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Prof. Dr.-Ing. Stefan Diebels

Vorsitz: Prof. Dr.-Ing. Dirk Bähre

Akad. Mitarbeiter: Dr.-Ing. Florian Schäfer
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verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet

habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not

used any other media or materials than the ones referred to in this thesis.
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Abstract

Modelling Contact Mechanics with improved Green’s Function

Molecular Dynamics

by Yunong Zhou

Green’s function molecular dynamics (GFMD) is frequently used to solve linear

boundary-value problems using molecular-dynamics techniques. In this thesis, we

first show that the convergence rate of GFMD can be substantially optimized. Im-

provements consist in the implementation of the so-called “fast inertial relaxation

engine” algorithm as well as in porting the solution of the equations of motion

into a Fourier representation and a shrewd assignment of inertia. GFMD was fur-

thermore generalized to the simulation of finite-temperatures contact mechanics

through the implementation of a Langevin thermostat. An analytical expression

was derived for the potential of mean force, which implicitly describes the interac-

tion between a hard wall and a thermally fluctuating elastomer. GFMD confirmed

the correctness of the derived expression. A Hertzian contact was simulated as ad-

ditional benchmark. Although the thermally induced shift in the displacement can

be substantial, it turns out to be essentially independent of the normal load. A fi-

nal application consisted in the test of the frequently made hypothesis that contact

area and reduced pressure are linearly related for randomly rough surfaces. The

relation was found to be particularly reliable if the pressure is undimensionalized

with the root-mean-square height gradient.
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Zusammenfassung

Modellierung von Kontaktmechanik mit verbesserter Green’s Function

Molecular Dynamics

by Yunong Zhou

Green’s function molecular dynamics (GFMD) wird häufig verwendet, um lin-

eare Randwertprobleme im Rahmen einer Molekulardynamik-Simulation zu lösen.

In dieser Dissertation zeigen wir zunächst, dass die Konvergenzrate von GFMD

substantiell optimiert werden kann. Verbesserungen bestehen in der Implemen-

tierung des sogenannten “fast inertial relaxation engine” Algorithmus sowie der

Verlagerung der Lösung der Bewegungsgleichungen in die Fourier-Darstellung und

einer geschickter Wahl der Massen. Desweitern wurde GFMD zur Simulation der

Kontaktmechanik bei endlichen Temperaturen durch Verwendung von Langevin

Thermostaten verallgemeinert. Diesbezüglich wurde ein analytischer Ausdruck

für ein effektives thermisches Potential hergeleitet, welches die Thermik repulsiver

Wände implizit beschreibt und durch GFMD bestätigt wurde. Als Referenzsys-

tem wurde ein zudem klassischer Hertz’scher Kontakt simuliert. Obgleich die

Thermik eine substantielle Verschiebung der Auslenkung bewirken kann, erweist

sich die Auslenkung als nahezu unabh”angig von der Normalkraft. Schliesslich

konnte als Anwedung auch die häufig für zufällig raue Oberflächen postulierte lin-

eare Abhängigkeit zwischen realer Kontaktfläche und reduziertem Druck getestet

werden. Sie gilt vor allem dann, wenn der Druck über dem im echten Kontakt

gemittelte Standardabweichung des Höhengradienten entdimensionalisiert wird.
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Chapter 1

Introduction

1.1 Background

Contact mechanics is a study that focuses on the deformation of elastic bodies

when they contact each other. The pioneering work on contact mechanics was

another important contribution by the famous German physicist Heinrich Hertz,

following his confirmation of the existence of electromagnetic waves. In 1882,

Hertz solved the adhesion- and frictionless contact problem of two linear elastic

spheres analytically [1]. So far, the analytical work managed by Hertz on contact

mechanics still remains the theoretical basis for many practical contact problems

in engineering, and has a profound influence on the development of mechanical

engineering and tribology in particular [2]. Since then, the study of contact me-

chanics has made great progress. Johnson et al. strived to include short-ranged

adhesion into classical Hertzian contact problem, the resulting theory work was

known as Johnson-Kendall-Roberts (JKR) model [3]. Another similar work was

managed by Derjaguin et al., in which the interaction was replaced by long-ranged

force. It is known as Derjaguin-Muller-Toporov (DMT) model [4].

All of the theoretical works mentioned above considered only contacts of smooth

bodies. However, there is no such an absolutely smooth surface in the world,

even a highly polished surface will have many microscopic asperities. Therefore,

accurately evaluating the true contact situation, such as knowing the true contact

area of rough surface, is significant for many engineering applications. Currently,

the dominant rough contact theories can be broadly divided into the following

two categories: (1) multiple asperity contact model, pioneered by Greenwood and

Williamson in their Greenwood-Williamson (GW) model; (2) scaling theory for

randomly rough contacts proposed by Persson, which is also known as Persson

1



Chapter 1. Introduction 2

theory. More details about these two theories will be outlined in the following

section.

In terms of numerical methods, the boundary element method (BEM) and the

finite element method (FEM) provide effective approaches of solving contact me-

chanics problems with complex boundary conditions. However, for numerical sim-

ulations of contact problems that consider small scale roughness for the purpose of

practical interest, a fine surface grid is necessary for the numerical contact analy-

sis. As a result, rough surface contact problems generally need to be conducted on

grids with a large number of nodes. Solution of such huge systems of equations is

extremely time-consuming even on high speed computers. Thus, it is particularly

meaningful to study the optimization of numerical simulations. Polonsky et al.

proposed a conjugate-gradient (CG) based method combined with the multi-level

multi-summation (MLMS) algorithm to obtain a fast converge contact mechanics

solver [5]. Bugnicourt et al. developed a similar toolbox based on CG method,

while the MLMS algorithm was replaced by fast Fourier transform (FFT) algo-

rithm [6]. Campana and Müser developed Green’s function molecular dynamics

(GFMD)[7], which, as other boundary value method do, allows us to simulate the

linear elastic response of contact problem in terms of the displacement in the top

layer of elastic solid.

So far, contact mechanics is adopted in a wide range of applications, ranging

from traditional mechanical engineering systems, microelectromechanical systems

(MEMS), and biological systems.

In the domain of classical mechanical engineering, the performance of tires, gaskets,

sealings, braking systems and so on are closely related to their contact mechanics.

A commonly used example is the leakage problem of seal in the water tap or

hydraulic system. The gap and the relative contact area between the contact solids

play a critical role in this issue. Many studies tried to understand how external

load and surface roughness affect the gap and relative contact area [8–11]. These

studies could in turn make it possible to design a more reliable mechanical device

to reduce leakage. Even though a seal is only a small component, it deserves a lot

of attention. In the event of leakage in the hydraulic part, the reliability would be

reduced, and the oil would be wasted. In some instances, it could also trigger an

undesirable accident, such as the Challenger disaster.
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The mechanical properties of the contact process in MEMS is another substan-

tial topic in contact mechanics. MEMS is a modern technology, which combines

microelectronics and mechanical engineering. It has been broadly employed in a

number of applications, which profoundly affect people’s daily life. A classical

application is a pressure sensor, which is a kind of device that receives pressure

as an input signal and outputs electrical signals as a function of the input pres-

sure. In general, a pressure sensor could be modeled as an elastic body with finite

thickness deposited on a rigid nominally flat substrate, e.g., silicon. Its operating

scale is in the micrometer range. There are pieces of evidences showing that, the

surfaces cannot be regarded as smooth [12, 13]. Additionally, due to the sizable

surface-volume ratio in MEMS devices, surface force, e.g., van der Waals forces,

start to play an important role in adhesion. Vast studies have demonstrated that

surface roughness is a prominent factor reducing in adhesion [14, 15]. At this

point, it is interesting to study how surface roughness and adhesion contribute

to the output electrical signal in a pressure sensor, which is still in the range of

contact mechanics study. On the other hand, some studies have demonstrate that

the thermal effect could significantly affect van der Waals interactions [16–18]. At

this point, considering the performance of MEMS devices in different conditions,

such as a wide range of temperature, it is also interesting to include the effect of

thermal fluctuation into a contact mechanics treatment.

1.2 Approaches to contact mechanics

As mentioned in the previous section, the classical Hertzian contact theory, which

was conceived in 1881, established the groundwork for the field of contact me-

chanics. In the next two hundred years, a diverse understanding of rough surfaces

was developed and a number of theories of rough contact mechanics were formu-

lated based on this understanding. The most dominant of these are GW model

(multiple asperity model) and Persson theory (scaling theory for randomly rough

contact). Since this thesis mainly focuses on Hertzian and random rough surface

contacts, this section will review these methods briefly. On the other hand, nu-

merical techniques for the solution of contact problem, such as GFMD, will also

be discussed.
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1.2.1 Theory approaches

Single asperity contact theory

The theory work conducted by Hertz is commonly considered to be the beginning

of modern contact mechanics study [1]. He solved the adhesion- and frictionless

normal contact problem at small load between two elastic sphere bodies with

Young’s modulus E1 and E2, Poisson ratio ν1 and ν2 and radius curvature R1 and

R2. This contact problem is equivalent to the contact of a rigid parabolic indenter

with radius curvature Rc and a flat half-space elastic surface with effective modulus

E∗ if satisfying the following relation:

1

Rc

=
1

R1

+
1

R2

and
1

E∗
=

1− ν2
1

E1

+
1− ν2

2

E2

A typical Hertzian contact model is drawn in Fig. 1.1.

elastic layer

x

y

Figure 1.1: Hard-wall constraint, elastic solid of finite thickness compressed
by a parabolic indenter. The dotted line shows the associated stress profile.

The parabolic indenter is given by

h(r) =
r2

2Rc
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where Rc is the radius of curvature and r =
√
x2 + y2 is the in-plane distance

of the center of the indenter from the origin of the coordinate system. The gap

g(x, y) represents the distance between elastic solid and rigid parabolic indenter,

which reads

g(x, y) = h(r)− u(x, y)

where u(x, y) is defined as the displacement of elastic solid. The hard-wall con-

straint is applied in Hertzian contact theory, which indicates that the indenter

cannot penetrate the elastic layer, it reads

g(x, y) ≥ 0

Hertzian theory predicts that the contact area ac increases with external force FN,

which reads,

a3
c =

3FNRc

4E∗
(1.1)

The stress profile in the contact area is given below.

σ(r) = σ0

[
1−

(
r

ac

)2
]1/2

(1.2)

where σ0 = 3FN/(2πa
2
c) is the maximum (compressive) stress.

The traditional Hertz theory only included the repulsion force induced by the

squeezing of contact bodies. This approach is applicable to macro-scale contact

problems. However, the surface force, which is neglected at the macro-scale,

can become effective at micrometer, or even smaller scales. This surface force

stems from van der Waals forces. Because surface forces play an essential part in

many technical applications and biological systems, it is necessary to generalize

the nonoverlap Hertzian theory to adhesive contact theory.

Towards this end, Johnson et al. reinvestigated the Hertzian contact problem

by considering adhesive interaction, which is also known as JKR model [3]. JKR

theory included adhesion as short-range interaction, which means JKR theory only

considered the adhesion within the contact area between two bodies to predict the

force response of the system. The adhesion outside the contact area is neglected.

At this point, Johnson et al. derived the expression of the contact area ac as a
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function of external force FN to be

a3
c =

3Rc

4E∗

(
FN + 3γπRc +

√
6γπRcFN + (3γπRc)2

)
, (1.3)

where γ is the energy per unit contact area. When γ = 0, this expression reduces

to Hertzian theory, as shown in Eq. (1.1). In the JKR model, an additional force

Fp is required to separate the contact bodies, this pull-off force is predicted as

Fp = −3

2
γπRc (1.4)

Unlike the JKR model, Derjaguin et al. treated adhesion as a long-range interac-

tion and neglected the effect of adhesion on the deformation of elastic bodies [4].

As a result, adhesion force behaves as an external load that is independent of the

contact area. This model is known as the DMT model, for which the contact area

is predicted as

a3
c =

3Rc

4E∗
(FN + 2γπRc) (1.5)

When contact area ac = 0, the resulting pull-off force is given by

Fp = −2γπRc (1.6)

Apparently, the estimation of the pull-off force in DMT theory remains different

from that in JKR theory. There was a longtime discussion about the way to explain

this divergence. Tabor recognized that the JKR model and DMT model describe

the opposite limits of short-range and long-range interaction [19]. He demonstrated

that the opposition between these two theories could be fixed by introducing a

dimensionless parameter µT, which is now known as Tabor parameter.

µT =

[
Rcγ

2

E∗2z3
0

] 1
3

(1.7)

where z0 characterizes the range of adhesion. Essentially, the Tabor parameter

could be interpreted as the ratio of elastic deformation induced by adhesion and

the effective range of this surface force. The contact is close to JKR limit when

µT is large (µT > 5) while close to DMT limit when µT is small (µT < 0.1) [20].
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Contact mechanics theory of nominally flat surfaces

Classical single-asperity contact mechanics assumes that the contact surface is

geometrically smooth. However, even though the real surface appears to be flat

on a macro-scale, it is rough on the micro-scale. Standing by a practical point

of view, the Hertzian theory, and the JKR and DMT model cannot meet the

requirement of mechanical engineering demands. In this case, various models

based on roughness representation are developed to describe the contact behavior

between the elastic surface and rough indenter. One of the pioneering works is

developed by Greenwood and Williamson, known as the GW model [21].

GW model solved the contact between an ideally flat surface and a nominally flat

surface with many asperities. In this model, numerous asperities are distributed

on a nominal flat plane. All asperity heights follow a specific height distribution

function, for example, a Gaussian distribution. Each asperity is treated as a

classical Hertzian model with identical radius curvature, however, interactions

between asperity is neglected. In this case, the rough surface can be determined

by three statistical parameters: the standard deviation of asperity height σG, a

characteristic asperity radius RG, and the surface density of asperities ηG. Suppose

the separation between two surfaces is d, the height of a certain asperity is s. The

penetration is given by s−d. Some asperities would be contact at this height, the

probability is

Pr(s > d) =

∫ ∞

d

φ∗(s)ds (1.8)

where φ∗(s) is the probability distribution function of the asperity height. Suppose

the asperity height follows Gaussian distribution, φ∗(s) is normalized to standard

Gaussian distribution to simplify the calculation, therefore,

φ∗(s) =
1√
2π
e−

s2

2 (1.9)

Once the rough surface is determined, the GW model could estimate the expression

of relative contact area ar and mean pressure p, which are quantities that people

interested. They read

ar = πηGRGσGF1(h)

p =
4

3
ηGE

∗
√
RGF 3

2
(h)
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where

Fn(h) =

∫ ∞

h

(s− h)nφ∗(s)ds

and h = d/σG.

The GW model has been extensively used since it was published. Additionally,

many studies made an effort to extend the utility of the GW model. For example,

Fuller and Tabor applied the JKR model to each asperity instead of the tradi-

tional Hertzian contact model so that the GW model was able to include adhesion

interaction [22].

Despite the successfully widespread use of the GW model, it still suffers from limi-

tations [23]. First, it is still unclear that the statistical construction of the random

surface is correct. Second, the GW model assumed that the surface roughness

was only on a single length-scale. This assumption leads to an identical asperity

radius of a random surface, which remains physically meaningless since the radius

is obviously affected by the resolution of the measuring apparatus [24]. Third,

the GW model neglected the elastic coupling between asperities. In fact, as men-

tioned by Campana, Müser and Robbins, any bearing area model, such as the

GW model, produces a very poor contact auto-correlation function (ACF), which

reads C̃c(q) ∝ ∆r−2(1+H), while the correct ACF should be C̃c(q) ∝ ∆r−(1+H) [25].

Persson developed an alternative approach to contact mechanics that was able

to overcome many shortcomings of the GW model [24, 26, 27]. As mentioned

by Archard, the stochastic parameters of random surfaces are dominated by the

resolution of the measurement apparatus [28]. At this point, the rough surface in

the Persson theory was designed to be self-affine fractal. A fractal surface has the

property that the roughness’s statistical property remains identical if the length

scale changes. This kind of surface is defined by the surface roughness power

spectrum C(q), it reads

C(q) = C(q0)

(
q

q0

)−2(H+1)

(1.10)

where H is the Hurst exponent, which is related to the fractal dimension via

Df = 3 − H, q0 indicates an arbitrary reference wave number. Usually, q0 is

chosen to be identical with qr = 2π/λr, where λr,s represents the roll-off and

shortest wavelength, respectively. In reality, the random surface cannot be self-

affine over all length scales. Therefore, the power spectrum should be within a
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range of 2π/λr ≤ q ≤ 2π/λs, an idealized power spectrum is depicted in Fig. 1.2.

A variety of surfaces are demonstrated by experiments that follow this feature

[24, 26, 29, 30]. The Fourier transform of a random roughness surface profile

102 103

q
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qr

Figure 1.2: Surface roughness power spectrum of a surface which is self-affine
fractal for 2π/λr ≤ q ≤ 2π/λs. Dash line indicates that those wavenumbers
cannot be detected by measurement apparatus.

satisfying the random-phase approximation is defined by

h̃(q) =
√
C(q)e2πir(q) (1.11)

where r(q) is a uniform random number on (0, 1). The resulting surface height

h(r) of random roughness surface is given by the inverse Fourier transform of h̃(q).

A typical random surface produced from the power spectrum shown in Eq. 1.10 is

depicted in Fig. 1.3.

The basic idea of Persson theory is to understand how the pressure distribution

Pr(p, ζ), changes as the magnification ζ = q/qr is increased, where qr = 2π/λr

indicates the smallest wavenumber that could be detected. Additionally, when

observing the random surface under the magnification ζ, only those asperities
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Figure 1.3: Height profile of random roughness surface with self-affine property
for λr/L = 1/2.

which wavenumber smaller than q could be detected. In a special case, say ζ =

1, no asperity could be identified, which means, direct contact of two smooth

planes [24, 31]. On the other hand, when ζ = qs/qr, this magnification takes

maximum, where qs = 2π/λs is the maximum wavenumber that measurement

apparatus could detect.

The starting point in Persson theory is to assume that full contact is satisfied in

any magnification. At this point, a probability density function P (p, ζ) is defined,

where p is pressure. After that, a diffusion function is derived to describe the

probability function changing with magnification ζ. It is given by

∂P

∂ζ
= f(ζ)

∂2P

∂p2
(1.12)
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where f(ζ) is a function that includes all information about the random roughness

surface.

f(ζ) =
π

4

(
E

1− ν2

)2

qrq
3C(q) (1.13)

Because the contact problem degenerates to the contact of two smooth surfaces

when ζ = 1, the initial condition of diffusion function should satisfy

P (p, 1) = δ(p− p0) (1.14)

where δ(·) is the Dirac delta function, p0 represents nominal contact pressure.

Under the assumption of full contact and no adhesion included, the boundary

condition of diffusion function should be

P (0, ζ) = 0 (1.15)

The diffusion function could be solved analytically with the boundary condition

and the initial condition given above. The relative contact area is given by

ar = erf

(
p0

2
√
G

)
(1.16)

where

G(ζ) =
π

4

(
E

1− ν2

)2 ∫ ζqr

qr

dqq3C(q) (1.17)

is identical to the standard deviation of the stress in full contact. Compared with

the GW model, Persson theory is more accurate when the contact area is very

large.

1.2.2 Numerical approaches

Theoretical approaches to contact mechanics encounter difficulties when the con-

tact is coupled with too many factors, such as temperature and humidity. In this

case, physical experiment and numerical simulation would be more convenient

ways to access contact mechanics studies. Consequently, these two approaches

have attracted a lot of attention [32–34]. However, the experimental approach to

contact mechanics to some extent still suffers limitations. First, the experiment

apparatus can only work for contact mechanics problems with a specific strategy,

namely, the applicability is limited. Second, in most cases, it is cost-consuming
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to set up and maintain the experiment apparatus. Therefore, considering the fast

development of computer technology in the past decades, it is urgent to develop a

powerful numerical modeling technique to benefit the study of contact mechanics.

The finite element method (FEM) is one of the dominating numerical techniques

to solve partial differential equations (PDE) in combination with boundary con-

ditions, this kind of problem is known as boundary value problem (BVP). Gener-

ally, a contact mechanics problem can be mapped onto BVP without much effort.

Therefore, the contact mechanics problem could also be investigated within the

framework of FEM. A series of studies of contact mechanics with FEM approach

has demonstrated its reliability [35–37].

However, when investigating the linear elastic contact problem, although FEM

can also solve such problems, GFMD, which is a BEM, is more efficient. GFMD

allows us to simulate the linear elastic response of a semi-infinite or finite-thickness

elastic solid to an external load, or generally, boundary condition acting on the

surface [7, 38]. During the last decades, GFMD has been used extensively to solve

those contact mechanics of elastic solids with either simple parabolic or random

roughness surfaces [39–42]. The advantage of GFMD is that it only propagates the

displacement of the top layer. As a result, a relatively large system can be resolved,

and the local potential energy minimum could be located more quickly than all-

atom simulations and FEM. Most of the simulations in this thesis is concerned

with stable mechanical structures. Therefore, the damping term is introduced to

the dynamics, such that the minimum of potential energy could be quickly located

with a well-chosen damping parameter.

As stated above, GFMD tends to find the Fourier transform of displacement field

ũ(q) such that the potential energy is the local minimum. Therefore, the Verlet

algorithm is applied to propagate the system, which reads

ũnew(q) = 2ũnow(q)− ũold(q) + F̃ (q)∆t2 (1.18)

In the following, the basic logic of GFMD in terms of pseudo code is given.

loop over time steps until the potential energy minimum is located

- add external force, adhesion, or finite-range repulsion

F (r) = Fint(r) + Fext(r)

- transform force to Fourier space

F (r)→ F̃ (q)
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- transform displacement to Fourier space

u(r)→ ũ(q)

- calculate elastic force in Fourier space

F̃ (q)+ = F̃ela(q)

- add damping force

F̃ (q) += η(ũnow(q)− ũold(q))

- propagate the simulation with Verlet algorithm

- transform displacement into real space

u(q)→ ũ(r)

- implement the boundary condition

end loop

1.3 Research gaps in contact mechanics

1.3.1 How to locate stable mechanical structure quickly?

Numerical optimization is a fundamental issue with the intention of time- and cost-

efficient in a computer simulation. It is widely used in simulations on physics,

chemistry and material science. The optimized quantity is a penalty function,

which is often the total potential energy of a given system. For example, the

stable mechanical structure requires the minimum potential energy to be located.

Various classical minimization methods, such as the steepest descent algorithm,

take steps parallel to the negative gradient direction. If the penalty function is

potential energy, the optimal direction is parallel to the force [43–46]. However,

this algorithm can lead to undesired zig-zag motion if the bottom of this function

is extremely flat, in which case the minimum is only reached slowly. The CG

method avoids this inadequacy if the penalty function is quadratic. However, if

the function is far from quadratic, CG method may suffer from many times of

restart before the minimum potential is located.

An alternative approach was developed by Bitzek et.al. in 2006, known as the fast-

inertial-relaxation-engine (FIRE). It is a minimization method which can suppress

the zig-zag motion. Meanwhile, unlike CGM based algorithm, it can get rid of the

quadratic limitation of the penalty function [47]. Up to now, FIRE has been suc-

cessfully implemented into traditional particle-based simulation toolboxes, such
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as LAMMPS. This fact indicates that FIRE should also work for the solution of

partial-differential equations (PDEs). The reason is that the solution of PDEs can

be mapped onto a MD problem after discretization of the variable space. Simi-

larly, FIRE also works for boundary-value problems (BVPs). Therefore, it could

also benefit the solution of contact mechanics simulation, which could be trans-

lated to a boundary-value problem (BVP). GFMD is a technique that allows such

BVPs to be addressed within the framework of MD [7, 38, 48]. Although GFMD

has been widely used in contact mechanics simulations, there is little research on

optimization for this technique. There is also no research on the implementation

of FIRE for the optimization of GFMD.

1.3.2 What structural parameters affect contact area?

Another issue regarding the real contact area has received considerable critical

attention, especially the relation between relative contact area ar and pressure p

in nominally flat, linearly elastic contact [21, 36, 49–51]. It has been reported many

times that the relative contact area ar increases with pressure from very small but

non-zero ar up to ar ≈ 0.1 in randomly rough surface contact simulations [35, 51–

54]. This randomly rough, self-affine surface is defined by a height power spectrum

C(q), which reads C(q) ∝ q−2(1+H), where H is the Hurst exponent, which is a

quantity that correlates to the fractal dimension via Df = 3−H, q is the magnitude

of wave vector q. The phases of the randomly rough surface height in Fourier

space are independent random numbers that are uniformly distributed on (0, 2π),

such that the surface is fully defined as the random phase approximation (rpa)

surface. Persson theory managed to explain the linearity of area-pressure relation

up to roughly 10% relative contact area on Taylor expanding of Eq. (1.16) if the

randomly rough surface is rpa [8, 24]. Unlike the bearing-area model, Persson

theory also finds an accurate pressure-dependence of the interfacial stiffness along

with an accurate distribution function of the interfacial separation [27, 34, 54–57].

Although it is argued that the area-pressure relation should be linear for randomly

rough surfaces, several indications suggest that this linearity is not accurate, es-

pecially when the external load is fairly small so that only a meso-scale patch in

contact region is measured [58]. In fact, as Yastrebov and coworkers reported,

even though several asperities were in contact, the area-pressure relation still de-

viates from linearity [59]. However, the ratio of system size and short-wavelength
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cutoff was fixed in their simulations, in which case the deviation from the linear-

ity may not convincing. To make it clear, Nicola et.al. carefully studied (1+1)

dimensional, adhesionless contact between an elastic body and a randomly rough

surface, remarkable logarithmic corrections to the area-pressure linearity were re-

ported [42]. After that, a similar study, which was (2+1) dimensional, adhesive

contact between an elastic solid and a randomly rough, self-affine surface was con-

ducted [60]. In this study, a clearly sublinear scaling was found. However, since

they studied the adhesive contact problem, the deviation from linearity could stem

from the adhesive hysteresis.

It is still remain unclear how the Hurst exponent affects the linear pre-factor of

area-load relation. Some studies claimed that this pre-factor is closely correlated

with the Nayak parameter at fixed pressure [59, 61, 62]. However, as mentioned

above, the ratio of system size and short-wavelength cutoff was fixed in their

simulations, as a result, the logarithmic relation between contact area and the

Nayak parameter is not plausible. In fact, the dependence of the pre-factor on

the Nayak parameter turns out to be weak if the surface is not in the domain of

ideally random rough. To make it clear, let us consider two thought experiments

regarding the contact problem of nominally flat surfaces. In the first experiment,

we arbitrary modify the height profile of the rough indenter in non-contact zone,

but make sure that all modified points are below the elastic body. In such a way,

the contact area remain unchanged, while the Nayak parameter could have shifted

by orders of magnitude. In the second experiment, we modify the randomly rough

surface such that the peaks are blunt and the valleys are steep. In this case, for a

given pressure, the relative contact area should be large. After then, the indenter

is flipped around, and the resulting contact area would decreased while the Nayak

parameter remain unchanged. As a result, the correlation between the Nayak

parameter and the pre-factor is not convincing, especially when the rpa surface is

not considered.

1.3.3 How do thermal fluctuations affect Hertzian theory?

As mentioned above, many mechanical applications, such as gaskets, braking sys-

tems and pressure sensors, need to be considered for their performance at different

temperatures because temperature can affect the mechanical contact in numerous
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ways. Continuum contact mechanics theories, such as Hertzian theory, often ig-

nore the effect of thermal fluctuations. This approximation is reasonable when

applying the theory to macro-scale problems. However, if the contact problem

is micro-scale or even smaller, the approximation could lead to noticeable er-

rors for the load-indentation relation when two bodies are pressed against each

other [63, 64]. Temperature can affect mechanical contacts and their interpreta-

tion in numerous other ways. For example, the presence of thermal noise generally

impedes an unambiguous definition of contact area [65–69]. In addition, consider-

ing the van der Waals force between contact bodies, significant reduction of pull-off

force with increasing temperature was observed in atomic-force microscope (AFM)

experiment [16]. It is possible that thermal surface fluctuations, which were not

included in the modeling of temperature effects on tip depinning, are responsible

for a significant reduction of effective surface energy and thereby for a reduction

of the depinning force. In fact, it has been shown that thermal fluctuations limit

the adhesive strength of compliant solids [70]. Finally, in the context of colloid

science, it may well be that thermal corrections have a non-negligible effect on the

surprisingly complex phase diagram of Hertzian spheres [71]. It is therefore cer-

tainly desirable to model the effect of thermal fluctuations in a variety of contact

and colloid problems.

While thermal fluctuations can be incorporated into simulations with so-called

thermostats [72, 73], proper sampling can require a significant computational over-

head. In addition, some contact solvers do not appear amenable to thermostatting.

This concerns in particular those contact-mechanics approaches that optimize the

stress field, as done with the classical solver by Polonsky and Keer [39, 74], rather

than the displacement fields in the GFMD method [7, 75]. The issues sketched

above indicate that investigating how thermal fluctuation affects the mean force

F (per unit area) between surfaces as a function of their interfacial separation, or

gap g is significant.

1.4 Outline of this thesis

My thesis is composed of five themed chapters. Chapter 1 gave a brief intro-

duction of contact mechanics, such as the background of contact mechanics study

and some fundamental approaches to contact mechanics, including theoretical and

numerical methods. After that, the main research gaps in contact mechanics are
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drawn and this thesis’s contributions are summarized. Chapter 2 demonstrates

that the fast-inertial-relaxation-engine (FIRE) benefits the solution of boundary-

value problems. Additionally, considering that GFMD solves Newton’s equations

of motion in Fourier space, a rather remarkable speedup could be reached by

choosing the masses associated with the eigenmodes of the free elastic solid appro-

priately. Chapter 3 investigates the classical Hertzian contact mechanics theory

in the presence of thermal noise in the framework of GFMD and by using various

mean-field approaches. Theoretical results are validated to be consistent with nu-

merical simulations. Chapter 4 investigates what structural parameters affect the

area-pressure relation. Chapter 5 summarizes the main conclusions that can be

made from this thesis. Some suggestions for future work are also outlined.





Chapter 2

Optimizations of Green’s

function molecular dynamics

This Chapter demonstrates that FIRE can benefit the solution of BVPs. Towards

this end, the mechanical contact between weakly adhesive indenter and a flat,

linearly elastic solid is studied. The reason is that the contact mechanics problem

of isotropic solids can be translated to BVP without much effort. Green’s function

molecular dynamics (GFMD) is a technique that allows BVPs to be addressed

within the framework of MD [7, 38, 48]. To locate the minimum potential energy,

a damping term is usually added to Newton’s equation of motion. In this study, we

replace the damping term in GFMD with a FIRE-based algorithm and investigate

how this modification affects the rate of convergence.

We also investigate further optimization considering the rearrangement of inertia

of modes. In a certain contact problem, or generally, a BVP, long wavelength

modes relax more slowly than short wavelength modes. Therefore, it is possible

to assign wavelength-dependent inertia to match the frequencies so that all modes

relax on similar time scales.

Conjugate gradient (CG) method is one of the most commonly used minimization

method in contact simulations. This method is also implemented into our GFMD

code and the basic idea follows the works introduced by Bugnicourt et al. [6]. The

CG method by Bugnicourt and co-workers had not only outrun regular GFMD in

the contact-mechanics challenge [39]. In our understanding, the CG implementa-

tion of that group had led to the overall most quickly convergent solution, although

other CG-based contact-mechanics methods [5, 76–78] may well be on par. The

contact-mechanics challenge was a publicly announced large-scale contact problem

19
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for three-dimensional solids having the added complexity of short-range adhesion.

More than one dozen groups participated in the exercise using a similarly large

number of solution strategies.

In the remaining part of this chapter, the problems are defined in Sec. 2.1, while

the numerical methods are described in Sec. 2.2. Numerical results are presented

in Sec. 2.3 and conclusions are drawn in the final Sec. 2.4.

2.1 Model and problem definition

In this study, we investigate the contact problem between a linearly elastic solid

and a rigid indenter with various topographies. The contact modulus is defined as

E∗ = E/(1−ν2), where E represents Young’s modulus and ν is Poisson ratio. For

isotropic solids with central interaction, the elastic tensor satisfies C1122 = C1212.

With this in mind, the bead-spring model can be used to simulate an isotropic

elastic solid with ν = 1/4.

The height of the elastic solid is set to h = L/2, where L is the width of the elastic

body. A constant normal pressure is applied to the elastic body, causing it to

come into contact with a rigid indenter fixed in space. Since the purpose of this

chapter is to explore the optimization methods for GFMD rather than to study

specific contact mechanics problems, in order to be time-efficient, we only consider

the contact problem in the (1+1)-dimensional case, which means that the rigid

indenter is a cylinder, whose symmetry axes are oriented parallel to the z axis. As

a result, all our energies are line energy densities.

2.1.1 Treatment of elasticity

Bead-spring model

The first approach to compute the elastic energy is based on the bead-spring model,

in which case the elastic solid is discretized into a square lattice. As shown in

Fig. 2.1, the nearest neighbors and the next-nearest neighbors interact with springs

of “stiffness” k1 = 0.75 E∗ and k2 = 0.375 E∗, respectively. (True spring stiffnesses

have to be multiplied with the length of the cylinder in z-direction.) These values

are independent of the discretization of our effectively two-dimensional elastic
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k1 k2

Figure 2.1: An illustrative diagram of a bead-spring system.

body. The equilibrium length of the two springs are set to the equilibrium nearest

and next-nearest neighbor distance, r1 and r2, respectively. Therefore, the elastic

energy, which is the sum of all spring energies can be written as below.

Vel =
1

2

∑

i,j>i

kij
{
rij − req

ij

}2
. (2.1)

Inverse Green’s function matrix

The basic idea of the second approach stems from GFMD, in which all information

on the elastic energy is included in the displacement field of the bottom layer

since the indenter is located below the elastic body. The elastic body allows for

displacements in both directions that are normal to the z axis, i.e., parallel to

x and y. For this discrete set of displacements, we use the Fourier transform so

that the displacements are propagated in reciprocal space, as a result, the elastic

energy is also evaluated in the Fourier representation. The Fourier transform read

ũα(q) =
1

N x

Nx∑

n=1

unα exp{iqx} (2.2)

unα(x) =
∑

q

ũα(q) exp{−iqx}. (2.3)

where Nx is the number of points in the surface and q denotes a wave number which

satisfies −πNx/L ≤ q < πNx/L. Greek indices enumerate Cartesian coordinates,
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α = 1 corresponding to the x coordinate and α = 2 to y, while the Latin letter n

enumerates grid points.

The elastic energy of this elastic solid is fully defined with these definitions. It

reads

Vela =
L

4

∑

q

∑

αβ

qMαβ(q)u∗α(q)uβ(q), (2.4)

where the matrix coefficients Mαβ contain all needed information on the elastic

coupling between different modes. They read [38]

M11(qh) = (1− r)cosh(qh) sinh(qh)− rqh
‖f(qh)‖ C11

M12(qh) =
1− r
1 + r

(1− r) sinh2(qh)− 2(rqh)2

‖f(qh)‖ C11

M22(qh) = (1− r)cosh(qh) sinh(qh) + rqh

‖f(qh)‖ C11,

where

r =
1− s
1 + s

s =
C44

C11

C11 and C44 are elastic constants in Voigt notation and

‖f(qh)‖ = cosh2(qh)− (rqh)2 − 1

2.1.2 Rigid indenters

The first example is the classical Hertzian contact problem, which is a parabolic

rigid indenter in contact with a flat, elastic manifold. The indenter is depicted in

Fig 2.2 and the elastic layer is defined in Sec. 2.1.1. The profile of the indenter is

given by

h(x) = −x2/2Rc, (2.5)

where Rc is the radius of curvature.

In the second example, the indenter is replaced by a random rough, self-affine

surface, as shown in Fig. 2.3. The power spectrum of random surface C(q) for a
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elastic layer

x

y

Figure 2.2: The elastic contact of a finite-thickness, linear elastic body with a
rigid parabolic indenter. The interaction is defined as a short-ranged adhesion
and an even shorter-ranged repulsion. The dotted line shows the associated
stress profile.

D = 1 + 1 dimensional solid is defined as follows [79].

C(q) ∝ q−2H−1Θ (qmax − q) ,

where H = 0.8 is called the Hurst exponent. Θ(•) is the Heavyside step function,

Figure 2.3: The elastic contact of a finite thickness linear elastic body with a
rigid, randomly rough indenter. The figure is not to scale, i.e., the resolution
in y direction is enhanced. The height of the elastic solid h = L/2, where L is
the width of this elastic solid.
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and qmax = 1024 q0 with q0 = 2π/L.

The third and final example is the problem defined in the contact-mechanics chal-

lenge [39]. The indenter is similar to the second one, however, the surface is two

dimensional and the interaction between the indenter and elastic surface is the

short-ranged adhesion plus a hard-wall constraint. More details can be found

in the original manuscript [39]. Configurations both in real space and Fourier

space and the problem definition can be downloaded at [80]. So far, the imple-

mentation of mass-weighted GFMD method with a nonoverlap constraint is still

problematic, therefore, we only evaluate the performance of FIRE-GFMD for this

example. Mass-weighted and FIRE-GFMD are introduced in Sec. 2.2.

2.1.3 Interaction

The initial normal equilibrium positions of the elastic body are set to yn = 0 if

no external forces acting on the body. The lateral equilibrium positions are set

to xeq
n = nL/Nx. Since the rigid indenter is fixed in space and the positions are

determined, the gap gn, namely, the normal distance of a grid point n from the

indenter is given by

gn = un,y − hs(xn), (2.6)

where xn = xeq
n + un,x is the lateral position of the discretization point n. Unlike

classical Hertzian contact theory, the hard-wall constraint is abandoned by default

in this study if not explicitly mentioned, otherwise the interaction is defined as

short-ranged adhesion and an even shorter-ranged repulsion. At this point, the

interaction energy (line density) is given by

Vint =
L

Nx

∑

n

γ1 exp(−2gn/ρ)− γ2 exp(−gn/ρ) (2.7)

where γi has the unit energy per surface area and ρ of length. In this study, the

values of γ1, γ2, and ρ are set as ρ ≈ 2.56 × 10−4 Rc, γ1 ≈ 2.10 × 103 E∗Rc

and γ2 ≈ 2.05 E∗Rc. The equilibrium gap can be found by having the first-order

derivative of the interaction equal to zero. With the choice of parameters, the

equilibrium gap would be ρeq ≈ 1.95 × 10−3 Rc and the resulting surface energy

of γeq = 5.0 × 10−4 E∗Rc would be gained at a gap of ρeq. The resulting Tabor

parameter is roughly 3, which means that the adhesion could be treated as short-

ranged.
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It is possible that one wants to map these reduced units to real units, it could

be conducted by assuming that the ρeq equals to the typical atomic distance, say

ρeq ≈ 3Å, and the interfacial interaction γeq ≈ 50 mJ/m2. With this choice, the

radius of curvature of indenter Rc ≈ 150 nm and contact modulus E∗ ≈ 650 MPa.

These values are representative of a thermoplastic polymer.

2.2 Numerical methods

2.2.1 FIRE GFMD

As introduced in Sec. 1.3.1, FIRE is a minimization method that can avoid the

disadvantages of steepest descent algorithm and CG algorithm. The basic idea of

FIRE in a certain simulation is described as follows: Inertia are assigned to the

variables leading to an implicit averaging of the gradient direction over past itera-

tions and turning a steepest-descent program into a MD code. At the same time,

the instantaneous velocity is slightly biased toward the steepest-descent direction.

Moreover, the time step size is increased with each iteration, which can be done

because true dynamics do not matter. Once the vector product of velocity and

forces (negative gradients) is negative all velocities are set to zero, the time step

is set back to a small value, and the procedure is restarted with the original, small

time step.

FIRE has been demonstrated to be efficient for the solution of particle-based

simulations. Similarly, it should also benefit the solution of contact mechanics

simulation, which could be translated to typical PDEs. The implementation of

FIRE into GFMD in terms of pseudo code works as follows:

loop over time steps until the minimum potential energy is located

- transform displacements to Fourier space

u(r)→ ũ(q)

- calculate velocities of each mode in Fourier space

ṽ(q) = (ũ(q)now − ũ(q)old)/∆t

- calculate elastic forces in Fourier space

F̃ (q) = F̃ela(q)

- calculate the external load

F̃ (0) += p
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- propagate the simulation with the Verlet algorithm

- modify velocity according to the following expression

ṽ(q) = (1− ξ)ṽ(q) + ξF̃ (q)‖ṽ(q)‖/‖F̃ (q)‖
if V now

pot < V old
pot , increase the time step and decrease ξ → ξfξ

if V now
pot > V old

pot , decrease time step ∆t→ ∆tfdec, freeze the system

ṽ(q) = 0 and set ξ → ξstart.

- transform displacement into real space

u(q)→ ũ(r)

- implement the boundary condition

end loop

2.2.2 Mass-weighted GFMD

GFMD propagates the displacements according to the Newton’s equations of mo-

tion in Fourier space. The expression for each mode reads

m(q)¨̃u = f̃(q) (2.8)

where f̃(q) represents the total force in the Fourier space, which consists of an

elastic force, an interaction force and an external force. m(q) denotes an inertia

for each mode. The expressions for forces are presented as follow:

f̃ela,α(q) = −qE
∗

2

∑

β

Mαβ(q)ũβ(q), (2.9)

f̃int,α(q) =
1

Nx

∑

n

∂Vint

∂rα
exp (iqxeq

n ) , (2.10)

f̃ext,α(q) = p0δα2δq0, (2.11)

where p0 denotes the external force divided by the linear length of the system in

x direction. This total force equals to the negative gradient of the total potential

energy line density Vtot, which reads

Vtot = Vela + Vint − p0Nxũy(0), (2.12)

If a static mechanical structure is required, the total potential Vtot should be mini-

mized. In such a case, a contact-mechanics problem is translated to a mathematical

minimization problem.
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In traditional GFMD, the inertia m(q) are assumed to be independent of the wave

vector, in which case the inertia for each mode remains identical. In fact, the elastic

deformation of an undulation with wave vector λ penetrates O(λ) deep into the

elastic body if the thickness is infinite. Therefore, a more natural dynamics would

be achieved if m(q) were chosen to proportionally to 1/q. The efficient dynamics,

which is applicable to locate the local minimum potential energy quickly, could

be reached if the effective masses m(q) are chosen proportional to the stiffness

at wave vector q. For a free surface, this would be m(q) ∝ qE∗, in the limit

of large thickness h. In most contact problems, an external force applied on the

elastic manifold, in which case an additional contribution arises due to the contact

stiffness kcont, which couples, in particular, to the center-of-mass (COM) or q = 0

mode. In this case, the resulting inertia for each mode m(q) would be

m(q) ∝
√

(qE∗)2 + θ(kcont/A)2 (2.13)

where A is the apparent contact area and θ a number of order unity. In this

expression, the value of the contact stiffness kcont requires extra consideration. If

it is known reasonably well, then by rearranging the inertia of each mode according

to the scheme presented above, the long-wavelength modes and short-wavelength

modes will converge to their minimum values with similar characteristic times.

Unfortunately, in some cases, it is difficult to obtain the exact value of the contact

stiffness. However, a systematic slowing down with system size – or with increased

small-scale resolution – is prevented from happening even if the estimate of the

optimum choice for kcont is off by a factor of 10 or 100.

In the case of randomly rough surfaces, kcont can often be roughly estimated to

be a small but finite fraction of the external pressure divided by the root-mean-

square height h̄, say kcont ≈ p0/(10h̄).

2.2.3 Mass-weighted FIRE GFMD

As already mentioned in the introduction, FIRE can benefit the solution of classical

boundary-value problems within the framework of MD. In principle, FIRE should

also work for mass-weighted GFMD. The basic idea of this study is described

below. The system is propagated without damping as long as the power

P = F · v (2.14)
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is positive, where F and v are vectors containing the (generalized) forces and

velocities of the considered degrees of freedom. The time step was increased in

each iteration by 2%. Moreover, we redirected the current direction of steepest

descent while keeping the magnitude of the velocity constant. This is done such

that v → (1 − ξ)v + ξfv/f , where ξ = 0.1 initially and after each FIRE restart.

Otherwise, ξ(t+ 1) = 0.99ξ(t), where t is the time step.

This method is called “mass-weighting”, because the dynamics are propagated in

Fourier space and the inertia of each mode is designed to be proportional to the ex-

pected stiffness of a given mode. On the other hand, we also tried another scheme,

in which the inertia m(q) in propagation is kept constant, while q-dependent in the

effective power evaluation. However, this approach did not optimize the simulation

as expected, hence we do not consider this idea in this study. In this approach,

the effective power is given by
∑

qm(q)F̃∗(q) · v(q). The effect of this and related

modifications to FIRE was meant to make the slow modes move down in potential

energy as long as possible before restarting the engine.

2.3 Numerical results

2.3.1 Hertzian indenter

We evaluated the efficiency of various minimization methods based on a contact

mechanics problem with one parabolic and one randomly rough indenter in this

section. We start with the simple parabolic contact problem, because it is much

easier to validate the results through theoretical approach. Because of this advan-

tage, this test case has become a benchmark for numerical solution technique in

contact mechanics [81]. Because we utilize the short-range adhesion rather than

nonoverlap constraint on the regular Hertz problem, the surface topography after

equilibrium has features at small scale in addition to the long-range elastic defor-

mation. Therefore, the elastic deformation of manifold consists of various length

scales even though the indenter is simply parabolic.

Fig. 2.4 shows us how quickly various solution strategies minimize the energy at a

fixed system size. Towards this end, we first compute the excess energy ∆v, which

is defined as the total potential energy minus the total potential energy of a fully

relaxed structure. The excess energy is then divided by the value obtained for the
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initial structure, which is set up such that the elastic manifold is flat and located

ρeq above the highest indenter coordinate. The expression of ∆v is given by

∆v =
Vtot(t)− Vtot(∞)

Vtot(0)− Vtot(∞)

This figure shows us that the all-atom simulation is confirmed to be the most

inefficient of all investigated methods, even when measured in (global) time steps,

which does not account for the many layers that need to be simulated. The reason

is the large disparity of frequencies in the system. The fastest mode, which is limits

the time step, has an intrinsic frequency ωmax which is O(Nx) higher than that of

the slowest mode, ωmin, for which the damping is chosen to be roughly critical. The

FIRE algorithm is successfully implemented into all-atom simulation, and it leads

to an increase of the convergence rate of 6 for the investigated system size. How-

ever, this improvement does not surpass the performance of conventional GFMD,

in which case the convergence rate increased by a factor of 2.5 compared with that

of FIRE based all-atom simulation. The ratio ωmax/ωmin reduces from O(Nx) to

O(
√
Nx), which is at the root of the speedup compared to natural dynamics.

Once FIRE is added to regular GFMD, the convergence rate increases by a factor

of 3 compared to regular GFMD, which is slightly faster than the performance

of CGM. CGM only leads to a speedup & 2 at this system size compared to

regular GFMD. In contrast, mass-weighted GFMD leads to a speedup of a factor

of 10 compared to regular GFMD. Lastly, we implement FIRE into mass-weighted

GFMD, the convergence rate increases by another 20%. The overall speedup is

remarkable.

The FIRE based mass-weighted GFMD needs 75 iterations to reduce the excess

energy to 10−5 of its original value compared to & 15000 iterations for natural

all-atom simulation, while regular GFMD requires 1000 iterations.

The reason why we choose the value of ∆v = 10−5 is to call a configuration related

somewhat arbitrary. However, it is hard to tell difference between the stress profile

produced when excess energy equals 10−5 and that of the fully relaxed structure

when excess energy smaller than 10−5. Specifically, errors in the stress are clearly

less than 0.5% of the maximum (compressive) contact stress for the investigated

and related examples. This error drops to roughly 10−3% when excess energy

smaller than 10−8.
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Figure 2.4: Relative excess energy ∆v as a function of time steps for a
parabolic indenter contact simulation with grid number Nx = 512. All GFMD-
based methods have Nx grid points, while the all-atom simulations have Nx×Ny

grid points, where Ny = Nx/2. The top and bottom graph presents different
methods, regular GFMD being the only one reported in both graphs.
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So far, we have anaylsed the performance of each algorithm with a fixed number of

discretization points in contact mechanics problem. However, it is often important

to know how the convergence rate scales with number of discretization points, or

system size. The related results are depicted in Fig. 2.5.
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Figure 2.5: Number of iterations needed to relax the relative excess energy
∆v to 10−5 for the Hertzian case as a function of the number of grid points.
Top and bottom graph presents different method, conjugate-gradient method is
the only one presented in both graphs.

This figure shows us that the number of iterations needed to decrease the excess

energy to 10−5 scales linearly with Nx (or number of discretization points in the

topmost layer) in an all-atom simulation. To achieve this scaling, the damping has

to be reduced with increasing Nx. If the damping were kept constant, the long-

range modes would be automatically over damped at large Nx and the scaling

would go as N2
x . Adding FIRE to an all-atom simulation could alleviates the

situation, however, the exponent is only reduced marginally to 0.85. Regular

GFMD improves that to a squareroot dependence.

The measured exponent reduced to 0.38 with CG and to 0.25 with FIRE. This

indicates that FIRE slightly outperforms CG-based optimization. For the par-

ticular problem under consideration mass-weighting appears to eliminate the size
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dependence altogether.

The scaling show in Fig 2.5 is found to be also valid for (2+1)-dimensional contact

problems, whenever tested, e.g., GFMD, FIRE-GFMD, and MW-GFMD. When

the short-range repulsion was replaced by nonoverlap constraint, the scaling was

also found to exist.

In computer simulations, considering the cost- and time-efficient issues, it is also

significant to evaluate the relation between the CPU time per iteration and system

size, which is analyzed in Fig. 2.6. In all-atom simulations, the relation between

CPU time per iteration and system size satisfies a scaling law with exponent

2.0 (3.0 for three-dimensional systems). However, the exponent of this scaling

decreased to 1.0 (2.0 for three-dimensional systems) plus a logarithmic correction

for GFMD based approaches.

In a typical simulation, we could start with a relatively small system size, for

which crude results can be obtained and reasonable parameters required for FIRE,

damping, or mass-weighting can be gauged. After that, the continuum limit can be

approximated with increasing resolution by keeping those parameters unchanged.

In this way, the number of iterations is much reduced.

2.3.2 Randomly rough indenter

In this section, the adhesive Hertzian indenter is replaced by a purely repulsive

self-affine, rigid indenter. Nevertheless, the trends in results part remain similar,

as depicted in Fig. 2.7. Both FIRE and mass-weighting GFMD perform faster than

regular GFMD. Implementing FIRE into mass-weighted GFMD, the convergence

rate increased by a factor of 2, while the factor was 0.25 for simple parabolic

indenter contact case.

2.3.3 Application to the contact-mechanics challenge

In this section, we reinvestigate the contact-mechanics-challenge problem. FIRE

algorithm is used to optimize the simulation. Since this study is the first time for

us to implement CGM into GFMD, it is possible to be unsufficient to conclude that

FIRE outperforms CGM. The risk to be erroneous motivated us to apply FIRE
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Figure 2.6: CPU time in seconds per iteration as a function of the linear
system size Nx. The solid lines reflect fits, while the dashed lines are reverse
extension of the fits. Adding mass weighting or FIRE or conjugate gradient
method does not significantly affect the time per iteration for typically used
numbers. All computations were performed on a laptop with a 1.6 GHz Intel
Core i5 central processor unit (CPU). The FFTW version 3.3.5 is used in our
code.

GFMD to the problem defined in the contact-mechanics challenge. CG methods

was reported to spend 3000 iterations for a discretization points of 32768× 32768,

which definitely outrun the regular GFMD in terms of convergence rate, for which

30, 000 iterations were required to obtain a similar accuracy at that size. The data

obtained from CGM, which was submitted by Bugnicourt and coworkers, revealed

convergence to a few 10−9 times the maximum compressive stress. An even greater

accuracy would certainly require higher data precision than those obtained when

requesting “double” in C++ or “double precision” in Fortran.

The convergence of FIRE GFMD for the contact-mechanics-challenge problem

is similar to that identified in this study for related contact problems. FIRE

GFMD needs a little more than 500 iterations to reduce the excess energy to

10−3 of its original value. This value is slightly higher than that reported in the

previous benchmark, which needs only roughly 300 to achieve the same reduction.
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Figure 2.7: As in Fig.2.4, however, for a randomly rough indenter. The default
substrate roughness is set up as follows: we use a Hurst exponent of H = 0.8.
There is no roll-off so that the system size corresponds to the long wavelength
cutoff λl. The short wavelength cutoff is chosen to be λs = 0.01Lx. By default,
the system is discretized into Nx = 1024 grid points.

The reason is that the number of discretization points for the contact mechanics

challenge is greater. Additionally, the range of adhesion of the contact-mechanics-

challenge problem is much shorter. FIRE GFMD needs 2000 iterations to reach

the stress to the same accuracy as Bugnicourt. In this case, FIRE GFMD turns

out to slightly outperform the CGM by Bugnicourt. This improvement may not be

strong enough to motivate the replacement of a working CG-based minimization

in a code with a new FIRE method. However, when designing new code, the FIRE

method appears to be a better choice, because it is much easier to implement.

2.4 Conclusion

In this chapter, we investigated the performance of various minimization methods,

including FIRE method, the mass-weighting method and mass-weighting FIRE
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method, on classical BVPs within the framework of GFMD. Two contact mechan-

ics problems were conducted as benchmarks to illustrate the extension of FIRE.

In regular GFMD, a critical damped dynamics for each surface Fourier mode

was set up to minimize the total potential energy. It allows for the possibility

of short-range adhesion, and even shorter-range repulsion, and nonoverlap con-

straints. Since GFMD is a MD technique, introducing FIRE to GFMD would not

require much effort.

It is demonstrated that FIRE can successfully accelerate a regular GFMD sim-

ulation resulting in a remarkable speedup of one order of magnitude for typical

system sizes compared to regular GFMD and even larger speedups for larger sys-

tems. It is also possible to combine FIRE with other minimization methods in a

straightforward fashion in the framework of GFMD, such as an effective choice for

the inertia of each mode. This is known as a mass-weighting method, which in-

duces a narrow distribution of intrinsic frequencies whereby the number of required

sweeps to relax the system no longer increases substantially with system size. Even

though the relative speedup due to FIRE in such mass-weighted GFMD approach

is not overwhelming, a factor of two in efficiency can still be useful for pushing the

boundaries of large-scale problems on massive parallel supercomputers.

The successful implementation also indicates that the FIRE algorithm could also

benefit finite-element method, or generally, any engineering simulation that could

result in the solution of boundary value problems. Experience from atomic-scale

applications shows that FIRE is always competitive with much more complex

mathematical optimization algorithms [47, 82, 83] (such as quasi-Newton methods)

and sometimes FIRE can even be superior [84].
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Thermal Hertzian contact

mechanics

This chapter attempts to study how thermal fluctuations affect the mean force

F (per unit area) between surfaces as a function of their interfacial separation,

or, gap g. Furthermore, it is also interesting to study if this relation could be

applied to classical Hertzian contact theory. Towards this end, we attempt to

construct the effective surface interactions. Because a hard-wall constraint is the

most commonly used interaction between surfaces, we restrict our attention to

the effect of thermal fluctuations on hard-wall constraints. Since atoms fluctuate

about their equilibrium sites in solids, thermal fluctuations automatically make

repulsion effectively adopt a finite range.

The purpose of this chapter is to quantify thermal effects, namely, the relation

between the interfacial separation and the mean force obtained for flat walls. Af-

ter that, an extension of this relation to a Hertzian contact would be conducted

to ascertain its applicability. Another purpose of this chapter is to identify an

analytical expression for the thermal corrections to the load-displacement relation

in a Hertzian contact.

In the remaining part of this chapter, the contact problem and the interaction

between surfaces are designed in Sec. 5.1. The numerical technique is introduced

in Sec. 3.2, while the theory is outlined in Sec. 3.3. Numerical and theoretical

results are presented in Sec. 3.4 and conclusions are drawn in the final Sec. 5.4.

37
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3.1 Model design

3.1.1 Treatment of elasticity and thermal displacement

In this study, the elastic body is designed as initially flat, semi-infinite and linearly

elastic. The rigid substrate is fixed in space and the elastic body is moving from

above, while the contact is defined as friction- and adhesionless. The indenter, as

designed in this study, is either perfectly flat, i.e., h(r) = 0, or parabola, in which

case h(r) = −r2/(2Rc), where Rc is the radius of curvature. In order to reduce

finite-size effects and to simplify both analytical and numerical treatments, peri-

odic boundary conditions are assumed by default within the quadratic, interfacial

plane.

The elastic surface is subjected not only to an external load per particle, l, squeez-

ing it down against the indenter but also to thermal fluctuations, as they would

occur in thermal equilibrium at a finite temperature T . Additionally, the small

slope approximation is applied to the counterface, therefore, the shear displace-

ment could be neglected.

In this case, the elastic energy of the deformed solid (semi-infinite thickness) can

be expressed as

Uela[u(r)] =
E∗A

4

∑

q

q |ũ(q)|2 . (3.1)

Here, u(r) states the z-coordinate of the elastic solid’s bottom surface as a function

of the in-plane coordinate r = (x, y). E∗ is the contact modulus, A the (projected)

interfacial area, q an in-plane wave vector, and q its magnitude.

ũ(q) =
1

A

∫
d2r e−iq·ru(r) (3.2)

denotes the Fourier transform of u(r). The short-hand notation u0 = ũ(q = 0)

will be used for the center-of-mass coordinate.

For a flat indenter, only u0 will be used to denote the mean distance, or gap,

between indenter and the solid surface. Here, we define the displacement d as a

function of temperature and load according to

d(T, L) ≡ hind(r = 0)− 〈u(T, L, r →∞)〉, (3.3)
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where 〈u(T, L, r →∞)〉 is the thermal expectation value that the field u(r) would

have (infinitely) far away from the top if the simulation cell were infinitely large.

In this chapter, we are interested mostly in the temperature-induced reductions of

d, i.e., in the term dT defined in the expression

d = d0 − dT , (3.4)

where d0 indicates the displacement for an athermal Hertzian indenter at a given

load. We compute dT through the following approximation

dT ≈ 〈u(T, L, rX)〉 − u(0, L, rX), (3.5)

where rX is the most distant point from the center of the Hertzian indenter.

3.1.2 Treatment of interaction

As in the reminder of this thesis, the interaction is fully defined by the integral of

the surface energy density γ(g) over the surface, which is a function of the local

interfacial separation or gap, g(r) = u(r)− h(r), between the surfaces. It reads

Uint =

∫

A

d2r γ{g(r)}, (3.6)

If the elastic energy is given explicitly, the probability of a certain configuration

to occur would be proportional to the Boltzmann factor, i.e.,

Pr[u(r)] ∝ e−β(Uela+Uint) (3.7)

where β = 1/kBT is the inverse thermal energy.

This section will introduce a variety of interaction strategies that will be used in

this chapter.
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Non-overlap constraint

The non-overlap constraint, or hard-wall constraint is applied for most traditional

contact problems, in which case the surface energy density is defined as

γ(g) =

{
∞ if g < 0

0 else .
(3.8)

This function indicates that the rigid indenter is not allowed to penetrate the

elastic sheet.

In this study, we will repeatedly go back and forth between continuous and discrete

descriptions of displacement fields. For the discrete description, the elastic solid is

split into individual atoms, which are arranged on a square lattice with the lattice

constant ∆a. Transitions between these two representations in real space can be

achieved with the substitutions

∑

n

...↔ 1

∆a2

∫

A

d2r..., (3.9)

while transitions between summations and integrals in the Fourier space can be

achieved with ∑

q

...↔ A

(2π)2

∫
d2q... . (3.10)

To simplify the analytical evaluation of integrals, the square Brillouin zone (BZ)

of the surface will be approximated with a circular domain. In this case, the upper

cutoff for q is chosen to be qmax =
√

4π/∆a as to conserve the number of degrees

of freedom with respect to the original BZ.

Effective hard-wall potentials

Non-overlap constraints can be applied in GFMD simulations if the thermal effect

is neglected. The basic idea of this constraint is sketched as follows: elastic sheet

is split into discrete atoms and pressed against the rigid sheet, once the atoms

penetrate the rigid solid, they go back onto the surface. This scheme no longer

works at finite temperature, in which case the thermal fluctuation is considered.

It violates the fluctuation-dissipation theorem (FDT) because the damping that is
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effectively imposed by this algorithm, is not compensated by a conjugate random

force.

In order to apply non-overlap constraint when thermal fluctuations are considered,

a controlled fashion to violate of the rigid sheet should be allowed. The resulting

procedure in terms of surface energy density function is given as below.

γ(g) =
κoE

∗∆a

n

(−g
∆a

)n
Θ(−g) (3.11)

where Θ is the Heavyside step function, κo is the hard-wall stiffness and n is a

dimensionless parameter.

Although this procedure allows the atom penetrate the rigid sheet, it is designed to

eliminate the penetration as quickly as possible. Towards this end, good numbers

for the exponent n and the dimensionless hard-wall stiffness κo need to be chosen.

In order for the effective hard-wall potential to have a minimal effect on ∆t, the

(non-negative) exponent n should be as small as possible. However, we would

like the force to be a continuous function, for reasons explained at length in any

better text book on molecular dynamics [72, 73]. While these arguments can be

somewhat academic when the discontinuities are small, we are going to send κo

to large numbers resulting in significant force discontinuities. Thus, n must be

chosen greater equal two. This appears to make n = 2 the optimal choice.

Regarding the choice of κo when ∆t and n are determined, we should keep in mind

that we do not need extremely accurate dynamics in the ”forbidden” domain. The

main purpose of this energy density function is to leave the ”forbidden” zone as

quickly as possible. On the other hand, the stiffness should be designed less than

a critical value above which the energy conservation is not satisfied for athermal

simulation even when Verlet algorithm is used. For Verlet, the critical time step

for a harmonic oscillator is ∆tc = T/π, where T is the oscillator period, i.e., for

∆t < ∆tc, the trajectory may be inaccurate, but the energy is conserved (except

for round-off errors). This can be achieved by setting the overlap stiffness to

ko = νo π
2 m

dt2
− ks, (3.12)

where ks = ∆u2/(kBT ), while m is the inertia of the considered degree of freedom.

νo is a numerical factor, which must be chosen less than unity. At and above the

critical value of νo = 1, energy conservation would be no longer obeyed in the
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absence of a thermostat. At the same time, dynamics but also static distribu-

tion functions are very inaccurate, even if a thermostat prevents the system from

blowing up.

The optimum value for ko certainly depends on the specific investigated problem.

However, the analysis of simple models can provide useful preliminary estimates.

This will be done in Sec. 3.1.2.

Approximate collision rules

Another technique to apply hard-wall constraint with consideration of thermal

fluctuation is to use approximate collision rules and control the error of the im-

precision with the time step. The implementation is summarized as follows: ∆t

is fixed in simulation, atom velocity changes sign if it violates the non-overlap

constraint. The procedure in terms of pseudo code is sketched as follows, in which

case the constraint is ignored.

if (z violates constraint) then

z = 2zconstr-z

vz = -vz (velocity Verlet)

zold = 2zconstr-zold (standard Verlet)

end if

In a certain GFMD simulation, in which case all observables are propagated in

Fourier space, the following extra cost would have to be achieved: not only the

current positions, but also the old positions in real space will have to be stored

in memory for the purpose of the velocity calculation. Additionally, two extra

Fourier transforms on old positions will have to be requested, which would double

the number of the most expensive function calls. Since this approach appears to

show similar scaling with ∆t in simple models as effective hard-wall repulsion, see

Sec. 3.1.2 for more details, we did not apply this procedure in this study in case

of time consuming.
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Numerical case studies

To investigate the performance of these two approaches to mimic hard-wall con-

straint, we study the following single harmonic oscillator problem: thermal fluctu-

ations are applied to an originally free harmonic oscillator, the resulting variance is

∆u2. Additionally, this harmonic oscillator is then constrained to have no negative

deflections from its mechanical equilibrium site.

Essentially, the harmonic oscillator problem described above requires that kBT , k,

and m should be chosen such that the ∆u2 is unity (in units of kBT/k). The default

time step that we use for the free oscillator is 2π/30, i.e., 30 time steps per period.

The damping coefficient is chosen to be γ = 1, whereby the free harmonic oscillator

is slightly under-damped. Results for the convergence of how the estimate for the

mean displacement u0 approaches the exact value with decreasing time step ∆t

are shown in Fig. 3.1.
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Figure 3.1: Mean displacement u0 in units of ∆u as a function of time steps.
Different symbols represent different hard-wall approximation, open circles in-
dicates approximate collision rules and closed diamonds the harmonic effective
hard-wall potential. Dash lines show linear fits, while solid line shows the ana-
lytical solution.
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As shown in this figure, the approximate collision rules turns out to be better than

the approximate hard-wall interactions at a given value of ∆t. However, u0 has

leading-order corrections of order ∆t in both approaches. The error for effective

hard-wall potential is less than 1% with the choice of νo = 0.1, which is rigorous

for most simulations. Additionally, simulations must be conducted at two different

values of ∆t for the purpose of a meaningful extrapolation. Considering that the

double times of Fourier transform when using approximate collision ruls would

result the time consuming problem, we decided to apply the effective hard-wall

interaction for the full contact mechanics simulations.

3.2 Thermal GFMD

GFMD is a boundary element method allowing us to effectively solve the elastic

response of a linearly elastic solid to boundary conditions [7, 38, 75]. The elastic

surface displacement field is split into discrete atoms, thus these atoms could reflect

the dynamic degrees of freedom. Elastic interactions are applied on the surface in

terms of elastic Green’s function. In this study, we consider a linear elastic solid

with semi-infinite thickness frictionlessly contacts with rigid counterface. The

equation to be solved in GFMD is

mq
¨̃u(q) + ηq ˙̃u(q) +

q E∗

2
ũ(q) = F̃ (q, t), (3.13)

where F̃ (q, t) is the Fourier transform of all external forces acting on the surface

atoms. The terms mq and ηq represent inertia and damping coefficients of different

surface modes, which may depend on the wave vector. In this study, we focus on

isotropic systems, therefore, both mq and ηq only depend on the magnitude q but

not on the direction of q.

The thermal fluctuations can be explained as random forces, which have to satisfy

the FDT [85], in which case the random forces must obey a zero mean, and the

second moments must satisfy,

〈Γ(q, t)Γ(q′, t′)〉 = 2 ηq kBT δq,q′ δ(t− t′), (3.14)
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assuming discrete atoms, finite domains but continuous times. Here, δ(•) is the

Dirac delta function, which can be replaced with δt,t′/∆t in a molecular dynamics

(MD) simulation, in which the time t is discretized into steps of size ∆t.

At this point, GFMD is only used to generate the correct distribution of config-

urations, which—in a classical system—does not depend on the choice of inertia.

In this case, the mq can be chosen at will as long as the stable configurations

can be reached. In standard GFMD simulation, mq is assumed to be constant,

in which case identical simulations are obtained as if the Newton’s equation were

propagated in real space. However, a realistic dynamics would be produced if

mq are chosen proportional to 1/q. In fact, realistic dynamics require the treat-

ment of damping and random noise to have “memory”, as discussed in Ref. [86].

When being interested in efficient dynamics, which are useful to identify the local

minimum potential energy, or stable equilibrium configuration quickly, the mq are

better chosen proportionally to the stiffness at wave vector q, which means, small

value of mq for long-wavelength modes and large value of mq for short-wavelength

modes [75]. In this context, it is also worth mentioning that significant progress

has been made recently on GFMD to properly reflect not only true (rather than

efficient) dynamics of crystalline solids [87] but also for truly visco-elastic materials

with broad relaxation functions [41].

3.3 Theory

In this section, we investigate the analytical expression for the thermal expectation

value of an interfacial force per atom f(u0) as a function of their mean separation

u0 in the case of hard-wall potential. Towards this end, a partition function

Z(N, β, u0) of a fluctuating surface in front of a wall is defined, therefore, the free

energy could be determined according to F(kBT, u0) = −kBT lnZ(β, u0). The

mean force between hard wall and elastic surface can then be calculated from

f = − 1

N

∂F(N, kBT, u0)

∂u0

. (3.15)

Minor errors in the treatment presented below appear in numerical coefficients

that result, for example, by having approximated the Brillouin zone of a square

with a sphere, or, by having replaced a discrete set of wave vectors (finite system)
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with a continuous set (infinitely large system). However, these and related ap-

proximations are controlled, because errors resulting from them can be estimated

and they could even be corrected systematically.

3.3.1 The statistical mechanics of a free surface

We start our theoretical study with the free surface, which is the reference state

and the easiest case to investigate. In this approach, the variance of atomic dis-

placement caused by thermal fluctuation is an important quantity. In the case of

fixed center-of-mass mode, the variance is defined as

∆u2 ≡
〈
{u(r)− ũ(0)}2〉 . (3.16)

The variance could be computed in a straightforward fashion if we make Fourier

transform of the displacement, which reads

∆u2 =
∑

q′

〈
|ũ(q′)|2

〉
(3.17)

≈ A

(2π)2

∫
d2q

2 kBT

qE∗A
(3.18)

≈ 2√
π

kBT

E∗∆a
, (3.19)

where we made use of equipartition for harmonic modes, see also Eq. (3.28).

The prefactor 2/
√
π ≈ 1.1284 turns out to be very close to unity. However, in a

quantitative theory, we wish to know and perhaps to understand its precise value.

Towards this end, we assume the BZ to be square in real space with N atoms and

a summation based on this assumption is conducted. It shows that ∆u2 can be

evaluated by

∆u2 =

(
1.1222− 1.24√

N

)
kBT

E∗∆a
, (3.20)

if
√
N > 512 to more than three digits accuracy. This result is fairly close to the

analytical result based on a BZ, which is approximated as sphere.

Eq. (3.19) reveals that the fluctuations are dominated by the small scales. In

the case of an Einstein solid, in which each surface atom is an independent har-

monic oscillator with identical stiffness kE = kBT/{(N − 1) ∆u2}. In reality, i.e.,
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in less than infinite dimensions, there is always a correlation of thermal height

fluctuations.

In this case, the following question remains: what is the distance over which height

fluctuations are correlated? Towards this end, we calculate the thermal displace-

ment autocorrelation function (ACF) Cuu(r). It can be defined and evaluated to

obey:

Cuu(∆r) = 〈u(r)u(r + ∆r)〉 (3.21)

≈ 1

2π2

kBT

qE∗

∫ √4π/∆a

0

dq

∫ 2π

0

dϕ eiqr cosϕ (3.22)

=
1

π

kBT

rqE∗

∫ √4πr/∆a

0

d(qr)J0(qr) (3.23)

=
2 kBT

qE∗

√
4π r

∆a
1F2

(
1

2
; 1,

3

2
;
−π r2

∆a2

)
(3.24)

≈
{

2 kBT√
π E∗∆a

+O(r2) for r → 0

kBT/(π q E
∗ r) for r →∞,

(3.25)

in this expression, J0(x) represents the Bessel function of the first kind and

1F2(...) a generalized hypergeometric function. The analytical result of ACF shows

Helmholtz ringing at intermediate values of r. This leads to the theoretical solu-

tion of little practical use, except in the two limiting cases r → 0 and r → ∞.

Generally, Helmholtz ringing is the result of feature, such as abrupt cutoffs in the

wave vector domain. However, even using exact expectation values of |ũ(q)|2 for

a square BZ and extending the ACF to continuous limit between the lattice posi-

tions, the Helmholtz ringing remains. The validity of these claims is demonstrated

in Fig. 3.2.

One could generalize the Cuu(r) to a continuous function by constructing the

simplest expression with the correct limit behaviors, which reads

Cuu(r) ≈
2√
π

kBT

E∗
1

(∆a2 + 4π r2)1/2
. (3.26)

As shown in Fig. 3.2, this asymptotic function is acceptable at a intermediate

domain where r = ∆a and the errors remain less than 5% in the limit of large

N for larger r. Although numerical results presented in Fig. 3.2 include data for

r parallel to [1, 0], it is demonstrated that other direction, such as [1, 1] direction

could also get similar results.
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Figure 2. The radial displacement ACF Cuu(r)—normalized to its value at r = 0—as a function of
distance r: asymptotic approximation given in Eq. (27) (black line), exact correlation function along the
[10] direction with interpolation between non-lattice sites (dashed brown line), numerically exact results for
systems of size 2048⇥ 2048 (red circles), 512⇥ 512 (green squares), and 128⇥ 128 (blue diamonds). They
were also obtained for the [10] direction, except for the open symbols, which refer to the [11] direction.

A quite reasonable approximation or rather generalization of Cuu(r) to a continuous function can be made266
by constructing the simplest expression with the correct asymptotic behaviors summarized in Eq. (26):267

Cuu(r) ⇡ 2p
⇡

kBT

E⇤
1

(�a2 + 4⇡ r2)1/2
. (27)

As can be seen in Fig. 2, this asymptotic approximation is quite reasonable already at a nearest-neighbor268
spacing of r = �a and has errors of less than 5% (in the limit of large N ) for larger values of r. While269
numerical results for finite systems in Fig. 2 include predominantly data for r parallel to [1, 0], similar270
results are obtained for other directions as well, as demonstrated examplarily for the [1, 1] direction of the271
N = 128 ⇥ 128 lattice.272

The asymptotic ACF has decayed to approximately 30% of its maximum value at the nearest-neighbor273
distance. This means that the displacements of adjacent lattice sites are essentially uncorrelated.274

The last property of interest used in the subsequent treatment is the partition function of a free surface275
(fs):276

Zfs(�) =
Y

q

�qp
2⇡�u2(q)

(28)

This is a provisional file, not the final typeset article 10

Figure 3.2: The ACF Cuu(r)/Cuu(0) as a function of r/∆a. Closed color
symbols represent numerical results along the [10] direction for different system
sizes, while open symbols refer to the numerical result along the [11] direction.
The solid line represents the asymptotic approximation presented in Eq. (3.26),
while the dashed line the exact correlation function along the [10] direction with
interpolation between non-lattice sites.

Another property should be noticed is that the asymptotic function has decayed

to roughly 30% of its maximum value at the nearest-neighbour distance. This

indicates that the displacements of neighboring lattice sites are substantially un-

correlated.

The partition function of a free surface is defined as

Zfs(β) =
∏

q

λq√
2π∆u2(q)

(3.27)

with

∆u2(q) =
2 kBT

q E∗A
. (3.28)

λq = h/
√

2mq kBT represents the thermal de Broglie wavelength of a surface

mode. It indicates the ideal-gas contribution of the momenta conjugate to ũ(q)

to the partition function. The intention of including λq into the calculation is to
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satisfy the partition function dimensionless, as long as E∗ is small compared to

the external pressure and temperature kept fixed. At this point, a precise choice

of mq is not necessary, even though it might be an interesting issue in itself.

If the solid is simplified to an Einstein solid, the partition function can be given

as

Zmf(β) =

(
λmf√

2π∆u2

)N
, (3.29)

where ∆u was sketeched above and λmf represents a mean-field de Broglie wave-

length.

3.3.2 Interaction of a thermal, elastic surface with a flat

wall

In this section, the statistical mechanics of an initially flat, linearly elastic surface

in front of a flat, rigid wall is studied. The purpose is to deduce the expression

of mean force in a straightforward fashion. We conducted various mean-field ap-

proaches for this intention. The theoretical results appears to be quite accurate

in different asymptotic limits of the full problem.

First mean-field approximation

The Einstein solid, which was introduced in Sec. 3.3.1, is the most straightforward

way to thermal contact problem. As a result, a degree of freedom is a hybrid of

an atom in real space and a delocalized, ideal sine wave. Additionally, we assume

that the elastic energy of an individual atom follows

vmf
ela(u) =

kBT

2 ∆u2
u2. (3.30)

According to FDT, the expectation value of u should remain zero, towards this

end, we assume that the interaction energy with a counterface placed at a distance

u0 from the atom’s mean position is given by

vmf
sub(u) =

∆a2

2π

∫ 2π

0

dϕ γ(u0 + u cosϕ). (3.31)

This expression indicates that an oscillation of an atom leads to an undulation. If

so, u0 automatically corresponds to the atom’s mean position.



Chapter 3. Thermal Hertzian contact mechanics 50

The excess free energy per particle ∆F/N for a fixed center-of-mass position sat-

isfies

e−βF/N =
1√

2π∆u2

∫ ∞

−∞
du e−β{v

mf
ela(u)+vmf

sub(u)}, (3.32)

where the term “excess” refers to the change of the free energy relative to that of a

free surface. For hard-wall interactions, the integral in Eq. (3.32) can be evaluated

to be

e−βF/N =
1√

2π∆u2

∫ u0

−u0
du e−βvela(u)

= erf

(
u0√
2∆u

)
. (3.33)

Hence,

F
N kBT

= − ln

{
erf

(
u0√
2∆u

)}
(3.34)

≈




− ln

(√
2
π
u0
∆u

)
for u0 < ∆u/2

∆u√
πu0

e−u
2
0/(2∆u2) for u0 > 2∆u.

(3.35)

The derivative of Eq. (3.34) leads to the force expression from this first mean-field

approximation, which reads

fmf1(u0) =

√
2

π

kBT

∆u

exp{−u2
0/(2∆u2)}

erf{u0/(
√

2∆u)}
. (3.36)

Second mean-field approximation

Another approach to thermal contact problem is to introduce an external force f

divided by the thermal energy instead of the interaction force, such that u adopts

the desired value of u0. In this case, the possibility of a displacement u to occur

reads

Pr(u) ∝ e−(u−u0)2/(2∆u2)−βf(u−u0)Θ(u), (3.37)

where f should be well chosen such that 〈u〉 = u0, in which case the equilibrium

lattice position satisfies ueq = u0 + βf∆u2. In this case, the restoring force in

the spring equals to zero. The requirement 〈u〉 = u0 automatically leads to the
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following self-consistent equation for f :

β f ∆u =

√
2

π

exp
{
− (β f ∆u2−u0)2

2∆u2

}

1− erf
(
β f ∆u2−u0√

2 ∆u

) . (3.38)

This approach leads to similar results for the f at small u0 as the first mean-

field estimation. However, the predicted force appears to be half that of the first

mean-field approach for large u0.

Probabilistic approach

The third approach is to define the excess free energy of an elastic body in front

of a hard-wall by a path integral, which reads

e−βF(u′0) =
1

ZA

∫
D[u(r)] δ (u′0 − u0) e−β vtot[u(r)], (3.39)

where D[u(r)] denotes an integral over all possible displacement realizations and

ZA =

∫
D[u(r)] δ (u0 − u′0) e−β vela[u(r)]. (3.40)

Eq. (3.39) can be explained as follows: the relative number of configurations that

are produced with the thermal equilibrium distribution of a free surface (fs), whose

maximum displacement is less than u0, i.e.,

e−βF(u0) = 〈Pr(umax < u0)〉fs , (3.41)

This interpretation motivated us to solve the following probability problem: what

is the possibility of N ′ = N∆a2/∆Ac independent Gaussian random number satis-

fies 〈u〉 = 0 and ∆u2 < u0? Here ∆Ac is the correlation area for the displacements.

The distribution of umax = max{u(r)} converges to the Gumbel distribution [88]

as long as the Gaussian random number N ′ is large enough, which reads

Pr(umax) =
1

βgev

e−(e−z) (3.42)

with

z =
umax − µgev

βgev

, (3.43)
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where µgev is the mode of the Gumbel distribution, i.e., the most likely value for

umax to occur, and βgev a parameter determining the shape of the distribution.

For a normal Gaussian distribution ΦG(u/∆u), they are given by

µgev

∆u
=
√

2 erf−1

(
1− 2

N ′

)
(3.44)

βgev

∆u
=

1

N ′ · ΦG(µgev/∆u)
(3.45)

in the limit of large N ′. Here erf−1(...) stands for the inverse function of the error

function [88].

As shown in Fig. 3.3, the distribution of umax one time produced with GFMD and

another time by taking N ′ independent random numbers are roughly identical,

and both of them are almost dead-on the Gumbel distribution.
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Figure 3.3: Distribution of maximum displacements for different system sizes.
Closed symbols represent the data obtained from GFMD simulation, while open
symbols indicate the data obtained from N ′ = 0.92N independent random
numbers of mean zero and variance ∆u. Solid lines represent the Gumbel dis-
tributions.
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Rather than relying on the Gumbel distribution, one might as well write down

the exact probability of one positive Gaussian random variable (grv) to be less

than u0 and take the result into the N ′/2-th power. (On average, there are N ′/2

positive grv’s, whose value may not exceed u0. The negative grv’s are irrelevant

with respect to the violation of the violation of the non-overlap constraint.) In

this approximation,

Pr(umax < u0) =

{
erf

(
u0√
2σ

)}N ′/2
. (3.46)

and therefore

∆F = −N
′kBT

2
ln

{
erf

(
u0√
2∆u

)}
. (3.47)

This approach works for large separations, in which case u0/∆u� 1. One should

notice that this expression is similar to the first mean-field case, except for the

prefactor, which is reduced by a factor of two while N is replaced with N ′.

3.3.3 Thermal Hertzian contacts

Preliminary considerations

All variables needed to define a thermal Hertzian contact problem are listed as

follows: the radius of curvature of the rigid indenter Rc, grid distance ∆a, contact

modulus E∗, external load L, and thermal energy kBT . Therefore, the ther-

mal displacement dT should be identified by a function of variables listed above.

Specifically, at small temperature, the leading-order approximation of the relative

displacement dT/d0 can be expected to depend on powers of the variables declared

above, which reads

dT
d0

∝
(
Rc

∆a

)α(
E∗R2

c

L

)β (
kBT

E∗R3
c

)γ
, (3.48)

where d0 represents the displacement of a typical athermal Hertzian indenter at

external load L. E∗ and Rc are used to define the units of pressure and length,

respectively. Furthermore, the exponents should satisfy the following rule, which

is deduced with the help of dimensional analysis.

α + 3β − 5γ = 0 (3.49)
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The sum rule Eq. (3.49) holds generally for temperature ranging from low to high

value.

Low-temperature approximation

Low-temperature corresponds to weak thermal fluctuations, in which case the

stress profile of a typical Hertzian contact problem is expected to be similar to

that of the athermal Hertzian contact problem except for a slightly deviation.

This deviation then could be predicted as a constant shift dT according to the

perturbative assumption. In this case, the thermal Hertzian gap could be evalu-

ated with g(r) = gH(r) + dT , where gH(r) is the Hertzian gap for athermal case.

Considering that the dominant contribution to thermal energy are located in the

original contact domain, the thermal energy per atom could be approximated as

eT = −dT L+
1

∆a2

∫
d2rFpa {gH(r) + dT} (3.50)

≈ −dT L+
2π

∆a2

∫ ac

0

dr rFpa(dT ), (3.51)

where Fpa ≡ F/N denotes the hard-wall, free-energy normalized to the atom. The

thermal displacement dT could be obtained by minimizing eT over T, which leads

to

L =
π a2

c

∆a2
f(dT ) (3.52)

≈ π a2
c

∆a2

√
2

π

kBT

∆u

exp (−u2
0/2∆u2)

erf(u0/
√

2∆u)
(3.53)

where the last approximation is only valid at small temperatures. Taylor expand-

ing this last expression leads to
dT
d0

≈ T

T ∗
(3.54)

with

T ∗ =
L∆a2

π kB Rc

. (3.55)

High-temperature approximation

When the temperature is very high, the thermal displacement dT is far beyond

the original displacement d0, so that the deformation of the elastic solid could
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be neglected. In this case, we assume the displacement field is a constant, say,

dT , and the resulting individual forces can be summed up with a mean gap of

dT + r2
n/(2Rc). The external load then could be approximated as

L ≈ N ′

2N

1

∆a2

∫
d2r fmf1

(
dT +

r2

2Rc

)
(3.56)

≈ L0
∆u

dT
e−d

2
T /(2∆u2) (3.57)

with

L0 =

√
2

π

N ′

N

kBT Rc

∆a2
. (3.58)

To solve Eq. (3.57), we introduce Lambert W function W (x) ≈ lnx − ln lnx for

x� 1. The thermal displacement in unit of ∆u could be evaluated as

dT
∆u
≈
√
W

(
L2

0

L2

)
. (3.59)

3.4 Results and analysis

3.4.1 Flat indenter

We have introduced three different theoretical approaches to the thermal contact

mechanics for a perfect flat-on-flat geometry in Sec. 3.3.2. In this section, we

explore for which case these approaches are consistent with the numerical results

obtained with thermal GFMD technique. In numerical simulation, we set contact

modulus E∗ = 1, grid distance ∆a = 1, and consider different values of u0/∆u.

As shown in Fig. 3.4, the first mean-field theory is consistent with GFMD data for

small values of u0, while the probabilistic approach appears to be consistent with

GFMD data for large values of u0. There is a smooth transition between these

two limits, which could be matched by the second mean-field theory. However,

as introduced in Sec. 3.3.2, there is no closed form expression to describe this

transition. On the other hand, we noticed that these two limits have similar

functional form and the transition is quite continuous. The limitation and property

mentioned above motivated us to apply a switching function to approximate this

transition, as presented in Fig. 3.4, this function matches the GFMD data ranging

from small to large values of u0 with maximum errors less than 10%.
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Figure 3.4: Dimensionless mean force βf∆u as a function of normalized
mean separation u0/∆u, where ∆u represents the height standard deviation of
a surface atom in the absence of a counterface.

This switching function is given by

F(u0) ≈ w1(u0)Fmf1(u0) + w2(u0)∆F (3.60)

with the weighting functions

w1(u0) =
1

2

{
N ′

N
+

(
2− N ′

N

)
e−u

2
0/∆u

2

}
(3.61)

w2(u0) = e−u
2
0/∆u

2 {1− tanh(u0/∆u)} (3.62)

where ∆F = −N ′kBT/2. The negative derivative of Eq. (3.60) with respect to u0

is nothing but the mean force f .
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3.4.2 Hertzian indenter

So far, an effective potential to describe the thermal effects in terms of repul-

sive force has been managed in a straightforward fashion. In this section, we

implement this potential into classical Hertzian contact problem to validate its

applicability. Towards this end, we investigate how thermal fluctuations effect the

load-displacement relation within the framework of GFMD. Additionally, the def-

inition of a contact area with consideration of thermal fluctuations is also studied.

In order to avoid the discreteness problem, the grid distance ∆a is set to sufficiently

small compared to the linear dimension of the contact area ac. This convention

allows the simulation results to be consistent with the continuous Hertzian contact

theory.

The default parameters to conduct the thermal Hertzian contact simulation are

listed as follows: the radius of curvature Rc = 256 ∆a, the normal load L =

131 E∗∆a2, as a result, contact area could be calculated with the area-load ex-

pression in classical Hertzian contact theory, which is ac ≈ 30 ∆a. Results for

the displacement and stress profile at a given temperature kBT = 0.2E∗∆a3 are

presented in Fig. 3.5.

When temperature is non-zero, the boundary of contact and non-contact domain

becomes indistinct. In this case, the definition of “true contact area” should be

discussed explicitly. In classical hard-wall constraint, contact can be detected

only when elastic solids penetrate into rigid indenter is observed. However, when

thermal fluctuation is switched on, the penetration behavior turns out to be in-

stantaneous and undetectable. As a result, the instantaneous contact area could

be argued to be zero. However, during each instantaneous time, the forces between

surfaces is infinitely large, consequently, the stress profile is similar to a classical

Hertzian case after time averaging. If the temperature is sufficiently small, the

stress profile would very close to an athermal Hertzian case.

Regarding the definition of true contact area, we follow the idea that define a

contact line where the gradient of the normal stress has a maximum slope, which

is proposed in a recent paper [89]. In this example, this definition leads to a

reduction of contact radius of order 1%, while the normal displacement is reduced

by roughly 30%.
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Figure 3.5: Top: Interfacial stress σ as a function of distance r/∆a from
the symmetry axis. The blue circles represent GFMD data at kBT = 0 with
hard-wall overlap potential, the blue line is the analytical solution of stress in
Hertzian contact problem. The red open squares represent full simulation data
at finite temperature, while the red dotted line shows GFMD data without
thermal fluctuations, however, an effective potential was constructed to reflect
the thermal effects at a given temperature. The arrow marks the point of largest
slope for the thermal indenter. Bottom: Displacement field u(r) as a function
of distance r from the symmetry axis.
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Unlike the definition of contact area, the load-displacement relation for thermal

contact problem could be defined in a straightforward way. As mentioned in

Sec. 3.1.2, because of the repulsive force induced by the thermal fluctuations, the

displacement d will reduced by dT . The expression of displacement d for classi-

cal Hertzian contact problem is scale free, in a similar manner, the temperature

induced displacement dT/d0 should also hold this property when ∆a � ac. As

shown in Fig. 3.6, the thermal displacement dT for different Hertzian realizations

can be mapped exactly on a single master curve Ξ(T/T̃ ), which reads

dT = d̃0 Ξ(T/T̃ ), (3.63)

where

d̃0 =

(
RcL

E∗∆a3

)− 1
3

d0 (3.64)

and

T̃ =

(
L

E∗R2
c

) 2
3 E∗∆a3

kB
. (3.65)

The master curve describes the thermal displacement at low and high temperature

limits. It shows that dT could be approximated with power laws, however, loga-

rithmic corrections should be made for both limits, such that the approximation

could be consistent with GFMD data.

Ξ(t) ≈
{
t (1− ln t) for t� 1

1.727
√
t {1 + ln(t)/6} for 0.1 < t < 104

. (3.66)

Substituting the low-temperature limit to Eq. (3.63) would result in the following

thermal displacement expression.

dT
d0

≈ T

T ∗

(
1− ln

T

T̃

)
(3.67)

for T � T̃ . This expression indicates that the low-temperature approximation

deduced in Sec. 3.3.3 predicted correctly the linear term, but failed to predict the

logarithmic corrections, which become dominant for a small ratio T/T̃ .

The argument that extending the integration domain in Eq. (3.51) back to radii

beyond the athermal contact radius would lead better results at small T/T̃ is

demonstrated to be inefficient. The reason is sketched as follows: the displacement
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Figure 3.6: Reduced thermal displacement dT/d̃0 as a function of reduced
temperature t = T/T̃ for different Hertzian contact realizations. The reference
model (black circles) is defined in Sec. 3.4.2. In one case, load was increased
by a factor of two (red squares), and in another case, the radius of curvature
was increased by a factor of eight (orange diamonds) with respect to the default
values. Green triangles represent GFMD simulations with parameters in real
units: ∆a = 2.5 Å, Rc = 200 nm, E∗ = 100 GPa, and L = 200 nN, which was
a typical blunt atomic-force microscope (AFM) indenter contact. Solid blue
and red line show the low- and intermediate-temperature approximation from
Eq. (3.66). The dash line indicates the high temperature limit of Eq. (3.59).

shift due to thermal fluctuations is assumed to be a constant, which is inconsis-

tent with the results as shown in Fig. 3.7, this shift far away from the indenter is

significantly larger than at r = 0 and this difference increases with decreasing tem-

perature. Nevertheless, we still decided to keep this low-temperature discussion

since it allows one to rationalize dT ∼ T relation to be linear.

From a practical point of view, one may want to study the thermal displace-

ments for real rather than for reduced units. Before investigating this issue, we

should make it clear that the range of application of the master curve presented

in Eq. (3.66) for t > 0.1 can only hold for the shown domain, and cannot extend

to t → ∞. Nevertheless, when t > 103, the correlated temperature is already far

beyond that required for a typical real-laboratory experiment which turns out to

be almost impossible to be reached. Therefore, we would like to conclude that this

master curve is still applicable for practical purposes.



Chapter 3. Thermal Hertzian contact mechanics 61

0 20 40 60 80 100 120 140 160 180
r / ∆a

0

1

2

3

4

5

6
d T(r

) /
 d

T( r
 =

 0
)

T / T* = 0.5 . 10-3

T / T* = 0.5

Figure 3.7: Spatially resolved thermal displacement dT as a function of dis-
tance r/∆a from the symmetry axis, where dT was normalized to its value at
r = 0. Dashed blue line represents the lower temperature case, while solid red
line represents the high temperature case.

At this point, we start to explore the issue that translating d(T ) dependence

with real units rather than reduced units. Towards this end, the expressions for

both low-temperature and intermediate-temperature limits are updated for a hard-

matter (E∗ = 1 GPa) and a soft-matter (E∗ = 50 MPa) system. The expressions

are demonstrated by thermal GFMD simulations. Results are presented in Fig. 3.8.

The radius of curvature was set to Rc = 50 nm for both cases and the external

load was adjusted so that plastic deformation can be neglected.
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Figure 3.8: Displacement d as a function of temperature T for fixed external
load. Top figure corresponds to hard-matter (E∗ = 1 GPa), and the bottom
figure corresponds to soft-matter (E∗ = 50 MPa). Green circles indicate the
GFMD data. Red lines represent the intermediate-temperature approximations,
while blue dashed line represents the low-temperature approximation.
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As shown in Fig. 3.8, the GFMD results of both soft- and hard-matter match the

intermediate-temperature estimation at room temperature extremely well. Rel-

ative corrections are required at low-temperature limit for hard-matter and can

be ignored for soft-matter. This observation motivated us to explore the ques-

tion: how far do thermal fluctuations affect the load-displacement relation? This

question is critical to contact mechanics experiments because most indentation ex-

periments are conducted at constant temperature and varying load. Substituting

the intermediate-temperature approximation of Eq. (3.66) into Eqs. (3.63–3.65)

and considering the displacement-load relation in classical Hertzian contact the-

ory leads to

dT = dref
T

{
1− 1

9
ln
(
L/Lref

)}
(3.68)

with dref
T ≈ 1.426 ∆u and

Lref =

(
kBT

E∆a3

)3/2

E∗R2
c . (3.69)

This expression indicates that when thermal fluctuation is switched on, the thermal

shift is only roughly 1.5 times the thermal standard deviation of its smallest-scale

surface fluctuations.

As shown in Fig. 3.9, the thermal corrections leads to a constant shift for soft

matter systems. When external load equals to L ≈ 16 nN, the corresponding

thermal shift is dT ≈ 1.2. Reducing the external load by 100 times only leads to

a bare change of thermal shift, say dT ≈ 1.7. If twice the value of thermal dis-

placement compared to that at 16 nN is required, a corresponding external load

of 20 fN is expected, which is almost undetectable. For reasons of completeness,

we state that the range of validity of the intermediate-temperature approxima-

tion of 0.1 < t < 104 demonstrated in Fig. 3.6 translates to a range of loads

of 0.15 < L/nN < 1.5 · 104 for the specific examples studied here. This range is

sufficient for most of indenter experiments.

3.5 Conclusion

In this chapter, the effect of thermal fluctuations on classical Hertzian contact

mechanics in the case of hard-wall interactions is studied. Towards this end, we
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Figure 3.9: Displacement d as a function of external load L for a soft-matter
(E∗ = 50 MPa). Blue circles indicate GFMD data with zero temperature, and
the red circles indicate the GFMD data with T = 300 K, which corresponds to
room temperature. Black line is the load-displacement curve in Hertzian theory.
Red dashed line represents the intermediate-temperature approximations.

first investigate an initially flat elastic surface contacts with a flat rigid inden-

ter. The purpose is to construct effective surface interactions so that the thermal

effect could be considered in the case of hard-wall interaction. The thermal fluc-

tuations could be translated to a finite-range repulsive force. The functional form

of this repulsive force was derived analytically and demonstrated to increase with

decreasing the interfacial separation u0 at small u0 but starts to decrease quickly

with increasing interfacial separation when u0 is sufficiently large.

To validate the analytical approach, Green’s function molecular dynamics (GFMD)

technique was extended to include thermal fluctuations. The most critical issue

that needs to be addressed here was how to deal with hard-wall interactions in the

simulations. A stiff harmonic potential was introduced to replace the hard-wall

constraint and it turns out to be applicable if simulations are conducted at different

values for the stiffness and extrapolation is made to infinite stiffness. The GFMD
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results are consistent with the different mean-field approaches to the thermal con-

tact mechanics problem addressed above. In this way, an accurate, closed-form

displacement-force relation was obtained to describe the contact behavior of an

initially flat, linear elastic solids and a flat, rigid substrate.

After that, we applied this effective hard-wall interaction to the classical Hertzian

contact problem and a noticeable shift in the normal displacement is obtained.

The thermal shift of Hertzian indenter was demonstrated to be slightly less than

1.5 times the thermal standard deviation of surface positions of a free, initially flat

surface. Logarithmic corrections which depend on external load turns out to be

negligible. In this case, thermal noise leads to a shift of the load-displacement curve

that is roughly equal to the root-mean-square fluctuation of surface atoms but

almost independent of the load. Constant shifts usually hardly undetectable, this

could potentially explain why Hertzian contact theory can be applied to nanoscale

problem without trouble.

As expectation, similar results should be reached if the classical Hertzian contact

replaced by randomly rough surface contact. On the other hand, if the short range

adhesion is included into this study, we expect a reduction of this adhesion would

be obtained due to thermal fluctuations. Future works could attempt to elucidate

this issue.





Chapter 4

Effects of structural

parameters on the relative

contact area

This chapter attempts to understand what structural parameters characterizing

the surface topography affect the area-pressure relation in nominally flat contacts.

Towards this end, the friction-, and adhesionless contact problem between an

initially flat, linearly elastic solid and a rigid indenter with various profiles was

studied. Specifically, the indenter was designed to move from below, and the

hard-wall constraint between these two bodies was imposed. Green’s function

molecular dynamics (GFMD) is a technique that allows us to solve this kind of

contact problem in the framework of MD, which has already been widely used

in contact mechanics study [7, 41, 87, 90]. As throughout this thesis, we use the

FIRE-GFMD, which is demonstrated to be an efficient and reliable solver to locate

the stable mechanical structure of contact simulations quickly [75].

The first counterface investigated in this chapter is an isotropic, randomly rough

indenter, which is commonly used in many contact mechanics studies. The second

case was also a randomly rough indenter, however, the isotropy was destroyed.

The third case is an isotropic warping indenter, which is a typical randomly rough,

phase correlated surface. The fourth and the last case was a generilized Hertzian

indenter.

The remainder of this chapter is organized as followes: The elastic body and

rigid indenter are introduced in Sec. 4.1. The theory is sketched in Sec. 4.2,

which includes the construction of topographic order parameters beyond the Nayak

67
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parameter. Results are presented in Sec. 4.3, while conclusions are shown in

Sec. 4.4.

4.1 Model design

4.1.1 Elastic body

The elastic body studied in this chapter is designed as initially flat, linear elastic

body. Periodic boundary conditions are assumed by default with the intention to

reduce finite-size effect and simplify the numerical simulation.

An external load is applied to the elastic body so that the contact between elastic

body and rigid indenter could be measured. In order to avoid one single point

contact, the minimum load is adjusted to lead to at least one meso-scale asperity

in contact. The interaction considered in this chapter is the hard-wall constraint,

or non-overlap constraint, in which case the contact is considered only if the pene-

tration of the elastic body is detected. In addition, the small-slope approximation

is also assumed, which allows us to assume a zero shear-stress boundary conditions

between the bodies.

4.1.2 Rigid indenter

Isotropic rpa indenter

The default indenter considered in this study is randomly rough, self-affine surface,

which is fully defined by a height power spectral function C(q). This kind of surface

has a feature that the stochastic properties are dominated by the resolution of the

measuring apparatus. The spectrum used in this chapter reads

C(q) = C(qr)×





froll if q < qr

(q/qr)
−2(1+H) if qr < q < qs

0 else,

(4.1)

where froll is a Boolean variable, of which the value can only be zero or one. It

is set to be zero by default in this study and only set to one when mentioned
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explicitly. In this case, the roll-off wavelength λr = 2π/qr plays the role of a long

wavelength cutoff. Accordingly, the properties of the isotropic rpa surface is fully

defined by the Hurst exponent H, the system size L, the roll-off wavelength λr

and cut-off λs = 2π/qs, and a prefactor C(qr). In practice, L should be chosen

larger than λr to average implicitly over different random realizations, which can

become relevant for large Hurst exponent at small relative contact area.

The surface is defined according to

h̃(q) =
√
C(q)e2πir(q) (4.2)

where r(q) is a uniform random number on (0, 1). h̃(q) represents the Fourier

transform of height profile. The real space representation could be obtained if the

following convention is applied.

h(r) =
∑

q

h̃(q)exp[iq · r] (4.3)

h̃(q) =
1

N

∑

r

h(r)exp[−iq · r] (4.4)

where N denotes the number of grid points, into which the surface is discretized.

Anisotropic rpa indenter

An anisotropic surface is realized by introducing a single number, known as “Peklenik”

number γP. The number results in an effective wavenumber

qP =

(
γ2

Pq
2
x + q2

y/γ
2
P√

γ4
P + 1/γ4

P

)1/2

(4.5)

as the variable to be used in the height spectrum rather than the true wave number

q. The Peklenik number satisfies 0 < γP <∞. The isotropic rpa surface is realized

when γP = 1. The such produced height profiles reveal prefered directions or

“grooves”, as shown in Fig. 4.1.
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Isotropic height-warped indenter

An isotropic height-warped surface is defined by

hw =





hmin + (h− hmin)
(

h−hmin

hmax−hmin

)w
if w ≥ 0

hmax − (hmax − h)
(

hmax−h
hmax−hmin

)|w|
else,

(4.6)

where hmin ≤ Min {h(r)} and hmax ≥ Max {h(r)}. Here h indicates the height

of an ideal randomly rough surface at a given position r and hw is the height

after warping transform at the same position. According to this expression, the

surface remains unchanged when w = 0. When w > 0, peaks are blunted and

valleys are sharpened, while the opposite is achieved with w < 0, as can be seen

explicitly in the cross-section of the height profile shown in Fig. 4.2. In the current

study, hmin = 2Min{h(r)}−Max{h(r)} and hmax = 2Max{h(r)}−Min{h(r)} were

applied.

Phase correlation through the warping procedure is reflected by the observation

that the height histograms are systematically skewed for w 6= 0. The reference

histogram is produced with rpa surface, which turns out to be symmetric. Ad-

ditionally, the expectation value of the rms gradient is much increased in the

sharpened parts and significantly reduced in the blunted domains. In contrast,

for sufficiently large rpa surfaces, ḡ is independent of the height, except near the

heighest and lowest heights in a finite sample. In practical point of view, the

Peklenik parameter should be correlated with wave vector [91]. The warping sur-

face should also include additional refinements. However, our impression is that

the constant γP already includes the feature of scratched surface. w = 2 could also

lead to a reasonable polished surface, i.e., relatively deep valleys and smoothened

tops.

Generalized Hertzian indenter

The last indenter is a generalized Hertzian indenter, which is defined by

h(r) =
R

n

( r
R

)n
(4.7)

where R is of unit of length, r is the in-plane distance of a point from the symme-

try axis of an individual indenter, which we place into the center-of-mass of the
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simulation cell. Different values of n lead to different profiles. In this study, we

study the surfaces generated from three different values of n, i.e., n = 1.5 (sharp

indenter), n = 2 (parabolic indenter), and n = 4 (blunt indenter).

4.2 Theory

4.2.1 Prediction of κ in Persson theory

Considering a linearly elastic solid in contact with an ideal randomly rough, self-

affine fractal rigid substrate, Persson theory predicts the area-load relation as

ar = erf
{√

2 p0/E
∗ḡ
}
, (4.8)

where ḡ is the rms height gradient averaged over the entire surface, i.e.,

ḡ2 =

∫
d2q C(q) q2. (4.9)

Eq. (4.8) not only works for randomly rough indenter, but also holds for smooth

indenters with harmonic height profiles defined in Eq. (4.7) if ḡ is evaluated over

the true contact domains [92], in which case the ḡ is replaced by ḡc. Therefore, the

range of applicability of Eq. (4.8) appears to extend when re-expressing it through

ar = erf
(√

πκcp
∗
c/2
)
, (4.10)

where κc is the proportionality coefficient of area-load relation, p∗c = p0/(E
∗ḡc) rep-

resents the reduced pressure, the index “c” indicates that the quantity is evaluated

over the true contact zones rather than the entire surface.

In fact, when taking Persson theory literally, it does ask the question how the rms-

height changes in a given point of contact (described using a small resolution of the

surface topography) when short-wavelength roughness is added to the description

of the contact problem. Using the full spectrum to estimate this increase in the

rms-roughness can be seen as an approximation, which might be possible to correct

in future work.
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Persson theory predicts a value of κ =
√

8/π ≈ 1.596. In the formulation of the

theory, it appears to us as if no distinction is made – or must be made – between

κ and κc, at least as long as pressures lie in a range in which ar ∝ p, that is, if

p is sufficiently large for contact to spread out over clearly disconnected contact

patches but still small enough so that ar is less than, say, 0.05. Careful simulations

of sufficiently large systems find a relatively weak dependence of κ on the Hurst

roughness exponent, e.g., κ(H ≈ 0.8) . 2 and κ(H ≈ 0.3) & 2. [35, 52–54, 57, 93].

Analytical results for the Hertz contact result in κc ≈ 1.666, see also Eq. (4.29)

and the more detailed discussion of periodically repeated, smooth indenters in

Sec. 4.3.5.

4.2.2 Definitions of scalar parameters

Relative contact area is determined by the ratio of the true contact area and the

nominal contact area. Therefore, it is a scalar, and it can only be a function of

other scalars, such as reduced pressure p∗, Nayak parameter ΦN and other scalar

structural parameters. In principle, structural parameters, including Nayak pa-

rameter, must follow the law of dimensional analysis, some details about such

dimensional analysis could be found in Ref.[40]. Additionally, real contact is de-

stroyed predominantly due to roughness at small wavelengths. Therefore, those

structural parameters Φi, where i indicates an integer, should not depend on pa-

rameters that are defined exclusively by parameters from the height-distribution.

Because the structural parameters are closely correlated with square-gradient

height, we could discuss the square-gradient term firstly. When determining ḡ

over a periodically repeated surface, ḡ2 ≡ 〈(∇h)2〉 is identical to −〈δh∆h〉, where

δh = h − 〈h〉, and 〈•〉 represents ensemble average. However, this equality only

holds for full contact. If the situation from full contact turns to partial contact,

we define

(ḡ′c)
2

= −〈δh∆h〉c (4.11)

the dependence of arel on parameters depending on height profiles in the contact

then becomes

arel = arel[p/(E
∗ḡc), ḡc/ḡ

′
c, {Φc}]. (4.12)

Ultimately, arel is a functional of the height topography. As such, there should exist

a dependence of arel that does not necessitate parameters averaged over the real
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contact. However, those might necessitate very non-local terms, or, alternatively,

high-order derivatives of h(r). The latter may not be well defined when the surface

profile or its (higher-order) derivatives are not well defined, as is the case, for

example, for a conical indenter. Thus, the following discussion assumes surface

height profiles to be sufficiently smooth.

Regarding the construction of relevant parameters used to determine the contact

area, it is useful to keep in mind three symmetry relations. First, inversion (r →
−r) leaves the contact area unchanged. This is why each derivative with respect

to a spatial coordinate must appear an even number of times in the construction

of an invariant. Second, each measure should be rotationally invariant and reduce

to a scalar. This is automatically achieved when representing derivatives with

the Einstein summation convention, which requires every index (enumerating an

in-plane coordinate) occurring twice in a product to be summed over. To use it

effectively, we use it jointly with the index notation, in which case h2
α indicates

the square-height gradient (∇h) · (∇h) and hαα the Laplacian ∆h. However, ḡ

will keep indicating the rms height gradient
√
〈h2

α〉. Third, the invariants may

not change on a rigid, vertical translation of the surface h(r) → h(r) + h0. This

is why only δh = h− 〈h〉 can appear in the invariants. The lowest-order invariant

obeying these rules that we could identify are given by

Φ1 =
〈δh h2

α〉√
〈h2

α〉 ḡ2
(4.13)

Φ2 =
−〈δh2 hαα〉
2
√
〈δh2〉 ḡ2

(4.14)

Φ3 =
−〈δh2〉 〈hαα〉
2
√
〈δh2〉 ḡ2

. (4.15)

Before constructing the next parameters, the allowed values for the parameter Φ1

to Φ3 will be discussed. Φ1 and Φ2 are identical when averaged over a periodically

repeated surfaces (as can be seen again by integration in parts) but not when they

are determined over partial contact, in which case the index “c” would be added.

The parameter Φ3 is identical zero for periodically repeated surfaces but not for

finite contacts, since the mean curvature disappears for a periodically repeated

surface, while the curvature must average to a positive number for partial contact

(assuming the elastic body indents the profile from below).
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The values of Φ1 and Φ2 averaged over a single rpa surface may be finite. However,

averaging these means over various disorder realization will make them disappear,

as any surface realization h(r) has the same probability (density) to occur −h(r).

Thus, Φ1 and Φ2—as well as any other parameter, in which the symbol h appears

an odd number of times as a factor—should be small when determined over a

single rpa surface realization, in particular when the roll-off domain is sufficiently

large.

When averaged over partial contact and/or over surfaces violating the rpa, Φ1 and

Φ2 may and usually do take finite values. This is why we call them symmetry

allowed in Table 4.1. For the remaining parameters, we will no longer state the

rationale for why terms are symmetry allowed or forbidden, as all relevant argu-

ments have been mentioned or are contained in Sec. 4.2.3. Table 4.1 summarizes

our conclusions on each parameter constructed in this work.

Additional parameters in which numerator and denominator are second order in

the derivative but higher order in h can be constructed. They will be considered

up to the lowest order needed beyond the rms-height gradient, in which the param-

eters do not disappear in case of the random-phase approximation. This includes

the parameters

Φ4 =
〈δh2 h2

α〉
〈δh2〉 ḡ2

(4.16)

Φ5 =
−〈δh3 hαα〉
3 〈δh2〉 ḡ2

(4.17)

For rpa-surfaces, Φ4 is automatically equal to unity and for all periodically re-

peated surfaces, Φ4 = Φ5.

Finally, we consider parameters in which the order of the derivatives is increased

from two to four while the order in the height is kept as small as possible. Three

of quite a few resulting (irreducible) possibilities are

Φ6 =
1

ḡ4

〈
δh2
〉
〈hααhββ〉 (4.18)

Φ7 =
2

3 ḡ4

〈
δh2 hααhββ

〉
(4.19)

Φ8 =
1

ḡ4

{〈
h2
αh

2
β

〉
− 3

〈
h2
α

〉 〈
h2
β

〉
+ 〈hαhβ〉2

}
(4.20)

Φ9 =
2

ḡ4

〈
hαhβ − h2

γ δαβ/2
〉2
, (4.21)
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where δαβ is the Kronecker-delta symbol.

The parameter Φ6 is nothing but the Nayak parameter ΦN, up to a multiplicative

constant of 2/3. It is frequently interpreted as a measure for the spectral width.

We chose the prefactor such that Φ6 and Φ7 are equal to unity for single-wave-

vector roughness. The parameter Φ7 is a generalization of the Nayak parameter.

For randomly rough, rpa surface, its expectation value is close to but less than Φ6.

Thus, both parameters tend to infinity as the ratio εf = λs/λr becomes large, that

is, with ε−2H
f . However, for (strongly) correlated random roughness Φ7 takes much

greater values than Φ6, just as Φ4 starts to substantially exceed unity, because the

factorization of the various terms (see also Sec. 4.2.3) no longer holds once the rpa

is no longer satisfied.

The parameter Φ8 plays the role of a generalized height gradient cumulant. It is

constructed such that it takes the value of zero when the fourth-order cumulant

of the surface slope s parallel to any in-plane unit vector n takes the value of zero

if it is distributed normally, i.e., when c4,n = 〈s4〉 − 3〈s2〉2 disappears for every n.

This parameter is implicitly symmetrized with respect to its mirror images in the

xz and yz planes so that 〈s〉 = 0 follows. Note that Φ8 being small is a necessary

but not a sufficient criterion for every c4,n to disappear. It is only sufficient if the

surfaces are stochastically isotropic.

Finally, Φ9 is a measure for anisotropy. It takes the values of zero and one in the

limits of ideal isotropic and ideal anisotropy, respectively, where, for the latter,

surfaces are perfectly smooth along one spatial direction. Assuming the Peklenik

number to be independent of the wavevector, Φ9 can be easily shown to be identical

to (γ2
P − 1/γ2

P)2/(γ4
P + 1/γ4

P). As is the case for some other parameters too, Φ9

is not identical to zero for an individual surface realization, but only averages to

zero after taking sufficiently many surface realizations.

We conclude this section by stating that the Nayak parameter is the lowest-order

scalar structural parameter that the proportionality coefficient κ can depend on if

the surface is isotropic and satisfies the random-phase approximation. All other

parameters of similar or smaller order in height are either identical to zero, or their

expectation value is zero, or they strongly correlate with the Nayak parameter.
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full prs rpa n-rpa
Φ1 ε allowed
Φ2 Φ1 Φ1

Φ3 0 0
Φ4 1− ε allowed
Φ5 Φ4 Φ4

Φ6 allowed allowed
Φ7 ≈ Φ6 allowed
Φ8 ε allowed
Φ9 ε ε

if isotropic if isotropic

Table 4.1: Values of parameters averaged over a full, periodically repeated
surface (prs) if the random-phase approximation (rpa) is valid and when it is
not valid (n-rpa). The word “allowed” indicates that a finite value is symmetry
allowed. The number ε implies that the result averages to zero after an ensem-
ble average over many surface realizations and that it should be small for an
individual instantiation.

4.2.3 Evaluation of fourth-order invariants

For (isotropic) randomly rough surfaces, invariants being fourth order in height and

fourth order in derivatives are the leading-order, scalar structural parameters that

can affect the proportionality coefficient κ. Of particular interest should be those

that—unlike the Nayak parameter—cannot be reduced to products of invariants

being second order in height. Yet, the evaluation of fourth-order expressions is

commonly done using Wick’s theorem [94], which, applied to the current problem,

translates to

C4(q1, . . . ,q4) ≡
〈
h̃(q1)h̃(q2)h̃(q3)h̃(q4)

〉

≈
〈
h̃(q1)h̃(q2)

〉〈
h̃(q3)h̃(q4)

〉

+
〈
h̃(q1)h̃(q3)

〉〈
h̃(q2)h̃(q4)

〉

+
〈
h̃(q1)h̃(q4)

〉〈
h̃(q2)h̃(q3)

〉
, (4.22)

whereby expectation values of fourth-order expressions are reduced to products of

height spectra, since

〈
h̃(qm)h̃(qn)

〉
∝ C(|qm|) δ(qm + qn), (4.23)
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where C(q) is the height spectrum. Eq. (4.22) is exact for Gaussian random

variables of mean zero.

4.3 Results

4.3.1 On the accurate calculation of ar and κ

In a recent study proposed by Yastrebov and coworkers [61], a new expression

to estimate the relative contact area in purpose of ensuring an unprecedented

accuracy is given,

ar =
nc − αncl

ntot

, (4.24)

where ntot is the total number of points into which the surface is discretized and

α = (π − 1 + ln 2)/24. nc is the number of contact points, ncl the number of

contact line points, which are in contact but have at least one non-contact point

as nearest neighbor.

For an isotropic rpa surface, this expression turns out to be quite efficient to get

an applicable accurate relative contact area. Nevertheless, we believe that the

performance can at best be comparable with a properly executed Richardson ex-

trapolation. The reason is that the numerical coefficient α ≈ 0.11811 can hardly

be universal even if the special form of writing it as (π−1+ ln 2)/24 might convey

an intelligent mathematical reason for its specific value. To make it clear, let us

assume that the leading order correction were truly follow the idea of Eq.( 4.24),

in which ar is proportional to the number of contact line points within the contact

domains. This number would ultimately scale with a/λs, because the fractal na-

ture of the contact seizes exist in this limit, so that the contact line acquires the

(fractal) dimension of unity. This linear scaling of the leading order corrections

to the contact area would be picked up by Richardson extrapolation and the pro-

portionality coefficient would automatically adjust to the exact value and not to

a value, which is very good but not exact.

The proposed correction scheme can only outperform a Richardson extrapolation

if higher order corrections happened to be incorporated into it, as is shown in

Fig. 4.3 by the accurate values from the Yastrebov extrapolation at large εc. How-

ever, since the exact value α must depend on the specifics of a simulation, it
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can only be exact in isolated cases of measure zero so that it is generally asymp-

totically inferior to Richardson. As such, a claim of having provided data with

unprecedented accuracy with this method is not justified given that previous works

used a Richardson extrapolation while employing ratios of εc = a/λs, εf = λs/λr,

and εt = λr/L, which were simultaneously all greater than the data having the

purportedly unprecedented accuracy.

0.0 0.1 0.2 0.3 0.4 0.5
a / λs

0.100

0.102

0.104

0.106

0.108

0.110

a r

Yastrebov
mod. Yastrebov
Richardson
GFMD data

Figure 4.3: Relative contact area ar as a function of a/λs for an isotropic
rpa surface with different extrapolation schemes. The parameters to define the
system are specified by: H = 0.8, p∗ = 0.05, λr/L = 0.5, and λs/L = 0.008. In
the modified Yastrevob extrapolation, the prefactor α in Eq. (4.24) was chosen
such that the extrapolated contact area remain unchanged if discretization aλs

increased by a factor of 2.

To improve the performance of Yastrebov’s scheme, an incorporation of Richardson

extrapolation could be applied. Consider two independent contact simulations

with different values of a/λs while leave other parameters identical. For the two

simulations, the Yastrebov’s extrapolation should lead to identical relative contact

area. Therefore, the resulting α should also be adjusted such that the extrapolation

could give the same estimation. This modification leads to an improvement, as

can be seen in Fig. 4.3. However, the performance turns out to be imprecise when
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a/λs ≥ 1/4. In our contact simulations, including rpa surface and warped surface,

we noted that the result produced from Yastrebov’s extrapolation with the choice

of α = 0.11 appears to be very close to that of Richardson extrapolation, say,

within 0.1%. In order to apply Yastrebov’s extrapolation scheme in our study

without loss of precision, we choose α = 0.11 and the discretization of a/λs . 1/4.

This value of α typically deteriorates the quality of the contact area estimation

for a = λs/2 but improves it overall otherwise.

Lastly, different pressures may lead to different errors in Yastrebov’s extrapolation

scheme. In this case, the following questions remain: What is the origin of their

observed logarithmic correction of κ on pressure? Is it the lack of a rigorous

extrapolation to the continuum (εc = a/λs → 0), the fractal (εf = λs/λr → 0),

the thermodynamic (εt = λr/L → 0) limit? Or is it actually true? Even though

our comments of their self assessment are critical, their data appears to be of

similar quality as that most other leading works, which had all together come to

the conclusion that κ would remain unchanged at small p [42], but which either

simply took the values at the smallest value of εc without further extrapolation

or that made Richardson extrapolations, which we can no longer reconstruct [54].

In a recent study managed by Nicola and coworkers [42], they show logarithmic

corrections in κ at small p for (1+1) dimensional contact simulations even for very

large sizes when many different meso-scale patches exist.

To investigate if κ is constant or not at small pressure, the trends of κ at limit

p→ 0 is studied. Towards this end, we compute κ as a pressure-dependent function

through the equation

ar = erf
(√

πκp∗/2
)
, (4.25)

rather than through ar/p
∗, because Eq. (4.25) accounts for some of the low-pressure

non linearities, as can be appreciated in Fig. 1 of Ref. ([95]).

4.3.2 Isotropic rpa surfaces

Does κ have a low-pressure limit?

κ cannot have a finite low-pressure limit, if it is defined or computed according to

κ =

(∏

x

lim
εx→0

)
lim
p→0

κ(p) (4.26)
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where the various limits (defined in the previous section with x taking the “values”

c for continuum, f for fractal, and t for thermodynamic) are taken in arbitrary

order. The reason is that for any finite system, if pressure is extremely small, only

the highest asperity could be in contact, which is similar to Hertzian contact, in

which case κ results in infinity.

Because it is not possible to get a finite limit with the definition of κ presented

above, we turn to another approach to obtain the low-pressure limit, which reads

κ = lim
p→0

lim
εt,f→0

ar

p∗
, (4.27)

With this definition, we attempt to study whether ar can be proportional to p

over an extended range in pressure with no or negligible logarithmic corrections

to the proportionality coefficient κ if both εt,f are sufficiently small while εc is

properly taken to zero at each pressure. This limit is certainly not approached

if the product εtεf is not taken to infinite similarly small while having a varying

discretization errors, as in Ref. [61]. Another approach proposed by Prodanov et

al. [54], they managed to keep all but one εt,f,c constant. However, this idea is

not good enough, because the discretization corrections probably decrease as εf

decreases due to the increase of the characteristic patch size. Additionally, they

assumed that the leading errors to κ follow the sum of the power law in terms of

εx, while they could also be of a more general form.

Alternatively, to study the trend of κ at small pressure limit, we ran simulations

in which εt and/or εf were decreased simultaneously with decreasing pressure

according to

ε = εref (p/pref)
1
4 . (4.28)

Results are shown in Fig. 4.4. It reveals that κ increases apparently with decreasing

p for all three H = 0.3 cases, while it essentially plateaus for the two H = 0.8

cases in which εf is decreased as p decreases. If the pressure is further decreased,

the H = 0.3 cases could eventually reach plateaus. In this case, a qualitative

difference between H = 0.3 and H = 0.8 would remain: The curves for which εt

and εf are decreased with decreasing pressure lead to small values of κ for H = 0.8

but to large values for H = 0.3.

The reason for this phenomenon could be potentially linked to the distribution

of contact patch areas and the characteristic contact patch size Ac, which we

define to be the expected patch size that a randomly picked contact point belongs
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Figure 4.4: κ as defined in Eq. (4.27) as a function of reduced pressure
p∗. Different color represent different choice of how εf,t change with pressure p.
Open and closed symbols represent H = 0.3 and H = 0.8 respectively. The term
“const” relates to εt = 1/2 and εf = 1/32. The reference value of pressure is
p∗ = 0.2. The term “varying” indicates that the respective ε is scaled according
to Eq. (4.28).

to. The three H = 0.3 curves and the H = 0.8 case with fixed εf , all of which

belong to those simulations in which the characteristic contact areas are rather

small. According to a recent study on contact patches [96], Ac increases only

logarithmically with εf for H < 0.5. In this case, large patches are not possible

to occur for H = 0.3 cases even when εf is small. Additionally, even for H = 0.8

case, only small contact patches are allowed to arise at pressures well below the

percolation threshold if εf is fixed to a constant value as large as εf = 1/32.

Conversely, large contact patches can arise even at small pressures if εf is small

and H > 0.5. The large patches play a significant role in the linear area-load

relation at small pressure, as can be rationalized qualitatively from bearing-area

models.

To investigate whether κ has a well-defined limit when being deduced with the

meaningful limit defined in Eq.(4.27), we ran simulations with two sets of εt,f to
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comprare the resulting κ(p) relation, the first case is a small system with εt = 1

and εf = 1/32, another case is a larger system with εt = 1/4 and εf = 1/128.

The results are depicted in Fig. 4.5. This figure demonstrates that with increasing

system size, i.e., decreasing εt and εf , the pressure sensitivity of κ turns out to be

remarkable for H = 0.8 case but not for H = 0.3 case.

The tendancies revealed in Fig. 4.5 are consistent with those of Fig. 4.4, i.e.,

increasing system size leads to a reduction of κ and its pressure sensitivity for

H = 0.8 but not for H = 0.3. The trends also roughly match the observations by

Prodanov et al. [54], who proposed the existence of a well-defined value of κ for

H = 0.8 but not for H = 0.3.

So far, we have already speculatively linked the different trends for H = 0.3 and

H = 0.8 to the way how a characteristic contact patch size changes with de-

creasing εf . It motivated us to explore the explanation why Ac increases only

logarithmically with εf for H < 0.5 but algebraically for H > 0.5. One potential

reason could be that most of the elastic energy (in full contact) is stored in long-

wavelength modes for H > 0.5 but in short-wavelength modes for H < 0.5. If this

consideration were tenable, H = 0.5 could be the dividing line for the divergence.

We therefore repeated simulations for H = 0.5 case, as shown in Fig. 4.5. How-

ever, the results leave us uncertain. More rigorous works should be conducted to

characterize the transition between the different scaling behaviors in future.

In this section, we studied the trend of κ at zero pressure limit for an isotropic,

rpa surface, in a manner of Eq. (4.27). For small Hurst exponent, i.e., H < 0.5,

it might not exist and/or it might depend on how εf → 0 is approached, e.g., it

could take different valus when reaching it with constant εf/εt and with constant

εf/
√
εt. Meanwhile, we expect that the value of κ =

√
2π ≈ 2.5 predicted by the

BGT model [97], might provide a (potentially rigorous) upper bound for κ when

the limit εt → 0 is taken before εf → 0.

Effect of Nayak and related parameters on κ

Yastrebov et al. [61] came up with a decreased logarithmic dependence of κ on the

Nayak parameter for isotropic, randomly rough, self-affine surfaces. However, this

dependence appears to be problematic with respect to two aspects of their claim

and their data. First, κ is implicitly predicted to become negative for very large
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Figure 4.5: Top: κ as a function of reduced pressure p∗. Different color
indicates different Hurst exponent. Open symbols represent GFMD data with
the choice of εt = 1 and εf = 1/32, while closed symbols εt = 1/4 and εf =
1/128. Bottom: Scaling with εf for H = 0.8 and εt = 0.5. Dashed lines are
linear fits to the three lowest values in εf. Results were averaged over up to 100
random realizations per data point.



Chapter 4. Effects of structural parameters on the relative contact area 86

Nayak parameters, which is physically meaningless. Second, their data points seem

to be partially inconsistent, e.g., in their Fig.10d, the points (ΦN, κ) = (700, 1.93)

and (70, 2.05) should be moved to (70, 1.93) and (700, 2.05), respectively. In this

way, the Nayak parameter ΦN would be consistent not only with our own cal-

culations but also with the values that Yastrebov et al. reported themselves in

their Fig.1. Once these two data points are corrected, the logarithmic dependence

seems to be much less convincing than with improperly plotted data.

The suspectable logarithmic dependence of κ on Nayak parameter motivated us

to run simulations to present an independent test of the extent with which the

Nayak parameter affects κ. In our simulations, we expand the range of surfaces

and contrast surfaces with cutoff to those with smooth and sharp rolloffs. Results

are presented in Fig. 4.6, which were averaged over up to 400 random realizations

per data points.

As shown in Fig. 4.6, the averaged values of κ turn out to be consistent with a

κ(ΦN) = κ(∞) − cNΦ−νNN relation rather than a decreased logarithmic relation.

Two different dependencies plotted in Fig. 4.6 correspond to H = 0.3 and H = 0.8

case respectively. Therefore, κ cannot be concluded to be a single function of ΦN

(and p∗), at least not possible for different Hurst exponent.

4.3.3 Anisotropic rpa surfaces

In this section, we attempt to understand how anisotropy affects the relative con-

tact area. Towards this end, we repeated the simulations presented in Fig. 4.4

with a Peklenik number of γP = 4. As shown in Fig. 4.7, the pressure dependence

of κ at fixed value of εt,f is improved compared the ideal rpa surfaces with γP = 1.

This result may not be particularly surprising in consideration of the observation

that one-dimensional surfaces have logarithmic corrections to the κ(p) relation,

even for H > 0.5.

Fig. 4.7 also shows that κ is not very pressure sensitive for H = 0.8 when εf is

decreased with pressure so that for macroscopic systems, in which εf is two or

three orders of magnitude smaller than in simulations, the pressure sensitivity is

marginally small. However, compared with the isotropic case, κ is apparently in-

creased due to anisotropy. When the Peklenik number is chosen far from unity,

different law may apply as the surface’s dimensionality has effectively changed
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Figure 4.6: Proportionality coefficient κ as a function of the Nayak parameter
ΦN = 1.5 Φ6 at p∗ = 0.02. Full and open symbols relate to H = 0.3 and H = 0.8,
respectively. Different surface realizations were considered: (1) orange triangles
up: cut-off, (2) blue triangles down: smooth roll-off, (3) green triangles left:
hard roll-off. In these three cases, εt and εf were fixed: εt = 1/4, εf = 1/125,
Finally, (4) squares: cut-off with 1/40 ≤ εf ≤ 1/1000. The dashed lines are fits
κ = κ∞ + cΦ−νN , where ν turned out to be consistent with ν ≈ 0.5 for H = 0.8
and ν ≈ 1 for H = 0.3.

from two to one. In a recent study on κ, the tendency for one-dimensional con-

tact problem, the pressure sensitivity of κ at the zero pressure limit has been

convincingly established not only for small H but also for H = 0.8 [42].

Additionally, regarding the anisotropic rpa surfaces, we noticed that κc, whose

definition of reduced pressure uses the rms height gradient ḡ averaged over the

contact domain only, has a fairly weak dependence on p∗. Values of κc are roughly

close to 1.8. Interestingly, the order of the points are essentially in reverse order

compared to the analysis in which ḡ was averaged over entire surfaces.

Lastly, as shown in Fig. 4.7, the smallest κ occurs for the smallest Hurst exponent.

The explanation could be as follows: for H = 0.3, roughness exists mainly at small

wavelengths and as a result, contact patches are rather small compared to H = 0.8.
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Figure 4.7: The interpretation is similar to Fig. 4.4, however, the rigid inden-
ter used in this figure is replaced by an anisotropic indenter with γP = 4. The
color symbols used in this figure, which are not used in the Fig. 4.4, represent
results for κc.

The coarse grained, or rotationally averaged height profile of an individual meso-

scale asperity is therefore blunter for H = 0.8 than H = 0.3.

4.3.4 Isotropic height-warped surfaces

Most of contact studies focus on the ideal, rpa surfaces with assumption of the

random-phase approximation, quite a few numerical studies use a Weierstrass pro-

file, which has phase correlation, while producing a height autocorrelation function

(ACF) being similar to experimental ACFs. Nevertheless, the Weierstrass profile

is far from those experimental surfaces as demonstrated in Fig.2 of Ref. [98]. This

convinces us that the warping surface introduced in Sec. 4.1, while perhaps far from

ideal, reproduces the stochastic properties of correlated surfaces in a significantly

more realistic fashion than a Weierstrass-function based height profile.
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Results are shown in Fig. 4.8. It shows that the increase of κ with decreasing

pressure is much stronger for a positive warping exponent w, in which case the

peaks are blunted and valleys are sharpened. In this figure, when H = 0.8, κ

even increases with decreasing p∗ when εf is reduced with decreasing pressure.

Oppositely, the negative warping exponent leads to sharp peaks and blunt valleys.

In this case, κ is found to decrease with pressure. This observation also holds in

certain pressure ranges, when εf is not scaled according to Eq. (4.28) but kept

constant.

Similar to the observation for anisotropic surfaces, κc turns out to be insensitive

to the reduced pressure if the rms height gradient is defined in the true contact

zones. Again, κc is generally equals to 1.8 for small reduced pressure. Correlating

the respective values of κc with the structural parameters, which are symmetry-

allowed and finite, has remained unsuccessful so far.

4.3.5 Periodically repeated smooth indenters

In this section, indenters are periodically repeated, therefore, each indenter bears

the same external load. If the contact zone is relatively small compared with the

period, which means, the external pressure p0 applied on the indenter is quite

small, a area-load relation must be obtained as if the indenter were isolated. Ac-

cording to a recent study [92], the asymptotic low pressure relation for period-

ically repeated indenters with harmonic height profiles can be rationalized with

Eq. (4.10). The prefactor κc can be obtained analytically, which reads

κc(n) =

√
π

n

Γ(n
2

+ 3
2
)

Γ(n
2

+ 1)
, (4.29)

where Γ(•) represents the gamma function. The simulation results are depicted

in Fig. 4.9. It confirms the analytical results at low pressure. Even though the

errors become apparent when ar > 0.3, they remain below 25%. The high pressure

asymptotic trend could also rationalized with Eq. (4.10), however, the value of κc

should be decreased.
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Figure 4.8: The interpretation is similar to Fig. 4.4, however, the indenter
is replaced by a height warped surfaces. The top and bottom graph represents
GFMD results for a warping surface with w = 2 and w = −2, respectively.
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Figure 4.9: Relative contact area ar as a function of reduced pressure p/E∗

for periodically repeated indenters which are fully defined in Sec. 4.1. Symbols
represent GFMD data.

4.4 Conclusion

In this study, we constructed a variety of structural parameters and attempted

to determine which one could affect the relative contact area in a straightforward

way. The key point was to understand if ar is linear in pressure p and inversely

proportional to the rms height gradient ḡ for small reduced pressures, defined as

p∗ = p/(E∗ḡ). If the linear relation is true, what structural parameter determine

the proportionality κ = ar/p
∗? Towards this end, the contact problem between

an initially flat, adhesion- and frictionless, linearly elastic body and a variety

of rough, rigid surfaces, including isotropic rpa surface, anisotropic rpa surface,

isotropic warping surface and periodically repeated harmonic smooth surface, is

studied.

One of the difficulties to validate the area-load linearity for the small-pressure limit

is that taking the limit p∗ → 0 properly is not a simple task, because εt, which

represents the ratio roll-off wavelength and system size, and εf , which indicates
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the ratio of short wavelength and roll-off wavelength, have to be sufficiently small.

In a previous study by Prodanov et al. [54], they kept the ratio of grid distance

and short wavelength, εc = a/λs, fixed, which appears to be insufficient. In this

study, we extrapolate results for a determined surface to the continuum limit first

and then compute contact area while taking thermodynamic and fractal limit to

zero simultaneously or by taking fractal limit to zero while keep thermodynamic

limit constant.

The last type of analysis, in which continuum and fractal limits are set to zero,

while thermodynamic limit is kept constant, and reduced pressure p∗ is set to be

extremely small, attracted particular attention. In this case, only a single meso-

scale asperity contact could be detected for very small εf and Hurst exponent

H > 0.5. The reason is that typical contact patch sizes increase algebraically

with decreasing εf for H > 0.5 [96]. In an individual meso-scale asperity, which

could be described as a single asperity with micro-scale roughness added to it, the

linearity between contact area and pressure is well satisfied [50] and the expression

can be rationalized with Persson theory [49]. Accordingly, the linearity between

load and contact area in a macroscale system should be determined automatically.

However, this conclusion can only hold for (2+1) dimensional systems. It was

reported that in (1+1) dimensional systems, area-load relation does not follow

the linear dependence at small pressure, even for very large systems [41]. This

discrepancy still remains unclear to us. Additionally, the area-load dependence at

small reduced pressure p∗ for H < 0.5 surface is not determined. Even though our

current analysis supports the findings [59, 61] that the area-load relation indeed

has logarithmic corrections in p∗. They might be the consequence of the small,

logarithmic growth of characteristic contact patch sizes with decreasing εf for

H < 0.5. Meanwhile, we wonder if κ computed in the thermodynamic limit can

systematically exceed predictions of the more advanced bearing-area models such

as Bush, Gibson, and Thomas (BGT) [97]. Thus although we believe to have

furthered the rigor with which κ is computed, we expect that the final answer to

how κ has to be computed in the thermodynamic limit still needs to be found.

Additionally, it is demonstrated that the Nayak parameter ΦN has no rigorous

correlation with κ. In this case, it is not allowed the function κ(p∗, H, εt, εf) to be

reduced to a smaller number of variables, such as, κ(p∗,ΦN, εt).

Although Persson theory cannot be used to explain why different Hurst exponent
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leads to different κ, it allows us to rationalize the deviation of κ(p∗) from lin-

earity both for finite system and surfaces violating the rpa approximation. The

basic version of Persson theory assumes that the elastic body “feels” the full root-

mean-square gradient (averaged over the entire surface) as soon as the elastic body

hits the rough substrate. However, for any finite surface, a certain fraction must

be in contact before the root-mean-square gradient and other stochastic parame-

ters, such as the curtosis, approach their “true” mean values. While this fraction

decreases with system size, ḡ (typically) remains below its asymptotic value for

finite rpa surfaces at small ar so that (according to Persson theory and simulations

presented in this work) ar turns out larger than in the thermodynamic limit. A

possible correction of Persson theory for this case could be to identify the rms-

gradient of the ar × 100% top- (or bottom) most heights and use this value to

determine the reduced pressure p∗c, which would then satisfy Eq. (4.10) reasonably

well. To some extent, this would constitute a somewhat dissatisfactory compro-

mise between Persson theory and bearing-area models, since it is not the top- (or

bottom) most, say, 20% of the peaks that are in contact at 20% relative contact

area, as is implicitly assumed in bearing-area models. However, this is the simplest

correction that comes to our mind at this point of time. It is certainly much less

tedious to work out than the systematic corrections to Persson theory relying on

a cumulant expansion of the short- but finite-range repulsive interactions between

indenter and elastic body [23].

In full simulations, ḡ can be averaged over the true contact area and no compro-

mise between bearing-area models and Persson theory needs to be made. In all

investigated randomly-rough contacts, we find a close-to-linear relation between

ar and p∗c, i.e., when averaging the rms height gradient only over the true contact

even if the original ar(p) deviates clearly from linearity. In these simulations, we

find κc to lie in the relatively narrow range satisfying κc ≈ 1.8 ± 0.1. This value

for κc is only slightly larger than the value of 1.6 predicted by Persson theory but

clearly below the value of 2.5 predicted by Bush, Gibson, and Thomas [97] using

an advanced bearing-area model. Thus, the range of validity of Persson theory

could be substantially expanded if the approximation of using the full rms-height

gradient were replaced with an accurate estimate of the mean rms-height gradient

in the true contact.





Chapter 5

Thermal effects on the

pull-off force in the JKR

model

This chapter attempts to understand how thermal fluctuations effect the pull-off

force in the JKR model. Towards this end, we set up a virtual loading-unloading

experiment, in which a parabolic rigid indenter is fixed in space, an isotropic elastic

solid is placed below the indenter and is connected with an elastic spring. This

spring is designed to characterize the stiffness of the cantilever in AFM experiments

and is allowed to move up and down with a constant velocity.

The purpose of this chapter is to study to what extent the thermal fluctuations

affect the pull-off force within the formalism of the JKR model. Furthermore,

this work is also expected to provide a plausible reproduction for the existing

experiment results [16].

The remainder of this chapter is organized as follows: The details about the virtual

loading-unloading simulation are introduced in Sec. 5.1. The method is sketched

in Sec. 5.2, in which the basic idea of the numerical simulation and how we imple-

ment the thermal fluctuations are described in detail. The numerical results are

presented in Sec. 5.3, while conclusions are drawn in Sec. 5.4.

95
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5.1 Model design

In this section, the details about the loading-unloading simulation are introduced.

As shown in Fig. 5.1, the elastic body is designed as initially flat and lineally

elastic, which is placed in the xy plane and below z = 0. The parabolic rigid

counterface is fixed in space and the profile is given by

h(r) =
r2

2R
(5.1)

where R denotes the radius of curvature, r =
√
x2 + y2 is the in-plane distance of

the center of the counterface from the center of the coordinate system. The elastic

body is connected to an elastic spring with stiffness k, which is allowed to move

along the z direction at constant velocity vspr.

rigid

elastic

v

x

z

Figure 5.1: Schematic illustration showing the set up of a tip-substrate model
for an loading-unloading simulation.

The interaction between the elastic body and the rigid counterface is defined as

the same as that in the JKR model [3], in which case the short-ranged adhesion is

assumed as a delta function of strength γ, hence it only exists within the contact

domain. The contact force Fcont as a function of indentation d can be determined
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jointly by [99]

Fcont =
4E∗

3R
a3

c −
√

8πγE∗a3/2
c (5.2)

d =
a2

c

R
−
√

2πγ

E∗
a1/2

c (5.3)

where E∗ is the contact modulus and ac the contact area. The resulting pull-off

force F in the JKR model for the athermal case is given by

F = −3

2
πγR (5.4)

which is independent of the contact modulus [3]. To discriminate the athermal

pull-off force from the thermal pull-off force, the short-hand notation F0 will be

used to indicate the pull-off force in athermal case.

The loading-unloading process of a certain simulation can be described as follows:

The elastic spring, which is used to characterize the cantilever, moves to the rigid

counterface with a constant velocity. Consequently, the elastic body begins to

move due to the work of the spring force and comes into contact with the rigid

counterface at z = 0. The elastic body continues to indent for some distance.

After that, the spring begins to move in the opposite direction, which represents

the beginning of the unloading process.

In an AFM experiment, the interaction between the tip and the counterface will

result in the vertical deflection of the cantilever beam. As a result, the applied

force can be deduced from the deflection according to Hooke’s law [100, 101]. In

MD simulations, the cantilever beam is modeled by coupling a harmonic spring to

the bottom layer of the elastic body [102]. In such a way, the force Fspr which is

measured by the spring, is defined as

Fspr = −k (uspr − uela) (5.5)

where uspr denotes the normal displacement of the spring and uela the normal

displacement of the elastic body.
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5.2 Method

Bradley’s model has been widely used to calculate the pull-off force between two

spheres by assuming that the interaction is nothing but a Lennard-Jones (LJ)

potential [16, 103, 104]. In such a way, if the indenter is supposed to be controlled

by an elastic spring, the total potential energy realized by this spring can be given

as below

Vtot =
1

2
k (uspr − uela)2 − 4γ

3

[(
ρ0

uela

)2

− 1

4

(
ρ0

uela

)8
]

(5.6)

where ρ0 has the unit of length. This model estimated the pull-off force as F =

−2πγR, which is identical to the value of that in the Derjaguin-Muller-Toporov

(DMT) model [4]. It has been demonstrated several times that the DMT model

is accurate in the case of the long-range adhesion and stiff material [32, 105,

106]. Unfortunately, this model becomes increasingly inaccurate for large and soft

matter, hence different assumptions on the interaction have led to the Johnson-

Kendall-Roberts (JKR) model [3], in which a singular crack term is assumed near

the contact line.

This just motivates us to replace the LJ potential with a JKR contact force and

to study to what extent the thermal fluctuations affect the pull-off force in the

framework of the JKR model. Therefore, we rewrite the total potential Vtot as

follows.

Vtot =
1

2
k (uspr − uela)2 −

∫ uela

0

duFcont (5.7)

where the contact force Fcont is naturally invoked only in the contact zone.

To simulate the loading-unloading process, we solve Newton’s equations of motion

as described below.

müela +mη (u̇ela − u̇spr) = −∂Vtot

∂uela

(5.8)

The effect of thermal fluctuations can be cast as random forces, which have to sat-

isfy the fluctuation-dissipation-theorem (FDT) [85]. Hence, the mean and second

moment of random forces Γ(t) must obey

〈Γ(t)〉 = 0 (5.9)

〈Γ(t)Γ(t′)〉 = 2ηkBTδ(t− t′) (5.10)
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respectively, where η represents a damping constant of unit inverse time and δ(·)
denotes the Dirac delta function, kB is the Boltzmann constant and T is temper-

ature, 〈·〉 represents ensemble average.

To include the thermal fluctuations, we rewrite the Eq.(5.8) as follows.

müela +mη (u̇ela − u̇spr) = −∂Vtot

∂uela

+ Γspr(t) + Γcont(t) (5.11)

Similar to the contact force, the random force Γcont(t), which is used to characterize

the thermal effects during the contact process, is also assumed to be realized only

in the contact domain. Another random force term Γspr, which is used to simulate

the thermal effects on the spring, however, is assumed to exist throughout the

simulation.

The displacement of the elastic spring uspr = vspr∆t as it is restricted to move at

constant velocity, where ∆t is time step. The displacement of the elastic body uela,

however, is controlled by the spring and the interaction force jointly. In this case,

we use the following scheme to propagate the displacement of the elastic body.

unow
ela = uold

ela + u̇now
ela ∆t (5.12)

u̇now
ela = u̇old

ela + üela∆t (5.13)

The implementation of JKR-MD in terms of pseudo code works as follows:

loop over time steps until the stop request is applied

- move elastic spring

uspr+ = u̇spr∆t

- if the retract request is applied, change velocity direction

u̇spr× = −1

- move elastic indenter

uela+ = u̇ela∆t

- calculate the elastic force

Fela = k (uspr − uela)

- calculate random force on elastic spring due to thermal fluctuations

Fela+ = Γela(t)

- calculate contact JKR force

Fela+ = Fcont

- calculate random force in contact domain

Fela+ = Γcont(t)
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- propagate the velocity of the elastic body

u̇ela+ = Fela/∆t

end loop

5.3 Results

In this section, we investigate to what extent the thermal fluctuations results

in the deviation of the pull-off force. As a first glance, Fig. 5.2 shows a force-

displacement hysteresis of a single loading-unloading simulation considering both

the contact force and the thermal fluctuations as described in previous section. To

obtain this curve, the contact modulus E∗ is chosen to be 40 GPa, which represents

a typical oxidized silicon surface. The radius of curvature is fixed to R = 11.8 nm.

The surface energy is γ = 42 mJ/m2 and the spring stiffness is k = 0.005 N/m.

Room temperature (T = 300 K) is applied. These values are motivated by the

experimental setup of Ref. [107].
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Figure 5.2: The dimensionless spring force Fspr/F0 as a function of the dimen-
sionless spring displacement uspr/u0 in an loading-unloading simulation, where
u0 represents the spring displacement at pull-off point for an athermal case.
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Figure 5.3: An experimental pull-off force probability reported in Fig.5 of
Ref. [107], while the data is renormalized so that the integration equals to one.
The red line represents the probability curve obtained using simulation with
adjustable parameters.

To further demonstrate that this simulation can realistically reflect the experiment,

we measured the probability distribution curve of the pull-off force from a mass of

loading-unloading simulations, and compared our data to the existing data from

the real experiment. Results are shown in Fig. 5.3: the grey histogram is the

probability to measure a specific pull-off force, which is obtained from a large

number of AFM experiments [107].

Some crucial information of the experiment, which should be helpful to our simu-

lation are summarized as below: Both surfaces and tips are silicon oxide, in which

case elastic modulus E = 74 GPa and ν = 0.17 are applied. All AFM tips of the

probes had a radius of curvature around 10 nm. The normal stiffness kspr was of

order 10−3 N/m, which represents a compliant cantilever is applied. Experiments

are conducted at room temperature. Parameters utilized in our simulations are

identical to those values applied to get the hysteresis curve in Fig. 5.2, which re-

mains similar to the experiment parameters. The probability distribution (solid
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red line) is obtained over 20, 000 loading-unloading curves and it roughly coincides

with the distribution obtained from experiments.

Fig. 5.4 shows plots of pull-off force histogram with different temperatures using

the JKR-MD introduced in Sect. 5.2. MD results can be described as an asym-

metric bell shape and can be perfectly fitted using the Gumbel distribution with

adjustable parameters, which is given by

Pr[F ] =
1

β
e−z−e

−z

(5.14)

with

z =
F − µ
β

, (5.15)

where µ is the mode of the Gumbel distribution, that is, the most likely value for

pull-off force to occur, and β represents a parameter to determine the bell shape.
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Figure 5.4: Normalized probability density function of pull-off force with var-
ious temperatures. Solid squares indicates the JKR-MD results while dashed
lines represent fitting lines using the Gumbel distribution.

As shown in this figure, the distributions of pull-off force are expanded with in-

creasing temperature, a remarkable reduction of pull-off force is also realized at the
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Figure 5.5: The deviation of average pull-off force from Fp as a function of
temperature T .

same time. As an example, the most likely pull-off force Fp/F0 decreases from 0.9

to 0.75 as temperature increases from 100 K to 500 K. This result indicates that

the thermal fluctuations contribute to the process in which an AFM tip probes

jump-out-of-contact dynamics.

We would like to argue that the significant reduction of the pull-off force stems

from the effects of thermal fluctuations as it is the only additional factor considered

in this study. A possible explanation could be that the thermal fluctuations lead

to a reduction of the surface energy. In this case, a particle of the elastic body is

more likely to jump to another local minimum, which represents the case to jump

out of contact, even though in the case where the pulling force is relatively small.

Fig. 5.5 presents the temperature dependence of bias of pull-off force from Fp.

The trend shows that the deviation increases with increasing temperature, which

shows Fp decreases with temperature assuming the surface energy to be constant.
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5.4 Conclusions

In this chapter, we proposed a modified Bradley’s model, in which the LJ in-

teraction is replaced by a JKR contact model, to simulate the loading-unloading

process of a typical AFM tip. Therefore, an extremely short-ranged adhesion

between counterfaces is assumed in this model. Thermal effects are included by

considering a Langevin thermostats, which satisfies the FDT.

To validate the reliability of this model, we analysed a large number of loading-

unloading curves such that a probability distribution of pull-off force was achieved.

The distribution obtained from our simulation turned out similar to the experi-

mental result, which recognized adjusting parameters.

Furthermore, we explored the distribution of the pull-off force with different tem-

peratures. It shows that even at room temperature, i.e., T = 300 K, the pull-off

force is already reduced by 20% compared to the athermal case. This reduction

increases with increasing temperature. Meanwhile, thermal fluctuation can also

benefit the broadening of pull-off force distribution, which has also been observed

experimentally [16].

Even though this crude work managed to reproduce the experiment results, there

are some interesting issues still remain unsolved due to time limit, which are

expected to be investigated in future works.

First, the issue how thermal fluctuations affect the surface energy still remains

open. Intuitively, thermal fluctuations reduce the adhesion strength, however, the

quantitative relation between temperature and surface energy is not yet deter-

mined. One can start this issue by studying the flat-flat adhesion contact problem

using Green’s function molecular dynamics (GFMD), which is an efficient method

to get the linear response of an elastic solid with various boundary conditions [7].

Second, it has been demonstrated that the model introduced in this chapter can

reproduce the experiment result quite reasonably. In light of this fact, it is also

worth some effort to get the probability distribution function other than a simple

fitting curve.



Chapter 6

Conclusions and outlook

In this thesis, the first contribution is to build up an efficient contact mechanics

simulation toolbox. Towards this end, the fast-inertial-relaxation-engine (FIRE),

which is a minimization method that can locate a minimum of the potential energy

quickly, was implemented into the regular Green functional molecular dynamics

(GFMD). GFMD is a method which translates a contact-mechanics problem, or

generally, a boundary-value problem into the framework of molecular dynamics.

Two contact mechanics benchmarks were introduced to validate the reliability of

this new toolbox. The first benchmark is a simple parabolic indenter in contact

with a weakly adhesive, linearly elastic solid of finite thickness. The second bench-

mark is a nominally flat indenter with random roughness in contact with a weakly

adhesive, linearly elastic solid of finite thickness. It was demonstrated that FIRE

was successfully implemented during this thesis into a regular GFMD and leads

to a remarkable speedup of one order of magnitude for typical system sizes and

even larger speedups for larger systems. Furthermore, because GFMD propagates

displacement in Fourier space, at this point, another prominent speedup was ob-

tained through an effective choice for the inertia of the modes. The conclusions

obtained in this thesis indicated that FIRE could also benefit finite-element meth-

ods, which is another approximation method access to the solution of boundary

value problem.

The second contribution is to investigate the effect of thermal fluctuations on con-

tact mechanics in the case of hard wall constraint. Towards this end, the analytical

expression of the repulsive force resulted from thermal fluctuations was derived.

To validate the analytical results, the GFMD technique was generalized to include

thermal noise, which satisfies fluctuation dissipation theorem. The simulation

results were consistent with different mean-field approximations to the problem,
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which allows us to determine a closed-form analytical distance-force expression for

a flat, thermal elastic layer interacting with a flat, rigid substrate. After that,

an application of this method was a traditional Hertzian contact problem which

thermal fluctuations were added to validate this method. It was shown that ther-

mal fluctuation can induce non-negligible shifts in the normal displacement. This

displacement was found to be roughly equal to the root-mean-square fluctuation

of surface atoms but almost independent of the load.

The third contribution of this thesis is the study on the dependence of relative

contact area on pressure for nominally flat surface contact problem. Some studies

claimed that the area-pressure relation should follow a rigorous linearity. However,

the proportionality of relative contact area and pressure remains unclear. There-

fore, it is meaningful to study if there are any structural parameter to correlate

with this proportionality. For this reason, the relative contact area between an ini-

tially flat, adhesion- and frictionless, linearly elastic body and a variety of rough,

rigid substrate is studied using GFMD. It is found that the linearity can only hold

if the root-mean-square height gradient evaluated over the real contact area. No

single unitless structural parameter, including the Nayak parameter, correlate to

the proportionality.

On the basis of the work presented in this thesis, further extensions should be

considered. First, since FIRE was demonstrated to be efficient to the solution

of boundary-element method, it should also benefit the solution of finite element

method. It is meaningful to implement the FIRE algorithm into any existing finite

element method toolbox. Second, regarding the effect of thermal fluctuation on

pressure-distance relation, only hard-wall constraint is included. A more general

case should include the surface force, e.g., van der Waals forces since the surface

force starts to dominate with decreasing the length scale. Therefore, it would be

interesting to study the effect of thermal noise on the pressure-distance relation

for adhesive contacts.
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[11] Wolf B. Dapp and Martin H. Müser. Fluid leakage near the percolation

threshold. Scientific Reports, 6(1), February 2016. doi: 10.1038/srep19513.

URL https://doi.org/10.1038/srep19513.

[12] Y. P. Zhao, L. S. Wang, and T. X. Yu. Mechanics of adhesion in MEMS—a

review. Journal of Adhesion Science and Technology, 17(4):519–546, January

2003. doi: 10.1163/15685610360554393. URL https://doi.org/10.1163/

15685610360554393.

[13] C.K. Bora, E.E. Flater, M.D. Street, J.M. Redmond, M.J. Starr, R.W.

Carpick, and M.E. Plesha. Multiscale roughness and modeling of MEMS

interfaces. Tribology Letters, 19(1):37–48, May 2005. doi: 10.1007/

s11249-005-4263-8. URL https://doi.org/10.1007/s11249-005-4263-8.

[14] B. N. J. Persson and M. Scaraggi. Theory of adhesion: Role of surface rough-

ness. The Journal of Chemical Physics, 141(12):124701, September 2014.

doi: 10.1063/1.4895789. URL https://doi.org/10.1063/1.4895789.

[15] A. Tiwari, L. Dorogin, A. I. Bennett, K. D. Schulze, W. G. Sawyer, M. Tahir,

G. Heinrich, and B. N. J. Persson. The effect of surface roughness and

viscoelasticity on rubber adhesion. Soft Matter, 13(19):3602–3621, 2017.

doi: 10.1039/c7sm00177k. URL https://doi.org/10.1039/c7sm00177k.

[16] A. V. Pinon, M. Wierez-Kien, A. D. Craciun, N. Beyer, J. L. Gallani, and

M. V. Rastei. Thermal effects on van der waals adhesive forces. Physical

Review B, 93(3), January 2016. doi: 10.1103/physrevb.93.035424. URL

https://doi.org/10.1103/physrevb.93.035424.
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facial stiffness of solids with randomly rough surfaces. Journal of Physics:

Condensed Matter, 23(8):085001, February 2011. doi: 10.1088/0953-8984/

23/8/085001. URL https://doi.org/10.1088/0953-8984/23/8/085001.
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Self-affine elastic contacts: Percolation and leakage. Phys. Rev. Lett., 108

(24):244301, jun 2012. doi: 10.1103/physrevlett.108.244301. URL http:

//dx.doi.org/10.1103/PhysRevLett.108.244301.

http://dx.doi.org/10.1016/j.jmps.2008.03.011
http://dx.doi.org/10.1209/0295-5075/77/38005
https://doi.org/10.1016%2Fj.jmps.2012.01.006
https://doi.org/10.1016%2Fj.jmps.2012.01.006
http://dx.doi.org/10.1007/s11249-013-0282-z
http://dx.doi.org/10.1007/s11249-013-0282-z
https://doi.org/10.1088/0953-8984/23/8/085001
http://dx.doi.org/10.1103/PhysRevLett.108.244301
http://dx.doi.org/10.1103/PhysRevLett.108.244301


Bibliography 122

[57] L. Afferrante, F. Bottiglione, C. Putignano, B. N. J. Persson, and G. Car-

bone. Elastic contact mechanics of randomly rough surfaces: An assess-

ment of advanced asperity models and persson’s theory. Tribology Let-

ters, 66(2), May 2018. doi: 10.1007/s11249-018-1026-x. URL https:

//doi.org/10.1007/s11249-018-1026-x.

[58] Roman Pohrt, Valentin L. Popov, and Alexander E. Filippov. Normal con-

tact stiffness of elastic solids with fractal rough surfaces for one- and three-

dimensional systems. Physical Review E, 86(2):026710, aug 2012. doi: 10.

1103/physreve.86.026710. URL http://dx.doi.org/10.1103/PhysRevE.

86.026710.

[59] V. A. Yastrebov, G. Anciaux, and J.-F. Molinari. From infinitesimal to full

contact between rough surfaces: Evolution of the contact area. International

Journal of Solids and Structures, 52:83–102, jan 2015. doi: 10.1016/j.ijsolstr.

2014.09.019. URL https://doi.org/10.1016/j.ijsolstr.2014.09.019.

[60] M. Khajeh Salehani, J.S. van Dokkum, N. Irani, and L. Nicola. On the

load-area relation in rough adhesive contacts. Tribology International, 144:

106099, April 2020. doi: 10.1016/j.triboint.2019.106099. URL https://

doi.org/10.1016/j.triboint.2019.106099.

[61] Vladislav A. Yastrebov, Guillaume Anciaux, and Jean-Francois Molinari.

The role of the roughness spectral breadth in elastic contact of rough sur-

faces. Journal of the Mechanics and Physics of Solids, 107:469–493, October

2017. doi: 10.1016/j.jmps.2017.07.016. URL https://doi.org/10.1016/

j.jmps.2017.07.016.

[62] P. Ranganath Nayak. Random process model of rough surfaces. Journal of

Lubrication Technology, 93(3):398–407, July 1971. doi: 10.1115/1.3451608.

URL https://doi.org/10.1115/1.3451608.

[63] Binquan Luan and Mark O. Robbins. The breakdown of continuum models

for mechanical contacts. Nature, 435(7044):929–932, jun 2005. doi: 10.1038/

nature03700. URL https://doi.org/10.1038/nature03700.

[64] Binquan Luan and Mark O. Robbins. Contact of single asperities with

varying adhesion: Comparing continuum mechanics to atomistic simula-

tions. Physical Review E, 74(2):026111, aug 2006. doi: 10.1103/physreve.

74.026111. URL https://doi.org/10.1103/physreve.74.026111.

https://doi.org/10.1007/s11249-018-1026-x
https://doi.org/10.1007/s11249-018-1026-x
http://dx.doi.org/10.1103/PhysRevE.86.026710
http://dx.doi.org/10.1103/PhysRevE.86.026710
https://doi.org/10.1016/j.ijsolstr.2014.09.019
https://doi.org/10.1016/j.triboint.2019.106099
https://doi.org/10.1016/j.triboint.2019.106099
https://doi.org/10.1016/j.jmps.2017.07.016
https://doi.org/10.1016/j.jmps.2017.07.016
https://doi.org/10.1115/1.3451608
https://doi.org/10.1038/nature03700
https://doi.org/10.1103/physreve.74.026111


Bibliography 123

[65] Yifei Mo, Kevin T. Turner, and Izabela Szlufarska. Friction laws at the

nanoscale. Nature, 457(7233):1116–1119, February 2009. doi: 10.1038/

nature07748. URL https://doi.org/10.1038/nature07748.

[66] Shengfeng Cheng, Binquan Luan, and Mark O. Robbins. Contact and fric-

tion of nanoasperities: Effects of adsorbed monolayers. Physical Review

E, 81(1):016102, January 2010. doi: 10.1103/physreve.81.016102. URL

https://doi.org/10.1103/physreve.81.016102.

[67] Yifei Mo and Izabela Szlufarska. Roughness picture of friction in dry

nanoscale contacts. Physical Review B, 81(3):035405, January 2010. doi:

10.1103/physrevb.81.035405. URL https://doi.org/10.1103/physrevb.

81.035405.

[68] S Eder, A Vernes, G Vorlaufer, and G Betz. Molecular dynamics simula-

tions of mixed lubrication with smooth particle post-processing. Journal

of Physics: Condensed Matter, 23(17):175004, April 2011. doi: 10.1088/

0953-8984/23/17/175004. URL https://doi.org/10.1088/0953-8984/

23/17/175004.

[69] Tevis D. B. Jacobs and Ashlie Martini. Measuring and understanding contact

area at the nanoscale: A review. Applied Mechanics Reviews, 69(6):060802,

November 2017. doi: 10.1115/1.4038130. URL https://doi.org/10.1115/

1.4038130.

[70] Tian Tang, Anand Jagota, Manoj K. Chaudhury, and Chung-Yuen

Hui. Thermal fluctuations limit the adhesive strength of compli-

ant solids. The Journal of Adhesion, 82(7):671–696, June 2006.

doi: 10.1080/00218460600775781. URL https://doi.org/10.1080/

00218460600775781.
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Appendix A

GFMD documentation

A.1 Introduction

A.1.1 Basic idea of GFMD

Green’s function molecular dynamics (GFMD) is a technique allowing us to solve

boundary-value problems, for example, the linear-elastic response of a solid to

a boundary condition, within the framework of MD [7, 38]. The central idea is

to use Fourier transform of surface modes as coordinates, which are propagated

according to Newton’s equations of motion.

mq
¨̃u(q) + ηq ˙̃u(q) +

qE∗

2
ũ(q) = F̃ (q) (A.1)

where F̃ (q) is the Fourier transform of all external forces acting on the surface

atoms, ũ(q) is the Fourier transform of displacement field u(r). mq and ηq represent

inertia and damping coefficients of different surface modes, which may depend on

the wave vector. E∗ is the contact modulus.

In this GFMD solver, displacement Verlet algorithm is applied to propagate the

displacement, which reads

ũnew(q) = 2ũnow(q)− ũold(q) + F̃ (q)∆t2 (A.2)

The implementation and basic idea of GFMD in terms of pseudo code is sketched

below.

129
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1 - initialize all parameters

2 - define rigid/elastic sheet

3 - loop over time steps until converged

4 - implement interaction in real space

5 - transform displacement and force into Fourier space

6 - calculate elastic restoring force

7 F̃ (q) = F̃ (q)− q(E∗/2)ũnow(q)

8 - add external pressure

9 F̃ (0) = F̃ (0) + p

10 - add damping force

11 F̃ (q) = F̃ (q) + ηq{ũnow(q)− ũold(q)}
12 - use Verlet algorithm to propagate

13 ũnew(q) = 2ũnow(q)− ũold(q) + F̃ (q)∆t2

14 - transform displacement into real space

15 - implement the boundary condition

16 - postanalysis

A.1.2 Source code structure

There are 5 source code files under the src directory, which are listed in Table A.1

Table A.1: source code structure

file name description

header.h declare all libraries and all global constants

contMech.h declare all global variables and global functions

gfmdSheet.h declare all variables and functions to define rigid indenter,

elastic sheet and the interaction

contMech.cpp main function, post-analysis

gfmdSheet.cpp include all information on elastic sheet and rigid indenter

A.1.3 Basic running

Because GFMD simulation is conducted in Fourier space, a fast Fourier trans-

form library is expected to pre-installed. In the current version, FFTW is in the
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position to do this job, which is a C subroutine library for computing the dis-

crete Fourier transform[108]. More details about FFTW, including installation

and manipulation, could be referred on www.fftw.org.

To compile a C++ program, a commonly used C++ compiler should be installed.

GNU compiler is used to compile the GFMD simulation under Linux platform

while clang compiler is applied under macOS platform.

The command in Linux/macOS environment to compile GFMD code would be

1 $ g++ /path/contMech.cpp /path/gfmdSheet.cpp -O2

2 -std=c++11 -lfftw3 -L /path/fftw/lib -I /path/fftw/include

3 -o contMech.exe

This command generates an executable file contMech.exe. Then run this exe-

cutable file with command

1 $ ./contMech.exe

After several time steps, some basic data files would be given, which are sketched

in Table A.2.

Table A.2: output file overview

file name description

gMoni.dat energy at each time step, including total energy, kinetic en-

ergy, potential etc.

moni1-xxxx.dat some typical displacement at each time step, i.e., center of

mass mode, fastest mode etc.

elSheet1.dat displacement and stress of elastic sheet which are generated

at the last time step

equilPos0.dat profile of rigid indenter

elSheet1.datH cross section of displacement and stress of elastic sheet which

are generated at the last time step

equilPos0.datH cross section of rigid indenter profile

params.out dump out some useful information and results of post-

analysis, such as contact line, contact area etc..

params.def default parameters.

www.fftw.org
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A.1.4 Visualization

gnuplot is adopted to visualize those output files (*.dat). gnuplot is a portable

command-line driven graphing utility for Linux, macOS and many other platforms.

More details about gnuplot, including installation and manipulation, could be

referred to the documentation on www.gnuplot.info.

Suppose that the newest version of gnuplot is installed, the first step to use

gnuplot is to open terminal and write a command

1 $ gnuplot

The user interface should look like

1 username$ gnuplot

2

3 G N U P L O T

4 Version 5.2 patchlevel 7 last modified 2019-05-29

5

6 Copyright (C) 1986-1993, 1998, 2004, 2007-2018

7 Thomas Williams, Colin Kelley and many others

8

9 gnuplot home: http://www.gnuplot.info

10 faq, bugs, etc: type "help FAQ"

11 immediate help: type "help" (plot window: hit ’h’)

12

13 Terminal type is now ’qt’

14 gnuplot>

To visualize a data file with gnuplot, we basically only need to use command

plot. For example,

1 gnuplot> plot "elSheet1.datH" u 1:3 w l

This command plots the elSheet1.datH using the data of 1st column and 3rd

column.u is short for using, w l means with line.

www.gnuplot.info
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A.2 Parameters

Similar to LAMMPS, the current version of GFMD code executes by reading

commands from an input script "params.in". It is not necessary for users to read

the source code line by line, instead, the users just need to write a simple input

script to define parameters about the contact simulation. All parameters have

default setting, which means that only those parameters that the user wants to

change need to be listed in the input script.

A completed input script consists of 3 parts, global parameters, elastic sheet pa-

rameters and rigid sheet parameters. Parameter names are prompt by a hash sign

#. There must be a space between the parameter name and the hash sign.

A.2.1 Global parameters

All global default parameters are listed in Table A.3.

Table A.3: global parameters overview

parameter default value description

lengthX/lengthY 1.0/1.0 system length along x/y direction

nxGlobal/nyGlobal 512/512 grid points of system along x/y direc-

tion

nTime 100 simulation time in unit of time step

dTime 0.25 time step

dampGlobal 1.0 global damping

randSeed 4711 random seed

fLangevin 0 switch of Langevin thermostat, ==0:

switch off; ==1: switch on

tempInit 0.01 initial dimensionless temperature, out

of use if fLangevin == 0

tempFinal 0.01 final dimensionless temperature, out of

use if fLangevin == 0

nSheet 2 sheet number, DO NOT change

fFire 0 switch of fire optimization, ==0: switch

off; ==1: switch on
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fireRedrct 0.005 a factor to redirect velocity , out of use

if fFire==0

fireIncrmt 1.2 a factor to increase time step, out of

use if fFire==0

fireDecrmt 0.5 a factor to decrease time step, out of

use if fFire==0

There must be a line to remind the finish of global parameter definition, it reads

1 0 # end global parameters

Here is an example to define the global parameters

1 1 # lengthX

2 512 # nxGlobal

3

4 4000 # nTime

5 0.25 # dTime

6

7 0 # fFire

8

9 1.0 # dampGlobal

10 4711 # randSeed

11

12 2 # nSheet

13 0 # end global parameters

14

15 ...

A.2.2 Rigid sheet parameters

All rigid sheet parameters are listed in Table A.5.

Table A.5: rigid sheet parameters

parameter default value description
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fRough 1 define indenter shape

==1: parabolic indenter;

==2: random roughness indenter;

==4: flat punch;

==8: single wave indenter;

nx/ny nxGlobal/nyGlobal grid points for indenter

rXhertz/rYhertz 1.0/1.0 radius of curvature for Hertzian

indenter,

out of use if fRough 6= 1

hertzRescale 1.0 > 1.0: blunt Hertzian indenter;

< 1.0: sharp Hertzian indenter

hurst 0.8 hurst exponent, out of use if

fRough 6= 2

lambdaR 0.5 roll-off wavelength, out of use if

fRough 6= 2

lambdaS 0.005 short wavelength cut-off, out of

use if fRough 6= 2

fRollOff 1 switch of smooth roll-off,

==1: smooth roll-off;

==0: roll-off wavelength = long

wavelength cutoff;

==2: roll-off with cusp;

out of use if fRough 6= 2

fRNorm 1 normalize rough indenter,

== 1: normalize to rms gradient;

== 2: normalize to rms height;

out of use if fRough 6= 2

rRoughNorm 1.0 specify a value for rms gradien-

t/height, out of use if fRough 6=
2.

fIndMode 0 punch shape,

==0: spherical flat punch;

==1: line flat punch;

out of use if fRough 6= 4.
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indRadius 0.2*lengthY punch radius,

out of use if fRough 6= 4.

indHeight 0.2*lengthY punch height,

out of use if fRough 6= 4.

fRStep 0 change smooth indenter to step

indenter,

==0: switch off;

==1: switch on;

rRoughStep 1.0/200 step height,

out of use if fRStep = 0.

fBoxMuller 0 use BoxMuller random seed gen-

erator

heightWarp 0.0 warped surface

peklenik 1.0 anisotropic surface

Rigid indenter is set to sheet 0 by default. GFMD simulation starts to read

indenter parameters after reading

1 0 # sheet start

and stop to read indenter parameters after reading

1 0 # sheet end

General Hertzian indenter

In this section, the input script of a general Hertzian indenter is sketched. The

functional form of this indenter is given by

h(r) =
1

2α

(
r2

Rc

)α

where Rc denotes radius of curvature, α indicates the rescale factor, if α = 1,

the indenter is a typical parabola, if α < 1, the indenter become sharp while it

become blunt if α > 1. Assume that the indenter grid point is set by default, and

Rc = 1.0. The input file should reads
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1 ...

2

3 0 # sheet start

4 1 # fRough

5 1.0 # rXhertz

6 1.0 # hertzRescale

7 0 #sheet end

8

9 ...

The indenter profile could be plotted using gnuplot with command

1 gnuplot> plot "equilPos0.datH" u 1:2 w l

the cross section of this indenter is depicted as below.

x

z

Figure A.1: parabolic indenter
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Random roughness indenter

A typical random rough surface is fully defined by a height power spectrum func-

tion, which reads

C(q) = 〈|h̃(q)|2〉

=
C(0)Θ(qs − q)

{1 + (q/qr)2}(1+H)/2

log q

lo
g 

C
(q

)

qr qs

Figure A.2: Surface roughness power spectrum of a surface which is self-affine
fractal for qs > q > qr. The roll-off wavevector qr and short wavevector cut-off
qs depend on the system under consideration.

Here, h̃(q) is the Fourier transform of the height h(r). qr = 2π/λr is the roll-

off wave number and qs = 2π/λs is the cut-off wave number. H = 0.8 is Hurst

exponent, Θ(•) is the Heavyside step function. The data is normalized by selecting

C(0) such that the root-mean-square (rms) gradient of the surface satisfies ḡ = 1.

If λr = 0.25Lx, λr/λs = 128, the input file should reads
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1 ...

2

3 0 # sheet start

4 2 # fRough

5 0.8 # hurst

6 0.25 # lambdaR

7 2e-3 # lambdaS

8 1 # fRollOff

9 1 # fRNorm

10 0 # sheet end

11 ...

Figure A.3: cross-section plot of random roughness surface

Flat punch

A typical spherical flat punch with radius curvature Rc = 0.2, height h = 0.2 is

defined as below.

1 0 # sheet start

2 4 # fRough

3 0 # fIndMode

4 0.2 # indRadius

5 0.2 # indHeight

6 ...

7 0 # sheet end

A linear flat punch with height h = 0.2 should be defined as below.
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1 0 # sheet start

2 4 # fRough

3 1 # fIndMode

4 0.2 # indHeight

5 ...

6 0 # sheet end

Figure A.4: cross-section plot of flat punch

Stepped indenter

A stepped indenter with Rc = 1.0, step height hs = 0.005 is defined as below.

1 0 # sheet start

2 1 # fRough

3 1.0 # rXhertz

4 1 # fRStep

5 5e-3 # rRoundStep

6 0 # sheet end

A.2.3 Elastic sheet parameters

This version of GFMD code is designed to solve contact problems of linear elastic

solid with either finite or semi-infinite thickness. All parameters about the elastic

solid are listed in Table A.7.

Table A.7: elastic sheet parameters overview
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parameter default value description

elaDim 1 elastic dimension.

pressure 0.01 external pressure working on elas-

tic sheet

pressFinal pressure pressure at the last time step

nx/ny nxGlobal/nyGlobal grid points of elastic sheet

contactMod 1.0 contact modulus

poisson 0.25 Poisson ratio

fThickness 0 elastic sheet property,

==0: infinite thickness;

==1: constant stress;

==2: constant strain;

thickness lengthY elastic sheet thickness

fConstCOM 0 center-of-mass (COM) con-

strained if ==1.

zConstCOM 0 position of COM mode when

COM is constrained

vConstCOM 0 velocity of COM mode

A typical elastic sheet is defined as below.

1 1 # sheet start

2 1 # elaDim

3 2 # contactMod

4 0.25 # poisson

5 1e-3 # pressure

6 1 # fThickness

7 0.5 # thickness

8 0 # fConstCOM

9 ...

10 1 # sheet end

In this params.in, an elastic sheet with contact modulus E∗ = 2.0, Poisson ratio

ν = 0.25, external pressure p = 0.001 and thickness h = 0.5 is defined.
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A.2.4 Read old configuration

Sometimes GFMD simulation requires to read configuration from a data file rather

than initializing configuration from scratch. Towards this end, the data file of this

configuration should be renamed.

If the old configuration is elastic solid, the file should be renamed to elSheet1.old

and the data arrangement should be consistent with elSheet1.dat.

For rigid indenter, the situation is different because it is only allowed to read the

rigid indenter in Fourier space. In this case, the first two columns correspond to

qx and qy, respectively and the last two columns indicate the real and imaginary

part of Fourier transform of the height position.

A.3 Interaction

So far, the elastic and rigid configuration are fully defined. In this section, the

interaction between these two sheets would be sketched. All parameters related

interactions are listed in Table A.9.

Table A.9: interaction parameters overview



Appendix A. GFMD documentation 143

fMorse 0 define interaction type,

==0: hard-wall constraint;

==1: adhesion + hard-wall

==2: adhesion + short-ranged re-

pulsion;

morse2sheet 1 apply interaction to a specified

sheet

surfEner 1e-4 surface energy,

out of use if fMorse = 0

sigMorse 1e-3*lengthY finite distance,

out of use if fMorse = 0

surfDist 1 initial distance between sheets, in

unit of dy.

out of use if fMorse = 0

const2sheet 0 apply hard-wall constraint to a

specified sheet,

==2: switch off hard-wall con-

straint

A.3.1 Hard-wall constraint

Hard-wall constraint is one of the most commonly used interactions in contact

simulations, in which case the elastic sheet is not allowed to penetrate the rigid

indenter. It is defined as

γ(g) =

{
∞ if g < 0

0 else .

where g is the gap between indenter and elastic sheet.

Hard-wall constraint is the default setting in GFMD code. Therefore, if there is

no interaction specified in input script, the interaction would be hard-wall. Be

careful that the const2sheet is a parameter which should be defined in elastic

sheet.
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A.3.2 Adhesion interaction and hard-wall constraint

Suppose z(x, y) denotes the profile of rigid indenter, the displacement of elastic

sheet, u(x, y) is formally a function of both in-plane coordinates. The gap g(x, y)

indicates the distance between the deformed elastic sheet and undeformed tip, i.e.,

g(x, y) = z(x, y)− u(x, y)

It is furthermore assumed that the tip cannot penetrate the substrate, which is

the hard-wall constraint. The finite-range adhesive interaction, which only depend

on the local gap. The default expression would be

γ(g) = −γ0

∫
d2r exp{−g(x, y)/σM} (A.3)

where γ0 is surface energy per unit area, σM is a single length scale. They are

surfEner and sigMorse in params.in respectively.

Here is an example about the adhesion with hard-wall constraint.

1 0 # sheet start

2 ...

3 1 # fMorse

4 1 # morse2sheet

5 2e-4 # surfEner

6 1e-3 # sigMorse

7 1 # surfDist

8 0 # sheet end

9

10 1 # sheet start

11 ...

12 0 # const2sheet

13 1 # sheet end

In this example, γ0 = 2× 10−4 and σM = 1× 10−3.
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A.3.3 Adhesion interaction and short-ranged repulsion

This interaction consists of a short-range adhesion and an even shorter-ranged

repulsion. The expression is

γ(g) = γ0

∫
d2r
{

e2{z0−g(x,y)}/σM − 2e{z0−g(x,y)}/σM
}

where γ0 denotes the surface energy per unit surface area, g(x, y) the gap between

indenter and elastic sheet. We should notice that hard-wall constraint should be

switched off if Morse potential is switched on. Here is an example.

1 0 # sheet start

2 ...

3 2 # fMorse

4 1 # morse2sheet

5 1e-4 # surfEner

6 1e-3 # sigMorse

7 1 # surfDist

8 0 # sheet end

9

10 1 # sheet start

11 ...

12 2 # const2sheet

13 1 # sheet end

A.4 Examples

So far, the elastic sheet configuration, rigid indenter configuration, and the interac-

tion are fully defined, which are sufficient to run a frictionless contact simulation.

In this section, some typical contact examples would be presented, so that the user

could get familiar with the manipulation of the GFMD code.

All examples are (2+1) dimensional and run quickly. Most of them require roughly

1 minute to equilibration. Each problem needs an input script(params.in) and

generates a variety of output files(*.dat and *.datH).
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A.4.1 Hertzian contact problem with hard-wall constraint

1 1.0 # lengthX

2 512 # nxGlobal

3

4 4000 # nTime

5 0.25 # dTime

6

7 1.0 # dampGlobal

8

9 0 # end global parameters

10

11 0 # sheet start

12 1 # fRough

13 1.0 # rXhertz

14 0 # fMorse

15 0 # sheet end

16

17 1 # sheet start

18 1 # elaDim

19 1 # fThickness

20 1.0 # thickness

21 1e-3 # pressure

22 0 # const2sheet

23 1 # sheet end

In this example, the sample size is 1.0×1.0, grid points is 512×512, therefore, the

grid distance would be ∆a ≈ 2.0×10−3. The rigid substrate is defined as parabolic

indenter with radius curvature Rc = 1.0. The effective modulus E∗ and Poisson

ratio ν are not declared in this script, therefore we use default value, which are

E∗ = 1.0 and ν = 0.25 respectively. The elastic sheet thickness is h = 1.0 and it is

constant stress boundary condition. The external pressure is defined as p = 0.001.

Assuming that ∆a = 0.25Å is the typical atom distance and E∗ = 1GPa the

typical effective modulus. Therefore, we could calculate that the radius curvature

of indenter would be Rc = 512∆a = 12.8nm, the external load would be L =

0.164nN.
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According to classical Hertzian theory, the distribution of interfacial stress in the

contact area as a function of distance from the center of the contact area should

be

σz(r) =

√
p0(1− r2

a2
c

)

where ac = [3LRc/(4E
∗)]1/3 and p0 = 3L/(2πa2

c). These expressions could be

found in any contact mechanics related textbook.
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Figure A.5: Interfacial stress σz as a function of distance r from the central
point of contact area in a Hertzian contact geometry. The (red) solid line
represents the analytical solution to the Hertz problem, the (black) solid circles
reflect the GFMD simulation.

In a regular Hertzian contact simulation, we should notice that the contact radius

is required to be much less than the radius curvature of indenter. To validate

the reliability of GFMD simulation on Hertzian contact problem, we could dump

out the cross section of displacement field and check if the displacement outside

contact area decays as function 1/r.
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Figure A.6: displacement field uz(r) as a function of distance r from the
symmetry axis. The (black) solid circle denotes the GFMD simulation, (red)
solid line represents the displacement outside contact area decays as a function
of 1/r.
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A.4.2 Hertzian contact problem with adhesion interaction

1 6000 # nTime

2

3 0 # end global parameters

4

5 0 # sheet start

6 1 # fMorse

7 1 # morse2sheet

8 2e-4 # surfEner

9 1e-3 # sigMorse

10 0 # sheet end

11

12 1 # sheet start

13 1 # elaDim

14 1 # fThickness

15 1.0 # thickness

16 5e-4 # pressure

17 0 # const2sheet

18 1 # sheet end

Figure A.7: A short-range adhesion, elastic solid of infinite thickness com-
pressed by a parabolic indenter. The dotted line shows the associated stress
profile.

In this example, we implement adhesion into original hard-wall constraint. For

more details about the adhesion, we could go back to section 3.2. In this example,

we set γ0 = 2.0 × 10−4 and σM = 1.0 × 10−3. Therefore, we could calculate that
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the Tabor parameter would be µT = [Rcγ
2
0/(E

∗2σ3
M)]1/3 ≈ 3.42, which closes to a

typical short-range adhesion limit.

A.4.3 Rough surface contact problem with adhesion inter-

action

1 1 # lengthX

2 32768 # nxGlobal

3

4 3000 # nTime

5 0.25 # dTime

6

7 1 # dampGlobal

8 4711 # randSeed

9

10 0 # end global parameters

11

12 0 # sheet start

13 2 # fRough

14 1 # fMorse

15 1 # morse2sheet

16 2e-5 # surfEner

17 2.071e-5 # sigMorse

18 0 # sheet end

19

20 1 # sheet start

21 1 # elaDim

22 0 fThickness

23 1e-2 # pressure

24 0 # const2sheet

25 1 # sheet end

The stochastic properties of a random roughness surface are fully defined by the

following variables: Hurst exponent H, linear system size L, roll-off wavelength

λr, short wavelength cut-off λs, height power spectrum C(qr) and in the case of

numerical simulations, ∆a, which represents the resolution of the discrete elastic
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manifold. In this example, we don’t use the parameters defined in the input script,

instead, we read the old configuration from equilPos0.Fourier.old. One could

download the surface from contact mechanics challenge webpage. Regarding the

elastic sheet, we set fThickness = 0, which means that we are going to study an

semi-infinite thickness elastic layer. The external pressure is set to p = 0.01.

There is a straightforward way to validate this example. Since all parameters

defined in this script are consistent with those parameters defined in contact me-

chanics challenge paper [39], therefore, after equilibrium, we should get identical

interfacial stress profile as contact mechanics challenge. The result is listed below.

41 41.2 41.4 41.6 41.8 42
r

-0.8

-0.4

0

0.4

σ 
 (E

*g
)

reference
GFMD

Figure A.8: Interfacial stress profile along a selected cross-section. solid
(black) curve is reference data downloaded from contact mechanics challenge
website, dashed (red) curve is GFMD result.

https://www.lmp.uni-saarland.de/ index.php/research-topics/contact-mechanics-challenge- announcement/
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A.4.4 Hertzian contact problem with Morse potential

1 1.0 # lengthX

2 512 # nxGlobal

3

4 6000 # nTime

5 0.25 # dTime

6

7 1.0 # dampGlobal

8

9 0 # end global parameters

10

11 0 # sheet start

12 1 # fRough

13 1.0 # rXhertz

14 2 # fMorse

15 1 # morse2sheet

16 1e-4 # surfEner

17 1e-3 # sigMorse

18 0 # sheet end

19

20 1 # sheet start

21 1 # elaDim

22 1 # fThickness

23 1.0 # thickness

24 5e-4 # pressure

25 2 # const2sheet

26 1 # sheet end
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A.5 Optimizations

In the given context, some optimization would be briefly introduced and the re-

alizations would be discussed in details, so that the user could optimize a GFMD

simulation in a proper manner.

In this section, the solution of either a typical Hertzian or a randomly rough contact

problem is optimized. All parameters are well chosen so that the interaction is in

the limit of short-range adhesion. For more details, please read this paper [75].

A.5.1 Fast inertia relaxation engine (FIRE)

The basic idea of FIRE is sketched in Erik’s work [47]. Here we only outline the

pseudo code of FIRE optimization.

1 - regular MD procedure

2 - propagate with Verlet algorithm

3 - FIRE optimization

4 - calculate total potential energy V now
tot and V old

tot

5 if (V now
tot < V old

tot )

6 - move velocity direction to steepest-descent direction

7 v→ (1− α)v + αF̃|v|
8 - increase time step ∆t

9 ∆t→ min(finc∆t,∆tmax)

10 else if (V now
tot > V old

tot )

11 - freeze system

12 v = 0

13 - decrease time step ∆t

14 ∆t→ fdec∆t

15 - back to MD procedure

For a FIRE optimization, 3 parameters should be declared explicitly, which are α,

finc and fdec. All of them are fully defined in the GFMD code, which are listed in

the table.
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parameter default value description

fFire 0 ==0: switch off;

==1: switch on.

fireRedrct 0.005 factor to redirect velocity direction, α

fireIncrmt 1.2 factor to increase time step, finc

fireDecrmt 0.5 factor to decreasxe time step, fdec

Because FIRE optimization is sensitive to different configuration and different

interaction, therefore, sometimes FIRE related parameters are needed to adjust

for different simulations.

To find the best parameter set for specified simulation, the best practice would

be choosing α = 0, finc = 1.0 and fdec = 1.0 at beginning, which means that

we only switch on FIRE but change neither velocity v nor time step ∆t. But

it doesn’t mean that we would get the same potential energy trajectory as the

potential energy trajectory when we switch off FIRE, because when V now
tot < V old

tot ,

the system would be frozen up. If there is no error information, we could increase

the value of α to redirect the velocity, increase the value of finc and decrease the

value of fdec to adjust the time step. Here is an example script.

1 4000 # nTime

2

3 1 # fFire

4 0.005 # fireRedrct

5 1.2 # fireIncrmt

6 0.5 # fireDecrmt

7

8 0 # end global parameters

9

10 0 # sheet start

11 1 # fRough

12 2 # fMorse

13 1 # morse2sheet

14 2e-4 # surfEner

15 1e-3 # sigMorse

16 0 # sheet end

17

18 1 # sheet start
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19 1 # elaDim

20 1 # fThickness

21 1 # thickness

22 5e-4 # pressure

23 2 # const2sheet

24 1 # sheet end

A.5.2 Mass-weighted GFMD

The basic idea of mass-weighted has sketched in our publication[75]. In this man-

ual, we would like to introduce how to optimize simulation with mass- weighting

in our GFMD code.

Unlike FIRE optimization, we don’t have any parameters to be adjusted, to opti-

mize a typical simulation with mass-weighted algorithm, the only thing we need

to do is to switch on mass-weighted and choose a reasonable zero mode mass.

parameter default value description

fMassweightg 0 ==0: switch off;

==1: switch on

zeroModeMass 1 zero mode mass

Regarding mass-weighting optimization, we should keep in mind that this opti-

mization cannot work with hard-wall constraint. Another thing that we should

be careful is that these two parameters are not global parameters, they are elastic

sheet parameters. Here is an example script.

1 4000 # nTime

2 0.1 # dTime

3

4 10 # dampGlobal

5

6 0 # end global parameters

7

8 0 # sheet start

9 1 # fRough
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10 2 # fMorse

11 1 # morse2sheet

12 2e-4 # surfEner

13 1e-3 # sigMorse

14 0 # sheet end

15

16 1 # sheet start

17 1 # elaDim

18 1 # fThickness

19 1 # thickness

20 5e-4 # pressure

21 2 # const2sheet

22 1 # fMassWeightg

23 1 # zeroModeMass

24 1 # sheet end

A.5.3 FIRE mass-weighting GFMD

It has been demonstrated that FIRE can successfully accelerate a regular GFMD

calculation resulting a remarkable speed up. It can also be combined in a straight-

forward fashion with other accelerator of GFMD method, such as mass-weighting

optimization. The only thing we need to do is to switch on these two optimiza-

tions in script and adjust parameters for different simulations. Here is an example

script.

1 4000 # nTime

2 0.05 # dTime

3

4 1 # fFire

5

6 0 # end global parameters

7

8 0 # sheet start

9 1 # fRough

10 2 # fMorse
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11 1 # morse2sheet

12 2e-4 # surfEner

13 1e-3 # sigMorse

14 0 # sheet end

15

16 1 # sheet start

17 1 # elaDim

18 1 # fThickness

19 1.0 # thickness

20 5e-4 # pressure

21 2 # const2sheet

22 1 # fMassWeightg

23 1 # sheet end
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