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Abstract

Cell‐free systems containing multiple enzymes are becoming an increasingly

interesting tool for one‐pot syntheses of biochemical compounds. To extensively

explore the enormous wealth of enzymes in the biological space, we present methods

for assembling and curing data from databases to apply them for the prediction of

pathway candidates for directed enzymatic synthesis. We use Kyoto Encyclopedia of

Genes and Genomes to establish single organism models and a pan‐organism model

that is combining the available data from all organisms listed there. We introduce a

filtering scheme to remove data that are not suitable, for example, generic

metabolites and general reactions. In addition, a valid stoichiometry of reactions is

required for acceptance. The networks created are analyzed by graph theoretical

methods to identify a set of metabolites that are potentially reachable from a defined

set of starting metabolites. Thus, metabolites not connected to such starting

metabolites cannot be produced unless new starting metabolites or reactions are

introduced. The network models also comprise stoichiometric and thermodynamic

data that allow the definition of constraints to identify potential pathways. The

resulting data can be directly applied using existing or future pathway finding tools.
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1 | INTRODUCTION

The enzymatic potential of the numerous enzymes in nature is a most

promising, extremely versatile, and powerful resource for creating

powerful tools for the production of various interesting products.

Besides the production in host organisms, synthesis using cell‐free
systems gains more and more interest. Particularly multistep

biocatalysis seems only marginally explored today compared to its

expected huge potential (Krauser & Weyler, 2013). Cell‐free systems

for the synthesis range from mixtures of isolated enzymes

over multienzyme systems, for example, multienzyme complexes

(S. Z. Wang et al., 2017) and enzyme cascades, to cell lysates (Endo &

Koizumi, 2001) and permeabilized cells. In special cases, such

systems are even combined with chemical synthesis in one pot

(Groeger & Hummel, 2014).

The design of a multistep synthesis route does not only require

the determination of the reaction sequence leading to the desired

product, but also depends on numerous aspects such as substrate

and cofactor supply or thermodynamics. For living cells, a recent

review article discusses the state‐of‐the‐art computational tools for

design and reconstruction of metabolic pathways (Wang, Dash,

Ng, & Maranas, 2017). To design such a pathway for cell‐free
biosynthesis is by far not developed to such a mature state. In

particular, it seems almost impossible to explore manually all

potentially feasible pathways and to determine which one is the

most suitable for production.

The in silico path‐finding and design methods all require a

metabolic network model containing all required information from

the host organisms of interest, such as enzyme, reaction, and

thermodynamics data.

© 2019 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

[Correction added on 14 November 2020, after first online publication: Projekt Deal funding statement has been added.]

http://orcid.org/0000-0002-1689-9300
mailto:e.heinzle@mx.uni-saarland.de
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbit.27249&domain=pdf&date_stamp=2020-01-11


There is an ever‐growing plethora of biological databases with

enzyme and reaction data of an ever‐growing number of organisms

that is suited for the reconstruction of genome‐scale metabolic

networks. One of the most popular databases is Kyoto Encyclopedia

of Genes and Genomes (KEGG; Kanehisa & Goto, 2000; Kanehisa,

Furumichi, Tanabe, Sato, & Morishima, 2016, 2018). However,

despite the huge amount of data collected from primary literature

that is carefully curated afterwards, the data is partly incomplete,

and sometimes even inconsistent or erroneous. It is thus a challenge

to handle these data and make them suitable for useful network

reconstructions.

We already presented a computational tool to guide and support

finding the most suitable synthesis path to a product (Blaß, Weyler, &

Heinzle, 2017). We extended this study by developing a method of

building network models from KEGG data, which is suitable for path‐
finding. We selected nine organism networks that are of interest

primarily for their application in cell‐free production. Some were

selected because of peculiarities of the networks. Finally, a so‐called
pan‐organism network was used lumping all metabolic reactions

listed in KEGG in one single network.

2 | MATERIALS & METHODS

In the following, we give a short introduction to our path‐finding
method. We also present how to build network reconstruction

models based on data found in biological databases, particu-

larly KEGG.

2.1 | Path‐finding

We already presented a method for finding candidates for suitable

synthesis pathways in genome‐scale metabolic network reconstruc-

tions starting from arbitrary substrates (Blaß et al., 2017). A

pathway in our definition consists of two parts. First, the so‐called
linear path consists of a sequence of metabolites connected by

reactions. It starts with a reaction that has one of the possible

predefined start metabolites as a substrate and ends with a reaction

that has the target metabolite T as a product. Second, there is the

set of supplying reactions, which provide the substrates required by

the reactions on the pathway that are not contained in the

metabolite pool. All metabolites in this pool are considered freely

available since they will be provided by the specified pathway

reactions (see Section 2.2).

The path‐finding algorithm is based on a mixed‐integer linear

program (MILP) and combines graph‐based path‐finding and reaction

stoichiometry (Pey, Prada, Beasley, & Planes, 2011). The method is

elaborated in detail in Blaß et al. (2017). Figure 1 shows an

exemplary pathway illustrating a possible solution of the MILP. The

pathway shown is a feasible synthesis pathway to the target T

(depicted as red octagon). Metabolites in the figure are depicted as

squares, where large squares represent metabolites in arcs (see

Section 2.2) and small squares represent cofactors and inorganic

metabolites. Reactions are represented by circles. The linear path of

the pathway is marked with a blue background. Metabolites S1 to S4

and M1 (marked in green) are contained in the metabolite pool (see

Section 2.2) and are thus initially available. As M4, which is required

by reaction R3, is not available from the metabolite pool, R4 is

needed as a supplying reaction producing it.

In addition to the 17 constraints of the MILP presented in Blaß

et al. (2017), we added a constraint which prevents the use of a

reaction in the pathway (more precisely, the supplying reactions) that

consumes the target. This constraint is necessary to prevent cycles

formed by a reaction belonging to the linear path that produces the

target and a supplying reaction consuming the target to produce a

precursor, which is consumed by a reaction on the linear path. It thus

prevents pathways for which the target has to be already present in

at least catalytic amounts. An example for such an undesired

pathway is shown in Figure 2. In this example, the target T needs

to be consumed by reaction R6 to form metabolite M4, which is

required by reaction R5 to produce the target T.

The complete MILP is listed in Material S1.

S3

S2

R4S4 M4

M2

S1

R2M1 TM3 R3R1

F IGURE 1 Exemplary pathway illustrating a feasible pathway to

the target metabolite T (red octagon). Large squares: metabolites
with arcs (see Section 2.2); small squares: cofactors/inorganic
metabolites; green: metabolites from the metabolite pool (see
Section 2.2); circles: reactions; blue background: linear path; R4:

supplying reaction [Color figure can be viewed at
wileyonlinelibrary.com]

R5

M4 R6 S2

S3

TR2

S1

M2R1M1 M3

F IGURE 2 Exemplary pathway illustrating a pathway to the
target metabolite T (red octagon) where T needs to be consumed to

produce M4. Large squares: metabolites with arcs; small squares:
cofactors/inorganic metabolites; green: metabolites from the
metabolite pool; circles: reactions; blue background: linear path; R4

is a supplying reaction. This pathway example is not a valid synthesis
pathway candidate for T [Color figure can be viewed at
wileyonlinelibrary.com]
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2.2 | Model building

In the following, we define the different parts of our network

reconstruction and model based on KEGG data.

The reactions and metabolites in the model are given as lists of

KEGG REACTION and COMPOUND ids (Kanehisa et al., 2016).

The reactions and metabolites are connected by arcs, which are

derived from reactions.

The metabolites in the model are categorized into sets that are

treated differently in the path‐finding algorithm. One set consists of

potential start metabolites. These are all metabolites in the model that

can be used as the start of the linear path of a pathway candidate.

Metabolites in this category are automatically determined and have a

molecular mass smaller than 300 and occur in arcs. The so‐called basis

metabolites are expert‐curated metabolites, which are inexpensive,

easily available, and are often hubs in the arc network, such as

D‐glucose (C00031) or pyruvate (C00022). The cofactors (e.g., ATP

[C00002], NADH [C00004] and so forth) and inorganics such as water

(C00001), oxygen (C00007) or CO2 (C00011) are a set of

expert‐curated metabolites that are considered as freely available if

they are required as substrates in reactions, but are not part of the

reaction chain. They are thus excluded from the arcs to prevent

biologically meaningless shortcuts in the pathways. All metabolite sets

are disjoint, except for the basis metabolites that form a subset of the

start metabolites. The metabolite pool is the superset of metabolites that

are considered as freely available. It is made up of start metabolites,

basis metabolites, cofactors, and inorganic metabolites. Further details

on the different categories are given in Blaß et al. (2017).

For each reaction, there is a set of arcs, which are substrate–product

pairs of a reaction. There are different strategies to derive the arcs from

a reaction. The straightforward method is using all possible combinations

(i.e., the cross product) of substrates and products of a reaction. It is

however more useful to use meaningful substrate–product pairs, such as

reactant pairs. A reactant pair is a substrate–product pair with both

parts having atoms or atom groups in common that preserves

the chemical substructures of the reactants through the reaction

(Kotera et al., 2004; Kotera, Okuno, Hattori, Goto, & Kanehisa, 2004).

The reactant pairs are defined in the KEGG RCLASS database, which

classifies reactions based on the chemical structure patterns of their

substrate–product pairs (Muto et al., 2013). Only those reactant pairs

are used for the arcs that do not contain any metabolite from the

cofactor and inorganics list. This means, however, that reactions

involving metabolites from this list are still represented by the remaining

arcs. A more detailed discussion on the arcs can be found in Section 1.4

of Material S2 (Tables B12–B16). The arc graph of the model is a

directed graph G= (V, E), where V is the set of metabolites and E is the

set of arcs between these metabolites.

The model also contains a stoichiometric matrix, where each row

corresponds to a metabolite in the model and each column indicates

a reaction. An entry in the matrix is the stoichiometric coefficient of

the metabolite in the respective reaction.

When using KEGG COMPOUND and KEGG REACTION data

for a network reconstruction, some obstacles have to be addressed.

One of them is reaction directionality. For the reactions contained in

KEGG, the reaction directions are not indicated in the database entries.

There is thus a need for further reaction data to annotate directionality.

To do so, we use the component contribution method of the

biochemical thermodynamics calculator eQuilibrator (Flamholz, Noor,

Bar‐Even, & Milo, 2012; Noor, Haraldsdóttir, Milo, & Fleming, 2013) to

compute the ΔrG′m value (the change of the Gibbs free energy of a

reaction at a given pH of 7 and ionic strength I in 1mM concentration of

the reactants) for each reaction in the network and infer if the

respective reaction is reversible. Reactions with ∣ΔrG∣ ≤15 kJ/mol are

designated as reversible. In biological systems as well as in most

biosynthetic setups, concentrations of substrates and products often

differ by several orders of magnitude. This significantly influences

reaction reversibility. As these effects cannot be adequately considered

given the size of the networks presented in this study and the unknown

kinetics, the ΔrG value of 15 kJ/mol was chosen as a consensus value to

determine reaction reversibility. This somewhat arbitrary value

represents a compromise between the assumption of reversibility of

all reactions and a more stringent restriction with a ΔrG value of less

than 15 kJ/mol that would potentially exclude feasible biosynthetic

routes with concentrations of intermediates adjusting in a running

system. The value was set after a series of simulations and expert

inspection of results. However, the user of our tool can freely set the

ΔrG cutoff to meet the needs of his specific investigation. The reactions

are added to the model in the respective direction(s), which means that

for each reversible reaction, we get two reactions in the respective

directions. Another obstacle is the inconsistent use of identifiers for

metabolites. In some reaction equations, the KEGG COMPOUND (C)

identifiers are used, and in others, the G identifiers from the

KEGG GLYCAN structure database. As we do not consider glycans,

those reactions are excluded. For polymerization reactions, the reaction

stoichiometry in KEGG is not expressed in distinct numbers. Such

reactions are not applicable for our method where the coefficients in

the stoichiometric matrix are required to be integer numbers.

We did not generally exclude membrane‐associated reactions. To

our knowledge, it is not sufficiently clear whether and to what extent

intracellular as well as extracellular membrane‐associated enzymes are

active in permeabilized cells. In earlier work, we could, however,

experimentally show that megasynthases producing a circular

oligopeptide can be kept active in permeabilized cells in contrast to

cell extracts where activities could not be detected (Weyler & Heinzle,

2017). The exact reasons were not identified but could potentially be

related to yet unknown membrane association. On the other hand, in

selectively permeabilized eukaryotes, the organelles including

membrane reactions remain intact and functional (e.g., Nicolae,

Wahrheit, Nonnenmacher, Weyler, & Heinzle, 2015).

We thus have to filter the KEGG data before building a model.

Figure 3 shows the filtering steps to obtain the reactions suitable for

building a reconstruction of a pan‐organism network encompassing

reactions from all organisms and also for organism‐specific networks.

The filtering starts with all 11,196 reactions in KEGG REACTION.

First, the reactions with invalid reactants are removed, which are

reactants that do not have a C identifier. The 10,764 remaining reactions
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are further trimmed down to 10,603 reactions with valid stoichiometry,

where all reactants have integer stoichiometric coefficients. From these,

reactions that are generic or contain generic reactants (i.e., the database

entry has a comment containing ‘generic,’ ‘incomplete,’ or ‘general’) are

removed, sparing 7,989 reactions. After removing those without any

reaction class annotations, 7,676 reactions remain in the pan‐organism
model, which corresponds to about 69% of all KEGG reactions.

To build the organism‐specific models, the organism annotation

for the genes of the enzymes catalyzing those reactions is

used. From the 7,676 reactions in the pan‐organism network

reconstruction, KEGG has Enzyme Commission numbers associated

with 5,975 reactions. Out of those, 4,549 (76%) have enzymes whose

genes are annotated with organisms. These reactions are the basis of

the organism‐specific network model reconstructions.

Our network reconstruction workflow filters out ill‐formed

reaction entries in KEGG. However, we do not include a gap filling

step. This would require large manual efforts that are not in the

scope of this study.

Possible target metabolites in KEGG for the computation of

synthesis pathway candidates are determined automatically. A target

metabolite is a metabolite in the respective model that is not a

dedicated start or basis metabolite. It also has to appear as a product in

at least one arc in the network, so it could be potentially produced. We

predict potentially producible targets in a given model by determining

its feasible reactions, that is, reactions for which potentially all

substrates are available or producible. The feasible reactions are

obtained by initially starting with the set of metabolites consisting of

the model’s start metabolites and cofactors/inorganics. With these

metabolites, all reactions that are feasible are determined by checking

for each reaction that has not already been added to the set of feasible

reactions if all substrates are available. The products of these feasible

reactions are added to the set of metabolites. This step is repeated until

no new substrates are added. The resulting set of reactions is then a

subset of the model’s reactions that potentially are feasible.

The next step is to do a reachability screening in the arc graph of the

model. To do so, we add a node representing an artificial start metabolite

that is connected to all potential start metabolites. From there, we do a

breadth‐first search in the graph. Breadth‐first search is a suitable

algorithm for exploring a graph. The search starts with a source vertex

and discovers all neighboring vertices with the present depth before

discovering the next depth‐level vertices (Cormen, Leiserson, Rivest, &

Stein, 2009). The potentially producible targets are those targets that

are connected with the start node by a path (a sequence of edges that

connect vertices) and that are produced by any of the feasible reactions.

2.3 | Computational details

The model data are based on KEGG release 90.1, May 1, 2019. The code

for model building and statistics is written in Python 2.7, the code for the

thermodynamics is written in Python 3.6 using the eQuilibrator API

(Flamholz et al., 2012). We furthermore used the packages—graph‐tool
(Peixoto, 2014) and Matplotlib (Hunter, 2007). The path‐finding tool was

run on MATLAB R2019a with IBM CPLEX Studio 12.9. All computations

were carried out on a 2.5Ghz Intel Core i7 with 32GB of RAM.

The software used in this study is available at https://github.com/

mecatsb, where the repository mecat contains the path‐finding tool

and the repository mecatpy contains the code used for the pathway

analysis as well as the organism models. Release v1.0 contains the

code version used in this study.

3 | RESULTS

We first present the organisms and models used in our study and

then discuss some interesting properties of these models. We finally

present and discuss the results of our path‐finding analysis.

valid reactants
10764

valid stoichiometry
10603

 not general or generic reaction
7989

reactions with RCLASS entries
7676

reactions in pan-organism network reconstruction
7708

reaction with associated
enzyme(s)

5975

reactions with associated
organism(s)

4549

organism-specific network reconstructions

all KEGG reactions
11196

F IGURE 3 Reaction filtering from all reactions in Kyoto
Encyclopedia of Genes and Genomes (KEGG) to the set of reactions
for building the pan‐organism network reconstruction and the

organism‐specific models. The reactions are filtered in the given
order. The numbers indicate how many reactions stay after filtering.
The width of the box bases are proportional to the number of

reaction that remain after filtering
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3.1 | Models

For each organism in the KEGG Organisms database, we build an

organism‐specific network model, as described in Section 2.2. Figure 4

shows the number of reactions in KEGG that are annotated for the

specific organism together with the number of reactions that are part

of the organism‐specific network reconstruction. The organisms are

sorted in descending order with respect to the number of annotated

reactions in the model. The order in which the reactions are filtered

is following the procedure shown in Figure 3.

On average, 67% of the reactions in KEGG that are annotated

with an organism end up in an organism‐specific model (see insert in

Figure 4). The reason for this is the filtering of all reactions according

to the filter constraints shown in Figure 3 and discussed in detail in

Section 2.2. Figure 3 shows that the majority of the discarded

reactions are general and/or generic or contain generic reactants.

In addition to the pan‐organism network model, we chose nine

organism‐specific models for all network and pathway analyses as

examples. Table 1 lists the organisms, which were chosen primarily for

their importance in biotechnological production as well as in scientific

research. CHO, the permanent cells of the ovary of a Chinese hamster C.

griseus were originally isolated already in 1957. CHO is serving as a

model cell line for metabolic studies. Most importantly, however, it is

most frequently used for the industrial heterologous production of

therapeutic proteins (Lalonde & Durocher, 2017; Wurm, 2004). The

application of animal cells for biosynthetic purposes is easier starting

from cell lines like CHO rather than cells from primary tissues.

Escherichia coli is probably the most important model organism and is

used in all kinds of areas spanning from basic molecular biological work

to industrial applications (Pontrelli et al., 2018). Vibrio natriegens is an

extremely fast growing marine bacterium that recently got increasing

interest. Due to its duplication time of 10 minutes, it has been in the

focus of molecular biology research, for example, for protein production

also in cell‐free systems (Failmezger, Scholz, Blombach, &

Siemann‐Herzberg, 2018; Hoffart et al., 2017). Pseudomonas putida is

known for its diverse biodegration and biosynthetic capabilities

(Loeschcke & Thies, 2015; Nikel, Chavarria, Danchin, & de Lorenzo,

2016; Poblete‐Castro, Becker, Dohnt, DosSantos, & Wittmann, 2012).

Myxococcus xanthus is a model organism for studying social behavior of

bacteria with extended signaling networks and secondary metabolite

production (Wrótniak‐Drzewiecka, Brzezińska, Dahm, Ingle, & Rai,

2016). Saccharomyces cerevisiae is probably the most important

eukaryotic model micro‐organism used very widely and already for a

long time for the production of ethanol in alcoholic beverages and

biofuel. It is also widely discussed for the production of other

metabolites and its broad application is supported by a large toolbox

for metabolic engineering (Krivoruchko & Nielsen, 2015; Nielsen, 2019;

Steensels et al., 2014). The yeast Schizosaccharomyces pombe is a model

organism primarily used in molecular and cell biology but is recently

also discussed as promising candidate for the expression and secretion

of heterologous proteins (Takegawa et al., 2009). Corynebacterium

glutamicum is a most important micro‐organism in the industrial scale

production of amino acids but also other metabolic products (Becker,

Gießelmann, Hoffmann, &Wittmann, 2016). While these organisms have

been used in a vast range of production processes, they are also well

understood and we assume that KEGG data on these organisms is

relatively complete and accurate. Mycoplasma penetrans has the

smallest genome of known organisms and its metabolism is very limited

(Sasaki et al., 2002). From the present view, the most important

organisms for cell‐free synthesis are E. coli, S. cerevisiae, P. putida, and

M. xanthus. We exclude plants and algae from our species models since

they seem less applicable from the present view on cell‐free biocatalysis.

All model data are part of the GitHub repository https://github.

com/mecatsb/mecatpy.

Table 2 shows the number of potential targets for the respective

model as defined in Section 2.2. The arc reachable targets are those

targets that are connected to a basis metabolite via an arc path,

which is determined by breadth‐first search. The feasible targets are

targets that are products of feasible reactions as described in Section

2.2. The set of potentially producible targets is the intersection of the

targets that are connected to a basis metabolite via an arc path and

the targets that are products of the feasible reactions.

Table 2 shows that a large portion of potential targets is not

connected to any of the basis metabolites in the model. For all

models, about 32% (in the S. pombe model spo) to 43% (in the

pan‐organism model kegg) of all potential targets are potentially

producible targets. This means that for all other potential targets, a

synthesis pathway cannot be found, as a path is a required part of a

valid solution. We will elaborate the reasons for this drastic

reduction later in this study.

3.2 | Network model analysis

We first present some basic properties of the arc graphs of the

different organism models.

F IGURE 4 Comparison of the total number of reactions and the
number of reactions selected for the models for all organisms
annotated in KEGG. KEGG, Kyoto Encyclopedia of Genes and

Genomes [Color figure can be viewed at wileyonlinelibrary.com]
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Figure B1 in Material S2 shows the node degree distributions of

the arc graphs of the different organism network reconstructions.

The degree of a node is the number of edges leaving it (out‐degree)
plus the number of edges entering it (in‐degree). Tables B1–B10 in

Material S2 list the hubs with the top five occurrences of each

network. As expected, pyruvate, L‐glutamate, D‐glyceradehyde
3‐phosphate, and acetyl‐CoA are in almost all cases metabolites

with highest node degrees. M. penetrans (mpe), having the smallest

network of all studied here, differs most significantly from all

others both in the types of metabolites with highest node degrees

as well as in the generally small numbers of node degrees (<13). In

the pan‐organism network model (kegg), trans,trans‐farnesyl
diphosphate has an exceptionally high node degree (107), that is,

however, mostly originating from plant metabolism. In kegg,

pyruvate is by far the most connected metabolite with a node

degree of 167. The outstanding role of only a few metabolites is

most strikingly seen in Figure B1 of Material S2.

The sizes of the arc graphs together with the average node

degrees, standard deviation of the distribution are listed in Table B11

of Material S2. It is interesting to see that the average node degrees

vary only from 2.37 to 3.14 for individual organisms and 3.3 for kegg,

the pan‐organism network.

Table 3 lists the number of connected components of the

arc graphs in the respective models and the size of the

largest connected component, respectively. A connected compo-

nent in the graph is a subgraph where each vertex in the subgraph

is connected to each other vertex in the subgraph by a path

(Cormen et al., 2009).

TABLE 1 Models for the studies

Model Name
Reactions (KEGG/model/
reversible)

Feasible
reactions Metabolites (model/basis)

kegg Pan‐organism network model 11,196/7,676/2,934 5,467 6,473/39

cge Cricetulus griseus (Chinese hamster) 2,616/1,555/639 922 1,485/39

eco Escherichia coli K‐12 MG1655 1,775/1,225/511 950 1,191/39

vna Vibrio natriegens 1,690/1,193/489 888 1,180/39

ppun Pseudomonas putida NBRC 14164 1,683/1,199/469 766 1,240/37

mxa Myxococcus xanthus 1,492/1,021/428 684 1,077/36

sce Saccharomyces cerevisiae (budding yeast) 1,543/1,020/403 655 1,031/39

spo Schizosaccharomyces pombe (fission yeast) 1,408/905/378 592 915/39

cgb Corynebacterium glutamicum ATCC 13032 (Bielefeld) 1,122/792/318 534 845/38

mpe Mycoplasma penetrans 371/236/101 166 314/22

Note: The model names are derived from the KEGG organism codes, except for the pan‐organism network model, which is named kegg. The number of

reactions in KEGG refers to the number of reactions that are annotated for the respective organism. The number of reversible reactions is the

corresponding subset of the reactions in the model. The feasible reactions are determined as described in Section 2.2 based on the set of basis

metabolites as start metabolites. The basis metabolites are selected as described in Section 2.2.

Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes.

TABLE 2 Number of potential targets for each organism model based on basis metabolites as possible start metabolites

Model
Potential
targets

Arc reachable
targets

Feasible
targets

Potentially producible
targets

% of potential
targets

kegg 5,441 3,017 2,412 2,325 43

cge 1,128 437 358 333 30

eco 878 419 376 351 40

vna 865 397 348 328 38

ppun 902 380 317 293 32

mxa 777 320 281 266 34

sce 713 268 243 227 32

spo 637 264 216 201 32

cgb 598 261 215 200 33

mpe 184 70 69 56 30

Note: Arc reachable targets: targets that are connected to a basis metabolite via an arc path; feasible targets: targets that are products of feasible

reactions as described in Section 2.2; potentially producible targets: targets that are connected to a basis metabolite via an arc path and that are products

of feasible reactions and are thus realistic targets, intersection of the former two columns of the table; % of potential targets: percentage of potentially

producible targets in relation to the total number of potential targets.
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The smallest connected components contain two vertices in all

models. This is by definition the smallest component size as the

arc graph does not contain metabolites without any arcs. We

furthermore list the number of components containing basis

metabolites; as well as the total number of metabolites in all those

components with the percentage of those metabolites in relation to

the number of metabolites in the arc graph (in parentheses). These

numbers give information on how much of each network is possibly

reachable from the designated start points, since a potentially

producible target has to be connected to any of the predefined basis

metabolites via an arc path. Table 3 shows that between half and

two‐third of the metabolites in a model’s arc graph are contained in a

component with basis metabolites.

Exemplarily, Figure 5 shows the arc graph of the pan‐organism
model kegg. The arc graph consists of a large main component and a

large number of small components. Components in red are

components containing potential start metabolites, whereas the

components in blue are the so‐called satellite components without

start metabolites. The arc graphs of the other models are shown in

Figure B2 of Material S2. Figure B3 of Material S2 shows the arc

graph component histograms.

There are several reasons for isolated components in a model. The

first reason is missing annotation in the data on which the model is

based. This could be improved by using manually compiled and curated

network reconstructions with gap filling. Several reactions in KEGG are

formulated as general reactions and/or are reactions containing generic

compounds. Some of the often numerous reactions summarized in such

reactions are explicitly listed in KEGG. An even larger number could, in

principle, be added, for example, from BRENDA (Jeske, Placzek,

Schomburg, Chang, & Schomburg, 2018). Some reactions involve

additional proteins that transfer electrons or groups or use covalently

bound cofactors as, for example, nicotinamide adenine dinucleotide

phosphate. These are filtered out in the model building process. As we

do not include such reactions in our model, some metabolic pathways

could be cut off. Another reason is that a component is really isolated.

In Material S3, we list all components identified in the kegg

model. The 6,246 metabolites are grouped in 481 components.

The largest component connected to start metabolites comprises

4,612 metabolites and is represented in the center of Figure 5. All

other components with a size of 5 or more metabolites were

investigated in more detail (Material S4). They comprise 682

metabolites in 69 components. We could identify some typical

families related to biochemical characteristics (Material 5). Reactions

of xenobiotic compounds, for example, drugs, were most prominent

with 14 components with 141 metabolites followed by polyketides

(10/109), carbohydrate‐derived metabolites (10/86), terpenoids

(9/112), compounds with gonane tape nucleus (7/74), fatty acid

and lipids related compounds (7/59), and flavonoids (4/54).

Xenobiotics are inherently not listed in the starting metabolites.

Some of these families have often general reactions or involve

generic metabolites, for example, metabolites contain a group ‐R that

is not explicitly specified. R is later cleaved off the metabolite.

Smaller components (<5) were not analyzed in detail but could

often serve as missing links in larger pathways once the

connecting reactions could be defined following the criteria specified

in Section 2.2.

3.3 | Reachability analysis

We determined the target reachability in the organism‐specific
networks by testing the existence of a pathway candidate to each

TABLE 3 Number of components in the models with the number
of metabolites in the largest component

Model

Number of

components

Size of
largest

component

Components
with basis

metabolites

Metabolites
in

components
with basis

metabolites

kegg 481 4,612 1 4,612 (74%)

cge 186 754 4 763 (55%)

eco 139 766 2 768 (69%)

vna 146 726 1 726 (66%)

ppun 157 761 2 763 (66%)

mxa 159 587 3 595 (60%)

sce 182 478 1 478 (50%)

spo 162 438 1 438 (52%)

cgb 115 457 2 459 (60%)

mpe 57 76 7 141 (54%)

Note: The fourth column lists the number of components containing basis

metabolites. The last column shows the number of metabolites that

belong to a component containing basis metabolites. The percentage of

those metabolites in relation to the number of metabolites in the arc

graph is shown in parentheses.

F IGURE 5 Arc graph of the pan‐organism model kegg. Red:

components containing potential start metabolite; blue: satellite
components without start metabolites [Color figure can be viewed at
wileyonlinelibrary.com]
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possible target starting with basis metabolites using our MILP

presented in Section 2.1. Figure 6 shows for each model the

percentage of targets for which a synthesis pathway candidate has

been identified and for which a pathway candidate is not accessible

and why. The raw data for the figure is listed in Table B17 of Material

S2. In the following, we discuss the different fractions in more detail.

The blue and orange fractions represent the targets for which a

synthesis pathway candidate has been identified in the respective

models. The targets represented by the orange fractions have been

predicted to have a pathway candidate. This means that they can be

produced by feasible reactions of the model and they are connected to

at least one of the predefined basis metabolites by a path in the arc

graph (see Section 2.2). An example for this category is UDP‐glucose
(Material S6, Section F.1). However, the targets represented by the

blue fractions have not been predicted to be feasible, despite having a

synthesis pathway candidate. For those targets, we found that most of

the pathway candidates calculated with the MILP include a direct cycle

formed by supplying reactions that use metabolites that are not in the

metabolite pool. In a mathematical sense, it is valid to consume a

metabolite as long as its overall balance is zero. However, in real world

applications, this would not be correct since the metabolite has to be

present in at least catalytic amounts already at the start of the

reaction. An example for such a pathway is the pathway candidate for

the 5‐methyl‐5,6,7,8‐tetrahydromethanopterin (C04488) production

in the pan‐organism network model kegg (Material S6, Section F.2).

The pathway requires coenzyme F420 (C00876) and reduced

coenzyme F420 (C01080), which are neither metabolites nor

cofactors, and thus are not part of the metabolite pool. They thus

have to be produced by the reactions of the pathway.

The green, red, purple, and brown fractions represent targets

without any pathway candidate. In the following, we will discuss the

different reasons for this.

With the help of breadth‐first search, we found that the targets

represented by the green and red fractions are not connected to any

of the potential start metabolites via an arc path. Therefore, these

targets cannot have a pathway candidate, since a path from a start

metabolite to the target is mandatory, as stated in Section 2.1.

The targets belonging to the green category are not part of a

component containing potential start metabolites. In our pan‐organism
model kegg, this is the case for proansamycin X. Component 134 in

Material S4 shows that there is no reaction in KEGG producing

proansamycin X (C12176) from 3‐amino‐5‐hydroxybenzoate (C12107),

which belongs to a component with start metabolites (Material S3). The

situation could be improved by using manually compiled and curated

network reconstructions with gap filling, for example, for metabolites of

the earlier discussed polyketide, flavone, and terpenoid families (see

also Material S5). As outlined in Section 2.2, we only did some minor

generic curation which has the purpose of extracting meaningful data

and removing ill‐specified data. A comprehensive network reconstruc-

tion for an organism would require a lot of manual work encompassing

more data sources including primary literature, which was not in the

scope of this study. However, when using our path‐finding method, the

user can choose any network model that contains the information

needed for path‐finding, regardless of data origin.

The targets represented by the red fractions are contained in

components with start metabolites but do not have a necessary arc path

from a start metabolite to the target, such as riboflavin (C00255).

The targets represented by the purple fractions are connected to a

potential start metabolite in the network via an arc path. However, this

is not sufficient for a valid pathway candidate. In addition, the arcs have

to be associated with reactions for which all substrates are available or

producible to ensure that the pathway candidate is feasible (Blaß et al.,

2017). However, for these targets, there is no reaction in the set of

feasible reactions (see Section 2.2) that produces that target for the last

one arc of the arc path, which means that the overall pathway is not

feasible. Note that the other arc‐reaction associations thus do not

matter in this case. An example for such a target is biotin (C00120;

Material S6, Section F.3).

The targets represented by the brown fractions are targets that are

predicted to have pathway candidates as they are connected to

predefined start metabolites by an arc path and are produced by

feasible reactions. However, our path‐finding algorithm could not

determine valid pathway candidates. To explore the reasons for this,

we list the feasible reactions of the respective models that produce these

F IGURE 6 Analysis of the target search in the different organism
models. blue: targets for which a pathway candidate has been found by
our method, but that have not been predicted as feasible; orange:

targets for which a pathway candidate has been found by our method;
green: targets for which a candidate has not been found due to the
absence of an arc path from any start metabolite to the target because

the target is in a satellite component without start metabolite; red:
targets for which a candidate has not been found due to the absence of
an arc path from any start metabolite to the target (and the target is in

a component with start metabolites); purple: targets for which a
candidate has not been found due to the lack of a feasible reaction that
produces the target; brown: targets for which a candidate has not been
found due to other reasons that are discussed in the text [Color figure

can be viewed at wileyonlinelibrary.com]
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targets for each of those targets. For each of these reactions, we

determine why it is not part of a pathway candidate. We identified three

non‐disjoint categories in which we can sort these reactions. To the first

category, belong reactions that produce the target but do not have arcs

containing the target. As discussed in Section 2.1, a valid pathway

candidate has to include a reaction with an arc to the target. Reactions

that produce the targets only from substrates that are designated

cofactors or inorganic metabolites are also sorted to this category, as

they are correctly predicted to be feasible. However, our path‐finding
method does not handle such pathways since a valid pathway candidate

requires at least one arc by definition and there are no arcs containing

cofactors and inorganic metabolites. The second category encompasses

reactions that do have an arc to the target, but require a substrate that is

also a target for which no pathway candidate has been identified with

our method. The reactions in the third category cannot be used in a

pathway candidate because of a constraint in the MILP, which excludes

pathways that use reactions consuming the target, as discussed in

Section 2.1. There is no valid sequence of reactions with arcs that is

feasible without using supplying reactions that consume the target. An

example for a target of the brown fraction is 5′‐methylthioadenosine

(C00170), where the reactions producing this target belong to the first

two categories discussed above (Material S6, Section F.4).

To illustrate the different target categories, the example arc graph

in Figure 7a depicts examples for each of the categories. Note that, for

the sake of clarity, the depicted arc graph has additional vertices for the

cofactors (small circles), which would normally not be part of the graph.

The potential start metabolites A and B are depicted by hexagons, the

potential targets E, F, G, and H by octagons. Figure 7b lists the reaction

equations and the arcs belonging to these reactions. A valid pathway

candidate to E consists of the reactions R1 and R3 (arcs 1, 2, and 4),

since all needed substrates, that is, A, B, and Y, are available. E would

thus be a target represented by the orange fractions in Figure 6.

For target F, it is not possible to find a pathway candidate because

F is part of a graph component that does not include potential start

metabolites. F is thus an example of the green fractions. Target G is

part of the component which also includes the potential start

metabolites. However, there is no arc path connecting metabolites A

or B to G, which makes G a target represented by the red fractions.

Target H is an example for the purple fraction. To reach H, there are

valid arc paths (e.g. 1→ 5→ 8 or 2→ 5→ 8), however, the last reaction

belonging to arc 8 requires W as a substrate, which is not available.

4 | CONCLUDING REMARKS

Our presented method allows creating and characterizing genome‐scale
metabolic network reconstructions for the planning of biosynthetic

production pathways using cell‐free systems. The data are taken from

biological databases, for example, KEGG. We also discussed typical

problems in the context of network reconstruction and how these can be

solved to obtain applicable network models. We used the presented

method for establishing models for the network reconstruction of a

pan‐organism from the whole KEGG database as well as for several

interesting model organisms. We also used our path‐finding method

based on a global optimization problem to compute pathway candidates

for all possible target molecules in the models and demonstrated that our

method yields correct and meaningful results and that it is widely

applicable for all kinds of networks and network sizes. The increasing

availability of larger‐scale metabolic networks that are increasingly well

curated, as is for example, already the case for E. coli and S. cerevisiae

(Orth et al., 2011; Zomorrodi & Maranas, 2010), will also increase the

power of our method. Our network analysis method for multienzyme

systems that do not have any cellular compartments particularly

lacking a cell membrane differs significantly from published methods

for whole cells with a defined link to the extracellular environment via

(a)

(b)

F IGURE 7 Arc graph with examples for the different target
categories in Figure 6 and the corresponding reactions. (a) Small circles:
cofactor metabolites; hexagons: potential start metabolites; octagons:
potential targets; large circles: metabolites not in any of the previous

categories. Orange: target of the orange category; green: target of the
green category; red: target of the red category; purple: target of the
purple category. The numbers on the arcs refer to the column ‘arcs’ in

(b). (b) Reactions in the example network with their respective reaction
equations [Color figure can be viewed at wileyonlinelibrary.com]
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transport systems (S. Z. Wang et al., 2017; von Kamp, Thiele, Hädicke, &

Klamt, 2017) or with models of microbial communities, for example,

Magnúsdóttir and Thiele (2018).

The tools we presented are directly applicable to designing the

synthesis of target compounds in cell‐free systems. Our analysis tools

—especially the feasibility prediction we described in Section 2.2—are

useful tools to predict if a target could potentially be produced

in a given model and could thus be used to quickly screen if a

host organism or strain is potentially capable of producing a certain

product directly.

If this is not the case, a comparison of biosynthesis pathways in a

selected host organism and in the pan‐organism is useful for

identifying genetic engineering targets to create a production

organism eventually. Our tools help to identify heterologous enzymes

that might be candidates for insertion in the host organism chosen

using genetic engineering to complete a desired pathway in that

organism. Our tools also help to answer which substrates are

required for a certain synthesis pathway.

Biosynthesis pathway candidates including stoichiometric and

thermodynamic constraints can be determined with our presented

path‐finding algorithm presented earlier (Blaß et al., 2017).

As reviewed in a recent publication (Lin, Warden‐Rothman, &

Voigt, 2019), various methods have already been published and are

in development that additionally allow the identification of new

reactions considering the promiscuity of many enzymes but also the

chemical similarity of substrates of these enzymes.

Our network reconstructions are the basis for the identification of

gaps in the network that would prohibit synthesis of a desired target.

With our tools, it is possible to identify potential gap fillers from the

pan‐organism network, which can then be implemented in an organism

of interest using genetic engineering. It is also possible to do manual

directed gap filling in the pan‐organism network, for example, by

considering generic reactions, reactions not contained in KEGG, or

expert reasoning.

Overall, our tools and networks are a suitable basis for focused

and directed experimental work and the implementation of the

synthesis of target compounds in cell‐free systems.
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