analysis because there were not enough 

artifact-free trials (< 7) to calculate reliable ERPs in one of the conditions. For the purpose of 

peak detection, the subject average waveforms were low-pass filtered at 10 Hz. 

Because FRN effects are typically largest at frontocentral sites (Holroyd & Coles, 

2002; Miltner et al., 1997), FRN measures were analyzed at electrode FCz. The FRN was 

quantified in two ways: The FRNpeak was measured according to an algorithm described in 

Holroyd et al. (2003; see Ferdinand et al., 2012; Holroyd et al., 2006; Peterburs et al., 2016, 
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for studies that used a similar approach) as the difference between the N200 peak (180 – 300 

ms) and the preceding P200 peak (140 – 200 ms). The FRNdiff was measured as the peak 

amplitude between 300 and 450 ms in the negative minus positive feedback difference wave 

(cf. Becker et al., 2014; Peterburs et al., 2016; Weismüller and Bellebaum, 2016). 

For the N170 quantification, electrodes were re-referenced to the average of all 

electrodes (cf. Arbel, Hong, Baker, & Holroyd, 2017). This was done because the mastoid 

electrodes are located in close proximity to the occipito-temporal electrode sites at which the 

N170 is usually largest, which complicates the measurement of the N170 (Luck, 2014). N170 

amplitudes were quantified as the difference between the N170 peak (140 – 200 ms) and the 

preceding P100 peak (90 – 150 ms) at electrodes P7 and P8. 

As determined by an inspection of the waveforms, the feedback-locked P300 peaked 

around 500 ms at electrode Pz. P300 mean amplitudes between 450 and 600 ms were 

analyzed at electrodes Fz and Pz. 

3.2.5.2 Single Trial EEG Analysis 

From all artifact-free EEG segments recorded in the learning phase, single trial mean 

amplitudes at electrode FCz were extracted in 32 time bins of 25 ms duration each, ranging 

from 0 to 800 ms after stimulus onset. To ensure that the results of the single trial EEG 

analysis were based on the same data as the ERP results in the learning phase, we restricted 

this analysis to the same 36 subjects that were included in the ERP analysis. For every 

subject, standardized trial-by-trial RPE and SPE estimates derived from the reinforcement 

learning model (see 2.4) were used to predict standardized single-trial mean amplitudes across 

the experimental conditions in separate linear regression models for every time bin. The 

correlations (beta weights) between model-derived RPEs/SPEs and single trial EEG 

amplitudes were then submitted to a statistical analysis. 
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3.2.5.3 ERPs in the Test Phase 

ERPs were averaged for every combination of the factors Valence (positive, negative) and 

Item Status (short delay hits, long delay hits, correct rejections). One data set had to be 

excluded from this analysis because there were not enough artifact-free trials (< 7) to 

calculate reliable ERPs in one of the conditions. Mean amplitudes were analyzed in two 

adjacent time windows, ranging from 300 – 500 ms and 500 – 1100 ms. The early time 

window is typically used for the analysis of FN400 effects in ERP studies of recognition 

memory (see Rugg & Curran, 2007, for a review). The later 500 – 1100 ms time window was 

chosen because, as evident from Figure 3.3C, an inspection of the waveforms suggested that 

the late old/new effect continued until approximately 1100 ms at anterior electrodes. In order 

to cover frontal electrode sites, where FN400 effects are largest as well as parietal electrode 

sites at which late old/new effects are typically most pronounced, mean amplitudes were 

analyzed at 15 electrodes broadly distributed across the scalp (F3, Fz, F4, FC3, FCz, FC4, C3, 

Cz, C4, CP3, CPz, CP4, P3, Pz, P4). 

3.2.6 Statistical Analyses 

All statistical analyses were conducted using IBM SPSS software. Behavioral and 

electrophysiological measures were analyzed using repeated measures ANOVAs and 

dependent t-tests. Greenhouse-Geisser corrected degrees of freedom and p-values are reported 

whenever the assumption of sphericity was violated. Significant effects were decomposed 

using lower level ANOVAs and dependent t-tests. As measures of effect sizes, partial eta 

squared (ηp
2
) are reported for ANOVA results. For independent t-tests, Cohen’s d was 

calculated. For dependent t-tests, d was calculated according to Dunlap, Cortina, Vaslow, & 

Burke (1996), taking into account the correlations between measurements. Error margins in 

graphs represent 95% confidence intervals based on the mean square error of the depicted 

effect (Jarmasz & Hollands, 2009). 
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3.3 Results 

3.3.1 Performance in the Learning Phase 

Correct responses in the probabilistic learning task are depicted as a function of Delay and 

Block in Figure 3.1B and were analyzed in a two (Delay: Short, long) by five (Block) 

ANOVA. A main effect of Block was found, F(3.04,127.56) = 70.08, pcorr < .001, ηp
2
 = .63, 

indicating that the frequency of correct responses changed during the course of the learning 

task. Subsidiary t-tests revealed that correct responses increased from the first to the second 

block, t(42) = 7.37, p < .001, d = 0.91, from the second to the third block, t(42) = 4.22, p < 

.001, d = 0.52, from the third block to the fourth, t(42) = 2.61, p < .05, d = 0.33, and from the 

fourth block to the fifth, t(42) = 2.03, p < .05, d = 0.24. No main effect of Delay, F(1,42) < 1, 

p = .63, ηp
2
 = .01, and no Delay by Block interaction, F(4,168) < 1, p = .96, ηp

2
 = .00, were 

found. Correct responses in the final block of the probabilistic learning task (without 

feedback) are shown in Figure 3.1B and did not differ between the two Delay conditions, 

t(42) = 0.98, p = .33, d = 0.20. 
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Figure 3.1: Trial procedure in the probabilistic learning task (A): At the beginning of each 

trial, one of four Chinese characters was presented. As soon as the participant made a choice, 

it was displayed for a duration defined by the delay condition (short: 500 ms, long: 6500 ms). 

Outdoor (indoor) scene pictures were presented as positive (negative) feedback. Behavioral 

results in the learning phase (B) and in the test phase (C). Beeswarm plots show individual 

datapoints in addition to means and confidence intervals. 

3.3.2 Recognition Memory in the Test Phase 

Pr scores and high-confidence Pr scores are given as a function of Delay and Valence in 

Figure 3.1C. Pr scores were analyzed in a two (Delay: Short, long) by two (Valence: Positive, 

negative) ANOVA. There was a significant main effect of Delay, F(1,42) = 5.08, p < .05, ηp
2
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= .11, driven by higher Pr scores for long delayed feedback pictures. The main effect of 

Valence was also significant, F(1,42) = 40.72, p < .001, ηp
2
 = .49, reflecting higher Pr scores 

for negative (indoor) than for positive (outdoor) feedback pictures. The Delay by Valence 

interaction was not significant, F(1,42) < 1, p = .56, ηp
2
 = .01. 

The analysis of the high-confidence Pr scores did not yield a significant main effect of 

Delay, F(1,42) = 3.49, p = .07, ηp
2
 = .08, but only a strong main effect of Valence, F(1,42) = 

40.23, p < .001, ηp
2
 = .49, reflecting higher scores for negative (indoor) than for positive 

(outdoor) feedback pictures. The Delay by Valence interaction was not significant, F(1,42) < 

1, p = .41, ηp
2
 = .02. 

3.3.3 ERPs in the Learning Phase 

3.3.3.1 FRNpeak and FRNdiff 

Feedback-locked ERPs in the learning phase are shown at electrode FCz as a function of 

Delay, Valence, and Memory in Figure 3.2A. The corresponding FRNpeak amplitudes were 

analyzed in a two (Delay: Short, long) by two (Valence: Positive, negative) by two (Memory: 

Hit, miss) ANOVA. This analysis yielded a significant main effect of Valence, F(1,35) = 

9.93, p < .01, ηp
2
 = .22, driven by more negative amplitudes for negative feedback pictures 

than for positive feedback pictures. Notably, a significant Delay by Memory interaction was 

obtained, F(1,35) = 4.40, p < .05, ηp
2
 = .11. Long delayed feedback pictures that were 

subsequently forgotten elicited more negative FRNpeak amplitudes than those that were 

subsequently remembered, t(35) = 2.16, p < .05, d = 0.14. In contrast, no difference was found 

between subsequently remembered and forgotten feedback pictures that were presented with a 

short delay, t(35) = -1.28, p = .21, d = -0.10. No further ANOVA effects reached significance, 

all p-values > .40. 
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 Negative minus positive feedback difference waves are shown as a function of Delay 

and Memory in Figure 3.2B. FRNdiff peak amplitudes were analyzed in a two (Delay: Short, 

long) by two (Memory: Hit, miss) ANOVA that yielded a significant main effect of Delay, 

F(1,35) = 8.53, p < .01, ηp
2
 = .20, driven by more negative amplitudes for shortly delayed 

feedback pictures than for long delayed feedback pictures. No significant main effect of 

Memory, F(1,35) < 1, p = .50, ηp
2
 = .01, and no Delay by Memory interaction, F(1,35) < 1, p 

= .41, ηp
2
 = .02, were obtained. 

 

Figure 3.2: FRN and single trial EEG results in the learning phase. Feedback-locked ERP 

waveforms (A) and negative minus positive feedback difference waves (B) at electrode FCz. 

Shaded areas indicate the time windows used for the detection of P200/N200 peak amplitudes 

(140 – 300 ms) and FRNdiff peak amplitudes (300 – 450 ms). Mean correlations between 

reward and salience prediction errors (RPE/SPE) and single trial EEG mean amplitudes at 

electrode FCz (C). Shaded areas indicate the time windows in which significant correlations 

between single trial EEG mean amplitudes and RPE (150 – 300 ms, 350 – 425 ms, 550 – 625 

ms) and SPE (150 – 275 ms) estimates were obtained. Beeswarm plots show individual 

datapoints in addition to means and confidence intervals. 

3.3.3.2 N170 

Feedback-locked waveforms at electrodes P7 and P8 are depicted in Figure 3.3A. N170 

amplitudes were analyzed in a two (Delay: Short, long) by two (Memory: Hit, Miss) by two 
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(Electrode: P7, P8) ANOVA that yielded a significant main effect of Delay, F(1,35) = 9.13, p 

< .01, ηp
2
 = .21, reflecting larger N170 amplitudes elicited by long delayed than by shortly 

delayed feedback pictures. No further effects reached significance, all p-values > .16. 

3.3.3.3 P300 

Feedback-locked waveforms at electrode Pz are shown in Figure 3.3B. Mean amplitudes in 

the 450 – 600 ms time window were analyzed in a two (Delay: Short, Long) by two (Valence: 

Positive, Negative) by two (Memory: Hit, miss) by two (Electrode: Fz, Pz) ANOVA that 

yielded significant main effects of Delay, F(1,35) = 5.25, p < .05, ηp
2
 = .13, and Valence, 

F(1,35) = 5.41, p < .05, ηp
2
 = .13, qualified by a Delay by Valence by Electrode interaction, 

F(1,35) = 8.28, p < .01, ηp
2
 = .19. No further effects involving the experimental factors 

reached significance, all p-values > .09. To disentangle the significant triple interaction, mean 

amplitudes at electrodes Fz and Pz were analyzed in separate ANOVAs including the factors 

Delay, Valence, and Memory. At electrode Fz, a significant main effect of Valence was 

obtained, F(1,35) = 9.76, p < .01, ηp
2
 = .22, reflecting more positive amplitudes elicited by 

positive than by negative feedback pictures. No further effects reached significance, all p-

values > .08. At electrode Pz, more positive amplitudes were elicited by shortly delayed than 

by long delayed feedback pictures, F(1,35) = 4.46, p < .05, ηp
2
 = .11. No further effects 

reached significance, all p-values > .10. 

3.3.4 Correlations Between Prediction Error Estimates and EEG Activity in the 

Learning Phase 

The analysis of FRN amplitudes in the learning phase were complemented by a model-based 

single trial EEG analysis that was aimed at validating models of the functional significance of 

the FRNpeak and FRNdiff measures used in the present study. High correlations between EEG 

amplitudes and trial-by trial estimates of reward prediction errors (RPEs) in time windows in 
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which FRNpeak and FRNdiff effects were present would confirm that EEG activity in these time 

windows reflects the processing of RPEs. High correlations between EEG amplitudes and 

salience prediction errors (SPEs) in the FRNpeak and FRNdiff time windows would indicate that 

EEG activity in these time windows is sensitive to general expectancy violations irrespective 

of valence. 

Mean correlations between model-derived trial-by-trial RPE and SPE estimates and 

feedback-locked single trial EEG amplitudes at electrode FCz are depicted as a function of 

time in Figure 3.2C. Correlations between RPEs and EEG activity were marked by two 

distinctive positive peaks around 200 and 400 ms, indicating that large negative RPEs (as 

elicited by unexpected negative feedback) were associated with more negative EEG 

amplitudes around these time points. Correlations between SPEs and EEG activity showed a 

pronounced negative peak around 200 ms, suggesting that unexpected feedback, irrespective 

of valence, was associated with more negative EEG amplitudes around this time point. These 

observations were confirmed by a series of t-tests testing the significance of the mean 

correlations between RPEs/SPEs and EEG activity in each of the 32 time bins. When 

correcting for multiple comparisons (α = 0.0016), significant correlations between EEG 

amplitudes and RPE estimates were obtained in the 150 – 300 ms and the 350 – 425 ms time 

intervals in which FRNpeak and FRNdiff effects were present, and in a later (550 – 625 ms) time 

interval. Significant correlations between EEG amplitudes and SPEs were only present in the 

150 – 275 ms time window in which the FRNpeak was measured.  

Taken together, EEG activity in the FRNpeak and FRNdiff time windows reflected the 

processing of RPEs, as evidenced by high correlations between EEG amplitudes and RPE 

estimates. In contrast, significant correlations between EEG amplitudes and SPEs were 

confined to the early FRNpeak time window, which suggests that EEG activity in this time 
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window was sensitive to general expectancy violations irrespective of whether the feedback 

was better (positive) or worse (negative) than expected.  

3.3.5 ERPs in the Test Phase 

ERPs waveforms associated with correct memory decisions in the recognition memory test 

are depicted in Figure 3.3C. Mean amplitudes in the 300 – 500 ms and 500 – 1100 ms time 

windows were analyzed in two separate four-way ANOVAs including the factors Valence 

(positive, negative), Item Status (short delay hits, long delay hits, correct rejections), Antpos 

(F = frontal, FC = frontocentral, C = central, CP = centroparietal, P = parietal), and Side (left, 

midline, right). 

In the 300 – 500 ms time window, a significant main effect of Valence was obtained, 

F(1,41) = 29.60, p < .001, ηp
2
 = .42, reflecting more positive amplitudes elicited by positive 

feedback pictures than by negative ones. The Valence by Side interaction was only marginally 

significant, F(1.58,64.73) = 3.36, pcorr = .05, ηp
2
 = .08. No further effects involving the 

experimental factors reached significance, all p-values > .25. 

In the 500 – 1100 ms time window, significant main effects of Valence, F(1,41) = 

45.76, p < .001, ηp
2
 = .53, and Item Status, F(2,82) = 10.72, p < .001, ηp

2
 = .21, were obtained, 

qualified by significant interactions between Valence and Antpos, F(1.27,51.90) = 4.38, pcorr 

< .05, ηp
2
 = .10, Item Status and Antpos, F(2.67,109.37) = 6.80, pcorr < .01, ηp

2
 = .14, Valence 

and Side, F(1.64,67.24) = 6.67, pcorr < .01, ηp
2
 = .14, and Valence, Antpos, and Side, 

F(4.97,203.80) = 2.69, pcorr < .05, ηp
2
 = .06. No further effects involving the experimental 

factors reached significance, all p-values > .26. Because we were chiefly interested in the 

effect of Item Status, which did not interact with Valence, we further explored the significant 

Item Status by Antpos interaction and conducted separate one-way ANOVAs including the 

factor Item Status for each level of the Antpos factor. The main effect of Item Status was 
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significant at each level of the Antpos factor. Effect sizes were largest over frontocentral (ηp
2
 

= .21) and smallest over parietal electrode sites (ηp
2
 = .18). Subsidiary t-tests revealed that 

short delay hits did not differ significantly from correct rejections, all p-values > .07. In 

contrast, long delay hits were associated with more positive mean amplitudes than correct 

rejections at each level of the Antpos factor. Effect sizes were largest at frontal (d = 0.32) and 

smallest at parietal electrodes (d = 0.15). Notably, long delay hits were also associated with 

more positive mean amplitudes than short delay hits. These effects were obtained at each level 

of the Antpos factor, but here effect sizes were largest at parietal electrodes (d = 0.24) and 

smallest at frontal electrodes (d = 0.18). 

 

Figure 3.3: Feedback-locked waveforms in the learning phase at electrodes P7 and P8 (A). 

Shaded areas indicate the time window used for the detection of P100/N170 peak amplitudes 

(90 – 200 ms). Feedback-locked waveforms in the learning phase at electrode Pz (B). Shaded 
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areas indicate the 450 – 600 ms time window in which P300 mean amplitudes were analyzed. 

ERP waveforms associated with correct memory decisions in the test phase are shown for 

three representative frontal, central, and parietal electrodes (C). Shaded areas indicate the 300 

– 500 ms and 500 – 1100 ms time windows used to analyze old/new effects. Beeswarm plots 

show individual datapoints in addition to means and confidence intervals. 

3.4 Discussion 

In Experiment 2, ERPs were used to investigate interactions between feedback-based learning 

and concurrent incidental memory encoding of feedback pictures in a probabilistic learning 

task. In the learning phase, participants used feedback pictures that were provided with either 

a short (500 ms) or long (6500 ms) temporal delay to learn associations between Chinese 

characters and motor responses. Based on evidence from neuroimaging studies suggesting 

that the processing of temporally delayed feedback engages the MTL-based declarative 

learning system, we used a feedback delay manipulation to establish a short delay condition in 

which feedback processing should strongly rely on the procedural learning system, and a long 

delay condition in which the declarative learning system should be more involved in feedback 

processing. As evidenced by the performance in the probabilistic learning task, participants 

were able to use the feedback for learning the stimulus-response associations and, consistent 

with previous studies (e.g., Foerde & Shohamy, 2011; Weismüller & Bellebaum, 2016), 

learned equally well in the short and long feedback delay conditions. 

The major goal of Experiment 2 was to explore how feedback-based learning with 

long (and short) feedback delay interacts with memory encoding. In previous studies 

investigating the effects of feedback delay on memory for feedback pictures, delayed 

feedback pictures were associated with a higher proportion of correct high-confidence 

memory responses (Foerde & Shohamy, 2011; Lighthall et al., 2018). Consistent with these 

studies, and in support of the view that the involvement of the declarative memory system 

boosts memory for feedback events, we found that long delayed feedback pictures were 

remembered better than shortly delayed feedback pictures.  
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Of note, it has been argued that studies investigating interactions between reward 

learning and memory encoding need to control for motivational and attentional confounds that 

could affect memory encoding (Murayama & Kitagami, 2014). In the present study, these 

confounds were avoided by the use of an incidental learning paradigm. Furthermore, the fixed 

assignment of picture and feedback categories (outdoor = positive, indoor = negative) ensured 

that participants needed to process the picture content in order to use the feedback for 

learning. As these important boundary conditions were met in the present study as well in 

previous studies investigating the effects of feedback timing on memory (Foerde & Shohamy, 

2011; Lighthall et al., 2018) we feel save to conclude that they reflect the involvement of 

different neural systems for immediate and delayed feedback processing. 

Consistent with previous ERP studies, we analyzed FRN amplitudes in the feedback-

locked ERP waveforms (FRNpeak) and in the negative minus positive feedback difference 

waves (FRNdiff). Whereas the FRNpeak primarily captures variance related to the N200 and has 

been functionally related to the general violation of action-outcome relationships irrespective 

of their valence (Ferdinand et al., 2012), the FRNdiff carries valence-related variance as 

reflected by the reward positivity (Holroyd et al., 2008; Proudfit, 2015). Prior studies 

investigating the effects of feedback timing on the FRN have found that whereas shortly 

delayed feedback is associated with larger FRNdiff amplitudes than long delayed feedback 

(e.g., Höltje & Mecklinger, 2018; Peterburs et al., 2016; Weismüller & Bellebaum, 2016), the 

reverse applies for the FRNpeak (Höltje & Mecklinger, 2018; Peterburs et al., 2016). 

Consistent with these studies, shortly delayed feedback elicited larger FRNdiff amplitudes than 

long delayed feedback. This finding confirms the view that the procedural learning system 

was strongly involved in the processing of shortly delayed feedback. Interestingly, in the 

present study, FRNpeak amplitudes did not differ between shortly delayed and long delayed 

feedback. Different from previous studies that have found increased FRNpeak amplitudes for 
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long delayed feedback (Höltje & Mecklinger, 2018; Peterburs et al., 2016), the cue (the 

Chinese character) and the choice (the colored button representing the response key) remained 

on the screen during the delay period of the feedback learning task, thereby lowering the 

working memory demands in the present study as compared to the aforementioned studies. It 

is conceivable that in the Peterburs et al. (2016) and Höltje & Mecklinger (2018) studies, 

higher working memory demands in the delayed feedback condition were associated with a 

stronger working memory-guided build-up of action-outcome expectations, the violation of 

which resulted in higher FRNpeak amplitudes. 

Comparing FRN measures for subsequently remembered or forgotten feedback 

pictures, we found that the FRNpeak was attenuated for subsequent hit responses relative to 

subsequent misses in the long feedback delay condition. This finding indicates that feedback 

processing and incidental memory encoding competed for neural processing resources, which 

is in principle consistent with a similar interaction reported by Wimmer et al. (2014). As the 

subsequent memory effect (SME) was only found for long delayed feedback, the processing 

of which has been shown to engage the hippocampus (Foerde & Shohamy, 2011; Lighthall et 

al., 2018), it is tempting to speculate that the SME reflects a competition for hippocampal 

processing resources. This conjecture is supported by the finding that no SME was found in 

the short delay condition. In contrast, Wimmer et al. (2014) found that successful memory 

encoding was associated with diminished reward processing as reflected in striatal RPE 

signals, which could reflect a competition between memory encoding and reward learning for 

striatal processing resources. Importantly, Wimmer and colleagues used a reward learning 

task with a short reward delay (1.5 seconds) in which presumably reward learning strongly 

relied on the striatum. Thus, the interaction between memory encoding and delayed feedback 

processing in the present study most likely reflects competition for different (hippocampal) 

processing resources than the one reported by Wimmer et al. (2014).  
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Because the functional significance of the FRN is still a matter of debate, the analysis 

of FRNpeak and FRNdiff amplitudes in the learning phase was complemented by a model-based 

single trial EEG analysis in which we explored how the processing of reward prediction errors 

(RPEs) and general expectancy violations irrespective of valence was reflected in the EEG 

signal. Using a computational reinforcement learning model, we computed trial-by-trial 

estimates of RPEs and fitted them to the EEG data. Our assumption was that if the FRN 

reflects the processing of RPEs, best fits between RPEs and EEG amplitudes should be 

obtained in the time windows in which FRN effects are present in the ERP waveform. This is 

exactly what we found: Reliable RPE correlations were selectively observed in the FRNpeak 

(140 – 300 ms) and FRNdiff (300 – 450 ms) time windows. This finding confirms the view that 

the FRN reflects the processing of RPE signals on the single trial level. Notably, an exception 

to this pattern of results was the cluster of significant RPE correlations in the 550 – 625 ms 

time period. Even though this result was not predicted, it is conceivable that correlations in 

this late time interval were related to the P300, which peaked around 500 ms at parietal 

electrodes in the present study. Further research is needed to clarify the functional 

significance of this finding. 

Different from signed RPEs, unsigned prediction errors or salience prediction errors 

(SPEs) distinguish between expected and unexpected outcomes without taking into account 

the valence of the prediction error. Based on the assumption that the FRNpeak is sensitive to 

this more general type of violation of action-outcome expectations, we hypothesized that best 

fits between model-derived SPEs and single trial EEG amplitudes should occur in the FRNpeak 

window. We found significant SPE correlations between 150 and 275 ms, where FRNpea 

effects occurred, but not in the later time windows in which correlations with the RPE 

dominated in the ERP waveforms. This finding confirms the view that the FRNpeak primarily 

reflects variance related to the N200 and by this indicates the salience (unexpectedness) of an 
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outcome irrespective of feedback valence. More generally, the results of the single trial EEG 

analysis provide further evidence in support of the view that the FRNpeak and the FRNdiff 

constitute functionally distinct ERP components reflecting different aspects of feedback 

processing, i.e., the processing of general expectancy violations and unexpected rewards, 

respectively. 

We also analyzed two ERP components that have recently been found to be sensitive 

to feedback delay manipulations, i.e., the N170 and the P300. We expected that delayed 

feedback should elicit larger N170 amplitudes than immediate feedback. Furthermore, if the 

N170 reflects the involvement of declarative memory processes it is conceivable that these 

processes interact with memory encoding. In the present study, delayed feedback pictures 

elicited larger N170 amplitudes, but no effects of successful memory encoding were obtained. 

Based on the extant data, it is difficult to make inferences about which precise declarative 

memory processes the N170 delay effect reflects. It is conceivable that the N170 elicited by 

delayed feedback is linked to an MTL-based process that binds together the reaction given by 

the participants and the temporally delayed feedback stimulus (Arbel et al., 2017; Foerde & 

Shohamy, 2011). 

Consistent with the studies by Wang et al. (2014) and Weismüller & Bellebaum 

(2016), we found that shortly delayed feedback pictures elicited larger P300 amplitudes than 

those presented with long feedback delay. Notably, in the two aformentioned studies the P300 

delay effect was significant at frontal electrodes, whereas we found a significant P300 delay 

effect at parietal, but not at frontal electrodes. The frontal P300 effects obtained in the studies 

by Wang et al. (2014) and Weismüller & Bellebaum (2016) resemble frontal slow wave 

activity associated with the maintenance of information in working memory (Ranganath & 

Paller, 1999, 2000; Werkle-Bergner, Mecklinger, Kray, Meyer, & Düzel, 2005). Consistent 

with the recent proposal that the feedback-locked parietal P300 reflects the updating of the 
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value assigned to an action (Fischer & Ullsperger, 2013; Ullsperger et al., 2014), the P300 

delay effect obtained in the present study could reflect stronger action value updating under 

short feedback delay conditions for the reaction given by the participant, potentially as a 

downstream consequence of the more pronounced feedback evaluation process reflected in 

the FRNdiff in this condition. 

Even though P300 amplitudes are often predictive of subsequent memory and reflect 

the encoding of item-specific details (Fabiani et al., 1986; Kamp, Bader, & Mecklinger, 2017; 

Karis, Fabiani, & Donchin, 1984), surprisingly no parietal subsequent memory effect (SME) 

was obtained in the present study. Interestingly however, as evidenced by the FRNpeak, an 

SME was obtained in the delayed feedback condition. ERPs elicited by delayed feedback 

pictures showed effects of successful memory encoding, albeit in an earlier time period than 

the P300 SME usually found during incidental encoding. Thus, it is possible that the presence 

of feedback stimuli and the ensuing expectancy violations speeded up memory formation in 

particular in the long delay condition, hereby provoking interference between feedback 

evaluation and memory encoding processes that relied on similar neural processing resources. 

We also hypothesized that delayed feedback processing with hippocampal 

involvement should primarily boost the recollection of feedback pictures and give rise to a 

parietal old/new effects, the putative ERP correlate of recollective processing. In partial 

confirmation of this prediction, long delayed feedback pictures elicited a strong old/new effect 

between 500 and 1100 ms poststimulus. In contrast, feedback pictures that had been presented 

with a short feedback delay in the learning phase were not associated with an old/new effect 

in this late time interval. This pattern of results is consistent with the behavioral finding that 

feedback pictures presented with a long delay were associated with better recognition memory 

than those presented with a short delay. 
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Notably, the late old/new effect associated with long delayed feedback was more 

broadly distributed than typically observed in ERP studies of recognition memory. This 

finding is reminiscent of studies that have found more anterior topographical distributions of 

N400 effects for pictures as compared with words (Ganis, Kutas, & Sereno, 1996), which has 

been taken as evidence for partially different sets of neural generators for the N400 to verbal 

and pictorial stimuli (for a review, see Kutas & Federmeier, 2000). Similarly, the broad 

topographical distribution of the late old/new effect observed in the present study could reflect 

overlapping, but non-identical sets of neural generators underlying the late old/new effect for 

pictorial and verbal stimuli. Consistent with this view, in a recognition memory study in 

which scene pictures similar to those in the present study were used, young adults elicited a 

broadly distributed old/new effect between 300 and 900 ms that was largest over central 

electrode sites (Gutchess et al., 2007). 

In the present study, a significant early frontal old/new effect was obtained in neither 

condition, indicating that there was no substantial contribution of familiarity to recognition 

memory. This finding contrasts with our previous study in which superior memory for 

pictures presented with positive feedback was associated with an early frontal old/new effect 

(Höltje & Mecklinger, 2018), and indicates that positive feedback valence and feedback delay 

benefit memory by distinct mechanisms: Whereas reward signals elicited by positive feedback 

strengthen a context-free and familiarity-based form of recognition, delayed feedback fosters 

the recollection of feedback pictures, presumably mediated by the hippocampal involvement 

in feedback processing. 
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4 Experiment 3: The Role of Explicit Outcome Expectations in Delayed 

Feedback Processing 

4.1 Introduction 

The results of Experiment 2 are broadly consistent with the view that declarative learning 

processes support learning from delayed feedback and benefit memory for delayed feedback 

events (Foerde & Shohamy, 2011). In Experiment 3, we addressed the question how these 

declarative learning processes get involved in delayed feedback processing initially and 

hypothesized that explicit outcome expectations play a pivotal role in this mechanism. It is 

conceivable that learners spontaneously generate explicit outcome expectations during the 

feedback delay period, a process that requires a mental representation of the allegedly correct 

stimulus-response-outcome association, which in turn is considered a hallmark feature of 

goal-directed or model-based learning (Daw, 2018). In particular the disconfirmation of such 

an explicit outcome expectation could be associated with enhanced declarative learning and 

memory encoding (Brod, Hasselhorn, & Bunge, 2018; Greve, Cooper, Kaula, Anderson, & 

Henson, 2017) and hippocampal activity reflecting the processing of expectancy mismatches 

(Duncan, Curtis, & Davachi, 2009; Kumaran & Maguire, 2006, 2007).  

To investigate the role of explicit outcome expectations in delayed feedback 

processing, we contrasted a default delayed feedback condition with a “Prediction” condition 

in which participants were asked on each trial to indicate during the feedback delay period 

which type of feedback picture (indoor or outdoor scene) they expected. The configuration of 

the Prediction condition was intended to stimulate participants to consistently generate 

explicit outcome expectations, whereas this would only sporadically be the case in the default 

“Delay” condition. Importantly, because the probability of spontaneously generating an 

explicit outcome expectation could increase with the time passing until the feedback is 
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delivered, the temporal delay between the participants’ choice and the presentation of the 

feedback picture was kept at four seconds in both conditions. Different from previous studies 

investigating episodic memory for delayed feedback pictures (Foerde & Shohamy, 2011; 

Höltje & Mecklinger, 2020; Lighthall et al., 2018), we balanced the mapping between picture 

category and feedback valence. This enabled us to dissociate effects of valence on memory 

from differences in memory between indoor and outdoor scene pictures. 

 If explicit outcome expectations mediate the involvement of declarative learning 

processes in delayed feedback processing, the behavioral and ERP correlates of delayed 

feedback processing identified in Experiment 2 should be more pronounced in the Prediction 

condition than in the Delay condition. We also hypothesized that in particular the 

disconfirmation of explicit outcome expectations (i.e., negative feedback pictures) should be 

associated with stronger recollective processing due to the hippocampal acticity elicited by 

expectancy mismatches (e.g., Long, Lee, & Kuhl, 2016).  

4.2 Method 

4.2.1 Participants 

Thirty-five native German speakers were recruited from the student population of Saarland 

University. Informed consent was required and participants received money (€8/h) or course 

credit as a compensation for their participation. All participants were right-handed as assessed 

by the Edinburgh Handedness Inventory (Oldfield, 1971), had normal or corrected-to-normal 

vision and no self-reported neurological or psychiatrical problems. The experimental 

procedures were approved by the local ethics committee. Data from three participants had to 

be excluded from all analyses because there were not enough artifact-free trials (< 7) to 

calculate reliable ERPs in one of the conditions (see section on EEG recording and 

processing). Thus, all analyses are based on a data set from N = 32 participants (10 male; 
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median age = 21 years, range = 19-28 years) that was completely balanced regarding the 

assignment of experimental conditions, stimulus lists, and response keys. 

4.2.2 Stimuli and Procedure 

Each experimental session began with the fitting of the EEG cap (see section on EEG 

recording and processing). Thereafter, participants were seated in front of a 19‘‘ computer 

screen with a resolution of 1280 × 1024 pixels in an electrically shielded and sound-

attenuated booth. The experimental tasks were presented using E-Prime 2 software 

(Psychology Software Tools, Inc.) and participants used a keyboard for their responses. All 

stimuli were presented in the centre of the screen on a white background. 

 In the learning phase of the experiment, participants learned associations between 

Chinese characters and two response keys with probabilistic feedback. Scene pictures were 

presented as feedback, and the picture category (indoor or outdoor scene) designated the 

valence (positive or negative) of the feedback. Feedback pictures were always presented with 

a temporal delay of four seconds from the participants’ response. The “Delay” condition 

constituted a default delayed feedback condition in which participants merely waited for the 

feedback picture. In the “Prediction” condition, however, participants were asked to predict 

the category (indoor or outdoor scene) of the upcoming feedback picture on each trial.  The 

learning phase was followed by a retention interval of approximately five minutes during 

which the participants were asked to solve simple arithmetical tasks. In the ensuing test phase, 

recognition memory for the scene pictures was tested in a surprise memory test. 

A total of 680 scene pictures were used in the experiment. Five hundred and sixty of 

these pictures were the same as in the Höltje and Mecklinger (2020) study, the others were 

collected from various free internet sources. The size of the pictures was scaled to a width of 

600 pixels and a height between 350 and 450 pixels. 
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4.2.2.1 Learning Phase 

Eight different Chinese characters, divided into two sets of four characters each (set 1: , , 

, ; set 2: , , , ), were used in the probabilistic feedback learning task. The two 

character sets were assigned to the “Prediction” and “Delay” conditions and every character 

was associated with one of two response keys (the “c”- and “n”- keys of the keyboard). 

Participants were instructed to learn the associations by trial and error and to use the feedback 

for this purpose. Feedback was valid in 70% of the trials, meaning that when participants 

responded with the correct (incorrect) button, they received positive (negative) feedback in 

seven out of ten times. Participants were informed that the feedback would not always be 

valid, but the instructions emphasized that it was possible to use the feedback for learning. 

Overall, every participant completed 120 learning trials per condition, divided into 

three blocks of 40 trials each. The three learning blocks were followed by one block in which 

participants continued performing the task without feedback. Each of the four characters 

assigned to one condition was presented ten times per block, in pseudorandomized order, so 

that no character was repeated on the next trial. Participants were given ten practice trials for 

each condition.  

The 680 scene pictures were divided into two indoor and two outdoor lists of 170 

pictures each. Pictures from one indoor and one outdoor list were presented as feedback 

pictures in the learning phase, and pictures from the other indoor and outdoor lists served as 

lures in the test phase. Each picture was presented only once during learning, but not every 

picture from the list was necessarily used as a feedback picture. The reason for this is that the 

number of pictures presented from one category (indoor or outdoor scene) ultimately 

depended on the number of correct responses given by the participant. Importantly, even if a 

participant’s responses were 100% correct (incorrect), no more than 170 scene pictures from 
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one category were presented. The reason for this is that feedback was presented with 70% 

validity, as stated above. 

A schematic of the trial procedure is depicted in Figure 4.1A. Each trial of the 

probabilistic feedback learning task started with a central fixation cross (500 ms), followed by 

a Chinese character. The two response keys were represented by a yellow and a blue button 

located in the bottom left and right corners of the screen. As soon as the participant responded 

with a keypress, the button corresponding to the chosen key remained on the screen, whereas 

the other button disappeared. At the same time, the character was surrounded by a frame of 

the same color as the chosen button. This screen which served to make the choice salient was 

shown troughout the 4000 ms long delay period less the timing of the subsequent fixation 

cross. If the participants did not respond within 1500 ms after onset of the Chinese character, 

they were informed that their response was too slow and the trial was repeated. The delay 

period was followed by a central fixation cross jittered between 500 and 700 ms and a 

feedback picture (1500 ms). After the feedback, a blank screen was presented for 1000 ms 

before the next trial started. 

 The “Prediction” condition differed from the trial procedure in the “Delay” condition 

outlined above in one aspect: During the four second long delay period before the 

presentation of the feedback picture, participants were asked to predict the category of the 

upcoming feedback picture using a six-step rating scale (“sure indoor”, “probably indoor”, 

“maybe indoor”, “maybe outdoor”, “probably outdoor”, “sure outdoor”). The rating scale was 

presented in the top third of the screen, above the Chinese character. 

Performance in the learning phase was assessed as the proportion of correct responses 

in the probabilistic feedback learning task and in the final block of the task without feedback. 
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Figure 4.1: Trial procedure in the probabilistic feedback learning task (A). On each trial, a 

Chinese character was presented. As soon as the participants responded, their choice was 

displayed and participants waited passively for the presentation of the feedback picture (Delay 

condition) or were asked to predict the category of the upcoming feedback picture (Prediction 

condition). In both conditions, outdoor (indoor) scene pictures were presented as positive 

(negative) feedback 4000 ms after the response. Behavioral results in the learning phase (B) 

and in the test phase (C). Beeswarn plots show individual datapoints in addition to means and 

confidence intervals. 
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4.2.2.2 Test Phase 

The 240 feedback pictures from the learning phase were presented together with 240 new 

scene pictures in pseudorandomized order, so that not more than three adjacent “old” or 

“new” pictures were presented in direct succession. Moreover, the number of pictures from 

each category (indoor or outdoor scene) presented as lures was the same as the number of 

pictures from each category presented as feedback pictures in the learning phase. Participants 

were admitted a short break after every 80 trials. In the beginning of each trial, a fixation 

cross was presented with a duration jittered between 1000 and 1500 ms, followed by a picture 

presented for 1500 ms. Participants were instructed to decide for every picture whether it was 

old or new using a six-step confidence scale („sure old“, „probably old“, „maybe old“, 

„maybe new“, „probably new“, „sure new“). After the presentation of the picture, a blank 

screen appeared for 1000 ms. Then, the question „Old or New?“ appeared, together with a 

depiction of the rating scale. The old/new decision could be given as soon as the picture was 

presented. As soon as participants made a response, a blank screen was shown for 1000 ms 

before the next trial started. 

To assess memory performance in the test phase, measures of old/new discrimination, 

Pr [p(hit) – p(false alarm)], and response bias, Br [p(false alarm) / p(1 – Pr)], were calculated 

separately for positive and negative pictures encoded in the Prediction and Delay conditions 

(Snodgrass & Corwin, 1988). For this purpose, the corresponding three steps of the 

confidence scale were collapsed into „old“- and „new“-decisions. In addition, high-

confidence Pr and Br scores were calculated based on „sure“- and „probably“-decisions only. 

4.2.3 EEG Recording and Processing 

The EEG was recorded during the learning and test phases of the experiment from 28 

Ag/AgCl scalp electrodes embedded in an elastic cap with positions according to the 10-20 
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electrode system (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC3, FCz, FC4, FC6, T7, C3, Cz, C4, 

T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, O1, O2, and A2). The vertical and horizontal EOG 

was recorded from four electrodes placed above and below the right eye and at the canthi of 

the left and right eyes. The electrodes were on-line referenced to a left mastoid electrode (A1), 

and AFz was used as a ground electrode. The EEG was amplified with a BrainAmp DC 

amplifier (Brain Products GmbH) from 0.016 to 250 Hz and digitized at 500 Hz. For off-line 

processing of the EEG data, the EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-

Calderon & Luck, 2014) toolboxes for MATLAB (MathWorks, Inc.) were used. Electrodes 

were re-referenced to the average of the left and right mastoid electrodes. The data were 

filtered at 0.1 – 30 Hz using a second order Butterworth filter, and at 50 Hz using a Parks-

McClellan notch filter. Segments were extracted from the learning phase data from 200 ms 

before feedback onset to 1000 ms thereafter, and segments from 200 ms before picture onset 

to 1500 ms thereafter were extracted from the test phase data. The segments were baseline-

corrected based on activity during the 200 ms before feedback or picture onset. Independent 

component analysis (ICA) was applied to the segmented data to correct for ocular artifacts. 

Components associated with ocular artifacts were identified and rejected manually based on 

their activations and topographies. Segments containing artifacts were rejected using the 

following criteria: A minimal and maximal allowed total amplitude of ± 100 µV, a maximal 

difference of values of 100 µV during intervals of 200 ms (window steps of 100 ms), a 

maximal allowed voltage step of 15 µV/ms, and maximal 200 ms activity with a deviation of 

less than 0.4 µV from the maximum or minimum voltage in the segment. On average, 4.9 % 

and 4.3 % of all segments were rejected in the learning phase and the test phase, respectively. 

Grand average waveforms were low-pass filtered at 12 Hz for illustration purposes. 
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4.2.3.1 ERPs in the Learning Phase 

ERPs were averaged for every combination of the factors Condition (Prediction, Delay), 

Valence (positive, negative), and Memory (hits, misses). Feedback pictures judged as being 

“old” or “new” in the test phase were counted as hits and misses, respectively. For this 

purpose, the three corresponding steps of the confidence scale were collapsed into “old”- and 

“new”-decisions. For the purpose of peak detection, the subject average waveforms were low-

pass filtered at 10 Hz. 

Because FRN effects are typically largest at frontocentral sites (Holroyd & Coles, 

2002; Miltner et al., 1997), FRN measures were analyzed at electrode FCz. The FRN was 

quantified in two ways: The FRNpeak was measured according to an algorithm described in 

Holroyd et al. (2003; see Ferdinand et al., 2012; Holroyd et al., 2006; Peterburs et al., 2016, 

for studies that used a similar approach) as the difference between the N200 peak (180 – 280 

ms) and the preceding P200 peak (130 – 180 ms). The FRNdiff was measured as the peak 

amplitude between 280 and 450 ms in the negative minus positive feedback difference wave 

(cf. Becker et al., 2014; Peterburs et al., 2016; Weismüller and Bellebaum, 2016). 

As determined by an inspection of the waveforms, the feedback-locked P300 peaked 

around 500 ms at electrode Pz. P300 mean amplitudes between 450 and 650 ms were 

analyzed at electrodes FCz and Pz. 

4.2.3.2 ERPs in the Test Phase 

ERPs were averaged for every combination of the factors Item Status (Prediction hits, Delay 

hits, correct rejections) and Valence (positive, negative). Mean amplitudes were analyzed in 

two adjacent time windows, ranging from 300 – 500 ms and 500 – 1000 ms. The early time 

window is typically used for the analysis of early mid-frontal old/new effects in ERP studies 

of recognition memory (see Rugg & Curran, 2007, for a review). The later 500 – 1000 ms 
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time window was chosen because, as evident from Figure 4.3A, an inspection of the 

waveforms suggested that the late old/new effect continued until approximately 1000 ms. In 

order to cover frontal electrode sites, where early mid-frontal old/new effects are largest, as 

well as parietal electrode sites, at which late old/new effects are typically most pronounced, 

mean amplitudes were analyzed at 15 electrodes broadly distributed across the scalp (F3, Fz, 

F4, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, P4). 

4.2.4 Data Analyses 

All statistical analyses were conducted using IBM SPSS software. Behavioral and 

electrophysiological measures were analyzed using repeated measures ANOVAs and 

dependent t-tests. Greenhouse-Geisser corrected degrees of freedom and p-values are reported 

whenever the assumption of sphericity was violated. Significant effects were decomposed 

using lower level ANOVAs and dependent t-tests. As measures of effect sizes, partial eta 

squared (ηp
2
) are reported for ANOVA results. For independent t-tests, Cohen’s d was 

calculated. For dependent t-tests, d was calculated according to Dunlap, Cortina, Vaslow, & 

Burke (1996), taking into account the correlations between measurements. Error margins in 

graphs represent 95% confidence intervals based on the mean square error of the depicted 

effect (Jarmasz & Hollands, 2009). 

4.3 Results 

4.3.1 Performance in the Learning Phase 

Correct responses in the probabilistic feedback learning task, depicted in Figure 4.1B, were 

analyzed in a two (Condition: Prediction, Delay) by three (Block) ANOVA. A significant 

main effect of Condition was found, F(1, 31) = 5.41, p < .05, ηp
2
 = .15, reflecting an overall 

higher proportion of correct responses in the Delay condition (M = 0.78, SEM = 0.02) as 

compared with the Prediction condition (M = 0.70, SEM = 0.03). The main effect of Block 
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was also significant, F(2, 62) = 50.21, p < .001, ηp
2
 = .62, indicating that the proportion of 

correct responses changed during the course of the learning phase. Subsidiary t-tests revealed 

that the proportion of correct responses increases from the first block (M = 0.63, SEM = 0.02) 

to the second block (M = 0.77, SEM = 0.02), t(31) = 7.22, p < .001, d = 1.12, and from the 

second to the third block (M = 0.82, SEM = 0.03), t(31) = 2.75, p < .05, d = 0.35. The 

interaction between Condition and Block was not significant, F(1.49, 46.13) < 1, pcorr = .57, 

ηp
2
 = .02. The proportion of correct responses in the block without feedback that followed the 

three blocks of the learning phase, depicted in Figure 4.1B, was higher in the Delay condition 

(M = 0.91, SEM = 0.02) than in the Prediction condition (M = 0.79, SEM = 0.05), t(31) = 2.16, 

p < .05, d = 0.50.  

4.3.2 Recognition Memory in the Test Phase 

Measures of old/new discrimination (Pr) and response bias (Br) in the memory test are shown 

in Figure 4.1C and were analyzed in separate two (Condition: Prediction, Delay) by two 

(Valence: Positive, Negative) ANOVAs. The analysis of Pr scores did not yield any 

significant effects (all p-values > .59). The same result was obtained in the analysis of high-

confidence Pr scores (all p-values > .30). In the analysis of Br scores, a significant main effect 

of Valence was obtained, F(1, 31) = 26.51, p < .001, ηp
2
 = .46, reflecting larger bias scores for 

positive feedback pictures (M = 0.51, SEM = 0.02) than for negative ones (M = 0.37, SEM = 

0.03). The main effect of Condition was not significant, F(1, 31) < 1, p = .90, ηp
2
 = .00, and 

neither was the Condition by Valence interaction, F(1, 31) < 1, p = .72, ηp
2
 = .00. The analysis 

of high-confidence Br scores yielded a similar pattern of results: A significant effect of 

Valence was obtained, F(1, 31) = 20.55, p < .001, ηp
2
 = .40, reflecting larger high-confidence 

bias scores for positive feedback pictures (M = 0.27, SEM = 0.02) than for negative ones (M = 

0.18, SEM = 0.02). No further effects reached significance, all p-values > .50. 
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4.3.3 ERPs in the Learning Phase 

4.3.3.1 FRNpeak and FRNdiff 

ERPs recorded during feedback presentation in the learning phase at electrode FCz are shown 

in Figure 4.2A. FRNpeak amplitudes were analyzed in a two (Condition: Prediction, Delay) by 

two (Valence: Positive, Negative) by two (Memory: Hits, Misses) ANOVA that yielded a 

significant main effect of Condition, F(1, 31) = 5.28, p <.05, ηp
2
 = .15, reflecting larger (more 

negative) FRNpeak amplitudes in the Prediction condition (M = -4.71, SEM = 0.52 µV) than in 

the Delay condition (M = -4.20, SEM = 0.55 µV). The main effect of Valence was also 

significant, F(1, 31) = 13.20, p <.01, ηp
2
 = .30, reflecting larger amplitudes elicited by 

negative feedback pictures (M = -3.74, SEM = 0.53 µV) than by positive ones (M = -5.17, 

SEM = 0.59 µV). There also was a significant triple interaction between Condition, Valence, 

and Memory, F(1, 31) = 5.19, p <.05, ηp
2
 = .14. No further effects reached significance, all p-

values > .15.  

The significant triple interaction was followed up by two ANOVAs including the 

factors Valence and Memory, calculated separately for the Prediction and Delay conditions. 

In the Prediction condition, significant main effects of Valence, F(1, 31) = 14.34, p <.01, ηp
2
 

= .32, and Memory, F(1, 31) = 3.30, p <.05 (one-tailed), ηp
2
 = .10, were obtained. As 

predicted based upon prior studies, subsequently forgotten feedback pictures (M = -4.96, SEM 

= 0.54 µV) were associated with larger FRNpeak amplitudes than subsequently remembered 

ones (M = -4.46, SEM = 0.54 µV). The Valence by Memory interaction was not significant, 

F(1, 31) < 1, p = .80, ηp
2
 = .00. 

In the Delay condition, a significant effect of Valence was obtained, F(1, 31) = 6.88, p 

<.05, ηp
2
 = .18, qualified by a significant Valence by Memory interaction, F(1, 31) = 5.26, p < 

.05, ηp
2
 = .15. Subsidiary t-tests showed that subsequently forgotten positive feedback pictures 
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(M = -3.91, SEM = 0.63 µV) elicited larger FRNpeak amplitudes than subsequently 

remembered ones (M = -3.29, SEM = 0.54 µV), t(31) = 1.93, p < .05 (one-tailed), d = 0.18, 

whereas no such difference was obtained for negative feedback pictures (negative hits: M = -

5.14, SEM = 0.65 µV; negative misses: M = -4.45, SEM = 0.68 µV), t(31) = -1.43, p = .16, d = 

-0.18. The main effect of Memory was nonsignificant, F(1, 31) < 1, p = .91, ηp
2
 = .00. 

Negative minus positive feedback difference waves at electrode FCz are shown in 

Figure 4.2B. FRNdiff amplitudes were analyzed in a two (Condition: Prediction, Delay) by two 

(Memory: Hits, Misses) ANOVA that did not yield any significant effects, all p-values > .15.  

4.3.3.2 P300 

Waveforms recorded during the learning phase at electrode Pz are shown in Figure 4.2C. 

P300 mean amplitudes between 450 and 650 ms were analyzed in a two (Condition: 

Prediction, Delay) by two (Valence: Positive, Negative) by two (Memory: Hits, Misses) by 

two (Electrode: FCz, Pz) ANOVA. The main effect of Condition was significant, F(1, 31) = 

7.73, p < .01, ηp
2
 = .20, and qualified by a Condition by Electrode interaction, F(1, 31) = 5.02, 

p < .05, ηp
2
 = .14. The main effect of Valence did not reach significance, F(1, 31) = 3.52, p 

=.070, ηp
2
 = .10, but there was a significant Valence by Electrode interaction, F(1, 31) = 

12.61, p < .01, ηp
2
 = .29. No further effects involving the experimental conditions reached 

significance, all p-values > .13. To follow up the significant Condition by Electrode and 

Valence by Electrode interactions, mean amplitudes at electrodes FCz and Pz were analyzed 

in two separate ANOVAs including the factors Condition, Valence, and Memory. 

At the frontocentral electrode FCz, the main effect of Condition did not reach 

significance, F(1, 31) = 3.18, p = .08, ηp
2
 = .09, and neither did any other effect, all p-values > 

.14. At the parietal electrode Pz, in contrast, the main effect of Condition was significant, F(1, 

31) = 10.29, p < .01, ηp
2
 = .25, indicating that the Prediction condition (M = 5.97, SEM = 0.90 
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µV) was associated with more positive mean amplitudes than the Delay condition (M = 4.39, 

SEM = 0.78 µV). Negative feedback pictures (M = 5.88, SEM = 0.84 µV) elicited more 

positive-going amplitudes than positive ones (M = 4.47, SEM = 0.80 µV), as evidenced by a 

significant main effect of Valence, F(1, 31) = 8.16, p < .01, ηp
2
 = .21. The triple interaction 

between Condition, Valence, and Memory was only marginally significant, F(1, 31) = 3.93, p 

= .06, ηp
2
 = .11. 
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Figure 4.2: Feedback-locked ERP waveforms recorded in the learning phase. Waveforms at 

electrode FCz (A), negative minus positive feedback difference waves at electrode FCz (B), 

and feedback-lowaveforms at electrode Pz (C). Shaded areas indicate the time windows used 

for the detection of P200/N200 peak amplitudes (130 – 280 ms), FRNdiff peak amplitudes 

(280 – 450 ms), and P300 mean amplitudes (450 – 650 ms). 

4.3.4 ERPs in the Test Phase 

4.3.4.1 Hits and Correct Rejections 

ERP waveforms associated with correct memory decisions in the recognition memory test are 

depicted in Figure 4.3A. Mean amplitudes in the 300 – 500 ms and 500 – 1000 ms time 

windows were analyzed in two separate ANOVAs including the factors Item Status 

(Prediction hits, Delay hits, correct rejections), Valence (positive, negative), Antpos (F = 

frontal, FC = frontocentral, C = central, CP = centroparietal, P = parietal), and Side (left, 

midline, right). Only effects involving the factor Item Status are reported, as we were mainly 

interested in effects of successful memory retrieval on ERP mean amplitudes. 

300 – 500 ms. Mean amplitudes in this early time window showed an effect of Item 

Status, F(2, 62) = 9.85, p < .001, ηp
2
 = .24, qualified by significant interactions between Item 

Status and Valence, F(1, 31) = 4.14, p < .05, ηp
2
 = .12, and Item Status and Antpos, F(2.34, 

72.40) = 3.00, pcorr < .05, ηp
2
 = .09. No further effects involving the factor Item Status reached 

significance, all p-values > .37. To follow up the Item Status by Valence and Item Status by 

Antpos interactions, two separate ANOVAs involving the factors Item Status and Antpos 

were calculated for positive and negative pictures. 

Positive pictures were associated with an effect of Item Status, F(1.62, 50.25) = 8.22, 

pcorr < .01, ηp
2
 = .21. The Item Status by Antpos interaction was not significant, F(2.06, 63.71) 

= 1.81, pcorr = .17, ηp
2
 = .06.  Follow-up t-tests disclosed that correct rejections (M = -2.69, 

SEM = 0.65 µV) were associated with more negative mean amplitudes than Prediction hits (M 

= -2.22, SEM = 0.67 µV), t(31) = 2.41, p < .05, d = 0.13, and Delay hits (M = -1.60, SEM = 
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0.75 µV), t(31) = 3.81, p < .01, d = 0.26. The difference in mean amplitudes between 

Prediction hits and Delay hits did not reach significance, t(31) = 1.97, p = .06, d = 0.15. 

ERPs elicited by negative pictures were associated with a pattern of results similar to 

the one obtained for positive ones in this early time window: The main effect of Item Status 

was significant, F(2, 62) = 6.93, p < .01, ηp
2
 = .18, whereas the Item Status by Antpos 

interaction was not, F(2.26, 69.96) = 1.47, pcorr = .24, ηp
2
 = .05. Subsidiary t-tests revealed 

that correct rejections (M = -3.35, SEM = 0.68 µV) were associated with more negative mean 

amplitudes than Prediction hits (M = -1.77, SEM = 0.72 µV), t(31) = 4.25, p < .001, d = 0.40, 

and Delay hits (M = -2.41, SEM = 0.76 µV), t(31) = 2.19, p < .05, d = 0.23. Mean amplitudes 

did not differ between Prediction hits and Delay hits, t(31) = 1.36, p = .19, d = 0.15. 

500 – 1000 ms. The analysis of mean amplitudes in this later time window yielded a 

main effect of Item Status, F(2, 62) = 15.79, p < .001, ηp
2
 = .34, and interactions between Item 

Status and Valence, F(2, 62) = 4.39, p < .05, ηp
2
 = .12, and Item Status and Antpos, F(2.60, 

80.60) = 4.20, pcorr < .05, ηp
2
 = .12. The triple interaction between Item Status, Valence, and 

Antpos was also significant, F(2.50, 77.47) = 3.12, pcorr < .05, ηp
2
 = .09. No further effects 

involving Item Status reached significance, all p-values > .12. To further explore the triple 

interaction, two separate ANOVAs including the factors Item Status and Antpos were 

calculated for positive and negative pictures. 

 Positive pictures were associated with a main effect of Item Status, F(2, 62) = 4.63, p 

< .05, ηp
2
 = .13, reflecting more negative mean amplitudes for correct rejections (M = 1.14, 

SEM = 0.71 µV) than for Prediction hits (M = 1.87, SEM = 0.75 µV), t(31) = 2.20, p < .05, d 

= 0.18, and Delay hits (M = 2.08, SEM = 0.84 µV), t(31) = 2.74, p < .05, d = 0.20. Mean 

amplitudes did not differ between Prediction hits and Delay hits, t(31) = 0.71, p = .48, d = 

0.05. 
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 Negative pictures were associated with a significant effect of Item Status, F(2, 62) = 

13.18, p < .001, ηp
2
 = .30, qualified by an Item Status by Antpos interaction, F(2.63, 81.50) = 

5.89, p < .01, ηp
2
 = .16. No further effects involving Item Status reached significance, all p-

values > .23. To disentangle the significant Item Status by Antpos interaction, separate one-

way ANOVAs including the factor Item Status were conducted at each level of the Antpos 

factor. The main effect of Item Status was significant at each level of the Antpos factor. Effect 

sizes were largest over frontal (ηp
2
 = .35) and smallest over parietal electrode sites (ηp

2
 = .13). 

The significant main effects of Item Status were followed up by t-tests revealing that at each 

level of the Antpos factor, Prediction hits (MF = -1.96, SEM = 0.90 µV; MFC = -0.06, SEM = 

0.86 µV; MC = 2.59, SEM = 0.86 µV; MCP = 5.06, SEM = 0.86 µV; MP = 6.14, SEM = 0.86 

µV) were associated with more positive mean amplitudes than correct rejections (MF = -4.70, 

SEM = 0.85 µV; MFC = -2.82, SEM = 0.79 µV; MC = 0.12, SEM = 0.76 µV; MCP = 2.99, SEM 

= 0.70 µV; MP = 4.69, SEM = 0.67 µV), all p-values < .01. Effect sizes were largest at 

frontocentral (ηp
2
 = .58) and smallest at parietal electrodes (ηp

2
 = .31). Delay hits (MF = -2.96, 

SEM = 0.85 µV; MFC = -1.11, SEM = 0.87 µV; MC = 1.52, SEM = 0.92 µV; MCP = 4.10, SEM 

= 0.90 µV; MP = 5.48, SEM = 0.86 µV) were associated with more positive mean amplitudes 

than correct rejections at each level of the Antpos factor (all p-values < .05), except for 

parietal electrode sites (p = .07). Effect sizes were largest over frontal electrode sites (ηp
2
 = 

.36). The difference in mean amplitudes between Prediction hits and Delay hits was 

significant at frontal to central electrodes (all p-values < .05), with largest effect sizes at 

frontal electrodes (ηp
2
 = .20), whereas it did not reach significance at centroparietal (p = .08) 

and parietal electrodes (p = .21). 

 After having confirmed that both positive and negative pictures were associated with 

significant old/new effects (i.e., more positive mean amplitudes for hits than for correct 

rejections) that were most pronounced over frontal electrode sites in this late time window, we 
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directly compared the size of the old/new effects elicited by positive and negative pictures 

encoded under Prediction and Delay conditions at these frontal electrodes of interest. As 

revealed by t-tests, negative pictures encoded in the Prediction condition (M = 2.74, SEM = 

0.45 µV) elicited a larger old/new effect than when encoded in the Delay condition (M = 1.74, 

SEM = 0.50 µV), t(31) = 2.09, p < .05, d = 0.37, whereas the size of the old/new effect 

elicited by positive pictures did not differ as a function of the encoding condition (Prediction: 

M = 0.75, SEM = 0.36 µV; Delay: M = 1.07, SEM = 0.36 µV), t(31) = -1.03, p = .31, d = -

0.16. 

4.3.4.2 Correct Rejections and False Alarms, 300 – 500 ms 

The finding that participants strongly tended to make “old” responses for positive pictures in 

the test phase (see section on memory results) prompted us to further explore the ERP 

correlates of this response bias. Similar response biases in recognition memory have 

previously been associated with stronger familiarity signals as reflected in the early, mid-

frontal old/new effect (Azimian-Faridani & Wilding, 2006; Windmann, Urbach, & Kutas, 

2002). If recognition judgements in the test phase were strongly affected by familiarity 

signals, new pictures judged as “old” (false alarms) should be associated with a stronger early 

mid-frontal old/new effect than correct rejections. Further, if positive pictures were associated 

with stronger familiarity signals than negative ones in the test phase, new positive pictures 

should elicit a stronger mid-frontal old/new effect than new negative pictures. ERP 

waveforms for positive and negative correct rejections and false alarms at the frontal midline 

electrode Fz are depicted in Figure 4.3B. Mean amplitudes in the 300 – 500 ms time window 

at electrode Fz were analyzed in a two (Item Status: Correct rejections, false alarms) by two 

(Valence: Positive, negative) ANOVA. As predicted, false alarms (M = -8.15, SEM = 0.93 

µV) were associated with more positive mean amplitudes than correct rejections (M = -9.07, 

SEM = 0.90 µV), F(1, 31) = 8.54, p < .01, ηp
2
 = .22, and positive pictures (M = -8.08, SEM = 
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0.94 µV) elicited more positive mean amplitudes than negative ones (M = -9.14, SEM = 0.91 

µV), F(1, 31) = 6.00, p < .05, ηp
2
 = .16. The Item Status by Valence interaction was 

nonsignificant, F(1, 31) < 1, p = .62, ηp
2
 = .01. 

 

Figure 4.3: ERP waveforms recorded during picture presentation in the test phase. 

Waveforms associated with correct memory decisions are ahown for three respresentative 

frontal, central, and parietal electrodes (A). Waveforms associated with correct rejections and 
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false alarms are shown at the frontal midline electrode Fz (B). Shaded areas indicate the 300 – 

500 ms and 500 – 1000 ms time windows used to analyze old/new effects. 

4.4 Discussion 

In Experiment 3, we investigated how explicit outcome expectations affect delayed feedback 

processing and memory for delayed feedback events. Our hypothesis was that  if outcome 

predictions generated during the feedback delay period lead to an involvement of declarative 

learning processes in delayed feedback processing, the behavioral memory benefit for delayed 

feedback pictures (Foerde & Shohamy, 2011; Lighthall et al., 2018) and the ERP correlates 

associated with it (Höltje & Mecklinger, 2020) should be more pronounced under conditions 

that promote the generation of predictions regarding the outcome of an action. To test this 

hypothesis, we contrasted a Prediction condition in which participants were asked on each 

trial to predict the category of the upcoming feedback picture (indoor or outoor scene) with a 

standard delayed feedback condition in a probabilistic feedback learning task. Feedback 

valence and picture category were yoked so that for each participant, one picture category 

always coded positive feedback, and the other picture category coded negative feedback. 

Notably, and different from previous studies investigating memory for delayed feedback 

events (Foerde & Shohamy, 2011; Höltje & Mecklinger, 2020; Lighthall et al., 2018), the 

assignment of feedback valence and picture category was balanced across participants in the 

present study, which enabled us to examine effects of feedback valence on memory without 

confounding differences in memory between pictures categories. 

As evidenced by an increase in the proportions of correct responses over the course of 

the learning phase, participants successfully used the feedback pictures for learning in both 

conditions. Performance was significantly higher in the Delay condition than in the Prediction 

condition, which indicates that the requirement to predict the category of the upcoming 

feedback picture increased task difficulty in the Prediction condition. Contrary to our 

expectations, feedback pictures encoded in the Prediction condition were not remembered 
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better than those learned in the Delay condition. It is conceivable that the increased task 

difficulty in the Prediction condition was associated with higher attentional demands that may 

have counteracted the encoding of feedback pictures in this condition. Interestingly, whereas 

the behavioral data do not support the view that the declarative learning system was more 

strongly involved in the Prediction condition, the feedback-locked ERP data are suggestive of 

this conclusion.  

As predicted based upon the results of Experiment 2, FRNpeak amplitudes elicited by 

subsequently remembered feedback pictures were attenuated relative to subsequently 

forgotten ones. This finding confirms the reliability of the FRNpeak subsequent memory effect 

observed in Exp. 2 and, beyond that, shows that this interaction between delayed feedback 

processing and memory encoding can be found with a feedback delay of only four seconds 

(vs. seven seconds in Exp. 2). In the Delay condition, the FRNpeak subsequent memory effect 

was somewhat less pronounced than in the Prediction condition and only reached significance 

for positive feedback pictures. This result is consistent with our hypothesis that generating 

predictions about the outcome of an action leads to an involvement of the declarative learning 

system in delayed feedback processing: The finding that the FRNpeak SME was more 

pronounced in the Prediction condition than in the Delay condition indicates that there was 

stronger interference at the electrophysiological level between feedback processing and 

memory encoding in the Prediction condition, which presumably reflects increased 

competition for similar (hippocampal) processing resources in this condition (Höltje & 

Mecklinger, 2020). 

Feedback processing as reflected in the FRNpeak was more pronounced in the 

Prediction condition than in the Delay condition. This finding is consistent with previous 

studies showing that FRN amplitudes are modulated by outcome expectations (Bismark, 

Hajcak, Whitworth, & Allen, 2013; Hajcak, Moser, Holroyd, & Simons, 2007). In the study 
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by Bismark and colleagues (2013) it was found that no FRN is elicited when there is no time 

to develop an outcome expectation. Hajcak et al. (2007) found that unpredicted outcomes 

were associated with larger FRN amplitudes than predicted outcomes, but only in a task in 

which the outcome was predicted after a choice was made, and not when the prediction was 

made before the choice. However, an alternative explanation for the difference in FRNpeak 

amplitudes between the Prediction and Delay conditions is possible: The proportions of 

correct responses in the learning phase suggest that stimulus-response associations were 

learned faster in the Delay condition than in the Prediction condition, and previous studies 

have shown that FRN amplitudes can decrease after a stimulus-response association has been 

learned (Holroyd & Coles, 2002). Thus, it is conceivable that this learning-related decrease in 

FRNpeak amplitudes was on average more pronounced in the Delay condition than in the 

Prediction condition, whereas continued learning and feedback processing in the Prediction 

condition was associated with large FRNpeak amplitudes. 

The processing of unexpected positive outcomes as reflected in FRNdiff amplitudes did 

not differ between the Prediction and Delay conditions. This result indicates that feedback 

processing engaged the procedural learning system to a similar extent in the two conditions. 

Feedback pictures in the Prediction condition elicited larger parietal P300 amplitudes 

than those in the Delay condition. In ERP studies investigating feedback processing, 

unexpected outcomes are often associated with larger P300 amplitudes than expected 

outcomes (Bellebaum & Daum, 2008; Hajcak, Holroyd, Moser, & Simons, 2005; Hajcak et 

al., 2007; Von Borries, Verkes, Bulten, Cools, & De Bruijn, 2013). It is possible that 

generating predictions boosted the surprise associated with the processing of unexpected 

outcomes (Brod et al., 2018). Furthermore, consistent with the study by Chase et al. (2011), in 

which the feedback P300 was associated with feedback learning based on explicit rules, this 

finding could reflect a stronger reliance on declarative learning processes in the Prediction 
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condition. It is conceivable that predicting the feedback picture category increased the amount 

of attentional resources allocated to processing the feedback picture and thereby boosted 

parietal P300 amplitudes. Negative pictures also elicited larger P300 amplitudes than positive 

ones; however, this valence effect most likely reflects the increased distinctiveness of 

negative feedback pictures resulting from the decreasing frequency of negative feedback over 

the course of the learning task. 

ERP old/new effects revealed further evidence in support of the view that explicit 

outcome expectations modulate the involvement of declarative learning processes in feedback 

processing, which also affects memory for the feedback events. Most interestingly, negative 

feedback pictures that disconfirmed the expectation of a positive outcome in the feedback 

learning task elicited a late old/new effect in the ensuing memory test which was more 

pronounced for feedback pictures encoded in the Prediction condition than for those learned 

in the Delay condition. This finding suggests that the initial processing of unexpected 

negative feedback pictures in the Prediction condition during the learning phase boosted later 

recollective processing of these pictures in the recognition memory test. In other words, 

feedback pictures that disconfirmed a prediction were associated with enhanced declarative 

learning. This resonates with recent theoretical and empirical work suggesting that declarative 

learning is driven by the strength of the prediction error elicited by an event (Greve et al., 

2017; Henson & Gagnepain, 2010) and could reflect a stronger involvement of declarative 

learning processes in predictive feedback processing.  

Feedback pictures in the Prediction and Delay conditions elicited equally strong early 

mid-frontal old/new effects, suggesting that memory retrieval relied on episodic familiarity to 

a similar extent in both learning conditions.  

To our surprise, participants showed a strong tendency to make incorrect “old” 

decisions for positive pictures in the recognition memory test. Our experimental design, 
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carefully balanced with regard to the assignment of picture category and feedback valence, 

enabled us to detect this recognition bias induced by positive feedback valence which, to our 

best knowledge, went unnoticed in previous studies investigating memory for feedback 

events. A further analysis revealed that false alarms and positive pictures were associated with 

larger early mid-frontal old/new effects than correct rejections and negative pictures, which 

strongly suggests that positive pictures were often erroneously judged as “old” because they 

elicited strong familiarity signals in the test phase. This pattern of results is reminiscent of  a 

study by Johansson et al. (2004) in which pictures of emotional faces were associated with a 

more liberal recognition bias than those of neutral faces, and correctly rejected emotional 

faces elicited stronger early mid-frontal old/new effects than neutral ones. The authors argued 

that, in order to facilitate the processing of behaviorally relevant information, the arousal 

associated with the processing of emotional stimuli induces a relaxation of the criterion for 

recognition (see Windmann and Kutas, 2001, for a similar finding with negative words). In 

the present study, it is conceivable that an emotional response to positive feedback pictures 

established in the learning phase was generalized to other pictures from the same picture 

category (indoor or outdoor scene) and thereby caused the recognition bias observed in the 

test phase. Alternatively, it is conceivable that the reward value associated with positive 

feedback pictures generalized to other pictures belonging to the same category, a phenomenon 

well known from conditioning paradigms (Miendlarzewska et al., 2016). Further research is 

needed to investigate how feedback valence affects memory and response bias.  
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5 General Discussion 

The global aim of this dissertation was to investigate interactions between feedback 

processing and memory encoding, and how they are reflected in ERPs. One of the key 

questions to be answered was how the putative involvement of declarative memory processes 

in delayed feedback processing, as evident from hippocampal activity associated with delayed 

feedback processing (Foerde & Shohamy, 2011), is reflected in the ERP correlate of 

dopaminergic RPEs in feedback processing (i.e., the FRN). Our approach was to present 

feedback pictures depicting indoor and outdoor scene in a probabilistic feedback learning task 

in which participants learned associations between Chinese characters and two responses. In a 

subsequent memory test, recognition memory for the scene pictures was tested. We contrasted 

subsequently remembered and forgotten pictures to examine how ERPs recorded during 

feedback presentation were modulated by successful memory formation. Another 

superordinate research question was how feedback timing and valence modulate familiarity 

and recollection, two distinct sub-processes contributing to episodic memory retrieval. To 

address this question, we analyzed ERPs recorded during the presentation of “old” and “new” 

scene pictures in the recognition memory test. Notably, the incidental nature of the learning 

paradigm we employed allowed us to investigate effects of feedback timing and valence on 

behavioral measures of memory and ERPs associated with feedback processing and memory 

retrieval without motivational and attentional confounds that cannot be ruled out in intentional 

learning paradigms. 

 In the following, we will summarize the research questions and the main findings from 

the three experiments we conducted. Most findings were already extensively discussed in the 

respective chapters. We will therefore focus on the implications of our main findings and 

integrate them into the theoretical and empirical context provided by the literature. We will 
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highlight the methodological advancements included in this dissertation, but also address its 

limitations, point out open questions, and make suggestions for future research. 

5.1 Summary of Research Questions and Main Findings 

5.1.1 Experiment 1 

The aim of Experiment 1 was to investigate how feedback timing and valence affect memory 

for task-unrelated pictures presented together with performance feedback in a probabilistic 

learning task. Feedback was delivered either with a short (SD, 500 ms) or long (LD, 6500 ms) 

temporal delay. We examined how interactions between feedback processing and memory 

encoding are reflected in the ERP correlates of RPEs in feedback processing (i.e., the FRN) 

and episodic memory retrieval (i.e., early mid-frontal and late parietal old/new effects). 

Behaviorally, memory was better for positive than negative feedback pictures, but there was 

no effect of feedback delay on memory performance. In the ERPs recorded during the 

learning phase, subsequently remembered positive feedback pictures were associated with a 

subsequent memory effect that resembled in its spatiotemporal characteristics the FRNdiff, 

suggesting that positive reward prediction errors as reflected in the FRNdiff contribute to 

successful memory encoding. Consistent with previous studies, the FRNdiff was reduced for 

delayed feedback, but only in a condition in which feedback was useful for learning. As 

evidenced by behavioral and ERP estimates of familiarity and recollection, positive feedback 

enhanced memory mainly by boosting familiarity-based recognition. 

5.1.2 Experiment 2 

Experiment 2 pursued the same principal goal as Exp. 1, namely to investigate interactions 

between feedback processing and memory encoding under SD and LD feedback conditions, 

and how they are reflected in ERPs. We reasoned that the fixed assignment between picture 

and feedback categories (outdoor = positive, indoor = negative) employed by Foerde and 
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Shohamy (2011) could be an important boundary condition that enables memory for feedback 

pictures to benefit from delayed feedback presentation and modified the probabilistic 

feedback learning task accordingly. Feedback processing as reflected in the FRNpeak was 

diminished for remembered LD feedback pictures, indicating that delayed feedback 

processing and memory encoding competed for similar neural processing resources. As 

evidenced by large FRNdiff amplitudes in the SD condition, the evaluation of shortly delayed 

feedback strongly relied on the procedural learning system. A complementary model-based 

single trial analysis was conducted to validate models of the functional significance of the 

FRN. Consistent with previous studies, feedback-locked N170 and P300 amplitudes were 

sensitive to feedback delay. In the test phase, memory for LD feedback pictures was better 

than for SD pictures and accompanied by a late old/new effect, presumably reflecting 

extended recollective processing. 

5.1.3 Experiment 3 

The aim of Experiment 3 was to further explore the source of the involvement of declarative 

learning processes in delayed feedback processing. We reasoned that a temporal feedback 

delay of several seconds allows participants to spontaneously generate explicit outcome 

expectations, the disconfirmation of which could be associated with increased hippocampal 

activity and enhanced declarative learning. To test this hypothesis, we contrasted a default 

delayed feedback condition with Prediction condition in which the generation of explicit 

outcome expectations was enforced by asking participants to predict on each trial which type 

of feedback picture (indoor or outdoor scene) they expected. Behaviorally, there was no 

difference in hit rates between the two conditions, but a strong tendency to judge positive 

feedback pictures as “old” in the recognition memory test. A stronger FRNpeak SME and 

larger P300 amplitudes indicate that feedback processing in the Prediction condition was 

associated with a stronger involvement of the declarative learning system than in the Delay 
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condition. As evidenced by ERP old/new effects, negative feedback pictures that 

disconfirmed an explicit outcome expectation were associated with stronger recollective 

processing in the Prediction condition than in the Delay condition. The behavioral response 

bias in the test phase was paralleled by the finding that familiarity signals elicited by “new” 

pictures were modulated by picture valence (positive > negative) and memory decisions (false 

alarms > correct rejections). 

5.2 Implications 

5.2.1 Insights Into the Interaction Between Delayed Feedback Processing and Memory 

Encoding 

Recent neuroimaging research has shown that feedback timing modulates the brain systems 

involved in feedback learning. Learning from immediate feedback relies on the integrity of 

the nigrostriatal dopamine pathway, whereas the processing of feedback that is delayed by 

several seconds engages the hippocampus (Foerde, Race, Verfaellie, & Shohamy, 2013; 

Foerde & Shohamy, 2011). Furthermore, delayed feedback pictures associated with 

hippocampal activity are remembered better than shortly delayed ones (Foerde & Shohamy, 

2011; Lighthall et al., 2018). Prima facie, these findings suggest that the involvement of 

declarative learning processes associated with hippocampal activity in delayed feedback 

processing has a beneficial effect on memory, even though it has not yet been shown that the 

hippocampal activity associated with delayed feedback predicts subsequent memory. One of 

the key findings of this dissertation is that the putative involvement of declarative learning 

processes in delayed feedback processing causes interference between feedback processing 

and memory encoding at the electrophysiological level. In Experiment 2, we replicated the 

behavioral effect of feedback delay on memory obtained by Foerde and Shohamy (2011) and 

found that long delayed feedback pictures that were subsequently remembered elicited smaller 

FRNpeak amplitudes than subsequently forgotten ones. This finding clearly shows that the 
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memory enhancement associated with delayed feedback processing is not “for free”, but 

rather comes at the cost of diminished feedback processing as reflected in ERPs. In 

Experiment 3, we replicated the FRNpeak SME and found that the interference between 

feedback processing and memory encoding was more pronounced in a condition in which 

participants were asked to predict the category of the upcoming feedback picture. The latter 

finding indicates that the involvement of declarative learning processes in delayed feedback 

processing may at least to some extent be related to the spontaneous generation of explicit 

outcome expectations during the feedback delay period. 

 The FRNpeak SMEs obtained in Experiments 2 and 3 indicate that delayed feedback 

processing and incidental memory encoding compete for similar processing resources. 

However, even though it is tempting to speculate that this interference at the 

electrophysiological level reflects a competition for hippocampal processing resources, it is 

not possible to draw such a conclusion based on EEG data. Furthermore, the hippocampus is 

not the only brain structure that could cause interference between feedback processing and 

memory encoding. Freedberg, Toader, Wassermann, and Voss (2020) recently proposed a 

model for striatum-MTL interactions in learning and memory that assumes a competition for 

PFC processing resources early during learning as the source of competitive interactions 

between the striatum-based procedural learning system and the MTL-based declarative 

learning system. One testable prediction that can be derived from the Freedberg et al. (2020) 

model is that if the interference at the electrophysiological level between delayed feedback 

processing and memory encoding is caused by a competition for PFC processing resources, 

then this interference should only occur early during learning. Thus, one promising avenue for 

future research would be to examine learning-related changes in the interaction between 

delayed feedback processing and memory encoding.  
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Further insights into the processes reflected in the FRNpeak that appear to be involved 

both in delayed feedback processing and in declarative memory encoding could be gained by 

exploring the spectral characteristics of the underlying EEG activity. For instance, (frontal) 

theta power is associated with salience prediction errors in feedback processing (Cavanagh, 

Figueroa, Cohen, & Frank, 2012; Ergo, De Loof, Janssens, & Verguts, 2019; Mas-Herrero & 

Marco-Pallarés, 2014) and has been suggested to signal the need for cognitive control 

(Cavanagh & Frank, 2014). In EEG studies investigating memory formation, successful 

encoding is often associated with increased theta power, presumably reflecting a mechanism 

by which theta oscillations support the encoding of associative memories (Herweg, Solomon, 

& Kahana, 2020). Thus, it is conceivable that FRNpeak amplitudes as measured in the present 

work and feedback-related theta power reflect the same cognitive process that is necessary 

both for the processing of unexpected feedback and for memory encoding (but see Rawls et 

al., 2020, for a recent study indicating that the FRN and frontal midline theta reflect 

functionally distinct processes). Future studies should therefore examine whether interference 

between delayed feedback processing and memory encoding at the electrophysiological level 

can be localized in theta activity. 

A second open question is why we found interference between delayed feedback 

processing and memory encoding at the electrophysiological level, but not behaviorally. In 

Experiment 2, feedback learning performance did not differ between the short and long 

feedback delay conditions, but long delayed feedback pictures were remembered better than 

shortly delayed ones. In the study by Wimmer et al. (2014), one of the few studies that 

investigated interactions between reward learning and memory encoding, behavioral 

interference between reward learning and memory encoding was found at the single trial 

level. In the Wimmer et al. (2014) study, participants performed a reward learning task with 

fluctuating reward probabilities. On each trial, two objects were presented surrounded by 
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color frames representing two possible choices, each associated with drifting reward 

probabilities. Approximately 1.5 seconds later, participants were given “reward” or “miss” 

feedback. Participants were instructed to earn as much “reward” as possible in the task. One 

day later, a surprise recognition memory test was conducted for the objects presented together 

with the choice options. Wimmer et al. (2014) found that subsequent memory for the objects 

predicted diminished updating of choice behavior on the next trial and decreased correlations 

between RPE estimates derived from a computational reinforcement learning model and 

BOLD signals in the striatum at the time of feedback presentation. Even though the Wimmer 

et al. (2014) study differs in many aspects from the paradigm used in the present work, it is an 

intriguing question whether similar interference effects at the single trial level can be found 

between delayed feedback processing and memory encoding. 

5.2.2 How Do Positive RPEs Affect Memory Encoding? 

Our finding in Experiment 1 that the processing of positive feedback is associated with 

superior memory for pictures presented together with the feedback and increased reward 

signals as reflected in the FRNdiff resonates with the results of a number of recent studies 

suggesting that positive RPEs strengthen memory encoding (e.g., De Loof et al., 2018; Jang, 

Nassar, Dillon, & Frank, 2019) and provides ERP evidence in support of this view. 

Interestingly, and similar to the Jang et al. (2019) study, this effect was observed after a short 

retention interval of only 20 minutes, which suggests that memory consolidation processes did 

not strongly contribute to it. In contrast, memory enhancememts associated with reward 

processing have often been obtained after considerably longer rentention intervals (e.g., 

Murayama & Kitagami, 2014; Murayama & Kuhbandner, 2011; Wittmann et al., 2005), and 

dopamine signals elicited by rewards are thought to enhance memory by facilitating the late 

stage of hippocampal long-term potentiation, a process that unfolds over a time scale of hours 

to days (Lisman et al., 2011; Shohamy & Adcock, 2010). Thus, the consolidation-independent 
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memory enhancement for pictures presented together with positive feedback observed in 

Experiment 1 is most likely mediated by a distinct underlying mechanism that modulates 

memory encoding. In the study by Jang et al. (2019) participants were given a gambling task. 

On each trial, participants were first shown the value of the gamble, followed by the image of 

an object whose category (living or nonliving) indicated the probability of reward. 

Participants then made a play-or-pass decision and were shown their earnings if they played 

or their hypothetical trial outcome if they passed. A surprise recognition memory test for the 

objects presented in the gambling task was conducted either directly after a short break or on 

the next day. Jang et al. (2019) found that memory for the objects increased linearly as a 

function of the RPE elicited by the presentation of the object in the gambling task, but was 

unaffected by RPEs elicited by the cue signalling the value of the gamble or by the outcome. 

Notably, this effect was already present in the immediate memory test, indicating that it was 

not consolidation-dependent. Jang et al. (2019) discussed the possibility that fluctuations in 

anticipatory attention could have affected the encoding of the objects, even though they kept 

the different types of trials in the gambling task as similar as possible. In a similar vein, we 

cannot completely rule out the possibility that fluctuations in attention affected the encoding 

of the pictures presented together with the feedback in Experiment 1, although we used an 

incidental learning paradigm to minimize attentional and motivational influences on memory 

encoding. Furthermore, the Jang et al. (2019) study indicates that memory enhancements by 

RPEs may critically depend on the timing of the RPE. This finding highlights the utility of our 

learning paradigm in which memory was tested for pictures presented at the time point of 

feedback presentation. 

 Importantly, a mnemonic bias similar to the one observed in Experiment 3 cannot 

explain the memory enhancement associated with the processing of positive feedback in 

Experiment 1, since indoor and outdoor scene pictures were randomly assigned to the positive 
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and negative feedback conditions in this study. Thus, picture category and feedback valence 

were independent from each other in Experiment 1, and a tendency to judge one of the picture 

categories as “old” more often than the other would not have systematically affected memory 

for positive or negative feedback pictures. 

5.3 Methodological Advancements 

5.3.1 Implications for ERP Studies Investigating Feedback Processing 

The functional significance of the FRN has been a subject of continuous debate during the last 

two decades. The most prominent theory of the FRN states that it reflects dopaminergic RPEs 

in feedback processing (Holroyd & Coles, 2002; Sambrook & Goslin, 2015; Walsh & 

Anderson, 2012). However, evidence is mounting in favor of the alternative view that the 

FRN reflects the processing of unexpected outcomes irrespective of valence (e.g., Ferdinand 

et al., 2012; Hauser et al., 2014; Oliveira et al., 2007; Talmi et al., 2013; Walentowska, 

Severo, Moors, & Pourtois, 2019). A third branch of studies has focussed on variance in the 

FRN signal related to the processing of rewards or positive outcomes (for a review see 

Proudfit, 2015). Differences between studies regarding the measurement of the FRN certainly 

contributed to the divergent results in the literature: A peak-to-peak quantification of the FRN 

primarily captures variance related to the N200 and is more likely to reflect the processing of 

unexpected outcomes irrespective of valence than a quantification based on the positive minus 

negative feedback difference wave which by definition more strongly reflects activity 

differentiating between positive (rewarding) and negative (nonrewarding) outcomes. The 

present work contributes to a reconciliation of the divergent accounts of the FRN by 

acknowledging that the peak-to-peak FRN (FRNpeak) and the difference wave-based FRN 

(FRNdiff) are functionally dissociated and reflect the processing of unexpected outcomes 

irrespective of valence and rewarding outcomes, respectively. In a series of three experiments, 

we examined these two FRN measures and found that FRNpeak amplitudes were larger for 
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negative than for positive feedback (Exp. 1 – 3), more pronounced for long delayed than for 

shortly delayed feedback (Exp. 1 and 2), increased by the requirement to make predictions 

about the feedback (Exp. 3), and sensitive to the interaction between delayed feedback 

processing and memory encoding (Exp. 2 and 3). In contrast, FRNdiff amplitudes were 

consistently larger for shortly delayed feedback (Exp. 1 and 2), but not sensitive to the 

interaction between delayed feedback processing and memory encoding (Exp. 2) or to explicit 

outcome expectations (Exp. 3). Rather, ERP amplitudes in the FRNdiff time window predicted 

subsequent memory for pictures presented together with positive feedback (Exp. 1). These 

results of the present work are broadly consistent with our view stated above that the FRNpeak 

and FRNdiff reflect the processing of unexpected outcomes irrespective of valence and the 

processing of positive outcomes, respectively. Thus, in order to avoid drawing incomplete and 

biased conclusions from FRN results, ERP studies investigating feedback processing should 

consider examining both FRN measures, for each of them provides distinct and valuable 

information. 

5.3.2 Utility of Computational Learning Models for EEG Studies 

In Experiment 2, we sought to validate the aforementioned models of the functional 

significance of the FRN by correlating trial-by-trial estimates of RPEs derived from a 

computational reinforcement learning model with EEG data recorded during feedback 

processing. In functional neuroimaging, similar RL models are frequently used to identify 

brain regions in which BOLD signals correlate with model-derived learning signals (for 

reviews, see Daw & Doya, 2006; O’Doherty et al., 2007). In contrast, only few studies have 

connected model-derived reinforcement learning parameters with EEG data at the single trial 

level (Chase et al., 2011; Hauser et al., 2014; Philiastides, Biele, Vavatzanidis, Kazzer, & 

Heekeren, 2010), even though the estimation of trial-by-trial learning parameters is one of the 

major advantages provided by computational RL models. We made use of this advantage and 
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found that strong correlations between RPE estimates and EEG amplitudes were confined to 

those time windows in which FRN effects were present in the ERP waveforms. This finding 

confirms that the FRN is an ERP correlate of RPEs in feedback processing (Sambrook & 

Goslin, 2015; Walsh & Anderson, 2012). Furthermore, significant correlations between 

unsigned prediction errors (salience prediction errors, SPEs) were obtained in the earlier 

FNRpeak time window, but not in the later FRNdiff time window. This pattern of results 

indicates the the FRNpeak measured in the original feedback-locked ERP waveforms and the 

FRNdiff measured in the negative minus positive feedback difference wave are functionally 

dissociated and reflect distinct processes, namely the processing of unexpected outcome 

irrespective of valence (FRNpeak) and the processing of unexpected positive outcomes or 

rewards (FRNdiff). The results of this complementary model-based analysis further emphasize 

our view stated above that both FRN measures, FRNpeak and FRNdiff, provide valuable and 

distinct information on feedback processing. 

5.4 Concluding Remarks 

Taken together, the findings obtained in this thesis provide behavioral and ERP evidence for 

multiple types of interactions between feedback processing and memory encoding and 

retrieval. Firstly, positive RPEs in feedback processing can enhance familiarity-based 

memory for pictures presented together with the feedback. Secondly, the putative involvement 

of declarative learning processes in delayed feedback processing boosts recollective memory 

for feedback pictures. As evidenced by ERPs, this latter interaction between delayed feedback 

processing and memory encoding induces a competition for neural processing resources that 

is intensified by the requirement to generate explicit outcome expectations. Thirdly, 

expectancy violations elicited by the processing of negative feedback are associated with a 

recollection-based memory enhancement. 
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