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Abstract

It is well-known that correlation does not equal causation, but how can
we infer causal relations from data? Causal discovery tries to answer precisely
this question by rigorously analyzing under which assumptions it is feasible
to infer causal networks from passively collected, so-called observational data.
Particularly, causal discovery aims to infer a directed graph among a set of
observed random variables under assumptions which are as realistic as possible.

A key assumption in causal discovery is faithfulness. That is, we assume
that separations in the true graph imply independencies in the distribution and
vice versa. If faithfulness holds and we have access to a perfect independence
oracle, traditional causal discovery approaches can infer the Markov equivalence
class of the true causal graph—i.e., infer the correct undirected network and
even some of the edge directions. In a real-world setting, faithfulness may
be violated, however, and neither do we have access to such an independence
oracle. Beyond that, we are interested in inferring the complete DAG structure
and not just the Markov equivalence class. To circumvent or at least alleviate
these limitations, we take an information-theoretic approach.

In the first part of this thesis, we consider violations of faithfulness that
can be induced by exclusive or relations or cancelling paths, and develop a
weaker faithfulness assumption, called 2-adjacency faithfulness, to detect some
of these mechanisms. Further, we analyze under which conditions it is possible
to infer the correct DAG structure even if such violations occur.

In the second part, we focus on independence testing via conditional mutual
information (CMI). CMI is an information-theoretic measure of dependence
based on Shannon entropy. We first suggest estimating CMI for discrete vari-
ables via normalized maximum likelihood instead of the plug-in maximum like-
lihood estimator that tends to overestimate dependencies. On top of that, we
show that CMI can be consistently estimated for discrete-continuous mixture
random variables by simply discretizing the continuous parts of each variable.

Last, we consider the problem of distinguishing the two Markov equivalent
graphs X → Y and Y → X, which is a necessary step towards discovering all
edge directions. To solve this problem, it is inevitable to make assumptions
about the generating mechanism. We build upon the idea which states that
the cause is algorithmically independent of its mechanism. We propose two
methods to approximate this postulate via the Minimum Description Length
(MDL) principle: one for univariate numeric data and one for multivariate
mixed-type data. Finally, we combine insights from our MDL-based approach
and regression-based methods with strong guarantees and show we can identify
cause and effect via L0-regularized regression.
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Zusammenfassung

Es ist bekannt, dass Korrelation nicht gleich Kausalität ist. Doch wie kön-
nen wir kausale Zusammenhänge aus Daten schlussfolgern? Causal Discovery
versucht exakt dieses Problem zu lösen, indem genau spezifiziert wird, unter
welchen Annahmen kausale Netzwerke aus passiv gesammelten Daten, soge-
nannten Beobachtungsdaten, hergeleitet werden können. Ziel ist es, unter real-
istischen Annahmen, gerichtete Graphen aus Beobachtungsdaten zu inferieren.

Die Faithfulness Annahme ist essenziell für Causal Discovery. Diese nimmt
an, dass Unabhängigkeiten in der Wahrscheinlichkeitsverteilung in direktem
Zusammenhang mit Separationen im kausalen Graph stehen. Klassische Causal
Discovery Algorithmen können unter dieser Annahme und mit Hilfe eines per-
fekten Unabhängigkeitstests den kausalen Graphen bis zu seiner Markov Äquiv-
alenzklasse bestimmen. Diese besteht aus dem korrekten ungerichteten Graphen
und einer Teilmenge der Kantenrichtungen. In der Praxis könnte allerdings
weder die Faithfulness Annahme gelten, noch verfügen wir über einen perfek-
ten Unabhängigkeitstest. Zudem ist es unser Ziel, alle Kantenrichtungen zu
bestimmen und nicht nur die Markov Äquivalenzklasse des Graphen. Um diese
Probleme zu überwinden oder zumindest abzuschwächen, verfolgen wir einen
informationstheoretischen Ansatz.

Im ersten Teil dieser Dissertation betrachten wir kausale Mechanismen,
welche die Faithfulness Annahme verletzen. Hierzu definieren wir eine schwä-
chere Faithfulness Annahme, die es uns erlaubt einen Teil dieser Interaktionen
zu finden. Zusätzlich analysieren wir unter welchen Bedingungen es möglich
ist, die Kantenrichtungen eines solchen Mechanismus zu bestimmen.

Der zweite Teil setzt sich mit dem Testen von Unabhängigkeiten auseinan-
der. Dazu stützen wir uns auf die konditionelle Transinformation (CMI); ein in-
formationstheoretisches Maß zum Beziffern von Abhängigkeiten, basierend auf
der Shannon Entropie. Wir entwickeln zwei konsistente Schätzer für CMI, einen
spezifisch für diskrete Daten und einen generelleren Schätzer für diskrete, kon-
tinuierliche und gemischte Daten. Um CMI auf gemischten Daten zu berechnen,
diskretisieren wir zuerst die kontinuierlichen Datenpunkte mittels adaptiver
Histogramme und arbeiten anschließend mit den diskretisierten Daten.

Im dritten Teil beschäftigen wir uns damit, die beiden Markov äquivalenten
Graphen X → Y und Y → X zu unterscheiden. Dazu müssen wir Annah-
men über den kausalen Mechanismus treffen. Wir bauen in unserem Ansatz
auf das Postulat, das eine algorithmische Unabhängigkeit zwischen Ursache
und Mechanismus—definiert durch Kolmogorov Komplexität—annimmt. Wir
approximieren diese Inferenzregel mit Hilfe des Minimum Description Length
Prinzips und entwickeln einen Ansatz für univariate numerische Paare und
einen weiteren Ansatz für multivariate gemischte Daten. Zusätzlich zeigen wir,
dass es unter relativ schwachen Annahmen möglich ist, Ursache und Wirkung
mit Hilfe von L0-regularisierten Regressionsmethoden zu bestimmen.
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Chapter 1

Introduction

The urge to think about cause and effect is deeply embedded in human reason-
ing. Let us imagine we walk down a busy shopping street on a sunny afternoon.
When we briefly walk past a kid enjoying some ice cream, we notice that the
ice cream has almost melted. Immediately, our brain starts to think about
reasons that could have caused the ice cream to melt. Since it is not that
hot outside, we quickly figure out that the child probably did not eat the ice
cream very fast. To come to this conclusion, we make use of the causal model
that we have in our heads. We know that ice cream typically melts when it is
warmer than zero degrees celsius and that depending on how hot it is, it will
take more or less time for it to melt. Combining these two aspects, we come
to the conclusion that to this day, it must have taken some time for the ice
cream to melt that much. Using our causal knowledge on this matter, we can
also try to make predictions. For example, will the ice cream melt completely
if the child continues eating at this pace? The main emphasis here is that we
need to have a model in our minds to answer such questions.

But what if we do not have such a model or knowledge for a specific ques-
tion, for example, does gene A influence or cause gene B? Although one might
argue that a gene does not cause another gene, we will not go into a philo-
sophical discussion on the meaning of the word cause and call a relationship
causal if it has a direction attached to it. To figure out if gene A causes gene
B, we could try to run a controlled experiment and knock out gene A. Simply
put, A would not be available in the system or unable to function. If we then
observe that gene B is not produced anymore, we could trace back that this
had something to do with knocking out A. To verify that gene A influences
gene B and not vice versa, we could repeat the experiment but knock out B

1
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instead of A. Suppose this does not change the expression of gene A. In that
case, we can conclude a causal effect from gene A to gene B, which we de-
note as A→ B. Doing such controlled experiments is, however, not always an
option because there might be ethical problems, e.g. in psychological studies,
or such experiments might be too expensive, or they are simply too difficult
to conduct. On the flip side, we often have access to passively collected data,
so called observational data. Extracting causal knowledge from such observa-
tional data is often referred to as causal discovery (Spirtes et al., 2000). In
the following, we will first briefly explain the most fundamental concepts and
assumptions of causal discovery at a toy example. Subsequently, we point out
open problems and shortcomings of some of these assumptions and formulate
the research questions that we investigate in this thesis.

1.1 A Gentle Introduction to Causal Discovery

The goal of causal discovery is to infer a causal network among a set of at-
tributes or features, e.g. a set of genes, from observational data. In a causal
network, each node represents a feature from the data set and a directed edge
between two nodesX and Y denotes a causal relationship, e.g. X → Y , denotes
that X is the cause of Y . Without making any assumptions, observational data
is, however, not sufficient to unambiguously infer causal relationships, as op-
posed to data gathered through controlled experiments (Pearl, 2009). Yet, if we
are willing to make some assumptions, e.g., assume that features that are not
even correlated are also not causally related, we can infer causal relationships
from observational data (Spirtes et al., 2000). Ideally, we would prefer to make
these assumptions as light-weight as possible such that they are likely to hold in
practice. Below, we will provide a detailed example of a causal network, which
we will use to explain the main concepts and assumptions of causal discovery.1

Consider the causal network in Figure 1.1, which describes an office en-
vironment. We have Jack and Jill, who share the office and should, due to a
global pandemic, come to the office according to a certain office plan (Plan). In
addition, Jack and Jill have an office plant. We can model how much this plant
grows (Growth) dependent on its exposure to sunlight (Light) and dependent
on the amount of water it has access to (Water). In this scenario, Light and
Water are both direct causes or parents of Growth, which is encoded in the
graph via the two directed edges pointing towards Growth. Sunlight is an in-
dependent factor that has no parents in this network. In contrast, the amount
of water the plant gets, strongly depends on whether or not Jack and Jill are

1This introduction is mostly tailored towards constraint-based causal discovery,
which relies on conditional independence tests. However, the main ideas do also
translate to other classes of algorithms, such as score-based methods.
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Plan

Jill

Jack

Water

Growth

Light

Figure 1.1: Office Plant Network: The above toy network describes factors that causally
influence the growth of an office plant in a shared office. Jack and Jill share the office
and the corresponding nodes represent their presence at the office. Both Jack and Jill
are supposed follow an office plan (Plan), which is generated by a certain mechanism.
The presence of Jack and Jill influences the amount of water the plant gets (Water).
Together, the amount of water and the exposure to sunlight (Light) determine the plants
growth (Growth) through some complicated mechanism.

at the office, which in turn depends on the office plan. Note, however, that the
office plan is no direct cause or parent of Water, but can be referred to as an
ancestor of Water. Vice versa, we call Water a descendent of Plan, Jack and
Jill, whereas only for Jack and Jill, Water is also a child node in the graph.

At a high level, such a causal network is an accessible way to summarize
the more complicated causal mechanism itself. Similar to the child with the
ice cream, for which we not only knew that heat melts the ice cream but also
had a rough mechanism in our minds how those quantities relate, the plant
growth also follows a complicated mechanism dependent on the amount of
water available and its exposure to sunlight. In the real world, there also exist
other factors that influence the growth of a plant, e.g., small fluctuations of
the temperature in the room, the humidity and many more. In our model, we
abstract those away as noise, and model the plant growth as

Growth := f(Light,Water, N) ,

where f is a complicated function of Light, Water and an independent noise
variable N , which could, for example, be modelled as Gaussian distributed.
We also call N an exogenous or unobserved variable. In a similar way, we can
describe each node in the network

Plan := f1(N1) Jill := f4(Plan, N4)
Light := f2(N2) Water := f5(Jack, Jill, N5)
Jack := f3(Plan, N3) Growth := f6(Light,Water, N6) .

Since both Plan and Light do not have any parent nodes, they purely depend
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on external nodes. Altogether, such a set of equations allows us to model each
node as a random variable and define a joint distribution P among them. As
can be seen from the above equations, we use different noise variables for each
observed variable. A quite common assumption that we also make through-
out this thesis is to assume that all external variables are independent of each
other. Thus, no unobserved variable influences more than one of the observed
variables. This assumption is called causal sufficiency, i.e., we assume that
we observe all relevant variables. Besides, we will assume that all causal re-
lationships are acyclic. There also exist approaches that aim to relax these
assumptions (Spirtes et al., 2000; Forré and Mooij, 2019), but we do not focus
on these in this thesis.

Under the assumption that causal sufficiency holds and there are no cyclic
causal relations, the true causal network can be described by a directed acyclic
graph (DAG), similar to the one shown in Figure 1.1. To infer such a network
only given the distribution P or a large data set that we assume to be drawn
independent and identically distributed (i.i.d.) according to P , we need to make
assumptions that hold for the network and the distribution. Most common are
the causal Markov condition (CMC) and the faithfulness assumption (Spirtes
et al., 2000). Together, they state that each independence statement in the
distribution is due to a separation in the true graph and vice versa. As a
simple example, consider Plan and Light in Figure 1.1. Clearly, both variables
are generated from two independent noise variables N1 and N2 and are thus
independent of each other. Hence, we correctly conclude from the faithfulness
assumption that both nodes are not adjacent in the true causal graph. From
the graph, on the other hand, we see that all directed paths from Jill to Growth
are blocked by the node Water. Accordingly, we expect that due to the causal
Markov condition Jill will be independent of Growth if we condition on Water,
denoted as Jill⊥⊥Growth | Water. Since both nodes are connected through a
directed path in a single direction, it may still hold that Growth is dependent
on Jill, denoted as Growth��⊥⊥ Jill, if we do not condition on Water.

After we briefly discussed the causal Markov condition and the faithfulness
assumption, we will explain how to learn causal structures under those assump-
tions. In particular, assuming that both assumptions hold, we are able to 1)
distinguish between direct and dependencies for each node, that is, infer the
true undirected network, and 2) infer some of the edge directions. We will ex-
plain how both can be achieved by summarizing the main ideas of the Peter and
Clark (PC) algorithm (Spirtes et al., 2000). To obtain the undirected network,
the algorithm starts with a fully connected graph, that is, each pair of nodes is
connected through an edge. Based on this graph, we start to delete edges based
on the faithfulness assumption. We delete an edge between a pair of nodes X
and Y , if X and Y can be rendered independent by conditioning on a set of ran-
dom variables S, which does not include X and Y . In the office plant network,



5 Chapter 1. Introduction

we can remove the edge between Light and Plan since Light⊥⊥Plan. We can
further delete the edge between Jill and Growth since Jill⊥⊥Growth | Water
and continue until we cannot detect further independencies.

To infer some of the edge directions, it suffices to identify v-structures. A
v-structure describes a triple of nodes in which two non-adjacent nodes jointly
cause the third node, e.g. X → Y ← Z. In particular, if faithfulness holds, X
and Z are dependent given Y , even if we additionally condition on any other
node in the graph. Vice versa, X and Z can be rendered independent if we
do not condition on Y (Spirtes et al., 2000), and hence, we can identify this
v-structure. As an example, consider the triple Water → Growth ← Light.
Clearly, the sunlight is independent of the amount of water provided to the
plant. By conditioning on Growth, both quantities will become conditionally
dependent, which allows us to identify the v-structure and hence infer the cor-
responding edge directions. We repeat this procedure for each unshielded triple
(X and Y are not adjacent) in the undirected graph, which we determined in
the previous step. As a result, we identified the correct undirected graph and
all v-structures. Subsequently, it might be possible to further infer some edge
directions due to the acyclicity of the graph (Meek, 1995a). Such a partially di-
rected graph represents the Markov equivalence class of the true DAG, provided
that faithfulness and the causal Markov condition hold.

Although this sounds appealing in theory, the above framework contains
quite a list of ifs and buts. First, a lot of the framework heavily depends on
the faithfulness assumption to hold. However, as we will show below, there
exist causal mechanisms that violate this assumption and thus lead to wrong
inferences. Second, the entire construction of the graph relies on correctly
detecting (in)dependencies. In practice, small sample sizes, complex generating
mechanisms and varying data types can make this task difficult. Last, we can
only infer the edge directions up to the Markov equivalence class and need to
leave some of the edges undirected. These are precisely the research questions
that we study in this thesis, as we elaborate below.

1.2 Research Questions

In the following, we discuss the research questions that we investigate in this
dissertation, focusing on the faithfulness assumption, conditional independence
testing and cause-effect inference beyond Markov equivalent DAGs.

The faithfulness assumption is a very practical assumption, which is known
to hold in simple systems such as linear Gaussian models (Meek, 1995b). How-
ever, there exist generating mechanisms such as deterministic relations, can-
celling paths or xor structures, which violate this assumption (Ramsey et al.,
2006). As a result, algorithms that rely on faithfulness will fail to recover
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the corresponding edges. In this thesis, we investigate faithfulness violations
induced by xor structures, which we explain below.

Let us consider the office plant network again, for which we will now define
the generating mechanism in more detail. In particular, the office plan, which
is due to a pandemic, should reduce the number of people showing up at the
office at the same time, but should also be fair. Hence, the boss of Jack and
Jill creates the office plan by throwing an unbiased coin for each employee to
determine whether he or she is allowed to go to the office on this day. We
also assume that the actual presence of Jack and Jill may occasionally deviate
from this plan. Further, Jack and Jill almost always water the plant when they
are alone in their office. We model the amount of water they give the plant
with a Gaussian distributed random variable. Surprisingly, however, when
both Jack and Jill are at the office on the same day, they think that the other
person already watered the plant and hence the plant will predominantly not
be watered if both are at the office. Consequently, the process of watering the
plant follows an exclusive or (xor) structure dependent on the presence of Jack
and Jill. This mechanism can be described as follows

Jack Jill Plant Watered
0 0 0
1 0 1
0 1 1
1 1 0

where a “0” denotes that Jack respectively Jill was not at the office and a “1”
that they were present. Similarly, “0” denotes that the plant was not watered
and “1” that it was. Due to the office plan, the probability that Jack is at
the office it roughly one half and the same holds for Jill. As a result, the
xor relation will induce an independence between Jack and Plant Watered as
well as Jill and Plant Watered, as we show in Chapter 2. If we assume that
Jack and Jill provide the plant roughly the same amount of water, we will get
that Jack⊥⊥Water as well as Jill⊥⊥Water. Thus, if we rely on the faithfulness
assumption, we would delete the edges between Jack, Jill andWater in the first
phase of the PC algorithm. Hence, we would infer the wrong DAG structure,
which leads us to the first research question.

Question 1 How can we discover causal DAGs in the presence of faithfulness
violations induced by xor-type relations?

To answer this question, we thoroughly analyze the dependence structures
induced by xor-relations in Chapter 2 and propose a weaker faithfulness as-
sumption that considers triple interactions. In particular, we utilize the fact
that xor-relations like the one described above can be detected when observing
all three nodes. Subsequently, we define a sound orientation rule, which allows
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us to infer some of the edge directions within such a structure if it is embedded
in a larger graph. To provide some intuition on how to put our ideas into prac-
tice, we provide a sound algorithm to discover local causal structures w.r.t. a
target node under our assumptions.

Part II of this thesis is dedicated to conditional independence testing. We
discussed that independence tests are used to distinguish direct from indirect
dependencies and to detect v-structures. Therefore, it is vital to have access
to a reliable conditional independence test. If a test is too lenient, i.e., finds
dependencies although there are none, the corresponding discovery algorithm
would find spurious edges that do not occur in the true DAG. On the other
hand, it is important that a test can detect complex dependencies, such as
the ones generated by the xor mechanism, since otherwise, we will not recover
all true edges. Ideally, an independence test should be applicable to different
kinds of data, as it frequently occurs that not all random variables are of the
same type. In the office plant network, for example, the presence of Jill at
the office can be modelled as a binary variable. The amount of sunlight that
shines on the plant, however, has to contain continuous data points. Of course,
independence testing is a well studied-topic (Bergsma, 2004), but there do not
exist many tests that are applicable to mixed data types. Hence, we formulate
the second research question as follows.

Question 2 How can we detect (conditional) dependencies among mixed-type
random variables that can be discrete, continuous or a mixture of both?

In this thesis, we propose two approaches that build up towards this goal.
In Chapter 3, we develop an information-theoretic approach based on algorith-
mic independence, which is defined via Kolmogorov complexity (Kolmogorov,
1965). Since Kolmogorov complexity itself is not computable, we propose to
estimate this quantity for discrete data via an estimator based on the Minimum
Description Length (MDL) principle (Rissanen, 1978). In addition, we prove
that our estimator is a consistent estimator of conditional mutual information
(CMI), which is a non-parametric measure of dependence. Following up on this
result, we propose a consistent estimator of CMI for mixed random variables in
Chapter 4. To cope with both discrete and continuous data points, we propose
to first discretize the continuous data points using adaptive histograms and
then estimate CMI from the discretized data.

In Part III, we focus on those edges that cannot be inferred via v-structures,
i.e., our goal is to infer DAGs beyond their Markov equivalence class. If we
are able to detect all v-structures, the undirected edges that remain are single
edges between two nodes. In the office plant network, for example, the edge
between Plan and Jack, as well as the edge between Plan and Jill, would fall
into this category. For both, we cannot exploit a v-structure to obtain the
corresponding edge direction. This specific causal discovery task is also called
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causal inference, bi-variate causal discovery or simply cause-effect inference.
In short, the goal is to determine the edge direction between two dependent
random variables X and Y , that is, decide between the two possible graph
structures X → Y and Y → X. Note, however, that we implicitly assume
that there exists no unobserved variable Z that causes both X and Y and
hence induces the dependence between both variables. Under this premise, we
formulate our last research question.

Question 3 How can we distinguish between the two Markov equivalent DAGs
X → Y and Y → X, and do so with guarantees?

To distinguish between Markov equivalent DAGs, it is necessary to make
assumptions about the generating mechanism. We build upon the postulate,
which states that the causal mechanism, that is, the conditional distribution
of the effect given the cause, is algorithmically independent of the distribution
of the cause (Janzing and Schölkopf, 2010). We explain the theoretical foun-
dations of these concepts in Chapter 5. In addition, we analyze under which
conditions this algorithmic independence can be approximated via MDL. To
put theory into practice, we propose an MDL-based score for univariate nu-
meric data in Chapter 6, which we use to tell cause from effect on observational
data. In particular, we assume that the causal mechanism can be expressed
by a mixture of local and global regression functions, for which we encode the
parameters and the residuals to get an MDL score. In Chapter 7, we sim-
plify the model to non-linear regression functions and focus on identifiability.
That is, we specify under which conditions we are guaranteed to infer the cor-
rect causal direction using L0-regularized regression. In the following chapter,
Chapter 8, we generalize the idea presented in Chapter 6 and propose an MDL-
based estimator for multivariate mixed-type data, which we instantiate using
classification and regression trees (CART).

Last, we round up with a conclusion in Chapter 9.

1.3 Contributions of this Thesis

This thesis is a cumulative dissertation based on the research articles listed
in Table 1.1. While the main content of those research articles is included
verbatim in this dissertation, we made some modifications to keep the thesis
coherent. These include changes in the notation, rewriting introductions and
conclusions, removing abstracts, and restructuring related work and prelimi-
nary sections, which are shared by multiple chapters. Chapter 5 mainly serves
as a preliminary chapter for Chapters 6–8. In addition, Chapter 5 contains a
short theoretical analysis, which aims to further clarify the theoretical founda-
tions of Chapters 6–8 in hindsight.
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Table 1.1: Publications on which this thesis is based.

publication used in

Alexander Marx, Arthur Gretton, and Joris M. Mooij. A Weaker Faith-
fulness Assumption based on Triple Interactions. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), 2021

Chapter 2

Alexander Marx and Jilles Vreeken. Testing Conditional Independence on
Discrete Data using Stochastic Complexity. In Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2019

Chapter 3

Alexander Marx, Lincen Yang, and Matthijs van Leeuwen. Estimating Con-
ditional Mutual Information for Discrete-Continuous Mixtures using Multi-
dimensional Adaptive Histograms. In Proceedings of the SIAM International
Conference on Data Mining (SDM), 2021

Chapter 4

Alexander Marx and Jilles Vreeken. Telling Cause from Effect using MDL-
based Local and Global Regression. In Proceedings of the IEEE International
Conference on Data Mining (ICDM), 2017

Chapter 6

Alexander Marx and Jilles Vreeken. Telling cause from effect by local and
global regression. In Knowledge and Information System (KAIS), 2019

Chapter 6

Alexander Marx and Jilles Vreeken. Identifiability of Cause and Effect using
Regularized Regression. In Proceedings of the ACM International Confer-
ence on Knowledge Discovery and Data Mining (SIGKDD), 2019

Chapter 7

Alexander Marx and Jilles Vreeken. Causal Inference on Multivariate and
Mixed-Type Data. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), 2018

Chapter 8

This thesis is based on the seven research articles listed in Table 1.1, all
of which the author was the first author. The contributions for the paper on
which we base Chapter 4 were split half/half with Lincen Yang, the officially
second author of the corresponding research article.
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Part I

The Faithfulness Assumption

In the first part of this thesis, we focus on one of the most fundamental as-
sumptions in causal discovery, faithfulness. Simply put, faithfulness asserts
that each independence found in the distribution corresponds to a separation
in the true causal graph. In Chapter 2, we will first give a general introduc-
tion to graphical models, which are a key tool for modelling causal graphs
and explain the most common assumptions on which many causal discovery
algorithms rely. Then we focus specifically on the faithfulness assumption,
which enables us to make inferences about the causal graph based on the given
probability distribution—or a large i.i.d. sample of the true distribution. We
analyze several generating mechanisms that could be part of a causal network,
such as xor relations, which violate this assumption and hence cannot be de-
tected when assuming that faithfulness holds. Based on the observation that
many such faithfulness violations can be detected when looking at triples of
nodes instead of pairs, we propose a weaker assumption that allows us to pick
up such mechanisms.

11
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Chapter 2

A Weaker Faithfulness
Assumption based on
Triple Interactions

Two standard assumptions in causal discovery are the causal Markov condition
and the faithfulness assumption (Spirtes et al., 2000). While the former assumes
that all separations in the true causal graph G imply independencies in P , the
faithfulness assumption is its counterpart. That is, all independencies found in
P are due to separations in G. Although both assumptions have great merit
for causal discovery algorithms, especially the faithfulness assumption has been
criticized in the past (Andersen, 2013; Zhang and Spirtes, 2016).

Despite it was proven that faithfulness violations in causally sufficient
linear-Gaussian and discrete acyclic systems occur with Lebesgue measure
zero (Meek, 1995b), it has also been shown that given a finite sample, em-
pirical faithfulness violations do appear surprisingly often (Uhler et al., 2013).
Even on population level, there exist simple generating mechanisms, as shown
in Figure 2.1, that violate faithfulness. For instance, two independent random
variablesX and Z, that can be modelled by fair coins, together cause Y through
a noisy xor relation. As a consequence, all three variables are marginally in-
dependent. Following the faithfulness assumption, there should be no edges
connecting X,Y and Z in the causal graph—however, there are.

Faithfulness violations like the above have been intensively studied in the
past (Ramsey et al., 2006; Zhang and Spirtes, 2008; Spirtes and Zhang, 2014)

This chapter is based on Marx, Gretton, and Mooij (2021a).

13
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ZX

(a)

Y

ZX

(b)

Figure 2.1: Failures of adjacency faithfulness: Assume in graph (a) X,Z are fair inde-
pendent coins and Y := (X⊕Z)⊕E, where ⊕ is the xor operator and E is a biased coin
denoting a noise term. Then X is independent of Y (denoted as X ⊥⊥P Y ) and Z ⊥⊥P Y .
Graph (b) could correspond with a linear model where both directed paths from X to Y
cancel s.t. X ⊥⊥P Y , but X��⊥⊥P Z and Z��⊥⊥P Y .

and several weaker assumptions such as adjacency faithfulness (Spirtes et al.,
2000), P-minimality (Pearl, 2009), SGS-minimality (Spirtes et al., 2000) and
frugality (Forster et al., 2017), which we review in Section 2.2.3, have been
proposed. Although faithfulness violations induced by xor-type relations—i.e.,
both parents are marginally independent of the child node—can be detected
by most of the above approaches, they do not analyze under which conditions
the DAG structure can be recovered once such violations have been detected.

To overcome this limitation, we propose a new assumption that we call
2-adjacency faithfulness, which allows us to both detect such faithfulness viola-
tions and partially infer the underlying DAG structure under certain conditions.
We start by explaining the standard concepts and notation in Section 2.1 and
review failures of adjacency faithfulness as well as related work in Section 2.2.
Then, we study the causal structure of xor-type connections in Section 2.3
and propose 2-adjacency faithfulness in Section 2.4. To partially infer causal
DAGs that may contain such generating mechanisms, we introduce a sound
orientation rule in Section 2.5. Further, we show under which assumptions on
the distribution this rule is applicable—which we formalize as the 2-orientation
faithfulness assumption—and analyze its failure cases. As a proof of concept,
we introduce a modification of the Grow and Shrink (GS) algorithm (Margari-
tis and Thrun, 2000) in Section 2.6 and show it correctly identifies the Markov
blanket of a target node under strictly weaker assumptions than faithfulness. In
addition, we give some intuition on how to extend well-known causal discovery
algorithms based on our new assumptions.

2.1 DAGs and Independence

In this section, we define our notation and provide definitions for separations
on graphs and independence w.r.t. a probability distribution.
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2.1.1 Causal Graphs

A causal directed acyclic graph (DAG) G over a set of random variables V with
joint distribution P is defined such that each pair of nodes that is adjacent in
G is causally related. For simplicity, we will use the random variables V to also
refer to the nodes of the graph. A directed edgeX → Y in G between two nodes
representing the random variables X,Y ∈ V indicates that X is a direct cause
or parent of Y and that Y is a direct effect or child ofX. Accordingly, we denote
the set of all parents of X ∈ V with Pa(X), the set of all children with Ch(X)
and the set of parents and children with PC(X) := Pa(X) ∪ Ch(X). Further,
we write An(X) for the set of ancestors and De(X) for the set of all descendants
of X, where X is an ancestor and descendant of itself. Respectively, we refer
to the non-descendants of X as Nd(X) := V\De(X). Last, the Markov blanket
of a variable X is defined as MB(X) := PC(X) ∪ Sp(X), where Sp(X) are the
spouses of X, that is, nodes that share a child node with X. Importantly, X
is d-separated of any other node in the graph given its Markov blanket and
MB(X) is the smallest such set.

DAGs are used to represent causal graphs under the assumption of acyclic-
ity, no selection bias, and causal sufficiency, that is, it is assumed that no two
variables X,Y ∈ V are caused by a confounder Z which is not in the set of ob-
served variables V. This is also the setup on which we focus in this thesis—i.e.,
assuming that all relevant variables are observed, that there are no causal cy-
cles and that there has been no conditioning on selection variables. Further, as
a short form to summarize a model as defined above, we writeM = (G,V, P ).

2.1.2 Independence and Separation

In the following, we define conditional independence in a probability distribu-
tion and d-separation in a graph.

Given three sets of probabilistic random variables X,Y, Z ⊆ V, where P is
the joint distribution over V, we denote that X is probabilistically independent
of Y given Z in P as X⊥⊥P Y | Z.

D-separation (Pearl, 2009) is defined in terms of paths. A path p between
X and Y , denoted p = 〈X, . . . , Y 〉, is a sequence of distinct nodes X1, . . . , Xn

such that Xi is adjacent to Xi+1 for i = 1, . . . , n − 1, X1 = X and Xn = Y .
Further, we call a node C a collider on a path 〈. . . , X,C, Y, . . . 〉, where C is
adjacent to both X and Y , if two arrowheads point to it, that is X → C ← Y .

Definition 2.1 (d-Separation) A path between two vertices X,Y in a DAG
is d-connecting given a set Z, if

1. every non-collider on the path is not in Z, and
2. every collider on the path is an ancestor of Z.
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Figure 2.2: The figure shows three possible orientations for the skeleton structure X −
Y −Z. While the two orientations (a) and (b) are Markov equivalent, since they have the
same skeleton structure and the same v-structures (none), (c) is not Markov equivalent
to (a) or (b).

If there is no path d-connecting X and Y given Z, then X and Y are d-separated
given Z. Sets X and Y are d-separated given Z, if for every pair X,Y , with
X ∈ X and Y ∈ Y, X and Y are d-separated given Z.

As shorthand notation for separations on a DAG G, we write X⊥⊥G Y | Z
if X is d-separated from Y given Z. Building upon this notion, we can now
formally define a Markov equivalence class, which is often defined using the
notion of v-structures, which is just a different way to define a collider structure
like X → C ← Y , for which X and Y are not adjacent.

Definition 2.2 (Markov Equivalence (Pearl, 2009)) Two DAGs G1 and
G2 are said to be Markov equivalent, if and only if they have the same skeleton
(underlying undirected graph) and the same v-structures.

Aminimal example to explain Markov equivalence is provided in Figure 2.2.
The simple chain graph X → Y → Z and the common cause graph X ← Y →
Z are Markov equivalent, since they do not contain a collider and share the
same skeleton. On the contrary, a simple v-structure like X → Y ← Z is not
Markov equivalent to the previous two.

Another useful set of tools for inferences on graphs and distributions, which
we will need for some of our proofs, are the graphoid axioms (Dawid, 1979;
Spohn, 1980; Geiger et al., 1990).

Definition 2.3 (Graphoid Axioms) Let M = (G,V, P ), with W, X,Y, Z ⊆
V. The (semi-)graphoid axioms are (⊥⊥ denotes ⊥⊥P and ⊥⊥G)

1. Symmetry: X⊥⊥Y | Z ⇒ Y⊥⊥ X | Z.
2. Decomposition: X⊥⊥Y ∪W | Z ⇒ X⊥⊥Y | Z.
3. Weak Union: X⊥⊥Y ∪W | Z ⇒ X⊥⊥Y |W ∪ Z.
4. Contraction: (X⊥⊥Y |W ∪ Z) ∧ (X⊥⊥W | Z)⇒ X⊥⊥Y ∪W | Z.

For separations only on G, the graphoid axioms include (only for ⊥⊥G).
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5. Intersection: (X⊥⊥Y | W ∪ Z) ∧ (X⊥⊥W | Y ∪ Z)⇒ X⊥⊥Y ∪W | Z, for
any pairwise disjoint subsets W, X,Y, Z ⊆ V.

6. Composition: (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)⇒ X⊥⊥Y ∪W | Z.

As an illustration why certain rules only hold for graphs and not generally
for probability distributions, consider rule (6) and Figure 2.1 (a) again. From
the distribution induced by the xor, we find that Y ⊥⊥P X and Y ⊥⊥P Z but we
cannot conclude that Y ⊥⊥P {X,Z}. If, however, in a graph Y is d-separated
from X and from Z then Y is d-separated from the set {X,Z}.

We round up this section by defining the causal Markov condition (CMC)
and the local Markov condition for DAGs (Spirtes et al., 2000).

Definition 2.4 (Causal Markov Condition) Let M = (G,V, P ), the cau-
sal Markov condition holds, if every d-separation imposed by G implies an in-
dependence in P .

Definition 2.5 (Local Markov Condition) GivenM = (G,V, P ), for each
node X ∈ V it holds that X is d-separated from all non-descendants of X given
the parents of X.

In the remainder of this chapter, we focus on differences between graphs
and the distribution. To this end, the causal Markov condition is an essential
assumption for causal discovery. On the other hand, assumptions about what
properties of the graph can be inferred based on the given distribution have
been weakened over time (Ramsey et al., 2006; Zhang and Spirtes, 2008; Forster
et al., 2017). Most commonly known is the faithfulness assumption.

2.2 Adjacency Faithfulness and Faithfulness Violations

To lay out the problem, we first explain faithfulness and adjacency faithfulness,
then examine when those could fail and give a summary about the most relevant
related approaches that use weaker assumptions.

The faithfulness assumption is one of the core assumptions made by most
causal discovery algorithms (Spirtes et al., 2000) and it can be seen as the
inverse assumption to CMC—i.e., assuming that all independencies found in P
imply a d-separation in the causal graph. Adjacency faithfulness is a slightly
weaker assumption.

Definition 2.6 (Adjacency Faithfulness) Given the tripleM = (G,V, P ),
if X,Y ∈ V are adjacent in G, then they are probabilistically dependent given
any subset S ⊆ V\{X,Y }.
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Alternatively, we could turn this definition around by stating that if we find
a conditional independence in P , then we assume that there is no edge in the
corresponding graph. Assuming adjacency faithfulness ensures that we recover
the correct skeleton graph (i.e., the undirected graph). Correct detection of
the skeleton together with the correct identification of all collider structures
ensures that the detected graph is in the Markov equivalence class of the true
graph (Verma and Pearl, 1991). The latter is ensured by additionally assuming
that orientation faithfulness holds (Zhang and Spirtes, 2008).

Definition 2.7 (Orientation-Faithfulness) Given M = (G,V, P ). Let the
path 〈X,Y, Z〉 be unshielded in G, that is X is adjacent to Y and Y is adjacent
to Z, but X is not adjacent to Z.

1. If X → Y ← Z, then X��⊥⊥P Z given any subset of V\{X,Z} that con-
tains Y ; otherwise

2. X and Z are dependent conditional on any subset of V\{X,Z} that does
not contain Y .

The bottleneck here is the adjacency faithfulness assumption, as many
causal discovery algorithms such as PC (Spirtes et al., 2000) or GES (Chick-
ering, 2002) rely on finding adjacent nodes either by checking for marginal
dependencies or adding single edges based on adjacency faithfulness and CMC.
If one is willing to assume that those assumptions hold, then any violation of
orientation faithfulness can be detected as shown by Zhang and Spirtes (2008).
However, adjacency faithfulness can be violated in many ways, e.g. by xor-type
connections, path cancellations, or deterministic relations. We briefly explain
the first two below, as they are relevant for the remainder. For deterministic
relations and finite sample failures, see Lemeire et al. (2012).

2.2.1 Xor-Type Relations

In this chapter, we focus on xor-type relations. That is, given a triple of nodes
X,Y, Z ∈ V such that X → Y ← Z, where at least one of the causal edges
cannot be detected by marginal dependence, but only by looking at the joint
distribution over X,Y and Z. The key here is that either parent of Y might
not be dependent on Y , but only by considering both parents, we can detect
the dependence. To illustrate this, consider the following example where we
describe a noisy xor with an unobserved noise variable that is modelled with a
biased coin as it is common for binary causal structures (Inazumi et al., 2011).

Example 2.1 LetM = (G,V, P ) be a causal model. Given variables X,Y, Z ∈
V such that X → Y ← Z in G and there is no edge connecting X and Z, as in
Figure 2.1(a), where X,Z are fair independent coins. Their common effect Y is
generated as Y := (X ⊕Z)⊕E, where ⊕ denotes xor—i.e., X ⊕Z := (X +Z)
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mod 2—and E is a biased coin with P (E = 1) = p, where 0 ≤ p < 1
2 and

E⊥⊥P {X,Z}. Hence, X��⊥⊥G Y , Z��⊥⊥G Y , however, due to the xor, we have that
X ⊥⊥P Y and Z ⊥⊥P Y . Both edges violate adjacency faithfulness. If we were
to check the joint distribution, we can find that Y ��⊥⊥P {X,Z}, or X��⊥⊥P Z | Y ,
since we get that P (X = 1, Z = 1, Y = 1) = p

4 , where P (X = 1, Z = 1) ·P (Y =
1) = 1

4 ·
1
2 = 1

8 . Those terms being equal would only hold if p = 1
2 , which we

excluded by assumption.

Similar examples, where the marginal dependencies might be hard to de-
tect can be found for continuous data (Sejdinovic et al., 2013), as we show in
Figure 2.3. In this mechanism, the effect is modelled through a sign function
with exponential noise, where both causes are Gaussian distributed.

2.2.2 Cancelling Paths

A minimal example of cancelling paths was given by Hesslow (1976) and is
illustrated with the causal graph shown in Figure 2.1(b). In Hasslow’s example
taking birth control pills (X) can influence the risk of getting thrombosis (Y )
via two paths. It has a direct effect and also taking the pills reduces the chance
of pregnancy (Z), which itself is a cause of thrombosis. However, the causal
effects induced by those paths cancel such that X ⊥⊥P Y even though X��⊥⊥G Y .
As an example for a mechanism that induces such a cancellation, consider a
linear Gaussian system in which Z := αX, Y := βZ − γX and γ = αβ. This
failure of faithfulness was shown to be undetectable since X will be dependent
on Y given Z and hence the graph X → Z ← Y is also a valid graph for those
independencies—i.e., Markov equivalent (Zhang and Spirtes, 2008). There exist
cancelling paths that consist of more than three variables, which are detectable,
e.g., if Z is not adjacent to Y , but there is a path Z → W → Y (Zhang and
Spirtes, 2008).

2.2.3 Weaker Assumptions

In the following, we discuss different approaches on how to relax faithfulness.
Two well-studied assumptions are P-minimality (Pearl, 2009) and SGS-

minimality (Spirtes et al., 2000). While the former states that from all DAGs
that satisfy the causal Markov condition w.r.t. P , the DAG that entails most
conditional independence statements is preferred. The latter assumes that no
proper subgraph of the true DAG fulfils the causal Markov condition w.r.t. to
P . From both assumptions, SGS-minimality is the weaker assumption (Zhang,
2013). In a different line of research, it was shown that SGS-minimality suffices
for causal discovery approaches based on the assumption that the effect is
generated through an additive noise function of the causes (Peters et al., 2014).
We discuss additive noise models in more detail in the last part of this thesis.
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Figure 2.3: Sample data for the collider graph X → Y ← Z, where X,Z ∼ N(0, 1) are
i.i.d. and Y := sign(XZ) ·E, with E ∼ Exp( 1√

2 ). The dependence is only detectable by
considering X,Y and Z jointly.

A more recent approach by Forster et al. (2017) introduces the concept of
frugality, which is a stronger assumption than both minimality assumptions.
The authors define a DAG G to be more frugal than G′, if G contains fewer
edges than G′. A maximally frugal DAG uses only as many edges as are nec-
essary to satisfy the causal Markov condition. To determine maximally frugal
graphs, one has to consider all causal orderings of the variables, which is rather
costly, but can be solved using permutation algorithms (Raskutti and Uhler,
2018). Another approach to discover causal graphs based on frugality, or any of
the above assumptions is based on boolean satisfiability (SAT) solvers (Zhalama
et al., 2017). Here, we introduce 2-adjacency faithfulness, which allows us to
find xor-type relations, some faithfulness violations induced by cancelling paths
and all relations that are detectable by assuming adjacency faithfulness. We
conjecture that 2-adjacency faithfulness is a slightly stronger assumption than
frugality since frugality considers all permutations and not only triples (Forster
et al., 2017). However, this can also be an advantage, since we only need to
check all triples to detect 2-associations, instead of all permutations. In addi-
tion, we extend existing work by providing a sound orientation rule that can be
used to infer the edges within a 2-association, if they appear in a larger graph.

In the next section, we discuss xor-type relations in more detail. We use
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those structures as an example to illustrate one of the main properties of 2-
associations, that we describe in Theorem 2.1.

2.3 Unfaithful Triples

We first define what we call an unfaithful triple1 and its properties, and then
argue why such a triple a) violates adjacency faithfulness and b) even if de-
tected, the underlying DAG structure cannot be uniquely determined without
further information.

Definition 2.8 (Unfaithful Triple) GivenM = (G,V, P ) and three distinct
nodes X,Y, Z ∈ V: if X,Y and Z are marginally independent but not mutually
independent in P , we call {X,Y, Z} an unfaithful triple w.r.t. P .2 If further
for each distinct pair of nodes A,B ∈ {X,Y, Z} :

∀S ⊆ V\{X,Y, Z} : A��⊥⊥P B | S ∪ {X,Y, Z}\{A,B} ,

we call {X,Y, Z} a minimal unfaithful triple.

The first example for such a triple for three binary random variables was
given by Bernstein (1927), which is equivalent to our noisy xor example. The
minimality condition ensures that the three nodes are connected by a path of
length two, as we will show below. We start by showing that if three ran-
dom variables {X,Y, Z} are marginally independent, finding a dependence be-
tween all three variables, e.g. X��⊥⊥P {Y,Z}, implies that also Y ��⊥⊥P {X,Z} and
Z��⊥⊥P {X,Y }.

Lemma 2.1 GivenM = (G,V, P ), let {X,Y, Z} ⊆ V form an unfaithful triple
in P , then X��⊥⊥P {Y,Z}, Y ��⊥⊥P {X,Z} and Z��⊥⊥P {X,Y }, which in addition
implies that X��⊥⊥P Y | Z, X��⊥⊥P Z | Y and Y ��⊥⊥P Z | X.

Proof: Assume that w.l.o.g. X��⊥⊥P {Y, Z} is violated. By weak union, we
get X ⊥⊥P Y | Z which is equivalent to Y ⊥⊥P X | Z, using symmetry. We
know that Y ⊥⊥P Z. By contraction, we get that Y ⊥⊥P {X,Z}. Similarly, we
conclude that Z ⊥⊥P {X,Y }. Altogether, this implies that X,Y, Z would be in-
dependent, which is a contradiction. Next, we can see that each pair of joint
dependence and marginal independence, e.g. X��⊥⊥P {Y, Z} and X ⊥⊥P Z, im-
plies a conditional dependence, e.g. X��⊥⊥P Y | Z, by contraction. �

1Ramsey et al. (2006) used the term unfaithful triple for the non-detectable faith-
fulness violation explained in Section 2.2.2.

2Not mutually independent implies that X��⊥⊥P {Y,Z}, Y��⊥⊥P {X,Z} or
Z��⊥⊥P {X,Y }.
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Figure 2.4: Assume that {X,Y, Z} form an unfaithful triple. Since X is d-separated from
Y given U and Z, they do not form a minimal unfaithful triple. Neither do {U, Y, Z},
since Y can be d-separated from U given {W,Z}. Thus, only {U,W,Z} can be a minimal
unfaithful triple.

Consider Example 2.1. Since X,Y, Z form an unfaithful triple, we can
infer from Lemma 2.1 that each pair is conditionally dependent given the third
node. As there are no other nodes in the graph, X,Y, Z must form a minimal
unfaithful triple. Next, we show that (minimal) unfaithful triples must be
connected in the causal graph.

Lemma 2.2 GivenM = (G,V, P ), let {X,Y, Z} ⊆ V form an unfaithful triple
in P . If CMC holds, each node in the triple is d-connected to at least one other
node in the triple by a path in G.

Proof: Assume w.l.o.g. that X is d-separated from Y and Z in G—i.e.,
X ⊥⊥G Y and X ⊥⊥G Z. By applying the composition axiom, we get X ⊥⊥G{Y, Z}.
If we apply the causal Markov condition, we get that X ⊥⊥P {Y,Z}, which is a
contradiction to our assumption. �

Further, we show that a minimal unfaithful triple has to contain a collider
on a path of length two that connects all three nodes in the triple, e.g. X →
Y ← Z (see Figure 2.4). To do that, we first show a more general statement.

Theorem 2.1 GivenM = (G,V, P ) with three distinct nodes X,Y, Z ∈ V and
assume that CMC holds. If ∀S ⊆ V\{X,Y, Z} it holds that X��⊥⊥P Y | Z ∪ S,
X��⊥⊥P Z | Y ∪ S and Y ��⊥⊥P Z | X ∪ S, then one of the three nodes is a collider
on a path of length two between the two other nodes, e.g. X → Y ← Z in G.

Proof: There must be (at least) one node in {X,Y, Z} that is not an ancestor
of any of the other nodes, say Z < An(X) and Z < An(Y ), because of acyclic-
ity. In other words, X < De(Z) and Y < De(Z). The local Markov property
states that Z ⊥⊥GNd(Z) | Pa(Z) and hence in particular Z ⊥⊥G{X,Y } | Pa(Z).
Further, if |Pa(Z)∩{X,Y }| < 2, we get a contradiction with the assumed con-
ditional dependences. Hence {X,Y } ⊆ Pa(Z) and X → Z ← Y is in G. �
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The theorem only states that there exists a collider, e.g. X → Y ← Z,
but not whether this path is shielded or not. Since we do not assume any
marginal dependence or independence in Theorem 2.1, we can derive that the
same statement holds for a minimal unfaithful triple. Notice that for a minimal
unfaithful triple each pair of nodes is marginally independent, which implies
that there is no way to decide which of the three possible collider structures
corresponds with the causal graph in the absence of further information.

Knowing that a minimal unfaithful triple has to contain a collider in G,
it is obvious that such a structure violates adjacency faithfulness, as none of
the edges is represented by a marginal dependence in P . The key point is that
we can detect such interactions by taking multiple parents into account. In
the following, we define a weaker assumption that allows us to detect and infer
causal graphs that contain such faithfulness violations.

2.4 2-Adjacency Faithfulness

To define our new assumption, we first need to define associations between a
single node and a set of nodes.

Definition 2.9 (k-Association) Let P be the joint distribution of a set of
random variables V.

1. Given distinct X,Y ∈ V, we say that X is 1-associated to Y , if for each
subset S ⊆ V\{X,Y } it holds that X��⊥⊥P Y | S.

2. Given distinct X,Y1, Y2 ∈ V, X is 2-associated to {Y1, Y2} if for each
subset S ⊆ V\{X,Y1, Y2} it holds that

i) X��⊥⊥P Y1 | S ∪ Y2,
ii) X��⊥⊥P Y2 | S ∪ Y1 and
iii) Y1��⊥⊥P Y2 | S ∪X.

We call X strictly 2-associated to the set {Y1, Y2}, if X is 2-associated to
{Y1, Y2} and X is not 1-associated to either Y1 or Y2.

In other words, k-associations relate to two types of dependencies: cer-
tain conditional dependencies between pairs of variables (1-associations) and
between triples (2-associations). For readability, we use a shorthand notation
and write X −2 {Y,Z} if X is 2-associated to Y and Z resp. X −1 Y if X is
1-associated to Y . We denote a strict 2-association by “ s−2”. If we refer to a set
Y that contains at most two elements and we want to express that X is either
1- or 2-associated to this set, we write X −≤2 Y. Similarly, we write X s−≤2 Y,
if X is 1- or strictly 2-associated to Y.

Pairwise dependencies can occur for example in a simple chain X → Y →
Z, where no adjacency failure occurs. In this case, X −1 Y and Y −1 Z. Triple
interactions that match the definition of 2-associations, however, need to have
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a specific structure. As we saw in Theorem 2.1, 2-associations always contain a
collider. Thus, a chain graph or a common cause structure does not induce a 2-
association. On the other hand, the minimum unfaithful triple in Example 2.1
matches the definition, since X s−2 {Y,Z}, Y

s−2 {X,Z} and Z
s−2 {X,Y }. In

general, strict 2-associations describe collider structures such as X → Y ← Z
for which at least one of the edges violates adjacency faithfulness. If faithfulness
holds, a collider structure induces a 2-association, but not a strict 2-association.
We use this intuition for our new assumption.

Definition 2.10 (2-Adjacency Faithfulness) GivenM = (G,V, P ), for all
X,Y ∈ V, where X and Y are adjacent in the generating DAG G, there exists
Y ⊆ MB(X), with Y ∈ Y, s.t. X s−≤2 Y.

The main idea here is to weaken adjacency faithfulness such that if a
marginal dependence is not present, i.e., adjacency faithfulness is violated, there
will be a dependence in combination with a parent, child or spouse. If adja-
cency faithfulness is not violated, we will not find any strict 2-associations and
our assumption reduces to adjacency faithfulness. By also considering strict 2-
associations, however, we can discover a larger spectrum of causal mechanisms.

The textbook example for a mechanism that violates faithfulness but is de-
tectable by assuming 2-adjacency faithfulness is the xor-connection described
in Example 2.1. Here, Y s−2 {X,Z}, two parents, while X s−2 {Y,Z}—i.e.,
a child and a spouse. We could even slightly adapt the mechanism and only
model Z using an unbiased coin but use a biased coin for X. In this case, only
X is marginally independent of Y , while Z becomes dependent on Y . Moreover,
assuming 2-adjacency faithfulness could even allow us to detect some faithful-
ness violations that are due to cancelling paths. In particular, consider the two
paths X → Y and X → Z → W → Y that cancel such that X ⊥⊥P Y . Since
X ⊥⊥P Y , X ⊥⊥P W | Z, X could be strictly 2-associated to the set {W,Y }.
Since we know that a 2-association contains a collider and we can neither find
a 1-association to Y or W , we know that there has to be an edge violating
adjacency faithfulness.

It is not possible to rely on orientation faithfulness when dealing with strict
2-associations. Although we know that a strict 2-association has to contain a
collider, we do not know the skeleton structure within the triple and hence
cannot apply orientation faithfulness. Next, we show that we can sometimes
identify the collider if such a triple occurs in a larger graph.

2.5 2-Orientation Faithfulness

So far, we showed how we can detect unfaithful triples from conditional (in)de-
pendence statements under the weaker assumption of 2-adjacency faithfulness.
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Figure 2.5: In both distributions Y
s
−2 {X,Z} and Y −1 W . In the graph shown in (a)

Y is a collider on all paths between {X,Z} and W , whereas in (b) Y is a non-collider.

Now imagine that we want to use this knowledge for causal discovery. If we
observe an isolated triple that follows the dependence structure of the noisy
xor, we can only tell that there is a collider. However, if we are given more
information, we are able to break this symmetry.

Example 2.2 Consider that X and Z are unbiased coins as in the noisy xor
example. In addition, there is a binary variable W with P (W = 1) = p, where
0 < p < 1 and an unobserved binary noise variable E with P (E = 1) = q,
where 0 < q < 1

2 . Now we generate Y as

Y := ((X ⊕ Z) ∧W )⊕ E ,

where E,W,X and Z are drawn independently. The requirements for p ensure
that W is dependent on Y and the requirements on E ensure that the depen-
dencies are non-deterministic (q , 0) and evident without observing E (q , 1

2).
The corresponding causal graph is given in Figure 2.5(a). From the induced
dependencies, that we derive in detail in Appendix A.1, we can now obtain an
asymmetry. In particular, {X,Y, Z} form a minimal unfaithful triple, but only
Y is dependent on W , whereas {X,Z}⊥⊥P W and due to the xor, X ⊥⊥P W | Y
as well as Z ⊥⊥P W | Y . Thus, we can detect that there is no edge between X
and W or Z and W since none of these pairs can be 2-associated. However,
we do find that X��⊥⊥P W | {Y, Z} and Z��⊥⊥P W | {Y,X}. As we will show in
Theorem 2.2, we can use this information to identify Y as the collider in the
triple and W → Y .

To detect such an asymmetry, it is necessary that the collider in the triple
is the effect of another node or pair of nodes. If, for example, X would be the
collider in the triple and W → Y (see Figure 2.5(b)), we cannot find such an
asymmetry. To generate that graph we could model Y as a noisy copy of W
and construct X with a noisy xor from Y and Z. We still know that W is
adjacent to Y , but we cannot direct any of the edges as for example we would
find that X��⊥⊥P W | Z, which we would also observe if Z would be the collider
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in the triple, or if we would flip the edge direction between Y and W—i.e., W
would be a noisy copy of Y .

Based on this intuition, we propose an orientation rule that may include
causal structures that induce strict 2-associations. To do so, we use a shorthand
notation—i.e., write Y → X, if for each element Y ∈ Y it holds that Y → X
and vice versa write X → Y if X is a parent of each node Y ∈ Y, that is,
∀Y ∈ Y : X → Y .

Definition 2.11 (Orientation Rule) Let M := (G,V, P ) and we are given
two disjoint sets X, Z ⊆ V and Y ∈ V, where Y s−≤2 X and Y s−≤2 Z, and no
X ∈ X is adjacent to some Z ∈ Z in G.

i) If for each pair X ∈ X and Z ∈ Z it holds that X is dependent on Z
given any subset of V\{X,Z} that contains Y ∪(X\{X})∪(Z\{Z}), then
X → Y ← Z,

ii) otherwise, if for each pair X ∈ X and Z ∈ Z it holds that X is dependent
on Z conditional on any subset of V\{X,Z} that contains (X\{X}) ∪
(Z\{Z}) but does not contain Y , Y is a non-collider on at least one path
〈X,Y, Z〉 where X ∈ X and Z ∈ Z.

Simply put, the above orientation rule relies on the fact that a (strict) 2-
association contains a collider. Either Y is the collider on each path 〈X,Y, Z〉
between any variable X ∈ X and Z ∈ Z or Y is one of the parents in at least
one of the triples and hence blocks at least one such path. If both sets X
and Z only contain a single element, rule i) refers to a “normal” collider, e.g.
X → Y ← Z and rule ii) refers either to a chain like X → Y → Z or to a
common cause X ← Y → Z. Let us consider Example 2.2 again, where we
generated Y as a non-deterministic function of X,Z andW . First, we find that
Y

s−2 {X,Z}, Y −1 W and W is not adjacent to X or Z (since W is not 1- or
strictly 2-associated to X or Z), which is required to apply our rule. Further,
we can apply rule i) since W is dependent on X given any set that includes
{Y,Z} and W is dependent on Z given any set that includes {Y,X}. Hence,
we can infer that {X,Z} → Y ←W .

In the following we first show that our orientation rule is sound—i.e., if rule
i) or ii) can be applied, we are sure we found the true graph structure—and
then analyze the inverse, that is, what assumptions need to hold such that the
given graph structure implies the suggested dependence model.

Theorem 2.2 Assuming that the CMC holds, the orientation rule in Defini-
tion 2.11 is sound.

We provide the proof for Theorem 2.2 in Appendix A.3. We show both rules
by contraposition, that is, to show the implication in rule ii) holds, we prove
that if the true structure is X → Y ← Z (exactly the structure not implied by
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rule ii)), we can always find a pair X ∈ X and Z ∈ Z such that X becomes
independent of Z if we condition on a set that includes (X\{X}) ∪ (Z\{Z}),
but does not contain Y . Rule i) can be proven accordingly.

The question that remains is: Does the inverse always hold? For example,
if the true graph contains a non-collider structure such as X → Y → Z, will
we always find that X��⊥⊥P Z? The short answer is no. Already when we only
assume adjacency faithfulness, it can happen that X ⊥⊥P Z although the true
graph is X → Y → Z and it holds that X��⊥⊥P Y and Y ��⊥⊥P Z, which is called
failure of transitivity. More generally, assuming that orientation faithfulness
holds, such failures will not occur. In the following, we extend this assumption
to our setting.

Definition 2.12 (2-Orientation Faithfulness) Let M := (G,V, P ) and we
are given disjoint X, Z ⊆ V and Y ∈ V, where Y s−≤2 X and Y s−≤2 Z, and no
X ∈ X is adjacent to some Z ∈ Z in G.

i) If X → Y ← Z is in G, then for each pair X ∈ X and Z ∈ Z, X��⊥⊥P Z
given any subset of V\{X,Z} that contains Y ∪ (X\{X}) ∪ (Z\{Z}),

ii) otherwise, for each pair X ∈ X and Z ∈ Z, X��⊥⊥P Z conditional on any
subset of V\{X,Z} that contains (X\{X}) ∪ (Z\{Z}), but not Y .

Equivalently to 2-adjacency faithfulness, 2-orientation faithfulness reduces
to orientation faithfulness, if both sets X and Z only contain a single element.
For orientation faithfulness, it has been shown that all failures can be detected
under the assumption that adjacency faithfulness holds (Zhang and Spirtes,
2008). Sadly, an equally strong statement cannot be made for 2-adjacency
faithfulness and 2-orientation faithfulness, as we discuss below.

2.5.1 Failures of 2-Orientation Faithfulness

Without any assumptions, we can detect triples for which Y s−≤2 X and Y s−≤2
Z, and know by assuming CMC that all 2-associations contain a collider. If
further, all paths 〈X,Y, Z〉 with (X,Z) ∈ X×Z are unshielded, we can detect if
any of the conditions in 2-orientation faithfulness fails. In particular, due to the
soundness of our orientation rule, we would detect that none of the conditions in
the orientation rule is satisfied if condition i) or ii) in 2-orientation faithfulness
fails, as we show in Corollary 2.1.

Yet, we cannot detect all failures of 2-orientation faithfulness. That is
due to the fact that we might not always be able to detect whether all paths
〈X,Y, Z〉 are unshielded. If there is a direct edge between X and Z, we will
always find that those nodes are either 1-associated or there exists a third node
U such that they are strictly 2-associated (if 2-adjacency faithfulness holds).
However, if we find a strict 2-association between X and {Z,U} there is no
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Figure 2.6: In both figures, Y
s
−2 X = {X1, X2}, Y

s
−2 Z = {Z1, Z2} (related nodes

and edges are marked in black) and X2
s
−2 {U,Z2}. If we are only given this information,

we cannot determine whether the path 〈X2, Y, Z2〉 is unshielded (a) or shielded (b). While
in graph (a), we could safely apply our orientation rule, the shielded graph (b) can be
problematic. Due to the directed path from X1 over U to Z2 and the adjacency between
X2 and Z2, each pair X,Z ∈ X×Z is now d-connected given {Y }∪(X\{X})∪(Z\{Z}).
Thus, the condition for rule i) could hold, although X → Y ← Z is not in G.

guarantee that the path is shielded. In particular, if U is the collider between
X and Z, the triple is unshielded; but if Z is the collider between X and
U , the triple is shielded (see Figure 2.6, in which X refers to X2 and Z to
Z2). In a causal discovery algorithm, we could try to iteratively infer the DAG
structure within such triples until we cannot apply the rule anymore. If we
are lucky, we can first infer that X → U ← Z and after that also apply our
rule for {X, Y, Z}. Keeping this exception in mind, we can derive the following
corollary from Theorem 2.2.

Corollary 2.1 Given M := (G,V, P ) with Y ∈ V and X, Z ⊆ V, where X ∩
Z = ∅, Y s−≤2 X, Y s−≤2 Z and no pair of nodes (X,Z) ∈ X × Z is adjacent.
Assuming that CMC holds, we can detect if condition i) or ii) of 2-orientation
faithfulness fails on the triple {X, Y, Z}.

The proof is provided in Appendix A.3. In general, 2-orientation faithful-
ness might be useful not only for constraint-based causal discovery methods,
but also for algorithms that aim to discover the Markov blanket of a target
node or permutation-based causal discovery algorithms such as the Sparsest
Permutation (SP) algorithm proposed by Raskutti and Uhler (2018). In Ap-
pendix A.2, we provide a short discussion from which we conjecture that the
SP algorithm can identify the collider pattern even for strict 2-associations like
in Figure 2.5(a), if 2-orientation faithfulness holds.

In the next section, we demonstrate how to put theory into practice and
propose an algorithm to find the Markov blanket of a target node under 2-
adjacency faithfulness.
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2.6 A Modified GS Algorithm

As a proof of concept, we propose a simple modification of the Grow and
Shrink (GS) algorithm (Margaritis and Thrun, 2000) to discover Markov blan-
kets that can contain strict 2-associations. After that, we briefly discuss further
challenges that need to be solved to propose a causal discovery algorithm based
on our new assumptions.

The GS algorithm is a simple and theoretically sound causal discovery al-
gorithm, that as a first step identifies the Markov blanket for each node (Mar-
garitis and Thrun, 2000). This step of the algorithm consists of a grow phase,
in which we iteratively discover a superset of the Markov blanket of a target
node T , and a shrink phase, in which superfluous nodes are pruned.

To make sure that we can detect Markov blankets that contain strict 2-
associations, we assume that 2-adjacency faithfulness holds and that we can
detect all spouses. For the latter, we assume that a slight variation of the 2-
orientation faithfulness assumption holds. In essence, we need to assume that
condition i) in 2-orientation faithfulness also holds for shielded triples, which
boils down to assuming that the spouses of the target do not cancel each other
out, as we explain below.

Assumption 2.1 Let M := (G,V, P ) and we are given two disjoint sets
X, Z ⊆ V and Y ∈ V, where Y s−≤2 X and Y

s−≤2 Z. If X → Y ← Z in
G, then for each pair X ∈ X and Z ∈ Z, X is dependent on Z given any subset
of V\{X,Z} that contains Y ∪ (X\{X}) ∪ (Z\{Z}).

The above assumption is a relatively lightweight adaption of condition i) in
2-orientation faithfulness. In particular, let X = {X,T}, where T is the target
node. Then all nodes in Z are spouses of T and even become part of PC(T ) if
all paths 〈T, Y, Z〉 for Z ∈ Z are shielded. Thus, we would already add those
nodes when looking for the parents and children of T . The only complication
that may arise is if the second node X ∈ X is adjacent to a node in Z ∈ Z
and this adjacency would lead to a cancellation such that Z is only dependent
on T if we do not condition on X. The corresponding causal graph consists
of the paths T → Y ← Z and Y ← X → Z. Since X cannot block the path
〈T, Y, Z〉, such a scenario seems to be only possible if the causal mechanism
that generates Z from X is deterministic. Based on this assumption, we can
introduce our adapted GS algorithm.

The generalized GS algorithm is shown in Algorithm 2.1, where we only
modified the grow phase to also consider pairs of random variables. This allows
us to find nodes to which the target node is strictly 2-associated or spouses to
which a child node of T is strictly 2-associated using Assumption 2.1. The
shrink phase is not modified and checks if singletons can be removed. It is im-
portant to note that we will not remove single nodes of a true strict 2-association
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Algorithm 2.1: Modified GS for Markov Blankets
input : Random variables V with joint distribution P , Target

T ∈ V
output: MB(T )

1 V′ ← V\{T};
2 S← ∅;
// Grow Phase

3 while
(
∃X ∈ V′ : T��⊥⊥P X | S

)
∨

4
(
∃X,Z ∈ V′ : T��⊥⊥P X | S ∪ {Z}

)
do

5 S← S ∪ {X} ;
// Shrink Phase

6 while ∃X ∈ S : T ⊥⊥P X | S\X do
7 S← S\X ;
8 return S

to T or a child of T , because we do not check for marginal dependencies. For
example, assume that T s−2 {X,Z} and both nodes were added in the grow
phase, where X is a child of T and Z the corresponding spouse. If we try
to remove X in the shrink phase, we have that T��⊥⊥P X | S\X, since Z ∈ S.
Hence, X remains in S, as well as Z.

In the following, we show that our proposed algorithm correctly identifies
the Markov blanket of a target node assuming that 2-adjacency faithfulness,
the causal Markov condition and Assumption 2.1 hold.

Theorem 2.3 Let M = (G,V, P ), and assume 2-adjacency faithfulness, As-
sumption 2.1 and CMC hold. Algorithm 2.1 identifies MB(T ) for T ∈ V.

We provide the proof in Appendix A.3. For discovering the Markov blanket,
we do not need to know the collider of a strict 2-association since it only returns
a set of nodes. The more challenging task is to implement our framework to dis-
cover causal networks. As an example, the next step in the GS algorithm would
be to distinguish the spouses from the parents and children of a node. However,
this is not straightforward for strict 2-associations, since we first need to iden-
tify the collider in the triple. Similarly, we could extend well-known algorithms
such as the PC algorithm (Spirtes et al., 2000) or the GES algorithm (Chick-
ering, 2002) by modifying the skeleton phase, respectively the forward phase
such that we can find triple interactions as we did for GS. The edge orienta-
tion could be done by first applying the orientation rule in Definition 2.11 and
then applying a similar set of rules like Meek’s orientation rules (Meek, 1995a).
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Alternatively, it was shown that SAT-based discovery algorithms can be easily
adapted to weaker assumptions than faithfulness (Zhalama et al., 2017), which
is an interesting avenue for future work.

2.7 Conclusion

In this chapter, we showed that we can relax adjacency faithfulness such that
we are able to detect edges which would be missed by assuming faithfulness
or adjacency faithfulness. In particular, we proposed 2-adjacency faithfulness,
which only assumes a dependence between a node X and a set of at most two
nodes that are part of the Markov blanket of X. We provided an in-depth
analysis of such dependencies and proposed a sound orientation rule, which
can infer part of the correct causal structure by detecting collider structures.
We complemented this rule with 2-orientation faithfulness, which assumes that
if a causal graph contains such collider structures, we will find that the corre-
sponding conditional dependence statements hold in P . As a proof of concept,
we showed that we can extend the GS algorithm to find Markov blankets under
strictly weaker assumptions than faithfulness.

Although we did not provide an empirical evaluation of our work, we can at
least validate that xor-type dependencies like the one shown in Figure 2.3 can
be detected by several independence tests, as we show in Chapter 4. Amongst
these tests is also the one we propose in the corresponding chapter. However,
the question is, how reliable can we find such dependencies or complex depen-
dencies in general, and how high are the chances that we find false positives?
In the following part, we attempt to answer these questions and evaluate condi-
tional independence testing via mutual information estimation on both discrete
data and mixed-type data.
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Part II

Conditional
Independence Testing

In this second part, we focus on the other key aspect in constraint-based causal
discovery, which is independence testing. The ideal test can pick up complex
dependencies, is data-efficient, that is, also detect dependencies on small sample
sizes and restrictive enough to not allow for false positives. A natural choice to
measure complex dependencies is via (conditional) mutual information (CMI),
which is non-parametric and in theory, can pick up any kind of dependence. For
discrete data, however, the empirical estimator for CMI overestimates depen-
dencies. To adjust for this bias, we propose to compute the involved entropies
via the normalized maximum likelihood instead of using the plug-in maximum
likelihood estimator, as described in Chapter 3. Only considering discrete data
might be theoretically appealing, but in practice, data can be discrete, continu-
ous or even consist of mixture variables that are partially discrete and partially
continuous. To also detect dependencies on such mixed data, we propose to
first learn an adaptive histogram model by discretizing the continuous part of
each random variable and then estimate CMI from the discretized data, as we
show in Chapter 4. Through empirical evaluation, we show that both these es-
timators perform well in practice and can pick up complex dependencies such
as xor-type relations, which we discuss the Part I.
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Chapter 3

Independence Testing
on Discrete Data

As we showcase in the first part, testing for conditional independence is a
crucial part of constraint-based causal discovery algorithms. For instance, in
a simple Markov chain X → Z → Y , X and Y may be dependent but are
rendered independent given Z. Vice versa, a collider structure such as X →
Z ← Y may introduce a dependence between two marginally independent
variables X and Y when conditioned on Z. A theoretically appealing way
to measure dependencies is through the non-parametric mutual information
(MI), since it has several important properties, such as the chain rule, the data
processing inequality, and—last but not least—it is zero if (and only if) two
random variables are independent of each other (Cover and Thomas, 2012). To
also measure conditional dependencies, as needed to detect collider structures,
we need to consider conditional mutual information (CMI).

On discrete data, however, the empirical estimator for conditional mu-
tual information is known to overestimate dependencies (Mandros et al., 2017;
Paninski, 2003) on small sample sizes. Consequently, if we only have an empir-
ical sample and do not know the true distribution, it is likely that the plug-in
estimator is not zero even if the data is generated independently. In extreme
cases, the empirical conditional entropy Ĥ(X | Y ) can even become zero if the
sample space of Y is larger than the number of samples (Mandros et al., 2017).
Thus, we could find a functional dependence between X and Y , although they
are independent. The same effect translates to CMI.

This chapter is based on Marx and Vreeken (2019a).

35
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To counter this bias of the empirical estimator, several suggestions have
been made in the past. Zhang et al. (2010) set a fixed threshold λ, which they
use to control for finite sample errors. However, this approach only works when
the sample size is known beforehand, as the bias of CMI decreases for larger
sample sizes. Most relevant for us are the approaches by Goebel et al. (2005)
and Suzuki (2016), which compute a threshold that is aware of both the sam-
ple size and the domains of the involved variables. While Goebel et al. (2005)
propose to set a threshold based on the gamma distribution, where the degrees
of freedom depend on the domain sizes of the variables, Suzuki (2016) chooses
a threshold based on the Minimum Description Length principle (Rissanen,
1978). Despite those, there also exist approaches that focus on reducing the
bias of estimating MI (Vinh et al., 2014; Mandros et al., 2017) or the Shan-
non entropy (Paninski, 2003; Han et al., 2015; Valiant and Valiant, 2011), or
different data types. The latter, we discuss in the next chapter.

In this thesis, we motivate our approach by considering algorithmic CMI
based on Kolmogorov complexity (Kolmogorov, 1965), which we introduce
in Section 3.1. In contrast to the empirical estimator for CMI, algorithmic
CMI does not only consider the empirical distribution, but also its complexity,
which leads to a more robust estimation. Although Kolmogorov complexity is
not computable, for discrete data, we can approximate it from above via the
minimax optimal normalized maximum likelihood (NML) (Shtarkov, 1987), to
which we state the definition in Section 3.2. Further, we discuss factorized
NML and quotient NML, which are both variations of NML for conditional
distributions. In Section 3.3, we show how to approximate algorithmic CMI
via different versions of NML and further prove that the corresponding esti-
mator, SCCI, is a strongly consistent estimator of CMI. Next, in Section 3.4,
we discuss the relation between SCCI and the corrections proposed by Goebel
et al. (2005) and Suzuki (2016). After that, we empirically analyze the sample
complexity of SCCI in Section 3.5. As our experiments suggest, SCCI needs
a sub-linear amount of samples to detect independencies. Last, we empirically
benchmark our test against state-of-the-art conditional independence tests for
discrete data and show that it improves the accuracy of constraint-based dis-
covery algorithms in Section 3.6. For reproducibility, we provide our test in
the SCCI R-package.

3.1 Conditional Independence Testing

In this section, we introduce the notation and give brief introductions to both
conditional independence testing using conditional mutual information (CMI),
as well as to the notion of algorithmic conditional independence, which is de-
fined through Kolmogorov complexity.
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Since in this part, we do not focus on differences between separations and
independencies, as we assume that faithfulness and the causal Markov condition
hold, we slightly abuse the notation and denote ⊥⊥P with ⊥⊥, whenever clear
from context.1 Under this setup, our goal is to test the conditional independence
hypothesis H0 : X ⊥⊥Y | Z against the general alternative H1 : X��⊥⊥Y | Z,
where X,Y and Z denote possibly multivariate discrete random vectors with
finite sample spaces (or domain sizes) X ,Y and Z. In the context of inde-
pendence testing in causal graphs, the random variables X and Y would be
univariate in most cases, while Z could refer to a set of random variables. To
not make the notation overly complicated, we will only use the set notation,
e.g. Z, when we want to clarify that we are referring to random variables that
represent multiple nodes in a causal graph.

A perfect independence test minimizes both the type I error, that is, falsely
rejecting the null hypothesis, as well as the type II error—i.e., falsely accepting
the null hypothesis. A high type I error will lead to finding spurious edges in
a causal discovery setup while having a high type II error means that we will
miss out on true edges. A well-known measure for conditional independence
is conditional mutual information (CMI) based on Shannon entropy (Cover
and Thomas, 2012). The Shannon entropy of a possibly multivariate discrete
random variable X with probability mass p is defined as

H(X) = −
∑
x∈X

p(x) log p(x) ,

and the conditional Shannon entropy of a discrete random variable X given Y
is defined as

H(X | Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)
p(y) .

Using these definitions, we can define conditional mutual information as

I(X;Y | Z) = H(X | Z)−H(X | Z, Y ) ,

where X ⊥⊥Y | Z iff I(X;Y | Z) = 0.
If we are given the true distribution of a random variable, CMI is ideal to

test for conditional independencies on discrete data. In practice, we need to
work with a limited sample size. On such a limited sample the plug-in estimator
Ĥ tends to underestimate conditional entropies, and as a consequence, condi-
tional mutual information is overestimated—even for completely independent
data, as the following example shows.

1Note that assuming faithfulness, every independence implies a d-separation.
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Example 3.1 Given three random variables X1, X2 and Y , with respective
domain sizes 1 000, 8 and 4. Suppose that we are given 500 samples drawn from
their joint distribution and find that Ĥ(Y | X1) = Ĥ(Y | X2) = 0. That is, Y
is a deterministic function of X1, as well as of X2. However, as |X1| = 1 000,
and given only 500 samples, it is likely that a large fraction of values v ∈ X1
is only assigned to a single data point. Thus, finding that Ĥ(Y | X1) = 0 is
likely due to the limited amount of samples, rather than that it depicts a true
(functional) dependency, while Ĥ(Y | X2) = 0 is more likely to be due to a true
dependency, since the number of samples n� |Y| × |X2|—i.e., the support for
each value in the sample space is � 1.

A possible solution is to set a threshold t such that X ⊥⊥Y | Z if Î(X;Y |
Z) ≤ t. Setting t is, however, not an easy task, as t is dependent on the quality
of the entropy estimate, which by itself strongly depends on the complexity of
the distribution and the given number of samples. Instead, to avoid this prob-
lem altogether, we will base our test on the notion of algorithmic independence.

3.1.1 Algorithmic Independence

To define algorithmic independence, we first need to briefly introduce to Kol-
mogorov complexity (Kolmogorov, 1965; Li and Vitányi, 2019).

Definition 3.1 ((Prefix) Kolmogorov Complexity) The (prefix) Kolmo-
gorov complexity of a finite binary string x is the length of the shortest self-
delimiting binary program p∗ for a universal prefix Turing machine U that
generates x, and then halts. Formally, we have

K(x) = min{|p| | p ∈ {0, 1}∗,U(p) = x} .

In other words, program p∗ is the most succinct algorithmic description of x, or
the ultimate lossless compressor for that string. Importantly, the above defini-
tion defines prefix Kolmogorov complexity. There also exists plain Kolmogorov
complexity, for which the program does not have to be self-delimiting, that is,
it is assumed that the machine knows where codewords start and end. In this
chapter, this distinction does not make a difference, however, for consistency
throughout the thesis, we use prefix Kolmogorov complexity.

To define algorithmic independence, we will also need conditional (prefix)
Kolmogorov complexity, that is,

K(x | y) = min{|q| | q ∈ {0, 1}∗,U(y, q) = x} .

In essence, we still try to find the shortest program that outputs x, but we get y
as an additional input. Similar to Shannon entropy, providing more information
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can only reduce the length of the program and hence K(x | y) ≤ K(x) +O(1),
where the constant does not depend on x or y. It is common to avoid writing
the additional constant complexity term and instead write

+
≤ or += to indicate

that the inequality respectively the equality holds up to an additive constant.
By definition, Kolmogorov complexity makes maximal use of any effective

structure in x; structure that can be expressed more succinctly algorithmically
than by printing it verbatim. As such it is the theoretical optimal measure for
complexity. In the context of our problem, instead of purely considering the sta-
tistical dependence between random variables, it also considers the complexity
of the generating mechanism that induces the dependence.

Let us consider Example 3.1 again and let x1, x2, and y be the binary strings
representing of the samples drawn from X1, X2 and Y . As Y can be expressed
as a deterministic function of X1 or X2, K(y | x1) and K(y | x2) reduce to the
programs describing the corresponding function. As the domain size of X2 is 8
and |Y| = 4, the program that describes the function from X2 to Y only has to
describe the mapping from 8 to 4 values, which will be shorter than describing
a mapping from X1 to Y , since |X1| = 1 000—i.e., K(y | x2)

+
≤ K(y | x1) in

contrast Ĥ(Y | X1) = Ĥ(Y | X2).
To reject X ⊥⊥Y | Z, we test whether providing information about Y and

Z leads to a shorter program than only knowing Z (Chaitin, 1975).

Definition 3.2 (Algorithmic CMI) Given the strings x, y and z, we write
z∗ to denote the shortest program for z, and analogously (z, y)∗ for the shortest
program for the concatenation of z and y. Algorithmic conditional mutual
information is defined as

IA(x; y | z) = K(x | z∗)−K(x | (z, y)∗) .

Similar to CMI, we say that x is algorithmically independent of y given
z iff IA(x; y | z) += 0. Due to the halting problem Kolmogorov complexity is,
however, not computable nor approximable up to arbitrary precision (Li and
Vitányi, 2019). The Minimum Description Length (MDL) principle (Grünwald,
2007) provides a statistically well-founded approach to approximate Kolmogo-
rov complexity from above.

3.1.2 MDL a Brief Primer

The Minimum Description Length (MDL) principle (Grünwald, 2007; Rissanen,
1978) is a practical variant of Kolmogorov Complexity. Simply put, instead of
all programs, it considers only those programs that we know output x and
halt. Intuitively, given a collection of models, also called a model class M,
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MDL identifies the model M∗ ∈ M, which compresses the given data D best.
Formally, our goal is to find

M∗ = argmin
M∈M

L(D|M) + L(M),

where L(M) is the length in bits needed to describe the modelM or identifyM
within the model classM, and L(D |M) is the length in bits of the description
of data D given M . Such a model class can be defined very generally. As we
will see below, a model class could for example be the set of all parametric
distributions with a parameter vector θ consisting of k entries. We could even
specify this class further and only consider multinomials. Another example of
a model class, as we will see in the next chapter, can be the set of all possible
discretizations of a random variable w.r.t. a given precision ε.

The general concept of splitting up the encoding into the code length of the
data given the model and the code length of the model is also known as two-
part MDL. There also exists one-part, or refined MDL, where we encode data
w.r.t. to whole model class. Refined MDL is superior as it avoids arbitrary
choices in the description language L, but in practice it is only computable
for certain model classes, such as multinomials. Given infinite data the model
costs degenerate to an additive logarithmic term, which is independent of the
data. Hence given infinite data, two-part MDL behaves similar to refined MDL.
Note that in either case we are only concerned with code lengths—our goal is
to measure the complexity of a dataset under a model class, not to actually
compress it (Grünwald, 2007).

In the following section, we will introduce a refined MDL code for multi-
nomials and use it to approximate algorithmic CMI.

3.2 Stochastic Complexity for Multinomials

In the following, we will define stochastic complexity for multinomials, which
belongs to the class of refined MDL codes. On a high level, we will define
stochastic complexity as the negative logarithm of the normalized maximum
likelihood (NML), which has several nice properties.

Let X be a discrete random variable with |X | = k, where we assume that
X can be modelled by a parametric distribution Pθ, with parameter vector
θ = (θ1, . . . , θk). Further, we denote all distributions that can be described
with such a k-dimensional parameter θ by Mk. Given a sample xn of n data
points drawn w.r.t. Pθ we denote the maximum likelihood (ML) estimate of θ
w.r.t. to xn by θ̂(xn). Shtarkov (1987) defined the NML density function as

fNML(X | Mk) =
fθ̂(xn)(xn)
CnMk

, (3.1)
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where fθ̂(xn) is the empirical density function for X based on the maximum
likelihood estimate θ̂(xn) under the model classMk. The normalizing factor,
or regret CnMk

, relative to the model classMk is defined as

CnMk
=

∑
x̃n∈Xn

fθ̂(x̃n)(x̃
n) .

The sum iterates over every possible sample x̃n of length n and sample space
X , and for each considers the ML estimate for that data given model classMk.
Whenever clear from context, we will dropMk to simplify the notation—i.e.,
we write PNML(xn) for PNML(xn | Mk) and let Cnk to refer to CnMk

.
Notably, as shown by Rissanen (2001) the NML distribution incorporates

all information in the data that can be extracted with the models in the model
classMk. Moreover, the NML distribution is the optimal encoding w.r.t. the
model class even if the data was generated by a model outside Mk. The
latter was formally shown by Rissanen (2001), who proved that besides solving
Shtarkov’s minimax problem (Shtarkov, 1987), the NML distribution is also
the solution to the minimax problem

inf
q

sup
g
Eg log

fθ̂(xn)(xn)
q(xn) ,

where the distributions q and g can range over virtually any distribution—i.e.,
g can be a distribution outside the model class. Since in this thesis, we only use
NML as an encoding, we refer the reader that is interested in the optimality
properties of NML to Rissanen (2001).

Important for us is that for discrete data, we can assume the model class
to be the class of multinomial distributions. Under this assumption, we can
rewrite Equation (3.1) as (Kontkanen and Myllymäki, 2007)

fNML(xn) =
∏k
j=1

( cj

n

)cj

Cnk
,

where cj is the empirical frequency of the j-th value in the sample space X in
xn. Respectively we can compute the regret as

Cnk =
∑

c1+···+ck=n

n!
c1! · · · ck!

k∏
j=1

(cj
n

)cj

.

Fortunately, Mononen and Myllymäki (2008) derived a formula to calculate the
regret in sub-linear time, meaning that the whole formula can be computed in
linear time w.r.t. n.
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Building upon the definition of fNML, we obtain the stochastic complexity
of a discrete random variable X based on a sample xn by simply taking the
negative logarithm2—i.e.,

SC(X) = − log fNML(xn) ,
= nĤ(X) + log Cnk .

As a result, we see that the stochastic complexity decomposes into n times the
empirical entropy and the log regret, which is also called parametric complexity.

3.2.1 Conditional Stochastic Complexity

Conditional stochastic complexity can be defined in different ways. We consider
factorized normalized maximum likelihood (fNML) (Silander et al., 2008) and
quotient normalized maximum likelihood (qNML) (Silander et al., 2018), which
are equivalent except for the regret terms.

Given an empirical sample over two random vectors X and Y , conditional
stochastic complexity using fNML is defined as

SCf (X | Y ) = −
∑
y∈Y

log fNML(xn | yn = y)

= nĤ(X | Y ) +
∑
y∈Y

log Ccy

|X | ,

where cy corresponds to the number of samples for which Y = y. Analogously,
we define conditional stochastic complexity using qNML (Silander et al., 2018)

SCq(X | Y ) = − log fNML(xn, yn)
fNML(yn)

= nĤ(X | Y ) + log
Cn|X |·|Y|
Cn|Y|

.

In the following, we refer to conditional stochastic complexity as SC and
only use SCf or SCq whenever there is a conceptual difference. Further, we
denote to the regret term of SC(X) as R(X) = logCn|X | and respectively refer

2As is common for MDL encodings, we want to obtain a code-length in terms of
bits and hence compute the logarithm with respect to basis 2 and define 0 log 0 = 0.
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to the regret of SC(X | Y ) as R(X | Y ), where

Rf (X | Y ) =
∑
y∈Y

log Ccy

|X | and

Rq(X | Y ) = log
Cn|X |·|Y|
Cn|Y|

.

Next, we show that Cnk is log-concave in n, which is a property we need
to guarantee that our estimator is always smaller or equal than the empirical
estimator Î(X;Y | Z).

Lemma 3.1 For n ≥ 1, the regret Cnk of the multinomial stochastic complexity
of a random variable with a domain size of k ≥ 2 is log-concave in n.

For readability, we postpone the proof of Lemma 3.1 to Appendix A.4. In
the following theorem, we present the first implication of this Lemma.

Theorem 3.1 Given three discrete random variables X, Y and Z with domain
sizes ≥ 2, it holds that R(X | Z) ≤ R(X | Z, Y ).

Proof: We start by proving the statement for Rf . Consider that Z contains
p distinct value combinations {r1, . . . , rp}. If we add Y to Z, the number of
distinct value combinations, {l1, . . . , lq}, increases to q, where p ≤ q. Conse-
quently, to show the claim, it suffices to show that

p∑
i=1

log Cci

k ≤
q∑
j=1

log Ccj

k (3.2)

where
∑p
i=1 ci =

∑q
j=1 cj = n. Next, consider w.l.o.g. that each value combi-

nation {ri}i=1,...,p is mapped to one or more value combinations in {l1, . . . , lq}.
Hence, Equation (3.2) holds, if log Cnk is sub-additive in n. Since we know
from Lemma 3.1 that the regret term is log-concave in n (since both p, q ≥ 2),
sub-additivity follows by definition.

Next, consider Rq. Let k, p and q be the domain sizes of X, Y and Z, we
need to show that

Rq(X | Z) ≤ Rq(X | Z, Y )

⇔ log
Cnkq
Cnq
≤ log

Cnkpq
Cnpq

.
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We know from Silander et al. (2018) that for p ∈ N, p ≥ 2, the function q 7→ Cn
p·q
Cn

q

is increasing for every q ≥ 2. This suffices to prove the statement above. �

3.3 Stochastic Complexity based Conditional Independence

With the above, we can formulate our new conditional independence test, which
we will refer to as the Stochastic Complexity based Conditional Independence
criterium, or SCCI.

Definition 3.3 (SCCI) Let X, Y and Z be discrete random vectors, SCCI
is defined as

SCCI(X;Y | Z) = SC(X | Z)− SC(X | Z, Y )
= nÎ(X;Y | Z) +R(X | Z)−R(X | Z, Y ) . (3.3)

Further, we say that X ⊥⊥Y | Z if SCCI(X;Y | Z) ≤ 0.

From the second row in Equation 3.3, we see that the regret terms formulate
a natural threshold tSC for the empirical estimate of CMI, where tSC = R(X |
Z, Y ) − R(X | Z). From Theorem 3.1 we know that if we instantiate SCCI
using fNML or qNML, we are guaranteed that R(X | Z, Y ) − R(X | Z) ≥ 0.
Hence, Y has to provide a significant gain such that SCCI(X;Y | Z) > 0—i.e.,
we need Ĥ(X | Z)− Ĥ(X | Z, Y ) > tSC/n. In other words, if

Î(X;Y | Z) ≤ tSC

n
,

we would consider X and Y to be independent given Z. Thus, it is obvious that
no matter what formulation of conditional stochastic complexity we choose,
SCCI is more restrictive than the empirical estimator of CMI.

3.3.1 Factorized SCCI

To formulate our independence test based on factorized normalized maximum
likelihood, we have to revisit the regret terms again. In particular, Rf (X | Z)
is only equal to Rf (Y | Z), when the domain size of X is equal to the domain
of Y . Further, Rf (X | Z) − Rf (X | Z, Y ) is not guaranteed to be equal to
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Rf (Y | Z) − Rf (Y | Z,X). Consequently, our test would not be symmetric.
Hence, we formulate SCCI using fNML as

SCCIf (X;Y | Z) = nÎ(X;Y | Z)
+ max{R(X | Z)−R(X | Z, Y ),R(Y | Z)−R(Y | Z,X)} .

An alternative way to obtain a symmetric test using fNML would be to
base the test on an equivalent formulation of (algorithmic) CMI, that is

IA(x, y | z) = K(x | z∗)−K(x | (z, y)∗)
+= K(x | z∗) +K(y | z∗)−K((x, y) | z∗) . (3.4)

If we approximate this alternative formulation using fNML, we get

SCCIfs(X;Y | Z) = SCf (X | Z) + SCf (Y | Z)− SCf (X,Y | Z) .

By writing down the regret terms, we see that SCCIfs is symmetric. In par-
ticular, if we only consider the regret terms, we get∑

z∈Z

(
Ccz

|X | + C
cz

|Y| − C
cz

|X ||Y|

)
.

All regret terms depend on the factorization given Z. For the previous formu-
lation, however, we compare the factorizations of X given only Z to the one
given Z and Y , or respectively the factorization of Y given only Z to the one
given Z and X. Thus, for SCCIf all regret terms correspond to the same do-
main, either to the domain of X or Y , whereas for SCCIfs the regret terms are
based on X, Y and the Cartesian product of them. Due to the latter, SCCIfs
is more conservative than SCCIf , as we will show in our experiments. Apart
from the fact that SCCIf is more robust in the high-dimensional setup, both
variants have a similar performance, which is why we mainly consider SCCIf
in the experiments.

3.3.2 Quotient SCCI

To formulate SCCI using quotient normalized maximum likelihood, we can
straightforwardly replace SC with SCq in the independence criterium—i.e.

SCCIq(X;Y | Z) = SCq(X | Z)− SCq(X | Z, Y ) .

By writing down the regret terms for SCCIq(X;Y | Z) and SCCIq(Y ;X | Z),
we can see that they are equal and hence SCCIq is symmetric. Another nice
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property of the qNML formulation is that we would get an equivalent formu-
lation, if we were to base SCCIq on the alternative formulation of algorithmic
(CMI) that we showed in Equation 3.4. The only shortcoming of this formula-
tion is that similar to SCCIfs, SCCIq is more restrictive than SCCIf and thus
does not perform as well on high-dimensional data.

Another way to instantiate SCCI, is to use the asymptotic approximation
of stochastic complexity (Rissanen, 1996), which was done by Suzuki (2016) to
approximate CMI. In practice, the corresponding test (JIC) is, however, very
restrictive, which leads to a low recall.

Next, we will show that SCCI is a consistent estimator of CMI and hence in
the sample limit able to reliably distinguish (conditional) independencies from
dependencies. Thereafter, we compare SCCI to CMI using the threshold based
on the gamma distribution (Goebel et al., 2005), and empirically evaluate the
sample complexity of SCCI on a limited sample.

3.3.3 SCCI as a Consistent Estimator of CMI

In this part, our goal is to show that 1
nSCCI approaches the true conditional

mutual information, as n→∞. That is, we need to show that

1
n

SCCI = Î + tSC

n

approaches CMI. Since it is known that Î → I when n→∞ almost surely (An-
tos and Kontoyiannis, 2001), it remains to prove that tSC/n approaches zero,
which we will show below.

Theorem 3.2 Given three discrete random variables X, Y and Z, we have
that limn→∞

1
nSCCI(X;Y | Z) = I(X;Y | Z), almost surely.

Proof: To show the claim, we need to show that

lim
n→∞

Î(X;Y | Z) + 1
n

(R(X | Z)−R(X | Z, Y )) = I(X;Y | Z) .

The proof for any alternative formulation of SCCI follows equivalently. Since
it is known that Î → I when n → ∞ almost surely (Antos and Kontoyiannis,
2001), we need to show that 1

n (R(X | Z) − R(X | Z, Y )) goes to zero as n
goes to infinity. From Rissanen (1996) we know that log Cnk asymptotically be-
haves like k−1

2 logn + O(1), i.e., only grows logarithmically w.r.t. n. Hence,
1
nR(X | Z) and 1

nR(X | Z, Y ) will approach zero if n→∞. �
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3.4 Link to Related Estimators

Goebel et al. (2005) estimate conditional mutual information through a second-
order Taylor series and show that their estimator can be approximated with
the gamma distribution. In particular, they state that

Î(X;Y | Z) ∼ Γ
(
|Z|
2 (|X | − 1)(|Y| − 1), 1

n ln 2

)
,

where X , Y and Z refer to the domains of X, Y and Z. This means by
selecting a significance threshold α, we can derive a threshold for CMI based
on the gamma distribution—for convenience we call this threshold tΓ. In the
following, we compare tΓ against tSC = R(X | Z, Y )−R(X | Z).

First of all, for qNML, like tΓ, tSC depends purely on the sample size and
the domain sizes. However, we consider the difference in complexity between
only conditioning X on Z and the complexity of conditioning X on Z and
Y . For fNML, we have the additional aspect that the regret terms for both
R(X | Z) and R(X | Z, Y ) also relate to the probability mass function of Z,
and respectively the Cartesian product of Z and Y . Recall that for k being the
size of the domain of X, we have that

Rf (X | Z) =
∑
z∈Z

log Ccz

k .

As Cnk is log-concave in n (Lemma 3.1), Rf (X | Z) is maximal if Z is uniformly
distributed—i.e., it is maximal when H(Z) is maximal. This is a favourable
property, as the probability that Z is equal to X is minimal for uniform Z, as
stated in the following Lemma.

Lemma 3.2 (Cover and Thomas (2012)) If X and Y are i.i.d. with en-
tropy H(Y ), then P (Y = X) ≥ 2−H(Y ) with equality if and only if Y has a
uniform distribution.

To elaborate on the link between tΓ and tSC, we compare them empirically.
In addition, we compare the results to the threshold provided from the JIC test.
First, we compare tΓ with α = 0.05 and α = 0.001 to tSC/n for fNML, qNML,
and JIC on fixed domain sizes, with |X |=|Y|=|Z|=4 and varying sample sizes
(see Figure 3.1). For fNML we computed the worst case threshold by modelling
Z as uniformly distributed. In general, the behaviour for each threshold is
similar, whereas qNML, fNML and JIC are more restrictive than tΓ.

Next, we keep the sample size fixed at 500 and increase the domain size
of Z from 2 to 200, to simulate a multivariate random vector. Except to
JIC, which seems to overpenalize in this case, we observe that fNML is most
restrictive until we reach a plateau when |Z| = 125. This is due to the fact
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Figure 3.1: Threshold for CMI using fNML, qNML, JIC and the gamma distribution with
α = 0.05 (solid) and α = 0.001 (dashed) for different sample sizes and fixed domain sizes
equal to four (left) and fixed sample size of 500 and changing domain sizes (right).

that |Z||Y| = 500 and hence each data point is assigned to one value in the
Cartesian product. We have that Rf (X | Z, Y ) = |Z||Y|C1

k.
Note that for the thresholds that we computed for fNML we pretend that

Z and Y are divided equally over the joint domain |Y||Z|. In practice, this
requirement may not be fulfilled, and hence the regret term for fNML can be
smaller. In addition, it is possible that the number of distinct value combina-
tions for Y and Z that we observe in the sample is smaller than their Cartesian
product, which also reduces the regret for the fNML formulation.

3.5 Empirical Sample Complexity

In this section, we empirically evaluate the sample complexity of SCCIf ,
where we focus on the type I error, i.e., H0 : X ⊥⊥Y | Z is true and hence
I(X;Y | Z) = 0. We generate data accordingly and draw samples from the
joint distribution, where we set P (x, y, z) = 1

|X ||Y||Z| for each value configura-
tion (x, y, z) ∈ X ×Y ×Z. Per sample size we draw 1 000 data sets and report
the average absolute error for SCCIf and the empirical estimator of CMI. We
show the results for two cases in Figure 3.2. We observe that in contrast to the
empirical estimator Î, SCCIf quickly approaches zero, and that the difference
between both estimators is especially large if we increase the sample space.

If we take a second look at those plots, we see that SCCIf only needs 180
samples to reach an average error smaller than 0.05 (in both), while the size
of the domain space for the second experiment is |X ||Y||Z| = 256. Ideally, we
would like to compute the number of samples that is needed for a reliable result
as a function of the domain sizes of the involved variables. Formally, we would
like to know the number of samples n that is required such that

P (|SCCIf (X;Y | Z)/n− I(X;Y | Z)| ≥ ε) ≤ δ .
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Figure 3.2: Error for SCCIf and Î compared to I, where I(X;Y |Z) = 0. Left: |X | =
|Y| = 4 and |Z| = 4. Right: |X | = |Y| = 4 and |Z| = 16. Values smaller than 10−5 are
truncated to 10−5.

As a theoretical analysis is very challenging, we try to derive an empirical
bound for ε = δ = 0.05.

We generate data according to the independence hypothesis like above and
conduct empirical evaluations for varying domain sizes of X, Y and Z, where
we define w.l.o.g. |X | ≥ |Y|, as the test is symmetric. For each combination
of domain sizes, we compute P (|SCCIf (X;Y | Z)/n − I(X;Y | Z)| ≥ ε) =
P (SCCIf (X;Y | Z)/n ≥ 0.05) ≤ 0.05 as follows: We start with a small n, e.g.
two, generate 1 000 data sets and check if over those data sets P (SCCIf (X;Y |
Z)/n ≥ 0.05) ≤ 0.05 holds. If not, we increase n by the minimum domain size
of X, Y and Z. We repeat this procedure until we reach an n, for which
P (SCCIf (X;Y | Z)/n ≥ 0.05) ≤ 0.05 holds and report this n.

In Figure 3.3 we plot those values for varying either the domain sizes of
X, Y or Z independently or jointly. From these evaluations, we handcrafted
a formula to show that it is possible to find an n that is sub-linear w.r.t. the
domain sizes of X, Y and Z for which empirically P (SCCIf (X;Y | Z)/n ≥
0.05) ≤ 0.05 always holds. Hence, we additionally plot for each domain size
the corresponding suggested bound for the sample complexity w.r.t. the for-
mula 35 + 2|X ||Y| 23 (|Z| + 1). We observe that the empirical values for n are
always smaller than the values provided by this formula. Despite this positive
result, we want to emphasize that this is only an example function to show
the existence of a sub-linear bound for this data. From the plots we would
expect that there exists an even tighter bound, however, we did not optimize
for that. For future work we would like to theoretically validate a sub-linear
bound function.
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Figure 3.3: Estimated sample complexities for independently generated data s.t.
P (|SCCIf/n − I| ≥ 0.05) ≤ 0.05. The suggested bound is calculated as 35 +
2|X ||Y| 23 (|Z| + 1). For all setups, increasing the domain size of X, Y , Z together
or independently, the bound function is larger than the empirical value.

3.6 Experiments

In this section, we empirically evaluate SCCI based on fNML and compare
it to the alternative formulation using qNML. To not overload the plots, we
postpone most comparisons to SCCIfs to Appendix A.5. In addition, we com-
pare our results to the G2 test from the pcalg R package (Kalisch et al., 2012),
CMIΓ (Goebel et al., 2005) and JIC (Suzuki, 2016).

3.6.1 Identifying Conditional (In)dependencies

To test whether SCCI can reliably identify (in)dependencies, we generate data
according to the graph shown in Figure 3.4, where we assign the values of F
uniformly w.r.t. to its domain space and model a dependency from X to Y by
uniformly assigning a mapping form X to Y . We set the domain size for each
variable to four and generate data under various samples sizes (100–2 500) and
additive uniform noise settings (0%–95%). For each setup we generate 200 data
sets and assess the accuracy. We report the correct identifications of F ⊥⊥T |
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F

D

E

T

Figure 3.4: [d-Separation] Given the above causal DAG, F is d-separated from T given
D,E and hence by CMC it holds that F ⊥⊥T | {D,E}. Assuming that faithfulness holds,
we additionally get that D��⊥⊥T | {E,F} as well as E��⊥⊥T | {D,F}.

{D,E} as the true positive rate and the false identifications D⊥⊥T | {E,F}
or E⊥⊥T | {D,F} as false positive rate.3 For the G2 test and CMIΓ we select
α = 0.05, however, we found no significant differences for α = 0.01.

We show the accuracy of the best performing competitors in Figure 3.5
and report the remaining results as well as the true and false positive rates for
each approach in Appendix A.5. Overall, we observe that SCCIf performs near
perfect for less than 70% noise, while for ≥ 70% additive noise, the type II error
increases. Those results are even better than expected as from our empirical
bound function we would suggest that at least 378 samples are required to
have reliable results for this data set. SCCIq has a similar but slightly worse
performance. In contrast, CMIΓ only performs well for less than 30% noise and
fails to identify true independencies after more than 30% noise has been added,
which leads to a high type I error. The G2 test has problems with sample sizes
up to 500 and performs inconsistently for more than 35% noise.

3.6.2 Changing the Domain Size

Using the same data generator as above, we now consider a different setup. We
fix the sample size to 2 000 and use only 10% additive noise—a setup in which
all tests performed well. What we change is the domain size of the source F
from 2 to 20 while also restricting the domain sizes of the remaining variable
to the same size. For each setup we generate 200 data sets.

From the results in Figure 3.6 we can clearly see that only SCCIf performs
well for larger domain sizes, whereas all other test have a false positive rate of
100% for |F| > 10, resulting in an accuracy of 50%.
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Figure 3.5: [Higher is better] Accuracy of SCCIf , SCCIq, CMIΓ and G2 for identifying
d-separation using varying samples sizes and additive noise percentages, where a noise level
of 0.95 refers to 95% additive noise. Note that for 0% noise the relation is deterministic.
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Figure 3.6: D-separation example with 2 000 samples and 10% noise. We gradually
increase the domain size of the source node F , which propagates through the graph.
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Figure 3.7: Left: Percentage of parents identified, where we start with only two parents
and increase the number of parents to seven. Right: Percentage of parents identified,
where we always use three parents and add independently generated noise variables to
the conditioning set.

3.6.3 Identifying Multiple Parents

In this experiment, we test the type II error. This we do by generating a certain
number of parents PaT from which we generate a target node T . To generate
the parents, we use either a

• uniform distribution with domain size d ∼ Unif(2, 5),
• geometric distribution with parameter p ∼ Unif(0.6, 0.8),
• hyper-geometric distribution with parameter K ∼ Unif(4, 6), or
• Poisson distribution with parameter λ ∼ Unif(1, 2).

Given PaT , we generate T as a mapping from the Cartesian product of the
parents to T plus 10% additive uniform noise. Then we generate for each
distribution 200 data sets with 2 000 samples, per number of parents k ∈
{2, . . . , 7}. We apply SCCIf , SCCIq, CMIΓ and G2 on each data set and check
∀P ∈ PaT if the corresponding test correctly identifies that P��⊥⊥T | PaT \{P}.

We plot the averaged results for each k in Figure 3.7. It can clearly be
observed that SCCIf performs best and still has near to 100% accuracy for
seven parents. Although not plotted here, we can add that the competitors
struggled most with the data drawn from the Poisson distribution. We assume
that this is due to the fact that the domain sizes for these data sets were on
average larger than for the remaining distributions.

In the next experiment, we generate parents and target in the same way,
whereas we now fix the number of parents to three. In addition, we generate
k ∈ {1, . . . , 7} random variables N that are drawn jointly independent from T
and PaT and are uniformly distributed. Then we assess whether the tests under
consideration can still identify for each P ∈ PaT that P��⊥⊥T | N ∪ PaT \{P}.

3For 0% noise all functions are deterministic, which leads to a faithfulness violation
and thus D��⊥⊥T | {E,F} and E��⊥⊥T | {D,F} does not hold. Consequently, an
accuracy of 50% is the best we can hope for in this setting.
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Figure 3.8: [Higher is better] F1 score on undirected edges for stable PC using SCCIf ,
SCCIq, JIC, CMIΓ and G2 on the Alarm network for different sample sizes.
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Figure 3.9: [Higher is better] Precision (left) and recall (right) for PCMB using SCCIf ,
SCCIq, JIC, CMIΓ and G2 to identify all Markov blankets in the Alarm network for
different sample sizes.

The averaged results for G2, JIC, SCCIf , SCCIq and CMIΓ are plotted
in Figure 3.7. Notice that the results for G2 are barely visible, as they are
close to zero for each setup. In general, the trend that we observe is similar to
the previous experiment, except that the differences between SCCIf and its
competitors are even larger.

3.6.4 Causal Discovery with SCCI

Last, we evaluate how SCCI performs in practice. Thus, we run the stable PC
algorithm (Kalisch et al., 2012; Colombo and Maathuis, 2014) on the Alarm
network (Scutari and Denis, 2014) from which we generate data with different
sample sizes and average over the results of ten runs for each sample size.
We equip the stable PC algorithm with SCCIf , SCCIq, JIC, CMIΓ and the
default, the G2 test, and plot the average F1 score over the undirected graphs
in Figure 3.8. We observe that our proposed test, SCCIf outperforms its
competitors by a large margin, especially for n ≤ 1 000.
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As a second practical test, we compute the Markov blanket for each node
in the Alarm network and report the precision and recall. To find the Markov
blankets, we run the PCMB algorithm (Peña et al., 2007) with the four inde-
pendence tests. We plot the precision and recall for each variant in Figure 3.9.
We observe that again SCCIf performs best—especially with regard to recall.
As for Markov blankets of size m it is necessary to condition on at least m− 1
variables, the advantage in recall can be linked back to SCCIf being able to
correctly detect dependencies for larger domain sizes.

3.7 Conclusion

In this chapter, we introduced SCCI, a conditional independence test for dis-
crete data. We derived SCCI from algorithmic conditional independence and
showed how to instantiate it using different variants of NML. In the sample
limit, we showed that SCCI is a strongly consistent estimator of CMI, while
given only a few samples, it outperforms state-of-the-art independence tests.
To examine the efficiency of SCCI further, we empirically analyzed its sample
complexity for detecting independencies. Our analysis suggests that a sub-
linear amount of samples is sufficient to find independencies, however, formally
proving this result is out of the scope of this thesis. Since not all interesting
data is discrete, we consider the more general case in the next chapter.
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Chapter 4

Towards Independence
Testing on Mixture Data

In the previous chapter, we showed how to estimate conditional mutual infor-
mation on discrete data, however, not all data is discrete. In many-real world
settings, the data may be continuous, may concern a mix of discrete and con-
tinuous random variables, such as age (in years) and height, or even random
variables that can individually consist of a mixture of discrete and continuous
components. For the latter, consider the photoelectric effect, where electrons
are emitted after electromagnetic radiation, such as light, hits a surface. Below
a certain level of radiation, no reaction is happening, while after this thresh-
old, the reaction is put into motion.1 Hence, if we were to measure the joint
distribution of both quantities, the variable quantifying the rate of the reaction
would be such a mixture variable.

While estimating (conditional) mutual information for purely discrete or
continuous data is a well-studied problem (Cover and Thomas, 2012; Darbellay
and Vajda, 1999; Gao et al., 2016; Han et al., 2015; Paninski and Yajima,
2008), not much work has focused on mixture random variables. Although
there exist several discretization-based methods that can estimate MI for a
mix of discrete and continuous random variables (Cabeli et al., 2020; Mandros
et al., 2020; Suzuki, 2016), so far, only methods based on k-nearest neighbor
(kNN) estimation were shown to work on mixed variables, which may consist
of discrete-continuous mixture variables (Gao et al., 2017; Mesner and Shalizi,

This chapter is based on Marx, Yang, and van Leeuwen (2021b).
1Thanks to Lukas Klemmer for bringing up this example.
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2020; Rahimzamani et al., 2018).
Regardless of the success of kNN-based estimators, discretization-based

approaches have attractive properties, e.g., with regard to global interpreta-
tion. That is, a natural and understandable way to discretize a continuous
random variable is via creating a histogram model, where we cut the sam-
ple space of the continuous variable into multiple non-overlapping parts called
bins (Scott, 2015), or (hyper)rectangles for multi-dimensional variables. Within
a bin, we consider the distribution to be constant, which allows us to estimate
the density function via Riemann integration by making the bins smaller and
smaller (Cover and Thomas, 2012). This definition, however, is less straight-
forward when discrete-continuous mixture variables are involved.

We approach this problem as follows: we first extend the definition of
entropy for a univariate discrete-continuous mixture variable given by Politis
(1991) to multivariate variables. Using this definition, we show that CMI for
mixed random variables can be written as a sum of entropies that are well-
defined through the Radon-Nikodym derivate (see Section 4.1). Exploiting
this property, we propose a consistent CMI estimator for such data that is
based on adaptive histogram models in Section 4.2. To efficiently learn adaptive
histograms from data, in Section 4.3, we define a model selection criterion based
on the Minimum Description Length principle (Rissanen, 1978). Subsequently,
we propose an iterative greedy algorithm that aims to obtain the histogram
model that minimizes the proposed MDL score in Section 4.4. We discuss
related work in Section 4.5, and in Section 4.6, we empirically show that our
method performs favorably to state-of-the-art estimators for mixed data and
can be used in a causal discovery setting.

4.1 Entropy for Mixed Random Variables

Formally, we consider multi-dimensional mixed random variables, of which any
individual dimension can be discrete, continuous, or a discrete-continuous mix-
ture. Further, we call a vector of such mixed random variables a mixed random
vector. For a mixed random vector (X,Y ), where X and Y are possibly multi-
variate, we cannot use the same definition of entropy or mutual information, as
in the previous section. Instead, we need to adopt the most general definition
of mutual information (MI), i.e., the measure-theoretic definition:

I(X;Y ) =
∫
X×Y

log dPXY
dPXPY

dPXY ,

where dPXY /(dPXPY ) is the Radon-Nikodym derivative, dPXY the joint mea-
sure, and PXPY the product measure. It has been proven that PXPY is ab-
solutely continuous with respect to PXY (Gao et al., 2017), i.e., PXY = 0
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whenever PXPY = 0; and therefore, such a Radon-Nikodym derivative always
exists and I(X,Y ) is well-defined. This measure-theoretic definition can be
extended to CMI using the chain rule: I(X;Y | Z) = I(X; {Y,Z})− I(X;Z).

As we saw in the previous chapter, CMI for purely discrete data can be
written as a sum of (conditional) entropies, e.g. I(X;Y | Z) = H(X,Z) +
H(Y,Z) − H(X,Y, Z) − H(Z). The same holds for purely continuous data.
What is not clear, however, is if this formula also holds when (X,Y, Z) contains
discrete-continuous mixture random variables. We investigate this problem
in two steps. We first define the measure-theoretic entropy for a (possibly
multi-dimensional) discrete-continuous mixture random variable and prove it
to be well-defined, though previous work claimed the opposite (Gao et al.,
2017). Second, using this definition, we prove that (conditional) MI for a mixed
random vector can be written as the sum of measure-theoretic entropies, just
like purely continuous or discrete random vectors.

4.1.1 A Generalized Definition of Entropy

The measure-theoretic entropy is defined only for univariate random vari-
ables (Politis, 1991). For this definition, we give an explicit proof that such a
univariate measure-theoretic entropy is well-defined, and then extend its defi-
nition to the multi-dimensional case, which we prove is also well-defined.

Generalized One-Dimensional Entropy

We start off by reviewing the existing definition for the one-dimensional case
(Politis, 1991). Given a one-dimensional random variable X

H(X) =
∫
R

dPX(x)
dv(x) log dPX(x)

dv(x) dv(x),

where v(·) is a measure defined on all one-dimensional Borel sets (Politis, 1991).
If v(·) is the Lebesgue measure, which we denote as u(·), H(X) becomes the
differential entropy. Alternatively, if v(·) is a counting measure, H(X) becomes
the common (discrete) entropy.

If, however, X is a discrete-continuous mixture variable, v is defined as
follows. We split R into three disjoint subsets s.t. R = Sd ∪ Sc ∪ So. First,
So is the subset of R on which X has zero probability measure, i.e., PX(So) =
0. Second, the set Sd contains all discrete points, i.e., Sd is countable and
∀x ∈ Sd, PX(x) > 0. Third, Sc covers the continuous points, hence PX(Sc) +
PX(Sd) = 1 and for any Borel set A ⊆ Sc satisfying u(A) = 0, we have
PX(A) = 0. Based on these three subsets Sd, Sc, and So, we can define v as

v(A) = u(A ∩ Sc) + |A ∩ Sd| , (4.1)
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where |A ∩ Sd| is the cardinality of this intersection.
To show that the generalized one-dimensional entropy is well-defined, we

need to prove that the Radon-Nikodym derivative dPX/dv always exists. This
we show in the following lemma.

Lemma 4.1 Given a one-dimensional discrete-continuous random variable X
with probability measure PX , PX is absolutely continuous w.r.t. v, i.e., PX = 0
whenever v = 0, and hence dPX/dv always exists.

Proof: Given a Borel set A ⊆ R such that v(A) = u(A∩Sc)+|A∩Sd| = 0, we
have u(A∩Sc) = 0 due to non-negativity of any measure, as well as |A∩Sd| = 0.
Since A∩Sc ⊆ Sc, by the definition of Sc we have P (A∩Sc) = 0. It remains to
show that A ∩ Sd = ∅, which we do by contradiction. Assume that A ∩ Sd , ∅,
then there exists x ∈ A ∩ Sd s.t. for a set containing only x, |{x}| = 1. Then
|A ∩ Sd| ≥ |{x}| = 1, which contradicts |A ∩ Sd| = 0. Thus, we must have
A ∩ Sd = ∅ and then PX(A) = 0. �

Next, we extend this definition to multi-dimensional variables.

Generalized Multi-Dimensional Entropy

In the following, we extend the measure-theoretic entropy definition to a mixed
m-dimensional random vector W = (W1, . . . ,Wm), where each Wi is a one-
dimensional variable. For each Wi, we define Sid, Sic, Sio and measure vi as
above, and also define the product measure v for the m-dimensional random
vector as v = v1 × . . .× vm. Then, define the entropy for W as

H(W ) =
∫
Rm

dPW (w)
dv(w) log dPW (w)

dv(w) dv(w). (4.2)

To prove that such entropy is well-defined, we show that dPW /dv always exists.

Lemma 4.2 Given a mixed m-dimensional random vectorW = (W1, . . . ,Wm)
with probability measure PW , dPW /dv always exists.

Proof: Given a m-dimensional Borel set A, there exist one-dimensional
Borel sets A1, . . . , Am such that A = A1× . . .×Am. If v(A) = 0, then there ex-
ists at least one vi, i ∈ {1, . . . ,m}, such that vi(Ai) = 0. Thus, by Lemma 4.1,
PWi

(Ai) = 0 ⇒ PW (R × . . . × R × Ai × R × . . . × R) = 0 ⇒ PW (A) = 0, as
A = A1 × . . .×Am ⊆ R× . . .× R×Ai × R× . . .× R. �
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Last, based on Lemma 4.1 and 4.2, we can prove that just like for a purely
continuous or discrete random vector, conditional mutual information for a
mixed random vector can be written as a sum of entropies.

Lemma 4.3 Given a mixed random vector (X,Y, Z) with joint probability
measure PXY Z , we can write I(X;Y | Z) = H(X,Z) + H(Y,Z) − H(Z) −
H(X,Y, Z), where each entropy can be defined as in Eq. (4.2).

Proof: We first prove the statement for Z , ∅, for which we can write
I(X;Y |Z) = I(X; {Y,Z}) − I(X;Z) by the chain rule for mutual informa-
tion. Thus, it suffices to prove that I(X;Z) = H(X) + H(Z) − H(X,Z)
and I(X; {Y,Z}) = H(X) + H(Y,Z) − H(X,Y, Z). Next, denote v as the
product measure defined based on (X,Z), where v = v1 × . . . × vmXZ , and
mXZ is the number of dimensions of X plus that of Z; then by Lemma 4.2,
we also have PXZ � v. Next, we show that PXPZ � v. For some mXZ-
dimensional Borel set A = A1 × . . . × AmXZ

satisfying v(A) = 0 there exists
vi ∈ {v1, . . . , vmXZ} such that vi(Ai) = 0. Hence, PXPZ(A) = 0 because
0 ≤ PXPZ(A) = PXPZ(A1× . . .×AmXZ

) ≤ PXPZ(R× . . .R×Ai×R . . .×R) =
Pi(Ai) = 0, where Pi is the marginalization of the product measure PXPZ to
the ith dimension and Pi(Ai) = 0 is because vi(Ai) = 0 by the definition of v.

Finally, by the chain rule of the Radon-Nikodym derivative we have that

I(X;Z) =
∫

log dPXZ
dPXPZ

dPXZ

=
∫

log dPXZ/dv

dPXPZ/dv
(dPXZ/dv)dv

= H(X) +H(Z)−H(X,Z) .

The proof for I(X; {Y,Z}) is equivalent. If Z = ∅, CMI reduces to I(X;Y ),
for which we can prove the statement in the same manner. �

As a direct implication of the above proof, it follows that mutual informa-
tion can also be written as the sum of entropies, since it is a special case of
CMI with Z = ∅. With this generalized definition, we can now show how to
estimate CMI using adaptive histogram models.

4.2 Adaptive Histogram Models

Adaptive histogram models have been thoroughly studied for continuous ran-
dom variables (Scott, 2015); however, to the best of our knowledge, there exists
no rigorous definition of histograms for mixed random variables. Thus, to use
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histogram models as a foundation to estimate the measure-theoretic (condi-
tional) MI, we need to rigorously define histograms for mixed random variables.
We start with the one-dimensional case.

4.2.1 One-Dimensional Histogram Models

A histogram model is typically defined based on a set of consecutive intervals
called bins (Scott, 2015). However, to deal with discrete-continuous mixture
random variables, we define the set of bins, denoted as B, such that each bin is
either an interval or a set containing only a single point. That is, B = B′∪B′′,
where B′ and B′′ are sets of subsets of R, with B′ consisting of countable
consecutive intervals and B′′ consisting of countable single point sets. Last, we
define the “width” of a bin using the measure v as defined in Equation 4.1, i.e.,
for a bin Bj ∈ B we have

v(Bj) = u(Bj ∩B′) + |Bj ∩B′′| .

As any Bj ∈ B′′ contains only a single discrete point, v(Bj) = 1 for all Bj ∈ B′′.
Further, we define a histogram modelM as a set of bins equipped with a pa-

rameter vector of length k, where k = |B| is the number of bins. That is, a his-
togram model M is a family of probability distributions PX,θ, parametrized by
the vector θ = (θ1, . . . , θk). Each element of θ represents the Radon-Nikodym
derivative (or density) of each bin. Note that this definition generalizes to
purely continuous random variables when B′′ = ∅ and also to discrete random
variables if B′ = ∅. For the latter case, the histogram model degenerates to a
multinomial model.

4.2.2 Multi-Dimensional Histograms

For a mixed m-dimensional random vector W = (W1, . . . ,Wm), we define the
set of bins for each Wi as in Section 4.2.1, denoted as Bi. Consequently, we
can define a set of m-dimensional bins, denoted B, by the Cartesian product
B = B1 × . . . × Bm. Since each Bi is countable, B is also countable, and we
can hence assume B is indexed by j. Then, we split B in a similar way as in
the one-dimensional case, i.e., B = B′ ∪ B′′, where B′′ contains only discrete
values. That is, for any m-dimensional bin Bj ∈ B′′, each dimension of Bj
is a set that contains a single one-dimensional point. Note that, however, for
any Bj ∈ B′, each dimension of Bj can either be a one-dimensional interval or
a one-dimensional single-point set. Further, we define the volume of a multi-
dimensional bin Bj ∈ B using the product measure v(Bj) (see Section 4.1.1).

Similar to univariate histograms, a multi-dimensional histogram model M
can be described by a probability distribution PW,θ parametrized by the vector
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θ = (θ1, . . . , θk), where k is the number of bins and θi is the Radon-Nikodym
derivative for each bin.

4.2.3 Maximum Likelihood Estimator

Given a possibly multi-dimensional histogram with k bins, we denote the
Radon-Nikodym derivative dPW,θ/dv as fhθ and its MLE as fh

θ̂
. Observe that

for any parameter θj ∈ θ, the product θjv(Bj) follows a multinomial distribu-
tion. Thus, given a dataset D = {Di}i=1,...,n, with Di representing a row, the
maximum log-likelihood is denoted as and equal to

lM (D) = log fh
θ̂(D)(D) = log

k∏
j=1

(
cj

n · v(Bj)

)cj

, (4.3)

where cj and v(Bj) are respectively the number of data points and the bin
volumes of bin j ∈ {1 . . . k}. Notice that this maximum likelihood generalizes
to the discrete case (i.e., multinomial distribution) when all v(Bj) = 1, and to
the continuous case (Scott, 2015) when v becomes the Lebesgue measure.

4.2.4 Conditional Mutual Information Estimator

Combining all previous theoretical discussions, we can estimate conditional
mutual information for (possibly multivariate) random variables X,Y, Z by

Ih(X;Y | Z) = Hh(X,Z) +Hh(Y, Z)−Hh(X,Y, Z)−Hh(Z) .

The corresponding measure-theoretic entropies are estimated from m-dimen-
sional data over (X,Y, Z), where mX , mY and mZ are the corresponding num-
ber of dimensions of X,Y and Z. We estimate the entropies as

Hh(X,Y, Z) = −
∫
Rm

fh
θ̂

(x, y, z) log(fh
θ̂

(x, y, z))dv

Hh(X,Z) = −
∫
RmX +mZ

fh
θ̂

(x, z) log(fh
θ̂

(x, z))dv

Hh(Y,Z) = −
∫
RmY +mZ

fh
θ̂

(y, z) log(fh
θ̂

(y, z))dv

Hh(Z) = −
∫
RmZ

fh
θ̂

(z) log(fh
θ̂

(z))dv

in which fh
θ̂

(x, y, z) is the maximum likelihood estimator given the data, while
we obtain fh

θ̂
(x, z), fh

θ̂
(y, z), and fh

θ̂
(z) via marginalization from fh

θ̂
(x, y, z).
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Next, we will prove that Ih is a strongly consistent estimator for conditional
mutual information on mixed data.

Theorem 4.1 Given a mixed random vector (X,Y, Z) with probability measure
PXY Z , limv′→0 limn→∞ Ih(X;Y | Z) = I(X;Y | Z) almost surely, where n
refers to the sample size and v′ refers to the maximum of the histogram volumes
for bins in B′ (defined in Section 4.2.2).

The proof is provided in Appendix A.6. Informally, our proof is based on
the following key aspects: 1) All volume-related terms in Ih cancel out, 2) dis-
crete empirical entropy converges to the true entropy almost surely (Antos and
Kontoyiannis, 2001), and 3) in the limit, differential entropy can be obtained
by discretizing a continuous random variable into “infinitely” small bins (Cover
and Thomas, 2012, Theorem 8.3.1). Notably, the order of the double limit in
Theorem 4.1 inherently indicates that n should grow faster than the number of
bins (Rudin, 1964), which is also required for histograms on purely continuous
data to converge (Scott, 2015).

4.3 Learning Adaptive Histograms from Data

To efficiently estimate a histogram model that inherits the consistency guaran-
tees from Theorem 4.1 we need to consider the following requirements. First
of all, we need to ensure that we learn a joint histogram model over (X,Y, Z).
This is due to the fact that we obtain the lower-dimensional entropies such as
Hh(X,Z) by marginalization over the maximum likelihood estimator fh

θ̂
(x, y, z).

If we would not learn a joint model, the volume-related terms in Hh(X,Y, Z),
Hh(X,Z), Hh(Y,Z), and Hh(Z) would not cancel out. In addition, we need
to make sure that the number of bins is in o(n)—i.e., grows sub-linear w.r.t.
n, while at the same time the size of the bins decreases.

One way to achieve those properties would be to fix the bin width or the
number of bins depending on the number of samples. However, such an ap-
proach is not very flexible and does not allow for variable bin widths. To allow
for a more flexible model, we formally consider the problem of constructing an
adaptive multi-dimensional histogram as a model selection problem and employ
a selection criterion based on MDL (see Section 3.1.2). MDL-based model se-
lection has been successfully used for learning one-dimensional (Kontkanen and
Myllymäki, 2007) and two-dimensional histograms (Kameya, 2011; Yang et al.,
2020), demonstrating adaptivity to both local density changes and sample size.

We now briefly define the MDL-optimal histogram model. Specifically,
while previous work (Kameya, 2011; Kontkanen and Myllymäki, 2007; Yang
et al., 2020) only considers purely continuous data (or more precisely, data
with arbitrarily small precision), we apply the MDL principle to mixed type
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data, based on our rigorous definition of histogram models for mixed random
variables. On top of that, we empirically show that our score fulfils the desired
properties, that is, the number of bins grows as o(n).

4.3.1 MDL Histograms

To encode a histogram model, we resort to two-part MDL. Hence, we first need
to define a model classM, then the encoding of a model M ∈M and last the
encoding of the data given a model M .

Given a datasetD with n rows andm individual columnsDj , we now define
the model classM. First, we create fixed bins according to B′′ (as defined in
Section 4.2.2) per discrete value that occurs in Dj . Next, we enumerate all
possible bins for B′ with fixed precision ε to encode the continuous part of
Dj . To this end, denote the remaining non-discrete data points in Dj as Dc

j .
If Dc

j is empty Dj corresponds to a discrete variable and we can stop here.
Otherwise, we create all possible cut points for Dc

j as

C0
j = {min(Dc

j),min(Dc
j) + ε, . . . ,max(Dc

j)} .

By selecting a subset of cut points Cj ⊆ C0
j , we get a valid solution for B′. We

can enumerate all possible segmentations by enumerating each Cj ⊆ C0
j . By

repeating this process for each dimension, we obtain our model classM. Fur-
ther, we get the code length for a model M ∈M by encoding all combinations
of cut points for each dimension (Kontkanen and Myllymäki, 2007), i.e.,

L(M) =
∑

j∈{1,...,m}

L(Cj) =
∑

j∈{1,...,m}

log
(
|C0
j |
|Cj |

)
.

If we take a step back, we notice that such a model M in essence describes
a multivariate discrete variable. If we denote k as the size of the domain space
of the cartesian product of that multivariate random variable, we can encode
it via NML, as in the last chapter—i.e.,

L(D |M) = −lM (D) + log Cnk ,

where −lM (D) is the maximum log-likelihood of data D under a histogram
model M (see Equation 4.3) and log Cnk is the parametric regret as defined in
Section 3.2. In other words, we encode the data given the model with the
stochastic complexity. Thus, we get the total code length L(M,D) = L(D |
M) + L(M) of our two-part MDL code.
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Figure 4.1: Left: Average number of bins k to discretize X ∼ N(0, 1) for increasing
sample sizes (20 repetitions per sample size). Right: Per dimension of a multivariate
Gaussian distribution with Xi⊥⊥Xj and Xi ∼ N(0, 1), we show the average number of
bins (n = 2 000, 20 repetitions).

4.3.2 Empirical Consistency of the MDL Score

To prove consistency for our score, we need to show that the number of selected
bins grows at rate o(n). Since the theoretical analysis is rather difficult, we
instead empirically demonstrate this property for one-dimensional Gaussian
distributions. As we show in Figure 4.1, the average number of bins k obtained
for a Gaussian distribution, grows with n, but slower than

√
n. In addition,

for multi-dimensional data, for which we can only approximate the histogram
model that minimizes L(D,M), we observe that if the number of dimensions
increases, the average number of bins per dimension decreases if we keep n fixed.
Thus, there is empirical evidence that our score has this desired property.

Next, we explain how we compute those discretizations.

4.4 Implementation

In the following, we describe our algorithm to estimate the joint entropy for an
m-dimensional discrete-continuous mixture random vector X = (X1, . . . , Xm).

4.4.1 Algorithm

To discretize a one-dimensional random variable X, we first create bins for the
discrete values of X and then discretize the continuous values. We detect dis-
crete data points by checking if a single value x in the domain X of X occurs
multiple times. If a user-defined threshold t, e.g. 5 is reached, we create a
bin for this point. To discretize the remaining continuous values, we start by
splitting X into Kinit equi-width bins, which we can safely choose from the
complexity class O(

√
n) as we saw in the previous section. Using dynamic
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Algorithm 4.1:
input : Data D = {D1, . . . , Dm} ∼ X;

Maximum number of iterations imax
output: Discretization Xd

1 Xd ← init(D); i← 1;
2 while Xd changes ∧ i ≤ imax do
3 Xi

d ← Xd;
4 foreach j ∈ {1, . . . ,m} do
5 Xij

d ← refine(Dj | Xd);
6 if SC(Xij

d ) < SC(Xi
d) then

7 Xi
d ← Xij

d ;

8 Xd ← Xi
d; i← i+ 1;

9 return Xd;

programming, we compute the variable-width histogram model M that mini-
mizes L(D,M) in quadratic time w.r.t. Kinit, as proposed by Kontkanen and
Myllymäki (2007).

Since the runtime complexity to compute the optimal variable-width his-
togram over a multi-dimensional random variable would grow exponentially
w.r.t. m, we opt for an iterative greedy algorithm, for which we provide
the pseudocode in Algorithm 4.1. As input, we are given a dataset D =
{D1, . . . , Dm} consisting of n rows and m columns, representing a sample of
size n from an m-dimensional random vector X, and a user-specified parame-
ter imax specifying the maximum number of iterations. First, we initialize the
discretization Xd (line 1) by creating single bin histograms for the continuous
points in Dj and a bin with bin-width 1 per discrete point. To detect the
latter, we check if there exist |{x ∈ Xj | Dj = x}| ≥ t, where t is a user-
defined threshold. After that, we iteratively update the discretization for that
Xj providing the highest gain in stochastic complexity, until either the score
cannot be improved or the maximum number of iterations has been reached
(lines 2–8). To update the discretization of a variable Xj we call the function
refine (line 5), which receives as input the data Dj and the discretization after
iteration i. It then re-discretizes Xj using an extension of the dynamic pro-
gramming algorithm by Kontkanen and Myllymäki (2007). In essence, instead
of simply discretizing Xj independently of the remaining variables, we keep the
discretizations for all Xi , Xj fixed and find the optimal histogram for Xj s.t.
the overall score L(D,M) is minimized.
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4.4.2 Complexity

The complexity of discretizing a univariate random variable is in O(Kmax ·
(Kinit)2) and depends on the number of initial bins Kinit and the maximum
number of bins Kmax, which we typically chose as a fraction of Kinit (both in
o(
√
n)). In a multi-dimensional setting we have to multiply this complexity

by the current domain size of the remaining variables, since we have to update
each bin conditioned on those. In the worst case, this number is equal to
(Kmax)m−1. Overall, we apply this procedure—if all variables are continuous—
imax ·m times.

4.5 Related Work

Here, we discuss related methods for adaptive histograms and (conditional)
mutual information estimation for different data types.

Both theoretical properties and practical issues of density estimation using
histograms have been studied for decades (Scott, 2015). Various algorithms
have been proposed for the challenging task of constructing an adaptive one-
dimensional histogram, among which the MDL-based histogram (Kontkanen
and Myllymäki, 2007) is considered to be the state-of-the-art, as it is self-
adaptive to both local density structure and sample size; and does not have any
hyperparameters. Learning adaptive multivariate histograms is even harder
due to the combinatorial explosion of the search space. One approach is to
resort to the dyadic CART algorithm (Klemelä, 2009); various methods de-
signed for specific tasks also exist (Kameya, 2011; Weiler and Eggert, 2007).
Our algorithm is similar to that of Kameya (2011), but they only consider the
two-dimensional case.

For estimating (conditional) mutual information on continuous data or a
mix of discrete and continuous data, three classes of approaches exist. The
first class concerns kernel density estimation (KDE) methods (Gao et al., 2016;
Paninski and Yajima, 2008), which perform well on continuous data; however,
no KDE-based MI and CMI estimation method exists that is designed for
discrete-continuous mixture random variables. Moreover, bandwidth tuning
for KDE can be extensive and computationally expensive, which becomes even
worse when the data is not purely continuous, as different bandwidths may
be needed when discrete random variables take different values. The second
class of methods relies on k-nearest neighbor (kNN) estimates (Frenzel and
Pompe, 2007; Kozachenko and Leonenko, 1987; Kraskov et al., 2004), which
have been established as the state-of-the-art (Gao et al., 2017; Rahimzamani
et al., 2018). kNN approaches can be applied not only to a mix of discrete and
continuous variables, but can also be used as consistent MI (Gao et al., 2017)
and CMI (Mesner and Shalizi, 2020; Rahimzamani et al., 2018) estimators for
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discrete-continuous mixtures. The third class of methods first discretizes the
continuous random variables and then calculates the mutual information from
the discretized variables (Cover and Thomas, 2012; Darbellay and Vajda, 1999;
Suzuki, 2016). Two recent approaches based on adaptive partitioning for data
that consists of discrete and continuous variables have been proposed (Cabeli
et al., 2020; Mandros et al., 2020). While Mandros et al. (2020) focus on mutual
information and its application to functional dependency discovery, Cabeli et al.
(2020), similar to us, build upon an MDL-based score to estimate MI and
CMI, to which we compare in Section 4.6. The key difference is that Cabeli
et al. (2020) compute I(X;Y | Z) as (I(X; {Y,Z})− I(X;Z) + I(Y ; {X,Z})−
I(Y ;Z))/2 and maximize each of the four terms (with penalty terms) directly,
while we first learn a joint histogram.

To the best of knowledge, we are the first to propose a CMI estimator
for discrete-continuous mixture variables based on discretization or histogram
density estimation. Our method can consistently estimate CMI on mixed ran-
dom variables containing discrete-continuous mixtures. We focus on histogram-
based models instead of kNN estimation, since histograms are more inter-
pretable (Scott, 2015) and do not require tuning of the parameter k, which
can have a large impact on the outcome.

4.6 Experiments

In this section, we empirically evaluate the performance of our approach. First,
we will benchmark our estimator against state-of-the-art CMI estimators on dif-
ferent data types. After that, we evaluate how well our estimator is suited to
test for conditional independence in a causal discovery setup. For reproducibil-
ity, we make our code available online.2

4.6.1 Mutual Information Estimation

On the mutual information estimation task, we compare our approach to the
state-of-the-art MI estimators. In particular, we compare against FP (Frenzel
and Pompe, 2007), RAVK (Rahimzamani et al., 2018) and MS (Mesner and
Shalizi, 2020), which all rely on kNN estimates, and MIIC (Cabeli et al., 2020),
which is a discretization-based method. All of those can be applied to our
setup, but only the authors of RAVK and MS specifically consider discrete-
continuous mixture variables. We apply MIIC using the default parameters
and use k = 10 for all kNN-based approaches.3 For our algorithm, we set the

2https://github.com/ylincen/CMI-adaptive-hist.git
3We evaluated all kNN estimators with k = 5, 10, 20. Since k = 10 had the best

trade-off, we report those results.

https://github.com/ylincen/CMI-adaptive-hist.git
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maximum number of iterations and the threshold to detect discrete points in a
mixture variable to 5, set Kinit = 20 logn and Kmax = 5 logn. To comply with
the literature, we compute all entropies using the natural logarithm.

Experiment I-IV

As a sanity check, we start with an experiment on purely continuous data. That
is, for Experiment I, let X and Y be Gaussian distributed random variables
with mean 0, variance 1, and covariance 0.6. Consequently, the correlation
ρ between X and Y is 0.6 and the true MI can be calculated as I(X;Y ) =
− 1

2 log(1−ρ2). In Experiment II, X is discrete and drawn from Unif(0, l−1),
with l = 5 and Y is continuous with Y ∼ Unif(x, x+ 2) for X = x. Therefore,
I(X;Y ) = log(l)− (l−1) log 2

l (Gao et al., 2017). Next, for Experiment III, X
is exponentially distributed with rate 1 and Y is a zero-inflated Poissonization
of X—i.e., Y = 0 with probability p = 0.15 and Y ∼ Pois(x) for X = x with
probability 1−p. The ground truth is I(X;Y ) = (1−p)(2 log 2−γ−

∑∞
k=1 log k·

2−k) ≈ (1 − p)0.3012, where γ is the Euler-Mascheroni constant (Gao et al.,
2017). Last, in Experiment IV, we generate the data according to the Markov
chain X → Z → Y (see Mesner and Shalizi (2020)). In particular, X is
exponentially distributed with rate 1

2 , Z ∼ Pois(x) for X = x and Y is binomial
distributed with size n = z for Z = z and probability p = 1

2 . Due to the Markov
chain structure, the ground truth is I(X;Y | Z) = 0.

For each of the above experiments, we sample data according to sample
size n ∈ {100, 200, . . . , 1 000} and generate 100 data sets per sample size. We
run each of the estimators on the generated data and show the mean squared
error (MSE) of each estimator in Figure 4.2. Overall, our estimator performs
best or very close to the best throughout the experiments and reaches an MSE
lower than 0.001 with at most 1 000 samples. The best competitors are MS and
MIIC; however, both are biased when we consider discrete-continuous mixture
variables, as we show in Experiment V.

Experiment V

Next, we generate data according to a discrete-continuous mixture (Gao et al.,
2017). Half of the data points are continuous, with X and Y being standard
Gaussian with correlation ρ = 0.8, while the other half follows a discrete dis-
tribution with P (1, 1) = P (−1,−1) = 0.4 and P (1,−1) = P (−1, 1) = 0.1. In
addition, we generate Z independently with Z ∼ Binomial(3, 0.2). Hence the
ground truth is equal to I(X;Y ) = I(X;Y | Z) = 0.4 · log 0.4

0.52 + 0.1 · log 0.1
0.52 −

1
4 log(1− 0.82) ≈ 0.352.

In Figure 4.3 (top) we show the mean and MSE for this experiment. We
see that our estimator starts by overestimating the true value, but its average
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Figure 4.2: Synthetic data with known ground truth. Ordered from top-left to bottom-
right, we show the MSE for Experiments I-IV, for our estimator and competing algorithms
MS, RAVK, FP and MIIC.

quickly converges to the ground truth, while the competing estimators seem to
have a slightly positive or negative bias. Especially FP and MIIC, which were
not designed for this setup, have a clear bias even for 1 000 data points. The
same trend can be observed for their MSE.

Experiment VI

Last, we test how sensitive our method is to dimensionality. We generate X
and Y as in Experiment II, but fix n to 2 000 and add d independent random
variables, Zi ∼ Binomial(3, 0.5).

Figure 4.3 (bottom) shows the mean and MSE. Our estimator recovers the
true CMI up to a neglectable error up to d = 2. After that, it starts to slowly
underestimate the true CMI. This can be explained by the fact that the model
costs increase linearly with the domain size and hence, we will fit fewer bins to
the continuous variable for large d. We validated this conjecture by repeating
the experiment for n = 10 000. On this larger sample size, the MSE for our
estimator remained below 0.001 even for d = 4. While MIIC is slightly more
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Figure 4.3: Top row: Experiment V, where we show the mean of the estimators (left)
with the true CMI as a dashed gray line and the MSE (right). Bottom row: Experiment
VI, where the sample size is constant at 2 000 and the x-axis refers to the number of
dimensions of Z. We show the mean (left) and MSE (right). The color coding is chosen
as in Figure 4.2.

stable for d ≥ 3, the competing kNN-based estimators deviate quite a bit from
the true estimate for higher dimensions.

Overall, we are on par with or outperform the best competitor throughout
Experiments I–VI. Especially on mixture data, which is our main focus, our
method is the only one that converges to the true estimate.

4.6.2 Independence Testing

Although our estimator is quite accurate, it is only close to zero and not exactly
zero for the Markov chain. As we saw in the previous chapter, the empirical esti-
mator for CMI on discrete data overestimates dependencies. Hence, we need to
correct our estimator to test for independence. We do this, by considering two
alternatives. First, we apply the fNML correction as suggested in Section 3.3
for SCCIf on the discretized data and call this variant ISC. As an alterna-
tive, we use an adjustment based on the Chi-squared distribution, which was
originally proposed for estimating mutual information in the context of feature
selection (Vinh et al., 2014). We adapted this correction for the conditional
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Figure 4.4: Synthetic network with continuous (white), discrete (gray) and mixed
(shaded) random variables consisting of different causal structures, such as colliders,
a chain (C → E → G), and a fork (C ← B → D).

case, by determining the degrees of freedom as l = (|X |−1)(|Y|−1)|Z|, whereas
for the unconditional case, we compute l = (|X | − 1)(|Y| − 1) as proposed by
the authors. Finally, we compute

IX 2(X;Y | Z) = Î(X;Y | Z)− Xα,l2n ,

where Xα,l refers to the critical value of the Chi-squared distribution with
significance level α and degrees of freedom l.

To test how well IX 2 and ISC perform on mixed-type and continuous
data, we benchmark both against state-of-the-art kernel-based tests RCIT and
RCoT (Strobl et al., 2019), as well as JIC (Suzuki, 2016), and MIIC (Cabeli
et al., 2020), which are both discretization-based methods using a correction
based on stochastic complexity.4 To apply RCIT and RCoT on mixed data,
we treat the discrete data points as integers. In the following, we evaluate
the performance of each test in a causal discovery setup. In addition, we pro-
vide experiments on individual collider and non-collider structures with various
generating mechanisms including xor, in Appendix A.6.1.

Causal Discovery

To evaluate our test in a causal discovery setting, we generate data according
to a small synthetic network—shown in Figure 4.4—that consists of a mix-
ture of generating mechanisms that we used in experiments I-IV and includes
continuous and discrete (ordinal) random variables and one mixture variable,
which is partially Gaussian and partially Poisson distributed.

4Note that MIIC also calculates stochastic complexity based on factorized NML
and JIC uses an asymptotic approximation of stochastic complexity.
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Figure 4.5: Precision (left) and recall (right) on undirected graphs inferred using the
PC-stable algorithm equipped with the corresponding independence test.

More specifically, the source nodes of the network are A and B. A is
generated as A ∼ Exp(1) and B ∼ Unif(0, 4) (discrete). To get B → C we
generate C as C ∼ Binom(b, 0.5) for B = b, for B → D we sample D as
D ∼ N(b− 2, 1) for B = b and E is sampled as exponentially distributed with
rate 1

c+1 for C = c. F is generated as a function of C and D. First, we generate
C ′ by rounding the values of C and then we write F as F = D

C′
2 +N(0, 1). Last,

we generate G as the zero inflated Poissonization of A. Let E′ = sign(E−1)+1
2 ,

which ensures that E′ is either zero or one dependent on the value of E. Then
G ∼ N(a, 1) if E′ = 0 and A = a, and G ∼ Pois(a) for A = a if G = 1.

To evaluate how well the ground truth graph can be recovered, we apply
the stable PC algorithm (Colombo and Maathuis, 2014; Spirtes et al., 2000)
equipped with the different independence tests, where we use α = 0.01 for
IX 2 , RCIT and RCoT. Figure 4.5 shows recovery precision and recall for the
undirected graph, averaged over 20 draws per sample size n ∈ {100, 500, 1 000,
2 000, 5 000, 10 000}.

We see that overall IX 2 performs best and being the only method that
reaches both a perfect accuracy and recall. While JIC also reaches a perfect
recall, it finds too many edges leading to a precision of only 80%. Although
also MIIC, RCIT and RCoT have a perfect precision, their recall is worse than
for IX 2 . Both of the kernel-based tests also do not manage to detect all the
edges even for 10 000 samples. After a closer inspection, this is due to the edge
E → G that involves the discrete-continuous variable G. If we compare IX 2

to ISC, we can see that the latter has a lower recall. After inspecting the data
in more detail, we came to the conclusion that this is due to the fact that the
fNML-based score penalizes stronger w.r.t. the domain size and thus is more
conservative. The fact that we already compute the histogram model via MDL
leads to relatively sparse histograms, which in addition to a strong correction
leads to underfitting. Therefore, the Chi-squared correction works better in
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combination with our discretization algorithm.

4.7 Conclusion

We proposed a novel approach for the estimation of conditional mutual infor-
mation from data that may contain discrete, continuous, and mixture variables.
To be able to deal with discrete-continuous mixture variables, we defined a class
of generalized adaptive histogram models. Based on our observation that CMI
for mixture-variables can be written as a sum of entropies, we presented a CMI
estimator based on such histograms, for which we proved that it is consistent.

Further, we used the Minimum Description Length principle to formally de-
fine optimal histograms, and proposed a greedy algorithm to practically learn
good histograms from data. Finally, we demonstrated that our algorithm out-
performs state-of-the-art (conditional) mutual information estimation meth-
ods, and that it can be successfully used as a conditional independence test in
causal graph structure learning. Notably, for both setups, we observe that our
approach performs especially well when mixture variables are present.
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Part III

Bivariate Causal Discovery

In the previous parts, we focused on improving the performance of constraint-
based causal discovery methods by relaxing the faithfulness assumption to al-
low for more complex generating mechanisms and by making advances towards
better conditional independence tests. Assume that we are given the perfect in-
dependence oracle and also, faithfulness holds. Using a constraint-based causal
discovery algorithm, we can still only infer the underlying causal DAG up to its
Markov equivalence class. That is, if we find an edge between two nodes X and
Y , which does not belong to a v-structure or can be inferred using other orien-
tation rules based on v-structures, we cannot distinguish X → Y from X ← Y
and hence, need to leave this edge undirected. In this part, we will show that
we can infer the edge direction between X and Y if we make assumptions about
generating mechanism. The task of inferring the causal direction between two
dependent random variables is also labeled as causal inference. We first discuss
the general approach to do causal inference based on the algorithmic model of
causality and its link to two-part MDL in Chapter 5. In Chapter 6, we propose
a practical approach for causal inference on univariate numeric data based on
MDL. In the following chapter, Chapter 7, we focus on identifiability, i.e., un-
der which conditions can we guarantee that our solution is correct. Last, we
extend our work to multivariate mixed-type data in Chapter 8.
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Chapter 5

Causal Inference via
Two-Part MDL: a Primer

The approaches that we discuss in the subsequent chapters all have in common
that they are either inspired or directly build upon the algorithmic indepen-
dence of conditionals (AIC) postulate. In essence, AIC postulates that from all
factorizations of the joint distribution, the one with the shortest algorithmic
description corresponds with the true causal DAG. As a consequence, this pos-
tulate allows for an inference scheme that goes beyond estimating the Markov
equivalence class of the true DAG G. That is, in contrast to approaches that
build upon conditional independence testing, we can distinguish between the
two Markov equivalent DAGs X → Y and Y → X. As the name suggests, the
postulate is defined via Kolmogorov complexity, which we already know is not
computable. Budhathoki and Vreeken (2017b) suggested to approximate AIC
through two-part MDL for multivariate binary data, and this general idea has
been implemented in multiple approaches, such as the ones we present in Chap-
ters 6 and 8. Although these methods perform well in practice, the theoretical
link between AIC and two-part MDL is quite crude. The former is formulated
based on the true distributions, while the MDL formulation interprets this pos-
tulate from a more practical point of view, which encodes the given data with
respect to a certain model and also encodes the model itself. To bridge this
gap, we show that, similar to the MDL formulation, we can rewrite AIC using
two-part descriptions in terms of Kolmogorov complexity. Further, we prove

This chapter mainly introduces preliminary concepts needed for Chapters 6,7
and 8. Sections 5.3 and 5.4 present new results.
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Figure 5.1: Reichenbach’s Common Cause Principle: X and Y are two dependent random
variables. Their dependence is either due to an unobserved confounder Z (middle), or
one of the two causes the other, i.e., either X causes Y (left) or Y causes X (right).

that our new formulation leads to an equivalent inference principle as the orig-
inal postulate. As a corollary, we investigate the implications of our findings
for joint encodings, which encode data and model jointly. We emphasize that
for such encodings is necessary to encode the model independent of the data,
as otherwise, the asymmetry between the description length of the causal and
anti-causal model might vanish.

This chapter is structured as follows. In Section 5.1, we lay out the general
setting and explain the principle of independent mechanisms. Then, we state
the AIC postulate and review how it can be approximated using two-part MDL
(Section 5.2). Last, in Section 5.3, we formally validate the link between AIC
and two-part MDL descriptions and we discuss practical implications of our
findings for joint descriptions in Section 5.4.

5.1 The Principle of Independent Mechanisms

Throughout this chapter and the next chapters, we assume that we are given
two dependent random variables X and Y for which we want to infer the
underlying causal DAG from observational data. That is, we assume the data
is passively collected and represents an i.i.d. sample of joint distribution PXY .
According to Reichenbach’s common cause principle (Reichenbach, 1956), the
dependence between X and Y can be explained by three possible graphs.

Definition 5.1 (Reichenbach’s Common Cause Principle) If two vari-
ables X and Y are statistically dependent (X��⊥⊥Y ), then there exists a third
variable Z that causally influences both, that is X ← Z → Y . As a special
case, Z may coincide with either X, which results in the causal graph X → Y
or Y (X ← Y ). Furthermore, this variable Z d-separates X and Y . Thus, by
applying the causal Markov condition, we get that X ⊥⊥Y | Z, see Figure 5.1.

It could also be that the dependence between X and Y is due to a combination
of the above graphs, e.g. X → Y , X ← Z → Y . In this chapter, however, we
assume all causal relations to be acyclic and further assume causal sufficiency,
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i.e., we observe all relevant variables. Thus, we only need to decide between
X → Y andX ← Y , which is already a difficult problem since both these DAGs
are Markov equivalent. Hence, it is not possible to tell apart both graphs if we
rely on a constraint-based causal discovery approach (Pearl, 2009).

This is, however, not the end of the story. We can distinguish X → Y from
X ← Y if we additionally make assumptions about the generating mechanism.
A very general such assumption, which has gained a lot of attention in recent
years, is the principle of independent mechanisms, which focuses on the possible
factorizations of the joint distribution PXY . In particular, we can write PXY as
the product PXPY |X or PY PX|Y ; but why does this help? Consider an example
inspired by (Peters et al., 2017, Chapter 2.1), in which the cause X corresponds
to the altitude and the effect Y to the temperature as measured for different
cities. Assume we consider a set of different cities from the same climate zone. If
we observe the altitude for a random city, we will have a mechanism in mind to
derive the corresponding temperature value (i.e. PY |X), which is independent
of PX . Further, we can make a thought experiment and think about how the
temperature would change, if we were to change the altitude of the city, e.g., by
magically lifting it into the air. Vice versa, it is hard to imagine that increasing
or decreasing the temperature in a city, e.g., by putting on the heating system
in every house, will change the altitude. In other words, the independence of
the mechanism does not hold for the anti-causal direction: the mechanism PX|Y
would need to take a rather particular form to be independent of PY , which
only holds in specific settings, e.g., for a linear model with both the cause and
additive noise being Gaussian distributed (Peters et al., 2017). More generally,
we can formulate the principle of independent mechanisms as follows (Janzing
and Schölkopf, 2010; Peters et al., 2017).

Postulate 5.1 (Principle of Independent Mechanisms) The causal gen-
erative process of a system’s variables is composed of autonomous modules that
do not inform or influence each other.

In the probabilistic case, this means that the conditional distribution of each
variable given its causes (i.e., its mechanism) does not inform or influence the
other conditional distributions.

Projected on our two-variable example, if we assume that the principle
of independent mechanisms holds, we get that PX ⊥⊥PY |X , while the same
does not necessarily hold for the factorization w.r.t. the anti-causal direction.
There exist several approaches that aim at using this asymmetry to infer the
causal direction between two random variables from observational data (Janz-
ing et al., 2012; Sgouritsa et al., 2015); in practice, however, it is difficult to
precisely estimate this dependence. Motivated by the same idea, Janzing and
Schölkopf (2010) proposed an inference principle based on algorithmic indepen-
dence, which we state in the next section.
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5.2 The Algorithmic Model of Causality

In the following, we will give a brief introduction to the algorithmic model
of causality and the algorithmic independence of conditionals. After that, we
state the commonly used two-part MDL approximation that was suggested by
Budhathoki and Vreeken (2017b).

The algorithmic model of causality (AMC) was introduced by Janzing and
Schölkopf (2010) as an algorithmic equivalent of the statistical model of causal-
ity. Simply put, we can compute the value of a node Xi with a program of
constant complexity that takes as input the values of the parents of Xi and an
independent noise variable.

Postulate 5.2 (Algorithmic Model of Causality) Let G be a DAG for-
malizing the causal structure among the strings x1, . . . , xm. Then every xi is
computed by a program qi with length O(1) from its parents pai and additional
input ni. We write

xi = qi(pai, ni) ,

meaning that the Turing machine computes xi from the input pai, ni using the
additional program qi and halts. The inputs ni are jointly independent, i.e.,

ni⊥⊥n1, . . . , ni−1, ni+1, . . . , nm .

Janzing and Schölkopf justified this model by showing that similar to the sta-
tistical model, we can also derive an algorithmic version of the causal Markov
condition. That is, the algorithmic Markov condition (AMC) states that the
joint complexity over all nodes is given by the sum of the complexities of each
individual node given the optimal compression of its parents

K(x1, . . . , xm) +=
m∑
i=1

K(xi | pa∗i ) .

Due to the symmetry of information, i.e., K(x) + K(y | x∗) += K(y) + K(x |
y∗), the algorithmic Markov condition only allows for identifying the Markov
equivalence class. To be able to distinguish between Markov equivalent DAGs,
Janzing and Schölkopf (2010) further postulated the algorithmic equivalent of
the principle of independent mechanisms.

Postulate 5.3 (Algorithmic Independence of Conditionals) Let G be a
causal DAG over a set of m variables X with joint distribution PX, which is
lower semi-computable, that is, K(PX) < ∞. A causal hypothesis is only ac-
ceptable if the shortest description of the joint distribution PX is given by the
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concatenation of the shortest descriptions of the Markov kernels, i.e.,

K(PX1,...,Xm) +=
m∑
i=1

K(PXi|Pai
) ,

where Pai are the parents of Xi in G. Equivalently, it holds that

IA(PX1|Pa1 ; . . . ;PXm|Pam
) += 0 .

If we apply the above postulate to the case where the true graph only consists
of the edge X → Y , we get that

IA(PX ;PY |X) += 0 .

Note that it is assumed that this independence only holds for the true causal
direction. For additive noise models,1 for example, it has been shown that for
the anti-causal direction we get a dependence (Janzing and Steudel, 2010), that
is, IA(PY ;PX|Y )� 0. If we combine those results, we can derive an inference
rule as follows. If X → Y is the true graph, then

K(PX) +K(PY |X)
+
≤ K(PY ) +K(PX|Y ) . (5.1)

In other words, we can infer the true causal direction by selecting the factor-
ization with the smallest Kolmogorov complexity. To use this idea in practice,
we first need to solve two problems. First, Kolmogorov complexity is not
computable (Li and Vitányi, 2019), and second, we are not given the true dis-
tribution but just a limited number of data points. A principled way to solve
at least the first part of the problem is to approximate Kolmogorov complexity
via the MDL, as we explain below.

The first idea on how the algorithmic independence of conditionals could
lead to an MDL-based inference rule was sketched out by Janzing and Schölkopf
(2010), however, they do neither instantiate nor evaluate this idea in practice.
They suggest that, the probabilistic models P̂X and P̂Y |X , which are learned
from a finite number of observations, together define a joint distribution P̂X→Y ,
which is not necessarily equal to the description of P̂Y→X in the inverse direc-
tion. As common in MDL, they first encode the complexity of the model, i.e.,
P̂X and P̂Y |X , and then encode the data given the model as the negative log-
likelihood w.r.t. P̂X→Y resp. P̂Y→X and select the direction with the smaller
complexity as the causal one.

Budhathoki and Vreeken (2017b) suggested a more practical approximation
of Equation 5.1 via two-part MDL as follows. For the causal direction, we define

1We will discuss additive noise models in more detail in Chapter 6.
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a model asMX→Y = (MX ,MY |X) from the classMX→Y =MX×MY |X that
best describes the data over Y by exploiting as much structure of X as possible
to save bits. By MDL, we identify the optimal model MX→Y ∈ MX→Y for
data (xn, yn) over X and Y as the one minimizing

LX→Y := L(MX) + L(xn |MX) + L(MY |X) + L(yn | xn,MY |X) . (5.2)

We can define LY→X analogously and infer X → Y if LX→Y < LY→X , X ← Y
if LX→Y > LY→X , and do not decide if both terms are equal. Consequently,
to use this idea in practice, we need to define the model class. Budhathoki
and Vreeken (2017b) implemented their idea for multivariate binary data and
used binary trees as their models. In Chapter 6, we present an approach for
univariate numeric data that models the conditionals as regression functions;
and in Chapter 8, we use classification and regression trees (CART) to model
dependencies on multivariate mixed-type data.

Although these approaches perform well in practice, Equation 5.1 only
considers the true distribution, while Equation 5.2 is formulated via a two-part
description of a model and the data given this model. In the following section,
we formally analyze the connection between both inference rules. We bridge the
gap between both variants by deriving a two-part variant of Equation 5.1, in
terms of Kolmogorov complexity, and show that on expectation both versions
lead to the same inference.

5.3 Linking AIC to Two-Part Descriptions

Given an i.i.d. sample xn w.r.t. a distribution P , the shortest encoding of the
data that is theoretically possible converges to the Shannon entropy

H(P ) = −
∑
x

P (x) logP (x) ,

as proven by Shannon’s source coding theorem (Shannon, 1948). Hence, if P is
a computable distribution with parameter vector θ, the sample estimate θ̂ will
in the limit converge to the true parameter. Therefore, we could in the limit
encode the data xn conditional on P to arrive at the shortest code-length of
the data given the model that describes P . Thus, the shortest encoding for our
causal setup can be achieved if the model classMX contains PX and similarly,
MY |X contains PY |X . Slightly abusing the notation, we define

L∗X→Y := L(PX) + L(xn | PX) + L(PY |X) + L(yn | xn, PY |X) .

The above equation already comes close to an MDL version of the algorithmic
independence of conditionals, however, we still need to explain how the data
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encoded by the model fits into the equation. To this end, we will show that
the equivalent formulation of L∗X→Y in terms of Kolmogorov complexity, i.e.,

KX→Y := K(PX) +K(x | PX) +K(PY |X) +K(y | x, PY |X) ,

is on expectation equal to K(PX)+K(PY |X)+H(PXY ), where H(PXY ) relates
to the Shannon entropy of the joint distribution PXY . The analogoue holds for
the anti-causal direction, that is, on expectation KY→X is equal to K(PY ) +
K(PX|Y ) + H(PXY ). Thus, assuming that the algorithmic independence of
conditionals holds, we get that on expectation the inequality between cause
and effect holds similar to Equation 5.1. That is,

KX→Y
+
≤ KY→X ,

if X → Y is the true causal direction.
Before proving this statement, we need to state a more general Lemma

that links the Kolmogorov complexity of a string x to Shannon entropy (Li and
Vitányi, 2019, Chapter 8.1).2

Lemma 5.1 Let H(P ) be the entropy of a computable probability distribution
P and H(P ) <∞. Then,∣∣∣∣∣∑

x

P (x)K(x | P )−H(P )
∣∣∣∣∣ ≤ O(1),

with a constant precision that is independent of x and P .

Note that if we sum over P (x)K(x) instead of P (x)K(x | P ), the inequality
becomes less precise and only holds up to constant cP = K(P ) +O(1), which
is dependent on P (Li and Vitányi, 2019, Chapter 8.1). For conditional codes
such as K(y | x, PY |X) assume that given input x there exists an O(1) program
that selects the correct probability table PY |X=x from the auxiliary conditional
probability table that is given as input. Based on these insights, we can derive
of our main theorem.

Theorem 5.1 Given rational distribution PXY with finite support, for which
all factorizations are lower semi-computable, i.e., K(PX)+K(PY |X)+K(PY )+
K(PX|Y ) <∞, it holds that∑

x

∑
y

PXY (x, y)
(
K(PX)+K(x | PX)+K(PY |X)+K(y | x, PY |X)

)
2The author would like to thank Bruno Bauwens for useful pointers to and clari-

fications w.r.t. Lemma 5.1.
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is equal to K(PX) + K(PY |X) + H(PXY ) up to an additive constant that is
independent of PX and PY |X . Equivalently, K(PY ) + K(PX|Y ) + H(PXY ) is
equal to the expectation over K(PY ) +K(y | PY ) +K(PX|Y ) +K(x | y, PX|Y )
up to an additive constant independent of PY and PX|Y .

Proof: In the following, we prove the statement for the factorization PXPY |X ;
the proof for PY PX|Y follows analogously. First, note that we can compute
PX(x) as PX(x) =

∑
y PXY (x, y). Thus, we can rewrite the first part as

(?1) =
∑
x

∑
y

PXY (x, y) (K(PX) +K(x | PX))

=
∑
x

PX(x) (K(PX) +K(x | PX))

+= K(PX) +H(PX) .

To get from line 2 to 3, we apply Lemma 5.1. Similarly, we can proceed with
the second part

(?2) =
∑
x

∑
y

PXY (x, y)
(
K(PY |X) +K(y | x, PY |X)

)
=
∑
x

PX(x)
∑
y

PXY (x, y)
PX(x)

(
K(PY |X) +K(y | x, PY |X)

)
= K(PY |X) +

∑
x

PX(x)
∑
y

PXY (x, y)
PX(x) K(y | x, PY |X)

+= K(PY |X) +
∑
x

PX(x)
∑
y

PY |X=x(y)K(y | PY |X=x)

+= K(PY |X) +
∑
x

PX(x)H(PY |X=x)

= K(PY |X) +H(PY |X) .

Importantly, in the step from line 3 to 4, we assume that we can select the
correct probability table PY |X=x form inputs PY |X and x with an O(1) program.

If we combine (?1) and (?2), we get K(PX) + K(PY |X) + H(PXY ) and
obtain an equivalent result for the inverse direction due to the symmetry of the
joint entropy. �

Although the theorem is only stated for two random variables, it is straight-
forward to extend it to the general formulation of the algorithmic independence
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of conditionals. In particular, we have
m∑
i=1

∑
xi

∑
pai

PXiPai(xi, pai)
(
K(PXi|Pai

) +K(xi | pai, PXi|Pai
)
)

is equal to
∑m
i=1K(PXi|Pai

) +H(PX1,...,Xm
) up to a constant.

In the following section, we point out that the results of Theorem 5.1 do
not necessarily hold for joint descriptions and discuss implications of these
observations for practical MDL encodings.

5.4 Connection to Joint Descriptions

The optimization goal of a two-part encoding, e.g. two-part MDL, is also often
formalized as finding that model M∗ ∈ M, which minimizes the joint costs of
data and model, that is,

M∗ = argmin
M∈M

L(D,M) = L(M) + L(D |M) .

Hence, intuitively we could rewrite LX→Y as L(xn,MX) + L(yn,MY |X | xn).
The problem is, if we rigorously expand the second term, we need to encode
the model given the data, i.e.,

L(yn,MY |X | xn) = L(MY |X | xn) + L(yn | xn,MY |X) .

In terms of MDL, we can argue that the model is independent of the data
xn. In general, while technically possible, it is not common to encode a model
conditioned on the data. Thus, we do not elaborate further on this ambiguity
and jump into Kolmogorov land.

In particular, assume that X → Y is the true causal model. If we were
to prove that K(x, PX) + K(y, PY |X | x) is on average equal to K(PX) +
K(PY |X) + H(PXY ), the proof would become slightly more involved. It is
inevitable, however, that to split off PY |X from K(y, PY |X | x) we need to keep
x in the conditional term. That is, we arrive at the termK(PY |X | x) and would
need to argue that it is equal to K(PY |X). Since PX ⊥⊥PY |X and x is sampled
from PX , we can indeed conclude that K(PY |X | x) = K(PY |X) + O(1). For
the anti-causal direction, this independence does not hold, i.e., PY ��⊥⊥PX|Y .
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Hence, K(PX|Y | y)
+
≤ K(PX|Y ). Due to this asymmetry, we get that∑

x

∑
y

PXY (x, y)(K(y, PY ) +K(x, PX|Y | y))

+
≤ K(PY ) +K(PX|Y ) +H(PXY )
+
≥ K(PX) +K(PY |X) +H(PXY ) .

In other words, an approximation of this formulation does not allow us to dis-
tinguish X → Y from Y → X, because we cannot guarantee that the inequality
between the causal and anti-causal direction still holds. Thus, encodings that
approximate the joint description with the goal to do causal inference should
be designed with caution, as the description length of the conditional model
should be independent of the data of the conditioning variable.

5.5 Conclusion

To sum up, we first established a clear connection between KX→Y and L∗X→Y ,
which is a possible instantiation of the two-part MDL description for the causal
model LX→Y . In addition, we showed that comparing KX→Y to KY→X is
equivalent to comparing the Kolmogorov complexities of the corresponding
factorizations, i.e., the inference rule based on AIC. Hence, under reasonable
model assumptions, we can approximate AIC with two-part MDL according
to LX→Y and LY→X . In the following Chapters, we will present different
approaches that are inspired or base upon the algorithmic model of causality.
However, note that the research presented in those chapters was done before
the work presented in this chapter was developed.



Chapter 6

Causal Inference via
MDL-based Regression

We now turn from theory to practice and consider the problem of inferring
the most likely causal direction between two statistically dependent univariate
numeric random variables X and Y , given only an i.i.d. sample from their
joint distribution. We further assume acyclicity and causal sufficiency, that is,
we assume that there is no hidden confounder Z that causes both X and Y .
Simply put, we are interested in identifying whether X causes Y (X → Y ), or
whether Y causes X (Y → X).

In the previous parts, we discussed faithfulness and conditional indepen-
dence tests, which are both relevant for constraint-based causal discovery meth-
ods. However, even if faithfulness holds and we are given the perfect indepen-
dence criterium, we cannot decide between the two Markov equivalent DAGs
X → Y and Y → X (Pearl, 2009) since these graphs do not contain a v-
structure. One possibility to infer cause and effect in such a scenario is by
doing interventions (Pearl, 2009). The idea here is that we would actively
change the distribution or intervene on the distribution of X or Y and check
if this changes the distribution of the second variable. If not, we know that
we performed the intervention on the effect of both variables. In the setup we
consider, however, we do not have access to such interventional data. Thus, we
need to make assumptions on the generating mechanism to be able to find an
asymmetry between cause and effect.

This chapter is based on Marx and Vreeken (2017, 2019b).
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Figure 6.1: Example data for the ground truth model X → Y . The left-hand data
is generated using a cubic function with Gaussian noise, whereas the right-hand data is
generated using a global trend function as well as an additional local function to model
the structure within duplicated values of X.

One such assumption is the algorithmic independence of conditionals (Janz-
ing and Schölkopf, 2010) that we discussed in the previous chapter. That is,
we assume that the algorithmic mutual information between the distribution
of the cause and its mechanism (PY |X) is zero—i.e., they are algorithmically
independent. As a consequence, the shortest algorithmic description of the
joint distribution of X and Y is achieved by first describing the distribution of
the cause and then describing the conditional distribution of the effect given
the cause. Building upon this postulate, Budhathoki and Vreeken (2017b) pro-
posed to estimate this inequality using two-part MDL and instantiated their
framework for multivariate binary data. In this work, we build upon this idea
and develop a two-part MDL approximation for numeric data.

Simply put, we propose to fit a regression model from X to Y , and vice
versa, measuring both the complexity of the function, as well as the error
it makes in bits, and select that direction which has the shortest description
length. We carefully construct an MDL score such that we can meaningfully
compare between different types of functional dependencies, including linear,
quadratic, cubic, reciprocal, and exponential functions, and the error that they
make. This way, for example, we will find that we can more succinctly describe
the data in Figure 6.1(a) by a cubic function than with a linear function.
Although it takes fewer bits to describe the linear function, it will take many
more bits to describe the larger error it makes. However, not all data might look
as smooth as in the previous example. In fact, many real-world data sets look
like the data plotted in Figure 6.1(b), see Mooij et al. (2016). We can clearly
see that despite the general linear trend, the data contains more structure,
which we can encode. That is, for all values x of X, the associated values of Y
show a similar pattern. In contrast, if we rotate the plot by 90 degrees, we do
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not observe such regularities for the X values mapped to a single Y value. We
can exploit this asymmetry by considering local regression functions per value
of X, each individually fitted but since we assume all noise to be of the same
type, all should be in the same function class. In this particular example, we
therewith correctly infer that X causes Y . The Minimum Description Length
principle prevents us from overfitting, as such local functions are only included
if they aid global compression.

The remainder of this chapter is structured as follows. In Section 6.1,
we introduce our score based on the algorithmic independence of conditional,
as well as a practical instantiation based on the MDL principle. Since only
providing an inference result does not give us any information about how certain
we are that this decision is correct, we provide a detailed discussion on the
confidence of a provided inference in Section 6.2. Additionally, we discuss and
provide two different significance tests which we evaluate in our experiments.
After that, we introduce the linear-time algorithms Slope and Sloper to
efficiently compute our score in Section 6.3. In Section 6.4, we discuss related
work and in Section 6.5, we empirically validate our approach on synthetic data
as well as on real-world benchmark data. Especially on the benchmark data,
we clearly outperform the state-of-the-art in the field.

6.1 Information Theoretic Causal Inference

In this chapter, we assume that we are given two correlated univariate numeric
random variables X and Y . Further, we assume that causal sufficiency holds
and no causal relation is cyclic. Hence, according to Reichenbach’s common
cause principle (see Definition 5.1), the true causal graph between X and Y
can either be X → Y or X ← Y .

To estimate which of the two options corresponds with the true graph,
we build upon the algorithmic independence of conditionals (see Section 5.2).
Accordingly, if X → Y is the true graph, we get that

K(PX) +K(PY |X)
+
≤ K(PY ) +K(PX|Y ) . (6.1)

This means that if X → Y , first describing the marginal distribution of the
cause K(PX) and then describing the conditional distribution of the effect
given the cause K(PY |X), will be shorter than the Kolmogorov complexity of
the factorization for the anti-causal direction.

Although Equation (6.1) already allows for inferring the causal direction
for a given pair, we obtain a more robust score, allowing for fair comparison of
results independent of data sizes, when we normalise the result. In particular,
Budhathoki and Vreeken (2017b) recently proposed to normalize the scores
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with the sum of the description lengths for the marginal distributions. We
therefore define our causal indicator as

IKX→Y =
K(PX) +K(PY |X)
K(PX) +K(PY ) ,

and IKY→X in the same manner. Consequently, we infer X → Y , if IKX→Y <
IKY→X , and Y → X, if IKX→Y > IKY→X and do not decide if IKX→Y = IKY→X .

The confidence of our score is C = |IKX→Y − IKY→X |. The higher, the more
certain we are that the inferred causal direction is correct. In Section 6.2,
we will show how we can in addition define two analytical tests to determine
whether an inference is statistically significant.

Next, we will show how we can instantiate the above indicator in practice
using a two-part MDL encoding.

6.1.1 Causal Inference by MDL

As Kolmogorov complexity is not computable, we will instantiate IKX→Y and
IKY→X using the Minimum Description Length principle (Li and Vitányi, 2019;
Grünwald, 2007). In practice this means we will need to define a model class
M under which we can estimate IKX→Y as

ILX→Y = L(X) + L(Y | X)
L(X) + L(Y ) .

As suggested by Budhathoki and Vreeken (2017b), we describe the model for
the causal direction MX→Y ∈ M in two parts. We use MX to describe the
marginal and MY |X to describe the conditional. Thus, we define L(X) as the
sum L(MX) + L(xn | MX) and further define L(Y | X) as L(MY |X) + L(yn |
xn,MY |X), where (xn, yn) corresponds to an empirical sample of n entries that
was drawn i.i.d. from PXY .1

We define ILY→X analogue to ILX→Y , and we infer X → Y , if ILX→Y <
ILY→X , Y → X, if ILX→Y > ILY→X and do not decide if ILX→Y = ILY→X or if
the difference is below a user-defined threshold. Like above, confidence C is
simply the absolute difference between ILX→Y and ILY→X .

To put this framework into practice, we need to define the model class and
explain how we encode the data given a corresponding model.

1As described in Section 5.3, this two-part MDL description can be justified via
rewriting the algorithmic independence of conditionals as two-part descriptions in
terms of Kolmogorov complexity.



93 Chapter 6. Causal Inference via MDL-based Regression

Intuition for the Conditional Encoding

The general idea is simple: we use regression to model the data of Y given
X. That is, we model Y as a function f of X and independent noise N , i.e.,
Y = f(X)+N . We do so by fitting a regression function f over X and treat the
error as Gaussian distributed noise. Naturally, the better f(X) fits Y , the fewer
bits we will have to spend on encoding the errors. The more parameters f(X)
has, however, the more bits we will have to spend on encoding these. This way,
MDL naturally balances the complexity of the model to that of the data given
the model (Grünwald, 2007). For example, while a linear function is simpler
to describe than a cubic function, the latter will be a significantly better fit for
the data shown in Figure 6.1(a), and hence, MDL will prefer the more complex
model. At the same time, we would not decide to fit a polynomial of a higher
degree, since the model costs increase, while the error will at most reduce by a
small margin.

A key idea in our approach is to compress the data as much as possible.
Thus, we do not only consider a single global regression function fg, but also
consider fitting additional local, or compound functions as models. That is, we
consider models that besides the global function fg may additionally consist of
local regression functions fl that model Y for those values x of X that non-
deterministically map to multiple values of Y . That is, per such value of X,
we take the corresponding values of Y , sort these ascendingly, and uniformly
re-distribute them on X over a fixed interval. For these re-distributed points,
we can fit a local regression model fl, if it improves the overall compression.
This way, we will for example be able to much more succinctly describe the
data in Figure 6.1(b) than with a single global function. In particular, we can
pick up local structures, e.g., that all values of Y associated to a single point
in X are roughly uniformly distributed. To avoid overfitting we use MDL, and
only allow a local function for a value of X into our model if it provides a gain
in overall compression. Further, we assume that for the true causal model the
data in the local components follows the same pattern. Hence, we only allow
models in which all local functions are of the same type, e.g., all are linear.

In the following paragraphs, we specify how we describe a model and vice
versa, how we encode the data given the model.

Encoding the Marginals

We start by defining the cost for the marginal distributions, L(X) and L(Y ),
which mostly serve to normalize our causal indicators ILX→Y and ILY→X . As we
beforehand do not know how X or Y are distributed, and do not want to incur
any undue bias, we encode both using a uniform prior with regard to the data
resolution τ of X and Y . That is, we have L(xn |MX) = n log max(X)−min(X)

τX
,

where τX is the resolution of the data of X. Since we normalize the data before



6.1. Information Theoretic Causal Inference 94

running our algorithm (see Section 6.3), max(X) = 1, min(X) = 0 and thus
L(xn | MX) = −n log τX . Note that resolution τ can be different between X
and Y—we specify how we choose τ in the next section. Since we assume the
same model for MX and MY , the model costs will cancel overall, hence there
is no need to specify them. We define L(yn | MY ) in the same way as the
marginal encoding for the data over X.

Encoding the Conditional Model

Formally, we write F for the set of regression functions, or model, we use to
encode the data of Y given X. A model F consists of at least one global
regression function fg ∈ F , and up to k local regression functions fl ∈ F ,
where k refers to the number of unique values of xn. We write Fl for the set of
local regression functions fl ∈ Fl, and require that all fl ∈ Fl are of the same
type. The description length, or encoded size, of F is

L(F ) = LN(|Fl|) + log
(
k

|Fl|

)
+ 2 log(|F|) + L(fg) +

∑
fl∈Fl

L(fl) ,

where we first describe the number of local functions using LN,2 the MDL
optimal encoding for integers z ≥ 1 (Rissanen, 1983), then map each fl to its
associated value of X, after which we use log |F| bits to identify the type of the
global regression function fg, and whenever Fl is non-empty also log |F| bits
to identify the type of the local regression functions fl. Finally, we encode the
functions themselves. Knowing the type of a function, we only need to encode
its parameters, and hence

L(f) =
∑
φ∈Φf

LN(s) + LN(d|φ| · 10se) + 1 ,

where we encode each parameter φ up to a certain precision p, where p > 0 is
an integer. We shift φ by the smallest integer number s such that φ ·10s ≥ 10p,
i.e., p = 3 means that we consider four digits. Accordingly, we encode the shift,
the shifted digit and the sign.

Encoding the Residuals

Reconstructing the data of Y given f(X) corresponds to encoding the resid-
uals, or the error the model makes. Since we fit our regression functions by

2LN of an integer z > 0 is defined as LN(z) = log∗ z + log c0, where log∗ z =
log z+log log z+. . . and we consider only the positive terms, and c0 is a normalization
constant to ensure the Kraft inequality holds (Kraft, 1949).
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minimizing the sum of squared errors, which corresponds to maximizing the
likelihood under a Gaussian, it is a natural choice to encode the errors using a
Gaussian distribution with zero-mean.

Since we have no assumption on the standard deviation of the error, we
set the variance in the encoding for a normal distribution (Grünwald, 2007,
Chapter 12) to be the empirical estimate σ̂. That is, for data points xn with
large n we get that

− ln(xn, 0, σ̂2) = SSE
2σ̂2 + n

2 ln 2πσ̂2

⇔ − ln(xn, 0, σ̂2) = n

2 + n

2 ln 2πσ̂2

⇔ − log(xn, 0, σ̂2) = n

2 ln 2 + n

2 log 2πσ̂2 = n

2

(
1

ln 2 + log 2πσ̂2
)
,

where we do a basis change to the logarithm with basis two. Hence, the encoded
size of the error of F (X) with respect to the data of Y corresponds to

L(Y | F,X) =
∑
f∈F

(
nf
2

(
1

ln 2 + log 2πσ̂2
)
− nf log τ

)
,

where nf is the number of data points for which we use a specific function
f ∈ F and the term with regard to τ is a correction term with respect to the
resolution of the data. Intuitively, this score is higher the less structure of
the data is described by the model and increases logarithmically to the sum of
squared errors.3

Combining the data and model costs, we can now proceed and define the
total encoded size of the conditional encoding of Y given X as

L(Y | X) = L(F ) + L(Y | F,X) . (6.2)

By MDL we are after that model F that minimizes Equation (6.2). Next,
we discuss how we can assess the significance of a decision using the no-
hypercompression inequality.

3In retrospect, we could have also assumed that the error has standard deviation
one and hence encode it as

∑
f∈F

SSE
2 ln 2 + nf

2 log 2π (Grünwald, 2007, Chapter 12),
which is numerically more stable, since we do not run the risk of taking the logarithm
of a number < 1.
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6.2 Significance of a Prediction

In the following, we discuss two possibilities to evaluate a decision. Since there
are only two options, X is the cause, or Y is the cause; and very rarely, the
scores are equal, we want to provide the user some insight to the decision. One
possibility is to compute an MDL-based p-value and the second option is by
looking at the relative confidence.

6.2.1 Significance by Hypercompression

Ranking based on confidence works well in practice. Ideally, we would ad-
ditionally like to know the significance of an inference. It turns out we can
define an appropriate hypothesis test using the no-hypercompressibility in-
equality (Bloem and de Rooij, 2020; Grünwald, 2007). In a nutshell, under
the hypothesis that the data was sampled from the null-model, the probability
that any other model can compress k bits better is

P0(L0(x)− L(x) ≥ k) ≤ 2−k .

This means that if we assume the null model to be the direction corresponding
to the least-well compressed causal direction, we can evaluate the probability of
gaining k bits by instead using the most-well compressed direction. Formally,
if we write LX→Y for L(X) + L(Y | X), and vice-versa for LY→X , we have

L0 = max{LX→Y , LY→X} .

The probability that the data can be compressed

k = |LX→Y − LY→X |

bits better by encoding it in the anti-causal direction is then simply 2−k.
In fact, we can construct a more conservative test by assuming that the data

is not causated, but merely correlated. That is, we assume both directions are
wrong; the one compresses too well, the other compresses too poorly. Hence, if
we assume these two to be equal in terms of exceptionality, the null complexity
is the mean between the complexities of the two causal directions, i.e.,

L0 = min{LX→Y , LY→X}+ |LX→Y − LY→X |2 .

The probability of the best-compressing direction is then 2−k with

k = |LX→Y − LY→X |2 .
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We can now set a significance threshold α as usual, such as α = 0.001, and use
this to prune out those cases where the difference in compression between the
two causal directions is insignificant.

6.2.2 Significance by Confidence

Although the above significance test based on the absolute difference in com-
pression follows nicely from theory, and behaves well in practice, it is not free of
problems. In particular, as most significance tests, it is sensitive to the number
of samples, which in our context can be directly linked to the initial complexi-
ties L(X) and L(Y ). Assume we draw two samples from the distribution PXY ,
where sample A only consists of 1 000 data points, while sample B contains
n = 10 000 data points. Since both, the encoding of the marginal, as well as
the encoding for the conditional, depend on n, it is likely that the absolute
difference between LX→Y and LY→X is larger for sample B. However, if we
find an equally large absolute difference between LX→Y and LY→X for a pair
of nodes on a relatively small sample and a different pair on a large sample, we
would intuitively say that the large gain on the small sample is more signifi-
cant. Following this conjecture, the above significance test using the absolute
difference is biased towards larger data sets.

To resolve this bias we formulate a null hypothesis with respect to the
marginal complexities. In particular, we rescale the initial complexity L(X) +
L(Y ) as if they would sum up to b bits. Thus, we write the new null hypothesis
as H0: Given a budget of b bits both directions compress equally well. With
this hypothesis, we calculate k as

k = |LX→Y − LY→X |2 · b

L(X) + L(Y ) = C · b2 .

This means that finding a threshold for the confidence value is equivalent to the
relative significance test. In particular, we can calculate a confidence threshold
given a significance level α and a budget b as C = −2 log(α)/b. For instance,
allowing a budget of b = 1 000 bits and a significance level of α = 0.05 renders all
inferences with a confidence value lower than 0.00864 insignificant. Informally,
we say that we do not expect that a difference of more than k in b bits, is due
to a random effect. In other words, to be able to compare significance values
between different experiments, we pretend that both experiments contained the
same amount of samples.

We will evaluate both of the above procedures, in addition to our confidence
score, in the experiments. In the next section we describe how we compute the
marginal and conditional costs in linear time.
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6.3 The Slope Algorithm

With the framework defined in the previous section, we can determine the most
likely causal direction and the corresponding confidence value. In this section,
we present the Slope algorithm to efficiently compute the causal indicators. To
keep the computational complexity of the algorithm linear, we restrict ourselves
to linear, quadratic, cubic and exponential functions; and their counterparts:
reciprocal and logarithmic functions. Note that at the cost of extra compu-
tation this class may be expanded arbitrarily. We start by introducing the
subroutine of Slope that computes the conditional complexity of Y given X.

6.3.1 Calculating Conditional Scores

Algorithm 6.1 describes the subroutine to calculate the conditional costs L(Y |
X) or L(X | Y ). We start by fitting a global function fg for each function
class c ∈ F and choose that fg with the minimum sum of data and model costs
(line 2). Next, we add fg to the model F and store the total costs (3–4). For
purely continuous data, we are done.

If X includes duplicate values, however, we need to check whether fitting
local models leads to a gain in compression. To this end we check for each value
xi that occurs at least twice in the sample xn if we can fit a local function.
In particular, we fit the corresponding values in yn, ordered ascendingly, as a
function fl(Xi), where Xi corresponds to a sequence of ascending data points,
which are uniformly spaced over the interval [−t, t], where t is a user-determined
scale parameter (lines 9–13). If the model costs of the new local function fl are
higher than the gain on the data side, we do not add fl to our model (line 14).
As it is fair to assume that the data generating process is the same for each
local component, we restrict all local functions to be of the same type. As
final result, we return the costs according to the model with the smallest total
encoded size. In case the process does not involve a local function, our model
will only contain fg.

6.3.2 Causal Direction and Confidence

In the previous paragraph, we described Algorithm 6.1, which is the main
algorithmic part of Slope. Before applying it, we first normalize X and Y to
be from the same domain and then determine the data resolutions τX and τY
for X and Y . To obtain the data resolution, we calculate the smallest non-
zero difference between two instances of the corresponding random variable.
Next, we apply Algorithm 6.1 for both directions to obtain L(Y | X) and
L(X | Y ). Subsequently, we estimate the marginals L(X) and L(Y ) based
on their data resolutions. This we do by modelling both with a uniform prior
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Algorithm 6.1: ConditionalCosts(Y,X)
input : data over random variables Y and X
output: score L(Y | X)

1 F = empty model;
2 fg = FitFunction(Y ∼ X,F);
3 F = F ∪ fg;
4 s = sg = L(F ) + L(Y | F,X);
5 Xu = {x | count x ∈ xn ≥ 2};
6 foreach Fc ∈ F do
7 sc = sg, Fc = F ;
8 foreach xi ∈ Xu do
9 Yi = {y ∈ Y | y maps to xi};

10 sort Yi ascendingly;
11 Xi = norm(1 : |Yi|,min = −t,max = t);
12 fl = FitFunction(Yi ∼ Xi,Fc);
13 ŝ = L(Fc ∪ fl) + L(Y | Fc ∪ fl, X);
14 if ŝ < sc then sc = ŝ, Fc = Fc ∪ fl;
15 if sc < s then s = sc;
16 return s;

as L(X) = −n log τX and L(Y ) = −n log τY . In the last step, we compute
ILX→Y and ILY→X and report the causal direction as well as the corresponding
confidence value C.

The choice of the resolution might seem to be ad-hoc, which it is. However,
since we compute the unconditioned complexities with a uniform prior, the ex-
act value of the resolution is not important. In general, setting a resolution in
our score prevents us from getting negative code lengths in case σ̂ approaches
zero. In this special setting, where we only consider two univariate variables
with the same sample size, the penalty for the resolution cancels out. In par-
ticular, in both ILX→Y and ILY→X , we subtract n times the negative logarithm
of the resolution for X and Y . Hence, the number of bits spent to correct for
the resolution is equal for both ILX→Y and ILY→X .

6.3.3 Combining Basis Functions

To extend the generality of Slope, we provide a second version of it, which we
call Sloper. The aim of Sloper is to allow for more complex functions, e.g.
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Y = a + bX + c log(X) + dx−3 + N . This we do by fitting a mixture of basis
functions as the global function. As a consequence, Sloper is more flexible
and can help to infer more complex functional relationships. Naturally, this
comes at a cost. In particular, we go over each possible combination of basis
functions—in our case 2|F| − 1 with |F| = 8 basis functions—and find the one
minimizing the two part-costs.

Since all possible combinations can be non-ambiguously enumerated, we
can still use the same encoding.

6.3.4 Computational Complexity

To assess the computational complexity, we have to consider the score calcula-
tion and the fitting of the functional relations. The model costs are computed
in linear time according to the number of parameters, whereas the data costs
need linear time with regard to the number of data points n. Since we restrict
ourselves to relatively simple functions, we can fit these in linear time w.r.t. n.
To fit local functions, in the worst case we perform n/2 times |F| fits over two
data points, which is still linear. In total, the runtime complexity of Slope
hence is O(n|F|), for Sloper respectively O(n2|F|). In practice, Slope and
Sloper are very fast and typically output a result within a few seconds, up to
a few minutes for pairs with tens of thousands of samples.

6.4 Related Work

A well studied framework to infer the causal direction between two correlated
random variables are additive noise models (ANMs) (Shimizu et al., 2006).
That is, we assume that Y was generated as a function of X with additive
noise NX independent of X, i.e., Y = f(X) +NX with X ⊥⊥NX . It turns out
that for various settings (Peters et al., 2011b, 2014) the correct causal direction
is identifiable as there does not exist an ANM in the anti-causal direction; it
is impossible to find a function X = g(Y ) + NY where Y ⊥⊥NY holds. This
is the case for linear functions f and non-Gaussian noise NX (Shimizu et al.,
2006), non-linear functions and additive noise (Hoyer et al., 2009), post-non-
linear models where the effect is generated as Y = f1(f2(X)+NX) (Zhang and
Hyvärinen, 2009), mixtures of multiple additive noise models (Hu et al., 2018),
as well as for discrete regression (Peters et al., 2011a). In a comparative study,
Mooij et al. (2016) reviewed several ANM-based approaches for continuous data
from which ANM-pHSIC performed best. To test for independence of cause
and noise, ANM-pHSIC employs a kernel-based independence criterium, the
Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2008), which
can find complex non-linear dependencies.
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A limiting factor of these approaches is that the results strongly rely on the
used independence test and the fitting algorithm (Mooij et al., 2016). Prob-
lems can arise when the functions overfit and an ANM is discovered for both
directions, as we show in our experiments. In addition, it is hard to derive a
meaningful confidence score from the corresponding p-values, as they are highly
dependent on the sample size (Anderson et al., 2000).

Another class of methods relies on the postulate of the independence of
mechanisms, that we discussed in Section 5.1. Quickly summarized, this postu-
late assumes that if X → Y , the distribution of the cause (PX) is independent
of the mechanism (PY |X), while the same does not hold for the anti-causal
direction (Janzing and Schölkopf, 2010). The authors of IGCI define this in-
dependence via orthogonality in the information space. Practically, they define
their score using the entropies of X and Y (Janzing et al., 2012). Liu and
Chan (2016) implemented this framework by calculating the distance correla-
tion for discrete data between PX and PY |X . A third approach based on this
postulate is Cure (Sgouritsa et al., 2015). Here, the main idea is to estimate
the conditional using unsupervised inverse Gaussian process regression on the
corresponding marginal and compare the result to the supervised estimation.
If the supervised and unsupervised estimation for PX|Y deviate less than those
for PY |X , an independence of PY |X and PX is assumed and the causal di-
rection X → Y is inferred. Although well formulated in theory, the proposed
framework is only solvable for data consisting of at most 200 data points and
otherwise strongly relies on finding a good sample of the data.

We base our approach on a related postulate, that is, the algorithmic in-
dependence of conditionals (Janzing and Schölkopf, 2010; Lemeire and Dirkx,
2006). The postulate states that if X → Y , the complexity of the description
of the joint distribution in terms of Kolmogorov complexity, K(PXY ), will be
shorter when first describing the distribution of the cause K(PX) and than de-
scribing the distribution of the effect given the cause K(PY |X) than vice versa
(see also Section 5.2). To the best of our knowledge, Mooij et al. (2010) were
the first to propose a practical instantiation of this framework based on the
Minimum Message Length principle (MML) (Wallace and Boulton, 1968) us-
ing Bayesian priors. Vreeken (2015) proposed to approximate the Kolmogorov
complexity for numeric data using the cumulative residual entropy, and gave an
instantiation for multivariate continuous-valued data. Perhaps most related to
Slope is Origo (Budhathoki and Vreeken, 2017b), which uses two-part MDL
to infer the causal direction on binary data, whereas we focus on univariate
numeric data. Last, a quite recent proposal, QCCD (Tagasovska et al., 2020),
approximates AIC using non-parametric conditional quantile estimation. Since
this approach was published after the paper in which we proposed Slope, we
will not compare to QCCD in this Chapter, but we will include comparisons
to QCCD in the next Chapter.
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6.5 Experiments

In this section, we empirically evaluate Slope and Sloper. In particular, we
consider synthetic data, a benchmark data set, and a real-world case study. We
implemented both in R and make the code, the data generators, as well as the
real world data publicly available for research purposes.4 We compare Slope
and Sloper to the state-of-the-art for univariate causal inference. These in-
clude Cure (Sgouritsa et al., 2015), IGCI (Janzing et al., 2012) and RE-
SIT (Peters et al., 2014). From the class of ANM-based methods we compare
to ANM-pHSIC (Hoyer et al., 2009; Mooij et al., 2016), which a recent survey
identified as the most reliable ANM inference method (Mooij et al., 2016). We
use the implementations by the authors, sticking to the recommended settings.

To run Slope, we have to define the parameter t, which is used to normalize
the data Xi within a local component, on which the data Yi is fitted. Generally,
the exact value of t is not important for the algorithm, since it only defines the
domain of the data points Xi, which can be compensated by the parameters
of the fitted function. In our experiments, we use t = 5 and set the precision p
for the parameters to three.

6.5.1 Evaluation Measures

As simply giving the accuracy over a set of experiments does not suffice to judge
about the quality of an inference algorithm, we briefly explain frequently used
measures. In general, it is not only important to have a high accuracy, but also
to assign high confidence values to decisions about which the corresponding
approach is most certain and low confidence values to less certain decisions as
in our case high noise settings.

Commonly used measures to give more insight to this behaviour than the
overall accuracy, are the area under the receiver operating characteristic (ROC)
curve and the area under the precision recall (PR) curve. However, both have
the drawback that they assign a preference to either select X → Y as the true
positive and Y → X as the true negative or vice versa. As a consequence, they
are not symmetric. The assignment of X and Y for the tested pairs is highly
arbitrary and hence, the imposed preference of those tests is arbitrary, too.

An alternative measure is the accuracy with respect to the decision rate,
which we simply denote by accuracy curve. The decision rate is the percentage
of pairs for which we force a decision—i.e., a decision rate of p% means that
we consider those p% of all decisions with the highest confidence. In contrast
to ROC and PR the decision rate is independent of the label of the result.
To get the accuracy curve, we simply calculate the accuracy per decision rate.

4http://eda.mmci.uni-saarland.de/slope/

http://eda.mmci.uni-saarland.de/slope/
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Similar to ROC and PR, we can also calculate the area under the accuracy
curve (AUAC), which is our preferred measure.

6.5.2 Synthetic Data

We first consider data with known ground truth. To generate such data, we
follow the standard scheme of Hoyer et al. (2009). That is, we first generate
X randomly according to a given distribution, and then generate Y as Y =
f(X) +N , where f is a function that can be linear, cubic or reciprocal, and N
is the noise term, which can either be additive or non-additive.

Accuracy

First, we evaluate the performance of Slope under different distributions. Fol-
lowing the scheme above, we generate X randomly from either

1. a uniform distribution with min = −t and max = t, where t ∼ Unif(1, 10),
2. a sub-Gaussian distribution by sampling data with N (0, s), where s ∼

Unif(1, 10) and taking each value to the power of 0.7, keeping its sign,5
3. a binomial distribution with p ∼ Unif(0.1, 0.9) and the number of trials

t ∼ dUnif(1, 10)e, or
4. a Poisson distribution with λ ∼ Unif(1, 10).

Note that the binomial and Poisson distribution generate discrete data points,
which with high probability results in duplicate values. To generate Y we first
apply either a linear, cubic or reciprocal function on X, with fixed parame-
ters, and add either additive noise using a uniform or Gaussian distribution
with t, s ∼ Unif(1,max(x)/2) or non-additive noise with N (0, 1)| sin(2πνX)|+
N (0, 1)| sin(2π(10ν)X)|/4 according to (Sgouritsa et al., 2015), where we choose
ν ∼ Unif(0.25, 1.1). For every combination we generate 100 data sets of 1 000
samples each.

Next, we apply Slope, RESIT, and IGCI and record their accuracies.
Since all tested functions can be modelled by Slope, they can also be modelled
by Sloper. Hence, the performance of Sloper is identical, and we only give
the results for one of them. As they take up to hours to process a single pair,
we do not consider Cure and ANM here. We give the averaged results over all
three function types in Figure 6.2. In general, we find that Slope and IGCI
perform on par and reach 100% for most setups, whereas Slope performs better
on the sub-Gaussian data. If we consider the single results for linear, cubic and
reciprocal, we find that on the linear data with sub-Gaussian distributed X,
Slope performs on average 7% better than IGCI.

5We consider sub-Gaussian distributions since linear functions with both X and
N Gaussian distributed are not identifiable by ANMs (Hoyer et al., 2009).
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Figure 6.2: [Higher is better] Accuracies of Slope, RESIT and IGCI on synthetic
data–Sloper performs identical to Slope. The first letter of the labels corresponds to
the distribution of X (u: uniform, g: sub-Gaussian, b: binomial and p: Poisson), the
second letter to that of the noise (u: uniform, g: Gaussian and n: non-additive).

Confidence

Second, we investigate the dependency of the RESIT, IGCI, and Slope scores
on the size of the data. In an ideal world, a confidence score is not affected by
the size of the data, as this allows easy comparison and ranking of scores.

To analyze this aspect, we generate 100 datasets of 100, 250, 500 and 1 000
samples each, where X is Gaussian distributed and Y is a cubic function of
X with uniform noise. Subsequently, we apply RESIT, IGCI and Slope
and record their confidence values. We show the results per sample size in
Figure 6.3. As each method uses a different score, the scale of the Y-axis is not
important. What is important to note, is the trend of the scores over different
sample sizes. We see that the mean of the confidence values of Slope is very
consistent and nearly independent of the number of samples. In addition, our
score becomes more precise with more data: the size of the confidence interval
decreases. In strong contrast, the standard deviation of the confidence values
increases with larger sample size for RESIT. For IGCI, we observe that the
average confidence increases with the number of samples.

In addition to theses plots, we check if there is a significant mean shift
in the confidence values for different sample sizes. Hence, we apply the exact
two-sided Wilcoxon rank-sum test (Wilcoxon, 1945; Marx et al., 2016). In
particular, we compare the confidence values for the sample sizes 100, 200, 500
to the ones for sample size 1 000 for all methods. As result, we observe that for
a significance level of 0.01 we find a significant shift in all three tests for IGCI.
Also, for RESIT, there is a significant mean shift between the values for 100
and 1 000 as well as for 250 and 1 000. Slope is consistent from 250 samples
onwards. In other words, while it is easy to compare and rank Slope scores,
this is not the case for the two others—which, as we will see below results in
comparatively bad accuracy curves.
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Figure 6.3: [The more stable the better] Confidence values on a cubic function for
different sample sizes. Unlike RESIT and IGCI, the Slope scores can be meaningfully
compared between different sample sizes.

Identifiability of ANMs on Synthetic Data

Connected to the vulnerability of the p-values of RESIT to the size of the data,
we investigate in a similar problem. When the data size or the complexity of
the function increases, the test for independence between X and N is likely to
hold in both directions. Accordingly, we generate uniform data with additive
Gaussian noise for different data sizes and plot the results for linear and cubic
functions in Figure 6.4. We can observe that this problem does very rarely
occur for the linear data. For the more complex generative function, the cubic
function, we observe that quite frequently both directions are flagged as ANMs.
Notably, most of the time one direction is significant, the other is so, too. In
such cases, RESIT and other ANM based algorithms, decide for the more
extreme p-value. As stated by Anderson et al. (2000), a more extreme p-value
does not necessarily imply a stronger independence. The only valid statement
we can make is that it is highly unlikely that the noise is dependent on X as well
as on Y for the inverse direction. Deciding for the correct direction, however,
is not well defined. Especially, if we consider that the p-values can be very low
and in the order of 10−100, as we saw in the previous experiment.

Since Slope does not rely on p-values, but decides based on the fit as well
as the complexity of the model, we can avoid these problems.

Fitting Local Models

Local regression on duplicates in the data adds to the modelling power of
Slope, yet, it may also lead to overfitting. Here we evaluate whether MDL
protects us from picking up spurious structure.

To control non-determinacy, we sample X uniformly from k equidistant
values over [0, 1], i.e., X ∈ [ 0

k ,
1
k , · · · ,

k
k ]. To obtain Y , we apply a linear
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Figure 6.4: Percentage of cases where one (blue) or both (purple) causal directions are
significant under an ANM.
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Figure 6.5: [Slope does not overfit] Percentage of local models Slope chooses, resp.
the expected number of Y values per X value.

function and additive Gaussian noise as above. Per data set we sample 1 000
data points. In Figure 6.5 we plot the locality of the model, i.e., the average
number of used local functions divided by the average number of bins Slope
could have used, against the number of distinct X values. As a reference, we
also include the average number of values of Y per value of X. We see that for
at least 75 unique values, Slope does not use local models. Only at 40 distinct
values, i.e., an average of 25 duplicates per X, Slope consistently starts to fit
local models. This shows that if anything, rather than being prone to overfit,
Slope is conservative in using local models.

GP Simulated Data

Next, we want to show that considering a richer function class is beneficial
for our approach. As a showcase, we apply both Slope and Sloper to the
synthetic data pairs proposed by Mooij et al. (2016), where both the data over
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Figure 6.6: [Higher is better] Accuracy curves of Slope and Sloper on the SIM, SIM-ln
and SIM-G data sets. The gray area refers to the 95% confidence interval of a coin flip.

the cause X and the function that maps X to Y have been generated using a
Gaussian process (GP). We consider three scenarios,6 each containing 100 pairs
of 1 000 samples. The first one, SIM is the standard setup, SIM-ln has low
noise levels and for SIM-G both the distribution of X as well as the additive
noise variable are near Gaussian.

In Figure 6.6 we provide the accuracy curves for Slope and Sloper. Over-
all, we can observe that Sloper clearly improves upon the the results of Slope,
since it is able to fit the more complex GP functions better. Especially for the
low noise scenario, Sloper improves significantly and reaches an overall accu-
racy of 80%. In general, we can observe that the accuracy curves for both are
good since the correct decisions have the highest confidence values.

If we consider the area under the accuracy curve, Sloper performs well
having an AUAC of 96% on SIM-ln, 77% on SIM-G and 75% on SIM whereas
Slope has an AUAC of about 50% for all of them. As we expect our approach
to work better in a low noise setup since a) in this case it will be easier to fit
non-linear regression functions and b) linear-Gaussian functions are generally
not identifiable (Peters et al., 2011b), it is not surprising that Sloper performs
best on the SIM-ln data set.

6.5.3 Real World Data

Next, we evaluate Slope on real world benchmark data. In particular, we
consider the Tübingen cause-effect data set.7 At the time of writing the data
set included 98 univariate numeric cause effect pairs. We first compare Slope
to IGCI, RESIT, ANM, and Cure, using the suggested parameter settings
for this benchmark. Afterwards, we compare different variants of Slope.

6We exclude the confounded scenario since it violates our assumptions.
7https://webdav.tuebingen.mpg.de/cause-effect/
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Accuracy Curves and Overall Accuracy

We first consider the overall accuracy and the accuracy curves over the bench-
mark data, where we weight all decisions according to the weights specified
in the benchmark. In case an algorithm does not decide, we consider this a
toss-up and weight these results as one half of the corresponding weight.

We plot the results in Figure 6.7, where in addition we show the 95%
confidence interval for the binomial distribution with success probability of 0.5
in gray. We observe that Slope strongly outperforms its competitors in both
area under the accuracy curve and overall accuracy; it identifies the correct
result for top-ranked 34 data sets, over the top-72 pairs (which correspond to
72.4% of the weights) it has an accuracy of 90%, while over all pairs it obtains
an accuracy of 81.7%.

In Figure 6.8 we show the corresponding confidence values of Slope for
the benchmark pairs. The plot emphasizes not only the predictive power of
Slope, but also the strong correlation between confidence value and accu-
racy. In comparison to the other approaches the area under the accuracy curve
(Figure 6.7) of Slope is stable and only decreases slightly at the very end.
Our competitors, obtain overall accuracies of between 56% (Cure) and 71%
(RESIT), which for the most part are insignificant with regard to a fair coin
flip. This is also reflected in the AUAC values, which lie between 0.588 (Cure)
and 0.736 (IGCI), whereas Slope has an AUAC of 0.942.

If we not only consider the confidence values, but also our proposed sta-
tistical test based on the absolute difference, we can improve our results even
further. After adjusting the p-values using the Benjamini-Hochberg correc-
tion (Benjamini and Hochberg, 1995) to control the false discovery rate (FDR),
81 out of the 98 decisions are significant w.r.t. α = 0.001. As shown in Fig-
ure 6.8 the pairs rated as insignificant correspond to small confidence values. In
addition, from the 17 insignificant pairs, 11 were inferred incorrect from Slope
and 6 correct. Over the significant pairs the weighted accuracy increases to
85.2%, and the AUAC to 0.965.

To provide further evidence that the confidence values and the p-values
are indeed related, we plot the adjusted p-values and confidence values in Fig-
ure 6.9(a). We observe that high confidence values correspond to highly sig-
nificant p-values. We also computed the area under the accuracy curve for
Slope when ranking by p-values, and find it is only slightly worse than that
ranked by confidence. We posit that confidence works better as it is more in-
dependent of the data size. To test this, we calculate the correlation between
data size and corresponding measures using the maximal information coefficient
(MIC) (Reshef et al., 2011). We find a medium correlation between confidence
and p-values (0.64), and between p-values and data size (0.55), and only a weak
correlation between confidence and data size (0.31).

Apart from the accuracies, we also tracked which functional dependencies
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Figure 6.7: [Higher is better] Accuracy curves of Slope, Cure, RESIT, IGCI and
ANM on the Tübingen benchmark data set (98 pairs).
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Figure 6.8: Confidence values for Slope for the Tübingen benchmark pairs, in descending
order, corresponding to Figure 6.7. We marked correct inferences in green, errors in red,
and inferences insignificant at α = 0.001 for the absolute p-value test are marked with a
gray arrow on top.

Slope found on the benchmark data. We found that most of the time (54.6%),
it fits linear functions. For 23.7% of the data it fits exponential models, and for
15.5% cubic models. Quadratic and reciprocal models are rarely fitted (6.2%).

A key observation to make here is that although we allow to fit complex
models, in many cases Slope prefers a simple model as it has sufficient ex-
planatory power at lower model costs. In fact, if we only allow linear functions
Slope is only a few percentage points less accurate compared to the full class of
functions. The confidence of the method, however, is much larger in the latter
case as only then Slope is able to better measure the difference in complexity
in both directions.

Relative p-values

Next, we compare the absolute p-value that we applied in the last section, to
finding a cut-off for the confidence value based on the relative significance test.
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Figure 6.9: Left: Confidence and significance of Slope on the Tübingen benchmark
pairs. Only samples with low confidence are also insignificant. Right: Runtime in seconds
over all 98 pairs, in log-scale. Slope and Sloper both are more accurate than all, and
faster than all except for IGCI.

As explained in Section 6.2, the confidence value can be interpreted as a
relative p-value with respect to a given reference size, e.g. 1 000 bits. Although
ranking by relative p-value would obviously result in the same area under the
accuracy curve as ranking by confidence value, it does allow us to determine a
sensible threshold to decide between significant and random decisions.

Given budget b = 1 000 bits and a significance level α = 0.05, we obtain
a confidence threshold tC = 0.00864. If we reconsider Figure 6.8, we observe
that 32 decisions are rendered insignificant by this threshold. From those, 17
are incorrect and 15 correct. Consequently, this threshold exactly prevents our
algorithm to make 50 : 50, or random decisions. At the same time, considering
only the significant decisions, results in an accuracy of 95.2%. Alternatively, if
we lower the significance threshold to 0.01, eleven more decisions are insignif-
icant, out of which more than two thirds are correct, which implies that a
α = 0.01 might be too restrictive.

Area under the ROC, PR and Accuracy Curve

In this paragraph, we briefly discuss the different evaluation measures as the
area under the ROC, PR, and accuracy curve. We use each measure to evaluate
Slope, Sloper, Cure, RESIT, IGCI and ANM on both the Tübingen data
set including 98 univariate pairs and an older version (version 0.9, on which
many of our competitors were evaluated), including only 79 univariate pairs.
For the ROC and PR curves, we compute both directions, where ROCX cor-
responds to selecting X → Y as true positive and ROCY to selecting Y → X
as true positive—accordingly so for PR. We show the results in Table 6.1.



111 Chapter 6. Causal Inference via MDL-based Regression

Table 6.1: [Higher is better] Area under the ROC, PR and Accuracy curves for Slope,
Sloper, Cure, RESIT, IGCI and ANM on both the Tübingen data set including 98
univariate pairs and the older version 0.9, including only 79 univariate pairs. All decisions
are weighted with the corresponding weights of the benchmark.

Slope Sloper Cure RESIT IGCI ANM

Tübingen98

ROCX 0.898 0.865 0.424 0.573 0.671 0.472
ROCY 0.897 0.862 0.413 0.564 0.675 0.472

PRX 0.962 0.948 0.716 0.791 0.808 0.734
PRY 0.728 0.705 0.232 0.265 0.600 0.255

AUAC 0.942 0.927 0.588 0.676 0.736 0.713

Tübingen79

ROCX 0.812 0.792 0.381 0.508 0.388 0.469
ROCY 0.851 0.830 0.414 0.528 0.422 0.502

PRX 0.942 0.935 0.740 0.800 0.675 0.742
PRY 0.575 0.573 0.200 0.254 0.269 0.232

AUAC 0.933 0.924 0.819 0.534 0.715 0.802

First of all, we observe that both Slope and Sloper have very similar
results and outperform the competing approaches on each scoring metric. Fur-
ther, we observe that it makes a huge difference for every approach whether we
consider PRX or PRY (see e.g. Cure). This difference relates to the imbalance
of the benchmark data set, in which the majority of the data pairs have X as
the true cause. However, since it is an arbitrary choice how to assign X and
Y for each data set, we consider the area under the precision recall curve not
as an appropriate measure for causal inference. We observe a similar effect for
the area under the ROC curve, but much weaker. Still the score is dependent
on the choice of the true positive and hence we consider the area under the
accuracy curve as the most objective measure.

Slope and its Variations

As a last test on the benchmark data set, we compare Slope, Sloper and
two additional variants of our algorithm. Those are SlopeG, which only fits
global functions and SlopeP , which has the same results as Slope, but uses
the absolute p-value as confidence. For each variant we plot the accuracy curve
for all significant decisions with respect to α = 0.001 in Figure 6.10.

First of all, we observe that Sloper is on par with Slope up to a decision
rate of 75% and reaches an overall accuracy of 80%. The AUAC of Sloper
(0.936) is nearly as good as the one for Slope (0.945). Hence, only in the
low confidence region, Sloper had a slightly worse performance. When we
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Figure 6.10: [Higher is better] Accuracy curves for Slope, Sloper, SlopeP and
SlopeG on the Tübingen benchmark data set. SlopeP is inferred with Slope, but
ranked according to the p-value and SlopeG only fits the data with a single global func-
tion. Only significant decisions with respect to α = 0.001 are considered.

inspected those decisions, we found that the corresponding pairs mainly con-
sisted of pairs with high noise levels. This explains why Slope and Sloper
made different decisions as both were not very certain. Moreover, we observe
that using the p-value as confidence measure leads to a slightly worse accuracy
curve and AUAC of 0.918, however, as expected it is still good as the confidence
values correlate with the p-values. SlopeG has an overall accuracy of about
73% and an AUAC of 0.861, which clearly shows that fitting local functions
boosts the accuracy significantly.

Runtime

Next, we evaluate the computational efficiency of Slope. To this end we
report, per method, the wall-clock time needed to decide on all 98 pairs of the
benchmark data set. We ran these experiments on Linux servers with two six-
core Intel Xenon E5-2643v2 processors and 64GB RAM. The implementations
of Slope, IGCI and RESIT are single-threaded, whereas ANM and Cure
are implemented in Matlab and use the default number of threads. We give
the results in Figure 6.9. We see that IGCI is fastest, followed by Slope and
Sloper, taking 1 475 respectively 1 936 seconds to processes all pairs. The
other competitors are all at least one order of magnitude slower. Taking 13
days, Cure has the longest runtime. The large gain in runtime of Slope
compared to RESIT, ANM and Cure rises from the fact that those methods
employ Gaussian process regression to fit the functions.
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6.5.4 Case Study: Octet Binary Semi Conductors

To evaluate real-world performance we conduct a case study on octet binary
semi-conductors (Ghiringhelli et al., 2015; Van Vechten, 1969). In essence, the
data set includes the 82 different materials one can form by taking one each from
two specific groups of atoms, and of which the resulting material either forms
a rocksalt or zincblende crystal structure. The aim of current research is to
predict, given a set of physical properties, the crystal structure of the material.
A key component to distinguish between both forms is the energy difference
δE between rocksalt and zincblende. At the time of writing, it is not known
which combination of physical properties can be used to calculate δE , however,
there exist candidates that are known to have some impact (Ghiringhelli et al.,
2015; Goldsmith et al., 2017). Since the data set contains very high quality
measurements, it is well suited as a case study for our method.

In particular, form the set of physical properties, which also contains de-
rived properties consisting of combinations or log transformations, we extracted
the top 10 that had the highest association to δe (Mandros et al., 2017). The
point is that we know that all of these properties somehow influence δE , but an
exact formula to calculate δE is not known yet. After consulting the domain
experts, we thus obtain 10 new cause effect pairs. For each of those pairs, we
define δE as X and one of the top 10 features as Y . Since the energy difference
is influenced by the features, we can assume that Y → X is the true causal di-
rection for all pairs. For more detailed information to the data set, we refer to
Ghiringhelli et al. (2015). We make these extracted cause-effect pairs available
for research purposes.8

Last, we applied Slope, Sloper and their competitors to each of the ten
pairs. As result, we find that Slope and Sloper perform identical and infer
the correct direction for 9 out of 10 pairs. The only error is also the only
insignificant score (p = 0.199) at α = 0.001. In comparison, we find that Cure
infers all pairs correctly, whereas IGCI makes the same decisions as Slope.
RESIT and ANM, on the other hand, only get 4 resp. 5 pairs correct.

6.6 Conclusion

We studied the problem of inferring the causal direction between two univari-
ate numeric random variables X and Y . To model the causal dependencies,
we proposed an MDL-based framework employing local and global regression.
Further, we proposed Slope, an efficient linear-time algorithm, to instantiate
this framework. To fit more flexible functions, we extended Slope to consider
combinations of basis functions. Moreover, we introduced ten new cause-effect
pairs from a material science data set.

8http://eda.mmci.uni-saarland.de/slope/

http://eda.mmci.uni-saarland.de/slope/
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Empirical evaluations on synthetic and real world-data show that Slope
reliably infers the correct causal direction with high accuracy. On benchmark
data, at 82% accuracy, Slope outperforms the state-of-the-art by more than
10% and has a more robust accuracy curve while additionally also being com-
putationally more efficient.

Despite the excellent performance on synthetic and benchmark data, we
did not focus much on another critical aspect of causal inference: identifiability.
Ideally, we would like to provide conditions under which we are certain that
we can infer the correct causal direction; in the sample limit. In the following
chapter, we will provide exactly this result and show that we can guarantee
identifiability if we use lossy (or sloppy) MDL encodings.



Chapter 7

Identifiability of
Cause and Effect using
Regularized Regression

In the previous chapter, we considered the problem of inferring the causal di-
rection between two correlated numeric random variables under the assumption
of acyclicity and causal sufficiency. We proposed a two-part MDL score, which
models dependencies using local and global regression functions to approximate
the algorithmic independence of conditionals. Although the corresponding al-
gorithm, Slope, shows a good performance on benchmark data sets known at
that time, one point of criticism is that Slope has no guarantees with regard
to identifiability. In this chapter, we aim at solving this problem.

As identifiable, we consider models that, under specific conditions and given
infinite data, are guaranteed to infer the correct causal direction. After all,
unless we know we can unambiguously distinguish cause from effect given in-
finitely many samples, there is little point in trying it on fewer samples. A
lot of research in causal inference is therefore focused on identifiability results,
figuring out the conditions under which models are identifiable (Peters et al.,
2011b). Most well researched in this regard are additive noise models, which are
known to be identifiable for many different setups, such as linear functions with
non-Gaussian noise (Shimizu et al., 2006) or non-linear functions with additive
noise (Hoyer et al., 2009). For a broader overview, we refer to Section 6.4.
Nonetheless, ANMs are a rather strict assumption on how the world works;

This chapter is based on Marx and Vreeken (2019c).
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in practice, we often find functions and independent noise for both directions,
which puts us back at square one.

In this chapter, we aim at combining two ideas to get an identifiable model,
which performs well in practice. The first part is to follow the general approach
to use regularized regression as done in Slope or also in CAM (Bühlmann
et al., 2014), where the idea is to infer a hierarchy among a set of random
variables based on a log-likelihood score. As the second part, we build upon a
recent result, which shows that given the true generating function, the causal
direction is identifiable by simply comparing the residual error (Blöbaum et al.,
2018). That is, if we fit both Y = f(X) +NX and X = g(X) +NY such that f
and g minimize the respective residual errors NX and NY , the expected squared
error in the causal direction is smaller than for the anti-causal direction. The
limitation of this approach is, however, that the two functions we fit should be
of a similar complexity class to avoid comparing residuals of arbitrarily under-
or overfit models. Thus, we need to select a specific, quite restricted model
class beforehand, e.g. polynomials up to degree three, and hope that this class
of functions can model the true function.

To benefit from both ideas, we propose a very light-weight assumption,
that is, we assume that the best anti-causal model requires at least as many
parameters as the causal model. As a consequence, we can derive identifia-
bility guarantees for a large class of L0-regularized regression functions. We
carefully justify this assumption by showing that it is connected to the algo-
rithmic model of causality and, in addition, holds trivially for a vast class of
generating functions. As a proof of concept, we instantiate this general frame-
work using spline-based regression and show that our approach performs well
even if not all of our assumptions are met.

The roadmap of this chapter is as follows. First, in Section 7.1, we give a
brief introduction to the main concepts of RECI (Blöbaum et al., 2018) that we
build upon. We then, in Section 7.2, derive the key assumption to our approach
and connect it to the AIC postulate. Based on this assumption, we show
that the class of identifiable regression-based scoring functions is identifiable
in Section 7.3 and show how to instantiate it. In Section 7.4, we provide the
Sloppy algorithm to compute our causal indicator in practice and empirically
evaluate Sloppy in Section 7.5.

7.1 Causal Inference by Regression Error

In this section, we briefly explain the main idea behind RECI (Blöbaum et al.,
2018), its limitations, and how we want to solve them.

Similar to the previous chapter, we consider causal inference based on an
i.i.d. sample of two univariate continuous random variables X and Y and
assume acyclicity and causal sufficiency. Further, we write βf for the set of
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parameters of a function f and denote with ‖βf‖0 to the number of non-zero
parameters.

7.1.1 A brief Introduction to RECI

The general idea behind RECI (Blöbaum et al., 2018) is that we can infer cause
from effect simply by comparing the regression error of the best fitting model
for the causal and anti-causal direction. In particular, they formulate a set of
assumptions under which they can differentiate between cause and effect with
certainty. Formally, if φ is the function that minimizes the least-squared error
when predicting the effect Y from the cause X and vice versa ψ the function
minimizing the error when predicting the cause from the effect, Blöbaum et al.
(2018) formulate a set of assumptions, under which

E[(Yα − φ(X))2] ≤ E[(X − ψ(Yα))2] (7.1)

always holds. In other words, when their assumptions hold, Blöbaum et al.
(2018) prove that we can identify the true causal model using Equation (7.1).
Hence, we can use the asymmetry in the regression error to infer the causal
direction between two random variables.

Identifiability is an important concept in causal inference, as we can only
make statements about the true causal model when we can guarantee identi-
fiability. As this cannot be done in general, the goal is to prove identifiability
under a set of assumptions that are as lightweight and as general as possible.
We state the main assumptions for RECI below (Blöbaum et al., 2018).

Assumption 7.1 (Causal model) We can write the effect as

Yα := f(X) + αN ,

with noise term N and parameter α restricting the noise level.

Assumption 7.2 (Unbiased noise) The noise term N is unbiased and has
unit variance.

Assumption 7.3 (Compact supports) The distribution of X has compact
support and w.l.o.g. X attains values between 0 and 1, which can be achieved
by normalizing X. Further, the distribution of N has compact support and
there exist values n+ > 0 > n− such that for each value x ∈ X , [n−, n+] is the
smallest interval that containing the support for the conditional density of N
given x. Hence, we know that [αn−, 1+αn+] is the smallest interval containing
the support of the density of Yα and rescale it to

Ỹα := Yα − αn−
1 + αn+ − αn−

.
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Figure 7.1: Left: Error for the best fitting function in the causal and anti-causal direction,
when restricting the number of parameters. Right: Error plus L0 penalty on the number
of parameters for the same data.

Ỹα has the same scale as X and attains values between 0 and 1.

Based on Assumptions 7.1-7.3, Blöbaum et al. (2018) show that their approach
works under the additive noise assumption, that is, the cause X is independent
of the noise term. In addition, their framework allows slight violations of this
assumption, as it is also valid when there is a low dependence between the noise
and the cause. In particular, they show that Equation (7.1) holds for strictly
monotonically increasing and twice differentiable φ and trivially holds for non-
invertible functions, as for the latter case, there is an information loss in the
anti-causal direction. Last, they show that Equation (7.1) holds with equality
if and only if φ is a linear function, which means that we cannot identify the
causal direction for linear functions.

In general, RECI provides a solid framework to identify cause from effect
only based on regression error, which is easy to obtain. Also, Assumption 7.3 is
not very restrictive, as we can achieve it by normalizing the data, if we have a
sufficient number of samples. The problem is, however, that in practice we do
not know the true functions. Hence, we need to restrict ourselves to comparing
functions of the same type, i.e., polynomials of degree three or six, but cannot
compare across functions of different complexities. The goal of this work is to
solve precisely this issue while conserving the identifiability guarantees.

7.1.2 Main Idea

The key idea to overcome the limitations of RECI is simple. Instead of only
comparing the regression error, we use regularized regression and compare the
regularized scores of those functions for which they are minimal. To illustrate
this, consider the following example.
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Example 7.1 Assume we are given an i.i.d. sample from the joint distribu-
tion of X and Y , and we know the true causal direction. Now we use our go-to
algorithm to fit a regression function in both the causal and the anti-causal
direction. In Figure 7.1, we plot the minimum regression error for both direc-
tions, where we gradually allow the model to fit more parameters. If we allow
a sufficient number of parameters, we can reduce the regression error for both
directions to approximately the same level. As a consequence, only comparing
the regression errors of the best fitting model does not identify the correct causal
direction. However, we observe that we can find a much simpler function for
the true causal direction, which attains approximately the same regression er-
ror; in contrast to the anti-causal direction. When we compare the scores of
those functions minimizing the regression error plus an L0 penalty over the
parameters (right plot), we can identify the correct model, as there is a clear
difference between both scores.

Of course, we do not want to rely on a proof by an artificial example, but
from Example 7.1 we get our motivation. What we completely forgot about
for a second, is the identifiability. It is known that we can use regularized
regression to fit functions, but does this also result in scoring functions that
are identifiable?

In the following, we will show that it does. In particular, we define a class
of scoring functions for regularized regression that are identifiable under the
assumption that the mechanism mapping the cause to the effect is at most as
complex as the anti-causal one. We derive and justify this assumption from
the algorithmic model of causality using Kolmogorov’s structure function.

7.2 Principled Regularization for Causality

To define our new inference rule, we need to introduce one more assumption,
that is, we assume that true causal model is not more complex than the anti-
causal model. This claim might not be too intuitive and hence we are going to
carefully justify our assumption in the following from the algorithmic model of
causality, which we will briefly recap.

In the following, we will, as common when talking about Kolmogorov com-
plexity (see Definition 3.1), use lower case letters such as x to refer to the
binary string representation of X. As stated in Postulate 5.2, the algorithmic
model of causality for two random variables X and Y with ground truth graph
X → Y can be summarized as follows. If x is the cause, we generate y as

y = q(x, n) ,

where n is a noise variable and q is a program of constant complexity that is
independent of its inputs. This program can in theory model every physical
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process (Deutsch, 1985), which includes functional relationships. Hence, it also
supports the causal model that we assume in this chapter (Assumption 7.1).

Under the algorithmic model of causality, we can further assume that the al-
gorithmic independence of conditionals postulate holds (Janzing and Schölkopf,
2010) and thus can infer the causal direction by comparing the algorithmic de-
scriptions of the factorizations of PXY (see Postulate 5.3). In particular, if
X → Y , we have that

K(PX) +K(PY |X)
+
≤ K(PY ) +K(PX|Y ) . (7.2)

That is, we infer that direction, which provides the simplest factorization
of the joint distribution of X and Y . In theory, we could infer the causal
direction for any physical process—if only we could compute Kolmogorov com-
plexity. One way to approximate Kolmogorov complexity is to split it into the
complexity of the meaningful information that can be efficiently represented
by a short program and the complexity of the irreducible noise that cannot be
modelled efficiently. A sound theoretical concept that differentiates between
those quantities is described by Kolmogorov’s structure function.

7.2.1 Kolmogorov’s Structure Function

Although there is no written publication of Kolmogorov about the structure
function, it has found its way into research (Vereshchagin and Vitányi, 2004).
The key concept we need is that of a model S 3 x, that is, a model is a set
of binary strings of which x is a member. Given such a set S and no further
input, we will need log |S| bits to look up x in S.1 Simple models, i.e., those
with low Kolmogorov complexity K(S), will consist of many possible strings
and hence it will take us relatively many bits to identify x in S. If we increase
the budget for K(S) we can contemplate more complex models that consist of
fewer possible strings, and for these it will cost much fewer bits to single out x.
In the most extreme case, where we set K(S) = K(x), we can have S = {x}.
Formally, we can describe this relationship as Kolmogorov’s structure function

hx(α) = min
S
{log |S| : S 3 x,K(S) ≤ α}

with S being a contemplated model for x and α a non-negative number bound-
ing the complexity of the contemplated S’s (Vereshchagin and Vitányi, 2004).
There exists complexity thresholds α for which α+ hx(α) = K(x) +O(1). For
these, the associated model S is called an optimal set for x. Its description of
up to α bits is called sufficient statistic for x. Moreover, for a sufficient statis-
tic S it holds that K(x) ≤ K(S) + log |S| ≤ K(x) + O(1). If we consider all

1As usual, we use log with base 2 to refer to bits.
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Figure 7.2: Shown is the sufficiency line L(α) = K(x) − α and the structure function
hx. At α0 corresponding to the minimum sufficient statistic, hx hits the sufficiency line
for the first time. For all α > α0 where hx(α) = L(α), the corresponding set S is a
sufficient statistic for x. Marked in red it the gap between K(x) and hx(α) + α.

sufficient statistics S for x, we call that S which is associated with the smallest
α—i.e., α0, the minimal sufficient statistic for x. That is, the minimum suffi-
cient statistic S contains all meaningful information about x and the associated
term hx(α0) measures the complexity of the irreducible noise contained in x.
Further, it holds that hx(α0) + α0 = K(x).

In Figure 7.2 we visualize this concept as suggested by Vereshchagin and
Vitányi (2004). We see that for α0 the structure function hmeets the sufficiency
line, that is defined as L(α) = K(x) − α, which is optimal and hence α0 +
hx(α0) = K(x). For α < α0, hx(α) can be arbitrarily far above the sufficiency
line and for α > α0, hx(α) is within a constant term above the sufficiency line.

Similar to conditional Kolmogorov complexity, we define the conditional
structure function as

hx(i | y) = min
S
{log |S| : S 3 x,K(S | y) ≤ i} .

We will need this conditional version as we will be considering functional rela-
tionships from X to Y and vice versa.

Now let us consider Equation (7.2) again and let x and y correspond to the
binary string representations of X and Y . Further, be ix0 the complexity level
of the minimum sufficient statistic of x conditioned on y, and accordingly iy0
the complexity level of the minimum sufficient statistic for y given x. We can
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rewrite Equation (7.2) as

K(PX) + iy0 + hy(iy0 | x) ≤ K(PY ) + ix0 + hx(ix0 | y) .

In the following, we explain the above inequality given that Assumption 7.1-
7.3 hold. As ix0 contains all meaningful information of x given y, hx(ix0 | y)
relates to K(C − ψ(Eα)) and hy(iy0 | x) relates to K(Eα − φ(C)) ≈ K(N).
Further, we find according to Postulate 5.2, that the program modelling the
causal function (which relates to ix0) has constant complexity. For invertible
functions, it is likely that the same holds for the function in the anti-causal
direction. If the variance of the noise term goes to zero, that is, the function is
near deterministic, Blöbaum et al. (2018) showed that the expected error for
the causal model is smaller or equal to the error in the anti-causal direction—
i.e., hy(iy0 | x) ≤ hx(ix0 | y). Thus, we would essentially ignore the Kolmogorov
complexities of the marginals, or assume that K(PX) += K(PY ). For almost
deterministic data, this assumption seems sensible, since in this case, we can
compute y from x with a program of constant complexity. Under this premise,
we can infer that X → Y , if

iy0 + hy(iy0 | x) ≤ ix0 + hx(ix0 | y) . (7.3)

Note that this inequality also holds if the function φ is not invertible and there
does not exist an inverse function ψ. This follows from the fact that there is an
information loss in the anti-causal direction and we cannot efficiently use the
information about x to derive y. In addition, we can see from Equation (7.3)
that if we only consider the regression error, it is important to know the true
functions. If we do not, and overfit, e.g., in the anti-causal direction, we fit
noise and obtain lower errors than for the true function, which can lead to
wrong inferences. Formally, if we allow for a complexity level ix > ix0 , it is
possible and for large ix will eventually happen that hx(ix | y) < hx(ix0 | y).
Similarly, if we allow for iy < iy0, which relates to underfitting in the causal
direction, we will end up making false decisions.

Hence, we need to include the complexity of the model into our score,
without breaking the identifiability results. According to the algorithmic model
of causality, the program describing the causal mechanism, which relates to iy0
has constant complexity. If the function φ is invertible, the same will likely hold
for the ix0 . Otherwise, if the function is non-invertible, it is likely that iy0

+
≤ ix0 .

As we cannot compute Kolmogorov complexity, we need to formalize this idea
differently. In essence, if the causal mechanism has a lower complexity than
the anti-causal one, the true causal function φ should need at most as many
parameters or degrees of freedom as the reverse function ψ. We formulate this
in Assumption 7.4.
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Assumption 7.4 (Simplicity) Let Yα be generated as in Assumption 7.1.
Further, let φ be the function minimizing the expected least-squared error for
predicting the effect Y from the cause X and ψ be the function minimizing the
expected least-squared error in the anti-causal direction. We assume that ψ has
at least as many parameters as φ, i.e., ‖βφ‖0 ≤ ‖βψ‖0.

While we cannot show that Assumption 7.4 holds in general, there are
strong indications that it holds in many real-world settings. For example, if we
know that φ consists of a linear combination of basis functions that are linearly
independent of each other, we cannot find an inverse function that has fewer
degrees of freedom. Moreover, Kilbertus et al. (2018) recently considered the
problem of anti-causal learning and give indications on why it is harder than
learning the causal direction. In particular, they give various examples, why it
is simpler to learn the causal direction, from which we selected a few. As for
low degree polynomials, it is easy to see that it is not possible to formulate an
inverse with less parameters as the original function, the Abel-Ruffini theorem
states that general polynomial equations of degree greater than 4 do not have
an algebraic solution (Abel, 1826). Further, it is known that some elementary
transcendental functions as X + sin(X) do not have an elementary inverse. In
addition, in cryptography there exist the concept of a one-way function (Abel,
1826). Those are functions, that are easy to obtain in one direction but almost
impossible to reverse.

Utilizing Assumption 7.4, we can finally connect all the dots and introduce
our new framework.

7.3 Identifiable Regularized Regression

In the following, we show how we can design scoring functions, which 1) allow
to identify the true causal direction under Assumptions 7.1-7.4, 2) help to
identify the true functions φ and ψ and 3) are more robust w.r.t. overfitting.
To this end, we define below an Identifiable Regression-based Scoring Function,
or short IRSF and show that an IRSF fulfills the claims listed above.

Definition 7.1 (IRSF) Given two random variables X and Y and a regres-
sion function φ that maps X to Y . Further, we are given a scoring func-
tion S : R≥0 × N 7→ R that takes as input the expected least-squared error
E[(Y − φ(X))2] and the number of parameters of φ, ‖βφ‖0. We call such a
scoring function

S(Y | X,φ) := γ(E[(Y − φ(X))2]) + λ(‖βφ‖0)

an Identifiable Regression-based Scoring Function (IRSF), if both γ : R≥0 7→ R
and λ : N 7→ R are strictly monotonically increasing.
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It is easy to see that the number of parameters corresponds to the complexity of
the function and hence λ(‖βφ‖0) relates to iy0. Further, under Assumptions 7.1-
7.2, we can see that γ(E[(Y − φ(X))2]) can be formulated to approximate
hy(iy0 | x). However, the question that remains is, can we identify this model
and under which conditions. This we formalize in our main theorem.
Theorem 7.1 Let Assumptions 7.1-7.4 hold, where φ denotes the function that
minimizes the expected least-squared error when predicting the effect Y from
the cause X and ψ be the function minimizing the expected least-squared error
for predicting X from Y—i.e., φ(x) = E[Y |x] and vice versa ψ(y) = E[X|y].
Further, let S be an IRSF according to Definition 7.1. The following limit
always holds

lim
α→0

S(E[(Ỹα − φ(X))2], ‖βφ‖0)
S(E[(X − ψ(Ỹα))2], ‖βψ‖0)

≥ 1 ,

with equality if and only if φ is linear.

Proof: We know from Blöbaum et al. (2018) that under Assumptions 7.1-7.3
the following always holds

(∗) = lim
α→0

E[(Ỹα − φ(X))2]
E[(X − ψ(Ỹα))2]

≥ 1 . (7.4)

As S is an IRSF, we can write it as S(a, b) := γ(a) +λ(b), where γ is a strictly
monotonically increasing function. Hence, the statement does not change by
applying γ to the nominator and denominator in Equation (7.4). Based on
Assumption 7.4 we know that ‖βφ‖0 ≤ ‖βψ‖0. Hence,

γ(E[(Ỹα − φ(X))2]) + ‖βφ‖0
γ(E[(X − ψ(Ỹα))2]) + ‖βψ‖0

≥ (∗) ,

with equality if and only if φ and ψ are linear and thus ‖βφ‖0 = ‖βψ‖0 = 1.
As λ is strictly monotonically increasing, applying it to ‖βφ‖0 and ‖βψ‖0 will
not change this statement. �

7.3.1 Specifying γ and λ

Theorem 7.1 holds independently of how we exactly specify γ and λ. The
problem, however, is that we do not know φ nor ψ beforehand. If we knew those
functions, we could also apply the inference rule that is used in RECI (Blöbaum
et al., 2018). The advantage of our score is that it not only identifies the true
causal direction, when given φ and ψ, but also if specified correctly, can help
to find exactly those functions and hence is less likely to overfit and underfit.
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The perfect definition of γ and λ would be such that the minimum value of
S is attained when the function we find approximates the minimum sufficient
statistic and no further structure can be exploited, leaving γ to be the cost
function over the irreducible noise. Therefore, it is important to specify S
s.t. it approximates the Kolmogorov complexity of the conditional. If S gives
too much weight to γ, we prioritize minimizing the error, which will lead to
overfitting. On the other hand, if we define λ such that it grows too fast, we
over-penalize complexity and underfit.

To illustrate this, consider Example 7.1 again. If we assign too little weight
to the complexity of the function, we could probably train a deep neural net-
work for the anti-causal direction that has a similar regression error as the
simple causal model. Luckily, model selection is not a new topic and there
already exist model selection criteria that try to avoid overfitting and aim at
recovering the true function (Schwarz, 1978; Akaike, 1983; Grünwald, 2007).
Interesting for us are only those that can be specified as an IRSF. We provide
a selection of those below.

The most well-known scoring functions that we can write as an IRFS ac-
cording to Definition 7.1 are the Akaike information criterion (Akaike, 1983)
(AIC) and the Bayesian information criterion (Schwarz, 1978) (BIC).

Akaike Information Criterion

For the causal direction the Akaike information criterion can be written as

n log(E[(Ỹα − φ(X))2]) + 2‖βφ‖0 + c ,

where c is a constant term independent of the model. As the sample size n is
the same for the causal and the anti-causal direction, we can consider it as a
parameter of the function γ and write down an IRSF with γ(a) = n log(a) and
λ(b) = 2b+ c.

Bayesian Information Criterion

The Bayesian information criterion for scoring the causal direction is equal to

n log(E[(Ỹα − φ(X))2]) + log(n) · ‖βφ‖0

and can similar to AIC be written as an IRSF. Hence, both scores can be used
in Theorem 7.1. One detail that we have to consider for AIC and BIC is that
log is not defined for 0 and is negative for values between 0 and 1. Hence, it is
necessary to adjust both scores by taking log(E[(Ỹα − φ(X))2] + 1).
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Minimum Description Length Principle

As discussed in the previous chapters, MDL codes (see Section 3.1.2) do also
offer a well defined way to balance model complexity and the complexity of
the data given a model (Grünwald, 2007). Defining an optimal encoding for
continuous data without making any assumptions, however, is a hard problem.
One approach that utilizes two-part MDL to approximate the algorithmic Mar-
kov condition for continuous data is Slope (Marx and Vreeken, 2019b), as we
saw in Chapter 6. In Slope, the main assumption is that the error is Gaus-
sian distributed. Crudely speaking, the score used in Slope can be written
as γ(E[(Ỹα − φ(X))2]), where γ is based on the negative log likelihood, plus a
function ρ over the parameters. As this function ρ does not purely consider the
number of parameters, but assigns different weights according to the value, of
the parameter, the corresponding scoring function is not an IRSF and hence
Theorem 7.1 does not apply for Slope. If we loosen the encoding from Slope
slightly and “forget” about the exact values of the parameters but encode each
parameter with the same constant number of bits, we arrive at an IRFS and
Theorem 7.1 can be applied. In this case, the encoding would be called lossy
as we do not encode all the information available to us.2

7.4 The Sloppy Algorithm

In theory, there are many possible ways to instantiate our framework, as we can
use every function learning algorithm that minimizes the regression error and
allows to control the number of parameters. During our empirical evaluation,
we evaluate two possible ways, one using basis functions and one splines.

We refer to our method as Sloppy. We name it such both because it is
partially inspired by Slope, because it is the first instantiation of the IRSF
framework, but primarily because from an information-theoretic perspective
the notion of a constant penalty per parameter can be inefficient (too high), as
well as lossy (too low), and hence, sloppy. In practice, we consider the following
two variants,

1. SloppyB: We find the best linear combination according to the given
score function S from a set of basis functions that include polynomials
up to a degree of six, an exponential and logarithmic basis function as
well as reciprocal up to the degree of two. This can be done with an
algorithm following the standard forward-backward selection scheme.

2. SloppyS: We fit a cubic spline, where we control the degrees of freedom
and find that selection of splines, for which S is minimal. Even, when
we do this exhaustively, SloppyS is still very fast in practice.

2Such an encoding could also mean that we assume that all parameters are drawn
from the same distribution and hence use a fixed amount of bits to encode them.
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For our experiments, we use AIC and BIC as scoring function S.

7.4.1 Inference

Before applying Sloppy, we standardize X and Y to zero mean and unit
variance or normalize them between zero and one, depending on our prior
beliefs. Hence, we can assume that K(PX) += K(PY ) and can infer the causal
direction according to Theorem 7.1, as described in the previous section. Then,
given an IRSF S, we use Sloppy to compute those functions φ and ψ that
minimize S(Y | X,φ) and S(X | Y, ψ). We decide that X → Y if S(Y |
X,φ) < S(X | Y, ψ), that Y → X if S(Y | X,φ) > S(X | Y, ψ) and do not
decide in case of equality.

7.4.2 Confidence

The authors of RECI (Blöbaum et al., 2018) showed that in empirical evalu-
ations we can use the minimum of the error terms for both directions divided
by the maximum as a confidence measure. We do so accordingly and define
the confidence of a decision as

C(X,Y ) := 1− min{S(Y | X,φ), S(X | Y, ψ)}
max{S(Y | X,φ), S(X | Y, ψ)} .

The higher C(X,Y ), the more certain we are that our decision is correct.
This allows to order decisions across different inferences by their confidence.
In addition, we can set a threshold t such that we require C(X,Y ) ≥ t and
otherwise do not decide for a direction as we are not confident enough about
the decision. Notably, similar to the confidence score provided in the previous
chapter, C(X,Y ) is also a normalized score and hence is not dependent on the
sample size, as we will see in the experiments.

7.5 Experiments

In this section, we empirically evaluate Sloppy and benchmark it against com-
peting state-of-the-art methods. To represent additive noise models, we select
RESIT (Peters et al., 2014) using the Hilbert Schmidt Independence Criterion
to measure the independence between cause and noise distribution (Gretton
et al., 2008). A recent study shows that the overall performance of RESIT
on simulated and real-world data is on par if not better than competing meth-
ods of this type (Tagasovska et al., 2020). In addition, we compare against
IGCI (Janzing et al., 2012) representing methods for the low-noise setup and
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QCCD (Tagasovska et al., 2020), which is to the best of our knowledge the
method with the best overall performance.

We first provide a detailed outline on how we configured each approach.
Then, we show the overall performance over synthetic and real-world bench-
mark data sets, followed by a more detailed analysis. Since SloppyS and
SloppyB performed very similar, we only present the results for SloppyS for
these experiments, which for conciseness we will refer to as Sloppy. In the
last part of the experiments, in Section 7.5.6, we also provide the results for
SloppyB , as well as compare to the more related regression-based methods
Slope, CAM and RECI.

All experiments were performed single threaded and Sloppy took only up
to a couple of seconds for a single pair. For research purposes and to make our
results reproducible, we make the code for Sloppy available online.3

7.5.1 Configuration of Sloppy and Competing Methods

For RESIT and QCCD, we used the default configurations as recommended
by the authors (Peters et al., 2014; Tagasovska et al., 2020). Before we applied
IGCI to the synthetic data sets, we standardized X and Y to have zero mean
and unit variance. As for all of the simulated data sets the cause was generated
as a Gaussian or near Gaussian distributed random variable this preprocessing
step led to better results than normalizing the data. However, when we applied
IGCI to the Tübingen data set, we found that normalizing the data between
zero and one led to better results, hence we reported those results.

We implemented Sloppy using cubic splines, as described in Section 7.4.
Equivalent to the preprocessing we did for IGCI, we standardized X and Y
to have zero mean and unit variance for the simulated data sets, as for those
we knew that the cause was generated with a Gaussian or near Gaussian dis-
tribution. Since we did not know the distributions for the real-world data sets
beforehand, we choose to use a uniform prior and normalized the data between
zero and one for the Tübingen data set. As scoring function we used BIC for
the simulated pairs. For the normalized real-world data sets, however, BIC was
too restrictive and mainly fitted linear models. Hence, we used AIC for these.

7.5.2 Benchmarking

In order to benchmark Sloppy against RESIT, QCCD and IGCI, we applied
them to ten benchmark data sets and reported their accuracies. We took five
data sets from Mooij et al. (2016). Those consist of four simulated data sets
generated using a Gaussian process: SIM (without confounder), SIM-ln (with

3http://eda.mmci.uni-saarland.de/sloppy/

http://eda.mmci.uni-saarland.de/sloppy/
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Figure 7.3: Accuracy of Sloppy, RESIT, QCCD and IGCI over all synthetic data set
and the Tübingen benchmark data set.

low noise), SIM-G (with distributions close to Gaussian) and SIM-c (with con-
founder). The fifth one is a collection of 99 real-world bivariate continuous
cause effect pairs, known as the Tübingen benchmark data set (version from
December 17), for which we weigh the pairs as recommended. The remaining
five data sets were taken from Tagasovska et al. (2020). These consist of non-
linear functions with additive noise (AN ), sigmoidal functions with additive
noise (AN-s), non-linear and sigmoidal location scale functions (LS and LS-s),
that is, we generate the effect Y as

Y = f(X) + g(X) ·NY

and sigmoid functions with multiplicative uniform noise NY (MN-U )—i.e.,

Y = f(X) ·NY .

All simulated data sets consist of 100 cause-effect pairs. For each such pair,
1 000 samples from the joint distribution were generated.

In Figure 7.3, we show the accuracies for Sloppy, RESIT, QCCD and
IGCI on all data sets. On average, Sloppy has an accuracy of 81%. If we
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Figure 7.4: Accuracy of Sloppy (left), for those decisions that have a higher confidence
than {0, 0.01, 0.05, 0.1} and right the corresponding percentage of draws.

consider only those data sets for which our assumptions hold, those are AN and
AN-s, we have an accuracy of 100%. The reason why we could not achieve this
for the SIM data sets is because they also contain pairs for which the function
is close to linear, have high noise or are sampled from mixture models. Taking
this under consideration, Sloppy still performs very well on these data sets.
The only data set where we have a poor performance is LS-s, which violates our
assumption with respect to the generating model. This is also the only data set
where we clearly lose to QCCD. In turn, we perform better than QCCD on
AN-s and are on par for the remaining data sets. Overall, RESIT and IGCI
have more problems than Sloppy with those data sets that do not follow their
assumptions and thus cover a smaller area than Sloppy.

7.5.3 Setting a Confidence Threshold

In this experiment, we consider the same data sets as above and look at the
confidence of Sloppy. In particular, we show in Figure 7.4 how the accuracy
of Sloppy improves when we only consider those decisions with a confidence
greater than or equal to {0, 0.01, 0.05, 0.1}. We can observe that setting a
threshold of 0.1 improves the average accuracy over all data sets from 81% to
89%, which clearly shows that we assign low confidence values to bad decisions.
In addition, we show the percentage of pairs that do not reach the corresponding
threshold. We undoubtedly see that this number is higher for those data sets
that do not fulfil our assumptions, whereas for those data sets that do, the
number of pairs where we do not decide remains low, even for a cut-off of 0.1.

7.5.4 Accuracy Curves

Related to confidence values are accuracy curves (see Section 6.5.1). In par-
ticular, we obtain an accuracy curve, if we order a set of decisions by their
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Figure 7.5: [Higher is better] Accuracy curves of Sloppy for every tested data set. As
we obtain 100% accuracy for AN, AN-s and LS, those curves lie above each other.

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

decisions [%]

ac
cu

ra
cy

Sloppy QCCD
IGCI RESIT

Figure 7.6: [Higher is better] Accuracy curves for Sloppy, RESIT, QCCD and IGCI
on the Tübingen benchmark data set. The gray area marks the 95% confidence interval
of a random coin flip.

confidence values and report for each percentage k (decision rate) the accuracy
over the top k% of the decisions. In Figure 7.5 we report the accuracy curves
of Sloppy for each tested data set. Importantly, we observe that for all data
sets, even for LS-s, the first 10% of our decisions are correct. Then, depend-
ing on the overall accuracy that we achieve on the corresponding data set, the
accuracy slowly drops after considering more and more decisions with lower
confidence values.

In addition, we show in Figure 7.6 the accuracy curves for Sloppy, RESIT,
QCCD and IGCI for the real-world benchmark data set. Although the overall
performance of all methods does not differ too much, we can clearly see that
Sloppy has the best accuracy curve. In particular, for the first 31% of all
decisions, we only get one decision wrong and only drop below 95% accuracy
after considering more than 40% of all decisions. In comparison, the competing
approaches more frequently assign high confidence values to wrong decisions.
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Figure 7.7: Distribution of confidence values for correct and incorrect decisions for the
Tübingen benchmark data set (left) and the simulated data sets (right).

7.5.5 Confidence Distribution

In the last experiment, we consider the distribution of the confidence values
for correct and incorrect decisions for the real-world pairs and the simulated
pairs, as shown in Figure 7.7. It is encouraging to see that there is a clear dif-
ference in the distribution and higher confidence values are assigned to correct
decisions. For the simulated data, the first quartile for the incorrect decisions
(0.094) is approximately on the same level as the third quartile for the correct
decisions (0.085), which means that we could almost separate the correct form
the incorrect decisions using a threshold in this region. For the real-world data
the distributions overlap a bit more, however, when applying the exact imple-
mentation of the Wilcoxon-Mann-Whitney test (Wilcoxon, 1945; Marx et al.,
2016), we get that the confidence values for the incorrect directions are smaller
than for the correct directions with a p-value < 10−4.

7.5.6 Comparison to RECI, CAM and Slope

In the following, we explain how we needed to configure Sloppy to obtain
similar results to RECI, CAM and Slope and briefly discuss their differences.
Additionally, we provide the results for SloppyB , which turn out to be almost
identical to the ones for SloppyS .

RECI

As RECI assumes that the true functions are known, it is hard to do a fair
comparison without preselecting for a suitable regressor (Blöbaum et al., 2018).
To provide an impression of the results, we preprocessed the data by normal-
izing it between zero and one (as suggested by the authors) and then applied
SloppyS with zero penalty for the parameters. First of all, we observe that
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Figure 7.8: Accuracy of Sloppy (solid: SloppyB , dashed: SloppyS), RECI (using
cubic splines), CAM and Slope (solid: Slope allowing for non-deterministic functions,
dashed: Slope using a mixture of deterministic basis functions) over all synthetic data
sets and the Tübingen benchmark data set.

the splines strongly overfit, where the average number of degrees of freedom
is over 140, in contrast to Sloppy, where the average number of degrees of
freedom is 5. Nonetheless, the results on the synthetic and benchmark data
are still reasonable, as shown in Figure 7.8. The overall average performance,
however, drops from 81% to 60%. Since the authors of RECI suggest to only
fit low degree polynomials (Blöbaum et al., 2018), choosing splines is, however,
a sub-optimal choice.

CAM

In the bivariate setting, CAM is very related to Sloppy. CAM also uses
regularized splines and standardizes the data, where they maximize the log-
likelihood for both directions (Bühlmann et al., 2014). Therefore, it is not
surprising, that the results obtained with CAM are very similar to the re-
sults we get with Sloppy, as shown in Figure 7.8. However, when CAM was
developed, the authors only showed consistency of their method for finding a
hierarchy among a set of variables in a causal discovery setup and did not focus
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Figure 7.9: Decision rates for Sloppy and CAM on the Tübingen benchmark.

on the bi-variate case. In this chapter, we focused especially on identifiability
in the bi-variate setting. In addition, when we compare the decision rates of
CAM and Sloppy on the Tübingen benchmark data set (see Figure 7.9), we
see that Sloppy clearly outperforms CAM.

Slope

For Slope, we also standardize the data between zero and one. In particular,
there exist two versions: Slope using a deterministic function and allowing
for non-deterministic functions (Marx and Vreeken, 2017) and Sloper using
a set of basis functions, without fitting non-deterministic functions (Marx and
Vreeken, 2019b). Apart from the exact score and the preprocessing, Sloper
comes close to SloppyB . When we look at the results over all data sets (Fig-
ure 7.8), we see that Sloper performs similar to RECI using cubic splines.
On average, Slope performs much worse than Sloper and only has a better
performance on the Tübingen benchmark data set.

7.6 Conclusion

We considered causal inference between two continuous random variables X
and Y , without hidden confounders. The main contribution in this chapter is
that we showed under which conditions we can use regularized regression to
identify cause from effect with guarantees. Further, we linked this result to
Slope, which we proposed in the previous chapter.

As a possible instantiation of our framework, we introduced Sloppy—
which finds the best fitting function for the causal and anti-causal direction
according to a given identifiable regression-based scoring function. In practice,
we model functions using either a set of basis functions or cubic splines and use
AIC or BIC as scoring functions. Our results show that Sloppy outperforms
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the state-of-the-art algorithms with identifiability guarantees on synthetic and
real-world data and is on par with methods that do not have such guarantees.
We note, however, that Sloppy is just a first instantiation and are quite certain
it is possible to define—and are looking forward to seeing—instantiations of
IRFS that will outperform our method in practice.

In the next chapter, we will take a step back and look at a more general ap-
proach that considers causal inference between two multivariate mixed random
variables. This approach, similar to the work presented in the previous chapter,
builds upon the two-part MDL approximation of the algorithmic independence
of conditionals postulate.
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Chapter 8

Causal Inference via
Classification and
Regression Trees

We already saw how to make cause-effect inference between two univariate
random variables of the same type. In practice, however, X and Y do not have
to be of the same type. The altitude of a location (continuous), for example,
determines whether it is a suitable habitat (binary) for a mountain hare. In
fact, neither X nor Y has to be univariate. Whether or not a location is a good
habitat for an animal is not just caused by a single aspect but by a combination
of conditions such as altitude, annual average temperature, and precipitation,
which do not have to be of the same type. Therefore, we are interested in the
general case where X and Y may be of any cardinality and may be single or
mixed-type. A different interpretation would be to think of X and Y as meta-
variables; e.g. altitude, annual average temperature and precipitation could be
summarized by a meta-variable labelled as environmental conditions.

Such a general setting has not been considered previously and we were the
first to tackle this problem. As we saw in the previous chapters, causal inference
for two univariate random variables is a well-researched topic (see Section 6.4).
When it comes to multivariate variables, there exist only a few approaches. For
purely continuous multivariate data, Janzing et al. (2010) proposed the linear
trace method (LTR), which aims to find a structure matrix A and the covari-
ance matrix ΣX to express Y as AX. Under the quite restrictive assumptions

This chapter is based on Marx and Vreeken (2018).
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that the functions are deterministic and invertible, Chen et al. (2013) developed
a kernelized version of LTR. Most related to our approach are Origo (Bud-
hathoki and Vreeken, 2017b) and Ergo (Vreeken, 2015). Origo was developed
for multivariate binary data and uses a compression-based approach to approx-
imate the algorithmic independence of conditionals. To instantiate their ap-
proach in practice, they use binary trees. Ergo, on the other hand, is based on
the postulate that the cause contains more relative information about the effect
than vice versa—i.e., if X → Y , K(Y |X)/K(Y ) < K(X|Y )/K(X) (Vreeken,
2015). The author instantiates this framework for multivariate continuous data
by using cumulative entropies.

In this work, we consider multivariate and mixed-type data. In particular,
we define an MDL score for coding forests, a model class where a model consists
of classification and regression trees, as this allows us to consider both discrete
and continuous-valued data with one unified model. By allowing dependencies
from X to Y , or vice versa, we can also measure conditional complexities and
hence use our encoding for causal inference. We first briefly discuss the two
different causal indicators, the one based on the algorithmic independence of
conditionals and the one developed for Ergo in Section 8.1. In addition, we
develop an adjusted version of the Ergo indicator, which adjusts for biases
induced by mixed variables and large differences in the domain space of the
involved variables. After that, in Section 8.2, we discuss how to encode clas-
sification and regression forests. To learn such forests from data, we present
the Crack algorithm, short for classification and regression-based packing, in
Section 8.3. Last, we empirically evaluate both causal indicators in Section 8.4.
We first evaluate the differences between both variants and then compare them
on both univariate benchmark data and multivariate pairs of different types.

8.1 Causal Inference by Compression

As in Chapters 5 and 6, we discuss the algorithmic independence of conditionals
or, more specifically, its two-part MDL approximation. Chapter 5 discussed
general aspects about the connection between two-part MDL and AIC and
Chapter 6 focused on a specific instantiation of it for univariate numeric data.
Here, we develop a two-part MDL approach whereX and Y can be multivariate
and of mixed type, i.e., binary, or generally discrete, or continuous.

In the following, we are going to very briefly recap the algorithmic indepen-
dence of conditionals for two random variables and its corresponding two-part
MDL approximation. Then we discuss the challenges that occur when consid-
ering multivariate mixed random variables and propose an alternative causal
indicator based on two-part MDL.
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8.1.1 Causal Inference by Complexity

As described in more detail in Section 5.2, the general idea can be summa-
rized as follows. Connected to the idea of independent mechanisms, Janzing
and Schölkopf (2010) postulated the algorithmic independence of conditionals,
which for two variables states that if X → Y ,

K(PX) +K(PY |X) ≤ K(PY ) +K(PX|Y ) .

To approximate the above inequality using two-part MDL for data (xn, yn),
we need to define a model class. For the causal direction, we define a model
as MX→Y = (MX ,MY |X) from the class MX→Y = MX ×MY |X that best
describes the data over Y by exploiting as much structure of X as possible to
save bits. By MDL, we identify the optimal model MX→Y ∈ MX→Y for data
over X and Y as the one minimizing

LX→Y := L(MX) + L(xn |MX) + L(MY |X) + L(yn | xn,MY |X) ,

where we encode a model for the anti-causal direction equivalently. In the
following, we will refer to the above, i.e., LX→Y and its analogue for the inverse
direction LY→X , as the Absolute Causal Indicator (ACI). We will refer to
LX→Y as ACIX→Y and to LY→X as ACI Y→X . Akin to the Kolmogorov
complexity based inference criterium, we infer that X is a likely cause of Y if
ACIX→Y < ACI Y→X , Y is a likely cause of X if ACIX→Y > ACI Y→X and
do not decide between both alternatives if ACIX→Y = ACI Y→X .

8.1.2 Normalized Causal Indicator

The absolute causal indicator has nice theoretical properties that follow from
the algorithmic independence of conditionals. However, by considering the
absolute difference in encoded lengths between X → Y and Y → X, it has an
intrinsic bias towards data of higher marginal complexity. For example, when
we gain 5 bits between encoding the data over Y conditioned on X, rather
than independently, this is more impressive if L(yn |MY ) ≈ 100 as opposed to
L(yn |MY ) ≈ 1 000 000 bits. This is particularly important in the mixed-data
setting, as the marginal complexity of a binary attribute will typically be much
smaller than that of an attribute recorded at a higher resolution.

To address this shortcoming of ACI , we propose a novel, normalized in-
dicator for causal inference on mixed-type data. We start with the Ergo
indicator (Vreeken, 2015), which rather than the absolute difference considers
the compression ratios of the target variables, i.e., if X → Y then

L(MY |X) + L(yn | xn,MY |X)
L(MY ) + L(yn |MY ) <

L(MX|Y ) + L(xn | yn,MX|Y )
L(MX) + L(xn |MX) .
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That is, the fraction of bits we save when encoding the effect conditioned on
the cause relative to encoding only the effect is higher than for the anti-causal
direction, i.e., conditioning the cause on the effect. This score accounts for
different marginal complexities ofX and Y , and hence suffices for the univariate
mixed-type data case. For multivariate and mixed-type data, we face the same
problem: if the variables according to individual dimensions Yi ∈ Y are of
different marginal complexities L(yni | MYi), the gain in compression of one
single Yi may dominate the overall score simply because it has a larger marginal
complexity (e.g. because it has a large sample space).

We can compensate this by explicitly considering the compression ratios
per dimension Yi ∈ Y , rather than the compression ratio over Y as a whole.
Formally, we define our new Normalized Causal Indicator (NCI ) as

NCIX→Y = 1
|Y |

∑
Yi∈Y

L(yni | xn,MYi|X) + L(MYi|X)
L(yni |MYi) + L(MYi)

.

As above, we inferX → Y if NCIX→Y < NCI Y→X , infer Y → X if NCIX→Y >
NCI Y→X and do not decide if both scores are equal.

Although free of bias from the marginal complexities of individual variates,
we have to be careful to screen for redundancy within Y resp. X. By definition,
NCI counts the causal effect on each variate, and redundancies within Y (resp.
X) hence exacerbate the measured effect. This is, however, not problematic as
we can detect such redundancies using standard independence tests.

In practice, we expect that ACI performs well on data where X and Y
are of the same type, especially when |X| = |Y | and the domain sizes of their
attributes are balanced. Whenever the variates of X and Y are of different
marginal complexities, e.g., because of unbalanced domains, dimensionality,
and especially for mixed-type data, the experiments confirm that the NCI
performs much better than the ACI .

8.2 MDL for Tree Models

To use MDL in practice, we need to specify an appropriate model classM, and
define how to encode both data and models in bits. Here, we need to be able to
consider continuous (up to a certain precision), discrete and mixed-type data,
be able to exploit dependencies between attributes of different types, and be
able to encode the data of Y conditioned on the data of X. Classification and
regression trees (CART) lend themselves very naturally to do all of this.

To formally write down our MDL model, we will use the following no-
tation. We consider two multivariate mixed-type random variables X and
Y and further consider A = X ∪ Y , i.e., the set containing both X and Y
with |A| = m dimensions. In the following, we will often refer to a single
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dimension or univariate random variable Ai ∈ A as an attribute, regard-
less of whether it belongs to X or Y . An attribute Ai has a type, where
type(Ai) ∈ {binary, categorical, continuous}. We will refer to binary and cat-
egorical attributes as nominal attributes. We write Ai to denote the domain
of an attribute Ai. Respectively, the size of the domain of an attribute |Ai|
is for discrete data simply the number of distinct values and for numeric data
equal to max(Ai)−min(Ai)

τAi
+ 1, where τAi

is the resolution at which the data
over attribute Ai was recorded. For example, a resolution of 1 means that we
consider integers, of 0.01 means that the corresponding attribute was recorded
with a precision of up to a hundredth.

8.2.1 Encoding a Tree

In the following, we discuss how we can model a set of attributes A and depen-
dencies among them using tree models. That is, we consider models M that
contain a classification or regression tree Ti per attribute Ai ∈ A, where tree
Ti encodes the data over Ai by exploiting dependencies on other attributes by
means of splitting or regression. In particular, an internal node v ∈ int(Ti) of
a tree Ti models a dependency to another attribute, represented by a split or
a regression step—i.e., internal nodes relate to the model. For example, a tree
Ti that contains a split node w.r.t. a binary attribute Aj and a regression node
w.r.t. attribute Ak models the data of attribute Ai conditioned on {Aj , Ak}.
To encode the data, we consider the leave nodes lvs(Ti) of a tree Ti. A leaf
node l ∈ lvs(Ti) describes the data with respect to the number of data points
|l| associated to the corresponding leaf. Loosely speaking, the better we can fit
the data by creating dependencies on other nodes, the more succinctly we will
be able to encode the data in the leave nodes.

To ensure lossless decoding, there needs to exist an order on the trees
Ti ∈M such that we can transmit these one by one. In other words, in a valid
tree model there are no cyclic dependencies between the trees Ti ∈ M , and a
valid model can hence be represented by a DAG. LetMA be the set of all valid
tree models for A, that is, M ∈ MA is a set of |A| trees such that the data
types of the leafs in Ti corresponds to the data type of attribute ai, and its
dependency graph is acyclic.

We writeMX andMY to denote the subset of valid coding forests for X
and Y , where we do not allow dependencies. To describe the possible set of
models where we allow attributes of X to only depend on attributes of Y we
writeMX|Y and do so accordingly for Y depending only on X. If an attribute
does not have any incoming dependencies, its tree is a stump. Figure 8.1 shows
the DAG for a toy data set, and an example tree for Y2. From the DAG, the
set of purple edges would be a valid model inMY |X , whereas the orange edges
are a valid model forMX|Y .
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Figure 8.1: Toy data set with ground truth X → Y . Shown is the dependency DAG
(right). More dependencies go from X to Y than vice versa. Left: Example coding tree
for Y2. X1 splits the values of Y2 into two subsets. In addition, the subset belonging to
the left child can be further compressed by regressing on X2.

Now that we know the relevant model classes, we can define our MDL score.
At the highest level, the number of bits to describe data an over attributes A
together with a valid model M for A as

L(an,M) =
∑
Ti∈M

L(ani , Ti) ,

where we make use of the fact that M encodes a DAG structure, and we can
hence serialize its dependencies.

In turn, the encoded cost of a tree Ti consists of two independent parts.
First, we transmit its topology, and second the data in its leaves. For the
topology, we indicate per node whether it is a leaf or an internal node, and if
the latter, whether it is a split or regression node. Formally we hence have

L(ani , Ti) = |Ti|+
∑

v∈int(Ti)

(1 + L(v)) +
∑

l∈lvs(Ti)

L(l) .

This leaves us to define the encoded cost of an internal node, L(v), and the
encoded cost of the data in the leaves, L(l).

Cost of a Node

A node v ∈ Ti can be of two main types; it either defines a split, or a regres-
sion step. We consider these in turn. With regard to splits, we include both
multiway and binary splits. To encode a split node v, we need

Lsplit(v) = 1 + log |A|+ L(Φsplit)
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bits. We first encode whether it is a single or multiway split, then the attribute
Aj on which we split, and last the conditions on which we split. For single way
splits, L(Φsplit) corresponds to the cost of describing the value in the domain
of Xj on which we split, which is equal to log |Aj | when Aj is categorical, and
log(|Aj | − 1) when it is binary or numeric. Note that we consider these two
cases for categorical and binary data, since for binary data there is only a single
option for a split, whereas for categorical data any value in A can be the one we
split on. For multiway splits on categorical attributes Aj we split on all values,
which costs no further bits, while for numeric Aj we split on every value that
occurs at least k times—with one residual split for all remaining data points.
To encode k we use LN, the MDL optimal code for integers (Rissanen, 1983).

To encode a regression node v, we first encode the attribute we regress on,
and then the parameters Φ(v) of the regression function, i.e.,

Lreg(v) = log |A|+
∑

φ∈Φ(v)

( 1 + LN(s) + LN(d|φ| · 10se) ) .

Similar as for Slope, we encode each parameter φ ∈ Φ(v) up to user defined
number of significant digits s. In practice, for computational reasons, we use
linear and quadratic regression, but note that this score is general and can
encode any regression function with a real-valued parameter vector.

Cost of a Leaf

In classification and regression trees, the actual data is stored in the leaves. To
encode the data in a leaf of a categorical or discrete attribute, we can assume a
multinomial distribution and encode the data using the normalized maximum
likelihood (Kontkanen and Myllymäki, 2007), which we defined in Section 3.2.
In particular, we encode the data of a categorical leaf using the stochastic
complexity for multinomials as

Lnom(l) = |l| · Ĥ(Ai | l) + log C|l||Ai| ,

where Ĥ denotes the empirical Shannon entropy, |Ai| domain size of attribute
Ai and |l| is the number of data points associated with the current leaf.

For numeric data, refined MDL encodings have very high computational
complexity (Kontkanen and Myllymäki, 2007). In the interest of efficiency,
we hence encode the data in numeric leaves with two-part MDL, using point
models with a Gaussian, resp. uniform distribution. The former is especially
suited for encoding residuals, since such a step aims to minimizes the variance
of Gaussian distributed error. A split or a regression node can reduce the
variance, or the domain size of the data in the leaf, and each can therewith
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reduce the cost. The costs for a leaf assuming a Gaussian distribution are

Lnum(l | σ̂, µ̂) = |l|2

(
1

ln 2 + log 2πσ̂2
)
− |l| log τAi ,

given empirical mean µ̂ and variance σ̂ or as uniform given min and max

Lnum(l | min(l),max(l)) =|l| · log
(

max(l)−min(l)
τAi

+ 1
)
.

We encode the data as Gaussian if this costs fewer bits than encoding it as
uniform. To indicate this decision, we use one bit and encode the minimum of
both plus the corresponding parameters. As we consider empirical data, we can
safely assume that all parameters fall within the domain of the given attribute.
The encoded costs of a numeric leaf l hence are

Lnum(l) = 1 + 2 log |Ai|+ min{Lnum(l | σ̂, µ̂), Lnum(l | min(l),max(l))} .

We now have a complete score. In the next section we discuss how to
optimize it, but first we discuss some important causal aspects.

Identifiability and Limitations

Tree models are closely related to the algorithmic model of causality as pos-
tulated by Janzing and Schölkopf (2010). That is, every node xi in a DAG
can be computed by a program qi with length O(1) from its parents pai and
additional input ni—formally, xi = qi(pai, ni). Following the AIC postulate,
the shortest description of xi is through its parents.

In general, the MDL optimal tree model identifies the shortest description
of a node Ai conditioned on a subset of attributes Si ⊆ A\{Ai}. In particular,
by splitting or regressing on an attribute Aj ∈ Si it approximates program qi
given the parents as input. The remaining unexplained data that corresponds
to the additional input or noise ni is encoded in the leaves of the tree. In other
words, tree Ti with the minimal costs relates to the tree where Si contains only
the parents of Ai, and encodes exactly the relevant dependencies towards Ai.

Although tree models are very general, we can identify specific settings in
which the model is identifiable. First, consider the case where X and Y are
univariate and of a single type. If both are continuous, our model reduces to a
simple regression model. If the complexities of the marginal codes are equal, we
can build upon the identifiability results for almost deterministic, non-linear
functions developed for regularized regression (Blöbaum et al., 2018; Marx
and Vreeken, 2019c). Similarly, building upon the algorithmic independence
of conditionals, for discrete data we can identify additive noise models using
stochastic complexity (Budhathoki and Vreeken, 2017a). Combining these re-
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Algorithm 8.1: Crack(A,M)
input : data an over attributes A, model classM
output: tree model M ∈M with low L(an,M)

1 Ti ← TrivialTree(Ai) for all Ai ∈ A;
2 G ← (V = {vi | Ai ∈ A}, E = ∅);
3 while L(an,M) decreases do
4 for Ai ∈ A do
5 Oi ← Ti;
6 for l ∈ lvs(Ti), (i, j) ∈ G do
7 if E ∪ (vi, vj) is acyclic and j < path(l) then
8 T ′

i ← RefineLeaf(Ti, l, j);
9 if L(T ′

i ) < L(Oi) then
10 Oi ← T ′

i ;

11 k ← arg mini{L(Oi)− L(Ti)};
12 if L(Ok) < L(Tk) then
13 Tk ← Ok, E ← E ∪ (vk, vek

) ;

14 return M ←
⋃

i Ti

sults to multivariate mixed-type data is, however, non-trivial. Thus, we leave
this part for future work.

In practice, we are limited by the optimality of our approximation of Kol-
mogorov complexity. That is, any inferences we make are with respect to
the encoding we defined above, rather than the much more generally defined
Kolmogorov complexity. If the generating process does not use tree-models, or
measures complexity differently, the inferences we draw based on our score may
be wrong. The experiments show, however, that our scores are very reliable
even in adversarial settings.

8.3 The Crack Algorithm

Finding the optimal decision tree for a single nominal attribute is NP-hard,
and hence so is the optimization problem at hand. We introduce the Crack
algorithm, which stands for classification and regression based packing of data.
Crack is an efficient greedy heuristic for discovering a coding forest M from
model class M for data over attributes A with low L(an,M). It builds upon
the well-known ID3 algorithm (Quinlan, 1986).
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Greedy Algorithm

We give the pseudocode of Crack as Algorithm 8.1. Before running the algo-
rithm, we set the resolution per attribute. To be robust to noise, we set τAi for
continuous attributes to the kth smallest distance between two adjacent values,
with k = 0.1 · n.

Crack starts with an empty model consisting of only trivial trees, i.e., leaf
nodes containing all records, per attribute (line 1). We iteratively discover that
refinement of the current model that maximizes compression. To find the best
refinement, we consider every attribute (line 4), and every legal additional split
or regression of its corresponding tree (line 8). That is, a refinement is only
legal when the dependency is allowed by the model familyM (lines 6–7) and
the dependency graph remains acyclic.

The key subroutine of Crack is RefineLeaf, in which we discover the op-
timal refinement of a leaf l in tree Ti. That is, it finds the optimal split of l over
all candidate attributes Aj such that we minimize the encoded length. In case
both Ai and Aj are numeric, RefineLeaf also considers the best linear and
quadratic regression and decides for the variant with the best compression—
choosing to split in case of a tie. In the interest of efficiency, we do not allow
splitting or regressing multiple times on the same candidate.

Since we use a greedy heuristic to construct the coding trees, we have a
worst case runtime of O(2mn), where m is the number of attributes and n is
the number of data points. In practice, Crack takes only a few seconds for all
tested cause-effect pairs.

Causal Inference with Crack

To compute our causal indicators we run Crack twice on the given data set
D. First with model class MX|Y to obtain MX|Y and second with MY |X ,
to obtain MY |X . For the marginal L(xn | MX) we assume a uniform prior
and define L(xn | MX) =

∑
Ai∈X (n log |Ai|) if Ai is a numeric attribute and

simply take the score of a tree without any splits for a discrete variable. We
encode the marginal costs for Y accordingly. We refer to Crack using NCI as
CrackN , and as CrackA using ACI .

8.4 Experiments

In this section, we evaluate Crack empirically. We implemented Crack in
C++, and provide the source code including the synthetic data generator along
with the tested datasets for research purposes.1 The experiments concerning
Crack were executed single-threaded on a MacBook Pro with 2.6 GHz Intel

1http://eda.mmci.uni-saarland.de/crack/

http://eda.mmci.uni-saarland.de/crack/
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Figure 8.2: Accuracy for ACI and NCI on discrete (left), continuous (middle) and
mixed-type (right) data based on dependence probability ϕ.

Core i7 processor and 16 GB memory running Mac OS X. All tested data sets
could be processed within seconds; with a maximum runtime of 3.8 seconds.

8.4.1 Synthetic Data

On synthetic data, we want to show the advantages of either score. In partic-
ular, we expect CrackA to perform well on categorical data and continuous
data with balanced domain sizes and dimensions, whereas we expect CrackN
to outperform CrackA on continuous data with varying domain sizes, dimen-
sions and on mixed-type data.

We generate synthetic data with assumed ground truth X → Y with |X| =
k and |Y | = l, each having n = 5 000 rows, as follows. First, we randomly
assign the type for each attribute in X. For discrete data, we randomly draw
the number of classes between two (binary) and five and distribute the classes
uniformly. Continuous data is generated following a normal distribution taken
to the power of q by keeping the sign, leading to a sub-Gaussian (q < 1.0) or
super-Gaussian (q > 1.0) distribution.2

To create data with the true causal direction X → Y , we introduce de-
pendencies from X to Y , where we distinguish between splits and refinements.
We call the probability threshold to create a dependency ϕ ∈ [0, 1]. For each
j ∈ {1, . . . , l}, we throw a biased coin based on ϕ for each Xi ∈ X that deter-
mines if we model a dependency from Xi to Yj . A split means that we find
a category (discrete) or a split-point (continuous) on Xi to split Yj into two
groups, for which we model its distribution independently. As refinement, we
either do a multiway split or model Yj as a linear or quadratic function of Xi

plus independent Gaussian noise. We decide uniformly at random whether to
do a split or refinement.

2To ensure identifiability, we use super- and sub-Gaussians (Hoyer et al., 2009).
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Figure 8.3: Accuracy of ACI (left) and NCI (right) on symmetric dimensions k ∈
{2, 3, 5, 7, 11} for discrete, continuous and mixed-type data.
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Figure 8.4: Accuracy of ACI (left) and NCI (right) on synthetically generated causal
pairs of asymmetric cardinality, |X| = 3 and |Y | ∈ {1, 3, 5, 7, 11} with ground truth
X → Y or Y → X chosen randomly, for discrete, continuous and mixed-type data.

Accuracy

First, we compare the accuracies of CrackN and CrackA with regard to
single-type and mixed-type data. To do so, we generate 200 synthetic data sets
with |X| = |Y | = 3 for each dependency level where ϕ ∈ {0.0, 0.1, . . . 1.0}.
Figure 8.2 shows the results for discrete, continuous and mixed-type data.
For single-type data, the accuracy of both methods increases with the de-
pendency, and reaches nearly 100% for ϕ = 1.0. At ϕ = 0, both approaches
correctly do not decide instead of taking wrong decisions. As expected CrackN
strongly outperforms CrackA on mixed-type data, reaching near 100% accu-
racy, whereas CrackA reaches only 72%. On discrete data, CrackA picks up
the correct signal faster than CrackN .

Dimensionality

Next, we evaluate how sensitive both scores are w.r.t. the dimensionality of
both X and Y , where we separately consider the cases of symmetric k = l
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Figure 8.5: [Higher is better] Accuracy curves of the multivariate methods Crack,
Origo and Ergo, and the univariate methods IGCI, Cure and Slope (dashed lines)
on the univariate Tübingen causal benchmark pairs (100), weighted as defined.

and asymmetric k , l dimensionalities. Per setting, we consider the average
accuracy over 200 independently generated data sets.

For the symmetric case, both methods are near to 100% on single-type data,
whereas only CrackN also reaches this target on mixed-type data, as can be
seen in Figure 8.3. To test asymmetric pairs, we set the dimensionality of X to
three, |X| = 3, and vary the dimensionality of Y from 1 to 11. To avoid bias, we
choose the ground truth causal direction, i.e., X → Y and Y → X, uniformly
at random. We plot the results in Figure 8.4. We observe that CrackN has
much less difficulty with the asymmetric data sets than CrackA. CrackN
performs near perfect and has a clear advantage over CrackA on mixed-type
and continuous data. CrackA performs better on discrete data for l = 1.

8.4.2 Univariate Benchmark Data

To evaluate Crack on univariate data, we apply it to the well-known Tübin-
gen benchmark data set (v1.0) consisting of 100 univariate cause-effect pairs
with known ground truth.3 As these are mainly numeric pairs, with only a few
categoric instances, we apply CrackA. We compare to the state-of-the-art
methods for multivariate pairs, Origo (Budhathoki and Vreeken, 2017b) and
Ergo (Vreeken, 2015), and those specialized for univariate pairs, which are
Cure (Sgouritsa et al., 2015), IGCI (Janzing et al., 2012) and Slope (Marx
and Vreeken, 2017) using their publicly available implementations and recom-
mended parameter settings.4

For each approach, we sort the results by confidence. Accordingly, we cal-
culate the accuracy curves (see Section 6.5.1). We plot the results in Figure 8.5
and show the 95% confidence interval of a fair coin flip as a grey area. Except

3https://webdav.tuebingen.mpg.de/cause-effect/
4Note that Sloppy and QCCD were published after Crack.
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Table 8.1: Comparison of LTR, Ergo, Origo and Crack on 17 multivariate cause-
effect pairs with known ground truth. The type is either “N” for numeric or “M” for
mixed. A “3” indicates a correct decision, a “–” an incorrect one and (n/a) that a method
is not applicable.

Decisions

Causal Pair n |X| |Y | Ground Truth Type LTR Ergo Origo Crack

Climate 10 226 4 4 Y → X N 3 3 – –
Ozone 989 1 3 Y → X N (n/a) 3 3 3
Car 392 3 2 X → Y N – 3 3 3
Radiation 72 16 16 Y → X N – – – 3
Symptoms 120 6 2 X → Y M 3 3 – 3
Brightness 1 000 9 1 X → Y N (n/a) (n/a) – 3
Chemnitz 1 440 3 7 X → Y N 3 3 3 3
Precipitation 4 748 3 12 X → Y N 3 – – 3
Stock 7 2 394 4 3 X → Y N – 3 – 3
Stock 9 2 394 4 5 X → Y N – 3 – 3
Haberman 306 3 1 X → Y M 3 3 – –
Iris flower 150 4 1 X → Y M (n/a) (n/a) – 3
Canis 2 183 4 2 X → Y M (n/a) (n/a) 3 3
Lepus 2 183 4 3 X → Y M (n/a) (n/a) 3 3
Martes 2 183 4 2 X → Y M (n/a) (n/a) 3 3
Mammals 2 183 4 7 X → Y M (n/a) (n/a) 3 3
Octet 82 1 10 Y → X N (n/a) 3 3 3

Accuracy 0.56 0.82 0.47 0.88

to Crack none of the multivariate methods is significant w.r.t. the fair coin
flip. In particular, Crack has an accuracy of over 90% for the first 41% of
its decisions and reaches 77.2% overall—the final result of CrackN is only 3%
worse. Crack also beats both Cure (52.5%) and IGCI (66.2%), which are
methods specialized for univariate pairs. Perhaps most impressively, Crack
performs within the 95% confidence interval of the best performing method,
Slope, which has an overall accuracy of 81.7%. Slope is at the advantage for
univariate pairs as it can exploit non-deterministic structure in the data, which
is not doable for multivariate data.

8.4.3 Real World Data

Next, we apply CrackN on multivariate mixed-type and single-type data,
where we collected 17 cause-effect pairs with known ground truth. We provide
basic statistics for each pair in Table 8.1. The first six are part of the Tübingen
benchmark (Mooij et al., 2016), and the next four were provided by Janzing
et al. (2010). Further, we extracted cause-effect pairs from the Haberman and
Iris (Dheeru and Karra Taniskidou, 2017), Mammals (Heikinheimo et al., 2007)
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and Octet (Ghiringhelli et al., 2015; Van Vechten, 1969) data sets. Haberman
is a data set on medical case studies describing the survival of patients who had
undergone surgery for breast cancer between 1958 and 1970 (Haberman, 1976).
X consists of the age of the patient at time of operation, the patient’s year of
operation and the number of positive axillary nodes detected. Y is the survival
status, which is binary and divided into longer or at most five years (X → Y ).
The Iris data set contains data about three types of the Iris plant (Y ) and four
features dependent on which the type can be determined (Fisher, 1936). Next,
we extract four cause-effect data sets from the Mammals data set (Heikinheimo
et al., 2007), which consists of both climate data and presence records of 121
mammal species over 2 183 areas of 50 × 50km in Europe. We assume that
elevation, precipitation, average temperature and the annual temperature range
(X) cause the presence of a mammal and not contrarily. We created three data
sets, Canis, Lepus andMartes, each containing locations of different types of the
named species and one data set containing all three of them. Last, we created
a data set based on the octet data set (Ghiringhelli et al., 2015; Van Vechten,
1969). Marx and Vreeken (2017) created 10 univariate cause effect pairs based
on the data set that had all the same effect, which we combined to a single
multivariate data set.

We compare CrackN with LTR (Janzing et al., 2010), Ergo (Vreeken,
2015) and Origo (Budhathoki and Vreeken, 2017b). Ergo and LTR do not
consider categoric data, and are hence not applicable on all data sets. In
addition, LTR is only applicable to strictly multivariate data sets. CrackN is
applicable to all data sets, and infers 15/17 causal directions correctly, by which
it has an overall accuracy of 88.2%. Importantly, the two wrong decisions have
low confidences compared to the correct inferences.

In addition, we conduct an experiment to check whether or not our result
is influenced by redundant variables within X or Y . Hence, we first apply
a standard redundancy test (R, Hmisc, redun) to omit redundant attributes
within X or Y (R2 ≥ 0.95). After the reduction step, we apply CrackN to
the non-redundant pairs. As result, we found that the Climate cause-effect
pair indeed contained redundant information and was inferred correctly after
removing the redundant variables. For all other pairs, the prediction did not
change. Hence, applying CrackN after redundancy correction leads to an
accuracy of 94.4%.

8.5 Conclusion

We considered the problem of inferring the causal direction from the joint distri-
bution of two univariate or multivariate random variables X and Y , consisting
of single-, or mixed-type data. We pointed out weaknesses of known causal
indicators and proposed the normalized causal indicator for mixed-type data
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and data with highly unbalanced domains. Further, we suggested a practical
two-part MDL encoding based on classification and regression trees to instan-
tiate the absolute and normalized causal indicators and provide Crack, a fast
greedy heuristic to efficiently approximate the optimal MDL score.

In the experiments, we evaluated the advantages of our proposed causal
indicators and gave advice on when to use them. On real-world benchmark
data, we are on par with the state-of-the-art for univariate continuous data
and beat the state-of-the-art on multivariate data with a wide margin. For
future work, we aim to investigate the application of Crack for the discovery
of causal networks as well as its application to biological networks.



Chapter 9

Conclusion

In this thesis, we focused on three different aspects in the broader research area
of causal discovery. These concern the faithfulness assumption, conditional
independence testing, and cause-effect inference. We formulated a research
question for each of these topics, which defined the general problems that we
aimed to solve. In the following, we will discuss the progress that we made
towards answering these research questions, point out aspects that we did not
solve yet, and examine possible avenues for future work.

The first research question that we formulated was concerned with the
faithfulness assumption. We criticized that this essential assumption can be
violated by different generating mechanisms. Our goal was to infer causal
structures even if faithfulness is violated, and thus, classical approaches fail to
infer the true causal graph. We formalized this research question as follows.

Question 1 How can we discover causal DAGs in the presence of faithfulness
violations induced by xor-type relations?

To tackle this problem, we first thoroughly analyzed the conditional inde-
pendence statements induced by xor relations. After that, we devised a weaker
faithfulness assumption, 2-adjacency faithfulness, which is, opposed to normal
faithfulness, not violated by such mechanisms. We further pointed out the dif-
ficulties such mechanisms impose for inferring the DAG structure and provided
a sound inference rule to approach this problem. This new inference rule allows
us to infer the causal DAG within such an xor relation if it appears in a larger
graph. As a proof of concept, we additionally provide a sound adaptation of
the GS algorithm to discover the Markov blanket of a target node under strictly
weaker assumptions than faithfulness.
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Although these contributions are important steps towards answering Ques-
tion 1, the last step, the development of a sound causal discovery algorithm
is yet to be done. A possible instantiation of such an algorithm could be
achieved by extending existing constraint-based algorithms such as the PC
algorithm (Spirtes et al., 2000) or score-based algorithms such as GES (Chick-
ering, 2002) to our setting. For both, the main challenge would be to efficiently
discover strict 2-associations and develop a smart procedure to infer the edge
directions. The second part is especially difficult, considering we might not be
able to infer the skeleton structure for all strict 2-associations. Another open
problem is to extend our framework to the setup in which causal sufficiency
does not hold, i.e., there might be unobserved confounders, or relax the as-
sumption that all causal relations are acyclic. Besides, an interesting future
project would be to evaluate how frequently such faithfulness violations occur
in real data and evaluate our algorithm on such data.

In the second part of this thesis, we considered the problem of conditional
independence testing, which lies at the core of causal discovery and largely
influences the accuracy of causal discovery algorithms. Within the broad topic
of independence testing, we considered the following research question.

Question 2 How can we detect (conditional) dependencies among mixed-type
random variables that can be discrete, continuous or a mixture of both?

Towards this goal, we first developed a conditional independence criterium,
SCCI, for discrete data based on stochastic complexity, which approximates al-
gorithmic conditional mutual information. In addition, we proved that SCCI
is a consistent estimator of CMI defined through Shannon entropy and em-
pirically evaluated the sample complexity of SCCI on this task. Further, we
benchmarked SCCI against state-of-the-art conditional independence tests in
a causal discovery setup. We noticed that compared to its competitors, SCCI
is able to pick up more true dependencies while not compromising the false
discovery rate. As a follow-up project, we proposed a more general CMI es-
timator that can be applied to discrete, continuous and discrete-continuous
mixture random variables. We proved that we can consistently estimate CMI
for such data using adaptive histogram models. Through evaluations on syn-
thetic data, we showed that among the tested estimators, our estimator is the
only one that converges to the true CMI estimate on mixture data.

Despite these advancements, we did not entirely reach our goal yet. Being
able to consistently estimate CMI is an important step towards independence
testing. However, as we evaluated in Chapter 3, the plug-in estimator for CMI
on discrete data tends to overestimate dependencies and hence, is almost never
completely zero for independent variables. Thus, to reliably distinguish depen-
dencies from independencies, we need to correct for this bias. We evaluated
multiple possible correction criteria towards this goal, but the ideal remains to



155 Chapter 9. Conclusion

be found. In addition, we might improve our results for independence testing
by tailoring the histogram estimation more towards this objective. On a differ-
ent note, also the efficiency of the algorithm still leaves room for improvement.
It would be interesting to evaluate faster and more efficient search heuristics to
see whether we can achieve equally good results with less computational effort.

In the last part of this thesis, we considered the problem of telling cause
from effect given an i.i.d. sample of numeric, continuous or mixed-type data.
Being able to infer the causal direction in such a scenario helps to distinguish
between Markov equivalent DAGs, and thus, enables us to infer the correct
DAG structure. We formulated this objective in our third research question.

Question 3 How can we distinguish between the two Markov equivalent DAGs
X → Y and Y → X, and do so with guarantees?

To approach this problem, we build upon the algorithmic independence of
conditionals, which states that the factorization of the joint distribution w.r.t.
the true DAG is the shortest one (Janzing and Schölkopf, 2010). We first es-
tablished a direct link between this postulate, which is formulated in terms of
Kolmogorov complexity, and two-part MDL approximations of it. As a prac-
tical instantiation of this framework, we modelled dependencies between cause
and effect for univariate numeric i.i.d. data using local and global regression
functions. To efficiently estimate these functions from an empirical sample, we
proposed Slope. Although performing well in practice, Slope does, however,
not come with guarantees besides approximating the AIC postulate. Hence, we
followed-up on Slope with Sloppy, for which we derived identifiability results
for L0-regularized regression functions and even managed to outperform Slope
in multiple settings. Subsequently, we extended the ideas presented in Chap-
ter 6 to multivariate mixed-type data and proposed one of the first methods for
cause-effect inference that can be applied to such a general setting. Throughout
the empirical evaluations for all these methods, we were able to show that our
proposed algorithms are among the state-of-the-art on both synthetic data, as
well as on real-world benchmark data.

Despite the work presented in this thesis, the key aspects of Slope and
Sloppy have been further developed to infer the complete causal DAG among
a set of random variables X1, . . . , Xm (Mian et al., 2021). The corresponding
algorithm Globe is able to infer the full DAG structure and not only the
Markov equivalence class, as opposed to constraint-based methods. Another
avenue for future improvements would be to relax the assumption of causal
sufficiency or consider different generating mechanisms like the location-scale
setup, in which Sloppy was not able to pick up the correct causal direction.

The research questions we tried to answer in this thesis have the overar-
ching goal of bringing causal discovery closer to the application to real-world
data. Naturally, part of this process is to develop algorithms that have only
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lightweight assumptions, like the one presented in Part I, are robust and appli-
cable to different data types. MDL-based approaches, as the ones presented in
Parts II and III, intrinsically aim towards robust methods by considering both
the complexity of a model and how well it can fit the data. Simply put, these
methods were developed in the spirit of Occam’s Razor: if two models perform
equally well, we should prefer the simpler one. Towards applicability on diverse
data sets, we proposed two approaches (in Chapters 4 and 8), which are not
limited to a specific data type, but can be applied in a mixed setting. To con-
clude, we hope that this thesis provided a small stepping stone towards more
robust causal discovery methods that can be applied in a real-world setting.



Appendices

A.1 Example 2.2 in Detail

As described in Section 2.5, we can generate a DAG of the form X → Y ← Z
and W → Y s.t. X,Y and Z form a minimal unfaithful triple and W��⊥⊥P Y
as follows. We generate X,Z,W and E independently, with X and Z as fair
coins, W as a coin with P (W = 1) = p, where 0 < p < 1 and E (the noise
variable) as a biased coin with P (E = 1) = q, 0 < q < 1

2 . With q > 0, we
ensure that the function is non-deterministic. Further, we generate Y as

Y := ((X ⊕ Z) ∧W )⊕ E .

We will obtain that P (Y = 1) = q + p
2 − pq. Further, we can calculate that

P (X = 1, Y = 1) = 1
2P (Y = 1) = P (X = 1) · P (Y = 1). Also, P (X =

1, Y = 0) = P (X = 1) · P (Y = 0), which means that they are marginally
independent. The same holds for Z and Y . If we calculate the probability
for all three variables, we get that P (X = 0, Z = 1, Y = 1) = p+q−2pq

4 and
P (X = 0, Z = 1) · P (Y = 1) = 1

4P (Y = 1). Hence, we need to solve

P (X = 0, Z = 1, Y = 1) = P (X = 0, Z = 1) · P (Y = 1)

⇔ p+ q − 2pq = q + p

2 − pq

⇔ p− pq = p

2 .

The only solutions are p = 0 or q = 1
2 , which we excluded. Hence, Y ��⊥⊥P {X,Z}

and by weak union also Y ��⊥⊥P X | Z, as well as Y ��⊥⊥P Z | X. Since we
know by assumption that X ⊥⊥P Z we can conclude from Lemma 2.1 that also
X��⊥⊥P Z | Y , which means that {X,Y, Z} from a minimal unfaithful triple

157
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since W will also not cancel out any of these conditional dependencies. Next,
we also find that W��⊥⊥P Y , since P (W = 1, Y = 1) = p

2 , which is only equal
to P (W = 1) · P (Y = 1), if p = 0, p = 1 or q = 1

2 , which we excluded,
and hence W��⊥⊥P Y . Last, we need to show that X��⊥⊥P W | {Y,Z} and that
Z��⊥⊥P W | {X,Y }. We can write

P (X,W | Y,Z) = P (X,W, Y, Z)
P (Y, Z) .

To show conditional dependence, this value has to be different from P (X |
Y, Z) · P (W | Y, Z). Consider the case where all variables are equal to one.
Hence, we get that

P (X = 1,W = 1, Y = 1, Z = 1) = pq

4 ,

P (X = 1, Y = 1, Z = 1) = q

4 ,

P (W = 1, Y = 1, Z = 1) = p

4 .

Since we know that P (Y = 1, Z = 1) = P (Y = 1)/2, we thus need to solve

pq = pq

2P (Y = 1) .

This equation can only be true if p or q = 0, i.e., the system is either inde-
pendent of W or deterministic, p = 1 or q = 1

2 , which we all excluded by
assumption. Hence, X��⊥⊥P W | {Y,Z}. The dependence between Z and W
given X and Y can be derived in the same way.

A.2 2-Orientation Faithfulness and Sparsest Markov Rep-
resentation

In this section, we briefly discuss the connection of our new assumptions to
approaches based on the sparsest Markov representation (SMR) (Raskutti and
Uhler, 2018) which is also referred to as frugality (Forster et al., 2017), which
we discussed in the related work section. A graph G∗ satisfies the SMR as-
sumption if every graph G that fulfils the Markov property and is not in the
Markov equivalence class of G∗ contains more edges than G∗. Here we will not
discuss the SMR assumption in further detail, but focus on the suggested causal
discovery algorithm under the SMR assumption, which is called the Sparsest
Permutation (SP) algorithm.

To explain the SP algorithm, we need to define a DAG Gπ, w.r.t. a per-
mutation π. A DAG Gπ consists of vertices V and directed edges Eπ, where
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an edge from the j-th node π(j) according to permutation π to node π(k) is in
Eπ if and only if j < k and

Xπ(j)��⊥⊥P Xπ(k) | {Xπ(1), Xπ(2), . . . , Xπ(k−1)}\{Xπ(j)} ,

where Xπ(j) refers to the j-th random variable according to permutation π.
Based on this definition, the SP algorithm constructs a graph Gπ for each
possible permutation and selects that permutation π∗ for which Gπ∗ contains
the fewest edges. This permutation π∗ is also called minimal or a minimal
permutation, if it is not unique.

Although this procedure might be very slow in practice, it is theoretically
appealing. In particular, we conjecture that it can identify the collider pattern
even if strict 2-associations are included, if 2-orientation faithfulness holds.
Here, we will not provide a proof for this conjecture, but give some evidence
by discussing the behaviour of the SP algorithm on an example graph.

Consider the graph provided in Figure 2.5(a) again. For this example, we
assume that V does not consist of any further vertices than the four shown
in the graph. We will show that all permutations π that are minimal have in
common that π(4) = Y . W.l.o.g. let π(1) = X,π(2) = Z and π(3) = W , then
Gπ only contains the three correct edges, which are:

π(1)→ π(4) : X��⊥⊥P Y | {Z,W}
π(2)→ π(4) : Z��⊥⊥P Y | {X,W}
π(3)→ π(4) : W��⊥⊥P Y | {X,Z}

and we do not add any superfluous edges, as

π(1)→ π(2) : X ⊥⊥P Z | ∅
π(1)→ π(3) : X ⊥⊥P W | Z
π(2)→ π(3) : Z ⊥⊥P W | X .

If we would pick a permutation π′ in which we flip for example W and Y such
that Y is no longer the node assigned to the highest number in the permutation,
i.e., π′(3) = Y and π′(4) = W , we will find more edges and thus not a minimal
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graph anymore. In particular, we get that

π′(1)→ π′(3) : X��⊥⊥P Y | {Z}
π′(2)→ π′(3) : Z��⊥⊥P Y | {X}
π′(3)→ π′(4) : Y ��⊥⊥P W | {X,Z}
π′(1)→ π′(4) : X��⊥⊥P W | {Z, Y }
π′(2)→ π′(4) : Z��⊥⊥P W | {X,Y }

and thus the graph according to this permutation contains two edges more than
for permutation π. The main point is that we are now allowed to condition on
Y , which opens the paths between X or Z and W . Similarly, assume that we
put X as the last node and get the order π′(1) = Z, π′(2) = W,π′(3) = Y and
π′(4) = X, for which

π′(1)→ π′(2) : Z ⊥⊥P W | ∅
π′(1)→ π′(3) : Z ⊥⊥P Y | {W}
π′(1)→ π′(4) : Z��⊥⊥P X | {W,Y }
π′(2)→ π′(3) : W��⊥⊥P Y | {Z}
π′(2)→ π′(4) : W��⊥⊥P X | {Z, Y }
π′(3)→ π′(4) : Y ��⊥⊥P X | {Z,W}

and hence, we again find four edges, which is one more than for π. Also, if
π′(1) = Y , we can use it in the conditional to find a dependence between X
and Z, and at least one dependence between X or Z and W . Hence, at least
for this example graph, the SP algorithm would infer a correct ordering.

An interesting avenue for future work would be to analyze whether it is
possible to always detect the collider pattern also in larger graphs and triples
that may or may not be shielded.

A.3 Proofs for Chapter 2

Theorem 2.2 Assuming that the CMC holds, the orientation rule in Defini-
tion 2.11 is sound.

Proof: First, we derive a general statement about the relations between X
and Z without further specifying the role of Y . In particular, we show that
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there always exists a pair (X,Z) ∈ X × Z s.t. w.l.o.g.

X ⊥⊥G Z | Pa(X) ∪ (X\{X}) ∪ (Z\{Z}) , (1)

where Pa(X) ⊆ V\Z. Due to acyclicity, there has to exist a node in X∪ Z, say
X, that is not an ancestor of any node in (X∪Z)\{X} and hence (X∪Z)\{X} ⊆
Nd(X). By the local Markov condition, we get that X ⊥⊥G(X∪Z)\{X} | Pa(X).
Thus, by weak union,

X ⊥⊥G Z | Pa(X) ∪ (X\{X}) ∪ (Z\{Z}) ,

for any Z ∈ Z. Further, Z ∩ Pa(X) = ∅, as by assumption no pair of nodes
(X,Z) ∈ X × Z is adjacent in G.

Since Y s−≤2 X and Y s−≤2 Z, we know that Y is at least adjacent to one
node in X and one node in Z. Hence, Y can take the following roles:

a) Y is a descendent of each node in X ∪ Z, that is, X → Y ← Z,
b) Y is a non-descendent of each node in X ∪ Z and
c) Y is a descendent of at least one node in X∪ Z and a non-descendent of

at least one node in X ∪ Z.
The first statement corresponds to the graph structure implied by rule i) and
any possible structure from the latter two is implied by the probabilities found in
rule ii). To show these two implications hold, we do a proof by contraposition
for each rule.

Hence, to show rule i), we need to prove that if the graph structure is not a
collider—i.e., Y takes one of the roles described in b) or c)—then there exists
a pair (X,Z) ∈ X × Z and there exists a subset S ⊆ V\{X,Z} s.t.

X ⊥⊥P Z | S ∪ {Y } ∪ (X\{X}) ∪ (Z\{Z}) .

First, consider all graphs in which Y is a non-descendent of each node in X∪Z
as described in b). We know from statement (1) that, w.l.o.g., there exists a
pair (X,Z) ∈ X × Z for which X ⊥⊥G Z | Pa(X) ∪ (X\{X}) ∪ (Z\{Z}). Since
Y ∈ Nd(X), we will also find that X ⊥⊥G Z | Pa(X)∪(X\{X})∪(Z\{Z})∪{Y },
where Pa(X) does not include X or Z. Thus, by CMC we found the required
independence. For the cases described in c), again assume that X is not an
ancestor of any node in (X ∪ Z)\{X}. To conclude the same statement as
previously, we show that X has to be in De(Y ) and thus Y ∈ Nd(X). We do
this by deriving a contradiction: assume X ∈ Nd(Y ). If X consists only of the
single node X, then X has to be adjacent to Y , X ∈ Pa(Y ) and hence X → Y
in G. Thus, Y (and hence X) has to be an ancestor of at least one node in Z,
by assumption (Y is a non-descendent of at least one node in X ∪ Z), which
is a contradiction. Similarly, if X contains a second node, X ′, we know by
assumption that X ′ ∈ Nd(X). We also know that the triple {X,X ′, Y } has to
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contain a collider. X cannot be the collider, since X < De(Y ) and also X ′

cannot be the collider since X < An(X ′). Hence, Y has to be the collider on
the path 〈X,Y,X ′〉. As above, at least one node Z ∈ Z has to be a descendent
of Y , by assumption and thus, X ∈ An(Z), which is a contradiction.

Last, we prove that the implication in rule ii) holds. Thus, by contraposi-
tion, we need to show that if X → Y ← Z, then there exists a pair X,Z ∈ X×Z
s.t. X is conditionally independent of Z given a subset of V\{X,Z} that con-
tains (X\{X})∪(Z\{Z}) but does not contain Y . From statement (1) there ex-
ists a pair (X,Z) ∈ X×Z that is d-separated given Pa(X)∪(X\{X})∪(Z\{Z}).
Since Y cannot be in Pa(X) due to acyclicity, we showed that there exists such
a pair of nodes X,Z that can be rendered conditionally independent by a subset
of V\{X,Z} that contains (X\{X}) ∪ (Z\{Z}) but does not contain Y (after
applying CMC), which concludes the proof. �

Corollary 2.1 Given M := (G,V, P ) with Y ∈ V and X, Z ⊆ V, where X ∩
Z = ∅, Y s−≤2 X, Y s−≤2 Z and no pair of nodes (X,Z) ∈ X × Z is adjacent.
Assuming that CMC holds, we can detect if condition i) or ii) of 2-orientation
faithfulness fails on the triple {X, Y, Z}.

Proof: Since we know that Y s−≤2 X and Y s−≤2 Z, we can conclude that,
as in the proof of Theorem 2.2, Y can take three different roles w.r.t. X and
Z, where role a) corresponds to condition i) in 2-orientation faithfulness and
rule i) in the orientation rule and roles b) and c) correspond to condition ii)
and rule ii).

Now assume that condition i) in 2-orientation faithfulness fails, that is,
the true graph can be described by role a), but there exists a pair X ∈ X and
Z ∈ Z, for which X is independent of Z given a subset of V\{X,Z} that
contains Y ∪ (X\{X})∪ (Z\{Z}). If this is the case, we cannot apply rule i) of
our orientation rule. In addition, we showed in Theorem 2.2 that for a graph
as described by a) rule ii) can never apply. Thus, we can detect this failure of
condition i) in 2-orientation faithfulness by noticing that neither rule i) nor ii)
of our orientation rule applies.

Next, assume condition ii) in 2-orientation fails. This means that we can-
not apply rule ii) of the orientation rule. Again, we showed that for such graphs
Y takes either role b) or c), in which case orientation rule i) can never apply.
Hence, we can detect if condition ii) in 2-orientation faithfulness fails, since
none of the two conditions in our orientation rule are met. �

Theorem 2.3 Let M = (G,V, P ), and assume 2-adjacency faithfulness, As-
sumption 2.1 and CMC hold. Algorithm 2.1 identifies MB(T ) for T ∈ V.
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Proof: We follow the original correctness proof under the faithfulness as-
sumption (Margaritis and Thrun, 2000), that consists of two main steps. First,
we need to show that MB(T ) ⊆ S after the grow phase and second, we need to
ensure that all nodes in MB(T ) stay in S during the shrink phase, while nodes
not in MB(T ) will be removed from S in the shrink phase.

Grow phase: By assumption (2-adjacency faithfulness), for each node X ∈
PC(T ), T is either 1-associated to X, or there exists a set X that includes X
such that T s−2 X. If T is 1-associated to a node X, then T��⊥⊥P X | S, if X < S,
hence we will add those nodes. If T is strictly 2-associated to a set {X,Z} then
T��⊥⊥P X | S∪{Z} for all S ⊆ V\{X,T, Z}. Thus, we also add X to S, if X < S
and afterwards also find that T��⊥⊥P Z | S, if Z < S, since X ∈ S. Hence, all
nodes in PC(T ) will be added during the grow phase. Next, we need to consider
the spouses of T that do not overlap with PC(T ), hence might not have been
added yet.1 Since we know that eventually S will contain all children of T , we
will afterwards also add the corresponding spouses. In particular, we need to
consider two classes of spouses S: 1) Spouses that through a child node C are
strictly 2-associated to T (T s−2 {C, S}). Those will be added due to the strict
2-association as explained above. 2) Spouses that are not involved in such a
strict 2-association. For the latter, we find a conditional dependence between T
and S by conditioning on the corresponding child node C (by Assumption 2.1),
which will be in S. A special case occurs if a child node C is strictly 2-associated
to two spouses S1 and S2. Due to Assumption 2.1, T is dependent on S1 if we
condition on C and S2, vice versa T is dependent on S2 if we condition on C
and S1. Similarly to how we add strict 2-associations above, we will also first
add one of the two and then the second one. Thus, after the grow phase, S will
contain all elements of MB(T ).

Shrink phase: Since it is possible that after the grow phase S is a superset
of MB(T ), we need to ensure that in the shrink phase all W < MB(T ) will be
deleted from S and all X ∈ MB(T ) will stay in S.

First, we show that no node X ∈ MB(T ) will be removed from S. Assume X
is the first element in MB(T ) that we attempt to remove from S. If X ∈ PC(T ),
by definition of 2-adjacency faithfulness T is either 1-associated to X and hence,
X will not be removed, or T is strictly 2-associated to a set X ⊆ MB(T ) that
contains X. W.l.o.g. let X = {X,Z}, then T��⊥⊥P X | S\{X}, since S contains
Z, and hence, X will not be removed from S. If X is a spouse of T , there
again exist two cases. Either T is strictly 2-associated to a set that contains
X, in which case, X will not be removed from S as explained above, or T
is not strictly 2-associated to a set that contains X. In the latter case, by
Assumption 2.1, X is dependent on T conditioned on a subset of MB(T )\{X}
and thus X��⊥⊥P T | S\{X}. In particular, this subset consists of the common

1There could be nodes that are spouses of T and in PC(T ) at the same time, e.g.,
if T has two children X and Z, where Z is also a parent of X.
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child C and in the special case that C is strictly 2-associated to X and a second
spouse S, it also contains that second spouse S. Either way, those conditioning
sets are contained in S. Hence, X will not be removed from S. In the following
iterations, S will still contain MB(T ) and hence, we will also not remove a true
element of MB(T ).

Last, assume W < MB(T ), but W ∈ S after the grow phase. Further, we
can write S\{W} as MB(T ) ∪ Q, where Q contains all elements from S\{W}
that are not in MB(T ). Then, T ⊥⊥G{W}∪Q | MB(T ) and thus by weak union,
T ⊥⊥GW | MB(T )∪Q, which implies T ⊥⊥P W | S\{W} (by CMC). Hence, we
delete each node in S that is not in MB(T ) in the shrink phase. �

A.4 Proofs for Chapter 3

Lemma 3.1 For n ≥ 1, the regret Cnk of the multinomial stochastic complexity
of a random variable with a domain size of k ≥ 2 is log-concave in n.

Proof: To improve the readability of this proof, we write CnL as shorthand
for CnML

of a random variable with a domain size of L. Since n is an integer,
each CnL > 0 and C0

L = 1, we can prove Lemma 3.1, by showing that the fraction
CnL/C

n−1
L is decreasing for n ≥ 1, when n increases. We know from Mononen

and Myllymäki (2008) that CnL can be written as the sum

CnL =
n∑
k=0

m(k, n) =
n∑
k=0

nk(L− 1)k
nkk! ,

where xk represent falling factorials and xk rising factorials. Further, they
show that for fixed n we can write m(k, n) as

m(k, n) = m(k − 1, n) (n− k + 1)(k + L− 2)
nk

, (2)

where m(0, n) is equal to 1. It is easy to see that from n = 1 to n = 2 the
fraction CnL/C

n−1
L decreases, as C0

L = 1, C1
L = L and C2

L = L + L(L − 1)/2. In
the following, we will show the general case. We rewrite the fraction as follows.

CnL
Cn−1
L

=
∑n
k=0m(k, n)∑n−1

k=0 m(k, n− 1)

=
∑n−1
k=0 m(k, n)∑n−1

k=0 m(k, n− 1)
+ m(n, n)∑n−1

k=0 m(k, n− 1)
(3)
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Next, we will show that both parts of the sum in Equation 3 are decreasing when
n increases. We start with the left part, which we rewrite to∑n−1

k=0 m(k, n)∑n−1
k=0 m(k, n− 1)

=
∑n−1
k=0 m(k, n− 1) +

∑n−1
k=0 (m(k, n)−m(k, n− 1))∑n−1

k=0 m(k, n− 1)

= 1 +

∑n−1
k=0

(L−1)k

k!

(
nk

nk − (n−1)k

(n−1)k

)
∑n−1
k=0 m(k, n− 1)

. (4)

When n increases, each term of the sum in the numerator in Equation 4 de-
creases, while each element of the sum in the denominator increases. Hence,
the whole term is decreasing. In the next step, we show that the right term in
Equation 3 also decreases when n increases. It holds that

m(n, n)∑n−1
k=0 m(k, n− 1)

≥ m(n, n)
m(n− 1, n− 1) .

Using Equation 2 we can reformulate the term as follows.

n+L−2
n2 m(n− 1, n)
m(n− 1, n− 1) = n+ L− 2

n2

(
1 + m(n− 1, n)−m(n− 1, n− 1)

m(n− 1, n− 1)

)
After rewriting, we have that n+L−2

n2 is definitely decreasing with increasing n.
For the right part of the product, we can argue the same way as for Equation 4.
Hence the whole term is decreasing, which concludes the proof. �

A.5 Additional Experiments for Chapter 3

In this section, we provide more details to the true positive and false positive
rates w.r.t. the experiments in Section 3.6.1, which we show in Figure 1. In
addition, we also provide the results for SCCIfs and CMIΓ with α = 0.001.
Since we did not provide the accuracy of JIC for this experiment in the main
body of Chapter 3, we plot the accuracy, true and false positive rates of JIC
in Figure 3 and analyze those results at the end of this section.

From Figure 1, we see that SCCIf and SCCIfs perform best. Only for
very high noise setups (≥ 70%) they start to flag everything as independent.
The G2 test struggles with small sample sizes. It needs more than 500 sam-
ples and is inconsistent given more than 35% noise. Note that we forced
G2 to decide for every sample size, while the minimum number of samples
recommended for G2 on this data set would be 1 440, which corresponds to
10(|X |− 1)(|Y|− 1)|Z| (Kalisch et al., 2012). Further, we observe that there is
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Figure 1: True positive (TPR) and false positive rates (FPR) of SCCIf , SCCIq, SCCIfs,
G2 and CMIΓ with α = 0.05 (Γ.05) and α = 0.001 (Γ.001) for identifying d-separation.
We use varying samples sizes (x-axis) and additive noise percentages (y-axis) as in Fig-
ure 3.5, where a noise level of 0.95 refers to 95% additive noise.

barely any difference between CMIΓ using α = 0.05 or α = 0.001 as a signif-
icance level. After more than 20% noise has been added, CMIΓ starts to flag
everything as dependent.

Next, we also show the accuracy for identifying d-separation for CMI with
zero as threshold in Figure 2. Overall, it performs very poorly, which raises
from the fact that it barely finds any independence. In addition to the accuracy
of CMI, we also plot the average value that CMI reports for the true positive
case (F ⊥⊥T | {D,E}), where it should be equal to zero. It can be seen that it
is dependent on the noise level as well as the sample size. This could explain,
why SCCIf performs best on the d-separation data. Since the noise is uniform,
the threshold for SCCIf is likely to be higher the more noise has been added.

The JIC test has the opposite problem. For the d-separation scenario that
we picked it is too restrictive and falsely detects independencies where the
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Figure 2: Accuracy of empirical CMI (left) and the average value of empirical CMI for the
true independent case (right) for varying samples sizes and additive noise percentages.
Î(F ;T | {D,E}) is larger for small sample sizes and high noise settings.
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Figure 3: Accuracy, true positive (TPR) and false positive rates (FPR) of JIC for iden-
tifying d-separation. We use varying samples sizes and additive noise percentages, where
a noise level of 0.95 refers to 95% additive noise.

ground truth is dependent, as shown in Figure 3. As the discrete version of
JIC is calculated from the empirical entropies and a penalizing term based on
the asymptotic formulation of stochastic complexity—i.e.,

JIC(X;Y | Z) := max{Î(X;Y | Z)− (|X | − 1)(|Y| − 1)|Z|
2n logn, 0} ,

it penalizes quite strongly in our example since |Z| = 16. As JIC is based on
an asymptotic formulation of stochastic complexity, we expect it to perform
better given more data.

A.6 Proofs for Chapter 4

Theorem 4.1 Given a mixed random vector (X,Y, Z) with probability measure
PXY Z , limv′→0 limn→∞ Ih(X;Y | Z) = I(X;Y | Z) almost surely, where n
refers to the sample size and v′ refers to the maximum of the histogram volumes
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for bins in B′ (defined in Section 4.2.2).

Proof: To prove Theorem 4.1 we need several intermediate results. Lemma A.3
shows that a histogram results in a valid discretization as all terms correspond-
ing to volumes in Ih cancel out, and hence Ih can be written as a sum of plug-in
estimators of discrete entropies. Then, Lemma A.1 shows a classic result that
the plug-in estimator of discrete entropies will converge to the true entropy al-
most surely. Further, we show in Lemma A.2 that as the volumes of histogram
bins containing continuous values go to 0, the true entropies of the discretized
variables (which are discretized by the histogram) converge to the true entropies
of original variables.

Lemma A.1 Given a discrete random vector (Xd, Yd, Zd), the empirical en-
tropy Ĥ converges to the true entropy as n→∞, i.e., limn→∞Ĥ(Xd, Yd, Zd) =
H(Xd, Yd, Zd) almost surely (Antos and Kontoyiannis, 2001).

Lemma A.2 Given a random vector (X,Y, Z) that contains discrete-continuous
mixture random variables, with bins B = B′ ∪B′′ and the resulting discretized
random vector (Xd, Yd, Zd), where B′′ contains discrete data points (of which
every dimension has a discrete value) and B′ = B \B′′, we have

lim
v′→0

H(Xd, Yd, Zd) = H(X,Y, Z) ,

where v′ = maxBj∈B′(v(Bj)).

Proof: Firstly, it is well-known that this result holds if (X,Y, Z) is a con-
tinuous random vector (Cover and Thomas, 2012); then, if (X,Y, Z) contains
mixture variables,

H(X,Y, Z) = lim
v′→0

∑
Bj∈B′

PXdYdZd

v(Bj)
log PXdYdZd

v(Bj)
+

∑
Bj∈B′′

PXdYdZd

v(Bj)
log PXdYdZd

v(Bj)

= lim
v′→0

H(Xd, Yd, Zd) ,

which concludes the proof. �

Definition A.1 Given a random vector (X,Y, Z) that contains mixture vari-
ables, and an adaptive grid B, we define the discretized random variable Xd,
Yd, Zd, with probability measure (probability mass function)

PXd,Yd,Zd
((j1, j2, j3)) =

∫
Bj

dXY Z
dv

dv ,
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where Bj denotes the jth bin of B.

Lemma A.3 Given an m-dimensional random vector (X,Y, Z) that contains
mixture variables with an unknown probability measure PXY Z , a dataset D =
(xi, yi, zi)i∈{1,...,n} generated by PXY Z , a histogram model M , and correspond-
ing discretized random vector (Xd, Yd, Zd), we have

Ih(X,Y |Z) = Ĥ(Xd, Zd) + Ĥ(Yd, Zd)− Ĥ(Xd, Yd, Zd)− Ĥ(Zd) .

That is, the terms corresponding to volumes in Ih cancel out and our histogram
model results a valid discretization.

Proof: Denote the adaptive grid of histogram model M as BXY Z , which is
the Cartesian product of bins defined on X,Y, Z—i.e. BXY Z = BX×BY ×BZ ,
and denote the corresponding MLE of histogram density function as fh

θ̂XY Z
.

Further, define a function vX , such that for each xi in D, vX(xi) = v(BXj )
if xi ∈ BXj , where BXj is a bin of BX and v is defined based on the random
variable X. Then, define vY , vZ , vXZ , vY Z , vXY Z similarly. By the definition

Ih(X,Y | Z) = Hh(X,Z) +Hh(Y, Z)−Hh(X,Y, Z)−Hh(Z) .

First consider Hh(X,Z). We write BXZ = BX × BZ , with marginal den-
sity function fh

θ̂XZ
. W.l.o.g. suppose that BXZ consists of k bins, denoted as

BXZj , j ∈ {1, . . . , k}. Then,

Hh(X,Z) = −
∫
RmX +mZ

fh
θ̂XZ

log fh
θ̂XZ

dv

= −
k∑
j=1

∫
BXZ

j

fh
θ̂XZ

log fh
θ̂XZ

dv

= −
k∑
j=1

cj log
(

cj
nv(Bj)

)

= −
k∑
j=1

cj log
(cj
n

)
+

n∑
i=1

log(vXZ(xi, zi))

= Ĥ(Xd, Zd) +
n∑
i=1

log(vXZ(xi, zi)) ,

where cj is the number of data points in Bj and vXZ(xi, zi) = vX(xi)vZ(zi).
The remaining entropies can be calculated similarly. Hence, Ih(X,Y | Z) =
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Ĥ(Xd, Zd) + Ĥ(Yd, Zd) − Ĥ(Xd, Yd, Zd) − Ĥ(Zd), as the sum of the volume
related terms is equal to zero. That is,

n∑
i=1

log(vXZ(xi, zi)) +
n∑
i=1

log(vY Z(yi, zi))

−
n∑
i=1

log(vXY Z(xi, yi, zi))−
n∑
i=1

log(vZ(zi)) = 0 .

�

To conclude the proof of Theorem 4.1, we link the above results:

lim
v′→0

lim
n→∞

Ih(X;Y | Z)

= lim
v′→0

lim
n→∞

(Hh(X,Z)+Hh(Y,Z)−Hh(X,Y, Z)−Hh(Z))

= lim
v′→0

lim
n→∞

(Ĥ(Xd, Zd)+Ĥ(Yd, Zd)−Ĥ(Xd, Yd, Zd)−Ĥ(Zd))

= lim
v′→0

(H(Xd, Zd)+H(Yd, Zd)−H(Xd, Yd, Zd)−H(Zd))

= I(X;Y | Z) .

�

A.6.1 Additional Experiments for Chapter 4

In the following, we provide additional experiments to evaluate IX 2 and ISC.
To evaluate how well IX 2 and ISC can identify conditional (in)dependencies,
we evaluate both variants on various generating mechanisms that involve col-
lider and non-collider structures. As in the causal discovery experiment, we set
α = 0.01 for IX 2 , RCIT and RCoT.

Collider StructuresWe generate data according to a collider structure, which
can be represented by a directed acyclic graph as, e.g. X → Z ← Y . Accord-
ing to this structure, we model X and Y by some distribution and write Z
as a non-deterministic function of X and Y . We generate data for different
generating mechanisms, including two continuous and four mixed settings:

1. X ⊥⊥Y and X,Y are either drawn from N(0, 1) or from Unif(−2, 2). Z
is an additive function of polynomials up to degree three or the tangent
function plus additive independent noise N ∼ N(0, 0.1)—e.g. Z = X3 +
tan(Y ) +N . We pick the type of the distribution of X,Y , as well as the
function type, uniform at random.
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Figure 4: Accuracy for detecting continuous (left) and mixed-type (right) dependencies
in collider structures (top) and independencies in non-collider structures (bottom) for
different sample sizes.

2. X,Y are drawn from a standard Gaussian distribution, with X ⊥⊥Y and
Z = sign(X · Y ) ·Exp(1/

√
2). Note that this is a generating mechanism

that is likely to induce a faithfulness violation, as explained in Chapter 2.
3. X,Y ∼ N(0, 1) with X ⊥⊥Y and Z = sign(X · Y ), where we randomly

assign a z ∈ Z to 10% of the values in Z to make the function non-
deterministic.

4. X ∼ N(0, 1), Y ∼ Pois(λ), with parameter λ selected uniformly at
random from {1, 2, 3}. We generate Z as X modulo Y and assign 10%
of the data points randomly.

5. X,Y are unbiased coins. Z ′ = X⊕Y , where ⊕ denotes the xor operator.
From Z ′ we calculate Z as N(0, 0.1) if Z ′ = 0 and Pois(5) · N(0, 0.1)
under the condition that Z ′ = 1.

6. We generate X,Y and Z ′ as above, but this time we generate Z as
Pois(5) +N(0, 0.1) if Z ′ = 1 and as N(0, 0.1) if Z ′ = 0.

For each mechanism we generate 100 data sets and report the averaged re-
sults, separately for the continuous and mixed data, in Figure 4 (top). On the
continuous data, both of our approaches perform on par with RCIT and JIC
for more than 400 data points, whereas MIIC has a slightly better performance
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and RCoT is not able to detect the dependence for the sign function and hence
has an accuracy of about 50%. Since the functions for mixed data include an
xor and the modulo operator, it is difficult to treat all discrete variables as or-
dinal and hence RCIT only reaches up to 80% accuracy—which is mostly due
to an xor determining the scaling of a Gaussian distributed variable. On the
other hand, both of our tests perform very well and only need 400 samples to
obtain an accuracy close to 100%. JIC and MIIC perform on par with our tests.

Non-Collider Structures Similar to collider structures, there also exist non-
collider structures of the form X → Z → Y or X ← Z → Y . In both cases, the
ground truth is that X ⊥⊥Y | Z. To simulate data according to these graphs,
we consider two continuous mechanisms based on polynomial functions and
two mixed generating mechanisms:

1. X ∼ N(0, 1), Z is an additive noise function of X and Y is an additive
noise function of Z. The functions can be polynomials up to degree three
or the tangent function.

2. Z ∼ N(0, 1), X and Y are independent additive noise functions of Z, as
defined above.

3. X,Y and Z are generated as in Experiment IV.
4. X and Y are generated according to Experiment II and Z ∼ N(µ, x) for

X = x and µ ∈ [−4, 4].
In essence, Figure 4 (bottom) shows that IX 2 has an almost perfect accuracy
for the continuous and mixed data, whereas RCIT and RCoT fail to detect up
to 20% of the independencies for continuous data, MIIC does not detect up
to 11% and JIC seems to generally overestimate dependencies for those test
cases. If we consider these results in comparison to the results for detecting
dependencies for the collider setting, we suspect that both MIIC and JIC have
a larger tendency to falsely detect dependencies, while our approach is more
conservative and hence needs more samples to detect true dependencies. De-
spite an almost perfect performance on mixed data, ISC is not as accurate on
the purely continuous data. This is due to the way we compute the regret
terms. In particular, for linear functions that are almost deterministic, which
describes about 1/4 of all dependencies, the regret tends to be too lenient.
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