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1 Introduction

1.1 Model-informed drug development

A mathematical model might be defined as an abstraction of reality describing a system with mathematical

languages in order to study and explain it, and enable predictions on patterns of behaviour. However, a model

is typically a simplification of a system and thus should not be judged of being “right” or “wrong”, but by its fit

for purpose, as George Box stated: “Essentially, all models are wrong, but some are useful” (1,2).

Drug development extends to various stages from early pre-clinical development to post-marketing

authorisation management (Figure 1). It is a continuous process where a vast amount of data from in vitro and

animal studies, as well as human clinical trials is collected and needs to be considered to inform decision-

making. This is not only a challenging process but also time-consuming and expensive (3). The number of late

clinical development failure in phase 2 and 3 stages is high due to insufficient efficacy, and only less than 10 %

of new compounds finally receive marketing authorisation (4).

Model-informed drug development (MIDD) approaches, also known as model-based drug development, or

modelling and simulations (M&S) techniques, provide a framework to integrate and analyse various data with

relevant prior knowledge to drive industrial and regulatory decision-making trough all stages of the drug

development process (Figure 1) (4–6). In addition, good practice in MIDD can reduce costs and increase the

success rates in late-stage clinical phases (5). From a regulatory perspective, the degree of impact of M&S

exercises on the regulatory decision depends on the intended purpose of the model. A framework of three

main categories has been proposed; related to the purpose of the model, it can be of low, medium, or high

impact, where M&S is used to describe, justify, or replace the available or usual evidence, respectively (4).

Overall, MIDD approaches facilitate understanding and predicting the pharmacokinetics (PK) and

pharmacodynamics (PD) of a drug candidate. They can for instance be used to inform clinical trial designs,

inform on disease progression, guide optimal dosing strategies (e.g. initial dose selection in first-in-human

trials), perform (paediatric) extrapolations (7), guide dosing recommendations in product labelling, or support

evidence for efficacy and safety (6).

MIDD encompasses several quantitative mathematical / statistical approaches, such as pharmacometrics,

Physiologically-based Pharmacokinetic (PBPK) modelling, or Quantitative Systems Pharmacology (QSP). More

specifically, pharmacometrics can be defined as the science of quantitative pharmacology that enables the

characterisation, understanding and prediction of the PK and PD of a drug candidate, including the

quantification of uncertainty, by applying mathematical and statistical methods (8,9). Under the umbrella of

pharmacometrics, in particular population PK, PD, and PKPD M&S, including exposure-response analyses, are

of special interest and increasingly applied in drug development (8). The different types of population
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approaches, i.e. naïve average data approach , the two-stage approach, and the nonlinear mixed-effects

modelling (NLME) approach, are described later in this work.

Another important approach is the PBPK (or PBPK/PD) modelling, where the models include knowledge of the

physiology and physicochemical information, as well as information on the target population, enabling to

distinguish between drug parameters and systems’ parameters (i.e. physiological and anatomical or organ

parameters). Knowledge on the concentration-time behaviour in blood and tissue(s) can be obtained taking

into consideration organs that are most relevant to absorption, distribution, metabolism, and excretion (ADME)

(10,11). PBPK models are increasingly used to predict a drug´s exposure for a given population or for instance,

to extrapolate exposure from adults to children (12) or even from animals to humans. Moreover, it is used to

predict drug-drug interaction (DDIs) qualitatively and quantitatively in silico (10,13). However, in European

Regulation, applications of PBPK models are so far predominantly limited to DDIs (6). In QSP, all relevant

processes are considered even more detailed; as an example, PBPK models are combined with in vitro-in vivo

correlations of ADME processes, the complex underlying biology of the system, and information on the

pathophysiology, and they include details of the disease process. However, overall, these three mentioned

approaches (pharmacometrics, PBPK, and QSP), should not necessarily be considered separately, but may

rather be considered as a network of different approaches that may inform each other.

Figure 1 Stages of drug development as continuous process from drug discovery to post-marketing development.
Modelling and Simulation (M&S) techniques (indicated by pink arrows) are used at each step to support decision-making.
[Modified from (4,5)]
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1.2 Pulmonary arterial hypertension

Pulmonary hypertension (PH) is a pathophysiological disorder that encompasses a number of diseases that

are characterised by elevated pulmonary vascular resistance (PVR) and pulmonary arterial blood pressure

(PAP). PH is currently classified in five groups of diseases according to their similar clinical presentation,

pathological findings, haemodynamic characteristics, and treatment strategy (14). Further subcategories allow

to distinguish between diverse origins of the diseases within each classification, leading to various forms of PH

(Table 1) (14).

Pulmonary arterial hypertension (PAH, group 1) is a rare disease with a prevalence of about 15 to 60 patients

per million and an incidence of 5 to 10 cases per million per year in Europe (15). In 2014, the incidence was

about 3.9 per million adults and the prevalence 25.9 per million adults in Germany (16). PAH is more frequently

diagnosed in elderly patients between 50 and 65 years of age compared to younger ages (14), however, it

affects every age, including the new-born. It is a progressive, currently incurable disease and the mean survival

after diagnosis is approximately 3 years (17). The patient status can be categorised according to a classification

system (World Health Organisation functional class, WHO-FC), and is based on a complex disease assessment

(14,18). Patients are classified in low-risk (WHO-FC I), medium-risk (WHO-FC II), or high-risk (WHO-FC III or IV)

groups. The estimated 1-year mortality varies depending on the class between < 5 % (low risk) and > 10 %

(high risk) (14).

Overall, PAH is recognised as a very heterogeneous disease. As such, besides the idiopathic form, PAH can,

for instance, occur due to genetic mutations (e.g. mutation in the bone morphogenetic protein receptor 2,

BMPR2) or intake of drugs or toxins, and it can be associated with autoimmune diseases, human

immunodeficiency virus (HIV) infection, or congenital heart disease (Table 1).
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Table 1 Pulmonary hypertension (PH) classification system

Pulmonary hypertension (PH)

Group I Group I.1 Group II

Pulmonary arterial hypertension

(PAH)

Pulmonary veno-occlusive disease

and/or pulmonary capillary

haemangiomatosis

PH due to left heart disease

I.1 Idiopathic

I.2 Heritable

I.2.1 BMPR2 mutation

I.2.2 Other mutations

I.3 Drugs and toxins induced

I.4 Associated with:

I.4.1 Connective tissue disease

I.4.2 Human immune deficiency virus

(HIV) infection

I.4.3 Portal Hypertension

I.4.4 Congenital heart disease

I.4.5 Schistosomiasis

I.1.1 Idiopathic

I.1.2 Heritable

I.1.2.1 EIF2AK4 mutation

I.1.2.2 Other mutations

I.1.3 Drugs, toxins and radiation

induced

I.1.4 Associated with:

I.1.4.1 Connective tissue disease

I.1.4.2 HIV infection

II.1 Left ventricular systolic dysfunction

II.2 Left ventricular diastolic dysfunction

II.3 Valvular disease

II.4 Congenital / acquired left heart

inflow/outflow tract obstruction and

congenital cardiomyopathies

II.5 Congenital / acquired pulmonary veins

stenosis

Group I.2

Persistent PH of the new-born

Group III Group IV Group V

PH due to lung disease and/or

hypoxia

Chronic thromboembolic hypertension

and other pulmonary obstructions

PH with unclear and/or multifactorial

mechanism

III.1 Chronic obstructive pulmonary

disease

III.2 Interstitial lung disease

III.3 Other pulmonary diseases with

mixed restrictive and obstructive

pattern

III.4 Sleep-disordered breathing

III.5 Alveolar hypoventilation disorders

III.6 Chronic exposure to high altitude

III.7 Developmental lung disease

IV.1 Chronic thromboembolic

pulmonary hypertension

IV.2 Other pulmonary artery obstruction

IV.2.1 Angiosarcoma

IV.2.2 Other intravascular tumours

IV.2.3 Arteritis

IV.2.4 Congenital pulmonary arteries

stenosis

IV.2.5 Parasites (hydatidosis)

V.1 Haematological disorders: chronic

haemolytic anaemia, myeloproliferative

disorders, splenectomy

V.2 Systemic disorders: sarcoidosis,

pulmonary histiocytosis,

lymphangioleiomyomatosis,

neurofibromatosis

V.3 Metabolic disorders: glycogen storage

disease, Gaucher disease, thyroid

disorders

V.4 Others: pulmonary tumoral thrombotic

microangiopathy, fibrosing

mediastinitis, chronic renal failure (with

/ without dialysis), segmental

pulmonary hypertension

Modified from (14,19)
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PAH is a pre-capillary PH form (Figure 2) with an increase in mean PAP (PAPm) ≥ 25 mmHg at rest as assessed

by right heart catheterisation. In the absence of other causes of precapillary PH, such as PH due to lung

diseases, or chronic thromboembolic PH, it is defined by a pulmonary arterial wedge pressure  of ≤ 15 mmHg

and a PVR > 3 Wood units (WU) (14). In healthy persons, the normal PAPm at rest is at about 14  3 mmHg

with an upper limit of 20 mmHg and a PVR of ≤ 3 WU (14,20).

Figure 2 Schematic representation of
pulmonary hypertension (PH). Illustration of
site of initiation of elevated pulmonary
arterial pressure of precapillary pulmonary
hypertension, and postcapillary pulmonary
hypertension. L.V., left ventricle; R.A., right
atrium; R.V., right ventricle. [Modified from
(21)]

Since symptoms of P(A)H are initially non-specific (e.g. exertion, shortness of breath, fatigue, weakness, or

angina) (14), diagnosis is difficult and should be assessed by experts only, according to a complex algorithm,

as suggested by the guideline from the European Society of Cardiology (ESC) (14). Overall, diagnostics of PH

include a number of tests such as electrocardiogram, pulmonary function tests, arterial blood gases, right heart

catheterisation, and vasoreactivity testing. The 6-minute walking test (6MWT) is a popular procedure to assess

the exercise capacity of PAH patients (22,23). However, the 6-minute walking distance (6MWD) is influenced

by a number of factors, such as demographics (e.g. age, weight, height, and sex) or the need for oxygen and

comorbidities that need to be considered (14). Furthermore, the cardiopulmonary exercise testing provides

information on exercise capacity, gas exchange, ventilator efficacy, and cardiac function during exercise (14).

So far, the only biochemical markers used in clinical practice are markers of myocardial stress, i.e. b-type

natriuretic peptide and N-terminal-pro b-type natriuretic peptide, which are not specific for PH but can provide

information on the prognosis in patients with P(A)H (14). A continuous risk assessment of patients with PAH

should be performed according to the ESC guideline (14) and regular laboratory tests (e.g. including aspartate

aminotransferase [AST] and alanine aminotransferase [ALT]) should be conducted during follow-up

assessment and under drug treatment.

Key elements of the pathogenesis of PAH involve vasoconstriction of the small pulmonary arteries and vascular

remodelling and proliferation due to a variety of cellular and molecular factors, leading to a progressive

increase in vascular resistance. An increase in right ventricular afterload finally leads to right-sided heart failure.

In all forms of PAH, thickening of the vascular walls as a consequence of proliferation of smooth muscular cells

in the small peripheral arteries and neovascularisation can be observed (24). Vasoconstriction of the pulmonary

arteries due to endothelial dysfunction is a common mechanism that is associated with a decreased production

of the vasodilators nitric oxide (NO) and prostacyclin. Overexpression of the potent and long-acting
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vasoconstrictor endothelin-1 (ET-1), which also promotes vascular remodelling, occurs concurrently (Figure 3)

(25). Further explanation of the pathophysiology is provided in the next chapter.

The current treatment options for patients with PAH are limited. Besides general interventions and measures

such as physical activity, infection prevention, or psychosocial support, a comprehensive pharmacological

treatment strategy includes for instance supportive therapy with oral anticoagulants, diuretics, oxygen, and

digoxin in the first step (14). Calcium channel blockers (e.g. nifedipine, diltiazem, amlodipine) can be

administered to some patients with response to acute vasodilator testing at the time of right heart

catheterisation (14). Further specific drug treatment options include single or combination therapy with

phosphodiesterase type 5 (PDE5) inhibitors (sildenafil, tadalafil, vardenafil), the soluble guanylate cyclase (sGC)

stimulator riociguat, prostacyclin analogues (beraprost, epoprostenol, iloprost, treprostinil), the prostacyclin

receptor (IP) agonist selexipag, or endothelin receptor antagonists (ERAs; ambrisentan, bosentan, macitentan)

(Figure 3). The ESC guideline gives comprehensive recommendations for efficacy of drug monotherapy,

combination therapy, and sequential drug combination therapy depending on the different WHO-FC levels

(14).
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1.3 Endothelin and endothelin receptors

ET-1 is an endothelium-derived peptide and a member of a ET-gene family that comprises three isoforms, i.e.

ET-1, ET-2, and ET-3 (26). The ET mRNA encodes the precursor protein prepro-ET-1, which is cleaved to big-

ET-1. Proteolytic cleavage of big-ET-1 through endothelin-converting enzyme (ECE-1) yields the mature

peptide (Figure 3) (26–28). ET-1 is synthesised by almost every cell type, but in particular in vascular endothelial

and smooth muscle cells, airway epithelial and smooth muscle cells, macrophages, fibroblasts, cardiac

myocytes, mesangial cells, podocytes, and neurons (29). ET-2 is synthesised in the ovary and intestinal

epithelial cells. It contributes to ovulation, thermoregulation, lung alveolarisation and intestinal contraction,

while ET-3 mainly mediates release of vasodilator and anti-inflammatory molecules such as NO and

prostacyclin (29). Furthermore, it may promote growth of cells such as melanocytes (29). ET-3 is mainly

expressed in the placenta, brain neurons, melanocytes, renal tubular epithelial cells, and intestinal epithelial

cells (29).

ET peptides are bound to the two endothelin receptors A and B (ETA and ETB). ETA binds ET-1 and ET-2 with

high affinity (ET-1 ≥ ET-2), and ET-3 with a 100-fold lower affinity (29,30). Binding to ETB is similar for all three

ETs (30), however, a selective binding of ET-3 to ETB has also been suggested (29). ETA and ETB are G-protein

coupled receptors that are expressed in almost every cell of the body (28) and extensively in the kidneys (30).

However, ETA are predominately expressed in vascular smooth muscle cells, myocytes, and fibroblasts, while

ETB is mainly located in in endothelial cells and renal tubuli and less on smooth muscle cells, fibroblasts, and

macrophages (28,31,32) (Figure 3). ET-1 binding to its G-protein coupled receptors Gi, Gq, Gs, and G12/13,

regulates a variety of signalling cascades (28). ETA and ETB show opposite action in normal physiological

conditions. ETA predominately promotes strong vasoconstriction, cell proliferation, inflammation, fibrosis, and

hypertrophy in vascular smooth muscle cells (28,29,32) (Figure 3). The activation of ETB causes vasodilatation,

at least initially, via production of NO and vasodilator prostanoids and eicosanoids, with anti-proliferative and

anti-apoptotic properties (28,30–32). Furthermore, endothelial ETB can be considered as physiological

antagonist when activated by ET-3, as it inhibits ET-1-mediated effects (29). However, ETA and ETB seem to

form heterodimers. As such, ETB on smooth muscle cells are coupled with ETA exhibiting vasoconstrictive

effects (32).
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Figure 3 Endothelin (ET), nitric oxide (NO), and prostacyclin (PGI2) pathway involved in cell proliferation and contraction of
smooth-muscle cells in patients with PAH and the respective targets for therapeutic intervention. Current drug treatment
options shown here include endothelin receptor A and B (ETA and ETB) antagonists (ERA; ambrisentan, bosentan,
macitentan), phosphodiesterase type 5 (PDE5) inhibitors (sildenafil, tadalafil, vardenafil), the soluble guanylate cyclase (sGC)
stimulator riociguat, prostacyclin analogues (beraprost, epoprostenol, iloprost, treprostinil), and the prostacyclin receptor
(IP) agonist selexipag. AC: adenylate cyclase, ATP: adenosine triphosphate, cAMP: cyclic adenosine monophosphate, cGMP:
cyclic guanosine monophosphate, ECE-1: endothelin-converting enzyme–1, ET-1: endothelin-1, GMP: guanosine
monophosphate, GTP: guanosine triphosphate, IP3: inositol triphosphate, PLC: phospholipase C  [Modified from (32,33)]
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ET-1 binding to ETA is almost irreversible and binding lasts almost 2 h after internalisation of the receptor-

complex followed by recycling of the ETA receptors (34). This leads to continuously activated signal transduction

followed by prolonged biological effects, such as vasoconstriction and long-lasting increase in blood pressure

(34,35). ET-1 clearance is mediated by an ETB receptor-linked mechanism in the pulmonary circulation (36).

ETB are degraded by lysosomes and therefore serve as a clearance receptor for ET-1, which is removed from

the systemic circulation within seconds (29,35). ET-1 uptake into lungs is markedly decreased and clearance is

shifted towards liver and kidney after acute treatment of the non-selective ETA and ETB receptor antagonist

bosentan (36). Furthermore, clearance is disabled after acute blockade of ETA and ETB (36). After long-term

treatment with selective ETA antagonists, a potential interaction (i.e. cross-talk) between ETA and ETB may cause

a partial reduction in ETB-mediated clearance from the pulmonary circulation.  This results in a compensatory

increase of ET-1 in the liver and kidneys, similarly as observed after non-selective ETA/ETB blockage (36).

Overall, the ET system is involved in the pathogenesis of various disease conditions such as PAH, cardiovascular

diseases, coronary artery disease, cardiac arrhythmias, heart failure, idiopathic pulmonary fibrosis, renal

diseases, cancer, autoimmune diseases, neurological diseases, or age-related eye diseases (29).

1.4 Endothelin receptor antagonists

The family of ERAs currently comprises three oral compounds that are approved for the treatment of PAH;

the selective ETA antagonist ambrisentan, and the two non-selective ETA / ETB antagonists bosentan and

macitentan. Sitaxsentan was another selective ETA antagonist also approved for the treatment of PAH, but

withdrawn from the market in 2010 due to its hepatotoxicity.

A number of additional ERAs for oral use have been developed for the treatment of various disease conditions

associated with involvement of the ET system. A selection of different selective ETA antagonists is listed in Table

2. The selective ETA antagonist clazosentan and the non-selective ETA / ETB antagonist tezosentan have both

been developed for parenteral use in emergency indications. In project I and project II, the ERAs bosentan,

clazosentan, and tezosentan were investigated. A detailed description of their PK and PD characteristics is

given below.
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Table 2 Endothelin receptor antagonists in development for the treatment of various diseases.

Compound Proposed effect

Aprocitentan (active metabolite of

macitentan)

Antihypertensive effect

Darusentan Treatment of resistant hypertension, essential hypertension (37), improved
endothelium-dependent vasodilation, attenuated progression of experimental

atherosclerosis in mice (38), and mitigation of myocardial ischemia has been observed
in mice (39). It reversed proteinuria, caused regression of established
glomerulosclerosis, and restored podocyte structure and function in a model of

normotensive focal segmental glomerulosclerosis (40).

Zibotentan Inhibits pro-carcinogenic behaviour such as inhibition of apoptosis and cellular
proliferation and has been developed as an antineoplastic drug candidate (41).

Atrasentan Reduced blood pressure and seem to have favourable effect on metabolic parameters
such as glucose metabolism (42); it reduced atherosclerotic plaque volume (43), has
been studied in patients with diabetic nephropathy to reduce doubling of serum

creatinine (44), and appears to have a protective effect on renal function (44).

Avosentan Anti-proteinuric effects have been reported (45).

Sparsentan (dual oral ERA and

angiotensin receptor antagonist)

Compound currently under investigation in patients with primary focal segmental
glomerulosclerosis; an antihypertensive effect has been reported in patients with
essential hypertension (29).

Bosentan

The non-selective ETA / ETB antagonist bosentan has been developed in the 1990s and is the first approved

ERA, commonly prescribed for the treatment of PAH. In 2001 orphan designation has been granted by the

European Commission for the treatment of PAH and chronic thromboembolic PH (EU/3/01/019). It has been

authorised in the European Union in 2002 as TracleerTM. The period of market exclusivity ended in 2012 (46,47)

and a couple of generic products are now available on the market.

Bosentan (TracleerTM) is currently approved for the treatment of patients with PAH WHO-FC III. Efficacy has

been shown in primary (idiopathic and heritable) PAH, PAH secondary to scleroderma without significant

interstitial pulmonary disease, and PAH associated with congenital systemic-to-pulmonary shunts and

Eisenmenger’s physiology (48). Bosentan is approved for use in adults and children aged one year and older.

Treatment in adults should be started with the oral application of 62.5 mg twice daily. After four weeks, the

dose should be increased to 125 mg twice daily. For children aged one year and older, the recommended

dose is 2 mg/kg body weight twice daily. Bosentan is contraindicated in patients with moderate to severe liver

impairment (i.e. Child-Pugh class B and C) but no dose adjustments is recommended in patients with mild

hepatic impairment (i.e. Child-Pugh class A). Dose adjustments are neither warranted in renal dysfunction,

advanced age (elderly above the age of 65 years), or other patient characteristics (e.g. sex, ethnicity). Very

common adverse reactions are hepatobiliary disorders. Elevated levels of liver AST and ALT are associated
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with bosentan administration in a dose-dependent manner, which may be partly due to inhibition of the bile

salt export pump (BSEP), leading to accumulation of bile salts in the hepatocytes.

Bosentan is a competitive antagonist binding tightly to ETA and ETB (dissociation constant Kd about 7.7 and

67 nM, respectively) displacing ET-1 from its binding site. PK, efficacy, and safety of bosentan have been

investigated over the last decades in various trials in healthy volunteers, adults, and paediatric patients. A brief

overview of PD effects of bosentan observed in different clinical trials is given in Table 3. The PK characteristics

of bosentan are provided in the following section and key points are summarised in the three boxes below.

Table 3 Pharmacodynamic effects of bosentan observed in different clinical trials

Study name, population, treatment Pharmacodynamic effect

BREATHE-1 and study AC-052-351 (48)

 Adult PAH patients with WHO-FC III-IV  Increase in exercise capacity measured by 6MWT
 Improvement in WHO-FC
 Improvement in haemodynamic measures

EARLY trial (study AC-052-364) (48,49)

 Adult PAH patients with WHO-FC II
 6 months treatment

 Improved PVR and 6MWT
 Reduced clinical worsening

BREATHE-5 (study AC-052-405)(48)

 Adult PAH patients with WHO-FC III and Eisenmenger
physiology associated with congenital heart disease

 16 weeks treatment

 Bosentan:

 Did not worsen hypoxaemia,

 Reduced the mean PVR,
 Improved exercise capacity

BREATHE-4 (study AC-052-362)(48)

 PAH patients with WHO-FC III associated with HIV
infection

 16 weeks treatment

 Improved exercise capacity

COMPASS-3 (50)

 Adult PAH patients
 28 weeks treatment with bosentan monotherapy or in

combination with sildenafil

 Improvement of 6MWD of ≥ 380 meters has been
achieved

In addition to the studies mentioned in Table 3, the acute PD effect of sildenafil in patients with PAH, treated

with bosentan has been investigated (study COMPASS-1) (51), as well as the effect of bosentan combined with

sildenafil compared to sildenafil monotherapy (study COMPASS-2) (52). BREATHE-3 (study AC-052-356) and

FUTURE 1 / 2 / 3 (studies AC-052-365 / AC-052-367 / AC-052-373) assessed primarily the PK of bosentan

film-coated or dispersible tablet in children between 0.2 to 15 years of age (48,53–55). BREATHE-4 was a study

performed in term or pre-term neonates (48,56).
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After intravenous or oral administration, bosentan uptake into hepatocytes occurs via the two organic anion

transporting polypeptides OATP1B1 and OATP1B3. Furthermore, bosentan is a substrate and possibly an

inducer of P-glycoprotein (P-gp). Bosentan is primarily eliminated through the bile into the intestine and

excreted with the faeces, whereof about 30.2 % of the administered dose are eliminated unchanged after oral

administration, and 3.7 % after intravenous administration (57). Bosentan is catalysed by Cytochrome P450

(CYP) isozymes 3A4, 2C9, and 2C19 (57) yielding two metabolites, i.e. hydroxy-bosentan (RO48-5033) and

desmethyl-bosentan (RO47-8634) that account for about 8.3 % and 3.1 %, in plasma, respectively (58). Both

metabolites are further catalysed by CYP2C9 and/or 3A4 to hydroxy-desmethyl-bosentan (RO64-1056) (57).

The affinity of hydroxy-bosentan to ET receptors is about 2-fold lower compared to bosentan and it

contributes to the overall efficacy with approximately 20 % (57). By inducing the CYP isozymes CYP3A4, 2C9,

and possibly 2C19, bosentan induces its own metabolism and causes many DDIs with other substrates of these

isozymes (Table 4).

After multiple dose administration of bosentan

over 10 days to healthy volunteers, exposure at

steady-state has been reduced to 57 % and

apparent oral clearance increased by 73 %

(autoinduction) (59). Exposure of the three

metabolites also decreased by 71 to 80 % (59).

Bosentan has a blood/plasma distribution ratio

of 0.6 and it is highly bound to albumin (≥ 98

%) (57). The fraction unbound of the main

metabolite hydroxy-bosentan is about 3-fold

greater compared to bosentan, however, the

two other metabolites show a higher plasma

protein binding with a free fraction of 0.4 – 1.2

% (57). After oral administration, the half-life of

the main metabolite hydroxy-bosentan is longer compared to bosentan (10-14 h vs. 5.4 h), whereas the other

metabolites show similar half-lives as bosentan (57).

Intravenously administered bosentan has been investigated in healthy volunteers over a dose range from 10

to 750 mg with varying infusion rates (60). A dose-dependent decrease in clearance, volume of distribution,

and elimination half-life has been observed (57,60). A nonlinear tissue binding (saturation of widespread ET

receptors) resulting in an apparent decrease in volume of distribution has been proposed (57).

Single oral doses of an oral suspension formulation ranging from 3 – 2400 mg have been investigated in

healthy volunteers (60). Maximum plasma concentrations (Cmax) and area under the concentration-time curve

 Key points

 Metabolism, elimination, and excretion of bosentan

Elimination and excretion

 Primarily eliminated through the bile into intestine
 Excretion with faeces: about 30 % unchanged after oral

administration, and 4 % after intravenous administration

 Liver uptake via OATP1B1 and OATP1B3
 Inhibits the BSEP
 Substrate and possibly inhibitor of P-gp

Metabolism

 CYP isozymes 3A4, 2C9, and 2C19

 Three metabolites
 hydroxy-bosentan (RO48-5033):

main metabolite, about 8.3 % in plasma,

contribution to efficacy about 20 %
 desmethyl-bosentan (RO47-8634):

about 3.1 % in plasma

 hydroxy-desmethyl-bosentan (RO64-1056):
secondary metabolite through metabolism of
hydroxy-bosentan and desmethyl-bosentan

 Autoinduction of CYP3A4, 2C9 and possibly 2C19
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from zero to infinity (AUC∞) increased almost proportionally for doses up to 600 mg, while higher doses

showed a trend to a less proportional increase in exposure metrics with a prolonged terminal half-life, maybe

due to limited absorption with increasing doses (flip-flop kinetics) (57,60).

Absolute bioavailability has been investigated in two-

way crossover studies. The total availability was

approximately 50 % and was similar after single and

multiple dose administration (57,61).

Doses from 100 mg to 1000 mg bosentan have orally

been given as tablet formulation over 8 days to healthy

volunteers assessing steady-state PK, which was

reached within 3 to 5 days (61). Plasma concentrations

increased dose-proportional for doses up to 500 mg,

but exposure (AUC) decreased about 37 to 60 % on

day 8 compared to day 1 (61,62), which is likely caused

by autoinduction of the metabolising enzymes (62).

After multiple oral dosing of therapeutic doses of 62.5

mg bosentan, a slightly smaller decrease in exposure

of only about 33 % has been observed (62).

Results of studies investigating the

PK of therapeutic doses of

bosentan in adult patients with PAH

reveal that exposure is dose-

disproportional and about 2-fold

higher compared to healthy

volunteers, while clearance is about

2-fold lower (57).

After twice daily administration of

62.5 mg and 125 mg bosentan,

exposure of the metabolites

hydroxy-bosentan, desmethyl-

bosentan and hydroxy-desmethyl-bosentan relative to bosentan has been higher (62.5 mg: 3.8 %, 39 %, and

27 %, and 125 mg with 3.3 %, 29 %, and 21 %) (57,58).

 Key points
Pharmacokinetic parameters for bosentan

 Absolute bioavailability (oral administration) about

50 %
 Protein binding: albumin (≥ 98 %)
 Distribution blood/plasma ratio 0.6

Volume of distribution at steady-state

 Single intravenous 10 – 750 mg, healthy volunteers:
mean 9.3 – 46.4 L

Clearance

 Single intravenous 10 – 750 mg, healthy volunteers:
mean 4.8 – 10.7 L/h

 Single oral 3 - 2400 mg, healthy volunteers:
mean 12.2 to 32.1 L/h

 Multiple oral 62.5 and 125 mg, PAH patients:

mean 3.7 L/h

Terminal elimination half-life

 Single intravenous 10 – 750 mg, healthy volunteers:

mean 2.8 – 4.3 h
 Single oral 3 - 2400 mg, healthy volunteers:

mean 3.6 – 6.7 h

 Multiple oral 100 - 1000 mg, healthy volunteers:
mean 4.8 – 19 h

 Key points

Bosentan mean exposure after single and multiple, intravenous and

oral administration

Route of administration and dose Cmax AUC

Single intravenous

10 – 750 mg * (57)

1.08 – 137 mg/L 0.95 – 179 mg*h/L

Single oral 3 - 2400 mg * (57) 0.034 – 16.5 mg/L 0.26 – 77.3 mg*h/L

Multiple oral 100 - 1000 mg * (57)

       day 1

       day 8

0.99 – 5.52 mg/L

0.69 – 3.21 mg/L

5.03 – 28.9 mg*h/L

3.38 – 12.9 mg*h/L

Multiple oral 62.5 and 125 mg + (57) 1190 – 2290 µg/L 6230 – 8910 µg*h/L

 * healthy volunteers + PAH patients
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Clazosentan

Clazosentan is an intravenous administered successor compound of bosentan, currently not approved (63). It

is a highly selective ETA antagonist with only low affinity to ETB (Kd about 0.2 and 11 nM, respectively). It has

been developed for the treatment of emergency indications like aneurysmal subarachnoid haemorrhage, brain

cerebral vasospasm and cerebral infraction. As such, clazosentan prevented and reversed cerebral vasospasm

in a canine model of subarachnoid haemorrhage (64). Since cerebral vasospasm is one of the major causes of

morbidity and mortality after subarachnoid haemorrhage (63,64), clazosentan has been investigated in

patients with aneurysmal subarachnoid haemorrhage (65–69).

Clazosentan PK has been investigated in healthy volunteers over a broad dose range from and 3 – 60 mg/h

and with varying infusion durations of up to 12 h, and 0.1 mg/kg/h to 0.05 mg/kg/h over 72 h (64,70). Non-

compartmental as well as compartmental PK analyses indicated a dose-proportional behaviour of Cmax and

AUC (64,70). Mean clearance ranged from 35.5 to 43.9 L/h (64,70) and the volume of distribution at steady-

state from 23 to 32.4 L for doses up to 60 mg/h and infusion durations up to 12 h (64). Both parameters

decreased with higher doses (64). A compartmental PK analysis in patients with aneurysmal subarachnoid

haemorrhage revealed similar parameter values for clearance (34.4 L/h) and volume of distribution (volume

of distribution central compartment: 14.5 L and for the peripheral compartment 20.4 L) (71).

Clazosentan is highly bound to plasma proteins (> 98 %). After uptake into hepatocytes via OATP1B1 /

OATP1B3 (72), clazosentan is primarily eliminated via bile and excreted unchanged with the faeces (64,71). The

formation of one minor metabolite is catalysed by CYP2C9 (70,73).

Tezosentan

Tezosentan is another successor compound of bosentan currently under investigations. It shows high affinity

to both receptors, ETA and ETB (Kd about 0.26 and 0.5 nM, respectively (74)), and has been developed for

parenteral use thus allowing its use in emergency indications such as ischemic renal failure. Tezosentan

increases cardiac output and renal blood flow, while decreasing peripheral and pulmonary pressures and

pulmonary oedema. It induces coronary vasodilation and showed efficacy in acute renal failure complicating

rhabdomyolysis (75–77).

The PK has been investigated after single-dose administration to healthy volunteers over broad dose ranges

from 5 – 600 mg as 1 h infusion (75), 100 mg/h over 6 h, and 5 mg/h over 72 h (76). Exposure (Cmax and AUC)

proportionally increases with single doses of tezosentan, while clearance and volume of distribution decreased

with increasing doses (mean clearance 26 – 49 L/h and mean volume of distribution at steady-state of 10 – 22

L) (75,76).

Tezosentan is highly bound to plasma proteins, mainly albumin with 74 – 96 % and has a blood/plasma

distribution ratio of 0.6. It is a substrate for OATP, and predominantly eliminated via bile followed by
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unchanged excretion with the faeces (78,79). Three minor metabolites have been identified, whereof the

formation of hydroxy-tezosentan may be catalysed by CYP2C9 and has been detected only in some samples

(75,78). Hydroxy-tezosentan is active with 10 – 20-fold lower potency than tezosentan (75). Tezosentan is an

inhibitor of CYP2C9 (78).
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1.5 Fluvoxamine

Fluvoxamine is a serotonin-selective reuptake inhibitor and therapeutically used for the treatment of depressive

disorders including episodes of major depressions, and obsessive compulsive disorder. The recommended

dose in adults varies between 50 mg to a maximum of 300 mg daily divided into two or three oral single

doses.

After oral administration, fluvoxamine is fully absorbed from the gastrointestinal tract (80). Cmax after

administration of single and multiple doses of  50 mg to young healthy female and male volunteers, is achieved

within about 3 to 12 h (81). After single doses of 50 mg mean Cmax values of about 30 ng/mL were reached,

while after multiple doses Cmax varied between 32 to 300 ng/mL (81). Due to a first-pass effect, absolute

bioavailability is about 50 %. Fluvoxamine is bound to plasma proteins with about 80 % and the mean volume

of distribution is approximately 25 L/kg. Clearance varied between 1.1 to 3 L/min after single dose

administration of 50 mg (82). Fluvoxamine metabolisation in the liver occurs almost completely leading to a

number of inactive metabolites predominantly excreted with urine (80). The main enzyme involved in the

metabolism of fluvoxamine is CYP isoenzyme 2D6 (83), and the involvement of CYP1A2 is likely (82,84).

Fluvoxamine is a strong inhibitor of CYP1A2 and 2C19, as well as moderate inhibitor of the isozymes CYP2C9,

2D6, and 3A4. Therefore, co-administration with fluvoxamine can affect exposure of a number of substances

like tricyclic antidepressants (e.g. clomipramine, imipramine, and amitriptyline), neuroleptic agents (e.g.

clozapine, olanzapine), theophylline, caffeine, methadone, propranolol, or ropinirole, due to an increase in

exposure through inhibition of CYP1A2 by fluvoxamine. Further, exposure of warfarin increases when

administered with fluvoxamine mainly because of its CYP2C9 inhibiting effect. Moreover, PK DDIs are known

for compounds metabolised by CYP3A4 leading to an increase in exposure (e.g. terfenadine, cisaprid,

carbamazepine, ciclosporin, midazolam, alprazolam, or diazepam). Due to its CYP1A2 and 2C19 inhibiting

property, fluvoxamine has been assigned a lead compound status for DDI with CYP1A2 and 2C19 by the US

Food and Drug Administration (FDA) (83).
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1.6 Cytochrome P450 isozymes and genetic polymorphisms

Metabolic transformation of xenobiotics is achieved in phase I reactions (oxidation, reduction, or hydrolysis),

phase II reactions (e.g. conjugation with glucuronic acid), or both. A key role in phase I metabolism is oxidation

by monooxygenases that contain haem as a cofactor (i.e. haemproteins), the CYP isozymes. CYP isozymes are

classified by their gene sequence into families, assigned by numbers (e.g. CYP1, CYP2, CYP3), subfamilies,

assigned by letters (e.g. CYP1A, CYP2D, CYP3A), and isozymes, again assigned by numbers (e.g. CYP2D6,

CYP3A4). In addition, a frequent spelling includes the allelic variants, assigned by an asterisk and numbers (e.g.

CYP1C19*2, CYP2C9*3). The main families involved in drug metabolism are CYP1, CYP2, and CYP3 (85,86). CYP

isozymes are predominantly expressed in the liver, but also in the gastrointestinal tract or the lungs.

The activity of many CYP isozymes can be altered by genetic mutations that are predominantly single-

nucleotide polymorphisms (85). Genetic polymorphisms can lead to increased and decreased enzyme activity

or even loss of enzyme activity. Accordingly, populations are classified by their genetic polymorphism status

as ultrarapid, intermediate, poor metabolisers, and extensive metabolisers with “normal” enzyme activity (wild

type) (85). Genetic polymorphisms for CYP2A6, 2C9, 2C19, and 2D6 are very common and of particular interest

in drug therapy (85), and a ethnicity-related polymorphism in CYP3A4, was described (87). Reduction or loss

of enzyme activity can lead to significantly higher drug exposure and consequently affect drug safety. In

contrast, exposure of a drug can be significantly lower in ultrarapid metabolisers and thus reduce efficacy.

However, the opposite case may occur for compounds where active metabolites strongly contribute to the

drug effect or drive safety risks. Implications for drug treatment can be even more complex for compounds

catalysed by two or more CYP isozymes exhibiting genetic polymorphisms. The relative enzyme abundances

of different CYP isozymes can vary extensively between individuals, shifting exposure of the parent compound

and the metabolites, and thus leading to distinct variability in PK within the same target population. Dose

adjustments may be required for certain subpopulations based on their genetic polymorphisms. However,

identifying the optimal dose for patients based on their genetic polymorphisms can be challenging, because

PK data for the different subpopulations may be limited or even lacking.
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1.7 Drug-drug interaction

The big issue of DDIs comes into play in case of multiple-drug treatment with compounds that are substrates,

inhibitors, or inducers of the same CYP isozymes, other metabolic enzymes, or transporters, such as OATP,

BSEP, or P-gP. As a consequence, reduction or loss of efficacy, increase in side effects, serious or fatal adverse

events, or hospitalisation may occur. In such cases, dose adjustments may be required or the co-administration

can be contraindicated.

Drug-drug interaction potential of bosentan, clazosentan, and tezosentan

Three of the most common CYP isozymes (2C9, 2C19, and 3A4), which also exhibit genetic polymorphisms

(85,87), are involved in bosentan metabolism. Because bosentan is an inducer of CYP3A4, 2C9, and possibly

2C19, an inhibitor of BSEP, a substrate of OATP, as well as a possibly inducer of P-gp, co-administration with

a numerous other compounds can lead to clinically meaningful changes in PK of either bosentan, the co-

medication, or both. A selection of important DDIs with bosentan is listed in Table 4.

For Clazosentan, DDI due to inhibition of OATP uptake can substantially increase exposure and decrease

clearance and volume of distribution of clazosentan, which may be of clinical relevance (72). A substantial

increase in tezosentan exposure as well as decrease in clearance and volume of distribution occur after co-

administration with cyclosporine, likely due to inhibition of transport proteins in the liver (72,79).

Table 4 Selection of important drug-drug interactions with bosentan

Compound Effect on enzymes or

transporters

Effect on exposure

Clarithromycin Inhibitor of CYP3A4, OTAP, and P-gp Increase in peak plasma concentrations and AUC of bosentan by
282 % and 273 %, respectively (59).

Increase in exposure (i.e. AUC) of hydroxy-bosentan, desmethyl-

bosentan, and hydroxy-desmethyl-bosentan by 204 %, 44 %, and
52 %, respectively (59).

Ketoconazole,

itraconazole,

ritonavir

Strong inhibitors of CYP3A4 Cmax and AUC of bosentan increase 2.1- and 2.3-fold (mean),
respectively with ketoconazole (62). 48-fold increase in bosentan
concentration with ritonavir during the first 4 days (88).

Treatment is not recommended due to meaningful increase of
exposure of bosentan (48). Co-administration of strong CYP3A4
inhibitors is expected to particularly increase bosentan plasma

concentrations in CYP2C9 poor metabolisers, which may lead to
harmful adverse events (48,58).

Voriconazole CYP2C9, CYP2C19, and CYP3A

inhibitor

Combination not recommended due to expected substantial

increase in bosentan plasma concentration (48).

Fluconazole CYP2C9 / CYP3A4 inhibitor Combination not recommended due to expected substantial
increase in bosentan plasma concentration (48).

Rifampicin Strong inducer of CYP2C9 / CYP3A4 Bosentan plasma concentrations are expected to decrease by up
to 90 % (48).
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Compound Effect on enzymes or

transporters

Effect on exposure

Carbamazepine,

phenobarbital,

phenytoin, St.

John´s wort

Inducers of CYP3A4 Expected decrease in systemic exposure of bosentan: caution is

required (48)

Sildenafil, tadalafil Substrates of CYP3A4 Exposure of the PDE5 inhibitors is expected to decrease in a
meaningful manner about 40 to 63 % (sildenafil) and 41.5 %
(tadalafil) (48,89,90). concurrently, bosentan plasma

concentrations increase (50) and are significantly higher
compared to ambrisentan, when given with sildenafil (59).

Simvastatin Substrate of CYP3A4 Decreased exposure to simvastatin and -hydroxyacid simvastatin

by 34 and 46 %, respectively (91).

Lopinavir / Ritonavir Substrate and inducer of CYP3A4

(lopinavir)

Strong inhibitor of CYP3A4 and
inhibitor of OATP1B1 (ritonavir)

Increase in AUC and Cmax of bosentan and hydroxy-bosentan by

5.2-fold and 4.3-fold, and 6.1- and 5.3-fold, respectively (48,88).
Initial trough plasma concentrations of bosentan have been
approximately 48-fold higher than those measured after bosentan

administered alone (48).

Digoxin Substrate of P-gP Decrease in exposure of digoxin (48,92).

Warfarin Substrate of CYP3A4 (R-warfarin) and

CYP2C9 (S-warfarin)

Reduction in mean AUC of 38 % for R-warfarin and 29 % for S-

warfarin (48,93).

Glibenclamide Substrate of CYP3A4, Inhibitor of BSEP Decrease in Cmax and AUC of glibenclamide by about 22 % and

40 %, respectively. Exposure (AUC) of bosentan and its three
metabolites decreased by about 29%, 26 %, 25 %, and 22 %,
respectively. Combination causes elevated liver aminotransferase

(48,94). Co-administration with glibenclamide is not
recommended (48).

Cyclosporine Substrate and inhibitor of CYP3A4,

Inhibitor of P-gp and OATP

Concomitant use is contraindicated (48), and an increase in

plasma concentration of bosentan can be expected when co-
administered with tacrolimus or sirolimus (48,57). Steady-state
plasma concentrations increase 3-fold to 4-fold compared with

bosentan alone. Decrease in blood concentrations of cyclosporine
A by approximately 50% (48,95).
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Physiologically-based pharmacokinetic modelling for drug-drug interaction

The risk of potential PK DDIs should generally be assessed in vitro using human enzymes and transporters,

and in vivo (13) to ensure safe and effective drug therapies. However, the use of in silico methods such as PBPK

modelling methods is an emerging technique to assess potential DDIs qualitatively and quantitatively (10,13).

PBPK models are developed using specialised software platforms (i.e. collection of computer programs and

included system data) that need to be qualified for the intended use (10). The platform needs to be able to

adequately perform simulations for the intended scenario (10). Moreover, the predictive performance of the

specific drug models needs to be satisfactorily based on pre-defined decision criteria (10,96). The predictive

performance of compound files (e.g. inhibitor, inducer, or probe drug) in the PBPK platform need to be

confirmed, for instance by comparison with in vivo PK studies for this drug (10).

The model development process generally follows a common cycle of “predict, learn, confirm” (96). A base

model is typically developed based on experimental or in silico predicted physicochemical data, as well as in

vitro ADME parameters. The obtained predictions are then compared with in vivo single and multiple dose

clinical PK data. Model parameters may be adjusted and the refined model compared, and ideally confirmed,

using additional PK data from other studies, such as DDI studies.

The FDA provides information on index victim drugs (drugs affected by the DDI) or perpetrator drugs (drugs

affecting the PK of other drugs) suitable for clinical DDI studies. These compounds are (almost exclusive)

substrates of a certain metabolic pathway or are inhibitors or inducers of specific enzymes (i.e. clinical index

substrates, inhibitors or inducers). For instance, theophylline and caffeine are substrates for CYP1A2. Rifampicin

is a strong inducer of CYP1A2, 2C19, 3A, and moderate inducer of CYP2B6, 2C8, 2C9, and therefore frequently

used for DDI studies. Midazolam is a compound that is exclusively metabolised by CYP3A4, and thus

commonly used to investigate DDIs regarding CYP3A4. Fluvoxamine as a strong CYP1A2 inhibitor has been

assigned a lead compound status for DDI with this isoenzyme (83). Due to their CYP enzyme related properties,

these compounds can be used as compound files in a PBPK platform, when sufficiently qualified PBPK models

are available. As such, PBPK models for fluvoxamine, theophylline, caffeine, rifampicin, and midazolam,

forming a network for CYP1A2 DDI prediction, have been built (97).  In addition, a population PK model was

developed aiming to confirm and substantiate the results of the PBPK model for fluvoxamine (project III). The

PK of fluvoxamine was investigated using the NLME approach. Data from two studies were used, where the

PK was assessed after administration of single oral doses of 50 mg fluvoxamine to healthy volunteers. In study

one, all volunteers were phenotyped according to their CYP2D6 status (extensive and poor metabolisers)(98),

and in study two, the smoking status of all participants was recorded (82). The population PK model

development followed a commonly used strategy of sequential testing of a variety of model structures,

investigations of random, as well as covariate effects, as described in chapter 3.
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1.8 Endogenous rhythms and chronopharmacology

“Circadian time keeping allows appropriate temporal regulation of an organism’s internal metabolism to

anticipate and respond to recurrent daily changes in the environment.” (99). Endogenous rhythms are typically

called circadian rhythms, as suggested by Halberg, and are commonly characterised by a mean period length

of 24 h (daily rhythm) (100,101). It is driven by clock genes (101,102), expressed in the suprachiasmatic nucleus

(103).

The first clock gene period has been identified by Seymour Benzer and Ronald Konopka in 1971 (104) and has

been isolated and further investigated by Jeffrey Hall, Michael Rosbash, Michael Young and others (105–111).

Briefly, period influences the circadian rhythm by encoding the protein PER, that accumulates during the night

and is degraded during the day, oscillating over a 24 h cycle. After binding to the protein TIM, which is encoded

by another clock gene called timeless (112), the two proteins enter the nucleus and block the activity of the

period gene, thus regulating the synthesis of PER in a cyclic manner through an negative feedback loop (111).

Over the years, a number of additional clock genes such as doubletime  (113), clock , cycle , and cryptochrome

, have been identified, all contributing to an overall very complex system regulating the circadian rhythm

(99,102).

The phenomenon of endogenous rhythms influences life on different scales, reaching from milliseconds (e.g.

neuronal discharge) to seasonal (circa-annual) rhythms (101). They can vary on a daily basis (circadian rhythm),

several times within one day (ultradian rhythm), or be longer than 24 h (infradian rhythm) (103). For instance,

it is known that body temperature, organ functions, or concentrations of endogenous compounds (e.g.

cortisol, thyroid hormones, melatonin, epinephrine) underlie cyclic rhythms (103,114–116). A daytime-

dependent variation in production of ET and its receptors has also been suggested (117–119). The sleep-

wakening rhythm as well as many other processes such as regulation of blood pressure, heart rate, or

menstrual cycle follow time-dependent rhythms (116). Furthermore, it has been observed that the occurrence

of disease onsets (e.g. asthma or heart attacks, ischemic strokes), as well as birth and death can predominantly

occur at specific times of a day or during a specific season (101,120,121). Desynchronisation of the internal clock

can lead to meaningful disturbances of the endogenous rhythm by affecting the underlying physiological

process and can consequently cause diseases (e.g. metabolic diseases or depressive disorders due to chronic

sleep disturbances) (99,122).

Since many physiological processes underlie endogenous rhythms, this can consequently also hamper

pharmacotherapy and the field of chronopharmacology is emerging (99). It is increasingly recognised that the

time point of drug administration can be of special interest. For instance, it is widely accepted that

antihypertensive drugs in dippers or therapy with thyroid hormones should be given in the morning due to

circadian rhythm in blood pressure (120,121) and peak in endogenous hormone production in the morning,
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respectively. On the other hand, non-dippers should preferably receive their antihypertensive drugs in the

evening (121) and likewise, statins should be administered in the evening, because HMG-CoA-reductase

production underlies a circadian rhythm with peaks around midnight (101). In addition, optimal dosing time

points may also reduce drug-induced toxicity (103).

Moreover, endogenous rhythms also affect ADME processes in the body, therewith affecting PK (121). Time to

and extent of Cmax reached, can vary meaningful when a drug is administered in the morning or in the evening.

For example, absorption (by passive diffusion) occurs faster in the morning, which can lead to a significant

increase in Cmax (121). In addition, a circadian rhythm in renal blood flow and glomerular filtration rate have

been observed in humans, resulting in variation of renal elimination processes depending on time (101,123).

Moreover, hepatic clearance in rats has been observed to be faster during night time and a possible rhythm

in CYP3A4 activity in human liver have been presumed (101), overall suggesting the existence of periodical

patterns in elimination processes.
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2 Objectives

2.1 Project I – Pharmacometric analyses of bosentan and endothelin-1

Bosentan is still one of the most frequently used therapeutic options to treat patients with PAH. However, it

exhibits nonlinear PK and shows distinct variability. In order to better characterise and understand its PK

behaviour, the first goal of this project was to develop a PK model for bosentan after intravenous

administration to healthy volunteers, including the competitive antagonism with ET-1. Furthermore, a PKPD

model for blood pressure and heart rate aimed to describe the influence of bosentan on cardiovascular effects.

In addition, an analysis was conducted investigating covariates that possibly affect PK and PD.

2.2 Project II – Population target-mediated drug disposition modelling of

bosentan, clazosentan, and tezosentan

Although target-mediated drug disposition (TMDD) is a behaviour that is predominantly known for large

molecule drugs such as peptides and proteins, the numbers of small molecule drugs that exhibit TMDD and

thus nonlinear PK behaviour due to their pronounced target (i.e. receptor or enzyme) selectivity and activity,

are increasing. Since for the small molecule bosentan TMDD was found to explain the nonlinearity in PK

(project I), the primary aim of this project was to investigate whether the concept of TMDD could be applied

for bosentan´s follow-up compounds, clazosentan, and tezosentan, hypothesising a class effect for ERAs.

Secondly, the hypothesis of diurnal receptor expression, as put forward in project I, was further investigated.

2.3 Project III – The influence of CYP2D6 polymorphism and smoking on

pharmacokinetics of fluvoxamine

The occurrence of DDI during multiple-drug therapy is a very important topic, due to either higher risks of

safety issues or possibly loss in efficacy on the other hand. PBPK models can be used to predict a drug´s

exposure and can allow to identify important interactions with metabolising enzymes and drugs concomiantly

used. CYP1A2 is an important enzyme frequently involved in drug metabolism, thus high likely involved in

DDIs. Fluvoxamine is a strong inhibitor for CYP1A2 and an important compound used for investigations of

DDIs with CYP1A2. As part of the development of a PBPK DDI network for CYP1A2 with fluvoxamine,

theophylline, caffeine, rifampicin, and midazolam, project III aimed, to investigate the influence of CYP2D6

polymorphisms and smoking on the PK of fluvoxamine, by developing a population PK model using the NLME

approach.
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3 Methods

3.1 Population modelling

The PK and PD properties of a drug candidates need to be adequately investigated during drug development

to ensure that treatments are safe and efficacious. Every drug however, exhibits variability in exposure and

response to a certain extent. The population modelling approach allows to estimate parameters (i.e. PK or PD

parameters) including their variability at a population level, where data form all individuals are considered

simultaneously, thus identifying the relationship between patient´s characteristics and drug exposure and

response. Three common population approaches are the naïve average data approach, the two-stage

approach and the NLME approach.

Naïve average data approach

The naïve average data approach is a relatively simple method of analysing population PK data; after pooling

the data from all individuals the average value of each sampling time is computed and a model is fitted to the

mean data. Although such models allow to describe a general trend of the mean data, which can an also be

sparse, the identification of variability in exposure is hampered, as all sources of variability data are masked

(9).

Two-stage approach

The two-stage approach is a traditional procedure used to analyse PK data. In a first stage, model parameter

are fitted to each individual separately, while in the second stage the distribution of these parameters is

described by calculating the mean or median values, the variance and percentiles. Although this method is

somehow attractive due to its simplicity, it requires data rich situation and well-balanced studies, which can be

considered a big disadvantage.

Nonlinear mixed-effects modelling approach

In 1972 Sheiner and co-workers (124) first described the usage of a population PK model that commonly means

today a NLME model. Such population models can also be used to analyse PD data or for instance to exhibit

exposure-response analyses for efficacy and safety.

NLME models can be used to describe, understand, and predict the concentration-time profiles and PD

responses for efficacy and safety of a given compound for an intended target population. They allow the

simultaneous estimation of population mean parameters, inter-individual (IIV) and intra-individual variability

(IOV), and to quantify the extent of covariates (e.g. patient factors, disease state, or co-medication) influencing

a certain parameter. This can be done using pooled data of different origins and properties (e.g. data from

phase 1, 2, and 3 clinical trials, data obtained from adult and paediatric patients, or data from healthy
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volunteers and patients). Pooling such data can be much more informative for the analysis of covariates

because the diversity of patient factors increases and thus the range of a particular covariate expands. For

instance, pooling data from volunteers with varying degrees of renal dysfunction (mild, moderate, severe, or

end-stage renal disease) can allow to better predict their influence on PK. Furthermore, only few data points

are necessary to conduct an NLME analysis, which is a great advantage in situations when only sparse sampling

can be conducted (e.g. paediatric / vulnerable patients). Nonetheless, pooling data from different sources

should be performed carefully and its results may need cautious interpretation, if data from a certain

population are underrepresented with relatively little data contributing to the overall dataset (e.g. children vs.

adult, patients with end-stage renal disease or hepatic impairment vs. volunteers with normal organ function,

poor metabolisers with rare genetic polymorphisms of a certain enzyme such as CYP2C9*3/*3 vs. extensive

metabolisers CYP2C9*1/*1).

In a NLME model, the dependent variable (e.g. plasma concentration) is related to the independent variable

(e.g. time point, dose) in a nonlinear way (“nonlinear”). The term “mixed-effects” is related to the model

parametrisation, that consist of “fixed effects”, i.e. population mean parameters (structural model), and

“random effects” (IIV, IOV, residual variability) that differ between individuals (stochastical model). As such, the

general three components of a NLME model are the structural model, the stochastical model, and the

covariate model (Figure 4). In general, model development starts with evaluation of the structural model,

followed by the stochastical model, and finally the covariate analysis is conducted to identify factors influencing

PK or PD parameters.

Figure 4 Nonlinear mixed-effects (NLME) models consist of three main pillars, the structural, the stochastical, and the
covariate model, which are usually developed sequentially.
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3.1.3.1 Structural model

The structural model describes the general trend of the observed data (e.g. plasma concentration) as a

function of (PK) parameters and dose.

The mathematical model can be expressed as algebraic equations (Equation 1), or differential equation

(Equation 2) if the system is getting more complex. A differential equation describes the rate of change of a

variable over time. An example for the simplest case, a one-compartment model for single intravenous

administration of a drug, is given in Equation 1 (algebraic equation) and Equation 2 (differential equation):

𝐶(𝑡) =
𝐷𝑜𝑠𝑒𝑉 𝑒−𝐶𝐿𝑉 ∗𝑡                       (Equation 1)

In this model (Equation 1) the dependent variable C (concentration) is related to time (t) and depends on t.

The constant parameters dose, clearance (𝐶𝐿), and volume of distribution (𝑉) do not change with different

values of t.

𝑑𝐶𝑑𝑡 = − 𝐶𝐿𝑉 × 𝐶,𝐶0 =
𝐷𝑜𝑠𝑒𝑉                        (Equation 2)

In Equation 2, the rate of change of the concentration (C) is related to time and expressed by
𝑑𝐶𝑑𝑡 . The initial

value at time point zero of the dependent variable (C0) is specified by
𝐷𝑜𝑠𝑒𝑉 .

In a more general way, the function 𝑓() describes the observed plasma concentration 𝑌𝑖𝑗 of a plasma

concentration j from patient i with a function of the individual parameter 𝑖 and a fixed or measured

component 𝑥𝑖𝑗 (e.g. dose, time) (Equation 3).

𝑌𝑖𝑗 = 𝑓(𝑖,𝑥𝑖𝑗) (Equation 3)

The evaluation of the structural PK model usually includes testing of various types of models, such as one-,

two-, or three-compartment models, where additionally different absorption, distribution, or elimination

behaviours (e.g. nonlinear elimination described by Michaelis-Menten kinetics) may be tested. However, also

other, more complex model structures, such as TMDD models, should be tested, depending on the

characteristics of the drug.

Commonly, PD structural model evaluation includes linear, log-linear, Emax, or sigmoidal Emax functions, which

can be linked directly (using plasma concentrations) or indirectly to PK. A delay in actual effect mostly requires

the usage of indirect models, such as indirect-link models (i.e. linking with tissue concentrations), using effect-

compartments as an interface between PK and PD, or indirect-response models, where the PD effect or

biomarker is described as a function of time (e.g. endogenous substances that underlie synthesis and

degradation processes).
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3.1.3.2 Stochastical model

The stochastical model describes and quantifies the observed variability in the population and allows to parse

it into IIV, IOV, and residual variability. The variability can be implemented as additive, proportional, or

exponential model.

The IIV reflects the variability in fixed-effects parameters between each individual compared to the population

typical (mean) values and is usually described as exponential model (Equation 4).

𝑖 = 𝑝𝑜𝑝 × exp (𝑖)                        (Equation 4)

where 𝑖 is the individual parameter for the individual i, and 𝑖 is the deviation from the population typical

value (𝑝𝑜𝑝) for the individual i, and assumed to be normally distributed with mean 0 and variance 2 (125).

The variability is usually reported as relative coefficient of variation (CV [%] or %CV), which is calculated as

follows:𝐶𝑉[%] = ඥexp(2)− 1 × 100                    (Equation 5)

IOV, accounts for the variability within an individual, for instance observed after multiple dose administration

or different periods in a cross-over study (i.e. observation at different occasions). Equation 6 gives the general

exponential model form where  is the deviation from the population typical value at different occasions

(OCC), and is assumed to be normally distributed with mean 0 and variance 𝜋 ².

𝑖 = 𝑝𝑜𝑝 × exp (𝑖 + 1𝑂𝐶𝐶1 + 2𝑂𝐶𝐶2 +⋯+ 0𝑂𝐶𝐶0)             (Equation 6)

Residual variability (𝜀) addresses all variability that cannot be characterised by IIV or IOV. This may be variability

in analytical assays, in time of drug administration, or differences in actual sampling time points. They

characterise the deviation of measured values from predicted values that are based on individual model

parameters. Residual variability (𝜀𝑖𝑗) is assumed to be normally distributed with mean 0 and variance 𝜎 ². It can

be modelled as additive (𝜎 ² is a constant for the range of observed data; Equation 7), proportional (𝜎 ²

increases with larger values; Equation 8), a combined (proportional and additive; Equation 9), exponential

(Equation 10), or a power model (Equation 11).𝑌𝑜𝑏𝑠,𝑖𝑗 = 𝑌𝑝𝑟𝑒𝑑,𝑖𝑗 + 𝜀𝑖𝑗                       (Equation 7)𝑌𝑜𝑏𝑠,𝑖𝑗 = 𝑌𝑝𝑟𝑒𝑑,𝑖𝑗 + 𝑌𝑝𝑟𝑒𝑑 ,𝑖𝑗 × 𝜀𝑖𝑗                   (Equation 8)𝑌𝑜𝑏𝑠,𝑖𝑗 = 𝑌𝑝𝑟𝑒𝑑,𝑖𝑗 + 𝑌𝑝𝑟𝑒𝑑 ,𝑖𝑗 × 𝜀1𝑖𝑗 + 𝜀2𝑖𝑗                 (Equation 9)𝑌𝑜𝑏𝑠,𝑖𝑗 = 𝑌𝑝𝑟𝑒𝑑,𝑖𝑗 × exp(𝜀𝑖𝑗)                     (Equation 10)𝑌𝑜𝑏𝑠,𝑖𝑗 = 𝑌𝑝𝑟𝑒𝑑,𝑖𝑗 + 𝑌𝑝𝑟𝑒𝑑 ,𝑖𝑗𝜀𝑖𝑗                     (Equation 11)

where 𝑌𝑝𝑟𝑒𝑑,𝑖𝑗 is the individual model-predicted concentration.
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3.1.3.3 Covariate model

In order to investigate, understand, and evaluate why PK or PD differ between individuals of a population, a

covariate analysis studying patient-related and / or study-specific characteristics can be conducted. Covariates

are usually categorised into continuous (e.g. age, weight, clinical laboratory parameters) and categorical (e.g.

race, sex, smoking status, CYP isoenzyme phenotype).

The investigation of covariates is often conducted graphically in a first step (e.g. plotting the individual PK

parameter versus a covariate) evaluating potential systematical relationships. The statistical testing of selected

covariates is then usually performed applying a forward inclusion and backward elimination procedure. Firstly,

all covariates are tested separately in a univariate manner on each parameter of interest and added to the

model if considered statistically significant at a pre-defined significance level (e.g. p < 0.05, with 1 degree of

freedom, difference in objective function value between two models [OFV] < -3.84) to build the full covariate

model. Afterwards, covariates are removed sequentially (backward elimination) applying more stringent

criteria (e.g. p < 0.001, with 1 degree of freedom, OFV < -10.83) until the final covariate model is built.

Covariates can be included in a model in many different ways. In this work, in project III, the impact of CYP2D6

phenotype (poor vs. extensive metabolisers) and smoking status on the clearance (𝐶𝐿) of fluvoxamine were

modelled as categorical covariates. A factor for CYP2D6 poor metabolisers (𝜃𝑃𝑀/𝐸𝑀) as compared to extensive

metabolisers (𝜃𝑃𝑀/𝐸𝑀 = 1), was estimated and multiplied by the typical population parameter value for CL

(𝑝𝑜𝑝) and the IIV (exp (𝑖)) (Equation 12).𝐶𝐿 = 𝑝𝑜𝑝 × 𝜃𝑃𝑀/𝐸𝑀 × exp (𝑖)                    (Equation 12)

3.1.3.4 Model evaluation and simulations

In order to assess which model is most suitable to describe the PK or PD data, during model development,

several diagnostic methods are used for decision-making. Typically, numerical analyses include the assessment

of OFV, precision, and plausibility of parameter estimates, and graphical methods such as goodness-of-fit

plots and visual predictive checks (VPCs) are used.

A key element of the modelling approach is to derive model parameters that describe the observed data best.

This is commonly done using the likelihood function, which is a probability function for the occurrence of the

measured data depending on the respective parameter estimates. Minus twice the logarithm of the likelihood

function (-2LL) is used to assess the alignment of the observed data and the model-prediction for a set of

parameters. The OFV is equal to -2LL. The difference of the OFV can be used to discriminate between models

with the lowest OFV indicating the best model fit. The OFV approximately follows the chi-square χ2 distribution.

As such, for instance a level of significance of p < 0.05 is achieved if OFV is decreased by ≥ 3.84 points for

one degree of freedom, where the degree of freedom is the numerical difference of estimated parameters

between a full model compared to a reduced model. This test is also called ratio likelihood test and is only
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valid for models where the reduced model is nested within the full model and has one estimated parameter

less than the full model (i.e. nested model).

Furthermore, the reliability of a model is assessed by considering the precision of the parameter estimates

based on the relative standard error (RSE [%]) of the estimated parameter, which ideally is as low as possible

(and commonly should be below 50 %).

Goodness-of-fit plots are used for graphical model evaluation. Variables of interest are plotted against each

other (e.g. observed data versus population prediction or individual prediction) allowing to visually assess the

model performance and identify model misspecifications (e.g. systematic over-predictions or under-

predictions of the observed data).

VPCs are generally produced to graphically assess the predictive performance of a model including the

variability. The final model is used to simulate a large number (e.g. 1000) of datasets that are a subset of the

original data (internal validation) or a new dataset (external validation), and are plotted against the observed

data. The observed and model-predicted 5th, 50th, and 95th percentiles are plotted together with the 90 %

prediction interval (or different widths of the prediction interval and percentiles), evaluating whether the

observed data are lying within the prediction interval. Different types of VPCs exist, however, the prediction-

corrected VPC (pc-VPC) (126) is one of the most commonly used methods to assess the predictive

performance of a model.

The final model can also be used to simulate data other than the original data for interpolation (non-observed

data within the bounds of the original data) or extrapolation (non-observed data outside the original data)

purpose. Moreover, simulations can be conducted to understand the behaviour of the system under different

scenarios. They can be carried out to assess the effect of covariates of certain subpopulations on drug exposure

(e.g. how the exposure changes for patients with different degrees of renal impaired compared to patients

with normal renal functions receiving the same dose). Furthermore, they can guide recommendation for dose

adjustments and labelling. However, it should be kept in mind that simulations require confidence in the

underlying model with a clear understanding of its limitations (1).
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3.2 Target-mediated drug disposition models

The development of drugs that bind with high specificity and potency to a target are of increasing interest

because they enable targeted therapies. Such compounds are bound with distinct affinity to their target, e.g.

receptors or enzymes that are only of low capacity. Therefore, a substantial fraction of the dose is often rapidly

bound to the target site, which can be observed in the PK profile that exhibits disproportional behaviour

(127,128). However, such nonlinearity may only be observed in total clearance and volume of distribution (127)

and not distinctly in exposure (e.g. Cmax or AUC). Dose-normalised concentration-time profiles

(concentration/dose vs. time) may show apparent dose-proportionality at relatively high concentrations

(superimposition), but not at lower concentrations, in the terminal elimination phase (127). Such a behaviour

is known as TMDD. However, since the binding capacity of non-specific tissues is larger than the low capacity

of receptors or enzymes, saturable target binding is often masked, in particular for small molecules. The

phenomenon of drugs exhibiting TMDD has been predominately reported for large molecules such as

peptides and proteins (128). Nevertheless, the development of small molecule compounds with extensive

target selectivity and potency is emerging. When applying M&S techniques, like population modelling, to

investigate the PK behaviour of substances exhibiting TMDD, concentration-time profiles can most likely not

be sufficiently described using linear models. For instance, a one-compartment model with linear elimination

process, as used to analyse the PK of fluvoxamine, will not be applicable in most cases to compounds that

show distinct nonlinear PK due to their high target affinity (e.g. bosentan). Thus, more complex models are

required and the application of the TMDD concepts to small molecules is of increasing interest. As such, the

development of PK models reflecting TMDD are emerging. A general PK TMDD model as proposed by Mager

and Jusko (129) was used and adjusted in project I and project II of this work. Figure 5 illustrates a general

TMDD model for a drug that is orally or intravenously administered, bound to a receptor (kon) from which it

can dissociate again (koff). The drug can distribute from the plasma to a non-specific tissue in the periphery

(ktp, kpt) and be eliminated either from the central compartment (kel) or via an internalisation process after

binding to the target site (km). The receptors are synthesised (ksyn) and degraded (kdeg).
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Figure 5 Illustration of a PK target-mediated drug disposition (TMDD) model. Dosing compartment: the drug may be
administered orally or intravenously and is absorbed with first-order absorption rate constant (ka) and bioavailability (F) or
zero-order rate constant of drug infusion (k0), respectively. The drug in the central compartment (plasma, VCentral) can
distribute to non-specific tissue sites (VPeripheral), be eliminated from the system (kel), or bind with rate constant kon to a
pharmacologic target, e.g. the unoccupied receptor to form a drug–receptor complex. This complex may then either
dissociate (koff) or be internalised and degraded (km). The free target (e.g. receptors) are synthesised (ksyn) and degraded
(kdeg). [Modified from (129)]
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4 Results

The three projects were published in scientific journals and are presented with their supplementary material in

the Appendix.

4.1 Publication I

A.-K. Volz, A. Krause, W.E. Haefeli, J. Dingemanse, T. Lehr, Target-Mediated Drug Disposition

Pharmacokinetic–Pharmacodynamic Model of Bosentan and Endothelin-1, Clin. Pharmacokinet. 56 (2017)

1499–1511. doi:10.1007/s40262-017-0534-4.

4.2 Publication II

A.-K. Volz, J. Dingemanse, A. Krause, T. Lehr, Target-Mediated Population Pharmacokinetic Modeling of

Endothelin Receptor Antagonists., Pharm. Res. 37 (2019) 2. doi:10.1007/s11095-019-2723-3.

4.3 Publication III

H. Britz, N. Hanke, A.-K. Volz, O. Spigset, M. Schwab, T. Eissing, et al., Physiologically-Based Pharmacokinetic

Models for CYP1A2 Drug–Drug Interaction Prediction: A Modeling Network of Fluvoxamine, Theophylline,

Caffeine, Rifampicin, and Midazolam, CPT Pharmacometrics Syst. Pharmacol. 8 (2019) 296–307.

doi:10.1002/psp4.12397.
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5 Conclusion

M&S techniques provide helpful methods to characterise and understand the PK and PD behaviour of drugs.

The knowledge obtained from pharmacometric analyses can consequently facilitate optimal dosing

recommendations for the intended use and across subgroups of a target population, and therefore support

industrial and regulatory decision-making.

In this context, the investigation of DDI is of special interest. Because DDIs for instance due to CYP isozyme

activation or inhibition can alter a drug´s exposure in a meaningful way, comprehensive knowledge on the DDI

potential of compounds of interest is essential. In silico methods, such as PBPK modelling, can be used to

qualitatively and quantitatively predict the DDI potential of a certain combination. However, this requires well

informed, qualified model networks. Fluvoxamine as a lead substance for DDI with CYP1A2 was used to

develop a network for CYP1A2 DDI prediction with theophylline, caffeine, rifampicin, and midazolam, using

PBPK modelling techniques. As part of this work (project III), in addition a NLME model was developed to

characterise the PK of fluvoxamine after single oral administration to healthy volunteers, aiming to confirm

and support the results from the PBPK model. The influence of CYP2D6 phenotype and cigarette smoking

(induction of CYP1A2) on fluvoxamine PK was successfully described by a one-compartment model with linear

absorption and elimination processes, confirming the results from the developed PBPK model network, which

now contributes to the library of publicly available PBPK models for DDI prediction (www.open-systems-

pharmacology.org). The results of this project also confirmed previous observations obtained in clinical trials

(130,131) and showed that both, CYP2D6 phenotype and cigarette smoking, influence the clearance of

fluvoxamine, leading to increased exposures in CYP2D6 poor metabolisers and decreased exposures in

smokers compared to non-smokers.

Although the characteristics of bosentan, the first ERA approved for the treatment of PAH, have been already

studied during its development in the 1990s, plasma concentration-time profiles over broad dose ranges in

healthy volunteers and after therapeutic doses in patients revealed that bosentan PK follows a distinct

nonlinear behaviour and bosentan showed pronounced IIV in PK and PD, which deserves more attention.

The NLME approach, was used to characterise and better understand the PK behaviour of bosentan after

intravenous administration, and to discover sources of the observed nonlinearity and variability (project I).

Moreover, in this project the influence of bosentan on endogenous ET-1 levels as well as its effects on blood

pressure and heart rate were investigated in healthy volunteers. It was suggested, that the observed

nonlinearity in PK is caused by the strong receptor binding affinity and that the usage of relatively simple linear

compartment models (with or without implementation of Michaelis-Menten kinetics), may not be appropriate

to describe the plasma concentration-time profiles of bosentan over broad dose ranges. A more complex

approach was necessary. Finally a competitive TMDD PKPD model was successfully developed confirming the
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hypothesis of a distinct nonlinearity caused by the strong receptor binding affinity. The developed two-

compartment TMDD model enables to simultaneously describe the nonlinear plasma concentration-time data

of bosentan through its strong ET receptor binding, leading to a displacement of ET-1 from the binding sites,

and consequently decreasing blood pressure with simultaneously increasing heart rate.

The application of the TMDD concept to small molecules such as bosentan was further investigated for the

two intravenous administered successor compounds, clazosentan and tezosentan (project II). Because both

compounds exhibit dose-dependent nonlinearity in clearance and volume of distribution, their strong receptor

binding affinities were suggested to be the reason for this observation, necessitating and justifying the

application of a complex TMDD model to adequately describe the observed plasma concentration-time

profiles in healthy volunteers. Furthermore, the developed models were able to distinguish between selective

antagonism on ETA (clazosentan) and non-selective ETA / ETB antagonism (bosentan and tezosentan), which

was in addition reflected in the occurrence of a drug clearance process through internalisation of the drug -

ETB – complex only for the non-selective antagonists.

Since endogenous rhythms as internal timekeepers influence almost every cell and each process, a diurnal

variation of the receptor synthesis was integrated in the TMDD PK models, reflecting a daytime-dependent

change in receptor expression. This could be observed in a multiple peak phenomenon in the observed plasma

concentration-time profiles.
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6 Limitations

The TMDD models developed in project I and project II confirmed the hypothesis that the nonlinear PK

observed for the three investigated ERAs is caused by their distinct receptor binding activity. The firstly

developed model (project I) allowed to describe the competitive antagonism with endogenous ET-1 and it was

possible to differentiate several clearance processes. Further, the model included a description of the delayed

effect in haemodynamics. However, a disadvantage of the first model was that the internalisation processes

for the target complexes could not be estimated separately for bosentan and ET-1 due to the limited data on

ET-1 measures. Furthermore, in all TMDD models developed in project I and project II, the target was

implemented as a mixture of both receptor subtypes, ETA and ETB. This is considered the major limitation.

Because of the complexity of the model and lack of more informative data, it was not possible to estimate the

receptors and their individual drug binding affinity separately. Therefore, some of the estimated parameters

(receptor baseline values and rate constants of the target synthesis and degradation) were only

approximations which ideally would be further investigated and adopted in future in vitro and in silico studies.

The diurnal receptor synthesis or reappearance was successfully described in all TMDD models by

implementing a cosine function on the (lumped) receptor synthesis rate. However, the 8-h variation with peaks

in receptor production around morning, afternoon, and midnight is only an approximation and it is likely, that

ETA and ETB receptors in different tissues do not underlie identical endogenous rhythms.

In project III, the PK of fluvoxamine was described using NLME modelling. The model was further used to

investigate the influence of CYP2D6 phenotype and cigarette smoking on fluvoxamine’s clearance and thus

on exposure. A model was successfully developed and confirmed the results from the PBPK analysis, as well

as previous clinical studies on fluvoxamine. In addition, the analysis showed, that PK in fluvoxamine is variable

and pronounced differences in plasma concentrations in the absorption phase could be observed. An

influence of cigarette smoking on the absorption of fluvoxamine after oral administration can be assumed, as

reflected by the prolonged absorption rate constants, estimated by model. However, only very limited data

from 10 and 24 young and healthy volunteers, respectively, after single oral doses of 50 mg fluvoxamine were

available for this analysis. To obtain even more reliable information on the PK characteristics of fluvoxamine

the usage of a larger, more heterogeneous dataset could be helpful. Ideally such data should contain PK

measures after intravenous administration, allowing a more precise analysis of the absorption phase. A larger

dataset with a wider range of covariates could be useful to gain further information on the impact of different

patient characteristics of interest on exposure of fluvoxamine under certain conditions. This may then also

include DDI analyses for various subpopulations.
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7 Future perspectives

The population PK analysis for fluvoxamine conducted in project III, underlined the observation that CYP2D6

poor metabolisers are expected to have higher exposure and that cigarette smoking induces the clearance of

fluvoxamine, yielding lower systemic exposure. This knowledge itself should be considered in clinical practice

to provide optimal treatment to patients receiving fluvoxamine therapy. Beyond this, fluvoxamine as a strong

inhibitor of CYP1A2 and 2C19, as well as a moderate inhibitor of the isozymes CYP2C9, 2D6, and 3A4, is

involved in DDIs when co-administered with substances that are substrates of these isoenzymes, which needs

to be considered during multiple-drug treatment with fluvoxamine.

Furthermore, fluvoxamine as a lead compound for DDI with CYP1A2 now contributes to a network of PBPK

models for DDIs with this isoenzyme. However, fluvoxamine is also a lead substance for DDI with CYP2C19.

Therefore, the developed PBPK model may further be extended by the strong CYP2C19 inhibitory effect of

fluvoxamine allowing future in silico investigations for DDI with drugs metabolised by CYP1A2 and / or

CYP2C19. A well informed and sufficiently qualified model for CYP2C19 could then be used to predict the

influence on a drug´s exposure for patients with different CYP2C19 phenotype status, and finally be used to

guide optimal dosing strategies for a compound of interest.

Overall, results from the modelling exercises in project I and project II showed that the strong receptor binding

affinity of three intravenous administered ERAs is reflected in the concentration-time profiles revealing TMDD

as a class phenomenon for ERA PK. In addition, these findings suggested that the PK of ERAs is modulated to

a certain extent by an endogenous rhythm of receptor expression or reoccurrence.

The developed TMDD models describing and predicting the PK of the three investigated ERAs build a useful

basis to further investigate the characteristics of these compounds after single and multiple oral administration

(bosentan) or multiple intravenous administration (clazosentan, tezosentan). The models can be applied to

patient data to further investigate covariate effects between patient subgroups. One may then raise the

question whether the developed TMDD models may help optimising current dosing recommendations, e.g.

for bosentan, to overcome the observed variability in PK and PD in PAH patients. Furthermore, the introduction

of a therapeutic drug monitoring concept based on the TMDD model could be considered to individualise

dosing strategies for subgroups of the target population. The incorporation of competitive antagonism by

endogenous ET-1, as successfully performed for bosentan, may be a helpful tool to use ET-1 as a biochemical

marker for PKPD predictions and the significance of such a marker for the prediction of effectiveness should

be evaluated. For the two follow-up compounds, clazosentan and tezosentan, the models may be used to

guide optimal dosing strategies in clinical trials. Further investigations on the time-dependent receptor

expression could be conducted and results could be easily integrated into the model to possibly discover an

optimal timing of ERA doses.
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In addition, the knowledge gained form these projects can be used to develop a mechanistic whole-body

PBPK model for bosentan and other ERAs to reflect the different binding affinities to ETA and ETB in more

detail. Provided the availability of data, in such a model, systems parameter could ideally be integrated

separately for each receptor subtype allowing a more precise description of the binding and elimination

processes for each compound, including the endogenous ET-1. This would allow to differentiate between non-

selective ETA / ETB antagonists as opposed to selective ERAs, characterise substance specific PK within the

group of ERAs, quantify expected drug specific PD effect, and identify optimal dosing regimens. The model

may be extended by incorporation of the metabolites to more comprehensively assess their PD contribution

and also the impact of metabolic DDI changing metabolic ratios, as often observed. Moreover, a PBPK model

would allow to additionally account for the OATP transporter-mediated uptake into the liver, the inhibition of

BSEP, and the interaction with the various CYP isozymes. Such an approach may also allow to develop a PBPK

DDI model for the different ERAs which then may be used to predict optimal dosing regimen under combined

drug treatment for various patient populations.

.
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8 Summary

Modelling and simulation techniques (M&S) can be used to characterise and understand a drug’s

pharmacokinetic (PK) and pharmacodynamic (PD) behaviour, and therewith support dosing strategies and

decision-making during drug development and for regulatory purposes.

Endothelin receptor antagonists (ERAs) are a class of compounds that displace endogenous endothelin-1 (ET-

1) from its receptor binding sites. Because ET-1 plays a key role in the pathogenesis of various diseases, ERAs

are interesting compounds for the treatment of the numerous diseases in whose pathogenesis the ET system

is involved.

Bosentan, was the first ERA approved for the treatment of pulmonary arterial hypertension (PAH), a fatal and

rare disease. Because bosentan exhibits distinct PK nonlinearity and considerable variability in PK and PD, a

population model was developed to better characterise and understand the drug´s properties. A target-

mediated drug disposition (TMDD) model best described the nonlinear PK of bosentan, reflecting its strong

receptor binding affinity and simultaneously describing the replacement of the endogenous ET-1 from its

binding sites as well as bosentan’s effect on blood pressure and heart rate. Additionally, the TMDD model

structure, as developed for bosentan, was successfully applied to its successor compounds clazosentan and

tezosentan. The model allowed to distinguish between selective ETA and non-selective ETA / ETB antagonists

as reflected by the absence of (indirect) evidence of drug-receptor internalisation by clazosentan. In addition,

a diurnal receptor expression was integrated in the models, reflecting the observed multiple peak

phenomenon in the PK profiles.

Furthermore, a population PK model for fluvoxamine was developed evaluating the effect of CYP2D6

phenotype and smoking on clearance and exposure of fluvoxamine. A one-compartment model with

combined linear zero-and first order absorption and linear elimination was successfully applied to the data.

The model showed, that CYP2C6 poor metabolisers are expected to have higher fluvoxamine plasma

concentrations, because metabolisation of fluvoxamine through CYP2D6 is reduced. At the same time, it was

shown that cigarette smoking induces the CYP1A2 metabolism of fluvoxamine and also leads to a decrease in

oral absorption. Consequently exposure in smokers is expected to decrease compared to non-smokers. The

population model underlined and confirmed the results of a fluvoxamine PBPK model as part of a DDI network

with theophylline, caffeine, rifampicin, and midazolam, which can now be used for DDI predictions with

CYP1A2.
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9 Zusammenfassung

Modellierungs- und Simulationstechniken (M&S) können zur Charakterisierung und zum Verständnis des

pharmakokinetischen (PK) und pharmakodynamischen (PD) Verhaltens eines Arzneimittels eingesetzt werden

und damit Dosierungsstrategien und Entscheidungsfindung während der Arzneimittelentwicklung und für

regulatorische Zwecke unterstützen.

Endothelin-Rezeptor-Antagonisten (ERAs) sind eine Klasse von kleinen Molekülen, die endogenes Endothelin-

1 (ET-1) von seinen Rezeptor-Bindungsstellen verdrängen. Da ET-1 in der Pathogenese verschiedener

Erkrankungen eine Rolle spielt, sind ERAs interessante Verbindungen für die Behandlung von Erkrankungen,

in denen das ET-1-System involviert ist.

Bosentan war der erste ERA, der für die Behandlung der pulmonalen arteriellen Hypertonie (PAH), einer

tödlichen und seltenen Krankheit, zugelassen wurde. Da Bosentan eine ausgeprägte nichtlineare PK und

Variabilität in der PK und PD aufweist, wurde ein Populationsmodell entwickelt, um die Eigenschaften des

Medikaments besser zu charakterisieren und zu verstehen. Ein sogenanntes target-mediated drug disposition

(TMDD) PKPD-Modell beschrieb die nichtlineare PK von Bosentan am besten. So gelang es, die starke

Rezeptor-Bindungsaffinität von Bosentan abzubilden und gleichzeitig die Verdrängung des natürlichen ET-1

aus diesen Bindungsstellen, sowie die Wirkung auf Blutdruck und Herzfrequenz zu beschreiben. Die für

Bosentan entwickelte Modellstruktur, das TMDD-Modell, wurde erfolgreich auf dessen Nachfolgeprodukte

Clazosentan und Tezosentan angewandt. Das Modell ermöglichte die Unterscheidung zwischen selektiven

ETA- und nicht-selektiven ETA- / ETB-Rezeptorantagonisten, was sich in der fehlenden Internalisierung des

Wirkstoff-Rezeptor-Komplexes für Clazosentan widerspiegelt. Darüber hinaus wurde eine zeitlich

schwankende Rezeptorexpression in das Modell integriert, die das beobachtete Phänomen mehrfacher

Spitzen in den Plasmakonzentrationen der PK Profile beschreiben kann.

Zusätzliche wurde ein PK-Populationsmodell für Fluvoxamin entwickelt, um den Einfluß des CYP2D6-

Phänotyps und des Rauchens auf die Clearance und die Fluvoxamin-Exposition zu untersuchen. Ein Ein-

Kompartiment-Modell mit kombinierter linearer Absorption nullter und erster Ordnung sowie linearer

Elimination wurde erfolgreich auf die Daten angewendet. Das Modell zeigte, dass bei schlechten CYP2C6

Metabolisierern höhere Fluvoxamin-Plasmakonzentrationen zu erwarten sind, da die Metabolisierung von

Fluvoxamin durch CYP2D6 reduziert ist. Gleichzeitig wurde gezeigt, dass das Rauchen von Zigaretten den

CYP1A2-Stoffwechsel von Fluvoxamin induziert und zusätzlich zu einer Abnahme der oralen Absorption führt.

Folglich wird erwartet, dass die Exposition bei Rauchern im Vergleich zu Nichtrauchern abnimmt. Das Modell

unterstrich und bestätigte die Ergebnisse eines physiologiebasierten PK (PBPK) Modells von Fluvoxamin als

Teil eines Netzwerks für Arzneimittelwechselwirkungen mit Theophyllin, Koffein, Rifampicin und Midazolam,

welches nun für Vorhersagen von Arzneimittelwechselwirkungen mit CYP1A2 verwendet werden kann.
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Images

I took the photos on the pages 3 and 67 during my walk through the Scottish Lowlands and Highlands in 2019.

For me, the photos symbolise that the stoniest paths can often be the most beautiful and exciting ones and

that it is always worthwhile to go on and risk a look around the corner.

The illustrations of drugs and people in the graphical abstract were taken from https://smart.servier.com.

The Figures 1 to 5 were stylistically revised and illustrated by Thomas Gronle (www.gronle-legron.de).
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Abstract

Background and Objectives Bosentan is a competitive

antagonist on endothelin receptor A and B (ETA and ETB),

displacing the endogenous binding partner endothelin-1

(ET-1) from its binding sites. After administration of

escalating single doses of 10–750 mg as an intravenous

(i.v.) infusion, bosentan showed dose-dependent pharma-

cokinetics (PK). The aim of this analysis was to develop a

PK model of bosentan after i.v. administration including

competitive antagonism with ET-1 and to analyze its

influence on blood pressure and heart rate with a combined

pharmacokinetic/pharmacodynamic (PK/PD) model.

Methods PK/PD data from 70 young male Caucasian

subjects were analyzed after single i.v. administration of

10, 50, 250, 500, and 750 mg of bosentan. Population

analyses, simulations, and evaluation were performed using

a non-linear mixed-effects modeling approach.

Results The PK of bosentan was best described by a two-

compartment, target-mediated drug disposition (TMDD)

model. ET-1 plasma and urine profiles were successfully

integrated into the bosentan two-compartment, TMDD

model encompassing competition for the same receptor. A

multiple-peak phenomenon of bosentan plasma concen-

trations after i.v. administration was best described by a

diurnal expression or reappearance of ET receptors on the

cell surface. Blood pressure was best described by an Emax

model; heart rate was modeled as a compensatory effect of

changes in blood pressure.

Conclusion The developed competitive PK/PD model of

bosentan and ET-1 after i.v. administration provides a first

step towards understanding the complex PK properties of

bosentan and offers a valuable tool for future PK/PD

research.

Key Points

Based on data from a single i.v. administration

across a wide dose range (10–750 mg), for the first

time, a TMDD model was developed for bosentan

explaining the non-linearity in PK and its effect on

ET-1 in plasma and urine.

The model proposes a new hypothesis that a

circadian expression of ET receptor(s) explains a

multiple-peak phenomenon in the profile of

bosentan.

The effect of bosentan on blood pressure was best

described by the amount of bosentan bound to the

receptor and modeled by an Emax model, whereas the

increase in heart rate was modeled as a

compensatory effect of changes in blood pressure.
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1 Background and Objectives

Bosentan is one of the most frequently used drugs in the

therapy of pulmonary arterial hypertension (PAH).

Bosentan is a dual endothelin receptor A and B (ETA, ETB)

antagonist displacing endothelin-1 (ET-1) from its binding

site, causing vasodilatation and blood pressure reduction

preferentially in the pulmonary but also in the systemic

circulation.

Bosentan is highly bound to albumin (C98%) [1],

eliminated via the bile into the intestine, and mainly

excreted with feces [2]. After uptake into the hepatocytes

via organic anion transporting polypeptides (OATP1B1

and OATP1B3), bosentan is metabolized by cytochrome

P450 (CYP) isozymes CYP3A4, CYP2C9, and CYP2C19

[1]. Three metabolites are formed of which the main

metabolite, hydroxybosentan, actively contributes to the

overall efficacy with 10–20% [1]. Bosentan exhibits auto-

induction by inducing the metabolizing enzymes

CYP3A4, CYP2C9, and possibly CYP2C19 [1]. It is a

substrate and possibly an inducer of P-glycoprotein (P-gp)

and also an inhibitor of the bile salt export pump (BSEP)

[3].

Bosentan is administered as a tablet in a dose-escalating

manner, starting with 62.5 mg up to 125 mg twice daily

[1, 3]. When administered in a wide and off-label dose

range of 10–750 mg as an intravenous (i.v.) infusion,

bosentan showed a marked inter-individual variability

(IIV) and dose-dependent pharmacokinetics (PK) up to

500 mg [4]; the area under the plasma concentration-time

curve (AUC) increased disproportionally while clearance

and volume of distribution decreased with higher doses [4].

Although bosentan is frequently applied in the treatment of

PAH, its PK is still not completely understood and, to our

knowledge, no PK or PD model is publically available

describing bosentan plasma concentrations and their

influence on blood pressure neither with nor without taking

into account the competitive antagonism with ET-1.

The aims of these analyses were (1) the development of

a PK model of bosentan after i.v. administration including

competitive antagonism with ET-1, (2) the development of

PK/PD models for the effects on blood pressure and heart

rate, and (3) to perform a covariate identification on the

final PK/PD model.

2 Methods

2.1 Study Design

Data from the first-in-human study of bosentan in healthy

subjects were used for analyses. A brief summary of the

study design is outlined below [4]. Bosentan was

administered as an i.v. infusion of 10, 50, 250, 500, or

750 mg with varying infusion rates and combinations

resulting in nine different dosing groups (Supplementary

Table S1). In each dosing group, six participants were

treated with bosentan and two received a 5% dextrose

placebo infusion. In dosing group 8, bosentan was

administered without a placebo control (i.v. vs. oral

administration). Treatment was administered between 8

and 9 a.m. after fasting overnight. Blood samples for

bosentan plasma concentrations were taken pre-dose and

5, 10, 20, and 30 min and 1, 1.25, 2.5, 4, 6, 8, 10, 12, and

24 h after dosing. ET-1 plasma levels were taken pre-

dose, and after 35 min, 2.5, 6, and 24 h. ET-1 urine

samples were taken over the following intervals: pre-dose,

0–4, 4–8, 8–12, and 12–24 h. Systolic and diastolic blood

pressure (SBP and DBP) as well as heart rate were mea-

sured nine times between the pre-dose and 24 h after

dosing.

Plasma concentrations of bosentan were determined

either by HPLC-UV or narrow-bore HPLC with tandem

mass spectrometry detection using ion spray, depending on

the drug concentration. The lower limit of quantification for

HPLC-UV was 50 ng/mL (0.088 nmol/mL) and for the

HPLC-MS method was 500 pg/mL (8.8 * 10-4 nmol/mL).

Plasma and urine levels of ET-1 were analyzed by a

radioimmunological assay [5]. ET-1 in plasma was deter-

mined in dose groups 1–7 and 9. Urine levels of ET-1 were

determined for dose groups 1–5. Total circulating bosentan

and ET-1 levels, i.e., unbound (free) compounds and those

bound to plasma proteins were determined, but not those

bound to the receptor because the receptor is not soluble.

2.2 Model Development and Evaluation

Population analyses, simulations, and model evaluations

were performed using non-linear mixed-effects modeling

techniques (NONMEM, Version 7.3; ICON Development

Solutions, Ellicott City, MD, USA). These allowed esti-

mation of population means (medians) for PK and PK/PD

model parameters and quantification of IIV and residual

(unexplained) variability. Model selection was based on

visual inspection of goodness-of-fit plots, precision of

parameter estimates, and the objective function value

(OFV) provided by NONMEM. A nested model was con-

sidered superior to another when the OFV was reduced by

3.84 units [v2 test statistic, p\ 0.05, 1 degree of freedom

(DF)]. All pre-dose values (PK and PD) were set to time

zero. SAS, Version 9.4 (SAS Institute Inc., Cary, NC,

USA) was used for statistical analyses and generation of

graphics.
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Model development was performed sequentially. First, a

PK model for bosentan plasma concentrations was devel-

oped. Subsequently, ET-1 measurements in plasma and

urine were included. One-, two-, and three-compartment

models with linear or non-linear distribution and elimina-

tion processes (e.g., Michaelis–Menten) were evaluated. As

binding of bosentan to its receptors is tight and might

influence the PK, additionally, various target-mediated

drug disposition (TMDD) models [6] were explored.

Binding kinetics of TMDD models are usually not easy to

identify; therefore, model exploration was performed

sequentially by fixing some parameter values alternately

and estimating them in the next steps. The final PK model

was used as a basis for the PK/PD model, linking blood

pressure and heart rate to the PK model. PK parameter

values were fixed to their estimates and SBP, DBP, and

heart rate were modeled simultaneously, but not linked to

each other. Different linear, exponential, and Emax models

were evaluated. Direct links to plasma concentration,

indirect link models, indirect response models, and effect

compartment models were explored. Further, the circadian

rhythm of blood pressure was included in the model and

the model was simplified by linking heart rate increase as a

result of the change in blood pressure.

For the final PK and PK/PD model, the following pre-

specified covariates were investigated: age, weight, height,

body mass index, creatinine clearance, serum creatinine,

bilirubin, serum glutamate pyruvate transaminase, serum glu-

tamic-oxaloacetic transaminase, alkalinephosphatase, gamma-

glutamyl transpeptidase, albumin, protein, cholesterol, hemo-

globin, and hematocrit. Continuous covariate effects were

modeled as exponential terms centered on the median.

Covariate analysis was performed on the PK and PK/PD

model in a stepwise procedure. Covariates were tested one

by one (univariate) for statistical significance (p\ 0.01),

added to the model using a forward inclusion, and elimi-

nated in a backward elimination procedure with signifi-

cance levels of 1 and 0.1%, respectively. A visual

predictive check (VPC) based on 1000 simulations using

the final PK and PK/PD model was performed stratified by

dose group. Median values and corresponding 5th and 95th

percentiles were plotted against time and the observed data

superimposed. Perl-speaks-NONMEM (PsN), Version

4.6.0 was used for prediction-corrected VPC across all dose

groups.

3 Results

3.1 Study Population and Dataset

The population consisted of 70 young, healthy male Cau-

casian subjects, mean ages were 22 years and the

bodyweight ranged from 56.8 to 101.1 kg (mean 77.5 kg)

[Supplementary Table S2]. Overall, 706 bosentan plasma,

320 ET-1 plasma, and 115 ET-1 urine levels, and in total

630 measurements of heart rate and blood pressure were

available for analyses. All post-dose bioanalytical mea-

surements available were above the lower limit of

quantification.

3.2 Population PK/PD Model

The bosentan PK and the final competitive TMDD PK

model (each without diurnal receptor synthesis) were

linked to blood pressure and heart rate (Fig. 1) and

described the data very well. The results of both PK/PD

models were comparable, parameter estimates did not

differ remarkably (Supplementary Table S3, Table 1); all

parameters were estimated precisely. Goodness-of-fit

plots (Fig. 2, Supplementary Figures S1 and S2) showed

that the data were well described by the final model. VPC

stratified by dose and prediction corrected showed a good

descriptive performance with neither bias nor under- or

over-estimation of the model variability (Fig. 3, Supple-

mentary Figures S3–S5). None of the investigated

covariates had a significant impact on the PK/PD model.

Furthermore, no correlation was observed between base-

line levels of ET-1 and the PD parameters. Model stability

was confirmed by changing the initial parameter ±10%,

which did not result in different estimates. The NON-

MEM code of the final model is provided in the Supple-

mentary Material.

3.2.1 Bosentan PK Model

Bosentan PK was best described by a two-compartment

TMDD model. The TMMD model was statistically sig-

nificantly superior to the linear one-, two-, or three-com-

partment models (DOFV -1300, DDF 7, p\ 0.001).

Bosentan is distributed from the central compartment to the

periphery (Q), eliminated with a first-order rate (kEB) or

bound (kOnB) to its binding partner, probably the ETA and

ETB receptors, by a second-order process. The binding

partner was best described by a turnover model with a zero-

order production (kSynR) and a first-order degradation rate

(kDegR). The formed bosentan-binding partner complex was

cleared by a first-order rate process (kInt) or by dissociation

of the complex (kOffB). The estimated central (4.14 L) and

peripheral volumes of distribution (5.7 L) were small. The

elimination rate constant of bosentan from the central

compartment (kEB = CL/Vcentral) was estimated as 1.24/h,

about nine times higher than the elimination rate constant

of the bosentan-binding partner complex (kInt = 0.134/h).

A low to moderate IIV [coefficient of variation (%CV)

17–37] was observed for bosentan clearance, both volumes

Bosentan TMDD PK/PD Modeling 1501



of distribution, and the internalization process of the

bosentan-binding partner complex (kInt).

Although the bosentan TMDD model described the

plasma concentration-time profiles very well, a system-

atic time-dependent wave pattern was observed in the

conditional weighted residuals (CWRes), caused by a

systematic multiple-peak phenomenon within individual

plasma concentration-time profiles (Fig. 4a, c). As an

improvement, an enterohepatic recycling model (EHC)

[7] was tested as well as cosine functions (FCos) for the

synthesis rate of the binding partner (the ET receptors)

and the synthesis rate of endogenous ET-1. For the

cosine functions, periods with 24, 12, 8, and 6 h (X)

were tested while the amplitude (a) was fixed to 1 and

the shift from the origin was estimated by the model.

The cosine function (FCos) was coded as follows, vary-

ing around the mean 1, and multiplied by the synthesis

rate:

FCos ¼ 1þ a � cosðð2p=XÞ � ðtime - shiftÞÞ;

kSynR ¼ kDegR � RBase � FCos;

where shift is the time of occurrence of the maximum and

kDegR is the degradation rate of the unoccupied receptors

with a baseline RBase at time zero. Overall, the cosine

function FCos of the synthesis rate of the binding partner

(kSynR) improved the model significantly (p\ 0.001) and

better than the other two options tested. The best period

was found to be 8 h and the time shift was estimated to be

4.33 h. Figure 4 shows that the model misspecification

decreased significantly; CWRes profiles showed almost no

trend over time (Fig. 4d) and the multiple peak phe-

nomenon was captured in individual profiles (Fig. 4b).

Whereas all parameters from the TMDD model were

estimated in similar dimensions for all models evaluated,

the introduction of the cosine function caused numerical

model instabilities when linking the PK model to the PD.

Fig. 1 Competitive TMDD, PK/PD model illustration. CL total body

clearance of bosentan, KdB dissociation rate constant bosentan, KdE

dissociation rate constant of ET-1, kDegR degradation rate constant of

free receptor, kEc second elimination/degradation rate constant of

ET-1, kEffect rate constant effect compartment, kEu elimination rate

constant of ET-1 into urine, kInt internalization rate constant of the

bosentan-complex and ET-1-complex, kOffB dissociation rate constant

of the bosentan-complex, kOffE dissociation rate constant of the ET-1-

complex, kOnB building rate constant of bosentan-complex, kOnE
building rate constant of the ET-1-complex, kSynE synthesis rate

constant of ET-1, kSynR synthesis rate constant of free receptor,

Q inter-compartmental clearance, RCB bosentan-target complex, RCE

ET-1 target complex, Vcentral volume of distribution of the central

compartment, Vperipheral volume of distribution of the peripheral

compartment. Model description: see text
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Table 1 Estimated parameter values for the final competitive PK/PD model

Parameter Value RSE, % Description

Pharmacokinetics

Fixed effects

Vcentral, L 4.14 7 Volume of distribution of central compartment

Vperipheral, L 5.71 9 Volume of distribution of peripheral compartment

Q, L/h 11.3 14 Inter-compartmental clearance

RBase, lmol 0.112 12 Receptor baseline at timepoint zero

kDegR, h
-1 0.105 17 Rate constant degradation free receptor

KdB , nM 1.93 14 Dissociation rate constant bosentan

kOnB , lmol-1 * h-1 48.7 15 Rate constant complex building bosentan

kInt, h
-1 0.134 7 Rate constant internalization of the complex

CL, L/h 5.15 6 Total body clearance

ETBase, lmol 5 * 10-6 3 ET-1 baseline at timepoint zero

kEu, h
-1 0.229 7 Rate constant elimination ET-1 into urine

kEc, h
-1 0.295 10 Rate constant second elimination/degradation ET-1

KdE , nM 9.66 15 Dissociation rate constant ET-1

kOnE , lmol-1 * h-1 62.7 17 Rate constant complex building ET-1

Random effects: IIV

IIV Vc, %CV 37 10 IIV in volume of distribution, central compartment

IIV Vp, %CV 19 20 IIV in volume of distribution, peripheral compartment

IIV kInt, %CV 17 18 IIV in internalization of the (two) complexes

IIV CL, %CV 31 14 IIV in total body clearance

IIV ETBase, %CV 13 12 IIV in ET-1 baseline

IIV kEu, %CV 37 12 IIV in elimination ET-1 into urine

IIV kEc, %CV 27 28 IIV in second elimination/degradation ET-1

Residual variability, %

Proportional plasmaB 24 6 Proportional residual error plasma bosentan

Proportional plasmaE 16 5 Proportional residual error plasma ET-1

Proportional urine 44 7 Proportional residual error urine ET-1

Pharmacodynamics

Fixed effects

SBP(0), mmHg 122 2 Baseline SBP

DBP(0), mmHg 59.3 1 Baseline DBP

HR(0), bpm 56.8 1 Baseline heart rate

kEffect, h
-1 4.32 1 Rate constant effect compartment

SMax 0.513 17 Maximum effect in SBP

DMax (0.726) – Maximum effect in DBP

EC50, nmol/mL 1.13 41 Concentration at which effect is half maximum

a 0.817 13 Amplitude cosine function blood pressure

X, h (24) – Period cosine function blood pressure

Shift, h 12 2 Phase shift cosine function blood pressure

Random effects: IIV

IIV SBP(0), %CV 6 9 IIV in baseline of SBP

IIV DBP(0), %CV 11 9 IIV in baseline of DBP

IIV HR(0), %CV 11 9 IIV in baseline of HR

Residual variability

Additive SBP, mmHg 33 7 Additive residual error SBP

Additive DBP, mmHg 27 6 Additive residual error DBP

Additive HR, bpm 24 8 Additive residual error HR

Parameter values in parentheses were not estimated but fixed

bpm beats per minute, CL clearance, CV coefficient of variation, DBP diastolic blood pressure, ET-1 endothelin-1, HR heart rate, IIV inter-individual
variability, RSE relative standard error, SBP systolic blood pressure
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Therefore, the cosine function was not kept for the final

PK/PD model.

3.2.2 ET-1 PK Model

Concentration-time profiles of the endogenous ET-1 were

best described by a TMDD model, which was integrated

into the bosentan TMDD model; the resulting model had

two ligands competing for the same binding partner.

Endogenous ET-1 was synthesized by a zero-order pro-

duction rate (kSynE) and eliminated by a first-order process

into urine (kEu) or catabolized (kEc). Bound ET-1 was

internalized by a first-order rate constant (kInt), where the

rate was assumed to be identical to the elimination rate of

the bosentan-binding partner complex. The steady-state

levels of circulating ET-1 at baseline (ET(0)) and the

amount of ET-1 bound to the target at baseline (RCE(0))

were estimated according to the following equations

adapted from the literature [8]:

ETð0Þ ¼ ðkInt � kOnE � RBase � ETBaseÞ=ðkInt þ kOffEÞ þ ðkEu
� ETBase þ kEc � ETBaseÞ;

RCEð0Þ ¼ ðkOnE � ETBase � RBaseÞ=ðkInt þ kOffEÞ;

where kInt is the rate constant for internalization of the ET-

1-binding partner complex, kOnE is the rate constant for the

complex building, kOffE is the complex dissociation rate

constant, and RBase and ETBase are the initial estimates of

the target and ET-1 baseline values, respectively, at time-

point zero.

The urinary excretion (kEu) and the catabolic metabo-

lism rate (kEc) contributed equally to the elimination of

circulating ET-1 from the central compartment (kEu: 0.229

1/h vs. kEc: 0.296 1/h). Overall, the total elimination of

circulating ET-1 from the central compartment (kEu ? kEc)

was about four times higher than ET-1 elimination via the

binding partner complex (kInt). The dissociation rate con-

stant (Kd =
kOff
kOn

) value of ET-1 ðKdEÞ to the binding partner

Fig. 2 Goodness-of-fit plot (linear scale) of the final competitive PK/

PD model. Observed vs. model population predicted (upper panels) or

individual predicted (lower panels) data of the final competitive,

TMDD model (linear scale): bosentan plasma concentration (nmol/

mL) (a, d), ET-1 level (pmol/mL) in plasma (b, e), ET-1 amount in

urine (pmol) at the end of each collection interval of 0–4, 4–8, 8–12,

and 12–24 h (c, f). Colors/symbols denote dosing groups. The black

solid line indicates the line of identity
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was estimated to be about five times higher than the value

of bosentan KdBð Þ [9.66 vs. 1.93 nM], indicating that

bosentan displaces endogenous ET-1 from its binding site.

A low-to-moderate IIV (%CV 13–37) was established on

the urinary excretion (kEu), the catabolic metabolism (kEc),

and the ET-1 baseline levels (ETBase).

3.2.3 PD Model

SBP and BDP under bosentan treatment were best descri-

bed by Emax functions decreasing the estimated baseline

values in a proportional manner. The amount of bound

bosentan-binding partner complex was the best descriptor

Fig. 3 Visual predictive check of the final competitive PK/PD model.

Three selected doses (low, medium, and high) of the final compet-

itive, TMDD model. Open circles indicate observed concentrations,

the solid line indicates the median predicted concentration, the dashed

line indicates the median observed concentration, the shaded area

indicates the 5th to 95th percentile of simulated concentrations in

1000 simulated subjects. Bosentan concentration in plasma (nmol/

mL) (a, b, c), ET-1 level in plasma (pmol/mL) (d, e, f) and ET-1

amount in urine (pmol) at the end of each collection interval of 0–4,

4–8, 8–12, and 12–24 h (g, h, i)
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of the PD effect, and an effect compartment improved the

descriptive performance significantly (DOFV -32, DDF 1,

p\ 0.001). Because blood pressure underlies a circadian

rhythm [9, 10], a sine function was introduced varying the

systolic and diastolic baseline values (SBP(0), DBP(0)) and

this improved the model significantly (DOFV -41, DDF 2,

p\ 0.001). The final SBP and DBP models are described

in the following equations:

SBP ¼ ðSBPð0Þ þ a � sinðð2p=XÞ � ðtime - shiftÞÞÞ

� ð1� ðSmax � AEffect=ðEC50 þ AEffectÞÞÞ;

DBP ¼ ðDBPð0Þ þ a � sinðð2p=XÞ � ðtime - shiftÞÞÞ

� ð1� ðDmax � AEffect=ðEC50 þ AEffectÞÞÞ;

where SBP(0) and DBP(0) reflect the SBP and DBP,

respectively, at baseline, and Smax and Dmax are the

Fig. 4 Randomly selected individual profiles (upper panel) and

conditional weighted residuals over time (lower panel) without (left

panel) and with (right panel) cosine function on receptor synthesis.

Upper panel Randomly selected individual PK profiles after i.v.

administration of 10, 50, 250, 500, or 750 mg of bosentan over 5 min,

a without and b with cosine function on receptor synthesis. Dashed

lines indicate observed concentrations, solid lines and symbols

represent individual predicted concentrations. Lower panel Condi-

tional weighted residuals over time for the bosentan pharmacokinetic,

TMDD model c without and d with cosine function on receptor

synthesis separated for all dosing groups
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maximum effects on SBP and DBP. AEffect is the amount of

the bosentan-binding partner complex in the effect com-

partment. In the sine function, X describes the period, a the

amplitude, and shift the time shift from the origin. The

baseline values for SBP and DBP were estimated at 122

and 60 mmHg, with a small IIV (%CV 6 and 11%,

respectively). The equilibrium rate constant was estimated

at 4.32/h, indicating a rapid adjustment of the equilibrium

concentration in the effect compartment (t0.5 = 0.165 h).

Initially, heart rate was modeled independently from the

change in blood pressure. However, as heart rate increased

compensatorily with decreasing blood pressure, heart rate

was modeled in dependence of the blood pressure. The

mean arterial blood pressure (MAP) and its baseline value

(MAP(0)) were calculated based on SBP and DBP and their

baseline values. The compensatory increase in heart rate as

a result of blood pressure reduction was described as

follows:

MAPð0Þ ¼ DBPð0Þ þ 1=3 � ðSBPð0Þ�DBPð0ÞÞ;

MAP ¼ DBPþ 1=3 � ðSBP�DBPÞ;

Heart rate ¼ HRð0Þ � ðMAPð0Þ=MAPÞ:

The population typical heart rate at baseline (HR(0)) was

estimated as 57 beats per min (bpm) with an IIV of %CV

11. Modeling heart rate in dependence of MAP improved

the descriptive performance of the model (DOFV -66,

DDF 1, p\ 0.001) and the parameter estimates did not

change markedly.

3.3 Simulations

Simulations were performed to visualize the complex PK/

PD model. Six different, single i.v. bosentan doses were

administered and median concentration and effect profiles

over time are shown in Fig. 5. The bosentan concentration-

time profiles showed the typical non-linear and dose-de-

pendent behavior, which is triggered by the TMDD pro-

cesses. Once bosentan is administered, endogenous ET-1 is

displaced immediately from the binding partner; at

bosentan doses of[500 mg, ET-1 levels increase almost

three times and return to baseline after 12 h for all doses

investigated. The SBP is reduced under bosentan treatment.

At the highest dose group (750 mg), a reduction of

7 mmHg was observed with a compensatory increase in

heart rate of 5 bpm.

4 Discussion

In the present study assessing a wide dose range, bosentan

PK was non-linear with clearance and volume of distri-

bution decreasing dose dependently and a less than

proportional increase in the AUC. This phenomenon was

best described by a TMDD model. Such models are often

applied to describe non-linear PK behavior of drugs with

substantial and high affinity binding to a binding site, thus

markedly influencing the temporal profile of drug plasma

concentrations. TMDD has received considerable interest

in explaining non-linear PK of specific peptide [11] and

protein pharmaceuticals [12], but it also plays a role for

small molecules, e.g., linagliptin [13], imirestat [14], or

warfarin [15].

In our analysis, the binding partner was not pre-speci-

fied. Based on preclinical findings, it can be assumed that

binding to ETA receptors, which are predominantly

expressed in vascular smooth muscle cells, and ETB

receptors, which are the major ET receptors found in

endothelial cells and renal tubules [16], influenced the PK

of bosentan and probably represents the high affinity

binding partner for bosentan. In the present model assess-

ing a non-selective endothelin antagonist, ETA and ETB

receptors were not considered separately, but taken toge-

ther as one binding partner for bosentan and ET-1,

respectively. The TMDD concept is further supported by

the dose-dependent increase of endogenous ET-1 levels,

which is probably displaced from ET receptors by bosen-

tan, which binds with a much higher affinity. With the

present model, a dissociation rate constant for bosentan of

1.93 nM was estimated, which is in the order of magnitude

of measured binding constant (Kb) values of 0.79–1.1 nM

[17]. The Kd value of ET-1 was estimated five times higher

at 9.66 nM, reflecting the lower binding affinity to ET

receptors compared with bosentan.

ET-1 binding to its receptors is tight and causes long

biological effects, particularly after binding to ETA [16].

One reason for its long-lasting effect is that ET-1 remains

bound to ETA after internalization for up to 2 h before the

ETA receptors enter the recycling pathway [16, 18, 19] and

are again presented at the cell surface [18]. In contrast, the

ETB-ET-1 receptor complex is degraded by lysosomes in

the cells [20]. Therefore, ETB is recognized as a ‘clearance’

receptor removing ET-1 from the systemic circulation via

internalization and degradation [16, 20–23]. Investigations

of the internalization process of other compounds binding

to the ETA receptor suggest that not only binding of the

natural agonist ET-1 to ETA leads to endocytosis but also

of ET-1 receptor antagonists, e.g., BQ123 can promote

receptor internalization [24]. This is similar to the behavior

towards other receptor blockers, such as of GnRH antag-

onists [25] or cholecystokinin antagonists [26], which are

also able to initiate endocytosis.

In our model, we also identified that a degradation

component of the bosentan-binding partner improved the

model significantly. It is conceivable that bosentan is also

able to initiate endocytosis, possibly leading to
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internalization of bosentan; the subsequent intracellular

clearance process is currently not entirely understood.

Although the estimated degradation constant was about

nine times smaller than the elimination constant of total

plasma bosentan, it should be considered that at low

doses (\50 mg i.v.), the majority of bosentan is bound

and consequently degradation may play a pronounced

role.

The presented model includes two simplifications. First,

the assumption was made that the degradation process of

bound bosentan and bound ET-1 occurs at the same rate.

Because of the lack of available data, it was not possible to

differentiate these two kinetic processes. Second, with the

available data it was neither possible to differentiate the

binding of bosentan and ET-1 to the two ET receptors.

Hence, the model used a lumped ET receptor as binding

Fig. 5 Simulations of the final PK/PD model after single-dose i.v.

administration of placebo, 10, 62.5, 125, 500, or 750 mg of bosentan

(a). Free endothelin-1 (ET-1) level in plasma over time increases with

higher doses of bosentan (b); cumulated ET-1 amount excreted into

urine (c); formed receptor complex of ET-1 by time (d); systolic

blood pressure (SBP) change (mmHg) [e]; compensatory heart rate

(HR) change (bpm) (f); and formed receptor complex of bosentan by

time (g). RC receptor complex
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partner, which is a mixture of both ET receptors. This

appeared justified because bosentan is a non-selective ET

receptor antagonist.

Bosentan binding to ET receptors occurred with high

affinity (Kd *1.9 nM). Low doses of bosentan (10–50 mg

i.v.) were almost completely bound and primarily removed

from the system via an internalization process. With

ascending doses ([50 mg i.v.), the amount of bosentan

eliminated from the central compartment, i.e., via the liver

and bile, increased, suggesting saturable receptor-binding

capacity. The bosentan TMDD model was extended with

endogenous ET-1 plasma and urine levels where the Kd

value of ET-1 for the binding partner was estimated five

times lower at 9.7 nM. Because of the higher affinity of

bosentan to the binding partner, bound ET-1 was displaced

from the binding site, resulting in a significant increase of

free ET-1 in plasma after administration of high bosentan

doses (Fig. 5). Plasma ET-1 could serve as a potential bio-

marker to determine the receptor occupancy of bosentan.

Incorporation of ET-1 urine excretion allowed the

identification of two elimination processes of free ET-1.

Approximately 44% of free ET-1 eliminated from plasma

is excreted into urine and this amount shows a marginal

dose-dependent increase (Fig. 5). Approximately 56% of

free ET-1 is eliminated by a second elimination pathway. It

might be speculated that this process is at least in part

receptor-mediated via ETB from the lung, kidney, or liver

[22, 23]. Incorporation of the latter elimination pathway

improved the model significantly (p\ 0.001).

Bosentan is a competitive antagonist of ET-1 at its

receptors [17]. Therefore, its action will depend on its

concentration at the target site and the level of the natural

agonist (ET-1). It appears possible that patients with high

circulating ET-1 levels and concurrently low exposure to

the antagonist might differ compared with patients with

low ET-1 levels in their response to the antagonist, whereas

such differences are less important if plateau effects of the

antagonist are reached. ET-1 was included in the model for

the following reasons: (1) In patients, ET-1 levels can be

up to five times the levels in healthy subjects [27], indi-

cating that circulating amounts can be substantially

increased. (2) Given the fact that most of the circulating

ET-1 is released by the lung in a paracrine fashion [28],

local ET-1 release is obviously considerable and slight

changes in circulating ET-1 levels likely reflect pro-

nounced changes in the target organ (lung). (3) The cur-

rently approved therapeutic bosentan dosing regimen

(125 mg twice daily) does not appear to fully block ET

receptors because higher doses give rise to even higher

ET-1 levels [4], indicating that plateau effects are not

reached. However, it should be considered that the pre-

sented model can be applied also without restrictions in the

absence of ET-1 measurements (see Supplementary

Table S3).

Bosentan plasma concentration-time profiles showed a

multiple-peak phenomenon after i.v. administration

(Fig. 4a) and diagnostic plots showed a wave-like pattern

in the CWRes over time (Fig. 4c). A multiple-peak phe-

nomenon can occur as a consequence of a number of dif-

ferent mechanisms, such as the presence of gastrointestinal

absorption windows or EHC [7, 29]. In our analysis,

bosentan was administered i.v., which eliminates a

majority of potential reasons caused by absorption pro-

cesses. Although no EHC was yet described for bosentan,

we investigated a basic EHC model [7]. Compared with the

other options tested, the EHC model was not superior, but

further investigations such as co-administration of an

absorbent agent (e.g., charcoal) would be required to def-

initely reject the EHC hypothesis.

Recent studies revealed that the ET-1 system underlies

circadian variability; ET-1, ETA, and ETB showed a clock

time-dependent mRNA expression regulated by Per1 in the

liver, heart, kidney, and lung [30]. Expression of the ET-1

clearance receptor (ETB) has been shown to be lowest at

noon and highest at midnight. Further, circadian variability

of ET-1 plasma levels has been reported in chronic kidney

disease and, based on the impact of treatment with an ET-

receptor antagonist, related to clinical endpoints such as

blood pressure and dipping [31]. Hence, these findings

suggest that short-lived changes are indeed possible. In-

vitro internalization of the receptors occurs within minutes

[32] and short exposure (30–120 min) profoundly down-

regulates ETB receptors (for details, please refer to De

Mey et al. [33]). To the best of our knowledge, it is cur-

rently unknown whether receptors also internalize after

antagonist exposure.

We tested the circadian hypothesis in our model by

incorporating a cosine function, which modulates either

ET-1 production or synthesis/reappearance of the receptors

at the cell surface. Consideration of diurnal modulation of

the synthesis of the binding partner (ET receptor) signifi-

cantly improved the model, accurately described the mul-

tiple-peak phenomenon, and removed the model

misspecification in the diagnostic plots almost completely

(Fig. 4d). For the synthesis or receptor reappearance at the

cell surface, a period of 8 h was estimated, which is in

perfect agreement with in-vitro findings [34]. To our

knowledge, there is no published evidence describing the

period of ET receptor expression in humans in vivo. In

addition, it should be acknowledged that the analytes were

less frequently measured beyond 12 h after dosing, which

may lead to an only approximate estimate of the period,

owing to a lack of data over a full 24-h period. While this

may be less relevant for bosentan, which is dosed twice

daily, this should be more thoroughly assessed for ET
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antagonists with once-daily dosing such as ambrisentan and

macitentan. To our knowledge, this is the first report of a

circadian PK variation caused by expression changes of a

binding partner/receptor.

To confirm the hypothesis experimentally, bosentan PK

might be compared in animals with and without Per1 clock

protein and by relating these findings to receptor expres-

sion in the tissue [30]. Another option would be to measure

circadian ETB receptor expression in human platelets (e.g.,

at the RNA or protein level) and to assess the impact of

desynchronizing the internal clock (e.g., in a sleep-depri-

vation experiment).

The bosentan PK and the final competitive TMDD PK

model were linked to blood pressure and heart rate and

described the data very well. The results of both PK/PD

models were comparable, parameter estimates did not

differ remarkably (Table 1 and Supplementary Table S3).

The circadian variation of the cardiovascular markers was

reflected in the model by a cosine function. The estimates

and the diurnal effect size were comparable to other reports

[9, 10]. The best linkage between PK and PD was achieved

if the bosentan-binding partner complex was considered,

which reflects the amount of bound bosentan, thus further

supporting the physiological basis of the TMDD model.

The effect of this complex on the PD was slightly delayed

and best described by an effect compartment. This delay is

probably caused by the downstream cascade processes

induced after formation of the drug-receptor complex.

The effect of bosentan on heart rate was successfully

modeled as a compensatory effect for blood pressure chan-

ges (baroreceptor reflex). This approach is novel and elegant

because it reflects the physiology very well and reduced the

number of model parameters; to describe heart rate, no

additional parameter was required besides the estimation of

a baseline value. The overall acute cardiovascular effects of

bosentan were mild. Simulation studies revealed that at the

highest dose (750 mg), a drop in blood pressure of 7 mmHg

and a heart rate increase by 5 bpm was observed.

These findings suggest that after single-dose administra-

tion of bosentan, blood pressure reduction is associated with

adequate baroreflex activation and thereby a compensatory

increase in heart rate. After administration of ascending oral

doses (once or twice daily) of bosentan for 4 weeks in 293

patients with mild-to-moderate essential hypertension, DBP

was significantly reduced with an absolute reduction of

5.7 mmHg at each dose (daily dose 500 or 2000 mg), while

heart rate was not increased significantly [35]. It is expected

that after long-term use of bosentan, no sympathetic reflex

activation and no heart rate increases occur compared with

the short-term intake of a single dose owing to the resetting

of the baroreflex. Observations with nicardipine and

nifedipine, which effectively reduce blood pressure, showed

similar behavior after short- and long-term treatment

[36, 37]. Based on these findings with respect to baroreflex

activation with nicardipine and nifedipine, the changes

observed in blood pressure and heart rate with bosentan

could be expected and a heart rate increase might vanish

after multiple dosing of the drug [38].

5 Conclusion

In a comprehensive and mechanistic TMDD PK/PD model,

we successfully described the competitive relationship

between bosentan and ET-1 and the cardiovascular effects

of the drug on heart rate and blood pressure. The model

suggests that a strong binding to the target (presumed to be

ET receptors) is responsible for the non-linearity in the PK

of bosentan, a cause of PK variability not reported previ-

ously. Furthermore, the model suggests that circadian

expression of ET receptors explains the multiple-peak

phenomenon of bosentan plasma concentrations after i.v.

administration. The model provides a first step towards

understanding the complex PK properties of bosentan and

offers a valuable tool for future PK/PD research on

bosentan.
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$PROBLEM Competitive bosentan-ET-1 PKPD 
 
$INPUT   
$DATA ../../ .csv IGNORE=@  
 
$SUBROUTINES ADVAN6 TOL=9 
;------------------------------------------- 
$MODEL  
;------------------------------------------- 
COMP(Cent)  ;1 central compartment bosentan 
COMP(R)  ;2 unoccupied receptor 
COMP(RCB)  ;3 receptor complex bosentan 
COMP(P)  ;4 peripheral compartment bosentan 
COMP(ET1)  ;5 endothelin-1 unbound (free) 
COMP(RCE)   ;6 receptor complex endothelin-1 
COMP(ET1U)   ;7 endothelin-1 in urine 
COMP(Effect)   ;8 pharmacodynamics: effect compartment 
COMP(FCosBP) ;9 pharmacodynamics: cosine function blood pressure/heart rate 
 
;------------------------------------------- 
$PK                                
;------------------------------------------- 
Vc      = THETA(1)*EXP(ETA(1)) ;volume central compartment 
Vp      = THETA(2)*EXP(ETA(2))  ;volume peripheral compartment 
Q        = THETA(3)                            ;intercompartmental clearance 
kCP = Q/Vc 
kPC = Q/Vp 
RBase   = THETA(4)                            ;receptor baseline at time point zero 
A_0(2)  = RBase 
kDegR  = THETA(5)                            ;rate constant degradation free receptor 
kOnB    = THETA(6)                            ;rate constant complex building bosentan 
KdB      = THETA(7)                            ;dissociation rate constant bosentan  
kOffB   = kOnB * KdB                          
kIntRCB = THETA(8)*EXP(ETA(3)) ;rate constant internalisation receptor complex bosentan 
CL       = THETA(9)*EXP(ETA(4)) ;total body clearance 
kEB = CL/Vc                                   ;elimination rate constant 
 
BST0 = 0                                      ;concentration bosentan at time point zero 
A_0(1)  = ((kIntRCB*kOnB*RBase*BST0)/(kIntRCB+kOffB))+kEB*BST0 
RCB0    = kOnB*RBase*BST0/(kIntRCB+kOffB)     
A_0(3)  = RCB0   ;RCB0 amount receptor complex bosentan at time point zero 
 
EBase  = THETA(10)*EXP(ETA(5)) ;endothelin-1 baseline baseline level at time point zero                
kEu     = THETA(11)*EXP(ETA(6)) ;rate constant elimination endothelin-1 into urine                      
kEc     = THETA(12)*EXP(ETA(7)) ;rate constant second elimination/degradation endothelin-1              
kOnE  = THETA(13)                           ;rate constant complex building endothelin-1    
KdE    = THETA(14)                           ;dissociation rate constant endothelin-1    
kOffE   = kOnE * KdE 
kIntRCE = kIntRCB                             ;rate constant internalisation receptor complex endothelin-1 
 
 
 
A_0(5) = ((kIntRCE*kOnE*RBase*EBase)/(kIntRCE+kOffE))+kEu*EBase+kEc*EBase  

;endothelin-1 at time point zero  
RCE0 = kOnE*EBase*RBase/(kIntRCE+kOffE)  
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A_0(6) = RCE0    ;amount receptor complex endothelin-1 at time point zero 
 
 
PI = 3.1415927 
alphaPD   = THETA(15)                          ;amplitude cosine function blood pressure/heart rate 
omegaPD = THETA(16)                          ;period cosine function blood pressure/heart rate 
shiftPD    = THETA(17)                          ;phase shift cosine function blood pressure/heart rate 
SBase  = THETA(18)*EXP(ETA(8))   ;baseline systolic blood pressure 
DBase  = THETA(19)*EXP(ETA(9))      ;baseline diastolic blood pressure 
HBase  = THETA(20)*EXP(ETA(10))    ;baseline diastolic blood pressure 
kEffect    = THETA(21)                          ;rate constant effect compartment 
SMax      = THETA(22)                           ;maximum effect systolic blood pressure 
DMax     = THETA(23)                           ;maximum effect diastolic blood pressure 
EC50      = THETA(24)                           ;concentration at which effect is half maximum 
 
;+++++++++++++++ 
;calculations compartment initialisation A(1),(3),(5) and (6) adapted from 
;Yan X, Chen Y, Krzyzanski W.  
;Methods of solving rapid binding target-mediated drug disposition model  
;for two drugs competing for the same receptor.  
;J. Pharmacokinet. Pharmacodyn. 2012;39:543–60.: 
 
;bosentan at time point zero was set to 0: BST0 = 0 
;Equation (16) page 545: A_0(1)=((kIntRCB*kOnB*RBase*BST0)/(kIntRCB+kOffB))+kEB*BST0 
;Equation (10) page 545: RCB0=kOnB*RBase*BST0/(kIntRCB+kOffB) then A_0(3) = RCB0 
;Equation (17) page 545: 
A_0(5)=((kIntRCE*kOnE*RBase*EBase)/(kIntRCE+kOffE))+kEu*EBase+kEc*EBase 
;Equation (13) page 545: RCE0=kOnE*EBase*RBase/(kIntRCE+kOffE) then A_0(6) = RCE0 
;+++++++++++++++ 
 
S1 = Vc/1000              ;scaling central compartment for liter with DV [ng/ml] and AMT (DOSE) [mg] 
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;------------------------------------------- 
$DES 
;------------------------------------------- 
;just information: 
;Rtot   = R + RCB + RCE total amount receptor 
;BSTtot = BST + RCB     total bosentan 
;ET1tot = ET1 + RCE     total endothelin-1 
 
FB = kOnB*BST0*RBase-(kOffB*BST0*RBase/(kIntRCB+kOffB)) 
FE = kOnE*EBase*RBase-(kOffE*EBase*RBase/(kIntRCE+kOffE)) 
kSynR = kDegR * RBase + FB + FE                           ;rate constant synthesis free receptor 
kSynE = kEu*EBase + kEc*EBase + kIntRCE*RCE0      ;rate constant synthesis endothelin-1 
 
;+++++++++++++++ 
;FB, FE, kSynR, kSynE calculations adapted from: 
;Yan X, Chen Y, Krzyzanski W.  
;Methods of solving rapid binding target-mediated drug disposition model  
;for two drugs competing for the same receptor.  
;J. Pharmacokinet. Pharmacodyn. 2012;39:543–60.: 
 
;Equation (15) page 545:  
;kSynR=kDegR*RBase + kOnB*BST0*RBase-(kOffB*BST0*RBase/(kIntRCB+kOffB)) + 
kOnE*EBase*RBase-(kOffE*EBase*RBase/(kIntRCE+kOffE)) 
;which is kSynR=kDegR*RBase+FB+FE  
 
;Equation (102) page 553: 
;kSynE = kEu*EBase + kEc*EBase + kIntRCE*RCE0 
;+++++++++++++++ 
 
DADT(1)= -kEB*A(1) -kOnB*A(1)*A(2)+kOffB*A(3) -kCP*A(1)+kPC*A(4)                                    
;1 central compartment bosentan         
DADT(2)= -kOnB*A(1)*A(2)+kOffB*A(3) -kOnE*A(2)*A(5)+kOffE*A(6) + kSynR-kDegR*A(2)         
;2 unoccupied receptor    
DADT(3)= kOnB*A(1)*A(2)-kOffB*A(3) -kIntRCB*A(3)          
;3 receptor complex bosentan 
DADT(4)= kCP*A(1)-kPC*A(4)                                       
;4 peripheral compartment bosentan       
DADT(5)= -kOnE*A(2)*A(5)+kOffE*A(6) +kSynE-kEu*A(5)-kEc*A(5)   
;5 endothelin-1 free (measurement plasma)      
DADT(6)= kOnE*A(2)*A(5)-kOffE*A(6) -kIntRCE*A(6)    
;6 receptor complex endothelin-1 
DADT(7)= kEu*A(5)                
;7 endothelin-1 in urine (measurement urine)   
DADT(8)= kEffect * (A(3)-A(8))                                                                         
;8 pharmacodynamics: effect compartment 
DADT(9)=1+ alphaPD*cos((2*PI/omegaPD)*(T-shiftPD)) -1            
;9 pharmacodynamics: cosine function blood pressure/heart rate which is 
FCosBP=(alphaPD*sin((2*PI/omegaPD)*(TIME-shiftPD)))  
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;------------------------------------------- 
$ERROR  
;------------------------------------------- 
AEffect = A(8)                             ;rename(theoretical) amount of receptor complex bosentan in effect 
compartment  
FCosBP  = A(9)                  ;rename cosine function blood pressure/heart rate 
 
EffectSBP = (SMax*AEffect/(AEffect+EC50))   ;Emax function effect systolic blood pressure  
SBP = (SBase+FCosBP)*(1-EffectSBP)          ;pharmacodynamic effect systolic blood pressure 
EffectDBP = (DMax*AEffect/(AEffect+EC50))  ;Emax function effect diastolic blood pressure  
DBP = (DBase+FCosBP)*(1-EffectDBP)          ;pharmacodynamic effect diastolic blood pressure 
MAPbase = DBase + 1/3*(SBase-DBase) ;baseline mean arterial blood pressure 
MAP     = DBP + 1/3*(SBP-DBP)               ;mean arterial blood pressure 
HR = HBase*(MAPbase/MAP)                    ;compensatory increase in heart rate  
 
IPRED = A(1)/S1                              ;prediction central compartment bosentan 
IF (CMT.EQ.5)  IPRED = A(5)                 ;prediction endothelin-1 plasma             
IF (CMT.EQ.7)  IPRED = A(7)                 ;prediction endothelin-1 urine 
IF (FLAG.EQ.2) IPRED = SBP                  ;prediction systolic blood pressure 
IF (FLAG.EQ.3) IPRED = DBP                  ;prediction diastolic blood pressure  
IF (FLAG.EQ.4) IPRED = HR                   ;prediction heart rate 
 
DEL=0 
IF (IPRED.EQ.0) DEL=0.0001 
W=IPRED 
IRES  = DV - IPRED 
IWRES = IRES/(W+DEL) 
 
Y = IPRED + W * EPS(1)                       ;residual variability bosentan 
IF (CMT.EQ.5) Y = IPRED + IPRED * EPS(2)  ;residual variability endothelin-1 plasma 
IF (CMT.EQ.7) Y = IPRED + IPRED * EPS(3)  ;residual variability endothelin-1 urine 
IF (FLAG.EQ.2) Y = IPRED + EPS(4)          ;residual variability systolic blood pressure 
IF (FLAG.EQ.3) Y = IPRED + EPS(5)          ;residual variability diastolic blood pressure 
IF (FLAG.EQ.4) Y = IPRED + EPS(6)           ;residual variability heart rate 
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;------------------------------------------- 
$THETA                                        
;------------------------------------------- 
(0,4.14)  ;1 Vc 
(0,5.72)  ;2 Vp 
(0,11.3)  ;3 Q 
(0,0.111) ;4 RBase 
(0,0.101) ;5 kDegR 
(0,48.4)  ;6 kOnB 
(0,0.00762)       ;7 KdB 
(0,0.133)          ;8 kIntRCB/RCE 
(0,5.18)            ;9 CL 
(0,0.000005)     ;10 EBase 
(0,0.23)           ;11 kEu 
(0,0.298)          ;12 kEc 
(0,62.3)           ;13 kOnE 
(0,0.0389,2)       ;14 KdE 
(0,0.811,1)        ;15 alphaPD 
(24)        FIX    ;16 omegaPD 
(0,11.8,24)        ;17 shiftPD 
(0,121)            ;18 SBPbase 
(0,58.9)           ;19 DBPbase 
(0,56.9)           ;20 HRbase 
(0,1.85)           ;21 kEffect 
(0,0.199,1)        ;22 SBPmax 
(0.726)     FIX   ;23 DBPmax 
(0,0.485)          ;24 EC50 
;------------------------------------------- 
$OMEGA                                        
;------------------------------------------- 
0.01    ;1 IIV Vc 
0.01    ;2 IIV Vp 
0.01    ;3 IIV kInt 
0.01    ;4 IIV CL 
0.01    ;5 IIV EBase 
0.01    ;6 IIV kEu 
0.01    ;7 IIV kEc 
0.01    ;8 IIV SBPbase 
0.01    ;9 IIV DBPbase 
0.01    ;10 IIV HRbase 
;------------------------------------------- 
$SIGMA                                      
;------------------------------------------- 
0.0579  ;prop. error plasma bosentan 
0.0307     ;prop. error endothelin-1 plasma 
0.193      ;prop. error endothelin-1 urine 
0.01        ;add. error systolic blood pressure 
0.01        ;add. error diastolic blood pressure 
0.01        ;add. error heart rate 
;---------------------------------------------------------------------------------------------------------------- 
$ESTIMATION METHOD=1 INTER MAXEVAl=9999 POSTHOC NOABORT PRINT=1 SIGL=9 
SIGDIG=3 
$COV  
$TABLE   FILE=  
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ABSTRACT

Purpose Bosentan, clazosentan, and tezosentan are three

small-molecule endothelin receptor antagonists (ERAs),

displacing endothelin-1 (ET-1) from its binding site. A

target-mediated drug disposition (TMDD) pharmacoki-

netic (PK) model described the non-linearity in the PK

of bosentan caused by its high receptor binding affinity

with time-dependent varying receptor expression or re-

appearance. The aim of this analysis was to investigate

the presence of TMDD for clazosentan and tezosentan

and to corroborate the hypothesis of a diurnal receptor

synthesis.

Methods PK data from healthy subjects after intravenous

(i.v.) administration of single ascending doses of bosentan, cla-

zosentan, and tezosentan were analyzed. Frequent blood sam-

ples for PK measurements were collected. Population analy-

ses, simulations, and evaluations were performed using a non-

linear mixed-effects modeling approach.

Results Two-compartment TMDD models were success-

fully developed describing the PK of all three ERAs

with different receptor-complex internalization proper-

ties. The observed multiple peaks in the concentration-

time profiles were captured with cosine functions on the

receptor synthesis rate mimicking a diurnal receptor ex-

pression or reappearance. The results strongly suggest

that TMDD is a class effect of ERAs.

Conclusion The developed TMDDPKmodels are a next step

towards understanding the complex PK of ERAs and further

support the hypothesis that TMDD is a class effect of ERAs.

KEY WORDS bosentan . clazosentan . pharmacokinetic

modeling . target-mediated drug disposition . tezosentan

ABBREVIATIONS
ACE Angiotensin-converting enzyme

AUC Area under the plasma concentration-time

curve

CL Total body clearance

Cmax Maximum plasma concentration

CV Capital coefficient of variation

CWRes Conditional weighted residuals

CYP Cytochrome P450

DDP-4 Dipeptidyl peptidase-4

EHC Enterohepatic recirculation

ERA Endothelin receptor antagonist

ET Endothelin

ET-1 Endothelin-1

ETA Endothelin receptor subtype A

ETB Endothelin receptor subtype B

FCos Cosine function

GOF Goodness-of-fit

i.v. Intravenous

IIV Interindividual variability

Kd Dissociation rate constants

kDegR Rate constant degradation free / unoccu-

pied receptor

kE Elimination rate constant

kIntRC Internalization rate constant

kOff Rate constant complex dissociating drug

kOn Rate constant complex building drug

kSynR Rate constant receptor synthesis
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LC-MS/MS Liquid chromatography with tandem

mass spectrometry

LLOQ Lower limits of quantification

OFV Objective function value

PBPK Physiologically-based pharmacokinetic

PD Pharmacodynamic

PK Pharmacokinetic

Q Intercompartmental clearance

Rbase Receptor baseline

TMDD Target-mediated drug disposition

V Volume of distribution

VCentral Volume of distribution central compartment

VPC Visual predictive check

VPeripheral Volume of distribution peripheral

compartment

α Amplitude cosine function

Ω Period cosine function

INTRODUCTION

Target-mediated drug disposition (TMDD) is a special form

of pharmacokinetic (PK) non-linearity in which the strong

binding of the drug to its target influences the PK. TMDD

(and the resulting non-linearity in PK) is often recognized by a

dose-dependent disproportional change in (apparent) volume

of distribution (V), total body clearance (CL), maximum plas-

ma concentration (Cmax), or area under the plasma

concentration-time curve (AUC). Monoclonal antibodies are

the most prominent class of molecules undergoing TMDD (1).

However, TMDD has been described also for some small

molecules such as selegiline (2), warfarin (3), the angiotensin-

converting enzyme (ACE) inhibitors enalaprilat, perindopri-

lat, and cilazaprilat (4), and the dipeptidyl peptidase-4 (DDP-

4) inhibitor linagliptin (5). Although TMDD might be

regarded as an undesirable drug feature, it also offers oppor-

tunities. Based on concentration-time profiles it can provide

important information on target engagement and exposure

can be used as a pharmacodynamic (PD) biomarker (6–8),

e.g., plasma endothelin-1 (ET-1) could serve as a potential

biomarker to determine the receptor occupancy of bosentan

(9). As small and large molecules become more potent, ana-

lytical methods more sensitive and with the application of

micro-dosing, it is very likely that further reports on TMDD

will be emerging (10).

Endothelin (ET) receptors with the subtypes A and B (ETA

and ETB) are a class of G protein coupled receptors predom-

inantly expressed in vascular smooth muscle cells (ETA), en-

dothelia cells and renal tubulus (ETB) (11). They follow differ-

ent signaling as well as internalization pathways after the nat-

ural ligand ET-1 has been bound; the ETA receptor enters a

recycling pathway and is represented at the cell surface again,

while ETB serves as a ‘clearance receptor’ removing ET-1

from the systemic circulation through internalization and deg-

radation (11–17). One reason for a long-lasting vasoconstric-

tive effect of ET-1 bound to ETA is binding to the receptor for

up to approximately 2 h after internalization (11,16,17).

Endothelin receptor antagonists (ERAs) build a class of

small-molecule compounds such as bosentan, macitentan, cla-

zosentan, tezosentan, or ambrisentan, which bind to ET

receptors and thereby displace the endogenous binding part-

ner ET-1 from its binding site. Consequently, they cause va-

sodilatation, reduced blood pressure, as well as other

compound-specific PD effects. It was observed that receptor

complex internalization is not only induced by the natural

ligand ET-1 but that it can also occur after receptor binding

of ERAs (18). A TMDDmodel was previously introduced for

bosentan (19) and a mechanistic two-compartment TMDD

PK model described the competitive relationship between

bosentan and ET-1 (9). Themodel suggested that strong bind-

ing of bosentan to the receptors is responsible for its non-linear

PK (9). Observing TMDD for bosentan and considering the

properties of ERAs, it is hypothesized that TMDD is a class

effect, although so far it has been suggested only for bosentan.

The primary aim of this analysis was to investigate the

presence of TMDD for clazosentan and tezosentan in com-

parison to bosentan (9), using a population PK modeling ap-

proach. Additionally, multiple peaks in the plasma

concentration-time profiles of bosentan after intravenous

(i.v.) administration were observed and explained by a diurnal

expression or reoccurrence of the target. Thus, a second aim

of the analysis was to further investigate the hypothesis on

clock-dependent target fluctuation as a class effect of ERAs

investigating three representatives of this class, i.e., bosentan,

clazosentan, and tezosentan.

MATERIAL AND METHODS

Compounds and Study Data

Bosentan was the first approved ERA. It is a competitive antag-

onist on ETA and ETB and frequently used in the therapy of

pulmonary arterial hypertension. After i.v. administration of

single ascending doses in healthy male subjects, it showed non-

linear PK (9,20). It is highly bound to albumin (21) andmainly

eliminated with feces (22) after metabolism by cytochrome

P450 (CYP) enzymes (21). Bosentan affects its own metabo-

lism by inducing CYP3A4, CYP2C9, and possibly CYP2C19

(21). Themainmetabolite hydroxybosentan contributes to the

overall efficacy with 10–20% (21). Uptake into hepatocytes

occurs via organic anion transporting polypeptides.

Bosentan is also an inhibitor of the bile salt export pump, as

well as a substrate and possibly inducer of P-glycoprotein (23).

Data used for this population PK analysis were generated in a

placebo-controlled first-in-humans study in healthy male
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subjects (20). In this study bosentan was administered as single

i.v. injection or infusion over a wide dose range from 10 to

750 mg. Blood samples for plasma concentrations were taken

pre-dose, and 14 times up to 24 h after dosing of bosentan or

placebo, leading to 706 bosentan plasma concentrations from

54 of 70 subjects. Depending on the plasma concentration,

HPLC-UV or narrow-bore liquid chromatography with tan-

dem mass spectrometry (LC-MS/MS) detection using ion

spray was used. The lower limits of quantification (LLOQ)

were 50 ng/ml (0.088 nmol/ml) and 500 pg/ml (8.8 ×

10−4 nmol/ml), respectively.

Clazosentan is an ERA which binds with high selectivity to

ETA (24,25) and with lower affinity to ETB. It was developed

for parenteral use for the acute treatment of emergency indi-

cations; clazosentan prevented and reversed cerebral vaso-

spasm in a canine model of subarachnoid hemorrhage

(24,26). It is highly bound to plasma proteins (> 98%) and

primarily eliminated unchanged via bile into feces (26). PK

analysis of clazosentan indicated dose-proportionality in Cmax

and AUC (24,26). However, CL and V decreased with higher

doses (24,26). One minor metabolite formed by CYP2C9 (26)

was identified. For population PK modeling, the first-in-

humans study of clazosentan was used in which the compound

was administered as single i.v. infusions of 3, 10, 30, or 60mg/

h with varying infusion durations, resulting in six dosing

groups. The study population consisted of 48 healthy, male

subjects. In each dosing group, six subjects were treated with

clazosentan and two received a placebo infusion. The infu-

sions started between 9 and 10 a.m. after an overnight fast.

Blood samples for clazosentan plasma concentrations were

taken pre-dose, and at 1, 2, 2.5, 3 h during the 3-h infusion,

at 1, 3, 5, 6 h during the 6-h infusion, and at 1, 3, 6, 11, 12 h

during the 12-h infusion. Blood samples were also taken 0.25,

0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 9, and 12 h after end of the

infusions. Plasma levels of clazosentan were determined by

LC-MS/MS. The LLOQ was 2 ng/ml (3.2 × 10−3 nmol/

ml). Overall, 472 clazosentan plasma concentrations were

available for analysis.

Tezosentan is an ERA with high affinity to both receptors,

ETA and ETB (27,28). It was also developed for parenteral use

and found to be effective in animal models of hypertension,

acute renal failure, and heart failure (29). It increases cardiac

output and renal blood flow, decreases pulmonary pressure

and the occurrence of pulmonary edema, and induces coro-

nary vasodilatation (29). Tezosentan showed dose-

proportionality in Cmax and AUC (27,29) while CL and V

decreased with higher doses (27,29). It is highly bound to

albumin (30) and predominantly eliminated unchanged via

liver and bile into the feces (29). Several minor metabolites

were detected (30). One metabolite shows an activity towards

ET receptors, but its potency is 10–20-fold lower than that of

tezosentan (27,30). Overall, 539 tezosentan plasma concen-

trations from 42 of 56 healthy, male subjects were used for

the analysis (27). The compound was administered as i.v. in-

fusion of 5, 20, 50, 100, 200, 400, and 600 mg over 1 h in

seven different dosing groups. In each dosing group, six

subjects were treated with tezosentan and two received

a placebo infusion. Infusions started between 8 and

10 a.m. after an overnight fasting. Blood samples were

taken pre-dose, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4,

5, 7, 12, and 15 h after start of infusion. Plasma levels of

tezosentan were analyzed by LC-MS/MS. The LLOQ was

2.5 ng/ml (3.5 × 10−3 nmol/ml).

For all three ERAs, all post-dose bioanalytical measure-

ments were above the LLOQ. A summary of dose groups

and population characteristics is presented in supplementary

Tables S1 and S2, respectively.

Model Development and Evaluation

The non-linear mixed effects modeling approach was used

(31); population analyses, simulations, and model evaluation

were performed with NONMEM version 7.3 (ICON

Development Solutions, Ellicott City, MD, USA). Model se-

lection was based on visual inspection of goodness-of-fit (GOF)

plots, precision of parameter estimates, and the objective func-

tion value (OFV) provided by NONMEM. A model was con-

sidered superior to a nested (reduced) model if the OFV was

reduced by 10.83 units (χ2 test statistic, p ≤ 0.001, 1 degree of

freedom). All pre-dose sampling times were set to zero. SAS

version 9.4 (SAS Institute Inc., Cary, NC, USA) was used for

statistical analyses and generation of graphics.

Model development was performed sequentially for each

compound evaluating the model structure without incorpora-

tion of random effects but including residual variability. The

model development process started with linear one-, two-, and

three-compartment models with different distribution and

elimination processes (e.g., Michaelis-Menten kinetics or in-

corporation of a liver compartment). Afterwards, TMDD

models were investigated stepwise and optimized for distribu-

tion and elimination characteristics until a good fit for the

structural model was obtained. Dissociation rate constants

(Kd) were fixed to values that were obtained from in vitro assays

for clazosentan and tezosentan (25,32) and in case of bosentan

to the previously estimated value (9). It was evaluated if the

receptor complex could be degraded by incorporating an in-

ternalization rate constant (kIntRC) in each model. If structural

model misspecifications were observed and empirical

Bayesian estimates indicated a bimodal distribution, mixture

models (two sub-populations) were evaluated for selected

parameters such as CL, V, receptor baseline (RBase), or

kIntRC using the $Mixture procedure in NONMEM.

Important key structural models and their OFV as provided

by NONMEM are presented in supplementary Tables S3,

S4, and S5 respectively. To evaluate the hypothesized

diurnal or circadian fluctuation in target expression or
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recurrence, a cosine function (9) was integrated into each

model. Interindividual variability (IIV) was tested on the final

structural (base) model in a stepwise procedure one by one for

statistical significance (p ≤ 0.001, 1 degree of freedom).

Numerical model stabilities were assessed by changing the

initial parameter ±10%, which did not result in markedly

different estimates. Visual predictive checks (VPCs) based on

1000 simulations using the final PK models were performed

stratified by dose group. Medians and corresponding 5th and

95th percentiles of data simulated from the models were plot-

ted against time and the observed data superimposed to assess

if data simulations from the model were in line with observed

data.

RESULTS

For bosentan, clazosentan, and tezosentan, a two-

compartment TMDD model described the available plasma

concentration-time profiles best and was superior to one-,

two- or three-compartment models without TMDD compo-

nent. The final PK models are illustrated in Fig. 1 and

NONMEM codes are provided in the supplementary materi-

al. GOF plots of all final PK models are depicted in Fig. S1 in

the supplementary materials. Parameter values were estimat-

ed with good accuracy (Table I) and the VPC stratified by

dose showed a satisfactory descriptive performance for each

model (supplementary Fig. S2). The ERAs were administered

directly into the central compartment (i.v. administration)

from where they were distributed with rate Q to the periph-

eral compartment (volume of distribution VPeripheral).

Elimination occurred from the central compartment (volume

of distribution VCentral) with first-order rate constant (kE=

CL/ VCentral) or the ERAs were bound to the receptor with

a second-order rate constant (kOn). ETA and ETB receptors

were considered as one receptor. A turnover model was used

to describe the receptor with a zero-order synthesis rate con-

stant (kSynR) and a first-order degradation rate constant

(kDegR). The drug–receptor complex was either dissociated

with rate constant kOff (kOff= kOn× RBase) or, depending on

the compound, also degraded by kIntRC. Compound-specific

details are described in the following.

Bosentan PK model: After binding to the receptor, bosentan

was internalized or dissociated again. Free bosentan was

eliminated from the central compartment with a kE of

approximately 1.2 h−1. The estimated apparent volumes

of distribution, VCentral and VPeripheral, were 4.26 l and

6.38 l, respectively. A low to moderate IIV was observed

for kIntRC (17 %CV), VCentral and VPeripheral (20 to 41

%CV), and CL (34 %CV).

Clazosentan PK model: Clazosentan receptor binding oc-

curred fast with high receptor binding affinity (Kd =

0.2 nM). No internalization process of the drug-receptor

complex could be identified. The clazosentan-receptor

complex dissociated again and the free compound in

plasma was exclusively eliminated from the central com-

partment with a kE of approximately 6.66 h−1. Total CL

was approximately eight times as high compared to

bosentan (38.1 l/h vs. 4.97 l/h), while the volumes of

distribution were as small as for bosentan (VCentral =

5.76 l and VPeripheral= 3.16 l). Low IIVs were observed

on VCentral (20 %CV), RBase (20 %CV) and CL

(14 %CV).

Tezosentan PK model: Tezosentan (as clazosentan) was

bound to the receptor with high affinity (Kd =

0.26 nM). The tezosentan-receptor complex either disso-

ciated or internalized. From the stepwise model develop-

ment, it was observed that internalization of the complex

was necessary to adequately describe the data (p< 0.001).

However, some remaining misspecifications in the lower

concentration range were still present in the observed vs.

predicted GOF plot so that the structural model was not

fully satisfactory. Therefore, mixture models were evalu-

ated, finally identifying two subpopulations with different

typical values for kIntRC, improving the descriptive per-

formance of the model statistically significantly

(p < 0.001). For approximately 77% of subjects

Fig. 1 Two-compartment TMDDPKmodel for bosentan, clazosentan, and tezosentan. CL total body clearance, Kd dissociation rate constant, kDegR degradation

rate constant of unoccupied receptor, kIntRC internalization rate constant of the bosentan, kIntRC_1 and kIntRC_2 internalization rate constants of tezosentan complex,

kOff rate constant for complex dissociation, kOn rate constant for complex building, kSynR synthesis rate constant of unoccupied receptor, Q intercompartmental

clearance, VCentral volume of distribution central compartment, VPeripheral volume of distribution peripheral compartment.
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(population 1), kIntRC (for this population kIntRC_1) was

0.204 h−1, and for 23% of the population (population

2) an internalization rate constant of kIntRC_2= 0.03 h−1

was estimated, i.e., about 15% of the corresponding pa-

rameter in population 1. VCentral was within the range of

bosentan and clazosentan with 5.38 l, whereas VPeripheral

was estimated very small with approximately 2 l. Low to

moderate IIVs were identified on tezosentan CL and

VPeripheral (31 and 54 %CV). The relative contribution

of the TMDD on total clearance of bosentan and tezo-

sentan is visualized in Fig. 2.

Multiple peaks in individual plasma concentration-time

profiles were observed for all three ERAs, leading to wave-

like patterns in conditional weighted residuals (CWRes) over

time (Fig. 3). Such patterns might, for example, be a conse-

quence of enterohepatic recirculation (EHC) of a drug (33). As

far as known, EHC could not be shown for the investigated

ERAs, and implementation of an established EHCmodel (34)

did not improve model fits (data not shown). Therefore, the

formerly developed cosine function (FCos) (9) for kSynR
was implemented in each PK model mimicking a time-

dependent receptor synthesis or reappearance:

F Cos ¼ 1þ α� cos 2π=Ωð Þ � time−shiftð Þð Þ;
kSynR ¼ kDegR � RBase � F Cos

The periodΩ was tested in a stepwise manner and fixed to

24, 12, 8, and 6 h allowing to estimate the time of occurrence

of the maximum (shift) relative to time after start of treatment.

kDegR denotes the degradation rate of the unoccupied receptor

with a baseline RBase at time zero. The period to best fit the

data was found to be 8 h with an estimated shift of 4.3, 7.3,

and 7.5 h for bosentan, clazosentan, and tezosentan, respec-

tively. The amplitude α was estimated to 0.87 for clazosentan

and 0.40 for tezosentan. Since α was estimated close to the

upper boundary of 1 for bosentan, it was fixed to 1.

Table I Parameter Estimates of the Final PK Model with Cosine Function on Receptor Production Rate for Bosentan, Clazosentan, and Tezosentan

Parameter Bosentan Clazosentan Tezosentan

Value RSE*[%] Value RSE*[%] Value RSE*[%]

Fixed effects

VCentral (l) 4.26 7 5.76 5 5.38 5 Volume of distribution of central compartment

VPeripheral (l) 6.38 7 3.16 10 1.85 10 Volume of distribution of peripheral compartment

Q (l/h) 11.4 13 6.05 9 2.71 10 Intercompartmental clearance

RBase (μmol) 0.106 9 0.0022 8 0.111 50 Receptor baseline

kDegR (h
−1) 0.143 13 4.5 29 1.2 13 Rate constant degradation free receptor

Kd (nM) (1.5) N/A (0.2) N/A (0.26) N/A Dissociation rate constant drug

kOn (μmol−1 * h−1) 48.5 11 402 9 22.8 29 Rate constant complex building drug

kIntRC (h−1) 0.144 5 0 N/A 0.204a / 0.03b 5a / 40b Rate constant internalization of the drug –

receptor complex

CL (l/h) 4.97 6 38.1 3 26.4 14 Total body clearance

α (1) N/A (0.872) N/A (0.404) N/A Amplitude cosine function

Ω (h) (8) N/A (8) N/A (8) N/A Period cosine function

Shift (h) (4.28) N/A (7.28) N/A (7.53) N/A Phase shift cosine function

Random effects: Interindividual variability (IIV)

IIV Vc (%CV) 41 13 20 15 N/A N/A IIV in volume of distribution, central compartment

IIV Vp (%CV) 20 16 N/A N/A 54 12 IIV in volume of distribution, peripheral compartment

IIV RBase (%CV) N/A N/A 20 27 N/A N/A IIV in receptor baseline

IIV kIntRC (%CV) 17 14 N/A N/A N/A N/A IIV in internalization of the (two) complexes

IIV CL (%CV) 34 16 14 10 31 10 IIV in total body clearance

Residual variability

proportional plasma drug (%) 22 7 15 11 29 5 Proportional residual error plasma

additive plasma drug (nmol/ml) N/A N/A (1*10−6) N/A N/A N/A Additive residual error plasma

*RSE relative standard error, N/A: not applicable, fixed parameter value or parameter not estimated, Parameter values in parentheses were not estimated but fixed
a kIntRC population 1, b kIntRC population 2,
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Subsequently the parameters of the cosine function (α,Ω, and

shift) were fixed to avoid numerical instabilities. Overall the

trends in the CWRes were reduced (Fig. 4) and the model fits

improved statistically significantly (p< 0.001). Illustrative indi-

vidual plasma concentration-time profiles are shown in Fig. 4.

Parameter estimates remained precise with low relative

Fig. 3 Conditional weighted residuals versus time of the final two-compartment TMDDmodels with (upper panels) and without (lower panels) diurnal receptor

synthesis for bosentan, clazosentan, and tezosentan. Solid thick red lines indicates polynomial regression fits (loess). Colors and symbols indicate dose groups.

Fig. 2 Proportion of different clearance processes for bosentan (sold lines), clazosentan (dotted lines) and tezosentan (dashed lines). Left panel: Drug-receptor

complex internalization. Right panel: Plasma clearance (elimination from central compartment).
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standard errors (≤ 29%, except for RBase of tezosentan with

50%) and did not change markedly for all three models after

the inclusion of the diurnal rhythm (Table I).

Simulations over 48 h for each PK model without

incorporation of receptor fluctuation were performed

over a broad dose range in order to visualize the non-

linear PK triggered by the underlying TMDD process

(Fig. 5). Bosentan administration was simulated for doses

from 1 to 1000 mg over 5 min. Binding to the receptor

occurred fast (Kd = 1.5 nM) and almost completely.

Receptor baseline values were reached again after

48 h. Clazosentan 3-h infusions were simulated for

doses from 1 to 1920 mg/h. Elimination from the sys-

temic circulation was fast, and receptor binding was

almost complete. There was no evidence of receptor

complex internalization for clazosentan, so that unoccu-

pied receptor was degraded with kDegR of approximately

4.5 h−1, and receptor baseline was reached again after

18 h. Tezosentan administration was simulated for 1-

h infusions for doses from 5 to 1600 mg. The highest

doses of tezosentan were eliminated approximately twice

as fast as bosentan, and receptor baseline was reached

within 8 h after start of the infusion. After administra-

tion of low doses, bosentan and tezosentan were almost

completely cleared by internalization. As receptor bind-

ing is saturable, the amount of drug eliminated from

systemic circulation (i.e., the central compartment) via

liver and bile increased with increasing doses.

Fig. 4 Representative individual plasma concentration-time profiles (nmol/ml) for bosentan (left column), clazosentan (middle column), and tezosentan (right

column). Circles indicate observed concentrations, blue solid lines indicate the model-predicted individual profile without diurnal receptor synthesis, black dashed

lines indicate the model-predicted individual with diurnal receptor synthesis.
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DISCUSSION

TMDD models are valuable tools to better understand, de-

scribe, and predict the PK primarily of large biologicals (1,6).

However, also for small chemical molecules with distinct tar-

get affinity, this concept is increasingly becoming a focus in

PK modeling and simulation to study non-linearity

caused by target-binding (10). Although TMDD has be-

come a more commonly investigated feature, few inves-

tigations have been performed on TMDD as class effects

of therapeutics. Nevertheless, the extent of drug-target-

complex building for compounds of the same class can serve

as a surrogate marker to understand and predict compound-

specific pharmacology.

In the work presented, it was investigated whether TMDD

might be a class effect of ERAs, studying bosentan, clazosen-

tan, and tezosentan. For all three drugs, data after i.v. admin-

istration over a broad dose range were available and a

TMDD model could be fit that could explain the dose-

dependent non-linear PK behavior. This is in contrast to pre-

vious population PK analyses for clazosentan and tezosentan,

in which linear two-compartment models were used charac-

terizing the PK after administration to humans (24,27).

However, these previous analyses also indicated a non-linear

PK for clazosentan and tezosentan after single-dose adminis-

tration over broad dose ranges. Since the non-linear PK may

also be a consequence of saturable elimination processes (35),

different types of models were investigated using saturable

Fig. 5 Simulations over 48 h of the final PKmodels of bosentan (left), clazosentan (middle), and tezosentan (right) after single i.v. administration of different doses.

Upper panels: plasma concentration-time profiles (nmol/ml), middle panels: unoccupied receptor (μmol), lower panels: drug-receptor complex (μmol). Solid

black line: unoccupied receptor at baseline.
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processes such as Michaelis-Menten kinetics. For instance, the

introduction of a liver compartment and subsequent saturable

uptake from the liver to the central compartment were tested

in particular for bosentan, which interacts with various trans-

porters and metabolic enzymes (e.g., organic anion transport-

ing polypeptides, bile salt export pump, or CYP enzymes), but

such models were inferior regarding statistical significance,

GOF or predictive performance, compared to the TMDD

model (data not shown). Nonetheless, these findings do not

necessarily exclude that in particular for bosentan, additional

saturable processes due to transporter-mediated liver uptake

and hepatic metabolism exist and may influence the PK be-

havior to a certain extent. Since metabolism of clazosentan

and tezosentan differs from that of bosentan (both are pre-

dominantly eliminated unchanged via liver and bile into the

feces) and for both compounds liver uptake appears not to

occur via saturable transporters, it was assumed that a satura-

ble elimination is not the leading cause for the non-linear PK.

The selection of the drugs was based on accessibility of indi-

vidual data, broad dose ranges applied, and the existence of

i.v. administrations, as overlaying absorption processes and

first-pass effects after oral administration would have ham-

pered identifying the receptor binding processes (10). Other

ERAs such as macitentan, ambrisentan, atrasentan, ziboten-

tan, or sitaxentan were not investigated in this analysis due to

non-existence of i.v. data and the inaccessibility of individual

data. Nonetheless, published mean data of these oral ERAs

indicate a dose-disproportional trend in PK (e.g., (36–38)).

However, it can be hypothesized that for all ERAs

TMDD is applicable, as many prerequisites for

TMDD apply such as a target that is plasma-based

and a high affinity binding of ERAs to the target to

replace its endogenous ligand ET-1. As far as known,

this is the first attempt to generalize TMDD as a class

effect for ERAs. So far, TMDD has been suggested for

many ACE inhibitors and a class effect can be hypoth-

esized for DPP-4 inhibitors and vitamin-k-antagonists as

for some representatives of these therapeutic classes

TMDD has been demonstrated based on similar phar-

macological features.

The endogenous ligand ET-1 binds tightly to ETA and

ETB receptors and is internalized via two different pathways,

as described above. For simplification and due to lack of data

to separate these processes, ETA and ETB receptors were

combined into a single model component and represented

as one binding partner in the model. This combination of

binding partners leads also to the phenomenon that the

parameters kDegR, RBase, and kSynR turn from systems param-

eters, which are independent of the compound, into

compound-specific parameters. For example, the estimated

receptor baselines were similar for bosentan and tezosentan,

while it was estimated considerably lower for clazosentan

(0.106, 0.111, and 0.0022 μmol, respectively). In our model,

RBase is a mixture of ETA and ETB and in the case of clazo-

sentan it may only represent one receptor subtype (i.e., ETA),

potentially explaining the lower RBase value for clazosentan.

Ideally, these binding processes could be included in a

mechanistic approach such as a whole body physiologically-

based PK (PBPK) model. Additionally, for bosentan, such a

model could account for transporter-mediated liver uptake

and inhibition of the bile salt export pump. A published

PBPK model incorporated various PK properties and pre-

dicted liver exposure after administration of bosentan

(39,40). However, although this model also accounted for

the binding process of bosentan to ET receptors, for the recep-

tors were not differentiated, the competitive antagonism with

the natural ligand ET-1 was not included, and no internaliza-

tion process was incorporated.

Even so the model was simplified regarding the ETA and

ETB receptors, it was able to discriminate the different bind-

ing affinities to ETA and ETB and is appropriate for the objec-

tives of this work. For example, clazosentan binding occurs

with 55 times as high affinity to ETA (Kd = 0.2 nM) than to

ETB (Kd = 11 nM). Therefore, binding to ETB may be less

relevant and clearance from the systemic circulation as drug-

receptor complex via endocytosis may play a minor role.

Consequently, clazosentan is exclusively eliminated from plas-

ma, for example, via liver and bile, as reflected in the model,

in which the degradation of the receptor-ligand complex was

estimated to be close to zero and thus removed from the mod-

el. However, for bosentan and tezosentan receptor recycling

via ETA and internalization followed by degradation (ETB),

are indiscernible as binding to both receptors has a similar

magnitude (32). Accordingly, a second elimination process,

reflecting the degradation of the drug–receptor complex

(kIntRC) was incorporated for both compounds. Simulations

show that the amount of free receptor decreases after single-

dose administration of bosentan and tezosentan and returns to

baseline. For clazosentan also a decrease in free receptor is

visible. However, after 3 h an increase above baseline becomes

visible which disappears after 16 h. This behavior is caused by

the fact that clazosentan has a large kOn value which is respon-

sible for a quick formation of the receptor-ligand complex.

Compared to bosentan and tezosentan, this complex is not

cleared and accumulates. Simultaneously, free receptor is syn-

thesized or presented and after the 3-h infusion stop, free cla-

zosentan is massively cleared from the system and the equilib-

rium is shifted from the bound receptor-ligand complex to-

wards free clazosentan and receptor, causing a short-term and

transient rebound of free receptor. As the free receptor is not

measured in vivo, it is unclear whether this represents a true

effect or a model-derived artefact. Since a subsequent intracel-

lular degradation process is currently not described, experimen-

tal work is necessary to better understand the processes of

agonist- and antagonist-mediated internalization and degrada-

tion of the ET receptors and their binding partners.
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Nonetheless, the described compound-specific internaliza-

tion processes are supported by the extent of plasma ET-1

elevation as consequence of its replacement from the target

binding sites after administration of different ERAs. With the

competitive antagonism of bosentan and ET-1 using a com-

plex TMDD model, ET-1 plasma levels increased dose-

dependently (9). While clearance via ETB receptors was re-

duced, ET-1 was increasingly cleared into urine with higher

doses of bosentan. The same phenomenon was observed

for tezosentan (27). In contrast, since clazosentan mainly

binds to ETA, ET-1 binding to ETB is still possible and

therefore it may partly be cleared from the systemic

circulation via ETB, finally leading to a less pronounced

increase of free ET-1 concentrations in plasma after

administration of clazosentan (24).

In the tezosentan model, two sub-populations with differ-

ent internalization rates of the receptor-ligand complex were

identified using a mixture model, which improved the model

statistically significantly (p< 0.001) and identified about 77%

of the population with an estimated internalization rate in the

same order of magnitude as for bosentan (kIntRC bosentan:

0.144 h−1, tezosentan: 0.204 h−1). In 23% of the population,

an eight times lower internalization rate was identified

(kIntRC= 0.03 h−1). None of the available covariates explained

the sub-population and no sub-population with different in-

ternalization rates of the receptor-ligand complex was identi-

fied for the two other ERAs. However, a genetic polymor-

phism in ETA or ETB may lead to functional consequences

of, e.g., agonist-mediated down regulation (41) and thus it

may be possible that antagonist-mediated internalization is

altered, too. In addition, several diseases and conditions such

as Parkinson’s disease and Foot-and-mouth disease are de-

scribed for which an altered lysosomal activity is reported

(42–44). On the other hand, there were some indications dur-

ing the model development process that a subpopulation with

a different clearance from the central compartment (plasma)

may also be possible for tezosentan and possibly also for

bosentan. Nonetheless, these models (Table S3 and

Table S5) were not superior in the current analysis.

Furthermore, it might also be possible that the identified sub-

populations are mere artefacts. Overall, further research is

required to investigate the existence of this subpopulation

and the possible reasons.

Multiple peaks in the plasma concentration-time profiles of

bosentan, clazosentan, and tezosentan were observed after i.v.

administration. As potential explanation, EHCwas investigat-

ed but neither confirmed by literature nor by the application

of an EHC model (34). Recently, a circadian variation in the

ET system was discussed (9) where ET-1, ETA, and ETB

showed a clock time-dependent mRNA expression regulated

by Per1 in liver, heart, kidney, and lung (45).

Therefore, it was tested whether mimicking the circadian

fluctuation by a cosine function on the synthesis of the ET

receptors improved the descriptive performance. For all three

ERAs investigated, a circadian variation of the time-

dependent synthesis of the ET receptor described the data

best by modulating the receptor production or reappearance

every 8 h (diurnal rhythm), which is encoded by theΩ param-

eter in our model. The shift parameter in the cosine model

indicates the shift from the origin. For our compounds a shift

of 4.28 h was estimated for bosentan, 7.28 h for clazosentan,

and 7.53 h for tezosentan. As all studies started at around 8 to

10 am, the shift and Ω parameters result in a maximum ap-

pearance of the receptor in the morning, afternoon, and

around midnight for bosentan and around 3 h later for clazo-

sentan and tezosentan. The reason for the differences in shift

parameter is unclear. One reason might be the different sam-

pling schedule for the compounds as bosentan was sampled

for the longest duration. In addition and as mentioned

before, the two receptors ETA and ETB were combined

in our model but both receptors are expressed to a

different extent in different tissues, and it is very likely

that the circadian (or diurnal) variation is also different

between organs and tissues (45).

Our model showed that a period of 8 h described

the data best for all three compounds investigated.

However, as PK data were only generated over a max-

imum of 24 h, the 8 h period is an approximation and

further investigations over a longer time period are re-

quired to confirm this high frequency as typically phys-

iological processes fluctuate less frequently in a 24-

h (circadian) rhythm as for instance blood pressure

(46), vasoactive intestinal peptide, or cortisol (47).

Nonetheless, in vitro findings also suggested a period of 8 h

fluctuation for the ET production in humans (48) and

other peptides (substance P, neuropeptide Y (47)), such

that these findings corroborate the results presented

here and thereby support the hypothesis of a diurnal ET

receptor production or reappearance.

CONCLUSION

Mechanistic TMDD PK models were successfully developed

describing the PK of the small chemical molecules bosentan,

clazosentan, and tezosentan. These suggest TMDD as a class

effect of ERAs. The model enabled to differentiate between a

selective ETA antagonist and dual ETA and ETB antagonists

as reflected by their target binding affinity as well as the target-

complex internalization behavior. These models contribute to

corroboration of the hypotheses of diurnal ET receptor pro-

duction or reappearance, which leads to multiple peak plasma

concentrations. The results presented here are a next step

towards understanding the complex PK of ERAs and further

support the hypothesis that TMDD is a class effect of ERAs.
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Figure S1 Goodness-of-fit plots of observed versus population prediction (upper panels) and 

individual prediction (lower panels) of the final two-compartment TMDD models for bosentan, 

clazosentan, and tezosentan by dose groups. Colors and symbols indicate the different dose groups. 

The black line indicates the line of identity, and the thick red lines indicate polynomial regression fits 

(loess). 
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Figure S2 Visual predictive checks of the final TMDD PK model of bosentan (A), clazosentan (B), 

and tezosentan (C) stratified by dose group. Open circles indicate observed concentrations, dashed 

lines indicate median observed concentrations, solid lines indicate median model-predicted 

concentrations, shaded areas indicate the 5th and the 95th percentile of simulated concentrations in 

1000 simulated subjects.   
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Table S1 Dose groups studied  

Dose group Single dose  

 

Duration of i.v. administration  

Bosentan 

1 10 mg 5 min 

2 50 mg 5 min 

3 250 mg 5 min 

4 500 mg 5 min 

5 750 mg 5 min 

6 500 mg 30 min 

7 500 mg 15 min 

8 250 mg 5 or 15 min 

9 750 mg 350 mg over 21 min followed by 400 mg over 219 
min 

Clazosentan 

1 3 mg/h 3 h 

2 10 mg/h 3 h 

3 30 mg/h 3 h 

4 60 mg/h 3 h 

5 60 mg/h 6 h 

6 30 mg/h 12 h 

Tezosentan 

1 5 mg/h 1 h 

2 20 mg/h 1 h 

3 50 mg/h 1 h 

4 100 mg/h 1 h 

5 200 mg/h 1 h 

6 400 mg/h 1 h 

7 600 mg/h 1 h 
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Table S2 Summary statistics of subject characteristics at baseline  

 Bosentan Clazosentan Tezosentan 

Total subjects 70 48 56 

Race 

Caucasian 70 42 46 

Black 0 4 9 

Others 0 2 1 

Treatment    

Active  54 36 42 

Placebo 16 12 14 

Age [years] 

Min 19 19 20 

5th percentile 19 21 21 

Mean  22 25 25 

Standard deviation 2.33 3.93 3.64 

Median 22 24 24 

95th percentile 26 33 33 

Max  31 36 37 

Body weight [kg] 

Min 57 54 55 

5th percentile 65 59 59 

Mean  78 71 70 

Standard deviation 8.43 8.74 6.25 

Median 77 69 70 

95th percentile 90 87 78 

Max  101 91 88 

Height [cm] 

Min 167 163 170 

5th percentile 176 165 170 

Mean  184 176 180 

Standard deviation 6.27 5.86 5.57 

Median 184 177 180 

95th percentile 195 185 191 

Max  201 188 193 

Body mass index [kg/m2] 

Min 20 18 18 

5th percentile 20 20 19 

Mean  23 23 22 

Standard deviation 1.91 2.16 1.73 

Median 23 23 22 

95th percentile 27 27 25 

Max  27 27 26 
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Table S3 Bosentan model development: objective function values (OFV) as provided by NONMEM for key 
models 

Bosentan 

Model # Model structure  OFV ∆  OFV Comment 

Models with linear elimination: kE = CL/VCentral 

1 One-compartment 3239.631 N/A  

2 Two-compartment 2284.568 -955.063 Compared to #1. 

3 Three-compartment 2185.351 -99.217 Compared to #2. 

Models with Michaelis-Menten elimination: kE = ((VM*A)/(KM+A)) 

4 One-compartment 3361.606 +121.975 Compared to #1. 

5 Two-compartment 2257.287 -27.281 Compared to #2. 

6 Three-compartment 2132.292 -53.059 Compared to #3. 

TMDD models 

7 One-compartment without kIntRC 2454.992 +322.7 Compared to #6. 

8 Two-compartment without kIntRC 2149.883 +17.59 Compared to #6. 

9 One-compartment with one kIntRC 2115.008 -17.284 Compared to #6. 

10 Two-compartment with one kIntRC 2030.39 -84.618 Compared to #9. 

11 Two-compartment with one kIntRC 
with IIV on CL 

1079.619 -950.771 Compared to #10.  

12 Two-compartment with one 

kIntRC with IIV on CL, VCentral, 

VPeripheral, kIntRC 

921.483 -1108.907 Compared to #10. 

Final full model after 

investigation of IIVs.  

13 Two-compartment with mixture 
model on kIntRC 

N/A N/A No second population 
identified. 

14 Two-compartment with mixture 
model on CL 

1509.72 +430.101 Compared to #11.  

15 Two-compartment with mixture 
model on CL with IIV on VCentral, 

VPeripheral, kIntRC 

1058.355 +136.872 Compared to #12.  

16 Two-compartment with mixture 
model on RBase 

N/A N/A No second population 
identified. 

Model structure is the basic model structure without incorporation of random effects (interindividual 
variabilities, IIVs) but including residual variability. In addition, selected key models after inclusion of IIVs 
are listed for comparison. A amount of unbound drug in the central compartment, CL total body clearance, IIV 

interindividual variability, kE elimination rate constant, KM concentration at which elimination is half 
maximum, OFV objective function value,  VCentral volume of distribution central compartment,  VM rate of 
elimination which approaches maximum. 
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Table S4 Clazosentan model development: objective function values (OFV) as provided by NONMEM 
for key models 

Clazosentan 

Model # Model structure  OFV ∆ OFV Comment 

Models with linear elimination: kE = CL/VCentral 

1 One-compartment -1951.36 N/A  

2 Two-compartment -3184.565 -1233.205 Compared to #1. 

3 Three-compartment -3249.516 -64.951 Compared to #2. 

Models with Michaelis-Menten elimination: kE = ((VM*A)/(KM+A)) 

4 One-compartment -1938.099 +13.27 Compared to #1. 

5 Two-compartment -3167.852 +16.713 Compared to #2. 

6 Three-compartment -3234.94 +14.576 Compared to #3. 

TMDD models 

7 One-compartment without 
kIntRC 

-3307.168 -57.652 Compared to #3. 

8 Two-compartment 
without kIntRC 

-3395.047 -87.879 Compared to #7. 

9 Two-compartment 
without kIntRC with IIV on 

RBase 

-3648.017 -252.97 Compared to #8. 
 

10 Two-compartment 

without kIntRC with 

IIV on CL, VCentral, RBase 

-3885.47 -490.423 Compared to #8. 

Final full model after 

investigation of IIVs. 

11 One-compartment with 
one kIntRC 

-3310.451 +84.596 Compared to #8 

12 Two-compartment with 
one kIntRC 

-3396.645 -1.598 Compared to #8. kIntRC estimated 
zero during investigation of IIVs 
(models not listed here). 

13 Two-compartment with 
mixture model on kIntRC 

N/A N/A Not tested, no kIntRC estimated 
for clazosentan. 

14 Two-compartment with 
mixture model on CL 

N/A N/A No second population identified. 

15 Two-compartment with 
mixture model on RBase 

-3589.988 +58.029 Compared to #9. 

16 Two-compartment with 
mixture model on RBase 
with IIV on CL, VCentral 

-3878.006 +7.464 Compared to #10. Second 
population could not be 
estimated but need to be fixed. 

Model structure is the basic model structure without incorporation of random effects (interindividual 
variabilities, IIVs) but including residual variability. In addition, selected key models after inclusion of 
IIVs are listed for comparison. A amount of unbound drug in the central compartment, CL total body 
clearance, IIV interindividual variability, kE elimination rate constant, KM concentration at which 
elimination is half maximum, OFV objective function value, VCentral volume of distribution central 
compartment,  VM rate of elimination which approaches maximum. 
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Table S5 Tezosentan model development: objective function values (OFV) as provided by NONMEM for 
key models 

Tezosentan 

Model # Model structure  OFV ∆  OFV Comment 

Models with linear elimination: kE = CL/VCentral 

1 One-compartment 693.543 N/A  

2 Two-compartment -1138.885 -1832.428 Compared to #1. 

3 Three-compartment -1161.902 -23.017 Compared to #2, but QPeripheral_2 and 
VPeripheral_2 not plausible with very 
high RSE. 

Models with Michaelis-Menten elimination: kE = ((VM*A)/(KM+A)) 

4 One-compartment 747.263 +53.72 Compared to #1. 

5 Two-compartment -1318.727 -179.842 Compared to #2. 

6 Three-compartment -1366.028 -204.126 Compared to #3, but VPripheral not 
plausible with very high RSE. 

TMDD models 

7 One-compartment without 
kIntRC 

-1237,929 +128,099 Compared to #6. 

8 Two-compartment without 
kIntRC 

-1294,996 +71,032 Compared to #6. 

9 One-compartment with one 
kIntRC 

-1396.249 -30.221 Compared to #6. 

10 Two-compartment with one 
kIntRC 

-1440.002 -43.753 Compared to #9. 

11 Two-compartment with one 
kIntRC with IIV on kIntRC 

-1761.626 -321.624 Compared to #10. 

12 Two-compartment with one 
kIntRC with IIV on kIntRC, CL, 
VPeripheral 

-2046.672 -606.669 Compared to #10. 

13 Two-compartment with 
mixture model on kIntRC 

-1579.561 -139.559 Compared to #10. 

14 Two-compartment with 

mixture model on kIntRC 

and IIV on CL and 

VPeripheral 

-2095.545 -48.875 Compared to #12. 

Final full model after 

investigation of IIVs. 

15 Two-compartment with 
mixture model on CL 

-1636.535 -56.974 Compared to #13. 

16 Two-compartment with 
mixture model on CL and 
IIV on kIntRC and VPeripheral 

-1924.59 +170.955 Compared to #14. 

17 Two-compartment with 
mixture model on RBase 

-1628.333 -48.772 Compared to #13. 

18 Two-compartment with 
mixture model on RBase and 
IIV on CL and VPeripheral 

-2070.521 +25.024 Compared to #14. High RSE. 

Model structure is the basic model structure without incorporation of random effects (interindividual 
variabilities, IIVs) but including residual variability. In addition, selected key models after inclusion of 
IIVs are listed for comparison. A amount of unbound drug in the central compartment, CL total body 
clearance, IIV interindividual variability, kE elimination rate constant, KM concentration at which 
elimination is half maximum, OFV objective function value,  RSE relative standard error, VCentral volume of 
distribution central compartment, VPripheral volume of distribution peripheral compartment, VM rate of 
elimination which approaches maximum. 
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NONMEM model codes 

Bosentan  

 
;; 1. Based on: run011 
;; 2. Description: 2 CMT TMDD, IIV Vc Vp kIntRCB CL KdB not fixed 
;; x1. Author: AKV 
 
$PROBLEM Bosentan PK i.v. SRD 10, 50, 250, 500, 750 mg day 1 in healthy human subjects  
$INPUT ID TIME DV_2=DROP DV AMT2=DROP AMT CMT=DROP EVID BLQ DOSE RATE 
CONC DAY ADM STUD DGR SUBJ=DROP SAMP=DROP PTNO=DROP SEX AGE WT HT 
BMI BILI SGPT AP SGOT GGT ALB PROT CHOL HGB HCT SCR CRCL 
 
$DATA ../../DATASET/BOSENTAN_PK_V01.csv  
IGNORE=@  
 
$SUBROUTINES ADVAN9 TOL=9 
 
$MODEL  
COMP(C)        ;1 Central compartment  
COMP(R)        ;2 Unoccupied target  
COMP(RCB)   ;3 Drug-target complex 
COMP(P)        ; 4 Peripheral compartment 
 
$PK 
Vc = THETA(1)*EXP(ETA(1))             ; Volume of distribution of central compartment 
Vp = THETA(2)*EXP(ETA(2))             ; Volume of distribution of peripheral compartment 
Q = THETA(3)                                        ; Intercompartmental clearance 
kOnB = THETA(4)                                 ; Rate constant complex building drug 
KdB  = Vc*THETA(5)                            ; Dissociation rate constant drug (0.00966 µmol/l) 
kIntRCB = THETA(6)*EXP(ETA(3))    ; Rate constant internalization of the drug – receptor 
complex 
RBase = THETA(7)                                 ; Receptor baseline   
A_0(2) = RBase  
kDegR = THETA(8)                               ; Rate constant degradation free receptor 
CL = THETA(9)*EXP(ETA(4))             ; Clearance  
 
S1 = Vc/1000                                          ; scaling for litre with DV [ng/ml] and AMT (DOSE) [mg]  
 
$DES 
kCP  = Q/Vc                                             
kPC  = Q/Vp 
kOffB = kOnB * KdB 
kSynR =kDegR*RBase                            ; rate constant synthesis unoccupied target 
kEB   = CL/Vc                                         ; Elimination rate constant 
 
DADT(1)= -kEB*A(1)-kOnB*A(1)*A(2)+kOffB*A(3)-kCP*A(1)+kPC*A(4)           
DADT(2)=          -kOnB*A(1)*A(2)+kOffB*A(3)+kSynR-kDegR*A(2)              
DADT(3)=           kOnB*A(1)*A(2)-kOffB*A(3)-kIntRCB*A(3) 
DADT(4)=                                  kCP*A(1)-kPC*A(4)                
 
$ERROR 
IPRED = A(1) / S1 ; Central compartment bosentan PK 
DEL=0 
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IF (IPRED.EQ.0) DEL=0.0001 
W     = IPRED 
IRES  = DV - IPRED 
IWRES = IRES / (W + DEL) 
Y = IPRED + IPRED * EPS(1) ; Bosentan PK 
 
$THETA 
(0, 4.26)      ;1 VCentral 
(0, 5.93)      ;2 VPeripheral 
(0, 6.59)      ;3 Q 
(0, 19.4)      ;4 kOnB 
(0, 0.0077)  ;5 KdB 
(0, 0.142)    ;6 kIntRCB 
(0, 0.327)    ;7 RBase 
(0, 0.0847)  ;8 kDegR 
(0, 4.49)      ;9 CL 
 
$OMEGA  
0.01 ;1 IIV VCentral  
0.01 ;2 IIV VPeripheral  
0.01 ;3 IIV kIntRCB 
0.01 ;4 IIV CL 
 
$SIGMA  
 0.339 ;proportional error plasma bosentan  
 
$ESTIMATION METHOD=1 INTER MAXEVAl=9999 POSTHOC NOABORT PRINT=1 
$COV UNCONDITIONAL 
$TABLE ID TIME DOSE DGR DV PRED IPRED IWRES CWRES ONEHEADER NOPRINT 
FILE=sdtab012 
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Clazosentan 

;; 1. Based on: run115 
;; 2. Description: 2 CMT TMDD, IIV CL Vc RBase   
;; x1. Author: AKV 
 
$PROBLEM Clazosentan PK Study 1161 
 
$INPUT ID TIME DV DV2=DROP AMT AMT2=DROP CMT=DROP EVID DOSE DGR RATE 
INFT FLAG BLQ 
$DATA ../../DATASET/   
IGNORE=@  
 
$SUBROUTINES ADVAN13 TOL=9 
 
$MODEL 
COMP(C)        ;1 Central compartment  
COMP(R)        ;2 Unoccupied target  
COMP(RCC)   ;3 Drug-target complex 
COMP(P)        ;4 Peripheral compartment 
 
$PK 
Vc = THETA(1)*EXP(ETA(2))         ; Volume of distribution of central compartment 
Vp = THETA(2)                                  ; Volume of distribution of peripheral compartment 
Q  = THETA(3)                                   ; Intercompartmental clearance 
RBase   = THETA(4)*EXP(ETA(3))  ; Receptor baseline   
A_0(2)  = RBase 
kDegR   = THETA(5)                         ; Rate constant degradation free receptor 
KdC     = (Vc*0.0002)                        ; Dissociation rate constant drug (0.0002 µmol/l) 
kOnC    = THETA(6)                          ; Rate constant complex building drug 
CL = THETA(7)*EXP(ETA(1))         ; Clearance 
 
S1 = Vc/1000   ;scaling for litre with DV [ng/ml] and AMT (DOSE) [mg] 
  
$DES 
kCP= Q/Vc 
kPC= Q/Vp 
kOffC = kOnC * KdC                      
kSynR = kDegR * RBase               ; Rate constant degradation unoccupied target 
kEc = CL/Vc                                  ; Elimination rate constant 
 
DADT(1) = -kOnC*A(1)*A(2) +kOffC*A(3) -kEc*A(1) -kCP*A(1)+kPC*A(4) 
DADT(2) = -kOnC*A(1)*A(2) +kOffC*A(3) +kSynR-kDegR*A(2) 
DADT(3) =  kOnC*A(1)*A(2) -kOffC*A(3)   
DADT(4) =  kCP*A(1)-kPC*A(4) 
 
$ERROR 
IPRED = A(1)/S1 ; Central compartment clazosentan PK 
 
DEL=0 
IF (IPRED.EQ.0) DEL=0.0001 
W     = IPRED 
IRES  = DV - IPRED 
IWRES = IRES / (W + DEL) 
 



 

  Page 14| 16 

Y = IPRED + IPRED * EPS(1) + EPS(2) ; Clazosentan PK 
$THETA 
(0,10.6)       ;1 VCentral 
(0,9.96)       ;2 VPeripheral 
(0,11.3)       ;3 Q 
(0,0.0015)   ;4 RBase 
(0,2.42)       ;5 kDegR 
(0,308)        ;6 kOnC 
(0,44.8)       ;7 CL 
 
$OMEGA  
0.01  ;1 IIV CL 
0.01  ;2 IIV VCentral 
0.01  ;3 IIV RBase 
 
$SIGMA  
0.01                   ;proportional.error plasma clazosentan 
0.000001 FIX   ; additive error plasma clazosentan 
 
$ESTIMATION METHOD=1 INTER MAXEVAl=9999 POSTHOC NOABORT PRINT=1 
$COV 
$TABLE ID TIME DOSE DGR DV FLAG IPRED IWRES CWRES ONEHEADER NOPRINT 
FILE=sdtab116 
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Tezosentan 

;; 1. Based on: run023 
;; 2. Description: 2 CMT TMDD, mixture kIntRC, IIV Vp CL 
;; x1. Author: AKV 
 
$PROBLEM Tezosentan PK   
 
$INPUT ID TIME DV DV2=DROP AMT AMT2=DROP CMT EVID DOSE DUR RATE CONC 
DGR FLAG BLQ CLOC=DROP SEX AGE WT HT BMI RACE STUD MDV 
 
$DATA ../../DATASET/  
IGNORE=@  
 
$SUBROUTINES ADVAN13 TOL=9 
 
$MODEL  
COMP(C)         ; 1 Central compartment 
COMP(R)         ; 2 Unoccupied target 
COMP(RCB)    ; 3 Drug-target-complex 
COMP(P)          ; 4 Peripheral compartment 
 
$PK 
Vc = THETA(1)                                           ; Volume of distribution of central compartment 
Vp = THETA(2)*EXP(ETA(1))                  ; Volume of distribution of peripheral compartment 
Q  = THETA(3)                                            ; Intercompartmental clearance 
RBase  = THETA(4)    
A_0(2) = RBase                                           ; Receptor baseline   
kDegR  = THETA(5)                                   ; Rate constant degradation free receptor 
KDT    = Vc*0.00026                                  ; Dissociation rate constant drug (0.00026 µmol/l) 
kOnT   = THETA(6)                                   ; Rate constant complex building drug 
EST=MIXEST 
IF(MIXNUM.EQ.1)THEN 
kIntRCT = THETA(7)                       ; Rate constant internalization of the drug – receptor 
population 1 
POP=1 
ELSE 
kIntRCT = THETA(8)*THETA(7)   ;Rate constant internalization of the drug – receptor population 
2 
POP=2 
ENDIF 
CL   = THETA(10)*EXP(ETA(2))             ; Clearance 
 
S1 = Vc/1000    ; scaling for liter with DV [nmol/ml] and AMT tezosentan (DOSE) [mmol] 
 
$DES 
kCP = Q/Vc                                                   
kPC = Q/Vp   
kOffT = kOnT * KDT 
kSynR=kDegR*RBase                               ; Rate constant degradation unoccupied target 
kET = Cl / Vc                                             ; Elimination rate constant 
 
DADT(1)= -kET*A(1) - kOnT*A(1)*A(2) + kOffT*A(3) -kCP*A(1) +kPC*A(4)  
DADT(2)= -kOnT*A(1)*A(2) + kOffT*A(3) + kSynR - kDegR*A(2)                      
DADT(3)=  kOnT*A(1)*A(2) - kOffT*A(3) -kIntRCT*A(3)                                 
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DADT(4)=  kCP*A(1) -kPC*A(4)  
 
$ERROR 
IPRED = F                                                               
DEL=0 
IF (IPRED.EQ.0) DEL=0.0001 
W     = F 
IRES  = DV - IPRED 
IWRES = IRES /(W + DEL) 
 
Y = IPRED + IPRED * EPS(1) ;Tezosentan  PK 
 
$MIX  
NSPOP=2  
P(1)=THETA(9)      ;proportion population 1 
P(2)=1-THETA(9)  ; proportion population 2 
 
$THETA 
(0,5.58)        ;1 VCentral 
(0,2.66)        ;2 VPeriheral 
(0,3.65)        ;3 Q4 
(0,0.044)      ;4 RBase 
(0,4.8)          ;5 kDegR 
(0,115)         ;6 kONT 
(0,0.203)      ;7 kIntRCT_1 
(0,0.125)      ;8 fraction kIntRCT_2 
(0,0.778)      ;9 proportion population 1 
(0,20.7)        ;10 CL 
 
$OMEGA  
0.01 ;1 IIV VPeripheral 
0.01 ;2 IIV CL 
 
$SIGMA  
 0.268  ;proportional.error plasma tezosentan 
 
$ESTIMATION METHOD=1 INTER MAXEVAl=9999 POSTHOC NOABORT PRINT=1 
$COV UNCONDITIONAL 
$TABLE ID TIME DV DOSE DGR FLAG CMT STUD PRED IPRED CWRES NOPRINT 
FILE=sdtab026 
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Physiologically-Based Pharmacokinetic Models for 
CYP1A2 Drug–Drug Interaction Prediction: A Modeling 
Network of Fluvoxamine, Theophylline, Caffeine, 
Rifampicin, and Midazolam

Hannah Britz1, Nina Hanke1, Anke-Katrin Volz1, Olav Spigset2,3, Matthias Schwab4,5,6, Thomas Eissing7, Thomas Wendl7,  

Sebastian Frechen7 and Thorsten Lehr1,*

This study provides whole- body physiologically-based pharmacokinetic models of the strong index cytochrome P450 (CYP)1A2 

inhibitor and moderate CYP3A4 inhibitor fluvoxamine and of the sensitive CYP1A2 substrate theophylline. Both models were 

built and thoroughly evaluated for their application in drug– drug interaction (DDI) prediction in a network of perpetrator and 

victim drugs, combining them with previously developed models of caffeine (sensitive index CYP1A2 substrate), rifampicin 

(moderate CYP1A2 inducer), and midazolam (sensitive index CYP3A4 substrate). Simulation of all reported clinical DDI studies 

for combinations of these five drugs shows that the presented models reliably predict the observed drug concentrations, re-

sulting in seven of eight of the predicted DDI area under the plasma curve (AUC) ratios (AUC during DDI/AUC control) and seven 

of seven of the predicted DDI peak plasma concentration (C
max

) ratios (C
max

 during DDI/C
max

 control) within twofold of the 

observed values. Therefore, the models are considered qualified for DDI prediction. All models are  comprehensively docu-

mented and publicly available, as tools to support the drug development and clinical research community.

Cytochrome P450 (CYP)1A2 is an important enzyme for the 

metabolism of several endogenous substances (e.g., mel-

atonin), and it is involved in the elimination of 15% of all 

therapeutic drugs.1 CYP1A2 is exclusively expressed in the 

liver, where it accounts for about 13% of total CYP content 

in liver microsomes.2 The expression of CYP1A2 can be 

markedly induced by smoking, whereas rifampicin, a strong 

CYP3A4 inducer, shows only a moderate potential to in-

duce CYP1A2.1,3 Well- known substrates of CYP1A2 include 

caffeine and theophylline, which are mainly metabolized via 

CYP1A2 (fractions metabolized of 0.954 and 0.7,5,6 respec-

tively) and can, therefore, be used as sensitive CYP1A2 

substrates to evaluate the activity of CYP1A2 in vivo .7 The 

most important inhibitor of CYP1A2 is fluvoxamine.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

✔  Physiologically-based pharmacokinetic (PBPK) mod-

els are a valuable tool to investigate and predict the drug–

drug interaction (DDI) potential of investigational drugs. A 

publicly available library of thoroughly and transparently 

evaluated models of relevant perpetrator and victim drugs 

used in clinical studies is needed to accelerate the drug 

development process.

WHAT QUESTION DID THIS STUDY ADDRESS?

✔  The aim of this study was to provide whole- body PBPK 

models of the most important cytochrome (CYP)1A2 per-

petrator and victim drugs and to evaluate them for their 

application in PBPK DDI modeling.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?

✔  This study provides publicly available and transpar-

ently built and evaluated PBPK models of fluvoxamine and 

theophylline. Both models integrate the current knowl-

edge on relevant pharmacokinetic (PK) mechanisms, in-

cluding the impact of different genotypes and smoking on 

the PK of fluvoxamine.

HOW MIGHT THIS CHANGE DRUG DISCOVERY, 

DEVELOPMENT, AND/OR THERAPEUTICS?

✔  The developed PBPK models are ready to use for their 

application in DDI modeling and might help to support the 

drug development process.
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The US Food and Drug Administration (FDA) specifies 

caffeine as a sensitive clinical index substrate and flu-

voxamine as a strong clinical index inhibitor for CYP1A2. 

Furthermore, they recommend considering a clinical study 

in smokers for investigational drugs that are CYP1A2 sub-

strates.8 Theophylline is classified as a sensitive clinical 

substrate and rifampicin as moderate clinical inducer of 

CYP1A2.9

Physiologically-based pharmacokinetic (PBPK) model-

ing is a valuable method, recognized by the FDA and the 

European Medicines Agency, to explore and quantitatively 

predict the pharmacokinetics (PK) of drugs, to evaluate 

drug–drug interactions (DDIs), and to support clinical study 

design, dose selection, and labeling.8,10–12 The FDA further-

more supports the prediction of DDI studies with weak and 

moderate index inhibitors and inducers as an alternative 

to prospective clinical studies, if the sponsors can demon-

strate adequate model performance using clinical data from 

DDI studies with strong index perpetrators.8

The aim of this study was to develop a PBPK DDI net-

work for CYP1A2 and thereby to extend the library of pub-

licly available PBPK models for DDI prediction.13,14 For this 

purpose, whole- body PBPK models of fluvoxamine and 

theophylline have been developed and existing models of 

Figure 1 Cytochrome P450 (CYP) 1A2 drug–drug interaction (DDI) network. Schematic illustration of the developed CYP1A2 DDI 
network with fluvoxamine and rifampicin as CYP1A2 perpetrator drugs and theophylline and caffeine as CYP1A2 victim drugs. 
Midazolam was used as CYP3A4 victim drug for fluvoxamine. Dark green lines indicate induction by rifampicin or smoking, and the 
red and orange lines indicate inhibition by fluvoxamine.

Figure 2 Fluvoxamine plasma concentrations. (a) Population predictions of selected fluvoxamine plasma concentration- time profiles 
compared with observed data in linear (left panel) and semilogarithmic plots (right panel). The upper panel shows i.v. application, 
the lower panel p.o. administration of fluvoxamine. Observed data are shown as dots ± SD.34,35 Population simulation arithmetic 
means are shown as lines; the shaded areas illustrate the 68% population prediction intervals. (b) Predicted compared with observed 
fluvoxamine plasma concentration values of all clinical studies. Line of identity and 0.5- fold to 2.0- fold acceptance limits are shown 
as black lines. The 0.8- fold to 1.25- fold limits are shown as grey lines. Details on dosing regimens and study populations are listed in 
Table S1a of Supplement S1. Predicted and observed pharmacokinetic parameters are summarized in Table S1d of Supplement S1.
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caffeine,15 rifampicin,13 and midazolam13 have been ex-

panded and coupled for mutual validation of the DDI per-

formance of these five models. The evaluation of the single 

models and of the network was accomplished by predic-

tion of multiple clinical DDI studies, demonstrating their 

performance with different victim or perpetrator drugs. 

Figure 1 shows the successfully developed CYP1A2 PBPK 

DDI network, with caffeine and theophylline as sensitive 

substrates, fluvoxamine as a strong inhibitor, and rifampi-

cin and smoking as moderate inducers (owing to the lack 

of strong CYP1A2 inducers). The evaluation of the final flu-

voxamine PBPK model, including the fluvoxamine fraction 

metabolized via CYP2D6, was supported by a post hoc  

population pharmacokinetic (PopPK) analysis to confirm 

the PBPK results concerning the impact of CYP2D6 poor 

metabolism and smoking on the metabolism of fluvoxam-

ine. The supplementary document (Supplement S1) to 

this paper was devised as comprehensive documentation 

and reference guide and provides detailed information on 

the single models and modeled DDI studies, including all 

model parameters, plots, and quantitative assessments of 

model performance.

METHODS

Software

PBPK modeling was performed with PK- Sim and MoBi 

modeling software version 7.3.0 (part of the Open Systems 

Pharmacology Suite,16 www.open-systems-pharmacology.

org). Parameter optimization was accomplished using the 

Monte Carlo algorithm implemented in PK- Sim. Sensitivity 

analysis was performed within PK- Sim. PopPK analysis was 

performed with NONMEM version 7.3 (ICON Development 

Solutions, Ellicott City, MD). Digitization of published plasma 

concentration- time profiles was accomplished using 

GetData Graph Digitizer version 2.26.0.20 (S. Fedorov). PK 

parameter analysis was performed with MATLAB version 

R2013b (The MathWorks, Natick, MA). Graphics were com-

piled with R version 3.5.1 (The R Foundation for Statistical 

Computing, Vienna, Austria) and RStudio version 1.1.453 

(RStudio, Boston, MA). SAS version 9.4 (SAS Institute, Cary, 

NC) was used for statistical analysis and graphics of the 

PopPK analysis.

PBPK model building

Fluvoxamine and theophylline PBPK model building was 

started with an extensive literature search to collect phys-

icochemical parameters, information on absorption, distri-

bution, metabolism, and excretion processes and clinical 

studies of i.v. and p.o. administration of fluvoxamine and 

theophylline in single- dose and multiple- dose regimens.

The PBPK models were built based on healthy individu-

als, using the reported mean values for age, weight, height, 

and genetic background for each study protocol. If no infor-

mation on these parameters could be found, a healthy male 

European individual, 30 years of age, with a body weight of 

73 kg and a height of 176 cm was used.

To model the specific metabolic clearance, relevant CYP 

enzymes were implemented in accordance with literature, 

using the PK- Sim expression database reverse transcription- 

polymerase chain reaction profiles17 to define their relative 

expression in the different organs of the body. For more de-

tails see Table S6 in Supplement S1. Glomerular filtration 

and enterohepatic cycling were enabled, as they are active 

under physiological conditions.

To build the data sets for PBPK modeling, the reported 

observed plasma concentration- time profiles were digi-

tized and divided into “training data set” and “test data 

set.” Model parameters that could not be informed from 

experimental reports were optimized by simultaneously fit-

ting the model to all measured plasma concentration- time 

profiles assigned to the training data set. To limit the pa-

rameters to be optimized during model building, the mini-

mal number of processes necessary was implemented into 

the model. Model evaluation was carried out based on the 

clinical data of the test data set. Descriptive (training data 

set) and predictive (test data set) performance of the model 

for all published clinical studies is transparently presented in 

Supplement S1.

PBPK model evaluation

Model performance was evaluated with different meth-

ods. The predicted population plasma concentration- time 

profiles were compared with the plasma concentration- 

time profiles observed in the clinical studies. Furthermore, 

predicted plasma concentration values of all studies were 

compared with the observed plasma concentrations in 

goodness- of- fit plots. In addition, the performance was 

evaluated by comparison of predicted to observed area 

under the plasma curve (AUC) and peak plasma concentra-

tion (C
max

) values. As quantitative measures of the descrip-

tive and predictive performance of the models, the mean 

relative deviation (MRD) according to Edginton et al. 18 and 

the geometric mean fold error (GMFE) were calculated. 

MRD was calculated for all observed plasma concentra-

tions according to Eq. 1.

with log
10

 c
obs

 = logarithm of the observed plasma concen-

tration, log
10

 c
pred

 = logarithm of the predicted plasma con-

centration, and N  = number of observed values. An MRD 

value ≤ 2 characterizes an adequate prediction.

(1)MRD=10x ;x=

�

∑N

i=1
( log10 cobs− log10cpred)

2

N

Figure 3 Theophylline plasma concentrations. (a) Population predictions of selected theophylline plasma concentration- time profiles 
compared with observed data in linear (left panel) and semilogarithmic plots (right panel). The upper panel shows i.v. application, the 
lower panel p.o. administration of theophylline. Observed data are shown as dots ± SD.36,37 Population simulation arithmetic means 
are shown as lines, and the shaded areas illustrate the 68% population prediction intervals. (b) Predicted compared with observed 
theophylline plasma concentration values of all clinical studies. Line of identity and 0.5- fold to 2.0- fold acceptance limits are shown 
as black lines. The 0.8- fold to 1.25- fold limits are shown as grey lines. Details on dosing regimens and study populations are listed in 
Table S2a of Supplement S1. Predicted and observed pharmacokinetic parameters are summarized in Table S2d of Supplement S1.
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The GMFE was calculated for all observed AUC and C
max

 

values according to Eq. 2.

with pred PK parameter = predicted AUC or C
max

 value, obs 

PK parameter = observed AUC or C
max

 value, and n  = num-

ber of studies. A GMFE value below two characterizes an 

adequate prediction.

PopPK model building and evaluation

Fluvoxamine PBPK model evaluation was supported by a 

post hoc  PopPK analysis to quantify the effect of CYP2D6 

poor metabolism and the impact of smoking on fluvoxam-

ine clearance and to compare the results to the effect sizes 

predicted by the PBPK model.

PopPK analysis, model evaluation, and simulation were 

performed using nonlinear mixed- effects modeling tech-

niques implemented in NONMEM. A full description of the 

PopPK methodology is available in Supplement S1.

DDI network building

In addition to the evaluation methods described above, a 

CYP1A2 DDI network was built to evaluate the DDI perfor-

mance of the developed models (Figure 1). Fluvoxamine 

was used as a CYP1A2 and CYP3A4 inhibitor theoph-

ylline and caffeine as CYP1A2 victim drugs, rifampicin 

as CYP1A2 and CYP2E1 inducer, and midazolam as a 

CYP3A4 victim drug. Mathematical implementation of 

the drug interaction processes in general is specified in 

Supplement S1. All induction and inhibition processes 

were modeled using interaction parameter values from in 

vitro  experimental reports without further adjustment or 

fitting.

DDI network evaluation

All predicted DDI simulations were evaluated by com-

parison of predicted vs. observed victim drug plasma 

concentration- time profiles alone and during co- 

administration, DDI AUC ratios (Eq. 3), and DDI C
max

 ra-

tios (Eq. 4).

As a quantitative measure of the prediction accuracy 

for each DDI interaction, GMFEs of the predicted DDI 

AUC ratios and DDI C
max

 ratios were calculated according 

to Eq. 2.

Sensitivity analysis

Sensitivity of the final PBPK models to single parame-

ters (local sensitivity analysis) was calculated, measured 

as relative changes of the AUC of one dosing interval in 

steady- state conditions for simulations of the highest rec-

ommended doses for fluvoxamine (300 mg once daily) and 

theophylline (500 mg once daily), respectively.

Parameters were included into the analysis if they have 

been optimized (Table S1b or S2b in Supplement S1), if 

they might have a strong influence due to calculation meth-

ods used in the model (fraction unbound) or if they had sig-

nificant impact in former models (solubility, blood/plasma 

ratio, and glomerular filtration rate fraction).

Sensitivity to a parameter is calculated as the ratio of the 

relative change of the simulated AUC to the relative variation 

of the parameter around the value used in the final model 

according to Eq. 5.

with S  = sensitivity of the AUC to the examined model pa-

rameter, ΔAUC = change of the AUC, AUC = simulated AUC 

with the original parameter value, Δp  = change of the exam-

ined model parameter value, and p  = original model param-

eter value. A sensitivity value of + 1.0 signifies that a 10% 

increase of the examined parameter causes a 10% increase 

of the simulated AUC.

Virtual population characteristics

To predict the variability of the simulated plasma 

concentration- time profiles, virtual populations of 100 in-

dividuals were generated, containing European, Asian, or 

Japanese individuals. The percentage of male and female 

individuals and the age and weight ranges were set cor-

responding with the reported demographics. If not speci-

fied, virtual populations containing 50 male and 50 female 

individuals 20–50 years of age were used, without spe-

cific body weight or height restriction as implemented in 

the software. For details on study populations see Tables 

S1a, S2a, S7a, S8a, S9a, and S10a in Supplement S1. 

In the generated virtual populations, corresponding organ 

volumes, tissue compositions, blood flow rates, etc. were 

varied by an implemented algorithm within the limits of the 

International Commission on Radiological Protection,19,20 

Tanaka and Kawamura,21 or Japanese22 databases. In ad-

dition, the reference concentrations of the implemented 

CYP enzymes were set to be distributed with the default 

variabilities for their expression available in PK- Sim. Table 

S6 in Supplement S1 summarized the implemented en-

zymes with their reference concentrations and variabilities.

With these populations, simulations were generated and 

compared with observed data. As the observed data were 

(2)
GMFE=10

�
∑
���
�
�
�

log10

�
pred PK parameter
obs PK parameter

��
�
�
���

�

∕n

(3)
DDI AUC ratio=

AUCvictim drug during coadministration

AUCvictim drug alone

(4)DDICmaxratio=

Cmax
victim drug during coadministration

Cmaxvictim drug alone

(5)S=

ΔAUC

AUC
∗

p

Δp

Figure 4 Plasma concentration- time profiles of the drug– drug interaction (DDI) network. Population predictions of selected plasma 
concentration- time profiles compared with observed data for the fluvoxamine- theophylline, rifampicin- theophylline, fluvoxamine- 
caffeine, and fluvoxamine- midazolam DDIs in linear (left panel) and semilogarithmic plots (right panel). Observed data are shown 
as dots ± SD.38-41 Population simulation arithmetic means are shown as lines, and the shaded areas illustrate the 68% population 
prediction intervals. Details on dosing regimens and study populations are listed in Tables S7a, S8a, S9a, and S10a of Supplement 
S1. Predicted and observed pharmacokinetic parameters are summarized in Tables S7b, S8b, S9b, and S10b of Supplement S1.
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reported in terms of arithmetic means and SDs, simulated 

68% population prediction intervals were plotted that corre-

spond to the range span of ± 1 SD around the mean assum-

ing normal distribution.

RESULTS

PBPK model building and evaluation

The final PBPK models of fluvoxamine and theophylline 

precisely describe and predict the plasma concentration- 

time profiles following i.v. and p.o. administration for a large 

range of administered doses.

Plots of population predicted compared with observed 

plasma concentration- time profiles of all studies obtained 

from literature are shown in linear as well as in semiloga-

rithmic plots in Figure 2a (selected fluvoxamine studies), 

Figure 3a (selected theophylline studies), and Figures 

S1a, S1b, S2a, and S2b of Supplement S1 (all studies). 

Goodness- of- fit plots are presented in Figure 2b (fluvox-

amine), Figure 3b (theophylline), and Figures S1c and S2c 

of Supplement S1. MRD values of all studies are listed in 

Tables S1c and S2c of Supplement S1.

Predicted compared with observed AUC and C
max

 values 

of all studies with calculated GMFEs are listed in Tables S1d 

and S2d of Supplement S1. Plots showing the correlation 

of predicted to observed AUC and C
max

 values of all studies 

are presented in Figures S1f and S2d of Supplement S1.

For fluvoxamine PBPK model development, 26 different 

clinical studies with PK blood sampling were used, with 

9 studies assigned to the training data set (Table S1a in 

Supplement S1). The fluvoxamine PBPK model applies me-

tabolism by CYP1A2, CYP2D6, and glomerular filtration.

To distinguish between fluvoxamine metabolism in 

CYP2D6 extensive metabolizers (EMs) and poor metab-

olizers (PMs), the CYP2D6 catalytic rate constant (k 
cat

) of 

PMs was set to zero. This assumption was made because 

CYP2D6 PMs were characterized by absent CYP2D6 enzy-

matic activity,23 which results in a predicted 1.5- fold increase 

of the fluvoxamine AUC in CYP2D6 PMs compared with 

CYP2D6 EMs (observed: 1.3- fold increase24). Population 

predictions of fluvoxamine plasma concentration- time pro-

files compared with observed data for CYP2D6 EMs and 

PMs are shown in Figure S1d of Supplement S1.

Furthermore, the final model is able to describe the influ-

ence of smoking on the PK of fluvoxamine. Smoking is the 

strongest known inducer of CYP1A2 and results in higher 

metabolism of CYP1A2 substrates.1 As no detailed infor-

mation on the frequency, duration, and amount of smoking 

was available from literature, the induction of CYP1A2 was 

implemented as a static 1.38- fold increase in enzyme activ-

ity. This factor was optimized based on the study of Spigset 

et al. ,25 resulting in a 39% reduction of the fluvoxamine AUC 

in smokers (observed: 31% reduction). Population predic-

tions of fluvoxamine plasma concentration- time profiles 

compared with observed data for nonsmokers and smok-

ers are shown in Figure S1e of Supplement S1. Drug- 

dependent parameters of the final fluvoxamine model are 

listed in Table S1b of Supplement S1. System- dependent 

parameters are given in Table S6 of Supplement S1.

Figure 5 Correlation of predicted to observed drug–drug interaction (DDI) area under the curve (AUC) ratios, and DDI peak plasma 
concentration (C

max
) ratios. The left panel illustrates the predicted compared with observed DDI AUC ratios, the right panel illustrates 

the predicted compared with observed DDI C
max

 ratios of the fluvoxamine- theophylline, rifampicin- theophylline, fluvoxamine- caffeine, 
and fluvoxamine- midazolam DDIs. Fluvoxamine interaction studies are shown as dots and rifampicin interaction studies are shown as 
triangles. The colors represent the different victim drugs. The line of identity and the 0.5- fold to 2.0- fold acceptance limits are shown 
as straight black lines. The curved grey lines are the prediction acceptance limits proposed by Guest et al. 42 Study references, dosing 
regimens, and values of predicted and observed DDI AUC ratios and DDI C

max
 ratios are listed in Table 1.
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Sensitivity analysis of a simulation of 300 mg fluvoxamine 

p.o. once daily with a sensitivity threshold of 0.5 reveals that 

the fluvoxamine model is sensitive to the values of lipophilic-

ity (optimized), CYP2D6 catalytic rate constant (optimized), 

CYP2D6 Michaelis- Menten constant (literature value), 

and fraction unbound (literature value; see Figure S1g of 

Supplement S1).

For theophylline PBPK model development, 40 differ-

ent clinical studies with PK blood sampling and additional 

fraction excreted unchanged to urine measurements and 

CYP1A2 fraction metabolized information were used, with 

13 clinical studies assigned to the training data set (Table 

S2a in Supplement S1). The theophylline PBPK model 

applies metabolism by CYP1A2, CYP2E1, and glomerular 

filtration with reabsorption in the renal tubulus.

In the model, CYP1A2 metabolizes theophylline with high 

affinity but low capacity, whereas CYP2E1 metabolizes the-

ophylline with low affinity and high capacity, as described 

in the literature,26 resulting in a good prediction of the ob-

served concentration dependency of theophylline metabo-

lism. About 95% of an administered theophylline dose are 

excreted with the urine but only 14–17% as unchanged 

drug.27,28 Due to the lack of valid in vitro  data on renal tubu-

lar re absorption transporters for theophylline, the glomerular 

filtration rate fraction was optimized to a value of 0.22 to 

describe the fraction of theophylline excreted unchanged to 

urine. Drug- dependent parameters of the final theophylline 

model are listed in Table S2b of Supplement S1. System- 

dependent parameters are given in Table S6 of Supplement 

S1.

Sensitivity analysis of a simulation of 500 mg theoph-

ylline p.o. once daily with a sensitivity threshold of 0.5 re-

veals that the theophylline model is sensitive to the values 

of fraction unbound (literature value), CYP1A2 catalytic 

rate constant (optimized), and CYP1A2 Michaelis- Menten 

constant (literature value; see Figure S2e of Supplement 

S1).

DDI network modeling

For the CYP1A2 DDI network modeling, eight different 

clinical DDI studies were available, consisting of two 

studies of fluvoxamine with theophylline, three studies 

Table 1 DDI AUC ratios, DDI C
max

 ratios, and GMFE values of DDI studies

Perpetrator 

drug 

Victim drug 

 

Observed 

DDI AUC 

ratio

Predicted 

DDI AUC 

ratio

Pred/Obs 

DDI AUC 

ratio

Observed 

DDI C
max

 

ratio

Predicted 

DDI C
max

 

ratio

Pred/Obs 

DD C
max

 

ratio

Reference 

 

Fluvoxamine Theophylline 

50 mg p.o., 

q.d./b.i.d.

3.21 mg/kg p.o.,  

s.d.

2.40 2.16 0.90 1.09 1.08 0.99 Orlando  

200643

50/100 mg 

p.o., q.d.

257 mg p.o.,  

s.d.

2.70 3.10 1.15 1.16 1.13 0.97 Rasmussen 

199738

GMFE (range) 1.13 (1.11–1.15) 1.02 (1.01–1.03)

Pred/Obs within twofold 2/2 2/2

Rifampicin Theophylline 

600 mg p.o.,  

q.d.

3.95 mg/kg i.v. 

(30 minutes)

0.83 0.87 1.05 0.98 Powell- Jackson  

198544

600 mg p.o.,  

q.d.

5.19 mg/kg i.v. 

(20 minutes)

0.81 0.71 0.89 1.19 0.98 0.82 Boyce  

198439

600 mg p.o.,  

q.d.

355.5 mg p.o., 

s.d.

0.87 0.75 0.87 0.90 0.89 0.99 Powell- Jackson 

198544

GMFE (range) 1.12 (1.05–1.16) 1.11 (1.01–1.21)

Pred/Obs within twofold 3/3 2/2

Fluvoxamine Caffeine 

50/100 mg 

p.o.,  

q.d.

200 mg p.o.,  

s.d.

5.40 4.99 0.92 1.06 1.07 1.01 Jeppesen 

199640

100 mg p.o.,  

b.i.d

250 mg p.o.,  

s.d.

14.90 7.03 0.47 1.44 1.06 0.74 Culm- Merdek 

200545

GMFE (range) 1.51 (1.08–2.12) 1.17 (1.01–1.36)

Pred/Obs within twofold 1/2 2/2

Fluvoxamine Midazolam 

50 mg p.o.,  

b.i.d.

10 mg p.o.,  

s.d.

1.38 1.51 1.09 1.40 1.34 0.95 Lam  

200341

GMFE 1.09 1.04

Pred/Obs within twofold 1/1 1/1

AUC, area under the plasma concentration- time curve; C
max

, peak plasma concentration; DDI, drug- drug interaction; GMFE, geometric mean fold error; 

Pred/Obs, predicted/observed; -, no data available.
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of rifampicin with theophylline, two studies of fluvox-

amine with caffeine, and one study of fluvoxamine with 

midazolam. The victim drug plasma concentration- time 

profiles of these studies, before and during perpetrator 

treatment, were predicted and compared with observed 

data. Tables S7a, S8a, S9a, and S10a of Supplement 

S1 list the administration protocols and study popula-

tion details of the clinical DDI studies. The parameters 

to model the CYP1A2, CYP2E1, and CYP3A4 induction 

and inhibition processes are described in Supplement 

S1. Population predictions of plasma concentration- time 

profiles of the different victim drugs before and during 

co administration are presented in linear as well as semi-

logarithmic plots in Figure 4 (selected studies) and 

Figures S7a, S8a, S9a, and S10a of Supplement S1 

(all studies). All victim drug plasma concentration- time 

profiles before and during co administration with fluvox-

amine or rifampicin are well- predicted over the full range 

of reported administration protocols.

Figure 5 shows the correlation of predicted to observed 

DDI AUC ratios and DDI C
max

 ratios of the modeled DDI 

studies as a visualization of the performance of the entire 

network. Table 1 lists the corresponding DDI AUC ratio and 

DDI C
max

 ratio values shown in Figure 5, with calculated 

GMFE values for each perpetrator– victim drug combina-

tion, demonstrating the good performance of the developed 

models when applied for DDI prediction.

PopPK modeling of fluvoxamine

The PK of fluvoxamine were best described by a one- 

compartment model with zero- order absorption with a lag 

time and linear elimination from the central compartment. 

As shown in Table S11 of Supplement S1, parameter es-

timates were precise. Goodness- of- fit plots (Figure S11a 

in Supplement S1) and visual predictive checks (Figure 

S11b in Supplement S1) demonstrate the good descriptive 

performance of the model.

The impact of CYP2D6 phenotype on total clearance of 

fluvoxamine was best described as a categorical covariate. 

Volunteers who are CYP2D6 PMs show a 22% lower total 

clearance of fluvoxamine compared with EMs. Furthermore, 

fluvoxamine clearance was found to be 28% higher in smok-

ers compared with nonsmokers.

DISCUSSION

The developed PBPK models of fluvoxamine and theophyl-

line reliably describe and predict plasma concentration- time 

profiles over the full range of published doses and admin-

istration protocols. Their good descriptive and predictive 

performance has been demonstrated by comparison of 

predicted to observed plasma concentration- time profiles, 

AUC and C
max

 values, calculation of MRDs and GMFEs, 

as well as with the prediction of different DDIs. Although 

the populations used for model predictions were carefully 

generated according to the reported study demographics, 

CYP1A2 and CYP2D6 show high interindividual variability, 

and information on smoking status and CYP2D6 phenotype 

were lacking in most of the study reports. This could explain 

why a small percentage of the fluvoxamine and theophylline 

studies cannot be accurately predicted using the same k
cat

 

values for all studies.

There are two previously published PBPK models of flu-

voxamine: a minimal PBPK model (three compartments)29 

and a model built on the basis of few clinical studies (four 

studies).30 For theophylline, one PBPK model has been 

previously reported, developed to predict the disposition 

of theophylline during pregnancy.31 All three models have 

not been challenged by prediction of DDIs. The whole- 

body PBPK models presented in this study have been 

built using a multitude of clinical studies, are transpar-

ently documented, and they have been evaluated in a DDI  

network.

To describe the metabolism of fluvoxamine, CYP1A2 

and CYP2D6 were implemented into the PBPK model. 

Model building was started with the working hypothesis 

that CYP2D6 accounts for up to 60% of fluvoxamine me-

tabolism.32 However, our PBPK analysis suggested a higher 

fraction of fluvoxamine metabolized by CYP1A2 than by 

CYP2D6. This result was supported by the finding that flu-

voxamine total apparent clearance (CL/F) in CYP2D6 PMs 

(no CYP2D6 activity) was only 25% lower than in CYP2D6 

EMs.32 (Taking into account that CYP2D6 is also expressed 

in the intestine, CYP2D6 PMs might show a higher bioavail-

ability of fluvoxamine, reducing CL/F, and thereby further 

reducing the impact of CYP2D6 poor metabolism on fluvox-

amine clearance.)

To confirm this relatively small impact of CYP2D6 poor 

metabolism on fluvoxamine PK, a PopPK analysis of fluvox-

amine was conducted. The reduction of fluvoxamine CL/F in 

CYP2D6 PMs compared with EMs was quantified at 22%. 

This is the first reported compartmental analysis of fluvoxam-

ine, which is in very good agreement with the noncompart-

mental result for reduction of CL/F in CYP2D6 PMs of 25%.32

Simulation of fluvoxamine fraction metabolized using 

the final PBPK model and a single dose of 50 mg predicts 

fractions metabolized of 20% by CYP2D6 and of 71% by 

CYP1A2, which is very close to the PopPK analysis result. 

Neither fraction metabolized information nor the CYP2D6 

PM fluvoxamine plasma profiles were used during the final 

PBPK model parameter optimization. Fitting the catalytic 

rate constants of CYP2D6 and CYP1A2 and, therefore, 

the contribution of both enzymes to fluvoxamine metab-

olism to get a good description of the nonlinear PK of 

fluvoxamine for the different doses administered already 

resulted in a model that accurately describes the fractions 

metabolized.

The inducing effect of smoking on the metabolism of flu-

voxamine is also well- described by the PBPK model, with 

AUC ratios smoking/nonsmoking of 0.61 predicted and 0.69 

observed. The fluvoxamine PopPK analysis gives a 28% 

higher CL/F of fluvoxamine in smokers compared with non-

smokers. The small overprediction of the fluvoxamine C
max

 

in smokers could be attributed to gastrointestinal effects of 

smoking that reduce the absorption of fluvoxamine but were 

not accounted for in the model. However, due to a lack of 

more detailed information on the frequency, duration, and 

amount of smoking, the induction of CYP1A2 could only 

be implemented as a static increase of the enzyme activity. 

To model this CYP induction in a mechanistic and dynamic 
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way, for example, to predict the return of CYP1A2 activity 

to baseline when smoking is stopped before a surgical in-

tervention, as well as to validate the estimated factor on 

CYP1A2 enzyme activity for the smoking population, more 

data are needed.

The developed theophylline model can be used for pre-

diction of plasma concentration- time profiles following i.v. 

administration or p.o. administration of syrup, solution, or 

immediate-release formulations. As the reported plasma 

concentration profiles of the different sustained release 

dosage forms strongly vary with the mechanism used for 

prolongation of drug release, sustained release or enteric 

coated theophylline formulations were not considered in the 

current investigation. If needed, the model can be easily ex-

tended by implementation of sustained release drug disso-

lution profiles.33

The DDIs presented in this study have been modeled 

using reported experimental values to inform all neces-

sary interaction parameters. This approach is followed as 

an additional means of model evaluation, predicting all 

available reported clinical DDI studies, and comparing the 

observed data to model predictions. The caffeine,15 rifam-

picin,13 and midazolam13 PBPK models applied have been 

evaluated and described elsewhere. The existing rifampi-

cin model has been extended to predict the induction of 

CYP1A2 and CYP2E1 by rifampicin. The DDI performance 

of the enhanced rifampicin model has been successfully 

evaluated with the data of three different clinical rifampicin- 

theophylline DDI studies.

The presented CYP1A2 DDI network demonstrates the 

good performance of all models for DDI prediction over the full 

range of reported DDI study protocols. This has been shown 

by victim drug concentration- time profiles, DDI AUC ratios, 

DDI C
max

 ratios, and corresponding GMFE values. All DDIs of 

fluvoxamine with the sensitive CYP1A2 victim drugs theoph-

ylline and caffeine are well predicted. The moderate inhibition 

of CYP3A4 by fluvoxamine was successfully implemented 

and evaluated by prediction of the fluvoxamine- midazolam 

DDI. Due to the present lack of models for CYP2C19 victim 

drugs, the strong inhibition of CYP2C19 by fluvoxamine could 

not be tested. However, fluvoxamine CYP2C19 interaction 

parameters are reported and can be easily implemented into 

the presented fluvoxamine PBPK model.

In summary, a PBPK CYP1A2 DDI network has been suc-

cessfully developed. Whole- body PBPK models of fluvoxam-

ine and theophylline have been carefully built and evaluated 

by DDI prediction using different kinds of perpetrator (induc-

tion, competitive inhibition, and mixed inhibition) and victim 

drugs (CYP1A2 and CYP3A4). Furthermore, a previously 

developed model of rifampicin has been expanded with pa-

rameters for CYP1A2 and CYP2E1 interaction and tested. 

The resulting PBPK network of fluvoxamine, theophylline, 

caffeine, rifampicin, and midazolam adequately predicts the 

observed data of all clinical DDI studies reported for combi-

nations of these drugs and, therefore, all models are consid-

ered ready to use for DDI prediction. The newly developed 

models of fluvoxamine and theophylline are transparently 

documented and the model files, also including DDI model 

files, are provided as Supplementary Material to this paper 

(Data  S1-S6) as well as in the Open Systems Pharmacology 

repository (www.open-systems-pharmacology.org), to ex-

tend the library of publicly available PBPK models for DDI 

prediction. They can be applied to help understand and 

characterize the DDI potential of investigational drugs, to in-

form the design of clinical trials, or to generate dose recom-

mendations for comedication.

Supporting Information. Supplementary information accompa-

nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 

website (www.psp-journal.com).

Supplement S1. Model information and evaluation.

Data S1. Fluvoxamine model file.

Data S2. Theophylline model file.

Data S3. Fluvoxamine- theophylline DDI model file.

Data S4. Rifampicin- theophylline DDI model file.

Data S5. Fluvoxamine- caffeine DDI model file.

Data S6. Fluvoxamine- midazolam DDI model file.
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1 Mathematical implementation of drug-drug interactions  

 

1.1 DDI modelling: Mixed inhibition 

In the case of mixed inhibition, the inhibitor can bind reversibly to the enzyme in a competitive 

manner or to the enzyme-substrate complex in an uncompetitive manner. Substrate and 

inhibitor have different binding sites on the enzyme. Equations (1) and (2) describe the 

changes in Michaelis-Menten constant (KM) and maximal reaction velocity (Vmax) in the 

presence of a mixed inhibitor: 

 

KM,app= KM *  
1 + [I]

KIc

1 + [I]
KIu

       (1) 

 

Vmax,app= Vmax

1 + [I]
KIu

        (2) 

 

with KM,app = apparent Michaelis-Menten constant in the presence of a mixed inhibitor, KM = 

Michaelis-Menten constant, [I] = inhibitor concentration, KIc = dissociation constant of the 

competitive inhibitor-enzyme complex, KIu = dissociation constant of the uncompetitive 

inhibitor-(enzyme-substrate) complex, Vmax,app = apparent maximum reaction velocity in the 

presence of a mixed inhibitor, Vmax = maximum reaction velocity.  

 

 

1.2 DDI modelling: Competitive inhibition  

In the case of competitive inhibition, the inhibitor binds reversibly to the enzyme. Substrate 

and inhibitor compete for free enzyme and the inhibitor can be replaced by high substrate 

concentrations. The apparent maximum reaction velocity remains constant and Equation (3) 

describes the increase in KM for the substrate in the presence of a competitive inhibitor:  

 

KM,app= KM * (1 + [I]
Ki

)        (3) 

 

with KM,app = Michaelis-Menten constant in the presence of inhibitor, KM = Michaelis-Menten 

constant in the absence of inhibitor, [I] = free inhibitor concentration, Ki = dissociation 

constant of the inhibitor-enzyme complex.  

 

 

1.3 DDI modelling: Induction  

In the case of enzymes or transporters induction, the protein synthesis rate (Rsyn) in enzyme 

turnover equation is replaced by the apparent protein synthesis rate in the presence of an 

inducer (Rsyn,app), described by Equations (4) and (5): 

 

d[E]
dt

= Rsyn,app- kdeg* [E]       (4) 
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Rsyn,app= Rsyn* (1 + Emax * [I]
EC50 + [I])       (5) 

 

with d[E]/dt = enzyme or transporter turnover, Rsyn,app = rate of enzyme or transporter 

synthesis in the presence of an inducer, kdeg = degradation rate constant, [E] = enzyme or 

transporter concentration, Rsyn = rate of enzyme or transporter synthesis in the absence of 

inducer, Emax = maximal induction effect in vivo, [I] = free inducer concentration, EC50 = 

concentration for half-maximal induction in vivo.  
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2 PBPK model development 

 

2.1 PBPK model development - general 

Physiologically-based pharmacokinetic (PBPK) models of the cytochrome P450 (CYP) 1A2 

perpetrator drug fluvoxamine and of the CYP1A2 substrate theophylline were developed with 

clinical data of healthy subjects, covering the full dosing range of reported studies for 

intravenous as well as oral administration. Previously developed models of the CYP1A2 

substrate caffeine, the CYP1A2 inducer rifampicin and the CYP3A4 substrate midazolam (a 

fluvoxamine victim drug) were used to build a CYP1A2 DDI network.  

The following sections on fluvoxamine (Section 2.2) and theophylline (Section 2.3) model 

development present figures showing plasma concentration-time profiles of population 

predictions compared to observed data for all available studies in linear and semilogarithmic 

plots (Figures S1a, S1b, S1d, S1e, S2a and S2b), goodness of fit plots to compare predicted to 

observed plasma concentration values (Figures S1c and S2c), figures showing predicted 

compared to observed area under the plasma concentration-time curve (AUC) and peak 

plasma concentration (Cmax) values (Figures S1f and S2d), and bar graphs illustrating sensitivity 

analysis results (Figures S1g and S2e). They also contain study tables with details on the clinical 

studies used for model development (Tables S1a and S2a), PBPK model parameter tables with 

drug-dependent parameters of the final models (Tables S1b and S2b), tables of mean relative 

deviation (MRD) values for all observed plasma concentrations obtained from clinical studies 

(Tables S1c and S2c) and tables listing predicted and observed AUC and Cmax values together 

with calculated geometric mean fold error (GMFE) (Tables S1d and S2d).  

Sections 2.4, 2.5 and 2.6 summarize the drug-dependent parameters of previously developed 

caffeine, rifampicin and midazolam PBPK models that were applied for DDI prediction in this 

study (Tables S3, S4 and S5) 1,2.  

System-dependent parameters, such as reference concentrations (concentration in the tissue 

with the highest expression) and tissue expression profiles of metabolizing enzymes and 

transporters, are listed in Table S6.  
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2.2 Fluvoxamine model development 

Fluvoxamine is a selective serotonin reuptake inhibitor used to treat major depression and 

obsessive compulsive disorder 3,4. Recommended doses are 50 to 300 mg once daily. The 

pharmacokinetics of orally administered single doses are linear. Following multiple oral 

administration, the pharmacokinetics at steady-state become non-linear, due to saturable 

Michaelis-Menten kinetics of the metabolic pathways 5. Metabolism of fluvoxamine includes 

hydroxylation via CYP1A2 and O-demethylation via the very polymorphic CYP2D6 6,7. Following 

oral administration fluvoxamine is excreted via the urine as metabolites 8. The U.S. Food and 

Drug Administration (FDA) recommends fluvoxamine as strong clinical CYP1A2 and CYP2C19 

index inhibitor to evaluate the impact of CYP1A2/CYP2C19 inhibition on CYP1A2/CYP2C19 

substrates 9. Furthermore, the FDA lists fluvoxamine as moderate CYP3A4 inhibitor.  

The fluvoxamine PBPK model was developed using 26 different clinical studies with 

pharmacokinetic (PK) blood sampling. These studies include 1 study of 30 mg fluvoxamine 

administered intravenously (iv) as a single-dose, and 25 studies of fluvoxamine administered 

orally (po) in single- or multiple-doses. In the single-dose (s.d.) po studies fluvoxamine was 

administered in doses of 25 - 200 mg. In the multiple-dose po studies fluvoxamine was 

administered once (q.d.) or twice daily (b.i.d.), in doses of 10 - 150 mg per administration. 

Details on dosing regimens, patient demographics and literature references of these studies 

are listed in Table S1a. The final fluvoxamine PBPK model applies metabolism by CYP1A2, 

CYP2D6 and glomerular filtration. Drug-dependent parameters are summarized in Table S1b. 

System-dependent parameters are given in Table S6.  

The good descriptive and predictive performance of the final fluvoxamine PBPK model is 

demonstrated in linear (Figure S1a) as well as semilogarithmic plots (Figure S1b) of population 

predicted compared to observed plasma concentration-time profiles of all clinical studies. 

Figure S1c shows predicted versus observed plasma concentration values in a goodness of fit 

plot. Linear and semilogarithmic plots of population predicted compared to observed plasma 

concentration-time profiles of CYP2D6 extensive (EMs) and poor metabolizers (PMs) are 

presented in Figure S1d. Population predicted compared to observed plasma concentration-

time profiles of non-smokers and smokers are illustrated in Figure S1e. Calculated MRD values 

are presented in Table S1c. Furthermore, predicted and observed AUC and Cmax values of 

fluvoxamine with calculated GMFEs are presented in Table S1d and Figure S1f.  

Sensitivity analysis results of a simulation of 300 mg fluvoxamine po q.d. are illustrated in 

Figure S1g. The fluvoxamine model is sensitive to the values of lipophilicity (optimized), 

CYP2D6 catalytic rate constant (optimized), CYP2D6 Michaelis-Menten constant (literature 

value) and fraction unbound (literature value).  
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Figure S1a. Fluvoxamine (iv, po) linear. Population predictions of fluvoxamine plasma 

concentration-time profiles compared to observed data. Observed data are shown as triangles 

(training dataset) or dots (test dataset) ± SD. Population simulation arithmetic means are 

shown as lines; the shaded areas illustrate the 68% population prediction intervals. Details on 

dosing regimens, study populations and literature references are listed in Table S1a. Predicted 

and observed PK parameters are summarized in Table S1d.  
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Figure S1b. Fluvoxamine (iv, po) semilogarithmic. Population predictions of fluvoxamine 

plasma concentration-time profiles compared to observed data. Observed data are shown as 

triangles (training dataset) or dots (test dataset) ± SD. Population simulation arithmetic means 

are shown as lines; the shaded areas illustrate the 68% population prediction intervals. Details 

on dosing regimens, study populations and literature references are listed in Table S1a. 

Predicted and observed PK parameters are summarized in Table S1d. 
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Figure S1c. Goodness of fit plot. Predicted compared to observed fluvoxamine plasma 

concentration values of all clinical studies. Line of identity and 0.5- to 2.0-fold acceptance 

limits are shown as black lines. The 0.8- to 1.25-fold limits are shown as grey lines. Details on 

dosing regimens, study populations and literature references are listed in Table S1a. Predicted 

and observed PK parameters are summarized in Table S1d. 
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Figure S1d. Fluvoxamine (po) in CYP2D6 extensive and poor metabolizers. Population 

predictions of fluvoxamine plasma concentration-time profiles in CYP2D6 extensive (EMs) and 

poor metabolizers (PMs) compared to observed data in linear (left panel) and semilogarithmic 

(right panel) plots. Observed data are shown as squares (EMs) or asterisks (PMs). Population 

simulation arithmetic means are shown as black (EMs) or brown (PMs) lines; the shaded areas 

illustrate the respective 68% population prediction intervals. Details on dosing regimens, 

study populations and literature references are listed in Table S1a. Predicted and observed PK 

parameters are summarized in Table S1d.  
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Figure S1e. Fluvoxamine (po) in non-smokers and smokers. Population predictions of 

fluvoxamine plasma concentration-time profiles in non-smokers and smokers compared to 

observed data in linear (left panel) and semilogarithmic (right panel) plots. Observed data are 

shown as diamonds (non-smokers) or open triangles (smokers). Population simulation 

arithmetic means are shown as dark grey (non-smokers) or violet (smokers) lines; the shaded 

areas illustrate the 68% population prediction intervals. Details on dosing regimens, study 

populations and literature references are listed in Table S1a. Predicted and observed PK 

parameters are summarized in Table S1d. 
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Figure S1f. Predicted compared to observed AUC and Cmax values. Predicted compared to 

observed fluvoxamine AUC values (left) and Cmax values (right) of all clinical studies. Line of 

identity and 0.5- to 2.0-fold acceptance limits are shown as black lines. The 0.8- to 1.25-fold 

limits are shown as grey lines. Details on dosing regimens, study populations and literature 

references are listed in Table S1a. Predicted and observed PK parameters are summarized in 

Table S1d. 
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Figure S1g. Fluvoxamine model sensitivity analysis. Sensitivity of the model to single 

parameters, measured as change of the simulated AUC under steady-state conditions of a 300 

mg po q.d. fluvoxamine regimen. A sensitivity value of + 1.0 signifies that a 10% increase of 

the examined parameter causes a 10% increase of the simulated AUC. CYP1A2, cytochrome 

P450 1A2; CYP2D6, cytochrome P450 2D6; GFR, glomerular filtration rate; kcat, catalytic rate 

constant; KM, Michaelis-Menten constant; Spec. intest. perm., specific intestinal permeability. 
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2-18 

 

Table S1c. Mean relative deviation values of fluvoxamine plasma concentration predictions 
Dose [mg] Route n CYP2D6 phenotype [%] Smokers [%] MRD Reference 

30 iv (60 min), s.d. 17 - - 1.13 Japanese Society 2015 10 

25 po (sol), s.d. 10 - - 1.23 de Vries 1993 12 

25 po (tab), s.d. 6 - - 1.31 Japanese Society 2015 10 

50 po (sol), s.d. 10 - - 1.29 de Vries 1993 12 

50 po (tab), s.d. 5 EM 50 2.53 Fukasawa 2006 13 

50 po (tab), s.d. 12 - - 1.44 Japanese Society 2015 10 

50 po (tab), s.d. 12 EM 50 3.39 Kunii 2005 14 

50 po (tab), s.d. 6 - - 1.70 Orlando 2010 15 

50 po (tab), s.d. 10 - - 1.36 van Harten 1991 18 

50 po (tab), b.i.d. 5 - - 1.27 de Vries 1992 12 

100 po (tab), s.d. 12 - - 1.34 Bahrami 2007 19 

100 po (caps), s.d. 6 - - 1.31 de Bree 1983 8 

100 po (sol), s.d. 10 - - 1.27 de Vries 1993 12 

100 po (tab), s.d. 60 - - 1.45 Japanese Society 2015 10 

150 po (-), b.i.d. 24 EM - 1.07 Labellarte 2004 20 

200 po (tab), s.d. 10 - - 1.56 Japanese Society 2015 10 

12.5/25/50/100 po (tab), b.i.d. 12 EM: 80, PM: 20 0 1.22 Spigset 1998 5 

50/100 po (tab), q.d. 6 - 50 1.32 Fleishaker 1994 21 

   MRD (range) 1.51 (1.07-3.39)   

   MRD < 2 16/18 studies   

caps, capsule; CYP2D6, cytochrome P450 2D6; EM, extensive metabolizers; iv, intravenous; MRD, mean relative deviation; n, number 

of individuals studied; PM, poor metabolizers; po, oral; Route, route of administration; sol, solution; tab, tablet; -, no data available. 
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2.3 Theophylline model development 

Theophylline is a methylxanthine and a therapeutic for the treatment of asthma and obstructive 

pulmonary disease 31. Recommended doses are between 11 and 13 mg/kg body weight, to achieve 

theophylline plasma concentrations of 8 to 20 µg/ml 32. Metabolism of theophylline includes 8-

hydroxylation by CYP1A2 or CYP2E1 as well as demethylation by CYP1A2 33, resulting in a fraction 

metabolized via CYP1A2 of 0.7 34,35. About 95% of an administered theophylline dose are excreted 

with the urine, but only 14 - 17% as unchanged drug 36,37. The FDA lists theophylline as a sensitive 

clinical CYP1A2 substrate 38. 

The theophylline PBPK model was developed using 40 different clinical studies with PK blood 

sampling. These studies include 19 studies of theophylline administered iv as a single-dose, and 21 

studies of theophylline administered po in single- or multiple-doses. In the single-dose iv studies 

theophylline was administered in doses of 2.37 mg/kg - 426.6 mg. In the single-dose po studies 

theophylline was administered in doses of 3.1 mg/kg - 500 mg. In the multiple-dose po studies 

theophylline was administered three times daily (t.i.d.) in doses of 158 - 200 mg per administration. 

Analyzing all 40 studies used for PBPK model development, the pharmacokinetics of theophylline 

were found to be linear. In addition to plasma concentration-time profiles, the training dataset of 

the theophylline model included fraction excreted unchanged to urine measurements and CYP1A2 

fraction metabolized information. Details on dosing regimens, patient demographics and literature 

references of these studies are listed in Table S2a. The final theophylline PBPK model applies 

metabolism by CYP1A2, CYP2E1 and glomerular filtration with reabsorption in the renal tubules. 

Due to the lack of valid in vitro data on renal reabsorption transporters for theophylline, the 

glomerular filtration rate fraction was optimized to describe the fraction of theophylline excreted 

unchanged to urine. Drug-dependent parameters are summarized in Table S2b. System-dependent 

parameters are given in Table S6.  

The good descriptive and predictive performance of the final theophylline PBPK model is 

demonstrated in linear (Figure S2a) as well as semilogarithmic plots (Figure S2b) of population 

predicted compared to observed plasma concentration-time profiles of all clinical studies. Figure 

S2c shows predicted versus observed plasma concentration values in a goodness of fit plot. 

Calculated MRD values are presented in Table S2c. Furthermore, predicted and observed AUC and 

Cmax values of theophylline with calculated GMFEs are presented in Table S2d and Figure S2d.  

Sensitivity analysis results of a simulation of 500 mg theophylline po q.d. are illustrated in Figure 

S2e. The theophylline model is sensitive to the values of fraction unbound (literature value), CYP1A2 

catalytic rate constant (optimized) and CYP1A2 Michaelis-Menten constant (literature value).  
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Figure S2a. Theophylline (iv, po) linear. Population predictions of theophylline plasma 

concentration-time profiles compared to observed data. Observed data are shown as triangles 

(training dataset) or dots (test dataset) ± SD. Population simulation arithmetic means are shown as 

lines; the shaded areas illustrate the 68% population prediction intervals. Details on dosing 

regimens, study populations and literature references are listed in Table S2a. Predicted and 

observed PK parameters are summarized in Table S2d. 
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Figure S2b. Theophylline (iv, po) semilogarithmic. Population predictions of theophylline plasma 

concentration-time profiles compared to observed data. Observed data are shown as triangles 

(training dataset) or dots (test dataset) ± SD. Population simulation arithmetic means are shown as 

lines; the shaded areas illustrate the 68% population prediction intervals. Details on dosing 

regimens, study populations and literature references are listed in Table S2a. Predicted and 

observed PK parameters are summarized in Table S2d. 
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Figure S2c. Goodness of fit plot. Predicted compared to observed theophylline plasma 

concentration values of all clinical studies. Line of identity and 0.5- to 2.0-fold acceptance limits are 

shown as black lines. The 0.8- to 1.25-fold limits are shown as grey lines. Details on dosing regimens, 

study populations and literature references are listed in Table S2a. Predicted and observed PK 

parameters are summarized in Table S2d.  
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Figure S2d. Predicted compared to observed AUC and Cmax values. Predicted compared to observed 

theophylline AUC values (left panel) and Cmax values (right panel) of all clinical studies. Line of 

identity and 0.5- to 2.0-fold acceptance limits are shown as black lines. The 0.8- to 1.25-fold limits 

are shown as grey lines. Details on dosing regimens, study populations and literature references are 

listed in Table S2a. Predicted and observed PK parameters are summarized in Table S2d. 
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Figure S2e. Theophylline model sensitivity analysis. Sensitivity of the model to single parameters, 

measured as change of the simulated AUC under steady-state conditions of a 500 mg po q.d. 

theophylline regimen. A sensitivity value of + 1.0 signifies that a 10% increase of the examined 

parameter causes a 10% increase of the simulated AUC. CYP1A2, cytochrome P450 1A2; CYP2E1, 

cytochrome P450 2E1; GFR, glomerular filtration rate; kcat, catalytic rate constant; KM, Michaelis-

Menten constant; Spec. intest. perm., specific intestinal permeability. 
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Table S2c. Mean relative deviation values of theophylline plasma concentration predictions 

Dose [mg] Dose [mg/kg] Route n Smokers [%] MRD Reference 

 2.37 iv (30 min), s.d. 6 0 1.71 McKinnon 1987 39 

 3.16 iv (20 min), s.d. 11 0 1.70 Jonkman 1989 40 

 3.94 iv (30 min), s.d. 10 0 1.34 Miyazawa 2002 41 

 3.95 iv (20 min), s.d. 10 - 1.25 Lin 1987 42 

 4.73 iv (30 min), s.d. 5 - 1.41 Ko 1999 43 - White CYP2C19 EMs 

 4.73 iv (30 min), s.d. 6 - 1.17 Ko 1999 43 - Korean CYP2C19 EMs 

 4.73 iv (30 min), s.d. 7 - 1.18 Ko 1999 43 - Korean CYP2C19 PMs 

 4.74 iv (30 min), s.d. 6 0 2.47 Schneider 1990 44 

 5.00 iv (30 min), s.d. 8 0 1.38 Prince 1989 45 

 5.01 iv (30 min),s.d. 25 0 1.80 Nix 1989 46 

125  iv (5 min), s.d. 5 0 1.38 Cusack 1980 47 

146  iv (30 min), s.d.* 12 - 2.51 Sörgel 1992 48 

197.5  iv (10 min), s.d. 10 - 1.23 Charles 1987 49 

250  iv (30 min), s.d. 6 0 1.42 Jonkman 1985b 50 

276.5  iv (30 min), s.d. 12 0 3.05 Macias 1998 36 - Group I 

276.5  iv (30 min), s.d. 7 0 1.52 Macias 1998 36 - Group II 

300  iv (bolus), s.d. 10 30 1.42 Sips 1984 51 

400  iv (30 min), s.d. 8 - 1.39 Oosterhuis 1992 52 

426.6  iv (5 h), s.d. 8 0 1.04 Jonkman 1984 53 

 3.10 po (sol), s.d. 8 0 1.62 Tornatore 1982 54 

 3.40 po (syr), s.d. 9 0 1.33 Batty 1995 55 

 5.00 po (sol), s.d. 10 20 1.21 Colli 1987 56 

 5.00 po (sol), s.d. 12 0 1.31 Manfredi 1981 57 

79  po (tab), s.d. 8 0 1.58 Kwon 2007 58 

100  po (-), s.d. 20 0 2.48 Peng 2003 59 

125  po (tab), s.d. 5 0 1.43 Cusack 1980 47 

125  po (tab), s.d. 8 0 2.06 Rovei 1982 37 

158  po (-), t.i.d. 10 0 1.34 Bowles 1988 60 

160  po (tab), s.d. 12 - 1.14 Upton 1980 61 

190  po (syr), s.d. 10 10 1.12 Trembath 1980 62 

200  po (tab), s.d. 14 0 1.23 Antal 1981 63 

200  po (tab), s.d. 14 0 1.31 Antal 1981 63 

200  po (-), t.i.d. 12 - 1.43 Fourtillan 1986 64 

200  po (caps), s.d. 18 0 1.23 Meyer 1999 65 

250  po (tab), s.d. 10 0 1.31 Brion 1989 66 

250  po (tab), s.d. 8 0 1.42 Rovei 1982 37 

270  po (sol), s.d. 8 0 1.47 Jonkman 1985c 67 

375  po (tab), s.d. 8 0 1.66 Rovei 1982 37 

480  po (tab), s.d. 20 0 2.17 Karim 1986 68  

500  po (tab), s.d. 8 0 1.31 Rovei 1982 37 

  Mean MRD (range) 1.54 (1.04-3.05) 

   MRD < 2 34/40 studies 

*, from day 1 to day 4 po administration of 146 mg theophylline b.i.d. and on day 5 iv administration; caps, capsule; CYP2C19, 

cytochrome P450 2C19; EMs, extensive metabolizers; iv, intravenous; MRD, mean relative deviation; n, number of individuals 

studied; PMs, poor metabolizers; po, oral; Route, route of administration; sol, solution; syr, syrup; tab, tablet; -, no data 

available. 
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2.4 Caffeine model development  

Caffeine is a methylxanthine and stimulant of the central nervous system. For the investigation of 

DDIs, caffeine is recommended by the FDA as sensitive clinical CYP1A2 index substrate 9. The 

caffeine PBPK model applied for DDI prediction is a template model integrated in the PK-Sim® 

modelling platform 1. The model incorporates metabolism via CYP1A2 and a first order renal plasma 

clearance process. Drug-dependent parameters of the caffeine template model are summarized in 

Table S3 1.  
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2.5 Rifampicin model development 

Rifampicin is an antibiotic used for the treatment of mycobacterium infections. It induces multiple 

metabolizing enzymes and transporters and is classified by the FDA as strong clinical index inducer 

of CYP2C19 and CYP3A4 and as moderate clinical index inducer of CYP1A2 38. The rifampicin PBPK 

model applied for DDI prediction has been developed previously 2, but was extended in this study 

by inclusion and evaluation of parameters to model the induction of CYP1A2 and CYP2E1. Drug-

dependent parameters of the extended rifampicin model are summarized in Table S4 2.  
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2.6 Midazolam model development 

Midazolam is a sedative and is exclusively metabolized via CYP3A4. The FDA lists midazolam as a 

sensitive clinical CYP3A4 index substrate for the investigation of DDIs 9. The midazolam PBPK model 

applied for DDI prediction has been described previously 2. Drug-dependent parameters of the 

midazolam model are summarized in Table S5 2.  
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2.7 System-dependent parameters  

System-dependent parameters, such as reference concentrations and tissue expression profiles of 

metabolizing enzymes and transporters, are listed in Table S6.  

Within virtual populations, the reference concentrations of the implemented enzymes and 

transporters were distributed according to the variabilities for enzyme expression provided in PK-

Sim. If no information was available in the modelling platform, they were set to be log-normally 

distributed according to literature reports or otherwise with a moderate geometric standard 

deviation of 1.4 (35 %CV).  

 

 

Table S6. System-dependent parameters, expression of ADME relevant proteins 
Protein Mean reference 

concentration  

[µmol protein/l  

in the tissue of  

highest expression] 

Geometric  

standard deviation  

of reference  

concentration 

Relative expression  

in the different organs  

(PK-Sim expression  

database profile) 

 

Half-life  

liver 

[hours] 

Half-life  

intestine 

[hours] 

AADAC 1.0 103 1.40 a RT-PCR 104 36  23  

CYP1A2 1.80 105 1.63 106 RT-PCR 107 39 23 

CYP2D6 0.40 105 2.49 106 RT-PCR 107 51 23 

CYP2E1 1.96 105 1.35 106 RT-PCR 107 20 23 

CYP3A4 4.32 105 1.18 liver,  

1.46 intestine 106 

RT-PCR 107 36 108 23 109 

OATP1B1 1.0 103 1.54 110 RT-PCR 111 36 23  

P-gp (efflux) 

 

 

1.41 optimized 

 

 

1.60 110 

 

 

RT-PCR 111, with the 

relative expression in  

intestinal mucosa 

increased  

by factor 3.57 (optimized)  

36 

 

 

23  

 

 

EHC continuous fraction: Fraction of biliary secreted compound directly entering the duodenum = 1 
a, CV of 35% assumed; AADAC, arylacetamide deacetylase; CYP1A2, cytochrome P450 1A2; CYP2D6, 

cytochrome P450 2D6; CYP2E1, cytochrome P450 2E1; CYP3A4, cytochrome P450 3A4; EHC, enterohepatic 

circulation; OATP1B1, organic anion transporting polypeptide 1B1; P-gp, P-glycoprotein; RT-PCR, reverse 

transcription-polymerase chain reaction profile. If no information on reference concentration was available, it 

was set to 1.0 μmol/l and the catalytic rate constant (kcat) was optimized according to 103. 
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3 DDI prediction  

 

3.1 DDI modelling - general  

All induction and inhibition processes were modelled using interaction parameter values from in 

vitro experimental reports. No co-administration studies were used for parameter optimization 

during the fluvoxamine and theophylline model building. The aim of this approach was, to evaluate 

the built models not only by their performance in the prediction of the test dataset studies, but also 

by the prediction of DDI studies 9,112–114. 

The expression and the activity of CYP1A2 are highly variable between individuals and populations 
115. Furthermore, the influence of polymorphisms, such as CYP1A2*1C and CYP1A2*1F, on the 

metabolism of CYP1A2 substrates has been investigated in different studies, but the clinical 

relevance of these genotypes has not been conclusively clarified 116–119. Since theophylline and 

caffeine are mainly metabolized via CYP1A2, indicated by fractions metabolized of 0.7 34,35 and 0.95 
120, respectively, a strong influence of the interindividual variability of CYP1A2 expression on the 

pharmacokinetics of the two drugs can be assumed. This effect is most likely more pronounced on 

caffeine due to its higher fraction metabolized via CYP1A2. For CYP3A4 and the sensitive clinical 

CYP3A4 index substrate midazolam, the same effects has been observed 121,122. 

The developed theophylline victim drug PBPK model shows a good descriptive and predictive 

performance for 34 of the 40 modelled theophylline studies (see Table S2c). Furthermore, the PBPK 

models of caffeine 1 and midazolam 2 have been thoroughly evaluated and showed a good 

performance. However, to model some of the reported DDI studies, the CYP1A2 or CYP3A4 kcat of 

the victim drugs was adjusted to describe the plasma concentration-time profiles of the control 

groups (no co-medication) and the adjusted kcat was then also used for the co-administration group 

(one of two fluvoxamine-theophylline studies, one of three rifampicin-theophylline studies, both 

fluvoxamine-caffeine studies and the fluvoxamine-midazolam study). After adaptation of either 

CYP1A2 or CYP3A4 kcat, the predicted DDI AUC ratios showed no relevant difference in comparison 

to the predicted DDI AUC ratios without adaptation of CYP1A2 or CYP3A4 kcat (documented in 3.2 to 

3.5). When applying the presented PBPK models for DDI prediction, adaptation of kcat values for 

variable CYP enzymes that account for a high fraction metabolized of a modeled drug (fm ≥ 0.7) to 
the control group of the analyzed study should be considered. 

Plots of population predicted compared to observed plasma concentration-time profiles and plots 

of predicted compared to observed DDI AUC ratios and DDI Cmax ratios of all fluvoxamine-

theophylline, rifampicin-theophylline, fluvoxamine-caffeine and fluvoxamine-midazolam DDIs 

that could be obtained from literature are shown in this supplementary document. Details on dosing 

regimens, study population characteristics and literature references of all clinical studies are 

summarized in Tables S7a, S8a, S9a and S10a. Predicted and observed DDI AUC and Cmax values and 

ratios as well as GMFE values are summarized in Tables S7b, S8b, S9b and S10b.  
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3.2 Fluvoxamine-theophylline DDI 

For fluvoxamine DDI modelling, the reported in vitro CYP inhibition constants were corrected for 

fluvoxamine binding in human liver microsomal preparations according to Yao et al. 26. To calculate 

the in vivo inhibition constant Ki, in vivo, the free fraction of fluvoxamine in the test system used to 

measure the Ki, in vitro has to be taken into account, see equation (6):  

 

 Ki, in vivo = fu,mic * Ki, in vitro       (6) 

 

with Ki, in vivo = inhibition constant used for DDI prediction, fu,mic = free fraction of fluvoxamine in the 

microsomal in vitro assay and Ki, in vitro = inhibition constant measured in vitro. 

The free fraction of fluvoxamine in the microsomal assay increases, as the microsomal protein 

concentration decreases, as described by equation (7):  

 

fu,mic = 0.195 * Cprot
- 0.686       (7) 

 

with Cprot = microsomal protein concentration in the microsomal assay 26.  

 

To predict the fluvoxamine-theophylline DDI, the Ki, in vitro = 11 nmol/l for fluvoxamine inhibition of 

CYP1A2 reported by Karjalainen et al. 25 was corrected according to equations (6) and (7) and the 

resulting Ki, in vivo = 10 nmol/l was used as KIc and KIu to model the mixed-inhibition of CYP1A2 by 

fluvoxamine.  

To adequately describe the plasma concentration-time profile of the control group in the study of 

Rasmussen et al. 123, the CYP1A2 kcat of the final theophylline model (6.48 min-1) was adjusted to 

16.01 min-1 to match the control group of this study. The predicted DDI AUC ratio changed from 

2.18 to 3.10. To model the fluvoxamine-theophylline interaction study of Orlando et al. 124, the 

original CYP1A2 kcat of the theophylline PBPK model was used. 

The fluvoxamine-theophylline DDI model shows a good performance predicting the theophylline 

plasma concentrations for the first 48 h after dosing. After 48 h, the theophylline clearance is 

overpredicted (see Figure S7a, lower panel). This limitation only causes negligible changes in 

theophylline AUC, but should be considered during the application of the fluvoxamine-theophylline 

DDI model. 

Plots of population predicted compared to observed theophylline plasma concentration-time 

profiles of all fluvoxamine-theophylline DDI studies obtained from literature are shown in linear and 

semilogarithmic plots in Figure S7a. A comparison of predicted to observed DDI AUC ratios and DDI 

Cmax ratios is shown in Figure S7b. Details on the two clinical studies are summarized in Table S7a. 

Predicted and observed AUC and Cmax values, DDI ratios and GMFE values are summarized in Table 

S7b.  
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Figure S7a. Fluvoxamine-theophylline DDI. Population predictions of theophylline plasma 

concentration-time profiles compared to observed data of the fluvoxamine-theophylline interaction 

in linear (left panel) and semilogarithmic plots (right panel). Observed data are shown as dark red 

(control) or red dots (DDI) ± SD. Population simulation arithmetic means are shown as dark red 

(control) or red lines (DDI); the shaded areas illustrate the respective 68% population prediction 

intervals. Details on dosing regimens, study populations and literature references are listed in Table 

S7a. Predicted and observed PK parameters are summarized in Table S7b. 
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Figure S7b. Correlation of predicted to observed DDI AUC ratios and DDI Cmax ratios. The left panel 

illustrates the predicted compared to observed DDI AUC ratios, the right panel illustrates the 

predicted compared to observed DDI Cmax ratios of the fluvoxamine-theophylline DDI. The line of 

identity and the 0.5- to 2.0-fold acceptance limits are shown as straight black lines. The curved grey 

lines are the prediction acceptance limits proposed by Guest et al. 125. Details on dosing regimens, 

study populations and literature references are listed in Table S7a. Predicted and observed PK 

parameters are summarized in Table S7b.  
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3.3 Rifampicin-theophylline DDI 

To predict the rifampicin-theophylline DDI, a previously developed PBPK model of rifampicin 2 was 

expanded with parameters to model the induction of CYP1A2 and CYP2E1. Induction of CYP1A2 and 

CYP2E1 was implemented using the same in vivo half-maximal induction concentration (EC50) of 0.34 

µmol/l as reported for the induction of CYP3A4 83,84. The maximal induction effect (Emax) for CYP1A2 

was set to 0.65 90 and for CYP2E1 to 0.8 91.  

To adequately describe the plasma concentration-time profile of the control group in the study of 

Boyce et al. 126, the CYP1A2 kcat of the final theophylline model (6.48 min-1) was adjusted to  

9.18 min-1 to match the control group of this study. The change in the predicted DDI AUC ratio was 

negligibly small, from 0.74 to 0.71. To model the rifampicin-theophylline interaction studies of 

Powell-Jackson et al. 127, the CYP1A2 kcat of the theophylline PBPK model was used. 

In one of the reported DDI studies, theophylline was administered orally as a sustained release 

formulation (Phyllocontin®) 127. To model this study, the effect of the sustained release on the 

plasma concentration-time profile was implemented using a Weibull function to slow down the 

theophylline dissolution 128. Fitting of the Weibull parameters to describe the theophylline plasma 

concentration-time profile of the control group resulted in a dissolution time of 113.49 min (50% 

dissolved) and a shape of 1.51, which were then implemented to simulate the theophylline PK of 

the control group and of the rifampicin-theophylline co-administration group of this study 127. 

Plots of population predicted compared to observed theophylline plasma concentration-time 

profiles of all rifampicin-theophylline DDI studies obtained from literature are shown in linear and 

semilogarithmic plots in Figure S8a. A comparison of predicted to observed DDI AUC ratios and DDI 

Cmax ratios is shown in Figure S8b. Details on the clinical studies are summarized in Table S8a. 

Predicted and observed AUC and Cmax values, DDI ratios and GMFE values are summarized in Table 

S8b.  
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Figure S8a. Rifampicin-theophylline DDI. Population predictions of theophylline plasma 

concentration-time profiles compared to observed data of the rifampicin-theophylline interaction 

in linear (left panel) and semilogarithmic plots (right panel). Observed data are shown as dark red 

(control) or red dots (DDI) ± SD. Population simulation arithmetic means are shown as dark red 

(control) or red lines (DDI); the shaded areas illustrate the respective 68% population prediction 

intervals. Details on dosing regimens, study populations and literature references are listed in Table 

S8a. Predicted and observed PK parameters are summarized in Table S8b. 
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Figure S8b. Correlation of predicted to observed DDI AUC ratios and DDI Cmax ratios. The left panel 

illustrates the predicted compared to observed DDI AUC ratios, the right panel illustrates the 

predicted compared to observed DDI Cmax ratios of the rifampicin-theophylline DDI. The line of 

identity and the 0.5- to 2.0-fold acceptance limits are shown as straight black lines. The curved grey 

lines are the prediction acceptance limits proposed by Guest et al. 125. Details on dosing regimens, 

study populations and literature references are listed in Table S8a. Predicted and observed PK 

parameters are summarized in Table S8b.  
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3.4 Fluvoxamine-caffeine DDI 

To predict the fluvoxamine-caffeine DDI, mixed-inhibition of CYP1A2 by fluvoxamine was modelled 

using KIc and KIu values of 10 nmol/l as described for the fluvoxamine-theophylline DDI.  

To adequately describe the plasma concentration-time profiles of the control groups in the studies 

of Jeppesen et al. 129 and Culm-Merdek et al. 130, the CYP1A2 kcat of the previously developed caffeine 

PBPK model (1.01 min-1) 1 was adjusted to 0.96 min-1 and 0.74 min-1, respectively, to match the 

control groups of these studies. The predicted DDI AUC ratio for Jeppesen et al. 129 remained the 

same, the predicted DDI AUC ratio for the study of Culm-Merdek et al. 130 changed from 6.91 to 

7.03. 

Plots of population predicted compared to observed caffeine plasma concentration-time profiles of 

all fluvoxamine-caffeine DDI studies obtained from literature are shown in linear and 

semilogarithmic plots in Figure S9a. A comparison of predicted to observed DDI AUC ratios and DDI 

Cmax ratios is shown in Figure S9b. Details on the two clinical studies are summarized in Table S9a. 

Predicted and observed AUC and Cmax values, DDI ratios and GMFE values are summarized in Table 

S9b.  
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Figure S9a. Fluvoxamine-caffeine DDI. Population predictions of caffeine plasma concentration-

time profiles compared to observed data of the fluvoxamine-caffeine interaction in linear (left 

panel) and semilogarithmic plots (right panel). Observed data are shown as dark green (control) or 

green dots (DDI) ± SD. Population simulation arithmetic means are shown as dark green (control) or 

green lines (DDI); the shaded areas illustrate the respective 68% population prediction intervals. 

Details on dosing regimens, study populations and literature references are listed in Table S9a. 

Predicted and observed PK parameters are summarized in Table S9b. 
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Figure S9b. Correlation of predicted to observed DDI AUC ratios and DDI Cmax ratios. The left panel 

illustrates the predicted compared to observed DDI AUC ratios, the right panel illustrates the 

predicted compared to observed DDI Cmax ratios of the fluvoxamine-caffeine DDI. The line of identity 

and the 0.5- to 2.0-fold acceptance limits are shown as straight black lines. The curved grey lines are 

the prediction acceptance limits proposed by Guest et al. 125. Details on dosing regimens, study 

populations and literature references are listed in Table S9a. Predicted and observed PK parameters 

are summarized in Table S9b.  
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3.5 Fluvoxamine-midazolam DDI 

To predict the fluvoxamine-midazolam DDI, competitive inhibition of CYP3A4 by fluvoxamine was 

modelled using a Ki of 1.6 µmol/l. This value was calculated with equations (6) and (7) using in vitro 

data from Olesen et al. 27 and dividing the calculated value by 10 as described by Yao et al. 26.  

To adequately describe the plasma concentration-time profile of the control group in the 

fluvoxamine-midazolam study of Lam et al. 131, the CYP3A4 kcat of the previously developed 

midazolam PBPK model (13.0 min-1) 2 was adjusted to 15.6 min-1 to match the control group of this 

study. The change in the predicted DDI AUC ratio was negligibly small, from 1.45 to 1.51. 

Plots of population predicted compared to observed midazolam plasma concentration-time profiles 

of the only fluvoxamine-midazolam DDI study available from literature are shown in linear and 

semilogarithmic plots in Figure S10a. A comparison of predicted to observed DDI AUC ratios and DDI 

Cmax ratios is shown in Figure S10b. Details on the clinical study are summarized in Table S10a. 

Predicted and observed AUC and Cmax values, DDI ratios and GMFE values are summarized in Table 

S10b.  
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Figure S10a. Fluvoxamine-midazolam DDI. Population predictions of midazolam plasma 

concentration-time profiles compared to observed data of the fluvoxamine-midazolam interaction 

in linear (left panel) and semilogarithmic plots (right panel). Observed data are shown as dark blue 

(control) or blue dots (DDI). Population simulation arithmetic means are shown as dark blue 

(control) or blue lines (DDI); the shaded areas illustrate the respective 68% population prediction 

intervals. Details on dosing regimens, study populations and literature references are listed in Table 

S10a. Predicted and observed PK parameters are summarized in Table S10b.  
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Figure S10b. Correlation of predicted to observed DDI AUC ratios and DDI Cmax ratios. The left panel 

illustrates the predicted compared to observed DDI AUC ratios, the right panel illustrates the 

predicted compared to observed DDI Cmax ratios of the fluvoxamine-midazolam DDI. The line of 

identity and the 0.5- to 2.0-fold acceptance limits are shown as straight black lines. The curved grey 

lines are the prediction acceptance limits proposed by Guest et al. 125. Details on dosing regimens, 

study populations and literature references are listed in Table S10a. Predicted and observed PK 

parameters are summarized in Table S10b. 
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4 Population pharmacokinetic modelling of fluvoxamine  

 

4.1 Objectives 

The objectives of this analysis were (1) the development of a population pharmacokinetic (PopPK) 

model of fluvoxamine after single oral administration in healthy volunteers, and (2) to evaluate the 

influence of CYP2D6 phenotype and cigarette smoking on fluvoxamine pharmacokinetics. 

Furthermore, it was examined which was the best predictor of the effect of CYP2D6 phenotype on 

fluvoxamine clearance: dextromethorphan metabolic ratio (MR) (linear or logarithmic values) or 

CYP2D6 phenotype used as categorical covariate. 

 

4.2 Methods 

Dataset 

Data from two studies assessing the pharmacokinetics of fluvoxamine in healthy volunteers were 

used for the population pharmacokinetic analysis. In the study of Spigset et al. 1997 17 the 

relationship between fluvoxamine pharmacokinetics and CYP2D6 phenotype (extensive or poor 

metabolizers) was investigated, whereas in the study of Spigset et al. 1995 16 the effect of cigarette 

smoking on fluvoxamine pharmacokinetics was examined. In both studies fluvoxamine was 

administered orally as a single dose of 50 mg to healthy female and male volunteers. Blood samples 

were taken pre-dose and 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24, 32, and 48 h after dosing. Plasma levels of 

fluvoxamine were determined by HPLC; the lower limit of quantification was 0.5 nmol/l. 

 

Model building and evaluation 

Population analysis, model evaluation and simulation were performed using non-linear mixed-

effects modelling techniques implemented in NONMEM. These allow estimation of population 

medians for pharmacokinetic model parameters with simultaneous quantification of interindividual 

variability (IIV) and residual (unexplained) variability. Model selection was based on the objective 

function value (OFV) provided by NONMEM, visual inspection of goodness of fit plots, precision of 

parameter estimates and visual predictive checks. A nested model was considered superior to 

another when the OFV was reduced by 3.84 units (χ² test statistic, p < 0.05, 1 degree of freedom).  

The two studies were analyzed separately using ADVAN6. The First-Order Conditional Estimation 

with Interaction (FOCE-I) method was applied. The structural base model building was performed 

sequentially for each study; linear one-, two- and three-compartment models were tested. Different 

absorption models, such as zero-order, first-order or mixed parallel zero- and first-order absorption 

processes were evaluated. Absorption lag was tested using a lag time or transit compartments. 

Saturable processes on absorption rates as well as on clearance were evaluated using Michaelis-

Menten kinetics.  

Based on the structural base model, IIVs were modelled exponentially and evaluated univariately. 

IIVs were added to the model if they improved the model in a statistically significant manner and if 

the parameter estimates of the model remained stable.  

The impact of CYP2D6 phenotype and smoking status as covariates was tested on absorption and 

clearance parameters of the fluvoxamine PopPK models. CYP2D6 phenotype was analyzed as 

continuous or as categorical covariate, using the dextromethorphan metabolic ratios as reported 

for each participant. Smoking status was analyzed as categorical covariate.  
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4.3 Results 

Study population 

The population of the study by Spigset et al. 1997 17 consisted of 10 young healthy volunteers, that 

were categorized by CYP2D6 phenotype. The only female and 4 of the male volunteers were 

phenotyped as CYP2D6 extensive metabolizers, whereas 5 males were characterized as CYP2D6 

poor metabolizers. All subjects were non-smokers. Mean age was 25 years and bodyweight ranged 

from 55 to 86 kg 17. 

The population of the study by Spigset et al. 1995 16 consisted of 24 young healthy volunteers, 

whereof 12 were non-smokers and 12 were smokers, with 5 females and 7 males in each group. All 

volunteers were characterized as CYP2D6 extensive metabolizers. Mean age was 36.5 years and 

bodyweight ranged from 51 to 95 kg 16.  

In each study one sample was missing and excluded from analysis. Overall, 139 and 311 fluvoxamine 

post-dose plasma concentrations were available for analysis, from the studies of Spigset et al. 1997 
17 and Spigset et al. 1995 16, respectively. 

 

Population pharmacokinetic model 

The pharmacokinetics of fluvoxamine in both studies were best described by a one-compartment 

model with zero-order absorption and linear elimination from the central compartment. As shown 

in Table S11, parameter estimates were precise with low to moderate relative standard errors. 

Diagnostic plots as presented by goodness of fit plots (Figure S11a) and visual predictive checks 

(Figure S11b) demonstrate that the data is adequately described.  

Parameter estimates for both studies are listed in Table S11. Zero-order input time differed slightly 

between both studies with 1.53 hours and 3.51 hours, respectively. Absorption lag time was 

estimated at 2.75 hours and 1.79 hours, respectively. The volumes of distribution were estimated 

at 2610 l/F and 3030 l/F. Fluvoxamine was cleared from the systemic circulation with 147 l/h/F and 

133 l/h/F, respectively. IIV was mild to moderate with 29 to 53 %CV on the two different volumes 

of distribution and 49 %CV for both studies on clearance. Residual variability was best described 

with a combined error model. Although the additive error is very low, it was necessary to adequately 

describe the data. 

The impact of CYP2D6 phenotype on total clearance of fluvoxamine was best described as a 

categorical covariate. Volunteers phenotyped as CYP2D6 poor metabolizers had a 22% lower total 

clearance compared to extensive metabolizers (mean CL = 114 l/h vs. 147 l/h, p-value < 0.001). To 

evaluate the impact of smoking on total clearance of fluvoxamine, smoking status was incorporated 

as a categorical covariate. Fluvoxamine total clearance was approximately 28% higher in smokers 

compared to non-smokers (mean CL = 170 l/h vs. 133 l/h, p-value < 0.001).  

Simulations of the fluvoxamine plasma concentrations over time illustrate the differences in 

fluvoxamine elimination between CYP2D6 extensive and poor metabolizers as well as between non-

smokers and smokers (Figure S11c).  
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Table S11. Parameter estimates of the final population pharmacokinetic models 
 

Parameter 

Spigset 1997 Spigset 1995  

Value RSE [%] Value RSE [%]  Description 

Fixed effects      

D (h) 1.53 12 3.51 9  Zero-order input time 

ALAG (h) 2.75 1 1.79 6  Absorption lag time  

VCentral (l/F) 2610 11 3030 12  Volume of distribution over bioavailability 

CL (l/h/F) 147 25 133 18  Total clearance over bioavailability 

      

Random effects: Interindividual variability (IIV)  

IIV VCentral (%CV) 29 21 53 18  IIV in volume of distribution 

IIV CL (%CV) 49 17 49 22  IIV in total clearance   

      

Covariates      

CYP2D6 poor metabolism on CL 0.775 33 N/A N/A  Impact of CYP2D6 poor metabolism on CL  

Smoking on CL N/A N/A 1.28 21  Impact of smoking on CL 

      

Residual variability      

Proportional (%) 34 13 49 18  Proportional residual error  

Additive (nmol/ml) (9*10-10) N/A 3*10-6 50  Additive residual error  

CL, total clearance; CV, coefficient of variation; RSE, relative standard error; N/A, not applicable. Parameter values in parentheses 

were fixed. 
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Figure S11a. Goodness of fit plots. Goodness of fit plots of the final population pharmacokinetic 

models for the studies of Spigset et al. 1997 17 (upper panel) and Spigset et al. 1995 16 (lower panel). 

Shown are population predictions (left panel) and individual predictions (right panel) versus 

observed plasma concentrations.  
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Figure S11b. Visual predictive checks. Visual predictive checks of the final population 

pharmacokinetic models for the studies of Spigset et al. 1997 17 (upper panel) and Spigset et al. 1995 
16 (lower panel). Shown are observed plasma concentrations (open circles), median predicted 

plasma concentrations (solid red lines) and the 5th to 95th percentiles of simulated plasma 

concentrations in 1000 simulated subjects (shaded areas).  
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Figure S11c. Impact of CYP2D6 phenotype and smoking on fluvoxamine pharmacokinetics. 

Simulated plasma concentration-time profiles for single oral doses of 50 mg fluvoxamine using the 

final population pharmacokinetic models. In the left panel, the solid grey line illustrates the plasma 

concentrations of CYP2D6 extensive metabolizers; the dashed red line illustrates the simulated 

fluvoxamine plasma concentrations of CYP2D6 poor metabolizers. In the right panel, the solid black 

line illustrates the plasma concentrations of non-smokers; the dashed blue line illustrates the 

simulated fluvoxamine plasma concentrations of smokers.  
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