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Abstract
This trend article reviews papers with hyphenated high-resolution mass spectrometry (HRMS) approaches applied in analytical
toxicology, particularly in clinical and forensic toxicology published since 2016 and referenced in PubMed. The article focuses
on the question of whether HRMS has or will become the all-in-one device in these fields as supposed by the increasing number
of HRMS presentations at scientific meetings, corresponding original papers, and review articles. Typical examples for the
different application fields are discussed such as targeted or untargeted drug screening, quantification, drug metabolism studies,
and metabolomics approaches. Considering the reviewed papers, HRMS is currently the only technique that fulfills the criteria of
an all-in-one device for the various applications needed in analytical toxicology.
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Introduction

Since the 1980s, gas chromatography-mass spectrometry
(GC-MS) has become the gold standard in analytical toxicol-
ogy with selected ion monitoring (SIM) for immunoassay
confirmation, targeted screening, and quantification. Full-
scan monitoring providing informative and reproducible mass
spectra with electron impact (EI) ionization allows compre-
hensive screening with a high degree of confidence using
corresponding reference libraries [1–6]. In last years, the num-
ber of GC-MS papers decreased, but GC-MS with electron
ionization (EI) is still in use as the backbone of the clinical
and forensic laboratory [3].

Since the 1990s, liquid chromatography-mass spectrome-
try (LC-MS) with electrospray ionization (ESI), atmospheric
pressure chemical ionization (APCI), or atmospheric pressure
photoionization (APPI) revolutionized the bioanalysis also in
analytical toxicology. LC coupled to tandem MS (LC-MS/

MS) with selected reaction monitoring (SRM) for targeted
(multi-analyte) screening and quantification or with data-
dependent or data-independent product ion spectra formation
for comprehensive screening has become a new gold standard
[2–6].

The next trend started in the last years with the coupling of
high-resolution mass spectrometry (HRMS) mostly with GC
or LC for analysis of small and large molecules in analytical
toxicology [2]. HRMS was developed in the 1960s with
double-focusing mass spectrometers, but today time-of-flight
(TOF) or Orbitrap (OT) mass analyzers are common, mostly
as hybrids with triple quadrupoles (QTOF, QOT) or ion traps
in front allowing fragmentation to reproducible MS/MS spec-
tra [3–7]. The high mass resolution allows differentiation of
isobaric compounds with the same nominal mass but different
elemental compositions. Thus, mass traces of coeluting iso-
baric compounds, e.g., endogenous biomolecules, can be ex-
cluded increasing the selectivity and thus sensitivity. The ele-
mental composition of a molecule can be calculated by accu-
rate determination of the parent and fragment masses allowing
provisional identification of unknown compounds, e.g., by
comparing with lists of the exact masses and empirical formu-
las of potential poisons [8]. However, isomeric compounds
can only be differentiated by different fragmentation [9].
The increasing number of HRMS presentations at scientific
meetings, corresponding original papers, and review articles
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[2–7, 10–12] may lead to the presumption that HRMS has or
will become the all-in-one device for targeted or non-targeted
(also named untargeted) screening, quantification, drug me-
tabolism, and metabolomics in analytical toxicology, namely
in clinical and forensic toxicology, forensic chemistry, doping
control, etc. Therefore, the aim of the present trend article is to
confirm this presumption considering English-written papers
published since 2016 and referenced in PubMed preselected
with the terms “HRMS and (toxicology or forensics or dop-
ing).”Out of them, review articles covering a particular aspect
of a trend and typical—exemplary—original papers
supporting the corresponding trends have been selected as
the number of the citations is limited for trend articles.

Screening for detection of drugs, poisons,
and/or their metabolites

In contrast to other fields of analytical chemistry, the analysis
in clinical and forensic toxicology has to start with a screening
for detection of often unknown drugs or poisons. Depending
on the case and the clinical signs of intoxication, the screening
has to cover a limited number of compounds or even over
10,000 potential poisons. Thus, the analytical strategy is dif-
ferent; either a targeted screening or a non-targeted compre-
hensive screening can be performed.

LC-MS/MS in the SRMmode was established over the last
years as the standard for multi-analyte targeted screening, of-
ten combined with quantification [2, 13–15]. The identifica-
tion power depends, of course, on the selectivity and the num-
ber of monitored transitions. Selectivity can markedly be im-
proved by using HRMS doubling the identification points per
selected ion [16]. Another advantage of HRMS is the option
of combined targeted and untargeted screening. Thoren et al.
[17] compared a typical LC-MS/MS targeted screening with a
triple quadrupole linear ion trap with a non-targeted LC-
HRMS/MS method with advantages for general unknown
drug screening. Both methods used information-dependent
acquisition of product ion spectra. LC-HRMS/MS was slight-
ly less sensitive, but offered an open unknown screening.
Further advantages will be discussed in the following.

Interestingly, GC coupled to HRMS (GC-HRMS) was ap-
plied for a high-throughput screening for detection of about 300
drugs and poisons in human blood using an OT analyzer [18].
However, considering the limitations of GC [9] such as risk of
thermal degradation, limited volatility without derivatization,
and less sensitivity, the advantage over corresponding LC-
HRMS approaches cannot be assessed. In the last few years, a
clear trend to highly selective and sensitive screening by LC-
HRMS/MS with QTOF or QOT analyzers was observed
[19–21], particularly since hundreds of so-called new psycho-
active substances (NPS) appeared on the drugs of abuse market
per year [2–6, 12, 22]. Pasin et al. [11] critically reviewed

applications for NPS analysis and highlighted the advantage
to detect and tentatively identify novel analogs without the need
for certified reference materials or comprehensive mass spectral
libraries. They discussed non-targeted screening strategies as a
two-step process that involves the discovery or detection of a
component followed by putative identification. Component dis-
covery has been identified as the most problematic step, which
can be categorized into two different approaches, top-down or
bottom-up, as illustrated in Fig. 1. The current role of HRMS in
NPS analysis was recently discussed with experts in this field
[23]. Considering all advantages, HRMS tend to replace con-
ventional quadrupole-based MS, particularly using integrated
targeted/non-targeted screening for detection of known and
new substances also with retrospective data mining [24].

In the following, selected examples for typical LC-HRMS
screening approaches are discussed showing the trend of uni-
versality of this technique. In direction to compliment or even
replace well-established GC-MS general unknown screenings
[25–27], Helfer et al. [20] developed an LC-QOT-MS/MS
standard urine screening approach in full-scan mode after
positive/negative switching and data-dependent acquisition
for unknowns. A compound was positively identified when
the corresponding accurate mass precursor ion and the five
most intense fragment ions were detected and the MS/MS
spectrum fits well with the corresponding full HR-MS/MS
reference library of parent drugs and their metabolites [28].
This approach was successfully transferred to blood analysis
providing fast, simple, and robust screening and identification
of a broad range of drugs within therapeutic ranges [21].
However, in contrast to GC-EI-MS reference libraries (e.g.,
ref. [29]) running with different apparatus types, LC-(HR)MS
libraries (e.g., ref. [28]) can be more apparatus-depending as
ionization, collision energy, MS/MS conditions, etc. may
have a significant influence on the transferability, but can be
limited by adopting and standardizing these parameters [30].
Partridge et al. [31] described another comprehensive LC-
QTOF-MS/MS blood screening also using data-dependent
acquisition, and an in-house retention time, accurate mass,
andMS/MS spectral database. As advantage of such methods,
they can be easily updated with new compounds without af-
fecting method performance. Finally, an LC-QTOF-MS/MS
with data-independent acquisition was developed for serum
screening and applied to authentic serum and post-mortem
femoral blood samples in comparison to GC-MS [32]. Not
surprisingly, the HRMS method could detect much more
drugs than the GC-MS approach.

Besides these general approaches, various methods were
published for particular drug groups e.g., hallucinogenic
phenethylamines (non-targeted) [33], low-dosed opioids
(non-targeted data acquisition coupled with targeted data
processing) [34], or synthetic cannabinoids (non-targeted)
[35]. Thanks to its high sensitivity, LC-HRMS/MS was suc-
cessfully applied also for broad-spectrum drug screening in
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low sample volumes such as dried blood spots [36] or in
samples with low concentrations such as hair samples [37],
urine after dilute-and-shoot application [38], or wastewater
[39]. Finally, Mollerup et al. [40] described a new approach
with LC-ion mobility-HRMS/MS for broad scope screening
based on prediction of collision cross section and retention
time with machine learning using artificial neural networks.
Together with the exact mass, tentative identification of new
compounds could be performed with in silico predicted refer-
ence values for improving confidence and filtering false-
positive identifications.

Besides GC or LC coupling, paper spray ionization
coupled to QOT (PSI-HR-MS/MS) allowed comprehensive
urine drug screening [41]. Its screening power was compared

to that of published LC-HR-MS/MS procedures [42] showing
that PSI-HR-MS/MS was suitable, but limitations should be
considered such as limited detection of drugs in low concen-
trations and risk of false-positive or false-negative results
caused by mixed spectra. McKenna et al. [43] compared
PSI-HR-MS/MS with conventional LC-MS/MS resulting in
acceptable qualitative and quantitative agreement. A further
ambient coupling was described by Duvivier et al. [44] using
direct analysis in real-time HRMS for drug testing by longi-
tudinal scan of intact locks of hair. Data-dependent product
ion scanning allowed detection of various drugs of abuse in a
single hair confirmed by accurate mass and fragmentation
patterns. In forensic chemistry, drugs (e.g., NPS) in solid
and liquid samples could be detected using ambient ionization

Fig. 1 Comparison of top-down
and bottom-up non-targeted
screening workflows using
HRMS (taken from Pasin et al.,
Anal Bioanal Chem.
2017;409:5821–36). Details in
ref. [11]
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techniques coupled to HRMS [45], namely by laser diode
thermal desorption or atmospheric solids analysis probe
allowing fast analysis of a wide range of samples with mini-
mal or no sample preparation. This ambient coupling con-
firmed again the universality of HRMS.

Quantification

For assessing the extent of impairment or severity of poi-
soning, quantification mainly in blood (plasma, serum) is
needed. So far, LC-MS/MS mostly in SRM mode is the
method of choice for quantification, often combined with
targeted screening (see above), allowing multi-analyte ap-
proaches saving time and resources [2, 4, 6, 13, 46]. The
question arises whether there is a trend that HRMS will take
over also this field. Recent papers and review articles clear-
ly indicate this, particularly for low-dosed drug or in low-
volume samples [7, 11, 22]. For example, Caspar et al. [47]
developed a quantitative approach for low-dosed hallucino-
gens and opioids in blood plasma using LC-OT-MS/MS
with alternating HR full-scan and all-ions fragmentation
MS. This allowed identification and quantification with no
limitations on the number of monitored compounds and
reevaluation of the acquired data using group-indicating
fragment ions, e.g., for new or unexpected analytes.
Thomas et al. [48] described simultaneous quantification
of insulin, its synthetic analogs, and C-peptide in human
plasma by LC-OT-MS/MS with targeted single ion moni-
toring experiments for the multiply protonated precursors of
the target peptides or alternatively with product ion experi-
ments for the respective five- or fourfold protonated precur-
sors. Further procedure for insulins was recently reviewed
by the same group [49] concluding that HRMS provides the
sensitivity required to determine analyte concentrations in
the sub-ng/mL level. Another highly sensitive approach was
published [50] for determination of anticoagulant rodenti-
cides in blood by LC-QTOF-MS/MS with parallel reaction
monitoring providing the highest sensitivity. Finally,
Kronstrand et al. [51] developed an LC-QTOF-MS/MS
method using the all-ions mode for quantification of low
concentrations of drugs in hair showing that HRMS found
its way also in alternative matrix testing.

Metabolism of drugs of abuse

Studies on drug metabolism are mandatory in drug discovery
and development and toxicological risk assessment, and also
for developing urine screening assays particularly for lipophil-
ic drugs detectable often only as metabolites in urine [7]. For
example, NPS are sold without any preclinical study, and thus,
no or limited information about their excretion form is known.

Thus, clinical and forensic toxicologists started with analytical
strategies for identification of the metabolites and their forma-
tion pathways [7, 52–55] using animals or human in vivo,
ex vivo, or in vitro samples such as blood, urine, primary
hepatocytes, cell cultures, S9 fraction, microsomes, or cytosol.
Various review articles [7, 52, 54–57] confirm that HRMS
plays the major role in this field, particularly in non-targeted
modes allowing retrospective datamining [56]. Again, HRMS
provides the elemental composition of the parent and fragment
masses allowing to identify the type of metabolic changes and
in most cases the position in a particular part of the molecule,
but not the exact position, e.g., in an aromatic ring system [7].
However, the latter is of minor relevance in developing urine
screening assays.

Metabolomics techniques in analytical
toxicology

Since the last few years, metabolomics plays also a role in
clinical and forensic toxicology and doping control. Besides
conventional GC- or LC-MS methods, LC-HRMS was
established particularly for untargeted metabolomics studies,
again because of its high specificity, sensitivity, and flexibility
[58–63]. There are two main application fields, one focusing
on the change of the endogenous compounds under the influ-
ence of drug administration [62, 64–69] or sample manipula-
tion [65, 70–74] and one on the use of metabolomics tech-
niques for investigating the metabolism of new drugs, namely
of NPS [60, 61, 75]. Metabolomics could also play a role in
doping control, e.g., for detecting hormone abuse considering
that hormones have a strong influence on human endogenous
metabolism changing several endogenous parameters [76].

Outlook

The papers reviewed in this article clearly show that HRMS is
currently the most powerful and flexible technique in analyt-
ical toxicology used for various applications such as targeted
and non-targeted screening, quantification, drug metabolism,
and metabolomics. Of course, also for HRMS, potential pit-
falls have to be considered and details can be found in ref. [9].
Today, HRMS is the only technique that fulfills the criteria of
an all-in-one device for the various applications needed in
analytical toxicology. It can be expected that HRMS will be-
come the gold standard and that its application will replace
most of the assays with other techniques in future, of course
considering suitable separation and/or ionization techniques
such as GC with EI or LC with ESI, APCI, or APPI. Current
limitations of HRMS techniques are the comparably expen-
sive apparatus and the need of well-skilled operators. Another
problem is the enormous size of (full scan) data requiring huge
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storage and fast and sophisticated software for data evaluation.
Although over time the costs are becoming lower and the
software packages have improved, the costs still limit the
widespread distribution in routine laboratories and the soft-
ware needs to become more user-friendly.
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