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Abstract

Causal inference is one of the fundamental problems in science. To
make absolute statements about cause and effect, carefully designed
experiments are necessary, in which we consider representative popu-
lations, instrument the putative cause, and control for everything else.
In practice, setting up such an experiment is often impossible, too
expensive, or unethical. The only option then is to consider causal
inference from observational studies where data has not been obtained
in a controlled manner.

A particularly interesting setting is to tell cause from effect between
a pair of random variables X and Y given a sample from their joint
distribution. For a long period of time, it was thought to be impossible
to distinguish between causal structures X → Y and Y → X from
observational data as the factorisation of the joint distribution is the
same in both directions. In the past decade, researchers have made a
long stride in this direction by exploiting sophisticated properties of
the joint distribution. Most of the existing methods, however, are for
continuous real-valued data.

In the first part of the thesis, we consider bivariate causal infer-
ence on different discrete data settings—–univariate i.i.d., univariate
non-i.i.d., and multivariate i.i.d. pairs. To this end, we build upon the
principle of algorithmic independence of conditionals (AIC), which
states that marginal distribution of the cause is algorithmically indepen-
dent of conditional distribution of the effect given the cause. However,
as Kolmogorov complexity is not computable, we approximate the
AIC from above through the statistically sound Minimum Description
Length (MDL) principle. On univariate i.i.d. and non-i.i.d. pairs,
where causal mechanisms are simple, we use refined MDL codes that
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are minimax optimal w.r.t. a model class. We resort to crude MDL
codes on a pair of multivariate i.i.d. variables.

Although useful, saying that there exists a causal relationship from
a set of variables towards a certain variable of interest does not always
fully satisfy one’s curiosity; for a domain expert it is of particular
interest to know those conditions that are most effective, such as
the combinations of drugs and their dosages that are most effective
towards recovery. Motivated by this problem, in the second part of this
thesis, we consider discovering statistically reliable causal rules from
observational data. Overall, extensive evaluations show that methods
proposed in this thesis are highly accurate, and discover meaningful
causations from real-world data.
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Zusammenfassung

Kausale Inferenz ist eines der grundlegenden Probleme in der Wis-
senschaft. Um absolute Aussagen über Ursache und Wirkung zu
treffen sind sorgfältig geplante Experimente notwendig, in denen
wir repräsentative Populationen betrachten, die mutmaßliche Ursache
messen und alle weiteren Umstände kontrollieren. In der Praxis ist die
Einrichtung eines solches Experiments oft unmöglich, zu teuer oder un-
ethisch. Die einzige Möglichkeit besteht dann darin kausale Schlussfol-
gerungen aus unkontrollierten Beobachtungsstudien zu ziehen.

Ein Problem von besonderem Interesse ist die Unterscheidung
zwishchen Ursache und Wirkung von einem Paar von Zufallsvariablen
X and Y . Lange Zeit wurde angenommen dass es unmöglich ist
zwischen den kausalen Strukturen X → Y und Y → X auf Grundlage
von Beobachtungsdaten zu unterscheiden, da die Faktorisierung der
gemeinsamen Verteilung in beide Richtungen die gleiche ist. Im
letzten Jahrzehnt haben Forscher jedoch große Fortschritte in diesem
Gebiet gemacht, indem Sie Komplexe Eigenschaften der gemeinsamen
Verteilung geschickt ausnutzen. Die meisten bestehenden Methoden
beziehen sich jedoch auf kontinuierliche, reellwertige Daten.

Im ersten Teil der Arbeit, betrachten wir bivariate kausale Inferenz
auf verschiedenen diskreten datenquellen—univariat i.i.d., univariat
nicht-i.i.d. und multivariat i.i.d. Paare. Zu diesem Zweck bauen
wir auf dem Prinzip der algorithmischen Unabhängigkeit von Kondi-
tionalen (AIC) auf, das besagt, dass die Randverteilung der Ursache
algorithmisch unabhängig von der bedingten Verteilung der Wirkung
gegeben der Ursache ist. Da die Kolmogorow-Komplexität jedoch
nicht berechenbar ist, nähern wir uns der AIC mithilfe des statistisch
soliden Minimum Description Length (MDL) Prinzips von oben an.
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Bei univariat i.i.d. und nicht i.i.d. Paaren, wo kausale Mechanismen
einfach sind, verwenden wir “refined” MDL Kodierungen welche min-
imax optimal bzgl. einer Modellklasse sind. Wir greifen auf “crude”
MDL Kodierungen für multivariat i.i.d. Variablen Paare zurück.

Obwohl die Aussage, dass ein kausaler Zusammenhang von einer
Menge von Variablen gegenüber einer bestimmten Variable existiert
nützlich ist, erfüllt nicht es immer vollständig jedermanns Interesse.
Für Experten in einem Bereich ist es von besonderem Interesse die
effektivsten Bedingungen zu kennen, wie z.B. die Kombination und
Dosierung von Medikamenten, die für die Genesung am effektivsten
sind. Durch diese Problemstellung motiviert, betrachten wir im zweiten
Teil dieser Arbeit die Entdeckung kausaler Regeln aus Beobachtungs-
daten. Allgemein zeigen umfangreiche Evaluierungen dass die vorgestell-
ten Methoden in dieser Arbeit sehr genau sind und sinnvolle Ursache-
Wirkungsverhaltnisse gefunden werden.
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Introduction 1

The ultimate goal of scientific data analysis is to understand the data
generating process. Towards that goal, we often study correlations
between variables as these may gain us insight into how and which vari-
ables interact with each other. For example, identifying how various
genes interact with each other is key to understanding the development
of tissues and organisms. There exist a large number of techniques at
our disposal to that end. With supervised learning, for instance, we can
learn a prediction function to understand how genes interact with the
phenotype. Often times, not only do we want to find out if variables
are correlated, but also guide further actions and policies from there.
For example, we might want to deactivate certain genes to treat an
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1. INTRODUCTION

illness without side-effects.
Correlations that we observe among variables, however, can mis-

lead us to take wrong actions. A classic example that illustrates this
problem is that of the correlation between ice cream sales and violent
crimes. In many cities, as ice cream sales rise, so do violent crimes.
Based on this observation, should we then stop selling ice cream to
reduce violent crimes? Of course not. Based on common sense, we
can all agree that ice cream sales go up in warm weather, and violent
crimes are also more likely when the temperatures rise. Therefore the
correlation that we observe between ice cream sales and violent crimes
is due to a third variable weather. This simple example shows that to
successfully enact on the system, i.e. to decide whether to stop selling
ice cream to reduce violent crimes, we have to know more than just
the fact that two or more variables are correlated. What we really need
to know is their causal relationship, i.e. whether one variable causes
the other.

To answer whether a variable X causes another variable Y , we
require a controlled experiment. In such an experiment, we externally
change the value of X only and observe Y , while leaving all other
variables in the system unchanged. Any change that we observe in Y ,
therefore, has to be due to X only, and hence we can tell whether X
causes Y . Conducting such an experiment in practice, however, is not
straightforward. For example, it is extremely difficult to control all fac-
tors that potentially influence the recovery (age, sex, diet, environment
to name a few) when assessing the efficacy of a drug. A pragmatic
alternative then is to conduct a randomised controlled trial where we
randomise the assignment of X to individuals, by which we mitigate
any influence on Y from factors other than X . In many cases, however,
conducting a randomised controlled trial may be simply impossible or

2



at least impractical or unethical. Finding a large number of volunteers
willing to face a violent crime—to find out if an increase in violent
crime causes an increase in ice cream sales—alone is a daunting task,
let alone the ethical side of committing crimes in the name of science.

For a long period of time, it was thought to be impossible to answer
causal questions without a controlled experiment. In many cases, we
would like to draw causal conclusions from settings where we do not
have full control over variables, but are reduced to mere observers,
i.e. observational studies. From observational data, we can estimate
the joint distribution to understand relationships between variables.
However, it may or may not be the same as the joint distribution we
would have observed had we run an experiment. Therefore we cannot
be certain whether X causes Y using effect measures based only on
the joint distribution. The goal of causal inference from observational
data is then to identify those conditions under which we can reason
about the true causal relationships based on the joint distribution.

Towards this goal, we can start by assessing whether variables are
dependent; after all we have been doing that for centuries. However, a
well-known axiom in statistics—correlation does not imply causation—
suggests that statistical properties of variables alone cannot determine
their causal structure. As discussed before, just because ice cream
sales correlates with violent crimes does not mean that ice cream sales
cause violent crimes. Is it then futile to study dependence between
variables in the hope of identifying their underlying causal relation?
No. Although we may not identify the exact causal relation, we can
infer the existence of causal relation between variables from their
statistical properties. Reichenbach (1956) was the first one to see this
connection.

3



1. INTRODUCTION

Z

X Y X Y X Y

FIGURE 1.1: Reichenbach’s common cause principle connects sta-
tistical relation to causal relation. A statistical dependence between
two variables X and Y implies that either (left) they have a common
cause Z, otherwise known as confounder, or that (middle) X causes
Y , or that (right) Y causes X . Furthermore X and Y are statistically
independent when conditioned upon Z. Note that the latter two cases
are special cases of the first case when Z coincides with either X or Y .

Principle 1 (Reichenbach’s Common Cause Principle). If two random
variables X and Y are statistically dependent (X 6⊥⊥ Y ), then either X
causes Y , or that Y causes X, or X and Y have a common cause Z.
Moreover, Z screens off the dependence between X and Y in the sense
that X and Y become independent (X ⊥⊥ Y ) when conditioned upon Z.

In Figure 1.1, we illustrate this principle with causal graphs where
a directed edge from X to Y implies X causes Y . Statistically, X → Y
represents a joint distribution P(X ,Y ) where we first generate a value
of X using the marginal distribution P(X), and then we generate a
value of Y using the conditional distribution P(Y | X). Let us examine
our ice cream sales example through the lens of this principle. We
observe that ice cream sales (X) and violent crimes (Y ) are dependent,
and based on common sense, we can rule out X → Y and Y → X .
This means that according to this principle, X ← Z→ Y has to be the
explanation for the dependence between X and Y , with Z for example

4
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FIGURE 1.2: Markov equivalent causal graphs. The three structures
encode the same conditional independence relation: (X ⊥⊥ Y ) | Z.

being the weather or some other unseen factor. Although useful in
its own right, this does not solve the problem of causal inference. In
scientific practice, we would like to draw conclusions based on the
evidence in the form of observed data instead of common sense which
may not be obvious in many problems.

The big problem with identifying causal graphs from observational
data is that different graphs can satisfy the same conditional inde-
pendence relation. All three causal graphs shown in Figure 1.2, for
instance, encode the same conditional independence: (X ⊥⊥ Y ) | Z.
Technically we say they are Markov equivalent. Using Reichenbach’s
common cause principle, we can hence identify causal structures only
up to Markov equivalence classes. Let us consider the implications
assuming that we have data over X , Y and Z. Even if we have three
variables, and establish that X and Y are independent given Z, we
can only infer the undirected graph X—Z—Y . While closer to the
truth, we still cannot tell the causal direction between the pairs of
dependent variables. The only conclusion we can draw is that one
of the structures in Figure 1.2 is true, but not which one. At the
heart of this problem lies the fact that we cannot distinguish between
bivariate causal structures X → Y and Y → X because they are also

5
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observationally equivalent: P(X ,Y ) = P(X)P(Y | X) = P(Y )P(X | Y ).
For this reason, inferring the causal direction between two variables
from their joint distribution was thought to be impossible for a long
time. With additional assumptions in the generative model, in the
past decade, researchers have shown that bivariate causal inference is
possible, however. The general idea is to define classes of marginal
and conditional distributions, and choose that direction as the causal
direction in which factorisation of the joint distribution belongs to
those corresponding classes, but not in the reverse direction.

Most of the existing methods for bivariate causal inference are
for continuous real-valued data (Shimizu et al., 2006; Hoyer et al.,
2009; Janzing et al., 2012; Bloebaum et al., 2018). In many real-
world scenarios, we have data from discrete domain. For example,
a person’s education level can be finitely many, so is the fact that
whether they earn more than 50,000 euros annually. One might then be
interested in finding out whether education level causes high income
(>50K), or that high income causes education. Those are the kind of
problems we consider first. Roughly stated, in the first part of this
thesis, we investigate various techniques to infer the bivariate causal
structure from observational discrete data. This, we state formally in
the research question below:

Question 1. Given a sample drawn from the joint distribution of two
dependent discrete r.v.s X and Y , how do we reliably infer whether
X → Y or Y → X is their causal structure?

To answer this question, we build upon the algorithmic indepen-
dence of conditionals (AIC) principle (Peters et al., 2017b; Janzing
and Schölkopf, 2010), which states that the marginal distribution of

6



cause is algorithmically independent of the conditional distribution of
effect given cause. However, as Kolmogorov complexity (Kolmogorov,
1965) is not computable, we approximate the AIC through the Mini-
mum Description Length (MDL) principle (Rissanen, 1978). The MDL
principle is attractive for various reasons. It provides a statistically
sound means for approximating Kolmogorov complexity. Moreover,
as the MDL principle considers the trade-off between goodness-of-fit
of a model and its simplicity, it naturally avoids overfitting data.

Using the MDL principle, in Chapter 3, we instantiate the AIC
through the minimax optimal code with respect to a parametric fam-
ily of multinomial distributions for a pair of univariate discrete ran-
dom variables. Building upon the foundations of Granger causal-
ity (Granger, 1969), which introduces an additional restriction on the
AIC, we use the minimax optimal predictive codes to infer the causal
direction between a pair of univariate event sequences—discrete time
series—in Chapter 4. In Chapter 5, we instantiate the AIC for a pair of
multivariate binary random variables using MDL-based decision trees.

Often times, Question 1 and its answer thereof does not fully
satisfy one’s curiosity. We want more than just an answer that a
variable or a group of variables likely cause a target variable of interest.
In combination treatment of drugs, for instance, certain combinations
of drugs and their dosages are much more effective than others, while
some may even lead to severe side effects. To take any concrete action,
it is not enough to know that certain combinations of drugs cause
recovery; we have to also know which combination of those drugs and
dosages are most effective. For example, in the combination treatment
of Tuberculosis (Y ), drugs such as Isoniazid (X1), Pyrazinamide (X2)
and Ethambutol (X3) are included. Although any off-the-shelf causal
inference method might tell us that X1, X2 and X3 cause Y , only certain

7
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combinations of their daily dosages (in milligrams per kilogram weight
of a patient) are known to be effective, e.g. X1 = 5 and 18.2≤ X2 ≤
26.3 and 14.5 ≤ X3, some can also be lethal. This motivates the
problem we deal in the second part of this thesis. That is, we would
like to find most effective causal rules from observational data. This,
we state in the research question below.

Question 2. How do we efficiently discover statistically reliable causal
rules from observational data?

We answer this question for discrete variables in Chapter 6. To
this end, we condition our effect measure on a set of potential con-
founders. This ensures that we measure the causal effect of a rule.
Moreover, we give a graphical criteria for all rules that we discover
from observational data to be causal. For rules discovered from data
to be statistically reliable, we take a conservative approach, and bias
our effect measure. The resulting effect measure has a low variance,
and therefore rules we discover from sample generalise well to the
population. To efficiently search for those rules in data, we propose a
branch-and-bound search algorithm. We round up with conclusion in
Chapter 7.

Publications

This thesis is a cumulative dissertation based on the research articles
shown in Table 1.1. Although many parts of those research articles are
included verbatim in this thesis, some parts were rewritten to reflect
on the work in hindsight. Moreover, to keep this thesis coherent, we

8



Table 1.1: Publications on which this thesis is based.

publication used in

K. Budhathoki and J. Vreeken. MDL for causal inference on
discrete data. In 2017 IEEE 17th International Conference on
Data Mining (ICDM)

Chap. 3

K. Budhathoki and J. Vreeken. Accurate causal inference on
discrete data. In 2018 IEEE 18th International Conference on
Data Mining (ICDM)

Chap. 3

K. Budhathoki and J. Vreeken. Causal inference by compression.
In 2016 IEEE 16th International Conference on Data Mining
(ICDM)

Chap. 4

K. Budhathoki and J. Vreeken. Origo: causal inference by com-
pression. Knowledge and Information System, Vol. 56, No. 2

Chap. 4

K. Budhathoki and J. Vreeken. Causal inference on event se-
quences. In Proceedings of the 2018 SIAM International Confer-
ence on Data Mining (SDM)

Chap. 5

K. Budhathoki, M. Boley, and J. Vreeken. Rule discovery for
exploratory causal reasoning. In NeurIPS 2018 workshop on
Causal Learning (full article under submission)

Chap. 6

removed abstracts, changed notation, and rewrote introductions from
the research articles.
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Assumptions for Causal Inference 2

In this chapter, we lay out the mathematical foundations for causal
inference. Causal analysis aims to infer probabilities under chang-
ing conditions through interventions. This contrasts with statistical
analysis that can only deal with static conditions. That is, standard
statistical machinery allows us to estimate the joint distribution from a
sample by implicitly assuming that external conditions do not change.
The joint distribution, however, cannot tell us how it would behave if
external conditions were subject to a change. There is nothing in the
joint distribution of ice cream sales and violent crime rate alone to tell
us that changing ice cream sales would increase or decrease violent
crimes. Such information must be provided by causal assumptions

11



2. ASSUMPTIONS FOR CAUSAL INFERENCE

which identify relationships that remain the same even when external
conditions change. Therefore, there is some causal assumption behind
every causal conclusion. A crucial assumption for bivariate causal
inference is that of independence of mechanisms.

2.1 The Principle of Independent Mechanisms

Suppose that we observe a sample drawn from the joint distribution
P(X ,Y ). We represent the data-generation process by a causal graph.
A causal graph can simulate any data generating process that operates
sequentially along it arrows, e.g. a directed acyclic graph. A causal
graph such as X → Y represents a data-generating process where we
randomly assign a value to X according to its distribution P(X), and
then Y is assigned a value according to the conditional distribution
P(Y | X).

In bivariate causal inference, our goal is to infer from the sample
if X → Y or Y → X is a plausible causal graph. That is, we would
like to infer whether X causes Y , or Y causes X . We use Pearl’s
do-notation (Pearl, 2009, Chap. 3) do(X = x), or do(x) in short, to
represent the intervention on X which changes the system by exter-
nally forcing X to assume a value of x, keeping everything else in the
system fixed. The effect of an intervention do(x) on Y is given by
the post-intervention distribution P(Y | do(x)). We say that X causes
Y , if changing an intervention on X has a different effect on Y , i.e.
P(Y | do(x)) 6= P(Y | do(x′)).

For exposition, let X be the pressure on the acceleration pedal of
a car, and Y be the speedometer reading. If we change the pressure
on the acceleration pedal, the speedometer reading will also change;

12



2.1. The Principle of Independent Mechanisms

P(Y | do(x)) 6= P(Y | do(x′)). The action of altering the speedometer
reading by moving the pointer, however, does not affect the pressure
on the acceleration pedal; P(X | do(y)) does not change, and remains
P(X), regardless of the value of Y we set. Therefore the pressure on
the acceleration pedal of a car causes its speedometer reading, and not
the other way around.

In an observational data, however, we do not have access to the
post-intervention distribution P(Y | do(x)). What we have, instead, is
a sample drawn from the joint distribution P(X ,Y )—and from that
sample we can estimate the conditional distribution P(Y | X = x). The
conditional distribution P(Y | X = x), however, can be different than
the post-intervention distribution P(Y | do(x)); whereas everything else
in the system is fixed in case of P(Y | do(x)), that is not necessarily the
case for P(Y | X = x). It is easy to see this for our car example in the
reverse direction from Y to X . Suppose that we have joint observations
of X and Y that are representative of the population. The observed
conditional distribution of pressure on the acceleration pedal given the
value of speedometer reading P(X | Y = y) is most likely a unimodal
distribution centred around y with some random measurement error.
In contrast, P(X | do(Y = y)) does not depend on the value of Y ,
and is simply P(X). This problem of identifying the bivariate causal
graph from the joint distribution is further complicated by the fact
that factorisations of the joint distribution for X → Y and Y → X are
equivalent, i.e. P(X)P(Y | X) = P(Y )P(X | Y ). Therefore, for a long
time, it was believed that we cannot identify the causal graph of two
variables using their joint distribution.

If, however, we analyse the assumption hidden in an intervention,
there are clues to recovering the causal graph from observational data.
In particular, an intervention on a set of variables given their causal

13



2. ASSUMPTIONS FOR CAUSAL INFERENCE

graph assumes modularity or invariance, i.e. in case of a system that
consists of two variables, if X → Y is the underlying causal graph, the
conditional distribution of Y given X , P(Y | X), does not change if we
intervene on X , as long as we do not intervene on Y itself (Property 7.3
Dawid, 2010; Pearl, 2009, Chap. 1.3.2). In other words, no matter what
mechanism P(X) we use to regulate X , the conditional distribution
P(Y | X) remains invariant.

Suppose that we apply pressure on the acceleration pedal depend-
ing on a random number generator P(X). No matter what random
number generator P(X) we choose to regulate the pressure on the
acceleration pedal, the physical mechanism P(Y | X) responsible for
rendering the speedometer reading based on the pressure on the accel-
eration pedal will remain invariant. In the reverse direction, suppose
that we can, somehow, change the speedometer reading by moving
the pointer based on a random number generator P(Y ). If such a re-
verse mechanism P(X | Y ) can be constructed, only specific choices
of P(Y ) will be able to reproduce P(X ,Y ) through the factorisation
P(Y )P(X | Y ), as the reverse mechanism is a rather contrived one.

The notion of invariance was formalised as a postulate on the
independence of mechanisms particularly for bivariate causal inference
by Janzing and Schölkopf (2010), and later stated as a principle in
Peters et al. (2017a).

Principle 2 (Independent Mechanisms). If X → Y is the underlying
causal graph of r.v.s X and Y , then P(Y | X) is independent of P(X).

The notion of dependence, however, is abstract. Accordingly,
different formalisations have been proposed. IGCI (Janzing et al.,
2012) defines dependence in terms of information geometry. Liu and
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Chan (2016) measure dependence between empirical distributions by
distance correlation. Janzing and Schölkopf (2010) formalise depen-
dence using algorithmic information theory, and postulate algorithmic
independence of P(X) and P(Y | X). As any physical process can
be simulated on a Turing machine (Deutsch, 1985), algorithmic de-
pendence can capture any dependence that can be explained with a
physical process; hence the algorithmic causal inference framework is
both general and theoretically sound.

2.2 The Algorithmic Independence of Conditionals

We briefly introduce Kolmogorov complexity—a key concept in al-
gorithmic information theory—before formulating the principle of
independent mechanisms in terms of algorithmic information theory.

Kolmogorov complexity (Kolmogorov, 1965; Solomonoff, 1964;
Chaitin, 1969) measures the complexity of describing a mathematical
object, such as numbers, sets, functions, relations. Let `(x) denote
the length of a binary string x. Let U (p) denote the output of the
universal Turing machine U for an input program p. The Kolmogorov
complexity of a finite binary string x is denoted by K(x), and defined
as the length of the shortest binary program to U that generates x and
stops. Formally, we have

K(x) = min
p:U (p)=x

`(x) .

We can think of the shortest program p∗ as the most succinct algorith-
mic description of x, and K(x) as the ultimate lossless compressed size
of x.
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The Kolmogorov complexity of a probability distribution P, de-
noted K(P), is the length of the shortest program to U that outputs
P(x) to a precision ε on the input 〈x,ε〉 (Grünwald and Vitányi, 2008).
The conditional Kolmogorov complexity of a probability distribu-
tion P, given a probability distribution Q, is denoted by K(P | Q), and
defined as the length of the shortest binary program to U that outputs
P(x) to a precision ε on the input 〈x,ε,Q〉. We can then define the
algorithmic mutual information between P and Q as

I(P : Q) = K(P)−K(P | Q∗) +
= K(Q)−K(Q | P∗) ,

where P∗ and Q∗ are the lengths of the shortest binary program for P
and Q respectively, and +

= indicates that the equality holds up to an
additive constant. Using algorithmic information theory, we can now
formalise the principle of independent mechanisms.

Principle 3 (Algorithmic Independence of Conditionals (Peters et al.,
2017a)). If X→Y is the underlying causal graph of random variables
X and Y , then P(Y | X) is algorithmically independent of P(X), i.e.

I(P(X) : P(Y | X))
+
= 0,

or equivalently K(P(X))+K(P(Y | X))
+
≤ K(P(Y ))+K(P(X | Y )).

The algorithmic independence of conditionals (AIC) implies that
the factorisation of the joint distribution P(X ,Y ) is simpler—in terms
of Kolmogorov complexity—in the causal direction than in the anti-
causal direction. Thus, we can identify the underlying causal graph
by comparing the Kolmogorov complexity of the factorisation of
P(X ,Y ) between two directions. Leaving aside the computability
of Kolmogorov complexity, causal inference using the AIC requires
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access to the joint distribution P(X ,Y ). In practice, we only have a
sample drawn from P(X ,Y ), but not P(X ,Y ) itself.

In practice, we have to not only estimate the probability densities
from the sample, we have to also compute their Kolmogorov complex-
ity. With a large enough sample size, and appropriate smoothness, we
can get a fairly good estimate of the probability densities through ker-
nel density estimation. What we cannot do, however, is compute their
Kolmogorov complexity, amongst others due to the halting problem.
In practice, we therefore need other, computable, notions of indepen-
dence or information. In Chapter 3—5, we instantiate the algorithmic
independence of conditionals with the Minimum Description Length
principle.

2.3 Structural Equation Model

Structural equation modeling is, arguably, the most popular framework
for causal analysis. In a structural equation model (SEM), we represent
data generating process by a set of structural assignments (Pearl, 2009,
Chap. 1.4). Given a set of variables and their causal graph, an SEM
represents every variable as a deterministic function of its parents in
the causal graph and an unobserved noise variable. In case of two
variables X and Y with the underlying causal graph X → Y , an SEM
consists of two assignments:

X := fX ( /0,NX ) ,

Y := fY (X ,NY ) ,

where fX and fY are deterministic functions, and noise variables NX
and NY are statistically independent, i.e. NY ⊥⊥ NY .

17
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Note that we use an assignment operator (:=) instead of an equality
operator (=) to indicate a functional dependence in an SEM. Unlike
the algebraic equality operator which allows us to move variables on
both sides of the equation, the assignment operator does not. The
assignment operator has a causal meaning in an SEM; any intervention
on X leads to a change in Y . In an SEM, an intervention such as
do(x) can be carried out by replacing the corresponding structural
assignment by X := x. As such, after the intervention do(x), the SEM
reduces to

X := x ,

Y := fY (X ,NY ) .

The distribution of Y entailed by this modified SEM corresponds to
the post-intervention distribution P(Y | do(x)).

So far we assumed that we have access to the causal graph. Our
goal is instead to identify the causal graph itself. One may then wonder
whether we can identify the causal graph from the joint distribution
with SEMs. For general SEMs, without restrictions on the functional
form or the distribution of noise, we can always construct a suitable
function and noise in both directions such that noises are jointly inde-
pendent (Peters et al., 2017b, Prop. 4.1). Therefore, we cannot tell if
the joint distribution P(X ,Y ) is induced by an SEM with the causal
graph X → Y , or Y → X . That is, we cannot identify causal graph
from the joint distribution with general SEMs. With some restrictions,
however, we can recover the causal graph from the joint distribution.

Next we discuss a special class of SEMs, known as Additive Noise
Models, that do allow us to identify the causal graph from the joint
distribution.
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2.4 Additive Noise Model (ANM)

Given a set of variables and their causal graph, an Additive Noise
Model (ANM) represents every variable as a deterministic function of
its parents and an additive noise variable (Pearl, 2009, Chap. 7.1.2).
In case of two variables X and Y with the underlying causal graph
X → Y , an ANM consists of two assignments:

X := NX ,

Y := fY (X)+NY ,

where NY ⊥⊥ NX , or equivalently NY ⊥⊥ X . If the data-generation
process follows an ANM, we can identify the causal structure from the
joint distribution if variables admit an ANM in one direction, but not in
the other. That is, in the anti-causal direction, we cannot fit a function
and an additive noise such that noise variables are independent.

The assumption of independent noise terms is also connected to
the principle of independent mechanisms. Each value t of NY shifts
the output of the deterministic mechanism fY (X) by t. Each shift can
be thought of as a new mechanism altogether. If NY were dependent
on NX , it would not be able to randomly select a mechanism. Instead,
mechanism of Y would depend on the mechanism of X .

In the past decade, we have gained an extensive understanding on
the identifiability of causal graphs from the joint distribution using
ANMs. Shimizu et al. (2006) showed that we can distinguish causal
directions for linear models with non-Gaussian additive noise. A rather
less extreme restriction on the class of ANMs also allows for causal
inference in practice. The identifiability result from Hoyer et al. (2009)
implies that a joint distribution “generally” does not admit an ANM in
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both directions at the same time. As such, as long as the function is
non-linear, there are no restrictions on the distribution of noise for the
causal direction to be identifiable. Peters et al. (2010) extend ANMs
to discrete variables, and show that in “general” a joint distribution
admits an ANM in at most one direction.

In practice, to identify the causal direction given a sample drawn
from the joint distribution, we first fit ANMs in both directions and
choose the direction with the independence as the causal direction. In
particular, in the fitting step, we find the pair ( fY ,NY ) in the direction
from X to Y and the pair ( fX ,NX ) in the reverse direction. Then,
with a suitable independence test, we check whether NY ⊥⊥ X , or
NX ⊥⊥Y holds. If the results of the independence tests are the same in
both direction, we cannot identify the structure using ANM—we are
undecided. Otherwise we pick the direction with the independence as
the causal direction. As a result, causal inference using ANM hinges
on the choice of independence measure.

Most dependence measures either assume the type of the sampling
distribution of the test statistic, or require a kernel. Alternatively
information-theory offers Shannon entropy (Cover and Thomas, 2006)
as an intuitive yet powerful tool to measure independence without
classical hypothesis testing based on p-values. In Chapter 3, we
show how to instantiate ANMs through both information theory and
algorithmic information theory.
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Causal Inference on Univariate IID Pairs 3

In this chapter, we consider the problem of inferring causal direction
between a pair i.i.d. univariate discrete random variables from a sample
drawn from their joint distribution.1

3.1 Introduction

Suppose that we have observations of two variables: a student’s grade
and socio-economic status of the student’s family—both of which can
take on only a finite number of values. Many studies report that these

1This chapter builds upon and extends Budhathoki and Vreeken (2017, 2018a).
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are statistically dependent (Hill and Giammatteo, 1963; Croizet and
Dutrévis, 2004). How can we then tell if one is the cause of the other?
Intuitively, changing socio-economic status of a student’s family will
most likely affect the student’s grade, whereas changing a student’s
grade would probably not affect socio-economic status of their family.
It is therefore plausible that socio-economic status of a student’s family
causes student’s grade, and not the other way around. We do not have
experimental data, however, to answer the question—what we have
instead is observational data.

In a nutshell, we would like to infer the causal direction between a
pair of i.i.d. univariate discrete random variables from a sample drawn
from their joint distribution. Most of the existing methods for bivariate
causal inference (Shimizu et al., 2006; Mooij et al., 2009; Janzing
et al., 2012; Peters et al., 2014; Bloebaum et al., 2018) work only
with continuous real-valued data. Although there exist a few bivariate
causal inference methods for discrete data (Peters et al., 2010; Liu
and Chan, 2016; Kocaoglu et al., 2017; Cai et al., 2018), they require
accurate estimation of the distribution from the sample for reliable
causal inference. Commonly used plug-in estimators are known to
overfit and hence inference at the population level from small sample
sizes can be unreliable.

To avoid overfitting, thereby generalise results at the population
level, we can instead turn to the Minimum Description Length (MDL)
principle (Rissanen, 1978; Grünwald, 2007). As the MDL principle
provides a statistically sound means for approximating Kolmogorov
complexity (Vereshchagin and Vitanyi, 2004; Gács et al., 2001), this
allows us to formulate a computable version of the algorithmic in-
dependence of conditionals (AIC). Moreover, using a MDL-based
estimator, we can draw a connection between the AIC and other causal
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inference frameworks, such as additive noise models (ANMs) (Peters
et al., 2010).

In this work, we present the computable (algorithmic)-information-
theoretic formulations of existing bivariate causal inference frame-
works. First we show how to instantiate the AIC for discrete data
using the refined version of MDL. Then we provide an information-
theoretic formulation of ANMs using Shannon entropy as a depen-
dence measure—as such we avoid explicit statistical hypothesis testing.
Lastly we use an MDL-based estimator of Shannon entropy within
an ANM. The information-theoretic formulation gives us general, ef-
ficient, identifiable, and, as the experiments show, highly accurate
methods for bivariate causal inference from a sample of discrete vari-
ables.

3.2 Refined MDL-based Approximation of AIC

Consider a pair of correlated univariate discrete random variables
X and Y with their finite domains X and Y respectively. Suppose
that we have a sample drawn from their joint distribution P(X ,Y ).
From this sample, we would like to infer whether X causes Y , or Y
causes X . To this end, first we use the refined version of the Minimum
Description Length principle (MDL) (Rissanen, 1978) to approximate
the algorithmic independence of conditionals (AIC).

3.2.1 Refined MDL: Stochastic Complexity (SC)

The practical version of the Minimum Description Length (MDL)
principle (Rissanen, 1978) provides a statistically sound means for ap-
proximating Komogorov complexity (Gács et al., 2001; Vereshchagin
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and Vitanyi, 2004). Rather than all programs to the Turing machines,
it only considers those for which we know they stop after generating
the desired output, i.e. lossless compressors. The MDL principle is
particularly suitable for materialising the algorithmic independence
of conditionals, as its generic solution to the model selection problem
demands density estimation from the sample go hand in hand with the
complexity of the estimated density.

In MDL literature, programs are often referred to as models. Typ-
ically models are a family of probability distributions or functions
with the same functional form, e.g. a parametric family of Poisson
distributions, kth degree polynomials. Informally, according to the
MDL principle, just like the two-part decomposition of Kolmogorov
complexity, the best model to explain the data D from a set of models
(model class) M is the one that minimises L(M)+L(D |M), where
L(M) is the description length, in bits, of the model M, and L(D |M) is
the length, in bits, of the data when encoded with the model M (Grün-
wald, 2007).

Given M, we can encode D using the optimal prefix code of length
L(D |M) = − logP(D |M), where P(D |M) is the probability mass
or density of D w.r.t. M. To encode M, we have to make a choice
out of many possible codes (coding schemes), which leaves room
for arbitrariness; L(P) can be large under one code, but relatively
shorter under another. The refined version of MDL overcomes this
arbitrariness by encoding data D not just with one model M, but with
the entire model class M . It is possible to design a one-part code of
length L̄(D |M ) for any data D such that it differs from the shortest
code length of D using individual models in M by a constant. Codes
with such property are also called Universal codes.

One such code can be obtained by constructing a Normalized Max-
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imum Likelihood (NML) distribution from the model class, and taking
the optimal prefix code of data according to its NML distribution (Ris-
sanen, 2000). Suppose that our model class is a parametric family
of distributions,2 i.e. M = {P(• | θ) | θ ∈ Θ}, where Θ ⊆ Rm is a
m-dimensional parameter space. Let xn = (xi)

n
i=1 be a sequence of n

outcomes where each outcome xi is an element of X . Let X n be the
n-fold Cartesian product of X such that xn ∈X n. Then the NML
distribution w.r.t. a model class M is defined as

PNML(xn;M ) =
P(xn | θ̂(xn;M ))

∑
zn∈X n

P(zn | θ̂(zn;M ))
, (3.1)

where θ̂(xn;M ) is the maximum likelihood estimate (MLE) of θ w.r.t.
M for xn. As the name suggests, the NML distribution of xn relative
to a model class M is the maximum likelihood of xn w.r.t. to M
normalised over the sum of the maximum likelihoods of every possible
sample of size n w.r.t. to M . The NML distribution has a number of
important theoretical properties. First, it gives a unique solution to the
minimax problem posed by Shtarkov (1987),

min
P̄

max
xn∈X n

log
P(xn | θ̂(xn,M ))

P̄(xn |M )
.

That is, for any data xn from X n, PNML(xn;M ) assigns a probability,
which differs from the highest achievable probability within the model
class—the maximum likelihood P(xn | θ̂(xn;M ))— by a constant
factor in the denominator of Equation (3.1). In other words, the NML

2We can convert deterministic functions into distributions by adding a random noise.
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distribution is the minimax optimal universal model with respect to
the model class. Second, it also provides solution to another minimax
problem formulated by Rissanen (2001), which is given by

min
P̄

max
Q

EQ

(
log

P(xn | θ̂(xn;M ))

P̄(xn;M )

)
,

where Q is the worst-case data generating distribution (outside the
model class M ), and EQ is the expectation over xn. That is, even if the
true data generating distribution does not reside in the model class M
under consideration, PNML(xn |M ) still gives the optimal encoding
for the data xn relative to M . These properties are highly desirable
when modelling real-world problems, where we often do not know the
true distribution, yet want our model to perform as close to the true
model as possible, regardless of whether the true model lies inside or
outside the model class.

The optimal prefix code length of xn corresponding to its NML
distribution w.r.t. M is also called the stochastic complexity of xn

w.r.t. M , defined as

S(xn;M ) =− logPNML(xn;M )

=− logP(xn | θ̂(xn;M ))+ log ∑
zn∈X n

P(zn | θ̂(zn;M )) ,

where the last term with the summation is the parametric complexity
of the model class M . Given that we only have data xn and a con-
templated model class M , which may or may not contain the true
distribution, it is plausible to instantiate K(P(X)) through S(xn;M ).
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3.2.2 Stochastic Complexity for Multinomials

Let xn = (xi)
n
i=1 be a sequence of n outcomes where each outcome xi

is an element of X = {1,2, . . . ,m}. For discrete random variables,
we consider a family of multinomial distributions as our contemplated
model class, which is defined as

Mm = {P(X | θ) | θ ∈Θm} ,

where Θm is the simplex shape parameter space given by

Θm = {θ = (θ1, . . . ,θm) | θ j ≥ 0 and
m

∑
j=1

θ j = 1} ,

and θ j = P(X = j | θ). The MLE of θ w.r.t. Mm from the sample xn

is given by

θ̂(xn;Mm) =

(
h1

n
,

h2

n
, . . . ,

hm

n

)
,

where h j is the number of occurrences (frequency) of an outcome j in
sample xn, i.e.

h j = |{xi | xi = j, i = 1,2, . . . ,n}| .

Thus the NML distribution of xn w.r.t. the multinomial model class
Mm is given by

PNML(xn;Mm) =

m
∏
j=1

(h j/n)h j

∑
h1+···+hm=n

( n
h1,...,hm

) m
∏
j=1

(h j/n)h j

,
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where the multinomial coefficient is the number of ordered arrange-
ments of outcomes of xn such that each outcome j occurs h j times.
Then the stochastic complexity of xn w.r.t. Mm is

S(xn;Mm) =− log
m

∏
j=1

(h j/n)h j + log ∑
h1+···+hm=n

(
n

h1, . . . ,hm

) m

∏
j=1

(h j/n)h j

= nHn(X)+ logR(Mm,n) , (3.2)

where Hn(X) is the plug-in estimate of Shannon entropy (Cover and
Thomas, 2006) of X , using the empirical distribution P̂(•) on the
sample xn, and logR(Mm,n) is the parametric complexity of the multi-
nomial model class with m distinct outcomes and the sample size of
n.

Computational Complexity We can compute the counts h js in
O(n) time with a single pass over the data. Although the parametric
complexity is exponential in m, we can approximate it up to a finite
floating-point precision of d digits in sub-linear time with respect to
the sample size n given precomputed counts hi (Mononen and Myl-
lymäki, 2008).3 Altogether we can compute the multinomial stochastic
complexity of xn in O(n) time.

3.2.3 Conditional SC for Multinomials

Let xn = (xi)
n
i=1 be a sequence of n outcomes where each outcome

xi is an element of the space of outcomes X of size |X | = m. Let

3In the experiments, we set d = 10.
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yn = (yi)
n
i=1 be another sequence of n outcomes where each outcome yi

is an element of Y whose size is |Y |= `. To compute the conditional
stochastic complexity of yn given xn w.r.t. the multinomial model class,
we use the optimal prefix code of yn given xn according to its factorized
Normalized Maximum Likelihood distribution (fNML) (Silander et al.,
2008). The fNML distribution of yn given xn, denoted PfNML(yn |
xn;M`), is the product of the NML probabilities of the parts of yn that
are defined by the values of xn, which is given by

PfNML(yn | xn;M`) = ∏
x∈X

PNML(yn | x;M`) .

Thus the stochastic complexity of yn given xn using fNML is given by

S(yn | xn;M`) =− logPfNML(yn | xn;M`)

=− log ∏
x∈X

PNML(yn | x;M`)

= ∑
x∈X
− logPNML(yn | x;M`)

= ∑
x∈X

S(yn | x;M`) .

That is, we can compute the conditional stochastic complexity of
yn given xn by partitioning yn according to the unique values of xn,
computing the multinomial stochastic complexity of each part of yn,
and finally aggregating them.

Computational Complexity On a single simultaneous pass over xn

and yn, we can partition yn as well as compute the counts in each part.
We can compute the multinomial stochastic complexity of each part of
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size n(x) in O(n(x)) time. Thus, to compute the multinomial stochastic
complexities of all parts of yn, it takes ∑x∈X O(n(x)) ≡ O(n) time.
Altogether we can compute the conditional multinomial stochastic
complexity in O(n) time.

3.2.4 Multinomial SC based AIC for Discrete Data

Using the marginal and the conditional stochastic complexity for multi-
nomials, we can now state the stochastic complexity based approxima-
tion of AIC for discrete data.

Proposition 3.2.1 (Multinomial Stochastic Complexity based approx.
of AIC). Consider a sample xn of the discrete random variable X
with its sample space X of size m. Likewise let yn be a sample of
the discrete random variable Y with its sample space Y of size `. If
X → Y is the underlying causal graph, then

S(xn;Mm)+S(yn | xn;M`)< S(yn;M`)+S(xn | yn;Mm) .

Using this proposition, we can identify the causal direction from the
sample as follows:

• Infer X → Y if S(xn;Mm) + S(yn | xn;M`) < S(yn;M`) + S(xn |
yn;Mm).

• Infer Y → X if S(yn;M`) + S(xn | yn;Mm) < S(xn;Mm) + S(yn |
xn;M`).

• Undecided otherwise.

We refer to this causal inference procedure as CISC. Although the
formulation above follows directly from the statistically sound approx-
imation of Kolmogorov complexity provided by the MDL principle,
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there are no theoretical guarantees why the above proposition should
hold. After all, we are approximating the Kolmogorov complexity of
a distribution by the stochastic complexity of data w.r.t. a paramet-
ric model class. In short, CISC lacks theoretical results on whether
we can identify the true causal graph from the joint distribution of
a pair of variables. For bivariate causal inference, there are other
practically successful sound theoretical frameworks that possess the
identifiability that we seek. Next we discuss how we can formulate
one such framework—additive noise models (ANMs) (Pearl, 2009,
Chap. 1)—in terms of information theory.

3.2.5 Information-Theoretic ANM

To arrive at the information-theoretic formulation of ANMs, we have to
quantify the information content—in terms of joint Shannon entropy—
of random variables X and Y with the joint distribution P(X ,Y ) in-
duced by ANMs in two directions: X → Y and Y → X . Thus, in
addition to computing the marginal Shannon entropies of X and Y , we
need the conditional Shannon entropy of Y given X and vice versa. Al-
though trivial, the lemma below implies that the conditional Shannon
entropy of Y given X is the same as the conditional Shannon entropy
of noise NY given X in an ANM.

Lemma 3.2.1. For an ANM from X to Y , we have H(Y | X) = H(NY |
X).
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Proof. The conditional Shannon entropy of Y given X is defined as

H(Y | X) = ∑
x∈X

P(X = x)H(Y | X = x)

= ∑
x∈X

P(X = x)H( fY (x)+NY | X = x)

as adding a constant fY (x) to a random variable NY only changes the
outcomes of NY , but not its distribution, we have H( fY (x)+NY | X =
x) = H(NY | X = x), which results in

= ∑
x∈X

P(X = x)H(NY | X = x)

= H(NY | X) .

With this lemma, we can now present the information-theoretic formu-
lation of ANMs.

Theorem 3.2.2 (Information-Theoretic Additive Noise Model). Con-
sider the joint distribution P(X ,Y ) induced by an ANM with the causal
graph X → Y . Thus in the “generic” case, there exists a function fY
such that NY = Y − fY (X) is independent of X, but for any function
fX , NX = X − fX (Y ) depends on Y (Peters et al., 2010). Then for a
function fY and any function fX , we have

H(X)+H(NY )< H(Y )+H(NX ) .

Proof. The joint Shannon entropy of random variables X and Y whose
joint distribution is induced by an ANM with the causal graph X → Y
is given by

H(X)+H(Y | X) = H(X)+H(NY | X) (using Lemma 3.2.1)
= H(X)+H(NY ) . (∵ NY ⊥⊥ X)
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In the other direction Y → X , we have the joint Shannon entropy of X
and Y as

H(Y )+H(X | Y ) = H(Y )+H(NX | Y ) (using Lemma 3.2.1)
< H(Y )+H(NX ) . (∵ NX 6⊥⊥ Y )

Since the joint Shannon entropy of X and Y is symmetric in their
ordering, we get the final inequality by combining the right hand sides
of the relations above.

This theorem shows that we can infer the causal direction by simply
comparing the Shannon entropy of random variables under ANMs in
two directions.4 In practice, however, we do not have access to the
true distribution. Instead, we have to estimate Shannon entropy of a
random variable from a sample. To this end, we can start by using the
naive plug-in estimator of Shannon entropy based on the empirical
distribution. Let Hn(X) be the plug-in estimate of Shannon entropy
of the random variable X from the sample xn using the empirical
distribution. Using Hn as an estimator of H in Theorem 3.2.2, we can
identify the causal direction from the sample as follows:

• Infer X → Y if Hn(X)+Hn(NY )< Hn(Y )+Hn(NX ).

• Infer Y → X if Hn(Y )+Hn(NX )< Hn(X)+Hn(NY ).

• Undecided otherwise.

We refer to this causal inference procedure as ACID. Using Shan-
non entropy, we avoid explicit statistical hypothesis testing for inde-
pendence. Moreover calculating Shannon entropy is computationally
4For continuous real-valued data, Kpotufe et al. (2014) studied similar formulations
with differential entropy.
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cheaper than running an independence test, such as the chi-squared
test of independence. The plug-in estimators are, however, known
to overfit data. An alternative is to consider multinomial stochastic
complexity (see Chap. 3.2.2) which can also be seen as an estimator of
Shannon entropy. Although biased, causal inference using multinomial
stochastic complexity generalise better to the population. Next we
discuss how to use multinomial stochastic complexity as an estimator
of Shannon entropy with ANMs.

3.2.6 Multinomial Stochastic Complexity based ANM

Based on multinomial stochastic complexity, we propose the following
estimator for Shannon entropy.

Sn(xn;Mm) = S(xn;Mm)/n .

The following theorem shows that Sn(xn;Mm) is strongly consistent
for every possible probability distribution.

Theorem 3.2.3. The multinomial stochastic complexity based estimate
of Shannon entropy is strongly universally consistent, that is, almost
surely

lim
n→∞

Sn(xn,Mm) = H(X) .

Proof. Using Eq. (3.2), we can express S(xn;Mm) as

S(xn;Mm) = nHn(X)+ logR(Mm,n) .

Using this, we can write Sn(xn,Mm) as

Sn(xn,Mm) = Hn(X)+
logR(Mm,n)

n
.
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Thus to prove the theorem, we have to show that

lim
n→∞

(
Hn(X)+

logR(Mm,n)
n

)
= H(X) .

To this end, first we simplify the left hand side of the above expression,
this results in

lim
n→∞

(
Hn(X)+

logR(Mm,n)
n

)
= lim

n→∞
Hn(X)+ lim

n→∞

logR(Mm,n)
n

.

From the result by Antos and Kontoyiannis (2001), we know that the
plug-in estimator of Shannon entropy is strongly universally consistent,
that is,

lim
n→∞

Hn(X) = H(X) . (3.3)

To show that the second limit with parametric complexity vanishes, we
use the asymptotic expansion of the parametric complexity (Rissanen,
2000), i.e.

logR(Mm,n) =
m
2

log
n

2π
+ log

π(m+1)/2

Γ(m+1
2 )

+o(1) ,

where Γ(•) is the Euler gamma function and o(1)→ 0 as n→∞. Note
that we can upper bound the logarithm of a number by its square root,
i.e. 0≤ logn≤

√
n for all n > 0. Thus we have lim

n→∞

logn
n ≤ lim

n→∞

√
n

n =

lim
n→∞

1√
n = 0, and trivially lim

n→∞
0 = 0. Applying the squeeze theorem,
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we get lim
n→∞

logn
n = 0. With this, it is easy to see that

lim
n→∞

logR(Mm,n)
n

= 0 . (3.4)

Combining relations (3.3) and (3.4), we get the final result.

Just as in case of the plug-in estimator of Shannon entropy, we can
now simply replace H by Sn in Theorem 3.2.2. By fitting a function f̂Y ,
we estimate the noise as yn− f̂Y (xn) in the direction from X to Y ; let α

be the size of the domain of the estimated noise. Likewise, by fitting a
function f̂X , we estimate the noise as xn− f̂X (yn) in the direction from
Y to X ; let β be the size of the domain of the estimated noise. Using
Sn as an estimator of H in Theorem 3.2.2, we can identify the causal
direction from the sample as follows:

• Infer X→Y if S(xn,Mm)+S(yn− f̂Y (xn),Mα)< S(yn,M`)+S(xn−
f̂X (yn),Mβ ).

• Infer Y→X if S(yn,M`)+S(yn− f̂Y (xn),Mβ )< S(xn,Mm)+S(xn−
f̂X (yn),Mα).

• Undecided otherwise.

Note that as n is on the both side of the inequalities, we omitted n
from our causal inference rule, and simply use S instead of Sn in the
comparison. We refer to this causal inference procedure as CRISP
from here onwards.
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3.2.7 Information-Theoretic Discrete Regression

To use ANM-based causal inference rules, we need the noise variables,
their distributions in particular. Of course, we do not know the true
distributions of the noise variables. By fitting a function on the sample
in each direction, however, we can compute the empirical distribu-
tions of the noise variables, e.g. in the direction from X to Y , find
the function f̂Y such that we can estimate the noise by yn− f̂Y (xn).
This is a well-known regression problem, with discrete variables. The
discrete regression algorithm we present here is an adaptation of dis-
crete regression with dependence minimisation (Peters et al., 2010) to
information-theoretic scores.

To find the function such as f̂Y in a typical regression problem, we
minimise a loss function, such as the residual sum of squares (RSS)
or the `p norm. Such loss functions, however, are not appropriate
for our purpose; after the regression, we check whether the residual
is independent of the regressor. Thus we need a loss function that
maximises the independence between the residual and the regressor.
In the information-theoretic terms, this implies minimising the mutual
information between the residual and the regressor, which is equivalent
to minimising the Shannon entropy of the residual.

Unlike in the continuous case, there is no risk of overfitting in the
discrete case; Y may take different values for each outcomes of X , and
hence there is no need for regularization. We can simply consider all
possible functions, and take the one with the minimal value of the loss
function. However, even if range of the function lies within the domain
of the target variable, we are left with exponentially many choices of
functions, thereby making the problem intractable. Hence, we resort
to heuristics.
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Algorithm 1: Discrete Regression with Entropy Estimate
Minimisation

Input: Discrete sequences xn and yn, max. no. of iterations J,
entropy estimator Ĥ

Output: Ĥ(yn− f̂ (xn))
1 X ← SET(xn);
2 Y ←min(yn),min(yn)+1, . . . ,max(yn);
3 for x←X do
4 f̂0(x)← argmaxy∈Y P̂(X = x,Y = y);

5 e← Ĥ(yn− f̂0(xn));
6 j← 0;
7 do
8 j← j+1;
9 for x← RANDOMORDER(X ) do

10 e′←miny∈Y Ĥ(yn− f̂ x→y
j−1 (x

n));
11 if e′ < e then
12 e← e′;
13 f̂ j(x)← argminy∈Y Ĥ(yn− f̂ x→y

j−1 (x
n));

14 while j < J;
15 return Ĥ(yn− f j(xn))

We present the pseudocode for information-theoretic discrete re-
gression in Algorithm 1. To regress Y as a function of X , we start with
a function that maps each x-value to the most frequently co-occurring
y value (line 1-2). Then we iteratively update the function for each
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x value. To ensure that the algorithm is deterministic, we do so in
some canonical order (line 8). To update the function for a x value, we
temporarily map x to other y values keeping all other mappings f (x′)
with x 6= x′ fixed. We use f x→y

j−1 (x
n) to denote that f j−1 temporarily

maps x to y. From all the mappings, we pick the best one as the one
that results in the least estimated Shannon entropy of the residual (line
9). If the estimated entropy of this residual is better than the best esti-
mated Shannon entropy of the residual so far, we update our function
(line 10-13). We keep on iterating as long as the estimated Shannon
entropy of the residual reduces, or we arrive at the maximum number
of iterations J (line 14).

In a nutshell, we perform alternating minimisation in discrete
space. Note that entropy estimators presented here are non-negative,
and hence is bounded from below. Since the search space is finite and
the estimated Shannon entropy of the residual is strictly decreasing
in every iteration, the algorithm will converge. It could, however,
converge to a local optimum. The worst case computational complex-
ity of the discrete regression is O(|Y ||X |) ≡ O(`m). By setting the
maximum number of iterations J, we can terminate early, however.

3.3 Related Work

Most of the existing methods for causal inference on a pair of discrete
variables are either based on the structural equation models (SEMs),
or the algorithmic independence of conditionals (AIC).

In SEMs, every variable is assumed to be a deterministic function
of its parents and an unobserved noise variable (Pearl, 2009, Chap. 1.4).
The additive noise models (ANMs) are a special class of SEMs which
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assume that the noise is additive. Peters et al. (2010) extend ANMs to
discrete data, and propose the DR algorithm. DR uses chi-squared test
of independence, which is more expensive to compute than Shannon
entropy. Moreover, we do not require explicit null hypothesis testing
in every iteration, unlike DR.

Another causal inference method for a pair of discrete variables
based on SCMs is ECI (Kocaoglu et al., 2017). They postulate that the
unobserved variable (noise) is simpler—in terms of the Rényi entropy—
in the true direction. In particular, it is conjectured that if X causes Y ,
then we have Hα(X)+Hα(N)< Hα(Y )+Hα(Ñ) with Hα being the
Rényi entropy, where Y = f (X ,N),X ⊥⊥ N and X = g(Y, Ñ),X ⊥⊥ Ñ.
Unlike ANMs, which assume that the noise is additive, it can be of
arbitrary type in ECI.

The algorithmic independence of conditionals (AIC) postulates
that if X causes Y , P(X) and P(Y | X) are algorithmically indepen-
dent (Janzing and Schölkopf, 2010; Lemeire and Dirkx, 2006; Peters
et al., 2017b). As Kolmogorov complexity is not computable, causal
inference methods based on the AIC have to define a computable
dependence measure. Liu and Chan (2016) (DC), for instance, use
distance correlation as a dependence measure. To infer the causal
direction, DC computes the distance correlation between empirical
marginal and conditional distributions in two directions.

A recent proposal by Cai et al. (2018) (HCR) takes a different
approach than these two frameworks. They assume a two-stage causal
process that consists of a deterministic map from the cause to a hidden
compact representation, and a probabilistic map from the hidden rep-
resentation to the effect. This causal model is identifiable under some
conditions on the true causal mechanism.
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3.4 Experiments

We implemented all the proposed causal inference methods for dis-
crete variables in Python and provide the source code, along with the
used datasets, and synthetic dataset generator.5 All experiments were
executed single threaded on MacBook Pro with 2.5 GHz Intel Core
i7 processor and 16 GB memory. Following Peters et al. (2010), we
use the statistical significance level of α = 0.05 for DR, and set the
maximum number of iterations J to 10 for the discrete regression.

3.4.1 Synthetic Data

First we consider synthetic data to study the performance of causal
inference methods on data with known ground truth. To this end, we
generate synthetic data with the ground truth X → Y using ANMs.
Following the scheme of Peters et al. (2010), we sample cause, i.e. X ,
from following model classes:

• uniform from {2, . . . ,L},
• binomial with parameters (n, p),

• geometric with parameter p,

• hypergeometric with parameters (M,K,N),

• poisson with parameter λ ,

• negative binomial with parameter (n, p), and

• multinomial with parameter θ.

5https://github.com/kailashbuki/caddie
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We randomly choose the parameters for each model class. In particular,
we choose L uniformly between 2 and 10, p uniformly between 0.1 and
0.9, n, M and K uniformly between 1 and 40, N uniformly between
1 and min(40,M +K − 1), λ uniformly between 1 and 10, and θ
randomly s.t. ∑ j θ j = 1.0. We choose f (x) uniformly between -7 and
+7 for every x, and noise N uniformly, independent of X , between −t
and +t, where t is uniformly chosen between 1 and 7.

All the existing methods (discussed in Chapter 3.3) except DR
assume generative models that are not ANMs. It is, therefore, fair to
include only DR for comparison. As for the evaluation, the problem
of inferring causal direction is similar to that of binary classification.
It does not make sense, however, to report ROC curves, which are
typically used for evaluating classifiers. ROC curves enforce asymme-
try between positive and negative classes. In our task, however, we
do not have such asymmetry—we can change class labels by simply
swapping the variables. Therefore accuracy is a more natural metric in
our setting. To balance the classes, we swap X and Y variables for a
half of the pairs.

We start by assessing the performance of various methods against
the difference in their scores in two directions. Let CX→Y denote the
score in the direction from X to Y using a specific method, and CX→Y
be that in the reverse direction using the same method. If we only
take decisions for pairs with |CX→Y −CY→X | ≥ δ for some threshold
δ , we can trade-off accuracy (percentage of correct decisions) versus
decision rate (percentage of pairs in which a decision was taken). One
problem remains that some of the pairs may have δ = 0, therewith the
method remains undecided. As a result, we may not achieve a 100%
decision rate. To circumvent this problem, we only consider those out
of 100 generated pairs for which δ > 0 for further analysis.
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FIGURE 3.1: Accuracy (fraction of correct decisions among decided
cause-effect pairs) against decision rate (fraction of samples for which
algorithm makes a decision for causal direction) for various distribu-
tions of X .
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FIGURE 3.2: Decisiveness (percentage of decided pairs) of bivariate
discrete causal inference methods for various distributions of X .

Figure 3.1 shows accuracies of various methods at increasing
decision rates for 1000 cause-effect pairs for various model classes.
The results show that all methods except CISC are highly accurate
whenever they make a decision, in all cases. To complement these
results further, we also show decisiveness (percentage of decisions
among all cause-effect pairs) of causal inference methods for the
aforementioned model classes in Figure 3.2. We observe that DR is
often indecisive. The proposed methods, however, make decisions in
most cause-effect pairs, regardless of the model class.
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FIGURE 3.3: Accuracy (percentage of correct decisions among de-
cided cause-effect pairs) and decisiveness (percentage of decisions
among all cause-effect pairs) against sample size on cause-effect pairs
with X generated randomly from the Geometric family.

Next we study the effect of sample size on the performance of
causal inference methods. To this end, we generate 1000 cause-effect
pairs from the geometric model class. In Figure 3.3 (left), we show the
decisiveness of various methods at various sample sizes. We observe
that all methods but DR are highly decisive even when the sample size
is small—in the range of hundreds. In Figure 3.3 (right), we show
the accuracy on the decided cause-effect pairs. We see that DR is
accurate even though it is not as decisive compared to other methods.
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The proposed methods (CRISP in particular), however, are not only
highly decisive, but they are also highly accurate starting from a small
sample size.

Overall we observe that information-theoretic causal inference
methods on discrete data are both highly decisive and accurate when
causal generative model follows an ANM.

3.4.2 Real-World Data

Abalone The abalone dataset from the UCI machine learning repos-
itory6 contains physical measurements of 4177 abalones (large, edible
sea snails). We consider sex (X) of the abalone against length (Y1),
diameter (Y2), and height (Y3). The sex of the abalone is nominal
(male, female, or infant), whereas length, diameter, and height are all
measured in millimeters, and have 70, 57 and 28 unique values, re-
spectively. Following Peters et al. (2010), we treat the data as discrete.
Since sex causes the size of the abalone and not the other way around,
we regard X→Y1, X→Y2, and X→Y3 as the ground truth. We report
the results in Table 3.1. Both ACID and CRISP recover the ground
truth from all pairs. In contrast, CISC infers wrong direction in all of
them. DR, on the other hand, remains undecided in all cases; it is not
wrong, however.

NLSchools The nlschools dataset is the 99-th pair in the Tübingen
cause-effect benchmark pairs.7 It contains the language test score (X),

6http://archive.ics.uci.edu/ml/
7https://webdav.tuebingen.mpg.de/cause-effect/
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Table 3.1: Results on real-world datasets. A tick (X) indicates a correct
decision, a cross (×) indicates a wrong decision, and a double-headed
arrow (↔) indicates an indecision.

Dataset Ground Truth CISC DR ACID CRISP

abalone
sex→ length × ↔ X X

sex→ diameter × ↔ X X

sex→ height × ↔ X X

nlschools SES→ test-score × X X X

and socio-economic status (SES) of pupil’s family (Y ) of 2287 eighth-
grade pupils from 132 classes in 131 schools in the Netherlands. The
language test score has 47 unique values, and the socio-economic sta-
tus of pupil’s family has 21 unique values. Existing research (Croizet
and Dutrévis, 2004; Hill and Giammatteo, 1963) in social science
point to Y → X as the ground truth. Intuitively it also makes sense
that the socio-economic status of pupil’s family is one of the causes of
the language test score. As shown in Table 3.1, all methods but CISC
recover the ground truth.

3.5 Discussion

In this work, we showed how to instantiate the algorithmic indepen-
dence of conditionals (AIC) through the Minimum Description Length
(MDL) principle for bivariate causal inference on discrete data. Taking
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an alternative route, we also gave an information-theoretic formulation
of additive noise models (ANMs) using Shannon entropy. Furthermore,
we proposed an MDL-based estimator of Shannon entropy within an
ANM. The experiments show that the proposed methods are highly
accurate on both synthetic and real-world data.

These results suggest that information-theoretic formulation of
ANM leads to reliable causal inference from samples. In particular,
we do not require evaluating p-values, unlike other statistical inde-
pendence testing frameworks that require evaluating p-values in every
iteration. Furthermore we can estimate Shannon entropy—using both
plug-in and MDL-based estimators—relatively faster than running
hypothesis tests for independence.

Although these results are promising, we see many possibilities
for future work. CISC does not have any theoretical guarantees on
the identifiability of the data generating mechanism, unlike ACID and
CRISP. It is important to note that identifiability results apply only at
the population level. Therefore, having an identifiability result ensures
that we are estimating the right quantity from a sample using statistical
machinery available to us. It would make an engaging future work to
include identifiability results for CISC.

In the experiments, the proposed methods, ACID and CRISP in
particular, achieve (near) 100% accuracy on both synthetic and real-
world data. Although impressive, those results by no means suggest
that the proposed methods are perfect. In particular, when domain
sizes of variables are much larger than the sample size, performances
of all causal inference methods will inevitably drop. We can see a
glimpse of this behaviour in Figure 3.3 when the sample size is a mere
100.
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3.6 Conclusion

We studied the problem of inferring causal direction between a pair
of i.i.d. discrete random variables from a sample drawn from their
joint distribution. To this end, first we instantiated the algorithmic in-
dependence of conditionals (AIC) for discrete data through the refined
version of the Minimum Description Length principle. The resulting
inference procedure CISC, however, does not have any theoretical
guarantees on whether it identifies the true causal graph. The causal
graph of discrete additive noise models (ANMs) are known to be iden-
tifiable in the generic case. Taking advantage of this identifiability
property, we formulated discrete ANMs in terms of information theory
using Shannon entropy as a dependence measure, and proposed ACID.
Shannon entropy is cheaper to compute, and we do not require explicit
statistical hypothesis testing for independence. However, as the plug-
in estimator of Shannon entropy overfits, we proposed CRISP using
the refined-MDL-based estimator of Shannon entropy that is biased,
but generalises well. Extensive evaluation on synthetic and real-world
data shows that the proposed methods are highly accurate on a wide
range of settings.

Software Artefacts

The Python implementation of causal inference methods used in this
chapter has been released as a python package caddie in the PyPI
repository.
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Installation

The package requires Python ≥ 3.7. To install the package and all its
dependencies, use pip3.

$ pip3 install caddie

Example Usage

For all the methods, we report results in a tuple of the form (CX→Y ,CY→X ).
For information-theoretic methods, we report bits; for methods that
employ hypothesis testing, we report the p-value.

>>> X, Y = [1, 1, 1, 1, 1], [-1, -1, -1, -1, -1]

>>> from caddie import anm, cisc, measures as mrs

>>> cisc.cisc(X, Y)

>>> anm.fit_both_dir(X, Y, mrs.StochasticComplexity)

>>> anm.fit_both_dir(X, Y, mrs.ChiSquaredTest)

>>> anm.fit_both_dir(X, Y, mrs.ShannonEntropy)
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Causal Inference on Event Sequence Pairs 4

In the previous chapter, we considered i.i.d. data. In many real-world
applications, we have non-i.i.d. data. Next we consider discrete-valued
times series, or event sequences.1

4.1 Introduction

Suppose that we have two recording stations along a river. At those
recording stations, over a period of time, we measure the water level
every 15 minutes. Every time we measure the water level, we can

1This work is published as Budhathoki and Vreeken (2018b).
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simply record whether the water level increased, decreased or stayed
the same (three possible values) compared to the last reading. How can
we tell the direction of the river simply by looking at those records?
Intuitively water level upstream causes water level downstream, with
some lag. As such, the river follows from the upstream to the down-
stream recording station, and not the other way around. We can agree
that this trivial exercise would not be so trivial any more had we not
known that the data was from a river.

In a nutshell, we consider the case where we are given two discrete-
valued time series—event sequences—of length n, and have to deter-
mine whether it is more likely that xn caused yn, or that yn caused
xn. Most of the existing bivariate causal inference methods for time
series (Granger, 1969; Rissanen and Wax, 1987; Chen et al., 2004; Chu
and Glymour, 2008; Hyvärinen et al., 2008; Peters et al., 2013; Huang
and Kleinberg, 2015), however, work with continuous real-valued data.
Transfer entropy (Schreiber, 2000) is an information-theoretic variant
of Granger causality (Granger, 1969) that is directly applicable to
event sequences. However, as it uses the plug-in prediction strategy,
it is not robust to model misspecification (Kotlowski and Grünwald,
2012).

In this work we take a related, but subtly different approach. We
take an information theoretic viewpoint and define causality in terms
of compression. Simply put, we say that xn causes yn if we save more
bits by compressing the data of yn with additionally the past of xn, than
vice versa. To optimally compress the data, we would need to know
its distribution. In practice, however, we only have observed data and
a class of possible prediction strategies—in which the true distribution
may or may not live. We hence build our inference framework on the
notion of sequential normalized maximum likelihood (SNML) (Kot-
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lowski and Grünwald, 2012), which is a strategy that is guaranteed to
give the minimum number of additional bits (regret) compared to the
true distribution, regardless of input, and regardless of whether or not
the true distribution is in the model class under consideration. At every
time step, our prediction for the current outcome is proportional to the
Maximum Likelihood estimate of the overall sequence, including the
past outcomes as well as the current one.

We propose a bivariate causal inference method on event sequences
using SNML, including a detailed exposition on how to derive our
causal indicators for binary event sequences based on the class of
bernoulli distributions—from which the extension to multinomial dis-
tributions is trivial. Importantly, for discrete data in general, CUTE,
which stands for causal inference on event sequences, has only a linear
time worst case runtime complexity. We empirically evaluate CUTE
on a wide range of binary-valued event sequences. Results on syn-
thetic data show that it performs better than transfer entropy on a wide
range of settings. Additionally, we consider two case studies on real
world data, where we find that CUTE with high accuracy reconstructs
the ground truth in water elevation levels in two rivers, as well as in
discovering excitatory connections in neural spike train data.

4.2 Theory

In this section, we formally introduce the problem, and present our
framework.
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4.2.1 The Problem, Formally

Let xn = x1,x2, . . . ,xn be an event sequence, a time series of n observed
outcomes where each outcome xi is an element of a discrete space
of observations X ∈ {1,2, . . . ,m}. Likewise yn = y1,y2, . . . ,yn such
that yi ∈ Y . Given two correlated event sequences xn and yn, we are
interested in finding the most likely causal direction between them.
That is, we would like to identify whether xn causes yn, or yn causes
xn, or they are just correlated.

4.2.2 Assumptions

To measure the causal dependence between two event sequences,
we take the usual assumptions of Granger causality (Granger, 1969).
Namely, we assume the following.

1. Cause precedes the effect in time.

2. Cause has unique information about the future values of effect.

Assumption 1 is commonly accepted (Chen et al., 2004; Wu and
Hatsopoulos, 2006), and also corroborated by the thermodynamic
principle—the arrow of causation points in the same direction as
the arrow of time. That is, the past influences the future, but not
the other way around. One of the implications of Assumption 2 is
that we assume there is no confounding event sequence zn that is the
common cause of both xn and yn. The other implied assumption is that
there is no instantaneous causal relationship—the present value of the
cause does not help in the prediction of the present value of the effect.
Assumption 2 is also intuitively plausible: the past of the cause and
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the future of the effect should share some information which cannot
be accounted for only by the knowledge of the past of the effect. This
also means that causal dependence measure should be able to quantify
that unique information which is not available otherwise.

4.2.3 Measuring Causal Dependence

We base our causal dependence measure on the foundation of Granger
causality (Granger, 1969) where causal dependence is measured in
terms of predictability.

Definition 4.2.1 (Granger Causality). Let It be the information avail-
able as of time t in the entire universe that includes both xt−1 and yt−1,
and It

¬x be that in a modified universe where xt−1 is excluded. We say
that xt Granger-causes yt if

P(yt+1 | It)> P(yt+1 | It
¬x) ,

where P indicates the prediction strategy.2

Building upon ideas from Rissanen and Wax (1987), we associate
predictability with compression. In particular, we consider the encoded
length of the event sequence using a sequential prediction strategy.
Intuitively the more predictable an event sequence is, the smaller the
number of bits required to describe it using the prediction strategy.

Let P(xt | xt−1) be the prediction of current outcome xt given its
past xt−1. To encode the event sequence xn, we use P(• | xt−1) in
every iteration t = 1,2, . . . ,n. Let P : X n→ [0,1] be the probability

2In the original paper (Granger, 1969), predictability is measured in terms of the variance
of the error in regression, thereby ending up with a reverse inequality.
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distribution over all the possible event sequences of size n from X ,
and P(X n = xn) be the probability mass of the event sequence xn.
Then the predictions P(• | xt−1) can be considered as a conditional of
the joint distribution, i.e. P(X n = xn) = ∏

n
t=1 P(xt | xt−1).

The ideal code length for encoding the current outcome xt given
its past xt−1 using the prediction P(xt | xt−1) is − logP(xt | xt−1). In
learning theory, it is commonly known as log loss. Hence the total
encoded length of the event sequence xn using its past, denoted L(xn),
is given by

L(xn) =
n

∑
t=1
− logP(xt | xt−1) .

Likewise, let P(xt | xt−1,yt−1) be the prediction probability of xt given
the past outcomes of xn, as well as the past outcomes of yn. The total
encoded length of the event sequence xn using its past as well as the
past of yn, denoted L(xn | yn), is then

L(xn | yn) =
n

∑
t=1
− logP(xt | xt−1,yt−1) .

Note that the encoded size L(xn) measures the predictability of xn from
its past outcomes, and L(xn | yn) measures the predictability of xn from
its past, as well as the past of yn. Their difference, hence, measures
the extra predictability of xn contributed by the past of yn which is not
available otherwise. With that, we define the causal dependence from
the direction yn to xn as

∆yn→xn = L(xn)−L(xn | yn) ,

and that from xn to yn is given by

∆xn→yn = L(yn)−L(yn | xn) .
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Due to the dependence on time our causal dependence measure is
inherently asymmetric. Under our assumptions, the direction with
larger dependence is likely the true causal direction. Thus, using the
above indicators we arrive at the following causal inference rules on
event sequence data.

• If ∆xn→yn > ∆yn→xn , we infer xn→ yn.

• If ∆xn→yn < ∆yn→xn , we infer yn→ xn.

• Undecided otherwise.

That is, if the added knowledge of the past outcomes of xn makes
the encoding of yn easier than vice versa, we infer xn is likely the
cause of yn. If it is the other way around, we infer yn is likely the
cause of xn. If causal dependence is the same in both directions, we
remain undecided. The larger the difference in causal dependence
in both directions, the more confident we are. In practice, we can
always introduce a threshold τ on the absolute difference between two
indicators |∆xn→yn −∆yn→xn |, and treat the results smaller than τ as
undecided.

The proposed causal inference rule is based on the premise that we
have access to the true distribution. In practice, we of course do not
know this distribution; we only have observed data, and possible mod-
els or prediction strategies P . The true distribution may or may not
be in this model class. Next we discuss how to construct a prediction
strategy such that we get optimal performance w.r.t. P , regardless of
whether true distribution lies in P .
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4.2.4 Sequential Normalised Maximum Likelihood

As models, prediction strategies P , we consider parameterised fami-
lies of distributions. Formally, we define P as

P = {Pθ : θ ∈Θ} ,

where Θ is a parameter space, i.e. Θ = {θ ∈Rk}, and k > 0. Typically
the performance of a prediction strategy P on an event sequence xn

w.r.t. a model class P is measured by regret, which is defined as

R(P;xn) =
n

∑
t=1
− logP(xt |xt−1)− min

Pθ∈P

n

∑
t=1
− logPθ(xt |xt−1)

=− logP(xn)− min
Pθ∈P

− logPθ(xn) .

In words, regret is the additional number of bits required to encode
the event sequence using a prediction strategy P instead of the best
prediction strategy from the model class P . The regret, however, is
not the same for all xn ∈X n—it can be small for some, and large for
others. To be robust against model misspecification, the worst-case
regret is taken over all possible event sequences of length n:

Rmax(P;n) = max
xn∈X n

R(P;xn) .

The optimal prediction strategy relative to a model class P for a
sample of size n is then the one that minimises the worst-case regret,

min
P

Rmax(P;n) .

If the true data generating distribution lies in the model class under
consideration P , the maximum likelihood (ML) strategy—predict

58



4.2. Theory

the next outcome xt+1 using the distribution Pθ̂(xt ) with θ̂(xt) being
the ML estimator based on the past outcomes xt—will be the optimal
prediction strategy. The ML strategy, however, is not robust against
the misspecifaction of the model class, i.e. when the true distribution is
not in the model class under consideration the result can be arbitrarily
bad (Kotlowski and Grünwald, 2012).

We would like to have a prediction strategy P that is optimal regard-
less of whether the true distribution lies in P . A surprisingly slight
modification of the ML strategy can achieve such optimality, and gives
the solution to the minimax problem posed above. The modification
involves computing the ML estimator of the data sequence including
the current outcome, followed by the normalisation of the distribution.
That is, the modified strategy predicts xt with a distribution propor-
tional to Pθ̂(xt−1,xt )

, where θ̂(xt−1,xt) is the ML estimator for the data
sequence x1, . . . ,xt−1,xt , and is defined as

PSNML(xt | xt−1) =
Pθ̂(xt−1,xt )

∑
x∈X

Pθ̂(xt−1,x)
.

This strategy is also known as the Sequential Normalised Maximum
Likelihood model (SNML) (Kotlowski and Grünwald, 2012; Rissanen
and Roos, 2007). We use it to encode the event sequence. For the expo-
nential family of distributions (e.g. Bernoulli, Multinomial, Gaussian,
etc.), we can use the respective closed-form expression to calculate the
ML estimator θ̂. Hence, it turns out to be easy to compute the SNML
strategy for the whole exponential family.

Importantly the SNML strategy is general in the sense that we are
only restricted by the choice of our model class. For clarity, we focus
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specifically on binary data. Without loss of generality, it generalises to
the general discrete case.

4.2.5 SNML for Binary Data

As models for binary data, we consider a parameterised family of
Bernoulli distributions. The parameterised family of Bernoulli distri-
butions B is defined as B = {Pθ : θ ∈ Θ}, where Θ is a parameter
space defined as Θ = {θ ∈ [0,1]}. The probability mass function for
Bernoulli distribution is given by

Pθ(X = k) = θk(1−θ)1−k ,

where k∈ {0,1}. The ML estimator for an event sequence xt−1 relative
to the Bernoulli class is given by θ̂(xt−1) = t1/(t − 1), where t1 =

∑
t−1
i=1 xi is the number of ones in xt−1. Let t0 = t−1− t1 be the number

of zeros in xt−1. Then the denominator of the SNML strategy for
predicting xt given the past xt−1 is given by

∑
x∈X

Pθ̂(xt−1,x) = ∑
x∈{0,1}

Pθ̂(xt−1,x) = Pθ̂(xt−1,0)+Pθ̂(xt−1,1)

= (θ̂(xt−1,0))t1(1− θ̂(xt ,0))t0+1+

(θ̂(xt−1,1))t1+1(1− θ̂(xt ,1))t0

=
( t1

t

)t1 (
1− t1

t

)t0+1
+

(
t1 +1

t

)t1+1(
1− t1 +1

t

)t0

=
1
tt

{
tt1
1 (t0 +1)t0+1 +(t1 +1)t1+1tt0

0

}
.

60



4.2. Theory

Thus the prediction for the outcome xt = 1 from its past xt−1 using the
SNML strategy is given by

PSNML(xt = 1 | xt−1) =
Pθ̂(xt−1,1)

∑
x∈X

Pθ̂(xt−1,x)

=
(t1 +1)t1+1tt0

0

tt1
1 (t0 +1)t0+1 +(t1 +1)t1+1tt0

0
, (4.1)

and that for xt = 0 is trivially given by

PSNML(xt = 0 | xt−1) = 1−PSNML(xt = 1 | xt−1) .

In practice, instead of computing the SNML prediction, which
could possibly result in overflow errors for large sample size, we can
directly compute the SNML code length using the log-sum-exp trick.
For our purpose, we also need to compute the encoded length of the
event sequence xn given event sequence yn. Next we discuss how to
conditionally encode one event sequence given the other using the past
of both.

4.2.5.1 Causal Mechanism: Conditional SNML

To encode an event sequence xn given an event sequence yn, i.e. for
L(xn | yn), we have to compute − logPSNML(xt | xt−1,yt−1). To predict
the outcome xt , we can use either xi or yi in every time step i =
1,2, . . . , t− 1. Let u = ∑

t−1
i=1 xi⊕ yi, with ⊕ being the Boolean XOR

operator, be the number of time steps where the outcome of xi and yi
differ. Thus we end up with 2u different event sequence for predicting
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the outcome xt . Among all possibilities, we choose the one that
improves the prediction of xt .

For exposition, we present a toy example in Eq. (4.2). Suppose we
want to predict the outcome x4 given its past x3 = 111, and that of yn,
which is y3 = 010. At every time step—except for the second— we
have two choices. Overall we therefore can construct four different
event sequence z1, . . . ,z4 that we can use to base our prediction on.

x3 : 1 1 1 (4.2)

y3 : 0 1 0
z1 : 0 1 0 (y3,1,y1)

z2 : 0 1 1 (y3,1,x1)

z2 : 1 1 1 (x3,1,x1)

z4 : 1 1 0 (x3,1,y1)

By virtue of Eq. (4.1), we know that the prediction depends on the
number of ones in the past t1. Therefore we can use the number
of ones present in newly constructed event sequence zis to directly
get the prediction. Let tx = ∑

t−1
i=1 xi be the number of ones in xt−1,

defining ty analogous. To predict xt given its past and that of yn, we
can use the number of ones in the range from tmin = min(tx, ty) to
tmax = ∑

t−1
i=1 xi⊕ yi.

In every iteration, we choose the number of ones t1 ∈ {tmin, tmin +
1, . . . , tmax} that results in the minimal code length − logPSNML(xt |
xt−1,yt−1), using the prediction PSNML(xt | xt−1,yt−1). This way, the
optimisation of − logPSNML(xt | xt−1,yt−1) also includes the index set
for that of the − logPSNML(xt | xt−1). Thus we have

− logPSNML(xt | xt−1,yt−1)≤− logPSNML(xt | xt−1) .
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FIGURE 4.1: SNML predictions using the past of xn, and that of
yn. For time steps t = 1,2, . . . ,50, and number of ones in the past
t1 = 1,2, . . . ,50 such that t1 < t, we plot the code length using the
SNML prediction strategy for (top) xt = 1, and (bottom) xt = 0.

The equality holds when yt−1 does not help in the prediction of xt .
As a result, both causal indicators are positive, i.e. ∆xn→yn ≥ 0, and
∆yn→xn ≥ 0.

At first glance, it is not evident whether the prediction is monotone
with respect to the number of ones in the past t1. Moreover, derivative
analysis or an inductive proof appears to be non-trivial. Therefore
we numerically compute the code length of the outcome xt using
the prediction PSNML(xt | xt−1,yt−1) for various number of ones t1 =
1,2, . . . , t − 1 for a fixed t. Further we repeat the same process for
t = 1,2, . . . ,50. In Fig. 4.1, we show the results in a 3D plot. We
observe that the code length for the outcome xt = 1 is monotonically
decreasing with respect to the number of ones in the past t1 for a fixed
t. The code length for the outcome xt = 0, however, is monotonically
increasing relative to t1 for a fixed t.
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This numerical analysis suggests that tmax maximises the prediction
of the outcome xt = 1 given its past xt−1, and that of yn. On the
contrary, tmin maximises the prediction of the outcome xt = 0. Hence,
the prediction for the outcome xt = 1 from its past xt−1, and that of yn

using SNML strategy is given by

PSNML(xt = 1 | xt−1,yt−1) =
Z

ttmax
max(t0 +1)t0+1 +Z

, (4.3)

where Z = (tmax + 1)tmax+1tt0
0 , and t0 = t − 1− tmax. Likewise, the

prediction for the outcome xt = 0 from its past xt−1, and that of yn

using SNML strategy is given by

PSNML(xt = 0 | xt−1,yt−1) =
K

K + ttmin
min (t0 +1)t0+1

, (4.4)

where K = ttmin
min (t0 +1)t0+1, and t0 = t−1− tmin.

From here onwards, we refer to the proposed framework as CUTE,
for causal inference on event sequences using SNML. All logarithms
are to base 2, and by convention we use 0log0 = 0.

4.2.6 Computational Complexity

To compute L(xn), we have to compute − logPSNML(xt | xt−1) for
t = 1,2, . . . ,n. In every iteration, we can keep track of the count of the
number of ones t1 we have seen so far. Given t and t1, we can compute
− logPSNML(xt | xt−1) in constant time, O(1), using the closed form
expression in Eq. (4.1). Therefore we can compute L(xn) in O(n) time.

To compute L(xn | yn), we have to compute− logPSNML(xt | xt−1,yt−1)
for t = 1,2, . . . ,n. In every iteration, we can keep track of the count of

64



4.3. Related Work

number of ones tx, ty, and tmax. Given tx, ty, and tmax, we can compute
− logPSNML(xt | xt−1,yt−1) in constant time, O(1), using the closed
form expression in Eq. (4.3), and Eq. (4.4). Hence we can compute
L(xn | yn) in O(n) time. This implies we can compute - ∆xn→yn in O(n)
time.

Altogether the worst case computational complexity of the frame-
work is O(n).

4.3 Related Work

Causal inference techniques on time series are, for the most part, based
on Granger causality (Granger, 1969). The key idea is that a time
series xn does not Granger cause a time series yn if the past of xn does
not help in predicting yn given the past of yn. Typically predictability
in measured in terms of the variance of the error in regression. This
also corresponds to a significance test assuming a multivariate time
series model (Chu and Glymour, 2008; Quinn et al., 2011). There
exists many variants of Granger causality depending on the assumed
model, and the predictability measure.

Linear Granger causality, for instance, considers a vector autore-
gressive (VAR) model. A VAR model describes the current outcome
as a linear function of its past values, and an additive error term.
Non-linear Granger causality is an extension of Granger causality to
non-linear systems (Chen et al., 2004). The key idea there is to ap-
ply linear regression for each local neighbourhood and average the
resulting statistical quantity over the entire attractor (a set of numerical
values toward which a system tends to evolve). Rissanen and Wax
(1987) proposed a compression-based framework for measuring mu-
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tual and causal dependence on the foundations of Granger causality,
with an instantiation for continuous real-valued data. Another variant
of Granger causality is the transfer entropy (Schreiber, 2000), or TENT
for short, which measures predictability in terms of Shannon entropy.
Transfer entropy can, unlike others, detect both linear and non-linear
causal influences.

There do exist techniques that take a different approach than
Granger causality. Chu and Glymour (2008) propose conditional
independence test on non-iid setting, and introduce the additive non-
linear time series models (ANLTSM). It uses additive model regression
as a general purpose non-linear conditional independence test. TS-
LiNGAM (Hyvärinen et al., 2008) considers the general case where
causal influences can occur either instantaneously or with considerable
time lags. It combines the non-Gaussian instantaneous model with
autoregressive models for causal analysis. Peters et al. (2013) use re-
stricted structural equation models, ANMs in particular, to find causal
structures from time series. Huang and Kleinberg (2015) introduce a
causal inference framework based on logical formulas where cause is
a discrete variable, and effect is a continuous-valued variable.

Except for transfer entropy, all the frameworks above either work
with continuous-valued or mixed time series data. The known variants
of Granger causality for event sequences, or discrete-valued time
series are either highly tailored for the problem at hand (Quinn et al.,
2011), or just minor variations (Pötter and Blossfeld, 2001). Transfer
entropy is close in spirit to CUTE, but unlike transfer entropy, we
are robust to adversarial settings (e.g. misspecified model classes).
Importantly CUTE runs in O(n) time. TENT, on the other hand, takes
O(nk + 2k), where k is the lag value. As it is the most commonly
applied Granger causality framework, we compare CUTE against
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TENT in the experiments.

4.4 Experiments

We implemented CUTE in Python and provide the source code, along
with the used datasets, and synthetic dataset generator.3 All experi-
ments were executed single threaded on MacBook Pro with 2.5 GHz
Intel Core i7 processor and 16 GB memory. We compare CUTE with
transfer entropy which is both commonly regarded as the state of
the art in Granger causality and straightforwardly applicable to event
sequences.

4.4.1 Synthetic Data

To evaluate CUTE on data with the known ground truth, we use
synthetic data. We sample a cause event sequence xn, with X ∈ {0,1},
of size n = 1000 in i.i.d. fashion from the Bernoulli distribution with
a random parameter from the Uniform distribution U (0.1,0.5). To
generate the effect event sequence yn from the cause event sequence
xn, we use an ANM in binary arithmetic:

yt = f (xt−1,yt−1)+ εt (mod 2)

where εt ∈ {0,1} is an i.i.d. noise from a Bernoulli distribution with
a random parameter θ in U (0,0.3). The modulo operation ensures
that noise has a flipping effect when εt = 1. In particular, we consider
ANMs with following functional forms:

3https://github.com/kailashbuki/pycute
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FIGURE 4.2: Accuracies at various decision rates on various functional
forms.

• shift: yt = xt−s + εt (mod 2), where s∼U (1,20)
• shift+invert: yt = xt−s⊕1+ εt (mod 2), where s∼U (1,20)
• rule-based:

yt =

{
B(θ = 0.5), if xt−1 = yt−1
xt−1, otherwise

}
+ εt (mod 2) .

Whereas the first functional form shifts the cause event sequence by
s time steps, the second one additionally inverts the resulting shifted
event sequence. To generate a shifted sequence, we generate cause
event sequence of size s+n, and then slice the first s time steps of the
cause after shifting the sequence. The last functional form uses a coin
flip to generate outcomes of yn if outcomes of xn and yn are the same
at the previous time step, or else simply uses the outcome of xn from
the previous time step. In this case, we sample y0 using a random coin
flip.

In figure 4.2, we present accuracies of CUTE and TENT at increas-
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ing decision rates for 1000 cause-effect pairs for various functional
forms aforementioned. The results show that CUTE is consistently
more accurate than TENT in all cases, even at very high decision rates.

4.4.2 Real-World Data

Next we investigate CUTE on real-world data.

River Water Level

First we look into water level of rivers in Germany. We consider two
rivers in particular: Saar and Rhein. For a river, we collect the raw
water level recorded every 15 minutes from 25 June 2017 until 24 July
2017 from various water level recording stations.4 This way we end up
with 2880 data points from one station. The raw water level, however,
is continuous real-valued, and hence we have to binarise the data. To
this end, if the water level goes up from previous recording, we use
1. Otherwise we use 0. It is intuitively plausible to consider that the
water level recording of the station upstream causes the water level
recording of the station downstream.

For the Saar river, we collect the raw water level data from three
stations, namely Hanweiler, Sankt Arnual, and Fremersdorf. Then we
binarise the recordings from each station. In Figure 4.3, we show the
map of the Saar river along with the recording stations. For instance,
Hanweiler station is upstream compared to Fremersdorf station. There-
fore the ground truth would be Hanweiler causes Fremersdorf. We
run CUTE on all the pairs. In Figure 4.4, we present the results as

4http://www.pegelonline.wsv.de/webservices/files/Wasserstand+
Rohdaten/
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FIGURE 4.3: Map of the Saar and the Rhein river in Germany. The
recording stations are marked with gray dots.

a directed acyclic graph (DAG). The results clearly corroborate our
intuition.

For the Rhein river, we collect the raw water level data from four
stations, namely Speyer, Mannheim, Worms, and Mainz. Then we
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FIGURE 4.4: Results of CUTE on the Saar river. A green edge
represents a correct causal direction.
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FIGURE 4.5: Results of CUTE on the Rhein river. A green edge
represents a correct causal direction. A red edge indicates a wrong
causal direction.

binarise the recordings from each station. In Figure 4.3, we show the
map of the Rhein river along with the recording stations. After running
CUTE on all the pairs, we end up with a DAG as shown in Figure 4.5.
We see that CUTE identifies the correct direction in all but one case.
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Temperature

The temperature dataset is the 48th pair in the Tübingen cause-
effect benchmark pairs.5 It contains indoor (xn), and outdoor (yn)
temperature measurements recorded every 5 minutes. There are n =
168 measurements. We binarise the data like before. The ground truth
of the pair is yn→ xn, which CUTE recovers correctly.

Overall, these results show that CUTE finds sensible causal direc-
tions from real data.

Neural Spike Train Recordings

Next we look at the neural spike train recordings data from an exper-
iment carried out on a monkey (Quinn et al., 2011). As the original
experimental data itself is not available for public use, we obtained the
data simulator used by the authors to confirm their experimental data.
The spike trains are generated using point process generalised linear
models (GLM). The values of the parameters are selected to be within
the range of parameters identified in point process GLM model fits to
spike trains from electrode array recording data of primate primary
motor cortex (Wu and Hatsopoulos, 2006). Typically there are two
types of influences in neural spike trains, namely excitatory (neurons
fire more) and inhibitory (neurons fire less).

In Fig. 4.6 (left), we show the ground truth of the spike train data.
We note that CUTE is not designed to deal with feedback loops. The
inferred DAG after testing pairwise causality using CUTE is presented
on the right side of Fig. 4.6. We see that it correctly infers the direction
of the two non-looped causal connections, and correctly recovers one

5https://webdav.tuebingen.mpg.de/cause-effect/
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X1 X2

X4 X3

X1 X2

X4 X3

FIGURE 4.6: (left) Ground truth for the neural spike train data. A
directed edge with a pointy head represents an excitatory influence,
whereas a directed edge with a circular head represents an inhibitory
influence. (right) Results of CUTE on the neural spike train data. A
green edge represents a correct causal direction. A gray edge indicates
a partially identified causal direction.

of the two causal connections (as opposed to saying there is none) for
X1 and X2, X1 and X4, and X4 and X3 each. When we remove the loops
from the generating model by removing the inhibitory connections,
we obtain the generating model depicted in Fig. 4.7. When we use
CUTE to identify the causal direction of all dependent edges, we find
that it recovers the ground truth.

4.5 Discussion

The experiments show that CUTE works well in practice. It reliably
identifies true causal direction in a wide range of settings, is remarkably
fast, and outperforms the state of the art by a wide margin, while
qualitative case studies confirm that the results are sensible.

Although these results are promising, we see many possibilities for
further improvement. We focused mainly on binary data in this work.
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FIGURE 4.7: (left) Ground truth for the neural spike train data after
removing the inhibitory influences, and cycles. (right) Results of
CUTE on the modified neural spike train data. A green edge represents
correct causal direction.

But the extension to discrete data is also straightforward. We can
compute PSNML for a discrete time series by using the maximum like-
lihood estimator relative to a multinomial family. For the conditional
compression, we can trivially extend the proposal in Section 4.2.5.1.

In this work, we do not take into account the instantaneous effects.
In theory, however, we can include the instantaneous effects by using
the current outcome yt of the conditioned time series yn in conditional
compression cost L(xn | yn). As such, we will then have L(xn | yn) =

∑
n
t=1− logP(xt | xt−1,yt). Likewise, we can compute L(xn | yn) using

the causal mechanism proposed in Chapter 4.2.5.1.
Our method might fail in presence of a confounding time series zn

that causes both xn and yn. One of the avenues for future work would
be to address that problem. That would also require reconsidering
our assumptions, and computing compressed sizes of event sequences
conditioned on the confounding event sequence. Last it would be
interesting to explore the possibilities of extending CUTE on other
data types, and using CUTE for causal discovery.
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4.6 Conclusion

We proposed a causal inference framework for event sequences using
information theory by building upon on the foundations of Granger
causality. To encode the event sequences, we used minimax optimal
codes relative to a parametric family of prediction strategies. We
proposed CUTE, a linear time method for inferring the causal direction
between two event sequences. Extensive evaluation on synthetic,
and real-world data showed that CUTE discovers meaningful causal
relations in binary-valued event sequences, and outperforms the state-
of-the-art.

Software Artefacts

The Python implementation of causal inference methods used in this
work has been released as a python package pycute in the PyPI
repository.

Installation

The package requires Python ≥ 3.7. To install the package and all its
dependencies, use pip3.

$ pip3 install pycute

Example Usage

For both CUTE and TENT, we report results in a tuple of the form
(∆xn→yn ,∆yn→xn).
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>>> X, Y = [1] * 1000, [-1] * 1000

>>> from pycute import cute, tent

>>> cute.cute(X, Y)

>>> tent.tent(X, Y)
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Causal Inference on Multivariate IID Pairs 5

So far, we considered pairs of both i.i.d. and non-i.i.d. univariate
discrete random variables. In practice, sometimes it is also of interest
to know whether a group of variables together cause another group
of variables. This, we consider next. In particular, we deal with
the problem of inferring the causal direction between a pair of i.i.d.
multivariate binary random variables.1

1This work is published as Budhathoki and Vreeken (2016, 2018c).
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5.1 Introduction

Suppose that we have daily closing stock indices in various stock
markets in Asia and Europe. For each of these markets we can record
whether stock index went up from the previous closing or not (1 or 0).
How can we tell if stock markets in one continent cause the other from
this data? In a nutshell, we would like to infer the causal direction
between a pair of multivariate binary random variables from a sample
drawn from their joint distribution.

In recent years large strides have been made in the theory and
practice of discovering causal structure from observational data (Peters
et al., 2017b; Pearl, 2009; Hernán and Robins, 2019). Most methods,
and especially those that defined for pairs of variables, however, can
only consider continuous-valued or discrete numeric data (Shimizu
et al., 2006; Peters et al., 2010; Janzing et al., 2012; Peters et al.,
2014; Sgouritsa et al., 2015; Bloebaum et al., 2018) and are hence not
applicable on multivariate binary data.

In this work, we instantiate the algorithmic independence of condi-
tionals (AIC) through the crude version of the Minimum Description
Length principle, and propose ORIGO,2 which is a method for causal
inference on multivariate binary data. In particular, we model the
causal mechanism by a set of decision trees allowing for impure leaves
in a decision tree. As such, we assume that effect is a non-deterministic
boolean function of its cause.

To identify the best set of decision trees for a set of variables,
we use the MDL principle. To this end, we encode one variable at a
time using a decision tree. Such a tree may split only on previously

2ORIGO is Latin for origin
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encoded variables. We use this mechanism to measure how much
better we can compress the data of Y given the data of X, simply
by (dis)allowing the trees for Y to split on variables of X, and vice
versa. We identify the most likely causal direction as the one with
the most succinct description. Extensive experiments on synthetic,
benchmark, and real-world data show that ORIGO is robust to noise,
dimensionality, and skew between dimensionality of variables.

5.2 Crude MDL-based Approximation of AIC

Consider a pair of dependent multivariate binary random variables X
and Y. Suppose that we have a sample drawn from their joint distri-
bution P(X,Y). From this sample, we would like to infer whether X
causes Y, or Y causes X. To this end, we model the causal mechanism
by a set of decision trees, and build upon the algorithmic indepen-
dence of conditionals (AIC). This time, however, we consider crude
MDL (Rissanen, 1978) codes to instantiate the AIC as it is intractable
to compute stochastic complexity for rather complex model classes,
such as a set of decision trees.

5.2.1 Crude MDL

Although the refined version of MDL possesses minimax optimality
properties and leaves no room for arbitrariness, we can compute it
in practice only for limited model classes, such as the exponential
family. For rather complicated model classes, we have to resort to
crude MDL. Despite arbitrariness, carefully designed two-part MDL
codes are known to converge to the true distribution—if it exists—fast
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even on small sample sizes (Grünwald, 2007). The crude version
of MDL, also known as two-part MDL, can be roughly described as
follows (Grünwald, 2007).

Minimum Description Length Principle. Given a set of models M
and data D, the best model M ∈M is the one that minimises

L(D,M) = L(M)+L(D |M) ,

where, in bits,

• L(M) is the length of the description of M, and

• L(D |M) is the length of the description of D when encoded with M.

Intuitively L(M) represents the compressible part of the data, and
L(D | M) represents the noise in the data. In general, a model is a
probability measure, and the set of models is a parametric collection of
such models. Note that MDL requires the compression to be lossless in
order to allow for fair comparison between different models M ∈M .

5.2.2 Approximating AIC by Crude MDL

The algorithmic independence of conditionals is based on the premise
that we have access to the true distribution. In practice, we of course
do not know this distribution, we only have observed data. MDL
eliminates the need for assuming a distribution, as it instead identifies
the model from the class that best describes the data. The total encoded
size, which takes into account both how well the model fits the data as
well as the complexity of the model, therefore functions as a practical
instantiation of K(P(•)).
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To perform causal inference by MDL, we will need a model class
M of causal models. Let MX→Y ∈M be the causal model from the
direction X to Y. The causal model MX→Y consists of model MX for
X and MY|X for Y given X. We define MY→X analogously. The total
description length for the data over X and Y in the direction X to Y is
given by

LX→Y = L(X,MX)︸ ︷︷ ︸
L(MX )+L(X|MX)

+ L(Y,MY|X | X)︸ ︷︷ ︸
L(MY|X)+L(Y|MY|X,X)

,

where the first term is the total description length of X and MX, and
the second the total description length of Y and MY|X given the data
of X. We define MY→X analogously. Using the above indicators in the
algorithmic independence of conditionals, we arrive at the following
causal inference rules:

• If LX→Y < LY→X, we infer X→ Y.

• If LX→Y > LY→X, we infer Y→ X.

• Undecided otherwise.

That is, if total description length from X towards Y is simpler
than vice versa, we infer X is likely the cause of Y under the causal
mechanism represented by the model class. If it is the other way
around, we infer Y is likely the cause of X. If the total description
length is the same in both directions, we are undecided. In practice,
we can always introduce a threshold τ and treat differences between
the two indicators smaller than τ as undecided. To use these indicators
in practice, we have to define what causal model class M we use, how
to describe a model M ∈M in bits, how to encode a dataset D given a
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FIGURE 5.1: A toy example of valid causal models. A directed edge
from a node u to a node v indicates that u depends on v.

model M, and how to efficiently infer the optimal M∗ ∈M . This we
discuss in the next section.

5.2.3 Decision Trees as Causal Mechanism

A decision tree for a non-deterministic boolean function f : {0,1}m→
{0,1} is a binary tree whose internal nodes are labelled by the variables
X1, . . . ,Xm, and two outgoing edges from a node are labelled by 0 and
1. The leaves of the tree have probabilities of binary class labels. We
assume that effect is a non-deterministic function of its cause, that can
be represented by a set of decision trees.

In Figure 5.1, we give a toy example to show the valid models. For
MX and MY, we only allow dependencies between variables in X, and
between variables in Y respectively, but not in between. In MY|X, we
only allow variables in Y to acyclically depend on each other, as well
as on variables in X. Therefore, for the causal model MX→Y, we allow
variables in X to depend on each other, and variables in Y to depend on
either X or Y. The reverse model MY→X is constructed analogously.
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FIGURE 5.2: The three decision trees from the left are generated by
PACK for a toy binary dataset with three variables X1, X2 and X3. In
the rightmost figure, we show dependencies between the variables
based on their decision trees in a directed acyclic graph.

5.2.4 MDL-based Decision Trees

PACK (Tatti and Vreeken, 2008) is an MDL-based algorithm for
discovering itemsets that compress the binary data efficiently. To do
so, it discovers a set of decision trees that together encode the data
most succinctly. While we do not care about these itemsets, it is the
decision tree model PACK infers that is of interest to us.

For example, consider a toy binary dataset with three variables
X1, X2, and X3. PACK aims at discovering the set of decision trees
such that we can encode the data in as few bits as possible. We give
an example of the decision trees PACK could discover in Figure 5.2
(first three from the left). As the figure shows, X1 depends on X2, and
X3 depends on both X1 and X2. Those dependencies are shown in a
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directed acyclic graph in Figure 5.2 (rightmost).
For self-containment, we briefly explain how to compress bi-

nary data using MDL-based decision trees from Tatti and Vreeken
(2008). Suppose that we have a sample of m binary random variables
X = {X1, . . . ,Xm}, and the set of decision trees MX = {T1, . . . ,Tm}
corresponding to each variable Xi. We use optimal prefix codes to
encode each variable Xi by its corresponding decision tree Ti. To this
end, using each leaf l ∈ leaves(Ti) of the tree Ti, we encode a different
part of Xi. As such, the total cost of encoding Xi using Ti is given by

L(Xi | Ti) =− ∑
l∈leaves(Ti)

∑
v∈{0,1}

n(vl) log P̂(Xi = v | l) ,

where n(vl) is the number of observations in leaf l that assume a value
v, and P̂(Xi = v | l) is the empirical probability of the event Xi = v
given that leaf l is chosen.

To decode a variable, we have to transmit its corresponding deci-
sion tree as well. First we transmit leaves of a decision tree. Using
refined MDL, we compute the encoded size of a leaf l as

L(l) = log
n(l)

∑
j=0

(
n(l)

j

)(
j

n(l)

)n(l)
(

n(l)− j
n(l)

)n(l)− j

,

where n(l) is the number of observations for which leaf l is used. For a
parametric family of multinomial distributions, we can compute the
expression above in linear time (Kontkanen and Myllymäki, 2007).

Then we encode the number of nodes in the decision tree Ti. In
doing so, we use one bit to indicate whether a node is a leaf or an
intermediate node. If a node is an intermediate node, we use an extra
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logm bits to identify the split variable. Let inter(Ti) be the set of all
intermediate nodes of the decision tree Ti. Then the total number of
bits needed to encode a decision tree Ti is given by

L(Ti) = ∑
node∈inter(Ti)

(
1+ logm

)
+ ∑

l∈leaves(Ti)

(
1+L(l)

)
.

Thus the total encoded size of the decision tree Ti and that of Xi using
Ti is given by

L(Xi,Ti) = L(Ti)+L(Xi | Ti) .

Altogether the total encoded size of all the decision trees T and all
the variables using their corresponding decision trees is given by

L(X,MX) = ∑
Ti∈MX

L(Xi,Ti) .

To infer the best set of decision trees from the sample, PACK uses a
greedy heuristic, which can be roughly described as follows. We start
with a set of trivial decision trees without a split, one for each variable.
For each variable Xi, we keep looking for the best variable X j to split
on that we have not split on before, as long as the dependency graph
remains acyclic, and the total encoded size decreases. For more details
on PACK, we refer the interested reader to Tatti and Vreeken (2008).

5.2.5 Instantiating the MDL score with PACK

To compute L(X ,MX), we can simply compress X using PACK. Com-
puting L(Y,MY|X | X), however, is not straightforward, as PACK does
not support conditional compression off-the-shelf. Clearly, it does
not suffice to simply compress X and Y together as this gives us
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L(XY,MXY) which may use any acyclic dependency between X and
Y and vice versa. When computing LX→Y, for instance, we do not
want the variables of X to depend on the variables of Y. Therefore,
we modify PACK such that a variable of X is only allowed to split on
other variables of X, and a variable of Y is allowed to split on both the
variables of X and the other variables of Y.

From here onwards, we refer to the PACK-based instantiation of
the causal score as ORIGO, which means origin in latin. Although our
focus is primarily on binary data, we can infer causal direction from
categorical data as well. To this end, we can binarize the categorical
data creating a binary feature per value. The implementation of PACK
already provides this feature off-the-shelf.

5.2.6 Computational Complexity

Next we analyse the computational complexity of ORIGO. To compute
LX→Y, we have to run PACK only once. PACK uses the ID3 algorithm
to construct binary decision trees, therewith the computational com-
plexity of PACK is O(2kn), where n is the number of observations in
the sample, and k is the total number of univariate variables in X and
Y. To infer the causal direction, we have to compute both LX→Y, and
LY→X. Therefore, in the worst case, the computational complexity of
ORIGO is O(2kn). In practice, ORIGO is fast, and completes within
seconds.

5.3 Related Work

Most causal inference methods for a pair of variables are for univariate
cause-effect pairs. Those methods typically exploit sophisticated prop-
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erties of the joint distribution. One of the widely used frameworks are
the Additive Noise Models (ANMs) (Shimizu et al., 2006; Hoyer et al.,
2009). The ANMs assume that effect is a deterministic function of its
cause and an additive noise that is independent of the cause. Although
there exists variants of ANMs (Zhang and Hyvärinen, 2009; Peters
et al., 2010), they are only for applicable on univariate cause-effect
pairs.

Causal inference methods based on the algorithmic independence
of conditionals (Peters et al., 2017b; Janzing and Schölkopf, 2010;
Lemeire and Dirkx, 2006) require computable alternatives to Kol-
mogorov complexity. The information-geometric approach (Janzing
et al., 2012) defines independence in terms of the orthogonality in in-
formation space. Sgouritsa et al. (2015) define independence in terms
of the accuracy of the estimation of conditional distribution using
corresponding marginal distribution. Liu and Chan (2016) define inde-
pendence in terms of the distance correlation between empirical distri-
butions, and propose DC. ERGO (Vreeken, 2015) is a causal inference
framework based on relative conditional complexities, K(Y | X)/K(Y )
and K(X | Y )/K(X), and infers the direction with the lowest rela-
tive complexity. Cumulative entropy is used to instantiate ERGO in
practice for univariate and multivariate continuous real-valued data.

Causal inference on a pair of multivariate variables has received
relatively much less attention. The linear trace method (Janzing et al.,
2010; Zscheischler et al., 2011) infers linear causal relations of the
form Y = AX , where A is the structure matrix that maps the cause to
the effect, using the linear trace condition which operates on A, and the
covariance matrix of X , ΣX . The kernelized trace method (Chen et al.,
2013) extends the trace-based method to non-linear causal relations.

Overall, only DC and ERGO are directly applicable to multivariate
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binary data.

5.4 Experiments

We implemented ORIGO in Python and provide the source code along
with the used datasets, and synthetic dataset generator.3 All experi-
ments were executed single-threaded on MacBook Pro with 2.5 GHz
Intel Core i7 processor and 16 GB memory running Mac OS X. We
compare ORIGO against the ERGO score (Vreeken, 2015) instantiated
with PACK, and DC (Liu and Chan, 2016).

5.4.1 Synthetic Data

To evaluate ORIGO on the data with known ground truth, we consider
synthetic data. In particular, we generate binary data X and Y such that
variables in Y probabilistically depend on the variables of X, termed
here onwards as dependency. Throughout the experiments on synthetic
data, we generate X of size 5000-by-m, and Y of size 5000-by-p.

To this end, we generate data on a per variable basis. First, we
assume the ordering of variables – the ordering of variables in X
followed by the ordering of variables in Y. Then, for each variable,
we generate a binary decision tree. In doing so, we only consider
the variables preceding it in the ordering as candidate nodes for its
decision tree. Then, each row is generated by following the ordering
of variables, and using their corresponding decision trees. Further,
we use the split probability to control the depth/size of the tree. We

3https://github.com/kailashbuki/origo
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randomly choose weighted probabilities for the presence/absence of
leaf variables.

With the above scheme, with high probability, we generate data
with a strong dependency in one direction. In general, we expect this
direction to be the true causal direction, i.e. X→Y. Although unlikely,
it is possible, that the model in the reverse direction is superior. More-
over, unless we set the split probability to 1.0, however, it is possible
that by chance we generate pairs without dependencies, and hence
without a true causal direction. Unless stated otherwise we choose
not to control for either case, by which at worst we underestimate the
performance of ORIGO.

All reported values are averaged over 500 samples unless stated
otherwise.

Performance: First we examine the effect of dependency on vari-
ous metrics – the percentage of correct inferences (accuracy over all
pairs), the percentage of indecisive inferences, and the percentage of
incorrect inferences. We start with m = p = 3. We fix the split prob-
ability to 1.0, and generate trees with the maximum possible height,
i.e. m+ p− 1 = 5. In Figure 5.3 (left), we give the plot showing
various metrics at various dependencies for the generated pairs. We
see that with the increase in dependency, indecisiveness quickly drops
to zero, while accuracy increases sharply towards 90%. Note that at
zero dependency, there are no causal edges, hence ORIGO is correct
in being indecisive.

Next we study the effect of the maximum height h of the trees on
the accuracy of ORIGO. We set m = p = 3, and the split probability to
1.0. In Figure 5.3 (right), we observe that the accuracy gets higher as
h increases. This is due to the increase in the number of causal edges
with the increase in the maximum height of the tree. Although the
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FIGURE 5.3: For synthetic datasets with m = p = 3, we report (left)
fraction of correct, incorrect and indecisive decisions at various depen-
dencies, (right) the accuracy over all pairs at various dependencies for
trees at various maximum heights.

increase in accuracy is quite large when we move from h = 1 to 2, it is
almost negligible when we move from h = 2 onwards. This shows that
ORIGO already infers the correct causal direction even when there are
only few causal dependencies in the generating model.

Next we analyse the effect of split probability on the accuracy of
ORIGO. To this end, we set m = p = 3, fix the dependency to 1.0, and
generate trees with the maximum possible height. In Figure 5.4 (left),
we observe that the accuracy of ORIGO increases with the increase in
the split probability. This is due to the fact that the depth of the tree
increases with the increase in the split probability. Consequently, there
are more causal edges, therewith the more accurate ORIGO is.

Next, we examine whether considering a rather large space of data
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instead of single sample improves the result. To this end, we perform
bootstrap aggregating, also called bagging. Bagging is the process
of sampling K new datasets Di from a given dataset D uniformly and
with replacement. We fix the dependency to 0.7, the probability of
split to 1.0, the number of bagging samples to K = 50 and generate
trees with maximum height of h = 5. We run ORIGO on each sampled
cause-effect pair. Then we take the majority vote to decide the causal
direction. In Figure 5.4 (right), we compare the accuracy of ORIGO
against bagging (ORIGI) for symmetric cause effect pairs. We see that
bagging does not really improve the result. This is not unexpected
as bagging is mainly a way to overcome overfitting, which by MDL
we are naturally protected against (Grünwald, 2007). These results
confirm this conviction.

Next we investigate the accuracy of ORIGO on cause-effect pairs
with asymmetric dimensions. For that, we fix the split probability
to 1.0, and generate trees with the maximum possible height. At
every level of dependency, we generate 500 cause-effect pairs, 250
of which with m = 1, p = 3 and remaining 250 with m = 3, p = 1. In
particular, we consider those pairs for correctness where there is at
least one causal edge from X to Y. In Figure 5.5 (left), we give the plot
comparing the accuracy of ORIGO against ERGO and DC. We see that
ORIGO performs much better than the other methods. In particular,
the difference in accuracy gets larger as the dependency increases. We
also note that the performance of DC has a striking resemblance to
flipping a fair coin.

Next we consider the symmetric case where m = p = 3. We fix
the split probability to 1.0, and generate trees with the maximum
possible height. As in the asymmetric case, we consider those pairs
for correctness where there is at least one causal edge from X to Y.
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FIGURE 5.4: For synthetic datasets, we show (left) the accuracy over
all pairs at various split probabilities for ORIGO with m = p = 3,
and (right) compare the accuracy over all pairs against bagging in
symmetric case with m = p.

In Figure 5.5 (right), we show the plot comparing the accuracy of
ORIGO against ERGO, and DC. We see that both ORIGO performs as
good or better than other methods. We note that for the pairs without
dependency, DC infers a causal relationship in over 50% of the cases.

Dimensionality

Next we study the robustness against dimensionality. First we consider
cause-effect pairs with symmetric number of dimensions, i.e. m = p
and vary it between 1 and 10. We fix the dependency to 0.7, the split
probability to 1.0, and the maximum height of trees to 5. In particular,
we compare ORIGO against ERGO and DC. In Figure 5.6 (left), we
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FIGURE 5.5: For synthetic datasets, we compare (left) the accuracy
over all pairs in asymmetric case (1 vs. 3), and (right) the accuracy
over all pairs at various dependencies in symmetric case (m = p = 3)

see that ORIGO is highly accurate in every setting. With the exception
of the univariate case, ERGO also performs well when both X and Y
have the same cardinality.

In practice, however, we also encounter cause-effect pairs with
asymmetric number of dimensions. To evaluate performance in this
setting, we set respectively m and p to 5 and vary the other between 1
to 10 – and generate 100 data pairs per setting. In Figure 5.6 (right),
we see that ORIGO outperforms ERGO by a huge margin the stronger
the imbalance between the cardinalities of X and Y. This is due to the
inherent bias of ERGO favouring the causal direction from the side
with higher complexity towards the simple one. In addition, we see
that ORIGO outperforms DC in every setting.
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FIGURE 5.6: For synthetic datasets, we report the accuracy over all
pairs (left) in symmetric case with m = p, and (right) in asymmetric
case (5 vs. varying dimensions).

5.4.2 Real-World Data

Next, we evaluate ORIGO on real-world data.

Multivariate Benchmark Pairs

First we evaluate ORIGO on real-world data with multivariate pairs.
For that we consider four cause-effect pairs with known ground truth
taken from the Tübingen cause-effect benchmark pairs.4 The chemnitz
dataset is taken from Janzing et al. (2010), whereas the car dataset
is from the UCI repository.5 We use IPD (Nguyen et al., 2014) to
discretize the data. We give the base statistics in Table 5.1. For each

4https://webdav.tuebingen.mpg.de/cause-effect/
5https://archive.ics.uci.edu/ml/
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Table 5.1: Results on the benchmark multivariate cause-effect pairs.
A tick (X) indicates a correct decision, a cross (×) indicates a wrong
decision, and a double-headed arrow (↔) indicates an indecision.

Dataset n m p Truth ORIGO ERGO DC

weather forecast 10,226 4 4 Y→ X ↔ X ↔
ozone 989 1 3 Y→ X X X ×
auto-mpg 392 3 2 X→ Y X X ×
radiation 72 16 16 Y→ X × × ×
chemnitz 1,440 3 7 X→ Y X × X

car 1,728 6 1 X→ Y X X X

pairs, we report the sample size, the dimension of X, the dimension
of Y, the ground truth. Furthermore, we report the results of ORIGO,
ERGO, and DC. We observe that both ORIGO and ERGO infer correct
direction from four pairs. Whereas ORIGO is incorrect in one pair and
remains indecisive in the other, ERGO is incorrect in two pairs. DC,
however, is mostly incorrect.

Acute inflammation

The acute inflammation dataset is taken from the UCI repository.4

It consists of the diagnosis of two diseases of urinary system for 120
potential patients. There are 6 symptoms – temperature of the patient
(X1) , occurrence of nausea (X2), lumber pain (X3), urine pushing (X4),
micturition pains (X5), burning of urethra, itch, swelling of urethra
outlet (X6). All the symptoms are binary but the temperature of the pa-

95



5. CAUSAL INFERENCE ON MULTIVARIATE IID PAIRS

tient, which takes a real value between 35◦C−42◦C. The two diseases
for diagnosis are inflammation of urinary bladder (Y1) and nephritis of
renal pelvis origin (Y2). We discretise the temperature into two bins
using IPD. This results in two binary attributes X11 and X12. We then
run ORIGO on the pair (X,Y) where X = {X11,X12,X3,X4,X5,X6}
and Y = {Y1,Y2}. We find that Y→X. That is, ORIGO infers that the
disease causes the symptoms, which is in agreement with our intuition.

5.5 Discussion

In this work, we showed how to instantiate the algorithmic indepen-
dence of conditionals through the crude version of the Minimum
Description Length principle for a pair of multivariate binary ran-
dom variables. The experiments show that ORIGO works well in
practice. ORIGO reliably identifies true causal structure regardless
of cardinality, skew, with high statistical power, even at low level of
dependencies. Moreover, the qualitative case studies show that the
results are sensible.

Although these results show the strength of our framework, and
of ORIGO in particular, we see many possibilities to further improve.
For instance, PACK does not work directly on categorical data. By
binarizing the categorical data, it can introduce undue dependencies.
This presents an inherent need for a lossless compressor that works
directly on categorical data. For other data types, for instance, Marx
and Vreeken (2019) have extended ORIGO to mixed-type data using
crude MDL-based regression trees.

One avenue for future work would be to include the missing identi-
fiability results for ORIGO, as it does not have any theoretical guaran-
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tees on the identifiability of the causal graph from the joint distribution
of variables. Similar to other causal inference frameworks for a pair
of variables, ORIGO is based on the causal sufficiency assumption.
Extending ORIGO to include confounders is another avenue of future
work.

5.6 Conclusion

We proposed a causal inference method for a pair of i.i.d. multivariate
binary random variables. To this end, we instantiated the algorithmic
independence of conditionals through MDL-based decision trees. We
model the causal mechanism by a set of decision trees allowing for
impure leaves in a decision tree. As we can compute refined MDL code
only for limited few model classes, we computed the two-part MDL
code of the data, and the set of decision trees. Extensive evaluation
on synthetic, benchmark, and real-world data showed that ORIGO
reliably infers the correct causal direction on a wide range of settings.

Software Artefacts

The Python implementation of MDL-based causal inference methods
in this work has been released as a python package origo in the PyPI
repository.

Installation

The package requires Python ≥ 3.7. To install the package and all its
dependencies, use pip3.
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$ pip3 install origo

Example Usage

We report results in a tuple of the form (LX→Y,LY→X).

>>> X, Y = [[1],[1],...], [[-1],[-1],...]

>>> from origo import origo, ergo

>>> origo.origo(X, Y)

>>> ergo.ergo(X, Y)
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Discovering Reliable Causal Rules 6

Just knowing that a group of variables cause a target variable does not
always fully satisfy one’s curiosity. It is often of particular interest,
for instance, to know the conditions on the variables under which
the effect is visible, such as the specific combinations of drugs that
lead to severe side-effects. In this chapter, we study the problem of
deriving rules or policies from observational data that, when enacted
on a complex system, cause a desired outcome.1

1This work was presented at the NeurIPS 2018 workshop on Causal Learning (Bud-
hathoki et al., 2018), and the full research article is currently under submission.
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6.1 Introduction

Consider the study of the effect of combinations of drugs. Certain
drugs can amplify each others effect, and are therewith combinations
of drugs can turn out to be much more effective, or even only effective,
than when the drugs are taken individually. This effect is sometimes
positive, for example in combination treatments against HIV and
cancer, but sometimes it is also negative, as it can lead to severe
up to possibly lethal side effects. For all but the smallest number
of drugs, however, there are so many possible combinations that it
quickly becomes practically impossible to test these combinations in a
controlled manner. From the observational data, however, we can only
establish that some drugs together cause the recovery. We need more
than such a generic statement because some drug combinations are,
for instance, more effective than the others. Some, on the other hand,
can lead to severe side-effects. In such cases, it is of particular interest
to us to identify the combination of drugs that are most effective.

In a nutshell, we would like to discover rules from a set of action-
able variables that are most effective with regard to a target variable
of interest. Existing methods for causal inference from observational
data, however, can only extract partially directed causal graphs from
data (Spirtes et al., 2000; Chickering, 2002; Pearl, 2009), or identify
the most likely causal direction between pairs of variables (Shimizu
et al., 2006; Hoyer et al., 2009). Though simple to state, this task
of discovering effective rules is not only computationally hard; we
also have have to cope with an intricate combination of two semantic
problems—one statistical and one structural.

The statistical problem is the well-known phenomenon of over-
fitting. This phenomenon results from the high variance of the naive
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empirical (or “plug-in”) estimator of causal effect for rules with too
small sample sizes for the instances either covered, or excluded by
the rule. Combined with the maximization task over a usually very
large rule language, this variance turns into a strong positive bias that
dominates the search and causes essentially random results of either
extremely specific or extremely general rules.

The second, structural problem is often referred to as Simpson’s
paradox. Even strong and confidently measured effects of a rule might
not actually reflect true domain mechanisms, but can be mere artifacts
of the effect of other variables. Notably, such confounding effects
can not only attenuate or amplify the marginal effect of a rule on the
target variable, in the most misleading cases they can even result in
sign reversal, i.e. when interpreted naively, the data might indicate a
negative effect even though in reality there is a positive effect (Pearl,
2009, Chap. 6).

In this work, we present a theoretically sound approach to discov-
ering causal rules that remedies both of these problems.

1. To address the overfitting problem, we propose to measure and
optimise the reliable effect of a rule. In contrast to the plug-in
estimator, we propose a conservative empirical estimate of the
population effect, that is not prone to overfitting. Additionally,
and in contrast to other known rule optimisation criteria, it is
also consistent, i.e., with increasing amounts of evidence (data),
the measure converges to the actual population effect of a rule.

2. To address the structural problem, we propose to control for
the effect of a given set of potential confounder variables. In
particular, we identify the admissible data-generating processes
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under which it is possible to discover causal rules. While in
practice the set of control variables will rarely be complete, i.e.,
not contain all potential confounders, this approach can rule out
specific alternative explanations of findings as well as eliminate
misleading observations caused by selected observables that
are known to be strong confounders. In fact, this pragmatic
approach is usually a necessity caused by the limited sample
size.

3. We develop a practical algorithm for efficiently discovering the
top-k strongest reliable effect rules. In particular, we show how
the optimisation function can be cast into a branch-and-bound
approach based on computationally efficient tight, optimistic
estimator.

Moreover, our approach lends itself naturally to an iterative ap-
proach in which we can discover insights beyond the factors included
in the control variables. We support our claims by experiments on
real-world datasets as well as by reporting the required computation
times on a large set of benchmark datasets.

6.2 Reliable Causal Rules

We consider a causal system of discrete (random) variables with a
designated target variable Y and a number of covariates, which we
differentiate into actionable variables XXX and control variables ZZZ.
For example, Y might indicate recovery from a disease, XXX different
medications that can be administered to a patient, and ZZZ might contain
patient properties like sex and age. We assume that one can perform

102



6.2. Reliable Causal Rules

an intervention on the system that involves enforcing specific values
x for some chosen set of variables X ⊆ XXX, after the values z for ZZZ
have been observed. Each such intervention yields different joint post-
intervention probabilities, denoted by P(• | do(x),z) (Pearl, 2009,
Chap. 3). We are interested in (stochastic) policies Q that enforce
values x non-deterministically with probability Q(x | z). The post-
intervention probabilities are then given as the mixture

P(•|do(Q),z) = ∑
x∈X

P(•|do(x),z)Q(x | z) ,

where X is the joint domain of X. For example, a doctor might
describe different medications to patients of different demographics
and different doctors might have varying preferences for medications
resulting in stochasticity when considering the policy of a hospital
as whole. Note that in practice we usually have a choice as to which
covariates to consider as actionable variables and which as control.
Below we discuss in detail the considerations affecting this choice.

In this work, we are concerned with policies that are described by
rules σ(x) that evaluate to either true (>) or false (⊥) for a given value
x. Specifically, we investigate the rule language L of conjunctions
of propositions σ ≡ π1∧·· ·∧πl) that can be formed from inequality
and equality conditions on individual actionable variables X (i.e.,
π ≡ X ≤ v and so on). In general there are many values x that can
satisfy a rule σ (e.g., σ ≡ X ≤ 3 is satisfied by X = 3,2, . . . ). Hence,
such rules describe a multitude of compatible policies Qσ , each of
which enforces σ , i.e.,

P(σ(X) = > |do(Qσ ),z) = 1 .
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When working with observational data that has been sampled accord-
ing to some observational probabilities, this degree of freedom is
eliminated by identifying the rule σ with the observationally con-
gruent policy defined as Qσ (x | z) = P(x | σ ,z). This specific choice
permits truthful evaluation through the observational data.

Our goal is to identify rules σ that have a high causal effect on a
specific outcome y for the target variable Y , which we define as the
difference in the post-intervention probabilities of y under the policies
described by σ and σ̄ , i.e.,

−→e (σ) = E [P(y | do(σ),z)−P(y | do(σ̄),z)] .

where σ̄ denotes the logical negation of σ .

6.2.1 From Observational to Causal Effect

On observational data, we can approximate the causal effect by the
(conditional) observational effect of σ on Y where we replace inter-
vention by simple conditioning, i.e.,

e(σ) = E [P(y | σ ,z)−P(y | σ̄ ,z)] ,

where we use the shorthands σ and σ̄ to denote the events σ(X) = >
and σ(X) = ⊥, respectively. However, unless special conditions hold,
the observed conditional probabilities will not be the same as the post-
intervention probabilities; hence e(σ) 6= −→e (σ). That is, in general,
we only measure association rather than causation.

As mentioned in the introduction, a well-known reason for this
discrepancy is the potential presence of confounders, i.e., variables
that influence both, our desired actionable variable(s) and the target.
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More generally, to get accurate causal effect estimates, we have to
eliminate the influence of all spurious path in the causal graph, i.e.,
the directed graph that describes the conditional independences of our
random variables (with respect to all post-intervention distributions).
Intuitively, we can achieve this by choosing our set of control variables
large enough.

In more detail, when estimating the causal effect of X on Y , any
undirected path connecting Y and X that has an incoming edge towards
X is a spurious path. A node (variable) is a collider on a path if its
in-degree is 2, e.g., Z is a collider on the path X → Z←Y . A spurious
path is blocked by a set of nodes Z, if the path contains a collider
that is not in Z, or a non-collider on the path is in Z (Pearl, 2009,
Def. 1.2.3). A set of nodes Z satisfies the back-door criterion for a
set of nodes X and a node Y if it blocks all spurious paths from any
X in X to Y , and there is no direct path from any X in X to any Z in
Z (Pearl, 2009, Def. 3.3.1). For X and Y , if a set Z satisfies the back-
door criterion, then observation and post-intervention probabilities are
equal within each z stratum of Z (Pearl, 2009, Thm. 3.3.2):

P(y | do(x),z) = P(y | x,z) . (6.1)

Consequently, for e(σ) to be a truthful estimate of −→e (σ) for all
rules σ ∈L , we have to assure that our control variables ZZZ satisfy the
back-door criterion for all the actionable variables XXX. This also im-
plies that there are no other spurious paths via potentially unobserved
variables U . In the special case that ZZZ is empty, Y must not cause any
actionable variable X in XXX. The following definition summarises all
these requirements (see Fig. 6.1 for an illustration).
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Z1 Z`. . .

U1 Uk
. . .

X1 Xp. . .

Y

FIGURE 6.1: A skeleton causal graph of an admissible input to causal
rule discovery (see Def. 6.2.1). A dashed edge from a node u to v
indicates that u potentially affects v.

Definition 6.2.1 (Admissible Input to Causal Rule Discovery). The
causal system (XXX,Y,ZZZ) of actionable variables, target variable, and
control variables is an admissible input to causal rule discovery if the
underlying causal graph of the variables satisfy the following:

(a) there are no outgoing edges from Y to any X in XXX,

(b) no outgoing edges from any X in XXX to any Z in ZZZ,

(c) no edges between actionable variables XXX, and

(d) no edges between any unobserved U in U and X in XXX.

The lemma below shows that the control variables ZZZ block all
spurious paths between any subset of actionable variables X and Y .

Lemma 6.2.1. Let (XXX, Y , ZZZ) be an admissible input. Then the control
variables ZZZ block all spurious paths between any subset of actionable
variables X and Y .
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Proof. To prove this lemma, we argue graphically. All spurious paths
between X and Y can be either from Y to X directly, or via control
variables ZZZ, or via other actionable variables XXX \X, or via latent
variables U . Criterion (a) rules out trivial spurious paths from Y
to XXX that cannot be blocked by any ZZZ. Criterion (b) ensures that
any spurious path unblocked by one control variable is blocked by
another. Criterion (c) ensures that there are no spurious paths between
any subset of actionable variables X in the rule σ and Y via other
actionable variables XXX \X. To see this, suppose that we have two
actionable variables X1 and X2, and a rule σ ≡ X1 = 1. If the causal
graph contains the path X1 ← X2 → Y , the observational effect is a
biased estimator of the causal effect. Criterion (d) is really just a form
of standard causal sufficiency (Scheines, 1997). In particular, as there
are no edges between any latent variable U in U and any X in XXX, by
conditioning on ZZZ, we block any spurious path between any X and Y
via U . Thus the control variables ZZZ block all spurious paths between
any subset of actionable variables X and Y .

The following theorem notes that, for admissible inputs, e(σ) is
equal to the causal effect of a rule or, more precisely, its observationally
congruent policy (proof in appendix).

Theorem 1. Let (XXX, Y , ZZZ) be an admissible input. Then for any rule
σ in rule language L , we have e(σ) =−→e (σ).

Proof. The post-intervention probability of y in a z stratum of ZZZ under
the policy described by σ is given by

P(y | do(σ),z) = ∑
x∈X

P(y | do(x),z)Qσ (x | z)
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As σ describes the observationally congruent policy Qσ (x | z) = P(x |
σ ,z), we have

= ∑
x∈X

P(y | do(x),z)P(x | σ ,z)

As P(x | σ ,z) = 0 for all x with σ(x) = ⊥, we can only take those x
for which σ(x) = > holds in the summation

= ∑
x∈X

σ(x)=>

P(y | do(x),z)P(x | σ ,z)

AsZZZ blocks all spurious paths from Y to any X⊆XXX due to Lemma 6.2.1,
for any rule σ in L , we can replace the post-intervention probability
under intervention do(x) by the observational conditional probability
within each z stratum of ZZZ using Eq. (6.1)

= ∑
x∈X

σ(x)=>

P(y | x,z)P(x | σ ,z)

= ∑
x∈X

σ(x)=>

P(y | x,z)P(x,σ | z)
P(σ | z)

For x with σ(x) = >, we have P(x,σ | z) = P(x | z), thus

= ∑
x∈X

σ(x)=>

P(y | x,z)P(x | z)
P(σ | z)

= ∑
x∈X

σ(x)=>

P(y,x | z)
P(σ | z)
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Since ∑ x∈X
σ(x)=>

P(y,x | z) = P(y,σ | z), this results in

=
P(y,σ | z)

P(s | z)
= P(y | σ ,z) .

Using this result, we have the causal effect of σ on Y as

−→e (σ) = E [P(y | do(σ),z)−P(y | do(σ̄),z)]
= E [P(y | σ ,z)−P(y | σ̄ ,z)]
= e(σ) .

Exceptional cases aside, in practice, we often do not know the com-
plete causal graph, and hence we do not know if we are considering—
or have even measured—complete ZZZ. In an attempt to block any path
other than the direct ones betweenXXX and Y , a naive approach would be
to include as many variables inZZZ as possible. In addition to potentially
violating Def. 6.2.1, the empirical estimation of the effect gets harder
with more control variables, which we will discuss next.

One strategy would be to initialise ZZZ to the best of our knowledge,
which could be the empty set, and then discover the rules with the
strongest observational effect. From these, we can then carefully
select those that we wish to add to ZZZ, and then iterate to investigate
whether there exist strong observational effect rules between XXX and
Y conditioned on ZZZ. While this does not guarantee we discover the
true ZZZ, it does provide a natural approach to causal exploration—as
well as to iterative data mining, where we wish to discover hypotheses
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that explain the data beyond what we already know (Hanhijärvi et al.,
2009).

6.2.2 Statistical Considerations

In practice, we want to estimate e(σ) from a sample drawn from the
population. Suppose that we have a sample of N instances stratified by
ZZZ from the population (or in practice, the sample size is large enough
to give relatively accurate estimates of the marginal distribution of ZZZ).
The naive estimator of the observational effect e(σ) is the estimator
based on the empirical distribution P̂, i.e. the plug-in estimator:

ê(σ) = E
[
P̂(y | σ ,z)− P̂(y | σ̄ ,z)

]
= ∑

z∈Z

(
P̂(y | σ ,z)− P̂(y | σ̄ ,z)

)
P̂(z)

= ∑
z∈Z

(p̂σ ,z− p̂σ̄ ,z)P̂(z) ,

where Z is the joint domain of ZZZ, p̂σ ,z = P̂(y | σ ,z), and p̂σ̄ ,z = P̂(y |
σ̄ ,z). In a stratified sample, P̂(z) is the same as P(z) for all z. As
the empirical distribution is an unbiased estimator of the population
distribution, the plug-in estimator is an unbiased estimator of the
observational effect.

Although unbiased, the plug-in estimator shows high variance for
rules with overly small sample sizes for either of the two events, σ or
σ̄ . To illustrate this, in Fig. 6.3 (left), we show the score distribution
for the plug-in estimator for a very specific rule of five conditions, and
see that while it is close to the true observational effect, it shows very
high variance in small samples. This high variance is problematic, as
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it leads to overfitting: if we use this estimator for the optimisation
task over a very large space of rules, the variance will turn into a
strong positive bias—we will overestimate the effects of rules from
the sample—that dominates the search, and we end up with random
results of either extremely specific or extremely general rules.

We address this problem of high variance by biasing the plug-in
estimator. In particular, we introduce bias in terms of our confidence
in the point estimates using confidence intervals. Note that we need
not quantify the confidence of the point estimate P̂(z) as P̂(z) = P(z);
the point estimates of concern are the conditional probabilities p̂σ ,z
and p̂σ̄ ,z.

In repeated random samples of instances with σ=> andZZZ=z from
the population, the number of instances with successful outcome y is a
binomial random variable with the success probability P(y|σ ,z). In a z
stratum ofZZZ, let nσ ,z and nσ̄ ,z be the number of instances that satisfy σ

and σ̄ , respectively. Then the one-sided binomial confidence interval
of p̂σ ,z, using a normal approximation of the error distribution, is
given by β

√
p̂σ ,z(1− p̂σ ,z)/nσ ,z, where β is the 1−α/2 quantile of a

standard normal distribution for an error rate α . For a 95% confidence
level, for instance, the error rate is α =0.05, thereby β =1.96. We
can easily verify that the maximum value of p̂σ ,z(1− p̂σ ,z) is 1/4,
and hence the maximum value of the one-sided confidence interval is
β/(2√nσ ,z). Taking a conservative approach, we bias the difference
p̂σ ,z− p̂σ̄ ,z by subtracting the sum of the maximum values of the
one-sided confidence intervals of the point estimates, this results in

τ(z) = (p̂σ ,z− p̂σ̄ ,z)−
(

β/(2
√

nσ ,z)+β/(2
√

nσ̄ ,z)
)
.

Note that τ(z) lower bounds the true probability mass difference
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in the population with confidence 1−α . That is, there is a 1−α

chance that the true difference is larger than τ(z). For a fixed β , the
lower bound gets tighter with increasing sample size. In fact, it is easy
to see that τ(z) is a consistent estimator of the true probability mass
difference in the population; the bias term vanishes asymptotically.
More formally, for a fixed finite β , we have

lim
min(nσ ,z,nσ̄ ,z)→∞

β/(2
√

nσ ,z)+β/(2
√

nσ̄ ,z) = 0 .

As we deal with empirical probabilities, we can express τ(z) in
terms of counts in a contingency table. Suppose that we have a contin-
gency table as shown in Tab. 6.1 (left) for a z stratum. Then we can
express τ(z) in terms of the cell counts in the contingency table as

τ(z) =
a

nσ ,z
− c

nσ̄ ,z
− β

2√nσ ,z
− β

2√nσ̄ ,z
.

In the extreme case, however, a rule may select all or none of the
instances in a stratum, resulting in nσ ,z=0 or nσ̄ ,z=0, and hence the
empirical conditional probability mass functions can be undefined. In
practice, we encounter this problem often, both due to specificity of a
rule as well as small sample sizes to begin with.

As a remedy, we apply the Laplace correction to the score. That
is, we increment count of each cell in the contingency table by one.
This way we start with a uniform distribution within each stratum of
ZZZ. Hence a stratum of size n increases to n+4, and the total effective
sample size increases from N to N + 4|Z |. After applying Laplace
correction, we have P̂(z) = (n+4)/(N +4|Z |), and τ(z) is given by

τ(z) =
a+1

nσ ,z +2
− c+1

nσ̄ ,z +2
− β

2
√

nσ ,z +2
− β

2
√

nσ̄ ,z +2
.
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After introducing the bias and applying the Laplace correction to the
plug-in estimator, we obtain the reliable estimator of the observational
effect as

r̂(σ) = ∑
z∈Z

τ(z)P̂(z) . (6.2)

Although biased, r̂(σ) is still a consistent estimator of the observa-
tional effect. Importantly, in contrast to the plug-in estimator, the
reliable estimator is much better at generalisation as it avoids overfit-
ting.

Consider the following example to see the generalisation behaviour
of the estimators. Suppose that we generate the population using the
causal graph in Fig. 6.2. In addition, we generate five uniformly dis-
tributed binary actionable variables, X2,X3, . . . ,X6 that are independent
of each other as well as the rest of the variables. We can now numeri-
cally estimate the variance of the two estimators for a specific rule, e.g.
σ ≡ X1=1∧X2=0∧X3=1∧X4=1∧X5=0∧X6=0, which does not
only contain causal variable X1 but also five actionable variables that
are independent of the target Y .

To do so, we draw stratified samples of increasing sizes from
the population, and report ê(σ) and r̂(σ) scores averaged over 25
simulations along with one sample standard deviation in Fig. 6.3
(left). We observe that variances of both estimators decrease with
increasing sample size. Although the reliable estimator is biased, its
variance is relatively low compared to the plug-in estimator. As a
result of this low variance, unlike the plug-in estimator, the reliable
estimator is indeed able to avoid overfitting, and hence, better at
generalisation. Let σ∗ denote the top-1 rule in the population, i.e.
σ∗ = argmaxσ∈L e(σ). Let ϕ∗ denote the top-1 rule using the plug-in
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Z

X1 Y

P(Z=1) P(Z=0)

0.9 0.1

Z P(X1=1 |Z) P(X1=0 |Z)
1 0.8 0.2
0 0.5 0.5

P(Y |X1,Z)

Z X1 Y =1 Y =0

1 1 0.7 0.3
1 0 0.5 0.5
0 1 0.5 0.5
0 0 0.4 0.6

FIGURE 6.2: A toy causal graph of three variables X1, Y and Z.

estimator, i.e. ϕ∗ = argmaxσ∈L ê(σ), and ρ∗ denote the top-1 rule
using the reliable estimator, i.e. ρ∗ = argmaxσ∈L r̂(σ). In Fig. 6.3
(right), we plot e(ϕ∗) against e(ρ∗). We observe that with increasing
sample sizes e(ρ∗) is both relatively closer, as well as converges much
faster to the reference e(σ∗), which is in agreement with both theory
and intuition.

6.3 Discovering Rules

Now that we have a reliable and consistent score for the observational
effect, we turn to the problem of discovering rules that yield maximal
reliable observational effect. Below, we provide the formal problem
definition.

Definition 6.3.1 (Top-k causal rule discovery). Given a sample and
a positive integer k, find a set Fk ⊆L , |Fk| = k, such that for all
σ ∈Fk and ϕ ∈L \Fk, r̂(σ)≥ r̂(ϕ).
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FIGURE 6.3: From the population generated using the causal graph
of Fig. 6.2 together with 5 additional independent random actionable
variables X2, . . . ,X6, we show (left) variance of the plug-in and reliable
estimator of the observational effect for a specific rule that contains
variables that are independent of the target, and (right) generalisation
error of the effect estimators.

Given the hardness of empirical effect maximisation problems (Wang
et al., 2005), it is unlikely that the optimisation of the reliable obser-
vational effect allows a worst-case polynomial algorithm. While the
exact computational complexity of the causal rule discovery problem
is open, here we proceed to develop a practically efficient algorithm
using the branch-and-bound paradigm.

6.3.1 Branch-and-Bound Search

The branch-and-bound search scheme (Mehlhorn and Sanders, 2008)
finds a solution that optimises the objective function f : Ω→R, among
a set of admissible solutions Ω, also called the search space. Let
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ext(σ), also called the extension of σ , denote the subset of instances
in the sample that satisfy σ The generic search scheme for a branch-
and-bound algorithm requires the following two ingredients:

• A refinement operator b : L →P(L ) that is monotone, i.e. for
σ ,ϕ ∈ L with ϕ = b(σ) it holds that ext(ϕ) ⊆ ext(σ), and that
non-redundantly generates the search space L . That is, for every
rule σ ∈L , there is a unique sequence of rules σ0,σ1, . . . ,σ` = σ

with σi = b(σi−1).

• An optimistic estimator f̌ : Ω→ R that provides an upper bound
on the objective function attainable by extending the current rule to
more specific rules. That is, it holds that f̌ (σ) ≥ f (ϕ) for all ϕ ∈
L with ext(ϕ)⊆ ext(σ).

A branch-and-bound algorithm simply enumerates the search space
L starting from the root φ using the refinement operator b (branch),
but based on the optimistic estimator f̌ prunes those branches that
cannot yield improvement over the best rules found so far (bound).

The optimistic estimator depends on the objective function, and
there are many optimistic estimators for an objective function f . Not
all of these are equally well-suited in practice, as the tightness of the
optimistic estimator determines its pruning potential. We consider the
tight optimistic estimator (Grosskreutz et al., 2008) given by

f̌ (σ) = max{ f (Q) | Q⊆ ext(σ)}
≥max{ f (ϕ) | ext(ϕ)⊆ ext(σ) for all ϕ ∈L } .

The branch-and-bound search scheme also provides an option to
trade-off the optimality of the result for the speed. Instead of asking
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for the f -optimal result, we can ask for the γ-approximation result
for some approximation factor γ ∈ (0,1]. This is done by relaxing the
optimistic estimator, i.e. f̌ (σ)≥ γ f (ϕ) for all ϕ ∈L with ext(ϕ)⊆
ext(σ). Lower γ generally yields better pruning, at the expense of
guarantees on the quality of the solution.

In our problem setting, we can define the refinement operator based
on the lexicographical ordering of propositions:

b(σ) = {σ ∧πi | πi ∈ π, i > max{ j : π j ∈ π(σ)}} ,

where π is the set of propositions and π(σ) is the subset of π used in σ .
In practice, we need more sophisticated refinement operators in order
to avoid the inefficiency resulting from a combinatorial explosion of
equivalent rules. This, we can do by defining a closure operator on the
rule language (see, e.g. Boley and Grosskreutz (2009)), which we also
employ in our experimental evaluation. Next we derive an optimistic
estimator for the objective function r̂.

6.3.2 Efficient optimistic estimator

If we look at the definition of r̂(σ) in Eq. (6.2), we see that, regardless
of σ , P̂(z) remains the same for a z stratum. Thus, we can obtain
an optimistic estimator of r̂(σ) by simply bounding τ(z) for each z
stratum. Let τ̌(z) denote the optimistic estimator of τ(z). Then the
optimistic estimator of r̂(σ) is given by

ř(σ) = ∑
z∈Z

τ̌(z)P̂(z) .

To derive the optimistic estimator τ̌(z), for clarity of exposition we
first project τ(z) in terms of free variables a and b, such that we can
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Table 6.1: Contingency tables for (left) a rule σ , and (right) its refine-
ment σ̃ = b(σ) for a z stratum of ZZZ.

Y =y Y 6=y
σ => a b
σ =⊥ c d

∑ n1 n0 n

Y =y Y 6=y

σ̃ => ã b̃
σ̃ =⊥ c̃ d̃

∑ n1 n0 n

write

τ(a,b) =
a+1

a+b+2
− n1−a+1

n−a−b+2
− 0.5β√

a+b+2
− 0.5β√

n−a−b+2
.

Suppose that we have a contingency table as shown in Tab. 6.1 (left)
for a z stratum with the rule σ . The refinement of σ , σ̃ = b(σ),
results in a contingency table as shown in Tab. 6.1 (right). Note that
n1, n0, and n do not change within a z stratum regardless of the rule.
Since ext(σ̃)⊆ ext(σ) holds for any σ̃ = b(σ), we have the following
relations: ã≤ a and b̃≤ b.

This implies that the subsets of the extensions of σ will have
contingency table counts ã in the range {0,1, . . . ,a}, and b̃ in the
range {0,1, . . . ,b}. Let C = {0,1, . . . ,a}× {0,1, . . . ,b}. Then the
optimistic estimator of τ(z) can be defined in terms of C as

τ̌(z)≥ max
(ã,b̃)∈C

τ(ã, b̃) .

This shows that we have the optimistic estimate of τ(z) by simply
taking the maximum value of τ from all possible configurations C .
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In the following proposition, we show that we can have a tight opti-
mistic estimator that can be computed in time linear to the number
of observations in the contingency table.

Proposition 1. Let C = {0,1, . . . ,a}×{0,1, . . . ,b} be the set of all
possible configurations of (ã, b̃) in Tab. 6.1 (right) that can result from
refinements of a rule σ from the contingency table of Tab. 6.1 (left).
Then the tight optimistic estimator of τ(z) is given by

τ̌t(σ ,z) = max
ã∈{0,1,...,a}

ã+1
ã+2

− n1− ã+1
n− ã+2

− β

2
√

ã+2
− β

2
√

n− ã+2
.

Proof. The expression for τ(ã, b̃) from the contingency table in Tab. 6.1
(right) is given by

τ(ã, b̃) =
ã+1

ã+ b̃+2
− n1− ã+1

n− ã− b̃+2
− β

2
√

ã+ b̃+2
− β

2
√

n− ã− b̃+2
.

Combining the first and the third term above, we get

λz(ã, b̃) =
2ã+2−β

√
ã+ b̃+2

2(ã+ b̃+2)
− n1− ã+1

n− ã− b̃+2
− β

2
√

n− ã− b̃+2
.

Note that if we fix the value of ã, then the value of b̃ that max-
imises τ(ã, b̃) has to maximise the first term above, but minimise
the other two terms. Observe that b̃ = 0, out of b̃ ∈ {0,1, . . . ,b}, does
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both simultaneously. Thus we have the following relation: τ(ã,0)>
τ(ã, b̃) for all b̃ > 0.

The tight optimistic estimator of τ(z) is the maximum value over
all possible configurations C given by

τ̌t(σ ,z) = max
ã∈{0,1,...,a}

τ(ã,0)

= max
ã∈{0,1,...,a}

ã+1
ã+2

− n1− ã+1
n− ã+2

− β

2
√

ã+2
− β

2
√

n− ã+2
.

Tight optimistic estimators give us very high pruning power at
much lower computational complexity than the strictest optimistic
estimator, but, is still not free: we have to compute it for every node
in our search tree, and although it only has a linear time complexity,
for large search spaces this may be costly. It is therefore an interesting
question to ask whether, at the expense of tightness, we can obtain an
optimistic estimator with a closed form expression, one that we can
hence compute in constant time. It turns out that based on our tight
optimistic estimator we achieve so with relative ease.

Proposition 2. Let C = {0,1, . . . ,a}×{0,1, . . . ,b} be the set of all
possible configurations of (ã, b̃) in Tab. 6.1 (right) that can result from
the refinement of a rule σ from the contingency table of Tab. 6.1 (left).
Then the closed-form optimistic estimator of τ(z) is given by

τ̌l(σ ,z) =
a+1
a+2

− n1−a+1
n−a+2

− β

2
√

a+2
.
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Proof. From Proposition 1, we have the tight optimistic estimator of
τ(z) as

τ̌t(σ ,z) = max
ã∈{0,1,...,a}

ã+1
ã+2

− n1− ã+1
n− ã+2

− β

2
√

ã+2
− β

2
√

n− ã+2

< max
ã∈{0,1,...,a}

ã+1
ã+2

− n1− ã+1
n− ã+2

− β

2
√

ã+2
.

Suppose that we have ρ(ã) = ã+1
ã+2 −

n1−ã+1
n−ã+2 −

β

2
√

ã+2
. Then it holds

that

τ̌t(σ ,z)≤ max
ã∈{0,1,...,a}

ρ(ã).

In words, the maximum value of ρ upper bounds the tight optimistic
estimate τ̌t(σ ,z). Hence the maximum of ρ is also an optimistic
estimator of τ(z), albeit a loose one. Next we show that ρ is mono-
tonically increasing with ã. To this end, we relax ρ to a continuous
domain. In particular, we consider ã ∈R≥0, which naturally subsumes
the discrete domain {0,1, . . . ,a}. Then we take the first derivative of
ρ with respect to ã. Thus we have

dρ

dã
=

1
(ã+2)

− (ã+1)
(ã+2)2 +

1
n− ã+2

− n1− ã+1
(n− ã+2)2 +

β

4(ã+2)3/2

=
1

(ã+2)2 +
n−n1 +1
(n− ã+2)2 +

β

4(ã+2)3/2

> 0.
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Since the first derivative is positive, ρ is monotonically increasing
w.r.t. ã. Therefore the maximum of ρ is at ã = a, which is given by

τ̌l(σ ,z) =
a+1
a+2

− n1−a+1
n−a+2

− β

2
√

a+2
.

We now have two optimistic estimators for τ(z), a tight one,
τ̌t(σ ,z) at a computational cost of O(N), and a loose one, τ̌l(σ ,z)
at O(1). In the experiments we will evaluate the performance of both
estimators.

6.4 Related Work

Rule discovery (Fürnkranz et al., 2012) is a well-studied topic within
data mining, but relatively little work has been done from a causal
perspective.

In rule-based classification the goal is to find a (set of) rules that
together optimally predict the target label. Classic approaches include
CN2 (Lavrač et al., 2004), and FOIL (Quinlan and Cameron-Jones,
1995). In more recent work, the attention shifted from accuracy to
optimising more reliable scores, such as Area-Under-ROC (Fürnkranz
and Flach, 2005). While related, the overall goal in learning classifica-
tion rules is different than ours; we want to find rules that describe the
strong causal effects, rather than separate two classes.

Association rules (Agrawal et al., 1993) are implications of the
form I⇒ J, where I and J are disjoint sets of items. The interestingness
of an association rule is typically measured in terms of its relative
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occurrence frequency. To get reliable rules, we can impose hard
constraints on the relative occurrence frequency of an association rule.
Despite that, within this framework we conflate the goal of finding
rules with large effect size with the relative occurrence frequency of the
rule. Contrast patterns (Dong and Li, 1999; Dong and Bailey, 2012),
otherwise known as emerging patterns, are patterns whose supports
differ significantly between datasets. As the support of a pattern is
an empirical effect measure, without special measures such as taken
here, emerging patterns tend to overfit the given sample and hence
capture unreliable statements that are not necessarily characteristic of
the underlying domain.

Subgroup discovery (Wrobel, 1997; Friedman and Fisher, 1999) is
a related, but subtly different task. Most subgroup discovery methods
optimise a surrogate function based on some statistical null hypothesis
test. The resulting objective functions are usually some multiplicative
combination of coverage and effect and, hence, do not consistently
optimise for large effect. Also patterns found through standard sub-
group discovery frameworks do not correct for the influence of con-
founder and are hence purely associational. Closer to our approach is
RAWR (Kalofolias et al., 2017), which discovers patterns that both
have large deviation from the mean of the population, but at the same
time are also representative with respect to a univariate binary control
variable Z in terms of statistical parity. Besides that we introduce a re-
liable measure of effect, our framework allows for control variables of
higher dimensionality that, under the specific circumstances, directly
optimises the causal effect.

Silverstein et al. (2000) test for pairwise dependence and condi-
tional independence relationships to discover causal associations rules
that consist of a univariate antecedent given a univariate control vari-

123



6. DISCOVERING RELIABLE CAUSAL RULES

able; they do not find the conditions under which the effect is visible on
the target. Li et al. (2015) are specifically concerned with discovering
causal association rules from observational data given a target. They
propose to do so by first mining association rules with the target as a
consequent, and performing cohort studies per rule. Unlike our setup,
they optimise the plug-in estimator of the odds ratio.

Atzmueller and Puppe (2009) propose a semi-automatic approach
to discovering causal interactions by mining subgroups using a chosen
quality function, inferring a causal network over these, and visually
presenting this to the user. They discover causal relationships among
the rules, and not rules that have causal effect on the target. Causal
falling rule lists (Wang and Rudin, 2017) are sequences of “if-then”
rules over the covariates such that the effect of a specific intervention
on the target decreases monotonically down the list. Our formulation,
on the other hand, is aimed at finding top-k interventions, represented
by rules, that have maximal effect on the target given the control
variables.

Shamsinejadbabaki et al. (2013) discover rules σ for which P(Y =
y | do(σ = >)) differs from P(Y = y | σ = >) on a partial directed
acyclic graph of all the variables (X, Y , and ZZZ) using the plug-in
estimator. First, their effect measure is different than ours. Second,
such effect measure would not be able to find actions from a causal
diagram with no spurious paths, say X → Y , because intervention and
observation are equivalent in those scenarios, i.e. P(Y | do(X = x)) =
P(Y | X = x) (Pearl, 2009, Chap. 3.5.1).

Overall, despite the importance of the problem, to the best of our
knowledge there does not exist a generally applicable, theoretically
well-founded, efficient approach to discovering reliable rules with
strong causal effect from observational data.

124



6.5. Experiments

6.5 Experiments

We implemented the branch-and-bound search with priority-queue in
free and open source realKD2 Java library, and provide the source code
online.3 All experiments were executed single threaded on Intel Xeon
E5-2643 v3 machine with 256 GB memory running Linux. We report
the results at β = 2.0, which corresponds to a 95.45% confidence level.
The coverage of a rule is a fraction of individuals that belong to its
extension, defined as cvg(σ) = |ext(σ)|/N. We search for optimal
top−k rules, i.e. γ = 1.0, unless stated otherwise.

6.5.1 Efficiency

First we assess efficiency of the branch-and-bound search with the
optimistic estimators. To this end, we search for top−1 rules in all the
standard classification datasets from the KEEL repository (Alcalá-Fdez
et al., 2011).4 For each dataset, we select the classification target as the
target variable, and randomly select one of the attributes as the control
variable. We binarise a nominal target variable by mapping one of its
outcomes to the positive category (Y = 1), and the rest to the negative
category (Y = 0). We discretise a continuous real-valued actionable
variable into maximum 8 equi-frequent bins.

2https://bitbucket.org/realKD/
3http://eda.mmci.uni-saarland.de/dice/
4As both census and adult datasets are from the same census data of the United
States in 1994, we only consider one of them in our evaluation. Further, instead
of the titanic dataset in the KEEL repository with only 3 attributes, we consider
the titanic training set with 10 attributes and 1 target from the Kaggle prediction
challenge.
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In Tab. 6.2, we provide a summary of the datasets along with ef-
ficiency results. For each dataset, we report the target variable (Y ),
the set of control variables (ZZZ), the sample size (N), the number of
actionable variables (|X|), and the approximation factor (γ) such that
the branch-and-bound implementation with the loose optimistic esti-
mator finishes within an hour. Further, for both optimistic estimators,
we give the runtime in seconds, denoted τ̌l and τ̌t resp., followed by
the speed-up factor (τ̌l /τ̌t ), and the number of nodes expanded during
the search, denoted nl and nt resp., followed by the node reduction
factor (nl /nt). To highlight the performance differences between the
two optimistic estimators at a finer granularity, we report at least two
significant non-zero digits for the runtime.

For most datasets, we observe that the loose optimistic estimator is
already fast enough, retrieving the optimal top-1 result within 30 min-
utes. In general, however, the tight optimistic estimator is faster than
the loose one as indicated by the speed-up factors. This observation
is also supported by the fact that the node reduction factor is almost
in the same range as the speed-up factor for most datasets. In case of
small datasets, such as nursery and breast, where the number of
expanded nodes are relatively small, the loose optimistic estimator is
marginally better the tight one, however.

For datasets such as kddcup, although the number of actionable
variables is quite large, the branch-and-bound implementation is much
faster with both optimistic estimators. As kddcup contains many
binary actionable variables that are extremely sparse, refinements of
a rule using the predicates on such actionable variables will lead to
one of the stratums without sufficient statistical evidence, and likely
worse score than the current best. Both optimistic estimators are able
to identify such cases, thereby pruning the search space.
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Overall we observe that the branch-and-bound search with both
optimistic estimators finishes within minutes in most datasets, taking
up to an hour (or more) for few datasets.

6.5.2 Quality of Top-k Rules

To assess the quality of discovered rules we consider synthetic data
with known ground truth. In particular, we compare reliable obser-
vational effect r̂(σ) to observational effect ê(σ) with an empty ZZZ,
and weighted relative accuracy (Lavrač et al., 1999). In our case,
the weighted relative accuracy of an event σ for an outcome y at the
population level is given by

w(σ) = P(σ)
(

P(y | σ)−P(y)
)
.

We apply the Laplace correction to the plug-in estimators of both obser-
vational effect and weighted relative accuracy. To generate synthetic
data, we consider the toy causal graph from Fig. 6.2. First we generate
the population using the joint distribution of the nodes in the causal
graph. Then we add five other uniformly distributed binary actionable
variables that are independent of each other as well as the rest of the
variables. As only one actionable variable (X1) affects the target Y in
the causal graph, we expect the top-1 rule to contain only a proposition
on that actionable variable, i.e. either σ ≡ X1 = 0 or σ ≡ X1 = 1 is a
relevant result.

To evaluate the quality of the results, we use precision at k, which
is the fraction of k rules that are relevant. In Fig. 6.4, we report preci-
sion at k=1 averaged over 100 samples for increasing sample sizes.
We observe that all the effect measures show high precision at k=1
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ê(σ) |ZZZ := /0

FIGURE 6.4: We show precision at k=1, averaged over 100 samples,
for the Laplace-corrected plug-in estimator of observational effect
ê(σ) with an empty ZZZ, the Laplace corrected plug-in estimator of
weighted relative accuracy, ŵ(σ), and reliable observational effect,
r̂(σ), for various sample sizes.

with a sufficient sample size. On smaller sample sizes, however, both
weighted relative accuracy and observational effect without control
variables lag behind reliable observational effect. These results, to-
gether with the results from Fig. 6.3, demonstrate that by taking into
account both the structural and statistical problems, reliable observa-
tional effect measure discovers rules that are causal even on small
sample sizes.

6.5.3 Qualitative Study on Real-World Data

Next we investigate whether rules discovered by reliable observational
effect are meaningful. To this end, we consider two real-world datasets.
Moreover, we show how the proposed framework can be used for
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mining rules iteratively.
Titanic For the first qualitative study, we consider the titanic

training set from Kaggle.5 The sinking of RMS Titanic is one of the
notorious shipwrecks in history. One of the reasons behind such tragic
loss of lives was the lack of lifeboats. During the evacuation, some
passengers were treated differently than the others; some groups of
people were, hence, more likely to survive than the others. Thus, it is
of interest to find the conditions that have effect on the survival. The
dataset contains demographics and travel attributes of the passengers
on board. The target of interest is the survival of a passenger.

In Tab. 6.3, we present the results of iterative rule mining on this
dataset. For every iteration, we report the control variables, and the top-
3 rules along with their coverage, followed by r̂(σ |ZZZ) and ê(σ |ZZZ)
scores. We start without control variables in the first iteration. In the
subsequent iterations, we put top−1 rules discovered from previous
iterations in ZZZ.

In the first iteration, without any control variables, we observe that
being a female passenger from the first, or the second class has the
highest effect on survival with a score of r̂(σ |ZZZ) = 0.576. It is well-
known that passengers from different classes were treated differently
during evacuation. What is interesting is that although females were
more likely to survive, this only applied to the females from the first
and the second class; this is also corroborated by the fact that roughly
half of the females from the third class did not survive the mishap
compared to the only one-tenth from the other two classes combined.

In the second iteration, the top−1 rule discovered in the first itera-
tion is used as the control variable. Thus, controlling for the female

5https://www.kaggle.com/c/titanic/data
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passengers from the first and the second class, we find that children
with fewer siblings, and parents on board have highest effect on sur-
vival. The fact that this rule came out on top with a coverage of only
4.6% demonstrates that reliable observational effect can discover rare
rules.

In the third iteration, we control for the top-1 rules discovered in
the previous two iterations, that isZZZ= {σ1,σ2}, and find that being an
unmarried female despite paying a low fare has the highest effect on
survival with a score of r̂(σ |ZZZ) = 0.003. In the fourth iteration, where
ZZZ = {σ1,σ2,σ3} we find that all top-3 rules have negative r̂(σ | ZZZ)
scores. Although the ê(σ | ZZZ) scores is positive for the top-1 rule,
the negative r̂(σ |ZZZ) score indicates the lack of evidence for the rule.
Therefore we stop after the fourth iteration.

Adult For the second qualitative study, we consider the adult
dataset from the KEEL repository. The adult dataset contains socio-
economic records of the population from the census database of the
United States in 1994. The target of interest is the annual gross income
(> 50K or ≤ 50K). We ignore two attributes namely “Fnlwgt” which
represents the number of people that the census takers believe that
the observation represents, and “Education-num” which represents the
highest level of education (edu) in numerical form.

In the first iteration, without any control variable, despite a mere
0.31% coverage, we observe the highest effect for people who hold a
degree from a professional school; work for more than 30.5 hours per
week; are older than mid-thirties; are married with a civilian spouse;
and whose annual capital gain—profits from selling capital assets such
as real estate, stocks—is positive.

In the second iteration, we find the highest effect for husbands in
the households who are native to the US with a professional speciality,
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Table 6.3: Results of iterative rule mining on the titanic dataset
with “survival” as the target. We start without control variables in the
first iteration. In the subsequent iterations, we control for the top−1
rules from previous iterations. “par-ch” stands for the number of par-
ents/children aboard, and “sib-sp” for the number of siblings/spouses
aboard.

Itr. ZZZ Top-3 rules (σ ) cvg(σ) r̂(σ |ZZZ) ê(σ |ZZZ)

1 /0 (σ1) class ≤ 2 ∧ sex = female 0.1907 0.576 0.690

class ≤ 2 ∧ sex = female ∧ par-ch ≤ 2 0.1885 0.573 0.687

class ≤ 2 ∧ sex = female ∧ sib-sp ≤ 2 0.1874 0.572 0.686

2 {σ1} (σ2) age < 12.5 ∧ sib-sp ≤ 2 ∧ par-ch ≥ 1 0.0460 0.239 0.482

age < 12.5 ∧ sib-sp ≤ 2 0.0490 0.235 0.472

age < 12.5 ∧ sib-sp ≤ 2 ∧ par-ch ≥ 1 ∧
fare ≤ 65.8

0.0410 0.233 0.485

3 {σ1,σ2} (σ3) fare < 19.85 ∧ title = Miss 0.1036 0.003 0.222

title = Miss 0.2044 0.002 0.195

fare ≤ 99.96 ∧ title=Miss 0.1750 −0.001 0.192

4 {σ1,σ2,σ3} (σ4) embarked=C 0.1821 −0.036 0.149

embarked=S 0.7760 −0.293 −0.117

embarked=Q 0.0392 −0.369 −0.049

and incur an annual capital loss of no less than 184 USD. People who
are specialists in their profession are likely to have a good living, and
have money to invest in capital assets; although some of the assets
can result in a net loss. Therefore a native US citizen with such socio-
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economic status is likely to earn more than 50K per annum in 1994
than the others.

In the third iteration, we find that being a self employed and
incorporated white male has the highest effect on annual gross income.
In the fourth iteration, we cannot find any rule with a positive r̂(σ |ZZZ)
score; hence we stop.

6.6 Discussion

In this work, we identified the conditions under which causal rule
discovery is possible. The experimental results show that the proposed
algorithm is fast and reliably discovers relevant causal rules. The
results on synthetic data corroborates the necessity for both statistical
and structural considerations to reliably discover relevant rules from a
sample that are consistent with data generation process. On real-world
data, the reliable observational effect finds sensible rules.

Although these results are promising, we see many possibilities
for future work. One such direction would be to extend this work for a
continuous real-valued target. We compute the reliable observational
effect by grouping the individuals based on their value of control
variables. As the number of control variables increases, the domain
Z grows larger. Consequently we require a very large sample size to
compute the reliable observational effect with sufficient confidence.
Therefore, it would make an interesting future work to develop an
effect measure, and the algorithm to gracefully handle a large set of
control variables.

To verify that the rules we discover from data are causal, we have
to look at the causal structure of input variables. In practice, we

133



6. DISCOVERING RELIABLE CAUSAL RULES

often do not know the exact underlying causal structure. Under strict
assumptions, however, we can discover a partially directed causal
graph directly from data (Ch. 5 Spirtes et al., 2000; Chickering, 2002;
Pearl, 2009, Ch. 2.5). As causal graph discovery is computationally
expensive, using our domain knowledge, we can often rule out certain
variables for causal rule discovery. For instance, smoking causes
tar deposits in a person’s lungs, therefore either smoking or tar
deposits can be in our set of actionable variables X. If we were
to include both in X, we would violate the third condition for an
admissible input to causal rule discovery.

In the hope of blocking any spurious path between any X ∈ X and
Y byZZZ, a naive approach would be to include as many variables inZZZ as
possible. Doing so, however, not only potentially violates the criterion
for an admissible input, but also invites other statistical problems
detailed in Sec. 6.2.2. A rather safe strategy is to consider those
variables in ZZZ—using our domain knowledge—that are potentially not
affected by any intervention on the actionable variables, otherwise
known as pre-treatment covariates. For instance, smoking does not
affect a person’s sex, whereas it may affect a person’s blood pressure.
It is, therefore, safe to include sex in ZZZ, but not blood pressure
as that could violate the second condition for an admissible input to
causal rule discovery.

Note that despite the best of our knowledge, we can hardly be sure
that we have no unobserved confounders. It is, therefore, typical in
causal inference literature to assume that we have measured all the
confounders, also known as the causal sufficiency assumption (Spirtes
et al., 2000, Ch. 3.2.2). Assuming causal sufficiency, and that ZZZ
blocks all the spurious paths between any X ∈ X and Y , the noisy-or
model (Koller and Friedman, 2009, Ch. 5.4.1), widely used in the
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medical domain, with three layers—the bottom layer for the target,
the middle layer for the actionable variables, and the top one for the
control variables—satisfies the criterion for an admissible input to
causal rule discovery.

If we are merely interested in discovering associations, we can
simply run the proposed method with an empty set of control variables,
i.e. ZZZ= /0. Besides, any violation of Definition 6.2.1 implies that we
discover associations. The choice of β is up to a user’s discretion. It is
quite common to report results at the 95% confidence level, thereby
β = 1.96. It is easy to see that the 0% confidence interval corresponds
to the plug-in estimator, and that for higher confidence values we
naturally need larger amounts of evidence.

Instead of searching for everything significant, we are only after
top-k rules. As such, we are maximising the reliable observational
effect. We want to discover those k rules from the sample that are
also top-k in the population. Although the generalisation error bound
of the reliable observational effect remains an open problem, the
generalisation error plot on the synthetic data in Fig. 6.3 indicates that
the reliable observational effect performs quite well even without a
correction for multiple hypothesis testing.

6.7 Conclusion

Traditional rule discovery methods struggle with the consistent detec-
tion of conditions that have a strong causal effect on an output variable.
In this work, we presented a novel rule discovery approach based on
reliably estimating the observational effect given the value of potential
confounders. We also identified the conditions under which causal rule
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discovery is possible. We then demonstrated that the corresponding
score is a conservative and consistent estimator of the causal effect
and derived an efficient algorithm that detects meaningful rules on real
datasets. Moreover, and of particular importance for both causal and
associational data exploration, we showed that the presented approach
naturally allows for iterative rule discovery. Causal assumptions are
not verifiable even in principle, without controlled experiment. It
would thus make an engaging future work to study the sensitivity of
causal rule discovery to violations of assumptions for the admissible
input. As we only worked with discrete variables, one avenue for fur-
ther research would be to extend this work to continuous real-valued
target and control variables.

Software Artefacts

We implemented the branch-and-bound algorithm in Java. Please
follows the steps below to get the implementation running.

Preparing the Executable

Use the jar file provided in http://eda.mmci.uni-saarland.de/
dice/, or follow the following steps:

• Checkout the development branch of the realkd repository from
https://bitbucket.org/realKD/realkd/overview.

• Prepare the jar files using maven from inside the root folder.

• The compiled SNAPSHOT jar will be in the “target” directory.
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Preparing Datasets

The dataset must be in one of the following file formats.

• arff

• xarf (https://bitbucket.org/realKD/realkd/wiki/model/
data/xarf)

Inferring reliable (causal) rules

To infer reliable (causal) rules from data, we have to provide a job
description file in the json format. A sample job file is provided
in http://eda.mmci.uni-saarland.de/dice/. In short, we pro-
vide information about the dataset(s) in the “workspaces” field, and
the computations to carry out on those workspaces in the “computa-
tions” field. For the detail information about the “computations” field,
please refer to the “subgroupDiscovery.html” file inside the “kdondoc”
directory. To run the job, we simply provide the job description file as
an argument in the command line.

$ java -jar realkd.jar sgd.json

The result of the computation will be stored in the “output” directory.
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Table 6.4: Results of iterative rule mining on the adult dataset with
“annual gross income” (> 50K or≤ 50K) as the target. We start without
control variables in the first iteration. In the subsequent iterations, we
control for the top−1 rules discovered in the previous iterations. “hpw”
stands for hours per week.

Itr. ZZZ Top-3 rules (σ ) cvg(σ) r̂(σ |ZZZ) ê(σ |ZZZ)

1 /0 (σ1) edu=prof-school ∧ cap-gain > 0.0 ∧
age ≥ 34.5 ∧ hpw ≥ 30.5 ∧
mstatus=married-civ

0.0031 0.659 0.747

occup=exec-manag. ∧ cap-gain > 0.0 ∧
age ≥ 34.5 ∧ hpw > 47.5 ∧
mstatus=married-civ ∧ native=US

0.0049 0.658 0.729

edu=prof-school ∧ cap-gain > 0.0 ∧
hpw ≥ 30.5 ∧ mstatus=married-civ

0.0034 0.656 0.741

2 {σ1} (σ2) occup=prof ∧ native=US ∧
rel=husband ∧ cap-loss ≥ 184

0.0044 0.586 0.661

occup=prof ∧ native=US ∧
rel=husband ∧ cap-loss ≥ 184 ∧
race=white

0.0043 0.585 0.660

occup=prof ∧ race=white ∧
rel=husband ∧ cap-loss ≥ 184

0.0046 0.584 0.657

3 {σ1,σ2} (σ3) race=white ∧ sex=male ∧
work=self-emp-inc

0.0286 0.318 0.350

sex=male ∧ work=self-emp-inc 0.0303 0.317 0.349

race=white ∧ work=self-emp-inc 0.0324 0.289 0.319

4 {σ1,σ2,σ3} - 1.0 −0.972 −0.260
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Conclusion 7

In this thesis, we developed various techniques to identify causal
relations from observational discrete data. First, we showed various
ways to instantiate the algorithmic independence of conditionals (AIC)
for bivariate causal inference on different data settings—univariate i.i.d.
pairs, univariate non-i.i.d. pairs, and multivariate i.i.d. pairs. Some
techniques, in theory, can identify the causal graph from the joint
distribution, some cannot. Importantly, regardless of the identifiability
result, we saw that the proposed methods are reasonably accurate
in both simulated and real-world settings. Next, we looked beyond
bivariate pairs to causal rules to identify the conditions that are most
effective on the target variable of interest. In particular, we gave
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an efficient branch-and-bound search algorithm to discover reliable
causal rules directly from data. The contributions of this thesis can be
summarised as follows:

• On a pair of univariate i.i.d. discrete variables, we instantiated
the AIC through the refined version of the Minimum Description
Length (MDL) principle, and proposed CISC. Although the formu-
lation follows directly from the statistically sound approximation
of Kolmogorov complexity through the MDL principle, there were
no theoretical results on the identifiability. To have an identifiable
method, we turned to discrete additive noise models (ANMs), which
are “generally” identifiable from the joint distribution. In particular,
we formulated ANMs in terms of Shannon entropy, and proposed
ACID. With an information-theoretic formulation, we avoid ex-
plicit statistical hypothesis testing for independence. Moreover, we
showed that the refined MDL code of data w.r.t. the parametric
family of multinomial distributions can be used as an estimator of
the Shannon entropy, and proposed CRISP. As such, we showed
the connection between AIC and ANMs which are two widely used
frameworks for bivariate causal inference. Extensive experiments
on synthetic and real-world data showed that the proposed methods
are highly accurate and recover the ground truth.

• As discrete variables can also be non-i.i.d., next we considered a pair
of univariate discrete-valued time series, or event sequences. To this
end, we built an information-theoretic causal inference framework
based on the foundations of Granger causality, which has close
connection to the AIC. In particular, we instantiated the framework
by the sequential normalised maximum likelihood codes, which are
robust to model misspecification in the sense that they are minimax
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optimal with respect to a model class. The proposed method CUTE
runs in linear time, and through the evaluation, we observed that it
is highly accurate compared to the state-of-the-art.

• Often times, we are interested in knowing whether a group of vari-
ables cause another group of variables. Therefore, we considered
causal inference on a pair of multivariate binary random variables
next. We modelled the causal mechanism by a set of decision trees.
As refined MDL codes are computationally hard to compute on com-
plex model classes beyond the exponential family, we instantiated
the AIC through the two-part MDL codes. Although not identifi-
able, experiments on synthetic data demonstrated that the resulting
method ORIGO is robust to noise and dimensionality, and recovers
the ground truth from real-world data.

• There are situations where saying that a group of variables cause a
target variable of interest does not fully satisfy one’s curiosity. For
a domain expert, for instance, it is of interest to know the most ef-
fective conditions that cause the target. To identify those conditions
directly from data, next we studied the problem of deriving rules
or policies from observational data that, when enacted on a com-
plex system, cause a desired outcome. To this end, we investigated
conditions under which the observational effect (which is what we
can estimate from observational data) is an unbiased estimator of
the causal effect. Then we developed a reliable estimator for the
observational effect that does not suffer from overfitting when using
it to optimise over the rule language, and gave an effective algorithm
for finding optimal rules with respect to this estimator.

Although these results are promising, there is a plenty of room for
improvement. Experiments show that CISC, CUTE and ORIGO—all
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of which deal with a pair of variables—work well in practice despite
the lack of identifiability results. Although identifiability results are
on the population level, i.e. joint distribution, and all we can do in
practice is estimate the joint distribution from a sample, it is important
to have such results rather than not have them at all. It would make
an engaging future work to include missing identifiability results for
those methods.

It is standard in causal discovery to assume that we have measured
all the common causes of the observed variables, otherwise known
as causal sufficiency assumption. For bivariate causal inference, we
assumed causal sufficiency—that is, there is no hidden common cause.
Although this leads to fine theoretical results, it is a strong assump-
tion after all. Therefore it would be a worthwhile goal to relax that
assumption. In fact, there has been some research in this direction
for continuous real-valued data with ANMs (Janzing et al., 2009;
Schölkopf et al., 2016; Janzing and Schölkopf, 2017; Kaltenpoth and
Vreeken, 2019). It would be interesting to see whether NML codes
could be used to solve this for discrete data.

For the discovered rules to be causal, the input must be admissible
(Definition 6.2.1). Although Criterion (a), (b) and (d) are fairly stan-
dard in the literature, Criterion (c) is something new and specific to
rule discovery. Criterion (c) requires that there are no edges between
actionable variables. Over a large group of actionable variables, this
can be a strong assumption. The naive way to remove this assumption
would be to include rest of the actionable variables in the set of control
variables to block any spurious path between actionable variables in
a rule and the target via rest of the actionable variables. By doing
so, however, we may not only violate other criteria, but the search
procedure also gets complicated. Therefore, one avenue for future
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work would be to relax this assumption. Another engaging direction
for the future would be to extend the rule discovery framework to
continuous real-valued variables.

Note that we need controlled experiment to make absolute state-
ments about cause and effect. Even that, in practice, requires a strin-
gent experiment design. To make things worse, controlled experiments
cannot answer our all causal questions. The only viable alternative
then is to carry out an observational study. Causal inference from
observational data, however, rests on unverifiable assumptions, such
as that of causal sufficiency. It is therefore important to state those
assumptions in a formal language (as in additive noise models), and
take conclusions from observational study as a suggestion. In support
of open science, all implementations of the methods we proposed in
this thesis together with used datasets are made publicly available
online.
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Learning. Cognitive Technologies. Springer, 2012.

P. Gács, J. Tromp, and P. M. B. Vitányi. Algorithmic statistics. IEEE
Trans. Information Theory, 47(6):2443–2463, 2001.

C. W. J. Granger. Investigating causal relations by econometric models
and cross-spectral methods. Econometrica, 37(3):424–438, 1969.

148



Bibliography

H. Grosskreutz, S. Rüping, and S. Wrobel. Tight optimistic estimates
for fast subgroup discovery. In Machine Learning and Knowledge
Discovery in Databases, pages 440–456. Springer, 2008.

P. Grünwald. The Minimum Description Length Principle. MIT Press,
2007.

P. Grünwald and P. M. B. Vitányi. Algorithmic information theory.
CoRR, abs/0809.2754, 2008.

S. Hanhijärvi, M. Ojala, N. Vuokko, K. Puolamäki, N. Tatti, and
H. Mannila. Tell me something I don’t know: randomization strate-
gies for iterative data mining. In KDD, pages 379–388. ACM, 2009.

M. A. Hernán and J. M. Robins. Causal Inference. Boca Raton:
Chapman & Hall/CRC, forthcoming edition, 2019.

E. H. Hill and M. C. Giammatteo. Socio -economic status and its
relationship to school achievement in the elementary school. Ele-
mentary English, 40(3):265–270, 1963.

P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf. Nonlin-
ear causal discovery with additive noise models. In Advances in
Neural Information Processing Systems 21, pages 689–696. Curran
Associates, Inc., 2009.

Y. Huang and S. Kleinberg. Fast and accurate causal inference from
time series data. In Florida Artificial Intelligence Research Society
Conference, pages 49–54, 2015.

A. Hyvärinen, S. Shimizu, and P. O. Hoyer. Causal modelling com-
bining instantaneous and lagged effects: An identifiable model

149



BIBLIOGRAPHY

based on non-Gaussianity. In Proceedings of the 25th International
Conference on Machine Learning, pages 424–431. ACM, 2008.

D. Janzing and B. Schölkopf. Causal inference using the algorithmic
markov condition. IEEE Trans. Information Theory, 56(10):5168–
5194, 2010.

D. Janzing and B. Schölkopf. Detecting confounding in multivariate
linear models via spectral analysis. Journal of Causal Inference, 6
(1), 2017.

D. Janzing, J. Peters, J. Mooij, and B. Schölkopf. Identifying con-
founders using additive noise models. In Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09,
pages 249–257, Arlington, Virginia, United States, 2009. AUAI
Press.

D. Janzing, P. Hoyer, and B. Schölkopf. Telling cause from effect
based on high-dimensional observations. In Proceedings of the 27th
International Conference on Machine Learning, pages 479–486.
International Machine Learning Society, 2010.

D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis,
B. Steudel, and B. Schölkopf. Information-geometric approach to
inferring causal directions. AIJ, 182-183:1–31, 2012.

J. Kalofolias, M. Boley, and J. Vreeken. Efficiently discovering locally
exceptional yet globally representative subgroups. In 2017 IEEE
International Conference on Data Mining, pages 197–206, 2017.

D. Kaltenpoth and J. Vreeken. We are not your real parents: Telling
causal from confounded by mdl. In Proceedings of the 2019 SIAM

150



Bibliography

International Conference on Data Mining (SDM), pages 199–207.
SIAM, 2019.

M. Kocaoglu, A. G. Dimakis, S. Vishwanath, and B. Hassibi. Entropic
causal inference. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, pages 1156–1162. AAAI Press,
2017.

D. Koller and N. Friedman. Probabilistic Graphical Models - Princi-
ples and Techniques. MIT Press, 2009.

A. Kolmogorov. Three approaches to the quantitative definition of
information. Problemy Peredachi Informatsii, 1(1):3–11, 1965.

P. Kontkanen and P. Myllymäki. A linear-time algorithm for computing
the multinomial stochastic complexity. Inf. Process. Lett., 103(6):
227–233, 2007.

W. Kotlowski and P. Grünwald. Sequential normalized maximum
likelihood in log-loss prediction. In 2012 IEEE Information Theory
Workshop, pages 547–551, 2012.

S. Kpotufe, E. Sgouritsa, D. Janzing, and B. Schölkopf. Consistency of
causal inference under the additive noise model. In Proceedings of
the 31st International Conference on Machine Learning, volume 32,
pages 478–495. PMLR, 2014.
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