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Abstract: At present, little is known about the molecular imaging-based response assessment of
prostate-specific membrane antigen (PSMA)-targeted radioligand therapy with 177Lutetium (177Lu-
PSMA-617 RLT) in metastatic castration-resistant prostate cancer (mCRPC). Our study evaluated
the response to RLT using both molecular imaging and biochemical response assessments, and their
potential prediction of progression-free survival (PFS). Fifty-one consecutive patients given two cycles
of RLT at 6-week intervals were analyzed retrospectively. 68Ga-PSMA-11 PET/CT was obtained
about 2 weeks prior to the first and 4–6 weeks after the second cycle. Molecular imaging-based
response using SUVpeak and tumor-to-liver ratio (TLR) was determined by modified PERCIST criteria.
∆TLR and ∆SUV were significantly correlated with ∆PSA (p < 0.001, each). After a median follow-up
of 49 months, the median PFS (95% CI) was 8.0 (5.9–10.1) months. In univariate analysis, responders
showing partial remission (PRPSA and PRTLR) had significantly (p < 0.001, each) longer PFS (median:
10.5 and 9.3 months) than non-responders showing either stable or progressive disease (median: 4.0
and 3.5 months). Response assessment using SUVpeak failed to predict survival. In multivariable
analysis, response assessment using TLR was independently associated with PFS (p < 0.001), as was
good performance status (p = 0.002). Molecular imaging-based response assessment with 68Ga-PSMA-
11 PET/CT using normalization of the total lesion PSMA over healthy liver tissue uptake (TLR) could
be an appropriate biomarker to monitor RLT in mCRPC patients and to predict progression-free
survival (PFS) of this treatment modality.

Keywords: metastatic castration-resistant prostate cancer (mCRPC); Lutetium-177; PSMA-617; radi-
oligand therapy; 68Ga-PSMA-11 PET/CT; molecular imaging-based response assessment; tumor-to-
liver ratio (TLR)

1. Introduction

Despite advances in early detection and therapy, a significant fraction of patients
with prostate cancer develops lethal metastatic castration-resistant prostate carcinoma
(mCRPC) [1]. In the last decade, many life-prolonging therapy options, such as chemo-
therapy (docetaxel and cabazitaxel, each with survival benefit of 2.4 months compared to
mitoxantrone), androgen receptor targeting agents (enzalutamide with survival benefit
of 4.8 months and abiraterone with 3.9 months, each compared to placebo), and 223Ra
therapy (with survival benefit of 2.8 months compared to placebo) have been approved
for the treatment of men with mCRPC [2–6]. More recently, studies using 177Lu-labeled
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prostate specific membrane antigen (PSMA) ligands such as PSMA-617, called 177Lu-PSMA
radioligand therapy (RLT), have shown encouraging results in these patients [7–10]. The
assessment of response to these treatments still relies on biochemical parameters, such as
prostate specific antigen (PSA) and conventional imaging modalities, including computed
tomography (CT), magnetic resonance tomography (MRI), and bone scintigraphy [11].
However, these conventional imaging tools have limited diagnostic value in the advanced
stage of disease, especially in the response evaluation of bone metastases, which could show
more sclerotic changes, even after successful treatment and therapy response. Thus, there
is significant demand for a reliable imaging methodology to accurately monitor treatment,
especially for 177Lu-PSMA-617 RLT in the setting of mCRPC. The response assessment by
positron emission tomography/computed tomography (PET/CT) using 18F-fluorocholine
has been investigated in patients with mCRPC treated with docetaxel [12], abiraterone [13],
or enzalutamide [14], and showed the ability to predict clinical outcome beyond the PSA
response. In recent years, 68Ga-PSMA-11 PET/CT has gained increasing importance in
the management of prostate cancer for initial staging [15], biochemical recurrence [16],
detection of metastases in non-metastatic CRPC [17], and screening for 177Lu-PSMA-617
RLT. Recently, Violet et al. found a significant correlation between tumoral uptake on
pretherapeutic 68Ga-PSMA PET and absorbed dose by the tumor, estimated on a 177Lu-
PSMA-617 whole-body scan using an automated voxelized dosimetry tool [18]. However,
little is known about the impact of 68Ga-PSMA-11 PET/CT on response assessment of
different therapy options in mCRPC, especially for 177Lu-PSMA-617 RLT [19,20].

The aim of this study was to evaluate 68Ga-PSMA-11 PET-derived parameters (SU-
Vpeak and the normalization over the healthy liver tissue uptake/tumor-to-liver ratio/TLR)
as potential tools for monitoring 177Lu-PSMA-617 RLT. Molecular imaging-based response
assessment using the modified PERCIST criteria was compared with biochemical response
assessment using the established biomarker serum PSA. Furthermore, the potential value
of these PET-derived parameters for the prediction of progression-free survival outcome
was evaluated.

2. Materials and Methods
2.1. Patients and Ethics

The study population included patients with late-stage/end-stage mCRPC, who
underwent 177Lu-PSMA-617 RLT at our institution. Inclusion requirements for this study
were histologically confirmed mCRPC, at least 2 cycles of 177Lu-PSMA-617 RLT, 68Ga-
PSMA-11 PET/CT about 2 weeks before the first and 4–6 weeks after the second cycle
of 177Lu-PSMA-617 RLT, and availability of clinical outcome data. Furthermore, intense
PSMA expression of all tumor lesions on pre-treatment 68Ga-PSMA-11 PET/CT, defined
visually, as tumoral uptake higher than liver uptake was required. The standard decision
approach in choosing 177Lu-PSMA-617 RLT was based on multidisciplinary tumor board
discussion and was in accordance with German healthcare reimbursement specifications.

This therapy was performed on a compassionate use basis under the German Pharma-
ceutical Act §13 (2b). Patients gave written consent after being thoroughly informed about
the risks and potential side effects of this intervention. Additionally, patients consented
to publication of any resulting data in accordance with the Declaration of Helsinki. The
analysis was approved by the local institutional review board (ethics committee permission
number 140/17).

2.2. 177Lu-PSMA-617 RLT

Each patient received two cycles of 177Lu-PSMA-617 RLT with mean cumulative
administered activities of 12.9 GBq (range: 9.1–16.9). Patients continued their androgen
deprivation therapy (ADT). Patients were excluded if they underwent changes in ADT
regimens between scans at baseline and restaging after two cycles. ADT, especially enzalu-
tamide, can alter the PSMA expression in prostate carcinoma cells [21] and may therefore
falsify SUV measurements.
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PSMA-617 was obtained from ABX advanced biochemical compounds GmbH (Rade-
berg, Germany) and 177Lu from IDB Holland BV (Baarle-Nassau, The Netherlands). Produc-
tion and quality control of 177Lu-PSMA-617 was accomplished analogously to a published
methodology [9]. For a typical labeling, 150 µg (143 nmol) PSMA-617 was used for 6 GBq
of 177Lu. Radiochemical yields and purity of the radiotracer were ≥99%.

2.3. 68Ga-PSMA-11 PET-CT Imaging and Data Acquisition

A mean activity of 68Ga-PSMA-11 of 120 ± 19 MBq was administered intravenously,
followed by a 500 mL infusion of NaCl 0.9%. No diuretics were applied. The mean time
between injection and PET acquisition was approximately 60 min according to standard
procedures for prostate cancer imaging [22]. PET/CT datasets were acquired on a Biograph
40 mCT PET/CT scanner (Siemens Medical Solutions, Knoxville, TN, USA) (acquisition
time: 3 min/bed position; extended FOV: 21.4 cm (TrueV), slice thickness: 3.0 mm) with
EANM Research Ltd. accreditation. A standard LD spiral CT was acquired for attenuation
correction and anatomical localization using an X-ray tube voltage of 120 keV and a
modulation of the tube current applying CARE Dose4D with a reference tube current of
50 mAs. CT images were reconstructed as a 512 × 512 matrix with an increment of 3 mm
and a slice thickness of 5.0 mm. The PET images were iteratively reconstructed using
the three-dimensional OSEM (ordered-subset expectation maximization) algorithm with
3 iterations, 24 subsets, and with Gaussian filtering to a transaxial resolution of 5 mm at
full-width at half-maximum (FWHM). Attenuation correction was performed using the
low-dose non-enhanced CT data.

2.4. Biochemical Response Assessment

Biochemical response to 177Lu-PSMA-617 RLT was measured in terms of serum PSA
level. Biochemical partial response (PRPSA) was defined as a decrease in serum PSA level
of ≥50% from the baseline value. Stable disease (SDPSA) was defined as an intermediate
change of serum PSA level between −50% and +25%. Progressive disease (PDPSA) was
defined using the Prostate Cancer Working Group 3 criteria (PCWG3) [11] as an increase in
serum PSA level of ≥25% and at least 2 ng/mL.

2.5. Molecular Imaging-Based Response Assessment

The response to 177Lu-PSMA-617 RLT was assessed by 68Ga-PSMA-11 PET/CT. As-
suming that 177Lu-PSMA-617 RLT had different effects on metastases in different organs,
as reported by Kulkarni et al. [23] with lymph node metastases responding better to this
treatment than bone metastases, we included a five-organ system per patient in the re-
sponse assessment, as previously described by Seitz et al. [24]. These comprised lymph
nodes, bones, liver, prostate or prostate bed, and other organs. For each organ, the three
lesions with the highest PSMA uptake on 68Ga-PSMA-11 PET/CT were identified as target
lesions and included in this analysis. Using the volume region of interest, SUVpeak of the
tumor lesions and SUVmean of healthy liver tissue were measured. Then, the sum of the
SUVpeak of all included lesions was divided by the SUVmean of the liver to calculate the
tumor-to-liver ratio (TLR). This method was applied to each individual patient at each time
point (before the first and after the second cycle of RLT).

For molecular imaging-based response assessment, the PET Response Criteria in Solid
Tumors (PERCIST) 1.0 were slightly modified [25] and then used to interpret post treatment
changes. Here, the following definitions were made: Molecular imaging-based partial
response (PRSUV or PRTLR) represents a decrease of >30% of summed SUVpeak or TLR,
respectively. Progressive disease (PDSUV or PDTLR) was defined as an increase of >30% of
SUVpeak or TLR, respectively, or appearance of any new lesion. A change within the range
of +30% and −30% was considered a stable disease (SDSUV or SDTLR).
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2.6. Statistics and Survival Assessment

Data on patient characteristics, treatment-related data, and response analyses are
presented descriptively and analyzed regarding association with progression-free survival
(PFS). PFS was defined as the interval from the start of 177Lu-PSMA-617 RLT to docu-
mented PSA progression (as defined using the Prostate Cancer Working Group 3 criteria
(PCWG3) or death (cut-off date: 30 March 2021). Patients were independently categorized
as responder (partial response) or non-responder (stable or progressive disease), either by
molecular imaging-based response or biochemical response assessment.

The examined patient, disease, and treatment characteristics included age, perfor-
mance status, hemoglobin, alkaline phosphatase (ALP), prior chemotherapy, presence of
visceral metastasis, diffuse bone marrow involvement, tumor burden on 68Ga-PSMA-11
PET/CT (low-moderate vs. high) at baseline, and PSA levels. Total tumor burden at
baseline were visually classified in low, moderate, or high in analogy to Gaertner et al. [26].
Characteristics furthermore included the cumulative 177Lu-PSMA-617 activity of the first
2 cycles of RLT, PSA response after two cycles, and the molecular imaging-based response
by modified PERCIST criteria starting with the first 177Lu-PSMA-617 administration. Vari-
ables were analyzed categorically. For age, performance status, hemoglobin level, ALP
level, and PSA level at the start of 177Lu-PSMA-617 RLT, respective arbitrary cut-offs of
65 years, ECOG 1, 12 g/dL, 220 U/L, and 230 ng/mL were employed. Because of inhomo-
geneously administered 177Lu-PSMA-617 activities, we divided the study cohort into two
groups: patients who received more than 13 GBq, and those that received equal to or less
than 13 GBq cumulative activities in the first 2 cycles of RLT.

PFS was analyzed using Kaplan–Meier statistics. To identify predictors of this end-
point, multivariable Cox proportional-hazards modeling was performed using a stepwise
model by backward elimination. Factors with moderate significance (p < 0.15) in univari-
ate analysis were included in the multivariable analysis. Correlation between molecular
imaging-based response (∆TLR, ∆SUV) and biochemical response (∆PSA) was calculated
using Spearman’s rank correlation test. Cohen’s κ was used to assess the degree of agree-
ment among the response variables. The significance level for all tests was p < 0.05.
SPSS version 23 (SPSS Inc., Chicago, IL, USA) and Prism 8 software (GraphPad Software,
San Diego, CA, USA) were used.

3. Results

The data of 51 patients who met the inclusion criteria were retrospectively analyzed
(characteristics summarized in Table 1). A total of 322 tumor lesions on screening 68Ga-
PSMA-PET/CT in 51 patients were identified as target lesions in the defined five-organ
system and evaluated in this study. These included 142 bone metastases (in 48 patients),
110 lymph node metastases (in 40 patients), 30 liver metastases (in 12 patients), 22 lesions
in the prostate bed (in 22 patients), and 18 other metastases (in 10 patients).

Table 1. Patient characteristics.

Patient Characteristics Value, No. (%)

Number of Patients 51
Number of therapeutic cycles 2

Median Activity (Range) (GBq) 12.9 (9.1–16.9)
Age

Median (Range) 74.5 (49–89)
ECOG

0–1 40 (78%)
≥1 11 (22%)

Baseline PSA in ng/mL
Median (Range) 235.5 (0.21–3266)
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Table 1. Cont.

Patient Characteristics Value, No. (%)

Baseline AP (U/L)
Median (Range) 200 (133–1753)

AP ≥ 220 10 (20%)
Previous therapies

Surgery (Prostatectomy) 23 (45%)
ADT 51 (100%)

External beam radiotherapy of prostate or prostate bed 26 (51%)
Docetaxel or Cabazitaxel 36 (71%)

≥2 lines of taxanes 15 (29%)
Abiraterone or Enzalutamide 47 (92%)

Both (Enzalutamide and Abiraterone) 22 (43%)
223Ra therapy 10 (20%)

Patterns of metastatic spread
Predominant lymph nodes 12 (24%)

Predominant bone 43 (84%)
Visceral organs 18 (35%)

The Spearman test showed a significant correlation between changes in ∆PSA and
∆SUV, and between ∆PSA and ∆TLR, in the comparison of the parameters before and
after two cycles of RLT (p < 0.001, each). The correlation was slightly better between ∆PSA
and ∆TLR than the correlation between ∆PSA and ∆SUV (rTLR = 0.63 vs. rSUV = 0.57),
Figure 1.
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Figure 1. Correlation between ∆PSA and (A) ∆TLR and (B) ∆SUV. The blue dotted line is localized at −50% PSA change
and the green dotted line at −30% of TLR/SUV.

3.1. Biochemical and Molecular-Imaging Response Assessment

Thirty-one patients (61%) showed partial biochemical response (PRPSA), 18 patients
(35%) stable disease (SDPSA), and two patients (4%) progressive disease (PDPSA). Using
molecular-imaging based response assessed by SUVpeak, 37 patients (73%) showed partial
response (PRSUV), 12 patients (23%) stable disease (SDSUV), and two patients (4%) progres-
sive disease (PDSUV). Response assessment using TLR gave similar results, with PRTLR in
35 patients (69%), SDTLR in 13 patients (25%), and PDTLR in three patients (6%). A compar-
ison of the used response assessment methods showed a moderate agreement (Cohen’s
κ = 0.45) with a concordance of 76% (39/51) between SUV and PSA, and a substantial
agreement (Cohen’s κ = 0.61) with a concordance of 82% (42/51) between TLR and PSA.
The concordance between TLR and SUV was 88% (45/51). With the exception of two
patients, all subjects showing partial remission by PSA also showed partial remission by
TLR. One of these two patients was classified by molecular imaging-based response as
having disease progression due to appearance of new metastases (Figure 2) and the other
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patient as stable disease. The majority of discrepancies were found in patients with stable
disease by PSA (Figure 3A). Two patients showed concordance with progressive disease by
both methods. With the exception of three patients, all who showed partial remission by
PSA also showed partial remission by SUV. Of these, one patient was classified as having
disease progression due to the appearance of new metastases (Figure 2) and two patients
as having stable disease. The majority of discrepancies were found in patients with stable
disease by PSA (Figure 3B). Two patients showed concordance with progressive disease by
both methods. Representative structural responses to 177Lu-PSMA-617 RLT are shown in
Figures 2 and 4.
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Figure 2. Progression with appearance of new metastases illustrated by 68Ga-PSMA-11 PET/CT
maximum-intensity projection images (A) before and (B) 5 weeks after the second cycle of 177Lu-
PSMA-617 RLT in a man with mCRPC. According to biochemical response based on serum PSA
levels, the patient showed a partial remission.
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Figure 3. Waterfall plots illustrating the relative changes in standard biochemical parameters (PSA) after two cycles of
177Lu-PSMA-617 RLT compared to the assessment in molecular-imaging based response with TLR (A) and SUV (B). Values
marked with * highlight the discordant cases.
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Figure 4. Concordant biochemical and molecular imaging-based response as illustrated by 68Ga-
PSMA-11 PET/CT maximum-intensity projection images (A) before and (B) 6 weeks after the second
cycle of 177Lu-PSMA-617 RLT in a man with mCRPC. The patient was classified as having partial
remission by each of PSA, SUV, and TLR.

3.2. Survival Analysis

Median (minimum–maximum) follow-up was 49.0 (6.0–64.4) months following the
first 177Lu-PSMA-617 RLT administration. Forty patients (78.4%) died by the end of the
study. All deaths were mCRPC related. No treatment-related mortality was observed.
The median (95% CI) OS was 14.7 (11.2–18.2) months. Disease progression events were
documented in 44 men (86.3%). The median (95% CI) PFS was 8.0 (5.9–10.1) months. Two
factors related to response to 177Lu-PSMA-617 RLT and one factor related to patient’s
characteristics were significantly associated with PFS in univariate analysis (Table 2).

Table 2. Relationship of PFS with selected factors in patients with mCRPC treated with 177Lu-PSMA-617.

Variable Category or
Categories

n
(%)

PFS,
Months

Univariate
Analysis

Multivariable
Analysis

(95% CI) HR (95% CI) p HR (95% CI) p
Total 51 (100%) 8.0 (5.9–10.1)
Age

>65 yr 42 (83%) 8.4 (6.4–10.4) - 0.724 - -
≤65 yr 9 (17%) 5.7 (3.7–7.7) -

Performance status
ECOG ≤ 1 40 (78%) 9.3 (7.4–11.2) 0.25 (0.12–0.54) <0.001 0.26 (0.12–0.56) 0.002
ECOG > 1 11 (22%) 4.4 (2.4–6.5)

Hemoglobin
HB > 13 g/dL 21 (41%) 8.0 (3.7–12.3) - 0.782 - -
Hb ≤ 12 g/dL 30 (59%) 7.8 (5.5–10.1)

ALP
<220 U/L 39 (76.5%) 12.3 (9.7–14.9) 0.249
≥220 U/L 12 (23.5%) 9.2 (4.6–13.8)
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Table 2. Cont.

Variable Category or
Categories

n
(%)

PFS,
Months

Univariate
Analysis

Multivariable
Analysis

Prior chemotherapy
No 15 (29%) 9.3 (7.3–11.3) - 0.862 - -
Yes 36 (71%) 7.2 (6.2–8.2)

Visceral metastases at
basline

No 33 (65%) 8.4 (6.2–10.6) - 0.529 - -
Yes 18 (35%) 6.7 (3.8–9.6)

Tumor burden
Low-moderate 31 (61%) 9.6 (6.7–12.5) 0.223

high 20 (39%) 6.7 (2.3–11.1)
Diffuse bone marrow
involvment at basline

Yes 15 (29%) 8.4 (5.2–11.6) - 0.838 - -
No 36 (71%) 7.8 (5.7–9.9)

PSA level at start of
177Lu-PSMA-617 RLT

≤230 ng/mL 26 (51%) 8.4 (5.5–11.3) - 0.757 - -
>230 ng/mL 25 (49%) 7.6 (6.1–9.1)
Cumulative

177Lu-PSMA-617
activity of the first 2

cycles RLT
≤13 GBq 27 (53%) 9.6 (6.0–13.2) - 0.336 - -
>13 GBq 24 (47%) 7.2 (5.4–9.0)

Biochemical response
after the first two cycles

RLT
PRPSA 31 (61%) 10.5 (8.2–12.8) 0.29 (0.16–0.56) <0.001 0.24 (0.12–0.49) 0.091

SDPSA or PDPSA 20 (39%) 4.0 (2.1–5.9)
Molecular-imaging

response SUV after the
first two cycles RLT

PRSUV 37 (73%) 9.2 (7.5–10.9) - 0.302 - -
SDSUV or PDSUV 14 (27%) 5.0 (0.9–9.0)

Molecular-imaging
response TLR after the

first two cycles RLT
PRTLR 35 (69%) 9.3 (6.9–11.7) 0.27 (0.15–0.53) <0.001 0.27 (0.14–0.54) <0.001

SDTLR or PDTLR 16 (31%) 3.5 (0.9–6.1)

Responders showing biochemical partial remission (PRPSA) after two cycles of 177Lu-
PSMA-617 RLT had significantly longer PFS than non-responders (SD PSA or PD PSA) with
a median PFS (95% CI) of 10.5 (8.2–12.8) versus 4.0 (2.1–5.9) months (p < 0.001, log-rank
test). The corresponding Kaplan–Meier curves are shown in Figure 5.

Response on molecular imaging using TLR after two cycles of 177Lu-PSMA-617 RLT
was associated with longer PFS (Table 2). Patients with PRTLR had a median PFS (95% CI)
of 9.3 (6.9–11.7) months versus 3.5 (0.9–6.1) months for non-responders who showed SDTLR
or PDTLR (p ≤ 0.001, log-rank test). The corresponding Kaplan–Meier curves are shown in
Figure 6.
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Figure 5. Kaplan–Meier curves for PFS stratified by biochemical response using serum PSA change
after two cycles of 177Lu-PSMA-617 RLT.
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Figure 6. Kaplan–Meier curves for PFS stratified by molecular-imaging response assessment using
TLR after two cycles of 177Lu-PSMA-617 RLT.

There was no significant outcome difference between responders and non-responders
in the molecular-imaging based response assessment using SUVpeak with a median PFS of
9.2 (7.5–10.9) months versus 5.0 (0.9–9.0), for responders and non-responders, respectively,
p = 0.302. The corresponding Kaplan–Meier curves are shown in Figure 7. The general
condition of the patient at baseline was also related to PFS. Median (95% CI) PFS was
9.3 (7.4–11.2) months in men with ECOG 0-1 versus 4.4 (2.4–6.5) months in those with
ECOG > 1 (p ≤ 0.001, log-rank test).
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Figure 7. Kaplan–Meier curves for PFS stratified by molecular-imaging response assessment using
SUVpeak after two cycles of 177Lu-PSMA-617 RLT.

In the multivariable analysis, partial response in the molecular-imaging based re-
sponse assessment using TLR (PRTLR) remained an independent predictor for PFS with a
HR (95% CI) of 0.27 (0.14–0.54; p < 0.001). Preserved patient performance score (ECOG 0-1)
also remained as an independent predictor of PFS with a HR (95% CI) of 0.26 (0.12–0.56;
p = 0.002). Biochemical response based on serum PSA levels did not remain independently
significant in multivariable analysis (p = 0.091).

4. Discussion

The aim of this study was to investigate the feasibility of 68Ga-PSMA-11 PET/CT for
response assessment and outcome prediction of 177Lu-PSMA-617 RLT given to patients with
mCRPC. For this purpose, molecular imaging-based response and biochemical response
after two cycles of 177Lu-PSMA-617 RLT in 51 patients were evaluated. Molecular imaging-
based response using 68Ga-PSMA-11 PET-derived parameters (SUVpeak and tumor-to-
liver ratio: TLR) was assessed by a five-organ system and modified PERCIST criteria.
Biochemical response was measured in terms of serum PSA level and assessed using
PCWG3.

This is the first study to demonstrate that response assessment based on molecular
imaging with 68Ga-PSMA-11 PET/CT using normalization of tumoral PSMA uptake
over healthy liver tissue (TLR) is a predictor of outcome (PFS) in patients with late-stage
mCRPC treated with 177Lu-PSMA-617 RLT. After two cycles of 177Lu-PSMA-617 RLT,
responders (PRTLR) had a significantly lower risk for disease progression or death in
comparison to non-responders (SDTLR or PDTLR). On the contrary, molecular imaging
response assessment using SUVpeak failed to predict PFS in univariate analysis; responders
(PRSUV) had a median PFS of 9.2 months versus 5.0 months in non-responders (SDSUV or
PDSUV), p = 0.302. Recently published studies that also addressed the role of 68Ga-PSMA-11
PET/CT in assessing response to 177Lu-PSMA-617 RLT similarly reported no predictive
value of SUV alone, either for response or for survival [19,20]. One potential explanation
is the known existence of error sources for SUV measurements, such as incubation time
variations, inaccurate weight assessments, and extravasation of injected activity, resulting
in suboptimal test/retest accuracy [27]. These shortcomings were mostly overcome by
normalization of SUV measurements over the uptake of a reference organ. In our study,
healthy liver tissue was chosen as the reference region because of little potential 177Lu-
PSMA-617 RLT related toxicity and possible changes in tracer uptake of baseline versus
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interim PET compared to other sites of physiologic uptake, such as kidneys or salivary
glands, as known from PSMA dosimetry reports [28]. Moreover, liver SUV assessments are
facilitated by the generally homogenous physiological PSMA expression and the ease of
obtaining a representative area for VOI placement, even in patients with liver metastases.
The chosen method of SUV normalization over liver proved to have a high impact regarding
survival prediction, which might be seen to be analogous to the TLR parameter in FDG
PET for lymphoma response assessment, which is well established and superior to merely
(non-normalized) SUV-based response classifications [29].

Regarding the two molecular imaging biomarkers, SUVpeak and newly introduced
TLR, the correlation with the biochemical biomarker PSA showed minor differences. In
our cohort, we documented a PSA decline >50% after two 2 cycles of 177Lu-PSMA-617 RLT
in 61% of patients. By molecular imaging-based response assessment, partial response was
observed in 73% of patients using SUVpeak and in 68% of patients using TLR. These results
are in agreement with previously published reports showing efficacy of this treatment
modality in advanced mCRPC [8,30,31]. The correlation between ∆SUVpeak and ∆PSA
was significant, although with only a moderate r value (rSUV = 0.57, p < 0.001), and ∆TLR
showed slightly a superior correlation with ∆PSA (rTLR = 0.63, p ≤ 0.001). The resulting
response categories (PR, SD, PR) were again associated with slightly superior concordance
rates for TLR over SUVpeak: 76% (SUVpeak vs. PSA) and 82% (TLR vs. PSA). Similar
concordance values of 65–87% between PSA and SUV changes have been reported in other
studies with different cohorts of patients with prostate cancer [31,32]. However, to our
knowledge, this is the first study to show the correlation between PSA and TLR.

Serum PSA level is the most widely used parameter for treatment monitoring in
daily routine and in prospective trials dealing with advanced prostate cancer. In addition,
in 177Lu-PSMA RLT studies, ∆PSA during or at the end of therapy is a commonly used
biomarker to evaluate treatment success. In a phase II prospective trial of 177Lu-PSMA-617
in mCRPC, Violet et al. reported that patients achieving a PSA decline >50% had a longer
PFS than those without this decline [33]. Our data confirms this predictive power of PSA
decline in the early response assessment. However, in multivariable analysis, this parameter
lost the independent predictive impact, apparently due to its strong association with ∆TLR,
which proved slightly superior to ∆PSA for prediction of PFS; that is, response by PSA
and response by TLR were very similar in our cohort and thus not independent from each
other. The more accurate predictor of PFS, ∆TLR, remained as an independent predictor,
whereas ∆PSA was removed as an “independent predictor” within multivariable analysis.
Nevertheless, ∆PSA was significantly associated with PFS in univariate analysis (p < 0.001).
One should note that serial PSA measurements may sometimes miss disease progression, as
concluded by authors from a large study (post hoc analysis of the PREVAIL trial) including
n = 872 mCRPC patients undergoing enzalutamide treatment versus placebo [34]. In their
conclusion, they state that “Non-rising PSA at radiographic progression is a common
phenomenon in mCRPC patients treated with enzalutamide”. Furthermore, “Therefore, a
disease monitoring strategy that includes imaging not entirely reliant on serial serum PSA
measurement may more accurately identify disease progression”. Recently Michalski et al.
published data regarding assessment of the response to 177Lu-PSMA radioligand therapy
using modified PSMA PET Progression Criteria [35]. They found that progression according
to modified PPP criteria was a significant prognostic marker for OS (p < 0.001) with a hazard
ratio (HR) of 15.5 (95% CI 3.4–70.2). In contrast, the response of serum PSA level was not
significant (p = 0.12). However, there are some methodological differences with our study;
namely, they analyzed the response using serum PSA at the end of therapy (in our study,
after two cycles) and stratified the patients as progressive versus non-progressive (in our
study, as responders versus non-responders), and analyzed the predictor for OS (in our
study, for PFS). Although not shown in this study, whether a less-marked PSA decline (less
than 50%) as a cut-off for response may better distinguish associated PFS may eventually
be shown by investigations with larger patient cohorts.
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In addition, the patients’ performance status was an independent predictor of PFS in
our study. Patients with a good general condition, defined as ECOG 0-1 at the start of 177Lu-
PSMA-617 RLT, had significantly longer PFS than those with a worsened performance
score (ECOG > 1). These results are in accordance with the literature [36] and with our
previous study of hepatic metastasized mCRPC patients treated with 177Lu-PSMA-617
RLT [37].

5. Limitation

The main limitations of this study are its retrospective design and the small number of
patients. Because interim staging after two cycles of 177Lu-PSMA-617 RLT was performed
with PET-CT consisting of non-contrast enhanced low-dose CT, it was not possible to
define the response using Response Criteria in Solid Tumors. Furthermore, the five-organ
system includes metastases from different sites but does not reflect the total viable tumor
burden. Therefore, using total tumor volume parameters, especially in patients with mixed
responses, might be of advantage by reflecting the total viable PSMA expressing tumor
burden in contrast to selected target lesions. Another limitation that may affect liver
SUV measurements is the presence of disseminated liver metastasis, but this is rare in the
mCRPC setting.

6. Conclusions
68Ga-PSMA-11 PET-derived response assessment based on normalization of tumoral

PSMA expression to normal liver tissue (TLR) may be an appropriate biomarker for
monitoring 177Lu-PSMA-617 RLT in mCRPC patients and predicting survival outcome (PFS)
of this treatment modality. Our study indicates the superiority of using liver-normalized
tumor SUV values for molecular response assessment in this setting compared to the use
of standard tumor SUV measurements, which are widely practiced at present. However,
prospective studies with larger patient cohorts are needed to confirm these initial findings.
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