
Approximation Algorithms for
Network Design and Cut Problems

in Bounded-Treewidth

A dissertation submitted towards the degree
Doctor of Natural Sciences

of the Faculty of Mathematics and Computer Science
of Saarland University

by Daniel Vaz

Saarbrücken / 2020

Day of Colloquium: 8. December 2020
Dean of the Faculty: Prof. Dr. Thomas Schuster

Chair of the Committee: Prof. Dr. Markus Bläser
Reporters

First reviewer: Prof. Dr. Kurt Mehlhorn
Second reviewer: Prof. Dr. Parinya Chalermsook
Third reviewer: Prof. Dr. Robert Krauthgamer

Academic Assistant: Dr. Sándor Kisfaludi-Bak

ii

Abstract

Abstract This thesis explores two optimization problems, the group Steiner tree and
firefighter problems, which are known to be NP-hard even on trees. We study the
approximability of these problems on trees and bounded-treewidth graphs.

In the group Steiner tree, the input is a graph and sets of vertices called groups;
the goal is to choose one representative from each group and connect all the representa-
tives with minimum cost. We show an O(log2 n)-approximation algorithm for bounded-
treewidth graphs, matching the known lower bound for trees, and improving the best
possible result using previous techniques. We also show improved approximation results
for group Steiner forest, directed Steiner forest, and a fault-tolerant version of group
Steiner tree.

In the firefighter problem, we are given a graph and a vertex which is burning. At
each time step, we can protect one vertex that is not burning; fire then spreads to
all unprotected neighbors of burning vertices. The goal is to maximize the number of
vertices that the fire does not reach. On trees, a classic (1−1/e)-approximation algorithm
is known via LP rounding. We prove that the integrality gap of the LP matches this
approximation, and show significant evidence that additional constraints may improve
its integrality gap. On bounded-treewidth graphs, we show that it is NP-hard to find a
subpolynomial approximation even on graphs of treewidth 5. We complement this result
with an O(1)-approximation on outerplanar graphs.

Zusammenfassung Diese Arbeit untersucht zwei Optimierungsprobleme, von welchen
wir wissen, dass sie selbst in Bäumen NP-schwer sind. Wir analysieren Approximationen
für diese Probleme in Bäumen und Graphen mit begrenzter Baumweite.

Im Gruppensteinerbaumproblem, sind ein Graph und Mengen von Knoten (Gruppen)
gegeben; das Ziel ist es, einen Knoten von jeder Gruppe mit minimalen Kosten zu
verbinden. Wir beschreiben einen O(log2 n)-Approximationsalgorithmus für Graphen
mit beschränkter Baumweite, dies entspricht der zuvor bekannten unteren Schranke für
Bäume und ist zudem eine Verbesserung über die bestmöglichen Resultate die auf anderen
Techniken beruhen. Darüber hinaus zeigen wir verbesserte Approximationsresultate für
andere Gruppensteinerprobleme.

Im Feuerwehrproblem sind ein Graph zusammen mit einem brennenden Knoten gege-
ben. In jedem Zeitschritt können wir einen Knoten der noch nicht brennt auswählen und
diesen vor dem Feuer beschützen. Das Feuer breitet sich anschließend zu allen Nachbarn
aus. Das Ziel ist es die Anzahl der Knoten die vom Feuer unberührt bleiben zu maximie-
ren. In Bäumen existiert ein lang bekannter (1−1/e)-Approximationsalgorithmus der auf
LP Rundung basiert. Wir zeigen, dass die Ganzzahligkeitslücke des LP tatsächlich dieser
Approximation entspricht, und dass weitere Einschränkungen die Ganzzahligkeitslücke
möglicherweise verbessern könnten. Für Graphen mit beschränkter Baumweite zeigen
wir, dass es NP-schwer ist, eine sub-polynomielle Approximation zu finden.

iv

Acknowledgments

First and foremost, I would like to thank Parinya Chalermsook for being an excellent
advisor and mentor. Thanks for guiding me through this journey, and always being there
when I was in need of advice or help. I learned a lot from you, and always had fun doing
it. Thank you also for always trying to bring us all together as much as possible, so we
could focus on research and solving problems.

I am very grateful to Kurt Mehlhorn, who agreed to supervise my PhD and created
a wonderful atmosphere for me and everyone in the group. Speaking to Kurt or listening
to one of his talks was always captivating, and I hope I have the opportunity to do it
again soon.

Research is not something I like to do alone, and so I want to thank everyone that I
collaborated with during my PhD. I am happy that I got to work with so many bright
and friendly people, who ensured that research was always enjoyable. A special thank
you to Parinya, Syamantak, Bundit, Guy, Erik Jan, and Antonios, for being friends as
well as collaborators.

I am grateful to the Max Planck Institute for Informatics for financing my PhD, and
to all of the staff for trying their hardest to assist us in any way they could. Moreover, the
Saarbrücken Graduate School of Computer Science played an important role, especially
before the doctoral research phase, by allowing me to explore and decide on my research
path. I also feel very fortunate for having had the opportunity to visit other academic
institutions: thank you Universidad de Chile, Simons Institute and Aalto University for
hosting me during my visits.

Thank you to everyone in the Algorithms and Complexity group. It was a pleasure
being around such friendly and brilliant people, and there was never a dull day at work.
A big thank you especially to Bhaskar, André, Attila, Andi, Michael, Pavel, and the
monkeys. It was thanks to you that my time in Saarbrücken was so fun, and that I left
with a lot more hobbies than I arrived with.

I cannot thank my family enough: for raising me and always feeding my curiosity, for
supporting me in everything I do, and for always being there for me. Obrigado do fundo
do meu coração.

Thank you to all of my friends, who may have played a small role in this work, but a
significant role in my life.

Last but not least, thank you, Alina, for sharing my life and being the best companion
I could ever ask for.

vi

Contents

1 Introduction 1
1.1 Algorithms for NP-hard Problems Beyond Trees 2
1.2 Problems and Contributions . 3
1.3 Organization . 5

2 Notation and Preliminaries 7
2.1 Graph Notation . 7
2.2 Treewidth and Tree Decompositions . 9
2.3 Computational Regimes for Coping with NP-hardness 11
2.4 Standard Algorithmic Tools . 13

I Network Design on Bounded Treewidth Graphs 15

3 Group Steiner Tree 17
3.1 Problem Definitions and Results . 20
3.2 The Algorithm of Garg, Konjevod and Ravi 21
3.3 Connectivity for GST on Bounded-Treewidth Graphs 29
3.4 Solving GST on Bounded-Treewidth Graphs 39
3.5 Group Steiner Forest on Bounded-Treewidth Graphs 48
3.6 Directed Steiner Forest on Bounded-Treewidth Graphs 53

4 Fault-Tolerant Group Steiner Tree 57
4.1 Problem Definitions and Results . 60
4.2 Connectivity Lemma Based Approach . 61
4.3 Connectivity-K Mimicking Networks . 70

5 Conclusion and Open Problems 79
5.1 Open Problems . 80

II Firefighter Problem 83

6 Firefighter Problem on Trees 85
6.1 Problem Definitions and Results . 87
6.2 Standard Linear Program and Preliminaries 89
6.3 Integrality Gap Instances for the Standard LP 90
6.4 Improving the Standard LP with Hartke’s Constraints 97

7 Firefighter Problem beyond Trees 117
7.1 Problem Definitions and Results . 118
7.2 The Firefighter Problem on Outerplanar Graphs 119
7.3 The Firefighter Problem on Bounded-Treewidth Graphs 128

8 Conclusion and Open Problems 135
8.1 Open Problems . 135

Appendix 139

A Appendix for Part I 139
A.1 Omitted proofs of Chapter 3 . 139
A.2 Algorithms . 141

B Appendix for Part II 147
B.1 Algorithms . 147
B.2 Integrality instance for LP-Hartke (α = 2) 148

viii

List of Figures

3.1 Relation between various network design problems. 18

4.1 Example of different partitions of edges into paths from demands γ1, γ2. . 62

6.1 Simplified instance used to achieve integrality gap of 1− 1/e for LP-FF. . 92
6.2 Instance with a non-integral extreme point for LP-FF. 100
6.3 Gadget used to achieve an integrality gap of 5/6 for LP-Hartke. 111
6.4 Example of the integrality gap instance for LP-Hartke, when α = 1. . . 112
6.5 Simplified instance used to achieve integrality gap of 5/6 for LP-Hartke. 113

7.1 Example of delay and influence. 120
7.2 Construction of Tφ for 3 variables and one example clause, x1 ∨ x2 ∨ x3. . 130

8.1 Example of Ω(n)-completable instance with treewidth 2. 137

B.1 Full example of the integrality gap instance for LP-Hartke, when α = 2. 148

x

List of Algorithms

A.1 Complete algorithm to approximate GST [GKR00]. 141
A.2 Modified algorithm for rounding an instance of Theorem 3.38. 142
A.3 Algorithm to approximately solve GSF. 143
A.4 Algorithm to approximately solve MDGSF. 144
A.5 Algorithm for computing a minor connectivity-K mimicking network. . . . 145
B.1 Greedy algorithm for k-completable and k-weak-completable graphs. . . . 147

xii

CHAPTER 1
Introduction

Computers have revolutionized the world as we know it today, with numerous applications
in all aspects of society. Unfortunately, many computational problems that are useful
in practice have been proven to be NP-hard, and thus it is believed that they cannot
be solved efficiently. There are three characteristics of an algorithm that are mostly
considered regarding NP-hard problems: running time, solution quality, and generality.
A consequence of the NP-hardness of a problem is that it is impossible (or incredibly
difficult) to obtain an algorithm that has good running time, perfect solution quality,
and is general.

We view this thesis as presenting research on approximation algorithms: we are
interested in studying the existence of algorithms that solve a problem in its general
form, and whose running time is bounded by a polynomial on the input length, at the
cost of outputting a solution that is less than optimal, but guarantees that the solution
is not much worse than the optimum. More formally, an α(n)-approximation algorithm
for a minimization problem, where α : Z+ → R is a function on the size of the instance,
is an algorithm that outputs a feasible solution of cost at most α(n) ·opt for any instance
of size n and with optimum cost opt. Similarly, an α-approximation algorithm for a
maximization problem always outputs a feasible solution of cost at least α(n) · opt.

As part of our journey to obtain general approximation algorithms, we will also veer
into the field of parameterized algorithms, which trade off generality with running time,
by considering a parameter of the input instance; the higher the parameter, the more
general is the algorithm and the higher the running time. Our goal is to design FPT
algorithms, which given an instance of a problem of size n and a parameter k (which
can be, for instance, the maximum degree, or the size of the optimum solution), find the
optimum solution in time f(k) poly(n), where f is any computable function. An FPT
algorithm limits the combinatorial explosion to the chosen parameter, meaning that it
runs in polynomial time with regard to the instance size.

Network design problems, a wide class of problems with many practical applications
(see e.g. [GK11, He13, HKR+11]), are often successfully handled using approximation
algorithms [GK11, GK11, KV18]. These problems concern the task of finding subgraphs
establishing connections between nodes, while satisfying certain properties, such as tol-
erance to link or node failures. Numerous classic graph problems are in this class: the
traveling salesman problem, Steiner tree, matching problems, among others.

Many of these problems can be solved effortlessly on simple graphs such as trees, and,
even on general graphs, have constant-approximation algorithms, which often match the
best achievable guarantees. However, some problems are NP-hard even on trees, and
become harder still on general graphs. In this thesis, we focus on two such problems,
and how they can be approximated beyond trees.

The first problem we consider is the group Steiner tree (GST) problem, in which we

Chapter 1. Introduction

are given a base graph and a collection of groups of vertices, and are asked to find a
minimum-cost way to connect a representative of each of the given groups. GST is a
well-known network design problem that generalizes Steiner tree, and is known to be
surprisingly hard. The second problem we consider is the firefighter problem (Max-FF),
in which we are given a graph and a fire source, that is, a vertex that is “burning”. This
problem can be viewed as one-player game played on the input graph: in each turn, we
can protect a vertex that is not burning, making it immune to fire; then, the fire spreads
from all currently burning vertices to their neighbors that were not protected. The goal
is to choose a strategy that maximizes the number of the saved vertices, which the fire
does not reach. We are interested in these problems because of their rich complexity:
besides being NP-hard to solve even on trees, there are some gaps in knowledge between
the tree case and the general graph case.

In the group Steiner tree problem, existing results relied on a known technique
to transform general graphs into trees while preserving distances in the graph [Bar96,
FRT04]. These techniques, known as metric tree embedding techniques, work well in
general, but they cannot be improved even on very simple graphs [CG04, GNR+04]. In
our work, we show new techniques that allow us to improve the approximation ratio
for bounded-treewidth graphs, a generalization of trees for which metric tree embedding
techniques could not improve the state of the art. In fact, our results are tight from
an approximation point of view: our approximation guarantees match the best possible
result for trees [HK03], and hence are tight for any generalization. Our results also
apply in settings for which aforementioned techniques are not known, such as when the
cost of the solution depends on the vertices in the solution, and not only on the edges.
Additionally, we study an extension of group Steiner tree in which we want to connect
the groups in a fault-tolerant manner, and provide a framework to solve problems in
similar settings.

In the firefighter problem, we start by studying the problem on trees, and show that
the standard linear program used to approximate the problem cannot yield any improved
results. We also show how to augment the standard linear program so as to overcome
the previous barrier, even though we do not show a general improved approximation
algorithm. We then turn our attention to more general classes of graphs: we show
an approximation algorithm for outerplanar graphs (see Section 2.1 for definitions).
We also show that even in bounded-treewidth graphs, it is NP-hard to give any good
approximation. Our results show that at a very low value of treewidth (between 2 and 5),
the problem changes from being approximable, to not having any good approximations.

1.1 Algorithms for NP-hard Problems Beyond Trees

Many of the NP-hard graph problems that are studied in computer science, such as
network design problems, tend to be much simpler when the input graph is a tree, and
are often even solvable in polynomial time (see e.g. [CFK+15]). These algorithms for
trees are not necessarily helpful, but there are some approaches to go from trees to more
general graphs.

One of these techniques are metric tree embeddings [Bar98, FRT04], which can be
used to embed a graph into a tree, where the problem can then be solved. This technique
is extremely general, and can be used for some problems where the objective depends

2

1.2. Problems and Contributions

on distances between vertices (see [FRT04] for applications). For the group Steiner
tree problem, this is the only currently-known approach to approximate the problem on
general graphs [FRT04, GKR00]. Unfortunately, the use of this technique implies a loss
of Ω(log n) in the approximation ratio [CG04, GNR+04], meaning that, to obtain better
results, new techniques are needed.

In this thesis, we focus on a different way of generalizing trees, which uses the
techniques developed on trees to obtain results on bounded-treewidth graphs.

The concept of treewidth was introduced by Robertson and Seymour [RS84] in their
seminal work on graph minors (after being known under different names [BB73, Hal76]).
Since then, treewidth has been widely used in parameterized algorithms (see for exam-
ple [CFK+15, Chapter 7] and references within), due to the fact that many problems
studied and considered fundamental in computer science are tractable when the input
graph has bounded treewidth. Furthermore, bounded-treewidth graphs have special
significance as a stepping stone to planar graphs: starting with Baker [Bak94], several
approximation algorithms (namely PTAS) for planar graphs have been obtained by
reduction to the bounded-treewidth case (see [DHK05, DHK11, Kle05]).

This concept also finds applicability in practice. For example, logical inference on
graphical models relies on treewidth to decide what methods to use [PDGF+15], and
control flow graphs arising in the compilation of structured programs are known to have
low treewidth, which implies that they also have good register allocation [Tho98].

Intuitively, treewidth measures how “tree-like” a graph is, that is, how similar the
structure of a graph is to a tree. More concretely, a tree decomposition groups vertices
into bags, and arranges these bags into a tree structure, in a way that maintains certain
desirable properties. Treewidth measures how large these bags must be, so that the graph
can be organized into a tree. This underlying tree structure is extremely helpful, since it
helps us to adapt the techniques used to solve problems on trees, such as recursion and
dynamic programming, to more general graphs.

See Section 2.2 for more details on tree decompositions and treewidth.

1.2 Problems and Contributions

1.2.1 The Group Steiner Tree (GST) Problem

In this problem, we are given a graph with costs on the edges, and a collection of subsets
of vertices that we call groups. Our goal is to find a minimum cost subtree of the graph
that connects to (at least) one vertex of each group, which we call the representative.
The group Steiner tree problem finds applicability in circuit design and broadcasting, in
situations where there is some flexibility in the choice of elements to connect or their
positioning [RW89]. Besides its applicability, the problem also attracts a great deal of
theoretical interest.

After Reich and Widmayer proposed the problem in 1989 [RW89], Garg, Konjevod
and Ravi [GKR00] presented an algorithm that outputs a solution whose cost is a factor
of O(log n log h) away from the optimum, when the input graph is a tree of size n, with
h groups. By applying the metric tree embedding technique by Bartal [Bar96], improved
on by Fakcharoenphol et al. [FRT04]), this result implies a O(log2 n log h)-approximation
to the problem in general graphs. Surprisingly, Halperin and Krauthgamer presented a

3

Chapter 1. Introduction

matching lower bound for the tree case: they showed that, even when the input graph
is a tree, there is no O(log2−ε h)-approximation, under some reasonable complexity
assumptions [HK03].

The main open problem regarding GST is whether we can achieve an O(log n log h)-
approximation in general graphs. In our work, we show that, for a restricted class of
graphs, the answer is affirmative: we present an O(log n log h)-approximation algorithm
for graphs with bounded treewidth. This result strictly improves the best known approx-
imation factor for bounded-treewidth graphs, since metric tree embedding techniques
incur the loss of Ω(log n) in the approximation factor, even on graphs with treewidth
2 [CG04, GNR+04]. It is our hope that our results can be used to obtain a better ap-
proximation ratio for planar graphs, and that our techniques may inspire further results
in more general graph classes.

In this thesis, we show a simplified version of the results published at SODA’17
[CDL+17]. Furthermore, we present our results generalizing the approach to other
group problems [CDE+18], such as a fault-tolerant variant of the problem, where the
representative of each group must be connected by k edge-disjoint (or vertex-disjoint)
paths.

1.2.2 The Firefighter Problem

The firefighter problem can be seen as a 1-player game on a graph G with a fire source
s, which is initially burning. In each round, the player can choose a non-burning vertex
to protect. Then, all the unprotected vertices neighboring a burning vertex start burning
as well. The goal is to find a strategy that maximizes the number of non-burning
vertices when the game ends, that is, when no new vertices can start burning. This
problem models the spread of natural phenomena, such as forest fires, diseases, or ideas
[FM09, Har95].

In general graphs, it has been shown that it is NP-hard to n1−ε-approximate the
problem [ACH+12]. For this reason, most of the work on this problem looks at more
specific cases, such as when the input graph is a tree. In this situation, a simple greedy
2-approximation [HL00], as well as a (1− 1/e)-approximation using randomized round-
ing of a linear program [CVY08] are known. Concurrently to our work, Adjiashvili et
al. [ABZ17] obtained a PTAS ((1 + ε)-approximation for any ε > 0) for this prob-
lem. Their result also uses the standard linear program as part of the algorithm, but
preprocesses the instance so that the rounding procedure outputs a better approximation.

In our work, we show that 1− 1/e is the best approximation ratio achievable using
the standard linear program, and we provide some evidence that extending it using
constraints suggested by Hartke may improve the approximation ratio. Seeing as how
rounding the linear program yielded the best approximation for a long time, and is still
used as part of the PTAS by Adjiashvili et al. [ABZ17], we think that studying the
limitations of the standard LP and improving them is an important question, which can
lead to improved rounding algorithms or simplified PTAS.

In later work, we turn our attention to studying the complexity landscape of the
problem: while the tree case is NP-hard, but can be well approximated, the general case
does not have any good approximation. Our results are two-fold: first, we show that
even on bounded-treewidth graphs (treewidth 5), computing an n1−ε-approximation is

4

1.3. Organization

NP-hard, for any ε > 0; the above result also applies when, on graphs of treewidth w,
fewer than w/2− 1 vertices can be protected per turn. Our second result shows that on
outerplanar graphs (planar graphs where all vertices are on the same face, see Section 2.1
for definitions), the problem has an O(1)-approximation. It is likely that this result can
be generalized to other classes of graphs, especially k-outerplanar graphs. We leave this
question as an open problem.

1.3 Organization

We start the thesis by presenting some notation and well-known results that are used
throughout. The rest of the thesis is divided into two parts. In Part I, our results on the
group Steiner tree problem (Chapter 3) and its fault-tolerant extension (Chapter 4) are
described. In Part II, the firefighter problem is studied, starting with some results on
trees (Chapter 6), and then the results on outerplanar graphs and bounded-treewidth
graphs (Chapter 7). We finish each part with a conclusion and discussion of future work.

5

Chapter 1. Introduction

6

CHAPTER 2
Notation and Preliminaries

2.1 Graph Notation

Throughout this document, we assume a graph to be unweighted, undirected and simple
unless otherwise specified. For most problems where the input is a graph, we will refer
to the input graph as G = (V,E), the number of vertices as n = |V |, and the number of
edges as m = |E|.

If G is directed, we consider E ⊆ V × V , and refer to the edges as (u, v). For
undirected graphs, we will usually consider E to be a symmetric subset of V × V , where
(u, v) ∈ E implies that (v, u) ∈ E; we denote the edge between u and v as (u, v), (v, u),
or uv. In order to distinguish between results for directed and undirected graphs, we
either use the notation uv for undirected graphs, or explicitly state when it is assumed
that E is symmetric (though in most cases, this assumption is not necessary).

A weight or cost vector is a vector w ∈ RE (edge weights) or w ∈ RV (vertex weights).
We use the notation we (resp. wv) to mean the weight of the corresponding edge e (resp.
vertex v), that is, the coordinate of w indexed by e (resp. v). For subsets of elements
(vertices or edges), we use the notation w(S) to mean the sum of the weights of those
elements, w(S) =

∑
s∈S ws, for S ⊆ E (resp. S ⊆ V). Unless otherwise specified, weights

are specified on edges.
We say a subgraph p ⊆ G is a path, if it has vertex set V (p) =

{
p1, p2, . . . , p|p|

}
and edge set E(p) = {(pi−1, pi) : i ∈ {2, . . . , |p|}}. The length of a path p is |E(p)|, the
number of its edges. For convenience, we may consider a path p as a tuple of vertices or
of edges, according to context. Given two paths p, q, we denote by p◦q the concatenation
of paths p and q, that is, the path

(
p1, p2, . . . , p|p|, q1, . . . , q|q|

)
, provided that the edge

p|p|q1 exists (in G). The shortest path metric of a graph G with edge-weights w ∈ RE is
a metric (V (G), d(G,w)), where d(G,w)(u, v) is the minimum weight w(E(p)) of a path p
from u to v.

Given two graphs G1, G2, their union G1 ∪ G2 is a multigraph whose vertex set is
the union V (G1) ∪ V (G2), and which has an edge uv ∈ G for every edge uv ∈ G1, and
for every edge uv ∈ G2 (which means it might have parallel edges if G1 and G2 contain
the same edge).

A cut (V1, V2) is a partition of V , and its cutset is the set of edges connecting V1, V2,
denoted E(V1, V2). Given disjoint S1, S2 ⊆ V , we say (V1, V2) is a cut between S1 and
S2, or that (V1, V2) separates S1 from S2, if S1 ⊆ V1, S2 ⊆ V2. The weight of a cut is the
total weight of the edges in its cutset (edges have weight 1 if not specified). A mincut
separating S1 from S2 is a cut between S1 and S2 with minimum weight.

Directed graphs Let G = (V,E) be a directed graph. E is the set of arcs (or simply
edges) of G, and for every arc e = (u, v) ∈ E, we say that e is an arc from u to v, and u

Chapter 2. Notation and Preliminaries

and v are the tail and head of e, respectively.
The in-degree (resp. out-degree) of a vertex v ∈ V is the number of arcs in E whose

head (resp. tail) is v.
We say G is a directed acyclic graph (DAG) if it contains no directed cycles (see

[Die12] for properties of these graphs). A DAG is rooted if there is exactly one vertex
(the root) with in-degree 0.

An arborescence (also out-arborescence) is a directed, rooted tree where every edge
points away from the root. An in-arborescence is similar, but with all the edges pointing
towards the root.

Trees and arborescences When G is a tree or an (in or out)-arborescence with root
r, we introduce additional notation. We will define all the notation with respect to an
out-arborescence. The definitions for trees and in-arborescences can be obtained from
the corresponding out-arborescence, by directing all of the edges away from the root.

The parent p(v) of v in G is the tail of the (unique) arc to v. The set of children of
v, denoted C(v), contains the heads of the arcs from v, that is, the set of all vertices u
such that there is an arc from v to u. An out-arborescence is d-ary , for some d ∈ Z≥1 if
every vertex has at most d children.

We say that u is an ancestor of v if there is a directed path from u to v. u is the
`-th ancestor of v, denoted p(`)(v) if u is the unique vertex such that a path of length `
between u and v exists (p(v) is the first ancestor of v).

The subtree of G rooted at v, denoted Gv, is the subgraph of G induced by all the
vertices reachable from v, that is, all vertices u such that there is a path from v to u.

The depth of a vertex v is the length of the unique path from the root to v. The
height of v, or equivalently, the height of Gv, is the maximum length of a path from v to
a leaf in Gv. The depth or height of a tree G is the height of the root r.

Given a set of vertices (for example, that satisfy a certain condition), a topmost or
highest vertex in the set is a vertex that has minimum depth among vertices in the
set. Similarly, a lowest vertex is a vertex that has maximum depth among vertices in
the set. Following this notation, the lowest common ancestor of vertices u and v is the
maximum-depth vertex that is an ancestor of both u and v.

All of these definitions apply to DAGs as well, except that parents, `-th ancestors,
and lowest common ancestors may not be unique.

Proposition 2.1. Let V be a set of vertices of size |V | = n. The number of possible
forests on V is at most nn.

Proof. Every forest on V can be uniquely identified by a parent function p : V → V
(p(u) = v if v is the parent of u, p(v) = v if v has no parent). Therefore, the number of
forests on V is at most the number of possible functions p : V → V , which is nn.

Proposition 2.2. Let G be a tree with ` ≥ 3 leaves, such that every internal vertex of
G has degree at least 3. Then |V (G)| ≤ 2`− 2.

Proof. Let the root r of G be an internal vertex. Removing r from G will leave us with
subtrees G1, G2, . . . , Gk, k ≥ 3. If ` = 3, then we must have k = 3 and each Gi is a single
leaf, since each tree must have at least one leaf and there is only one possibility for trees
with one leaf, so V (G) ≤ 4.

8

2.2. Treewidth and Tree Decompositions

Assume by induction that the statement holds for `′ < `. Then

|V (G)| = 1 +
k∑
i=1

|V (Gi)| ≤ 1 +
k∑
i=1

(2`i − 2) = 2`− (2k − 1) ≤ 2`− 2

Planar and outerplanar graphs We use the notation and results presented by Di-
estel [Die12, Chapter 4]. A planar graph is a graph that can be embedded onto the
plane (R2) in such a way that edges only intersect at their endpoints (i.e. there are no
crossings). An embedding of a planar graph is also referred to as plane graph. The faces
of an embedding are the contiguous regions of R2 \G. The outer face is the unique face
that is unbounded. Let f be a face of an embedding of G. The subgraph of G induced
by f , G[f], is the subgraph of G containing exactly all of the vertices and edges in the
frontier (or boundary) of f .

An outerplanar graph is a planar graph such that the outer face of some embedding
contains all of the vertices. We generally consider an arbitrary such embedding when
talking about outerplanar graphs. A k-outerplanar graph is defined recursively as follows:
a 1-outerplanar graph is simply an outerplanar graph; a k-outerplanar graph is a planar
graph such that, for an appropriate embedding, removing the vertices and edges on the
outer face results in a (k − 1)-outerplanar graph.

2.2 Treewidth and Tree Decompositions

The concepts of treewidth and tree decomposition were proposed by Robert and Seymour
in their seminal paper [RS84]. These concepts have been used ever since and have found
numerous applications in the field of algorithms.

Before stating the formal definition, let us consider how treewidth might be useful as
a parameter when designing algorithms. The set of graphs with treewidth 1 is simply
the set of all trees. When considering problems on trees, many problems can be easily
solved, because their structure allows for simple ideas to be used, such as recursion or
bottom-up dynamic programming. For example, if we can obtain a solution for a tree
from solutions for its subtrees, we can get a solution by “building it up”, that is, starting
from leaves, and then constructing solutions for progressively bigger subtrees, until we
have a solution for the entire tree.

This approach works on trees for two reasons: (1) we have a tree structure, which
allows us to use a bottom-up recursive strategy; (2) the “interface” of a subtree is a single
vertex, that is, there is only one vertex connecting the subtree to the rest of the graph,
which in many cases implies that dependence between the solution in the subtree and
outside of it can be restricted to that single vertex.

The concept of tree decomposition pushes this idea a step further: we still want a
tree-like structure, but we allow the interface of a subinstance (subtree in the previous
case) to contain a small number of vertices. It is important that the number of vertices
in the interface is indeed small, as we usually need to enumerate all the possibilities for
the solution on these vertices.

Definition 2.3. Let G be an undirected graph. A tree decomposition is a pair (T ,X)
where T is a tree and X = {Xt ⊆ V (G)}t∈V (T) is a collection of bags such that:

9

Chapter 2. Notation and Preliminaries

(1) V (G) =
⋃
t∈V (T)Xt, that is, every v ∈ V (G) is contained in some bag Xt;

(2) For any edge uv ∈ E, there is a bag Xt that contains both u and v, i.e. u, v ∈ Xt;

(3) For each vertex v ∈ V (G), the collection of nodes t whose bags Xt contain v induces
a connected subgraph of T , that is, T [{t ∈ V (T) : v ∈ Xt}] is a (connected) subtree.

We will use the term node to refer to an element t ∈ V (T), and bag to refer to the
corresponding subset Xt.

The treewidth of G, denoted tw(G), is the minimum width of any tree decomposition
(T ,X) for G. The width of (T ,X) is given by max |Xt| − 1. When working with
directed graphs, we will consider the treewidth and tree decomposition of its undirected
counterpart, that is, the undirected graph with the same edges (but without direction)
as G.

Let G be a graph and (T ,X) be its tree decomposition. We will say that each edge
uv ∈ E(G) belongs to a unique bag Xt, and write e ∈ Et, if t ∈ T is the node closest to
the root such that u, v ∈ Xt. For a subset S ⊆ V (T), we define X(S) :=

⋃
t∈S Xt. We

also define Gt as the subgraph with vertices X(Tt) and edges E(Gt) =
⋃
t′∈Tt Et′ . For

each v ∈ V , we denote by tv the node closest to the root for which v ∈ Xtv .
Another interpretation of Property (3) is that, for any v ∈ V , there is a single node

tv ∈ T where v arises, that is, such that v is in Xt but not in Xp(t); for every other
bag Xt′ containing v, it must have been passed on from the parent. We can use this
property in a recursive algorithm by passing down some information about a vertex v to
the children bags containing v. Since there is a single bag in which v arises, this makes
sure that all bags containing v get the same information.

We will use the following result, which shows that a tree decomposition of G of width
O(tw(G)) is computable in time O(2O(tw(G))n).

Theorem 2.4 ([BDD+16]). There is an algorithm that, given a graph G, finds a tree
decomposition (T , {Xt}t∈V (T)) such that |Xt| ≤ 5 tw(G) for all t, in time O

(
2O(tw(G))n

)
.

In order to simplify notation, we assume that T is a binary tree. Furthermore, it is
helpful to require the height of T to be O(log n). Lemma 2.6, based on the following
result of Bodlaender [Bod88], summarizes the properties we assume.

Theorem 2.5 ([Bod88, Theorem 4.2]). Let G = (V,E), with n = |V | and tw(G) ≤ w.
Then G has a tree-decomposition (T ,X) with T a binary tree with depth at most

O(log n), and the width of this decomposition is at most 3w + 2.

In fact, the proof of Theorem 2.5 shows how to transform any given tree decomposition
of G with width w into one with the properties above. This transformation runs in near-
linear time in the size of T .

Lemma 2.6. Given a tree decomposition (T ′,X ′) of width w, we can transform it into
a tree decomposition (T ,X) with the following properties:

(1) the height of T is at most O(log n);

(2) each bag Xt satisfies |Xt| ≤ 3w + 2;

10

2.3. Computational Regimes for Coping with NP-hardness

(3) every non-leaf has exactly 2 children;

(4) every leaf bag has no edges (Et = ∅ for leaf t ∈ T).

Furthermore, this transformation runs in near-linear time in the size of T .

Proof. Theorem 2.5 shows us how to transform (T ′,X ′) so that it is a binary tree and
satisfies Properties (1) and (2).

Let t be a node that does not satisfy Property (3); by Theorem 2.5, it must have
exactly one child. We make a copy t′ of t and make it the child of t. It can be easily
seen that this does not affect the previous properties or contradicts the definition of tree
decomposition. Furthermore, t′ satisfies Property (4).

For any leaf node t that does not satisfy Property (4), we make two copies t′, t′′, and
make them the children of t. Since Xt = Xt′ = Xt′′ , no edges belong to t′ and t′′.

2.3 Computational Regimes for Coping with NP-hardness

2.3.1 Approximation Algorithms

Approximation algorithms are a common approach to handle NP-hardness of an opti-
mization problem: since an NP-hard problem cannot be solved to optimality (unless
P = NP), we instead develop efficient algorithms that find a solution provably close to
the optimum.

Let P be a minimization problem with objective function f . Given an instance I of
P, the goal of the problem is to find a feasible solution S for I that minimizes f(S).
Let opt(I) be the optimum value of f over all feasible solutions for an instance I, and
OPT(I) be an arbitrary feasible solution minimizing f , that is, f(OPT(I)) = opt(I).
The definition is analogous for maximization problems.

Definition 2.7. Let A be an algorithm for a problem P, α : Z+ → R be a function,
and let alg(I) = f(A(I)) be the value of the solution A(I) returned by A.

We say that A is an α(n)-approximation algorithm for P if, for all instances I of P,

opt(I) ≤ alg(I) ≤ α(n) opt(I) (minimization, α(n) ≥ 1)
α(n) opt(I) ≤ alg(I) ≤ opt(I) (maximization, α(n) ≤ 1)

The approximation ratio or approximation factor of A is the value α(n) closest to 1
such that A is an α(n)-approximation algorithm for P.

If A is a randomized algorithm, we consider the expected value of the solution, that
is, alg(I) = E[f(A(I))].

If P is a maximization problem, we sometimes consider the ratio opt(I)/ alg(I) (that
is, we say A is an O(log n)-approximation instead of an Ω(1/ log n)-approximation).

For some problems, we have a polynomial time approximation scheme (PTAS), which
can output, in polynomial time, an (1 + ε)-approximate solution for any constant ε > 0.
PTAS allow us to get to within a very small percentage of the solution by increasing the
running time of the algorithm.

11

Chapter 2. Notation and Preliminaries

Definition 2.8. Let P be a minimization problem.
A polynomial-time approximation scheme (PTAS) for P is a family of approximation

algorithms {Aε} such that, for every constant ε > 0, there is a (1 + ε)-approximation
algorithm Aε running in polynomial time. For maximization problems, Aε is a (1− ε)-
approximation algorithm.

We say {Aε} is an efficient polynomial-time approximation scheme (EPTAS) if,
for every ε > 0, the running time of Aε is f(1/ε) poly(n), where f is some computable
function and n is the size of the input. If f is a polynomial, {Aε} is a fully-polynomial-time
approximation scheme (FPTAS).

The goal when studying the approximability of a problem is to determine the best
approximation ratio of an algorithm to that problem. To that end, we also consider
hardness of approximation results, which show what approximation ratios are unlikely. We
say that a problem P is α(n)-inapproximable under some complexity assumption (usually
P 6= NP), if the assumption implies that there is no α(n)-approximation algorithm for
P. If the assumption is P 6= NP, we also say that it is NP-hard to α(n)-approximate P.

For more details and examples, see [KV18, Vaz01, WS11].

2.3.2 Parameterized Complexity

Parameterized complexity is the field of computer science that aims to characterize the
hardness of NP-hard problems according to additional parameters. The parameters
can be anything from the size of the solution, to a property of the input graph, like
the maximum degree or treewidth. A problem associated with a parameter is called a
parameterized problem, and we can formally define it as follows (for decision problems).

Definition 2.9 ([CNP+11]). A parameterized (decision) problem P is specified by a
language L ⊆ Σ∗ × Z≥0 containing all YES-instances of P, where Σ is a fixed, finite
alphabet. For an instance (x, k) ∈ Σ∗ ×Z≥0, k is called the parameter.

Intuitively, a parameterized problem is simply a problem where each instance is
augmented with a non-negative integer parameter. This definition also generalizes to
optimization problems, as well as to multiple parameters.

We can now define relevant computation classes for parameterized problems. In this
thesis, we are mostly interested in the classes of fixed-parameter tractable (FPT) and
slice-wise polynomial (XP) problems.

Definition 2.10 ([CNP+11]). Let P be a parameterized (decision) problem.
We say P is fixed-parameter tractable (FPT) if there is an algorithm A, a computable

function f : Z≥0 → Z≥0 and a constant c ∈ Z≥0 such that, given an instance (x, k), A
correctly decides if (x, k) is a YES-instance in time bounded by f(k) · (x+ k)c.

We say P is slice-wise polynomial (XP) if there is an algorithm A and computable
functions f, g : Z≥0 → Z≥0 such that, given an instance (x, k), A correctly decides if
(x, k) is a YES-instance in time bounded by f(k) · (x+ k)g(k).

The class of all fixed-parameter tractable problems is denoted by FPT, and the class
of all slice-wise polynomial problems by XP. An algorithm that certifies that P is in FPT
or in XP is called an FPT or XP algorithm, respectively.

For optimization problems the definition is similar, with the difference being that A
must compute an optimum solution, instead of deciding whether (x, k) is a YES-instance.

12

2.4. Standard Algorithmic Tools

2.4 Standard Algorithmic Tools

2.4.1 Linear Programming

Linear programming is one of the most used techniques in approximation algorithms
(see e.g. [WS11] or [Vaz01, Part II]). In this section, we will give a small introduction to
linear programs and introduce some notation that will be used throughout this thesis. A
more thorough introduction, as well as references to the results presented in this section
can be found in the book by Bertsimas and Tsitsiklis [BT97].

Many interesting problems in combinatorial optimization have two interesting prop-
erties: (i) the objective function is linear in the solution (for example, the objective may
be to minimize the sum of weights of the edges in the solution), and (ii) the feasibility
constraints of the problem, that is, the rules to decide whether a solution is feasible, are
linear, or can be expressed as linear constraints. Problems satisfying these constraints
can be expressed as an (integer) linear program.

When formulating a linear program (LP), the first step is to choose the decision vari-
ables. The assignment to these variables is restricted by linear inequalities or equations
called constraints. If an assignment satisfies all of the constraints of a linear program,
we say this assignment is a feasible solution. Finally, an LP has a linear objective func-
tion. The goal of linear programming is referred to as solving the LP, and consists in
finding an optimum solution, that is, a feasible solution that optimizes (either maximizes
or minimizes) the objective function. The value of a feasible solution (resp. an LP) is
the value of the objective function for that assignment (resp. for the assignment of the
optimum solution). The support of a solution x, denoted supp(x) is the set of variables
that are assigned a non-zero value.

Definition 2.11. A linear program (LP) is a problem of the form

min cTx, s.t. Ax ≥ b, x ≥ 0 (2.1)

where x ∈ Rn is the vector of n decision variables, and A ∈ Rm×n, b ∈ Rm encode the
m constraints.

The value of the expression in (2.1) is the value of the LP. A vector x ∈ Rn is a
feasible solution if Ax ≥ b, x ≥ 0; its value is cTx. If the value of x is equal to the value
of the LP, x is an optimum solution. The support of x is supp(x) = {i ∈ [n] : xi > 0}.

All LPs can be written exactly as above. However, it might be easier to slightly adjust
the expression for other problems, e.g. by changing min to max, ≥ to ≤, or (partially)
removing the constraint x ≥ 0.

If the variables are constrained to take only integer values, we call the linear program
an integer program (IP). If only some of the variables must be integer, it is called a mixed
integer program. Solving IPs is NP-hard, as they generalize many of the classic NP-hard
problems. However, solving LPs can be done in polynomial time, which makes them a
useful tool to approximate NP-hard problems. Specifically, there are known algorithms
to solve LPs and obtain an extreme point solution, which is not only optimum, but also
has the property that it cannot be written as a convex combination of feasible solutions.

13

Chapter 2. Notation and Preliminaries

2.4.2 Rounding Linear Programs

One technique that is used to solve problems using LPs is to first define and solve an LP
relaxation to the problem. An LP is said to be a relaxation to a problem if any feasible
solution to the problem can be encoded as a feasible solution to the LP. The easiest way
to obtain an LP relaxation to a problem is to formulate the IP that encodes that problem,
and then remove the integrality constraints to make it an LP.

After obtaining a relaxation and solving it, we can round the solution, that is, we
can transform it into a feasible solution to the problem, in a way that increases its value
by at most a factor of α. The solution that we obtain is then an α-approximation to the
problem, because the value of the LP relaxation is at least as good as the value of the
optimum solution. However, the value of the LP may sometimes be better than the value
of the optimum solution. This motivates the definition of integrality gap

Definition 2.12. Let L denote an LP, and let x∗ ∈ Rn, xI ∈ Zn be an optimum solution
and optimum integer solution to L, respectively.

The integrality gap of the LP is the ratio of the optimum value of an integer solution
to the value of the LP, that is,

intgap(L) =
cTxI

cTx∗
.

The best approximation we can get by rounding an LP is given by the integrality
gap, since the ratio of any integer solution to the value of the LP is bounded by it.

In some cases, rounding may be accomplished by using the structure of the extreme
point solutions for the specific LP. We say a solution is 1/k-integral if all the variables
take values in (1/k)Z. An LP is 1/k-integral if all its extreme point solutions are 1/k-
integral. If a solution (or LP) is 1-integral, we simply say it is integral . If a solution (or
LP) is 1/2-integral, we say it is half-integral . We also define the concept of integrality gap
against 1/k-integral solutions as the ratio of the value of an optimum integer solution to
the value of an optimum 1/k-integral solution.

14

PART I

Network Design on Bounded Treewidth
Graphs

This part of the thesis is the result of close collaboration with Parinya
Chalermsook, Syamantak Das, Guy Even and Bundit Laekhanukit. It is
mostly based on an article published in the Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017)
[CDL+17], and an article published in the proceedings of Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018) [CDE+18].

16

CHAPTER 3
Group Steiner Tree

The group Steiner tree (GST) problem was introduced by Reich and Widmayer [RW89]
and is by now a cornerstone problem in combinatorial optimization and theoretical
computer science, having received considerable attention over the past two decades
[BDH+16, CEK06, CP05, DHK14, GKR00, HKK+07, HRZ01, NPS11, RW89]. In this
problem, we are given an undirected graph G = (V,E), edge or vertex costs, a root vertex
r and a collection of h subsets of vertices, S1, . . . , Sh ⊆ V , called groups. The goal is
to find a minimum-cost tree that, for each group Si, i ∈ [h], connects r to at least one
vertex of Si.

This problem admits a polynomial time O(log n log h)-approximation when the graph
is a tree, due to the seminal result of Garg, Konjevod and Ravi [GKR00]. Using the
work of Bartal [Bar96], and later Fakcharoenphol et al. [FRT04], we can convert any
graph with edge lengths into a tree where distances are approximately preserved. This
technique, referred to as metric tree embedding , leads to an increase of the cost by a
factor of O(log n), which results in an O(log2 n log h)-approximation for the problem in
general graphs. This is the best possible result using this technique, as there are graphs
where the cost of a solution increases by an Ω(log n) factor [CG04, GNR+04].

Alternatively, a slightly worse approximation ratio can be achieved combinatorially,
that is, avoiding the use of linear programming techniques: Chekuri et al. [CEK06] show a
greedy algorithm for trees that achieves an approximation ratio ofO(log1+ε n log h), where
the running time depends exponentially on 1/ε. Using the technique outlined above,
this implies a combinatorial O(log2+ε n log h)-approximation in polynomial time (for a
constant ε > 0). We remark that tree embedding techniques do not currently exist for
graphs with vertex costs, and thus there are no known polynomial-time polylogarithmic
approximations for GST with vertex costs in general graphs.

On the hardness of approximation side, GST is known to generalize set cover. Set
cover is hard to approximate to a factor of (1−ε) lnn for any ε > 0 [Fei98], which implies
the same hardness for GST. Furthermore, Halperin et al. [HK03, HKK+07] showed that,
unless NP ⊆ ZPTIME

(
npolylogn

)
, GST has no polynomial (or quasi-polynomial) time

O(log2−ε h)-approximation. This bound is, in some sense, matched by an algorithm by
Chekuri and Pál [CP05], which gives an O(log2 h)-approximation in quasi-polynomial
time to GST in general graphs.

Beyond the results outlined above, others have explored variants of the problem: Naor
et al. [NPS11] studied the online variant of GST and gave polylogarithmic-competitive
algorithms for it; Demaine et al. [DHK14], and later Bateni et al. [BDH+16], focused on
a specific subset of instances of pratical value, in which the graph is planar, and each
group is concentrated in a face. These works culminated in a PTAS for this specialization
of the problem. Regarding parameterized algorithms for the problem, little is known:
the exact solution can be computed with running time O(2h poly(n)) using dynamic

Chapter 3. Group Steiner Tree

Steiner tree

GST

GSF

DST

DSF

+groups digraph

unrooted unrooted

Figure 3.1: Relation between various network design problems. An arrow A → B
means that B is a generalization of A. A dashed arrow indicates that A can be solved
by a reduction to B.

programming [DW71]; Jones et al. study the problem on sparse graphs, parameterized
by the number of non-terminals in the solution [JLR+17].

The main open question regarding the approximation of GST is whether we can
achieve the same approximation ratio in general graphs as we can in trees. Current
polynomial-time techniques, which rely on metric tree embeddings, cannot be improved:
there are graphs with treewidth 2 which cannot be embedded into a tree without losing
a factor of Ω(log n) [CG04, GNR+04]. Furthermore, no such techniques are known for
graphs with vertex costs. This suggests that, if we want to improve the approximation
algorithms for GST, new techniques are needed.

Group and directed network design problems Many variants and generalizations
of GST are studied in the literature (see e.g. [He13]). One closely related problem is the
directed Steiner tree problem, which generalizes GST by encoding groups as sink vertices,
with arcs from every vertex in a group. In this work, we are also interested in two other
problems, group Steiner forest and directed Steiner forest, which generalize group Steiner
tree and directed Steiner tree, respectively. Figure 3.1 represents the relation between
all of the problems described below.

In the directed Steiner tree problem (DST) we are given a directed graph with edge
costs, a root r and a set of h terminals T . The goal of the problem is to find the
minimum-cost tree (out-arborescence) that connects the root to all the terminals. The
DST problem generalizes GST via a simple reduction: we start from the input graph
of GST, and turn its edges onto pairs of arcs in each direction; afterwards, one vertex
for each group is created, and arcs are added from each terminal in the group to the
corresponding vertex for the group, with cost 0. This reduction implies a lower bound
of Ω(log2−ε h) for the approximation of DST; furthermore, many algorithms for the two
problems share techniques, and sometimes are just slight adaptations of each other (see
e.g. [HRZ01, CCC+99, CEK06, GLL19]). For a long time, the best approximation ratio
for DST was O(hεε−2 log h), due to the work of Charikar et al. [CCC+99]. If quasi-
polynomial running time is allowed, their result implies an O(log3 h)-approximation.
Very recently, Grandoni et al. [GLL19] improved the approximation ratio in quasi-
polynomial running time to O(log2 h/ log log h), which is tight under the projection game
conjecture [GLL19, HK03].

The group Steiner forest problem (GSF) is a generalization of GST that has also

18

received significant attention. In this problem, we are given a graph G and a collection
of pairs of groups {(Ai, Bi)}i∈[h] (where Ai, Bi ⊆ V are subsets of vertices). The goal is
to find a minimum-cost subgraph H ⊆ G that, for every i ∈ [h], contains a path from
some vertex a ∈ Ai to some vertex b ∈ Bi.

Most of the research for GSF actually applies for a more general problem, the directed
Steiner forest problem (DSF). DSF is a computationally harder problem, but as with
GST and DST, it is possible to use the techniques developed for DSF (see, e.g., [BBM+13,
CCC+99, CEG+11, CDK+17, FKN12]), together with tools available only for undirected
graphs, to obtain polylogarithmic approximation algorithms for GSF. Notably, Chekuri
et al. [CEG+11] gave a O(log2 n log2 h)-approximation algorithm for GSF that runs in
polynomial time. This algorithm is obtained by using the known results for GST as a
subroutine.

In the DSF problem, we are given a similar input to GSF, but the input graph is
directed and the source-sink pairs are pairs of vertices. On general graphs, DSF has
been shown to be as hard as the label-cover problem [DK99], which thus rules out
polylogarithmic approximation guarantees unless NP ⊆ DTIME(npolylog(n)). The early
results for DSF gave algorithms whose approximation ratio depends on h, the number
of source-sink pairs, while approximation ratios in terms of n, the number of vertices,
were still Ω(n). The first algorithm that broke the bound of Ω(n) was given by Feldman,
Kortsarz and Nutov [FKN12], with an approximation ratio of n4/5+ε, for any ε > 0. This
bound was later improved to n2/3+ε [BBM+13], n3/5+ε for unweighted graphs [CDK+17],
and recently, n0.5778+ε for unweighted graphs [AB18].

Generalizations of GSF and GST to higher connectivity have also been studied
[CGL15, GKR10, KKN12], see Chapter 4 for details.

Related work The approximation algorithm for GST in general graphs uses proba-
bilistic metric tree embedding techniques, which approximate distances in a graph by a
distribution over trees. For the purpose of approximating GST, we are interested in tree
embeddings for which distances in the resulting trees increase by a small factor (called
the distortion).

This technique was first introduced by Karp [Kar89], who presented a probabilistic
embedding of cycles. Alon et al. [AKP+95] extended this technique to general metrics,
with expected distortion of 2O(

√
logn log logn). This factor was then improved by Bartal

to O(log2 n) [Bar96], and then to O(log n log log n) [Bar98], and finally to O(log n) by
Fakcharoenphol et al. [FRT04].

This upper bound on distortion is known to be tight, as there are expander graphs
for which any tree embedding must have distortion Ω(log n). Gupta et al. [GNR+04]
show that this lower bound also applies for tree embeddings of series-parallel graphs,
which have treewidth 2. Carroll and Goel [CG04] expand on this result by showing the
same distortion of Ω(log n) when embedding graphs of bounded treewidth to families of
graphs excluding a small fixed minor.

One of the main ideas in our algorithm is to formulate an LP to obtain a solution from a
dynamic program to the Steiner tree problem. The technique of formulating an LP from a
dynamic programming has been used before: Martin et al. [MRC90] showed that dynamic
programs can be formulated as integral LPs (see also [Bü11, dFR01, d’E63, Man60] for
stochastic dynamic programs). Gupta et al. [GTW13] also use a similar technique to

19

Chapter 3. Group Steiner Tree

approximate the sparsest-cut problem. However, their algorithm performs rounding on
sets of vertices simultaneously, while we embed the graph into a tree via the dynamic
programming table, making our technique more general. Dynamic programs for Steiner
tree on bounded treewidth were first presented by Chimani et al. [CMZ12], with running
time O

(
wO(w)n

)
, and later improved to O

(
2O(w)n

)
using several different techniques

[BCK+15, CNP+11, FBN15].

Our results Our goal is to improve the best approximation factor achievable in poly-
nomial time, from the current O(log2 n log h) to the factor O(log n log h). We chose
bounded-treewidth graphs as a first step towards this goal: not only do many results
for trees generalize to this setting; but we also know that distortion for tree-embedding
techniques is Θ(log n) in the worst case [GNR+04].

We show that on bounded-treewidth graphs it is possible to surpass the results
obtained using tree embedding techniques: we present an O(log n log h)-approximation
algorithm for GST with running time nO(tw(G) log tw(G)), which is polynomial in n for
constant treewidth. Our result extends to GST on graphs with vertex costs, with the
same approximation guarantees and a running time of nO(tw(G)2).

The main technical contribution in this section is a framework that allows us to
formulate GST as a dynamic program with extra constraints; and then solve this problem
by rounding a linear program. This formulation is very similar to GST on trees, so we
can solve it using the known algorithm by Garg et al. [GKR00]. In Chapter 4 we show
some more uses of this technique. We expect that our framework can be used to solve
GST, or even other problems, in further settings.

Organization The organization of this chapter is as follows: in Section 3.1 we introduce
the formalism of the problems that we present in this chapter; in Section 3.2 we give a
summary of the LP for GST and the algorithm of Garg et al. [GKR00]; in Section 3.3
we present a framework that allows us to more easily reason about the connectivity of
graphs in bounded-treewidth; in Section 3.4 we show how to use this framework to solve
group Steiner tree in bounded-treewidth graphs. Finally, we show some extensions to
group Steiner forest and directed Steiner forest in Sections 3.5 and 3.6.

3.1 Problem Definitions and Results

For ease of presentation, we focus on the case of edge costs. The problems can be easily
formulated also for vertex costs, and all of the results apply to both settings. When the
use of vertex costs requires different techniques, we present these techniques and show
how to apply them.

Problem 3.1: Group Steiner Tree (GST).

• Instance:
(
G, c, r,S

)
, where

– G = (V,E) is a graph with edge costs c : E → R;
– r ∈ V is the root of the instance;
– S = {Si}i∈[h] is a collection of h groups Si ⊆ V , i ∈ [h].

• Solution: a tree F ⊆ E that, for every i ∈ [h], connects r to some vi ∈ Si.

20

3.2. The Algorithm of Garg, Konjevod and Ravi

• Goal: minimize the cost of F , c(F) =
∑

e∈F ce.

Problem 3.2: Group Steiner Forest (GSF).

• Instance:
(
G, c,P

)
, where

– G = (V,E) is a graph with edge costs c : E → R;
– P = {(Ai, Bi)}i∈[h] is a collection of h group pairs (Ai, Bi) ⊆ V × V , i ∈ [h].

• Solution: a forest F ⊆ E that, for every i ∈ [h], connects some ai ∈ Ai to some
bi ∈ Bi.
• Goal: minimize the cost of F , c(F) =

∑
e∈F ce.

Problem 3.3: Directed Steiner Forest (DSF).

• Instance:
(
G, c, P

)
, where

– G = (V,E) is a directed graph with edge costs c : E → R;
– P = {(ai, bi)}i∈[h] is a collection of h terminal pairs (ai, bi) ∈ V × V , i ∈ [h].

• Solution: a forest F ⊆ E that, for every i ∈ [h], connects ai to bi.
• Goal: minimize the cost of F , c(F) =

∑
e∈F ce.

Theorem 3.4. There is an O(log n log h)-approximation algorithm for GST with running
time nO(w logw), where w is the treewidth of the input graph.

Theorem 3.5. There is an O(log n log h)-approximation algorithm for GST on a graph
with vertex costs, with running time nO(w2), where w is the treewidth of the input graph.

Theorem 3.6. There is an O(log n log2 h)-approximation algorithm for GSF with running
time nO(w logw) (nO(w2) for vertex costs), where w is the treewidth of the input graph.

Theorem 3.7. There is an O(w log2 n log2 h)-approximation algorithm for DSF with
running time nO(w2), where w is the treewidth of the undirected version of the input
graph.

3.2 The Algorithm of Garg, Konjevod and Ravi

The algorithm of Garg, Konjevod and Ravi [GKR00] (GKR from now on) works by
solving an LP relaxation of the problem, and then rounding the LP solution repeatedly.
The solution obtained in each iteration costs the same as the LP solution in expectation,
but covers each group with probability Ω(1/ log n). By repeating this experiment suffi-
ciently (O(log n log h) times), and taking the union of all of the solutions obtained, we
can guarantee that all the groups are covered with high probability, while increasing the
cost by a factor equal to the number of experiments.

This algorithm can then be used in conjunction with probabilistic tree embedding
techniques [FRT04] to obtain an approximation algorithm for general graphs. We will
start by presenting the reduction from general graphs to trees, then the standard LP
for GST, which is used in GKR, and finally show the rounding algorithm and analyze
its correctness. All of the results in this section are based on the paper by Garg et
al. [GKR00], and are presented here for completeness.

21

Chapter 3. Group Steiner Tree

3.2.1 Reduction to Trees

In this section, we show how to use probabilistic tree embeddings to solve GST on general
graphs, by losing a factor of O(log n). To prove this result, formalized in Lemma 3.9, the
theorem of Fakcharoenphol et al. [FRT04] (Theorem 3.8) is used. We provide a proof of
the reduction for completeness.

Theorem 3.8 ([FRT04]). Let (V, d) be an arbitrary metric. There is a distribution D
over tree metrics that O(log n)-approximates the metric (V, d), that is, for any u, v ∈ V :

E(T,dT)∼D [dT (u, v)] ≤ O(log n) d(u, v) (i)

d(u, v) ≤ dT (u, v) ∀(T, dT) ∈ D (ii)

Furthermore, there is a polynomial-time algorithm that samples a tree metric (T, dT)
according to distribution D.

Lemma 3.9 ([FRT04, GKR00]). If there is an α(n, h)-approximation algorithm for GST
on trees, there is an O(α(n, h) log n)-approximation algorithm for GST on general graphs.

Proof. Let
(
G, c, r, {Si}i∈[h]

)
be an instance of GST, and let F ∗ be the optimum solution.

Let (V (G), dc) be the shortest path metric ofG with edge costs c, where dc(u, v) represents
the minimum total cost c(P) of a path P between u and v in G.

To obtain an O(α(n, h) log n)-approximation (in expectation) for this instance, we do
the following:

• Sample a tree metric (T, dT) according to distributionD thatO(log n)-approximates
(G, dc);

• Compute an α(n, h)-approximate solution FT for T with edge costs given by dT ,
and the same root r and groups {Si}i∈[h];

• Obtain a solution F for the original problem by adding to F , for each edge uv ∈ FT ,
the shortest path from u to v in G (according to dc).

We will now show that F is a feasible solution, and an O(α(n, h) log n)-approximate
solution in expectation. Notice that, if two vertices u and v are connected in FT , they
must be connected in F as well: there must be a path u = w0, w1, . . . , w` = v in FT ,
and we add to F a path connecting each of the pairs (wi−1, wi), i ∈ [`]. Therefore, the
concatenation of the paths in F for the pairs (wi−1, wi) must connect u to v in F . We
conclude that F connects r to every group, since FT must also connect every group.

In order to prove the approximation guarantees, we need to prove that c(F) ≤ c(FT)
and that E[opt(T)] ≤ O(log n) opt(G). Since we know that c(FT) ≤ α(n, h) opt(T) by
definition, the lemma follows. To prove the first claim, it is sufficient to use Property (ii)
of Theorem 3.8, since each edge in uv ∈ FT gets replaced by a shortest path in F , and
dc(u, v) ≤ dT (u, v). This implies that the union of all of these shortest paths must cost
at most as much as all the edges in FT .

To prove that E[opt(T)] ≤ O(log n) opt(G), notice that we can obtain a solution F ∗T
for T by taking each edge uv ∈ F ∗ and adding to F ∗T the shortest path between u and v

22

3.2. The Algorithm of Garg, Konjevod and Ravi

in (T, dT). We denote the cost of F ∗T as dT (F ∗T). Using Property (i) of Theorem 3.8 and
linearity of expectation, we conclude that

E(T,dT)∼D [dT (F ∗T)] ≤
∑
uv∈F ∗

E [dT (u, v)] ≤
∑
uv∈F ∗

O(log n)dc(u, v) = O(log n)c(F ∗)

We conclude that the expected cost of F is at most

E(T,dT)∼D [c(F)] ≤ E(T,dT)∼D [c(FT)]

≤ α(n, h) E(T,dT)∼D [opt(T)]

≤ O
(
α(n, h) log n

)
opt(G)

3.2.2 Linear Program for GST

There are several equivalent LPs for GST. The most common one is based on the standard
network design LP; we refer to it as the cut-LP for GST. In this LP, there are variables
xe, e ∈ E, which indicate whether edge e is in the solution (xe = 1) or not (xe = 0).

Definition 3.10 (Cut-LP for GST – Cut-LP).

min
∑
e∈E

cexe

s. t.
∑
e∈δ(U)

xe ≥ 1 ∀ i ∈ [h], U ⊆ V \ Si : r ∈ U

xe ≥ 0 ∀ e ∈ E

The intuitive meaning of Cut-LP is the following: if we consider any cut that
separates the root r from a group Si, there must be an edge crossing the cut, as otherwise
r and Si would not be connected. Despite its simplicity, it has an exponential number
of constraints, which is sometimes an undesirable property. The flow-LP addresses this
issue by formulating GST as the problem of finding a tree supporting a unit flow from
the root to each group. We consider the flows to be directed; out(v) and in(v) refer to
the sets of heads of arcs from v and tails of arcs to v, respectively.

Definition 3.11 (Flow-LP for GST – Flow-LP).

min
∑
e∈E

cexe

s. t. f ie ≤ xe ∀ i ∈ [h], e ∈ E
f i(in(v))− f i(out(v)) = 0 ∀ i ∈ [h], v ∈ V \ (r ∪ Si)
f i(in(v))− f i(out(v)) ≥ 0 ∀ i ∈ [h], v ∈ Si

f i(out(r)) = 1 ∀ i ∈ [h]

f ie ≥ 0 ∀ i ∈ [h], e ∈ E
xe ≥ 0 ∀ e ∈ E

23

Chapter 3. Group Steiner Tree

To formulate Flow-LP, we introduce additional variables f ie for every group Si and
every edge e ∈ E. f i represents a flow from the root to the elements of the group Si.
In the integral case (f ie ∈ {0, 1}), this corresponds to a path from the root to a single
element of Si. The solution is then the set of edges necessary to support this flow. The
constraints support this idea: the first constraint states that xe must be at least as much
as the flow going through e for any of the groups.

The remaining constraints are commonly known as flow conservation constraints,
and simply force the ingoing flow to equal the outgoing flow, for each flow f i. The
two exceptions are the root (where there is an outgoing flow of 1), and the elements of
the group Si, that may receive flow, and thus may have outgoing flow smaller than the
ingoing flow. Since flow conservation constraints apply to all vertices, including leaves,
the flow leaving the root has to be fully received by elements of the group, that is, there
is a unit flow between the root and each group.

We now show that both of the LPs above are relaxations to the GST problem.

Claim 3.12. Both Cut-LP and Flow-LP are relaxations to GST. Furthermore, any
integral solution of either LP corresponds to a feasible solution to GST.

Proof. To prove the first part of the claim, it is sufficient to consider a solution F and
show how to construct an LP solution corresponding to it. In either case, we can take x
to be the indicator vector of a solution (xe = 1 if and only if e is in the solution). Notice
that the cost of x equals the cost of F , cTx = c(F). For Flow-LP, we take f i to be the
indicator vector of a path from the root to an element of Si covered by F .

Regarding Cut-LP, for any cut (U, V \ U) that separates r and a group Si, there
must be an edge e in F crossing the cut, as F contains a path from r to some vi ∈ Si.
Since e ∈ F , xe = 1, and therefore the constraints are satisfied. For Flow-LP, it is easy
to see that the indicator vector of a path starting at r and ending at vi ∈ Si must satisfy
the flow conservation constraints. It must also be that f ie ≤ xe, as the path is contained
in the solution F . In any case, the constructed solutions are feasible for both Cut-LP
and Flow-LP.

The second part of the claim is an even stronger statement: it says that if there is an
integral solution to one of the LPs, then we can convert it into a solution to GST with
the same cost. Let x be an integral solution to Cut-LP. We will show how to convert it
to an integral solution of Flow-LP, and then from there to a solution of GST.

Notice that for every cut separating the root and any group Si, the sum of xe for
edges e crossing the cut is at least 1. Another way of stating this is that if we consider x
as a vector of capacities of the edges, the min-cut separating r and Si is at least 1, for
every group i ∈ [h]. By the max-flow min-cut theorem [FF56], this implies that there is
a unit flow f i for every group from the root r to Si. Since the capacities are integral,
we can further assume that this flow is integral [FF56]. By definition, f i satisfies flow
conservation, and does not exceed the capacities x. This transformation does not change
the cost of the solution. Now, to transform it into a feasible solution for GST, simply
take F = {e ∈ E : xe = 1}. Notice that c(F) = cTx, and F must connect every group,
as it contains a unit flow from the root to a vertex in each group. Therefore, integral
solutions to the LPs above can be converted into a feasible solution to the problem.

24

3.2. The Algorithm of Garg, Konjevod and Ravi

3.2.3 Rounding Algorithm

In this section, we describe the GKR algorithm, which O(log n log h)-approximates GST
on trees. We present the algorithm and show its correctness; furthermore, we show a
slight generalization of the main lemma in the analysis, which we require in Section 3.5.

Given a tree instance of GST, the GKR algorithm computes an optimal LP solution
and rounds it repeatedly to ensure that every group is connected. The key step in the
algorithm is the rounding, which produces a solution with the same expected cost as the
LP solution, and where each group is connected to the root with probability Ω(1/ log n).
We refer to this step as RoundGKR and state its properties in Lemma 3.13. We first
show how to use this lemma to obtain the desired O(log n log h)-approximation; we then
present a proof of the lemma based on the original work of Garg et al. [GKR00], as well
as the elegant analysis of Rothvoß for the directed Steiner tree problem [Rot11].

The GKR algorithm starts by computing x, an optimal solution to the LP. Then, it
rounds the solution independently ` log n log h times, for some integer `, takes the union
of all obtained solutions, and, if needed, finally connects any unconnected groups using a
shortest path. Given an LP solution x ∈ [0, 1]E , RoundGKR computes a solution F as
follows: for every edge e adjacent to the root, e is added to F independently at random
with probability xe; any other edge is added to F with probability xe/xp(e) given that
p(e) ∈ F . We assume that xe ≤ xp(e) so that probabilities are well defined; any solution
can be preprocessed such that it satisfies this constraint, without affecting its feasibility.
See Algorithm A.1 for more details on the GKR algorithm.

Let yj , j ∈ [h], represent the value of the minimum cut (or max flow) separating the
root r from group Sj (with a maximum of 1). Formally,

yj = min ({x(δ(U)) | U ⊆ V \ Sj , r ∈ U}, 1).

If x is a feasible solution for the Cut-LP, it follows that yj = 1 for all groups Sj , j ∈ [h].
However, the lemma we show applies even when yj < 1.

Lemma 3.13. Let G be a tree, x ∈ [0, 1]E(G) be any LP solution satisfying xe ≤ xp(e),
e ∈ E(G), and yi be defined as above.

RoundGKR(G, r, x) outputs a subtree F ⊆ G with expected cost cTx. Each group
Sj is connected by F with probability at least yj/(min(height(G), 12 log |Sj |)).

Theorem 3.14. Let I =
(
G, c, r, {Si}i∈[h]

)
be a GST instance, where G is a tree.

GKR computes a feasible solution to I with expected cost O(log n log h) c(OPT) in
polynomial time, where c(OPT) is the cost of the optimal solution.

Proof. Let (x, f) be the optimum LP solution to Flow-LP, and let ` ≥ 36. We remark
that xe ≤ xp(e): since all of the flow going through e goes through p(e) too, an optimum
solution will set xe = maxi f

i
e ≤ xp(e). Furthermore,

min(height(G), 12 log |Si|) ≤ 12 log |Si| ≤ 12 log n

Let Fi be a random variable representing the output of the i-th call to RoundGKR,
and F̂ =

⋃
i∈[` logn log h] Fi. Fix a group Sj , j ∈ [h]. We represent as Sj ∩ F̂ = ∅ the event

25

Chapter 3. Group Steiner Tree

that Sj is not connected to the root in F̂ .

Pr[Sj ∩ F̂ = ∅] ≤
(

1− 1

12 log n

)` logn log h

≤ e−` log h/12

≤ h−3

The first inequality follows from applying Lemma 3.13.
We conclude that the probability that a group is not connected to the root is at most

h−3. For groups that are not connected to the root, the algorithm connects them using a
shortest path which costs at most c(OPT(I)) (the cost of the optimum solution cannot
be lower than the shortest path to any single group). We can now bound the expected
cost of F̂ :

E[c(F̂)] ≤
` logn log h∑

i=1

c(Fi) +
∑
j∈[h]

Pr[Sj ∩ F̂ = ∅] c(OPT(I))

≤ (` log n log h) cTx+ h
1

h3
c(OPT(I))

≤
(
` log n log h+

1

h2

)
c(OPT(I))

= O(log n log h) c(OPT(I))

All that is left is to prove Lemma 3.13.

Proof of Lemma 3.13. Let F be a random variable representing the output of the function
call to RoundGKR(G, r, x). The following claim shows that the probability that e ∈ F
is exactly xe for all edges. By linearity of expectation this implies that

E[c(F)] =
∑

e∈E(G)

ce Pr[e ∈ F] = cTx

Claim 3.15. For any e ∈ E(G), Pr[e ∈ F] = xe.

Proof. We prove the claim by top-down induction. For edges adjacent to the root, the
probability that e ∈ F is xe by the algorithm. For any other edge,

Pr[e ∈ F] = Pr[p(e) ∈ F] Pr [e ∈ F | p(e) ∈ F] = xp(e)
xe
xp(e)

= xe

The second step follows by induction hypothesis, using the probabilities in the algorithm.

We will now provide a lower bound for the probability that a group is connected. In
order to simplify the analysis, we use the following lemma from Garg et al. [GKR00].

Lemma 3.16 (Lemma 3.3 in [GKR00], adapted). If x, x′ are solutions that differ only
in the capacity of a single edge e, and xe ≥ x′e, then for any group Si, the probability of
including a vertex from Si is no greater for x′ than for x.

26

3.2. The Algorithm of Garg, Konjevod and Ravi

Fix a group S = Sj , j ∈ [h]. Let y = yj and H = height(G). We will start by
showing that

Pr[S ∩ F 6= ∅] ≥ y

H

where S ∩ F 6= ∅ represents the event that F connects the root to S.
Let f ≤ x be a flow from r to S of value y. Since the minimum cut separating r from

S has value (at least) y by definition, such a flow must exist. Using Lemma 3.16, we
can iteratively reduce the values of the edges until we have x′ = f , without increasing
the probability of connecting S. This implies that any lower bound on the probability of
success for f applies to x as well. From now on, we assume that x = f .

Let X = |S ∩ F | be a random variable that counts the number of terminals in S
connected by the solution. Our goal is to lower bound Pr[X ≥ 1] = Pr[S ∩ F 6= ∅]. In
order to bound this probability, we use the insight of Rothvoß [Rot11]:

E[X] = 0 Pr[X = 0] + E[X | X ≥ 1] Pr[X ≥ 1] = E[X | X ≥ 1] Pr[X ≥ 1]

Rearranging, we obtain

Pr[X ≥ 1] =
E[X]

E[X | X ≥ 1]

We first bound E[X]. Using linearity of expectation,

E[X] =
∑
t∈S

Pr[t ∈ F] =
∑
t∈S

Pr[p(t)t ∈ F] =
∑
t∈S

xp(t)t ≥ y

The third step follows from Claim 3.15, and the last two steps from the assumption that
x = f and the fact that f is a flow of value y.

In order to upper bound E[X | X ≥ 1], we use the following identity:

Lemma 3.17. Let (Ω,F , P) be a probability space, Ai ∈ F be events with indicator
variable Xi and X =

∑
iXi.

Then E[X | X ≥ 1] ≤ maxi E[X | Ai].

The proof of this lemma follows by simple probabilistic arguments, and is deferred
to Appendix A.1.1.

Consider the probability space derived from the execution of RoundGKR(G, r, x).
Applying Lemma 3.17 to the events {t ∈ F} for all t ∈ S, we obtain that

E[X | X ≥ 1] ≤ max
t∈S

E[X | t ∈ F]

Therefore, it is sufficient to prove that, for any t ∈ S, E[X | t ∈ F] ≤ H.
Let t ∈ S, let t(`) be the `-th ancestor of t, and C(`) be the vertices v ∈ S such that

t(`) is the lowest common ancestor of v and t. We will prove that each set C(`) contributes
a sum of at most 1 to the expectation, and hence the expectation is bounded by the
height of the tree. For simplicity of notation, we write x(v) to mean xe, where e is the
edge connecting v to its parent.

27

Chapter 3. Group Steiner Tree

E[X | t ∈ F] =
∑
v∈S

Pr[v ∈ F | t ∈ F]

=
∑
`∈[H]

∑
v∈C(`)

Pr[v ∈ F | t(`) ∈ F]

=
∑
`∈[H]

∑
v∈C(`)

x(v)

x(t(`))
(1)

=
∑
`∈[H]

1

x(t(`))

∑
v∈C(`)

x(v)

≤
∑
`∈[H]

1

x(t(`))
x(t(`)) (2)

= H

Step (1) follows by using Claim 3.15 on the path from v to t(`). Step (2) follows because
x is a flow, and hence all of the flow into C(`) flows through t(`).

We obtain that

Pr [X ≥ 1] =
E[X]

E[X | X ≥ 1]
≥ y

H

as desired.
We now repeat the proof with slight changes to show that

Pr[X ≥ 1] ≥ y

12 log |S|

Using Lemma 3.16, we further reduce x to be a flow from r to S where the flow to
each vertex in S is either 0 or greater than y/(2|S|). We achieve this by decreasing the
flow along the path from the root to any vertex receiving at most y/(2|S|); in doing so,
we lose at most y/2 units of flow in total, and hence x is a flow of value at least y/2.

As above, we have

E[X] =
∑
t∈S

xp(t)t ≥ y/2

We now prove that, for any t ∈ S, E[X | t ∈ F] ≤ 2(log |S|+ 2). Let

Ĉ(`) =
{
v ∈ S

∣∣∣ x(lca(t, v)) ∈
]
2−`−1, 2−`

]}
,

for ` ∈ {0, . . . , dlog |S|e}. In other words, we group the ancestors by flow passing through
them. We remark that the union of Ĉ(`) covers the range

]
2−dlog |S|e−1, 1

]
⊇
]
1/(2|S|), 1

]
,

which includes all the terminals with incoming flow in x.

28

3.3. Connectivity for GST on Bounded-Treewidth Graphs

By a similar argument as in the first case, we get

E[X | t ∈ F] =
∑
v∈S

Pr[v ∈ F | t ∈ F]

=
∑
`∈[H]

∑
v∈Ĉ(`)

Pr[v ∈ F | lca(t, v) ∈ F]

=
∑
`∈[H]

∑
v∈Ĉ(`)

x(v)

x(lca(t, v))

≤
∑
`∈[H]

1

2−`−1

∑
v∈Ĉ(`)

x(v)

=
∑
`∈[H]

2`+1 2−`

≤ 2(dlog |S|e+ 1)

Applying the formula for PrX ≥ 1, we conclude that

Pr[X ≥ 1] =
E[X]

E[X | X ≥ 1]
≥ y/2

2(log |S|+ 2)
≥ y

12 log |S|

This concludes the proof.

3.3 Connectivity for GST on Bounded-Treewidth Graphs

Many problems, such as Steiner tree, can be solved easily using dynamic programming
when the input graph is a tree. This dynamic programming algorithm can then be
adapted to solve the problem on bounded-treewidth graphs as well, by adjusting the
“boundary conditions” of the subproblems (see Section 3.3.4 for more details).

Unfortunately, it is more challenging to apply dynamic programming to GST. In fact,
there is no known use of this technique to approximate the problem in polynomial time,
even on trees. The main obstacle to the use of dynamic programming or other recursive
techniques for GST is that subproblems cannot be solved independently, as vertices of
each group can be present in multiple subproblems. While Chekuri et al. successfully
used recursion to approximate GST on trees [CEK06], they did so by carefully balancing
the cost of the solution with the number of groups covered in each subtree. It is not clear
how to generalize this approach to bounded-treewidth graphs.

In this section, we are going to present the ideas necessary to transform GST into an
instance of a different problem, which we can approximate. This transformation produces
an instance whose size depends exponentially on the treewidth of the input graph. We
start by giving a different perspective on dynamic programming in Section 3.3.1, which
will help us develop understanding on how the algorithm works. In Section 3.3.2 we
define the concept of connection sets and prove some properties of these objects. In
Section 3.3.3 we present a result that allows us to easily argue about the connectivity of
a solution in a dynamic program, and in Section 3.3.4, we show how to use this result to
write a simple dynamic program for Steiner tree.

29

Chapter 3. Group Steiner Tree

While dynamic programming algorithms for Steiner tree were known before [BCK+15,
CMZ12, CNP+11, FBN15], our techniques are more easily used to solve GST, and can
be generalized to other problems, including high-connectivity variants (see Chapter 4).

3.3.1 A Different Perspective on Dynamic Programming

Dynamic programming is a technique that is frequently used to solve a problem when
it has optimal substructure, that is, when an optimal solution to a problem can be
constructed from optimal solutions to its subproblems. By computing and storing the
solution to each subproblem once, dynamic programming can compute the optimal
solution in time polynomial in the number of subproblems, whereas using recursion can
take exponential time for even the simplest problems.

Throughout this thesis, we are mostly interested in a specific (but very general)
type of dynamic programming, in which subproblems are specified by a subinstance
and a state. A subinstance is simply a smaller part of the original instance (e.g. a
subgraph of the original graph), the idea being that we can compute solutions to a larger
subinstance by combining solutions to smaller subinstances. In many situations, we
do not get a feasible solution by simply combining solutions to smaller subinstances.
The state specifies restrictions on the solutions in the subinstance, so that solutions can
be combined. In other words, the state encodes an equivalence class of solutions for a
subinstance, in the sense that all of these solutions corresponding to a state can be used
interchangeably when combining them with solutions to other subinstances.

If the number of subinstances and the number of possible states for each subinstance
are both bounded, we can obtain optimal solutions for each subinstance and each state,
starting from solutions to smaller subinstances and combining these to obtain solutions
to progressively bigger instances, until we have a solution for the general instance. This
process is what we generally know as dynamic programming.

Let us consider a more concrete example, the maximum independent set problem on
trees: in this problem, we are given a tree G = (V,E), and we want to find the largest
independent set I ⊆ V , that is, the largest subset I such that no two vertices in I share
an edge of E. Let r ∈ V be an arbitrary root. We are going to consider as subinstances
all of the subtrees Gv (the subtree of G rooted at v), v ∈ V ; the state will be a single bit
b, which encodes whether v is contained in the solution (b = 1) or not (b = 0). Implicitly,
we are saying that when combining a solution in Gv with others, it is only relevant to
know whether v is contained in the solution, and the rest of the solution does not matter.
We refer to the problem on Gv with state b as P (v, b). To be more explicit, we can state
P (v, b) as the problem of finding a maximum independent set I in Gv such that v ∈ I,
in the case that b = 1, and otherwise v 6∈ I.

For a vertex v with children v1, v2, . . . , vα, we can obtain the optimal solution for
P (v, 1) by taking v together with the union of the solutions for all the subproblems
P (vi, 0). Obtaining the solution for P (v, 0) can be done similarly, by taking the union,
for each child vi of v, of the best solution for either P (vi, 0) or P (vi, 1). In any case, the
solution to P (v, b) is obtained from a combination (P (v1, b1), P (v2, b2), . . . , P (vα, bα)) of
one subproblem for each child. If b = 0, we can take arbitrary bi ∈ {0, 1}, but if b = 1,
we must take bi = 0, i ∈ [α] (otherwise the solution would contain an edge from v to one
of the children).

30

3.3. Connectivity for GST on Bounded-Treewidth Graphs

Since the number of subproblems is 2|V |, and we can find the optimal solution
for P (v, b) efficiently from the solutions for the subproblems, we can solve maximum
independent set on trees in polynomial time.

This leads to an abstract view of dynamic programming: a solution to a subproblem
is determined by the choice of states for children subinstances, as well as the solutions for
each of theses states. To solve a subproblem, we compute all the optimum solutions for
each child subinstance and its state; then, using these optimum solutions, we consider all
possible combination of states for the children subinstances. Among all of these combined
solutions, the best one will be optimal for the subproblem.

When solving GST on bounded-treewidth graphs, we will use this abstraction to
describe our algorithm. We will show that we can reformulate GST as the problem of
assigning states to the subinstances so that the total cost is minimized and all groups
are covered.

3.3.2 Connectivity and Connection Sets

In this section, we introduce the concept of connection sets, as well as some of their
properties. Connection sets formalize the notion of connectivity of a graph, and we use
them in the presentation and analysis of our algorithm.

Definition 3.18. Let G = (V,E) be a (directed or undirected) graph. A (directed or
undirected) connection set Λ over V is a subset of S × S that expresses connectivity in
a graph, that is, (u, v) ∈ Λ if there is a path connecting u to v in G.

Formally, a connection set Λ ⊆ V ×V is a reflexive, transitive relation on V : (v, v) ∈ Λ
for all v ∈ V , since v is connected to itself by the empty path; and concatenating paths
between u and w and w and v implies that there is a path between u and v, that
is, connection sets are transitive. If a connection set is undirected it must also be
symmetric, and thus it is an equivalence relation. Unless otherwise stated, we assume
that a connection set is directed if it corresponds to a directed graph or if it is clearly
directed from context; we assume it is undirected in all other cases.

The following operators are useful when handling connections sets.

Definition 3.19. Let V be a vertex set, U ⊆ V , and Y ⊆ V × V .
The (reflexive) transitive closure tc(Y) of Y is the smallest connection set (reflexive

transitive relation) that is a superset of Y .
The projection of Y onto U is defined as Y |U = Y ∩ (U × U).

The transitive closure of a set Y ⊆ V ×V can be obtained by adding to Y all pairs (v, v)
for v ∈ V , and all pairs (w,w′) for which there is a sequence (w = w0, w1, . . . , wq = w′)
such that (wi−1, wi) ∈ Y for all i ∈ [q].

The following properties of connection sets are used throughout our work. For
convenience, we assume that a set of undirected edges is given as a set of pairs (u, v) and
(v, u) for each edge uv whenever working with connection sets.

Lemma 3.20. Let G = (V,E), G1 = (V1, E1), G2 = (V2, E2) be graphs.

(1) The connection set of G over V is given by Λ = tc(E).

31

Chapter 3. Group Steiner Tree

(2) Given two connection sets Λ1, Λ2 (for graphs G1, G2), Λ = tc(Λ1 ∪ Λ2) is the
connection set over V1 ∪ V2 of the graph G′ = (V1 ∪ V2, E1 ∪ E2).

Proof. Let u, v ∈ V . We know that (u, v) ∈ Λ if and only if there is a sequence
(u = w0, w1, . . . , wq = v) such that (wi−1, wi) ∈ E for all i ∈ [q], which is equivalent to
there being a u-v-path in G.

For the second property, notice that if (u, v) ∈ Λ1, (v, w) ∈ Λ2, it is not necessarily
true that (u,w) ∈ Λ1∪Λ2, even though there is a path between u and w in G′. Therefore,
we need to take the transitive closure of the union to make it a connection set.

Let u, v ∈ V1 ∪ V2. We have that (u, v) ∈ tc(Λ1 ∪ Λ2) if and only if there is a
sequence (u = w0, w1, . . . , wq = v) such that (wi−1, wi) ∈ Λ1 ∪ Λ2 for all i ∈ [q]. If
(wi−1, wi) ∈ Λ1 ∪ Λ2, then wi−1, wi are connected in either G1 or G2. By concatenating
the paths for each pair (wi−1, wi), we obtain a path in G′. Similarly, given a u-v-path in
G′, we can divide it into contiguous subsequences in G1 or G2. The endpoints of these
contiguous subsequences are connected in G1 or G2, and thus the pair is in Λ1 or Λ2.
Therefore, there is a sequence as in the definition of transitive closure, and therefore,
(u, v) ∈ tc(Λ1 ∪ Λ2).

The following lemma reasons about the number of possible connection sets over a
set of n vertices. In our algorithms, we enumerate connection sets for small graphs, and
therefore this lemma will be useful to determine the running time and memory needed.

Lemma 3.21. Let V be a vertex set, with n = |V |.
The number of possible connection sets of over V is:

• at most nn for undirected connection sets

• at most 2n
2 for directed connection sets

Proof. An undirected connection set is an equivalence relation, and a directed connection
set is a preorder relation. These types of relations are well known and the bounds above
are simple to prove.

Since connection sets are subsets of V × V , the number of possible connection sets
for a vertex set V is at most 2n

2 . For undirected connection sets (equivalence relations),
we are essentially partitioning V into equivalence classes. We can bound the number of
possible different undirected connection sets by assigning each v ∈ V to an equivalence
class indexed by [n]. This will include all the valid undirected connection sets, so the
number must be at most nn.

3.3.3 Connectivity Lemma

Let G = (V,E) and let (T , X) be a tree decomposition of G satisfying Properties (3)
and (4) of Lemma 2.6, i.e. each internal node has two children, no edge belongs to a leaf
bag. These assumptions are not strictly required, but they simplify the presentation of
the results. All of the results of this section can be generalized in case these assumptions
are not used.

In this section, we will show a key concept that we use to obtain the dynamic program
for Steiner tree. This concept can also be applied to fault-tolerant versions of Steiner
tree, and allows for a simple analysis of the algorithms.

32

3.3. Connectivity for GST on Bounded-Treewidth Graphs

Consider a dynamic program for Steiner tree. In a feasible solution, all of the terminals
must be connected to the root. Since we want to solve the problem in time polynomial in
the number of terminals, we would like to avoid enumerating all the terminals covered in a
certain subproblem. Intuitively, we would like to somehow invalidate all the subproblems
that lead to infeasible solutions, where a terminal is not connected to the root. For this to
work, we need to know, for each subproblem, whether each terminal in the corresponding
subinstance is connected. This is global information: whether a terminal is connected
depends also on edges in different (non-overlapping) subproblems. Think, for instance,
about the edges incident to the root; in every subproblem associated with a terminal, we
must somehow know that the right edge incident to the root is in the solution. Otherwise,
the terminal might not be connected to the root.

We propose a framework to deal with this issue: by adding some information to the
subproblems (encoded in the state), and by defining some local compatibility rules, we
can ensure that the information contained in each subproblem is valid globally, that
is, a set of local rules will enforce global consistency of the information stored in the
subproblems. We find this result surprising: with these local rules, the choice of the state
for a subinstance indirectly influences all of the other subproblems.

More formally, each subinstance corresponds to the subgraph Gt, for some node t ∈ T
of the tree decomposition. Let P (t,Σ) be a subproblem for Gt with state Σ. The state
of P (t,Σ) encodes the full connectivity information of the final solution restricted to Xt,
that is, it encodes a connection set ∆ ⊆ Xt × Xt, where (x, y) ∈ ∆ implies that any
solution that uses P (t,Σ), must contain a path between x and y.

The following definition shows the rules that we can enforce on the state of subprob-
lems (local) and its intended consequence (global).

Definition 3.22 (Local and Global Connectivity).
Let Y ⊆ E(G) and Yt = Y ∩ Et.
We say that the pairs {(Γt,∆t)}t∈V (T) satisfy the local (resp., global) connectivity

definition for Y if, for every node t ∈ V (T) (having left and right children t′ and t′′,
respectively),

Local Global

Γt :=

{
∅ if t is a leaf of T
tc (Γt′ ∪ Γt′′ ∪ Yt)|t otherwise

Γt := tc (Y ∩ E(Gt))|t

∆t :=

{
Γt if t = root(T)

tc(∆p(t) ∪ Γt)
∣∣
t

otherwise
∆t := tc (Y)|t

where the projection operator on Xt is simplified as |t.

The following lemma shows that the local and global connectivity definitions are, in
fact, equivalent. We remark that the local definition only uses the state corresponding to
a node t and its parent or children, whereas the global definition uses information about
the entire solution. This lemma implies that, just by ensuring that the conditions in the
local definition are satisfied, we can have access to global information in any subproblem.

33

Chapter 3. Group Steiner Tree

Lemma 3.23. Let Y ⊆ E be a subset of edges and, for every t ∈ V (T), (Γt,∆t) be a
pair of connectivity sets.

Then, the pairs (Γt,∆t) satisfy the local connectivity definition if and only if they
satisfy the global connectivity definition.

We defer the proof of the lemma, as well as its extension to any combination of
undirected or directed graphs, vertex or edge connectivity, and vertex or edge costs, to
the end of Section 3.3, in order to focus on the application of this lemma to the design
of dynamic programs.

3.3.4 A Dynamic Program for Steiner Tree

In this section, we present a dynamic program for Steiner tree in bounded-treewidth
graphs, that we later use to solve GST. Such a dynamic program had already been
presented by Chimani et al. [CMZ12], and algorithms with better running time are already
known [BCK+15, CNP+11, FBN15]. We present our own construction for notational
consistency and to simplify the presentation of the algorithm for GST. The size of the
dynamic program, as well as the running time of the algorithm, are O(nwO(w)), where
w is the treewidth of G. In the following, we assume that r ∈ Xt for every t ∈ V (T).

We start by defining the subproblems of this dynamic program: our goal is to assign
states (Γ,∆) to each node t ∈ T ; to that end, we define a subproblem P [t,Γ,∆] for
every node t ∈ T , and every possible pair of connectivity sets Γ,∆ for Xt. Intuitively,
subproblem P [t,Γ,∆] can be thought of as

“Find the minimum-cost tree in Gt that (i) connects all the pairs in Γ;
(ii) assuming the existence of paths between any pair in ∆, connects all
the terminals in Gt to r ”.

We store the value of the optimal solution in a table c, that is, for each subproblem
P [t,Γ,∆], we compute the optimal cost c[t,Γ,∆].

We start by setting the initial values for leaf cells, as well as marking some cells
as invalid, by setting c[t,Γ,∆] = +∞. These cells represent situations in which the
local definition does not apply, and therefore their use would prevent us from using
Lemma 3.23. We run the following procedure to initialize the table.

Procedure 3.24: Initialization of the DP table.

(1) For every leaf node t and every pair (Γ,∆), we set c[t,Γ,∆] = 0 if Γ = ∅ and set
(t,Γ,∆) as invalid otherwise.

(2) We mark the cells (root(T),Γ,∆) as invalid if Γ 6= ∆.

(3) Let vi ∈ T be one of the terminals, and t ∈ V (T) a node. We mark a cell (t,Γ,∆)
as invalid if vi ∈ Xt but (r, vi) 6∈ ∆.

For all of the other subproblems, we compute the optimal value by using the values of
the children subproblems. Specifically, for a subproblem P [t,Γ,∆], where t has children
t1, t2, we are going to choose a subproblem for each of t1, t2, as well as a subset of edges
of Et to add to the solution.

34

3.3. Connectivity for GST on Bounded-Treewidth Graphs

Definition 3.25. Let P [t1,Γ1,∆1], P [t2,Γ2,∆2] be subproblems and Yt ⊆ Et be a subset
of edges of the bag. We say that (Γ,∆) is consistent with

(
(Γ1,∆1), (Γ2,∆2)

)
via Yt,

denoted
(Γ,∆)

Yt←→
(
(Γ1,∆1), (Γ2,∆2)

)
if the following conditions (closely related to the local connectivity definition of Sec-
tion 3.3.3) hold:

Γ = tc(Γ1 ∪ Γ2 ∪ Yt)|t
∆1 = tc(∆ ∪ Γ1)|t1
∆2 = tc(∆ ∪ Γ2)|t2

The optimum for P := P [t,Γ,∆] is computed as the sum of the minimum cost for
P1 := P [t1,Γ1,∆1], P2 := P [t2,Γ2,∆2] and Yt where P is consistent with (P1, P2) via Yt.
Formally,

c[t,Γ,∆] = min
{
c[t1,Γ1,∆1] + c[t2,Γ2,∆2] + c(Yt)

∣∣ (Γ,∆)
Yt←→
(
(Γ1,∆1), (Γ2,∆2)

)}
The actual solution can be obtained recursively as Ft = Yt ∪ Ft1 ∪ Ft2 .

The optimum c∗ is the cost of best subproblem for root(T), that is,

c∗ = min
Γ
c[root(T),Γ,Γ]

We now use the perspective of Section 3.3.1 to argue about the solution of this dynamic
program. Consider the states for each subinstance in the optimum obtained by the
dynamic program. Since each subproblem must choose a state for each child subinstance,
we use exactly one subproblem P [t,Γt,∆t] for each node t ∈ T . Furthermore, it can be
seen that the cost of the solution is equal to the sum of c(Yt), for the Yt used by the
chosen subproblems.

We can now apply Lemma 3.23, with all of the chosen Yt ⊆ Et plus Γt, ∆t obtained
from the chosen states for each subinstance. By the construction of the dynamic program,
all of the conditions in the local connectivity definition are satisfied. Therefore, the global
connectivity definition holds too, and we know that ∆t = tc (Y)|t. In particular, we
know that for every terminal vi ∈ T , there is a bag Xt 3 vi, t ∈ T . Since the solution
cannot use invalid cells (otherwise the cost would be infinite), (r, vi) ∈ ∆t, which implies
that (r, vi) ∈ tc (Y)|t, that is, there is a path in Y between r and vi. We conclude that
in the solution Y , every terminal is connected to the root r.

All that is left is to show that the optimum solution Y ∗ is found. Let Y ∗t = Y ∗ ∩ Et,
Γt = tc (Y ∗ ∩ E(Gt))|t, ∆t = tc (Y ∗)|t. By Lemma 3.23, Γt, ∆t also satisfy the local
connectivity definition. Therefore, all of the subproblems taken are valid and (Γt,∆t) is
consistent with

(
(Γt1 ,∆t1), (Γt2 ,∆t2)

)
via Y ∗t , for all t ∈ T with children t1, t2. Further-

more, we can prove that c[t,Γt,∆t] ≤ c(F ∩Gt), for any solution that is consistent with
state (Γt,∆t) for Gt. Indeed, the claim is trivial for leaves and, for internal nodes,

c(F ∩Gt) = c(F ∩ Et) + c(F ∩Gt1) + c(F ∩Gt2)

≥ c(F ∩ Et) + c[t1,Γt1 ,∆t1] + c[t2,Γt2 ,∆t2]

≥ c[t,Γt,∆t],

where the first inequality follows by induction. This implies that, for the right choice of
Γ, c[root(T),Γ,Γ] ≤ c(Y ∗), that is, an optimum solution is found.

35

Chapter 3. Group Steiner Tree

3.3.5 Proof of Lemma 3.23

In this section, we will prove a generalized version of Lemma 3.23, that can be used for
edge and vertex costs. Additionally, it can also be used for edge or vertex connectivity,
meaning that, in higher-connectivity problems, it can be used to find edge-disjoint or
vertex-disjoint paths. In order to handle the case of vertex connectivity, we introduce a
modified version of transitive closure that is compatible with the concept of internally
disjoint paths.

Definition 3.26. Let V be a set of vertices, Z ⊆ V a subset of vertices, and Y ⊆ V ×V
a set of edges.

We denote by tc∗Z(Y) the set of all pairs (u, v) ∈ V × V such that there is a u-v-path
in the graph (Z ∪ {u, v}, Y), that is, a path whose internal vertices are in Z, and whose
edges are in Y . Formally,

tc∗Z(Y) =
{

(u, v)
∣∣ ∃p = (u,w1, . . . , w`, v), E(p) ⊆ Y ; ∀i ∈ [`], wi ∈ Z

}
We remark that it is not necessary for u, v to be vertices of Z in order for (u, v) to be

in tc∗Z(Y). In fact, this is a useful feature of tc∗ when working with vertex-disjoint paths
from u to v, as the endpoints are shared among all paths. However, it is important that
all of the internal vertices of a path be contained in Z.

Using this definition, we keep track, for every node t ∈ T , of which vertices in the
corresponding bag Xt are allowed to be used in the solution, by using triples (Z,Γ∗,∆∗),
instead of the previously used pairs (Γ,∆) as the state for t.

For the purposes of this section, we introduce the following definitions for local and
global connectivity.

Definition 3.27 (Generalized Local and Global Connectivity).
Let Y ⊆ E(G), W ⊆ V (G), Yt = Y ∩ Et, Wt = W ∩

(
Xt \Xp(t)

)
.

We say that the the triples {(Zt,Γ∗t ,∆∗t)}t∈T satisfy the local (resp., global) connec-
tivity definition for Y if, for every node t ∈ V (T) (having left and right children as t′

and t′′, respectively),

Local Global

Zt :=

{
Wt if t = root(T)(
Zp(t) ∪Wt

)
∩Xt otherwise

Zt := W ∩Xt

Γ∗t :=

{
∅ if t is a leaf of T
tc∗Zt

(
Γ∗t′ ∪ Γ∗t′′ ∪ Yt

)∣∣
t

otherwise
Γ∗t := tc∗W (Y ∩ E(Gt))|t

∆∗t :=

Γ∗t if t = root(T)

tc∗Zt

(
∆∗p(t) ∪ Γ∗t

)∣∣∣
t

otherwise
∆∗t := tc∗W (Y)|t

We then prove the following lemma, proving that the given local and global connec-
tivity definitions are equivalent.

Lemma 3.28. Let G = (V,E) be a (directed or undirected) graph, and (T , X) its
(undirected) tree decomposition satisfying Properties (3) and (4) from Lemma 2.6. Let

36

3.3. Connectivity for GST on Bounded-Treewidth Graphs

W ⊆ V be a subset of vertices, Y ⊆ E be a subset of edges and, for every t ∈ V (T),
(Zt,Γ

∗
t ,∆

∗
t) be a triple as in Definition 3.27.

Then, the triples (Zt,Γ
∗
t ,∆

∗
t) satisfy the local connectivity definition if and only if

they satisfy the global connectivity definition.

Before proving the lemma, we show how Lemma 3.23 follows. We will prove that, if
we fix W = V , Wt = Xt \Xp(t) and Zt = Xt, the definitions of Lemmas 3.23 and 3.28
are equivalent (see Table 3.1).

For this, it is sufficient to see that tc∗W (F) = tc∗V (F) = tc(F) for any set F ⊆ V × V ,
and that the common vertices in Γ∗t′ , Γ∗t′′ , and Yt are all in Xt, thus

tc∗Zt
(Γ∗t′ ∪ Γ∗t′′ ∪ Yt)

∣∣
t

= tc (Γ∗t′ ∪ Γ∗t′′ ∪ Yt)|t

Similarly, since ∆∗p(t) and Γ∗t only intersect in Xt,

tc∗Zt

(
∆∗p(t) ∪ Γ∗t

)∣∣
t

= tc
(
∆∗p(t) ∪ Γ∗t

)∣∣
t

We conclude that if Zt = Xt, then Γ∗t = Γt and ∆∗t = ∆t, and the proof follows.
For reference, we show how to use this lemma for the cases of edge connectivity,

edge costs, and vertex connectivity, vertex costs in Table 3.1. Notice that in a problem
that does not require disjoint paths, such as Steiner tree, edge connectivity and vertex
connectivity are equivalent, and therefore one of the simplified cases of Table 3.1 is
always sufficient. In more general problems, the more general version of the lemma may
be required in combination with more general techniques. Examples of the use of this
lemma in fault-tolerant settings can be seen in Chapter 4.

Connectivity Costs
Edge Edge W = V, Wt = Xt \Xp(t), Zt = Xt

Vertex Vertex Y = E, Yt = Et

Table 3.1: Table demonstrating how to adapt Lemma 3.28 to different settings

The following technical lemma is useful when arguing about connectivity in tree
decompositions, and will be needed to prove Lemma 3.28. It proves that if a path starts
and ends in a bag Xt, but none of its internal vertices are contained in Xt, then the edges
of the path must be contained in one subtrees of T \ t (that is, the path cannot “cross”
over the bag Xt).

Lemma 3.29 (Path Lemma). Let G be any graph and (T ,X) be a tree decomposition
of G. Let t ∈ V (T) and P be a simple path with at least 2 edges, whose endpoints x, y
are the only vertices of P in Xt, that is, V (P) ∩Xt ⊆ {x, y}.

Then there is a connected component T ′ in T \ t whose bags contain all the edges of
P , that is, for every edge (a, b) ∈ E(P), there is a node t′ ∈ V (T ′) such that (a, b) ∈ Et′ .

Proof. We provide a simple proof by contradiction. Assume that there are two consecutive
edges, (a, b), (b, c) ∈ E(P) that are in different connected components of T \ t (otherwise,
all edges must be in the same component). Since b is contained in two bags Xt′ , Xt′′ on
different components of T \ t, all bags corresponding to nodes on the path between t′ and

37

Chapter 3. Group Steiner Tree

t′′ must also contain b, by definition of tree decomposition. Since t′, t′′ are in different
components of T \ t, then t is on the path between t′ and t′′, which implies that b ∈ Xt.
Thus we reach a contradiction with the assumption of the lemma.

Proof of Lemma 3.28. We remark that the function tc∗ shares some properties with the
usual definition of transitive closure, which are used throughout the proof:

Observation 3.30. The function tc∗ satisfies the following properties:

• Idempotence: tc∗Z(tc∗Z(Y)) = tc∗Z(Y)

• Monotonicity: tc∗Z′(Y
′) ⊆ tc∗Z(Y) if Z ′ ⊆ Z, Y ′ ⊆ Y

Equivalence for Zt We prove that the two definitions for Z are equivalent by induction
on the depth of the node (top-down). At the root, we have that Wroot(T) = W ∩Xroot(T),
so the equivalence holds.

For the induction step, let t ∈ V (T) be a node other than the root. Then(
Zp(t) ∪Wt

)
∩Xt =

(
Zp(t) ∩Xt

)
∪ (Wt ∩Xt)

⊆ (W ∩Xt) ∪ (W ∩Xt)

= W ∩Xt

The second step follows from the induction hypothesis, as well as the definition of W .
We now prove the converse inclusion.

W ∩Xt =
(
W ∩Xp(t) ∩Xt

)
∪
(
W ∩

(
Xt \Xp(t)

))
⊆
(
Zp(t) ∩Xt

)
∪Wt

=
(
Zp(t) ∪Wt

)
∩Xt

We use the induction hypothesis, as well as the fact that Wt ⊆ Xt.

Equivalence for Γ∗t We prove the statement by induction on the height of a node t
(bottom-up). Since E(Gt) = ∅, both definitions are equivalent for every leaf t.

Let t be any node. By induction hypothesis, Γ∗t′ ,Γ
∗
t′′ ⊆ tc∗W (Y ∩ E(Gt)). Therefore,

tc∗Zt
(Γ∗t′ ∪ Γ∗t′′ ∪ Yt)

∣∣
t
⊆ tc∗W (Y ∩ E(Gt))|t

Here, we use that Zt = W ∩Xt ⊆W .
To prove the converse inclusion, let (u, v) ∈ tc∗W (Y ∩ E(Gt))|t. By definition, there

must be a path p between u and v using internal vertices inW . Let u = w0, w1, . . . , w` = v
be all the vertices of p (in the correct order) that are also in Xt.

Each pair (wi, wi+1) is connected by a subpath of p. By Lemma 3.29, (wi, wi+1) is
either an edge in Yt, or the subpath is fully contained in Y ∩E(Gt′) or Y ∩E(Gt′′), and
uses internal vertices in W . In the first case, (wi, wi+1) ∈ Yt, while in the remaining
cases, (wi, wi+1) is in Γt′ or Γt′′ , by the induction hypothesis. We conclude that, since
wi ∈ Zt = W ∩Xt, for i ∈ [l − 1], then (u, v) is in tc∗Zt

(
Γ∗t′ ∪ Γ∗t′′ ∪ Yt

)∣∣
t
.

38

3.4. Solving GST on Bounded-Treewidth Graphs

Equivalence for ∆∗t We now prove that both definitions for ∆∗ are equivalent, by
using induction on the depth of the nodes (top-down). For the node root(T), we have
E(Groot(T)) = E(G), and thus the base case follows.

For the induction step, we remark that ∆∗p(t),Γ
∗
t ⊆ tc∗W (Y) by the induction hypoth-

esis together with the statement of the lemma for Γ∗. Therefore,

tc∗Zt

(
∆∗p(t) ∪ Γ∗t

)∣∣
t
⊆ tc∗W (Y)|t

For the reverse inclusion, we fix a pair (u, v) ∈ tc∗W (Y)|t, and a path p that connects
u to v in Y using internal vertices in W . Further, let u = w0, w1, . . . , w` = v be all the
vertices of p (in the correct order) that are also in Xt.

By Lemma 3.29, (wi, wi+1) is either an edge in Yt, or the subpath p′ of p connecting
wi and wi+1 is contained either in Y ∩ E(Gt′), Y ∩ E(Gt′′) or Y ∩ (E \ E(Gt)). For all
but the last case, (wi, wi+1) ∈ Γ∗t , by definition. In the remaining case, it must be that
the vertices of p′ are also contained in X(T \ Tb). Specifically, because the nodes whose
bags contain a given vertex must form a connected component of T , wi, wi+1 ∈ Xp(t),
which implies (wi, wi+1) ∈ tc∗W (Y)|p(t) = ∆∗p(t).

In any case, since wi ∈ Zt = W ∩ Xt, for i ∈ [l − 1], we conclude that every pair
(wi, wi+1) and thus (u, v), are contained in tc∗Zt

(
∆∗p(t) ∪ Γ∗t

)∣∣
t
.

3.4 Solving GST on Bounded-Treewidth Graphs

As we have seen in Section 3.3.4, we can solve Steiner tree optimally on bounded-
treewidth graphs, using dynamic programming and the fact that the problem has optimal
substructure. For GST, the situation is more complicated: if we consider subproblems
that correspond to covering a specific set of groups, the problem has optimal substructure
and we can solve using dynamic programming. In that case, the best-known running
time is O(2h poly(n)). If we want to avoid an exponential dependency on h, the problem
does not seem to have optimal substructure, and thus dynamic programming does not
seem applicable.

Let us briefly consider the dynamic programming for Steiner tree. It splits a problem
into subproblems by considering two almost-disjoint subgraphs (their intersection is
contained in Xt). This is possible for Steiner tree because all of the terminals must
be covered, and therefore an optimal solution for the subproblems covers each of the
terminals in the subgraph. If we instead have groups, now both of the subproblems may
have elements of the same groups. Therefore, an optimal solution for the problem may
cover each group on one of the two subgraphs. This means that there is no longer an
“optimal solution” for the individual subproblems: there are dependencies between the
subproblems that we do not know how to encode in the state using o(2h) possibilities. In
fact, it seems unlikely that such a strategy would work, as we know that even for trees
(with treewidth 1), we cannot compute the optimal solution in polynomial time [HK03].

We take a slightly different approach to solving this problem, one that is inspired by
dynamic programming, but incorporates the knowledge of how to solve GST on trees.
The idea is to take a dynamic program similar to the one for Steiner tree, but without
specifying any terminals (hence no cells are marked invalid in Step (3) of Procedure 3.24).
Even without terminals, every solution obtained from this dynamic program still satisfies

39

Chapter 3. Group Steiner Tree

local (and therefore global) connectivity definitions, though it is not forced to connect
any vertices.

The next step is to use a different algorithm to find a solution in the dynamic program,
such that a fraction of the groups is covered, while keeping the cost low. We associate
groups to the subproblems as follows: if the state of the subproblem implies that a group
is covered, we say that the subproblem belongs to the group. Using the framework in
Section 3.3, we simply need to check if (r, vi) is in ∆, for some vi ∈ Si which is part of
the group. We are left with the problem of finding a solution that covers all groups, i.e.
such that for each group there is one subproblem in the solution that covers it.

The key to solving this problem is that it is very similar to group Steiner tree itself
(with some additional degree constraints). The input graph for the instances we obtain is
a certain type of DAG with bounded maximum degree and logarithmic height. Therefore,
we can transform it into a tree by creating copies of nodes with in-degree more than
1 (in a bottom-up fashion). Doing so creates a tree that has the same optimum for
the group Steiner tree, but which is much larger than the DAG (the size of the tree is
nO(w logw)). Solving the linear program and rounding it similarly to what is done in the
GKR algorithm (Section 3.2) gives an O(log n log h)-approximation in polynomial time
for bounded treewidth.

We now formalize these ideas and prove the correctness of the algorithm. In order to
state our result formally, we introduce the concept of a solution tree, which represents a
dynamic programming solution.

Definition 3.31 (Solution tree).
Let H̃ be a DAG with root r̃, and let its nodes be partitioned into combination nodes

H̃c, and subproblem nodes H̃p.
We say an out-arborescence T ⊆ H̃ is a solution tree if:

(1) It is rooted at r̃,

(2) Every node t̃ ∈ T has in-degree at most 1,

(3) Every combination node t̃c ∈ T ∩ H̃c has full out-degree (i.e. all of its children are
also in T),

(4) Every subproblem node t̃ ∈ T ∩ H̃p (including the root r̃) has out-degree 1 in T
(i.e. there is only one arc out of t̃).

Using this definition, we specify the following problem, which we reduce GST to.

Problem 3.32: Solution Tree Group Steiner Tree (STGST).
• Instance:

(
H, c, r,S, Hc, Hp

)
, where

– H = (V,E) is a DAG with edge costs c : E → R;
– r ∈ V is the root of the instance;
– S = {Si}i∈[h] is a collection of groups Si ⊆ V , i ∈ [h];
– Hc, Hp partition V (H), and are called the sets of combination and subproblem

nodes, respectively.
• Solution: a solution tree F ⊆ E that, for every i ∈ [h], connects r to some
vi ∈ Si
• Goal: minimize the cost of F , c(F) =

∑
e∈F ce

40

3.4. Solving GST on Bounded-Treewidth Graphs

3.4.1 Encoding GST on Bounded-Treewidth Graphs as a Tree

Theorem 3.33. Let I = (G, c, r,S) be an instance of GST, where G has treewidth w.
There is an STGST instance I ′ =

(
T̃ , c̃, r̃,

{
S̃i
}
i∈[h]

, T̃c, T̃p
)
, where T̃ is a tree, such

that:

(1) |V (T̃)| = O(nO(w logw))

(2) for every tree F ⊆ E(G) there is a solution tree Y (and vice-versa), such that
c(F) = c(Y) and, for every i ∈ [h], F connects r to Si if and only if Y connects
root(T̃) to S̃i.

Furthermore, we can compute I ′ given I, as well as F (resp. Y) given Y (resp. F), in
time O

(
nO(w logw)

)
.

The theorem also applies for GST with vertex costs; even then, the STGST instance
in the reduction uses edge costs. The rest of this section is dedicated to proving this
theorem. Throughout the section, we assume that r ∈ Xt for every t ∈ V (T) (we can
simply add r to every bag).

Before we define T̃ , we are going to define a DAG H̃, and then show how to transform
it into a tree. The structure of H̃ is similar to the dynamic programming space in
Section 3.3.4, and all the nodes are partitioned into combination nodes H̃c and problem
nodes H̃p. It consists of:

(1) Nodes t̃[t,Γ,∆] ∈ H̃p for every t ∈ T , Γ,∆ ∈ Ct;

(2) Combination nodes t̃c[t̃, t̃1, t̃2, Yt] ∈ H̃c for every t̃ = t̃[t,Γ,∆], t̃i = t̃[ti,Γi,∆i],
where t1, t2 are the children of t, and Yt ⊆ Et;

(3) Arcs (t̃, t̃c), (t̃c, t̃1), (t̃c, t̃2), for t̃c[t̃, t̃1, t̃2, Yt] ∈ H̃ and

(Γ,∆)
Yt←→ ((Γ1,∆1), (Γ2,∆2));

(4) Root node r̃ ∈ H̃p and arcs (r̃, t̃), for all t̃ = t̃[root(T),Γ,Γ], with Γ ∈ Croot(T).

All arcs except those of type (t̃, t̃c) have cost 0. The cost of an arc (t̃, t̃c) is
c̃(t̃, t̃c) = c(Yt).

This construction contains all the nodes we need, but may contain some nodes
corresponding to invalid subproblems, or nodes not connected to the root. Therefore, we
apply a pruning procedure:

Procedure 3.34: Pruning of H̃.

(1) Remove all nodes t̃, t̃c ∈ H̃ that are not connected from the root, that is, nodes for
which there is no directed path from the root in H̃.

(2) Remove all nodes t̃ = t̃[t,Γ,∆], where t is a leaf and Γ 6= ∅.
Additionally, remove any combination node t̃c ∈ H̃, if there is an arc (t̃c, t̃) and t̃
is removed.

(3) Repeatedly remove nodes t̃ = t̃[t,Γ,∆], where t is not a leaf, but t̃ has no children.
Additionally, remove any combination node t̃c ∈ H̃, if there is an arc (t̃c, t̃) and t̃
is removed.

41

Chapter 3. Group Steiner Tree

The DAG H̃ already satisfies all of the desired properties in the statement of the
theorem, except that it is not a tree. We will now prove these properties, before showing
how to transform H̃ into a tree.

We start by the size of H̃: the number of nodes in H̃ is |V (H̃)| = O(nwO(w)),
as there are at most

∑
t∈T |Ct|2 ≤ O(nwO(w)) nodes t̃. The combination nodes t̃c are

parameterized by a node t ∈ T (with children t1, t2), Γ,∆ ∈ Ct, Γ1,∆1 ∈ Ct1 , Γ2,∆2 ∈ Ct2 ,
and Yt ⊆ Et. Since Property (2) of Theorem 3.33 specifies that F is a tree, we can restrict
Yt to be a forest (a subset of a tree). Therefore, the number of possibilities for Yt is at
most O(wO(w)) (by Proposition 2.1). Additionally, we know that |V (T)| = O(n), and
|Ct| ≤ O(wO(w)), so we conclude that the number of combination nodes is O(nwO(w)).
More importantly, the out-degree of every combination node is 2; the out-degree of the
root is at most O(wO(w)); as each edge is parameterized by Γ ∈ Croot(T); and the out-
degree of any other node is O(wO(w)), since the number of combination nodes for that
same node t ∈ T is bounded by O(wO(w)).

Consider now the groups S̃′i for H̃ to be all nodes t̃ = t̃[t,Γ,∆] such that (r, v) ∈ ∆
for some v ∈ Si. Formally,

S̃′i =
{
t̃ ∈ H̃ : t̃ = t̃[t,Γ,∆], (r, v) ∈ ∆, v ∈ Si

}
∀i ∈ [h]

Both H̃ and the groups S̃′i can be computed in time O
(
nwO(w)

)
, since it is sufficient

to enumerate all the problems and combination nodes in time O
(
nwO(w)

)
, then add the

edges to each combination node, and determine the groups, which both take time linear
in the size of H̃.

The following lemma proves that H̃ satisfies Property (2) of Theorem 3.33.

Lemma 3.35. For every tree F ⊆ E(G) there is a solution tree Y (and vice-versa), such
that c(F) = c(Y) and for every i ∈ [h], F connects r to Si if and only if Y connects
root(T̃) to S̃′i.

Proof. Let F ⊆ E(G). We define Γt := tc (F ∩ E(Gt))|t, ∆t := tc (F)|t, for all t ∈ T .
We now take Y consisting of r̃, t̃t = t̃[t,Γt,∆t] for all t ∈ T , and t̃c[t̃t, t̃t1 , t̃t2 , F ∩ Et]
for all t ∈ T with children t1, t2. By Lemma 3.23, all the conditions are satisfied for
the edges to exist between the nodes and for all nodes to be valid. Additionally, all the
conditions in Definition 3.31 hold. Therefore, Y is a (feasible) solution tree.

The cost of Y is

c(Y) =
∑
t∈T

c(t̃c[t̃t, t̃t1 , t̃t2 , F ∩ Et]) =
∑
t∈T

c(F ∩ Et) = c(F)

We will now show the converse implication. We claim that a solution tree Y assigns
a unique state to each bag.

Observation 3.36. Given a solution tree Y ⊂ H̃, Y must contain exactly one node
t̃t = t̃[t,Γt,∆t] ∈ Y, and one combination node t̃ct = t̃c[t̃t, t̃t1 , t̃t2 , Yt] for each t ∈ T .

Proof. Clearly the statement holds for t = root(T), since r̃ ∈ H̃p, which implies that
exactly one node t̃t = t̃[t,Γt,∆t] is in Y. Similarly, because t̃t ∈ H̃p, there is only one
t̃c[t̃t, t̃t1 , t̃t2 , F ∩ Et] in Y.

42

3.4. Solving GST on Bounded-Treewidth Graphs

The statement follows by induction on the depth of the node, since if there is only
one t̃c[t̃t, t̃t1 , t̃t2 , F ∩ Et] in Y for a given t ∈ T , then that implies that there is only one
t̃[t1,Γt1 ,∆t1] and one t̃[t2,Γt2 ,∆t2] in Y as well.

Using the observation above, we can then define F to be

F =
⋃
t∈T

Yt

=
⋃{

Y : t̃c[t̃, t̃1, t̃2, Y] ∈ Y
}

Similarly to the above, we can show that c(F) = c(Y). If F connects r to a vertex
vi ∈ Si, then there must be a bag Xt 3 vi and t̃[t,Γt,∆t] ∈ Y. Using Lemma 3.23,
(r, vi) ∈ tc (F)|t = ∆t, which implies that t̃ ∈ S̃′i, where t̃ is in the solution Y . Conversely,
if some t̃ = t̃[t,Γt,∆t] ∈ S̃′i is in the solution Y (and hence connected to r̃), there must be
some vi ∈ Si such that (r, vi) ∈ ∆t (by definition of S′i). By Lemma 3.23, ∆t = tc (F)|t,
so if (r, vi) ∈ ∆t, r is connected to vi in F .

All that is left is to show how to transform H̃ into a tree. Our goal is achieved by
making copies of nodes in H̃ so that they have in-degree 1. The following procedure
shows how to construct T̃ .

Procedure 3.37.

(1) For every node t̃ ∈ H̃ (including root and combination nodes), add a node t̃(p) to
T̃ for every path p in H̃ from r̃ to t̃;

(2) Connect two nodes t̃(p), t̃′(p′) if p′ = p ◦ t, i.e. p′ is p with an edge to t at the end;

(3) The root of T̃ is the only copy of r̃, i.e. root(T̃) = r̃((r̃));

(4) S̃i = {t̃(p) : t̃ ∈ S̃′i}.

The two representations are virtually equivalent; we can easily convert a solution tree
Y in H̃ to a solution tree Y ′ in T̃ by adding r̃ to Y ′, and then repeating the following:
for every node t̃′ ∈ Y ′, which is a copy of t̃ ∈ Y, add to Y the children of t̃′ in T̃ which
are copies of the children of t̃. To convert a solution tree Y ′ in T̃ to Y in H̃, we just need
to take the original nodes that the nodes of Y ′ are copies of.

Using the correspondence between solution trees in H̃ and in T̃ , we can see that
Lemma 3.35 implies that Property (2) in Theorem 3.33 holds for T̃ . To prove that
|V (T̃)| = O(nO(w logw)), it is sufficient to consider that the degree in T̃ is bounded by
O(wO(w)) (because it is bounded also in H̃), and that the height of T , and therefore of
H̃ and T̃ , is O(log n). We conclude that the number of nodes in T is

|V (T̃)| = O
(
wO(w)

)O(logn)
= nO(w logw)

To compute T̃ , we simply enumerate all of its nodes (that is, all paths in H̃). Therefore,
we can compute T̃ from H̃ in time linear in

∣∣T̃ ∣∣. This concludes the proof of the theorem.

43

Chapter 3. Group Steiner Tree

Vertex Costs

In order to adapt Theorem 3.33 to GST with vertex costs, we need to modify the states
throughout the proof to match those of Lemma 3.28. We will briefly describe the changes
necessary to the algorithm.

The main modification is to the nodes of the tree: instead of nodes t̃[t,Γ,∆] ∈ H̃p,
we now have nodes t̃[t,Γ,∆, Z] ∈ H̃p for every t ∈ T̃ , Γ,∆ ∈ Ct, Z ⊆ Xt. Given nodes
t̃[t,Γ,∆, Z], t̃[t1,Γ1,∆1, Z1], t̃[t2,Γ2,∆2, Z2], where t1, t2 are the children of t in T , we
write:

(Γ,∆, Z)
Yt←→
(
(Γ1,∆1, Z1), (Γ2,∆2, Z2)

)
if the following conditions hold:

Γ = tc∗Z(Γ1 ∪ Γ2 ∪ Yt)|t
∆1 = tc∗Z1

(∆ ∪ Γ1)
∣∣
t1

∆2 = tc∗Z2
(∆ ∪ Γ2)

∣∣
t2

Z1 ∩Xt = Z ∩Xt1 Z2 ∩Xt = Z ∩Xt2

We remark that, even though we do not check the exact same conditions for Z as in
Lemma 3.28, our consistency constraints follow by setting Wt = Zt \Xp(t).

We use this new condition when determining what arcs to add, that is, we add the
arcs to and from a combination node if (Γ,∆, Z)

Et←→
(
(Γ1,∆1, Z1), (Γ2,∆2, Z2)

)
. Notice

the use of Et instead of Yt, implying that the solution can use any edge. For the root
node, we add arcs (r̃, t̃) for all t̃ = t̃[root(T),Γ,Γ, Z], with Γ ∈ Croot(T), Z ⊆ Xroot(T).

The cost of an arc (r̃, t̃) is c(Z), and the cost of an arc (t̃c, t̃1) (resp. (t̃c, t̃2)) is
c̃(t̃c, t̃1) = c(Z1 \ Z) (resp. c̃(t̃c, t̃2) = c(Z2 \ Z)). All other arcs have cost 0.

Finally, we define the groups as

S̃′i =
{
t̃ ∈ H̃ : t̃ = t̃[t,Γ,∆, Z], (r, v) ∈ ∆, v ∈ Si ∩ Z

}
∀i ∈ [h]

The remainder of the analysis is similar to the case of edge costs. For a given solution
W ⊆ V , we define

Zt = W ∩Xt

Γt = tc∗Zt
(E(Gt)

∣∣
t

∆t = tc∗Zt
(E)
∣∣
t

Given states {(Zt,Γt,∆t)}t∈T , we can define a solution W =
⋃
t∈T Zt. The proof of

Lemma 3.35 follows from these definitions.

3.4.2 Approximating GST on Bounded-Treewidth Graphs

Now that we have showed how to obtain a tree instance that captures finding a solution
for GST in bounded-treewidth graphs, we need to show how to efficiently obtain an
approximate solution in this new instance. Our task is to find a solution tree in the graph
that covers all groups, and has relatively good cost. We will show that simple changes
to the LP and to the rounding procedure presented in Section 3.2 will be sufficient to
obtain the desired results.

44

3.4. Solving GST on Bounded-Treewidth Graphs

Specifically, we will add LP constraints for every combination node, with the meaning
that, if its parent edge is picked, then every outgoing edge has to be picked as well; in LP
terms, the fractional value of each outgoing edge is the same as the value of the parent
edge. Due to the rounding algorithm (similar to GKR, presented in Section 3.2), this
implies immediately that if a combination node is in the solution, all of its outgoing
edges are too. For the remaining nodes, we will add constraints specifying that only
one outgoing edge must be picked. We do this by stating that the sum of LP values of
outgoing edges must equal the LP value of the parent edge. In order to ensure that these
nodes have out-degree 1 in the solution, the rounding algorithm is changed so that it
picks exactly one outgoing edge, with probability proportional to the LP values.

These are all the changes required to the algorithm, and as we will see, the analysis
of the GKR algorithm (see Section 3.2) mostly applies in this case, with only one small
change being necessary to account for the modified algorithm.

The following theorem formalizes these changes and shows that we can get a good
approximate solution for GST on bounded-treewidth graphs.

Theorem 3.38. Let
(
T̃ , c̃, r̃, {S̃i}i∈[h], T̃c, T̃p

)
be an instance of STGST, where T̃ is a

tree.
There is an algorithm that runs in time poly(|T̃ |) and outputs a solution tree Y ⊆ T̃

sampled from a distribution D such that:

(1) EY∼D[c(Y)] ≤ c(OPT), where c(OPT) denotes the cost of the optimal solution

(2) For any group S̃i, the probability that the group is covered (with α constant) is

PrY∈D
[
|S̃i ∩ Y| > 0

]
≥ 1

α height(T̃)

We will first show how to use this theorem to approximate GST on bounded-treewidth
graphs. Apply Theorem 3.38 ` times, with ` = 3α height(T̃) log h, to obtain solutions
Y1,Y2, . . . ,Y`. Then, apply Property (2) of Theorem 3.33 to each Yi to obtain a tree Fi
in the original graph G. Finally, take the union of all Fi to get the solution F̂ =

⋃
i Fi,

removing extra edges if necessary to make it a tree.
Let us analyze the cost of F̂ : we know that c(Fi) = c(Yi) by Theorem 3.33 and that

EY∼D[c(Y)] ≤ c(OPT). Therefore,

E[c(F̂)] ≤ ` c(OPT) = O(log n log h) c(OPT)

Regarding whether F̂ is feasible, we know from Theorem 3.33 that each group is covered
in Yi with probability 1/(α height(T̃)). By Theorem 3.33, Yi covering a group implies
that Fi also covers it. Hence, if a group is covered by any Yi, it is covered in F̂ . Over `
samples, the probability that a group S̃j is not covered (by any Yi) is at most(

1− 1

α height(T̃)

)`
=

(
1− 1

α height(T̃)

)3αheight(T̃) log h

≤ e−3 log h

≤ h−3

45

Chapter 3. Group Steiner Tree

By union bound, the probably that any group is not covered is at most hh−3 = h−2.
Thus with high probability all the groups will be covered. If there is a group which is
not covered, it can be covered by taking a shortest path from the root to the closest
group element, without affecting the expected cost (due to the low probability that this
occurs).

Now that we know how to use the rounding to obtain an approximate solution, we
shall prove Theorem 3.38.

Proof of Theorem 3.38. We start by showing the changes that are necessary to the LP.
In order to ensure that the solution obtained is a solution tree, we modify the LP as
follows.

Definition 3.39 (Cut-LP for STGST (LP-STGST)).

min
∑
e∈E

cexe

s. t.
∑
e∈δ(U)

xe ≥ 1 ∀U ⊆ V : r̃ ∈ U,U ∩ S̃i = ∅ for some i

x(p(v),v) = x(v,u) ∀ v ∈ T̃c, u ∈ C(v) (1)

x(p(v),v) =
∑

u∈C(v)

x(v,u) ∀ v ∈ T̃p : C(v) 6= ∅ (2)

xe ≥ 0 ∀ e ∈ E

The above LP is similar to the Cut-LP in Section 3.2, with additional Constraints
(1), (2). Constraint (1) ensures that, for every combination node t̃, if t̃ is added to
the solution, then it has full out-degree. Constraint (2) similarly ensures the degree
properties of subproblem nodes in T̃p: if such a node t̃ is in the solution (and it is not a
leaf), then exactly one outgoing edge should also be in the solution.

The rounding algorithm is similar to GKR rounding (see Section 3.2). One change
is needed, in order to ensure the correct degree for subproblem nodes. Specifically, for a
node t̃ ∈ T̃p that is in the solution, whose single incoming edge is e, only one edge from t̃
is added to the solution. This edge is chosen randomly1 from all the outgoing edges of t̃,
each with probability xe′/xe. We show the modified algorithm in Algorithm A.2.

All that we need to show now is that this small change does not affect the analysis
of the GKR algorithm. For combination nodes t̃ ∈ T̃c, we simply use the normal GKR
rounding. By Constraint (1), xe′ = xe, which means that, if e is in the solution Y, then
e′ is picked with probability 1. As to subproblem nodes t̃ ∈ T̃p, we show that removing
them from T̃p (which causes the algorithm to use normal GKR rounding) affects rounding
negatively, that is, the rounding procedure performs better with nodes in T̃p.

Fix a group S̃i. We will show that if we remove a single node t̃ ∈ T̃p from T̃p, the
probability that S̃i is covered does not increase. By repeatedly removing nodes from
T̃p, this set eventually becomes empty, and therefore our algorithm is reduced to simple
GKR. Since the probability of covering S̃i is non-increasing throughout this process, the
lower bounds on the probability for GKR rounding also apply to our modified rounding.

1The edge can be picked by generating a real number r ∈ [0, 1); each edge ei is picked if∑i−1
j=1 x(ej)/xe ≤ r <

∑i
j=1 x(ej)/xe.

46

3.4. Solving GST on Bounded-Treewidth Graphs

Lemma 3.40. Let t̃ ∈ T̃p be a topmost node in T̃p and S̃i be a group. Then

Pr[RoundMod(T̃ , T̃p, x) ∩ S̃i] ≥ Pr[RoundMod(T̃ , T̃p \ t̃, x) ∩ S̃i]

Proof. Let e =
(
p(t̃), t̃

)
, p(e) =

(
p(p(t̃)), p(t̃)

)
be its parent edge, and let Y , Y ′ be random

variables representing the solutions obtained from the calls to RoundMod(T̃ , T̃p, x), and
RoundMod(T̃ , T̃p \

{
t̃
}
, x), respectively. Let Ye, Y ′e be the solutions Y , Y ′ restricted to

the sub-tree consisting of e and descendant edges.
Notice that it is sufficient to prove that Pr[Ye ∩ S̃i] ≥ Pr[Y ′e ∩ S̃i], since other parts

of the solution (Y \ Ye and Y ′ \ Y ′e) are not affected by t̃, and therefore, the probability
that a group gets connected is similar for Y \ Ye and Y ′ \ Y ′e.

Let F(Y) be the event that Y ∩ S̃i = ∅, that is, that the group S̃i is not connected
in Y. Let fe′ = Pr[F(Ye′) | e′ ∈ Y], f ′e′ = Pr[F(Y ′e′) | e′ ∈ Y ′].

Conditioning on p(e) ∈ Y , we obtain the probability of F(Ye) using the complement.
F(Ye) occurs if e is chosen, then one of the edges e′ ∈ C(e) is chosen, and for that edge,
the event F(Ye′) occurs. Since only one edge e′ ∈ C(e) is picked, these events are disjoint.
Formally,

Pr[F(Ye) | p(e) ∈ Y] = 1− xe
xp(e)

Pr[F(Ye) | e ∈ Y]

= 1− xe
xp(e)

∑
e′∈C(e)

xe′

xe
Pr[F(Ye′) | e′ ∈ Y]

= 1− xe
xp(e)

∑
e′∈C(e)

xe′

xe
(1− fe′)

The probability that F(Y ′e) occurs can be defined similarly: it is the complementary
probability to F(Y ′e), which occurs if e is chosen, and then the complement of all the
independent e′ ∈ C(e) either not being selected, or being selected and F(Y ′e′) occurring.
Formally, we have,

Pr[F(Y ′e) | p(e) ∈ Y ′] = 1− xe
xp(e)

Pr[F(Y ′e) | e ∈ Y ′]

= 1− xe
xp(e)

1−
∏

e′∈C(e)

(
1− xe′

xe
Pr[F(Y ′e′) | e′ ∈ Y ′]

)
= 1− xe

xp(e)

1−
∏

e′∈C(e)

(
1− xe′

xe

(
1− f ′e′

))
We need two more ingredients to complete the proof: the first is the observation that

fe′ = f ′e′ , for every e
′ ∈ C(e), since both instances are similar under the condition that

e′ is in the solution; the second is the following simple inequality.

Claim 3.41. Let ai ∈ [0, 1], i ∈ [n]. Then,

n∏
i=1

(1− ai) ≥ 1−
n∑
i=1

ai

47

Chapter 3. Group Steiner Tree

Proof. The proof follows by induction. Notice that, for n = 1, the left and right hand
sides are equal to 1− a1, and so the claim follows. Assume now that the claim holds for
n− 1 elements. Then, by induction hypothesis, we have:

n∏
i=1

(1− ai) = (1− an)
n−1∏
i=1

(1− ai)

≥ (1− an)

(
1−

n−1∑
i=1

ai

)

= 1− an −
n−1∑
i=1

ai + an

n−1∑
i=1

ai

≥ 1−
n∑
i=1

ai

Using this claim, we can show that Pr[F(Y ′e) | p(e) ∈ S′] ≥ Pr[F(Ye) | p(e) ∈ S]:

Pr[F(Y ′e) | p(e) ∈ S′] = 1− xe
xp(e)

1−
∏

e′∈C(e)

(
1− xe′

xe

(
1− f ′e′

))
≥ 1− xe

xp(e)

1−

1−
∑

e′∈C(e)

xe′

xe

(
1− f ′e′

)
= 1− xe

xp(e)

∑
e′∈C(e)

xe′

xe
(1− fe′)

= Pr[F(Ye) | e ∈ S′]

Finally, since Pr
[
Ye ∩ S̃i | p(e) 6∈ Y

]
= 0 (also for Y ′e), then

Pr[Ye ∩ S̃i] = Pr[p(e) ∈ Y] Pr[Ye ∩ S̃i | p(e) ∈ Y]

= Pr[p(e) ∈ Y](1− Pr[F(Ye) | p(e) ∈ Y])

≥ Pr[p(e) ∈ Y ′]
(
1− Pr[F(Y ′e) | p(e) ∈ Y ′]

)
= Pr[p(e) ∈ Y ′] Pr[Y ′e ∩ S̃i | p(e) ∈ Y ′]

= Pr[Y ′e ∩ S̃i]

This completes the proof of the lemma.

The analysis of GKR [GKR00] is resilient to constraints added to the LP, and our
modified rounding does not decrease the probability of covering a group. Therefore, the
same analysis follows, which completes the proof of the theorem.

3.5 Group Steiner Forest on Bounded-Treewidth Graphs

In this section, we will show how to adapt the ideas used in Section 3.4 to the group
Steiner forest (GSF) problem. Despite its similarity to GST, this problem is harder

48

3.5. Group Steiner Forest on Bounded-Treewidth Graphs

to solve because of its more general structure. In the non-group setting, the Steiner
forest problem is NP-hard on graphs of treewidth 3 [Gas10], even though Steiner tree is
fixed-parameter tractable when parameterized by the treewidth.

Our algorithm is inspired by the work of Chekuri et al. [CEG+11]. The main insight
is that the solution is a forest, and therefore we can obtain a good solution by taking
the union of multiple trees. Specifically, at each step, we find a good approximation of
the tree with the best density, that is, the one that covers the most pairs of groups with
the least cost. By repeating this process until all pairs are covered, we obtain a feasible
solution to the problem, at the cost of a (1 + lnh) factor.

In their work, Chekuri et al. [CEG+11] use an adaptation of the GKR algorithm to
give an O(log2 n log2 h)-approximation to the problem in general graphs. We show that
our algorithm for GST on bounded-treewidth can also be adapted to the density setting,
which leads to an O(log n log2 h)-approximation to the problem in bounded-treewidth
graphs.

Formally, we reduce the GSF problem to the problem of finding a tree with minimum
density, which minimizes the ratio of the cost of the edges to the number of group pairs
connected. We call this problem minimum-density group Steiner forest (MDGSF).

Problem 3.42: Minimum-Density Group Steiner Forest (MDGSF).

• Instance:
(
G, c, r,P

)
, where

– G = (V,E) is a graph with edge costs c : E → R;
– r ∈ V is the root of the solution;
– P = {(Ai, Bi)}i∈[h] is a collection of group pairs (Ai, Bi) ⊆ V × V , i ∈ [h].

• Solution: a tree F ⊆ E, rooted at r.
• Goal: minimize the density of F , d(F) = c(F)/h(F), where

– c(F) =
∑

e∈F ce is the cost of F ;
– h(F) =

∣∣{i ∈ [h] : F connects ai ∈ Ai to bi ∈ Bi}
∣∣ is the number of group

pairs covered by F .
If h(F) = 0, then d(F) = +∞ by convention.
• Remark: We can assume that F is a tree by Observation 3.46, and therefore, we

can assume that the root r is given.

The theorem below is a more complete version of Theorem 3.6, and formalizes the
results of this section.

Theorem 3.43. There is an O(log n log h)-approximation algorithm for MDGSF with
running time nO(w logw), where w is the treewidth of the input graph. This implies an
O(log n log2 h)-approximation algorithm for GSF with the same asymptotic running time.

The proof of the theorem follows directly by combining the following two results.

Lemma 3.44. Let
(
G, c,P

)
be an instance of GSF, and let A be an algorithm with

approximation ratio α(n, h) for all instances of MDGSF of the form
(
G, c, r,P ′

)
, with

P ′ ⊆ P, r ∈ V (G).
Then, we can compute an (α(1 + lnh))-approximation for GSF instance

(
G, c,P

)
in

polynomial time and with at most O(hn) calls to A.

49

Chapter 3. Group Steiner Tree

Theorem 3.45. Let I =
(
G, c, r,P

)
be an instance of MDGSF.

There is an algorithm that runs in time nO(w logw), where w is the treewidth of G,
and that computes an O(log n log h)-approximate solution to I.

The proof of Lemma 3.44 follows by standard counting arguments. We provide the
proof for completeness.

Proof of Lemma 3.44. The algorithm for GSF (represented in Algorithm A.3) can be
described as follows: Initialize the solution F̂ as the empty set. While some group pairs
are not yet covered, call A on G with the uncovered pairs, trying every possible root.
From all the solutions obtained, take the one with the lowest density, and add it to F̂ .
We denote by Fi the i-th such lowest-density solution that is added to F̂ . When all the
groups are covered, output F .

Since the solution obtained by A always covers at least one of the group pairs, after
at most h iterations, all the group pairs must be covered. Since we need to call A for
every possible choice of root, we need to call A at most hn times in total.

Let c(Fi), h(Fi) be the cost and number of group pairs covered by Fi, respectively.
For convenience, we denote OPT := OPT(G, c,P) to be an optimum solution for the
GSF instance. We have that:

c(F̂) =

q∑
i=1

c(Fi) =

q∑
i=1

h(Fi)
c(Fi)

h(Fi)

≤
q∑
i=1

h(Fi)α
c(OPT)

h−
∑i−1

j=1 h(Fj)

≤
h−1∑
`=0

α
c(OPT)

h− `

= αc(OPT)
h∑
`=1

1

`

≤ αc(OPT)(1 + lnh)

The first inequality follows from the observation that before the i-th iteration F̂ covers∑i−1
j=1 h(Fj) group pairs, and there are h −

∑i−1
j=1 h(Fj) left. Since OPT covers these

groups with cost c(OPT), the density of Fi has to be at most α times the density of
OPT on the remaining groups.

The second inequality follows by considering the density with which each group is
covered: for the first h(F1) groups, the density is at most αc(OPT)/h, for the next h(F2)
groups, the density is at most αc(OPT)/(h − h(F1)) and so on. We can then upper
bound the density of the `-th group pair covered as αc(OPT)/(h− `), by replacing the
denominator with a number that is at most as large.

With these two observations, the rest of the proof follows.

3.5.1 Approximating Minimum-Density Group Steiner Forest

This section will focus on the proof of Theorem 3.45. The following observation shows
that MDGSF always has an optimal solution that is a tree, and therefore we can simply
search for a tree with approximately optimal density in our algorithm.

50

3.5. Group Steiner Forest on Bounded-Treewidth Graphs

Observation 3.46. For any instance of MDGSF, there is an optimal solution that is a
tree.

Proof. The observation follows in two steps: first, if the solution has cycles, we can
repeatedly remove an edge from a cycle until the solution is a forest. This operation does
not increase the cost, and does not affect connectivity between groups, so the density
does not increase.

The second step is to consider the density of individual trees in the solution F . If
we have multiple components Fi with density d(Fi), cost c(Fi), and h(Fi) group pairs
covered, we can take i∗ = argmini d(Fi), and obtain that:

d(F) =

∑
i c(Fi)∑
i h(Fi)

=

∑
i h(Fi) d(Fi)∑

i h(Fi)
≥
∑

i h(Fi) d(Fi∗)∑
i h(Fi)

≥ d(Fi∗)

Therefore, if F is optimal, Fi∗ is optimal too.

Algorithm A.4 details the steps on how to get the desired approximation. The main
idea is reduce to MDGSF to a variant of the STGST problem used in Theorem 3.33, and
then apply an algorithm similar to the one by Chekuri et al. [CEG+11], which solves
an appropriate LP relaxation and rounds it to obtain a solution. By using a rounding
procedure similar to Section 3.4.2, we can guarantee that the density of the solution is
a good approximation. We remark that to solve MDGSF, it is sufficient to repeat the
rounding procedure O(log h) times, so that the solution covers a constant fraction of the
groups covered by the LP solution.

We start by introducing an LP relaxation for the variant of STGST, which we call
MDSTGSF. The difference between these two problems is that in MDSTGSF, our goal is to
minimize the density of the solution. We denote as Ãi, B̃i the groups in S̃ corresponding
to Ai, Bi.

Definition 3.47 (Cut-LP for MDSTGSF – LP-STGSF).

min
∑
e∈E

cexe

s. t.
∑
e∈δ(S)

xe ≥ yi ∀S ⊆ V : r̃ ∈ S, S ∩ Ãi = ∅ for some i

∑
e∈δ(S)

xe ≥ yi ∀S ⊆ V : r̃ ∈ S, S ∩ B̃i = ∅ for some i

x(p(v),v) = x(v,u) ∀ v ∈ T̃c, u ∈ C(v) (1)

x(p(v),v) =
∑

u∈C(v)

x(v,u) ∀ v ∈ T̃p (2)

h∑
i=1

yi = 1

xe ≥ 0 ∀ e ∈ E

We can see that LP-STGSF is a relaxation of MDSTGSF in the following sense: for
any solution tree F for the MDSTGSF, we can set x = χF /h(F), where χF ∈ {0, 1}E is

51

Chapter 3. Group Steiner Tree

the indicator vector for F (χF (e) = 1 if and only if e ∈ F), and h(F) is the number of
group pairs connected by F . We set yi = 1/h(F) if F connects Ai to Bi, and yi = 0
otherwise. This solution (x, y) is feasible for LP-STGSF: degree constraints are satisfied,
since the x is just the scaled-down indicator vector of F . Similarly, since Ai and Bi are
connected, we know that every cut between them, or in this case, between them and the
root is crossed by at least one edge of F . Therefore, x(δ(S)) ≥ 1/h(F) = yi for all such
cuts. The sum of the values yi must equal 1, since all the non-zero yi have the same
value, 1/h(F), and there are h(F) non-zero such values. Finally, let us show that the
objective value is the density of F :

∑
e∈E

cexe =
∑
e∈F

ce
1

h(F)
=

1

h(F)

∑
e∈F

c(e) = d(F)

Let us now show how to round the solution. Let Bj =
{
i : 2−j < yi ≤ 2−(j−1)

}
, for

j ∈ [2 log h]. We will now show that by ignoring group pairs that are not in any Bj , we
don’t lose too much “coverage”, since these groups have very small values of yi.∑

j∈[2 log h]

∑
i∈Bj

yi =
∑
j

y(Bj)−
∑{

yi : yi ≤
1

h2

}

≥ 1− 1

h2

∣∣∣∣{yi : yi ≤
1

h2

}∣∣∣∣
≥ 1− 1

h

≥ 1

2

By an averaging argument, there is a j∗ such that
∑

i∈Bj yi ≥ 1/(4 log h). Our strategy
will be to focus on Bj∗ , and prove that, by rounding the solution multiple times, we can
obtain a solution that covers a constant fraction of the group pairs in Bj .

Let B = Bj∗ . We use a variation of Theorem 3.38 to round the solution. Its proof,
combined with Lemma 3.13, implies that if the min-cut separating the root from a group
has value at least yi, then the group is covered with probability yi/height(T̃). Since
yi ≥ 1/2j

∗ for i ∈ B, we apply Theorem 3.38 ` = 3·2j∗ height(T̃) times to obtain solutions
Y1,Y2, . . . ,Y`. Then, apply Property (2) of Theorem 3.33 to each Yi to obtain a tree Fi
in the original graph G. Finally, take the union of all Fi to get the solution F = ∪iFi,
removing extra edges if necessary to make it a tree.

The expected cost, by Theorem 3.38, is at most `cTx = O(2j
∗

log n)d(OPT). Fur-
thermore, since y(B) ≥ 1/(4 log h) but yi ≤ 1/2j

∗−1 for i ∈ B, then |B| ≥ 2j
∗
/(8 log h).

Therefore, if we connect a constant fraction α of the group pairs in B, the density of the
solution F is

d(F) ≤ `cTx

α|B|
=

3 · 2j∗cTx log n

α2j∗/(8 log h)
= O(log n log h) cTx = O(log n log h) d(OPT)

All that is left to prove is that we connect a constant fraction of the group pairs in
B. Over ` samples, the probability that a group Aj or Bj is not covered (by any Yi) is

52

3.6. Directed Steiner Forest on Bounded-Treewidth Graphs

at most (
1− yj

height(T̃)

)`
=

(
1− yj

height(T̃)

)3·2j∗ height(T̃)

≤ e−3·2j∗yj ≤ e−3 ≤ 1

20

Applying union bound, the probability that we do not simultaneously cover both Aj and
Bj is 2/20. Hence, we conclude that 9/10|B| group pairs are covered in expectation,
which implies that the density of F is

d(F) = O(log n log h)d(OPT)

More formally, the probability that the cost exceeds 4 · ` · cTx is at most 1/4, by
Markov’s law. Similarly, the probability that we leave more than 4/10|B| groups uncov-
ered is at most 1/4. By inclusion-exclusion principle, with probability 1/2, we cover at
least 6/10|B| group pairs with cost at most 4 · ` · cTx. For convenience, we assume that
at least one group pair gets connected. Otherwise, we can repeat the rounding until at
least one group is covered.

We conclude that, with probability 1/2

d(F) ≤ 4 · ` · cTx
6/10|B|

= O(log n log h)d(OPT)

This concludes the proof of Theorem 3.45.

3.6 Directed Steiner Forest on Bounded-Treewidth Graphs

In this section, we will focus on solving directed Steiner forest on a graph G with bounded
undirected treewidth, that is, the treewidth of the undirected graph obtained by removing
directionality from edges. We will use the same approach to the problem as used by
Chekuri et al. [CEG+11], who show that we can solve the problem by finding junction
trees with good density (i.e. the ratio between total cost and number of pairs connected).

A junction tree is the union of an in-arborescence and an out-arborescence rooted
at some vertex r. The idea behind junction trees is that there is a unique path from
any vertex in the in-arborescence to any vertex in the out-arborescence, going through r.
Thus, junction trees serve as an analogue to the trees that a group Steiner forest solution
can be partitioned into.

Solving the problem can now be reduced to the following two tasks:

(1) Proving that a junction tree with good density exists;

(2) Finding a junction tree with approximately optimal density.

We will omit the details of the second part, as it is very similar to the algorithm of
Section 3.5. Since Lemma 3.23 (local-global connectivity equivalence) also applies for
directed graphs, there is an equivalent of Section 3.4.1 for directed graphs. Therefore,

53

Chapter 3. Group Steiner Tree

we can use ideas similar to those of Section 3.5, where we want to find a solution that
connects groups Ai to the root, and the root to groups Bi, and we consider all the groups
to have size 1.

As to the first step, we will show that if the underlying undirected graph has treewidth
w, there is always a junction tree of density O(w log n)d(OPT). Since we can find a junc-
tion tree which is an O(log n log h)-approximation to the density of the best junction tree,
we can apply our algorithm to find a junction tree with density O(w log2 n log h)d(OPT).

Similarly to Section 3.5, by iteratively covering pairs using junction trees with good
density, we can cover all the groups while incurring a loss of O(log h) in the approximation
factor. Putting all the pieces together, we can find an O(w log2 n log2 h)-approximation
to directed Steiner forest.

The goal of this section is to prove Theorem 3.7, which we recall below.

Theorem 3.7 (page 21). There is an O(w log2 n log2 h)-approximation algorithm for
DSF with running time nO(w2), where w is the treewidth of the undirected version of the
input graph.

The following lemma, together with the techniques of Section 3.5, imply the Theo-
rem 3.7.

Lemma 3.48. Let (G, c,R) be an instance of DSF, where G is a directed graph with
treewidth w and R = {(ai, bi) : i ∈ [h]} are terminal pairs.

There is a junction tree J ⊆ G with density O(w log n)d(OPT), where OPT is the
subgraph H ⊆ G which minimizes d(H).

Proof. Let H∗ ⊆ G be the optimal solution to DSF on G, and (T , X) be a tree decom-
position as in Lemma 2.6. For each i ∈ [h], we denote by P (ai, bi) the shortest path in
H∗ between ai and bi, and by ti the highest node in T such that Xti intersects P (ai, bi).
For each (ai, bi), i ∈ [h], we say that Xti is the head bag, and ri ∈ Xti ∩ P (ai, bi) (picked
arbitrarily) is the head vertex.

We will now show that there is a subgraph H = H∗ ∩Tti with density O(log n)d(H∗).
Since T has height O(log n), there is a level ` of the tree that contains the head bags for
Ω(h/ log n) pairs (by pigeon-hole principle). Let Xt1 , Xt2 , . . . , Xtp be all the p head bags
at level `, and let Hi = H∗ ∩ Tti (for i ∈ [p]). We consider a unique copy of each bag,
even if it is the head bag for multiple terminal pairs. We know that

⋃
i∈[p]Hi connects

at least Ω(h/ log n) pairs, by the choice of ` and the definition of Hi. Since all of the
Hi are subgraphs of H∗, their union costs as much as H∗, and therefore, the density of⋃
i∈[p]Hi is at most O(log n)d(H∗). Furthermore, all the Hi are pairwise edge-disjoint,

since all the sets E(Tti) are disjoint, i ∈ [p]. By an averaging argument, we conclude that
one of the Hi, i ∈ [p], has density at most O(log n)d(H∗), as desired.

We can now finish the proof of the lemma. Since |Xti | ≤ O(w), there is a vertex
rj ∈ Xti that is the head vertex for Ω(h(Hi)/w) pairs, where h(Hi) is the number of
pairs connected by Hi. Let Qj = {q ∈ [h] : rq = rj} be the set of pairs that have rj as
their head vertex, and J =

⋃
q∈Qj

P (aq, bq). We claim that J satisfies the conditions of
the lemma.

We start by showing that J must be a junction tree, because it is the union of paths
that all go through rj . Let P (aq, bq) be partitioned into P1q and P2q, where P1q goes from

54

3.6. Directed Steiner Forest on Bounded-Treewidth Graphs

aq to rj and P2q from rj to bq, for all q ∈ Qj . To satisfy the definition of junction tree, we
simply need that J1 =

⋃
q∈Qj

P1q is an in-arborescence rooted at rj and J2 =
⋃
q∈Qj

P2q

is an out-arborescence rooted at rj . Indeed, the paths P1q all go from some vertex to
rj , and paths P2q go from rj to some other vertex. Therefore, we can easily transform
J1 and J2 into arborescences by removing extraneous edges. If J1 (resp. J2) has any
cycles, remove the edge of the cycle outgoing from the vertex closest to (resp. from) rj .
Additionally, for every vertex of J1 (resp. J2), we remove outgoing (resp. ingoing) edges
until only one is left. It can be easily verified that J1 and J2 are now arborescences, and
thus J = J1 ∪ J2 is a junction tree.

Regarding the density of J , if rq = rj , then P (aq, bq) ⊆ Hi. Therefore, c(J) ≤ c(Hi).
Furthermore, J connects at least Ω(h(Hi)/w) pairs, so

d(J) ≤ O
(

c(Hi)

h(Hi)/w

)
= O(w)d(Hi) ≤ O(w log n)d(H∗)

By proving the existence of junction trees with density O(w log n)d(OPT), we can
use the techniques of Section 3.5 to find an O(log n log h)-approximate junction tree.
These results imply an O(w log2 n log2 h)-approximation, which runs in time nO(w2).

55

Chapter 3. Group Steiner Tree

56

CHAPTER 4
Fault-Tolerant Group Steiner Tree

In network design, a setting of particular interest is that of fault-tolerant design. In many
applications, we often want to ensure that the network stays operational, even when
some failures occur (see e.g. [MSD+96] or [KV18, Chapter 20] and references within). For
instance, it would be catastrophic if one server or cable failure would cause the internet
to fail in an entire country. In the fault-tolerant setting, we require connectivity to be
redundant, by having multiple paths which are independent from each other. If we have
k independent paths between two nodes, connectivity is preserved even if the network
suffers k − 1 failures, as there must be at least one path which is not affected.

There are three variants of fault-tolerance that are usually considered in the literature:
edge connectivity asks for resilience to edge failures, and thus independent paths must
be edge-disjoint; vertex connectivity considers vertex failures, and asks for independent
paths to be internally vertex-disjoint. Due to vertex connectivity being usually hard to
approximate (see e.g. [CCK08]), Jain et al. [JMV+02] introduced the concept of element-
connectivity. In this setting, we are given a set of terminals, and we are only interested
in connectivity between the terminals. Motivated by the importance of the terminals in
the network, Jain et al. take the assumption that these terminals cannot fail (or in any
case, will be quickly repaired or replaced), and therefore independent paths can share
terminals, but not edges or non-terminal vertices. This turned out to be an easier case
to approach, while at the same time being useful in practice [FJW06, JMV+02].

One of the problems of interest in this field is the survivable network design problem
(SNDP). In this problem, we are given a graph G with demands ruv ∈ Z≥0, and we must
find a minimum-cost subgraph that contains ruv independent paths connecting u and
v, for every u, v ∈ V . The term independent may mean edge-disjoint, vertex-disjoint,
or element-disjoint, where the terminals are all the vertices participating in a pair with
positive demand.

In a seminal paper, Jain [Jai01] gave a 2-approximation to the edge-connectivity
variant of the problem. This result was later extended to element connectivity by
Fleischer et al. [FJW06] and Cheriyan et al. [CVV06]. For the vertex-connectivity
variant of the problem, Chuzhoy and Khanna present an O(k3 log n)-approximation to
the problem [CK12]. Nutov studied SNDP with vertex costs, obtaining an O(k log n)-
approximation for the edge-connectivity problem [Nut10], and later as well for element-
connectivity [Nut12]. From the perspective of hardness of approximation, Kortsarz et al.
proved that the SNDP is 2log1−ε n-hard to approximate [KKL04], whereas Chakraborty
et al. proved that the problem is kΩ(1)-hard to approximate [CCK08] (under some
reasonable complexity assumptions).

While these results apply for the general SNDP problem, we are mostly interested
in the rooted setting, where all the demands are between a root vertex r and another
vertex. When considering edge connectivity, the setting where a set of terminals T have

Chapter 4. Fault-Tolerant Group Steiner Tree

uniform pairwise demands among themselves (ruv = k for u, v ∈ T) can be reduced to
the rooted setting.

In this chapter, we study a generalization of rooted SNDP and GST, in which we want
multiple edge-disjoint paths to connect the root and the groups. We will specifically
focus on the edge connectivity variant of the restricted group survivable network design
problem (GroupSNDP). In this problem, we are given a graph G with edge costs c, a root
r, and a collection of h groups Si, along with a demand ki for each group. Our goal is to
find a minimum-cost subgraph of G so that, for every group Si, there is a vertex vi ∈ Si
such that there are ki edge-disjoint paths between r and vi.

The GroupSNDP problem focuses on a more difficult setting than SNDP, that of media
broadcasting, such as in cable television or streaming service. In this case, we may want
to connect a central server to local servers located in different communities. Each of these
local servers can then redirect the signal or content to the clients in the area through a
local network. In this scenario, we are given groups of vertices, and we simply need to
connect a single representative vertex from each group. If we need a single path to each
group, the problem turns into GST; for more details on this problem see Chapter 3.

The case in which the demands are at most 2 has been studied by Khandekar et
al. [KKN12] and Gupta et al. [GKR10], culminating in an Õ(log3 n log h)-approximation
for the problem. Other than these results, there are no other approximation algorithms
to the problem, even for demands of value 3. The problem is known to be as hard as the
label cover problem on directed graphs [KKN12].

Chalermsook, Grandoni and Laekhanukit [CGL15] studied the relaxed group SNDP
problem, where the ki paths for a group Si can connect r to different vertices in Si
(whereas in GroupSNDP they must connect the same vertex). In this setting, they
give a bicriteria algorithm that outputs an O(log2 n log h)-approximate solution while
guaranteeing connectivity of at least Ω(ki/ log n) for each group. They also extended their
algorithm to the unrooted version of the problem, where demands are given between a
source and a target group (thus generalizing group Steiner forest). For this problem they
give an O(log4 n log h) bicriteria approximation that guarantees connectivity Ω(ki/ log n)
for each group. They also show that the problem is label-cover-hard, that is, unless
NP has quasi-polynomial time algorithms, there is no 2log1−ε n-approximation to these
problems.

Mimicking networks and vertex sparsification As part of our approach to solve
SNDP on bounded-treewidth graphs, we use vertex sparsifiers to represent connectivity
in the graph. Vertex sparsification is the problem of reducing the number of vertices in
a graph so that some property of interest is preserved for a special subset of vertices,
denoted terminals. In our case, we are interested in preserving the value of cuts between
subsets of these terminals: given a graph G with capacities w and a set of terminals T ,
we want to find a smaller graph H with capacities w′, where the minimum cut separating
any two disjoint subsets of terminals is preserved. Such a graph is called a mimicking
network of G.

The first construction for a mimicking network was given by Hagerup et al. [HKN+98],
with size 22k (where k is the number of terminals). Subsequently, two independent works
by Krauthgamer and Rika [KR13], and Khan and Raghavendra [KR14] proved that there
are graphs whose mimicking networks have size 2Ω(k). While there is some research on

58

mimicking networks in specific graph classes [CSW+00, KR13, GHP17, KR17, KPZ19],
as well as in an approximation setting [CLL+10, MM10, Chu12], it remains an open
question to close this gap for general graphs.

Related work The research community has dedicated considerable attention to (un-
rooted) SNDP, including in specific graph classes. For the Steiner forest problem,
which corresponds to SNDP with unit demands, results are known for low-treewidth
graphs [BHM11, CNP+11] and Euclidean graphs [BKM15]. For the general demand
case, results are also known for graphs of bounded genus [BDT14], and metric-cost
graphs [CV07].

Borradaile et al. [BDT14, BZ17] studied the variant of the problem in which one
is allowed to buy multiple copies of edges. For demands ki ∈ {0, 1, 2, 3}, they give an
EPTAS for this problem on planar graphs. For the k-ECSS problem, where demands are
uniform (every vertex v ∈ V has demand k), Czumaj et al. [CGS+04] showed a PTAS for
k = 2 in unweighted planar graphs; Berger and Grigni [BG07] showed an exact algorithm
for 2-ECSS running in time 2O(w2)n where w is the treewidth of the input graph. Using
this result, they obtain a PTAS for 2-ECSS on planar graphs.

The problem of finding a vertex sparsifier that approximately preserves cut values
has been extensively studied; we refer to such a sparsifier as quality-q sparsifier (meaning
that the value of each cut is q-approximated). When no extra vertices are allowed (i.e.
the sparsifier has size k), the best known result is a quality-O(log k/ log log k) sparsi-
fier [CLL+10, MM10]. In this setting, there is a lower bound of Ω

(
(log k/ log log k)1/4

)
on the quality of sparsifiers [MM10]. Chuzhoy presents a sparsifier of quality O(1) and
size O(C3) [Chu12], where C is the total capacity of edges incident on the terminals.
This sparsifier can be computed in time poly(n) 2C , making it especially useful when the
capacity into terminals is low.

On certain classes of graphs, the size of mimicking networks can be vastly improved.
On planar graphs, Krauthgamer and Rika [KR13, KR17] showed how to construct a
mimicking network of size O(k22k), matching the lower bound of Karpov et al. [KPZ19].
When all the terminals are on the same face of a planar graph, Goranci et al. [GHP17]
present a construction of size O(k2). Chaudhuri et al. [CSW+00] show that graphs of
treewidth w have mimicking networks of size O(k22w).

Our results Our first result is a generalization of the techniques of Chapter 3 to
the fault-tolerant setting. The main obstacle to solving SNDP is that the solution
must support, for each connectivity requirement, multiple edge-disjoint or vertex-disjoint
paths. However, the solution cannot simply be partitioned so that each part supports a
disjoint path for each demand. Instead, possibly conflicting partitions might be required
for different demands, and thus any algorithm must either take several partitions into
consideration, or consider the connectivity of a solution in a different way. We show that
in a bounded-treewidth setting, the number of ways that a solution can be partitioned,
from the point of view of a single bag, is bounded as a function of the treewidth.
Therefore, we can enumerate, for each bag, the partitions of interest, and compute the
optimum solution using dynamic programming.

Using our framework of Section 3.3, we formulate a dynamic program for rooted
SNDP, which leads to an FPT algorithm with running time O(nf(w,K)), where w is

59

Chapter 4. Fault-Tolerant Group Steiner Tree

the treewidth of the input graph and K is the maximum connectivity demand. Using
the arguments of Section 3.4, we give an O(log n log h)-approximation algorithm for
GroupSNDP that runs in time ng(w,K), where g(K,w) = O(log f(K,w)). We remark that
the approximation ratio is the best possible, as implied by the hardness result of Halperin
and Krauthgamer [HK03]. Unfortunately, f(K,w) is doubly-exponential in K and w.

For our second result, we represent connectivity in a different way, which does not
require the enumeration of partitions. To achieve this goal, we introduce a new structure,
called connectivity-K mimicking network , which is a specialization of mimicking networks
to bounded-connectivity problems. Connectivity-K mimicking networks differ from the
standard mimicking networks in two ways: (i) all edges have capacity 1; (ii) we are only
interested in K-connectivity (for a given K), and hence we only preserve cuts of size
less than K. We present a construction for connectivity-K mimicking networks of size
3KKw for a graph with w terminals, and use this construction to reduce the running
time of our algorithm for SNDP to n 2exp(K)w logw and of the approximation algorithm
for GroupSNDP to nexp(K)w logw. This running time matches our algorithm for GST
(when K = 1), and can be further improved if smaller constructions for connectivity-K
mimicking networks exist.

The tradeoff for improving the running time is that this approach currently only
works for edge connectivity and edge costs, in undirected graphs. On the other hand,
the result based on Section 3.3 applies to any combination of vertex or edge costs, vertex
or edge connectivity and directed or undirected graphs.

We remark that when the cost is polynomially bounded (e.g., in the Word RAM model
with words of size O(log n)), polynomial-time algorithms for SNDP follow from Courcelle’s
theorem [Cou90, BPT92] (albeit, with much larger running time). However, employing
the theorem as a black-box does not allow us to design approximation algorithms for
GroupSNDP.

Organization We show two different approaches to solve the problem: the first one is
an extension of the connectivity-based approaches of Section 3.3, and generalizes to many
different problems. The results based on this technique are described in Section 4.2. The
second approach introduces a new cut-based sparsifier for fault-tolerant settings, and we
show how to use this technique to solve GroupSNDP in Section 4.3.

4.1 Problem Definitions and Results

Problem 4.1: Survivable Network Design Problem (SNDP).

• Instance:
(
G, c, r, S, k

)
, where

– G = (V,E) is a graph with edge costs c : E → R;
– r ∈ V is the root of the instance;
– S = {si}i∈[h] is the set of terminals si ∈ V , i ∈ [h];
– k ∈ Zh is the demand vector, where ki is the demand for terminal si, i ∈ [h].

• Solution: a subgraph F ⊆ E such that, for every i ∈ [h], F contains ki edge-
disjoint paths from r to si
• Goal: minimize the cost of F , c(F) =

∑
e∈F ce

60

4.2. Connectivity Lemma Based Approach

Problem 4.2: Restricted Group SNDP (GroupSNDP).

• Instance:
(
G, c, r,S, k

)
, where

– G = (V,E) is a graph with edge costs c : E → R;
– r ∈ V is the root of the instance;
– S = {Si}i∈[h] is a collection of groups Si ⊆ V , i ∈ [h];
– k ∈ Zh is the demand vector, where ki is the demand for group Si, i ∈ [h].

• Solution: a subgraph F ⊆ E where, for every i ∈ [h], there is vi ∈ Si such that
F contains ki edge-disjoint paths from r to vi
• Goal: minimize the cost of F , c(F) =

∑
e∈F ce

The problems defined above are the edge-cost, edge-connectivity version. Vertex-cost
and/or vertex-connectivity variants of both problems can be defined analogously (for
vertex connectivity, the paths must be internally vertex-disjoint).

Our results are as follows. We define exp(x) = 2O(x) throughout the chapter.
The two following results apply to edge-cost, vertex-cost, edge-connectivity, vertex-

connectivity, directed and undirected variants of the problems.

Theorem 4.3. There is an exact algorithm for SNDP, with edge or vertex costs and
edge or vertex connectivity, with running time n2exp(Kw2), where w is the treewidth of
the input graph, and K is the maximum demand.

Theorem 4.4. There is an O(log n log h)-approximation algorithm for GroupSNDP, with
edge or vertex costs and edge or vertex connectivity, with running time nexp(Kw2), where
w is the treewidth of the input graph, and K is the maximum demand.

The two following results apply to the edge-cost, edge-connectivity, undirected variant
of the problem.

Theorem 4.5. There is an exact algorithm for SNDP with running time n2exp(K)w logw,
where w is the treewidth of the input graph, and K is the maximum demand.

Theorem 4.6. There is an O(log n log h)-approximation algorithm for GroupSNDP with
running time nexp(K)w logw, where w is the treewidth of the input graph, and K is the
maximum demand.

4.2 Connectivity Lemma Based Approach

In order to demonstrate the applicability of the techniques developed in Section 3.4,
we will now show how to extend the same ideas to solve GroupSNDP. Similarly to
GST, we will show that GroupSNDP on bounded-treewidth graphs can be encoded as
a special tree instance, which is obtained from a dynamic program related to that of
SNDP. Therefore, we start by presenting a dynamic program for SNDP and proving
Theorem 4.3. Afterwards, we briefly discuss how to use the techniques of Section 3.4.2
to obtain a solution to the GroupSNDP problem, proving Theorem 4.4.

In order to simplify the presentation and better show the parallelism between this
section and Section 3.4, we focus on the case of edge connectivity, and edge costs. We
then describe the changes necessary to prove the general results.

61

Chapter 4. Fault-Tolerant Group Steiner Tree

r

γ1 γ2

r

γ1 γ2

Figure 4.1: Example of different partitions of edges into paths from demands γ1, γ2.
On the left (resp., right), two paths from r to γ1 (resp., γ2)

4.2.1 Dynamic Program for SNDP

In this section, we present a dynamic program for SNDP on bounded-treewidth graphs.
In order to solve the problem, we use a similar strategy to the one we used for Steiner tree:
we design a dynamic program that optimally chooses a state for each of the subinstances,
which correspond to the nodes of the tree decomposition (see Sections 3.3.1 and 3.3.4 for
more details).

Seeing as how in Steiner tree, the state is a pair (Γ,∆), and SNDP is a high-
connectivity version of this problem, we might think of using a scaled-up version of
the same approach, such as,

(Γ1,Γ2, . . . ,ΓK ,∆1,∆2, . . . ,∆K)

where K = max ki is the maximum demand and each pair (Γi,∆i) would “increase” the
connectivity by 1. Unfortunately, this strategy does not work, as this would be equivalent
to partitioning our solution into edge-disjoint Steiner trees. While any solution obtained
this way would be feasible, it is not guaranteed that the optimal solution is of that form,
even for very simple cases. In Figure 4.1, we see an example of a solution in which the
edges are partitioned differently for different terminals, and therefore, a global partition
as above does not work.

Our main idea is to design states that store additional information, by storing con-
nectivity information about all the possible partitions of our solution. In this way, any
terminal can use a different partition of the edges, and we can ensure that all the demands
are satisfied. We will show that, even though we may need to partition the solution
differently for every terminal, there is a limited number of ways that these partitions can
express themselves locally, and therefore the number of states is bounded by a function
of the width of the tree decomposition and the maximum demand.

Let
(
G, c, r, S, k

)
be an instance of SNDP, and (T , X) be a tree decomposition of

G satisfying the properties of Lemma 2.6. Furthermore, we add r to every bag Xt,
t ∈ V (T). We dedicate the rest of this section to the proof of Theorem 4.3, starting with
edge connectivity and edge costs on undirected graphs.

62

4.2. Connectivity Lemma Based Approach

Let t be a node of the tree decomposition of G. The possible states for Gt are of the
form Ψ ⊆ C2K

t , where Ct represents the set of possible connection sets over Xt. In other
words, the states for Gt will be a set of tuples of 2K connection sets. Each of these tuples
of connection sets, (Γ1,Γ2, . . . ,ΓK ,∆1,∆2, . . . ,∆K), represents a possible partition of
the edges of the solution into K sets F1, F2, . . . , FK , such that for each i ∈ [K], (Γi,∆i)
represent the connectivity of Fi, in the sense of Definition 3.22. We refer to the set of all
partitions of a set A as part(A).

Observation 4.7. There are at most exp(wO(wK)) possible states for a subinstance Gt,
t ∈ T , where w is the width of the tree decomposition.

Proof. The number of possible connection sets is wO(w) (by Lemma 3.21), which implies
that the number of possible elements (~Γ, ~∆) is wO(wK). Since Ψ is a subset of these
elements, there are exp(wO(wK)) possible sets Ψ.

Our goal is now to find a state for each subinstance of the problem, indexed by the
nodes of the tree decomposition T , in such a way that these states satisfy consistency
constraints derived from Definition 3.22, and such that the cost of the solution is mini-
mized. We can thus define a dynamic program with subproblems of the form P [t,Ψ], for
every t ∈ T and every possible state Ψ for t as described above. The intuitive meaning
of P [t,Ψ] is to

“Find the minimum-cost subgraph F of Gt such that, for every element
(~Γ, ~∆) ∈ Ψ, F can be partitioned into (F1, . . . , FK) ∈ part(F), where, for
every j ∈ [K], Fj connects all the pairs in Γj , and, assuming the existence
of paths between any pair in ∆j , connects all the terminals in Gt to r with
demand dt ≥ j”.

Our goal is to compute c[t,Ψ], the optimal cost for problem P [t,Ψ].
As with the dynamic program in Section 3.3.4, we start by setting initial values for

trivial subproblems, and marking some subproblems as invalid, that is, c[t,Ψ] = +∞,
according to Definition 3.22.

Procedure 4.8: Initialization of the DP table.

(1) For every leaf node t and every state Ψ, we set c[t,Ψ] = 0 if for every (~Γ, ~∆) ∈ Ψ,
Γj = ∅ for j ∈ [K]. Otherwise, we set (t,Ψ) as invalid.

(2) We mark the cells (root(T),Ψ) as invalid if there is (~Γ, ~∆) ∈ Ψ such that ~Γ 6= ~∆.

(3) Let si be one of the terminals, and t ∈ V (T) be a node with si ∈ Xt. A cell (t,Ψ)
is only valid if there is (~Γ, ~∆) ∈ Ψ such that for all j ∈ [ki], (r, si) ∈ ∆j . If this
condition is not satisfied, we mark the cell as invalid.

For all the other subproblems, we compute the optimal value by using the values of
children subproblems that are consistent with it.

Definition 4.9. We say that states Ψ, Ψ′, Ψ′′ for node t and its children t′, t′′ are
consistent via Yt, and denote it as

Ψ
Yt←→
(
Ψ′,Ψ′′

)
63

Chapter 4. Fault-Tolerant Group Steiner Tree

if for every element (~Γ, ~∆) ∈ Ψ, there are elements (~Γ′, ~∆′) ∈ Ψ′, (~Γ′′, ~∆′′) ∈ Ψ′′, and a
partition (Y1, . . . , YK) ∈ part(Yt) such that (~Γ, ~∆) (~Γ′, ~∆′), (~Γ′′, ~∆′′) are consistent via
partition (Y1, . . . , YK), that is, for every j ∈ [K],

Γj = tc(Γ′j ∪ Γ′′j ∪ Yj)
∣∣
t

∆′j = tc(∆j ∪ Γ′j)
∣∣
t′

∆′′j = tc(∆j ∪ Γ′′j)
∣∣
t′′

Additionally, it must also hold that for every (~Γ′, ~∆′) ∈ Ψ′ (resp. (~Γ′′, ~∆′′) ∈ Ψ′′), there
are elements (~Γ, ~∆) ∈ Ψ, (~Γ′′, ~∆′′) ∈ Ψ′′ (resp. (~Γ′, ~∆′) ∈ Ψ′) such that the conditions
above hold.

We say a set of states {Ψt}t∈T is consistent via Y if, for each internal node t ∈ T
with children t′, t′′, states Ψt, Ψt′ , Ψt′′ are consistent via Yt := Y ∩Xt.

Using this definition of consistency, we can now compute the optimal value for any
subproblem, using the following recursion:

c[t,Ψ] = min
{
c[t′,Ψ′] + c[t′′,Ψ′′] + c(Yt)

∣∣ Ψ
Yt←→
(
Ψ′,Ψ′′

)}
The optimal solution is obtained from the best state for the root, that is, it is given by,

c∗ = min
Ψ
c[root(T),Ψ]

All that is left is to prove that this dynamic program captures an optimum solution
to the problem, and that the solutions we obtain using the dynamic program are feasible.
Specifically, we will prove that we can represent a solution F as a consistent set of states
{Ψt}t∈T , and similarly, if we have a consistent set of states {Ψt}t∈T , we can obtain a
solution to the problem, with the guarantees given by Ψt. These two properties together
imply that, given an optimum solution F ∗ and the corresponding states {Ψ∗t }t∈T , the
cost of F ∗ in Gt is at least c(F ∗ ∩Gt) ≥ c[t,Ψt] for any t ∈ T . Therefore, the cost of the
solution obtained is at most the optimum cost. The following lemmas formalize these
properties.

Lemma 4.10. For every subgraph F ⊆ E(G) there is a consistent set of states {Ψt}t∈T ,
such that

• the cost of the dynamic program solution {Ψt}t∈T is exactly c(F), and

• for every ` ≤ K pairs of vertices {(a1, b1), (a2, b2), . . . , (a`, b`)} in the same bag (for
some t ∈ T , a1, b1, . . . , a`, b` ∈ Xt), if there are edge-disjoint paths connecting each
pair (ai, bi) in F , then there is (~Γ, ~∆) ∈ Ψ such that (ai, bi) ∈ ∆i for i ∈ [`].

Proof. We start by showing how to transform F into states {Ψt}t∈T . Let F ⊆ E(G),
and let Yt = F ∩ Et, for every t ∈ T . For every node t ∈ T , the set Ψt will contain one
element for every possible partition of F into K parts. For each of these partitions, the
corresponding elements in the sets Ψt will be consistent among all nodes t ∈ T , which

64

4.2. Connectivity Lemma Based Approach

will prove the consistency properties. Formally, for each partition P = (P1, . . . , PK) ∈
part(F), we define, for each node t ∈ T ,

Γ
(t)
j (P) = tc (Pj ∩ E(Gt))|t

∆
(t)
j (P) = tc (Pj)|t

Using the notation ~Γ(t)(P) = (Γ
(t)
1 (P), . . . ,Γ

(t)
K (P)) (similarly for ∆), we define Ψt as:

Ψt =
{(
~Γ(t)(P), ~∆(t)(P)

)
| P ∈ part(F)

}
By Lemma 3.23, the connection sets Γ

(t)
j (P), ∆

(t)
j (P) satisfy the local definition of

connectivity for fixed j and P . This immediately implies that all of the cells (t,Ψt)
are valid, as they satisfy the validity constraints by definition of the elements in Ψt.
Additionally, consistency is also satisfied, as

(
~Γ(t)(P), ~∆(t)(P)

)
,
(
~Γ(t′)(P), ~∆(t′)(P)

)
, and(

~Γ(t′′)(P), ~∆(t′′)(P)
)
are consistent via partition (P1 ∩ Yt, P2 ∩ Yt, . . . , PK ∩ Yt), by defi-

nition. The cost of the solution is
∑

t∈T c(Yt) = c(F), since Yt = F ∩Et and all the sets
Et form a partition of the edges of the graph. This concludes the transformation from F
to {Ψt}t∈T .

Let (a1, b1), (a2, b2), . . . , (a`, b`) be pairs of vertices belonging to the bag Xt, t ∈ T ,
` ≤ K. We will now prove that if there are edge-disjoint paths connecting the pairs
in F , then there is (~Γ, ~∆) ∈ Ψ such that (ai, bi) ∈ ∆i for i ∈ [`]. Let q1, . . . , q` be the
edge-disjoint paths connecting the pairs in F , such that qi connects ai to bi. We take
a partition of F consistent with the paths qi, that is, we take (P1, . . . , PK) ∈ part(F)
such that for all i ∈ [`], qi ⊆ Pi (such a partition must exist: it is sufficient to start
with Pi = qi and add extra edges to any part). Using

(
~Γ(t)(P), ~∆(t)(P)

)
∈ Ψt, we can

now finish the proof: by definition, ∆
(t)
j (P) = tc (Pj)|t, and (aj , bj) ∈ tc (Pj)|t, which

concludes the proof.

Lemma 4.11. For every consistent set of states {Ψt}t∈T , there is a subgraph F ⊆ E(G),
such that

(1) the cost of F , c(F), is the cost of the dynamic program solution {Ψt}t∈T , and

(2) for every ` ≤ K pairs of vertices {(a1, b1), (a2, b2), . . . , (a`, b`)} belonging to the
same bag (a1, b1, . . . , a`, b` ∈ Xt for some t ∈ T), if there is (~Γ, ~∆) ∈ Ψ such that
(ai, bi) ∈ ∆i for i ∈ [`], then there are edge-disjoint paths connecting each pair
(ai, bi) in F .

Proof. Let {Ψt}t∈T be a set of states for each node of T . For each internal node t ∈ T ,
with children t′, t′′ ∈ T , there must be a set of edges Yt ⊆ Et, such that

Ψt
Yt←→ (Ψt′ ,Ψt′′).

We take F =
⋃
t∈T Yt, which implies that the c(F) =

∑
t∈T c(Yt), which is the cost of the

dynamic programming solution dictated by the states {Ψt}t∈T . Notice that in this case
we also have that Yt = F ∩ Et, as Yt ⊆ Et, and the sets Et are disjoint. This concludes
the transformation from states to solution F .

65

Chapter 4. Fault-Tolerant Group Steiner Tree

We now prove Property (2) of the lemma. Let (a1, b1), (a2, b2), . . . , (a`, b`) be pairs
of vertices belonging to the bag Xt, t ∈ T , ` ≤ K, and let ψt = (~Γ, ~∆) ∈ Ψt be an
element of Ψt such that (aj , bj) ∈ ∆j , for every j ∈ [`]. Using the consistency rules, we
can now obtain consistent elements for every node in T . This can be achieved using the
consistency rules in the following two ways:

(1) if we have an element ψt for a node t ∈ T , consistency dictates that there are
elements ψp(t) ∈ Ψp(t) and ψτ ∈ Ψτ (where τ is the sibling of t), such that ψp(t) is
consistent with (ψt, ψτ). Thus we obtain elements for nodes p(t) and τ ;

(2) if we have an element ψt for a node t ∈ T with children t′, t′′, by consistency,
there must be elements ψt′ ∈ Ψt′ and ψt′′ ∈ Ψt′′ , such that ψt is consistent with
(ψt′ , ψt′′). Thus we obtain elements for nodes t′ and t′′.

By repeating this process, we can obtain elements ψt for every node t ∈ T , such that
consistency rules are satisfied. Furthermore, consistency rules for ψt imply that for every
node t ∈ T , there is a partition of

(
Y

(t)
1 , . . . , Y

(t)
K

)
∈ part(Yt) that satisfies consistency.

Taking the union over all t ∈ T of the partition, Fi = ∩t∈T Y (t)
i , we also get a partition

(F1, . . . , FK) of F .
Let

(
~Γ(t), ~∆(t)

)
= ψt, for every node t. By fixing j, and applying Lemma 3.23 to the

connection sets (Γ
(t)
j ,∆

(t)
j) for every node t ∈ T , we get that (aj , bj) ∈ ∆

(t)
j implies that

there is a path in Fj connecting aj and bj . Since (F1, . . . , FK) is a partition of F , this
implies that there are edge-disjoint paths connecting all the pairs in F .

Vertex Costs, Vertex Connectivity and Directed Graphs

We will now show how to adapt the techniques of this section to solve SNDP with
vertex costs, vertex connectivity, or in directed graphs. We refer to the undirected,
edge-connectivity, edge-costs variant presented above as the default case. Regarding
directed graphs, not much change is needed: the only difference is that connectivity sets
are no longer symmetric, and therefore the number of possibilities increases to 2w

2 (see
Lemma 3.21), implying a running time of n 2exp(w2K) for SNDP.

For the vertex-cost or vertex-connectivity variants, we introduce the more general
framework of Definition 3.27 and Lemma 3.28. Let t be a node of the tree decom-
position of G. We now take states for Gt to be of the form (Z,Ψ), where Z ⊆ V ,
Ψ ⊆ (2Xt)K ×C∗t 2K , where C∗t is the set of possible relations in Xt. Each of the elements
of Ψ represents the connectivity of a partition of the solution, that is, each element of
Ψ is a tuple (Z1, . . . , ZK ,Γ1,Γ2, . . . ,ΓK ,∆1,∆2, . . . ,∆K), where each triple (Zi,Γi,∆i)
has the meaning of Definition 3.27 for a single set of the partition.

Observation 4.12. The number of possible states (Z,Φ) is 2exp(w2K).

Proof. There are at most 2w possible subsets of Xt, and 2w
2 relations in Xt. Therefore,

(2Xt)K × C∗t 2K has at most exp(w2K) elements, and at most 2exp(w2K) subsets.

A solution is now represented as a pair (F,W), F ⊆ E, W ⊆ V . We remark that,
as in the algorithm for the vertex-cost variant in Section 3.4.1, the algorithm does not
directly store the values of Wt = W ∩ (Xt \Xp(t)), but instead only stores the value of
Zt in the state. Setting Wt = Zt \ Xp(t), or, given W , setting Zt = W ∩ Xt, achieves

66

4.2. Connectivity Lemma Based Approach

the same purpose. Depending on the variant of the problem considered, we may fix
F or W , and may consider different ways of partitioning the solution. We will now
present the general structure of the dynamic program, and then detail the changes to
the edge-connectivity and vertex-connectivity variants. The algorithm is similar for both
the edge-connectivity and vertex-connectivity variants, with the only difference being
how to “partition” the edges and vertices of the solution. We purposefully postpone
the definition of the functions partE and partV (representing the set of edge and vertex
partitions, respectively).

We start by initializing some of the cells in the dynamic program, and marking
some others as invalid, meaning their cost is set to be infinite (and cannot be changed).
The conditions presented here depend on the function partV , and hence differ between
variants.

Procedure 4.13: Initialization of the DP table.
(1) For every node t and every state (Z,Ψ), we set cell (t, Z,Ψ) as invalid if for some

(~Z, ~Γ, ~∆), ~Z 6∈ partV (Z).

(2) For every leaf node t and every state (Z,Ψ), we mark (t, Z,Ψ) as invalid if for any
(~Z, ~Γ, ~∆) ∈ Ψ, and any j ∈ [K], Γj 6= ∅.

(3) We mark cells (root(T), Z,Ψ) as invalid if there is (~Z, ~Γ, ~∆) ∈ Ψ such that ~Γ 6= ~∆.

(4) Let si be one of the terminals, and t ∈ V (T) a node with si ∈ Xt. A cell (t, Z,Ψ) is
only valid if si ∈ Z and there is (~Z, ~Γ, ~∆) ∈ Ψ such that for all j ∈ [ki], (r, si) ∈ ∆j .
If this condition is not satisfied, we mark the cell as invalid.

(5) For every leaf node t and every state (Z,Ψ), if (t, Z,Ψ) is not marked invalid, we
set c[t, Z,Ψ] = 0.

The initialization is mostly similar to the default case, except for the addition of
Step (1), and the condition that si ∈ Z in Step (4).

We now present the definition of consistency for both the edge-connectivity and
vertex-connectivity variants. The general definition is as follows, using the generic partE
function, which will differ depending on the variant.

Definition 4.14. We say that states Ψ, Ψ′, Ψ′′ for node t and its children t′, t′′ are
consistent via Yt, and denote it as

(Z,Ψ)
Yt←→
(
(Z ′,Ψ′), (Z ′′,Ψ′′)

)
if it holds that

Z ∩Xt′ = Z ′ ∩Xt Z ∩Xt′′ = Z ′′ ∩Xt

and for every element (~Z, ~Γ, ~∆) ∈ Ψ, there are elements (~Z ′, ~Γ′, ~∆′) ∈ Ψ′, (~Z ′′, ~Γ′′, ~∆′′) ∈
Ψ′′, and a partition (Y1, . . . , YK) ∈ partE(Yt) such that (~Z, ~Γ, ~∆), (~Z ′, ~Γ′, ~∆′), (~Z ′′, ~Γ′′, ~∆′′)
are consistent via partition (Y1, . . . , YK), that is, for every j ∈ [K],

Γj = tc∗Zj
(Γ′j ∪ Γ′′j ∪ Yj)

∣∣∣
t

∆′j = tc∗Z′j (∆j ∪ Γ′j)
∣∣∣
t1

∆′′j = tc∗Z′′j (∆j ∪ Γ′′j)
∣∣∣
t2

Z ′j ∩Xt = Zj ∩Xt′ Z ′′j ∩Xt = Zj ∩Xt′′

67

Chapter 4. Fault-Tolerant Group Steiner Tree

Additionally, it must also hold that for every (~Z ′, ~Γ′, ~∆′) ∈ Ψ′ (resp. (~Z ′′, ~Γ′′, ~∆′′) ∈ Ψ′′),
there are elements (~Z, ~Γ, ~∆) ∈ Ψ, (~Z ′′, ~Γ′′, ~∆′′) ∈ Ψ′′ (resp. (~Z ′, ~Γ′, ~∆′) ∈ Ψ′) such that
the conditions above hold.

We say a set of states {(Z,Ψt)}t∈T is consistent via Y if, for each internal node t ∈ T
with children t′, t′′, states (Z,Ψt), (Zt′ ,Ψt′), (Zt′′ ,Ψt′′) are consistent via Yt := Y ∩Xt.

Now, given a definition of consistency for the states, we can compute the optimal
value for any subproblem, using the following recursion:

c[t, Z,Ψ] = min
{
c[t′, Z ′,Ψ′] + c[t′′, Z ′′,Ψ′′] + c(Yt) + c(Z ′ \ Z) + c(Z ′′ \ Z)∣∣∣ (Z,Ψ)

Yt←→
(
(Z ′,Ψ′), (Z ′′,Ψ′′)

)}
The optimal solution is then obtained from the best state for the root, that is, it is given
by,

c∗ = min
Z,Ψ

c[root(T), Z,Ψ] + c(Z)

We are now ready to specify the final details:

• Edge-connectivity: if edge-disjoint paths are desired, set partE(A) = part(A) to
be the set of all partitions of A ⊆ E; otherwise, set partE(A) = {(A,A, . . . , A)},
that is, partE(A) simply copies A to every index;

• Vertex-connectivity: if vertex-disjoint paths are desired, set partV (B) = part(B)
to be the set of all partitions of B ⊆ V ; otherwise, set partV (B) = {(B,B, . . . , B)},
that is, partV (B) copies B to every index;

• Edge-costs: set c(Y), Y ⊆ E as appropriate; otherwise, set c(Y) = 0, Y ⊆ E,
which implies that we can fix F = E and Yt = Et (since edges are free);

• Vertex-costs: set c(W), W ⊆ E as appropriate; otherwise, set c(W) = 0, W ⊆ V ,
which implies that we can fix W = V and Zt = Xt (since vertices are free).

Any combination of costs and connectivity may be taken, including edge costs and vertex
costs simultaneously.

To finish the analysis of the result, we need to prove the analogues of Lemmas 4.10
and 4.11. We omit the full proofs of the lemmas, as they are mostly similar to the
original, but highlight the differences required to make the proofs follow.

We transform a solution specified by F ⊆ E, W ⊆ V into states {(Zt,Ψt)}t∈T as
follows: Zt = W ∩ Xt; for each partition P = (PE , PV), with PE = (F1, . . . , FK) ∈
partE(F), PV = (W1, . . . ,WK) ∈ partV (F), we define, for each node t ∈ T ,

Z
(t)
j (P) = Wj ∩Xt

Γ
(t)
j (P) = tc∗Wj

(Fj ∩ E(Gt))
∣∣∣
t

∆
(t)
j (P) = tc∗Wj

(Fj)
∣∣∣
t

Using the notation ~Z(t)(P) =
(
Z

(t)
1 (P), . . . , Z

(t)
K (P)

)
(similarly for ~Γ(t)(P), ~∆(t)(P)), we

define Ψt as:

Ψt =
{(
~Z(t)(P), ~Γ(t)(P), ~∆(t)(P)

)
| P ∈ partE(F)× partV (W)

}
68

4.2. Connectivity Lemma Based Approach

Conversely, given states {(Zt,Ψt)}t∈T , we can set W =
⋃
t∈T Zt, and set F as in

Lemma 4.11. The rest of the analysis follows similarly to the default case.

4.2.2 Solving GroupSNDP

Our strategy to solve GroupSNDP is similar to that of Section 3.4.1: we are going to
define an instance of STGST that represents our instance of the GroupSNDP problem.
Remarkably, we embed both GST and GroupSNDP to the same problem, even though
the fault-tolerance in the latter makes the problem much harder. The reason for this is
that, in both cases, we can solve the problem by a dynamic program with extra group
constraints, with these group constraints determining the problem (in this case STGST)
that we embed to.

Since we know how to obtain an O(log n log h)-approximation to the STGST problem
in size polynomial on the size of the instance, it is sufficient to prove an analogue of
Theorem 3.33 for GroupSNDP.

Theorem 4.15. Let I =
(
G, c, r,S, k

)
be an instance of GroupSNDP, where G has

treewidth w and let K = maxi ki.
There is an STGST instance I ′ =

(
T̃ , c̃, r̃,

{
S̃i
}
i∈[h]

, T̃c, T̃p
)
, where T̃ is a tree, such

that:

(1) |V (T̃)| = O(nw
O(wK)

)

(2) for every tree F ⊆ E(G) there is a solution tree X (and vice-versa), such that
c(F) = c(X) and, for every i ∈ [h], F contains ki edge-disjoint paths from r to
some vi ∈ Si iff X connects root(T̃) to S̃i.

Furthermore, we can compute I ′ given I, as well as F (resp. X) given X (resp. F), in
time O

(
nO(w logw)

)
.

Proof. The proof of this theorem follows analogously to that of Theorem 3.33. We will
mostly highlight the differences between these two proofs, and omit most details to avoid
repetition.

As with the proof of Theorem 3.33, we start by defining a DAG H̃, which mimics the
dynamic program in Section 4.2.1. It consists of:

(1) Nodes t̃[t,Ψ] for every t ∈ T̃ , and every state Ψ for t;

(2) Combination nodes t̃c[t̃, t̃1, t̃2, Yt] for every t̃ = t̃[t,Ψ], t̃i = t̃[ti,Ψi], where t1, t2 are
the children of t, and Yt ⊆ Et;

(3) Arcs (t̃, t̃c), (t̃c, t̃1), (t̃c, t̃2), for t̃c[t̃, t̃1, t̃2, Yt] ∈ H̃ and

Ψ
Yt←→ (Ψ1,Ψ2);

(4) Root node r̃ and arcs (r̃, t̃), for all t̃ = t̃[root(T),Ψ], where for every (~Γ, ~∆) ∈ Ψ,
~Γ = ~∆.

Pruning is performed similarly to Procedure 3.34, with a slight modification: a leaf
node t̃ = t̃[t,Ψ] is removed if there is (~Γ, ~∆) ∈ Ψ such that Γ 6= ∅K .

69

Chapter 4. Fault-Tolerant Group Steiner Tree

The groups S̃′i are defined as follows: a node t̃ = t̃[t,Ψ] is in S̃′i if there exists
vi ∈ Si ∩ Xt and an element (~Γ, ~∆) ∈ Ψ such that, for every j ∈ [ki], (r, vi) ∈ ∆j .
Formally,

S̃′i =

{
t̃[t,Ψ] ∈ H̃ : (r, vi) ∈

ki⋂
j=1

∆j , (~Γ, ~∆) ∈ Ψ, vi ∈ Si
}

∀i ∈ [h]

The remainder of the proof follows similarly to Theorem 4.15, and by using Lem-
mas 4.10 and 4.11. Using similar arguments, we can prove that the size of the instance
is O

(
nw

O(wK)).
Vertex Costs, Vertex Connectivity and Directed Graphs

We now show how to adapt the results of this section to other variants of GroupSNDP,
as we did in Section 4.2.1. We will show the necessary changes to obtain an analogue of
Theorem 4.15 for any variant of costs, connectivity and directed or undirected graphs,
with an increased size of |V (T̃)| = nexp (w2K).

The nodes and arcs of the graph are defined according to the new states (of the
form (Z,Φ)), and the notion of consistency for these states. The resulting graph has
nodes t̃[t, Z,Ψ], t̃c[t̃, t̃1, t̃2, Yt], and arcs as in the default case. For a combination node
t̃c = t̃c[t̃, t̃1, t̃2, Yt], the arc (t̃, t̃c) has cost c(Yt); for every t̃ = t̃[t, Z,Ψ], and every parent
t̃′ = t̃[t′, Z ′,Ψ′] of t̃, the arc (t̃′, t̃) has cost c(Z \ Z ′) (or simply c(Z) if the parent of t̃ is
the root node r̃). For a definition of c(Yt) and c(Z \ Z ′) (resp. c(Z)) see Section 4.2.1.

Pruning is performed similarly to Procedure 3.34, using the steps of Procedure 4.13
except for Step (4). In other words, we remove nodes corresponding to invalid cells
marked in (1)–(3), (5). Then, we remove nodes not connected from the root; nodes
t̃ = t̃[t, Z,Ψ] where t is not a leaf but t̃ is; and combination nodes for which at least one
of the children has been removed.

The groups S̃′i are defined as follows: a node t̃ = t̃[t, Z,Ψ] is in S̃′i if there exists
vi ∈ Si ∩ Z and an element (~Z, ~Γ, ~∆) ∈ Ψ such that, for every j ∈ [ki], (r, vi) ∈ ∆j .
Formally,

S̃′i =

{
t̃[t, Z,Ψ] ∈ H̃ : (r, vi) ∈

ki⋂
j=1

∆j , (~Z, ~Γ, ~∆) ∈ Ψ, vi ∈ Si ∩ Z

}
∀i ∈ [h]

The remainder of the proof follows similarly to the default case. Due to the increased
number of states (see Observation 4.12), the size of the instance is nexp (w2K).

4.3 Connectivity-K Mimicking Networks

In this section, we present a different method to represent connectivity within a bag,
which improves our results. The main idea is to represent connectivity as a graph,
which we call connectivity-K mimicking network , in such a way that routing paths in the
connectivity-K mimicking network is almost equivalent to routing them in the original
graph. We can then use mimicking networks as the states in our dynamic program, and
using similar analysis, get a faster algorithm for GroupSNDP.

70

4.3. Connectivity-K Mimicking Networks

The biggest differences between these two approaches are the running time and
the generality of the approach: the running time of the algorithm of Section 4.2 is
doubly-exponential on the maximum demand and the treewidth, while the approach we
present in this section is only single-exponential in the treewidth; however, we formulate
connectivity-K mimicking networks with regard to edge cuts, and therefore can only
apply this approach for edge-connectivity, edge-cost variants of SNDP and GroupSNDP.

The formal definition of connectivity-K mimicking network is as follows.

Definition 4.16. Let G be a graph with edge capacities c ≥ 1, and let X ⊆ V (G) be a
subset of the vertices of G called terminals.

We say that H is a connectivity-K mimicking network for (G,X) if the following
holds: for any disjoint subsets XA, XB of X, we have

mincutKH(XA, XB) = mincutKG (XA, XB)

where mincutKG (X,Y) = min
(
mincutG(X,Y),K

)
is the minimum between K and the

value of the minimum cut in G separating X and Y .

In our case, we are interested in querying how many edge-disjoint paths there are
between two sets of vertices. Therefore, it is enough to consider the unweighted setting
of this definition, that is, the case of c = 1, where all the capacities are 1.

In that case, we can always find a connectivity-K mimicking network whose size
depends exponentially on the maximum connectivity and linearly on the number of
terminals. This implies that our states have size exp(K)w, which is a big improvement
on the results of Section 4.2, where the states have size wO(wK).

We start by showing that small connectivity-K mimicking networks exist, in Sec-
tion 4.3.1, then show how to compute one, in Section 4.3.2, and finally show how to
use connectivity-K mimicking networks to obtain improved results for GroupSNDP, in
Section 4.3.3.

4.3.1 Existence of Small Connectivity-K Mimicking Networks

In this section, we will show the existence of connectivity-K mimicking networks of
size 3KK|X|, where X is the set of terminals. We start by introducing the notion
of connectivity-K-linked graphs, and then show how to use these graphs to obtain
connectivity-K mimicking networks.

Definition 4.17. Let G be a graph and X ⊆ G be a set of degree-1 terminals.
We say G is connectivity-K-linked (with respect to X) if for every cut (A,B),

|E(A,B)| ≥ min(|X ∩A|, |X ∩B|,K)

A violating cut is a cut (A,B) that does not satisfy the inequality above.
Let H ⊆ G \X be a subgraph of G. We say H is connectivity-K-linked with respect

to its neighbors if H is connectivity-K-linked with respect to the set of terminals ∂(H),
containing one terminal for each edge outgoing from H, that is,

∂(H) = {te | uv = e ∈ E(G), u ∈ H, v 6∈ H}

71

Chapter 4. Fault-Tolerant Group Steiner Tree

The following theorem formalizes the result.

Theorem 4.18. Let G be a graph, X ⊆ V (G) be a set of terminals, and K ∈ Z≥1 .
There is a connectivity-K mimicking network of size 3KK|X| for G with unit edge

capacities c = 1 and terminal set X.

The proof of theorem follows from the two lemmas below. We postpone their proof
in order to show how they imply Theorem 4.18.

Lemma 4.19. Let G be a graph with degree-1 terminals X, and let H be a connected
subgraph not containing any terminal in X.

If H is connectivity-K-linked with respect to its neighbors, G/H is a connectivity-K
mimicking network for G, where G/H denotes the graph obtained from G by contracting
every edge in H.

Lemma 4.20. Any graph G with a set of degree-1 terminals X and containing no
connectivity-K-linked subgraph has size at most 3K |X|.

Proof of Theorem 4.18. In order to simplify the presentation, Lemmas 4.19 and 4.20
assume that all the terminals have degree exactly 1. We can make G satisfy this assump-
tion by adding, for each terminal v ∈ X, dummy vertices v1, . . . , vK that have a single
incident edge connecting them to v. The new set of terminals X ′ is the set of all dummy
vertices for all of the terminals.

To use the set of terminals X ′ instead of X when computing a cut, we simply consider
all of the dummy vertices for each terminal of interest. In other words, if we want to
compute the min-cut separating A,B ⊆ X ′, we instead consider the sets A′, B′ ⊆ X ′

containing the dummy vertices for each of the terminals in A or B, respectively. Since
we are only interested in cuts of capacity at most K, K dummy vertices are sufficient.

We obtain our connectivity-K mimicking network by repeatedly contracting any
connectivity-K-linked sets, until no more are left. Repeated application of Lemma 4.19
proves that such a graph is a connectivity-K mimicking network, and Lemma 4.20
establishes the size of the resulting graph as being at most 3K |X ′| ≤ 3KK|X|. This
concludes the proof of the theorem.

We now prove Lemmas 4.19 and 4.20.

Proof of Lemma 4.19. Let G′ = G/H be obtained from G by contracting a connectivity-
K-linked set H. We will show that mincutKG′(XA, XB) = mincutKG (XA, XB).

Starting with mincutKG′(XA, XB) ≥ mincutKG (XA, XB), we can see that all the edges
in G′ are also in G, which implies that any cutset in G′ is also in G. We conclude that
the size of the minimum cut in G must be at most the size of the minimum cut in G′,
for any pair of terminals sets. In general, we can say that contraction of edges only ever
increases connectivity, which implies the above.

We remark that, since the capacities are uniform, it is sufficient to consider sets XA,
XB, |XA|, |XB| ≤ K. Indeed, if mincutK(XA, XB) = ` ≤ K (in G or G′), then there are
` edge-disjoint paths connecting ` terminals from XA to ` terminals from XB. We can
choose X ′A ⊆ XA, X ′B ⊆ XB, as the endpoints of these ` disjoint paths. Additionally, if
` < K, we add an additional vertex, if possible, of XA (resp. XB) to X ′A (resp. X ′B); this

72

4.3. Connectivity-K Mimicking Networks

will make sure that connectivity-K-linkedness is preserved. In this way, we have that
|X ′A|, |X ′B| ≤ K, and mincutK(XA, XB) = ` = mincutK(X ′A, X

′
B).

Let us now show that mincutKG′(XA, XB) ≤ mincutKG (XA, XB). Let XA, XB be any
disjoint subsets of X and let ` = mincutG′(XA, XB). Then there are ` edge-disjoint
paths between the terminals in XA and XB in G′. Of these, `′ ≤ ` paths go through the
vertex corresponding to H in G′ (w.l.o.g. the paths are simple, otherwise we can replace
them by shortest paths that only go through H once).

Now, we consider the terminals of ∂(H) corresponding to the ingoing and outgoing
edges for each of these `′ paths, that is, YA ⊆ ∂(H) corresponding to the incoming edges
of the paths into H, and YB ⊆ ∂(H) corresponding to the outgoing edges. Since H is
connectivity-K-linked, we can route paths between these terminal sets inside H if ` ≤ K,
and only K of the paths if ` > K. We can then augment min(`′,K) of the paths in
G′ into paths in G by routing inside H. In any case, we can convert the ` paths in G′

into (`− `′) paths in G not intersecting H plus min(`′,K) paths routed through H, and
therefore,

mincutKG (XA, XB) ≥ (`− `′) + min(`′,K)

≥ min(K, `)

= mincutKG′(XA, XB).

Proof of Lemma 4.20. Let NK(w) be the maximum number of Steiner (non-terminal)
nodes in such a graph G, with w = |X|. We will prove by double induction that

NK(w) ≤ 3K−2(w − 2(K − 1)) if w > 2(K − 1)

NK(w) ≤ 3K−2 if w ≤ 2(K − 1)

This proof can be divided into three parts:

(1) N2(w) ≤ w − 2, for w ≥ 3

(2) NK(2K ′ + 1) = NK′(2K
′ + 1), for all K ′ < K

(3) NK(w) = NK(w1 + `) +NK(w2 + `), where w1 + w2 = w and ` is the number of
edges in a violating cut that divides G into two subgraphs of size w1, w2.

Starting with Point (2), it is not possible to divide 2K ′ + 1 into two sets such that
both are at least of size K ′ + 1. This implies that

min(|X ∩A|, |X ∩B|,K ′) = min(|X ∩A|, |X ∩B|,K)

since either |X ∩A| ≤ K ′ or |X ∩B| ≤ K ′. Therefore, we can increase the value of K ′

in the definition of connectivity-K ′ linked to any other value K > K ′ without affecting
the statement.

The proof of Point (1) follows from these two simple facts and Proposition 2.2: (i) for
K = 2, G is a forest; (ii) G does not contain any vertex of degree 2, unless both its
neighbors are terminals. Fact (i) follows because any cycle is always connectivity-2-
linked, so any graph that does not contain a connectivity-2-linked subgraph does not
contain any cycles, and thus must be a forest. To prove Fact (ii), note that any such
vertex v has one neighbor that is not a terminal. The incident edge connecting v to

73

Chapter 4. Fault-Tolerant Group Steiner Tree

its non-terminal neighbor is a connectivity-K-linked graph, for any K, so it can be
contracted.

As to Point (3), if there is no violating cut, the graph is a connectivity-K-linked set
and can be contracted (leading to 1 steiner node). If there is a violating cut, then we can
cut each of the ` edges into two, that is, replace each edge by two terminals of degree 1,
each connected to an endpoint of the edge. Then, we can inductively obtain the size of
the instance by summing the sizes of the two parts.

There are now two possibilities (w.l.o.g. w1 ≤ w2). If w1 + ` ≤ 2K − 1, since w1 > `,

NK(w) = NK(w1 + `) +NK(w2 + `)

≤ NK(2K − 1) +NK(w − w1 + `)

≤ NK−1(2K − 1) +NK(w − 1)

≤ 3K−3
(
2K − 1− 2(K − 2)

)
+ 3K−2

(
w − 1− 2(K − 1)

)
≤ 3K−33 + 3K−2

(
w − 1− 2(K − 1)

)
≤ 3K−2

(
w − 2(K − 1)

)
Otherwise,

NK(w) = NK(w1 + `) +NK(w2 + `)

≤ 3K−2
(
w1 + `− 2(K − 1)

)
+ 3K−2

(
w2 + `− 2(K − 1)

)
≤ 3K−2

(
w1 + w2 − 2(K − 1) + 2`− 2(K − 1)

)
≤ 3K−2

(
w − 2(K − 1)

)
In any case, by double induction on K and w, we conclude that the G has size at

most 3K |X|.

4.3.2 Computing Small Connectivity-K Mimicking Networks

We now present an algorithm that finds a good connectivity-K mimicking network for
a graph G, and then prove its correctness (Theorem 4.21). The idea of the algorithm is
to use the above lemma to compute a connectivity-K mimicking network. It starts by
computing a violating cut (A,B), satisfying

|E(A,B)| < min(|X ∩A|, |X ∩B|,K)

If such a cut does not exist, the graph is connectivity-K-linked, and therefore we can
contract it onto a single vertex attached to all of the terminals. Otherwise, we remove
the edges E(A,B) of the cut, and for each edge, attach a degree-one terminal to each
endpoint. Then, we recurse, on both sides of the graph, and finally join the solutions by
connecting by an edge the neighbors of matching terminals created in the previous step.
In other words, in the previous step we removed each edge uv ∈ E(A,B) and added
terminals tuv, tvu. Now, we undo this operation, by removing tuv, tvu and connecting
their neighbors with an edge. The algorithm is formally presented in Algorithm A.5.

Theorem 4.21. Given a graph G with degree-1 terminals X, the algorithm described
above (see Algorithm A.5) computes a connectivity-K mimicking network H of G with
the same terminals, and of size at most O(3K |X|). Furthermore, H is a minor of G.

74

4.3. Connectivity-K Mimicking Networks

Proof. It is clear that the algorithm runs in time |X|K poly(n). Notice that, to compute
a violating cut, we simply have to compute the min-cuts for every subsets of terminals
X ∩ A, X ∩ B, which takes time poly(n) for each pair of terminal sets. Every time we
recurse, we remove one of the edges of the original graph from consideration, and so we
must terminate after at most |E(G)| calls.

We will now prove that H is a minor of G. There are essentially two different
operations performed by the algorithm:

• Splitting edges: when recursing, edges are split, but are afterwards re-joined.
Therefore, this operation does not really change the graph.

• Returning a star when no violating cut exists: This can be thought of as contracting
all the edges in G not incident to a terminal.

In both of these cases, the operations can be thought of as contractions of edges until the
right result is achieved. Therefore, this does not violate the invariant that H is a minor
of G. Since we only contract subgraphs that are connectivity-K-linked, the resulting
graph must be a connectivity-K mimicking network of G by Lemma 4.19.

By careful consideration of Lemma 4.20, we can see that it actually applies even if
the graph contains connectivity-K-linked sets. Indeed, the proof applies as long as we
can either find a violating cut and recurse on both parts, or otherwise the graph is itself
connectivity-K-linked. These are precisely the operations made by the algorithm, and
thus the bounds of Lemma 4.20 apply to this algorithm.

4.3.3 Using Connectivity-K Mimicking Networks to solve GroupSNDP

In this section, we prove Theorem 4.5. The proof follows the general structure of the
proof presented in Section 4.2, but we use connectivity-K mimicking networks as the
states. Our goal is to assign two connectivity-K mimicking networks to each subinstance,
roughly corresponding to the connectivity in E(Gt) and E \ E(Gt).

We remark that this notation deviates from that in Section 3.3.3, in which we are
interested in the connectivity in E(Gt) and E (corresponding to Γ and ∆ respectively).
The reason for this change is that, in higher connectivity, we want to avoid counting
connections multiple times, if only one connection exists. For example, in the rule
∆t = tc

(
∆p(t) ∪ Γt

)∣∣
t
in Definition 3.22, the same pair (u, v) can be both in ∆p(t) and

Γt, and we cannot determine whether they correspond to the same path or disjoint
paths. Therefore, we consider the connectivity in disjoint sets of edges, and indeed in
almost-disjoint graphs, that only intersect in Xt.

Two ingredients are needed to adjust this technique to our result: (i) consistency
rules for the DP, and (ii) an oracle to determine how many edge-disjoint paths there are
between two vertices u and v in the same bag.

The following equivalents of Definition 3.22 and Lemma 3.23 for connectivity-K
mimicking networks provide these constructions. For convenience, we discard the use of
Y in Definition 3.22, using instead all of the edges of the graph. We can then apply the
lemma to the graph (V (G), Y), where Y is any subset of edges.

75

Chapter 4. Fault-Tolerant Group Steiner Tree

Definition 4.22 (Local Connectivity).
We say that the pairs of connectivity-K mimicking networks {(H′t,Ht)}t∈V (T) satisfy

the local connectivity definition if, for every node t ∈ V (T) (having left and right children
as t1 and t2, respectively),

H′t :=

{
(Xt, ∅) if t is a leaf of T
mimnetK

(
Et ∪H′t1 ∪H

′
t2 , Xt

)
otherwise

Ht1 := mimnetK
(
H′t2 ∪Ht ∪ Et, Xt1

)
Ht2 := mimnetK

(
H′t1 ∪Ht ∪ Et, Xt2

)
Hroot(T) := (Xroot(T), ∅)

Lemma 4.23. Let G = (V,E) be a graph, and (T , X) its tree decomposition satisfying
Properties (3) and (4) from Lemma 2.6. For every t ∈ V (T), let (H′t,Ht) be a pair as
in Definition 4.22.

Then, the triples (H′t,Ht) satisfy the local definitions iff for every t ∈ V (T) and every
pair of disjoint sets S1, S2 ⊆ Xt,

mincutKH′t(S1, S2) = mincutKE(Gt)
(S1, S2)

mincutKHt
(S1, S2) = mincutKE\E(Gt)

(S1, S2).

Proof. We start by proving the equality for H′ by bottom-up induction, and then the
one for H by top-down induction.

Let t ∈ T be a node of the tree decomposition. Then E(Gt) = ∅ = H′t, so equality
immediately follows. Consider now an internal node t with children t1, t2, and assume
that the claim follows for t1, t2.

Let S1, S2 ⊆ Xt, and F be the cutset for a mincut between S1 and S2 in E(Gt). We
will use cG(S1, S2) = mincutKG (S1, S2) for conciseness (in this proof only). Then

cGt(S1, S2)

= min(K, |F |)
= min(K, |F ∩ Et|+ |F ∩ E(Gt1)|+ |F ∩ E(Gt2)|)
≥ min

(
k, cEt(S1, S2) + cE(Gt1)(S1 ∩Xt1 , S2 ∩Xt1

)
+ cE(Gt2)(S1 ∩Xt2 , S2 ∩Xt2))

= min
(
k, cEt(S1, S2) + cH′t1

(S1 ∩Xt1 , S2 ∩Xt1

)
+ cH′t2

(S1 ∩Xt2 , S2 ∩Xt2))

≥ cH′t(S1, S2)

The third inequality follows because each of the three terms corresponds to a min-cut
between S1 and S2 for the respective edge sets. The fourth inequality follows by induction
hypothesis, and the final one follows by definition of H′t. For this last step, we crucially
use that Xt1∩Xt2 ⊆ Xt, which means that any cut for Et, H′t1 and H′t2 uses disjoint edges
and disjoint vertices outside of Xt. Though these edges may not necessarily exist in H′t,
they provide an upper bound for the cut cH′t , because H

′
t = mimnetK(Et∪H′t1 ∪H

′
t2 , Xt).

Analogously, we can prove that cE(Gt) ≤ cH′t , by taking a set of edges F ′ of H′t that
realizes the minimum cut in that graph. The same steps then apply to prove the desired

76

4.3. Connectivity-K Mimicking Networks

inequality.

cH′t(S1, S2) = min(K, |F ′|)
= min(K, |F ′ ∩ Et|+ |F ′ ∩ E(H′t1)|+ |F ′ ∩ E(H′t2)|)
≥ min

(
k, cEt(S1, S2) + cH′t1

(S1 ∩Xt1 , S2 ∩Xt1

)
+ cH′t2

(S1 ∩Xt2 , S2 ∩Xt2))

= min
(
k, cEt(S1, S2) + cGt1

(S1 ∩Xt1 , S2 ∩Xt1

)
+ cGt2

(S1 ∩Xt2 , S2 ∩Xt2))

≥ cGt(S1, S2)

This concludes the first part of the proof.
We now prove that mincutKE\E(Gt)

(S1, S2) = mincutKHt
(S1, S2). For t = r, notice that

E \ E(Gt) = ∅ = Ht, so the equality follows in this case. We now prove the equality for
a node t1 with parent t and sibling t2.

Let S1, S2 ⊆ Xt1 , and F be the cutset for a mincut between S1 and S2 in E \E(Gt1).
Then

cE\E(Gt1)(S1, S2) = min(K, |F |)
= min(K, |F ∩ Et|+ |F ∩ (E \ E(Gt))|+ |F ∩ E(Gt2)|)
≥ min(K, cEt(S1 ∩Xt, S2 ∩Xt) + cE\E(Gt)(S1 ∩Xt, S2 ∩Xt)

+ cE(Gt2)(S1 ∩Xt2 , S2 ∩Xt2))

= min(K, cEt(S1 ∩Xt, S2 ∩Xt) + cHt(S1 ∩Xt, S2 ∩Xt)

+ cH′t2
(S1 ∩Xt2 , S2 ∩Xt2))

≥ cHt1
(S1, S2)

Similarly to the proof above, we use the fact that F ∩Et, F ∩ (E \E(Gt)), F ∩E(Gt2)
are cuts in the subgraphs Et, G \E(Gt), E(Gt2) respectively. The last step follows from
the fact that the three terms correspond to cuts in Et, Ht and H′t2 , and therefore their
union forms a cut in Ht ∪ Et ∪ H′t2 . Since Ht1 = mimnetK(Ht ∪ Et ∪ H′t2 , Xt1), the
inequality follows. The converse follows similarly:

cHt1
(S1, S2) = min(K, |F |)

= min(K, |F ∩ Et|+ |F ∩ E(Ht)|+ |F ∩ E(H′t2)|)
≥ min(K, cEt(S1 ∩Xt, S2 ∩Xt) + cHt(S1 ∩Xt, S2 ∩Xt)

+ cH′t2
(S1 ∩Xt2 , S2 ∩Xt2))

= min(K, cEt(S1 ∩Xt, S2 ∩Xt) + cE\E(Gt)(S1 ∩Xt, S2 ∩Xt)

+ cE(Gt2)(S1 ∩Xt2 , S2 ∩Xt2))

≥ cE\E(Gt1)(S1, S2)

This completes the proof.

All that is left is to provide an oracle to decide if the solution has ki edge-disjoint paths
from the root r to a vertex vi. Let t be a node such that r, vi ∈ Xt. The number of edge-
disjoint paths in a solution Y between r and vi (up to k) is given by mincutKY ({r}, {vi}),

77

Chapter 4. Fault-Tolerant Group Steiner Tree

which by Lemma 4.23 is the same as mincutKH′t∪Ht
({r}, {vi}), for (H′t,Ht) according to

Definition 4.22 for graph (V, Y).
We conclude that we can use a similar dynamic program, where the states for Gt are

all possible connectivity-K mimicking networks with terminals Xt. By Theorem 4.18,
there is a connectivity-K mimicking network for any graph, with w terminals, of size
O(3KKw). Since the number of edges is at most the square of the number of vertices,
there are O(exp(9KK2w2)) possible states for each node, which completes the proof.

The proof of Theorem 4.6 follows analogously to Section 4.2.2.

78

CHAPTER 5
Conclusion and Open Problems

In this part of the thesis, we present a framework that allows us to extend the ideas of
dynamic programming to problems containing group constraints. To achieve this, we
formulate the problem as a variant of GST, where solutions correspond to valid recursions
in an underlying dynamic program, and the group constraints guarantee that, for each
group, one of its terminals is added to the solution at some point in the recursion.

We start by showing a set of tools to handle connectivity on bounded treewidth,
making it a simple task to design a dynamic program for Steiner tree, which we can also
use as the underlying dynamic program in our algorithm for GST. These tools allow us
to easily generalize Steiner tree and specify more complex connectivity requirements, as
long as these occur between elements in the same bag, with the possible addition of a
few extra elements (such as the root for Steiner tree).

We also show how to formulate the problem of finding a solution for GST as the
problem of finding a dynamic programming solution for Steiner tree that covers one
terminal for each group, and we show how to approximate this problem by treating
it as a variant of GST itself. Our main result is an O(log n log h)-approximation algo-
rithm for GST on bounded-treewidth graphs, obtained by combining the ideas described
above. Inspired by the use of junction trees by Chekuri et al. [CEG+11], we use our
techniques to obtain an O(log n log2 h)-approximation for GSF on bounded treewidth and
an O(w log2 n log2 h)-approximation for DSF on bounded (undirected) treewidth.

We then turn to the fault-tolerant setting, and show that our connectivity framework
can also be used to approach high-connectivity problems, such as SNDP and GroupSNDP.
Unfortunately, the immediate use of this technique requires running time that is double-
exponential in the maximum connectivity demand and treewidth, since each terminal or
group can partition the solution into disjoint paths differently, and the dynamic program
must track all of the possible possibilities.

Our main results are a dynamic program for SNDP with running time n 2exp(Kw logw)

and an O(log n log h)-approximation for GroupSNDP with running time nexp(Kw logw),
which we obtain using our technique for solving dynamic programs with group constraints.
We later improve these running times for the edge-connectivity variants to n 2exp(K)w logw

and nexp(K)w logw, respectively. These improved results use a mathematical object that
we call connectivity-K mimicking network, which captures the connectivity of a graph
up to a certain threshold, and is much smaller than the graph, with the size depending
only on the number of terminals and the maximum connectivity. We think that this data
structure is of independent interest and merits further study (see [LPS19] for a different
application of the same concept).

We feel that our results for GST and GroupSNDP may be important steps towards
understanding the approximability of these problems, as well as showing new ways to
use dynamic programming techniques to obtain approximation algorithms.

Chapter 5. Conclusion and Open Problems

5.1 Open Problems

There are still many open problems related to our results, both for the single connectivity
case of GST and its high-connectivity extensions.

For GST, the most important open question concerns the approximability of the
problem, namely whether the best approximation ratio for the problem is O(log n log h)
in general graphs, and whether a poly-logarithmic approximation ratio can be achieved
for GST with vertex costs. Tree embedding techniques are currently not known for vertex
costs, and, even for edge costs, imply the loss of an Ω(log n) factor.

Open Problem 5.1. Is there a polynomial time O(log n log h)-approximation for GST
in general graphs?

Open Problem 5.2. Is there a polynomial time O(polylog n)-approximation for GST
in general graphs with vertex costs?

Regarding our results, it would be interesting to improve the running time of our
algorithm to be FPT. It may also be possible to improve the term in the exponent
of the running time from w logw to simply w. While the second question may follow
from carefully combining our techniques with known FPT algorithms for Steiner tree
[BCK+15, CNP+11, FBN15], the question of whether FPT running time is achievable
requires the use of new techniques.

Open Problem 5.3. Is there an O(log n log h)-approximation algorithm for GST with
running time 2O(w) poly(n)?

Besides the running time improvements to our algorithm, there might be other useful
extensions of our results. With our current algorithm, we do not use the full expressive-
ness of the tree decomposition, since the leaves of our STGST contain information about
the state of all the ancestors. This means that we might be able to use our algorithm
in more general settings, such as in graphs with small balanced separator number (see
e.g. [BGH+95, Gru10]). Another possible extension is to provide an approximate em-
bedding into the STGST problem, which would imply a loss in the approximation factor,
but improve the running time. The ideal situation in this scenario would be to have an
O(1)-approximate embedding with polynomial size.

Open Problem 5.4. Can the algorithm of Theorem 3.4 be used more generally, e.g.
with a balanced separator tree instead of a tree decomposition?

Open Problem 5.5. Is there an O(1)-approximate embedding from GST to STGST,
where the instance size is polynomial in the size of the original instance, and costs are
accurate up to an O(1)-factor?

Another natural question is to ask in what graphs the same approximation ratio
applies. Two natural classes of graphs are planar graphs and Euclidean graphs. For
planar graphs, Baker’s technique [Bak94] has been used to obtain PTAS for diverse
problems [DHK05, DHK11, Kle05], by using algorithms for bounded-treewidth graphs.
For Euclidean graphs, there are PTAS for Steiner tree that use dynamic programming,
which might be amenable to our techniques. As an example, combining our techniques

80

5.1. Open Problems

with the algorithm of Arora [Aro98] yields an O(log n log h)-approximation for Euclidean
GST, with running time nO(log logn) in Euclidean space of constant dimension (where n
is the total number of points in the groups).

We remark that every tree metric can be embedded into a Euclidean space with
distortion O(

√
log log n) [LMS98, Mat99]. Therefore, the group Steiner tree problem in

a Euclidean space is hard to approximate to a factor of log2−ε n, for any constant ε > 0.

Open Problem 5.6. Is there an O(log n log h)-approximation algorithm for GST on
planar graphs?

Open Problem 5.7. Is there an O(log n log h)-approximation algorithm for GST on
Euclidean graphs?

Our techniques lie at the intersection of combinatorial and LP rounding algorithms.
We think it might be interesting to look at other kinds of algorithms to approximate
GST on bounded treewidth.

Open Problem 5.8. Can we obtain an O(log n log h)-approximation for GST on graphs
with bounded treewidth, using combinatorial algorithms (i.e. without explicitly solving
an LP)?

Open Problem 5.9. Can we obtain an O(log n log h)-approximation for GST on graphs
with bounded treewidth, by rounding an LP (potentially from an LP hierarchy, see
e.g. [Lau03])?

There are also some other problems that we can approach using similar techniques.
For instance, the work of Gupta et al. for the sparsest cut problem [GTW13] can be seen
as using a similar technique to ours, and thus shows that such techniques may have wide
applicability. Examples of some related problems where the same technique might be
used (further) are GSF and GST with degree-constraints.

Open Problem 5.10. Is there an O(log n log h)-approximation algorithm for GSF on
bounded treewidth?

Open Problem 5.11. Is there a bicriteria (O(log n log h),polylog(n, h))-approximation
algorithm for the bounded-degree GST problem on bounded treewidth?

For higher-connectivity problems, the most interesting question is whether we can
achieve a running time that is single-exponential on the treewidth and maximum con-
nectivity demand. One way to improve the running time is to obtain a connectivity-K
mimicking network with size polynomial on the number of terminals and maximum
connectivity, or, more generally, to prove that the number of relevant connectivity-K
mimicking networks is only single-exponential. Another question is whether we can com-
pute a connectivity-K mimicking network in running time near-linear on the size of the
graph (and FPT on the maximum connectivity). Even though a positive answer would
not lead to an improvement of our results, we find this to be a question of independent
interest.

Open Problem 5.12. Is there an O(log n log h)-approximation algorithm for Group-
SNDP with running time npoly(K)w logw?

81

Chapter 5. Conclusion and Open Problems

Open Problem 5.13. Does every graph G with terminals X have a connectivity-K
mimicking network of size poly(K)|X|?

Open Problem 5.14. Is there a setM of exp(poly(K)w)) graphs such that every graph
G with w terminals has a connectivity-K mimicking network inM?

Open Problem 5.15. Is there an algorithm that computes a connectivity-K mimicking
network of size exp(K)|X| with running time exp(K)n polylog n?

Finally, there are other problems where the use of our techniques might lead to
improved results. The most clear examples are the unrooted and relaxed variants of
GroupSNDP, but other high-connectivity problems may also benefit from the use of our
framework.

Open Problem 5.16. Is there an O(log n log h)-approximation algorithm for unrooted
GroupSNDP?

Open Problem 5.17. Is there an O(log n log h)-approximation algorithm for relaxed
GroupSNDP?

82

PART II

Firefighter Problem

This part is the result of close collaboration with Parinya Chalermsook and
Erik Jan van Leeuwen. It is based on an article presented at the Workshop on
Approximation and Online Algorithms in 2016 [CV16], as well as unpublished
work [vLV].

84

CHAPTER 6
Firefighter Problem on Trees

The firefighter problem was introduced by Hartnell in 1995 [Har95] as a model for fire
spreading on a graph. It can be described as a one-player game, where the goal is to
strategically place firefighters, so as to maximize the number of vertices saved. At the
beginning of the game, a vertex s is burning . At each time step, the player can pick some
non-burning vertices to protect , which remain protected for the rest of the game. Then,
the fire spreads from every burning vertex to its neighbors that are not protected, with
the game stopping when the fire can no longer spread. We say that a vertex is saved if
it is not burning at the end of the game, either because it was protected or because the
fire was blocked off by protected vertices.

The firefighter problem can also model other spreading phenomena, such as infectious
diseases, computer viruses, or even ideas. In any of these scenarios, protecting a vertex
represents any kind of defensive action, such as vaccinations, quarantine, or disconnecting
a node of the network. In the field of epidemiology, some recent studies have looked at
interactions between individuals, modeled as a graph, and how diseases spread in this
model [RK03, SW16, Cra15]. The firefighter problem and its algorithms might be useful
to strategically use a limited stock of vaccines in such a way that contains the spread of
a disease (see also [DH07, Har04]).

There are two important variants of the firefighters problem: in the maximization
variant (Max-FF), we are allowed to protect one vertex per time step, and the objective
is to maximize the number of saved vertices; in the minimization variant (Min-FF), we
are given a terminal set X ⊆ V (G), we are allowed to pick B vertices per time step, and
the goal is to save all terminals in X , while minimizing the budget B.

In this chapter, we will focus on the Max-FF problem. Even though it is NP-hard
to n1−ε-approximate the problem in general graphs [ACH+12], there are still many
open questions on more specific settings, such as trees, grids or other sparse graphs
(see e.g. [FM09]). On trees, the problem remains NP-hard, but better approximation
results are known: Hartnell and Li give a simple 2-approximation algorithm [HL00];
an LP-rounding algorithm by Cai et al. achieves a (1 − 1/e)-approximation [CVY08],
which Costa et al. [CDD+13] extend to the case of multiple fire sources and firefighters;
Iwaikawa et al. [IKM11] improve the approximation ratio slightly when the degree of
the tree is bounded. Recently, Adjashvili et al. presented a PTAS for the problem on
trees [ABZ17]. Their results use the standard LP for the problem as a subroutine, but
do not bound the integrality gap. We believe that the integrality gap questions are
interesting despite the known approximation guarantees.

In this chapter, we study Max-FF on trees, which we henceforth refer to as Tree-FF.
Most of the results for Tree-FF heavily rely on the graph structure, and therefore do not
usually generalize to other classes of graphs (for example, when graphs have cycles). We
explore the approximability of Max-FF in more general graphs in Chapter 7.

Chapter 6. Firefighter Problem on Trees

Related work Tree-FF has several connections to classic optimization problems (that
do not apply to Max-FF in general):

• Set cover: On the one hand, Tree-FF can be thought of as a maximum coverage
problem, and is a special case of the maximum coverage problem with group budget
constraints [CK04];

• Submodular optimization: In a similar vein, Tree-FF can also be modeled as a
submodular optimization problem under matroid constraints [CCP+11], where the
matroid constraints restrict the sets of vertices that can be protected;

• Cut Problems: Anshelevich et al. [ACH+12] discussed that solutions to the
firefighter problem can be seen as a “cut over time”, in which the cut must be
produced gradually over many timesteps. In other words, in each time step t, the
player is allowed to remove a set of vertices from the graph. The final goal is then
to “disconnect” s from a set of vertices T .

King and MacGillivray show that Tree-FF is solvable in polynomial time if the input
tree has degree at most three, with the fire starting at a vertex with degree at most
2 [KM10]. Cai et al. present an exact algorithm with running time 2O(

√
n logn) [CVY08].

The problem was also studied from the point of view of parameterized algorithms
(e.g. [BCC+14, CVY08, CC14]) and on many special cases, e.g. when the tree has bounded
pathwidth [CC14] as well as on bounded degree graphs [BCR13, CC14]. Chalermsook
and Chuzhoy study the Min-FF problem and show an O(log∗ n)-approximation [CC10].
This result was later improved to an O(1)-approximation by Adjashvili et al. [ABZ17].

Another question of interest, particularly in the discrete mathematics community, is
whether a fire can be stopped at all for graphs following a fixed structure. Of particular
interest are infinite graphs, such as grids or regular graphs, where we want to distinguish
between containment, i.e. a finite number of vertices burns, or non-containment, i.e. an
infinite number of vertices burns (see [DH07, FHL+00, Fog03, Har95, MW03, WM02]).

The surviving rate of a graph is the expected fraction of vertices that burns if the
fire source is chosen at random and vertices are protected optimally. Determining the
surviving rate is a problem that has been studied for different classes of graphs, including
trees [CW09], graphs of bounded treewidth [CCV+10] and planar graphs [Gor15]. Finbow
et al. [FHL+00] look at the related question of determining which graphs maximize the
surviving rate.

Our results Our goal is to develop a better understanding of Tree-FF from the perspec-
tive of linear programming. The known (1− 1/e)-approximation was obtained from the
standard LP by independent rounding. Cai et al. [CVY08] claimed that this result is the
best possible for LP-respecting algorithms, that is, algorithms which only protect vertices
that are in the support of the LP solution. However, many algorithms in other contexts
are not LP-respecting (such as the algorithm by Chalermsook and Chuzhoy [CC10] for
Min-FF), and hence the question of whether rounding the standard LP could lead to a
better approximation ratio was open.

Our first result (formalized in Theorem 6.5) proves that this is not possible, that is,
the integrality gap of the standard LP relaxation can be arbitrarily close to (1−1/e). This
result also generalizes for any constant budget B ∈ Z≥1, matching the algorithmic result

86

6.1. Problem Definitions and Results

of Costa et al. [CDD+13]. Furthermore, if the degree of the input tree is upper bounded
by a constant d ∈ Z≥4, we show an integrality gap result of (1− 1/e+O(1/

√
d)). The

best approximation ratio in this setting is (1− 1/e+ Ω(1/d)) by Iwaikawa et al. [IKM11].
Motivated by the negative results above, we analyze a stronger LP relaxation, sug-

gested by Hartke [Har04], that adds some constraints to the standard LP. We denote this
new relaxation LP-Hartke. Even though Hartke showed experimentally that the new
relaxation outperforms the standard LP, he did not provide any theoretical analysis for
the new LP. We show some evidence that LP-Hartke is a stronger relaxation than the
standard LP, namely:

• For the tractable instances studied by Finbow et al. [FM09], any extreme point of
the new LP is integral. In contrast, the extreme point solutions of the standard LP
are not integral in these instances.

• A family of instances, capturing the integrality gap instances of Theorem 6.5,
admits a better approximation ratio than (1− 1/e) by rounding the new LP.

• When the LP solution is near-integral, e.g. for half-integral solutions, the new LP
is provably better than the old one.

Our results provide the first indications that LP-Hartke might lead to improvements
over the standard LP in general instances. All of the above results exploit the new
constraints to show that the solutions to the new LP are more structured than those of
the standard LP. We use this additional structure to propose a new two-phase dependent
rounding algorithm, which leads to the improved approximation results.

We believe that LP-Hartke has an integrality gap strictly better than (1 − 1/e),
but are unable to show it formally. However, we prove that even using LP-Hartke we
cannot get a PTAS for Tree-FF, as the integrality gap of LP-Hartke is at most 5/6.

Organization The organization of this chapter is as follows: in Section 6.1, we present
the problems and state our results formally; in Section 6.2, we present the standard
LP, as well as some observations about the problem; in Section 6.3, we show that the
integrality gap of the standard LP is arbitrarily close to 1 − 1/e; finally, in Section 6.4
we show the power of LP-Hartke, by proving that it outperforms the standard LP in
different types of instances.

6.1 Problem Definitions and Results

Definition 6.1 (Valid Strategy).
A strategy is a collection {Si}i∈[n] where Si ⊆ V , is the set of vertices protected at

time step i. We denote by V (S) =
⋃
i∈[n] Si the set of all vertices protected by S. We

say S is applied if the vertices in Si are protected at time step i, for every i ∈ [n].
A valid strategy satisfies the constraint that no vertex is protected when burning,

that is, d′(s, Si) ≤ i, where d′ refers to the distance in G \
⋃i−1
j=1 Sj .

A strategy has budget B if |Si| ≤ B for all i ∈ [n].
A vertex v ∈ V is saved by a valid strategy {Si}i∈[n] if v ∈ Si for some i ∈ [n] or s is

disconnected from v in G \ V (S).

87

Chapter 6. Firefighter Problem on Trees

Problem 6.2: Firefighter Problem (Max-FF).

• Instance:
(
G, s, w,B), where

– G = (V,E) is a graph with vertex weights w : V → R (by default, w = 1);
– s ∈ V is the source of a fire;
– B ∈ Z≥1 is the budget , that is, the number of vertices that can be protected

per time step (by default, B = 1).
• Solution: a valid strategy {Si}i∈[n] with budget B (|Si| ≤ B).
• Goal: maximize the weight of the set of verticesR that is saved, w(R) =

∑
v∈R wu

Problem 6.3: Firefighter Problem on Trees (Tree-FF).

• Instance:
(
G, s, w,B), where

–
(
G, s, w,B) is an instance of Max-FF;

– G is a tree.
• Solution: a valid strategy {Si}i∈[n] with budget B (|Si| ≤ B).
• Goal: maximize the weight of the set of verticesR that is saved, w(R) =

∑
v∈R wu

Problem 6.4: Minimization Firefighter Problem (Min-FF).

• Instance:
(
G, s,X), where

– G = (V,E) is a graph;
– s ∈ V is the source of a fire;
– X ⊆ V is a set of terminals.

• Solution: a valid strategy {Si}i∈[n] that saves all the terminals.
• Goal: minimize the budget B = max {|Si| : i ∈ [n]}

Theorem 6.5. Let ε > 0, B ≥ 1. There is an instance (G, s,1, B) of Tree-FF of size
bounded by some function f(ε,B), such that the integrality gap of the standard LP is

• at most (1− 1/e+ ε);

• at most
(
1− (1− 1/k)k + ε

)
, when compared to 1/k-integral solutions, for any

k ≤ 2/ε.

Theorem 6.6. Let B ≥ 1 and d ≥ 2 be integers such that B < d/5. There is an instance
(G, s, w,B) of Tree-FF of size bounded by some function f(d), such that the integrality
gap of the standard LP is at most (1− 1/e+O(

√
B/d)).

Theorem 6.7. Let (T, s, w, 1), w > 0 be an instance of Tree-FF as described by Finbow
et al. [FM09], and let x be an extreme point solution for LP-Hartke. Then x is integral.

Furthermore, there is an instance (T, s, w, 1), for which the standard LP has an non-
integral extreme point solution.

Theorem 6.8. Let (T, s, w, 1) be an instance of Tree-FF, and let x be a half-integral
extreme point solution for LP-Hartke.

Then there is a valid strategy {Si}i∈[n] that saves vertices with a weight of at least
5/6wTx.

88

6.2. Standard Linear Program and Preliminaries

Theorem 6.9. Let (T, s, w, 1) be an instance of Tree-FF, and let x be a separable (see
Definition 6.29) extreme point solution for LP-Hartke.

Then there is a valid strategy {Si}i∈[n] that saves vertices with a weight of at least
αwTx, where α > 1− 1/e.

Theorem 6.10. Let ε > 0. There is an instance (T, s,1, 1) of Tree-FF of size bounded
by some function f(ε), such that the integrality gap of LP-Hartke is at most 5/6 + ε.

6.2 Standard Linear Program and Preliminaries

We will start by presenting the standard LP, as well as some assumptions that simplify
our presentation. Let (T, s, w,B) be an instance of Tree-FF. We assume that T is rooted
at s and then partition the vertices into layers, according to to their distance from the
root. Formally, we have layers L0, L1, . . . , Lλ, where, for each i ∈ [λ], Li contains all the
vertices at depth i.

For any vertex v, let Pv denote the (unique) path from s to v. A natural LP relaxation
is as follows: for each v ∈ V , we have variables xv indicating whether v is protected by
the solution, and yv indicating whether v is saved.

Definition 6.11 (Standard LP for Tree-FF – LP-FF).

max
∑
v∈V

wvyv

s.t.
∑
v∈Lj

xv ≤ B ∀j ∈ [λ]

yv ≤
∑
u∈Pv

xu ∀v ∈ V

xv, yv ∈ [0, 1] ∀v ∈ V

Notice that, in this LP relaxation, we assume that the vertices protected in each
time step are contained in the layer corresponding to that time step. We say a strategy
{Si}i∈[n] is layered if Si ⊆ Li for all i ∈ [n]. From this point onwards, and unless
otherwise specified, we assume that all the strategies are layered. Proposition 6.12 proves
that these assumptions are valid for Tree-FF (but not Max-FF in general).

Proposition 6.12. Let (T, s, w,B) be an instance of Tree-FF, with layers L0, L1, . . . , Lλ,
and S = {Si}i∈[n] be a valid strategy.

Then there is a valid strategy S′ = {S′i}i∈[λ] that is layered and at least as good as S,
that is:

(1) S′ saves all the vertices that S saves;

(2) S′ protects at most as many vertices as S at each time step, that is |S′i| ≤ |Si| for
all i ∈ [n];

(3) S′ is layered, that is, S′i ⊆ Li for i ∈ [λ].

89

Chapter 6. Firefighter Problem on Trees

Proof. For every i ∈ [λ], and every v ∈ Si that is not contained in Li, replace v by the
ancestor v′ of v that is in Li. This is still a valid strategy, since vertices in Li cannot burn
before time step i. Furthermore, every vertex saved by v must also be saved by v′, since
v disconnects Tv from s, and v′ disconnects Tv′ ⊃ Tv. This proves the statement.

Lemma 6.13. Let ε > 0 and let (T, s, w,B) be an instance of the Max-FF problem, with
integrality gap γ for LP-FF.

There is an instance (T ′, s,1, B), with T ⊆ T ′ with integrality gap of γ+ε for LP-FF.

Proof. Let wmax = maxv∈V wv and M = 3B(n+ 1)/εwmax, where n = |V (T)|. Starting
from T , we construct an instance (T ′, s,1, B) by adding dMwve children to each vertex
v ∈ V . Let X = V (T ′) \ V (T) denote the set of newly added vertices. Since wv ≤ wmax

for all v ∈ V , we add at most n · 3B(n+ 1)/ε vertices, that is, |V (T ′)| = O(Bn2/ε).
Let (x, y) be the optimum LP solution for (T, s, w,B), and let opt = wT y. We can

construct a solution (x, y′) for (T ′, s,1, B) by setting y′v = yv, v ∈ V (T), and y′v = yp(v)

for v ∈ X . By construction,

opt′ = 1T y′ ≥
∑

v∈V (T)

yvdMwve ≥
∑

v∈V (T)

yvMwv = MwT y = M opt

Any integral solution can protect B vertices in X per layer, for a total of at most
(n + 1)B vertices. Let R be the set of saved vertices by some integral solution for T ′.
Then the total weight saved is at most

|R| ≤
∑

v∈V (T)∩R

(
1 + dwvMe

)
+ (n+ 1)B

≤
∑

v∈V (T)∩R
wvM + 2n+ (n+ 1)B

≤Mγ opt +2n+ (n+ 1)B

≤M opt

(
γ +

3(n+ 1)B

M opt

)
= opt′

(
γ +

εwmax

opt

)
≤ opt′ (γ + ε)

The last inequality follows from opt ≥ wmax, since the optimum solution can at least
save the vertex of maximum weight.

We conclude that (T ′, s,1, B) has integrality gap γ + ε.

6.3 Integrality Gap Instances for the Standard LP

In this section, we consider the goal of maximizing the number of leaves saved, as this
simplifies the analysis dramatically. This corresponds to setting the weight on every leaf
to 1 and the weight of every other vertex to 0. By Lemma 6.13, we can transform any
instance into an instance with uniform weights, w = 1, in such a way that the integrality
gap is only affected by a factor of 1 + ε. This implies that all of the results below also
apply to the uniform weight setting.

90

6.3. Integrality Gap Instances for the Standard LP

We construct the integrality gap instance in sets of contiguous layers, which we
call phases, such that, in each phase, the LP can fractionally protect a vertex in every
top to bottom path. By having k phases, and in each of them having the LP solution
save each leaf by 1/k, we get that all of the leaves are completely saved by the LP
solution. On the other hand, we prove that any integral solution saves a fraction of at
most (1− 1/e+O(1/k)) of the leaves, meaning that, by increasing k, we can make the
integrality gap arbitrarily close to (1− 1/e).

From now on, we will focus on proving Theorem 6.5. Let ε > 0. We will start by
defining a construction that we will use as a building block to obtain the final instance.

Definition 6.14 (Good Gadget). An (M,k′, δ)-good gadget is a collection of trees
T = {T1, . . . , TM}, with roots r1, . . . , rM (ri is the root of Ti), as well as a subset
S ⊆

⋃
i∈[M] V (Ti), satisfying the following properties:

• Uniform depth: We think of the gadget as having layers L0, L1, . . . , Lh, where Lj is
the union over all trees of all vertices at depth j and L0 = {r1, . . . , rm}. All leaves
are in the same layer Lh.

• LP-friendly: S contains k′ vertices per layer, that is, for j ∈ [h], |S ∩Lj | ≤ k′ (and
|S ∩L0| = 0). Moreover, for any tree Ti and a leaf v ∈ V (Ti), the unique path from
ri to v must contain exactly one vertex in S.

• Integrally adversarial: Let 1 ≤ B ≤ k′, B ⊆ {r1, . . . , rM} be a subset of roots
and U = {Uj}hj=1 be a valid layered strategy with budget B. A vertex v ∈ Ti is
(U ,B)-risky if ri ∈ B and the unique (ri, v)-path does not contain any vertex from
U .
The number of (U ,B)-risky vertices in Lh is at least(

1− B

k′
(1 + δ)

)
|B|
M
|Lh|,

for any 1 ≤ B ≤ k′, B ⊆ L0, valid strategy U with budget B.

We say that vertices in S are special and all other vertices are regular . We say a
vertex is (U ,B)-safe if it is not (U ,B)-risky.

The following two results combined are sufficient to prove the theorem.

Lemma 6.15. Let k′ ≥ 2, M ≥ 1 be integers, and δ > 0 be a real number.
Then, an (M,k′, δ)-good gadget exists. Moreover, it contains at most O(k′/δ2)M

vertices.

Lemma 6.16. Let k ≥ 2, B ≥ 1 be integers and let δ > 0. Assume that (M,kB, δ)-good
gadgets exist for any M > 0.

Then we can construct an instance (G, s, w,B) of size bounded by some function
f(B, k, δ), such that the integrality gap of the standard LP is at most

(
1− (1− 1/k)k + δ

)
(even against 1/k-integral solutions).

Furthermore, if for some integer d ≥ 2, d-ary (M,kB, δ)-good gadgets exist for any
M > 0, then the construction above is also d-ary.

91

Chapter 6. Firefighter Problem on Trees

................

k kD

D2

D

D

Figure 6.1: Simplified example of the instance used to achieve integrality gap of 1−1/e
for LP-FF. The values used are k = 2 and D = 2. The labels in the figure indicate, in
general, the number of edges in that location, in terms of k and D. Special vertices are
colored gray.

Setting k = d2e−1/εe, δ = ε/2, we get an integrality gap of at most:

1− (1− 1/k)k +
ε

2
≤ 1− e−1

(
1− 1

k

)
+
ε

2

= 1− e−1 + ε

Hence, we obtain an instance for which the integrality gap is 1− e−1 + ε, which finishes
the proof of Theorem 6.5. The integrality gap of the LP against 1/k-integral solutions
follows directly from setting δ = ε.

We first show how to derive the final construction, assuming the existence of a good
gadget (Lemma 6.16). The proof of Lemma 6.15 follows later. Figure 6.1 exemplifies the
construction for k = 2.

6.3.1 Constructing the Instance (Lemma 6.16)

Our construction proceeds in k phases, where k is a parameter of the construction. We
show how to construct the instance inductively. For B > 1, the parameters of the good
gadget must be scaled up by a factor of B, so that the construction works out. For this
purpose, we use k′ = kB. Let α be the height of the instance.

The first phase of the construction is simply a (1, kB, δ)-good gadget, where the
single root r1 is the root of the instance. We now describe how to construct phase q + 1,
assuming that we have constructed the instance up to phase q.

Let l1, . . . , lMq ∈ Lαq be the Mq leaves after the construction of phase q, with
all of the leaves in layer αq. For phase q + 1, we take the (Mq, kB, δ)-good gadget

92

6.3. Integrality Gap Instances for the Standard LP

(Tq, {rj}j∈[Mq],Sq); recall that such a gadget consists of Mq trees. For each i = 1, . . . ,Mq,
we unify each root ri with the leaf li. This completes the description of the construction.

Denote by S̃q =
⋃
q′≤q Sq′ the set of all special vertices in the first q phases. After

phase q, we argue that our construction satisfies the following properties:

Lemma 6.17. Let 1 ≤ q ≤ k.
(1) All of the leaves are in the same layer αq.

(2) For every layer Lj, j ≤ αq, it holds that |Lj ∩ S̃q| ≤ kB. For every path P from
the root to v ∈ Lαq , |P ∩ S̃q| = q.

(3) For any valid strategy U with budget B, the number of vertices in Lαq that end up
burning is at least ∣∣Lαq

∣∣ ((1− 1

k

)q
− δ q

k

)
Proof. By construction, all of the leaves after phase q are in the same layer, since, in
each of the phases, the distance from a leaf to its root is always the same.

As to the second property, when constructing the instance, each gadget occupies
disjoint layers. Therefore, the gadget properties ensure that there are at most k′ = kB
special vertices per layer. Moreover, consider any path P from the root to some vertex
v ∈ Lαq . We will prove that |P ∩ S̃q| = q. For q = 1, the instance is a single gadget, and,
therefore, the statement holds by the gadget properties. For any q ≥ 2, assume that the
statement holds for the instance up to phase q− 1. We can split this path into two parts
P = P ′ ∪ P ′′ where P ′ starts from the root and ends at some vertex v′ ∈ Lαq−1 , and
P ′′ starts at v′ and ends at v. By the induction hypothesis, |P ′ ∩ S̃q−1| = q − 1 and the
second property of the gadget guarantees that |P ′′ ∩Sq| = 1, which proves the statement.

To prove the final property, consider any valid strategy U = {Uj}
αq

j=1 with budget B.
By Proposition 6.12, we can assume that Uj ⊆ Lj . If q = 1, then the statement follows
by the gadget properties, using B = {r}, M = 1 and k′ = kB, which implies that at
least (1− 1/k − δ/k)|Lh| of the vertices always burn, independently of the strategy.

For q ≥ 2, assume that the statement is true for the first q − 1 phases. We can
partition U into U ′∪U ′′, where U ′ = {Uj}

αq−1

j=1 corresponds to a valid strategy for the first
q − 1 phases, and U ′′ = {Uj}

αq

j=1+αq−1
corresponds to a valid strategy for the last gadget.

By the induction hypothesis, we have that at least
(
(1− 1/k)q−1 − (q − 1)δ/k

)
|Lαq−1 |

vertices in Lαq−1 burn; denote these burning vertices by B.
We now prove that every (U ′′,B)-risky vertex ends up burning, and that the number

of these vertices is large enough. Let v ∈ Lαq be a (U ′′,B)-risky vertex. There is no
vertex of Pv protected by U ′ in the first q−1 phases, since the ancestor of v in layer αq is
in B, and hence burning. Furthermore, by the definition of risky, there is also no ancestor
of v protected by U ′′. Hence, v ends up burning. By the properties of the gadget, the
number of burning vertices in layer Lαq is:

(1− 1/k − δ/k)
|B|
|Lαq−1 |

∣∣Lαq

∣∣ ≥ (1− 1/k − δ/k)
(
(1− 1/k)q−1 − (q − 1)δ/k

) ∣∣Lαq

∣∣
≥ ((1− 1/k)q − qδ/k)

∣∣Lαq

∣∣
This concludes the proof of the lemma.

93

Chapter 6. Firefighter Problem on Trees

After the construction is finished, we can set the weights as mentioned before: wv = 1
for every leaf v ∈ Lα and wv = 0 otherwise. By Lemma 6.15, we know that the size
of the gadget is at most O(k′/δ2)M . By simple induction, we get that the size of the
instance is a tower function of O(k′/δ2), which we can represent as O(k′/δ2) ↑↑ k 1.

In order to finish the proof of Lemma 6.16, it is now sufficient to use Lemma 6.17 to
define an LP solution. We set xv = 1/k for all the vertices in S, and xv = 0 otherwise.
Since in each gadget, every root to leaf path goes through one special vertex, then every
root to leaf path in the complete instance goes through k special vertices, and therefore
we can set yu = 1 for every leaf u ∈ Lα. Lemma 6.17 directly implies the integrality gap
of the instance (against 1/k-integral solutions). We remark that if all the gadgets used
are d-ary, so is the instance, as the only operation used in our construction is to unify
leaves (which have no children) with other vertices.

6.3.2 Existence of Good Gadgets (Lemma 6.15)

We now show that an (M,k′, δ)-good gadget exists for any value of M ∈ Z≥1, k′ ∈ Z≥2

and δ > 0. We first describe the construction and then show that it has the desired
properties.

Construction Throughout the construction, we use a structure which we call spider .
A spider is a tree in which every vertex except the root has at most one child. If a vertex
has no children (i.e. a leaf), we call it a foot of the spider. We call the paths from the
root to each foot the legs of the spider.

Let D = 1 + d2/δe. Our construction is composed of M trees T1, . . . , TM , where each
tree Ti has a spider at the root, and the feet of these spiders form set S. We then need
to balance these trees, so that they all have the same height and the same number of
leaves. To achieve this, we add a spider to each foot of the main spiders.

Formally, for each i = 1, . . . ,M , the tree Ti is constructed as follows: We have a
spider rooted at ri that contains k′Di−1 legs. Its feet are in Di−1 consecutive layers,
starting at layer αi = 1 +

∑i−1
j=1D

j−1; each such layer has k′ feet. Denote by S(i) the
feet of these spiders. Next, for each vertex v ∈ S(i), we have a spider rooted at v with
DM−i+1 feet, all of which belong to layer α = 1 +

∑M
j=1D

j−1. The set S is defined as
S =

⋃M
i=1 S(i).

We use the following observation:

Observation 6.18. For every i ∈ [M], the number of leaves of Ti is k′DM .
Furthermore, the gadget has α ≤ DM layers. Therefore, the size of each Ti is at most

k′D2M and the size of the gadget is bounded by Mk′D2M ≤ (k′D2)M .

Analysis We now prove that the above gadget is (M,k′, δ)-good. The construction
ensures that all leaves are in the same layer Lα.

The second property also follows from the construction: for any two trees Ti, Tj ,
i, j ∈ [M], i 6= j, the set of feet of the spider rooted at ri and rj are in disjoint sets of
layers, and therefore, S(i) ∩ S(j) = ∅. Since each S(i) has at most k′ vertices per layer,

1a ↑↑ b := aa↑↑(b−1), a ↑↑ 1 = a

94

6.3. Integrality Gap Instances for the Standard LP

so does S. Moreover, any path from ri to a leaf of Ti must go through a vertex in S(i),
since it must go through one of the legs of the spider to reach the leaf from the root.

The third and final property is established by the following claim.

Claim 6.19. Let B ≥ 1, B be a subset of roots and U = {Uj}hj=1 be a valid strategy with
budget B.

For any i ∈ [M], such that ri ∈ B, the fraction of leaves of Ti that are (U ,B)-safe is
at most B/k′(1− 2/(D − 1)).

Proof. We recall that a vertex u is (U ,B)-risky if u is in a tree Ti rooted at some ri ∈ B,
and U does not cut u from ri; otherwise, u is (U ,B)-safe.

All of the vertices in S(i) are contained in the first αi+1−1 layers. If a vertex v ∈ S(i)

or one of its ancestors is in U , then all of the DM−i+1 descendants of v in Lh will be
(U ,B)-safe. Any other vertex is part of a spider rooted at some v ∈ S(i), and therefore
adding it to U only makes 1 leaf (U ,B)-safe.

We conclude that the number of leaves that are (U ,B)-safe is at most DM−i+1 for
any vertex in U up to layer αi+1 − 1, and at most 1 for any other vertex in U up to the
layer α. Since there are at most B vertices in U for each layer, the number of such leaves
is

B(αi+1 − 1)DM−i+1 +B(α− αi+1 + 1)

≤ B

 i∑
j=1

Dj−1

DM−i+1 +B

 M∑
j=1

Dj−1 −
i∑

j=1

Dj−1 + 1


≤ B Di

D − 1
DM−i+1 +B

DM

D − 1

≤ BDM

(
D + 1

D − 1

)
The total number of leaves in each tree is k′DM , and therefore the fraction of leaves

that are (U ,B)-safe is:

BDM
(
D+1
D−1

)
k′DM

=
B

k′

(
1 +

2

D − 1

)
Since D ≥ 1 + 2/δ, 2/(D − 1) ≤ δ, and therefore, the total number of (U ,B)-risky

vertices is at least (1−B/k′(1 + δ))k′DM for each tree Ti with ri ∈ B, for a total of:(
1− B

k′
(1 + δ)

)
|B|
M
|Lh|.

6.3.3 Bounded-Degree Integrality Gap Instances

Iwaikawa et al. [IKM11] showed a (1− 1/e+ Ω(1/d))-approximation algorithm for d-ary
trees (with budget B = 1). We show an instance whose integrality gap is almost tight
to this approximation factor. The rest of this section will be dedicated to to proving
Theorem 6.6, which we recall below.

95

Chapter 6. Firefighter Problem on Trees

Theorem 6.6 (page 88). Let B ≥ 1 and d ≥ 2 be integers such that B < d/5. There
is an instance (G, s, w,B) of Tree-FF of size bounded by some function f(d), such that
the integrality gap of the standard LP is at most (1− 1/e+O(

√
B/d)).

To prove this theorem, we construct a bounded-degree analogue of our good gadgets.
Specifically, we are going to use a d-ary (M,k′, (k′ + 2)/(d − 1))-good gadget for our
construction, where k′ < d.

Lemma 6.20. Let k′ ≥ 2, d ≥ 2 be integers such that k′ < d.
A d-ary (M,k′, (k′ + 2)/(d− 1))-good gadget exists for any M > 0.

Proof. The construction is similar to Lemma 6.15; we will build upon it by pointing out
the differences. First, we set D = d. Besides this parameter change, the only difference
is that we replace a vertex with ` > d children by a suitable d-ary tree with ` leaves.

Let i ∈ [M]. More specifically, instead of each ri having k′Di−1 children, we root a
d-ary tree at ri with k′Di−1 leaves, in which each vertex in layers 0 through i − 2 has
exactly D children, and the vertices at layer i − 1 have k′ children. For each of these
leaves, there is a path of the appropriate length so that we have k′ special vertices in
each layer from αi to αi+1 − 1. We remark that this tree has height i ≤ αi − 1, so the
entire tree fits in the layers before αi, and hence the construction can be analogous to
the construction of Lemma 6.15.

Similarly, we root a complete D-ary tree with DM−i+1 leaves at each special vertex,
with a path starting at each of those leaves and ending at layer α. For the construction
to be sound, the leaves of the tree have to be in layer at most α. Since the last special
vertices are in layer αi+1 − 1, there are at least α− (αi+1 − 1) layers available. It is now
sufficient to prove that the height of the complete D-ary tree, M − i+ 1, does not exceed
the layers available. Indeed,

α− (αi+1 − 1) = 1 +

M∑
j=i+1

Dj−1

≥ 1 +M − i,

so we can conclude that the construction is well-defined.
It follows from the proof of Lemma 6.15 that this gadget has uniform depth and is

LP-friendly. We will now show that it is also integrally adversarial. We will show the last
property by examining how many vertices can be made (U ,B)-safe by adding a vertex
to U in each layer:

• In layer j ∈ [i− 1], each vertex has exactly k′DM−j descendants in Lh;

• In layers i to αi+1 − 1, each vertex has at most DM−i+1 descendants in Lh;

• In layer αi+1−1+j, j ∈ [M−i+1], each vertex has at most DM−i+1−j descendants
in Lh;

• In the remaining layers up to α (at most α−1 layers), each vertex has 1 descendant
in Lh.

96

6.4. Improving the Standard LP with Hartke’s Constraints

Since U has at most B vertices per layer, we can now bound the number of (U ,B)-safe
vertices for each ri ∈ B by:

B

 i−1∑
j=1

k′DM−j + (αi+1 − 1)DM−i+1 +
M−i+1∑
j=1

DM−i+1−j + α


≤ B

(
k′DM − k′DM−i+1

D − 1
+

Di

D − 1
DM−i+1 +

DM−i+1

D − 1
+

DM

D − 1

)
≤ B

D − 1

(
k′DM − k′DM−i+1 +DM+1 +DM−i+1 +DM

)
≤ BDM

D − 1

(
k′ +D + 1

)
Since each tree has k′DM leaves, the fraction of (U ,B)-risky leaves for ri ∈ B is at

least

1−
BDM

D−1 (k′ +D + 1)

k′DM
= 1− B

k′
· k
′ +D + 1

D − 1
= 1− B

k′

(
1 +

k′ + 2

D − 1

)
Setting D = d, and summing over all trees in B, the number of (U ,B)-risky vertices

is at least (
1− B

k′

(
1 +

k′ + 2

d− 1

))
|B|
M
|Lh|.

By Lemma 6.16, the existence of d-ary (M,k′, (k′ + 2)/(d− 1))-good gadgets implies
that there is an instance (G, s, w,B) with integrality gap

1−
(

1− 1

k

)k
+
kB + 2

d− 1
≤ 1− e−1

(
1− 1

k

)
+
kB + 2

d− 1

The additive error factor is minimized when k =
√

(d− 1)/B, which leads to an inte-
grality gap of

1− e−1 +O

(√
B

d

)
This completes the proof of the theorem.

6.4 Improving the Standard LP with Hartke’s Constraints

We have seen in Section 6.3 that the standard LP has an integrality gap of 1 − 1/e.
However, there is a PTAS for Tree-FF [ABZ17] that indirectly uses the standard LP.
An interesting open question is whether we can obtain a PTAS, or at least a better
approximation, by using a stronger LP relaxation.

In this section, we focus on the case of B = 1, that is, when only one vertex is
protected per time step. Let (T, s, w, 1) be an instance of Tree-FF. We assume that T
is rooted at s and the vertices are partitioned into layers L0, L1, . . . , Lλ, where, for each
i ∈ [λ], Li contains all the vertices at depth i. For any vertex v, let Pv denote the
(unique) path from s to v.

97

Chapter 6. Firefighter Problem on Trees

Hartke [Har04] suggested adding the following constraints to narrow down the inte-
grality gap of the LP. ∑

u∈Pv∪(Tv∩Lj)

xu ≤ 1 ∀v ∈ V, j ∈ [λ]

Intuitively, the constraints state that in an optimal solution, for any vertex v ∈ V , if an
ancestor of v is protected, then no descendant of v should be protected. Conversely, if
some descendant of v is protected, only one descendant should be protected per layer,
and then no ancestor of v should be protected. We write this as an LP constraint by
saying that the sum of the values of the variables corresponding to ancestors of v, plus,
descendants of v in any given layer Lj , must be at most 1.

The new LP with these constraints is written down below:

Definition 6.21 (Hartke’s LP for Tree-FF – LP-Hartke).

max
∑
v∈V

wvyv

s.t.
∑

u∈Pv∪(Tv∩Lj)

xu ≤ 1 ∀v ∈ V, j ∈ [λ] (1)

yv ≤
∑
u∈Pv

xu ∀v ∈ V

xv, yv ∈ [0, 1] ∀v ∈ V

We start by stating a property of the solution, which allows us to assign the y variables
according to the x variables.

Observation 6.22. Given a solution x ∈ [0, 1]V (T) satisfying Constraints (1), the solu-
tion (x, y) defined by yv =

∑
u∈Pv

xu is feasible for LP-Hartke and at least as good as
any other feasible solution (x, y′).

Proof. Since yv ≤
∑

u∈Pv
xu, and

∑
u∈Pv

xu ≤ 1 by Constraint (1), the observation
follows.

6.4.1 New Properties of Extreme Points

In their work, Finbow et al. [FM09] introduce some tractable instances of Tree-FF, in
which the maximum degree in the tree is at most 3, and the fire starts at a vertex of
degree 2. We denote these instances as 2-branching (the important property in these
instances is that, at any point, we have to choose between two vertices, i.e. one vertex is
protected and the other one burns).

Let (T, s, w, 1) be a 2-branching instance of Tree-FF, with w > 0. Even though we
know how to solve these instances optimally in linear time, we show that the standard
LP for Tree-FF is not integral on these instances. In contrast, LP-Hartke is integral in
these instances, proving that it is a stronger relaxation. This section will be dedicated
to proving these two points, which imply Theorem 6.7.

In order to prove that LP-Hartke is integral on these instances, we first present
the following structural lemma.

98

6.4. Improving the Standard LP with Hartke’s Constraints

Lemma 6.23. Let (x, y) be an optimal extreme point for LP-Hartke on instance
(T, s, w, 1), w > 0. Suppose s has two children, denoted by a and b. Then xa, xb ∈ {0, 1}
and xa + xb = 1.

Proof. Suppose that xa, xb ∈ (0, 1). We will define two solutions (x′, y′) and (x′′, y′′) and
derive that (x, y) can be written as a convex combination of (x′, y′) and (x′′, y′′), which
is a contradiction with (x, y) being an extreme point.

First, we define (x′, y′) by setting x′b = 1, x′a = 0. For each vertex v ∈ Tb, we set
x′v = 0. For each vertex v ∈ Ta, we define x′v = xv/(1 − xa). We can show that x′ is
feasible for LP-Hartke: for each v ∈ Ta and any layer Lj below v, we have that∑

u∈Pv

x′u +
∑

u∈Tv∩Lj

x′u =

(∑
u∈Pv

xu
)
− xa

(1− xa)
+

∑
u∈Tv∩Lj

xu

(1− xa)

≤

(∑
u∈Pv∪(Tv∩Lj) xu

)
− xa

(1− xa)
≤ 1,

where the last inequality is due to the fact that x is feasible.
The constraint is trivially satisfied for every v ∈ Tb, because xv = 0 for v ∈ Tb, so the

constraint reduces to xb =
∑

u∈Pv
xu ≤ 1. For the root vertex v = s, we have that

∑
u∈Lj

x′u =

(∑
u ∈(Lj∩Ta) xu

)
− xa

(1− xa)
≤ 1.

We define (x′′, y′′) analogously: x′′b = 0, x′′a = 1. For each vertex v ∈ Ta, we set
x′′v = 0, and for each v ∈ Tb, we define x′′v = xv/(1− xb). By symmetry, (x′′, y′′) is also
feasible.

Observe that, for each v ∈ Tb, y′v = 1 and for each v ∈ Ta, y′v = yv−xa
1−xa . The value of

x′ is

w(Tb) +
∑
v∈Ta

wvy
′
v = w(Tb) +

1

1− xa

∑
v∈Ta

wv(yv − xa)

= w(Tb) +

∑
v∈Ta wvyv
(1− xa)

− xa
(1− xa)

w(Ta)

Similarly, the objective value of solution x′′ is

w(Ta) +

∑
v∈Tb wvyv
(1− xb)

− xb
(1− xb)

w(Tb)

Now, consider the convex combination

z =
1− xa

(2− xa − xb)
x′ +

1− xb
(2− xa − xb)

x′′

As a convex combination of x′ and x′′, z must be feasible. Its objective value is

1

(2− xa − xb)
·

(1− xa − xb)(w(Ta) + w(Tb)) +
∑

v∈V (T)

wvyv


99

Chapter 6. Firefighter Problem on Trees

ba

dc

Figure 6.2: Instance with a non-integral extreme point for LP-FF. Gray vertices:
xv = 1/2; otherwise: xv = 0.

Since w(Ta) + w(Tb) = w(T), we have that w(Ta) + w(Tb) > wT y (since the solution
cannot save both a and b). Combining this with the above, we get that the objective
value of z is at least wT y, with equality only if xa + xb = 1. Since y is optimal, we must
have xa + xb = 1, and we therefore z = (1− xa)x′ + xax

′′. It can be verified easily that
zv = xv for every v ∈ V (T).

We can now prove that extreme point solutions to LP-Hartke are integral for these
instances.

Theorem 6.24. Let (x, y) be an optimal extreme point for LP-Hartke on a 2-branching
instance (T, s, w, 1), w > 0.

Then (x, y) is an integral solution.

Proof. We prove the theorem by induction on the height of the tree. If the tree has
height 1, then Lemma 6.23 immediately shows that the solution is integral, since it is
integral for the children of the root.

Now, for a tree T of height h, assuming the induction hypothesis for trees of height
at most h− 1, let a, b be the two children of s. We apply Lemma 6.23 to conclude that
xa, xb ∈ {0, 1} and xa + xb = 1. W.l.o.g. let xa = 1 and xb = 0. By the constraints of
LP-Hartke, xa = 1 implies that xv = 0 for all v ∈ Ta.

Now, let us focus on x restricted to Tb: it must be an extreme point solution for
the instance restricted to Tb. Otherwise, we could either replace it by a better solution,
contradicting optimality of x, or write it as a convex combination of solutions, which
would imply the same for x and contradict the assumption that x is an extreme point.

Since x restricted to Tb is an extreme point solution to Tb, we can apply the induction
hypothesis and conclude that x is integral for Tb, and hence for T .

This concludes the proof of the theorem.

We present a simple 2-branching instance in Figure 6.2, as well as a solution for LP-FF
on this instance that is optimal and an extreme point, but not integral. Furthermore,
standard rounding on this instance has an expected value of 2.5, if vertices are protected
with probabilities given by x.

Claim 6.25. The solution (x, y) represented in Figure 6.2, with y defined according to
Observation 6.22, is an extreme point solution of LP-FF on this instance.

Proof. Suppose (for contradiction) that (x, y) is not an extreme point. Then, there
are distinct solutions (x′, y′), (x′′, y′′) and α ∈ (0, 1) such that (x, y) = α(x′, y′) + (1 −
α)(x′′, y′′). Since yc = 1 and y′c, y

′′
c ≤ 1, then y′c = y′′c = 1, and likewise, y′d = y′′d = 1.

100

6.4. Improving the Standard LP with Hartke’s Constraints

Combining that x′a + x′c = y′c = 1 with x′a + x′d = y′d = 1 and x′c + x′d ≤ 1, we conclude
that x′a ≥ 1/2. Similarly, we get that x′′a ≥ 1/2, which implies that x′a = x′′a = 1/2.

Similar reasoning using that x′a + x′b ≤ 1 allows us to conclude that x′b = x′′b = 1/2,
and thus, (x′, y′) = (x′′, y′′) = (x, y), which contradicts our assumption.

6.4.2 Rounding 1/2-Integral Solutions

In this section, we consider 1/2-integral LP solutions. By Theorem 6.5, LP-FF is not
strong enough to obtain a (3/4 + ε)-approximation algorithm, for any ε > 0. Here,
we show a 5/6-approximation algorithm based on rounding LP-Hartke. The result is
formalized in Theorem 6.8, which we recall below.

Theorem 6.8 (page 88). Let (T, s, w, 1) be an instance of Tree-FF, and let x be a
half-integral extreme point solution for LP-Hartke.

Then there is a valid strategy {Si}i∈[n] that saves vertices with a weight of at least
5/6wTx.

We believe that the extreme points may be 1/2-integral in some interesting special
cases. The rest of this section is dedicated to proving the theorem above.

Description of the algorithm Our algorithm considers the tree in top-down order,
that is, it considers layers L1, . . . , Ln in this order. We start with an empty strategy S.
For each layer Lj , the algorithm chooses a vertex according to x, while giving preference
to vertices whose ancestors are not in the support of x. Let Aj = Lj ∩ supp(x) be the
set of vertices in Lj and the support of x. We partition Aj into (A′j , A

′′
j), where v ∈ A′j

if there is no ancestor of v in supp(x), and v ∈ A′′j if there is (exactly) one ancestor u of
v in supp(x). We choose Sj based on the following rules:

• If there is only one v ∈ Aj such that is not saved by S so far, protect Sj = {v}. If
there is no such vertex, protect nothing (Sj = ∅);

• If Aj = A′j or Aj = A′′j , pick a vertex u at random from Aj with uniform probability.
Protect Sj = {u};

• Otherwise, we have that |A′j | = |A′′j | = 1. In this case, we protect Sj = A′j with
probability 1/3; Sj = A′′j otherwise.

Analysis Below, we argue that each vertex v ∈ supp(x) is saved with probability at
least 5/6 yv. This immediately implies the theorem: consider a vertex v′ ∈ V such that
xv′ = 0. If yv′ = 0, we are immediately done. Otherwise, consider the lowest ancestor v
of v′ in supp(x). The probability that v′ is saved is at least that of v, which is at least
5/6 yv = 5/6 yv′ .

Lemma 6.26. Let v ∈ supp(x). Then v is saved with probability at least 5/6 yv.

Proof. Let us first consider some simple cases. Consider a layer Lj such that |Aj | = 1;
such a vertex v ∈ Aj is saved with probability 1 ≥ 5/6 yv. Next, consider a layer Lj such
that |A′j | = 2; each vertex v ∈ A′j is saved with probability 1/2 and yv = 1/2, so the
probability of saving v is yv ≥ (5/6)yv. The following claims cover the remaining two
cases.

101

Chapter 6. Firefighter Problem on Trees

Claim 6.27. Let Lj be a layer such that |A′j | = |A′′j | = 1. Then the vertex u ∈ A′j is
protected with probability 2/3 ≥ 5/6 yu and vertex v ∈ A′′j is saved with probability 5/6.

Proof. Let v′ ∈ Aj′ be the ancestor of v in the support of x.
We prove the lemma by induction on j, the depth of the layer. In particular, it is

sufficient to show, under the assumption that v′ is protected with probability at least
1/2, that u is protected with probability at least 2/3 and v is saved with probability 5/6.

Let us start by showing that the assumption follows directly from the induction
hypothesis. For the base case, let Lj be the highest layer such that |A′j | = |A′′j | = 1. This
means that |A′j′ | = 2 (or |Aj′ | = 1), and therefore the probability of v′ being protected is
at least 1/2. For the induction step, induction hypothesis and the statement above also
show that v′ is protected with probability at least 1/2 (specifically 1/2 if |A′j′ | = 2 and
at least 2/3 if |A′j′ | = 1).

Notice that if v′ is protected, then v is saved as a consequence, and therefore, u is
the only vertex left in Aj to protect. Therefore, the event that u is not saved occurs only
if v′ is not protected and u itself is not protected. The probability of this happening is

Pr[u not saved] = Pr[v′ 6∈ Sj′] · Pr[u 6∈ Sj | v′ 6∈ Sj′]

≤ 1

2
· 2

3
=

1

3

We conclude that u is protected with probability 2/3.
Consider now vertex v. For v not to be saved, then v′ must not be protected and u

must be protected in layer j. The probability that this happens is

Pr[v not saved] = Pr[v′ 6∈ Sj′] · Pr[u ∈ Sj | v′ 6∈ Sj′]

≤ 1

2
· 1

3
=

1

6

Claim 6.28. Let Lj be a layer such that A′′j = {u, v} (containing two vertices). Then
each such vertex is saved with probability at least 5/6.

Proof. Let u′ ∈ A′i and v′ ∈ A′k be the ancestors of u and v in the support of x. If at least
one of u′ or v′ is protected, then both u and v are saved, one of them as consequence
of the ancestor being protected, and the other protected by the algorithm as the only
choice left for Lj .

Let us first show that Pr[u′ 6∈ Si ∩ v′ 6∈ Sk] ≤ 1/3, and then show how it follows that
u is saved with probability at least 5/6. We consider several cases: If u′ and v′ are in
the same layer (i = k), then the probability above is 0, since one of them is protected.
If at least one of u′, v′ is in a layer that Claim 6.27 applies to (|A′i| = |A′′i | = 1 or
|A′k| = |A′′k| = 1), then

Pr[u′ 6∈ Si ∩ v′ 6∈ Sk] ≤ min
(
Pr[u′ 6∈ Si],Pr[v′ 6∈ Sk]

)
≤ 1

3

Finally, in the remaining case, u′ and v′ are independent from each other, and therefore,

Pr[u′ 6∈ Si ∩ v′ 6∈ Sk] =
1

4

102

6.4. Improving the Standard LP with Hartke’s Constraints

Using the fact that Pr[u′ 6∈ Si ∩ v′ 6∈ Sk] ≤ 1/3, we have that

Pr[u not saved] = Pr[u 6∈ Sj ∩ u′ 6∈ Si ∩ v′ 6∈ Sk]
= Pr[u′ 6∈ Si ∩ v′ 6∈ Sk] Pr[u 6∈ Sj | u′ 6∈ Si ∩ v′ 6∈ Sk]

≤ 1

3
· 1

2
=

1

6

We conclude that u is saved with probability at least 5/6 and, by symmetry, the same
is true for v as well.

By the arguments above, any vertex v is saved with probability at least 5/6 yv, as
desired.

6.4.3 Ruling Out the Gap Instances in Section 6.3

In this section, we will show that the instances presented in Section 6.3 admit an approx-
imation with ratio better than (1− 1/e) using LP-Hartke. To this end, we introduce
the concept of η-separable LP solutions and show an improved rounding algorithm for
solutions in this class (Theorem 6.9). The intuition for this result is that, in separable
solutions, the rounding process creates dependencies in the lower layers, as many vertices
are saved by protecting their ancestors. If many vertices in a layer are already saved,
we may exclude them from the selection process, and thus scale up the LP value for un-
protected vertices. This causes the probability that each vertex is protected to increase,
and, under the right circumstances, increases the quality of the solution.

Definition 6.29. Let η ∈ (0, 1), and (x, y) be a solution for LP-FF or LP-Hartke.
We say that a vertex v is η-light (for x) if

∑
u∈Pv\{v} xu < η, and that v is η-

heavy otherwise. A layer Lj is η-light (resp. η-heavy) if all vertices in Lj are η-light
(resp. η-heavy).

A solution (x, y) is said to be η-separable if all layers are η-light or η-heavy, that is,
for every j ∈ [n], either the vertices in Lj are all η-light, or all η-heavy.

Observation 6.30. The LP solution presented in Section 6.3 is η-separable for all values
of η ∈ {1/k, 2/k, . . . , 1}.

Observation 6.31. If v is η-heavy, then so is any descendant of v. Similarly, if a layer
Lj is η-heavy, so are all layers Lj′, j′ > j.

Theorem 6.32. Let (T, s, w, 1) be an instance of Tree-FF, and let x be an η-separable
extreme point solution for LP-Hartke, for some η ∈ (0, 1).

Then there is an efficient algorithm that produces an integral solution of value(
1− 1/e+ f(η)

)
wT y

where f(η) is some function depending only on η.

The theorem above is a more specific restatement of Theorem 6.9, and we will spend
the rest of the section proving it.

103

Chapter 6. Firefighter Problem on Trees

Algorithm By Observation 6.31, there is some i such that layers L1, . . . , Li are η-light,
and layers Li+1, . . . are η-heavy. Our algorithm proceeds in two phases, corresponding
to η-light and η-heavy layers.

In the first phase, the algorithm protects, for 1 ≤ j ≤ i, one vertex in Lj at random,
such that the probability that v is chosen is xv (as done by Cai et al. [CVY08]). Denote
by S′ = {Sj}j∈[i] the strategy obtained in this phase.

In the second phase, our algorithm performs randomized rounding conditioned on
the solutions in the first phase. Specifically, when we process each η-heavy layer Lj , let
L̃j ⊆ Lj be the collection of vertices that was not saved by S′. We sample one vertex
v ∈ L̃j such that

Pr
[
Sj = {v}

]
=

xv

x
(
L̃j
) .

Let S′′ = {Sj}j>i be the strategy obtained in the second phase. The algorithm outputs
S = S′ ∪ S′′ as its strategy. This completes the description of the algorithm. We remark
that running the algorithm in two phases simplifies the analysis, but is not strictly
required. Sampling in every layer only from vertices that have not been saved cannot
decrease the probability of a vertex being saved, compared to above. Therefore, the same
performance guarantees apply.

In order to simplify the presentation, we will focus on the case when η = 1/2, while
at the same making it clear where the analysis would change for different values. We will
argue that each vertex v ∈ T is saved with probability at least (1− 1/e+ δ)yv for some
universal constant δ > 0 depending only on η. We denote by P (v) the s-v-path in T . We
will need the following simple observation that follows directly by standard probabilistic
analysis (see Cai et al. [CVY08]).

Proposition 6.33. For each vertex v ∈ V (T), the probability that v is not saved is

Pr[v not saved] ≤
∏

u∈P (v)

(1− xu) ≤ e−yv .

Taking advantage of the difference between (1− x) and e−x, as well as the difference
between 1−e−x and (1−e−1)x, we can immediately get an improvement in the probability
of saving certain vertices. The following lemma formalizes this.

Lemma 6.34. Let v ∈ T , and δ ∈ [0, e−1).
There are constants β1, β2 such that, if yv ≤ β1 or there is some ancestor u ∈ P (v)

such that xu ≥ β2, then
Pr[v saved] ≥ (1− 1/e+ δ)yv.

For δ = 0.01, we have β1 = 0.96 and β2 = 0.22

Proof. Since v is saved with probability at least 1− e−yv (see Proposition 6.33), we are
interested in finding values of yv such that

1− e−yv ≥ (1− 1/e+ δ)yv

1− e−yv
yv

≥ 1− 1/e+ δ

104

6.4. Improving the Standard LP with Hartke’s Constraints

Since (1 − e−yv)/yv is continuous and decreasing on (0, 1], from arbitrarily close to 1
(when yv is close to 0) to 1 − 1/e (when yv = 1), there must be a value of β1 ∈ (0, 1]
such that for all yv ≤ β1, 1− e−yv ≥ (1− 1/e+ δ)yv.

Now, let us consider the case of xu > β2, for some ancestor u ∈ P (v). The bound used
in the standard analysis is only tight when the values are small, and can be improved
when one of the values is relatively big.

Pr [v is saved] ≥ 1−
∏

u′∈P (v)

(1− x′u)

≥ 1− (1− xu)e−(yv−xu)

≥ 1− exu(1− xu)e−yv

≥ 1− exu(1− xu)e−1yv

≥
(
1− exu(1− xu)e−1

)
yv

exu(1 − xu) is continuous and decreasing in [0, 1], from 1 (xu = 0) to 0 (xu = 1). For
some value of β2 such that

eβ2(1− β2)e−1 = e−1 − δ,

we have that

Pr [v is saved] ≥
(
1− exu(1− xu)e−1

)
yv

≥
(
1− e−1 + δ

)
yv

For δ = 0.01, we can numerically determine the values β1 = 0.96 and β2 = 0.22

From now on, we only consider vertices v ∈ T such that yv > β1 and xu < β2 for
every u ∈ P (v), for values of β1, β2 such that β1 − η − β2 > 0 is a positive constant.

Let X1 ⊆ V , X2 ⊆ V \ X1 be random variables representing the sets of vertices
considered above that are saved by the strategy in the first and second phases, that is,
by S′ and S′′, respectively. Unless specified, we always consider probabilities over the
choice of S′, S′′. We can write the probability of v not being saved as

Pr [v 6∈ X1 ∪ X2] = Pr [v 6∈ X1] Pr [v 6∈ X2 | v 6∈ X1]

For any terminal v, let P ′(v) and P ′′(v) be the sets of ancestors of v that are η-light
and η-heavy respectively, i.e. ancestors in P ′(v) and P ′′(v) considered by the algorithm
in Phase 1 and 2 respectively. By Proposition 6.33, we can upper bound Pr [v 6∈ X1]
by e−x(P ′(v)). In the rest of this section, we show that the second term above is upper
bounded by e−x(P ′′(v))c for some c < 1, and therefore

Pr [v 6∈ X1 ∪ X2] ≤ ce−x(P ′(v))−x(P ′′(v)) ≤ ce−yv .

If the value of c satisfies c = 1− δe, we get by simple algebraic manipulation that

Pr [v 6∈ X1 ∪ X2] ≥ 1− ce−yv ≥ (1− 1/e+ δ)yv

The following lemma is the main technical tool we need in the analysis. We remark
that this lemma encapsulates the additional power of LP-Hartke, and we do not
distinguish between LP-Hartke and LP-FF in the remainder of the analysis.

105

Chapter 6. Firefighter Problem on Trees

Lemma 6.35. Let x be an η-separable solution to LP-Hartke, v ∈ V and Lj be a layer
containing an η-heavy ancestor of v.

Then
ES′

[
x
(
L̃j
)
| v 6∈ X1

]
≤ α

for α = 1− η + (1− e−η).
For η = 1/2, α ≤ 0.9.

Intuitively, this lemma says that any vertex that is not saved by the result of the
first phase will have ancestors on “sparse” η-heavy layers (in expectation). We defer the
proof of this lemma in order to show how to complete the analysis. Since the term that
the lemma above bounds appears in the denominator of the probabilities used in the
algorithm, we cannot simply lower bound the improvement. The following definition
establishes some notation to refer to vertices where the lemma gives an improvement.
We later show that this happens for each vertex with constant probability, and therefore,
we can conclude that the probability that each vertex is selected increases.

For each vertex v, denote by L(v) the layer to which vertex v belongs (L̃(v) is defined
analogously to L̃j). Let λ ∈ (0, 1] be the solution to λ−3α = 1.

Definition 6.36. Let v ∈ V and u ∈ P ′′(v) be an η-heavy ancestor of v,
For a fixed S′, we say that vertex v is partially protected by S′ if∑

u∈P ′′(v)

xux
(
L̃(u)

)
≤ λ−1αx(P ′′(v))

Furthermore, we say that u is good for v and S′ if

x
(
L̃(u)

)
≤ λ−2α

We denote as X ′ ⊆ V \ X1 the subset of vertices that are partially protected by S′,
and as Sgood

v ⊆ P ′′(v) the set of good ancestors of v.

Intuitively, we say v ∈ V is partially protected if the average of x
(
L̃(u)

)
over all

η-heavy ancestors u, weighted by xu is only slightly worse than α. We say that u is good
for v if x

(
L̃(u)

)
is not too worse than α (only by a factor λ−2).

The next two claims show that each vertex that is not saved by S′ is partially protected
with probability at least 1− λ, and that, for each such vertex, the sum of xu for all the
good ancestors makes up a fraction of at least 1−λ of the total. We exploit this to argue
that, in this case, it is more likely that an ancestor of v is protected, and therefore, that
v is saved.

Claim 6.37. For any v ∈ V ,

PrS′
[
v ∈ X ′ | v 6∈ X1

]
≥ 1− λ

Proof. By linearity of expectation and Lemma 6.35,

ES′

 ∑
u∈P ′′(v)

xux
(
L̃(u)

) ∣∣∣ v 6∈ X1

 =
∑

u∈P ′′(v)

xu ES′
[
x
(
L̃(u)

) ∣∣∣ v 6∈ X1

]
≤ αx(P ′′(v))

106

6.4. Improving the Standard LP with Hartke’s Constraints

Using Markov’s inequality,

PrS′

 ∑
u∈P ′′(v)

xux
(
L̃(u)

)
≤ λ−1αx(P ′′(v))

∣∣∣ v 6∈ X1


= 1− Pr

 ∑
u∈P ′′(v)

xux
(
L̃(u)

)
> λ−1αx(P ′′(v))

∣∣∣ v 6∈ X1


≥ 1− αx(P ′′(v))

λ−1αx(P ′′(v))

= 1− λ

Claim 6.38. For any strategy S′ and vertex v ∈ X ′,

x
(
Sgood
v

)
≥ (1− λ)x(P ′′(v)).

Proof. Suppose (for contradiction) that the weighted fraction of good ancestors was less
than 1− λ, that is, x

(
P ′′(v) \ Sgood

v

)
≥ λ.

For each such u ∈ P ′′(v) \ Sgood
v , we have x

(
L̃(u)

)
> λ−2α. Then,∑

u∈P ′′(v)

xux
(
L̃(u)

)
> λ−2α

∑
u∈P ′′(v)\Sgoodv

xu ≥ λ−2α · λ = λ−1α.

But then v is not partially protected, which is a contradiction.

Using the results so far, we can now provide a better bound for Pr [v 6∈ X2 | v 6∈ X1].

Lemma 6.39. Let β = β1 − η − β2.

Pr [v 6∈ X2 | v ∈ X1] ≤ e−x(P ′′(v))δ′,

where δ′ = λ+ (1− λ)e−(1−λ)2β/λ < 1.

Proof. The proof follows mostly algebraically, and with only simple probabilistic tech-
niques. We can rewrite the probability of a vertex v ∈ V not being saved after the second
phase.

Pr [v 6∈ X2 | v 6∈ X1]

= Pr
[
v ∈ X ′ | v 6∈ X1

]
Pr
[
v 6∈ X2 | v ∈ X ′

]
+ Pr

[
v 6∈ X ′ | v 6∈ X1

]
Pr
[
v 6∈ X2 | v 6∈ X ′

]
≤ (1− λ) Pr

[
v 6∈ X2 | v ∈ X ′

]
+ λ · e−x(P ′′(v))

The last inequality holds because Pr [v 6∈ X2 | v 6∈ X ′] is at most e−x(P ′′(v)) from
Proposition 6.33.

It remains to provide a better upper bound for Pr [v 6∈ X2 | v ∈ X ′]. We express the
term above as a sum over all the possible choices for S′, such that that choice leads to
v ∈ X ′. We remark that, for a good ancestor u ∈ Sgood

v , x
(
L̃(u)

)
≤ λ−2α = λ.

107

Chapter 6. Firefighter Problem on Trees

Pr
[
v 6∈ X2 | v ∈ X ′

]
=

∑
Q′:v∈X ′

PrS′
[
S′ = Q′

∣∣ v ∈ X ′] PrV2
[
v 6∈ X2 | S′ = Q′

]
≤

∑
Q′:v∈X ′

PrS′
[
S′ = Q′

∣∣ v ∈ X ′] ∏
bad u∈P ′′(v)

(1− xv)
∏

good u∈P ′′(v)

(
1− xv

λ

)
≤

∑
Q′:v∈X ′

PrS′
[
S′ = Q′

∣∣ v ∈ X ′] ∏
bad u∈P ′′(v)

e−xv
∏

good u∈P ′′(v)

e−xv/λ

≤
∑

Q′:v∈X ′
PrS′

[
S′ = Q′

∣∣ v ∈ X ′] e−λx(P ′′(v)) e−(1−λ)x(P ′′(v))/λ (a)

≤ e−λx(P ′′(v)) e−(1−λ)x(P ′′(v))/λ

≤ e−x(P ′′(v))e−(1−λ)x(P ′′(v))(λ−1−1)

≤ e−x(P ′′(v))e−(1−λ)2x(P ′′(v))/λ

Step (a) follows by Claim 6.38 and the fact e−xv ≤ e−xv/λ. Combining both the
expressions, we get:

Pr [v 6∈ X2 | v 6∈ X1] ≤
(

(1− λ) Pr
[
v 6∈ X2 | v ∈ X ′

]
+ λ e−x(P ′′(v))

)
≤
(

(1− λ) e−x(P ′′(v))e−(1−λ)2β/λ + λ e−x(P ′′(v))
)

≤ e−x(P ′′(v))
(
λ+ (1− λ)e−(1−λ)2β/λ

)
≤ e−x(P ′′(v))δ′

By Lemma 6.34, we can assume that x(P ′′(v)) ≥ β > 0. Since β > 0 and λ < 1, we
conclude that δ′ < 1.

Overall, the approximation factor we get is (1 − e−1δ′) for some universal constant
δ′ ∈ (0, 1).

Proof of Lemma 6.35

Let v ∈ V and Lj be a layer containing an η-heavy ancestor of v. Recall that we want
to prove that

ES′
[
x
(
L̃j
)
| v 6∈ X1

]
≤ α

The proof will proceed by considering the probability that each u ∈ Lj is in L̃j , and
then further group these vertices according to the least common ancestor with v. Using
the constraints in LP-Hartke, we can then bound the value of xu, for all descendants
u of an ancestor of v, which will then allows to bound the sum.

We introduce the following two claims that will help us prove the lemma. As a
reminder, we denote by X1 ⊆ V the random variable representing the sets of vertices
that are saved by S′. We will prove the lemma by considering the probability of a vertex
u ∈ Lj being in X1.

108

6.4. Improving the Standard LP with Hartke’s Constraints

Claim 6.40. Let u ∈ Lj such that u′ := lca(u, v) is η-light, and let ε = y(u′).
Then,

Pr [u 6∈ X1 | v 6∈ X1] ≤ e−(η−ε)

Proof. Let u′ = lca(u, v). It is equivalent to say u 6∈ X1 or V (S′)∩P (u) = ∅, and similarly,
v 6∈ X1 if and only if V (S′) ∩ P (v) = ∅. Therefore, we can rewrite our probability as

Pr [u 6∈ X1 | v 6∈ X1] = Pr
[
V (S′) ∩ P (u) = ∅

∣∣ V (S′) ∩ P (v) = ∅
]

= Pr
[
V (S′) ∩

(
P (u) \ P (v)

)
= ∅

∣∣ V (S′) ∩ P (v) = ∅
]

Using Proposition 6.33, and that y(u) ≥ η, y(u′) = ε, and P (u)\P (v) = P (u)\P (u′),
we have that:

Pr [u 6∈ X1 | v 6∈ X1] = Pr
[
V (S′) ∩

(
P (u) \ P (v)

)
= ∅

∣∣ V (S′) ∩ P (v) = ∅
]

≤
∏

w∈P ′(u)\P ′(u)

(1− xw)

≤ e−(x(P ′(u))−x(P ′(u′)))

≤ e−(η−ε)

If the lowest common ancestor of u and v is not η-light, we simply bound the
probability by

Pr [u 6∈ X1 | v 6∈ X1] ≤ 1

Claim 6.41. Let ε > 0 and L′ ⊆ Lj be the set of vertices u such that y(lca(u, v)) ≥ ε.
Then x(L′) ≤ 1− ε.

Proof. This claim follows from the constraints in LP-Hartke. Let w be the topmost
ancestor of v such that yw ≥ ε. Then all vertices in L′ must be descendants of w, so

x(P (w)) + x(L′) ≤ 1

=⇒ x(L′) ≤ 1− x(P (w)) ≤ 1− ε

With the above two tools, we are ready to proceed. First we break the expectation
term into

ES′
[
x
(
L̃j
) ∣∣ v 6∈ X1

]
=
∑
u∈Lj

xu Pr [u 6∈ X1 | v 6∈ X1]

Let v′ ∈ Lj be the ancestor of v in layer Lj . We break down the sum further based
on the lowest common ancestor of u and v. Using Claim 6.40, we get

ES′
[
x
(
L̃j
) ∣∣∣ v 6∈ X1

]
=
∑
ε∈[0,1)

∑
u∈Lj :y(lca(u,v))=ε

xu Pr [u 6∈ X1 | v 6∈ X1]

≤
∑
ε∈[0,η)

e−(η−ε) ∑
u∈Lj :y(lca(u,v))=ε

xu + ·
∑

u∈Lj :y(lca(u,v))≥η
xu

Notice that there is only a finite (actually, linear) number of values that y(w) can take,
for an ancestor w of v. We slightly abuse notation and write ε ∈ [0, η) to represent
iterating over all these possible values.

109

Chapter 6. Firefighter Problem on Trees

We now define zε :=
∑

u∈Lj :y(lca(u,v))=ε xu in order to simplify the expression above.
Similarly, we define zη :=

∑
u∈Lj :y(lca(u,v))≥η xu to include the remaining cases. We can

now write the above as ∑
ε∈[0,η)

e−(η−ε)zε + zη.

By Claim 6.41, we know that ∑
ε′∈[ε,η]

zε′ ≤ 1− ε

We can express the sum above as the sum of the areas of rectangles of width zε and
height e−(η−ε). Equivalently, we can write it as an integral over a piece-wise constant
function f(t), which takes the value e−(η−ε) for a length of zε. This function can further be
made monotonically non-decreasing by a suitable ordering of these intervals. Claim 6.41
now implies that the interval in which the function is at least e−(η−ε) has length at most
1− ε.

Using all of this, we conclude that the integral is maximized when f(t) = e−(η−t) for
t ∈ [0, η) and f(t) = 1 for t ∈ [η, 1], and therefore we have that:

ES′
[
x
(
L̃j
)
| v 6∈ X1

]
≤
∫ 1

0
f(t)dt

≤
∫ η

0
e−(η−t)dt+

∫ 1

η
1 dt

= e−(η−t)
∣∣∣η
0

+ t|1η
= (1− η) + (1− e−η)

6.4.4 Integrality Gap for LP-Hartke

In this section, we present, for any ε > 0, an instance where LP-Hartke has an
integrality gap of 5/6 + ε. Interestingly, these instances admit an optimal half-integral
LP solution. We recall the formal result below.

Theorem 6.10 (page 89). Let ε > 0. There is an instance (T, s,1, 1) of Tree-FF of
size bounded by some function f(ε), such that the integrality gap of LP-Hartke is at
most 5/6 + ε.

Gadget The motivation of our construction is a simple gadget represented in Figure 6.3.
In this instance, vertices are either special (colored gray) or regular. This gadget has
three properties of interest:

• If we assign an LP-value of xv = 1/2 to every special vertex, then this is a feasible
LP solution that ensures yu = 1 for every leaf u.

• For any strategy S that does not pick any vertex in the first layer of this gadget,
at most 2 out of 3 leaves of the gadget are saved.

• Any pair of special vertices in the same layer do not have a common ancestor inside
this gadget.

110

6.4. Improving the Standard LP with Hartke’s Constraints

a

a′′

a′

b

b′

b′′

Figure 6.3: Gadget used to achieve an integrality gap of 5/6 for LP-Hartke. Special
vertices are colored gray.

The basic idea is to make two interleaved copies of the gadget. In order to help with
visualization, we will always label each vertex according to their “function” in the gadget
of Figure 6.3. At first try, we could try using the following instance:

• Layer 1: two special vertices a(1), a(2) and two regular vertices b(1), b(2);

• Layer 2: two special vertices a′(1) and b′(1), descendants of a(1) and b(1) re-
spectively;

• Layer 3: two special vertices a′(2) and b′(2), descendants of a(2) and b(2) re-
spectively;

• Layer 4: two special vertices a′′(1) and b′′(1), descendants of a(1) and b′(1)
respectively;

• Layer 5: two special vertices a′′(2) and b′′(2), descendants of a(2) and b′(2)
respectively;

Notice that a′(i) and a′′(i) descend from a(i), but b′′(i) descends from b′(i), which
descends from b(i) (as in the gadget of Figure 6.3). We skip in this description any
regular vertices that are only used for layering, e.g. since a′(2) is a descendant of a(2)
in layer 3, there must be a vertex in layer 2 which is a child of a(2) and the parent of
a′(2). We will present a formal construction later. The construction described above is
depicted in Figure 6.4 (α = 1).

Unfortunately, this construction does not have the desired integrality gap, since there
is a strategy that protects all the leaves: We can save all of the leaves from the first
gadget (descendants of a(1) and b(1)) by protecting only 2 vertices (say in layers 1 and
2), leaving us free to protect both a′′(2) and b′′(2) in layers 4 and 5.

To overcome this problem, we make copies of the vertices in the description above,
with the number of copies increasing exponentially with depth. Specifically, we make
αi−1 copies of the vertices in layer i, i ∈ [5]. At the same time, we add dummy layers
(in which each vertex has a single child), which has the effect of increasing the budget
comparably to the number of copies. This allows a strategy to be repeated for all copies,
while preventing the use of “leftover” vertices from previous layers.

Consider the previous example: we can protect a(1), b′(1), a′(2), the parent of a′′(2),
and b′′(2), which saves all the leaves. Notice that we can save both a′′(2) and b′′(2) only
because, in the previous layer, both a′′(1) and b′′(1) were already saved, and therefore
we could save an additional vertex in the second copy of the gadget. However, by adding
the copies as described above, there are now α3 copies of (and layers corresponding to)

111

Chapter 6. Firefighter Problem on Trees

Figure 6.4: Example of the integrality gap instance for LP-Hartke, when α = 1.
Special vertices (xv = 1/2) are colored gray.

a′′(1) and b′′(1), whereas there are α4 copies of a′′(2) and b′′(2). Therefore, we can only
save α3 + α4 of the total 2α4 copies of a′′(2) and b′′(2), and hence the strategy above no
longer saves all of the leaves.

Finally, we need to balance the instance, since there are a different number of copies
of each of the original vertices. To do this, we add children to the leaves in the current
construction in such a way that each of a′(1), a′(2), a′′(1), b′′(1), a′′(2), b′′(2) corresponds
to exactly α5 leaves. For instance, there will be α copies of a′(1), so we give each of those
copies α4 descendants, such that, in total, we have α5 leaves corresponding to a′(1).

A simplified depiction of the construction for any value of α is presented in Figure 6.5.
We will now describe the construction formally and show that the integrality gap of

LP-Hartke for this instance converges to 5/6 as the value of α increases.

Construction We denote the instance as T , and take s to be its root.
The first layer of this instance, L1, contains 4 vertices: two special vertices, which we

name a(1) and a(2), and two regular vertices, which we name b(1) and b(2). Recall the
definition of spider from Section 6.3.2.

Let α = d1/εe. The vertices b(1) and b(2) are the roots of two spiders. Specifically,
the spider Z1 rooted at b(1) has α feet, with one foot per layer, in consecutive layers
L2, . . . , Lα+1. For each j ∈ [α], denote by b′(1, j), the jth foot of spider Z1. The spider
Z2, rooted at b(2), has α2 feet, with one foot per layer, in layers Lα+2, . . . , Lα2+α+1. For
each j ∈ [α2], denote by b′(2, j), the jth foot of spider Z2. All the feet of spiders Z1 and
Z2 are special vertices.

For each j ∈ [α], the vertex b′(1, j) is also the root of spider Z ′1,j , with α
2 feet, lying in

the α2 consecutive layers L2+α+jα2 , . . . , L1+α+(j+1)α2 (one foot per layer). For j′ ∈ [α2],
let b′′(1, j, j′) denote the j′-th foot of spider Z ′1,j that lies in layer L1+α+jα2+j′ . Notice that
we have α3 such feet of these spiders

{
Z ′1,j

}α
j=1

lying in layers L2+α+α2 , . . . , L1+α+α2+α3 .
Similarly, for each j ∈ [α2], the vertex b′(2, j) is the root of spider Z ′2,j with α2 feet,
lying in consecutive layers L2+α+α3+jα2 , . . . , L1+α+α3+(j+1)α2 . We denote by b′′(2, j, j′)
the j′-th foot of this spider.

The special vertex a(1) is also the root of spider W1 which has α+ α3 feet: The first
α feet, denoted by a′(1, j) for j ∈ [α], are aligned with the vertices b′(1, j), i.e. for each

112

6.4. Improving the Standard LP with Hartke’s Constraints

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

......

...

...

...

...

...

...

...

...

...

α α2α3 α4 α α2

α2

α2

α2

α2

α

α2

α3

α4

Figure 6.5: Simplified instance used to achieve integrality gap of 5/6 for LP-Hartke.
The labels in the figure indicate the number of edges in that location, in terms of α.
Special vertices (xv = 1/2) are colored gray.

j ∈ [α], the foot a′(1, j) of spider W1 is in the same layer as the foot b′(1, j) of Z1. For
each j ∈ [α], j′ ∈ [α2], we also have a foot a′′(1, j, j′) which is placed in the same layer
as b′′(1, j, j′). Similarly, the special vertex a(2) is the root of spider W2 with α2 + α4

feet. For j ∈ [α2], spider W2 has a foot a′(2, j) placed in the same layer as b′(2, j). For
j ∈ [α2], j′ ∈ [α2], W2 also has a foot a′′(2, j, j′) in the layer of b′′(2, j, j′). All the feet of
both W1 and W2 are special vertices.

Finally, for i ∈ {1, 2}, and j ∈ [αi], each vertex a′(i, j) has α5−i children, which are
leaves of the instance. For j ∈ [α], j′ ∈ [α2], the vertices b′′(i, j, j′), a′′(i, j, j′) have α3−i

children each which are also leaves of the instance. We set the weight of all the leaves to
1, and of all other vertices to 0. Let X be the set of all leaves.

Proposition 6.42. The instance satisfies |X | = 6α5. Moreover, (i) the number of leaves
in subtrees Ta(1) ∪ Tb(1) is 3α5, and (ii) the number of leaves in subtrees Ta(2) ∪ Tb(2) is
3α5.

Proof. Each vertex a′(1, j) has α4 children, and there are α such vertices. Similarly,
each vertex a′(2, j) has α3 children. There are α2 such vertices. This accounts for 2α5

113

Chapter 6. Firefighter Problem on Trees

terminals.
For i ∈ {1, 2}, each vertex a′′(i, j, j′) has α3−i children. There are αi+2 such ver-

tices. This accounts for another 2α5 terminals. Finally, there are α3−i children of each
b′′(i, j, j′), and there are α2+i such vertices.

Fractional solution We define the solution x, with xv = 1/2 for every special vertex v,
and xv = 0 otherwise. We will now show that this solution is feasible and saves every leaf.
Notice that, in each layer, there are at most 2 special vertices, and therefore, x(Lj) ≤ 1.
The following lemma implies that the constraints in LP-Hartke are satisfied.

Lemma 6.43. For each special vertex v, for each layer Lj below v, the set Lj ∩ Tv
contains at most one special vertex.

Proof. Each layer contains two special vertices, either a′(i, j) and b′(i′, j′) or a′′(i, j) and
b′′(i′, j′). In any case, the least common ancestor of such two special vertices in the same
layer is always the root s (since one vertex is in Ta(i), while the other is in Tb(i)). This
implies that, for any non-root vertex v, the set Lj ∩ Tv can contain at most one special
vertex.

Consider a vertex v ∈ V and a layer Lj below v: if x(Pv) = 0, the constraint
is satisfied, since x(Lj) ≤ 1; if x(Pv) = 1, there are no special descendants of v by
construction; if x(Pv) = 1/2, then applying Lemma 6.43 to the special ancestor of v
implies that Lj ∩ Tv contains at most one special vertex, that is, x(Lj ∩ Tv) ≤ 1/2, and
the constraint is satisfied.

Let us now consider the saved vertices: our construction guarantees that any path
from root to leaf contains 2 special vertices: either a(i) and a′(i, j); a(i) and a′′(i, j, j′);
or b′(i, j) and b′′(i, j, j′).

Integral solution We argue that no strategy can save more than (1 + 1/α)5α5 termi-
nals. Let X1 = X ∩ (Ta(1) ∪ Tb(1)) and X2 = X ∩ (Ta(2) ∪ Tb(2)), that is, the leaves that
are descendants of a(1), b(1) or a(2), b(2), respectively.

The following lemma is the key to our analysis.

Lemma 6.44. Any strategy S such that S1 ∩ {a(1), b(1)} = ∅ saves at most α5(2 + 3/α)
vertices of X1.

Proof. The lemma follows by counting the number of descendants of each vertex that
are in X1, and then bounding the total number of such vertices that can be saved.

Let Q′ = {a′(1, j)}j∈[α] ∪ {b′(1, j)}j∈[α] be the set of all special vertices of the form
a′(1, j), b′(1, j), and Q′′ = {a′′(1, j, j′)}j∈[α],j′∈[α2] ∪ {b′′(1, j, j′)}j∈[α],j′∈[α2] be the set of
all special vertices of the form a′′(1, j, j′), b′′(1, j, j′) . By construction, the vertices in Q′

are contained in the first 1 +α layers of T and have α4 descendants in X each. Similarly,
the vertices in Q′′ are contained in the first 1+α+α2 +α3 layers and have α2 descendants
in X . All vertices that are not special (with the exception of b(1)) have degree exactly
1, and therefore the number of descendants of a vertex that are in X is determined by
its descendants in Q′ or Q′′.

Using this information, we can upper bound the number of vertices in X1 that can
be saved: in the first 1 + α layers, the maximum number of vertices in X1 we can save

114

6.4. Improving the Standard LP with Hartke’s Constraints

is α4 per vertex protected, by protecting a vertex in Q′ or one of its ancestors, since we
do not protect a(1) or b(1) by assumption; in the following α2 + α3 layers, we can save
at most α2 vertices of X1 per layer, by protecting a vertex in Q′′ or one of its ancestors;
and then we can protect at most 1 leaf in the next layer; no consequent layer contains
vertices in (Ta(1) ∪ Tb(1)).

In total, the number of vertices that we can save, if we avoid a(1) and b(1), is at
most:

(1 + α)α4 + (α2 + α3)α2 + 1 = 2α5 + 2α4 + 1 ≤ 2α5 + 3α4

Lemma 6.45. Any strategy S such that S1 ∩ {a(2), b(2)} = ∅ saves at most α5(2 + 4/α)
vertices of X2.

Proof. The proof of this lemma is similar to that of Lemma 6.44: in the first 1 + α+ α2

layers, the maximum number of vertices in X2 we can save is α3 per layer; in the following
α3 + α4 layers, we can save at most α vertices in X2 per layer; in the final layer, we can
only protect one vertex in X2.

In total, the number of vertices that we can save, if we avoid a(2) and b(2), is at
most:

(1 + α+ α2)α3 + (α3 + α4)α+ 1 ≤ 2α5 + 4α4

Since the vertices a(1), a(2), b(1), b(2) are all in the first layer, it is only possible
to protect one of them. Therefore, either Lemma 6.44 or Lemma 6.45 applies, and
therefore the total number of vertices that can be saved by an integral solution is at most
5α5 + 4α4 ≤ 5α5(1 + 1/α).

We conclude that the integrality gap of this instance is 5α5(1 + 1/α)/(6α5) ≤ 5/6 + ε.

115

Chapter 6. Firefighter Problem on Trees

116

CHAPTER 7
Firefighter Problem beyond Trees

The firefighter problem is interesting from the viewpoint of approximation: while it is
easy to approximate on trees (there is a PTAS [ABZ17]), it is n1−ε-inapproximable on
general graphs (assuming P 6= NP), where even a single mistake can cause almost all of
the vertices to burn [ACH+12].

On trees, Max-FF has been extensively studied [ACH+12, CVY08, CC10, Har95,
HL00, IKM11, KM10], with constant-factor approximation algorithms known [CVY08,
HL00], and more recently, even a PTAS [ABZ17]. However, trees have a very simple
structure: because they have no cycles, there is always a single (simple) path between the
fire source and the any vertex. Furthermore, there needs to be no consideration about
strategically “delaying” the fire, that is, protecting vertices along short paths, in order to
gain more time to save a larger portion of the graph.

In this chapter, we study the approximability of Max-FF on bounded-treewidth graphs.
This is a natural choice for this problem: on the one hand, even treewidth-2 graphs
introduce the challenges of multiple paths and delays; on the other hand, it allows us
to consider the intermediate case between the existence of a PTAS for tree instances,
and n1−ε-inapproximability on general graphs. Although results on trees are usually
generalizable to bounded-treewidth graphs, the dynamic nature of the firefighter problem
makes it hard to generalize known algorithms.

Related work Little is known about the problem in the bounded-treewidth setting.
Cai et al. [CCV+10] study the surviving rate of bounded-treewidth graphs. The surviving
rate is defined as the fraction of vertices that can be saved, if the fire breaks out at a
(uniformly) random vertex in the graph. They show that, if the budget is less than
w = tw(G), there are graphs (such as the complete bipartite graph Kw,n−w) where only
O(w) vertices can be saved, independently of the starting point of the fire. On the other
hand, if the budget is at least w, there is a strategy that ensures that the surviving rate
is 1−O(w2 log n/n).

For a more thorough description of the problem and related work for Max-FF on trees,
we refer the reader to Chapter 6 and Section 6.1.

Our results Our goal is to describe the influence of treewidth on the approximation
ratio. We present both lower and upper bounds for the best approximation ratio for
different values of treewidth.

We start by presenting an O(1)-approximation algorithm for Max-FF on outerplanar
graphs (see Section 2.1 for a definition). We show that outerplanar graphs have a nice
structure, which allows us to use a modified greedy algorithm to obtain our result. Our
techniques work for all graphs that satisfy a structural property which we denote k-
completability, and we think our results may generalize to other classes of graphs, such

Chapter 7. Firefighter Problem beyond Trees

as treewidth-2 graphs.
Our second result confirms that even on bounded-treewidth graphs, Max-FF is a hard

problem: we show that, on graphs of treewidth 5, it is NP-hard to n1−ε-approximate.
More generally, for any budget B ≥ 1, there is no polynomial-time n1−ε-approximation
algorithm for Max-FF on graphs of treewidth 2B + 3, unless P = NP. This implies that
on graphs of treewidth w, a subpolynomial approximation is possible only if the budget is
at least w/2− 1. We find this to be an interesting result, as it provides a partial parallel
to the result of Cai et al. [CCV+10], which shows that the surviving rate is sub-constant
when B < w, and close to 1 otherwise (for constant w). To obtain our result, we start
from the NP-hardness construction of Chlebíková and Chopin [CC14], and modify it to
obtain a graph with low treewidth, where Max-FF cannot be approximated.

Organization The organization of this chapter is as follows: in Section 7.2, we present
a constant-approximation algorithms for Max-FF on outerplanar graphs (and other k-
completable graphs); in Section 7.3, we show that it is hard to n1−ε-approximate Max-FF
on graphs with treewidth 5.

7.1 Problem Definitions and Results

Problem 7.1: Firefighter Problem on Outerplanar Graphs (Outer-FF).

• Instance:
(
G, s, w,B), where

–
(
G, s, w,B) is an instance of Max-FF;

– G is outerplanar.
• Solution: a valid strategy {Si}i∈[n] with budget B (|Si| ≤ B).
• Goal: maximize the weight of the set of vertices R that is saved, w(R) =

∑
v∈R wu

Problem 7.2: Cubic Monotone 1-in-3-SAT (CM-1-in-3-SAT).

• Instance: φ = (φ1, φ2, . . . , φn) on variables v1, . . . , vn, where
– v1, v2, . . . , vn are Boolean variables;
– φi = (vi1 , vi2 , vi3) is a clause on 3 positive literals, i1, i2, i3 ∈ [n], i ∈ [n];
– Each variable vj appears in exactly 3 clauses, j ∈ [n].

• Solution: an assignment a ∈ {0, 1}n, such that, for each clause φi, i ∈ [n],
exactly one of the literals is assigned the value 1.
• Goal: Decide whether a feasible assignment exists
• Remark: CM-1-in-3-SAT is known to be NP-hard [MR01, PSS10].

Theorem 7.3. There is an algorithm that computes an O(1)-approximation to the Out-
er-FF problem in polynomial time.

Theorem 7.4. Let ε > 0, B ≥ 1 and φ be an instance of CM-1-in-3-SAT.
There is a polynomial-time reduction from φ to an instance I = (G, s,1, B) of Max-FF,

where G has N vertices and treewidth 2B + 3, such that:

• If φ is CM-1-in-3-SAT-satisfiable, there is a valid strategy for I with budget B that
saves at least N1−ε vertices.

118

7.2. The Firefighter Problem on Outerplanar Graphs

• If φ is not CM-1-in-3-SAT-satisfiable, there is no valid strategy for I with budget B
that saves more than N ε vertices.

Corollary 7.5. It is NP-hard to approximate Max-FF on graphs of treewidth at least 5
(treewidth 2B + 3 for budget B ≥ 1) to a factor better than n1−ε, for any ε > 0.

Corollary 7.6. Unless P = NP, Max-FF on graphs of treewidth w can only be approxi-
mated (with factor below n1−ε, ε > 0) if the budget is at least B ≥ w/2− 1.

7.2 The Firefighter Problem on Outerplanar Graphs

In this section, we study Max-FF on outerplanar graphs, which remain simple in structure,
but break all of the important properties of trees. Our results show that in graphs with
a certain structure, which we name k-completable, we can think of the solution in
terms of small vertex cuts (of size at most k). We show that, in that case, we can save a
constant fraction of the optimum by repeatedly protecting the k vertices that separate the
most vertices from the fire source. As a consequence, we obtain an O(1)-approximation
algorithm for outerplanar graphs, which are 3-completable. We believe that k-completable
graphs are useful generalization of trees for Max-FF, but we focus on outerplanar graphs
in this thesis.

We will start by formally introducing some definitions that we will use throught
this section, then introduce k-completable graphs and show that outerplanar graphs
are 3-completable, and finally present an algorithm to approximate the problem in k-
completable graphs. The following theorems summarize our results (see Section 7.2.2 for
definitions).

Theorem 7.7. The class of outerplanar graphs is 3-completable.

Theorem 7.8. Let (G, s, w,B) be an instance of the problem and k ∈ Z+.
Then there is an algorithm that runs in time O(nk+1m) and finds a solution that is:

(1) a (4k + 2)-approximation if G is k-weak-completable and B ≥ k;

(2) a (4k2 + 4k + 2)-approximation if G is k-completable (and B < k);

Combining these results implies Theorem 7.3.

7.2.1 Delays and Influence

In this section, we will introduce some notation that is heavily used in the explanation of
the algorithm. We will start by defining delayed vertices, and then move on to define the
influence relationship. We will finally prove some properties and connections between
the two terms.

We denote by d(u, v) the shortest-path distance between vertices u and v, and denote
d(v) := d(s, v) for convenience.

Definition 7.9. Let u, v ∈ V .
We say v is a delay vertex (or simply a delay) if, for some u ∈ V \ {v}, v is contained

in an s-u-shortest-path. For such vertices u ∈ V \ {v}, we say u is delayed by v or that
v is a delay (vertex) for u.

119

Chapter 7. Firefighter Problem beyond Trees

Figure 7.1: Example of delay and influence. The fire source is marked as a filled square
(red), a vertex v is marked as a filled circle. The vertices delayed and influenced by v
are the vertices inside the dashed (green) and full (blue) curve, respectively.

We now introduce the notion of influence.

Definition 7.10. Let u, v ∈ V .
We say u is influenced by v if u = v or if d(u) > d(v) and there is a path P from v

to u such that for all u′ ∈ V (P) \ v, d(u′) > d(v).

In other words, a vertex u is influenced by v if the fire can spread to u, even if we
protect all other vertices at the distance d(v) from the source. We will now show that if a
vertex u is delayed by a vertex v, it is also influenced by v. This allows us to consider only
the notion of influence in the analysis of our algorithm. See Figure 7.1 for an example of
the concepts of delay and influence.

Lemma 7.11. Let u, v ∈ V . If u is delayed by v, then u is influenced by v.

Proof. Since v is a delay for u, there must be a shortest path from s to u containing v.
Let P = (v0, v1, . . . , vj = v, . . . , vk = u) be such a shortest path.

Since P is a shortest path, we have that d(vi) = i for all i ∈ [k]. Indeed, if d(vi) < i
we could replace (v0, v1, . . . , vi) by a shorter path between s and vi, a contradiction; and
since (v0, v1, . . . , vi) has length i, d(vi) ≤ i, which together imply that d(vi) = i.

Now, the subpath (v = vj , . . . , vk = u) satisfies the constraints in Definition 7.10: it
is a v-u-path, and d(v`) = ` > j for ` > j, which finishes the proof.

Finally, we will prove that both the delay relation and the influence relation are
partial orders, and thus transitive.

Lemma 7.12. Let u, v ∈ V and denote by u <D v the relation “u is delayed by v” and
by u <I v the relation “u is influenced by v”.

Then <D and <I are partial orders, that is, they are reflexive, antisymmetric and
transitive.

Proof. We start by proving the statement for the delay relation, <D. It is reflexive, since
v is trivially in every (shortest) path from s to v; it is antisymmetric, since u <D v

120

7.2. The Firefighter Problem on Outerplanar Graphs

implies that u = v or d(v) < d(u), as v is in a shortest path from s to u. This means
that u <D v, v <D u either implies u = v or leads to d(u) > d(v) and d(v) > d(u), which
is a contradiction. It is transitive because if w <D u and u <D v, then we can obtain a
shortest path from s to w by appending any shortest path from s to u to any shortest
path from u to w. Since u <D v, there is a shortest path from s to u containing v, which
means that we can construct a shortest path from s to w containing v too.

As to the influence relation, it is reflexive by definition, and antisymmetric, since for
u 6= v, either d(u) > d(v) or d(v) > d(u). To prove that it is transitive, take v, u, w ∈ V
such that w <I u, u <I v. By definition, d(w) > d(u) > d(v), and there are paths P ′

from u to w, P ′′ from v to u such that for all u′ ∈ V (P ′) \ u, d(u′) > d(u) > d(v), and
for all u′ ∈ V (P ′′) \ v, d(u′) > d(v). Concatenating P ′ and P ′′ results in a path from v
to w satisfying the conditions, thus finishing the proof.

7.2.2 k-Completable Graphs

In this section, we will define k-completable graphs and show that outerplanar graphs
are 3-completable. We start with a weaker (but more general) definition, of k-weak-
completable graphs, and then move on to the stronger definition.

Throughout this section, we will refer to small sets of vertices or vertex cuts as squads .
Formally, a squad is simply a set of vertices C ⊆ V , to be interpreted as a vertex cut
separating s from some vertices in the graph. We also say that a squad C saves a vertex
v if s and v are in different connected components of G− C.

Definition 7.13. A graph G is k-weak-completable if, for any fire source s ∈ V , and any
vertex v ∈ V , there is a squad Cv ⊆ V , such that:

(1) v ∈ Cv,

(2) |Cv| ≤ k,

(3) d(u) ≥ d(v) for all u ∈ Cv, and

(4) every vertex delayed by v is saved by Cv, that is, it is separated from s in G− Cv.

A class of graphs G is k-weak-completable if for all G ∈ G, G is k-weak-completable.

Intuitively, a graph G is k-weak-completable if for any vertex v ∈ V , there is a small
vertex cut Cv separating a fire source from the vertices delayed by v. This allows us
to consider the solution as the union of small cuts, while losing a factor of O(k) in the
approximation. For this purpose, we impose that the vertices in a set Cv must be at
least as far from the fire source as v itself.

However, if the budget is small, this is not sufficient. In that case, we need extra
constraints on vertices v close to the fire source, stating that it must be possible to
protect all the vertices in Cv using a valid strategy.

This motivates the following definition:

Definition 7.14. Let G be a graph and C ⊆ V (G) be a set of its vertices.
We say that C is dispersed at distance a if, for some ordering v1, v2, . . . , v|C| of the

vertices of C, we have d(vi) ≥ a+ i for every i ∈ [|C|].

121

Chapter 7. Firefighter Problem beyond Trees

If G is k-weak-completable and all the squads Cv are dispersed at distance d(v) when
v is close to the fire source, we call the graph k-completable.

Definition 7.15. A graph G is k-completable if it is k-weak-completable and, for any
fire source s ∈ V , satisfies the following constraints: for any v ∈ V such that d(v) ≤ k,
there are 2k squads C1, C2, . . . , C2k ⊆ V such that
(1) |Ci| ≤ k and Ci is dispersed at distance d(v), for i ∈ [2k];

(2) Every vertex delayed by v is saved by one of the squads Ci, i ∈ [2k], that is, for
every vertex u delayed by v, there is i ∈ [2k] such that Ci separates s from u.

A class of graphs G is k-completable if for all G ∈ G, G is k-completable.

We will now prove that the class of outerplanar graphs is 3-completable. We start by
proving that outerplanar graphs are 3-weak-completable, and then prove Theorem 7.7,
which we recall below. Although outerplanar graphs are k-completable for constant k
and also have bounded treewidth, it is not clear whether these two concepts are related.
We defer the discussion of this question to Chapter 8.

Lemma 7.16. The class of outerplanar graphs is 3-weak-completable.

Theorem 7.7 (page 119). The class of outerplanar graphs is 3-completable.

Before we continue with the proofs, we need to introduce the definition of a tour, as
well as prove some results about tours that will be useful later.

Definition 7.17. A tour T ⊆ G of an outerplanar graph G is a minimum length closed
walk that goes through every vertex, goes through every edge of the outer face (at most
twice), and uses no chords.

A subtour is a closed subwalk of a tour, that is, a closed walk that only goes through
vertices and edges of the outer face.

A slice A ⊆ T of a tour is a (continuous) subwalk of the tour, and can be thought as
either the sequence or set of vertices of A, depending on context.

When considering a tour T as a sequence of vertices, we refer to each time that v
appears in the tour as an appearance of v in T .

When using the concept of tour, we generally specify a special vertex s (the fire
source). In that case, we consider (one of the appearances of) s to be the first vertex of
a tour. If a special vertex s is specified, we assume that a slice does not contain s.

Lemma 7.18. Let G be an outerplanar graph. Then G has a tour.

Proof. The proof follows from basic principles presented in the book by Diestel [Die12,
Chapter 4], but is not explicitly stated. Therefore, we present a short proof of the lemma.

Let f be the outer face (for an arbitrary embedding), and let H = G[f] be the
subgraph of G induced by the face f . By [Die12, Lemma 4.2.2], we can partition the
edges of H into edges that belong to cycles and bridge edges, which are not on any cycle.
Since all edges of H must be in the frontier of f , we can further partition the edges into
cycles according to the other face whose frontier they belong to. This implies that H is
the union of edge-disjoint cycles and bridge edges.

Doubling the bridge edges, we obtain a graph where the degree of every vertex is
even (each cycle and bridge edge now contributes degree 2), and therefore there is an
Eulerian circuit, which is a tour, since it visits every vertex and edge at most twice.

122

7.2. The Firefighter Problem on Outerplanar Graphs

Lemma 7.19. Let G be an outerplanar graph, s ∈ V (G) be a special vertex, T be a tour
of G, and u, v ∈ T \ {s}.

(1) Let Au be the smallest slice containing all the appearances of u. Then {u} is a
vertex cut separating T \Au from Au.

(2) Let u, v ∈ V be such that uv is either a chord of G, or can be added as a chord of
G without changing the embedding. Let Auv be the smallest slice containing all the
appearances of u and v. Then {u, v} is a vertex cut separating T \Auv from Auv.

Proof. We start by proving Point (1), and then show how it implies Point (2) by a simple
transformation.

Let T ′ be the subtour obtained by connecting s to the first appearance of u along T ,
and then connecting the last appearance of u to s along T . In other words, T ′ is obtained
by closing T \Au by unifying two appearances of u. Notice that Au is also a subtour, as
it starts and ends in u.

Now, we need to prove that T ′ and Au are almost disjoint. In fact, we will prove that
the only vertex in T ′ and Au is u. Assume for contradiction that there exists a vertex w
in T ′ and Au. Take w that is minimally close to u through T ′ and Au, that is, such that
there is no other vertex closer to u simultaneously through T ′ and Au. Now let H be a
subgraph of G formed by the union of two simple shortest paths connecting w to u in
T ′ and in Au. H must be a cycle, since, by minimality, the two paths cannot share any
vertices.

Since all of the edges of H are in a cycle of T , they must also be edges in cycles of
Au or T ′. However, this implies that each edge of H should be part of three faces: the
outer face, the face defined by H, and a face in Au (or T ′), which is a contradiction.

Now, since the outer face of G does not contain any chords, all the edges in E(G)
are either in T or in the inner faces of G[T]. These faces are identified by cycles, so the
faces of G[T ′] and G[Au] must be disjoint, since T ′ and Au only share one single vertex.
Therefore, no edge can cross from a vertex in T ′ to a vertex in Au, as it would not be
contained in T or any of the inner faces of T , and thus {u} is a vertex cut.

Assuming that the first point is true, we can easily prove the second point. Notice
that, since outerplanar graphs have a forbidden minor characterization [Die12], then
edge-contraction must preserve outerplanarity (a minor of the contracted graph is also a
minor of the original graph). Therefore, we can contract the chord e = uv in G ∪ {uv},
obtaining G′ = G/e. Let ve be the vertex obtained by contracting e. The statement is
immediately implied by the above, since cutting {u, v} in G is equivalent to cutting ve
in G′.

We are now ready to finish the proof that outerplanar graphs are 3-completable.

Proof of Lemma 7.16. Let T be a tour of G, and let A be the set of all vertices influenced
by v (including v). We will now prove that A is a slice of T . Notice that A must be
connected, since all vertices in A are connected to v via paths in A. Now, if A is
not a slice, since it is connected, it must be composed of multiple slices connected by
chords. Let c = u1u2 be one of the chords connecting disjoint slices of A, and Ac be the
smallest slice of T containing both endpoints of c. By choice of c, Ac 6⊆ A. However,
by Lemma 7.19, {u1, u2} is a cut separating s 6∈ Ac from Ac. For every w ∈ Ac, any

123

Chapter 7. Firefighter Problem beyond Trees

path going from s to w must go through either u1 or u2, and thus we must have that
d(w) > min(d(u1), d(u2)) > d(v), which implies that w is influenced by v. Since all the
vertices in Ac are influenced by v, Ac must be a subset of A, which is a contradiction.
Therefore, A must be a slice.

Let u1, u2 be the vertices immediately before and after A \ {v} in T . We remark that
it is possible that u1 = u2, or even u1 = v or u2 = v, since we exclude v before taking
the neighbors of A. Given the above, we define the squad for v as Cv = {u1, u2, v}.

We will now prove that any edge uw ∈ E with u 6∈ A to w ∈ A \ v, satisfies u ∈ Cv
and d(u) = d(v). In other words, all of the edges into A (excluding v) come from Cv,
and therefore Cv saves all vertices in A. The statement also holds (trivially) when u = v.

First, we show that, for such an edge, d(u) = d(v) and d(w) = d(v) + 1. In fact,
uw ∈ E implies that d(w) ≤ d(u) + 1, and d(u) ≤ d(v) (otherwise u ∈ A). Therefore,
d(w) ≤ d(v)+1, and since w ∈ A\{v}, d(w) ≥ d(v)+1, which means that d(w) = d(v)+1
and d(u) = d(v).

It remains to prove that u ∈ Cv. If uw ∈ T , that follows directly, since A is a slice of
T and therefore has at most two neighbors, both of which are in Cv. If uw is a chord,
then it defines a slice Auw. By Lemma 7.19, {u,w} separates s from Auw, and therefore,
every path from s to Auw must go through u or w. Since d(w) > d(v), d(u) = d(v),
this further implies that all of the vertices a ∈ Auw \ u satisfy d(a) > d(v), and thus,
(Auw \ {u}) ⊆ A. This makes u a neighbor of A, which implies that u ∈ Cv.

The proof of the lemma follows easily from the above. First, there are edges u1w ∈ T ,
u2w ∈ T , which implies by the above that d(u1) = d(u2) = d(v). On the other hand,
since every edge into A \ {v} has an endpoint in Cv, then Cv is a cut, concluding the
proof.

Proof of Theorem 7.7. We know already from Lemma 7.16 that outerplanar graphs are
3-weak-completable. All that remains is to prove the additional conditions of Defini-
tion 7.15. Let v ∈ V be a vertex satisfying d(v) ≤ k, and take Cv = {u1, u2, v} and A as
defined in the proof of Lemma 7.16.

Now, assuming that A is the slice starting at the neighbor of u1 along T and ending
at the neighbor of u2 along T , take u′1 ∈ A to be the farthest neighbor of u1 along A
(before v) satisfying d(u′1) = d(v) + 1. Similarly, take u′2 ∈ A to be the farthest neighbor
of u2 along A (after v) satisfying d(u′2) = d(v) + 1.

We can now define the squads Ci that satisfy the definition. In general, we have
C1 = {u1, u

′
1}, C2 = {u2, u

′
2}, C3 = {v, u′1}, C4 = {v, u′2}. If u1 = v (resp. u2 = v), we

remove the squad C1 (resp. C2), and remove u′1 (resp. u′2) from C3. If C3 = C4 = {v},
keep only one set.

To complete the proof, we just need to check that the squads satisfy the definition.
Trivially, |Ci| ≤ 3 for i ∈ [3]. Regarding every vertex delayed by v being saved by one of
these squads, we claim that the subslices of A between u1 and u′1; u′1 and v; v and u′2;
u′2 and u2 are covered by C1, C3, C4, C2, respectively. This can be shown by applying
Lemma 7.19 to the respective pairs of vertices, since u1u

′
1, u2u

′
2 are edges; similarly,

edges vu′1, vu′2 could be added, since C1, C2 are vertex cuts, which means that no edge
can cross these. Finally, we know that d(u1) = d(v), d(u′1) = d(v) + 1, and therefore C1,
C3 can be protected in the first 2 time steps. The same reasoning applies for C2 and C4.

124

7.2. The Firefighter Problem on Outerplanar Graphs

7.2.3 A Greedy Algorithm for k-Completable Graphs

In this section, we present an algorithm that outputs an O(k2)-approximation for Max-FF
on k-completable graphs, with any budget. We also present an O(k)-approximation
algorithm for k-weak-completable graphs, when the budget is at least k.

We show that, for k-completable or k-weak-completable graphs, we can cover all of the
vertices saved by an optimum solution just by protecting squads of size k. Furthermore,
we show that the number of squads we need is relatively low: there is a set of squads
that saves the same vertices as the optimum solution, and which needs only c squads for
every k time steps, where c is a constant depending only on k. By using an adaptation of
the greedy algorithm for trees, this is sufficient to show a O(c)-approximation, since for
every k time steps, we can protect at least one squad out of c, implying that we save a
fraction of at least 1/O(c) of the vertices saved by the optimum in the same time steps.

In order to present these results, we need two technical ideas. First, we need to reduce
the optimal solution to a strategy in which vertices are not delay vertices to others in
the strategy. This is not possible in general, as delayed vertices may be needed in order
to save all the vertices saved by the optimum solution. Fortunately, the definitions of
completability imply that there are small squads that save all of the vertices influenced
by the optimum solution. Since influence is transitive, there is a subset of vertices of the
optimum solution that are not delayed by others, and influence all of the vertices saved
by the solution, which is sufficient for our analysis.

Afterwards, we show an analogue of the greedy algorithm on trees, and analyze it
with respect to a collection of groups of at most c squads. If we know that protecting
all of the vertices in all of the groups is at least as good as an optimum solution, but
we are allowed to protect only one squad per group, we show that the greedy algorithm
obtains an O(c) approximation. Finally, we apply these results to obtain approximation
algorithms for k-completable graphs (c = O(k2)) and k-weak-completable graphs, when
B ≥ k (c = O(k)).

Let (G, s, w,B) be an instance of the problem. In this section, we analyze a simple
greedy algorithm, which starts with an empty strategy, and greedily finds the best k
vertices to add to the strategy. In order to formally describe the algorithm, we need the
following definition:

Definition 7.20. Let (G, s, w,B) be an instance of the problem and let U ⊆ V (G) be
a set of vertices.

We say U is schedulable if the vertices in U can be protected with budget B, that is,
U is schedulable if for all i ∈ [n],∣∣{v ∈ U : d(v) ≤ i}

∣∣ ≤ iB
If U is schedulable, we can find a valid strategy S with budget B that protects all

of the vertices in U , by protecting each vertex v ∈ U on the latest time step that is at
most d(v) and has budget available.

Using this definition, the algorithm can be described as follows: start with an empty
vertex set U ; until the fire stops spreading, repeatedly find a squad Q of at most k vertices
such that U ∪Q is schedulable, maximizing the total weight of the vertices saved by Q;

125

Chapter 7. Firefighter Problem beyond Trees

add these vertices to U . We denote this algorithm as GreedyFF; see Algorithm B.1 for
a formal description.

Lemma 7.21. Let S be a strategy and let Ŝ be the substrategy of S containing only the
minimal elements of S with respect to the delay relation, that is, only those vertices of S
that are not delayed by any other v ∈ V (S).

Then all vertices delayed by a vertex in S (including the vertices saved by S) are also
delayed by a vertex in Ŝ.

Proof. Let u ∈ V be any vertex delayed by v ∈ V (S). If v ∈ V (Ŝ), the claim follows.
Otherwise, since the delay relation is a partial order (Lemma 7.12), there must be a
minimal element v′ of V (S) such that v is delayed by v′. The set of minimal elements is
precisely V (Ŝ), so v is delayed by a vertex in Ŝ, and by transitivity, so is u.

Lemma 7.22. Let c, k ∈ Z+, and let C1, C2, . . . , C` be sets of at most c squads, each of
size at most k, and let T be defined as the set of vertices saved by any of the squads in⋃
i∈[`] Ci. Additionally, assume that, for any C ∈ Ci and any schedulable set of vertices

U of size |U | ≤ (i− 1)k, C ∪ U is schedulable.
Then, GreedyFF outputs a valid strategy with budget B that saves a total weight of

at least w(T)/(2c+ 2), and runs in time O(nk+1m).

Proof. We start by ordering all the squads in
⋃
i∈[`] Ci into C1,1, C1,2, . . . , C2,1, . . . , C`,1, . . .,

where Ci,j ∈ Ci for all j ≤ c. We then define T (Ci,j), as the set of vertices of T first
saved by Ci,j , that is, all vertices in T saved by Ci,j not saved by any previous squad in
the ordering above. We also define T (Ci) =

⋃
C∈Ci T (C).

We will show that, after the algorithm has chosen ` squads, the strategy S that
protects those squads saves a total weight of at least w(T)/(2c+ 2). Let Qi be the squad
chosen by the algorithm on iteration i. For any squad, we define as saved(Q) the set of
vertices saved by Q, and as saved′i(Q) the set of vertices saved by Q after the first i− 1
iteration, that is,

saved′i(Q) = saved(Q) \
i−1⋃
j=1

saved(Qj)

Now, we say that iteration i was a good iteration if

w(saved′(Qi)) ≥
w(T (Ci))
c+ 1

Otherwise, we say iteration i was bad. In this case, since at iteration i any squad in Ci
can be protected, then for all C ∈ Ci, w(saved′i(C)) < w(T (Ci))

c+1 . This implies that a total
weight of at least w(T (C))− w(T (Ci))

c+1 of T (C) must already have been saved in previous
iterations. Taking the union over all squads in Ci, we conclude that, out of the vertices
in T (Ci), S must save a total weight of at least

w
(
saved(S) ∩ T (Ci)

)
≥
∑
C∈Ci

(
w(T (C))− w(T (Ci))

c+ 1

)
≥ w(T (Ci))− c

w(T (Ci))
c+ 1

=
1

c+ 1
w(T (Ci))

126

7.2. The Firefighter Problem on Outerplanar Graphs

This means that, in every iteration, the strategy chosen by the algorithm either saves
a total weight of at least w(T (Ci))/(c+ 1), or we can conclude that a weight of at least
w(T (Ci))/(c+ 1) of T (Ci) has already been saved. Let T g =

⋃
good i T (Ci), T b = T \ T g

be the subset of vertices in T assigned to good and bad iterations, respectively. We know
that our solution saves a weight of at least w(T (Ci))/(c+ 1) in every good iteration, and
hence w(saved(S)) ≥ w(T g)/(c + 1). As to the bad iterations, we know that while we
may perform badly, S saves a fraction of 1/(c + 1) of the total weight in T (Ci), and
hence saves a fraction of 1/(c + 1) of the total weight in T b. We conclude that, since
w(T g) + w(T b) = w(T),

w(saved(S)) ≥ 1

c+ 1
max

(
w(T g), w(T b)

)
≥ 1

2(c+ 1)
w(T)

Having established the needed technical tools, we can now prove our results on k-
completable graphs. This, together with the fact outerplanar graphs are 3-completable
(Theorem 7.7), proves Theorem 7.3. The rest of this section is dedicated to proving
Theorem 7.8, which we recall for convenience.

Theorem 7.8 (page 119). Let (G, s, w,B) be an instance of the problem and k ∈ Z+.
Then there is an algorithm that runs in time O(nk+1m) and finds a solution that is:

(1) a (4k + 2)-approximation if G is k-weak-completable and B ≥ k;

(2) a (4k2 + 4k + 2)-approximation if G is k-completable (and B < k);

Proof. Let S be an optimal solution, and Ŝ be defined as in Lemma 7.21. We consider
an ordering v1, v2, . . . , v` of the vertices of Ŝ, so that d(vj) is non-decreasing.

Case 1 (k-weak-completable, B ≥ k): For this case, we consider the following
squads: C1, C2, . . . , C`, where Cj is the cut corresponding to vj in Definition 7.13. We
then partition the squads into sets Ci of 2k squads, that is,

Ci = {Cj : j ∈ [`], 2k(i− 1) < j ≤ 2ki}

We will now apply Lemma 7.22 with c = 2k. To do this, we need to show that any set
in Ci can be protected along with any other (i− 1)k vertices. Let t = d(v2k(i−1)+1); since
d(vj) is non-decreasing, we know that d(vj) ≥ t for j > 2k(i− 1). To prove that we can
protect any set in Ci along with any other (i− 1)k vertices, it is now sufficient to prove
that ik ≤ Bt, which means that we are able to protect all of the ik vertices in t time
steps, by protecting at most B vertices per time step. We know that i ≤ dBt/2ke, since
all of the vertices with d(vj) ≤ t are contained in the first dBt/2ke sets. This implies our
statement: we want to be able to protect at most ik vertices until time step t, to satisfy
the conditions of the lemma, and indeed,

ik ≤
⌈
Bt

2k

⌉
k ≤ Bt

k
k = Bt

The last inequality follows because da/2be ≤ a/b for a ≥ b.
Applying Lemma 7.22 with c = 2k shows that the greedy algorithm outputs a

2(c+ 1) = (4k + 2)-approximation in this case.

127

Chapter 7. Firefighter Problem beyond Trees

Case 2 (k-completable, B < k): For this case, we do something slightly different:
we consider an ordering v1, v2, . . . , v` of the vertices of Ŝ as before, but we consider the
squads and their partition only for the vertices satisfying d(vj) > k. The remaining
vertices, which are closest to the root, are handled separately.

Let j′ be the maximum index such that d(vj′) ≤ k. Notice that j′ ≤ Bk, since Ŝ can
protect at most Bk vertices at most k units away from the source. We now obtain the
squads for vj , j > j′, and partition them as before into sets C1, C2,

Similarly to the previous case, we show that Lemma 7.22 is applicable on these sets.
Since t ≥ k (and hence Bt ≥ k), we can use the previous argument to conclude that for
any set of (i− 1)k vertices, there is a strategy protecting them, plus any set Ci ∈ Ci.

It remains to handle the vertices vj , j ≤ j′. For these, we invoke the properties
of k-completable graphs (Definition 7.15), and take the sets Cj,1, Cj,2, . . . , Cj,2k in the
definition. In each Ci, i ∈ [B], we insert sets Cj,` for (i − 1)k < j ≤ ik. For each set
Ci, i ∈ [B], and corresponding j, we know that j ≤ B d(vj), and j > k(i− 1)/B, which
implies that Bd(vj) > (i− 1)k. This means that we can still protect at least one vertex
at time step d(vj). By the properties of k-completable graphs, this is enough, since each
squad can be protected on time steps [d(vj), d(vj) + k− 1] with budget 1, and we proved
that there is still at least 1 unit of budget free for each time step in that interval.

We conclude that all of the squads in the sets Ci satisfy the required properties, and
therefore, we can apply Lemma 7.22 with c = max |Ci| = 2k2 + 2k. Therefore, we show
that the greedy algorithm outputs a 2(c + 1) = (4k2 + 4k + 2)-approximation in this
case.

7.3 The Firefighter Problem on Bounded-Treewidth Graphs

In this section, we prove that it is NP-hard to approximate the Max-FF problem on
graphs of treewidth 2B + 3 to any factor smaller than n1−ε, for any ε > 0, and any
budget B ≥ 1. To show this result, we present a reduction from the CM-1-in-3-SAT
problem, that is, given an instance φ for this problem, we construct a tree instance Tφ
for Max-FF. This tree has the property that, if φ is CM-1-in-3-SAT-satisfiable, there is
a strategy with budget 1 that will stop the fire in Tφ and save all of its leaves. If, on
the other hand, φ is not CM-1-in-3-SAT-satisfiable, then we will show that there is no
strategy that saves all of the leaves of Tφ.

As a reminder, a formula φ for CM-1-in-3-SAT has no negative literals, every variable
appears in exactly 3 clauses and each clause contains 3 literals (see also Section 7.1). The
goal is to find an assignment such that every clause contains exactly 1 true literal. The
NP-hardness of CM-1-in-3-SAT is implied by the results of Moore and Robson [MR01],
as well as by Porschen et al. [PSS10], who prove the NP-hardness of a more general
problem, XSAT for k-CNF`+ (CM-1-in-3-SAT corresponds to the case of k = ` = 3).

Since CM-1-in-3-SAT is NP-hard, this implies that it is also NP-hard to determine,
given a tree T , whether there is a strategy (with budget 1) that saves all of its leaves.
Finbow et al. [FKM+07] were the first to present such a construction, but we will use
instead an adaptation of the result of Chlebíková and Chopin [CC14] for our purpose.
By changing their construction, we can ensure that, until all leaves are saved, there is
always one leaf at most 2 steps away from the fire. This property then allows us to prove
that, for any budget B ≥ 1, there is a graph Gφ,B with treewidth 2B + 3 such that a

128

7.3. The Firefighter Problem on Bounded-Treewidth Graphs

large group of vertices can be saved if φ is CM-1-in-3-SAT-satisfiable, and almost all of
these vertices burn otherwise.

The construction of Gφ,B is simple: for B = 1, we start from Tφ, and add 4 gate
vertices. These gate vertices are all connected by edges to every leaf of Tφ, as well as
to M = nO(1/ε) new additional vertices, which we call drones. Notice that Gφ,B has
feedback vertex number 4, as removing the gate vertices makes it a forest, which also
implies that the treewidth of Gφ,B is 5. For B > 1, we add a subtree that forces any
strategy to “waste” the additional budget, and we increase the number of gate vertices
to 2B + 2 to handle the higher budget.

If φ is satisfiable, there is a strategy that saves all of the leaves of Tφ, and hence in
Gφ,B saves all of the gate vertices and M drones. Otherwise, we can show that the fire
always reaches the gate vertices, and that they cannot all be protected by the time the
fire reaches them. Therefore, at least one of the gate vertices burns, and the fire then
spreads to the drones, very few of which can be protected.

The rest of this section is dedicated to proving Theorem 7.4 formally, which we recall
for convenience.

Theorem 7.4 (page 118). Let ε > 0, B ≥ 1 and φ be an instance of CM-1-in-3-SAT.
There is a polynomial-time reduction from φ to an instance I = (G, s,1, B) of Max-FF,

where G has N vertices and treewidth 2B + 3, such that:

• If φ is CM-1-in-3-SAT-satisfiable, there is a valid strategy for I with budget B that
saves at least N1−ε vertices.

• If φ is not CM-1-in-3-SAT-satisfiable, there is no valid strategy for I with budget B
that saves more than N ε vertices.

We start by showing the construction of Tφ and proving that it is possible to save all
the leaves of Tφ if and only if φ is CM-1-in-3-SAT-satisfiable (with budget 1). As long as
the condition above holds, and there is always one leaf at most 2 steps aways from the
fire, we can construct an instance Gφ,B for a given B ≥ 1, such that Gφ,B has treewidth
2B + 3 and approximating Max-FF on Gφ,B is equivalent to deciding if φ is satisfiable.
We give a simplified example of Tφ in Figure 7.2.

Tree instance Tφ Let φ be a formula of CM-1-in-3-SAT with n variables x1, . . . , xn
and m clauses Cj = (xi(j,1) ∨ xi(j,2) ∨ xi(j,3)). We will work with the clauses Cj and their
negation Cj = (x̄i(j,1) ∨ x̄i(j,2) ∨ x̄i(j,3)). This allows us to restate the problem as finding
an assignment where each Cj contains at most one true literal, and Cj contains at most
two true literals (where the respective variables are assigned to false).

We will now show how to construct Tφ. The construction follows the one by Chle-
bíková and Chopin [CC14], but there are both simplifications and changes to their
construction. Start with a path (s = u1, u

′
1, u2, u

′
2, . . . , un), where s is the fire source.

Each of the vertices u′i has exactly one child (ui+1), whereas the vertices ui have children
vi, v̄i, and, unless i = n, u′i. To each vertex vi (resp. v̄i) add a leaf child, as well as a
path with 2(n− i) edges. The end vertex of this path has 3 children, each corresponding
to a clause containing xi. We denote by `ij (resp. ¯̀i

j) the vertex corresponding to clause

129

Chapter 7. Firefighter Problem beyond Trees

....................................

Figure 7.2: Construction of Tφ for 3 variables and one example clause, x1 ∨ x2 ∨ x3. In
Gφ,B, all the leaves (shaded gray) are connected to the gate vertices.

Cj (resp. Cj). This completes the first phase of the construction, corresponding to the
variables. Notice that all of the vertices `ij and ¯̀i

j are on layer 2n, since, for any i, it
takes 2(i− 1) steps from s to ui, 1 from ui to vi (or v̄i), 2(n− i) from vi (or v̄i) to the
end of the path, and 1 step more to `ij (or ¯̀i

j).
After the first 2n layers, we have 5 layers for each clause. Let Cj be a clause. For

each variable xi in Cj , add a path of length 5(j − 1) to the corresponding vertices `ij and
¯̀i
j (so that we reach the layers for Cj). Let λij , λ̄

i
j be the vertices at the end of these

paths. Next, add a single child to λij , which will be a leaf. To λ̄ij , add two paths, of
length 2 and 4 for one of the variables, and 3 and 5 for the two others.

This concludes the construction of the instance. We will now prove that φ is satisfiable
if and only if there is a strategy which saves all the leaves. Additionally, we are going to
prove that one of the leaves is always two steps away from the fire, until all of the leaves
are saved.

Observation 7.23. Tφ has at most 56n2 vertices and height 7n.

Proof. Since there are n variables and n clauses, the height of the Tφ is 2n in the first
phase, and 5n in the second phase.

In the first 2n layers, there are at most 2n + 3 vertices per layer: 1 vertex ui or
u′i, 2 vertices which are leaf children of some vi, v̄i, and then 2 vertices per variable,
corresponding to the paths from vi, v̄i. In the second phase, each layer has size at most
6n+ 3: each clause has at most 6 vertices in paths from `ij to λ

i
j (or ¯̀i

j to λ̄
i
j), and the

clause corresponding to the current layer may have 3 additional paths, from the forking

130

7.3. The Firefighter Problem on Bounded-Treewidth Graphs

at λ̄ij). Layer 2n+ 1 has 6n+ 2 vertices: all the vertices `ij , ¯̀i
j , plus the leaf children of

vn, v̄n.
We conclude that, since each layer has at most 6n + 2 ≤ 8n vertices, the whole

instance has size at most 56n2.

Lemma 7.24. Let φ be a formula for CM-1-in-3-SAT and Tφ be the corresponding tree
constructed as above.

Then φ is CM-1-in-3-SAT-satisfiable if and only if there is a strategy for Tφ that saves
all the leaves. Additionally, until the fire stops spreading, it can spread to a leaf in 2 time
steps.

Proof. We will divide the proof in two parts: first we show a strategy that saves all the
leaves if φ is satisfiable, then we show that any solution must be well-behaved, which
implies that there is no strategy that saves all leaves if φ is unsatisfiable, and that the
fire can always spread to a leaf in 2 time steps.

Assume φ is CM-1-in-3-SAT-satisfiable, and let a be a satisfying assignment. For
every variable xi, if ai = 1, we will protect v̄i and the leaf child of vi; if ai = 0, we protect
vi and the leaf child of v̄i. This defines the strategy for the first 2n layers.

As detailed in the construction, each clause Cj corresponds to 5 layers in the tree
(layers 2n+ 5(j − 1) + 1 to 2n+ 5(j − 1) + 5). Since a is a satisfying assignment, each
clause Cj contains exactly one xi set to true, and two variables xi′ , xi′′ set to false. This
implies that after 2n+5(j−1) layers, λij , λ̄

i′
j and λ̄i′′j are burning, and λ̄ij , λ

i′
j , and λ

i′′
j are

saved by protecting v̄i, vi′ , and vi′′ respectively. In the first layer for Cj , we protect the
leaf child of λij , then in the second and third layers, protect vertices on the shorter paths
leaving λ̄i′j and λ̄i

′′
j (of sizes ≥ 2 and ≥ 3), and in the fourth and fifth layers, protect

vertices on the longer paths leaving λ̄i′j and λ̄i′′j (of sizes ≥ 4 and ≥ 5).
To conclude, we protect all the leaves that all children of vi, v̄i vertices, as well as all

of the leaves in the layers of each clause, which means that the strategy described saves
all the leaves.

We will now argue that if a strategy saves all the leaves, it must be well-behaved,
meaning that for each variable, it has to protect either:

(1) vi and the leaf child of v̄i;

(2) v̄i and the leaf child of vi; or

(3) both leaf children of vi and v̄i.

Additionally, we will show that in the first 2n time steps, there is always one leaf that
is at most 2 time steps away from the fire. We prove this claim by induction on n for a
strategy that saves all the leaves.

Consider the first time step: there are two leaves, children of v1 and v̄1 respectively,
2 time steps away from the source. Since the paths to these leaves are disjoint, the
solution must protect one vertex in each path, and it cannot protect both v1 and v̄1

simultaneously. The remaining options are the ones claimed above, the strategy must
respect one of these options in order to save the leaf children of vi, v̄i.

If n = 1, the argument above proves the claim. If n > 1, we know that u2 burns,
and therefore we can apply the induction hypothesis for n− 1 variables x2, . . . , xn, with

131

Chapter 7. Firefighter Problem beyond Trees

source u2. Notice that as part of the induction, we also show that there are always leaves
at most 2 steps away from the fire.

We will continue our argument and show a similar argument for the clause layers: if
a strategy saves all leaves, then, for each clause, there must be exactly one vertex λij and
two vertices λ̄ij burning, and there is always one leaf at most two steps from the fire, until
the fire stops spreading. Furthermore, the strategy protects only vertices descending
from these burning vertices in the 5 layers corresponding to each clause.

Consider the first clause, C1, and consider a strategy that saves all the leaves. We
know that this strategy must be well-behaved in the first 2n layers, which means, that,
for each variable xi, λi1 or λ̄i1 (or both) must be burning.

If more than one λi1 burns, it is not possible to save all the leaves. Since each of these
has a leaf child, a strategy can only protect one of the leaf children, and therefore any
additional children will burn. Therefore, we conclude that either one λi1 or none burn. If
none burn, we know that all of the vertices λ̄i1 must burn. However, if all of the λ̄i1 burn
since each of these has 2 leaf descendants, there are 6 leaves to save, all in disjoint paths,
in only 5 layers. This is clearly impossible, since the strategy would have to protect 6
vertices in 5 layers. We conclude that, if the strategy saves all the leaves, then there
must be there must be exactly one vertex λi1 and two vertices. λ̄i1 burning.

Now we simply need to prove that in this case, the solution is well behaved. Let λi1,
λ̄i
′

1 , λ̄i
′′

1 be the burning vertices. Since λi1 has one leaf child, the strategy must protect in
the first time step, since it will otherwise burn. Now, there are 4 leaves left (2 descendants
of λ̄i′1 , λ̄i

′′
1 each) left to save, and there are also 4 layers left. At this point, the fire is

at distance at most 2 from two of the leaves (those on the shorter paths). Therefore,
the strategy must protect one vertex in each of these shorter paths. After that, the fire
reaches the third layer of the clause, and again the remaining two leaves are at distance
at most 2 from the fire, so the strategy must protect a vertex in each of the paths.

If the instance has only one clause, the proof is complete, and otherwise, the five
layers corresponding to C1 do not affect the strategy in the remaining layers, as only
vertices corresponding to this clause were protected. Therefore, the instance is now
similar to one with fewer clauses, and the induction hypothesis completes the proof.

The proof of the lemma follows easily: if φ is not satisfiable, then for each assignment
there must be one clause that is not satisfied. Since a solution must be well-behaved to
save all the leaves, this means that for any unsatisfied clause Cj , there will either be at
least two vertices λij burning, or all λ̄

i
j burn, after 2n+ 5(j − 1) steps. As we have seen

above, this implies that the solution cannot save all the leaves.

Hardness instance Gφ,B Given a budget B ≥ 1, we start by constructing a tree T ′φ
that satisfies the guarantees of Lemma 7.24 for strategies with budget B. For B = 1, we
have T ′φ = Tφ. For B > 1, we augment Tφ with some additional structure. Let r be the
root of Tφ, and h = height(Tφ) be its height. For every i ∈ [h], we add B − 1 paths of
length i from the root, ending at B − 1 distinct leaves (in layer i). We call the resulting
tree T ′φ. The idea is that any valid strategy for T ′φ must always protect B − 1 of the
recently added leaves, or it will fail to save all the leaves. The remaining vertex can then
be used to recreate a strategy in Tφ.

Observation 7.25. T ′φ has at most 28n2(B + 1) vertices and height 7n.

132

7.3. The Firefighter Problem on Bounded-Treewidth Graphs

Proof. The height of T ′φ is the same as Tφ, which by Observation 7.23 is h = 7n.
For each i ∈ [h] we add (B − 1)i vertices to the tree, for a total of h(h+ 1)(B − 1)/2

vertices. Since h = 7n, we add at most 28n2(B−1) vertices. By Observation 7.23, Tφ has
at most 56n2 vertices, so T ′φ has at most 56n2 + 28n2(B− 1) = 28n2(B+ 1) vertices.

Let ε > 0, and let N = (2|T ′φ|)1/ε. We construct Gφ,B by adding, to T ′φ, 2B + 2 gate
vertices g1, . . . , g2B+2 and M = N −|T ′φ|− (2B+ 2) drones (so |V (Gφ,B)| = N). We also
add edges connecting each gi to all the leaves of T ′φ (including the newly added ones), as
well as between each gi and all the drones.

Observation 7.26. Gφ,B has treewidth 2B + 3 and feedback vertex number 2B + 2.

Proof. Removing the gate vertices g1, . . . , g2B+2 turns Gφ,B into a forest, which implies
the feedback vertex number bound. To obtain a tree decomposition of width 2B + 3 for
Gφ,B, start by constructing a tree decomposition of width 1 for Gφ,B \{gi : i ∈ [2B + 2]},
and add g1, . . . , g2B+2 to all the bags.

Lemma 7.27. Let ε > 0, φ be a formula for CM-1-in-3-SAT and Gφ,B be the graph
constructed as above.

Then, if φ is CM-1-in-3-SAT-satisfiable there is a strategy for Gφ,B that saves at least
M vertices. Otherwise, there is no strategy for Gφ,B that saves more than 2|Tφ| vertices.

Proof. If φ is CM-1-in-3-SAT-satisfiable, we can construct a valid strategy that saves all
the leaves of T ′φ: we use the strategy of Lemma 7.24 to protect one vertex of Tφ per
layer, and protect the B − 1 added leaves in layer i at time i, i ∈ [h]. By saving all the
leaves, the fire cannot spread to the gate vertices or drones, which implies that at least
M vertices (the drones) are saved.

Consider now the case that φ is not satisfiable, and consider a strategy S for Gφ,B.
We say that S is respecting at time i (or on time step i) if, on time step i, it protects the
B − 1 added leaves in layer i, at most one vertex in Tφ, and none of the gate vertices or
drones.

By Lemma 7.24, we know that at least one leaf of Tφ burns if the strategy protects
at most one vertex per time step in Tφ. In this case, the fire reaches the gate vertices.
We will now show that the fire always reaches the gate vertices, and, by that time, S
can only protect 2B + 1 of the gate vertices. Since there are 2B + 2 gate vertices, one of
these burns, and the fire spreads on the next time step to all of the unprotected drones.
This implies that at most 3B + 1 of the vertices outside T ′φ can be saved.

Let i be the earliest time step on which a leaf burns or S is not respecting (i ≤ h
by Lemma 7.24). If S does not protect all the added leaves in layer i, then one of them
burns; hence we can reduce this to the case that a leaf burns. If any leaf in T ′φ burns,
then the fire reaches the gate vertices at time i+ 1. Since S is respecting up to time step
i− 1, it can only protect gate vertices on time steps i and i+ 1, and thus it can protect
at most 2B gate vertices.

If no leaf burns on time step i, but S is not respecting, then S must protect a vertex
outside T ′φ, and therefore does not protect a vertex in Tφ. In this case, S protects at most
1 gate vertex on this time step. By Lemma 7.24, there are always leaves in Tφ that are 2
time steps away from the fire; since no vertex in Tφ is protected at time i, the fire is now
1 step ahead, and hence there are always leaves that are 1 time step away from the fire.

133

Chapter 7. Firefighter Problem beyond Trees

Let i′ > i be the earliest time step after i on which a leaf burns or S is not respecting
(again, i′ ≤ h by Lemma 7.24). As above, if S does not protect all the added leaves in
layer i, then a leaf burns. Furthermore, if no vertex in Tφ is protected, the leaves that
are 1 time step away from the fire burn. Therefore, at least one leaf burns at time i′,
and the fire reaches the gate vertices at time i′ + 1. S can protect 2B gate vertices on
time steps i′, i′ + 1, plus 1 more at time i, for a total of 2B + 1 gate vertices.

As we have shown above, at most 2B + 1 gate vertices can be protected for any
strategy S, which implies at most 3B + 1 vertices outside of T ′φ can be saved. Since
3B + 1 < |T ′φ|, S saves at most 2|T ′φ| vertices, as desired.

We conclude that if φ is CM-1-in-3-SAT-satisfiable, there is a strategy saving at least
M = N − |T ′φ| − 4 ≥ N − N ε ≥ N1−ε, and otherwise, no strategy saves more than
2|T ′φ| = N ε vertices. This concludes the proof of Theorem 7.4.

Furthermore, Theorem 7.4 tells us that, unless tw(G) ≤ 2B + 2, Max-FF cannot be
n1−ε-approximated on G. In other words, if B ≥ (tw(G)− 2)/2 = tw(G)/2− 1, a better
approximation may exist, as stated in Corollary 7.6.

134

CHAPTER 8
Conclusion and Open Problems

Our research on the firefighter problem has the goal of clarifying the aproximability of
the problem in two settings: on trees, constant approximation algorithms are known, and
we focused on the limitations of current techniques, as well as on overcoming them; on
bounded-treewidth graphs, we sought to study the influence of treewidth on the approx-
imability of the problem, and to determine when the problem becomes inapproximable,
as it is known to be in general graphs [ACH+12].

Until the recent PTAS was discovered by Adjiashvili et al. [ABZ17], the best approxi-
mation result on trees was a (1−1/e)-approximation algorithm by LP rounding [CVY08].
We show that this is essentially the best possible approximation ratio that can be ob-
tained by comparing to the optimum value of the standard LP, since there are instances
with integrality gap arbitrarily close to 1− 1/e.

We then present some evidence that a stronger LP, suggested by Hartke [Har04],
might allow for better approximation results: we improve the approximation ratio when
rounding half-integral solutions, as well as instances we call separable, which include the
integrality gap instances for the standard LP. While Hartke’s LP cannot be rounded to
obtain an approximation factor better than 5/6, it is possible that a family of progressively
stronger constraints can lead to better approximation algorithms, until a PTAS is
achieved (matching the result of Adjiashvili et al. [ABZ17]).

Despite the existence of a PTAS for Max-FF on trees, the problem is known to be
n1−ε-inapproximable in general graphs. We show that this inapproximability carries over
to much simpler graphs, with treewidth 5, or treewidth 2B+ 3 for instances with budget
B. This also implies that, on graphs of treewidth w, it is necessary that the budget
is at least B ≥ w/2 − 1, in order to obtain a subpolynomial approximation. On the
algorithmic side, we show that outerplanar graphs, a family of simple planar graphs with
treewidth 2, admit an O(1)-approximation algorithm.

In our opinion, these results help us understand the approximability of Max-FF,
as well as the applicability of current techniques. Furthermore, they also raise other
questions about the complexity of the problem, which have yet to be answered.

8.1 Open Problems

Regarding Max-FF on trees, the question of approximability has been answered by Ad-
jiashvili et al. [ABZ17]. We would find it interesting to obtain an LP rounding algo-
rithm that directly implies a PTAS, by using progressively stronger LP relaxations (see
e.g. [Lau03]). It is possible that Hartke’s LP is one step in this direction, but its inte-
grality gap is only known to lie between 1− 1/e and 5/6. Another question of interest
regarding an LP for the problem would be to solve the LP in linear-time. This would
imply a (1− 1/e)-approximation, or even a PTAS, with a fast running time.

Chapter 8. Conclusion and Open Problems

Open Problem 8.1. What is the integrality gap of Hartke’s LP?

Open Problem 8.2. Is it possible to obtain a PTAS by rounding a family of progres-
sively stronger LP relaxations?

Open Problem 8.3. Is it possible to solve the LP for Max-FF on trees with linear
running time?

On the opposite end of the spectrum, one might ask if it is possible to obtain a PTAS
or at least a good constant approximation with a fully combinatorial algorithm, especially
with a linear running time. The best known result with these properties is the greedy
2-approximation algorithm by Hartnell and Li [HL00]. Anshelevich et al. [ACH+12] show
that Max-FF on trees can be formulated as maximizing a monotone submodular function
subject to a partition matroid constraint. Interestingly, the same approximation factors,
of 1 − 1/e for an LP rounding algorithm, and 2 for a greedy algorithm, are the best
known for this more general problem. While this problem is NP-hard to approximate to
a factor better than 1 − 1/e [FGM+06], it would be interesting to obtain an improved
combinatorial approximation algorithm, both for Max-FF on trees and the submodular
function maximization problem above.

Open Problem 8.4. Is there a combinatorial algorithm for Tree-FF with an approxi-
mation factor better than 2?

Open Problem 8.5. Is there a combinatorial algorithm with an approximation factor
better than 2 for the monotone submodular function maximization problem subject to a
partition matroid constraint?

For the bounded-treewidth setting, the main open question is to determine the
smallest value of treewidth such that Max-FF is inapproximable. If multiple firefighters
per time step are allowed, we can also ask how large the budget B must be, as a function
of treewidth, for a constant approximation to Max-FF to a exist. Our results show that
B ≥ w/2−1 necessarily, where w is the treewidth of the input graph; however, there is no
known constant approximation algorithm, even for any B and treewidth 2. We conjecture
that, similarly to the surviving rate [CCV+10], a good approximation is possible if and
only if B ≥ w.

Open Problem 8.6. Is it NP-hard to n1−ε-approximate Max-FF with budget B on
graphs of treewidth B + 1, for any ε > 0, B ≥ 1?

Open Problem 8.7. Is there an O(1)-approximation algorithm for Max-FF on graphs
of treewidth w, with budget B ≥ w?

While Max-FF may be hard to approximate even in bounded-treewidth graphs, it is
possible that, on graphs with more structure such as planar graphs, better approximation
algorithms do exist. Indeed, our result for outerplanar graphs uses planarity, as well
as other properties, to obtain an O(1)-approximation, and our hardness instances are
not planar. This could suggest that planarity might be exploited to obtain constant
approximations to the problem. One good starting point could be grid graphs, which
could benefit from previous work on fire containment in infinite grids (see [FM09]).

136

8.1. Open Problems

...

Figure 8.1: Example of Ω(n)-completable instance with treewidth 2, consisting of
(n− 4)/5 parallel paths. The fire source is marked as a filled square (red), a vertex v is
marked as a filled circle. The vertices delayed and influenced by v are the vertices inside
the dashed (green) and full (blue) curve, respectively. In order to save all the vertices
delayed by v, (n− 4)/5 > n/10 vertices must be protected (one per path).

Open Problem 8.8. Is there a constant approximation for Max-FF on grid graphs?

Open Problem 8.9. Is there a constant approximation for Max-FF on planar graphs?

Our result for outerplanar graphs relies on the notion of k-completable graphs, by
showing that, in such graphs, a simple greedy algorithm that considers k vertices at a
time outputs a constant approximation to the problem. It might be possible to improve
both the running time, and the dependence of the approximation ratio on the value
of k. Moreover, there are simple examples of graphs with treewidth 2 that are not
(n/10)-completable (see Figure 8.1). However, a similar idea of covering all of the
vertices saved by the solution, using small vertex cuts, seems to work intuitively in these
examples. This suggests that the notion of k-completable graphs might not be the most
adequate, and raises the question of whether a better definition exists.

Open Problem 8.10. Can we improve the running time of the approximation algorithm
for outerplanar graphs?

Open Problem 8.11. Can we improve the approximation ratio for k-completable
graphs?

137

Chapter 8. Conclusion and Open Problems

Open Problem 8.12. Is there a better notion of k-completable, such that treewidth-2
graphs are k-completable, for some constant k?

Finally, it is worthwhile to discuss how to extend the firefighter problem, so that it
could be used to model real-world situations more accurately. In epidemiology, one of
the best-known models is the SIR model (see e.g. [Het00]), which stands for Susceptible,
Infectious, and Removed, the three states that an individual can be in the model. The
Max-FF problem uses a restricted version of the SIR model in which susceptible individuals
can become infectious by being infected by a neighbor, or become removed by being
protected by the strategy. It would be interesting to generalize the Max-FF problem so
that infectious individuals can recover and gain immunity. An example of such a problem
could be to minimize the maximum number of simultaneous infectious individuals, given
a budget for vaccination per time step. To the extent of our knowledge, no effort has
been made to solve such problems or analyze their computational complexity.

138

APPENDIX A
Appendix for Part I

A.1 Omitted proofs of Chapter 3

A.1.1 Proof of Lemma 3.17

Lemma 3.17 (page 27). Let (Ω,F , P) be a probability space, Ai ∈ F be events with
indicator variable Xi and X =

∑
iXi.

Then E[X | X ≥ 1] ≤ maxi E[X | Ai].

Proof. We will now consider a probability space conditioned on X ≥ 1. Formally, we
consider a probability space (Ω′,F ′, P ′), with Ω′ =

⋃
iAi, F ′ = {A ⊆ F | A ⊆ Ω′} and

P ′(A) =
P (A)

P (Ω′)
=

P (A)

P (X ≥ 1)

We will write E[Z] for the expected value of Z with probability function P , and E′[Z]
with probability function P ′.

This formulation allows us to state some interesting facts. We start by showing that
E′[X] = E[X | X ≥ 1]. Indeed,

E′[X] =
∑
i

P ′(Ai) =
∑
i

P (Ai)

P (X ≥ 1)
=

E(X)

P (X ≥ 1)
= E[X | X ≥ 1]

Similarly, we can show that E′(X | Ai) = E(X | Ai):

E′[X | Ai] =
∑
j

P ′(Aj ∩Ai)
P ′(Ai)

=
∑
j

P (Aj ∩Ai)/P (X ≥ 1)

P (Ai)/P (X ≥ 1)

= E[X | Ai]

We can now finish the proof using the above facts, together with Jensen’s inequality,

Appendix A. Appendix for Part I

E′[X]2 ≤ E′[X2]:

E′[X]2 ≤ E′[X2]

=
∑
i,j

P ′(A′i ∩A′j)

=
∑
i

P ′(Ai)
∑
j

P ′(Aj | Ai)

=
∑
i

P ′(Ai) E′[X | Ai]

=
∑
i

P ′(Ai) E[X | Ai]

≤
∑
i

P ′(Ai) max
i

E[X | Ai]

= E′(X) max
j

E[X | Aj]

Rearranging and replacing E′[X] = E[X | X ≥ 1], we get:

E[X | X ≥ 1] ≤ max
j

E[X | Aj]

140

A.2. Algorithms

A.2 Algorithms

A.2.1 Rounding Algorithm of Garg et al. [GKR00]

function ApproxGST(G, c, r, {Si}i∈[h])
// First solve the LP
x, f ← SolveLP(G, c, r, {Si}i∈[h])

// Repeat rounding ` log n log h times for some large `
for i ∈ [` log n log h] do

Fi ← RoundGKR(G, r, x)
end for
F̂ ←

⋃
i∈[` logn log h] Fi

// If a group is not covered, connect it using a shortest path
for i ∈ [h] do

if F̂ ∩ Si = ∅ then
F̂ ← F̂ ∪ ShortestPath(r, Si)

end if
end for

return F
end function

function RoundGKR(G, r, x)
F ← ∅ // Our solution

for e ∈ E(G) in BFS order from r do
if p(e) ∈ F then

Add e to F with probability xe/xp(e)
end if

end for

return F̂
end function

Algorithm A.1: Complete algorithm to approximate GST [GKR00].

141

Appendix A. Appendix for Part I

A.2.2 Modified Rounding Algorithm for STGST (Section 3.4.2)

function RoundMod(T̃ , T̃p, x)
Y ← ∅ // Our solution

for e = (λ, t̃) ∈ E(T̃) in BFS order do
if e ∈ Y and t̃ ∈ T̃ \ T̃p then

// If t̃ is a combination node, choose independently
for e′ ∈ E(T̃) children of e (p(e′) = e) do

Add e′ to Y with probability xe′/xe
end for

else if e ∈ Y and t̃ ∈ T̃p then
// Otherwise, choose exactly one edge
Pick exactly one child edge e′ of e, with probability xe′/xe.
Add e′ to Y

end if
end for

return Y
end function

Algorithm A.2: Modified algorithm for rounding an instance of Theorem 3.38.

142

A.2. Algorithms

A.2.3 Rounding Algorithm for GSF (Section 3.5)

function ApproxGSF(G, c, {(Ai, Bi)}i∈[h])
F̂ ← ∅ // Our solution
P ← [h] // Set of yet uncovered group pairs

while |P | > 0 do
// Compute solution for every choice for the root
for r ∈ V do

Fr ← ApproxMDGSF(G, c, r, {(Ai, Bi)}i∈P)
end for

// Choose best solution in this iteration
F ′ ← argmin {d(Fr) : r ∈ V }
F̂ ← F̂ ∪ F ′

// Update P
for i ∈ [h] do

Remove i from P if F ′ connects Ai to Bi
end for

end while

return F̂
end function

Algorithm A.3: Algorithm to approximately solve GSF.

143

Appendix A. Appendix for Part I

A.2.4 Rounding Algorithm for MDGSF (Section 3.5)

function ApproxMDGSF(G, c, r, {(Ai, Bi)}i∈[h])
// Build an instance of MDSTGSF for

⋃
i∈[h]{Ai, Bi}(

T̃ , c̃, r̃, S̃, T̃c, T̃p
)
←MDSTGSF(G, c, r,

⋃
i∈[h]{Ai, Bi})

// Solve the LP
x, y ← SolveLP-MDSTGSF(T̃ , c̃, r̃, {(Ãi, B̃i) : i ∈ P})

// Choose the best bucket
Choose j∗ = argmaxj∈[2 log h]

∑
i∈Yj yi,

where Yj = {i ∈ [h] : 2−j < yi ≤ 2−(j−1)}

// Repeat rounding 2j
∗
` log n times for some large `

for i ∈ [2j
∗
` log n] do

Fi ← RoundMod(T̃ , T̃p, x′) // From Algorithm A.2
end for

return
⋃
i∈[` logn] Fi

end function

Algorithm A.4: Algorithm to approximately solve MDGSF.

144

A.2. Algorithms

A.2.5 Algorithm for Connectivity-K Mimicking Networks (Section 4.3)

function ConnKMimNet(G, X, K)
// ViolatingCut computes a cut that violates connectivity-K linkedness, i.e.

|E(A,B)| < min(|X ∩A|, |X ∩B|,K)
(A,B)← ViolatingCut(G,X,K)

// Return a star containing all terminals, centered at a steiner vertex v
if no such cut exists then

return (X ∪ v, {(v, u) : u ∈ X})
end if

Let GA ← G[A], XA ← T ∩A, GB ← G[B], XB ← T ∩B
for every edge (u, v) ∈ E(A,B) do

Add a terminal tuv to GA, XA and edge (u, tuv) to GA
Add a terminal tvu to GB, XB and edge (u, tvu) to GB

end for

HA ← ConnKMimNet(GA, XA,K), HB ← ConnKMimNet(GB, XB,K)
H ← HA ∪HB

for every edge (u, v) ∈ EG(A,B) do
Remove tuv, tvu from H
Add edge (u, v) to H

end for

return H
end function

Algorithm A.5: Algorithm for computing a minor connectivity-K mimicking network.

145

Appendix A. Appendix for Part I

146

APPENDIX B
Appendix for Part II

B.1 Algorithms

function GreedyFF(G, s, w, B, k)
U ← ∅ // Our strategy
B ← {s} // Set of burning vertices

// While the fire is spreading
while N(B) \ U 6= ∅ do

// Find best set of k vertices
Find Q, |Q| ≤ k, such that

U ∪Q is schedulable,
Q maximizes the weight of vertices saved in G \ U .

U ← U ∪Q, B ← B ∪N(B) \Q
end while

return U
end function

Algorithm B.1: Greedy algorithm for k-completable and k-weak-completable graphs.

Appendix B. Appendix for Part II

B.2 Integrality instance for LP-Hartke (α = 2)

s

s

s

s

s

Figure B.1: Full example of the integrality gap instance for LP-Hartke, when α = 2.
Special vertices (xv = 1/2) are colored black.

148

Bibliography

[AB18] Amir Abboud and Greg Bodwin. Reachability preservers: New extremal
bounds and approximation algorithms. In Artur Czumaj, editor, Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
1865–1883. SIAM, 2018.

[ABZ17] David Adjiashvili, Andrea Baggio, and Rico Zenklusen. Firefighting on
trees beyond integrality gaps. In Philip N. Klein, editor, Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
2364–2383. SIAM, 2017.

[ACH+12] Elliot Anshelevich, Deeparnab Chakrabarty, Ameya Hate, and Chaitanya
Swamy. Approximability of the firefighter problem – computing cuts over
time. Algorithmica, 62(1-2):520–536, 2012.

[AKP+95] Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West. A graph-
theoretic game and its application to the k-server problem. SIAM J. Com-
put., 24(1):78–100, 1995.

[Aro98] Sanjeev Arora. Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems. J. ACM, 45(5):753–782, 1998.

[Bü11] İSMET Esra Büyüktahtakin. Dynamic Programming Via Linear Program-
ming. Wiley Online Library, 2011.

[Bak94] Brenda S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. J. ACM, 41(1):153–180, 1994.

[Bar96] Yair Bartal. Probabilistic approximations of metric spaces and its algorith-
mic applications. In 37th Annual Symposium on Foundations of Computer
Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages
184–193. IEEE Computer Society, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics. In
Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Sym-
posium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
pages 161–168. ACM, 1998.

[BB73] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic program-
ming. J. Comb. Theory, Ser. A, 14(2):137–148, 1973.

[BBM+13] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya
Raskhodnikova, and Grigory Yaroslavtsev. Approximation algorithms for
spanner problems and directed Steiner forest. Inf. Comput., 222:93–107,
2013.

Bibliography

[BCC+14] Cristina Bazgan, Morgan Chopin, Marek Cygan, Michael R. Fellows, Fe-
dor V. Fomin, and Erik Jan van Leeuwen. Parameterized complexity of
firefighting. J. Comput. Syst. Sci., 80(7):1285–1297, 2014.

[BCK+15] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof.
Deterministic single exponential time algorithms for connectivity problems
parameterized by treewidth. Inf. Comput., 243:86–111, 2015.

[BCR13] Cristina Bazgan, Morgan Chopin, and Bernard Ries. The firefighter problem
with more than one firefighter on trees. Discret. Appl. Math., 161(7-8):899–
908, 2013.

[BDD+16] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin,
Daniel Lokshtanov, and Michal Pilipczuk. A ck n 5-approximation algorithm
for treewidth. SIAM J. Comput., 45(2):317–378, 2016.

[BDH+16] MohammadHossein Bateni, Erik D. Demaine, MohammadTaghi Hajiaghayi,
and Dániel Marx. A PTAS for planar group Steiner tree via spanner boot-
strapping and prize collecting. In Daniel Wichs and Yishay Mansour, editors,
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
570–583. ACM, 2016.

[BDT14] Glencora Borradaile, Erik D. Demaine, and Siamak Tazari. Polynomial-time
approximation schemes for subset-connectivity problems in bounded-genus
graphs. Algorithmica, 68(2):287–311, 2014.

[BG07] André Berger and Michelangelo Grigni. Minimum weight 2-edge-connected
spanning subgraphs in planar graphs. In Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata, Languages
and Programming, 34th International Colloquium, ICALP 2007, Wroclaw,
Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in
Computer Science, pages 90–101. Springer, 2007.

[BGH+95] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks.
Approximating treewidth, pathwidth, frontsize, and shortest elimination
tree. J. Algorithms, 18(2):238–255, 1995.

[BHM11] MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Approximation schemes for Steiner forest on planar graphs and graphs of
bounded treewidth. J. ACM, 58(5):21:1–21:37, 2011.

[BKM15] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-
time approximation scheme for Euclidean Steiner forest. ACM Trans. Al-
gorithms, 11(3):19:1–19:20, 2015.

[Bod88] Hans L. Bodlaender. NC-algorithms for graphs with small treewidth. In
Jan van Leeuwen, editor, Graph-Theoretic Concepts in Computer Science,
14th International Workshop, WG ’88, Amsterdam, The Netherlands, June

150

Bibliography

15-17, 1988, Proceedings, volume 344 of Lecture Notes in Computer Science,
pages 1–10. Springer, 1988.

[BPT92] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation
of linear-time algorithms from predicate calculus descriptions of problems
on recursively constructed graph families. Algorithmica, 7(5&6):555–581,
1992.

[BT97] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1st edition, 1997.

[BZ17] Glencora Borradaile and Baigong Zheng. A PTAS for three-edge-connected
survivable network design in planar graphs. In Klaus Jansen, José D. P.
Rolim, David Williamson, and Santosh S. Vempala, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, volume 81 of LIPIcs, pages 3:1–3:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[CC10] Parinya Chalermsook and Julia Chuzhoy. Resource minimization for fire
containment. In Moses Charikar, editor, Proceedings of the Twenty-First An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, January 17-19, 2010, pages 1334–1349. SIAM, 2010.

[CC14] Janka Chlebíková and Morgan Chopin. The firefighter problem: A structural
analysis. In Marek Cygan and Pinar Heggernes, editors, Parameterized and
Exact Computation - 9th International Symposium, IPEC 2014, Wroclaw,
Poland, September 10-12, 2014. Revised Selected Papers, volume 8894 of
Lecture Notes in Computer Science, pages 172–183. Springer, 2014.

[CCC+99] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel,
Sudipto Guha, and Ming Li. Approximation algorithms for directed Steiner
problems. J. Algorithms, 33(1):73–91, 1999.

[CCK08] Tanmoy Chakraborty, Julia Chuzhoy, and Sanjeev Khanna. Network de-
sign for vertex connectivity. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 167–176. ACM, 2008.

[CCP+11] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maxi-
mizing a monotone submodular function subject to a matroid constraint.
SIAM J. Comput., 40(6):1740–1766, 2011.

[CCV+10] Leizhen Cai, Yongxi Cheng, Elad Verbin, and Yuan Zhou. Surviving rates of
graphs with bounded treewidth for the firefighter problem. SIAM J. Discret.
Math., 24(4):1322–1335, 2010.

[CDD+13] Vítor Costa, Simone Dantas, Mitre Costa Dourado, Lucia Draque Penso,
and Dieter Rautenbach. More fires and more fighters. Discret. Appl. Math.,
161(16-17):2410–2419, 2013.

151

Bibliography

[CDE+18] Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit,
and Daniel Vaz. Survivable network design for group connectivity in low-
treewidth graphs. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David
Steurer, editors, Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX/RANDOM 2018, August
20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs, pages 8:1–8:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[CDK+17] Eden Chlamtác, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit.
Approximating spanners and directed Steiner forest: Upper and lower
bounds. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 534–553. SIAM, 2017.

[CDL+17] Parinya Chalermsook, Syamantak Das, Bundit Laekhanukit, and Daniel Vaz.
Beyond metric embedding: Approximating group Steiner trees on bounded
treewidth graphs. In Philip N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 737–751. SIAM,
2017.

[CEG+11] Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set con-
nectivity problems in undirected graphs and the directed Steiner network
problem. ACM Trans. Algorithms, 7(2):18:1–18:17, 2011.

[CEK06] Chandra Chekuri, Guy Even, and Guy Kortsarz. A greedy approximation
algorithm for the group Steiner problem. Discret. Appl. Math., 154(1):15–34,
2006.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameter-
ized Algorithms. Springer, 2015.

[CG04] Douglas E. Carroll and Ashish Goel. Lower bounds for embedding into
distributions over excluded minor graph families. In Susanne Albers and
Tomasz Radzik, editors, Algorithms - ESA 2004, 12th Annual European
Symposium, Bergen, Norway, September 14-17, 2004, Proceedings, volume
3221 of Lecture Notes in Computer Science, pages 146–156. Springer, 2004.

[CGL15] Parinya Chalermsook, Fabrizio Grandoni, and Bundit Laekhanukit. On
survivable set connectivity. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 25–36. SIAM, 2015.

[CGS+04] Artur Czumaj, Michelangelo Grigni, Papa A. Sissokho, and Hairong Zhao.
Approximation schemes for minimum 2-edge-connected and biconnected
subgraphs in planar graphs. In J. Ian Munro, editor, Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 496–505.
SIAM, 2004.

152

Bibliography

[Chu12] Julia Chuzhoy. On vertex sparsifiers with Steiner nodes. In Howard J.
Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May
19 - 22, 2012, pages 673–688. ACM, 2012.

[CK04] Chandra Chekuri and Amit Kumar. Maximum coverage problem with group
budget constraints and applications. In Klaus Jansen, Sanjeev Khanna, José
D. P. Rolim, and Dana Ron, editors, Approximation, Randomization, and
Combinatorial Optimization, Algorithms and Techniques, 7th International
Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, APPROX 2004, and 8th International Workshop on Random-
ization and Computation, RANDOM 2004, Cambridge, MA, USA, August
22-24, 2004, Proceedings, volume 3122 of Lecture Notes in Computer Sci-
ence, pages 72–83. Springer, 2004.

[CK12] Julia Chuzhoy and Sanjeev Khanna. An O(k3 log n)-approximation algo-
rithm for vertex-connectivity survivable network design. Theory Comput.,
8(1):401–413, 2012.

[CLL+10] Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. Vertex sparsifiers
and abstract rounding algorithms. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las
Vegas, Nevada, USA, pages 265–274. IEEE Computer Society, 2010.

[CMZ12] Markus Chimani, Petra Mutzel, and Bernd Zey. Improved Steiner tree
algorithms for bounded treewidth. J. Discrete Algorithms, 16:67–78, 2012.

[CNP+11] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan
M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity
problems parameterized by treewidth in single exponential time. In Rafail
Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150–159. IEEE Computer Society, 2011.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Inf. Comput., 85(1):12–75, 1990.

[CP05] Chandra Chekuri and Martin Pál. A recursive greedy algorithm for walks
in directed graphs. In 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, pages 245–253. IEEE Computer Society, 2005.

[Cra15] Meggan E. Craft. Infectious disease transmission and contact networks in
wildlife and livestock. Philosophical Transactions of the Royal Society B:
Biological Sciences, 370(1669), 5 2015.

[CSW+00] Shiva Chaudhuri, K. V. Subrahmanyam, Frank Wagner, and Christos D.
Zaroliagis. Computing mimicking networks. Algorithmica, 26(1):31–49,
2000.

153

Bibliography

[CV07] Joseph Cheriyan and Adrian Vetta. Approximation algorithms for network
design with metric costs. SIAM J. Discret. Math., 21(3):612–636, 2007.

[CV16] Parinya Chalermsook and Daniel Vaz. New integrality gap results for the
firefighters problem on trees. In Klaus Jansen and Monaldo Mastrolilli,
editors, Approximation and Online Algorithms - 14th International Work-
shop, WAOA 2016, Aarhus, Denmark, August 25-26, 2016, Revised Selected
Papers, volume 10138 of Lecture Notes in Computer Science, pages 65–77.
Springer, 2016.

[CVV06] Joseph Cheriyan, Santosh S. Vempala, and Adrian Vetta. Network design
via iterative rounding of setpair relaxations. Combinatorica, 26(3):255–275,
2006.

[CVY08] Leizhen Cai, Elad Verbin, and Lin Yang. Firefighting on trees: (1 − 1/e)-
approximation, fixed parameter tractability and a subexponential algorithm.
In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga, editors, Al-
gorithms and Computation, 19th International Symposium, ISAAC 2008,
Gold Coast, Australia, December 15-17, 2008. Proceedings, volume 5369 of
Lecture Notes in Computer Science, pages 258–269. Springer, 2008.

[CW09] Leizhen Cai and Weifan Wang. The surviving rate of a graph for the
firefighter problem. SIAM J. Discret. Math., 23(4):1814–1826, 2009.

[d’E63] F. d’Epenoux. A probabilistic production and inventory problem. Manage-
ment Science, 10(1):98–108, 1963.

[dFR01] Daniela Pucci de Farias and Benjamin Van Roy. Approximate dynamic
programming via linear programming. In Thomas G. Dietterich, Suzanna
Becker, and Zoubin Ghahramani, editors, Advances in Neural Information
Processing Systems 14 [Neural Information Processing Systems: Natural and
Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia,
Canada], pages 689–695. MIT Press, 2001.

[DH07] Mike Develin and Stephen G. Hartke. Fire containment in grids of dimension
three and higher. Discret. Appl. Math., 155(17):2257–2268, 2007.

[DHK05] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi
Kawarabayashi. Algorithmic graph minor theory: Decomposition, approxi-
mation, and coloring. In 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, pages 637–646. IEEE Computer Society, 2005.

[DHK11] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi
Kawarabayashi. Contraction decomposition in H-minor-free graphs
and algorithmic applications. In Lance Fortnow and Salil P. Vadhan,
editors, Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 441–450. ACM,
2011.

154

Bibliography

[DHK14] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Philip N. Klein. Node-
weighted Steiner tree and group Steiner tree in planar graphs. ACM Trans.
Algorithms, 10(3):13:1–13:20, 2014.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[DK99] Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded
pairwise distance. In Jeffrey Scott Vitter, Lawrence L. Larmore, and
Frank Thomson Leighton, editors, Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia,
USA, pages 750–759. ACM, 1999.

[DW71] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,
1(3):195–207, 1971.

[FBN15] Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding up
dynamic programming with representative sets: An experimental evalua-
tion of algorithms for Steiner tree on tree decompositions. Algorithmica,
71(3):636–660, 2015.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, 1998.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[FGM+06] Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviri-
denko. Tight approximation algorithms for maximum general assignment
problems. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26,
2006, pages 611–620. ACM Press, 2006.

[FHL+00] Stephen Finbow, Bert Hartnell, Q. Li, and K. Schmeisser. On minimizing the
effects of fire or a virus on a network. JCMCC. The Journal of Combinatorial
Mathematics and Combinatorial Computing, 33, 2000.

[FJW06] Lisa Fleischer, Kamal Jain, and David P. Williamson. Iterative rounding
2-approximation algorithms for minimum-cost vertex connectivity problems.
J. Comput. Syst. Sci., 72(5):838–867, 2006.

[FKM+07] Stephen Finbow, Andrew D. King, Gary MacGillivray, and Romeo Rizzi.
The firefighter problem for graphs of maximum degree three. Discret. Math.,
307(16):2094–2105, 2007.

[FKN12] Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation
algorithms for directed Steiner forest. J. Comput. Syst. Sci., 78(1):279–292,
2012.

[FM09] Stephen Finbow and Gary MacGillivray. The firefighter problem: a survey
of results, directions and questions. Australas. J Comb., 43:57–78, 2009.

155

Bibliography

[Fog03] Patricia Fogarty. Catching the fire on grids, 2003.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci.,
69(3):485–497, 2004.

[Gas10] Elisabeth Gassner. The Steiner forest problem revisited. J. Discrete Algo-
rithms, 8(2):154–163, 2010.

[GHP17] Gramoz Goranci, Monika Henzinger, and Pan Peng. Improved guarantees
for vertex sparsification in planar graphs. In Kirk Pruhs and Christian
Sohler, editors, 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages
44:1–44:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[GK11] Anupam Gupta and Jochen Könemann. Approximation algorithms for
network design: A survey. Surveys in Operations Research and Management
Science, 16(1):3–20, 1 2011.

[GKR00] Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approxima-
tion algorithm for the group Steiner tree problem. J. Algorithms, 37(1):66–
84, 2000.

[GKR10] Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. Tree embed-
dings for two-edge-connected network design. In Moses Charikar, editor,
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages
1521–1538. SIAM, 2010.

[GLL19] Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log2 k/ log log k)-
approximation algorithm for directed Steiner tree: a tight quasi-polynomial-
time algorithm. In Moses Charikar and Edith Cohen, editors, Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 253–264. ACM,
2019.

[GNR+04] Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Cuts,
trees and l1-embeddings of graphs. Combinatorica, 24(2):233–269, 2004.

[Gor15] Przemyslaw Gordinowicz. Planar graph is on fire. Theor. Comput. Sci.,
593:160–164, 2015.

[Gru10] Hermann Gruber. On balanced separators, treewidth, and cycle rank. CoRR,
abs/1012.1344, 2010.

[GTW13] Anupam Gupta, Kunal Talwar, and David Witmer. Sparsest cut on bounded
treewidth graphs: algorithms and hardness results. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 281–290. ACM, 2013.

156

Bibliography

[Hal76] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1):171–186,
Mar 1976.

[Har95] Bert Hartnell. Firefighter! an application of domination. In Manitoba
Conference on Combinatorial Mathematics and Computing, 1995.

[Har04] Stephen G. Hartke. Attempting to narrow the integrality gap for the fire-
fighter problem on trees. In James Abello and Graham Cormode, editors,
Discrete Methods in Epidemiology, Proceedings of a DIMACS Workshop,
New Brunswick, New Jersey, USA, March 18-19, 2004, volume 70 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 225–231. DIMACS/AMS, 2004.

[He13] M. Hauptmann and M. Karpinski (eds.). A compendium on steiner tree
problems, 2013.

[Het00] Herbert W. Hethcote. The mathematics of infectious diseases. SIAM Review,
42(4):599–653, 2000.

[HK03] Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability.
In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the
35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003,
San Diego, CA, USA, pages 585–594. ACM, 2003.

[HKK+07] Eran Halperin, Guy Kortsarz, Robert Krauthgamer, Aravind Srinivasan,
and Nan Wang. Integrality ratio for group Steiner trees and directed Steiner
trees. SIAM J. Comput., 36(5):1494–1511, 2007.

[HKN+98] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar
Ragde. Characterizing multiterminal flow networks and computing flows in
networks of small treewidth. J. Comput. Syst. Sci., 57(3):366–375, 1998.

[HKR+11] Stephan Held, Bernhard Korte, Dieter Rautenbach, and Jens Vygen. Com-
binatorial optimization in VLSI design. In Vasek Chvátal, editor, Com-
binatorial Optimization - Methods and Applications, volume 31 of NATO
Science for Peace and Security Series - D: Information and Communication
Security, pages 33–96. IOS Press, 2011.

[HL00] Bert Hartnell and Qiyan Li. Firefighting on trees: How bad is the greedy
algorithm? Congressus Numerantium, 145, 01 2000.

[HRZ01] Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky. An im-
proved approximation scheme for the group Steiner problem. Networks,
37(1):8–20, 2001.

[IKM11] Yutaka Iwaikawa, Naoyuki Kamiyama, and Tomomi Matsui. Improved
approximation algorithms for firefighter problem on trees. IEICE Trans.
Inf. Syst., 94-D(2):196–199, 2011.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner
network problem. Combinatorica, 21(1):39–60, 2001.

157

Bibliography

[JLR+17] Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and
Ondrej Suchý. Parameterized complexity of directed Steiner tree on sparse
graphs. SIAM J. Discret. Math., 31(2):1294–1327, 2017.

[JMV+02] Kamal Jain, Ion I. Mandoiu, Vijay V. Vazirani, and David P. Williamson.
A primal-dual schema based approximation algorithm for the element con-
nectivity problem. J. Algorithms, 45(1):1–15, 2002.

[Kar89] Richard M Karp. A 2k-competitive algorithm for the circle. Technical
report, 1989.

[KKL04] Guy Kortsarz, Robert Krauthgamer, and James R. Lee. Hardness of approx-
imation for vertex-connectivity network design problems. SIAM J. Comput.,
33(3):704–720, 2004.

[KKN12] Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. Approximating fault-
tolerant group-Steiner problems. Theor. Comput. Sci., 416:55–64, 2012.

[Kle05] Philip N. Klein. A linear-time approximation scheme for planar weighted
TSP. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages
647–657. IEEE Computer Society, 2005.

[KM10] Andrew D. King and Gary MacGillivray. The firefighter problem for cubic
graphs. Discret. Math., 310(3):614–621, 2010.

[KPZ19] Nikolai Karpov, Marcin Pilipczuk, and Anna Zych-Pawlewicz. An expo-
nential lower bound for cut sparsifiers in planar graphs. Algorithmica,
81(10):4029–4042, 2019.

[KR13] Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct
representations of terminal cuts. In Sanjeev Khanna, editor, Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1789–
1799. SIAM, 2013.

[KR14] Arindam Khan and Prasad Raghavendra. On mimicking networks repre-
senting minimum terminal cuts. Inf. Process. Lett., 114(7):365–371, 2014.

[KR17] Robert Krauthgamer and Inbal Rika. Refined vertex sparsifiers of planar
graphs. CoRR, abs/1702.05951, 2017.

[KV18] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer-Verlag Berlin Heidelberg, 6th edition, 2018.

[Lau03] Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre relaxations for 0-1 programming. Math. Oper. Res., 28(3):470–496,
2003.

[LMS98] Nathan Linial, Avner Magen, and Michael E Saks. Low distortion euclidean
embeddings of trees. Israel Journal of Mathematics, 106(1):339–348, 1998.

158

Bibliography

[LPS19] Yang P. Liu, Richard Peng, and Mark Sellke. Vertex sparsifiers for c-edge
connectivity. CoRR, abs/1910.10359, 2019.

[Man60] Alan S. Manne. Linear programming and sequential decisions. Manage.
Sci., 6(3):259–267, 4 1960.

[Mat99] Jiří Matoušek. On embedding trees into uniformly convex banach spaces.
Israel Journal of Mathematics, 114(1):221–237, 1999.

[MM10] Konstantin Makarychev and Yury Makarychev. Metric extension operators,
vertex sparsifiers and lipschitz extendability. In 51th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2010, October 23-26,
2010, Las Vegas, Nevada, USA, pages 255–264. IEEE Computer Society,
2010.

[MR01] Cristopher Moore and J. M. Robson. Hard tiling problems with simple tiles.
Discret. Comput. Geom., 26(4):573–590, 2001.

[MRC90] R. Kipp Martin, Ronald L. Rardin, and Brian A. Campbell. Polyhedral
characterization of discrete dynamic programming. Oper. Res., 38(1):127–
138, 1990.

[MSD+96] Milena Mihail, David Shallcross, Nate Dean, and Marco Mostrel. A commer-
cial application of survivable network design: ITP/INPLANS CCS network
topology analyzer. In Éva Tardos, editor, Proceedings of the Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January 1996,
Atlanta, Georgia, USA, pages 279–287. ACM/SIAM, 1996.

[MW03] Gary MacGillivray and Ping Wang. On the firefighter problem. JCMCC.
The Journal of Combinatorial Mathematics and Combinatorial Computing,
47, 2003.

[NPS11] Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted
Steiner tree and related problems. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 210–219. IEEE Computer
Society, 2011.

[Nut10] Zeev Nutov. Approximating Steiner networks with node-weights. SIAM J.
Comput., 39(7):3001–3022, 2010.

[Nut12] Zeev Nutov. Approximating minimum-cost connectivity problems via un-
crossable bifamilies. ACM Trans. Algorithms, 9(1):1:1–1:16, 2012.

[PDGF+15] Nathalie Peyrard, Simon De Givry, Alain Franc, Stephane Robin, Regis
Sabbadin, Thomas Schiex, and Matthieu Vignes. Exact and approximate
inference in graphical models: variable elimination and beyond. arXiv
preprint arXiv:1506.08544, 2015.

159

Bibliography

[PSS10] Stefan Porschen, Tatjana Schmidt, and Ewald Speckenmeyer. Complexity
results for linear XSAT-problems. In Ofer Strichman and Stefan Szeider,
editors, Theory and Applications of Satisfiability Testing - SAT 2010, 13th
International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, volume 6175 of Lecture Notes in Computer Science, pages 251–
263. Springer, 2010.

[RK03] Jonathan M. Read and Matt J. Keeling. Disease evolution on networks: the
role of contact structure. Proceedings of the Royal Society of London. Series
B: Biological Sciences, 270(1516):699–708, 4 2003.

[Rot11] Thomas Rothvoß. Directed Steiner tree and the Lasserre hierarchy. CoRR,
abs/1111.5473, 2011.

[RS84] Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width.
J. Comb. Theory, Ser. B, 36(1):49–64, 1984.

[RW89] Gabriele Reich and Peter Widmayer. Beyond Steiner’s problem: A VLSI
oriented generalization. In Manfred Nagl, editor, Graph-Theoretic Concepts
in Computer Science, 15th International Workshop, WG ’89, Castle Rolduc,
The Netherlands, June 14-16, 1989, Proceedings, volume 411 of Lecture
Notes in Computer Science, pages 196–210. Springer, 1989.

[SW16] Raazesh Sainudiin and David Welch. The transmission process: A com-
binatorial stochastic process for the evolution of transmission trees over
networks. Journal of Theoretical Biology, 410:137 – 170, 2016.

[Tho98] Mikkel Thorup. All structured programs have small tree-width and good
register allocation. Inf. Comput., 142(2):159–181, 1998.

[Vaz01] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin,
Heidelberg, 2001.

[vLV] Erik Jan van Leeuwen and Daniel Vaz. The firefighter problem on bounded-
treewidth graphs. Unpublished manuscript.

[WM02] Ping Wang and Stephanie A Moeller. Fire control on graphs. Journal of
Combinatorial Mathematics and Combinatorial Computing, 41:19–34, 2002.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

160

Index

Notation

G[f], 9
DAG, 8
FPT, 12
LP, 13
XP, 12

approximation algorithm, 11
α(n)-inapproximable, 12
EPTAS, 12
FPTAS, 12
PTAS, 11
approximation factor, 11
approximation ratio, 11
efficient polynomial-time

approximation scheme, 12
fully-polynomial-time

approximation scheme, 12
polynomial time approximation

scheme, 11
arborescence, 8

in-arborescence, 8
out-arborescence, 8

cut, 7
cutset, 7
mincut, 7
separate, 7
weight, 7

directed acyclic graph, 8
rooted, 8

graph
arc, 7
head, 8
tail, 8

in-degree, 8
out-degree, 8
path, 7
length, 7

shortest path metric, 7

linear program, 13
1/k-integral, 14
constraints, 13
decision variables, 13
extreme point solution, 13
feasible solution, 13
half-integral, 14
integer program, 13
integral, 14
integrality gap, 14
against 1/k-integral solutions, 14

mixed integer program, 13
objective function, 13
optimum solution, 13
relaxation, 14
round, 14
solving, 13
support, 13
value, 13

parameterized problem, 12
fixed-parameter tractable, 12
slice-wise polynomial, 12

planar graph, 9
k-outerplanar graph, 9
faces, 9
outer face, 9
outerplanar graph, 9
plane graph, 9
subgraph of G induced by f , 9

tree
`-th ancestor, 8
d-ary, 8
ancestor, 8
children, 8
depth, 8

161

height, 8
lowest common ancestor, 8
parent, 8
subtree of G rooted at v, 8

tree decomposition, 9

bag, 9
belongs, 10
node, 10
width, 10

treewidth, 10

Network Design

tc(Y), 31
tc∗Z(Y), 36
d(F), 49
h(F), 49
k-ECSS, 59
DSF, 19
DST, 18
GKR, 21
GSF, 18
GST, 17
GroupSNDP, 58
MDGSF, 49
MDSTGSF, 51
SNDP, 57

connection set, 31
connectivity definition, 33, 36

global connectivity definition, 33, 36
local connectivity definition, 33, 36

connectivity-K mimicking network, 60,
70, 71

terminals, 71
connectivity-K-linked, 71

violating cut, 71
with respect to its neighbors, 71

consistent, 35, 63, 67

directed Steiner forest, 19
terminal pair, 21

directed Steiner tree, 18
terminal, 18

dynamic programming
optimal substructure, 30
state, 30

subinstance, 30

group Steiner forest, 18
group pair, 21
group pairs, 49
minimum-density group Steiner

forest, 49
group Steiner tree, 17

group, 17, 20

junction tree, 53

local connectivity definition, 76

metric tree embedding, 17
distortion, 19

mimicking network, 58

restricted group survivable network
design problem, 58

demand, 58, 61
groups, 58, 61

solution tree, 40
combination nodes, 40
subproblem nodes, 40

survivable network design problem, 57
demand, 60
terminals, 60

transitive closure, 31

vertex sparsifier, 58
quality-q sparsifier, 59
terminal, 58

162

Firefighter Problem

Firefighter Problem

(M,k′, δ)-good gadget, 91
LP-friendly:, 91
Integrally adversarial:, 91
special vertices, 91
Uniform depth:, 91

(U ,B)-risky, 91
(U ,B)-safe, 91
Gφ,B, 128, 133

drones, 129, 133
gate vertices, 129, 133

T ′φ, 132
Tφ, 128, 129
η-heavy, 103
η-light, 103
η-separable, 103
S, 91
k-completable, 122

dispersed, 121
k-weak-completable, 121
CM-1-in-3-SAT, 118
Max-FF, 85, 88
LP-Hartke, 98
Min-FF, 85
Outer-FF, 118
Tree-FF, 88
2-branching, 98

Cubic Monotone 1-in-3-SAT, 118
assignment, 118
clause, 118
variables, 118

delay vertex, 119

delayed, 119

firefighter problem, 85, 88
budget, 88
burning, 85
protect, 85
saved, 85, 87
source, 88

influenced, 120

partially protected, 106
good, 106

schedulable, 125
spider, 94

foot, 94
leg, 94

squad, 121
save, 121
separate, 121

strategy, 87
apply, 87
budget, 87
layered, 89
respecting, 133
saved, 87
valid strategy, 87

tour, 122
appearance, 122
slice, 122
subtour, 122

163

	Introduction
	Algorithms for NP-hard Problems Beyond Trees
	Problems and Contributions
	Organization

	Notation and Preliminaries
	Graph Notation
	Treewidth and Tree Decompositions
	Computational Regimes for Coping with NP-hardness
	Standard Algorithmic Tools

	Network Design on Bounded Treewidth Graphs
	Group Steiner Tree
	Problem Definitions and Results
	The Algorithm of Garg, Konjevod and Ravi
	Connectivity for GST on Bounded-Treewidth Graphs
	Solving GST on Bounded-Treewidth Graphs
	Group Steiner Forest on Bounded-Treewidth Graphs
	Directed Steiner Forest on Bounded-Treewidth Graphs

	Fault-Tolerant Group Steiner Tree
	Problem Definitions and Results
	Connectivity Lemma Based Approach
	Connectivity-K Mimicking Networks

	Conclusion and Open Problems
	Open Problems

	Firefighter Problem
	Firefighter Problem on Trees
	Problem Definitions and Results
	Standard Linear Program and Preliminaries
	Integrality Gap Instances for the Standard LP
	Improving the Standard LP with Hartke's Constraints

	Firefighter Problem beyond Trees
	Problem Definitions and Results
	The Firefighter Problem on Outerplanar Graphs
	The Firefighter Problem on Bounded-Treewidth Graphs

	Conclusion and Open Problems
	Open Problems

	Appendix
	Appendix for Part I
	Omitted proofs of Chapter 3
	Algorithms

	Appendix for Part II
	Algorithms
	Integrality instance for Hartke's LP (alpha=2)

