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Pantoprazole impairs fracture 
healing in aged mice
Maximilian M. Menger1,2,4*, Philipp Bremer1,4, Claudia Scheuer1, Mika F. Rollmann2, 
Benedikt J. Braun2, Steven C. Herath2, Marcel Orth3, Thomas Später1, Tim Pohlemann3, 
Michael D. Menger1 & Tina Histing1,2

Proton pump inhibitors (PPIs) belong to the most common medication in geriatric medicine. They 
are known to reduce osteoclast activity and to delay fracture healing in young adult mice. Because 
differentiation and proliferation in fracture healing as well as pharmacologic actions of drugs markedly 
differ in the elderly compared to the young, we herein studied the effect of the PPI pantoprazole 
on bone healing in aged mice using a murine fracture model. Bone healing was analyzed by 
biomechanical, histomorphometric, radiological and protein biochemical analyses. The biomechanical 
analysis revealed a significantly reduced bending stiffness in pantoprazole-treated animals when 
compared to controls. This was associated with a decreased amount of bone tissue within the callus, 
a reduced trabecular thickness and a higher amount of fibrous tissue. Furthermore, the number of 
osteoclasts in pantoprazole-treated animals was significantly increased at 2 weeks and decreased at 
5 weeks after fracture, indicating an acceleration of bone turnover. Western blot analysis showed a 
lower expression of the bone morphogenetic protein-4 (BMP-4), whereas the expression of the pro-
angiogenic parameters was higher when compared to controls. Thus, pantoprazole impairs fracture 
healing in aged mice by affecting angiogenic and osteogenic growth factor expression, osteoclast 
activity and bone formation.

The population of the elderly will considerably increase in the next decades, making the treatment of geriatric 
patients a major health  issue1. This population suffers from a higher risk of bone fractures, which is associated 
with an elevated mortality and a reduced healing  potential2. Simultaneously, the use of proton pump inhibitors 
(PPIs) among the elderly has markedly increased during the last decades, becoming one of the most widely 
prescribed medications in geriatric  medicine3. These potent acid-suppressing agents are commonly used for the 
therapy of reflux esophagitis as well as peptic and other gastrointestinal  disorders4,5. Furthermore, PPIs are used 
in combination with analgesic drugs, especially with nonsteroidal anti-inflammatory drugs (NSAIDs). They 
should prevent stress ulcers by inhibiting the gastric proton-pump  (H+/K+-ATPase) activity in parietal cells 
during basal and stimulated gastric acid  secretion6,7.

Despite the symptomatic benefits of PPIs, it is well known that chronic acid suppression can have also det-
rimental physiological effects. PPIs inhibit calcium and vitamin  B12 absorption, resulting in an increased rate 
of bone loss, a low bone mineral density (BMD) and, therefore, a greater risk for  fractures8–10. Epidemiological 
studies could verify that PPI therapy in the elderly is associated with an increased risk of non-spine  fractures11, 
in particular  hip12–14 and other osteoporosis-related  fractures15–17. In addition, we demonstrated in a previous 
study using a murine femur fracture model that in young adult mice PPI administration delays fracture  healing18.

However, there is also evidence that PPIs can prevent bone loss by inhibiting the osteoclastic vacuolar 
 H+-ATPase (V-ATPase)19,20. This enzyme is responsible for creating an acidic environment between the ruffled 
border of osteoclasts and the bone tissue. Thereby, lytic enzymes are activated at the bone-apposed plasma mem-
brane of the osteoclast and bone is resorbed within the process of  remodeling21. Interestingly, Visentin et al.22 
could show that a selective inhibitor of the V-ATPase protects from bone loss in ovariectomized rats. Moreover, 
recent studies implicate an altered activity of the V-ATPase in cellular aging and  longevity23. Hence, the inhibi-
tion of the V-ATPase by PPIs may have a different effect in aged individuals when compared to the young and 
may therefore, prevent osteoporosis and, more importantly, benefit bone healing in the elderly.
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On the other hand, fracture healing in geriatric patients is subjected to significant alterations including a 
decreased differentiation and proliferation of stem  cells24,25 as well as the delay of chondrogenesis and osteo-
chondral  ossification26. Moreover, aging involves a progressive decline in the functional reserve of multiple 
organs, such as hepatic clearance and renal  extraction27. These physiological changes do not only affect drug 
pharmacokinetics and metabolism, but may also alter the mode of action of specific drugs, including PPIs. Of 
interest, there is a complete lack of information about the effects of PPIs on bone healing and regeneration in the 
elderly. Herein, we hypothesized that PPIs affect fracture healing also in aged mice. To prove this hypothesis, we 
studied in aged mice the effects of pantoprazole on fracture healing using a standardized femur fracture model.

Results
In CD-1 mice transverse midshaft femur fractures were induced by a 3-point bending device. The fractures were 
stabilized using intramedullary medical stainless steel screws. Animals were treated daily by intraperitoneal 
(i.p.) injection of 100 mg/kg body weight (BW) pantoprazole (Nycomed, Konstanz, Germany). Control animals 
received the same amounts of vehicle (saline). Animals were studied directly after surgery and at 2 weeks or 
5 weeks after fracture healing.

Radiological analysis. The radiography performed directly after surgery confirmed transverse midshaft 
femur fractures. It also confirmed the adequate positioning of the intramedullary implants. Radiological analy-
sis further revealed a lower Goldberg score in pantoprazole-treated animals compared to controls at both 2 
(0.9 ± 0.2 vs. 1.3 ± 0.2; p = 0.110) and 5 weeks (1.8 ± 0.2 vs. 2.0 ± 0.0; p = 0.201) after fracture healing (Fig. 1). How-
ever, this difference did not prove to be statistically significant.

Biomechanical analysis. Biomechanical analysis of the femora using a three-point bending device (Mini-
Zwick Z 2.5; Zwick, Ulm, Germany) showed a significantly lower bending stiffness in the pantoprazole-treated 
animals at 2 (Fig. 2a,c) and 5 weeks (Fig. 2b,d) after fracture healing when compared to vehicle-treated controls. 
This significantly lower bending stiffness in pantoprazole-treated animals was found when comparing the abso-
lute bending stiffness data (Fig. 2a,b) (p = 0.007 at 2 weeks, p = 0.021 at 5 weeks) but also when comparing the 
relative data (Fig. 2c,d, referring to the non-fractured contralateral femora) (p ≤ 0.001 at 2 weeks, p = 0.017 at 
5 weeks). Of note, pantoprazole treatment showed no effect on the bending stiffness of the non-fractured con-
tralateral femora at 2 and 5 weeks after fracture healing when compared to controls (95.9 ± 7.2 vs. 108.9 ± 2.7 N/
mm; p = 0.098 and 118.6 ± 7.4 vs. 106.2 ± 7.2 N/mm; p = 0.153).

Histological analysis. The histological analysis revealed in both groups a typical callus formation of sec-
ondary fracture healing, including intramembranous and endochondral ossification (Fig. 3a–d). At 2 weeks after 
fracture healing the total callus area in relation to the femoral diameter (CAr/BDm) was significantly lower in 
pantoprazole-treated animals compared to controls (Fig. 3e,f) (p = 0.048; p = 0.495 at 5 weeks). The analysis of 
callus composition at 2 (p =  < 0.001) and 5 (p = 0.007) weeks after fracture healing showed a significantly lower 
amount of bone tissue in pantoprazole-treated animals (Fig. 3g,h), whereas the amount of remnant fibrous tis-
sue was significantly higher when compared to controls (Fig. 3k,l) (p ≤ 0.001 at 2 weeks; p = 0.036 at 5 weeks). Of 
note, the amount of cartilaginous tissue did not significantly differ between the two experimental groups, neither 
at 2 (p = 0.699) nor at 5 weeks (p = 0.924) after fracture healing (Fig. 3i,j).

Furthermore, the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts within the cal-
lus tissue was also assessed by histology (Fig. 4a–d). The analysis showed a significantly enhanced number of 
osteoclasts at 2 weeks (p = 0.037) after fracture healing in pantoprazole-treated animals. In contrast, at 5 weeks 
(p ≤ 0.001) of pantoprazole treatment the number of osteoclasts was found significantly reduced when compared 
to vehicle-treated controls (Fig. 4e,f). Moreover, the distribution of the osteoclasts differed between the two study 
groups. In control animals after 2 weeks of fracture healing the majority of positively stained cells (~ 70%) were 
found in the osseous tissue. Only ~ 30% of the TRAP-positive osteoclasts were found in the cartilaginous tissue. 

Figure 1.  Radiological analysis of mice femora. Radiological images of the femora of controls (a,b) and 
pantoprazole-treated animals (c,d) at 2 weeks (a,c) and 5 weeks (b,d) after fracture healing. Scale bars: 2 mm.
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In pantoprazole-treated mice after 2 weeks of fracture healing only ~ 45% of the TRAP-positive osteoclasts were 
found in the osseous tissue (p = 0.111), while the majority of the positive cells were found in the cartilaginous tis-
sue (Fig. 4g) (p = 0.111). After 5 weeks in pantoprazole-treated animals all of the TRAP-positive cells were found 
in the osseous tissue (p = 0.493), while in controls a few positive cells were still found within the cartilaginous 
tissue (p = 0.129) of the callus (Fig. 4h).

Additional histological analysis revealed a significantly decreased vessel density in pantoprazole-treated 
animals at 2 weeks after fracture healing when compared to controls (Fig. 5a,b,e) (p = 0.010). At 5 weeks after 
fracture healing the vessel density of pantoprazole-treated animals did not significantly differ from that of con-
trols (Fig. 5g) (p = 0.482).

Moreover, the number of osteoblasts within the callus tissue was examined by osteocalcin staining. This 
analysis revealed neither at 2 (Fig. 5c,d,f) nor at 5 weeks (Fig. 5h) after fracture healing a significant difference 
in the number of osteoblasts between the two study groups.

µ-CT analysis. The influence of pantoprazole on fracture healing was additionally assessed using µCT analy-
sis. Two weeks after surgery the µCT analysis revealed the formation of a large fracture callus in both controls 
and pantoprazole-treated animals (Fig.  6a,c). Five weeks after surgery all mice of the two groups showed a 
complete osseous bridging of the fracture gap (Fig. 6b,d). At 2 (p = 0.853) and 5 weeks (p = 0.831) after fracture 
healing the overall tissue volume in pantoprazole-treated animals did not differ from that of controls (Fig. 6e,f). 
The bone volume to tissue volume ratio was slightly lower after 2 (p = 0.438) and 5 weeks (p = 0.103) of pantopra-
zole treatment when compared to controls. However, this difference did not prove to be statistically significant 
(Fig. 6g,h). While the trabecular thickness of the callus was not affected at 2 weeks (p = 0.694) after pantoprazole 
treatment, the analysis after 5 weeks (p = 0.004) of fracture healing revealed a significantly reduced trabecular 
thickness in pantoprazole-treated animals when compared to controls (Fig. 6i,j).

Western blot analysis. At 2 weeks after fracture healing Western blot analysis of the callus tissue dem-
onstrated that pantoprazole treatment significantly reduced the expression of the bone formation marker bone 
morphogenetic protein (BMP)-4 when compared to controls (Fig. 7a,c) (p = 0.045). In contrast, the expression 
of BMP-2 was not affected in pantoprazole-treated animals (Fig. 7a,b) (p = 0.459).

The expression of runt-related transcription factor 2 (RUNX2), an important regulator of osteoblastogenesis, 
was only slightly but not significantly increased in pantoprazole-treated animals when compared to controls 
(Fig. 7a,d).

The expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF) (p = 0.095) and 
cysteine-rich protein (CYR) 61 (p = 0.690) was almost twofold higher in pantoprazole-treated animals, however, 
this difference did not prove to be statistically significant (Fig. 7e–g). As a result, we found in pantoprazole-
treated animals slightly lower ratios of BMP-2/VEGF (p = 0.162) and BMP-2/Cyr 61 (p = 0.310), but markedly 
lower ratios of BMP-4/VEGF (p = 0.016) and BMP-4/Cyr 61 (p = 0.095) (Table 1).

Figure 2.  Biomechanical analysis of mice femora. Biomechanical analysis of bending stiffness 2 weeks (a,c) and 
5 weeks (b,d) after fracture healing in controls (white bars) and pantoprazole-treated animals (black bars). Data 
are given in absolute values [N/mm] (a,b) and in percent to the contralateral, non-fractured femora [%] (c,d). 
Means ± SD; n = 9–12; *p < 0.05 vs. control.
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Figure 3.  Histological and histomorphometrical analyses of mice femora. Representative histological images 
2 weeks (a,c) and 5 weeks (b,d) after fracture healing in controls (a,b) and pantoprazole-treated animals (c,d). 
Fibrous tissue (ft), cartilage tissue (ct), woven bone (wb) and cortical bone (cb) are indicated. Scale bars: 
1000 µm. (e,f) Histomorphometric analysis of the total callus area (CAr) in relation to the diameter of the femur 
(BDm) at 2 weeks (e) and 5 weeks (f) after fracture healing in control (white bars) and pantoprazole-treated 
animals (black bars). (g–l) Histomorphometric analysis of the tissue distribution within the callus, including 
total osseous tissue callus area/total callus area (TOTAr/CAr, [%]) (g,h), cartilaginous callus area/total callus 
area (CgAr/CAr, [%]) (i,j), and fibrous tissue callus area/total callus area (FTAr/CAr, [%]) (k,l) at 2 weeks (g,i,k) 
and 5 weeks (h,j,l) after fracture healing in controls (white bars) and pantoprazole-treated animals (black bars). 
Means ± SD; n = 9–12; *p < 0.05 vs. control.
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Moreover, the expression of receptor activator of NF-κB ligand (RANKL), a stimulator of osteoclastogenesis, 
was increased in pantoprazole-treated animals (Fig. 7h,i) (p = 0.056). On the other hand, osteoprotegerin (OPG), 
an inhibitor of osteoclastogenesis, was decreased after pantoprazole treatment (Fig. 7h,j) (p = 0.121). As a result, 
the RANKL/OPG ratio was significantly higher in pantoprazole-treated animals when compared to controls 
(Fig. 7k) (p = 0.016).

Additional Western blot analyses revealed a reduced expression of heme oxygenase (HO)-1 (Fig. 8a,b) 
(p = 0.222) and the nuclear factor erythroid 2-related factor 2 (Nrf2) (Fig. 8a,c) (p = 0.077) in pantoprazole-treated 
animals. In addition, we found a significantly increased expression of the apoptotic marker cleaved caspase-3 
(Casp-3) (Fig. 8a,d) (p = 0.002).

Figure 4.  Histological analysis of osteoclastogenesis. (a–d) Representative histological sections of TRAP-
positive osteoclasts (arrows) at 2 weeks (a,c) and 5 weeks (b,d) after fracture healing in controls and 
pantoprazole-treated animals. Scale bars: 50 µm. (e,f) Quantitative analysis of the number of TRAP-positive 
cells per high-power field (HPF) in the callus tissue at 2 weeks (e) and 5 weeks (f) of controls (white bars) and 
pantoprazole-treated animals (black bars). (g,h) Distribution of osteoclasts [%] within the osseous tissue (black) 
and cartilaginous tissue (gray) at 2 weeks (g) and 5 weeks (h) after fracture healing in controls and pantoprazole-
treated animals. Means ± SD; n = 10–12; *p < 0.05 vs. control.
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Discussion
The aim of the present study was to analyze the effect of pantoprazole treatment on bone healing in aged mice. 
Our results demonstrate that pantoprazole impairs fracture repair in aged mice, as indicated by a decreased bone 
formation, resulting in a reduced biomechanical stiffness. Of interest, the impaired fracture repair was associated 
with a lower expression of the bone formation marker BMP-4, and a disturbed ratio of pro-angiogenic proteins 
to osteogenic growth factors.

PPIs are among the most widely used pharmaceuticals in modern medicine. They work by inhibiting the  H+/
K+-ATPase enzyme, and, as a result, by elevating the intragastric pH. Therefore, they are used in the management 
of acid-related gastrointestinal disorders and in the prevention of drug-related side effects on the gastrointestinal 
tract. However, recent studies emphasize their side effects, including an increased risk of fractures especially 
among patients with the age of 50 or  older28. Interestingly, Prause et al.29 could show that PPI treatment of 
osteoclasts in vitro decreases their viability and reduces their TRAP activity, resulting in an overall inhibition 
of their bone degrading and resorption function. Furthermore, another study performed in vivo revealed that 
gastrointestinal PPIs delay osteoclastic resorption of bone and calcium phosphate  biomaterials30. Of note, osteo-
clasts play a vital role in the process of bone remodeling and fracture  repair31,32 and their inhibition is associated 
with a delay of bone  healing33. In line with these findings, our biomechanical, histological and µCT analyses 
demonstrate a decreased bone tissue formation and trabecular thickness as well as a reduced bending stiffness 
in pantoprazole-treated aged animals. In addition, the histological staining revealed a significantly increased 

Figure 5.  Histological analysis of vascularization and osteoblastogenesis. Representative histological sections 
of microvessels (arrows) at 2 weeks (a,b) and osteocalcin-positive osteoblasts at 2 weeks (c,d) after fracture 
healing in controls and pantoprazole-treated animal. Scale bars: 50 µm. Quantitative analysis of the number 
of microvessels (e,g) and osteocalcin-positive osteoblasts (f,h) per high-power field (HPF) in the callus tissue 
at 2 weeks (e,f) and 5 weeks (g,h) of controls (white bars) and pantoprazole-treated animals (black bars). 
Means ± SD; n = 6–11; *p < 0.05 vs. control.
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number of TRAP-positive osteoclasts 2 weeks after fracture healing. At the same time, Western blot analyses 
revealed a significantly increased RANKL/OPG ratio in pantoprazole-treated animals. These findings indicate 
an early accelerated bone turnover after pantoprazole treatment.

There is accumulating evidence that the acid suppressive action of PPIs may lead to a malabsorption of several 
nutrients, including  calcium34. Furthermore, hypocalcemia leads to an endocrine feedback loop stimulating 
parathyroid hormone (PTH) production and secretion. PTH enhances osteoclastic bone resorption and liberates 
both calcium and phosphate from the  skeleton35. In a recent study, Fischer et al.36 demonstrated that calcium 
and vitamin D deficiency in mice with ovariectomy-induced osteoporosis leads to increased serum levels of 
PTH and osteoclast activity. Thus, it may be speculated that the increased osteoclast activity, observed in our 

Figure 6.  µ-CT analysis of mice femora. Representative µCT images at 2 weeks (a,c) and 5 weeks (b,d) after 
fracture healing in controls (a,b) and pantoprazole-treated animals (c,d). Scale bars: 2 mm. (e–j) µCT analysis of 
the tissue volume  [mm3] (e, f), bone volume/tissue volume (BV/TV, [%]) (g,h) and trabecular thickness [mm] 
(i,j) at 2 weeks (e,g,i) and 5 weeks (f,h,j) after fracture healing in controls (white bars) and pantoprazole-treated 
animals (black bars). Means ± SD; n = 10–12; *p < 0.05 vs. control.
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Figure 7.  Western blot analysis of mice femora (1). Western blot analysis of the expression of the bone 
formation markers BMP-2 (a,b), BMP-4 (a,c) and RUNX2 (a,d), the pro-angiogenic factors VEGF (e,f) and 
CYR 61 (e,g), the osteoclastogenesis stimulator RANKL (h,i) and the osteoclastogenesis inhibitor OPG (h,j) 
in the callus of controls (white bars) and pantoprazole-treated animals (black bars) at 2 weeks after fracture 
healing. (k) displays the RANKL/OPG-ratio in the callus of controls (white bars) and pantoprazole-treated 
animals (black bars). Means ± SD; n = 5; *p < 0.05 vs. control.
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present study, is caused by a pantoprazole-induced malabsorption of calcium, which subsequently may have led 
to increased PTH. This early dominant osteoclastic activity may inhibit adequate bone formation during the 
process of healing, possibly contributing to the increased fragility of the bone and the reduced healing quality.

Of interest, in the aged mice of the present study pantoprazole suppressed the expression of the bone for-
mation marker BMP-4, whereas the expression of BMP-2 was not affected. BMP-2 and BMP-4 were analyzed, 
because they belong to the best characterized and most osteoinductive members of the BMP family, displaying a 
biological activity throughout different stages of bone  healing37,38. Because BMP-4 expression was suppressed in 
pantoprazole-treated mice at 2 weeks after fracture healing, we propose that pantoprazole affects bone metabo-
lism through the regulation of bone formation. The BMP action in fracture healing includes the conversion of 
soft callus into bone, involving the resorption of calcified cartilage and the formation of new bone  tissue39. Thus, 
the lower expression of bone formation markers, i.e. BMP-4, observed after pantoprazole treatment, may have 
resulted in a delayed fracture healing with a lower callus stability and, thus, a reduced bending stiffness.

Vascularization is thought to be a prerequisite for successful bone regeneration. VEGF and CYR 61 are rec-
ognized as major pro-angiogenic factors, which also exert osteogenic activities, improving the process of bone 
formation and accelerating fracture repair in experimental animal  models40,41. This is in contrast with the results 
of the present study. In fact, we found an increased expression of VEGF and CYR 61 in the callus tissue of the 
pantoprazole-treated animals, which, however, was associated with a reduced bone formation and a lower bend-
ing stiffness. Of interest, Peng et al.42,43 demonstrated that VEGF alone is not capable of initiating the cascade of 
bone formation and that overexpression of VEGF can even impair the process of bone regeneration and healing. 
In line with this view, Garcia et al.44 found in a murine femoral fracture model an increased VEGF expression 
in the fibrous callus tissue of nonunions when compared with the osseous callus tissue of successfully healed 
fractures. Accordingly, Weiss et al.45 and Sarahrudi et al.46 could show that serum levels of VEGF are increased in 
patients with nonunions when compared with that of patients with normal healing fractures. However, it remains 
to be determined, whether a massive overexpression of angiogenic growth factors such as VEGF and CYR 61 

Table 1.  Ratio of osteogenic to angiogenic growth factor expression within the callus tissue of controls and 
pantoprazole-treated animals at 2 weeks after fracture healing. All data are mean ± SEM; *p < 0.05 vs. control.

Osteogenic/angiogenic growth factor expression Control Pantoprazole

BMP-2/VEGF 0.42 ± 0.08 0.27 ± 0.05

BMP-2/Cyr 61 4.13 ± 1.31 2.42 ± 0.38

BMP-4/VEGF 0.41 ± 0.13 0.12 ± 0.02*

BMP-4/Cyr 61 4.26 ± 2.0 1.32 ± 0.38

Figure 8.  Western blot analysis of mice femora (2). Western blot analysis of the anti-oxidant factors HO-1 
(a,b) and Nrf2 (a,c) and the pro-apoptotic marker Casp-3 (a,d) in the callus of controls (white bars) and 
pantoprazole-treated animals (black bars) at 2 weeks after fracture healing. Means ± SD; n = 5; *p < 0.05 vs. 
control.
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causes nonunion formation or whether a nonunion formation caused by other factors induces a compensatory 
overexpression of these factors.

Moreover, it could be demonstrated that impaired fracture healing in the elderly is associated with a dysfunc-
tion in the bone vascular system, resulting in a delayed angiogenesis and a decreased vascularization during 
fracture  repair2,47. In fact, at early healing time points during healing fracture callus of young mice presents with 
a significantly higher surface density of blood vessels when compared with that of aged  mice48. The impaired 
healing process caused by pantoprazole treatment may aggravate the dysfunction of the vascular system. In line 
with this hypothesis we found a significantly decreased vessel density within the callus tissue of pantoprazole-
treated animals at 2 weeks after facture healing. This may cause hypoxic conditions in the fracture callus, which 
results in an increased expression of the pro-angiogenic growth factors VEGF and CYR 61. In contrast, growth 
factors for osteoblastic differentiation like BMP-4 and new bone formation are down-regulated, because in this 
critical setting of hypoxia cell survival at the fracture site is of principal importance. This view is in line with 
the results of the study of Garcia et al.44, who found an overexpression of VEGF when compared to BMP-2 and 
BMP-4 in nonunion formation, which is most likely caused by an increased hypoxic environment and impaired 
functional vascularization in segmental bone  defects44. Finally, Peng et al.43 reported that excessive expression 
of VEGF in relation to BMP-4 impairs fracture healing by a differentiation of mesenchymal stem cells toward 
an endothelial lineage rather than a differentiation into osteoblastic cells.

Interestingly, the reduction of the bone formation marker BMP-4 by pantoprazole is in line with the results of 
our previous study, in which we analyzed the effects of pantoprazole on fracture healing in young adult  animals18. 
Nonetheless, there are some major differences in response when comparing the effects of pantoprazole on fracture 
healing in aged mice compared to young adult animals. In pantoprazole-treated aged mice bending stiffness at 
2 and 5 weeks is ~ 50% lower compared to pantoprazole-treated young adult  mice18. However, this difference is 
most probably caused by aging, because in non-treated aged mice bending stiffness at 2 and 5 weeks is also ~ 50% 
lower compared to non-treated young adult  mice18. However, in aged mice pantoprazole provoked an early dete-
rioration of fracture healing, as shown by a markedly reduced ratio of osseous tissue within the callus at 2 weeks 
after fracture healing. In contrast, in young adult animals pantoprazole affected the ratio of osseous tissue only 
during the later course at 5 weeks of fracture  healing18. Most importantly, in pantoprazole-treated young adult 
animals RANKL, a stimulator of osteoclastogenesis, was found reduced, while in pantoprazole-treated aged mice 
the number of TRAP-positive cells and the expression of RANKL was found markedly increased during the 
initial period of healing and reduced only during the late time course at 5 weeks. These latter findings indicate a 
different mode of action of pantoprazole in aged compared to young adult mice. In aged animals, pantoprazole 
exerts impaired healing due to an early, accelerated and overwhelming osteoclastic response, most likely caused 
by enhanced PTH serum levels due to calcium malabsorption. In contrast, in young adult animals, pantoprazole 
exerts impaired healing due to a reduced osteoclast activity with delayed bone remodeling, which is discussed 
to be caused by an inhibition of the osteoclastic V-ATPase18.

The process of aging is associated with substantial changes in gene expression and metabolic control, as well as 
the production of high levels of reactive oxygen species (ROS)49. These toxic radicals are thought to be crucially 
involved in cellular senescence and induce cell injury by damaging nuclear acids and  proteins50. Furthermore, 
ROS are produced during the initial phase of fracture healing under ischemic and inflammatory  conditions50. 
The damage induced by ROS is attenuated by antioxidant enzymes generated during fracture healing. These 
enzymes are capable of neutralizing free radicals before they can harm cellular  components50. Interestingly, we 
found a reduced expression of HO-1 and Nrf2 within the callus tissue of pantoprazole-treated animals. These two 
molecules are widely accepted to play an essential role in the protection against oxidative stress and apoptotic 
 injury51. Accordingly, we found an increased expression of the apoptotic marker Casp-3 within the callus tissue 
of pantoprazole-treated animals, indicating enhanced cell and tissue damage. Therefore, pantoprazole may impair 
the process of fracture healing due to the increased amount of ROS-induced injury.

The present study has some limitations. In order to fully exploit the effects of pantoprazole on fracture 
healing, we have used in the present study a higher pantoprazole dose when compared to that used in clinical 
practice. Therefore, the effect of pantoprazole on bone regeneration in patients may be less pronounced when 
compared to that observed in the present study. Hence, clinical trials are necessary to confirm the results of this 
experimental study. In addition, despite the evidence of negative effects of pantoprazole on bone healing, the 
prevention of peptic ulcers and reflux esophagitis is always of major importance, especially in elderly individuals. 
Thus, although the results of the present study suggest that pantoprazole should be used with caution during 
fracture healing in the elderly, it has always to be carefully weighed up whether PPI treatment should be stopped.

In conclusion, the present study demonstrates that pantoprazole treatment in aged mice impairs fracture heal-
ing most probably by a too early stimulation of osteoclast activity, a downregulation of BMP-4 and antioxidant 
factors, as well as a disturbed ratio of angiogenic to osteogenic growth factors.

Methods
Animals and specimens. For the present study a total number of 54 CD-1 mice of both sexes with an 
age of 16–18 months were used. The animals were bred at the Institute for Clinical and Experimental Surgery, 
Saarland University. The experiments were approved by the local governmental animal protection committee 
(Landesamt für Verbraucherschutz, Abteilung C Lebensmittel- und Veterinärwesen, Saarbrücken, Germany) 
and were conducted in accordance with the European legislation on protection of animals (Guide line 2016/63/
EU) and the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals (http:// oacu.
od.nih.gov/regs/index.htm. Eighth Edition; 2011). Twenty-two mice were treated daily by intraperitoneal (i.p.) 
injection of 100  mg/kg body weight (BW) pantoprazole (Nycomed, Konstanz, Germany). Another 22 mice 
treated with vehicle (saline) served as controls. The dose of pantoprazole chosen in the present study was the 
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same as was given in the previous study with young adult  animals18 and corresponds to doses used in various 
experimental  studies52–54.

Surgical procedure. Mice were anesthetized by i.p. injection of xylazine (12  mg/kg BW) and ketamine 
(90 mg/kg BW). Femoral fractures were induced as described previously in  detail18. Under aseptic conditions a 
medial parapatellar incision was performed at the right knee and the patella was dislocated laterally. After drill-
ing a hole (diameter of 0.5 mm) into the intercondylar notch an injection needle with a diameter of 0.4 mm was 
placed into the intramedullary canal. Subsequently, a tungsten guidewire (diameter of 0.2 mm) was inserted 
through the needle. After removal of the needle, the femur was fractured by a 3-point bending device and an 
intramedullary medical stainless steel screw (length of 17.2 mm, diameter of 0.5 mm; AO Foundation, Research 
Implants System, Davos, Switzerland) was implanted over the guidewire to stabilize the  fracture55. After fixation 
of the fracture the wound was closed using 5-0 synthetic sutures. Adequate reduction of the fracture and posi-
tion of the implant were confirmed by radiography (MX-20, Faxitron X-ray Corporation, Wheelin, IL, USA). All 
fractures were simple, transverse midshaft fractures according to the AO classification type A2 fracture. In none 
of the animals a comminuted or incomplete fracture was observed. For analgesia the mice received tramadol-
hydrochloride (Grünenthal, Aachen, Germany) in the drinking water (1 mg/ml) from day 1 before surgery until 
day 7 after  surgery56.

Radiological analysis. At the end of the observation period the animals were re-anesthetized and lateral 
X-rays (MX-20, Faxitron X-ray Corporation) of the healing femora were performed. Fracture healing was ana-
lyzed according to the classification of Goldberg with stage 0 indicating radiological nonunion, stage 1 indicating 
possible union and stage 2 indicating radiological  union57,58.

Biomechanical analysis. For biochemical analysis, femora were resected at 2 and 5 weeks after fracture 
and freed from soft tissue. After removal of the implants callus stiffness was measured using a three-point bend-
ing device (Mini-Zwick Z 2.5; Zwick, Ulm, Germany). Due to the different time points of healing studied, the 
loads which had to be applied varied markedly between the individual animals. Loading was stopped individu-
ally in every case when the actual load–displacement curve deviated more than 1% from  linearity59. To guarantee 
standardized measuring conditions, femora were always mounted with the ventral aspect upwards. A working 
gauge length of 6 mm was used. Applying a gradually increasing bending force with 1 mm/min, the bending 
stiffness (N/mm) was calculated from the linear elastic part of the load displacement  diagram56. The application 
of only a non-destructive force was controlled macroscopically and, later on, microscopically during the histo-
logical analysis. To account for differences in bone stiffness of the individual animals, the unfractured left femora 
were also analyzed, serving as internal control. All values of the fractured femora are given as absolute values 
and, additionally, in percent of the corresponding unfractured femora.

Histomorphometric analysis. For histological analysis, femora were analyzed at 2 and 5 weeks after frac-
ture healing. The bones were fixed in IHC zinc fixative (BD Pharmingen, San Diego, CA) for 24 h, decalcified in 
13% EDTA solution for 2 weeks and then embedded in paraffin. Longitudinal sections of 5 µm thickness were 
stained with Safranin-O. At a magnification of × 1.25 (BX60, Olympus, Tokyo, Japan; Axio Cam and Axio Vision 
3.1, Carl Zeiss, Oberkochen, Germany) structural indices were calculated according to the suggestion provided 
by Gerstenfeld et al.60 using the ImageJ Analysis System (NIH, Bethesda, MD, USA). These included total callus 
area (bone, cartilaginous and fibrous callus area)/femoral bone diameter (cortical width plus marrow diameter) 
at the fracture gap (CAr/BDm [mm]), bone (total osseous tissue) callus area/total callus area (TOTAr/CAr [%]), 
cartilaginous callus area/total callus area (CgAr/CAr [%]), and fibrous tissue callus area/total callus area (FTAr/
CAr [%])18,56.

Additionally, tartrate-resistant acid phosphatase (TRAP) activity was analyzed in the callus at 2 and 5 weeks 
after fracture healing. Therefore, bones were fixed in IHC zinc fixative for 24 h, decalcified in 13% EDTA solution 
for 2 weeks and then embedded in paraffin. After deparaffinizing again, longitudinal sections of 5 µm thickness 
were incubated in a mixture of 5 mg naphthol AS-MX phosphate and 11 mg fast red TR salt in 10 ml 0.2 M 
sodium acetate buffer (pH 5.0) for 1 h at 37 °C. Sections were counterstained with methyl green and covered with 
glycerine gelatine. TRAP-positive multinucleated cells (three or more nuclei each cell) were counted as described 
before in  detail18. The data on histomorphological osteoclast analyses are given as numbers of osteoclasts per 
high-power field (HPF). The osteoclast analysis differentiated between the number of osteoclasts within bone 
tissue and the number of osteoclasts within cartilaginous  tissue18.

Moreover, the number of microvessels was analyzed in the callus at 2 and 5 weeks after fracture healing. Sec-
tions were additionally cut and stained with hematoxylin and eosin (HE) according to standard procedures. The 
presentation of a lumen with a typical vascular wall morphology was necessary to classify the identified structure 
as a microvessel. The number of microvessels in controls and pantoprazole-treated animals was counted at a 
magnification of × 400 (Olympus BX60 microscope) in the central part of the periosteal callus in 4 high power 
fields (HPF) per specimen [vessels/HPF]61.

In addition, the number of osteoblasts was analyzed in the callus at 2 and 5 weeks after fracture healing. 
Sections were additionally cut and stained with an anti-osteocalcin antibody (Abcam, Cambridge, UK), an 
osteoblast marker, which was detected by its corresponding secondary antibody. Osteocalcin-positive osteoblasts 
were counted in the central part of the periosteal callus in 4 high power fields (HPF) per specimen [osteocalcin-
positive osteoblasts/HPF].
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µ-CT analysis. The femora were scanned (Skyscan 1172, Bruker, Billerica, MA) at 2 and 5 weeks after frac-
ture at a spatial resolution of 8.9 mm with a standardized setup, as described  previously62. Images were stored in 
three-dimensional (3D) arrays. To express gray values as mineral content (bone mineral density; BMD), calcium 
hydroxyapatite (CaHA) phantom rods with known BMD values (0.250 g and 0.750 g [CaHA/cm3]) were used 
for calibration. The ROI was contoured manually on each transversal slide, including exclusively newly formed 
callus tissue but excluding the original cortical bone. For the analysis both periosteal and intramedullary callus 
tissue was included. The ROI was interpolated between each transversal slide by a CT analyzer software (CTAna-
lyser, Bruker, Billerica, MA, USA) to guarantee the inclusion of the complete callus tissue. For each specimen the 
tissue volume (TV,  [mm3]), the bone volume fraction of the tissue volume (BV/TV,  [mm3]) and the trabecular 
thickness [mm] from callus ROI was determined.

Western blot analysis. Protein expression within the callus tissue was determined by Western blot analy-
sis, including the expression of bone morphogenetic protein-2 (BMP-2) and -4 (BMP-4), the vascular endothe-
lial growth factor (VEGF), cysteine-rich protein (CYR) 61, receptor activator of NF-κB ligand (RANKL) and 
osteoprotegerin (OPG). The callus tissue was frozen and stored at − 80 °C until required. Analyses were per-
formed from callus tissue at 2 weeks after fracture healing. After saving the whole-protein fraction, analysis was 
performed using the following antibodies: rabbit anti-mouse BMP-2/BMP-4 (both 1:25, Santa Cruz Biotech-
nology, Heidelberg, Germany), RUNX2 rabbit anti-mouse (1:50, Abcam, Cambridge, UK), rabbit anti-mouse 
VEGF (1:100, Santa Cruz Biotechnology), goat anti-mouse CYR 61 (1:100, Santa Cruz Biotechnology), rab-
bit anti-mouse RANKL (1:25, Abcam) rabbit anti-mouse OPG (1:50, Bioss Antibodies, Woburn, USA), rabbit 
anti-mouse HO-1 (1:50, Enzo Life Sciences by Biomol GmbH, Homburg), rabbit anti-mouse Nrf-2 (1:50, Cell 
Signaling Technology, Frankfurt), rabbit anti-mouse Casp-3 (1:50, R&D Systems, Wiesbaden). Primary antibod-
ies were incubated at 4 °C overnight and were followed by corresponding horseradish peroxidase-conjugated 
secondary antibodies (1.5 h at room temperature, 1:1000, R&D Systems, Minneapolis, USA + DakoCytomation, 
Hamburg, Germany). Protein expression was visualized by means of luminol-enhanced chemiluminescence 
after exposure of the membrane to the Intas ECL Chemocam Imager (Intas Science Imaging Instrument GmbH, 
Göttingen, Germany) and normalized to ß-actin signals (1:5000, mouse anti-mouse ß-actin, Sigma-Aldrich) to 
correct for unequal loading (Fig. S1).

Statistics. All data are given as means ± SD. After proving the assumption for normal distribution (Kolmogo-
rov–Smirnov test) and equal variance (F-test), comparison between the two experimental groups was performed 
by Student’s t-test. For non-parametrical data Mann–Whitney U-test was used. Statistics were performed using 
SigmaPlot 13.0 software (Systat Software GmbH, Erkrath, Germany). A p-value < 0.05 was considered to indicate 
significant  differences63.

Data availability
All data generated or analyzed during this study are included in this published article.
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